Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác đều cạnh a. Gọi D là trung điểm cạnh BC. Biết AA' = 2a, khoảng cách giữa hai đường thẳng A'BC'D là:

    Hình vẽ minh họa

    Gọi D' là trung điểm của B'C', ta có BDC'D' là hình bình hành

    \Rightarrow C'D//BD' \Rightarrow
C'D//(A'BD').

    Kẻ B'H \bot BD'.

    Ta có: \left. \ \begin{matrix}A'D'\bot B'C' \\A'D'\bot BB' \\\end{matrix} ight\} \Rightarrow A'D'\bot(BCC'B')\Rightarrow A'D'\bot B'H.

    \left. \ \begin{matrix}
B'H\bot BD' \\
B'H\bot A'D' \\
\end{matrix} ight\} \Rightarrow
B'H\bot(A'BD')

    Suy ra,

    d(A'B,C'D) = d\left(
C'D;(A'BD') ight) = d\left( C';(A'BD') ight)
= d\left( B';(A'BD') ight) = B'H

    Ta có: B'D' = \frac{a}{2}; BB'= 2a.

    Xét \Delta BB'D' vuông tại B' ta có:

    \frac{1}{B'H^{2}} =
\frac{1}{BB'^{2}} + \frac{1}{B'D'^{2}} = \frac{1}{4a^{2}} +
\frac{4}{a^{2}} \Rightarrow BH = \frac{2a}{\sqrt{17}}

  • Câu 2: Thông hiểu

    Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng a và các góc phẳng đỉnh B đều bằng 600.

    Cặp đường thẳng nào sau đây không vuông góc với nhau?

    Hình ảnh minh họa

    Cặp đường thẳng nào sau đây không vuông góc với nhau

    Xét tam giác CB'D' có ba cạnh bằng a\sqrt 3 nên tam giác không vuông.

    => B’C và CD’ không vuông góc với nhau.

  • Câu 3: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng A'BAD' bằng:

    Hình vẽ minh họa

    Ta có: A'B//D'C nên góc giữa hai đường thẳng A'BAD' bằng góc giữa hai đường thẳng D'CAD' và bằng góc \widehat{AD'C}

    Mà tam giác ACD’ là tam giác đều nên \widehat{AD'C} = 60^{0}

    \Rightarrow (A'B;AD') =
60^{0}

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a tâm I, SA vuông góc với mặt phẳng đáy. Biết SA = a\sqrt{3};\beta = \left( SI;(ABCD)
ight). Tính \tan\beta?

    Hình vẽ minh họa

    Ta có: SA\bot(ABCD) nên AI là hình chiếu vuông góc của SI trên mặt phẳng đáy.

    Do đó góc giữa đường thẳng SI và mặt phẳng (ABCD) bằng góc giữa SI và AI.

    Xét tam giác SAI vuông tại A nên \widehat{SIA} < 90^{0} \Rightarrow (SI;AI) =
\widehat{SIA}

    \tan\widehat{SIA} = \dfrac{SA}{AI} =\dfrac{a\sqrt{3}}{\dfrac{a\sqrt{2}}{2}} = \sqrt{6}

    Vậy \tan\beta = \sqrt{6}

  • Câu 5: Thông hiểu

    Cho tứ diện ABCD có H là trực tâm tam giác BCD, AH vuông góc với mặt phẳng đáy. Khẳng định nào dưới đây là khẳng định đúng?

    Hình vẽ minh họa:

    Vì AH ⊥ (BCD) => AH ⊥ CD (*)

    Do H là trực tâm tam giác BCD => BH ⊥ CD (**)

    Từ (*) và (**) => CD ⊥ AH, CD ⊥ BH => CD ⊥ (ABH) => CD ⊥ AB

  • Câu 6: Thông hiểu

    Nếu ba vecto \vec{a}, \vec{b}, \vec{c} cùng vuông góc với vecto \vec{n} khác \vec{0} thì chúng: 

    "Nếu ba vecto \vec{a}, \vec{b}, \vec{c} cùng vuông góc với vecto \vec{n} khác \vec{0} thì chúng đồng phẳng"

    Giải thích:

    Giả sử \vec{a}, \vec{b}, \vec{c} không đồng phẳng, khi đó tồn tại duy nhất bộ số thực (x; y; z) sao cho:

    \overrightarrow n  = x\overrightarrow a  + y\overrightarrow b  + z\overrightarrow c

    Nhân cả hai vế với \overrightarrow n ta có:

    \begin{matrix}  \overrightarrow n .\overrightarrow n  = x\overrightarrow a .\overrightarrow n  + y\overrightarrow b .\overrightarrow n  + z\overrightarrow c .\overrightarrow n  = 0 \hfill \\   \Rightarrow \overrightarrow n  = \overrightarrow 0  \hfill \\ \end{matrix} 

    (Mâu thuẫn với giả thiết)

  • Câu 7: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Gọi α là góc giữa đường thẳng SD và mặt phẳng (ABCD). Mệnh đề nào sau đây là mệnh đề đúng?

    Hình vẽ minh họa:

    Giả sử H là trung điểm của AB => SH ⊥ AB => SH ⊥ (ABCD)

    => Hình chiếu vuông góc của SD trên mặt phẳng (ABCD) là cạnh HD.

    => \alpha = \left( SD,(ABCD) ight) =
(SD;HD) = \widehat{SDH}

    Tam giác SAB đều cạnh a => SH =
\frac{a\sqrt{3}}{2}

    Ta lại có: HD = \sqrt{AH^{2} + AB^{2}} =
\frac{a\sqrt{5}}{2}

    => \cot\alpha = \cot\widehat{SDH} =
\frac{DH}{SH} = \frac{5}{\sqrt{15}}

  • Câu 8: Thông hiểu

    Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Góc giữa SB và mặt phẳng (SCA) bằng 600. Gọi M là trung điểm của SB. Tính của góc giữa mặt phẳng (AMO) và mặt phẳng (SAB).

    Tính của góc giữa mặt phẳng (AMO) và mặt phẳng (SAB)

    Hình chóp S.ABCD đều, O là tâm của đáy nên SO \bot \left( {ABCD} ight);BD \bot \left( {SAC} ight)

    ABCD là hình vuông cạnh a nên AC = BD = a\sqrt 2 ;OB = \frac{1}{2}BD = \frac{{a\sqrt 2 }}{2}

    Ta có: \left( {SAB} ight) \cap \left( {AMO} ight) = AM

    Khi đó: \sin \varphi  = \frac{{d\left( {O;\left( {SAB} ight)} ight)}}{{d\left( {O;AM} ight)}} với \varphi là góc giữa hai mặt phẳng (AMO) và (SAB).

    Do BD \bot \left( {SAC} ight) suy ra góc giữa SB và (SAC) là góc giữa SB và SO và bằng góc \widehat {BSO} = {60^0}.

    Tam giác SBO vuông tại O nên ta có:

    \begin{matrix}  SO = \dfrac{{OB}}{{\tan {{60}^0}}} = \dfrac{{a\sqrt 2 }}{{2\sqrt 3 }} = \dfrac{{a\sqrt 6 }}{6} \hfill \\  SB = \dfrac{{OB}}{{\sin {{60}^0}}} = \dfrac{{a\sqrt 2 }}{{\sqrt 3 }} = \dfrac{{a\sqrt 6 }}{3} \hfill \\   \Rightarrow MB = \dfrac{{a\sqrt 6 }}{6} \hfill \\ \end{matrix}

    Gọi I là trung điểm của AB. Kẻ OH ⊥ SI (1)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {AB \bot OI} \\   {AB \bot SO} \end{array}} ight. \Rightarrow AB \bot \left( {SOI} ight) \Rightarrow OH \bot AB (2)

    Từ (1) và (2) suy ra OH \bot \left( {SAB} ight) \Rightarrow d\left( {O;\left( {SAB} ight)} ight) = OH

    Vì OI là đường trung bình của tam giác ABD nên OI = \frac{1}{2}AD = \frac{a}{2}

    Tam giác SOI vuông tại O, đường cao OH, có

    \frac{1}{{O{H^2}}} = \frac{1}{{O{I^2}}} + \frac{1}{{S{O^2}}} = \frac{{10}}{{{a^2}}} \Rightarrow OH = \frac{a}{{\sqrt {10} }}

    Áp dụng công thức tính độ dài đường trung tuyến trong các tam giác SAB và SBC, ta có:

    \begin{matrix}  A{M^2} = \dfrac{{2A{B^2} + 2S{A^2} - S{B^2}}}{4} = \dfrac{{2{a^2}}}{3} \Rightarrow AM = a\sqrt {\dfrac{2}{3}}  \hfill \\  C{M^2} = \dfrac{{2C{B^2} - 2C{S^2} - S{B^2}}}{4} = \dfrac{{2{a^2}}}{3} \Rightarrow CM = a\sqrt {\dfrac{2}{3}}  \hfill \\ \end{matrix}

    Trong tam giác AMC, có:

    \cos \widehat {CAM} = \frac{{A{M^2} + A{C^2} - M{C^2}}}{{2AMM.AC}} = \frac{{\sqrt 3 }}{2} \Rightarrow \widehat {CAM} = {30^0}

    \begin{matrix}  d\left( {O;AM} ight) = \dfrac{{d\left( {C;AM} ight)}}{2} \hfill \\   = \frac{1}{2}AC.\sin \widehat {CAM} = \dfrac{1}{2}AC.\sin {30^0} = \dfrac{{a\sqrt 2 }}{4} \hfill \\   \Rightarrow \sin \varphi  = \dfrac{{d\left( {O;\left( {SAB} ight)} ight)}}{{d\left( {O;AM} ight)}} = \dfrac{a}{{\sqrt {10} }}:\dfrac{{a\sqrt 2 }}{4} = \dfrac{2}{{\sqrt 5 }} \hfill \\ \end{matrix}

  • Câu 9: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy

    Ta có: \left\{ \begin{matrix}AC\bot BD \\AC\bot SB \\\end{matrix} ight.\  \Rightarrow AC\bot(SBD)

  • Câu 10: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Trong trường hợp a và b vuông góc nhau và chéo nhau, nếu (P) ⊃ a, (P) // b và (Q) ⊃ b, (Q) // a thì (P) // (Q).

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a. Cạnh bên SA=a\sqrt{2} và vuông góc với đáy (ABCD). Tính khoảng cách d từ điểm B đến mặt phẳng (SCD)

    Hình vẽ minh họa:

    Tính khoảng cách d từ điểm B đến mặt phẳng (SCD)

    Do AB // CD => d(B;(SCD))=d(A;(SCD))

    Kẻ AE ⊥ SD tại E (1)

    Ta có: \left\{ \begin{gathered}CD \bot AD \hfill \\CD \bot SA \hfill \\\end{gathered} ight. \Rightarrow CD \bot (SAD) \Rightarrow CD \bot AE(**)

    Từ (1) và (2) => AE ⊥ (SCD)

    => d(A;(SCD)) = AE

    Xét tam giác vuông SAD ta có:

    AE = \frac{{SA.AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \frac{{a\sqrt 6 }}{3}

    Vậy d(B;(SCD))=AE=\frac{{a\sqrt 6 }}{3}

     

  • Câu 12: Nhận biết

    Cho tam giác ABC vuông tại A và có hai đỉnh B và C nằm trên mặt phẳng (P). Gọi C’ là hình chiếu vuông góc của đỉnh C lên mặt phẳng (P). Trong các mệnh đề sau mệnh đề nào đúng?

    Vì C’ trùng với C nên tam giác ABC’ là tam giác vuông tại A.

  • Câu 13: Nhận biết

    Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa

    Hình vẽ minh họa:

    Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

    Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.

  • Câu 14: Nhận biết

    Tìm mệnh đề đúng trong các mệnh đề sau:

    Đáp án đúng: Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”

  • Câu 15: Vận dụng

    Cho hình vuông ABCD và tam giác đều SAB cạnh a nằm trong hai mặt phẳng vuông góc với nhau. Tính sin góc giữa đường thẳng SC và mặt phẳng (SAD).

    Tính sin góc giữa đường thẳng SC và mặt phẳng (SAD)

    Gọi I là trung điểm của AB. Khi đó SI \bot \left( {ABCD} ight)

    Ta có \left\{ \begin{gathered}  AD \bot AB \hfill \\  AD \bot SI \hfill \\ \end{gathered}  ight. \Rightarrow AD \bot \left( {SAB} ight)AD \subset \left( {SAD} ight) \Rightarrow \left( {SAD} ight) \bot \left( {SAB} ight)

    Dựng BH \bot SA tại H suy ra SH \bot \left( {SAD} ight)

    Trong mặt phẳng (SAD) kẻ Hx // AD. Trong mặt phẳng (BC, Hx) qua C kẻ đường thẳng song song với BH cắt Hx tại K thì CK \bot \left( {SAD} ight)

    Suy ra SK là hình chiếu vuông góc của SC trên mặt phẳng (SAD) nên góc giữa đường thẳng SC và mặt phẳng (SAD) là góc \widehat {CSK}

    Ta có BH = CK = \frac{{a\sqrt 3 }}{2}

    Trong tam giác SCI có

    SC = \sqrt {S{I^2} + I{C^2}}  = \sqrt {\frac{{3{a^2}}}{4} + \frac{{5{a^2}}}{4}}  = a\sqrt 2

    Suy ra \sin \widehat {CSK} = \frac{{CK}}{{SC}} = \dfrac{{\dfrac{{a\sqrt 3 }}{2}}}{{a\sqrt 2 }} = \frac{{\sqrt 6 }}{4}

  • Câu 16: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 8a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 8a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{8}{3}a^{3}

  • Câu 17: Vận dụng

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Gọi K là trung điểm của DD’. Tính khoảng cách giữa hai đường thẳng CK, A’D.

    Hình vẽ minh họa:

    Trong mặt phẳng (CDD’C), gọi P là giao điểm của CK và C’D’

    => KD’ là đường trung bình của ∆PCC’

    => D’ là trung điểm của PC’

    Trong mặt phẳng (A’B’C’D’), gọi M là giao điểm của PB’ và A’D’

    Ta có: A’D // B’C => A’D // (AKB’)

    => d(CK, A’D) = d (A’,(CKB’)) = \frac{1}{2}d(C’,(CPB’))

    Xét tứ diện PCC’B’ ta có:

    C’P, C’B và C’B đôi một vuông góc với nhau

    Đặt d(C’, (CPB’)) = x, thì:

    \frac{1}{x^{2}} = \frac{1}{CC'^{2}}+ \frac{1}{C'B'^{2}} + \frac{1}{C'P^{2}}

    \Rightarrow \frac{1}{x^{2}} =\frac{1}{a^{2}} + \frac{1}{a^{2}} + \frac{1}{4a^{2}} =\frac{9}{4a^{2}}

    \Rightarrow d\left( C';(CPB')ight) = x = \frac{2a}{3}

    \Rightarrow d(CK;A'D) =\frac{1}{2}d\left( C';(CPB') ight) = \frac{1}{2}.\frac{2a}{3}= \frac{a}{3}

  • Câu 18: Vận dụng cao

    Cho khối lập phương ABCD.A’B’C’D’. Gọi M là trung điểm của AD, φ là góc giữa hai mặt phẳng (BMC’) và (ABB’A’). Khẳng định nào dưới đây đúng?

    Hình vẽ minh họa:

    Do ABCD.A’B’C’D’ là hình lập phương

    => MA, CB, C’B’ cùng vuông góc với (ABB’A’)

    => Tam giác MBC’ có hình chiếu vuông góc lên mặt phẳng (ABB’A’) là tam giác ABB’.

    Ta có S_{ABB'} = S_{MBC'}.cos\phi
\Rightarrow \cos\phi = \frac{S_{ABB'}}{S_{MBC'}}

    Xét tam giác MBC’, ta có:

    \begin{matrix}MB = \sqrt{MA^{2} + AB^{2}} = \sqrt{\dfrac{a^{2}}{4} + a^{2}} =\dfrac{\sqrt{5}a}{2} \hfill\\C'B = \sqrt{2}a\hfill \\MC' = \sqrt{DM^{2} + DC'} = \sqrt{\dfrac{a^{2}}{4} + 2a^{2}} =\dfrac{3a}{2} \hfill\\\end{matrix}

    Đặt p = (MB + MC’ + BC’)/2

    Áp dụng công thức Hê-rông ta có:

    S_{MBC'} = \sqrt{p(p - MC')(p -
MB)(p - BC')} = \frac{3a^{2}}{4}

    Mặt khác S_{ABB'} = \dfrac{a^{2}}{2}\Rightarrow \cos\phi = \dfrac{S_{ABB'}}{S_{MBC'}} =\dfrac{\dfrac{a^{2}}{2}}{\dfrac{3a^{2}}{4}} = \dfrac{2}{3}

  • Câu 19: Thông hiểu

    Tính thể tích khối lăng trụ đứng tam giác, đáy là tam giác đều cạnh 2a, cạnh bên bằng 3a.

    Hình vẽ minh họa

    Khối lăng trụ đã cho có đáy là tam giác đều cạnh bằng 2a nên diện tích là \frac{(2a)^{2}\sqrt{3}}{4} và chiều cao AA' = 3a (vì lăng trụ là lăng trụ đứng)

    Vậy thể tích hình lăng trụ là: V =
\frac{(2a)^{2}\sqrt{3}}{4}.3a = 3\sqrt{3}a^{3}

  • Câu 20: Nhận biết

    Công thức tính thể tích V của khối nón có bán kính r và chiều cao h là:

    Công thức tính thể tích là: V =
\frac{1}{3}\pi r^{2}h

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 68 lượt xem
Sắp xếp theo