Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tập xác định của hàm số y = \log_{2}(x - 2) là:

    Điều kiện xác định của hàm số y = \log_{2}(x - 2) là:

    x - 2 > 0 \Rightarrow x >
2

    Vậy tập xác định của hàm số là D = (2; +
\infty)

  • Câu 2: Thông hiểu

    Tìm tập xác định của hàm số y = \left( x^{2} - 3x + 2
ight)^{\pi}là:

    Điều kiện xác định:

    x^{2} - 3x + 2 > 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x < 1 \\
x > 2 \\
\end{matrix} ight.

    Vậy tập xác định là: D = ( - \infty;1)
\cup (2; + \infty)

  • Câu 3: Nhận biết

    Với a là số thực dương tùy ý, điền biểu thức thích hợp vào chỗ chấm: \sqrt{a^{3}.\sqrt[4]{a}} = ...

    Ta có:

    \sqrt{a^{3}.\sqrt[4]{a}} =
\sqrt{a^{3}.a^{\frac{1}{4}}} = \sqrt{a^{3 + \frac{1}{4}}} =
\sqrt{a^{\frac{13}{4}}} = a^{\frac{13}{8}}.

  • Câu 4: Vận dụng

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Thông hiểu

    Phương trình \log_{2}(x - 1) = \log_{2}(2x + 1) có tập nghiệm là:

    Điều kiện \left\{ \begin{matrix}x - 1 > 0 \\2x + 1 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > 1 \\x > - \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow x > 1

    Ta có:

    \log_{2}(x - 1) = \log_{2}(2x +1)

    \Leftrightarrow x - 1 = 2x + 1
\Leftrightarrow x = - 2(ktm)

    Vậy phương trình vô nghiệm hay S =
\varnothing.

  • Câu 6: Thông hiểu

    Giá trị của biểu thức

    C = \frac{7}{16}\ln\left( 3 + 2\sqrt{2}ight) - 4\ln\left( \sqrt{2} + 1 ight) - \frac{25}{8}\ln\left(\sqrt{2} - 1 ight)

    Ta có:

    C = \frac{7}{16}\ln\left( 3 + 2\sqrt{2}
ight) - 4ln\left( \sqrt{2} + 1 ight) - \frac{25}{8}\ln\left(
\sqrt{2} - 1 ight)

    C = \frac{7}{16}\ln\left( \sqrt{2} + 1
ight)^{2} - 4ln\left( \sqrt{2} + 1 ight) - \frac{25}{8}\ln\left(
\sqrt{2} + 1 ight)^{- 1}

    C = \frac{7}{8}\ln\left( \sqrt{2} + 1
ight) - 4ln\left( \sqrt{2} + 1 ight) + \frac{25}{8}\ln\left(
\sqrt{2} + 1 ight)

    C = \left( \frac{7}{8} - 4 +
\frac{25}{8} ight).ln\left( \sqrt{2} + 1 ight) = 0

  • Câu 7: Nhận biết

    Tìm tập nghiệm của phương trình \log_{2}\left( x^{2} - 2x + 4 ight) =0?

    Điều kiện xác định:

    x^{2} - 2x + 4 > 0

    Ta có:

    \log_{2}\left( x^{2} - 2x + 4 ight) =0

    \Leftrightarrow x^{2} - 2x + 4 =
2^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.\ (tm)

    Vậy tập nghiệm phương trình là S =
\left\{ 0;2 ight\}

  • Câu 8: Nhận biết

    Với số thực dương a bất kì ta có \sqrt{\frac{1}{a^{3}}} tương ứng với:

    Với a > 0 ta có: \sqrt{\frac{1}{a^{3}}} = \left( \frac{1}{a^{3}}
ight)^{\frac{1}{2}} = \left( a^{- 3} ight)^{\frac{1}{2}} = a^{-
\frac{3}{2}}

  • Câu 9: Vận dụng cao

    Rút gọn biểu thức

    P = \frac{{4 + \sqrt 3 }}{{1 + \sqrt 3 }} + \frac{{6 + \sqrt 8 }}{{\sqrt 2  + \sqrt 4 }} + ... + \frac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} + ... + \frac{{200 + \sqrt {9999} }}{{\sqrt {99}  + \sqrt {101} }}

    Với k \geqslant 2 ta có:

    \begin{matrix}  \dfrac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} \hfill \\   = \dfrac{{\left[ {{{\left( {\sqrt {k - 1} } ight)}^2} + {{\left( {\sqrt {k + 1} } ight)}^2} + \sqrt {\left( {k + 1} ight)\left( {k - 1} ight)} } ight]\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)}}{{\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)\left( {\sqrt {k - 1}  + \sqrt {k + 1} } ight)}} \hfill \\   = \dfrac{{\sqrt {{{\left( {k + 1} ight)}^3}}  - \sqrt {{{\left( {k - 1} ight)}^3}} }}{2} \hfill \\ \end{matrix}

    Khi đó:

    \begin{matrix}  P = \dfrac{1}{2}.\left( {\sqrt {{3^3}}  - \sqrt {{1^3}}  + \sqrt {{4^3}}  - \sqrt {{2^3}}  + \sqrt {{5^3}}  - \sqrt {{3^3}}  + \sqrt {{6^3}}  - \sqrt {{4^3}}  + ... + \sqrt {{{101}^3}}  - \sqrt {{{99}^3}} } ight) \hfill \\   = \dfrac{1}{2}\left( { - 1 - \sqrt {{2^3}}  + \sqrt {{{101}^3}}  + \sqrt {{{100}^3}} } ight) = \dfrac{{999 + \sqrt {{{101}^3}}  - \sqrt 8 }}{2} \hfill \\ \end{matrix}

  • Câu 10: Nhận biết

    Giá trị của \log_{a}\frac{1}{\sqrt[3]{a}} với a > 0;a eq 1 bằng:

    Ta có: \log_{a}\frac{1}{\sqrt[3]{a}} =\log_{a}a^{\frac{- 3}{2}} = - \frac{3}{2}

  • Câu 11: Vận dụng

    Rút gọn biểu thức T = \left( \frac{a^{\frac{3}{2}} +
b^{\frac{3}{2}}}{a - b} - \frac{a - b}{a^{\frac{1}{2}} +
b^{\frac{1}{2}}} ight).\left( \frac{\sqrt{a} - \sqrt{b}}{\sqrt{ab}}
ight).

    Ta có:

    T = \left( \frac{a^{\frac{3}{2}} +
b^{\frac{3}{2}}}{a - b} - \frac{a - b}{a^{\frac{1}{2}} +
b^{\frac{1}{2}}} ight).\left( \frac{\sqrt{a} - \sqrt{b}}{\sqrt{ab}}
ight)

    T = \left( \frac{\sqrt{a^{3}} -
\sqrt{b^{3}}}{\sqrt{a^{2}} - \sqrt{b^{2}}} - \frac{a\sqrt{a^{2}} -
\sqrt{b^{2}} - b}{\sqrt{a} + \sqrt{b}} ight).\left( \frac{\sqrt{a} -
\sqrt{b}}{\sqrt{ab}} ight)

    T = \left( \frac{\sqrt{a^{3}} +
\sqrt{b^{3}} - \sqrt{a^{3}} - \sqrt{b^{3}} + \sqrt{a^{2}b} -
\sqrt{ab^{2}}}{\sqrt{a^{2}} - \sqrt{b^{2}}} ight).\left(
\frac{\sqrt{a} - \sqrt{b}}{\sqrt{ab}} ight)

    T = \left( \frac{\sqrt{a^{2}b} -
\sqrt{ab^{2}}}{\sqrt{a^{2}} - \sqrt{b^{2}}} ight).\left(
\frac{\sqrt{a} - \sqrt{b}}{\sqrt{ab}} ight) = 1

  • Câu 12: Nhận biết

    Hàm số nào sau đây đồng biến trên \mathbb{R}?

    Do \frac{\sqrt{2} + \sqrt{3}}{2} >
1 nên hàm số y = \left(
\frac{\sqrt{2} + \sqrt{3}}{2} ight)^{x} đồng biến trên \mathbb{R}.

  • Câu 13: Nhận biết

    Giải phương trình 2^{3a} = 64 ta được:

    Ta có:

    2^{3a} = 64 \Leftrightarrow 2^{3a} =
2^{6} \Leftrightarrow 3a = 6 \Leftrightarrow a = 2(tm)

    Vậy phương trình đã cho có nghiệm a =
2

  • Câu 14: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m trên đoạn \lbrack -
2018;2018brack để hàm số y =
\ln\left( x^{2} - 2x - m + 1 ight) có tập xác định \mathbb{R}?

    Hàm số y = \ln\left( x^{2} - 2x - m + 1
ight) xác định trên \mathbb{R} khi và chỉ khi

    x^{2} - 2x - m + 1 > 0;\forall x \in
\mathbb{R}

    \Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta' < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 > 0 \\
1 + m - 1 < 0 \\
\end{matrix} ight.\  \Rightarrow m < 0

    Do \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 2018;2018brack \\
\end{matrix} ight.

    \Rightarrow m \in \left\{ - 2018; -
2017;...; - 1 ight\}

    Vậy có 2018 giá trị của m thỏa mãn yêu cầu bài toán.

  • Câu 15: Thông hiểu

    Biết \sqrt[5]{{\frac{b}{a}\sqrt[3]{{\frac{a}{b}}}}} = {\left( {\frac{a}{b}} ight)^m} với a và b là các số thực dương. Tìm m?

    Ta có:

    \begin{matrix}  {\left( {\dfrac{a}{b}} ight)^m} = {\left( {\sqrt[3]{{\dfrac{{{b^3}}}{{{a^3}}}.\dfrac{a}{b}}}} ight)^{\frac{1}{5}}} = {\left( {\dfrac{{{b^2}}}{{{a^2}}}} ight)^{\frac{1}{{15}}}} = {\left( {\dfrac{b}{a}} ight)^{\frac{2}{{15}}}} \hfill \\   \Rightarrow m = \dfrac{{ - 2}}{{15}} \hfill \\ \end{matrix}

  • Câu 16: Vận dụng

    Cho các số thức a, b thỏa mãn 1 < a < b\log_{a}b + \log_{b}a^{2} = 3. Tính giá trị của biểu thức T = \log_{ab}\frac{a^{2} +b}{2}?

    Ta có:

    \log_{a}b + \log_{b}a^{2} = 3\Leftrightarrow \log_{a}b + 2\log_{b}a = 3(*)

    Đặt t = \log_{a}b. Do 1 < a < b \Rightarrow t > log_{a}b
\Rightarrow t > 1

    Khi đó t + \frac{2}{t} = 3
\Leftrightarrow t^{2} - 3t + 2 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t = 1(ktm) \\
t = 2(tm) \\
\end{matrix} ight.

    Với t = 2 ta có: \log_{a}b = 2 \Rightarrow b = a^{2}

    => T = \log_{ab}\frac{a^{2} + b}{2} =\log_{a^{3}}a^{2} = \frac{2}{3}\log_{a}a = \frac{2}{3}

  • Câu 17: Thông hiểu

    Biết a,b là các số thực dương khác 1 thỏa mãn \log_{a}b = \sqrt{3}. Tính giá trị \log_{\frac{\sqrt{b}}{a}}\left(\frac{\sqrt[3]{b}}{\sqrt{a}} ight)?

    Ta có: \log_{a}b = \sqrt{3} \Rightarrow b= a^{\sqrt{3}}

    Khi đó:

    \log_{\frac{\sqrt{b}}{a}}\left(\dfrac{\sqrt[3]{b}}{\sqrt{a}} ight) =\log_{\frac{a^{\frac{\sqrt{3}}{2}}}{a}}\left(\dfrac{a^{\frac{\sqrt{3}}{3}}}{a^{\frac{1}{2}}} ight) =\dfrac{\dfrac{\sqrt{3}}{3} - \dfrac{1}{2}}{\dfrac{\sqrt{3}}{2} - 1} = -\dfrac{1}{\sqrt{3}}

  • Câu 18: Thông hiểu

    Cho biểu thức F
= \frac{1}{2^{- x - 1}} + 3.{\sqrt{2}}^{2x} - 4^{\frac{x -
1}{2}}. Với 2^{x} =
\sqrt{3} thì giá trị của biểu thức F bằng:

    Ta có:

    F = \frac{1}{2^{- x - 1}} +
3.{\sqrt{2}}^{2x} - 4^{\frac{x - 1}{2}}

    F = 2^{x + 1} + 3.\left( {\sqrt{2}}^{2}
ight)^{x} - \left( 4^{\frac{1}{2}} ight)^{x - 1}

    F = 2.2^{x} + 3.2^{x} -
\frac{1}{2}.2^{x} = \frac{9}{2}.2^{x}

    Thay 2^{x} = \sqrt{3} vào biểu thức F vừa biến đổi ta được:

    F = \frac{9}{2}.\sqrt{3} =
\frac{9\sqrt{3}}{2}

  • Câu 19: Thông hiểu

    Tổng các nghiệm của phương trình 3^{x^{2} - 3x} = 81 bằng 3||-3||-4||5

    Đáp án là:

    Tổng các nghiệm của phương trình 3^{x^{2} - 3x} = 81 bằng 3||-3||-4||5

    Ta có:

    3^{x^{2} - 3x} = 81 \Leftrightarrow
3^{x^{2} - 3x} = 3^{4}

    \Leftrightarrow x^{2} - 3x = 4
\Leftrightarrow x^{2} - 3x = 4

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 4 \\
\end{matrix} ight.\ (tm)

    Vậy tổng các nghiệm của phương trình là 3

  • Câu 20: Vận dụng

    Biết đồ thị hàm số y = f(x) đối xứng với đồ thị hàm số y = \log_{a}x;\ (0 < a eq 1) qua điểm I(2;2). Giá trị của f\left( 4 - a^{2018} ight) là:

    Gọi M\left( x;\log_{a}x ight) là điểm thuộc đồ thị hàm số y =\log_{a}x thì điểm đối xứng với M qua IM'\left( 4 - x;4 - \log_{a}x ight) thuộc đồ thị hàm số y = f(x)

    => f(4 - x) = 4 \log_{a}x

    \Rightarrow f\left( 4 - a^{2018} ight)= 4 - \log_{a}^{2018} = - 2014

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 25 lượt xem
Sắp xếp theo