Tìm giá trị tham số m để bất phương trình
có nghiệm đúng với mọi x.
Ta có:
Bất phương trình đã cho có nghiệm đúng với mọi x khi cả (1) và (2) đúng với mọi x.
Với hoặc
không thỏa mãn đề bài.
Với hoặc
để thỏa mãn đề bài thì:
Tìm giá trị tham số m để bất phương trình
có nghiệm đúng với mọi x.
Ta có:
Bất phương trình đã cho có nghiệm đúng với mọi x khi cả (1) và (2) đúng với mọi x.
Với hoặc
không thỏa mãn đề bài.
Với hoặc
để thỏa mãn đề bài thì:
Với một số thực dương a tùy ý, khi đó
bằng:
Với ta có:
Xác định nghiệm của phương trình
![]()
Phương trình tương đương:
Cho hai số thực
và
với
. Kết luận nào sau đây sai?
Theo tính chất Logarit dễ thấy
Do thiếu điều kiện của nên
là đáp án sai.
Thực hiện thu gọn biểu thức
với
ta được kết quả là:
Ta có:
Ta cũng có:
Khi đó:
Kết quả khi thu gọn biểu thức
khi
là:
Ta có:
Cho hai số thực dương
thỏa mãn
. Tìm khẳng định đúng dưới đây?
Ta có:
Cho a là một số thực dương khác 1. Tính giá trị của biểu thức:
![]()
Ta có:
Tập nghiệm của bất phương trình
là:
Ta có:
Vậy tập nghiệm của bất phương trình là:
Tính giá trị của biểu thức
biết
thỏa mãn
?
Ta có:
Thay vào biểu thức Q ta được:
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là .
Tính tổng các nghiệm nguyên thuộc đoạn
của bất phương trình:
![]()
Tính tổng các nghiệm nguyên thuộc đoạn của bất phương trình:
Cho hai số thực dương a và b. Đơn giản biểu thức
ta được
. Tích
là:
Ta có:
Cho
và
với x và y là các số thực khác 0. So sánh P và Q?
Ta có: là những số thực dương
Ta lại có:
Giải phương trình
ta được:
Ta có:
Vậy phương trình đã cho có nghiệm
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết
khi đó
Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Hàm số
là hàm nghịch biến. Đúng||Sai
d) Tổng các nghiệm nguyên của bất phương trình
bằng
. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số là hàm nghịch biến. Đúng||Sai
d) Tổng các nghiệm nguyên của bất phương trình bằng
. Sai||Đúng
a) Ta có:
b) Điều kiện xác định:
c) Tập xác định
Suy ra hàm số là hàm nghịch biến.
d) Ta có:
Điều kiện xác định
Nghiệm nguyên của bất phương trình là:
Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:
Xác định hàm số tương ứng với đồ thị dưới đây:

Đồ thị hàm số đi lên và đi qua điểm (1; 0) nên hàm số tương ứng với đồ thị trong hình vẽ là
Tìm tập xác định của hàm số
là:
Điều kiện xác định của hàm số
Vậy tập xác định là:
Tìm hàm số đồng biến trên
trong các hàm số dưới đây?
Xét hàm số có
nên hàm số
đồng biến trên
?
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Khi đó ta được: