Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Giải phương trình \log_{2}a + \log_{2}3 = 0 thu được nghiệm là:

    Điều kiện xác định: a > 0

    \log_{2}a + \log_{2}3 = 0

    \Leftrightarrow \log_{2}3a = 0\Leftrightarrow 3a = 2^{0} \Leftrightarrow a =\frac{1}{3}(tm)

    Vậy phương trình có nghiệm là a =
\frac{1}{3}.

  • Câu 2: Vận dụng

    Cho đồ thị của ba hàm số y = m^{x};y = n^{x};y = \log_{t}x như hình vẽ:

    Chọn kết luận đúng về mối quan hệ giữa m,n,t?

    Quan sát đồ thị ta thấy

    Hàm số y = m^{x} là hàm số đồng biến nên m > 1

    Hàm số y = n^{x} là hàm số đồng biến nên n > 1

    Hàm số y = \log_{t}x là hàm nghịch biến nên 0 < t < 1

    Vậy ta có: \left\{ \begin{matrix}
0 < t < m \\
0 < t < n \\
\end{matrix} ight.

    Khi thay x = 1 vào hai hàm số y = m^{x};y
= n^{x} ta thu được m > n

    Vậy t < n < m.

  • Câu 3: Vận dụng

    Cho phương trình (m + 3)9^{x} + (2m - 1)3^{x} + m + 1 = 0. Tìm tất cả các giá trị thực của tham số m để phương trình có hai nghiệm trái dấu.

    Đặt t = 3^{x} ta có phương trình (m + 3)t^{2} + (2m - 1)t + m + 1 =
0(*)

    Phương trình đã cho có hai nghiệm trái dấu (giả sử x_{1} < 0 < x_{2})

    Phương trình (*) tương đương 0 < t_{1}
= 3^{x_{1}} < 1 < 3^{x_{2}} = t_{2} nghĩa là 0 < t_{1} < 1 < t_{2}.

    \Leftrightarrow \left\{ \begin{gathered}
  m + 3 e 0 \hfill \\
  \Delta  > 0 \hfill \\
  \left( {{t_1} - 1} ight)\left( {{t_2} - 1} ight) < 0 \hfill \\
  {t_1}{t_2} > 0 \hfill \\
  {t_1} + {t_2} > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
   - 20m - 11 > 0 \hfill \\
  {t_1}{t_2} - \left( {{t_1} + {t_2}} ight) + 1 < 0 \hfill \\
  {t_1}{t_2} > 0 \hfill \\
  {t_1} + {t_2} > 0 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
  m < \dfrac{{ - 11}}{{20}} \hfill \\
  \dfrac{{m + 1}}{{m + 3}} + \dfrac{{2m - 1}}{{m + 3}} + 1 < 0 \hfill \\
  \dfrac{{m + 1}}{{m + 3}} > 0 \hfill \\
   - \dfrac{{2m - 1}}{{m + 3}} > 0 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m e  - 3 \hfill \\
  m < \dfrac{{ - 11}}{{20}} \hfill \\
   - 3 < m <  - \dfrac{3}{4} \hfill \\
  \left[ \begin{gathered}
  m < 3 \hfill \\
  m >  - 1 \hfill \\ 
\end{gathered}  ight. \hfill \\
   - 3 < m < \dfrac{1}{2} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow  - 1 < m <  - \dfrac{3}{4}

  • Câu 4: Thông hiểu

    Có bao nhiêu giá trị x nguyên thỏa mãn bất phương trình 6^{x} + 4 \leq 2^{x + 1} +
2.3^{x}?

    Ta có:

    6^{x} + 4 \leq 2^{x + 1} +
2.3^{x}

    \Leftrightarrow 6^{x} + 4 - 2^{x + 1} -
2.3^{x} \leq 0

    \Leftrightarrow 2^{x}\left( 3^{x} - 2
ight) + 2\left( 2 - 3^{x} ight) \leq 0

    \Leftrightarrow \left( 2^{x} - 2
ight)\left( 3^{x} - 2 ight) \leq 0

    \Leftrightarrow x \in \left\lbrack\log_{2}2;1 ightbrack

    x\mathbb{\in Z}

    Vậy có duy nhất 1 giá trị nguyên của x thỏa mãn yêu cầu đề bài.

  • Câu 5: Nhận biết

    Tìm tập xác định của hàm số y = \log(x - 2)^{2}.

    Điều kiện xác định (x - 2)^{2} > 0
\Rightarrow x eq 2

    Vậy tập xác định của hàm số là D=\mathbb{R}\backslash\left\{ 2 ight\}.

  • Câu 6: Thông hiểu

    Cho hàm số f(x)= \log_{2}m. Với m > 0, giá trị của biểu thức T = f\left(\frac{6}{m} ight) + f\left( \frac{8m}{3} ight) bằng:

    Ta có:

    T = f\left( \frac{6}{m} ight) +f\left( \frac{8m}{3} ight) = f\left( \frac{6}{m}.\frac{8m}{3} ight)= f(16) = 4

  • Câu 7: Vận dụng cao

    Chof\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}biết rằng f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} với m và n là các số nguyên dương và phân số \frac{m}{n} tối giản. Tính giá trị biểu thức m - {n^2}.

    Ta có:

    f\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\sqrt {\dfrac{{{x^2}.{{\left( {x + 1} ight)}^2} + {x^2} + {{\left( {x + 1} ight)}^2}}}{{{x^2}.{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\dfrac{{{x^2} + x + 1}}{{x\left( {x + 1} ight)}}}} = {5^{1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}}}

    \begin{matrix}  f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow {5^{\sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)} }} = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow \sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)}  = \dfrac{m}{n} \hfill \\   \Leftrightarrow 2021 - \dfrac{1}{{2021}} = \dfrac{m}{n} \hfill \\   \Leftrightarrow \dfrac{{4084440}}{{2021}} = \dfrac{m}{n} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m = 4084440} \\   {n = 2021} \end{array}} ight. \Rightarrow m - {n^2} =  - 1 \hfill \\ \end{matrix}

  • Câu 8: Vận dụng

    Cho {9^x} + {9^{ - x}} = 14;\frac{{6 + 3.\left( {{3^x} + {3^{ - x}}} ight)}}{{2 - {3^{x + 1}} - {3^{1 - x}}}} = \frac{a}{b}; (\frac{a}{b} là phân số tối giản). Tính giá trị biểu thức P = ab.

    Ta có:

    \begin{matrix}  {\left( {{3^x} + {3^{ - x}}} ight)^2} = 14 + 2 = 16 \hfill \\   \Rightarrow {3^x} + {3^{ - x}} = 4 \hfill \\   \Rightarrow \dfrac{a}{b} = \dfrac{{6 + 3.4}}{{2 - 3.4}} =  - \dfrac{9}{5} \hfill \\   \Rightarrow P =  - 45 \hfill \\ \end{matrix}

  • Câu 9: Nhận biết

    Cho x >
0, giá trị biểu thức M =
x\sqrt[5]{x} bằng bao nhiêu?

    Ta có:

    M = x\sqrt[5]{x} = x^{1}.x^{\frac{1}{5}}
= x^{1 + \frac{1}{5}} = x^{\frac{6}{5}}

  • Câu 10: Nhận biết

    Cho số thực a
> 1 và các số thực \alpha;\beta. Khẳng định nào đúng?

    Ta có: a > 1 khi đó a^{\alpha} > a^{\beta} \Rightarrow \alpha >
\beta.

  • Câu 11: Thông hiểu

    Tìm giá trị của x biết \log_{7}\frac{1}{x} = 2\log_{7}a -6\log_{49}b.

    Ta có:

    \log_{7}\frac{1}{x} = 2\log_{7}a -6\log_{49}b

    \Leftrightarrow \log_{7}\frac{1}{x} =\log_{7}a^{2} - 6\log_{7^{2}}b

    \Leftrightarrow \log_{7}\frac{1}{x} =\log_{7}a^{2} - 3\log_{7}b

    \Leftrightarrow \log_{7}\frac{1}{x} =\log_{7}a^{2} - \log_{7}b^{3}

    \Leftrightarrow \log_{7}\frac{1}{x} =\log_{7}\frac{a^{2}}{b^{3}}

    \Leftrightarrow x =
\frac{b^{3}}{a^{2}}

  • Câu 12: Nhận biết

    Xác định nghiệm phương trình 3^{t - 1} - 27 = 0?

    Ta có:

    3^{t - 1} - 27 = 0 \Leftrightarrow 3^{t
- 1} = 3^{3}

    \Leftrightarrow t - 1 = 3
\Leftrightarrow t = 4(tm)

    Vậy phương trình có nghiệm t =
4

  • Câu 13: Thông hiểu

    Tìm nghiệm nguyên nhỏ nhất của bất phương trình \log_{2}\left( \log_{4}x ight) \geq  \log_{4}\left( \log_{2}x ight).

    Điều kiện: \left\{ \begin{gathered}
  {\log _4}x > 0 \hfill \\
  {\log _2}x > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow x > 1

    Bất phương trình tương đương

    \log_{2}\left( \log_{4}x ight) \geq  \log_{2}\sqrt{\log_{2}x}

    \Leftrightarrow \log_{4}x \geq\sqrt{\log_{2}x}

    \Leftrightarrow \left( \log_{2^{2}}xight)^{2} \geq \log_{2}x

    \Leftrightarrow \frac{1}{4}\left(\log_{2}x ight)^{2} \geq \log_{2}x

    \Leftrightarrow \log_{2}x \geq 4\Leftrightarrow x \geq 16

    Vậy nghiệm nguyên nhỏ nhất của bất phương trình là x = 16.

  • Câu 14: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y = \ln\left( x^{2} - 2mx + 4ight) xác định với mọi x\in\mathbb{ R}.

    Hàm số xác định với mọi x thuộc tập số thực:

    \Leftrightarrow x^{2} - 2mx + 4 >
0;\forall x\mathbb{\in R}

    \Leftrightarrow m^{2} - 4 < 0
\Leftrightarrow m \in ( - 2;2)

  • Câu 15: Thông hiểu

    Cho {5^x} = 2. Tính A = {25^x} + {5^{2 - x}}

    Ta có: A = {25^x} + {5^{2 - x}} = {\left( {{5^x}} ight)^2} + \frac{{25}}{{{5^x}}} = \frac{{33}}{2}

  • Câu 16: Thông hiểu

    Cho tam giác vuông ABC có a,b là độ dài hai cạnh góc vuông, c là độ dài cạnh huyền với điều kiện c - b eq 1;c + b eq 1. Chọn kết luận đúng.

    Do tam giác ABC vuông nên ta có:

    c^{2} = a^{2} + b^{2}

    \Rightarrow a^{2} = c^{2} -b^{2}

    \Rightarrow a^{2} = (c - b)(c +b)

    \Rightarrow log_{a}a^{2} =log_{a}\left\lbrack (c - b)(c + b) ightbrack

    \Rightarrow 2 = log_{a}\lbrack c -bbrack + log_{a}\lbrack c + bbrack

    \Rightarrow 2 = log_{a}\lbrack c -bbrack + log_{a}\lbrack c + bbrack

    \Rightarrow 2 = \frac{1}{log_{c - b}a} +\frac{1}{log_{c + b}a}

    \Rightarrow \log_{c + b}a + \log_{c - b}a= 2\log_{c + b}a.\log_{c - b}a

  • Câu 17: Vận dụng

    Cho n là số nguyên dương và một số a bất kì với a > 0,a eq 1. Biết

    \log_{a}2019 + \log_{\sqrt{a}}2019 +\log_{\sqrt[3]{a}}2019 + ... + \log_{\sqrt[n]{a}}2019 =2033136\log_{a}2019

    Khi đó giá trị của n là bao nhiêu?

    Ta có:

    \log_{a}2019 + \log_{\sqrt{a}}2019 +\log_{\sqrt[3]{a}}2019 + ... + \log_{\sqrt[n]{a}}2019 =2033136\log_{a}2019

    \Leftrightarrow \log_{a}2019 +2\log_{a}2019 + 3\log_{a}2019 + ... + n\log_{a}2019 =2033136\log_{a}2019

    \Leftrightarrow (1 + 2 + 3 + ... +n)\log_{a}2019 = 2033136\log_{a}2019

    \Leftrightarrow 1 + 2 + 3 + ... + n =
2033136

    \Leftrightarrow \frac{n(n + 1)}{2} =
2033136

    \Leftrightarrow \left\lbrack
\begin{matrix}
n = 2016(tm) \\
n = - 2017(ktm) \\
\end{matrix} ight.

    Vậy n = 2016

  • Câu 18: Nhận biết

    Tính giá trị của biểu thức \log_{2}5.\log_{5}64.

    Ta có: \log_{2}5.\log_{5}64 = \log_{2}64 =\log_{2}2^{6} = 6

  • Câu 19: Nhận biết

    Tìm giá trị của x để hàm số y = e^{x^{2} - 2x} có nghĩa.

    Hàm số y = e^{x^{2} - 2x} xác định với mọi x\in\mathbb{ R}

    Vật tập xác định của hàm số là: D=\mathbb{ R}.

  • Câu 20: Thông hiểu

    Cho hai số thực dương a và b. Đơn giản biểu thức E = \frac{a^{\frac{1}{3}}\sqrt{b} +
b^{\frac{1}{3}}.\sqrt{a}}{\sqrt[6]{a} + \sqrt[6]{b}} ta được E = a^{x}.b^{y}. Tích x.y là:

    Ta có:

    K = E = \frac{a^{\frac{1}{3}}\sqrt{b} +
b^{\frac{1}{3}}.\sqrt{a}}{\sqrt[6]{a} + \sqrt[6]{b}} =
\frac{a^{\frac{1}{3}}.b^{\frac{1}{2}} +
b^{\frac{1}{3}}.a^{\frac{1}{2}}}{a^{\frac{1}{6}} +
b^{\frac{1}{6}}}

    =
\frac{a^{\frac{1}{3}}.b^{\frac{1}{3}}\left( a^{\frac{1}{6}} +
b^{\frac{1}{6}} ight)}{a^{\frac{1}{6}} + b^{\frac{1}{6}}} =
a^{\frac{1}{3}}.b^{\frac{1}{3}}

    \Rightarrow \left\{ \begin{matrix}
x = \frac{1}{3} \\
y = \frac{1}{3} \\
\end{matrix} ight.\  \Rightarrow xy = \frac{1}{9}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo