Cho hàm số . Khẳng định nào sau đây đúng?
Ta có:
Cho hàm số . Khẳng định nào sau đây đúng?
Ta có:
Số gia của hàm số tại
ứng với số gia
bằng:
Ta có:
Xác định công thức đạo hàm của hàm số ?
Ta có:
Cho hàm số . Đạo hàm cấp hai của hàm số
tại điểm
là:
Ta có:
Cho hàm số . Tính
?
Ta có:
Cho . Tính
Ta có:
Đạo hàm của hàm số là:
Ta có:
Cho hàm số . Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ
thỏa mãn phương trình
?
Ta có:
Ta có:
Khi đó
Phương trình tiếp tuyến của đồ thị hàm số tại điểm M là
Biết rằng . Tính giá trị biểu thức
?
Ta có:
Cho đường cong với
là tham số. Gọi
là tập các giá trị của tham số
sao cho đồ thị hàm số
có đúng 1 tiếp tuyến song song với trục hoành. Tổng các phần tử có trong tập
là:
Ta có:
Vì tiếp tuyến song song với trục hoành nên hệ số góc tiếp tuyến k = 0
Gọi tiếp điểm là khi đó
Để có đúng 1 tiếp tuyến song song với trục hoàn thì
Vậy tổng các giá trị m là 5.
Cho hàm số . Khẳng định nào dưới đây đúng?
Ta có:
Ta có:
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số tương ứng với số gia
của đối số
tại
là
Đúng||Sai
b) Đạo hàm của hàm số bằng biểu thức
. Sai||Đúng
c) Đạo hàm của hàm số âm khi và chỉ khi
. Đúng||Sai
d) Phương trình tiếp tuyến của đồ thị hàm số song song với đường thẳng
là
. Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số tương ứng với số gia
của đối số
tại
là
Đúng||Sai
b) Đạo hàm của hàm số bằng biểu thức
. Sai||Đúng
c) Đạo hàm của hàm số âm khi và chỉ khi
. Đúng||Sai
d) Phương trình tiếp tuyến của đồ thị hàm số song song với đường thẳng
là
. Sai||Đúng
a) Với số gia của đối số x tại ta có:
b) Ta có:
c) Ta có:
.
d) Ta có:
Tiếp tuyến song song với đường thẳng
Vì
Cho hàm số . Biết hàm số có đạo hàm tại
. Giá trị của
bằng:
Ta có:
Ta có:
Để hàm số có liên tục tại x = 1 thì:
Xét
Và
Từ đó suy ra
Vậy
Cho hàm số . Tính
thu được kết quả là:
Ta có:
Cho hàm số có đạo hàm tại x0 là
. Mệnh đề nào sau đây sai?
Từ định nghĩa ta rút ra kết luận:
Đáp án sai là:
Đáp án đúng theo định nghĩa
Đáp án đúng vì
Đặt =>
Đáp án đúng vì
Đặt =>
Tính đạo hàm của hàm số
Ta có:
Cho hàm số . Viết phương trình tiếp tuyến của đồ thị hàm số biết tiếp tuyến song song với đường thẳng y = 9x + 7
Gọi M(x0; y0) là tọa độ tiếp điểm
Ta tính được:
Do tiếp tuyến song song với đường thẳng y = 9x + 7 nên có k = 9
=>
Với x0 = −1, ta có:
=> Phương trình tiếp tuyến cần tìm là y = 9x + 7 (loại)
với x0 = 3 thì
Phương trình tiếp tuyến cần tìm là y = 9x – 25 (thỏa mãn)
Tính đạo hàm của hàm số
Ta có:
Cho hàm số và
. Nghiệm của phương trình
là:
Ta có:
Xét phương trình:
Đạo hàm của hàm số là:
Ta có: