Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho tứ diện ABCD có: AB = AC = AD, \widehat {BAC} = \widehat {BAD} = {60^0}. Gọi M và N lần lượt là trung điểm của AB và CD. Mặt phẳng (BCD) vuông góc với mặt phẳng:

    Hình vẽ minh họa:

    Mặt phẳng (BCD) vuông góc với mặt phẳng nào

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BN \bot CD} \\   {AN \bot CD} \end{array} \Rightarrow } ight.CD \bot \left( {ABN} ight)

    CD \subset \left( {BCD} ight) \Rightarrow \left( {BCD} ight) \bot \left( {ABN} ight)

  • Câu 2: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, SA vuông góc với đáy. Gọi M là trung điểm của AC. Khẳng định nào sau đây sai?

    Hình vẽ minh họa

    Ta có: tam giác ABC vuông cân tại B, BM là đường trung tuyến nên cũng là đường cao.

    \Rightarrow BM\bot SA

    Lại có: BM\bot SA \Rightarrow BM\bot(SAC)
\Rightarrow BM\bot AC

    Ta có: \left\{ \begin{matrix}
BM\bot(SAC) \\
BM \subset (SBM) \\
\end{matrix} ight.\  \Rightarrow (SBM)\bot(SAC)

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB)

    BC \subset (SBC) \Rightarrow
(SAB)\bot(SBC)

  • Câu 3: Vận dụng

    Cho hình vuông ABCD cạnh 4a , lấy H, K lần lượt trên các cạnh AB, AD sao cho BH = 3HA, AK = 3KD. Trên đường thẳng vuông góc với mặt phẳng (ABCD) tại H lấy điểm S sao cho \widehat {SBH} = 30^\circ. Gọi E là giao điểm của CH và BK . Tính cosin của góc giữa hai đường thẳng SE và BC .

    Gọi I là hình chiếu vuông góc của E lên AB ta có

    \begin{matrix}  \Delta ABK = \Delta BCH \hfill \\   \Rightarrow \widehat {ABK} = \widehat {BCH} \Rightarrow \widehat {HEB} = 90^\circ  \hfill \\ \end{matrix}

    Tính cosin của góc giữa hai đường thẳng

    Ta có:

    \begin{matrix}  {\text{cos}}\left( {SE\,;\,BC} ight) = {\text{cos}}\left( {SE\,;\,EI} ight) = \left| {\cos \widehat {SEI}} ight| \hfill \\  SH = BH.\tan 30^\circ  = 3a.\dfrac{{\sqrt 3 }}{3} = a\sqrt 3  \hfill \\  \dfrac{{HB}}{{HC}} = \dfrac{{HE}}{{HB}} \Rightarrow HE = \dfrac{{H{B^2}}}{{HC}} = \dfrac{{9a}}{5} \hfill \\  SE = \sqrt {S{H^2} + H{E^2}}  = \sqrt {3{a^2} + \dfrac{{81{a^2}}}{{25}}}  = \dfrac{{2a\sqrt {39} }}{5} \hfill \\  \dfrac{{HE}}{{HB}} = \dfrac{{HI}}{{HE}} \Rightarrow HI = \dfrac{{H{E^2}}}{{HB}} = \dfrac{{27a}}{{25}} \hfill \\  SI = \sqrt {S{H^2} + H{I^2}}  = \sqrt {3{a^2} + {{\left( {\dfrac{{27a}}{{25}}} ight)}^2}}  = \dfrac{{2a\sqrt {651} }}{{25}} \hfill \\ \end{matrix}

    Trong tam giác vuông SEI có:

    EI = \sqrt {S{E^2} - S{I^2}}  = \frac{{36a}}{{25}}

    => \cos \widehat {SEI} = \frac{{EI}}{{SE}} = \frac{{18}}{{5\sqrt {39} }}

  • Câu 4: Thông hiểu

    Cho hình chóp S,ABC có đáy là tam giác vuông cân tại A. Tam giác SBC là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với mặt đáy. Tính d(SA;BC)?

    Hình vẽ minh họa

    Gọi H là trung điểm của BC. Suy ra SH\bot(ABC)

    Kẻ HK\bot SA;(K \in SA)(1)

    Ta có: \left\{ \begin{matrix}
BC\bot SH \\
BC\bot AH \\
\end{matrix} ight.\  \Rightarrow BC\bot(SHA) \Rightarrow BC\bot
KH(2)

    Từ (1) và (2) suy ra HK là đoạn vuông góc chung của SA và BC

    Do đó d(SA;BC) = HK =
\frac{SH.HA}{\sqrt{SH^{2} + HA^{2}}} = \frac{a\sqrt{3}}{4}

  • Câu 5: Nhận biết

    Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là VV' . Khi đó tỉ số \frac{V}{V'} = 1/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là VV' . Khi đó tỉ số \frac{V}{V'} = 1/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Ta có:

    Thể tích khối chóp là: V =
\frac{1}{3}B.h

    Thể tích hình lăng trụ là: V' =
B.h

    Khi đó: \dfrac{V}{V'} =\dfrac{\dfrac{1}{3}B.h}{B.h} = \dfrac{1}{3}

  • Câu 6: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Gọi I là trung điểm của cạnh AB. Tính cosin của góc giữa hai đường thẳng A'DB'I ta được kết quả là:

    Hình vẽ minh họa:

    Gọi độ dài cạnh hình lập phương là a, a > 0

    Ta có:

    B'C//A'D \Rightarrow
(A'D;B'I) = (B'I,B'C)

    Tính được \left\{ \begin{matrix}B'I = \sqrt{a^{2} + \left( \dfrac{a}{2} ight)^{2}} =\dfrac{a\sqrt{5}}{2} = CI \\B'C = a\sqrt{2} \\\end{matrix} ight.

    Trong tam giác B’CI ta có:

    \cos\widehat{IB'C} = \dfrac{\left(\dfrac{a\sqrt{5}}{2} ight)^{2} + \left( a\sqrt{2} ight)^{2} - \left(\dfrac{a\sqrt{5}}{2}ight)^{2}}{2.\dfrac{a\sqrt{5}}{2}.a\sqrt{2}}

    = \frac{2a^{2}}{a^{2}\sqrt{10}} =
\frac{\sqrt{10}}{5}

  • Câu 7: Nhận biết

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng BD và A’C’ bằng:

    Do BD và A’C’ lần lượt nằm trên hai mặt phẳng (ABCD) và (A’B’C’D’) song song với nhau nên d(A’C’, BD) = d((ABCD),(A’B’C’D’)).

    Mà ABCD.A’B’C’D’ là hình lập phương nên ta có d((ABCD), (A’B’C’D’)) = AA’ = a. Vậy d(A’C’, BD) = a.

  • Câu 8: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.

    Hình vẽ minh họa:

    Ta có:

    SA ⊥ BC

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC

  • Câu 9: Nhận biết

    Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

    Ta có: SA ⊥ (ABC) => SA ⊥ BC

    Mặt khác BC ⊥ AB

    Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB

    Vậy \widehat{\left( SC,(SAB) ight)} =\widehat{(SC,SB)} = \widehat{BSC\ }(vì tam giác SBC vuông tại B)

  • Câu 10: Nhận biết

    Cho hình lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác đều, M là trung điểm của BC. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có tam giác ABC đều và M là trung điểm của BC nên AM\bot BC

    Ta có: \left\{ \begin{matrix}
AM\bot BC \\
BC//B'C' \\
\end{matrix} ight.\  \Rightarrow AM\bot B'C'

  • Câu 11: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a và SA ⊥ (ABCD). Góc giữa SC và mặt phẳng đáy bằng 450. Tính tan α. Biết α là góc giữa đường thẳng SC và mặt phẳng (SAB).

    Hình vẽ minh họa:

    Ta có: Góc giữa SC và mặt phẳng đáy bằng 450 khi đó:

    \begin{matrix}
\left( SC;(ABCD) ight) = (SC;AC) = \widehat{SCA} \\
\Rightarrow SA = AC = 2a\sqrt{2} \\
\end{matrix}

    Gọi O là giao điểm của AC và BD ta có:

    Ta có: \left\{ \begin{matrix}
DO\bot AC \\
DO\bot SA \\
\end{matrix} ight.\  \Rightarrow DO\bot(SAC)=> Hình chiếu của SD trên mặt phẳng (SAC) là SO.

    => \left( SD;(SAC) ight) = (SD;SO) =
\widehat{DSO}

    \left\{ \begin{matrix}DO = \dfrac{1}{2}BD = a\sqrt{2} \hfill \\SO = \sqrt{SA^{2} + AO^{2}} = a\sqrt{10} \hfill \\\end{matrix} ight.

    => \tan\widehat{DSO} = \frac{DO}{SO} =
\frac{\sqrt{5}}{5}

  • Câu 12: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. Cạnh bện SA vuông góc với mặt phẳng (ABCD) và SC =10\sqrt{5}. Gọi M, N lần lượt là trung điểm của SA và CD. Tính khoảng cách d giữa BD và MN.

    Hình vẽ minh họa:

    Gọi P là trung điểm BC và E = NP ∩ AC

    => PN // BD => BD // (MNP)

    => d(BD, MN) = d(BD, (MNP)) = d(O, (MNP)) = \frac{1}{3}d(A, (MNP))

    Kẻ AK ⊥ ME

    Khi đó d(A, (MNP)) = AK.

    Ta tính được:

    \begin{matrix}SA = \sqrt{SC^{2} - AC^{2}} = 10\sqrt{3} \\\Rightarrow MA = 5\sqrt{3};AE = \dfrac{3}{4}AC = \dfrac{15\sqrt{2}}{2} \\\end{matrix}

    Xét tam giác vuông MAE ta có:

    AK = \frac{MA.AE}{\sqrt{MA^{2} +AE^{2}}} = 3\sqrt{5}

    \Rightarrow d(BD;MN) = \frac{1}{3}AK =\sqrt{5}

  • Câu 13: Vận dụng cao

    Cho hình lăng trụ tam giác đều ABC.A’B’C’ có AB = 2\sqrt{3} và AA’ = 2. Gọi M, N, P lần lượt là trung điểm các cạnh A’B’, A’C’ và BC. Cosin của góc tạo bởi hai mặt phẳng (AB’C’) và (MNP) bằng:

    Hình vẽ minh họa:

    Gọi P, Q lần lượt là trung điểm của BC và B’C’; I = BM ∩ AB’, J = CN ∩ AC’, E = MN ∩ A’Q.

    Suy ra (MNP) ∩ (AB’C’) = (MNCB) ∩ (AB’C’) = IJ và gọi K = IJ ∩ PE

    => K ∈ AQ, với E là trung điểm của MN.

    (AA’QP) ⊥ IJ => AQ ⊥ IJ, PE ⊥ IJ

    => ((MNP), (AB’C’)) = (AQ, PE) = α.

    Ta có: AP = 3, PQ = 2

    \Rightarrow AQ = \sqrt{13} \Rightarrow
QK = \frac{\sqrt{13}}{3}

    PE = \frac{5}{2} \Rightarrow PK =
\frac{5}{3}

    \cos\alpha = \left| \cos\widehat{QKP}
ight| = \frac{\left| KQ^{2} + KP^{2} - PQ^{2} ight|}{2KQ.KP} =
\frac{\sqrt{13}}{65}

  • Câu 14: Thông hiểu

    Cho hình chóp tam giác S.ABCSA =
SB = SC = AB = aBC =
a\sqrt{2}. Tính cosin góc giữa hai đường thẳng ABSC.

    Hình vẽ minh họa

    Giả sử M, N, Q lần lượt là trung điểm các cạnh SA, SB, AC

    Mặt khác ta có: \left\{ \begin{matrix}
MN//AB \\
MQ//SC \\
\end{matrix} ight.\  \Rightarrow (AB;SC) = (MN;MQ)

    Ta có: AN =
\frac{a\sqrt{3}}{2}

    NC = \sqrt{\frac{SC^{2} + BC^{2}}{2} -\frac{SB^{2}}{4}}= \sqrt{\dfrac{a^{2} + 2a^{2}}{2} - \dfrac{a^{2}}{4}} =\dfrac{a\sqrt{5}}{2}

    Xét tam giác NAC có:

    NQ = \sqrt{\frac{NA^{2} + CN^{2}}{2} -\frac{AC^{2}}{4}}= \sqrt{\dfrac{\dfrac{3a^{2}}{4} + \dfrac{5a^{2}}{4}}{2}- \dfrac{a^{2}}{4}} = \dfrac{a\sqrt{3}}{2}

    Xét tam giác MNQ ta có:

    \cos\widehat{NMQ} = \frac{MN^{2} +MQ^{2} - NQ^{2}}{2MN.MQ}= \dfrac{\dfrac{a^{2}}{4} + \dfrac{a^{2}}{4} -\dfrac{3a^{2}}{4}}{2.\dfrac{a}{2}.\dfrac{a}{2}} = -\dfrac{1}{2}

    \Rightarrow \widehat{NMQ} = 120^{0}
\Rightarrow (MN,MQ) = 180^{0} - 120^{0} = 60^{0}

    \Rightarrow \cos(AB,SC) =
\frac{1}{2}

  • Câu 15: Nhận biết

    Cho hình chóp tứ giác S.ABCD có tất cả các cạnh đều bằng nhau và bằng a. Số đo góc giữa hai đường thẳng SACD bằng bao nhiêu?

    Hình vẽ minh họa

    Ta có: AB//CD \Rightarrow (SA;CD) =
(SA;AB) = \widehat{SAB}

    Tam giác SAB đều nên \widehat{SAB} = 60^{0}

    \Rightarrow (SA;CD) = \widehat{SAB} =
60^{0}

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều và H là trung điểm cạnh BC. Gọi O là trung điểm AH của tam giác ABC, SO\bot(ABCD). Gọi I là trung điểm cạnh OH. Gọi mặt phẳng (\alpha) qua I và vuông góc với OH. Thiết diện của (\alpha) với hình chóp S.ABC là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
(\alpha)\bot OH \\
BC\bot OH \\
\end{matrix} ight.\  \Rightarrow (\alpha)//BC

    => Qua I kẻ đường thẳng d_{1}//BC. Gọi \left\{ \begin{matrix}
d_{1} \cap AB = M \\
d_{1} \cap AC = N \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
SO\bot OH \\
(\alpha)\bot OH \\
\end{matrix} ight.\  \Rightarrow (\alpha)//SO=> Qua I kẻ đường thẳng IK//SO;(K \in SH)

    (\alpha)//BC => Qua K kẻ đường thẳng d_{2}//BC. Gọi \left\{ \begin{matrix}
d_{2} \cap SB = Q \\
d_{2} \cap SC = P \\
\end{matrix} ight.

    => thiết diện (\alpha) và hình chóp là tứ giác MNPQ có IK là đường trung trực của MN và PQ.

    => MNPQ là hình thang cân.

  • Câu 17: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Gọi α là số đo của góc giữa đường thẳng SA và mặt phẳng (ABC). Tính tan α.

    Hình chiếu của SA lên mặt phẳng (ABC) là AH

    => Góc giữa SA và mặt phẳng (ABC) là \widehat{SAH}

    Tam giác ABC và SBC là các tam giác đều cùng cạnh a

    AH = SH =\frac{a\sqrt{3}}{2}

    Vậy tan α = 1

  • Câu 18: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a\sqrt{2}. Tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với đáy. Cạnh SC tạo với đáy một góc bằng 60^{0}. Tính thể tích của hình chóp S.ABCD?

    Hình vẽ minh họa

    Kẻ SH\bot AC;H \in (AC) ta có:

    \left\{ \begin{matrix}
SH\bot AC \\
SH \subset (SAC) \\
(SAC)\bot(ABCD) \\
AC = (SAC) \cap (ABCD) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    Vậy SH là đường cao của hình chóp

    Lại có AC = 2a, tam giác SAC vuông tại S và \widehat{SAC} =
60^{0} nên \left\{ \begin{matrix}SA = a \\SC = a\sqrt{3} \\SH = \dfrac{a\sqrt{3}}{2} \\\end{matrix} ight.

    Thể tích hình chóp là V =
\frac{1}{3}.\left( a\sqrt{2} ight)^{2}.\frac{a\sqrt{3}}{2} =
\frac{a^{3}\sqrt{3}}{3}

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABCDABCD là hình vuông cạnh a; SA =
a;SA\bot(ABCD). Khoảng cách giữa hai đường thẳng SC;BD bằng bao nhiêu?

    Hình vẽ minh họa

    Dựng Cx//BD;(\alpha) =
(SC;Cx)

    \Rightarrow d(BD;SC) = d\left(
BD;(\alpha) ight)

    d\left( BD;(\alpha) ight) = d\left(
O;(\alpha) ight) = \frac{1}{2}d\left( A;(\alpha) ight)

    Dựng AK\bot SC. Dễ thấy AK\bot(\alpha) \Rightarrow d\left( A;(\alpha)
ight) = AK

    \frac{1}{AK^{2}} = \frac{1}{SA^{2}} +
\frac{1}{AC^{2}} \Rightarrow AK = \frac{a\sqrt{6}}{3}

    \Rightarrow d\left( O;(\alpha) ight) =
\frac{a\sqrt{6}}{3}

  • Câu 20: Nhận biết

    Công thức tính thể tích khối lăng trụ có diện tích đáy B và chiều cao h là:

    Thể tích khối lăng trụ có diện tích đáy B và chiều cao h là:

    V = B.h

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 73 lượt xem
Sắp xếp theo