Tìm giá trị tham số m để bất phương trình
có nghiệm đúng với mọi x.
Ta có:
Bất phương trình đã cho có nghiệm đúng với mọi x khi cả (1) và (2) đúng với mọi x.
Với hoặc
không thỏa mãn đề bài.
Với hoặc
để thỏa mãn đề bài thì:
Tìm giá trị tham số m để bất phương trình
có nghiệm đúng với mọi x.
Ta có:
Bất phương trình đã cho có nghiệm đúng với mọi x khi cả (1) và (2) đúng với mọi x.
Với hoặc
không thỏa mãn đề bài.
Với hoặc
để thỏa mãn đề bài thì:
Cho x là số thực dương. Biết rằng
với
là các số tự nhiên và
là phân số tối giản. Chọn khẳng định đúng?
Ta có:
Tập nghiệm của bất phương trình
là:
Điều kiện:
Bất phương trình tương đương:
Kết hợp với điều kiện ta được nghiệm bất phương trình là:
Vậy tập nghiệm bất phương trình là:
Tính
.
Ta có:
Xác định nghiệm của phương trình
![]()
Phương trình tương đương:
Anh B lần đầu gửi vào ngân hàng 50 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất 8,4 một năm. Đúng 3 kỳ hạn sau ngân hàng thay đổi lãi suất, anh B gửi tiếp 12 tháng nữa với kỳ hạn như cũ và lãi suất trong thời gian này là 12% một năm thì anh B rút tiền về. Hỏi số tiền anh B nhận được cả gốc và lãi là bao nhiêu?
Anh B lần đầu gửi vào ngân hàng 50 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất 8,4 một năm. Đúng 3 kỳ hạn sau ngân hàng thay đổi lãi suất, anh B gửi tiếp 12 tháng nữa với kỳ hạn như cũ và lãi suất trong thời gian này là 12% một năm thì anh B rút tiền về. Hỏi số tiền anh B nhận được cả gốc và lãi là bao nhiêu?
Tập nghiệm của phương trình
là:
Điều kiện
Ta có:
Vậy phương trình có tập nghiệm .
Cho
với
là các số tự nhiên. Trong các khẳng định sau, khẳng định nào đúng?
Ta có:
Do nên chỉ có một bộ số
thỏa mãn.
Khẳng định đúng là .
Rút gọn biểu thức
.
Ta có:
Biểu thức
viết dưới dạng lũy thừa của một số hữu tỉ là
. Kết quả nào sau đây đúng?
Ta có:
Với số thực dương
bất kì ta có
tương ứng với:
Với ta có:
Cho hai số thực dương a và b thỏa mãn
và
. Giá trị của biểu thức
là:
Theo điều kiện ta có:
Vào dịp sinh nhật con gái tròn 18 tuổi, gia đình anh B gửi vào ngân hàng 200 triệu đồng với lãi suất x%/năm (theo hình thức lãi kép), số tiền này chỉ được thanh toán khi con gái anh kết thúc chương trình 4 năm học đại học. Tính lãi suất kì hạn 1 năm của ngân hàng biết năm 22 tuổi con gái anh B nhận được tổng số tiền là 252 495 392 đồng.
Áp dụng công thức tính lãi kép ta có:
Vậy lãi suất ngân hàng là 6%.
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Trong các phương trình sau đây, phương trình nào vô nghiệm?
Ta có:
Hàm số mũ luôn dương nên phương trình vô nghiệm là phương trình
Biết rằng hai số tự nhiên
thỏa mãn
. Tính tổng giá trị của
và
?
Đáp án: 6
Biết rằng hai số tự nhiên thỏa mãn
. Tính tổng giá trị của
và
?
Đáp án: 6
Ta có:
Tìm tập xác định của hàm số
?
Điều kiện xác định
Suy ra tập xác định của hàm số là: .
Tìm tất cả các giá trị thực của tham số m để hàm số
xác định với mọi
.
Hàm số xác định với mọi x thuộc tập số thực:
Cho
biết rằng
với m và n là các số nguyên dương và phân số
tối giản. Tính giá trị biểu thức
.
Ta có:
Với a và b là hai số thực dương tùy ý thì
bằng:
Ta có: