Hai số thực dương
thỏa mãn
và
. Hãy xác định giá trị biểu thức
?
Ta có:
Lại có:
Đặt khi đó (*) trở thành:
Với
Hai số thực dương
thỏa mãn
và
. Hãy xác định giá trị biểu thức
?
Ta có:
Lại có:
Đặt khi đó (*) trở thành:
Với
Xác định nghiệm của bất phương trình
?
Ta có:
Vậy tập nghiệm của bất phương trình là
Khẳng định nào dưới đây sai?
Ta có: (do
)
Đên ngày 10 mỗi tháng, chị T gửi tiết kiệm vào ngân hàng 10 triệu đồng với lãi suất 0,5%/tháng theo hình thức lãi kép. Biết rằng trong suốt quá trình gửi, chị T không rút tiền ra và lãi suất ngân hàng không thay đổi. Hỏi sau đúng 5 năm thì chị T sẽ nhận được số tiền cả gốc và lãi bằng gần nhất với giá trị nào dưới đây?
Sau đúng 5 năm số tiền chị nhận được cả gốc và lãi là:
(triệu đồng)
Cho hai số thực dương a và b. Đơn giản biểu thức
ta được
. Tích
là:
Ta có:
Tính giá trị của biểu thức
. Biết
với
là các số thực dương lớn hơn
?
Ta có:
Cho số thực dương a và b. Biểu thức thu gọn của biểu thức
![]()
có dạng
. Tính
.
Ta có:
Hàm số nào sau đây được gọi là hàm số lũy thừa?
Hàm số là hàm số lũy thừa.
Hàm số và hàm số
là hàm số mũ.
Hàm số là hàm số lôgarit.
Tìm tập xác định của hàm số
?
Tập xác định của hàm số là
.
Cho
. Viết biểu thức
và
. Tính ![]()
Ta có:
Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.
Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.
Tìm tập xác định của hàm số
là:
Điều kiện xác định:
Vậy tập xác định là:
Trong các khẳng định sau, khẳng định nào sai?
Vì nên
.
Vì nên
.
Vì nên
.
Vì nên
Cho hàm số
với
là tham số. Có tất cả bao nhiêu các giá trị nguyên dương của tham số
để hàm số đã
xác định với mọi
?
Đáp án: 2020
Cho hàm số với
là tham số. Có tất cả bao nhiêu các giá trị nguyên dương của tham số
để hàm số đã
xác định với mọi
?
Đáp án: 2020
Hàm số xác định với mọi
khi và chỉ khi
Mà
Vậy có 2022 giá trị nguyên dương của tham số a thỏa mãn điều kiện đề bài.
Giá trị của
là:
Ta có:
Biết rằng
. Tính giá trị của biểu thức
.
Thay vào biểu thức
ta được:
Giả sử
, với
là phân số tối giản. Gọi
. Kết luận nào dưới đây đúng?
Ta có:
Phương trình
có nghiệm thuộc khoảng nào sau đây?
Điều kiện xác định
Phương trình đã cho:
Vậy nghiệm của phương trình thuộc khoảng
Cho phương trình
với
là tham số. Hỏi có tất cả các giá trị nguyên của tham số
để phương trình có nghiệm thực?
Ta có:
Để phương trình đã cho có nghiệm thực thì
Mà
Vậy có 5 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Tìm giá trị
biết
.
Ta có: