Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a\sqrt 2 và cạnh bên bằng 2a. Góc giữa đường thẳng SB với mặt phẳng (SAC) bằng

    Gọi O = AC \cap BD. Ta có S.ABCD là hình chóp tứ giác đều suy ra SO \bot \left( {ABCD} ight).

    \left\{ \begin{gathered}  SO \bot \left( {ABCD} ight) \hfill \\  BD \subset \left( {ABCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow SO \bot BD

    \left\{ \begin{gathered}  BD \bot SO \hfill \\  BD \bot AC \hfill \\  SO,AC \subset \left( {SAC} ight) \hfill \\  SO \cap AC = \left\{ O ight\} \hfill \\ \end{gathered}  ight. \Rightarrow BD \bot \left( {SAC} ight)

    Suy ra hình chiếu vuông góc của đường thẳng SB lên mặt phẳng (SAC) là đường thẳng SO.

    Do đó góc giữa SB và mặt phẳng (SAC) bằng góc giữa hai đường thẳng SB và SO và bằng góc \widehat {BSO}.

    BO = \frac{{BD}}{2} = \frac{{a\sqrt 2 .\sqrt 2 }}{2} = a

    \left\{ \begin{gathered}  SO \bot \left( {ABCD} ight) \hfill \\  OB \subset \left( {ABCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow SO \bot OB

    Xét tam giác SOB có

    Ta có \sin \widehat {BSO} = \frac{{BO}}{{SB}} = \frac{a}{{2a}} = \frac{1}{2} \Rightarrow BSO = {30^0}

  • Câu 2: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh a. Biết \left( (SAB);(ABCD) ight) = 90^{0} và tam giác SAB đều. Xác định thể tích hình chóp S.ABCD?

    Hình vẽ minh họa

    Gọi H là trung điểm của AB

    Tam giác SAB đều nên SH\bot
AB

    Ta có: \left\{ \begin{matrix}
SH\bot AB \\
(SAB)\bot(ABCD) \\
SH \subset (SAB) \\
AB = (SAB) \cap (ABCD) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    Vậy SH là đường cao của hình chóp

    Xét tam giác AHS vuông tại H ta có:

    SH = \sqrt{SA^{2} - AH^{2}} =
\sqrt{a^{2} - \left( \frac{a}{2} ight)^{2}} =
\frac{a\sqrt{3}}{2}

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{1}{3}.a^{2}.\frac{a\sqrt{3}}{2} =
\frac{a^{3}\sqrt{3}}{6}

  • Câu 3: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC bằng 600, tam giác SBC là tam giác đều có cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Tính số đo góc giữa đường thẳng SA và mặt phẳng đáy (ABC).

    Hình vẽ minh họa:

    Gọi H là trung điểm của BC => SH ⊥ (ABC)

    Vì SH ⊥ (ABC) => HA là hình chiếu vuông góc của SA trên mặt phẳng (SAB)

    => \left( SA,(ABC) ight) = (SA,AH) =
\widehat{SAH}

    Xét tam giác SBC đều cạnh 2a => SH =
a\sqrt{3}

    Tam giác ABC vuông tại A => AH =
\frac{BC}{2} = a

    Tam giác SAH vuông nên

    \begin{matrix}\tan\widehat{SAH} = \dfrac{SH}{AH} = \sqrt{3}  \hfill\\\Rightarrow \widehat{SAH} = 60^{0} \hfill \\\end{matrix}

  • Câu 4: Thông hiểu

    Cho tứ diện ABCD có hai mặt ABCABD là tam giác đều. Khi đó (AB;CD) bằng:

    Hình vẽ minh họa

    Ta có: I là trung điểm của AB.

    ABCABD là tam giác đều nên \left\{ \begin{matrix}
CI\bot AB \\
DI\bot AB \\
\end{matrix} ight.\  \Rightarrow AB\bot(CID) \Rightarrow AB\bot
CD

  • Câu 5: Thông hiểu

    Cho một khối lăng trụ đứng như hình vẽ:

    Biết đáy ABCD là hình thoi cạnh bằng a, CC' = 4a;BD =
a\sqrt{3}. Tính thể tích V của lăng trụ đứng đã cho?

    Kí hiệu hình vẽ như sau:

    Gọi giao điểm của AC và BD là I

    Ta có: \left\{ \begin{matrix}AC\bot BD \\BI = \dfrac{BD}{2} = \dfrac{a\sqrt{3}}{2} \\\end{matrix} ight.

    Xét tam giác vuông BAI vuông tại I ta có:

    AI^{2} = BA^{2} - BI^{2} = a^{2} -
\left( \frac{a\sqrt{3}}{2} ight)^{2} = \frac{a^{2}}{4}

    \Rightarrow AI = \frac{a}{2} \Rightarrow
AC = a

    Diện tích hình bình hành ABCD là:

    S_{ABCD} = 2S_{ABC} =
2.\frac{1}{2}.BI.AC

    = 2.\frac{1}{2}.\frac{a\sqrt{3}}{2}.a =
\frac{a^{2}\sqrt{3}}{2}

    Vậy V_{ABCD.A'B'C'D'} =
S_{ABCD}.CC' = 2a^{3}\sqrt{3}

  • Câu 6: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC), đáy ABC là tam giác cân tại A. Gọi M là trung điểm của BC, J là trung điểm của BM. Xác định góc giữa hai mặt phẳng (SBC)(ABC)?

    Hình vẽ minh họa

    Dễ thấy (SBC) \cap (ABC) =
BC

    Ta có tam giác ABC cân tại A, M là trung điểm của BC suy ra AM\bot BC

    Theo giả thiết SA\bot(ABC). Khi đó \left\{ \begin{matrix}
BC\bot AM \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAM) \Rightarrow BC\bot
SM

    Ta được \left\{ \begin{matrix}
(SBC) \cap (ABC) = BC \\
AM\bot BC \\
SM\bot BC \\
\end{matrix} ight.

    \Rightarrow \left( \widehat{(SBC);(ABC)}
ight) = \widehat{SMA}

  • Câu 7: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:

    Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”

    Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB

    Mặt khác AB ⊥ AD.

    Từ đó suy ra AB ⊥ (SDA)

  • Câu 8: Vận dụng cao

    Trong không gian cho tam giác ABC. Xác định vị trí của điểm M sao cho giá trị của biểu thức P = MA2 + MB2 + MC2 đạt giá trị nhỏ nhất

    Gọi G là trọng tâm giác ABC => \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} = \overrightarrow{0}

    Ta có:

    \begin{matrix}P = \left( \overrightarrow{MG} + \overrightarrow{GA} ight)^{2} +\left( \overrightarrow{MG} + \overrightarrow{GB} ight)^{2} + \left(\overrightarrow{MG} + \overrightarrow{GC} ight)^{2}\hfill \\= 3MG^{2} + 2\overrightarrow{MG}.\left( \overrightarrow{GA} +\overrightarrow{GB} + \overrightarrow{GC} ight) + GA^{2} + GB^{2} +GC^{2}\hfill \\= 3MG^{2} + GA^{2} + GB^{2} + GC^{2} \hfill \\\geq GA^{2} + GB^{2} + GC^{2}\hfill \\\end{matrix}

    Dấu bằng xảy ra khi M trùng với G

    Vậy P_{\min} = GA^{2} + GB^{2} +
GC^{2} với M trùng G là trọng tâm tam giác ABC

  • Câu 9: Vận dụng

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Hình vẽ minh họa

    Giả sử tứ diện đều cạnh bằng a

    Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện

    Mỗi góc cũng là một tứ diện đều có cạnh bằng \frac{a}{2}

    Do đó thể tích phần cắt bỏ là V''
= 4.\frac{V}{8} = \frac{V}{2}

    (Vì tứ diện cạnh giảm một nưả thì thể tích giảm \left( \frac{1}{2} ight)^{3} =
\frac{1}{8}

    Vậy V' = \frac{V}{2} \Rightarrow
\frac{V'}{V} = \frac{1}{2}

  • Câu 10: Vận dụng

    Cho hình lăng trụ đứng ABC.A’B’C’ có cạnh bên AA' = a\sqrt{2}. Biết đáy ABC là tam giác vuông có BA = BC = a, gọi M là trung điểm của BC. Tính khoảng cách giữa hai đường thẳng AM và B’C.

    Hình vẽ minh họa:

    Gọi N là trung điểm của BB’ => MN // B’C

    => B’C // (AMN)

    => d(AM, B’C) = d(B’C, (AMN)) = d(B’, (AMN)) = d(B, (AMN))

    Kẻ BH ⊥ AM, BK ⊥ HN

    => BK ⊥ (AMN)

    => d(AM, B’C) = d(B, (AMN)) = BK

    Ta có:

    \frac{1}{BH^{2}} = \frac{1}{AB^{2}} +\frac{1}{BM^{2}}

    \Rightarrow \frac{1}{BH^{2}} =\frac{1}{a^{2}} + \frac{4}{a^{2}} = \frac{5}{a^{2}}

    \Rightarrow BH =\frac{a}{\sqrt{5}}

    Ta có: BN =\frac{a\sqrt{2}}{2}

    Do tam giác ABM vuông tại B

    \frac{1}{BK^{2}} = \frac{1}{BH^{2}} +\frac{1}{BN^{2}}

    \Rightarrow \frac{1}{BK^{2}} =\frac{5}{a^{2}} + \frac{2}{a^{2}} = \frac{7}{a^{2}}

    \Rightarrow BK =\frac{a\sqrt{7}}{7}

    \Rightarrow d(AM;B'C) =\frac{a\sqrt{7}}{7}

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a; cạnh SA vuông góc với mặt đáy và SA = 2a. Gọi M là trung điểm của cạnh SC. Gọi \mu là góc giữa đường thẳng BM và mặt phẳng (ABC). Xác định \cos\mu?

    Hình vẽ minh họa

    Gọi H là trung điểm của AC => HM // SA và HM = \frac{1}{2}.SA = a

    SA\bot(ABCD) \Rightarrow
HM\bot(ABC)

    \Rightarrow \left( BM;(ABC) ight) =
(BM,BH) = \widehat{MBH}

    Ta có: BH =
\frac{a\sqrt{3}}{2}

    \Rightarrow BM = \sqrt{BH^{2} +
MH^{2}}= \sqrt{\left( \frac{a\sqrt{3}}{2}
ight)^{2} + a^{2}} = \frac{a\sqrt{7}}{2}

    Trong tam giác BMH có:

    \cos\mu = \cos\widehat{MBH} =\dfrac{BH}{BM} = \dfrac{\dfrac{a\sqrt{3}}{2}}{\dfrac{a\sqrt{7}}{2}} =\dfrac{\sqrt{21}}{7}

  • Câu 12: Nhận biết

    Trong không gian cho ba đường thẳng phân biệt a, b, c. Khẳng định nào sau đây sai?

    Mệnh đề đúng: Nếu a và b cùng vuông góc với c thì a // b

  • Câu 13: Vận dụng

    Cho tứ diện ABCDAC = AD = BC = BD = a;AB = x. Gọi M,N lần lượt là trung điểm của các cạnh AB;CD. Biết (ACD)\bot(BCD)(ABC)\bot(ABD). Tính giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCDAC = AD = BC = BD = a;AB = x. Gọi M,N lần lượt là trung điểm của các cạnh AB;CD. Biết (ACD)\bot(BCD)(ABC)\bot(ABD). Tính giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Thông hiểu

    Cho tứ diện ABCD có AB = CD. Gọi I, J E, F lần lượt là trung điểm của AC, BC, BD, AD. Góc (IE; JF) bằng:

    Hình vẽ minh họa

    Ta có: IF là đường trung bình của tam giác ACD => \left\{ \begin{matrix}IF//CD \\IF = \dfrac{1}{2}CD \\\end{matrix} ight.

    JE là đường trung bình của tam giác BCD => \left\{ \begin{matrix}JE//CD \\JE = \dfrac{1}{2}CD \\\end{matrix} ight.

    => \left\{ \begin{matrix}
IF = JE \\
IF//JE \\
\end{matrix} ight.=> Tứ giác IJEF là hình bình hành

    Mặt khác \left\{ \begin{matrix}IJ = \dfrac{1}{2}AB \\JE = \dfrac{1}{2}CD \\\end{matrix} ight.. MÀ AB = CD => IJ = JE

    Do đó IJEF là hình thoi => (IE; JF) = 900

  • Câu 15: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'có cạnh bằng a. Khoảng cách từ A' đến mp (ABCD) bằng:

    Hình vẽ minh họa

    Ta có A'A\bot(ABCD) nên d\left( A',(ABCD) ight) = A'A =
a.

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA\bot(ABC). Gọi H là chân đường cao kẻ từ đỉnh A của tam giác SAB. Xác định kết luận sai?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) ightarrow SA\bot
BC

    Ta có: \left\{ \begin{matrix}
BC\bot AB(gt) \\
BC\bot SA;\left( do\ \ SA\bot(ABC) ight) \\
AB \cap SA = A \\
AB;SA \subset (SAB) \\
\end{matrix} ight.

    \Rightarrow BC\bot(SAB)

    Lại có: \left\{ \begin{matrix}
AH\bot SB \\
AH\bot BC;\left( do\ \ BC\bot(SAB) ight) \\
SB \cap BC = B \\
AB;BC \subset (SBC) \\
\end{matrix} ight.

    \Rightarrow AH\bot(SBC) \Rightarrow
AH\bot BC \Rightarrow AH\bot BC

  • Câu 17: Nhận biết

    Chỉ ra mệnh đề sai trong các mệnh đề dưới đây.

    Mệnh đề sai: “Qua một điểm O cho trước có một và chỉ một đường thẳng vuông góc với một đường thẳng cho trước.”

    Vì qua một điểm O cho trước có vô số đường thẳng vuông góc với một đường thẳng cho trước.

  • Câu 18: Nhận biết

    Cho khối chóp tam giác có chiều cao bằng 5, diện tích đáy bằng 6. Thể tích của hình chóp bằng:

    Ta có: \left\{ \begin{matrix}
B = 6 \\
h = 5 \\
\end{matrix} ight.

    Thể tích khối chóp tam giác là V =
\frac{1}{3}B.h = \frac{1}{3}.6.5 = 10

  • Câu 19: Nhận biết

    Mệnh đề nào sau đây đúng?

    Mệnh đề: “Hai mặt phẳng cùng vuông góc với một mặt phẳng thì song song với nhau” sai vì hai mặt phẳng đó có thể cắt nhau.

    Mệnh đề: “Hai mặt phẳng cùng vuông góc với một mặt phẳng thì vuông góc với nhau.“ sai vì hai mặt phẳng đó có thể tạo với nhau những góc khác 900.

    Dễ thấy mệnh đề: “Hai mặt phẳng cùng vuông góc với một mặt phẳng thì cùng song song với một đường thẳng.” đúng.

    Mệnh đề: “Hai mặt phẳng cùng vuông góc với một mặt phẳng thì cùng vuông góc với một đường thẳng.“ sai vì trong trường hợp mặt phẳng (P) và mặt phẳng (Q) cùng vuông góc với mặt phẳng (R), (P) ⊥ (Q) thì không thể có đường thẳng nào cùng vuông góc với (P) và (Q).

  • Câu 20: Thông hiểu

    Cho tứ diện ABCD;AC = 6a;BD = 8a. Gọi trung điểm của AD,BC lần lượt là M,N. Biết AC\bot DB. Độ dài đoạn thẳng MN là:

    Hình vẽ minh họa

    Gọi P là trung điểm của CD. Khi đó \left\{ \begin{matrix}MP = \dfrac{1}{2}AC = 3a \\NP = \dfrac{1}{2}BD = 4a \\\end{matrix} ight.

    Lại có \left\{ \begin{matrix}
NP//BD;MP//AC \\
AC\bot BD \\
\end{matrix} ight.\  \Rightarrow MP\bot NP hay tam giác MNP vuông tại P

    Theo định lí Pythagore ta có:

    MN = \sqrt{NP^{2} + MP^{2}} =
5a

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 49 lượt xem
Sắp xếp theo