Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho tứ diện đều ABCD, M là trung điểm của AB. Gọi α là góc giữa hai đường thẳng CM và DM. Tính giá trị của cos α?

    Gọi a là độ dài cạnh của tứ diện đều. Khi đó:

    CD = a;MC = MD = \frac{{a\sqrt 3 }}{2}

    Ta có hình vẽ minh họa:

    Tính cosin góc giữa hai đường thẳng

    Áp dụng định lí cosin vào tam giác CMD ta được:

    \begin{matrix}  \cos \widehat {CMD} = \dfrac{{M{C^2} + M{D^2} - C{D^2}}}{{2MC.MD}} \hfill \\   = \dfrac{{\dfrac{{3{a^2}}}{2} - {a^2}}}{{\dfrac{{3{a^2}}}{2}}} = \dfrac{{\dfrac{{{a^2}}}{2}}}{{\dfrac{{3{a^2}}}{2}}} = \dfrac{1}{3} \hfill \\   \Rightarrow \cos \alpha  = \dfrac{1}{3} \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SA =
2a;SA\bot(ABCD). Xác định độ lớn khoảng cách từ điểm A đến mặt phẳng (SBD)?

    Hình vẽ minh họa

    Gọi O = AC \cap BD

    Kẻ AK\bot SO;(K \in SO)(1)

    Ta có:

    SA\bot(ABCD) \Rightarrow SA\bot
BD(*)

    AC\bot DB(**)

    Từ (*) và (**) suy ra DB\bot(SAC)
\Rightarrow BC\bot AK(2)

    Từ (1) và (2) suy ra AK\bot(SBD)
\Rightarrow d\left( A;(SBD) ight) = AK

    Xét tam giác SAO vuông tại A ta có: \frac{1}{AK^{2}} = \frac{1}{AO^{2}} +
\frac{1}{SA^{2}} = \frac{9}{4a^{2}} \Rightarrow AK =
\frac{2a}{3}

    \Rightarrow d\left( A;(SBD) ight) =
\frac{2a}{3}

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Cạnh bên SA = a\sqrt{3} và vuông góc với mặt đáy (ABC). Gọi ϕ là góc giữa hai mặt phẳng (SBC) và (ABC). Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa:

    Gọi M là trung điểm của BC => AM ⊥ BC.

    Ta có:

    \left\{ \begin{matrix}
AM\bot BC \\
BC\bot SA \\
\end{matrix} \Rightarrow ight.\ BC\bot(SAM) \Rightarrow BC\bot
SM

    Do đó ((SBC),(ABC)) = (SM, AM) = \widehat{SMA}

    Tam giác ABC đều cạnh a, suy ra trung tuyến AM = \frac{a\sqrt{3}}{2}.

    Tam giác vuông SAM ta có: \sin\widehat{SMA} = \frac{SA}{SM} =
\frac{SA}{\sqrt{SA^{2} + AM^{2}}} = \frac{2\sqrt{5}}{5}

  • Câu 4: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.

    Hình vẽ minh họa:

    Ta có:

    SA ⊥ BC

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC

  • Câu 5: Nhận biết

    Công thức tính thể tích V của khối nón có bán kính r và chiều cao h là:

    Công thức tính thể tích là: V =
\frac{1}{3}\pi r^{2}h

  • Câu 6: Nhận biết

    Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:

    Do ∆BCD là tam giác đều cạnh \sqrt{18} nên có diện tích là S_{BCD} = \frac{18\sqrt{3}}{4} =
\frac{9\sqrt{3}}{2}

  • Câu 7: Nhận biết

    Cho hình chóp S.ABC có AB = AC, \widehat {SAB} = \widehat {SAC}. Tính số đo góc giữa hai đường thẳng SA và BC.

    Ta có:

    \begin{matrix}  \overrightarrow {AS} .\overrightarrow {BC}  = \overrightarrow {AS} .\left( {\overrightarrow {AC}  - \overrightarrow {AB} } ight) \hfill \\   = \overrightarrow {AC} .\overrightarrow {AS}  - \overrightarrow {AB} .\overrightarrow {AS}  \hfill \\   = AC.AS.\cos \widehat {SAC} - AB.AS.\cos \widehat {SAB} \hfill \\   = 0 \hfill \\ \end{matrix}

    AB = AC,\widehat {SAB} = \widehat {SAC}

    => Góc giữa hai đường thẳng SA, BC là: 900

  • Câu 8: Nhận biết

    Cho tứ diện OABCOA;OB;OC đôi một vuông góc với nhau. Đường thẳng nào sau đây vuông góc với OA?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
OA\bot OB(gt) \\
OA\bot OC(gt) \\
\end{matrix} ight.\  \Rightarrow OA\bot(OBC) \Rightarrow OA\bot
BC

  • Câu 9: Thông hiểu

    Cho hình chóp tam giác S.ABCSA =
SB = SC = AB = aBC =
a\sqrt{2}. Tính cosin góc giữa hai đường thẳng ABSC.

    Hình vẽ minh họa

    Giả sử M, N, Q lần lượt là trung điểm các cạnh SA, SB, AC

    Mặt khác ta có: \left\{ \begin{matrix}
MN//AB \\
MQ//SC \\
\end{matrix} ight.\  \Rightarrow (AB;SC) = (MN;MQ)

    Ta có: AN =
\frac{a\sqrt{3}}{2}

    NC = \sqrt{\frac{SC^{2} + BC^{2}}{2} -\frac{SB^{2}}{4}}= \sqrt{\dfrac{a^{2} + 2a^{2}}{2} - \dfrac{a^{2}}{4}} =\dfrac{a\sqrt{5}}{2}

    Xét tam giác NAC có:

    NQ = \sqrt{\frac{NA^{2} + CN^{2}}{2} -\frac{AC^{2}}{4}}= \sqrt{\dfrac{\dfrac{3a^{2}}{4} + \dfrac{5a^{2}}{4}}{2}- \dfrac{a^{2}}{4}} = \dfrac{a\sqrt{3}}{2}

    Xét tam giác MNQ ta có:

    \cos\widehat{NMQ} = \frac{MN^{2} +MQ^{2} - NQ^{2}}{2MN.MQ}= \dfrac{\dfrac{a^{2}}{4} + \dfrac{a^{2}}{4} -\dfrac{3a^{2}}{4}}{2.\dfrac{a}{2}.\dfrac{a}{2}} = -\dfrac{1}{2}

    \Rightarrow \widehat{NMQ} = 120^{0}
\Rightarrow (MN,MQ) = 180^{0} - 120^{0} = 60^{0}

    \Rightarrow \cos(AB,SC) =
\frac{1}{2}

  • Câu 10: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều và H là trung điểm cạnh BC. Gọi O là trung điểm AH của tam giác ABC, SO\bot(ABCD). Gọi I là trung điểm cạnh OH. Gọi mặt phẳng (\alpha) qua I và vuông góc với OH. Thiết diện của (\alpha) với hình chóp S.ABC là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
(\alpha)\bot OH \\
BC\bot OH \\
\end{matrix} ight.\  \Rightarrow (\alpha)//BC

    => Qua I kẻ đường thẳng d_{1}//BC. Gọi \left\{ \begin{matrix}
d_{1} \cap AB = M \\
d_{1} \cap AC = N \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
SO\bot OH \\
(\alpha)\bot OH \\
\end{matrix} ight.\  \Rightarrow (\alpha)//SO=> Qua I kẻ đường thẳng IK//SO;(K \in SH)

    (\alpha)//BC => Qua K kẻ đường thẳng d_{2}//BC. Gọi \left\{ \begin{matrix}
d_{2} \cap SB = Q \\
d_{2} \cap SC = P \\
\end{matrix} ight.

    => thiết diện (\alpha) và hình chóp là tứ giác MNPQ có IK là đường trung trực của MN và PQ.

    => MNPQ là hình thang cân.

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 3a. Cạnh bên SA vuông góc với (ABCD), góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 30◦ . Tìm khoảng cách từ A đến mặt phẳng (SBC).

    Ta có:

    Gọi H là chân đường cao lên cạnh SB. Khi đó, ta có

    d(A, (SBC)) = AH. sin 30◦ => AH = AB . sin 30◦ = \frac{3a}{2}

  • Câu 12: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 5a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 5a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{5}{3}a^{3}

  • Câu 13: Thông hiểu

    Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Góc giữa SB và mặt phẳng (SCA) bằng 600. Gọi M là trung điểm của SB. Tính của góc giữa mặt phẳng (AMO) và mặt phẳng (SAB).

    Tính của góc giữa mặt phẳng (AMO) và mặt phẳng (SAB)

    Hình chóp S.ABCD đều, O là tâm của đáy nên SO \bot \left( {ABCD} ight);BD \bot \left( {SAC} ight)

    ABCD là hình vuông cạnh a nên AC = BD = a\sqrt 2 ;OB = \frac{1}{2}BD = \frac{{a\sqrt 2 }}{2}

    Ta có: \left( {SAB} ight) \cap \left( {AMO} ight) = AM

    Khi đó: \sin \varphi  = \frac{{d\left( {O;\left( {SAB} ight)} ight)}}{{d\left( {O;AM} ight)}} với \varphi là góc giữa hai mặt phẳng (AMO) và (SAB).

    Do BD \bot \left( {SAC} ight) suy ra góc giữa SB và (SAC) là góc giữa SB và SO và bằng góc \widehat {BSO} = {60^0}.

    Tam giác SBO vuông tại O nên ta có:

    \begin{matrix}  SO = \dfrac{{OB}}{{\tan {{60}^0}}} = \dfrac{{a\sqrt 2 }}{{2\sqrt 3 }} = \dfrac{{a\sqrt 6 }}{6} \hfill \\  SB = \dfrac{{OB}}{{\sin {{60}^0}}} = \dfrac{{a\sqrt 2 }}{{\sqrt 3 }} = \dfrac{{a\sqrt 6 }}{3} \hfill \\   \Rightarrow MB = \dfrac{{a\sqrt 6 }}{6} \hfill \\ \end{matrix}

    Gọi I là trung điểm của AB. Kẻ OH ⊥ SI (1)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {AB \bot OI} \\   {AB \bot SO} \end{array}} ight. \Rightarrow AB \bot \left( {SOI} ight) \Rightarrow OH \bot AB (2)

    Từ (1) và (2) suy ra OH \bot \left( {SAB} ight) \Rightarrow d\left( {O;\left( {SAB} ight)} ight) = OH

    Vì OI là đường trung bình của tam giác ABD nên OI = \frac{1}{2}AD = \frac{a}{2}

    Tam giác SOI vuông tại O, đường cao OH, có

    \frac{1}{{O{H^2}}} = \frac{1}{{O{I^2}}} + \frac{1}{{S{O^2}}} = \frac{{10}}{{{a^2}}} \Rightarrow OH = \frac{a}{{\sqrt {10} }}

    Áp dụng công thức tính độ dài đường trung tuyến trong các tam giác SAB và SBC, ta có:

    \begin{matrix}  A{M^2} = \dfrac{{2A{B^2} + 2S{A^2} - S{B^2}}}{4} = \dfrac{{2{a^2}}}{3} \Rightarrow AM = a\sqrt {\dfrac{2}{3}}  \hfill \\  C{M^2} = \dfrac{{2C{B^2} - 2C{S^2} - S{B^2}}}{4} = \dfrac{{2{a^2}}}{3} \Rightarrow CM = a\sqrt {\dfrac{2}{3}}  \hfill \\ \end{matrix}

    Trong tam giác AMC, có:

    \cos \widehat {CAM} = \frac{{A{M^2} + A{C^2} - M{C^2}}}{{2AMM.AC}} = \frac{{\sqrt 3 }}{2} \Rightarrow \widehat {CAM} = {30^0}

    \begin{matrix}  d\left( {O;AM} ight) = \dfrac{{d\left( {C;AM} ight)}}{2} \hfill \\   = \frac{1}{2}AC.\sin \widehat {CAM} = \dfrac{1}{2}AC.\sin {30^0} = \dfrac{{a\sqrt 2 }}{4} \hfill \\   \Rightarrow \sin \varphi  = \dfrac{{d\left( {O;\left( {SAB} ight)} ight)}}{{d\left( {O;AM} ight)}} = \dfrac{a}{{\sqrt {10} }}:\dfrac{{a\sqrt 2 }}{4} = \dfrac{2}{{\sqrt 5 }} \hfill \\ \end{matrix}

  • Câu 14: Vận dụng

    Cho tứ diện ABCD có AC = AD = BC = BD = a, (ACD) ⊥ (BCD) và (ABC) ⊥ (ABD). Tính độ dài cạnh CD.

    Gọi M, N lần lượt là trung điểm của CD, AB, ∆ACD và ∆BCD cân

    => AM ⊥ CD, BM ⊥ CD. Ta có:

    \left\{ \begin{matrix}(ACD)\  \cap \ (BCD) \\CD\bot AM \subset (ACD) \\CD\bot BM \subset (BCD) \\\end{matrix} ight.

    \Rightarrow \widehat{\left( (ACD);\(BCD) ight)} = \widehat{(AM;\ BM)} = 90^{0}

    => AM ⊥ BM

    Và ta dễ dàng chứng minh được ∆ACD = ∆BCD (c – c - c)

    => AM = BM => ∆ABM vuông cân tại M

    => MN ⊥ AB

    Đặt CD = x

    Áp dụng định lý Py-ta-go ta có:

    AM^{2} = a^{2} -\frac{x^{2}}{4}

    Xét ∆ABM vuông cân tại M

    \Rightarrow AB^{2} = 2AM^{2} = 2a^{2} -\frac{x^{2}}{2}

    \Rightarrow AN^{2} = \frac{1}{4}AB^{2} =\frac{a^{2}}{2} - \frac{x^{2}}{8}

    Áp dụng định lý Py-ta-go ta có:

    DN^{2} = AD^{2} - AN^{2}

    \Rightarrow DN^{2} = a^{2} -\frac{a^{2}}{2} + \frac{x^{2}}{8} = \frac{a^{2}}{2} +\frac{x^{2}}{8}

    Xét ∆CDN vuông cân tại N

    \Rightarrow CD^{2} = 2DN^{2} = a^{2} +\frac{x^{2}}{4}

    \Rightarrow a^{2} + \frac{x^{2}}{4} =x^{2} \Leftrightarrow x = \frac{2a\sqrt{3}}{3}

  • Câu 15: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:

    Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”

    Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB

    Mặt khác AB ⊥ AD.

    Từ đó suy ra AB ⊥ (SDA)

  • Câu 16: Vận dụng

    Cho hình lăng trụ ABC.A’B’C’ có AA' = \frac{{a\sqrt {10} }}{4}';AC = a\sqrt 2 ;BC = a;\widehat {ACB} = {135^0}$. Hình chiếu vuông góc của C’ lên mặt phẳng (ABC) trùng với trung điểm M của AB. Tính góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’)

    Góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’)

    Trong (ABC) kẻ MN \bot AC \Rightarrow AC \bot \left( {MNC'} ight) ( điểm N thuộc cạnh AC)

    Vậy NC’ là hinh chiếu của MC’ trên mp(ACC’A’)

    Góc giữa MC’ và mp(ACC’A’) là góc \widehat {MC'N}

    Ta có

    \begin{matrix}  A{B^2} = A{C^2} + B{C^2} - 2.AC.BC.\cos \widehat {ACB} = 5{a^2} \hfill \\   \Rightarrow AB = a\sqrt 5  \Rightarrow AM = \dfrac{{a\sqrt 5 }}{2} \hfill \\ \end{matrix}

    CM là đường trung tuyến của tam giác ABC, nên có

    C{M^2} = \frac{{C{A^2} + C{B^2}}}{2} - \frac{{A{B^2}}}{4} = \frac{{{a^2}}}{4} \Rightarrow CM = \frac{a}{2}

    Tam giác CMC’ vuông tại M, nên C'M = \sqrt {C{{C'}^2} - C{M^2}}  = \frac{{a\sqrt 6 }}{4}

    Diện tích {S_{\Delta AMC}} = \frac{1}{2}{S_{\Delta ABC}} = \frac{{{a^2}}}{4} = \frac{1}{2}MN \cdot AC \Rightarrow MN = \frac{a}{{2\sqrt 2 }}

    Xét tam giác vuông MC’N, có

    \tan \widehat {MC'N} = \frac{{MN}}{{MC'}} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {MC'N} = {30^o}

    Vậy góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’) là \widehat {MC'N} = {30^o}

  • Câu 17: Vận dụng

    Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. H là hình chiếu vuông góc của O trên mặt phẳng (ABC). Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa:

    Chọn khẳng định sai

    Ta có: OA ⊥ OB, OA ⊥ OC => OA ⊥ (OBC) => OA ⊥ BC (*)

    Gọi M là giao điểm của AH và BC

    Theo giả thiết ta có: OH ⊥ (ABC) => OH ⊥ BC (**)

    Từ (*) và (**) suy ra: BC ⊥ (AOM) => BC ⊥ OM

    Xét tam giác BOC vuông ta có:

    \frac{1}{{O{I^2}}} = \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}

    Xét tam giác AOI vuông ta có:

    \frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{M^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}

    Từ chứng minh trên ta có: BC ⊥ (AOM) => BC ⊥ AM (1)

    Gọi N là giao điểm của BH và AC. Chứng minh tương tự ta có: AC ⊥ BN (2)

    Từ (1) và (2) => H là trực tâm tam giác ABC

    Vậy 3O{H^2} = A{B^2} + A{C^2} + B{C^2} là kết quả sai.

  • Câu 18: Thông hiểu

    Cho khối lăng trụ tam giác đều ABC.A'B'C'AA' = 4a. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 30^{0}.

    Hình vẽ minh họa

    Gọi M là trung điểm của BC.

    Khi đó \left( (A'BC);(ABC) ight) =
\widehat{A'MA} = 30^{0}

    Trong tam giác vuông A’MA có:

    \tan\widehat{A'MA} =
\frac{A'A}{AM} \Rightarrow AM = \frac{A'A}{tan30^{0}} =
4\sqrt{3}a

    Tam giác ABC đều nên AM =
\frac{AB\sqrt{3}}{2} \Rightarrow AB = 8a

    Vậy thể tích khối lăng trụ là: V =
S_{ABC}.AA' = \frac{(8a)^{2}\sqrt{3}}{4} =
64\sqrt{3}a^{3}

  • Câu 19: Vận dụng cao

    Cho hình chóp S.ABC có tam giác ABC vuông tại B và \widehat{ACB} = 30^{0}. Tam giác SAC là tam giác đều và thuộc mặt phẳng vuông góc với (ABC). Xét điểm M thuộc cạnh SC sao cho mặt phẳng (MAB) tạo với hai mặt phẳng (SAB); (ABC) góc bằng nhau. Tỉ số\frac{MS}{MC} có giá trị bằng:

    Gọi H là trung điểm của AC, suy ra SH ⊥ (ABC).

    Gọi N là trung điểm của AB, suy ra AB ⊥ (SHN).

    Lấy K là giao điểm của AM, SH. Do đó \left\{ \begin{matrix}
\left( (ABM),(ABC) ight) = \widehat{HNK} \\
\ \left( (ABM),(SAB) ight) = \widehat{KNS} \\
\end{matrix} ight.

    Theo giả thiết, NK là phân giác của góc \widehat{SNH}

    Giả sử: AB = 1 \Rightarrow BC = \sqrt{3}
\Rightarrow AC = 2 \Rightarrow SH = \sqrt{3}

    Mặt khác: SN = \sqrt{HN^{2} + SH^{2}} =
\frac{\sqrt{15}}{2}

    \Rightarrow \frac{KH}{KS} = \frac{HN}{SN}
= \frac{\sqrt{5}}{5} (tính chất phân giác).

    Gọi E là trung điểm của CM, theo định lí Ta-lét thì:

    \frac{KH}{KS} = \frac{ME}{MS} =
\frac{1}{\sqrt{5}}

    \Rightarrow \frac{MC}{MS} =
\frac{2ME}{MS} = \frac{2}{\sqrt{5}}

    \Rightarrow \frac{MC}{MS} =
\frac{2}{\sqrt{5}}

    Vậy \frac{MS}{MC} =
\frac{\sqrt{5}}{2}

  • Câu 20: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và SA vuông góc với mặt phẳng đáy. Gọi \alpha = \left( SD;(ABCD) ight). Xác định \alpha?

    Hình vẽ minh họa

    Ta có: Hình chiếu của SD lên mặt phẳng (ABCD) là AD nên góc giữa SD và mặt phẳng đáy là góc \widehat{SDA}

    \Rightarrow \alpha =
\widehat{SDA}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 68 lượt xem
Sắp xếp theo