Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm tập nghiệm của bất phương trình: \log_{2}(3 - x) < 2.

    Điều kiện 3 - x > 0 \Leftrightarrow x
< 3

    Bất phương trình tương đương

    \Leftrightarrow 3 - x < 4
\Leftrightarrow x > - 1

    Kết hợp với điều kiện ta được tập nghiệm bất phương trình là: ( - 1;3)

  • Câu 2: Thông hiểu

    Anh B vay ngân hàng 200 triệu đồng và trả góp trong vòng 1 năm với lãi suất 1,15%/tháng. Sau đúng một tháng kể từ ngày vay, anh B hoàn nợ cho ngân hàng với số tiền hoàn nợ mỗi tháng là như nhau. Hỏi số tiền gần nhất với số tiền mỗi tháng anh B sẽ phải trả cho ngân hàng là bao nhiêu? Biết lãi suất ngân hàng không thay đổi trong thời gian anh B hoàn nợ.

    Mỗi tháng anh B phải trả số tiền cho ngân hàng là:

    x = \frac{a.(1 + r)^{n}.r}{(1 + r)^{n} -
1} = \frac{200.(1 + 1,15\%)^{12}.1,15\%}{(1 + 1,15\%)^{12} -
1}

    =
\frac{200.(1,0115)^{12}.0,0115}{(1,0115)^{12} - 1} \approx
17,94

  • Câu 3: Nhận biết

    Hàm số nào sau đây đồng biến trên \mathbb{R}?

    Do \frac{\sqrt{2} + \sqrt{3}}{2} >
1 nên hàm số y = \left(
\frac{\sqrt{2} + \sqrt{3}}{2} ight)^{x} đồng biến trên \mathbb{R}.

  • Câu 4: Nhận biết

    Xác định tập nghiệm của phương trình \log_{3}(2x + 3) = 1?

    Điều kiện xác định: x > -
\frac{3}{2}

    \log_{3}(2x + 3) = 1 \Leftrightarrow 2x +3 = 3 \Leftrightarrow x = 0(tm)

    Vậy phương trình có tập nghiệm S =
\left\{ 0 ight\}.

  • Câu 5: Thông hiểu

    Biểu thức L =
\sqrt[6]{x^{3}.\sqrt[3]{x^{2}\sqrt{x}}};(x > 0) viết dưới dạng lũy thừa của một số hữu tỉ là x^{m}. Kết quả nào sau đây đúng?

    Ta có:

    L =
\sqrt[6]{x^{3}.\sqrt[3]{x^{2}\sqrt{x}}} =
\sqrt[6]{x^{3}.\sqrt[3]{x^{2}.x^{\frac{1}{2}}}} =
\sqrt[6]{x^{3}.\sqrt[3]{x^{\frac{5}{2}}}}

    = \sqrt[6]{x^{3}.x^{\frac{5}{6}}} =
\sqrt[6]{x^{\frac{23}{6}}} = x^{\frac{23}{36}} \Rightarrow m =
\frac{23}{36}

  • Câu 6: Thông hiểu

    Giải bất phương trình 2^{x + 2} - 2^{x + 3} - 2^{x + 4} > 5^{x + 1} -
5^{x + 2} thu được tập nghiệm là:

    Ta có:

    2^{x + 2} - 2^{x + 3} - 2^{x + 4} >
5^{x + 1} - 5^{x + 2}

    \Leftrightarrow - 20.2^{x} > -
20.5^{x}

    \Leftrightarrow 2^{x} <
5^{x}

    \Leftrightarrow \left( \frac{2}{5}
ight)^{x} < 1 \Leftrightarrow x > 0

    Vậy tập nghiệm bất phương trình là: S =
(0; + \infty)

  • Câu 7: Thông hiểu

    Tìm tập xác định của hàm số y = \log_{2}\frac{3 - x}{2x} là:

    Điều kiện xác định của hàm số

    \frac{3 - x}{2x} > 0 \Rightarrow x \in
(0;3)

    Vậy tập xác định là: D =
(0;3)

  • Câu 8: Vận dụng

    Nếu \sqrt{x^{2} +
\sqrt[3]{x^{4}y^{2}}} + \sqrt{y^{2} + \sqrt[3]{y^{4}x^{2}}} = a thì giá trị biểu thức x^{\frac{2}{3}} +
y^{\frac{2}{3}} bằng bao nhiêu?

    Ta có:

    \sqrt{x^{2} + \sqrt[3]{x^{4}y^{2}}} +
\sqrt{y^{2} + \sqrt[3]{y^{4}x^{2}}} = a

    \Leftrightarrow
\sqrt{\sqrt[3]{x^{3}}\left( \sqrt[3]{x^{2}} + \sqrt[3]{y^{2}} ight)} +
\sqrt{\sqrt[3]{y^{3}}\left( \sqrt[3]{y^{2}} + \sqrt[3]{x^{2}} ight)} =
a

    \Leftrightarrow \sqrt{\left(
\sqrt[3]{x^{2}} + \sqrt[3]{y^{2}} ight)}\left( \sqrt{\sqrt[3]{x^{4}}}
+ \sqrt{\sqrt[3]{y^{4}}} ight) = a

    \Leftrightarrow \sqrt{\left(
\sqrt[3]{x^{2}} + \sqrt[3]{y^{2}} ight)^{3}} = a

    \Leftrightarrow \sqrt[3]{x^{2}} +
\sqrt[3]{y^{2}} = a^{\frac{2}{3}}

  • Câu 9: Thông hiểu

    Nếu x,y là hai số thực dương bất kì thỏa mãn 4\ln^{2}x + 9\ln^{2}y = 12\ln x.\ln y thì khẳng định nào dưới đây đúng?

    Ta có:

    4\ln^{2}x + 9\ln^{2}y = 12\ln x.\ln y

    \Leftrightarrow (2\ln x - 3\ln y)^{2} =0

    \Leftrightarrow 2\ln x - 3\ln y =0

    \Leftrightarrow x^{2} =
y^{3}

  • Câu 10: Vận dụng cao

    Chof\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}biết rằng f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} với m và n là các số nguyên dương và phân số \frac{m}{n} tối giản. Tính giá trị biểu thức m - {n^2}.

    Ta có:

    f\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\sqrt {\dfrac{{{x^2}.{{\left( {x + 1} ight)}^2} + {x^2} + {{\left( {x + 1} ight)}^2}}}{{{x^2}.{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\dfrac{{{x^2} + x + 1}}{{x\left( {x + 1} ight)}}}} = {5^{1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}}}

    \begin{matrix}  f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow {5^{\sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)} }} = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow \sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)}  = \dfrac{m}{n} \hfill \\   \Leftrightarrow 2021 - \dfrac{1}{{2021}} = \dfrac{m}{n} \hfill \\   \Leftrightarrow \dfrac{{4084440}}{{2021}} = \dfrac{m}{n} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m = 4084440} \\   {n = 2021} \end{array}} ight. \Rightarrow m - {n^2} =  - 1 \hfill \\ \end{matrix}

  • Câu 11: Vận dụng

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Chị Minh đến ngân hàng để gửi tiết kiệm 400 triệu đồng theo hai loại kỳ hạn khác nhau. Với loại kỳ hạn 3 tháng lãi suất x% một quý chị gửi 250 triệu đồng, số tiền còn lại chị gửi theo kỳ hạn 1 tháng lãi suất 0,25% một tháng. Sau một năm số tiền cả gốc và lãi chị Minh nhận được là 416,78 triệu đồng. Biết rằng nếu không rút lãi suất thì số lãi sẽ được nhập vào số gốc để tính lãi cho kỳ hạn tiếp theo. Tìm giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Sắp xếp theo thứ tự tăng dần các số 2020^{0};5^{\frac{1}{2}};\left( \frac{4}{5}
ight)^{- 1} Sai||Đúng

    b) Hàm số y = \left( \frac{\pi +
3}{2\pi} ight)^{x}nghịch biến trên tập xác định của nó.Đúng||Sai

    c) Phương trình \frac{1}{2}\log\left(
x^{2} - 4x - 1 ight) = log8x - log4x có tổng các nghiệm thực bằng 5.Đúng||Sai

    d) Tập nghiệm của bất phương trình \left( 3^{2x} - 9 ight)\left( 3^{x} -
\frac{1}{27} ight)\sqrt{3^{x + 1} - 1} \leq 0 chứa đúng 4 giá trị nguyên. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Sắp xếp theo thứ tự tăng dần các số 2020^{0};5^{\frac{1}{2}};\left( \frac{4}{5}
ight)^{- 1} Sai||Đúng

    b) Hàm số y = \left( \frac{\pi +
3}{2\pi} ight)^{x}nghịch biến trên tập xác định của nó.Đúng||Sai

    c) Phương trình \frac{1}{2}\log\left(
x^{2} - 4x - 1 ight) = log8x - log4x có tổng các nghiệm thực bằng 5.Đúng||Sai

    d) Tập nghiệm của bất phương trình \left( 3^{2x} - 9 ight)\left( 3^{x} -
\frac{1}{27} ight)\sqrt{3^{x + 1} - 1} \leq 0 chứa đúng 4 giá trị nguyên. Sai||Đúng

    a) Ta có: \left\{ \begin{matrix}2020^{0} = 1 \\5^{\frac{1}{2}} = \sqrt{5} \\\left( \dfrac{4}{5} ight)^{- 1} = \dfrac{5}{4} \\\end{matrix} ight. nên sắp xếp đúng là: 2020^{0};\left( \frac{4}{5} ight)^{-
1};5^{\frac{1}{2}}

    b) Ta có:

    y = \left( \frac{\pi + 3}{2\pi}
ight)^{x} có cơ số \frac{\pi +
3}{2\pi} \in (0;1) nên hàm số đã cho nghịch biến trên tập xác định của nó.

    c) Điều kiện xác định x > 2 +
\sqrt{5}

    \frac{1}{2}\log\left( x^{2} - 4x - 1ight) = \log8x - \log4x

    \Leftrightarrow \log\left( x^{2} - 4x -1 ight) = 2\log\left( \frac{8x}{4x} ight)

    \Leftrightarrow x^{2} - 4x - 1 = 4
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1(ktm) \\
x = 5(tm) \\
\end{matrix} ight.

    Vậy tổng các nghiệm của phương trình là S
= 5

    d) Điều kiện xác định 3^{x + 1} - 1 \geq
0 \Leftrightarrow x \geq - 1

    Ta có: x = - 1 là một nghiệm của bất phương trình

    Với x > - 1 bất phương trình tương đương với \left( 3^{2x} - 9
ight)\left( 3^{x} - \frac{1}{27} ight) \leq 0

    Đặt t = 3^{x} > 0 ta có:

    \left( t^{2} - 9 ight)\left( t -
\frac{1}{27} ight) \leq 0 \Leftrightarrow (t - 3)(t + 3)\left( t -
\frac{1}{27} ight) \leq 0

    \Rightarrow \left\lbrack \begin{matrix}t \leq - 3 \\\dfrac{1}{27} \leq t \leq 3 \\\end{matrix} ight. kết hợp với điều kiện t = 3^{x} > 0 ta được nghiệm \frac{1}{27} \leq t \leq 3 \Leftrightarrow
\frac{1}{27} \leq 3^{x} \leq 3 \Leftrightarrow - 3 \leq x \leq
1

    Kết hợp với điều kiện x > - 1 ta được - 1 < x \leq 1 suy ra trường hợp này có 2 nghiệm nguyên

    Vậy bất phương trình có ba nghiệm nguyên.

  • Câu 13: Nhận biết

    Chọn mệnh đề sai trong các mệnh đều dưới đây.

    Mệnh đề sai là: 3^{\frac{x}{y}} =
\frac{3^{x}}{3^{y}}

    \frac{3^{x}}{3^{y}} = 3^{x -
y}

  • Câu 14: Nhận biết

    Tính giá trị biểu thức a^{log_{\sqrt{a}}4} với a > 0,a eq 1.

    Ta có:

    a^{log_{\sqrt{a}}4} = a^{2log_{a}4} =
a^{log_{a}4^{2}} = 16

  • Câu 15: Vận dụng

    Tính giá trị biểu thức C = \frac{a}{b}. Biết \log_{9}a = \log_{16}b = \log_{12}\frac{5b -a}{2};(a,b > 0).

    Giả sử \log_{9}a = \log_{16}b =\log_{12}\frac{5b - a}{2} = t khi đó:

    \Rightarrow \left\{ \begin{matrix}a = 9^{t} \\b = 16^{t} \\\dfrac{5b - a}{2} = 12^{t} \\\end{matrix} ight.\  \Rightarrow 12^{t} = \frac{5.16^{t} -9^{t}}{2}

    \Leftrightarrow 5.16^{t} - 2.12^{t} -
9^{t} = 0

    \Leftrightarrow 5 - 2.\left( \frac{3}{4}
ight)^{t} - \left( \frac{3}{4} ight)^{2t} = 0

    \Leftrightarrow \left( \frac{3}{4}
ight)^{t} = \sqrt{6} - 1

    \Leftrightarrow \frac{a}{b} =
\frac{9^{t}}{16^{t}} = \left( \frac{3}{4} ight)^{2t} = \left( \sqrt{6}
- 1 ight)^{2} = 7 - 2\sqrt{6}

  • Câu 16: Thông hiểu

    Viết biểu thức P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}};\left( {x > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}} = {x^{\frac{1}{5}}}.{x^{\frac{2}{3}}}.{x^{\frac{3}{5}}} = {x^{\frac{{113}}{{30}}}}

  • Câu 17: Nhận biết

    Với số thực dương a bất kì ta có \sqrt{\frac{1}{a^{3}}} tương ứng với:

    Với a > 0 ta có: \sqrt{\frac{1}{a^{3}}} = \left( \frac{1}{a^{3}}
ight)^{\frac{1}{2}} = \left( a^{- 3} ight)^{\frac{1}{2}} = a^{-
\frac{3}{2}}

  • Câu 18: Vận dụng

    Bà A gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 10%/ 1 năm theo hình thức lại kép một thời gian dài (nghĩa là nếu bà không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo). Năm nay gia đình có việc cần nên bà rút hết tiền trong ngân hàng để xử lí công việc. Sau khi rút cả vốn và lãi, bà trích ra 10 triệu để mua đồ tân gia cho con trai thì bà còn 240 triệu. Hỏi bà A đã gửi tiết kiệm được bao nhiêu năm? 10 năm||12 năm||20 năm||15 năm

    Đáp án là:

    Bà A gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 10%/ 1 năm theo hình thức lại kép một thời gian dài (nghĩa là nếu bà không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo). Năm nay gia đình có việc cần nên bà rút hết tiền trong ngân hàng để xử lí công việc. Sau khi rút cả vốn và lãi, bà trích ra 10 triệu để mua đồ tân gia cho con trai thì bà còn 240 triệu. Hỏi bà A đã gửi tiết kiệm được bao nhiêu năm? 10 năm||12 năm||20 năm||15 năm

    Giả sử bà A đã gửi ngân hàng trong x năm

    Số tiền bà nhận được là 250 triệu đồng

    Áp dụng công thức lại kép thì sau n năm số tiền bà A nhận được là T = 100.10^{6}.(1 + 0,1)^{n}

    \Leftrightarrow 250.10^{6} =
100.10^{6}.(1 + 0,1)^{n}

    \Leftrightarrow n = \log_{1,1}2,5\Leftrightarrow n \approx 9,61

    Vậy bà A đã gửi tiết kiệm trong 10 năm.

  • Câu 19: Thông hiểu

    Xác định nghiệm của phương trình

    \left\lbrack \left( 3 - 2\sqrt{2}
ight)^{\left( a^{2} + 1 ight)x} - \left( 3 + 2\sqrt{2} ight)
ightbrack.\left\lbrack 4^{x} - \left( b^{2} + 2 ight)
ightbrack = 0

    Phương trình tương đương:

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left( 3 - 2\sqrt{2} ight)^{\left( a^{2} + 1 ight)x} - \left( 3 +
2\sqrt{2} ight) = 0 \\
4^{x} - \left( b^{2} + 2 ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = - \dfrac{1}{a^{2} + 2} \\x = \log_{4}\left( b^{2} + 2 ight) \\\end{matrix} ight.

  • Câu 20: Nhận biết

    Tìm tập xác định của hàm số y = \log_{2}\left( 4 - x^{2} ight).

    Điều kiện xác định 4 - x^{2} > 0
\Rightarrow x \in ( - 2;2)

    Vậy tập xác định của hàm số là D = ( -
2;2)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo