Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Biết khi rút gọn biểu thức \frac{6 + 3\left( 3^{x} + 3^{- x} ight)}{2 -
3^{x + 1} - 3^{1 - x}} thu được phân số \frac{a}{b} tối giản và 9^{x} + 9^{- x} = 14 . Tính giá trị biểu thức M = a.b.

    Ta có:

    9^{x} + 9^{- x} = 14 \Leftrightarrow
\left( 3^{x} + 3^{- x} ight)^{2} = 16

    \Leftrightarrow 3^{x} + 3^{- x} =
4

    Ta lại có:

    \frac{6 + 3\left( 3^{x} + 3^{- x}
ight)}{2 - 3^{x + 1} - 3^{1 - x}} = \frac{6 + 3.4}{2 - 3.4} =
\frac{18}{- 10} = \frac{9}{- 5}

    \Rightarrow M = a.b = - 45

  • Câu 2: Nhận biết

    Cho số thực dương a eq 1. Tính \log_{a\sqrt{a}}a\sqrt[3]{a}.

    Ta có:

    \log_{a\sqrt{a}}a\sqrt[3]{a} =\log_{a^{\frac{3}{2}}}a^{\frac{4}{3}} = \frac{\frac{4}{3}}{\frac{3}{2}} =\frac{8}{9}

  • Câu 3: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết a = \log_{3}2 khi đó \log_{6}48 = \frac{4a + 1}{a + 1} Đúng||Sai

    b) Tập xác định của hàm số y =
2^{\sqrt{x}} + \log(3 - x)D =
(0;3) Sai||Đúng

    c) Hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến. Đúng||Sai

    d) Tổng các nghiệm nguyên của bất phương trình \log_{\sqrt{5}}^{2}x^{5} - 25\log_{\sqrt{5}}x^{2} -75 \leq 0 bằng 62. Sai||Đúng

    a) Ta có:

    \log_{6}48 = \log_{6}(6.8) = \log_{6}(6) +\log_{6}(8)

    = 1 + \frac{1}{\log_{8}6} = 1 +\frac{1}{\log_{8}(2.3)} = 1 + \frac{1}{\dfrac{1}{3}\left( 1 + \log_{2}3ight)}

    = \dfrac{1 + \log_{2}3 + 3}{1 + \log_{2}3}= \dfrac{4 + \dfrac{1}{a}}{1 + \dfrac{1}{a}} = \dfrac{4a + 1}{a +1}

    b) Điều kiện xác định: \left\{
\begin{matrix}
x \geq 0 \\
3 - x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x < 3 \\
\end{matrix} ight.\  \Leftrightarrow D = \lbrack 0;3)

    c) Tập xác định D = (0; +
\infty)

    0 < \sqrt{\frac{2018}{2019}} < 1
\Rightarrow 0 < 1 - \sqrt{\frac{2018}{2019}} < 1

    Suy ra hàm số y = \log_{1 -\sqrt{\frac{2018}{2019}}}x là hàm nghịch biến.

    d) Ta có:

    Điều kiện xác định x > 0

    \log_{\sqrt{5}}^{2}x^{5} -25\log_{\sqrt{5}}x^{2} - 75 \leq 0

    \Leftrightarrow 4\log_{5}^{2}x -4\log_{5}x - 3 \leq 0

    \Leftrightarrow - \frac{1}{2} \leq\log_{5}x \leq \frac{3}{2} \Leftrightarrow \frac{1}{\sqrt{5}} \leq x \leq\sqrt{125}

    Nghiệm nguyên của bất phương trình là: 0;1;2;3;4;5;6;7;8;9;10;11

    Vậy tổng các nghiệm nguyên của bất phương trình đã cho là:

    S = 1 + 2 + ... + 11 = \frac{11(11 +
1)}{2} = 66

  • Câu 4: Nhận biết

    Tìm nghiệm của phương trình \left( \sqrt{3} ight)^{3t - 6} = 1?

    Ta có:

    \left( \sqrt{3} ight)^{3t - 6} = 1
\Leftrightarrow \left( \sqrt{3} ight)^{3t - 6} = \left( \sqrt{3}
ight)^{0}

    \Leftrightarrow 3t - 6 = 0
\Leftrightarrow t = 2(tm)

    Vậy phương trình có nghiệm t = 2.

  • Câu 5: Thông hiểu

    Biết rằng m,n là các số thực dương thỏa mãn \dfrac{\log_{3}m.\log_{2}3}{1 + \log_{2}5} + \log n =1. Tìm khẳng định đúng trong các khẳng định sau?

    Ta có:

    \dfrac{\log_{3}m.\log_{2}3}{1 + \log_{2}5} + \log n =1

    \Leftrightarrow\frac{\log_{2}m}{\log_{2}10} + \log n = 1

    \Leftrightarrow \log m + \log n = 1
\Leftrightarrow \log(mn) = 1

    \Leftrightarrow mn = 10

  • Câu 6: Vận dụng cao

    Cho các số thực dương phân biệt a và b. Biểu thức thu gọn của biểu thức

    P = \frac{{\sqrt a  - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \frac{{\sqrt {4a}  + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}}

    có dạng P = m\sqrt[4]{a} + n\sqrt[4]{b}. Khi đó biểu thức liên hệ giữa n và m là:

    Ta có:

    \begin{matrix}  P = \dfrac{{\sqrt a  - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \dfrac{{\sqrt {4a}  + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}} \hfill \\  P = \dfrac{{{{\left( {\sqrt[4]{a}} ight)}^2} - {{\left( {\sqrt[4]{b}} ight)}^2}}}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \dfrac{{2\sqrt[4]{a}\sqrt[4]{a} + 2\sqrt[4]{a}\sqrt[4]{b}}}{{\sqrt[4]{a} + \sqrt[4]{b}}} \hfill \\  P = \dfrac{{\left( {\sqrt[4]{a} - \sqrt[4]{b}} ight)\left( {\sqrt[4]{a} + \sqrt[4]{b}} ight)}}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \dfrac{{2\sqrt[4]{a}\left( {\sqrt[4]{a} + \sqrt[4]{b}} ight)}}{{\sqrt[4]{a} + \sqrt[4]{b}}} \hfill \\  P = \sqrt[4]{a} + \sqrt[4]{b} - 2\sqrt[4]{a} = \sqrt[4]{b} - \sqrt[4]{a} \hfill \\   \Rightarrow m =  - 1;n = 1 \hfill \\ \end{matrix}

  • Câu 7: Nhận biết

    Tìm nghiệm phương trình 5^{x - 1} - \frac{1}{25} = 0?

    Ta có:

    5^{x - 1} - \frac{1}{25} = 0
\Leftrightarrow 5^{x - 1} = 5^{- 2}

    \Leftrightarrow x - 1 = - 2
\Leftrightarrow x = - 1(tm)

    Vậy phương trình có nghiệm x = -
1.

  • Câu 8: Thông hiểu

    Gọi x_{1};x_{2} là các nghiệm của phương trình \left( 2 - \sqrt{3} ight)^{x} +
\left( 2 + \sqrt{3} ight)^{x} = 4. Khi đó giá trị của biểu thức A = {x_{1}}^{2} + 2{x_{2}}^{2} bằng bao nhiêu?

    Ta có:

    \left( 2 - \sqrt{3} ight)^{x} + \left(
2 + \sqrt{3} ight)^{x} = 4

    \Leftrightarrow \left( 2 - \sqrt{3}
ight)^{x} + \frac{1}{\left( 2 - \sqrt{3} ight)^{x}} = 4

    \Leftrightarrow \left( 2 - \sqrt{3}
ight)^{2x} + 1 = 4\left( 2 - \sqrt{3} ight)^{x}

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left( 2 - \sqrt{3} ight)^{2x} = 2 + \sqrt{3} = \left( 2 - \sqrt{3}
ight)^{- 1} \\
\left( 2 - \sqrt{3} ight)^{2x} = 2 - \sqrt{3} \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 1 \\
\end{matrix} ight.\ (tm)

    Khi đó: A = {x_{1}}^{2} + 2{x_{2}}^{2} =
3

  • Câu 9: Nhận biết

    Biết rằng x =
\frac{1}{256};y = \frac{1}{27}. Tính giá trị của biểu thức C = x^{\frac{- 3}{4}} + y^{\frac{-
4}{3}}.

    Thay x = \frac{1}{256};y =
\frac{1}{27} vào biểu thức C =
x^{\frac{- 3}{4}} + y^{\frac{- 4}{3}} ta được:

    C = \left( \frac{1}{256}
ight)^{\frac{- 3}{4}} + \left( \frac{1}{27} ight)^{\frac{- 4}{3}} =
\left( 4^{- 4} ight)^{\frac{- 3}{4}} + \left( 3^{- 3} ight)^{\frac{-
4}{3}}

    = 4^{3} + 3^{4} = 145

  • Câu 10: Vận dụng

    Cho hàm số f(x) =
\frac{4^{x}}{4^{x} + 2}. Tính giá trị của biểu thức:

    A = f\left( \frac{1}{2018} ight) +
f\left( \frac{2}{2018} ight) + f\left( \frac{3}{2018} ight) + ... +
f\left( \frac{2017}{2018} ight)

    Ta có:

    f(x) + f(1 - x) = \frac{4^{x}}{4^{x} +
2} + \frac{4^{1 - x}}{4^{1 - x} + 2} = 1

    Khi đó:

    A = f\left( \frac{1}{2018} ight) +
f\left( \frac{2}{2018} ight) + f\left( \frac{3}{2018} ight) + ... +
f\left( \frac{2017}{2018} ight)

    A = \frac{2007}{2}

  • Câu 11: Thông hiểu

    Cho phương trình \log_{2}(x - 3) + \log_{2}(x - 1) = 3. Tìm tổng tất cả các nghiệm của phương trình đã cho.

    Điều kiện xác định: \left\{
\begin{matrix}
x - 3 > 0 \\
x - 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 3 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow x > 3

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{2}\left\lbrack (x -3)(x - 1) ightbrack = \log_{2}8

    \Leftrightarrow x^{2} - 4x + 3 = 8
\Leftrightarrow x^{2} - 4x - 5 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1(ktm) \\
x = 5(tm) \\
\end{matrix} ight.

    Vậy tổng các nghiệm của phương trình đã cho bằng 5.

  • Câu 12: Vận dụng

    Cho a là một số thực dương khác 1. Tính giá trị của biểu thức:

    P = \log_{a}2018 + \log_{\sqrt{a}}2018 +\log_{\sqrt[3]{a}}2018 + ... + \log_{\sqrt[2018]{a}}2018

    Ta có:

    P = \log_{a}2018 + \log_{\sqrt{a}}2018 +\log_{\sqrt[3]{a}}2018 + ... + \log_{\sqrt[2018]{a}}2018

    P = \log_{a}2018 + 2\log_{a}2018 +3\log_{a}2018 + ... + 2018\log_{a}2018

    P = \log_{a}2018(1 + 2 + 3 + .... +2018)

    P = \log_{a}2018.\frac{(1 +2018).2018}{2}

    P = 1009.2019.\log_{a}2018

  • Câu 13: Thông hiểu

    Rút gọn biểu thức B = \left( \frac{a + b}{\sqrt[3]{a} + \sqrt[3]{b}}
- \sqrt[3]{ab} ight):\left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2} biết a^{2} eq
b^{2}.

    Ta có:

    B = \left( \frac{a + b}{\sqrt[3]{a} +
\sqrt[3]{b}} - \sqrt[3]{ab} ight):\left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2}

    B = \left( \sqrt[3]{a^{2}} -
\sqrt[3]{ab} + \sqrt[3]{b^{2}} - \sqrt[3]{ab} ight):\left( \sqrt[3]{a}
- \sqrt[3]{b} ight)^{2}

    B = \left( \sqrt[3]{a^{2}} -
2\sqrt[3]{ab} + \sqrt[3]{b^{2}} ight):\left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2}

    B = \left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2}:\left( \sqrt[3]{a} - \sqrt[3]{b} ight)^{2} =
1

  • Câu 14: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Hàm số y = \ln( - x) có tập xác định D = ( - \infty;0)

    Cơ số a = e > 1 do đó hàm số đồng biến trên ( - \infty;0)

  • Câu 15: Thông hiểu

    Đồ thị hàm số sau là của hàm số nào?

    Đồ thị đi xuống nên hàm số đã cho là nghịch biến nên loại y = \left( \sqrt{2} ight)^{x}y = \left( \sqrt{3} ight)^{x}.

    Đồ thị hàm số đi qua điểm (−1; 3) nên chỉ có đáp án y = \left( \frac{1}{3} ight)^{x} thỏa mãn.

  • Câu 16: Nhận biết

    Tìm hàm số đồng biến trên \mathbb{R} trong các hàm số dưới đây?

    Xét hàm số y = \left( \frac{\pi}{2}
ight)^{x}\frac{\pi}{2} >
1 nên hàm số y = \left(
\frac{\pi}{2} ight)^{x}đồng biến trên \mathbb{R}?

  • Câu 17: Nhận biết

    Nếu m^{2x} =
3 thì giá trị 3m^{6x} là:

    Ta có: 3m^{6x} = 3.\left( m^{2x}
ight)^{3} = 3.3^{3} = 81

  • Câu 18: Vận dụng

    Cho phương trình \log{_{3}}^{2}x - 4\log_{3}x + m - 3 = 0. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt x_{1};x_{2} thỏa mãn x_{1} > x_{2} >
1.

    Đặt t = \log_{3}x. Phương trình đã cho trở thành t^{2} - 4t + m - 3 =
0(*)

    Phương trình (*) có hai nghiệm phân biệt t_{1};t_{2} thỏa mãn t_{1} > t_{2} > 0

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
P > 0 \\
S > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
7 - m > 0 \\
m - 3 > 0 \\
4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 3 < m < 7

  • Câu 19: Thông hiểu

    Cho hàm số f(x)= \log_{2}m. Với m > 0, giá trị của biểu thức T = f\left(\frac{6}{m} ight) + f\left( \frac{8m}{3} ight) bằng:

    Ta có:

    T = f\left( \frac{6}{m} ight) +f\left( \frac{8m}{3} ight) = f\left( \frac{6}{m}.\frac{8m}{3} ight)= f(16) = 4

  • Câu 20: Thông hiểu

    Tính giá trị biểu thức D = 3^{1 - \sqrt{2}}.3^{2 +
\sqrt{2}}.9^{\frac{1}{2}}

    Ta có:

    D = 3^{1 - \sqrt{2}}.3^{2 +
\sqrt{2}}.9^{\frac{1}{2}}

    D = 3^{1 - \sqrt{2} + 2 + \sqrt{2} + 1}
= 3^{4} = 81

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo