Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho a,b >
0. Nếu viết \log_{3}\left(\sqrt[5]{a^{3}b} ight)^{\frac{2}{3}} = \frac{x}{15}\log_{3}a +\frac{y}{15}\log_{3}b thì giá trị x
+ y bằng bao nhiêu?

    Ta có:

    \log_{3}\left( \sqrt[5]{a^{3}b}ight)^{\frac{2}{3}} = \log_{3}a^{\frac{2}{5}} +\log_{3}b^{\frac{2}{15}}

    = \frac{2}{5}\log_{3}a +\frac{2}{15}\log_{3}b = \frac{6}{15}\log_{3}a +\frac{2}{15}\log_{3}b

    \Rightarrow x + y = 8

  • Câu 2: Vận dụng

    Cho bất phương trình \log_{x - m}\left( x^{2} - 1 ight) > \log_{x -m}\left( x^{2} + x - 2 ight). Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?

    Điều kiện xác định x e m + 1;x > m

    Ta có:

    \log_{x - m}\left( x^{2} - 1 ight) >\log_{x - m}\left( x^{2} + x - 2 ight)(*)

    Với x > m + 1

    (*) \Leftrightarrow \left\{
\begin{matrix}
x^{2} - 1 > x^{2} + x - 2 \\
x^{2} + x - 2 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x < 1 \\
\left\lbrack \begin{matrix}
x < - 2 \\
x > 1 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow x < - 2

    Với 0 < x < m + 1

    (*) \Leftrightarrow 0 < x^{2} - 1
< x^{2} + x - 2

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} - 1 > 0 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > - 1 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow x > 1

    Bất phương trình (*) vô nghiệm khi và chỉ khi \left\{ \begin{matrix}m + 1 \geq - 2 \\m + 1 \leq 1 \\\end{matrix} ight.\  \Leftrightarrow - 3 \leq m \leq 0

  • Câu 3: Nhận biết

    Biết rằng x =
\frac{1}{256};y = \frac{1}{27}. Tính giá trị của biểu thức C = x^{\frac{- 3}{4}} + y^{\frac{-
4}{3}}.

    Thay x = \frac{1}{256};y =
\frac{1}{27} vào biểu thức C =
x^{\frac{- 3}{4}} + y^{\frac{- 4}{3}} ta được:

    C = \left( \frac{1}{256}
ight)^{\frac{- 3}{4}} + \left( \frac{1}{27} ight)^{\frac{- 4}{3}} =
\left( 4^{- 4} ight)^{\frac{- 3}{4}} + \left( 3^{- 3} ight)^{\frac{-
4}{3}}

    = 4^{3} + 3^{4} = 145

  • Câu 4: Thông hiểu

    Biết rằng hai số tự nhiên m,n thỏa mãn m\log_{28}2 + n\log_{28}7 = 2 . Tính tổng giá trị của mn ?

    Đáp án: 6

    Đáp án là:

    Biết rằng hai số tự nhiên m,n thỏa mãn m\log_{28}2 + n\log_{28}7 = 2 . Tính tổng giá trị của mn ?

    Đáp án: 6

    Ta có:

    m\log_{28}2 + n\log_{28}7 = 2

    \Leftrightarrow \log_{28}\left(2^{x}.7^{y} ight) = 2 \Leftrightarrow 2^{x}.7^{y} =28^{2}

    \Leftrightarrow 2^{x}.7^{y} = \left(2^{2}.7 ight)^{2} \Leftrightarrow 2^{x}.7^{y} =2^{4}.7^{2}

    \Leftrightarrow \left\{ \begin{matrix}x = 4 \\y = 2 \\\end{matrix} ight.\  \Rightarrow x + y = 6

  • Câu 5: Nhận biết

    Xác định nghiệm phương trình \log_{2}x + 1 = 0?

    Điều kiện xác định: x > 0

    \log_{2}x + 1 = 0 \Leftrightarrow \log_{2}x = - 1

    \Leftrightarrow x = 2^{- 1} =
\frac{1}{2}(tm)

    Vậy phương trình có nghiệm x =
\frac{1}{2}.

  • Câu 6: Vận dụng

    Biểu thức D =
\sqrt{\frac{- 1 + \sqrt{1 + \frac{1}{4}\left( 2^{a} - 2^{- a}
ight)^{2}}}{1 + \sqrt{1 + \frac{1}{4}\left( 2^{a} - 2^{- a}
ight)^{2}}}};(a < 0)bằng với biểu thức nào dưới đây?

    Ta có:

    D = \sqrt{\frac{- 1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} - 2^{- a} ight)^{2}}}{1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} - 2^{- a} ight)^{2}}}};(a < 0)

    D = \sqrt{\frac{- 1 + \sqrt{1 +
\frac{1}{4}\left( 2^{2a} - 2 + 2^{- 2a} ight)}}{1 + \sqrt{1 +
\frac{1}{4}\left( 2^{2a} - 2 + 2^{- 2a} ight)}}}

    D = \sqrt{\frac{- 1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} + 2^{- a} ight)^{2}}}{1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} + 2^{- a} ight)^{2}}}}

    D = \sqrt{\frac{- 1 + \frac{1}{2}\left(
2^{a} + 2^{- a} ight)^{2}}{1 + \frac{1}{2}\left( 2^{a} + 2^{- a}
ight)^{2}}}

    D = \sqrt{\frac{\frac{1}{2.2^{a}}.\left(
2^{2a} - 2.2^{a} + 2 ight)}{\frac{1}{2.2^{a}}.\left( 2^{2a} + 2.2^{a}
+ 2 ight)}}

    D = \left| \frac{2^{a} - 1}{2^{a} + 1}
ight| = \frac{1 - 2^{a}}{1 + 2^{a}}

  • Câu 7: Thông hiểu

    Xác định nghiệm của phương trình (2,5)^{5x - 7} = \left( \frac{2}{5} ight)^{x +
1}?

    Ta có:

    (2,5)^{5x - 7} = \left( \frac{2}{5}
ight)^{x + 1} \Leftrightarrow \left( \frac{5}{2} ight)^{5x - 7} =
\left( \frac{5}{2} ight)^{- (x + 1)}

    \Leftrightarrow 5x - 7 = - (x +
1)

    \Leftrightarrow x = 1(tm)

    Vậy phương trình đã cho có nghiệm x =
1.

  • Câu 8: Thông hiểu

    Chọn mệnh đề đúng trong các khẳng định dưới đây.

    Xét hàm số y = a^{x} y = \left( \frac{1}{a} ight)^{x}

    Với \forall x\in\mathbb{ R} ta có: f( - x) = a^{- x} = \left( \frac{1}{a}
ight)^{x} = g(x)

    Suy ra đồ thị các hàm số f(x) và g(x) đối xứng với nhau qua trục Oy.

  • Câu 9: Nhận biết

    Cho phương trình 2^{x^{2} + 2x} = 8^{2 - x}. Giải phương trình và tính tổng tất cả các nghiệm vừa tìm được.

    Ta có:

    2^{x^{2} + 2x} = 8^{2 - x}
\Leftrightarrow 2^{x^{2} + 2x} = \left( 2^{3} ight)^{2 -
x}

    \Leftrightarrow x^{2} + 2x = 3.(2 -
x)

    \Leftrightarrow x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 6 \\
\end{matrix} ight.\ (tm)

    Tổng tất cả các nghiệm của phương trình là S = 1 + ( - 6) = - 5

  • Câu 10: Nhận biết

    Tìm tập xác định của hàm số y = \left( \frac{5\sqrt{3}}{2}
ight)^{x}?

    Tập xác định của hàm số y = \left(
\frac{5\sqrt{3}}{2} ight)^{x}D=\mathbb{R}.

  • Câu 11: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Hàm số y = \log_{2}x đồng biến trên khoảng (0; + \infty).

  • Câu 12: Nhận biết

    Với các số a,b,c là các số thực dương và a eq 1. Tìm khẳng định sai trong các khẳng định dưới đây?

    Ta có: \log_{a}b = \frac{\ln b}{\ln a} nên \log_{a}b = \frac{\ln a}{\ln b} sai.

  • Câu 13: Nhận biết

    Giá trị của 27^{\frac{1}{3}} là:

    Ta có: 27^{\frac{1}{3}} = \left( 3^{3}
ight)^{\frac{1}{3}} = 3^{3.\frac{1}{3}} = 3

  • Câu 14: Thông hiểu

    Viết biểu thức P = \frac{{{a^2}.{a^{\frac{5}{2}}}.\sqrt[3]{{{a^4}}}}}{{\sqrt[6]{{{a^5}}}}};\left( {a > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \dfrac{{{a^2}.{a^{\frac{5}{2}}}.\sqrt[3]{{{a^4}}}}}{{\sqrt[6]{{{a^5}}}}} = \dfrac{{{a^2}.{a^{\frac{5}{2}}}.{a^{\frac{4}{3}}}}}{{{a^{\frac{5}{6}}}}} = {a^5}

  • Câu 15: Thông hiểu

    Tìm tập xác định của hàm số y = \left( x^{2} - 3x + 2
ight)^{\pi}là:

    Điều kiện xác định:

    x^{2} - 3x + 2 > 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x < 1 \\
x > 2 \\
\end{matrix} ight.

    Vậy tập xác định là: D = ( - \infty;1)
\cup (2; + \infty)

  • Câu 16: Thông hiểu

    Cho {5^x} = 2. Tính A = {25^x} + {5^{2 - x}}

    Ta có: A = {25^x} + {5^{2 - x}} = {\left( {{5^x}} ight)^2} + \frac{{25}}{{{5^x}}} = \frac{{33}}{2}

  • Câu 17: Vận dụng

    Cho a,b >0 thỏa mãn a^{2} + 4b^{2} =5ab. Chọn khẳng định đúng?

    Ta có: a^{2} + 4b^{2} = 5ab \Rightarrow(a + 2b)^{2} = 9ab

    Lôgarit cơ số 10 cho hai vế ta được:

    \log(a + 2b)^{2} =\log(9ab)

    \Leftrightarrow 2\log(a + 2b) = \log9 +\log a + \log b

    \Leftrightarrow 2\left\lbrack \log(a +2b) - \log3 ightbrack = \log a + \log b

    \Leftrightarrow \log\left( \frac{a +2b}{3} ight) = \frac{\log a + \log b}{2}

  • Câu 18: Thông hiểu

    Giải phương trình 2^{\frac{1}{x}}.\left( \sqrt{x^{2} + 4} - x - 2
ight) = 4\sqrt{x^{2} + 4} - 4x - 8.

    Điều kiện xác định x eq 0

    Phương trình đã cho tương đương:

    \Leftrightarrow 2^{\frac{1}{x}}.\left(
\sqrt{x^{2} + 4} - x - 2 ight) = 4\left( \sqrt{x^{2} + 4} - x - 2
ight)

    \Leftrightarrow \left( 2^{\frac{1}{x}} -
4 ight)\left( \sqrt{x^{2} + 4} - x - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{\frac{1}{x}} - 4 = 0 \\
\sqrt{x^{2} + 4} - x - 2 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{\frac{1}{x}} = 4 \\
\sqrt{x^{2} + 4} = x + 2 \\
\end{matrix} ight.

    Giải phương trình 2^{\frac{1}{x}} =
4 có nghiệm x =
\frac{1}{2}

    Giải phương trình \sqrt{x^{2} + 4} = x +
2

    \Leftrightarrow \left\{ \begin{matrix}
x \geq - 2 \\
x^{2} + 4 = (x + 2)^{2} \\
\end{matrix} ight.

    \Leftrightarrow x = 0

    Vậy phương trình có nghiệm duy nhất x =
\frac{1}{2}

  • Câu 19: Vận dụng cao

    Rút gọn biểu thức

    P = \frac{{4 + \sqrt 3 }}{{1 + \sqrt 3 }} + \frac{{6 + \sqrt 8 }}{{\sqrt 2  + \sqrt 4 }} + ... + \frac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} + ... + \frac{{200 + \sqrt {9999} }}{{\sqrt {99}  + \sqrt {101} }}

    Với k \geqslant 2 ta có:

    \begin{matrix}  \dfrac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} \hfill \\   = \dfrac{{\left[ {{{\left( {\sqrt {k - 1} } ight)}^2} + {{\left( {\sqrt {k + 1} } ight)}^2} + \sqrt {\left( {k + 1} ight)\left( {k - 1} ight)} } ight]\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)}}{{\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)\left( {\sqrt {k - 1}  + \sqrt {k + 1} } ight)}} \hfill \\   = \dfrac{{\sqrt {{{\left( {k + 1} ight)}^3}}  - \sqrt {{{\left( {k - 1} ight)}^3}} }}{2} \hfill \\ \end{matrix}

    Khi đó:

    \begin{matrix}  P = \dfrac{1}{2}.\left( {\sqrt {{3^3}}  - \sqrt {{1^3}}  + \sqrt {{4^3}}  - \sqrt {{2^3}}  + \sqrt {{5^3}}  - \sqrt {{3^3}}  + \sqrt {{6^3}}  - \sqrt {{4^3}}  + ... + \sqrt {{{101}^3}}  - \sqrt {{{99}^3}} } ight) \hfill \\   = \dfrac{1}{2}\left( { - 1 - \sqrt {{2^3}}  + \sqrt {{{101}^3}}  + \sqrt {{{100}^3}} } ight) = \dfrac{{999 + \sqrt {{{101}^3}}  - \sqrt 8 }}{2} \hfill \\ \end{matrix}

  • Câu 20: Vận dụng

    Cho các hàm số y = {\log _a}x;{\text{ }}y = {\log _b}x có đồ thị như hình vẽ. Đường thẳng x = 5 cắt trục hoành, đồ thị hàm số y = {\log _a}xy = {\log _b}x lần lượt tại A,B,C. Biết rằng CB = 2AB. Mệnh đề nào sau đây đúng?

    Ta có: A\left( {5;0} ight),B\left( {5;{{\log }_a}5} ight),C\left( {5;{{\log }_b}5} ight)

    Theo bài ra ta có: CB = 2AB

    \Leftrightarrow {\log _b}5 - {\log _a}5 = 2{\log _a}5

    \Leftrightarrow {\log _b}5 = 3{\log _a}5

    \Leftrightarrow {\log _b}5 = \frac{1}{3}{\log _5}a \Leftrightarrow a = {b^3}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 24 lượt xem
Sắp xếp theo