Cho đường thẳng a và mặt phẳng (P). Có bao nhiêu mặt phẳng đi qua a và vuông góc với mặt phẳng (P)?
Có một khi a không vuông góc với (P), có vô số khi a vuông góc với (P).
Cho đường thẳng a và mặt phẳng (P). Có bao nhiêu mặt phẳng đi qua a và vuông góc với mặt phẳng (P)?
Có một khi a không vuông góc với (P), có vô số khi a vuông góc với (P).
Cho hình chóp
có đáy
là tam giác vuông cân tại
và
. Biết
và
. Góc nhị diện
có số đo bằng:
Hình vẽ minh họa
Kẻ tại
là trung điểm của
và
.
Ta có
.
Suy ra góc giữa và
bằng góc
.
Ta có:
Suy ra góc nhị diện có số đo bằng
.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông có độ dài đường chéo bằng a √ 2 và SA vuông góc với mặt phẳng (ABCD). Gọi α là góc giữa mặt phẳng (SBD) và (ABCD). Nếu
thì góc giữa hai mặt phẳng (SAC) và (SBC) bằng
Hình vẽ minh họa:
Gọi O là tâm hình vuông ABCD, H, K lần lượt là hình chiếu của A lên SB, SC.
Ta dễ dàng chứng minh được AH ⊥ (SBC) => AH ⊥ SC.
Mà AK ⊥ SC nên SC ⊥ (AHK) => SC ⊥ HK.
Ta có:
(SAC) ∩ (SBC) = SC
AK ⊥ SC
HK ⊥ SC
=> ((SAC), (SBC)) = (AK; HK) = .
Ta cũng có: ((SBD); (ABCD)) = (SO; AO) = = α
=> tan α = SA/AO => SA = a
Do đó: tam giác SAB vuông cân tại A =>
Xét tam giác SAC có:
Xét tam giác AHK vuông tại H, ta có:
Vậy ((SAC); (SBC)) = 300.
Cho hình chóp
có đáy
là hình vuông cạnh
;
. Tính khoảng cách giữa hai đường chéo nhau
và
bằng:
Hình vẽ minh họa
Kẻ đường thẳng d qua B và song song AC
Gọi M là hình chiếu vuông góc của A lên d
Gọi H là hình chiếu của A lên SM.
Ta có:
Xét tam giác SAM có đường cao AH nên
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Trong không gian cho tam giác đều SAB và hình vuông ABCD cạnh a nằm trên hai mặt phẳng vuông góc. Gọi H, K lần lượt là trung điểm của AB, CD. Gọi ϕ là góc giữa hai mặt phẳng (SAB) và (SCD). Mệnh đề nào sau đây đúng?
Hình ảnh minh họa:
Dễ dàng xác định giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng d đi qua S và song song với AB.
Trong mặt phẳng (SAB) có SH ⊥ AB => SH ⊥ d.
Ta có:
=> d ⊥ SK. Từ đó suy ra ((SAB), (SCD)) = (SH, SK) =
Trong tam giác vuông SHK ta có:
Cho hình chóp
có đáy
là hình thang vuông tại
;
. Gọi
là trung điểm của
, biết hai mặt phẳng
và
cùng vuông góc với đáy và mặt phẳng
tạo với đáy một góc
. Tính khoảng cách từ trung điểm của cạnh
đến mặt phẳng
?
Từ I kẻ
Gọi K là trung điểm của SD.
Gọi , kẻ
Ta có:
Xét tam giác ICQ có
Xét tam giác SIP vuông tại I có
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh có độ dài bằng 2a. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của BC. Tính khoảng các d giữa hai đường thẳng BB' và A'H
Do nên
Ta có:
Nên
Vậy khoảng cách
Tìm mệnh đề đúng trong các mệnh đề sau:
Đáp án đúng: “Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”
Cho hình lập phương
. Giả sử mặt phẳng
đi qua điểm
vuông góc với
. Thiết diện tạo bởi
và hình lập phương là:
Hình vẽ minh họa
Ta có:
Vậy chính là mặt phẳng
. Thiết diện là một hình chữ nhật.
Cho hình chóp tứ giác đều
có đáy là hình vuông cạnh
, độ dài cạnh bên bằng
. Gọi
lần lượt là trung điểm của các cạnh
và
. Góc giữa
và
bằng:
Hình vẽ minh họa
Gọi P là trung điểm của SB
Ta có:
Mà
Cho tứ diện
. Gọi trung điểm các cạnh
và
lần lượt là các điểm
. Giao tuyến của hai mặt phẳng
và mặt phẳng
là
Hình vẽ minh họa
Hai mặt phẳng và mặt phẳng
có điểm B chung và MN // CD nên theo tính chất giao tuyến của hai mặt phẳng thì giao tuyến là đường thẳng d đi qua B và song song với MN (hoặc song song với CD).
Cho tứ diện ABCD có AB = AC = AD và
. Gọi I và J lần lượt là trung điểm của AB và CD. Hãy xác định góc giữa cặp vecto
?
Hình vẽ minh họa:

Xét tam giác ICD có J là trung điểm của CD =>
Tam giác ABC có AB = AC và => Tam giác ABC đều => CI ⊥ AB
Tương tự ta chứng minh được tam giác aBD đều => DI ⊥ AB
Ta có:
Cho khối chóp
có đáy
là hình vuông cạnh bằng
. Tính thể tích khối chóp
, biết
.
Hình vẽ minh họa
Kẻ
Ta có:
Lại có:
Xét tam giác SAB vuông tại A có:
Cho hình chóp đều, các cạnh bên có độ dài bằng
và tạo với đáy một góc
. Tính chu vi đáy P của hình chóp đó.
Hình vẽ minh họa
Kẻ
H là tâm đường tròn ngoại tiếp đồng thời là trọng tâm tam giác ABC
Ta có:
Gọi M là trung điểm của BC
Gọi
Vì M là trung điểm của BC nên
Chu vi đáy ABC bằng
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:
Hình vẽ minh họa:
Theo bài ta có AB là hình chiếu của SB trên (ABC)
Vậy
Mà ∆SBA vuông cân tại A nên
Cho khối chóp
có
biết độ dài các cạnh
. Thể tích khối chóp
là:
Hình vẽ minh họa
Ta có:
Nên tam giác ABC vuông tại A
Suy ra
Vậy
Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:
Hình vẽ minh họa:
Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)
=> Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là
Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’
=>
Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = 2a, BC = a. Hình chiếu vuông góc H của đỉnh S trên mặt phẳng đáy là trung điểm của cạnh AB, góc giữa đường thẳng SC và mặt phẳng đáy bằng 600. Tính cosin góc giữa hai đường thẳng SB và AC.

+) Ta có:
+) Mặt khác
=>
Cho hình chóp
có đáy
là hình chữ nhật và
vuông góc với mặt phẳng đáy. Tìm mệnh đề sai dưới đây?
Hình vẽ minh họa
Ta có:
là hình chữ nhật nên
không vuông góc với
Vậy không vuông góc với mặt phẳng