Đề kiểm tra 15 phút Toán 11 Chương 7 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Đạo hàm gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số f(x)
= \frac{1}{3}x^{3} + 3x^{2} - 2020. Chọn khẳng định đúng?

    Ta có:

    f(x) = \frac{1}{3}x^{3} + 3x^{2} -
2020

    \Rightarrow f'(x) = x^{2} + 6x
\Rightarrow f''(x) = 2x + 6

  • Câu 2: Vận dụng

    Cho hàm số y =
\sqrt{3}\cos x + \sin x - x^{2} + 2021x + 2022. Có bao nhiêu nghiệm thuộc \lbrack 0;4\pibrack thỏa mãn phương trình y'' =
0?

    Ta có:

    y = \sqrt{3}\cos x + \sin x - x^{2} +
2021x + 2022

    \Rightarrow y' = \sqrt{3}\sin x +
\cos x - 2x + 2021

    \Rightarrow y'' = \sqrt{3}\cos x
- \sin x - 2

    Lại có y'' = 0 \Leftrightarrow
\sqrt{3}\cos x - \sin x - 2 = 0

    \Leftrightarrow \frac{1}{2}\sin x -
\frac{\sqrt{3}}{2}\cos x = - 1

    \Leftrightarrow \sin\left( x -
\frac{\pi}{3} ight) = - 1

    \Leftrightarrow x - \frac{\pi}{3} =
\frac{- \pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow x = \frac{- \pi}{6} +
k2\pi;\left( k\mathbb{\in Z} ight)

    Do x \in \lbrack 0;3\pibrack
\Leftrightarrow 0 \leq \frac{- \pi}{6} + k2\pi \leq 4\pi

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{1}{12} \leq k \leq \dfrac{25}{12} \\k\mathbb{\in Z} \\\end{matrix} ight.\  \Rightarrow k \in \left\{ 1;2ight\}

    Vậy có 2 nghiệm thỏa mãn yêu cầu đề bài.

  • Câu 3: Nhận biết

    Cho hàm số y =
\log x. Khẳng định nào sau đây đúng?

    Ta có: \left( \log_{a}x ight)' =\frac{1}{x\ln a}

    \Rightarrow y' =\frac{1}{x\ln10}

  • Câu 4: Thông hiểu

    Cho hàm số f(x)= \left\{ \begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Khi đó f'(0) = ?

    Với x eq 0 xét:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0} = \lim_{x ightarrow 0}\dfrac{\dfrac{3 - \sqrt{4 - x}}{4} -\frac{1}{4}}{x}

    = \lim_{x ightarrow 0}\frac{2 -
\sqrt{4 - x}}{4x} = \lim_{x ightarrow 0}\frac{4 - (4 - x)}{4x\left( 2
+ \sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(
2 + \sqrt{4 - x} ight)} = \frac{1}{16}

    \Rightarrow f'(0) =
\frac{1}{16}

  • Câu 5: Thông hiểu

    Đạo hàm của hàm số y=\frac{1}{\sqrt{x^{2}-x+1}} bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  y = \dfrac{1}{{\sqrt {{x^2} - x + 1} }} \hfill \\   \Rightarrow y\prime  = \left( {\dfrac{1}{{\sqrt {{x^2} - x + 1} }}} ight)\prime  \hfill \\   \Leftrightarrow y' = \dfrac{{ - \left( {\sqrt {{x^2} - x + 1} } ight)'}}{{{{\left( {\sqrt {{x^2} - x + 1} } ight)}^2}}} \hfill \\   \Leftrightarrow y' = \dfrac{{ - \dfrac{{2x - 1}}{{2\sqrt {{x^2} - x + 1} }}}}{{{x^2} - x + 1}} \hfill \\   \Leftrightarrow y' = \dfrac{{ - 2x + 1}}{{2\sqrt {{x^2} - x + 1} \left( {{x^2} - x + 1} ight)}} \hfill \\ \end{matrix}

  • Câu 6: Nhận biết

    Một vật chuyển động có phương trình s(t)
= 3cost. Khi đó, vận tốc tức thời tại thời điểm t của vật là:

    Ta có v(t) = s'(t) = (3cost)^{'}
= - 3sint.

  • Câu 7: Nhận biết

    Tính đạo hàm của hàm số y = \frac{1}{6}.x^{6} - \frac{1}{4}.x^{4} + a^{3}
+ b với a;b là hằng số)?

    Ta có:

    y = \frac{1}{6}.x^{6} -
\frac{1}{4}.x^{4} + a^{3} + b

    \Rightarrow y' = 6.\frac{1}{6}.x^{6
- 1} - 4.\frac{1}{4}.x^{4 - 1} + 0 + 0

    \Rightarrow y' = x^{5} -
x^{3}

  • Câu 8: Vận dụng

    Cho hàm số y = f(x) liên tục trên \mathbb{R},f^{'}(x) =
0 có đúng hai nghiệm x = 1;x =
2. Hàm số g(x) = f\left( x^{2} + 2x
- m ight), có bao nhiêu giá trị nguyên của m \in \lbrack - 20;20brack để phương trình g^{'}(x) = 0 có nhiều nghiệm nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R},f^{'}(x) =
0 có đúng hai nghiệm x = 1;x =
2. Hàm số g(x) = f\left( x^{2} + 2x
- m ight), có bao nhiêu giá trị nguyên của m \in \lbrack - 20;20brack để phương trình g^{'}(x) = 0 có nhiều nghiệm nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Thông hiểu

    Cho chuyển động thẳng xác định bởi phương trình s\left( t ight) = {t^3} - 3{t^2}, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Khẳng định nào sau đây là đúng?

     Ta có:

    v(t) = s’(t) = 3t2 − 6t => a(t) = v(t) = 6t – 6

    Tại t = 3, ta có: v(3) = 9 m/s

    Tại t = 4, ta có: a(4) = 18 m/s2

  • Câu 10: Nhận biết

    Một chất điểm chuyển động theo phương trình s(t) = t^{2}, trong đó t > 0, t tính bằng giây và s(t) tính bằng mét. Tính vận tốc của chất điểm tại thời điểm t = 2 giây.

    Ta tính được s'(t) = 2t

    Vận tốc của chất điểm v(t) = s'(t) =2t

    => v(2) = 2.2 = 4(m/s)

  • Câu 11: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} + 1\ \ khi\ x \geq 1 \\ax + b\ \ khi\ x < 1 \\\end{matrix} ight. có đạo hàm tại điểm x = 1 (với a,b\mathbb{\in R}). Giá trị của biểu thức P = 2a - 5b bằng bao nhiêu?

    Hàm số có đạo hàm tại x = 1 khi hai điều sau xảy ra:

    Hàm số phải liên tục tại điểm x = 1:

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{xightarrow 1^{-}}f(x) = f(1)

    \Rightarrow a + b = 2

    \lim_{x ightarrow 1}\frac{f(x) -f(1)}{x - 1} = f'(1)

    \Leftrightarrow f'\left( 1^{+}ight) = f'\left( 1^{-} ight)

    \Leftrightarrow a = 3

    \Rightarrow b = - 1

    Vậy giá trị của biểu thức P = 2a - 5b =11

  • Câu 12: Thông hiểu

    Cho hàm số f(x)= \frac{x}{\sqrt{x+4}-2} với xeq 0 xác định và liên tục trên (-4;+\infty). Tính f(0).

    Do hàm số xác định và liên tục trên (-4;+\infty)

    => Hàm số liên tục tại x= 0

    => \mathop {\lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( x ight) = \mathop {\lim }\limits_{x \to 0} \dfrac{x}{{\sqrt {x + 4}  - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{x\left( {\sqrt {x + 4}  + 2} ight)}}{{\left( {\sqrt {x + 4}  - 2} ight)\left( {\sqrt {x + 4}  + 2} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{x\left( {\sqrt {x + 4}  + 2} ight)}}{x} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \left( {\sqrt {x + 4}  + 2} ight) = 4 \hfill \\  \mathop { \Rightarrow \lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight) = 4 \hfill \\ \end{matrix}

  • Câu 13: Thông hiểu

    Đạo hàm của hàm số f(t)=\frac{t+\tan t}{t-1} bằng biểu thức nào sau đây?

    Ta có:

    \begin{matrix}  f(t) = \dfrac{{t + \tan t}}{{t - 1}} \hfill \\   \Rightarrow f\prime (t) = \left( {\dfrac{{t + \tan t}}{{t - 1}}} ight)\prime  \hfill \\   \Leftrightarrow f\prime (t) = \dfrac{{\left( {t + \tan t} ight)'\left( {t - 1} ight) - \left( {t - 1} ight)'\left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\   \Leftrightarrow f'(t) = \dfrac{{\left( {1 + \dfrac{1}{{{{\cos }^2}t}}} ight).\left( {t - 1} ight) - \left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\   \Leftrightarrow f'(t) = \dfrac{{\left( {1 + 1 + {{\tan }^2}t} ight).\left( {t - 1} ight) - \left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\   \Leftrightarrow f'(t) = \dfrac{{\left( {2 + {{\tan }^2}t} ight).\left( {t - 1} ight) - \left( {t + \tan t} ight)}}{{{{\left( {t - 1} ight)}^2}}} \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu

    Cho hàm số y =
f(x) = \left\{ \begin{matrix}
x^{2} + 1\ \ \ ;\ x \geq 1 \\
2x\ \ \ \ \ \ \ \ ;\ x < 1 \\
\end{matrix} ight.. Mệnh đề nào dưới đây là mệnh đề sai?

    Ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ - }} \frac{{f\left( x ight) - f\left( 1 ight)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{2x - 2}}{{x - 1}} = 2 \hfill \\
  \mathop {\lim }\limits_{x \to 1 + } \frac{{f\left( x ight) - f\left( 1 ight)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 1 - 2}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} ight) = 2 \hfill \\ 
\end{gathered}  ight.

    Vậy f'\left( 1^{-} ight) =
f'\left( 1^{+} ight) = f'(1) = 2

    Suy ra hàm số có đạo hàm tại x_{0} =
1

    Vậy mệnh đề sai là: ∄f'(1)

  • Câu 15: Nhận biết

    Cho hàm số y =
x^{2} - x + 2. Tính y'(1)?

    Ta có: y = x^{2} - x + 2

    \Rightarrow y' = 2x - 1

    \Rightarrow y'(1) = 2.1 - 1 =
1

  • Câu 16: Vận dụng

    Cho hàm số f(x)=x^{4}-4x^{2}+3 và g(x)=3+10x-7x^{2}. Nghiệm của phương trình f''(x)+g'(x) =0 là:

     Ta có:

    \begin{matrix}  f'\left( x ight) = 4{x^3} - 8x \hfill \\   \Rightarrow f''\left( x ight) = 12{x^2} - 8 \hfill \\  g'\left( x ight) =  - 14x + 10 \hfill \\ \end{matrix}

    Xét phương trình:

    \begin{matrix}  f''(x) + g'(x) = 0 \hfill \\   \Rightarrow 12{x^2} - 8 - 14x + 10 = 0 \hfill \\   \Leftrightarrow 12{x^2} - 14x + 2 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = \dfrac{1}{6}} \end{array}\left( {tm} ight)} ight. \hfill \\ \end{matrix}

  • Câu 17: Thông hiểu

    Cho hàm số xác định bởi công thức f(x) = \sqrt{- 5x^{2} + 14x - 9}. Tìm tập hợp các giá trị của x để f'(x) < 0?

    Tập xác định D = \left\lbrack
1;\frac{9}{5} ightbrack

    Ta có:

    f(x) = \sqrt{- 5x^{2} + 14x -
9}

    \Rightarrow f'(x) = \frac{- 5x +
7}{\sqrt{- 5x^{2} + 14x - 9}};\forall x \in \left( 1;\frac{9}{5}
ight)

    f'(x) < 0 \Leftrightarrow \frac{-
5x + 7}{\sqrt{- 5x^{2} + 14x - 9}} < 0

    \Leftrightarrow \left\{ \begin{gathered}
   - 5x + 7 < 0 \hfill \\
  1 < x < \frac{9}{4} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \frac{7}{5} < x < \frac{9}{5}

  • Câu 18: Vận dụng cao

    Cho hai hàm số f(x) =\frac{1}{x\sqrt{2}};g(x) = \frac{x^{2}}{\sqrt{2}}. Gọi d_{1};d_{2} lần lượt là tiếp tuyến của mỗi đồ thị hàm số f(x);g(x) đã cho tại giao điểm của chúng. Hỏi góc giữa hai tiếp tuyến trên bằng bao nhiêu?

    Xét phương trình hoành độ giao điểm:

    \frac{1}{x\sqrt{2}} =\frac{x^{2}}{\sqrt{2}} \Leftrightarrow x = 1

    Ta có: d_{1} có hệ số góc k_{1} = f'(1) = -\frac{1}{\sqrt{2}}

    d_{2} có hệ số góc k_{2} = g'(1) = \sqrt{2}

    => k_{1}.k_{2} = - 1 \Rightarrowd_{1}\bot d_{2}

  • Câu 19: Thông hiểu

    Tìm đạo hàm cấp hai của hàm số sau: y = {\left( {{x^2} + 1} ight)^3}

     Ta có: y = {\left( {{x^2} + 1} ight)^3} = {x^6} + 3{x^4} + 3{x^2} + 1

    \begin{matrix}   \Rightarrow y' = 6{x^5} + 12{x^3} + 6x \hfill \\   =  > y'' = \left( {y'} ight)' = \left( {6{x^5} + 12{x^3} + 6x} ight)' = 30{x^4} + 36{x^2} + 6 \hfill \\ \end{matrix}

  • Câu 20: Nhận biết

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Đáp án là:

    Cho f(x) = (x -
3)^{6} . Khi đó f''(2)
= 30

    Ta có:

    f(x) = (x - 3)^{6}

    \Rightarrow f'(x) = 6(x -
3)^{5}

    \Rightarrow f''(x) = 6.5.(x -
3)^{4} = 30(x - 3)^{4}

    \Rightarrow f''(2) = 30.(2 -
3)^{4} = 30

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo