Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Xác định tất cả các giá trị của tham số m để phương trình 3^{x^{2} + 1} = m - 1 có nghiệm?

    Ta có:

    3^{x^{2}} \geq 3^{0} \Leftrightarrow
3^{x^{2} + 1} \geq 3^{1}

    Phương trình 3^{x^{2} + 1} = m -
1 có nghiệm khi và chỉ khi m - 1
\geq 3 \Leftrightarrow m \geq 4(tm)

    Vậy m \in \lbrack 4; + \infty) thỏa mãn yêu cầu bài toán.

  • Câu 2: Thông hiểu

    Tính giá trị của a^{\log_{\sqrt{a}}4} với a > 0;a eq 1?

    Ta có: a^{\log_{\sqrt{a}}4} =a^{2\log_{a}4} = a^{\log_{a}16} = 16.

  • Câu 3: Thông hiểu

    Anh B vay ngân hàng 200 triệu đồng và trả góp trong vòng 1 năm với lãi suất 1,15%/tháng. Sau đúng một tháng kể từ ngày vay, anh B hoàn nợ cho ngân hàng với số tiền hoàn nợ mỗi tháng là như nhau. Hỏi số tiền gần nhất với số tiền mỗi tháng anh B sẽ phải trả cho ngân hàng là bao nhiêu? Biết lãi suất ngân hàng không thay đổi trong thời gian anh B hoàn nợ.

    Mỗi tháng anh B phải trả số tiền cho ngân hàng là:

    x = \frac{a.(1 + r)^{n}.r}{(1 + r)^{n} -
1} = \frac{200.(1 + 1,15\%)^{12}.1,15\%}{(1 + 1,15\%)^{12} -
1}

    =
\frac{200.(1,0115)^{12}.0,0115}{(1,0115)^{12} - 1} \approx
17,94

  • Câu 4: Vận dụng

    Cho a,b >0 thỏa mãn a^{2} + 4b^{2} =5ab. Chọn khẳng định đúng?

    Ta có: a^{2} + 4b^{2} = 5ab \Rightarrow(a + 2b)^{2} = 9ab

    Lôgarit cơ số 10 cho hai vế ta được:

    \log(a + 2b)^{2} =\log(9ab)

    \Leftrightarrow 2\log(a + 2b) = \log9 +\log a + \log b

    \Leftrightarrow 2\left\lbrack \log(a +2b) - \log3 ightbrack = \log a + \log b

    \Leftrightarrow \log\left( \frac{a +2b}{3} ight) = \frac{\log a + \log b}{2}

  • Câu 5: Thông hiểu

    Giả sử \sqrt[5]{8\sqrt{2\sqrt[3]{2}}} =
2^{\frac{a}{b}}, với \frac{a}{b} là phân số tối giản. Gọi K = a^{2} + b^{2}. Kết luận nào dưới đây đúng?

    Ta có:

    \sqrt[5]{8\sqrt{2\sqrt[3]{2}}} =
\sqrt[5]{8\sqrt{2.2^{\frac{1}{3}}}} = \sqrt[5]{8\sqrt{2^{\frac{4}{3}}}}
= \sqrt[5]{2^{3}.2^{\frac{2}{3}}}

    = \sqrt[5]{2^{\frac{11}{3}}} =
2^{\frac{11}{15}} \Rightarrow \frac{a}{b} = \frac{11}{15} \Rightarrow
\left\{ \begin{matrix}
a = 11 \\
b = 15 \\
\end{matrix} ight.

    \Rightarrow K = 11^{2} + 15^{2} = 346
\in (340;350)

  • Câu 6: Nhận biết

    Chọn khẳng định sai trong các khẳng định sau?

    Hàm số y = \log_{2}x đồng biến trên khoảng (0; + \infty)

  • Câu 7: Thông hiểu

    Cho đồ thị hàm số:

    Xác định hàm số tương ứng?

    Đồ thị hàm số đi lên và qua điểm có tọa độ (1;3) nên hàm số thỏa mãn là y = 3^{x}

  • Câu 8: Thông hiểu

    Tìm số nghiệm phương trình \log_{2}x^{2} = 2\log_{2}(3x + 4)?

    Điều kiện \left\{ \begin{matrix}x^{2} > 0 \\3x + 4 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq 0 \\x > - \dfrac{4}{3} \\\end{matrix} ight.

    Ta có:

    \log_{2}x^{2} = 2\log_{2}(3x +4)

    \Leftrightarrow \log_{2}x^{2} =\log_{2}(3x + 4)^{2}

    \Leftrightarrow x^{2} = (3x + 4)^{2}
\Leftrightarrow \left\lbrack \begin{matrix}
x = 3x + 4 \\
x = - 3x - 4 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1(tm) \\
x = - 2(ktm) \\
\end{matrix} ight.

    Vậy phương trình có 1 nghiệm.

  • Câu 9: Nhận biết

    Số nghiệm nguyên của bất phương trình \log_{\frac{1}{2}}(x - 3) \geq  \log_{\frac{1}{2}}4 là:

    Ta có:

    \log_{\frac{1}{2}}(x - 3) \geq  \log_{\frac{1}{2}}4

    \Leftrightarrow \left\{ \begin{matrix}
x - 3 > 0 \\
x - 3 \leq 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 3 \\
x \leq 7 \\
\end{matrix} ight.

    Tập nghiệm của bất phương trình là S = (3; 7].

    Từ đó suy ra bất phương trình có 4 nghiệm nguyên.

  • Câu 10: Nhận biết

    Giải phương trình 5^{x} = 10 thu được nghiệm:

    Ta có:

    5^{x} = 10 \Leftrightarrow x =\log_{5}10(tm)

    Vậy phương trình có nghiệm x =\log_{5}10.

  • Câu 11: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m \in \lbrack - 2019;2019brack để hàm số y = \frac{\ln x - 6}{\ln x -
3m} đồng biến trên khoảng \left(
1;e^{6} ight)?

    Đặt t = \ln x. Khi đó hàm số đã cho đồng biến trên khoảng \left( 1;e^{6}
ight) khi và chỉ khi hàm số y =
\frac{t - 6}{t - 3m} đồng biến trên khoảng (0;6).

    Hàm số f(t) đồng biến trên khoảng (0;6) khi và chỉ khi:

    \left\{ \begin{matrix}
- 3m + 6 > 0 \\
3m otin (0;6) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
m < 2 \\
\left\lbrack \begin{matrix}
m \leq 0 \\
m \geq 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Rightarrow m \leq 0

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 2019; - 2018;...;0 ight\}

    Vậy có tất cả 2020 số nguyên m thỏa mãn yêu cầu bài toán.

  • Câu 12: Nhận biết

    Đơn giản biểu thức H = x^{\frac{1}{3}}.\sqrt[6]{x};(x >
0) với x > 0 ta được kết quả là:

    Ta có: H = x^{\frac{1}{3}}.\sqrt[6]{x} =
x^{\frac{1}{3}}.x^{\frac{1}{6}} = x^{\frac{1}{3} + \frac{1}{6}} =
\sqrt{x}

  • Câu 13: Nhận biết

    Tính giá trị của biểu thức B = 2\log_{2}12 + 3\log_{2}5 - \log_{2}15 -\log_{2}150.

    Ta có:

    B = 2\log_{2}12 + 3\log_{2}5 - \log_{2}15 -\log_{2}150

    B = \log_{2}12^{2}.5^{3} - \log_{2}15.150= \log_{2}\frac{18000}{2250} = \log_{2}8 = 3

  • Câu 14: Vận dụng

    Tìm tất cả các giá trị của tham số m để phương trình \left( \frac{1}{5}
ight)^{\left| x^{2} - 4x + 3 ight|} = m^{4} - m^{2} + 1 có bốn nghiệm phân biệt.

    Phương trình đã cho viết lại như sau:

    \left| x^{2} - 4x + 3 ight| =\log_{\frac{1}{5}}\left( m^{4} - m^{2} + 1 ight)

    Xét đồ thị hàm số y = \left| x^{2} - 4x +
3 ight| như hình vẽ.

    Phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi:

    0 < {\log _{\frac{1}{5}}}\left( {{m^4} - {m^2} + 1} ight) < 1

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {{m^4} - {m^2} < 0} \\ 
  {{m^4} - {m^2} + \dfrac{4}{5} > 0} 
\end{array}} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m eq 0 \\
- 1 < m < 1 \\
\end{matrix} ight.

  • Câu 15: Vận dụng cao

    Tích 2017!{\left( {1 + \frac{1}{1}} ight)^1}{\left( {1 + \frac{1}{2}} ight)^2}...{\left( {1 + \frac{1}{{2017}}} ight)^{2017}} được viết dưới dạng {a^b}, khi đó \left( {a;b} ight) là cặp nào trong các cặp số sau?

    Ta có:

    \begin{matrix}  2017!{\left( {1 + \dfrac{1}{1}} ight)^1}{\left( {1 + \dfrac{1}{2}} ight)^2}...{\left( {1 + \dfrac{1}{{2017}}} ight)^{2017}} \hfill \\   = 2017!{\left( {\dfrac{2}{1}} ight)^1}{\left( {\dfrac{3}{2}} ight)^2}...{\left( {\dfrac{{2017}}{{2016}}} ight)^{2016}}.{\left( {\dfrac{{2018}}{{2017}}} ight)^{2017}} \hfill \\   = 2017!\dfrac{1}{1}.\dfrac{1}{2}.\dfrac{1}{3}....\dfrac{1}{{2016}}.\dfrac{{{{2018}^{2017}}}}{{2017}} = {2018^{2017}} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 2018} \\   {b = 2017} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 16: Vận dụng

    Cho {9^x} + {9^{ - x}} = 14;\frac{{6 + 3.\left( {{3^x} + {3^{ - x}}} ight)}}{{2 - {3^{x + 1}} - {3^{1 - x}}}} = \frac{a}{b}; (\frac{a}{b} là phân số tối giản). Tính giá trị biểu thức P = ab.

    Ta có:

    \begin{matrix}  {\left( {{3^x} + {3^{ - x}}} ight)^2} = 14 + 2 = 16 \hfill \\   \Rightarrow {3^x} + {3^{ - x}} = 4 \hfill \\   \Rightarrow \dfrac{a}{b} = \dfrac{{6 + 3.4}}{{2 - 3.4}} =  - \dfrac{9}{5} \hfill \\   \Rightarrow P =  - 45 \hfill \\ \end{matrix}

  • Câu 17: Thông hiểu

    Biểu thức L =
\sqrt[6]{x^{3}.\sqrt[3]{x^{2}\sqrt{x}}};(x > 0) viết dưới dạng lũy thừa của một số hữu tỉ là x^{m}. Kết quả nào sau đây đúng?

    Ta có:

    L =
\sqrt[6]{x^{3}.\sqrt[3]{x^{2}\sqrt{x}}} =
\sqrt[6]{x^{3}.\sqrt[3]{x^{2}.x^{\frac{1}{2}}}} =
\sqrt[6]{x^{3}.\sqrt[3]{x^{\frac{5}{2}}}}

    = \sqrt[6]{x^{3}.x^{\frac{5}{6}}} =
\sqrt[6]{x^{\frac{23}{6}}} = x^{\frac{23}{36}} \Rightarrow m =
\frac{23}{36}

  • Câu 18: Nhận biết

    Tập xác định của hàm số y = \log(2x - 3)^{2} là:

    Hàm số y = \log(2x - 3)^{2} xác định nếu (2x - 3)^{2} > 0 \Leftrightarrow
x eq \frac{3}{2}

    Vậy tập xác định D\mathbb{=
R}\backslash\left\{ \frac{3}{2} ight\}.

  • Câu 19: Thông hiểu

    Tìm giá trị của x biết \log_{3}\left( x^{2} - 1 ight) + \log_{9}\left(x^{2} - 1 ight) = \frac{3}{2}.

    Điều kiện x^{2} - 1 > 0
\Leftrightarrow \left\lbrack \begin{matrix}
x < - 1 \\
x > 1 \\
\end{matrix} ight.

    Ta có:

    \log_{3}\left( x^{2} - 1 ight) +\log_{9}\left( x^{2} - 1 ight) = \frac{3}{2}

    \Leftrightarrow \log_{3}\left( x^{2} - 1ight) + \frac{1}{2}\log_{3}\left( x^{2} - 1 ight) =\frac{3}{2}

    \Leftrightarrow \log_{3}\left( x^{2} - 1ight) = 1

    \Leftrightarrow x^{2} - 1 =
3

    \Leftrightarrow x^{2} = 4
\Leftrightarrow x = \pm 2

  • Câu 20: Nhận biết

    Rút gọn biểu thức P = \frac{{{x^{\frac{1}{6}}}.\sqrt[3]{{{x^4}}}.\sqrt[4]{{{x^5}}}}}{{\sqrt {{x^3}} }} với x > 0

    Ta có: P = \frac{{{x^{\frac{1}{6}}}.\sqrt[3]{{{x^4}}}.\sqrt[4]{{{x^5}}}}}{{\sqrt {{x^3}} }} = \frac{{{x^{\frac{1}{6}}}.{x^{\frac{4}{3}}}.{x^{\frac{5}{4}}}}}{{{x^{\frac{3}{2}}}}} = \frac{{{x^{\frac{{11}}{4}}}}}{{{x^{\frac{3}{2}}}}} = {x^{\frac{5}{4}}} 

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo