Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho phương trình 3^{- m} = m - 1. Tìm tất cả các giá trị của tham số m để phương trình đã cho có nghiệm?

    Ta có: 3^{- m} = m - 1 \Leftrightarrow
\left( \frac{1}{3} ight)^{m} = m - 1

    Phương trình đã cho có nghiệm khi và chỉ khi m - 1 > 0 \Leftrightarrow m >
1.

  • Câu 2: Vận dụng

    Số 20172018^{20162017} có bao nhiêu chữ số?

    Số tự nhiên M k chữ số khi

    10^{k - 1} \leq M \leq
10^{k}

    Đặt M = 20172018^{20162017} suy ra

    \log M = \log\left( 20172018^{20162017}
ight)

    \Leftrightarrow M = 10^{\log\left(
20172018^{20162017} ight)}

    \Leftrightarrow M =
10^{20162017.log(20172018)}

    \Leftrightarrow M \approx
10^{1147278480,5} < 10^{147278481}

    Vậy số các chữ số của 20172018^{20162017} là 147278481.

  • Câu 3: Thông hiểu

    Cho bất phương trình \left( \frac{1}{3} ight)^{\frac{2}{x}} +
3.\left( \frac{1}{3} ight)^{\frac{1}{x} + 1} > 12 có tập nghiệm S = (a;b). Giá trị của biểu thức T = 3a + 10b bằng:

    Ta có:

    \left( \frac{1}{3} ight)^{\frac{2}{x}}
+ 3.\left( \frac{1}{3} ight)^{\frac{1}{x} + 1} > 12

    Đặt t = \left( \frac{1}{3}
ight)^{\frac{1}{x}};(t > 0) khi đó bất phương trình trở thành:

    \Leftrightarrow t^{2} + t > 12
\Leftrightarrow (t - 3)(t - 4) > 0

    \Leftrightarrow t > 3\ (do\ t >
0)

    Từ đó suy ra \left( \frac{1}{3}
ight)^{\frac{1}{x}} > 3 \Leftrightarrow \frac{1}{x} < - 1
\Leftrightarrow - 1 < x < 0

    Tập nghiệm của bất phương trình là: ( -
1;0) \Rightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 0 \\
\end{matrix} ight.

    Vậy T = 3a + 10b = - 3

  • Câu 4: Vận dụng

    Cho hàm số f(x) =
\frac{4^{x}}{4^{x} + 2}. Tính giá trị của biểu thức:

    A = f\left( \frac{1}{2018} ight) +
f\left( \frac{2}{2018} ight) + f\left( \frac{3}{2018} ight) + ... +
f\left( \frac{2017}{2018} ight)

    Ta có:

    f(x) + f(1 - x) = \frac{4^{x}}{4^{x} +
2} + \frac{4^{1 - x}}{4^{1 - x} + 2} = 1

    Khi đó:

    A = f\left( \frac{1}{2018} ight) +
f\left( \frac{2}{2018} ight) + f\left( \frac{3}{2018} ight) + ... +
f\left( \frac{2017}{2018} ight)

    A = \frac{2007}{2}

  • Câu 5: Nhận biết

    Tìm tập xác định của hàm số y = \log_{\sqrt{5}}\left( \frac{1}{6 - x}ight)?

    Điều kiện xác định \frac{1}{6 - x} > 0
\Rightarrow 6 - x > 0 \Rightarrow x < 6

    Suy ra tập xác định của hàm số là: D = (
- \infty;6).

  • Câu 6: Thông hiểu

    Giải phương trình \log_{2}\left( x^{2} + x + 1 ight) = 2 +\log_{2}x. Gọi S là tổng tất cả các nghiệm của phương trình. Giá trị của S là:

    Điều kiện xác định:

    \left\{ \begin{matrix}
x^{2} + x + 1 > 0 \\
x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\forall x\mathbb{\in R} \\
x > 0 \\
\end{matrix} ight.\  \Rightarrow x > 0

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{2}\left( x^{2} + x+ 1 ight) = \log_{2}4 + \log_{2}x

    \Leftrightarrow \log_{2}\left( x^{2} + x+ 1 ight) = \log_{2}(4x)

    \Leftrightarrow x^{2} + x + 1 =
4x

    \Leftrightarrow x^{2} - 3x + 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{3 + \sqrt{5}}{2}(tm) \\x = \dfrac{3 - \sqrt{5}}{2}(tm) \\\end{matrix} ight.

    \Rightarrow S = \frac{3 + \sqrt{5}}{2} +
\frac{3 - \sqrt{5}}{2} = 3

    Vậy S = 3

  • Câu 7: Nhận biết

    Tập nghiệm của bất phương trình \log_{0,25}\left( x^{2} - 3x ight) = -1? là:

    Điều kiện x^{2} - 3x > 0
\Leftrightarrow x \in ( - \infty;0) \cup (3; + \infty)

    \log_{0,25}\left( x^{2} - 3x ight) = -1

    \Leftrightarrow x^{2} - 3x =
4

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1(tm) \\
x = 4(tm) \\
\end{matrix} ight.

    Vậy phương trình có nghiệm x = -1 hoặc x = 4.

  • Câu 8: Thông hiểu

    Giá trị của \log_{3}H với H =
\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} là: 21/100

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giá trị của \log_{3}H với H =
\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} là: 21/100

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Ta có:

    H =\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} =3^{\dfrac{1}{10}}27^{\dfrac{1}{10}.\dfrac{1}{5}}.243^{\dfrac{1}{10}.\dfrac{1}{5}.\dfrac{1}{2}}= 3^{\dfrac{21}{100}}

    \Rightarrow \log_{3}H =\log_{3}3^{\frac{21}{100}} = \frac{21}{100}

  • Câu 9: Thông hiểu

    Hãy xác định hàm số đồng biến trên toàn tập xác định của nó trong các hàm số dưới đây?

    Hàm số y = \log_{\sqrt{5}}x có \sqrt{5} > 1 nên hàm số y = \log_{\sqrt{5}}x đồng biến trên tập xác định của nó là (0; +\infty).

    Hàm số y = \left( 3\sqrt{2} ight)^{-x}0 < \frac{1}{3\sqrt{2}}< 1 nên nghịch biến trên tập xác định của nó.

    Hàm số y = \left( \frac{e}{3\pi}ight)^{x}0 <\frac{e}{3\pi} < 1 nên hàm số nghịch biến trên tập xác định của nó.

    Hàm số y = \log_{\frac{\pi}{6}}x có 0 < \frac{\pi}{6} < 1 nên hàm số nghịch biến trên tập xác định của nó.

  • Câu 10: Vận dụng

    Rút gọn biểu thức H = \frac{x - 3.x^{\frac{1}{3}} + 2}{\sqrt[3]{x} -1} + \frac{\sqrt{x} - x^{\frac{5}{6}} +\sqrt[6]{x}}{\sqrt[6]{x}}.

    Ta có:

    H = \frac{x - 3.x^{\frac{1}{3}} +2}{\sqrt[3]{x} - 1} + \frac{\sqrt{x} - x^{\frac{5}{6}} +\sqrt[6]{x}}{\sqrt[6]{x}}

    H = \frac{\left( \sqrt[3]{x} - 1ight)\left( x^{\frac{2}{3}} + \sqrt[3]{x} - 2 ight)}{\sqrt[3]{x} -1} + \frac{\sqrt[6]{x}\left( \sqrt[3]{x} - x^{\frac{2}{3}} + 1ight)}{\sqrt[6]{x}}

    H = x^{\frac{2}{3}} + \sqrt[3]{x} - 2 +\sqrt[3]{x} - x^{\frac{2}{3}} + 1 = 2\sqrt[3]{x} - 1

  • Câu 11: Nhận biết

    Chọn khẳng định sai trong các khẳng định sau?

    Hàm số y = \log_{2}x đồng biến trên khoảng (0; + \infty)

  • Câu 12: Nhận biết

    Cho số dương x
eq 1 và các số thực \alpha;\beta. Đẳng thức nào sau đây sai?

    Ta có: x^{\alpha}.x^{\beta} = x^{\alpha +
\beta}

  • Câu 13: Thông hiểu

    Thu gọn biểu thức H = \frac{a^{\frac{4}{3}}.b +
a.b^{\frac{4}{3}}}{\sqrt[3]{a} + \sqrt[3]{b}} với a,b là các số thực dương:

    Ta có:

    H = \frac{a^{\frac{4}{3}}.b +
a.b^{\frac{4}{3}}}{\sqrt[3]{a} + \sqrt[3]{b}} = \frac{ab\left(
a^{\frac{1}{3}} + b^{\frac{1}{3}} ight)}{a^{\frac{1}{3}} +
b^{\frac{1}{3}}} = ab

  • Câu 14: Nhận biết

    Rút gọn biểu thức F = a^{\frac{7}{3}}:\sqrt[3]{a};(a >
0) ta được:

    Ta có:

    F = a^{\frac{7}{3}}:\sqrt[3]{a} =
a^{\frac{7}{3}}:a^{\frac{1}{3}} = a^{\frac{7}{3} - \frac{1}{3}} =
a^{2}

  • Câu 15: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{{2018}^x}}}{{{{2018}^x} + \sqrt {2018} }}. Tính tổng

    S = f\left( {\frac{1}{{2019}}} ight) + f\left( {\frac{2}{{2019}}} ight) + ... + f\left( {\frac{{2018}}{{2019}}} ight)

    Với hàm số

    f\left( {1 - x} ight) = \frac{{\sqrt {2018} }}{{{{2018}^x} + \sqrt {2018} }} \Rightarrow f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + ... + f\left( {\dfrac{{2018}}{{2019}}} ight) \hfill \\   \Rightarrow S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{{2018}}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + f\left( {\dfrac{{2017}}{{2019}}} ight) \hfill \\+ ... + f\left( {\dfrac{{1009}}{{2019}}} ight) + f\left( {\dfrac{{1010}}{{2019}}} ight) = 1009 \hfill \\ \end{matrix}

  • Câu 16: Thông hiểu

    Với các số a, b > 0 thỏa mãn a^{2} + b^{2} = 6ab, biểu thức \log_{2}(a + b) bằng:

    Ta có:

    a^{2} + b^{2} = 6ab \Rightarrow (a +
b)^{2} = 8ab

    \Rightarrow \log_{2}(a + b)^{2} =\log_{2}(8ab)

    \Rightarrow 2\log_{2}(a + b) = \log_{2}8 +\log_{2}a + \log_{2}b

    \Rightarrow \log_{2}(a + b) =\frac{1}{2}\left( \log_{2}8 + \log_{2}a + \log_{2}b ight)

    \Rightarrow \log_{2}(a + b) =\frac{1}{2}\left( 3 + \log_{2}a + \log_{2}b ight)

  • Câu 17: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m trên đoạn \lbrack -
2018;2018brack để hàm số y =
\ln\left( x^{2} - 2x - m + 1 ight) có tập xác định \mathbb{R}?

    Hàm số y = \ln\left( x^{2} - 2x - m + 1
ight) xác định trên \mathbb{R} khi và chỉ khi

    x^{2} - 2x - m + 1 > 0;\forall x \in
\mathbb{R}

    \Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta' < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 > 0 \\
1 + m - 1 < 0 \\
\end{matrix} ight.\  \Rightarrow m < 0

    Do \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 2018;2018brack \\
\end{matrix} ight.

    \Rightarrow m \in \left\{ - 2018; -
2017;...; - 1 ight\}

    Vậy có 2018 giá trị của m thỏa mãn yêu cầu bài toán.

  • Câu 18: Vận dụng

    Cho phương trình \log{_{3}}^{2}x - 4\log_{3}x + m - 3 = 0. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt x_{1};x_{2} thỏa mãn x_{1} > x_{2} >
1.

    Đặt t = \log_{3}x. Phương trình đã cho trở thành t^{2} - 4t + m - 3 =
0(*)

    Phương trình (*) có hai nghiệm phân biệt t_{1};t_{2} thỏa mãn t_{1} > t_{2} > 0

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
P > 0 \\
S > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
7 - m > 0 \\
m - 3 > 0 \\
4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 3 < m < 7

  • Câu 19: Nhận biết

    Cho a,b >
0. Tìm khẳng định đúng trong các khẳng định dưới đây?

    Khẳng định đúng là: a^{\ln b} = b^{\ln
a}

  • Câu 20: Thông hiểu

    Cho biểu thức F
= \frac{1}{2^{- x - 1}} + 3.{\sqrt{2}}^{2x} - 4^{\frac{x -
1}{2}}. Với 2^{x} =
\sqrt{3} thì giá trị của biểu thức F bằng:

    Ta có:

    F = \frac{1}{2^{- x - 1}} +
3.{\sqrt{2}}^{2x} - 4^{\frac{x - 1}{2}}

    F = 2^{x + 1} + 3.\left( {\sqrt{2}}^{2}
ight)^{x} - \left( 4^{\frac{1}{2}} ight)^{x - 1}

    F = 2.2^{x} + 3.2^{x} -
\frac{1}{2}.2^{x} = \frac{9}{2}.2^{x}

    Thay 2^{x} = \sqrt{3} vào biểu thức F vừa biến đổi ta được:

    F = \frac{9}{2}.\sqrt{3} =
\frac{9\sqrt{3}}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo