Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho các mệnh đề sau:

    (i) Cơ số của logarit phải là số dương.

    (ii) Chỉ số thực dương mới có logarit.

    (iii) \ln(A + B) = \ln A + \lnB với mọi A > 0;B >0.

    (iv) \log_{a}b.\log_{b}c.\log_{c}a =1 với mọi a,b,c\in\mathbb{R}

    Số mệnh đề đúng là:

    (i) Sai vì cơ số của \log_{a}b chỉ cần thỏa mãn 0 < a eq0

    (ii) Đúng vì điều kiện có nghĩa của \log_{a}b là b> 0

    (iii) Sai vì \ln(A + B) = \ln A.\ln B với mọi A > 0;B >0.

    (iv) Sai vì nếu a,b,c < 0 thì các biểu thức \log_{a}b;\log_{b}c;\log_{c}a không có nghĩa.

  • Câu 2: Nhận biết

    Với a là số thực dương tùy ý, điền biểu thức thích hợp vào chỗ chấm: \sqrt{a^{3}.\sqrt[4]{a}} = ...

    Ta có:

    \sqrt{a^{3}.\sqrt[4]{a}} =
\sqrt{a^{3}.a^{\frac{1}{4}}} = \sqrt{a^{3 + \frac{1}{4}}} =
\sqrt{a^{\frac{13}{4}}} = a^{\frac{13}{8}}.

  • Câu 3: Thông hiểu

    Tìm tập xác định của hàm số y = \ln\left( x - 2 - \sqrt{x^{2} - 3x - 10}
ight).

    Điều kiện xác định của hàm số

    \left\{ \begin{matrix}
x - 2 > \sqrt{x^{2} - 3x - 10} \\
x^{2} - 3x - 10 \geq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 2 \\
x^{2} - 4x + 4 > x^{2} - 3x - 10 \\
x^{2} - 3x - 10 \geq 0 \\
\end{matrix} ight.

    \Leftrightarrow 5 \leq x <
14

    Vậy tập xác định của hàm số là D =
\lbrack 5;14)

  • Câu 4: Nhận biết

    Giải phương trình 5^{x} = 10 thu được nghiệm:

    Ta có:

    5^{x} = 10 \Leftrightarrow x =\log_{5}10(tm)

    Vậy phương trình có nghiệm x =\log_{5}10.

  • Câu 5: Thông hiểu

    Khẳng định nào sau đây đúng?

    Ta có: \left\{ \begin{matrix}
0 < \sqrt{5} - 2 < 1 \\
2018 < 2019 \\
\end{matrix} ight.

    \Rightarrow \left( \sqrt{5} - 2
ight)^{2018} > \left( \sqrt{5} - 2 ight)^{2019}

  • Câu 6: Nhận biết

    Với các số a, b, c là các số thực dương tùy ý khác 1 và \log_{a}c = x;\log_{b}c =y. Khi đó giá trị của \log_{a}(ab) bằng:

    Với a, b, c là các số thực dương tùy ý khác 1 ta có:

    \log_{c}a = \frac{1}{x};\log_{c}b =\frac{1}{y}

    Khi đó ta có: \log_{c}(ab) = \log_{c}a +\log_{c}b = \frac{1}{x} + \frac{1}{y}

  • Câu 7: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    a) Hàm số y = \left( \sqrt{5} - 2
ight)^{x} luôn nghịch biến trên tập số thực. Đúng||Sai

    b) Tập xác định của hàm số y = \ln(x -
2) + \sqrt{9 - x}D =
(2;9) Sai||Đúng

    c) Ta có: a = 3^{\sqrt{5}};b = 3^{2};c =
3^{\sqrt{6}} suy ra a < c <
b Sai||Đúng

    d) Với \forall m \geq 0 thì hàm số y = log_{2020}(mx - m + 2) xác định trên \lbrack 1; + \infty). Đúng||Sai

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    a) Hàm số y = \left( \sqrt{5} - 2
ight)^{x} luôn nghịch biến trên tập số thực. Đúng||Sai

    b) Tập xác định của hàm số y = \ln(x -
2) + \sqrt{9 - x}D =
(2;9) Sai||Đúng

    c) Ta có: a = 3^{\sqrt{5}};b = 3^{2};c =
3^{\sqrt{6}} suy ra a < c <
b Sai||Đúng

    d) Với \forall m \geq 0 thì hàm số y = log_{2020}(mx - m + 2) xác định trên \lbrack 1; + \infty). Đúng||Sai

    a) Vì 0 < \sqrt{5} - 2 < 1 nên hàm số y = \left( \sqrt{5} - 2
ight)^{x} luôn nghịch biến trên tập số thực đúng.

    b) Điều kiện xác định của hàm số:

    \left\{ \begin{matrix}
x - 2 > 0 \\
9 - x \geq 0 \\
\end{matrix} ight.\  \Rightarrow x \in (2;9brack

    Vậy tập xác định của hàm số là D =
(2;9brack

    c) Ta có: 2 < \sqrt{5} <
\sqrt{6} nên 3^{2} <
3^{\sqrt{5}} < 3^{\sqrt{6}} hay b < a < c

    d) Điều kiện xác định:

    mx - m + 2 > 0 \Leftrightarrow mx
> m - 2\ \ (*)

    TH1: m = 0 \Rightarrow (*)0 > -
1(tm)

    TH2: m > 0 \Rightarrow (*)
\Leftrightarrow x > \frac{m - 2}{m}

    Suy ra tập xác định của hàm số D = \left(
\frac{m - 2}{2}; + \infty ight)

    Khi đó yêu cầu bài toán trở thành \frac{m
- 2}{2} < 1 \Leftrightarrow m - 2 < m \Leftrightarrow - 2 <
0(tm)

    Th3: m < 0 \Rightarrow (*)
\Leftrightarrow x < \frac{m - 2}{m}

    Suy ra tập xác định của hàm số D = \left(
- \infty;\frac{m - 2}{2} ight)

    Do đó không tồn tại giá trị m thỏa mãn yêu cầu bài toán.

  • Câu 8: Vận dụng

    Cho phương trình \log{_{3}}^{2}x - 4\log_{3}x + m - 3 = 0. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt x_{1};x_{2} thỏa mãn x_{1} > x_{2} >
1.

    Đặt t = \log_{3}x. Phương trình đã cho trở thành t^{2} - 4t + m - 3 =
0(*)

    Phương trình (*) có hai nghiệm phân biệt t_{1};t_{2} thỏa mãn t_{1} > t_{2} > 0

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
P > 0 \\
S > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
7 - m > 0 \\
m - 3 > 0 \\
4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 3 < m < 7

  • Câu 9: Nhận biết

    Biết rằng \sqrt x .\sqrt[3]{{{x^2}.\sqrt x }} = {x^n} với x > 0. Tìm n?

     Ta có:

    \begin{matrix}  \sqrt x .\sqrt[3]{{{x^2}.\sqrt x }} \hfill \\   = {x^{\frac{1}{2}}}.\sqrt[3]{{{x^2}.{x^{\frac{1}{2}}}}} = {x^{\frac{1}{2}}}.\sqrt[3]{{{x^{\frac{5}{2}}}}} \hfill \\   = {x^{\frac{1}{2}}}.{x^{\frac{5}{6}}} = {x^{\frac{1}{2} + \frac{5}{6}}} = {x^{\frac{4}{3}}} \hfill \\ \end{matrix}

    Vậy n = \frac{4}{3}

  • Câu 10: Thông hiểu

    Xác định nghiệm của phương trình 4^{2x + 1} = 64?

    Ta có:

    4^{2x + 1} = 64 \Leftrightarrow 4^{2x +
1} = 4^{3}

    \Leftrightarrow 2x + 1 = 3
\Leftrightarrow x = 1(tm)

    Vậy phương trình có nghiệm x = 1.

  • Câu 11: Vận dụng

    Biết \left(
\sqrt{5} - 2 ight)^{- a} > \left( \sqrt{5} + 2
ight)^{b}. Chọn khẳng định đúng?

    Ta có:

    \sqrt{5} - 2 = \frac{1}{\sqrt{5} +
2};\sqrt{5} + 2 > 1

    Nên \left( \sqrt{5} - 2 ight)^{- a}
> \left( \sqrt{5} + 2 ight)^{b}

    \Leftrightarrow \left( \sqrt{5} + 2
ight)^{a} > \left( \sqrt{5} + 2 ight)^{b} \Leftrightarrow a >
b

  • Câu 12: Nhận biết

    Tìm nghiệm của phương trình \log_{2}(3x - 4) = - 1?

    Điều kiện xác định: x >
\frac{4}{3}

    \log_{2}(3x - 4) = - 1 \Leftrightarrow 3x- 4 = 2^{- 1}

    \Leftrightarrow 3x - 4 = \frac{1}{2}
\Leftrightarrow x = \frac{3}{2}(tm)

    Vậy phương trình có nghiệm x =
\frac{3}{2}.

  • Câu 13: Thông hiểu

    Cho phương trình \log_{2}(x - 3) + \log_{2}(x - 1) = 3. Tìm tổng tất cả các nghiệm của phương trình đã cho.

    Điều kiện xác định: \left\{
\begin{matrix}
x - 3 > 0 \\
x - 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 3 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow x > 3

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{2}\left\lbrack (x -3)(x - 1) ightbrack = \log_{2}8

    \Leftrightarrow x^{2} - 4x + 3 = 8
\Leftrightarrow x^{2} - 4x - 5 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1(ktm) \\
x = 5(tm) \\
\end{matrix} ight.

    Vậy tổng các nghiệm của phương trình đã cho bằng 5.

  • Câu 14: Vận dụng cao

    Cho hàm số f\left( x ight) = \frac{{{4^x}}}{{{4^x} + 2}}. Tính tổng

    S = f\left( {\frac{1}{{2005}}} ight) + f\left( {\frac{2}{{2005}}} ight) + ... + f\left( {\frac{{2004}}{{2005}}} ight) + f\left( {\frac{{2005}}{{2005}}} ight)

    Với hàm số f\left( x ight) = \frac{{{a^x}}}{{{a^x} + \sqrt a }} ta có: f\left( x ight) + f\left( {1 - x} ight) = 1

    Khi đó:

    \begin{matrix}  S = \left[ {f\left( {\dfrac{1}{{2005}}} ight) + f\left( {\dfrac{{2004}}{{2005}}} ight)} ight] + \left[ {f\left( {\dfrac{2}{{2005}}} ight) + f\left( {\dfrac{{2003}}{{2005}}} ight)} ight] \hfill\\+ ... + \left[ {f\left( {\dfrac{{1002}}{{2005}}} ight) + f\left( {\dfrac{{1003}}{{2005}}} ight)} ight] + f\left( 1 ight) \hfill \\   = 1 + 1 + ... + 1 + f\left( 1 ight) = 1002 + \dfrac{4}{6} = \dfrac{{3008}}{3} \hfill \\ \end{matrix}

  • Câu 15: Vận dụng

    Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Thông hiểu

    Rút gọn biểu thức E = \frac{a^{2}.\left( a^{- 2}.b^{3}
ight)^{2}.b^{- 1}}{\left( a^{- 1}.b ight)^{3}.a^{- 5}.b^{-
2}} với a,b là hai số thực dương.

    Ta có:

    E = \frac{a^{2}.\left( a^{- 2}.b^{3}
ight)^{2}.b^{- 1}}{\left( a^{- 1}.b ight)^{3}.a^{- 5}.b^{- 2}} =
\frac{\left( a^{2}.a^{- 4} ight).\left( b^{6}.b^{- 1} ight)}{\left(
a^{- 3}.a^{- 5} ight)\left( b^{3}.b^{- 2} ight)} =
a^{6}b^{4}

  • Câu 17: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết \log_{3}a = x;\log_{3}b =y với a,b \in
\mathbb{R}^{+}. Khi đó \log_{3}\left( 3a^{4}b^{5} ight) = 1 + 4x +5y Đúng||Sai

    b) Tập xác định của hàm số y = \sqrt{(x- 2)^{0}} + \log_{2}\left( 9 - x^{2} ight) là D = (2;3) Sai||Đúng

    c) Hàm số y = \ln( - x) nghịch biến trên khoảng ( - \infty;0)Sai||Đúng

    d) Có 31 giá trị nguyên của x thỏa mãn \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0 Đúng||Sai

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết \log_{3}a = x;\log_{3}b =y với a,b \in
\mathbb{R}^{+}. Khi đó \log_{3}\left( 3a^{4}b^{5} ight) = 1 + 4x +5y Đúng||Sai

    b) Tập xác định của hàm số y = \sqrt{(x- 2)^{0}} + \log_{2}\left( 9 - x^{2} ight) là D = (2;3) Sai||Đúng

    c) Hàm số y = \ln( - x) nghịch biến trên khoảng ( - \infty;0)Sai||Đúng

    d) Có 31 giá trị nguyên của x thỏa mãn \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0 Đúng||Sai

    a) Ta có:

    \log_{3}\left( 3a^{4}b^{5} ight) =\log_{3}(3) + \log_{3}\left( a^{4} ight) + \log_{3}\left( b^{5}ight)

    = 1 + 4\log_{3}a + 5\log_{3}b = 1 + 4x +5y

    b) Điều kiện xác định: \left\{
\begin{matrix}
x - 2 eq 0 \\
9 - x^{2} > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x eq 2 \\
- 3 < x < 3 \\
\end{matrix} ight.\  \Leftrightarrow D = ( - 3;3)\backslash\left\{ 2
ight\}

    c) Điều kiện xác định: x <
0

    Cơ số a = e > 1 do đó hàm số đồng biến trên ( - \infty;0).

    d) Xét hàm số \left( 3^{x^{2}} - 9^{x}ight)\left\lbrack \log_{2}(x + 30) - 5 ightbrack = f(x) với x > - 30

    Cho f(x) = 0 \Leftrightarrow \left\lbrack\begin{matrix}3^{x^{2}} - 9^{x} = 0 \\\log_{2}(x + 30) - 5 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
3^{x^{2}} = 3^{2x} \\
x + 30 = 2^{5} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 0 \\
\end{matrix} ight.

    Ta có bảng xét dấu như sau:

    Suy ra f(x) \leq 0 \Leftrightarrow
\left\lbrack \begin{matrix}
- 30 < x \leq 0 \\
x = 2 \\
\end{matrix} ight.

    Mặt khác x\mathbb{\in Z \Rightarrow}x \in
\left\{ - 29; - 28; - 27;...; - 2; - 1;0;2 ight\}

    Vậy có 31 số nguyên của x thỏa mãn bất phương trình \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0.

  • Câu 18: Vận dụng

    Cho các số thức a, b thỏa mãn 1 < a < b\log_{a}b + \log_{b}a^{2} = 3. Tính giá trị của biểu thức T = \log_{ab}\frac{a^{2} +b}{2}?

    Ta có:

    \log_{a}b + \log_{b}a^{2} = 3\Leftrightarrow \log_{a}b + 2\log_{b}a = 3(*)

    Đặt t = \log_{a}b. Do 1 < a < b \Rightarrow t > log_{a}b
\Rightarrow t > 1

    Khi đó t + \frac{2}{t} = 3
\Leftrightarrow t^{2} - 3t + 2 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
t = 1(ktm) \\
t = 2(tm) \\
\end{matrix} ight.

    Với t = 2 ta có: \log_{a}b = 2 \Rightarrow b = a^{2}

    => T = \log_{ab}\frac{a^{2} + b}{2} =\log_{a^{3}}a^{2} = \frac{2}{3}\log_{a}a = \frac{2}{3}

  • Câu 19: Nhận biết

    Tìm tập xác định của hàm số y = \log(x - 2)^{2}.

    Điều kiện xác định (x - 2)^{2} > 0
\Rightarrow x eq 2

    Vậy tập xác định của hàm số là D=\mathbb{R}\backslash\left\{ 2 ight\}.

  • Câu 20: Nhận biết

    Cho hàm số y =
\ln(x - 2) + \sqrt{9 - x}. Tìm tập xác định của hàm số?

    Điều kiện xác định của hàm số y = \ln(x -
2) + \sqrt{9 - x} là:

    \left\{ \begin{matrix}
x - 2 > 0 \\
9 - x \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow x \in (2;9brack

    Vậy tập xác định của hàm số là: D =
(2;9brack

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 23 lượt xem
Sắp xếp theo