Trong các mệnh đề sau, mệnh đề nào sai?
Trong trường hợp a và b vuông góc nhau và chéo nhau, nếu (P) ⊃ a, (P) // b và (Q) ⊃ b, (Q) // a thì (P) // (Q).
Trong các mệnh đề sau, mệnh đề nào sai?
Trong trường hợp a và b vuông góc nhau và chéo nhau, nếu (P) ⊃ a, (P) // b và (Q) ⊃ b, (Q) // a thì (P) // (Q).
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có
và AA’ = 2. Gọi M, N, P lần lượt là trung điểm các cạnh A’B’, A’C’ và BC. Cosin của góc tạo bởi hai mặt phẳng (AB’C’) và (MNP) bằng:
Hình vẽ minh họa:
Gọi P, Q lần lượt là trung điểm của BC và B’C’; I = BM ∩ AB’, J = CN ∩ AC’, E = MN ∩ A’Q.
Suy ra (MNP) ∩ (AB’C’) = (MNCB) ∩ (AB’C’) = IJ và gọi K = IJ ∩ PE
=> K ∈ AQ, với E là trung điểm của MN.
(AA’QP) ⊥ IJ => AQ ⊥ IJ, PE ⊥ IJ
=> ((MNP), (AB’C’)) = (AQ, PE) = α.
Ta có: AP = 3, PQ = 2
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, SA vuông góc với đáy. Gọi M là trung điểm AC. Khẳng định nào sau đây sai?
Ta có:
=> đúng.
ΔABC vuông cân tại B, M là trung điểm AC ⇒ ⇒
đúng.
=> đúng
Cho tứ diện
. Gọi trung điểm của
lần lượt là
. Biết
. Độ dài đoạn thẳng
là:
Hình vẽ minh họa
Gọi P là trung điểm của CD. Khi đó
Lại có hay tam giác MNP vuông tại P
Theo định lí Pythagore ta có:
Cho hình chóp SABCD có SA ⊥ (ABCD), đáy ABCD là hình thang vuông tại A và B có độ dài cạnh AB = a. Gọi I, J lần lượt là trung điểm của AB và CD. Tính khoảng cách giữa hai đường thẳng IJ và SD.
Hình vẽ minh họa:
Ta có AD // (IJ) ⇒ IJ // (SAD) ⇒ d(IJ, SD) = d(IJ, (SAD)) = d(I, (SAD)) = IA = a/2
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của BC và DD’. Tính theo a khoảng cách giữa hai đường thẳng MN và BD.
Hình vẽ minh họa:
Gọi O, P, K lần lượt là trung điểm của AC, CD, OC
Kẻ DI ⊥ MP, DH ⊥ NI
Ta có: , BD // MP, tứ giác DIKO là hình chữ nhật
=>
Khi đó: d(MN, BD) = d(BD, (MNP)) = d(D, (MNP)) = DH
Xét tam giác vuông NDI ta có:
Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Cho hình chóp
, có đáy
là hình chữ nhật,
. Gọi
lần lượt là đường cao của tam giác
và
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Vì
Mà
Tam giác SAB có đường cao
Mà
Tương tự chứng minh ta được:
Cho khối chóp
có chiều cao bằng
đáy là tam giác
có diện tích bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp tam giác là
Cho hình lăng trụ đứng tam giác
có đáy
là tam giác vuông tại
,
. Gọi
là trung điểm của
. Tính cosin góc giữa hai đường thẳng
và
.

Hình vẽ minh họa
Gọi N là trung điểm của BB’, ta có: MN//B’C nên
Ta có:
Áp dụng định lí cosin trong tam giác MNA ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên => SO ⊥ (ABCD)
Từ => AC ⊥ (SBD)
Từ => BD ⊥ (SAC)
Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.
Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).
Cho hình chóp
đáy là tam giác
vuông tại
và
. Mệnh đề nào sau đây sai?
Ta có:
Vậy đáp án sai là: .
Cho hình chóp
, đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Cho hình chóp , đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Hình vẽ minh họa
a) Ta có:
b) Ta có:
mà
c) Ta có:
Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc .
d) Ta có:
Suy ra SD là hình chiếu vuông góc của SC lên (SAD)
Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc trong tam giác vuông SCD.
Xét tam giác SCD vuông tại D ta có:
Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = 2a, BC = a. Hình chiếu vuông góc H của đỉnh S trên mặt phẳng đáy là trung điểm của cạnh AB, góc giữa đường thẳng SC và mặt phẳng đáy bằng 600. Tính cosin góc giữa hai đường thẳng SB và AC.

+) Ta có:
+) Mặt khác
=>
Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:
Hình vẽ minh họa:
Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)
=> Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là
Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’
=>
Cho hình lăng trụ
có đáy
là tam giác cân tại
. Gọi
là trung điểm cạnh
. Chọn kết luận đúng?
Hình vẽ minh họa
Vì tam giác ABC cân tại A và M là trung điểm của BC
=>
Ta có:
Cho hình chóp
có
, đáy
là tam giác cân tại
. Gọi
là trung điểm của
,
là trung điểm của
. Xác định góc giữa hai mặt phẳng
và
?
Hình vẽ minh họa
Dễ thấy
Ta có tam giác ABC cân tại A, M là trung điểm của BC suy ra
Theo giả thiết . Khi đó
Ta được
Cho một khối lăng trụ đứng như hình vẽ:

Biết đáy
là hình thoi cạnh bằng a,
. Tính thể tích
của lăng trụ đứng đã cho?
Kí hiệu hình vẽ như sau:
Gọi giao điểm của AC và BD là I
Ta có:
Xét tam giác vuông BAI vuông tại I ta có:
Diện tích hình bình hành ABCD là:
Vậy
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC bằng 600, tam giác SBC là tam giác đều có cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Tính số đo góc giữa đường thẳng SA và mặt phẳng đáy (ABC).
Hình vẽ minh họa:
Gọi H là trung điểm của BC => SH ⊥ (ABC)
Vì SH ⊥ (ABC) => HA là hình chiếu vuông góc của SA trên mặt phẳng (SAB)
=>
Xét tam giác SBC đều cạnh 2a =>
Tam giác ABC vuông tại A =>
Tam giác SAH vuông nên