Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho lăng trụ đều ABC.A’B’C’ có AB = 1; AA’ = m (m > 0). Để góc giữa AB’ và BC’ bằng 600 thì m có giá trị là bao nhiêu?

    Hình vẽ minh họa

    Tìm giá trị của m để góc tạo bời 2 đường thẳng thỏa mãn điều kiện

    Giả sử M, N, O lần lượt là trung điểm của BB’; B’C’; AB

    => MP // AB’; MN // BC’

    => Góc cần tìm là góc giữa MP và MN

    => MP = MN = \frac{{\sqrt {{m^2} + 1} }}{2}

    Lấy Q là trung điểm của A’B’ khi đó suy ra:

    \begin{matrix}  PN = \sqrt {P{Q^2} + Q{N^2}}  = \sqrt {{m^2} + \dfrac{1}{4}}  \hfill \\   \Rightarrow \cos \widehat {PMN} = \dfrac{{P{M^2} + M{N^2} - P{N^2}}}{{2.PM.MN}} =  \pm \dfrac{1}{2} \hfill \\   \Rightarrow m = \sqrt 2  \hfill \\ \end{matrix}

  • Câu 2: Vận dụng

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Gọi K là trung điểm của DD’. Tính khoảng cách giữa hai đường thẳng CK, A’D.

    Hình vẽ minh họa:

    Trong mặt phẳng (CDD’C), gọi P là giao điểm của CK và C’D’

    => KD’ là đường trung bình của ∆PCC’

    => D’ là trung điểm của PC’

    Trong mặt phẳng (A’B’C’D’), gọi M là giao điểm của PB’ và A’D’

    Ta có: A’D // B’C => A’D // (AKB’)

    => d(CK, A’D) = d (A’,(CKB’)) = \frac{1}{2}d(C’,(CPB’))

    Xét tứ diện PCC’B’ ta có:

    C’P, C’B và C’B đôi một vuông góc với nhau

    Đặt d(C’, (CPB’)) = x, thì:

    \frac{1}{x^{2}} = \frac{1}{CC'^{2}}+ \frac{1}{C'B'^{2}} + \frac{1}{C'P^{2}}

    \Rightarrow \frac{1}{x^{2}} =\frac{1}{a^{2}} + \frac{1}{a^{2}} + \frac{1}{4a^{2}} =\frac{9}{4a^{2}}

    \Rightarrow d\left( C';(CPB')ight) = x = \frac{2a}{3}

    \Rightarrow d(CK;A'D) =\frac{1}{2}d\left( C';(CPB') ight) = \frac{1}{2}.\frac{2a}{3}= \frac{a}{3}

  • Câu 3: Thông hiểu

    Cho khối hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông, đường chéo BD = 2a. Biết góc giữa hai mặt phẳng (A'BD) và mặt phẳng (ABCD) bằng 30^{0}. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi góc giữa mặt phẳng (A'BD) và mặt phẳng (ABCD)\alphaO =
AC \cap BD

    Ta có: \left\{ \begin{matrix}
AO\bot BD \\
AA'\bot BD \\
\end{matrix} ight.\  \Rightarrow A'O\bot BD

    \Rightarrow \alpha = (AO;A'O) =
\widehat{AOA'} = 30^{0}

    Ta có ABCD là hình vuông, BD = 2a nên AB
= AD = a\sqrt{2}

    Ta có: AO = \frac{1}{2}AC = \frac{1}{2}BD
= a

    Xét tam giác AOA’ có AA' =
AO.tan30^{0} = \frac{a\sqrt{3}}{3}

    \Rightarrow
V_{ABCD.A'B'C'D'} = AA'.S_{ABCD} =
\frac{a\sqrt{3}}{3}.2a^{2} = \frac{2a^{3}\sqrt{3}}{3}

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh 2a, \widehat{ABC} = 60^{0}, SA = a\sqrt{3} và SA ⊥ (ABCD). Tính góc giữa đường thẳng SA và mặt phẳng (SBD).

    Hình vẽ minh họa:

    Vì tam giác ABC cân và có góc 600 nên nó là tam giác đều

    Gọi O là trung điểm của AC.

    Ta có: Hai mặt phẳng (SAC) và (SBD) vuông góc nhau theo giao tuyến SO

    => Hình chiếu vuông góc của SA lên mặt phẳng (SBD) là SO

    => \widehat{\left( SA,(SBD) ight)} =\widehat{(SA,\ SO)} = \widehat{ASO}

    Xét tam giác vuông SOA ta có: \left\{\begin{matrix}OA = \dfrac{AC}{2} = \dfrac{2a}{2} = a \\SA = a\sqrt{3} \\\end{matrix} ight.

    => \tan\widehat{OSA} = \frac{AO}{SA} =\frac{1}{\sqrt{3}} \Rightarrow \widehat{OSA} = 30^{0}

    Vậy góc giữa SA và mặt phẳng (SBD) bằng 300.

  • Câu 5: Thông hiểu

    Cho hình lăng trụ đứng ABC.A'B'C' có đáy là các tam giác đều cạnh bằng \sqrt{3} và cạnh bên bằng 1. Tính góc giữa hai đường thẳng BB'AC'?

    Hình vẽ minh họa

    Ta có:

    BB'//CC' \Rightarrow
(BB';AC') = (CC';AC') = \widehat{AC'C}

    Khi đó tam giác ACC' vuông cân tại C nên \tan\widehat{AC'C} =
\frac{AC}{CC'} = \frac{\sqrt{3}}{1} = \sqrt{3}

    \Rightarrow \widehat{AC'C} =
60^{0}

    \Rightarrow (BB';AC') =
\widehat{AC'C} = 60^{0}

  • Câu 6: Vận dụng cao

    Cho hình lăng trụ tam giác đều ABC.A’B’C’ có cạnh bằng a, chiều cao b. Biết góc giữa hai đường thẳng AC’ và A’B bằng 600. Tính b theo a.

    Hình vẽ minh họa:

    Lấy M, N, P, Q lần lượt là trung điểm của các cạnh AB, AA’, A’C’, A’B’ suy ra MN, NP, PQ và MQ lần lượt là đường trung bình của tam giác ABA’, AA’C’, A’B’C’ và hình chữ nhật ABB’A’. Suy ra:

    \left\{ \begin{matrix}MN// = \dfrac{1}{2}A'B \\NP// = \dfrac{1}{2}AC' \\PQ = \dfrac{1}{2}B'C' = \dfrac{a}{2} \\MQ// = BB' \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}MN = NP \\(AC';A'B) = \widehat{MNP} = 60^{0} \\\end{matrix} ight.

    Từ đó suy ra: tam giác MNP đều

    => MP = MN = \frac{a\sqrt{2}}{2}

    Kết hợp với BB'\bot(A'B'C)
\Rightarrow MQ\bot(A'B'C') \Rightarrow MQ\bot
PQ

    => Tam giác MNP vuông tại Q

    => MQ^{2} = MP^{2} - PQ^{2} =
\frac{a^{2}}{4} \Rightarrow MQ = \frac{a}{2}

    =>b = \frac{a}{2}

  • Câu 7: Nhận biết

    Cho hình hộp chữ nhật ABCD.A'B'C'D'. Mặt phẳng (BCD'A') vuông góc với mặt phẳng nào trong các mặt phẳng dưới đây?

    Hình vẽ minh họa

    Ta có: ABCD.A'B'C'D' là hình hộp chữ nhật suy ra \left\{ \begin{matrix}
BC\bot AB \\
BC\bot BB' \\
\end{matrix} ight.\  \Rightarrow BC\bot(ABB'A')

    \Rightarrow
(BCD'A')\bot(ABB'A')

  • Câu 8: Nhận biết

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:

    Hình vẽ minh họa:

    Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.

    Gọi O là hình chiếu của S trên mặt phẳng (ABCD).

    Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.

    Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:

    \begin{matrix}SO = \sqrt{SB^{2} - OB^{2}} \hfill \\= \sqrt{a^{2} - \dfrac{a^{2}}{2}} = \sqrt{\dfrac{a^{2}}{2}} =\dfrac{a\sqrt{2}}{2}\hfill \\\end{matrix}

  • Câu 9: Thông hiểu

    Cho hình lâp phương ABCD.EFGH. Hãy xác định góc giữa cặp vecto \overrightarrow {AB} và \overrightarrow {EG}?

    Hình vẽ minh họa

    Hãy xác định góc giữa cặp vecto

    Ta có: AEGC là hình chữ nhật nên EG // AC

    Vì ABCD là hình vuông nên

    => \left( {\overrightarrow {AB} ,\overrightarrow {EG} } ight) = \left( {\overrightarrow {AB} ;\overrightarrow {AC} } ight) = \widehat {BAC} = {45^0}

  • Câu 10: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có các cạnh bằng 1. Tính khoảng cách giữa hai mặt phẳng (ABB')(CC'D').

    Hình vẽ minh họa

    ABCD.A'B'C'D' là hình lập phương nên (ABB')//(CC'D')BC\bot(ABB'A').

    Khoảng cách giữa hai mặt phẳng (ABB')(CC'D')

    d\left( (ABB'),(CC'D')
ight) = d\left( C,(ABB'A') ight) = CB = 1

  • Câu 11: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 4a. Cạnh bên hình chóp SA = 2a. Hình chiếu vuông góc của đỉnh S trên mặt phẳng đáy là trung điểm M của OA. Gọi α là góc giữa SD và mặt phẳng đáy. Chọn mệnh đề đúng trong các mệnh đề dưới đây.

    Hình vẽ minh họa:

    Ta có: SM ⊥ (ABCD)

    => Hình chiếu vuông góc của SD trên mặt phẳng (ABCD) là cạnh MD.

    \Rightarrow \alpha = \left( SD,(ABCD)
ight) = (SD;MD) = \widehat{SDM}

    Ta tính được: SM = \sqrt{SA^{2} - AM^{2}}
= a\sqrt{2}

    Xét tam giác ADM có:

    MD = \sqrt{AM^{2} + AD^{2} -
2AM.AD.cos45^{0}} = a\sqrt{10}

    => \tan\alpha = \tan\widehat{SDM} =
\frac{SM}{MD} = \frac{\sqrt{5}}{5}

  • Câu 12: Nhận biết

    Mệnh đề nào sau đây là mệnh đề sai?

    Mệnh đề sai: “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì song song.”

    Vì hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì có thể cắt nhau, chéo nhau.

  • Câu 13: Thông hiểu

    Một hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng đáy. Biết góc giữa SA và mặt phẳng (SBC) bằng 45^{0}. Tính thể tích khối chóp S.ABC đã cho.

    Hình vẽ minh họa

    Gọi M là trung điểm của BC thì \left\{
\begin{matrix}
AM\bot BC \\
SA\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAM)

    Từ đây dễ thấy góc cần tìm là \alpha =
\widehat{ASM} = 45^{0}

    Do đó tam giác SAM vuông cân tại A và SA
= AM = \frac{a\sqrt{3}}{2}

    \Rightarrow V_{S.ABC} =
\frac{1}{3}.\frac{a\sqrt{3}}{2}.\frac{a^{2}\sqrt{3}}{4} =
\frac{a^{3}}{8}

  • Câu 14: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA ⊥ (ABCD). Gọi AM, AN lần lượt là đường cao của tam giác SAB và tam giác SAD. Khẳng định nào dưới đây là khẳng định đúng?

    Hình vẽ minh họa:

    Khẳng định đúng trong các khẳng định đã cho

    Ta có: SA ⊥ (ABCD) => SA ⊥ BC

    Mà AB ⊥ BC => BC ⊥ (SAB)

    => BC ⊥ AE

    Mà AM nằm trong mặt phẳng (SAB)

    Xét tam giác SAB có:

    AM ⊥ SB

    Mà BC ⊥ AM => AM ⊥ (SBC) => AM ⊥ SC

    Chứng minh tương tự ta được: AN ⊥ SC

    => SC ⊥ (AMN)

  • Câu 15: Thông hiểu

    Một tấm ván hình chữ nhật ABCD được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu 2\ m. Cho biết AB = 1\ m, AD
= 3,5\ m. Tính góc giữa đường thẳng BD và đáy hố. (Kết quả làm tròn đến độ).

    Đáp án : 33\ ^{0}

    Đáp án là:

    Một tấm ván hình chữ nhật ABCD được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu 2\ m. Cho biết AB = 1\ m, AD
= 3,5\ m. Tính góc giữa đường thẳng BD và đáy hố. (Kết quả làm tròn đến độ).

    Đáp án : 33\ ^{0}

    Gọi H, K lần lượt là hình chiếu của C, D lên đáy hố là mặt phẳng (AKHB).

    Khi đó BD có hình chiếu lên đáy là KB, suy ra

    \left( BD,(AKHB) ight) = (BD,BK) =
\widehat{DBK}.

    Với độ sâu hố là DK = CH = 2(m), ta có

    AK = \sqrt{AD^{2} - DK^{2}} =
\frac{\sqrt{33}}{2}.

    KB = \sqrt{AK^{2} + AB^{2}} =
\frac{\sqrt{37}}{2}.

    \tan DBK = \frac{DK}{KB} =
\frac{4\sqrt{37}}{37}

    \Rightarrow \widehat{DBK} \approx
33{^\circ}.

  • Câu 16: Vận dụng

    Cho hình chóp S.ABCD có ABCD là hình vuông, tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm BC. Gọi \alpha là góc hợp bởi đường thẳng SA và mặt phẳng (SDM). Tính \alpha

    + Không mất tính tổng quát, đặt AB = 2

    + Gọi N là trung điểm AB suy ra SN \bot AB \Rightarrow SN \bot \left( {ABCD} ight)

    + Gọi h = d\left( {A,\left( {SDM} ight)} ight) \Rightarrow \sin \alpha  = \frac{h}{{SA}}

    Gọi I = DM \cap CN,\,J = AB \cap DM

    + Ta có \frac{{d\left( {A,\left( {SDM} ight)} ight)}}{{d\left( {N,\left( {SDM} ight)} ight)}} = \frac{{{\text{AJ}}}}{{NJ}} = \frac{4}{3}

    \Rightarrow h = d\left( {A,\left( {SDM} ight)} ight) = \frac{4}{3}d\left( {N,\left( {SDM} ight)} ight)

    + Ta có 

    \Delta CNB = \Delta DMC \Rightarrow \widehat {NCB} = \widehat {MDC}

    \Rightarrow \widehat {NCB} + \widehat {DMC} = \widehat {MDC} + \widehat {DMC} = 180^\circ  - \widehat {MCD} = 90^\circ

    \Rightarrow DM \bot CN \Rightarrow DM \bot \left( {SNC} ight)

    + Gọi NH là đường cao \Delta SNI \Rightarrow NH \bot \left( {SDM} ight)

    \Rightarrow d\left( {N,\left( {SDM} ight)} ight) = NH

    + Tam giác NJI đồng dạng tam giác MBJ

    \begin{matrix}   \Rightarrow \dfrac{{NI}}{{MB}} = \dfrac{{NJ}}{{MJ}} \hfill \\   \Rightarrow NI = \dfrac{{NJ}}{{MJ}}.MB = \dfrac{{NJ}}{{\sqrt {M{B^2} + B{J^2}} }} \hfill \\  MB = \dfrac{3}{{\sqrt {{1^2} + {2^2}} }}.1 = \dfrac{3}{{\sqrt 5 }} \hfill \\ \end{matrix}

    + Tam giác SAB là tam giác đều cạnh bằng 2 \Rightarrow SN = \sqrt 3

    \frac{1}{{N{H^2}}} = \frac{1}{{N{S^2}}} + \frac{1}{{N{I^2}}} \Rightarrow NH = \frac{{3\sqrt 2 }}{4}

    h = d\left( {A,\left( {SDM} ight)} ight) = \frac{4}{3}d\left( {N,\left( {SDM} ight)} ight) = \frac{4}{3}.\frac{{3\sqrt 2 }}{4} = \sqrt 2

    \Rightarrow \sin \alpha  = \frac{h}{{SA}} = \frac{{\sqrt 2 }}{2} \Rightarrow \alpha  = 45^\circ

  • Câu 17: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.

    Hình vẽ minh họa:

    Ta có:

    SA ⊥ BC

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC

  • Câu 18: Nhận biết

    Công thức tính thể tích V của khối nón có bán kính r và chiều cao h là:

    Công thức tính thể tích là: V =
\frac{1}{3}\pi r^{2}h

  • Câu 19: Nhận biết

    Chọn mệnh đề đúng trong các mệnh đề sau?

    Ta có: \left\{ \begin{matrix}
a\bot b \\
b//c \\
\end{matrix} ight.\  \Rightarrow a\bot c

    Vậy mệnh đề đúng là: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.”

  • Câu 20: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK, biết AB = 6cm;AC = 7cm;AD = 4cm.

    Hình vẽ minh họa

    Ta có: V_{ABCD} =\frac{1}{2}AB.\frac{1}{2}AD.AC = \frac{1}{2}.6.7.4 = 28\left( cm^{3}ight)

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}V_{ABCD} = 7\left(cm^{3} ight)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 49 lượt xem
Sắp xếp theo