Cho hình chóp
có
. Gọi hình chiếu vuông góc của điểm
lên cạnh
là điểm
. Xác định góc giữa hai mặt phẳng
và
?
Hình vẽ minh họa
Ta có:
Vì
Vậy
Cho hình chóp
có
. Gọi hình chiếu vuông góc của điểm
lên cạnh
là điểm
. Xác định góc giữa hai mặt phẳng
và
?
Hình vẽ minh họa
Ta có:
Vì
Vậy
Cho hình chóp
có đáy
là hình bình hành tâm
, tam giác
cân. Giả sử
lần lượt là trung điểm các cạnh
. Khẳng định nào dưới đây sai?
Hình vẽ minh họa
Vì tam giác SAB là tam giác cân tại S nên
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên => SO ⊥ (ABCD)
Từ => AC ⊥ (SBD)
Từ => BD ⊥ (SAC)
Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.
Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh SA vuông góc với mặt phẳng đáy (ABCD), SA = AB = a, AD = 3a. Gọi M là trung điểm của BC. Tính cosin của góc tạo bởi hai mặt phẳng (ABCD) và (SDM).
Hình vẽ minh họa:
Gọi H là hình chiếu vuông góc của A lên DM, ta có DM ⊥ (SAH).
Gọi α là góc giữa (SDM) và (ABCD) ta có:
Ta có:
Ta có:
Ta lại có:
Vậy
Cho tứ diện ABCD có AB = AC = AD và
. Gọi I và J lần lượt là trung điểm của AB và CD. Hãy xác định góc giữa cặp vecto
?
Hình vẽ minh họa:

Xét tam giác ICD có J là trung điểm của CD =>
Tam giác ABC có AB = AC và => Tam giác ABC đều => CI ⊥ AB
Tương tự ta chứng minh được tam giác aBD đều => DI ⊥ AB
Ta có:
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của BC và DD’. Tính theo a khoảng cách giữa hai đường thẳng MN và BD.
Hình vẽ minh họa:
Gọi O, P, K lần lượt là trung điểm của AC, CD, OC
Kẻ DI ⊥ MP, DH ⊥ NI
Ta có: , BD // MP, tứ giác DIKO là hình chữ nhật
=>
Khi đó: d(MN, BD) = d(BD, (MNP)) = d(D, (MNP)) = DH
Xét tam giác vuông NDI ta có:
Cho hình chóp
có đáy
là tam giác đều cạnh
; cạnh
vuông góc với mặt đáy và
. Gọi
là trung điểm của cạnh
. Gọi
là góc giữa đường thẳng
và mặt phẳng
. Xác định
?
Hình vẽ minh họa
Gọi H là trung điểm của AC => HM // SA và
Mà
Ta có:
Trong tam giác BMH có:
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Khẳng định nào dưới đây là sai?
Hình vẽ minh họa

Vì H là trung điểm của AB, tam giác ABC cân =>
Ta có: =>
mà
=>
Mặt khác => CH vuông góc với các đường thẳng
Và chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Vậy mệnh đề đúng là: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.”
Khối lăng trụ đứng
có đáy
là tam giác vuông cân tại A. Biết
và góc giữa đường thẳng
và mặt phẳng
bằng
. Tính thể tích khối lăng trụ đứng
.
Hình vẽ minh họa
Ta có:
Suy ra
Ta có:
Vậy
Cho hình chóp
có đáy
là hình thoi tâm
, cạnh bên
vuông góc với mặt phẳng đáy. Gọi
là góc giữa đường thẳng
với mặt phẳng đáy. Khi đó:
Hình vẽ minh họa
Ta có: suy ra OD là hình chiếu vuông góc của SD lên mặt phẳng (ABCD)
Suy ra
Vậy
Cho hình chóp S.ABC có
và SA = SB = SC. Gọi H là hình chiếu vuông góc của S trên mặt phẳng (ABC), khi đó:
Hình vẽ minh họa:
Đặt SA = a
Xét tam giác SAB vuông cân tại S ta có:
Xét tam giác SAC cân tại S ta có:
=> SA = SC = AC = a
Áp dụng định lí cosin cho tam giác SBC ra có:
Vậy tam giác ABC vuông tại A mà H là hình chiếu của S trên (ABC) nên H là tâm đường tròn ngoại tiếp tam giác ABC
Hay H là trung điểm của BC.
Cho hình chóp S.ABCD có đáy là hình vuông, SA = SB và (SAB) ⊥ (ABCD). Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Ta có:
(SAB) ⊥ (ABCD)
BC ⊥ BA
=> BC ⊥ (SAB).
Từ B kẻ BK ⊥ SA => d(BC, SA) = BK.
Ta có:
Tam SAB cân tại S, do vậy d(BC, SA) = BK ≠ AB
Cho hình vuông ABCD và tam giác đều SAB cạnh a nằm trong hai mặt phẳng vuông góc với nhau. Tính sin góc giữa đường thẳng SC và mặt phẳng (SAD).

Gọi I là trung điểm của AB. Khi đó
Ta có mà
Dựng tại H suy ra
Trong mặt phẳng (SAD) kẻ Hx // AD. Trong mặt phẳng (BC, Hx) qua C kẻ đường thẳng song song với BH cắt Hx tại K thì
Suy ra SK là hình chiếu vuông góc của SC trên mặt phẳng (SAD) nên góc giữa đường thẳng SC và mặt phẳng (SAD) là góc
Ta có
Trong tam giác SCI có
Suy ra
Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

Ta có: SA ⊥ (ABC) => SA ⊥ BC
Mặt khác BC ⊥ AB
Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB
Vậy (vì tam giác SBC vuông tại B)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên
và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ O đến mặt phẳng (SBC)
Ta có:
Từ A kẻ =>
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OB = OC = a. Tính khoảng cách giữa hai đường thẳng OA và BC.
Hình vẽ minh họa:
Gọi M là trung điểm CB, ta có: OM ⊥ BC.
Mặt khác vì OA, OB, OC đôi một vuông góc nên OA ⊥ (OBC)
=> OA ⊥ OM. Do đó khoảng cách giữa OA và BC là OM.
Ta có:
Cho hình chóp S.ABC có SA = SB = SC và
. Góc giữa cặp vecto
là: