Tìm mệnh đề sai trong các mệnh đề sau:
Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”
Tìm mệnh đề sai trong các mệnh đề sau:
Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”
Cho hình chóp
có
. Kết luận nào sau đây sai về góc giữa
và ![]()
Vì nên AB là hình chiếu của SB trên (ABC)
Vậy .
Biết khối chóp có diện tích đáy và chiều cao lần lượt bằng
. Thể tích khối chóp bằng:
Ta có:
Thể tích khối chóp là:
Cho hình chóp S.ABCD có ABCD là hình thoi tâm O, SA = SC; SB = SD. Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa:
Ta có: Tam giác SAC và tam giác SBD lần lượt là tam giác cân tại S
=> SO ⊥ AC, SO ⊥ BD
=> SO ⊥ (ABCD)
Dễ thấy:
SO ⊥ (ABCD)
AC ⊥ BD
BD ⊥ (SAC)
Là những khẳng định đúng.
Cho hình chóp S.ABCD có mặt phẳng đáy là hình vuông cạnh a,
, SA vuông góc với mặt phẳng đáy. Tính góc giữa SB và AC?
Hình vẽ minh họa

Lấy M là trung điểm của SD
Góc cần tìm là góc giữa OM và SC
Ta có MC là trung tuyến của tam giác SCD
Xét tam giác MOC ta có:
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) ,
. Góc giữa SC với mặt phẳng (ABCD) là:
Hình vẽ minh họa:
Ta có:
Lại có:
=>
Giả sử
là thể tích khối tứ diện đều
. Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích
. Tỉ số
1/2
(Kết quả được ghi dưới dạng phân số tối giản a/b)
Giả sử là thể tích khối tứ diện đều
. Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích
. Tỉ số
1/2
(Kết quả được ghi dưới dạng phân số tối giản a/b)
Hình vẽ minh họa
Giả sử tứ diện đều cạnh bằng a
Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện
Mỗi góc cũng là một tứ diện đều có cạnh bằng
Do đó thể tích phần cắt bỏ là
(Vì tứ diện cạnh giảm một nưả thì thể tích giảm
Vậy
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của điểm S lên mặt phẳng (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Gọi α là số đo của góc giữa đường thẳng SA và mặt phẳng (ABC). Tính tan α.

Hình chiếu của SA lên mặt phẳng (ABC) là AH
=> Góc giữa SA và mặt phẳng (ABC) là
Tam giác ABC và SBC là các tam giác đều cùng cạnh a
Vậy tan α = 1
Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng a và các góc phẳng đỉnh B đều bằng 600.
Cặp đường thẳng nào sau đây không vuông góc với nhau?
Hình ảnh minh họa

Xét tam giác CB'D' có ba cạnh bằng nên tam giác không vuông.
=> B’C và CD’ không vuông góc với nhau.
Tính thể tích khối lăng trụ đứng tam giác, đáy là tam giác đều cạnh
, cạnh bên bằng
.
Hình vẽ minh họa
Khối lăng trụ đã cho có đáy là tam giác đều cạnh bằng 2a nên diện tích là và chiều cao
(vì lăng trụ là lăng trụ đứng)
Vậy thể tích hình lăng trụ là:
Cho hình chóp S.ABC có SA = SB và CA = CB. Tính số đo góc giữa hai đường thẳng chéo nhau SC và AB.
Hình vẽ minh họa:

Cho hình chóp S.ABC có AB = AC,
. Tính số đo góc giữa hai đường thẳng SA và BC.
Ta có:
Vì
=> Góc giữa hai đường thẳng SA, BC là: 900
Cho hình lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng . Điểm M và N lần lượt là trung điểm các đoạn AC, BB’. Côsin góc giữa đường thẳng MN và (BA’C’) bằng

Gọi là số đo góc giữa MN và (BA’C’), K là hình chiếu vuông góc của N lên (B’A’C’).
Khi đó
Gọi E là trung điểm của A’C’, khi đó BMEB’ là hình chữ nhật. Gọi , ta có
Ta có
. Kẻ
Từ
Cho hình chóp
, có đáy
là tam giác đều và
. Gọi
là trung điểm của cạnh
và
là hình chiếu của
lên
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Mà
Theo giả thiết
Từ (1) và (2) suy ra
Mà
Cho tứ diện
có
, các cạnh còn lại bằng nhau và bằng
. Mặt phẳng
chứa cạnh
và vuông góc với cạnh
tại
. Diện tích tam giác
lớn nhất bằng bao nhiêu?
Hình vẽ minh họa
Ta có:
Theo giả thiết ta có các tam giác ACD và BCD là các tam giác đều cạnh bằng 4
Gọi H là trung điểm của AB ta có: và
Dấu bằng xảy ra khi và chỉ khi
Vậy
Cho hình chóp tứ giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp
bằng bao nhiêu?
Hình vẽ minh họa
Gọi O là giao điểm của hai đường chéo AC và BD
Ta có: tam giác SAC cân, O là trung điểm của AC nên
Tương tự tam giác SBD cân, O là trung điểm của BD nên
Suy ra OA là hình chiếu vuông góc của SA lên mặt phẳng đáy
ABCD là hình vuông nên
Xét tam giác vuông SOA ta có:
Cho hình chóp S.ABCD có đáy là ABCD là hình vuông, cạnh bên SA vuông góc với mặt phẳng đáy. Đường thẳng SD tạo với mặt phẳng (SAB) một góc 450. Gọi I là trung điểm của cạnh CD. Góc giữa hai đường thẳng BI và SD bằng (số đo góc được làm tròn đến hàng đơn vị).
Hình vẽ minh họa:
Gọi a là số đo cạnh của hình vuông ABCD
Ta có:
Ta lại có:
I là trung điểm của CH nên
Xét tam giác BCI vuông tại C ta có:
Cho tứ diện ABCD có AC = AD = BC = BD = a, (ACD) ⊥ (BCD) và (ABC) ⊥ (ABD). Tính độ dài cạnh CD.
Gọi M, N lần lượt là trung điểm của CD, AB, ∆ACD và ∆BCD cân
=> AM ⊥ CD, BM ⊥ CD. Ta có:
=> AM ⊥ BM
Và ta dễ dàng chứng minh được ∆ACD = ∆BCD (c – c - c)
=> AM = BM => ∆ABM vuông cân tại M
=> MN ⊥ AB
Đặt CD = x
Áp dụng định lý Py-ta-go ta có:
Xét ∆ABM vuông cân tại M
Áp dụng định lý Py-ta-go ta có:
Xét ∆CDN vuông cân tại N
Cho hình chóp tứ giác
có
và đáy là hình vuông. Chọn kết luận đúng?
Hình vẽ minh họa
Ta có:
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 3a. Cạnh bên SA vuông góc với (ABCD), góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 30◦ . Tìm khoảng cách từ A đến mặt phẳng (SBC).
Ta có:
Gọi H là chân đường cao lên cạnh SB. Khi đó, ta có
d(A, (SBC)) = AH. sin 30◦ => AH = AB . sin 30◦ =