Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tìm điều kiện của tham số m để phương trình \ln(x - 2) = \ln(mx) có nghiệm?

    Ta có:

    \ln(x - 2) = \ln(mx) \Leftrightarrow
\left\{ \begin{matrix}
x - 2 > 0 \\
x - 2 = mx \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x > 2 \\
(m - 1)x = - 2 \\
\end{matrix} ight.

    Phương trình \ln(x - 2) =
\ln(mx) có nghiệm khi và chỉ khi phương trình (m - 1)x = - 2 có nghiệm x > 2

    Xét phương trình (m - 1)x = -
2

    Nếu m = 1 phương trình vô nghiệm

    Nếu m eq 1 \Leftrightarrow x = -
\frac{2}{m - 1} có nghiệm x >
2 khi và chỉ khi

    - \frac{2}{m - 1} > 2 \Leftrightarrow
1 + \frac{1}{m - 1} < 0

    \Leftrightarrow \frac{m}{m - 1} < 0
\Leftrightarrow 0 < m < 1

    Vậy m \in (0;1) thỏa mãn yêu cầu đề bài.

  • Câu 2: Nhận biết

    Tìm điều kiện xác định của hàm số y = f(x) = \frac{1}{\log_{2}x - 1}?

    Điều kiện xác định của hàm số y = f(x) = \frac{1}{\log_{2}x - 1} là:

    \left\{ \begin{matrix}x > 0 \\ \log_{2}x - 1 eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > 0 \\ \log_{2}x eq 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > 0 \\x eq 2 \\\end{matrix} ight.

    Vậy tập xác định của hàm số đã cho là D =
(0; + \infty)\backslash\left\{ 2 ight\}.

  • Câu 3: Thông hiểu

    Cho số thực a dương tùy ý. Đặt a^{\frac{5}{4}}\sqrt{a.\sqrt[3]{a}} =
a^{x}. Giá trị của x tương ứng là:

    Ta có:

    a^{\frac{5}{4}}\sqrt{a.\sqrt[3]{a}} =
a^{\frac{5}{4}}.\sqrt{a.a^{\frac{1}{3}}} =
a^{\frac{5}{4}}.\sqrt{a^{\frac{4}{3}}}

    = a^{\frac{5}{4}}.a^{\frac{4}{6}} =
a^{\frac{5}{4} + \frac{4}{6}} = a^{\frac{23}{12}}

    \Rightarrow x =
\frac{23}{12}

    Vậy giá trị của x tương ứng là: \frac{23}{12}.

  • Câu 4: Nhận biết

    Cho phương trình 3^{x^{2} - 4x + 5} = 9 . Tổng bình phương các nghiệm của phương trình đã cho bằng 10

    Đáp án là:

    Cho phương trình 3^{x^{2} - 4x + 5} = 9 . Tổng bình phương các nghiệm của phương trình đã cho bằng 10

    Ta có:

    3^{x^{2} - 4x + 5} = 9 \Leftrightarrow
3^{x^{2} - 4x + 5} = 3^{2}

    \Leftrightarrow x^{2} - 4x + 5 = 2
\Leftrightarrow x^{2} - 4x + 3 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{1} = 1 \\
x_{2} = 3 \\
\end{matrix} ight.\  \Leftrightarrow {x_{1}}^{2} + {x_{2}}^{2} =
10

    Vậy giá trị cần tìm bằng 10

  • Câu 5: Thông hiểu

    Vào dịp sinh nhật con gái tròn 18 tuổi, gia đình anh B gửi vào ngân hàng 200 triệu đồng với lãi suất x%/năm (theo hình thức lãi kép), số tiền này chỉ được thanh toán khi con gái anh kết thúc chương trình 4 năm học đại học. Tính lãi suất kì hạn 1 năm của ngân hàng biết năm 22 tuổi con gái anh B nhận được tổng số tiền là 252 495 392 đồng.

    Áp dụng công thức tính lãi kép ta có:

    T = a.(1 + x\%)^{n}

    \Leftrightarrow 252495392 = 2.10^{8}.(1
+ x\%)^{4}

    \Leftrightarrow x = 6(tm)

    Vậy lãi suất ngân hàng là 6%.

  • Câu 6: Vận dụng

    Cho hình vẽ:

    Ta có đường thẳng d = 3 song song trục hoành cắt trục tung và đồ thị hai hàm số y = m^{x},y = n^{x};m,n \in
\mathbb{R}^{+}\backslash\left\{ 1 ight\} lần lượt tại H,M,N. Biết \frac{MH}{MN} = \frac{3}{2}. Chọn khẳng định đúng?

    Ta có:\frac{MH}{MN} = \frac{3}{2}
\Rightarrow \frac{HM}{HN} = \frac{3}{5}

    Gọi M\left( x_{1};3 ight) \in y = m^{x}\Rightarrow x_{1} = \log_{m}3

    N\left( x_{2};3 ight) \in y = n^{x}\Rightarrow x_{2} = \log_{n}3

    Khi đó \frac{HM}{HN} = \frac{3}{5}\Leftrightarrow \log_{m}3 = \frac{3}{5}\log_{n}3

    \Leftrightarrow \frac{1}{\log_{3}m} =\frac{3}{5}\frac{1}{\log_{3}n}

    \Leftrightarrow log_{3}m =
\frac{5}{3}.log_{3}n

    \Leftrightarrow m = n^{\frac{5}{3}}\Leftrightarrow m^{3} = n^{5}

  • Câu 7: Nhận biết

    Cho các số dương a,b thỏa mãn 0 < a < 1 < b. Chọn khẳng định đúng.

    Xét tính đúng sai của từng đáp án dựa vào điểu kiện của a,b

    \log_{a}b < \log_{a}1 = 0 (vì \left\{ \begin{matrix}
0 < a < 1 \\
b > 1 \\
\end{matrix} ight.) nên \log_{a}b < 0 đúng

    a < b nên \ln a < \ln b. Vậy \ln a > \ln b sai.

    \left\{ \begin{matrix}
a < b \\
0 < 0,5 < 1 \\
\end{matrix} ight. nên (0,5)^{a} > (0,5)^{b}. Vậy (0,5)^{a} < (0,5)^{b} sai.

    \left\{ \begin{matrix}
2 > 1 \\
a < b \\
\end{matrix} ight. nên 2^{a}
< 2^{b}. vậy 2^{a} >
2^{b} sai.

  • Câu 8: Thông hiểu

    Biết rằng 4^{x}+ 4^{- x} = 7. Khi đó biểu thức G =\frac{5 - 2^{x} - 2^{- x}}{3 + 2^{x + 1} + 2^{1 - x}} =\frac{p}{q} với \frac{p}{q} là phân số tối giản, p,q\mathbb{\in Z}. Kết luận nào sau đây đúng?

    Ta có:

    4^{x} + 4^{- x} = 7 \Leftrightarrow\left( 2^{x} + 2^{- x} ight)^{2} = 9

    \Leftrightarrow \left\lbrack\begin{matrix}2^{x} + 2^{- x} = 3(tm) \\2^{x} + 2^{- x} = - 3(ktm) \\\end{matrix} ight.

    \Rightarrow 2^{x} + 2^{- x} =3

    G = \frac{5 - \left( 2^{x} + 2^{- x}ight)}{3 + 2\left( 2^{x} + 2^{- x} ight)} = \frac{5 - 3}{3 + 2.3} =\frac{2}{9}

    \Rightarrow p = 2;q = 9 \Rightarrow p+q = 11

  • Câu 9: Nhận biết

    Cho số thực a
> 1 và các số thực \alpha;\beta. Khẳng định nào đúng?

    Ta có: a > 1 khi đó a^{\alpha} > a^{\beta} \Rightarrow \alpha >
\beta.

  • Câu 10: Thông hiểu

    Xác định nghiệm của phương trình

    \left\lbrack \left( 3 - 2\sqrt{2}
ight)^{\left( a^{2} + 1 ight)x} - \left( 3 + 2\sqrt{2} ight)
ightbrack.\left\lbrack 4^{x} - \left( b^{2} + 2 ight)
ightbrack = 0

    Phương trình tương đương:

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left( 3 - 2\sqrt{2} ight)^{\left( a^{2} + 1 ight)x} - \left( 3 +
2\sqrt{2} ight) = 0 \\
4^{x} - \left( b^{2} + 2 ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = - \dfrac{1}{a^{2} + 2} \\x = \log_{4}\left( b^{2} + 2 ight) \\\end{matrix} ight.

  • Câu 11: Thông hiểu

    Với \log_{2}x =\sqrt{5} thì biểu thức \log_{2x}x có giá trị bằng bao nhiêu?

    Ta có:

    \log_{2}x = \sqrt{5} \Rightarrow x =2^{\sqrt{5}} > 1

    \Rightarrow \log_{x}2;\log_{x}x;\log_{x}2x đều xác định và \log_{x}2x eq 0 khi đó:

    \log_{2x}x = \dfrac{1}{\log_{x}2x} =\dfrac{1}{\log_{x}2 + \log_{x}x}

    = \dfrac{1}{\dfrac{1}{\log_{2}x} + 1} =\dfrac{1}{\dfrac{1}{\sqrt{5}} + 1} = \dfrac{\sqrt{5}}{1 +\sqrt{5}}

  • Câu 12: Vận dụng

    Tính giá trị biểu thức C = \frac{a}{b}. Biết \log_{9}a = \log_{16}b = \log_{12}\frac{5b -a}{2};(a,b > 0).

    Giả sử \log_{9}a = \log_{16}b =\log_{12}\frac{5b - a}{2} = t khi đó:

    \Rightarrow \left\{ \begin{matrix}a = 9^{t} \\b = 16^{t} \\\dfrac{5b - a}{2} = 12^{t} \\\end{matrix} ight.\  \Rightarrow 12^{t} = \frac{5.16^{t} -9^{t}}{2}

    \Leftrightarrow 5.16^{t} - 2.12^{t} -
9^{t} = 0

    \Leftrightarrow 5 - 2.\left( \frac{3}{4}
ight)^{t} - \left( \frac{3}{4} ight)^{2t} = 0

    \Leftrightarrow \left( \frac{3}{4}
ight)^{t} = \sqrt{6} - 1

    \Leftrightarrow \frac{a}{b} =
\frac{9^{t}}{16^{t}} = \left( \frac{3}{4} ight)^{2t} = \left( \sqrt{6}
- 1 ight)^{2} = 7 - 2\sqrt{6}

  • Câu 13: Vận dụng cao

    Chof\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}biết rằng f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} với m và n là các số nguyên dương và phân số \frac{m}{n} tối giản. Tính giá trị biểu thức m - {n^2}.

    Ta có:

    f\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\sqrt {\dfrac{{{x^2}.{{\left( {x + 1} ight)}^2} + {x^2} + {{\left( {x + 1} ight)}^2}}}{{{x^2}.{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\dfrac{{{x^2} + x + 1}}{{x\left( {x + 1} ight)}}}} = {5^{1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}}}

    \begin{matrix}  f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow {5^{\sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)} }} = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow \sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)}  = \dfrac{m}{n} \hfill \\   \Leftrightarrow 2021 - \dfrac{1}{{2021}} = \dfrac{m}{n} \hfill \\   \Leftrightarrow \dfrac{{4084440}}{{2021}} = \dfrac{m}{n} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m = 4084440} \\   {n = 2021} \end{array}} ight. \Rightarrow m - {n^2} =  - 1 \hfill \\ \end{matrix}

  • Câu 14: Nhận biết

    Phương trình \log_{3}\left( x^{2} + 2 ight) = 3 có tất cả bao nhiêu nghiệm?

    Điều kiện xác định: x^{2} + 2 >
0;\forall x\mathbb{\in R}

    \log_{3}\left( x^{2} + 2 ight) = 3\Leftrightarrow x^{2} + 2 = 3^{3}

    \Leftrightarrow x^{2} = 25
\Leftrightarrow x = \pm 5(tm)

    Vậy phương trình có hai nghiệm.

  • Câu 15: Thông hiểu

    Cho hàm số f(x) =
\frac{9^{x}}{9^{x} + 3};\left( x\mathbb{\in R} ight) và hai số a,b thỏa mãn a + b = 1. Khi đó f(a) + f(b) bằng bao nhiêu?

    Ta có:

    f(a) + f(b) = \dfrac{9^{1 - b}}{9^{1 - b}+ 3} + \dfrac{9^{b}}{9^{b} + 3}

    = \dfrac{\dfrac{9}{9^{b}}}{\dfrac{9}{9^{b}}+ 3} + \dfrac{9^{b}}{9^{b} + 3} = \dfrac{9}{9 + 3.9^{b}} +\frac{9^{b}}{9^{b} + 3} = 1

  • Câu 16: Vận dụng

    Rút gọn biểu thức T = \left( \frac{a^{\frac{3}{2}} +
b^{\frac{3}{2}}}{a - b} - \frac{a - b}{a^{\frac{1}{2}} +
b^{\frac{1}{2}}} ight).\left( \frac{\sqrt{a} - \sqrt{b}}{\sqrt{ab}}
ight).

    Ta có:

    T = \left( \frac{a^{\frac{3}{2}} +
b^{\frac{3}{2}}}{a - b} - \frac{a - b}{a^{\frac{1}{2}} +
b^{\frac{1}{2}}} ight).\left( \frac{\sqrt{a} - \sqrt{b}}{\sqrt{ab}}
ight)

    T = \left( \frac{\sqrt{a^{3}} -
\sqrt{b^{3}}}{\sqrt{a^{2}} - \sqrt{b^{2}}} - \frac{a\sqrt{a^{2}} -
\sqrt{b^{2}} - b}{\sqrt{a} + \sqrt{b}} ight).\left( \frac{\sqrt{a} -
\sqrt{b}}{\sqrt{ab}} ight)

    T = \left( \frac{\sqrt{a^{3}} +
\sqrt{b^{3}} - \sqrt{a^{3}} - \sqrt{b^{3}} + \sqrt{a^{2}b} -
\sqrt{ab^{2}}}{\sqrt{a^{2}} - \sqrt{b^{2}}} ight).\left(
\frac{\sqrt{a} - \sqrt{b}}{\sqrt{ab}} ight)

    T = \left( \frac{\sqrt{a^{2}b} -
\sqrt{ab^{2}}}{\sqrt{a^{2}} - \sqrt{b^{2}}} ight).\left(
\frac{\sqrt{a} - \sqrt{b}}{\sqrt{ab}} ight) = 1

  • Câu 17: Nhận biết

    Giá trị B =
\sqrt[3]{2021}.\sqrt[5]{2021} viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có:

    B = \sqrt[3]{2021}.\sqrt[5]{2021} =
2021^{\frac{1}{3}}.2021^{\frac{1}{5}} = 2021^{\frac{1}{3} + \frac{1}{5}}
= 2021^{\frac{8}{15}}

  • Câu 18: Thông hiểu

    Cho phương trình \log_{5}(2m + 3) - \log_{5}(m + 2) = 0. Xác định nghiệm phương trình đã cho?

    Điều kiện xác định:

    \left\{ \begin{matrix}2m + 3 > 0 \\m + 2 > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m > - \dfrac{3}{2} \\m > - 2 \\\end{matrix} ight.\  \Leftrightarrow m > - \dfrac{3}{2}

    Ta có:

    \log_{5}(2m + 3) - \log_{5}(m + 2) =0

    \Leftrightarrow \log_{5}(2m + 3) =\log_{5}(m + 2)

    \Leftrightarrow 2m + 3 = m + 2
\Leftrightarrow m = - 1(tm)

    Vậy phương trình có nghiệm là m = -
1.

  • Câu 19: Thông hiểu

    Cho \log_{a}b =2;\log_{a}c = 3. Tính giá trị của biểu thức P = \log_{a}\left( ab^{3}c^{3} ight)?

    Ta có:

    P = \log_{a}\left( ab^{3}c^{3}ight)

    = \log_{a}a + \log_{a}b^{3} +\log_{a}c^{3}

    = 1 + 3\log_{a}b + 5\log_{a}c

    = 1 + 3.2 + 5.3 = 22

  • Câu 20: Nhận biết

    Hàm số nào sau đây được gọi là hàm số lũy thừa?

    Hàm số y = x^{- 3} là hàm số lũy thừa.

    Hàm số y = 3^{- x} và hàm số y = e^{x} là hàm số mũ.

    Hàm số y = \ln x là hàm số lôgarit.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 26 lượt xem
Sắp xếp theo