Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Biết x,y là hai số thực dương khác 1 thỏa mãn log_{\sqrt{x}}y = \frac{2y}{5};log_{25}x =
\frac{5}{2y} . Hỏi giá trị của biểu thức y^{2} - 2x^{2} bằng bao nhiêu? -25||25||0||-1

    Đáp án là:

    Biết x,y là hai số thực dương khác 1 thỏa mãn log_{\sqrt{x}}y = \frac{2y}{5};log_{25}x =
\frac{5}{2y} . Hỏi giá trị của biểu thức y^{2} - 2x^{2} bằng bao nhiêu? -25||25||0||-1

    Ta có:

    \left\{ \begin{matrix}\log_{\sqrt{x}}y = \dfrac{2y}{5} \\ \log_{25}x = \dfrac{5}{2y} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}log_{x}y^{2} = \dfrac{2y}{5} \\ \log_{x}25 = \dfrac{2y}{5} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}y^{2} = 25 \\ \log_{25}x = \dfrac{5}{2y} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}y = 5;(y > 0) \\ \log_{25}x = \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}y = 5 \\x = 5 \\\end{matrix} ight.

    Vậy giá trị của biểu thức y^{2} - 2x^{2}
= - 25

  • Câu 2: Nhận biết

    \log_{2}\left(\frac{1}{16} ight) = ...

    Ta có: \log_{2}\left( \dfrac{1}{16} ight)= \log_{2}2^{- 4} = - 4

  • Câu 3: Thông hiểu

    Cho phương trình 5^{x} + m^{2} = 9 với m là tham số. Hỏi có tất cả các giá trị nguyên của tham số m để phương trình có nghiệm thực?

    Ta có: 5^{x} + m^{2} = 9 \Leftrightarrow
5^{x} = 9 - m^{2}

    Để phương trình đã cho có nghiệm thực thì 9 - m^{2} > 0 \Leftrightarrow m \in ( -
3;3)

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 2; - 1;0;1;2 ight\}

    Vậy có 5 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 4: Thông hiểu

    Đồ thị hàm số sau là của hàm số nào?

    Đồ thị đi xuống nên hàm số đã cho là nghịch biến nên loại y = \left( \sqrt{2} ight)^{x}y = \left( \sqrt{3} ight)^{x}.

    Đồ thị hàm số đi qua điểm (−1; 3) nên chỉ có đáp án y = \left( \frac{1}{3} ight)^{x} thỏa mãn.

  • Câu 5: Vận dụng

    Cho phương trình \log{_{3}}^{2}x - 4\log_{3}x + m - 3 = 0. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt x_{1};x_{2} thỏa mãn x_{1} > x_{2} >
1.

    Đặt t = \log_{3}x. Phương trình đã cho trở thành t^{2} - 4t + m - 3 =
0(*)

    Phương trình (*) có hai nghiệm phân biệt t_{1};t_{2} thỏa mãn t_{1} > t_{2} > 0

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
P > 0 \\
S > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
7 - m > 0 \\
m - 3 > 0 \\
4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 3 < m < 7

  • Câu 6: Thông hiểu

    Cho a,b >
0;log_{3}a = p;log_{3}b = q. Biểu thức \log_{3}\left( \frac{3^{r}}{a^{m}b^{d}}ight) được biểu diễn như thế nào theo các ẩn số?

    Ta có:

    \log_{3}\left( \frac{3^{r}}{a^{m}b^{d}}ight) = \log_{3}3^{r} - \log_{3}a^{m} - \log_{3}b^{d}

    = r\log_{3}3 - m\log_{3}a -d\log_{3}b

    = r - m\log_{3}a - d\log_{3}b

    = r - mp - dq

  • Câu 7: Nhận biết

    Hàm số nào dưới đây đồng biến trên \mathbb{R}?

    Ta có: \frac{\sqrt{2} + \sqrt{3}}{e} >
1 nên hàm số y = \left(
\frac{\sqrt{2} + \sqrt{3}}{e} ight)^{x} đồng biến trên \mathbb{R}.

  • Câu 8: Nhận biết

    Trong các hàm số dưới đây, hàm số nào nghịch biến trên tập xác định của nó?

    Hàm số y = \log_{\frac{e}{2\pi}}x có 0 < \frac{e}{2\pi} < 1 là hàm số nghịch biến trên tập xác định của nó.

    Các hàm số y = \log_{\sqrt{2}}x; y = \log_{\pi}2x; y = \log_{2}x có cơ số lớn hơn 1 nên đồng biến trên tập xác định của nó.

  • Câu 9: Nhận biết

    Giải phương trình \log_{3}(2n + 1) = 2 ta thu được tập nghiệm S là:

    Điều kiện xác định: n > -
\frac{1}{2}

    \log_{3}(2n + 1) = 2 \Leftrightarrow 2n +1 = 3^{2}

    \Leftrightarrow 2n + 1 = 9
\Leftrightarrow n = 4(tm)

    Vậy phương trình có nghiệm n =
4.

  • Câu 10: Vận dụng

    Cho a\log_{6}3 +b\log_{6}2 + c\log_{6}5 = 5 với a,b,c là các số tự nhiên. Trong các khẳng định sau, khẳng định nào đúng?

    Ta có:

    a\log_{6}3 + b\log_{6}2 + c\log_{6}5 =5

    \Leftrightarrow 3^{a}.2^{b}.5^{c} =
5

    Do a,b,c\in\mathbb{ N} nên chỉ có một bộ số (a,b,c) = (0,0,1) thỏa mãn.

    Khẳng định đúng là a = b.

  • Câu 11: Vận dụng

    Cho a,b,c là các số thực dương khác 1. Các hàm số y = \log_{a}x;y = \log_{b}x;y =\log_{c}x có đồ thị như hình vẽ bên.

    Tìm khẳng định đúng.

    Kí hiệu hình vẽ như sau:

    Kẻ đường thẳng y = 1 cắt đồ thị của các hàm số y = \log_{a}x;y = \log_{b}x;y =\log_{c}x lần lượt tại các điểm có hoành độ là a;b;c.

    Từ đồ thị ta có a > c >
b.

  • Câu 12: Vận dụng cao

    Cho số thực dương a và b. Biểu thức thu gọn của biểu thức

    P = \left( {2{a^{\frac{1}{4}}} - 3{b^{\frac{1}{4}}}} ight).\left( {2{a^{\frac{1}{4}}} + 3{b^{\frac{1}{4}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight)

    có dạng P = xa + yb. Tính x + y.

    Ta có:

    \begin{matrix}  P = \left( {2{a^{\frac{1}{4}}} - 3{b^{\frac{1}{4}}}} ight).\left( {2{a^{\frac{1}{4}}} + 3{b^{\frac{1}{4}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left[ {{{\left( {2{a^{\frac{1}{4}}}} ight)}^2} - {{\left( {3{b^{\frac{1}{4}}}} ight)}^2}} ight].\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left( {4{a^{\frac{1}{2}}} - 9{b^{\frac{1}{2}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left[ {{{\left( {4{a^{\frac{1}{2}}}} ight)}^2} - {{\left( {9{b^{\frac{1}{2}}}} ight)}^2}} ight] = 16a - 81b \hfill \\   \Rightarrow x = 16;y =  - 81 \hfill \\   \Rightarrow y - x =  - 97 \hfill \\ \end{matrix}

  • Câu 13: Vận dụng

    Có bao nhiêu khẳng định sai trong các khẳng định cho dưới đây?

    (1) Với số thực a và các số nguyên m,n, ta có \left( a^{m} ight)^{n} =
a^{m.n};\frac{a^{m}}{a^{n}} = a^{m:n}.

    (2) Với hai số thực a,b cùng khác 0 và số nguyên n, ta có (ab)^{n} =
a^{n}.b^{n};\left( \frac{a}{b} ight)^{n} =
\frac{a^{n}}{b^{n}}

    (3) Với hai số thực a,b thỏa mãn 0 < a < b và số nguyên n, ta có a^{n}
< b^{n} khi và chỉ khi n >
0.

    (4) Cho số thực a và các số nguyên m,n. Khi đó, với a > 0 thì a^{m} > a^{n} khi và chỉ khi m > n.

    Khẳng định sai: "Với số thực a và các số nguyên m,n , ta có \left( a^{m} ight)^{n} =
a^{m.n};\frac{a^{m}}{a^{n}} = a^{m:n} "
  • Câu 14: Thông hiểu

    Viết biểu thức P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}};\left( {x > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}} = {x^{\frac{1}{5}}}.{x^{\frac{2}{3}}}.{x^{\frac{3}{5}}} = {x^{\frac{{113}}{{30}}}}

  • Câu 15: Nhận biết

    Đơn giản biểu thức E = a^{\sqrt{2}}.\left( \frac{1}{a}
ight)^{\sqrt{2} - 1} với a >
0 được kết quả là:

    Ta có:

    E = a^{\sqrt{2}}.\left( \frac{1}{a}
ight)^{\sqrt{2} - 1} = a^{\sqrt{2}}.a^{- \sqrt{2} + 1} = a^{\sqrt{2} -
\sqrt{2} + 1} = a

  • Câu 16: Thông hiểu

    Hình bên là đồ thị hàm số nào trong các hàm số dưới đây?

    Đồ thị đã cho là của một hàm số nghịch biến trên tập xác định của nó.

    Trong bốn phương án đã cho, chỉ có hàm số y
= \left( \frac{1}{3} ight)^{x}thỏa mãn.

  • Câu 17: Nhận biết

    Biết a \in
\mathbb{R}^{+}, khi đó \sqrt[4]{a} bằng:

    Ta có: \sqrt[4]{a} =
a^{\frac{1}{4}}

  • Câu 18: Nhận biết

    Giải phương trình \log_{2}a + \log_{2}3 = 0 thu được nghiệm là:

    Điều kiện xác định: a > 0

    \log_{2}a + \log_{2}3 = 0

    \Leftrightarrow \log_{2}3a = 0\Leftrightarrow 3a = 2^{0} \Leftrightarrow a =\frac{1}{3}(tm)

    Vậy phương trình có nghiệm là a =
\frac{1}{3}.

  • Câu 19: Thông hiểu

    Xác định nghiệm của phương trình

    \left\lbrack \left( 3 - 2\sqrt{2}
ight)^{\left( a^{2} + 1 ight)x} - \left( 3 + 2\sqrt{2} ight)
ightbrack.\left\lbrack 4^{x} - \left( b^{2} + 2 ight)
ightbrack = 0

    Phương trình tương đương:

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left( 3 - 2\sqrt{2} ight)^{\left( a^{2} + 1 ight)x} - \left( 3 +
2\sqrt{2} ight) = 0 \\
4^{x} - \left( b^{2} + 2 ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = - \dfrac{1}{a^{2} + 2} \\x = \log_{4}\left( b^{2} + 2 ight) \\\end{matrix} ight.

  • Câu 20: Thông hiểu

    Cho a là một số dương, biểu thức {a^{\frac{2}{3}}}.\sqrt a viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có: {a^{\frac{2}{3}}}.\sqrt a  = {a^{\frac{2}{3}}}.{a^{\frac{1}{2}}} = {a^{\frac{7}{6}}}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo