Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD, cạnh bên bằng cạnh đáy và bằng a. Gọi M là trung điểm của SC. Tính góc giữa hai mặt phẳng (MBD) và (ABCD).

    Tính góc giữa hai mặt phẳng (MBD) và(ABCD)

    Gọi O là tâm hình vuông ABCD, suy ra SO ⊥ (ABCD).

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BD \bot SO} \\   {BD \bot AO} \end{array}} ight. \Rightarrow BD \bot \left( {SAC} ight) \Rightarrow BD \bot OM

    Do \left\{ {\begin{array}{*{20}{l}}  {(MBD) \cap (ABCD) = BD} \\   {OM \subset (MBD)} \\   {OM \bot BD} \\   {OC \subset (ABCD)} \\   {OC \bot BD} \end{array}} ight.

    \Rightarrow \widehat {\left( {MBD),(ABCD)} ight)} = (\widehat {OM,OC}) = \widehat {MOC}

    Tam giác SOC vuông tại O, trung tuyến OM, suy ra OM = MC = \frac{{CS}}{2} = \frac{a}{2}

    => Tam giác MOC cân tại M.

    => OC = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}

    Khi đó \cos \widehat {MOC} = \frac{{OC}}{{SC}} = \frac{{\frac{{a\sqrt 2 }}{2}}}{a} = \frac{{\sqrt 2 }}{2} \Rightarrow \widehat {MOC} = {45^{^0}}

    Vậy \widehat {\left( {\left( {MDB} ight);\left( {ABCD} ight)} ight)} = {45^0}

  • Câu 2: Vận dụng

    Cho tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c. Độ dài đoạn thẳng AD bằng bao nhiêu?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
CD\bot AB \\
\end{matrix} ight.\  \Rightarrow AB\bot(BCD)

    => Tam giác ABD vuông tại B.

    Ta có: \left\{ \begin{matrix}
CD\bot AB \\
CD\bot BC \\
\end{matrix} ight.\  \Rightarrow CD\bot(ABC)

    => Tam giác BCD vuông tại C.

    Ta có: \left\{ \begin{matrix}
AD^{2} = AB^{2} + BD^{2} \\
BD^{2} = BC^{2} + CD^{2} \\
\end{matrix} ight.

    \begin{matrix}\Rightarrow AD^{2} = AB^{2} + BC^{2} + CD^{2} \hfill \\\Rightarrow AD = \sqrt{AB^{2} + BC^{2} + CD^{2}} \hfill \\\Rightarrow AD = \sqrt{a^{2} + b^{2} + c^{2}} \hfill \\\end{matrix}

  • Câu 3: Nhận biết

    Trong các khẳng định sai về lăng trụ đều, khẳng định nào là sai?

    Vì lăng trụ đều nên các cạnh bằng nhau. Do đó đáy là đa giác đều.

    Vì lăng trụ đều là lăng trụ đứng nên các mặt bên vuông góc với đáy.

    Vì lăng trụ đều là lăng trụ đứng nên các cạnh bên vuông góc với đáy.

    Vì lăng trụ đều là lăng trụ đứng nên các cạnh bên bằng nhau và cùng vuông góc với đáy. Do đó các mặt bên là những hình vuông.

  • Câu 4: Nhận biết

    Cho hình chóp S.ABC có AB = AC, \widehat {SAB} = \widehat {SAC}. Tính số đo góc giữa hai đường thẳng SA và BC.

    Ta có:

    \begin{matrix}  \overrightarrow {AS} .\overrightarrow {BC}  = \overrightarrow {AS} .\left( {\overrightarrow {AC}  - \overrightarrow {AB} } ight) \hfill \\   = \overrightarrow {AC} .\overrightarrow {AS}  - \overrightarrow {AB} .\overrightarrow {AS}  \hfill \\   = AC.AS.\cos \widehat {SAC} - AB.AS.\cos \widehat {SAB} \hfill \\   = 0 \hfill \\ \end{matrix}

    AB = AC,\widehat {SAB} = \widehat {SAC}

    => Góc giữa hai đường thẳng SA, BC là: 900

  • Câu 5: Thông hiểu

    Khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A. Biết AB = 2a và góc giữa đường thẳng BC' và mặt phẳng (ACC'A') bằng 30^{0}. Tính thể tích khối lăng trụ đứng ABC.A'B'C'.

    Hình vẽ minh họa

    Ta có:

    \left\{ \begin{matrix}
AB\bot AC \\
AB\bot AA' \\
\end{matrix} ight.\  \Rightarrow AB\bot(ACC'A')

    Suy ra \left( BC';(ACC'A')
ight) = (BC';AC') = \widehat{AC'B} = 30^{0}

    Ta có: AC' = \frac{AB}{tan30^{0}} =
2\sqrt{3}a

    \Rightarrow AA' = \sqrt{12a^{2} -
4a^{2}} = 2\sqrt{2}a

    Vậy V_{ABC.A'B'C'} =
AA'.S_{ABC} = 2\sqrt{2}a.\frac{1}{2}.2a.2a =
4\sqrt{2}a^{3}

  • Câu 6: Vận dụng

    Cho hình chóp S.ABCD có ABCD là hình vuông, tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm BC. Gọi \alpha là góc hợp bởi đường thẳng SA và mặt phẳng (SDM). Tính \alpha

    + Không mất tính tổng quát, đặt AB = 2

    + Gọi N là trung điểm AB suy ra SN \bot AB \Rightarrow SN \bot \left( {ABCD} ight)

    + Gọi h = d\left( {A,\left( {SDM} ight)} ight) \Rightarrow \sin \alpha  = \frac{h}{{SA}}

    Gọi I = DM \cap CN,\,J = AB \cap DM

    + Ta có \frac{{d\left( {A,\left( {SDM} ight)} ight)}}{{d\left( {N,\left( {SDM} ight)} ight)}} = \frac{{{\text{AJ}}}}{{NJ}} = \frac{4}{3}

    \Rightarrow h = d\left( {A,\left( {SDM} ight)} ight) = \frac{4}{3}d\left( {N,\left( {SDM} ight)} ight)

    + Ta có 

    \Delta CNB = \Delta DMC \Rightarrow \widehat {NCB} = \widehat {MDC}

    \Rightarrow \widehat {NCB} + \widehat {DMC} = \widehat {MDC} + \widehat {DMC} = 180^\circ  - \widehat {MCD} = 90^\circ

    \Rightarrow DM \bot CN \Rightarrow DM \bot \left( {SNC} ight)

    + Gọi NH là đường cao \Delta SNI \Rightarrow NH \bot \left( {SDM} ight)

    \Rightarrow d\left( {N,\left( {SDM} ight)} ight) = NH

    + Tam giác NJI đồng dạng tam giác MBJ

    \begin{matrix}   \Rightarrow \dfrac{{NI}}{{MB}} = \dfrac{{NJ}}{{MJ}} \hfill \\   \Rightarrow NI = \dfrac{{NJ}}{{MJ}}.MB = \dfrac{{NJ}}{{\sqrt {M{B^2} + B{J^2}} }} \hfill \\  MB = \dfrac{3}{{\sqrt {{1^2} + {2^2}} }}.1 = \dfrac{3}{{\sqrt 5 }} \hfill \\ \end{matrix}

    + Tam giác SAB là tam giác đều cạnh bằng 2 \Rightarrow SN = \sqrt 3

    \frac{1}{{N{H^2}}} = \frac{1}{{N{S^2}}} + \frac{1}{{N{I^2}}} \Rightarrow NH = \frac{{3\sqrt 2 }}{4}

    h = d\left( {A,\left( {SDM} ight)} ight) = \frac{4}{3}d\left( {N,\left( {SDM} ight)} ight) = \frac{4}{3}.\frac{{3\sqrt 2 }}{4} = \sqrt 2

    \Rightarrow \sin \alpha  = \frac{h}{{SA}} = \frac{{\sqrt 2 }}{2} \Rightarrow \alpha  = 45^\circ

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Tính khoảng cách d từ A đến (SCD).

    Hình vẽ minh họa

    Tính khoảng cách d từ A đến (SCD)

    Gọi H là trung điểm của AB => SH \bot AB \Rightarrow SH \bot \left( {ABCD} ight)

    Ta có: AH // CD => d\left( {A;\left( {SCD} ight)} ight) = d\left( {H;\left( {SCD} ight)} ight)

    Gọi M là trung điểm của CD, K là hình chiếu vuông góc của H trên SM

    \begin{matrix}   \Rightarrow d\left( {H;\left( {SCD} ight)} ight) = HK \hfill \\   \Rightarrow HK = \dfrac{{SH.HM}}{{\sqrt {S{H^2} + H{M^2}} }} = \dfrac{{\sqrt {21} }}{7} \hfill \\ \end{matrix}

     

  • Câu 8: Thông hiểu

    Cho khối lăng trụ đứng ABC.A'B'C', đáy ABCAB =
AC = a;\widehat{BAC} = 120^{0}. Tính thể tích của khối lăng trụ đã cho biết \left( (AB'C');(ABCD)
ight) = 60^{0}.

    Hình vẽ minh họa

    Gọi H là trung điểm của B’C’, khi đó góc giữa mặt phẳng (AB’C’) và (ABCD) là góc \widehat{AHA'} =
60^{0}

    Ta có:

    S_{ABC} = \frac{1}{2}AC.AB.sin120^{0} =
\frac{a^{2}\sqrt{3}}{4}

    B'C' = BC = \sqrt{AB^{2} +
AC^{2} - 2AB.AC.cos120^{0}}

    = \sqrt{a^{2} + a^{2} - 2.a.a.\left( -
\frac{1}{2} ight)} = a\sqrt{3}

    \Rightarrow AH' =
\frac{2S_{ABC}}{B'C'} = \frac{a}{2}

    \Rightarrow AA' = A'H.tan60^{0}
= \frac{a\sqrt{3}}{2}

    Vậy V = S_{ACB}.AA' =
\frac{3a^{3}}{8}

  • Câu 9: Thông hiểu

    Cho hình chóp S.ABC có SA = SB và CA = CB. Tính số đo góc giữa hai đường thẳng chéo nhau SC và AB.

    Hình vẽ minh họa:

    Số đo góc giữa hai đường thẳng chéo nhau

    \begin{matrix}  \overrightarrow {SC} \overrightarrow {AB}  =  - \overrightarrow {CS} .(\overrightarrow {CB}  - \overrightarrow {CA} ) \hfill \\   = \overrightarrow {CS} .\overrightarrow {CA}  - \overrightarrow {CS} .\overrightarrow {CB}  \hfill \\   = CS.CA.\cos \widehat {SCA} - CS.CB.\cos \widehat {SCB} \hfill \\   = CS.CA.\dfrac{{S{C^2} + C{A^2} - S{A^2}}}{{2SC.CA}} \hfill \\   - CS.CB.\dfrac{{S{C^2} + C{B^2} - S{B^2}}}{{2SC.CB}} \hfill \\   = \frac{{S{C^2} + C{A^2} - S{A^2}}}{2} - \dfrac{{S{C^2} + C{B^2} - S{B^2}}}{2} = 0 \hfill \\  ({\text{Do }}SA = SB{\text{ v\`a  }}CA = CB) \Rightarrow SC \bot AB \hfill \\ \end{matrix}

  • Câu 10: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy

    Ta có: \left\{ \begin{matrix}AC\bot BD \\AC\bot SB \\\end{matrix} ight.\  \Rightarrow AC\bot(SBD)

  • Câu 11: Nhận biết

    Trong các mệnh đề sau, mênh đề nào đúng?

    Mệnh đề: “Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này sẽ vuông góc với mặt phẳng kia.” Sai vì nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này vuông góc với giao tuyến sẽ vuông góc với mặt phẳng kia.

    Mệnh đề: “Hai mặt phẳng phân biệt vuông góc với một mặt phẳng thứ ba thì song song với nhau.” sai vì còn trường hợp hai mặt phẳng cắt nhau.

    Mệnh đề: “Với mỗi điểm A ∊ (α) và mỗi điểm B ∊ (β) thì ta có đường thẳng AB vuông góc với giao tuyến d của (α) và (β).” Sai vì ít nhất nếu cả A và B đều thuộc giao tuyến của (α) và (β) thì AB trùng với (α) ⋂ (β).

  • Câu 12: Nhận biết

    Công thức tính thể tích V của khối nón có bán kính r và chiều cao h là:

    Công thức tính thể tích là: V =
\frac{1}{3}\pi r^{2}h

  • Câu 13: Vận dụng cao

    Cho tứ diện ABCD có BD vuông góc với AB và CD. Gọi P và Q lần lượt là trung điểm của các cạnh CD và AB thỏa mãn BD : CD : PQ : AB = 3 : 4 : 5 : 6. Gọi ψ là góc giữa hai đường thẳng AB và CD. Tính giá trị của cosψ

    Hình vẽ minh họa:

    Do AB vuông góc với BD nên AB nằm trong mặt phẳng (α) chứa AB và vuông góc với BD. Dựng hình chữ nhật BDPR thì góc giữa hai đường thẳng AB và CD cũng là góc giữa hai đường thẳng AB và BR. Ta có:

    \cos\psi = \frac{\left| BQ^{2} + BR^{2}- QR^{2} ight|}{2BQ.BR} = \frac{|9 + 4 - 16|}{2.3.2} =\frac{1}{4}

  • Câu 14: Vận dụng

    Cho tứ diện ABCD có AB = AC = AD, \widehat {BAC} = \widehat {BAD} = {60^0}. Hãy chứng mình AB ⊥ CD.

    Một bạn chứng mình qua các bước sau:

    Bước 1. \overrightarrow {CD}  = \overrightarrow {AC}  - \overrightarrow {AD}

    Bước 2. \overrightarrow {AB} .\overrightarrow {CD}  = \overrightarrow {AB} .\left( {\overrightarrow {AC}  - \overrightarrow {AD} } ight)

    Bước 3. \overrightarrow {AB} .\overrightarrow {AC}  - \overrightarrow {AB} .\overrightarrow {AD}  = |\overrightarrow {AB} |.|\overrightarrow {AD} |.\cos {60^0} - |\overrightarrow {AB} |.|\overrightarrow {AD} |.\cos {60^0} = 0

    Bước 4. Suy ra AB ⊥ CD

    Theo em. Lời giải trên sai từ:

    Bài toán sai từ bước 1 vì

    Theo quy tắc trừ hai vectơ ta có:

    \overrightarrow {CD}  = \overrightarrow {AD}  - \overrightarrow {AC} {\text{ }}

  • Câu 15: Nhận biết

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng BD và A’C’ bằng:

    Do BD và A’C’ lần lượt nằm trên hai mặt phẳng (ABCD) và (A’B’C’D’) song song với nhau nên d(A’C’, BD) = d((ABCD),(A’B’C’D’)).

    Mà ABCD.A’B’C’D’ là hình lập phương nên ta có d((ABCD), (A’B’C’D’)) = AA’ = a. Vậy d(A’C’, BD) = a.

  • Câu 16: Thông hiểu

    Cho tứ diện đều ABCD. Gọi trung điểm của các cạnh AB;BC lần lượt là M;N. Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Gọi P là trung điểm của BD.

    Ta có: MN;NP;MP lần lượt là đường trung bình của tam giác ABC;BCD;ABD.

    Do đó:

    MN//AC;MN = \frac{1}{2}AC

    NP//CD;NP = \frac{1}{2}CD

    ABCD là tứ diện đều \Rightarrow AC = CD = AD

    \Rightarrow MN = NP = MP nên tam giác MNP là tam giác đều.

    \Rightarrow (MN;CD) = (MN;NP) =
\widehat{MNP} = 60^{0}

  • Câu 17: Vận dụng

    Cho hình chóp S.ABCD có thể tích bằng \frac{4}{3}a^{3}, đáy ABCD là hình vuông cạnh bằng a\sqrt{2}; SA
= SD. Biết mặt bên (SAD) vuông góc với mặt phẳng (ABCD). Xác định khoảng cách d\left( B;(SCD)
ight)?

    Hình vẽ minh họa

    Gọi I là trung điểm của AD

    Tam giác SAD cân tại S suy ra SI\bot
AD

    Ta có \left\{ \begin{matrix}
SI\bot AD \\
(SAD)\bot(ABCD) \\
\end{matrix} ight.\  \Rightarrow SI\bot(ABCD)

    Suy ra SI là đường cao của hình chóp

    Theo giả thiết

    V_{S.ABCD} =
\frac{1}{3}SI.S_{ABCD}

    \Leftrightarrow \frac{4a^{3}}{3} =
\frac{1}{2}SI.2a^{2}

    \Leftrightarrow SI = 2a

    AB//(SCD) \Rightarrow d\left( B;(SCD)
ight) = d\left( A;(SCD) ight) = 2d\left( I;(SCD)
ight)

    Gọi H là hình chiếu vuông góc của I lên SD

    Mặt khác \left\{ \begin{matrix}
SI\bot DC \\
ID\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot DC. Ta có: \left\{ \begin{matrix}
IH\bot SD \\
IH\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot(SCD)

    \Rightarrow d\left( I;(SCD) ight) =
IH

    Xét tam giác SID vuông tại I có:

    \frac{1}{IH^{2}} = \frac{1}{SI^{2}} +
\frac{1}{ID^{2}} = \frac{1}{4a^{2}} + \frac{4}{2a^{2}} \Rightarrow IH =
\frac{2a}{3}

    \Rightarrow d\left( B;(SCD) ight) =
d\left( A;(SCD) ight) = 2d\left( I;(SCD) ight) =
\frac{4a}{3}

  • Câu 18: Vận dụng

    Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Gọi K là trung điểm của DD’. Tính khoảng cách giữa hai đường thẳng CK, A’D.

    Hình vẽ minh họa:

    Trong mặt phẳng (CDD’C), gọi P là giao điểm của CK và C’D’

    => KD’ là đường trung bình của ∆PCC’

    => D’ là trung điểm của PC’

    Trong mặt phẳng (A’B’C’D’), gọi M là giao điểm của PB’ và A’D’

    Ta có: A’D // B’C => A’D // (AKB’)

    => d(CK, A’D) = d (A’,(CKB’)) = \frac{1}{2}d(C’,(CPB’))

    Xét tứ diện PCC’B’ ta có:

    C’P, C’B và C’B đôi một vuông góc với nhau

    Đặt d(C’, (CPB’)) = x, thì:

    \frac{1}{x^{2}} = \frac{1}{CC'^{2}}+ \frac{1}{C'B'^{2}} + \frac{1}{C'P^{2}}

    \Rightarrow \frac{1}{x^{2}} =\frac{1}{a^{2}} + \frac{1}{a^{2}} + \frac{1}{4a^{2}} =\frac{9}{4a^{2}}

    \Rightarrow d\left( C';(CPB')ight) = x = \frac{2a}{3}

    \Rightarrow d(CK;A'D) =\frac{1}{2}d\left( C';(CPB') ight) = \frac{1}{2}.\frac{2a}{3}= \frac{a}{3}

  • Câu 19: Thông hiểu

    Cho tứ diện ABCD. Gọi H là trực tâm của tam giác BCD và AH vuông góc với mặt phẳng đáy. Khẳng định nào dưới đây là đúng?

    Hình vẽ minh họa

    Chọn khẳng định đúng

    Vì AH vuông góc với (BCD) suy ra AH⊥CD (1)

    Mà H là trực tâm của tam giác BCD ⇒BH⊥CD (2)

    Từ (1), (2) suy ra: \left\{ {\begin{array}{*{20}{l}}  {CD \bot AH} \\   {CD \bot BH} \end{array}} ight.

    ⇒CD⊥(ABH)⇒CD⊥AB

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCD có ABCD là hình thoi tâm O, SA = SC; SB = SD. Khẳng định nào dưới đây là khẳng định đúng?

    Hình vẽ minh họa:

    Ta có: Tam giác SAC và tam giác SBD lần lượt là tam giác cân tại S

    => SO ⊥ AC, SO ⊥ BD

    => SO ⊥ (ABCD)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 40 lượt xem
Sắp xếp theo