Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tính giá trị biểu thức D = \log\left( \tan 1^{0} ight) + \log\left(
\tan 2^{0} ight) + ... + \log\left( tan89^{0} ight).

    Ta có:

    D = \log\left( \tan 1^{0} ight) +\log\left( \tan 2^{0} ight) + ... + \log\left( \tan89^{0}ight)

    D = \log\left( \tan1^{0}.\tan2^{0}...\tan89^{0} ight)

    D = \log\left\lbrack \tan1^{0}.\tan2^{0}...\tan\left( 90^{0} - 2^{0} ight).\tan\left( 90^{0} -1^{0} ight) ightbrack

    D = \log\left( \tan1^{0}.\tan2^{0}...\cot2^{0}.\cot1^{0} ight)

    D = \log\left\lbrack \left( \tan1^{0}..\cot1^{0} ight)\left( \tan 2^{0}.\cot2^{0} ight)...ightbrack

    D = \log1 = 0

  • Câu 2: Nhận biết

    Kết quả khi thu gọn biểu thức A =
x^{\frac{1}{2}}.x^{\frac{1}{3}}.\sqrt[6]{x} khi x > 0 là:

    Ta có:

    A =
x^{\frac{1}{2}}.x^{\frac{1}{3}}.\sqrt[6]{x} =
x^{\frac{1}{2}}.x^{\frac{1}{3}}.x^{\frac{1}{6}} = x^{\frac{1}{2} +
\frac{1}{3} + \frac{1}{6}} = x

  • Câu 3: Nhận biết

    Trong các hàm số dưới đây, hàm số nào nghịch biến trên tập xác định của nó?

    Hàm số y = \log_{\frac{e}{2\pi}}x có 0 < \frac{e}{2\pi} < 1 là hàm số nghịch biến trên tập xác định của nó.

    Các hàm số y = \log_{\sqrt{2}}x; y = \log_{\pi}2x; y = \log_{2}x có cơ số lớn hơn 1 nên đồng biến trên tập xác định của nó.

  • Câu 4: Nhận biết

    Giải phương trình 5^{x} = 10 thu được nghiệm:

    Ta có:

    5^{x} = 10 \Leftrightarrow x =\log_{5}10(tm)

    Vậy phương trình có nghiệm x =\log_{5}10.

  • Câu 5: Thông hiểu

    Giải phương trình \log_{2}\left( x^{2} + x + 1 ight) = 2 +\log_{2}x. Gọi S là tổng tất cả các nghiệm của phương trình. Giá trị của S là:

    Điều kiện xác định:

    \left\{ \begin{matrix}
x^{2} + x + 1 > 0 \\
x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\forall x\mathbb{\in R} \\
x > 0 \\
\end{matrix} ight.\  \Rightarrow x > 0

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{2}\left( x^{2} + x+ 1 ight) = \log_{2}4 + \log_{2}x

    \Leftrightarrow \log_{2}\left( x^{2} + x+ 1 ight) = \log_{2}(4x)

    \Leftrightarrow x^{2} + x + 1 =
4x

    \Leftrightarrow x^{2} - 3x + 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{3 + \sqrt{5}}{2}(tm) \\x = \dfrac{3 - \sqrt{5}}{2}(tm) \\\end{matrix} ight.

    \Rightarrow S = \frac{3 + \sqrt{5}}{2} +
\frac{3 - \sqrt{5}}{2} = 3

    Vậy S = 3

  • Câu 6: Nhận biết

    Hàm số nào sau đây phù hợp với hình vẽ:

    Ta có: y(1) = 0 và hàm số đồng biến trên (0; + \infty) nên chỉ có hàm số y = \log_{\sqrt{6}}x thỏa mãn.

  • Câu 7: Thông hiểu

    Thu gọn biểu thức H = \frac{a^{\frac{4}{3}}.b +
a.b^{\frac{4}{3}}}{\sqrt[3]{a} + \sqrt[3]{b}} với a,b là các số thực dương:

    Ta có:

    H = \frac{a^{\frac{4}{3}}.b +
a.b^{\frac{4}{3}}}{\sqrt[3]{a} + \sqrt[3]{b}} = \frac{ab\left(
a^{\frac{1}{3}} + b^{\frac{1}{3}} ight)}{a^{\frac{1}{3}} +
b^{\frac{1}{3}}} = ab

  • Câu 8: Thông hiểu

    Tìm tập xác định của hàm số y = f(x) = \log_{2}\frac{x + \sqrt{x} - 2}{x -2}?

    Hàm số xác định khi

    \frac{x + \sqrt{x} - 2}{x - 2} =\frac{\left( \sqrt{x} - 1 ight)\left( \sqrt{x} + 2 ight)}{x - 2}> 0

    \Leftrightarrow \frac{\sqrt{x} - 1}{x -2} > 0 \Leftrightarrow \left\lbrack \begin{matrix}0 \leq x < 1 \\2 < x \\\end{matrix} ight.

    Vậy tập xác định của hàm số là D =\lbrack 0;1) \cup (2; + \infty)

  • Câu 9: Vận dụng

    Biết phương trình 8lo{g_{2}}^{2}\sqrt[3]{x} + 2(m -
1)log_{\frac{1}{4}}x - 2019 = 0 có hai nghiệm phân biệt thỏa mãn x_{1}x_{2} = 4. Chọn mệnh đề đúng.

    Ta có:

    8\log{_{2}}^{2}\sqrt[3]{x} + 2(m -1)\log_{\frac{1}{4}}x - 2019 = 0

    \Leftrightarrow\frac{8}{9}\log{_{2}}^{2}x - (m - 1)\log_{2}x - 2019 = 0

    Đặt t = \log_{2}x \Leftrightarrow x =2^{t} ta được:

    \Leftrightarrow \frac{8}{9}t^{2} - (m -
1)t - 2019 = 0

    Phương trình đã cho có hai nghiệm phân biệt thỏa mãn x_{1}x_{2} = 4 khi và chỉ khi

    \frac{8}{9}t^{2} - (m - 1)t - 2019 =
0 có hai nghiệm phân biệt thỏa mãn.

    2^{t_{1} + t_{2}} = 4 \Leftrightarrow
t_{1} + t_{2} = 2

    \Leftrightarrow \frac{9(m - 1)}{8} = 2
\Rightarrow m = \frac{25}{9} \in (2;5).

  • Câu 10: Thông hiểu

    Cho hai số thực dương a và b thỏa mãn log_{9}a^{4} + log_{3}b = 8log_{3}a + log_{\sqrt[3]{3}}b = 9. Giá trị của biểu thức P = ab + 1 là:

    Theo điều kiện ta có:

    \left\{ \begin{matrix}\log_{9}a^{4} + \log_{3}b = 8 \\\log_{3}a + \log_{\sqrt[3]{3}}b = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}2\log_{9}a + \log_{3}b = 8 \\\log_{3}a + 3\log_{3}b = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\log_{9}a = 3 \\\log_{3}b = 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 27 \\b = 9 \\\end{matrix} ight. \Rightarrow
P = ab + 1 = 244

  • Câu 11: Nhận biết

    Cho x,y là hai số thực dương và a,b là hai số thực tùy ý. Đẳng thức nào sau đây sai?

    Biểu thức sai là: x^{a}.y^{b} = (xy)^{a +
b}

  • Câu 12: Nhận biết

    Cho các số dương a,b thỏa mãn 0 < a < 1 < b. Chọn khẳng định đúng.

    Xét tính đúng sai của từng đáp án dựa vào điểu kiện của a,b

    \log_{a}b < \log_{a}1 = 0 (vì \left\{ \begin{matrix}
0 < a < 1 \\
b > 1 \\
\end{matrix} ight.) nên \log_{a}b < 0 đúng

    a < b nên \ln a < \ln b. Vậy \ln a > \ln b sai.

    \left\{ \begin{matrix}
a < b \\
0 < 0,5 < 1 \\
\end{matrix} ight. nên (0,5)^{a} > (0,5)^{b}. Vậy (0,5)^{a} < (0,5)^{b} sai.

    \left\{ \begin{matrix}
2 > 1 \\
a < b \\
\end{matrix} ight. nên 2^{a}
< 2^{b}. vậy 2^{a} >
2^{b} sai.

  • Câu 13: Thông hiểu

    Cho hai số thực dương a,b. Tính giá trị biểu thức: M = \log_{\sqrt{2}}a - \log_{2}b biết a^{2} - 16b = 0?

    Ta có: a^{2} - 16b = 0 \Rightarrow b =
\frac{a^{2}}{16}

    M = \log_{\sqrt{2}}a - \log_{2}b =\log_{\sqrt{2}}a - \log_{2}\frac{a^{2}}{16}

    = 2\log_{a}a - 2\log_{2}a + \log_{2}16 =\log_{2}16 = 4

  • Câu 14: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết \log_{3}a = x;\log_{3}b =y với a,b \in
\mathbb{R}^{+}. Khi đó \log_{3}\left( 3a^{4}b^{5} ight) = 1 + 4x +5y Đúng||Sai

    b) Tập xác định của hàm số y = \sqrt{(x- 2)^{0}} + \log_{2}\left( 9 - x^{2} ight) là D = (2;3) Sai||Đúng

    c) Hàm số y = \ln( - x) nghịch biến trên khoảng ( - \infty;0)Sai||Đúng

    d) Có 31 giá trị nguyên của x thỏa mãn \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0 Đúng||Sai

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết \log_{3}a = x;\log_{3}b =y với a,b \in
\mathbb{R}^{+}. Khi đó \log_{3}\left( 3a^{4}b^{5} ight) = 1 + 4x +5y Đúng||Sai

    b) Tập xác định của hàm số y = \sqrt{(x- 2)^{0}} + \log_{2}\left( 9 - x^{2} ight) là D = (2;3) Sai||Đúng

    c) Hàm số y = \ln( - x) nghịch biến trên khoảng ( - \infty;0)Sai||Đúng

    d) Có 31 giá trị nguyên của x thỏa mãn \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0 Đúng||Sai

    a) Ta có:

    \log_{3}\left( 3a^{4}b^{5} ight) =\log_{3}(3) + \log_{3}\left( a^{4} ight) + \log_{3}\left( b^{5}ight)

    = 1 + 4\log_{3}a + 5\log_{3}b = 1 + 4x +5y

    b) Điều kiện xác định: \left\{
\begin{matrix}
x - 2 eq 0 \\
9 - x^{2} > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x eq 2 \\
- 3 < x < 3 \\
\end{matrix} ight.\  \Leftrightarrow D = ( - 3;3)\backslash\left\{ 2
ight\}

    c) Điều kiện xác định: x <
0

    Cơ số a = e > 1 do đó hàm số đồng biến trên ( - \infty;0).

    d) Xét hàm số \left( 3^{x^{2}} - 9^{x}ight)\left\lbrack \log_{2}(x + 30) - 5 ightbrack = f(x) với x > - 30

    Cho f(x) = 0 \Leftrightarrow \left\lbrack\begin{matrix}3^{x^{2}} - 9^{x} = 0 \\\log_{2}(x + 30) - 5 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
3^{x^{2}} = 3^{2x} \\
x + 30 = 2^{5} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 0 \\
\end{matrix} ight.

    Ta có bảng xét dấu như sau:

    Suy ra f(x) \leq 0 \Leftrightarrow
\left\lbrack \begin{matrix}
- 30 < x \leq 0 \\
x = 2 \\
\end{matrix} ight.

    Mặt khác x\mathbb{\in Z \Rightarrow}x \in
\left\{ - 29; - 28; - 27;...; - 2; - 1;0;2 ight\}

    Vậy có 31 số nguyên của x thỏa mãn bất phương trình \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0.

  • Câu 15: Nhận biết

    Tìm nghiệm của phương trình \log_{2}(x - 5) = 3?

    Điều kiện xác định: x > 5

    \log_{2}(x - 5) = 3 \Leftrightarrow x - 5= 2^{3} \Leftrightarrow x = 13(tm)

    Vậy phương trình có nghiệm x =
13.

  • Câu 16: Thông hiểu

    Xác định nghiệm của phương trình \sqrt{2^{x}.\sqrt[3]{4^{x}}.\sqrt[3]{0,125}} =
4\sqrt[3]{2}.

    Điều kiện xác định: x \in
\mathbb{N}^{*}

    Phương trình đã cho được viết lại như sau:

    \sqrt{2^{x}.\sqrt[3]{4^{x}}.\sqrt[3]{0,125}} =
4\sqrt[3]{2}

    \Leftrightarrow
\sqrt{2^{x}.2^{\frac{2x}{3}}.2^{- \frac{1}{2x}}} =
2^{x}.2^{\frac{1}{3}}

    \Leftrightarrow
\sqrt{2^{x}.2^{\frac{2x}{3}}.2^{- \frac{1}{2x}}} =
2^{x}.2^{\frac{1}{3}}

    \Leftrightarrow \frac{x}{2} +
\frac{x}{3} - \frac{1}{2x} = \frac{7}{3}

    \Leftrightarrow \left\lbrack\begin{matrix}x = 3(tm) \\x = - \dfrac{1}{5}(ktm) \\\end{matrix} ight.

    Vậy phương trình có nghiệm x =
3.

  • Câu 17: Vận dụng

    Chị X gửi tiết kiệm ngân hàng 100 triệu đồng với lãi suất 8,4%/năm. Sau bao nhiêu năm chị X thu được gấp đôi số tiền ban đầu? Biết lãi hàng năm được nhập vào vốn.

    Gọi số tiền ban đầu chị X gửi vào ngân hàng là A, lãi suất là r và sau n năm được tính theo công thức T_{n} =
A.(1 + r)^{n}.

    Để số tiền sau n năm thu được gấp đôi số tiền ban đầu ta có phương trình:

    A(1 + r)^{n} = 2A

    \Leftrightarrow 1,084^{n} =
2

    \Leftrightarrow n \approx
8,594

    Vậy sau 9 năm người gửi thu được gấp đôi số tiền ban đầu.

  • Câu 18: Vận dụng

    Biết \left(
\sqrt{5} - 2 ight)^{- a} > \left( \sqrt{5} + 2
ight)^{b}. Chọn khẳng định đúng?

    Ta có:

    \sqrt{5} - 2 = \frac{1}{\sqrt{5} +
2};\sqrt{5} + 2 > 1

    Nên \left( \sqrt{5} - 2 ight)^{- a}
> \left( \sqrt{5} + 2 ight)^{b}

    \Leftrightarrow \left( \sqrt{5} + 2
ight)^{a} > \left( \sqrt{5} + 2 ight)^{b} \Leftrightarrow a >
b

  • Câu 19: Vận dụng cao

    Cho số thực dương a và b. Biểu thức thu gọn của biểu thức

    P = \left( {2{a^{\frac{1}{4}}} - 3{b^{\frac{1}{4}}}} ight).\left( {2{a^{\frac{1}{4}}} + 3{b^{\frac{1}{4}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight)

    có dạng P = xa + yb. Tính x + y.

    Ta có:

    \begin{matrix}  P = \left( {2{a^{\frac{1}{4}}} - 3{b^{\frac{1}{4}}}} ight).\left( {2{a^{\frac{1}{4}}} + 3{b^{\frac{1}{4}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left[ {{{\left( {2{a^{\frac{1}{4}}}} ight)}^2} - {{\left( {3{b^{\frac{1}{4}}}} ight)}^2}} ight].\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left( {4{a^{\frac{1}{2}}} - 9{b^{\frac{1}{2}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left[ {{{\left( {4{a^{\frac{1}{2}}}} ight)}^2} - {{\left( {9{b^{\frac{1}{2}}}} ight)}^2}} ight] = 16a - 81b \hfill \\   \Rightarrow x = 16;y =  - 81 \hfill \\   \Rightarrow y - x =  - 97 \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Cho hàm số f(x)
= \frac{x^{\frac{2}{3}}.\left( \sqrt[3]{x^{- 2}} - \sqrt[3]{x}
ight)}{x^{\frac{1}{8}}.\left( \sqrt[8]{x^{3}} - \sqrt[8]{x}
ight)} với x > 0;x eq
1. Hãy xác định giá trị f\left(
2021^{2022} ight)?

    Ta có:

    f(x) = \frac{x^{\frac{2}{3}}.\left(
\sqrt[3]{x^{- 2}} - \sqrt[3]{x} ight)}{x^{\frac{1}{8}}.\left(
\sqrt[8]{x^{3}} - \sqrt[8]{x} ight)} = \frac{x^{\frac{2}{3}}.\left(
x^{- \frac{2}{3}} - x^{\frac{1}{3}} ight)}{x^{\frac{1}{8}}.\left(
x^{\frac{3}{8}} - x^{\frac{1}{8}} ight)}

    = \frac{- \left( x^{\frac{1}{2}} - 1
ight)\left( x^{\frac{1}{2}} + 1 ight)}{x^{\frac{1}{2}} - 1} = -
x^{\frac{1}{2}} - 1

    Khi đó: f\left( 2021^{2022} ight) =
\left( 2021^{2022} ight)^{\frac{1}{2}} - 1 = - 2021^{1011} -
1

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 24 lượt xem
Sắp xếp theo