Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a. Góc tạo bởi cạnh bên SA và mặt phẳng đáy bằng 45^{0}. Thể tích khối chóp là:

    Hình vẽ minh họa

    \left( SA;(ABC) ight) = \widehat{SAO}
= 45^{0}

    SO = AO.tan45^{0} =
\frac{a\sqrt{3}}{3}

    V = \frac{1}{3}.SO.S_{ABC} =
\frac{1}{3}.\frac{a\sqrt{3}}{3}.\frac{a^{2}\sqrt{3}}{4} =
\frac{a^{3}}{12}

  • Câu 2: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D' có đáy là hình thoi. Gọi O;O' lần lượt là tâm các hình bình hành ADD'A'ABB'A' (như hình vẽ).

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Hình vẽ minh họa

    Ta có: O;O' lần lượt là tâm các hình bình hành ADD'A'ABB'A'

    => O;O' lần lượt là trung điểm của các cạnh A'D;A'B

    \Rightarrow OO' là đường trung bình tam giác A'BD \Rightarrow OO'//BD

    Vì đáy ABCD là hình thoi \Rightarrow
AC\bot BD

    Ta có: \left\{ \begin{matrix}
OO'//BD \\
AC\bot BD \\
\end{matrix} ight.\  \Rightarrow AC\bot OO'

  • Câu 3: Thông hiểu

    Tính thể tích hình chóp đều S.ABCD biết chiều cao bằng a\sqrt{2} và độ dài cạnh bên bằng a\sqrt{6}?

    Hình vẽ minh họa

    Gọi O là tâm hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Tam giác SOA vuông tại O nên OA =
\sqrt{SA^{2} - SO^{2}} = 2a \Rightarrow AC = BD = 4a

    Vậy thể tích hình chóp là: V =
\frac{1}{3}SO.S_{ABCD} = \frac{1}{3}.a\sqrt{2}.\frac{4a.4a}{2} = V =
\frac{8\sqrt{2}a^{3}}{3}

  • Câu 4: Nhận biết

    Cho hình chóp S.ABCD đáy ABCD là hình thoi tâm I, cạnh bên SA vuông góc với đáy. Gọi H;K lần lượt là hình chiếu của A lên SC;SD. Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
BD\bot AC \\
BD\bot SA;do\ SA\bot(ABCD) \\
\end{matrix} ight.\  \Rightarrow BD\bot(SAC)

  • Câu 5: Vận dụng

    Cho tứ diện đều ABCD cạnh bằng a, M là trung điểm của cạnh BC. Gọi \alpha là góc giữa hai đường thẳng ABDM. Khi đó \cos\alpha bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi N là trung điểm của BC

    => MN là đường trung bình tam giác ABC

    \Rightarrow \left\{ \begin{matrix}
MN//AB \\
MN = \frac{1}{2}AB \\
\end{matrix} ight.

    Vì tam giác BCD và tam giác ACD là các tam giác đều cạnh a

    \Rightarrow MD = ND =
\frac{a\sqrt{3}}{2}

    MN//AB \Rightarrow \alpha = (AB,DM) =
(MN,DM)

    Xét tam giác MND ta có:

    \cos\widehat{NMD} = \frac{MN^{2} +
MD^{2} - ND^{2}}{2MN.MD}

    = \dfrac{\left( \dfrac{a}{2} ight)^{2} +\left( \dfrac{a\sqrt{3}}{2} ight)^{2} - \left( \dfrac{a\sqrt{3}}{2}ight)^{2}}{2.\dfrac{a}{2}.\dfrac{a\sqrt{3}}{2}} = \dfrac{\sqrt{3}}{6}> 0

    \Rightarrow \widehat{NMD} < 90^{0}
\Rightarrow (MN,DM) = \widehat{NMD}

    \Rightarrow \cos\alpha =
\cos\widehat{NMD} = \frac{\sqrt{3}}{6}

  • Câu 6: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = a;BC
= a\sqrt{2}; SA\bot(ABC)SA = a. Góc giữa đường thằng SC và mặt phẳng đáy bằng:

    Hình vẽ minh họa

    Ta có góc giữa SC và mặt phẳng đáy là góc \widehat{SCA}

    Xét tam giác SCA vuông tại A có:

    AC = \sqrt{AB^{2} + BC^{2}} =
a\sqrt{3}

    \Rightarrow \tan\widehat{SCA} =
\frac{SA}{AC} = \frac{a}{a\sqrt{3}} = \frac{1}{\sqrt{3}}

    \Rightarrow \widehat{SCA} =
30^{0}

  • Câu 7: Thông hiểu

    Cho tứ diện ABCD có AC = a, BD = 3a. Gọi M, N lần lượt là trung điểm của AD và BC. Biết AC vuông góc với BD. Tính MN.

    Hình vẽ minh họa:

    Gọi P là trung điểm của AB => PN, PM lần lượt là đường trung bình của tam giác ABC và tam giác ABD.

    => \left\{ \begin{matrix}PN = \dfrac{1}{2}AC = \dfrac{a}{2} \\PM = \dfrac{1}{2}BD = \dfrac{3a}{2} \\\end{matrix} ight.

    Ta có: AC\bot BD \Rightarrow PN\botPM

    => MN = \sqrt{PN^{2} + PM^{2}} =\sqrt{\frac{a^{2}}{4} + \frac{9a^{2}}{4}} =\frac{a\sqrt{10}}{2}

  • Câu 8: Thông hiểu

    Cho hình chóp O.ABC có OA = OB = OC = 1, các cạnh OB, OC, OA đối một vuông góc. Gọi M là trung điểm của AB. Tính góc giữa hai vecto \overrightarrow {OM} ;\overrightarrow {BC}?

    Tính góc giữa hai vecto

    Ta có:

    \begin{matrix}  \overrightarrow {OM} .\overrightarrow {BC}  = \dfrac{1}{2}\left( {\overrightarrow {OA}  - \overrightarrow {OB} } ight).\left( {\overrightarrow {OC}  - \overrightarrow {OB} } ight) \hfill \\   = \dfrac{1}{2}O{B^2} = \dfrac{{ - 1}}{2} \hfill \\   \Rightarrow \cos \left( {\overrightarrow {OM} .\overrightarrow {BC} } ight) = \dfrac{{\overrightarrow {OM} .\overrightarrow {BC} }}{{OM.BC}} = \dfrac{{ - \dfrac{1}{2}}}{{\dfrac{{\sqrt 2 .\sqrt 2 }}{2}}} =  - \dfrac{1}{2} \hfill \\   \Rightarrow \left( {\overrightarrow {OM} .\overrightarrow {BC} } ight) = {120^0} \hfill \\ \end{matrix}

  • Câu 9: Vận dụng

    Cho tứ diện đều ABCD có M là trung điểm của cạnh CD, gọi \varphi là góc giữa hai đường thẳng AM và BC. Giá trị \cos \varphi bằng:

    Tính cosin góc giữa hai đường thẳng

    Giả sử cạnh của tứ diện đều bằng a

    Vì M là trung điểm của CD. Nên AM là đường cao trong tam giác ACD đều.

    => AM = \frac{{a\sqrt 3 }}{2}

    Ta có:

    \begin{matrix}  \overrightarrow {CB} .\overrightarrow {AM}  = \overrightarrow {CB} .\left( {\overrightarrow {CM}  - \overrightarrow {CA} } ight) = \overrightarrow {CB} .\overrightarrow {CM}  - \overrightarrow {CB} .\overrightarrow {CA}  \hfill \\   = CB.CM.\cos \widehat {BCM} - CB.CA.\cos \widehat {ACB} \hfill \\   = a.\dfrac{a}{2}.\cos {60^o} - a.a.\cos {60^o} =  - \dfrac{{{a^2}}}{4} \hfill \\ \end{matrix}

    => \cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight) = \dfrac{{\overrightarrow {BC} .\overrightarrow {AM} }}{{\left| {\overrightarrow {BC} } ight|.\left| {\overrightarrow {AM} } ight|}} = \dfrac{{\dfrac{{ - {a^2}}}{4}}}{{a.\dfrac{{a\sqrt 3 }}{2}}} = \dfrac{{ - \sqrt 3 }}{6}

     

    => \cos \varphi  = \left| {\cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight)} ight| = \frac{{\sqrt 3 }}{6}

  • Câu 10: Vận dụng

    Cho tứ diện ABCDAB =
m;(m > 0), các cạnh còn lại bằng nhau và bằng 4. Mặt phẳng (\alpha) chứa cạnh AB và vuông góc với cạnh CD tại I. Diện tích tam giác ABI lớn nhất bằng bao nhiêu?

    Hình vẽ minh họa

    Ta có: (\alpha)\bot CD \equiv I
\Rightarrow \left\{ \begin{matrix}
AI\bot CD \\
BI\bot CD \\
\end{matrix} ight.

    Theo giả thiết AC = AD = BC = BD = CD =
4cm ta có các tam giác ACD và BCD là các tam giác đều cạnh bằng 4

    \Rightarrow IA = IB =
4.\frac{\sqrt{3}}{2} = 2\sqrt{3}

    Gọi H là trung điểm của AB ta có: IH\bot
ABIH = \sqrt{IA^{2} -
\frac{m^{2}}{4}} = \sqrt{12 - \frac{m^{2}}{4}}

    S_{ABI} = \frac{1}{2}IH.AB

    = \frac{1}{2}m.\sqrt{12 -
\frac{m^{2}}{4}}

    = \sqrt{\frac{m^{2}}{4}.\left( 12 -
\frac{m^{2}}{4} ight)} \leq 6

    Dấu bằng xảy ra khi và chỉ khi x =
2\sqrt{6}

    Vậy \max S_{ABI} = 6

  • Câu 11: Vận dụng cao

    Cho tứ diện ABCD có BD vuông góc với AB và CD. Gọi P và Q lần lượt là trung điểm của các cạnh CD và AB thỏa mãn BD : CD : PQ : AB = 3 : 4 : 5 : 6. Gọi ψ là góc giữa hai đường thẳng AB và CD. Tính giá trị của cosψ

    Hình vẽ minh họa:

    Do AB vuông góc với BD nên AB nằm trong mặt phẳng (α) chứa AB và vuông góc với BD. Dựng hình chữ nhật BDPR thì góc giữa hai đường thẳng AB và CD cũng là góc giữa hai đường thẳng AB và BR. Ta có:

    \cos\psi = \frac{\left| BQ^{2} + BR^{2}- QR^{2} ight|}{2BQ.BR} = \frac{|9 + 4 - 16|}{2.3.2} =\frac{1}{4}

  • Câu 12: Nhận biết

    Trong các khẳng định sai về lăng trụ đều, khẳng định nào là sai?

    Vì lăng trụ đều nên các cạnh bằng nhau. Do đó đáy là đa giác đều.

    Vì lăng trụ đều là lăng trụ đứng nên các mặt bên vuông góc với đáy.

    Vì lăng trụ đều là lăng trụ đứng nên các cạnh bên vuông góc với đáy.

    Vì lăng trụ đều là lăng trụ đứng nên các cạnh bên bằng nhau và cùng vuông góc với đáy. Do đó các mặt bên là những hình vuông.

  • Câu 13: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnha, cạnh bên SA vuông góc với mặt đáy và SA = 2a. Gọi M là trung điểm của SC. Tính côsin của góc \alpha là góc giữa đường thẳng BM và mặt phẳng (ABC)?

    Hình vẽ minh họa

    Gọi H là trung điểm cạnh AC.

    Khi đó HM//SA nên HM vuông góc (ABC) tại H.

    Do đó \left( \widehat{BM,(ABC)} ight) =
\left( \widehat{BM,BH} ight) = \widehat{MBH} do \Delta MBH vuông tại H.

    Ta có:

    \cos\widehat{MBH} = \frac{BH}{BM}
= \frac{BH}{\sqrt{HM^{2} + BH^{2}}} = \dfrac{\dfrac{a\sqrt{3}}{2}}{\sqrt{a^{2} + \left(\dfrac{a\sqrt{3}}{2} ight)^{2}}} = \dfrac{\sqrt{21}}{7}.

  • Câu 14: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'có cạnh bằng a. Khoảng cách từ A' đến mp (ABCD) bằng:

    Hình vẽ minh họa

    Ta có A'A\bot(ABCD) nên d\left( A',(ABCD) ight) = A'A =
a.

  • Câu 15: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) , SA = a\sqrt{2}. Góc giữa SC với mặt phẳng (ABCD) là:

    Hình vẽ minh họa:

    Ta có: \widehat{\left( SC,(ABCD) ight)}= \widehat{(SC,AC)} = \widehat{SCA}

    Lại có: \tan\widehat{SCA} = \frac{SA}{AC}= \frac{SA}{AB\sqrt{2}} = \frac{a\sqrt{2}}{a\sqrt{2}} = 1

    => \widehat{SCA} = 45^{0}

  • Câu 16: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 7a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 7a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{7}{3}a^{3}

  • Câu 17: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK, biết AB = 6cm;AC = 7cm;AD = 4cm.

    Hình vẽ minh họa

    Ta có: V_{ABCD} =\frac{1}{2}AB.\frac{1}{2}AD.AC = \frac{1}{2}.6.7.4 = 28\left( cm^{3}ight)

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}V_{ABCD} = 7\left(cm^{3} ight)

  • Câu 18: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có các cạnh bằng 1. Tính khoảng cách giữa hai mặt phẳng (ABB')(CC'D').

    Hình vẽ minh họa

    ABCD.A'B'C'D' là hình lập phương nên (ABB')//(CC'D')BC\bot(ABB'A').

    Khoảng cách giữa hai mặt phẳng (ABB')(CC'D')

    d\left( (ABB'),(CC'D')
ight) = d\left( C,(ABB'A') ight) = CB = 1

  • Câu 19: Nhận biết

    Cho hình lập phương ABCD.A1B1C1D1. Tính \cos \left( {\overrightarrow {A{C_1}} ;\overrightarrow {BD} } ight)

    Tính cosin góc giữa hai vecto

    Ta có:

    \begin{matrix}  \overrightarrow {A{C_1}} .\overrightarrow {BD}  = \left( {\overrightarrow {A{A_1}}  + \overrightarrow {AC} } ight).\left( {\overrightarrow {AD}  - \overrightarrow {AB} } ight) \hfill \\   = \overrightarrow {AC} .\overrightarrow {AD}  - \overrightarrow {AC} .\overrightarrow {AB}  \hfill \\   = \overrightarrow {AC} .\overrightarrow {BD}  \hfill \\   = 0 \hfill \\   \Rightarrow \overrightarrow {A{C_1}} .\overrightarrow {BD}  = 0 \hfill \\ \end{matrix}

  • Câu 20: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách d giữa hai đường thẳng SA và BD.

    Hình vẽ minh họa:

    Gọi I là trung điểm của AD

    => SI ⊥ AD => SI ⊥ (ABCD)

    Kẻ Ax // BD

    Ta có d(BD, SA) = d (BD, (SAx)) = d (D, (SAx)) = 2d (I, (SAx))

    Kẻ IE ⊥ Ax, kẻ IK ⊥ SE

    Khi đó d (I, (SAx)) = IK

    Gọi F là hình chiếu của I trên BD, ta có: IE = IF = \frac{AO}{2} =\frac{a\sqrt{2}}{4}

    Xét tam giác vuông SIE ta có:

    IK = \frac{SI.IE}{\sqrt{SI^{2} +IE^{2}}} = \frac{a\sqrt{21}}{14}

    => d(BD;SA) = 2IK =\frac{a\sqrt{21}}{7}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 49 lượt xem
Sắp xếp theo