Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm điều kiện xác định của hàm số y = \log_{3}(2x)

    Điều kiện xác định của hàm số y =\log_{3}(2x) là:

    2x > 0 \Rightarrow x > 0
\Rightarrow x \in (0; + \infty)

  • Câu 2: Vận dụng

    Anh B lần đầu gửi vào ngân hàng 50 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất 8,4 một năm. Đúng 3 kỳ hạn sau ngân hàng thay đổi lãi suất, anh B gửi tiếp 12 tháng nữa với kỳ hạn như cũ và lãi suất trong thời gian này là 12% một năm thì anh B rút tiền về. Hỏi số tiền anh B nhận được cả gốc và lãi là bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Anh B lần đầu gửi vào ngân hàng 50 triệu đồng theo thể thức lãi kép (tức là tiền lãi của kỳ trước được cộng vào vốn của kỳ kế tiếp) với kỳ hạn 3 tháng với lãi suất 8,4 một năm. Đúng 3 kỳ hạn sau ngân hàng thay đổi lãi suất, anh B gửi tiếp 12 tháng nữa với kỳ hạn như cũ và lãi suất trong thời gian này là 12% một năm thì anh B rút tiền về. Hỏi số tiền anh B nhận được cả gốc và lãi là bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{{2018}^x}}}{{{{2018}^x} + \sqrt {2018} }}. Tính tổng

    S = f\left( {\frac{1}{{2019}}} ight) + f\left( {\frac{2}{{2019}}} ight) + ... + f\left( {\frac{{2018}}{{2019}}} ight)

    Với hàm số

    f\left( {1 - x} ight) = \frac{{\sqrt {2018} }}{{{{2018}^x} + \sqrt {2018} }} \Rightarrow f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + ... + f\left( {\dfrac{{2018}}{{2019}}} ight) \hfill \\   \Rightarrow S = f\left( {\dfrac{1}{{2019}}} ight) + f\left( {\dfrac{{2018}}{{2019}}} ight) + f\left( {\dfrac{2}{{2019}}} ight) + f\left( {\dfrac{{2017}}{{2019}}} ight) \hfill \\+ ... + f\left( {\dfrac{{1009}}{{2019}}} ight) + f\left( {\dfrac{{1010}}{{2019}}} ight) = 1009 \hfill \\ \end{matrix}

  • Câu 4: Nhận biết

    Với 0 < a eq
1,x > 0, kết luận nào sau đây sai?

    Với 0 < a eq 1,x > 0 ta có:

    \log_{a}a = 1

    \log_{a}a^{x} = x

    \log_{a}1 = 0

    Là các kết luận đúng

    Ta lại có: a^{\log_{a}x} = x \Rightarrow x^{\log_{a}x} = x sai.

  • Câu 5: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số f(x) = \left( 1 + \ln might)^{x} đồng biến trên tập số thực.

    Ta có hàm số f(x) = \left( 1 + \ln m
ight)^{x} đồng biến trên \mathbb{R}

    Khi và chỉ khi 1 + \ln m > 1\Leftrightarrow m > 1

  • Câu 6: Nhận biết

    Tìm nghiệm của phương trình \left( \sqrt{3} ight)^{3t - 6} = 1?

    Ta có:

    \left( \sqrt{3} ight)^{3t - 6} = 1
\Leftrightarrow \left( \sqrt{3} ight)^{3t - 6} = \left( \sqrt{3}
ight)^{0}

    \Leftrightarrow 3t - 6 = 0
\Leftrightarrow t = 2(tm)

    Vậy phương trình có nghiệm t = 2.

  • Câu 7: Nhận biết

    Biết rằng x =
\frac{1}{256};y = \frac{1}{27}. Tính giá trị của biểu thức C = x^{\frac{- 3}{4}} + y^{\frac{-
4}{3}}.

    Thay x = \frac{1}{256};y =
\frac{1}{27} vào biểu thức C =
x^{\frac{- 3}{4}} + y^{\frac{- 4}{3}} ta được:

    C = \left( \frac{1}{256}
ight)^{\frac{- 3}{4}} + \left( \frac{1}{27} ight)^{\frac{- 4}{3}} =
\left( 4^{- 4} ight)^{\frac{- 3}{4}} + \left( 3^{- 3} ight)^{\frac{-
4}{3}}

    = 4^{3} + 3^{4} = 145

  • Câu 8: Thông hiểu

    Tìm tất cả các giá trị thực của x thỏa mãn đẳng thức \log_{3}x = 3\log_{3}2 + \log_{9}25 -\log_{\sqrt{3}}3.

    Ta có:

    \log_{3}x = 3\log_{3}2 + \log_{9}25 -\log_{\sqrt{3}}3

    \Leftrightarrow \log_{3}x = \log_{3}8 +\log_{3}5 - \log_{3}9

    \Leftrightarrow \log_{3}x =\log_{3}\frac{40}{9} \Leftrightarrow x = \frac{40}{9}

  • Câu 9: Nhận biết

    Với a là số thực dương tùy ý, a^{4}.a^{\frac{1}{2}} bằng:

    Ta có:

    a^{4}.a^{\frac{1}{2}} = a^{4 +
\frac{1}{2}} = a^{\frac{9}{2}}

  • Câu 10: Thông hiểu

    Biểu thức L =
\sqrt[6]{x^{3}.\sqrt[3]{x^{2}\sqrt{x}}};(x > 0) viết dưới dạng lũy thừa của một số hữu tỉ là x^{m}. Kết quả nào sau đây đúng?

    Ta có:

    L =
\sqrt[6]{x^{3}.\sqrt[3]{x^{2}\sqrt{x}}} =
\sqrt[6]{x^{3}.\sqrt[3]{x^{2}.x^{\frac{1}{2}}}} =
\sqrt[6]{x^{3}.\sqrt[3]{x^{\frac{5}{2}}}}

    = \sqrt[6]{x^{3}.x^{\frac{5}{6}}} =
\sqrt[6]{x^{\frac{23}{6}}} = x^{\frac{23}{36}} \Rightarrow m =
\frac{23}{36}

  • Câu 11: Nhận biết

    Tìm điều kiện xác định của hàm số y = \ln(x - 1)^{2}?

    Điều kiện xác định của hàm số y = \ln(x -
1)^{2} là:

    (x - 1)^{2} > 0 \Leftrightarrow x
eq 1

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ 1 ight\}.

  • Câu 12: Vận dụng

    Cho các số thức a, b thỏa mãn 1 < a < b\log_{a}b + \log_{b}a^{2} = 3. Tính giá trị của biểu thức T = \log_{ab}\frac{a^{2} +b}{2}?

    Ta có:

    \log_{a}b + \log_{b}a^{2} = 3\Leftrightarrow \log_{a}b + 2\log_{b}a = 3(*)

    Đặt t = \log_{a}b. Do 1 < a < b \Rightarrow t > log_{a}b
\Rightarrow t > 1

    Khi đó t + \frac{2}{t} = 3
\Leftrightarrow t^{2} - 3t + 2 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t = 1(ktm) \\
t = 2(tm) \\
\end{matrix} ight.

    Với t = 2 ta có: \log_{a}b = 2 \Rightarrow b = a^{2}

    => T = \log_{ab}\frac{a^{2} + b}{2} =\log_{a^{3}}a^{2} = \frac{2}{3}\log_{a}a = \frac{2}{3}

  • Câu 13: Thông hiểu

    Điều kiện xác định của hàm số y = \dfrac{1}{\sqrt{\log_{9}\dfrac{2x}{x + 1} -\dfrac{1}{2}}} là:

    Điều kiện xác định của hàm số:

    \left\{ {\begin{array}{*{20}{l}}
  {\dfrac{{2x}}{{x + 1}} > 0} \\ 
  { l o g{ _9}\dfrac{{2x}}{{x + 1}} - \dfrac{1}{2} > 0} 
\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
  {\dfrac{{2x}}{{x + 1}} > 0} \\ 
  {\dfrac{{2x}}{{x + 1}} > 3} 
\end{array}} ight.} ight.

    \Leftrightarrow \frac{2x}{x + 1} > 3
\Leftrightarrow \frac{x + 3}{x + 1} < 0 \Leftrightarrow - 3 < x
< - 1

  • Câu 14: Nhận biết

    Giải phương trình \log_{2}a + \log_{2}3 = 0 thu được nghiệm là:

    Điều kiện xác định: a > 0

    \log_{2}a + \log_{2}3 = 0

    \Leftrightarrow \log_{2}3a = 0\Leftrightarrow 3a = 2^{0} \Leftrightarrow a =\frac{1}{3}(tm)

    Vậy phương trình có nghiệm là a =
\frac{1}{3}.

  • Câu 15: Thông hiểu

    Cho biểu thức U
= \sqrt[4]{x\sqrt[3]{x^{2}\sqrt{x^{3}}}};(x > 0). Mệnh đề nào sau đây đúng?

    Ta có:

    U =
\sqrt[4]{x\sqrt[3]{x^{2}\sqrt{x^{3}}}} =
\sqrt[4]{x\sqrt[3]{x^{2}x^{\frac{3}{2}}}} =
\sqrt[4]{x\sqrt[3]{x^{\frac{7}{2}}}}

    = \sqrt[4]{x.x^{\frac{7}{6}}} =
\sqrt[4]{x^{\frac{13}{6}}} = x^{\frac{13}{24}}

  • Câu 16: Thông hiểu

    Giả sử phương trình \log_{3}(x - 1) + \log_{3}(x - 5) = 1 có nghiệm là x = p + \sqrt{q};\left(p;q\in\mathbb{ Z} ight). Tính giá trị biểu thức H = p + q?

    Điều kiện xác định \left\{ \begin{matrix}
x - 1 > 0 \\
x - 5 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 1 \\
x > 5 \\
\end{matrix} ight.\  \Rightarrow x > 5

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{3}\left\lbrack (x -1).(x - 5) ightbrack = \log_{3}3

    \Leftrightarrow (x - 1).(x - 5) =
3

    \Leftrightarrow x^{2} - 6x + 5 = 3
\Leftrightarrow x^{2} - 6x + 2 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 3 - \sqrt{7}(ktm) \\
x = 3 + \sqrt{7}(tm) \\
\end{matrix} ight.

    Nghiệm của phương trình là

    x = 3 + \sqrt{7} \Rightarrow \left\{
\begin{matrix}
p = 3 \\
q = 7 \\
\end{matrix} ight.\  \Rightarrow H = 3 + 7 = 10

  • Câu 17: Vận dụng

    Cho {9^x} + {9^{ - x}} = 14;\frac{{6 + 3.\left( {{3^x} + {3^{ - x}}} ight)}}{{2 - {3^{x + 1}} - {3^{1 - x}}}} = \frac{a}{b}; (\frac{a}{b} là phân số tối giản). Tính giá trị biểu thức P = ab.

    Ta có:

    \begin{matrix}  {\left( {{3^x} + {3^{ - x}}} ight)^2} = 14 + 2 = 16 \hfill \\   \Rightarrow {3^x} + {3^{ - x}} = 4 \hfill \\   \Rightarrow \dfrac{a}{b} = \dfrac{{6 + 3.4}}{{2 - 3.4}} =  - \dfrac{9}{5} \hfill \\   \Rightarrow P =  - 45 \hfill \\ \end{matrix}

  • Câu 18: Vận dụng

    Tìm tập nghiệm của bất phương trình 4x^{2} + x.2^{x^{2} + 1} + 3.2^{x^{2}} >
x^{2}.2^{x^{2}} + 8x + 12.

    Ta có:

    4x^{2} + x.2^{x^{2} + 1} + 3.2^{x^{2}}
> x^{2}.2^{x^{2}} + 8x + 12

    \Leftrightarrow \left( 4 - 2^{x^{2}}
ight)\left( x^{2} - 2x - 3 ight) > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
4 - 2^{x^{2}} > 0 \\
x^{2} - 2x - 3 > 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
4 - 2^{x^{2}} < 0 \\
x^{2} - 2x - 3 < 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
\sqrt{2} > x > - \sqrt{2} \\
\left\lbrack \begin{matrix}
x < - 1 \\
x > 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x < - \sqrt{2} \\
x > \sqrt{2} \\
\end{matrix} ight.\  \\
- 1 < x < 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
- \sqrt{2} < x < - 1 \\
\sqrt{2} < x < 3 \\
\end{matrix} ight.

    Vậy tập nghiệm bất phương trình là: S =
\left( - \sqrt{2}; - 1 ight) \cup \left( \sqrt{2};3
ight)

  • Câu 19: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết \log_{3}a = x;\log_{3}b =y với a,b \in
\mathbb{R}^{+}. Khi đó \log_{3}\left( 3a^{4}b^{5} ight) = 1 + 4x +5y Đúng||Sai

    b) Tập xác định của hàm số y = \sqrt{(x- 2)^{0}} + \log_{2}\left( 9 - x^{2} ight) là D = (2;3) Sai||Đúng

    c) Hàm số y = \ln( - x) nghịch biến trên khoảng ( - \infty;0)Sai||Đúng

    d) Có 31 giá trị nguyên của x thỏa mãn \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0 Đúng||Sai

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết \log_{3}a = x;\log_{3}b =y với a,b \in
\mathbb{R}^{+}. Khi đó \log_{3}\left( 3a^{4}b^{5} ight) = 1 + 4x +5y Đúng||Sai

    b) Tập xác định của hàm số y = \sqrt{(x- 2)^{0}} + \log_{2}\left( 9 - x^{2} ight) là D = (2;3) Sai||Đúng

    c) Hàm số y = \ln( - x) nghịch biến trên khoảng ( - \infty;0)Sai||Đúng

    d) Có 31 giá trị nguyên của x thỏa mãn \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0 Đúng||Sai

    a) Ta có:

    \log_{3}\left( 3a^{4}b^{5} ight) =\log_{3}(3) + \log_{3}\left( a^{4} ight) + \log_{3}\left( b^{5}ight)

    = 1 + 4\log_{3}a + 5\log_{3}b = 1 + 4x +5y

    b) Điều kiện xác định: \left\{
\begin{matrix}
x - 2 eq 0 \\
9 - x^{2} > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x eq 2 \\
- 3 < x < 3 \\
\end{matrix} ight.\  \Leftrightarrow D = ( - 3;3)\backslash\left\{ 2
ight\}

    c) Điều kiện xác định: x <
0

    Cơ số a = e > 1 do đó hàm số đồng biến trên ( - \infty;0).

    d) Xét hàm số \left( 3^{x^{2}} - 9^{x}ight)\left\lbrack \log_{2}(x + 30) - 5 ightbrack = f(x) với x > - 30

    Cho f(x) = 0 \Leftrightarrow \left\lbrack\begin{matrix}3^{x^{2}} - 9^{x} = 0 \\\log_{2}(x + 30) - 5 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
3^{x^{2}} = 3^{2x} \\
x + 30 = 2^{5} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 0 \\
\end{matrix} ight.

    Ta có bảng xét dấu như sau:

    Suy ra f(x) \leq 0 \Leftrightarrow
\left\lbrack \begin{matrix}
- 30 < x \leq 0 \\
x = 2 \\
\end{matrix} ight.

    Mặt khác x\mathbb{\in Z \Rightarrow}x \in
\left\{ - 29; - 28; - 27;...; - 2; - 1;0;2 ight\}

    Vậy có 31 số nguyên của x thỏa mãn bất phương trình \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0.

  • Câu 20: Thông hiểu

    Cho a =\log_{12}18;b = \log_{24}54 . Tính giá trị biểu thức T = 5(a - b) + ab.

    Ta có: \left\{ \begin{matrix}a = log_{12}18 = \dfrac{log_{3}18}{log_{3}12} = \dfrac{log_{3}2 +2}{2log_{3}2 + 1} \\b = log_{24}54 = \dfrac{log_{3}54}{log_{3}24} = \dfrac{log_{3}2 +3}{3log_{3}2 + 1} \\\end{matrix} ight.

    Đặt x = log_{3}2 khi đó \left\{ \begin{matrix}a = \dfrac{x + 2}{2x + 1} \\b = \dfrac{x + 3}{3x + 1} \\\end{matrix} ight.

    Ta có: T = 5(a - b) + ab

    T = 5\left( \frac{x - 2}{2x + 1} -
\frac{x + 3}{3x + 1} ight) + \frac{x + 2}{2x + 1}.\frac{x + 3}{3x +
1}

    T = \frac{5\left\lbrack (x + 2)(3x + 1)
- (x + 3)(2x + 1) ightbrack + (x + 2)(x + 3)}{(2x + 1)(3x +
1)}

    T = \frac{6x^{2} + 3x + 1}{(2x + 1)(3x +
1)} = 1

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 23 lượt xem
Sắp xếp theo