Cho khối chóp
có chiều cao bằng
đáy là tam giác
có diện tích bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp tam giác là
Cho khối chóp
có chiều cao bằng
đáy là tam giác
có diện tích bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp tam giác là
Cho hình chóp
đáy
là hình thoi tâm I, cạnh bên
vuông góc với đáy. Gọi
lần lượt là hình chiếu của
lên
. Mệnh đề nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Công thức tính thể tích khối lăng trụ có diện tích đáy
và chiều cao
là:
Thể tích khối lăng trụ có diện tích đáy và chiều cao
là:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Gọi H và K lần lượt là trung điểm của cạnh BC và CD. Tính khoảng cách giữa hai đường thẳng HK và SD.
Gọi . Do
nên suy ra
(vì
)
Kẻ ta có:
Từ (1) và (2) , khi đó
Cho hình vuông ABCD cạnh 4a , lấy H, K lần lượt trên các cạnh AB, AD sao cho BH = 3HA, AK = 3KD. Trên đường thẳng vuông góc với mặt phẳng (ABCD) tại H lấy điểm S sao cho
. Gọi E là giao điểm của CH và BK . Tính cosin của góc giữa hai đường thẳng SE và BC .
Gọi I là hình chiếu vuông góc của E lên AB ta có

Ta có:
Trong tam giác vuông SEI có:
=>
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:
Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”
Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB
Mặt khác AB ⊥ AD.
Từ đó suy ra AB ⊥ (SDA)
Cho tứ diện ABCD. Gọi H là trực tâm của tam giác BCD và AH vuông góc với mặt phẳng đáy. Khẳng định nào dưới đây là đúng?
Hình vẽ minh họa

Vì AH vuông góc với (BCD) suy ra (1)
Mà H là trực tâm của tam giác BCD (2)
Từ (1), (2) suy ra:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AB = BC = a, AD = 2a,
, SA ⊥ (ABCD). Tính góc giữa đường thẳng SC và mặt phẳng (SAD).
Hình vẽ minh họa:
Gọi M là trung điểm của AD
=> ABCM là hình vuông => CM ⊥ AD
Ta có:
Suy ra hình chiếu vuông góc của SC trên mặt phẳng (SAD) là SM
=>
=>
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh bằng
, AA’ = 4. Tính góc giữa đường thẳng A’C với mặt phẳng (AA’BB’).

Ta có tại B. Khi đó A’B là hình chiếu của A’C lên mặt phẳng (AA’B’B)
Vậy góc tạo bởi đường thẳng A’C và mặt phẳng (AA’BB’) là góc
Khi đó
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên bằng
. Tính khoảng cách d từ đỉnh A đến mặt phẳng (SBC)
Hình vẽ minh họa

Giả sử O là tâm của tam giác đều ABC
Do S.ABC đều nên =>
Gọi E là trung điểm của BC ta có:
Xét (SAE) kẻ
Ta có:
Ta có:
Xét tam giác vuông SOE ta có:
Cho hình chóp
, có đáy
là hình chữ nhật,
. Gọi
lần lượt là đường cao của tam giác
và
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Vì
Mà
Tam giác SAB có đường cao
Mà
Tương tự chứng minh ta được:
Cho đường thẳng a và mặt phẳng (P). Có bao nhiêu mặt phẳng đi qua a và vuông góc với mặt phẳng (P)?
Có một khi a không vuông góc với (P), có vô số khi a vuông góc với (P).
Cho hình chóp S.ABC có SA = SB và CA = CB. Tính số đo góc giữa hai đường thẳng chéo nhau SC và AB.
Hình vẽ minh họa:

Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:
Do ∆BCD là tam giác đều cạnh nên có diện tích là
Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:
Hình vẽ minh họa:
Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)
=> Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là
Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’
=>
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, hình chiếu vuông góc của đỉnh S trên mặt phẳng (ABC) là một điểm nằm trên đoạn thẳng BC. Mặt phẳng (SAB) tạo với (SBC) một góc 600 và mặt phẳng (SAC) tạo với (SBC) một góc ϕ thỏa mãn
. Gọi ϕ là góc tạo bởi SA và mặt phẳng (ABC), tính tan ϕ.
Hình vẽ minh họa:
Dựng hình chữ nhật HNAM, suy ra tam giác HNC vuông cân tại N và tam giác HMB vuông cân tại M, suy ra AC ⊥ (SHN) và AB ⊥ (SHM).
Kẻ HE ⊥ SB và HF ⊥ SC, HP ⊥ SN và HK ⊥ SM, suy ra HP ⊥ (SAC), HK ⊥ (SAB).
Ta có:
=> là góc giữa (SAB) và (SBC) bằng 600
Suy ra:
Suy ra
Cho hình chóp
,
vuông góc với mặt phẳng
và
. Hỏi có bao nhiêu mặt của hình chóp là tam giác vuông?
Hình vẽ minh họa
Ta có: suy ra tam giác ABC vuông tại B
Ta có:
Suy ra tam giác SAB và tam giác SAC là các tam giác vuông tại A
Mặt khác suy ra tam giác SBC vuông tại B
Vậy hình chóp có bốn mặt đều là tam giác vuông.
Cho hình chóp
có
là hình vuông cạnh
;
. Khoảng cách giữa hai đường thẳng
bằng bao nhiêu?
Hình vẽ minh họa
Dựng
Dựng . Dễ thấy
Cho hình chóp
có đáy
là tam giác vuông cân tại
. Tam giác
vuông cân tại
có
là trung điểm của
và
. Gọi góc giữa hai đường thẳng
và
là
. Chọn kết luận đúng?
Hình vẽ minh họa
Giả sử
Lại có: suy ra tam giác SBC đều suy ra
Suy ra hay
Khi đó
Áp dụng định lí cosin cho tam giác MNC ta có:
Tính thể tích hình chóp đều
biết chiều cao bằng
và độ dài cạnh bên bằng
?
Hình vẽ minh họa
Gọi O là tâm hai đường chéo AC và BD
Ta có: tam giác SAC cân, O là trung điểm của AC nên
Tương tự tam giác SBD cân, O là trung điểm của BD nên
Tam giác SOA vuông tại O nên
Vậy thể tích hình chóp là: