Tính giá trị của
với
?
Ta có: .
Tính giá trị của
với
?
Ta có: .
Tìm tất cả các giá trị thực của tham số m để hàm số
đồng biến trên tập số thực.
Ta có hàm số đồng biến trên
Khi và chỉ khi
Thực hiện rút gọn biểu thức
ta thu được kết quả là:
Ta có:
Thu gọn biểu thức
ta được kết quả ta được phân số tối giản
. Khẳng định nào sau đây đúng?
Ta có:
Suy ra
Cho số thực dương a và b. Biểu thức thu gọn của biểu thức
![]()
có dạng
. Tính
.
Ta có:
Với
và
là hai số thực dương tùy ý, biểu thức
bằng:
Ta có:
Giải phương trình
thu được nghiệm là:
Điều kiện xác định:
Vậy phương trình có nghiệm là .
Giả sử tập nghiệm của bất phương trình
có dạng
với
. Tính tổng
.
Ta có:
Vậy S = 2
Hàm số nào sau đây không phải là hàm số mũ?
Hàm số là hàm số lũy thừa, không phải hàm số mũ.
Giả sử phương trình
có nghiệm lớn nhất là
. Tính giá trị biểu thức
?
Điều kiện xác định
Phương trình đã cho tương đương:
Nghiệm lớn nhất của phương trình là
Cho hàm số
trên
trên cùng một hệ trục tọa độ như hình vẽ. Tìm mệnh đề đúng trong các mệnh đề sau.

Ta có:
thì
Với thì
Tìm công bội
của một cấp số nhân. Biết ba số
theo thứ tự lập thành cấp số nhân.
Theo giả thiết ta có:
Vậy công bội của cấp số nhân là:
Xét tính đúng, sai của các phát biểu sau?
a) Hàm số
luôn nghịch biến trên tập số thực. Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Ta có:
suy ra
Sai||Đúng
d) Với
thì hàm số
xác định trên
. Đúng||Sai
Xét tính đúng, sai của các phát biểu sau?
a) Hàm số luôn nghịch biến trên tập số thực. Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Ta có: suy ra
Sai||Đúng
d) Với thì hàm số
xác định trên
. Đúng||Sai
a) Vì nên hàm số
luôn nghịch biến trên tập số thực đúng.
b) Điều kiện xác định của hàm số:
Vậy tập xác định của hàm số là
c) Ta có: nên
hay
d) Điều kiện xác định:
TH1:
TH2:
Suy ra tập xác định của hàm số
Khi đó yêu cầu bài toán trở thành
Th3:
Suy ra tập xác định của hàm số
Do đó không tồn tại giá trị m thỏa mãn yêu cầu bài toán.
Cho
là số thực dương. Viết
dưới dạng lũy thừa với số mũ hữu tỉ ta được:
Ta có:
Cho biết
. Tính giá trị biểu thức
theo các giá trị
?
Ta có:
Ta có:
Tìm điều kiện của tham số
để phương trình
có nghiệm?
Ta có:
Phương trình có nghiệm khi và chỉ khi phương trình
có nghiệm
Xét phương trình
Nếu phương trình vô nghiệm
Nếu có nghiệm
khi và chỉ khi
Vậy thỏa mãn yêu cầu đề bài.
Biết
, khi đó
bằng:
Ta có:
Cho phương trình
. Tìm tập nghiệm
của phương trình đã cho.
Ta có:
Vậy tập nghiệm của phương trình là
Hàm số nào sau đây phù hợp với hình vẽ:

Ta có: và hàm số đồng biến trên
nên chỉ có hàm số
thỏa mãn.
Cho
là một số thực dương. Giá trị của biểu thức
bằng bao nhiêu?
Ta có: