Cho hình chóp
có
. Gọi hình chiếu vuông góc của điểm
lên cạnh
là điểm
. Xác định góc giữa hai mặt phẳng
và
?
Hình vẽ minh họa
Ta có:
Vì
Vậy
Cho hình chóp
có
. Gọi hình chiếu vuông góc của điểm
lên cạnh
là điểm
. Xác định góc giữa hai mặt phẳng
và
?
Hình vẽ minh họa
Ta có:
Vì
Vậy
Biết khối chóp có diện tích đáy và chiều cao lần lượt bằng
. Thể tích khối chóp bằng:
Ta có:
Thể tích khối chóp là:
Công thức tính thể tích khối lăng trụ có diện tích đáy
và chiều cao
là:
Thể tích khối lăng trụ có diện tích đáy và chiều cao
là:
Cho hình lập phương ABCD.A’B’C’D’. Gọi M là trung điểm của BB’. Tính cosin của góc giữa hai đường thẳng AM và A’C’.

+ Ta có AC // A’C’ nên góc giữa AM và A’C’ là góc giữa AC và AM.
+ Xét tam giác AMC có:
Áp dụng định lí cosin trong tam giác AMC, ta có:
Cho hình lăng trụ đứng ABC.A’B’C’ có cạnh bên
. Biết đáy ABC là tam giác vuông có BA = BC = a, gọi M là trung điểm của BC. Tính khoảng cách giữa hai đường thẳng AM và B’C.
Hình vẽ minh họa:
Gọi N là trung điểm của BB’ => MN // B’C
=> B’C // (AMN)
=> d(AM, B’C) = d(B’C, (AMN)) = d(B’, (AMN)) = d(B, (AMN))
Kẻ BH ⊥ AM, BK ⊥ HN
=> BK ⊥ (AMN)
=> d(AM, B’C) = d(B, (AMN)) = BK
Ta có:
Ta có:
Do tam giác ABM vuông tại B
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Khẳng định nào dưới đây là sai?
Hình vẽ minh họa

Vì H là trung điểm của AB, tam giác ABC cân =>
Ta có: =>
mà
=>
Mặt khác => CH vuông góc với các đường thẳng
Và chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.
Cho hình lập phương
. Gọi
là trung điểm của cạnh
. Tính
của góc giữa hai đường thẳng
và
ta được kết quả là:
Hình vẽ minh họa:
Gọi độ dài cạnh hình lập phương là a, a > 0
Ta có:
Tính được
Trong tam giác B’CI ta có:
Cho hình chóp
có đáy
là hình vuông cạnh bằng
, biết
đều. Tính
?
Hình vẽ minh họa
Ta có:
.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC), SA =
. Tính cosin của góc giữa hai mặt phẳng (SAB) và (SBC) là:
Hình vẽ minh họa:
Gọi M là trung điểm BC. Kẻ AK ⊥ SM tại K.
Ta có:
Lại có AK ⊥ SM = (SBC) ∩ (SAM)
=> AK ⊥ (SBC) ⇒ AK ⊥ SB
Kẻ AH ⊥ SB tại H. Suy ra SB ⊥ (AHK) ⇒ SB ⊥ HK
Ta có:
=> ((SAB), (SBC)) = (AH, HK) =
Xét tam giác SAB có:
Xét tam giác SAM có:
Xét tam giác AHK vuông tại K có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Gọi α là góc giữa đường thẳng SD và mặt phẳng (ABCD). Mệnh đề nào sau đây là mệnh đề đúng?
Hình vẽ minh họa:
Giả sử H là trung điểm của AB => SH ⊥ AB => SH ⊥ (ABCD)
=> Hình chiếu vuông góc của SD trên mặt phẳng (ABCD) là cạnh HD.
=>
Tam giác SAB đều cạnh a =>
Ta lại có:
=>
Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa
Hình vẽ minh họa:
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.
Cho hình chóp tứ giác đều
có đáy là hình vuông
cạnh
. Gọi
là giao điểm hai đường chéo
. Biết rằng
. Tính góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có:
Suy ra tam giác SCD đều.
Một khối chóp tứ giác đều có các cạnh bằng
(cm). Khi đó thể tích của khối chóp đã cho bằng bao nhiêu?
Hình vẽ minh họa
Gọi hình chóp tứ giác đều có tất cả các cạnh bằng 2t là S.ABCD với I là tâm của đáy ta có:
lần lượt vuông tại S; B; D
I là trung điểm của AC suy ra
Vậy thể tích hình chóp là:
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:
Hình vẽ minh họa:
Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.
Gọi O là hình chiếu của S trên mặt phẳng (ABCD).
Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.
Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:
Hình vẽ minh họa:
Theo bài ta có AB là hình chiếu của SB trên (ABC)
Vậy
Mà ∆SBA vuông cân tại A nên
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 3a. Cạnh bên SA vuông góc với (ABCD), góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 30◦ . Tìm khoảng cách từ A đến mặt phẳng (SBC).
Ta có:
Gọi H là chân đường cao lên cạnh SB. Khi đó, ta có
d(A, (SBC)) = AH. sin 30◦ => AH = AB . sin 30◦ =
Cho tứ diện
có
đôi một vuông góc. Khẳng định nào dưới đây đúng?
Hình vẽ minh họa
Ta có:
Cho tam giác
và tam giác
nằm trên hai mặt phẳng vuông góc với nhau và
. Với giá trị nào của
thì hai mặt phẳng
và
?
Hình vẽ minh họa
Gọi I, J lần lượt là trung điểm của AB và CD
Suy ra mà
Do đó
Ta có:
Mặt khác nên tam giác
vuông cân tại J
Do đó
Vậy
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 2. Đường thẳng SO vuông góc với mặt phẳng đáy (ABCD) và
. Tính khoảng cách d giữa hai đường thẳng SA và BD.
Hình vẽ minh họa:

Ta có:
Trong (SAC) kẻ OK⊥SA(1) ta có:
Từ (1) và (2) ta có OK là đường vuông góc chung của SA và BD
Khi đó
Cho hai mặt phẳng (P), (Q) là hai mặt phẳng vuông góc với nhau có giao tuyến là đường thẳng m và a, b, c, d là các đường thẳng. Trong các khẳng định sau, khẳng định nào sai?
"Nếu b ⊥ m thì b ⊂ (P) hoặc b ⊂ (Q)" là khẳng định sai vì có thể b ⊂ (P) và b ⊂ (Q).