Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA ⊥ (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào?

    Hình vẽ minh họa:

    Do I là trung điểm của SC và O là trung điểm AC nên IO ∥ SA. Do SA ⊥ (ABCD) nên IO ⊥ (ABCD), hay khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng IO

  • Câu 2: Thông hiểu

    Cho tứ diện đều ABCD, M là trung điểm của CD, N là điểm nằm trên AD sao cho BN vuông góc với AM. Tính tỉ số \frac{{DN}}{{DA}}

    Hình vẽ minh họa:

    Tính tỉ số giữa DN và DA

    Đặt \overrightarrow {AB}  = \overrightarrow b ;\overrightarrow {AC}  = \overrightarrow c ;\overrightarrow {AD}  = \overrightarrow d. Ta có:

    \begin{matrix}  \left| {\overrightarrow b } ight| = \left| {\overrightarrow c } ight| = \left| {\overrightarrow d } ight| = AB = a \hfill \\  \widehat {\left( {\overrightarrow b ;\overrightarrow c } ight)} = \widehat {\left( {\overrightarrow c ;\overrightarrow d } ight)} = \widehat {\left( {\overrightarrow d ;\overrightarrow b } ight)} = {60^0} \hfill \\   \Rightarrow \overrightarrow b .\overrightarrow c  = \overrightarrow c .\overrightarrow d  = \overrightarrow d .\overrightarrow b  = \dfrac{{{a^2}}}{2} \hfill \\ \end{matrix}

    Giả sử AN = k.AD. Khi đó:

    \overrightarrow {BN}  = \overrightarrow {BA}  + \overrightarrow {AN}  =  - \overrightarrow b  + k.\overrightarrow d

    Vì M là trung điểm của CD nên 2\overrightarrow {AM}  = \overrightarrow {AC}  + \overrightarrow {AD}  = \overrightarrow c  + \overrightarrow d

    Khi đó: BN ⊥ AM => \overrightarrow {BN} .\overrightarrow {AM}  = 0

    \begin{matrix}  \left( { - \overrightarrow b  + k.\overrightarrow d } ight).\left( {\overrightarrow c  + \overrightarrow d } ight) = 0 \hfill \\   \Rightarrow  - \dfrac{{{a^2}}}{2} - \dfrac{{{a^2}}}{2} + k.\dfrac{{{a^2}}}{2} + k.{a^2} = 0 \hfill \\   \Rightarrow k = \dfrac{2}{3} \hfill \\   \Rightarrow AN = \dfrac{2}{3}AD \hfill \\   \Rightarrow \dfrac{{DN}}{{DA}} = \dfrac{1}{3} \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu

    Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh bằng a. Cạnh bên SA vuông góc với đáy, SB hợp với mặt đáy một góc 600. Tính khoảng cách d từ điểm D đến mặt phẳng (SBC)

    Hình vẽ minh họa

    Tính khoảng cách d từ điểm D đến mặt phẳng (SBC)

    Ta có:

    \begin{matrix}  {60^0} = \left( {SB;\left( {ABCD} ight)} ight) = \left( {SB;AB} ight) = \widehat {SBA} \hfill \\   \Rightarrow SA = AB.\tan \widehat {SBA} = a\sqrt 3  \hfill \\ \end{matrix}

    Ta có: AD // BC => AD // (SBC)

    => d(D,(SBC)) = d(A; (SBC))

    Kẻ AK \bot SB (1)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BC \bot SA} \\   {BC \bot AB} \end{array}} ight. \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow BC \bot AK\left( 2 ight)

    Từ (1) và (2) => AK \bot \left( {SBC} ight)

    \begin{matrix}   \Rightarrow d\left( {A;\left( {SBC} ight)} ight) = AK \hfill \\  AK = \dfrac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \dfrac{{a\sqrt 3 }}{2} \hfill \\ \end{matrix}

    d\left( {D;\left( {SBC} ight)} ight) = AK = \frac{{a\sqrt 3 }}{2}

  • Câu 4: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.

    Hình vẽ minh họa:

    Ta có:

    SA ⊥ BC

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC

  • Câu 5: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và mặt bên SAB là tam giác vuông tại S. Tính số đo góc giữa hai đường thẳng SACD.

    Hình vẽ minh họa

    ABCD là hình bình hành nên CD//AB

    \Rightarrow (SA;CD) = (SA;AB) =
\widehat{SAB} = 45^{0}

  • Câu 6: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên \left\{ \begin{matrix}SO\bot AC \\SO\bot BD \\\end{matrix} ight. => SO ⊥ (ABCD)

    Từ \left\{ \begin{matrix}SO\bot AC \\AC\bot BD \\\end{matrix} ight.=> AC ⊥ (SBD)

    Từ \left\{ \begin{matrix}SO\bot BD \\AC\bot BD \\\end{matrix} ight.=> BD ⊥ (SAC)

    Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.

    Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA\bot(ABCD), SA = AB = a. Gọi M là trung điểm cạnh SB. Tính (AM,BD)?

    Hình vẽ minh họa

    Xét tam giác SAB vuông tại A có: SB =
\sqrt{SA^{2} + AB^{2}} = a\sqrt{2}

    Gọi E là trung điểm cạnh MC, ta có:

    OE//AM \Rightarrow (AM;BD) =
(OE,BD)OE = \frac{1}{2}AM =
\frac{1}{4}SB = \frac{a\sqrt{2}}{4}

    Lại có: CB\bot AB;SA\bot CB \Rightarrow
CB\bot SB

    Suy ra tam giác SBC vuông tại B.

    Xét tam giá MBC vuông tại B ta có:

    MC = \sqrt{MB^{2} + BC^{2}} =
\sqrt{\frac{1}{4}.2a^{2} + a^{2}} = \frac{a\sqrt{6}}{2}

    BE = \frac{1}{2}MC =
\frac{a\sqrt{6}}{4}

    Xét tam giác EBOcó:

    \cos\widehat{EOB} = \frac{EO^{2} +
OB^{2} - EB^{2}}{2.EO.OB} = \frac{1}{2}

    \Rightarrow \widehat{EOB} = 60^{0}
\Rightarrow OE//AM \Rightarrow (AM;BD) = 60^{0}

  • Câu 8: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD;AB = SA = a. Tính khoảng cách từ đường thẳng AB và mặt phẳng (SCD) bằng:

    Hình vẽ minh họa

    Gọi O là tâm của đáy \Rightarrow
SO\bot(ABCD)

    Lấy M, N lần lượt là trung điểm AB, CD.

    Kẻ OH\bot SN

    \left\{ \begin{matrix}
ON\bot CD \\
CD\bot SO \\
\end{matrix} ight.\  \Rightarrow CD\bot(SON)

    \Rightarrow CD\bot OH \Rightarrow
OH\bot(SCD)

    Ta có: AB//CD \subset (SCD) \Rightarrow
AB//(SCD)

    Khi đó d\left( AB;(SCD) ight) = d\left(
M;(SCD) ight) = 2d\left( O;(SCD) ight) = 2OH

    Trong tam giác SON vuông tại O, OH\bot
SN có:

    \frac{1}{OH^{2}} = \frac{1}{SO^{2}} +
\frac{1}{ON^{2}} \Rightarrow OH = \frac{a\sqrt{6}}{6}

    \Rightarrow d\left( AB;(SCD) ight) =
\frac{a\sqrt{6}}{3}

  • Câu 9: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 4a. Cạnh bên hình chóp SA = 2a. Hình chiếu vuông góc của đỉnh S trên mặt phẳng đáy là trung điểm M của OA. Gọi α là góc giữa SD và mặt phẳng đáy. Chọn mệnh đề đúng trong các mệnh đề dưới đây.

    Hình vẽ minh họa:

    Ta có: SM ⊥ (ABCD)

    => Hình chiếu vuông góc của SD trên mặt phẳng (ABCD) là cạnh MD.

    \Rightarrow \alpha = \left( SD,(ABCD)
ight) = (SD;MD) = \widehat{SDM}

    Ta tính được: SM = \sqrt{SA^{2} - AM^{2}}
= a\sqrt{2}

    Xét tam giác ADM có:

    MD = \sqrt{AM^{2} + AD^{2} -
2AM.AD.cos45^{0}} = a\sqrt{10}

    => \tan\alpha = \tan\widehat{SDM} =
\frac{SM}{MD} = \frac{\sqrt{5}}{5}

  • Câu 10: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 7a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 7a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{7}{3}a^{3}

  • Câu 11: Vận dụng cao

    Cho khối chóp S.ABCD có đáy là hình bình hành, AB = 3, AD = 4, \widehat{BAD} = 120^{0}. Cạnh bên SA = 2\sqrt{3} vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm các cạnh SA, AD và BC, α là góc giữa hai mặt phẳng (SAC) và (MNP). Chọn khẳng định đúng trong các khẳng định sau đây.

    Hình vẽ minh họa:

    Ta có:

    \left\{ \begin{matrix}
MN//SD \\
NP//CD \\
\end{matrix} ight.\  \Rightarrow (MNP)//(SCD)

    => \widehat{\left( (SAC);(MNP)
ight)} = \widehat{\left( (SAC);(SCD) ight)} = \alpha

    Gọi H là hình chiếu vuông góc của A xuống (SCD), K là hình chiếu của H xuống SC

    => \alpha = \widehat{AKH}

    Ta có:

    \begin{matrix}V_{S.ACD} = \dfrac{1}{2}V_{S.ABCD}\hfill \\= \dfrac{1}{3}SA \cdot S_{ABCD} = \dfrac{1}{3}SA.2S_{ABD} \hfill\\= \dfrac{1}{3}SA.AB.AD.sin\widehat{BAD} \hfill\\= \dfrac{1}{3} \cdot \dfrac{1}{2} \cdot 3 \cdot 4 \cdot \sqrt{3} \cdot2\sqrt{3} = 6\ AC^{2} = 13 \hfill\\\end{matrix}

    \begin{matrix}\Rightarrow SC^{2} = SA^{2} + AC^{2} = 25 \hfill\\SD = \sqrt{SA^{2} + AD^{2}} = \sqrt{28}\hfill \\\Rightarrow S_{SCD} = \sqrt{p(p - a)(p - b)(p - c)} = \sqrt{54} =3\sqrt{6} \hfill\\\end{matrix}

    \begin{matrix}\Rightarrow AH = d(A;(CSD)) = \dfrac{3.V_{S.ACD}}{S_{SCD}} =\dfrac{3.6}{2\sqrt{6}} = \sqrt{6}\hfill \\AK = \dfrac{SA.AC}{\sqrt{SA^{2} + AC^{2}}} = \dfrac{2\sqrt{39}}{5}\hfill \\\sin\alpha = \dfrac{AH}{AK} = \sqrt{6}.\dfrac{5}{2\sqrt{39}} =\dfrac{5\sqrt{26}}{26} \Rightarrow \alpha \in \left( 60^{0};90^{0}ight) \hfill\\\end{matrix}

  • Câu 12: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. Cạnh bện SA vuông góc với mặt phẳng (ABCD) và SC =10\sqrt{5}. Gọi M, N lần lượt là trung điểm của SA và CD. Tính khoảng cách d giữa BD và MN.

    Hình vẽ minh họa:

    Gọi P là trung điểm BC và E = NP ∩ AC

    => PN // BD => BD // (MNP)

    => d(BD, MN) = d(BD, (MNP)) = d(O, (MNP)) = \frac{1}{3}d(A, (MNP))

    Kẻ AK ⊥ ME

    Khi đó d(A, (MNP)) = AK.

    Ta tính được:

    \begin{matrix}SA = \sqrt{SC^{2} - AC^{2}} = 10\sqrt{3} \\\Rightarrow MA = 5\sqrt{3};AE = \dfrac{3}{4}AC = \dfrac{15\sqrt{2}}{2} \\\end{matrix}

    Xét tam giác vuông MAE ta có:

    AK = \frac{MA.AE}{\sqrt{MA^{2} +AE^{2}}} = 3\sqrt{5}

    \Rightarrow d(BD;MN) = \frac{1}{3}AK =\sqrt{5}

  • Câu 13: Nhận biết

    Cho hình lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác đều, M là trung điểm của BC. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có tam giác ABC đều và M là trung điểm của BC nên AM\bot BC

    Ta có: \left\{ \begin{matrix}
AM\bot BC \\
BC//B'C' \\
\end{matrix} ight.\  \Rightarrow AM\bot B'C'

  • Câu 14: Thông hiểu

    Cho hình chóp tam giác S.ABCABC vuông tại BSA\bot(ABC). Kẻ đường cao AH của tam giác SAB. Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) \Rightarrow SA\bot
BC

    Ta có: \left\{ \begin{matrix}
BC\bot AB(gt) \\
BC\bot SA;\left( do\ SA\bot(ABC) ight) \\
\end{matrix} ight.

    \Rightarrow BC\bot(SAB) \Rightarrow
BC\bot AH

    AH\bot SB \Rightarrow
AH\bot(SBC)

    \Rightarrow \left\{ \begin{matrix}
AH\bot SC \\
AH\bot BC \\
\end{matrix} ight.

    Vậy khẳng định sai là: “AH\bot
AC”.

  • Câu 15: Nhận biết

    Cho đường thẳng a và mặt phẳng (P). Có bao nhiêu mặt phẳng đi qua a và vuông góc với mặt phẳng (P)?

    Có một khi a không vuông góc với (P), có vô số khi a vuông góc với (P).

  • Câu 16: Vận dụng

    Cho hình vuông ABCD cạnh 4a , lấy H, K lần lượt trên các cạnh AB, AD sao cho BH = 3HA, AK = 3KD. Trên đường thẳng vuông góc với mặt phẳng (ABCD) tại H lấy điểm S sao cho \widehat {SBH} = 30^\circ. Gọi E là giao điểm của CH và BK . Tính cosin của góc giữa hai đường thẳng SE và BC .

    Gọi I là hình chiếu vuông góc của E lên AB ta có

    \begin{matrix}  \Delta ABK = \Delta BCH \hfill \\   \Rightarrow \widehat {ABK} = \widehat {BCH} \Rightarrow \widehat {HEB} = 90^\circ  \hfill \\ \end{matrix}

    Tính cosin của góc giữa hai đường thẳng

    Ta có:

    \begin{matrix}  {\text{cos}}\left( {SE\,;\,BC} ight) = {\text{cos}}\left( {SE\,;\,EI} ight) = \left| {\cos \widehat {SEI}} ight| \hfill \\  SH = BH.\tan 30^\circ  = 3a.\dfrac{{\sqrt 3 }}{3} = a\sqrt 3  \hfill \\  \dfrac{{HB}}{{HC}} = \dfrac{{HE}}{{HB}} \Rightarrow HE = \dfrac{{H{B^2}}}{{HC}} = \dfrac{{9a}}{5} \hfill \\  SE = \sqrt {S{H^2} + H{E^2}}  = \sqrt {3{a^2} + \dfrac{{81{a^2}}}{{25}}}  = \dfrac{{2a\sqrt {39} }}{5} \hfill \\  \dfrac{{HE}}{{HB}} = \dfrac{{HI}}{{HE}} \Rightarrow HI = \dfrac{{H{E^2}}}{{HB}} = \dfrac{{27a}}{{25}} \hfill \\  SI = \sqrt {S{H^2} + H{I^2}}  = \sqrt {3{a^2} + {{\left( {\dfrac{{27a}}{{25}}} ight)}^2}}  = \dfrac{{2a\sqrt {651} }}{{25}} \hfill \\ \end{matrix}

    Trong tam giác vuông SEI có:

    EI = \sqrt {S{E^2} - S{I^2}}  = \frac{{36a}}{{25}}

    => \cos \widehat {SEI} = \frac{{EI}}{{SE}} = \frac{{18}}{{5\sqrt {39} }}

  • Câu 17: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a\sqrt{2}. Tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với đáy. Cạnh SC tạo với đáy một góc bằng 60^{0}. Tính thể tích của hình chóp S.ABCD?

    Hình vẽ minh họa

    Kẻ SH\bot AC;H \in (AC) ta có:

    \left\{ \begin{matrix}
SH\bot AC \\
SH \subset (SAC) \\
(SAC)\bot(ABCD) \\
AC = (SAC) \cap (ABCD) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    Vậy SH là đường cao của hình chóp

    Lại có AC = 2a, tam giác SAC vuông tại S và \widehat{SAC} =
60^{0} nên \left\{ \begin{matrix}SA = a \\SC = a\sqrt{3} \\SH = \dfrac{a\sqrt{3}}{2} \\\end{matrix} ight.

    Thể tích hình chóp là V =
\frac{1}{3}.\left( a\sqrt{2} ight)^{2}.\frac{a\sqrt{3}}{2} =
\frac{a^{3}\sqrt{3}}{3}

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, \widehat{ABC} = 60^{0} , tam giác SBC là tam giác đều có bằng cạnh 2a và nằm trong mặt phẳng vuông với đáy. Gọi \varphi là góc giữa hai mặt phẳng (SAC) và (ABC). Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa:

    Gọi H là trung điểm của BC, suy ra SH ⊥ BC

    => SH ⊥ (ABC).

    Gọi K là trung điểm AC=> HK // AB nên HK ⊥ AC.

    Ta có:

    \left\{ \begin{matrix}
AC\bot HK \\
AC\bot SH \\
\end{matrix} ight.\  \Rightarrow AC\bot(SHK) \Rightarrow AC\bot
SK.

    => ((SAC), (ABC)) = (SK, HK) = \widehat{SHK}

    Xét tam giác vuông ABC ta có:

    \begin{matrix}AB = BC.cos\widehat{ABC} = a \hfill\\\Rightarrow HK = \dfrac{1}{2}AB = \dfrac{a}{2} \hfill\\\end{matrix}

    Xét tam giác vuông SHK ta có: \tan\widehat{SHK} = \frac{SH}{HK} =
2\sqrt{3}

  • Câu 19: Thông hiểu

    Cho tứ diện ABCD có độ dài các cạnh AB =
AC = AD = BC = BD = aCD =
a\sqrt{2}. Tính góc giữa hai đường thẳng AD và BC.

    Hình vẽ minh họa

    Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.

    Khi đó: KH//AD,KI//BC \Rightarrow (AD;BC)
= (KH;KI).

    Xét \Delta BIC,BI = \sqrt{BC^{2} -
AC^{2}} = \sqrt{a^{2} - \frac{a^{2}}{2}} =
\frac{a}{\sqrt{2}}.

    Ta có \left\{ \begin{matrix}
AB\bot DH \\
AB\bot HC \\
\end{matrix} \Rightarrow AB\bot(DHC) \Rightarrow AB\bot HI ight..

    Xét \Delta BIH,HI = \sqrt{IB^{2} -
HB^{2}} = \sqrt{\frac{a^{2}}{2} - \frac{a^{2}}{4}} =
\frac{a}{2}. (1)

    Xét \Delta IHK, ta có: \left\{ \begin{matrix}
IK = \frac{BC}{2} = \frac{a}{2} \\
HK = \frac{AD}{2} = \frac{a}{2} \\
\end{matrix} \Rightarrow IK = HK = \frac{a}{2} ight.. (2)

    Từ (1),(2) \Rightarrow HI = IK = HK
\Rightarrow \Delta IHK là tam giác đều

    \Rightarrow \widehat{IKH} = 60^{0} \Rightarrow
(KH;KI) = 60^{0}.

  • Câu 20: Nhận biết

    Cho khối chóp S.ABCSA\bot(ABC) biết độ dài các cạnh SA = 4cm,AB = 6cm, BC = 10cm;CA = 8cm. Thể tích khối chóp S.ABC là:

    Hình vẽ minh họa

    Ta có:

    AB^{2} + AC^{2} = 6^{2} + 8^{2} = 10^{2}
= BC^{2}

    Nên tam giác ABC vuông tại A

    Suy ra S_{ABC} = \frac{1}{2}AB.AC =
24

    Vậy V_{S.ABC} = \frac{1}{3}.S_{ABC}.SA =
32cm^{3}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 74 lượt xem
Sắp xếp theo