Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Biết x,y là các số thực dương khác 1 thỏa mãn \log_{x}y = 2. Biến đổi biểu thức C = \log_{\frac{\sqrt{x}}{y}}\left(x\sqrt[3]{y} ight) ta được kết quả là:

    Ta có:

    C = \log_{\frac{\sqrt{x}}{y}}\left(x\sqrt[3]{y} ight) = \frac{\log_{x}\left( x\sqrt[3]{y}ight)}{\log_{x}\left( \dfrac{\sqrt{x}}{y} ight)}

    = \dfrac{\log_{x}x +\log_{x}y^{\frac{1}{3}}}{\dfrac{1}{2}\log_{x}x - \log_{x}y}

    = \dfrac{1 +\dfrac{1}{3}\log_{x}y}{\dfrac{1}{2} - \log_{x}y} = \dfrac{1 +\dfrac{1}{3}.2}{\dfrac{1}{2} - 2} = - \dfrac{10}{9}

  • Câu 2: Thông hiểu

    Ta có: \sqrt[3]{x^{5}\sqrt{x^{2}\sqrt{x}}} =
x^{\alpha}. Giá trị \alpha là:

    Ta có:

    \sqrt[3]{x\sqrt[5]{x^{2}\sqrt{x}}} =
\sqrt[3]{x\sqrt[5]{x^{2}.x^{\frac{1}{2}}}} =
\sqrt[3]{x\sqrt[5]{x^{\frac{5}{2}}}} = \sqrt[3]{x^{\frac{3}{2}}} =
x^{\frac{1}{2}}

    \Rightarrow \alpha =
\frac{1}{2}

  • Câu 3: Vận dụng

    Tính giá trị biểu thức C = \frac{a}{b}. Biết \log_{9}a = \log_{16}b = \log_{12}\frac{5b -a}{2};(a,b > 0).

    Giả sử \log_{9}a = \log_{16}b =\log_{12}\frac{5b - a}{2} = t khi đó:

    \Rightarrow \left\{ \begin{matrix}a = 9^{t} \\b = 16^{t} \\\dfrac{5b - a}{2} = 12^{t} \\\end{matrix} ight.\  \Rightarrow 12^{t} = \frac{5.16^{t} -9^{t}}{2}

    \Leftrightarrow 5.16^{t} - 2.12^{t} -
9^{t} = 0

    \Leftrightarrow 5 - 2.\left( \frac{3}{4}
ight)^{t} - \left( \frac{3}{4} ight)^{2t} = 0

    \Leftrightarrow \left( \frac{3}{4}
ight)^{t} = \sqrt{6} - 1

    \Leftrightarrow \frac{a}{b} =
\frac{9^{t}}{16^{t}} = \left( \frac{3}{4} ight)^{2t} = \left( \sqrt{6}
- 1 ight)^{2} = 7 - 2\sqrt{6}

  • Câu 4: Nhận biết

    Giá trị B =
\sqrt[3]{2021}.\sqrt[5]{2021} viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có:

    B = \sqrt[3]{2021}.\sqrt[5]{2021} =
2021^{\frac{1}{3}}.2021^{\frac{1}{5}} = 2021^{\frac{1}{3} + \frac{1}{5}}
= 2021^{\frac{8}{15}}

  • Câu 5: Nhận biết

    Tìm tập xác định của hàm số y = \log_{\frac{1}{2}}\left( x^{2} - 3x + 2ight)

    Điều kiện xác định {x^2} - 3x + 2 > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {x < 1} \\ 
  {x > 2} 
\end{array}} ight.

    => Tập xác định của hàm số là: ( -
\infty;1) \cup (2; + \infty)

  • Câu 6: Vận dụng

    Tìm m để bất phương trình \log_{3}\left\lbrack - x^{2} + 2(m + 3)x - 3m - 4ightbrack > 1 vô nghiệm.

    Ta có:

    \log_{3}\left\lbrack - x^{2} + 2(m + 3)x- 3m - 4 ightbrack > 1

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 4 > 3

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 7 > 0

    Bất phương trình vô nghiệm khi:

    \Leftrightarrow - x^{2} + 2(m + 3)x - 3m
- 7 \leq 0;\forall x\mathbb{\in R}

    \Leftrightarrow (m + 3)^{2} - 3m - 7
\leq 0

    \Leftrightarrow m^{2} + 3m + 2 \leq
0

    \Leftrightarrow - 2 \leq m \leq -
1

  • Câu 7: Nhận biết

    Với a, b là các số thực dương tùy ý và a khác 1, đặt P = \log_{a}b^{3} +\log_{a^{2}}b^{6}. Mệnh đề nào dưới đây đúng?

    Ta có:

    P = \log_{a}b^{3} +\log_{a^{2}}b^{6}

    P = 3\log_{a}b +\frac{6}{2}\log_{a}b

    P = 3\log_{a}b + 3\log_{a}

    P = 6\log_{a}b

  • Câu 8: Vận dụng cao

    Tích 2017!{\left( {1 + \frac{1}{1}} ight)^1}{\left( {1 + \frac{1}{2}} ight)^2}...{\left( {1 + \frac{1}{{2017}}} ight)^{2017}} được viết dưới dạng {a^b}, khi đó \left( {a;b} ight) là cặp nào trong các cặp số sau?

    Ta có:

    \begin{matrix}  2017!{\left( {1 + \dfrac{1}{1}} ight)^1}{\left( {1 + \dfrac{1}{2}} ight)^2}...{\left( {1 + \dfrac{1}{{2017}}} ight)^{2017}} \hfill \\   = 2017!{\left( {\dfrac{2}{1}} ight)^1}{\left( {\dfrac{3}{2}} ight)^2}...{\left( {\dfrac{{2017}}{{2016}}} ight)^{2016}}.{\left( {\dfrac{{2018}}{{2017}}} ight)^{2017}} \hfill \\   = 2017!\dfrac{1}{1}.\dfrac{1}{2}.\dfrac{1}{3}....\dfrac{1}{{2016}}.\dfrac{{{{2018}^{2017}}}}{{2017}} = {2018^{2017}} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 2018} \\   {b = 2017} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 9: Vận dụng

    Cho các số thực dương a,b và biểu thức

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack 1 + \frac{1}{4}\left(
\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}} ight)^{2}
ightbrack^{\frac{1}{2}}

    Tính giá trị biểu thức P?

    Ta có:

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack 1 + \frac{1}{4}\left(
\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}} ight)^{2}
ightbrack^{\frac{1}{2}}

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack 1 + \frac{1}{4}\left( \frac{a}{b} - 2
+ \frac{b}{a} ight) ightbrack^{\frac{1}{2}}

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack \frac{1}{4}\left( \frac{a +
b}{\sqrt{ab}} ight) ightbrack^{\frac{1}{2}}

    P = 2\frac{1}{a +
b}.\sqrt{ab}.\frac{1}{2}.\frac{a + b}{\sqrt{ab}} = 1

  • Câu 10: Thông hiểu

    Thực hiện thu gọn biểu thức C = \left( x^{\frac{1}{2}} - y^{\frac{1}{2}}
ight)^{2}.\left( 1 - 2\sqrt{\frac{x}{y}} + \frac{y}{x} ight)^{-
1} với x > 0;y > 0 ta được kết quả là:

    Ta có:

    \left( x^{\frac{1}{2}} - y^{\frac{1}{2}}
ight)^{2} = \left( \sqrt{x} - \sqrt{y} ight)^{2}

    Ta cũng có:

    \left( 1 - 2\sqrt{\frac{x}{y}} +
\frac{y}{x} ight)^{- 1} = \left\lbrack \left( \sqrt{\frac{y}{x}} - 1
ight)^{2} ightbrack^{- 1}

    = \left( \frac{\sqrt{y} -
\sqrt{x}}{\sqrt{x}} ight)^{- 2} = \left( \frac{\sqrt{x}}{\sqrt{y} -
\sqrt{x}} ight)^{2}

    Khi đó:

    C = \left( \sqrt{x} - \sqrt{y}
ight)^{2}.\left( \frac{\sqrt{x}}{\sqrt{x} - \sqrt{y}} ight)^{2} =
x

  • Câu 11: Nhận biết

    Giải phương trình 2^{3a} = 64 ta được:

    Ta có:

    2^{3a} = 64 \Leftrightarrow 2^{3a} =
2^{6} \Leftrightarrow 3a = 6 \Leftrightarrow a = 2(tm)

    Vậy phương trình đã cho có nghiệm a =
2

  • Câu 12: Thông hiểu

    Cho hàm số y =f(x) = \log_{3}\left( x^{2} - 4x - m + 1 ight) với m là tham số. Tìm tất cả các giá trị thực của tham số m để hàm số đã y = f(x) xác định với mọi x\in \mathbb{R}?

    Hàm số y =f(x) = \log_{3}\left( x^{2} - 4x - m + 1 ight) xác định với mọi x\mathbb{\in R} khi và chỉ khi

    x^{2} - 4x - m + 1 > 0;\forall
x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta' < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 > 0 \\
4 + m - 1 < 0 \\
\end{matrix} ight.\  \Leftrightarrow m < - 3

    Vậy m \in ( - \infty; - 3)

  • Câu 13: Thông hiểu

    Gọi x_{1};x_{2} là các nghiệm của phương trình 4^{x} - 2^{x + 3} + 15 = 0. Trong các khẳng định dưới đây khẳng định nào đúng?

    Đặt t = 2^{x} > 0 phương trình trở thành t^{2} - 8t + 15 =
0(*)

    Gọi t_{1};t_{2} là hai nghiệm của phương trình (*) suy ra \left\lbrack
\begin{matrix}
t_{1} = 2^{x_{1}} \\
t_{2} = 2^{x_{2}} \\
\end{matrix} ight.

    Theo định lí Vi – et phương trình (*) ta có:

    t_{1}t_{2} = 15 \Rightarrow
2^{x_{1}}.2^{x_{2}} = 15

    \Rightarrow x_{1} + x_{2} =\log_{2}15

  • Câu 14: Thông hiểu

    Xác định nghiệm của phương trình 4^{2x + 1} = 64?

    Ta có:

    4^{2x + 1} = 64 \Leftrightarrow 4^{2x +
1} = 4^{3}

    \Leftrightarrow 2x + 1 = 3
\Leftrightarrow x = 1(tm)

    Vậy phương trình có nghiệm x = 1.

  • Câu 15: Nhận biết

    Phương trình 3^{x^{2} - 2x} = 1 có tất cả bao nhiêu nghiệm?

    Ta có:

    3^{x^{2} - 2x} = 1 \Leftrightarrow
3^{x^{2} - 2x} = 3^{0}

    \Leftrightarrow x^{2} - 2x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.\ (tm)

    Vậy phương trình đã cho có hai nghiệm.

  • Câu 16: Nhận biết

    Tìm hàm số đồng biến trên \mathbb{R} trong các hàm số dưới đây?

    Xét hàm số y = \left( \frac{\pi}{2}
ight)^{x}\frac{\pi}{2} >
1 nên hàm số y = \left(
\frac{\pi}{2} ight)^{x}đồng biến trên \mathbb{R}?

  • Câu 17: Thông hiểu

    Cho a =\log_{3}2;b = \log_{3}5. Khi đó \log60 có giá trị là:

    Ta có:

    \log60 =\frac{\log_{3}60}{\log_{3}10}= \frac{\log_{3}2^{2} + \log_{3}3 +\log_{3}5}{\log_{3}2 + \log_{3}5}

    = \frac{\log_{3}2^{2} + 1 +\log_{3}5}{\log_{3}2 + \log_{3}5}= \dfrac{2a + b + 1}{a + b}

  • Câu 18: Thông hiểu

    Cho hàm số f(x)= \log_{2}m. Với m > 0, giá trị của biểu thức T = f\left(\frac{6}{m} ight) + f\left( \frac{8m}{3} ight) bằng:

    Ta có:

    T = f\left( \frac{6}{m} ight) +f\left( \frac{8m}{3} ight) = f\left( \frac{6}{m}.\frac{8m}{3} ight)= f(16) = 4

  • Câu 19: Vận dụng

    Cho a,b,c là các số thực dương khác 1. Các hàm số y = \log_{a}x;y = \log_{b}x;y =\log_{c}x có đồ thị như hình vẽ bên.

    Tìm khẳng định đúng.

    Kí hiệu hình vẽ như sau:

    Kẻ đường thẳng y = 1 cắt đồ thị của các hàm số y = \log_{a}x;y = \log_{b}x;y =\log_{c}x lần lượt tại các điểm có hoành độ là a;b;c.

    Từ đồ thị ta có a > c >
b.

  • Câu 20: Nhận biết

    Cho biểu thức P = \sqrt {x.\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}} với x > 0. Mệnh đề nào sau đây là đúng?

     Ta có: 

    \begin{matrix}  P = \sqrt {x.\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}}  \hfill \\  P = \sqrt {x.\sqrt[3]{{{x^{\frac{7}{2}}}}}}  \hfill \\  P = \sqrt {x.{x^{\frac{7}{6}}}}  \hfill \\  P = \sqrt {{x^{\frac{{13}}{6}}}}  = {x^{\frac{{13}}{{12}}}} \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 26 lượt xem
Sắp xếp theo