Cho hình chóp S.ABCD có đáy ABCD là hình vuông với
. Cạnh bên SA vuông góc với đáy, SB hợp với đáy góc 600. Tính khoảng cách d giữa hai đường thẳng AD và SC.
Ta có =>
Kẻ
Ta có:
Lại có
Cho hình chóp S.ABCD có đáy ABCD là hình vuông với
. Cạnh bên SA vuông góc với đáy, SB hợp với đáy góc 600. Tính khoảng cách d giữa hai đường thẳng AD và SC.
Ta có =>
Kẻ
Ta có:
Lại có
Cho hình chóp SABCD có SA ⊥ (ABCD), đáy ABCD là hình thang vuông tại A và B có độ dài cạnh AB = a. Gọi I, J lần lượt là trung điểm của AB và CD. Tính khoảng cách giữa hai đường thẳng IJ và SD.
Hình vẽ minh họa:
Ta có AD // (IJ) ⇒ IJ // (SAD) ⇒ d(IJ, SD) = d(IJ, (SAD)) = d(I, (SAD)) = IA = a/2
Cho hình chóp S.ABC có đáy ABC là tam giác nhọn, SA = SB = SC. Gọi I là hình chiếu vuông góc của S trên mặt phẳng đáy. Khi đó:
Hình vẽ minh họa:

Ta có I là hình chiếu vuông góc của S trên mặt phẳng (ABC)
Tam giác SAI vuông tại I
=> SA2 = AI2 + SI2
Tam giác SBI vuông tại I
=> SB2 = BI2 + SI2
Tam giác SCI vuông tại I
=> SC2 = CI2 + SI2
Kết hợp với điều kiện: SA = SB = SC
=> I là tâm đường tròn ngoại tiếp tam giác ABC.
Cho hình chóp tứ giác đều S.ABCD, cạnh bên bằng cạnh đáy và bằng a. Gọi M là trung điểm của SC. Tính góc giữa hai mặt phẳng (MBD) và (ABCD).

Gọi O là tâm hình vuông ABCD, suy ra SO ⊥ (ABCD).
Ta có:
Do
Tam giác SOC vuông tại O, trung tuyến OM, suy ra
=> Tam giác MOC cân tại M.
=>
Khi đó
Vậy
Cho tứ diện đều ABCD, M là trung điểm của CD, N là điểm nằm trên AD sao cho BN vuông góc với AM. Tính tỉ số ![]()
Hình vẽ minh họa:

Đặt . Ta có:
Giả sử AN = k.AD. Khi đó:
Vì M là trung điểm của CD nên
Khi đó: BN ⊥ AM =>
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của BC và DD’. Tính theo a khoảng cách giữa hai đường thẳng MN và BD.
Hình vẽ minh họa:
Gọi O, P, K lần lượt là trung điểm của AC, CD, OC
Kẻ DI ⊥ MP, DH ⊥ NI
Ta có: , BD // MP, tứ giác DIKO là hình chữ nhật
=>
Khi đó: d(MN, BD) = d(BD, (MNP)) = d(D, (MNP)) = DH
Xét tam giác vuông NDI ta có:
Cho hình chóp
có đáy là hình thoi tâm
. Biết rằng
. Hãy chọn kết luận sai dưới đây?
Hình vẽ minh họa
Ta có tam giác SAC cân tại S và SO là đường trung tuyến cũng đồng thời là đường cao
=>
Trong tam giác SOA thì AC và SA không thể vuông tại A
Vậy khẳng định sai là: .
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a và SA ⊥ (ABCD). Góc giữa SC và mặt phẳng đáy bằng 450. Tính tan α. Biết α là góc giữa đường thẳng SC và mặt phẳng (SAB).
Hình vẽ minh họa:
Ta có: Góc giữa SC và mặt phẳng đáy bằng 450 khi đó:
Gọi O là giao điểm của AC và BD ta có:
Ta có: => Hình chiếu của SD trên mặt phẳng (SAC) là SO.
=>
=>
Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến ∆. Gọi ϕ là góc giữa (P) và (Q). Có tất cả bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(1) ϕ bằng góc giữa hai đường thẳng a và b cùng vuông góc với ∆.
(2) ϕ bằng góc giữa hai đường thẳng a và b cùng vuông góc với ∆, lần lượt nằm trên (P) và (Q).
(3) ϕ bằng góc giữa hai đường thẳng a và b đồng quy với ∆, cùng vuông góc với ∆, lần lượt nằm trên (P) và (Q).
Ta có: a và b chỉ cần lần lượt nằm trong (P), (Q) cùng vuông góc với ∆ là đủ, thêm đồng quy với ∆ càng tốt nên có tất cả 2 mệnh đề đúng.
Cho hình chóp tứ giác
có đáy
là hình vuông cạnh
. Biết
và tam giác
đều. Xác định thể tích hình chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Tam giác SAB đều nên
Ta có:
Vậy SH là đường cao của hình chóp
Xét tam giác AHS vuông tại H ta có:
Thể tích khối chóp là:
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Cho hình chóp tứ giác đều
có đáy là hình vuông cạnh
, độ dài cạnh bên bằng
. Gọi
lần lượt là trung điểm của các cạnh
và
. Góc giữa
và
bằng:
Hình vẽ minh họa
Gọi P là trung điểm của SB
Ta có:
Mà
Cho hình chóp S.ABCD có ABCD là hình vuông, tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm BC. Gọi
là góc hợp bởi đường thẳng SA và mặt phẳng (SDM). Tính ![]()
+ Không mất tính tổng quát, đặt AB = 2
+ Gọi N là trung điểm AB suy ra
+ Gọi
Gọi
+ Ta có
+ Ta có
+ Gọi NH là đường cao
+ Tam giác NJI đồng dạng tam giác MBJ
+ Tam giác SAB là tam giác đều cạnh bằng 2
Cho khối chóp
có chiều cao bằng
đáy là tam giác
có diện tích bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp tam giác là
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:
Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”
Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB
Mặt khác AB ⊥ AD.
Từ đó suy ra AB ⊥ (SDA)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?
Gọi O là tâm hình bình hành ABCD.
Các mặt phẳng cách đều A, B, C, D và S là
1) Mặt phẳng qua trung điểm của SA, SB, SC, SD
2) Mặt phẳng qua O và song song (SAB)
3) Mặt phẳng qua O và song song (SAD)
4) Mặt phẳng qua O và song song (SCD)
5) Mặt phẳng qua O và song song (SBC)
Hình chóp tam giác đều
. Gọi
là trọng tâm tam giác
. Khẳng định nào sau đây đúng?
Ta có khối chóp tam giác đều có đáy
là tam giác đều, trọng tâm G cũng là tâm của đáy nên
.
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A và SA ⊥ (ABC). M là trung điểm của BC. Hãy xác định góc giữa hai mặt phẳng (ABC) và (SBC).
Hình vẽ minh họa:
Ta có: Giao tuyến của hai mặt phẳng (SBC) và (ABC) là BC. (1)
Ta có: SA ⊥ (ABC), mà đường thẳng BC nằm trong (ABC) => SA ⊥ BC.
Do tam giác ABC cân tại A và M là trung điểm BC => BC ⊥ AM tại M.
Như vậy:
Lại có:
Từ (1), (2), (3) =>
Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa
Hình vẽ minh họa:
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.
Cho khối chóp S.ABCD có đáy là hình bình hành, AB = 3, AD = 4,
. Cạnh bên
vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm các cạnh SA, AD và BC, α là góc giữa hai mặt phẳng (SAC) và (MNP). Chọn khẳng định đúng trong các khẳng định sau đây.
Hình vẽ minh họa:
Ta có:
=>
Gọi H là hình chiếu vuông góc của A xuống (SCD), K là hình chiếu của H xuống SC
=>
Ta có: