Cho khối chóp
có chiều cao bằng
đáy là tam giác
có diện tích bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp tam giác là
Cho khối chóp
có chiều cao bằng
đáy là tam giác
có diện tích bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp tam giác là
Cho hai mặt phẳng (P) và (Q) song song với nhau và một điểm M không thuộc (P) và (Q). Qua M có bao nhiêu mặt phẳng vuông góc với (P) và (Q)?
Gọi d là đường thẳng qua M và vuông góc với (P). Do
Giả sử (R) là mặt phẳng chứa d. Mà
Có vô số mặt phẳng (R) chứa d. Do đó có vô số mặt phẳng qua M, vuông góc với (P) và (Q).
Cho hình lăng trụ tam giác đều
có
. Tính góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có: nên góc giữa hai đường thẳng
và
là góc giữa
và
và bằng góc
Với ta có:
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của BC và DD’. Tính theo a khoảng cách giữa hai đường thẳng MN và BD.
Hình vẽ minh họa:
Gọi O, P, K lần lượt là trung điểm của AC, CD, OC
Kẻ DI ⊥ MP, DH ⊥ NI
Ta có: , BD // MP, tứ giác DIKO là hình chữ nhật
=>
Khi đó: d(MN, BD) = d(BD, (MNP)) = d(D, (MNP)) = DH
Xét tam giác vuông NDI ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a ; AD = 2a,
. Tính góc giữa hai mặt phẳng (SCD) và (SAB).

Gọi M là trung điểm của AD.
Xét tứ giác ABCM có: AM // BC, AM = AB = BC = a,
Suy ra ABCM là hình vuông => MC = AB = a
Xét tam giác ACD có AM là trung tuyến và
Suy ra ACD vuông tại C => AC ⊥ CD
Trong (SAC), dựng AH ⊥ SC
Ta có: mà AH ⊂ (SAC) suy ra CD ⊥ AH.
Ta có:
Ta có:
Từ (1) và (2) suy ra góc giữa hai mặt phẳng (SAB) và (SCD) là góc giữa hai đường thẳng AH và AD.
Xét tam giác ABC vuông tại B có:
Xét tam giác SAC vuông tại A có:
Xét tam giác SAC vuông tại A và nên SAC vuông cân tại A.
Suy ra H là trung điểm SC và
Xét tam giác AHD vuông tại H (vì AH ⊥ (SCD)).
Ta có: suy ra
Vậy
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:
Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”
Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB
Mặt khác AB ⊥ AD.
Từ đó suy ra AB ⊥ (SDA)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a,
. Biết diện tích tam giác SBD bằng
. Khi đó SA bằng:
Hình vẽ minh họa
Gọi O là tâm của đáy.
Khi đó
Cho hình chóp tam giác
có
và
. Kết quả nào dưới đây đúng?
Ta có:
suy ra tam giác ABC vuông tại A
=> M là tâm đường tròn ngoại tiếp tam giác ABC.
Vì nên
là đường cao của hình chóp
.
Hình vẽ minh họa
Gọi N, I lần lượt là trung điểm cạnh AC và SB.
Ta có: MN // AB và IM // SC nên
Mà
Xét tam giác IMN có
Cho hình lập phương ABCD.A’B’C’D’ có tâm O. Gọi I là tâm của hình vuông A’B’C’D’ và điểm M thuộc đoạn OI sao cho MO = 2MI (tham khảo hình vẽ). Khi đó sin của góc tạo bởi hai mặt phẳng (MC’D’) và (MAB) bằng:

Hình ảnh minh họa:
Do AB // C’D’ nên giao tuyến của (MAB) và (MC’D’) là đường thẳng ∆ // AB // C’D’.
Gọi P, Q lần lượt là trung điểm của D’C’ và AB ta có:
=> MP ⊥ ∆, MQ ⊥ ∆.
Như vậy góc giữa (MAB) và (MC0’’) là góc giữa MP và MQ.
Không mất tính tổng quát, ta cho cạnh hình lập phương là 6.
Khi đó
Áp dụng định lí cosin cho tam giác MPQ ta được:
Góc α là góc giữa hai mặt phẳng (MC’D’) và (MAB) ta có:
Cho một khối trụ có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối trụ là:
Cho hình chóp
có đáy
là hình chữ nhật tâm O,
,
. Gọi
lần lượt là hình chiếu của
lên
. Xét tính đúng sai của các kết luận sau?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Cho hình chóp có đáy
là hình chữ nhật tâm O,
,
. Gọi
lần lượt là hình chiếu của
lên
. Xét tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Hình vẽ minh họa
a) Ta có:
Lại có
b) Chứng minh tương tự câu a ta có:
mà
Từ (*) và (**) suy ra: .
c) Ta có:
Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc .
d) Ta có:
Lại có ABCD là hình chữ nhật nên
Tam giác SAC vuông tại A nên
Cho hình lập phương ABCD.A’B’C’D’. Gọi M là trung điểm của BB’. Tính cosin của góc giữa hai đường thẳng AM và A’C’.

+ Ta có AC // A’C’ nên góc giữa AM và A’C’ là góc giữa AC và AM.
+ Xét tam giác AMC có:
Áp dụng định lí cosin trong tam giác AMC, ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a có G là trọng tâm và độ dài các cạnhSA = SB = SC = m. Tính độ dài đoạn thẳng GS?
Hình vẽ minh họa:
Ta có: SA = SB = SC, G là trọng tâm tam giác ABC
=> G là hình chiếu vuông góc của S trên mặt phẳng (ABC)
Gọi H là trung điểm của BC =>
Xét tam giác ABC đều cạnh a ta có:
Xét tam giác SBH vuông tại H ta có:
Xét tam giác SGH vuông tại G ta có:
Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa
Hình vẽ minh họa:
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.
Cho khối lăng trụ đứng
, đáy
có
. Tính thể tích của khối lăng trụ đã cho biết
.
Hình vẽ minh họa
Gọi H là trung điểm của B’C’, khi đó góc giữa mặt phẳng (AB’C’) và (ABCD) là góc
Ta có:
Vậy
Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Trong không gian cho ba đường thẳng phân biệt a, b, c. Khẳng định nào sau đây sai?
Mệnh đề đúng: Nếu a và b cùng vuông góc với c thì a // b
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, SA vuông góc với đáy, kẻ AH vuông góc với BC (H thuộc BC). Hãy xác định góc α giữa hai mặt phẳng (ABC) và (SBC).
Hình vẽ minh họa:
Ta có: Giao tuyến của hai mặt phẳng (SBC) và (ABC) là BC. (1)
Ta có: SA ⊥ (ABC) mà đường thẳng BC nằm trong (ABC)
=> SA ⊥ BC.
Ta có BC ⊥ AH tại H.
=>
Ta lại có:
Từ (1), (2), (3) =>
Cho hình chóp
có đáy
là hình chữ nhật và
vuông góc với mặt phẳng đáy. Tìm mệnh đề sai dưới đây?
Hình vẽ minh họa
Ta có:
là hình chữ nhật nên
không vuông góc với
Vậy không vuông góc với mặt phẳng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA =
. Khoảng cách giữa hai đường thẳng SB và CD là:
Hình vẽ minh họa:
Ta có:
BC ⊥ AB
BC ⊥ SA
=> BC ⊥ (SAB).
Vì SB ⊂ (SAB) và CD // (SAB) => d(SB, CD) = d(CD, (SAB)) = d(C, (SAB)) = BC = a