Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách d giữa hai đường thẳng SA và BD.
Hình vẽ minh họa:
Gọi I là trung điểm của AD
=> SI ⊥ AD => SI ⊥ (ABCD)
Kẻ Ax // BD
Ta có d(BD, SA) = d (BD, (SAx)) = d (D, (SAx)) = 2d (I, (SAx))
Kẻ IE ⊥ Ax, kẻ IK ⊥ SE
Khi đó d (I, (SAx)) = IK
Gọi F là hình chiếu của I trên BD, ta có:
Xét tam giác vuông SIE ta có:
=>

