Biết rằng
là các số thực dương thỏa mãn
. Tìm khẳng định đúng trong các khẳng định sau?
Ta có:
Biết rằng
là các số thực dương thỏa mãn
. Tìm khẳng định đúng trong các khẳng định sau?
Ta có:
Tích
được viết dưới dạng
, khi đó
là cặp nào trong các cặp số sau?
Ta có:
Cho ba số thực dương x, y, z thwo thứ tự lập thành một cấp số nhân, đồng thời với mỗi số thực dương
thì
theo thứ tự lập thành một cấp số cộng. Tính giá trị của biểu thức
?
Theo đề bài ta có:
Do đó:
Tìm tập xác định của hàm số
.
Điều kiện xác định
Vậy tập xác định của hàm số là .
Cho bất phương trình
. Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?
Điều kiện xác định
Ta có:
Với
Với
Bất phương trình vô nghiệm khi và chỉ khi
Cho phương trình
. Chọn khẳng định đúng.
Điều kiện xác định
Lấy logarit cơ số 3 hai vế phương trình ta được:
Trường hợp 1: ta có:
. Phương trình vô nghiệm.
Trường hợp 2: ta có:
vô nghiệm
Vậy phương trình đã cho vô nghiệm.
Tìm số nghiệm của phương trình
?
Điều kiện xác định
Phương trình đã cho tương đương:
Vậy phương trình có 1 nghiệm duy nhất.
Tìm nghiệm của phương trình
.
Điều kiện xác định
Vậy phương trình có nghiệm .
Rút gọn biểu thức
với
ta được kết quả là:
Ta có:
Có bao nhiêu giá trị nguyên của dương của tham số
để hàm số
đồng biến trên tập số thực?
Đáp án: 4
Có bao nhiêu giá trị nguyên của dương của tham số để hàm số
đồng biến trên tập số thực?
Đáp án: 4
Hàm số đồng biến trên
khi và chỉ khi
Mà
Vậy có 4 giá trị của tham số m thỏa mãn điều kiện đề bài.
Rút gọn biểu thức
.
Ta có:
Cho hàm số
. Tính giá trị của biểu thức:
![]()
Ta có:
Khi đó:
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Giá trị của
với
là: 21/100
(Kết quả ghi dưới dạng phân số tối giản a/b)
Giá trị của với
là: 21/100
(Kết quả ghi dưới dạng phân số tối giản a/b)
Ta có:
Chọn phát biểu sai?
Ta có: là phát biểu sai do
Biết rằng
. Tính giá trị của biểu thức
.
Thay vào biểu thức
ta được:
Tính giá trị biểu thức
với
?
Ta có:
Xét tính đúng, sai của các phát biểu sau?
a) Tập xác định của hàm số
là
. Đúng||Sai
b) Hàm số
đồng biến trên tập số thực. Đúng||Sai
c) Với mọi
thỏa mãn
khi đó
. Sai||Đúng
d) Có 2017 giá trị nguyên của tham số m trên
để hàm số
có tập xác định trên
. Sai||Đúng
Xét tính đúng, sai của các phát biểu sau?
a) Tập xác định của hàm số là
. Đúng||Sai
b) Hàm số đồng biến trên tập số thực. Đúng||Sai
c) Với mọi thỏa mãn
khi đó
. Sai||Đúng
d) Có 2017 giá trị nguyên của tham số m trên để hàm số
có tập xác định trên
. Sai||Đúng
a) Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
.
b) Hàm số đồng biến trên tập số thực đúng vì
.
c) Ta có:
d) Hàm số có tập xác định trên tập số thực khi và chỉ khi
Kết hợp với điều kiện ta được 2018 giá trị của tham số m thỏa mãn.
Xác định nghiệm của bất phương trình
?
Ta có:
hay
Đơn giản biểu thức
với
được kết quả là:
Ta có: