Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho tứ diện đều ABCD. Số đo góc giữa hai đường thẳng AB và CD là:

    Gọi a là độ dài cạnh tứ diện. Khi đó

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {CD}  = \left( {\overrightarrow {AC}  + \overrightarrow {CB} } ight).\overrightarrow {CD}  \hfill \\   = \overrightarrow {AC} .\overrightarrow {CD}  + \overrightarrow {CB} .\overrightarrow {CD}  \hfill \\   = AC.CD.\cos {120^0} + CB.CD.\cos {60^0} \hfill \\   =  - \dfrac{{{a^2}}}{2} + \dfrac{{{a^2}}}{2} = 0 \hfill \\   \Rightarrow \overrightarrow {AB}  \bot \overrightarrow {CD}  \Rightarrow AB \bot CD \hfill \\ \end{matrix}

     

  • Câu 2: Thông hiểu

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1}. Tính \left( AC;DA_{1} ight)?

    Hình vẽ minh họa

    Ta có:

    AC//A_{1}C_{1} \Rightarrow \left(
AC;DA_{1} ight) = \left( A_{1}C_{1};DA_{1} ight) =
\widehat{DA_{1}C_{1}}

    Do A_{1}C_{1};DA_{1};DC_{1} là các đường chéo hình vuông bằng nhau.

    Vậy tam giác AD_{1}C_{1} là tam giác đều \Rightarrow \widehat{DA_{1}C_{1}} =
60^{0}

    \Rightarrow \left( AC;DA_{1} ight) =
\widehat{DA_{1}C_{1}} = 60^{0}

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA\bot(ABCD). Biết diện tích tam giác SBD bằng a^{2}. Khi đó SA bằng:

    Hình vẽ minh họa

    Gọi O là tâm của đáy.

    Khi đó BD\bot(SAC) \Rightarrow BD\bot SO
\Rightarrow S_{SBD} = \frac{1}{2}.SO.BD = a^{2}

    \Rightarrow SO =
\frac{2a^{2}}{a\sqrt{2}} = a\sqrt{2}

    \Rightarrow SA = \sqrt{SO^{2} - AO^{2}}
= \sqrt{2a^{2} - \frac{a^{2}}{2}} = \frac{a\sqrt{6}}{2}

  • Câu 4: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác đều, SA vuông góc với mặt phẳng đáy. Gọi H là trung điểm cạnh AC, K là hình chiếu vuông góc của H trên SC. Khẳng định nào dưới đây là khẳng định đúng?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) \Rightarrow SA\bot
BH

    Mà tam giác ABC là tam giác đều AC\bot
BH

    \Rightarrow BH\bot SCHK\bot SC

    \Rightarrow SC\bot(BHK) \Rightarrow
(SCB)\bot(BHK)

  • Câu 5: Thông hiểu

    Một tấm ván hình chữ nhật ABCD được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu 2\ m. Cho biết AB = 1\ m, AD
= 3,5\ m. Tính góc giữa đường thẳng BD và đáy hố. (Kết quả làm tròn đến độ).

    Đáp án : 33\ ^{0}

    Đáp án là:

    Một tấm ván hình chữ nhật ABCD được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu 2\ m. Cho biết AB = 1\ m, AD
= 3,5\ m. Tính góc giữa đường thẳng BD và đáy hố. (Kết quả làm tròn đến độ).

    Đáp án : 33\ ^{0}

    Gọi H, K lần lượt là hình chiếu của C, D lên đáy hố là mặt phẳng (AKHB).

    Khi đó BD có hình chiếu lên đáy là KB, suy ra

    \left( BD,(AKHB) ight) = (BD,BK) =
\widehat{DBK}.

    Với độ sâu hố là DK = CH = 2(m), ta có

    AK = \sqrt{AD^{2} - DK^{2}} =
\frac{\sqrt{33}}{2}.

    KB = \sqrt{AK^{2} + AB^{2}} =
\frac{\sqrt{37}}{2}.

    \tan DBK = \frac{DK}{KB} =
\frac{4\sqrt{37}}{37}

    \Rightarrow \widehat{DBK} \approx
33{^\circ}.

  • Câu 6: Vận dụng

    Cho hình vuông ABCD cạnh 4a , lấy H, K lần lượt trên các cạnh AB, AD sao cho BH = 3HA, AK = 3KD. Trên đường thẳng vuông góc với mặt phẳng (ABCD) tại H lấy điểm S sao cho \widehat {SBH} = 30^\circ. Gọi E là giao điểm của CH và BK . Tính cosin của góc giữa hai đường thẳng SE và BC .

    Gọi I là hình chiếu vuông góc của E lên AB ta có

    \begin{matrix}  \Delta ABK = \Delta BCH \hfill \\   \Rightarrow \widehat {ABK} = \widehat {BCH} \Rightarrow \widehat {HEB} = 90^\circ  \hfill \\ \end{matrix}

    Tính cosin của góc giữa hai đường thẳng

    Ta có:

    \begin{matrix}  {\text{cos}}\left( {SE\,;\,BC} ight) = {\text{cos}}\left( {SE\,;\,EI} ight) = \left| {\cos \widehat {SEI}} ight| \hfill \\  SH = BH.\tan 30^\circ  = 3a.\dfrac{{\sqrt 3 }}{3} = a\sqrt 3  \hfill \\  \dfrac{{HB}}{{HC}} = \dfrac{{HE}}{{HB}} \Rightarrow HE = \dfrac{{H{B^2}}}{{HC}} = \dfrac{{9a}}{5} \hfill \\  SE = \sqrt {S{H^2} + H{E^2}}  = \sqrt {3{a^2} + \dfrac{{81{a^2}}}{{25}}}  = \dfrac{{2a\sqrt {39} }}{5} \hfill \\  \dfrac{{HE}}{{HB}} = \dfrac{{HI}}{{HE}} \Rightarrow HI = \dfrac{{H{E^2}}}{{HB}} = \dfrac{{27a}}{{25}} \hfill \\  SI = \sqrt {S{H^2} + H{I^2}}  = \sqrt {3{a^2} + {{\left( {\dfrac{{27a}}{{25}}} ight)}^2}}  = \dfrac{{2a\sqrt {651} }}{{25}} \hfill \\ \end{matrix}

    Trong tam giác vuông SEI có:

    EI = \sqrt {S{E^2} - S{I^2}}  = \frac{{36a}}{{25}}

    => \cos \widehat {SEI} = \frac{{EI}}{{SE}} = \frac{{18}}{{5\sqrt {39} }}

  • Câu 7: Nhận biết

    Thể tích khối hộp chữ nhật có ba kích thước là 2;3;5 bằng:

    Thể tích cần tìm là: V = 2.3.5 =
30

  • Câu 8: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy

    Ta có: \left\{ \begin{matrix}AC\bot BD \\AC\bot SB \\\end{matrix} ight.\  \Rightarrow AC\bot(SBD)

  • Câu 9: Vận dụng cao

    Cho hình chóp S.ABC có tam giác ABC vuông tại B và \widehat{ACB} = 30^{0}. Tam giác SAC là tam giác đều và thuộc mặt phẳng vuông góc với (ABC). Xét điểm M thuộc cạnh SC sao cho mặt phẳng (MAB) tạo với hai mặt phẳng (SAB); (ABC) góc bằng nhau. Tỉ số\frac{MS}{MC} có giá trị bằng:

    Gọi H là trung điểm của AC, suy ra SH ⊥ (ABC).

    Gọi N là trung điểm của AB, suy ra AB ⊥ (SHN).

    Lấy K là giao điểm của AM, SH. Do đó \left\{ \begin{matrix}
\left( (ABM),(ABC) ight) = \widehat{HNK} \\
\ \left( (ABM),(SAB) ight) = \widehat{KNS} \\
\end{matrix} ight.

    Theo giả thiết, NK là phân giác của góc \widehat{SNH}

    Giả sử: AB = 1 \Rightarrow BC = \sqrt{3}
\Rightarrow AC = 2 \Rightarrow SH = \sqrt{3}

    Mặt khác: SN = \sqrt{HN^{2} + SH^{2}} =
\frac{\sqrt{15}}{2}

    \Rightarrow \frac{KH}{KS} = \frac{HN}{SN}
= \frac{\sqrt{5}}{5} (tính chất phân giác).

    Gọi E là trung điểm của CM, theo định lí Ta-lét thì:

    \frac{KH}{KS} = \frac{ME}{MS} =
\frac{1}{\sqrt{5}}

    \Rightarrow \frac{MC}{MS} =
\frac{2ME}{MS} = \frac{2}{\sqrt{5}}

    \Rightarrow \frac{MC}{MS} =
\frac{2}{\sqrt{5}}

    Vậy \frac{MS}{MC} =
\frac{\sqrt{5}}{2}

  • Câu 10: Thông hiểu

    Cho tứ diện ABCD;AC = 6a;BD = 8a. Gọi trung điểm của AD,BC lần lượt là M,N. Biết AC\bot DB. Độ dài đoạn thẳng MN là:

    Hình vẽ minh họa

    Gọi P là trung điểm của CD. Khi đó \left\{ \begin{matrix}MP = \dfrac{1}{2}AC = 3a \\NP = \dfrac{1}{2}BD = 4a \\\end{matrix} ight.

    Lại có \left\{ \begin{matrix}
NP//BD;MP//AC \\
AC\bot BD \\
\end{matrix} ight.\  \Rightarrow MP\bot NP hay tam giác MNP vuông tại P

    Theo định lí Pythagore ta có:

    MN = \sqrt{NP^{2} + MP^{2}} =
5a

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABC có SA ⊥(ABC). Biết α là góc giữa SB và mặt phẳng (ABC). Xác định góc α.

    Hình vẽ minh họa:

    Ta có SA ⊥(ABC) => Hình chiếu của SB trên mặt phẳng (ABC) là đường thẳng AB.

    => Góc giữa đường thẳng SB và (ABC) là góc giữa hai đường thẳng SB và AB

    Tức là \alpha =
\widehat{SBA}

  • Câu 12: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 1, cạnh bên hợp với mặt đáy một góc 600. Tính khoảng cách d từ O đến mặt phẳng (SBC)

    Hình ảnh minh họa

    Tính khoảng cách d từ O đến mặt phẳng (SBC)

    Gọi O là tâm ABCD => SO \bot (ABCD)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {OB = \dfrac{{BD}}{2} = \dfrac{{\sqrt 2 }}{2}} \\   {OM = \dfrac{{AB}}{2} = \dfrac{1}{2}} \end{array}} ight.

    \begin{matrix}  {60^0} = \left( {SB;\left( {ABCD} ight)} ight) = \left( {SB;OB} ight) = \widehat {SBO} \hfill \\  SO = OB.\tan \widehat {SBO} = \dfrac{{\sqrt 6 }}{2} \hfill \\ \end{matrix}

    Gọi M là trung điểm của BC, kẻ OK vuông góc với SM (1)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BC \bot OM} \\   {BC \bot SO} \end{array}} ight. \Rightarrow BC \bot \left( {SOM} ight) \Rightarrow BC \bot OK\left( 2 ight)

    Xét tam giác vuông SOM ta có:

    \begin{matrix}  OK = \dfrac{{SO.OM}}{{\sqrt {S{O^2} + O{M^2}} }} = \dfrac{{\sqrt {42} }}{{14}} \hfill \\   \Rightarrow d\left( {O;\left( {SBC} ight)} ight) = OK = \dfrac{{\sqrt {42} }}{{14}} \hfill \\ \end{matrix}

  • Câu 13: Nhận biết

    Mệnh đề nào là mệnh đề đúng?

    Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”

  • Câu 14: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?

    Hình vẽ minh họa:

    Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).

    Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.

  • Câu 15: Nhận biết

    Cho một khối trụ có diện tích đáy bằng 4a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 4a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối trụ là: V = B.h = 4a^{2}.a
= 4a^{3}

  • Câu 16: Nhận biết

    Các đường thẳng cùng vuông góc với một đường thẳng thì: 

    Đáp án "Thuộc một mặt phẳng"  sai vì có thể xảy ra trường hợp chúng nằm trên nhiều mặt phẳng khác nhau.

    Đáp án "Vuông góc với nhau" sai vì có thể xảy ra trường hợp chúng song song với nhau.

    Đáp án "Song song với nhau" sai vì có thể xảy ra trường hợp chúng cắt nhau.

    Đáp án "Song song với một mặt phẳng"  đúng vì chúng đồng phẳng.

  • Câu 17: Thông hiểu

    Cho hình chóp S.ABC có SA ⊥ (ABC) và đáy ABC là tam giác vuông tại B. Xác định góc α giữa hai mặt phẳng (ABC) và (SBC).

    Hình vẽ minh họa:

    Ta có:

    Giao tuyến của hai mặt phẳng (SBC) và (ABC) là BC. (1)

    Ta có: SA ⊥ (ABC), mà đường thẳng BC nằm trong (ABC) => SA ⊥ BC.

    Ta có:\left\{ \begin{matrix}
BC\bot BA \subset (SAB) \\
BC\bot SA \subset (SAB) \\
BA\  \cap \ SA\  = \ A \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB)\ \ \ (2)

    Lại có: \left\{ \begin{matrix}
(SBA)\  \cap \ (ABC)\  = \ BA \\
(SBA)\  \cap \ (SBC)\  = \ BS \\
\end{matrix} ight.\ (3)

    Từ (1), (2), (3) => \alpha =
\widehat{SBA}

  • Câu 18: Thông hiểu

    Cho tứ diện ABCD có AC = \frac{3}{2}AD;\widehat {CAB} = \widehat {DAB} = {60^0};CD = AD. Gọi α là góc giữa AB và CD. Chọn khẳng định đúng?

     Hình vẽ minh họa:

    Chọn khẳng định đúng?

    Ta có:

    \cos (AB,CD) = \frac{{|\overrightarrow {AB} .\overrightarrow {CD} |}}{{|\overrightarrow {AB} |.|\overrightarrow {CD} |}} = \frac{{|\overrightarrow {AB} .\overrightarrow {CD} |}}{{AB.CD}}

    Mặt khác:

    \begin{matrix}  \overrightarrow {AB}  \cdot \overrightarrow {CD}  = \overrightarrow {AB} .(\overrightarrow {AD}  - \overrightarrow {AC} ) \hfill \\   = \overrightarrow {AB} .\overrightarrow {AD}  - \overrightarrow {AB} .\overrightarrow {AC}  \hfill \\   = |\overrightarrow {AB} |.|\overrightarrow {AD} |.\cos (\overrightarrow {AB} .\overrightarrow {AD} ) - |\overrightarrow {AB} |.|\overrightarrow {AC} |.\cos (\overrightarrow {AB} .\overrightarrow {AC} ) \hfill \\   = AB.AD.\cos {60^0} - AB.AC.\cos {60^0} \hfill \\   = AB.AD.\dfrac{1}{2} - AB.\dfrac{3}{2}AD.\dfrac{1}{2} \hfill \\   =  - \dfrac{1}{4}AB.AD =  - \dfrac{1}{4}AB.CD \hfill \\   \Rightarrow \cos (AB,CD) = \dfrac{{\left| { - \dfrac{1}{4}AB.CD} ight|}}{{AB.CD}} = \dfrac{1}{4} \hfill \\   \Rightarrow \cos \varphi  = \dfrac{1}{4} \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu

    Cho khối hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông, đường chéo BD = 4a. Biết góc giữa hai mặt phẳng (A'BD) và mặt phẳng (ABCD) bằng 30^{0}. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi góc giữa mặt phẳng (A'BD) và mặt phẳng (ABCD)\alphaO =
AC \cap BD

    Ta có: \left\{ \begin{matrix}
AO\bot BD \\
AA'\bot BD \\
\end{matrix} ight.\  \Rightarrow A'O\bot BD

    \Rightarrow \alpha = (AO;A'O) =
\widehat{AOA'} = 30^{0}

    Ta có ABCD là hình vuông, BD = 4a nên AB
= AD = 2a\sqrt{2}

    Ta có: AO = \frac{1}{2}AC = \frac{1}{2}BD
= 2a

    Xét tam giác AOA’ có AA' =
AO.tan30^{0} = \frac{2a\sqrt{3}}{3}

    \Rightarrow
V_{ABCD.A'B'C'D'} = AA'.S_{ABCD} =
\frac{2a\sqrt{3}}{3}.8a^{2} = \frac{16a^{3}\sqrt{3}}{3}

  • Câu 20: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC bằng 600, tam giác SBC là tam giác đều có cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Tính số đo góc giữa đường thẳng SA và mặt phẳng đáy (ABC).

    Hình vẽ minh họa:

    Gọi H là trung điểm của BC => SH ⊥ (ABC)

    Vì SH ⊥ (ABC) => HA là hình chiếu vuông góc của SA trên mặt phẳng (SAB)

    => \left( SA,(ABC) ight) = (SA,AH) =
\widehat{SAH}

    Xét tam giác SBC đều cạnh 2a => SH =
a\sqrt{3}

    Tam giác ABC vuông tại A => AH =
\frac{BC}{2} = a

    Tam giác SAH vuông nên

    \begin{matrix}\tan\widehat{SAH} = \dfrac{SH}{AH} = \sqrt{3}  \hfill\\\Rightarrow \widehat{SAH} = 60^{0} \hfill \\\end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 68 lượt xem
Sắp xếp theo