Cho hình lập phương
. Góc giữa hai đường thẳng
và
bằng:
Hình vẽ minh họa
Ta có: là hình lập phương nên các tứ giác
đều là hình vuông
Do đó
Suy ra
Cho hình lập phương
. Góc giữa hai đường thẳng
và
bằng:
Hình vẽ minh họa
Ta có: là hình lập phương nên các tứ giác
đều là hình vuông
Do đó
Suy ra
Cho hình chóp
có
. Kết luận nào sau đây sai về góc giữa
và ![]()
Vì nên AB là hình chiếu của SB trên (ABC)
Vậy .
Cho hình chóp đều, các cạnh bên có độ dài bằng
và tạo với đáy một góc
. Tính chu vi đáy P của hình chóp đó.
Hình vẽ minh họa
Kẻ
H là tâm đường tròn ngoại tiếp đồng thời là trọng tâm tam giác ABC
Ta có:
Gọi M là trung điểm của BC
Gọi
Vì M là trung điểm của BC nên
Chu vi đáy ABC bằng
Cho hình chóp S.ABC có đáy ABC là tam giác nhọn, SA = SB = SC. Gọi I là hình chiếu vuông góc của S trên mặt phẳng đáy. Khi đó:
Hình vẽ minh họa:

Ta có I là hình chiếu vuông góc của S trên mặt phẳng (ABC)
Tam giác SAI vuông tại I
=> SA2 = AI2 + SI2
Tam giác SBI vuông tại I
=> SB2 = BI2 + SI2
Tam giác SCI vuông tại I
=> SC2 = CI2 + SI2
Kết hợp với điều kiện: SA = SB = SC
=> I là tâm đường tròn ngoại tiếp tam giác ABC.
Cho khối chóp S.ABCD có đáy là hình bình hành, AB = 3, AD = 4,
. Cạnh bên
vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm các cạnh SA, AD và BC, α là góc giữa hai mặt phẳng (SAC) và (MNP). Chọn khẳng định đúng trong các khẳng định sau đây.
Hình vẽ minh họa:
Ta có:
=>
Gọi H là hình chiếu vuông góc của A xuống (SCD), K là hình chiếu của H xuống SC
=>
Ta có:
Cho hình chóp
, có đáy
là hình thang vuông tại
và
. Biết
. Xác định kết luận sai?
Hình vẽ minh họa
Gọi M là trung điểm của AB. Ta có:
Suy ra tam giác ACB vuông tại C.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA =
. Khoảng cách giữa hai đường thẳng SB và CD là:
Hình vẽ minh họa:
Ta có:
BC ⊥ AB
BC ⊥ SA
=> BC ⊥ (SAB).
Vì SB ⊂ (SAB) và CD // (SAB) => d(SB, CD) = d(CD, (SAB)) = d(C, (SAB)) = BC = a
Cho hình lăng trụ tam giác
có tất cả các cạnh bằng nhau. Hãy tính số đo góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có: Tam giác là tam giác đều suy ra
Lại có
.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy
Ta có:
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên bằng
. Tính khoảng cách d từ đỉnh A đến mặt phẳng (SBC)
Hình vẽ minh họa

Giả sử O là tâm của tam giác đều ABC
Do S.ABC đều nên =>
Gọi E là trung điểm của BC ta có:
Xét (SAE) kẻ
Ta có:
Ta có:
Xét tam giác vuông SOE ta có:
Chỉ ra mệnh đề sai trong các mệnh đề dưới đây.
Mệnh đề sai: “Qua một điểm O cho trước có một và chỉ một đường thẳng vuông góc với một đường thẳng cho trước.”
Vì qua một điểm O cho trước có vô số đường thẳng vuông góc với một đường thẳng cho trước.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Gọi α là số đo của góc giữa đường thẳng SA và mặt phẳng (ABC). Tính tan α.

Hình chiếu của SA lên mặt phẳng (ABC) là AH
=> Góc giữa SA và mặt phẳng (ABC) là
Tam giác ABC và SBC là các tam giác đều cùng cạnh a
Vậy tan α = 1
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có
.Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ D đến mặt phẳng (SBC)
Hình vẽ minh họa

Ta có: AD // BC =>
Gọi H là hình chiếu vuông góc của A lên SB =>
Ta có:
Từ (*) và (**) =>
Công thức tính thể tích khối lăng trụ có diện tích đáy
và chiều cao
là:
Thể tích khối lăng trụ có diện tích đáy và chiều cao
là:
Cho hình chóp S.ABC có SA = SB = SC;
. Hãy xác định góc giữa cặp vecto
?
Hình vẽ minh họa:

Ta có:
Mà SA = SB = SC và
=>
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?
Hình vẽ minh họa:
Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).
Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.
Cho hình chóp
có đáy là tam giác đều cạnh bằng
;
. Xác định thể tích hình chóp
?
Ta có nên SC là đường cao của hình chóp
Tam giác ABC đều cạnh x nên
Vậy thể tích hình chóp là:
Tính thể tích khối lăng trụ trong hình vẽ sau, biết
.

Quan sát hình vẽ ta thấy
Tam giác đều có cạnh bằng a nên
Do khối lăng trụ là lăng trụ đứng nên đường cao của lăng trụ là
Thể tích khối lăng trụ là
Cho tứ diện đều ABCD có M là trung điểm của cạnh CD, gọi
là góc giữa hai đường thẳng AM và BC. Giá trị
bằng:

Giả sử cạnh của tứ diện đều bằng a
Vì M là trung điểm của CD. Nên AM là đường cao trong tam giác ACD đều.
=>
Ta có:
=>
=>
Tìm mệnh đề đúng trong các mệnh đề sau:
Đáp án đúng: “Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”