Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho a,b,c >
0. Tính giá trị của biểu thức A =\log_{a}\left( b^{2} ight).\log_{b}\left( \sqrt{bc} ight) -\log_{a}(c)?

    Ta có:

    A =\log_{a}\left( b^{2}ight).\log_{b}\left( \sqrt{bc} ight) - \log_{a}(c)

    A = 2\log_{a}(b).\frac{1}{2}.\log_{b}(bc)- \log_{a}(c)

    A = \log_{a}(b).\log_{b}(bc) -\log_{a}(c)

    A = \log_{a}(b).\left\lbrack \log_{b}(b) +\log_{b}(c) ightbrack - \log_{a}(c)

    A = \log_{a}(b).\left\lbrack 1 +\log_{b}(c) ightbrack - \log_{a}(c)

    A = \log_{a}(b) + \log_{a}(b).\log_{b}(c) -\log_{a}(c)

    A = \log_{a}(b) + \log_{a}(c) -\log_{a}(c)

    A = \log_{a}(b)

  • Câu 2: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{{2018}^x}}}{{{{2018}^x} + \sqrt {2018} }}. Tính tổng

    S = f\left( {\frac{1}{{2019}}} ight) + f\left( {\frac{2}{{2019}}} ight) + ... + f\left( {\frac{{2018}}{{2019}}} ight)

    Với hàm số

    f\left( {1 - x} ight) = \frac{{\sqrt {2018} }}{{{{2018}^x} + \sqrt {2018} }} \Rightarrow f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + ... + f\left( {\dfrac{{2018}}{{2019}}} ight) \hfill \\   \Rightarrow S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{{2018}}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + f\left( {\dfrac{{2017}}{{2019}}} ight) \hfill \\+ ... + f\left( {\dfrac{{1009}}{{2019}}} ight) + f\left( {\dfrac{{1010}}{{2019}}} ight) = 1009 \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu

    Tìm tất cả các giá trị thực của x thỏa mãn đẳng thức \log_{3}x = 3\log_{3}2 + \log_{9}25 -\log_{\sqrt{3}}3.

    Ta có:

    \log_{3}x = 3\log_{3}2 + \log_{9}25 -\log_{\sqrt{3}}3

    \Leftrightarrow \log_{3}x = \log_{3}8 +\log_{3}5 - \log_{3}9

    \Leftrightarrow \log_{3}x =\log_{3}\frac{40}{9} \Leftrightarrow x = \frac{40}{9}

  • Câu 4: Thông hiểu

    Với a là một số thực dương thì biểu thức P = \frac{{{a^{\sqrt 7  + 1}}.{a^{2 - \sqrt 7 }}}}{{{{\left( {{a^{\sqrt 2  - 2}}} ight)}^{\sqrt 2  + 2}}}} được rút gọn là:

    Ta có: P = \frac{{{a^{\sqrt 7  + 1}}.{a^{2 - \sqrt 7 }}}}{{{{\left( {{a^{\sqrt 2  - 2}}} ight)}^{\sqrt 2  + 2}}}} = \frac{{{a^3}}}{{{a^{ - 2}}}} = {a^5}

  • Câu 5: Vận dụng

    Cho {4^x} + {4^{ - x}} = 34. Tính giá trị của biểu thức T = \frac{{{2^x} + {2^{ - x}} - 3}}{{1 + {2^{x + 1}} - {2^{1 - x}}}}

    Ta có:

    \begin{matrix}  {4^x} + {4^{ - x}} = 34 \hfill \\   \Rightarrow {2^{2x}} + 2 + {2^{ - 2x}} = 36 \hfill \\   \Rightarrow {\left( {{2^x} + {2^{ - x}}} ight)^2} = 36 \hfill \\   \Rightarrow {2^x} + {2^{ - x}} = 6;\left( {{2^x} + {2^{ - x}} > 0} ight) \hfill \\ \end{matrix}

    Khi đó ta được:

    T = \frac{{{2^x} + {2^{ - x}} - 3}}{{1 + {2^{x + 1}} - {2^{1 - x}}}} = \frac{{6 - 3}}{{1 - 2\left( {{2^x} + {2^{ - x}}} ight)}} = \frac{3}{{1 - 2.6}} = \frac{{ - 3}}{{11}}

  • Câu 6: Nhận biết

    Biết \frac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} với x > 1 và a + b = 2. Tính giá trị của biểu thức M = a – b.

     Ta có: 

    \begin{matrix}  \dfrac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} \hfill \\   \Leftrightarrow {x^{{a^2} - {b^2}}} = {x^{16}} \hfill \\   \Leftrightarrow {a^2} - {b^2} = 16 \hfill \\   \Leftrightarrow \left( {a + b} ight)\left( {a - b} ight) = 16 \hfill \\   \Rightarrow a - b = 8 \hfill \\ \end{matrix}

  • Câu 7: Nhận biết

    Cho hai số thực a và b với a > 0;a eq 1;b eq 0. Chọn khẳng định sai?

    Ta có: \dfrac{1}{2}\log_{a}b^{2} =\log_{a}b sai vì chưa biết b > 0 hay b < 0.

  • Câu 8: Vận dụng

    Tìm tập nghiệm của bất phương trình 4x^{2} + x.2^{x^{2} + 1} + 3.2^{x^{2}} >
x^{2}.2^{x^{2}} + 8x + 12.

    Ta có:

    4x^{2} + x.2^{x^{2} + 1} + 3.2^{x^{2}}
> x^{2}.2^{x^{2}} + 8x + 12

    \Leftrightarrow \left( 4 - 2^{x^{2}}
ight)\left( x^{2} - 2x - 3 ight) > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
4 - 2^{x^{2}} > 0 \\
x^{2} - 2x - 3 > 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
4 - 2^{x^{2}} < 0 \\
x^{2} - 2x - 3 < 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
\sqrt{2} > x > - \sqrt{2} \\
\left\lbrack \begin{matrix}
x < - 1 \\
x > 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x < - \sqrt{2} \\
x > \sqrt{2} \\
\end{matrix} ight.\  \\
- 1 < x < 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
- \sqrt{2} < x < - 1 \\
\sqrt{2} < x < 3 \\
\end{matrix} ight.

    Vậy tập nghiệm bất phương trình là: S =
\left( - \sqrt{2}; - 1 ight) \cup \left( \sqrt{2};3
ight)

  • Câu 9: Vận dụng

    Cho a\log_{6}3 +b\log_{6}2 + c\log_{6}5 = 5 với a,b,c là các số tự nhiên. Trong các khẳng định sau, khẳng định nào đúng?

    Ta có:

    a\log_{6}3 + b\log_{6}2 + c\log_{6}5 =5

    \Leftrightarrow 3^{a}.2^{b}.5^{c} =
5

    Do a,b,c\in\mathbb{ N} nên chỉ có một bộ số (a,b,c) = (0,0,1) thỏa mãn.

    Khẳng định đúng là a = b.

  • Câu 10: Nhận biết

    Cho hàm số y =
\ln(x - 2) + \sqrt{9 - x}. Tìm tập xác định của hàm số?

    Điều kiện xác định của hàm số y = \ln(x -
2) + \sqrt{9 - x} là:

    \left\{ \begin{matrix}
x - 2 > 0 \\
9 - x \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow x \in (2;9brack

    Vậy tập xác định của hàm số là: D =
(2;9brack

  • Câu 11: Thông hiểu

    Xác định các nghiệm phương trình \log_{2}(2x - 5)^{2} = 2\log_{2}(x - 2) rồi tính tổng tất cả các giá trị đó ta được kết quả là: 16/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Xác định các nghiệm phương trình \log_{2}(2x - 5)^{2} = 2\log_{2}(x - 2) rồi tính tổng tất cả các giá trị đó ta được kết quả là: 16/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Điều kiện

    \left\{ \begin{matrix}
(2x - 5)^{2} > 0 \\
x - 2 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
(2x - 5)^{2} > 0\forall x\mathbb{\in R} \\
x > 2 \\
\end{matrix} ight.

    \Rightarrow x > 2

    Ta có:

    \log_{2}(2x - 5)^{2} = 2\log_{2}(x -2)

    \Leftrightarrow \log_{2}(2x - 5)^{2} =\log_{2}(x - 2)^{2}

    \Leftrightarrow (2x - 5)^{2} = (x -
2)^{2}

    \Leftrightarrow \left\lbrack\begin{matrix}2x - 5 = x - 2 \\2x - 5 = - x + 2 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 3 \\x = \dfrac{7}{3} \\\end{matrix} ight.\ (tm)

    Tổng tất cả các nghiệm của phương trình là: S = 3 + \frac{7}{3} = \frac{16}{3}.

  • Câu 12: Thông hiểu

    Cho phương trình \log_{2}(x - 3) + \log_{2}(x - 1) = 3. Tìm tổng tất cả các nghiệm của phương trình đã cho.

    Điều kiện xác định: \left\{
\begin{matrix}
x - 3 > 0 \\
x - 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 3 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow x > 3

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{2}\left\lbrack (x -3)(x - 1) ightbrack = \log_{2}8

    \Leftrightarrow x^{2} - 4x + 3 = 8
\Leftrightarrow x^{2} - 4x - 5 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1(ktm) \\
x = 5(tm) \\
\end{matrix} ight.

    Vậy tổng các nghiệm của phương trình đã cho bằng 5.

  • Câu 13: Thông hiểu

    Bác H gửi vào ngân hàng 100 triệu đồng với lãi suất 6% một năm. Sau thời gian 10 năm nếu không rút lãi lần nào thì số tiền ông An nhận được tính cả gốc và lãi là bao nhiêu? Biết nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu.

    Đáp án: 179084769,7||179084769.7

    Đáp án là:

    Bác H gửi vào ngân hàng 100 triệu đồng với lãi suất 6% một năm. Sau thời gian 10 năm nếu không rút lãi lần nào thì số tiền ông An nhận được tính cả gốc và lãi là bao nhiêu? Biết nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu.

    Đáp án: 179084769,7||179084769.7

    Gọi a là số tiền tiết kiệm ban đầu, r là lãi suất

    Sau 1 tháng, số tiền cả gốc và lãi là: a(1 + r)

    Sau n tháng, số tiền cả gốc và lãi là: a(1 + r)^{n}

    Số tiền sau 10 năm với lãi suất 6% một năm là:

    10^{8}.(1 + 6\%)^{10} =
179084769,7 (triệu đồng).

  • Câu 14: Nhận biết

    Cho bất phương trình 2^{x + 2} < \left( \frac{1}{4} ight)^{-
x}. Tập nghiệm của bất phương trình là:

    Ta có:

    2^{x + 2} < \left( \frac{1}{4}
ight)^{- x} \Leftrightarrow 2^{x + 2} < 2^{2x}

    \Leftrightarrow x + 2 <
2x

    \Leftrightarrow x > 2

  • Câu 15: Nhận biết

    Tìm tập xác định của hàm số y = \left( \frac{5\sqrt{3}}{2}
ight)^{x}?

    Tập xác định của hàm số y = \left(
\frac{5\sqrt{3}}{2} ight)^{x}D=\mathbb{R}.

  • Câu 16: Vận dụng

    Chị X gửi tiết kiệm ngân hàng 100 triệu đồng với lãi suất 8,4%/năm. Sau bao nhiêu năm chị X thu được gấp đôi số tiền ban đầu? Biết lãi hàng năm được nhập vào vốn.

    Gọi số tiền ban đầu chị X gửi vào ngân hàng là A, lãi suất là r và sau n năm được tính theo công thức T_{n} =
A.(1 + r)^{n}.

    Để số tiền sau n năm thu được gấp đôi số tiền ban đầu ta có phương trình:

    A(1 + r)^{n} = 2A

    \Leftrightarrow 1,084^{n} =
2

    \Leftrightarrow n \approx
8,594

    Vậy sau 9 năm người gửi thu được gấp đôi số tiền ban đầu.

  • Câu 17: Thông hiểu

    Cho x là số thực dương. Biểu thức \sqrt[4]{x^{2}.\sqrt[3]{x}} được viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có: \sqrt[4]{x^{2}.\sqrt[3]{x}} =
\sqrt[4]{x^{2}.x^{\frac{1}{3}}} = \sqrt[4]{x^{\frac{7}{3}}} =
x^{\frac{7}{3.4}} = x^{\frac{7}{12}}

  • Câu 18: Nhận biết

    Tìm tập nghiệm của bất phương trình \left( \frac{1}{3} ight)^{x + 2} \geq
9?

    Ta có:

    \left( \frac{1}{3} ight)^{x + 2} \geq
9 \Leftrightarrow \left( 3^{- 1} ight)^{x + 2} \geq 3^{2}

    \Leftrightarrow 3^{- x - 2} \geq 3^{2}
\Leftrightarrow - x - 2 \geq 2 \Leftrightarrow x \leq - 4

    Vậy tập nghiệm của bất phương trình là x
\in ( - \infty; - 4brack

  • Câu 19: Thông hiểu

    Tìm tập xác định của hàm số y = f(x) = \log_{2}\frac{x + \sqrt{x} - 2}{x -2}?

    Hàm số xác định khi

    \frac{x + \sqrt{x} - 2}{x - 2} =\frac{\left( \sqrt{x} - 1 ight)\left( \sqrt{x} + 2 ight)}{x - 2}> 0

    \Leftrightarrow \frac{\sqrt{x} - 1}{x -2} > 0 \Leftrightarrow \left\lbrack \begin{matrix}0 \leq x < 1 \\2 < x \\\end{matrix} ight.

    Vậy tập xác định của hàm số là D =\lbrack 0;1) \cup (2; + \infty)

  • Câu 20: Nhận biết

    Với m là một số thực bất kì, mệnh đề nào dưới đây là mệnh đề sai?

    Theo định nghĩa và các tính chất của lũy thừa ta thấy:

    \sqrt{10^{m}} = \left( \sqrt{10}
ight)^{m}; \sqrt{10^{m}} = \left(
\sqrt{10} ight)^{m}; \left(
10^{m} ight)^{2} = 100^{m} là các mệnh đề đúng.

    Xét mệnh đề \left( 10^{m} ight)^{2} =
(10)^{m^{2}} với m = 1 ta có: \left( 10^{1} ight)^{2} = 100 eq
(10)^{1^{2}} nên mệnh đề sai.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 26 lượt xem
Sắp xếp theo