Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) ,
. Góc giữa SC với mặt phẳng (ABCD) là:
Hình vẽ minh họa:
Ta có:
Lại có:
=>
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) ,
. Góc giữa SC với mặt phẳng (ABCD) là:
Hình vẽ minh họa:
Ta có:
Lại có:
=>
Cho hình lập phương
. Mặt phẳng nào dưới đây không vuông góc với
?
Hình vẽ minh họa
Dễ thấy mặt phẳng không vuông góc với
.
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh bằng a. Cạnh bên SA vuông góc với đáy, SB hợp với mặt đáy một góc 600. Tính khoảng cách d từ điểm D đến mặt phẳng (SBC)
Hình vẽ minh họa

Ta có:
Ta có:
=>
Kẻ (1)
Ta có:
Từ (1) và (2) =>
Cho hình chóp S.ABC có SA = SB = SC và
. Góc giữa cặp vecto
là:
Cho ba đường thẳng phân biệt a, b, c. Mệnh đề nào sau đây đúng?
Khi cho ba đường thẳng phân biệt a, b, c thì mệnh đề : “Nếu a song song với b và c vuông góc với a thì c vuông góc với b” là mệnh đề đúng.
Cho hình chóp S.ABCD có ABCD là hình thoi tâm O, SA = SC; SB = SD. Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa:
Ta có: Tam giác SAC và tam giác SBD lần lượt là tam giác cân tại S
=> SO ⊥ AC, SO ⊥ BD
=> SO ⊥ (ABCD)
Dễ thấy:
SO ⊥ (ABCD)
AC ⊥ BD
BD ⊥ (SAC)
Là những khẳng định đúng.
Cho hình lập phương ABCD.A’B’C’D’. Tan góc giữa đường thẳng BD’ và mặt phẳng (ADD’A’) bằng bao nhiêu?
Hình vẽ minh họa:
Do ABCD.A’B’C’D’ là hình lập phương nên BA ⊥ (ADD’A’)
Do đó góc giữa đường thẳng BD’ và mặt phẳng (ADD’A’) là góc
Gọi độ dài cạnh của hình lập phương là a
Khi đó
=>
Vậy tan góc giữa đường thẳng BD’ và mặt phẳng (ADD’A’) là
Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng a và các góc phẳng đỉnh B đều bằng 600.
Cặp đường thẳng nào sau đây không vuông góc với nhau?
Hình ảnh minh họa

Xét tam giác CB'D' có ba cạnh bằng nên tam giác không vuông.
=> B’C và CD’ không vuông góc với nhau.
Công thức tính thể tích khối lăng trụ có diện tích đáy
và chiều cao
là:
Thể tích khối lăng trụ có diện tích đáy và chiều cao
là:
Cho hình lập phương như hình vẽ:

Biết
. Xác định thể tích của khối lập phương đã cho.
Gọi độ dài cạnh của khối lập phương là a; (x > 0)
Xét tam giác A’B’C’ vuông cân tại B’ ta có:
Xét tam giác A’AC’ vuông tại A’ ta có:
Vậy thể tích khối lập phương là
Cho a, b, c là các đường thẳng trong không gian. Mệnh đề nào dưới đây sai?
Nếu a ⊥ b, b ⊥ c thì a // c hoặc a cắt c hoặc a trùng với c hoặc a chéo c.
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
, biết
.
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho tứ diện đều
cạnh bằng
,
là trung điểm của cạnh
. Gọi
là góc giữa hai đường thẳng
và
. Khi đó
bằng bao nhiêu?
Hình vẽ minh họa
Gọi N là trung điểm của BC
=> MN là đường trung bình tam giác ABC
Vì tam giác BCD và tam giác ACD là các tam giác đều cạnh a
Vì
Xét tam giác MND ta có:
Tìm mệnh đề sai trong các mệnh đề sau:
Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”
Cho hình chóp S.ABCD có đáy là ABCD là hình vuông, cạnh bên SA vuông góc với mặt phẳng đáy. Đường thẳng SD tạo với mặt phẳng (SAB) một góc 450. Gọi I là trung điểm của cạnh CD. Góc giữa hai đường thẳng BI và SD bằng (số đo góc được làm tròn đến hàng đơn vị).
Hình vẽ minh họa:
Gọi a là số đo cạnh của hình vuông ABCD
Ta có:
Ta lại có:
I là trung điểm của CH nên
Xét tam giác BCI vuông tại C ta có:
Cho hình chóp tam giác đều S.ABC có độ dài cạnh đáy bằng a, cạnh bên bằng
. Gọi O là tâm của đáy ABC, d1 là khoảng cách từ A đến mặt phẳng (SBC) và d2 là khoảng cách từ O đến mặt phẳng (SBC). Tính d = d1 + d2.
Hình vẽ minh họa:
Gọi M là trung điểm BC.
Ta có:
Gọi H, K lần lượt là hình chiếu của O và A lên SM =>
Ta có:
Ta có:
Xét tam giác SOM có:
Vậy
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng
và cạnh bên bằng 2a. Góc giữa đường thẳng SB với mặt phẳng (SAC) bằng
Gọi . Ta có S.ABCD là hình chóp tứ giác đều suy ra
.
Vì
Có
Suy ra hình chiếu vuông góc của đường thẳng SB lên mặt phẳng (SAC) là đường thẳng SO.
Do đó góc giữa SB và mặt phẳng (SAC) bằng góc giữa hai đường thẳng SB và SO và bằng góc .
Có
Vì
Xét tam giác SOB có
Ta có
Cho một khối chóp tứ giác đều có cạnh đáy bằng
, biết độ dài cạnh bên và cạnh đáy tỉ lệ
. Tính thể tích V của khối chóp?
Hình vẽ minh họa
Gọi là tâm hình vuông
Ta có: tam giác SAC cân, O là trung điểm của AC nên
Tương tự tam giác SBD cân, O là trung điểm của BD nên
Trong tam giác SOC vuông tại O ta có:
Vậy thể tích hình chóp là:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA ⊥ (ABCD). Gọi I, J, K lần lượt là trung điểm của các cạnh AB, BC, SB. Khẳng định nào sau đây là khẳng định đúng?
Hình vẽ minh họa:

Xét tam giác SBC ta có:
=> KJ // SC (*)
Xét tam giác SAB ta có:
=> KI // SA (**)
Từ (*) và (**) => (IJK) // (SAC) (1)
Vì ABCD là hình vuông => BD ⊥ AC
Mà SA ⊥ BD => BD ⊥ (SAC)
Kết hợp với (1) => BD ⊥ (IJK)
=>
Cho hình chóp
có
, đáy
là tam giác cân tại
. Gọi
là trung điểm của
,
là trung điểm của
. Xác định góc giữa hai mặt phẳng
và
?
Hình vẽ minh họa
Dễ thấy
Ta có tam giác ABC cân tại A, M là trung điểm của BC suy ra
Theo giả thiết . Khi đó
Ta được