Rút gọn biểu thức
với x > 0
Ta có:
Rút gọn biểu thức
với x > 0
Ta có:
Cho
là các số thực dương lớn hơn 1 thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
Biểu thức
viết dưới dạng lũy thừa của một số hữu tỉ là
. Kết quả nào sau đây đúng?
Ta có:
Tìm điều kiện của tham số
để phương trình
có nghiệm?
Ta có:
Phương trình có nghiệm khi và chỉ khi phương trình
có nghiệm
Xét phương trình
Nếu phương trình vô nghiệm
Nếu có nghiệm
khi và chỉ khi
Vậy thỏa mãn yêu cầu đề bài.
Xác định nghiệm của phương trình
![]()
Phương trình tương đương:
Cho số thực dương a và b. Biểu thức thu gọn của biểu thức
![]()
có dạng
. Tính
.
Ta có:
Cho đồ thị hàm số
như hình vẽ:

Xác định giá trị
?
Đồ thị hàm số đi qua điểm (2; -1) nên
Khi đó
Tìm công bội
của một cấp số nhân. Biết ba số
theo thứ tự lập thành cấp số nhân.
Theo giả thiết ta có:
Vậy công bội của cấp số nhân là:
Trong các hàm số dưới đây, hàm số nào nghịch biến trên tập xác định của nó?
Hàm số có
là hàm số nghịch biến trên tập xác định của nó.
Các hàm số ;
;
có cơ số lớn hơn 1 nên đồng biến trên tập xác định của nó.
Biết
là các số thực dương tùy ý. Chọn khẳng định đúng dưới đây?
Theo quy tắc Logarit ta có:
Giá trị của biểu thức
là:
Ta có:
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình đã cho có nghiệm .
Biết
là các số thực dương khác 1 thỏa mãn
. Biến đổi biểu thức
ta được kết quả là:
Ta có:
Tìm tập xác định của hàm số
là:
Hàm số đã cho xác định khi
Vậy tập xác định của hàm số là .
Kết quả nào dưới đây là nghiệm của phương trình
?
Điều kiện xác định:
Vậy phương trình có nghiệm .
Cho hàm số
có đồ thị như hình vẽ:

Đường thẳng
cắt trục hoành, đồ thị hàm số
lần lượt tại
. Biết rằng
. Khẳng định nào sau đây đúng?
Ta có:
Mặt khác nên
Biết rằng
. Tính giá trị của biểu thức
.
Thay vào biểu thức
ta được:
Tìm tập xác định của hàm số
?
Hàm số xác định khi
Vậy tập xác định của hàm số là
Tìm tập nghiệm của bất phương trình
?
Ta có:
Rút gọn biểu thức
với
ta được kết quả:
Ta có: