Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là:
Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là mặt phẳng trung trực của đoạn thẳng AB.
Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là:
Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là mặt phẳng trung trực của đoạn thẳng AB.
Cho hình chóp
có
, các cạnh còn lại đều bằng a. Góc giữa hai đường thẳng
và
bằng:
Hình vẽ minh họa
Ta có:
Suy ra tam giác ABC vuông tại A.
Gọi H, M, N lần lượt là trung điểm của AB, AB, SA
Xét tam giác SBC có: SB = SC nên
Lại H là tam đường tròn ngoại tiếp tam giác ABC
Mà SA = SB = SC = a nên
Suy ra tam giác SAH vuông cân tại H
Do đó tam giác MHN cạnh . Góc cần tìm bằng
Cho
là hình hộp. Khẳng định nào sau đây đúng?
Nếu là hình hộp thì tất cả các mặt là bình bình hành nên mặt bên cũng là hình bình hành.
Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Nếu ba vecto
cùng vuông góc với vecto
khác
thì chúng:
"Nếu ba vecto cùng vuông góc với vecto
khác
thì chúng đồng phẳng"
Giải thích:
Giả sử không đồng phẳng, khi đó tồn tại duy nhất bộ số thực
sao cho:
Nhân cả hai vế với ta có:
(Mâu thuẫn với giả thiết)
Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:
Hình vẽ minh họa:
Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)
=> Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là
Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’
=>
Cho khối chóp
có chiều cao bằng
đáy là tam giác
có diện tích bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp tam giác là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC bằng 600, tam giác SBC là tam giác đều có cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Tính số đo góc giữa đường thẳng SA và mặt phẳng đáy (ABC).
Hình vẽ minh họa:
Gọi H là trung điểm của BC => SH ⊥ (ABC)
Vì SH ⊥ (ABC) => HA là hình chiếu vuông góc của SA trên mặt phẳng (SAB)
=>
Xét tam giác SBC đều cạnh 2a =>
Tam giác ABC vuông tại A =>
Tam giác SAH vuông nên
Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = 2a, BC = a. Hình chiếu vuông góc H của đỉnh S trên mặt phẳng đáy là trung điểm của cạnh AB, góc giữa đường thẳng SC và mặt phẳng đáy bằng 600. Tính cosin góc giữa hai đường thẳng SB và AC.

+) Ta có:
+) Mặt khác
=>
Đáy của hình lăng trụ đứng tam giác ABC.A’B’C’ là tam giác đều cạnh bằng 4. Tính khoảng cách giữa hai đường thẳng AA’ và BC.
Hình vẽ minh họa:
Gọi M là trung điểm của BC. Khi đó AM ⊥ AA’ tại A, AM ⊥ BC tại M.
Do đó, AM là đoạn vuông góc chung của AA’ và BC.
=> d(AA’, BC) =
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 3a. Cạnh bên SA vuông góc với (ABCD), góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 30◦ . Tìm khoảng cách từ A đến mặt phẳng (SBC).
Ta có:
Gọi H là chân đường cao lên cạnh SB. Khi đó, ta có
d(A, (SBC)) = AH. sin 30◦ => AH = AB . sin 30◦ =
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:
Hình vẽ minh họa:
Theo bài ta có AB là hình chiếu của SB trên (ABC)
Vậy
Mà ∆SBA vuông cân tại A nên
Cho hình lập phương
(như hình vẽ)

Tính sin của góc tạo bởi
và mặt phẳng đáy
?
Ta có:
Giả sử hình lập phương có cạnh bằng .
Trong tam giác ta có:
Một tấm ván hình chữ nhật
được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu
. Cho biết
,
. Tính góc giữa đường thẳng
và đáy hố. (Kết quả làm tròn đến độ).
Đáp án : 33![]()
Một tấm ván hình chữ nhật được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu
. Cho biết
,
. Tính góc giữa đường thẳng
và đáy hố. (Kết quả làm tròn đến độ).
Đáp án : 33
Gọi ,
lần lượt là hình chiếu của
,
lên đáy hố là mặt phẳng
.
Khi đó có hình chiếu lên đáy là
, suy ra
.
Với độ sâu hố là (m), ta có
.
.
.
Cho tam giác đều ABC có cạnh bằng 3a. Điểm H thuộc cạnh AC với HC = a. Dựng đoạn SH vuông góc với mặt phẳng (ABC) với SH = 2a. Khoảng cách từ điểm C đến mặt phẳng (SAB) bằng bao nhiêu?
Hình vẽ minh họa:
Gọi D là trung điểm của AB, do giả thiết suy ra CD ⊥ AB.
Trong (ABC) kẻ HM // CD suy ra HM ⊥ AB (1).
Do giả thiết SH ⊥ (ABC) => SH ⊥ AB (2)
Từ (1), (2) suy ra AB ⊥ (SHM)
Trong mặt phẳng (SHM) kẻ HK ⊥ SM (3), theo chứng minh trên => HK ⊥ AB (4)
Từ (3), (4) => HK ⊥ (SAB) => d (H; (SAB)) = HK
Dễ thấy CH ∩ (SAB) = {A}
Do đó
Theo giả thiết ∆ABC đều =>
Xét ∆ABC do HM // CD theo định lý Ta - lét ta có:
Áp dụng hệ thức lượng trong ∆SHM vuông tại H, ta có:
Cho khối lập phương ABCD.A’B’C’D’. Gọi M là trung điểm của AD, φ là góc giữa hai mặt phẳng (BMC’) và (ABB’A’). Khẳng định nào dưới đây đúng?
Hình vẽ minh họa:
Do ABCD.A’B’C’D’ là hình lập phương
=> MA, CB, C’B’ cùng vuông góc với (ABB’A’)
=> Tam giác MBC’ có hình chiếu vuông góc lên mặt phẳng (ABB’A’) là tam giác ABB’.
Ta có
Xét tam giác MBC’, ta có:
Đặt p = (MB + MC’ + BC’)/2
Áp dụng công thức Hê-rông ta có:
Mặt khác
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề “Hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến d. Với mỗi điểm A thuộc (P) và mỗi điểm B thuộc (Q) thì ta có AB vuông góc với d” là sai. Trong trường hợp a ∈ d, b ∈ d, khi đó AB trùng với d.
Mệnh đề “Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau (giao tuyến vuông góc với mặt phẳng thứ ba).
Mệnh đề “Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này sẽ vuông góc với mặt phẳng kia” là sai. Hai mặt phẳng vuông góc với nhau, đường thẳng thuộc mặt phẳng này và vuông góc với giao tuyến thì vuông góc với mặt phẳng kia.
Vậy mệnh đề đúng là: ”Nếu hai mặt phẳng (P) và (Q) cùng vuông góc với mặt phẳng (R) thì giao tuyến của (P) và (Q) nếu có cũng sẽ vuông góc với (R).”
Cho hình chóp
có đáy
là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC. Giả sử HK cắt BC tại D. Khi đó:
a)
Đúng||Sai
b)
Đúng||Sai
c)
Đúng||Sai
d) Tam giác SBC cân tại B. Sai||Đúng
Cho hình chóp có đáy
là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC. Giả sử HK cắt BC tại D. Khi đó:
a) Đúng||Sai
b) Đúng||Sai
c) Đúng||Sai
d) Tam giác SBC cân tại B. Sai||Đúng
đúng
đúng
đúng
Tam giác SBC cân tại B. sai
Cho một khối chóp
có đáy
là tam giác vuông cân tại
,
và
. Tam giác
đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Do tam giác SAB đều suy ra
Mà
Vậy SH là đường cao của hình chóp
Khi đó
Ta có:
Thể tích khối chóp là:
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là: