Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Biết rằng x =
\frac{1}{256};y = \frac{1}{27}. Tính giá trị của biểu thức C = x^{\frac{- 3}{4}} + y^{\frac{-
4}{3}}.

    Thay x = \frac{1}{256};y =
\frac{1}{27} vào biểu thức C =
x^{\frac{- 3}{4}} + y^{\frac{- 4}{3}} ta được:

    C = \left( \frac{1}{256}
ight)^{\frac{- 3}{4}} + \left( \frac{1}{27} ight)^{\frac{- 4}{3}} =
\left( 4^{- 4} ight)^{\frac{- 3}{4}} + \left( 3^{- 3} ight)^{\frac{-
4}{3}}

    = 4^{3} + 3^{4} = 145

  • Câu 2: Nhận biết

    Hàm số nào dưới đây đồng biến trên \mathbb{R}?

    Ta có: \frac{\sqrt{2} + \sqrt{3}}{e} >
1 nên hàm số y = \left(
\frac{\sqrt{2} + \sqrt{3}}{e} ight)^{x} đồng biến trên \mathbb{R}.

  • Câu 3: Thông hiểu

    Bác H gửi vào ngân hàng 100 triệu đồng với lãi suất 6% một năm. Sau thời gian 10 năm nếu không rút lãi lần nào thì số tiền ông An nhận được tính cả gốc và lãi là bao nhiêu? Biết nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu.

    Đáp án: 179084769,7||179084769.7

    Đáp án là:

    Bác H gửi vào ngân hàng 100 triệu đồng với lãi suất 6% một năm. Sau thời gian 10 năm nếu không rút lãi lần nào thì số tiền ông An nhận được tính cả gốc và lãi là bao nhiêu? Biết nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu.

    Đáp án: 179084769,7||179084769.7

    Gọi a là số tiền tiết kiệm ban đầu, r là lãi suất

    Sau 1 tháng, số tiền cả gốc và lãi là: a(1 + r)

    Sau n tháng, số tiền cả gốc và lãi là: a(1 + r)^{n}

    Số tiền sau 10 năm với lãi suất 6% một năm là:

    10^{8}.(1 + 6\%)^{10} =
179084769,7 (triệu đồng).

  • Câu 4: Vận dụng

    Tính tổng các nghiệm nguyên thuộc đoạn \lbrack - 10;10brack của bất phương trình:

    \left( 1 + \sqrt{10}ight)^{\log_{3}(x + 9)} - \frac{5}{3}\left( - 1 + \sqrt{10}ight)^{\log_{3}(x + 9)} \geq - \frac{2}{3}x - 6

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tính tổng các nghiệm nguyên thuộc đoạn \lbrack - 10;10brack của bất phương trình:

    \left( 1 + \sqrt{10}ight)^{\log_{3}(x + 9)} - \frac{5}{3}\left( - 1 + \sqrt{10}ight)^{\log_{3}(x + 9)} \geq - \frac{2}{3}x - 6

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Thông hiểu

    Tìm nghiệm nguyên nhỏ nhất của bất phương trình \log_{2}\left( \log_{4}x ight) \geq  \log_{4}\left( \log_{2}x ight).

    Điều kiện: \left\{ \begin{gathered}
  {\log _4}x > 0 \hfill \\
  {\log _2}x > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow x > 1

    Bất phương trình tương đương

    \log_{2}\left( \log_{4}x ight) \geq  \log_{2}\sqrt{\log_{2}x}

    \Leftrightarrow \log_{4}x \geq\sqrt{\log_{2}x}

    \Leftrightarrow \left( \log_{2^{2}}xight)^{2} \geq \log_{2}x

    \Leftrightarrow \frac{1}{4}\left(\log_{2}x ight)^{2} \geq \log_{2}x

    \Leftrightarrow \log_{2}x \geq 4\Leftrightarrow x \geq 16

    Vậy nghiệm nguyên nhỏ nhất của bất phương trình là x = 16.

  • Câu 6: Nhận biết

    Cho hai số thực ab với a >
0,a eq 1;b eq 0. Kết luận nào sau đây sai?

    Theo tính chất Logarit dễ thấy

    \log_{a^{3}}|b| =\frac{1}{2}\log_{a}|b|

    \frac{1}{2}\log_{a}b^{2} =\log_{a}|b|

    \frac{1}{2}log_{a}a^{2} = 1

    Do thiếu điều kiện của b nên \frac{1}{2}log_{a}b^{2} = log_{a}b là đáp án sai.

  • Câu 7: Thông hiểu

    Tập nghiệm của bất phương trình \log_{3}\left( 31 - x^{2} ight) \geq 3 là:

    Điều kiện: 31 - x^{2} > 0
\Leftrightarrow x \in \left( - \sqrt{31};\sqrt{31}
ight)(*)

    Ta có:

    \log_{3}\left( 31 - x^{2} ight) \geq 3\Leftrightarrow 31 - x^{2} \geq 27 \Leftrightarrow - 2 \leq x \leq2

    Kết hợp với điều kiện xác định ta suy ra được tập nghiệm của bất phương trình đã cho là: \lbrack -
2;2brack.

  • Câu 8: Thông hiểu

    Cho x = \left( 2
+ \sqrt{3} ight)^{- 1}y =
\left( 2 - \sqrt{3} ight)^{- 1}. Tính giá trị biểu thức B = (x + 1)^{- 1} + (y + 1)^{- 1}?

    Ta có:

    x = \left( 2 + \sqrt{3} ight)^{- 1} =
\frac{1}{2 + \sqrt{3}} = \frac{2 - \sqrt{3}}{2^{2} - \left( \sqrt{3}
ight)^{2}} = 2 - \sqrt{3}

    y = \left( 2 - \sqrt{3} ight)^{- 1} =
\frac{1}{2 - \sqrt{3}} = \frac{2 + \sqrt{3}}{2^{2} - \left( \sqrt{3}
ight)^{2}} = 2 + \sqrt{3}

    Khi đó:

    B = (x + 1)^{- 1} + (y + 1)^{-
1}

    B = \left( 2 - \sqrt{3} + 1 ight)^{-
1} + \left( 2 + \sqrt{3} + 1 ight)^{- 1}

    B = \left( 3 - \sqrt{3} ight)^{- 1} +
\left( 3 + \sqrt{3} ight)^{- 1}

    B = \frac{1}{3 - \sqrt{3}} + \frac{1}{3
+ \sqrt{3}}

    B = \frac{3 + \sqrt{3} + 3 -
\sqrt{3}}{\left( 3 - \sqrt{3} ight)\left( 3 + \sqrt{3} ight)} =
\frac{6}{9 - 3} = 1

  • Câu 9: Nhận biết

    Xác định nghiệm của bất phương trình 5^{x - 2} \leq \frac{1}{5}?

    Ta có:

    5^{x - 2} \leq \frac{1}{5}
\Leftrightarrow 5^{x - 2} \leq 5^{- 1}

    \Leftrightarrow x - 2 \leq - 1
\Leftrightarrow x \leq 1 hay x \in
( - \infty;1brack

  • Câu 10: Thông hiểu

    Hình vẽ dưới đây biểu diễn đồ thị của hàm số nào trong các hàm số dưới đây?

    Từ hình vẽ suy ra hàm số đồng biến nên loại hàm số y = \log_{\frac{1}{2}}x

    Lại từ hình vẽ suy đồ thị hàm số đi qua điểm \left( \frac{1}{2}; - 1 ight)

    Kiểm tra ta thấy \left\{ \begin{matrix}- 1 eq \log_{2}\left( 2.\dfrac{1}{2} ight) \\- 1 = \log_{2}\dfrac{1}{2} \\- 1 eq \log_{\sqrt{2}}\dfrac{1}{2} \\\end{matrix} ight. nên loại các hàm số y = \log_{2}(2x), y = \log_{\sqrt{2}}x.

  • Câu 11: Thông hiểu

    Cho a =\log_{12}18;b = \log_{24}54 . Tính giá trị biểu thức T = 5(a - b) + ab.

    Ta có: \left\{ \begin{matrix}a = log_{12}18 = \dfrac{log_{3}18}{log_{3}12} = \dfrac{log_{3}2 +2}{2log_{3}2 + 1} \\b = log_{24}54 = \dfrac{log_{3}54}{log_{3}24} = \dfrac{log_{3}2 +3}{3log_{3}2 + 1} \\\end{matrix} ight.

    Đặt x = log_{3}2 khi đó \left\{ \begin{matrix}a = \dfrac{x + 2}{2x + 1} \\b = \dfrac{x + 3}{3x + 1} \\\end{matrix} ight.

    Ta có: T = 5(a - b) + ab

    T = 5\left( \frac{x - 2}{2x + 1} -
\frac{x + 3}{3x + 1} ight) + \frac{x + 2}{2x + 1}.\frac{x + 3}{3x +
1}

    T = \frac{5\left\lbrack (x + 2)(3x + 1)
- (x + 3)(2x + 1) ightbrack + (x + 2)(x + 3)}{(2x + 1)(3x +
1)}

    T = \frac{6x^{2} + 3x + 1}{(2x + 1)(3x +
1)} = 1

  • Câu 12: Thông hiểu

    Cho a =\log_{7}12;b = \log_{12}14. Tính \log_{54}168 theo ab.

    Ta có: a = \log_{7}12 \Leftrightarrow a =\log_{7}3 + 2\log_{7}2

    Mặt khác ab = \log_{7}12.\log_{12}14 =\log_{7}14 = \log_{7}2 + 1

    \Rightarrow \log_{7}2 = ab -1

    Thay vào trên ta được

    \log_{7}3 = a - 2\log_{7}2 = a - 2(ab - 1)= a - 2ab + 2

    Từ đó ta biến đổi biểu thức về cơ số 7 ta được:

    \log_{54}168 =\frac{\log_{7}168}{\log_{7}54} = \frac{3\log_{7}2 + \log_{7}3 + 1}{3\log_{7}3+ \log_{7}2}

    = \frac{3ab - 3 + a - 2ab + 2 + 1}{3a -6ab + 6 + ab - 1} = \frac{ab + a}{3a - 5ab + 5}

  • Câu 13: Nhận biết

    Cho phương trình 2^{m^{2} - 2m - 3} = 1. Tìm tập nghiệm S của phương trình đã cho.

    Ta có:

    2^{m^{2} - 2m - 3} = 1

    \Leftrightarrow 2^{m^{2} - 2m - 3} =
2^{0}

    \Leftrightarrow m^{2} - 2m - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = 3 \\
\end{matrix} ight.\ (tm)

    Vậy tập nghiệm của phương trình là S =
\left\{ - 1;3 ight\}

  • Câu 14: Nhận biết

    Cho x,y là hai số thực dương và a,b là hai số thực tùy ý. Đẳng thức nào sau đây sai?

    Biểu thức sai là: x^{a}.y^{b} = (xy)^{a +
b}

  • Câu 15: Thông hiểu

    Khẳng định nào sau đây sai?

    Ta có: \left\{ \begin{matrix}
0 < \sqrt{3} - 1 < 1 \\
2018 > 2019 \\
\end{matrix} ight.

    \Rightarrow \left( \sqrt{3} - 1
ight)^{2018} < \left( \sqrt{3} - 1 ight)^{2017}

  • Câu 16: Vận dụng

    Cho ba số thực dương x, y, z thwo thứ tự lập thành một cấp số nhân, đồng thời với mỗi số thực dương a,(a eq 1) thì log_{a}x;log_{\sqrt{a}}y;log_{\sqrt[3]{a}}z theo thứ tự lập thành một cấp số cộng. Tính giá trị của biểu thức T = \frac{1959x}{y} + \frac{2019y}{z} +
\frac{60z}{x}?

    Theo đề bài ta có:

    \left\{ \begin{matrix}xz = y^{2} \\\log_{a}x + \log_{\sqrt[3]{a}}z = 2\log_{\sqrt{a}}y \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
xz = y^{2} \\
xz^{3} = y^{4} \\
\end{matrix} ight.\  \Leftrightarrow x = y = z

    Do đó: T = \frac{1959x}{y} +\frac{2019y}{z} + \frac{60z}{x}= 1959 + 2019 + 60 = 4038

  • Câu 17: Vận dụng cao

    Tìm tất cả các tập giá trị của a để  \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}}?

    Ta có: \sqrt[7]{{{a^2}}} = \sqrt[{21}]{{{a^6}}}

    => \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}} \Rightarrow \sqrt[{21}]{{{a^5}}} > \sqrt[{21}]{{{a^6}}}

    Mà 5 < 6 => 0 < a < 1

  • Câu 18: Vận dụng

    Tìm tất cả các giá trị của tham số m để phương trình \left( \frac{1}{5}
ight)^{\left| x^{2} - 4x + 3 ight|} = m^{4} - m^{2} + 1 có bốn nghiệm phân biệt.

    Phương trình đã cho viết lại như sau:

    \left| x^{2} - 4x + 3 ight| =\log_{\frac{1}{5}}\left( m^{4} - m^{2} + 1 ight)

    Xét đồ thị hàm số y = \left| x^{2} - 4x +
3 ight| như hình vẽ.

    Phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi:

    0 < {\log _{\frac{1}{5}}}\left( {{m^4} - {m^2} + 1} ight) < 1

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {{m^4} - {m^2} < 0} \\ 
  {{m^4} - {m^2} + \dfrac{4}{5} > 0} 
\end{array}} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m eq 0 \\
- 1 < m < 1 \\
\end{matrix} ight.

  • Câu 19: Nhận biết

    Hãy xác định tập xác định D của hàm số y = \log_{2}(3 - x)?

    Điều kiện xác định của hàm số y =
log_{2}(3 - x) là:

    3 - x > 0 \Leftrightarrow x <
3

    Vậy tập xác định của hàm số đã cho là D =
( - \infty;3).

  • Câu 20: Vận dụng

    Cho biết {\left( {x - 2} ight)^{ - \frac{1}{3}}} > {\left( {x - 2} ight)^{ - \frac{1}{6}}}, khẳng định nào sau đây đúng?

    Điều kiện: x - 2 > 0 \to x > 2

    Ta có:

    - \frac{1}{3} >  - \frac{1}{6} \Rightarrow {\left( {x - 2} ight)^{ - \frac{1}{3}}} > {\left( {x - 2} ight)^{ - \frac{1}{6}}}

    \Rightarrow x - 2 < 1 \Rightarrow x < 3

    Vậy 2 < x < 3

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo