Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng x; SC\bot(ABC);SC = x. Xác định thể tích hình chóp S.ABC?

    Ta có SC\bot(ABC) nên SC là đường cao của hình chóp

    Tam giác ABC đều cạnh x nên S_{ABC} =
\frac{x^{2}\sqrt{3}}{4}

    Vậy thể tích hình chóp là: V_{S.ABC} =
\frac{1}{3}SC.S_{ABC} = \frac{1}{3}.\frac{x^{2}\sqrt{3}}{4}.x =
\frac{x^{3}\sqrt{3}}{12}

  • Câu 2: Nhận biết

    Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:

    Hình vẽ minh họa:

    Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)

    => Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là \widehat{BA'B'}

    Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’

    => \widehat{BA'B'} =45^{0}

  • Câu 3: Nhận biết

    Trong không gian cho đường thẳng a và điểm M. Có bao nhiêu đường thẳng đi qua M, cắt a và vuông góc với a?

    Có 1 nếu M không thuộc a, có vô số nếu M thuộc a

  • Câu 4: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA ⊥ (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào?

    Hình vẽ minh họa:

    Do I là trung điểm của SC và O là trung điểm AC nên IO ∥ SA. Do SA ⊥ (ABCD) nên IO ⊥ (ABCD), hay khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng IO

  • Câu 5: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Đường thẳng nào dưới đây vuông góc với mặt phẳng (A'BD)?

    Hình vẽ minh họa

    Ta có: AB = AD = AA' = a nên A cách đều các điểm B,D,A'

    BC' = DC' = C'A' =
a\sqrt{2} nên C' cách đều các điểm B,D,A'

    Do đó A; C’ cùng nằm trên đường tròn ngoại tiếp tam giác A'BD

    \Rightarrow
AC'\bot(A'BD)

  • Câu 6: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D' có độ dài tất cả các cạnh bằng a và các góc \widehat{BAD};\widehat{DAA'};\widehat{A'AB} đều bằng 60^{0}. Gọi trung điểm của các cạnh AA',CD lần lượt là M,N. Gọi \alpha là góc tạo bởi hai đường thẳng MNB'C. Xác định \cos\alpha?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
A'D//B'C \\
MN//A'P \\
\end{matrix} ight. với P là trung điểm của D’C

    Suy ra (MN,B'C) = (A'P;A'D) =
\widehat{DA'P}

    \widehat{BAD} = \widehat{DAA'} =
\widehat{A'AB} = 60^{0} và các cạnh của hình hộp bằng a

    Do đó A'D = a;C'D = C'A'
= a\sqrt{3}

    A'P = \frac{A'D^{2} +
A'C'^{2}}{2} - \frac{DC'^{2}}{4}

    \Rightarrow A'P =
\frac{a\sqrt{5}}{2}

    Áp dụng định lí cosin cho tam giác A’DP ta có:

    \cos\alpha = \frac{A'D^{2} +
A'P^{2} - DP^{2}}{2A'D.A'P} =
\frac{3\sqrt{5}}{10}

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA=\frac{a\sqrt{15}}{2} và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ O đến mặt phẳng (SBC)

    Ta có: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {AO \cap \left( {SBC} ight) = C} \\   {AC = 2OC} \end{array}} ight. \hfill \\   \Rightarrow d\left( {A;\left( {SBC} ight)} ight) = 2d\left( {O;\left( {SBC} ight)} ight) \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {SA \bot \left( {ABCD} ight) \Rightarrow SA \bot BC} \\   {AB \bot BC} \end{array}} ight. \hfill \\   \Rightarrow BC \bot \left( {SAB} ight) \hfill \\ \end{matrix}

    Từ A kẻ AH \bot SB => AH \bot \left( {SBC} ight)

    \begin{matrix}   \Rightarrow AH = d\left( {A;\left( {SBC} ight)} ight) \hfill \\  \dfrac{1}{{A{H^2}}} = \dfrac{1}{{S{A^2}}} + \dfrac{1}{{A{B^2}}} \hfill \\   \Rightarrow AH = \dfrac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \dfrac{{a\sqrt {285} }}{{19}} \hfill \\   \Rightarrow d\left( {O;\left( {SBC} ight)} ight) = \dfrac{1}{2}AH = \dfrac{{a\sqrt {285} }}{{19}} \hfill \\ \end{matrix}

  • Câu 8: Thông hiểu

    Cho hai tam giác đều DAC và BAC lần lượt nằm trong hai mặt phẳng vuông góc với nhau. Gọi α là góc giữa hai mặt phẳng (DAB) và (DBC). Tính giá trị cos α.

    Tính giá trị cos α

    Giả sử cạnh của tam giác đều bằng 2a. Khi đó AB = AD = CB = CD = 2a

    Gọi H là trung điểm của AC. Tam giác DAC đều suy ra DH ⊥ AC.

    Tương tự BH ⊥ AC.

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\left( {DAC} ight) \bot \left( {ABC} ight)} \\   {\left( {DAC} ight) \cap \left( {ABC} ight)} \\   {DH \bot AC} \\   {DH \subset \left( {DAC} ight)} \end{array}} ight. \Rightarrow DH \bot \left( {ABC} ight)

    Gọi K là trung điểm của DB.

    Ta có: ABD cân tại A nên AK \bot BD

    Và CBD cân tại C nên CK \bot DB

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\left( {DAB} ight) \cap \left( {DBC} ight) = BD} \\   {AK \bot BD;AK \subset \left( {DAB} ight)} \\   {CK \bot BD;CK \subset \left( {DAB} ight)} \end{array}} ight.

    Suy ra góc giữa hai mặt phẳng (DAB) và (DBC) là góc giữa hai đường thẳng AK và CK.

    Ta có DH = a\sqrt 3 ;BH = a\sqrt 3 nên BDH vuông cân tại H.

    Từ đó ta có: \left\{ {\begin{array}{*{20}{c}}  {DB = \sqrt {D{H^2} + H{B^2}}  = a\sqrt 6 } \\   {HK = \dfrac{1}{2}BD = \dfrac{{a\sqrt 6 }}{2}} \end{array}} ight.

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {AC \bot DH} \\   {AC \bot BH} \\   {DH \cap BH = H} \\   {DH;BH \subset \left( {DBH} ight)} \end{array}} ight. \Rightarrow AC \bot \left( {DBH} ight)HK \subset \left( {DBH} ight) \Rightarrow AC \bot HK

    Xét tam giác ACK có KH vừa là trung tuyến, vừa là đường cao nên tam giác ACK cân tại K.

    Nên ta có: KH là phân giác của góc \widehat {AKC} suy ra \widehat {AKC} = 2\widehat {CKH}

    Ta có: t = \tan \widehat {CKH} = \frac{{HC}}{{HK}} = \frac{a}{{a\sqrt 6 :3}} = \frac{{\sqrt 6 }}{3}

    Vậy \cos \alpha  = \frac{{1 - {t^2}}}{{1 + {t^2}}} = \frac{{1 - \frac{6}{9}}}{{1 + \frac{6}{9}}} = \frac{1}{5}

  • Câu 9: Vận dụng

    Cho tam giác đều ABC có cạnh bằng 3a. Điểm H thuộc cạnh AC với HC = a. Dựng đoạn SH vuông góc với mặt phẳng (ABC) với SH = 2a. Khoảng cách từ điểm C đến mặt phẳng (SAB) bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi D là trung điểm của AB, do giả thiết suy ra CD ⊥ AB.

    Trong (ABC) kẻ HM // CD suy ra HM ⊥ AB (1).

    Do giả thiết SH ⊥ (ABC) => SH ⊥ AB (2)

    Từ (1), (2) suy ra AB ⊥ (SHM)

    Trong mặt phẳng (SHM) kẻ HK ⊥ SM (3), theo chứng minh trên => HK ⊥ AB (4)

    Từ (3), (4) => HK ⊥ (SAB) => d (H; (SAB)) = HK

    Dễ thấy CH ∩ (SAB) = {A}

    \frac{d\left( C;(SAB) ight)}{d\left(H;(SAB) ight)} = \frac{CA}{HA} = \frac{3}{2}

    Do đó d\left( C;(SAB) ight) =\frac{3}{2}d\left( H;(SAB) ight)

    Theo giả thiết ∆ABC đều => CD =\frac{3a\sqrt{3}}{2}

    Xét ∆ABC do HM // CD theo định lý Ta - lét ta có:

    \frac{HM}{CD} = \frac{AH}{AC} =\frac{2}{3}

    Áp dụng hệ thức lượng trong ∆SHM vuông tại H, ta có:

    HM = \frac{2}{3}CD \Rightarrow HM =\frac{2}{3}.\frac{3a\sqrt{3}}{2} = a\sqrt{3}

  • Câu 10: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA\bot(ABCD), SA = AB = a;AD = 2a. Gọi H;K lần lượt là hình chiếu của A lên SB;SD. Xét tính đúng sai của các kết luận sau?

    a) AH\bot SC Đúng||Sai

    b) SC\bot(AHK) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \cos\left( (AHK);(ABCD) ight) =
\frac{\sqrt{2}}{2}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA\bot(ABCD), SA = AB = a;AD = 2a. Gọi H;K lần lượt là hình chiếu của A lên SB;SD. Xét tính đúng sai của các kết luận sau?

    a) AH\bot SC Đúng||Sai

    b) SC\bot(AHK) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \cos\left( (AHK);(ABCD) ight) =
\frac{\sqrt{2}}{2}Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: \left\{ \begin{matrix}
BC\bot AB \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB);AH \subset
(SAB)

    \Rightarrow AH\bot BC

    Lại có AH\bot SB \Rightarrow AH\bot(SBC)
\Rightarrow AH\bot SC(*)

    b) Chứng minh tương tự câu a ta có:

    \left\{ \begin{matrix}
CD\bot AD \\
CD\bot SA \\
\end{matrix} ight.\  \Rightarrow CD\bot(SAD);AK \subset
(SAD)

    \Rightarrow AK\bot CDAK\bot SD \Rightarrow AK\bot(SCD)

    \Rightarrow AK\bot SC(**)

    Từ (*) và (**) suy ra: SC\bot(AHK).

    c) Ta có:

    \left\{ \begin{matrix}
(SCD) \cap (ABCD) = CD \\
AD\bot CD \equiv \left\{ D ight\} \\
SD\bot CD \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc \widehat{SDA}.

    d) Ta có: SA\bot(ABCD) \Rightarrow
\widehat{\left( (AHK);(ABCD) ight)} = \widehat{(SC;SA)} =
\widehat{ASC}

    Lại có ABCD là hình chữ nhật nên AC =
\sqrt{AB^{2} + AD^{2}} = a\sqrt{5}

    Tam giác SAC vuông tại A nên SC =
\sqrt{SA^{2} + AC^{2}} = a\sqrt{6}

    \Rightarrow \cos\widehat{ASC} =
\frac{SA}{SC} = \frac{\sqrt{6}}{6}

    \Rightarrow \cos\left( (AHK);(ABCD)
ight) = \frac{\sqrt{6}}{6} eq \frac{\sqrt{2}}{2}

  • Câu 11: Nhận biết

    Cho hình chóp S.ABC đáy là tam giác ABC cân tại A, SA vuông góc với đáy. Gọi Mlà trung điểm của BC, J là trung điểm của BM. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: BC\bot SA;\left( do\ SA\bot(ABC)
ight)

    Tam giác ABC cân tại A nên AM\bot
BC

    \Rightarrow BC\bot(SAM)

  • Câu 12: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I, cạnh a, \widehat{BAD} = 60^{0};SA = SB = SD =
\frac{a\sqrt{3}}{2}. Gọi ϕ là góc giữa hai mặt phẳng (SBD) và (ABCD). Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa:

    Từ giả thiết suy ra tam giác ABD đều cạnh a.

    Gọi H là hình chiếu của S trên mặt phẳng (ABCD).

    Do SA = SB = SD nên suy ra H cách đều các đỉnh của tam giác ABD hay H là tâm của tam giác đều ABD.

    Suy ra:

    \begin{matrix}HI = \dfrac{AI}{3} = \dfrac{a\sqrt{3}}{6} \hfill\\SH = \sqrt{SA^{2} - AH^{2}} = \dfrac{a\sqrt{15}}{6}\hfill \\\end{matrix}

    Vì ABCD là hình thoi nên HI ⊥ BD.

    Tam giác SBD cân tại S nên SI ⊥ BD

    => ((SBD), (ABCD)) = (SI, AI) = \widehat{SIH}

    Trong tam vuông SHI ta có: \tan\widehat{SIH} = \frac{SH}{HI} =
\sqrt{5}

  • Câu 13: Vận dụng

    Cho tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau. Điểm nào cách đều bốn đỉnh của A, B, C, D của tứ diện ABCD?

    Hình vẽ minh họa:

    Ta có:

    \left\{ \begin{matrix}
BC\bot AB \\
CD\bot AB \\
\end{matrix} ight.\  \Rightarrow AB\bot(BCD)=> Tam giác ABD vuông tại B.

    => IA = IB = ID = AD/2 (với I là trung điểm của AD)

    Ta có: \left\{ \begin{matrix}
CD\bot AB \\
CD\bot BC \\
\end{matrix} ight.\  \Rightarrow CD\bot(ABC)

    => Tam giác BCD vuông tại C.

    => EA = EC = ED = AD/2 (E là trung điểm của AD)

    Vậy I trùng với E

    Vậy điểm cách đều bốn đỉnh của A, B, C, D của tứ diện ABCD là trung điểm của đoạn thẳng AD.

  • Câu 14: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 3, BC = 4. Tam giác SAC nằm trong mặt phẳng vuông góc với đáy, khoảng cách từ điểm C đến đường thẳng SA bằng 4. Cosin của góc giữa hai mặt phẳng (SAB) và (SAC) bằng:

    Hình vẽ minh họa:

    Xét tam giác ABC vuông tại B ta có:

    AC = \sqrt{AB^{2} + BC^{2}} =
\sqrt{3^{2} + 4^{2}} = 5

    Gọi K là chân đường vuông góc kẻ từ C xuống SA.

    Xét tam giác CAK vuông tại K ta có:

    AK = \sqrt{CA^{2} - CK^{2}} = \sqrt{5^{2}
- 4^{2}} = 3

    Kẻ SH ⊥ AC, H ∈ AC. Vì (SAC) ⊥ (ABCD) và (SAC) ∩ (ABCD) = AC nên SA ⊥ (ABCD).

    Kẻ SH ⊥ AC, H ∈ AC và KP // SH, P ∈ AC thì KP ⊥ (ABCD).

    Xét tam giác BAC vuông tại B và tam giác KAC vuông tại K ta thấy các cạnh tương ứng bằng nhau và KP là đường cao của tam giác KAC nên BP là đường cao của tam giác BAC.

    Kẻ PM ⊥ KA, M ∈ KA.

    Vì KA ⊥ P B và KA ⊥ PM nên KA ⊥ (PMB).

    Suy ra KA ⊥ MB.

    Như vậy, góc giữa mặt phẳng (SAC) và (SAB) bằng góc \widehat{PMB}

    Xét tam giác KAC vuông tại K ta có:

    KP.AC = KA.KC \Rightarrow KP =
\frac{KA.KC}{AC} = \frac{3.4}{5} = \frac{12}{5}

    Suy ra: BP = KP =
\frac{12}{5}

    Xét tam giác KPA vuông tại P ta có:

    PA = \sqrt{KA^{2} - KP^{2}} =
\sqrt{3^{2} - \left( \frac{12}{5} ight)^{2}} =
\frac{9}{5}

    Lại có: PM.AK = PA.PK \Rightarrow PM =
\frac{PA.PK}{AK} = \frac{36}{25}

    Xét tam giác PMB vuông tại P ta có:

    MB = \sqrt{PB^{2} + PM^{2}} =
\sqrt{\left( \frac{12}{5} ight)^{2} + \left( \frac{36}{25}
ight)^{2}} = \frac{12\sqrt{34}}{25}

    Ta có: \cos\widehat{PMB} = \frac{MP}{MB}
= \frac{36}{25}.\frac{25}{12\sqrt{34}} =
\frac{3\sqrt{34}}{34}

  • Câu 15: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 2a?

    Ta có: V = (2a)^{3} = 8a^{3}

  • Câu 16: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AD = 2BC = 2AB = 2a, SA = 2a và SA vuông góc với ABCD. Gọi M là trung điểm SB và \varphi là góc tạo bởi đường thẳng MD và mặt phẳng (SCD). Khi đó \sin\varphi bằng:

    Tính sin của góc tạo bởi đường thẳng MD và mặt phẳng (SCD)

    Ta có tam giác SAB vuông tại A nên AM = \frac{{2a}}{{\sqrt 5 }}

    Ta có: \left\{ \begin{gathered}  AD \bot AB \hfill \\  A{\text{D}} \bot SA \hfill \\ \end{gathered}  ight. \Rightarrow A{\text{D}} \bot \left( {SAB} ight) \Rightarrow A{\text{D}} \bot MA

    Xét tam giác MDA vuông tại A theo định lí Pytago ta có:

    MD = \sqrt {A{D^2} + A{M^2}}  = \sqrt {4\,{a^2} + \frac{{4\,{a^2}}}{5}}  = \frac{{2\sqrt {30} a}}{5}

    Ta có \frac{{{d_{\left( {M,\,\left( {SC{\text{D}}} ight)} ight)}}}}{{{d_{\left( {B,\,\left( {SC{\text{D}}} ight)} ight)}}}} = \frac{{SM}}{{SB}} = \frac{1}{2}

    Gọi N là giao của AB và CD. Gọi P là trung điểm AD nên ABCP là hình vuông

    => CP = a \Rightarrow CP = \frac{1}{2}AD

    Ta có (hai đường chéo hình vuông)

    Mặt khác BP // CD.

    Do đó tam giác ACD vuông tại nên tam giác ACN vuông tại C, mặt khác BC \bot AN nên B là trung điểm AN.

    Ta có AB giao (SCB) tại N nên

    \frac{{{d_{\left( {B,\,\left( {C{\text{SD}}} ight)} ight)}}}}{{{d_{\left( {A,\left( {SCA} ight)} ight)}}}} = \frac{{NB}}{{NA}} = \frac{1}{2} \Rightarrow {d_{\left( {M,\left( {SC{\text{D}}} ight)} ight)}} = \frac{1}{4}{d_{\left( {A,\left( {SCA} ight)} ight)}}

    Ta có \left\{ \begin{gathered}  CD \bot AC \hfill \\  CD \bot SA \hfill \\ \end{gathered}  ight. \Rightarrow CD \bot \left( {SAC} ight)

    Trong (SAC) kẻ AH \bot SC

    \Rightarrow AH \bot \left( {SC{\text{D}}} ight) \Rightarrow {d_{\left( {A,\left( {SC{\text{D}}} ight)} ight)}} = AH \Rightarrow {d_{\left( {M,\left( {SC{\text{D}}} ight)} ight)}} = \frac{1}{4}AH

    Xét tam giác SAC vuông tại A nên AH = \frac{{2a}}{{\sqrt 3 }}

    Do đó \sin \varphi  = \frac{{{d_{\left( {M,\left( {SC{\text{D}}} ight)} ight)}}}}{{MD}} = \frac{{1AH}}{{4MD}}=\frac{{\sqrt {10} }}{{24}}

  • Câu 17: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.

    Hình vẽ minh họa:

    Ta có:

    SA ⊥ BC

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 2. Đường thẳng SO vuông góc với mặt phẳng đáy (ABCD) và SO=\sqrt{3}. Tính khoảng cách d giữa hai đường thẳng SA và BD.

    Hình vẽ minh họa:

    Tính khoảng cách d giữa hai đường thẳng SA và BD

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {BD \bot AC} \\   {BD \bot SO} \end{array} \Rightarrow BD \bot \left( {SAC} ight)} ight.

    Trong (SAC) kẻ OK⊥SA(1) ta có:

    OK⊂(SAC)⇒OK⊥BD(2) 

    Từ (1) và (2) ta có OK là đường vuông góc chung của SA và BD

    Khi đó d(SA;BD)=OK

    \begin{matrix}  OK = \dfrac{{SO.OA}}{{\sqrt {S{O^2} + O{A^2}} }} \hfill \\   = \dfrac{{\sqrt 3 .\dfrac{{2\sqrt 2 }}{2}}}{{\sqrt {{{\left( {\sqrt 3 } ight)}^2} + {{\left( {\dfrac{{2\sqrt 2 }}{2}} ight)}^2}} }} = \dfrac{{\sqrt {30} }}{5} \hfill \\ \end{matrix}

  • Câu 19: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề “Cho hai đường thẳng song song a và b và đường thẳng c sao cho c ⊥ a, c ⊥ b. Mọi mặt phẳng (α) chứa c thì đều vuông góc với mặt phẳng (a, b)” là sai. Trong trường hợp a và b trùng nhau, sẽ tồn tại mặt phẳng chứa a và b không vuông góc với mặt phẳng (α) chứa c.

    Mệnh đề “Cho a ⊥ b, mọi mặt phẳng chứa b đều vuông góc với a” là sai. Trong trường hợp a và b cắt nhau, mặt phẳng (a, b) chứa b nhưng không vuông góc với a.

    Mệnh đề “Cho a ⊥ b, nếu a ⊂ (α) và b ⊂ (β) thì (α) ⊥ (β)” là sai. Trong trường hợp a và b vuông góc nhau và chéo nhau, nếu (α) ⊃ a, (α) // b và (β) ⊃ b, (β) // a thì (α) // (β).

    Vậy mệnh đề đúng là mệnh đề: “Cho a ⊥ (α), mọi mặt phẳng (β) chứa a thì (β) ⊥ (α).”

  • Câu 20: Thông hiểu

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a. Góc tạo bởi cạnh bên SB và mặt phẳng đáy bằng 60^{0}. Thể tích khối chóp là:

    Hình vẽ minh họa

    Gọi H là tâm của tam giác đều ABC

    Khi đó SH\bot(ABC);BH =
\frac{a\sqrt{3}}{3}

    Theo bài ra ta có:

    \left( SB;(ABC) ight) = \widehat{SBH}
= 60^{0}

    Tam giác SBH vuông tại H có: SH =
BH.tan60^{0} = \frac{a\sqrt{3}}{3}.\sqrt{3} = a

    \Rightarrow V_{S.ABC} =
\frac{1}{3}.SO.S_{ABC} = \frac{1}{3}.a.\frac{a^{2}\sqrt{3}}{4} =
\frac{\sqrt{3}a^{3}}{12}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 68 lượt xem
Sắp xếp theo