Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Với m > 0;m
eq 1 thì giá trị của \log_{\sqrt[3]{m}}m bằng bao nhiêu?

    Ta có: \log_{\sqrt[3]{m}}m =\log_{m^{\frac{1}{3}}}m = 3\log_{m}m = 3

  • Câu 2: Nhận biết

    Biết \frac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} với x > 1 và a + b = 2. Tính giá trị của biểu thức M = a – b.

     Ta có: 

    \begin{matrix}  \dfrac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} \hfill \\   \Leftrightarrow {x^{{a^2} - {b^2}}} = {x^{16}} \hfill \\   \Leftrightarrow {a^2} - {b^2} = 16 \hfill \\   \Leftrightarrow \left( {a + b} ight)\left( {a - b} ight) = 16 \hfill \\   \Rightarrow a - b = 8 \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu

    Phương trình 3\log_{3}(x - 1) - \log_{\frac{1}{3}}(x - 5)^{3} =3 có bao nhiêu nghiệm nguyên?

    Điều kiện x > 5

    Ta có:

    3\log_{3}(x - 1) - \log_{\frac{1}{3}}(x -5)^{3} = 3

    \Leftrightarrow 3\log_{3}(x - 1) +3\log_{3}(x - 5) = 3

    \Leftrightarrow \log_{3}(x - 1) +\log_{3}(x - 5) = 1

    \Leftrightarrow \log_{3}\left\lbrack (x -1).(x - 5) ightbrack = 1

    \Leftrightarrow (x - 1).(x - 5) =
3^{1}

    \Leftrightarrow x^{2} - 6x + 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 3 + \sqrt{7} \\
x = 3 - \sqrt{7} \\
\end{matrix} ight.\ (ktm) (vì nghiệm cần xét là nghiệm nguyên)

    Vậy phương trình không có nghiệm nguyên.

  • Câu 4: Nhận biết

    Tìm tập xác định của hàm số y = \log_{\frac{1}{2}}\left( x^{2} - 3x + 2ight)

    Điều kiện xác định {x^2} - 3x + 2 > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {x < 1} \\ 
  {x > 2} 
\end{array}} ight.

    => Tập xác định của hàm số là: ( -
\infty;1) \cup (2; + \infty)

  • Câu 5: Thông hiểu

    Giá trị của \log_{3}H với H =
\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} là: 21/100

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giá trị của \log_{3}H với H =
\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} là: 21/100

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Ta có:

    H =\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} =3^{\dfrac{1}{10}}27^{\dfrac{1}{10}.\dfrac{1}{5}}.243^{\dfrac{1}{10}.\dfrac{1}{5}.\dfrac{1}{2}}= 3^{\dfrac{21}{100}}

    \Rightarrow \log_{3}H =\log_{3}3^{\frac{21}{100}} = \frac{21}{100}

  • Câu 6: Vận dụng

    Cho phương trình \log{_{3}}^{2}x - 4\log_{3}x + m - 3 = 0. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt x_{1};x_{2} thỏa mãn x_{1} > x_{2} >
1.

    Đặt t = \log_{3}x. Phương trình đã cho trở thành t^{2} - 4t + m - 3 =
0(*)

    Phương trình (*) có hai nghiệm phân biệt t_{1};t_{2} thỏa mãn t_{1} > t_{2} > 0

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
P > 0 \\
S > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
7 - m > 0 \\
m - 3 > 0 \\
4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 3 < m < 7

  • Câu 7: Thông hiểu

    Biến đổi biểu thức T = \sqrt{x^{\frac{4}{3}}.\sqrt[6]{x^{4}}};(x >
0)thành dạng lũy thừa với số mũ hữu tỉ, ta được:

    Ta có:

    T =
\sqrt{x^{\frac{4}{3}}.\sqrt[6]{x^{4}}} =
\sqrt{x^{\frac{4}{3}}.x^{\frac{4}{6}}} = \sqrt{x^{2}} = x

  • Câu 8: Thông hiểu

    Kết quả nào dưới đây đúng khi đơn giản biểu thức B =
\sqrt[6]{x\sqrt[4]{x^{5}\sqrt{x^{3}}}};(x > 0)?

    Ta có:

    B =
\sqrt[6]{x\sqrt[4]{x^{5}\sqrt{x^{3}}}} =
\sqrt[6]{x\sqrt[4]{x^{5}.x^{\frac{3}{2}}}} =
\sqrt[6]{x\sqrt[4]{x^{\frac{13}{2}}}}

    = \sqrt[6]{x.x^{\frac{13}{8}}} =
\sqrt[6]{x^{\frac{21}{8}}} = x^{\frac{21}{48}} =
x^{\frac{7}{16}}

  • Câu 9: Vận dụng

    Anh B dự định gửi x triệu đồng vào ngân hàng với lãi suất 6,5%/ năm. Để sau 3 năm số tiền lãi thu được đủ để mua một vật dụng trị giá 30 triệu đồng thì số tiền x;\left( x\mathbb{\in N} ight) tối thiểu mà anh B cần gửi vào ngân hàng là bao nhiêu? Biết cứ sau mỗi năm, số tiền lãi sẽ được nhập với vốn ban đầu

    Áp dụng công thức tính lãi kép: T_{n} =
x(1 + x)^{n}

    Với T_{n} là tổng giá trị đạt được sau n kì, x là số vốn gốc, r là lãi suất mỗi kì.

    Số tiền lãi thu được sau n kì là:

    P_{n} -
x = x(1 + r)^{n} - x = x\left\lbrack (1 + r)^{n} - 1
ightbrack

    Khi dó:

    30 = x\left\lbrack (1 + 6,5\%)^{3} - 1
ightbrack

    \Leftrightarrow x \approx
144,27 triệu đồng

  • Câu 10: Vận dụng

    Số 20172018^{20162017} có bao nhiêu chữ số?

    Số tự nhiên M k chữ số khi

    10^{k - 1} \leq M \leq
10^{k}

    Đặt M = 20172018^{20162017} suy ra

    \log M = \log\left( 20172018^{20162017}
ight)

    \Leftrightarrow M = 10^{\log\left(
20172018^{20162017} ight)}

    \Leftrightarrow M =
10^{20162017.log(20172018)}

    \Leftrightarrow M \approx
10^{1147278480,5} < 10^{147278481}

    Vậy số các chữ số của 20172018^{20162017} là 147278481.

  • Câu 11: Vận dụng

    Cho các số thực dương a,b và biểu thức

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack 1 + \frac{1}{4}\left(
\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}} ight)^{2}
ightbrack^{\frac{1}{2}}

    Tính giá trị biểu thức P?

    Ta có:

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack 1 + \frac{1}{4}\left(
\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}} ight)^{2}
ightbrack^{\frac{1}{2}}

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack 1 + \frac{1}{4}\left( \frac{a}{b} - 2
+ \frac{b}{a} ight) ightbrack^{\frac{1}{2}}

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack \frac{1}{4}\left( \frac{a +
b}{\sqrt{ab}} ight) ightbrack^{\frac{1}{2}}

    P = 2\frac{1}{a +
b}.\sqrt{ab}.\frac{1}{2}.\frac{a + b}{\sqrt{ab}} = 1

  • Câu 12: Nhận biết

    Trong các hàm số dưới đây, hàm số nào nghịch biến trên tập xác định của nó?

    Hàm số y = \log_{\frac{e}{2\pi}}x có 0 < \frac{e}{2\pi} < 1 là hàm số nghịch biến trên tập xác định của nó.

    Các hàm số y = \log_{\sqrt{2}}x; y = \log_{\pi}2x; y = \log_{2}x có cơ số lớn hơn 1 nên đồng biến trên tập xác định của nó.

  • Câu 13: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    a) Ta có:

    \log_{6}48 = \log_{6}(6.8) = \log_{6}(6) +\log_{6}(8)

    = 1 + \frac{1}{\log_{8}6} = 1 +\frac{1}{\log_{8}(2.3)} = 1 + \frac{1}{\dfrac{1}{3}\left( 1 + \log_{2}3ight)}

    = \dfrac{1 + \log_{2}3 + 3}{1 + \log_{2}3}= \dfrac{4 + \dfrac{1}{a}}{1 + \dfrac{1}{a}} = \dfrac{4a + 1}{a +1}

    b) Điều kiện xác định: \left\{
\begin{matrix}
x \geq 0 \\
3 - x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x < 3 \\
\end{matrix} ight.\  \Leftrightarrow D = \lbrack 0;3)

    c) Tập xác định D = (0; +
\infty)

    0 < \sqrt{\frac{2018}{2019}} < 1
\Rightarrow 0 < 1 - \sqrt{\frac{2018}{2019}} < 1

    Suy ra hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến.

    d) Ta có:

    Điều kiện xác định x > 0

    \log_{\sqrt{5}}^{2}x^{5} -25\log_{\sqrt{5}}x^{2} - 75 \leq 0

    \Leftrightarrow 4\log_{5}^{2}x -4\log_{5}x - 3 \leq 0

    \Leftrightarrow - \frac{1}{2} \leq\log_{5}x \leq \frac{3}{2} \Leftrightarrow \frac{1}{\sqrt{5}} \leq x \leq\sqrt{125}

    Nghiệm nguyên của bất phương trình là: 0;1;2;3;4;5;6;7;8;9;10;11

    Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:

    S = 1 + 2 + ... + 11 = \frac{11(11 +
1)}{2} = 66

  • Câu 14: Nhận biết

    Xác định nghiệm của bất phương trình 5^{x - 2} \leq \frac{1}{5}?

    Ta có:

    5^{x - 2} \leq \frac{1}{5}
\Leftrightarrow 5^{x - 2} \leq 5^{- 1}

    \Leftrightarrow x - 2 \leq - 1
\Leftrightarrow x \leq 1 hay x \in
( - \infty;1brack

  • Câu 15: Nhận biết

    Kết quả nào dưới đây là nghiệm của phương trình \ln(3m) = 2?

    Điều kiện xác định: m > 0

    \ln(3m) = 2 \Leftrightarrow 3m = e^{2}
\Leftrightarrow m = \frac{e^{2}}{3}(tm)

    Vậy phương trình có nghiệm m =
\frac{e^{3}}{3}.

  • Câu 16: Vận dụng cao

    Rút gọn biểu thức

    P = \frac{{4 + \sqrt 3 }}{{1 + \sqrt 3 }} + \frac{{6 + \sqrt 8 }}{{\sqrt 2  + \sqrt 4 }} + ... + \frac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} + ... + \frac{{200 + \sqrt {9999} }}{{\sqrt {99}  + \sqrt {101} }}

    Với k \geqslant 2 ta có:

    \begin{matrix}  \dfrac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} \hfill \\   = \dfrac{{\left[ {{{\left( {\sqrt {k - 1} } ight)}^2} + {{\left( {\sqrt {k + 1} } ight)}^2} + \sqrt {\left( {k + 1} ight)\left( {k - 1} ight)} } ight]\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)}}{{\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)\left( {\sqrt {k - 1}  + \sqrt {k + 1} } ight)}} \hfill \\   = \dfrac{{\sqrt {{{\left( {k + 1} ight)}^3}}  - \sqrt {{{\left( {k - 1} ight)}^3}} }}{2} \hfill \\ \end{matrix}

    Khi đó:

    \begin{matrix}  P = \dfrac{1}{2}.\left( {\sqrt {{3^3}}  - \sqrt {{1^3}}  + \sqrt {{4^3}}  - \sqrt {{2^3}}  + \sqrt {{5^3}}  - \sqrt {{3^3}}  + \sqrt {{6^3}}  - \sqrt {{4^3}}  + ... + \sqrt {{{101}^3}}  - \sqrt {{{99}^3}} } ight) \hfill \\   = \dfrac{1}{2}\left( { - 1 - \sqrt {{2^3}}  + \sqrt {{{101}^3}}  + \sqrt {{{100}^3}} } ight) = \dfrac{{999 + \sqrt {{{101}^3}}  - \sqrt 8 }}{2} \hfill \\ \end{matrix}

  • Câu 17: Nhận biết

    Biết rằng x =
\frac{1}{256};y = \frac{1}{27}. Tính giá trị của biểu thức C = x^{\frac{- 3}{4}} + y^{\frac{-
4}{3}}.

    Thay x = \frac{1}{256};y =
\frac{1}{27} vào biểu thức C =
x^{\frac{- 3}{4}} + y^{\frac{- 4}{3}} ta được:

    C = \left( \frac{1}{256}
ight)^{\frac{- 3}{4}} + \left( \frac{1}{27} ight)^{\frac{- 4}{3}} =
\left( 4^{- 4} ight)^{\frac{- 3}{4}} + \left( 3^{- 3} ight)^{\frac{-
4}{3}}

    = 4^{3} + 3^{4} = 145

  • Câu 18: Thông hiểu

    Đồ thị hàm số sau là của hàm số nào?

    Đồ thị đi xuống nên hàm số đã cho là nghịch biến nên loại y = \left( \sqrt{2} ight)^{x}y = \left( \sqrt{3} ight)^{x}.

    Đồ thị hàm số đi qua điểm (−1; 3) nên chỉ có đáp án y = \left( \frac{1}{3} ight)^{x} thỏa mãn.

  • Câu 19: Thông hiểu

    Tìm số nghiệm của phương trình \log_{3}(2a + 1) + \log_{3}(a - 3) = 2?

    Điều kiện xác định \left\{ \begin{matrix}2a + 1 > 0 \\a - 3 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a > - \dfrac{1}{2} \\a > 3 \\\end{matrix} ight.\  \Rightarrow a > 3

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{3}\left\lbrack (2a+ 1)(a - 3) ightbrack = \log_{3}9

    \Leftrightarrow (2a + 1)(a - 3) =
9

    \Leftrightarrow 2a^{2} - 5a - 12 = 0\Leftrightarrow \left\lbrack \begin{matrix}a = 4(tm) \\a = - \dfrac{3}{2}(ktm) \\\end{matrix} ight.

    Vậy phương trình có 1 nghiệm duy nhất.

  • Câu 20: Thông hiểu

    Cho hình vẽ:

    Đồ thị hình bên là của hàm số nào?

    Đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến nên loại hai hàm số y = \left( \sqrt{2} ight)^{x};y =
\left( \sqrt{3} ight)^{x}

    Đồ thị hàm số đi qua điểm ( -
1;3) nên hàm số y = \left(
\frac{1}{3} ight)^{x} thỏa mãn.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 24 lượt xem
Sắp xếp theo