Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình lập phương ABCD.A’B’CD’D. Tính góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)

    Góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)

    Gọi O là tâm của hình vuông ABCD. Khi đó ta có AO \bot BD (1).

    Mặt khác ta lại có ABCD.A’B’C’D’ là hình lập phương nên BB' \bot \left( {ABCD} ight)

    \Rightarrow BB' \bot AO (2)

    Từ (1) và (2) ta có AO \bot \left( {BDD'B'} ight) tại O

    Khi đó B’O là hình chiếu của AB’ lên mặt phẳng (BDD’B’).

    Suy ra góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’) là \widehat {AB'O}

    Xét tam giác vuông AB’O có \sin \widehat {AB'O} = \frac{{AO}}{{AB'}} = \frac{1}{2}

    Vậy \widehat {\left( {AB',\left( {BDD'B'} ight)} ight)} = 30^\circ

  • Câu 2: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách d giữa hai đường thẳng SA và BD.

    Hình vẽ minh họa:

    Gọi I là trung điểm của AD

    => SI ⊥ AD => SI ⊥ (ABCD)

    Kẻ Ax // BD

    Ta có d(BD, SA) = d (BD, (SAx)) = d (D, (SAx)) = 2d (I, (SAx))

    Kẻ IE ⊥ Ax, kẻ IK ⊥ SE

    Khi đó d (I, (SAx)) = IK

    Gọi F là hình chiếu của I trên BD, ta có: IE = IF = \frac{AO}{2} =\frac{a\sqrt{2}}{4}

    Xét tam giác vuông SIE ta có:

    IK = \frac{SI.IE}{\sqrt{SI^{2} +IE^{2}}} = \frac{a\sqrt{21}}{14}

    => d(BD;SA) = 2IK =\frac{a\sqrt{21}}{7}

  • Câu 3: Nhận biết

    Mệnh đề nào là mệnh đề đúng?

    Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”

  • Câu 4: Vận dụng cao

    Cho khối lập phương ABCD.A’B’C’D’. Gọi M là trung điểm của AD, φ là góc giữa hai mặt phẳng (BMC’) và (ABB’A’). Khẳng định nào dưới đây đúng?

    Hình vẽ minh họa:

    Do ABCD.A’B’C’D’ là hình lập phương

    => MA, CB, C’B’ cùng vuông góc với (ABB’A’)

    => Tam giác MBC’ có hình chiếu vuông góc lên mặt phẳng (ABB’A’) là tam giác ABB’.

    Ta có S_{ABB'} = S_{MBC'}.cos\phi
\Rightarrow \cos\phi = \frac{S_{ABB'}}{S_{MBC'}}

    Xét tam giác MBC’, ta có:

    \begin{matrix}MB = \sqrt{MA^{2} + AB^{2}} = \sqrt{\dfrac{a^{2}}{4} + a^{2}} =\dfrac{\sqrt{5}a}{2} \hfill\\C'B = \sqrt{2}a\hfill \\MC' = \sqrt{DM^{2} + DC'} = \sqrt{\dfrac{a^{2}}{4} + 2a^{2}} =\dfrac{3a}{2} \hfill\\\end{matrix}

    Đặt p = (MB + MC’ + BC’)/2

    Áp dụng công thức Hê-rông ta có:

    S_{MBC'} = \sqrt{p(p - MC')(p -
MB)(p - BC')} = \frac{3a^{2}}{4}

    Mặt khác S_{ABB'} = \dfrac{a^{2}}{2}\Rightarrow \cos\phi = \dfrac{S_{ABB'}}{S_{MBC'}} =\dfrac{\dfrac{a^{2}}{2}}{\dfrac{3a^{2}}{4}} = \dfrac{2}{3}

  • Câu 5: Thông hiểu

    Cho hình lăng trụ tam giác đều ABC.A'B'C'AB = a;AA' = a\sqrt{3}. Tính góc giữa hai đường thẳng AB'CC'?

    Hình vẽ minh họa

    Ta có: AA'//CC' nên góc giữa hai đường thẳng AB'CC' là góc giữa AA'AB' và bằng góc \widehat{A'AB}

    Với AB = a;AA' = a\sqrt{3} ta có: \tan\widehat{A'AB} =
\frac{A'B'}{AA'} = \frac{a}{a\sqrt{3}} =
\frac{1}{\sqrt{3}}

    \Rightarrow \widehat{A'AB} = 60^{0}
\Rightarrow (AB';CC') = 60^{0}

  • Câu 6: Nhận biết

    Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng x; SC\bot(ABC);SC = x. Xác định thể tích hình chóp S.ABC?

    Ta có SC\bot(ABC) nên SC là đường cao của hình chóp

    Tam giác ABC đều cạnh x nên S_{ABC} =
\frac{x^{2}\sqrt{3}}{4}

    Vậy thể tích hình chóp là: V_{S.ABC} =
\frac{1}{3}SC.S_{ABC} = \frac{1}{3}.\frac{x^{2}\sqrt{3}}{4}.x =
\frac{x^{3}\sqrt{3}}{12}

  • Câu 7: Nhận biết

    Cho tứ diện OABC với các đường thẳng OA, OB, OC đôi một vuông góc. Bộ ba mặt phẳng vuông góc với nhau từng đôi một là

    Dễ thấy rằng OA ⊥ (OBC), OB ⊥ (OCA), OC ⊥ (OAB)

    Vậy bộ ba mặt phẳng vuông góc với nhau từng đôi một là (OAB), (OBC), (OCA).

  • Câu 8: Thông hiểu

    Cho tứ diện SABC có SBC và ABC nằm trong hai mặt phẳng vuông góc với nhau. Tam giác SBC đều, tam giác ABC vuông tại A. Gọi H, I lần lượt là trung điểm của BC và AB. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Do SBC là tam giác đều có H là trung điểm BC => SH ⊥ BC.

    Mà ta có (SBC) ⊥ (ABC) theo giao tuyến BC

    => SH ⊥ (ABC) => SH ⊥ AB.

    Vì HI là đường trung bình của tam giác ABC => HI // AC => HI ⊥ AB.

    Ta có:

    \left\{ \begin{matrix}
SH\bot AB \\
HI\bot AB \\
\end{matrix} ight.\  \Rightarrow AB\bot(SHI) \Rightarrow
(SAB)\bot(SHI)

    Dùng phương pháp loại trừ thì khẳng định “(SAB) ⊥ (SAC)” là sai.

  • Câu 9: Thông hiểu

    Cho hình chóp S.ABCDcó đáy ABCD là hình vuông tâm O cạnh bằng aSA =
a\sqrt{3} vuông góc với đáy. Tính cosin góc giữa SB;AC.

    Hình vẽ minh hoạ

    Gọi I là trung điểm của SD

    => OI là đường trung bình tam giác SBD

    Suy ra \left\{ \begin{matrix}OI//SB \\OI = \dfrac{SB}{2} = \dfrac{\sqrt{SA^{2} + AB^{2}}}{2} = a \\\end{matrix} ight.

    Ta có: AI = \frac{SD}{2} =
\frac{\sqrt{SA^{2} + AD^{2}}}{2} = a

    \Rightarrow AI = OI nên tam giác AOI cân tại I

    Gọi H là tung điểm của OA \Rightarrow\left\{ \begin{matrix}IH\bot OA \\OH = \dfrac{OA}{2} = \dfrac{AC}{4} = \dfrac{a\sqrt{2}}{4} \\\end{matrix} ight.

    Xét tam giác OHI có:

    \cos\widehat{HOI} = \dfrac{OH}{OI} =\dfrac{\dfrac{a\sqrt{2}}{4}}{a} = \dfrac{\sqrt{2}}{4}

    \cos(SB,AC) = \cos\widehat{HOI} =
\frac{\sqrt{2}}{4}

  • Câu 10: Nhận biết

    Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là:

    Trong không gian, tập hợp các điểm M cách đều hai điểm A và B là mặt phẳng trung trực của đoạn thẳng AB.

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; SA\bot(ABCD);SA = a\sqrt{2}. Tính khoảng cách giữa hai đường chéo nhau ACSB bằng:

    Hình vẽ minh họa

    Kẻ đường thẳng d qua B và song song AC

    Gọi M là hình chiếu vuông góc của A lên d

    Gọi H là hình chiếu của A lên SM.

    Ta có: \left\{ \begin{matrix}
SA\bot BM \\
BM\bot AM \\
\end{matrix} ight.\  \Rightarrow BM\bot(SAM) \Rightarrow
AH\bot(SBM)

    \Rightarrow d(AC;SB) = d\left( A;(SBM)
ight) = AH

    Xét tam giác SAM có đường cao AH nên

    \frac{1}{AH^{2}} = \frac{1}{AS^{2}} +
\frac{1}{AM^{2}} = \frac{5}{2a^{2}}

    \Rightarrow AH =
\frac{a\sqrt{10}}{5}

  • Câu 12: Nhận biết

    Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là VV' . Khi đó tỉ số \frac{V}{V'} = 1/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là VV' . Khi đó tỉ số \frac{V}{V'} = 1/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Ta có:

    Thể tích khối chóp là: V =
\frac{1}{3}B.h

    Thể tích hình lăng trụ là: V' =
B.h

    Khi đó: \dfrac{V}{V'} =\dfrac{\dfrac{1}{3}B.h}{B.h} = \dfrac{1}{3}

  • Câu 13: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh có độ dài bằng 2a. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của BC. Tính khoảng các d giữa hai đường thẳng BB' và A'H

    Do BB’ // AA’nên d(BB′;A′H)=d(BB′;(AA′H))=d(B;(AA′H))

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {BH \bot AH} \\   {BH \bot A\prime H} \end{array} \Rightarrow BH \bot \left( {AA\prime H} ight)} ight.

    Nên d(B;(AA′H))=BH=BC/2=a

    Vậy khoảng cách d(BB′;A′H)=a

  • Câu 14: Vận dụng

    Cho lăng trụ ABCD.A’B’C’D’ có đáy là hình thoi cạnh a, \widehat{BAD} = 60^{0}. Hình chiếu vuông góc của B’ xuống mặt đáy trùng với giao điểm hai đường chéo của đáy và cạnh bên BB’ = a. Tính góc giữa cạnh bên và mặt đáy.

    Hình vẽ minh họa:

    Gọi O là giao điểm của AC và BD

    Theo giả thiết ta có: B’O ⊥ (ABCD)

    Dó đó \left( BB';(ABCD) ight) =
(BB';BO) = \widehat{B'BO}

    Vì tam giác ABD đều cạnh a => BO =
\frac{BD}{2} = \frac{a}{2}

    Tam giác B’BO vuông ta có:

    \begin{matrix}\cos\widehat{B'BO} = \dfrac{BO}{BB'} = \dfrac{1}{2} \hfill \\\Rightarrow \widehat{B'BO} = 60^{0} \hfill \\\end{matrix}

  • Câu 15: Vận dụng

    Cho hình hộp ABCD.A’B’C’D’, A’B’C’D’ là hình chữ nhật tâmH, A’D’ = 2a, A'B' = 2\sqrt 3 a, H là hình chiếu vuông góc của A trên mặt phẳng (A’B’C’D’), AH = 2\sqrt 3 a. Gọi \alpha là góc giữa hai đường thẳng AD’ và DB’. Tính \cos \alpha.

    Tính góc giữa hai đường thẳng

    Bước 1: Xác định góc giữa hai đường thẳng AD’ và DB’

    Kẻ đường thẳng d qua D, song song với AD', cắt A’D’ tại E

    Suy ra \alpha  = \widehat {\left( {AD',\,DB'} ight)} = \widehat {\left( {DE,\,DB'} ight)}

    Bước 2: Tính \cos \alpha

    Kẻ đường thẳng qua H, song song với A’D’, cắt A’B’ tại F.

    Lấy điểm I sao cho ADIH là hình bình hành.

    Suy ra DI // AH , mà AH \bot \left( {A'B'C'D'} ight)

    => DI \bot \left( {A'B'C'D'} ight) \Rightarrow DI \bot IB'

    Ta có

    \begin{matrix}  DE = AD' = \sqrt {A{H^2} + H{{D'}^2}}  = \sqrt {{{\left( {2\sqrt 3 a} ight)}^2} + {{\left( {2a} ight)}^2}}  = 4a \hfill \\  EB' = \sqrt {A'{E^2} + A'{{B'}^2}}  = \sqrt {{4^2} + {{\left( {2\sqrt 3 } ight)}^2}} .a = 2\sqrt 7 a \hfill \\  IB' = \sqrt {I{F^2} + F{{B'}^2}}  = \sqrt {{3^2} + {{\left( {\sqrt 3 } ight)}^2}} .a = 2\sqrt 3 a \hfill \\  DB' = \sqrt {D{I^2} + I{{B'}^2}}  = \sqrt {{{\left( {2\sqrt 3 } ight)}^2} + {{\left( {2\sqrt 3 } ight)}^2}} .a = 2\sqrt 6 a \hfill \\ \end{matrix}

    Trong tam giác EDB’, có:

    \begin{matrix}  \cos \widehat {EDB'} = \dfrac{{D{E^2} + D{{B'}^2} - E{{B'}^2}}}{{2.DE.DB'}} \hfill \\   = \dfrac{{{{\left( {4a} ight)}^2} + {{\left( {2\sqrt 6 a} ight)}^2} - {{\left( {2\sqrt 7 a} ight)}^2}}}{{2.4a.2\sqrt 6 a}} \hfill \\   = \dfrac{{\sqrt 6 }}{8} > 0 \hfill \\ \end{matrix}

    Suy ra \cos \alpha  = \frac{{\sqrt 6 }}{8}

  • Câu 16: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:

    Hình vẽ minh họa:

    Theo bài ta có AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB,(ABC) ight)} =\widehat{(SB,\ AB)} = \widehat{SBA}

    Mà ∆SBA vuông cân tại A nên \widehat{SBA}= 45^{0}

  • Câu 17: Thông hiểu

    Một hình chóp S.ABC có đáy ABC là cân AB
= AC = a;\widehat{CAB} = 120^{0}. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Tính thể tích khối chóp S.ABC theo a.

    Hình vẽ minh họa

    Gọi H là trung điểm của AB

    Tam giác SAB đều nên SH\bot
AB

    Ta có: \left\{ \begin{matrix}
SH\bot AB \\
(SAB)\bot(ABC) \\
SH \subset (SAB) \\
AB = (SAB) \cap (ABC) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABC)

    Vậy SH là đường cao của hình chóp tam giác S.ABC

    Xét tam giác AHS vuông tại H ta có:

    SH = \sqrt{SA^{2} - AH^{2}} =
\sqrt{a^{2} - \left( \frac{a}{2} ight)^{2}} =
\frac{a\sqrt{3}}{2}

    \Rightarrow V_{S.ABC} =\frac{1}{3}.\frac{a\sqrt{3}}{2}.\frac{1}{2}a^{2}.\sin120^{0} =\frac{a^{3}}{8}

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABC có các mặt bên tạo với đáy một góc bằng nhau. Hình chiếu vuông góc của điểm S trên mặt phẳng (ABC) là:

    Gọi I là hình chiếu vuông góc của S trên mặt phẳng (ABCD)

    M, N, P lần lượt là hình chiếu vuông góc của S trên các cạnh AB, AC, BC.

    Khi đó ta có: \left\{ \begin{matrix}SI\bot AB \\SM\bot AB \\\end{matrix} ight.\  \Rightarrow AB\bot(SIM) \Rightarrow AB\botIM

    Tương tự ta có: AC\bot IN,IP\botBC

    Khi đó \left( (SAB);(ABC) ight) =(SM,IM) = \widehat{SMI}

    Tương tự suy ra \widehat{SMI} =\widehat{SNI} = \widehat{SPI}

    => \Delta SMI = \Delta SNI = \DeltaSPI \Rightarrow IM = IN = IP

    => I là tâm đường tròn nội tiếp tam giác ABC.

  • Câu 19: Nhận biết

    Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

    Ta có: SA ⊥ (ABC) => SA ⊥ BC

    Mặt khác BC ⊥ AB

    Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB

    Vậy \widehat{\left( SC,(SAB) ight)} =\widehat{(SC,SB)} = \widehat{BSC\ }(vì tam giác SBC vuông tại B)

  • Câu 20: Nhận biết

    Cho hình lập phương ABCD.EFGH. Góc giữa cặp vecto \overrightarrow {AF} ;\overrightarrow {EG} là:

    Hình vẽ minh họa:

    Tính góc giữa hai vecto

    Ta có tam giác ACF là tam giác đều

    \overrightarrow {EG}  = \overrightarrow {AC}

    => Góc giữa cặp vecto \overrightarrow {AF} ;\overrightarrow {EG} là:

    \left( {\overrightarrow {AF} ;\overrightarrow {EG} } ight) = \left( {\overrightarrow {AF} ;\overrightarrow {AC} } ight) = \widehat {CAF} = {60^0}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 74 lượt xem
Sắp xếp theo