Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số y =f(x) = \log_{2}\left( x^{2} - 2x + 2022 - a ight) với a là tham số. Có tất cả bao nhiêu các giá trị nguyên dương của tham số a để hàm số đã y = f(x) xác định với mọi x\mathbb{\in R} ?

    Đáp án: 2020

    Đáp án là:

    Cho hàm số y =f(x) = \log_{2}\left( x^{2} - 2x + 2022 - a ight) với a là tham số. Có tất cả bao nhiêu các giá trị nguyên dương của tham số a để hàm số đã y = f(x) xác định với mọi x\mathbb{\in R} ?

    Đáp án: 2020

    Hàm số y = f(x) = \log_{2}\left( x^{2} -2x + 2022 - a ight) xác định với mọi x\in\mathbb{ R} khi và chỉ khi

    x^{2} - 2x + 2022 - a > 0;\forall
x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta' < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 > 0 \\
1 - (2022 - a) < 0 \\
\end{matrix} ight.\  \Leftrightarrow a < 2021

    a \in \mathbb{Z}^{+}

    Vậy có 2022 giá trị nguyên dương của tham số a thỏa mãn điều kiện đề bài.

  • Câu 2: Nhận biết

    Với a là số thực dương tùy ý, a^{\frac{5}{3}} tương ứng với:

    Với a > 0 ta có: a^{\frac{5}{3}} = \sqrt[3]{a^{5}}

  • Câu 3: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{{2018}^x}}}{{{{2018}^x} + \sqrt {2018} }}. Tính tổng

    S = f\left( {\frac{1}{{2019}}} ight) + f\left( {\frac{2}{{2019}}} ight) + ... + f\left( {\frac{{2018}}{{2019}}} ight)

    Với hàm số

    f\left( {1 - x} ight) = \frac{{\sqrt {2018} }}{{{{2018}^x} + \sqrt {2018} }} \Rightarrow f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + ... + f\left( {\dfrac{{2018}}{{2019}}} ight) \hfill \\   \Rightarrow S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{{2018}}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + f\left( {\dfrac{{2017}}{{2019}}} ight) \hfill \\+ ... + f\left( {\dfrac{{1009}}{{2019}}} ight) + f\left( {\dfrac{{1010}}{{2019}}} ight) = 1009 \hfill \\ \end{matrix}

  • Câu 4: Vận dụng

    Hai số thực dương m,n thỏa mãn m > n > 1\dfrac{1}{\log_{n}m} + \dfrac{1}{\log_{m}n} =\sqrt{2022}. Hãy xác định giá trị biểu thức \dfrac{1}{\log_{mn}n} -\dfrac{1}{\log_{mn}m}?

    Ta có: \dfrac{1}{\log_{n}m} +\dfrac{1}{\log_{m}n} = \sqrt{2022}

    \Leftrightarrow \log_{m}n + \log_{n}m =\sqrt{2022}(*)

    Lại có:

    \frac{1}{\log_{mn}n} -\frac{1}{\log_{mn}m}

    = \log_{n}(mn) - \log_{m}(mn)

    = \log_{m}n - \log_{n}m

    Đặt t = \log_{m}n khi đó (*) trở thành:

    t + \frac{1}{t} = \sqrt{2022}
\Leftrightarrow t^{2} - t.\sqrt{2022} + 1 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}t = \dfrac{\sqrt{2022} + \sqrt{2018}}{2} \\t = \dfrac{\sqrt{2022} - \sqrt{2018}}{2} \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}P = \dfrac{1}{t} - t = - \sqrt{2018} \\P = \dfrac{1}{t} - t = \sqrt{2018} \\\end{matrix} ight.

    Với m > n > 1 \Leftrightarrow 0
< log_{m}n < 1

    \Rightarrow 0 < t < 1 \Rightarrow
\frac{1}{t} > 1 \Rightarrow P > 0 \Rightarrow P =
\sqrt{2018}

  • Câu 5: Vận dụng

    Đên ngày 10 mỗi tháng, chị T gửi tiết kiệm vào ngân hàng 10 triệu đồng với lãi suất 0,5%/tháng theo hình thức lãi kép. Biết rằng trong suốt quá trình gửi, chị T không rút tiền ra và lãi suất ngân hàng không thay đổi. Hỏi sau đúng 5 năm thì chị T sẽ nhận được số tiền cả gốc và lãi bằng gần nhất với giá trị nào dưới đây?

    Sau đúng 5 năm số tiền chị nhận được cả gốc và lãi là:

    T_{60} = 10^{7}.(1 + 0,5\%)\left\lbrack
\frac{(1 + 0,5\%)^{60} - 1}{0,5\%} ightbrack \approx 701 (triệu đồng)

  • Câu 6: Nhận biết

    Giả sử \log_{2}x- 4\log_{2}b = 5\log_{2}a;(a;b > 0) thì giá trị của x biểu diễn theo a,b là:

    Ta có:

    \log_{2}x - 4\log_{2}b =5\log_{2}a

    \Leftrightarrow \log_{2}x = 5\log_{2}a +4\log_{2}b

    \Leftrightarrow \log_{2}x = \log_{2}a^{5}+ \log_{2}b^{4}

    \Leftrightarrow \log_{2}x = \log_{2}\left(a^{5}b^{4} ight) \Leftrightarrow x = a^{5}b^{4}

  • Câu 7: Nhận biết

    Tìm tập xác định của hàm số y = - \log\left( 2x - x^{2} ight)?

    Điều kiên xác định:

    2x - x^{2} > 0 \Leftrightarrow 0 <
x < 2

    Vậy tập xác định của hàm số là: D = (0;2)

  • Câu 8: Nhận biết

    Cho m là số thực dương. Viết m^{2}.\sqrt[3]{m} dưới dạng lũy thừa với số mũ hữu tỉ ta được:

    Ta có: m^{2}.\sqrt[3]{m} =
m^{2}.m^{\frac{1}{3}} = m^{2 + \frac{1}{3}} =
m^{\frac{7}{3}}

  • Câu 9: Thông hiểu

    Bác H gửi vào ngân hàng 100 triệu đồng với lãi suất 6% một năm. Sau thời gian 10 năm nếu không rút lãi lần nào thì số tiền ông An nhận được tính cả gốc và lãi là bao nhiêu? Biết nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu.

    Đáp án: 179084769,7||179084769.7

    Đáp án là:

    Bác H gửi vào ngân hàng 100 triệu đồng với lãi suất 6% một năm. Sau thời gian 10 năm nếu không rút lãi lần nào thì số tiền ông An nhận được tính cả gốc và lãi là bao nhiêu? Biết nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu.

    Đáp án: 179084769,7||179084769.7

    Gọi a là số tiền tiết kiệm ban đầu, r là lãi suất

    Sau 1 tháng, số tiền cả gốc và lãi là: a(1 + r)

    Sau n tháng, số tiền cả gốc và lãi là: a(1 + r)^{n}

    Số tiền sau 10 năm với lãi suất 6% một năm là:

    10^{8}.(1 + 6\%)^{10} =
179084769,7 (triệu đồng).

  • Câu 10: Thông hiểu

    Giá trị của biểu thức

    C = \frac{7}{16}\ln\left( 3 + 2\sqrt{2}ight) - 4\ln\left( \sqrt{2} + 1 ight) - \frac{25}{8}\ln\left(\sqrt{2} - 1 ight)

    Ta có:

    C = \frac{7}{16}\ln\left( 3 + 2\sqrt{2}
ight) - 4ln\left( \sqrt{2} + 1 ight) - \frac{25}{8}\ln\left(
\sqrt{2} - 1 ight)

    C = \frac{7}{16}\ln\left( \sqrt{2} + 1
ight)^{2} - 4ln\left( \sqrt{2} + 1 ight) - \frac{25}{8}\ln\left(
\sqrt{2} + 1 ight)^{- 1}

    C = \frac{7}{8}\ln\left( \sqrt{2} + 1
ight) - 4ln\left( \sqrt{2} + 1 ight) + \frac{25}{8}\ln\left(
\sqrt{2} + 1 ight)

    C = \left( \frac{7}{8} - 4 +
\frac{25}{8} ight).ln\left( \sqrt{2} + 1 ight) = 0

  • Câu 11: Vận dụng

    Cho {9^x} + {9^{ - x}} = 14;\frac{{6 + 3.\left( {{3^x} + {3^{ - x}}} ight)}}{{2 - {3^{x + 1}} - {3^{1 - x}}}} = \frac{a}{b}; (\frac{a}{b} là phân số tối giản). Tính giá trị biểu thức P = ab.

    Ta có:

    \begin{matrix}  {\left( {{3^x} + {3^{ - x}}} ight)^2} = 14 + 2 = 16 \hfill \\   \Rightarrow {3^x} + {3^{ - x}} = 4 \hfill \\   \Rightarrow \dfrac{a}{b} = \dfrac{{6 + 3.4}}{{2 - 3.4}} =  - \dfrac{9}{5} \hfill \\   \Rightarrow P =  - 45 \hfill \\ \end{matrix}

  • Câu 12: Vận dụng

    Cho bất phương trình \log_{x - m}\left( x^{2} - 1 ight) > \log_{x -m}\left( x^{2} + x - 2 ight). Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?

    Điều kiện xác định x e m + 1;x > m

    Ta có:

    \log_{x - m}\left( x^{2} - 1 ight) >\log_{x - m}\left( x^{2} + x - 2 ight)(*)

    Với x > m + 1

    (*) \Leftrightarrow \left\{
\begin{matrix}
x^{2} - 1 > x^{2} + x - 2 \\
x^{2} + x - 2 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x < 1 \\
\left\lbrack \begin{matrix}
x < - 2 \\
x > 1 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow x < - 2

    Với 0 < x < m + 1

    (*) \Leftrightarrow 0 < x^{2} - 1
< x^{2} + x - 2

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} - 1 > 0 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > - 1 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow x > 1

    Bất phương trình (*) vô nghiệm khi và chỉ khi \left\{ \begin{matrix}m + 1 \geq - 2 \\m + 1 \leq 1 \\\end{matrix} ight.\  \Leftrightarrow - 3 \leq m \leq 0

  • Câu 13: Nhận biết

    Tìm tập nghiệm của phương trình \log_{2}\left( x^{2} - 2x + 4 ight) =0?

    Điều kiện xác định:

    x^{2} - 2x + 4 > 0

    Ta có:

    \log_{2}\left( x^{2} - 2x + 4 ight) =0

    \Leftrightarrow x^{2} - 2x + 4 =
2^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.\ (tm)

    Vậy tập nghiệm phương trình là S =
\left\{ 0;2 ight\}

  • Câu 14: Nhận biết

    Thực hiện giải phương trình 2^{2m + 3} = 2^{m + 7} thu được nghiệm:

    Ta có:

    2^{2m + 3} = 2^{m + 7} \Leftrightarrow
2m + 3 = m + 7

    \Leftrightarrow m = 4(tm)

    Vậy phương trình có nghiệm m =
4.

  • Câu 15: Thông hiểu

    Cho biểu thức U
= \sqrt[4]{x\sqrt[3]{x^{2}\sqrt{x^{3}}}};(x > 0). Mệnh đề nào sau đây đúng?

    Ta có:

    U =
\sqrt[4]{x\sqrt[3]{x^{2}\sqrt{x^{3}}}} =
\sqrt[4]{x\sqrt[3]{x^{2}x^{\frac{3}{2}}}} =
\sqrt[4]{x\sqrt[3]{x^{\frac{7}{2}}}}

    = \sqrt[4]{x.x^{\frac{7}{6}}} =
\sqrt[4]{x^{\frac{13}{6}}} = x^{\frac{13}{24}}

  • Câu 16: Thông hiểu

    Cho a =\log_{12}18;b = \log_{24}54 . Tính giá trị biểu thức T = 5(a - b) + ab.

    Ta có: \left\{ \begin{matrix}a = log_{12}18 = \dfrac{log_{3}18}{log_{3}12} = \dfrac{log_{3}2 +2}{2log_{3}2 + 1} \\b = log_{24}54 = \dfrac{log_{3}54}{log_{3}24} = \dfrac{log_{3}2 +3}{3log_{3}2 + 1} \\\end{matrix} ight.

    Đặt x = log_{3}2 khi đó \left\{ \begin{matrix}a = \dfrac{x + 2}{2x + 1} \\b = \dfrac{x + 3}{3x + 1} \\\end{matrix} ight.

    Ta có: T = 5(a - b) + ab

    T = 5\left( \frac{x - 2}{2x + 1} -
\frac{x + 3}{3x + 1} ight) + \frac{x + 2}{2x + 1}.\frac{x + 3}{3x +
1}

    T = \frac{5\left\lbrack (x + 2)(3x + 1)
- (x + 3)(2x + 1) ightbrack + (x + 2)(x + 3)}{(2x + 1)(3x +
1)}

    T = \frac{6x^{2} + 3x + 1}{(2x + 1)(3x +
1)} = 1

  • Câu 17: Nhận biết

    Tìm tập xác định của hàm số \log_{2}(x - 1)?

    Điều kiện xác định x - 1 > 0
\Rightarrow x > 1

    Suy ra tập xác định của hàm số là: D =
(1; + \infty).

  • Câu 18: Thông hiểu

    Phương trình 2^{\sqrt{x}} = 2^{2 - x} có bao nhiêu nghiệm thực?

    Ta có:

    2^{\sqrt{x}} = 2^{2 - x} \Leftrightarrow
\left\{ \begin{matrix}
x \geq 0 \\
\sqrt{x} = 2 - x \\
\end{matrix} ight.\  \Leftrightarrow x = 1

    Vậy phương trình có duy nhất 1 nghiệm.

  • Câu 19: Thông hiểu

    Xác định tập nghiệm của phương trình \log_{2}\left( - x^{2} + 4x - 3 ight) =\log_{2}\left( \frac{5}{2} - x ight) + 1?

    Điều kiện xác định: \left\{
\begin{matrix}
- x^{2} + 4x - 3 > 0 \\
\frac{5}{2} - x > 0 \\
\end{matrix} ight.\  \Leftrightarrow 1 < x <
\frac{5}{2}

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{2}\left( - x^{2} +4x - 3 ight) = \log_{2}\left( \frac{5}{2} - x ight) +\log_{2}2

    \Leftrightarrow \log_{2}\left( - x^{2} +4x - 3 ight) = \log_{2}(5 - 2x)

    \Leftrightarrow - x^{2} + 4x - 3 = 5 -
2x

    \Leftrightarrow x^{2} - 6x + 8 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2(tm) \\
x = 4(ktm) \\
\end{matrix} ight.

    Vậy phương trình có tập nghiệm là S =
\left\{ 2 ight\}

  • Câu 20: Thông hiểu

    Cho {5^x} = 2. Tính A = {25^x} + {5^{2 - x}}

    Ta có: A = {25^x} + {5^{2 - x}} = {\left( {{5^x}} ight)^2} + \frac{{25}}{{{5^x}}} = \frac{{33}}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 24 lượt xem
Sắp xếp theo