Hàm số nào sau đây nghịch biến trên tập xác định?
Ta có: nghịch biến trên tập xác định.
Hàm số nào sau đây nghịch biến trên tập xác định?
Ta có: nghịch biến trên tập xác định.
Anh B vay ngân hàng 200 triệu đồng và trả góp trong vòng 1 năm với lãi suất 1,15%/tháng. Sau đúng một tháng kể từ ngày vay, anh B hoàn nợ cho ngân hàng với số tiền hoàn nợ mỗi tháng là như nhau. Hỏi số tiền gần nhất với số tiền mỗi tháng anh B sẽ phải trả cho ngân hàng là bao nhiêu? Biết lãi suất ngân hàng không thay đổi trong thời gian anh B hoàn nợ.
Mỗi tháng anh B phải trả số tiền cho ngân hàng là:
Chị X gửi tiết kiệm ngân hàng 100 triệu đồng với lãi suất 8,4%/năm. Sau bao nhiêu năm chị X thu được gấp đôi số tiền ban đầu? Biết lãi hàng năm được nhập vào vốn.
Gọi số tiền ban đầu chị X gửi vào ngân hàng là A, lãi suất là r và sau n năm được tính theo công thức .
Để số tiền sau n năm thu được gấp đôi số tiền ban đầu ta có phương trình:
Vậy sau 9 năm người gửi thu được gấp đôi số tiền ban đầu.
Số có bao nhiêu chữ số?
Ta có:
Số tự nhiên có
chữ số khi
Đặt suy ra
Vậy số các chữ số của là 147501992.
Với thì biểu thức
có giá trị bằng bao nhiêu?
Ta có:
đều xác định và
khi đó:
Giải bất phương trình thu được tập nghiệm là:
Ta có:
Vậy bất phương trình đã cho có tập nghiệm là: .
Tập nghiệm của bất phương trình là:
Ta có:
Vậy tập nghiệm của bất phương trình là:
Biết là số thực dương khác 1. Viết và thu gọn biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ. Tìm số mũ của biểu thức rút gọn đó?
Ta có:
Tìm m để bất phương trình vô nghiệm.
Ta có:
Bất phương trình vô nghiệm khi:
Đặt . Khi đó
biểu diễn là:
Ta có:
Phương trình có nghiệm thuộc khoảng nào sau đây?
Điều kiện xác định
Phương trình đã cho:
Vậy nghiệm của phương trình thuộc khoảng
Cho . Tính
Ta có:
Thu gọn biểu thức với
là các số thực dương:
Ta có:
Tập nghiệm của bất phương trình là:
Điều kiện:
Ta có:
Kết hợp với điều kiện xác định ta suy ra được tập nghiệm của bất phương trình đã cho là: .
Xét tính đúng, sai của các phát biểu sau?
a) Hàm số luôn nghịch biến trên tập số thực. Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Ta có: suy ra
Sai||Đúng
d) Với thì hàm số
xác định trên
. Đúng||Sai
Xét tính đúng, sai của các phát biểu sau?
a) Hàm số luôn nghịch biến trên tập số thực. Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Ta có: suy ra
Sai||Đúng
d) Với thì hàm số
xác định trên
. Đúng||Sai
a) Vì nên hàm số
luôn nghịch biến trên tập số thực đúng.
b) Điều kiện xác định của hàm số:
Vậy tập xác định của hàm số là
c) Ta có: nên
hay
d) Điều kiện xác định:
TH1:
TH2:
Suy ra tập xác định của hàm số
Khi đó yêu cầu bài toán trở thành
Th3:
Suy ra tập xác định của hàm số
Do đó không tồn tại giá trị m thỏa mãn yêu cầu bài toán.
Khẳng định nào dưới đây đúng?
Ta có:
Vậy đáp án đúng là:
Cho hàm số . Tính tổng
Với hàm số ta có:
Khi đó:
Hàm số nào dưới đây đồng biến trên ?
Ta có: nên hàm số
đồng biến trên
.
Cho thỏa mãn
. Xác định tỉ số
?
Điều kiện
Với
Biết , khi đó
bằng:
Ta có: