Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm tập nghiệm của bất phương trình \left( \frac{3}{4} ight)^{x - 1} > \left(
\frac{3}{4} ight)^{- x + 3}?

    Ta có:

    \left( \frac{3}{4} ight)^{x - 1} >
\left( \frac{3}{4} ight)^{- x + 3} \Leftrightarrow x - 1 > - x + 3
\Leftrightarrow x < 2

  • Câu 2: Thông hiểu

    Với các số a, b > 0 thỏa mãn a^{2} + b^{2} = 6ab, biểu thức \log_{2}(a + b) bằng:

    Ta có:

    a^{2} + b^{2} = 6ab \Rightarrow (a +
b)^{2} = 8ab

    \Rightarrow \log_{2}(a + b)^{2} =\log_{2}(8ab)

    \Rightarrow 2\log_{2}(a + b) = \log_{2}8 +\log_{2}a + \log_{2}b

    \Rightarrow \log_{2}(a + b) =\frac{1}{2}\left( \log_{2}8 + \log_{2}a + \log_{2}b ight)

    \Rightarrow \log_{2}(a + b) =\frac{1}{2}\left( 3 + \log_{2}a + \log_{2}b ight)

  • Câu 3: Nhận biết

    Xác định nghiệm của bất phương trình \left( \frac{1}{7} ight)^{x^{2} + x} >
\frac{1}{49}?

    Ta có:

    \left( \frac{1}{7} ight)^{x^{2} + x}
> \frac{1}{49} \Leftrightarrow \left( \frac{1}{7} ight)^{x^{2} + x}
> \left( \frac{1}{7} ight)^{2}

    \Leftrightarrow x^{2} + x < 2
\Leftrightarrow x^{2} + x - 2 < 0

    \Leftrightarrow - 2 < x <
1

    Vậy tập nghiệm của bất phương trình là x
\in ( - 2;1)

  • Câu 4: Thông hiểu

    Cho hàm số f(x) =
\frac{9^{x}}{9^{x} + 3};\left( x\mathbb{\in R} ight) và hai số a,b thỏa mãn a + b = 1. Khi đó f(a) + f(b) bằng bao nhiêu?

    Ta có:

    f(a) + f(b) = \dfrac{9^{1 - b}}{9^{1 - b}+ 3} + \dfrac{9^{b}}{9^{b} + 3}

    = \dfrac{\dfrac{9}{9^{b}}}{\dfrac{9}{9^{b}}+ 3} + \dfrac{9^{b}}{9^{b} + 3} = \dfrac{9}{9 + 3.9^{b}} +\frac{9^{b}}{9^{b} + 3} = 1

  • Câu 5: Vận dụng

    Biết phương trình 8lo{g_{2}}^{2}\sqrt[3]{x} + 2(m -
1)log_{\frac{1}{4}}x - 2019 = 0 có hai nghiệm phân biệt thỏa mãn x_{1}x_{2} = 4. Chọn mệnh đề đúng.

    Ta có:

    8\log{_{2}}^{2}\sqrt[3]{x} + 2(m -1)\log_{\frac{1}{4}}x - 2019 = 0

    \Leftrightarrow\frac{8}{9}\log{_{2}}^{2}x - (m - 1)\log_{2}x - 2019 = 0

    Đặt t = \log_{2}x \Leftrightarrow x =2^{t} ta được:

    \Leftrightarrow \frac{8}{9}t^{2} - (m -
1)t - 2019 = 0

    Phương trình đã cho có hai nghiệm phân biệt thỏa mãn x_{1}x_{2} = 4 khi và chỉ khi

    \frac{8}{9}t^{2} - (m - 1)t - 2019 =
0 có hai nghiệm phân biệt thỏa mãn.

    2^{t_{1} + t_{2}} = 4 \Leftrightarrow
t_{1} + t_{2} = 2

    \Leftrightarrow \frac{9(m - 1)}{8} = 2
\Rightarrow m = \frac{25}{9} \in (2;5).

  • Câu 6: Thông hiểu

    Cho a,b là hai số thực dương thỏa mãn \log_{9}a^{4} +\log_{3}b = 8 và \log_{3}a +\log_{\sqrt[3]{3}}b = 9. Tính giá trị của biểu thức K = ab + 1.

    Ta có:

    \left\{ \begin{matrix}\log_{9}a^{4} + \log_{3}b = 8 \\log_{3}a + \log_{\sqrt[3]{3}}b = 9 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2\log_{3}a + \log_{3}b = 8 \\ \log_{3}a + 3\log_{3}b = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\log_{3}a = 3 \\ \log_{3}b = 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 27 \\b = 9 \\\end{matrix} ight.

    \Leftrightarrow K = ab + 1 =
244

  • Câu 7: Thông hiểu

    Ta có: \sqrt[3]{x^{5}\sqrt{x^{2}\sqrt{x}}} =
x^{\alpha}. Giá trị \alpha là:

    Ta có:

    \sqrt[3]{x\sqrt[5]{x^{2}\sqrt{x}}} =
\sqrt[3]{x\sqrt[5]{x^{2}.x^{\frac{1}{2}}}} =
\sqrt[3]{x\sqrt[5]{x^{\frac{5}{2}}}} = \sqrt[3]{x^{\frac{3}{2}}} =
x^{\frac{1}{2}}

    \Rightarrow \alpha =
\frac{1}{2}

  • Câu 8: Vận dụng

    Tìm cặp số (a;b). Biết \frac{1}{2019!}\left( 1 - \frac{1}{2}
ight)^{1}.\left( 1 - \frac{1}{3} ight)^{2}.\left( 1 - \frac{1}{4}
ight)^{3}...\left( 1 - \frac{1}{2019} ight)^{2018} =
a^{b}.

    Ta có:

    \frac{1}{2019!}\left( 1 - \frac{1}{2}
ight)^{1}.\left( 1 - \frac{1}{3} ight)^{2}.\left( 1 - \frac{1}{4}
ight)^{3}...\left( 1 - \frac{1}{2019} ight)^{2018}

    = \frac{1}{2019!}\left( \frac{1}{2}
ight)^{1}.\left( \frac{2}{3} ight)^{2}.\left( \frac{3}{4}
ight)^{3}...\left( \frac{2018}{2019} ight)^{2018}

    =
\frac{1}{2019!}.\frac{1.2.3...2018}{2019^{2018}}

    = \frac{1}{2019^{2019}} = 2019^{-
2019}

  • Câu 9: Nhận biết

    Tìm hàm số nghịch biến trên \mathbb{R} trong các hàm số sau?

    Ta có:

    0 < \sqrt{5} - 2 < 1 nên hàm số y = \left( \sqrt{5} - 2
ight)^{x} nghịch biến trên \mathbb{R}.

  • Câu 10: Vận dụng

    Một người vay ngân hàng số tiền 400 triệu đồng, mỗi tháng trả góp 10 triệu đồng và lãi suất cho số tiền chưa trả là 1\% mỗi tháng. Kỳ trả đầu tiên là cuối tháng thứ nhất. Biết lãi suất không đổi trong suốt quá trình gửi, hỏi số tiền còn phải trả ở kỳ cuối là bao nhiêu để người này hết nợ ngân hàng? (làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một người vay ngân hàng số tiền 400 triệu đồng, mỗi tháng trả góp 10 triệu đồng và lãi suất cho số tiền chưa trả là 1\% mỗi tháng. Kỳ trả đầu tiên là cuối tháng thứ nhất. Biết lãi suất không đổi trong suốt quá trình gửi, hỏi số tiền còn phải trả ở kỳ cuối là bao nhiêu để người này hết nợ ngân hàng? (làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Nhận biết

    Tính giá trị biểu thức M = 2^{\log_{2}a} + \log_{a}\left( a^{b}ight) với điều kiện a > 0;a
eq 1?

    Ta có:

    M = 2^{\log_{2}a} + \log_{a}\left( a^{b}ight) = a + b

  • Câu 12: Thông hiểu

    Đơn giản biểu thức D = \frac{a^{\sqrt{3} + 1}.a^{2 -
\sqrt{3}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} ta được:

    Ta có:

    D = \frac{a^{\sqrt{3} + 1}.a^{2 -
\sqrt{3}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} =
\frac{a^{\sqrt{3} + 1 + 2 - \sqrt{3}}}{a^{\left( \sqrt{2} - 2
ight)\left( \sqrt{2} + 2 ight)}} = \frac{a^{3}}{a^{- 2}} =
a^{5}

  • Câu 13: Nhận biết

    Tìm điều kiện xác định của hàm số y =\log_{2}(x - 1)^{2}?

    Điều kiện xác định của hàm số y =\log_{2}(x - 1)^{2} là:

    (x - 1)^{2} > 0 \Leftrightarrow x
eq 1

  • Câu 14: Nhận biết

    Cho biểu thức P = \sqrt {x.\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}} với x > 0. Mệnh đề nào sau đây là đúng?

     Ta có: 

    \begin{matrix}  P = \sqrt {x.\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}}  \hfill \\  P = \sqrt {x.\sqrt[3]{{{x^{\frac{7}{2}}}}}}  \hfill \\  P = \sqrt {x.{x^{\frac{7}{6}}}}  \hfill \\  P = \sqrt {{x^{\frac{{13}}{6}}}}  = {x^{\frac{{13}}{{12}}}} \hfill \\ \end{matrix}

  • Câu 15: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{{2018}^x}}}{{{{2018}^x} + \sqrt {2018} }}. Tính tổng

    S = f\left( {\frac{1}{{2019}}} ight) + f\left( {\frac{2}{{2019}}} ight) + ... + f\left( {\frac{{2018}}{{2019}}} ight)

    Với hàm số

    f\left( {1 - x} ight) = \frac{{\sqrt {2018} }}{{{{2018}^x} + \sqrt {2018} }} \Rightarrow f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + ... + f\left( {\dfrac{{2018}}{{2019}}} ight) \hfill \\   \Rightarrow S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{{2018}}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + f\left( {\dfrac{{2017}}{{2019}}} ight) \hfill \\+ ... + f\left( {\dfrac{{1009}}{{2019}}} ight) + f\left( {\dfrac{{1010}}{{2019}}} ight) = 1009 \hfill \\ \end{matrix}

  • Câu 16: Thông hiểu

    Xác định tập nghiệm của phương trình \log_{2}\left( - x^{2} + 4x - 3 ight) =\log_{2}\left( \frac{5}{2} - x ight) + 1?

    Điều kiện xác định: \left\{
\begin{matrix}
- x^{2} + 4x - 3 > 0 \\
\frac{5}{2} - x > 0 \\
\end{matrix} ight.\  \Leftrightarrow 1 < x <
\frac{5}{2}

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{2}\left( - x^{2} +4x - 3 ight) = \log_{2}\left( \frac{5}{2} - x ight) +\log_{2}2

    \Leftrightarrow \log_{2}\left( - x^{2} +4x - 3 ight) = \log_{2}(5 - 2x)

    \Leftrightarrow - x^{2} + 4x - 3 = 5 -
2x

    \Leftrightarrow x^{2} - 6x + 8 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2(tm) \\
x = 4(ktm) \\
\end{matrix} ight.

    Vậy phương trình có tập nghiệm là S =
\left\{ 2 ight\}

  • Câu 17: Nhận biết

    Đơn giản biểu thức E = a^{\sqrt{2}}.\left( \frac{1}{a}
ight)^{\sqrt{2} - 1} với a >
0 được kết quả là:

    Ta có:

    E = a^{\sqrt{2}}.\left( \frac{1}{a}
ight)^{\sqrt{2} - 1} = a^{\sqrt{2}}.a^{- \sqrt{2} + 1} = a^{\sqrt{2} -
\sqrt{2} + 1} = a

  • Câu 18: Vận dụng

    Cho ba số thực dương a eq 1,b eq 1,c eq 1 thỏa mãn hệ phương trình \left\{ \begin{matrix}\log_{a}b = 2\log_{b}c = 4\log_{c}a \\a + 2b + 3c = 48 \\\end{matrix} ight. . Khi đó giá trị biểu thức P = a.b.c = 243

    Đáp án là:

    Cho ba số thực dương a eq 1,b eq 1,c eq 1 thỏa mãn hệ phương trình \left\{ \begin{matrix}\log_{a}b = 2\log_{b}c = 4\log_{c}a \\a + 2b + 3c = 48 \\\end{matrix} ight. . Khi đó giá trị biểu thức P = a.b.c = 243

    Theo bài ra: a eq 1,b eq 1,c eq
1

    \Rightarrow \log_{a}b eq 0;\log_{b}c eq0;\log_{c}a eq 0

    Khi đó ta có:

    \log_{a}b = 2\log_{b}c

    \Rightarrow \log_{a}c.\log_{c}b =2\log_{b}c

    \Rightarrow \log_{a}c =2\log_{b}^{2}c

    \log_{a}b = 4\log_{c}a

    \Rightarrow \log_{a}c.\log_{c}b =4\log_{c}a

    \Rightarrow \log_{c}b =4\log_{c}^{2}a

    Nên \log_{a}c.\log_{c}b =8\log_{b}^{2}c.\log_{c}^{2}a

    \Leftrightarrow \log_{a}b =8\log_{b}^{2}a

    \Leftrightarrow \log_{a}^{3}b = 8\Leftrightarrow \log_{a}b = 2 \Leftrightarrow b = a^{2}

    \log_{a}b = 2\log_{b}c

    \Leftrightarrow \log_{a}b = 2\log_{a^{2}}c\Leftrightarrow b = c

    Ta lại có: a + 2b + 3c = 48

    \Leftrightarrow a + 2a^{2} + 3a^{2} =
48

    \Leftrightarrow \left\lbrack\begin{matrix}a = - \dfrac{16}{5}(ktm) \\a = 3(tm) \\\end{matrix} ight.

    Vậy \left\{ \begin{matrix}
a = 3 \\
b = 9 \\
c = 9 \\
\end{matrix} ight.\  \Rightarrow P = a.b.c = 243

  • Câu 19: Thông hiểu

    Cho đồ thị hàm số y = f(x) như hình vẽ:

    Hàm số y = f(x) có thể là hàm số nào dưới đây?

    Dựa vào đồ thị ta có hàm số có tập xác định D\mathbb{= R} và hàm số nghịch biến suy ra hàm số tương ứng là y = \left(\frac{4}{5} ight)^{x}.

  • Câu 20: Thông hiểu

    Tập nghiệm của bất phương trình \log_{3}\left( 36 - x^{2} ight) \geq 3 là:

    Ta có:

    {\log _3}\left( {36 - {x^2}} ight) \geqslant 3 \Leftrightarrow \left\{ \begin{gathered}
  36 - {x^2} > 0 \hfill \\
  36 - {x^2} \geqslant {3^3} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  {x^2} < 36 \hfill \\
  {x^2} \leqslant 9 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 6 < x < 6 \\
- 3 \leq x \leq 3 \\
\end{matrix} ight.\  \Leftrightarrow - 3 \leq x \leq 3

    Vậy tập nghiệm của bất phương trình là: S
= \lbrack - 3;3brack.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 26 lượt xem
Sắp xếp theo