Với a là một số thực dương thì biểu thức
được rút gọn là:
Ta có:
Với a là một số thực dương thì biểu thức
được rút gọn là:
Ta có:
Kết quả khi thu gọn biểu thức
khi
là:
Ta có:
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Biết
. Biểu diễn
theo
?
Ta có:
Cho các số thực dương phân biệt a và b. Biểu thức thu gọn của biểu thức
![P = \frac{{\sqrt a - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \frac{{\sqrt {4a} + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}}](https://i.khoahoc.vn/data/image/holder.png)
có dạng
. Khi đó biểu thức liên hệ giữa n và m là:
Ta có:
Cho các số thức a, b thỏa mãn
và
. Tính giá trị của biểu thức
?
Ta có:
Đặt . Do
Khi đó
Với ta có:
=>
Xác định các nghiệm phương trình
rồi tính tổng tất cả các giá trị đó ta được kết quả là: 16/3
(Kết quả ghi dưới dạng phân số tối giản a/b)
Xác định các nghiệm phương trình rồi tính tổng tất cả các giá trị đó ta được kết quả là: 16/3
(Kết quả ghi dưới dạng phân số tối giản a/b)
Điều kiện
Ta có:
Tổng tất cả các nghiệm của phương trình là: .
Cho
. Mệnh đề nào sau đây đúng với mọi số thực dương
?
Theo quy tắc Logarit của một thương ta só:
với
Trong các hàm số sau đây, hàm số nào nghịch biến trên tập số thực
?
Hàm số là hàm số mũ có cơ số bằng
nghịch biến trên
.
Hàm số là hàm số mũ có cơ số
nên đồng biến trên
.
Hàm số chỉ xác định trên
.
Hàm số có
nên nghịch biến trên
.
Cho phương trình
. Tìm tập nghiệm
của phương trình đã cho.
Ta có:
Vậy tập nghiệm của phương trình là
Tìm tập xác định của hàm số
?
Tập xác định của hàm số là
.
Chị X gửi tiết kiệm ngân hàng 100 triệu đồng với lãi suất 8,4%/năm. Sau bao nhiêu năm chị X thu được gấp đôi số tiền ban đầu? Biết lãi hàng năm được nhập vào vốn.
Gọi số tiền ban đầu chị X gửi vào ngân hàng là A, lãi suất là r và sau n năm được tính theo công thức .
Để số tiền sau n năm thu được gấp đôi số tiền ban đầu ta có phương trình:
Vậy sau 9 năm người gửi thu được gấp đôi số tiền ban đầu.
Gọi
là các nghiệm của phương trình
. Trong các khẳng định dưới đây khẳng định nào đúng?
Đặt phương trình trở thành
Gọi là hai nghiệm của phương trình (*) suy ra
Theo định lí Vi – et phương trình (*) ta có:
Tìm giá trị tham số m để bất phương trình
có nghiệm đúng với mọi x.
Ta có:
Bất phương trình đã cho có nghiệm đúng với mọi x khi cả (1) và (2) đúng với mọi x.
Với hoặc
không thỏa mãn đề bài.
Với hoặc
để thỏa mãn đề bài thì:
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Với a là số thực dương tùy ý, điền biểu thức thích hợp vào chỗ chấm: ![]()
Ta có:
.
Xác định hàm số tương ứng với đồ thị dưới đây:

Đồ thị hàm số đi lên và đi qua điểm (1; 0) nên hàm số tương ứng với đồ thị trong hình vẽ là
Có bao nhiêu khẳng định sai trong các khẳng định cho dưới đây?
(1) Với số thực
và các số nguyên
, ta có
.
(2) Với hai số thực
cùng khác 0 và số nguyên n, ta có ![]()
(3) Với hai số thực
thỏa mãn 0 < a < b và số nguyên n, ta có
khi và chỉ khi
.
(4) Cho số thực
và các số nguyên
. Khi đó, với
thì
khi và chỉ khi
.
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết
với
. Khi đó
Đúng||Sai
b) Tập xác định của hàm số
là
Sai||Đúng
c) Hàm số
nghịch biến trên khoảng
Sai||Đúng
d) Có 31 giá trị nguyên của x thỏa mãn
Đúng||Sai
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết với
. Khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số nghịch biến trên khoảng
Sai||Đúng
d) Có 31 giá trị nguyên của x thỏa mãn Đúng||Sai
a) Ta có:
b) Điều kiện xác định:
c) Điều kiện xác định:
Cơ số do đó hàm số đồng biến trên
.
d) Xét hàm số với
Cho
Ta có bảng xét dấu như sau:
Suy ra
Mặt khác
Vậy có 31 số nguyên của x thỏa mãn bất phương trình .
Xác định tập nghiệm của phương trình
?
Điều kiện xác định:
Vậy phương trình có tập nghiệm .