Tìm hàm số nghịch biến trên
trong các hàm số sau?
Ta có:
nên hàm số
nghịch biến trên
.
Tìm hàm số nghịch biến trên
trong các hàm số sau?
Ta có:
nên hàm số
nghịch biến trên
.
Với các số
thỏa mãn
, biểu thức
bằng:
Ta có:
Xác định tập nghiệm của bất phương trình
.
Ta có:
Vậy tập nghiệm bất phương trình là:
Tìm tập xác định của hàm số
?
Điều kiện xác định:
Vậy tập xác định của hàm số đã cho là:
Tổng các nghiệm của phương trình
bằng 3||-3||-4||5
Tổng các nghiệm của phương trình bằng 3||-3||-4||5
Ta có:
Vậy tổng các nghiệm của phương trình là 3
Rút gọn biểu thức
với
là hai số thực dương.
Ta có:
Giá trị của biểu thức
là:
Ta có:
Trong các hàm số sau hàm số nào nghịch biến trên tập số thực?
Loại các đáp án và
vì các hàm số trong các đáp án này không xác định trên
.
Vì nên hàm số nghịch biến trên
.
Cho biểu thức
. Với
thì giá trị của biểu thức
bằng:
Ta có:
Thay vào biểu thức F vừa biến đổi ta được:
Tìm tập nghiệm của phương trình
?
Điều kiện xác định:
Ta có:
Vậy tập nghiệm phương trình là
Biết đồ thị hàm số
đối xứng với đồ thị hàm số
qua điểm
. Giá trị của
là:
Gọi là điểm thuộc đồ thị hàm số
thì điểm đối xứng với
qua
là
thuộc đồ thị hàm số
=>
Trong các hàm số sau đây, hàm số nào đồng biến trên
?
Ta có: nên hàm số
đồng biến trên
.
Cho phương trình
. Tìm tổng tất cả các nghiệm của phương trình đã cho.
Điều kiện xác định:
Phương trình đã cho tương đương:
Vậy tổng các nghiệm của phương trình đã cho bằng 5.
Cho
biết rằng
với m và n là các số nguyên dương và phân số
tối giản. Tính giá trị biểu thức
.
Ta có:
Với a và b là hai số thực dương tùy ý thì
bằng:
Ta có:
Giá trị
viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Cho
. Nếu viết
thì giá trị
bằng bao nhiêu?
Ta có:
Rút gọn biểu thức:
với
ta được kết quả là:
Ta có: .
Biết rằng các chữ số p khi viết trong hệ thập phân biết
là một số nguyên tố (số nguyên tố lớn nhất được biết cho đến lúc đó. Số p có tất cả bao nhiêu chữ số?
Ta có:
Vậy p có 227832 chữ số.
Tìm điều kiện của tham số
để phương trình
có nghiệm?
Ta có:
Phương trình có nghiệm khi và chỉ khi phương trình
có nghiệm
Xét phương trình
Nếu phương trình vô nghiệm
Nếu có nghiệm
khi và chỉ khi
Vậy thỏa mãn yêu cầu đề bài.