Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó
bằng:

Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó
bằng:

Cho tứ diện ABCD có AB = AC = AD,
. Hãy chứng mình
.
Một bạn chứng mình qua các bước sau:
Bước 1. ![]()
Bước 2. ![]()
Bước 3. ![]()
Bước 4. Suy ra ![]()
Theo em. Lời giải trên sai từ:
Bài toán sai từ bước 1 vì
Theo quy tắc trừ hai vectơ ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy
Ta có:
Cho tứ diện ABCD có SC = AC = AB =
, SC ⊥ (ABC), tam giác ABC vuông tạo A, các điểm M thuộc SA, N thuộc BCc sao cho AM = CN = t (0 < t < 2a). Tìm t để MN ngắn nhất.
Hình vẽ minh họa:
Theo giả thiết, ta có: SA = 2a, BC = 2a
Vì 0 < t < 2a
Đặt . Ta có:
Vậy
Từ đó suy ra MN nhỏ nhất khi và chỉ khi
Trong không gian cho ba đường thẳng phân biệt a, b, c. Khẳng định nào sau đây sai?
Mệnh đề đúng: Nếu a và b cùng vuông góc với c thì a // b
Cho hình vuông ABCD cạnh 4a , lấy H, K lần lượt trên các cạnh AB, AD sao cho BH = 3HA, AK = 3KD. Trên đường thẳng vuông góc với mặt phẳng (ABCD) tại H lấy điểm S sao cho
. Gọi E là giao điểm của CH và BK . Tính cosin của góc giữa hai đường thẳng SE và BC .
Gọi I là hình chiếu vuông góc của E lên AB ta có

Ta có:
Trong tam giác vuông SEI có:
=>
Cho hình lăng trụ đứng tam giác
có đáy
là tam giác cân,
và cạnh bên
. Tính góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có:
Xét tam giác ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
Vậy tam giác đều
Cho hình chóp tam giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp là:
Hình vẽ minh họa
Cho tứ diện ABCD có AC = AD = BC = BD = a, (ACD) ⊥ (BCD) và (ABC) ⊥ (ABD). Tính độ dài cạnh CD.
Gọi M, N lần lượt là trung điểm của CD, AB, ∆ACD và ∆BCD cân
=> AM ⊥ CD, BM ⊥ CD. Ta có:
=> AM ⊥ BM
Và ta dễ dàng chứng minh được ∆ACD = ∆BCD (c – c - c)
=> AM = BM => ∆ABM vuông cân tại M
=> MN ⊥ AB
Đặt CD = x
Áp dụng định lý Py-ta-go ta có:
Xét ∆ABM vuông cân tại M
Áp dụng định lý Py-ta-go ta có:
Xét ∆CDN vuông cân tại N
Cho hình chóp
có đáy
là tam giác đều cạnh
; cạnh
vuông góc với mặt đáy và
. Gọi
là trung điểm của cạnh
. Gọi
là góc giữa đường thẳng
và mặt phẳng
. Xác định
?
Hình vẽ minh họa
Gọi H là trung điểm của AC => HM // SA và
Mà
Ta có:
Trong tam giác BMH có:
Cho hình chóp
có thể tích bằng
, đáy
là hình vuông cạnh bằng
;
. Biết mặt bên
vuông góc với mặt phẳng
. Xác định khoảng cách
?
Hình vẽ minh họa
Gọi I là trung điểm của AD
Tam giác SAD cân tại S suy ra
Ta có
Suy ra SI là đường cao của hình chóp
Theo giả thiết
Vì
Gọi H là hình chiếu vuông góc của I lên SD
Mặt khác . Ta có:
Xét tam giác SID vuông tại I có:
Cho tứ diện ABCD có độ dài các cạnh
và
. Tính góc giữa hai đường thẳng AD và BC.
Hình vẽ minh họa
Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.
Khi đó: .
Xét .
Ta có .
Xét . (1)
Xét , ta có:
. (2)
Từ là tam giác đều
.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = a,
. Tam giác SBC đều và nằm trong mặt phẳng vuông với đáy. Tính khoảng cách d từ B đến mặt phẳng (SAC).
Hình vẽ minh họa:

Gọi M là trung điểm của BC
=>
Gọi N là trung điểm của AC
=>
Kẻ
Trong các mệnh đề dưới đây, mệnh đề nào là mệnh đề đúng?
Mệnh đề đúng: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng kia”.
Khối lăng trụ đứng
có đáy
là tam giác vuông cân tại A. Biết
và góc giữa đường thẳng
và mặt phẳng
bằng
. Tính thể tích khối lăng trụ đứng
.
Hình vẽ minh họa
Ta có:
Suy ra
Ta có:
Vậy
Cho hình lập phương ABCD.A’B’C’D’. Đường thẳng AC’ vuông góc với mặt phẳng nào sau đây?
Hình vẽ minh họa:

Ta có: AA’D’A là hình vuông => AD’ ⊥ A’D
ABCD.A’B’C’D là hình lập phương => AB ⊥ A’D
=> A’D ⊥ (ABC’D’) => A’D ⊥ AC’
Ta lại có: ABCD là hình vuông => AC ⊥ BD
Mà A’A ⊥ BD => BD ⊥ (AA’C’C) => BD ⊥ AC’
Kết hợp với A’D ⊥ AC’ => A’C ⊥ (A’BD)
Cho hình chóp
có đáy là hình vuông cạnh
,
. Tính
?
Hình vẽ minh họa
Ta có: nên góc giữa
và mặt phẳng đáy bằng góc
.
Ta có:
Vậy
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a, SO ⊥ (ABCD). Gọi M, N lần lượt là trung điểm của SA và BC. Tính góc giữa đường thẳng MN và mặt phẳng đáy. Biết
.
Hình vẽ minh họa:
Kẻ Mk // SO
Theo bài ra ta có: SO ⊥ (ABCD) => MK ⊥ (ABCD)
=>
Ta có:
Xét tam giác CNK có:
Xét tam giác MNK vuông ta có:
Cho tứ diện
có
. Gọi trung điểm của các cạnh
lần lượt là
. Biết rằng
. Tính
?
Hình vẽ minh họa
Đặt
Vì trung điểm của các cạnh lần lượt là
Suy ra
Từ đó
Suy ra tam giác GEF vuông tại G.
Vì nên
Công thức tính thể tích khối lăng trụ có diện tích đáy
và chiều cao
là:
Thể tích khối lăng trụ có diện tích đáy và chiều cao
là: