Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Biết rằng m,n là các số thực dương thỏa mãn \dfrac{\log_{3}m.\log_{2}3}{1 + \log_{2}5} + \log n =1. Tìm khẳng định đúng trong các khẳng định sau?

    Ta có:

    \dfrac{\log_{3}m.\log_{2}3}{1 + \log_{2}5} + \log n =1

    \Leftrightarrow\frac{\log_{2}m}{\log_{2}10} + \log n = 1

    \Leftrightarrow \log m + \log n = 1
\Leftrightarrow \log(mn) = 1

    \Leftrightarrow mn = 10

  • Câu 2: Vận dụng cao

    Tích 2017!{\left( {1 + \frac{1}{1}} ight)^1}{\left( {1 + \frac{1}{2}} ight)^2}...{\left( {1 + \frac{1}{{2017}}} ight)^{2017}} được viết dưới dạng {a^b}, khi đó \left( {a;b} ight) là cặp nào trong các cặp số sau?

    Ta có:

    \begin{matrix}  2017!{\left( {1 + \dfrac{1}{1}} ight)^1}{\left( {1 + \dfrac{1}{2}} ight)^2}...{\left( {1 + \dfrac{1}{{2017}}} ight)^{2017}} \hfill \\   = 2017!{\left( {\dfrac{2}{1}} ight)^1}{\left( {\dfrac{3}{2}} ight)^2}...{\left( {\dfrac{{2017}}{{2016}}} ight)^{2016}}.{\left( {\dfrac{{2018}}{{2017}}} ight)^{2017}} \hfill \\   = 2017!\dfrac{1}{1}.\dfrac{1}{2}.\dfrac{1}{3}....\dfrac{1}{{2016}}.\dfrac{{{{2018}^{2017}}}}{{2017}} = {2018^{2017}} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 2018} \\   {b = 2017} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 3: Vận dụng

    Cho ba số thực dương x, y, z thwo thứ tự lập thành một cấp số nhân, đồng thời với mỗi số thực dương a,(a eq 1) thì log_{a}x;log_{\sqrt{a}}y;log_{\sqrt[3]{a}}z theo thứ tự lập thành một cấp số cộng. Tính giá trị của biểu thức T = \frac{1959x}{y} + \frac{2019y}{z} +
\frac{60z}{x}?

    Theo đề bài ta có:

    \left\{ \begin{matrix}xz = y^{2} \\\log_{a}x + \log_{\sqrt[3]{a}}z = 2\log_{\sqrt{a}}y \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
xz = y^{2} \\
xz^{3} = y^{4} \\
\end{matrix} ight.\  \Leftrightarrow x = y = z

    Do đó: T = \frac{1959x}{y} +\frac{2019y}{z} + \frac{60z}{x}= 1959 + 2019 + 60 = 4038

  • Câu 4: Nhận biết

    Tìm tập xác định của hàm số y = \log(x - 2)^{2}.

    Điều kiện xác định (x - 2)^{2} > 0
\Rightarrow x eq 2

    Vậy tập xác định của hàm số là D=\mathbb{R}\backslash\left\{ 2 ight\}.

  • Câu 5: Vận dụng

    Cho bất phương trình \log_{x - m}\left( x^{2} - 1 ight) > \log_{x -m}\left( x^{2} + x - 2 ight). Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?

    Điều kiện xác định x e m + 1;x > m

    Ta có:

    \log_{x - m}\left( x^{2} - 1 ight) >\log_{x - m}\left( x^{2} + x - 2 ight)(*)

    Với x > m + 1

    (*) \Leftrightarrow \left\{
\begin{matrix}
x^{2} - 1 > x^{2} + x - 2 \\
x^{2} + x - 2 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x < 1 \\
\left\lbrack \begin{matrix}
x < - 2 \\
x > 1 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow x < - 2

    Với 0 < x < m + 1

    (*) \Leftrightarrow 0 < x^{2} - 1
< x^{2} + x - 2

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} - 1 > 0 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > - 1 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow x > 1

    Bất phương trình (*) vô nghiệm khi và chỉ khi \left\{ \begin{matrix}m + 1 \geq - 2 \\m + 1 \leq 1 \\\end{matrix} ight.\  \Leftrightarrow - 3 \leq m \leq 0

  • Câu 6: Thông hiểu

    Cho phương trình 3^{\sqrt{x^{2} - 2x}} = \left( \frac{1}{3}
ight)^{x - |x - 1|}. Chọn khẳng định đúng.

    Điều kiện xác định x^{2} - 2x \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
x \geq 2 \\
x \leq 0 \\
\end{matrix} ight.

    Lấy logarit cơ số 3 hai vế phương trình ta được:

    \Leftrightarrow \log_{3}3^{\sqrt{x^{2} -2x}} = \log_{3}\left( \frac{1}{3} ight)^{x - |x - 1|}

    \Leftrightarrow \sqrt{x^{2} - 2x} = |x -
1| - x

    Trường hợp 1: x \geq 2 ta có: \sqrt{x^{2} - 2x} = - 1. Phương trình vô nghiệm.

    Trường hợp 2: x \leq 0 ta có:

    \sqrt{x^{2} - 2x} = 1 - 2x

    \Leftrightarrow \left\{ \begin{matrix}
1 - 2x \geq 0 \\
x^{2} - 2x = (1 - 2x)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq \dfrac{1}{2} \\3x^{2} - 2x + 1 = 0 \\\end{matrix} ight.vô nghiệm

    Vậy phương trình đã cho vô nghiệm.

  • Câu 7: Thông hiểu

    Tìm số nghiệm của phương trình \log_{3}(2a + 1) + \log_{3}(a - 3) = 2?

    Điều kiện xác định \left\{ \begin{matrix}2a + 1 > 0 \\a - 3 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a > - \dfrac{1}{2} \\a > 3 \\\end{matrix} ight.\  \Rightarrow a > 3

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{3}\left\lbrack (2a+ 1)(a - 3) ightbrack = \log_{3}9

    \Leftrightarrow (2a + 1)(a - 3) =
9

    \Leftrightarrow 2a^{2} - 5a - 12 = 0\Leftrightarrow \left\lbrack \begin{matrix}a = 4(tm) \\a = - \dfrac{3}{2}(ktm) \\\end{matrix} ight.

    Vậy phương trình có 1 nghiệm duy nhất.

  • Câu 8: Nhận biết

    Tìm nghiệm của phương trình \log_{2}(3x - 2) = 3.

    Điều kiện xác định 3x - 2 > 0
\Leftrightarrow x > \frac{2}{3}

    \log_{2}(3x - 2) = 3

    \Leftrightarrow 3x - 2 =
2^{3}

    \Leftrightarrow x =
\frac{10}{3}(tm)

    Vậy phương trình có nghiệm x =
\frac{10}{3}.

  • Câu 9: Thông hiểu

    Rút gọn biểu thức G =
\frac{x^{\frac{1}{3}}.\sqrt[6]{x}}{\sqrt[4]{x}} với x > 0 ta được kết quả là:

    Ta có: G =
\frac{x^{\frac{1}{3}}.\sqrt[6]{x}}{\sqrt[4]{x}} =
\frac{x^{\frac{1}{3}}.x^{\frac{1}{6}}}{x^{\frac{1}{4}}} =
\frac{x^{\frac{1}{3} + \frac{1}{6}}}{x^{\frac{1}{4}}} = x^{\frac{1}{4}}
= \sqrt[4]{x}

  • Câu 10: Thông hiểu

    Có bao nhiêu giá trị nguyên của dương của tham số m để hàm số y = (6 - m)^{x} đồng biến trên tập số thực?

    Đáp án: 4

    Đáp án là:

    Có bao nhiêu giá trị nguyên của dương của tham số m để hàm số y = (6 - m)^{x} đồng biến trên tập số thực?

    Đáp án: 4

    Hàm số y = (6 - m)^{x} đồng biến trên \mathbb{R} khi và chỉ khi 6 - m > 1 \Leftrightarrow m <
5

    m \in \mathbb{Z}^{+} \Rightarrow m \in
\left\{ 1;2;3;4 ight\}

    Vậy có 4 giá trị của tham số m thỏa mãn điều kiện đề bài.

  • Câu 11: Vận dụng

    Rút gọn biểu thức T = \left( \frac{a^{\frac{3}{2}} +
b^{\frac{3}{2}}}{a - b} - \frac{a - b}{a^{\frac{1}{2}} +
b^{\frac{1}{2}}} ight).\left( \frac{\sqrt{a} - \sqrt{b}}{\sqrt{ab}}
ight).

    Ta có:

    T = \left( \frac{a^{\frac{3}{2}} +
b^{\frac{3}{2}}}{a - b} - \frac{a - b}{a^{\frac{1}{2}} +
b^{\frac{1}{2}}} ight).\left( \frac{\sqrt{a} - \sqrt{b}}{\sqrt{ab}}
ight)

    T = \left( \frac{\sqrt{a^{3}} -
\sqrt{b^{3}}}{\sqrt{a^{2}} - \sqrt{b^{2}}} - \frac{a\sqrt{a^{2}} -
\sqrt{b^{2}} - b}{\sqrt{a} + \sqrt{b}} ight).\left( \frac{\sqrt{a} -
\sqrt{b}}{\sqrt{ab}} ight)

    T = \left( \frac{\sqrt{a^{3}} +
\sqrt{b^{3}} - \sqrt{a^{3}} - \sqrt{b^{3}} + \sqrt{a^{2}b} -
\sqrt{ab^{2}}}{\sqrt{a^{2}} - \sqrt{b^{2}}} ight).\left(
\frac{\sqrt{a} - \sqrt{b}}{\sqrt{ab}} ight)

    T = \left( \frac{\sqrt{a^{2}b} -
\sqrt{ab^{2}}}{\sqrt{a^{2}} - \sqrt{b^{2}}} ight).\left(
\frac{\sqrt{a} - \sqrt{b}}{\sqrt{ab}} ight) = 1

  • Câu 12: Vận dụng

    Cho hàm số f(x) =
\frac{9^{x} - 2}{9^{x} + 3}. Tính giá trị của biểu thức:

    P = f\left( \frac{1}{2017} ight) +
f\left( \frac{2}{2017} ight) + ... + f\left( \frac{2016}{2017} ight)
+ f\left( \frac{2017}{2017} ight)

    Ta có:

    f(x) + f(1 - x) = \frac{9^{x} - 2}{9^{x}
+ 3} + \frac{9^{1 - x} - 2}{9^{1 - x} + 3} = \frac{1}{3}

    Khi đó:

    P = f\left( \frac{1}{2017} ight) +
f\left( \frac{2}{2017} ight) + ... + f\left( \frac{2016}{2017} ight)
+ f\left( \frac{2017}{2017} ight)

    P = \sum_{k = 1}^{1008}\left\lbrack
f\left( \frac{k}{2017} ight) + f\left( 1 - \frac{k}{2017} ight)
ightbrack + f\left( \frac{2017}{2017} ight)

    P = \sum_{k = 1}^{1008}\frac{1}{3} +
f(1) = \frac{4039}{12}

  • Câu 13: Nhận biết

    Tập xác định của hàm số y = \log_{2}(x - 2) là:

    Điều kiện xác định của hàm số y = \log_{2}(x - 2) là:

    x - 2 > 0 \Rightarrow x >
2

    Vậy tập xác định của hàm số là D = (2; +
\infty)

  • Câu 14: Thông hiểu

    Giá trị của \log_{3}H với H =
\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} là: 21/100

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giá trị của \log_{3}H với H =
\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} là: 21/100

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Ta có:

    H =\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} =3^{\dfrac{1}{10}}27^{\dfrac{1}{10}.\dfrac{1}{5}}.243^{\dfrac{1}{10}.\dfrac{1}{5}.\dfrac{1}{2}}= 3^{\dfrac{21}{100}}

    \Rightarrow \log_{3}H =\log_{3}3^{\frac{21}{100}} = \frac{21}{100}

  • Câu 15: Thông hiểu

    Chọn phát biểu sai?

    Ta có: 0,5^{3} > \left( \frac{1}{2}
ight)^{3}là phát biểu sai do a
< 1

  • Câu 16: Nhận biết

    Biết rằng x =
\frac{1}{256};y = \frac{1}{27}. Tính giá trị của biểu thức C = x^{\frac{- 3}{4}} + y^{\frac{-
4}{3}}.

    Thay x = \frac{1}{256};y =
\frac{1}{27} vào biểu thức C =
x^{\frac{- 3}{4}} + y^{\frac{- 4}{3}} ta được:

    C = \left( \frac{1}{256}
ight)^{\frac{- 3}{4}} + \left( \frac{1}{27} ight)^{\frac{- 4}{3}} =
\left( 4^{- 4} ight)^{\frac{- 3}{4}} + \left( 3^{- 3} ight)^{\frac{-
4}{3}}

    = 4^{3} + 3^{4} = 145

  • Câu 17: Nhận biết

    Tính giá trị biểu thức K = \log_{\frac{x}{5}}\left( \frac{x^{3}}{125}ight) với x \in
\mathbb{R}^{+}\backslash\left\{ 5 ight\}?

    Ta có:

    K = \log_{\frac{x}{5}}\left(\frac{x^{3}}{125} ight) = \log_{\frac{x}{5}}\left( \frac{x}{5}ight)^{3} = 3\log_{\frac{x}{5}}\left( \frac{x}{5} ight) =3

  • Câu 18: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    a) Tập xác định của hàm số y = \ln\left(- x^{2} + 5x - 6 ight)D =(2;3). Đúng||Sai

    b) Hàm số y = \left( \frac{\pi}{3}ight)^{x} đồng biến trên tập số thực. Đúng||Sai

    c) Với mọi a,b thỏa mãn \log_{2}a^{3} + \log_{2}b = 8 khi đó a^{3} + b = 64. Sai||Đúng

    d) Có 2017 giá trị nguyên của tham số m trên \lbrack - 2018;2018brack để hàm số y = \ln\left( x^{2} - 2x - m + 1ight) có tập xác định trên R. Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    a) Tập xác định của hàm số y = \ln\left(- x^{2} + 5x - 6 ight)D =(2;3). Đúng||Sai

    b) Hàm số y = \left( \frac{\pi}{3}ight)^{x} đồng biến trên tập số thực. Đúng||Sai

    c) Với mọi a,b thỏa mãn \log_{2}a^{3} + \log_{2}b = 8 khi đó a^{3} + b = 64. Sai||Đúng

    d) Có 2017 giá trị nguyên của tham số m trên \lbrack - 2018;2018brack để hàm số y = \ln\left( x^{2} - 2x - m + 1ight) có tập xác định trên R. Sai||Đúng

    a) Điều kiện xác định của hàm số y =\ln\left( - x^{2} + 5x - 6 ight) là:

    - x^{2} + 5x - 6 > 0 \Leftrightarrow2 < x < 3

    Vậy tập xác định của hàm số y = \ln\left(- x^{2} + 5x - 6 ight)D =(2;3).

    b) Hàm số y = \left( \frac{\pi}{3}ight)^{x} đồng biến trên tập số thực đúng vì a > 1.

    c) Ta có:

    \log_{2}a^{3} + \log_{2}b = 8

    \log_{2}a^{3} + \log_{2}b = 8\Leftrightarrow \log_{2}\left( a^{3}b ight) = 8

    \Leftrightarrow a^{3}b = 2^{8} =256

    d) Hàm số y = \ln\left( x^{2} - 2x - m +1 ight) có tập xác định trên tập số thực khi và chỉ khi

    x^{2} - 2x - m + 1 > 0;\forallx\mathbb{\in R}

    \Leftrightarrow \Delta' < 0\Leftrightarrow 1 + m - 1 < 0 < 0 \Leftrightarrow m <0

    Kết hợp với điều kiện m\mathbb{\in Z},m\in \lbrack - 2018;2018brack ta được 2018 giá trị của tham số m thỏa mãn.

  • Câu 19: Nhận biết

    Xác định nghiệm của bất phương trình 5^{x - 2} \leq \frac{1}{5}?

    Ta có:

    5^{x - 2} \leq \frac{1}{5}
\Leftrightarrow 5^{x - 2} \leq 5^{- 1}

    \Leftrightarrow x - 2 \leq - 1
\Leftrightarrow x \leq 1 hay x \in
( - \infty;1brack

  • Câu 20: Nhận biết

    Đơn giản biểu thức E = a^{\sqrt{2}}.\left( \frac{1}{a}
ight)^{\sqrt{2} - 1} với a >
0 được kết quả là:

    Ta có:

    E = a^{\sqrt{2}}.\left( \frac{1}{a}
ight)^{\sqrt{2} - 1} = a^{\sqrt{2}}.a^{- \sqrt{2} + 1} = a^{\sqrt{2} -
\sqrt{2} + 1} = a

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo