Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tính giá trị biểu thức M = 2^{\log_{2}a} + \log_{a}\left( a^{b}ight) với điều kiện a > 0;a
eq 1?

    Ta có:

    M = 2^{\log_{2}a} + \log_{a}\left( a^{b}ight) = a + b

  • Câu 2: Vận dụng

    Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Theo dự định số lượng thức ăn dự trữ của nông trại B sẽ hết sau 100 ngày, nhưng thực tế mức tiêu thụ của vật nuôi tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi lượng thức ăn dữ trữ thực tế sẽ hết sau khoảng bao nhiêu ngày? (làm tròn đến hàng đơn vị)

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Thông hiểu

    Cho hàm số y =f(x) = \log_{3}\left( x^{2} - 4x - m + 1 ight) với m là tham số. Tìm tất cả các giá trị thực của tham số m để hàm số đã y = f(x) xác định với mọi x\in \mathbb{R}?

    Hàm số y =f(x) = \log_{3}\left( x^{2} - 4x - m + 1 ight) xác định với mọi x\mathbb{\in R} khi và chỉ khi

    x^{2} - 4x - m + 1 > 0;\forall
x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta' < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 > 0 \\
4 + m - 1 < 0 \\
\end{matrix} ight.\  \Leftrightarrow m < - 3

    Vậy m \in ( - \infty; - 3)

  • Câu 4: Thông hiểu

    Cho hai số thực dương a,b thỏa mãn 2\log_{3}2.\log_{2}a - 3\log_{\sqrt{3}}b =4. Tìm khẳng định đúng dưới đây?

    Ta có:

    2\log_{3}2.\log_{2}a - 3\log_{\sqrt{3}}b =4

    \Leftrightarrow 2\log_{3}a -3.\log_{3^{\frac{1}{2}}}b = 4

    \Leftrightarrow \log_{3}a - 3.\log_{3}b =2

    \Leftrightarrow \log_{3}a - \log_{3}b^{3}= 2

    \Leftrightarrow \log_{3}\frac{a}{b^{3}} =2 \Leftrightarrow \frac{a}{b^{3}} = 9

  • Câu 5: Vận dụng

    Cho x > 0;y > 0. Viết biểu thức {x^{\frac{4}{5}}}.\sqrt[6]{{{x^5}\sqrt x }} = {x^m}{y^{\frac{4}{5}}}:\sqrt[6]{{{y^5}\sqrt y }} = {y^n}. Tính T = m - n

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{{\left( {{x^m}} ight)}^6} = {x^{\frac{{24}}{5}}}.{x^5}.{x^{\frac{1}{2}}} = {x^{\frac{{103}}{{10}}}} \Rightarrow m = \dfrac{{103}}{{60}}} \\   {{{\left( {{y^n}} ight)}^6} = {y^{\frac{{24}}{5}}}:\left( {{y^5}.{y^{\frac{1}{2}}}} ight) = {y^{ - \frac{7}{{10}}}} \Rightarrow n =  - \dfrac{7}{{60}}} \end{array}} ight. \Rightarrow T = m - n = \frac{{11}}{6}

  • Câu 6: Thông hiểu

    Khẳng định nào sau đây đúng?

    Ta có: \left\{ \begin{matrix}
0 < \sqrt{5} - 2 < 1 \\
2018 < 2019 \\
\end{matrix} ight.

    \Rightarrow \left( \sqrt{5} - 2
ight)^{2018} > \left( \sqrt{5} - 2 ight)^{2019}

  • Câu 7: Vận dụng

    Tính giá trị biểu thức D = \log\left( \tan 1^{0} ight) + \log\left(
\tan 2^{0} ight) + ... + \log\left( tan89^{0} ight).

    Ta có:

    D = \log\left( \tan 1^{0} ight) +\log\left( \tan 2^{0} ight) + ... + \log\left( \tan89^{0}ight)

    D = \log\left( \tan1^{0}.\tan2^{0}...\tan89^{0} ight)

    D = \log\left\lbrack \tan1^{0}.\tan2^{0}...\tan\left( 90^{0} - 2^{0} ight).\tan\left( 90^{0} -1^{0} ight) ightbrack

    D = \log\left( \tan1^{0}.\tan2^{0}...\cot2^{0}.\cot1^{0} ight)

    D = \log\left\lbrack \left( \tan1^{0}..\cot1^{0} ight)\left( \tan 2^{0}.\cot2^{0} ight)...ightbrack

    D = \log1 = 0

  • Câu 8: Vận dụng cao

    Rút gọn biểu thức

    P = \frac{{4 + \sqrt 3 }}{{1 + \sqrt 3 }} + \frac{{6 + \sqrt 8 }}{{\sqrt 2  + \sqrt 4 }} + ... + \frac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} + ... + \frac{{200 + \sqrt {9999} }}{{\sqrt {99}  + \sqrt {101} }}

    Với k \geqslant 2 ta có:

    \begin{matrix}  \dfrac{{2k + \sqrt {{k^2} - 1} }}{{\sqrt {k - 1}  + \sqrt {k + 1} }} \hfill \\   = \dfrac{{\left[ {{{\left( {\sqrt {k - 1} } ight)}^2} + {{\left( {\sqrt {k + 1} } ight)}^2} + \sqrt {\left( {k + 1} ight)\left( {k - 1} ight)} } ight]\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)}}{{\left( {\sqrt {k - 1}  - \sqrt {k + 1} } ight)\left( {\sqrt {k - 1}  + \sqrt {k + 1} } ight)}} \hfill \\   = \dfrac{{\sqrt {{{\left( {k + 1} ight)}^3}}  - \sqrt {{{\left( {k - 1} ight)}^3}} }}{2} \hfill \\ \end{matrix}

    Khi đó:

    \begin{matrix}  P = \dfrac{1}{2}.\left( {\sqrt {{3^3}}  - \sqrt {{1^3}}  + \sqrt {{4^3}}  - \sqrt {{2^3}}  + \sqrt {{5^3}}  - \sqrt {{3^3}}  + \sqrt {{6^3}}  - \sqrt {{4^3}}  + ... + \sqrt {{{101}^3}}  - \sqrt {{{99}^3}} } ight) \hfill \\   = \dfrac{1}{2}\left( { - 1 - \sqrt {{2^3}}  + \sqrt {{{101}^3}}  + \sqrt {{{100}^3}} } ight) = \dfrac{{999 + \sqrt {{{101}^3}}  - \sqrt 8 }}{2} \hfill \\ \end{matrix}

  • Câu 9: Thông hiểu

    Cho phương trình 3^{\sqrt{x^{2} - 2x}} = \left( \frac{1}{3}
ight)^{x - |x - 1|}. Chọn khẳng định đúng.

    Điều kiện xác định x^{2} - 2x \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
x \geq 2 \\
x \leq 0 \\
\end{matrix} ight.

    Lấy logarit cơ số 3 hai vế phương trình ta được:

    \Leftrightarrow \log_{3}3^{\sqrt{x^{2} -2x}} = \log_{3}\left( \frac{1}{3} ight)^{x - |x - 1|}

    \Leftrightarrow \sqrt{x^{2} - 2x} = |x -
1| - x

    Trường hợp 1: x \geq 2 ta có: \sqrt{x^{2} - 2x} = - 1. Phương trình vô nghiệm.

    Trường hợp 2: x \leq 0 ta có:

    \sqrt{x^{2} - 2x} = 1 - 2x

    \Leftrightarrow \left\{ \begin{matrix}
1 - 2x \geq 0 \\
x^{2} - 2x = (1 - 2x)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq \dfrac{1}{2} \\3x^{2} - 2x + 1 = 0 \\\end{matrix} ight.vô nghiệm

    Vậy phương trình đã cho vô nghiệm.

  • Câu 10: Thông hiểu

    Với a là một số thực dương thì biểu thức P = \frac{{{a^{\sqrt 7  + 1}}.{a^{2 - \sqrt 7 }}}}{{{{\left( {{a^{\sqrt 2  - 2}}} ight)}^{\sqrt 2  + 2}}}} được rút gọn là:

    Ta có: P = \frac{{{a^{\sqrt 7  + 1}}.{a^{2 - \sqrt 7 }}}}{{{{\left( {{a^{\sqrt 2  - 2}}} ight)}^{\sqrt 2  + 2}}}} = \frac{{{a^3}}}{{{a^{ - 2}}}} = {a^5}

  • Câu 11: Nhận biết

    Cho phương trình 2^{m^{2} - 2m - 3} = 1. Tìm tập nghiệm S của phương trình đã cho.

    Ta có:

    2^{m^{2} - 2m - 3} = 1

    \Leftrightarrow 2^{m^{2} - 2m - 3} =
2^{0}

    \Leftrightarrow m^{2} - 2m - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = 3 \\
\end{matrix} ight.\ (tm)

    Vậy tập nghiệm của phương trình là S =
\left\{ - 1;3 ight\}

  • Câu 12: Nhận biết

    Tìm điều kiện xác định của hàm số y = \log_{3}(2x)

    Điều kiện xác định của hàm số y =\log_{3}(2x) là:

    2x > 0 \Rightarrow x > 0
\Rightarrow x \in (0; + \infty)

  • Câu 13: Vận dụng

    Cho phương trình \log{_{3}}^{2}x - 4\log_{3}x + m - 3 = 0. Tìm tất cả các giá trị nguyên của tham số m để phương trình có hai nghiệm thực phân biệt x_{1};x_{2} thỏa mãn x_{1} > x_{2} >
1.

    Đặt t = \log_{3}x. Phương trình đã cho trở thành t^{2} - 4t + m - 3 =
0(*)

    Phương trình (*) có hai nghiệm phân biệt t_{1};t_{2} thỏa mãn t_{1} > t_{2} > 0

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
P > 0 \\
S > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
7 - m > 0 \\
m - 3 > 0 \\
4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 3 < m < 7

  • Câu 14: Thông hiểu

    Phương trình 3\log_{3}(x - 1) - \log_{\frac{1}{3}}(x - 5)^{3} =3 có bao nhiêu nghiệm nguyên?

    Điều kiện x > 5

    Ta có:

    3\log_{3}(x - 1) - \log_{\frac{1}{3}}(x -5)^{3} = 3

    \Leftrightarrow 3\log_{3}(x - 1) +3\log_{3}(x - 5) = 3

    \Leftrightarrow \log_{3}(x - 1) +\log_{3}(x - 5) = 1

    \Leftrightarrow \log_{3}\left\lbrack (x -1).(x - 5) ightbrack = 1

    \Leftrightarrow (x - 1).(x - 5) =
3^{1}

    \Leftrightarrow x^{2} - 6x + 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 3 + \sqrt{7} \\
x = 3 - \sqrt{7} \\
\end{matrix} ight.\ (ktm) (vì nghiệm cần xét là nghiệm nguyên)

    Vậy phương trình không có nghiệm nguyên.

  • Câu 15: Nhận biết

    Đơn giản biểu thức H = x^{\frac{1}{3}}.\sqrt[6]{x};(x >
0) với x > 0 ta được kết quả là:

    Ta có: H = x^{\frac{1}{3}}.\sqrt[6]{x} =
x^{\frac{1}{3}}.x^{\frac{1}{6}} = x^{\frac{1}{3} + \frac{1}{6}} =
\sqrt{x}

  • Câu 16: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m trên đoạn \lbrack -
2018;2018brack để hàm số y =
\ln\left( x^{2} - 2x - m + 1 ight) có tập xác định \mathbb{R}?

    Hàm số y = \ln\left( x^{2} - 2x - m + 1
ight) xác định trên \mathbb{R} khi và chỉ khi

    x^{2} - 2x - m + 1 > 0;\forall x \in
\mathbb{R}

    \Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta' < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 > 0 \\
1 + m - 1 < 0 \\
\end{matrix} ight.\  \Rightarrow m < 0

    Do \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 2018;2018brack \\
\end{matrix} ight.

    \Rightarrow m \in \left\{ - 2018; -
2017;...; - 1 ight\}

    Vậy có 2018 giá trị của m thỏa mãn yêu cầu bài toán.

  • Câu 17: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Hàm số y = \ln( - x) có tập xác định D = ( - \infty;0)

    Cơ số a = e > 1 do đó hàm số đồng biến trên ( - \infty;0)

  • Câu 18: Nhận biết

    Với một số thực dương a tùy ý, khi đó \sqrt{a^{2}.\sqrt[5]{a}} bằng:

    Với a > 0 ta có: \sqrt{a^{2}.\sqrt[5]{a}} =
\sqrt{a^{2}.a^{\frac{1}{5}}} = \sqrt{a^{2 + \frac{1}{5}}} =
\sqrt{a^{\frac{11}{5}}} = a^{\frac{11}{10}}

  • Câu 19: Thông hiểu

    Cho a =\log_{3}2;b = \log_{3}5. Khi đó \log60 có giá trị là:

    Ta có:

    \log60 =\frac{\log_{3}60}{\log_{3}10}= \frac{\log_{3}2^{2} + \log_{3}3 +\log_{3}5}{\log_{3}2 + \log_{3}5}

    = \frac{\log_{3}2^{2} + 1 +\log_{3}5}{\log_{3}2 + \log_{3}5}= \dfrac{2a + b + 1}{a + b}

  • Câu 20: Nhận biết

    Cho bất phương trình 2^{x + 2} < \left( \frac{1}{4} ight)^{-
x}. Tập nghiệm của bất phương trình là:

    Ta có:

    2^{x + 2} < \left( \frac{1}{4}
ight)^{- x} \Leftrightarrow 2^{x + 2} < 2^{2x}

    \Leftrightarrow x + 2 <
2x

    \Leftrightarrow x > 2

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 23 lượt xem
Sắp xếp theo