Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Tính thể tích khối lập phương có cạnh bằng
?
Ta có:
Cho một khối chóp
có đáy
là tam giác vuông cân tại
,
và
. Tam giác
đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Do tam giác SAB đều suy ra
Mà
Vậy SH là đường cao của hình chóp
Khi đó
Ta có:
Thể tích khối chóp là:
Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa
Hình vẽ minh họa:
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.
Cho hình chóp S.ABC có AB = AC và
. Tính số đo góc giữa hai đường thẳng chéo chau SA và BC.
Hình vẽ minh họa:

Xét
Ta có:
Từ (1) và (2)
Cho hình chóp
có đáy là hình vuông với
. Biết
. Góc giữa
và mặt phẳng
bằng:
Ta có:
Vì là hình vuông nên
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có
và AA’ = 2. Gọi M, N, P lần lượt là trung điểm các cạnh A’B’, A’C’ và BC. Cosin của góc tạo bởi hai mặt phẳng (AB’C’) và (MNP) bằng:
Hình vẽ minh họa:
Gọi P, Q lần lượt là trung điểm của BC và B’C’; I = BM ∩ AB’, J = CN ∩ AC’, E = MN ∩ A’Q.
Suy ra (MNP) ∩ (AB’C’) = (MNCB) ∩ (AB’C’) = IJ và gọi K = IJ ∩ PE
=> K ∈ AQ, với E là trung điểm của MN.
(AA’QP) ⊥ IJ => AQ ⊥ IJ, PE ⊥ IJ
=> ((MNP), (AB’C’)) = (AQ, PE) = α.
Ta có: AP = 3, PQ = 2
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a,
, SA vuông góc với mặt phẳng đáy và SA = 2a. Góc giữa hai đường thẳng SC và BD nằm trong khoảng nào?

Gọi O là giao điểm của AC và BD và M là trung điểm của SA.
Trong hình chữ nhật ABCD ta có
Xét tam giác MAB vuông tại A, ta có:
Xét tam giác MAO vuông tại O, ta có:
Do MO // SC nên góc giữa hai đường thẳng SC và BD là góc giữa hai đường thẳng MO và BD.
Áp dụng định lý cosin vào tam giác MOB ta có
Cho hình chóp S.ABCD có đáy là hình vuông, SA = SB và (SAB) ⊥ (ABCD). Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Ta có:
(SAB) ⊥ (ABCD)
BC ⊥ BA
=> BC ⊥ (SAB).
Từ B kẻ BK ⊥ SA => d(BC, SA) = BK.
Ta có:
Tam SAB cân tại S, do vậy d(BC, SA) = BK ≠ AB
Cho ba mặt phẳng (P), (Q) và (R). Mệnh đề nào sau đây đúng?
Vì một mặt phẳng vuông góc với một trong hai mặt phẳng song song thì sẽ vuông góc với mặt phẳng còn lại.
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B , SA vuông góc với mặt phẳng (ABCD), AB = BC = a, AD = 2a. Biết góc giữa SC và mặt phẳng (ABCD) bằng 450. Tính góc giữa mặt phẳng (SAD) và (SCD).

Tam giác ABC vuông cân tại B, suy ra
Vì nên AC là hình chiếu của SC trên mặt phẳng (ABCD).
Khi đó
Gọi M là trung điểm của AD => CM ⊥ AD.
Mà CM ⊥ SA nên CM ⊥ (SAD) => CM ⊥ SD
Hạ CH ⊥ SD . Khi đó SD ⊥ (CMH) => MH ⊥ SD
Ta có:
Ta lại có:
Tam giác MHC vuông tại M
Vậy
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?
Gọi O là tâm hình bình hành ABCD.
Các mặt phẳng cách đều A, B, C, D và S là
1) Mặt phẳng qua trung điểm của SA, SB, SC, SD
2) Mặt phẳng qua O và song song (SAB)
3) Mặt phẳng qua O và song song (SAD)
4) Mặt phẳng qua O và song song (SCD)
5) Mặt phẳng qua O và song song (SBC)
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = a,
. Tam giác SBC đều và nằm trong mặt phẳng vuông với đáy. Tính khoảng cách d từ B đến mặt phẳng (SAC).
Hình vẽ minh họa:

Gọi M là trung điểm của BC
=>
Gọi N là trung điểm của AC
=>
Kẻ
Cho hình chóp
có tất cả các cạnh bằng nhau. Gọi trung điểm các cạnh
và
lần lượt là
. Xác định cosin góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Theo giả thiết ta có:
là đường trung bình của tam giác
nên
Vì
Cho hình lăng trụ tam giác đều
có tất cả các cạnh bằng
. (như hình vẽ).

Tính
?
Hình vẽ minh họa
Gọi M là trung điểm cạnh BC.
Ta có tam giác ABC đều cạnh a nên ;
là hình lăng trụ tam giác đều nên
Do đó và
theo giao tuyến
Kẻ
Lại có
Cho hình hộp
có độ dài tất cả các cạnh bằng
và các góc
đều bằng
. Gọi trung điểm của các cạnh
lần lượt là
. Gọi
là góc tạo bởi hai đường thẳng
và
. Xác định
?
Hình vẽ minh họa
Ta có: với P là trung điểm của D’C
Suy ra
Vì và các cạnh của hình hộp bằng a
Do đó
Áp dụng định lí cosin cho tam giác A’DP ta có:
Cho hình chóp S.ABCD có
và
. Đáy ABCD là hình chữ nhật có
. Gọi M là trung điểm của CD, góc giữa SA và mặt phẳng (SBM) bằng \alpha . Giá trị
bằng:

Gọi K, I lần lượt là hình chiếu vuông góc của A lên BM và SK.
Ta có
Mà
Ta có
Suy ra hình chiếu vuông góc của điểm A lên mặt phẳng (SBM) là điểm I. Do đó bằng góc giữa hai đường thẳng SA và SI và bằng góc .
Ta có

Có
Ta có
Xét tam giác vuông SAK có
Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

Ta có: SA ⊥ (ABC) => SA ⊥ BC
Mặt khác BC ⊥ AB
Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB
Vậy (vì tam giác SBC vuông tại B)
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho hình chóp
có
và
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Gọi I là trung điểm của AB.
Xét tam giác SAB có SA = SB =>
Xét tam giác CAB có: =>
Từ (1) và (2) suy ra .
Cho hình chóp S.ABC có các mặt bên tạo với đáy một góc bằng nhau. Hình chiếu vuông góc của điểm S trên mặt phẳng (ABC) là:
Gọi I là hình chiếu vuông góc của S trên mặt phẳng (ABCD)
M, N, P lần lượt là hình chiếu vuông góc của S trên các cạnh AB, AC, BC.
Khi đó ta có:
Tương tự ta có:
Khi đó
Tương tự suy ra
=>
=> I là tâm đường tròn nội tiếp tam giác ABC.