Cho tứ diện
có
. Gọi trung điểm của các cạnh
lần lượt là
. Biết rằng
. Tính
?
Hình vẽ minh họa
Đặt
Vì trung điểm của các cạnh lần lượt là
Suy ra
Từ đó
Suy ra tam giác GEF vuông tại G.
Vì nên
Cho tứ diện
có
. Gọi trung điểm của các cạnh
lần lượt là
. Biết rằng
. Tính
?
Hình vẽ minh họa
Đặt
Vì trung điểm của các cạnh lần lượt là
Suy ra
Từ đó
Suy ra tam giác GEF vuông tại G.
Vì nên
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA vuông góc với đáy, góc
. Tính khoảng cách d giữa hai đường thẳng AB và SO.
Hình vẽ minh họa:

Ta có suy ra
Mà => ΔSBD đều cạnh
Xét tam giác vuông SAB có:
Gọi E là trung điểm AD, suy ra và
Do đó
Kẻ
Ta có:
Từ (1) và (2)
=>
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B , SA vuông góc với mặt phẳng (ABCD), AB = BC = a, AD = 2a. Biết góc giữa SC và mặt phẳng (ABCD) bằng 450. Tính góc giữa mặt phẳng (SAD) và (SCD).

Tam giác ABC vuông cân tại B, suy ra
Vì nên AC là hình chiếu của SC trên mặt phẳng (ABCD).
Khi đó
Gọi M là trung điểm của AD => CM ⊥ AD.
Mà CM ⊥ SA nên CM ⊥ (SAD) => CM ⊥ SD
Hạ CH ⊥ SD . Khi đó SD ⊥ (CMH) => MH ⊥ SD
Ta có:
Ta lại có:
Tam giác MHC vuông tại M
Vậy
Cho hình chóp tứ giác
có tất cả các cạnh đều bằng nhau và bằng
. Số đo góc giữa hai đường thẳng
và
bằng bao nhiêu?
Hình vẽ minh họa
Ta có:
Tam giác đều nên
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:
Hình vẽ minh họa:
Theo bài ta có AB là hình chiếu của SB trên (ABC)
Vậy
Mà ∆SBA vuông cân tại A nên
Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu hình hộp có ba mặt chung một đỉnh là hình vuông thì nó là hình lập phương.
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = a. Giả sử góc BAD bằng 600. Khoảng cách từ điểm S đến mặt phẳng (ABCD) bằng:
Hình vẽ minh họa

Từ S vẽ SO ⊥ (ABCD) ⇒ OA = OB = OC (là hình chiếu của các đường xiên bằng nhau) ⇒ O là tâm đường tròn ngoại tiếp đáy
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng đáy. Trực tâm của tam giác SBC và ABC lần lượt là H và K. Khẳng định nào dưới đây là khẳng định sai?
Ta có: BC ⊥ SA, BC ⊥ SH => BC ⊥ (SAH)
CK ⊥ AB, CK ⊥ SA => CK ⊥ (SAB) => CK ⊥ SB
Mặt khác CH ⊥ SB => SB ⊥ (CHK)
Ta có: BC ⊥ (SAH) => BC ⊥ HK
SB ⊥ (CHK) => SB ⊥ HK
=> HK ⊥ (SBC)
Dùng phương pháp loại trừ ta suy ra: BC ⊥ (SAB) là đáp án sai.
Cho tứ diện ABCD có AB, BC, BD đôi một vuông góc. Trong các khẳng định dưới đây khẳng định nào đúng?
Hình vẽ minh họa:

sai vì
CB ⊥ BD, CB ⊥ BA => CB ⊥ (ABD)
=> B là hình chiếu của C trên mặt phẳng (ABD)
=>
đúng vì
AB ⊥ BC, AB ⊥ BD => AB ⊥ (BCD)
=> B là hình chiếu của A trên mặt phẳng (BCD)
=>
sai vì
BD⊥ BA, BD ⊥ BC => BD ⊥ (ABC)
=> B là hình chiếu của D trên mặt phẳng (ABC)
=>
sai vì
=> B là hình chiếu của C trên mặt phẳng (ABD)
=>
Cho hình chóp
có đáy
là tam giác đều cạnh
, SA vuông góc với đáy và
. Tính chiều cao hình chóp
?
Ta có nên SA là đường cao của hình chóp
Tam giác ABC đều cạnh x nên
Vậy thể tích hình chóp là:
Cho hình vuông ABCD và tam giác đều SAB cạnh a nằm trong hai mặt phẳng vuông góc với nhau. Tính sin góc giữa đường thẳng SC và mặt phẳng (SAD).

Gọi I là trung điểm của AB. Khi đó
Ta có mà
Dựng tại H suy ra
Trong mặt phẳng (SAD) kẻ Hx // AD. Trong mặt phẳng (BC, Hx) qua C kẻ đường thẳng song song với BH cắt Hx tại K thì
Suy ra SK là hình chiếu vuông góc của SC trên mặt phẳng (SAD) nên góc giữa đường thẳng SC và mặt phẳng (SAD) là góc
Ta có
Trong tam giác SCI có
Suy ra
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA = x và vuông góc với mặt phẳng (ABCD). Xác định x để hai mặt phẳng (SBC) và (SCD) tạo với nhau một góc 600.
Hình vẽ minh họa:
Từ A kẻ AH vuông góc với SB (H ∈ SB).
Ta có:
Mà AH ⊥ SB suy ra AH ⊥ (SBC).
Từ A kẻ AK vuông góc với SD (K ∈ SD), tương tự, chứng minh được AK ⊥ (SCD).
Khi đó SC ⊥ (AHK) suy ra ((SBC); (SCD)) = (AH; AK) = = 600.
Lại có ∆SAB = ∆SAD => AH = AK mà = 600 suy ra tam giác AHK đều.
Tam giác SAB vuông tại S ta có:
Vì HK // BD suy ra
=> x = a
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên
và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ O đến mặt phẳng (SBC)
Ta có:
Từ A kẻ =>
Cho hình chóp tam giác
có
và
. Kết quả nào dưới đây đúng?
Ta có:
suy ra tam giác ABC vuông tại A
=> M là tâm đường tròn ngoại tiếp tam giác ABC.
Vì nên
là đường cao của hình chóp
.
Hình vẽ minh họa
Gọi N, I lần lượt là trung điểm cạnh AC và SB.
Ta có: MN // AB và IM // SC nên
Mà
Xét tam giác IMN có
Trong không gian cho đường thẳng Δ và điểm O. Qua điểm O có bao nhiêu mặt phẳng vuông góc với mặt phẳng Δ?
Trong không gian cho đường thẳng Δ và điểm O. Qua điểm O có đúng một mặt phẳng vuông góc với mặt phẳng Δ.
Công thức tính thể tích
của khối nón có bán kính
và chiều cao
là:
Công thức tính thể tích là:
Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình chữ nhật với AC =
và BC = . Tính khoảng cách giữa SD và BC.
Hình vẽ minh họa:
Theo giả thiết, suy ra AD là hình chiếu vuông góc của SD lên mặt phẳng (ABCD) và CD ⊥ AD (do ABCD là hình chữ nhật), nên theo định lý ba đường vuông góc suy ra CD ⊥ SD. Vì CD cũng vuông góc với BC nên CD là đoạn vuông góc chung của SD và BC.
Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó
bằng:

Khối chóp tứ giác
có đáy
là hình vuông cạnh bằng
,
. Mặt phẳng
tạo với mặt phẳng đáy một góc
. Xác định thể tích khối chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Tam giác SAB cân tại S nên
Ta có:
Vậy SH là đường cao của hình chóp
Xét tam giác AHS vuông tại H ta có:
Vậy thể tích hình chóp là:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy
Ta có: