Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Biết rằng \sqrt x .\sqrt[3]{{{x^2}.\sqrt x }} = {x^n} với x > 0. Tìm n?

     Ta có:

    \begin{matrix}  \sqrt x .\sqrt[3]{{{x^2}.\sqrt x }} \hfill \\   = {x^{\frac{1}{2}}}.\sqrt[3]{{{x^2}.{x^{\frac{1}{2}}}}} = {x^{\frac{1}{2}}}.\sqrt[3]{{{x^{\frac{5}{2}}}}} \hfill \\   = {x^{\frac{1}{2}}}.{x^{\frac{5}{6}}} = {x^{\frac{1}{2} + \frac{5}{6}}} = {x^{\frac{4}{3}}} \hfill \\ \end{matrix}

    Vậy n = \frac{4}{3}

  • Câu 2: Nhận biết

    Với một số thực dương a tùy ý, khi đó \sqrt{a^{2}.\sqrt[5]{a}} bằng:

    Với a > 0 ta có: \sqrt{a^{2}.\sqrt[5]{a}} =
\sqrt{a^{2}.a^{\frac{1}{5}}} = \sqrt{a^{2 + \frac{1}{5}}} =
\sqrt{a^{\frac{11}{5}}} = a^{\frac{11}{10}}

  • Câu 3: Nhận biết

    Tìm nghiệm của phương trình \log_{9}(2a) = \frac{1}{2}?

    Điều kiện xác định: a > 0

    \log_{9}(2a) = \frac{1}{2}\Leftrightarrow 2a = 9^{\frac{1}{2}}

    \Leftrightarrow 2a = 3 \Leftrightarrow a
= \frac{3}{2}(tm)

    Vậy phương trình có nghiệm a =
\frac{3}{2}.

  • Câu 4: Thông hiểu

    Cơ số x bằng bao nhiêu để \log_{x}\sqrt[10]{3} = - 0,1?

    Điều kiện x > 0;x eq 1

    Ta có:

    \log_{x}\sqrt[10]{3} = - 0,1

    \Leftrightarrow x^{- 0,1} =3^{0,1}

    \Leftrightarrow x^{- 1} = 3\Leftrightarrow x = \frac{1}{3}(tm)

    Vậy x=\dfrac{1}{3} là giá trị cần tìm.

  • Câu 5: Thông hiểu

    Tính giá trị biểu thức: N = 2\log_{2}a + 5\log_{2}b biết a,b \in \mathbb{R}^{+};a^{2}b^{5} =
64?

    Ta có: a,b > 0

    a^{2}b^{5} = 64 \Leftrightarrow \log_{2}\left( a^{2}b^{5} ight) = \log_{2}64

    \Leftrightarrow 2\log_{2}a + 5\log_{2}b =6

    \Leftrightarrow N = 6

  • Câu 6: Vận dụng

    Đầu mỗi tháng cô H gửi vào ngân hàng 4 triệu đồng với lãi suất kép là 0,5% mỗi tháng. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô H có được số tiền cả lãi và gốc nhiều hơn 100 triệu, biết lãi suất không đổi trong quá trình gửi.

    Ta có: T = \frac{M}{r}\left\lbrack (1 +r)^{n} - 1 ightbrack(1 + r)

    Giả sử sau n tháng sau anh A nhận được số tiền nhiều hơn 100 triệu, khi đó ta có:

    \frac{4}{0,5\%}\left\lbrack (1 +0,5\%)^{n} - 1 ightbrack(1 + 0,5\%) > 100

    \Rightarrow n > 23,5

    Vậy cần ít nhất 24 tháng để cô H có được số tiền cả lãi và gốc nhiều hơn 100 triệu.

  • Câu 7: Thông hiểu

    Giả mỗi năm diện tích đất phục vụ cho nông nghiệp giảm n\% diện tích hiện có. Hỏi sau 4 năm diện tích đất phục vụ cho nông nghiệp của nước ta sẽ là bao nhiêu phần trăm của diện tích hiện nay?

    Diện tích đất phục vụ nông nghiệp ban đầu là S, diện tích đất nông nghiệp sau 4 năm sẽ là S_{0}; n\% = \frac{n}{100}

    S = S_{0}\left( 1 - \frac{n}{100}
ight)^{n} = S_{0}\left( 1 - \frac{n}{100} ight)^{4}

    =>\frac{S}{S_{0}} = \left( 1 -\frac{n}{100} ight)^{4}

  • Câu 8: Vận dụng

    Số 20172018^{20162017} có bao nhiêu chữ số?

    Số tự nhiên M k chữ số khi

    10^{k - 1} \leq M \leq
10^{k}

    Đặt M = 20172018^{20162017} suy ra

    \log M = \log\left( 20172018^{20162017}
ight)

    \Leftrightarrow M = 10^{\log\left(
20172018^{20162017} ight)}

    \Leftrightarrow M =
10^{20162017.log(20172018)}

    \Leftrightarrow M \approx
10^{1147278480,5} < 10^{147278481}

    Vậy số các chữ số của 20172018^{20162017} là 147278481.

  • Câu 9: Nhận biết

    Cho a,b là hai số thực dương bất kì và b eq1. Kết luận nào sau đây đúng?

    Theo tính chất ta suy ra kết luận đúng là: {\log _b}a = \frac{{\ln a}}{{\ln b}}

  • Câu 10: Nhận biết

    Tìm nghiệm phương trình \log_{5}(2x - 1) = \log_{5}3?

    Điều kiện x > \frac{1}{2}

    Ta có:

    \log_{5}(2x - 1) = \log_{5}3

    \Leftrightarrow 2x - 1 = 3
\Leftrightarrow x = 2(tm)

    Vậy phương trình có nghiệm x =
2.

  • Câu 11: Thông hiểu

    Đơn giản biểu thức D = \frac{a^{\sqrt{3} + 1}.a^{2 -
\sqrt{3}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} ta được:

    Ta có:

    D = \frac{a^{\sqrt{3} + 1}.a^{2 -
\sqrt{3}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} =
\frac{a^{\sqrt{3} + 1 + 2 - \sqrt{3}}}{a^{\left( \sqrt{2} - 2
ight)\left( \sqrt{2} + 2 ight)}} = \frac{a^{3}}{a^{- 2}} =
a^{5}

  • Câu 12: Thông hiểu

    Tìm tập xác định của hàm số y = \left( x^{2} - 3x + 2
ight)^{\pi}là:

    Điều kiện xác định:

    x^{2} - 3x + 2 > 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x < 1 \\
x > 2 \\
\end{matrix} ight.

    Vậy tập xác định là: D = ( - \infty;1)
\cup (2; + \infty)

  • Câu 13: Vận dụng cao

    Cho các số thực dương phân biệt a và b. Biểu thức thu gọn của biểu thức

    P = \frac{{\sqrt a  - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \frac{{\sqrt {4a}  + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}}

    có dạng P = m\sqrt[4]{a} + n\sqrt[4]{b}. Khi đó biểu thức liên hệ giữa n và m là:

    Ta có:

    \begin{matrix}  P = \dfrac{{\sqrt a  - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \dfrac{{\sqrt {4a}  + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}} \hfill \\  P = \dfrac{{{{\left( {\sqrt[4]{a}} ight)}^2} - {{\left( {\sqrt[4]{b}} ight)}^2}}}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \dfrac{{2\sqrt[4]{a}\sqrt[4]{a} + 2\sqrt[4]{a}\sqrt[4]{b}}}{{\sqrt[4]{a} + \sqrt[4]{b}}} \hfill \\  P = \dfrac{{\left( {\sqrt[4]{a} - \sqrt[4]{b}} ight)\left( {\sqrt[4]{a} + \sqrt[4]{b}} ight)}}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \dfrac{{2\sqrt[4]{a}\left( {\sqrt[4]{a} + \sqrt[4]{b}} ight)}}{{\sqrt[4]{a} + \sqrt[4]{b}}} \hfill \\  P = \sqrt[4]{a} + \sqrt[4]{b} - 2\sqrt[4]{a} = \sqrt[4]{b} - \sqrt[4]{a} \hfill \\   \Rightarrow m =  - 1;n = 1 \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu

    Cho phương trình 2^{x^{2} - 3x + 2} + 2^{x^{2} + 6x + 5} =
2^{2x^{2} + 3x + 7} + 1. Tính tổng giá trị các nghiệm phương trình đã cho.

    Ta có:

    2^{x^{2} - 3x + 2} + 2^{x^{2} + 6x + 5}
= 2^{2x^{2} + 3x + 7} + 1

    \Leftrightarrow 2^{x^{2} - 3x + 2} +
2^{x^{2} + 6x + 5} = 2^{x^{2} - 3x + 2}.2^{x^{2} + 6x + 5} +
1

    \Leftrightarrow \left( 2^{x^{2} - 3x +
2} - 1 ight) - 2^{x^{2} + 6x + 5}.\left( 2^{x^{2} - 3x + 2} - 1
ight) = 0

    \Leftrightarrow \left( 2^{x^{2} + 6x +
5} - 1 ight).\left( 2^{x^{2} - 3x + 2} - 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{x^{2} + 6x + 5} - 1 = 0 \\
2^{x^{2} - 3x + 2} - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
2^{x^{2} + 6x + 5} = 1 \\
2^{x^{2} - 3x + 2} = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} + 6x + 5 = 0 \\
x^{2} - 3x + 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = - 5 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Vậy tổng tất cả các nghiệm của phương trình là S = 1 + 2 + ( - 1) + ( - 5) = - 3

  • Câu 15: Nhận biết

    Tìm tập xác định của hàm số y = \left( \frac{5\sqrt{3}}{2}
ight)^{x}?

    Tập xác định của hàm số y = \left(
\frac{5\sqrt{3}}{2} ight)^{x}D=\mathbb{R}.

  • Câu 16: Vận dụng

    Cho bất phương trình \log_{x - m}\left( x^{2} - 1 ight) > \log_{x -m}\left( x^{2} + x - 2 ight). Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?

    Điều kiện xác định x e m + 1;x > m

    Ta có:

    \log_{x - m}\left( x^{2} - 1 ight) >\log_{x - m}\left( x^{2} + x - 2 ight)(*)

    Với x > m + 1

    (*) \Leftrightarrow \left\{
\begin{matrix}
x^{2} - 1 > x^{2} + x - 2 \\
x^{2} + x - 2 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x < 1 \\
\left\lbrack \begin{matrix}
x < - 2 \\
x > 1 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow x < - 2

    Với 0 < x < m + 1

    (*) \Leftrightarrow 0 < x^{2} - 1
< x^{2} + x - 2

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} - 1 > 0 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > - 1 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow x > 1

    Bất phương trình (*) vô nghiệm khi và chỉ khi \left\{ \begin{matrix}m + 1 \geq - 2 \\m + 1 \leq 1 \\\end{matrix} ight.\  \Leftrightarrow - 3 \leq m \leq 0

  • Câu 17: Thông hiểu

    Rút gọn biểu thức P =\frac{\sqrt[3]{a^{5}}.a^{\frac{7}{3}}}{a^{4}.\sqrt[7]{a^{- 2}}};(a >0) thu được kết quả a^{\frac{m}{n}}, trong đó m,n \in \mathbb{N}^{*} và phân số \frac{m}{n} tối giản. Chọn khẳng định đúng?

    Ta có:

    P =\frac{\sqrt[3]{a^{5}}.a^{\frac{7}{3}}}{a^{4}.\sqrt[7]{a^{- 2}}} =\frac{a^{\frac{5}{3}}.a^{\frac{7}{3}}}{a^{4}.a^{- \frac{2}{7}}} =\frac{a^{4}}{a^{4}.a^{- \frac{2}{7}}} = a^{\frac{2}{7}}

    \Rightarrow \left\{ \begin{matrix}m = 2 \\n = 7 \\\end{matrix} ight.\  \Rightarrow 2m^{2} + n = 15.

  • Câu 18: Vận dụng

    Thực hiện rút gọn biểu thức Z = \left(
\frac{a^{\frac{1}{3}}.b^{\frac{1}{3}}}{2a^{- \frac{1}{3}} - b^{-
\frac{1}{3}}} + \frac{a^{\frac{1}{3}} - 2b^{\frac{1}{3}}}{4a^{-
\frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}}}
ight).\frac{8b - a}{6} ta thu được kết quả là:

    Ta có:

    Z = \left(
\frac{a^{\frac{1}{3}}.b^{\frac{1}{3}}}{2a^{- \frac{1}{3}} - b^{-
\frac{1}{3}}} + \frac{a^{\frac{1}{3}} - 2b^{\frac{1}{3}}}{4a^{-
\frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}}}
ight).\frac{8b - a}{6}

    Z = \frac{8b - a}{6} \cdot
\frac{a^{\frac{1}{3}}b^{\frac{1}{3}}\left( 4a^{- \frac{2}{3}} + 2a^{-
\frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}} ight) + \left( 2a^{-
\frac{1}{3}} - b^{- \frac{1}{3}} ight)\left( a^{\frac{1}{3}} -
2b^{\frac{1}{3}} ight)}{\left( 2a^{- \frac{1}{3}} - b^{- \frac{1}{3}}
ight)\left( 4a^{- \frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} +
b^{- \frac{2}{3}} ight)}

    Z = \frac{8b - a}{6} \cdot \frac{4a^{-
\frac{1}{3}}b^{\frac{1}{3}} + 2 + a^{\frac{1}{3}}b^{- \frac{1}{3}} + 2 -
4a^{- \frac{1}{3}}b^{\frac{1}{3}} - a^{\frac{1}{3}}b^{- \frac{1}{3}} +
2}{8a^{- 1} - b^{- 1}}

    Z = \frac{8b - a}{6} \cdot\frac{6}{\dfrac{8}{a} - \dfrac{1}{b}} = \frac{8b - a}{6} \cdot\frac{6ab}{8b - a} = ab

  • Câu 19: Thông hiểu

    Giá trị của biểu thức

    C = \frac{7}{16}\ln\left( 3 + 2\sqrt{2}ight) - 4\ln\left( \sqrt{2} + 1 ight) - \frac{25}{8}\ln\left(\sqrt{2} - 1 ight)

    Ta có:

    C = \frac{7}{16}\ln\left( 3 + 2\sqrt{2}
ight) - 4ln\left( \sqrt{2} + 1 ight) - \frac{25}{8}\ln\left(
\sqrt{2} - 1 ight)

    C = \frac{7}{16}\ln\left( \sqrt{2} + 1
ight)^{2} - 4ln\left( \sqrt{2} + 1 ight) - \frac{25}{8}\ln\left(
\sqrt{2} + 1 ight)^{- 1}

    C = \frac{7}{8}\ln\left( \sqrt{2} + 1
ight) - 4ln\left( \sqrt{2} + 1 ight) + \frac{25}{8}\ln\left(
\sqrt{2} + 1 ight)

    C = \left( \frac{7}{8} - 4 +
\frac{25}{8} ight).ln\left( \sqrt{2} + 1 ight) = 0

  • Câu 20: Nhận biết

    Tìm tập xác định của hàm số \log_{2}(x - 1)?

    Điều kiện xác định x - 1 > 0
\Rightarrow x > 1

    Suy ra tập xác định của hàm số là: D =
(1; + \infty).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo