Cho bất phương trình
. Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?
Điều kiện xác định
Ta có:
Với
Với
Bất phương trình vô nghiệm khi và chỉ khi
Cho bất phương trình
. Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?
Điều kiện xác định
Ta có:
Với
Với
Bất phương trình vô nghiệm khi và chỉ khi
Cho hai số thực a và b với
. Chọn khẳng định sai?
Ta có: sai vì chưa biết b > 0 hay b < 0.
Giải bất phương trình
thu được tập nghiệm là:
Ta có:
Vậy tập nghiệm bất phương trình là:
Tìm tập xác định của hàm số
là:
Điều kiện xác định:
Vậy tập xác định là:
Cho các số thực dương phân biệt a và b. Biểu thức thu gọn của biểu thức
![P = \frac{{\sqrt a - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \frac{{\sqrt {4a} + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}}](https://i.khoahoc.vn/data/image/holder.png)
có dạng
. Khi đó biểu thức liên hệ giữa n và m là:
Ta có:
Tìm tập xác định của hàm số
?
Điều kiên xác định:
Vậy tập xác định của hàm số là:
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Cho hai hàm số
với
là các số thực dương khác có đồ thị hàm số lần lượt là
như hình vẽ.

Chọn khẳng định đúng trong các khẳng định dưới đây.
Từ hình vẽ ta thấy đồ thị tăng suy ra hàm số
có cơ số
.
Đồ thị giảm suy ra hàm số
có cơ số
Cho đồ thị của ba hàm số
như hình vẽ:

Chọn kết luận đúng về mối quan hệ giữa
?
Quan sát đồ thị ta thấy
Hàm số là hàm số đồng biến nên
Hàm số là hàm số đồng biến nên
Hàm số là hàm nghịch biến nên
Vậy ta có:
Khi thay x = 1 vào hai hàm số ta thu được m > n
Vậy .
Giải bất phương trình
thu được tập nghiệm là:
Ta có:
Vậy bất phương trình đã cho có tập nghiệm là: .
Cho
là các số thực dương lớn hơn 1 thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
Cho
và
. Tính giá trị biểu thức
?
Ta có:
Khi đó:
Tìm tập nghiệm của phương trình
?
Ta có:
Vậy tập nghiệm của phương trình là .
Có bao nhiêu số thực dương
để
?
Ta có:
Để thì
Vậy có tất cả 8 số thực dương thỏa mãn yêu cầu bài toán.
Cho các số thực dương
và biểu thức

Tính giá trị biểu thức
?
Ta có:
Cho a là một số thực dương khác 1. Tính giá trị của biểu thức:
![]()
Ta có:
Tổng các nghiệm của phương trình
bằng:
Điều kiện
Ta có:
Khi đó tổng bình phương các nghiệm của phương trình bằng 0
Tìm tập xác định của hàm số
?
Tập xác định của hàm số là
.
Đơn giản biểu thức
với
được kết quả là:
Ta có:
Biết
,
bằng:
Ta có: