Cho tứ diện ABCD có (ACD) ⊥ (BCD), AC = AD = BC = BD = a, CD = 2x. Giá trị của x để hai mặt phẳng (ABC) và (ABD) vuông góc với nhau là:
Hình vẽ minh họa:
Gọi H là trung điểm của CD.
Do tam giác ACD cân tại A và tam giác BCD cân tại B.
Gọi E là trung điểm của AB, do tam giác ABC cân tại C
Ta có ∆ABC = ∆ADC (c.c.c) => CE = DE => ∆CDE vuông cân tại E.
Xét tam giác vuông CBH có
Xét tam giác vuông ACH có
Xét tam giác vuông ABH có:
Xét tam giác vuông ACE có:
Thay CE vào (*) ta được





