Cho hình chóp tam giác S.ABC có đáy ABC là tam giác vuông cân tại B với trọng tâm G. Cạnh bên SA tạo với đáy (ABC) một góc 300. Biết hai mặt phẳng (SBG) và (SCG) cùng vuông góc với mặt phẳng (ABC). Tính cosin của góc giữa hai đường thẳng SA và BC.
Hình vẽ minh họa:
Ta có:
Gọi O, N lần lượt là trung điểm của AC và BC.
Gọi D là điểm đối xứng của B qua O. Khi đó ABCD là hình vuông.
Vì BC // AD nên (SA, BC) = (SA, AD).
Gọi ϕ là góc giữa hai đường thẳng SA và AD.
Đặt AB = BC = x => AD = x
Ta có:
Góc giữa SA và mặt đáy (ABC) là
Ta có:
Ta có:
Áp dụng hệ quả của định lí cosin trong tam giác SAD ta có: