Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:

    Hình vẽ minh họa:

    Theo bài ta có AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB,(ABC) ight)} =\widehat{(SB,\ AB)} = \widehat{SBA}

    Mà ∆SBA vuông cân tại A nên \widehat{SBA}= 45^{0}

  • Câu 2: Nhận biết

    Cho hình hộp ABCD.A’B’C’D’. Giả sử tam giác AB’C và A’DC’ đều có ba góc nhọn. Góc giữa hai đường thẳng AC, A’D là góc nào sau đây?

    Xác định góc giữa hai đường thẳng AC, A’D

    Do ACC’A’ là hình bình hành nên AC song song với A’C’. Do đó:

    \left( {\widehat {AC;A'D}} ight) = \left( {\widehat {A'C';A'D}} ight)

    Như vậy \left( {\widehat {AC;A'D}} ight) = \widehat {DA'C'}

  • Câu 3: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D' có đáy là hình thoi. Gọi O;O' lần lượt là tâm các hình bình hành ADD'A'ABB'A' (như hình vẽ).

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Hình vẽ minh họa

    Ta có: O;O' lần lượt là tâm các hình bình hành ADD'A'ABB'A'

    => O;O' lần lượt là trung điểm của các cạnh A'D;A'B

    \Rightarrow OO' là đường trung bình tam giác A'BD \Rightarrow OO'//BD

    Vì đáy ABCD là hình thoi \Rightarrow
AC\bot BD

    Ta có: \left\{ \begin{matrix}
OO'//BD \\
AC\bot BD \\
\end{matrix} ight.\  \Rightarrow AC\bot OO'

  • Câu 4: Vận dụng

    Cho tam giác đều ABC có cạnh bằng 3a. Điểm H thuộc cạnh AC với HC = a. Dựng đoạn SH vuông góc với mặt phẳng (ABC) với SH = 2a. Khoảng cách từ điểm C đến mặt phẳng (SAB) bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi D là trung điểm của AB, do giả thiết suy ra CD ⊥ AB.

    Trong (ABC) kẻ HM // CD suy ra HM ⊥ AB (1).

    Do giả thiết SH ⊥ (ABC) => SH ⊥ AB (2)

    Từ (1), (2) suy ra AB ⊥ (SHM)

    Trong mặt phẳng (SHM) kẻ HK ⊥ SM (3), theo chứng minh trên => HK ⊥ AB (4)

    Từ (3), (4) => HK ⊥ (SAB) => d (H; (SAB)) = HK

    Dễ thấy CH ∩ (SAB) = {A}

    \frac{d\left( C;(SAB) ight)}{d\left(H;(SAB) ight)} = \frac{CA}{HA} = \frac{3}{2}

    Do đó d\left( C;(SAB) ight) =\frac{3}{2}d\left( H;(SAB) ight)

    Theo giả thiết ∆ABC đều => CD =\frac{3a\sqrt{3}}{2}

    Xét ∆ABC do HM // CD theo định lý Ta - lét ta có:

    \frac{HM}{CD} = \frac{AH}{AC} =\frac{2}{3}

    Áp dụng hệ thức lượng trong ∆SHM vuông tại H, ta có:

    HM = \frac{2}{3}CD \Rightarrow HM =\frac{2}{3}.\frac{3a\sqrt{3}}{2} = a\sqrt{3}

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA =
\frac{a\sqrt{2}}{2}. Tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích hình chóp S.ABCD theo a?

    Hình vẽ minh họa

    Gọi H là hình chiếu vuông góc của S lên AC

    Ta có: SO = \frac{1}{2}AC =
\frac{a\sqrt{2}}{2}

    Suy ra tam giác SAO đều

    \Rightarrow SH =
\frac{a\sqrt{6}}{4}

    Thể tích khối chóp là: V =
\frac{1}{3}.\frac{a\sqrt{6}}{4}.a^{2} =
\frac{a^{3}\sqrt{6}}{12}

  • Câu 6: Nhận biết

    Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa

    Hình vẽ minh họa:

    Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

    Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.

  • Câu 7: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi B, SB\bot(ABCD). Mặt phẳng nào sau đây vuông góc với mặt phẳng (SBD)?

    Minh họa bằng hình vẽ:

    Ta có: \left\{ \begin{matrix}
AC\bot BD \\
AC\bot SB \\
\end{matrix} ight.\  \Rightarrow AC\bot(SBD) \Rightarrow
(SAC)\bot(SBD)

  • Câu 8: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại hai đỉnh \widehat{A};\widehat{D}. Biết rằng AD = CD = a, AB = 2a;SA\bot(ABCD). Chọn kết luận đúng dưới đây?

    Hình vẽ minh họa

    Ta có: \Delta ABC vuông cân tại C nên BC\bot ACBC\bot SA\left( do\ SA\bot(ABCD)
ight)

    \Rightarrow BC\bot(SAC)

  • Câu 9: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a và I = AC \cap BD. Gọi M, N lần lượt là trung điểm của C'D', AA'. Gọi \varphi là góc tạo bởi đường thẳng IN và mặt phẳng (ACM). Tính \sin \varphi.

    Tính góc giữa đường thẳng và mặt phẳng

    Gọi H là hình chiếu vuông góc của điểm N lên mặt phẳng (ACM).

    Khi đó: NH = h = d\left( {N,\left( {ACM} ight)} ight) = IN.\sin \varphi

    Ta có: h = d\left( {N,\left( {ACM} ight)} ight) = \frac{1}{2}d\left( {A',\left( {ACM} ight)} ight) = \frac{{3{V_{A'ACM}}}}{{2{S_{ACM}}}}

    Xét tam giác ACM có:  CM = \frac{{\sqrt 5 }}{2}a

    \begin{matrix}  A{M^2} = \dfrac{{A{{D'}^2} + A{{C'}^2}}}{2} - \dfrac{{C'{{D'}^2}}}{4} \hfill \\   = \dfrac{{{{\left( {\sqrt 2 a} ight)}^2} + {{\left( {\sqrt 3 a} ight)}^2}}}{2} - \dfrac{{{a^2}}}{4} = \dfrac{9}{4}{a^2} \Rightarrow AM = \dfrac{3}{2}a \hfill \\   \Rightarrow {S_{ACM}} = \sqrt {p\left( {p - AC} ight)\left( {p - CM} ight)\left( {p - AM} ight)}  = \dfrac{3}{4}{a^2} \hfill \\  \left( {p = \dfrac{{AC + CM + AM}}{2}} ight) \hfill \\  {V_{A'ACM}} = {V_{M.A'AC}} = \dfrac{1}{2}{V_{D'.A'AC}} = \dfrac{1}{6}{V_{ACD.A'C'D'}} = \dfrac{1}{{12}}{V_{{\text{lp}}}} = \dfrac{{{a^2}}}{{12}} \hfill \\   \Rightarrow h = IN = \dfrac{a}{6} \hfill \\ \end{matrix}

    Vậy \sin \varphi  = \frac{h}{{IN}} = \frac{{\sqrt 3 }}{9}

  • Câu 10: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA\bot(ABC);V_{S.ABC} = \frac{a^{3}}{4}. Tính chiều cao hình chóp S.ABC?

    Ta có:

    SA\bot(ABC) nên SA là chiều cao của hình chóp.

    Do tam giác ABC đều cạnh a nên S_{ABC} =
\frac{a^{2}\sqrt{3}}{4}

    Ta lại có:

    V_{S.ABC} = \dfrac{1}{3}SA.S_{ABC}\Rightarrow SA = \dfrac{3V_{S.ABC}}{S_{ABC}} =\dfrac{3.\dfrac{a^{3}}{4}}{\dfrac{a^{2}\sqrt{3}}{4}} =a\sqrt{3}

  • Câu 11: Nhận biết

    Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OB = OC = a. Tính khoảng cách giữa hai đường thẳng OA và BC.

    Hình vẽ minh họa:

    Gọi M là trung điểm CB, ta có: OM ⊥ BC.

    Mặt khác vì OA, OB, OC đôi một vuông góc nên OA ⊥ (OBC)

    => OA ⊥ OM. Do đó khoảng cách giữa OA và BC là OM.

    Ta có: OM = \frac{1}{2}BC =
\frac{a\sqrt{2}}{2}

  • Câu 12: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a. Cạnh bên SA=a\sqrt{2} và vuông góc với đáy (ABCD). Tính khoảng cách d từ điểm B đến mặt phẳng (SCD)

    Hình vẽ minh họa:

    Tính khoảng cách d từ điểm B đến mặt phẳng (SCD)

    Do AB // CD => d(B;(SCD))=d(A;(SCD))

    Kẻ AE ⊥ SD tại E (1)

    Ta có: \left\{ \begin{gathered}CD \bot AD \hfill \\CD \bot SA \hfill \\\end{gathered} ight. \Rightarrow CD \bot (SAD) \Rightarrow CD \bot AE(**)

    Từ (1) và (2) => AE ⊥ (SCD)

    => d(A;(SCD)) = AE

    Xét tam giác vuông SAD ta có:

    AE = \frac{{SA.AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \frac{{a\sqrt 6 }}{3}

    Vậy d(B;(SCD))=AE=\frac{{a\sqrt 6 }}{3}

     

  • Câu 13: Thông hiểu

    Cho hình chóp S.ABCDcó đáy ABCD là hình vuông tâm O cạnh bằng aSA =
a\sqrt{3} vuông góc với đáy. Tính cosin góc giữa SB;AC.

    Hình vẽ minh hoạ

    Gọi I là trung điểm của SD

    => OI là đường trung bình tam giác SBD

    Suy ra \left\{ \begin{matrix}OI//SB \\OI = \dfrac{SB}{2} = \dfrac{\sqrt{SA^{2} + AB^{2}}}{2} = a \\\end{matrix} ight.

    Ta có: AI = \frac{SD}{2} =
\frac{\sqrt{SA^{2} + AD^{2}}}{2} = a

    \Rightarrow AI = OI nên tam giác AOI cân tại I

    Gọi H là tung điểm của OA \Rightarrow\left\{ \begin{matrix}IH\bot OA \\OH = \dfrac{OA}{2} = \dfrac{AC}{4} = \dfrac{a\sqrt{2}}{4} \\\end{matrix} ight.

    Xét tam giác OHI có:

    \cos\widehat{HOI} = \dfrac{OH}{OI} =\dfrac{\dfrac{a\sqrt{2}}{4}}{a} = \dfrac{\sqrt{2}}{4}

    \cos(SB,AC) = \cos\widehat{HOI} =
\frac{\sqrt{2}}{4}

  • Câu 14: Vận dụng

    Cho hình hộp ABCD.A’B’C’D’ có mặt đáy ABCD là hình thoi tâm O, góc \widehat{BAD} = 60^{0} và A’A = A’B = A’D. Hình chiếu vuông góc của A’ trên mặt phẳng (ABCD) là:

    Hình vẽ minh họa:

    Ta có: ABCD là hình thoi =>AB = AD mà \widehat{BAD} = 60^{0} nên tam giác ABD là tam giác đều (*)

    Ta có: A’A = A’B = A’D nên hình chiếu vuông góc của A’ trên mặt phẳng (ABCD) trùng với tâm I của đường tròn ngoại tiếp tam giác ABD. (**)

    Từ (*) và (**) => I là tâm đường tròn ngoại tiếp tam giác ABD.

  • Câu 15: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD;AB = SA = a. Tính khoảng cách từ đường thẳng AB và mặt phẳng (SCD) bằng:

    Hình vẽ minh họa

    Gọi O là tâm của đáy \Rightarrow
SO\bot(ABCD)

    Lấy M, N lần lượt là trung điểm AB, CD.

    Kẻ OH\bot SN

    \left\{ \begin{matrix}
ON\bot CD \\
CD\bot SO \\
\end{matrix} ight.\  \Rightarrow CD\bot(SON)

    \Rightarrow CD\bot OH \Rightarrow
OH\bot(SCD)

    Ta có: AB//CD \subset (SCD) \Rightarrow
AB//(SCD)

    Khi đó d\left( AB;(SCD) ight) = d\left(
M;(SCD) ight) = 2d\left( O;(SCD) ight) = 2OH

    Trong tam giác SON vuông tại O, OH\bot
SN có:

    \frac{1}{OH^{2}} = \frac{1}{SO^{2}} +
\frac{1}{ON^{2}} \Rightarrow OH = \frac{a\sqrt{6}}{6}

    \Rightarrow d\left( AB;(SCD) ight) =
\frac{a\sqrt{6}}{3}

  • Câu 16: Thông hiểu

    Cho hình lăng trụ đứng ABC.A'B'C' có đáy là các tam giác đều cạnh bằng \sqrt{3} và cạnh bên bằng 1. Tính góc giữa hai đường thẳng BB'AC'?

    Hình vẽ minh họa

    Ta có:

    BB'//CC' \Rightarrow
(BB';AC') = (CC';AC') = \widehat{AC'C}

    Khi đó tam giác ACC' vuông cân tại C nên \tan\widehat{AC'C} =
\frac{AC}{CC'} = \frac{\sqrt{3}}{1} = \sqrt{3}

    \Rightarrow \widehat{AC'C} =
60^{0}

    \Rightarrow (BB';AC') =
\widehat{AC'C} = 60^{0}

  • Câu 17: Thông hiểu

    Một tấm ván hình chữ nhật ABCD được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu 2\ m. Cho biết AB = 1\ m, AD
= 3,5\ m. Tính góc giữa đường thẳng BD và đáy hố. (Kết quả làm tròn đến độ).

    Đáp án : 33\ ^{0}

    Đáp án là:

    Một tấm ván hình chữ nhật ABCD được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu 2\ m. Cho biết AB = 1\ m, AD
= 3,5\ m. Tính góc giữa đường thẳng BD và đáy hố. (Kết quả làm tròn đến độ).

    Đáp án : 33\ ^{0}

    Gọi H, K lần lượt là hình chiếu của C, D lên đáy hố là mặt phẳng (AKHB).

    Khi đó BD có hình chiếu lên đáy là KB, suy ra

    \left( BD,(AKHB) ight) = (BD,BK) =
\widehat{DBK}.

    Với độ sâu hố là DK = CH = 2(m), ta có

    AK = \sqrt{AD^{2} - DK^{2}} =
\frac{\sqrt{33}}{2}.

    KB = \sqrt{AK^{2} + AB^{2}} =
\frac{\sqrt{37}}{2}.

    \tan DBK = \frac{DK}{KB} =
\frac{4\sqrt{37}}{37}

    \Rightarrow \widehat{DBK} \approx
33{^\circ}.

  • Câu 18: Vận dụng cao

    Cho hình lăng trụ tam giác đều ABC.A’B’C’ có AB = 2\sqrt{3} và AA’ = 2. Gọi M, N, P lần lượt là trung điểm các cạnh A’B’, A’C’ và BC. Cosin của góc tạo bởi hai mặt phẳng (AB’C’) và (MNP) bằng:

    Hình vẽ minh họa:

    Gọi P, Q lần lượt là trung điểm của BC và B’C’; I = BM ∩ AB’, J = CN ∩ AC’, E = MN ∩ A’Q.

    Suy ra (MNP) ∩ (AB’C’) = (MNCB) ∩ (AB’C’) = IJ và gọi K = IJ ∩ PE

    => K ∈ AQ, với E là trung điểm của MN.

    (AA’QP) ⊥ IJ => AQ ⊥ IJ, PE ⊥ IJ

    => ((MNP), (AB’C’)) = (AQ, PE) = α.

    Ta có: AP = 3, PQ = 2

    \Rightarrow AQ = \sqrt{13} \Rightarrow
QK = \frac{\sqrt{13}}{3}

    PE = \frac{5}{2} \Rightarrow PK =
\frac{5}{3}

    \cos\alpha = \left| \cos\widehat{QKP}
ight| = \frac{\left| KQ^{2} + KP^{2} - PQ^{2} ight|}{2KQ.KP} =
\frac{\sqrt{13}}{65}

  • Câu 19: Nhận biết

    Biết khối chóp có diện tích đáy và chiều cao lần lượt bằng 9;4. Thể tích khối chóp bằng:

    Ta có: \left\{ \begin{matrix}
B = 9 \\
h = 4 \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{1}{3}.9.4 = 12

  • Câu 20: Vận dụng

    Cho tứ diện đều ABCD có M là trung điểm của cạnh CD, gọi \varphi là góc giữa hai đường thẳng AM và BC. Giá trị \cos \varphi bằng:

    Tính cosin góc giữa hai đường thẳng

    Giả sử cạnh của tứ diện đều bằng a

    Vì M là trung điểm của CD. Nên AM là đường cao trong tam giác ACD đều.

    => AM = \frac{{a\sqrt 3 }}{2}

    Ta có:

    \begin{matrix}  \overrightarrow {CB} .\overrightarrow {AM}  = \overrightarrow {CB} .\left( {\overrightarrow {CM}  - \overrightarrow {CA} } ight) = \overrightarrow {CB} .\overrightarrow {CM}  - \overrightarrow {CB} .\overrightarrow {CA}  \hfill \\   = CB.CM.\cos \widehat {BCM} - CB.CA.\cos \widehat {ACB} \hfill \\   = a.\dfrac{a}{2}.\cos {60^o} - a.a.\cos {60^o} =  - \dfrac{{{a^2}}}{4} \hfill \\ \end{matrix}

    => \cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight) = \dfrac{{\overrightarrow {BC} .\overrightarrow {AM} }}{{\left| {\overrightarrow {BC} } ight|.\left| {\overrightarrow {AM} } ight|}} = \dfrac{{\dfrac{{ - {a^2}}}{4}}}{{a.\dfrac{{a\sqrt 3 }}{2}}} = \dfrac{{ - \sqrt 3 }}{6}

     

    => \cos \varphi  = \left| {\cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight)} ight| = \frac{{\sqrt 3 }}{6}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 68 lượt xem
Sắp xếp theo