Tính
.
Ta có:
Tính
.
Ta có:
Phương trình
có tất cả bao nhiêu nghiệm?
Điều kiện xác định:
Phương trình đã cho tương đương:
Vậy phương trình đã cho có 1 nghiệm.
Tính giá trị của
với
?
Ta có: .
Xác định hàm số đồng biến trên
?
Ta có: có
nên hàm số đồng biến trên tập số thực.
Tìm tập xác định của hàm số
?
Điều kiện xác định:
Vậy tập xác định của hàm số đã cho là:
Ta có:
. Giá trị
là:
Ta có:
Tìm tập xác định của hàm số
là:
Điều kiện xác định của hàm số
Vậy tập xác định là:
Đồ thị hàm số
đối xứng với đồ thị hàm số
đi qua điểm
. Giá trị của biểu thức
bằng bao nhiêu?
Đồ thị hàm số đối xứng với đồ thị hàm số
đi qua điểm
. Giá trị của biểu thức
bằng bao nhiêu?
Cho các số thực dương phân biệt a và b. Biểu thức thu gọn của biểu thức
![P = \frac{{\sqrt a - \sqrt b }}{{\sqrt[4]{a} - \sqrt[4]{b}}} - \frac{{\sqrt {4a} + \sqrt[4]{{16ab}}}}{{\sqrt[4]{a} + \sqrt[4]{b}}}](https://i.khoahoc.vn/data/image/holder.png)
có dạng
. Khi đó biểu thức liên hệ giữa n và m là:
Ta có:
Trong các hàm số dưới đây, hàm số nào là hàm số mũ?
Các hàm số ;
;
là các hàm số lũy thừa với số mũ hữu tỉ, hàm số
là hàm số mũ với cơ số là
.
Cho bất phương trình
. Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?
Điều kiện xác định
Ta có:
Với
Với
Bất phương trình vô nghiệm khi và chỉ khi
Với
thì
bằng:
Ta có:
Tìm nghiệm của phương trình
?
Ta có:
Vậy phương trình có nghiệm t = 2.
Tính giá trị biểu thức
với
?
Ta có:
Cho phương trình
với
là tham số. Hỏi có tất cả các giá trị nguyên của tham số
để phương trình có nghiệm thực?
Ta có:
Để phương trình đã cho có nghiệm thực thì
Mà
Vậy có 5 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Biết rằng
là các số thực dương thỏa mãn
. Tìm khẳng định đúng trong các khẳng định sau?
Ta có:
Tính giá trị biểu thức
.
Ta có:
Giá trị của biểu thức ![]()
Ta có:
Cho số thực dương
và số nguyên dương
tùy ý. Mệnh đề nào sau đây đúng?
Ta có: .
Biết khi rút gọn biểu thức
thu được phân số
tối giản và
. Tính giá trị biểu thức
.
Ta có:
Ta lại có: