Cho khối lăng trụ
có đáy
là tam giác vuông cân tại A. Biết góc giữa mặt phẳng
và mặt phẳng
bằng
và cạnh
. Tính thể tích khối lăng trụ đã cho bằng:
Hình vẽ minh họa
Gọi M là trung điểm của BC. Khi đó
Ta có:
Cho khối lăng trụ
có đáy
là tam giác vuông cân tại A. Biết góc giữa mặt phẳng
và mặt phẳng
bằng
và cạnh
. Tính thể tích khối lăng trụ đã cho bằng:
Hình vẽ minh họa
Gọi M là trung điểm của BC. Khi đó
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:
Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”
Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB
Mặt khác AB ⊥ AD.
Từ đó suy ra AB ⊥ (SDA)
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, SA ⊥ (ABCD). Chọn khẳng định sai trong các khẳng định sau?
Hình vẽ minh họa:
Vì SA ⊥ (ABCD) => SA ⊥ BD
Mà ABCD là hình thoi nên AC ⊥ BD
=> BD ⊥ (SAC)
Mặt khác SO và SC thuộc mặt phẳng (SAC)
=> BD ⊥ SO, BD ⊥ SC
Và AD, SC là hai đường thẳng chéo nhau
=> AD ⊥ SC là khẳng định sai.
Cho tam giác đều ABC có cạnh bằng 3a. Điểm H thuộc cạnh AC với HC = a. Dựng đoạn SH vuông góc với mặt phẳng (ABC) với SH = 2a. Khoảng cách từ điểm C đến mặt phẳng (SAB) bằng bao nhiêu?
Hình vẽ minh họa:
Gọi D là trung điểm của AB, do giả thiết suy ra CD ⊥ AB.
Trong (ABC) kẻ HM // CD suy ra HM ⊥ AB (1).
Do giả thiết SH ⊥ (ABC) => SH ⊥ AB (2)
Từ (1), (2) suy ra AB ⊥ (SHM)
Trong mặt phẳng (SHM) kẻ HK ⊥ SM (3), theo chứng minh trên => HK ⊥ AB (4)
Từ (3), (4) => HK ⊥ (SAB) => d (H; (SAB)) = HK
Dễ thấy CH ∩ (SAB) = {A}
Do đó
Theo giả thiết ∆ABC đều =>
Xét ∆ABC do HM // CD theo định lý Ta - lét ta có:
Áp dụng hệ thức lượng trong ∆SHM vuông tại H, ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = a,
. Tam giác SBC đều và nằm trong mặt phẳng vuông với đáy. Tính khoảng cách d từ B đến mặt phẳng (SAC).
Hình vẽ minh họa:

Gọi M là trung điểm của BC
=>
Gọi N là trung điểm của AC
=>
Kẻ
Khẳng định nào sau đây sai?
Đường thẳng vuông góc với hai đường thẳng nằm trong
thì
chỉ đúng khi hai đường thẳng đó cắt nhau.
Trong các khẳng định sai về lăng trụ đều, khẳng định nào là sai?
Vì lăng trụ đều nên các cạnh bằng nhau. Do đó đáy là đa giác đều.
Vì lăng trụ đều là lăng trụ đứng nên các mặt bên vuông góc với đáy.
Vì lăng trụ đều là lăng trụ đứng nên các cạnh bên vuông góc với đáy.
Vì lăng trụ đều là lăng trụ đứng nên các cạnh bên bằng nhau và cùng vuông góc với đáy. Do đó các mặt bên là những hình vuông.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:
Hình vẽ minh họa:
Theo bài ta có AB là hình chiếu của SB trên (ABC)
Vậy
Mà ∆SBA vuông cân tại A nên
Cho hai tam giác đều DAC và BAC lần lượt nằm trong hai mặt phẳng vuông góc với nhau. Gọi α là góc giữa hai mặt phẳng (DAB) và (DBC). Tính giá trị cos α.

Giả sử cạnh của tam giác đều bằng 2a. Khi đó AB = AD = CB = CD = 2a
Gọi H là trung điểm của AC. Tam giác DAC đều suy ra DH ⊥ AC.
Tương tự BH ⊥ AC.
Ta có:
Gọi K là trung điểm của DB.
Ta có: ABD cân tại A nên
Và CBD cân tại C nên
Ta có:
Suy ra góc giữa hai mặt phẳng (DAB) và (DBC) là góc giữa hai đường thẳng AK và CK.
Ta có nên BDH vuông cân tại H.
Từ đó ta có:
Ta có: mà
Xét tam giác ACK có KH vừa là trung tuyến, vừa là đường cao nên tam giác ACK cân tại K.
Nên ta có: KH là phân giác của góc suy ra
Ta có:
Vậy
Cho tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau. Điểm nào cách đều bốn đỉnh của A, B, C, D của tứ diện ABCD?
Hình vẽ minh họa:
Ta có:
=> Tam giác ABD vuông tại B.
=> IA = IB = ID = AD/2 (với I là trung điểm của AD)
Ta có:
=> Tam giác BCD vuông tại C.
=> EA = EC = ED = AD/2 (E là trung điểm của AD)
Vậy I trùng với E
Vậy điểm cách đều bốn đỉnh của A, B, C, D của tứ diện ABCD là trung điểm của đoạn thẳng AD.
Cho hình chóp tứ giác đều
. Tính khoảng cách từ đường thẳng
và mặt phẳng
bằng:
Hình vẽ minh họa
Gọi O là tâm của đáy
Lấy M, N lần lượt là trung điểm AB, CD.
Kẻ
Có
Ta có:
Khi đó
Trong tam giác SON vuông tại O, có:
Cho hai đường thẳng a và a’ lần lượt có vecto chỉ phương là
. Nếu
là góc giữa hai đường thẳng a và a’ thì
Do góc giữa hai đường thẳng bằng hoặc bù với góc giữa hai vecto chỉ phương của chúng nên đáp án đúng là:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, SA vuông góc với đáy. Gọi M là trung điểm AC. Khẳng định nào sau đây sai?
Tam giác ABC cân tại B có M là trung điểm AC
=> BM ⊥ AC.
Ta có: (do SA ⊥ (ABC)) => BM ⊥ (SAC) => (SBM) ⊥ (SAC).
Ta có: (do SA ⊥ (ABC)) => BC ⊥ (SAB) => (SBC) ⊥ (SAB).
Dùng phương pháp loại trừ thì khẳng định “(SAB) ⊥ (SAC)” là sai
Tìm mệnh đề đúng trong các mệnh đề sau:
Đáp án đúng: “Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”
Cho hình lăng trụ đứng tam giác
có đáy
là tam giác vuông tại
,
. Gọi
là trung điểm của
. Tính cosin góc giữa hai đường thẳng
và
.

Hình vẽ minh họa
Gọi N là trung điểm của BB’, ta có: MN//B’C nên
Ta có:
Áp dụng định lí cosin trong tam giác MNA ta có:
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho hình chóp
có đáy là tam giác đều cạnh bằng
;
. Xác định thể tích hình chóp
?
Ta có nên SC là đường cao của hình chóp
Tam giác ABC đều cạnh x nên
Vậy thể tích hình chóp là:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng
và cạnh bên bằng 2a. Góc giữa đường thẳng SB với mặt phẳng (SAC) bằng
Gọi . Ta có S.ABCD là hình chóp tứ giác đều suy ra
.
Vì
Có
Suy ra hình chiếu vuông góc của đường thẳng SB lên mặt phẳng (SAC) là đường thẳng SO.
Do đó góc giữa SB và mặt phẳng (SAC) bằng góc giữa hai đường thẳng SB và SO và bằng góc .
Có
Vì
Xét tam giác SOB có
Ta có
Cho khối lập phương ABCD.A’B’C’D’. Gọi M là trung điểm của AD, φ là góc giữa hai mặt phẳng (BMC’) và (ABB’A’). Khẳng định nào dưới đây đúng?
Hình vẽ minh họa:
Do ABCD.A’B’C’D’ là hình lập phương
=> MA, CB, C’B’ cùng vuông góc với (ABB’A’)
=> Tam giác MBC’ có hình chiếu vuông góc lên mặt phẳng (ABB’A’) là tam giác ABB’.
Ta có
Xét tam giác MBC’, ta có:
Đặt p = (MB + MC’ + BC’)/2
Áp dụng công thức Hê-rông ta có:
Mặt khác
Cho hình lập phương
. Gọi
là trung điểm của cạnh
. Tính
của góc giữa hai đường thẳng
và
ta được kết quả là:
Hình vẽ minh họa:
Gọi độ dài cạnh hình lập phương là a, a > 0
Ta có:
Tính được
Trong tam giác B’CI ta có: