Trong các phương trình sau đây, phương trình nào vô nghiệm?
Ta có:
Hàm số mũ luôn dương nên phương trình vô nghiệm là phương trình
Trong các phương trình sau đây, phương trình nào vô nghiệm?
Ta có:
Hàm số mũ luôn dương nên phương trình vô nghiệm là phương trình
Đơn giản biểu thức
với
ta được kết quả là:
Ta có:
Cho biết
, biểu thức
có giá trị là:
Ta có:
Cho
với
là các số tự nhiên. Trong các khẳng định sau, khẳng định nào đúng?
Ta có:
Do nên chỉ có một bộ số
thỏa mãn.
Khẳng định đúng là .
Với các số
thỏa mãn
, biểu thức
bằng:
Ta có:
Tìm hàm số nghịch biến trên tập số thực?
Ta có:
Hàm số có cơ số
nên hàm số nghịch biến trên
Hàm số có tập xác định
nên hàm số đồng biến trên
Hàm số có
nên hàm số nghịch biến trên
.
Hàm số có
nên hàm số đồng biến trên
.
Biết
là các số thực dương khác 1 thỏa mãn
. Tính giá trị
?
Ta có:
Khi đó:
Trong các hàm số sau đây, hàm số nào có tập xác định
?
Ta có:
Hàm số có tập xác định
Hàm số có tập xác định
Hàm số có tập xác định
Hàm số có tập xác định
Cho bất phương trình
có tập nghiệm
. Giá trị của biểu thức
bằng:
Ta có:
Đặt khi đó bất phương trình trở thành:
Từ đó suy ra
Tập nghiệm của bất phương trình là:
Vậy
Cho
, giá trị biểu thức
bằng bao nhiêu?
Ta có:
Tìm tập nghiệm của bất phương trình
.
Ta có:
Vậy tập nghiệm bất phương trình là:
Cho hàm số
. Tính tổng
![]()
Với hàm số ta có:
Khi đó:
Trong các khẳng định dưới đây, khẳng định nào sai?
Ta có:
Vậy đáp án sai là:
Cho hình vẽ:

Ta có đường thẳng
song song trục hoành cắt trục tung và đồ thị hai hàm số
lần lượt tại
. Biết
. Chọn khẳng định đúng?
Ta có:
Gọi
Khi đó
Biến đổi biểu thức
thành dạng lũy thừa với số mũ hữu tỉ, ta được:
Ta có:
Tìm tập xác định của hàm số ![]()
Điều kiện xác định
=> Tập xác định của hàm số là:
Xác định tập nghiệm của bất phương trình
?
Điều kiện
Ta có:
Vậy tập nghiệm bất phương trình là
Đơn giản biểu thức
ta được:
Ta có:
Tìm nghiệm phương trình
?
Ta có:
Vậy phương trình có nghiệm .
Cho hàm số
. Tìm tập xác định
của hàm số?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là