Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho tứ diện ABCD có (ACD) ⊥ (BCD), AC = AD = BC = BD = a, CD = 2x. Giá trị của x để hai mặt phẳng (ABC) và (ABD) vuông góc với nhau là:

    Hình vẽ minh họa:

    Gọi H là trung điểm của CD.

    Do tam giác ACD cân tại A và tam giác BCD cân tại B.

    \Rightarrow \left\{ \begin{matrix}
CD\bot AH \\
CD\bot BH \\
\end{matrix} \Rightarrow CD\bot(ABH) \Rightarrow CD\bot AB. ight.

    Gọi E là trung điểm của AB, do tam giác ABC cân tại C

    \Rightarrow \left\{ \begin{matrix}
CD\bot AB \\
AB\bot AE \\
\end{matrix} \Rightarrow AB\bot(CDE) \Rightarrow AB\bot DE. ight.

    \Rightarrow \left\{ \begin{matrix}
(ABC) \cap (ABD) = AB \\
(ABC) \supset CE\bot AB \\
(ABC) \supset DE\bot AB \\
\end{matrix} ight.

    \Rightarrow \widehat{\left( (ABC);(ABD)
ight)} = \widehat{(CE;DE)} = 90^{0}

    Ta có ∆ABC = ∆ADC (c.c.c) => CE = DE => ∆CDE vuông cân tại E.

    CD = CE\sqrt{2} \Rightarrow 2x =
CE\sqrt{2} \Rightarrow CE = x\sqrt{2}(*)

    Xét tam giác vuông CBH có BH^{2} = BC^{2}
- BH^{2} = a^{2} - x^{2}

    Xét tam giác vuông ACH có AH^{2} = AC^{2}
- CH^{2} = a^{2} - x^{2}

    Xét tam giác vuông ABH có:

    \begin{matrix}AB^{2} = AH^{2} + BH^{2} = 2a^{2} - 2x^{2}\hfill \\\Rightarrow AE = \dfrac{\sqrt{2a^{2} - 2x^{2}}}{2}\hfill \\\end{matrix}

    Xét tam giác vuông ACE có:

    CE^{2} = AC^{2} - AE^{2}

    = a^{2} - \frac{a^{2} - x^{2}}{2} =
\frac{a^{2} + x^{2}}{2}

    \Rightarrow CE = \sqrt{\frac{a^{2} +
x^{2}}{2}}

    Thay CE vào (*) ta được

    \sqrt{\frac{a^{2} + x^{2}}{2}} =
x\sqrt{2} \Rightarrow x = \frac{a\sqrt{3}}{3}

  • Câu 2: Nhận biết

    Cho tứ diện O.ABC trong đó ba đường thẳng OB, OC, OA đôi một vuông góc. Trong các mệnh đề sau, mệnh đề nào sai?

    Trong các mệnh đề sau, mệnh đề nào sai?

    Tam giác ABC luôn là tam giác nhọn

  • Câu 3: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:

    Hình vẽ minh họa:

    Theo bài ta có AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB,(ABC) ight)} =\widehat{(SB,\ AB)} = \widehat{SBA}

    Mà ∆SBA vuông cân tại A nên \widehat{SBA}= 45^{0}

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2a. Biết góc giữa hai mặt phẳng (SAB) và mặt phẳng (ABCD) bằng 90^{0}, SA =
SB. Tính tan góc giữa SC và mặt phẳng (ABCD), biết thể tích khối chóp S.ABCD bằng \frac{4a^{3}}{3}?

    Hình vẽ minh họa

    Kẻ SH\bot AB , gọi \alpha = \left( SC;(ABCD) ight)

    Ta có: \left\{ \begin{matrix}
(SAB)\bot(ABCD) \\
(SAB) \cap (ABCD) = AB \\
SH \subset (SAB) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    \Rightarrow \alpha =
\widehat{SCH}

    Lại có: V_{S.ABCD} =
\frac{1}{3}SH.S_{ABCD} = \frac{4a^{3}}{3} \Rightarrow SH =
a

    Do tam giác SAB cân tại S nên H là trung điểm của AB

    \Rightarrow HC = \sqrt{BH^{2} + BC^{2}}
= a\sqrt{5}

    \Rightarrow \tan\alpha =
\tan\widehat{SCH} = \frac{SH}{HC} = \frac{a}{a\sqrt{5}} =
\frac{\sqrt{5}}{5}

  • Câu 5: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình thoi tâm OSO vuông góc với mặt đáy. Chọn kết luận đúng?

    Hình vẽ minh họa

    Ta có: SO\bot(ABCD) \Rightarrow SO\bot
AC;SO \subset (SBD)

    ABCD là hình thoi \Rightarrow AC\bot BD;BD \subset
(SBD)

    SO \cap BD = \left\{ O
ight\}

    \Rightarrow AC\bot(SBD)

  • Câu 6: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA = a\sqrt{3}. Khoảng cách giữa hai đường thẳng SB và CD là:

    Hình vẽ minh họa:

    Ta có:

    BC ⊥ AB

    BC ⊥ SA

    => BC ⊥ (SAB).

    Vì SB ⊂ (SAB) và CD // (SAB) => d(SB, CD) = d(CD, (SAB)) = d(C, (SAB)) = BC = a

  • Câu 7: Vận dụng

    Cho hình lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng . Điểm M và N lần lượt là trung điểm các đoạn AC, BB’. Côsin góc giữa đường thẳng MN và (BA’C’) bằng

     Côsin góc giữa đường thẳng MN và (BA’C’) bằng

    Gọi là số đo góc giữa MN và (BA’C’), K là hình chiếu vuông góc của N lên (B’A’C’).

    Khi đó \sin \alpha  = \frac{{NK}}{{NI}} = \frac{{d\left( {N;\,\,\left( {BA'C'} ight)} ight)}}{{NI}}

    Gọi E là trung điểm của A’C’, khi đó BMEB’ là hình chữ nhật. Gọi I = MN \cap BE, ta có

    MN = \sqrt {B{M^2} + B{N^2}}  = 1 \Rightarrow IN = \frac{1}{3}MN = \frac{1}{3}

    Ta có \frac{{d\left( {N;\,\,\left( {BA'C'} ight)} ight)}}{{d\left( {B';\,\,\left( {BA'C'} ight)} ight)}} = \frac{{NB}}{{B'B}} = \frac{1}{2}

    \left\{ \begin{gathered}  A'C' \bot B'E \hfill \\  A'C' \bot ME \hfill \\ \end{gathered}  ight. \Rightarrow A'C' \bot \left( {BMEB'} ight) \Rightarrow \left( {BA'C'} ight) \bot \left( {BMEB'} ight)

    \left( {BA'C'} ight) \cap \left( {BMEB'} ight) = BE. Kẻ B'H \bot BE\,\left( {H \in BE} ight)

    \begin{matrix}   \Rightarrow B'H \bot \left( {BA'C'} ight) \Rightarrow d\left( {B';\,\,\left( {BA'C'} ight)} ight) = B'H \hfill \\  B'H = \dfrac{1}{{\sqrt {\dfrac{1}{{B'{E^2}}} + \dfrac{1}{{B'{B^2}}}} }} = \dfrac{{\sqrt {21} }}{7} \hfill \\ \end{matrix}

    Từ \frac{{d\left( {N;\,\,\left( {BA'C'} ight)} ight)}}{{d\left( {B';\,\,\left( {BA'C'} ight)} ight)}} = \frac{1}{2} \Rightarrow d\left( {N;\,\,\left( {BA'C'} ight)} ight) = \frac{{\sqrt {21} }}{{14}}

    \begin{matrix}   \Rightarrow \sin \alpha  = \dfrac{{d\left( {N;\,\,\left( {BA'C'} ight)} ight)}}{{NI}} = \dfrac{{3\sqrt {21} }}{{14}} \hfill \\   \Rightarrow \cos \alpha  = \sqrt {1 - {{\sin }^2}\alpha }  = \sqrt {1 - {{\left( {\dfrac{{3\sqrt {21} }}{{14}}} ight)}^2}}  = \dfrac{{\sqrt 7 }}{{14}} \hfill \\ \end{matrix}

  • Câu 8: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a, SO ⊥ (ABCD). Gọi M, N lần lượt là trung điểm của SA và BC. Tính góc giữa đường thẳng MN và mặt phẳng đáy. Biết MN =
\frac{a\sqrt{10}}{2}.

    Hình vẽ minh họa:

    Kẻ Mk // SO

    Theo bài ra ta có: SO ⊥ (ABCD) => MK ⊥ (ABCD)

    => \left( MN;(ABCD) ight) = (MN,NK)
= \widehat{MNK}

    Ta có: CK = \frac{3}{4}CA =
\frac{3a\sqrt{2}}{4}

    Xét tam giác CNK có:

    \begin{matrix}cos45^{0} = \dfrac{CN^{2} + CK^{2} - NK^{2}}{2.CN.CK} \hfill \\\Rightarrow KN = \dfrac{a\sqrt{10}}{4} \hfill \\\end{matrix}

    Xét tam giác MNK vuông ta có:

    \cos\widehat{MNK} = \frac{NK}{MN} =
\frac{1}{2} \Rightarrow \widehat{MNK} = 60^{0}

  • Câu 9: Thông hiểu

    Cho hình chóp S.ABCDcó đáy ABCD là hình vuông tâm O cạnh bằng aSA =
a\sqrt{3} vuông góc với đáy. Tính cosin góc giữa SB;AC.

    Hình vẽ minh hoạ

    Gọi I là trung điểm của SD

    => OI là đường trung bình tam giác SBD

    Suy ra \left\{ \begin{matrix}OI//SB \\OI = \dfrac{SB}{2} = \dfrac{\sqrt{SA^{2} + AB^{2}}}{2} = a \\\end{matrix} ight.

    Ta có: AI = \frac{SD}{2} =
\frac{\sqrt{SA^{2} + AD^{2}}}{2} = a

    \Rightarrow AI = OI nên tam giác AOI cân tại I

    Gọi H là tung điểm của OA \Rightarrow\left\{ \begin{matrix}IH\bot OA \\OH = \dfrac{OA}{2} = \dfrac{AC}{4} = \dfrac{a\sqrt{2}}{4} \\\end{matrix} ight.

    Xét tam giác OHI có:

    \cos\widehat{HOI} = \dfrac{OH}{OI} =\dfrac{\dfrac{a\sqrt{2}}{4}}{a} = \dfrac{\sqrt{2}}{4}

    \cos(SB,AC) = \cos\widehat{HOI} =
\frac{\sqrt{2}}{4}

  • Câu 10: Nhận biết

    Cho hình chóp S.ABC có đường thẳng SA vuông góc với đáy (ABC), SA =
2a. Khoảng cách từ điểm S đến đường thẳng AB bằng:

    SA vuông góc với đáy (ABC) nên SA\bot AB \Rightarrow d(S,AB) = SA =
2a

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác cân tại A và SA ⊥ (ABC). M là trung điểm của BC. Hãy xác định góc giữa hai mặt phẳng (ABC) và (SBC).

    Hình vẽ minh họa:

    Ta có: Giao tuyến của hai mặt phẳng (SBC) và (ABC) là BC. (1)

    Ta có: SA ⊥ (ABC), mà đường thẳng BC nằm trong (ABC) => SA ⊥ BC.

    Do tam giác ABC cân tại A và M là trung điểm BC => BC ⊥ AM tại M.

    Như vậy: \left\{ \begin{matrix}
BC\bot MA \subset (SAM) \\
BC\bot SA \subset (SAM) \\
MA\  \cap \ SA = A \\
\end{matrix} ight.\  \Rightarrow (SAM)\bot BC.\ (2)

    Lại có: \left\{ \begin{matrix}
(SMA) \cap (ABC) = MA \\
(SMA) \cap (SBC) = MS \\
\end{matrix} ight.

    Từ (1), (2), (3) => \alpha =
\widehat{SMA}

  • Câu 12: Thông hiểu

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh bằng 2\sqrt 2, AA’ = 4. Tính góc giữa đường thẳng A’C với mặt phẳng (AA’BB’).

     Số đo góc giữa đường thẳng A’C với mặt phẳng (AA’BB’)

    Ta có CB \bot \left( {AA'B'B} ight) tại B. Khi đó A’B là hình chiếu của A’C lên mặt phẳng (AA’B’B)

    Vậy góc tạo bởi đường thẳng A’C và mặt phẳng (AA’BB’) là góc \widehat {CA'B}

    Khi đó \tan \widehat {CA'B} = \frac{{BC}}{{A'B}} = \frac{{2\sqrt 2 }}{{\sqrt {{4^2} + {{\left( {2\sqrt 2 } ight)}^2}} }} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {CA'B} = 30^\circ

  • Câu 13: Vận dụng

    Cho tứ diện ABCD có AC = AD = BC = BD = a, (ACD) ⊥ (BCD) và (ABC) ⊥ (ABD). Tính độ dài cạnh CD.

    Gọi M, N lần lượt là trung điểm của CD, AB, ∆ACD và ∆BCD cân

    => AM ⊥ CD, BM ⊥ CD. Ta có:

    \left\{ \begin{matrix}(ACD)\  \cap \ (BCD) \\CD\bot AM \subset (ACD) \\CD\bot BM \subset (BCD) \\\end{matrix} ight.

    \Rightarrow \widehat{\left( (ACD);\(BCD) ight)} = \widehat{(AM;\ BM)} = 90^{0}

    => AM ⊥ BM

    Và ta dễ dàng chứng minh được ∆ACD = ∆BCD (c – c - c)

    => AM = BM => ∆ABM vuông cân tại M

    => MN ⊥ AB

    Đặt CD = x

    Áp dụng định lý Py-ta-go ta có:

    AM^{2} = a^{2} -\frac{x^{2}}{4}

    Xét ∆ABM vuông cân tại M

    \Rightarrow AB^{2} = 2AM^{2} = 2a^{2} -\frac{x^{2}}{2}

    \Rightarrow AN^{2} = \frac{1}{4}AB^{2} =\frac{a^{2}}{2} - \frac{x^{2}}{8}

    Áp dụng định lý Py-ta-go ta có:

    DN^{2} = AD^{2} - AN^{2}

    \Rightarrow DN^{2} = a^{2} -\frac{a^{2}}{2} + \frac{x^{2}}{8} = \frac{a^{2}}{2} +\frac{x^{2}}{8}

    Xét ∆CDN vuông cân tại N

    \Rightarrow CD^{2} = 2DN^{2} = a^{2} +\frac{x^{2}}{4}

    \Rightarrow a^{2} + \frac{x^{2}}{4} =x^{2} \Leftrightarrow x = \frac{2a\sqrt{3}}{3}

  • Câu 14: Thông hiểu

    Cho hình tứ diện ABCD, có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c.

    Độ dài AD bằng:

     Hình vẽ minh họa

    Tính độ dài đoạn thẳng AD

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {AB \bot BC} \\   {AB \bot CD} \end{array}} ight. ⇒AB⊥(BCD)

    => Tam giác ABD vuông tại B.

    Lại có BC⊥CD nên tam giác BCD vuông tại C.

    Khi đó: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{l}}  {A{D^2} = A{B^2} + B{D^2}} \\   {B{D^2} = B{C^2} + C{D^2}} \end{array}} ight. \hfill \\   \Rightarrow A{D^2} = A{B^2} + B{C^2} + C{D^2} \hfill \\   \Rightarrow AD = \sqrt {{a^2} + {b^2} + {c^2}}  \hfill \\ \end{matrix}

  • Câu 15: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 3a?

    Ta có: V = (3a)^{3} =
27a^{3}

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Cạnh bên SA=a\sqrt{3} và vuông góc với mặt đáy (ABC). Tính khoảng cách d từ A đến mặt phẳng (SBC). 

    Hình vẽ minh họa:

    Tính khoảng cách d từ A đến mặt phẳng (SBC)

    Gọi M là trung điểm BC 

    =>AM ⊥ BC và AM = \frac{{a\sqrt 3 }}{2}

    Gọi K là hình chiếu của A trên SM => AK ⊥ SM (1)

    Ta có: \left\{ \begin{gathered}  AM \bot BC \hfill \\  BC \bot SA \hfill \\ \end{gathered}  ight.

    \Rightarrow BC \bot (SAM) \Rightarrow BC \bot AK{\text{  }}\left( 2 ight)

    Từ (1) và (2) => AK⊥(SBC) => d(A;(SBC)) = AK

    Xét tam giác SAM ta có:

    AK = \frac{{SA.AM}}{{\sqrt {S{A^2} + A{M^2}} }} = \frac{{a\sqrt {15} }}{5}

    Vậy d(A;(SBC)) = AK = \frac{{a\sqrt {15} }}{5}

  • Câu 17: Thông hiểu

    Cho hình chóp S.ABCD có tất cả các cạnh đều bằng a. Gọi I và J lần lượt là trung điểm của SC và BC. Số đo góc (IJ; CD) bằng:

    Hình vẽ minh họa:

    Gọi O là tâm của hình thoi ABCD

    => OJ là đường trung bình của tam giác BCD => \left\{ \begin{matrix}OJ//CD \\OJ = \dfrac{1}{2}CD \\\end{matrix} ight.

    Vì CD // OJ => (IJ; CD) = (IJ; OJ)

    Xét tam giác IOJ có: \left\{\begin{matrix}IJ = \dfrac{1}{2}SB = \dfrac{a}{2} \\\begin{matrix}OJ = \dfrac{1}{2}CD = \dfrac{a}{2} \\OI = \dfrac{1}{2}SA = \dfrac{a}{2} \\\end{matrix} \\\end{matrix} ight.=> Tam giác IOJ đều

    Vậy (IJ; CD) = (IJ; OJ) = \widehat{IJO} =
60^{0}

  • Câu 18: Nhận biết

    Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

    Ta có: SA ⊥ (ABC) => SA ⊥ BC

    Mặt khác BC ⊥ AB

    Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB

    Vậy \widehat{\left( SC,(SAB) ight)} =\widehat{(SC,SB)} = \widehat{BSC\ }(vì tam giác SBC vuông tại B)

  • Câu 19: Nhận biết

    Cho (P) và (Q) là hai mặt phẳng vuông góc với nhau và giao tuyến của chúng là đường thẳng m. Gọi a, b, c, d là các đường thẳng. Xét các mệnh đề sau:

    (1) Nếu a ⊂ (P) và a ⊥ m thì a ⊥ (Q).

    (2) Nếu b ⊥ m thì b ⊂ (P) hoặc b ⊂ (Q).

    (3) Nếu c // m thì c // (P) hoặc c // (Q).

    (4) Nếu d ⊥ m thì d ⊥ (P).

    Có bao nhiêu mệnh đề đúng trong các mệnh đề đã cho?

    (1) Nếu a ⊂ (P) và a ⊥ m thì a ⊥ (Q). ---> đúng

    (2) Nếu b ⊥ m thì b ⊂ (P) hoặc b ⊂ (Q). ---> sai

    (3) Nếu c // m thì c // (P) hoặc c // (Q). ---> đúng

    (4) Nếu d ⊥ m thì d ⊥ (P). ---> sai

  • Câu 20: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng 1, cạnh SA vuông góc với đáy và SA = \sqrt{2}. Tính thể tích khối chóp S.ABCD đã cho.

    Hình vẽ minh họa

    Ta có: SA\bot(ABCD) nên SA là đường cao của hình chóp

    Thể tích khối chóp là V =
\frac{1}{3}.SA.S_{ABCD} = \frac{1}{3}.\sqrt{2}.1^{2} =
\frac{\sqrt{2}}{3}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 68 lượt xem
Sắp xếp theo