Giá trị của biểu thức
là:
Ta có:
Giá trị của biểu thức
là:
Ta có:
Cho phương trình
. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt
thỏa mãn
.
Đặt . Phương trình đã cho trở thành
Phương trình (*) có hai nghiệm phân biệt thỏa mãn
Xác định nghiệm của bất phương trình
?
Ta có:
hay
Cho hàm số
có đồ thị như hình vẽ,
có đồ thị đối xứng với đồ thị hàm số
qua đường thẳng
. Xác định hàm số
.

Ta có:
Phép đối xứng trục qua đường thẳng biến mỗi điểm có tọa độ
thành điểm có tọa độ
.
Mỗi điểm trên đồ thị hàm số có dạng
, lấy đối xứng qua
ta được điểm có tọa độ
thuộc đồ thị hàm số
.
Do đó . Đặt
, khi đó
. Vậy
.
Cho hai số thực dương a và b. Đơn giản biểu thức
ta được
. Tích
là:
Ta có:
Cho
biết rằng
với m và n là các số nguyên dương và phân số
tối giản. Tính giá trị biểu thức
.
Ta có:
Cho
là các số thực dương lớn hơn 1 thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
Tập nghiệm của bất phương trình
là:
Ta có:
hay
Cho biết
. Một học sinh đã thực hiện tính giá trị biểu thức
như sau:
Bước 1: ![]()
Bước 2: ![]()
Bước 3: ![]()
Bước 4: ![]()
Hỏi bạn học sinh giải toán sai từ bước nào?
Ta có:
Vậy bài toán sai từ bước 4.
Tìm tập xác định của hàm số
là:
Điều kiện xác định của hàm số
Vậy tập xác định là:
Cho phương trình phương trình
. Số nghiệm của phương trình là:
Điều kiện xác định:
Phương trình đã cho được viết lại như sau:
Vậy phương trình có duy nhất 1 nghiệm x = 3.
Biểu thức
viết dưới dạng lũy thừa của một số hữu tỉ là
. Kết quả nào sau đây đúng?
Ta có:
Giả sử phương trình
có hai nghiệm
với
. Khi đó giá trị của biểu thức
2||9||-1||-7
Giả sử phương trình có hai nghiệm
với
. Khi đó giá trị của biểu thức
2||9||-1||-7
Điều kiện xác định
Phương trình đã cho tương đương:
Biết các số
là các số thực dương và
. Tìm khẳng định sai trong các khẳng định dưới đây?
Ta có:
Vậy khẳng định sai là:
Tìm hàm số đồng biến trên
trong các hàm số dưới đây?
Xét hàm số có
nên hàm số
đồng biến trên
?
Hãy xác định hàm số đồng biến trên toàn tập xác định của nó trong các hàm số dưới đây?
Hàm số có
nên hàm số
đồng biến trên tập xác định của nó là
.
Hàm số có
nên nghịch biến trên tập xác định của nó.
Hàm số có
nên hàm số nghịch biến trên tập xác định của nó.
Hàm số có
nên hàm số nghịch biến trên tập xác định của nó.
Cho
. Khẳng định nào sau đây đúng?
Theo tính chất lũy thừa ta có:
Cho hàm số
. Tìm tập xác định
của hàm số?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Tính giá trị của biểu thức
. Biết
với
là các số thực dương lớn hơn
?
Ta có:
Cho số thực
và các số thực
. Khẳng định nào đúng?
Ta có: khi đó
.