Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Công thức tính thể tích khối lăng trụ có diện tích đáy B và chiều cao h là:

    Thể tích khối lăng trụ có diện tích đáy B và chiều cao h là:

    V = B.h

  • Câu 2: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 3, BC = 4. Tam giác SAC nằm trong mặt phẳng vuông góc với đáy, khoảng cách từ điểm C đến đường thẳng SA bằng 4. Cosin của góc giữa hai mặt phẳng (SAB) và (SAC) bằng:

    Hình vẽ minh họa:

    Xét tam giác ABC vuông tại B ta có:

    AC = \sqrt{AB^{2} + BC^{2}} =
\sqrt{3^{2} + 4^{2}} = 5

    Gọi K là chân đường vuông góc kẻ từ C xuống SA.

    Xét tam giác CAK vuông tại K ta có:

    AK = \sqrt{CA^{2} - CK^{2}} = \sqrt{5^{2}
- 4^{2}} = 3

    Kẻ SH ⊥ AC, H ∈ AC. Vì (SAC) ⊥ (ABCD) và (SAC) ∩ (ABCD) = AC nên SA ⊥ (ABCD).

    Kẻ SH ⊥ AC, H ∈ AC và KP // SH, P ∈ AC thì KP ⊥ (ABCD).

    Xét tam giác BAC vuông tại B và tam giác KAC vuông tại K ta thấy các cạnh tương ứng bằng nhau và KP là đường cao của tam giác KAC nên BP là đường cao của tam giác BAC.

    Kẻ PM ⊥ KA, M ∈ KA.

    Vì KA ⊥ P B và KA ⊥ PM nên KA ⊥ (PMB).

    Suy ra KA ⊥ MB.

    Như vậy, góc giữa mặt phẳng (SAC) và (SAB) bằng góc \widehat{PMB}

    Xét tam giác KAC vuông tại K ta có:

    KP.AC = KA.KC \Rightarrow KP =
\frac{KA.KC}{AC} = \frac{3.4}{5} = \frac{12}{5}

    Suy ra: BP = KP =
\frac{12}{5}

    Xét tam giác KPA vuông tại P ta có:

    PA = \sqrt{KA^{2} - KP^{2}} =
\sqrt{3^{2} - \left( \frac{12}{5} ight)^{2}} =
\frac{9}{5}

    Lại có: PM.AK = PA.PK \Rightarrow PM =
\frac{PA.PK}{AK} = \frac{36}{25}

    Xét tam giác PMB vuông tại P ta có:

    MB = \sqrt{PB^{2} + PM^{2}} =
\sqrt{\left( \frac{12}{5} ight)^{2} + \left( \frac{36}{25}
ight)^{2}} = \frac{12\sqrt{34}}{25}

    Ta có: \cos\widehat{PMB} = \frac{MP}{MB}
= \frac{36}{25}.\frac{25}{12\sqrt{34}} =
\frac{3\sqrt{34}}{34}

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABCD có tất cả các cạnh bằng nhau và đáy ABCD là hình vuông tâm O. Kết quả nào sau đây đúng?

    Hình chóp S.ABCD có tất cả các cạnh bên và cạnh đáy bằng nhau

    Do đó: SA = SC suy ra tam giác SAC cân tại A

    Lại có ABCD là hình vuông

    => O là trung điểm cạnh AC

    => SO vừa là đường trung tuyến vừa là đường cao của tam giác SAC

    => SO\bot AC

    Tương tự SO vừa là đường trung tuyến vừa là đường cao của tam giác SBD

    => SO\bot BD

    Từ đó ta có: \left\{ \begin{matrix}
SO\bot AC \subset (ABCD) \\
SO\bot BD \subset (ABCD) \\
\end{matrix} ight.

    \Rightarrow SO\bot(ABCD)

     

  • Câu 4: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có tất cả các cạnh bằng a. Gọi I;J lần lượt là trung điểm của SC;BC. Tính số đo góc giữa hai đường thẳng JICD?

    Hình vẽ minh họa

    Từ giả thiết ta có: JI//AB (do IJ là đường trung bình tam giác SAB)

    \Rightarrow (IJ;CD) =(SB;AB)

    Mặt khác ta lại có tam giác SAB đều nên \widehat{SBA} = 60^{0}

    \Rightarrow (SB;AB) = 60^{0} \Rightarrow(IJ;CD) = 60^{0}

  • Câu 5: Vận dụng

    Cho hình chóp S.ABCD có ABCD là hình vuông, tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm BC. Gọi \alpha là góc hợp bởi đường thẳng SA và mặt phẳng (SDM). Tính \alpha

    + Không mất tính tổng quát, đặt AB = 2

    + Gọi N là trung điểm AB suy ra SN \bot AB \Rightarrow SN \bot \left( {ABCD} ight)

    + Gọi h = d\left( {A,\left( {SDM} ight)} ight) \Rightarrow \sin \alpha  = \frac{h}{{SA}}

    Gọi I = DM \cap CN,\,J = AB \cap DM

    + Ta có \frac{{d\left( {A,\left( {SDM} ight)} ight)}}{{d\left( {N,\left( {SDM} ight)} ight)}} = \frac{{{\text{AJ}}}}{{NJ}} = \frac{4}{3}

    \Rightarrow h = d\left( {A,\left( {SDM} ight)} ight) = \frac{4}{3}d\left( {N,\left( {SDM} ight)} ight)

    + Ta có 

    \Delta CNB = \Delta DMC \Rightarrow \widehat {NCB} = \widehat {MDC}

    \Rightarrow \widehat {NCB} + \widehat {DMC} = \widehat {MDC} + \widehat {DMC} = 180^\circ  - \widehat {MCD} = 90^\circ

    \Rightarrow DM \bot CN \Rightarrow DM \bot \left( {SNC} ight)

    + Gọi NH là đường cao \Delta SNI \Rightarrow NH \bot \left( {SDM} ight)

    \Rightarrow d\left( {N,\left( {SDM} ight)} ight) = NH

    + Tam giác NJI đồng dạng tam giác MBJ

    \begin{matrix}   \Rightarrow \dfrac{{NI}}{{MB}} = \dfrac{{NJ}}{{MJ}} \hfill \\   \Rightarrow NI = \dfrac{{NJ}}{{MJ}}.MB = \dfrac{{NJ}}{{\sqrt {M{B^2} + B{J^2}} }} \hfill \\  MB = \dfrac{3}{{\sqrt {{1^2} + {2^2}} }}.1 = \dfrac{3}{{\sqrt 5 }} \hfill \\ \end{matrix}

    + Tam giác SAB là tam giác đều cạnh bằng 2 \Rightarrow SN = \sqrt 3

    \frac{1}{{N{H^2}}} = \frac{1}{{N{S^2}}} + \frac{1}{{N{I^2}}} \Rightarrow NH = \frac{{3\sqrt 2 }}{4}

    h = d\left( {A,\left( {SDM} ight)} ight) = \frac{4}{3}d\left( {N,\left( {SDM} ight)} ight) = \frac{4}{3}.\frac{{3\sqrt 2 }}{4} = \sqrt 2

    \Rightarrow \sin \alpha  = \frac{h}{{SA}} = \frac{{\sqrt 2 }}{2} \Rightarrow \alpha  = 45^\circ

  • Câu 6: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. BC = a. SA = SB = SC = \frac{{a\sqrt 3 }}{3}. Góc giữa đường thẳng SA và (ABC) bằng

    Góc giữa đường thẳng SA và (ABC) là

    +) Gọi H là trung điểm BC.

    Vì ABC vuông tại A nên H là tâm đường tròn ngoại tiếp tam giác ABC.

    Ta có: SA = SB = SC\,\left( {gt} ight) \Rightarrow SH \bot \left( {ABC} ight)

    => Hình chiếu của SA lên (ABC) là HA

    \Rightarrow \,\widehat {\left( {SA,\left( {ABC} ight)} ight)} = \widehat {\left( {SA,HA} ight)} = \widehat {SAH} (vì tam giác SAH vuông tại H)

    +) Ta có: AH = \frac{{BC}}{2} = \frac{a}{2}

    Xét tam giác SHA vuông tại H:

    \cos \widehat {SAH} = \dfrac{{AH}}{{SA}} = \dfrac{{\dfrac{a}{2}}}{{\dfrac{{a\sqrt 3 }}{3}}} = \frac{{\sqrt 3 }}{2} \Rightarrow \widehat {SAH} = 30^\circ

    Vậy \,\widehat {\left( {SA,\left( {ABC} ight)} ight)} = \widehat {SAH} = 30^\circ

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Cạnh bên SA=a\sqrt{3} và vuông góc với mặt đáy (ABC). Tính khoảng cách d từ A đến mặt phẳng (SBC). 

    Hình vẽ minh họa:

    Tính khoảng cách d từ A đến mặt phẳng (SBC)

    Gọi M là trung điểm BC 

    =>AM ⊥ BC và AM = \frac{{a\sqrt 3 }}{2}

    Gọi K là hình chiếu của A trên SM => AK ⊥ SM (1)

    Ta có: \left\{ \begin{gathered}  AM \bot BC \hfill \\  BC \bot SA \hfill \\ \end{gathered}  ight.

    \Rightarrow BC \bot (SAM) \Rightarrow BC \bot AK{\text{  }}\left( 2 ight)

    Từ (1) và (2) => AK⊥(SBC) => d(A;(SBC)) = AK

    Xét tam giác SAM ta có:

    AK = \frac{{SA.AM}}{{\sqrt {S{A^2} + A{M^2}} }} = \frac{{a\sqrt {15} }}{5}

    Vậy d(A;(SBC)) = AK = \frac{{a\sqrt {15} }}{5}

  • Câu 8: Nhận biết

    Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa

    Hình vẽ minh họa:

    Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

    Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.

  • Câu 9: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy

    Ta có: \left\{ \begin{matrix}AC\bot BD \\AC\bot SB \\\end{matrix} ight.\  \Rightarrow AC\bot(SBD)

  • Câu 10: Thông hiểu

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a\sqrt{2}. Tính khoảng cách giữa hai đường thẳng CC’ và BD.

    Hình vẽ minh họa:

    Ta có:

    OC ⊥ BD

    OC ⊥ CC’

    => OC là đoạn vuông góc chung của CC’ và BD.

    Vậy d(CC’, BD) = OC = AC/2 = 2a/2 = a

  • Câu 11: Nhận biết

    Cho hình chóp S.ABC, SA vuông góc với mặt phẳng (ABC)AB\bot BC. Hỏi có bao nhiêu mặt của hình chóp là tam giác vuông?

    Hình vẽ minh họa

    Ta có: AB\bot BC suy ra tam giác ABC vuông tại B

    Ta có: SA\bot(ABC) \Rightarrow \left\{
\begin{matrix}
SA\bot AB \\
SA\bot AC \\
\end{matrix} ight.

    Suy ra tam giác SAB và tam giác SAC là các tam giác vuông tại A

    Mặt khác \left\{ \begin{matrix}
AB\bot BC \\
SA\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot SC suy ra tam giác SBC vuông tại B

    Vậy hình chóp có bốn mặt đều là tam giác vuông.

  • Câu 12: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông ABCD cạnh a. Gọi O là giao điểm hai đường chéo AC;BD. Biết rằng SO = \frac{a\sqrt{2}}{2}. Tính góc giữa hai đường thẳng ABSD?

    Hình vẽ minh họa

    Ta có: AB//CD \Rightarrow (AB;SD) =(CD;SD)

    OD = \frac{1}{2}BD =\frac{a\sqrt{2}}{2}

    SD = \sqrt{SO^{2} + OD^{2}} =\sqrt{\frac{a^{2}}{2} + \frac{a^{2}}{2}} = a

    \Rightarrow SC = SC = CD =a

    Suy ra tam giác SCD đều.

    \Rightarrow \widehat{SCD} =60^{0}

    \Rightarrow (AB;SD) = (CD;SD) =\widehat{SCD} = 60^{0}

  • Câu 13: Vận dụng

    Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của BC và DD’. Tính theo a khoảng cách giữa hai đường thẳng MN và BD.

    Hình vẽ minh họa:

    Gọi O, P, K lần lượt là trung điểm của AC, CD, OC

    Kẻ DI ⊥ MP, DH ⊥ NI

    Ta có: ND = \frac{a}{2}, BD // MP, tứ giác DIKO là hình chữ nhật

    => DI = OK = \frac{OC}{2} =\frac{a\sqrt{2}}{4}

    Khi đó: d(MN, BD) = d(BD, (MNP)) = d(D, (MNP)) = DH

    Xét tam giác vuông NDI ta có:

    \begin{matrix}\dfrac{1}{DH^{2}} = \dfrac{1}{DN^{2}} + \dfrac{1}{DI^{2}} \Rightarrow DH =\dfrac{a\sqrt{3}}{6} \hfill \\\Rightarrow d(MN,BD) = \dfrac{a\sqrt{3}}{6} \hfill\\\end{matrix}

  • Câu 14: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnha, cạnh bên SA vuông góc với mặt đáy và SA = 2a. Gọi M là trung điểm của SC. Tính côsin của góc \alpha là góc giữa đường thẳng BM và mặt phẳng (ABC)?

    Hình vẽ minh họa

    Gọi H là trung điểm cạnh AC.

    Khi đó HM//SA nên HM vuông góc (ABC) tại H.

    Do đó \left( \widehat{BM,(ABC)} ight) =
\left( \widehat{BM,BH} ight) = \widehat{MBH} do \Delta MBH vuông tại H.

    Ta có:

    \cos\widehat{MBH} = \frac{BH}{BM}
= \frac{BH}{\sqrt{HM^{2} + BH^{2}}} = \dfrac{\dfrac{a\sqrt{3}}{2}}{\sqrt{a^{2} + \left(\dfrac{a\sqrt{3}}{2} ight)^{2}}} = \dfrac{\sqrt{21}}{7}.

  • Câu 15: Nhận biết

    Trong không gian cho đường thẳng Δ và điểm O. Qua điểm O có bao nhiêu mặt phẳng vuông góc với mặt phẳng Δ?

    Trong không gian cho đường thẳng Δ và điểm O. Qua điểm O có đúng một mặt phẳng vuông góc với mặt phẳng Δ.

  • Câu 16: Thông hiểu

    Cho khối chóp S.ABCDSA\bot(ABCD); đáy ABCD là hình chữ nhật AB = a;AD = a\sqrt{3}. Tính thể tích khối chóp S.ABCD, biết mặt phẳng (SBC) tạo với mặt phẳng đáy một góc bằng 60^{0}.

    Hình vẽ minh họa

    Ta có: S_{ABCD} =
a^{2}\sqrt{3}

    \left\{ \begin{matrix}
(SBC) \cap (ABCD) = BC \\
BC\bot SB \subset (SBC) \\
BC\bot AB \subset (ABCD) \\
\end{matrix} ight.\  \Rightarrow \left( (SBC);(ABCD) ight) = (SB;AB)
= \widehat{SBA}

    Vậy \widehat{SBA} = 60^{0}

    Xét tam giác vuông SAB có

    \tan60^{0} = \frac{SA}{AB} \Rightarrow SA= AB.\tan60^{0} = a\sqrt{3}

    Vậy V_{S.ABCD} = \frac{1}{3}S_{ABCD}.SA =
\frac{1}{3}.a^{2}\sqrt{3}.a\sqrt{3} = a^{3}

  • Câu 17: Nhận biết

    Tìm mệnh đề sai trong các mệnh đề sau:

    Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”

  • Câu 18: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh x, SA vuông góc với đáy và SA = x\sqrt{3}. Tính chiều cao hình chóp S.ABC?

    Ta có SA\bot(ABC) nên SA là đường cao của hình chóp

    Tam giác ABC đều cạnh x nên S_{ABC} =
\frac{x^{2}\sqrt{3}}{4}

    Vậy thể tích hình chóp là: V_{S.ABC} =
\frac{1}{3}SA.S_{ABC} = \frac{1}{3}.\frac{x^{2}\sqrt{3}}{4}.x\sqrt{3} =
\frac{x^{3}}{4}

  • Câu 19: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề “Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau hoặc cắt nhau (giao tuyến vuông góc với mặt phẳng thứ ba).

    Mệnh đề “Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một đường thẳng cho trước” là sai. Qua một đường thẳng vô số mặt phẳng vuông góc với một đường thẳng cho trước.

    Mệnh đề “Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước” là sai. Qua một điểm có vô số mặt phẳng vuông góc với một mặt phẳng cho trước.

    Vậy mệnh đề đúng là: “Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.”

  • Câu 20: Vận dụng

    Cho tứ diện ABCDAC = AD = BC = BD = a;AB = x. Gọi M,N lần lượt là trung điểm của các cạnh AB;CD. Biết (ACD)\bot(BCD)(ABC)\bot(ABD). Tính giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCDAC = AD = BC = BD = a;AB = x. Gọi M,N lần lượt là trung điểm của các cạnh AB;CD. Biết (ACD)\bot(BCD)(ABC)\bot(ABD). Tính giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 68 lượt xem
Sắp xếp theo