Cho hình lập phương
. Giả sử mặt phẳng
đi qua điểm
vuông góc với
. Thiết diện tạo bởi
và hình lập phương là:
Hình vẽ minh họa
Ta có:
Vậy chính là mặt phẳng
. Thiết diện là một hình chữ nhật.
Cho hình lập phương
. Giả sử mặt phẳng
đi qua điểm
vuông góc với
. Thiết diện tạo bởi
và hình lập phương là:
Hình vẽ minh họa
Ta có:
Vậy chính là mặt phẳng
. Thiết diện là một hình chữ nhật.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB, AD. Gọi α là góc giữa SA và (SHK). Chọn mệnh đề đúng?
Hình vẽ minh họa:
Gọi I là giao điểm của HK và AC
Dễ dàng suy ra HK // BD => HK ⊥ AC
Ta lại có: AC ⊥ SH
=> AC ⊥ (SHK)
=>
Tam giác SIA vuông tại I ta có:
Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:
Hình vẽ minh họa:
Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)
=> Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là
Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’
=>
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = a,
. Tam giác SBC đều và nằm trong mặt phẳng vuông với đáy. Tính khoảng cách d từ B đến mặt phẳng (SAC).
Hình vẽ minh họa:

Gọi M là trung điểm của BC
=>
Gọi N là trung điểm của AC
=>
Kẻ
Cho hình chóp
có đáy
là tam giác vuông
. Tam giác
là tam giác đều có cạnh bằng
và hình chiếu vuông góc của
lên mặt phẳng
trùng với trung điểm của
. Tính
?
Hình vẽ minh họa
Gọi I là trung điểm của BC
Suy ra
Vì nên hình chiếu của SA trên (ABC) là AI
Do đó góc giữa SA và mặt phẳng (ABC) bằng góc giữa SA và AI bằng
Tma giác SAI vuông tại I ta có:
Nếu ba vecto
cùng vuông góc với vecto
khác
thì chúng:
"Nếu ba vecto cùng vuông góc với vecto
khác
thì chúng đồng phẳng"
Giải thích:
Giả sử không đồng phẳng, khi đó tồn tại duy nhất bộ số thực
sao cho:
Nhân cả hai vế với ta có:
(Mâu thuẫn với giả thiết)
Cho hình chóp
có đáy
là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC. Giả sử HK cắt BC tại D. Khi đó:
a)
Đúng||Sai
b)
Đúng||Sai
c)
Đúng||Sai
d) Tam giác SBC cân tại B. Sai||Đúng
Cho hình chóp có đáy
là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC. Giả sử HK cắt BC tại D. Khi đó:
a) Đúng||Sai
b) Đúng||Sai
c) Đúng||Sai
d) Tam giác SBC cân tại B. Sai||Đúng
đúng
đúng
đúng
Tam giác SBC cân tại B. sai
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc giữa cạnh bên với mặt phẳng đáy bằng α. Tang của góc giữa mặt bên và mặt đáy bằng:

Chân đường cao hình chóp đều S.ABCD trùng với tâm O của đáy ABCD. AO là hình chiếu của SA lên (ABCD)
=>
Gọi M là trung điểm của BC => OM là hình chiếu của SM lên (ABCD) và MO ⊥ BC.
Cho hình chóp S.ABCD có
, ABCD là hình thang vuông tại A, B và
. Gọi
, M là trung điểm SB. Tính sin của góc giữa OM và (SCD).

Trong (SBD), gọi
Ta có BC // AD, áp dụng định lý Ta – let ta được:
Áp dụng định lý Menelaus cho tam giác SBD có cát tuyến OMI ta có:
Tam giác SAD vuông tại A có
=>
Mặt khác:
Lại có ABCD là hình thang vuông tại A, B và nên
=> mà
Kẻ , có
(do
)
Xét tam giác SAC vuông tại A có , AH là đường cao:
Xét tam giác SBD có:
Xét tam giác DIO có:
Do đó:
Mặt khác:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA ⊥ (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào?
Hình vẽ minh họa:
Do I là trung điểm của SC và O là trung điểm AC nên IO ∥ SA. Do SA ⊥ (ABCD) nên IO ⊥ (ABCD), hay khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng IO
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy, I là trung điểm của AC, H là hình chiếu của I trên SC. Kí hiệu d(a, b) là khoảng cách giữa hai đường thẳng a và b. Khẳng định nào sau đây là đúng?
Hình vẽ minh họa:
Ta có:
=> d(SA, BC) = AB
Cho khối chóp S.ABCD có đáy là hình bình hành, AB = 3, AD = 4, góc BAD = 1200. Cạnh bên
vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm các cạnh SA, AD và BC và α là góc giữa hai mặt phẳng (SAC) và (MNP). Chọn khẳng định đúng trong các khẳng định sau đây.
Hình vẽ minh họa:
Ta có:
=> ((SAC), (MNP)) = ((SAC), (SCD)) = α.
Gọi H là hình chiếu vuông góc của A xuống (SCD), K là hình chiếu vuông góc của H xuống SC, suy ra
Ta có
Trong tam giác ABC có
Do đó diện tích tam giác SCD là
Theo công thức tính thể tích khối chóp A.SCD thì
=>
=> α ∈ (600; 900)
Cho hình hộp ABCD.A’B’C’D’. Giả sử tam giác AB’C và A’DC’ đều có ba góc nhọn. Góc giữa hai đường thẳng AC, A’D là góc nào sau đây?

Do ACC’A’ là hình bình hành nên AC song song với A’C’. Do đó:
Như vậy
Cho khối chóp tam giác có chiều cao bằng
, diện tích đáy bằng
. Thể tích của hình chóp bằng:
Ta có:
Thể tích khối chóp tam giác là
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:
Hình vẽ minh họa:
Theo bài ta có AB là hình chiếu của SB trên (ABC)
Vậy
Mà ∆SBA vuông cân tại A nên
Một khối chóp tứ giác đều có các cạnh bằng
(cm). Khi đó thể tích của khối chóp đã cho bằng bao nhiêu?
Hình vẽ minh họa
Gọi hình chóp tứ giác đều có tất cả các cạnh bằng 2t là S.ABCD với I là tâm của đáy ta có:
lần lượt vuông tại S; B; D
I là trung điểm của AC suy ra
Vậy thể tích hình chóp là:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và
. Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:
Hình vẽ minh họa:
Ta có: => BC ⊥ (SAB)
=> SB là hình chiếu của SC lên mặt phẳng (SAB)
=>
Mà
Vậy
Cho một khối lăng trụ có diện tích đáy B và chiều cao h lần lượt là
. Khi đó thể tích khối lăng trụ đã cho bằng bao nhiêu?
Ta có:
Thể tích khối lăng trụ đã cho bằng:
Cho a, b, c là các đường thẳng trong không gian. Mệnh đề nào dưới đây sai?
Nếu a ⊥ b, b ⊥ c thì a // c hoặc a cắt c hoặc a trùng với c hoặc a chéo c.
Cho tam giác đều ABC có cạnh bằng 3a. Điểm H thuộc cạnh AC với HC = a. Dựng đoạn SH vuông góc với mặt phẳng (ABC) với SH = 2a. Khoảng cách từ điểm C đến mặt phẳng (SAB) bằng bao nhiêu?
Hình vẽ minh họa:
Gọi D là trung điểm của AB, do giả thiết suy ra CD ⊥ AB.
Trong (ABC) kẻ HM // CD suy ra HM ⊥ AB (1).
Do giả thiết SH ⊥ (ABC) => SH ⊥ AB (2)
Từ (1), (2) suy ra AB ⊥ (SHM)
Trong mặt phẳng (SHM) kẻ HK ⊥ SM (3), theo chứng minh trên => HK ⊥ AB (4)
Từ (3), (4) => HK ⊥ (SAB) => d (H; (SAB)) = HK
Dễ thấy CH ∩ (SAB) = {A}
Do đó
Theo giả thiết ∆ABC đều =>
Xét ∆ABC do HM // CD theo định lý Ta - lét ta có:
Áp dụng hệ thức lượng trong ∆SHM vuông tại H, ta có: