Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Tính thể tích khối chóp tam giác đều cạnh đáy bằng
. Biết độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ
?
Hình vẽ minh họa
Gọi H là trọng tâm tam giác ABC suy ra
Gọi M là trung điểm của BC
Vì độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2
Hay
Xét tam giác SAH vuông tại H ta có:
Vậy
Cho tứ diện
có
đôi một vuông góc. Gọi
là trực tâm tam giác
. Kết luận nào sai?
Hình vẽ minh họa
Ta có: đúng
Ta có: đúng
Ta có:
Mà đúng
Vậy hay tam giác HOA vuông tại H sai
Cho hình chóp S. ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo góc (MN; SC) bằng:
Hình vẽ minh họa:
Do ABCD là hình vuông cạnh a
=>
=> Tam giác SAC vuông tại S
Từ giả thiết ta có MN là đường trung bình của tam giác DSA
=> . Khi đó
=>
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên => SO ⊥ (ABCD)
Từ => AC ⊥ (SBD)
Từ => BD ⊥ (SAC)
Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.
Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).
Cho hình chóp tứ giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp
bằng bao nhiêu?
Hình vẽ minh họa
Gọi O là giao điểm của hai đường chéo AC và BD
Ta có: tam giác SAC cân, O là trung điểm của AC nên
Tương tự tam giác SBD cân, O là trung điểm của BD nên
Suy ra OA là hình chiếu vuông góc của SA lên mặt phẳng đáy
ABCD là hình vuông nên
Xét tam giác vuông SOA ta có:
Cho tứ diện đều ABCD có M là trung điểm của cạnh CD, gọi
là góc giữa hai đường thẳng AM và BC. Giá trị
bằng:

Giả sử cạnh của tứ diện đều bằng a
Vì M là trung điểm của CD. Nên AM là đường cao trong tam giác ACD đều.
=>
Ta có:
=>
=>
Cho tứ diện
có
. Gọi
lần lượt là trung điểm của các cạnh
. Biết
và
. Tính giá trị của
.
Cho tứ diện có
. Gọi
lần lượt là trung điểm của các cạnh
. Biết
và
. Tính giá trị của
.
Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình chữ nhật với AC =
và BC = . Tính khoảng cách giữa SD và BC.
Hình vẽ minh họa:
Theo giả thiết, suy ra AD là hình chiếu vuông góc của SD lên mặt phẳng (ABCD) và CD ⊥ AD (do ABCD là hình chữ nhật), nên theo định lý ba đường vuông góc suy ra CD ⊥ SD. Vì CD cũng vuông góc với BC nên CD là đoạn vuông góc chung của SD và BC.
Cho tứ diện đều ABCD có I và J lần lượt là trung điểm của AB và CD. Tính cosin góc giữa hai cạnh AJ và CI?
Hình vẽ minh họa:

Giả sử cạnh tứ diện đều bằng a. Khi đó:
Ta có:
Vậy cosin góc giữa hai cạnh AJ và CI bằng
Cho hình hộp
có độ dài tất cả các cạnh bằng
và
. Gọi
lần lượt là trung điểm câc các cạnh
. Tính cosin góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Gọi P là trung điểm của DC’. Ta có:
Suy ra
Xét tam giác ADA’ có suy ra tam giác ADA’ là tam giác đều
Xét tam giác A’AB có suy ra tam giác A’AB đều
Do đó tam giác DD’C đều
Vậy
Xét tam giác BAD có AD = AB và nên tam giác BAD là tam giác đều.
Vì tam giác BAD đều nên tam giác B’A’D’ cùng là tam giác đều.
Gọi A’I là đường cao của tam giác B’A’D’
Khi đó:
Dễ thấy A’P là đường trung tuyến của tam giác DA’C’ nên
Áp dụng định lí cosin cho tam giác A’DP có:
Cho hình chóp tứ giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp
bằng bao nhiêu?
Kết quả: 6 cm3
Cho hình chóp tứ giác đều có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp
bằng bao nhiêu?
Kết quả: 6 cm3
Hình vẽ minh họa
Gọi O là giao điểm của hai đường chéo AC và BD
Ta có: tam giác SAC cân, O là trung điểm của AC nên
Tương tự tam giác SBD cân, O là trung điểm của BD nên
Diện tích đáy
Góc giữa SB và mặt phẳng đáy là
ABCD là hình vuông nên
Xét tam giác vuông SOB ta có:
Khi đó thể tích khối chóp là:
Cho hai tam giác đều DAC và BAC lần lượt nằm trong hai mặt phẳng vuông góc với nhau. Gọi α là góc giữa hai mặt phẳng (DAB) và (DBC). Tính giá trị cos α.

Giả sử cạnh của tam giác đều bằng 2a. Khi đó AB = AD = CB = CD = 2a
Gọi H là trung điểm của AC. Tam giác DAC đều suy ra DH ⊥ AC.
Tương tự BH ⊥ AC.
Ta có:
Gọi K là trung điểm của DB.
Ta có: ABD cân tại A nên
Và CBD cân tại C nên
Ta có:
Suy ra góc giữa hai mặt phẳng (DAB) và (DBC) là góc giữa hai đường thẳng AK và CK.
Ta có nên BDH vuông cân tại H.
Từ đó ta có:
Ta có: mà
Xét tam giác ACK có KH vừa là trung tuyến, vừa là đường cao nên tam giác ACK cân tại K.
Nên ta có: KH là phân giác của góc suy ra
Ta có:
Vậy
Cho ba mặt phẳng (P), (Q) và (R). Mệnh đề nào sau đây đúng?
Vì một mặt phẳng vuông góc với một trong hai mặt phẳng song song thì sẽ vuông góc với mặt phẳng còn lại.
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có cạnh bằng a, chiều cao b. Biết góc giữa hai đường thẳng AC’ và A’B bằng 600. Tính b theo a.
Hình vẽ minh họa:
Lấy M, N, P, Q lần lượt là trung điểm của các cạnh AB, AA’, A’C’, A’B’ suy ra MN, NP, PQ và MQ lần lượt là đường trung bình của tam giác ABA’, AA’C’, A’B’C’ và hình chữ nhật ABB’A’. Suy ra:
Từ đó suy ra: tam giác MNP đều
=> MP = MN =
Kết hợp với
=> Tam giác MNP vuông tại Q
=>
=>
Cho tứ diện O.ABC trong đó ba đường thẳng OB, OC, OA đôi một vuông góc. Trong các mệnh đề sau, mệnh đề nào sai?

Tam giác ABC luôn là tam giác nhọn
Cho hình chóp
có đáy là hình chữ nhật. Gọi trung điểm các cạnh
lần lượt là
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có: MN là đường trung bình của tam giác SCD =>
Ta có:
Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Cho hình chóp
,
có đáy
là tam giác vuông tại
. Biết rằng
. Gọi
là góc giữa đường thẳng
và mặt phẳng
. Khi đó:
Hình vẽ minh họa
Ta thấy hình chiếu vuông góc của lên mặt phẳng
là
nên
Mà
Cho hình chóp
có đáy
là hình thang vuông tại
;
. Gọi
là trung điểm của
, biết hai mặt phẳng
và
cùng vuông góc với đáy và mặt phẳng
tạo với đáy một góc
. Tính khoảng cách từ trung điểm của cạnh
đến mặt phẳng
?
Từ I kẻ
Gọi K là trung điểm của SD.
Gọi , kẻ
Ta có:
Xét tam giác ICQ có
Xét tam giác SIP vuông tại I có