Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm tập xác định của hàm số y = \log_{\sqrt{5}}\left( \frac{1}{6 - x}ight)?

    Điều kiện xác định \frac{1}{6 - x} > 0
\Rightarrow 6 - x > 0 \Rightarrow x < 6

    Suy ra tập xác định của hàm số là: D = (
- \infty;6).

  • Câu 2: Nhận biết

    Xác định nghiệm của bất phương trình 5^{x - 2} \leq \frac{1}{5}?

    Ta có:

    5^{x - 2} \leq \frac{1}{5}
\Leftrightarrow 5^{x - 2} \leq 5^{- 1}

    \Leftrightarrow x - 2 \leq - 1
\Leftrightarrow x \leq 1 hay x \in
( - \infty;1brack

  • Câu 3: Thông hiểu

    Tìm tập xác định của hàm số y = \log_{2}\frac{3 - x}{2x} là:

    Điều kiện xác định của hàm số

    \frac{3 - x}{2x} > 0 \Rightarrow x \in
(0;3)

    Vậy tập xác định là: D =
(0;3)

  • Câu 4: Thông hiểu

    Cho bất phương trình \left( \frac{1}{3} ight)^{\frac{2}{x}} +
3.\left( \frac{1}{3} ight)^{\frac{1}{x} + 1} > 12 có tập nghiệm S = (a;b). Giá trị của biểu thức T = 3a + 10b bằng:

    Ta có:

    \left( \frac{1}{3} ight)^{\frac{2}{x}}
+ 3.\left( \frac{1}{3} ight)^{\frac{1}{x} + 1} > 12

    Đặt t = \left( \frac{1}{3}
ight)^{\frac{1}{x}};(t > 0) khi đó bất phương trình trở thành:

    \Leftrightarrow t^{2} + t > 12
\Leftrightarrow (t - 3)(t - 4) > 0

    \Leftrightarrow t > 3\ (do\ t >
0)

    Từ đó suy ra \left( \frac{1}{3}
ight)^{\frac{1}{x}} > 3 \Leftrightarrow \frac{1}{x} < - 1
\Leftrightarrow - 1 < x < 0

    Tập nghiệm của bất phương trình là: ( -
1;0) \Rightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 0 \\
\end{matrix} ight.

    Vậy T = 3a + 10b = - 3

  • Câu 5: Vận dụng cao

    Tìm tất cả các tập giá trị của a để  \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}}?

    Ta có: \sqrt[7]{{{a^2}}} = \sqrt[{21}]{{{a^6}}}

    => \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}} \Rightarrow \sqrt[{21}]{{{a^5}}} > \sqrt[{21}]{{{a^6}}}

    Mà 5 < 6 => 0 < a < 1

  • Câu 6: Nhận biết

    Tính giá trị biểu thức M = 2^{\log_{2}a} + \log_{a}\left( a^{b}ight) với điều kiện a > 0;a
eq 1?

    Ta có:

    M = 2^{\log_{2}a} + \log_{a}\left( a^{b}ight) = a + b

  • Câu 7: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) (0,2)^{\sqrt{16}} >
(0,2)^{\sqrt[3]{60}} Sai||Đúng

    b) Tập xác định của hàm số y=\log_{3}\left(- 3x^{2} + 23x - 20 ight) có 5 giá trị nguyên. Đúng||Sai

    c) Tổng tất cả các nghiệm thực của phương trình \log_{2}(x + 2) + \log_{4}(x - 5)^{2} +\log_{\frac{1}{2}}8 = 0 bằng 9.Đúng||Sai

    d) Có 3 giá trị nguyên của x thuộc \lbrack 0;2020brack thỏa mãn bất phương trình 16^{x} + 25^{x} + 36^{x} \leq 20^{x} +
24^{x} + 30^{x}. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) (0,2)^{\sqrt{16}} >
(0,2)^{\sqrt[3]{60}} Sai||Đúng

    b) Tập xác định của hàm số y=\log_{3}\left(- 3x^{2} + 23x - 20 ight) có 5 giá trị nguyên. Đúng||Sai

    c) Tổng tất cả các nghiệm thực của phương trình \log_{2}(x + 2) + \log_{4}(x - 5)^{2} +\log_{\frac{1}{2}}8 = 0 bằng 9.Đúng||Sai

    d) Có 3 giá trị nguyên của x thuộc \lbrack 0;2020brack thỏa mãn bất phương trình 16^{x} + 25^{x} + 36^{x} \leq 20^{x} +
24^{x} + 30^{x}. Sai||Đúng

    a) Ta có: \left( \sqrt{16} ight)^{6} =
16^{3};\left( \sqrt[3]{60} ight)^{6} = 60^{2}

    \Rightarrow \sqrt{16} >
\sqrt[3]{60} mà cơ số 0,2 <
1

    (0,2)^{\sqrt{16}} <
(0,2)^{\sqrt[3]{60}}

    b) Điều kiện xác định: - 3x^{2} + 23x -
20 > 0 \Leftrightarrow 1 < x < \frac{20}{3}

    Vậy tập xác định có 5 giá trị nguyên.

    c) Điều kiện xác định: x > - 2;x eq
5

    \log_{2}(x + 2) + \log_{4}(x - 5)^{2} +\log_{\frac{1}{2}}8 = 0

    \Leftrightarrow \log_{2}(x + 2) +\log_{2}|x - 5| - \log_{2}8 = 0

    \Leftrightarrow \log_{2}\left\lbrack (x +2).|x - 5| ightbrack = \log_{2}8

    \Leftrightarrow (x + 2).|x - 5| = 8
\Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x \geq 5 \\
(x + 2).(x - 5) = 8 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
- 2 < x < 5 \\
(x + 2).(x - 5) = - 8 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 6 \\x = \dfrac{3 \pm \sqrt{17}}{2} \\\end{matrix} ight.\ (tm)

    Vậy tổng tất cả các nghiệm của phương trình là: S = 9

    d) Ta có:

    16^{x} + 25^{x} + 36^{x} \leq 20^{x} +
24^{x} + 30^{x}

    \Leftrightarrow 4^{2x} + 5^{2x} + 6^{2x}
\leq 4^{x}.5^{x} + 4^{x}.6^{x} + 5^{x}.6^{x}

    \Leftrightarrow 2\left\lbrack 4^{2x} +
5^{2x} + 6^{2x} ightbrack - 2\left( 4^{x}.5^{x} + 4^{x}.6^{x} +
5^{x}.6^{x} ight) \leq 0

    \Leftrightarrow \left( 4^{x} - 5^{x}
ight)^{2} + \left( 4^{x} - 6^{x} ight)^{2} + \left( 5^{x} - 6^{x}
ight)^{2} \leq 0

    \Leftrightarrow \left\lbrack\begin{matrix}4^{x} - 5^{x} = 0 \\4^{x} - 6^{x} = 0 \\5^{x} - 6^{x} = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}\left( \dfrac{4}{5} ight)^{x} = 1 \\\left( \dfrac{4}{6} ight)^{x} = 1 \\\left( \dfrac{5}{6} ight)^{x} = 1 \\\end{matrix} ight.\  \Leftrightarrow x = 0 \in \lbrack0;2020brack

    Vậy có suy nhất 1 giá trị nguyên của x thỏa mãn yêu cầu đề bài.

  • Câu 8: Nhận biết

    Cho hàm số y =
\ln(x - 2) + \sqrt{9 - x}. Tìm tập xác định của hàm số?

    Điều kiện xác định của hàm số y = \ln(x -
2) + \sqrt{9 - x} là:

    \left\{ \begin{matrix}
x - 2 > 0 \\
9 - x \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow x \in (2;9brack

    Vậy tập xác định của hàm số là: D =
(2;9brack

  • Câu 9: Nhận biết

    Rút gọn biểu thức F = a^{\frac{7}{3}}:\sqrt[3]{a};(a >
0) ta được:

    Ta có:

    F = a^{\frac{7}{3}}:\sqrt[3]{a} =
a^{\frac{7}{3}}:a^{\frac{1}{3}} = a^{\frac{7}{3} - \frac{1}{3}} =
a^{2}

  • Câu 10: Thông hiểu

    Cho đồ thị hàm số:

    Xác định hàm số tương ứng?

    Đồ thị hàm số đi lên và qua điểm có tọa độ (1;3) nên hàm số thỏa mãn là y = 3^{x}

  • Câu 11: Vận dụng

    Cho hình vẽ:

    Ta có: m,n \in
\mathbb{R}^{+}\backslash\left\{ 1 ight\}, đường thẳng d song song trục hoành cắt trục tung và đồ thị hai hàm số y = m^{x},y =
n^{x} lần lượt tại H,M,N. Biết \frac{MH}{MN} = 3. Chọn khẳng định đúng?

    Ta có:

    Đường thẳng d cắt đồ thị hàm số y =
m^{x} tại điểm M\left( x_{M};y_{M}
ight)

    y_{M} = m^{x_{M}}

    Đường thẳng d cắt đồ thị hàm số y =
n^{x} tại điểm N\left( x_{N};y_{N}
ight)

    y_{M} = n^{x_{N}}

    y_{M} = y_{N} \Rightarrow m^{x_{M}} =
n^{x_{M}}

    Lại có \frac{MH}{MN} = 3 \Rightarrow
\frac{HM}{HN} = \frac{3}{4} \Rightarrow x_{M} =
\frac{3}{4}x_{N}

    \Rightarrow m^{\frac{3}{4}x_{N}} =
n^{n_{N}} \Rightarrow m^{\frac{3}{4}} = n \Rightarrow m^{3} =
n^{4}

  • Câu 12: Nhận biết

    Xác định nghiệm của phương trình 2^{3a - 5} = 16

    Ta có:

    2^{3a - 5} = 16 \Leftrightarrow 2^{3a -
5} = 2^{4}

    \Leftrightarrow 3a - 5 = 4
\Leftrightarrow a = 3

    Vậy phương trình có nghiệm a =
3.

  • Câu 13: Thông hiểu

    Biết x,y là các số thực dương khác 1 thỏa mãn \log_{x}y = 2. Biến đổi biểu thức C = \log_{\frac{\sqrt{x}}{y}}\left(x\sqrt[3]{y} ight) ta được kết quả là:

    Ta có:

    C = \log_{\frac{\sqrt{x}}{y}}\left(x\sqrt[3]{y} ight) = \frac{\log_{x}\left( x\sqrt[3]{y}ight)}{\log_{x}\left( \dfrac{\sqrt{x}}{y} ight)}

    = \dfrac{\log_{x}x +\log_{x}y^{\frac{1}{3}}}{\dfrac{1}{2}\log_{x}x - \log_{x}y}

    = \dfrac{1 +\dfrac{1}{3}\log_{x}y}{\dfrac{1}{2} - \log_{x}y} = \dfrac{1 +\dfrac{1}{3}.2}{\dfrac{1}{2} - 2} = - \dfrac{10}{9}

  • Câu 14: Nhận biết

    Đơn giản biểu thức E = a^{\sqrt{2}}.\left( \frac{1}{a}
ight)^{\sqrt{2} - 1} với a >
0 được kết quả là:

    Ta có:

    E = a^{\sqrt{2}}.\left( \frac{1}{a}
ight)^{\sqrt{2} - 1} = a^{\sqrt{2}}.a^{- \sqrt{2} + 1} = a^{\sqrt{2} -
\sqrt{2} + 1} = a

  • Câu 15: Thông hiểu

    Cho biểu thức F
= \frac{1}{2^{- x - 1}} + 3.{\sqrt{2}}^{2x} - 4^{\frac{x -
1}{2}}. Với 2^{x} =
\sqrt{3} thì giá trị của biểu thức F bằng:

    Ta có:

    F = \frac{1}{2^{- x - 1}} +
3.{\sqrt{2}}^{2x} - 4^{\frac{x - 1}{2}}

    F = 2^{x + 1} + 3.\left( {\sqrt{2}}^{2}
ight)^{x} - \left( 4^{\frac{1}{2}} ight)^{x - 1}

    F = 2.2^{x} + 3.2^{x} -
\frac{1}{2}.2^{x} = \frac{9}{2}.2^{x}

    Thay 2^{x} = \sqrt{3} vào biểu thức F vừa biến đổi ta được:

    F = \frac{9}{2}.\sqrt{3} =
\frac{9\sqrt{3}}{2}

  • Câu 16: Vận dụng

    Hai số thực dương m,n thỏa mãn m > n > 1\dfrac{1}{\log_{n}m} + \dfrac{1}{\log_{m}n} =\sqrt{2022}. Hãy xác định giá trị biểu thức \dfrac{1}{\log_{mn}n} -\dfrac{1}{\log_{mn}m}?

    Ta có: \dfrac{1}{\log_{n}m} +\dfrac{1}{\log_{m}n} = \sqrt{2022}

    \Leftrightarrow \log_{m}n + \log_{n}m =\sqrt{2022}(*)

    Lại có:

    \frac{1}{\log_{mn}n} -\frac{1}{\log_{mn}m}

    = \log_{n}(mn) - \log_{m}(mn)

    = \log_{m}n - \log_{n}m

    Đặt t = \log_{m}n khi đó (*) trở thành:

    t + \frac{1}{t} = \sqrt{2022}
\Leftrightarrow t^{2} - t.\sqrt{2022} + 1 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}t = \dfrac{\sqrt{2022} + \sqrt{2018}}{2} \\t = \dfrac{\sqrt{2022} - \sqrt{2018}}{2} \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}P = \dfrac{1}{t} - t = - \sqrt{2018} \\P = \dfrac{1}{t} - t = \sqrt{2018} \\\end{matrix} ight.

    Với m > n > 1 \Leftrightarrow 0
< log_{m}n < 1

    \Rightarrow 0 < t < 1 \Rightarrow
\frac{1}{t} > 1 \Rightarrow P > 0 \Rightarrow P =
\sqrt{2018}

  • Câu 17: Vận dụng

    Cho {9^x} + {9^{ - x}} = 14;\frac{{6 + 3.\left( {{3^x} + {3^{ - x}}} ight)}}{{2 - {3^{x + 1}} - {3^{1 - x}}}} = \frac{a}{b}; (\frac{a}{b} là phân số tối giản). Tính giá trị biểu thức P = ab.

    Ta có:

    \begin{matrix}  {\left( {{3^x} + {3^{ - x}}} ight)^2} = 14 + 2 = 16 \hfill \\   \Rightarrow {3^x} + {3^{ - x}} = 4 \hfill \\   \Rightarrow \dfrac{a}{b} = \dfrac{{6 + 3.4}}{{2 - 3.4}} =  - \dfrac{9}{5} \hfill \\   \Rightarrow P =  - 45 \hfill \\ \end{matrix}

  • Câu 18: Vận dụng

    Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Thông hiểu

    Cho a,b\in\mathbb{ R} thỏa mãn \log_{4}a = \log_{9}b = \log_{6}(a - 2b). Xác định tỉ số \frac{a}{b}?

    Điều kiện a > 0;b > 0;a >
2b

    \left\{ \begin{matrix}
a = 4^{t} \\
b = 9^{t} \\
a - 2b = 6^{t} \\
\end{matrix} ight.\  \Rightarrow 4^{t} - 2.9^{t} = 6^{t}

    \Leftrightarrow \left( \frac{4}{9}
ight)^{t} - \left( \frac{2}{3} ight)^{t} - 2 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}\left( \dfrac{2}{3} ight)^{t} = - 1(ktm) \\\left( \dfrac{2}{3} ight)^{t} = 2 \\\end{matrix} ight.

    Với \left( \frac{2}{3} ight)^{t} = 2
\Rightarrow \frac{x}{y} = \left( \frac{4}{9} ight)^{t} = \left\lbrack
\left( \frac{2}{3} ight)^{t} ightbrack^{2} = 4

  • Câu 20: Thông hiểu

    Viết biểu thức A
= \sqrt[3]{x\sqrt[4]{x}};(x > 0) dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có:

    A = \sqrt[3]{x\sqrt[4]{x}} =
\sqrt[3]{x.x^{\frac{1}{4}}} = \sqrt[3]{x^{\frac{5}{4}}} =
x^{\frac{5}{12}}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 26 lượt xem
Sắp xếp theo