Cho hình chóp
có đáy
là hình chữ nhật, cạnh bên
vuông góc với đáy. Kết luận nào đưới dây đúng?
Hình vẽ minh họa:
Ta có:
Cho hình chóp
có đáy
là hình chữ nhật, cạnh bên
vuông góc với đáy. Kết luận nào đưới dây đúng?
Hình vẽ minh họa:
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 4a. Cạnh bên hình chóp SA = 2a. Hình chiếu vuông góc của đỉnh S trên mặt phẳng đáy là trung điểm M của OA. Gọi α là góc giữa SD và mặt phẳng đáy. Chọn mệnh đề đúng trong các mệnh đề dưới đây.
Hình vẽ minh họa:
Ta có: SM ⊥ (ABCD)
=> Hình chiếu vuông góc của SD trên mặt phẳng (ABCD) là cạnh MD.
Ta tính được:
Xét tam giác ADM có:
=>
Cho hình lập phương
có cạnh bằng
Khoảng cách từ
đến mp
bằng:
Hình vẽ minh họa
Ta có nên
.
Cho hình chóp
, đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Cho hình chóp , đáy
là hình chữ nhật, biết
. Xác định tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Hình vẽ minh họa
a) Ta có:
b) Ta có:
mà
c) Ta có:
Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc .
d) Ta có:
Suy ra SD là hình chiếu vuông góc của SC lên (SAD)
Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc trong tam giác vuông SCD.
Xét tam giác SCD vuông tại D ta có:
Cho tứ diện OABC với các đường thẳng OA, OB, OC đôi một vuông góc. Bộ ba mặt phẳng vuông góc với nhau từng đôi một là
Dễ thấy rằng OA ⊥ (OBC), OB ⊥ (OCA), OC ⊥ (OAB)
Vậy bộ ba mặt phẳng vuông góc với nhau từng đôi một là (OAB), (OBC), (OCA).
Cho hình chóp
có thể tích bằng
, đáy
là hình vuông cạnh bằng
;
. Biết mặt bên
vuông góc với mặt phẳng
. Xác định khoảng cách
?
Hình vẽ minh họa
Gọi I là trung điểm của AD
Tam giác SAD cân tại S suy ra
Ta có
Suy ra SI là đường cao của hình chóp
Theo giả thiết
Vì
Gọi H là hình chiếu vuông góc của I lên SD
Mặt khác . Ta có:
Xét tam giác SID vuông tại I có:
Cho hình chóp
có đáy
là tam giác vuông tại
,
vuông góc với mặt phẳng đáy. Giả sử
là hình chiếu của
trên cạnh
. Ta có các khẳng định sau:
| a) |
b) |
c) |
Có bao nhiêu khẳng định đúng trong các khẳng định đã cho?
Hình vẽ minh họa
Ta có:
Lại có:
Vậy có 2 khẳng định đúng.
Cho tam giác đều ABC có cạnh bằng 3a. Điểm H thuộc cạnh AC với HC = a. Dựng đoạn SH vuông góc với mặt phẳng (ABC) với SH = 2a. Khoảng cách từ điểm C đến mặt phẳng (SAB) bằng bao nhiêu?
Hình vẽ minh họa:
Gọi D là trung điểm của AB, do giả thiết suy ra CD ⊥ AB.
Trong (ABC) kẻ HM // CD suy ra HM ⊥ AB (1).
Do giả thiết SH ⊥ (ABC) => SH ⊥ AB (2)
Từ (1), (2) suy ra AB ⊥ (SHM)
Trong mặt phẳng (SHM) kẻ HK ⊥ SM (3), theo chứng minh trên => HK ⊥ AB (4)
Từ (3), (4) => HK ⊥ (SAB) => d (H; (SAB)) = HK
Dễ thấy CH ∩ (SAB) = {A}
Do đó
Theo giả thiết ∆ABC đều =>
Xét ∆ABC do HM // CD theo định lý Ta - lét ta có:
Áp dụng hệ thức lượng trong ∆SHM vuông tại H, ta có:
Cho hình chóp S.ABC có đáy là tam giác vuông ABC cân với cạnh huyền
, cạnh bên
và
. Gọi M là trung điểm AC, N là trung điểm AB. Tính góc giữa hai đường thẳng SM và CN.

Đặt
Do tam giác vuông cân ABC tại C có suy ra:
Ta có:
Vậy
Mặt khác:
Gọi góc giữa hai véctơ
và
Theo công thức tích vô hướng của hai véctơ ta có:
Vậy góc giữa hai đường thẳng SM và CN bằng
Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh có độ dài bằng 2a. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của BC. Tính khoảng các d giữa hai đường thẳng BB' và A'H
Do nên
Ta có:
Nên
Vậy khoảng cách
Cho tứ diện ABCD có BCD là tam giác vuông tại đỉnh
, cạnh
,
. Tính cosin của góc nhị diện [A, BC, D].
Hình vẽ minh họa
Gọi M, H lần lượt là trung điểm của BC, CD.
Do vuông tại
nên
hay
là tâm đường tròn ngoại tiếp
.
Mà nên AH là đường cao kẻ từ
xuống
hay
.
(1)
M, H là trung điểm của BC, CD nên MH là đường trung bình của
Mà nên
. (2)
Từ (1), (2) suy ra: .
Suy ra: .
Lại có: .
Cho hình lăng trụ
có đáy
là tam giác vuông tại
,
và
. Chọn kết luận đúng về số đo góc giữa
và
?
Hình vẽ minh họa
Ta có hình chiếu của A”C lên mặt phẳng (ABC) là AC
Suy ra
Ta có:
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) ,
. Góc giữa SC với mặt phẳng (ABCD) là:
Hình vẽ minh họa:
Ta có:
Lại có:
=>
Cho hình chóp S.ABC có SA = SB = SC;
. Hãy xác định góc giữa cặp vecto
?
Hình vẽ minh họa:

Ta có:
Mà SA = SB = SC và
=>
Cho hình lập phương ABCD.A1B1C1D1 có cạnh bằng a. Gọi M là trung điểm của AD. Tính tích vô hướng của ![]()
Hình vẽ minh họa:

Ta có:
Cho khối lăng trụ tam giác đều
có cạnh bên bằng
. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng
và mặt phẳng
bằng
.
Hình vẽ minh họa
Gọi M là trung điểm của BC.
Ta có:
Trong tam giác vuông A’MA có:
Tam giác ABC đều nên
Vậy thể tích khối lăng trụ là:
Cho hình chóp S.ABCD có ABCD là hình vuông, tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm BC. Gọi
là góc hợp bởi đường thẳng SA và mặt phẳng (SDM). Tính ![]()
+ Không mất tính tổng quát, đặt AB = 2
+ Gọi N là trung điểm AB suy ra
+ Gọi
Gọi
+ Ta có
+ Ta có
+ Gọi NH là đường cao
+ Tam giác NJI đồng dạng tam giác MBJ
+ Tam giác SAB là tam giác đều cạnh bằng 2
Cho tứ diện ABCD có AB vuông góc với CD, AB = CD = 6. Gọi M là điểm thuộc cạnh BC sau đó MC = x.BC (0 < x < 1). Mặt phẳng (P) song song với AB và CD lần lượt cắt BC, DB, AD, AC tại M, N, P, Q. Diện tích lớn nhất của tứ giác bằng bao nhiêu?
Xét tứ giác MNPQ có:
=> MNPQ là hình bình hành
Mặt khác
=> MNPQ là hình chữ nhật
Vì MQ // AB nên
Theo giả thiết MC = x.BC => MB = (1 – x).BC
Vì MN // CD nên
=>
Diện tích hình chữ nhật MNPQ là:
Khi x = 1 – x => x = 1/2
Vậy diện tích tứ giác MNPQ lớn nhất bằng 9 khi M là trung điểm của BC.
Cho hình chóp tứ giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp
bằng bao nhiêu?
Kết quả: 6 cm3
Cho hình chóp tứ giác đều có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp
bằng bao nhiêu?
Kết quả: 6 cm3
Hình vẽ minh họa
Gọi O là giao điểm của hai đường chéo AC và BD
Ta có: tam giác SAC cân, O là trung điểm của AC nên
Tương tự tam giác SBD cân, O là trung điểm của BD nên
Diện tích đáy
Góc giữa SB và mặt phẳng đáy là
ABCD là hình vuông nên
Xét tam giác vuông SOB ta có:
Khi đó thể tích khối chóp là:
Cho hình chóp tứ giác
có đáy
là hình vuông cạnh bằng 1, cạnh
vuông góc với đáy và
. Tính thể tích khối chóp
đã cho.
Hình vẽ minh họa
Ta có: nên SA là đường cao của hình chóp
Thể tích khối chóp là