Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho {5^x} = 2. Tính A = {25^x} + {5^{2 - x}}

    Ta có: A = {25^x} + {5^{2 - x}} = {\left( {{5^x}} ight)^2} + \frac{{25}}{{{5^x}}} = \frac{{33}}{2}

  • Câu 2: Vận dụng

    Có bao nhiêu khẳng định sai trong các khẳng định cho dưới đây?

    (1) Với số thực a và các số nguyên m,n, ta có \left( a^{m} ight)^{n} =
a^{m.n};\frac{a^{m}}{a^{n}} = a^{m:n}.

    (2) Với hai số thực a,b cùng khác 0 và số nguyên n, ta có (ab)^{n} =
a^{n}.b^{n};\left( \frac{a}{b} ight)^{n} =
\frac{a^{n}}{b^{n}}

    (3) Với hai số thực a,b thỏa mãn 0 < a < b và số nguyên n, ta có a^{n}
< b^{n} khi và chỉ khi n >
0.

    (4) Cho số thực a và các số nguyên m,n. Khi đó, với a > 0 thì a^{m} > a^{n} khi và chỉ khi m > n.

    Khẳng định sai: "Với số thực a và các số nguyên m,n , ta có \left( a^{m} ight)^{n} =
a^{m.n};\frac{a^{m}}{a^{n}} = a^{m:n} "
  • Câu 3: Vận dụng cao

    Rút gọn biểu thức

    P = \frac{{4 + \sqrt 3 }}{{1 + \sqrt 3 }} + \frac{{6 + \sqrt 8 }}{{\sqrt 2  + \sqrt 4 }} + ... + \frac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} + ... + \frac{{200 + \sqrt {9999} }}{{\sqrt {99}  + \sqrt {101} }}

    Với k \geqslant 2 ta có:

    \begin{matrix}  \dfrac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} \hfill \\   = \dfrac{{\left[ {{{\left( {\sqrt {k - 1} } ight)}^2} + {{\left( {\sqrt {k + 1} } ight)}^2} + \sqrt {\left( {k + 1} ight)\left( {k - 1} ight)} } ight]\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)}}{{\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)\left( {\sqrt {k - 1}  + \sqrt {k + 1} } ight)}} \hfill \\   = \dfrac{{\sqrt {{{\left( {k + 1} ight)}^3}}  - \sqrt {{{\left( {k - 1} ight)}^3}} }}{2} \hfill \\ \end{matrix}

    Khi đó:

    \begin{matrix}  P = \dfrac{1}{2}.\left( {\sqrt {{3^3}}  - \sqrt {{1^3}}  + \sqrt {{4^3}}  - \sqrt {{2^3}}  + \sqrt {{5^3}}  - \sqrt {{3^3}}  + \sqrt {{6^3}}  - \sqrt {{4^3}}  + ... + \sqrt {{{101}^3}}  - \sqrt {{{99}^3}} } ight) \hfill \\   = \dfrac{1}{2}\left( { - 1 - \sqrt {{2^3}}  + \sqrt {{{101}^3}}  + \sqrt {{{100}^3}} } ight) = \dfrac{{999 + \sqrt {{{101}^3}}  - \sqrt 8 }}{2} \hfill \\ \end{matrix}

  • Câu 4: Nhận biết

    Cho số dương x
eq 1 và các số thực \alpha;\beta. Đẳng thức nào sau đây sai?

    Ta có: x^{\alpha}.x^{\beta} = x^{\alpha +
\beta}

  • Câu 5: Thông hiểu

    Cho bất phương trình: \left( \frac{2}{3} ight)^{2x^{2} + 4x} \leq\left( \frac{3}{2} ight)^{x + 3}. Chọn khẳng định đúng về tập nghiệm của bất phương trình.

    Ta có:

    \left( \frac{2}{3} ight)^{2x^{2} + 4x}\leq \left( \frac{3}{2} ight)^{x + 3}

    \Leftrightarrow \left( \frac{2}{3}ight)^{2x^{2} + 4x} \leq \left( \frac{2}{3} ight)^{- x -3}

    \Leftrightarrow 2x^{2} + 4x \geq - x -3

    \Leftrightarrow 2x^{2} + 4x + 3 \geq0

    \Leftrightarrow \left\lbrack\begin{matrix}x \leq - \dfrac{3}{2} \\x \geq - 1 \\\end{matrix} ight.

    Vậy tập nghiệm của bất phương trình là: S= \left( - \infty;\frac{- 3}{2} ight) \cup \lbrack - 1; +\infty)

  • Câu 6: Nhận biết

    Tìm tập xác định của hàm số y = \log_{2}\frac{x - 3}{2x}là:

    Hàm số đã cho xác định khi \frac{x -
3}{2x} > 0 \Rightarrow x \in (3; + \infty)

    Vậy tập xác định của hàm số là D = (3; +
\infty).

  • Câu 7: Nhận biết

    Tìm nghiệm của phương trình \log_{2}(x - 5) = 3?

    Điều kiện xác định: x > 5

    \log_{2}(x - 5) = 3 \Leftrightarrow x - 5= 2^{3} \Leftrightarrow x = 13(tm)

    Vậy phương trình có nghiệm x =
13.

  • Câu 8: Thông hiểu

    Cho tam giác vuông ABC có a,b là độ dài hai cạnh góc vuông, c là độ dài cạnh huyền với điều kiện c - b eq 1;c + b eq 1. Chọn kết luận đúng.

    Do tam giác ABC vuông nên ta có:

    c^{2} = a^{2} + b^{2}

    \Rightarrow a^{2} = c^{2} -b^{2}

    \Rightarrow a^{2} = (c - b)(c +b)

    \Rightarrow log_{a}a^{2} =log_{a}\left\lbrack (c - b)(c + b) ightbrack

    \Rightarrow 2 = log_{a}\lbrack c -bbrack + log_{a}\lbrack c + bbrack

    \Rightarrow 2 = log_{a}\lbrack c -bbrack + log_{a}\lbrack c + bbrack

    \Rightarrow 2 = \frac{1}{log_{c - b}a} +\frac{1}{log_{c + b}a}

    \Rightarrow \log_{c + b}a + \log_{c - b}a= 2\log_{c + b}a.\log_{c - b}a

  • Câu 9: Nhận biết

    Tìm tập xác định của hàm số y = \left( \frac{5\sqrt{3}}{2}
ight)^{x}?

    Tập xác định của hàm số y = \left(
\frac{5\sqrt{3}}{2} ight)^{x}D=\mathbb{R}.

  • Câu 10: Vận dụng

    Cho phương trình (m + 3)9^{x} + (2m - 1)3^{x} + m + 1 = 0. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm trái dấu.

    Đặt t = 3^{x} ta có phương trình (m + 3)t^{2} + (2m - 1)t + m + 1 =
0(*)

    Phương trình đã cho có hai nghiệm trái dấu (giả sử x_{1} < 0 < x_{2})

    Phương trình (*) tương đương 0 < t_{1}
= 3^{x_{1}} < 1 < 3^{x_{2}} = t_{2} nghĩa là 0 < t_{1} < 1 < t_{2}.

    \Leftrightarrow \left\{ \begin{gathered}
  m + 3 e 0 \hfill \\
  \Delta  > 0 \hfill \\
  \left( {{t_1} - 1} ight)\left( {{t_2} - 1} ight) < 0 \hfill \\
  {t_1}{t_2} > 0 \hfill \\
  {t_1} + {t_2} > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
   - 20m - 11 > 0 \hfill \\
  {t_1}{t_2} - \left( {{t_1} + {t_2}} ight) + 1 < 0 \hfill \\
  {t_1}{t_2} > 0 \hfill \\
  {t_1} + {t_2} > 0 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
  m < \dfrac{{ - 11}}{{20}} \hfill \\
  \dfrac{{m + 1}}{{m + 3}} + \dfrac{{2m - 1}}{{m + 3}} + 1 < 0 \hfill \\
  \dfrac{{m + 1}}{{m + 3}} > 0 \hfill \\
   - \dfrac{{2m - 1}}{{m + 3}} > 0 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
  m < \dfrac{{ - 11}}{{20}} \hfill \\
   - 3 < m <  - \dfrac{3}{4} \hfill \\
  \left[ \begin{gathered}
  m < 3 \hfill \\
  m >  - 1 \hfill \\ 
\end{gathered}  ight. \hfill \\
   - 3 < m < \dfrac{1}{2} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow  - 1 < m <  - \dfrac{3}{4}

  • Câu 11: Nhận biết

    Biết \frac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} với x > 1 và a + b = 2. Tính giá trị của biểu thức M = a – b.

     Ta có: 

    \begin{matrix}  \dfrac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} \hfill \\   \Leftrightarrow {x^{{a^2} - {b^2}}} = {x^{16}} \hfill \\   \Leftrightarrow {a^2} - {b^2} = 16 \hfill \\   \Leftrightarrow \left( {a + b} ight)\left( {a - b} ight) = 16 \hfill \\   \Rightarrow a - b = 8 \hfill \\ \end{matrix}

  • Câu 12: Nhận biết

    Tính giá trị của biểu thức B = 2\log_{2}12 + 3\log_{2}5 - \log_{2}15 -\log_{2}150.

    Ta có:

    B = 2\log_{2}12 + 3\log_{2}5 - \log_{2}15 -\log_{2}150

    B = \log_{2}12^{2}.5^{3} - \log_{2}15.150= \log_{2}\frac{18000}{2250} = \log_{2}8 = 3

  • Câu 13: Thông hiểu

    Cho a =\log_{12}18;b = \log_{24}54 . Tính giá trị biểu thức T = 5(a - b) + ab.

    Ta có: \left\{ \begin{matrix}a = log_{12}18 = \dfrac{log_{3}18}{log_{3}12} = \dfrac{log_{3}2 +2}{2log_{3}2 + 1} \\b = log_{24}54 = \dfrac{log_{3}54}{log_{3}24} = \dfrac{log_{3}2 +3}{3log_{3}2 + 1} \\\end{matrix} ight.

    Đặt x = log_{3}2 khi đó \left\{ \begin{matrix}a = \dfrac{x + 2}{2x + 1} \\b = \dfrac{x + 3}{3x + 1} \\\end{matrix} ight.

    Ta có: T = 5(a - b) + ab

    T = 5\left( \frac{x - 2}{2x + 1} -
\frac{x + 3}{3x + 1} ight) + \frac{x + 2}{2x + 1}.\frac{x + 3}{3x +
1}

    T = \frac{5\left\lbrack (x + 2)(3x + 1)
- (x + 3)(2x + 1) ightbrack + (x + 2)(x + 3)}{(2x + 1)(3x +
1)}

    T = \frac{6x^{2} + 3x + 1}{(2x + 1)(3x +
1)} = 1

  • Câu 14: Thông hiểu

    Cho phương trình 2\log_{2}(2x - 2) + \log_{2}(x - 3)^{2} =2. Giả sử T là tổng giá trị tất cả các nghiệm của phương trình. Giá trị của T là:

    Điều kiện \left\{ \begin{matrix}
2x - 2 > 0 \\
(x - 3)^{2} > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 1 \\
\forall x\mathbb{\in R} \\
\end{matrix} ight.\  \Rightarrow x > 1

    Ta có:

    2\log_{2}(2x - 2) + \log_{2}(x - 3)^{2} =2

    \Leftrightarrow \log_{2}(2x - 2)^{2} +\log_{2}(x - 3)^{2} = 2

    \Leftrightarrow \log_{2}\left\lbrack (2x- 2)^{2}(x - 3)^{2} ightbrack = 2

    \Leftrightarrow log_{2}\left\lbrack
\left( 4x^{2} - 8x + 4 ight)\left( x^{2} - 6x + 9 ight)
ightbrack = 2

    \Leftrightarrow 4x^{4} - 32x^{3} +
88x^{2} - 96x + 32 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 2 + \sqrt{2}(tm) \\
x = 2(tm) \\
x = 2 - \sqrt{2}(ktm) \\
\end{matrix} ight.

    \Rightarrow T = 2 + \sqrt{2} + 2 = 4 +
\sqrt{2}

  • Câu 15: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Sắp xếp theo thứ tự tăng dần các số 2020^{0};5^{\frac{1}{2}};\left( \frac{4}{5}
ight)^{- 1} Sai||Đúng

    b) Hàm số y = \left( \frac{\pi +
3}{2\pi} ight)^{x}nghịch biến trên tập xác định của nó.Đúng||Sai

    c) Phương trình \frac{1}{2}\log\left(
x^{2} - 4x - 1 ight) = log8x - log4x có tổng các nghiệm thực bằng 5.Đúng||Sai

    d) Tập nghiệm của bất phương trình \left( 3^{2x} - 9 ight)\left( 3^{x} -
\frac{1}{27} ight)\sqrt{3^{x + 1} - 1} \leq 0 chứa đúng 4 giá trị nguyên. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Sắp xếp theo thứ tự tăng dần các số 2020^{0};5^{\frac{1}{2}};\left( \frac{4}{5}
ight)^{- 1} Sai||Đúng

    b) Hàm số y = \left( \frac{\pi +
3}{2\pi} ight)^{x}nghịch biến trên tập xác định của nó.Đúng||Sai

    c) Phương trình \frac{1}{2}\log\left(
x^{2} - 4x - 1 ight) = log8x - log4x có tổng các nghiệm thực bằng 5.Đúng||Sai

    d) Tập nghiệm của bất phương trình \left( 3^{2x} - 9 ight)\left( 3^{x} -
\frac{1}{27} ight)\sqrt{3^{x + 1} - 1} \leq 0 chứa đúng 4 giá trị nguyên. Sai||Đúng

    a) Ta có: \left\{ \begin{matrix}2020^{0} = 1 \\5^{\frac{1}{2}} = \sqrt{5} \\\left( \dfrac{4}{5} ight)^{- 1} = \dfrac{5}{4} \\\end{matrix} ight. nên sắp xếp đúng là: 2020^{0};\left( \frac{4}{5} ight)^{-
1};5^{\frac{1}{2}}

    b) Ta có:

    y = \left( \frac{\pi + 3}{2\pi}
ight)^{x} có cơ số \frac{\pi +
3}{2\pi} \in (0;1) nên hàm số đã cho nghịch biến trên tập xác định của nó.

    c) Điều kiện xác định x > 2 +
\sqrt{5}

    \frac{1}{2}\log\left( x^{2} - 4x - 1ight) = \log8x - \log4x

    \Leftrightarrow \log\left( x^{2} - 4x -1 ight) = 2\log\left( \frac{8x}{4x} ight)

    \Leftrightarrow x^{2} - 4x - 1 = 4
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1(ktm) \\
x = 5(tm) \\
\end{matrix} ight.

    Vậy tổng các nghiệm của phương trình là S
= 5

    d) Điều kiện xác định 3^{x + 1} - 1 \geq
0 \Leftrightarrow x \geq - 1

    Ta có: x = - 1 là một nghiệm của bất phương trình

    Với x > - 1 bất phương trình tương đương với \left( 3^{2x} - 9
ight)\left( 3^{x} - \frac{1}{27} ight) \leq 0

    Đặt t = 3^{x} > 0 ta có:

    \left( t^{2} - 9 ight)\left( t -
\frac{1}{27} ight) \leq 0 \Leftrightarrow (t - 3)(t + 3)\left( t -
\frac{1}{27} ight) \leq 0

    \Rightarrow \left\lbrack \begin{matrix}t \leq - 3 \\\dfrac{1}{27} \leq t \leq 3 \\\end{matrix} ight. kết hợp với điều kiện t = 3^{x} > 0 ta được nghiệm \frac{1}{27} \leq t \leq 3 \Leftrightarrow
\frac{1}{27} \leq 3^{x} \leq 3 \Leftrightarrow - 3 \leq x \leq
1

    Kết hợp với điều kiện x > - 1 ta được - 1 < x \leq 1 suy ra trường hợp này có 2 nghiệm nguyên

    Vậy bất phương trình có ba nghiệm nguyên.

  • Câu 16: Thông hiểu

    Viết biểu thức A
= \sqrt[3]{x\sqrt[4]{x}};(x > 0) dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có:

    A = \sqrt[3]{x\sqrt[4]{x}} =
\sqrt[3]{x.x^{\frac{1}{4}}} = \sqrt[3]{x^{\frac{5}{4}}} =
x^{\frac{5}{12}}

  • Câu 17: Nhận biết

    Cho phương trình 2^{x^{2} + 2x} = 8^{2 - x}. Giải phương trình và tính tổng tất cả các nghiệm vừa tìm được.

    Ta có:

    2^{x^{2} + 2x} = 8^{2 - x}
\Leftrightarrow 2^{x^{2} + 2x} = \left( 2^{3} ight)^{2 -
x}

    \Leftrightarrow x^{2} + 2x = 3.(2 -
x)

    \Leftrightarrow x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 6 \\
\end{matrix} ight.\ (tm)

    Tổng tất cả các nghiệm của phương trình là S = 1 + ( - 6) = - 5

  • Câu 18: Vận dụng

    Số 20172018^{20162017} có bao nhiêu chữ số?

    Số tự nhiên M k chữ số khi

    10^{k - 1} \leq M \leq
10^{k}

    Đặt M = 20172018^{20162017} suy ra

    \log M = \log\left( 20172018^{20162017}
ight)

    \Leftrightarrow M = 10^{\log\left(
20172018^{20162017} ight)}

    \Leftrightarrow M =
10^{20162017.log(20172018)}

    \Leftrightarrow M \approx
10^{1147278480,5} < 10^{147278481}

    Vậy số các chữ số của 20172018^{20162017} là 147278481.

  • Câu 19: Vận dụng

    Cho hàm số y =\log_{a}x;y = \log_{b}x có đồ thị như hình vẽ:

    Đường thẳng x = 7 cắt trục hoành, đồ thị hàm số y = \log_{a}x;y =\log_{b}x lần lượt tại H,M,N. Biết rằng HM = MN. Khẳng định nào sau đây đúng?

    Ta có:\left\{ \begin{matrix}HM = y_{M} = \log_{a}7 \\MN = y_{N} - y_{M} = \log_{b}7 - \log_{a}7 \\\end{matrix} ight.

    Mặt khác HM = MN nên \log_{b}7 - \log_{a}7 = \log_{a}7

    \Leftrightarrow \log_{b}7 =\log_{\sqrt{a}}7

    \Leftrightarrow b = \sqrt{a}
\Leftrightarrow b^{2} = a

  • Câu 20: Thông hiểu

    Có bao nhiêu giá trị nguyên của dương của tham số m để hàm số y = (6 - m)^{x} đồng biến trên tập số thực?

    Đáp án: 4

    Đáp án là:

    Có bao nhiêu giá trị nguyên của dương của tham số m để hàm số y = (6 - m)^{x} đồng biến trên tập số thực?

    Đáp án: 4

    Hàm số y = (6 - m)^{x} đồng biến trên \mathbb{R} khi và chỉ khi 6 - m > 1 \Leftrightarrow m <
5

    m \in \mathbb{Z}^{+} \Rightarrow m \in
\left\{ 1;2;3;4 ight\}

    Vậy có 4 giá trị của tham số m thỏa mãn điều kiện đề bài.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo