Cho tứ diện đều
cạnh bằng
,
là trung điểm của
. Khi đó
là:
Hình vẽ minh họa
Gọi E là trung điểm cạnh AC. Khi đó ta có: EM // AB.
Ta có: là tứ diện đều cạnh bằng 1 và
Cho tứ diện đều
cạnh bằng
,
là trung điểm của
. Khi đó
là:
Hình vẽ minh họa
Gọi E là trung điểm cạnh AC. Khi đó ta có: EM // AB.
Ta có: là tứ diện đều cạnh bằng 1 và
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AA’ = 2a; AD = 4a. Gọi M là trung điểm của cạnh AD. Tính khoảng cách d giữa hai đường thẳng A’B’ và C’M.
Ta có: AA’ = AM = MD = 2a nên tam giác AMA’ và tam giác MDD’ lần lượt là tam giác vuông tại A và D
=> (1)
Ta lại có: (2)
Từ (1) và (2) =>
Ta lại có A’B’ // C’D’ => A’B’ // (MC’D’)
=> Khoảng cách d = d(A’B’, (MC’D’)) = d(A’; (MC’D’))
=>
Cho hình hộp chữ nhật
(như hình vẽ):

Biết rằng
. Tính góc tạo bởi đường thẳng
và mặt phẳng
?
Góc cần tìm là góc
Vì đáy là hình vuông nên
TH
1
Cho hình chóp
có thể tích bằng
, đáy
là hình vuông cạnh bằng
;
. Biết mặt bên
vuông góc với mặt phẳng
. Xác định khoảng cách
?
Hình vẽ minh họa
Gọi I là trung điểm của AD
Tam giác SAD cân tại S suy ra
Ta có
Suy ra SI là đường cao của hình chóp
Theo giả thiết
Vì
Gọi H là hình chiếu vuông góc của I lên SD
Mặt khác . Ta có:
Xét tam giác SID vuông tại I có:
Cho hình chóp S.ABC, tam giác ABC vuông tại B, cạnh bên SA vuông góc với mặt đáy (ABC). Gọi H là hình chiếu vuông góc của A lên SB (tham khảo hình vẽ bên). Mệnh đề nào sau đây sai?

Ta có: SA ⊥ (ABC) => SA ⊥ BC
Mặt khác BC ⊥ AB
Suy ra BC ⊥ (SAB) nên hình chiếu vuông góc của SC trên (SAB) là SB
Vậy (vì tam giác SBC vuông tại B)
Một khối chóp tứ giác đều có các cạnh bằng
(cm). Khi đó thể tích của khối chóp đã cho bằng bao nhiêu?
Hình vẽ minh họa
Gọi hình chóp tứ giác đều có tất cả các cạnh bằng 2t là S.ABCD với I là tâm của đáy ta có:
lần lượt vuông tại S; B; D
I là trung điểm của AC suy ra
Vậy thể tích hình chóp là:
Cho hình hộp
có độ dài tất cả các cạnh bằng
và
. Gọi
lần lượt là trung điểm câc các cạnh
. Tính cosin góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Gọi P là trung điểm của DC’. Ta có:
Suy ra
Xét tam giác ADA’ có suy ra tam giác ADA’ là tam giác đều
Xét tam giác A’AB có suy ra tam giác A’AB đều
Do đó tam giác DD’C đều
Vậy
Xét tam giác BAD có AD = AB và nên tam giác BAD là tam giác đều.
Vì tam giác BAD đều nên tam giác B’A’D’ cùng là tam giác đều.
Gọi A’I là đường cao của tam giác B’A’D’
Khi đó:
Dễ thấy A’P là đường trung tuyến của tam giác DA’C’ nên
Áp dụng định lí cosin cho tam giác A’DP có:
Cho lăng trụ tam giác đều ABC.A’B’C’ có tất cả các cạnh đều bằng a. Khoảng cách giữa hai đường thẳng BC và AB’ bằng:
Hình vẽ minh họa:
Ta có BC // B’C’ => BC // (AB’C’)
=> d(BC, AB’) = d(BC, (AB’C’)) = d(B, (AB’C’)) = d(A’ ,(AB’C’))
Gọi I và H lần lượt là hình chiếu vuông góc của A’ trên B’C’ và AI
Ta có: B’C’⊥ A’I và B’C’⊥ A’A nên B’C’⊥ (A’AI) => B’C’⊥ A’H
Mà AI ⊥ A’H
=> (AB’C’) ⊥ A’H.
Khi đó:
Vậy khoảng cách cần tìm là
Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Cho hình chóp tam giác
có đáy
vuông tại
,
. Khi đó:
Hình vẽ minh họa
Ta có:
Cho hình chóp OABC có OA = OB = OC = 1, các cạnh OA, OB, OC đôi một vuông góc. Gọi M là trung điểm của AB. Tính tích vô hướng của hai vecto
.

Ta có:
Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là
và
. Khi đó tỉ số
1/3
(Kết quả ghi dưới dạng phân số tối giản a/b)
Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là và
. Khi đó tỉ số
1/3
(Kết quả ghi dưới dạng phân số tối giản a/b)
Ta có:
Thể tích khối chóp là:
Thể tích hình lăng trụ là:
Khi đó:
Cho hình chóp S.ABC có SA ⊥(ABC). Biết α là góc giữa SB và mặt phẳng (ABC). Xác định góc α.
Hình vẽ minh họa:
Ta có SA ⊥(ABC) => Hình chiếu của SB trên mặt phẳng (ABC) là đường thẳng AB.
=> Góc giữa đường thẳng SB và (ABC) là góc giữa hai đường thẳng SB và AB
Tức là
Cho đường thẳng a và mặt phẳng (P). Có bao nhiêu mặt phẳng đi qua a và vuông góc với mặt phẳng (P)?
Có một khi a không vuông góc với (P), có vô số khi a vuông góc với (P).
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC bằng 600, tam giác SBC là tam giác đều có cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Tính số đo góc giữa đường thẳng SA và mặt phẳng đáy (ABC).
Hình vẽ minh họa:
Gọi H là trung điểm của BC => SH ⊥ (ABC)
Vì SH ⊥ (ABC) => HA là hình chiếu vuông góc của SA trên mặt phẳng (SAB)
=>
Xét tam giác SBC đều cạnh 2a =>
Tam giác ABC vuông tại A =>
Tam giác SAH vuông nên
Cho hình chóp S.ABCD có đáy ABCD là hình vuông với
. Cạnh bên SA vuông góc với đáy, SB hợp với đáy góc 600. Tính khoảng cách d giữa hai đường thẳng AD và SC.
Ta có =>
Kẻ
Ta có:
Lại có
Cho khối chóp tam giác đều
có cạnh đáy bằng 1cm và các cạnh bên bằng 2cm. Khi đó thể tích khối chóp bằng bao nhiêu?
Hình vẽ minh họa
Do đáy là tam giác đều nên gọi I là trung điểm của BC khi đó AI là đường cao của tam giác đáy.
Theo định lí Pythagore ta có:
Trong tam giác SOA vuông tại O ta có:
Vậy thể tích khối chóp tam giác là:
Cho hình lập phương ABCD.A’B’CD’D. Tính góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’)

Gọi O là tâm của hình vuông ABCD. Khi đó ta có (1).
Mặt khác ta lại có ABCD.A’B’C’D’ là hình lập phương nên
(2)
Từ (1) và (2) ta có tại O
Khi đó B’O là hình chiếu của AB’ lên mặt phẳng (BDD’B’).
Suy ra góc tạo bởi đường thẳng AB’ và mặt phẳng (BDD’B’) là
Xét tam giác vuông AB’O có
Vậy
Cho hình chóp S.ABCD có ABCD là hình vuông, tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm BC. Gọi
là góc hợp bởi đường thẳng SA và mặt phẳng (SDM). Tính ![]()
+ Không mất tính tổng quát, đặt AB = 2
+ Gọi N là trung điểm AB suy ra
+ Gọi
Gọi
+ Ta có
+ Ta có
+ Gọi NH là đường cao
+ Tam giác NJI đồng dạng tam giác MBJ
+ Tam giác SAB là tam giác đều cạnh bằng 2
Cho tứ diện đều ABCD. Số đo góc giữa hai đường thẳng AB và CD là:
Gọi a là độ dài cạnh tứ diện. Khi đó