Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số y =f(x) = \log_{3}\left( x^{2} - 4x - m + 1 ight) với m là tham số. Tìm tất cả các giá trị thực của tham số m để hàm số đã y = f(x) xác định với mọi x\in \mathbb{R}?

    Hàm số y =f(x) = \log_{3}\left( x^{2} - 4x - m + 1 ight) xác định với mọi x\mathbb{\in R} khi và chỉ khi

    x^{2} - 4x - m + 1 > 0;\forall
x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta' < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 > 0 \\
4 + m - 1 < 0 \\
\end{matrix} ight.\  \Leftrightarrow m < - 3

    Vậy m \in ( - \infty; - 3)

  • Câu 2: Vận dụng

    Cho ba số thực dương a,b,c khác 1. Đồ thị các hàm số y = a^{x};y = b^{x};y = c^{x} được cho trong hình vẽ.

    Chọn mệnh đề đúng?

    Do hàm số y = a^{x} nghịch biến trên \mathbb{R} suy ra a < 1.

    Do hàm số y = b^{x};y = c^{x} đồng biến trên \mathbb{R} suy ra b,c > 1

    Ta có: \forall x \in (0; +
\infty): b^{x} > c^{x}
\Leftrightarrow \left( \frac{b}{c} ight)^{x} > 1

    \Leftrightarrow \frac{b}{c} > 1
\Rightarrow b > c

    Vậy a < 1 < c < b.

  • Câu 3: Vận dụng

    Cho ba số thực dương x, y, z thwo thứ tự lập thành một cấp số nhân, đồng thời với mỗi số thực dương a,(a eq 1) thì log_{a}x;log_{\sqrt{a}}y;log_{\sqrt[3]{a}}z theo thứ tự lập thành một cấp số cộng. Tính giá trị của biểu thức T = \frac{1959x}{y} + \frac{2019y}{z} +
\frac{60z}{x}?

    Theo đề bài ta có:

    \left\{ \begin{matrix}xz = y^{2} \\\log_{a}x + \log_{\sqrt[3]{a}}z = 2\log_{\sqrt{a}}y \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
xz = y^{2} \\
xz^{3} = y^{4} \\
\end{matrix} ight.\  \Leftrightarrow x = y = z

    Do đó: T = \frac{1959x}{y} +\frac{2019y}{z} + \frac{60z}{x}= 1959 + 2019 + 60 = 4038

  • Câu 4: Nhận biết

    Bất phương trình \log_{\frac{1}{5}}f(x) >\log_{\frac{1}{5}}g(x) tương đương với khẳng định nào dưới đây?

    Do \frac{1}{5} < 1 nên ta phải đổi chiều bất phương trình, đồng thời chú ý đến điều kiện xác định.

    Vậy đáp án đúng là: g(x) > f(x) >
0

  • Câu 5: Thông hiểu

    Tổng các nghiệm của phương trình 3^{x^{2} - 3x} = 81 bằng 3||-3||-4||5

    Đáp án là:

    Tổng các nghiệm của phương trình 3^{x^{2} - 3x} = 81 bằng 3||-3||-4||5

    Ta có:

    3^{x^{2} - 3x} = 81 \Leftrightarrow
3^{x^{2} - 3x} = 3^{4}

    \Leftrightarrow x^{2} - 3x = 4
\Leftrightarrow x^{2} - 3x = 4

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 4 \\
\end{matrix} ight.\ (tm)

    Vậy tổng các nghiệm của phương trình là 3

  • Câu 6: Nhận biết

    Tìm điều kiện xác định của hàm số y =\log_{2}(x - 1)^{2}?

    Điều kiện xác định của hàm số y =\log_{2}(x - 1)^{2} là:

    (x - 1)^{2} > 0 \Leftrightarrow x
eq 1

  • Câu 7: Nhận biết

    Cho biểu thức P = \sqrt {x.\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}} với x > 0. Mệnh đề nào sau đây là đúng?

     Ta có: 

    \begin{matrix}  P = \sqrt {x.\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}}  \hfill \\  P = \sqrt {x.\sqrt[3]{{{x^{\frac{7}{2}}}}}}  \hfill \\  P = \sqrt {x.{x^{\frac{7}{6}}}}  \hfill \\  P = \sqrt {{x^{\frac{{13}}{6}}}}  = {x^{\frac{{13}}{{12}}}} \hfill \\ \end{matrix}

  • Câu 8: Thông hiểu

    Tính giá trị biểu thức K = \frac{6^{3 + \sqrt{5}}}{2^{2 + \sqrt{5}}.3^{1
+ \sqrt{5}}}.

    Ta có:

    K = \frac{6^{3 + \sqrt{5}}}{2^{2 +
\sqrt{5}}.3^{1 + \sqrt{5}}} = \frac{2^{3 + \sqrt{5}}.3^{3 +
\sqrt{5}}}{2^{2 + \sqrt{5}}.3^{1 + \sqrt{5}}} = 2.3^{2} =
18

  • Câu 9: Thông hiểu

    Phương trình \log_{2}(x - 1) = \log_{2}(2x + 1) có tập nghiệm là:

    Điều kiện \left\{ \begin{matrix}x - 1 > 0 \\2x + 1 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > 1 \\x > - \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow x > 1

    Ta có:

    \log_{2}(x - 1) = \log_{2}(2x +1)

    \Leftrightarrow x - 1 = 2x + 1
\Leftrightarrow x = - 2(ktm)

    Vậy phương trình vô nghiệm hay S =
\varnothing.

  • Câu 10: Thông hiểu

    Cho hàm số f(x)= \log_{2}m. Với m > 0, giá trị của biểu thức T = f\left(\frac{6}{m} ight) + f\left( \frac{8m}{3} ight) bằng:

    Ta có:

    T = f\left( \frac{6}{m} ight) +f\left( \frac{8m}{3} ight) = f\left( \frac{6}{m}.\frac{8m}{3} ight)= f(16) = 4

  • Câu 11: Nhận biết

    Cho a >
0,n;m\mathbb{\in R}. Khẳng định nào sau đây đúng?

    Theo tính chất lũy thừa ta có:

    \left( a^{m} ight)^{n} = \left( a^{n}
ight)^{m}

  • Câu 12: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{4^x}}}{{{4^x} + 2}}. Tính tổng

    S = f\left( {\frac{1}{{2005}}} ight) + f\left( {\frac{2}{{2005}}} ight) + ... + f\left( {\frac{{2004}}{{2005}}} ight) + f\left( {\frac{{2005}}{{2005}}} ight)

    Với hàm số f\left( x ight) = \frac{{{a^x}}}{{{a^x} + \sqrt a }} ta có: f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = \left[ {f\left( {\dfrac{1}{{2005}}} ight) + f\left( {\dfrac{{2004}}{{2005}}} ight)} ight] + \left[ {f\left( {\dfrac{2}{{2005}}} ight) + f\left( {\dfrac{{2003}}{{2005}}} ight)} ight] \hfill\\+ ... + \left[ {f\left( {\dfrac{{1002}}{{2005}}} ight) + f\left( {\dfrac{{1003}}{{2005}}} ight)} ight] + f\left( 1 ight) \hfill \\   = 1 + 1 + ... + 1 + f\left( 1 ight) = 1002 + \dfrac{4}{6} = \dfrac{{3008}}{3} \hfill \\ \end{matrix}

  • Câu 13: Nhận biết

    Nghiệm của phương trình \log_{2}(x + 1) = 3 là:

    Điều kiện xác định: x > -
1

    \log_{2}(x + 1) = 3 \Leftrightarrow x + 1= 2^{3}

    \Leftrightarrow x + 1 = 8
\Leftrightarrow x = 7(tm)

    Vậy phương trình có nghiệm x =
7.

  • Câu 14: Nhận biết

    Hàm số nào sau đây nghịch biến trên tập xác định?

    Ta có: 0 < \frac{{\sqrt 2 }}{2} < 1 \Rightarrow y = {\log _{\frac{{\sqrt 2 }}{2}}}x nghịch biến trên tập xác định.

  • Câu 15: Thông hiểu

    Cho a =\log_{7}12;b = \log_{12}14. Tính \log_{54}168 theo ab.

    Ta có: a = \log_{7}12 \Leftrightarrow a =\log_{7}3 + 2\log_{7}2

    Mặt khác ab = \log_{7}12.\log_{12}14 =\log_{7}14 = \log_{7}2 + 1

    \Rightarrow \log_{7}2 = ab -1

    Thay vào trên ta được

    \log_{7}3 = a - 2\log_{7}2 = a - 2(ab - 1)= a - 2ab + 2

    Từ đó ta biến đổi biểu thức về cơ số 7 ta được:

    \log_{54}168 =\frac{\log_{7}168}{\log_{7}54} = \frac{3\log_{7}2 + \log_{7}3 + 1}{3\log_{7}3+ \log_{7}2}

    = \frac{3ab - 3 + a - 2ab + 2 + 1}{3a -6ab + 6 + ab - 1} = \frac{ab + a}{3a - 5ab + 5}

  • Câu 16: Vận dụng

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Nhận biết

    Giả sử \log_{2}x- 4\log_{2}b = 5\log_{2}a;(a;b > 0) thì giá trị của x biểu diễn theo a,b là:

    Ta có:

    \log_{2}x - 4\log_{2}b =5\log_{2}a

    \Leftrightarrow \log_{2}x = 5\log_{2}a +4\log_{2}b

    \Leftrightarrow \log_{2}x = \log_{2}a^{5}+ \log_{2}b^{4}

    \Leftrightarrow \log_{2}x = \log_{2}\left(a^{5}b^{4} ight) \Leftrightarrow x = a^{5}b^{4}

  • Câu 18: Thông hiểu

    Cho các số thực dương a, b với a eq 1;\log_{a}b > 0. Khẳng định nào sau đây đúng?

    Trường hợp 1:

    0 < a < 1 \Rightarrow
log_{a}b > 0 = log_{a}1 \Rightarrow 0 < b < 1

    Trường hợp 2:

    a > 1 \Rightarrow
log_{a}b > 0 = log_{a}1 \Rightarrow b > 1

    Vậy \left\lbrack \begin{matrix}
0 < a,b < 1 \\
1 < a;b \\
\end{matrix} ight. là khẳng định đúng.

  • Câu 19: Vận dụng

    Cho a và b là các số thực thỏa mãn điều kiện {\left( {\frac{3}{4}} ight)^a} > {\left( {\frac{4}{5}} ight)^a}{b^{\dfrac{5}{4}}} > {b^{\dfrac{4}{3}}}. Chọn khẳng định đúng trong các khẳng định sau:

    Ta có:

    {\left( {\frac{3}{4}} ight)^a} > {\left( {\frac{4}{5}} ight)^a} \Rightarrow a < 0

    {b^{\frac{5}{4}}} > {b^{\frac{4}{3}}} \Rightarrow 0 < b < 1

  • Câu 20: Thông hiểu

    Cho hai số thực dương x;y. Viết biểu thức x^{\frac{4}{5}}\sqrt[6]{x^{5}\sqrt{x}} về dạng x^{p} và biểu thức y^{\frac{4}{5}}:\sqrt[6]{y^{5}.\sqrt{y}} về dạng y^{q}. Khi đó p - q có giá trị là bao nhiêu?

    Ta có:

    x^{\frac{4}{5}}\sqrt[6]{x^{5}\sqrt{x}} =
x^{\frac{4}{5}}\sqrt[6]{x^{5}x^{\frac{1}{2}}} =
x^{\frac{4}{5}}\sqrt[6]{x^{\frac{11}{2}}} =
x^{\frac{4}{5}}.x^{\frac{11}{12}} = x^{\frac{103}{60}}

    \Rightarrow p =
\frac{103}{60}

    y^{\frac{4}{5}}:\sqrt[6]{y^{5}.\sqrt{y}}
= y^{\frac{4}{5}}:\sqrt[6]{y^{\frac{11}{2}}} = y^{\frac{-
7}{60}}

    \Rightarrow q = \frac{-
7}{60}

    \Rightarrow p - q =
\frac{11}{6}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 20 lượt xem
Sắp xếp theo