Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình vẽ:

    Ta có: m,n \in
\mathbb{R}^{+}\backslash\left\{ 1 ight\}, đường thẳng d song song trục hoành cắt trục tung và đồ thị hai hàm số y = m^{x},y =
n^{x} lần lượt tại H,M,N. Biết \frac{MH}{MN} = 3. Chọn khẳng định đúng?

    Ta có:

    Đường thẳng d cắt đồ thị hàm số y =
m^{x} tại điểm M\left( x_{M};y_{M}
ight)

    y_{M} = m^{x_{M}}

    Đường thẳng d cắt đồ thị hàm số y =
n^{x} tại điểm N\left( x_{N};y_{N}
ight)

    y_{M} = n^{x_{N}}

    y_{M} = y_{N} \Rightarrow m^{x_{M}} =
n^{x_{M}}

    Lại có \frac{MH}{MN} = 3 \Rightarrow
\frac{HM}{HN} = \frac{3}{4} \Rightarrow x_{M} =
\frac{3}{4}x_{N}

    \Rightarrow m^{\frac{3}{4}x_{N}} =
n^{n_{N}} \Rightarrow m^{\frac{3}{4}} = n \Rightarrow m^{3} =
n^{4}

  • Câu 2: Thông hiểu

    Biết x,y là hai số thực dương khác 1 thỏa mãn log_{\sqrt{x}}y = \frac{2y}{5};log_{25}x =
\frac{5}{2y} . Hỏi giá trị của biểu thức y^{2} - 2x^{2} bằng bao nhiêu? -25||25||0||-1

    Đáp án là:

    Biết x,y là hai số thực dương khác 1 thỏa mãn log_{\sqrt{x}}y = \frac{2y}{5};log_{25}x =
\frac{5}{2y} . Hỏi giá trị của biểu thức y^{2} - 2x^{2} bằng bao nhiêu? -25||25||0||-1

    Ta có:

    \left\{ \begin{matrix}\log_{\sqrt{x}}y = \dfrac{2y}{5} \\ \log_{25}x = \dfrac{5}{2y} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}log_{x}y^{2} = \dfrac{2y}{5} \\ \log_{x}25 = \dfrac{2y}{5} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}y^{2} = 25 \\ \log_{25}x = \dfrac{5}{2y} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}y = 5;(y > 0) \\ \log_{25}x = \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}y = 5 \\x = 5 \\\end{matrix} ight.

    Vậy giá trị của biểu thức y^{2} - 2x^{2}
= - 25

  • Câu 3: Nhận biết

    Trong các biểu thức sau, biểu thức nào không có nghĩa?

    Lũy thừa với số mũ không nguyên thì cơ số phải dương nên biểu thức ( - 4)^{- \frac{1}{3}} không có nghĩa.

  • Câu 4: Vận dụng

    Cho a\log_{6}3 +b\log_{6}2 + c\log_{6}5 = 5 với a,b,c là các số tự nhiên. Trong các khẳng định sau, khẳng định nào đúng?

    Ta có:

    a\log_{6}3 + b\log_{6}2 + c\log_{6}5 =5

    \Leftrightarrow 3^{a}.2^{b}.5^{c} =
5

    Do a,b,c\in\mathbb{ N} nên chỉ có một bộ số (a,b,c) = (0,0,1) thỏa mãn.

    Khẳng định đúng là a = b.

  • Câu 5: Nhận biết

    Giải bất phương trình 2^{x + 1} \geq \frac{1}{16}. Kết luận nào sau đây đúng?

    Ta có:

    2^{x + 1} \geq \frac{1}{16}
\Leftrightarrow 2^{x + 1} \geq 2^{- 4}

    \Leftrightarrow x + 1 \geq - 4
\Leftrightarrow x \geq - 5 hay x
\in \lbrack - 5; + \infty)

  • Câu 6: Nhận biết

    Cho a,b >
0. Tìm khẳng định đúng trong các khẳng định dưới đây?

    Khẳng định đúng là: a^{\ln b} = b^{\ln
a}

  • Câu 7: Vận dụng

    Cho a và b là các số thực thỏa mãn điều kiện {\left( {\frac{3}{4}} ight)^a} > {\left( {\frac{4}{5}} ight)^a}{b^{\dfrac{5}{4}}} > {b^{\dfrac{4}{3}}}. Chọn khẳng định đúng trong các khẳng định sau:

    Ta có:

    {\left( {\frac{3}{4}} ight)^a} > {\left( {\frac{4}{5}} ight)^a} \Rightarrow a < 0

    {b^{\frac{5}{4}}} > {b^{\frac{4}{3}}} \Rightarrow 0 < b < 1

  • Câu 8: Thông hiểu

    Tìm tập xác định của hàm số y = \log_{2}\frac{3 - x}{2x} là:

    Điều kiện xác định của hàm số

    \frac{3 - x}{2x} > 0 \Rightarrow x \in
(0;3)

    Vậy tập xác định là: D =
(0;3)

  • Câu 9: Nhận biết

    Hàm số nào sau đây không phải là hàm số mũ?

    Hàm số y = x^{\pi} là hàm số lũy thừa, không phải hàm số mũ.

  • Câu 10: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Sắp xếp theo thứ tự tăng dần các số 2020^{0};5^{\frac{1}{2}};\left( \frac{4}{5}
ight)^{- 1} Sai||Đúng

    b) Hàm số y = \left( \frac{\pi +
3}{2\pi} ight)^{x}nghịch biến trên tập xác định của nó.Đúng||Sai

    c) Phương trình \frac{1}{2}\log\left(
x^{2} - 4x - 1 ight) = log8x - log4x có tổng các nghiệm thực bằng 5.Đúng||Sai

    d) Tập nghiệm của bất phương trình \left( 3^{2x} - 9 ight)\left( 3^{x} -
\frac{1}{27} ight)\sqrt{3^{x + 1} - 1} \leq 0 chứa đúng 4 giá trị nguyên. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Sắp xếp theo thứ tự tăng dần các số 2020^{0};5^{\frac{1}{2}};\left( \frac{4}{5}
ight)^{- 1} Sai||Đúng

    b) Hàm số y = \left( \frac{\pi +
3}{2\pi} ight)^{x}nghịch biến trên tập xác định của nó.Đúng||Sai

    c) Phương trình \frac{1}{2}\log\left(
x^{2} - 4x - 1 ight) = log8x - log4x có tổng các nghiệm thực bằng 5.Đúng||Sai

    d) Tập nghiệm của bất phương trình \left( 3^{2x} - 9 ight)\left( 3^{x} -
\frac{1}{27} ight)\sqrt{3^{x + 1} - 1} \leq 0 chứa đúng 4 giá trị nguyên. Sai||Đúng

    a) Ta có: \left\{ \begin{matrix}2020^{0} = 1 \\5^{\frac{1}{2}} = \sqrt{5} \\\left( \dfrac{4}{5} ight)^{- 1} = \dfrac{5}{4} \\\end{matrix} ight. nên sắp xếp đúng là: 2020^{0};\left( \frac{4}{5} ight)^{-
1};5^{\frac{1}{2}}

    b) Ta có:

    y = \left( \frac{\pi + 3}{2\pi}
ight)^{x} có cơ số \frac{\pi +
3}{2\pi} \in (0;1) nên hàm số đã cho nghịch biến trên tập xác định của nó.

    c) Điều kiện xác định x > 2 +
\sqrt{5}

    \frac{1}{2}\log\left( x^{2} - 4x - 1ight) = \log8x - \log4x

    \Leftrightarrow \log\left( x^{2} - 4x -1 ight) = 2\log\left( \frac{8x}{4x} ight)

    \Leftrightarrow x^{2} - 4x - 1 = 4
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1(ktm) \\
x = 5(tm) \\
\end{matrix} ight.

    Vậy tổng các nghiệm của phương trình là S
= 5

    d) Điều kiện xác định 3^{x + 1} - 1 \geq
0 \Leftrightarrow x \geq - 1

    Ta có: x = - 1 là một nghiệm của bất phương trình

    Với x > - 1 bất phương trình tương đương với \left( 3^{2x} - 9
ight)\left( 3^{x} - \frac{1}{27} ight) \leq 0

    Đặt t = 3^{x} > 0 ta có:

    \left( t^{2} - 9 ight)\left( t -
\frac{1}{27} ight) \leq 0 \Leftrightarrow (t - 3)(t + 3)\left( t -
\frac{1}{27} ight) \leq 0

    \Rightarrow \left\lbrack \begin{matrix}t \leq - 3 \\\dfrac{1}{27} \leq t \leq 3 \\\end{matrix} ight. kết hợp với điều kiện t = 3^{x} > 0 ta được nghiệm \frac{1}{27} \leq t \leq 3 \Leftrightarrow
\frac{1}{27} \leq 3^{x} \leq 3 \Leftrightarrow - 3 \leq x \leq
1

    Kết hợp với điều kiện x > - 1 ta được - 1 < x \leq 1 suy ra trường hợp này có 2 nghiệm nguyên

    Vậy bất phương trình có ba nghiệm nguyên.

  • Câu 11: Nhận biết

    Cho biểu thức P = \sqrt {x.\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}} với x > 0. Mệnh đề nào sau đây là đúng?

     Ta có: 

    \begin{matrix}  P = \sqrt {x.\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}}  \hfill \\  P = \sqrt {x.\sqrt[3]{{{x^{\frac{7}{2}}}}}}  \hfill \\  P = \sqrt {x.{x^{\frac{7}{6}}}}  \hfill \\  P = \sqrt {{x^{\frac{{13}}{6}}}}  = {x^{\frac{{13}}{{12}}}} \hfill \\ \end{matrix}

  • Câu 12: Nhận biết

    Tìm tập xác định của hàm số y = \left( \frac{5\sqrt{3}}{2}
ight)^{x}?

    Tập xác định của hàm số y = \left(
\frac{5\sqrt{3}}{2} ight)^{x}D=\mathbb{R}.

  • Câu 13: Nhận biết

    Tìm tập nghiệm của bất phương trình \left( \frac{3}{4} ight)^{x - 1} > \left(
\frac{3}{4} ight)^{- x + 3}?

    Ta có:

    \left( \frac{3}{4} ight)^{x - 1} >
\left( \frac{3}{4} ight)^{- x + 3} \Leftrightarrow x - 1 > - x + 3
\Leftrightarrow x < 2

  • Câu 14: Vận dụng

    Tìm tất cả các giá trị của tham số m để phương trình \left( \frac{1}{5}
ight)^{\left| x^{2} - 4x + 3 ight|} = m^{4} - m^{2} + 1 có bốn nghiệm phân biệt.

    Phương trình đã cho viết lại như sau:

    \left| x^{2} - 4x + 3 ight| =\log_{\frac{1}{5}}\left( m^{4} - m^{2} + 1 ight)

    Xét đồ thị hàm số y = \left| x^{2} - 4x +
3 ight| như hình vẽ.

    Phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi:

    0 < {\log _{\frac{1}{5}}}\left( {{m^4} - {m^2} + 1} ight) < 1

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {{m^4} - {m^2} < 0} \\ 
  {{m^4} - {m^2} + \dfrac{4}{5} > 0} 
\end{array}} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m eq 0 \\
- 1 < m < 1 \\
\end{matrix} ight.

  • Câu 15: Thông hiểu

    Cho biểu thức C
= \frac{a^{\sqrt{7} + 1}.a^{2 - \sqrt{7}}}{\left( a^{\sqrt{2} - 2}
ight)^{\sqrt{2} + 2}} với a >
0. Kết quả sau khi đơn giản biểu thức C là:

    Ta có:

    C = \frac{a^{\sqrt{7} + 1}.a^{2 -
\sqrt{7}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} =
\frac{a^{\sqrt{7} + 1 + 2 - \sqrt{7}}}{a^{\left( \sqrt{2} ight)^{2} -
2^{2}}} = \frac{a^{3}}{a^{- 2}} = a^{5}

  • Câu 16: Thông hiểu

    Xác định hàm số tương ứng với đồ thị dưới đây:

    Đồ thị hàm số đi lên và đi qua điểm (1; 0) nên hàm số tương ứng với đồ thị trong hình vẽ là y =\log_{2}x

  • Câu 17: Vận dụng cao

    Chof\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}biết rằng f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} với m và n là các số nguyên dương và phân số \frac{m}{n} tối giản. Tính giá trị biểu thức m - {n^2}.

    Ta có:

    f\left( x ight) = {5^{\sqrt {1 + \dfrac{1}{{{x^2}}} + \dfrac{1}{{{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\sqrt {\dfrac{{{x^2}.{{\left( {x + 1} ight)}^2} + {x^2} + {{\left( {x + 1} ight)}^2}}}{{{x^2}.{{\left( {x + 1} ight)}^2}}}} }}

    = {5^{\dfrac{{{x^2} + x + 1}}{{x\left( {x + 1} ight)}}}} = {5^{1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}}}

    \begin{matrix}  f\left( 1 ight).f\left( 2 ight).....f\left( {2020} ight) = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow {5^{\sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)} }} = {5^{\dfrac{m}{n}}} \hfill \\   \Leftrightarrow \sum\limits_{x = 1}^{2020} {\left( {1 + \dfrac{1}{x} - \dfrac{1}{{x + 1}}} ight)}  = \dfrac{m}{n} \hfill \\   \Leftrightarrow 2021 - \dfrac{1}{{2021}} = \dfrac{m}{n} \hfill \\   \Leftrightarrow \dfrac{{4084440}}{{2021}} = \dfrac{m}{n} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m = 4084440} \\   {n = 2021} \end{array}} ight. \Rightarrow m - {n^2} =  - 1 \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Giả sử phương trình \log_{3}(x - 1) + \log_{3}(x - 5) = 1 có nghiệm là x = p + \sqrt{q};\left(p;q\in\mathbb{ Z} ight). Tính giá trị biểu thức H = p + q?

    Điều kiện xác định \left\{ \begin{matrix}
x - 1 > 0 \\
x - 5 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 1 \\
x > 5 \\
\end{matrix} ight.\  \Rightarrow x > 5

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{3}\left\lbrack (x -1).(x - 5) ightbrack = \log_{3}3

    \Leftrightarrow (x - 1).(x - 5) =
3

    \Leftrightarrow x^{2} - 6x + 5 = 3
\Leftrightarrow x^{2} - 6x + 2 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 3 - \sqrt{7}(ktm) \\
x = 3 + \sqrt{7}(tm) \\
\end{matrix} ight.

    Nghiệm của phương trình là

    x = 3 + \sqrt{7} \Rightarrow \left\{
\begin{matrix}
p = 3 \\
q = 7 \\
\end{matrix} ight.\  \Rightarrow H = 3 + 7 = 10

  • Câu 19: Thông hiểu

    Biết \log_{m^{2}}\left( \frac{m^{3}}{\sqrt[5]{n^{3}}}ight) = 3 với m,n > 0;m eq
1. Hỏi giá trị của biểu thức \log_{m}n bằng bao nhiêu?

    Ta có:

    \log_{m^{2}}\left(\frac{m^{3}}{\sqrt[5]{n^{3}}} ight) = 3

    \Leftrightarrow \frac{1}{2}\left(\log_{m}m^{3} - \log_{m}n^{\frac{3}{5}} ight) = 3

    \Leftrightarrow 3 - \frac{3}{5}\log_{m}n= 6

    \Leftrightarrow \log_{m}n = -5

  • Câu 20: Thông hiểu

    Kết quả nào dưới đây đúng khi đơn giản biểu thức B =
\sqrt[6]{x\sqrt[4]{x^{5}\sqrt{x^{3}}}};(x > 0)?

    Ta có:

    B =
\sqrt[6]{x\sqrt[4]{x^{5}\sqrt{x^{3}}}} =
\sqrt[6]{x\sqrt[4]{x^{5}.x^{\frac{3}{2}}}} =
\sqrt[6]{x\sqrt[4]{x^{\frac{13}{2}}}}

    = \sqrt[6]{x.x^{\frac{13}{8}}} =
\sqrt[6]{x^{\frac{21}{8}}} = x^{\frac{21}{48}} =
x^{\frac{7}{16}}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo