Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Giải phương trình
và cho biết phương trình có tất cả bao nhiêu nghiệm nguyên dương?
Điều kiện xác định
Phương trình đã cho tương đương:
Kết hợp điều kiện đề bài ta thấy không có giá trị nào thỏa mãn
Vậy phương trình không có nghiệm nguyên dương.
Tính giá trị biểu thức
.
Ta có:
Tìm nghiệm của phương trình
?
Điều kiện xác định:
Vậy phương trình có nghiệm .
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Chị X gửi tiết kiệm ngân hàng 100 triệu đồng với lãi suất 8,4%/năm. Sau bao nhiêu năm chị X thu được gấp đôi số tiền ban đầu? Biết lãi hàng năm được nhập vào vốn.
Gọi số tiền ban đầu chị X gửi vào ngân hàng là A, lãi suất là r và sau n năm được tính theo công thức .
Để số tiền sau n năm thu được gấp đôi số tiền ban đầu ta có phương trình:
Vậy sau 9 năm người gửi thu được gấp đôi số tiền ban đầu.
Cho
và
với x và y là các số thực khác 0. So sánh P và Q?
Ta có: là những số thực dương
Ta lại có:
Giải phương trình
ta thu được nghiệm là:
Điều kiện xác định:
Vậy phương trình có nghiệm .
Hình bên là đồ thị hàm số nào trong các hàm số dưới đây?

Đồ thị đã cho là của một hàm số nghịch biến trên tập xác định của nó.
Trong bốn phương án đã cho, chỉ có hàm số thỏa mãn.
Cho hai số thực dương a và b thỏa mãn
và
. Giá trị của biểu thức
là:
Theo điều kiện ta có:
Đơn giản biểu thức
với
ta được kết quả là:
Ta có:
Trong các hàm số sau hàm số nào nghịch biến trên tập số thực?
Loại các đáp án và
vì các hàm số trong các đáp án này không xác định trên
.
Vì nên hàm số nghịch biến trên
.
Cho đồ thị hàm số:

Xác định hàm số tương ứng?
Đồ thị hàm số đi lên và qua điểm có tọa độ nên hàm số thỏa mãn là
Cho
. Tính giá trị của biểu thức
?
Ta có:
Biết khi rút gọn biểu thức
thu được phân số
tối giản và
. Tính giá trị biểu thức
.
Ta có:
Ta lại có:
Tính giá trị biểu thức
.
Ta có:
Tìm điều kiện xác định của hàm số
?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là .
Đặt
. Hãy biểu diễn
theo a và b.
Ta có:
Tìm số nghiệm phương trình
?
Điều kiện
Ta có:
Vậy phương trình có 1 nghiệm.
Cho phương trình
. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt
thỏa mãn
.
Đặt . Phương trình đã cho trở thành
Phương trình (*) có hai nghiệm phân biệt thỏa mãn