Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Hàm số nào dưới đây đồng biến trên \mathbb{R}?

    Ta có: \frac{\sqrt{2} + \sqrt{3}}{e} >
1 nên hàm số y = \left(
\frac{\sqrt{2} + \sqrt{3}}{e} ight)^{x} đồng biến trên \mathbb{R}.

  • Câu 2: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{4^x}}}{{{4^x} + 2}}. Tính tổng

    S = f\left( {\frac{1}{{2005}}} ight) + f\left( {\frac{2}{{2005}}} ight) + ... + f\left( {\frac{{2004}}{{2005}}} ight) + f\left( {\frac{{2005}}{{2005}}} ight)

    Với hàm số f\left( x ight) = \frac{{{a^x}}}{{{a^x} + \sqrt a }} ta có: f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = \left[ {f\left( {\dfrac{1}{{2005}}} ight) + f\left( {\dfrac{{2004}}{{2005}}} ight)} ight] + \left[ {f\left( {\dfrac{2}{{2005}}} ight) + f\left( {\dfrac{{2003}}{{2005}}} ight)} ight] \hfill\\+ ... + \left[ {f\left( {\dfrac{{1002}}{{2005}}} ight) + f\left( {\dfrac{{1003}}{{2005}}} ight)} ight] + f\left( 1 ight) \hfill \\   = 1 + 1 + ... + 1 + f\left( 1 ight) = 1002 + \dfrac{4}{6} = \dfrac{{3008}}{3} \hfill \\ \end{matrix}

  • Câu 3: Nhận biết

    Cho phương trình 3^{x} = a với a là tham số. Tìm tất cả các giá trị thực của a để phương trình đã cho có nghiệm thực?

    Để phương trình 3^{x} = a có nghiệm thực thì a > 0.

  • Câu 4: Thông hiểu

    Cho đồ thị hàm số y = f(x) = \log_{a}x;(a > 0,a eq 1) như hình vẽ:

    Xác định giá trị a?

    Đồ thị hàm số y = f(x) =\log_{a}x đi qua điểm (2; -1) nên \log_{a}2 = - 1

    Khi đó a^{- 1} = 2 \Leftrightarrow\frac{1}{a} = 2 \Leftrightarrow a = \frac{1}{2}

  • Câu 5: Thông hiểu

    Cho hàm số y =\log_{2}x. Tìm mệnh đề nào sai?

    Mệnh đề sai là: “Tập xác định của hàm số là D = \mathbb{R}

    Sửa lại như sau: “Tập xác định của hàm số là D = (0; + \infty).

  • Câu 6: Nhận biết

    Rút gọn biểu thức W = b^{\frac{5}{3}}:\sqrt[3]{b} với b > 0 ta được:

    Ta có:

    W = b^{\frac{5}{3}}:\sqrt[3]{b} =
b^{\frac{5}{3}}:b^{\frac{1}{3}} = b^{\frac{5}{3} - \frac{1}{3}} =
b^{\frac{4}{3}}

  • Câu 7: Vận dụng

    Tìm tập nghiệm của bất phương trình 4x^{2} + x.2^{x^{2} + 1} + 3.2^{x^{2}} >
x^{2}.2^{x^{2}} + 8x + 12.

    Ta có:

    4x^{2} + x.2^{x^{2} + 1} + 3.2^{x^{2}}
> x^{2}.2^{x^{2}} + 8x + 12

    \Leftrightarrow \left( 4 - 2^{x^{2}}
ight)\left( x^{2} - 2x - 3 ight) > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
4 - 2^{x^{2}} > 0 \\
x^{2} - 2x - 3 > 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
4 - 2^{x^{2}} < 0 \\
x^{2} - 2x - 3 < 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
\sqrt{2} > x > - \sqrt{2} \\
\left\lbrack \begin{matrix}
x < - 1 \\
x > 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x < - \sqrt{2} \\
x > \sqrt{2} \\
\end{matrix} ight.\  \\
- 1 < x < 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
- \sqrt{2} < x < - 1 \\
\sqrt{2} < x < 3 \\
\end{matrix} ight.

    Vậy tập nghiệm bất phương trình là: S =
\left( - \sqrt{2}; - 1 ight) \cup \left( \sqrt{2};3
ight)

  • Câu 8: Nhận biết

    Với a,b \in
\mathbb{R}^{+} thỏa mãn biểu thức 3\log a + 2\log b = 1. Khẳng định nào dưới đây đúng?

    Ta có:

    3\log a + 2\log b = 1 \Leftrightarrow \log a^{3} + \log b^{2} = 1

    \Leftrightarrow \log\left( a^{3}b^{2}
ight) = 1 \Leftrightarrow a^{3}b^{2} = 10

  • Câu 9: Vận dụng

    Số 20172018^{20162017} có bao nhiêu chữ số?

    Số tự nhiên M k chữ số khi

    10^{k - 1} \leq M \leq
10^{k}

    Đặt M = 20172018^{20162017} suy ra

    \log M = \log\left( 20172018^{20162017}
ight)

    \Leftrightarrow M = 10^{\log\left(
20172018^{20162017} ight)}

    \Leftrightarrow M =
10^{20162017.log(20172018)}

    \Leftrightarrow M \approx
10^{1147278480,5} < 10^{147278481}

    Vậy số các chữ số của 20172018^{20162017} là 147278481.

  • Câu 10: Vận dụng

    Rút gọn biểu thức H = \frac{x - 3.x^{\frac{1}{3}} + 2}{\sqrt[3]{x} -1} + \frac{\sqrt{x} - x^{\frac{5}{6}} +\sqrt[6]{x}}{\sqrt[6]{x}}.

    Ta có:

    H = \frac{x - 3.x^{\frac{1}{3}} +2}{\sqrt[3]{x} - 1} + \frac{\sqrt{x} - x^{\frac{5}{6}} +\sqrt[6]{x}}{\sqrt[6]{x}}

    H = \frac{\left( \sqrt[3]{x} - 1ight)\left( x^{\frac{2}{3}} + \sqrt[3]{x} - 2 ight)}{\sqrt[3]{x} -1} + \frac{\sqrt[6]{x}\left( \sqrt[3]{x} - x^{\frac{2}{3}} + 1ight)}{\sqrt[6]{x}}

    H = x^{\frac{2}{3}} + \sqrt[3]{x} - 2 +\sqrt[3]{x} - x^{\frac{2}{3}} + 1 = 2\sqrt[3]{x} - 1

  • Câu 11: Thông hiểu

    Với \log_{2}x =\sqrt{5} thì biểu thức \log_{2x}x có giá trị bằng bao nhiêu?

    Ta có:

    \log_{2}x = \sqrt{5} \Rightarrow x =2^{\sqrt{5}} > 1

    \Rightarrow \log_{x}2;\log_{x}x;\log_{x}2x đều xác định và \log_{x}2x eq 0 khi đó:

    \log_{2x}x = \dfrac{1}{\log_{x}2x} =\dfrac{1}{\log_{x}2 + \log_{x}x}

    = \dfrac{1}{\dfrac{1}{\log_{2}x} + 1} =\dfrac{1}{\dfrac{1}{\sqrt{5}} + 1} = \dfrac{\sqrt{5}}{1 +\sqrt{5}}

  • Câu 12: Thông hiểu

    Với các số a,b
> 0 thỏa mãn a^{2} + b^{2} =
6ab, biểu thức \log_{2}(a +b) bằng:

    Ta có:

    a^{2} + b^{2} = 6ab \Leftrightarrow (a +
b)^{2} = 8ab

    \Rightarrow \log_{2}(a + b)^{2} =\log_{2}(8ab)

    \Rightarrow 2\log_{2}(a + b) = \log_{2}8 +\log_{2}a + \log_{2}b

    \Rightarrow\log_{2}(a + b) =\frac{1}{2}\left( 3 + \log_{2}a +\log_{2}b ight)

  • Câu 13: Vận dụng

    Cho hình vẽ:

    Ta có đường thẳng d = 3 song song trục hoành cắt trục tung và đồ thị hai hàm số y = m^{x},y = n^{x};m,n \in
\mathbb{R}^{+}\backslash\left\{ 1 ight\} lần lượt tại H,M,N. Biết \frac{MH}{MN} = \frac{3}{2}. Chọn khẳng định đúng?

    Ta có:\frac{MH}{MN} = \frac{3}{2}
\Rightarrow \frac{HM}{HN} = \frac{3}{5}

    Gọi M\left( x_{1};3 ight) \in y = m^{x}\Rightarrow x_{1} = \log_{m}3

    N\left( x_{2};3 ight) \in y = n^{x}\Rightarrow x_{2} = \log_{n}3

    Khi đó \frac{HM}{HN} = \frac{3}{5}\Leftrightarrow \log_{m}3 = \frac{3}{5}\log_{n}3

    \Leftrightarrow \frac{1}{\log_{3}m} =\frac{3}{5}\frac{1}{\log_{3}n}

    \Leftrightarrow log_{3}m =
\frac{5}{3}.log_{3}n

    \Leftrightarrow m = n^{\frac{5}{3}}\Leftrightarrow m^{3} = n^{5}

  • Câu 14: Thông hiểu

    Tìm tập nghiệm S của phương trình \ln\left( 2a^{2} - a + 1 ight) = 0?

    Điều kiện xác định: 2a^{2} - a + 1 >
0

    \ln\left( 2a^{2} - a + 1 ight) = 0
\Leftrightarrow 2a^{2} - a + 1 = e^{0}

    \Leftrightarrow 2a^{2} - a + 1 = 1
\Leftrightarrow a.(2a - 1) = 0

    \Leftrightarrow \left\lbrack\begin{matrix}2a - 1 = 0 \\a = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{1}{2} \\a = 0 \\\end{matrix} ight.\ (tm)

    Vậy phương trình có tập nghiệm S =
\left\{ 0;\frac{1}{2} ight\}.

  • Câu 15: Nhận biết

    Với a là số thực dương tùy ý, a^{\frac{5}{3}} tương ứng với:

    Với a > 0 ta có: a^{\frac{5}{3}} = \sqrt[3]{a^{5}}

  • Câu 16: Thông hiểu

    Cho phương trình 5^{x} + m^{2} = 9 với m là tham số. Hỏi có tất cả các giá trị nguyên của tham số m để phương trình có nghiệm thực?

    Ta có: 5^{x} + m^{2} = 9 \Leftrightarrow
5^{x} = 9 - m^{2}

    Để phương trình đã cho có nghiệm thực thì 9 - m^{2} > 0 \Leftrightarrow m \in ( -
3;3)

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 2; - 1;0;1;2 ight\}

    Vậy có 5 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 17: Thông hiểu

    Cho biểu thức U
= \sqrt[4]{x\sqrt[3]{x^{2}\sqrt{x^{3}}}};(x > 0). Mệnh đề nào sau đây đúng?

    Ta có:

    U =
\sqrt[4]{x\sqrt[3]{x^{2}\sqrt{x^{3}}}} =
\sqrt[4]{x\sqrt[3]{x^{2}x^{\frac{3}{2}}}} =
\sqrt[4]{x\sqrt[3]{x^{\frac{7}{2}}}}

    = \sqrt[4]{x.x^{\frac{7}{6}}} =
\sqrt[4]{x^{\frac{13}{6}}} = x^{\frac{13}{24}}

  • Câu 18: Nhận biết

    Tìm điều kiện xác định của hàm số y = \log_{3}(2x)

    Điều kiện xác định của hàm số y =\log_{3}(2x) là:

    2x > 0 \Rightarrow x > 0
\Rightarrow x \in (0; + \infty)

  • Câu 19: Thông hiểu

    Viết biểu thức A
= \sqrt[3]{x\sqrt[4]{x}};(x > 0) dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có:

    A = \sqrt[3]{x\sqrt[4]{x}} =
\sqrt[3]{x.x^{\frac{1}{4}}} = \sqrt[3]{x^{\frac{5}{4}}} =
x^{\frac{5}{12}}

  • Câu 20: Nhận biết

    Xác định tập nghiệm của bất phương trình 2^{x + 1}.3^{x} \leq 72?

    Ta có:

    2^{x + 1}.3^{x} \leq 72 \Leftrightarrow
2^{x}.3^{x}.2 \leq 72

    \Leftrightarrow 6^{x} \leq 36
\Leftrightarrow 6^{x} \leq 6^{2} \Leftrightarrow x \leq 2

    Vậy tập nghiệm bất phương trình là x \in
( - \infty;2brack

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 24 lượt xem
Sắp xếp theo