Cho
. Tính ![]()
Ta có:
Cho
. Tính ![]()
Ta có:
Có bao nhiêu khẳng định sai trong các khẳng định cho dưới đây?
(1) Với số thực
và các số nguyên
, ta có
.
(2) Với hai số thực
cùng khác 0 và số nguyên n, ta có ![]()
(3) Với hai số thực
thỏa mãn 0 < a < b và số nguyên n, ta có
khi và chỉ khi
.
(4) Cho số thực
và các số nguyên
. Khi đó, với
thì
khi và chỉ khi
.
Rút gọn biểu thức

Với ta có:
Khi đó:
Cho số dương
và các số thực
. Đẳng thức nào sau đây sai?
Ta có:
Cho bất phương trình:
. Chọn khẳng định đúng về tập nghiệm của bất phương trình.
Ta có:
Vậy tập nghiệm của bất phương trình là:
Tìm tập xác định của hàm số
là:
Hàm số đã cho xác định khi
Vậy tập xác định của hàm số là .
Tìm nghiệm của phương trình
?
Điều kiện xác định:
Vậy phương trình có nghiệm .
Cho tam giác vuông ABC có
là độ dài hai cạnh góc vuông,
là độ dài cạnh huyền với điều kiện
. Chọn kết luận đúng.
Do tam giác ABC vuông nên ta có:
Tìm tập xác định của hàm số
?
Tập xác định của hàm số là
.
Cho phương trình
. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm trái dấu.
Đặt ta có phương trình
Phương trình đã cho có hai nghiệm trái dấu (giả sử )
Phương trình (*) tương đương nghĩa là
.
Biết
với x > 1 và a + b = 2. Tính giá trị của biểu thức
.
Ta có:
Tính giá trị của biểu thức
.
Ta có:
Cho
. Tính giá trị biểu thức
.
Ta có:
Đặt khi đó
Ta có:
Cho phương trình
. Giả sử
là tổng giá trị tất cả các nghiệm của phương trình. Giá trị của
là:
Điều kiện
Ta có:
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số
Sai||Đúng
b) Hàm số
nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình
có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình
chứa đúng 4 giá trị nguyên. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số Sai||Đúng
b) Hàm số nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình chứa đúng 4 giá trị nguyên. Sai||Đúng
a) Ta có: nên sắp xếp đúng là:
b) Ta có:
có cơ số
nên hàm số đã cho nghịch biến trên tập xác định của nó.
c) Điều kiện xác định
Vậy tổng các nghiệm của phương trình là
d) Điều kiện xác định
Ta có: là một nghiệm của bất phương trình
Với bất phương trình tương đương với
Đặt ta có:
kết hợp với điều kiện
ta được nghiệm
Kết hợp với điều kiện ta được
suy ra trường hợp này có 2 nghiệm nguyên
Vậy bất phương trình có ba nghiệm nguyên.
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Cho phương trình
. Giải phương trình và tính tổng tất cả các nghiệm vừa tìm được.
Ta có:
Tổng tất cả các nghiệm của phương trình là
Số
có bao nhiêu chữ số?
Số tự nhiên có
chữ số khi
Đặt suy ra
Vậy số các chữ số của là 147278481.
Cho hàm số
có đồ thị như hình vẽ:

Đường thẳng
cắt trục hoành, đồ thị hàm số
lần lượt tại
. Biết rằng
. Khẳng định nào sau đây đúng?
Ta có:
Mặt khác nên
Có bao nhiêu giá trị nguyên của dương của tham số
để hàm số
đồng biến trên tập số thực?
Đáp án: 4
Có bao nhiêu giá trị nguyên của dương của tham số để hàm số
đồng biến trên tập số thực?
Đáp án: 4
Hàm số đồng biến trên
khi và chỉ khi
Mà
Vậy có 4 giá trị của tham số m thỏa mãn điều kiện đề bài.