Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho khối chóp S.ABC có chiều cao bằng 6 đáy là tam giác ABC có diện tích bằng 12. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 12 \\
h = 6 \\
\end{matrix} ight.

    Thể tích khối chóp tam giác là V =
\frac{1}{3}B.h = \frac{1}{3}.12.6 = 24

  • Câu 2: Nhận biết

    Cho hai mặt phẳng (P) và (Q) song song với nhau và một điểm M không thuộc (P) và (Q). Qua M có bao nhiêu mặt phẳng vuông góc với (P) và (Q)?

    Gọi d là đường thẳng qua M và vuông góc với (P). Do (P)//(Q)⇒d⊥(Q)

    Giả sử (R) là mặt phẳng chứa d. Mà \left\{ {\begin{array}{*{20}{l}}  {d \bot \left( P ight)} \\   {d \bot \left( Q ight)} \end{array}} ight.

    \Rightarrow \left\{ {\begin{array}{*{20}{l}}  {\left( R ight) \bot \left( P ight)} \\   {\left( R ight) \bot \left( Q ight)} \end{array}} ight.

    Có vô số mặt phẳng (R) chứa d. Do đó có vô số mặt phẳng qua M, vuông góc với (P) và (Q).

  • Câu 3: Thông hiểu

    Cho hình lăng trụ tam giác đều ABC.A'B'C'AB = a;AA' = a\sqrt{3}. Tính góc giữa hai đường thẳng AB'CC'?

    Hình vẽ minh họa

    Ta có: AA'//CC' nên góc giữa hai đường thẳng AB'CC' là góc giữa AA'AB' và bằng góc \widehat{A'AB}

    Với AB = a;AA' = a\sqrt{3} ta có: \tan\widehat{A'AB} =
\frac{A'B'}{AA'} = \frac{a}{a\sqrt{3}} =
\frac{1}{\sqrt{3}}

    \Rightarrow \widehat{A'AB} = 60^{0}
\Rightarrow (AB';CC') = 60^{0}

  • Câu 4: Vận dụng

    Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của BC và DD’. Tính theo a khoảng cách giữa hai đường thẳng MN và BD.

    Hình vẽ minh họa:

    Gọi O, P, K lần lượt là trung điểm của AC, CD, OC

    Kẻ DI ⊥ MP, DH ⊥ NI

    Ta có: ND = \frac{a}{2}, BD // MP, tứ giác DIKO là hình chữ nhật

    => DI = OK = \frac{OC}{2} =\frac{a\sqrt{2}}{4}

    Khi đó: d(MN, BD) = d(BD, (MNP)) = d(D, (MNP)) = DH

    Xét tam giác vuông NDI ta có:

    \begin{matrix}\dfrac{1}{DH^{2}} = \dfrac{1}{DN^{2}} + \dfrac{1}{DI^{2}} \Rightarrow DH =\dfrac{a\sqrt{3}}{6} \hfill \\\Rightarrow d(MN,BD) = \dfrac{a\sqrt{3}}{6} \hfill\\\end{matrix}

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a ; AD = 2a, SA \bot \left( {ABCD} ight);SA = a\sqrt 2. Tính góc giữa hai mặt phẳng (SCD) và (SAB).

     Tính góc giữa hai mặt phẳng (SCD) và (SAB)

    Gọi M là trung điểm của AD.

    Xét tứ giác ABCM có: AM // BC, AM = AB = BC = a, \widehat {MAB} = {90^0}

    Suy ra ABCM là hình vuông => MC = AB = a

    Xét tam giác ACD có AM là trung tuyến và CM = \frac{1}{2}AD = a

    Suy ra ACD vuông tại C => AC ⊥ CD

    Trong (SAC), dựng AH ⊥ SC

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {CD \bot AC} \\   {CD \bot SA} \\   {SA \cap AC = A} \\   {SA;AC \subset \left( {SAC} ight)} \end{array}} ight. \Rightarrow CD \bot \left( {SAC} ight) mà AH ⊂ (SAC) suy ra CD ⊥ AH.

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {AH \bot CD} \\   {AH \bot SC} \\   {CD \cap SC = C} \\   {CD;SC \subset \left( {SCD} ight)} \end{array}} ight. \Rightarrow AH \bot \left( {SCD} ight)\left( 1 ight)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {AD \bot SA} \\   {AD \bot AB} \\   {SA \cap AB = A} \\   {SA;AB \subset \left( {SAB} ight)} \end{array}} ight. \Rightarrow AD \bot \left( {SAB} ight)\left( 2 ight)

    Từ (1) và (2) suy ra góc giữa hai mặt phẳng (SAB) và (SCD) là góc giữa hai đường thẳng AH và AD.

    Xét tam giác ABC vuông tại B có: AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2

    Xét tam giác SAC vuông tại A có: SC = \sqrt {S{A^2} + A{C^2}}  = 2a

    Xét tam giác SAC vuông tại A và SA = AC = a\sqrt 2 nên SAC vuông cân tại A.

    Suy ra H là trung điểm SC và AH = \frac{1}{2}SC = a

    Xét tam giác AHD vuông tại H (vì AH ⊥ (SCD)).

    Ta có: \cos \widehat {HAD} = \frac{{AH}}{{AD}} = \frac{a}{{2a}} = \frac{1}{2} suy ra \widehat {DAH} = {60^0}

    Vậy \left( {\widehat {\left( {SCD} ight);\left( {SAB} ight)}} ight) = {60^0}

  • Câu 6: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:

    Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”

    Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB

    Mặt khác AB ⊥ AD.

    Từ đó suy ra AB ⊥ (SDA)

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA\bot(ABCD). Biết diện tích tam giác SBD bằng a^{2}. Khi đó SA bằng:

    Hình vẽ minh họa

    Gọi O là tâm của đáy.

    Khi đó BD\bot(SAC) \Rightarrow BD\bot SO
\Rightarrow S_{SBD} = \frac{1}{2}.SO.BD = a^{2}

    \Rightarrow SO =
\frac{2a^{2}}{a\sqrt{2}} = a\sqrt{2}

    \Rightarrow SA = \sqrt{SO^{2} - AO^{2}}
= \sqrt{2a^{2} - \frac{a^{2}}{2}} = \frac{a\sqrt{6}}{2}

  • Câu 8: Thông hiểu

    Cho hình chóp tam giác S.ABCSA =
SB = SC = AB = AC = aBC =
a\sqrt{2}. Kết quả nào dưới đây đúng?

    Ta có:

    BC^{2} = AB^{2} + AC^{2} suy ra tam giác ABC vuông tại A

    => M là tâm đường tròn ngoại tiếp tam giác ABC.

    SA = SB = SC nên SM là đường cao của hình chóp S.ABC.

    Hình vẽ minh họa

    Gọi N, I lần lượt là trung điểm cạnh AC và SB.

    Ta có: MN // AB và IM // SC nên (SC,AB) =
(IM,MN)

    BN = \sqrt{AB^{2} + AN^{2}} =
\sqrt{a^{2} + \frac{a^{2}}{4}} = \frac{a\sqrt{5}}{2}

    SN = \sqrt{SC^{2} - NC^{2}} =
\sqrt{a^{2} - \frac{a^{2}}{4}} = \frac{a\sqrt{3}}{2}

    MN = \frac{a}{2};MI =
\frac{a}{2}

    Xét tam giác IMN có

    \cos\widehat{NMI} = \dfrac{MN^{2} +IM^{2} - IN^{2}}{2.MN.IM}= \dfrac{\dfrac{a^{2}}{4} + \dfrac{a^{2}}{4} -\dfrac{3a^{2}}{4}}{2.\dfrac{a}{2}.\dfrac{a}{2}} = -\dfrac{1}{2}

    \Rightarrow \widehat{NMI} =
120^{0}

    \Rightarrow (SC,AB) = (IM,MN) =
60^{0}

  • Câu 9: Vận dụng cao

    Cho hình lập phương ABCD.A’B’C’D’ có tâm O. Gọi I là tâm của hình vuông A’B’C’D’ và điểm M thuộc đoạn OI sao cho MO = 2MI (tham khảo hình vẽ). Khi đó sin của góc tạo bởi hai mặt phẳng (MC’D’) và (MAB) bằng:

    Hình ảnh minh họa:

    Do AB // C’D’ nên giao tuyến của (MAB) và (MC’D’) là đường thẳng ∆ // AB // C’D’.

    Gọi P, Q lần lượt là trung điểm của D’C’ và AB ta có:

    \left\{ \begin{matrix}
MP\bot C’D’ \\
MQ\bot AB \\
\end{matrix} ight.=> MP ⊥ ∆, MQ ⊥ ∆.

    Như vậy góc giữa (MAB) và (MC0’’) là góc giữa MP và MQ.

    Không mất tính tổng quát, ta cho cạnh hình lập phương là 6.

    Khi đó \left\{ \begin{matrix}
MP = \sqrt{IM^{2} + IP^{2}} = \sqrt{10} \\
MQ = \sqrt{34};PQ = 6\sqrt{2} \\
\end{matrix} ight.

    Áp dụng định lí cosin cho tam giác MPQ ta được:

    \cos\widehat{PMQ} = \frac{MP^{2} +
MQ^{2} - PQ^{2}}{2MP.MQ} = - \frac{14}{\sqrt{340}}

    Góc α là góc giữa hai mặt phẳng (MC’D’) và (MAB) ta có:

    \cos\alpha = \frac{14}{\sqrt{340}} =
\frac{7\sqrt{85}}{85} \Rightarrow \sin\alpha =
\frac{6\sqrt{85}}{85}

  • Câu 10: Nhận biết

    Cho một khối trụ có diện tích đáy bằng 4a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 4a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối trụ là: V = B.h = 4a^{2}.a
= 4a^{3}

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA\bot(ABCD), SA = AB = a;AD = 2a. Gọi H;K lần lượt là hình chiếu của A lên SB;SD. Xét tính đúng sai của các kết luận sau?

    a) AH\bot SC Đúng||Sai

    b) SC\bot(AHK) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \cos\left( (AHK);(ABCD) ight) =
\frac{\sqrt{2}}{2}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA\bot(ABCD), SA = AB = a;AD = 2a. Gọi H;K lần lượt là hình chiếu của A lên SB;SD. Xét tính đúng sai của các kết luận sau?

    a) AH\bot SC Đúng||Sai

    b) SC\bot(AHK) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \cos\left( (AHK);(ABCD) ight) =
\frac{\sqrt{2}}{2}Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: \left\{ \begin{matrix}
BC\bot AB \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB);AH \subset
(SAB)

    \Rightarrow AH\bot BC

    Lại có AH\bot SB \Rightarrow AH\bot(SBC)
\Rightarrow AH\bot SC(*)

    b) Chứng minh tương tự câu a ta có:

    \left\{ \begin{matrix}
CD\bot AD \\
CD\bot SA \\
\end{matrix} ight.\  \Rightarrow CD\bot(SAD);AK \subset
(SAD)

    \Rightarrow AK\bot CDAK\bot SD \Rightarrow AK\bot(SCD)

    \Rightarrow AK\bot SC(**)

    Từ (*) và (**) suy ra: SC\bot(AHK).

    c) Ta có:

    \left\{ \begin{matrix}
(SCD) \cap (ABCD) = CD \\
AD\bot CD \equiv \left\{ D ight\} \\
SD\bot CD \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc \widehat{SDA}.

    d) Ta có: SA\bot(ABCD) \Rightarrow
\widehat{\left( (AHK);(ABCD) ight)} = \widehat{(SC;SA)} =
\widehat{ASC}

    Lại có ABCD là hình chữ nhật nên AC =
\sqrt{AB^{2} + AD^{2}} = a\sqrt{5}

    Tam giác SAC vuông tại A nên SC =
\sqrt{SA^{2} + AC^{2}} = a\sqrt{6}

    \Rightarrow \cos\widehat{ASC} =
\frac{SA}{SC} = \frac{\sqrt{6}}{6}

    \Rightarrow \cos\left( (AHK);(ABCD)
ight) = \frac{\sqrt{6}}{6} eq \frac{\sqrt{2}}{2}

  • Câu 12: Vận dụng

    Cho hình lập phương ABCD.A’B’C’D’. Gọi M là trung điểm của BB’. Tính cosin của góc giữa hai đường thẳng AM và A’C’.

    Tính cosin của góc giữa hai đường thẳng

    + Ta có AC // A’C’ nên góc giữa AM và A’C’ là góc giữa AC và AM.

    + Xét tam giác AMC có:

    MA = MC = \sqrt {M{B^2} + A{B^2}}

    = \sqrt {{{\left( {\frac{a}{2}} ight)}^2} + {a^2}}  = \frac{{a\sqrt 5 }}{2}

    AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2

    Áp dụng định lí cosin trong tam giác AMC, ta có:

    \begin{gathered}  cos\left( {AM\,,\,AC} ight) = \left| {\dfrac{{A{M^2} + A{C^2} - M{C^2}}}{{2MA.AC}}} ight| \hfill \\   = \dfrac{{AC}}{{2MA}} = \dfrac{{a\sqrt 2 }}{{2.\dfrac{{a\sqrt 5 }}{2}}} = \dfrac{{\sqrt {10} }}{5} \hfill \\ \end{gathered}

  • Câu 13: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a có G là trọng tâm và độ dài các cạnhSA = SB = SC = m. Tính độ dài đoạn thẳng GS?

    Hình vẽ minh họa:

    Ta có: SA = SB = SC, G là trọng tâm tam giác ABC

    => G là hình chiếu vuông góc của S trên mặt phẳng (ABC)

    Gọi H là trung điểm của BC => BH = CH
= \frac{a}{2}

    Xét tam giác ABC đều cạnh a ta có:

    GH = \frac{AH}{3} =
\frac{a\sqrt{3}}{2}.\frac{1}{3} = \frac{a\sqrt{3}}{6}

    Xét tam giác SBH vuông tại H ta có:

    SH = \sqrt{SB^{2} - HB^{2}} =
\sqrt{m^{2} - \frac{a^{2}}{4}}

    Xét tam giác SGH vuông tại G ta có:

    \begin{matrix}SG = \sqrt{SH^{2} - GH^{2}} \hfill \\= \sqrt{m^{2} - \dfrac{a^{2}}{4} - \dfrac{a^{2}}{12}} = \dfrac{\sqrt{9m^{2}- 3a^{2}}}{3} \hfill \\\end{matrix}

  • Câu 14: Nhận biết

    Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa

    Hình vẽ minh họa:

    Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

    Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.

  • Câu 15: Thông hiểu

    Cho khối lăng trụ đứng ABC.A'B'C', đáy ABCAB =
AC = a;\widehat{BAC} = 120^{0}. Tính thể tích của khối lăng trụ đã cho biết \left( (AB'C');(ABCD)
ight) = 60^{0}.

    Hình vẽ minh họa

    Gọi H là trung điểm của B’C’, khi đó góc giữa mặt phẳng (AB’C’) và (ABCD) là góc \widehat{AHA'} =
60^{0}

    Ta có:

    S_{ABC} = \frac{1}{2}AC.AB.sin120^{0} =
\frac{a^{2}\sqrt{3}}{4}

    B'C' = BC = \sqrt{AB^{2} +
AC^{2} - 2AB.AC.cos120^{0}}

    = \sqrt{a^{2} + a^{2} - 2.a.a.\left( -
\frac{1}{2} ight)} = a\sqrt{3}

    \Rightarrow AH' =
\frac{2S_{ABC}}{B'C'} = \frac{a}{2}

    \Rightarrow AA' = A'H.tan60^{0}
= \frac{a\sqrt{3}}{2}

    Vậy V = S_{ACB}.AA' =
\frac{3a^{3}}{8}

  • Câu 16: Nhận biết

    Cho hình chóp S.ABC có đường thẳng SA vuông góc với đáy (ABC), SA =
2a. Khoảng cách từ điểm S đến đường thẳng AB bằng:

    SA vuông góc với đáy (ABC) nên SA\bot AB \Rightarrow d(S,AB) = SA =
2a

  • Câu 17: Nhận biết

    Trong không gian cho ba đường thẳng phân biệt a, b, c. Khẳng định nào sau đây sai?

    Mệnh đề đúng: Nếu a và b cùng vuông góc với c thì a // b

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, SA vuông góc với đáy, kẻ AH vuông góc với BC (H thuộc BC). Hãy xác định góc α giữa hai mặt phẳng (ABC) và (SBC).

    Hình vẽ minh họa:

    Ta có: Giao tuyến của hai mặt phẳng (SBC) và (ABC) là BC. (1)

    Ta có: SA ⊥ (ABC) mà đường thẳng BC nằm trong (ABC)

    => SA ⊥ BC.

    Ta có BC ⊥ AH tại H.

    => \left\{ \begin{matrix}
BC\bot HA \subset (SAH) \\
BC\bot SA \subset (SAH) \\
HA\  \cap \ SA = A \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAH)(2)

    Ta lại có: \left\{ \begin{matrix}
(SHA)\  \cap \ (ABC)\  = \ HA \\
(SHA)\  \cap \ (SBC)\  = \ HS \\
\end{matrix} ight.

    Từ (1), (2), (3) => \alpha =
\widehat{SHA}

  • Câu 19: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và SA vuông góc với mặt phẳng đáy. Tìm mệnh đề sai dưới đây?

    Hình vẽ minh họa

    Ta có:

    ABCD là hình chữ nhật nên BD không vuông góc với AC

    Vậy BD không vuông góc với mặt phẳng (SAC)

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy, SA = a\sqrt{3}. Khoảng cách giữa hai đường thẳng SB và CD là:

    Hình vẽ minh họa:

    Ta có:

    BC ⊥ AB

    BC ⊥ SA

    => BC ⊥ (SAB).

    Vì SB ⊂ (SAB) và CD // (SAB) => d(SB, CD) = d(CD, (SAB)) = d(C, (SAB)) = BC = a

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 7 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 69 lượt xem
Sắp xếp theo