Cho khối chóp tam giác có chiều cao bằng
, diện tích đáy bằng
. Thể tích của hình chóp bằng:
Ta có:
Thể tích khối chóp tam giác là
Cho khối chóp tam giác có chiều cao bằng
, diện tích đáy bằng
. Thể tích của hình chóp bằng:
Ta có:
Thể tích khối chóp tam giác là
Cho hình chóp
đáy
là hình thoi tâm I, cạnh bên
vuông góc với đáy. Gọi
lần lượt là hình chiếu của
lên
. Mệnh đề nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Cho hình chóp
có đáy
là tam giác vuông tại
,
. Kết luận nào dưới đây đúng?
Hình vẽ minh họa
Ta có:
Mà
Đồng thời
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách d giữa hai đường thẳng SA và BD.
Hình vẽ minh họa:
Gọi I là trung điểm của AD
=> SI ⊥ AD => SI ⊥ (ABCD)
Kẻ Ax // BD
Ta có d(BD, SA) = d (BD, (SAx)) = d (D, (SAx)) = 2d (I, (SAx))
Kẻ IE ⊥ Ax, kẻ IK ⊥ SE
Khi đó d (I, (SAx)) = IK
Gọi F là hình chiếu của I trên BD, ta có:
Xét tam giác vuông SIE ta có:
=>
Cho hình chóp
có đáy
là hình vuông,
. Kết luận nào sau đây sai?
Hình vẽ minh họa
Ta có:
vì
vì
vì
Cho hình chóp
có
, đáy
là tam giác cân tại
. Gọi
là trung điểm của
,
là trung điểm của
. Xác định góc giữa hai mặt phẳng
và
?
Hình vẽ minh họa
Dễ thấy
Ta có tam giác ABC cân tại A, M là trung điểm của BC suy ra
Theo giả thiết . Khi đó
Ta được
Cho hình chóp
có đáy
là hình vuông tâm
cạnh bằng
,
. Giả sử
là mặt phẳng đi qua điểm
và vuông góc với
. Tính diện tích thiết diện tạo bởi hình chóp và mặt phẳng
?
Hình vẽ minh họa
Ta có:
Từ O dựng OH vuông góc với SC
Ta có:
Lại có
Vậy thiết diện cần tìm là tam giác BHD
Cho hình chóp
có đáy
là hình chữ nhật ![]()
. Kẻ đường cao
của tam giác
. Khi đó:
a)
Đúng||Sai
b)
Sai||Đúng
c)
Đúng||Sai
d) Diện tích tam giác
bằng
Sai||Đúng
Cho hình chóp có đáy
là hình chữ nhật
. Kẻ đường cao
của tam giác
. Khi đó:
a) Đúng||Sai
b) Sai||Đúng
c) Đúng||Sai
d) Diện tích tam giác bằng
Sai||Đúng
đúng
đúng
đúng
Diện tích tam giác bằng
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:
Hình vẽ minh họa:
Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.
Gọi O là hình chiếu của S trên mặt phẳng (ABCD).
Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.
Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:
Cho hình chóp tứ giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp
bằng bao nhiêu?
Hình vẽ minh họa
Gọi O là giao điểm của hai đường chéo AC và BD
Ta có: tam giác SAC cân, O là trung điểm của AC nên
Tương tự tam giác SBD cân, O là trung điểm của BD nên
Suy ra OA là hình chiếu vuông góc của SA lên mặt phẳng đáy
ABCD là hình vuông nên
Xét tam giác vuông SOA ta có:
Cho hình chóp
có đáy
là tam giác đều cạnh
,
. Tính chiều cao hình chóp
?
Ta có:
nên SA là chiều cao của hình chóp.
Do tam giác ABC đều cạnh a nên
Ta lại có:
Cho hình vuông ABCD cạnh 4a , lấy H, K lần lượt trên các cạnh AB, AD sao cho BH = 3HA, AK = 3KD. Trên đường thẳng vuông góc với mặt phẳng (ABCD) tại H lấy điểm S sao cho
. Gọi E là giao điểm của CH và BK . Tính cosin của góc giữa hai đường thẳng SE và BC .
Gọi I là hình chiếu vuông góc của E lên AB ta có

Ta có:
Trong tam giác vuông SEI có:
=>
Cho hình chóp
có đáy là hình thoi tâm
. Biết rằng
. Hãy chọn kết luận sai dưới đây?
Hình vẽ minh họa
Ta có tam giác SAC cân tại S và SO là đường trung tuyến cũng đồng thời là đường cao
=>
Trong tam giác SOA thì AC và SA không thể vuông tại A
Vậy khẳng định sai là: .
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, đường chéo AC = 2a và SA vuông góc với mặt phẳng đáy (ABCD) (tham khảo hình vẽ). Tính khoảng cách giữa hai đường thẳng SB và CD.
Hình vẽ minh họa:
Vì AB // CD ⇒ CD // (SAB)
=> d(CD, (SAB)) = d(D, (SAB))
Mà AD ⊥ (SAB) => d(D, (SAB)) = AD.
Xét tam giác ABD vuông tại A ta có:
AB2 + AD2 = BD2 = 4a2 => AD =
Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:
Hình vẽ minh họa:
Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)
=> Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là
Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’
=>
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:
Hình vẽ minh họa:
Theo bài ta có AB là hình chiếu của SB trên (ABC)
Vậy
Mà ∆SBA vuông cân tại A nên
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có
.Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ D đến mặt phẳng (SBC)
Hình vẽ minh họa

Ta có: AD // BC =>
Gọi H là hình chiếu vuông góc của A lên SB =>
Ta có:
Từ (*) và (**) =>
Cho tứ diện
có hai mặt
và
là tam giác đều. Khi đó
bằng:
Hình vẽ minh họa
Ta có: I là trung điểm của AB.
Vì và
là tam giác đều nên
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA ⊥(ABC). Kẻ AH ⊥ SB. Chọn khẳng định sai trong các khẳng định dưới đây?
Hình vẽ minh họa:
AB ⊥ BC (hiển nhiên đúng)
Ta có: SA ⊥(ABC) mà BC nằm trong (ABC) => SA ⊥ BC
Ta lại có:
Dễ thấy AH ⊥ AC là khẳng định sai.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC), SA =
. Tính cosin của góc giữa hai mặt phẳng (SAB) và (SBC) là:
Hình vẽ minh họa:
Gọi M là trung điểm BC. Kẻ AK ⊥ SM tại K.
Ta có:
Lại có AK ⊥ SM = (SBC) ∩ (SAM)
=> AK ⊥ (SBC) ⇒ AK ⊥ SB
Kẻ AH ⊥ SB tại H. Suy ra SB ⊥ (AHK) ⇒ SB ⊥ HK
Ta có:
=> ((SAB), (SBC)) = (AH, HK) =
Xét tam giác SAB có:
Xét tam giác SAM có:
Xét tam giác AHK vuông tại K có: