Cho hình chóp O.ABC có OA = OB = OC = 1, các cạnh OB, OC, OA đối một vuông góc. Gọi M là trung điểm của AB. Tính góc giữa hai vecto
?

Ta có:
Cho hình chóp O.ABC có OA = OB = OC = 1, các cạnh OB, OC, OA đối một vuông góc. Gọi M là trung điểm của AB. Tính góc giữa hai vecto
?

Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên của hình chóp bằng nhau và bằng 2a. Tính khoảng cách d từ A đến mặt phẳng (SCD)
Hình vẽ minh họa

Gọi O là tâm hình vuông ABCD =>
Vì nên
Gọi H là trung điểm của CD =>
Gọi K là hình chiếu của O trên SH =>
Ta có:
Từ (*) và (**)
Ta lại có:
Cho tứ diện
có
đôi một vuông góc với nhau. Đường thẳng nào sau đây vuông góc với
?
Hình vẽ minh họa
Ta có:
Cho hình chóp
có đáy là tam giác vuông cân tại
. Tam giác
là tam giác đều cạnh
và nằm trong mặt phẳng vuông góc với mặt đáy. Tính
?
Hình vẽ minh họa
Gọi H là trung điểm của . Suy ra
Kẻ
Ta có:
Từ (1) và (2) suy ra HK là đoạn vuông góc chung của SA và BC
Do đó
Cho hình chóp S.ABCD có đáy là hình vuông tâm O, SA ⊥ (ABCD). Góc giữa hai mặt phẳng (SBD) và (ABCD) là:
Hình vẽ minh họa:
Ta có:
Hai mặt phẳng (ABCD) và (SBD) cắt nhau theo giao tuyến BD.
Lại có AO nằm trong (ABCD) và vuông góc với BD tại O
Mà SO nằm trong (SBD) và vuông góc với BD tại O.
=> Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng góc giữa hai đường thẳng OA và OS, tức là góc
Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình chữ nhật với AC =
và BC = . Tính khoảng cách giữa SD và BC.
Hình vẽ minh họa:
Theo giả thiết, suy ra AD là hình chiếu vuông góc của SD lên mặt phẳng (ABCD) và CD ⊥ AD (do ABCD là hình chữ nhật), nên theo định lý ba đường vuông góc suy ra CD ⊥ SD. Vì CD cũng vuông góc với BC nên CD là đoạn vuông góc chung của SD và BC.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a,
, SA vuông góc với mặt phẳng đáy và SA = 2a. Góc giữa hai đường thẳng SC và BD nằm trong khoảng nào?

Gọi O là giao điểm của AC và BD và M là trung điểm của SA.
Trong hình chữ nhật ABCD ta có
Xét tam giác MAB vuông tại A, ta có:
Xét tam giác MAO vuông tại O, ta có:
Do MO // SC nên góc giữa hai đường thẳng SC và BD là góc giữa hai đường thẳng MO và BD.
Áp dụng định lý cosin vào tam giác MOB ta có
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:
Hình vẽ minh họa:
Theo bài ta có AB là hình chiếu của SB trên (ABC)
Vậy
Mà ∆SBA vuông cân tại A nên
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:
Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”
Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB
Mặt khác AB ⊥ AD.
Từ đó suy ra AB ⊥ (SDA)
Cho hình chóp
có đáy
là hình thoi tâm
, cạnh bên
vuông góc với mặt phẳng đáy. Gọi
là góc giữa đường thẳng
với mặt phẳng đáy. Khi đó:
Hình vẽ minh họa
Ta có: suy ra OD là hình chiếu vuông góc của SD lên mặt phẳng (ABCD)
Suy ra
Vậy
Cho một khối trụ có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối trụ là:
Cho S.ABCD là hình chóp có đáy là hình chữ nhật.
. Gọi K nằm trên cạnh BC sao cho KC = 2KB, Q nằm trên cạnh CD sao cho QD = 3QC và M là trung điểm của cạnh SD. Biết
và
. Tính cosin góc giữa KM và SQ.
Gọi N là trung điểm AD. Như vậy MN là đường trung bình của tam giác SAD nên MB // SA.
Vậy
Ta có:
Suy ra
Xét tam giác MNK vuông tại N (do ) ta có:
Lại có
Xét tam giác SAQ vuông tại A nên
Ta có
Khi đó
Vậy
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác vuông cân tại B với trọng tâm G. Cạnh bên SA tạo với đáy (ABC) một góc 300. Biết hai mặt phẳng (SBG) và (SCG) cùng vuông góc với mặt phẳng (ABC). Tính cosin của góc giữa hai đường thẳng SA và BC.
Hình vẽ minh họa:
Ta có:
Gọi O, N lần lượt là trung điểm của AC và BC.
Gọi D là điểm đối xứng của B qua O. Khi đó ABCD là hình vuông.
Vì BC // AD nên (SA, BC) = (SA, AD).
Gọi ϕ là góc giữa hai đường thẳng SA và AD.
Đặt AB = BC = x => AD = x
Ta có:
Góc giữa SA và mặt đáy (ABC) là
Ta có:
Ta có:
Áp dụng hệ quả của định lí cosin trong tam giác SAD ta có:
Cho hình chóp S.ABC có SA = SB = SC;
. Hãy xác định góc giữa cặp vecto
?
Hình vẽ minh họa:

Ta có:
Mà SA = SB = SC và
=>
Cho hình lập phương
. Góc giữa hai đường thẳng
và
bằng:
Hình vẽ minh họa
Ta có: nên góc giữa hai đường thẳng
và
bằng góc giữa hai đường thẳng
và
và bằng góc
Mà tam giác ACD’ là tam giác đều nên
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OB = OC = a. Tính khoảng cách giữa hai đường thẳng OA và BC.
Hình vẽ minh họa:
Gọi M là trung điểm CB, ta có: OM ⊥ BC.
Mặt khác vì OA, OB, OC đôi một vuông góc nên OA ⊥ (OBC)
=> OA ⊥ OM. Do đó khoảng cách giữa OA và BC là OM.
Ta có:
Tính thể tích khối lăng trụ đứng tam giác trong hình vẽ sau:

Quan sát hình vẽ ta thấy:
Tam giác ABC vuông cân tại B
Khi đó
Cho hình tứ diện OABC có OA, OB, OC đôi một vuông góc. Gọi I là hình chiếu của điểm O trên mặt phẳng (ABC). Điểm I là:
Ta có:
Chứng minh tương tự ta được:
Vậy I là trực tâm của tam giác ABC.
Cho hình chóp
có đáy
là tam giác vuông cân tại
và
. Biết
và
. Góc nhị diện
có số đo bằng:
Hình vẽ minh họa
Kẻ tại
là trung điểm của
và
.
Ta có
.
Suy ra góc giữa và
bằng góc
.
Ta có:
Suy ra góc nhị diện có số đo bằng
.