Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong các biểu thức sau, biểu thức nào không có nghĩa?

    Lũy thừa với số mũ không nguyên thì cơ số phải dương nên biểu thức ( - 4)^{- \frac{1}{3}} không có nghĩa.

  • Câu 2: Thông hiểu

    Cho phương trình \log_{2}(2x - 1)^{2} = 2\log_{2}(x - 2). Số nghiệm thực của phương trình là:

    Điều kiện x > 2

    Ta có:

    \log_{2}(2x - 1)^{2} = 2\log_{2}(x -2)

    \Leftrightarrow 2\log_{2}(2x - 1) =2\log_{2}(x - 2)

    \Leftrightarrow 2x - 1 = x - 2
\Leftrightarrow x = - 1

    Nghiệm này không thỏa mãn điều kiện của phương trình nên phương trình đã cho vô nghiệm.

    Vậy tập nghiệm của bất phương trình là: S
= \lbrack - 2;2brack

  • Câu 3: Vận dụng

    Cho ba số thực dương a eq 1,b eq 1,c eq 1 thỏa mãn hệ phương trình \left\{ \begin{matrix}\log_{a}b = 2\log_{b}c = 4\log_{c}a \\a + 2b + 3c = 48 \\\end{matrix} ight. . Khi đó giá trị biểu thức P = a.b.c = 243

    Đáp án là:

    Cho ba số thực dương a eq 1,b eq 1,c eq 1 thỏa mãn hệ phương trình \left\{ \begin{matrix}\log_{a}b = 2\log_{b}c = 4\log_{c}a \\a + 2b + 3c = 48 \\\end{matrix} ight. . Khi đó giá trị biểu thức P = a.b.c = 243

    Theo bài ra: a eq 1,b eq 1,c eq
1

    \Rightarrow \log_{a}b eq 0;\log_{b}c eq0;\log_{c}a eq 0

    Khi đó ta có:

    \log_{a}b = 2\log_{b}c

    \Rightarrow \log_{a}c.\log_{c}b =2\log_{b}c

    \Rightarrow \log_{a}c =2\log_{b}^{2}c

    \log_{a}b = 4\log_{c}a

    \Rightarrow \log_{a}c.\log_{c}b =4\log_{c}a

    \Rightarrow \log_{c}b =4\log_{c}^{2}a

    Nên \log_{a}c.\log_{c}b =8\log_{b}^{2}c.\log_{c}^{2}a

    \Leftrightarrow \log_{a}b =8\log_{b}^{2}a

    \Leftrightarrow \log_{a}^{3}b = 8\Leftrightarrow \log_{a}b = 2 \Leftrightarrow b = a^{2}

    \log_{a}b = 2\log_{b}c

    \Leftrightarrow \log_{a}b = 2\log_{a^{2}}c\Leftrightarrow b = c

    Ta lại có: a + 2b + 3c = 48

    \Leftrightarrow a + 2a^{2} + 3a^{2} =
48

    \Leftrightarrow \left\lbrack\begin{matrix}a = - \dfrac{16}{5}(ktm) \\a = 3(tm) \\\end{matrix} ight.

    Vậy \left\{ \begin{matrix}
a = 3 \\
b = 9 \\
c = 9 \\
\end{matrix} ight.\  \Rightarrow P = a.b.c = 243

  • Câu 4: Thông hiểu

    Cho số thực a
> 1. Mệnh đề nào sau đây sai?

    Ta có: \left\{ \begin{matrix}
a > 1 \\
m > n \\
\end{matrix} ight.\  \Rightarrow a^{m} > a^{n}

    Với \left\{ \begin{matrix}
a > 1 \\
\frac{1}{3} < \frac{1}{2} \\
\end{matrix} ight.\  \Rightarrow a^{\frac{1}{3}} < a^{\frac{1}{2}}
\Rightarrow a^{\frac{1}{3}} < a^{\sqrt{2}}

    Vậy đáp án sai là: \sqrt{a} <
a^{\frac{1}{3}}

  • Câu 5: Vận dụng

    Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Nhận biết

    Với số thực dương a bất kì ta có \sqrt{\frac{1}{a^{3}}} tương ứng với:

    Với a > 0 ta có: \sqrt{\frac{1}{a^{3}}} = \left( \frac{1}{a^{3}}
ight)^{\frac{1}{2}} = \left( a^{- 3} ight)^{\frac{1}{2}} = a^{-
\frac{3}{2}}

  • Câu 7: Thông hiểu

    Xác định tất cả các giá trị của tham số m để phương trình 3^{x^{2} + 1} = m - 1 có nghiệm?

    Ta có:

    3^{x^{2}} \geq 3^{0} \Leftrightarrow
3^{x^{2} + 1} \geq 3^{1}

    Phương trình 3^{x^{2} + 1} = m -
1 có nghiệm khi và chỉ khi m - 1
\geq 3 \Leftrightarrow m \geq 4(tm)

    Vậy m \in \lbrack 4; + \infty) thỏa mãn yêu cầu bài toán.

  • Câu 8: Nhận biết

    Hãy xác định tập xác định D của hàm số y = \log_{2}(3 - x)?

    Điều kiện xác định của hàm số y =
log_{2}(3 - x) là:

    3 - x > 0 \Leftrightarrow x <
3

    Vậy tập xác định của hàm số đã cho là D =
( - \infty;3).

  • Câu 9: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    a) Hàm số y = \left( \frac{2021}{2020}
ight)^{x} nghịch biến trên tập số thực. Đúng||Sai

    b) Tập xác định của hàm số y = \log(x -
1)\lbrack 1; + \infty) Sai||Đúng

    c) Có 7 giá trị nguyên thuộc tập xác định của hàm số y = \log\left\lbrack (6 - x)(x + 2)
ightbrack Đúng||Sai

    d) Đồ thị của hàm số y = 2^{x}y = log_{2}x đối xứng với nhau qua đường thẳng y = - x. Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    a) Hàm số y = \left( \frac{2021}{2020}
ight)^{x} nghịch biến trên tập số thực. Đúng||Sai

    b) Tập xác định của hàm số y = \log(x -
1)\lbrack 1; + \infty) Sai||Đúng

    c) Có 7 giá trị nguyên thuộc tập xác định của hàm số y = \log\left\lbrack (6 - x)(x + 2)
ightbrack Đúng||Sai

    d) Đồ thị của hàm số y = 2^{x}y = log_{2}x đối xứng với nhau qua đường thẳng y = - x. Sai||Đúng

    Hàm số y = \left( \frac{2021}{2020}
ight)^{x} nghịch biến trên tập số thực. (đúng) vì 0 < a < 1.

    Tập xác định của hàm số y = \log(x -
1)(1; + \infty).

    Xét hàm số y = \log\left\lbrack (6 - x)(x
+ 2) ightbrack có điều kiện xác định là:

    (6 - x)(x + 2) > 0 \Leftrightarrow x
\in ( - 2;6)

    Vậy có 7 giá trị nguyên thuộc tập xác định của hàm số y = \log\left\lbrack (6 - x)(x + 2)
ightbrack.

    Đồ thị của hàm số y = 2^{x}y = log_{2}x đối xứng với nhau qua đường thẳng y = x

  • Câu 10: Nhận biết

    Giải phương trình \log_{3}(2n + 1) = 2 ta thu được tập nghiệm S là:

    Điều kiện xác định: n > -
\frac{1}{2}

    \log_{3}(2n + 1) = 2 \Leftrightarrow 2n +1 = 3^{2}

    \Leftrightarrow 2n + 1 = 9
\Leftrightarrow n = 4(tm)

    Vậy phương trình có nghiệm n =
4.

  • Câu 11: Vận dụng cao

    Cho P = \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {{y^2} + \sqrt[3]{{{x^2}{y^4}}}}Q = 2\sqrt {{{\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{{{y^2}}}} ight)}^3}} với x và y là các số thực khác 0. So sánh P và Q?

    Ta có: {x^2};{y^2};\sqrt[3]{{{x^4}{y^2}}};\sqrt[3]{{{x^2}{y^4}}} là những số thực dương

    Ta lại có:

    \begin{matrix}  Q = 2\sqrt {{{\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{{{y^2}}}} ight)}^3}}  \hfill \\   = 2\sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   = \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  + \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   > \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   > \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  = P \hfill \\   \Rightarrow P < Q \hfill \\ \end{matrix}

  • Câu 12: Thông hiểu

    Cho biểu thức U
= \sqrt[4]{x\sqrt[3]{x^{2}\sqrt{x^{3}}}};(x > 0). Mệnh đề nào sau đây đúng?

    Ta có:

    U =
\sqrt[4]{x\sqrt[3]{x^{2}\sqrt{x^{3}}}} =
\sqrt[4]{x\sqrt[3]{x^{2}x^{\frac{3}{2}}}} =
\sqrt[4]{x\sqrt[3]{x^{\frac{7}{2}}}}

    = \sqrt[4]{x.x^{\frac{7}{6}}} =
\sqrt[4]{x^{\frac{13}{6}}} = x^{\frac{13}{24}}

  • Câu 13: Thông hiểu

    Tính giá trị biểu thức: N = 2\log_{2}a + 5\log_{2}b biết a,b \in \mathbb{R}^{+};a^{2}b^{5} =
64?

    Ta có: a,b > 0

    a^{2}b^{5} = 64 \Leftrightarrow \log_{2}\left( a^{2}b^{5} ight) = \log_{2}64

    \Leftrightarrow 2\log_{2}a + 5\log_{2}b =6

    \Leftrightarrow N = 6

  • Câu 14: Nhận biết

    Trong các phương trình sau đây, phương trình nào nhận a = 2 làm nghiệm?

    Thay a = 2 vào các phương trình ta được:

    4^{2} = 16 (tm)

    Vậy x = 2 là nghiệm của phương trình 4^{a} = 16.

  • Câu 15: Thông hiểu

    Cho a =\log_{12}18;b = \log_{24}54 . Tính giá trị biểu thức T = 5(a - b) + ab.

    Ta có: \left\{ \begin{matrix}a = log_{12}18 = \dfrac{log_{3}18}{log_{3}12} = \dfrac{log_{3}2 +2}{2log_{3}2 + 1} \\b = log_{24}54 = \dfrac{log_{3}54}{log_{3}24} = \dfrac{log_{3}2 +3}{3log_{3}2 + 1} \\\end{matrix} ight.

    Đặt x = log_{3}2 khi đó \left\{ \begin{matrix}a = \dfrac{x + 2}{2x + 1} \\b = \dfrac{x + 3}{3x + 1} \\\end{matrix} ight.

    Ta có: T = 5(a - b) + ab

    T = 5\left( \frac{x - 2}{2x + 1} -
\frac{x + 3}{3x + 1} ight) + \frac{x + 2}{2x + 1}.\frac{x + 3}{3x +
1}

    T = \frac{5\left\lbrack (x + 2)(3x + 1)
- (x + 3)(2x + 1) ightbrack + (x + 2)(x + 3)}{(2x + 1)(3x +
1)}

    T = \frac{6x^{2} + 3x + 1}{(2x + 1)(3x +
1)} = 1

  • Câu 16: Nhận biết

    Trong các hàm số dưới đây, hàm số nào là hàm số mũ?

    Các hàm số y = \left( \sin x
ight)^{3}; y = x^{3}; y = \sqrt[3]{x} là các hàm số lũy thừa với số mũ hữu tỉ, hàm số y =
3^{x} là hàm số mũ với cơ số là 3.

  • Câu 17: Vận dụng

    Rút gọn biểu thức H = \frac{x - 3.x^{\frac{1}{3}} + 2}{\sqrt[3]{x} -1} + \frac{\sqrt{x} - x^{\frac{5}{6}} +\sqrt[6]{x}}{\sqrt[6]{x}}.

    Ta có:

    H = \frac{x - 3.x^{\frac{1}{3}} +2}{\sqrt[3]{x} - 1} + \frac{\sqrt{x} - x^{\frac{5}{6}} +\sqrt[6]{x}}{\sqrt[6]{x}}

    H = \frac{\left( \sqrt[3]{x} - 1ight)\left( x^{\frac{2}{3}} + \sqrt[3]{x} - 2 ight)}{\sqrt[3]{x} -1} + \frac{\sqrt[6]{x}\left( \sqrt[3]{x} - x^{\frac{2}{3}} + 1ight)}{\sqrt[6]{x}}

    H = x^{\frac{2}{3}} + \sqrt[3]{x} - 2 +\sqrt[3]{x} - x^{\frac{2}{3}} + 1 = 2\sqrt[3]{x} - 1

  • Câu 18: Thông hiểu

    Hãy xác định hàm số đồng biến trên toàn tập xác định của nó trong các hàm số dưới đây?

    Hàm số y = \log_{\sqrt{5}}x có \sqrt{5} > 1 nên hàm số y = \log_{\sqrt{5}}x đồng biến trên tập xác định của nó là (0; +\infty).

    Hàm số y = \left( 3\sqrt{2} ight)^{-x}0 < \frac{1}{3\sqrt{2}}< 1 nên nghịch biến trên tập xác định của nó.

    Hàm số y = \left( \frac{e}{3\pi}ight)^{x}0 <\frac{e}{3\pi} < 1 nên hàm số nghịch biến trên tập xác định của nó.

    Hàm số y = \log_{\frac{\pi}{6}}x có 0 < \frac{\pi}{6} < 1 nên hàm số nghịch biến trên tập xác định của nó.

  • Câu 19: Nhận biết

    Giả sử \log_{2}x- 4\log_{2}b = 5\log_{2}a;(a;b > 0) thì giá trị của x biểu diễn theo a,b là:

    Ta có:

    \log_{2}x - 4\log_{2}b =5\log_{2}a

    \Leftrightarrow \log_{2}x = 5\log_{2}a +4\log_{2}b

    \Leftrightarrow \log_{2}x = \log_{2}a^{5}+ \log_{2}b^{4}

    \Leftrightarrow \log_{2}x = \log_{2}\left(a^{5}b^{4} ight) \Leftrightarrow x = a^{5}b^{4}

  • Câu 20: Vận dụng

    Cho phương trình \log{_{3}}^{2}x - 4\log_{3}x + m - 3 = 0. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt x_{1};x_{2} thỏa mãn x_{1} > x_{2} >
1.

    Đặt t = \log_{3}x. Phương trình đã cho trở thành t^{2} - 4t + m - 3 =
0(*)

    Phương trình (*) có hai nghiệm phân biệt t_{1};t_{2} thỏa mãn t_{1} > t_{2} > 0

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
P > 0 \\
S > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
7 - m > 0 \\
m - 3 > 0 \\
4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 3 < m < 7

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo