Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I, cạnh a, góc BAD bằng 600, SA = SB = SD =
. Gọi α là góc giữa đường thẳng SD và mặt phẳng (SBC). Giá trị sin α bằng:
Hình vẽ minh họa:
Theo giả thiết, ABD là tam giác đều.
Gọi H là tâm đường tròn ngoại tiếp tam giác ABD.
Do SA = SB = SD nên S nằm trên trục của đường tròn ngoại tiếp tam giác ABD suy ra SH ⊥ (ABD) hay SH ⊥ (ABCD).
Do (SBC) ⊥ (SBH) nên từ H kẻ HK ⊥ SB tại K thì HK = d(H, (SBC)) và
=>
Mặt khác d(H, (SBC)) = 2/3d(A, (SBC)) = 2/3d(D, (SBC)) => d(D, (SBC)) =
Gọi O là hình chiếu vuông góc của điểm D trên (SBC).
Khi đó:
Xét tam giác SDO vuông tại O có:


