Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Với các số a, b, c là các số thực dương tùy ý khác 1 và \log_{a}c = x;\log_{b}c =y. Khi đó giá trị của \log_{a}(ab) bằng:

    Với a, b, c là các số thực dương tùy ý khác 1 ta có:

    \log_{c}a = \frac{1}{x};\log_{c}b =\frac{1}{y}

    Khi đó ta có: \log_{c}(ab) = \log_{c}a +\log_{c}b = \frac{1}{x} + \frac{1}{y}

  • Câu 2: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{4^x}}}{{{4^x} + 2}}. Tính tổng

    S = f\left( {\frac{1}{{2005}}} ight) + f\left( {\frac{2}{{2005}}} ight) + ... + f\left( {\frac{{2004}}{{2005}}} ight) + f\left( {\frac{{2005}}{{2005}}} ight)

    Với hàm số f\left( x ight) = \frac{{{a^x}}}{{{a^x} + \sqrt a }} ta có: f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = \left[ {f\left( {\dfrac{1}{{2005}}} ight) + f\left( {\dfrac{{2004}}{{2005}}} ight)} ight] + \left[ {f\left( {\dfrac{2}{{2005}}} ight) + f\left( {\dfrac{{2003}}{{2005}}} ight)} ight] \hfill\\+ ... + \left[ {f\left( {\dfrac{{1002}}{{2005}}} ight) + f\left( {\dfrac{{1003}}{{2005}}} ight)} ight] + f\left( 1 ight) \hfill \\   = 1 + 1 + ... + 1 + f\left( 1 ight) = 1002 + \dfrac{4}{6} = \dfrac{{3008}}{3} \hfill \\ \end{matrix}

  • Câu 3: Nhận biết

    Giải phương trình 3^{2x} - 5 = 0 ta được nghiệm phương trình là:

    Ta có:

    3^{2x} - 5 = 0 \Leftrightarrow 2x =\log_{3}5 \Leftrightarrow x = \frac{1}{2}.\log_{3}5

    Vậy phương trình đã cho có nghiệm là x =\frac{1}{2}.\log_{3}5.

  • Câu 4: Thông hiểu

    Viết biểu thức P = \frac{{{a^2}.{a^{\frac{5}{2}}}.\sqrt[3]{{{a^4}}}}}{{\sqrt[6]{{{a^5}}}}};\left( {a > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \dfrac{{{a^2}.{a^{\frac{5}{2}}}.\sqrt[3]{{{a^4}}}}}{{\sqrt[6]{{{a^5}}}}} = \dfrac{{{a^2}.{a^{\frac{5}{2}}}.{a^{\frac{4}{3}}}}}{{{a^{\frac{5}{6}}}}} = {a^5}

  • Câu 5: Thông hiểu

    Cho a,b\in\mathbb{ R} thỏa mãn \log_{4}a = \log_{9}b = \log_{6}(a - 2b). Xác định tỉ số \frac{a}{b}?

    Điều kiện a > 0;b > 0;a >
2b

    \left\{ \begin{matrix}
a = 4^{t} \\
b = 9^{t} \\
a - 2b = 6^{t} \\
\end{matrix} ight.\  \Rightarrow 4^{t} - 2.9^{t} = 6^{t}

    \Leftrightarrow \left( \frac{4}{9}
ight)^{t} - \left( \frac{2}{3} ight)^{t} - 2 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}\left( \dfrac{2}{3} ight)^{t} = - 1(ktm) \\\left( \dfrac{2}{3} ight)^{t} = 2 \\\end{matrix} ight.

    Với \left( \frac{2}{3} ight)^{t} = 2
\Rightarrow \frac{x}{y} = \left( \frac{4}{9} ight)^{t} = \left\lbrack
\left( \frac{2}{3} ight)^{t} ightbrack^{2} = 4

  • Câu 6: Vận dụng

    Tìm cặp số (a;b). Biết \frac{1}{2019!}\left( 1 - \frac{1}{2}
ight)^{1}.\left( 1 - \frac{1}{3} ight)^{2}.\left( 1 - \frac{1}{4}
ight)^{3}...\left( 1 - \frac{1}{2019} ight)^{2018} =
a^{b}.

    Ta có:

    \frac{1}{2019!}\left( 1 - \frac{1}{2}
ight)^{1}.\left( 1 - \frac{1}{3} ight)^{2}.\left( 1 - \frac{1}{4}
ight)^{3}...\left( 1 - \frac{1}{2019} ight)^{2018}

    = \frac{1}{2019!}\left( \frac{1}{2}
ight)^{1}.\left( \frac{2}{3} ight)^{2}.\left( \frac{3}{4}
ight)^{3}...\left( \frac{2018}{2019} ight)^{2018}

    =
\frac{1}{2019!}.\frac{1.2.3...2018}{2019^{2018}}

    = \frac{1}{2019^{2019}} = 2019^{-
2019}

  • Câu 7: Vận dụng

    Cho các số thức a, b thỏa mãn 1 < a < b\log_{a}b + \log_{b}a^{2} = 3. Tính giá trị của biểu thức T = \log_{ab}\frac{a^{2} +b}{2}?

    Ta có:

    \log_{a}b + \log_{b}a^{2} = 3\Leftrightarrow \log_{a}b + 2\log_{b}a = 3(*)

    Đặt t = \log_{a}b. Do 1 < a < b \Rightarrow t > log_{a}b
\Rightarrow t > 1

    Khi đó t + \frac{2}{t} = 3
\Leftrightarrow t^{2} - 3t + 2 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t = 1(ktm) \\
t = 2(tm) \\
\end{matrix} ight.

    Với t = 2 ta có: \log_{a}b = 2 \Rightarrow b = a^{2}

    => T = \log_{ab}\frac{a^{2} + b}{2} =\log_{a^{3}}a^{2} = \frac{2}{3}\log_{a}a = \frac{2}{3}

  • Câu 8: Nhận biết

    Cho hàm số y =\log_{\frac{1}{2}}(x + 1). Tìm tập xác định của hàm số.

    Điều kiện xác định của hàm số y =\log_{\frac{1}{2}}(x + 1) là:

    x + 1 > 0 \Rightarrow x > -
1

    Vậy tập xác định của hàm số là: D = ( -
1; + \infty)

  • Câu 9: Nhận biết

    Cho a là số thực dương. Biểu thức a^{3}\sqrt[3]{a^{2}} được viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có:

    a^{3}\sqrt[3]{a^{2}} =
a^{3}.a^{\frac{2}{3}} = a^{3 + \frac{2}{3}} =
a^{\frac{11}{3}}

  • Câu 10: Nhận biết

    Tính 2^{3 -\sqrt{2}}.4^{\sqrt{2}}.

    Ta có:

    2^{3 - \sqrt{2}}.4^{\sqrt{2}} = 2^{3 -\sqrt{2}}.\left( 2^{2} ight)^{\sqrt{2}}

    = 2^{3 - \sqrt{2}}.2^{2\sqrt{2}} = 2^{3- \sqrt{2} + 2\sqrt{2}} = 2^{3 + \sqrt{2}}

  • Câu 11: Vận dụng

    Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Vào mỗi mùng 1 hàng tháng cô X gửi vào ngân hàng 5 triệu đồng với lãi suất kép là 0,6% mỗi tháng. Biết lãi suất không đổi trong quá trình gửi. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô X có được số tiền cả gốc và lãi nhiều hơn 100 triệu đồng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Thông hiểu

    Trong các hàm số sau đây, hàm số nào đồng biến trên \mathbb{R}?

    Ta có: \frac{\sqrt{2} + \sqrt{3}}{3} >
1 nên hàm số y = \left(
\frac{\sqrt{2} + \sqrt{3}}{3} ight)^{x} đồng biến trên \mathbb{R}.

  • Câu 13: Thông hiểu

    Cho a,b >
0. Nếu viết \log_{3}\left(\sqrt[5]{a^{3}b} ight)^{\frac{2}{3}} = \frac{x}{15}\log_{3}a +\frac{y}{15}\log_{3}b thì giá trị x
+ y bằng bao nhiêu?

    Ta có:

    \log_{3}\left( \sqrt[5]{a^{3}b}ight)^{\frac{2}{3}} = \log_{3}a^{\frac{2}{5}} +\log_{3}b^{\frac{2}{15}}

    = \frac{2}{5}\log_{3}a +\frac{2}{15}\log_{3}b = \frac{6}{15}\log_{3}a +\frac{2}{15}\log_{3}b

    \Rightarrow x + y = 8

  • Câu 14: Vận dụng

    Một người gửi vào ngân hàng 200 triệu đồng vào tài khoản tiết kiệm ngân hàng với lãi suất 0,6%/ tháng, cứ sau mỗi tháng người đó rút ra 500 nghìn đồng. Hỏi sau đúng 36 lần rút tiền thì số tiền còn lại trong tài khoản của người đó gần nhất với phương án nào sau đây? (Biết rằng lãi suất không thay đổi và tiền lại mỗi tháng tính theo số tiền thực tế trong tài khoản của tháng đó?

    Số tiền còn lại trong tài khoản sau tháng thứ 1 là: 200.1,006 - 0,5 (triệu đồng)

    Số tiền còn lại trong tài khoản sau tháng thứ 2 là:

    (200.1,006 - 0,5).1,006 - 0,5 =
200.(1,006)^{2} - 0,5(1 + 1,006) (triệu đồng)

    Số tiền còn lại trong tài khoản sau tháng thứ 3 là:

    200.(1,006)^{3} - 0,5\left\lbrack 1 +
1,006 + (1,006)^{2} ightbrack(triệu đồng)

    Cứ tiếp tục quá trình thì số tiền còn lại trong tài khoản sau tháng thứ 36 là:

    200.(1,006)^{3} - 0,5\left\lbrack 1 +
1,006 + (1,006)^{2} + ... + (1,006)^{35} ightbrack

    = 200.(1,006)^{36} - 0,5.\frac{1 -
(1,006)^{36}}{1 - 1,006} = 228,035(triệu đồng).

  • Câu 15: Nhận biết

    Tập nghiệm của bất phương trình \log_{0,25}\left( x^{2} - 3x ight) = -1? là:

    Điều kiện x^{2} - 3x > 0
\Leftrightarrow x \in ( - \infty;0) \cup (3; + \infty)

    \log_{0,25}\left( x^{2} - 3x ight) = -1

    \Leftrightarrow x^{2} - 3x =
4

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1(tm) \\
x = 4(tm) \\
\end{matrix} ight.

    Vậy phương trình có nghiệm x = -1 hoặc x = 4.

  • Câu 16: Thông hiểu

    Cho bất phương trình: \left( \frac{2}{3} ight)^{2x^{2} + 4x} \leq\left( \frac{3}{2} ight)^{x + 3}. Chọn khẳng định đúng về tập nghiệm của bất phương trình.

    Ta có:

    \left( \frac{2}{3} ight)^{2x^{2} + 4x}\leq \left( \frac{3}{2} ight)^{x + 3}

    \Leftrightarrow \left( \frac{2}{3}ight)^{2x^{2} + 4x} \leq \left( \frac{2}{3} ight)^{- x -3}

    \Leftrightarrow 2x^{2} + 4x \geq - x -3

    \Leftrightarrow 2x^{2} + 4x + 3 \geq0

    \Leftrightarrow \left\lbrack\begin{matrix}x \leq - \dfrac{3}{2} \\x \geq - 1 \\\end{matrix} ight.

    Vậy tập nghiệm của bất phương trình là: S= \left( - \infty;\frac{- 3}{2} ight) \cup \lbrack - 1; +\infty)

  • Câu 17: Nhận biết

    Trong các hàm số dưới đây, hàm số nào nghịch biến trên tập xác định của nó?

    Hàm số y = \log_{\frac{e}{2\pi}}x có 0 < \frac{e}{2\pi} < 1 là hàm số nghịch biến trên tập xác định của nó.

    Các hàm số y = \log_{\sqrt{2}}x; y = \log_{\pi}2x; y = \log_{2}x có cơ số lớn hơn 1 nên đồng biến trên tập xác định của nó.

  • Câu 18: Thông hiểu

    Giả mỗi năm diện tích đất phục vụ cho nông nghiệp giảm n\% diện tích hiện có. Hỏi sau 4 năm diện tích đất phục vụ cho nông nghiệp của nước ta sẽ là bao nhiêu phần trăm của diện tích hiện nay?

    Diện tích đất phục vụ nông nghiệp ban đầu là S, diện tích đất nông nghiệp sau 4 năm sẽ là S_{0}; n\% = \frac{n}{100}

    S = S_{0}\left( 1 - \frac{n}{100}
ight)^{n} = S_{0}\left( 1 - \frac{n}{100} ight)^{4}

    =>\frac{S}{S_{0}} = \left( 1 -\frac{n}{100} ight)^{4}

  • Câu 19: Thông hiểu

    Biết \sqrt[5]{{\frac{b}{a}\sqrt[3]{{\frac{a}{b}}}}} = {\left( {\frac{a}{b}} ight)^m} với a và b là các số thực dương. Tìm m?

    Ta có:

    \begin{matrix}  {\left( {\dfrac{a}{b}} ight)^m} = {\left( {\sqrt[3]{{\dfrac{{{b^3}}}{{{a^3}}}.\dfrac{a}{b}}}} ight)^{\frac{1}{5}}} = {\left( {\dfrac{{{b^2}}}{{{a^2}}}} ight)^{\frac{1}{{15}}}} = {\left( {\dfrac{b}{a}} ight)^{\frac{2}{{15}}}} \hfill \\   \Rightarrow m = \dfrac{{ - 2}}{{15}} \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Gọi x_{1};x_{2} là các nghiệm của phương trình \left( 2 - \sqrt{3} ight)^{x} +
\left( 2 + \sqrt{3} ight)^{x} = 4. Khi đó giá trị của biểu thức A = {x_{1}}^{2} + 2{x_{2}}^{2} bằng bao nhiêu?

    Ta có:

    \left( 2 - \sqrt{3} ight)^{x} + \left(
2 + \sqrt{3} ight)^{x} = 4

    \Leftrightarrow \left( 2 - \sqrt{3}
ight)^{x} + \frac{1}{\left( 2 - \sqrt{3} ight)^{x}} = 4

    \Leftrightarrow \left( 2 - \sqrt{3}
ight)^{2x} + 1 = 4\left( 2 - \sqrt{3} ight)^{x}

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left( 2 - \sqrt{3} ight)^{2x} = 2 + \sqrt{3} = \left( 2 - \sqrt{3}
ight)^{- 1} \\
\left( 2 - \sqrt{3} ight)^{2x} = 2 - \sqrt{3} \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 1 \\
\end{matrix} ight.\ (tm)

    Khi đó: A = {x_{1}}^{2} + 2{x_{2}}^{2} =
3

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 26 lượt xem
Sắp xếp theo