Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 2a?

    Ta có: V = (2a)^{3} = 8a^{3}

  • Câu 2: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh a, SA\bot(ABCD);SA = a\sqrt{2}. Xác định thể tích S.ABCD?

    Hình vẽ minh họa

    Ta có:

    S_{ABCD} = a^{2} \Rightarrow V_{S.ABCD}
= \frac{1}{3}SA.S_{ABCD} = \frac{a^{3}\sqrt{2}}{3}

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABC có SA = SB = CA = CB. Tính ϕ là góc giữa SC và mặt phẳng (ABC), biết (SAB) vuông góc với (ABC):

    Hình vẽ minh họa:

    Gọi H là trung điểm của AB, ta có SH ⊥ AB, CH ⊥ AB

    Mà (SAB) ⊥ (ABC) nên SH ⊥ (ABC)

    Suy ra \left\{ \begin{matrix}SH\bot CH \\\widehat{\left( SC,(ABC) ight)} = \widehat{SCH} \\\end{matrix} ight.

    Ta có:

    ∆SAB = ∆CAB (c.c.c)

    => SH = CH. Do đó ∆SCH vuông cân tại H

    Vậy \widehat{\left( SC,(ABC) ight)} =\widehat{SCH} = 45^{0}

  • Câu 4: Vận dụng

    Cho tứ diện đều ABCD có M là trung điểm của cạnh CD, gọi \varphi là góc giữa hai đường thẳng AM và BC. Giá trị \cos \varphi bằng:

    Tính cosin góc giữa hai đường thẳng

    Giả sử cạnh của tứ diện đều bằng a

    Vì M là trung điểm của CD. Nên AM là đường cao trong tam giác ACD đều.

    => AM = \frac{{a\sqrt 3 }}{2}

    Ta có:

    \begin{matrix}  \overrightarrow {CB} .\overrightarrow {AM}  = \overrightarrow {CB} .\left( {\overrightarrow {CM}  - \overrightarrow {CA} } ight) = \overrightarrow {CB} .\overrightarrow {CM}  - \overrightarrow {CB} .\overrightarrow {CA}  \hfill \\   = CB.CM.\cos \widehat {BCM} - CB.CA.\cos \widehat {ACB} \hfill \\   = a.\dfrac{a}{2}.\cos {60^o} - a.a.\cos {60^o} =  - \dfrac{{{a^2}}}{4} \hfill \\ \end{matrix}

    => \cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight) = \dfrac{{\overrightarrow {BC} .\overrightarrow {AM} }}{{\left| {\overrightarrow {BC} } ight|.\left| {\overrightarrow {AM} } ight|}} = \dfrac{{\dfrac{{ - {a^2}}}{4}}}{{a.\dfrac{{a\sqrt 3 }}{2}}} = \dfrac{{ - \sqrt 3 }}{6}

     

    => \cos \varphi  = \left| {\cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight)} ight| = \frac{{\sqrt 3 }}{6}

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABCD, có đáy ABCD là hình chữ nhật, SA\bot(ABCD). Gọi AE;AF lần lượt là đường cao của tam giác SABSAD. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    SA\bot(ABCD) \Rightarrow SA\bot
BC

    AB\bot BC \Rightarrow
BC\bot(SAB)

    \Rightarrow BC\bot AE \subset
(SAB)

    Tam giác SAB có đường cao AE \Rightarrow
AE\bot SB

    AE\bot CB \Rightarrow AE\bot(SBC)
\Rightarrow AE\bot SC

    Tương tự chứng minh ta được: AF\bot SC
\Rightarrow SC\bot(AEF)

  • Câu 6: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông, đường chéo AC = 2a và SA vuông góc với mặt phẳng đáy (ABCD) (tham khảo hình vẽ). Tính khoảng cách giữa hai đường thẳng SB và CD.

    Hình vẽ minh họa:

    Vì AB // CD ⇒ CD // (SAB)

    => d(CD, (SAB)) = d(D, (SAB))

    Mà AD ⊥ (SAB) => d(D, (SAB)) = AD.

    Xét tam giác ABD vuông tại A ta có:

    AB2 + AD2 = BD2 = 4a2 => AD = a\sqrt{2}

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I, cạnh a, \widehat{BAD} = 60^{0};SA = SB = SD =
\frac{a\sqrt{3}}{2}. Gọi ϕ là góc giữa hai mặt phẳng (SBD) và (ABCD). Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa:

    Từ giả thiết suy ra tam giác ABD đều cạnh a.

    Gọi H là hình chiếu của S trên mặt phẳng (ABCD).

    Do SA = SB = SD nên suy ra H cách đều các đỉnh của tam giác ABD hay H là tâm của tam giác đều ABD.

    Suy ra:

    \begin{matrix}HI = \dfrac{AI}{3} = \dfrac{a\sqrt{3}}{6} \hfill\\SH = \sqrt{SA^{2} - AH^{2}} = \dfrac{a\sqrt{15}}{6}\hfill \\\end{matrix}

    Vì ABCD là hình thoi nên HI ⊥ BD.

    Tam giác SBD cân tại S nên SI ⊥ BD

    => ((SBD), (ABCD)) = (SI, AI) = \widehat{SIH}

    Trong tam vuông SHI ta có: \tan\widehat{SIH} = \frac{SH}{HI} =
\sqrt{5}

  • Câu 8: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy

    Ta có: \left\{ \begin{matrix}AC\bot BD \\AC\bot SB \\\end{matrix} ight.\  \Rightarrow AC\bot(SBD)

  • Câu 9: Nhận biết

    Trong không gian cho đường thẳng a và điểm M. Có bao nhiêu đường thẳng đi qua M và vuông góc với a?

    Trong không gian cho đường thẳng a và điểm M. Gọi (P) là mặt phẳng đi qua M vuông góc với a. Khi đó mọi đường thẳng nằm trong mặt phẳng (P) và đi qua M đều vuông góc với a.

    => Vậy có vô số đường thẳng đi qua M và vuông góc với a.

  • Câu 10: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, biết \Delta SAD đều. Tính \cos(BC;SA)?

    Hình vẽ minh họa

    Ta có: BC//AD \Rightarrow (BC;SA) =
(AD;SA) = 60^{0}

    \Rightarrow \cos(BC;SA) =
\frac{1}{2}.

  • Câu 11: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD;AB = SA = a. Tính khoảng cách từ đường thẳng AB và mặt phẳng (SCD) bằng:

    Hình vẽ minh họa

    Gọi O là tâm của đáy \Rightarrow
SO\bot(ABCD)

    Lấy M, N lần lượt là trung điểm AB, CD.

    Kẻ OH\bot SN

    \left\{ \begin{matrix}
ON\bot CD \\
CD\bot SO \\
\end{matrix} ight.\  \Rightarrow CD\bot(SON)

    \Rightarrow CD\bot OH \Rightarrow
OH\bot(SCD)

    Ta có: AB//CD \subset (SCD) \Rightarrow
AB//(SCD)

    Khi đó d\left( AB;(SCD) ight) = d\left(
M;(SCD) ight) = 2d\left( O;(SCD) ight) = 2OH

    Trong tam giác SON vuông tại O, OH\bot
SN có:

    \frac{1}{OH^{2}} = \frac{1}{SO^{2}} +
\frac{1}{ON^{2}} \Rightarrow OH = \frac{a\sqrt{6}}{6}

    \Rightarrow d\left( AB;(SCD) ight) =
\frac{a\sqrt{6}}{3}

  • Câu 12: Vận dụng cao

    Cho tứ diện ABCD có (ACD) ⊥ (BCD), AC = AD = BC = BD = a, CD = 2x. Giá trị của x để hai mặt phẳng (ABC) và (ABD) vuông góc với nhau là:

    Hình vẽ minh họa:

    Gọi H là trung điểm của CD.

    Do tam giác ACD cân tại A và tam giác BCD cân tại B.

    \Rightarrow \left\{ \begin{matrix}
CD\bot AH \\
CD\bot BH \\
\end{matrix} \Rightarrow CD\bot(ABH) \Rightarrow CD\bot AB. ight.

    Gọi E là trung điểm của AB, do tam giác ABC cân tại C

    \Rightarrow \left\{ \begin{matrix}
CD\bot AB \\
AB\bot AE \\
\end{matrix} \Rightarrow AB\bot(CDE) \Rightarrow AB\bot DE. ight.

    \Rightarrow \left\{ \begin{matrix}
(ABC) \cap (ABD) = AB \\
(ABC) \supset CE\bot AB \\
(ABC) \supset DE\bot AB \\
\end{matrix} ight.

    \Rightarrow \widehat{\left( (ABC);(ABD)
ight)} = \widehat{(CE;DE)} = 90^{0}

    Ta có ∆ABC = ∆ADC (c.c.c) => CE = DE => ∆CDE vuông cân tại E.

    CD = CE\sqrt{2} \Rightarrow 2x =
CE\sqrt{2} \Rightarrow CE = x\sqrt{2}(*)

    Xét tam giác vuông CBH có BH^{2} = BC^{2}
- BH^{2} = a^{2} - x^{2}

    Xét tam giác vuông ACH có AH^{2} = AC^{2}
- CH^{2} = a^{2} - x^{2}

    Xét tam giác vuông ABH có:

    \begin{matrix}AB^{2} = AH^{2} + BH^{2} = 2a^{2} - 2x^{2}\hfill \\\Rightarrow AE = \dfrac{\sqrt{2a^{2} - 2x^{2}}}{2}\hfill \\\end{matrix}

    Xét tam giác vuông ACE có:

    CE^{2} = AC^{2} - AE^{2}

    = a^{2} - \frac{a^{2} - x^{2}}{2} =
\frac{a^{2} + x^{2}}{2}

    \Rightarrow CE = \sqrt{\frac{a^{2} +
x^{2}}{2}}

    Thay CE vào (*) ta được

    \sqrt{\frac{a^{2} + x^{2}}{2}} =
x\sqrt{2} \Rightarrow x = \frac{a\sqrt{3}}{3}

  • Câu 13: Thông hiểu

    Cho hình chóp O.ABC có OA = OB = OC = 1, các cạnh OB, OC, OA đối một vuông góc. Gọi M là trung điểm của AB. Tính góc giữa hai vecto \overrightarrow {OM} ;\overrightarrow {BC}?

    Tính góc giữa hai vecto

    Ta có:

    \begin{matrix}  \overrightarrow {OM} .\overrightarrow {BC}  = \dfrac{1}{2}\left( {\overrightarrow {OA}  - \overrightarrow {OB} } ight).\left( {\overrightarrow {OC}  - \overrightarrow {OB} } ight) \hfill \\   = \dfrac{1}{2}O{B^2} = \dfrac{{ - 1}}{2} \hfill \\   \Rightarrow \cos \left( {\overrightarrow {OM} .\overrightarrow {BC} } ight) = \dfrac{{\overrightarrow {OM} .\overrightarrow {BC} }}{{OM.BC}} = \dfrac{{ - \dfrac{1}{2}}}{{\dfrac{{\sqrt 2 .\sqrt 2 }}{2}}} =  - \dfrac{1}{2} \hfill \\   \Rightarrow \left( {\overrightarrow {OM} .\overrightarrow {BC} } ight) = {120^0} \hfill \\ \end{matrix}

  • Câu 14: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào là đúng?

     Mệnh đề đúng: "Nếu hình hộp có ba mặt chung một đỉnh là hình vuông thì nó là hình lập phương"

  • Câu 15: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' . Ghép nối các đáp án với nhau.

    • (AB,B'C') || 90^{0}
    • (AC,B'C') || 45^{0}
    • (A'C',B'C) || 60^{0}
    Đáp án là:

    Cho hình lập phương ABCD.A'B'C'D' . Ghép nối các đáp án với nhau.

    • (AB,B'C') || 90^{0}
    • (AC,B'C') || 45^{0}
    • (A'C',B'C) || 60^{0}

    Hình vẽ minh họa

    Ta có: AB//A'B'(A'B',B'C') = 90^{0} \Rightarrow
(AB,B'C') = 90^{0}

    Vì tứ giác ABCD là hình vuông nên (AC;BC) = 45^{0}

    Ta có: BC//B'C' nên (AC,B'C') = 45^{0}

    Ta có: A'C'//AC và tam giác AVB' là tam giác đều vì có các cạnh đều bằng đường chéo của các hình vuông bằng nhau. Do đó (A'C',B'C) = (AC,B'C) =
60^{0}

  • Câu 16: Thông hiểu

    Tính thể tích khối lăng trụ đứng tam giác, đáy là tam giác đều cạnh 2a, cạnh bên bằng 3a.

    Hình vẽ minh họa

    Khối lăng trụ đã cho có đáy là tam giác đều cạnh bằng 2a nên diện tích là \frac{(2a)^{2}\sqrt{3}}{4} và chiều cao AA' = 3a (vì lăng trụ là lăng trụ đứng)

    Vậy thể tích hình lăng trụ là: V =
\frac{(2a)^{2}\sqrt{3}}{4}.3a = 3\sqrt{3}a^{3}

  • Câu 17: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:

    Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”

    Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB

    Mặt khác AB ⊥ AD.

    Từ đó suy ra AB ⊥ (SDA)

  • Câu 18: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA ⊥ (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào?

    Hình vẽ minh họa:

    Do I là trung điểm của SC và O là trung điểm AC nên IO ∥ SA. Do SA ⊥ (ABCD) nên IO ⊥ (ABCD), hay khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng IO

  • Câu 19: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Cắt hình lập phương bởi mặt phẳng trung trực của BD'. Diện tích thiết diện tạo thành bằng:

    Hình vẽ minh họa

    Gọi E là trung điểm của AD. Ta có: EB
= ED' nên E thuộc mặt phẳng trung trực của BD'.

    Gọi F;G;H;I;K lần lượt là trung điểm của CD;CC';B'C';A'B';AA'

    Chứng minh tương tự ta có các điểm trên đều thuộc mặt phẳng trung trực của BD'

    Vậy thiết diện của hình lập phương cắt bởi mặt phẳng trung trực của BD' là hình lục giác đều EFGHIK có cạnh bằng \frac{a\sqrt{2}}{2}.

    Vậy diện tích thiết diện là: S = 6.\left(
\frac{a\sqrt{2}}{2} ight)^{2}.\frac{\sqrt{3}}{4} =
\frac{3a^{2}\sqrt{3}}{4}

  • Câu 20: Vận dụng

    Cho hình hộp chữ nhật ABCD.A'B'C'D' có các kích thước AB = 4,AD = 3,AA' = 5. Khoảng cách giữa hai đường thẳng AC'B'C bằng:

    Đáp án: 30/19 (Ghi kết quả dưới dạng phân số tối giản a/b).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D' có các kích thước AB = 4,AD = 3,AA' = 5. Khoảng cách giữa hai đường thẳng AC'B'C bằng:

    Đáp án: 30/19 (Ghi kết quả dưới dạng phân số tối giản a/b).

    Hình vẽ minh họa

    Trong (BB'C'C) kẻ C'M//B'C;(M \in BC).

    \Rightarrow B^{'}C//\left(
AC^{'}M ight) \Rightarrow d\left( A^{'}C;B^{'}C ight) =
d\left( B^{'}C;\left( AC^{'}M ight) ight) = d\left( C;\left(
AC^{'}M ight) ight)

    Kẻ CH\bot AM;CK\bot
C^{'}H.

    Do \left\{ \begin{matrix}
CH\bot AM \\
CC^{'}\bot AM \\
\end{matrix} \Rightarrow AM\bot\left( CC^{'}H ight) \Rightarrow
AM\bot CK ight.

    CK\bot C^{'}H \Rightarrow
CK\bot\left( AC^{'}M ight) \Rightarrow d\left( C;\left(
AC^{'}M ight) ight) = CK.

    Ta có: B^{'}C^{'}MC là hình bình hành nên CM = B'C' =3.

    \frac{1}{d^{2}(B;AM)} = \frac{1}{AB^{2}}
+ \frac{1}{BM^{2}} \Rightarrow d(B;AM) =
\frac{12}{\sqrt{13}}

    \Rightarrow CH = \frac{1}{2}d(B;AM) =
\frac{6}{\sqrt{13}}.

    Áp dụng hệ thức lượng trong tam giác vuông C^{'}CH ta có:

    \frac{1}{CK^{2}} = \frac{1}{CH^{2}} +
\frac{1}{CC^{'2}} \Rightarrow CK = \frac{30}{19}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 73 lượt xem
Sắp xếp theo