Giải bất phương trình
thu được tập nghiệm là:
Ta có:
Vậy tập nghiệm bất phương trình là:
Giải bất phương trình
thu được tập nghiệm là:
Ta có:
Vậy tập nghiệm bất phương trình là:
Trong các hàm số sau hàm số nào có cùng tập xác định với hàm số
?
Ta có tập xác định hàm số là
.
Hàm số cũng có tập xác định là
.
Hàm số có tập xác định là
.
Hàm số có tập xác định là
.
Hàm số có tập xác định là
.
Cho các hàm số
có đồ thị như hình vẽ dưới đây:

Kết luận nào sau đây đúng?
Dựa vào đồ thị hàm số là một hàm số nghịch biến trên tập xác định của nó nên
Hàm số là các hàm số đồng biến trên tập xác định của nó nên
Kẻ đường thẳng cắt đồ thị hàm số
lần lượt tại các điểm
Dựa vào đồ thị ta thấy
Vậy kết luận đúng là:
Chọn mệnh đề đúng trong các khẳng định dưới đây.
Xét hàm số và
Với ta có:
Suy ra đồ thị các hàm số f(x) và g(x) đối xứng với nhau qua trục Oy.
Gọi
là các nghiệm của phương trình
. Khi đó giá trị của biểu thức
bằng bao nhiêu?
Ta có:
Khi đó:
Đặt
. Biểu diễn biểu thức
, với
là các phân số tối giản. Tính
.
Ta có:
Tìm tập xác định của hàm số
là:
Hàm số đã cho xác định khi
Vậy tập xác định của hàm số là .
Cho các số thực dương a, b với
. Khẳng định nào sau đây đúng?
Trường hợp 1:
Trường hợp 2:
Vậy là khẳng định đúng.
Giải phương trình
ta thu được tập nghiệm
là:
Điều kiện xác định:
Vậy phương trình có nghiệm .
Cho số thực dương a và b. Biểu thức thu gọn của biểu thức
![]()
có dạng
. Tính
.
Ta có:
Cho
. Khẳng định nào sau đây đúng?
Ta có: do đó nếu
Cho số thực dương
. Tính
.
Ta có:
Tìm tập xác định của hàm số ![]()
Điều kiện xác định
=> Tập xác định của hàm số là:
Kết quả khi thu gọn biểu thức
khi
là:
Ta có:
Cho ba số thực dương x, y, z thwo thứ tự lập thành một cấp số nhân, đồng thời với mỗi số thực dương
thì
theo thứ tự lập thành một cấp số cộng. Tính giá trị của biểu thức
?
Theo đề bài ta có:
Do đó:
Cho
; (
là phân số tối giản). Tính giá trị biểu thức
.
Ta có:
Tính giá trị biểu thức
.
Ta có:
Giải bất phương trình
được tập nghiệm là:
Ta có:
Vậy tập nghiệm của bất phương trình là
Cho bất phương trình
. Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?
Điều kiện xác định
Ta có:
Với
Với
Bất phương trình vô nghiệm khi và chỉ khi
Cho số thực a dương. Rút gọn biểu thức ![P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có: