Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho đường thẳng a và mặt phẳng (P). Có bao nhiêu mặt phẳng đi qua a và vuông góc với mặt phẳng (P)?

    Có một khi a không vuông góc với (P), có vô số khi a vuông góc với (P).

  • Câu 2: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại AAB =
a\sqrt{2}. Biết SA\bot(ABC)SA = a. Góc nhị diện \lbrack S,\ BC,\ Abrack có số đo bằng:

    Hình vẽ minh họa

    Kẻ AM\bot BC tại M \Rightarrow M là trung điểm của BCAM =
\frac{1}{2}BC = \frac{\left( a\sqrt{2} ight)\sqrt{2}}{2} = a .

    Ta có \left\{ \begin{matrix}
(SBC) \cap (ABC) = BC \\
(SAM)\bot BC \\
(SAM) \cap (SBC) = SM \\
(SAM) \cap (ABC) = AM \\
\end{matrix} ight. \Rightarrow
\left( \widehat{(SBC),(ABC)} ight) = \left( \widehat{SM,AM}
ight).

    Suy ra góc giữa (SBC)(ABC) bằng góc \widehat{SMA}.

    Ta có: \tan\widehat{SMA} = \frac{SA}{AM} = \frac{a}{a} =
1 \Rightarrow \widehat{SMA} = 45{^\circ}

    Suy ra góc nhị diện \lbrack S,\ BC,\
Abrack có số đo bằng 45{^\circ}.

  • Câu 3: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông có độ dài đường chéo bằng a √ 2 và SA vuông góc với mặt phẳng (ABCD). Gọi α là góc giữa mặt phẳng (SBD) và (ABCD). Nếu \tan\alpha =
\sqrt{2} thì góc giữa hai mặt phẳng (SAC) và (SBC) bằng

    Hình vẽ minh họa:

    Gọi O là tâm hình vuông ABCD, H, K lần lượt là hình chiếu của A lên SB, SC.

    Ta dễ dàng chứng minh được AH ⊥ (SBC) => AH ⊥ SC.

    Mà AK ⊥ SC nên SC ⊥ (AHK) => SC ⊥ HK.

    Ta có:

    (SAC) ∩ (SBC) = SC

    AK ⊥ SC

    HK ⊥ SC

    => ((SAC), (SBC)) = (AK; HK) = \widehat{AKH}.

    Ta cũng có: ((SBD); (ABCD)) = (SO; AO) = \widehat{SOA} = α

    => tan α = SA/AO => SA = a

    Do đó: tam giác SAB vuông cân tại A => AH = \frac{SB}{2} =
\frac{a\sqrt{2}}{2}

    Xét tam giác SAC có: \frac{1}{AK^{2}} =
\frac{1}{AS^{2}} + \frac{1}{AC^{2}} \Rightarrow AK =
\frac{a\sqrt{6}}{3}

    Xét tam giác AHK vuông tại H, ta có:

    \sin\widehat{AKH} = \frac{AH}{AK} =
\frac{\sqrt{3}}{2} \Rightarrow \sin\widehat{AKH} = 30^{0}

    Vậy ((SAC); (SBC)) = 300.

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; SA\bot(ABCD);SA = a\sqrt{2}. Tính khoảng cách giữa hai đường chéo nhau ACSB bằng:

    Hình vẽ minh họa

    Kẻ đường thẳng d qua B và song song AC

    Gọi M là hình chiếu vuông góc của A lên d

    Gọi H là hình chiếu của A lên SM.

    Ta có: \left\{ \begin{matrix}
SA\bot BM \\
BM\bot AM \\
\end{matrix} ight.\  \Rightarrow BM\bot(SAM) \Rightarrow
AH\bot(SBM)

    \Rightarrow d(AC;SB) = d\left( A;(SBM)
ight) = AH

    Xét tam giác SAM có đường cao AH nên

    \frac{1}{AH^{2}} = \frac{1}{AS^{2}} +
\frac{1}{AM^{2}} = \frac{5}{2a^{2}}

    \Rightarrow AH =
\frac{a\sqrt{10}}{5}

  • Câu 5: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 3a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 3a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= a^{3}

  • Câu 6: Thông hiểu

    Trong không gian cho tam giác đều SAB và hình vuông ABCD cạnh a nằm trên hai mặt phẳng vuông góc. Gọi H, K lần lượt là trung điểm của AB, CD. Gọi ϕ là góc giữa hai mặt phẳng (SAB) và (SCD). Mệnh đề nào sau đây đúng?

    Hình ảnh minh họa:

    Dễ dàng xác định giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng d đi qua S và song song với AB.

    Trong mặt phẳng (SAB) có SH ⊥ AB => SH ⊥ d.

    Ta có: \left\{ \begin{matrix}
CD\bot HK \\
CD\bot SH \\
\end{matrix} \Rightarrow CD\bot(SHK) \Rightarrow CD\bot SK ight.

    => d ⊥ SK. Từ đó suy ra ((SAB), (SCD)) = (SH, SK) = \widehat{HSK}

    Trong tam giác vuông SHK ta có: \tan\widehat{HSK} = \frac{HK}{SH} =
\frac{2\sqrt{3}}{3}

  • Câu 7: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A;D; AB =
a;AD = DC = a. Gọi I là trung điểm của AD, biết hai mặt phẳng (SBI)(SCI) cùng vuông góc với đáy và mặt phẳng (SBC) tạo với đáy một góc 60^{0}. Tính khoảng cách từ trung điểm của cạnh SD đến mặt phẳng (SBC)?

    Từ I kẻ IP\bot BC \Rightarrow BC\bot
SP

    \Rightarrow \left( (SBC);(ABCD) ight)
= \widehat{SPI} = 60^{0}

    Gọi K là trung điểm của SD.

    Gọi Q = BC \cap AD, kẻ IH\bot SP

    Ta có:

    d\left( K;(SBC) ight) =
\frac{1}{2}d\left( D;(SBC) ight)

    = \frac{1}{4}d\left( I;(SBC) ight) =
\frac{1}{4}IH

    Xét tam giác ICQ có IP = \frac{CD.IQ}{QC}
= \frac{2a}{\sqrt{5}}

    Xét tam giác SIP vuông tại I có SI =
IP.tan60^{0} = \frac{2a\sqrt{3}}{5}

    \frac{1}{IH^{2}} = \frac{1}{IS^{2}} +
\frac{1}{IP^{2}} \Rightarrow IH = \frac{3a^{2}}{5}

    \Rightarrow IH =
\frac{a\sqrt{15}}{5}

    \Rightarrow d\left( K;(SBC) ight) =
\frac{a\sqrt{15}}{20}

  • Câu 8: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh có độ dài bằng 2a. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của BC. Tính khoảng các d giữa hai đường thẳng BB' và A'H

    Do BB’ // AA’nên d(BB′;A′H)=d(BB′;(AA′H))=d(B;(AA′H))

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {BH \bot AH} \\   {BH \bot A\prime H} \end{array} \Rightarrow BH \bot \left( {AA\prime H} ight)} ight.

    Nên d(B;(AA′H))=BH=BC/2=a

    Vậy khoảng cách d(BB′;A′H)=a

  • Câu 9: Nhận biết

    Tìm mệnh đề đúng trong các mệnh đề sau:

    Đáp án đúng: Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”

  • Câu 10: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Giả sử mặt phẳng (\alpha) đi qua điểm C vuông góc với BD. Thiết diện tạo bởi (\alpha) và hình lập phương là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
CA\bot BD \\
CC'\bot BD \\
\end{matrix} ight.\  \Rightarrow (ACC'A')\bot BD

    Vậy (\alpha) chính là mặt phẳng (ACC'A'). Thiết diện là một hình chữ nhật.

  • Câu 11: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông cạnh a , độ dài cạnh bên bằng a . Gọi M,N lần lượt là trung điểm của các cạnh SABC . Góc giữa MNSC bằng:

    Hình vẽ minh họa

    Gọi P là trung điểm của SB

    Ta có: SC//NP \Rightarrow (MN,SC) =
(MN,NP) = \widehat{MNP}

    MP = \frac{1}{2}AB = \frac{a}{2};NP =
\frac{1}{2}SC = \frac{a}{2}

    MC^{2} = \frac{2\left( SC^{2} + AC^{2}
ight) - SA^{2}}{4}

    = \frac{2\left( a^{2} + 2a^{2} ight) -
a^{2}}{4} = \frac{5a^{2}}{4}

    MB = \frac{a\sqrt{3}}{2}

    MN^{2} = \frac{2\left( MC^{2} + MB^{2}
ight) - BC^{2}}{4}

    = \dfrac{2\left( \dfrac{5a}{4}^{2} +\dfrac{3a}{4}^{2} ight) - a^{2}}{4} = \dfrac{3a^{2}}{4}

    \Rightarrow \cos\widehat{MNP} =
\frac{NP^{2} + MN^{2} - MP^{2}}{2NP.MN}

    = \dfrac{MN}{2NP} =\dfrac{\dfrac{a\sqrt{3}}{2}}{2.\dfrac{a}{2}} =\dfrac{\sqrt{3}}{2}

    \Rightarrow \widehat{MNP} =
30^{0}

  • Câu 12: Nhận biết

    Cho tứ diện ABCD. Gọi trung điểm các cạnh ACAD lần lượt là các điểm M,N. Giao tuyến của hai mặt phẳng (BMN) và mặt phẳng (BCD)

    Hình vẽ minh họa

    Hai mặt phẳng (BMN) và mặt phẳng (BCD) có điểm B chung và MN // CD nên theo tính chất giao tuyến của hai mặt phẳng thì giao tuyến là đường thẳng d đi qua B và song song với MN (hoặc song song với CD).

  • Câu 13: Thông hiểu

    Cho tứ diện ABCD có AB = AC = AD và \widehat {BAC} = \widehat {BAD} = {60^0};\widehat {CAD} = {90^0}. Gọi I và J lần lượt là trung điểm của AB và CD. Hãy xác định góc giữa cặp vecto \overrightarrow {AB} ;\overrightarrow {IJ}?

    Hình vẽ minh họa:

    Hãy xác định góc giữa cặp vecto

    Xét tam giác ICD có J là trung điểm của CD => \overrightarrow {IJ}  = \frac{1}{2}\left( {\overrightarrow {JC}  + \overrightarrow {ID} } ight)

    Tam giác ABC có AB = AC và \widehat {BAC} = {60^0} => Tam giác ABC đều => CI ⊥ AB

    Tương tự ta chứng minh được tam giác aBD đều => DI ⊥ AB

    Ta có:

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {IJ}  = \dfrac{1}{2}\overrightarrow {AB} .(\overrightarrow {IC}  + \overrightarrow {ID} ) \hfill \\   = \dfrac{1}{2}\overrightarrow {AB} .\overrightarrow {IC}  + \dfrac{1}{2}\overrightarrow {AB} .\overrightarrow {ID}  = 0 \hfill \\   \Rightarrow \overrightarrow {AB}  \bot \overrightarrow {IJ}  \Rightarrow \left( {\overrightarrow {AB} ;\overrightarrow {IJ} } ight) = {90^0} \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a,SA\bot(ABCD). Tính thể tích khối chóp S.ABCD, biết d\left( A;(SBC) ight) =
\frac{a\sqrt{2}}{2}.

    Hình vẽ minh họa

    Kẻ AH\bot SB

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB) \Rightarrow BC\bot
AH

    Lại có: \left\{ \begin{matrix}
BC\bot AH \\
SB\bot AH \\
\end{matrix} ight.\  \Rightarrow AH\bot(SBC)

    \Rightarrow d\left( A;(SBC) ight) = AH
= \frac{a\sqrt{2}}{2}

    Xét tam giác SAB vuông tại A có:

    \frac{1}{AH^{2}} = \frac{1}{SA^{2}} +
\frac{1}{SB^{2}} \Rightarrow SA = a

    \Rightarrow V_{S.ABCD} =
\frac{1}{3}.SA.S_{ABCD} = \frac{a^{3}}{3}

  • Câu 15: Vận dụng

    Cho hình chóp đều, các cạnh bên có độ dài bằng a và tạo với đáy một góc 60^{0}. Tính chu vi đáy P của hình chóp đó.

    Hình vẽ minh họa

    Kẻ SH\bot(ABC)

    H là tâm đường tròn ngoại tiếp đồng thời là trọng tâm tam giác ABC

    Ta có: \left( SA;(ABC) ight) =
\widehat{SAH} = 60^{0}

    \Rightarrow AH = SA.cos\widehat{SAH} =
SA.cos60^{0} = a.\frac{1}{2} = \frac{a}{2}

    Gọi M là trung điểm của BC

    \Rightarrow AM = \frac{3}{2}AH =
\frac{3}{2}.\frac{a}{2} = \frac{3a}{4}

    Gọi AB = BC = AC = x \Rightarrow BM =
\frac{x}{2}

    Vì M là trung điểm của BC nên AM\bot
BC

    \Rightarrow AB^{2} = BM^{2} +
AM^{2}

    \Leftrightarrow x^{2} = \frac{1}{4}x^{2}
+ \left( \frac{3a}{4} ight)^{2}

    \Leftrightarrow x =
\frac{a\sqrt{3}}{2}

    Chu vi đáy ABC bằng AB + BC + AC = 3.x =
3.\frac{a\sqrt{3}}{2} = \frac{3a\sqrt{3}}{2}

  • Câu 16: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:

    Hình vẽ minh họa:

    Theo bài ta có AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB,(ABC) ight)} =\widehat{(SB,\ AB)} = \widehat{SBA}

    Mà ∆SBA vuông cân tại A nên \widehat{SBA}= 45^{0}

  • Câu 17: Nhận biết

    Cho khối chóp S.ABCSA\bot(ABC) biết độ dài các cạnh SA = 4cm,AB = 6cm, BC = 10cm;CA = 8cm. Thể tích khối chóp S.ABC là:

    Hình vẽ minh họa

    Ta có:

    AB^{2} + AC^{2} = 6^{2} + 8^{2} = 10^{2}
= BC^{2}

    Nên tam giác ABC vuông tại A

    Suy ra S_{ABC} = \frac{1}{2}AB.AC =
24

    Vậy V_{S.ABC} = \frac{1}{3}.S_{ABC}.SA =
32cm^{3}

  • Câu 18: Nhận biết

    Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:

    Hình vẽ minh họa:

    Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)

    => Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là \widehat{BA'B'}

    Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’

    => \widehat{BA'B'} =45^{0}

  • Câu 19: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = 2a, BC = a. Hình chiếu vuông góc H của đỉnh S trên mặt phẳng đáy là trung điểm của cạnh AB, góc giữa đường thẳng SC và mặt phẳng đáy bằng 600. Tính cosin góc giữa hai đường thẳng SB và AC.

    Tính cosin góc giữa hai đường thẳng SB và AC

    +) Ta có:

    \begin{matrix}  \overrightarrow {SB} .\overrightarrow {AC}  = \left( {\overrightarrow {SH}  + \overrightarrow {HB} } ight)\left( {\overrightarrow {AB}  + \overrightarrow {BC} } ight) \hfill \\   = \overrightarrow {SH} .\overrightarrow {AB}  + \overrightarrow {SH} .\overrightarrow {BC}  + \overrightarrow {HB} .\overrightarrow {AB}  + \overrightarrow {HB} .\overrightarrow {BC}  \hfill \\   = \overrightarrow {HB} .\overrightarrow {AB}  + \overrightarrow {HB} .\overrightarrow {BC}  \hfill \\   = \dfrac{1}{2}A{B^2} = 2{a^2} \hfill \\ \end{matrix}

    +) Mặt khác

    \begin{matrix}  AC = a\sqrt 5 ;CH = \sqrt {{a^2} + {a^2}}  = a\sqrt 2  \hfill \\  SH = CH.\tan \widehat {SCH} = a\sqrt 6  \hfill \\  SB = \sqrt {S{H^2} + H{B^2}}  = \sqrt {{{\left( {a\sqrt 6 } ight)}^2} + {a^2}}  = a\sqrt 7  \hfill \\ \end{matrix}

    => \cos \left( {SB,AC} ight) = \frac{{\left| {\overrightarrow {SB} .\overrightarrow {AC} } ight|}}{{SB.AC}} = \frac{{2{a^2}}}{{a\sqrt 7 .a\sqrt 5 }} = \frac{2}{{\sqrt {35} }}

  • Câu 20: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và SA vuông góc với mặt phẳng đáy. Tìm mệnh đề sai dưới đây?

    Hình vẽ minh họa

    Ta có:

    ABCD là hình chữ nhật nên BD không vuông góc với AC

    Vậy BD không vuông góc với mặt phẳng (SAC)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 74 lượt xem
Sắp xếp theo