Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh có độ dài bằng 2a. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của BC. Tính khoảng các d giữa hai đường thẳng BB' và A'H

    Do BB’ // AA’nên d(BB′;A′H)=d(BB′;(AA′H))=d(B;(AA′H))

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {BH \bot AH} \\   {BH \bot A\prime H} \end{array} \Rightarrow BH \bot \left( {AA\prime H} ight)} ight.

    Nên d(B;(AA′H))=BH=BC/2=a

    Vậy khoảng cách d(BB′;A′H)=a

  • Câu 2: Thông hiểu

    Cho hình lập phương ABCD.A’B’C’D. Mặt phẳng (A’BCD’) vuông góc với mặt phẳng:

    Hình vẽ minh họa:

    Dễ thấy: \left\{ \begin{matrix}
AB’\bot A’B \\
AB’\bot A’D’ \\
\end{matrix} \Rightarrow AB’\bot(A’BCD’) ight.

    Do đó: (ADC’B’)⊥(A’BCD’)

    Vậy mặt phẳng (A’BCD’) vuông góc với mặt phẳng (ADC’B’).

  • Câu 3: Nhận biết

    Trong không gian cho đường thẳng \Delta và điểm A. Qua điểm A có bao nhiêu đường thẳng vuông góc với \Delta?

    Trong không gian có vô số đường thẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.

  • Câu 4: Thông hiểu

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a. Góc tạo bởi cạnh bên SB và mặt phẳng đáy bằng 60^{0}. Thể tích khối chóp là:

    Hình vẽ minh họa

    Gọi H là tâm của tam giác đều ABC

    Khi đó SH\bot(ABC);BH =
\frac{a\sqrt{3}}{3}

    Theo bài ra ta có:

    \left( SB;(ABC) ight) = \widehat{SBH}
= 60^{0}

    Tam giác SBH vuông tại H có: SH =
BH.tan60^{0} = \frac{a\sqrt{3}}{3}.\sqrt{3} = a

    \Rightarrow V_{S.ABC} =
\frac{1}{3}.SO.S_{ABC} = \frac{1}{3}.a.\frac{a^{2}\sqrt{3}}{4} =
\frac{\sqrt{3}a^{3}}{12}

  • Câu 5: Thông hiểu

    Cho hình chóp tam giác S.ABCSA =
SB = SC = AB = AC = aBC =
a\sqrt{2}. Kết quả nào dưới đây đúng?

    Ta có:

    BC^{2} = AB^{2} + AC^{2} suy ra tam giác ABC vuông tại A

    => M là tâm đường tròn ngoại tiếp tam giác ABC.

    SA = SB = SC nên SM là đường cao của hình chóp S.ABC.

    Hình vẽ minh họa

    Gọi N, I lần lượt là trung điểm cạnh AC và SB.

    Ta có: MN // AB và IM // SC nên (SC,AB) =
(IM,MN)

    BN = \sqrt{AB^{2} + AN^{2}} =
\sqrt{a^{2} + \frac{a^{2}}{4}} = \frac{a\sqrt{5}}{2}

    SN = \sqrt{SC^{2} - NC^{2}} =
\sqrt{a^{2} - \frac{a^{2}}{4}} = \frac{a\sqrt{3}}{2}

    MN = \frac{a}{2};MI =
\frac{a}{2}

    Xét tam giác IMN có

    \cos\widehat{NMI} = \dfrac{MN^{2} +IM^{2} - IN^{2}}{2.MN.IM}= \dfrac{\dfrac{a^{2}}{4} + \dfrac{a^{2}}{4} -\dfrac{3a^{2}}{4}}{2.\dfrac{a}{2}.\dfrac{a}{2}} = -\dfrac{1}{2}

    \Rightarrow \widehat{NMI} =
120^{0}

    \Rightarrow (SC,AB) = (IM,MN) =
60^{0}

  • Câu 6: Nhận biết

    Công thức tính thể tích V của khối nón có bán kính r và chiều cao h là:

    Công thức tính thể tích là: V =
\frac{1}{3}\pi r^{2}h

  • Câu 7: Vận dụng

    Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của BC và DD’. Tính theo a khoảng cách giữa hai đường thẳng MN và BD.

    Hình vẽ minh họa:

    Gọi O, P, K lần lượt là trung điểm của AC, CD, OC

    Kẻ DI ⊥ MP, DH ⊥ NI

    Ta có: ND = \frac{a}{2}, BD // MP, tứ giác DIKO là hình chữ nhật

    => DI = OK = \frac{OC}{2} =\frac{a\sqrt{2}}{4}

    Khi đó: d(MN, BD) = d(BD, (MNP)) = d(D, (MNP)) = DH

    Xét tam giác vuông NDI ta có:

    \begin{matrix}\dfrac{1}{DH^{2}} = \dfrac{1}{DN^{2}} + \dfrac{1}{DI^{2}} \Rightarrow DH =\dfrac{a\sqrt{3}}{6} \hfill \\\Rightarrow d(MN,BD) = \dfrac{a\sqrt{3}}{6} \hfill\\\end{matrix}

  • Câu 8: Vận dụng cao

    Cho hình lập phương ABCD.A’B’C’D’ có thể tích bằng 27. Một mặt phẳng (α) tạo với mặt phẳng (ABCD) góc 600 và cắt các cạnh AA’, BB’, CC’, DD’ lần lượt tại M, N, P, Q. Tính diện tích của tứ giác MNPQ.

    Hình vẽ minh họa:

    Đặt AB = a

    V_{ABCD.A'B'C'D'} =
a^{3} = 27 \Rightarrow a = 3

    Ta có:

    \begin{matrix}S_{ABCD} = S_{MNPQ}.cos60^{0} \hfill\\\Rightarrow S_{MNPQ} = \dfrac{S_{ABCD}}{cos60^{0}} =\dfrac{a^{2}}{\dfrac{1}{2}} = 2a^{2} = 18 \hfill\\\end{matrix}

  • Câu 9: Nhận biết

    Các đường thẳng cùng vuông góc với một đường thẳng thì: 

    Đáp án "Thuộc một mặt phẳng"  sai vì có thể xảy ra trường hợp chúng nằm trên nhiều mặt phẳng khác nhau.

    Đáp án "Vuông góc với nhau" sai vì có thể xảy ra trường hợp chúng song song với nhau.

    Đáp án "Song song với nhau" sai vì có thể xảy ra trường hợp chúng cắt nhau.

    Đáp án "Song song với một mặt phẳng"  đúng vì chúng đồng phẳng.

  • Câu 10: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh x, SA vuông góc với đáy và SA = x\sqrt{3}. Tính chiều cao hình chóp S.ABC?

    Ta có SA\bot(ABC) nên SA là đường cao của hình chóp

    Tam giác ABC đều cạnh x nên S_{ABC} =
\frac{x^{2}\sqrt{3}}{4}

    Vậy thể tích hình chóp là: V_{S.ABC} =
\frac{1}{3}SA.S_{ABC} = \frac{1}{3}.\frac{x^{2}\sqrt{3}}{4}.x\sqrt{3} =
\frac{x^{3}}{4}

  • Câu 11: Nhận biết

    Cho hình chóp S.ABCDSA\bot(ABCD), tứ giác ABCD là hình vuông. Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
SA\bot(ABCD) \\
SA \subset (SAB) \\
\end{matrix} ight.\  \Rightarrow (SAB)\bot(ABCD)

    Ta có: \left\{ \begin{matrix}
SA\bot(ABCD) \\
SA \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow (SAC)\bot(ABCD)

    Ta có: \left\{ \begin{matrix}
BD\bot AC \\
BD\bot SA \\
AC \cap SA = \left\{ A ight\} \\
AC;SA \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
BD\bot(SAC) \\
BD \subset (SBD) \\
\end{matrix} ight.

    \Rightarrow (SBD)\bot(SAC)

    \left( (SAB);(SAC) ight) = (AD;BD) =
45^{0}

  • Câu 12: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:

    Hình vẽ minh họa:

    Theo bài ta có AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB,(ABC) ight)} =\widehat{(SB,\ AB)} = \widehat{SBA}

    Mà ∆SBA vuông cân tại A nên \widehat{SBA}= 45^{0}

  • Câu 13: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a\sqrt{3};BC = a\sqrt{2}. Cạnh bên SA = a và SA vuông góc với mặt phẳng đáy. Khoảng cách giữa SB và DC bằng:

    Hình vẽ minh họa:

    Vì DC // AB nên khoảng cách giữa SB và DC bằng khoảng cách giữa mặt phẳng (SAB) và DC.

    Do đó: d(DC, SB) = d(DC, (SAB)) = d(D, (SAB)) = AD = a\sqrt{2}

  • Câu 14: Vận dụng

    Cho tứ diện đều ABCD có M là trung điểm của cạnh CD, gọi \varphi là góc giữa hai đường thẳng AM và BC. Giá trị \cos \varphi bằng:

    Tính cosin góc giữa hai đường thẳng

    Giả sử cạnh của tứ diện đều bằng a

    Vì M là trung điểm của CD. Nên AM là đường cao trong tam giác ACD đều.

    => AM = \frac{{a\sqrt 3 }}{2}

    Ta có:

    \begin{matrix}  \overrightarrow {CB} .\overrightarrow {AM}  = \overrightarrow {CB} .\left( {\overrightarrow {CM}  - \overrightarrow {CA} } ight) = \overrightarrow {CB} .\overrightarrow {CM}  - \overrightarrow {CB} .\overrightarrow {CA}  \hfill \\   = CB.CM.\cos \widehat {BCM} - CB.CA.\cos \widehat {ACB} \hfill \\   = a.\dfrac{a}{2}.\cos {60^o} - a.a.\cos {60^o} =  - \dfrac{{{a^2}}}{4} \hfill \\ \end{matrix}

    => \cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight) = \dfrac{{\overrightarrow {BC} .\overrightarrow {AM} }}{{\left| {\overrightarrow {BC} } ight|.\left| {\overrightarrow {AM} } ight|}} = \dfrac{{\dfrac{{ - {a^2}}}{4}}}{{a.\dfrac{{a\sqrt 3 }}{2}}} = \dfrac{{ - \sqrt 3 }}{6}

     

    => \cos \varphi  = \left| {\cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight)} ight| = \frac{{\sqrt 3 }}{6}

  • Câu 15: Vận dụng

    Cho tứ diện ABCD có AB, BC, BD đôi một vuông góc. Trong các khẳng định dưới đây khẳng định nào đúng?

    Hình vẽ minh họa:

    Chọn khẳng định đúng

    \widehat {\left( {CD;\left( {ABD} ight)} ight)} = \widehat {CBD} sai

    CB ⊥ BD, CB ⊥ BA => CB ⊥ (ABD)

    => B là hình chiếu của C trên mặt phẳng (ABD)

    => \widehat {\left( {CD;\left( {ABD} ight)} ight)} = \widehat {CDB}

    \widehat {\left( {AC;\left( {BCD} ight)} ight)} = \widehat {ACB} đúng

    AB ⊥ BC, AB ⊥ BD => AB ⊥ (BCD)

    => B là hình chiếu của A trên mặt phẳng (BCD)

    => \widehat {\left( {AC;\left( {BCD} ight)} ight)} = \widehat {ACB}

    \widehat {\left( {AD;\left( {ABC} ight)} ight)} = \widehat {ADB} sai

    BD⊥ BA, BD ⊥ BC => BD ⊥ (ABC)

    => B là hình chiếu của D trên mặt phẳng (ABC)

    => \widehat {\left( {AD;\left( {ABC} ight)} ight)} = \widehat {DAB}

    \widehat {\left( {AC;\left( {ABD} ight)} ight)} = \widehat {CBA} sai

    => B là hình chiếu của C trên mặt phẳng (ABD)

    => \widehat {\left( {AC;\left( {ABD} ight)} ight)} = \widehat {CAB}

  • Câu 16: Nhận biết

    Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa

    Hình vẽ minh họa:

    Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

    Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.

  • Câu 17: Thông hiểu

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh bằng 2\sqrt 2, AA’ = 4. Tính góc giữa đường thẳng A’C với mặt phẳng (AA’BB’).

     Số đo góc giữa đường thẳng A’C với mặt phẳng (AA’BB’)

    Ta có CB \bot \left( {AA'B'B} ight) tại B. Khi đó A’B là hình chiếu của A’C lên mặt phẳng (AA’B’B)

    Vậy góc tạo bởi đường thẳng A’C và mặt phẳng (AA’BB’) là góc \widehat {CA'B}

    Khi đó \tan \widehat {CA'B} = \frac{{BC}}{{A'B}} = \frac{{2\sqrt 2 }}{{\sqrt {{4^2} + {{\left( {2\sqrt 2 } ight)}^2}} }} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {CA'B} = 30^\circ

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABC có SA = SB = SC; \widehat {ASB} = \widehat {BSC} = \widehat {CSA}. Hãy xác định góc giữa cặp vecto \overrightarrow {SC} ,\overrightarrow {AB}?

    Hình vẽ minh họa:

    Xác định góc giữa cặp vecto

    Ta có:

    \begin{matrix}  \overrightarrow {SC} .\overrightarrow {AB}  = \overrightarrow {SC} .(\overrightarrow {SB}  - \overrightarrow {SA} ) \hfill \\   = \overrightarrow {SC} .\overrightarrow {SB}  - \overrightarrow {SC} .\overrightarrow {SA}  \hfill \\   = |\overrightarrow {SC} |.|\overrightarrow {SB} |.\cos (\overrightarrow {SC} ,\overrightarrow {SB} ) \hfill \\   - |\overrightarrow {SC} |.|\overrightarrow {SA} |.\cos (\overrightarrow {AB} ;\overrightarrow {AC} ) \hfill \\   = SC.SB.\cos \widehat {BSC} - SC.SA.\cos \widehat {ASC} \hfill \\ \end{matrix}

    Mà SA = SB = SC và \widehat {ASB} = \widehat {BSC} = \widehat {CSA}

    => \overrightarrow {SC} .\overrightarrow {AB}  = 0 \Rightarrow \left( {\overrightarrow {SC} ,\overrightarrow {AB} } ight) = {90^0}

  • Câu 19: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Đường thẳng nào dưới đây vuông góc với mặt phẳng (A'BD)?

    Hình vẽ minh họa

    Ta có: AB = AD = AA' = a nên A cách đều các điểm B,D,A'

    BC' = DC' = C'A' =
a\sqrt{2} nên C' cách đều các điểm B,D,A'

    Do đó A; C’ cùng nằm trên đường tròn ngoại tiếp tam giác A'BD

    \Rightarrow
AC'\bot(A'BD)

  • Câu 20: Nhận biết

    Mệnh đề nào là mệnh đề đúng?

    Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 71 lượt xem
Sắp xếp theo