Thể tích khối hộp chữ nhật có ba kích thước là
bằng:
Thể tích cần tìm là:
Thể tích khối hộp chữ nhật có ba kích thước là
bằng:
Thể tích cần tìm là:
Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa
Hình vẽ minh họa:
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Mệnh đề nào sau đây là mệnh đề sai?
Mệnh đề sai là: “(P) là mặt phẳng trung trực của đoạn thẳng AB nếu nó đi qua ba điểm phân biệt cách đều A và B.”
Cho hình chóp
có đáy
là tam giác vuông cân tại
và
. Biết
và
. Góc nhị diện
có số đo bằng:
Hình vẽ minh họa
Kẻ tại
là trung điểm của
và
.
Ta có
.
Suy ra góc giữa và
bằng góc
.
Ta có:
Suy ra góc nhị diện có số đo bằng
.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 3, BC = 4. Tam giác SAC nằm trong mặt phẳng vuông góc với đáy, khoảng cách từ điểm C đến đường thẳng SA bằng 4. Cosin của góc giữa hai mặt phẳng (SAB) và (SAC) bằng:
Hình vẽ minh họa:
Xét tam giác ABC vuông tại B ta có:
Gọi K là chân đường vuông góc kẻ từ C xuống SA.
Xét tam giác CAK vuông tại K ta có:
Kẻ SH ⊥ AC, H ∈ AC. Vì (SAC) ⊥ (ABCD) và (SAC) ∩ (ABCD) = AC nên SA ⊥ (ABCD).
Kẻ SH ⊥ AC, H ∈ AC và KP // SH, P ∈ AC thì KP ⊥ (ABCD).
Xét tam giác BAC vuông tại B và tam giác KAC vuông tại K ta thấy các cạnh tương ứng bằng nhau và KP là đường cao của tam giác KAC nên BP là đường cao của tam giác BAC.
Kẻ PM ⊥ KA, M ∈ KA.
Vì KA ⊥ P B và KA ⊥ PM nên KA ⊥ (PMB).
Suy ra KA ⊥ MB.
Như vậy, góc giữa mặt phẳng (SAC) và (SAB) bằng góc
Xét tam giác KAC vuông tại K ta có:
Suy ra:
Xét tam giác KPA vuông tại P ta có:
Lại có:
Xét tam giác PMB vuông tại P ta có:
Ta có:
Cho tứ diện ABCD có AC = AD = BC = BD = a, (ACD) ⊥ (BCD) và (ABC) ⊥ (ABD). Tính độ dài cạnh CD.
Gọi M, N lần lượt là trung điểm của CD, AB, ∆ACD và ∆BCD cân
=> AM ⊥ CD, BM ⊥ CD. Ta có:
=> AM ⊥ BM
Và ta dễ dàng chứng minh được ∆ACD = ∆BCD (c – c - c)
=> AM = BM => ∆ABM vuông cân tại M
=> MN ⊥ AB
Đặt CD = x
Áp dụng định lý Py-ta-go ta có:
Xét ∆ABM vuông cân tại M
Áp dụng định lý Py-ta-go ta có:
Xét ∆CDN vuông cân tại N
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng
và cạnh bên bằng 2a. Góc giữa đường thẳng SB với mặt phẳng (SAC) bằng
Gọi . Ta có S.ABCD là hình chóp tứ giác đều suy ra
.
Vì
Có
Suy ra hình chiếu vuông góc của đường thẳng SB lên mặt phẳng (SAC) là đường thẳng SO.
Do đó góc giữa SB và mặt phẳng (SAC) bằng góc giữa hai đường thẳng SB và SO và bằng góc .
Có
Vì
Xét tam giác SOB có
Ta có
Cho hình chóp tứ giác S.ABCD có đáy là hình vuông và một cạnh bên vuông góc với mặt đáy. Có bao nhiêu mặt bên vuông góc với mặt đáy?
Hình vẽ minh họa:
Giả sử SA ⊥ (ABCD). Khi đó có đúng 2 mặt bên vuông góc với mặt đáy là (SAB), (SAD).
Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:
Do ∆BCD là tam giác đều cạnh nên có diện tích là
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Gọi H và K lần lượt là trung điểm của cạnh BC và CD. Tính khoảng cách giữa hai đường thẳng HK và SD.
Gọi . Do
nên suy ra
(vì
)
Kẻ ta có:
Từ (1) và (2) , khi đó
Cho hình lập phương ABCD.A1B1C1D1 có cạnh bằng a. Gọi M là trung điểm của AD. Tính tích vô hướng của ![]()
Hình vẽ minh họa:

Ta có:
Tính thể tích khối lăng trụ đứng tam giác trong hình vẽ sau:

Quan sát hình vẽ ta thấy:
Tam giác ABC vuông cân tại B
Khi đó
Cho hình lập phương
. Xác định đường thẳng vuông góc với đường thẳng
?
Hình vẽ minh họa:
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông với
. Cạnh bên SA vuông góc với đáy, SB hợp với đáy góc 600. Tính khoảng cách d giữa hai đường thẳng AD và SC.
Ta có =>
Kẻ
Ta có:
Lại có
Cho tứ diện ABCD có AB, BC, BD đôi một vuông góc. Trong các khẳng định dưới đây khẳng định nào đúng?
Hình vẽ minh họa:

sai vì
CB ⊥ BD, CB ⊥ BA => CB ⊥ (ABD)
=> B là hình chiếu của C trên mặt phẳng (ABD)
=>
đúng vì
AB ⊥ BC, AB ⊥ BD => AB ⊥ (BCD)
=> B là hình chiếu của A trên mặt phẳng (BCD)
=>
sai vì
BD⊥ BA, BD ⊥ BC => BD ⊥ (ABC)
=> B là hình chiếu của D trên mặt phẳng (ABC)
=>
sai vì
=> B là hình chiếu của C trên mặt phẳng (ABD)
=>
Cho hình chóp
có đáy
là tam giác đều cạnh
; cạnh
vuông góc với mặt đáy và
. Gọi
là trung điểm của cạnh
. Gọi
là góc giữa đường thẳng
và mặt phẳng
. Xác định
?
Hình vẽ minh họa
Gọi H là trung điểm của AC => HM // SA và
Mà
Ta có:
Trong tam giác BMH có:
Cho hai đường thẳng a, b và mặt phẳng (P). Mệnh đề nào sau đây đúng?
Mệnh đề: “Nếu a ⊥ (P) và a ⊥ b thì b // (P).” sai vì b có thể nằm trong (P).
Mệnh đề: “Nếu a // (P) và a ⊥ b thì b // (P).” sai vì b có thể cắt P hoặc b nằm trong P.
Mệnh đề: “Nếu a // (P) và a ⊥ b thì b ⊥ (P).” sai vì b có thể nằm trong (P).
Trong không gian cho hai tam giác đều ABC và ABC’ có chung cạnh AB và nằm trong hai mặt phẳng khác nhau. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, CB, BC’ và C’A. Tứ giác MNPQ là hình gì?
Hình vẽ minh họa:
Vì M, N, P, Q lần lượt là trung điểm của các cạnh AC, CB, BC’ và C’A
=>
=> MNPQ là hình bình hành
Gọi H là trung điểm của AB
Vì hai tam giác ABC và ABC’ đều nên
=>
Ta có:
Vậy tứ giác MNPQ là hình chữ nhật
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên => SO ⊥ (ABCD)
Từ => AC ⊥ (SBD)
Từ => BD ⊥ (SAC)
Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.
Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).