Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Với \forall
m\mathbb{\in R}, khẳng định nào sau đây đúng?

    Mệnh đề đúng là: \ln m^{4} =4\ln m

  • Câu 2: Thông hiểu

    Cho đồ thị hàm số y = f(x) như hình vẽ:

    Hàm số y = f(x) có thể là hàm số nào dưới đây?

    Dựa vào đồ thị ta có hàm số có tập xác định D\mathbb{= R} và hàm số nghịch biến suy ra hàm số tương ứng là y = \left(\frac{4}{5} ight)^{x}.

  • Câu 3: Thông hiểu

    Rút gọn biểu thức A = \frac{\sqrt{a} + \sqrt[4]{ab}}{\sqrt[4]{a} +
\sqrt[4]{b}} - \frac{\sqrt{a} - \sqrt{b}}{\sqrt[4]{a} -
\sqrt[4]{b}} với a > 0;b >
0 ta được kết quả:

    Ta có:

    A = \frac{\sqrt{a} +
\sqrt[4]{ab}}{\sqrt[4]{a} + \sqrt[4]{b}} - \frac{\sqrt{a} -
\sqrt{b}}{\sqrt[4]{a} - \sqrt[4]{b}}

    A = \frac{\left( \sqrt[4]{a} ight)^{2}
+ \sqrt[4]{ab}}{\sqrt[4]{a} + \sqrt[4]{b}} - \frac{\left( \sqrt[4]{a}
ight)^{2} - \left( \sqrt[4]{b} ight)^{2}}{\sqrt[4]{a} -
\sqrt[4]{b}}

    A = \frac{\sqrt[4]{a}\left( \sqrt[4]{a}
+ \sqrt[4]{b} ight)}{\sqrt[4]{a} + \sqrt[4]{b}} - \frac{\left(
\sqrt[4]{a} - \sqrt[4]{b} ight)\left( \sqrt[4]{a} + \sqrt[4]{b}
ight)}{\sqrt[4]{a} - \sqrt[4]{b}}

    A = \sqrt[4]{a} - \left( \sqrt[4]{a} +
\sqrt[4]{b} ight) = - \sqrt[4]{b}

  • Câu 4: Vận dụng

    Cho phương trình (m + 3)9^{x} + (2m - 1)3^{x} + m + 1 = 0. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm trái dấu.

    Đặt t = 3^{x} ta có phương trình (m + 3)t^{2} + (2m - 1)t + m + 1 =
0(*)

    Phương trình đã cho có hai nghiệm trái dấu (giả sử x_{1} < 0 < x_{2})

    Phương trình (*) tương đương 0 < t_{1}
= 3^{x_{1}} < 1 < 3^{x_{2}} = t_{2} nghĩa là 0 < t_{1} < 1 < t_{2}.

    \Leftrightarrow \left\{ \begin{gathered}
  m + 3 e 0 \hfill \\
  \Delta  > 0 \hfill \\
  \left( {{t_1} - 1} ight)\left( {{t_2} - 1} ight) < 0 \hfill \\
  {t_1}{t_2} > 0 \hfill \\
  {t_1} + {t_2} > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
   - 20m - 11 > 0 \hfill \\
  {t_1}{t_2} - \left( {{t_1} + {t_2}} ight) + 1 < 0 \hfill \\
  {t_1}{t_2} > 0 \hfill \\
  {t_1} + {t_2} > 0 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
  m < \dfrac{{ - 11}}{{20}} \hfill \\
  \dfrac{{m + 1}}{{m + 3}} + \dfrac{{2m - 1}}{{m + 3}} + 1 < 0 \hfill \\
  \dfrac{{m + 1}}{{m + 3}} > 0 \hfill \\
   - \dfrac{{2m - 1}}{{m + 3}} > 0 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
  m < \dfrac{{ - 11}}{{20}} \hfill \\
   - 3 < m <  - \dfrac{3}{4} \hfill \\
  \left[ \begin{gathered}
  m < 3 \hfill \\
  m >  - 1 \hfill \\ 
\end{gathered}  ight. \hfill \\
   - 3 < m < \dfrac{1}{2} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow  - 1 < m <  - \dfrac{3}{4}

  • Câu 5: Thông hiểu

    Phương trình \log_{2}x + \log_{2}(x - 1) = 1 có bao nhiêu nghiệm?

    Điều kiện \left\{ \begin{matrix}
x > 0 \\
x > 1 \\
\end{matrix} ight.\  \Rightarrow x > 1

    Ta có:

    \log_{2}x + \log_{2}(x - 1) =1

    \Leftrightarrow \log_{2}\left\lbrack x.(x- 1) ightbrack = 1

    \Leftrightarrow x.(x - 1) = 2^{1}
\Leftrightarrow x.(x - 1) = 2

    \Leftrightarrow x^{2} - x - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1(ktm) \\
x = 2(tm) \\
\end{matrix} ight.

    Vậy phương trình có 1 nghiệm x =
2.

  • Câu 6: Vận dụng cao

    Cho P = \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {{y^2} + \sqrt[3]{{{x^2}{y^4}}}}Q = 2\sqrt {{{\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{{{y^2}}}} ight)}^3}} với x và y là các số thực khác 0. So sánh P và Q?

    Ta có: {x^2};{y^2};\sqrt[3]{{{x^4}{y^2}}};\sqrt[3]{{{x^2}{y^4}}} là những số thực dương

    Ta lại có:

    \begin{matrix}  Q = 2\sqrt {{{\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{{{y^2}}}} ight)}^3}}  \hfill \\   = 2\sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   = \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  + \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   > \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   > \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  = P \hfill \\   \Rightarrow P < Q \hfill \\ \end{matrix}

  • Câu 7: Nhận biết

    Tìm tập xác định của hàm số y = \ln(1 - x)?

    Điều kiện xác định của hàm số y = \ln(1 -
x) là:

    1 - x > 0 \Rightarrow x <
1

    Vậy tập xác định của hàm số là D = ( -
\infty;1)

  • Câu 8: Nhận biết

    Tập nghiệm của bất phương trình \left( \frac{2}{3} ight)^{4x} \leq \left(\frac{3}{2} ight)^{2 - x} là:

    Ta có:

    \left( \frac{2}{3} ight)^{4x} \leq\left( \frac{3}{2} ight)^{2 - x}

    \Leftrightarrow \left( \frac{3}{2}ight)^{- 4x} \leq \left( \frac{3}{2} ight)^{2 - x}

    \Leftrightarrow - 4x \leq 2 -x

    \Leftrightarrow x \geq -\frac{2}{3}

  • Câu 9: Thông hiểu

    Tập nghiệm của bất phương trình \log_{3}\left( 36 - x^{2} ight) \geq 3 là:

    Ta có:

    {\log _3}\left( {36 - {x^2}} ight) \geqslant 3 \Leftrightarrow \left\{ \begin{gathered}
  36 - {x^2} > 0 \hfill \\
  36 - {x^2} \geqslant {3^3} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  {x^2} < 36 \hfill \\
  {x^2} \leqslant 9 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 6 < x < 6 \\
- 3 \leq x \leq 3 \\
\end{matrix} ight.\  \Leftrightarrow - 3 \leq x \leq 3

    Vậy tập nghiệm của bất phương trình là: S
= \lbrack - 3;3brack.

  • Câu 10: Nhận biết

    Với a là số thực dương tùy ý, a^{\frac{5}{3}} tương ứng với:

    Với a > 0 ta có: a^{\frac{5}{3}} = \sqrt[3]{a^{5}}

  • Câu 11: Nhận biết

    Rút gọn biểu thức: D = x^{\frac{2}{5}}.\sqrt[6]{x} với x > 0 ta được kết quả là:

    Ta có: D = x^{\frac{2}{5}}.\sqrt[6]{x} =
x^{\frac{2}{5}}.x^{\frac{1}{6}} = x^{\frac{2}{5} + \frac{1}{6}} =
x^{\frac{17}{30}}.

  • Câu 12: Thông hiểu

    Tìm tất cả các giá trị thực của x thỏa mãn đẳng thức \log_{3}x = 3\log_{3}2 + \log_{9}25 -\log_{\sqrt{3}}3.

    Ta có:

    \log_{3}x = 3\log_{3}2 + \log_{9}25 -\log_{\sqrt{3}}3

    \Leftrightarrow \log_{3}x = \log_{3}8 +\log_{3}5 - \log_{3}9

    \Leftrightarrow \log_{3}x =\log_{3}\frac{40}{9} \Leftrightarrow x = \frac{40}{9}

  • Câu 13: Thông hiểu

    Giả mỗi năm diện tích đất phục vụ cho nông nghiệp giảm n\% diện tích hiện có. Hỏi sau 4 năm diện tích đất phục vụ cho nông nghiệp của nước ta sẽ là bao nhiêu phần trăm của diện tích hiện nay?

    Diện tích đất phục vụ nông nghiệp ban đầu là S, diện tích đất nông nghiệp sau 4 năm sẽ là S_{0}; n\% = \frac{n}{100}

    S = S_{0}\left( 1 - \frac{n}{100}
ight)^{n} = S_{0}\left( 1 - \frac{n}{100} ight)^{4}

    =>\frac{S}{S_{0}} = \left( 1 -\frac{n}{100} ight)^{4}

  • Câu 14: Vận dụng

    Bác A lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất một quý. Đúng 6 tháng sau, bác A gửi thêm 100 triệu đồng với kỳ hạn và lãi suất không đổi. Biết rằng trong suốt thời gian gửi tiền lãi suất ngân hàng không thay đổi và người đó không rút tiền ra. Hỏi tổng số tiền người đó nhận được sau 1 năm gửi tiền vào ngân hàng bằng bao nhiêu? (Làm tròn kết quả đến chữ số thập phân thứ hai).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Bác A lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất một quý. Đúng 6 tháng sau, bác A gửi thêm 100 triệu đồng với kỳ hạn và lãi suất không đổi. Biết rằng trong suốt thời gian gửi tiền lãi suất ngân hàng không thay đổi và người đó không rút tiền ra. Hỏi tổng số tiền người đó nhận được sau 1 năm gửi tiền vào ngân hàng bằng bao nhiêu? (Làm tròn kết quả đến chữ số thập phân thứ hai).

    Chỗ nhập nội dung câu trả lời tự luận

    Số tiền 100 triệu đồng gửi lần đầu thì sau 1 năm (4 quý) nhận được cả vốn lẫn lãi là:

    T_{1} = 100.(1 + 0,02)^{4} =
108,24 triệu đồng

    Số tiền 100 triệu đồng gửi lần thứ hai thì 6 tháng (2 quý) nhận được cả vốn lẫn lãi là:

    T_{2} = 100.(1 + 0,02)^{2} =
104,04 triệu đồng

    Vậy tổng số tiền nhận được là: T = T_{1}
+ T_{2} = 212,28 triệu đồng.

  • Câu 15: Vận dụng

    Rút gọn biểu thức T = \left( \frac{a^{\frac{3}{2}} +
b^{\frac{3}{2}}}{a - b} - \frac{a - b}{a^{\frac{1}{2}} +
b^{\frac{1}{2}}} ight).\left( \frac{\sqrt{a} - \sqrt{b}}{\sqrt{ab}}
ight).

    Ta có:

    T = \left( \frac{a^{\frac{3}{2}} +
b^{\frac{3}{2}}}{a - b} - \frac{a - b}{a^{\frac{1}{2}} +
b^{\frac{1}{2}}} ight).\left( \frac{\sqrt{a} - \sqrt{b}}{\sqrt{ab}}
ight)

    T = \left( \frac{\sqrt{a^{3}} -
\sqrt{b^{3}}}{\sqrt{a^{2}} - \sqrt{b^{2}}} - \frac{a\sqrt{a^{2}} -
\sqrt{b^{2}} - b}{\sqrt{a} + \sqrt{b}} ight).\left( \frac{\sqrt{a} -
\sqrt{b}}{\sqrt{ab}} ight)

    T = \left( \frac{\sqrt{a^{3}} +
\sqrt{b^{3}} - \sqrt{a^{3}} - \sqrt{b^{3}} + \sqrt{a^{2}b} -
\sqrt{ab^{2}}}{\sqrt{a^{2}} - \sqrt{b^{2}}} ight).\left(
\frac{\sqrt{a} - \sqrt{b}}{\sqrt{ab}} ight)

    T = \left( \frac{\sqrt{a^{2}b} -
\sqrt{ab^{2}}}{\sqrt{a^{2}} - \sqrt{b^{2}}} ight).\left(
\frac{\sqrt{a} - \sqrt{b}}{\sqrt{ab}} ight) = 1

  • Câu 16: Vận dụng

    Cho ba số thực dương x, y, z thwo thứ tự lập thành một cấp số nhân, đồng thời với mỗi số thực dương a,(a eq 1) thì log_{a}x;log_{\sqrt{a}}y;log_{\sqrt[3]{a}}z theo thứ tự lập thành một cấp số cộng. Tính giá trị của biểu thức T = \frac{1959x}{y} + \frac{2019y}{z} +
\frac{60z}{x}?

    Theo đề bài ta có:

    \left\{ \begin{matrix}xz = y^{2} \\\log_{a}x + \log_{\sqrt[3]{a}}z = 2\log_{\sqrt{a}}y \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
xz = y^{2} \\
xz^{3} = y^{4} \\
\end{matrix} ight.\  \Leftrightarrow x = y = z

    Do đó: T = \frac{1959x}{y} +\frac{2019y}{z} + \frac{60z}{x}= 1959 + 2019 + 60 = 4038

  • Câu 17: Thông hiểu

    Cho số thực dương a tùy ý. Viết biểu thức M = a\sqrt{a^{3}\sqrt{a\sqrt{a}}} dưới dạng a^{\frac{x}{y}} trong đó \frac{x}{y} là phân số tối giản, x,y \in \mathbb{N}^{*}. Tính giá trị biểu thức H = x^{2} +
y^{2}?

    Ta có:

    M = a\sqrt{a^{3}\sqrt{a\sqrt{a}}} =
a\sqrt{a^{3}\sqrt{a.a^{\frac{1}{2}}}} =
a\sqrt{a^{3}\sqrt{a^{\frac{3}{2}}}}

    = a\sqrt{a^{3}.a^{\frac{3}{4}}} =
a.a^{\frac{15}{8}} = a^{\frac{23}{8}}

    \Rightarrow \frac{x}{y} = \frac{23}{8}
\Rightarrow H = x^{2} + y^{2} = 593

  • Câu 18: Nhận biết

    Tìm nghiệm của phương trình 2^{\sqrt{x + 1}} = 4

    2^{\sqrt{x + 1}} = 4

    \Leftrightarrow \sqrt{x + 1} =
log_{2}4

    \Leftrightarrow x + 1 = 4
\Leftrightarrow x = 3

    Vậy phương trình có nghiệm là x =
3

  • Câu 19: Thông hiểu

    Cho các mệnh đề sau:

    (i) Cơ số của logarit phải là số dương.

    (ii) Chỉ số thực dương mới có logarit.

    (iii) \ln(A + B) = \ln A + \lnB với mọi A > 0;B >0.

    (iv) \log_{a}b.\log_{b}c.\log_{c}a =1 với mọi a,b,c\in\mathbb{R}

    Số mệnh đề đúng là:

    (i) Sai vì cơ số của \log_{a}b chỉ cần thỏa mãn 0 < a eq0

    (ii) Đúng vì điều kiện có nghĩa của \log_{a}b là b> 0

    (iii) Sai vì \ln(A + B) = \ln A.\ln B với mọi A > 0;B >0.

    (iv) Sai vì nếu a,b,c < 0 thì các biểu thức \log_{a}b;\log_{b}c;\log_{c}a không có nghĩa.

  • Câu 20: Nhận biết

    Tìm điều kiện xác định của hàm số y = f(x) = \frac{1}{\log_{2}x - 1}?

    Điều kiện xác định của hàm số y = f(x) = \frac{1}{\log_{2}x - 1} là:

    \left\{ \begin{matrix}x > 0 \\ \log_{2}x - 1 eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > 0 \\ \log_{2}x eq 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > 0 \\x eq 2 \\\end{matrix} ight.

    Vậy tập xác định của hàm số đã cho là D =
(0; + \infty)\backslash\left\{ 2 ight\}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo