Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:

    Hình vẽ minh họa:

    Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)

    => Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là \widehat{BA'B'}

    Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’

    => \widehat{BA'B'} =45^{0}

  • Câu 2: Nhận biết

    Cho hình lập phương ABCD.EFGH. Góc giữa cặp vecto \overrightarrow {AF} ;\overrightarrow {EG} là:

    Hình vẽ minh họa:

    Tính góc giữa hai vecto

    Ta có tam giác ACF là tam giác đều

    \overrightarrow {EG}  = \overrightarrow {AC}

    => Góc giữa cặp vecto \overrightarrow {AF} ;\overrightarrow {EG} là:

    \left( {\overrightarrow {AF} ;\overrightarrow {EG} } ight) = \left( {\overrightarrow {AF} ;\overrightarrow {AC} } ight) = \widehat {CAF} = {60^0}

  • Câu 3: Thông hiểu

    Cho khối hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông, đường chéo BD = 4a. Biết góc giữa hai mặt phẳng (A'BD) và mặt phẳng (ABCD) bằng 60^{0}. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi góc giữa mặt phẳng (A'BD) và mặt phẳng (ABCD)\alphaO =
AC \cap BD

    Ta có: \left\{ \begin{matrix}
AO\bot BD \\
AA'\bot BD \\
\end{matrix} ight.\  \Rightarrow A'O\bot BD

    \Rightarrow \alpha = (AO;A'O) =
\widehat{AOA'} = 60^{0}

    Ta có ABCD là hình vuông, BD = 4a nên AB
= AD = 2a\sqrt{2}

    Ta có: AO = \frac{1}{2}AC = \frac{1}{2}BD
= 2a

    Xét tam giác AOA’ có AA' =
AO.tan60^{0} = 2a\sqrt{3}

    \Rightarrow
V_{ABCD.A'B'C'D'} = AA'.S_{ABCD} = 2a\sqrt{3}.8a^{2}
= 16a^{3}\sqrt{3}

  • Câu 4: Vận dụng

    Cho hình lăng trụ đứng ABC.A’B’C’ có cạnh bên AA' = a\sqrt{2}. Biết đáy ABC là tam giác vuông có BA = BC = a, gọi M là trung điểm của BC. Tính khoảng cách giữa hai đường thẳng AM và B’C.

    Hình vẽ minh họa:

    Gọi N là trung điểm của BB’ => MN // B’C

    => B’C // (AMN)

    => d(AM, B’C) = d(B’C, (AMN)) = d(B’, (AMN)) = d(B, (AMN))

    Kẻ BH ⊥ AM, BK ⊥ HN

    => BK ⊥ (AMN)

    => d(AM, B’C) = d(B, (AMN)) = BK

    Ta có:

    \frac{1}{BH^{2}} = \frac{1}{AB^{2}} +\frac{1}{BM^{2}}

    \Rightarrow \frac{1}{BH^{2}} =\frac{1}{a^{2}} + \frac{4}{a^{2}} = \frac{5}{a^{2}}

    \Rightarrow BH =\frac{a}{\sqrt{5}}

    Ta có: BN =\frac{a\sqrt{2}}{2}

    Do tam giác ABM vuông tại B

    \frac{1}{BK^{2}} = \frac{1}{BH^{2}} +\frac{1}{BN^{2}}

    \Rightarrow \frac{1}{BK^{2}} =\frac{5}{a^{2}} + \frac{2}{a^{2}} = \frac{7}{a^{2}}

    \Rightarrow BK =\frac{a\sqrt{7}}{7}

    \Rightarrow d(AM;B'C) =\frac{a\sqrt{7}}{7}

  • Câu 5: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 3a?

    Ta có: V = (3a)^{3} =
27a^{3}

  • Câu 6: Nhận biết

    Cho tứ diện OABCOA;OB;OC đôi một vuông góc với nhau. Đường thẳng nào sau đây vuông góc với OA?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
OA\bot OB(gt) \\
OA\bot OC(gt) \\
\end{matrix} ight.\  \Rightarrow OA\bot(OBC) \Rightarrow OA\bot
BC

  • Câu 7: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:

    Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”

    Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB

    Mặt khác AB ⊥ AD.

    Từ đó suy ra AB ⊥ (SDA)

  • Câu 8: Vận dụng

    Cho hình vuông ABCD cạnh 4a , lấy H, K lần lượt trên các cạnh AB, AD sao cho BH = 3HA, AK = 3KD. Trên đường thẳng vuông góc với mặt phẳng (ABCD) tại H lấy điểm S sao cho \widehat {SBH} = 30^\circ. Gọi E là giao điểm của CH và BK . Tính cosin của góc giữa hai đường thẳng SE và BC .

    Gọi I là hình chiếu vuông góc của E lên AB ta có

    \begin{matrix}  \Delta ABK = \Delta BCH \hfill \\   \Rightarrow \widehat {ABK} = \widehat {BCH} \Rightarrow \widehat {HEB} = 90^\circ  \hfill \\ \end{matrix}

    Tính cosin của góc giữa hai đường thẳng

    Ta có:

    \begin{matrix}  {\text{cos}}\left( {SE\,;\,BC} ight) = {\text{cos}}\left( {SE\,;\,EI} ight) = \left| {\cos \widehat {SEI}} ight| \hfill \\  SH = BH.\tan 30^\circ  = 3a.\dfrac{{\sqrt 3 }}{3} = a\sqrt 3  \hfill \\  \dfrac{{HB}}{{HC}} = \dfrac{{HE}}{{HB}} \Rightarrow HE = \dfrac{{H{B^2}}}{{HC}} = \dfrac{{9a}}{5} \hfill \\  SE = \sqrt {S{H^2} + H{E^2}}  = \sqrt {3{a^2} + \dfrac{{81{a^2}}}{{25}}}  = \dfrac{{2a\sqrt {39} }}{5} \hfill \\  \dfrac{{HE}}{{HB}} = \dfrac{{HI}}{{HE}} \Rightarrow HI = \dfrac{{H{E^2}}}{{HB}} = \dfrac{{27a}}{{25}} \hfill \\  SI = \sqrt {S{H^2} + H{I^2}}  = \sqrt {3{a^2} + {{\left( {\dfrac{{27a}}{{25}}} ight)}^2}}  = \dfrac{{2a\sqrt {651} }}{{25}} \hfill \\ \end{matrix}

    Trong tam giác vuông SEI có:

    EI = \sqrt {S{E^2} - S{I^2}}  = \frac{{36a}}{{25}}

    => \cos \widehat {SEI} = \frac{{EI}}{{SE}} = \frac{{18}}{{5\sqrt {39} }}

  • Câu 9: Thông hiểu

    Cho hình chóp SABCD có SA ⊥ (ABCD), đáy ABCD là hình thang vuông tại A và B có độ dài cạnh AB = a. Gọi I, J lần lượt là trung điểm của AB và CD. Tính khoảng cách giữa hai đường thẳng IJ và SD.

    Hình vẽ minh họa:

    Ta có AD // (IJ) ⇒ IJ // (SAD) ⇒ d(IJ, SD) = d(IJ, (SAD)) = d(I, (SAD)) = IA = a/2

  • Câu 10: Thông hiểu

    Cho hình chóp S.ABC, có đáy ABC là tam giác đều và SA\bot(ABC). Gọi M là trung điểm của cạnh ACN là hình chiếu của B lên SC. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) \Rightarrow BM\bot
SA

    BM\bot AC \Rightarrow BM\bot(SAC)
\supset SC \Rightarrow SC\bot BM(1)

    Theo giả thiết SC\bot BN(2)

    Từ (1) và (2) suy ra SC\bot(BMN)

    SC \subset (SBC) \Rightarrow
(BMN)\bot(SBC)

  • Câu 11: Nhận biết

    Cho tứ diện ABCD có: AB = AC = AD, \widehat {BAC} = \widehat {BAD} = {60^0}. Gọi M và N lần lượt là trung điểm của AB và CD. Mặt phẳng (BCD) vuông góc với mặt phẳng:

    Hình vẽ minh họa:

    Mặt phẳng (BCD) vuông góc với mặt phẳng nào

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BN \bot CD} \\   {AN \bot CD} \end{array} \Rightarrow } ight.CD \bot \left( {ABN} ight)

    CD \subset \left( {BCD} ight) \Rightarrow \left( {BCD} ight) \bot \left( {ABN} ight)

  • Câu 12: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a\sqrt{3};BC = a\sqrt{2}. Cạnh bên SA = a và SA vuông góc với mặt phẳng đáy. Khoảng cách giữa SB và DC bằng:

    Hình vẽ minh họa:

    Vì DC // AB nên khoảng cách giữa SB và DC bằng khoảng cách giữa mặt phẳng (SAB) và DC.

    Do đó: d(DC, SB) = d(DC, (SAB)) = d(D, (SAB)) = AD = a\sqrt{2}

  • Câu 13: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA = x và vuông góc với mặt phẳng (ABCD). Xác định x để hai mặt phẳng (SBC) và (SCD) tạo với nhau một góc 600.

    Hình vẽ minh họa:

    Từ A kẻ AH vuông góc với SB (H ∈ SB).

    Ta có:

    \left\{ \begin{matrix}
SA\bot BC \\
AB\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB) \Rightarrow BC\bot
AH

    Mà AH ⊥ SB suy ra AH ⊥ (SBC).

    Từ A kẻ AK vuông góc với SD (K ∈ SD), tương tự, chứng minh được AK ⊥ (SCD).

    Khi đó SC ⊥ (AHK) suy ra ((SBC); (SCD)) = (AH; AK) = \widehat{HAK} = 600.

    Lại có ∆SAB = ∆SAD => AH = AK mà \widehat{HAK} = 600 suy ra tam giác AHK đều.

    Tam giác SAB vuông tại S ta có:

    \frac{1}{AH^{2}} = \frac{1}{SA^{2}} +
\frac{1}{AB^{2}} \Rightarrow AH = \frac{ax}{\sqrt{x^{2} +
a^{2}}}

    \begin{matrix}\Rightarrow SH = \sqrt{SA^{2} - AH^{2}} = \dfrac{x^{2}}{\sqrt{x^{2} +a^{2}}} \hfill\\\Rightarrow \dfrac{SH}{SB} = \dfrac{x^{2}}{x^{2} + a^{2}} \hfill \\\end{matrix}

    Vì HK // BD suy ra

    \begin{matrix}\dfrac{SH}{SB} = \dfrac{HK}{BD}\hfill \\\Leftrightarrow \dfrac{x^{2}}{x^{2} + a^{2}} =\dfrac{ax}{a\sqrt{2}\sqrt{x^{2} + a^{2}}}\hfill \\\Leftrightarrow \dfrac{x^{2}}{\sqrt{x^{2} + a^{2}}} = \dfrac{1}{\sqrt{2}}\hfill\\\end{matrix}

    => x = a

  • Câu 14: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'có cạnh bằng a. Khoảng cách từ A' đến mp (ABCD) bằng:

    Hình vẽ minh họa

    Ta có A'A\bot(ABCD) nên d\left( A',(ABCD) ight) = A'A =
a.

  • Câu 15: Vận dụng

    Cho lăng trụ ABCD.A’B’C’D’ có đáy là hình thoi cạnh a, \widehat{BAD} = 60^{0}. Hình chiếu vuông góc của B’ xuống mặt đáy trùng với giao điểm hai đường chéo của đáy và cạnh bên BB’ = a. Tính góc giữa cạnh bên và mặt đáy.

    Hình vẽ minh họa:

    Gọi O là giao điểm của AC và BD

    Theo giả thiết ta có: B’O ⊥ (ABCD)

    Dó đó \left( BB';(ABCD) ight) =
(BB';BO) = \widehat{B'BO}

    Vì tam giác ABD đều cạnh a => BO =
\frac{BD}{2} = \frac{a}{2}

    Tam giác B’BO vuông ta có:

    \begin{matrix}\cos\widehat{B'BO} = \dfrac{BO}{BB'} = \dfrac{1}{2} \hfill \\\Rightarrow \widehat{B'BO} = 60^{0} \hfill \\\end{matrix}

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O. Biết rằng SA = SC, SB = SD. Khẳng định nào sau đây là đúng?

    Hình vẽ minh họa

    Khẳng định nào sau đây là đúng

    SA=SC => ΔSAC cân tại S

    Mà O là trung điểm AC => SO⊥AC

    Tương tự, ta cũng có SO⊥BDAC∩BD=O⊂(ABCD)

    => SO⊥(ABCD)

  • Câu 17: Thông hiểu

    Cho hình lâp phương ABCD.EFGH. Hãy xác định góc giữa cặp vecto \overrightarrow {AB} và \overrightarrow {EG}?

    Hình vẽ minh họa

    Hãy xác định góc giữa cặp vecto

    Ta có: AEGC là hình chữ nhật nên EG // AC

    Vì ABCD là hình vuông nên

    => \left( {\overrightarrow {AB} ,\overrightarrow {EG} } ight) = \left( {\overrightarrow {AB} ;\overrightarrow {AC} } ight) = \widehat {BAC} = {45^0}

  • Câu 18: Thông hiểu

    Cho tứ diện đều ABCD. Gọi trung điểm của các cạnh AB;BC lần lượt là M;N. Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Gọi P là trung điểm của BD.

    Ta có: MN;NP;MP lần lượt là đường trung bình của tam giác ABC;BCD;ABD.

    Do đó:

    MN//AC;MN = \frac{1}{2}AC

    NP//CD;NP = \frac{1}{2}CD

    ABCD là tứ diện đều \Rightarrow AC = CD = AD

    \Rightarrow MN = NP = MP nên tam giác MNP là tam giác đều.

    \Rightarrow (MN;CD) = (MN;NP) =
\widehat{MNP} = 60^{0}

  • Câu 19: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 4a?

    Ta có: V = (4a)^{3} =
64a^{3}

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và SA =a\sqrt{6}. Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}BC\bot SA \\BC\bot AB \\\end{matrix} ight.=> BC ⊥ (SAB)

    => SB là hình chiếu của SC lên mặt phẳng (SAB)

    => \alpha = \widehat{BSC}

    SB = \sqrt{SA^{2} + AB^{2}} =a\sqrt{7}

    Vậy \tan\alpha = \frac{BC}{SB} =\frac{\sqrt{7}}{7}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 68 lượt xem
Sắp xếp theo