Cho hình chóp
có đáy
là tam giác đều cạnh
,
. Tính chiều cao hình chóp
?
Ta có:
nên SA là chiều cao của hình chóp.
Do tam giác ABC đều cạnh a nên
Ta lại có:
Cho hình chóp
có đáy
là tam giác đều cạnh
,
. Tính chiều cao hình chóp
?
Ta có:
nên SA là chiều cao của hình chóp.
Do tam giác ABC đều cạnh a nên
Ta lại có:
Cho hình chóp
có đáy là hình vuông cạnh
,
. Tính
?
Hình vẽ minh họa
Ta có: nên góc giữa
và mặt phẳng đáy bằng góc
.
Ta có:
Vậy
Cho hình chóp
có đáy
là tam giác vuông tại
. Hình chiếu của
lên mặt phẳng đáy là trung điểm
của
. Tính thể tích khối chóp
biết
.
Hình vẽ minh họa
Xét tam giác ABC vuông tại C ta có:
H là trung điểm của BC nên
Xét tam giác SBH vuông tại H có
Diện tích đáy ABC là
Thể tích khối chóp là
Cho hình lập phương
. Góc giữa hai đường thẳng
và
bằng:
Hình vẽ minh họa
Ta có: là hình lập phương nên các tứ giác
đều là hình vuông
Do đó
Suy ra
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và
. Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:
Hình vẽ minh họa:
Ta có: => BC ⊥ (SAB)
=> SB là hình chiếu của SC lên mặt phẳng (SAB)
=>
Mà
Vậy
Cho tứ diện ABCD với các đường thẳng AB, BC, CD đôi một vuông góc. Góc giữa mặt phẳng (BCD) và mặt phẳng (ACD) bằng góc nào trong các góc sau đây?
Dễ thấy rằng:
Như vậy góc giữa mặt phẳng (BCD) và mặt phẳng (ACD) bằng góc giữa hai đường thẳng AC và BC, tức là bằng góc
Mệnh đề nào sau đây là mệnh đề sai?
Mệnh đề sai: “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì song song.”
Vì hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì có thể cắt nhau, chéo nhau.
Cho hình hộp
có độ dài tất cả các cạnh bằng
và các góc
đều bằng
. Gọi trung điểm của các cạnh
lần lượt là
. Gọi
là góc tạo bởi hai đường thẳng
và
. Xác định
?
Hình vẽ minh họa
Ta có: với P là trung điểm của D’C
Suy ra
Vì và các cạnh của hình hộp bằng a
Do đó
Áp dụng định lí cosin cho tam giác A’DP ta có:
Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa
Hình vẽ minh họa:
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.
Cho hình lập phương ABCD.EFGH. Góc giữa cặp vecto
là:
Hình vẽ minh họa:

Ta có tam giác ACF là tam giác đều
=> Góc giữa cặp vecto là:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D với AB = 2a, AD = DC = a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy. Góc giữa SC và mặt đáy bằng 600. Tính khoảng cách d giữa hai đường thẳng AC và SB.
Hình vẽ minh họa:
Xác định góc 600
Gọi M là trung điểm AB => ADCM là hình vuông => CM = AD = a
Xét tam giác ACB ta có:
=> Tam giác ACB vuông tại C
Lấy điểm E sao cho ACBE là hình chữ nhật
=> AC // BE
=> d(AC, SB) = d(AC, (SBE)) = d(A,(SBE))
Kẻ AK ⊥ SE. Khi đó:
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) ,
. Góc giữa SC với mặt phẳng (ABCD) là:
Hình vẽ minh họa:
Ta có:
Lại có:
=>
Cho hình chóp
, đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Cho hình chóp , đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Hình vẽ minh họa
a) Ta có:
b) Ta có:
mà
c) Ta có:
Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc .
d) Ta có:
Suy ra SD là hình chiếu vuông góc của SC lên (SAD)
Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc trong tam giác vuông SCD.
Xét tam giác SCD vuông tại D ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên
và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ O đến mặt phẳng (SBC)
Ta có:
Từ A kẻ =>
Cho hình lăng trụ ABC.A’B’C’ có
. Hình chiếu vuông góc của C’ lên mặt phẳng (ABC) trùng với trung điểm M của AB. Tính góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’)

Trong (ABC) kẻ ( điểm N thuộc cạnh AC)
Vậy NC’ là hinh chiếu của MC’ trên mp(ACC’A’)
Góc giữa MC’ và mp(ACC’A’) là góc
Ta có
CM là đường trung tuyến của tam giác ABC, nên có
Tam giác CMC’ vuông tại M, nên
Diện tích
Xét tam giác vuông MC’N, có
Vậy góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’) là
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABC) là một điểm nằm trên đoạn thẳng BC. Mặt phẳng (SAB) tạo với (SBC) một góc 600 và mặt phẳng (SAC) tạo với (SBC) một góc ϕ thỏa mãn
. Gọi ϕ là góc tạo bởi SA và mặt phẳng (ABC), tính tan ϕ.
Hình vẽ minh họa:
Dựng hình chữ nhật HNAM, suy ra tam giác HNC vuông cân tại N và tam giác HMB vuông cân tại M, suy ra AC ⊥ (SHN) và AB ⊥ (SHM).
Kẻ HE ⊥ SB và HF ⊥ SC, HP ⊥ SN và HK ⊥ SM, suy ra HP ⊥ (SAC), HK ⊥ (SAB).
Ta có:
=> là góc giữa (SAB) và (SBC) bằng 600
Suy ra:
Suy ra
Cho hình hộp chữ nhật
có
. Gọi mặt phẳng
qua
và vuông góc với
. Tính diện tích thiết diện tạo bởi
và hình hộp chữ nhật đã cho?
Hình vẽ minh họa
Hình chữ nhật có
. Lấy
là trung điểm của
. Ta dễ dàng chứng minh
Ta lại có suy ra mặt phẳng
chính là mặt phẳng
.
Qua điểm M kẻ MN // AD. Thiết diện khi đó là hình chữ nhật ADMN.
Ta tính được
Suy ra diện tích hình chữ nhật ADMN là: .
Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a. Cạnh bên
và vuông góc với đáy (ABCD). Tính khoảng cách d từ điểm B đến mặt phẳng (SCD)
Hình vẽ minh họa:

Do AB // CD =>
Kẻ tại E (1)
Ta có:
Từ (1) và (2) =>
=>
Xét tam giác vuông SAD ta có:
Vậy