Cho
là hình hộp. Khẳng định nào sau đây đúng?
Nếu là hình hộp thì tất cả các mặt là bình bình hành nên mặt bên cũng là hình bình hành.
Cho
là hình hộp. Khẳng định nào sau đây đúng?
Nếu là hình hộp thì tất cả các mặt là bình bình hành nên mặt bên cũng là hình bình hành.
Cho hình chóp S.ABCD có
, ABCD là hình thang vuông tại A, B và
. Gọi
, M là trung điểm SB. Tính sin của góc giữa OM và (SCD).

Trong (SBD), gọi
Ta có BC // AD, áp dụng định lý Ta – let ta được:
Áp dụng định lý Menelaus cho tam giác SBD có cát tuyến OMI ta có:
Tam giác SAD vuông tại A có
=>
Mặt khác:
Lại có ABCD là hình thang vuông tại A, B và nên
=> mà
Kẻ , có
(do
)
Xét tam giác SAC vuông tại A có , AH là đường cao:
Xét tam giác SBD có:
Xét tam giác DIO có:
Do đó:
Mặt khác:
Cho lăng trụ đứng
có đáy ABC là tam giác đều cạnh
. Gọi
là trung điểm cạnh BC. Biết
, khoảng cách giữa hai đường thẳng
và
là:
Hình vẽ minh họa
Gọi là trung điểm của
, ta có
là hình bình hành
.
Kẻ .
Ta có: .
Suy ra,
Ta có: .
Xét vuông tại
ta có:
Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

Ta có: SA ⊥ (ABC) => SA ⊥ BC
Mặt khác BC ⊥ AB
Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB
Vậy (vì tam giác SBC vuông tại B)
Cho hình chóp
có đáy
là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC. Giả sử HK cắt BC tại D. Khi đó:
a)
Đúng||Sai
b)
Đúng||Sai
c)
Đúng||Sai
d) Tam giác SBC cân tại B. Sai||Đúng
Cho hình chóp có đáy
là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC. Giả sử HK cắt BC tại D. Khi đó:
a) Đúng||Sai
b) Đúng||Sai
c) Đúng||Sai
d) Tam giác SBC cân tại B. Sai||Đúng
đúng
đúng
đúng
Tam giác SBC cân tại B. sai
Cho hình chóp
có đáy
là hình thoi tâm
, cạnh bên
vuông góc với mặt phẳng đáy. Gọi
là góc giữa đường thẳng
với mặt phẳng đáy. Khi đó:
Hình vẽ minh họa
Ta có: suy ra OD là hình chiếu vuông góc của SD lên mặt phẳng (ABCD)
Suy ra
Vậy
Một khối chóp tứ giác đều có các cạnh bằng
(cm). Khi đó thể tích của khối chóp đã cho bằng bao nhiêu?
Hình vẽ minh họa
Gọi hình chóp tứ giác đều có tất cả các cạnh bằng 2t là S.ABCD với I là tâm của đáy ta có:
lần lượt vuông tại S; B; D
I là trung điểm của AC suy ra
Vậy thể tích hình chóp là:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:
Hình vẽ minh họa:
Theo bài ta có AB là hình chiếu của SB trên (ABC)
Vậy
Mà ∆SBA vuông cân tại A nên
Cho hình chóp
có
là hình vuông cạnh
;
. Khoảng cách giữa hai đường thẳng
bằng bao nhiêu?
Hình vẽ minh họa
Dựng
Dựng . Dễ thấy
Mệnh đề nào là mệnh đề đúng?
Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B , SA vuông góc với mặt phẳng (ABCD), AB = BC = a, AD = 2a. Biết góc giữa SC và mặt phẳng (ABCD) bằng 450. Tính góc giữa mặt phẳng (SAD) và (SCD).

Tam giác ABC vuông cân tại B, suy ra
Vì nên AC là hình chiếu của SC trên mặt phẳng (ABCD).
Khi đó
Gọi M là trung điểm của AD => CM ⊥ AD.
Mà CM ⊥ SA nên CM ⊥ (SAD) => CM ⊥ SD
Hạ CH ⊥ SD . Khi đó SD ⊥ (CMH) => MH ⊥ SD
Ta có:
Ta lại có:
Tam giác MHC vuông tại M
Vậy
Cho hình lập phương
có cạnh bằng
. Cắt hình lập phương bởi mặt phẳng trung trực của
. Diện tích thiết diện tạo thành bằng:
Hình vẽ minh họa
Gọi là trung điểm của
. Ta có:
nên
thuộc mặt phẳng trung trực của
.
Gọi lần lượt là trung điểm của
Chứng minh tương tự ta có các điểm trên đều thuộc mặt phẳng trung trực của
Vậy thiết diện của hình lập phương cắt bởi mặt phẳng trung trực của là hình lục giác đều
có cạnh bằng
.
Vậy diện tích thiết diện là:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. Cạnh bện SA vuông góc với mặt phẳng (ABCD) và
. Gọi M, N lần lượt là trung điểm của SA và CD. Tính khoảng cách d giữa BD và MN.
Hình vẽ minh họa:
Gọi P là trung điểm BC và E = NP ∩ AC
=> PN // BD => BD // (MNP)
=> d(BD, MN) = d(BD, (MNP)) = d(O, (MNP)) = d(A, (MNP))
Kẻ AK ⊥ ME
Khi đó d(A, (MNP)) = AK.
Ta tính được:
Xét tam giác vuông MAE ta có:
Cho hình chóp
có đáy
là tam giác đều cạnh
, SA vuông góc với đáy và
. Tính chiều cao hình chóp
?
Ta có nên SA là đường cao của hình chóp
Tam giác ABC đều cạnh x nên
Vậy thể tích hình chóp là:
Cho hình lăng trụ tam giác đều
có
. Tính góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có: nên góc giữa hai đường thẳng
và
là góc giữa
và
và bằng góc
Với ta có:
Cho hình chóp
có đáy
là tam giác đều và
là trung điểm cạnh
. Gọi
là trung điểm
của tam giác
,
. Gọi
là trung điểm cạnh
. Gọi mặt phẳng
qua
và vuông góc với
. Thiết diện của
với hình chóp
là:
Hình vẽ minh họa
Ta có:
=> Qua I kẻ đường thẳng . Gọi
Ta có: => Qua I kẻ đường thẳng
=> Qua K kẻ đường thẳng
. Gọi
=> thiết diện và hình chóp là tứ giác
có IK là đường trung trực của MN và PQ.
=> là hình thang cân.
Cho tứ diện ABCD có (ACD) ⊥ (BCD), AC = AD = BC = BD = a, CD = 2x. Giá trị của x để hai mặt phẳng (ABC) và (ABD) vuông góc với nhau là:
Hình vẽ minh họa:
Gọi H là trung điểm của CD.
Do tam giác ACD cân tại A và tam giác BCD cân tại B.
Gọi E là trung điểm của AB, do tam giác ABC cân tại C
Ta có ∆ABC = ∆ADC (c.c.c) => CE = DE => ∆CDE vuông cân tại E.
Xét tam giác vuông CBH có
Xét tam giác vuông ACH có
Xét tam giác vuông ABH có:
Xét tam giác vuông ACE có:
Thay CE vào (*) ta được
Cho hình chóp S.ABCD có đáy là hình thoi cạnh 2a,
,
và SA ⊥ (ABCD). Tính góc giữa đường thẳng SA và mặt phẳng (SBD).
Hình vẽ minh họa:
Vì tam giác ABC cân và có góc 600 nên nó là tam giác đều
Gọi O là trung điểm của AC.
Ta có: Hai mặt phẳng (SAC) và (SBD) vuông góc nhau theo giao tuyến SO
=> Hình chiếu vuông góc của SA lên mặt phẳng (SBD) là SO
=>
Xét tam giác vuông SOA ta có:
=>
Vậy góc giữa SA và mặt phẳng (SBD) bằng 300.
Cho hình chóp
đáy là tam giác
cân tại
,
vuông góc với đáy. Gọi
là trung điểm của
,
là trung điểm của
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Tam giác ABC cân tại A nên