Đơn giản biểu thức
ta được
và
là phân số tối giản. Chọn khẳng định đúng trong các khẳng định dưới đây?
Ta có:
Đơn giản biểu thức
ta được
và
là phân số tối giản. Chọn khẳng định đúng trong các khẳng định dưới đây?
Ta có:
Đơn giản biểu thức
với
ta được kết quả là:
Ta có:
Hàm số nào sau đây nghịch biến trên tập xác định?
Ta có: nghịch biến trên tập xác định.
Cho số thực dương a và b. Biểu thức thu gọn của biểu thức
![]()
có dạng
. Tính
.
Ta có:
Cho
với
là các số tự nhiên. Trong các khẳng định sau, khẳng định nào đúng?
Ta có:
Do nên chỉ có một bộ số
thỏa mãn.
Khẳng định đúng là .
Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.
Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.
Tìm tập nghiệm
của phương trình
?
Điều kiện xác định:
Vậy phương trình có tập nghiệm .
Cho hàm số
. Tìm tập xác định
của hàm số?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Tìm tập xác định của hàm số
là:
Điều kiện xác định:
Vậy tập xác định là:
Trong các phương trình sau đây, phương trình nào nhận
làm nghiệm?
Thay vào các phương trình ta được:
(tm)
Vậy x = 2 là nghiệm của phương trình .
Với
, kết luận nào sau đây sai?
Với ta có:
Là các kết luận đúng
Ta lại có: sai.
Với một số thực dương a tùy ý, khi đó
bằng:
Với ta có:
Cho số thực
. Mệnh đề nào sau đây sai?
Ta có:
Với
Vậy đáp án sai là:
Cho phương trình
. Tìm tổng tất cả các nghiệm của phương trình đã cho.
Điều kiện xác định:
Phương trình đã cho tương đương:
Vậy tổng các nghiệm của phương trình đã cho bằng 5.
Biết
. Chọn khẳng định đúng?
Ta có:
Nên
Cho hàm số
. Tính giá trị của biểu thức:
![]()
Ta có:
Khi đó:
Tìm tập xác định của hàm số
.
Điều kiện xác định của hàm số
Vậy tập xác định của hàm số là
Tìm tập nghiệm của bất phương trình
?
Ta có:
Vậy tập nghiệm của bất phương trình là
Tính giá trị biểu thức:
. Biết
là các số thực dương khác 1 và thỏa mãn
?
Ta có:
Lại có
Cho
là hai số thực dương thỏa mãn
và
. Tính giá trị của biểu thức
.
Ta có: