Cho
và
với x và y là các số thực khác 0. So sánh P và Q?
Ta có: là những số thực dương
Ta lại có:
Cho
và
với x và y là các số thực khác 0. So sánh P và Q?
Ta có: là những số thực dương
Ta lại có:
Tính giá trị biểu thức
.
Ta có:
Gọi
là các nghiệm của phương trình
. Trong các khẳng định dưới đây khẳng định nào đúng?
Đặt phương trình trở thành
Gọi là hai nghiệm của phương trình (*) suy ra
Theo định lí Vi – et phương trình (*) ta có:
Bác H gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 6%/ 1 năm theo hình thức lại kép nghĩa là nếu bác không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi cần ít nhất bao lâu để bác H nhận được số tiền nhiều hơn 400 triệu bao gồm cả gốc và lãi?
Đáp án: 24 năm
Bác H gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 6%/ 1 năm theo hình thức lại kép nghĩa là nếu bác không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi cần ít nhất bao lâu để bác H nhận được số tiền nhiều hơn 400 triệu bao gồm cả gốc và lãi?
Đáp án: 24 năm
Áp dụng công thức lại kép thì sau n năm số tiền bác H nhận được là
Để nhận được số tiền hơn 400 triệu thì
Vậy sau ít nhất 24 năm thì bác H nhận được số tiền như mong muốn.
Biết rằng
với x > 0. Tìm n?
Ta có:
Vậy
Cho số thực
. Mệnh đề nào sau đây sai?
Ta có:
Với
Vậy đáp án sai là:
Biết
là hai số thực dương khác 1 thỏa mãn
. Hỏi giá trị của biểu thức
bằng bao nhiêu? -25||25||0||-1
Biết là hai số thực dương khác 1 thỏa mãn
. Hỏi giá trị của biểu thức
bằng bao nhiêu? -25||25||0||-1
Ta có:
Vậy giá trị của biểu thức
Cho
là số nguyên dương và một số
bất kì với
. Biết
![]()
Khi đó giá trị của
là bao nhiêu?
Ta có:
Vậy
Xác định nghiệm của bất phương trình
?
Ta có:
Vậy tập nghiệm của bất phương trình là
Trong các hàm số sau đây, hàm số nào đồng biến trên
?
Ta có: nên hàm số
đồng biến trên
.
Giải bất phương trình
được tập nghiệm là:
Ta có:
Vậy tập nghiệm của bất phương trình là
Điều kiện xác định của hàm số
là:
Điều kiện xác định của hàm số là
Biết
khi đó
có giá trị là:
Ta có:
Đơn giản biểu thức
ta được:
Ta có:
Cho biểu thức
. Khẳng định nào sau đây đúng?
Ta có:
Hàm số nào trong các hàm số sau đây là hàm nghịch biến trên tập số thực?
Hàm số nghịch biến trên
vì
Giải phương trình
.
Điều kiện xác định
Phương trình đã cho tương đương:
Giải phương trình có nghiệm
Giải phương trình
Vậy phương trình có nghiệm duy nhất
Biết
. Chọn khẳng định đúng?
Ta có:
Hình bên là đồ thị hàm số nào trong các hàm số dưới đây?

Đồ thị đã cho là của một hàm số nghịch biến trên tập xác định của nó.
Trong bốn phương án đã cho, chỉ có hàm số thỏa mãn.
Tìm điều kiện của tham số
để phương trình
có nghiệm?
Ta có:
Phương trình có nghiệm khi và chỉ khi phương trình
có nghiệm
Xét phương trình
Nếu phương trình vô nghiệm
Nếu có nghiệm
khi và chỉ khi
Vậy thỏa mãn yêu cầu đề bài.