Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho tứ diện ABCD có AB = AC = AD và \widehat {BAC} = \widehat {BAD} = {60^0};\widehat {CAD} = {90^0}. Gọi I và J lần lượt là trung điểm của AB và CD. Hãy xác định góc giữa cặp vecto \overrightarrow {AB} ;\overrightarrow {IJ}?

    Hình vẽ minh họa:

    Hãy xác định góc giữa cặp vecto

    Xét tam giác ICD có J là trung điểm của CD => \overrightarrow {IJ}  = \frac{1}{2}\left( {\overrightarrow {JC}  + \overrightarrow {ID} } ight)

    Tam giác ABC có AB = AC và \widehat {BAC} = {60^0} => Tam giác ABC đều => CI ⊥ AB

    Tương tự ta chứng minh được tam giác aBD đều => DI ⊥ AB

    Ta có:

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {IJ}  = \dfrac{1}{2}\overrightarrow {AB} .(\overrightarrow {IC}  + \overrightarrow {ID} ) \hfill \\   = \dfrac{1}{2}\overrightarrow {AB} .\overrightarrow {IC}  + \dfrac{1}{2}\overrightarrow {AB} .\overrightarrow {ID}  = 0 \hfill \\   \Rightarrow \overrightarrow {AB}  \bot \overrightarrow {IJ}  \Rightarrow \left( {\overrightarrow {AB} ;\overrightarrow {IJ} } ight) = {90^0} \hfill \\ \end{matrix}

  • Câu 2: Nhận biết

    Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác cân tại A. Gọi M là trung điểm cạnh BC. Chọn kết luận đúng?

    Hình vẽ minh họa

    Vì tam giác ABC cân tại A và M là trung điểm của BC

    => AM\bot BC

    Ta có: BC//B'C'

    \Rightarrow (B'C';AM) = (BC;AM)
= 90^{0}

  • Câu 3: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Dựng mặt phẳng (P) cách đều năm điểm A, B, C, D và S. Hỏi có tất cả bao nhiêu mặt phẳng (P) như vậy?

    Gọi O là tâm hình bình hành ABCD.

    Các mặt phẳng cách đều A, B, C, D và S là

    1) Mặt phẳng qua trung điểm của SA, SB, SC, SD

    2) Mặt phẳng qua O và song song (SAB)

    3) Mặt phẳng qua O và song song (SAD)

    4) Mặt phẳng qua O và song song (SCD)

    5) Mặt phẳng qua O và song song (SBC)

  • Câu 4: Nhận biết

    Cho hình chóp S.ABCDSA\bot(ABCD), tứ giác ABCD là hình vuông. Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
SA\bot(ABCD) \\
SA \subset (SAB) \\
\end{matrix} ight.\  \Rightarrow (SAB)\bot(ABCD)

    Ta có: \left\{ \begin{matrix}
SA\bot(ABCD) \\
SA \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow (SAC)\bot(ABCD)

    Ta có: \left\{ \begin{matrix}
BD\bot AC \\
BD\bot SA \\
AC \cap SA = \left\{ A ight\} \\
AC;SA \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
BD\bot(SAC) \\
BD \subset (SBD) \\
\end{matrix} ight.

    \Rightarrow (SBD)\bot(SAC)

    \left( (SAB);(SAC) ight) = (AD;BD) =
45^{0}

  • Câu 5: Nhận biết

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh a, SA\bot(ABCD);SA = a\sqrt{2}. Xác định thể tích S.ABCD?

    Hình vẽ minh họa

    Ta có:

    S_{ABCD} = a^{2} \Rightarrow V_{S.ABCD}
= \frac{1}{3}SA.S_{ABCD} = \frac{a^{3}\sqrt{2}}{3}

  • Câu 6: Nhận biết

    Cho hình chóp tứ giác S.ABCDSA\bot(ABCD) và đáy là hình vuông. Chọn kết luận đúng?

    Hình vẽ minh họa

    Ta có: SA\bot(ABCD) \Rightarrow SA\bot
BC

    Ta có: \left\{ \begin{matrix}
SA\bot BC \\
AB\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB)

  • Câu 7: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AA’ = 2a; AD = 4a. Gọi M là trung điểm của cạnh AD. Tính khoảng cách d giữa hai đường thẳng A’B’ và C’M.

    Ta có: AA’ = AM = MD = 2a nên tam giác AMA’ và tam giác MDD’ lần lượt là tam giác vuông tại A và D

    => \widehat{AMA'} =
\widehat{D'MD} = 45^{0} \Rightarrow A'M\bot MD' (1)

    Ta lại có: C'D'\bot(A'D'DA) \Rightarrow
C'D'\bot A'M (2)

    Từ (1) và (2) => A'M\bot(MC'Ð)

    Ta lại có A’B’ // C’D’ => A’B’ // (MC’D’)

    => Khoảng cách d = d(A’B’, (MC’D’)) = d(A’; (MC’D’))

    => A'M = \sqrt{AA'^{2} +
AM^{2}} = 2a\sqrt{2}

  • Câu 8: Vận dụng

    Cho lăng trụ ABCD.A’B’C’D’ có đáy là hình thoi cạnh a, \widehat{BAD} = 60^{0}. Hình chiếu vuông góc của B’ xuống mặt đáy trùng với giao điểm hai đường chéo của đáy và cạnh bên BB’ = a. Tính góc giữa cạnh bên và mặt đáy.

    Hình vẽ minh họa:

    Gọi O là giao điểm của AC và BD

    Theo giả thiết ta có: B’O ⊥ (ABCD)

    Dó đó \left( BB';(ABCD) ight) =
(BB';BO) = \widehat{B'BO}

    Vì tam giác ABD đều cạnh a => BO =
\frac{BD}{2} = \frac{a}{2}

    Tam giác B’BO vuông ta có:

    \begin{matrix}\cos\widehat{B'BO} = \dfrac{BO}{BB'} = \dfrac{1}{2} \hfill \\\Rightarrow \widehat{B'BO} = 60^{0} \hfill \\\end{matrix}

  • Câu 9: Thông hiểu

    Tính thể tích hình chóp đều S.ABCD biết chiều cao bằng a\sqrt{2} và độ dài cạnh bên bằng a\sqrt{6}?

    Hình vẽ minh họa

    Gọi O là tâm hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Tam giác SOA vuông tại O nên OA =
\sqrt{SA^{2} - SO^{2}} = 2a \Rightarrow AC = BD = 4a

    Vậy thể tích hình chóp là: V =
\frac{1}{3}SO.S_{ABCD} = \frac{1}{3}.a\sqrt{2}.\frac{4a.4a}{2} = V =
\frac{8\sqrt{2}a^{3}}{3}

  • Câu 10: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. BC = a. SA = SB = SC = \frac{{a\sqrt 3 }}{3}. Góc giữa đường thẳng SA và (ABC) bằng

    Góc giữa đường thẳng SA và (ABC) là

    +) Gọi H là trung điểm BC.

    Vì ABC vuông tại A nên H là tâm đường tròn ngoại tiếp tam giác ABC.

    Ta có: SA = SB = SC\,\left( {gt} ight) \Rightarrow SH \bot \left( {ABC} ight)

    => Hình chiếu của SA lên (ABC) là HA

    \Rightarrow \,\widehat {\left( {SA,\left( {ABC} ight)} ight)} = \widehat {\left( {SA,HA} ight)} = \widehat {SAH} (vì tam giác SAH vuông tại H)

    +) Ta có: AH = \frac{{BC}}{2} = \frac{a}{2}

    Xét tam giác SHA vuông tại H:

    \cos \widehat {SAH} = \dfrac{{AH}}{{SA}} = \dfrac{{\dfrac{a}{2}}}{{\dfrac{{a\sqrt 3 }}{3}}} = \frac{{\sqrt 3 }}{2} \Rightarrow \widehat {SAH} = 30^\circ

    Vậy \,\widehat {\left( {SA,\left( {ABC} ight)} ight)} = \widehat {SAH} = 30^\circ

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình chữ nhật với AC = a\sqrt{5} và BC = . Tính khoảng cách giữa SD và BC.

    Hình vẽ minh họa:

    Theo giả thiết, suy ra AD là hình chiếu vuông góc của SD lên mặt phẳng (ABCD) và CD ⊥ AD (do ABCD là hình chữ nhật), nên theo định lý ba đường vuông góc suy ra CD ⊥ SD. Vì CD cũng vuông góc với BC nên CD là đoạn vuông góc chung của SD và BC.

    CD = \sqrt{AC^{2} - BC^{2}} =\sqrt{5a^{2} - 2a^{2}} = a\sqrt{3}

  • Câu 12: Thông hiểu

    Cho khối hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông, đường chéo BD = 2a. Biết góc giữa hai mặt phẳng (A'BD) và mặt phẳng (ABCD) bằng 60^{0}. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi góc giữa mặt phẳng (A'BD) và mặt phẳng (ABCD)\alphaO =
AC \cap BD

    Ta có: \left\{ \begin{matrix}
AO\bot BD \\
AA'\bot BD \\
\end{matrix} ight.\  \Rightarrow A'O\bot BD

    \Rightarrow \alpha = (AO;A'O) =
\widehat{AOA'} = 60^{0}

    Ta có ABCD là hình vuông, BD = 2a nên AB
= AD = a\sqrt{2}

    Ta có: AO = \frac{1}{2}AC = \frac{1}{2}BD
= a

    Xét tam giác AOA’ có AA' =
AO.tan60^{0} = a\sqrt{3}

    \Rightarrow
V_{ABCD.A'B'C'D'} = AA'.S_{ABCD} = a\sqrt{3}.2a^{2}
= 2a^{3}\sqrt{3}

  • Câu 13: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A;D; AB =
a;AD = DC = a. Gọi I là trung điểm của AD, biết hai mặt phẳng (SBI)(SCI) cùng vuông góc với đáy và mặt phẳng (SBC) tạo với đáy một góc 60^{0}. Tính khoảng cách từ trung điểm của cạnh SD đến mặt phẳng (SBC)?

    Từ I kẻ IP\bot BC \Rightarrow BC\bot
SP

    \Rightarrow \left( (SBC);(ABCD) ight)
= \widehat{SPI} = 60^{0}

    Gọi K là trung điểm của SD.

    Gọi Q = BC \cap AD, kẻ IH\bot SP

    Ta có:

    d\left( K;(SBC) ight) =
\frac{1}{2}d\left( D;(SBC) ight)

    = \frac{1}{4}d\left( I;(SBC) ight) =
\frac{1}{4}IH

    Xét tam giác ICQ có IP = \frac{CD.IQ}{QC}
= \frac{2a}{\sqrt{5}}

    Xét tam giác SIP vuông tại I có SI =
IP.tan60^{0} = \frac{2a\sqrt{3}}{5}

    \frac{1}{IH^{2}} = \frac{1}{IS^{2}} +
\frac{1}{IP^{2}} \Rightarrow IH = \frac{3a^{2}}{5}

    \Rightarrow IH =
\frac{a\sqrt{15}}{5}

    \Rightarrow d\left( K;(SBC) ight) =
\frac{a\sqrt{15}}{20}

  • Câu 14: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Đường thẳng nào dưới đây vuông góc với mặt phẳng (A'BD)?

    Hình vẽ minh họa

    Ta có: AB = AD = AA' = a nên A cách đều các điểm B,D,A'

    BC' = DC' = C'A' =
a\sqrt{2} nên C' cách đều các điểm B,D,A'

    Do đó A; C’ cùng nằm trên đường tròn ngoại tiếp tam giác A'BD

    \Rightarrow
AC'\bot(A'BD)

  • Câu 15: Nhận biết

    Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa

    Hình vẽ minh họa:

    Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

    Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.

  • Câu 16: Thông hiểu

    Cho tứ diện đều ABCD, M là trung điểm của AB. Gọi α là góc giữa hai đường thẳng CM và DM. Tính giá trị của cos α?

    Gọi a là độ dài cạnh của tứ diện đều. Khi đó:

    CD = a;MC = MD = \frac{{a\sqrt 3 }}{2}

    Ta có hình vẽ minh họa:

    Tính cosin góc giữa hai đường thẳng

    Áp dụng định lí cosin vào tam giác CMD ta được:

    \begin{matrix}  \cos \widehat {CMD} = \dfrac{{M{C^2} + M{D^2} - C{D^2}}}{{2MC.MD}} \hfill \\   = \dfrac{{\dfrac{{3{a^2}}}{2} - {a^2}}}{{\dfrac{{3{a^2}}}{2}}} = \dfrac{{\dfrac{{{a^2}}}{2}}}{{\dfrac{{3{a^2}}}{2}}} = \dfrac{1}{3} \hfill \\   \Rightarrow \cos \alpha  = \dfrac{1}{3} \hfill \\ \end{matrix}

  • Câu 17: Thông hiểu

    Cho hình chóp S.ABC có SA = SB = CA = CB. Tính ϕ là góc giữa SC và mặt phẳng (ABC), biết (SAB) vuông góc với (ABC):

    Hình vẽ minh họa:

    Gọi H là trung điểm của AB, ta có SH ⊥ AB, CH ⊥ AB

    Mà (SAB) ⊥ (ABC) nên SH ⊥ (ABC)

    Suy ra \left\{ \begin{matrix}SH\bot CH \\\widehat{\left( SC,(ABC) ight)} = \widehat{SCH} \\\end{matrix} ight.

    Ta có:

    ∆SAB = ∆CAB (c.c.c)

    => SH = CH. Do đó ∆SCH vuông cân tại H

    Vậy \widehat{\left( SC,(ABC) ight)} =\widehat{SCH} = 45^{0}

  • Câu 18: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a\sqrt 2 và cạnh bên bằng 2a. Góc giữa đường thẳng SB với mặt phẳng (SAC) bằng

    Gọi O = AC \cap BD. Ta có S.ABCD là hình chóp tứ giác đều suy ra SO \bot \left( {ABCD} ight).

    \left\{ \begin{gathered}  SO \bot \left( {ABCD} ight) \hfill \\  BD \subset \left( {ABCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow SO \bot BD

    \left\{ \begin{gathered}  BD \bot SO \hfill \\  BD \bot AC \hfill \\  SO,AC \subset \left( {SAC} ight) \hfill \\  SO \cap AC = \left\{ O ight\} \hfill \\ \end{gathered}  ight. \Rightarrow BD \bot \left( {SAC} ight)

    Suy ra hình chiếu vuông góc của đường thẳng SB lên mặt phẳng (SAC) là đường thẳng SO.

    Do đó góc giữa SB và mặt phẳng (SAC) bằng góc giữa hai đường thẳng SB và SO và bằng góc \widehat {BSO}.

    BO = \frac{{BD}}{2} = \frac{{a\sqrt 2 .\sqrt 2 }}{2} = a

    \left\{ \begin{gathered}  SO \bot \left( {ABCD} ight) \hfill \\  OB \subset \left( {ABCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow SO \bot OB

    Xét tam giác SOB có

    Ta có \sin \widehat {BSO} = \frac{{BO}}{{SB}} = \frac{a}{{2a}} = \frac{1}{2} \Rightarrow BSO = {30^0}

  • Câu 19: Vận dụng

    Cho tứ diện ABCDAC = AD = BC = BD = a;AB = x. Gọi M,N lần lượt là trung điểm của các cạnh AB;CD. Biết (ACD)\bot(BCD)(ABC)\bot(ABD). Tính giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCDAC = AD = BC = BD = a;AB = x. Gọi M,N lần lượt là trung điểm của các cạnh AB;CD. Biết (ACD)\bot(BCD)(ABC)\bot(ABD). Tính giá trị của x.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Vận dụng

    Cho hình chóp S.ABCD có thể tích bằng \frac{4}{3}a^{3}, đáy ABCD là hình vuông cạnh bằng a\sqrt{2}; SA
= SD. Biết mặt bên (SAD) vuông góc với mặt phẳng (ABCD). Xác định khoảng cách d\left( B;(SCD)
ight)?

    Hình vẽ minh họa

    Gọi I là trung điểm của AD

    Tam giác SAD cân tại S suy ra SI\bot
AD

    Ta có \left\{ \begin{matrix}
SI\bot AD \\
(SAD)\bot(ABCD) \\
\end{matrix} ight.\  \Rightarrow SI\bot(ABCD)

    Suy ra SI là đường cao của hình chóp

    Theo giả thiết

    V_{S.ABCD} =
\frac{1}{3}SI.S_{ABCD}

    \Leftrightarrow \frac{4a^{3}}{3} =
\frac{1}{2}SI.2a^{2}

    \Leftrightarrow SI = 2a

    AB//(SCD) \Rightarrow d\left( B;(SCD)
ight) = d\left( A;(SCD) ight) = 2d\left( I;(SCD)
ight)

    Gọi H là hình chiếu vuông góc của I lên SD

    Mặt khác \left\{ \begin{matrix}
SI\bot DC \\
ID\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot DC. Ta có: \left\{ \begin{matrix}
IH\bot SD \\
IH\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot(SCD)

    \Rightarrow d\left( I;(SCD) ight) =
IH

    Xét tam giác SID vuông tại I có:

    \frac{1}{IH^{2}} = \frac{1}{SI^{2}} +
\frac{1}{ID^{2}} = \frac{1}{4a^{2}} + \frac{4}{2a^{2}} \Rightarrow IH =
\frac{2a}{3}

    \Rightarrow d\left( B;(SCD) ight) =
d\left( A;(SCD) ight) = 2d\left( I;(SCD) ight) =
\frac{4a}{3}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 49 lượt xem
Sắp xếp theo