Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Giá trị B =
\sqrt[3]{2021}.\sqrt[5]{2021} viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có:

    B = \sqrt[3]{2021}.\sqrt[5]{2021} =
2021^{\frac{1}{3}}.2021^{\frac{1}{5}} = 2021^{\frac{1}{3} + \frac{1}{5}}
= 2021^{\frac{8}{15}}

  • Câu 2: Vận dụng

    Bác H gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 6%/ 1 năm theo hình thức lại kép nghĩa là nếu bác không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi cần ít nhất bao lâu để bác H nhận được số tiền nhiều hơn 400 triệu bao gồm cả gốc và lãi?

    Đáp án: 24 năm

    Đáp án là:

    Bác H gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 6%/ 1 năm theo hình thức lại kép nghĩa là nếu bác không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo. Hỏi cần ít nhất bao lâu để bác H nhận được số tiền nhiều hơn 400 triệu bao gồm cả gốc và lãi?

    Đáp án: 24 năm

    Áp dụng công thức lại kép thì sau n năm số tiền bác H nhận được là T = 10^{8}.1,06^{n}

    Để nhận được số tiền hơn 400 triệu thì

    T > 4.10^{8} \Leftrightarrow
10^{8}.1,06^{n} > 4.10^{8}

    \Leftrightarrow 1,06^{n} > 4
\Leftrightarrow n > log_{1,06}4 \approx 23,79

    Vậy sau ít nhất 24 năm thì bác H nhận được số tiền như mong muốn.

  • Câu 3: Thông hiểu

    Tìm tập xác định của hàm số y = \ln\left( x - 2 - \sqrt{x^{2} - 3x - 10}
ight).

    Điều kiện xác định của hàm số

    \left\{ \begin{matrix}
x - 2 > \sqrt{x^{2} - 3x - 10} \\
x^{2} - 3x - 10 \geq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 2 \\
x^{2} - 4x + 4 > x^{2} - 3x - 10 \\
x^{2} - 3x - 10 \geq 0 \\
\end{matrix} ight.

    \Leftrightarrow 5 \leq x <
14

    Vậy tập xác định của hàm số là D =
\lbrack 5;14)

  • Câu 4: Thông hiểu

    Cho a =\log_{7}12;b = \log_{12}14. Tính \log_{54}168 theo ab.

    Ta có: a = \log_{7}12 \Leftrightarrow a =\log_{7}3 + 2\log_{7}2

    Mặt khác ab = \log_{7}12.\log_{12}14 =\log_{7}14 = \log_{7}2 + 1

    \Rightarrow \log_{7}2 = ab -1

    Thay vào trên ta được

    \log_{7}3 = a - 2\log_{7}2 = a - 2(ab - 1)= a - 2ab + 2

    Từ đó ta biến đổi biểu thức về cơ số 7 ta được:

    \log_{54}168 =\frac{\log_{7}168}{\log_{7}54} = \frac{3\log_{7}2 + \log_{7}3 + 1}{3\log_{7}3+ \log_{7}2}

    = \frac{3ab - 3 + a - 2ab + 2 + 1}{3a -6ab + 6 + ab - 1} = \frac{ab + a}{3a - 5ab + 5}

  • Câu 5: Nhận biết

    Tìm tập xác định của hàm số y=\log_{\frac{1}{2}}\left( x^{2} - 3x + 2ight)?

    Điều kiện xác định x^{2} - 3x + 2 > 0
\Leftrightarrow \left\lbrack \begin{matrix}
x < 1 \\
x > 2 \\
\end{matrix} ight.

    => Tập xác định của hàm số là D = ( -
\infty;1) \cup (2; + \infty).

  • Câu 6: Thông hiểu

    Có bao nhiêu giá trị nguyên của dương của tham số m để hàm số y = (6 - m)^{x} đồng biến trên tập số thực?

    Đáp án: 4

    Đáp án là:

    Có bao nhiêu giá trị nguyên của dương của tham số m để hàm số y = (6 - m)^{x} đồng biến trên tập số thực?

    Đáp án: 4

    Hàm số y = (6 - m)^{x} đồng biến trên \mathbb{R} khi và chỉ khi 6 - m > 1 \Leftrightarrow m <
5

    m \in \mathbb{Z}^{+} \Rightarrow m \in
\left\{ 1;2;3;4 ight\}

    Vậy có 4 giá trị của tham số m thỏa mãn điều kiện đề bài.

  • Câu 7: Thông hiểu

    Rút gọn biểu thức E = \frac{a^{2}.\left( a^{- 2}.b^{3}
ight)^{2}.b^{- 1}}{\left( a^{- 1}.b ight)^{3}.a^{- 5}.b^{-
2}} với a,b là hai số thực dương.

    Ta có:

    E = \frac{a^{2}.\left( a^{- 2}.b^{3}
ight)^{2}.b^{- 1}}{\left( a^{- 1}.b ight)^{3}.a^{- 5}.b^{- 2}} =
\frac{\left( a^{2}.a^{- 4} ight).\left( b^{6}.b^{- 1} ight)}{\left(
a^{- 3}.a^{- 5} ight)\left( b^{3}.b^{- 2} ight)} =
a^{6}b^{4}

  • Câu 8: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{4^x}}}{{{4^x} + 2}}. Tính tổng

    S = f\left( {\frac{1}{{2005}}} ight) + f\left( {\frac{2}{{2005}}} ight) + ... + f\left( {\frac{{2004}}{{2005}}} ight) + f\left( {\frac{{2005}}{{2005}}} ight)

    Với hàm số f\left( x ight) = \frac{{{a^x}}}{{{a^x} + \sqrt a }} ta có: f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = \left[ {f\left( {\dfrac{1}{{2005}}} ight) + f\left( {\dfrac{{2004}}{{2005}}} ight)} ight] + \left[ {f\left( {\dfrac{2}{{2005}}} ight) + f\left( {\dfrac{{2003}}{{2005}}} ight)} ight] \hfill\\+ ... + \left[ {f\left( {\dfrac{{1002}}{{2005}}} ight) + f\left( {\dfrac{{1003}}{{2005}}} ight)} ight] + f\left( 1 ight) \hfill \\   = 1 + 1 + ... + 1 + f\left( 1 ight) = 1002 + \dfrac{4}{6} = \dfrac{{3008}}{3} \hfill \\ \end{matrix}

  • Câu 9: Thông hiểu

    Tính giá trị biểu thức G = \frac{a - 3 - 4a^{- 1}}{a^{\frac{1}{2}} -
4a^{\frac{- 1}{2}}} - \frac{1}{a^{- \frac{1}{2}}} với a là một số thực dương.

    Ta có:

    G = \frac{a - 3 - 4a^{-
1}}{a^{\frac{1}{2}} - 4a^{\frac{- 1}{2}}} - \frac{1}{a^{-
\frac{1}{2}}}

    G = \frac{\frac{a^{2} - 3a -
4}{a}}{\frac{a - 4}{\sqrt{a}}} - \sqrt{a}

    G = \frac{a^{2} - 3a - 4}{\sqrt{a}(a -
4)} - \sqrt{a}

    G = \frac{a^{2} - 3a - 4 - a(a -
4)}{\sqrt{a}(a - 4)}

    G = \frac{a - 4}{\sqrt{a}(a - 4)} = a^{-
\frac{1}{2}}

  • Câu 10: Vận dụng

    Cho biết a,b >
0,a eq 1;b eq 1;n \in \mathbb{N}^{*}. Một học sinh đã thực hiện tính giá trị biểu thức P =\frac{1}{\log_{a}b} + \frac{1}{\log_{a^{2}}b} + ... +\frac{1}{\log_{a^{n}}b} như sau:

    Bước 1: P = \log_{b}a + \log_{b}a^{2} + ...+ \log_{b}a^{n}

    Bước 2: P = \log_{b}\left( a.a^{2}...a^{n}ight)

    Bước 3: P = \log_{b}\left( a^{1 + 2 + 3 +.... + n} ight)

    Bước 4: P = n(n -1)\log_{b}\sqrt{a}

    Hỏi bạn học sinh giải toán sai từ bước nào?

    Ta có:

    P = \dfrac{1}{\log_{a}b} +\dfrac{1}{\log_{a^{2}}b} + ... + \dfrac{1}{\log_{a^{n}}b}

    P = \log_{b}a + \log_{b}a^{2} + ... +\log_{b}a^{n}

    P = \log_{b}\left( a.a^{2}...a^{n}ight)

    P = \log_{b}\left( a^{1 + 2 + 3 + .... +n} ight)

    P = n(n + 1)\log_{b}\sqrt{a}

    Vậy bài toán sai từ bước 4.

  • Câu 11: Thông hiểu

    Cho phương trình (2,4)^{3x + 1} = \left( \frac{5}{12} ight)^{x -
9}. Xác định nghiệm của phương trình đã cho?

    Ta có:

    (2,4)^{3x + 1} = \left( \frac{5}{12}
ight)^{x - 9} \Leftrightarrow \left( \frac{12}{5} ight)^{3x + 1} =
\left( \frac{12}{5} ight)^{- x + 9}

    \Leftrightarrow 3x + 1 = - x + 9
\Leftrightarrow x = 2(tm)

    Vậy phương trình có nghiệm x = 2.

  • Câu 12: Nhận biết

    Giải phương trình 3^{2x} - 5 = 0 ta được nghiệm phương trình là:

    Ta có:

    3^{2x} - 5 = 0 \Leftrightarrow 2x =\log_{3}5 \Leftrightarrow x = \frac{1}{2}.\log_{3}5

    Vậy phương trình đã cho có nghiệm là x =\frac{1}{2}.\log_{3}5.

  • Câu 13: Thông hiểu

    Tìm tập nghiệm của bất phương trình \frac{{1 - {{\log }_{\frac{1}{2}}}x}}{{\sqrt {2 - 6x} }} < 0.

    Điều kiện: 0 < x <\frac{1}{3}

    Bất phương trình đã cho tương đương với 1 - {\log _{\frac{1}{2}}}x < 0 \Leftrightarrow 0 < x < \frac{1}{2}

    Kết hợp điều kiện, suy ra bất phương trình có nghiệm 0 < x < \frac{1}{3}

    Vậy tập nghiệm của bất phương trình là: \left( 0;\frac{1}{3} ight)

  • Câu 14: Nhận biết

    Biết \forall n
\in \mathbb{R}^{+}. Kết luận nào dưới đây đúng?

    Ta có: \log_{4}n^{4} = 4\log_{4}|n| =4\log_{4}n

  • Câu 15: Vận dụng

    Tìm tập nghiệm của bất phương trình 4x^{2} + x.2^{x^{2} + 1} + 3.2^{x^{2}} >
x^{2}.2^{x^{2}} + 8x + 12.

    Ta có:

    4x^{2} + x.2^{x^{2} + 1} + 3.2^{x^{2}}
> x^{2}.2^{x^{2}} + 8x + 12

    \Leftrightarrow \left( 4 - 2^{x^{2}}
ight)\left( x^{2} - 2x - 3 ight) > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
4 - 2^{x^{2}} > 0 \\
x^{2} - 2x - 3 > 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
4 - 2^{x^{2}} < 0 \\
x^{2} - 2x - 3 < 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
\sqrt{2} > x > - \sqrt{2} \\
\left\lbrack \begin{matrix}
x < - 1 \\
x > 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x < - \sqrt{2} \\
x > \sqrt{2} \\
\end{matrix} ight.\  \\
- 1 < x < 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
- \sqrt{2} < x < - 1 \\
\sqrt{2} < x < 3 \\
\end{matrix} ight.

    Vậy tập nghiệm bất phương trình là: S =
\left( - \sqrt{2}; - 1 ight) \cup \left( \sqrt{2};3
ight)

  • Câu 16: Nhận biết

    Biết a \in
\mathbb{R}^{+}, khi đó \sqrt[4]{a} bằng:

    Ta có: \sqrt[4]{a} =
a^{\frac{1}{4}}

  • Câu 17: Thông hiểu

    Cho m,n là các số thực dương lớn hơn 1 thỏa mãn m^{2} + 9n^{2} = 6mn. Tính giá trị biểu thức T = \dfrac{1 + \log_{12}m +\log_{12}n}{2\log_{12}(m + 3n)}?

    Ta có: m^{2} + 9n^{2} = 6mn

    \Leftrightarrow (m - 3n)^{2} = 0
\Leftrightarrow m = 3n

    \Rightarrow T = \dfrac{1 + \log_{12}m +\log_{12}n}{2\log_{12}(m + 3n)} = \dfrac{\log_{12}36n^{2}}{\log_{12}36n^{2}}= 1

  • Câu 18: Nhận biết

    Tính tổng tất cả các nghiệm của phương trình 2^{x^{2}} = 4^{2x}?

    Ta có:

    2^{x^{2}} = 4^{2x} \Leftrightarrow
2^{x^{2}} = \left( 2^{2} ight)^{2x}

    \Leftrightarrow 2^{x^{2}} = 2^{4x}
\Leftrightarrow x^{2} = 4x \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 4 \\
\end{matrix} ight.\ (tm)

    \Rightarrow S = 0 + 4 = 4

    Vậy phương trình có tổng nghiệm bằng 4.

  • Câu 19: Vận dụng

    Cho các số thực dương a,b và biểu thức

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack 1 + \frac{1}{4}\left(
\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}} ight)^{2}
ightbrack^{\frac{1}{2}}

    Tính giá trị biểu thức P?

    Ta có:

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack 1 + \frac{1}{4}\left(
\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}} ight)^{2}
ightbrack^{\frac{1}{2}}

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack 1 + \frac{1}{4}\left( \frac{a}{b} - 2
+ \frac{b}{a} ight) ightbrack^{\frac{1}{2}}

    P = 2(a + b)^{-
1}.(ab)^{\frac{1}{2}}.\left\lbrack \frac{1}{4}\left( \frac{a +
b}{\sqrt{ab}} ight) ightbrack^{\frac{1}{2}}

    P = 2\frac{1}{a +
b}.\sqrt{ab}.\frac{1}{2}.\frac{a + b}{\sqrt{ab}} = 1

  • Câu 20: Nhận biết

    Tìm tập xác định của hàm số y = \log_{2}\frac{x - 3}{2x}là:

    Hàm số đã cho xác định khi \frac{x -
3}{2x} > 0 \Rightarrow x \in (3; + \infty)

    Vậy tập xác định của hàm số là D = (3; +
\infty).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo