Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho phương trình \log{_{3}}^{2}x - 4\log_{3}x + m - 3 = 0. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt x_{1};x_{2} thỏa mãn x_{1} > x_{2} >
1.

    Đặt t = \log_{3}x. Phương trình đã cho trở thành t^{2} - 4t + m - 3 =
0(*)

    Phương trình (*) có hai nghiệm phân biệt t_{1};t_{2} thỏa mãn t_{1} > t_{2} > 0

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
P > 0 \\
S > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
7 - m > 0 \\
m - 3 > 0 \\
4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 3 < m < 7

  • Câu 2: Thông hiểu

    Có bao nhiêu giá trị nguyên của dương của tham số m để hàm số y = (6 - m)^{x} đồng biến trên tập số thực?

    Đáp án: 4

    Đáp án là:

    Có bao nhiêu giá trị nguyên của dương của tham số m để hàm số y = (6 - m)^{x} đồng biến trên tập số thực?

    Đáp án: 4

    Hàm số y = (6 - m)^{x} đồng biến trên \mathbb{R} khi và chỉ khi 6 - m > 1 \Leftrightarrow m <
5

    m \in \mathbb{Z}^{+} \Rightarrow m \in
\left\{ 1;2;3;4 ight\}

    Vậy có 4 giá trị của tham số m thỏa mãn điều kiện đề bài.

  • Câu 3: Vận dụng cao

    Tìm tất cả các tập giá trị của a để  \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}}?

    Ta có: \sqrt[7]{{{a^2}}} = \sqrt[{21}]{{{a^6}}}

    => \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}} \Rightarrow \sqrt[{21}]{{{a^5}}} > \sqrt[{21}]{{{a^6}}}

    Mà 5 < 6 => 0 < a < 1

  • Câu 4: Nhận biết

    Tính giá trị của biểu thức A = \log_{3}2.\log_{4}3...\log_{16}15.

    Ta có:

    A =\log_{3}2.\log_{4}3...\log_{16}15

    A =\log_{16}15.\log_{5}14....\log_{3}2.\log_{4}3 = \log_{16}2 =\frac{1}{4}

  • Câu 5: Thông hiểu

    Cho hàm số f(x) =
\frac{9^{x}}{9^{x} + 3};\left( x\mathbb{\in R} ight) và hai số a,b thỏa mãn a + b = 1. Khi đó f(a) + f(b) bằng bao nhiêu?

    Ta có:

    f(a) + f(b) = \dfrac{9^{1 - b}}{9^{1 - b}+ 3} + \dfrac{9^{b}}{9^{b} + 3}

    = \dfrac{\dfrac{9}{9^{b}}}{\dfrac{9}{9^{b}}+ 3} + \dfrac{9^{b}}{9^{b} + 3} = \dfrac{9}{9 + 3.9^{b}} +\frac{9^{b}}{9^{b} + 3} = 1

  • Câu 6: Thông hiểu

    Cho biểu thức C
= \frac{a^{\sqrt{7} + 1}.a^{2 - \sqrt{7}}}{\left( a^{\sqrt{2} - 2}
ight)^{\sqrt{2} + 2}} với a >
0. Kết quả sau khi đơn giản biểu thức C là:

    Ta có:

    C = \frac{a^{\sqrt{7} + 1}.a^{2 -
\sqrt{7}}}{\left( a^{\sqrt{2} - 2} ight)^{\sqrt{2} + 2}} =
\frac{a^{\sqrt{7} + 1 + 2 - \sqrt{7}}}{a^{\left( \sqrt{2} ight)^{2} -
2^{2}}} = \frac{a^{3}}{a^{- 2}} = a^{5}

  • Câu 7: Thông hiểu

    Có bao nhiêu giá trị x nguyên thỏa mãn bất phương trình 6^{x} + 4 \leq 2^{x + 1} +
2.3^{x}?

    Ta có:

    6^{x} + 4 \leq 2^{x + 1} +
2.3^{x}

    \Leftrightarrow 6^{x} + 4 - 2^{x + 1} -
2.3^{x} \leq 0

    \Leftrightarrow 2^{x}\left( 3^{x} - 2
ight) + 2\left( 2 - 3^{x} ight) \leq 0

    \Leftrightarrow \left( 2^{x} - 2
ight)\left( 3^{x} - 2 ight) \leq 0

    \Leftrightarrow x \in \left\lbrack\log_{2}2;1 ightbrack

    x\mathbb{\in Z}

    Vậy có duy nhất 1 giá trị nguyên của x thỏa mãn yêu cầu đề bài.

  • Câu 8: Nhận biết

    Tìm nghiệm phương trình 5^{x - 1} - \frac{1}{25} = 0?

    Ta có:

    5^{x - 1} - \frac{1}{25} = 0
\Leftrightarrow 5^{x - 1} = 5^{- 2}

    \Leftrightarrow x - 1 = - 2
\Leftrightarrow x = - 1(tm)

    Vậy phương trình có nghiệm x = -
1.

  • Câu 9: Nhận biết

    Chọn khẳng định sai trong các khẳng định sau?

    Hàm số y = \log_{2}x đồng biến trên khoảng (0; + \infty)

  • Câu 10: Vận dụng

    Với các số a,b> 0 thỏa mãn \log_{16}(a + 3b) =\log_{3}a = \log_{12}b. Xác định giá trị biểu thức \frac{a^{3} - ab^{2} + b^{3}}{a^{3} + a^{2}b +b^{3}}.

    Ta có:

    \log_{16}(a + 3b) = \log_{3}a =\log_{12}b

    \Leftrightarrow \left\{ \begin{matrix}16^{t} = a + 3b \\9^{t} = a \\12^{t} = b \\\end{matrix} ight.\  \Leftrightarrow 9^{t} + 3.12^{t} =16^{t}

    \Leftrightarrow \left( \frac{9}{16}ight)^{t} + 3.\left( \frac{12}{16} ight)^{t} = 1

    \Leftrightarrow \left( \frac{3}{4}ight)^{t} = \frac{- 3 + \sqrt{13}}{2} = \frac{a}{b}

    Vậy \frac{a^{3} - ab^{2} + b^{3}}{a^{3} +a^{2}b + b^{3}} = \frac{\left( \frac{a}{b} ight)^{3} - \frac{a}{b} +1}{\left( \frac{a}{b} ight)^{3} + \left( \frac{a}{b} ight)^{2} + 3}= \frac{5 - \sqrt{13}}{6}

  • Câu 11: Nhận biết

    Với m là một số thực bất kì, mệnh đề nào dưới đây là mệnh đề sai?

    Theo định nghĩa và các tính chất của lũy thừa ta thấy:

    \sqrt{10^{m}} = \left( \sqrt{10}
ight)^{m}; \sqrt{10^{m}} = \left(
\sqrt{10} ight)^{m}; \left(
10^{m} ight)^{2} = 100^{m} là các mệnh đề đúng.

    Xét mệnh đề \left( 10^{m} ight)^{2} =
(10)^{m^{2}} với m = 1 ta có: \left( 10^{1} ight)^{2} = 100 eq
(10)^{1^{2}} nên mệnh đề sai.

  • Câu 12: Thông hiểu

    Biết \log_{2}m =6\log_{4}a - 4\log_{2}\sqrt{b} - \log_{\frac{1}{2}}c. Biểu diễn m theo a,b,c?

    Ta có:

    \log_{2}m = 6\log_{4}a - 4\log_{2}\sqrt{b}- \log_{\frac{1}{2}}c

    \Leftrightarrow \log_{2}m = \log_{2}a^{3}- \log_{2}b^{2} + \log_{2}c

    \Leftrightarrow \log_{2}m =\log_{2}\frac{a^{3}.c}{b^{2}} \Leftrightarrow m =\frac{a^{3}.c}{b^{2}}

  • Câu 13: Nhận biết

    Tính giá trị biểu thức A = \sqrt[5]{- 4}.\sqrt[5]{8}.

    Ta có:

    A = \sqrt[5]{- 4}.\sqrt[5]{8} =
\sqrt[5]{- 4.8} = \sqrt[5]{- 32} = - 2

  • Câu 14: Thông hiểu

    Cho phương trình 3^{\sqrt{x^{2} - 2x}} = \left( \frac{1}{3}
ight)^{x - |x - 1|}. Chọn khẳng định đúng.

    Điều kiện xác định x^{2} - 2x \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
x \geq 2 \\
x \leq 0 \\
\end{matrix} ight.

    Lấy logarit cơ số 3 hai vế phương trình ta được:

    \Leftrightarrow \log_{3}3^{\sqrt{x^{2} -2x}} = \log_{3}\left( \frac{1}{3} ight)^{x - |x - 1|}

    \Leftrightarrow \sqrt{x^{2} - 2x} = |x -
1| - x

    Trường hợp 1: x \geq 2 ta có: \sqrt{x^{2} - 2x} = - 1. Phương trình vô nghiệm.

    Trường hợp 2: x \leq 0 ta có:

    \sqrt{x^{2} - 2x} = 1 - 2x

    \Leftrightarrow \left\{ \begin{matrix}
1 - 2x \geq 0 \\
x^{2} - 2x = (1 - 2x)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq \dfrac{1}{2} \\3x^{2} - 2x + 1 = 0 \\\end{matrix} ight.vô nghiệm

    Vậy phương trình đã cho vô nghiệm.

  • Câu 15: Nhận biết

    Tìm nghiệm phương trình \log_{5}(2x - 1) = \log_{5}3?

    Điều kiện x > \frac{1}{2}

    Ta có:

    \log_{5}(2x - 1) = \log_{5}3

    \Leftrightarrow 2x - 1 = 3
\Leftrightarrow x = 2(tm)

    Vậy phương trình có nghiệm x =
2.

  • Câu 16: Vận dụng

    Đầu mỗi tháng cô H gửi vào ngân hàng 4 triệu đồng với lãi suất kép là 0,5% mỗi tháng. Hỏi sau ít nhất bao nhiêu tháng (khi ngân hàng đã tính lãi) thì cô H có được số tiền cả lãi và gốc nhiều hơn 100 triệu, biết lãi suất không đổi trong quá trình gửi.

    Ta có: T = \frac{M}{r}\left\lbrack (1 +r)^{n} - 1 ightbrack(1 + r)

    Giả sử sau n tháng sau anh A nhận được số tiền nhiều hơn 100 triệu, khi đó ta có:

    \frac{4}{0,5\%}\left\lbrack (1 +0,5\%)^{n} - 1 ightbrack(1 + 0,5\%) > 100

    \Rightarrow n > 23,5

    Vậy cần ít nhất 24 tháng để cô H có được số tiền cả lãi và gốc nhiều hơn 100 triệu.

  • Câu 17: Vận dụng

    Thực hiện rút gọn biểu thức Z = \left(
\frac{a^{\frac{1}{3}}.b^{\frac{1}{3}}}{2a^{- \frac{1}{3}} - b^{-
\frac{1}{3}}} + \frac{a^{\frac{1}{3}} - 2b^{\frac{1}{3}}}{4a^{-
\frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}}}
ight).\frac{8b - a}{6} ta thu được kết quả là:

    Ta có:

    Z = \left(
\frac{a^{\frac{1}{3}}.b^{\frac{1}{3}}}{2a^{- \frac{1}{3}} - b^{-
\frac{1}{3}}} + \frac{a^{\frac{1}{3}} - 2b^{\frac{1}{3}}}{4a^{-
\frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}}}
ight).\frac{8b - a}{6}

    Z = \frac{8b - a}{6} \cdot
\frac{a^{\frac{1}{3}}b^{\frac{1}{3}}\left( 4a^{- \frac{2}{3}} + 2a^{-
\frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}} ight) + \left( 2a^{-
\frac{1}{3}} - b^{- \frac{1}{3}} ight)\left( a^{\frac{1}{3}} -
2b^{\frac{1}{3}} ight)}{\left( 2a^{- \frac{1}{3}} - b^{- \frac{1}{3}}
ight)\left( 4a^{- \frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} +
b^{- \frac{2}{3}} ight)}

    Z = \frac{8b - a}{6} \cdot \frac{4a^{-
\frac{1}{3}}b^{\frac{1}{3}} + 2 + a^{\frac{1}{3}}b^{- \frac{1}{3}} + 2 -
4a^{- \frac{1}{3}}b^{\frac{1}{3}} - a^{\frac{1}{3}}b^{- \frac{1}{3}} +
2}{8a^{- 1} - b^{- 1}}

    Z = \frac{8b - a}{6} \cdot\frac{6}{\dfrac{8}{a} - \dfrac{1}{b}} = \frac{8b - a}{6} \cdot\frac{6ab}{8b - a} = ab

  • Câu 18: Thông hiểu

    Khẳng định nào sau đây sai?

    Ta có: \left\{ \begin{matrix}
0 < \sqrt{3} - 1 < 1 \\
2018 > 2019 \\
\end{matrix} ight.

    \Rightarrow \left( \sqrt{3} - 1
ight)^{2018} < \left( \sqrt{3} - 1 ight)^{2017}

  • Câu 19: Thông hiểu

    Tính giá trị của biểu thức \log_{\sqrt[6]{x}}\left(x^{\frac{7}{4}}.\sqrt[6]{y} ight) biết \left\{ \begin{matrix}
x,y > 0,x eq 1 \\
log_{x}y = \sqrt{2022} \\
\end{matrix} ight.?

    Ta có:

    \log_{\sqrt[6]{x}}\left(x^{\frac{7}{4}}.\sqrt[6]{y} ight) = \log_{\sqrt[6]{x}}x^{\frac{7}{4}} +\log_{\sqrt[6]{x}}\sqrt[6]{y}

    = 6.\frac{7}{4} + \sqrt{2022} =
\frac{21}{2} + \sqrt{2022}

  • Câu 20: Nhận biết

    Tìm tập xác định của hàm số y=\log_{\frac{1}{2}}\left( x^{2} - 3x + 2ight)?

    Điều kiện xác định x^{2} - 3x + 2 > 0
\Leftrightarrow \left\lbrack \begin{matrix}
x < 1 \\
x > 2 \\
\end{matrix} ight.

    => Tập xác định của hàm số là D = ( -
\infty;1) \cup (2; + \infty).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo