Biểu thức
bằng với biểu thức nào dưới đây?
Ta có:
Biểu thức
bằng với biểu thức nào dưới đây?
Ta có:
Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?
Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?
Cho phương trình
. Xác định nghiệm phương trình đã cho?
Điều kiện xác định:
Ta có:
Vậy phương trình có nghiệm là .
Tập nghiệm của bất phương trình
là:
Ta có:
Tính giá trị biểu thức
.
Ta có:
Giá trị của
với
bằng:
Ta có:
Xét tính đúng, sai của các phát biểu sau?
a) Hàm số
luôn nghịch biến trên tập số thực. Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Ta có:
suy ra
Sai||Đúng
d) Với
thì hàm số
xác định trên
. Đúng||Sai
Xét tính đúng, sai của các phát biểu sau?
a) Hàm số luôn nghịch biến trên tập số thực. Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Ta có: suy ra
Sai||Đúng
d) Với thì hàm số
xác định trên
. Đúng||Sai
a) Vì nên hàm số
luôn nghịch biến trên tập số thực đúng.
b) Điều kiện xác định của hàm số:
Vậy tập xác định của hàm số là
c) Ta có: nên
hay
d) Điều kiện xác định:
TH1:
TH2:
Suy ra tập xác định của hàm số
Khi đó yêu cầu bài toán trở thành
Th3:
Suy ra tập xác định của hàm số
Do đó không tồn tại giá trị m thỏa mãn yêu cầu bài toán.
Tìm tập xác định của hàm số
là:
Hàm số đã cho xác định khi
Vậy tập xác định của hàm số là .
Phương trình
có bao nhiêu nghiệm?
Ta có:
Logarit cơ số 7 hai vế ta có:
Giải phương trình ta được
Giải phương trình
Vậy tập nghiệm của phương trình là:
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số
Sai||Đúng
b) Hàm số
nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình
có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình
chứa đúng 4 giá trị nguyên. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số Sai||Đúng
b) Hàm số nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình chứa đúng 4 giá trị nguyên. Sai||Đúng
a) Ta có: nên sắp xếp đúng là:
b) Ta có:
có cơ số
nên hàm số đã cho nghịch biến trên tập xác định của nó.
c) Điều kiện xác định
Vậy tổng các nghiệm của phương trình là
d) Điều kiện xác định
Ta có: là một nghiệm của bất phương trình
Với bất phương trình tương đương với
Đặt ta có:
kết hợp với điều kiện
ta được nghiệm
Kết hợp với điều kiện ta được
suy ra trường hợp này có 2 nghiệm nguyên
Vậy bất phương trình có ba nghiệm nguyên.
Cho a là một số thực dương khác 1. Tính giá trị của biểu thức:
![]()
Ta có:
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Chọn khẳng định sai trong các khẳng định sau?
Hàm số đồng biến trên khoảng
Tính giá trị biểu thức:
. Biết
là các số thực dương khác 1 và thỏa mãn
?
Ta có:
Lại có
Cho đồ thị của ba hàm số
như hình vẽ:

Chọn kết luận đúng về mối quan hệ giữa
?
Quan sát đồ thị ta thấy
Hàm số là hàm số đồng biến nên
Hàm số là hàm số đồng biến nên
Hàm số là hàm nghịch biến nên
Vậy ta có:
Khi thay x = 1 vào hai hàm số ta thu được m > n
Vậy .
Tập nghiệm của bất phương trình
là:
Ta có:
hay
Tính giá trị
biết
?
Ta có:
Mặt khác
Cho
, giá trị biểu thức
bằng bao nhiêu?
Ta có:
Cho
và
với x và y là các số thực khác 0. So sánh P và Q?
Ta có: là những số thực dương
Ta lại có:
Biết
,
bằng:
Ta có: