Tổng các nghiệm của phương trình
bằng:
Điều kiện
Ta có:
Khi đó tổng bình phương các nghiệm của phương trình bằng 0
Tổng các nghiệm của phương trình
bằng:
Điều kiện
Ta có:
Khi đó tổng bình phương các nghiệm của phương trình bằng 0
Xét tính đúng, sai của các phát biểu sau?
a) Tập xác định của hàm số
là
. Đúng||Sai
b) Hàm số
đồng biến trên tập số thực. Đúng||Sai
c) Với mọi
thỏa mãn
khi đó
. Sai||Đúng
d) Có 2017 giá trị nguyên của tham số m trên
để hàm số
có tập xác định trên
. Sai||Đúng
Xét tính đúng, sai của các phát biểu sau?
a) Tập xác định của hàm số là
. Đúng||Sai
b) Hàm số đồng biến trên tập số thực. Đúng||Sai
c) Với mọi thỏa mãn
khi đó
. Sai||Đúng
d) Có 2017 giá trị nguyên của tham số m trên để hàm số
có tập xác định trên
. Sai||Đúng
a) Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
.
b) Hàm số đồng biến trên tập số thực đúng vì
.
c) Ta có:
d) Hàm số có tập xác định trên tập số thực khi và chỉ khi
Kết hợp với điều kiện ta được 2018 giá trị của tham số m thỏa mãn.
Tìm hàm số nghịch biến trên tập số thực?
Ta có:
Hàm số có cơ số
nên hàm số nghịch biến trên
Hàm số có tập xác định
nên hàm số đồng biến trên
Hàm số có
nên hàm số nghịch biến trên
.
Hàm số có
nên hàm số đồng biến trên
.
Có bao nhiêu khẳng định sai trong các khẳng định cho dưới đây?
(1) Với số thực
và các số nguyên
, ta có
.
(2) Với hai số thực
cùng khác 0 và số nguyên n, ta có ![]()
(3) Với hai số thực
thỏa mãn 0 < a < b và số nguyên n, ta có
khi và chỉ khi
.
(4) Cho số thực
và các số nguyên
. Khi đó, với
thì
khi và chỉ khi
.
Cho biết
với
. Chọn khẳng định đúng?
Ta có:
Vậy
Tìm tập xác định của hàm số
.
Điều kiện xác định của hàm số
Vậy tập xác định của hàm số là
Tìm tập nghiệm của bất phương trình
?
Ta có:
Cho
thỏa mãn
. Chọn khẳng định đúng?
Ta có:
Lôgarit cơ số 10 cho hai vế ta được:
Đồ thị hàm số
đối xứng với đồ thị hàm số
đi qua điểm
. Giá trị của biểu thức
bằng bao nhiêu?
Đồ thị hàm số đối xứng với đồ thị hàm số
đi qua điểm
. Giá trị của biểu thức
bằng bao nhiêu?
![]()
Ta có:
Tìm tập xác định của hàm số
?
Điều kiện xác định
Suy ra tập xác định của hàm số là: .
Cho
là số thực dương. Viết
dưới dạng lũy thừa với số mũ hữu tỉ ta được:
Ta có:
Cho phương trình
. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt
thỏa mãn
.
Đặt . Phương trình đã cho trở thành
Phương trình (*) có hai nghiệm phân biệt thỏa mãn
Xác định hàm số đồng biến trên
?
Ta có: có
nên hàm số đồng biến trên tập số thực.
Cho hàm số
. Tính tổng
![]()
Với hàm số ta có:
Khi đó:
Biết rằng
. Khi đó biểu thức
với
là phân số tối giản,
. Kết luận nào sau đây đúng?
Ta có:
Tích tất cả các nghiệm của phương trình
là:
Ta có:
Vậy tích các nghiệm phương trình là -2
Cho phương trình
. Chọn khẳng định đúng.
Điều kiện xác định
Lấy logarit cơ số 3 hai vế phương trình ta được:
Trường hợp 1: ta có:
. Phương trình vô nghiệm.
Trường hợp 2: ta có:
vô nghiệm
Vậy phương trình đã cho vô nghiệm.
Biết
, khẳng định nào sau đây đúng?
Ta có: nên bất phương trình tương đương
Cho
với
. Trong các khẳng định sau, khẳng định nào đúng?
Ta có:
Suy ra
Vì nên chỉ có 1 bộ số
thỏa mãn.
Vậy