Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Giải phương trình 2^{\frac{1}{x}}.\left( \sqrt{x^{2} + 4} - x - 2
ight) = 4\sqrt{x^{2} + 4} - 4x - 8.

    Điều kiện xác định x eq 0

    Phương trình đã cho tương đương:

    \Leftrightarrow 2^{\frac{1}{x}}.\left(
\sqrt{x^{2} + 4} - x - 2 ight) = 4\left( \sqrt{x^{2} + 4} - x - 2
ight)

    \Leftrightarrow \left( 2^{\frac{1}{x}} -
4 ight)\left( \sqrt{x^{2} + 4} - x - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{\frac{1}{x}} - 4 = 0 \\
\sqrt{x^{2} + 4} - x - 2 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
2^{\frac{1}{x}} = 4 \\
\sqrt{x^{2} + 4} = x + 2 \\
\end{matrix} ight.

    Giải phương trình 2^{\frac{1}{x}} =
4 có nghiệm x =
\frac{1}{2}

    Giải phương trình \sqrt{x^{2} + 4} = x +
2

    \Leftrightarrow \left\{ \begin{matrix}
x \geq - 2 \\
x^{2} + 4 = (x + 2)^{2} \\
\end{matrix} ight.

    \Leftrightarrow x = 0

    Vậy phương trình có nghiệm duy nhất x =
\frac{1}{2}

  • Câu 2: Thông hiểu

    Phương trình \log_{2}(x - 1) = \log_{2}(2x + 1) có tập nghiệm là:

    Điều kiện \left\{ \begin{matrix}x - 1 > 0 \\2x + 1 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > 1 \\x > - \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow x > 1

    Ta có:

    \log_{2}(x - 1) = \log_{2}(2x +1)

    \Leftrightarrow x - 1 = 2x + 1
\Leftrightarrow x = - 2(ktm)

    Vậy phương trình vô nghiệm hay S =
\varnothing.

  • Câu 3: Vận dụng

    Tìm tập nghiệm của bất phương trình 4x^{2} + x.2^{x^{2} + 1} + 3.2^{x^{2}} >
x^{2}.2^{x^{2}} + 8x + 12.

    Ta có:

    4x^{2} + x.2^{x^{2} + 1} + 3.2^{x^{2}}
> x^{2}.2^{x^{2}} + 8x + 12

    \Leftrightarrow \left( 4 - 2^{x^{2}}
ight)\left( x^{2} - 2x - 3 ight) > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
4 - 2^{x^{2}} > 0 \\
x^{2} - 2x - 3 > 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
4 - 2^{x^{2}} < 0 \\
x^{2} - 2x - 3 < 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
\sqrt{2} > x > - \sqrt{2} \\
\left\lbrack \begin{matrix}
x < - 1 \\
x > 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x < - \sqrt{2} \\
x > \sqrt{2} \\
\end{matrix} ight.\  \\
- 1 < x < 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
- \sqrt{2} < x < - 1 \\
\sqrt{2} < x < 3 \\
\end{matrix} ight.

    Vậy tập nghiệm bất phương trình là: S =
\left( - \sqrt{2}; - 1 ight) \cup \left( \sqrt{2};3
ight)

  • Câu 4: Thông hiểu

    Tìm tập xác định của hàm số y = \left( x^{2} - 3x - 4 ight)^{\sqrt{2 -
\sqrt{3}}}.

    Điều kiện xác định của hàm số x^{2} - 3x
- 4 > 0 \Leftrightarrow \left\lbrack \begin{matrix}
x > 4 \\
x < - 1 \\
\end{matrix} ight.

    Vậy tập xác định của hàm số là C = ( -
\infty; - 1) \cup (4; + \infty)

  • Câu 5: Nhận biết

    Cho số thực dương a và số nguyên dương n tùy ý. Mệnh đề nào sau đây đúng?

    Ta có: \sqrt{a^{n}} =
a^{\frac{n}{2}}.

  • Câu 6: Thông hiểu

    Cho hàm số f(x)= \log_{2}m. Với m > 0, giá trị của biểu thức T = f\left(\frac{6}{m} ight) + f\left( \frac{8m}{3} ight) bằng:

    Ta có:

    T = f\left( \frac{6}{m} ight) +f\left( \frac{8m}{3} ight) = f\left( \frac{6}{m}.\frac{8m}{3} ight)= f(16) = 4

  • Câu 7: Vận dụng

    Cho a,b >0 thỏa mãn a^{2} + 4b^{2} =5ab. Chọn khẳng định đúng?

    Ta có: a^{2} + 4b^{2} = 5ab \Rightarrow(a + 2b)^{2} = 9ab

    Lôgarit cơ số 10 cho hai vế ta được:

    \log(a + 2b)^{2} =\log(9ab)

    \Leftrightarrow 2\log(a + 2b) = \log9 +\log a + \log b

    \Leftrightarrow 2\left\lbrack \log(a +2b) - \log3 ightbrack = \log a + \log b

    \Leftrightarrow \log\left( \frac{a +2b}{3} ight) = \frac{\log a + \log b}{2}

  • Câu 8: Nhận biết

    Tập nghiệm của bất phương trình \left( \frac{2}{3} ight)^{4x} \leq \left(\frac{3}{2} ight)^{2 - x} là:

    Ta có:

    \left( \frac{2}{3} ight)^{4x} \leq\left( \frac{3}{2} ight)^{2 - x}

    \Leftrightarrow \left( \frac{3}{2}ight)^{- 4x} \leq \left( \frac{3}{2} ight)^{2 - x}

    \Leftrightarrow - 4x \leq 2 -x

    \Leftrightarrow x \geq -\frac{2}{3}

  • Câu 9: Vận dụng

    Cho hàm số y =
x^{\alpha};y = x^{\beta};y = x^{\gamma} trên (0; + \infty) trên cùng một hệ trục tọa độ như hình vẽ. Tìm mệnh đề đúng trong các mệnh đề sau.

    Ta có:

    \alpha < x < 1 thì x^{\alpha} < x^{\beta} < x^{\gamma} <
x^{2}

    \Rightarrow \alpha > \beta >
\gamma > 1

    Với x > 1 thì a^{1} < x^{\gamma} < x^{\beta} <
x^{\alpha}

    \Rightarrow 1 < \gamma < \beta
< \alpha

  • Câu 10: Thông hiểu

    Cho hàm số f(x)
= \frac{x^{\frac{2}{3}}.\left( \sqrt[3]{x^{- 2}} - \sqrt[3]{x}
ight)}{x^{\frac{1}{8}}.\left( \sqrt[8]{x^{3}} - \sqrt[8]{x}
ight)} với x > 0;x eq
1. Hãy xác định giá trị f\left(
2021^{2022} ight)?

    Ta có:

    f(x) = \frac{x^{\frac{2}{3}}.\left(
\sqrt[3]{x^{- 2}} - \sqrt[3]{x} ight)}{x^{\frac{1}{8}}.\left(
\sqrt[8]{x^{3}} - \sqrt[8]{x} ight)} = \frac{x^{\frac{2}{3}}.\left(
x^{- \frac{2}{3}} - x^{\frac{1}{3}} ight)}{x^{\frac{1}{8}}.\left(
x^{\frac{3}{8}} - x^{\frac{1}{8}} ight)}

    = \frac{- \left( x^{\frac{1}{2}} - 1
ight)\left( x^{\frac{1}{2}} + 1 ight)}{x^{\frac{1}{2}} - 1} = -
x^{\frac{1}{2}} - 1

    Khi đó: f\left( 2021^{2022} ight) =
\left( 2021^{2022} ight)^{\frac{1}{2}} - 1 = - 2021^{1011} -
1

  • Câu 11: Nhận biết

    Trong các phương trình sau đây, phương trình nào nhận a = 2 làm nghiệm?

    Thay a = 2 vào các phương trình ta được:

    4^{2} = 16 (tm)

    Vậy x = 2 là nghiệm của phương trình 4^{a} = 16.

  • Câu 12: Thông hiểu

    Cho a,b là các số thực dương bất kì. Mệnh đề nào dưới đây đúng?

    Ta có:

    \log_{2}\left( \frac{2a^{3}}{b} ight) =\log_{2}\left( 2a^{3} ight) - \log_{2}b

    = \log_{2}2 + \log_{2}a^{3} -\log_{2}b

    = 1 + 3\log_{2}a - \log_{2}b

  • Câu 13: Vận dụng cao

    Rút gọn biểu thức

    P = \frac{{4 + \sqrt 3 }}{{1 + \sqrt 3 }} + \frac{{6 + \sqrt 8 }}{{\sqrt 2  + \sqrt 4 }} + ... + \frac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} + ... + \frac{{200 + \sqrt {9999} }}{{\sqrt {99}  + \sqrt {101} }}

    Với k \geqslant 2 ta có:

    \begin{matrix}  \dfrac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} \hfill \\   = \dfrac{{\left[ {{{\left( {\sqrt {k - 1} } ight)}^2} + {{\left( {\sqrt {k + 1} } ight)}^2} + \sqrt {\left( {k + 1} ight)\left( {k - 1} ight)} } ight]\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)}}{{\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)\left( {\sqrt {k - 1}  + \sqrt {k + 1} } ight)}} \hfill \\   = \dfrac{{\sqrt {{{\left( {k + 1} ight)}^3}}  - \sqrt {{{\left( {k - 1} ight)}^3}} }}{2} \hfill \\ \end{matrix}

    Khi đó:

    \begin{matrix}  P = \dfrac{1}{2}.\left( {\sqrt {{3^3}}  - \sqrt {{1^3}}  + \sqrt {{4^3}}  - \sqrt {{2^3}}  + \sqrt {{5^3}}  - \sqrt {{3^3}}  + \sqrt {{6^3}}  - \sqrt {{4^3}}  + ... + \sqrt {{{101}^3}}  - \sqrt {{{99}^3}} } ight) \hfill \\   = \dfrac{1}{2}\left( { - 1 - \sqrt {{2^3}}  + \sqrt {{{101}^3}}  + \sqrt {{{100}^3}} } ight) = \dfrac{{999 + \sqrt {{{101}^3}}  - \sqrt 8 }}{2} \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu

    Giá trị của \log_{3}H với H =
\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} là: 21/100

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giá trị của \log_{3}H với H =
\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} là: 21/100

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Ta có:

    H =\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} =3^{\dfrac{1}{10}}27^{\dfrac{1}{10}.\dfrac{1}{5}}.243^{\dfrac{1}{10}.\dfrac{1}{5}.\dfrac{1}{2}}= 3^{\dfrac{21}{100}}

    \Rightarrow \log_{3}H =\log_{3}3^{\frac{21}{100}} = \frac{21}{100}

  • Câu 15: Nhận biết

    Giá trị của biểu thức P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}} bằng:

    Ta có:

    P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}}

    = {\left[ {\left( {1 + \sqrt 3 } ight)\left( {3 - \sqrt 3 } ight)} ight]^{2016}} = {\left( {2\sqrt 3 } ight)^{2016}} = {12^{1008}}

  • Câu 16: Nhận biết

    Tìm tập xác định của hàm số \log_{2}(x - 1)?

    Điều kiện xác định x - 1 > 0
\Rightarrow x > 1

    Suy ra tập xác định của hàm số là: D =
(1; + \infty).

  • Câu 17: Nhận biết

    Cho các số dương a,b thỏa mãn 0 < a < 1 < b. Chọn khẳng định đúng.

    Xét tính đúng sai của từng đáp án dựa vào điểu kiện của a,b

    \log_{a}b < \log_{a}1 = 0 (vì \left\{ \begin{matrix}
0 < a < 1 \\
b > 1 \\
\end{matrix} ight.) nên \log_{a}b < 0 đúng

    a < b nên \ln a < \ln b. Vậy \ln a > \ln b sai.

    \left\{ \begin{matrix}
a < b \\
0 < 0,5 < 1 \\
\end{matrix} ight. nên (0,5)^{a} > (0,5)^{b}. Vậy (0,5)^{a} < (0,5)^{b} sai.

    \left\{ \begin{matrix}
2 > 1 \\
a < b \\
\end{matrix} ight. nên 2^{a}
< 2^{b}. vậy 2^{a} >
2^{b} sai.

  • Câu 18: Vận dụng

    Giá trị của biểu thức M = {\left( {3 + 2\sqrt 2 } ight)^{2019}}.{\left( {3\sqrt 2  - 4} ight)^{2018}} là:

    Ta có:

    \begin{matrix}  3\sqrt 2  - 4 = \sqrt 2 .\left( {3 - 2\sqrt 2 } ight) \hfill \\   \Rightarrow M = {\left( {3 + 2\sqrt 2 } ight)^{2019}}.{\left( {\sqrt 2 } ight)^{2018}}.{\left( {3 - 2\sqrt 2 } ight)^{2018}} \hfill \\  \left( {3 + 2\sqrt 2 } ight)\left( {3 - 2\sqrt 2 } ight) = {3^2} - {\left( {2\sqrt 2 } ight)^2} = 9 - 8 = 1 \hfill \\   \Rightarrow {\left( {3 + 2\sqrt 2 } ight)^{2018}}{\left( {3 - 2\sqrt 2 } ight)^{2018}} = 1 \hfill \\   \Rightarrow M = {\left( {3 - 2\sqrt 2 } ight)^{2018}}{.2^{2019}} \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu

    Thực hiện thu gọn biểu thức C = \left( x^{\frac{1}{2}} - y^{\frac{1}{2}}
ight)^{2}.\left( 1 - 2\sqrt{\frac{x}{y}} + \frac{y}{x} ight)^{-
1} với x > 0;y > 0 ta được kết quả là:

    Ta có:

    \left( x^{\frac{1}{2}} - y^{\frac{1}{2}}
ight)^{2} = \left( \sqrt{x} - \sqrt{y} ight)^{2}

    Ta cũng có:

    \left( 1 - 2\sqrt{\frac{x}{y}} +
\frac{y}{x} ight)^{- 1} = \left\lbrack \left( \sqrt{\frac{y}{x}} - 1
ight)^{2} ightbrack^{- 1}

    = \left( \frac{\sqrt{y} -
\sqrt{x}}{\sqrt{x}} ight)^{- 2} = \left( \frac{\sqrt{x}}{\sqrt{y} -
\sqrt{x}} ight)^{2}

    Khi đó:

    C = \left( \sqrt{x} - \sqrt{y}
ight)^{2}.\left( \frac{\sqrt{x}}{\sqrt{x} - \sqrt{y}} ight)^{2} =
x

  • Câu 20: Nhận biết

    Trong các hàm số sau: y = 0,5^{x};y = \log_{\frac{1}{2}}x;y =\log_{\frac{5}{2}}x;y = \left( \frac{4}{5} ight)^{x}. Hàm số nào đồng biến trên tập xác định?

    Ta có: \frac{5}{2} > 1 nên hàm số y =\log_{\frac{5}{2}}x đồng biến trên tập xác định của nó.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo