Cho hình lăng trụ tam giác đều
có
. Tính góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có: nên góc giữa hai đường thẳng
và
là góc giữa
và
và bằng góc
Với ta có:
Cho hình lăng trụ tam giác đều
có
. Tính góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có: nên góc giữa hai đường thẳng
và
là góc giữa
và
và bằng góc
Với ta có:
Cho hình chóp tứ giác
có
và đáy là hình vuông. Chọn kết luận đúng?
Hình vẽ minh họa
Ta có:
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. Cạnh bện SA vuông góc với mặt phẳng (ABCD) và
. Gọi M, N lần lượt là trung điểm của SA và CD. Tính khoảng cách d giữa BD và MN.
Hình vẽ minh họa:
Gọi P là trung điểm BC và E = NP ∩ AC
=> PN // BD => BD // (MNP)
=> d(BD, MN) = d(BD, (MNP)) = d(O, (MNP)) = d(A, (MNP))
Kẻ AK ⊥ ME
Khi đó d(A, (MNP)) = AK.
Ta tính được:
Xét tam giác vuông MAE ta có:
Cho khối chóp S.ABCD có đáy là hình bình hành, AB = 3, AD = 4, góc BAD = 1200. Cạnh bên
vuông góc với đáy. Gọi M, N, P lần lượt là trung điểm các cạnh SA, AD và BC và α là góc giữa hai mặt phẳng (SAC) và (MNP). Chọn khẳng định đúng trong các khẳng định sau đây.
Hình vẽ minh họa:
Ta có:
=> ((SAC), (MNP)) = ((SAC), (SCD)) = α.
Gọi H là hình chiếu vuông góc của A xuống (SCD), K là hình chiếu vuông góc của H xuống SC, suy ra
Ta có
Trong tam giác ABC có
Do đó diện tích tam giác SCD là
Theo công thức tính thể tích khối chóp A.SCD thì
=>
=> α ∈ (600; 900)
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với đáy SA = a. Gọi M là trung điểm của SB. Góc giữa AM bằng BD bằng?

Xét vuông cân tại A, ta có:
Góc giữa 2 đường thẳng BA và BD bằng , suy ra
Xét vuông cân tại A, ta có:
Vì là trung điểm của SB nên:
Ta có:
(Do , nên
)
Do đó:
Vậy góc giữa AM bằng BD bằng
Cho hình chóp tứ giác
có đáy
là hình vuông cạnh bằng
,
. Tính góc giữa đường thẳng
và mặt phẳng
?
Hình vẽ minh họa
Ta có: nên AC là hình chiếu của SC trên mặt phẳng (ABCD)
Do đó góc giữa đường thẳng SC và mặt phẳng (ABCD) là góc
Đáy là hình vuông cạnh
Cho hình chóp đều, các cạnh bên có độ dài bằng
và tạo với đáy một góc
. Tính chu vi đáy P của hình chóp đó.
Hình vẽ minh họa
Kẻ
H là tâm đường tròn ngoại tiếp đồng thời là trọng tâm tam giác ABC
Ta có:
Gọi M là trung điểm của BC
Gọi
Vì M là trung điểm của BC nên
Chu vi đáy ABC bằng
Cho hình chóp tứ giác đều S.ABCD, cạnh bên bằng cạnh đáy và bằng a. Gọi M là trung điểm của SC. Tính góc giữa hai mặt phẳng (MBD) và (ABCD).

Gọi O là tâm hình vuông ABCD, suy ra SO ⊥ (ABCD).
Ta có:
Do
Tam giác SOC vuông tại O, trung tuyến OM, suy ra
=> Tam giác MOC cân tại M.
=>
Khi đó
Vậy
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên
và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ O đến mặt phẳng (SBC)
Ta có:
Từ A kẻ =>
Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Công thức tính thể tích khối lăng trụ có diện tích đáy
và chiều cao
là:
Thể tích khối lăng trụ có diện tích đáy và chiều cao
là:
Cho hình lăng trụ đứng
có đáy là các tam giác đều cạnh bằng
và cạnh bên bằng
. Tính góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có:
Khi đó tam giác vuông cân tại C nên
Cho tứ diện
. Gọi trung điểm của
lần lượt là
. Biết
. Độ dài đoạn thẳng
là:
Hình vẽ minh họa
Gọi P là trung điểm của CD. Khi đó
Lại có hay tam giác MNP vuông tại P
Theo định lí Pythagore ta có:
Cho hình lập phương
. Mặt phẳng nào dưới đây không vuông góc với
?
Hình vẽ minh họa
Dễ thấy mặt phẳng không vuông góc với
.
Cho khối chóp tam giác đều
có cạnh đáy bằng 1cm và các cạnh bên bằng 2cm. Khi đó thể tích khối chóp bằng bao nhiêu?
Hình vẽ minh họa
Do đáy là tam giác đều nên gọi I là trung điểm của BC khi đó AI là đường cao của tam giác đáy.
Theo định lí Pythagore ta có:
Trong tam giác SOA vuông tại O ta có:
Vậy thể tích khối chóp tam giác là:
Cho hình lập phương ABCD.EFGH. Góc giữa cặp vecto
là:
Hình vẽ minh họa:

Ta có tam giác ACF là tam giác đều
=> Góc giữa cặp vecto là:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên => SO ⊥ (ABCD)
Từ => AC ⊥ (SBD)
Từ => BD ⊥ (SAC)
Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.
Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy
Ta có:
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho hình chóp
có đáy
là hình vuông cạnh bằng
, tam giác
đều và cạnh
. Gọi trung điểm các cạnh
lần lượt là
. Mệnh đề nào sau đây sai?
Hình vẽ minh họa
Ta có tam giác SAB đều cạnh bằng a nên
Mặt khác tam giác SBC có
Suy ra tam giác SBC vuông cân tại B hay
Từ
Tam giác ABS đều mà H là trung điểm của AB nên
Tam giác ABS đều nên AB không vuông góc với mặt phẳng
Ta có: