Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho khối lăng trụ tam giác đều ABC.A'B'C'BB' = 2a. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 60^{0}.

    Hình vẽ minh họa

    Gọi M là trung điểm của BC.

    Ta có: \left\{ \begin{matrix}
BC\bot AM \\
BC\bot A'M \\
(A'BC) \cap (ABC) = BC \\
\end{matrix} ight.

    \Rightarrow \left( (A'BC);(ABC)
ight) = \widehat{A'MA} = 60^{0}

    Trong tam giác vuông A’MA có:

    \tan\widehat{A'MA} =
\frac{A'A}{AM} \Rightarrow AM = \frac{A'A}{tan60^{0}} =
\frac{2\sqrt{3}}{3}a

    Tam giác ABC đều nên AM =
\frac{AB\sqrt{3}}{2} \Rightarrow AB = \frac{4a}{3}

    Vậy thể tích khối lăng trụ là: V =
S_{ABC}.AA' = 2a.\frac{4a^{2}\sqrt{3}}{9} =
\frac{8\sqrt{3}a^{3}}{9}

  • Câu 2: Thông hiểu

    Cho hình chóp S.ABC có các mặt bên tạo với đáy một góc bằng nhau. Hình chiếu vuông góc của điểm S trên mặt phẳng (ABC) là:

    Gọi I là hình chiếu vuông góc của S trên mặt phẳng (ABCD)

    M, N, P lần lượt là hình chiếu vuông góc của S trên các cạnh AB, AC, BC.

    Khi đó ta có: \left\{ \begin{matrix}SI\bot AB \\SM\bot AB \\\end{matrix} ight.\  \Rightarrow AB\bot(SIM) \Rightarrow AB\botIM

    Tương tự ta có: AC\bot IN,IP\botBC

    Khi đó \left( (SAB);(ABC) ight) =(SM,IM) = \widehat{SMI}

    Tương tự suy ra \widehat{SMI} =\widehat{SNI} = \widehat{SPI}

    => \Delta SMI = \Delta SNI = \DeltaSPI \Rightarrow IM = IN = IP

    => I là tâm đường tròn nội tiếp tam giác ABC.

  • Câu 3: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a\sqrt 2 và cạnh bên bằng 2a. Góc giữa đường thẳng SB với mặt phẳng (SAC) bằng

    Gọi O = AC \cap BD. Ta có S.ABCD là hình chóp tứ giác đều suy ra SO \bot \left( {ABCD} ight).

    \left\{ \begin{gathered}  SO \bot \left( {ABCD} ight) \hfill \\  BD \subset \left( {ABCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow SO \bot BD

    \left\{ \begin{gathered}  BD \bot SO \hfill \\  BD \bot AC \hfill \\  SO,AC \subset \left( {SAC} ight) \hfill \\  SO \cap AC = \left\{ O ight\} \hfill \\ \end{gathered}  ight. \Rightarrow BD \bot \left( {SAC} ight)

    Suy ra hình chiếu vuông góc của đường thẳng SB lên mặt phẳng (SAC) là đường thẳng SO.

    Do đó góc giữa SB và mặt phẳng (SAC) bằng góc giữa hai đường thẳng SB và SO và bằng góc \widehat {BSO}.

    BO = \frac{{BD}}{2} = \frac{{a\sqrt 2 .\sqrt 2 }}{2} = a

    \left\{ \begin{gathered}  SO \bot \left( {ABCD} ight) \hfill \\  OB \subset \left( {ABCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow SO \bot OB

    Xét tam giác SOB có

    Ta có \sin \widehat {BSO} = \frac{{BO}}{{SB}} = \frac{a}{{2a}} = \frac{1}{2} \Rightarrow BSO = {30^0}

  • Câu 4: Thông hiểu

    Một tấm ván hình chữ nhật ABCD được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu 2\ m. Cho biết AB = 1\ m, AD
= 3,5\ m. Tính góc giữa đường thẳng BD và đáy hố. (Kết quả làm tròn đến độ).

    Đáp án : 33\ ^{0}

    Đáp án là:

    Một tấm ván hình chữ nhật ABCD được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu 2\ m. Cho biết AB = 1\ m, AD
= 3,5\ m. Tính góc giữa đường thẳng BD và đáy hố. (Kết quả làm tròn đến độ).

    Đáp án : 33\ ^{0}

    Gọi H, K lần lượt là hình chiếu của C, D lên đáy hố là mặt phẳng (AKHB).

    Khi đó BD có hình chiếu lên đáy là KB, suy ra

    \left( BD,(AKHB) ight) = (BD,BK) =
\widehat{DBK}.

    Với độ sâu hố là DK = CH = 2(m), ta có

    AK = \sqrt{AD^{2} - DK^{2}} =
\frac{\sqrt{33}}{2}.

    KB = \sqrt{AK^{2} + AB^{2}} =
\frac{\sqrt{37}}{2}.

    \tan DBK = \frac{DK}{KB} =
\frac{4\sqrt{37}}{37}

    \Rightarrow \widehat{DBK} \approx
33{^\circ}.

  • Câu 5: Thông hiểu

    Cho tứ diện ABCD có AB = CD. Gọi I, J E, F lần lượt là trung điểm của AC, BC, BD, AD. Góc (IE; JF) bằng:

    Hình vẽ minh họa

    Ta có: IF là đường trung bình của tam giác ACD => \left\{ \begin{matrix}IF//CD \\IF = \dfrac{1}{2}CD \\\end{matrix} ight.

    JE là đường trung bình của tam giác BCD => \left\{ \begin{matrix}JE//CD \\JE = \dfrac{1}{2}CD \\\end{matrix} ight.

    => \left\{ \begin{matrix}
IF = JE \\
IF//JE \\
\end{matrix} ight.=> Tứ giác IJEF là hình bình hành

    Mặt khác \left\{ \begin{matrix}IJ = \dfrac{1}{2}AB \\JE = \dfrac{1}{2}CD \\\end{matrix} ight.. MÀ AB = CD => IJ = JE

    Do đó IJEF là hình thoi => (IE; JF) = 900

  • Câu 6: Nhận biết

    Mệnh đề nào sau đây là mệnh đề sai?

    Mệnh đề sai: “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì song song.”

    Vì hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì có thể cắt nhau, chéo nhau.

  • Câu 7: Vận dụng cao

    Cho hình lập phương ABCD. A’B’C’D’ có cạnh bằng a. Gọi I là điểm thuộc AB sao cho AI = x, (0 < x < a). Tìm x theo a để góc giữa hai đường thẳng DI và AC’ bằng 600.

    Hình vẽ minh họa:

    Ta có:

    \begin{matrix}DI = \sqrt{AD^{2} + AI^{2}} = \sqrt{a^{2} + x^{2}};AC' = a\sqrt{3} \hfill\\\overrightarrow{AC'}.\overrightarrow{DI} = \left(\overrightarrow{AA'} + \overrightarrow{AB} + \overrightarrow{AD}ight)\left( \overrightarrow{AI} - \overrightarrow{AD} ight) \hfill\\= \overrightarrow{AB}.\overrightarrow{AI} - {\overrightarrow{AD}}^{2} =ax - a^{2} \hfill \\\cos(AC';DI) = \dfrac{\left|\overrightarrow{AC'}.\overrightarrow{DI} ight|}{AC'.DI} \hfill \\\Leftrightarrow cos60^{0} = \dfrac{\left| ax - a^{2} ight|}{\sqrt{a^{2}+ x^{2}}.a\sqrt{3}} \hfill \\\Leftrightarrow \sqrt{3\left( a^{2} + x^{2} ight)} = 2|x - a| \hfill\\\Leftrightarrow 3a^{2} + 3x^{2} = 4\left( x^{2} - 2ax + a^{2} ight)\hfill \\\Leftrightarrow x^{2} - 8ax + a^{2} = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = \left( 4 - \sqrt{15} ight)a \\x = \left( 4 + \sqrt{15} ight)a \hfill \\\end{matrix} ight.\ \hfill \\\end{matrix}

    0 < x < a \Rightarrow x = \left(
4 - \sqrt{15} ight)a

  • Câu 8: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'có cạnh bằng a. Khoảng cách từ A' đến mp (ABCD) bằng:

    Hình vẽ minh họa

    Ta có A'A\bot(ABCD) nên d\left( A',(ABCD) ight) = A'A =
a.

  • Câu 9: Thông hiểu

    Cho hình chóp S.ABCD, có đáy ABCD là hình thang vuông tại AD. Biết SA\bot(ABCD);AD = BC = a;AB = 2a. Xác định kết luận sai?

    Hình vẽ minh họa

    Gọi M là trung điểm của AB. Ta có: CM =
MA = MB = a

    Suy ra tam giác ACB vuông tại C.

    \left\{ \begin{matrix}
BC\bot AC \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAC) \Rightarrow
(SBC)\bot(SAC)

    \left\{ \begin{matrix}
AB\bot AD \\
AB\bot SA \\
\end{matrix} ight.\  \Rightarrow AB\bot(SAD) \Rightarrow
(SAB)\bot(SAD)

    \left\{ \begin{matrix}
CD\bot AD \\
CD\bot SA \\
\end{matrix} ight.\  \Rightarrow CD\bot(SAD) \Rightarrow
(SCD)\bot(SAD)

  • Câu 10: Vận dụng

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên bằng \frac{a\sqrt{21}}{6}. Tính khoảng cách d từ đỉnh A đến mặt phẳng (SBC)

    Hình vẽ minh họa

    Tính khoảng cách d từ đỉnh A đến mặt phẳng (SBC)

    Giả sử O là tâm của tam giác đều ABC 

    Do S.ABC đều nên => SO \bot(ABC)

    Gọi E là trung điểm của BC ta có:

    \begin{matrix}  AO \cap \left( {SBC} ight) = E \hfill \\   \Rightarrow \dfrac{{d\left( {A;\left( {SBC} ight)} ight)}}{{d\left( {O;\left( {SBC} ight)} ight)}} = \dfrac{{AE}}{{OE}} = 3 \hfill \\   \Rightarrow d\left( {A;\left( {SBC} ight)} ight) = 3d\left( {O;\left( {SBC} ight)} ight) \hfill \\ \end{matrix}

    Xét (SAE) kẻ OK \bot SE (*)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BC \bot AE} \\   {BC \bot SO} \end{array}} ight. \Rightarrow BC \bot \left( {SEA} ight) \Rightarrow BC \bot OK\left( {**} ight)

    Ta có:

    \begin{matrix}  SO = \sqrt {S{A^2} - {{\left( {\dfrac{2}{3}AE} ight)}^2}}  \hfill \\   = \sqrt {\dfrac{{21{a^2}}}{{36}} - {{\left( {\dfrac{2}{3}\dfrac{{a\sqrt 3 }}{2}} ight)}^2}}  = \dfrac{a}{2} \hfill \\  OE = \dfrac{1}{3}AE = \dfrac{1}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{6} \hfill \\ \end{matrix}

    Xét tam giác vuông SOE ta có:

    OK = \frac{{SO.OE}}{{\sqrt {S{O^2} + O{E^2}} }} = \frac{a}{4}

    \Rightarrow d\left( {A;\left( {SBC} ight)} ight) = 3OK = \frac{{3a}}{4}

  • Câu 11: Nhận biết

    Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa

    Hình vẽ minh họa:

    Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

    Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.

  • Câu 12: Thông hiểu

    Cho tứ diện đều ABCD có I và J lần lượt là trung điểm của AB và CD. Tính cosin góc giữa hai cạnh AJ và CI?

    Hình vẽ minh họa:

    Tính cosin góc giữa hai cạnh AJ và CI?

    Giả sử cạnh tứ diện đều bằng a. Khi đó:

    Ta có:

    \begin{matrix}  \overrightarrow {AJ}  = \dfrac{1}{2}\overrightarrow {AD}  + \dfrac{1}{2}\overrightarrow {AC}  \hfill \\  \overrightarrow {CI}  = \overrightarrow {AI}  - \overrightarrow {AC}  = \dfrac{1}{2}\overrightarrow {AB}  - \overrightarrow {AC}  \hfill \\   \Rightarrow \overrightarrow {CI} .\overrightarrow {AJ}  = \dfrac{1}{4}\left( {\overrightarrow {AB}  - 2\overrightarrow {AC} } ight).\left( {\overrightarrow {AC}  + \overrightarrow {AD} } ight) \hfill \\   \Rightarrow \overrightarrow {CI} .\overrightarrow {AJ}  =  - \dfrac{{{a^2}}}{2} \hfill \\   \Rightarrow \overrightarrow {CI}  = \overrightarrow {AJ}  = \dfrac{{a\sqrt 3 }}{2} \hfill \\   \Rightarrow \cos \left( {\overrightarrow {CI} ;\overrightarrow {AJ} } ight) = \dfrac{2}{3} \hfill \\ \end{matrix}

    Vậy cosin góc giữa hai cạnh AJ và CI bằng \frac{2}{3}

  • Câu 13: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'. Tính (AB;A'C')?

    Hình vẽ minh họa

    AB//A'B' \Rightarrow
(AB;A'C') = (A'B';A'C') =
\widehat{B'A'C'}

    Tam giác A’B’C’ vuông cân tại B’ \Rightarrow \widehat{B'A'C'} =
45^{0}

    Vậy (AB;A'C') =
45^{0}.

  • Câu 14: Vận dụng

    Cho hình lăng trụ ABC. MNP có tất cả các cạnh bằng nhau. Gọi I là trung điểm của cạnh AC. Cosin của góc tạo bởi NC và BI bằng bao nhiêu?

     Gọi E là trung điểm MP => NE // BI

    => Góc giữa hai đường thẳng NC và BI bằng góc giữa hai đường thẳng NC và NE

    => Góc cần tính là \widehat {CNE}

    Đặt a là chiều dài cạnh của hình lăng trụ ta có:

    \begin{matrix}  NC = a\sqrt 2  \hfill \\  NE = \dfrac{{a\sqrt 3 }}{2} \hfill \\  CE = \sqrt {C{P^2} + E{P^2}}  = \dfrac{{a\sqrt 5 }}{2} \hfill \\ \end{matrix}

    => \cos \widehat {CNE} = \frac{{N{C^2} + N{E^2} - C{E^2}}}{{2NC.NE}} = \frac{{\sqrt 6 }}{4}

  • Câu 15: Vận dụng

    Cho hình chóp S.ABCD có thể tích bằng \frac{4}{3}a^{3}, đáy ABCD là hình vuông cạnh bằng a\sqrt{2}; SA
= SD. Biết mặt bên (SAD) vuông góc với mặt phẳng (ABCD). Xác định khoảng cách d\left( B;(SCD)
ight)?

    Hình vẽ minh họa

    Gọi I là trung điểm của AD

    Tam giác SAD cân tại S suy ra SI\bot
AD

    Ta có \left\{ \begin{matrix}
SI\bot AD \\
(SAD)\bot(ABCD) \\
\end{matrix} ight.\  \Rightarrow SI\bot(ABCD)

    Suy ra SI là đường cao của hình chóp

    Theo giả thiết

    V_{S.ABCD} =
\frac{1}{3}SI.S_{ABCD}

    \Leftrightarrow \frac{4a^{3}}{3} =
\frac{1}{2}SI.2a^{2}

    \Leftrightarrow SI = 2a

    AB//(SCD) \Rightarrow d\left( B;(SCD)
ight) = d\left( A;(SCD) ight) = 2d\left( I;(SCD)
ight)

    Gọi H là hình chiếu vuông góc của I lên SD

    Mặt khác \left\{ \begin{matrix}
SI\bot DC \\
ID\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot DC. Ta có: \left\{ \begin{matrix}
IH\bot SD \\
IH\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot(SCD)

    \Rightarrow d\left( I;(SCD) ight) =
IH

    Xét tam giác SID vuông tại I có:

    \frac{1}{IH^{2}} = \frac{1}{SI^{2}} +
\frac{1}{ID^{2}} = \frac{1}{4a^{2}} + \frac{4}{2a^{2}} \Rightarrow IH =
\frac{2a}{3}

    \Rightarrow d\left( B;(SCD) ight) =
d\left( A;(SCD) ight) = 2d\left( I;(SCD) ight) =
\frac{4a}{3}

  • Câu 16: Nhận biết

    Cho một khối trụ có diện tích đáy bằng 4a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 4a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối trụ là: V = B.h = 4a^{2}.a
= 4a^{3}

  • Câu 17: Nhận biết

    Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD), AH và AK lần lượt là đường cao của tam giác SAB và SAD. Hai mặt phẳng (SAB) và (SBC) vuông góc vì

    Hai mặt phẳng (SAB) và (SBC) vuông góc vì BC ⊥ (SAB) do BC ⊥ AB và BC ⊥ SA

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 2. Đường thẳng SO vuông góc với mặt phẳng đáy (ABCD) và SO=\sqrt{3}. Tính khoảng cách d giữa hai đường thẳng SA và BD.

    Hình vẽ minh họa:

    Tính khoảng cách d giữa hai đường thẳng SA và BD

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {BD \bot AC} \\   {BD \bot SO} \end{array} \Rightarrow BD \bot \left( {SAC} ight)} ight.

    Trong (SAC) kẻ OK⊥SA(1) ta có:

    OK⊂(SAC)⇒OK⊥BD(2) 

    Từ (1) và (2) ta có OK là đường vuông góc chung của SA và BD

    Khi đó d(SA;BD)=OK

    \begin{matrix}  OK = \dfrac{{SO.OA}}{{\sqrt {S{O^2} + O{A^2}} }} \hfill \\   = \dfrac{{\sqrt 3 .\dfrac{{2\sqrt 2 }}{2}}}{{\sqrt {{{\left( {\sqrt 3 } ight)}^2} + {{\left( {\dfrac{{2\sqrt 2 }}{2}} ight)}^2}} }} = \dfrac{{\sqrt {30} }}{5} \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu

    Cho khối lăng trụ ABC.A'B'C có đáy ABC là tam giác vuông cân tại A. Biết AB = a và góc giữa đường thẳng BC' và mặt phẳng (ACC'A') bằng 30^{0}. Tính thể tích khối lăng trụ đứng ABC.A'B'C'.

    Hình vẽ minh họa

    Ta có:

    \left\{ \begin{matrix}
AB\bot AC \\
AB\bot AA' \\
\end{matrix} ight.\  \Rightarrow AB\bot(ACC'A')

    Suy ra \left( BC';(ACC'A')
ight) = (BC';AC') = \widehat{AC'B} = 30^{0}

    Ta có: AC' = \frac{AB}{tan30^{0}} =
\sqrt{3}a

    \Rightarrow AA' = \sqrt{\left(
a\sqrt{3} ight)^{2} - a^{2}} = a\sqrt{2}

    Vậy V_{ABC.A'B'C'} =
AA'.S_{ABC} = \sqrt{2}a.\frac{1}{2}.a.a =
\frac{\sqrt{2}}{2}a^{3}

  • Câu 20: Vận dụng

    Cho lăng trụ ABCD.A’B’C’D’ có đáy là hình thoi cạnh a, \widehat{BAD} = 60^{0}. Hình chiếu vuông góc của B’ xuống mặt đáy trùng với giao điểm hai đường chéo của đáy và cạnh bên BB’ = a. Tính góc giữa cạnh bên và mặt đáy.

    Hình vẽ minh họa:

    Gọi O là giao điểm của AC và BD

    Theo giả thiết ta có: B’O ⊥ (ABCD)

    Dó đó \left( BB';(ABCD) ight) =
(BB';BO) = \widehat{B'BO}

    Vì tam giác ABD đều cạnh a => BO =
\frac{BD}{2} = \frac{a}{2}

    Tam giác B’BO vuông ta có:

    \begin{matrix}\cos\widehat{B'BO} = \dfrac{BO}{BB'} = \dfrac{1}{2} \hfill \\\Rightarrow \widehat{B'BO} = 60^{0} \hfill \\\end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 49 lượt xem
Sắp xếp theo