Phương trình
có tất cả bao nhiêu nghiệm?
Điều kiện xác định:
Phương trình đã cho tương đương:
Vậy phương trình đã cho có 1 nghiệm.
Phương trình
có tất cả bao nhiêu nghiệm?
Điều kiện xác định:
Phương trình đã cho tương đương:
Vậy phương trình đã cho có 1 nghiệm.
Cho hai số thực dương a và b. Đơn giản biểu thức
ta được
. Tích
là:
Ta có:
Tìm tập xác định của hàm số
là:
Điều kiện xác định
Suy ra tập xác định của hàm số là: .
Với
là một số thực dương, biểu thức
có giá trị là:
Ta có:
NB
Cho đồ thị của hàm số ![]()

Hàm số tương ứng với đồ thị trên là:
Đồ thị hàm số đi qua điểm A(2; 1) nên hàm số tương ứng với đồ thị là:
Thu gọn biểu thức
ta được kết quả ta được phân số tối giản
. Khẳng định nào sau đây đúng?
Ta có:
Suy ra
Xét tính đúng, sai của các phát biểu sau?
a) Tập xác định của hàm số
là
. Đúng||Sai
b) Hàm số
đồng biến trên tập số thực. Đúng||Sai
c) Với mọi
thỏa mãn
khi đó
. Sai||Đúng
d) Có 2017 giá trị nguyên của tham số m trên
để hàm số
có tập xác định trên
. Sai||Đúng
Xét tính đúng, sai của các phát biểu sau?
a) Tập xác định của hàm số là
. Đúng||Sai
b) Hàm số đồng biến trên tập số thực. Đúng||Sai
c) Với mọi thỏa mãn
khi đó
. Sai||Đúng
d) Có 2017 giá trị nguyên của tham số m trên để hàm số
có tập xác định trên
. Sai||Đúng
a) Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số là
.
b) Hàm số đồng biến trên tập số thực đúng vì
.
c) Ta có:
d) Hàm số có tập xác định trên tập số thực khi và chỉ khi
Kết hợp với điều kiện ta được 2018 giá trị của tham số m thỏa mãn.
Tìm cặp số
. Biết
.
Ta có:
Tính giá trị biểu thức
với
.
Ta có:
Cho
là các số thực dương bất kì. Mệnh đề nào dưới đây đúng?
Ta có:
Cho bất phương trình
. Tìm tất cả các giá trị của tham số m để bất phương trình vô nghiệm?
Điều kiện xác định
Ta có:
Với
Với
Bất phương trình vô nghiệm khi và chỉ khi
Cho hai hàm số
với
là các số thực dương khác có đồ thị hàm số lần lượt là
như hình vẽ.

Chọn khẳng định đúng trong các khẳng định dưới đây.
Từ hình vẽ ta thấy đồ thị tăng suy ra hàm số
có cơ số
.
Đồ thị giảm suy ra hàm số
có cơ số
Cho hàm số
. Tính giá trị của biểu thức:
![]()
Ta có:
Khi đó:
Tìm công bội
của một cấp số nhân. Biết ba số
theo thứ tự lập thành cấp số nhân.
Theo giả thiết ta có:
Vậy công bội của cấp số nhân là:
Nếu
thì giá trị
là:
Ta có:
Tập nghiệm của phương trình
là:
Điều kiện
Ta có:
Vậy phương trình có tập nghiệm .
Giá trị của
với
bằng:
Ta có:
Cho phương trình
. Tìm tập nghiệm
của phương trình đã cho.
Ta có:
Vậy tập nghiệm của phương trình là
Trong các hàm số sau đây, hàm số nào đồng biến trên
?
Ta có: nên hàm số
đồng biến trên
.
Tìm tất cả các tập giá trị của a để
?
Ta có:
=>
Mà 5 < 6 =>