Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho lăng trụ ABCD.A’B’C’D’ có đáy là hình thoi cạnh a, \widehat{BAD} = 60^{0}. Hình chiếu vuông góc của B’ xuống mặt đáy trùng với giao điểm hai đường chéo của đáy và cạnh bên BB’ = a. Tính góc giữa cạnh bên và mặt đáy.

    Hình vẽ minh họa:

    Gọi O là giao điểm của AC và BD

    Theo giả thiết ta có: B’O ⊥ (ABCD)

    Dó đó \left( BB';(ABCD) ight) =
(BB';BO) = \widehat{B'BO}

    Vì tam giác ABD đều cạnh a => BO =
\frac{BD}{2} = \frac{a}{2}

    Tam giác B’BO vuông ta có:

    \begin{matrix}\cos\widehat{B'BO} = \dfrac{BO}{BB'} = \dfrac{1}{2} \hfill \\\Rightarrow \widehat{B'BO} = 60^{0} \hfill \\\end{matrix}

  • Câu 2: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a và I = AC \cap BD. Gọi M, N lần lượt là trung điểm của C'D', AA'. Gọi \varphi là góc tạo bởi đường thẳng IN và mặt phẳng (ACM). Tính \sin \varphi.

    Tính góc giữa đường thẳng và mặt phẳng

    Gọi H là hình chiếu vuông góc của điểm N lên mặt phẳng (ACM).

    Khi đó: NH = h = d\left( {N,\left( {ACM} ight)} ight) = IN.\sin \varphi

    Ta có: h = d\left( {N,\left( {ACM} ight)} ight) = \frac{1}{2}d\left( {A',\left( {ACM} ight)} ight) = \frac{{3{V_{A'ACM}}}}{{2{S_{ACM}}}}

    Xét tam giác ACM có:  CM = \frac{{\sqrt 5 }}{2}a

    \begin{matrix}  A{M^2} = \dfrac{{A{{D'}^2} + A{{C'}^2}}}{2} - \dfrac{{C'{{D'}^2}}}{4} \hfill \\   = \dfrac{{{{\left( {\sqrt 2 a} ight)}^2} + {{\left( {\sqrt 3 a} ight)}^2}}}{2} - \dfrac{{{a^2}}}{4} = \dfrac{9}{4}{a^2} \Rightarrow AM = \dfrac{3}{2}a \hfill \\   \Rightarrow {S_{ACM}} = \sqrt {p\left( {p - AC} ight)\left( {p - CM} ight)\left( {p - AM} ight)}  = \dfrac{3}{4}{a^2} \hfill \\  \left( {p = \dfrac{{AC + CM + AM}}{2}} ight) \hfill \\  {V_{A'ACM}} = {V_{M.A'AC}} = \dfrac{1}{2}{V_{D'.A'AC}} = \dfrac{1}{6}{V_{ACD.A'C'D'}} = \dfrac{1}{{12}}{V_{{\text{lp}}}} = \dfrac{{{a^2}}}{{12}} \hfill \\   \Rightarrow h = IN = \dfrac{a}{6} \hfill \\ \end{matrix}

    Vậy \sin \varphi  = \frac{h}{{IN}} = \frac{{\sqrt 3 }}{9}

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABCD có tất cả các cạnh bằng nhau và đáy ABCD là hình vuông tâm O. Kết quả nào sau đây đúng?

    Hình chóp S.ABCD có tất cả các cạnh bên và cạnh đáy bằng nhau

    Do đó: SA = SC suy ra tam giác SAC cân tại A

    Lại có ABCD là hình vuông

    => O là trung điểm cạnh AC

    => SO vừa là đường trung tuyến vừa là đường cao của tam giác SAC

    => SO\bot AC

    Tương tự SO vừa là đường trung tuyến vừa là đường cao của tam giác SBD

    => SO\bot BD

    Từ đó ta có: \left\{ \begin{matrix}
SO\bot AC \subset (ABCD) \\
SO\bot BD \subset (ABCD) \\
\end{matrix} ight.

    \Rightarrow SO\bot(ABCD)

     

  • Câu 4: Nhận biết

    Trong không gian cho đường thẳng Δ và điểm O. Qua điểm O có bao nhiêu mặt phẳng vuông góc với mặt phẳng Δ?

    Trong không gian cho đường thẳng Δ và điểm O. Qua điểm O có đúng một mặt phẳng vuông góc với mặt phẳng Δ.

  • Câu 5: Thông hiểu

    Cho tứ diện ABCD có AC = a, BD = 3a. Gọi M, N lần lượt là trung điểm của AD và BC. Biết AC vuông góc với BD. Tính MN.

    Hình vẽ minh họa:

    Gọi P là trung điểm của AB => PN, PM lần lượt là đường trung bình của tam giác ABC và tam giác ABD.

    => \left\{ \begin{matrix}PN = \dfrac{1}{2}AC = \dfrac{a}{2} \\PM = \dfrac{1}{2}BD = \dfrac{3a}{2} \\\end{matrix} ight.

    Ta có: AC\bot BD \Rightarrow PN\botPM

    => MN = \sqrt{PN^{2} + PM^{2}} =\sqrt{\frac{a^{2}}{4} + \frac{9a^{2}}{4}} =\frac{a\sqrt{10}}{2}

  • Câu 6: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = 2a, BC = a. Hình chiếu vuông góc H của đỉnh S trên mặt phẳng đáy là trung điểm của cạnh AB, góc giữa đường thẳng SC và mặt phẳng đáy bằng 600. Tính cosin góc giữa hai đường thẳng SB và AC.

    Tính cosin góc giữa hai đường thẳng SB và AC

    +) Ta có:

    \begin{matrix}  \overrightarrow {SB} .\overrightarrow {AC}  = \left( {\overrightarrow {SH}  + \overrightarrow {HB} } ight)\left( {\overrightarrow {AB}  + \overrightarrow {BC} } ight) \hfill \\   = \overrightarrow {SH} .\overrightarrow {AB}  + \overrightarrow {SH} .\overrightarrow {BC}  + \overrightarrow {HB} .\overrightarrow {AB}  + \overrightarrow {HB} .\overrightarrow {BC}  \hfill \\   = \overrightarrow {HB} .\overrightarrow {AB}  + \overrightarrow {HB} .\overrightarrow {BC}  \hfill \\   = \dfrac{1}{2}A{B^2} = 2{a^2} \hfill \\ \end{matrix}

    +) Mặt khác

    \begin{matrix}  AC = a\sqrt 5 ;CH = \sqrt {{a^2} + {a^2}}  = a\sqrt 2  \hfill \\  SH = CH.\tan \widehat {SCH} = a\sqrt 6  \hfill \\  SB = \sqrt {S{H^2} + H{B^2}}  = \sqrt {{{\left( {a\sqrt 6 } ight)}^2} + {a^2}}  = a\sqrt 7  \hfill \\ \end{matrix}

    => \cos \left( {SB,AC} ight) = \frac{{\left| {\overrightarrow {SB} .\overrightarrow {AC} } ight|}}{{SB.AC}} = \frac{{2{a^2}}}{{a\sqrt 7 .a\sqrt 5 }} = \frac{2}{{\sqrt {35} }}

  • Câu 7: Nhận biết

    Cho hình chóp S.ABCD ABCD là hình vuông cạnh a, tam giác SAD đều. góc giữa BCSA là:

    Hình vẽ minh họa

    BC//AD \Rightarrow (BC,SA) = (AD,SA) =
60^{0}

  • Câu 8: Nhận biết

    Cho hình chóp S.ABC, SA vuông góc với mặt (ABC). Khi đó, góc hợp giữa đường thẳng SB và mặt phẳng (ABC) là:

    Ta có:

    SA\bot(ABC) nên hình chiếu của SB lên mặt phẳng (ABC) là AB.

    Do đó \left( SB;(ABC) ight) = (SB;AB) =\widehat{SBA}

  • Câu 9: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK, biết AB = 6cm;AC = 7cm;AD = 4cm.

    Hình vẽ minh họa

    Ta có: V_{ABCD} =\frac{1}{2}AB.\frac{1}{2}AD.AC = \frac{1}{2}.6.7.4 = 28\left( cm^{3}ight)

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}V_{ABCD} = 7\left(cm^{3} ight)

  • Câu 10: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?

    Hình vẽ minh họa:

    Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).

    Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và SA =a\sqrt{6}. Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}BC\bot SA \\BC\bot AB \\\end{matrix} ight.=> BC ⊥ (SAB)

    => SB là hình chiếu của SC lên mặt phẳng (SAB)

    => \alpha = \widehat{BSC}

    SB = \sqrt{SA^{2} + AB^{2}} =a\sqrt{7}

    Vậy \tan\alpha = \frac{BC}{SB} =\frac{\sqrt{7}}{7}

  • Câu 12: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh x, SA vuông góc với đáy và SA = x\sqrt{3}. Tính chiều cao hình chóp S.ABC?

    Ta có SA\bot(ABC) nên SA là đường cao của hình chóp

    Tam giác ABC đều cạnh x nên S_{ABC} =
\frac{x^{2}\sqrt{3}}{4}

    Vậy thể tích hình chóp là: V_{S.ABC} =
\frac{1}{3}SA.S_{ABC} = \frac{1}{3}.\frac{x^{2}\sqrt{3}}{4}.x\sqrt{3} =
\frac{x^{3}}{4}

  • Câu 13: Vận dụng

    Cho hình chóp S.ABCD có mặt phẳng đáy là hình vuông cạnh a, SA = a\sqrt 3, SA vuông góc với mặt phẳng đáy. Tính góc giữa SB và AC?

    Hình vẽ minh họa

    Góc giữa hai đường thẳng SB và AC trong mặt phẳng

    Lấy M là trung điểm của SD

    Góc cần tìm là góc giữa OM và SC

    Ta có MC là trung tuyến của tam giác SCD

    \begin{matrix}  M{C^2} = \dfrac{{S{C^2} + D{C^2}}}{2} - \dfrac{{S{D^2}}}{4} = 2{a^2} \hfill \\   \Rightarrow MC = a\sqrt 2  \hfill \\ \end{matrix}

    Xét tam giác MOC ta có:

    \begin{matrix}  \cos \widehat {MOC} = \dfrac{{M{O^2} + O{C^2} - M{C^2}}}{{2.MO.OC}} =  - \dfrac{1}{{2\sqrt 2 }} \hfill \\   \Rightarrow \alpha  \approx {69^0}17\prime  \hfill \\ \end{matrix}

  • Câu 14: Vận dụng cao

    Cho hình chóp tứ giác đều S.ABCD có AB = a, O là trung điểm của AC và SO = b. Gọi (∆) là đường thẳng đi qua C, (∆) chứa trong mặt phẳng (ABCD) và khoảng cách từ O đên (∆) là \frac{a\sqrt{14}}{6}. Giá trị lượng giác \cos\left( SA;(\Delta) ight) bằng bao nhiêu?

    Từ A kẻ (∆’) // (∆)

    Từ O kẻ (d) ⊥ (∆) cắt (∆) và (∆’) lần lượt tại H, K

    Ta có: \left\{ \begin{matrix}AK\bot OK \\AK\bot SO \\\end{matrix} ight.\  \Rightarrow AK\bot(SOK) \Rightarrow AK\botSK

    Ta được \cos\left( SA;(\Delta) ight) =\cos\left( SA;(\Delta') ight)

    Ta có: \left\{ \begin{matrix}SA = \dfrac{\sqrt{4b^{2} + 2a^{2}}}{2} \\AK = \dfrac{a}{3} \\\end{matrix} ight.

    => \cos\left( SA;(\Delta) ight) =\frac{AK}{SA} = \frac{2a}{3\sqrt{4b^{2} + 2a^{2}}}

  • Câu 15: Thông hiểu

    Tính thể tích khối lăng trụ đứng tam giác trong hình vẽ sau:

    Quan sát hình vẽ ta thấy:

    Tam giác ABC vuông cân tại B

    \Rightarrow AB = BC =
\frac{AC}{\sqrt{2}} = a

    \Rightarrow S_{ABC} =
\frac{1}{2}a^{2}

    Khi đó V_{ABC.A'B'C'} =
S_{ABC}.BB' = \frac{1}{2}a^{2}.a = \frac{a^{3}}{2}

  • Câu 16: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có các cạnh bằng 1. Tính khoảng cách giữa hai mặt phẳng (ABB')(CC'D').

    Hình vẽ minh họa

    ABCD.A'B'C'D' là hình lập phương nên (ABB')//(CC'D')BC\bot(ABB'A').

    Khoảng cách giữa hai mặt phẳng (ABB')(CC'D')

    d\left( (ABB'),(CC'D')
ight) = d\left( C,(ABB'A') ight) = CB = 1

  • Câu 17: Vận dụng

    Cho hình lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a. (như hình vẽ).

    Tính d\left( A;(A'BC)
ight)?

    Hình vẽ minh họa

    Gọi M là trung điểm cạnh BC.

    Ta có tam giác ABC đều cạnh a nên AM\bot
BC; AM = \sqrt{AB^{2} - BH^{2}} =
\frac{a\sqrt{3}}{2}

    ABC.A'B'C' là hình lăng trụ tam giác đều nên AA'\bot(ABC)
\Rightarrow AA'\bot BC

    Do đó BC\bot(A'AM)BC \subset (A'BC) \Rightarrow
(A'AM)\bot(A'BC) theo giao tuyến A'M

    Kẻ AH\bot AM \Rightarrow
AH\bot(A'BC)

    D\left( A;(A'BC) ight) =
AH

    Lại có \frac{1}{AH^{2}} =
\frac{1}{A'A^{2}} + \frac{1}{AM^{2}} \Leftrightarrow
\frac{1}{AH^{2}} = \frac{1}{a^{2}} + \frac{4}{3a^{2}}

    \Leftrightarrow \frac{1}{AH^{2}} =
\frac{7}{3a^{2}} \Rightarrow AH = \frac{a\sqrt{21}}{7}

  • Câu 18: Thông hiểu

    Cho khối chóp tứ giác đều S.ABCD, đáy là tứ giác ABCD cạnh bằng a. Biết cạnh bên gấp hai lần cạnh đáy. Tính thể tích khối chóp S.ABCD.

    Hình vẽ minh họa

    Gọi I là tâm đáy.

    Vì S.ABCD là hình chóp tứ giác đều nên SI là đường cao của hình chóp.

    Ta có: BD = \sqrt{AB^{2} + AD^{2}} =
a\sqrt{2}

    Vì AI là trung tuyến của tam giác ABD vuông tại A

    \Rightarrow AI = \frac{1}{2}BD =
\frac{a\sqrt{2}}{2}

    Chiều cao của khối chóp là SI =
\sqrt{SA^{2} - AI^{2}} = \sqrt{4a^{2} - \left( \frac{a\sqrt{2}}{2}
ight)} = \frac{a\sqrt{14}}{2}

    Thể tích khối chóp là: V =
\frac{1}{3}.SI.S_{ABCD} = \frac{1}{3}.\frac{a\sqrt{14}}{2}a^{2} =
\frac{a^{3}\sqrt{14}}{6}

  • Câu 19: Nhận biết

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:

    Hình vẽ minh họa:

    Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.

    Gọi O là hình chiếu của S trên mặt phẳng (ABCD).

    Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.

    Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là:

    \begin{matrix}SO = \sqrt{SB^{2} - OB^{2}} \hfill \\= \sqrt{a^{2} - \dfrac{a^{2}}{2}} = \sqrt{\dfrac{a^{2}}{2}} =\dfrac{a\sqrt{2}}{2}\hfill \\\end{matrix}

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA\bot(ABCD), SA = AB = a;AD = 2a. Gọi H;K lần lượt là hình chiếu của A lên SB;SD. Xét tính đúng sai của các kết luận sau?

    a) AH\bot SC Đúng||Sai

    b) SC\bot(AHK) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \cos\left( (AHK);(ABCD) ight) =
\frac{\sqrt{2}}{2}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA\bot(ABCD), SA = AB = a;AD = 2a. Gọi H;K lần lượt là hình chiếu của A lên SB;SD. Xét tính đúng sai của các kết luận sau?

    a) AH\bot SC Đúng||Sai

    b) SC\bot(AHK) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \cos\left( (AHK);(ABCD) ight) =
\frac{\sqrt{2}}{2}Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: \left\{ \begin{matrix}
BC\bot AB \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB);AH \subset
(SAB)

    \Rightarrow AH\bot BC

    Lại có AH\bot SB \Rightarrow AH\bot(SBC)
\Rightarrow AH\bot SC(*)

    b) Chứng minh tương tự câu a ta có:

    \left\{ \begin{matrix}
CD\bot AD \\
CD\bot SA \\
\end{matrix} ight.\  \Rightarrow CD\bot(SAD);AK \subset
(SAD)

    \Rightarrow AK\bot CDAK\bot SD \Rightarrow AK\bot(SCD)

    \Rightarrow AK\bot SC(**)

    Từ (*) và (**) suy ra: SC\bot(AHK).

    c) Ta có:

    \left\{ \begin{matrix}
(SCD) \cap (ABCD) = CD \\
AD\bot CD \equiv \left\{ D ight\} \\
SD\bot CD \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc \widehat{SDA}.

    d) Ta có: SA\bot(ABCD) \Rightarrow
\widehat{\left( (AHK);(ABCD) ight)} = \widehat{(SC;SA)} =
\widehat{ASC}

    Lại có ABCD là hình chữ nhật nên AC =
\sqrt{AB^{2} + AD^{2}} = a\sqrt{5}

    Tam giác SAC vuông tại A nên SC =
\sqrt{SA^{2} + AC^{2}} = a\sqrt{6}

    \Rightarrow \cos\widehat{ASC} =
\frac{SA}{SC} = \frac{\sqrt{6}}{6}

    \Rightarrow \cos\left( (AHK);(ABCD)
ight) = \frac{\sqrt{6}}{6} eq \frac{\sqrt{2}}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 39 lượt xem
Sắp xếp theo