Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho tứ diện ABCD có AC = AD = BC = BD = a, (ACD) ⊥ (BCD) và (ABC) ⊥ (ABD). Tính độ dài cạnh CD.

    Gọi M, N lần lượt là trung điểm của CD, AB, ∆ACD và ∆BCD cân

    => AM ⊥ CD, BM ⊥ CD. Ta có:

    \left\{ \begin{matrix}(ACD)\  \cap \ (BCD) \\CD\bot AM \subset (ACD) \\CD\bot BM \subset (BCD) \\\end{matrix} ight.

    \Rightarrow \widehat{\left( (ACD);\(BCD) ight)} = \widehat{(AM;\ BM)} = 90^{0}

    => AM ⊥ BM

    Và ta dễ dàng chứng minh được ∆ACD = ∆BCD (c – c - c)

    => AM = BM => ∆ABM vuông cân tại M

    => MN ⊥ AB

    Đặt CD = x

    Áp dụng định lý Py-ta-go ta có:

    AM^{2} = a^{2} -\frac{x^{2}}{4}

    Xét ∆ABM vuông cân tại M

    \Rightarrow AB^{2} = 2AM^{2} = 2a^{2} -\frac{x^{2}}{2}

    \Rightarrow AN^{2} = \frac{1}{4}AB^{2} =\frac{a^{2}}{2} - \frac{x^{2}}{8}

    Áp dụng định lý Py-ta-go ta có:

    DN^{2} = AD^{2} - AN^{2}

    \Rightarrow DN^{2} = a^{2} -\frac{a^{2}}{2} + \frac{x^{2}}{8} = \frac{a^{2}}{2} +\frac{x^{2}}{8}

    Xét ∆CDN vuông cân tại N

    \Rightarrow CD^{2} = 2DN^{2} = a^{2} +\frac{x^{2}}{4}

    \Rightarrow a^{2} + \frac{x^{2}}{4} =x^{2} \Leftrightarrow x = \frac{2a\sqrt{3}}{3}

  • Câu 2: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC), H là chân đường cao kẻ từ A của tam giác SAB. Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa:

    Ta có: SA ⊥ (ABC) mà BC thuộc (ABC)

    => SA ⊥ BC

    Xét tam giác ABC vuông tại B ta có:

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Khi đó: AH ⊥ SB, AH ⊥ BC => AH ⊥ (SBC) => AH ⊥ SC

    Nếu có: AH ⊥ AC trong khi SA ⊥ AC thì AC ⊥ (SAB)

    => AC ⊥ AB (vô lí)

  • Câu 3: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 7a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 7a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{7}{3}a^{3}

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy, I là trung điểm của AC, H là hình chiếu của I trên SC. Kí hiệu d(a, b) là khoảng cách giữa hai đường thẳng a và b. Khẳng định nào sau đây là đúng?

    Hình vẽ minh họa:

    Ta có:

    \left\{ \begin{matrix}
SA\bot BC \\
AB\bot SA \\
AB\bot BC \\
\end{matrix} ight. => d(SA, BC) = AB

  • Câu 5: Nhận biết

    Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa

    Hình vẽ minh họa:

    Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

    Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.

  • Câu 6: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I, cạnh a, \widehat{BAD} = 60^{0};SA = SB = SD =
\frac{a\sqrt{3}}{2}. Gọi ϕ là góc giữa hai mặt phẳng (SBD) và (ABCD). Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa:

    Từ giả thiết suy ra tam giác ABD đều cạnh a.

    Gọi H là hình chiếu của S trên mặt phẳng (ABCD).

    Do SA = SB = SD nên suy ra H cách đều các đỉnh của tam giác ABD hay H là tâm của tam giác đều ABD.

    Suy ra:

    \begin{matrix}HI = \dfrac{AI}{3} = \dfrac{a\sqrt{3}}{6} \hfill\\SH = \sqrt{SA^{2} - AH^{2}} = \dfrac{a\sqrt{15}}{6}\hfill \\\end{matrix}

    Vì ABCD là hình thoi nên HI ⊥ BD.

    Tam giác SBD cân tại S nên SI ⊥ BD

    => ((SBD), (ABCD)) = (SI, AI) = \widehat{SIH}

    Trong tam vuông SHI ta có: \tan\widehat{SIH} = \frac{SH}{HI} =
\sqrt{5}

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 2. Đường thẳng SO vuông góc với mặt phẳng đáy (ABCD) và SO=\sqrt{3}. Tính khoảng cách d giữa hai đường thẳng SA và BD.

    Hình vẽ minh họa:

    Tính khoảng cách d giữa hai đường thẳng SA và BD

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {BD \bot AC} \\   {BD \bot SO} \end{array} \Rightarrow BD \bot \left( {SAC} ight)} ight.

    Trong (SAC) kẻ OK⊥SA(1) ta có:

    OK⊂(SAC)⇒OK⊥BD(2) 

    Từ (1) và (2) ta có OK là đường vuông góc chung của SA và BD

    Khi đó d(SA;BD)=OK

    \begin{matrix}  OK = \dfrac{{SO.OA}}{{\sqrt {S{O^2} + O{A^2}} }} \hfill \\   = \dfrac{{\sqrt 3 .\dfrac{{2\sqrt 2 }}{2}}}{{\sqrt {{{\left( {\sqrt 3 } ight)}^2} + {{\left( {\dfrac{{2\sqrt 2 }}{2}} ight)}^2}} }} = \dfrac{{\sqrt {30} }}{5} \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng BD và A’C’ bằng:

    Do BD và A’C’ lần lượt nằm trên hai mặt phẳng (ABCD) và (A’B’C’D’) song song với nhau nên d(A’C’, BD) = d((ABCD),(A’B’C’D’)).

    Mà ABCD.A’B’C’D’ là hình lập phương nên ta có d((ABCD), (A’B’C’D’)) = AA’ = a. Vậy d(A’C’, BD) = a.

  • Câu 9: Thông hiểu

    Cho tứ diện ABCD có AB vuông góc với CD. Mặt phẳng (P) song song với AB và CD lần lượt cắt BC, DB, AD, AC tại M, N, P, Q. Tứ giác MNPQ là hình gì?

    Hình vẽ minh họa:

    Ta có: (MNPQ) // AB; (MNPQ) ∩ (ABC) = MQ

    => MQ // AB

    Tương tự ta có: MN // CD; NP // AB; QP // CD

    Khi đó tứ giác MNPQ là hình bình hành

    Ta có: MN ⊥ MQ (Do AB ⊥ CD)

    Hay tứ giác MNPQ là hình chữ nhật.

  • Câu 10: Nhận biết

    Cho hình chóp S.ABC đáy là tam giác ABC cân tại A, SA vuông góc với đáy. Gọi Mlà trung điểm của BC, J là trung điểm của BM. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: BC\bot SA;\left( do\ SA\bot(ABC)
ight)

    Tam giác ABC cân tại A nên AM\bot
BC

    \Rightarrow BC\bot(SAM)

  • Câu 11: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 3a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 3a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= a^{3}

  • Câu 12: Thông hiểu

    Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng a và các góc phẳng đỉnh B đều bằng 600.

    Cặp đường thẳng nào sau đây không vuông góc với nhau?

    Hình ảnh minh họa

    Cặp đường thẳng nào sau đây không vuông góc với nhau

    Xét tam giác CB'D' có ba cạnh bằng a\sqrt 3 nên tam giác không vuông.

    => B’C và CD’ không vuông góc với nhau.

  • Câu 13: Nhận biết

    Cho hình chóp ABCD có đáy ABCD là hình thoi tâm O, cạnh bên SO vuông góc với mặt phẳng đáy. Gọi \alpha là góc giữa đường thẳng SD với mặt phẳng đáy. Khi đó:

    Hình vẽ minh họa

    Ta có: SO\bot(ABCD) suy ra OD là hình chiếu vuông góc của SD lên mặt phẳng (ABCD)

    Suy ra \widehat{\left( SD;(ABCD) ight)}
= \widehat{(SD;SO)} = \widehat{SDO}

    Vậy \alpha = \widehat{SDO}

  • Câu 14: Thông hiểu

    Cho tứ diện ABCD có độ dài các cạnh AB =
AC = AD = BC = BD = aCD =
a\sqrt{2}. Tính góc giữa hai đường thẳng AD và BC.

    Hình vẽ minh họa

    Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.

    Khi đó: KH//AD,KI//BC \Rightarrow (AD;BC)
= (KH;KI).

    Xét \Delta BIC,BI = \sqrt{BC^{2} -
AC^{2}} = \sqrt{a^{2} - \frac{a^{2}}{2}} =
\frac{a}{\sqrt{2}}.

    Ta có \left\{ \begin{matrix}
AB\bot DH \\
AB\bot HC \\
\end{matrix} \Rightarrow AB\bot(DHC) \Rightarrow AB\bot HI ight..

    Xét \Delta BIH,HI = \sqrt{IB^{2} -
HB^{2}} = \sqrt{\frac{a^{2}}{2} - \frac{a^{2}}{4}} =
\frac{a}{2}. (1)

    Xét \Delta IHK, ta có: \left\{ \begin{matrix}
IK = \frac{BC}{2} = \frac{a}{2} \\
HK = \frac{AD}{2} = \frac{a}{2} \\
\end{matrix} \Rightarrow IK = HK = \frac{a}{2} ight.. (2)

    Từ (1),(2) \Rightarrow HI = IK = HK
\Rightarrow \Delta IHK là tam giác đều

    \Rightarrow \widehat{IKH} = 60^{0} \Rightarrow
(KH;KI) = 60^{0}.

  • Câu 15: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = a\sqrt{3} chiếu vuông góc H của S trên mặt phẳng đáy trùng với trọng tâm tam giác ABC và SH = \frac{a}{2}. Gọi M và N lần lượt là trung điểm của các cạnh BC và SC. Gọi α là góc giữa đường thẳng MN với mặt phẳng (ABCD). Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa:

    Ta có: MN // SB

    => \left( MN,(ABCD)
ight) = \left( SB;(ABCD) ight)

    Do SH ⊥ (ABCD)

    \begin{matrix}
\Rightarrow \left( MN,(ABCD) ight) = \left( SB;(ABCD) ight) \\
= (SB;HB) = \widehat{SBH} \\
\end{matrix}

    Ta có: \left\{ \begin{matrix}BD = \sqrt{AB^{2} + AD^{2}} = 2a \\BH = \dfrac{BD}{3} = \dfrac{2a}{3} \\\end{matrix} ight.

    => \tan\widehat{SBH} = \frac{SH}{BH} =
\frac{3}{4}

  • Câu 16: Thông hiểu

    Cho khối lăng trụ đứng ABC.A'B'C', đáy ABCAB =
AC = a;\widehat{BAC} = 120^{0}. Tính thể tích của khối lăng trụ đã cho biết \left( (AB'C');(ABCD)
ight) = 60^{0}.

    Hình vẽ minh họa

    Gọi H là trung điểm của B’C’, khi đó góc giữa mặt phẳng (AB’C’) và (ABCD) là góc \widehat{AHA'} =
60^{0}

    Ta có:

    S_{ABC} = \frac{1}{2}AC.AB.sin120^{0} =
\frac{a^{2}\sqrt{3}}{4}

    B'C' = BC = \sqrt{AB^{2} +
AC^{2} - 2AB.AC.cos120^{0}}

    = \sqrt{a^{2} + a^{2} - 2.a.a.\left( -
\frac{1}{2} ight)} = a\sqrt{3}

    \Rightarrow AH' =
\frac{2S_{ABC}}{B'C'} = \frac{a}{2}

    \Rightarrow AA' = A'H.tan60^{0}
= \frac{a\sqrt{3}}{2}

    Vậy V = S_{ACB}.AA' =
\frac{3a^{3}}{8}

  • Câu 17: Vận dụng cao

    Cho khối chóp S.ABCD có đáy là hình bình hành, AB = 3, AD = 4, \widehat{BAD} = 120^{0}. Cạnh bên SA = 2\sqrt{3} vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm các cạnh SA, AD và BC, α là góc giữa hai mặt phẳng (SAC) và (MNP). Chọn khẳng định đúng trong các khẳng định sau đây.

    Hình vẽ minh họa:

    Ta có:

    \left\{ \begin{matrix}
MN//SD \\
NP//CD \\
\end{matrix} ight.\  \Rightarrow (MNP)//(SCD)

    => \widehat{\left( (SAC);(MNP)
ight)} = \widehat{\left( (SAC);(SCD) ight)} = \alpha

    Gọi H là hình chiếu vuông góc của A xuống (SCD), K là hình chiếu của H xuống SC

    => \alpha = \widehat{AKH}

    Ta có:

    \begin{matrix}V_{S.ACD} = \dfrac{1}{2}V_{S.ABCD}\hfill \\= \dfrac{1}{3}SA \cdot S_{ABCD} = \dfrac{1}{3}SA.2S_{ABD} \hfill\\= \dfrac{1}{3}SA.AB.AD.sin\widehat{BAD} \hfill\\= \dfrac{1}{3} \cdot \dfrac{1}{2} \cdot 3 \cdot 4 \cdot \sqrt{3} \cdot2\sqrt{3} = 6\ AC^{2} = 13 \hfill\\\end{matrix}

    \begin{matrix}\Rightarrow SC^{2} = SA^{2} + AC^{2} = 25 \hfill\\SD = \sqrt{SA^{2} + AD^{2}} = \sqrt{28}\hfill \\\Rightarrow S_{SCD} = \sqrt{p(p - a)(p - b)(p - c)} = \sqrt{54} =3\sqrt{6} \hfill\\\end{matrix}

    \begin{matrix}\Rightarrow AH = d(A;(CSD)) = \dfrac{3.V_{S.ACD}}{S_{SCD}} =\dfrac{3.6}{2\sqrt{6}} = \sqrt{6}\hfill \\AK = \dfrac{SA.AC}{\sqrt{SA^{2} + AC^{2}}} = \dfrac{2\sqrt{39}}{5}\hfill \\\sin\alpha = \dfrac{AH}{AK} = \sqrt{6}.\dfrac{5}{2\sqrt{39}} =\dfrac{5\sqrt{26}}{26} \Rightarrow \alpha \in \left( 60^{0};90^{0}ight) \hfill\\\end{matrix}

  • Câu 18: Nhận biết

    Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:

    Hình vẽ minh họa:

    Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)

    => Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là \widehat{BA'B'}

    Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’

    => \widehat{BA'B'} =45^{0}

  • Câu 19: Vận dụng

    Cho tứ diện đều ABCD có M là trung điểm của cạnh CD, gọi \varphi là góc giữa hai đường thẳng AM và BC. Giá trị \cos \varphi bằng:

    Tính cosin góc giữa hai đường thẳng

    Giả sử cạnh của tứ diện đều bằng a

    Vì M là trung điểm của CD. Nên AM là đường cao trong tam giác ACD đều.

    => AM = \frac{{a\sqrt 3 }}{2}

    Ta có:

    \begin{matrix}  \overrightarrow {CB} .\overrightarrow {AM}  = \overrightarrow {CB} .\left( {\overrightarrow {CM}  - \overrightarrow {CA} } ight) = \overrightarrow {CB} .\overrightarrow {CM}  - \overrightarrow {CB} .\overrightarrow {CA}  \hfill \\   = CB.CM.\cos \widehat {BCM} - CB.CA.\cos \widehat {ACB} \hfill \\   = a.\dfrac{a}{2}.\cos {60^o} - a.a.\cos {60^o} =  - \dfrac{{{a^2}}}{4} \hfill \\ \end{matrix}

    => \cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight) = \dfrac{{\overrightarrow {BC} .\overrightarrow {AM} }}{{\left| {\overrightarrow {BC} } ight|.\left| {\overrightarrow {AM} } ight|}} = \dfrac{{\dfrac{{ - {a^2}}}{4}}}{{a.\dfrac{{a\sqrt 3 }}{2}}} = \dfrac{{ - \sqrt 3 }}{6}

     

    => \cos \varphi  = \left| {\cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight)} ight| = \frac{{\sqrt 3 }}{6}

  • Câu 20: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sau đây sai?

    Mệnh đề “ Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau.”

    Là sai vì hai đường thẳng đó chưa chắc đồng phẳng.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 69 lượt xem
Sắp xếp theo