Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) (0,2)^{\sqrt{16}} >
(0,2)^{\sqrt[3]{60}} Sai||Đúng

    b) Tập xác định của hàm số y=\log_{3}\left(- 3x^{2} + 23x - 20 ight) có 5 giá trị nguyên. Đúng||Sai

    c) Tổng tất cả các nghiệm thực của phương trình \log_{2}(x + 2) + \log_{4}(x - 5)^{2} +\log_{\frac{1}{2}}8 = 0 bằng 9.Đúng||Sai

    d) Có 3 giá trị nguyên của x thuộc \lbrack 0;2020brack thỏa mãn bất phương trình 16^{x} + 25^{x} + 36^{x} \leq 20^{x} +
24^{x} + 30^{x}. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) (0,2)^{\sqrt{16}} >
(0,2)^{\sqrt[3]{60}} Sai||Đúng

    b) Tập xác định của hàm số y=\log_{3}\left(- 3x^{2} + 23x - 20 ight) có 5 giá trị nguyên. Đúng||Sai

    c) Tổng tất cả các nghiệm thực của phương trình \log_{2}(x + 2) + \log_{4}(x - 5)^{2} +\log_{\frac{1}{2}}8 = 0 bằng 9.Đúng||Sai

    d) Có 3 giá trị nguyên của x thuộc \lbrack 0;2020brack thỏa mãn bất phương trình 16^{x} + 25^{x} + 36^{x} \leq 20^{x} +
24^{x} + 30^{x}. Sai||Đúng

    a) Ta có: \left( \sqrt{16} ight)^{6} =
16^{3};\left( \sqrt[3]{60} ight)^{6} = 60^{2}

    \Rightarrow \sqrt{16} >
\sqrt[3]{60} mà cơ số 0,2 <
1

    (0,2)^{\sqrt{16}} <
(0,2)^{\sqrt[3]{60}}

    b) Điều kiện xác định: - 3x^{2} + 23x -
20 > 0 \Leftrightarrow 1 < x < \frac{20}{3}

    Vậy tập xác định có 5 giá trị nguyên.

    c) Điều kiện xác định: x > - 2;x eq
5

    \log_{2}(x + 2) + \log_{4}(x - 5)^{2} +\log_{\frac{1}{2}}8 = 0

    \Leftrightarrow \log_{2}(x + 2) +\log_{2}|x - 5| - \log_{2}8 = 0

    \Leftrightarrow \log_{2}\left\lbrack (x +2).|x - 5| ightbrack = \log_{2}8

    \Leftrightarrow (x + 2).|x - 5| = 8
\Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x \geq 5 \\
(x + 2).(x - 5) = 8 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
- 2 < x < 5 \\
(x + 2).(x - 5) = - 8 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 6 \\x = \dfrac{3 \pm \sqrt{17}}{2} \\\end{matrix} ight.\ (tm)

    Vậy tổng tất cả các nghiệm của phương trình là: S = 9

    d) Ta có:

    16^{x} + 25^{x} + 36^{x} \leq 20^{x} +
24^{x} + 30^{x}

    \Leftrightarrow 4^{2x} + 5^{2x} + 6^{2x}
\leq 4^{x}.5^{x} + 4^{x}.6^{x} + 5^{x}.6^{x}

    \Leftrightarrow 2\left\lbrack 4^{2x} +
5^{2x} + 6^{2x} ightbrack - 2\left( 4^{x}.5^{x} + 4^{x}.6^{x} +
5^{x}.6^{x} ight) \leq 0

    \Leftrightarrow \left( 4^{x} - 5^{x}
ight)^{2} + \left( 4^{x} - 6^{x} ight)^{2} + \left( 5^{x} - 6^{x}
ight)^{2} \leq 0

    \Leftrightarrow \left\lbrack\begin{matrix}4^{x} - 5^{x} = 0 \\4^{x} - 6^{x} = 0 \\5^{x} - 6^{x} = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}\left( \dfrac{4}{5} ight)^{x} = 1 \\\left( \dfrac{4}{6} ight)^{x} = 1 \\\left( \dfrac{5}{6} ight)^{x} = 1 \\\end{matrix} ight.\  \Leftrightarrow x = 0 \in \lbrack0;2020brack

    Vậy có suy nhất 1 giá trị nguyên của x thỏa mãn yêu cầu đề bài.

  • Câu 2: Thông hiểu

    Cho phương trình \log_{2}(x - 3) + \log_{2}(x - 1) = 3. Tìm tổng tất cả các nghiệm của phương trình đã cho.

    Điều kiện xác định: \left\{
\begin{matrix}
x - 3 > 0 \\
x - 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 3 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow x > 3

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{2}\left\lbrack (x -3)(x - 1) ightbrack = \log_{2}8

    \Leftrightarrow x^{2} - 4x + 3 = 8
\Leftrightarrow x^{2} - 4x - 5 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1(ktm) \\
x = 5(tm) \\
\end{matrix} ight.

    Vậy tổng các nghiệm của phương trình đã cho bằng 5.

  • Câu 3: Nhận biết

    Giá trị của biểu thức P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}} bằng:

    Ta có:

    P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}}

    = {\left[ {\left( {1 + \sqrt 3 } ight)\left( {3 - \sqrt 3 } ight)} ight]^{2016}} = {\left( {2\sqrt 3 } ight)^{2016}} = {12^{1008}}

  • Câu 4: Nhận biết

    Cho các số thực dương a,b bất kì thỏa mãn \log a = x;logb = y. Tính giá trị biểu thức H = \log\left( a^{2}b^{3}
ight).

    Ta có:

    H = \log\left( a^{2}b^{3} ight) =
\log\left( a^{2} ight) + \log\left( b^{3} ight)

    = 2\log a + 3\log b = 2x + 3y

  • Câu 5: Vận dụng

    Đên ngày 10 mỗi tháng, chị T gửi tiết kiệm vào ngân hàng 10 triệu đồng với lãi suất 0,5%/tháng theo hình thức lãi kép. Biết rằng trong suốt quá trình gửi, chị T không rút tiền ra và lãi suất ngân hàng không thay đổi. Hỏi sau đúng 5 năm thì chị T sẽ nhận được số tiền cả gốc và lãi bằng gần nhất với giá trị nào dưới đây?

    Sau đúng 5 năm số tiền chị nhận được cả gốc và lãi là:

    T_{60} = 10^{7}.(1 + 0,5\%)\left\lbrack
\frac{(1 + 0,5\%)^{60} - 1}{0,5\%} ightbrack \approx 701 (triệu đồng)

  • Câu 6: Thông hiểu

    Rút gọn biểu thức B = \left( \frac{a + b}{\sqrt[3]{a} + \sqrt[3]{b}}
- \sqrt[3]{ab} ight):\left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2} biết a^{2} eq
b^{2}.

    Ta có:

    B = \left( \frac{a + b}{\sqrt[3]{a} +
\sqrt[3]{b}} - \sqrt[3]{ab} ight):\left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2}

    B = \left( \sqrt[3]{a^{2}} -
\sqrt[3]{ab} + \sqrt[3]{b^{2}} - \sqrt[3]{ab} ight):\left( \sqrt[3]{a}
- \sqrt[3]{b} ight)^{2}

    B = \left( \sqrt[3]{a^{2}} -
2\sqrt[3]{ab} + \sqrt[3]{b^{2}} ight):\left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2}

    B = \left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2}:\left( \sqrt[3]{a} - \sqrt[3]{b} ight)^{2} =
1

  • Câu 7: Nhận biết

    Giá trị của 27^{\frac{1}{3}} là:

    Ta có: 27^{\frac{1}{3}} = \left( 3^{3}
ight)^{\frac{1}{3}} = 3^{3.\frac{1}{3}} = 3

  • Câu 8: Nhận biết

    Trong các hàm số sau hàm số nào nghịch biến trên tập số thực?

    Loại các đáp án y =\log_{\frac{\pi}{4}}\left( 2x^{2} + 1 ight)y = \log_{\frac{1}{2}}x vì các hàm số trong các đáp án này không xác định trên \mathbb{R}.

    \frac{2}{e} < 1 nên hàm số nghịch biến trên \mathbb{R}.

  • Câu 9: Thông hiểu

    Cho a và b là hai số dương bất kì. Mệnh đề nào dưới đây sai?

    Ta có:

    \log_{2}(3ab)^{3} = 3.\left( \log_{3}3 +\log_{3}a + \log_{3}b ight)

    = 3.\left( 1 + \log_{3}a + \log_{3}bight)

    = 3 + 3\log_{3}ab

    = 3 + \log_{3}(ab)^{3}

    Vậy mệnh đề sai là: \log_{2}(3ab)^{3} =\left( 1 + \log_{3}a + \log_{3}b ight)^{3}

  • Câu 10: Nhận biết

    Giải phương trình \log_{3}(x - 1) = 2 ta thu được nghiệm là:

    Điều kiện xác định: x > 1

    \log_{3}(x - 1) = 2 \Leftrightarrow x - 1= 3^{2} \Leftrightarrow x = 10(tm)

    Vậy phương trình có nghiệm x =
10.

  • Câu 11: Thông hiểu

    Gọi x_{1};x_{2} là các nghiệm của phương trình 4^{x} - 2^{x + 3} + 15 = 0. Trong các khẳng định dưới đây khẳng định nào đúng?

    Đặt t = 2^{x} > 0 phương trình trở thành t^{2} - 8t + 15 =
0(*)

    Gọi t_{1};t_{2} là hai nghiệm của phương trình (*) suy ra \left\lbrack
\begin{matrix}
t_{1} = 2^{x_{1}} \\
t_{2} = 2^{x_{2}} \\
\end{matrix} ight.

    Theo định lí Vi – et phương trình (*) ta có:

    t_{1}t_{2} = 15 \Rightarrow
2^{x_{1}}.2^{x_{2}} = 15

    \Rightarrow x_{1} + x_{2} =\log_{2}15

  • Câu 12: Vận dụng

    Cho biết {\left( {x - 2} ight)^{ - \frac{1}{3}}} > {\left( {x - 2} ight)^{ - \frac{1}{6}}}, khẳng định nào sau đây đúng?

    Điều kiện: x - 2 > 0 \to x > 2

    Ta có:

    - \frac{1}{3} >  - \frac{1}{6} \Rightarrow {\left( {x - 2} ight)^{ - \frac{1}{3}}} > {\left( {x - 2} ight)^{ - \frac{1}{6}}}

    \Rightarrow x - 2 < 1 \Rightarrow x < 3

    Vậy 2 < x < 3

  • Câu 13: Thông hiểu

    Cho biểu thức U
= \sqrt[4]{x\sqrt[3]{x^{2}\sqrt{x^{3}}}};(x > 0). Mệnh đề nào sau đây đúng?

    Ta có:

    U =
\sqrt[4]{x\sqrt[3]{x^{2}\sqrt{x^{3}}}} =
\sqrt[4]{x\sqrt[3]{x^{2}x^{\frac{3}{2}}}} =
\sqrt[4]{x\sqrt[3]{x^{\frac{7}{2}}}}

    = \sqrt[4]{x.x^{\frac{7}{6}}} =
\sqrt[4]{x^{\frac{13}{6}}} = x^{\frac{13}{24}}

  • Câu 14: Thông hiểu

    Tìm tất cả các giá trị thực của x thỏa mãn đẳng thức \log_{3}x = 3\log_{3}2 + \log_{9}25 -\log_{\sqrt{3}}3.

    Ta có:

    \log_{3}x = 3\log_{3}2 + \log_{9}25 -\log_{\sqrt{3}}3

    \Leftrightarrow \log_{3}x = \log_{3}8 +\log_{3}5 - \log_{3}9

    \Leftrightarrow \log_{3}x =\log_{3}\frac{40}{9} \Leftrightarrow x = \frac{40}{9}

  • Câu 15: Nhận biết

    Cho phương trình 2^{x^{2} + 2x} = 8^{2 - x}. Giải phương trình và tính tổng tất cả các nghiệm vừa tìm được.

    Ta có:

    2^{x^{2} + 2x} = 8^{2 - x}
\Leftrightarrow 2^{x^{2} + 2x} = \left( 2^{3} ight)^{2 -
x}

    \Leftrightarrow x^{2} + 2x = 3.(2 -
x)

    \Leftrightarrow x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 6 \\
\end{matrix} ight.\ (tm)

    Tổng tất cả các nghiệm của phương trình là S = 1 + ( - 6) = - 5

  • Câu 16: Vận dụng

    Cho các số thức a, b thỏa mãn 1 < a < b\log_{a}b + \log_{b}a^{2} = 3. Tính giá trị của biểu thức T = \log_{ab}\frac{a^{2} +b}{2}?

    Ta có:

    \log_{a}b + \log_{b}a^{2} = 3\Leftrightarrow \log_{a}b + 2\log_{b}a = 3(*)

    Đặt t = \log_{a}b. Do 1 < a < b \Rightarrow t > log_{a}b
\Rightarrow t > 1

    Khi đó t + \frac{2}{t} = 3
\Leftrightarrow t^{2} - 3t + 2 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t = 1(ktm) \\
t = 2(tm) \\
\end{matrix} ight.

    Với t = 2 ta có: \log_{a}b = 2 \Rightarrow b = a^{2}

    => T = \log_{ab}\frac{a^{2} + b}{2} =\log_{a^{3}}a^{2} = \frac{2}{3}\log_{a}a = \frac{2}{3}

  • Câu 17: Vận dụng cao

    Chof\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}biết rằng f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} với m và n là các số nguyên dương và phân số \frac{m}{n} tối giản. Tính giá trị biểu thức m - {n^2}.

    Ta có:

    f\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\sqrt {\dfrac{{{x^2}.{{\left( {x + 1} ight)}^2} + {x^2} + {{\left( {x + 1} ight)}^2}}}{{{x^2}.{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\dfrac{{{x^2} + x + 1}}{{x\left( {x + 1} ight)}}}} = {5^{1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}}}

    \begin{matrix}  f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow {5^{\sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)} }} = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow \sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)}  = \dfrac{m}{n} \hfill \\   \Leftrightarrow 2021 - \dfrac{1}{{2021}} = \dfrac{m}{n} \hfill \\   \Leftrightarrow \dfrac{{4084440}}{{2021}} = \dfrac{m}{n} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m = 4084440} \\   {n = 2021} \end{array}} ight. \Rightarrow m - {n^2} =  - 1 \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Anh B vay ngân hàng 200 triệu đồng và trả góp trong vòng 1 năm với lãi suất 1,15%/tháng. Sau đúng một tháng kể từ ngày vay, anh B hoàn nợ cho ngân hàng với số tiền hoàn nợ mỗi tháng là như nhau. Hỏi số tiền gần nhất với số tiền mỗi tháng anh B sẽ phải trả cho ngân hàng là bao nhiêu? Biết lãi suất ngân hàng không thay đổi trong thời gian anh B hoàn nợ.

    Mỗi tháng anh B phải trả số tiền cho ngân hàng là:

    x = \frac{a.(1 + r)^{n}.r}{(1 + r)^{n} -
1} = \frac{200.(1 + 1,15\%)^{12}.1,15\%}{(1 + 1,15\%)^{12} -
1}

    =
\frac{200.(1,0115)^{12}.0,0115}{(1,0115)^{12} - 1} \approx
17,94

  • Câu 19: Nhận biết

    Cho hàm số y =\log_{3}(x + 3). Tìm tập xác định D của hàm số?

    Điều kiện xác định của hàm số y =\log_{3}(x + 3) là:

    x + 3 > 0 \Rightarrow x > -
3

    Vậy tập xác định của hàm số là D = ( - 3;
+ \infty)

  • Câu 20: Vận dụng

    Cho bất phương trình \log_{x - m}\left( x^{2} - 1 ight) > \log_{x -m}\left( x^{2} + x - 2 ight). Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?

    Điều kiện xác định x e m + 1;x > m

    Ta có:

    \log_{x - m}\left( x^{2} - 1 ight) >\log_{x - m}\left( x^{2} + x - 2 ight)(*)

    Với x > m + 1

    (*) \Leftrightarrow \left\{
\begin{matrix}
x^{2} - 1 > x^{2} + x - 2 \\
x^{2} + x - 2 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x < 1 \\
\left\lbrack \begin{matrix}
x < - 2 \\
x > 1 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow x < - 2

    Với 0 < x < m + 1

    (*) \Leftrightarrow 0 < x^{2} - 1
< x^{2} + x - 2

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} - 1 > 0 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > - 1 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow x > 1

    Bất phương trình (*) vô nghiệm khi và chỉ khi \left\{ \begin{matrix}m + 1 \geq - 2 \\m + 1 \leq 1 \\\end{matrix} ight.\  \Leftrightarrow - 3 \leq m \leq 0

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo