Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:
Do ∆BCD là tam giác đều cạnh nên có diện tích là
Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:
Do ∆BCD là tam giác đều cạnh nên có diện tích là
Cho hình chóp
có đáy
là hình vuông,
,
. Gọi
là trung điểm cạnh
. Tính
?
Hình vẽ minh họa
Xét tam giác SAB vuông tại A có:
Gọi E là trung điểm cạnh MC, ta có:
và
Lại có:
Suy ra tam giác SBC vuông tại B.
Xét tam giá MBC vuông tại B ta có:
Xét tam giác có:
Cho hình chóp S.ABC có
và SA = SB = SC. Gọi H là hình chiếu vuông góc của S trên mặt phẳng (ABC), khi đó:
Hình vẽ minh họa:
Đặt SA = a
Xét tam giác SAB vuông cân tại S ta có:
Xét tam giác SAC cân tại S ta có:
=> SA = SC = AC = a
Áp dụng định lí cosin cho tam giác SBC ra có:
Vậy tam giác ABC vuông tại A mà H là hình chiếu của S trên (ABC) nên H là tâm đường tròn ngoại tiếp tam giác ABC
Hay H là trung điểm của BC.
Cho hình chóp S.ABCD có
, ABCD là hình thang vuông tại A, B và
. Gọi
, M là trung điểm SB. Tính sin của góc giữa OM và (SCD).

Trong (SBD), gọi
Ta có BC // AD, áp dụng định lý Ta – let ta được:
Áp dụng định lý Menelaus cho tam giác SBD có cát tuyến OMI ta có:
Tam giác SAD vuông tại A có
=>
Mặt khác:
Lại có ABCD là hình thang vuông tại A, B và nên
=> mà
Kẻ , có
(do
)
Xét tam giác SAC vuông tại A có , AH là đường cao:
Xét tam giác SBD có:
Xét tam giác DIO có:
Do đó:
Mặt khác:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và
. Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:
Hình vẽ minh họa:
Ta có: => BC ⊥ (SAB)
=> SB là hình chiếu của SC lên mặt phẳng (SAB)
=>
Mà
Vậy
Cho hình chóp
có đáy
là hình thang vuông tại
;
. Gọi
là trung điểm của
, biết hai mặt phẳng
và
cùng vuông góc với đáy và mặt phẳng
tạo với đáy một góc
. Tính khoảng cách từ trung điểm của cạnh
đến mặt phẳng
?
Từ I kẻ
Gọi K là trung điểm của SD.
Gọi , kẻ
Ta có:
Xét tam giác ICQ có
Xét tam giác SIP vuông tại I có
Cho hình lập phương ABCD.A’B’C’D’ có thể tích bằng 27. Một mặt phẳng (α) tạo với mặt phẳng (ABCD) góc 600 và cắt các cạnh AA’, BB’, CC’, DD’ lần lượt tại M, N, P, Q. Tính diện tích của tứ giác MNPQ.
Hình vẽ minh họa:
Đặt AB = a
Ta có:
Cho hình lăng trụ
có đáy
là tam giác cân tại
. Gọi
là trung điểm cạnh
. Chọn kết luận đúng?
Hình vẽ minh họa
Vì tam giác ABC cân tại A và M là trung điểm của BC
=>
Ta có:
Mệnh đề nào đúng trong các mệnh đề sau?
Mệnh đề: “Góc giữa hai mặt phẳng luôn là góc nhọn” sai vì góc giữa hai mặt phẳng có thể là góc vuông.
Mệnh đề: ”Góc giữa mặt phẳng (P) và mặt phẳng (Q) bằng góc giữa mặt phẳng (P) và mặt phẳng (R) khi (Q) // (R) (hoặc mặt phẳng (Q) trùng với mặt phẳng (R))” đúng.
Mệnh đề: “Góc giữa mặt phẳng (P) và mặt phẳng (Q) bằng góc giữa mặt phẳng (P) và mặt phẳng (R) thì (Q) song song với (R)” sai vì hai mặt phẳng (R) và (Q) có thể trùng nhau.
Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa
Hình vẽ minh họa:
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.
Cho hình chóp tam giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp là:
Hình vẽ minh họa
Gọi H là tâm của tam giác đều ABC
Khi đó
Theo bài ra ta có:
Tam giác SBH vuông tại H có:
Cho hình lập phương
. Khẳng định nào dưới đây đúng?
Hình vẽ minh họa
Ta có:
Ta có:
Mặt khác
Ta có:
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Cho hình chóp
có đáy
là hình bình hành tâm
, tam giác
cân. Giả sử
lần lượt là trung điểm các cạnh
. Khẳng định nào dưới đây sai?
Hình vẽ minh họa
Vì tam giác SAB là tam giác cân tại S nên
Ta có:
Cho hình chóp S.ABC có SA = SB và CA = CB. Tính số đo góc giữa hai đường thẳng chéo nhau SC và AB.
Hình vẽ minh họa:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với mặt đáy và
. Gọi
là trọng tâm của tam giác SAB. Khoảng cách từ
đến mặt phẳng
bằng:
Hình vẽ minh họa
Gọi là trung điểm của
(vì
cân)
Ta có:
Và tại
.
Do đó .
Ta có: .
Vì là trọng tâm của
nên
.
Cho tứ diện
. Gọi trung điểm của
lần lượt là
. Biết
. Độ dài đoạn thẳng
là:
Hình vẽ minh họa
Gọi P là trung điểm của CD. Khi đó
Lại có hay tam giác MNP vuông tại P
Theo định lí Pythagore ta có:
Cho hình chóp
có đáy
là hình thoi tâm O cạnh bằng
;
. Biết
. Gọi
là góc giữa đường thẳng
và mặt phẳng
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Mà
Ta có:
Vậy
Cho một khối trụ có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối trụ là:
Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

Ta có: SA ⊥ (ABC) => SA ⊥ BC
Mặt khác BC ⊥ AB
Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB
Vậy (vì tam giác SBC vuông tại B)