Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình chóp S.ABCD có SA \bot \left( {ABCD} ight)SA = a\sqrt 3. Đáy ABCD là hình chữ nhật có AB = a,\,AD = a\sqrt 3. Gọi M là trung điểm của CD, góc giữa SA và mặt phẳng (SBM) bằng \alpha . Giá trị \tan \alpha bằng:

    Tính tan của góc giữa SA và mặt phẳng (SBM)

    Gọi K, I lần lượt là hình chiếu vuông góc của A lên BM và SK.

    Ta có \left\{ \begin{gathered}  BM \bot AK \hfill \\  BM \bot SA\left( {V\`i \,SA \bot \left( {ABCD} ight)} ight) \hfill \\  AK,SA \subset \left( {SAK} ight) \hfill \\  AK \cap SA = \left\{ A ight\} \hfill \\ \end{gathered}  ight. \Rightarrow BM \bot \left( {SAK} ight)

    AI \subset \left( {SAK} ight) \Rightarrow BM \bot AI

    Ta có \left\{ \begin{gathered}  AI \bot BM \hfill \\  AI \bot SK \hfill \\  BM,SK \subset \left( {SBM} ight) \hfill \\  BM \cap SK = \left\{ K ight\} \hfill \\ \end{gathered}  ight. \Rightarrow AI \bot \left( {SBM} ight)

    Suy ra hình chiếu vuông góc của điểm A lên mặt phẳng (SBM) là điểm I. Do đó bằng góc giữa hai đường thẳng SA và SI và bằng góc \widehat {ASK}.

    Ta có \left\{ \begin{gathered}  SA \bot \left( {ABCD} ight) \hfill \\  AK \subset \left( {ABCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow SA \bot AK

    Tính tan của góc giữa SA và mặt phẳng (SBM)

    \begin{matrix}  {S_{\Delta ABM}} = {S_{ABCD}} - {S_{\Delta AMD}} - {S_{\Delta BMC}} \hfill \\   = {a^2}\sqrt 3  - {a^2}\dfrac{{\sqrt 3 }}{4} - {a^2}\dfrac{{\sqrt 3 }}{4} = {a^2}\dfrac{{\sqrt 3 }}{2} \hfill \\  BM = \sqrt {B{C^2} + M{C^2}}  = \sqrt {3{a^2} + \frac{{{a^2}}}{4}}  = \dfrac{{a\sqrt {13} }}{2} \hfill \\ \end{matrix}

    Ta có

    \begin{matrix}  {S_{\Delta ABM}} = \dfrac{1}{2}AK.BM \hfill \\   \Rightarrow AK = \dfrac{{2{S_{\Delta ABM}}}}{{BM}} = \dfrac{{{a^2}\sqrt 3 }}{{a\dfrac{{\sqrt {13} }}{2}}} = a\dfrac{{2\sqrt 3 }}{{\sqrt {13} }} \hfill \\ \end{matrix}

    Xét tam giác vuông SAK có \tan \widehat {ASK} = \frac{{AK}}{{SA}} = \frac{{a\frac{{2\sqrt 3 }}{{\sqrt {13} }}}}{{a\sqrt 3 }} = \frac{2}{{\sqrt {13} }}

  • Câu 2: Vận dụng

    Cho lăng trụ ABCD.A’B’C’D’ có đáy là hình thoi cạnh a, \widehat{BAD} = 60^{0}. Hình chiếu vuông góc của B’ xuống mặt đáy trùng với giao điểm hai đường chéo của đáy và cạnh bên BB’ = a. Tính góc giữa cạnh bên và mặt đáy.

    Hình vẽ minh họa:

    Gọi O là giao điểm của AC và BD

    Theo giả thiết ta có: B’O ⊥ (ABCD)

    Dó đó \left( BB';(ABCD) ight) =
(BB';BO) = \widehat{B'BO}

    Vì tam giác ABD đều cạnh a => BO =
\frac{BD}{2} = \frac{a}{2}

    Tam giác B’BO vuông ta có:

    \begin{matrix}\cos\widehat{B'BO} = \dfrac{BO}{BB'} = \dfrac{1}{2} \hfill \\\Rightarrow \widehat{B'BO} = 60^{0} \hfill \\\end{matrix}

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; SA\bot(ABCD);SA = a\sqrt{2}. Tính khoảng cách giữa hai đường chéo nhau ACSB bằng:

    Hình vẽ minh họa

    Kẻ đường thẳng d qua B và song song AC

    Gọi M là hình chiếu vuông góc của A lên d

    Gọi H là hình chiếu của A lên SM.

    Ta có: \left\{ \begin{matrix}
SA\bot BM \\
BM\bot AM \\
\end{matrix} ight.\  \Rightarrow BM\bot(SAM) \Rightarrow
AH\bot(SBM)

    \Rightarrow d(AC;SB) = d\left( A;(SBM)
ight) = AH

    Xét tam giác SAM có đường cao AH nên

    \frac{1}{AH^{2}} = \frac{1}{AS^{2}} +
\frac{1}{AM^{2}} = \frac{5}{2a^{2}}

    \Rightarrow AH =
\frac{a\sqrt{10}}{5}

  • Câu 4: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau; AB = 8a;AC = 5a;AD = 6a. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK?

    Hình vẽ minh họa

    Ta có: V_{ABCD} =
\frac{1}{2}AB.\frac{1}{2}AD.AC = 60a^{3}

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =
\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}.V_{ABCD} =
15a^{3}

  • Câu 5: Nhận biết

    Cho một khối lăng trụ có diện tích đáy B và chiều cao h lần lượt là 3x^{2};2x. Khi đó thể tích khối lăng trụ đã cho bằng bao nhiêu?

    Ta có: \left\{ \begin{matrix}
B = 3x^{2} \\
h = 2x \\
\end{matrix} ight.

    Thể tích khối lăng trụ đã cho bằng: V =
B.h = 3x^{2}.2x = 6x^{3}

  • Câu 6: Thông hiểu

    Cho khối hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông, đường chéo BD = 2a. Biết góc giữa hai mặt phẳng (A'BD) và mặt phẳng (ABCD) bằng 30^{0}. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi góc giữa mặt phẳng (A'BD) và mặt phẳng (ABCD)\alphaO =
AC \cap BD

    Ta có: \left\{ \begin{matrix}
AO\bot BD \\
AA'\bot BD \\
\end{matrix} ight.\  \Rightarrow A'O\bot BD

    \Rightarrow \alpha = (AO;A'O) =
\widehat{AOA'} = 30^{0}

    Ta có ABCD là hình vuông, BD = 2a nên AB
= AD = a\sqrt{2}

    Ta có: AO = \frac{1}{2}AC = \frac{1}{2}BD
= a

    Xét tam giác AOA’ có AA' =
AO.tan30^{0} = \frac{a\sqrt{3}}{3}

    \Rightarrow
V_{ABCD.A'B'C'D'} = AA'.S_{ABCD} =
\frac{a\sqrt{3}}{3}.2a^{2} = \frac{2a^{3}\sqrt{3}}{3}

  • Câu 7: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.

    Hình vẽ minh họa:

    Ta có:

    SA ⊥ BC

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC

  • Câu 8: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông ABCD cạnh a. Gọi O là giao điểm hai đường chéo AC;BD. Biết rằng SO = \frac{a\sqrt{2}}{2}. Tính góc giữa hai đường thẳng ABSD?

    Hình vẽ minh họa

    Ta có: AB//CD \Rightarrow (AB;SD) =(CD;SD)

    OD = \frac{1}{2}BD =\frac{a\sqrt{2}}{2}

    SD = \sqrt{SO^{2} + OD^{2}} =\sqrt{\frac{a^{2}}{2} + \frac{a^{2}}{2}} = a

    \Rightarrow SC = SC = CD =a

    Suy ra tam giác SCD đều.

    \Rightarrow \widehat{SCD} =60^{0}

    \Rightarrow (AB;SD) = (CD;SD) =\widehat{SCD} = 60^{0}

  • Câu 9: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA\bot(ABC). Gọi H là chân đường cao kẻ từ đỉnh A của tam giác SAB. Xác định kết luận sai?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) ightarrow SA\bot
BC

    Ta có: \left\{ \begin{matrix}
BC\bot AB(gt) \\
BC\bot SA;\left( do\ \ SA\bot(ABC) ight) \\
AB \cap SA = A \\
AB;SA \subset (SAB) \\
\end{matrix} ight.

    \Rightarrow BC\bot(SAB)

    Lại có: \left\{ \begin{matrix}
AH\bot SB \\
AH\bot BC;\left( do\ \ BC\bot(SAB) ight) \\
SB \cap BC = B \\
AB;BC \subset (SBC) \\
\end{matrix} ight.

    \Rightarrow AH\bot(SBC) \Rightarrow
AH\bot BC \Rightarrow AH\bot BC

  • Câu 10: Thông hiểu

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1}. Tính \left( AC;DA_{1} ight)?

    Hình vẽ minh họa

    Ta có:

    AC//A_{1}C_{1} \Rightarrow \left(
AC;DA_{1} ight) = \left( A_{1}C_{1};DA_{1} ight) =
\widehat{DA_{1}C_{1}}

    Do A_{1}C_{1};DA_{1};DC_{1} là các đường chéo hình vuông bằng nhau.

    Vậy tam giác AD_{1}C_{1} là tam giác đều \Rightarrow \widehat{DA_{1}C_{1}} =
60^{0}

    \Rightarrow \left( AC;DA_{1} ight) =
\widehat{DA_{1}C_{1}} = 60^{0}

  • Câu 11: Vận dụng

    Cho tứ diện đều ABCD cạnh bằng a, M là trung điểm của cạnh BC. Gọi \alpha là góc giữa hai đường thẳng ABDM. Khi đó \cos\alpha bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi N là trung điểm của BC

    => MN là đường trung bình tam giác ABC

    \Rightarrow \left\{ \begin{matrix}
MN//AB \\
MN = \frac{1}{2}AB \\
\end{matrix} ight.

    Vì tam giác BCD và tam giác ACD là các tam giác đều cạnh a

    \Rightarrow MD = ND =
\frac{a\sqrt{3}}{2}

    MN//AB \Rightarrow \alpha = (AB,DM) =
(MN,DM)

    Xét tam giác MND ta có:

    \cos\widehat{NMD} = \frac{MN^{2} +
MD^{2} - ND^{2}}{2MN.MD}

    = \dfrac{\left( \dfrac{a}{2} ight)^{2} +\left( \dfrac{a\sqrt{3}}{2} ight)^{2} - \left( \dfrac{a\sqrt{3}}{2}ight)^{2}}{2.\dfrac{a}{2}.\dfrac{a\sqrt{3}}{2}} = \dfrac{\sqrt{3}}{6}> 0

    \Rightarrow \widehat{NMD} < 90^{0}
\Rightarrow (MN,DM) = \widehat{NMD}

    \Rightarrow \cos\alpha =
\cos\widehat{NMD} = \frac{\sqrt{3}}{6}

  • Câu 12: Nhận biết

    Chọn mệnh đề đúng?

    Mệnh đề đúng: “Cho đường thẳng a\bot(\alpha), mọi mặt phẳng (\beta)//(\alpha) thì (\beta)\bot a”.

    Minh họa bằng hình vẽ:

  • Câu 13: Vận dụng cao

    Cho tứ diện ABCD có AB vuông góc với CD, AB = CD = 6. Gọi M là điểm thuộc cạnh BC sau đó MC = x.BC (0 < x < 1). Mặt phẳng (P) song song với AB và CD lần lượt cắt BC, DB, AD, AC tại M, N, P, Q. Diện tích lớn nhất của tứ giác bằng bao nhiêu?

    Xét tứ giác MNPQ có: \left\{
\begin{matrix}
PQ//NP//AB \\
MN//PQ//CD \\
\end{matrix} ight.

    => MNPQ là hình bình hành

    Mặt khác AB\bot CD \Rightarrow MQ\bot
MN

    => MNPQ là hình chữ nhật

    Vì MQ // AB nên \frac{MQ}{AB} =
\frac{CM}{CB} = x \Rightarrow MQ = x.AB = 6x

    Theo giả thiết MC = x.BC => MB = (1 – x).BC

    Vì MN // CD nên \frac{MN}{CD} =
\frac{BM}{BC} = 1 - x

    => MN = (1 - x).DC = 6(1 -
x)

    Diện tích hình chữ nhật MNPQ là:

    \begin{matrix}S_{MNPQ} = MN.MQ \hfill\\= 6(1 - x).6x \hfill\\= 36x.(1 - x) \hfill\\\leq 36.\left( \dfrac{x + 1 - x}{2} ight)^{2} = 9 \hfill \\\Rightarrow S_{MNPQ} = 9 \hfill\\\end{matrix}

    Khi x = 1 – x => x = 1/2

    Vậy diện tích tứ giác MNPQ lớn nhất bằng 9 khi M là trung điểm của BC.

  • Câu 14: Nhận biết

    Cho hai mặt phẳng (P) và (Q) song song với nhau và một điểm M không thuộc (P) và (Q). Qua M có bao nhiêu mặt phẳng vuông góc với (P) và (Q)?

    Gọi d là đường thẳng qua M và vuông góc với (P). Do (P)//(Q)⇒d⊥(Q)

    Giả sử (R) là mặt phẳng chứa d. Mà \left\{ {\begin{array}{*{20}{l}}  {d \bot \left( P ight)} \\   {d \bot \left( Q ight)} \end{array}} ight.

    \Rightarrow \left\{ {\begin{array}{*{20}{l}}  {\left( R ight) \bot \left( P ight)} \\   {\left( R ight) \bot \left( Q ight)} \end{array}} ight.

    Có vô số mặt phẳng (R) chứa d. Do đó có vô số mặt phẳng qua M, vuông góc với (P) và (Q).

  • Câu 15: Thông hiểu

    Cho một khối chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB =
2aAB = 2a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ABC?

    Hình vẽ minh họa

    Gọi H là trung điểm của AB

    Do tam giác SAB đều suy ra SH\bot
AB

    \left\{ \begin{matrix}
(SAB)\bot(ABC) \\
SH \subset (SAB) \\
AB \subset (ABC) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABC)

    Vậy SH là đường cao của hình chóp

    Khi đó SH = a\sqrt{3}

    Ta có: AB = 2a \Rightarrow BC =
2a

    S_{ABC} = \frac{1}{2}(2a)^{2} =
2a^{2}

    Thể tích khối chóp là: V =
\frac{1}{3}S_{ABC}.SH = \frac{1}{3}.2a^{2}.a\sqrt{3} =
\frac{2a^{3}\sqrt{3}}{3}

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC. Giả sử HK cắt BC tại D. Khi đó:

    a) \widehat{(AC;AD)} = 90^{0} Đúng||Sai

    b) AH\bot(SBC) Đúng||Sai

    c) \widehat{(SC;HK)} = 90^{0} Đúng||Sai

    d) Tam giác SBC cân tại B. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC. Giả sử HK cắt BC tại D. Khi đó:

    a) \widehat{(AC;AD)} = 90^{0} Đúng||Sai

    b) AH\bot(SBC) Đúng||Sai

    c) \widehat{(SC;HK)} = 90^{0} Đúng||Sai

    d) Tam giác SBC cân tại B. Sai||Đúng

    \widehat{(AC;AD)} = 90^{0} đúng

    AH\bot(SBC) đúng

    \widehat{(SC;HK)} = 90^{0} đúng

    Tam giác SBC cân tại B. sai

  • Câu 17: Nhận biết

    Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:

    Do ∆BCD là tam giác đều cạnh \sqrt{18} nên có diện tích là S_{BCD} = \frac{18\sqrt{3}}{4} =
\frac{9\sqrt{3}}{2}

  • Câu 18: Vận dụng

    Cho tứ diện ABCD có AC = AD = BC = BD = a, (ACD) ⊥ (BCD) và (ABC) ⊥ (ABD). Tính độ dài cạnh CD.

    Gọi M, N lần lượt là trung điểm của CD, AB, ∆ACD và ∆BCD cân

    => AM ⊥ CD, BM ⊥ CD. Ta có:

    \left\{ \begin{matrix}(ACD)\  \cap \ (BCD) \\CD\bot AM \subset (ACD) \\CD\bot BM \subset (BCD) \\\end{matrix} ight.

    \Rightarrow \widehat{\left( (ACD);\(BCD) ight)} = \widehat{(AM;\ BM)} = 90^{0}

    => AM ⊥ BM

    Và ta dễ dàng chứng minh được ∆ACD = ∆BCD (c – c - c)

    => AM = BM => ∆ABM vuông cân tại M

    => MN ⊥ AB

    Đặt CD = x

    Áp dụng định lý Py-ta-go ta có:

    AM^{2} = a^{2} -\frac{x^{2}}{4}

    Xét ∆ABM vuông cân tại M

    \Rightarrow AB^{2} = 2AM^{2} = 2a^{2} -\frac{x^{2}}{2}

    \Rightarrow AN^{2} = \frac{1}{4}AB^{2} =\frac{a^{2}}{2} - \frac{x^{2}}{8}

    Áp dụng định lý Py-ta-go ta có:

    DN^{2} = AD^{2} - AN^{2}

    \Rightarrow DN^{2} = a^{2} -\frac{a^{2}}{2} + \frac{x^{2}}{8} = \frac{a^{2}}{2} +\frac{x^{2}}{8}

    Xét ∆CDN vuông cân tại N

    \Rightarrow CD^{2} = 2DN^{2} = a^{2} +\frac{x^{2}}{4}

    \Rightarrow a^{2} + \frac{x^{2}}{4} =x^{2} \Leftrightarrow x = \frac{2a\sqrt{3}}{3}

  • Câu 19: Thông hiểu

    Cho tứ diện ABCD có độ dài các cạnh AB =
AC = AD = BC = BD = aCD =
a\sqrt{2}. Tính góc giữa hai đường thẳng AD và BC.

    Hình vẽ minh họa

    Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.

    Khi đó: KH//AD,KI//BC \Rightarrow (AD;BC)
= (KH;KI).

    Xét \Delta BIC,BI = \sqrt{BC^{2} -
AC^{2}} = \sqrt{a^{2} - \frac{a^{2}}{2}} =
\frac{a}{\sqrt{2}}.

    Ta có \left\{ \begin{matrix}
AB\bot DH \\
AB\bot HC \\
\end{matrix} \Rightarrow AB\bot(DHC) \Rightarrow AB\bot HI ight..

    Xét \Delta BIH,HI = \sqrt{IB^{2} -
HB^{2}} = \sqrt{\frac{a^{2}}{2} - \frac{a^{2}}{4}} =
\frac{a}{2}. (1)

    Xét \Delta IHK, ta có: \left\{ \begin{matrix}
IK = \frac{BC}{2} = \frac{a}{2} \\
HK = \frac{AD}{2} = \frac{a}{2} \\
\end{matrix} \Rightarrow IK = HK = \frac{a}{2} ight.. (2)

    Từ (1),(2) \Rightarrow HI = IK = HK
\Rightarrow \Delta IHK là tam giác đều

    \Rightarrow \widehat{IKH} = 60^{0} \Rightarrow
(KH;KI) = 60^{0}.

  • Câu 20: Nhận biết

    Trong không gian cho đường thẳng a và điểm M. Có bao nhiêu đường thẳng đi qua M, cắt a và vuông góc với a?

    Có 1 nếu M không thuộc a, có vô số nếu M thuộc a

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 52 lượt xem
Sắp xếp theo