Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1}. Tính \left( AC;DA_{1} ight)?

    Hình vẽ minh họa

    Ta có:

    AC//A_{1}C_{1} \Rightarrow \left(
AC;DA_{1} ight) = \left( A_{1}C_{1};DA_{1} ight) =
\widehat{DA_{1}C_{1}}

    Do A_{1}C_{1};DA_{1};DC_{1} là các đường chéo hình vuông bằng nhau.

    Vậy tam giác AD_{1}C_{1} là tam giác đều \Rightarrow \widehat{DA_{1}C_{1}} =
60^{0}

    \Rightarrow \left( AC;DA_{1} ight) =
\widehat{DA_{1}C_{1}} = 60^{0}

  • Câu 2: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?

    Gọi O là tâm hình bình hành ABCD.

    Các mặt phẳng cách đều A, B, C, D và S là

    1) Mặt phẳng qua trung điểm của SA, SB, SC, SD

    2) Mặt phẳng qua O và song song (SAB)

    3) Mặt phẳng qua O và song song (SAD)

    4) Mặt phẳng qua O và song song (SCD)

    5) Mặt phẳng qua O và song song (SBC)

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều và H là trung điểm cạnh BC. Gọi O là trung điểm AH của tam giác ABC, SO\bot(ABCD). Gọi I là trung điểm cạnh OH. Gọi mặt phẳng (\alpha) qua I và vuông góc với OH. Thiết diện của (\alpha) với hình chóp S.ABC là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
(\alpha)\bot OH \\
BC\bot OH \\
\end{matrix} ight.\  \Rightarrow (\alpha)//BC

    => Qua I kẻ đường thẳng d_{1}//BC. Gọi \left\{ \begin{matrix}
d_{1} \cap AB = M \\
d_{1} \cap AC = N \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
SO\bot OH \\
(\alpha)\bot OH \\
\end{matrix} ight.\  \Rightarrow (\alpha)//SO=> Qua I kẻ đường thẳng IK//SO;(K \in SH)

    (\alpha)//BC => Qua K kẻ đường thẳng d_{2}//BC. Gọi \left\{ \begin{matrix}
d_{2} \cap SB = Q \\
d_{2} \cap SC = P \\
\end{matrix} ight.

    => thiết diện (\alpha) và hình chóp là tứ giác MNPQ có IK là đường trung trực của MN và PQ.

    => MNPQ là hình thang cân.

  • Câu 4: Nhận biết

    Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

    Ta có: SA ⊥ (ABC) => SA ⊥ BC

    Mặt khác BC ⊥ AB

    Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB

    Vậy \widehat{\left( SC,(SAB) ight)} =\widehat{(SC,SB)} = \widehat{BSC\ }(vì tam giác SBC vuông tại B)

  • Câu 5: Thông hiểu

    Cho tứ diện ABCD có BCD là tam giác vuông tại đỉnh B, cạnh CD =
a,BD = \frac{a\sqrt{6}}{3}, AB = AC
= AD = \frac{a\sqrt{3}}{2}. Tính cosin của góc nhị diện [A, BC, D].

    Hình vẽ minh họa

    Gọi M, H lần lượt là trung điểm của BC, CD.

    Do \Delta BCD vuông tại B nên BH = CH
= DH hay H là tâm đường tròn ngoại tiếp \Delta BCD.

    AB = AC = AD nên AH là đường cao kẻ từ A xuống (BCD) hay AH\bot(BCD).

    \Rightarrow AH\bot BC. (1)

    M, H là trung điểm của BC, CD nên MH là đường trung bình của \Delta BCD

    \Rightarrow \left\{ \begin{matrix}MH = \dfrac{1}{2}BD = \dfrac{a\sqrt{6}}{6}. \\MH//BD \\\end{matrix} ight.

    MD\bot BC nên MH\bot BC. (2)

    Từ (1), (2) suy ra: BC\bot(AMH).

    Suy ra: \left\{ \begin{matrix}
BC\bot AM \\
BC\bot MH \\
\end{matrix} \Rightarrow \lbrack A,BC,Dbrack = \widehat{AMH} ight..

    Lại có: AH = \sqrt{AC^{2} - CH^{2}} =
\sqrt{\left( \frac{a\sqrt{3}}{2} ight)^{2} - \left( \frac{a}{2}
ight)^{2}} = \frac{a\sqrt{2}}{2}.

    \Rightarrow \tan\widehat{AMH} =
\frac{AH}{MH} = \sqrt{3} \Rightarrow \widehat{AMH} = \frac{\pi}{3}
\Rightarrow \cos\widehat{AMH} = \frac{1}{2}.

  • Câu 6: Thông hiểu

    Cho tứ diện ABCD có AB vuông góc với CD. Mặt phẳng (P) song song với AB và CD lần lượt cắt BC, DB, AD, AC tại M, N, P, Q. Tứ giác MNPQ là hình gì?

    Hình vẽ minh họa:

    Ta có: (MNPQ) // AB; (MNPQ) ∩ (ABC) = MQ

    => MQ // AB

    Tương tự ta có: MN // CD; NP // AB; QP // CD

    Khi đó tứ giác MNPQ là hình bình hành

    Ta có: MN ⊥ MQ (Do AB ⊥ CD)

    Hay tứ giác MNPQ là hình chữ nhật.

  • Câu 7: Nhận biết

    Cho một khối trụ có diện tích đáy bằng 4a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 4a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối trụ là: V = B.h = 4a^{2}.a
= 4a^{3}

  • Câu 8: Thông hiểu

    Cho hai hình vuông ABCD và ABEF cạnh a nằm trên hai mặt phẳng vuông góc. Đường thẳng DE vuông góc với 

    Đường thẳng DE vuông góc với chỉ với AC và BF

  • Câu 9: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. Cạnh bện SA vuông góc với mặt phẳng (ABCD) và SC =10\sqrt{5}. Gọi M, N lần lượt là trung điểm của SA và CD. Tính khoảng cách d giữa BD và MN.

    Hình vẽ minh họa:

    Gọi P là trung điểm BC và E = NP ∩ AC

    => PN // BD => BD // (MNP)

    => d(BD, MN) = d(BD, (MNP)) = d(O, (MNP)) = \frac{1}{3}d(A, (MNP))

    Kẻ AK ⊥ ME

    Khi đó d(A, (MNP)) = AK.

    Ta tính được:

    \begin{matrix}SA = \sqrt{SC^{2} - AC^{2}} = 10\sqrt{3} \\\Rightarrow MA = 5\sqrt{3};AE = \dfrac{3}{4}AC = \dfrac{15\sqrt{2}}{2} \\\end{matrix}

    Xét tam giác vuông MAE ta có:

    AK = \frac{MA.AE}{\sqrt{MA^{2} +AE^{2}}} = 3\sqrt{5}

    \Rightarrow d(BD;MN) = \frac{1}{3}AK =\sqrt{5}

  • Câu 10: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?

    Hình vẽ minh họa:

    Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).

    Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.

  • Câu 11: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh bên SA vuông góc với đáy. Kết luận nào đưới dây đúng?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
SA\bot CD \\
AD\bot CD \\
\end{matrix} ight.\  \Rightarrow CD\bot(SAD) \Rightarrow CD\bot
SD

  • Câu 12: Nhận biết

    Cho hình chóp tứ giác S.ABCD có tất cả các cạnh đều bằng nhau và bằng a. Số đo góc giữa hai đường thẳng SACD bằng bao nhiêu?

    Hình vẽ minh họa

    Ta có: AB//CD \Rightarrow (SA;CD) =
(SA;AB) = \widehat{SAB}

    Tam giác SAB đều nên \widehat{SAB} = 60^{0}

    \Rightarrow (SA;CD) = \widehat{SAB} =
60^{0}

  • Câu 13: Vận dụng

    Cho hình chóp S.ABCD có SA \bot \left( {ABCD} ight)SA = a\sqrt 3. Đáy ABCD là hình chữ nhật có AB = a,\,AD = a\sqrt 3. Gọi M là trung điểm của CD, góc giữa SA và mặt phẳng (SBM) bằng \alpha . Giá trị \tan \alpha bằng:

    Tính tan của góc giữa SA và mặt phẳng (SBM)

    Gọi K, I lần lượt là hình chiếu vuông góc của A lên BM và SK.

    Ta có \left\{ \begin{gathered}  BM \bot AK \hfill \\  BM \bot SA\left( {V\`i \,SA \bot \left( {ABCD} ight)} ight) \hfill \\  AK,SA \subset \left( {SAK} ight) \hfill \\  AK \cap SA = \left\{ A ight\} \hfill \\ \end{gathered}  ight. \Rightarrow BM \bot \left( {SAK} ight)

    AI \subset \left( {SAK} ight) \Rightarrow BM \bot AI

    Ta có \left\{ \begin{gathered}  AI \bot BM \hfill \\  AI \bot SK \hfill \\  BM,SK \subset \left( {SBM} ight) \hfill \\  BM \cap SK = \left\{ K ight\} \hfill \\ \end{gathered}  ight. \Rightarrow AI \bot \left( {SBM} ight)

    Suy ra hình chiếu vuông góc của điểm A lên mặt phẳng (SBM) là điểm I. Do đó bằng góc giữa hai đường thẳng SA và SI và bằng góc \widehat {ASK}.

    Ta có \left\{ \begin{gathered}  SA \bot \left( {ABCD} ight) \hfill \\  AK \subset \left( {ABCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow SA \bot AK

    Tính tan của góc giữa SA và mặt phẳng (SBM)

    \begin{matrix}  {S_{\Delta ABM}} = {S_{ABCD}} - {S_{\Delta AMD}} - {S_{\Delta BMC}} \hfill \\   = {a^2}\sqrt 3  - {a^2}\dfrac{{\sqrt 3 }}{4} - {a^2}\dfrac{{\sqrt 3 }}{4} = {a^2}\dfrac{{\sqrt 3 }}{2} \hfill \\  BM = \sqrt {B{C^2} + M{C^2}}  = \sqrt {3{a^2} + \frac{{{a^2}}}{4}}  = \dfrac{{a\sqrt {13} }}{2} \hfill \\ \end{matrix}

    Ta có

    \begin{matrix}  {S_{\Delta ABM}} = \dfrac{1}{2}AK.BM \hfill \\   \Rightarrow AK = \dfrac{{2{S_{\Delta ABM}}}}{{BM}} = \dfrac{{{a^2}\sqrt 3 }}{{a\dfrac{{\sqrt {13} }}{2}}} = a\dfrac{{2\sqrt 3 }}{{\sqrt {13} }} \hfill \\ \end{matrix}

    Xét tam giác vuông SAK có \tan \widehat {ASK} = \frac{{AK}}{{SA}} = \frac{{a\frac{{2\sqrt 3 }}{{\sqrt {13} }}}}{{a\sqrt 3 }} = \frac{2}{{\sqrt {13} }}

  • Câu 14: Nhận biết

    Cho khối chóp S.ABC có chiều cao bằng 6 đáy là tam giác ABC có diện tích bằng 12. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 12 \\
h = 6 \\
\end{matrix} ight.

    Thể tích khối chóp tam giác là V =
\frac{1}{3}B.h = \frac{1}{3}.12.6 = 24

  • Câu 15: Vận dụng

    Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. H là hình chiếu vuông góc của O trên mặt phẳng (ABC). Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa:

    Chọn khẳng định sai

    Ta có: OA ⊥ OB, OA ⊥ OC => OA ⊥ (OBC) => OA ⊥ BC (*)

    Gọi M là giao điểm của AH và BC

    Theo giả thiết ta có: OH ⊥ (ABC) => OH ⊥ BC (**)

    Từ (*) và (**) suy ra: BC ⊥ (AOM) => BC ⊥ OM

    Xét tam giác BOC vuông ta có:

    \frac{1}{{O{I^2}}} = \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}

    Xét tam giác AOI vuông ta có:

    \frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{M^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}

    Từ chứng minh trên ta có: BC ⊥ (AOM) => BC ⊥ AM (1)

    Gọi N là giao điểm của BH và AC. Chứng minh tương tự ta có: AC ⊥ BN (2)

    Từ (1) và (2) => H là trực tâm tam giác ABC

    Vậy 3O{H^2} = A{B^2} + A{C^2} + B{C^2} là kết quả sai.

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với mặt đáy và SA = AB = \sqrt{3}. Gọi G là trọng tâm của tam giác SAB. Khoảng cách từ G đến mặt phẳng (SBC) bằng:

    Hình vẽ minh họa

    Gọi M là trung điểm của SB \Rightarrow AM\bot SB (vì \Delta SAB cân)

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
BC\bot SA \\
\end{matrix} \Rightarrow BC\bot(SAB) \Rightarrow BC\bot AM ight.

    \left\{ \begin{matrix}
AM\bot SB \\
AM\bot BC \\
\end{matrix} \Rightarrow AM\bot(SBC) \Rightarrow GM\bot(SBC) ight. tại M.

    Do đó d(G;(SBC)) = GM.

    Ta có: SM = \sqrt{AB^{2} + SA^{2}} =
\sqrt{6} \Rightarrow AM = \frac{SB}{2} =
\frac{\sqrt{6}}{2}.

    G là trọng tâm của \Delta SAB nên GM = \frac{1}{3}AM =
\frac{\sqrt{6}}{6}.

  • Câu 17: Thông hiểu

    Cho hình chóp S,ABC có đáy là tam giác vuông cân tại A. Tam giác SBC là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với mặt đáy. Tính d(SA;BC)?

    Hình vẽ minh họa

    Gọi H là trung điểm của BC. Suy ra SH\bot(ABC)

    Kẻ HK\bot SA;(K \in SA)(1)

    Ta có: \left\{ \begin{matrix}
BC\bot SH \\
BC\bot AH \\
\end{matrix} ight.\  \Rightarrow BC\bot(SHA) \Rightarrow BC\bot
KH(2)

    Từ (1) và (2) suy ra HK là đoạn vuông góc chung của SA và BC

    Do đó d(SA;BC) = HK =
\frac{SH.HA}{\sqrt{SH^{2} + HA^{2}}} = \frac{a\sqrt{3}}{4}

  • Câu 18: Nhận biết

    Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến ∆. Gọi ϕ là góc giữa (P) và (Q). Có tất cả bao nhiêu mệnh đề đúng trong các mệnh đề sau?

    (1) ϕ bằng góc giữa hai đường thẳng a và b cùng vuông góc với ∆.

    (2) ϕ bằng góc giữa hai đường thẳng a và b cùng vuông góc với ∆, lần lượt nằm trên (P) và (Q).

    (3) ϕ bằng góc giữa hai đường thẳng a và b đồng quy với ∆, cùng vuông góc với ∆, lần lượt nằm trên (P) và (Q).

    Ta có: a và b chỉ cần lần lượt nằm trong (P), (Q) cùng vuông góc với ∆ là đủ, thêm đồng quy với ∆ càng tốt nên có tất cả 2 mệnh đề đúng.

  • Câu 19: Thông hiểu

    Cho khối lăng trụ tam giác đều ABC.A'B'C'AA' = 4a. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 30^{0}.

    Hình vẽ minh họa

    Gọi M là trung điểm của BC.

    Khi đó \left( (A'BC);(ABC) ight) =
\widehat{A'MA} = 30^{0}

    Trong tam giác vuông A’MA có:

    \tan\widehat{A'MA} =
\frac{A'A}{AM} \Rightarrow AM = \frac{A'A}{tan30^{0}} =
4\sqrt{3}a

    Tam giác ABC đều nên AM =
\frac{AB\sqrt{3}}{2} \Rightarrow AB = 8a

    Vậy thể tích khối lăng trụ là: V =
S_{ABC}.AA' = \frac{(8a)^{2}\sqrt{3}}{4} =
64\sqrt{3}a^{3}

  • Câu 20: Vận dụng cao

    Cho hình lập phương ABCD.A’B’C’D’ có tâm O. Gọi I là tâm của hình vuông A’B’C’D’ và điểm M thuộc đoạn OI sao cho MO = 2MI (tham khảo hình vẽ). Khi đó sin của góc tạo bởi hai mặt phẳng (MC’D’) và (MAB) bằng:

    Hình ảnh minh họa:

    Do AB // C’D’ nên giao tuyến của (MAB) và (MC’D’) là đường thẳng ∆ // AB // C’D’.

    Gọi P, Q lần lượt là trung điểm của D’C’ và AB ta có:

    \left\{ \begin{matrix}
MP\bot C’D’ \\
MQ\bot AB \\
\end{matrix} ight.=> MP ⊥ ∆, MQ ⊥ ∆.

    Như vậy góc giữa (MAB) và (MC0’’) là góc giữa MP và MQ.

    Không mất tính tổng quát, ta cho cạnh hình lập phương là 6.

    Khi đó \left\{ \begin{matrix}
MP = \sqrt{IM^{2} + IP^{2}} = \sqrt{10} \\
MQ = \sqrt{34};PQ = 6\sqrt{2} \\
\end{matrix} ight.

    Áp dụng định lí cosin cho tam giác MPQ ta được:

    \cos\widehat{PMQ} = \frac{MP^{2} +
MQ^{2} - PQ^{2}}{2MP.MQ} = - \frac{14}{\sqrt{340}}

    Góc α là góc giữa hai mặt phẳng (MC’D’) và (MAB) ta có:

    \cos\alpha = \frac{14}{\sqrt{340}} =
\frac{7\sqrt{85}}{85} \Rightarrow \sin\alpha =
\frac{6\sqrt{85}}{85}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 73 lượt xem
Sắp xếp theo