Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC. Giả sử HK cắt BC tại D. Khi đó:

    a) \widehat{(AC;AD)} = 90^{0} Đúng||Sai

    b) AH\bot(SBC) Đúng||Sai

    c) \widehat{(SC;HK)} = 90^{0} Đúng||Sai

    d) Tam giác SBC cân tại B. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC. Giả sử HK cắt BC tại D. Khi đó:

    a) \widehat{(AC;AD)} = 90^{0} Đúng||Sai

    b) AH\bot(SBC) Đúng||Sai

    c) \widehat{(SC;HK)} = 90^{0} Đúng||Sai

    d) Tam giác SBC cân tại B. Sai||Đúng

    \widehat{(AC;AD)} = 90^{0} đúng

    AH\bot(SBC) đúng

    \widehat{(SC;HK)} = 90^{0} đúng

    Tam giác SBC cân tại B. sai

  • Câu 2: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh a, SA\bot(ABCD);SA = a\sqrt{2}. Xác định thể tích S.ABCD?

    Hình vẽ minh họa

    Ta có:

    S_{ABCD} = a^{2} \Rightarrow V_{S.ABCD}
= \frac{1}{3}SA.S_{ABCD} = \frac{a^{3}\sqrt{2}}{3}

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB=a\sqrt{2}.Cạnh bên SA = 2a và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ D đến mặt phẳng (SBC)

    Hình vẽ minh họa

    Tính khoảng cách d từ D đến mặt phẳng (SBC)

    Ta có: AD // BC => d\left( {D;\left( {SCD} ight)} ight) = d\left( {A;\left( {SBC} ight)} ight)

    Gọi H là hình chiếu vuông góc của A lên SB => AK \bot SB (*)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BC \bot SA} \\   {BC \bot AB} \end{array}} ight. \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow BC \bot AH\left( {**} ight)

    Từ (*) và (**) => AH \bot \left( {SBC} ight)

    \begin{matrix}  d\left( {A;\left( {SBC} ight)} ight) = AH \hfill \\   \Rightarrow AH = \dfrac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \dfrac{{2a\sqrt 3 }}{3} \hfill \\ \end{matrix}

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a tâm I, SA vuông góc với mặt phẳng đáy. Biết SA = a\sqrt{3};\beta = \left( SI;(ABCD)
ight). Tính \tan\beta?

    Hình vẽ minh họa

    Ta có: SA\bot(ABCD) nên AI là hình chiếu vuông góc của SI trên mặt phẳng đáy.

    Do đó góc giữa đường thẳng SI và mặt phẳng (ABCD) bằng góc giữa SI và AI.

    Xét tam giác SAI vuông tại A nên \widehat{SIA} < 90^{0} \Rightarrow (SI;AI) =
\widehat{SIA}

    \tan\widehat{SIA} = \dfrac{SA}{AI} =\dfrac{a\sqrt{3}}{\dfrac{a\sqrt{2}}{2}} = \sqrt{6}

    Vậy \tan\beta = \sqrt{6}

  • Câu 5: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, tam giác SAB cân. Giả sử E;F lần lượt là trung điểm các cạnh AB;CD. Khẳng định nào dưới đây sai?

    Hình vẽ minh họa

    Vì tam giác SAB là tam giác cân tại S nên SE\bot AB

    Ta có: \left\{ \begin{matrix}
AB//CD \\
SE\bot AB \\
\end{matrix} ight.\  \Rightarrow SE\bot CD

  • Câu 6: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo góc (MN; SC) bằng:

    Hình vẽ minh họa:

    Do ABCD là hình vuông cạnh a

    => AC = a\sqrt{2} \Rightarrow AC^{2} =
2a^{2} = SA^{2} + SC^{2}

    => Tam giác SAC vuông tại S

    Từ giả thiết ta có MN là đường trung bình của tam giác DSA

    => \overrightarrow{NM} =
\frac{1}{2}\overrightarrow{SA}. Khi đó \overrightarrow{NM}.\overrightarrow{SC} =
\frac{1}{2}\overrightarrow{SA}.\overrightarrow{SC} = 0

    => MN\bot SC \Rightarrow (MN;SC) =
90^{0}

  • Câu 7: Thông hiểu

    Cho hình chóp OABC có OA = OB = OC = 1, các cạnh OA, OB, OC đôi một vuông góc. Gọi M là trung điểm của AB. Tính tích vô hướng của hai vecto \overrightarrow {OC} ;\overrightarrow {MA}.

    Tính tích vô hướng của hai vecto

    Ta có:

    \begin{matrix}  \overrightarrow {OC} .\overrightarrow {MA}  = \dfrac{1}{2}\overrightarrow {OC} .\overrightarrow {BA}  \hfill \\   = \dfrac{1}{2}\overrightarrow {OC} .\left( {\overrightarrow {OA}  - \overrightarrow {OB} } ight) \hfill \\   = \dfrac{1}{2}\overrightarrow {OC} .\overrightarrow {OA}  - \dfrac{1}{2}\overrightarrow {OC} .\overrightarrow {OB}  \hfill \\   = 0 - 0 = 0 \hfill \\   \Rightarrow \overrightarrow {OC} .\overrightarrow {MA}  = 0 \hfill \\ \end{matrix}

  • Câu 8: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B , SA vuông góc với mặt phẳng (ABCD), AB = BC = a, AD = 2a. Biết góc giữa SC và mặt phẳng (ABCD) bằng 450. Tính góc giữa mặt phẳng (SAD) và (SCD).

    Tính góc giữa mặt phẳng (SAD) và (SCD)

    Tam giác ABC vuông cân tại B, suy ra AC = AB\sqrt 2  = a\sqrt 2

    SA \bot \left( {ABCD} ight) nên AC là hình chiếu của SC trên mặt phẳng (ABCD).

    Khi đó

    \begin{matrix}  \widehat {\left( {SC;\left( {ABCD} ight)} ight)} = \widehat {\left( {SC;AC} ight)} = \widehat {SCA} = {45^0} \hfill \\   \Rightarrow SA = AC = a\sqrt 2  \hfill \\ \end{matrix}

    Gọi M là trung điểm của AD => CM ⊥ AD.

    Mà CM ⊥ SA nên CM ⊥ (SAD) => CM ⊥ SD

    Hạ CH ⊥ SD . Khi đó SD ⊥ (CMH) => MH ⊥ SD

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{l}}  {(SAD) \cap (SCD) = SD} \\   {MH \subset (SAD)} \\   {MH \bot SD} \\   {CH \subset (SCD)} \\   {CH \bot SD} \end{array}} ight. \hfill \\   \Rightarrow \widehat {((SAD),(SCD))} = \widehat {(MH,CH)} = \widehat {MHC} \hfill \\ \end{matrix}

    Ta lại có: SD = \sqrt {S{A^2} + A{D^2}}  = a\sqrt 6 ;CM = AB = a

    \begin{matrix}  \Delta SAD \sim \Delta MHD \hfill \\   \Rightarrow \dfrac{{SA}}{{SD}} = \dfrac{{MH}}{{MD}} \hfill \\   \Rightarrow MH = \dfrac{{SA.MD}}{{SD}} = \dfrac{{a\sqrt 2 a}}{{a\sqrt 6 }} = \dfrac{{a\sqrt 3 }}{3} \hfill \\ \end{matrix}

    Tam giác MHC vuông tại M

    \Rightarrow \tan \widehat {MHC} = \frac{{CM}}{{MH}} = \frac{a}{{\frac{{a\sqrt 3 }}{3}}} = \sqrt 3  \Rightarrow \widehat {MHC} = {60^0}

    Vậy \left( {\widehat {\left( {SAD} ight);\left( {SCD} ight)}} ight) = {60^0}

  • Câu 9: Thông hiểu

    Cho khối lăng trụ tam giác đều ABC.A'B'C'BB' = 2a. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 60^{0}.

    Hình vẽ minh họa

    Gọi M là trung điểm của BC.

    Ta có: \left\{ \begin{matrix}
BC\bot AM \\
BC\bot A'M \\
(A'BC) \cap (ABC) = BC \\
\end{matrix} ight.

    \Rightarrow \left( (A'BC);(ABC)
ight) = \widehat{A'MA} = 60^{0}

    Trong tam giác vuông A’MA có:

    \tan\widehat{A'MA} =
\frac{A'A}{AM} \Rightarrow AM = \frac{A'A}{tan60^{0}} =
\frac{2\sqrt{3}}{3}a

    Tam giác ABC đều nên AM =
\frac{AB\sqrt{3}}{2} \Rightarrow AB = \frac{4a}{3}

    Vậy thể tích khối lăng trụ là: V =
S_{ABC}.AA' = 2a.\frac{4a^{2}\sqrt{3}}{9} =
\frac{8\sqrt{3}a^{3}}{9}

  • Câu 10: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với đáy SA = a. Gọi M là trung điểm của SB. Góc giữa AM bằng BD bằng?

    Góc giữa hai đường thẳng AM bằng BD

    Xét \Delta ABD vuông cân tại A, ta có:

    BD = \sqrt {A{B^2} + A{D^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2

    Góc giữa 2 đường thẳng BA và BD bằng 45^0, suy ra \left( {\overrightarrow {AB} ,\overrightarrow {BD} } ight) = {135^o}

    Xét \Delta SAB vuông cân tại A, ta có:

    \begin{matrix}  SB = \sqrt {S{A^2} + A{B^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2  \hfill \\  AM = \dfrac{{SA.AB}}{{SB}} = \dfrac{{a\sqrt 2 }}{2} \hfill \\ \end{matrix}

    Vì là trung điểm của SB nên: 2\overrightarrow {AM}  = \overrightarrow {AS}  + \overrightarrow {AB}

    Ta có:

    \begin{matrix}  2\overrightarrow {AM} .\overrightarrow {BD}  = \left( {\overrightarrow {AS}  + \overrightarrow {AB} } ight).\overrightarrow {BD}  \hfill \\   = \overrightarrow {AS} .\overrightarrow {BD}  + \overrightarrow {AB} .\overrightarrow {BD}  = \overrightarrow {AB} .\overrightarrow {BD}  \hfill \\ \end{matrix}

    (Do \overrightarrow {AS}  \bot \overrightarrow {BD}, nên \overrightarrow {AS} .\overrightarrow {BD}  = 0)

    \begin{matrix}  \overrightarrow {AS} .\overrightarrow {BD}  = \dfrac{{\overrightarrow {AB} .\overrightarrow {BD} }}{2} \hfill \\   = \dfrac{{AB.BD.\cos \left( {\overrightarrow {AB} ,\overrightarrow {BD} } ight)}}{2} \hfill \\   = \dfrac{{a.a\sqrt 2 .\cos \left( {{{135}^o}} ight)}}{2} = \dfrac{{ - {a^2}}}{2} \hfill \\ \end{matrix}

    Do đó: 

    \begin{matrix}  \cos \left( {\overrightarrow {AM} ,\overrightarrow {BD} } ight) = \dfrac{{\overrightarrow {AM} .\overrightarrow {BD} }}{{AM.BD}} \hfill \\   = \dfrac{{\dfrac{{ - {a^2}}}{2}}}{{\dfrac{{a\sqrt 2 }}{2}.a\sqrt 2 }} =  - \dfrac{1}{2} \Rightarrow \left( {\overrightarrow {AM} ,\overrightarrow {BD} } ight) = {120^o} \hfill \\ \end{matrix}

    Vậy góc giữa AM bằng BD bằng {60^o}

  • Câu 11: Nhận biết

    Cho tứ diện ABCD có: AB = AC = AD, \widehat {BAC} = \widehat {BAD} = {60^0}. Gọi M và N lần lượt là trung điểm của AB và CD. Mặt phẳng (BCD) vuông góc với mặt phẳng:

    Hình vẽ minh họa:

    Mặt phẳng (BCD) vuông góc với mặt phẳng nào

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BN \bot CD} \\   {AN \bot CD} \end{array} \Rightarrow } ight.CD \bot \left( {ABN} ight)

    CD \subset \left( {BCD} ight) \Rightarrow \left( {BCD} ight) \bot \left( {ABN} ight)

  • Câu 12: Nhận biết

    Thể tích khối hộp chữ nhật có ba kích thước là 2;3;5 bằng:

    Thể tích cần tìm là: V = 2.3.5 =
30

  • Câu 13: Vận dụng

    Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a, cạnh bên bằng a\sqrt{3}. Gọi O là tâm của đáy ABC, d1 là khoảng cách từ A đến mặt phẳng (SBC) và d2 là khoảng cách từ O đến mặt phẳng (SBC). Tính d = d1 + d2.

    Hình vẽ minh họa:

    Gọi M là trung điểm BC.

    Ta có: \left\{ \begin{matrix}BC\bot SO \\BC\bot AM \\\end{matrix} ight.\  \Rightarrow BC\bot(SAM)

    \Rightarrow (SAM)\bot(SBC)

    Gọi H, K lần lượt là hình chiếu của O và A lên SM => \left\{ \begin{matrix}d_{1} = AK \\d_{2} = OH \\\end{matrix} ight.

    Ta có: \frac{d_{1}}{d_{2}} =\frac{AK}{OH} = \frac{AM}{OM} = 3

    \Rightarrow d_{1} = 3d_{2} \Rightarrow d= 4d_{2} = 4OH

    Ta có: SO^{2} = SA^{2} - AO^{2} = 3a^{2}- \frac{a^{2}}{3} = \frac{8a^{2}}{3}

    Xét tam giác SOM có:

    \frac{1}{OH^{2}} = \frac{1}{SO^{2}} +\frac{1}{OM^{2}}

    \Rightarrow \frac{1}{OH^{2}} =\frac{3}{8a^{2}} + \frac{12}{a^{2}} = \frac{99}{8a^{2}}

    Vậy OH = \frac{2a\sqrt{22}}{33}\Rightarrow d = 4OH = \frac{8a\sqrt{22}}{33}

  • Câu 14: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Tính khoảng cách d từ A đến (SCD).

    Hình vẽ minh họa

    Tính khoảng cách d từ A đến (SCD)

    Gọi H là trung điểm của AB => SH \bot AB \Rightarrow SH \bot \left( {ABCD} ight)

    Ta có: AH // CD => d\left( {A;\left( {SCD} ight)} ight) = d\left( {H;\left( {SCD} ight)} ight)

    Gọi M là trung điểm của CD, K là hình chiếu vuông góc của H trên SM

    \begin{matrix}   \Rightarrow d\left( {H;\left( {SCD} ight)} ight) = HK \hfill \\   \Rightarrow HK = \dfrac{{SH.HM}}{{\sqrt {S{H^2} + H{M^2}} }} = \dfrac{{\sqrt {21} }}{7} \hfill \\ \end{matrix}

     

  • Câu 15: Nhận biết

    Tìm mệnh đề đúng trong các mệnh đề sau:

    Đáp án đúng: Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”

  • Câu 16: Vận dụng cao

    Cho hình chóp S.ABC có tam giác ABC đều cạnh aSA = SB
= SC = a\sqrt{3}. Lấy điểm M bất kì trong không gian. Gọi d là tổng khoảng cách từ điểm M đến tất cả các đường thẳng AB,BC,CA,SA,SB,SC. Tính giá trị nhỏ nhất của d?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABC có tam giác ABC đều cạnh aSA = SB
= SC = a\sqrt{3}. Lấy điểm M bất kì trong không gian. Gọi d là tổng khoảng cách từ điểm M đến tất cả các đường thẳng AB,BC,CA,SA,SB,SC. Tính giá trị nhỏ nhất của d?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a và SA ⊥ (ABCD). Góc giữa SC và mặt phẳng đáy bằng 450. Tính tan α. Biết α là góc giữa đường thẳng SC và mặt phẳng (SAB).

    Hình vẽ minh họa:

    Ta có: Góc giữa SC và mặt phẳng đáy bằng 450 khi đó:

    \begin{matrix}
\left( SC;(ABCD) ight) = (SC;AC) = \widehat{SCA} \\
\Rightarrow SA = AC = 2a\sqrt{2} \\
\end{matrix}

    Gọi O là giao điểm của AC và BD ta có:

    Ta có: \left\{ \begin{matrix}
DO\bot AC \\
DO\bot SA \\
\end{matrix} ight.\  \Rightarrow DO\bot(SAC)=> Hình chiếu của SD trên mặt phẳng (SAC) là SO.

    => \left( SD;(SAC) ight) = (SD;SO) =
\widehat{DSO}

    \left\{ \begin{matrix}DO = \dfrac{1}{2}BD = a\sqrt{2} \hfill \\SO = \sqrt{SA^{2} + AO^{2}} = a\sqrt{10} \hfill \\\end{matrix} ight.

    => \tan\widehat{DSO} = \frac{DO}{SO} =
\frac{\sqrt{5}}{5}

  • Câu 18: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:

    Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”

    Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB

    Mặt khác AB ⊥ AD.

    Từ đó suy ra AB ⊥ (SDA)

  • Câu 19: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) , SA = a\sqrt{2}. Góc giữa SC với mặt phẳng (ABCD) là:

    Hình vẽ minh họa:

    Ta có: \widehat{\left( SC,(ABCD) ight)}= \widehat{(SC,AC)} = \widehat{SCA}

    Lại có: \tan\widehat{SCA} = \frac{SA}{AC}= \frac{SA}{AB\sqrt{2}} = \frac{a\sqrt{2}}{a\sqrt{2}} = 1

    => \widehat{SCA} = 45^{0}

  • Câu 20: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng BA'CD là:

    Hình vẽ minh họa

    Ta có: AB//CD \Rightarrow (BA',CD) =
(BA',AB)

    ABB'A' là hình vuông nên (BA',AB) = \widehat{ABA'} =
45^{0}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 74 lượt xem
Sắp xếp theo