Biết
,
bằng:
Ta có:
Biết
,
bằng:
Ta có:
Cho ba số thực dương x, y, z thwo thứ tự lập thành một cấp số nhân, đồng thời với mỗi số thực dương
thì
theo thứ tự lập thành một cấp số cộng. Tính giá trị của biểu thức
?
Theo đề bài ta có:
Do đó:
Cho
khi đó
có giá trị bằng bao nhiêu?
Ta có:
Số nghiệm nguyên của bất phương trình
là:
Ta có:
Tập nghiệm của bất phương trình là S = (3; 7].
Từ đó suy ra bất phương trình có 4 nghiệm nguyên.
Thu gọn biểu thức
với
là các số thực dương:
Ta có:
Tìm cặp số
. Biết
.
Ta có:
Với
là một số thực bất kì, mệnh đề nào dưới đây là mệnh đề sai?
Theo định nghĩa và các tính chất của lũy thừa ta thấy:
;
;
là các mệnh đề đúng.
Xét mệnh đề với
ta có:
nên mệnh đề sai.
Tìm tập xác định của hàm số
?
Điều kiện xác định:
Vậy tập xác định của hàm số đã cho là:
Đầu mỗi tháng cô H gửi vào ngân hàng 4 triệu đồng với lãi suất kép là 0,5% mỗi tháng. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô H có được số tiền cả lãi và gốc nhiều hơn 100 triệu, biết lãi suất không đổi trong quá trình gửi.
Ta có:
Giả sử sau n tháng sau anh A nhận được số tiền nhiều hơn 100 triệu, khi đó ta có:
Vậy cần ít nhất 24 tháng để cô H có được số tiền cả lãi và gốc nhiều hơn 100 triệu.
Hàm số nào dưới đây đồng biến trên
?
Ta có: nên hàm số
đồng biến trên
.
Cho số thực dương a và b. Biểu thức thu gọn của biểu thức
![]()
có dạng
. Tính
.
Ta có:
Cho hàm số
với
là tham số. Tìm tất cả các giá trị thực của tham số
để hàm số đã
xác định với mọi
?
Hàm số xác định với mọi
khi và chỉ khi
Vậy
Cho hai số thực dương
. Tính giá trị biểu thức:
biết
?
Ta có:
Có bao nhiêu giá trị x nguyên thỏa mãn bất phương trình
?
Ta có:
Mà
Vậy có duy nhất 1 giá trị nguyên của x thỏa mãn yêu cầu đề bài.
Cho
. Nếu viết
thì giá trị
bằng bao nhiêu?
Ta có:
Tìm tất cả các giá trị của tham số m để phương trình
có bốn nghiệm phân biệt.
Phương trình đã cho viết lại như sau:
Xét đồ thị hàm số như hình vẽ.
Phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi:
Chọn phát biểu sai?
Ta có: là phát biểu sai do
Tìm tập nghiệm của bất phương trình
.
Điều kiện:
Bất phương trình đã cho tương đương với
Kết hợp điều kiện, suy ra bất phương trình có nghiệm
Vậy tập nghiệm của bất phương trình là:
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Xác định nghiệm phương trình
?
Điều kiện xác định:
Vậy phương trình có nghiệm .