Đồ thị hàm số sau là của hàm số nào?

Đồ thị đi xuống nên hàm số đã cho là nghịch biến nên loại và
.
Đồ thị hàm số đi qua điểm (−1; 3) nên chỉ có đáp án thỏa mãn.
Đồ thị hàm số sau là của hàm số nào?

Đồ thị đi xuống nên hàm số đã cho là nghịch biến nên loại và
.
Đồ thị hàm số đi qua điểm (−1; 3) nên chỉ có đáp án thỏa mãn.
Cho số thực a dương. Rút gọn biểu thức ![P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Thực hiện giải phương trình
thu được nghiệm:
Ta có:
Vậy phương trình có nghiệm .
Tích tất cả các nghiệm của phương trình
là:
Ta có:
Vậy tích các nghiệm phương trình là -2
Giả sử phương trình
có hai nghiệm
với
. Khi đó giá trị của biểu thức
2||9||-1||-7
Giả sử phương trình có hai nghiệm
với
. Khi đó giá trị của biểu thức
2||9||-1||-7
Điều kiện xác định
Phương trình đã cho tương đương:
Cho hàm số
. Tìm tập xác định của hàm số.
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là:
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Biết
là các số thực dương khác 1 thỏa mãn
. Tính giá trị
?
Ta có:
Khi đó:
Trong các biểu thức sau, biểu thức nào không có nghĩa?
Lũy thừa với số mũ không nguyên thì cơ số phải dương nên biểu thức không có nghĩa.
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số
Sai||Đúng
b) Hàm số
nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình
có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình
chứa đúng 4 giá trị nguyên. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Sắp xếp theo thứ tự tăng dần các số Sai||Đúng
b) Hàm số nghịch biến trên tập xác định của nó.Đúng||Sai
c) Phương trình có tổng các nghiệm thực bằng
.Đúng||Sai
d) Tập nghiệm của bất phương trình chứa đúng 4 giá trị nguyên. Sai||Đúng
a) Ta có: nên sắp xếp đúng là:
b) Ta có:
có cơ số
nên hàm số đã cho nghịch biến trên tập xác định của nó.
c) Điều kiện xác định
Vậy tổng các nghiệm của phương trình là
d) Điều kiện xác định
Ta có: là một nghiệm của bất phương trình
Với bất phương trình tương đương với
Đặt ta có:
kết hợp với điều kiện
ta được nghiệm
Kết hợp với điều kiện ta được
suy ra trường hợp này có 2 nghiệm nguyên
Vậy bất phương trình có ba nghiệm nguyên.
Cho ba số thực dương
thỏa mãn hệ phương trình
. Khi đó giá trị biểu thức
243
Cho ba số thực dương thỏa mãn hệ phương trình
. Khi đó giá trị biểu thức
243
Theo bài ra:
Khi đó ta có:
Nên
Mà
Ta lại có:
Vậy
Tìm m để bất phương trình
vô nghiệm.
Ta có:
Bất phương trình vô nghiệm khi:
Cho các số thực dương a, b với
. Khẳng định nào sau đây đúng?
Trường hợp 1:
Trường hợp 2:
Vậy là khẳng định đúng.
Bác A lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất một quý. Đúng 6 tháng sau, bác A gửi thêm 100 triệu đồng với kỳ hạn và lãi suất không đổi. Biết rằng trong suốt thời gian gửi tiền lãi suất ngân hàng không thay đổi và người đó không rút tiền ra. Hỏi tổng số tiền người đó nhận được sau 1 năm gửi tiền vào ngân hàng bằng bao nhiêu? (Làm tròn kết quả đến chữ số thập phân thứ hai).
Bác A lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất một quý. Đúng 6 tháng sau, bác A gửi thêm 100 triệu đồng với kỳ hạn và lãi suất không đổi. Biết rằng trong suốt thời gian gửi tiền lãi suất ngân hàng không thay đổi và người đó không rút tiền ra. Hỏi tổng số tiền người đó nhận được sau 1 năm gửi tiền vào ngân hàng bằng bao nhiêu? (Làm tròn kết quả đến chữ số thập phân thứ hai).
Số tiền 100 triệu đồng gửi lần đầu thì sau 1 năm (4 quý) nhận được cả vốn lẫn lãi là:
triệu đồng
Số tiền 100 triệu đồng gửi lần thứ hai thì 6 tháng (2 quý) nhận được cả vốn lẫn lãi là:
triệu đồng
Vậy tổng số tiền nhận được là: triệu đồng.
Cho
. Tính ![]()
Ta có:
Tìm tập xác định của hàm số
là:
Điều kiện xác định
Suy ra tập xác định của hàm số là: .
Tìm tất cả các tập giá trị của a để
?
Ta có:
=>
Mà 5 < 6 =>
Cho
; (
là phân số tối giản). Tính giá trị biểu thức
.
Ta có:
Cho số thực dương
. Tính
.
Ta có:
Tập nghiệm của phương trình
là:
Điều kiện
Ta có:
Vậy phương trình có tập nghiệm .