Tìm tập xác định của hàm số
.
Điều kiện xác định
Vậy tập xác định của hàm số là
Tìm tập xác định của hàm số
.
Điều kiện xác định
Vậy tập xác định của hàm số là
Tìm công bội
của một cấp số nhân. Biết ba số
theo thứ tự lập thành cấp số nhân.
Theo giả thiết ta có:
Vậy công bội của cấp số nhân là:
Giá trị của biểu thức
là:
Ta có:
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình có nghiệm là
Cho hàm số
. Tính tổng
![]()
Với hàm số
Khi đó:
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a)
Sai||Đúng
b) Tập xác định của hàm số
có 5 giá trị nguyên. Đúng||Sai
c) Tổng tất cả các nghiệm thực của phương trình
bằng
.Đúng||Sai
d) Có 3 giá trị nguyên của x thuộc
thỏa mãn bất phương trình
. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sai||Đúng
b) Tập xác định của hàm số có 5 giá trị nguyên. Đúng||Sai
c) Tổng tất cả các nghiệm thực của phương trình bằng
.Đúng||Sai
d) Có 3 giá trị nguyên của x thuộc thỏa mãn bất phương trình
. Sai||Đúng
a) Ta có:
mà cơ số
b) Điều kiện xác định:
Vậy tập xác định có 5 giá trị nguyên.
c) Điều kiện xác định:
Vậy tổng tất cả các nghiệm của phương trình là:
d) Ta có:
Vậy có suy nhất 1 giá trị nguyên của x thỏa mãn yêu cầu đề bài.
Phương trình
có bao nhiêu nghiệm?
Điều kiện
Ta có:
Vậy phương trình có 1 nghiệm .
Tính giá trị của biểu thức
.
Ta có:
Tính giá trị biểu thức
.
Ta có:
Tìm tất cả các giá trị của tham số m để phương trình
có bốn nghiệm phân biệt.
Phương trình đã cho viết lại như sau:
Xét đồ thị hàm số như hình vẽ.
Phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi:
Biết
,
bằng:
Ta có:
Cho
. Tính giá trị biểu thức
.
Ta có:
Đặt khi đó
Ta có:
Tập nghiệm của bất phương trình
là:
Điều kiện:
Bất phương trình tương đương:
Kết hợp với điều kiện ta được nghiệm bất phương trình là:
Vậy tập nghiệm bất phương trình là:
Tính
?
Ta có:
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình đã cho có nghiệm .
Tìm tập xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
Cho
. Biểu thức
được biểu diễn như thế nào theo các ẩn số?
Ta có:
Tìm tập xác định của hàm số
.
Điều kiện xác định của hàm số
Vậy tập xác định của hàm số là .
Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Đặt . Khi đó hàm số đã cho đồng biến trên khoảng
khi và chỉ khi hàm số
đồng biến trên khoảng
.
Hàm số đồng biến trên khoảng
khi và chỉ khi:
Vì
Vậy có tất cả 2020 số nguyên m thỏa mãn yêu cầu bài toán.
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có: