Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh bên SA vuông góc với đáy. Kết luận nào đưới dây đúng?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
SA\bot CD \\
AD\bot CD \\
\end{matrix} ight.\  \Rightarrow CD\bot(SAD) \Rightarrow CD\bot
SD

  • Câu 2: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 4a. Cạnh bên hình chóp SA = 2a. Hình chiếu vuông góc của đỉnh S trên mặt phẳng đáy là trung điểm M của OA. Gọi α là góc giữa SD và mặt phẳng đáy. Chọn mệnh đề đúng trong các mệnh đề dưới đây.

    Hình vẽ minh họa:

    Ta có: SM ⊥ (ABCD)

    => Hình chiếu vuông góc của SD trên mặt phẳng (ABCD) là cạnh MD.

    \Rightarrow \alpha = \left( SD,(ABCD)
ight) = (SD;MD) = \widehat{SDM}

    Ta tính được: SM = \sqrt{SA^{2} - AM^{2}}
= a\sqrt{2}

    Xét tam giác ADM có:

    MD = \sqrt{AM^{2} + AD^{2} -
2AM.AD.cos45^{0}} = a\sqrt{10}

    => \tan\alpha = \tan\widehat{SDM} =
\frac{SM}{MD} = \frac{\sqrt{5}}{5}

  • Câu 3: Nhận biết

    Cho hình lập phương ABCD.A'B'C'D'có cạnh bằng a. Khoảng cách từ A' đến mp (ABCD) bằng:

    Hình vẽ minh họa

    Ta có A'A\bot(ABCD) nên d\left( A',(ABCD) ight) = A'A =
a.

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật, biết SA\bot(ABCD);AB = a;SA = AD = a\sqrt{3}. Xác định tính đúng sai của các kết luận sau?

    a) BC\bot(SAB) Đúng||Sai

    b) (SAD)\bot(SCD) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \widehat{\left( SC;(SAD) ight)} =
30^{0}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật, biết SA\bot(ABCD);AB = a;SA = AD = a\sqrt{3}. Xác định tính đúng sai của các kết luận sau?

    a) BC\bot(SAB) Đúng||Sai

    b) (SAD)\bot(SCD) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \widehat{\left( SC;(SAD) ight)} =
30^{0}Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: \left\{ \begin{matrix}
BC\bot SA\left( do\ SA\bot(ABCD) ight) \\
BC\bot AB \\
SA\bigcap AB = \left\{ A ight\} \\
\end{matrix} ight.

    \Rightarrow BC\bot(SAB)

    b) Ta có: \left\{ \begin{matrix}
CD\bot SA\left( do\ SA\bot(ABCD) ight) \\
CD\bot AD \\
SA\bigcap AD = \left\{ A ight\} \\
\end{matrix} ight.

    \Rightarrow CD\bot(SAD)CD \subset (SCD)

    \Rightarrow (SCD)\bot(SAD)

    c) Ta có:

    \left\{ \begin{matrix}
(SCD) \cap (ABCD) = CD \\
AD\bot CD \equiv \left\{ D ight\} \\
SD\bot CD \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc \widehat{SDA}.

    d) Ta có:

    \left\{ \begin{matrix}
SC \cap (SAD) = \left\{ S ight\} \\
CD\bot(SAD) \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra SD là hình chiếu vuông góc của SC lên (SAD)

    Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc \widehat{CSD} trong tam giác vuông SCD.

    Xét tam giác SCD vuông tại D ta có:

    \tan\widehat{SCD} = \sqrt{6} \Rightarrow
\widehat{\left( SC;(SAD) ight)} = \widehat{SCD} eq
30^{0}

  • Câu 5: Nhận biết

    Cho tứ diện OABC với các đường thẳng OA, OB, OC đôi một vuông góc. Bộ ba mặt phẳng vuông góc với nhau từng đôi một là

    Dễ thấy rằng OA ⊥ (OBC), OB ⊥ (OCA), OC ⊥ (OAB)

    Vậy bộ ba mặt phẳng vuông góc với nhau từng đôi một là (OAB), (OBC), (OCA).

  • Câu 6: Vận dụng

    Cho hình chóp S.ABCD có thể tích bằng \frac{4}{3}a^{3}, đáy ABCD là hình vuông cạnh bằng a\sqrt{2}; SA
= SD. Biết mặt bên (SAD) vuông góc với mặt phẳng (ABCD). Xác định khoảng cách d\left( B;(SCD)
ight)?

    Hình vẽ minh họa

    Gọi I là trung điểm của AD

    Tam giác SAD cân tại S suy ra SI\bot
AD

    Ta có \left\{ \begin{matrix}
SI\bot AD \\
(SAD)\bot(ABCD) \\
\end{matrix} ight.\  \Rightarrow SI\bot(ABCD)

    Suy ra SI là đường cao của hình chóp

    Theo giả thiết

    V_{S.ABCD} =
\frac{1}{3}SI.S_{ABCD}

    \Leftrightarrow \frac{4a^{3}}{3} =
\frac{1}{2}SI.2a^{2}

    \Leftrightarrow SI = 2a

    AB//(SCD) \Rightarrow d\left( B;(SCD)
ight) = d\left( A;(SCD) ight) = 2d\left( I;(SCD)
ight)

    Gọi H là hình chiếu vuông góc của I lên SD

    Mặt khác \left\{ \begin{matrix}
SI\bot DC \\
ID\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot DC. Ta có: \left\{ \begin{matrix}
IH\bot SD \\
IH\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot(SCD)

    \Rightarrow d\left( I;(SCD) ight) =
IH

    Xét tam giác SID vuông tại I có:

    \frac{1}{IH^{2}} = \frac{1}{SI^{2}} +
\frac{1}{ID^{2}} = \frac{1}{4a^{2}} + \frac{4}{2a^{2}} \Rightarrow IH =
\frac{2a}{3}

    \Rightarrow d\left( B;(SCD) ight) =
d\left( A;(SCD) ight) = 2d\left( I;(SCD) ight) =
\frac{4a}{3}

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với mặt phẳng đáy. Giả sử H là hình chiếu của A trên cạnh SB. Ta có các khẳng định sau:

    a) AH\bot SC b) BC\bot(SAB) c) SC\bot AB

    Có bao nhiêu khẳng định đúng trong các khẳng định đã cho?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB)

    \Rightarrow BC\bot AH;\left( do\ \ \ AH
\subset (SAB) ight)

    Lại có: \left\{ \begin{matrix}
AH\bot SB \\
AH\bot BC \\
\end{matrix} ight.\  \Rightarrow AH\bot(SBC) \Rightarrow AH\bot
SC

    Vậy có 2 khẳng định đúng.

  • Câu 8: Vận dụng

    Cho tam giác đều ABC có cạnh bằng 3a. Điểm H thuộc cạnh AC với HC = a. Dựng đoạn SH vuông góc với mặt phẳng (ABC) với SH = 2a. Khoảng cách từ điểm C đến mặt phẳng (SAB) bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi D là trung điểm của AB, do giả thiết suy ra CD ⊥ AB.

    Trong (ABC) kẻ HM // CD suy ra HM ⊥ AB (1).

    Do giả thiết SH ⊥ (ABC) => SH ⊥ AB (2)

    Từ (1), (2) suy ra AB ⊥ (SHM)

    Trong mặt phẳng (SHM) kẻ HK ⊥ SM (3), theo chứng minh trên => HK ⊥ AB (4)

    Từ (3), (4) => HK ⊥ (SAB) => d (H; (SAB)) = HK

    Dễ thấy CH ∩ (SAB) = {A}

    \frac{d\left( C;(SAB) ight)}{d\left(H;(SAB) ight)} = \frac{CA}{HA} = \frac{3}{2}

    Do đó d\left( C;(SAB) ight) =\frac{3}{2}d\left( H;(SAB) ight)

    Theo giả thiết ∆ABC đều => CD =\frac{3a\sqrt{3}}{2}

    Xét ∆ABC do HM // CD theo định lý Ta - lét ta có:

    \frac{HM}{CD} = \frac{AH}{AC} =\frac{2}{3}

    Áp dụng hệ thức lượng trong ∆SHM vuông tại H, ta có:

    HM = \frac{2}{3}CD \Rightarrow HM =\frac{2}{3}.\frac{3a\sqrt{3}}{2} = a\sqrt{3}

  • Câu 9: Vận dụng

    Cho hình chóp S.ABC có đáy là tam giác vuông ABC cân với cạnh huyền AB = 4\sqrt 2, cạnh bên SC \bot \left( {ABC} ight)SC = 2. Gọi M là trung điểm AC, N là trung điểm AB. Tính góc giữa hai đường thẳng SM và CN.

    Tính góc giữa hai đường thẳng SM và CN

    Đặt \overrightarrow {CA}  = \overrightarrow x ;\overrightarrow {CB}  = \overrightarrow y ;\overrightarrow {CS}  = \overrightarrow z

    Do tam giác vuông cân ABC tại C có AB = 4\sqrt 2 suy ra:

    CA = CB = 4;CN = 2\sqrt 2 ;SM = 2\sqrt 2

    Ta có:

    \begin{matrix}  \overrightarrow {CN}  = \dfrac{1}{2}\left( {\overrightarrow {CA}  + \overrightarrow {CB} } ight) = \dfrac{1}{2}\left( {\overrightarrow x  + \overrightarrow y } ight) \hfill \\  \overrightarrow {SM}  = \overrightarrow {SC}  + \overrightarrow {CM}  =  - \overrightarrow z  + \dfrac{1}{2}\overrightarrow x  \hfill \\ \end{matrix}

    Vậy \overrightarrow {CN} .\overrightarrow {SM}  = \frac{1}{4}\left( {\overrightarrow x  + \overrightarrow y } ight)\left( {\overrightarrow x  - 2\overrightarrow z } ight)

    Mặt khác: \left\{ \begin{gathered}  {\overrightarrow x ^2} = {\overrightarrow y ^2} = 16 \hfill \\  {\overrightarrow z ^2} = 4 \hfill \\  \overrightarrow x .\overrightarrow y  = \overrightarrow y .\overrightarrow z  = \overrightarrow z .\overrightarrow x  = 0 \hfill \\ \end{gathered}  ight.

    \Rightarrow \overrightarrow {CN} .\overrightarrow {SM}  = \frac{1}{4}\left( {{{\overrightarrow x }^2} - 2\overrightarrow x .\overrightarrow z  + \overrightarrow y .\overrightarrow x  - 2\overrightarrow y .\overrightarrow z } ight) = 4

    Gọi \alpha góc giữa hai véctơ \overrightarrow {SM}\overrightarrow {CN}

    Theo công thức tích vô hướng của hai véctơ ta có:

    \begin{matrix}  \overrightarrow {CN} .\overrightarrow {SM}  = \left| {\overrightarrow {CN} } ight|.\left| {\overrightarrow {SM} } ight|.{\text{cos}}\alpha  \hfill \\   \Rightarrow {\text{cos}}\alpha  = \dfrac{{\overrightarrow {CN} .\overrightarrow {SM} }}{{\left| {\overrightarrow {CN} } ight|.\left| {\overrightarrow {SM} } ight|}} = \dfrac{4}{8} = \dfrac{1}{2} \hfill \\   \Rightarrow \alpha  = {60^o} \hfill \\ \end{matrix}

    Vậy góc giữa hai đường thẳng SM và CN bằng {60^o}

  • Câu 10: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh có độ dài bằng 2a. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của BC. Tính khoảng các d giữa hai đường thẳng BB' và A'H

    Do BB’ // AA’nên d(BB′;A′H)=d(BB′;(AA′H))=d(B;(AA′H))

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {BH \bot AH} \\   {BH \bot A\prime H} \end{array} \Rightarrow BH \bot \left( {AA\prime H} ight)} ight.

    Nên d(B;(AA′H))=BH=BC/2=a

    Vậy khoảng cách d(BB′;A′H)=a

  • Câu 11: Thông hiểu

    Cho tứ diện ABCD có BCD là tam giác vuông tại đỉnh B, cạnh CD =
a,BD = \frac{a\sqrt{6}}{3}, AB = AC
= AD = \frac{a\sqrt{3}}{2}. Tính cosin của góc nhị diện [A, BC, D].

    Hình vẽ minh họa

    Gọi M, H lần lượt là trung điểm của BC, CD.

    Do \Delta BCD vuông tại B nên BH = CH
= DH hay H là tâm đường tròn ngoại tiếp \Delta BCD.

    AB = AC = AD nên AH là đường cao kẻ từ A xuống (BCD) hay AH\bot(BCD).

    \Rightarrow AH\bot BC. (1)

    M, H là trung điểm của BC, CD nên MH là đường trung bình của \Delta BCD

    \Rightarrow \left\{ \begin{matrix}MH = \dfrac{1}{2}BD = \dfrac{a\sqrt{6}}{6}. \\MH//BD \\\end{matrix} ight.

    MD\bot BC nên MH\bot BC. (2)

    Từ (1), (2) suy ra: BC\bot(AMH).

    Suy ra: \left\{ \begin{matrix}
BC\bot AM \\
BC\bot MH \\
\end{matrix} \Rightarrow \lbrack A,BC,Dbrack = \widehat{AMH} ight..

    Lại có: AH = \sqrt{AC^{2} - CH^{2}} =
\sqrt{\left( \frac{a\sqrt{3}}{2} ight)^{2} - \left( \frac{a}{2}
ight)^{2}} = \frac{a\sqrt{2}}{2}.

    \Rightarrow \tan\widehat{AMH} =
\frac{AH}{MH} = \sqrt{3} \Rightarrow \widehat{AMH} = \frac{\pi}{3}
\Rightarrow \cos\widehat{AMH} = \frac{1}{2}.

  • Câu 12: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AC =
a\sqrt{3}AA' = 3a. Chọn kết luận đúng về số đo góc giữa A'C(ABC)?

    Hình vẽ minh họa

    Ta có hình chiếu của A”C lên mặt phẳng (ABC) là AC

    Suy ra \left( A'C;(ABC) ight) =
(A'C;AC) = \widehat{A'CA}

    Ta có: \tan\widehat{A'CA} =
\frac{AA'}{AC} = \frac{3a}{a\sqrt{3}} = \sqrt{3}

    \Rightarrow \widehat{A'CA} = 60^{0}
\Rightarrow \left( A'C;(ABC) ight) = 60^{0}

  • Câu 13: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) , SA = a\sqrt{2}. Góc giữa SC với mặt phẳng (ABCD) là:

    Hình vẽ minh họa:

    Ta có: \widehat{\left( SC,(ABCD) ight)}= \widehat{(SC,AC)} = \widehat{SCA}

    Lại có: \tan\widehat{SCA} = \frac{SA}{AC}= \frac{SA}{AB\sqrt{2}} = \frac{a\sqrt{2}}{a\sqrt{2}} = 1

    => \widehat{SCA} = 45^{0}

  • Câu 14: Thông hiểu

    Cho hình chóp S.ABC có SA = SB = SC; \widehat {ASB} = \widehat {BSC} = \widehat {CSA}. Hãy xác định góc giữa cặp vecto \overrightarrow {SC} ,\overrightarrow {AB}?

    Hình vẽ minh họa:

    Xác định góc giữa cặp vecto

    Ta có:

    \begin{matrix}  \overrightarrow {SC} .\overrightarrow {AB}  = \overrightarrow {SC} .(\overrightarrow {SB}  - \overrightarrow {SA} ) \hfill \\   = \overrightarrow {SC} .\overrightarrow {SB}  - \overrightarrow {SC} .\overrightarrow {SA}  \hfill \\   = |\overrightarrow {SC} |.|\overrightarrow {SB} |.\cos (\overrightarrow {SC} ,\overrightarrow {SB} ) \hfill \\   - |\overrightarrow {SC} |.|\overrightarrow {SA} |.\cos (\overrightarrow {AB} ;\overrightarrow {AC} ) \hfill \\   = SC.SB.\cos \widehat {BSC} - SC.SA.\cos \widehat {ASC} \hfill \\ \end{matrix}

    Mà SA = SB = SC và \widehat {ASB} = \widehat {BSC} = \widehat {CSA}

    => \overrightarrow {SC} .\overrightarrow {AB}  = 0 \Rightarrow \left( {\overrightarrow {SC} ,\overrightarrow {AB} } ight) = {90^0}

  • Câu 15: Nhận biết

    Cho hình lập phương ABCD.A1B1C1D1 có cạnh bằng a. Gọi M là trung điểm của AD. Tính tích vô hướng của \overrightarrow {{B_1}M} .\overrightarrow {B{D_1}}

    Hình vẽ minh họa:

    Tính tích vô hướng của hai vecto

    Ta có:

    \begin{matrix}  \overrightarrow {B{D_1}}  = \overrightarrow {BA}  + \overrightarrow {A{D_1}}  \hfill \\   \Rightarrow \overrightarrow {B{D_1}}  =  - \overrightarrow {AB}  + \overrightarrow {A{A_1}}  + \overrightarrow {AD}  \hfill \\  \overrightarrow {{B_1}M}  = \overrightarrow {{B_1}A}  + \overrightarrow {AM}  \hfill \\   \Rightarrow \overrightarrow {{B_1}M}  =  - \overrightarrow {AB}  - \overrightarrow {A{A_1}}  + \dfrac{1}{2}\overrightarrow {AD}  \hfill \\   \Rightarrow \overrightarrow {B{D_1}} .\overrightarrow {{B_1}M}  = A{B^2} - A{A_1}^2 + \dfrac{1}{2}A{D^2} \hfill \\   \Rightarrow \overrightarrow {B{D_1}} .\overrightarrow {{B_1}M}  = \dfrac{{{a^2}}}{2} \hfill \\ \end{matrix}

  • Câu 16: Thông hiểu

    Cho khối lăng trụ tam giác đều ABC.A'B'C' có cạnh bên bằng 4a. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 60^{0}.

    Hình vẽ minh họa

    Gọi M là trung điểm của BC.

    Ta có: \left\{ \begin{matrix}
BC\bot AM \\
BC\bot A'M \\
(A'BC) \cap (ABC) = BC \\
\end{matrix} ight.

    \Rightarrow \left( (A'BC);(ABC)
ight) = \widehat{A'MA} = 60^{0}

    Trong tam giác vuông A’MA có:

    \tan\widehat{A'MA} =
\frac{A'A}{AM} \Rightarrow AM = \frac{A'A}{tan60^{0}} =
\frac{4\sqrt{3}}{3}a

    Tam giác ABC đều nên AM =
\frac{AB\sqrt{3}}{2} \Rightarrow AB = \frac{8a}{3}

    Vậy thể tích khối lăng trụ là: V =
S_{ABC}.AA' = \frac{\sqrt{3}}{4}.4a.\left( \frac{8a}{3} ight)^{2}
= \frac{64\sqrt{3}a^{3}}{9}

  • Câu 17: Vận dụng

    Cho hình chóp S.ABCD có ABCD là hình vuông, tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm BC. Gọi \alpha là góc hợp bởi đường thẳng SA và mặt phẳng (SDM). Tính \alpha

    + Không mất tính tổng quát, đặt AB = 2

    + Gọi N là trung điểm AB suy ra SN \bot AB \Rightarrow SN \bot \left( {ABCD} ight)

    + Gọi h = d\left( {A,\left( {SDM} ight)} ight) \Rightarrow \sin \alpha  = \frac{h}{{SA}}

    Gọi I = DM \cap CN,\,J = AB \cap DM

    + Ta có \frac{{d\left( {A,\left( {SDM} ight)} ight)}}{{d\left( {N,\left( {SDM} ight)} ight)}} = \frac{{{\text{AJ}}}}{{NJ}} = \frac{4}{3}

    \Rightarrow h = d\left( {A,\left( {SDM} ight)} ight) = \frac{4}{3}d\left( {N,\left( {SDM} ight)} ight)

    + Ta có 

    \Delta CNB = \Delta DMC \Rightarrow \widehat {NCB} = \widehat {MDC}

    \Rightarrow \widehat {NCB} + \widehat {DMC} = \widehat {MDC} + \widehat {DMC} = 180^\circ  - \widehat {MCD} = 90^\circ

    \Rightarrow DM \bot CN \Rightarrow DM \bot \left( {SNC} ight)

    + Gọi NH là đường cao \Delta SNI \Rightarrow NH \bot \left( {SDM} ight)

    \Rightarrow d\left( {N,\left( {SDM} ight)} ight) = NH

    + Tam giác NJI đồng dạng tam giác MBJ

    \begin{matrix}   \Rightarrow \dfrac{{NI}}{{MB}} = \dfrac{{NJ}}{{MJ}} \hfill \\   \Rightarrow NI = \dfrac{{NJ}}{{MJ}}.MB = \dfrac{{NJ}}{{\sqrt {M{B^2} + B{J^2}} }} \hfill \\  MB = \dfrac{3}{{\sqrt {{1^2} + {2^2}} }}.1 = \dfrac{3}{{\sqrt 5 }} \hfill \\ \end{matrix}

    + Tam giác SAB là tam giác đều cạnh bằng 2 \Rightarrow SN = \sqrt 3

    \frac{1}{{N{H^2}}} = \frac{1}{{N{S^2}}} + \frac{1}{{N{I^2}}} \Rightarrow NH = \frac{{3\sqrt 2 }}{4}

    h = d\left( {A,\left( {SDM} ight)} ight) = \frac{4}{3}d\left( {N,\left( {SDM} ight)} ight) = \frac{4}{3}.\frac{{3\sqrt 2 }}{4} = \sqrt 2

    \Rightarrow \sin \alpha  = \frac{h}{{SA}} = \frac{{\sqrt 2 }}{2} \Rightarrow \alpha  = 45^\circ

  • Câu 18: Vận dụng cao

    Cho tứ diện ABCD có AB vuông góc với CD, AB = CD = 6. Gọi M là điểm thuộc cạnh BC sau đó MC = x.BC (0 < x < 1). Mặt phẳng (P) song song với AB và CD lần lượt cắt BC, DB, AD, AC tại M, N, P, Q. Diện tích lớn nhất của tứ giác bằng bao nhiêu?

    Xét tứ giác MNPQ có: \left\{
\begin{matrix}
PQ//NP//AB \\
MN//PQ//CD \\
\end{matrix} ight.

    => MNPQ là hình bình hành

    Mặt khác AB\bot CD \Rightarrow MQ\bot
MN

    => MNPQ là hình chữ nhật

    Vì MQ // AB nên \frac{MQ}{AB} =
\frac{CM}{CB} = x \Rightarrow MQ = x.AB = 6x

    Theo giả thiết MC = x.BC => MB = (1 – x).BC

    Vì MN // CD nên \frac{MN}{CD} =
\frac{BM}{BC} = 1 - x

    => MN = (1 - x).DC = 6(1 -
x)

    Diện tích hình chữ nhật MNPQ là:

    \begin{matrix}S_{MNPQ} = MN.MQ \hfill\\= 6(1 - x).6x \hfill\\= 36x.(1 - x) \hfill\\\leq 36.\left( \dfrac{x + 1 - x}{2} ight)^{2} = 9 \hfill \\\Rightarrow S_{MNPQ} = 9 \hfill\\\end{matrix}

    Khi x = 1 – x => x = 1/2

    Vậy diện tích tứ giác MNPQ lớn nhất bằng 9 khi M là trung điểm của BC.

  • Câu 19: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng \sqrt{6}cm . Góc tạo bởi cạnh bên SB và mặt phẳng đáy bằng 60^{0} . Thể tích khối chóp S.ABCD bằng bao nhiêu?

    Kết quả: 6 cm3

    Đáp án là:

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng \sqrt{6}cm . Góc tạo bởi cạnh bên SB và mặt phẳng đáy bằng 60^{0} . Thể tích khối chóp S.ABCD bằng bao nhiêu?

    Kết quả: 6 cm3

    Hình vẽ minh họa

    Gọi O là giao điểm của hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Diện tích đáy S_{ABCD} = AB^{2} = 6\left(
cm^{2} ight)

    Góc giữa SB và mặt phẳng đáy là \left(
SB;(ABCD) ight) = \widehat{SBO} = 60^{0}

    ABCD là hình vuông nên OB = \frac{1}{2}BD
= \frac{1}{2}AB\sqrt{2} = \frac{1}{2}.\sqrt{6}.\sqrt{2} =
\sqrt{3}(cm)

    Xét tam giác vuông SOB ta có:

    SO = BO.tan\widehat{SDO} =
\sqrt{3}.tan60^{0} = 3(cm)

    Khi đó thể tích khối chóp là: V =
\frac{1}{3}.SO.S_{ABC} = \frac{1}{3}.3.6 = 6cm^{3}

  • Câu 20: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng 1, cạnh SA vuông góc với đáy và SA = \sqrt{2}. Tính thể tích khối chóp S.ABCD đã cho.

    Hình vẽ minh họa

    Ta có: SA\bot(ABCD) nên SA là đường cao của hình chóp

    Thể tích khối chóp là V =
\frac{1}{3}.SA.S_{ABCD} = \frac{1}{3}.\sqrt{2}.1^{2} =
\frac{\sqrt{2}}{3}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 48 lượt xem
Sắp xếp theo