Rút gọn biểu thức
với
ta được kết quả là:
Ta có:
Rút gọn biểu thức
với
ta được kết quả là:
Ta có:
Biết
là các số thực dương khác 1 thỏa mãn
. Biến đổi biểu thức
ta được kết quả là:
Ta có:
Cho bất phương trình
. Tập nghiệm của bất phương trình là:
Ta có:
Với các số
thỏa mãn
. Xác định giá trị biểu thức
.
Ta có:
Vậy
Cho bất phương trình
. Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?
Điều kiện xác định
Ta có:
Với
Với
Bất phương trình vô nghiệm khi và chỉ khi
Cho đồ thị hàm số
như hình vẽ:

Xác định giá trị
?
Đồ thị hàm số đi qua điểm (2; -1) nên
Khi đó
Phương trình
có tập nghiệm là:
Điều kiện
Ta có:
Vậy phương trình vô nghiệm hay .
Tổng các nghiệm của phương trình
bằng:
Điều kiện
Ta có:
Khi đó tổng bình phương các nghiệm của phương trình bằng 0
![]()
Ta có:
Hàm số nào sau đây không phải là hàm số mũ?
Hàm số là hàm số lũy thừa, không phải hàm số mũ.
Biểu thức
bằng với biểu thức nào dưới đây?
Ta có:
Bất phương trình
tương đương với khẳng định nào dưới đây?
Do nên ta phải đổi chiều bất phương trình, đồng thời chú ý đến điều kiện xác định.
Vậy đáp án đúng là:
Tính
?
Ta có:
Cho
là số thực dương. Viết
dưới dạng lũy thừa với số mũ hữu tỉ ta được:
Ta có:
Cho biểu thức
với x > 0. Mệnh đề nào sau đây là đúng?
Ta có:
Cho hàm số
. Tính tổng
![]()
Với hàm số
Khi đó:
Tập xác định của hàm số
là:
Hàm số xác định nếu
Vậy tập xác định .
Đầu mỗi tháng cô H gửi vào ngân hàng 4 triệu đồng với lãi suất kép là 0,5% mỗi tháng. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô H có được số tiền cả lãi và gốc nhiều hơn 100 triệu, biết lãi suất không đổi trong quá trình gửi.
Ta có:
Giả sử sau n tháng sau anh A nhận được số tiền nhiều hơn 100 triệu, khi đó ta có:
Vậy cần ít nhất 24 tháng để cô H có được số tiền cả lãi và gốc nhiều hơn 100 triệu.
Biết
khi đó
có giá trị là:
Ta có:
Tìm tập xác định của hàm số
.
Điều kiện xác định của hàm số
Vậy tập xác định của hàm số là .