Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O cạnh bằng a; \widehat{ABC} = 60^{0}. Biết SO\bot(ABCD);SO = a\sqrt{3}. Gọi \alpha là góc giữa đường thẳng SB và mặt phẳng (SAC). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có:\left\{ \begin{matrix}
BD\bot AC \\
BD\bot SO \\
\end{matrix} ight.\  \Rightarrow BD\bot(SAC)

    \Rightarrow (SBD)\bot(SAC)

    (SBD) \cap (SAC) = SO

    \Rightarrow \left( SB;(SAC) ight) =
(SB;SO) = \widehat{BSO}

    Ta có: \tan\widehat{BSO} = \frac{SB}{SO}
= \frac{\frac{a\sqrt{3}}{2}}{a\sqrt{3}} = \frac{1}{2}

    \Rightarrow \widehat{BSO} =
\arctan\frac{1}{2} = \alpha

    Vậy \alpha \in \left( 25^{0};27^{0}
ight)

  • Câu 2: Vận dụng

    Cho hình chóp S.ABC có \widehat{BSC} =
120^{0};\widehat{CSA} = 60^{0};\widehat{ASB} = 90^{0}và SA = SB = SC. Gọi H là hình chiếu vuông góc của S trên mặt phẳng (ABC), khi đó:

    Hình vẽ minh họa:

    Đặt SA = a

    Xét tam giác SAB vuông cân tại S ta có:

    AB = \sqrt{SA^{2} + SB^{2}} =
a\sqrt{2}

    Xét tam giác SAC cân tại S ta có:

    \widehat{CSA} = 60^{0} => SA = SC = AC = a

    Áp dụng định lí cosin cho tam giác SBC ra có:

    \begin{matrix}BC^{2} = SB^{2} + SC^{2} - 2SB.SC.cos\widehat{BSC} \hfill \\BC^{2} = a^{2} + a^{2} - 2a.a.cos120^{0} = 3a^{2} \hfill \\BC = a\sqrt{3} = \sqrt{AB^{2} + AC^{2}} \hfill \\\end{matrix}

    Vậy tam giác ABC vuông tại A mà H là hình chiếu của S trên (ABC) nên H là tâm đường tròn ngoại tiếp tam giác ABC

    Hay H là trung điểm của BC.

  • Câu 3: Nhận biết

    Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác cân tại A. Gọi M là trung điểm cạnh BC. Chọn kết luận đúng?

    Hình vẽ minh họa

    Vì tam giác ABC cân tại A và M là trung điểm của BC

    => AM\bot BC

    Ta có: BC//B'C'

    \Rightarrow (B'C';AM) = (BC;AM)
= 90^{0}

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và SA =a\sqrt{6}. Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}BC\bot SA \\BC\bot AB \\\end{matrix} ight.=> BC ⊥ (SAB)

    => SB là hình chiếu của SC lên mặt phẳng (SAB)

    => \alpha = \widehat{BSC}

    SB = \sqrt{SA^{2} + AB^{2}} =a\sqrt{7}

    Vậy \tan\alpha = \frac{BC}{SB} =\frac{\sqrt{7}}{7}

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA =
\frac{a\sqrt{2}}{2}. Tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích hình chóp S.ABCD theo a?

    Hình vẽ minh họa

    Gọi H là hình chiếu vuông góc của S lên AC

    Ta có: SO = \frac{1}{2}AC =
\frac{a\sqrt{2}}{2}

    Suy ra tam giác SAO đều

    \Rightarrow SH =
\frac{a\sqrt{6}}{4}

    Thể tích khối chóp là: V =
\frac{1}{3}.\frac{a\sqrt{6}}{4}.a^{2} =
\frac{a^{3}\sqrt{6}}{12}

  • Câu 6: Vận dụng cao

    Cho hình chop SABC có SA ⊥ (ABC), tam giác ABC đều cạnh 2a, SB tạo với mặt phẳng đáy một góc 300. Khi đó mặt phẳng (SBC) tạo với đáy một góc x. Tính tan x.

    Hình vẽ minh họa:

    Ta có SA ⊥ (ABC)

    => AB là hình chiếu của AB lên (ABC).

    \begin{matrix}\Rightarrow \widehat{SBA} = \widehat{\left( SB;(ABC) ight)} = 30^{0} \hfill\\SA = AB.\tan30^{0} = \dfrac{2a\sqrt{3}}{3}\hfill \\\end{matrix}

    Gọi M là trung điểm của BC, ta có ∆ABC đều cạnh 2a

    => AM = a\sqrt{3}\left\{ \begin{matrix}
(SBC) \cap (ABC) = BC \\
AM\bot BC \\
SM\bot BC \\
\end{matrix} ight.

    \Rightarrow \widehat{SMA} =
\widehat{\left( (SBC);(ABC) ight)} = x

    \tan x = \frac{SA}{AM} =
\frac{2a\sqrt{3}}{3}.a\sqrt{3} = \frac{2}{3}

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABC có SA vuông góc với mặt phẳng đáy. Trực tâm của tam giác SBC và ABC lần lượt là H và K. Khẳng định nào dưới đây là khẳng định sai?

    Ta có: BC ⊥ SA, BC ⊥ SH => BC ⊥ (SAH)

    CK ⊥ AB, CK ⊥ SA => CK ⊥ (SAB) => CK ⊥ SB

    Mặt khác CH ⊥ SB => SB ⊥ (CHK)

    Ta có: BC ⊥ (SAH) => BC ⊥ HK

    SB ⊥ (CHK) => SB ⊥ HK

    => HK ⊥ (SBC)

    Dùng phương pháp loại trừ ta suy ra: BC ⊥ (SAB) là đáp án sai.

  • Câu 8: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA vuông góc với đáy, góc \widehat{SBD}=60^0. Tính khoảng cách d giữa hai đường thẳng AB và SO.

    Hình vẽ minh họa:

    Tính khoảng cách d giữa hai đường thẳng AB và SO

    Ta có ΔSAB = ΔSAD(c−g−c) suy ra SB=SD

    \widehat {SBD} = {60^0} => ΔSBD đều cạnh SB=SD=BD=a\sqrt2

    Xét tam giác vuông SAB có:

    SA = \sqrt {S{B^2} - A{B^2}}  = a

    Gọi E là trung điểm AD, suy ra OE//ABAE⊥OE

    Do đó d(AB;SO)=d(AB;(SOE))=d(A;(SOE))

    Kẻ AK⊥SE(1)

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {OE \bot AD} \\   {OE \bot SA} \end{array}} ight.

    ⇒ OE⊥(SAD)⇒OE⊥AK(2)

    Từ (1) và (2) ⇒ AK⊥(SOE)

    => d\left( {A;\left( {SOE} ight)} ight) = AK = \frac{{SA.AE}}{{\sqrt {S{A^2} + A{E^2}} }} = \frac{{a\sqrt 5 }}{5}

  • Câu 9: Vận dụng

    Cho hình chóp S.ABCD có SA \bot \left( {ABCD} ight);SA = a\sqrt 2, ABCD là hình thang vuông tại A, B và 2AB = 2BC = AD = 2a. Gọi O = AC \cap BD, M là trung điểm SB. Tính sin của góc giữa OM và (SCD).

    Tính sin của góc giữa OM và (SCD)

    Trong (SBD), gọi I = OM \cap SD \Rightarrow OM \cap \left( {SCD} ight) = I

    Ta có BC // AD, áp dụng định lý Ta – let ta được:

    \frac{{OB}}{{OD}} = \frac{{OC}}{{OA}} = \frac{{BC}}{{AD}} = \frac{1}{2}

    Áp dụng định lý Menelaus cho tam giác SBD có cát tuyến OMI ta có:

    \frac{{BO}}{{OD}}.\frac{{DI}}{{IS}}.\frac{{SM}}{{MB}} = 1 \Leftrightarrow \frac{1}{2}.\frac{{DI}}{{IS}}.1 = 1 \Leftrightarrow \frac{{DI}}{{IS}} = 2

    Tam giác SAD vuông tại A có

    SA = a\sqrt 2 ,AD = 2a \Rightarrow SD = a\sqrt 6

    => DI = \frac{3}{2}SD = \frac{{a\sqrt 6 }}{2}

    Mặt khác: \frac{{CO}}{{CA}} = \frac{1}{3} \Rightarrow \frac{{d\left( {O,\left( {SCD} ight)} ight)}}{{d\left( {A,\left( {SCD} ight)} ight)}} = \frac{1}{3}

    \Rightarrow d\left( {O,\left( {SCD} ight)} ight) = \frac{1}{3}d\left( {A,\left( {SCD} ight)} ight)

    Lại có ABCD là hình thang vuông tại A, B và 2AB = 2BC = AD nên AC = CD = a\sqrt 2

    => AC \bot CD mà CD \bot SA \Rightarrow CD \bot \left( {SAC} ight)

    Kẻ AH \bot SC, có CD \bot AH (do CD \bot \left( {SBC} ight))

    \Rightarrow AH \bot \left( {SCD} ight) \Rightarrow d\left( {A,\left( {SCD} ight)} ight) = AH

    Xét tam giác SAC vuông tại A có SA = a\sqrt 2 ,\,AC = a\sqrt 2, AH là đường cao:

    \begin{matrix}   \Rightarrow \dfrac{1}{{A{H^2}}} = \dfrac{1}{{A{S^2}}} + \dfrac{1}{{A{C^2}}} = \dfrac{1}{{2{a^2}}} + \dfrac{1}{{2{a^2}}} = \dfrac{1}{{{a^2}}} \hfill \\   \Rightarrow AH = a \hfill \\   \Rightarrow d\left( {O,\left( {SCD} ight)} ight) = \dfrac{1}{3}AH = \dfrac{a}{3} \hfill \\ \end{matrix}

    Xét tam giác SBD có:

    \begin{matrix}  SD = \sqrt {S{A^2} + A{D^2}}  = \sqrt {2{a^2} + 4{a^2}}  = a\sqrt 6  \hfill \\  SB = \sqrt {S{A^2} + A{B^2}}  = \sqrt {2{a^2} + {a^2}}  = a\sqrt 3  \hfill \\  BD = \sqrt {A{D^2} + A{B^2}}  = \sqrt {4{a^2} + {a^2}}  = a\sqrt 5  \hfill \\ \end{matrix}

    Xét tam giác DIO có:

    DI = 2SD = 2a\sqrt 6 ,DO = \frac{2}{3}DB = \frac{2}{3}a\sqrt 5 .

    Do đó:

    \begin{matrix}  \cos SDB = \cos IDO \Leftrightarrow \dfrac{{S{D^2} + B{D^2} - S{B^2}}}{{2.SD.BD}} = \dfrac{{I{D^2} + O{D^2} - O{I^2}}}{{2.ID.OD}} \hfill \\   \Leftrightarrow \dfrac{{6{a^2} + 5{a^2} - 3{a^2}}}{{2.a\sqrt 6 .a\sqrt 5 }} = \dfrac{{24{a^2} + \dfrac{{20{a^2}}}{9} - O{I^2}}}{{2.2a\sqrt 6 .\dfrac{2}{3}a\sqrt 5 }}. \hfill \\   \Leftrightarrow 8 = \dfrac{{\dfrac{{236}}{9}{a^2} - O{I^2}}}{{\dfrac{4}{3}{a^2}}} \Leftrightarrow O{I^2} = \dfrac{{140{a^2}}}{9} \Leftrightarrow OI = \dfrac{{2a\sqrt {35} }}{3} \hfill \\ \end{matrix}

    Mặt khác:

    \begin{matrix}  \sin \left( {OM,\left( {SCD} ight)} ight) = \sin \left( {OI,\left( {SCD} ight)} ight) \hfill \\   = \dfrac{{d\left( {O,\left( {SCD} ight)} ight)}}{{OI}} = \dfrac{{\dfrac{a}{3}}}{{\dfrac{{2a\sqrt {35} }}{3}}} = \dfrac{{\sqrt {35} }}{{70}} \hfill \\ \end{matrix}

  • Câu 10: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo góc (MN; SC) bằng:

    Hình vẽ minh họa:

    Do ABCD là hình vuông cạnh a

    => AC = a\sqrt{2} \Rightarrow AC^{2} =
2a^{2} = SA^{2} + SC^{2}

    => Tam giác SAC vuông tại S

    Từ giả thiết ta có MN là đường trung bình của tam giác DSA

    => \overrightarrow{NM} =
\frac{1}{2}\overrightarrow{SA}. Khi đó \overrightarrow{NM}.\overrightarrow{SC} =
\frac{1}{2}\overrightarrow{SA}.\overrightarrow{SC} = 0

    => MN\bot SC \Rightarrow (MN;SC) =
90^{0}

  • Câu 11: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?

    Hình vẽ minh họa:

    Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).

    Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.

  • Câu 12: Thông hiểu

    Cho tứ diện đều ABCD. I là trung điểm của AB. Góc giữa hai đường thẳng IC và AD có cosin bằng:

    Hình vẽ minh họa:

    Góc giữa hai đường thẳng IC và AD

    Giả sử cạnh tứ diện đều bằng a. Khi đó:

    \begin{matrix}  \overrightarrow {AD} .\overrightarrow {AB}  = {a^2}.\cos {60^0} = \dfrac{{{a^2}}}{2} \hfill \\  \overrightarrow {AC} .\overrightarrow {AD}  = \dfrac{{{a^2}}}{2} \hfill \\ \end{matrix}

    Ta có:

    \begin{matrix}  \overrightarrow {IC}  = \overrightarrow {AC}  - \overrightarrow {AI}  = \overrightarrow {AC}  - \dfrac{1}{2}\overrightarrow {AB}  \hfill \\   \Rightarrow \overrightarrow {IC} .\overrightarrow {AD}  = \dfrac{{{a^2}}}{2} - \dfrac{{{a^2}}}{4} = \dfrac{{{a^2}}}{4} \hfill \\ \end{matrix}

    \begin{matrix}  \cos \left( {\widehat {IC;AD}} ight) = \dfrac{{\left| {\overrightarrow {IC} .\overrightarrow {AD} } ight|}}{{IC.AD}} \hfill \\   \Rightarrow \cos \left( {\widehat {IC;AD}} ight) = \dfrac{{{a^2}}}{4}:\dfrac{{{a^2}\sqrt 3 }}{2} = \dfrac{1}{{2\sqrt 3 }} \hfill \\ \end{matrix}

  • Câu 13: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng 1, cạnh SA vuông góc với đáy và SA = \sqrt{2}. Tính thể tích khối chóp S.ABCD đã cho.

    Hình vẽ minh họa

    Ta có: SA\bot(ABCD) nên SA là đường cao của hình chóp

    Thể tích khối chóp là V =
\frac{1}{3}.SA.S_{ABCD} = \frac{1}{3}.\sqrt{2}.1^{2} =
\frac{\sqrt{2}}{3}

  • Câu 14: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'. Mặt phẳng nào dưới đây không vuông góc với (A'BD)?

    Hình vẽ minh họa

    Dễ thấy mặt phẳng (A'BC') không vuông góc với (A'BD).

  • Câu 15: Nhận biết

    Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa

    Hình vẽ minh họa:

    Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

    Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.

  • Câu 16: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề: “Góc giữa đường thẳng và mặt phẳng bằng góc giữa đường thẳng và đường thẳng b với b vuông góc với (P).” sai vì hai góc này phụ nhau.

    Mệnh đề: “Góc giữa đường thẳng a và mặt phẳng (P) bằng góc giữa đường thẳng a và mặt phẳng (Q) thì mặt phẳng (P) song song với mặt phẳng (Q).” sai vì (P) có thể trùng với (Q).

    Mệnh đề: “Góc giữa đường thẳng a và mặt phẳng (P) bằng góc giữa đường thẳng b và mặt phẳng (P) thì a song song với b.” sai vì a có thể trùng với b.

  • Câu 17: Nhận biết

    Biết khối chóp có diện tích đáy và chiều cao lần lượt bằng 9;4. Thể tích khối chóp bằng:

    Ta có: \left\{ \begin{matrix}
B = 9 \\
h = 4 \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{1}{3}.9.4 = 12

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA=\frac{a\sqrt{15}}{2} và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ O đến mặt phẳng (SBC)

    Ta có: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {AO \cap \left( {SBC} ight) = C} \\   {AC = 2OC} \end{array}} ight. \hfill \\   \Rightarrow d\left( {A;\left( {SBC} ight)} ight) = 2d\left( {O;\left( {SBC} ight)} ight) \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {SA \bot \left( {ABCD} ight) \Rightarrow SA \bot BC} \\   {AB \bot BC} \end{array}} ight. \hfill \\   \Rightarrow BC \bot \left( {SAB} ight) \hfill \\ \end{matrix}

    Từ A kẻ AH \bot SB => AH \bot \left( {SBC} ight)

    \begin{matrix}   \Rightarrow AH = d\left( {A;\left( {SBC} ight)} ight) \hfill \\  \dfrac{1}{{A{H^2}}} = \dfrac{1}{{S{A^2}}} + \dfrac{1}{{A{B^2}}} \hfill \\   \Rightarrow AH = \dfrac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \dfrac{{a\sqrt {285} }}{{19}} \hfill \\   \Rightarrow d\left( {O;\left( {SBC} ight)} ight) = \dfrac{1}{2}AH = \dfrac{{a\sqrt {285} }}{{19}} \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông với AC=\frac{a\sqrt{2}}{2}. Cạnh bên SA vuông góc với đáy, SB hợp với đáy góc 600. Tính khoảng cách d giữa hai đường thẳng AD và SC.

    Ta có AD // BC => AD // (SBC) => d(AD;SC)=d(A;(SBC))

    Kẻ AP⊥SB =>d(A;(SBC))=AP =>d(AD;SC)=AP

    Ta có:

    \begin{matrix}  AB = \dfrac{{AC}}{{\sqrt 2 }} = \dfrac{a}{2} \hfill \\  \dfrac{1}{{A{P^2}}} = \dfrac{1}{{S{A^2}}} + \dfrac{1}{{A{B^2}}} \hfill \\ \end{matrix}

    Lại có \left( {SB;\left( {ABCD} ight)} ight) = \widehat {SBA} = {60^0}

    \begin{matrix}   \Rightarrow \tan {60^0} = \dfrac{{SA}}{{AB}} \Rightarrow SA = \dfrac{{a\sqrt 3 }}{2} \hfill \\   \Rightarrow AP = \dfrac{{a\sqrt 3 }}{4} \hfill \\ \end{matrix}

  • Câu 20: Nhận biết

    Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:

    Do ∆BCD là tam giác đều cạnh \sqrt{18} nên có diện tích là S_{BCD} = \frac{18\sqrt{3}}{4} =
\frac{9\sqrt{3}}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 68 lượt xem
Sắp xếp theo