Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 7a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 7a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{7}{3}a^{3}

  • Câu 2: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC), đáy ABC là tam giác cân tại A. Gọi M là trung điểm của BC, J là trung điểm của BM. Xác định góc giữa hai mặt phẳng (SBC)(ABC)?

    Hình vẽ minh họa

    Dễ thấy (SBC) \cap (ABC) =
BC

    Ta có tam giác ABC cân tại A, M là trung điểm của BC suy ra AM\bot BC

    Theo giả thiết SA\bot(ABC). Khi đó \left\{ \begin{matrix}
BC\bot AM \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAM) \Rightarrow BC\bot
SM

    Ta được \left\{ \begin{matrix}
(SBC) \cap (ABC) = BC \\
AM\bot BC \\
SM\bot BC \\
\end{matrix} ight.

    \Rightarrow \left( \widehat{(SBC);(ABC)}
ight) = \widehat{SMA}

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA=\frac{a\sqrt{15}}{2} và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ O đến mặt phẳng (SBC)

    Ta có: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {AO \cap \left( {SBC} ight) = C} \\   {AC = 2OC} \end{array}} ight. \hfill \\   \Rightarrow d\left( {A;\left( {SBC} ight)} ight) = 2d\left( {O;\left( {SBC} ight)} ight) \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {SA \bot \left( {ABCD} ight) \Rightarrow SA \bot BC} \\   {AB \bot BC} \end{array}} ight. \hfill \\   \Rightarrow BC \bot \left( {SAB} ight) \hfill \\ \end{matrix}

    Từ A kẻ AH \bot SB => AH \bot \left( {SBC} ight)

    \begin{matrix}   \Rightarrow AH = d\left( {A;\left( {SBC} ight)} ight) \hfill \\  \dfrac{1}{{A{H^2}}} = \dfrac{1}{{S{A^2}}} + \dfrac{1}{{A{B^2}}} \hfill \\   \Rightarrow AH = \dfrac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \dfrac{{a\sqrt {285} }}{{19}} \hfill \\   \Rightarrow d\left( {O;\left( {SBC} ight)} ight) = \dfrac{1}{2}AH = \dfrac{{a\sqrt {285} }}{{19}} \hfill \\ \end{matrix}

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, SA vuông góc với đáy, kẻ AH vuông góc với BC (H thuộc BC). Hãy xác định góc α giữa hai mặt phẳng (ABC) và (SBC).

    Hình vẽ minh họa:

    Ta có: Giao tuyến của hai mặt phẳng (SBC) và (ABC) là BC. (1)

    Ta có: SA ⊥ (ABC) mà đường thẳng BC nằm trong (ABC)

    => SA ⊥ BC.

    Ta có BC ⊥ AH tại H.

    => \left\{ \begin{matrix}
BC\bot HA \subset (SAH) \\
BC\bot SA \subset (SAH) \\
HA\  \cap \ SA = A \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAH)(2)

    Ta lại có: \left\{ \begin{matrix}
(SHA)\  \cap \ (ABC)\  = \ HA \\
(SHA)\  \cap \ (SBC)\  = \ HS \\
\end{matrix} ight.

    Từ (1), (2), (3) => \alpha =
\widehat{SHA}

  • Câu 5: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I, cạnh a, góc BAD bằng 600, SA = SB = SD = \frac{a\sqrt{3}}{2}. Gọi α là góc giữa đường thẳng SD và mặt phẳng (SBC). Giá trị sin α bằng:

    Hình vẽ minh họa:

    Theo giả thiết, ABD là tam giác đều.

    Gọi H là tâm đường tròn ngoại tiếp tam giác ABD.

    Do SA = SB = SD nên S nằm trên trục của đường tròn ngoại tiếp tam giác ABD suy ra SH ⊥ (ABD) hay SH ⊥ (ABCD).

    Do (SBC) ⊥ (SBH) nên từ H kẻ HK ⊥ SB tại K thì HK = d(H, (SBC)) và \frac{1}{HK^{2}} = \frac{1}{HB^{2}} +
\frac{1}{HS^{2}}

    => HK =
\frac{a\sqrt{15}}{9}

    Mặt khác d(H, (SBC)) = 2/3d(A, (SBC)) = 2/3d(D, (SBC)) => d(D, (SBC)) = \frac{a\sqrt{15}}{6}

    Gọi O là hình chiếu vuông góc của điểm D trên (SBC).

    Khi đó:

    \begin{matrix}\alpha = (SD,SO) = \widehat{DSO} \hfill\\DO = d\left( D;(SBC) ight) = \dfrac{a\sqrt{15}}{6} \hfill\\\end{matrix}

    Xét tam giác SDO vuông tại O có:

    \sin\alpha = \dfrac{DO}{SD} =\dfrac{\dfrac{a\sqrt{15}}{6}}{\dfrac{a\sqrt{3}}{2}} =\dfrac{\sqrt{5}}{3}

  • Câu 6: Thông hiểu

    Cho hình chóp S.ABCD có tất cả các cạnh bằng nhau và đáy ABCD là hình vuông tâm O. Kết quả nào sau đây đúng?

    Hình chóp S.ABCD có tất cả các cạnh bên và cạnh đáy bằng nhau

    Do đó: SA = SC suy ra tam giác SAC cân tại A

    Lại có ABCD là hình vuông

    => O là trung điểm cạnh AC

    => SO vừa là đường trung tuyến vừa là đường cao của tam giác SAC

    => SO\bot AC

    Tương tự SO vừa là đường trung tuyến vừa là đường cao của tam giác SBD

    => SO\bot BD

    Từ đó ta có: \left\{ \begin{matrix}
SO\bot AC \subset (ABCD) \\
SO\bot BD \subset (ABCD) \\
\end{matrix} ight.

    \Rightarrow SO\bot(ABCD)

     

  • Câu 7: Nhận biết

    Cho khối chóp S.ABCSA\bot(ABC) biết độ dài các cạnh SA = 4cm,AB = 6cm, BC = 10cm;CA = 8cm. Thể tích khối chóp S.ABC là:

    Hình vẽ minh họa

    Ta có:

    AB^{2} + AC^{2} = 6^{2} + 8^{2} = 10^{2}
= BC^{2}

    Nên tam giác ABC vuông tại A

    Suy ra S_{ABC} = \frac{1}{2}AB.AC =
24

    Vậy V_{S.ABC} = \frac{1}{3}.S_{ABC}.SA =
32cm^{3}

  • Câu 8: Thông hiểu

    Khối chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SA = SB =
2a. Mặt phẳng (SAB) tạo với mặt phẳng đáy một góc 90^{0}. Xác định thể tích khối chóp S.ABCD?

    Hình vẽ minh họa

    Gọi H là trung điểm của AB

    Tam giác SAB cân tại S nên SH\bot
AB

    Ta có: \left\{ \begin{matrix}
SH\bot AB \\
(SAB)\bot(ABCD) \\
SH \subset (SAB) \\
AB = (SAB) \cap (ABCD) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    Vậy SH là đường cao của hình chóp

    Xét tam giác AHS vuông tại H ta có:

    SH = \sqrt{SA^{2} - AH^{2}} =
\sqrt{(2a)^{2} - \left( \frac{a}{2} ight)^{2}} =
\frac{a\sqrt{15}}{2}

    Vậy thể tích hình chóp là:

    V = \frac{1}{3}.SH.S_{ABCD} =
\frac{1}{3}.\frac{a^{2}\sqrt{15}}{2}.a^{2} =
\frac{a^{3}\sqrt{15}}{6}

  • Câu 9: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên \left\{ \begin{matrix}SO\bot AC \\SO\bot BD \\\end{matrix} ight. => SO ⊥ (ABCD)

    Từ \left\{ \begin{matrix}SO\bot AC \\AC\bot BD \\\end{matrix} ight.=> AC ⊥ (SBD)

    Từ \left\{ \begin{matrix}SO\bot BD \\AC\bot BD \\\end{matrix} ight.=> BD ⊥ (SAC)

    Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.

    Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).

  • Câu 10: Thông hiểu

    Cho hình chóp tam giác S.ABCSA =
SB = SC = AB = aBC =
a\sqrt{2}. Tính cosin góc giữa hai đường thẳng ABSC.

    Hình vẽ minh họa

    Giả sử M, N, Q lần lượt là trung điểm các cạnh SA, SB, AC

    Mặt khác ta có: \left\{ \begin{matrix}
MN//AB \\
MQ//SC \\
\end{matrix} ight.\  \Rightarrow (AB;SC) = (MN;MQ)

    Ta có: AN =
\frac{a\sqrt{3}}{2}

    NC = \sqrt{\frac{SC^{2} + BC^{2}}{2} -\frac{SB^{2}}{4}}= \sqrt{\dfrac{a^{2} + 2a^{2}}{2} - \dfrac{a^{2}}{4}} =\dfrac{a\sqrt{5}}{2}

    Xét tam giác NAC có:

    NQ = \sqrt{\frac{NA^{2} + CN^{2}}{2} -\frac{AC^{2}}{4}}= \sqrt{\dfrac{\dfrac{3a^{2}}{4} + \dfrac{5a^{2}}{4}}{2}- \dfrac{a^{2}}{4}} = \dfrac{a\sqrt{3}}{2}

    Xét tam giác MNQ ta có:

    \cos\widehat{NMQ} = \frac{MN^{2} +MQ^{2} - NQ^{2}}{2MN.MQ}= \dfrac{\dfrac{a^{2}}{4} + \dfrac{a^{2}}{4} -\dfrac{3a^{2}}{4}}{2.\dfrac{a}{2}.\dfrac{a}{2}} = -\dfrac{1}{2}

    \Rightarrow \widehat{NMQ} = 120^{0}
\Rightarrow (MN,MQ) = 180^{0} - 120^{0} = 60^{0}

    \Rightarrow \cos(AB,SC) =
\frac{1}{2}

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy, I là trung điểm của AC, H là hình chiếu của I trên SC. Kí hiệu d(a, b) là khoảng cách giữa hai đường thẳng a và b. Khẳng định nào sau đây là đúng?

    Hình vẽ minh họa:

    Ta có:

    \left\{ \begin{matrix}
SA\bot BC \\
AB\bot SA \\
AB\bot BC \\
\end{matrix} ight. => d(SA, BC) = AB

  • Câu 12: Vận dụng

    Cho tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c. Độ dài đoạn thẳng AD bằng bao nhiêu?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
CD\bot AB \\
\end{matrix} ight.\  \Rightarrow AB\bot(BCD)

    => Tam giác ABD vuông tại B.

    Ta có: \left\{ \begin{matrix}
CD\bot AB \\
CD\bot BC \\
\end{matrix} ight.\  \Rightarrow CD\bot(ABC)

    => Tam giác BCD vuông tại C.

    Ta có: \left\{ \begin{matrix}
AD^{2} = AB^{2} + BD^{2} \\
BD^{2} = BC^{2} + CD^{2} \\
\end{matrix} ight.

    \begin{matrix}\Rightarrow AD^{2} = AB^{2} + BC^{2} + CD^{2} \hfill \\\Rightarrow AD = \sqrt{AB^{2} + BC^{2} + CD^{2}} \hfill \\\Rightarrow AD = \sqrt{a^{2} + b^{2} + c^{2}} \hfill \\\end{matrix}

  • Câu 13: Nhận biết

    Cho tứ diện OABC với các đường thẳng OA, OB, OC đôi một vuông góc. Bộ ba mặt phẳng vuông góc với nhau từng đôi một là

    Dễ thấy rằng OA ⊥ (OBC), OB ⊥ (OCA), OC ⊥ (OAB)

    Vậy bộ ba mặt phẳng vuông góc với nhau từng đôi một là (OAB), (OBC), (OCA).

  • Câu 14: Nhận biết

    Cho hai đường thẳng phân biệt a, b và mặt phẳng (P) trong đó a ⊥ (P). Chọn mệnh đề sai trong các mệnh đề dưới đây.

    Mệnh đề sai: “Nếu a ⊥ b thì b // (P).”

    Vì b có thể nằm trong (P).

  • Câu 15: Vận dụng

    Cho hình vuông ABCD và tam giác đều SAB cạnh a nằm trong hai mặt phẳng vuông góc với nhau. Tính sin góc giữa đường thẳng SC và mặt phẳng (SAD).

    Tính sin góc giữa đường thẳng SC và mặt phẳng (SAD)

    Gọi I là trung điểm của AB. Khi đó SI \bot \left( {ABCD} ight)

    Ta có \left\{ \begin{gathered}  AD \bot AB \hfill \\  AD \bot SI \hfill \\ \end{gathered}  ight. \Rightarrow AD \bot \left( {SAB} ight)AD \subset \left( {SAD} ight) \Rightarrow \left( {SAD} ight) \bot \left( {SAB} ight)

    Dựng BH \bot SA tại H suy ra SH \bot \left( {SAD} ight)

    Trong mặt phẳng (SAD) kẻ Hx // AD. Trong mặt phẳng (BC, Hx) qua C kẻ đường thẳng song song với BH cắt Hx tại K thì CK \bot \left( {SAD} ight)

    Suy ra SK là hình chiếu vuông góc của SC trên mặt phẳng (SAD) nên góc giữa đường thẳng SC và mặt phẳng (SAD) là góc \widehat {CSK}

    Ta có BH = CK = \frac{{a\sqrt 3 }}{2}

    Trong tam giác SCI có

    SC = \sqrt {S{I^2} + I{C^2}}  = \sqrt {\frac{{3{a^2}}}{4} + \frac{{5{a^2}}}{4}}  = a\sqrt 2

    Suy ra \sin \widehat {CSK} = \frac{{CK}}{{SC}} = \dfrac{{\dfrac{{a\sqrt 3 }}{2}}}{{a\sqrt 2 }} = \frac{{\sqrt 6 }}{4}

  • Câu 16: Thông hiểu

    Cho hình chóp O.ABC có OA = OB = OC = 1, các cạnh OB, OC, OA đối một vuông góc. Gọi M là trung điểm của AB. Tính góc giữa hai vecto \overrightarrow {OM} ;\overrightarrow {BC}?

    Tính góc giữa hai vecto

    Ta có:

    \begin{matrix}  \overrightarrow {OM} .\overrightarrow {BC}  = \dfrac{1}{2}\left( {\overrightarrow {OA}  - \overrightarrow {OB} } ight).\left( {\overrightarrow {OC}  - \overrightarrow {OB} } ight) \hfill \\   = \dfrac{1}{2}O{B^2} = \dfrac{{ - 1}}{2} \hfill \\   \Rightarrow \cos \left( {\overrightarrow {OM} .\overrightarrow {BC} } ight) = \dfrac{{\overrightarrow {OM} .\overrightarrow {BC} }}{{OM.BC}} = \dfrac{{ - \dfrac{1}{2}}}{{\dfrac{{\sqrt 2 .\sqrt 2 }}{2}}} =  - \dfrac{1}{2} \hfill \\   \Rightarrow \left( {\overrightarrow {OM} .\overrightarrow {BC} } ight) = {120^0} \hfill \\ \end{matrix}

  • Câu 17: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?

    Hình vẽ minh họa:

    Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).

    Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.

  • Câu 18: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, các cạnh bên của hình chóp bằng nhau và bằng 2a. Tính khoảng cách d từ A đến mặt phẳng (SCD)

    Hình vẽ minh họa

    Tính khoảng cách d từ A đến mặt phẳng (SCD)

    Gọi O là tâm hình vuông ABCD => SO \bot \left( {ABCD} ight)

    OA \cap \left( {SCD} ight) = C nên 

    \begin{matrix}  \dfrac{{d\left( {A;\left( {SCD} ight)} ight)}}{{d\left( {O;\left( {SCD} ight)} ight)}} = \dfrac{{AC}}{{OC}} = 2 \hfill \\   \Rightarrow d\left( {A;\left( {SCD} ight)} ight) = 2d\left( {O;\left( {SCD} ight)} ight) \hfill \\ \end{matrix}

    Gọi H là trung điểm của CD => OH \bot CD

    Gọi K là hình chiếu của O trên SH => OK \bot SH (*) 

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {CD \bot OH} \\   {CD \bot SO} \end{array}} ight. \Rightarrow CD \bot \left( {SOH} ight) \Rightarrow CD \bot OK\left( ** ight)

    Từ (*) và (**) 

    \begin{matrix}  OK \bot \left( {SCD} ight) \Rightarrow d\left( {O;\left( {SCD} ight)} ight) = OK \hfill \\  OK = \dfrac{{SO.OH}}{{\sqrt {S{O^2} + O{H^2}} }} \hfill \\ \end{matrix}

    Ta lại có:

    \begin{matrix}  SO = \sqrt {S{A^2} - O{A^2}}  \hfill \\   = \sqrt {4{a^2} - {{\left( {\dfrac{{a\sqrt 2 }}{2}} ight)}^2}}  = \dfrac{{a\sqrt {14} }}{2} \hfill \\ \end{matrix}

    \Rightarrow OK = \dfrac{{\dfrac{{a\sqrt {14} }}{2}.\dfrac{a}{2}}}{{\sqrt {{{\left( {\dfrac{{a\sqrt {14} }}{2}} ight)}^2} + {{\left( {\dfrac{a}{2}} ight)}^2}} }} = \dfrac{{a\sqrt 7 }}{{\sqrt {30} }}

    d\left( {A;\left( {SCD} ight)} ight) = 2.OK = \frac{{2a\sqrt 7 }}{{\sqrt {30} }}

  • Câu 19: Nhận biết

    Cho hình hộp ABCD.A’B’C’D có tất cả các cạnh đều bằng nhau. Trong các mệnh đề sau. Mệnh đề nào có thể sai?

    Dễ thấy các đáp án A’C’ ⊥ BD, A’B ⊥ DC’, BC’ ⊥ A’D đúng

    Đáp án BB’ ⊥ BD sẽ bị sai trong trường hợp hình hộp có cạnh bên không vuông góc với mặt đáy

  • Câu 20: Nhận biết

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:

    Hình vẽ minh họa:

    Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.

    Gọi O là hình chiếu của S trên mặt phẳng (ABCD).

    Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.

    Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:

    \begin{matrix}SO = \sqrt{SB^{2} - OB^{2}} \hfill \\= \sqrt{a^{2} - \dfrac{a^{2}}{2}} = \sqrt{\dfrac{a^{2}}{2}} =\dfrac{a\sqrt{2}}{2}\hfill \\\end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 73 lượt xem
Sắp xếp theo