Đề kiểm tra 15 phút Toán 11 Chương 6 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Hàm số mũ và hàm số lôgarit gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Đặt \log_{2}a =m;\log_{2}b = n. Biểu diễn biểu thức \log_{\sqrt{8}}\sqrt[3]{ab^{2}} -4\log_{0,125}\frac{a\sqrt[3]{b}}{\sqrt[4]{a^{3}b^{7}}} = x.m -y.n, với x,y là các phân số tối giản. Tính x + y.

    Ta có:

    \log_{\sqrt{8}}\sqrt[3]{ab^{2}} -4\log_{0,125}\frac{a\sqrt[3]{b}}{\sqrt[4]{a^{3}b^{7}}}

    = 2\log_{8}\left( ab^{2}ight)^{\frac{1}{3}} - 4\log_{8}\frac{ab^{\frac{1}{3}}}{\left(a^{3}b^{7} ight)^{\frac{1}{4}}}

    = \frac{2}{9}\log_{2}\left( ab^{2}ight) - \frac{4}{3}\log_{2}\left( a^{\frac{1}{4}}.b^{\frac{- 17}{12}}ight)

    = \frac{2}{9}\log_{2}a +\frac{4}{9}\log_{2}b + \frac{1}{3}\log_{2}a -\frac{17}{9}\log_{2}b

    = \frac{5}{9}\log_{2}a -\frac{13}{9}\log_{2}b = \frac{5}{9}m - \frac{13}{9}n

    \Rightarrow \left\{ \begin{matrix}x = \dfrac{5}{9} \\y = \dfrac{13}{9} \\\end{matrix} ight.\  \Rightarrow x + y = 2

  • Câu 2: Thông hiểu

    Cho hàm số y =f(x) = \log_{2}\left( x^{2} - 2x + 2022 - a ight) với a là tham số. Có tất cả bao nhiêu các giá trị nguyên dương của tham số a để hàm số đã y = f(x) xác định với mọi x\mathbb{\in R} ?

    Đáp án: 2020

    Đáp án là:

    Cho hàm số y =f(x) = \log_{2}\left( x^{2} - 2x + 2022 - a ight) với a là tham số. Có tất cả bao nhiêu các giá trị nguyên dương của tham số a để hàm số đã y = f(x) xác định với mọi x\mathbb{\in R} ?

    Đáp án: 2020

    Hàm số y = f(x) = \log_{2}\left( x^{2} -2x + 2022 - a ight) xác định với mọi x\in\mathbb{ R} khi và chỉ khi

    x^{2} - 2x + 2022 - a > 0;\forall
x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta' < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 > 0 \\
1 - (2022 - a) < 0 \\
\end{matrix} ight.\  \Leftrightarrow a < 2021

    a \in \mathbb{Z}^{+}

    Vậy có 2022 giá trị nguyên dương của tham số a thỏa mãn điều kiện đề bài.

  • Câu 3: Nhận biết

    Biết \forall n
\in \mathbb{R}^{+}. Kết luận nào dưới đây đúng?

    Ta có: \log_{4}n^{4} = 4\log_{4}|n| =4\log_{4}n

  • Câu 4: Thông hiểu

    Cho 4^{x} + 4^{-
x} = 14, khi đó Q = \frac{2 + 2^{x}
+ 2^{- x}}{7 - 2^{x} - 2^{- x}} có giá trị bằng:

    Ta có:

    4^{x} + 4^{- x} = 14

    \Leftrightarrow \left( 2^{x} + 2^{- x}
ight)^{2} - 2.2^{x}.2^{- x} = 14

    \Leftrightarrow \left( 2^{x} + 2^{- x}
ight)^{2} = 16

    \Leftrightarrow 2^{x} + 2^{- x} =
4

    Vậy Q = \frac{2 + 2^{x} + 2^{- x}}{7 -
2^{x} - 2^{- x}} = \frac{2 + 4}{7 - 4} = 2

  • Câu 5: Nhận biết

    Cho x,y là hai số thực dương và a,b là hai số thực tùy ý. Đẳng thức nào sau đây sai?

    Biểu thức sai là: x^{a}.y^{b} = (xy)^{a +
b}

  • Câu 6: Vận dụng

    Tìm tập nghiệm của bất phương trình 4x^{2} + x.2^{x^{2} + 1} + 3.2^{x^{2}} >
x^{2}.2^{x^{2}} + 8x + 12.

    Ta có:

    4x^{2} + x.2^{x^{2} + 1} + 3.2^{x^{2}}
> x^{2}.2^{x^{2}} + 8x + 12

    \Leftrightarrow \left( 4 - 2^{x^{2}}
ight)\left( x^{2} - 2x - 3 ight) > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
4 - 2^{x^{2}} > 0 \\
x^{2} - 2x - 3 > 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
4 - 2^{x^{2}} < 0 \\
x^{2} - 2x - 3 < 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
\sqrt{2} > x > - \sqrt{2} \\
\left\lbrack \begin{matrix}
x < - 1 \\
x > 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x < - \sqrt{2} \\
x > \sqrt{2} \\
\end{matrix} ight.\  \\
- 1 < x < 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
- \sqrt{2} < x < - 1 \\
\sqrt{2} < x < 3 \\
\end{matrix} ight.

    Vậy tập nghiệm bất phương trình là: S =
\left( - \sqrt{2}; - 1 ight) \cup \left( \sqrt{2};3
ight)

  • Câu 7: Nhận biết

    Hàm số nào sau đây nghịch biến trên tập xác định?

    Ta có: 0 < \frac{{\sqrt 2 }}{2} < 1 \Rightarrow y = {\log _{\frac{{\sqrt 2 }}{2}}}x nghịch biến trên tập xác định.

  • Câu 8: Thông hiểu

    Giá trị của \log_{3}H với H =
\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} là: 21/100

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giá trị của \log_{3}H với H =
\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} là: 21/100

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Ta có:

    H =\sqrt[10]{3\sqrt[5]{27\sqrt[2]{243}}} =3^{\dfrac{1}{10}}27^{\dfrac{1}{10}.\dfrac{1}{5}}.243^{\dfrac{1}{10}.\dfrac{1}{5}.\dfrac{1}{2}}= 3^{\dfrac{21}{100}}

    \Rightarrow \log_{3}H =\log_{3}3^{\frac{21}{100}} = \frac{21}{100}

  • Câu 9: Vận dụng

    Cho biểu thức D =\left\lbrack \dfrac{x^{\frac{1}{2}} - a^{\frac{3}{2}}}{x^{\frac{1}{2}} -a^{\frac{1}{2}}} + (ax)^{\frac{1}{2}} ightbrack.\left(\dfrac{x^{\frac{1}{2}} - a^{\frac{1}{2}}}{x - a} ight). Khẳng định nào sau đây đúng?

    Ta có:

    D = \left\lbrack \frac{x^{\frac{1}{2}} -
a^{\frac{3}{2}}}{x^{\frac{1}{2}} - a^{\frac{1}{2}}} + (ax)^{\frac{1}{2}}
ightbrack.\left( \frac{x^{\frac{1}{2}} - a^{\frac{1}{2}}}{x - a}
ight)

    = \left\lbrack \frac{\left(
x^{\frac{1}{2}} ight)^{3} - \left( a^{\frac{1}{2}}
ight)^{3}}{x^{\frac{1}{2}} - a^{\frac{1}{2}}} + (ax)^{\frac{1}{2}}
ightbrack^{2}.\left\lbrack \frac{x^{\frac{1}{2}} -
a^{\frac{1}{2}}}{\left( x^{\frac{1}{2}} ight)^{2} - \left(
a^{\frac{1}{2}} ight)^{2}} ightbrack

    = \left\lbrack \frac{\left(
x^{\frac{1}{2}} - a^{\frac{1}{2}} ight)\left( \left( x^{\frac{1}{2}}
ight)^{2} + x^{\frac{1}{2}}a^{\frac{1}{2}} + \left( a^{\frac{1}{2}}
ight)^{2} ight)}{x^{\frac{1}{2}} - a^{\frac{1}{2}}} +
(ax)^{\frac{1}{2}} ightbrack\left\lbrack \frac{x^{\frac{1}{2}} -
a^{\frac{1}{2}}}{\left( x^{\frac{1}{2}} - a^{\frac{1}{2}} ight)\left(
x^{\frac{1}{2}} + a^{\frac{1}{2}} ight)} ightbrack

    = \left\lbrack \left( x^{\frac{1}{2}}
ight)^{2} + 2x^{\frac{1}{2}}a^{\frac{1}{2}} + \left( a^{\frac{1}{2}}
ight)^{2} ightbrack\left( \frac{1}{x^{\frac{1}{2}} +
a^{\frac{1}{2}}} ight)^{2}

    = \left( x^{\frac{1}{2}} +
a^{\frac{1}{2}} ight)^{2}\left( \frac{1}{x^{\frac{1}{2}} +
a^{\frac{1}{2}}} ight)^{2} = 1

  • Câu 10: Vận dụng

    Cho a là một số thực dương khác 1. Tính giá trị của biểu thức:

    P = \log_{a}2018 + \log_{\sqrt{a}}2018 +\log_{\sqrt[3]{a}}2018 + ... + \log_{\sqrt[2018]{a}}2018

    Ta có:

    P = \log_{a}2018 + \log_{\sqrt{a}}2018 +\log_{\sqrt[3]{a}}2018 + ... + \log_{\sqrt[2018]{a}}2018

    P = \log_{a}2018 + 2\log_{a}2018 +3\log_{a}2018 + ... + 2018\log_{a}2018

    P = \log_{a}2018(1 + 2 + 3 + .... +2018)

    P = \log_{a}2018.\frac{(1 +2018).2018}{2}

    P = 1009.2019.\log_{a}2018

  • Câu 11: Thông hiểu

    Phương trình \log_{2}x + \log_{2}(x - 1) = 1 có bao nhiêu nghiệm?

    Điều kiện \left\{ \begin{matrix}
x > 0 \\
x > 1 \\
\end{matrix} ight.\  \Rightarrow x > 1

    Ta có:

    \log_{2}x + \log_{2}(x - 1) =1

    \Leftrightarrow \log_{2}\left\lbrack x.(x- 1) ightbrack = 1

    \Leftrightarrow x.(x - 1) = 2^{1}
\Leftrightarrow x.(x - 1) = 2

    \Leftrightarrow x^{2} - x - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1(ktm) \\
x = 2(tm) \\
\end{matrix} ight.

    Vậy phương trình có 1 nghiệm x =
2.

  • Câu 12: Nhận biết

    Giải phương trình log_{3}(x + 1) = 2 được nghiệm x = 8

    Đáp án là:

    Giải phương trình log_{3}(x + 1) = 2 được nghiệm x = 8

    Điều kiện xác định: x > -
1

    \log_{3}(x + 1) = 2 \Leftrightarrow x + 1= 3^{2} \Leftrightarrow x = 8(tm)

    Vậy phương trình có nghiệm x =
8.

  • Câu 13: Vận dụng

    Cho hàm số y =\log_{a}x;y = \log_{b}x có đồ thị như hình vẽ:

    Đường thẳng x = 7 cắt trục hoành, đồ thị hàm số y = \log_{a}x;y =\log_{b}x lần lượt tại H,M,N. Biết rằng HM = MN. Khẳng định nào sau đây đúng?

    Ta có:\left\{ \begin{matrix}HM = y_{M} = \log_{a}7 \\MN = y_{N} - y_{M} = \log_{b}7 - \log_{a}7 \\\end{matrix} ight.

    Mặt khác HM = MN nên \log_{b}7 - \log_{a}7 = \log_{a}7

    \Leftrightarrow \log_{b}7 =\log_{\sqrt{a}}7

    \Leftrightarrow b = \sqrt{a}
\Leftrightarrow b^{2} = a

  • Câu 14: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    a) Tập xác định của hàm số y = \ln\left(- x^{2} + 5x - 6 ight)D =(2;3). Đúng||Sai

    b) Hàm số y = \left( \frac{\pi}{3}ight)^{x} đồng biến trên tập số thực. Đúng||Sai

    c) Với mọi a,b thỏa mãn \log_{2}a^{3} + \log_{2}b = 8 khi đó a^{3} + b = 64. Sai||Đúng

    d) Có 2017 giá trị nguyên của tham số m trên \lbrack - 2018;2018brack để hàm số y = \ln\left( x^{2} - 2x - m + 1ight) có tập xác định trên R. Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    a) Tập xác định của hàm số y = \ln\left(- x^{2} + 5x - 6 ight)D =(2;3). Đúng||Sai

    b) Hàm số y = \left( \frac{\pi}{3}ight)^{x} đồng biến trên tập số thực. Đúng||Sai

    c) Với mọi a,b thỏa mãn \log_{2}a^{3} + \log_{2}b = 8 khi đó a^{3} + b = 64. Sai||Đúng

    d) Có 2017 giá trị nguyên của tham số m trên \lbrack - 2018;2018brack để hàm số y = \ln\left( x^{2} - 2x - m + 1ight) có tập xác định trên R. Sai||Đúng

    a) Điều kiện xác định của hàm số y =\ln\left( - x^{2} + 5x - 6 ight) là:

    - x^{2} + 5x - 6 > 0 \Leftrightarrow2 < x < 3

    Vậy tập xác định của hàm số y = \ln\left(- x^{2} + 5x - 6 ight)D =(2;3).

    b) Hàm số y = \left( \frac{\pi}{3}ight)^{x} đồng biến trên tập số thực đúng vì a > 1.

    c) Ta có:

    \log_{2}a^{3} + \log_{2}b = 8

    \log_{2}a^{3} + \log_{2}b = 8\Leftrightarrow \log_{2}\left( a^{3}b ight) = 8

    \Leftrightarrow a^{3}b = 2^{8} =256

    d) Hàm số y = \ln\left( x^{2} - 2x - m +1 ight) có tập xác định trên tập số thực khi và chỉ khi

    x^{2} - 2x - m + 1 > 0;\forallx\mathbb{\in R}

    \Leftrightarrow \Delta' < 0\Leftrightarrow 1 + m - 1 < 0 < 0 \Leftrightarrow m <0

    Kết hợp với điều kiện m\mathbb{\in Z},m\in \lbrack - 2018;2018brack ta được 2018 giá trị của tham số m thỏa mãn.

  • Câu 15: Thông hiểu

    Ta có: 4^{x} +
4^{- x} = 7. Biểu thức D = \frac{5
+ 2^{x} + 2^{- x}}{8 - 4.2^{x} - 4.2^{- x}} có giá trị là:

    Ta có:

    4^{x} + 4^{- x} = 7 \Leftrightarrow
\left( 2^{x} + 2^{- x} ight)^{2} = 9

    \Leftrightarrow 2^{x} + 2^{- x} =
3

    \Rightarrow D = \frac{5 + 2^{x} + 2^{-
x}}{8 - 4.2^{x} - 4.2^{- x}} = \frac{5 + 2^{x} + 2^{- x}}{8 - 4.\left(
2^{x} + 2^{- x} ight)}

    = \frac{5 + 3}{8 - 4.3} = -
2

  • Câu 16: Nhận biết

    Giá trị B =
\sqrt[3]{2021}.\sqrt[5]{2021} viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có:

    B = \sqrt[3]{2021}.\sqrt[5]{2021} =
2021^{\frac{1}{3}}.2021^{\frac{1}{5}} = 2021^{\frac{1}{3} + \frac{1}{5}}
= 2021^{\frac{8}{15}}

  • Câu 17: Vận dụng cao

    Tích 2017!{\left( {1 + \frac{1}{1}} ight)^1}{\left( {1 + \frac{1}{2}} ight)^2}...{\left( {1 + \frac{1}{{2017}}} ight)^{2017}} được viết dưới dạng {a^b}, khi đó \left( {a;b} ight) là cặp nào trong các cặp số sau?

    Ta có:

    \begin{matrix}  2017!{\left( {1 + \dfrac{1}{1}} ight)^1}{\left( {1 + \dfrac{1}{2}} ight)^2}...{\left( {1 + \dfrac{1}{{2017}}} ight)^{2017}} \hfill \\   = 2017!{\left( {\dfrac{2}{1}} ight)^1}{\left( {\dfrac{3}{2}} ight)^2}...{\left( {\dfrac{{2017}}{{2016}}} ight)^{2016}}.{\left( {\dfrac{{2018}}{{2017}}} ight)^{2017}} \hfill \\   = 2017!\dfrac{1}{1}.\dfrac{1}{2}.\dfrac{1}{3}....\dfrac{1}{{2016}}.\dfrac{{{{2018}^{2017}}}}{{2017}} = {2018^{2017}} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 2018} \\   {b = 2017} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 18: Nhận biết

    Tính giá trị biểu thức K = \log_{\frac{x}{5}}\left( \frac{x^{3}}{125}ight) với x \in
\mathbb{R}^{+}\backslash\left\{ 5 ight\}?

    Ta có:

    K = \log_{\frac{x}{5}}\left(\frac{x^{3}}{125} ight) = \log_{\frac{x}{5}}\left( \frac{x}{5}ight)^{3} = 3\log_{\frac{x}{5}}\left( \frac{x}{5} ight) =3

  • Câu 19: Nhận biết

    Cho hàm số y =\log_{\frac{1}{2}}(x + 1). Tìm tập xác định của hàm số.

    Điều kiện xác định của hàm số y =\log_{\frac{1}{2}}(x + 1) là:

    x + 1 > 0 \Rightarrow x > -
1

    Vậy tập xác định của hàm số là: D = ( -
1; + \infty)

  • Câu 20: Thông hiểu

    Xác định tất cả các giá trị của tham số m để phương trình 3^{x^{2} + 1} = m - 1 có nghiệm?

    Ta có:

    3^{x^{2}} \geq 3^{0} \Leftrightarrow
3^{x^{2} + 1} \geq 3^{1}

    Phương trình 3^{x^{2} + 1} = m -
1 có nghiệm khi và chỉ khi m - 1
\geq 3 \Leftrightarrow m \geq 4(tm)

    Vậy m \in \lbrack 4; + \infty) thỏa mãn yêu cầu bài toán.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 6 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 583 lượt xem
Sắp xếp theo