Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số f(x)
= \frac{x^{\frac{2}{3}}.\left( \sqrt[3]{x^{- 2}} - \sqrt[3]{x}
ight)}{x^{\frac{1}{8}}.\left( \sqrt[8]{x^{3}} - \sqrt[8]{x}
ight)} với x > 0;x eq
1. Hãy xác định giá trị f\left(
2021^{2022} ight)?

    Ta có:

    f(x) = \frac{x^{\frac{2}{3}}.\left(
\sqrt[3]{x^{- 2}} - \sqrt[3]{x} ight)}{x^{\frac{1}{8}}.\left(
\sqrt[8]{x^{3}} - \sqrt[8]{x} ight)} = \frac{x^{\frac{2}{3}}.\left(
x^{- \frac{2}{3}} - x^{\frac{1}{3}} ight)}{x^{\frac{1}{8}}.\left(
x^{\frac{3}{8}} - x^{\frac{1}{8}} ight)}

    = \frac{- \left( x^{\frac{1}{2}} - 1
ight)\left( x^{\frac{1}{2}} + 1 ight)}{x^{\frac{1}{2}} - 1} = -
x^{\frac{1}{2}} - 1

    Khi đó: f\left( 2021^{2022} ight) =
\left( 2021^{2022} ight)^{\frac{1}{2}} - 1 = - 2021^{1011} -
1

  • Câu 2: Vận dụng

    Tìm điều kiện của tham số m để phương trình \ln(x - 2) = \ln(mx) có nghiệm?

    Ta có:

    \ln(x - 2) = \ln(mx) \Leftrightarrow
\left\{ \begin{matrix}
x - 2 > 0 \\
x - 2 = mx \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x > 2 \\
(m - 1)x = - 2 \\
\end{matrix} ight.

    Phương trình \ln(x - 2) =
\ln(mx) có nghiệm khi và chỉ khi phương trình (m - 1)x = - 2 có nghiệm x > 2

    Xét phương trình (m - 1)x = -
2

    Nếu m = 1 phương trình vô nghiệm

    Nếu m eq 1 \Leftrightarrow x = -
\frac{2}{m - 1} có nghiệm x >
2 khi và chỉ khi

    - \frac{2}{m - 1} > 2 \Leftrightarrow
1 + \frac{1}{m - 1} < 0

    \Leftrightarrow \frac{m}{m - 1} < 0
\Leftrightarrow 0 < m < 1

    Vậy m \in (0;1) thỏa mãn yêu cầu đề bài.

  • Câu 3: Vận dụng

    Cho các số thức a, b thỏa mãn 1 < a < b\log_{a}b + \log_{b}a^{2} = 3. Tính giá trị của biểu thức T = \log_{ab}\frac{a^{2} +b}{2}?

    Ta có:

    \log_{a}b + \log_{b}a^{2} = 3\Leftrightarrow \log_{a}b + 2\log_{b}a = 3(*)

    Đặt t = \log_{a}b. Do 1 < a < b \Rightarrow t > log_{a}b
\Rightarrow t > 1

    Khi đó t + \frac{2}{t} = 3
\Leftrightarrow t^{2} - 3t + 2 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t = 1(ktm) \\
t = 2(tm) \\
\end{matrix} ight.

    Với t = 2 ta có: \log_{a}b = 2 \Rightarrow b = a^{2}

    => T = \log_{ab}\frac{a^{2} + b}{2} =\log_{a^{3}}a^{2} = \frac{2}{3}\log_{a}a = \frac{2}{3}

  • Câu 4: Nhận biết

    Rút gọn biểu thức F = a^{\frac{7}{3}}:\sqrt[3]{a};(a >
0) ta được:

    Ta có:

    F = a^{\frac{7}{3}}:\sqrt[3]{a} =
a^{\frac{7}{3}}:a^{\frac{1}{3}} = a^{\frac{7}{3} - \frac{1}{3}} =
a^{2}

  • Câu 5: Thông hiểu

    Tính giá trị biểu thức S = \log_{\sqrt{a}}b^{2} +\frac{2}{\log_{\frac{a}{b^{2}}}a} với a,b > 0;a,b eq 1;a eq b^{2}.

    Ta có:

    S = \log_{\sqrt{a}}b^{2} +\frac{2}{\log_{\frac{a}{b^{2}}}a}

    S = 4\log_{a}b +2.\log_{a}\frac{a}{b^{2}}

    S = 4\log_{a}b + 2.\log_{a}a - 4\log_{a}b =2

  • Câu 6: Thông hiểu

    Phương trình 7^{x + 1} = \left( \frac{1}{7} ight)^{x^{2} - 2x
- 3} có hai nghiệm x_{1};x_{2}. Khi đó giá trị biểu thức T = 2{x_{1}}^{2} + 3{x_{2}}^{2} bằng bao nhiêu? Biết rằng x_{1} <
x_{2}.

    Ta có:

    7^{x + 1} = \left( \frac{1}{7}
ight)^{x^{2} - 2x - 3} \Leftrightarrow 7^{x + 1} = 7^{- \left( x^{2} -
2x - 3 ight)}

    \Leftrightarrow x + 1 = - \left( x^{2} -
2x - 3 ight) \Leftrightarrow x^{2} - x - 2 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{1} = - 1 \\
x_{2} = 2 \\
\end{matrix} ight.\ (tm) \Rightarrow T = 2{x_{1}}^{2} + 3{x_{2}}^{2} =
16

  • Câu 7: Thông hiểu

    Giá trị của \log_{3}H với H =
\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} là: 21/100

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giá trị của \log_{3}H với H =
\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} là: 21/100

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Ta có:

    H =\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} =3^{\dfrac{1}{10}}27^{\dfrac{1}{10}.\dfrac{1}{5}}.243^{\dfrac{1}{10}.\dfrac{1}{5}.\dfrac{1}{2}}= 3^{\dfrac{21}{100}}

    \Rightarrow \log_{3}H =\log_{3}3^{\frac{21}{100}} = \frac{21}{100}

  • Câu 8: Nhận biết

    Xác định số nghiệm của phương trình: \left( \frac{1}{3} ight)^{x^{2} - 4x} =
9?

    Ta có:

    \left( \frac{1}{3} ight)^{x^{2} - 4x}
= 9 \Leftrightarrow \left( 3^{- 1} ight)^{x^{2} - 4x} =
3^{2}

    \Leftrightarrow - \left( x^{2} - 4x
ight) = 2 \Leftrightarrow x^{2} - 4x + 2 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 2 + \sqrt{2} \\
x = 2 - \sqrt{2} \\
\end{matrix} ight.\ (tm)

    Vậy phương trình đã cho có 2 nghiệm.

  • Câu 9: Thông hiểu

    Giả sử phương trình \log_{\sqrt{2}}x + \log_{\frac{1}{2}}(2x - 1) =1 có nghiệm lớn nhất là x = m +
n\sqrt{2};\left( m,n\mathbb{\in Z} ight). Tính giá trị biểu thức A = m + 2n?

    Điều kiện xác định \left\{ \begin{matrix}x > 0 \\2x - 1 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > 0 \\x > \dfrac{1}{2} \\\end{matrix} ight.\  \Rightarrow x > \frac{1}{2}

    Phương trình đã cho tương đương:

    \Leftrightarrow 2\log_{2}x - \log_{2}(2x -1) = 1

    \Leftrightarrow \log_{2}\left(\frac{x^{2}}{2x - 1} ight) = 1

    \Leftrightarrow \frac{x^{2}}{2x - 1} = 2
\Leftrightarrow x^{2} - 4x + 2 = 0

    Nghiệm lớn nhất của phương trình là

    x = 2 + \sqrt{2} \Rightarrow \left\{
\begin{matrix}
m = 2 \\
n = 1 \\
\end{matrix} ight.\  \Rightarrow A = m + 2n = 4

  • Câu 10: Thông hiểu

    Tìm tập xác định của hàm số y = \left( x^{2} - 3x + 2
ight)^{\pi}là:

    Điều kiện xác định:

    x^{2} - 3x + 2 > 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x < 1 \\
x > 2 \\
\end{matrix} ight.

    Vậy tập xác định là: D = ( - \infty;1)
\cup (2; + \infty)

  • Câu 11: Nhận biết

    Trong các hàm số sau hàm số nào nghịch biến trên tập số thực?

    Loại các đáp án y =\log_{\frac{\pi}{4}}\left( 2x^{2} + 1 ight)y = \log_{\frac{1}{2}}x vì các hàm số trong các đáp án này không xác định trên \mathbb{R}.

    \frac{2}{e} < 1 nên hàm số nghịch biến trên \mathbb{R}.

  • Câu 12: Thông hiểu

    Thu gọn biểu thức H = \frac{a^{\frac{4}{3}}.b +
a.b^{\frac{4}{3}}}{\sqrt[3]{a} + \sqrt[3]{b}} với a,b là các số thực dương:

    Ta có:

    H = \frac{a^{\frac{4}{3}}.b +
a.b^{\frac{4}{3}}}{\sqrt[3]{a} + \sqrt[3]{b}} = \frac{ab\left(
a^{\frac{1}{3}} + b^{\frac{1}{3}} ight)}{a^{\frac{1}{3}} +
b^{\frac{1}{3}}} = ab

  • Câu 13: Nhận biết

    Với a và b là hai số thực dương tùy ý thì \log\left( ab^{2} ight) bằng:

    Ta có:

    \log\left( ab^{2} ight) = \log a +\log b^{2} = \log a + 2\log b

  • Câu 14: Vận dụng

    Cho x > 0;y > 0. Viết biểu thức {x^{\frac{4}{5}}}.\sqrt[6]{{{x^5}\sqrt x }} = {x^m}{y^{\frac{4}{5}}}:\sqrt[6]{{{y^5}\sqrt y }} = {y^n}. Tính T = m - n

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{{\left( {{x^m}} ight)}^6} = {x^{\frac{{24}}{5}}}.{x^5}.{x^{\frac{1}{2}}} = {x^{\frac{{103}}{{10}}}} \Rightarrow m = \dfrac{{103}}{{60}}} \\   {{{\left( {{y^n}} ight)}^6} = {y^{\frac{{24}}{5}}}:\left( {{y^5}.{y^{\frac{1}{2}}}} ight) = {y^{ - \frac{7}{{10}}}} \Rightarrow n =  - \dfrac{7}{{60}}} \end{array}} ight. \Rightarrow T = m - n = \frac{{11}}{6}

  • Câu 15: Nhận biết

    Tính 2^{3 -\sqrt{2}}.4^{\sqrt{2}}.

    Ta có:

    2^{3 - \sqrt{2}}.4^{\sqrt{2}} = 2^{3 -\sqrt{2}}.\left( 2^{2} ight)^{\sqrt{2}}

    = 2^{3 - \sqrt{2}}.2^{2\sqrt{2}} = 2^{3- \sqrt{2} + 2\sqrt{2}} = 2^{3 + \sqrt{2}}

  • Câu 16: Vận dụng

    Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Thông hiểu

    Cho hàm số f(x) =
\frac{9^{x}}{9^{x} + 3};\left( x\mathbb{\in R} ight) và hai số a,b thỏa mãn a + b = 1. Khi đó f(a) + f(b) bằng bao nhiêu?

    Ta có:

    f(a) + f(b) = \dfrac{9^{1 - b}}{9^{1 - b}+ 3} + \dfrac{9^{b}}{9^{b} + 3}

    = \dfrac{\dfrac{9}{9^{b}}}{\dfrac{9}{9^{b}}+ 3} + \dfrac{9^{b}}{9^{b} + 3} = \dfrac{9}{9 + 3.9^{b}} +\frac{9^{b}}{9^{b} + 3} = 1

  • Câu 18: Nhận biết

    Xác định nghiệm phương trình \log_{2}x + 1 = 0?

    Điều kiện xác định: x > 0

    \log_{2}x + 1 = 0 \Leftrightarrow \log_{2}x = - 1

    \Leftrightarrow x = 2^{- 1} =
\frac{1}{2}(tm)

    Vậy phương trình có nghiệm x =
\frac{1}{2}.

  • Câu 19: Nhận biết

    Tìm tập xác định của hàm số y = \log(x - 2)^{2}.

    Điều kiện xác định (x - 2)^{2} > 0
\Rightarrow x eq 2

    Vậy tập xác định của hàm số là D=\mathbb{R}\backslash\left\{ 2 ight\}.

  • Câu 20: Vận dụng cao

    Cho số thực dương a và b. Biểu thức thu gọn của biểu thức

    P = \left( {2{a^{\frac{1}{4}}} - 3{b^{\frac{1}{4}}}} ight).\left( {2{a^{\frac{1}{4}}} + 3{b^{\frac{1}{4}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight)

    có dạng P = xa + yb. Tính x + y.

    Ta có:

    \begin{matrix}  P = \left( {2{a^{\frac{1}{4}}} - 3{b^{\frac{1}{4}}}} ight).\left( {2{a^{\frac{1}{4}}} + 3{b^{\frac{1}{4}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left[ {{{\left( {2{a^{\frac{1}{4}}}} ight)}^2} - {{\left( {3{b^{\frac{1}{4}}}} ight)}^2}} ight].\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left( {4{a^{\frac{1}{2}}} - 9{b^{\frac{1}{2}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left[ {{{\left( {4{a^{\frac{1}{2}}}} ight)}^2} - {{\left( {9{b^{\frac{1}{2}}}} ight)}^2}} ight] = 16a - 81b \hfill \\   \Rightarrow x = 16;y =  - 81 \hfill \\   \Rightarrow y - x =  - 97 \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo