Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a\sqrt{2}. Tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với đáy. Cạnh SC tạo với đáy một góc bằng 60^{0}. Tính thể tích của hình chóp S.ABCD?

    Hình vẽ minh họa

    Kẻ SH\bot AC;H \in (AC) ta có:

    \left\{ \begin{matrix}
SH\bot AC \\
SH \subset (SAC) \\
(SAC)\bot(ABCD) \\
AC = (SAC) \cap (ABCD) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    Vậy SH là đường cao của hình chóp

    Lại có AC = 2a, tam giác SAC vuông tại S và \widehat{SAC} =
60^{0} nên \left\{ \begin{matrix}SA = a \\SC = a\sqrt{3} \\SH = \dfrac{a\sqrt{3}}{2} \\\end{matrix} ight.

    Thể tích hình chóp là V =
\frac{1}{3}.\left( a\sqrt{2} ight)^{2}.\frac{a\sqrt{3}}{2} =
\frac{a^{3}\sqrt{3}}{3}

  • Câu 2: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề “Hai mặt phẳng cùng song song với một mặt phẳng thứ ba thì song song với nhau” là sai. Hai mặt phẳng cùng song song với một mặt phẳng thứ ba thì song song hoặc trùng nhau.

    Mệnh đề “Qua một đường thẳng cho trước có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước” là sai. Nếu đường thẳng vuông góc với mặt phẳng cho trước thì có vô số mặt phẳng qua đường thẳng và vuông góc với mặt phẳng đó. Nếu đường thẳng không vuông góc với mặt phẳng cho trước thì không có mặt phẳng nào vuông góc với mặt phẳng đó.

    Mệnh đề “Hai mặt phẳng cùng vuông góc với một mặt phẳng thứ ba thì vuông góc với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau (giao truyến vuông góc với mặt phẳng kia).

    Vậy mệnh đề đúng là: “Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với hai mặt phẳng cắt nhau cho trước.”

  • Câu 3: Thông hiểu

    Cho tứ diện đều ABCD. Gọi trung điểm của các cạnh AB;BC lần lượt là M;N. Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Gọi P là trung điểm của BD.

    Ta có: MN;NP;MP lần lượt là đường trung bình của tam giác ABC;BCD;ABD.

    Do đó:

    MN//AC;MN = \frac{1}{2}AC

    NP//CD;NP = \frac{1}{2}CD

    ABCD là tứ diện đều \Rightarrow AC = CD = AD

    \Rightarrow MN = NP = MP nên tam giác MNP là tam giác đều.

    \Rightarrow (MN;CD) = (MN;NP) =
\widehat{MNP} = 60^{0}

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a ; AD = 2a, SA \bot \left( {ABCD} ight);SA = a\sqrt 2. Tính góc giữa hai mặt phẳng (SCD) và (SAB).

     Tính góc giữa hai mặt phẳng (SCD) và (SAB)

    Gọi M là trung điểm của AD.

    Xét tứ giác ABCM có: AM // BC, AM = AB = BC = a, \widehat {MAB} = {90^0}

    Suy ra ABCM là hình vuông => MC = AB = a

    Xét tam giác ACD có AM là trung tuyến và CM = \frac{1}{2}AD = a

    Suy ra ACD vuông tại C => AC ⊥ CD

    Trong (SAC), dựng AH ⊥ SC

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {CD \bot AC} \\   {CD \bot SA} \\   {SA \cap AC = A} \\   {SA;AC \subset \left( {SAC} ight)} \end{array}} ight. \Rightarrow CD \bot \left( {SAC} ight) mà AH ⊂ (SAC) suy ra CD ⊥ AH.

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {AH \bot CD} \\   {AH \bot SC} \\   {CD \cap SC = C} \\   {CD;SC \subset \left( {SCD} ight)} \end{array}} ight. \Rightarrow AH \bot \left( {SCD} ight)\left( 1 ight)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {AD \bot SA} \\   {AD \bot AB} \\   {SA \cap AB = A} \\   {SA;AB \subset \left( {SAB} ight)} \end{array}} ight. \Rightarrow AD \bot \left( {SAB} ight)\left( 2 ight)

    Từ (1) và (2) suy ra góc giữa hai mặt phẳng (SAB) và (SCD) là góc giữa hai đường thẳng AH và AD.

    Xét tam giác ABC vuông tại B có: AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2

    Xét tam giác SAC vuông tại A có: SC = \sqrt {S{A^2} + A{C^2}}  = 2a

    Xét tam giác SAC vuông tại A và SA = AC = a\sqrt 2 nên SAC vuông cân tại A.

    Suy ra H là trung điểm SC và AH = \frac{1}{2}SC = a

    Xét tam giác AHD vuông tại H (vì AH ⊥ (SCD)).

    Ta có: \cos \widehat {HAD} = \frac{{AH}}{{AD}} = \frac{a}{{2a}} = \frac{1}{2} suy ra \widehat {DAH} = {60^0}

    Vậy \left( {\widehat {\left( {SCD} ight);\left( {SAB} ight)}} ight) = {60^0}

  • Câu 5: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh có độ dài bằng 2a. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của BC. Tính khoảng các d giữa hai đường thẳng BB' và A'H

    Do BB’ // AA’nên d(BB′;A′H)=d(BB′;(AA′H))=d(B;(AA′H))

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {BH \bot AH} \\   {BH \bot A\prime H} \end{array} \Rightarrow BH \bot \left( {AA\prime H} ight)} ight.

    Nên d(B;(AA′H))=BH=BC/2=a

    Vậy khoảng cách d(BB′;A′H)=a

  • Câu 6: Thông hiểu

    Cho tam giác đều ABC cạnh a. Gọi D là điểm đối xứng với A qua BC. Trên đường thẳng vuông góc với mặt phẳng (ABC) tại D lấy điểm S sao cho SD = \frac{a\sqrt{6}}{2} . Gọi I là trung điểm BC, kẻ IH vuông góc SA (H ∈ SA). Khẳng định nào sau đây sai?

    Từ giả thiết suy ra ABDC là hình thoi nên BC ⊥ AD.

    Ta có:

    BC ⊥ AD và BC ⊥ SD

    => BC ⊥ (SAD)

    => BC ⊥ SA.

    Lại có theo giả thiết IH ⊥ SA => SA ⊥ (HCB) => SA ⊥ BH

    Tính được: \left\{ \begin{matrix}AI = \dfrac{a\sqrt{3}}{2};AD = 2AI = a\sqrt{3} \\SA = \sqrt{AD^{2} + SD^{2}} = \dfrac{3a\sqrt{2}}{2} \\\end{matrix} ight.

    Ta có:

    \begin{matrix}\Delta AHI\sim\Delta ADS \Rightarrow \dfrac{IH}{SD} = \dfrac{AI}{AS} \\\Rightarrow IH = \dfrac{SD.AI}{AS} = \dfrac{a}{2} = \dfrac{BC}{2} \\\end{matrix}

    => Tam giác HBC có trung tuyến IH bằng nửa cạnh đáy BC nên \widehat{BHC} = 90^{0} hay BH ⊥ HC.

    Từ đó suy ra (SAB) ⊥ (SAC). Dùng phương pháp loại trừ thì khẳng định “(SDB) ⊥ (SDC)” là sai.

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SA =
2a;SA\bot(ABCD). Xác định độ lớn khoảng cách từ điểm A đến mặt phẳng (SBD)?

    Hình vẽ minh họa

    Gọi O = AC \cap BD

    Kẻ AK\bot SO;(K \in SO)(1)

    Ta có:

    SA\bot(ABCD) \Rightarrow SA\bot
BD(*)

    AC\bot DB(**)

    Từ (*) và (**) suy ra DB\bot(SAC)
\Rightarrow BC\bot AK(2)

    Từ (1) và (2) suy ra AK\bot(SBD)
\Rightarrow d\left( A;(SBD) ight) = AK

    Xét tam giác SAO vuông tại A ta có: \frac{1}{AK^{2}} = \frac{1}{AO^{2}} +
\frac{1}{SA^{2}} = \frac{9}{4a^{2}} \Rightarrow AK =
\frac{2a}{3}

    \Rightarrow d\left( A;(SBD) ight) =
\frac{2a}{3}

  • Câu 8: Vận dụng

    Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. H là hình chiếu vuông góc của O trên mặt phẳng (ABC). Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa:

    Chọn khẳng định sai

    Ta có: OA ⊥ OB, OA ⊥ OC => OA ⊥ (OBC) => OA ⊥ BC (*)

    Gọi M là giao điểm của AH và BC

    Theo giả thiết ta có: OH ⊥ (ABC) => OH ⊥ BC (**)

    Từ (*) và (**) suy ra: BC ⊥ (AOM) => BC ⊥ OM

    Xét tam giác BOC vuông ta có:

    \frac{1}{{O{I^2}}} = \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}

    Xét tam giác AOI vuông ta có:

    \frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{M^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}

    Từ chứng minh trên ta có: BC ⊥ (AOM) => BC ⊥ AM (1)

    Gọi N là giao điểm của BH và AC. Chứng minh tương tự ta có: AC ⊥ BN (2)

    Từ (1) và (2) => H là trực tâm tam giác ABC

    Vậy 3O{H^2} = A{B^2} + A{C^2} + B{C^2} là kết quả sai.

  • Câu 9: Vận dụng

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Gọi K là trung điểm của DD’. Tính khoảng cách giữa hai đường thẳng CK, A’D.

    Hình vẽ minh họa:

    Trong mặt phẳng (CDD’C), gọi P là giao điểm của CK và C’D’

    => KD’ là đường trung bình của ∆PCC’

    => D’ là trung điểm của PC’

    Trong mặt phẳng (A’B’C’D’), gọi M là giao điểm của PB’ và A’D’

    Ta có: A’D // B’C => A’D // (AKB’)

    => d(CK, A’D) = d (A’,(CKB’)) = \frac{1}{2}d(C’,(CPB’))

    Xét tứ diện PCC’B’ ta có:

    C’P, C’B và C’B đôi một vuông góc với nhau

    Đặt d(C’, (CPB’)) = x, thì:

    \frac{1}{x^{2}} = \frac{1}{CC'^{2}}+ \frac{1}{C'B'^{2}} + \frac{1}{C'P^{2}}

    \Rightarrow \frac{1}{x^{2}} =\frac{1}{a^{2}} + \frac{1}{a^{2}} + \frac{1}{4a^{2}} =\frac{9}{4a^{2}}

    \Rightarrow d\left( C';(CPB')ight) = x = \frac{2a}{3}

    \Rightarrow d(CK;A'D) =\frac{1}{2}d\left( C';(CPB') ight) = \frac{1}{2}.\frac{2a}{3}= \frac{a}{3}

  • Câu 10: Nhận biết

    Cho hình chóp S.ABC có đường thẳng SA vuông góc với đáy (ABC), SA =
2a. Khoảng cách từ điểm S đến đường thẳng AB bằng:

    SA vuông góc với đáy (ABC) nên SA\bot AB \Rightarrow d(S,AB) = SA =
2a

  • Câu 11: Vận dụng

    Cho hình chóp S.ABCD có SA \bot \left( {ABCD} ight);SA = a\sqrt 2, ABCD là hình thang vuông tại A, B và 2AB = 2BC = AD = 2a. Gọi O = AC \cap BD, M là trung điểm SB. Tính sin của góc giữa OM và (SCD).

    Tính sin của góc giữa OM và (SCD)

    Trong (SBD), gọi I = OM \cap SD \Rightarrow OM \cap \left( {SCD} ight) = I

    Ta có BC // AD, áp dụng định lý Ta – let ta được:

    \frac{{OB}}{{OD}} = \frac{{OC}}{{OA}} = \frac{{BC}}{{AD}} = \frac{1}{2}

    Áp dụng định lý Menelaus cho tam giác SBD có cát tuyến OMI ta có:

    \frac{{BO}}{{OD}}.\frac{{DI}}{{IS}}.\frac{{SM}}{{MB}} = 1 \Leftrightarrow \frac{1}{2}.\frac{{DI}}{{IS}}.1 = 1 \Leftrightarrow \frac{{DI}}{{IS}} = 2

    Tam giác SAD vuông tại A có

    SA = a\sqrt 2 ,AD = 2a \Rightarrow SD = a\sqrt 6

    => DI = \frac{3}{2}SD = \frac{{a\sqrt 6 }}{2}

    Mặt khác: \frac{{CO}}{{CA}} = \frac{1}{3} \Rightarrow \frac{{d\left( {O,\left( {SCD} ight)} ight)}}{{d\left( {A,\left( {SCD} ight)} ight)}} = \frac{1}{3}

    \Rightarrow d\left( {O,\left( {SCD} ight)} ight) = \frac{1}{3}d\left( {A,\left( {SCD} ight)} ight)

    Lại có ABCD là hình thang vuông tại A, B và 2AB = 2BC = AD nên AC = CD = a\sqrt 2

    => AC \bot CD mà CD \bot SA \Rightarrow CD \bot \left( {SAC} ight)

    Kẻ AH \bot SC, có CD \bot AH (do CD \bot \left( {SBC} ight))

    \Rightarrow AH \bot \left( {SCD} ight) \Rightarrow d\left( {A,\left( {SCD} ight)} ight) = AH

    Xét tam giác SAC vuông tại A có SA = a\sqrt 2 ,\,AC = a\sqrt 2, AH là đường cao:

    \begin{matrix}   \Rightarrow \dfrac{1}{{A{H^2}}} = \dfrac{1}{{A{S^2}}} + \dfrac{1}{{A{C^2}}} = \dfrac{1}{{2{a^2}}} + \dfrac{1}{{2{a^2}}} = \dfrac{1}{{{a^2}}} \hfill \\   \Rightarrow AH = a \hfill \\   \Rightarrow d\left( {O,\left( {SCD} ight)} ight) = \dfrac{1}{3}AH = \dfrac{a}{3} \hfill \\ \end{matrix}

    Xét tam giác SBD có:

    \begin{matrix}  SD = \sqrt {S{A^2} + A{D^2}}  = \sqrt {2{a^2} + 4{a^2}}  = a\sqrt 6  \hfill \\  SB = \sqrt {S{A^2} + A{B^2}}  = \sqrt {2{a^2} + {a^2}}  = a\sqrt 3  \hfill \\  BD = \sqrt {A{D^2} + A{B^2}}  = \sqrt {4{a^2} + {a^2}}  = a\sqrt 5  \hfill \\ \end{matrix}

    Xét tam giác DIO có:

    DI = 2SD = 2a\sqrt 6 ,DO = \frac{2}{3}DB = \frac{2}{3}a\sqrt 5 .

    Do đó:

    \begin{matrix}  \cos SDB = \cos IDO \Leftrightarrow \dfrac{{S{D^2} + B{D^2} - S{B^2}}}{{2.SD.BD}} = \dfrac{{I{D^2} + O{D^2} - O{I^2}}}{{2.ID.OD}} \hfill \\   \Leftrightarrow \dfrac{{6{a^2} + 5{a^2} - 3{a^2}}}{{2.a\sqrt 6 .a\sqrt 5 }} = \dfrac{{24{a^2} + \dfrac{{20{a^2}}}{9} - O{I^2}}}{{2.2a\sqrt 6 .\dfrac{2}{3}a\sqrt 5 }}. \hfill \\   \Leftrightarrow 8 = \dfrac{{\dfrac{{236}}{9}{a^2} - O{I^2}}}{{\dfrac{4}{3}{a^2}}} \Leftrightarrow O{I^2} = \dfrac{{140{a^2}}}{9} \Leftrightarrow OI = \dfrac{{2a\sqrt {35} }}{3} \hfill \\ \end{matrix}

    Mặt khác:

    \begin{matrix}  \sin \left( {OM,\left( {SCD} ight)} ight) = \sin \left( {OI,\left( {SCD} ight)} ight) \hfill \\   = \dfrac{{d\left( {O,\left( {SCD} ight)} ight)}}{{OI}} = \dfrac{{\dfrac{a}{3}}}{{\dfrac{{2a\sqrt {35} }}{3}}} = \dfrac{{\sqrt {35} }}{{70}} \hfill \\ \end{matrix}

  • Câu 12: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau?

    Ta có:

    “Trong không gian hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau” sai do hai đường thẳng phân biệt cùng vuông góc với một đường thẳng có thể cắt nhau hoặc chéo nhau.

    “Trong không gian hai mặt phẳng cùng vuông góc với một đường thẳng thì song song với nhau” sai do hai mặt phẳng cùng vuông góc với một đường thẳng có thể trùng nhau.

    “Trong không gian hai đường thẳng không có điểm chung thì song song với nhau” sai do trong không gian hai đường thẳng không có điểm chung có thể chéo nhau.

    Vậy khẳng định đúng là: “Trong không gian hai đường thẳng vuông góc với nhau có thể cắt nhau hoặc chéo nhau.”

  • Câu 13: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥ (ABC). Gọi I là tâm đường tròn ngoại tiếp tam giác SBC, H là hình chiếu của I trên mặt phẳng đáy. Chọn khẳng định đúng trong các khẳng định dưới đây?

    Hình vẽ minh họa:

    Chọn khẳng định đúng

    Ta có: SA ⊥ (ABC) => SA ⊥ BC

    Mà AB ⊥ BC => BC ⊥ (SAB) => BC ⊥ SB

    => Tam giác SBC vuông tại B => I là trung điểm của SC

    Theo bài ra ta có: IH ⊥ (ABC) => IH // SA

    => H là trung điểm của cạnh AC,

    Mà tam giác ABC vuông tại B => H là tâm đường tròn ngoại tiếp tam giác ABC.

  • Câu 14: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I, cạnh a, góc BAD bằng 600, SA = SB = SD = \frac{a\sqrt{3}}{2}. Gọi α là góc giữa đường thẳng SD và mặt phẳng (SBC). Giá trị sin α bằng:

    Hình vẽ minh họa:

    Theo giả thiết, ABD là tam giác đều.

    Gọi H là tâm đường tròn ngoại tiếp tam giác ABD.

    Do SA = SB = SD nên S nằm trên trục của đường tròn ngoại tiếp tam giác ABD suy ra SH ⊥ (ABD) hay SH ⊥ (ABCD).

    Do (SBC) ⊥ (SBH) nên từ H kẻ HK ⊥ SB tại K thì HK = d(H, (SBC)) và \frac{1}{HK^{2}} = \frac{1}{HB^{2}} +
\frac{1}{HS^{2}}

    => HK =
\frac{a\sqrt{15}}{9}

    Mặt khác d(H, (SBC)) = 2/3d(A, (SBC)) = 2/3d(D, (SBC)) => d(D, (SBC)) = \frac{a\sqrt{15}}{6}

    Gọi O là hình chiếu vuông góc của điểm D trên (SBC).

    Khi đó:

    \begin{matrix}\alpha = (SD,SO) = \widehat{DSO} \hfill\\DO = d\left( D;(SBC) ight) = \dfrac{a\sqrt{15}}{6} \hfill\\\end{matrix}

    Xét tam giác SDO vuông tại O có:

    \sin\alpha = \dfrac{DO}{SD} =\dfrac{\dfrac{a\sqrt{15}}{6}}{\dfrac{a\sqrt{3}}{2}} =\dfrac{\sqrt{5}}{3}

  • Câu 15: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) , SA = a\sqrt{2}. Góc giữa SC với mặt phẳng (ABCD) là:

    Hình vẽ minh họa:

    Ta có: \widehat{\left( SC,(ABCD) ight)}= \widehat{(SC,AC)} = \widehat{SCA}

    Lại có: \tan\widehat{SCA} = \frac{SA}{AC}= \frac{SA}{AB\sqrt{2}} = \frac{a\sqrt{2}}{a\sqrt{2}} = 1

    => \widehat{SCA} = 45^{0}

  • Câu 16: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 4a?

    Ta có: V = (4a)^{3} =
64a^{3}

  • Câu 17: Nhận biết

    Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là VV' . Khi đó tỉ số \frac{V}{V'} = 1/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là VV' . Khi đó tỉ số \frac{V}{V'} = 1/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Ta có:

    Thể tích khối chóp là: V =
\frac{1}{3}B.h

    Thể tích hình lăng trụ là: V' =
B.h

    Khi đó: \dfrac{V}{V'} =\dfrac{\dfrac{1}{3}B.h}{B.h} = \dfrac{1}{3}

  • Câu 18: Nhận biết

    Cho tứ diện OABCOA;OB;OC đôi một vuông góc. Khẳng định nào dưới đây đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
OA\bot OB \\
OA\bot OC \\
\end{matrix} ight.\  \Rightarrow OA\bot(OBC)

  • Câu 19: Thông hiểu

    Cho hình lăng trụ đứng tam giác ABC.A'B'C' có đáy ABC là tam giác cân, AB = AC = a,\widehat{BAC} = 120^{0} và cạnh bên AA' = a\sqrt{2}. Tính góc giữa hai đường thẳng AB'BC?

    Hình vẽ minh họa

    Ta có: BC//B'C' \Rightarrow
(AB',BC) = (AB',B'C')

    Xét tam giác AB'C' ta có: AB' = AC' = \sqrt{AB^{2} +
BB'^{2}} = a\sqrt{3}

    Áp dụng định lí cosin cho tam giác ABC ta có:

    BC^{2} = AB^{2} + AC^{2} -
2AB.AC.cos\widehat{BAC}

    = a^{2} + a^{2} - 2a.a.cos120^{0} =
3a^{2}

    \Rightarrow BC = B'C' =
a\sqrt{3}

    Vậy tam giác AB'C' đều

    \Rightarrow (AB',BC) =
(AB',B'C') = \widehat{AB'C'} = 60^{0}

  • Câu 20: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.

    Hình vẽ minh họa:

    Ta có:

    SA ⊥ BC

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 69 lượt xem
Sắp xếp theo