Với
thì biểu thức
có giá trị bằng bao nhiêu?
Ta có:
đều xác định và
khi đó:
Với
thì biểu thức
có giá trị bằng bao nhiêu?
Ta có:
đều xác định và
khi đó:
Giá trị
viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Giả sử
, với
là phân số tối giản. Gọi
. Kết luận nào dưới đây đúng?
Ta có:
Cho hàm số
. Tính tổng
![]()
Với hàm số
Khi đó:
Chị X gửi tiết kiệm ngân hàng 100 triệu đồng với lãi suất 8,4%/năm. Sau bao nhiêu năm chị X thu được gấp đôi số tiền ban đầu? Biết lãi hàng năm được nhập vào vốn.
Gọi số tiền ban đầu chị X gửi vào ngân hàng là A, lãi suất là r và sau n năm được tính theo công thức .
Để số tiền sau n năm thu được gấp đôi số tiền ban đầu ta có phương trình:
Vậy sau 9 năm người gửi thu được gấp đôi số tiền ban đầu.
Tính giá trị biểu thức:
biết
?
Ta có:
Chọn mệnh đề đúng trong các khẳng định dưới đây.
Xét hàm số và
Với ta có:
Suy ra đồ thị các hàm số f(x) và g(x) đối xứng với nhau qua trục Oy.
Giải phương trình
và cho biết phương trình có tất cả bao nhiêu nghiệm nguyên dương?
Điều kiện xác định
Phương trình đã cho tương đương:
Kết hợp điều kiện đề bài ta thấy không có giá trị nào thỏa mãn
Vậy phương trình không có nghiệm nguyên dương.
Với các số
là các số thực dương tùy ý khác 1 và
. Khi đó giá trị của
bằng:
Với là các số thực dương tùy ý khác 1 ta có:
Khi đó ta có:
Trong các khẳng định dưới đây, khẳng định nào sai?
Ta có:
Vậy đáp án sai là:
Đồ thị hàm số sau là của hàm số nào?

Đồ thị đi xuống nên hàm số đã cho là nghịch biến nên loại và
.
Đồ thị hàm số đi qua điểm (−1; 3) nên chỉ có đáp án thỏa mãn.
Cho biểu thức
. Mệnh đề nào sau đây đúng?
Ta có:
Cho ba số thực dương x, y, z thwo thứ tự lập thành một cấp số nhân, đồng thời với mỗi số thực dương
thì
theo thứ tự lập thành một cấp số cộng. Tính giá trị của biểu thức
?
Theo đề bài ta có:
Do đó:
Tìm tập xác định của hàm số
?
Điều kiện xác định
Suy ra tập xác định của hàm số là: .
Trong các kết quả dưới đây, kết quả nào là tập nghiệm của bất phương trình
?
Ta có:
Vậy tập nghiệm của bất phương trình đã cho là
Cho bất phương trình
. Tập nghiệm của bất phương trình là:
Ta có:
Với một số thực dương a tùy ý, khi đó
bằng:
Với ta có:
Cho phương trình
. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt
thỏa mãn
.
Đặt . Phương trình đã cho trở thành
Phương trình (*) có hai nghiệm phân biệt thỏa mãn
Cho hàm số
. Tìm tập xác định của hàm số.
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là:
Phương trình
có hai nghiệm
. Khi đó giá trị biểu thức
bằng bao nhiêu? Biết rằng
.
Ta có: