Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 3a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 3a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= a^{3}

  • Câu 2: Vận dụng

    Cho tứ diện ABCDAB =
m;(m > 0), các cạnh còn lại bằng nhau và bằng 4. Mặt phẳng (\alpha) chứa cạnh AB và vuông góc với cạnh CD tại I. Diện tích tam giác ABI lớn nhất bằng bao nhiêu?

    Hình vẽ minh họa

    Ta có: (\alpha)\bot CD \equiv I
\Rightarrow \left\{ \begin{matrix}
AI\bot CD \\
BI\bot CD \\
\end{matrix} ight.

    Theo giả thiết AC = AD = BC = BD = CD =
4cm ta có các tam giác ACD và BCD là các tam giác đều cạnh bằng 4

    \Rightarrow IA = IB =
4.\frac{\sqrt{3}}{2} = 2\sqrt{3}

    Gọi H là trung điểm của AB ta có: IH\bot
ABIH = \sqrt{IA^{2} -
\frac{m^{2}}{4}} = \sqrt{12 - \frac{m^{2}}{4}}

    S_{ABI} = \frac{1}{2}IH.AB

    = \frac{1}{2}m.\sqrt{12 -
\frac{m^{2}}{4}}

    = \sqrt{\frac{m^{2}}{4}.\left( 12 -
\frac{m^{2}}{4} ight)} \leq 6

    Dấu bằng xảy ra khi và chỉ khi x =
2\sqrt{6}

    Vậy \max S_{ABI} = 6

  • Câu 3: Nhận biết

    Trong không gian cho đường thẳng \Delta và điểm A. Qua điểm A có bao nhiêu đường thẳng vuông góc với \Delta?

    Trong không gian có vô số đường thẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.

  • Câu 4: Nhận biết

    Tìm mệnh đề đúng trong các mệnh đề sau:

    Đáp án đúng: Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”

  • Câu 5: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông có độ dài đường chéo bằng a √ 2 và SA vuông góc với mặt phẳng (ABCD). Gọi α là góc giữa mặt phẳng (SBD) và (ABCD). Nếu \tan\alpha =
\sqrt{2} thì góc giữa hai mặt phẳng (SAC) và (SBC) bằng

    Hình vẽ minh họa:

    Gọi O là tâm hình vuông ABCD, H, K lần lượt là hình chiếu của A lên SB, SC.

    Ta dễ dàng chứng minh được AH ⊥ (SBC) => AH ⊥ SC.

    Mà AK ⊥ SC nên SC ⊥ (AHK) => SC ⊥ HK.

    Ta có:

    (SAC) ∩ (SBC) = SC

    AK ⊥ SC

    HK ⊥ SC

    => ((SAC), (SBC)) = (AK; HK) = \widehat{AKH}.

    Ta cũng có: ((SBD); (ABCD)) = (SO; AO) = \widehat{SOA} = α

    => tan α = SA/AO => SA = a

    Do đó: tam giác SAB vuông cân tại A => AH = \frac{SB}{2} =
\frac{a\sqrt{2}}{2}

    Xét tam giác SAC có: \frac{1}{AK^{2}} =
\frac{1}{AS^{2}} + \frac{1}{AC^{2}} \Rightarrow AK =
\frac{a\sqrt{6}}{3}

    Xét tam giác AHK vuông tại H, ta có:

    \sin\widehat{AKH} = \frac{AH}{AK} =
\frac{\sqrt{3}}{2} \Rightarrow \sin\widehat{AKH} = 30^{0}

    Vậy ((SAC); (SBC)) = 300.

  • Câu 6: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Cạnh bên SA=a\sqrt{3} và vuông góc với mặt đáy (ABC). Tính khoảng cách d từ A đến mặt phẳng (SBC). 

    Hình vẽ minh họa:

    Tính khoảng cách d từ A đến mặt phẳng (SBC)

    Gọi M là trung điểm BC 

    =>AM ⊥ BC và AM = \frac{{a\sqrt 3 }}{2}

    Gọi K là hình chiếu của A trên SM => AK ⊥ SM (1)

    Ta có: \left\{ \begin{gathered}  AM \bot BC \hfill \\  BC \bot SA \hfill \\ \end{gathered}  ight.

    \Rightarrow BC \bot (SAM) \Rightarrow BC \bot AK{\text{  }}\left( 2 ight)

    Từ (1) và (2) => AK⊥(SBC) => d(A;(SBC)) = AK

    Xét tam giác SAM ta có:

    AK = \frac{{SA.AM}}{{\sqrt {S{A^2} + A{M^2}} }} = \frac{{a\sqrt {15} }}{5}

    Vậy d(A;(SBC)) = AK = \frac{{a\sqrt {15} }}{5}

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABCSA =
SB = SC = \frac{a\sqrt{3}}{2}, đáy ABC là tam giác vuông tại ABC =
a. Tính cosin góc giữa đường thẳng SA và mặt phẳng (ABC) bằng:

    Hình vẽ minh họa

    Gọi H là hình chiếu vuông góc của S lên (ABC)

    Do SA = SB = SC =
\frac{a\sqrt{3}}{2} nên H là tâm đường tròn ngoại tiếp tam giác ABC hay H là trung điểm của BC \Rightarrow
AH = \frac{a}{2}

    Ta có: \left( SA;(ABC) ight) =
\widehat{SAH}

    \Rightarrow \cos\widehat{SAH} =
\frac{AH}{SA} = \frac{\sqrt{3}}{3}

  • Câu 8: Nhận biết

    Có bao nhiêu mặt phẳng đi qua một điểm A cho trước và vuông góc với hai mặt phẳng phân biệt (P) và (Q)?

    Có một khi (P) và (Q) cắt nhau, có vô số khi (P) // (Q).

  • Câu 9: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với mặt đáy và SA = AB = \sqrt{3}. Gọi G là trọng tâm của tam giác SAB. Khoảng cách từ G đến mặt phẳng (SBC) bằng:

    Hình vẽ minh họa

    Gọi M là trung điểm của SB \Rightarrow AM\bot SB (vì \Delta SAB cân)

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
BC\bot SA \\
\end{matrix} \Rightarrow BC\bot(SAB) \Rightarrow BC\bot AM ight.

    \left\{ \begin{matrix}
AM\bot SB \\
AM\bot BC \\
\end{matrix} \Rightarrow AM\bot(SBC) \Rightarrow GM\bot(SBC) ight. tại M.

    Do đó d(G;(SBC)) = GM.

    Ta có: SM = \sqrt{AB^{2} + SA^{2}} =
\sqrt{6} \Rightarrow AM = \frac{SB}{2} =
\frac{\sqrt{6}}{2}.

    G là trọng tâm của \Delta SAB nên GM = \frac{1}{3}AM =
\frac{\sqrt{6}}{6}.

  • Câu 10: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA\bot(ABC). Gọi H là chân đường cao kẻ từ đỉnh A của tam giác SAB. Xác định kết luận sai?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) ightarrow SA\bot
BC

    Ta có: \left\{ \begin{matrix}
BC\bot AB(gt) \\
BC\bot SA;\left( do\ \ SA\bot(ABC) ight) \\
AB \cap SA = A \\
AB;SA \subset (SAB) \\
\end{matrix} ight.

    \Rightarrow BC\bot(SAB)

    Lại có: \left\{ \begin{matrix}
AH\bot SB \\
AH\bot BC;\left( do\ \ BC\bot(SAB) ight) \\
SB \cap BC = B \\
AB;BC \subset (SBC) \\
\end{matrix} ight.

    \Rightarrow AH\bot(SBC) \Rightarrow
AH\bot BC \Rightarrow AH\bot BC

  • Câu 11: Nhận biết

    Các đường thẳng cùng vuông góc với một đường thẳng thì: 

    Đáp án "Thuộc một mặt phẳng"  sai vì có thể xảy ra trường hợp chúng nằm trên nhiều mặt phẳng khác nhau.

    Đáp án "Vuông góc với nhau" sai vì có thể xảy ra trường hợp chúng song song với nhau.

    Đáp án "Song song với nhau" sai vì có thể xảy ra trường hợp chúng cắt nhau.

    Đáp án "Song song với một mặt phẳng"  đúng vì chúng đồng phẳng.

  • Câu 12: Vận dụng

    Cho tứ diện đều ABCD có M là trung điểm của cạnh CD, gọi \varphi là góc giữa hai đường thẳng AM và BC. Giá trị \cos \varphi bằng:

    Tính cosin góc giữa hai đường thẳng

    Giả sử cạnh của tứ diện đều bằng a

    Vì M là trung điểm của CD. Nên AM là đường cao trong tam giác ACD đều.

    => AM = \frac{{a\sqrt 3 }}{2}

    Ta có:

    \begin{matrix}  \overrightarrow {CB} .\overrightarrow {AM}  = \overrightarrow {CB} .\left( {\overrightarrow {CM}  - \overrightarrow {CA} } ight) = \overrightarrow {CB} .\overrightarrow {CM}  - \overrightarrow {CB} .\overrightarrow {CA}  \hfill \\   = CB.CM.\cos \widehat {BCM} - CB.CA.\cos \widehat {ACB} \hfill \\   = a.\dfrac{a}{2}.\cos {60^o} - a.a.\cos {60^o} =  - \dfrac{{{a^2}}}{4} \hfill \\ \end{matrix}

    => \cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight) = \dfrac{{\overrightarrow {BC} .\overrightarrow {AM} }}{{\left| {\overrightarrow {BC} } ight|.\left| {\overrightarrow {AM} } ight|}} = \dfrac{{\dfrac{{ - {a^2}}}{4}}}{{a.\dfrac{{a\sqrt 3 }}{2}}} = \dfrac{{ - \sqrt 3 }}{6}

     

    => \cos \varphi  = \left| {\cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight)} ight| = \frac{{\sqrt 3 }}{6}

  • Câu 13: Vận dụng

    Cho tam giác đều ABC có cạnh bằng 3a. Điểm H thuộc cạnh AC với HC = a. Dựng đoạn SH vuông góc với mặt phẳng (ABC) với SH = 2a. Khoảng cách từ điểm C đến mặt phẳng (SAB) bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi D là trung điểm của AB, do giả thiết suy ra CD ⊥ AB.

    Trong (ABC) kẻ HM // CD suy ra HM ⊥ AB (1).

    Do giả thiết SH ⊥ (ABC) => SH ⊥ AB (2)

    Từ (1), (2) suy ra AB ⊥ (SHM)

    Trong mặt phẳng (SHM) kẻ HK ⊥ SM (3), theo chứng minh trên => HK ⊥ AB (4)

    Từ (3), (4) => HK ⊥ (SAB) => d (H; (SAB)) = HK

    Dễ thấy CH ∩ (SAB) = {A}

    \frac{d\left( C;(SAB) ight)}{d\left(H;(SAB) ight)} = \frac{CA}{HA} = \frac{3}{2}

    Do đó d\left( C;(SAB) ight) =\frac{3}{2}d\left( H;(SAB) ight)

    Theo giả thiết ∆ABC đều => CD =\frac{3a\sqrt{3}}{2}

    Xét ∆ABC do HM // CD theo định lý Ta - lét ta có:

    \frac{HM}{CD} = \frac{AH}{AC} =\frac{2}{3}

    Áp dụng hệ thức lượng trong ∆SHM vuông tại H, ta có:

    HM = \frac{2}{3}CD \Rightarrow HM =\frac{2}{3}.\frac{3a\sqrt{3}}{2} = a\sqrt{3}

  • Câu 14: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a ; AD = 2a, SA \bot \left( {ABCD} ight);SA = a\sqrt 2. Tính góc giữa hai mặt phẳng (SCD) và (SAB).

     Tính góc giữa hai mặt phẳng (SCD) và (SAB)

    Gọi M là trung điểm của AD.

    Xét tứ giác ABCM có: AM // BC, AM = AB = BC = a, \widehat {MAB} = {90^0}

    Suy ra ABCM là hình vuông => MC = AB = a

    Xét tam giác ACD có AM là trung tuyến và CM = \frac{1}{2}AD = a

    Suy ra ACD vuông tại C => AC ⊥ CD

    Trong (SAC), dựng AH ⊥ SC

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {CD \bot AC} \\   {CD \bot SA} \\   {SA \cap AC = A} \\   {SA;AC \subset \left( {SAC} ight)} \end{array}} ight. \Rightarrow CD \bot \left( {SAC} ight) mà AH ⊂ (SAC) suy ra CD ⊥ AH.

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {AH \bot CD} \\   {AH \bot SC} \\   {CD \cap SC = C} \\   {CD;SC \subset \left( {SCD} ight)} \end{array}} ight. \Rightarrow AH \bot \left( {SCD} ight)\left( 1 ight)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {AD \bot SA} \\   {AD \bot AB} \\   {SA \cap AB = A} \\   {SA;AB \subset \left( {SAB} ight)} \end{array}} ight. \Rightarrow AD \bot \left( {SAB} ight)\left( 2 ight)

    Từ (1) và (2) suy ra góc giữa hai mặt phẳng (SAB) và (SCD) là góc giữa hai đường thẳng AH và AD.

    Xét tam giác ABC vuông tại B có: AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2

    Xét tam giác SAC vuông tại A có: SC = \sqrt {S{A^2} + A{C^2}}  = 2a

    Xét tam giác SAC vuông tại A và SA = AC = a\sqrt 2 nên SAC vuông cân tại A.

    Suy ra H là trung điểm SC và AH = \frac{1}{2}SC = a

    Xét tam giác AHD vuông tại H (vì AH ⊥ (SCD)).

    Ta có: \cos \widehat {HAD} = \frac{{AH}}{{AD}} = \frac{a}{{2a}} = \frac{1}{2} suy ra \widehat {DAH} = {60^0}

    Vậy \left( {\widehat {\left( {SCD} ight);\left( {SAB} ight)}} ight) = {60^0}

  • Câu 15: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.

    Hình vẽ minh họa:

    Ta có:

    SA ⊥ BC

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC

  • Câu 16: Thông hiểu

    Cho hình lập phương như hình vẽ:

    Biết AC' = a\sqrt{3}. Xác định thể tích của khối lập phương đã cho.

    Gọi độ dài cạnh của khối lập phương là a; (x > 0)

    Xét tam giác A’B’C’ vuông cân tại B’ ta có:

    A'C'^{2} = A'B'^{2} +
B'C'^{2} = x^{2} + x^{2} = 2x^{2}

    \Rightarrow A'C' =
\sqrt{2}x

    Xét tam giác A’AC’ vuông tại A’ ta có:

    AC'^{2} = A'A^{2} +
A'C'^{2}

    \Leftrightarrow 3a^{2} = x^{2} + 2x^{2}
\Leftrightarrow x = a

    Vậy thể tích khối lập phương là V =
a^{3}

  • Câu 17: Thông hiểu

    Cho tứ diện đều ABCD, M là trung điểm của CD, N là điểm nằm trên AD sao cho BN vuông góc với AM. Tính tỉ số \frac{{DN}}{{DA}}

    Hình vẽ minh họa:

    Tính tỉ số giữa DN và DA

    Đặt \overrightarrow {AB}  = \overrightarrow b ;\overrightarrow {AC}  = \overrightarrow c ;\overrightarrow {AD}  = \overrightarrow d. Ta có:

    \begin{matrix}  \left| {\overrightarrow b } ight| = \left| {\overrightarrow c } ight| = \left| {\overrightarrow d } ight| = AB = a \hfill \\  \widehat {\left( {\overrightarrow b ;\overrightarrow c } ight)} = \widehat {\left( {\overrightarrow c ;\overrightarrow d } ight)} = \widehat {\left( {\overrightarrow d ;\overrightarrow b } ight)} = {60^0} \hfill \\   \Rightarrow \overrightarrow b .\overrightarrow c  = \overrightarrow c .\overrightarrow d  = \overrightarrow d .\overrightarrow b  = \dfrac{{{a^2}}}{2} \hfill \\ \end{matrix}

    Giả sử AN = k.AD. Khi đó:

    \overrightarrow {BN}  = \overrightarrow {BA}  + \overrightarrow {AN}  =  - \overrightarrow b  + k.\overrightarrow d

    Vì M là trung điểm của CD nên 2\overrightarrow {AM}  = \overrightarrow {AC}  + \overrightarrow {AD}  = \overrightarrow c  + \overrightarrow d

    Khi đó: BN ⊥ AM => \overrightarrow {BN} .\overrightarrow {AM}  = 0

    \begin{matrix}  \left( { - \overrightarrow b  + k.\overrightarrow d } ight).\left( {\overrightarrow c  + \overrightarrow d } ight) = 0 \hfill \\   \Rightarrow  - \dfrac{{{a^2}}}{2} - \dfrac{{{a^2}}}{2} + k.\dfrac{{{a^2}}}{2} + k.{a^2} = 0 \hfill \\   \Rightarrow k = \dfrac{2}{3} \hfill \\   \Rightarrow AN = \dfrac{2}{3}AD \hfill \\   \Rightarrow \dfrac{{DN}}{{DA}} = \dfrac{1}{3} \hfill \\ \end{matrix}

  • Câu 18: Nhận biết

    Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng x; SC\bot(ABC);SC = x. Xác định thể tích hình chóp S.ABC?

    Ta có SC\bot(ABC) nên SC là đường cao của hình chóp

    Tam giác ABC đều cạnh x nên S_{ABC} =
\frac{x^{2}\sqrt{3}}{4}

    Vậy thể tích hình chóp là: V_{S.ABC} =
\frac{1}{3}SC.S_{ABC} = \frac{1}{3}.\frac{x^{2}\sqrt{3}}{4}.x =
\frac{x^{3}\sqrt{3}}{12}

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABC có AB = AC và \widehat {SAC} = \widehat {SAB}. Tính số đo góc giữa hai đường thẳng chéo chau SA và BC.

    Hình vẽ minh họa:

    Tính số đo góc giữa hai đường thẳng chéo chau

    Xét

    \begin{matrix}  \overrightarrow {SA} .\overrightarrow {BC}  = \overrightarrow {SA} .(\overrightarrow {SC}  - \overrightarrow {SB} ) \hfill \\   = \overrightarrow {SA} .\overrightarrow {SC}  - \overrightarrow {SA} .\overrightarrow {SB}  \hfill \\   = |\overrightarrow {SA} |.|\overrightarrow {SC} |.\cos (\overrightarrow {SA} ,\overrightarrow {SC} ) - |\overrightarrow {SA} |.|\overrightarrow {SB} |.\cos \widehat {SAB} \hfill \\   = SA.SC.\cos \widehat {ASC} - SASB\cos \widehat {ASB}{\text{  }}\left( 1 ight) \hfill \\ \end{matrix}

    Ta có:

    \begin{matrix}   \Rightarrow \left\{ {\begin{array}{*{20}{l}}  {SA{\text{ chung }}} \\   {AB = AC} \\   {\widehat {SAB} = \widehat {SAC}} \end{array} \Rightarrow \Delta SAB = \Delta SAC(c - g - c)} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{l}}  {SC = SB} \\   {\widehat {ASC} = \widehat {ASB}} \end{array}} ight.(2) \hfill \\ \end{matrix}

    Từ (1) và (2) \Rightarrow \overrightarrow {SA} .\overrightarrow {BC}  = 0 \Rightarrow SA \bot BC

  • Câu 20: Nhận biết

    Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:

    Hình vẽ minh họa:

    Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)

    => Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là \widehat{BA'B'}

    Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’

    => \widehat{BA'B'} =45^{0}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 69 lượt xem
Sắp xếp theo