Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC). Gọi hình chiếu vuông góc của điểm A lên cạnh BC là điểm H. Xác định góc giữa hai mặt phẳng (SBC)(ABC)?

    Hình vẽ minh họa

    Ta có:

    BC = (SBC) \cap (ABC)

    \left\{ \begin{matrix}
BC\bot AS \\
BC\bot AH \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAH) \Rightarrow BC\bot
SH

    Vậy \left( (SBC);(ABC) ight) =
\widehat{SHA}

  • Câu 2: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, tam giác SAB cân. Giả sử E;F lần lượt là trung điểm các cạnh AB;CD. Khẳng định nào dưới đây sai?

    Hình vẽ minh họa

    Vì tam giác SAB là tam giác cân tại S nên SE\bot AB

    Ta có: \left\{ \begin{matrix}
AB//CD \\
SE\bot AB \\
\end{matrix} ight.\  \Rightarrow SE\bot CD

  • Câu 3: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên \left\{ \begin{matrix}SO\bot AC \\SO\bot BD \\\end{matrix} ight. => SO ⊥ (ABCD)

    Từ \left\{ \begin{matrix}SO\bot AC \\AC\bot BD \\\end{matrix} ight.=> AC ⊥ (SBD)

    Từ \left\{ \begin{matrix}SO\bot BD \\AC\bot BD \\\end{matrix} ight.=> BD ⊥ (SAC)

    Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.

    Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).

  • Câu 4: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh SA vuông góc với mặt phẳng đáy (ABCD), SA = AB = a, AD = 3a. Gọi M là trung điểm của BC. Tính cosin của góc tạo bởi hai mặt phẳng (ABCD) và (SDM).

    Hình vẽ minh họa:

    Gọi H là hình chiếu vuông góc của A lên DM, ta có DM ⊥ (SAH).

    Gọi α là góc giữa (SDM) và (ABCD) ta có: \alpha = \widehat{SHA}

    Ta có:

    \begin{matrix}S_{ADM} = \dfrac{1}{2}S_{ABCD} = \dfrac{3}{2}a^{2} \hfill\\DM = \sqrt{CD^{2} + CM^{2}} = \sqrt{a^{2} + \left( \dfrac{3}{2}a^{2}ight)} = \dfrac{a\sqrt{13}}{2} \hfill\\\end{matrix}

    Ta có:

    AH = \frac{2S_{ADM}}{DM} =
\frac{3}{2}a^{2}.\frac{2}{\sqrt{13}a} =
\frac{6a\sqrt{13}}{13}

    Ta lại có:

    \begin{matrix}\tan\alpha = \dfrac{SA}{AH} = \dfrac{1}{\dfrac{6\sqrt{13}}{13}} =\dfrac{\sqrt{13}}{6} \hfill\\\Rightarrow \cos\alpha = \dfrac{1}{\sqrt{1 + tan^{2}\alpha}} =\dfrac{6}{7} \hfill\\\end{matrix}

    Vậy \cos\alpha = \frac{6}{7}

  • Câu 5: Thông hiểu

    Cho tứ diện ABCD có AB = AC = AD và \widehat {BAC} = \widehat {BAD} = {60^0};\widehat {CAD} = {90^0}. Gọi I và J lần lượt là trung điểm của AB và CD. Hãy xác định góc giữa cặp vecto \overrightarrow {AB} ;\overrightarrow {IJ}?

    Hình vẽ minh họa:

    Hãy xác định góc giữa cặp vecto

    Xét tam giác ICD có J là trung điểm của CD => \overrightarrow {IJ}  = \frac{1}{2}\left( {\overrightarrow {JC}  + \overrightarrow {ID} } ight)

    Tam giác ABC có AB = AC và \widehat {BAC} = {60^0} => Tam giác ABC đều => CI ⊥ AB

    Tương tự ta chứng minh được tam giác aBD đều => DI ⊥ AB

    Ta có:

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {IJ}  = \dfrac{1}{2}\overrightarrow {AB} .(\overrightarrow {IC}  + \overrightarrow {ID} ) \hfill \\   = \dfrac{1}{2}\overrightarrow {AB} .\overrightarrow {IC}  + \dfrac{1}{2}\overrightarrow {AB} .\overrightarrow {ID}  = 0 \hfill \\   \Rightarrow \overrightarrow {AB}  \bot \overrightarrow {IJ}  \Rightarrow \left( {\overrightarrow {AB} ;\overrightarrow {IJ} } ight) = {90^0} \hfill \\ \end{matrix}

  • Câu 6: Vận dụng

    Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của BC và DD’. Tính theo a khoảng cách giữa hai đường thẳng MN và BD.

    Hình vẽ minh họa:

    Gọi O, P, K lần lượt là trung điểm của AC, CD, OC

    Kẻ DI ⊥ MP, DH ⊥ NI

    Ta có: ND = \frac{a}{2}, BD // MP, tứ giác DIKO là hình chữ nhật

    => DI = OK = \frac{OC}{2} =\frac{a\sqrt{2}}{4}

    Khi đó: d(MN, BD) = d(BD, (MNP)) = d(D, (MNP)) = DH

    Xét tam giác vuông NDI ta có:

    \begin{matrix}\dfrac{1}{DH^{2}} = \dfrac{1}{DN^{2}} + \dfrac{1}{DI^{2}} \Rightarrow DH =\dfrac{a\sqrt{3}}{6} \hfill \\\Rightarrow d(MN,BD) = \dfrac{a\sqrt{3}}{6} \hfill\\\end{matrix}

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a; cạnh SA vuông góc với mặt đáy và SA = 2a. Gọi M là trung điểm của cạnh SC. Gọi \mu là góc giữa đường thẳng BM và mặt phẳng (ABC). Xác định \cos\mu?

    Hình vẽ minh họa

    Gọi H là trung điểm của AC => HM // SA và HM = \frac{1}{2}.SA = a

    SA\bot(ABCD) \Rightarrow
HM\bot(ABC)

    \Rightarrow \left( BM;(ABC) ight) =
(BM,BH) = \widehat{MBH}

    Ta có: BH =
\frac{a\sqrt{3}}{2}

    \Rightarrow BM = \sqrt{BH^{2} +
MH^{2}}= \sqrt{\left( \frac{a\sqrt{3}}{2}
ight)^{2} + a^{2}} = \frac{a\sqrt{7}}{2}

    Trong tam giác BMH có:

    \cos\mu = \cos\widehat{MBH} =\dfrac{BH}{BM} = \dfrac{\dfrac{a\sqrt{3}}{2}}{\dfrac{a\sqrt{7}}{2}} =\dfrac{\sqrt{21}}{7}

  • Câu 8: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Khẳng định nào dưới đây là sai?

    Hình vẽ minh họa

    Chọn khẳng định sai

    Vì H là trung điểm của AB, tam giác ABC cân => CH⊥AB

    Ta có: SA⊥(ABC) => SA⊥CHCH⊥AB => CH⊥(SAB)

    Mặt khác AK⊂(SAB) => CH vuông góc với các đường thẳng SA,SB,AK

    AK⊥SB chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.

  • Câu 9: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 8a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 8a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{8}{3}a^{3}

  • Câu 10: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 2a?

    Ta có: V = (2a)^{3} = 8a^{3}

  • Câu 11: Nhận biết

    Chọn mệnh đề đúng trong các mệnh đề sau?

    Ta có: \left\{ \begin{matrix}
a\bot b \\
b//c \\
\end{matrix} ight.\  \Rightarrow a\bot c

    Vậy mệnh đề đúng là: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.”

  • Câu 12: Thông hiểu

    Khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A. Biết AB = 2a và góc giữa đường thẳng BC' và mặt phẳng (ACC'A') bằng 30^{0}. Tính thể tích khối lăng trụ đứng ABC.A'B'C'.

    Hình vẽ minh họa

    Ta có:

    \left\{ \begin{matrix}
AB\bot AC \\
AB\bot AA' \\
\end{matrix} ight.\  \Rightarrow AB\bot(ACC'A')

    Suy ra \left( BC';(ACC'A')
ight) = (BC';AC') = \widehat{AC'B} = 30^{0}

    Ta có: AC' = \frac{AB}{tan30^{0}} =
2\sqrt{3}a

    \Rightarrow AA' = \sqrt{12a^{2} -
4a^{2}} = 2\sqrt{2}a

    Vậy V_{ABC.A'B'C'} =
AA'.S_{ABC} = 2\sqrt{2}a.\frac{1}{2}.2a.2a =
4\sqrt{2}a^{3}

  • Câu 13: Nhận biết

    Cho hình chóp ABCD có đáy ABCD là hình thoi tâm O, cạnh bên SO vuông góc với mặt phẳng đáy. Gọi \alpha là góc giữa đường thẳng SD với mặt phẳng đáy. Khi đó:

    Hình vẽ minh họa

    Ta có: SO\bot(ABCD) suy ra OD là hình chiếu vuông góc của SD lên mặt phẳng (ABCD)

    Suy ra \widehat{\left( SD;(ABCD) ight)}
= \widehat{(SD;SO)} = \widehat{SDO}

    Vậy \alpha = \widehat{SDO}

  • Câu 14: Vận dụng

    Cho hình chóp S.ABC có \widehat{BSC} =
120^{0};\widehat{CSA} = 60^{0};\widehat{ASB} = 90^{0}và SA = SB = SC. Gọi H là hình chiếu vuông góc của S trên mặt phẳng (ABC), khi đó:

    Hình vẽ minh họa:

    Đặt SA = a

    Xét tam giác SAB vuông cân tại S ta có:

    AB = \sqrt{SA^{2} + SB^{2}} =
a\sqrt{2}

    Xét tam giác SAC cân tại S ta có:

    \widehat{CSA} = 60^{0} => SA = SC = AC = a

    Áp dụng định lí cosin cho tam giác SBC ra có:

    \begin{matrix}BC^{2} = SB^{2} + SC^{2} - 2SB.SC.cos\widehat{BSC} \hfill \\BC^{2} = a^{2} + a^{2} - 2a.a.cos120^{0} = 3a^{2} \hfill \\BC = a\sqrt{3} = \sqrt{AB^{2} + AC^{2}} \hfill \\\end{matrix}

    Vậy tam giác ABC vuông tại A mà H là hình chiếu của S trên (ABC) nên H là tâm đường tròn ngoại tiếp tam giác ABC

    Hay H là trung điểm của BC.

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông, SA = SB và (SAB) ⊥ (ABCD). Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Ta có:

    (SAB) ⊥ (ABCD)

    BC ⊥ BA

    => BC ⊥ (SAB).

    Từ B kẻ BK ⊥ SA => d(BC, SA) = BK.

    Ta có:

    Tam SAB cân tại S, do vậy d(BC, SA) = BK ≠ AB

  • Câu 16: Vận dụng

    Cho hình vuông ABCD và tam giác đều SAB cạnh a nằm trong hai mặt phẳng vuông góc với nhau. Tính sin góc giữa đường thẳng SC và mặt phẳng (SAD).

    Tính sin góc giữa đường thẳng SC và mặt phẳng (SAD)

    Gọi I là trung điểm của AB. Khi đó SI \bot \left( {ABCD} ight)

    Ta có \left\{ \begin{gathered}  AD \bot AB \hfill \\  AD \bot SI \hfill \\ \end{gathered}  ight. \Rightarrow AD \bot \left( {SAB} ight)AD \subset \left( {SAD} ight) \Rightarrow \left( {SAD} ight) \bot \left( {SAB} ight)

    Dựng BH \bot SA tại H suy ra SH \bot \left( {SAD} ight)

    Trong mặt phẳng (SAD) kẻ Hx // AD. Trong mặt phẳng (BC, Hx) qua C kẻ đường thẳng song song với BH cắt Hx tại K thì CK \bot \left( {SAD} ight)

    Suy ra SK là hình chiếu vuông góc của SC trên mặt phẳng (SAD) nên góc giữa đường thẳng SC và mặt phẳng (SAD) là góc \widehat {CSK}

    Ta có BH = CK = \frac{{a\sqrt 3 }}{2}

    Trong tam giác SCI có

    SC = \sqrt {S{I^2} + I{C^2}}  = \sqrt {\frac{{3{a^2}}}{4} + \frac{{5{a^2}}}{4}}  = a\sqrt 2

    Suy ra \sin \widehat {CSK} = \frac{{CK}}{{SC}} = \dfrac{{\dfrac{{a\sqrt 3 }}{2}}}{{a\sqrt 2 }} = \frac{{\sqrt 6 }}{4}

  • Câu 17: Nhận biết

    Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

    Ta có: SA ⊥ (ABC) => SA ⊥ BC

    Mặt khác BC ⊥ AB

    Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB

    Vậy \widehat{\left( SC,(SAB) ight)} =\widehat{(SC,SB)} = \widehat{BSC\ }(vì tam giác SBC vuông tại B)

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA=\frac{a\sqrt{15}}{2} và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ O đến mặt phẳng (SBC)

    Ta có: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {AO \cap \left( {SBC} ight) = C} \\   {AC = 2OC} \end{array}} ight. \hfill \\   \Rightarrow d\left( {A;\left( {SBC} ight)} ight) = 2d\left( {O;\left( {SBC} ight)} ight) \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {SA \bot \left( {ABCD} ight) \Rightarrow SA \bot BC} \\   {AB \bot BC} \end{array}} ight. \hfill \\   \Rightarrow BC \bot \left( {SAB} ight) \hfill \\ \end{matrix}

    Từ A kẻ AH \bot SB => AH \bot \left( {SBC} ight)

    \begin{matrix}   \Rightarrow AH = d\left( {A;\left( {SBC} ight)} ight) \hfill \\  \dfrac{1}{{A{H^2}}} = \dfrac{1}{{S{A^2}}} + \dfrac{1}{{A{B^2}}} \hfill \\   \Rightarrow AH = \dfrac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \dfrac{{a\sqrt {285} }}{{19}} \hfill \\   \Rightarrow d\left( {O;\left( {SBC} ight)} ight) = \dfrac{1}{2}AH = \dfrac{{a\sqrt {285} }}{{19}} \hfill \\ \end{matrix}

  • Câu 19: Nhận biết

    Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OB = OC = a. Tính khoảng cách giữa hai đường thẳng OA và BC.

    Hình vẽ minh họa:

    Gọi M là trung điểm CB, ta có: OM ⊥ BC.

    Mặt khác vì OA, OB, OC đôi một vuông góc nên OA ⊥ (OBC)

    => OA ⊥ OM. Do đó khoảng cách giữa OA và BC là OM.

    Ta có: OM = \frac{1}{2}BC =
\frac{a\sqrt{2}}{2}

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABC có SA = SB = SC và \widehat {ASB} = \widehat {BSC} = \widehat {CSA}. Góc giữa cặp vecto \overrightarrow {SA} ;\overrightarrow {BC} là:

     \begin{matrix}  \overrightarrow {SA} .\overrightarrow {BC}  = \overrightarrow {SA} .\left( {\overrightarrow {SC}  - \overrightarrow {SB} } ight) \hfill \\   = \overrightarrow {SA} .\overrightarrow {SC}  - \overrightarrow {SA} .\overrightarrow {SB}  \hfill \\   = \left| {\overrightarrow {SA} } ight|.\left| {\overrightarrow {SC} } ight|\cos \widehat {ASC} - \left| {\overrightarrow {SA} } ight|.\left| {\overrightarrow {SB} } ight|\cos \widehat {ASB} \hfill \\   = 0 \hfill \\   \Rightarrow SA \bot BC \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 70 lượt xem
Sắp xếp theo