Đề kiểm tra 15 phút Toán 11 Chương 6 Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho x là số thực dương. Biểu thức \sqrt[4]{x^{2}.\sqrt[3]{x}} được viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có: \sqrt[4]{x^{2}.\sqrt[3]{x}} =
\sqrt[4]{x^{2}.x^{\frac{1}{3}}} = \sqrt[4]{x^{\frac{7}{3}}} =
x^{\frac{7}{3.4}} = x^{\frac{7}{12}}

  • Câu 2: Thông hiểu

    Hình bên là đồ thị hàm số nào trong các hàm số dưới đây?

    Đồ thị đã cho là của một hàm số nghịch biến trên tập xác định của nó.

    Trong bốn phương án đã cho, chỉ có hàm số y
= \left( \frac{1}{3} ight)^{x}thỏa mãn.

  • Câu 3: Nhận biết

    Giá trị của biểu thức P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}} bằng:

    Ta có:

    P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}}

    = {\left[ {\left( {1 + \sqrt 3 } ight)\left( {3 - \sqrt 3 } ight)} ight]^{2016}} = {\left( {2\sqrt 3 } ight)^{2016}} = {12^{1008}}

  • Câu 4: Nhận biết

    Rút gọn biểu thức P = \frac{{{x^{\frac{1}{6}}}.\sqrt[3]{{{x^4}}}.\sqrt[4]{{{x^5}}}}}{{\sqrt {{x^3}} }} với x > 0

    Ta có: P = \frac{{{x^{\frac{1}{6}}}.\sqrt[3]{{{x^4}}}.\sqrt[4]{{{x^5}}}}}{{\sqrt {{x^3}} }} = \frac{{{x^{\frac{1}{6}}}.{x^{\frac{4}{3}}}.{x^{\frac{5}{4}}}}}{{{x^{\frac{3}{2}}}}} = \frac{{{x^{\frac{{11}}{4}}}}}{{{x^{\frac{3}{2}}}}} = {x^{\frac{5}{4}}} 

  • Câu 5: Nhận biết

    Tính giá trị biểu thức M = 2^{\log_{2}a} + \log_{a}\left( a^{b}ight) với điều kiện a > 0;a
eq 1?

    Ta có:

    M = 2^{\log_{2}a} + \log_{a}\left( a^{b}ight) = a + b

  • Câu 6: Thông hiểu

    Tổng các nghiệm của phương trình 3^{x^{2} - 3x} = 81 bằng 3||-3||-4||5

    Đáp án là:

    Tổng các nghiệm của phương trình 3^{x^{2} - 3x} = 81 bằng 3||-3||-4||5

    Ta có:

    3^{x^{2} - 3x} = 81 \Leftrightarrow
3^{x^{2} - 3x} = 3^{4}

    \Leftrightarrow x^{2} - 3x = 4
\Leftrightarrow x^{2} - 3x = 4

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 4 \\
\end{matrix} ight.\ (tm)

    Vậy tổng các nghiệm của phương trình là 3

  • Câu 7: Vận dụng

    Giá trị của biểu thức M = {\left( {3 + 2\sqrt 2 } ight)^{2019}}.{\left( {3\sqrt 2  - 4} ight)^{2018}} là:

    Ta có:

    \begin{matrix}  3\sqrt 2  - 4 = \sqrt 2 .\left( {3 - 2\sqrt 2 } ight) \hfill \\   \Rightarrow M = {\left( {3 + 2\sqrt 2 } ight)^{2019}}.{\left( {\sqrt 2 } ight)^{2018}}.{\left( {3 - 2\sqrt 2 } ight)^{2018}} \hfill \\  \left( {3 + 2\sqrt 2 } ight)\left( {3 - 2\sqrt 2 } ight) = {3^2} - {\left( {2\sqrt 2 } ight)^2} = 9 - 8 = 1 \hfill \\   \Rightarrow {\left( {3 + 2\sqrt 2 } ight)^{2018}}{\left( {3 - 2\sqrt 2 } ight)^{2018}} = 1 \hfill \\   \Rightarrow M = {\left( {3 - 2\sqrt 2 } ight)^{2018}}{.2^{2019}} \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Điều kiện xác định của hàm số y = (2,5)^{x} là:

    Điều kiện xác định của hàm số y =
(2,5)^{x} là x\in\mathbb{ R}

  • Câu 9: Thông hiểu

    Cho a,b là các số thực dương bất kì. Mệnh đề nào dưới đây đúng?

    Ta có:

    \log_{2}\left( \frac{2a^{3}}{b} ight) =\log_{2}\left( 2a^{3} ight) - \log_{2}b

    = \log_{2}2 + \log_{2}a^{3} -\log_{2}b

    = 1 + 3\log_{2}a - \log_{2}b

  • Câu 10: Thông hiểu

    Cho đồ thị hàm số y = f(x) = \log_{a}x;(a > 0,a eq 1) như hình vẽ:

    Xác định giá trị a?

    Đồ thị hàm số y = f(x) =\log_{a}x đi qua điểm (2; -1) nên \log_{a}2 = - 1

    Khi đó a^{- 1} = 2 \Leftrightarrow\frac{1}{a} = 2 \Leftrightarrow a = \frac{1}{2}

  • Câu 11: Nhận biết

    Trong các phương trình sau đây, phương trình nào vô nghiệm?

    Ta có:

    Hàm số mũ luôn dương nên phương trình vô nghiệm là phương trình 2^{x} = 0

  • Câu 12: Vận dụng

    Cho hình vẽ:

    Ta có đường thẳng d = 3 song song trục hoành cắt trục tung và đồ thị hai hàm số y = m^{x},y = n^{x};m,n \in
\mathbb{R}^{+}\backslash\left\{ 1 ight\} lần lượt tại H,M,N. Biết \frac{MH}{MN} = \frac{3}{2}. Chọn khẳng định đúng?

    Ta có:\frac{MH}{MN} = \frac{3}{2}
\Rightarrow \frac{HM}{HN} = \frac{3}{5}

    Gọi M\left( x_{1};3 ight) \in y = m^{x}\Rightarrow x_{1} = \log_{m}3

    N\left( x_{2};3 ight) \in y = n^{x}\Rightarrow x_{2} = \log_{n}3

    Khi đó \frac{HM}{HN} = \frac{3}{5}\Leftrightarrow \log_{m}3 = \frac{3}{5}\log_{n}3

    \Leftrightarrow \frac{1}{\log_{3}m} =\frac{3}{5}\frac{1}{\log_{3}n}

    \Leftrightarrow log_{3}m =
\frac{5}{3}.log_{3}n

    \Leftrightarrow m = n^{\frac{5}{3}}\Leftrightarrow m^{3} = n^{5}

  • Câu 13: Nhận biết

    Với 0 < a eq
1,x > 0, kết luận nào sau đây sai?

    Với 0 < a eq 1,x > 0 ta có:

    \log_{a}a = 1

    \log_{a}a^{x} = x

    \log_{a}1 = 0

    Là các kết luận đúng

    Ta lại có: a^{\log_{a}x} = x \Rightarrow x^{\log_{a}x} = x sai.

  • Câu 14: Vận dụng

    Biết phương trình 8lo{g_{2}}^{2}\sqrt[3]{x} + 2(m -
1)log_{\frac{1}{4}}x - 2019 = 0 có hai nghiệm phân biệt thỏa mãn x_{1}x_{2} = 4. Chọn mệnh đề đúng.

    Ta có:

    8\log{_{2}}^{2}\sqrt[3]{x} + 2(m -1)\log_{\frac{1}{4}}x - 2019 = 0

    \Leftrightarrow\frac{8}{9}\log{_{2}}^{2}x - (m - 1)\log_{2}x - 2019 = 0

    Đặt t = \log_{2}x \Leftrightarrow x =2^{t} ta được:

    \Leftrightarrow \frac{8}{9}t^{2} - (m -
1)t - 2019 = 0

    Phương trình đã cho có hai nghiệm phân biệt thỏa mãn x_{1}x_{2} = 4 khi và chỉ khi

    \frac{8}{9}t^{2} - (m - 1)t - 2019 =
0 có hai nghiệm phân biệt thỏa mãn.

    2^{t_{1} + t_{2}} = 4 \Leftrightarrow
t_{1} + t_{2} = 2

    \Leftrightarrow \frac{9(m - 1)}{8} = 2
\Rightarrow m = \frac{25}{9} \in (2;5).

  • Câu 15: Nhận biết

    Xác định nghiệm của bất phương trình \left( \frac{1}{7} ight)^{x^{2} + x} >
\frac{1}{49}?

    Ta có:

    \left( \frac{1}{7} ight)^{x^{2} + x}
> \frac{1}{49} \Leftrightarrow \left( \frac{1}{7} ight)^{x^{2} + x}
> \left( \frac{1}{7} ight)^{2}

    \Leftrightarrow x^{2} + x < 2
\Leftrightarrow x^{2} + x - 2 < 0

    \Leftrightarrow - 2 < x <
1

    Vậy tập nghiệm của bất phương trình là x
\in ( - 2;1)

  • Câu 16: Thông hiểu

    Rút gọn biểu thức B = \left( \frac{a + b}{\sqrt[3]{a} + \sqrt[3]{b}}
- \sqrt[3]{ab} ight):\left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2} biết a^{2} eq
b^{2}.

    Ta có:

    B = \left( \frac{a + b}{\sqrt[3]{a} +
\sqrt[3]{b}} - \sqrt[3]{ab} ight):\left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2}

    B = \left( \sqrt[3]{a^{2}} -
\sqrt[3]{ab} + \sqrt[3]{b^{2}} - \sqrt[3]{ab} ight):\left( \sqrt[3]{a}
- \sqrt[3]{b} ight)^{2}

    B = \left( \sqrt[3]{a^{2}} -
2\sqrt[3]{ab} + \sqrt[3]{b^{2}} ight):\left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2}

    B = \left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2}:\left( \sqrt[3]{a} - \sqrt[3]{b} ight)^{2} =
1

  • Câu 17: Thông hiểu

    Cho phương trình 3^{\sqrt{x^{2} - 2x}} = \left( \frac{1}{3}
ight)^{x - |x - 1|}. Chọn khẳng định đúng.

    Điều kiện xác định x^{2} - 2x \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
x \geq 2 \\
x \leq 0 \\
\end{matrix} ight.

    Lấy logarit cơ số 3 hai vế phương trình ta được:

    \Leftrightarrow \log_{3}3^{\sqrt{x^{2} -2x}} = \log_{3}\left( \frac{1}{3} ight)^{x - |x - 1|}

    \Leftrightarrow \sqrt{x^{2} - 2x} = |x -
1| - x

    Trường hợp 1: x \geq 2 ta có: \sqrt{x^{2} - 2x} = - 1. Phương trình vô nghiệm.

    Trường hợp 2: x \leq 0 ta có:

    \sqrt{x^{2} - 2x} = 1 - 2x

    \Leftrightarrow \left\{ \begin{matrix}
1 - 2x \geq 0 \\
x^{2} - 2x = (1 - 2x)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq \dfrac{1}{2} \\3x^{2} - 2x + 1 = 0 \\\end{matrix} ight.vô nghiệm

    Vậy phương trình đã cho vô nghiệm.

  • Câu 18: Thông hiểu

    Cho a =\log_{7}11;b = \log_{2}7. Biểu diễn \log_{\sqrt[3]{7}}\frac{121}{8} theo a,b.

    Ta có:

    \log_{\sqrt[3]{7}}\frac{121}{8} = 3\left(\log_{7}121 - \log_{7}8 ight)

    = 6\log_{7}11 - 9\log_{7}2

    = 6\log_{7}11 - 9.\frac{1}{\log_{2}7} = 6a- \frac{9}{b}

  • Câu 19: Vận dụng cao

    Cho a,b là các số thực thay đổi thỏa mãn log_{a^{2} + b^{2} +
20}(6a - 8b - 4) = 1c,d là các số thực dương thay đổi thỏa mãn \sqrt{c^{2} + c + log_{2}\frac{c}{d} -
7} = \sqrt{2\left( 2d^{2} + d - 3 ight)}. Tính giá trị nhỏ nhất của biểu thức \sqrt{(a - c + 1)^{2} +
(b - d)^{2}}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho a,b là các số thực thay đổi thỏa mãn log_{a^{2} + b^{2} +
20}(6a - 8b - 4) = 1c,d là các số thực dương thay đổi thỏa mãn \sqrt{c^{2} + c + log_{2}\frac{c}{d} -
7} = \sqrt{2\left( 2d^{2} + d - 3 ight)}. Tính giá trị nhỏ nhất của biểu thức \sqrt{(a - c + 1)^{2} +
(b - d)^{2}}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Nhận biết

    Tập xác định của hàm số y = \log(2x - 3)^{2} là:

    Hàm số y = \log(2x - 3)^{2} xác định nếu (2x - 3)^{2} > 0 \Leftrightarrow
x eq \frac{3}{2}

    Vậy tập xác định D\mathbb{=
R}\backslash\left\{ \frac{3}{2} ight\}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 116 lượt xem
Sắp xếp theo