Cho tứ diện ABCD có
;
. Gọi M và N là trung điểm của AB và CD. Góc giữa
và
bằng:
Hình vẽ minh họa

Ta có:
Mà
Cho tứ diện ABCD có
;
. Gọi M và N là trung điểm của AB và CD. Góc giữa
và
bằng:
Hình vẽ minh họa

Ta có:
Mà
Cho hình lập phương như hình vẽ:

Hỏi đường thẳng nào vuông góc với đường thẳng
?
Ta có:
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh bằng a. Cạnh bên SA vuông góc với đáy, SB hợp với mặt đáy một góc 600. Tính khoảng cách d từ điểm D đến mặt phẳng (SBC)
Hình vẽ minh họa

Ta có:
Ta có:
=>
Kẻ (1)
Ta có:
Từ (1) và (2) =>
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề “Cho hai đường thẳng song song a và b và đường thẳng c sao cho c ⊥ a, c ⊥ b. Mọi mặt phẳng (α) chứa c thì đều vuông góc với mặt phẳng (a, b)” là sai. Trong trường hợp a và b trùng nhau, sẽ tồn tại mặt phẳng chứa a và b không vuông góc với mặt phẳng (α) chứa c.
Mệnh đề “Cho a ⊥ b, mọi mặt phẳng chứa b đều vuông góc với a” là sai. Trong trường hợp a và b cắt nhau, mặt phẳng (a, b) chứa b nhưng không vuông góc với a.
Mệnh đề “Cho a ⊥ b, nếu a ⊂ (α) và b ⊂ (β) thì (α) ⊥ (β)” là sai. Trong trường hợp a và b vuông góc nhau và chéo nhau, nếu (α) ⊃ a, (α) // b và (β) ⊃ b, (β) // a thì (α) // (β).
Vậy mệnh đề đúng là mệnh đề: “Cho a ⊥ (α), mọi mặt phẳng (β) chứa a thì (β) ⊥ (α).”
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a và
. Gọi M, N lần lượt là trung điểm của C'D', AA'. Gọi
là góc tạo bởi đường thẳng IN và mặt phẳng (ACM). Tính
.

Gọi H là hình chiếu vuông góc của điểm N lên mặt phẳng (ACM).
Khi đó:
Ta có:
Xét tam giác ACM có:
Vậy
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
, biết
.
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 1, cạnh bên hợp với mặt đáy một góc 600. Tính khoảng cách d từ O đến mặt phẳng (SBC)
Hình ảnh minh họa

Gọi O là tâm ABCD =>
Ta có:
Gọi M là trung điểm của BC, kẻ OK vuông góc với SM (1)
Ta có:
Xét tam giác vuông SOM ta có:
Cho tứ diện O.ABC trong đó ba đường thẳng OB, OC, OA đôi một vuông góc. Trong các mệnh đề sau, mệnh đề nào sai?

Tam giác ABC luôn là tam giác nhọn
Hình tứ diện ABCD có AB = AC = AD = 3 và AB, AC, AD đôi một vuông góc với nhau. Diện tích của tam giác BCD bằng:
Do ∆BCD là tam giác đều cạnh nên có diện tích là
Tính thể tích khối chóp tứ giác đều có tất cả các cạnh bằng
?
Hình vẽ minh họa
Giả sử khối chóp tứ giác đều đã cho là
Khi đó ABCD là hình vuông cạnh bằng 1 cm và
Gọi H là tâm hình vuông ABCD thì nên SH là chiều cao của khối chóp
.
Tính SH
Xét tam giác ABC vuông tại B ta có:
Nhận thấy nên tam giác SAC vuông tại S
Diện tích đáy của khối chóp là
Thể tích khối chóp là
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B , SA vuông góc với mặt phẳng (ABCD), AB = BC = a, AD = 2a. Biết góc giữa SC và mặt phẳng (ABCD) bằng 450. Tính góc giữa mặt phẳng (SAD) và (SCD).

Tam giác ABC vuông cân tại B, suy ra
Vì nên AC là hình chiếu của SC trên mặt phẳng (ABCD).
Khi đó
Gọi M là trung điểm của AD => CM ⊥ AD.
Mà CM ⊥ SA nên CM ⊥ (SAD) => CM ⊥ SD
Hạ CH ⊥ SD . Khi đó SD ⊥ (CMH) => MH ⊥ SD
Ta có:
Ta lại có:
Tam giác MHC vuông tại M
Vậy
Cho hình chóp S.ABC có SA = SB = SC;
. Hãy xác định góc giữa cặp vecto
?
Hình vẽ minh họa:

Ta có:
Mà SA = SB = SC và
=>
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a có G là trọng tâm và độ dài các cạnhSA = SB = SC = m. Tính độ dài đoạn thẳng GS?
Hình vẽ minh họa:
Ta có: SA = SB = SC, G là trọng tâm tam giác ABC
=> G là hình chiếu vuông góc của S trên mặt phẳng (ABC)
Gọi H là trung điểm của BC =>
Xét tam giác ABC đều cạnh a ta có:
Xét tam giác SBH vuông tại H ta có:
Xét tam giác SGH vuông tại G ta có:
Một khối chóp tứ giác đều có các cạnh bằng
(cm). Khi đó thể tích của khối chóp đã cho bằng bao nhiêu?
Hình vẽ minh họa
Gọi hình chóp tứ giác đều có tất cả các cạnh bằng 2t là S.ABCD với I là tâm của đáy ta có:
lần lượt vuông tại S; B; D
I là trung điểm của AC suy ra
Vậy thể tích hình chóp là:
Cho hình lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng . Điểm M và N lần lượt là trung điểm các đoạn AC, BB’. Côsin góc giữa đường thẳng MN và (BA’C’) bằng

Gọi là số đo góc giữa MN và (BA’C’), K là hình chiếu vuông góc của N lên (B’A’C’).
Khi đó
Gọi E là trung điểm của A’C’, khi đó BMEB’ là hình chữ nhật. Gọi , ta có
Ta có
. Kẻ
Từ
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy
Ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Khẳng định nào dưới đây là sai?
Hình vẽ minh họa

Vì H là trung điểm của AB, tam giác ABC cân =>
Ta có: =>
mà
=>
Mặt khác => CH vuông góc với các đường thẳng
Và chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.
Cho tứ diện ABCD có AB vuông góc với CD, AB = CD = 6. Gọi M là điểm thuộc cạnh BC sau đó MC = x.BC (0 < x < 1). Mặt phẳng (P) song song với AB và CD lần lượt cắt BC, DB, AD, AC tại M, N, P, Q. Diện tích lớn nhất của tứ giác bằng bao nhiêu?
Xét tứ giác MNPQ có:
=> MNPQ là hình bình hành
Mặt khác
=> MNPQ là hình chữ nhật
Vì MQ // AB nên
Theo giả thiết MC = x.BC => MB = (1 – x).BC
Vì MN // CD nên
=>
Diện tích hình chữ nhật MNPQ là:
Khi x = 1 – x => x = 1/2
Vậy diện tích tứ giác MNPQ lớn nhất bằng 9 khi M là trung điểm của BC.
Cho hình lăng trụ đứng tam giác
có đáy
là tam giác cân,
và cạnh bên
. Tính góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có:
Xét tam giác ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
Vậy tam giác đều