Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tính giá trị của a^{\log_{\sqrt{a}}4} với a > 0;a eq 1?

    Ta có: a^{\log_{\sqrt{a}}4} =a^{2\log_{a}4} = a^{\log_{a}16} = 16.

  • Câu 2: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số f(x) = \left( 1 + \ln might)^{x} đồng biến trên tập số thực.

    Ta có hàm số f(x) = \left( 1 + \ln m
ight)^{x} đồng biến trên \mathbb{R}

    Khi và chỉ khi 1 + \ln m > 1\Leftrightarrow m > 1

  • Câu 3: Vận dụng

    Thực hiện rút gọn biểu thức Z = \left(
\frac{a^{\frac{1}{3}}.b^{\frac{1}{3}}}{2a^{- \frac{1}{3}} - b^{-
\frac{1}{3}}} + \frac{a^{\frac{1}{3}} - 2b^{\frac{1}{3}}}{4a^{-
\frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}}}
ight).\frac{8b - a}{6} ta thu được kết quả là:

    Ta có:

    Z = \left(
\frac{a^{\frac{1}{3}}.b^{\frac{1}{3}}}{2a^{- \frac{1}{3}} - b^{-
\frac{1}{3}}} + \frac{a^{\frac{1}{3}} - 2b^{\frac{1}{3}}}{4a^{-
\frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}}}
ight).\frac{8b - a}{6}

    Z = \frac{8b - a}{6} \cdot
\frac{a^{\frac{1}{3}}b^{\frac{1}{3}}\left( 4a^{- \frac{2}{3}} + 2a^{-
\frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}} ight) + \left( 2a^{-
\frac{1}{3}} - b^{- \frac{1}{3}} ight)\left( a^{\frac{1}{3}} -
2b^{\frac{1}{3}} ight)}{\left( 2a^{- \frac{1}{3}} - b^{- \frac{1}{3}}
ight)\left( 4a^{- \frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} +
b^{- \frac{2}{3}} ight)}

    Z = \frac{8b - a}{6} \cdot \frac{4a^{-
\frac{1}{3}}b^{\frac{1}{3}} + 2 + a^{\frac{1}{3}}b^{- \frac{1}{3}} + 2 -
4a^{- \frac{1}{3}}b^{\frac{1}{3}} - a^{\frac{1}{3}}b^{- \frac{1}{3}} +
2}{8a^{- 1} - b^{- 1}}

    Z = \frac{8b - a}{6} \cdot\frac{6}{\dfrac{8}{a} - \dfrac{1}{b}} = \frac{8b - a}{6} \cdot\frac{6ab}{8b - a} = ab

  • Câu 4: Thông hiểu

    Thu gọn biểu thức I =
\frac{\sqrt[3]{a^{7}}.a^{\frac{11}{3}}}{a^{4}.\sqrt[7]{a^{- 5}}};(a >
0) ta được kết quả ta được phân số tối giản \frac{x}{y};\left( x;y \in \mathbb{N}^{*}
ight). Khẳng định nào sau đây đúng?

    Ta có:

    I =
\frac{\sqrt[3]{a^{7}}.a^{\frac{11}{3}}}{a^{4}.\sqrt[7]{a^{- 5}}} =
\frac{a^{\frac{7}{3}}.a^{\frac{11}{3}}}{a^{4}.a^{\frac{- 5}{7}}} =
\frac{a^{6}}{a^{\frac{23}{7}}} = a^{\frac{19}{7}}

    Suy ra \left\{ \begin{matrix}
x = 19 \\
y = 7 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x^{2} + y^{2} = 410 \\
x^{2} - y^{2} = 312 \\
\end{matrix} ight.

  • Câu 5: Vận dụng cao

    Cho số thực dương a và b. Biểu thức thu gọn của biểu thức

    P = \left( {2{a^{\frac{1}{4}}} - 3{b^{\frac{1}{4}}}} ight).\left( {2{a^{\frac{1}{4}}} + 3{b^{\frac{1}{4}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight)

    có dạng P = xa + yb. Tính x + y.

    Ta có:

    \begin{matrix}  P = \left( {2{a^{\frac{1}{4}}} - 3{b^{\frac{1}{4}}}} ight).\left( {2{a^{\frac{1}{4}}} + 3{b^{\frac{1}{4}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left[ {{{\left( {2{a^{\frac{1}{4}}}} ight)}^2} - {{\left( {3{b^{\frac{1}{4}}}} ight)}^2}} ight].\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left( {4{a^{\frac{1}{2}}} - 9{b^{\frac{1}{2}}}} ight).\left( {4{a^{\frac{1}{2}}} + 9{b^{\frac{1}{2}}}} ight) \hfill \\  P = \left[ {{{\left( {4{a^{\frac{1}{2}}}} ight)}^2} - {{\left( {9{b^{\frac{1}{2}}}} ight)}^2}} ight] = 16a - 81b \hfill \\   \Rightarrow x = 16;y =  - 81 \hfill \\   \Rightarrow y - x =  - 97 \hfill \\ \end{matrix}

  • Câu 6: Nhận biết

    Với ab là hai số thực dương tùy ý, biểu thức \log\left( ab^{2} ight) bằng:

    Ta có:

    \log\left( ab^{2} ight) = \log a +\log b^{2} = \log a + 2\log b

  • Câu 7: Nhận biết

    Giải phương trình \log_{2}a + \log_{2}3 = 0 thu được nghiệm là:

    Điều kiện xác định: a > 0

    \log_{2}a + \log_{2}3 = 0

    \Leftrightarrow \log_{2}3a = 0\Leftrightarrow 3a = 2^{0} \Leftrightarrow a =\frac{1}{3}(tm)

    Vậy phương trình có nghiệm là a =
\frac{1}{3}.

  • Câu 8: Thông hiểu

    Giả sử tập nghiệm của bất phương trình \log_{\frac{1}{3}}(x + 1) > 2\log_{3}(2 -x) có dạng S = (a,b) \cup
(c;d) với a,b,c,d\in\mathbb{R}. Tính tổng S = a + b + c +
d.

    Ta có:

    \left\{ \begin{matrix}x + 1 > 0 \\2 - x > 0 \\\log_{\frac{1}{3}}(x + 1) > 2\log_{3}(2 - x) \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{gathered}
  x >  - 1 \hfill \\
  x < 2 \hfill \\
   - {\log _3}\left( {x + 1} ight) > 2{\log _3}\left( {2 - x} ight) \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}
   - 1 < x < 2 \hfill \\
  0 > 2{\log _3}\left( {2 - x} ight) + {\log _3}\left( {x + 1} ight) \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
  { - 1 < x < 2} \\ 
  {{x^2} + x + 1 > 0} 
\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  { - 1 < x < 2} \\ 
  {\left[ {\begin{array}{*{20}{l}}
  {x > \dfrac{{1 + \sqrt 5 }}{2}} \\ 
  {x < \dfrac{{1 - \sqrt 5 }}{2}} 
\end{array}} ight.} 
\end{array}} ight.} ight.

    \Rightarrow S = \left( - 1;\frac{1 -
\sqrt{5}}{2} ight) \cup \left( \frac{1 + \sqrt{5}}{2};2
ight)

    \Leftrightarrow a + b + c + d = - 1 +
\frac{1 - \sqrt{5}}{2} + \frac{1 + \sqrt{5}}{2} + 2 = 2

    Vậy S = 2

  • Câu 9: Nhận biết

    Hàm số nào sau đây không phải là hàm số mũ?

    Hàm số y = x^{\pi} là hàm số lũy thừa, không phải hàm số mũ.

  • Câu 10: Thông hiểu

    Giả sử phương trình \log_{\sqrt{2}}x + \log_{\frac{1}{2}}(2x - 1) =1 có nghiệm lớn nhất là x = m +
n\sqrt{2};\left( m,n\mathbb{\in Z} ight). Tính giá trị biểu thức A = m + 2n?

    Điều kiện xác định \left\{ \begin{matrix}x > 0 \\2x - 1 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > 0 \\x > \dfrac{1}{2} \\\end{matrix} ight.\  \Rightarrow x > \frac{1}{2}

    Phương trình đã cho tương đương:

    \Leftrightarrow 2\log_{2}x - \log_{2}(2x -1) = 1

    \Leftrightarrow \log_{2}\left(\frac{x^{2}}{2x - 1} ight) = 1

    \Leftrightarrow \frac{x^{2}}{2x - 1} = 2
\Leftrightarrow x^{2} - 4x + 2 = 0

    Nghiệm lớn nhất của phương trình là

    x = 2 + \sqrt{2} \Rightarrow \left\{
\begin{matrix}
m = 2 \\
n = 1 \\
\end{matrix} ight.\  \Rightarrow A = m + 2n = 4

  • Câu 11: Vận dụng

    Cho hàm số y =
x^{\alpha};y = x^{\beta};y = x^{\gamma} trên (0; + \infty) trên cùng một hệ trục tọa độ như hình vẽ. Tìm mệnh đề đúng trong các mệnh đề sau.

    Ta có:

    \alpha < x < 1 thì x^{\alpha} < x^{\beta} < x^{\gamma} <
x^{2}

    \Rightarrow \alpha > \beta >
\gamma > 1

    Với x > 1 thì a^{1} < x^{\gamma} < x^{\beta} <
x^{\alpha}

    \Rightarrow 1 < \gamma < \beta
< \alpha

  • Câu 12: Vận dụng

    Tìm công bội q của một cấp số nhân. Biết ba số x + \log_{2}3;x + \log_{4}3;x + \log_{8}3 theo thứ tự lập thành cấp số nhân.

    Theo giả thiết ta có:

    \left( x + \log_{4}3 ight)^{2} = \left(x + \log_{2}3 ight).\left( x + \log_{8}3 ight)

    \Leftrightarrow x\log_{2}3 + \left(\frac{1}{2}\log_{2}3 ight)^{2} = \frac{4}{3}x\log_{2}3 +\frac{1}{3}\left( \log_{2}3 ight)^{2}

    \Leftrightarrow \frac{1}{3}.x.\log_{2}3 =- \frac{1}{12}.\left( \log_{2}3 ight)^{2}

    \Leftrightarrow x = -\frac{1}{4}.\log_{2}3

    Vậy công bội của cấp số nhân là: q =\dfrac{x + \log_{4}3}{x + \log_{2}3} = \dfrac{- \dfrac{1}{4}.\log_{2}3 +\dfrac{1}{2}.\log_{2}3}{- \dfrac{1}{4}.\log_{2}3 + \log_{2}3} =\dfrac{1}{3}

  • Câu 13: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    a) Hàm số y = \left( \sqrt{5} - 2
ight)^{x} luôn nghịch biến trên tập số thực. Đúng||Sai

    b) Tập xác định của hàm số y = \ln(x -
2) + \sqrt{9 - x}D =
(2;9) Sai||Đúng

    c) Ta có: a = 3^{\sqrt{5}};b = 3^{2};c =
3^{\sqrt{6}} suy ra a < c <
b Sai||Đúng

    d) Với \forall m \geq 0 thì hàm số y = log_{2020}(mx - m + 2) xác định trên \lbrack 1; + \infty). Đúng||Sai

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    a) Hàm số y = \left( \sqrt{5} - 2
ight)^{x} luôn nghịch biến trên tập số thực. Đúng||Sai

    b) Tập xác định của hàm số y = \ln(x -
2) + \sqrt{9 - x}D =
(2;9) Sai||Đúng

    c) Ta có: a = 3^{\sqrt{5}};b = 3^{2};c =
3^{\sqrt{6}} suy ra a < c <
b Sai||Đúng

    d) Với \forall m \geq 0 thì hàm số y = log_{2020}(mx - m + 2) xác định trên \lbrack 1; + \infty). Đúng||Sai

    a) Vì 0 < \sqrt{5} - 2 < 1 nên hàm số y = \left( \sqrt{5} - 2
ight)^{x} luôn nghịch biến trên tập số thực đúng.

    b) Điều kiện xác định của hàm số:

    \left\{ \begin{matrix}
x - 2 > 0 \\
9 - x \geq 0 \\
\end{matrix} ight.\  \Rightarrow x \in (2;9brack

    Vậy tập xác định của hàm số là D =
(2;9brack

    c) Ta có: 2 < \sqrt{5} <
\sqrt{6} nên 3^{2} <
3^{\sqrt{5}} < 3^{\sqrt{6}} hay b < a < c

    d) Điều kiện xác định:

    mx - m + 2 > 0 \Leftrightarrow mx
> m - 2\ \ (*)

    TH1: m = 0 \Rightarrow (*)0 > -
1(tm)

    TH2: m > 0 \Rightarrow (*)
\Leftrightarrow x > \frac{m - 2}{m}

    Suy ra tập xác định của hàm số D = \left(
\frac{m - 2}{2}; + \infty ight)

    Khi đó yêu cầu bài toán trở thành \frac{m
- 2}{2} < 1 \Leftrightarrow m - 2 < m \Leftrightarrow - 2 <
0(tm)

    Th3: m < 0 \Rightarrow (*)
\Leftrightarrow x < \frac{m - 2}{m}

    Suy ra tập xác định của hàm số D = \left(
- \infty;\frac{m - 2}{2} ight)

    Do đó không tồn tại giá trị m thỏa mãn yêu cầu bài toán.

  • Câu 14: Nhận biết

    Cho m là số thực dương. Viết m^{2}.\sqrt[3]{m} dưới dạng lũy thừa với số mũ hữu tỉ ta được:

    Ta có: m^{2}.\sqrt[3]{m} =
m^{2}.m^{\frac{1}{3}} = m^{2 + \frac{1}{3}} =
m^{\frac{7}{3}}

  • Câu 15: Thông hiểu

    Cho biết m =\log_{25}7;n =\log_{2}5 . Tính giá trị biểu thức \log_{5}\frac{49}{8} theo các giá trị m,n?

    Ta có:

    m = \log_{25}7 = \log_{5^{2}}7 =\frac{1}{2}\log_{5}7

    \Rightarrow \log_{5}7 = 2m

    n = \log_{2}5 \Rightarrow \frac{1}{n} =\log_{5}2

    Ta có:

    \log_{5}\frac{49}{8} = \log_{5}49 -\log_{5}8

    = \log_{5}7^{2} - \log_{5}2^{3} =2\log_{5}7 - 3\log_{5}2

    = 2.2m - 3.\frac{1}{n} = \frac{4mn -
3}{n}

  • Câu 16: Vận dụng

    Tìm điều kiện của tham số m để phương trình \ln(x - 2) = \ln(mx) có nghiệm?

    Ta có:

    \ln(x - 2) = \ln(mx) \Leftrightarrow
\left\{ \begin{matrix}
x - 2 > 0 \\
x - 2 = mx \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x > 2 \\
(m - 1)x = - 2 \\
\end{matrix} ight.

    Phương trình \ln(x - 2) =
\ln(mx) có nghiệm khi và chỉ khi phương trình (m - 1)x = - 2 có nghiệm x > 2

    Xét phương trình (m - 1)x = -
2

    Nếu m = 1 phương trình vô nghiệm

    Nếu m eq 1 \Leftrightarrow x = -
\frac{2}{m - 1} có nghiệm x >
2 khi và chỉ khi

    - \frac{2}{m - 1} > 2 \Leftrightarrow
1 + \frac{1}{m - 1} < 0

    \Leftrightarrow \frac{m}{m - 1} < 0
\Leftrightarrow 0 < m < 1

    Vậy m \in (0;1) thỏa mãn yêu cầu đề bài.

  • Câu 17: Nhận biết

    Biết a \in
\mathbb{R}^{+}, khi đó \sqrt[4]{a} bằng:

    Ta có: \sqrt[4]{a} =
a^{\frac{1}{4}}

  • Câu 18: Nhận biết

    Cho phương trình 2^{m^{2} - 2m - 3} = 1. Tìm tập nghiệm S của phương trình đã cho.

    Ta có:

    2^{m^{2} - 2m - 3} = 1

    \Leftrightarrow 2^{m^{2} - 2m - 3} =
2^{0}

    \Leftrightarrow m^{2} - 2m - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = 3 \\
\end{matrix} ight.\ (tm)

    Vậy tập nghiệm của phương trình là S =
\left\{ - 1;3 ight\}

  • Câu 19: Nhận biết

    Hàm số nào sau đây phù hợp với hình vẽ:

    Ta có: y(1) = 0 và hàm số đồng biến trên (0; + \infty) nên chỉ có hàm số y = \log_{\sqrt{6}}x thỏa mãn.

  • Câu 20: Thông hiểu

    Cho a là một số thực dương. Giá trị của biểu thức B =
\left( \sqrt{2^{a}} ight)^{\frac{4}{a}} bằng bao nhiêu?

    Ta có: B = \left( \sqrt{2^{a}}
ight)^{\frac{4}{a}} = \left( 2^{\frac{a}{2}} ight)^{\frac{4}{a}} =
2^{\frac{a}{2}.\frac{4}{a}} = 2^{2} = 4

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 23 lượt xem
Sắp xếp theo