Cho tứ diện có hai mặt và là tam giác đều. Khi đó bằng:
Hình vẽ minh họa
Ta có: I là trung điểm của AB.
Vì và là tam giác đều nên
Cho tứ diện có hai mặt và là tam giác đều. Khi đó bằng:
Hình vẽ minh họa
Ta có: I là trung điểm của AB.
Vì và là tam giác đều nên
Cho hai đường thẳng a, b và mặt phẳng (P). Mệnh đề nào sau đây đúng?
Mệnh đề: “Nếu a ⊥ (P) và a ⊥ b thì b // (P).” sai vì b có thể nằm trong (P).
Mệnh đề: “Nếu a // (P) và a ⊥ b thì b // (P).” sai vì b có thể cắt P hoặc b nằm trong P.
Mệnh đề: “Nếu a // (P) và a ⊥ b thì b ⊥ (P).” sai vì b có thể nằm trong (P).
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên => SO ⊥ (ABCD)
Từ => AC ⊥ (SBD)
Từ => BD ⊥ (SAC)
Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.
Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, đường chéo AC = 2a và SA vuông góc với mặt phẳng đáy (ABCD) (tham khảo hình vẽ). Tính khoảng cách giữa hai đường thẳng SB và CD.
Hình vẽ minh họa:
Vì AB // CD ⇒ CD // (SAB)
=> d(CD, (SAB)) = d(D, (SAB))
Mà AD ⊥ (SAB) => d(D, (SAB)) = AD.
Xét tam giác ABD vuông tại A ta có:
AB2 + AD2 = BD2 = 4a2 => AD =
Một khối chóp tứ giác đều có các cạnh bằng (cm). Khi đó thể tích của khối chóp đã cho bằng bao nhiêu?
Hình vẽ minh họa
Gọi hình chóp tứ giác đều có tất cả các cạnh bằng 2t là S.ABCD với I là tâm của đáy ta có:
lần lượt vuông tại S; B; D
I là trung điểm của AC suy ra
Vậy thể tích hình chóp là:
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:
Hình vẽ minh họa:
Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.
Gọi O là hình chiếu của S trên mặt phẳng (ABCD).
Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.
Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:
Cho hình chóp có đáy là tam giác đều cạnh , . Tính chiều cao hình chóp ?
Ta có:
nên SA là chiều cao của hình chóp.
Do tam giác ABC đều cạnh a nên
Ta lại có:
Cho hình chóp có đáy là hình vuông cạnh ; . Tính khoảng cách giữa hai đường chéo nhau và bằng:
Hình vẽ minh họa
Kẻ đường thẳng d qua B và song song AC
Gọi M là hình chiếu vuông góc của A lên d
Gọi H là hình chiếu của A lên SM.
Ta có:
Xét tam giác SAM có đường cao AH nên
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, , SA vuông góc với mặt phẳng đáy và SA = 2a. Góc giữa hai đường thẳng SC và BD nằm trong khoảng nào?
Gọi O là giao điểm của AC và BD và M là trung điểm của SA.
Trong hình chữ nhật ABCD ta có
Xét tam giác MAB vuông tại A, ta có:
Xét tam giác MAO vuông tại O, ta có:
Do MO // SC nên góc giữa hai đường thẳng SC và BD là góc giữa hai đường thẳng MO và BD.
Áp dụng định lý cosin vào tam giác MOB ta có
Cho hình chóp tứ giác có đáy là hình vuông cạnh bằng 1, cạnh vuông góc với đáy và . Tính thể tích khối chóp đã cho.
Hình vẽ minh họa
Ta có: nên SA là đường cao của hình chóp
Thể tích khối chóp là
Cho tứ diện ABCD với các đường thẳng AB, AC, AD đôi một vuông góc, H là trực tâm tam giác BCD. Góc giữa mặt phẳng (BCD) và mặt phẳng (ACD) bằng góc nào trong các góc sau đây?
Dễ thấy rằng BA⊥(ACD), AH⊥(BCD), suy ra góc giữa mặt phẳng (BCD) và mặt phẳng (ACD) bằng góc giữa hai đường thẳng BA và AH, tức là bằng góc
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D với AB = 2a, AD = DC = a. Hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy. Góc giữa SC và mặt đáy bằng 600. Tính khoảng cách d giữa hai đường thẳng AC và SB.
Hình vẽ minh họa:
Xác định góc 600
Gọi M là trung điểm AB => ADCM là hình vuông => CM = AD = a
Xét tam giác ACB ta có:
=> Tam giác ACB vuông tại C
Lấy điểm E sao cho ACBE là hình chữ nhật
=> AC // BE
=> d(AC, SB) = d(AC, (SBE)) = d(A,(SBE))
Kẻ AK ⊥ SE. Khi đó:
Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.
Hình vẽ minh họa:
Ta có:
SA ⊥ BC
AB ⊥ BC
=> BC ⊥ (SAB) => BC ⊥ AH
Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC
Cho hình chóp S.ABCD có ABCD là hình thoi tâm O, SA = SC; SB = SD. Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa:
Ta có: Tam giác SAC và tam giác SBD lần lượt là tam giác cân tại S
=> SO ⊥ AC, SO ⊥ BD
=> SO ⊥ (ABCD)
Dễ thấy:
SO ⊥ (ABCD)
AC ⊥ BD
BD ⊥ (SAC)
Là những khẳng định đúng.
Cho hình lâp phương ABCD.EFGH. Hãy xác định góc giữa cặp vecto và ?
Hình vẽ minh họa
Ta có: AEGC là hình chữ nhật nên EG // AC
Vì ABCD là hình vuông nên
=>
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh SA vuông góc với mặt phẳng đáy (ABCD), SA = AB = a, AD = 3a. Gọi M là trung điểm của BC. Tính cosin của góc tạo bởi hai mặt phẳng (ABCD) và (SDM).
Hình vẽ minh họa:
Gọi H là hình chiếu vuông góc của A lên DM, ta có DM ⊥ (SAH).
Gọi α là góc giữa (SDM) và (ABCD) ta có:
Ta có:
Ta có:
Ta lại có:
Vậy
Cho hình vuông ABCD cạnh 4a , lấy H, K lần lượt trên các cạnh AB, AD sao cho BH = 3HA, AK = 3KD. Trên đường thẳng vuông góc với mặt phẳng (ABCD) tại H lấy điểm S sao cho . Gọi E là giao điểm của CH và BK . Tính cosin của góc giữa hai đường thẳng SE và BC .
Gọi I là hình chiếu vuông góc của E lên AB ta có
Ta có:
Trong tam giác vuông SEI có:
=>
Cho hình chóp tứ giác đều S.ABCD, cạnh bên bằng cạnh đáy và bằng a. Gọi M là trung điểm của SC. Tính góc giữa hai mặt phẳng (MBD) và (ABCD).
Gọi O là tâm hình vuông ABCD, suy ra SO ⊥ (ABCD).
Ta có:
Do
Tam giác SOC vuông tại O, trung tuyến OM, suy ra
=> Tam giác MOC cân tại M.
=>
Khi đó
Vậy
Cho ba đường thẳng phân biệt a, b, c. Mệnh đề nào sau đây đúng?
Khi cho ba đường thẳng phân biệt a, b, c thì mệnh đề : “Nếu a song song với b và c vuông góc với a thì c vuông góc với b” là mệnh đề đúng.
Có bao nhiêu mặt phẳng đi qua một điểm A cho trước và vuông góc với hai mặt phẳng phân biệt (P) và (Q)?
Có một khi (P) và (Q) cắt nhau, có vô số khi (P) // (Q).