Thể tích khối hộp chữ nhật có ba kích thước là
bằng:
Thể tích cần tìm là:
Thể tích khối hộp chữ nhật có ba kích thước là
bằng:
Thể tích cần tìm là:
Tính thể tích khối chóp tam giác đều cạnh đáy bằng
. Biết độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ
?
Hình vẽ minh họa
Gọi H là trọng tâm tam giác ABC suy ra
Gọi M là trung điểm của BC
Vì độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2
Hay
Xét tam giác SAH vuông tại H ta có:
Vậy
Cho lăng trụ đứng
có đáy ABC là tam giác đều cạnh
. Gọi
là trung điểm cạnh BC. Biết
, khoảng cách giữa hai đường thẳng
và
là:
Hình vẽ minh họa
Gọi là trung điểm của
, ta có
là hình bình hành
.
Kẻ .
Ta có: .
Suy ra,
Ta có: .
Xét vuông tại
ta có:
Cho hình chóp S.ABC có SA = SB = SC và
. Góc giữa cặp vecto
là:
Cho hình lập phương
có cạnh bằng
Khoảng cách từ
đến mp
bằng:
Hình vẽ minh họa
Ta có nên
.
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B , SA vuông góc với mặt phẳng (ABCD), AB = BC = a, AD = 2a. Biết góc giữa SC và mặt phẳng (ABCD) bằng 450. Tính góc giữa mặt phẳng (SAD) và (SCD).

Tam giác ABC vuông cân tại B, suy ra
Vì nên AC là hình chiếu của SC trên mặt phẳng (ABCD).
Khi đó
Gọi M là trung điểm của AD => CM ⊥ AD.
Mà CM ⊥ SA nên CM ⊥ (SAD) => CM ⊥ SD
Hạ CH ⊥ SD . Khi đó SD ⊥ (CMH) => MH ⊥ SD
Ta có:
Ta lại có:
Tam giác MHC vuông tại M
Vậy
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề: “Góc giữa đường thẳng và mặt phẳng bằng góc giữa đường thẳng và đường thẳng b với b vuông góc với (P).” sai vì hai góc này phụ nhau.
Mệnh đề: “Góc giữa đường thẳng a và mặt phẳng (P) bằng góc giữa đường thẳng a và mặt phẳng (Q) thì mặt phẳng (P) song song với mặt phẳng (Q).” sai vì (P) có thể trùng với (Q).
Mệnh đề: “Góc giữa đường thẳng a và mặt phẳng (P) bằng góc giữa đường thẳng b và mặt phẳng (P) thì a song song với b.” sai vì a có thể trùng với b.
Cho vecto
≠
và hai vecto
và
không cùng phương. Nếu vecto
vuông góc với cả hai vecto
và
thì
,
và
:
Trường hợp "Đồng phẳng" và " Có thể đồng phẳng" sai vì có thể xảy ra trường hợp như hình vẽ sau:

Giả sử trường hợp "Không đồng phẳng" sai tức là ba vecto ,
và
đồng phẳng.
Khi đó vì điều này mẫu thuẫn với giả thiết hai vecto
và
không cùng phương.
Vậy đáp án đúng là "Không đồng phẳng"
Cho hình chóp S.ABCD có đáy là ABCD là hình vuông, cạnh bên SA vuông góc với mặt phẳng đáy. Đường thẳng SD tạo với mặt phẳng (SAB) một góc 450. Gọi I là trung điểm của cạnh CD. Góc giữa hai đường thẳng BI và SD bằng (số đo góc được làm tròn đến hàng đơn vị).
Hình vẽ minh họa:
Gọi a là số đo cạnh của hình vuông ABCD
Ta có:
Ta lại có:
I là trung điểm của CH nên
Xét tam giác BCI vuông tại C ta có:
Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa
Hình vẽ minh họa:
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.
Cho tứ diện đều ABCD. Số đo góc giữa hai đường thẳng AB và CD là:
Gọi a là độ dài cạnh tứ diện. Khi đó
Cho hình hộp chữ nhật
có
. Gọi mặt phẳng
qua
và vuông góc với
. Tính diện tích thiết diện tạo bởi
và hình hộp chữ nhật đã cho?
Hình vẽ minh họa
Hình chữ nhật có
. Lấy
là trung điểm của
. Ta dễ dàng chứng minh
Ta lại có suy ra mặt phẳng
chính là mặt phẳng
.
Qua điểm M kẻ MN // AD. Thiết diện khi đó là hình chữ nhật ADMN.
Ta tính được
Suy ra diện tích hình chữ nhật ADMN là: .
Khối lăng trụ đứng
có đáy
là tam giác vuông cân tại A. Biết
và góc giữa đường thẳng
và mặt phẳng
bằng
. Tính thể tích khối lăng trụ đứng
.
Hình vẽ minh họa
Ta có:
Suy ra
Ta có:
Vậy
Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a, cạnh bên bằng
. Gọi O là tâm của đáy ABC, d1 là khoảng cách từ A đến mặt phẳng (SBC) và d2 là khoảng cách từ O đến mặt phẳng (SBC). Tính d = d1 + d2.
Hình vẽ minh họa:
Gọi M là trung điểm BC.
Ta có:
Gọi H, K lần lượt là hình chiếu của O và A lên SM =>
Ta có:
Ta có:
Xét tam giác SOM có:
Vậy
Các đường thẳng cùng vuông góc với một đường thẳng thì:
Đáp án "Thuộc một mặt phẳng" sai vì có thể xảy ra trường hợp nằm trên nhiều mặt phẳng khác nhau.
Đáp án "Vuông góc với nhau" sai vì có thể xảy ra trường hợp chúng song song với nhau.
Đáp án "Song song với nhau" sai vì có thể xảy ra trường hợp chúng cắt nhau.
Đáp án "Song song với một mặt phẳng" đúng vì chúng đồng phẳng.
Cho tứ diện đều ABCD có M là trung điểm của cạnh CD, gọi
là góc giữa hai đường thẳng AM và BC. Giá trị
bằng:

Giả sử cạnh của tứ diện đều bằng a
Vì M là trung điểm của CD. Nên AM là đường cao trong tam giác ACD đều.
=>
Ta có:
=>
=>
Khối chóp tứ giác
có đáy
là hình vuông cạnh bằng
,
. Mặt phẳng
tạo với mặt phẳng đáy một góc
. Xác định thể tích khối chóp
?
Hình vẽ minh họa
Gọi H là trung điểm của AB
Tam giác SAB cân tại S nên
Ta có:
Vậy SH là đường cao của hình chóp
Xét tam giác AHS vuông tại H ta có:
Vậy thể tích hình chóp là:
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề “Hai mặt phẳng cùng song song với một mặt phẳng thứ ba thì song song với nhau” là sai. Hai mặt phẳng cùng song song với một mặt phẳng thứ ba thì song song hoặc trùng nhau.
Mệnh đề “Qua một đường thẳng cho trước có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước” là sai. Nếu đường thẳng vuông góc với mặt phẳng cho trước thì có vô số mặt phẳng qua đường thẳng và vuông góc với mặt phẳng đó. Nếu đường thẳng không vuông góc với mặt phẳng cho trước thì không có mặt phẳng nào vuông góc với mặt phẳng đó.
Mệnh đề “Hai mặt phẳng cùng vuông góc với một mặt phẳng thứ ba thì vuông góc với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau (giao truyến vuông góc với mặt phẳng kia).
Vậy mệnh đề đúng là: “Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với hai mặt phẳng cắt nhau cho trước.”
Cho hình lập phương ABCD.A’B’C’D’. Đường thẳng AC’ vuông góc với mặt phẳng nào sau đây?
Hình vẽ minh họa:

Ta có: AA’D’A là hình vuông => AD’ ⊥ A’D
ABCD.A’B’C’D là hình lập phương => AB ⊥ A’D
=> A’D ⊥ (ABC’D’) => A’D ⊥ AC’
Ta lại có: ABCD là hình vuông => AC ⊥ BD
Mà A’A ⊥ BD => BD ⊥ (AA’C’C) => BD ⊥ AC’
Kết hợp với A’D ⊥ AC’ => A’C ⊥ (A’BD)
Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD), AH và AK lần lượt là đường cao của tam giác SAB và SAD. Hai mặt phẳng (SAC) và (AHK) vuông góc vì:
"AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC); và AK ⊥ (SCD) (do AK ⊥ SD và AK ⊥ CD)" sai vì hai điều kiện AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC) và AK ⊥ (SCD) (do AK vuông góc với SD và AK ⊥ CD) chưa liên quan đến (SAC).
"AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC); và AK ⊥ (SCD) (do AK ⊥ SD và AK ⊥ CD) nên SC ⊥ (AHK)" đúng
Ta có: AH ⊥(SBC) (vì AH ⊥ SB; AH ⊥ BC) nên AH ⊥ SC (1)
Và AK ⊥ (SCD) (vì AK ⊥ SD; AK ⊥ DC) nên AK ⊥ SC (2)
Từ (1) và (2) suy ra: SC ⊥ (AHK)
Từ đó suy ra hai mặt phẳng (AHK) và (SAC) vuông góc.
Vì chưa đủ điều kiện kết luận SC ⊥ (AHK)
=> "AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC) nên SC ⊥ (AHK)" và "AK ⊥ (SBC) (do AK ⊥ SD và AK ⊥ CD) nên SC ⊥ (AHK)" đều sai