Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Phương trình 7^{x + 1} = \left( \frac{1}{7} ight)^{x^{2} - 2x
- 3} có hai nghiệm x_{1};x_{2}. Khi đó giá trị biểu thức T = 2{x_{1}}^{2} + 3{x_{2}}^{2} bằng bao nhiêu? Biết rằng x_{1} <
x_{2}.

    Ta có:

    7^{x + 1} = \left( \frac{1}{7}
ight)^{x^{2} - 2x - 3} \Leftrightarrow 7^{x + 1} = 7^{- \left( x^{2} -
2x - 3 ight)}

    \Leftrightarrow x + 1 = - \left( x^{2} -
2x - 3 ight) \Leftrightarrow x^{2} - x - 2 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{1} = - 1 \\
x_{2} = 2 \\
\end{matrix} ight.\ (tm) \Rightarrow T = 2{x_{1}}^{2} + 3{x_{2}}^{2} =
16

  • Câu 2: Nhận biết

    Kết quả nào dưới đây là nghiệm của phương trình \ln(3m) = 2?

    Điều kiện xác định: m > 0

    \ln(3m) = 2 \Leftrightarrow 3m = e^{2}
\Leftrightarrow m = \frac{e^{2}}{3}(tm)

    Vậy phương trình có nghiệm m =
\frac{e^{3}}{3}.

  • Câu 3: Nhận biết

    Trong các hàm số dưới đây, hàm số nào là hàm số mũ?

    Các hàm số y = \left( \sin x
ight)^{3}; y = x^{3}; y = \sqrt[3]{x} là các hàm số lũy thừa với số mũ hữu tỉ, hàm số y =
3^{x} là hàm số mũ với cơ số là 3.

  • Câu 4: Nhận biết

    Chọn khẳng định sai trong các khẳng định sau?

    Hàm số y = \log_{2}x đồng biến trên khoảng (0; + \infty)

  • Câu 5: Thông hiểu

    Xác định nghiệm của phương trình \sqrt{2^{x}.\sqrt[3]{4^{x}}.\sqrt[3]{0,125}} =
4\sqrt[3]{2}.

    Điều kiện xác định: x \in
\mathbb{N}^{*}

    Phương trình đã cho được viết lại như sau:

    \sqrt{2^{x}.\sqrt[3]{4^{x}}.\sqrt[3]{0,125}} =
4\sqrt[3]{2}

    \Leftrightarrow
\sqrt{2^{x}.2^{\frac{2x}{3}}.2^{- \frac{1}{2x}}} =
2^{x}.2^{\frac{1}{3}}

    \Leftrightarrow
\sqrt{2^{x}.2^{\frac{2x}{3}}.2^{- \frac{1}{2x}}} =
2^{x}.2^{\frac{1}{3}}

    \Leftrightarrow \frac{x}{2} +
\frac{x}{3} - \frac{1}{2x} = \frac{7}{3}

    \Leftrightarrow \left\lbrack\begin{matrix}x = 3(tm) \\x = - \dfrac{1}{5}(ktm) \\\end{matrix} ight.

    Vậy phương trình có nghiệm x =
3.

  • Câu 6: Thông hiểu

    Biến đổi biểu thức T = \sqrt{x^{\frac{4}{3}}.\sqrt[6]{x^{4}}};(x >
0)thành dạng lũy thừa với số mũ hữu tỉ, ta được:

    Ta có:

    T =
\sqrt{x^{\frac{4}{3}}.\sqrt[6]{x^{4}}} =
\sqrt{x^{\frac{4}{3}}.x^{\frac{4}{6}}} = \sqrt{x^{2}} = x

  • Câu 7: Vận dụng cao

    Rút gọn biểu thức

    P = \frac{{4 + \sqrt 3 }}{{1 + \sqrt 3 }} + \frac{{6 + \sqrt 8 }}{{\sqrt 2  + \sqrt 4 }} + ... + \frac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} + ... + \frac{{200 + \sqrt {9999} }}{{\sqrt {99}  + \sqrt {101} }}

    Với k \geqslant 2 ta có:

    \begin{matrix}  \dfrac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} \hfill \\   = \dfrac{{\left[ {{{\left( {\sqrt {k - 1} } ight)}^2} + {{\left( {\sqrt {k + 1} } ight)}^2} + \sqrt {\left( {k + 1} ight)\left( {k - 1} ight)} } ight]\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)}}{{\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)\left( {\sqrt {k - 1}  + \sqrt {k + 1} } ight)}} \hfill \\   = \dfrac{{\sqrt {{{\left( {k + 1} ight)}^3}}  - \sqrt {{{\left( {k - 1} ight)}^3}} }}{2} \hfill \\ \end{matrix}

    Khi đó:

    \begin{matrix}  P = \dfrac{1}{2}.\left( {\sqrt {{3^3}}  - \sqrt {{1^3}}  + \sqrt {{4^3}}  - \sqrt {{2^3}}  + \sqrt {{5^3}}  - \sqrt {{3^3}}  + \sqrt {{6^3}}  - \sqrt {{4^3}}  + ... + \sqrt {{{101}^3}}  - \sqrt {{{99}^3}} } ight) \hfill \\   = \dfrac{1}{2}\left( { - 1 - \sqrt {{2^3}}  + \sqrt {{{101}^3}}  + \sqrt {{{100}^3}} } ight) = \dfrac{{999 + \sqrt {{{101}^3}}  - \sqrt 8 }}{2} \hfill \\ \end{matrix}

  • Câu 8: Vận dụng

    Tính giá trị biểu thức D = \log\left( \tan 1^{0} ight) + \log\left(
\tan 2^{0} ight) + ... + \log\left( tan89^{0} ight).

    Ta có:

    D = \log\left( \tan 1^{0} ight) +\log\left( \tan 2^{0} ight) + ... + \log\left( \tan89^{0}ight)

    D = \log\left( \tan1^{0}.\tan2^{0}...\tan89^{0} ight)

    D = \log\left\lbrack \tan1^{0}.\tan2^{0}...\tan\left( 90^{0} - 2^{0} ight).\tan\left( 90^{0} -1^{0} ight) ightbrack

    D = \log\left( \tan1^{0}.\tan2^{0}...\cot2^{0}.\cot1^{0} ight)

    D = \log\left\lbrack \left( \tan1^{0}..\cot1^{0} ight)\left( \tan 2^{0}.\cot2^{0} ight)...ightbrack

    D = \log1 = 0

  • Câu 9: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m trên đoạn \lbrack -
2018;2018brack để hàm số y =
\ln\left( x^{2} - 2x - m + 1 ight) có tập xác định \mathbb{R}?

    Hàm số y = \ln\left( x^{2} - 2x - m + 1
ight) xác định trên \mathbb{R} khi và chỉ khi

    x^{2} - 2x - m + 1 > 0;\forall x \in
\mathbb{R}

    \Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta' < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 > 0 \\
1 + m - 1 < 0 \\
\end{matrix} ight.\  \Rightarrow m < 0

    Do \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 2018;2018brack \\
\end{matrix} ight.

    \Rightarrow m \in \left\{ - 2018; -
2017;...; - 1 ight\}

    Vậy có 2018 giá trị của m thỏa mãn yêu cầu bài toán.

  • Câu 10: Nhận biết

    Biết a \in
\mathbb{R}^{+}, khi đó \sqrt[4]{a} bằng:

    Ta có: \sqrt[4]{a} =
a^{\frac{1}{4}}

  • Câu 11: Nhận biết

    Biết các số a,b,c là các số thực dương và a,b eq 1. Tìm khẳng định sai trong các khẳng định dưới đây?

    Ta có:

    \log_{a}c = \frac{1}{\log_{c}a} eq -\log_{c}a

    Vậy khẳng định sai là: \log_{a}c = -\log_{c}a

  • Câu 12: Nhận biết

    Xác định nghiệm của bất phương trình (0,7)^{x} < 3?

    Ta có:

    (0,7)^{x} < 3 \Leftrightarrow x >
log_{0,7}3 hay x \in \left(\log_{0,7}3; + \infty ight)

  • Câu 13: Vận dụng

    Tìm giá trị tham số m để bất phương trình 1 + \log_{5}\left( x^{2} + 1 ight) \geq  \log_{5}\left( mx^{2} + 4x + m ight) có nghiệm đúng với mọi x.

    Ta có:

    1 + \log_{5}\left( x^{2} + 1 ight) \geq  \log_{5}\left( mx^{2} + 4x + m ight)

    \Leftrightarrow \log_{5}\left\lbrack5\left( x^{2} + 1 ight) ightbrack \geq \log_{5}\left( mx^{2} + 4x +m ight)

    \Leftrightarrow \left\{ \begin{matrix}
5\left( x^{2} + 1 ight) \geq mx^{2} + 4x + m \\
mx^{2} + 4x + m > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(5 - m)x^{2} - 4x + 5 - m \geq 0\ \ \ (1) \\
mx^{2} + 4x + m > 0\ \ \ \ (2) \\
\end{matrix} ight.

    Bất phương trình đã cho có nghiệm đúng với mọi x khi cả (1) và (2) đúng với mọi x.

    Với m = 0 hoặc m = 5 không thỏa mãn đề bài.

    Với m eq 0 hoặc m eq 5 để thỏa mãn đề bài thì:

    \left\{ \begin{matrix}
5 - m > 0 \\
4 - (5 - m)^{2} \leq 0 \\
m > 0 \\
4 - m^{2} < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 5 \\
\left\lbrack \begin{matrix}
m \leq 3 \\
m \geq 7 \\
\end{matrix} ight.\  \\
m > 0 \\
\left\lbrack \begin{matrix}
m > 2 \\
m < - 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow 2 < m \leq
3

  • Câu 14: Thông hiểu

    Tìm giá trị của x biết \log_{3}\left( x^{2} - 1 ight) + \log_{9}\left(x^{2} - 1 ight) = \frac{3}{2}.

    Điều kiện x^{2} - 1 > 0
\Leftrightarrow \left\lbrack \begin{matrix}
x < - 1 \\
x > 1 \\
\end{matrix} ight.

    Ta có:

    \log_{3}\left( x^{2} - 1 ight) +\log_{9}\left( x^{2} - 1 ight) = \frac{3}{2}

    \Leftrightarrow \log_{3}\left( x^{2} - 1ight) + \frac{1}{2}\log_{3}\left( x^{2} - 1 ight) =\frac{3}{2}

    \Leftrightarrow \log_{3}\left( x^{2} - 1ight) = 1

    \Leftrightarrow x^{2} - 1 =
3

    \Leftrightarrow x^{2} = 4
\Leftrightarrow x = \pm 2

  • Câu 15: Vận dụng

    Có bao nhiêu khẳng định sai trong các khẳng định cho dưới đây?

    (1) Với số thực a và các số nguyên m,n, ta có \left( a^{m} ight)^{n} =
a^{m.n};\frac{a^{m}}{a^{n}} = a^{m:n}.

    (2) Với hai số thực a,b cùng khác 0 và số nguyên n, ta có (ab)^{n} =
a^{n}.b^{n};\left( \frac{a}{b} ight)^{n} =
\frac{a^{n}}{b^{n}}

    (3) Với hai số thực a,b thỏa mãn 0 < a < b và số nguyên n, ta có a^{n}
< b^{n} khi và chỉ khi n >
0.

    (4) Cho số thực a và các số nguyên m,n. Khi đó, với a > 0 thì a^{m} > a^{n} khi và chỉ khi m > n.

    Khẳng định sai: "Với số thực a và các số nguyên m,n , ta có \left( a^{m} ight)^{n} =
a^{m.n};\frac{a^{m}}{a^{n}} = a^{m:n} "
  • Câu 16: Thông hiểu

    Anh B vay ngân hàng 200 triệu đồng và trả góp trong vòng 1 năm với lãi suất 1,15%/tháng. Sau đúng một tháng kể từ ngày vay, anh B hoàn nợ cho ngân hàng với số tiền hoàn nợ mỗi tháng là như nhau. Hỏi số tiền gần nhất với số tiền mỗi tháng anh B sẽ phải trả cho ngân hàng là bao nhiêu? Biết lãi suất ngân hàng không thay đổi trong thời gian anh B hoàn nợ.

    Mỗi tháng anh B phải trả số tiền cho ngân hàng là:

    x = \frac{a.(1 + r)^{n}.r}{(1 + r)^{n} -
1} = \frac{200.(1 + 1,15\%)^{12}.1,15\%}{(1 + 1,15\%)^{12} -
1}

    =
\frac{200.(1,0115)^{12}.0,0115}{(1,0115)^{12} - 1} \approx
17,94

  • Câu 17: Thông hiểu

    Cho tam giác vuông ABC có a,b là độ dài hai cạnh góc vuông, c là độ dài cạnh huyền với điều kiện c - b eq 1;c + b eq 1. Chọn kết luận đúng.

    Do tam giác ABC vuông nên ta có:

    c^{2} = a^{2} + b^{2}

    \Rightarrow a^{2} = c^{2} -b^{2}

    \Rightarrow a^{2} = (c - b)(c +b)

    \Rightarrow log_{a}a^{2} =log_{a}\left\lbrack (c - b)(c + b) ightbrack

    \Rightarrow 2 = log_{a}\lbrack c -bbrack + log_{a}\lbrack c + bbrack

    \Rightarrow 2 = log_{a}\lbrack c -bbrack + log_{a}\lbrack c + bbrack

    \Rightarrow 2 = \frac{1}{log_{c - b}a} +\frac{1}{log_{c + b}a}

    \Rightarrow \log_{c + b}a + \log_{c - b}a= 2\log_{c + b}a.\log_{c - b}a

  • Câu 18: Thông hiểu

    Cho hai số thực dương x;y. Viết biểu thức x^{\frac{4}{5}}\sqrt[6]{x^{5}\sqrt{x}} về dạng x^{p} và biểu thức y^{\frac{4}{5}}:\sqrt[6]{y^{5}.\sqrt{y}} về dạng y^{q}. Khi đó p - q có giá trị là bao nhiêu?

    Ta có:

    x^{\frac{4}{5}}\sqrt[6]{x^{5}\sqrt{x}} =
x^{\frac{4}{5}}\sqrt[6]{x^{5}x^{\frac{1}{2}}} =
x^{\frac{4}{5}}\sqrt[6]{x^{\frac{11}{2}}} =
x^{\frac{4}{5}}.x^{\frac{11}{12}} = x^{\frac{103}{60}}

    \Rightarrow p =
\frac{103}{60}

    y^{\frac{4}{5}}:\sqrt[6]{y^{5}.\sqrt{y}}
= y^{\frac{4}{5}}:\sqrt[6]{y^{\frac{11}{2}}} = y^{\frac{-
7}{60}}

    \Rightarrow q = \frac{-
7}{60}

    \Rightarrow p - q =
\frac{11}{6}

  • Câu 19: Nhận biết

    Cho x là số thực dương. Viết x^{\frac{1}{3}}:\sqrt{x} dưới dạng lũy thừa với số mũ hữu tỉ ta được:

    Ta có: x^{\frac{1}{3}}:\sqrt{x} =
x^{\frac{1}{3}}:x^{\frac{1}{2}} = x^{\frac{1}{3} - \frac{1}{2}} = x^{-
\frac{1}{6}}

  • Câu 20: Vận dụng

    Cho các hàm số y
= log_{a}x;y = log_{b}x;y = log_{c}x có đồ thị như hình vẽ dưới đây:

    Kết luận nào sau đây đúng?

    Dựa vào đồ thị hàm số y =
log_{b}x là một hàm số nghịch biến trên tập xác định của nó nên 0 < b < 1

    Hàm số y = log_{a}x;y = log_{c}x là các hàm số đồng biến trên tập xác định của nó nên a;c > 1

    Kẻ đường thẳng y = 1 cắt đồ thị hàm số y = log_{c}x;y = log_{a}x lần lượt tại các điểm A(c;1),B(a;1)

    Dựa vào đồ thị ta thấy x_{A} < x_{B}
\Leftrightarrow c < a

    Vậy kết luận đúng là: a > c >
b

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 24 lượt xem
Sắp xếp theo