Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho tứ diện ABCD có AB = AC = AD, \widehat {BAC} = \widehat {BAD} = {60^0}. Hãy chứng mình AB ⊥ CD.

    Một bạn chứng mình qua các bước sau:

    Bước 1. \overrightarrow {CD}  = \overrightarrow {AC}  - \overrightarrow {AD}

    Bước 2. \overrightarrow {AB} .\overrightarrow {CD}  = \overrightarrow {AB} .\left( {\overrightarrow {AC}  - \overrightarrow {AD} } ight)

    Bước 3. \overrightarrow {AB} .\overrightarrow {AC}  - \overrightarrow {AB} .\overrightarrow {AD}  = |\overrightarrow {AB} |.|\overrightarrow {AD} |.\cos {60^0} - |\overrightarrow {AB} |.|\overrightarrow {AD} |.\cos {60^0} = 0

    Bước 4. Suy ra AB ⊥ CD

    Theo em. Lời giải trên sai từ:

    Bài toán sai từ bước 1 vì

    Theo quy tắc trừ hai vectơ ta có:

    \overrightarrow {CD}  = \overrightarrow {AD}  - \overrightarrow {AC} {\text{ }}

  • Câu 2: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD, đáy ABCD cạnh bằng 2a, cạnh bên SB = a\sqrt{5}. Tính thể tích hình chóp S.ABCD?

    Hình vẽ minh họa

    Gọi O là tâm hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Ta có: \left\{ \begin{matrix}
S_{ABCD} = 4a^{2} \\
SO = \sqrt{SB^{2} - OB^{2}} = \sqrt{5a^{2} - 2a^{2}} = a\sqrt{3} \\
\end{matrix} ight.

    Vậy thể tích hình chóp là: V =
\frac{1}{3}SO.S_{ABCD} = \frac{a\sqrt{3}.4a^{2}}{3} =
\frac{4\sqrt{3}a^{3}}{3}

  • Câu 3: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác cân tại B, SA\bot(ABC). Gọi I là trung điểm của AC, H là hình chiếu của I trên SC. Chọn khẳng định đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
BI\bot AC \\
BI\bot SA;\left( SA\bot(ABC) ight) \\
\end{matrix} ight.\  \Rightarrow BI\bot(SAC) \Rightarrow BI\bot
SC(1)

    Theo giả thiết ta có: SC\bot
IH(2)

    Từ (1) và (2) suy ra SC\bot(BHI)

    SC \subset (SBC) nên (BHI)\bot(SBC)

  • Câu 4: Vận dụng

    Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của BC và DD’. Tính theo a khoảng cách giữa hai đường thẳng MN và BD.

    Hình vẽ minh họa:

    Gọi O, P, K lần lượt là trung điểm của AC, CD, OC

    Kẻ DI ⊥ MP, DH ⊥ NI

    Ta có: ND = \frac{a}{2}, BD // MP, tứ giác DIKO là hình chữ nhật

    => DI = OK = \frac{OC}{2} =\frac{a\sqrt{2}}{4}

    Khi đó: d(MN, BD) = d(BD, (MNP)) = d(D, (MNP)) = DH

    Xét tam giác vuông NDI ta có:

    \begin{matrix}\dfrac{1}{DH^{2}} = \dfrac{1}{DN^{2}} + \dfrac{1}{DI^{2}} \Rightarrow DH =\dfrac{a\sqrt{3}}{6} \hfill \\\Rightarrow d(MN,BD) = \dfrac{a\sqrt{3}}{6} \hfill\\\end{matrix}

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABCDABCD là hình vuông cạnh a; SA =
a;SA\bot(ABCD). Khoảng cách giữa hai đường thẳng SC;BD bằng bao nhiêu?

    Hình vẽ minh họa

    Dựng Cx//BD;(\alpha) =
(SC;Cx)

    \Rightarrow d(BD;SC) = d\left(
BD;(\alpha) ight)

    d\left( BD;(\alpha) ight) = d\left(
O;(\alpha) ight) = \frac{1}{2}d\left( A;(\alpha) ight)

    Dựng AK\bot SC. Dễ thấy AK\bot(\alpha) \Rightarrow d\left( A;(\alpha)
ight) = AK

    \frac{1}{AK^{2}} = \frac{1}{SA^{2}} +
\frac{1}{AC^{2}} \Rightarrow AK = \frac{a\sqrt{6}}{3}

    \Rightarrow d\left( O;(\alpha) ight) =
\frac{a\sqrt{6}}{3}

  • Câu 6: Nhận biết

    Cho tứ diện ABCD. Gọi H là trực tâm tam giác BCDAH vuông góc với mặt phẳng đáy. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có:

    AH\bot(BCD) \Rightarrow AH\bot
CD

    H là trực tâm tam giác BCD nên BH\bot
CD

    \left\{ \begin{matrix}
CD\bot AH \\
CD\bot BH \\
\end{matrix} ight.\  \Rightarrow CD\bot(ABH) \Rightarrow CD\bot
AB

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC), đáy ABC là tam giác cân tại A. Gọi M là trung điểm của BC, J là trung điểm của BM. Xác định góc giữa hai mặt phẳng (SBC)(ABC)?

    Hình vẽ minh họa

    Dễ thấy (SBC) \cap (ABC) =
BC

    Ta có tam giác ABC cân tại A, M là trung điểm của BC suy ra AM\bot BC

    Theo giả thiết SA\bot(ABC). Khi đó \left\{ \begin{matrix}
BC\bot AM \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAM) \Rightarrow BC\bot
SM

    Ta được \left\{ \begin{matrix}
(SBC) \cap (ABC) = BC \\
AM\bot BC \\
SM\bot BC \\
\end{matrix} ight.

    \Rightarrow \left( \widehat{(SBC);(ABC)}
ight) = \widehat{SMA}

  • Câu 8: Thông hiểu

    Cho khối lăng trụ tam giác đều ABC.A'B'C'BB' = 2a. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 60^{0}.

    Hình vẽ minh họa

    Gọi M là trung điểm của BC.

    Ta có: \left\{ \begin{matrix}
BC\bot AM \\
BC\bot A'M \\
(A'BC) \cap (ABC) = BC \\
\end{matrix} ight.

    \Rightarrow \left( (A'BC);(ABC)
ight) = \widehat{A'MA} = 60^{0}

    Trong tam giác vuông A’MA có:

    \tan\widehat{A'MA} =
\frac{A'A}{AM} \Rightarrow AM = \frac{A'A}{tan60^{0}} =
\frac{2\sqrt{3}}{3}a

    Tam giác ABC đều nên AM =
\frac{AB\sqrt{3}}{2} \Rightarrow AB = \frac{4a}{3}

    Vậy thể tích khối lăng trụ là: V =
S_{ABC}.AA' = 2a.\frac{4a^{2}\sqrt{3}}{9} =
\frac{8\sqrt{3}a^{3}}{9}

  • Câu 9: Vận dụng

    Cho hình chóp S.ABC có \widehat{BSC} =
120^{0};\widehat{CSA} = 60^{0};\widehat{ASB} = 90^{0}và SA = SB = SC. Gọi H là hình chiếu vuông góc của S trên mặt phẳng (ABC), khi đó:

    Hình vẽ minh họa:

    Đặt SA = a

    Xét tam giác SAB vuông cân tại S ta có:

    AB = \sqrt{SA^{2} + SB^{2}} =
a\sqrt{2}

    Xét tam giác SAC cân tại S ta có:

    \widehat{CSA} = 60^{0} => SA = SC = AC = a

    Áp dụng định lí cosin cho tam giác SBC ra có:

    \begin{matrix}BC^{2} = SB^{2} + SC^{2} - 2SB.SC.cos\widehat{BSC} \hfill \\BC^{2} = a^{2} + a^{2} - 2a.a.cos120^{0} = 3a^{2} \hfill \\BC = a\sqrt{3} = \sqrt{AB^{2} + AC^{2}} \hfill \\\end{matrix}

    Vậy tam giác ABC vuông tại A mà H là hình chiếu của S trên (ABC) nên H là tâm đường tròn ngoại tiếp tam giác ABC

    Hay H là trung điểm của BC.

  • Câu 10: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên \left\{ \begin{matrix}SO\bot AC \\SO\bot BD \\\end{matrix} ight. => SO ⊥ (ABCD)

    Từ \left\{ \begin{matrix}SO\bot AC \\AC\bot BD \\\end{matrix} ight.=> AC ⊥ (SBD)

    Từ \left\{ \begin{matrix}SO\bot BD \\AC\bot BD \\\end{matrix} ight.=> BD ⊥ (SAC)

    Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.

    Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABCBC =
a\sqrt{2}, các cạnh còn lại đều bằng a. Góc giữa hai đường thẳng SBAC bằng:

    Hình vẽ minh họa

    Ta có: AB^{2} + AC^{2} =
BC^{2}

    Suy ra tam giác ABC vuông tại A.

    Gọi H, M, N lần lượt là trung điểm của AB, AB, SA

    \Rightarrow \left\{ \begin{matrix}
MN//SB \\
MH//AC \\
\end{matrix} ight.\  \Rightarrow (SB,AC) = (MN,MH)

    \left\{ \begin{matrix}MN = \dfrac{SB}{2} = \dfrac{a}{2} \\NH = \dfrac{AC}{2} = \dfrac{a}{2} \\AH = \dfrac{BC}{2} = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    Xét tam giác SBC có: SB = SC nên SH\bot
BC \Rightarrow SH = \sqrt{SB^{2} - HB^{2}} =
\frac{a\sqrt{2}}{2}

    Lại H là tam đường tròn ngoại tiếp tam giác ABC

    Mà SA = SB = SC = a nên SH\bot(ABC)

    Suy ra tam giác SAH vuông cân tại H

    HN = \frac{SA}{2} =
\frac{a}{2}

    Do đó tam giác MHN cạnh \frac{a}{2}. Góc cần tìm bằng 60^{0}

  • Câu 12: Vận dụng

    Tính thể tích khối chóp tam giác đều cạnh đáy bằng a. Biết độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2?

    Hình vẽ minh họa

    Gọi H là trọng tâm tam giác ABC suy ra SH\bot(ABC)

    Gọi M là trung điểm của BC

    \Rightarrow AM\bot BC;AM =
\frac{a\sqrt{3}}{2}

    Vì độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2

    Hay AM = \frac{1}{2}SA

    \Rightarrow SA = a\sqrt{3}

    Xét tam giác SAH vuông tại H ta có:

    \Rightarrow SH = \sqrt{SA^{2} -
AH^{2}}

    = \sqrt{\left( a\sqrt{3} ight)^{2} -
\left( \frac{2}{3}.\frac{a\sqrt{3}}{2} ight)^{2}} =
\frac{2a\sqrt{6}}{2}

    Vậy V_{S.ABC} = \frac{1}{3}.S_{ABC}.SH =
\frac{1}{3}.\frac{a^{2}\sqrt{3}}{4}.\frac{2a\sqrt{6}}{3} =
\frac{a^{3}\sqrt{2}}{6}

  • Câu 13: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA ⊥ (ABCD). Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào?

    Hình vẽ minh họa:

    Do I là trung điểm của SC và O là trung điểm AC nên IO ∥ SA. Do SA ⊥ (ABCD) nên IO ⊥ (ABCD), hay khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng IO

  • Câu 14: Vận dụng cao

    Cho tứ diện ABCD trong đó AB = 6; CD = 3, góc giữa AB và CD là 600 và điểm M trên BC sao cho BM = 2MC. Mặt phẳng (P) qua M song song với AB và CD cắt BD, AD, AC lần lượt tại M, N, Q. Diện tích MNPQ bằng:

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
(MNPQ)//AB \\
(MNPQ) \cap (ABC) = MQ \\
\end{matrix} ight.\  \Rightarrow MQ//AB

    Tương tự ta có: MN // CD, NP // AB, QP // CD

    Do đó tứ giác MNPQ là hình bình hành

    Ta có: (AB, CD) = (QM, MP) = 600

    Suy ra: S_{MNPQ} =
QM.QN.sin60^{0}

    Ta có:

    \begin{matrix}\Delta CMQ\sim\Delta CBA \hfill\\\Rightarrow \dfrac{CM}{CB} = \dfrac{MQ}{AB} = \dfrac{1}{3} \hfill\\\Rightarrow MQ = 2 \hfill\\\Delta AQN\sim\Delta ACD \hfill \\\Rightarrow \dfrac{AQ}{AC} = \dfrac{QN}{CD} = \dfrac{2}{3} \hfill\\\Rightarrow MQ = 2 \hfill \\\end{matrix}

    => S_{MNPQ} = QM.QN.sin60^{0} =
2.2.\frac{\sqrt{3}}{2} = 2\sqrt{3}

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABC có SA ⊥(ABC). Biết α là góc giữa SB và mặt phẳng (ABC). Xác định góc α.

    Hình vẽ minh họa:

    Ta có SA ⊥(ABC) => Hình chiếu của SB trên mặt phẳng (ABC) là đường thẳng AB.

    => Góc giữa đường thẳng SB và (ABC) là góc giữa hai đường thẳng SB và AB

    Tức là \alpha =
\widehat{SBA}

  • Câu 16: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = 2a, BC = a. Hình chiếu vuông góc H của đỉnh S trên mặt phẳng đáy là trung điểm của cạnh AB, góc giữa đường thẳng SC và mặt phẳng đáy bằng 600. Tính cosin góc giữa hai đường thẳng SB và AC.

    Tính cosin góc giữa hai đường thẳng SB và AC

    +) Ta có:

    \begin{matrix}  \overrightarrow {SB} .\overrightarrow {AC}  = \left( {\overrightarrow {SH}  + \overrightarrow {HB} } ight)\left( {\overrightarrow {AB}  + \overrightarrow {BC} } ight) \hfill \\   = \overrightarrow {SH} .\overrightarrow {AB}  + \overrightarrow {SH} .\overrightarrow {BC}  + \overrightarrow {HB} .\overrightarrow {AB}  + \overrightarrow {HB} .\overrightarrow {BC}  \hfill \\   = \overrightarrow {HB} .\overrightarrow {AB}  + \overrightarrow {HB} .\overrightarrow {BC}  \hfill \\   = \dfrac{1}{2}A{B^2} = 2{a^2} \hfill \\ \end{matrix}

    +) Mặt khác

    \begin{matrix}  AC = a\sqrt 5 ;CH = \sqrt {{a^2} + {a^2}}  = a\sqrt 2  \hfill \\  SH = CH.\tan \widehat {SCH} = a\sqrt 6  \hfill \\  SB = \sqrt {S{H^2} + H{B^2}}  = \sqrt {{{\left( {a\sqrt 6 } ight)}^2} + {a^2}}  = a\sqrt 7  \hfill \\ \end{matrix}

    => \cos \left( {SB,AC} ight) = \frac{{\left| {\overrightarrow {SB} .\overrightarrow {AC} } ight|}}{{SB.AC}} = \frac{{2{a^2}}}{{a\sqrt 7 .a\sqrt 5 }} = \frac{2}{{\sqrt {35} }}

  • Câu 17: Nhận biết

    Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là VV' . Khi đó tỉ số \frac{V}{V'} = 1/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là VV' . Khi đó tỉ số \frac{V}{V'} = 1/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Ta có:

    Thể tích khối chóp là: V =
\frac{1}{3}B.h

    Thể tích hình lăng trụ là: V' =
B.h

    Khi đó: \dfrac{V}{V'} =\dfrac{\dfrac{1}{3}B.h}{B.h} = \dfrac{1}{3}

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABC có SA ⊥ (ABC) và đáy ABC là tam giác vuông tại B. Xác định góc α giữa hai mặt phẳng (ABC) và (SBC).

    Hình vẽ minh họa:

    Ta có:

    Giao tuyến của hai mặt phẳng (SBC) và (ABC) là BC. (1)

    Ta có: SA ⊥ (ABC), mà đường thẳng BC nằm trong (ABC) => SA ⊥ BC.

    Ta có:\left\{ \begin{matrix}
BC\bot BA \subset (SAB) \\
BC\bot SA \subset (SAB) \\
BA\  \cap \ SA\  = \ A \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB)\ \ \ (2)

    Lại có: \left\{ \begin{matrix}
(SBA)\  \cap \ (ABC)\  = \ BA \\
(SBA)\  \cap \ (SBC)\  = \ BS \\
\end{matrix} ight.\ (3)

    Từ (1), (2), (3) => \alpha =
\widehat{SBA}

  • Câu 19: Thông hiểu

    Cho tứ diện đều ABCD. I là trung điểm của AB. Góc giữa hai đường thẳng IC và AD có cosin bằng:

    Hình vẽ minh họa:

    Góc giữa hai đường thẳng IC và AD

    Giả sử cạnh tứ diện đều bằng a. Khi đó:

    \begin{matrix}  \overrightarrow {AD} .\overrightarrow {AB}  = {a^2}.\cos {60^0} = \dfrac{{{a^2}}}{2} \hfill \\  \overrightarrow {AC} .\overrightarrow {AD}  = \dfrac{{{a^2}}}{2} \hfill \\ \end{matrix}

    Ta có:

    \begin{matrix}  \overrightarrow {IC}  = \overrightarrow {AC}  - \overrightarrow {AI}  = \overrightarrow {AC}  - \dfrac{1}{2}\overrightarrow {AB}  \hfill \\   \Rightarrow \overrightarrow {IC} .\overrightarrow {AD}  = \dfrac{{{a^2}}}{2} - \dfrac{{{a^2}}}{4} = \dfrac{{{a^2}}}{4} \hfill \\ \end{matrix}

    \begin{matrix}  \cos \left( {\widehat {IC;AD}} ight) = \dfrac{{\left| {\overrightarrow {IC} .\overrightarrow {AD} } ight|}}{{IC.AD}} \hfill \\   \Rightarrow \cos \left( {\widehat {IC;AD}} ight) = \dfrac{{{a^2}}}{4}:\dfrac{{{a^2}\sqrt 3 }}{2} = \dfrac{1}{{2\sqrt 3 }} \hfill \\ \end{matrix}

  • Câu 20: Nhận biết

    Cho hình lập phương như hình vẽ:

    Hỏi đường thẳng nào vuông góc với đường thẳng BC'?

    Ta có:

    \left\{ \begin{matrix}
AD'\bot AB \\
AD'\bot A'D \\
\end{matrix} ight.\  \Rightarrow AD'\bot(ABC'D')
\Rightarrow AD'\bot BC'

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 39 lượt xem
Sắp xếp theo