Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Viết biểu thức P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}};\left( {x > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}} = {x^{\frac{1}{5}}}.{x^{\frac{2}{3}}}.{x^{\frac{3}{5}}} = {x^{\frac{{113}}{{30}}}}

  • Câu 2: Thông hiểu

    Giải phương trình \log_{\frac{1}{3}}\left( x^{2} - 3x - 1 ight) +\log_{3}(2 - x) = 0 và cho biết phương trình có tất cả bao nhiêu nghiệm nguyên dương?

    Điều kiện xác định \left\{ \begin{matrix}
x^{2} - 3x - 1 > 0 \\
2 - x > 0 \\
\end{matrix} ight.

    Phương trình đã cho tương đương:

    \Leftrightarrow - \log_{3}\left( x^{2} -3x - 1 ight) = - \log_{3}(2 - x)

    \Leftrightarrow \log_{3}\left( x^{2} - 3x- 1 ight) = \log_{3}(2 - x)

    \Leftrightarrow x^{2} - 3x - 1 = 2 - x
\Leftrightarrow x^{2} - 2x - 3 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    Kết hợp điều kiện đề bài ta thấy không có giá trị nào thỏa mãn

    Vậy phương trình không có nghiệm nguyên dương.

  • Câu 3: Vận dụng

    Tính giá trị biểu thức D = \log\left( \tan 1^{0} ight) + \log\left(
\tan 2^{0} ight) + ... + \log\left( tan89^{0} ight).

    Ta có:

    D = \log\left( \tan 1^{0} ight) +\log\left( \tan 2^{0} ight) + ... + \log\left( \tan89^{0}ight)

    D = \log\left( \tan1^{0}.\tan2^{0}...\tan89^{0} ight)

    D = \log\left\lbrack \tan1^{0}.\tan2^{0}...\tan\left( 90^{0} - 2^{0} ight).\tan\left( 90^{0} -1^{0} ight) ightbrack

    D = \log\left( \tan1^{0}.\tan2^{0}...\cot2^{0}.\cot1^{0} ight)

    D = \log\left\lbrack \left( \tan1^{0}..\cot1^{0} ight)\left( \tan 2^{0}.\cot2^{0} ight)...ightbrack

    D = \log1 = 0

  • Câu 4: Nhận biết

    Tìm nghiệm của phương trình \log_{9}(2a) = \frac{1}{2}?

    Điều kiện xác định: a > 0

    \log_{9}(2a) = \frac{1}{2}\Leftrightarrow 2a = 9^{\frac{1}{2}}

    \Leftrightarrow 2a = 3 \Leftrightarrow a
= \frac{3}{2}(tm)

    Vậy phương trình có nghiệm a =
\frac{3}{2}.

  • Câu 5: Thông hiểu

    Viết biểu thức P = \frac{{{a^2}.{a^{\frac{5}{2}}}.\sqrt[3]{{{a^4}}}}}{{\sqrt[6]{{{a^5}}}}};\left( {a > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \dfrac{{{a^2}.{a^{\frac{5}{2}}}.\sqrt[3]{{{a^4}}}}}{{\sqrt[6]{{{a^5}}}}} = \dfrac{{{a^2}.{a^{\frac{5}{2}}}.{a^{\frac{4}{3}}}}}{{{a^{\frac{5}{6}}}}} = {a^5}

  • Câu 6: Vận dụng

    Chị X gửi tiết kiệm ngân hàng 100 triệu đồng với lãi suất 8,4%/năm. Sau bao nhiêu năm chị X thu được gấp đôi số tiền ban đầu? Biết lãi hàng năm được nhập vào vốn.

    Gọi số tiền ban đầu chị X gửi vào ngân hàng là A, lãi suất là r và sau n năm được tính theo công thức T_{n} =
A.(1 + r)^{n}.

    Để số tiền sau n năm thu được gấp đôi số tiền ban đầu ta có phương trình:

    A(1 + r)^{n} = 2A

    \Leftrightarrow 1,084^{n} =
2

    \Leftrightarrow n \approx
8,594

    Vậy sau 9 năm người gửi thu được gấp đôi số tiền ban đầu.

  • Câu 7: Vận dụng cao

    Cho P = \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {{y^2} + \sqrt[3]{{{x^2}{y^4}}}}Q = 2\sqrt {{{\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{{{y^2}}}} ight)}^3}} với x và y là các số thực khác 0. So sánh P và Q?

    Ta có: {x^2};{y^2};\sqrt[3]{{{x^4}{y^2}}};\sqrt[3]{{{x^2}{y^4}}} là những số thực dương

    Ta lại có:

    \begin{matrix}  Q = 2\sqrt {{{\left( {\sqrt[3]{{{x^2}}} + \sqrt[3]{{{y^2}}}} ight)}^3}}  \hfill \\   = 2\sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   = \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  + \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}} + 3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   > \sqrt {{x^2} + 3\sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {3\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  \hfill \\   > \sqrt {{x^2} + \sqrt[3]{{{x^4}{y^2}}}}  + \sqrt {\sqrt[3]{{{x^2}{y^4}}} + {y^2}}  = P \hfill \\   \Rightarrow P < Q \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Giải phương trình \log_{3}(x - 1) = 2 ta thu được nghiệm là:

    Điều kiện xác định: x > 1

    \log_{3}(x - 1) = 2 \Leftrightarrow x - 1= 3^{2} \Leftrightarrow x = 10(tm)

    Vậy phương trình có nghiệm x =
10.

  • Câu 9: Thông hiểu

    Hình bên là đồ thị hàm số nào trong các hàm số dưới đây?

    Đồ thị đã cho là của một hàm số nghịch biến trên tập xác định của nó.

    Trong bốn phương án đã cho, chỉ có hàm số y
= \left( \frac{1}{3} ight)^{x}thỏa mãn.

  • Câu 10: Thông hiểu

    Cho hai số thực dương a và b thỏa mãn log_{9}a^{4} + log_{3}b = 8log_{3}a + log_{\sqrt[3]{3}}b = 9. Giá trị của biểu thức P = ab + 1 là:

    Theo điều kiện ta có:

    \left\{ \begin{matrix}\log_{9}a^{4} + \log_{3}b = 8 \\\log_{3}a + \log_{\sqrt[3]{3}}b = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}2\log_{9}a + \log_{3}b = 8 \\\log_{3}a + 3\log_{3}b = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\log_{9}a = 3 \\\log_{3}b = 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 27 \\b = 9 \\\end{matrix} ight. \Rightarrow
P = ab + 1 = 244

  • Câu 11: Nhận biết

    Đơn giản biểu thức H = x^{\frac{1}{3}}.\sqrt[6]{x};(x >
0) với x > 0 ta được kết quả là:

    Ta có: H = x^{\frac{1}{3}}.\sqrt[6]{x} =
x^{\frac{1}{3}}.x^{\frac{1}{6}} = x^{\frac{1}{3} + \frac{1}{6}} =
\sqrt{x}

  • Câu 12: Nhận biết

    Trong các hàm số sau hàm số nào nghịch biến trên tập số thực?

    Loại các đáp án y =\log_{\frac{\pi}{4}}\left( 2x^{2} + 1 ight) và y = \log_{\frac{1}{2}}x vì các hàm số trong các đáp án này không xác định trên \mathbb{R}.

    \frac{2}{e} < 1 nên hàm số nghịch biến trên \mathbb{R}.

  • Câu 13: Thông hiểu

    Cho đồ thị hàm số:

    Xác định hàm số tương ứng?

    Đồ thị hàm số đi lên và qua điểm có tọa độ (1;3) nên hàm số thỏa mãn là y = 3^{x}

  • Câu 14: Thông hiểu

    Cho a,b,c >
0. Tính giá trị của biểu thức A =\log_{a}\left( b^{2} ight).\log_{b}\left( \sqrt{bc} ight) -\log_{a}(c)?

    Ta có:

    A =\log_{a}\left( b^{2}ight).\log_{b}\left( \sqrt{bc} ight) - \log_{a}(c)

    A = 2\log_{a}(b).\frac{1}{2}.\log_{b}(bc)- \log_{a}(c)

    A = \log_{a}(b).\log_{b}(bc) -\log_{a}(c)

    A = \log_{a}(b).\left\lbrack \log_{b}(b) +\log_{b}(c) ightbrack - \log_{a}(c)

    A = \log_{a}(b).\left\lbrack 1 +\log_{b}(c) ightbrack - \log_{a}(c)

    A = \log_{a}(b) + \log_{a}(b).\log_{b}(c) -\log_{a}(c)

    A = \log_{a}(b) + \log_{a}(c) -\log_{a}(c)

    A = \log_{a}(b)

  • Câu 15: Vận dụng

    Biết khi rút gọn biểu thức \frac{6 + 3\left( 3^{x} + 3^{- x} ight)}{2 -
3^{x + 1} - 3^{1 - x}} thu được phân số \frac{a}{b} tối giản và 9^{x} + 9^{- x} = 14 . Tính giá trị biểu thức M = a.b.

    Ta có:

    9^{x} + 9^{- x} = 14 \Leftrightarrow
\left( 3^{x} + 3^{- x} ight)^{2} = 16

    \Leftrightarrow 3^{x} + 3^{- x} =
4

    Ta lại có:

    \frac{6 + 3\left( 3^{x} + 3^{- x}
ight)}{2 - 3^{x + 1} - 3^{1 - x}} = \frac{6 + 3.4}{2 - 3.4} =
\frac{18}{- 10} = \frac{9}{- 5}

    \Rightarrow M = a.b = - 45

  • Câu 16: Nhận biết

    Tính giá trị biểu thức A = \sqrt[5]{- 4}.\sqrt[5]{8}.

    Ta có:

    A = \sqrt[5]{- 4}.\sqrt[5]{8} =
\sqrt[5]{- 4.8} = \sqrt[5]{- 32} = - 2

  • Câu 17: Nhận biết

    Tìm điều kiện xác định của hàm số y = \ln(x - 1)^{2}?

    Điều kiện xác định của hàm số y = \ln(x -
1)^{2} là:

    (x - 1)^{2} > 0 \Leftrightarrow x
eq 1

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ 1 ight\}.

  • Câu 18: Nhận biết

    Đặt a =\log_{7}11;b = \log_{2}7. Hãy biểu diễn \log_{\sqrt[3]{7}}\frac{121}{8} theo a và b.

    Ta có:

    \log_{\sqrt[3]{7}}\frac{121}{8} = 3\left(\log_{7}121 - \log_{7}8 ight)

    = 6\log_{7}11 - 9.\frac{1}{\log_{2}7} = 6a- \frac{9}{b}

  • Câu 19: Thông hiểu

    Tìm số nghiệm phương trình \log_{2}x^{2} = 2\log_{2}(3x + 4)?

    Điều kiện \left\{ \begin{matrix}x^{2} > 0 \\3x + 4 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq 0 \\x > - \dfrac{4}{3} \\\end{matrix} ight.

    Ta có:

    \log_{2}x^{2} = 2\log_{2}(3x +4)

    \Leftrightarrow \log_{2}x^{2} =\log_{2}(3x + 4)^{2}

    \Leftrightarrow x^{2} = (3x + 4)^{2}
\Leftrightarrow \left\lbrack \begin{matrix}
x = 3x + 4 \\
x = - 3x - 4 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1(tm) \\
x = - 2(ktm) \\
\end{matrix} ight.

    Vậy phương trình có 1 nghiệm.

  • Câu 20: Vận dụng

    Cho phương trình \log{_{3}}^{2}x - 4\log_{3}x + m - 3 = 0. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt x_{1};x_{2} thỏa mãn x_{1} > x_{2} >
1.

    Đặt t = \log_{3}x. Phương trình đã cho trở thành t^{2} - 4t + m - 3 =
0(*)

    Phương trình (*) có hai nghiệm phân biệt t_{1};t_{2} thỏa mãn t_{1} > t_{2} > 0

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
P > 0 \\
S > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
7 - m > 0 \\
m - 3 > 0 \\
4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 3 < m < 7

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 26 lượt xem
Sắp xếp theo