Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AA’ = 2a; AD = 4a. Gọi M là trung điểm của cạnh AD. Tính khoảng cách d giữa hai đường thẳng A’B’ và C’M.

    Ta có: AA’ = AM = MD = 2a nên tam giác AMA’ và tam giác MDD’ lần lượt là tam giác vuông tại A và D

    => \widehat{AMA'} =
\widehat{D'MD} = 45^{0} \Rightarrow A'M\bot MD' (1)

    Ta lại có: C'D'\bot(A'D'DA) \Rightarrow
C'D'\bot A'M (2)

    Từ (1) và (2) => A'M\bot(MC'Ð)

    Ta lại có A’B’ // C’D’ => A’B’ // (MC’D’)

    => Khoảng cách d = d(A’B’, (MC’D’)) = d(A’; (MC’D’))

    => A'M = \sqrt{AA'^{2} +
AM^{2}} = 2a\sqrt{2}

  • Câu 2: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a. Gọi M là trung điểm của SC. Tính cosin góc giữa hai đường thẳng BM và AC.

    Hình vẽ minh họa:

    Tính cosin của góc giữa hai đường thẳng

    Gọi H là tâm của hình vuông ABCD khi đó SH \bot \left( {ABCD} ight)

    Ta có:

    \begin{matrix}  \overrightarrow {BM}  = \overrightarrow {HM}  - \overrightarrow {HB}  = \dfrac{1}{2}\overrightarrow {HS}  + \dfrac{1}{2}\overrightarrow {HC}  - \overrightarrow {HB}  \hfill \\  \overrightarrow {AC}  = 2\overrightarrow {HC}  \hfill \\  HC \bot HB,HC \bot SH \hfill \\   \Rightarrow \overrightarrow {AC} .\overrightarrow {BM}  = H{C^2} = \dfrac{{A{C^2}}}{4} = \dfrac{{{a^2}}}{2} \hfill \\ \end{matrix}

    Vì tam giác SBC đều cạnh a và BM là trung tuyến nên BM = \frac{{a\sqrt 3 }}{2}

    Khi đó: \cos \left( {\overrightarrow {AC} ,\overrightarrow {BM} } ight) = \frac{{\overrightarrow {AC} .\overrightarrow {BM} }}{{AC.BM}} = \frac{1}{{\sqrt 6 }} > 0

  • Câu 3: Vận dụng

    Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của BC và DD’. Tính theo a khoảng cách giữa hai đường thẳng MN và BD.

    Hình vẽ minh họa:

    Gọi O, P, K lần lượt là trung điểm của AC, CD, OC

    Kẻ DI ⊥ MP, DH ⊥ NI

    Ta có: ND = \frac{a}{2}, BD // MP, tứ giác DIKO là hình chữ nhật

    => DI = OK = \frac{OC}{2} =\frac{a\sqrt{2}}{4}

    Khi đó: d(MN, BD) = d(BD, (MNP)) = d(D, (MNP)) = DH

    Xét tam giác vuông NDI ta có:

    \begin{matrix}\dfrac{1}{DH^{2}} = \dfrac{1}{DN^{2}} + \dfrac{1}{DI^{2}} \Rightarrow DH =\dfrac{a\sqrt{3}}{6} \hfill \\\Rightarrow d(MN,BD) = \dfrac{a\sqrt{3}}{6} \hfill\\\end{matrix}

  • Câu 4: Nhận biết

    Cho hình chóp S.ABCDSA\bot(ABCD), tứ giác ABCD là hình vuông. Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
SA\bot(ABCD) \\
SA \subset (SAB) \\
\end{matrix} ight.\  \Rightarrow (SAB)\bot(ABCD)

    Ta có: \left\{ \begin{matrix}
SA\bot(ABCD) \\
SA \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow (SAC)\bot(ABCD)

    Ta có: \left\{ \begin{matrix}
BD\bot AC \\
BD\bot SA \\
AC \cap SA = \left\{ A ight\} \\
AC;SA \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
BD\bot(SAC) \\
BD \subset (SBD) \\
\end{matrix} ight.

    \Rightarrow (SBD)\bot(SAC)

    \left( (SAB);(SAC) ight) = (AD;BD) =
45^{0}

  • Câu 5: Nhận biết

    Cho hình lập phương như hình vẽ:

    Hỏi đường thẳng nào vuông góc với đường thẳng BC'?

    Ta có:

    \left\{ \begin{matrix}
AD'\bot AB \\
AD'\bot A'D \\
\end{matrix} ight.\  \Rightarrow AD'\bot(ABC'D')
\Rightarrow AD'\bot BC'

  • Câu 6: Thông hiểu

    Cho tứ diện ABCD có độ dài các cạnh AB =
AC = AD = BC = BD = aCD =
a\sqrt{2}. Tính góc giữa hai đường thẳng AD và BC.

    Hình vẽ minh họa

    Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.

    Khi đó: KH//AD,KI//BC \Rightarrow (AD;BC)
= (KH;KI).

    Xét \Delta BIC,BI = \sqrt{BC^{2} -
AC^{2}} = \sqrt{a^{2} - \frac{a^{2}}{2}} =
\frac{a}{\sqrt{2}}.

    Ta có \left\{ \begin{matrix}
AB\bot DH \\
AB\bot HC \\
\end{matrix} \Rightarrow AB\bot(DHC) \Rightarrow AB\bot HI ight..

    Xét \Delta BIH,HI = \sqrt{IB^{2} -
HB^{2}} = \sqrt{\frac{a^{2}}{2} - \frac{a^{2}}{4}} =
\frac{a}{2}. (1)

    Xét \Delta IHK, ta có: \left\{ \begin{matrix}
IK = \frac{BC}{2} = \frac{a}{2} \\
HK = \frac{AD}{2} = \frac{a}{2} \\
\end{matrix} \Rightarrow IK = HK = \frac{a}{2} ight.. (2)

    Từ (1),(2) \Rightarrow HI = IK = HK
\Rightarrow \Delta IHK là tam giác đều

    \Rightarrow \widehat{IKH} = 60^{0} \Rightarrow
(KH;KI) = 60^{0}.

  • Câu 7: Vận dụng

    Cho hình lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng . Điểm M và N lần lượt là trung điểm các đoạn AC, BB’. Côsin góc giữa đường thẳng MN và (BA’C’) bằng

     Côsin góc giữa đường thẳng MN và (BA’C’) bằng

    Gọi là số đo góc giữa MN và (BA’C’), K là hình chiếu vuông góc của N lên (B’A’C’).

    Khi đó \sin \alpha  = \frac{{NK}}{{NI}} = \frac{{d\left( {N;\,\,\left( {BA'C'} ight)} ight)}}{{NI}}

    Gọi E là trung điểm của A’C’, khi đó BMEB’ là hình chữ nhật. Gọi I = MN \cap BE, ta có

    MN = \sqrt {B{M^2} + B{N^2}}  = 1 \Rightarrow IN = \frac{1}{3}MN = \frac{1}{3}

    Ta có \frac{{d\left( {N;\,\,\left( {BA'C'} ight)} ight)}}{{d\left( {B';\,\,\left( {BA'C'} ight)} ight)}} = \frac{{NB}}{{B'B}} = \frac{1}{2}

    \left\{ \begin{gathered}  A'C' \bot B'E \hfill \\  A'C' \bot ME \hfill \\ \end{gathered}  ight. \Rightarrow A'C' \bot \left( {BMEB'} ight) \Rightarrow \left( {BA'C'} ight) \bot \left( {BMEB'} ight)

    \left( {BA'C'} ight) \cap \left( {BMEB'} ight) = BE. Kẻ B'H \bot BE\,\left( {H \in BE} ight)

    \begin{matrix}   \Rightarrow B'H \bot \left( {BA'C'} ight) \Rightarrow d\left( {B';\,\,\left( {BA'C'} ight)} ight) = B'H \hfill \\  B'H = \dfrac{1}{{\sqrt {\dfrac{1}{{B'{E^2}}} + \dfrac{1}{{B'{B^2}}}} }} = \dfrac{{\sqrt {21} }}{7} \hfill \\ \end{matrix}

    Từ \frac{{d\left( {N;\,\,\left( {BA'C'} ight)} ight)}}{{d\left( {B';\,\,\left( {BA'C'} ight)} ight)}} = \frac{1}{2} \Rightarrow d\left( {N;\,\,\left( {BA'C'} ight)} ight) = \frac{{\sqrt {21} }}{{14}}

    \begin{matrix}   \Rightarrow \sin \alpha  = \dfrac{{d\left( {N;\,\,\left( {BA'C'} ight)} ight)}}{{NI}} = \dfrac{{3\sqrt {21} }}{{14}} \hfill \\   \Rightarrow \cos \alpha  = \sqrt {1 - {{\sin }^2}\alpha }  = \sqrt {1 - {{\left( {\dfrac{{3\sqrt {21} }}{{14}}} ight)}^2}}  = \dfrac{{\sqrt 7 }}{{14}} \hfill \\ \end{matrix}

  • Câu 8: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK, biết AB = 6cm;AC = 7cm;AD = 4cm.

    Hình vẽ minh họa

    Ta có: V_{ABCD} =\frac{1}{2}AB.\frac{1}{2}AD.AC = \frac{1}{2}.6.7.4 = 28\left( cm^{3}ight)

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}V_{ABCD} = 7\left(cm^{3} ight)

  • Câu 9: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng 1, cạnh SA vuông góc với đáy và SA = \sqrt{2}. Tính thể tích khối chóp S.ABCD đã cho.

    Hình vẽ minh họa

    Ta có: SA\bot(ABCD) nên SA là đường cao của hình chóp

    Thể tích khối chóp là V =
\frac{1}{3}.SA.S_{ABCD} = \frac{1}{3}.\sqrt{2}.1^{2} =
\frac{\sqrt{2}}{3}

  • Câu 10: Thông hiểu

    Cho hình chóp S.ABC có SA = SB và CA = CB. Tính số đo góc giữa hai đường thẳng chéo nhau SC và AB.

    Hình vẽ minh họa:

    Số đo góc giữa hai đường thẳng chéo nhau

    \begin{matrix}  \overrightarrow {SC} \overrightarrow {AB}  =  - \overrightarrow {CS} .(\overrightarrow {CB}  - \overrightarrow {CA} ) \hfill \\   = \overrightarrow {CS} .\overrightarrow {CA}  - \overrightarrow {CS} .\overrightarrow {CB}  \hfill \\   = CS.CA.\cos \widehat {SCA} - CS.CB.\cos \widehat {SCB} \hfill \\   = CS.CA.\dfrac{{S{C^2} + C{A^2} - S{A^2}}}{{2SC.CA}} \hfill \\   - CS.CB.\dfrac{{S{C^2} + C{B^2} - S{B^2}}}{{2SC.CB}} \hfill \\   = \frac{{S{C^2} + C{A^2} - S{A^2}}}{2} - \dfrac{{S{C^2} + C{B^2} - S{B^2}}}{2} = 0 \hfill \\  ({\text{Do }}SA = SB{\text{ v\`a  }}CA = CB) \Rightarrow SC \bot AB \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABC có SA = SB = SC; \widehat {ASB} = \widehat {BSC} = \widehat {CSA}. Hãy xác định góc giữa cặp vecto \overrightarrow {SC} ,\overrightarrow {AB}?

    Hình vẽ minh họa:

    Xác định góc giữa cặp vecto

    Ta có:

    \begin{matrix}  \overrightarrow {SC} .\overrightarrow {AB}  = \overrightarrow {SC} .(\overrightarrow {SB}  - \overrightarrow {SA} ) \hfill \\   = \overrightarrow {SC} .\overrightarrow {SB}  - \overrightarrow {SC} .\overrightarrow {SA}  \hfill \\   = |\overrightarrow {SC} |.|\overrightarrow {SB} |.\cos (\overrightarrow {SC} ,\overrightarrow {SB} ) \hfill \\   - |\overrightarrow {SC} |.|\overrightarrow {SA} |.\cos (\overrightarrow {AB} ;\overrightarrow {AC} ) \hfill \\   = SC.SB.\cos \widehat {BSC} - SC.SA.\cos \widehat {ASC} \hfill \\ \end{matrix}

    Mà SA = SB = SC và \widehat {ASB} = \widehat {BSC} = \widehat {CSA}

    => \overrightarrow {SC} .\overrightarrow {AB}  = 0 \Rightarrow \left( {\overrightarrow {SC} ,\overrightarrow {AB} } ight) = {90^0}

  • Câu 12: Vận dụng

    Cho tứ diện ABCDAB =
m;(m > 0), các cạnh còn lại bằng nhau và bằng 4. Mặt phẳng (\alpha) chứa cạnh AB và vuông góc với cạnh CD tại I. Diện tích tam giác ABI lớn nhất bằng bao nhiêu?

    Hình vẽ minh họa

    Ta có: (\alpha)\bot CD \equiv I
\Rightarrow \left\{ \begin{matrix}
AI\bot CD \\
BI\bot CD \\
\end{matrix} ight.

    Theo giả thiết AC = AD = BC = BD = CD =
4cm ta có các tam giác ACD và BCD là các tam giác đều cạnh bằng 4

    \Rightarrow IA = IB =
4.\frac{\sqrt{3}}{2} = 2\sqrt{3}

    Gọi H là trung điểm của AB ta có: IH\bot
ABIH = \sqrt{IA^{2} -
\frac{m^{2}}{4}} = \sqrt{12 - \frac{m^{2}}{4}}

    S_{ABI} = \frac{1}{2}IH.AB

    = \frac{1}{2}m.\sqrt{12 -
\frac{m^{2}}{4}}

    = \sqrt{\frac{m^{2}}{4}.\left( 12 -
\frac{m^{2}}{4} ight)} \leq 6

    Dấu bằng xảy ra khi và chỉ khi x =
2\sqrt{6}

    Vậy \max S_{ABI} = 6

  • Câu 13: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a;AD = 3a;SA\bot(ABCD);SA = 2a. Kẻ đường cao AI của tam giác SAB. Khi đó:

    a) BC\bot(SAB) Đúng||Sai

    b) \widehat{\left( SC;(ABCD) ight)}
\approx 30^{0} Sai||Đúng

    c) AI\bot CS Đúng||Sai

    d) Diện tích tam giác AIC bằng \frac{7a^{2}}{5}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a;AD = 3a;SA\bot(ABCD);SA = 2a. Kẻ đường cao AI của tam giác SAB. Khi đó:

    a) BC\bot(SAB) Đúng||Sai

    b) \widehat{\left( SC;(ABCD) ight)}
\approx 30^{0} Sai||Đúng

    c) AI\bot CS Đúng||Sai

    d) Diện tích tam giác AIC bằng \frac{7a^{2}}{5}Sai||Đúng

    BC\bot(SAB) đúng

    \widehat{\left( SC;(ABCD) ight)}
\approx 32,3^{0} đúng

    AI\bot CS đúng

    Diện tích tam giác AIC bằng \frac{a^{2}\sqrt{46}}{5}

  • Câu 14: Nhận biết

    Tìm mệnh đề sai trong các mệnh đề sau:

    Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”

  • Câu 15: Thông hiểu

    Cho khối lăng trụ đứng ABC.A'B'C', đáy ABCAB =
AC = a;\widehat{BAC} = 120^{0}. Tính thể tích của khối lăng trụ đã cho biết \left( (AB'C');(ABCD)
ight) = 60^{0}.

    Hình vẽ minh họa

    Gọi H là trung điểm của B’C’, khi đó góc giữa mặt phẳng (AB’C’) và (ABCD) là góc \widehat{AHA'} =
60^{0}

    Ta có:

    S_{ABC} = \frac{1}{2}AC.AB.sin120^{0} =
\frac{a^{2}\sqrt{3}}{4}

    B'C' = BC = \sqrt{AB^{2} +
AC^{2} - 2AB.AC.cos120^{0}}

    = \sqrt{a^{2} + a^{2} - 2.a.a.\left( -
\frac{1}{2} ight)} = a\sqrt{3}

    \Rightarrow AH' =
\frac{2S_{ABC}}{B'C'} = \frac{a}{2}

    \Rightarrow AA' = A'H.tan60^{0}
= \frac{a\sqrt{3}}{2}

    Vậy V = S_{ACB}.AA' =
\frac{3a^{3}}{8}

  • Câu 16: Nhận biết

    Cho hình hộp ABCD.A’B’C’D có tất cả các cạnh đều bằng nhau. Trong các mệnh đề sau. Mệnh đề nào có thể sai?

    Dễ thấy các đáp án A’C’ ⊥ BD, A’B ⊥ DC’, BC’ ⊥ A’D đúng

    Đáp án BB’ ⊥ BD sẽ bị sai trong trường hợp hình hộp có cạnh bên không vuông góc với mặt đáy

  • Câu 17: Thông hiểu

    Cho một khối chóp tứ giác đều có cạnh đáy bằng x(cm), biết độ dài cạnh bên và cạnh đáy tỉ lệ 2:1. Tính thể tích V của khối chóp?

    Hình vẽ minh họa

    Gọi O là tâm hình vuông ABCD

    OC = \frac{1}{2}AC =
\frac{1}{2}\sqrt{AB^{2} + BC^{2}} = \frac{1}{2}\sqrt{x^{2} + x^{2}} =
\frac{x\sqrt{2}}{2}

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Trong tam giác SOC vuông tại O ta có:

    SO = \sqrt{SC^{2} - OC^{2}} =
\sqrt{(2x)^{2} - \left( \frac{x\sqrt{2}}{2} ight)^{2}} =
\frac{x\sqrt{14}}{2}

    Vậy thể tích hình chóp là: V_{S.ABCD} =
\frac{1}{3}S_{ABCD}.SO = \frac{1}{3}.\frac{x\sqrt{14}}{2}.x^{2} =
\frac{x^{3}\sqrt{14}}{6}

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 2. Đường thẳng SO vuông góc với mặt phẳng đáy (ABCD) và SO=\sqrt{3}. Tính khoảng cách d giữa hai đường thẳng SA và BD.

    Hình vẽ minh họa:

    Tính khoảng cách d giữa hai đường thẳng SA và BD

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {BD \bot AC} \\   {BD \bot SO} \end{array} \Rightarrow BD \bot \left( {SAC} ight)} ight.

    Trong (SAC) kẻ OK⊥SA(1) ta có:

    OK⊂(SAC)⇒OK⊥BD(2) 

    Từ (1) và (2) ta có OK là đường vuông góc chung của SA và BD

    Khi đó d(SA;BD)=OK

    \begin{matrix}  OK = \dfrac{{SO.OA}}{{\sqrt {S{O^2} + O{A^2}} }} \hfill \\   = \dfrac{{\sqrt 3 .\dfrac{{2\sqrt 2 }}{2}}}{{\sqrt {{{\left( {\sqrt 3 } ight)}^2} + {{\left( {\dfrac{{2\sqrt 2 }}{2}} ight)}^2}} }} = \dfrac{{\sqrt {30} }}{5} \hfill \\ \end{matrix}

  • Câu 19: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy

    Ta có: \left\{ \begin{matrix}AC\bot BD \\AC\bot SB \\\end{matrix} ight.\  \Rightarrow AC\bot(SBD)

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông với AC = 5\sqrt{2}. Biết SA\bot(ABCD);SA = 5. Góc giữa SD và mặt phẳng (SAB) bằng:

    Ta có: \left\{ \begin{matrix}
AD\bot AB \\
AD\bot SA \\
\end{matrix} ight.\  \Rightarrow AD\bot(SAB)

    \Rightarrow \left( SD;(SAB) ight) =
(SD;SA) = \widehat{DSA}

    ABCD là hình vuông nên AC = AB.\sqrt{2} \Rightarrow AB = 5

    \Rightarrow \tan\widehat{DSA} =
\frac{AD}{SA} = \frac{5}{5} = 1

    \Rightarrow \widehat{DSA} = 45^{0}
\Rightarrow \left( SD;(SAB) ight) = 45^{0}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 51 lượt xem
Sắp xếp theo