Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tìm giá trị tham số m để bất phương trình 1 + \log_{5}\left( x^{2} + 1 ight) \geq  \log_{5}\left( mx^{2} + 4x + m ight) có nghiệm đúng với mọi x.

    Ta có:

    1 + \log_{5}\left( x^{2} + 1 ight) \geq  \log_{5}\left( mx^{2} + 4x + m ight)

    \Leftrightarrow \log_{5}\left\lbrack5\left( x^{2} + 1 ight) ightbrack \geq \log_{5}\left( mx^{2} + 4x +m ight)

    \Leftrightarrow \left\{ \begin{matrix}
5\left( x^{2} + 1 ight) \geq mx^{2} + 4x + m \\
mx^{2} + 4x + m > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(5 - m)x^{2} - 4x + 5 - m \geq 0\ \ \ (1) \\
mx^{2} + 4x + m > 0\ \ \ \ (2) \\
\end{matrix} ight.

    Bất phương trình đã cho có nghiệm đúng với mọi x khi cả (1) và (2) đúng với mọi x.

    Với m = 0 hoặc m = 5 không thỏa mãn đề bài.

    Với m eq 0 hoặc m eq 5 để thỏa mãn đề bài thì:

    \left\{ \begin{matrix}
5 - m > 0 \\
4 - (5 - m)^{2} \leq 0 \\
m > 0 \\
4 - m^{2} < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 5 \\
\left\lbrack \begin{matrix}
m \leq 3 \\
m \geq 7 \\
\end{matrix} ight.\  \\
m > 0 \\
\left\lbrack \begin{matrix}
m > 2 \\
m < - 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow 2 < m \leq
3

  • Câu 2: Thông hiểu

    Cho x là số thực dương. Biết rằng \sqrt{x\sqrt[3]{x\sqrt{x\sqrt[3]{x}}}} =
x^{\frac{m}{n}} với m,n là các số tự nhiên và \frac{m}{n} là phân số tối giản. Chọn khẳng định đúng?

    Ta có:

    \sqrt{x\sqrt[3]{x\sqrt{x\sqrt[3]{x}}}} =
\sqrt{x\sqrt[3]{x\sqrt{x.x^{\frac{1}{3}}}}} =
\sqrt{x\sqrt[3]{x\sqrt{x^{\frac{4}{3}}}}}

    = \sqrt{x\sqrt[3]{x.x^{\frac{2}{3}}}} =
\sqrt{x\sqrt[3]{x^{\frac{5}{3}}}} = \sqrt{x.x^{\frac{5}{9}}} =
\sqrt{x^{\frac{14}{9}}} = x^{\frac{7}{9}}

    \Rightarrow m = 7,n = 9 \Rightarrow m +
n = 16

  • Câu 3: Nhận biết

    Tập nghiệm của bất phương trình \log_{2}(3x + 1) < 2 là:

    Điều kiện: x > -
\frac{1}{3}

    Bất phương trình tương đương:

    {\log _2}\left( {3x + 1} ight) < 2 \Leftrightarrow 3x + 1 < 4

    \Leftrightarrow x < 1

    Kết hợp với điều kiện ta được nghiệm bất phương trình là: - \frac{1}{3} < x < 1

    Vậy tập nghiệm bất phương trình là: \left( - \frac{1}{3};1 ight)

  • Câu 4: Nhận biết

    Tính 2^{3 -\sqrt{2}}.4^{\sqrt{2}}.

    Ta có:

    2^{3 - \sqrt{2}}.4^{\sqrt{2}} = 2^{3 -\sqrt{2}}.\left( 2^{2} ight)^{\sqrt{2}}

    = 2^{3 - \sqrt{2}}.2^{2\sqrt{2}} = 2^{3- \sqrt{2} + 2\sqrt{2}} = 2^{3 + \sqrt{2}}

  • Câu 5: Thông hiểu

    Xác định nghiệm của phương trình

    \left\lbrack \left( 3 - 2\sqrt{2}
ight)^{\left( a^{2} + 1 ight)x} - \left( 3 + 2\sqrt{2} ight)
ightbrack.\left\lbrack 4^{x} - \left( b^{2} + 2 ight)
ightbrack = 0

    Phương trình tương đương:

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left( 3 - 2\sqrt{2} ight)^{\left( a^{2} + 1 ight)x} - \left( 3 +
2\sqrt{2} ight) = 0 \\
4^{x} - \left( b^{2} + 2 ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = - \dfrac{1}{a^{2} + 2} \\x = \log_{4}\left( b^{2} + 2 ight) \\\end{matrix} ight.

  • Câu 6: Vận dụng

    Anh B lần đầu gửi vào ngân hàng 50 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất 8,4 một năm. Đúng 3 kỳ hạn sau ngân hàng thay đổi lãi suất, anh B gửi tiếp 12 tháng nữa với kỳ hạn như cũ và lãi suất trong thời gian này là 12% một năm thì anh B rút tiền về. Hỏi số tiền anh B nhận được cả gốc và lãi là bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Anh B lần đầu gửi vào ngân hàng 50 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất 8,4 một năm. Đúng 3 kỳ hạn sau ngân hàng thay đổi lãi suất, anh B gửi tiếp 12 tháng nữa với kỳ hạn như cũ và lãi suất trong thời gian này là 12% một năm thì anh B rút tiền về. Hỏi số tiền anh B nhận được cả gốc và lãi là bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Thông hiểu

    Tập nghiệm của phương trình \log_{5}\left( x^{2} + 2x + 1 ight) = 2 là:

    Điều kiện x^{2} + 2x + 1 > 0\forall
x\mathbb{\in R}\backslash\left\{ - 1 ight\}

    Ta có:

    \log_{5}\left( x^{2} + 2x + 1 ight) =2

    \Leftrightarrow x^{2} + 2x + 1 = 5^{2}
\Leftrightarrow x^{2} + 2x - 24 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 6 \\
x = 4 \\
\end{matrix} ight.\ (tm)

    Vậy phương trình có tập nghiệm S =
\left\{ - 6;4 ight\}.

  • Câu 8: Vận dụng

    Cho a\log_{6}3 +b\log_{6}2 + c\log_{6}5 = 5 với a,b,c là các số tự nhiên. Trong các khẳng định sau, khẳng định nào đúng?

    Ta có:

    a\log_{6}3 + b\log_{6}2 + c\log_{6}5 =5

    \Leftrightarrow 3^{a}.2^{b}.5^{c} =
5

    Do a,b,c\in\mathbb{ N} nên chỉ có một bộ số (a,b,c) = (0,0,1) thỏa mãn.

    Khẳng định đúng là a = b.

  • Câu 9: Vận dụng

    Rút gọn biểu thức H = \frac{x - 3.x^{\frac{1}{3}} + 2}{\sqrt[3]{x} -1} + \frac{\sqrt{x} - x^{\frac{5}{6}} +\sqrt[6]{x}}{\sqrt[6]{x}}.

    Ta có:

    H = \frac{x - 3.x^{\frac{1}{3}} +2}{\sqrt[3]{x} - 1} + \frac{\sqrt{x} - x^{\frac{5}{6}} +\sqrt[6]{x}}{\sqrt[6]{x}}

    H = \frac{\left( \sqrt[3]{x} - 1ight)\left( x^{\frac{2}{3}} + \sqrt[3]{x} - 2 ight)}{\sqrt[3]{x} -1} + \frac{\sqrt[6]{x}\left( \sqrt[3]{x} - x^{\frac{2}{3}} + 1ight)}{\sqrt[6]{x}}

    H = x^{\frac{2}{3}} + \sqrt[3]{x} - 2 +\sqrt[3]{x} - x^{\frac{2}{3}} + 1 = 2\sqrt[3]{x} - 1

  • Câu 10: Thông hiểu

    Biểu thức L =
\sqrt[6]{x^{3}.\sqrt[3]{x^{2}\sqrt{x}}};(x > 0) viết dưới dạng lũy thừa của một số hữu tỉ là x^{m}. Kết quả nào sau đây đúng?

    Ta có:

    L =
\sqrt[6]{x^{3}.\sqrt[3]{x^{2}\sqrt{x}}} =
\sqrt[6]{x^{3}.\sqrt[3]{x^{2}.x^{\frac{1}{2}}}} =
\sqrt[6]{x^{3}.\sqrt[3]{x^{\frac{5}{2}}}}

    = \sqrt[6]{x^{3}.x^{\frac{5}{6}}} =
\sqrt[6]{x^{\frac{23}{6}}} = x^{\frac{23}{36}} \Rightarrow m =
\frac{23}{36}

  • Câu 11: Nhận biết

    Với số thực dương a bất kì ta có \sqrt{\frac{1}{a^{3}}} tương ứng với:

    Với a > 0 ta có: \sqrt{\frac{1}{a^{3}}} = \left( \frac{1}{a^{3}}
ight)^{\frac{1}{2}} = \left( a^{- 3} ight)^{\frac{1}{2}} = a^{-
\frac{3}{2}}

  • Câu 12: Thông hiểu

    Cho hai số thực dương a và b thỏa mãn log_{9}a^{4} + log_{3}b = 8log_{3}a + log_{\sqrt[3]{3}}b = 9. Giá trị của biểu thức P = ab + 1 là:

    Theo điều kiện ta có:

    \left\{ \begin{matrix}\log_{9}a^{4} + \log_{3}b = 8 \\\log_{3}a + \log_{\sqrt[3]{3}}b = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}2\log_{9}a + \log_{3}b = 8 \\\log_{3}a + 3\log_{3}b = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\log_{9}a = 3 \\\log_{3}b = 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 27 \\b = 9 \\\end{matrix} ight. \Rightarrow
P = ab + 1 = 244

  • Câu 13: Thông hiểu

    Vào dịp sinh nhật con gái tròn 18 tuổi, gia đình anh B gửi vào ngân hàng 200 triệu đồng với lãi suất x%/năm (theo hình thức lãi kép), số tiền này chỉ được thanh toán khi con gái anh kết thúc chương trình 4 năm học đại học. Tính lãi suất kì hạn 1 năm của ngân hàng biết năm 22 tuổi con gái anh B nhận được tổng số tiền là 252 495 392 đồng.

    Áp dụng công thức tính lãi kép ta có:

    T = a.(1 + x\%)^{n}

    \Leftrightarrow 252495392 = 2.10^{8}.(1
+ x\%)^{4}

    \Leftrightarrow x = 6(tm)

    Vậy lãi suất ngân hàng là 6%.

  • Câu 14: Nhận biết

    Tìm điều kiện xác định của hàm số y = \ln(3x)?

    Điều kiện xác định của hàm số y =
\ln(3x) là:

    3x > 0 \Rightarrow x >
0

  • Câu 15: Nhận biết

    Trong các phương trình sau đây, phương trình nào vô nghiệm?

    Ta có:

    Hàm số mũ luôn dương nên phương trình vô nghiệm là phương trình 2^{x} = 0

  • Câu 16: Thông hiểu

    Biết rằng hai số tự nhiên m,n thỏa mãn m\log_{28}2 + n\log_{28}7 = 2 . Tính tổng giá trị của mn ?

    Đáp án: 6

    Đáp án là:

    Biết rằng hai số tự nhiên m,n thỏa mãn m\log_{28}2 + n\log_{28}7 = 2 . Tính tổng giá trị của mn ?

    Đáp án: 6

    Ta có:

    m\log_{28}2 + n\log_{28}7 = 2

    \Leftrightarrow \log_{28}\left(2^{x}.7^{y} ight) = 2 \Leftrightarrow 2^{x}.7^{y} =28^{2}

    \Leftrightarrow 2^{x}.7^{y} = \left(2^{2}.7 ight)^{2} \Leftrightarrow 2^{x}.7^{y} =2^{4}.7^{2}

    \Leftrightarrow \left\{ \begin{matrix}x = 4 \\y = 2 \\\end{matrix} ight.\  \Rightarrow x + y = 6

  • Câu 17: Nhận biết

    Tìm tập xác định của hàm số y = \log_{\sqrt{5}}\left( \frac{1}{6 - x}ight)?

    Điều kiện xác định \frac{1}{6 - x} > 0
\Rightarrow 6 - x > 0 \Rightarrow x < 6

    Suy ra tập xác định của hàm số là: D = (
- \infty;6).

  • Câu 18: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y = \ln\left( x^{2} - 2mx + 4ight) xác định với mọi x\in\mathbb{ R}.

    Hàm số xác định với mọi x thuộc tập số thực:

    \Leftrightarrow x^{2} - 2mx + 4 >
0;\forall x\mathbb{\in R}

    \Leftrightarrow m^{2} - 4 < 0
\Leftrightarrow m \in ( - 2;2)

  • Câu 19: Vận dụng cao

    Chof\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}biết rằng f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} với m và n là các số nguyên dương và phân số \frac{m}{n} tối giản. Tính giá trị biểu thức m - {n^2}.

    Ta có:

    f\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\sqrt {\dfrac{{{x^2}.{{\left( {x + 1} ight)}^2} + {x^2} + {{\left( {x + 1} ight)}^2}}}{{{x^2}.{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\dfrac{{{x^2} + x + 1}}{{x\left( {x + 1} ight)}}}} = {5^{1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}}}

    \begin{matrix}  f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow {5^{\sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)} }} = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow \sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)}  = \dfrac{m}{n} \hfill \\   \Leftrightarrow 2021 - \dfrac{1}{{2021}} = \dfrac{m}{n} \hfill \\   \Leftrightarrow \dfrac{{4084440}}{{2021}} = \dfrac{m}{n} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m = 4084440} \\   {n = 2021} \end{array}} ight. \Rightarrow m - {n^2} =  - 1 \hfill \\ \end{matrix}

  • Câu 20: Nhận biết

    Với a và b là hai số thực dương tùy ý thì \log\left( ab^{2} ight) bằng:

    Ta có:

    \log\left( ab^{2} ight) = \log a +\log b^{2} = \log a + 2\log b

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo