Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Hàm số nào sau đây nghịch biến trên tập xác định?

    Ta có: 0 < \frac{{\sqrt 2 }}{2} < 1 \Rightarrow y = {\log _{\frac{{\sqrt 2 }}{2}}}x nghịch biến trên tập xác định.

  • Câu 2: Thông hiểu

    Biết \log_{2}\sqrt{m} - \log_{2}n = 3 với m,n > 0. Chọn khẳng định đúng?

    Ta có:

    \log_{2}\sqrt{m} - \log_{2}n =3

    \Leftrightarrow \log_{2}\dfrac{\sqrt{m}}{n} = 3 \Leftrightarrow \dfrac{\sqrt{m}}{n} =2^{3}

    \Leftrightarrow \frac{\sqrt{m}}{n} = 8
\Leftrightarrow m = 64n^{2}

  • Câu 3: Vận dụng

    Tìm giá trị tham số m để bất phương trình 1 + \log_{5}\left( x^{2} + 1 ight) \geq  \log_{5}\left( mx^{2} + 4x + m ight) có nghiệm đúng với mọi x.

    Ta có:

    1 + \log_{5}\left( x^{2} + 1 ight) \geq  \log_{5}\left( mx^{2} + 4x + m ight)

    \Leftrightarrow \log_{5}\left\lbrack5\left( x^{2} + 1 ight) ightbrack \geq \log_{5}\left( mx^{2} + 4x +m ight)

    \Leftrightarrow \left\{ \begin{matrix}
5\left( x^{2} + 1 ight) \geq mx^{2} + 4x + m \\
mx^{2} + 4x + m > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(5 - m)x^{2} - 4x + 5 - m \geq 0\ \ \ (1) \\
mx^{2} + 4x + m > 0\ \ \ \ (2) \\
\end{matrix} ight.

    Bất phương trình đã cho có nghiệm đúng với mọi x khi cả (1) và (2) đúng với mọi x.

    Với m = 0 hoặc m = 5 không thỏa mãn đề bài.

    Với m eq 0 hoặc m eq 5 để thỏa mãn đề bài thì:

    \left\{ \begin{matrix}
5 - m > 0 \\
4 - (5 - m)^{2} \leq 0 \\
m > 0 \\
4 - m^{2} < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 5 \\
\left\lbrack \begin{matrix}
m \leq 3 \\
m \geq 7 \\
\end{matrix} ight.\  \\
m > 0 \\
\left\lbrack \begin{matrix}
m > 2 \\
m < - 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow 2 < m \leq
3

  • Câu 4: Nhận biết

    Giải phương trình 4^{x^{2} - 2} = 16.

    4^{x^{2} - 2} = 16

    \Leftrightarrow x^{2} - 2 =\log_{4}16

    \Leftrightarrow x^{2} = 4

    \Leftrightarrow x = \pm 2

    Vậy phương trình có nghiệm x = \pm
2.

  • Câu 5: Vận dụng

    Biết rằng các chữ số p khi viết trong hệ thập phân biết p = 2^{759839} - 1 là một số nguyên tố (số nguyên tố lớn nhất được biết cho đến lúc đó. Số p có tất cả bao nhiêu chữ số?

    Ta có:

    \log p < \log 2^{756839} = 756839log2
\approx 227831,2409

    \Rightarrow 10^{227831} \leq p <
10^{227832}

    Vậy p có 227832 chữ số.

  • Câu 6: Thông hiểu

    Cho phương trình \log_{2}(x - 3) + \log_{2}(x - 1) = 3. Tìm tổng tất cả các nghiệm của phương trình đã cho.

    Điều kiện xác định: \left\{
\begin{matrix}
x - 3 > 0 \\
x - 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 3 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow x > 3

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{2}\left\lbrack (x -3)(x - 1) ightbrack = \log_{2}8

    \Leftrightarrow x^{2} - 4x + 3 = 8
\Leftrightarrow x^{2} - 4x - 5 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1(ktm) \\
x = 5(tm) \\
\end{matrix} ight.

    Vậy tổng các nghiệm của phương trình đã cho bằng 5.

  • Câu 7: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    a) Hàm số y = \left( \sqrt{5} - 2
ight)^{x} luôn nghịch biến trên tập số thực. Đúng||Sai

    b) Tập xác định của hàm số y = \ln(x -
2) + \sqrt{9 - x}D =
(2;9) Sai||Đúng

    c) Ta có: a = 3^{\sqrt{5}};b = 3^{2};c =
3^{\sqrt{6}} suy ra a < c <
b Sai||Đúng

    d) Với \forall m \geq 0 thì hàm số y = log_{2020}(mx - m + 2) xác định trên \lbrack 1; + \infty). Đúng||Sai

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    a) Hàm số y = \left( \sqrt{5} - 2
ight)^{x} luôn nghịch biến trên tập số thực. Đúng||Sai

    b) Tập xác định của hàm số y = \ln(x -
2) + \sqrt{9 - x}D =
(2;9) Sai||Đúng

    c) Ta có: a = 3^{\sqrt{5}};b = 3^{2};c =
3^{\sqrt{6}} suy ra a < c <
b Sai||Đúng

    d) Với \forall m \geq 0 thì hàm số y = log_{2020}(mx - m + 2) xác định trên \lbrack 1; + \infty). Đúng||Sai

    a) Vì 0 < \sqrt{5} - 2 < 1 nên hàm số y = \left( \sqrt{5} - 2
ight)^{x} luôn nghịch biến trên tập số thực đúng.

    b) Điều kiện xác định của hàm số:

    \left\{ \begin{matrix}
x - 2 > 0 \\
9 - x \geq 0 \\
\end{matrix} ight.\  \Rightarrow x \in (2;9brack

    Vậy tập xác định của hàm số là D =
(2;9brack

    c) Ta có: 2 < \sqrt{5} <
\sqrt{6} nên 3^{2} <
3^{\sqrt{5}} < 3^{\sqrt{6}} hay b < a < c

    d) Điều kiện xác định:

    mx - m + 2 > 0 \Leftrightarrow mx
> m - 2\ \ (*)

    TH1: m = 0 \Rightarrow (*)0 > -
1(tm)

    TH2: m > 0 \Rightarrow (*)
\Leftrightarrow x > \frac{m - 2}{m}

    Suy ra tập xác định của hàm số D = \left(
\frac{m - 2}{2}; + \infty ight)

    Khi đó yêu cầu bài toán trở thành \frac{m
- 2}{2} < 1 \Leftrightarrow m - 2 < m \Leftrightarrow - 2 <
0(tm)

    Th3: m < 0 \Rightarrow (*)
\Leftrightarrow x < \frac{m - 2}{m}

    Suy ra tập xác định của hàm số D = \left(
- \infty;\frac{m - 2}{2} ight)

    Do đó không tồn tại giá trị m thỏa mãn yêu cầu bài toán.

  • Câu 8: Nhận biết

    Cho số dương x
eq 1 và các số thực \alpha;\beta. Đẳng thức nào sau đây sai?

    Ta có: x^{\alpha}.x^{\beta} = x^{\alpha +
\beta}

  • Câu 9: Vận dụng

    Cho các hàm số y
= log_{a}x;y = log_{b}x;y = log_{c}x có đồ thị như hình vẽ dưới đây:

    Kết luận nào sau đây đúng?

    Dựa vào đồ thị hàm số y =
log_{b}x là một hàm số nghịch biến trên tập xác định của nó nên 0 < b < 1

    Hàm số y = log_{a}x;y = log_{c}x là các hàm số đồng biến trên tập xác định của nó nên a;c > 1

    Kẻ đường thẳng y = 1 cắt đồ thị hàm số y = log_{c}x;y = log_{a}x lần lượt tại các điểm A(c;1),B(a;1)

    Dựa vào đồ thị ta thấy x_{A} < x_{B}
\Leftrightarrow c < a

    Vậy kết luận đúng là: a > c >
b

  • Câu 10: Thông hiểu

    Gọi x_{1};x_{2} là các nghiệm của phương trình \left( 2 - \sqrt{3} ight)^{x} +
\left( 2 + \sqrt{3} ight)^{x} = 4. Khi đó giá trị của biểu thức A = {x_{1}}^{2} + 2{x_{2}}^{2} bằng bao nhiêu?

    Ta có:

    \left( 2 - \sqrt{3} ight)^{x} + \left(
2 + \sqrt{3} ight)^{x} = 4

    \Leftrightarrow \left( 2 - \sqrt{3}
ight)^{x} + \frac{1}{\left( 2 - \sqrt{3} ight)^{x}} = 4

    \Leftrightarrow \left( 2 - \sqrt{3}
ight)^{2x} + 1 = 4\left( 2 - \sqrt{3} ight)^{x}

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left( 2 - \sqrt{3} ight)^{2x} = 2 + \sqrt{3} = \left( 2 - \sqrt{3}
ight)^{- 1} \\
\left( 2 - \sqrt{3} ight)^{2x} = 2 - \sqrt{3} \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 1 \\
\end{matrix} ight.\ (tm)

    Khi đó: A = {x_{1}}^{2} + 2{x_{2}}^{2} =
3

  • Câu 11: Nhận biết

    Hàm số nào sau đây không phải là hàm số mũ?

    Hàm số y = x^{\pi} là hàm số lũy thừa, không phải hàm số mũ.

  • Câu 12: Thông hiểu

    Cho a\log_{6}3 +b\log_{6}2 + c\log_{6}5 = 5 với a,b,c\mathbb{\in N}. Trong các khẳng định sau, khẳng định nào đúng?

    Ta có:

    a\log_{6}3 + b\log_{6}2 + c\log_{6}5 =5

    Suy ra 3^{a}.2^{b}.5^{c} = 5

    a,b,c\mathbb{\in N} nên chỉ có 1 bộ số (a,b,c) = (0;0;1) thỏa mãn.

    Vậy a = b

  • Câu 13: Vận dụng cao

    Tìm tất cả các tập giá trị của a để  \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}}?

    Ta có: \sqrt[7]{{{a^2}}} = \sqrt[{21}]{{{a^6}}}

    => \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}} \Rightarrow \sqrt[{21}]{{{a^5}}} > \sqrt[{21}]{{{a^6}}}

    Mà 5 < 6 => 0 < a < 1

  • Câu 14: Thông hiểu

    Rút gọn biểu thức P =\frac{\sqrt[3]{a^{5}}.a^{\frac{7}{3}}}{a^{4}.\sqrt[7]{a^{- 2}}};(a >0) thu được kết quả a^{\frac{m}{n}}, trong đó m,n \in \mathbb{N}^{*} và phân số \frac{m}{n} tối giản. Chọn khẳng định đúng?

    Ta có:

    P =\frac{\sqrt[3]{a^{5}}.a^{\frac{7}{3}}}{a^{4}.\sqrt[7]{a^{- 2}}} =\frac{a^{\frac{5}{3}}.a^{\frac{7}{3}}}{a^{4}.a^{- \frac{2}{7}}} =\frac{a^{4}}{a^{4}.a^{- \frac{2}{7}}} = a^{\frac{2}{7}}

    \Rightarrow \left\{ \begin{matrix}m = 2 \\n = 7 \\\end{matrix} ight.\  \Rightarrow 2m^{2} + n = 15.

  • Câu 15: Vận dụng

    Biểu thức D =
\sqrt{\frac{- 1 + \sqrt{1 + \frac{1}{4}\left( 2^{a} - 2^{- a}
ight)^{2}}}{1 + \sqrt{1 + \frac{1}{4}\left( 2^{a} - 2^{- a}
ight)^{2}}}};(a < 0)bằng với biểu thức nào dưới đây?

    Ta có:

    D = \sqrt{\frac{- 1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} - 2^{- a} ight)^{2}}}{1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} - 2^{- a} ight)^{2}}}};(a < 0)

    D = \sqrt{\frac{- 1 + \sqrt{1 +
\frac{1}{4}\left( 2^{2a} - 2 + 2^{- 2a} ight)}}{1 + \sqrt{1 +
\frac{1}{4}\left( 2^{2a} - 2 + 2^{- 2a} ight)}}}

    D = \sqrt{\frac{- 1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} + 2^{- a} ight)^{2}}}{1 + \sqrt{1 +
\frac{1}{4}\left( 2^{a} + 2^{- a} ight)^{2}}}}

    D = \sqrt{\frac{- 1 + \frac{1}{2}\left(
2^{a} + 2^{- a} ight)^{2}}{1 + \frac{1}{2}\left( 2^{a} + 2^{- a}
ight)^{2}}}

    D = \sqrt{\frac{\frac{1}{2.2^{a}}.\left(
2^{2a} - 2.2^{a} + 2 ight)}{\frac{1}{2.2^{a}}.\left( 2^{2a} + 2.2^{a}
+ 2 ight)}}

    D = \left| \frac{2^{a} - 1}{2^{a} + 1}
ight| = \frac{1 - 2^{a}}{1 + 2^{a}}

  • Câu 16: Nhận biết

    Phương trình 3^{x^{2} - 2x} = 1 có tất cả bao nhiêu nghiệm?

    Ta có:

    3^{x^{2} - 2x} = 1 \Leftrightarrow
3^{x^{2} - 2x} = 3^{0}

    \Leftrightarrow x^{2} - 2x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.\ (tm)

    Vậy phương trình đã cho có hai nghiệm.

  • Câu 17: Thông hiểu

    Hàm số y =
log_{a}x;y = log_{b}x có đồ thị hàm số như hình vẽ:

    Đường thẳng y = 3 cắt hai đồ thị tại các điểm có hoành độ x_{1};x_{2}. Tính giá trị của \frac{a}{b}, biết rằng x_{1} = 2x_{2}?

    Xét phương trình hoành độ giao điểm \left\{ \begin{matrix}\log_{a}x = 3 \Leftrightarrow x_{1} = a^{3} \\\log_{b}x = 3 \Leftrightarrow x_{2} = b^{3} \\\end{matrix} ight.

    Ta có: x_{1} = 2x_{2} \Leftrightarrow
a^{3} = 2b^{3} \Leftrightarrow \left( \frac{a}{b} ight)^{3} = 2
\Leftrightarrow \frac{a}{b} = \sqrt[3]{2}

    Vậy tỉ số \frac{a}{b} =
\sqrt[3]{2}.

  • Câu 18: Nhận biết

    Chọn mệnh đề sai trong các mệnh đều dưới đây.

    Mệnh đề sai là: 3^{\frac{x}{y}} =
\frac{3^{x}}{3^{y}}

    \frac{3^{x}}{3^{y}} = 3^{x -
y}

  • Câu 19: Thông hiểu

    Cho biểu thức C
= \frac{a^{\sqrt{7} + 1}.a^{2 - \sqrt{7}}}{\left( a^{\sqrt{2} - 2}
ight)^{\sqrt{2} + 2}} với a >
0. Kết quả sau khi đơn giản biểu thức C là:

    Ta có:

    C = \frac{a^{\sqrt{7} + 1}.a^{2 -
\sqrt{7}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} =
\frac{a^{\sqrt{7} + 1 + 2 - \sqrt{7}}}{a^{\left( \sqrt{2} ight)^{2} -
2^{2}}} = \frac{a^{3}}{a^{- 2}} = a^{5}

  • Câu 20: Nhận biết

    Tính giá trị biểu thức K = \log_{\frac{x}{5}}\left( \frac{x^{3}}{125}ight) với x \in
\mathbb{R}^{+}\backslash\left\{ 5 ight\}?

    Ta có:

    K = \log_{\frac{x}{5}}\left(\frac{x^{3}}{125} ight) = \log_{\frac{x}{5}}\left( \frac{x}{5}ight)^{3} = 3\log_{\frac{x}{5}}\left( \frac{x}{5} ight) =3

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 23 lượt xem
Sắp xếp theo