Cho hai đường thẳng a và a’ lần lượt có vecto chỉ phương là
. Nếu
là góc giữa hai đường thẳng a và a’ thì
Do góc giữa hai đường thẳng bằng hoặc bù với góc giữa hai vecto chỉ phương của chúng nên đáp án đúng là:
Cho hai đường thẳng a và a’ lần lượt có vecto chỉ phương là
. Nếu
là góc giữa hai đường thẳng a và a’ thì
Do góc giữa hai đường thẳng bằng hoặc bù với góc giữa hai vecto chỉ phương của chúng nên đáp án đúng là:
Cho hình chóp
có đáy
là hình chữ nhật tâm O,
,
. Gọi
lần lượt là hình chiếu của
lên
. Xét tính đúng sai của các kết luận sau?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Cho hình chóp có đáy
là hình chữ nhật tâm O,
,
. Gọi
lần lượt là hình chiếu của
lên
. Xét tính đúng sai của các kết luận sau?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Hình vẽ minh họa
a) Ta có:
Lại có
b) Chứng minh tương tự câu a ta có:
mà
Từ (*) và (**) suy ra: .
c) Ta có:
Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc .
d) Ta có:
Lại có ABCD là hình chữ nhật nên
Tam giác SAC vuông tại A nên
Cho một khối chóp tứ giác đều có cạnh đáy bằng
, biết độ dài cạnh bên và cạnh đáy tỉ lệ
. Tính thể tích V của khối chóp?
Hình vẽ minh họa
Gọi là tâm hình vuông
Ta có: tam giác SAC cân, O là trung điểm của AC nên
Tương tự tam giác SBD cân, O là trung điểm của BD nên
Trong tam giác SOC vuông tại O ta có:
Vậy thể tích hình chóp là:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a,
, SA vuông góc với mặt phẳng đáy và SA = 2a. Góc giữa hai đường thẳng SC và BD nằm trong khoảng nào?

Gọi O là giao điểm của AC và BD và M là trung điểm của SA.
Trong hình chữ nhật ABCD ta có
Xét tam giác MAB vuông tại A, ta có:
Xét tam giác MAO vuông tại O, ta có:
Do MO // SC nên góc giữa hai đường thẳng SC và BD là góc giữa hai đường thẳng MO và BD.
Áp dụng định lý cosin vào tam giác MOB ta có
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A. BC = a.
. Góc giữa đường thẳng SA và (ABC) bằng

+) Gọi H là trung điểm BC.
Vì ABC vuông tại A nên H là tâm đường tròn ngoại tiếp tam giác ABC.
Ta có:
=> Hình chiếu của SA lên (ABC) là HA
(vì tam giác SAH vuông tại H)
+) Ta có:
Xét tam giác SHA vuông tại H:
Vậy
Cho hình chóp S.ABCD có ABCD là hình chữ nhật, SA ⊥ (ABCD). Góc giữa SC và mặt phẳng (ABCD) là góc giữa
Hình vẽ minh họa:
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Do đó góc giữa SC và mặt phẳng (ABCD) là góc giữa SC và AC.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên
và vuông góc với mặt đáy (ABCD). Tính khoảng cách d từ O đến mặt phẳng (SBC)
Ta có:
Từ A kẻ =>
Cho tứ diện đều ABCD, M là trung điểm của AB. Gọi α là góc giữa hai đường thẳng CM và DM. Tính giá trị của cos α?
Gọi a là độ dài cạnh của tứ diện đều. Khi đó:
Ta có hình vẽ minh họa:

Áp dụng định lí cosin vào tam giác CMD ta được:
Cho khối lăng trụ đứng
, đáy
có
. Tính thể tích của khối lăng trụ đã cho biết
.
Hình vẽ minh họa
Gọi H là trung điểm của B’C’, khi đó góc giữa mặt phẳng (AB’C’) và (ABCD) là góc
Ta có:
Vậy
Biết khối chóp có diện tích đáy và chiều cao lần lượt bằng
. Thể tích khối chóp bằng:
Ta có:
Thể tích khối chóp là:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 1, cạnh bên hợp với mặt đáy một góc 600. Tính khoảng cách d từ O đến mặt phẳng (SBC)
Hình ảnh minh họa

Gọi O là tâm ABCD =>
Ta có:
Gọi M là trung điểm của BC, kẻ OK vuông góc với SM (1)
Ta có:
Xét tam giác vuông SOM ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại
, các cạnh
, các góc
. Gọi
là hình chiếu vuông góc của
trên
và
. Tính cosin góc giữa hai mặt phẳng
và
.
Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại , các cạnh
, các góc
. Gọi
là hình chiếu vuông góc của
trên
và
. Tính cosin góc giữa hai mặt phẳng
và
.
Đáp án: 1/3 (Ghi đáp án dưới dạng phân số tối giản a/b).
Hình vẽ minh họa
Gọi là mặt phẳng qua
và vuông góc với
.
Gọi là mặt phẳng qua
và vuông góc với
Khi đó, với
là đỉnh thứ tư của hình vuông ABHC.
Khi đó: là hai tam giác vuông bằng nhau có
.
Gọi là chân đường cao hạ từ đỉnh
của tam giác SAB, ta có
.
Vậy góc giữa hai mặt phẳng và
là
.
Xét cân tại
có
.
Ta có: .
Vậy cosin góc giữa hai mặt phẳng và
bằng
.
Cho hình vuông ABCD cạnh 4a , lấy H, K lần lượt trên các cạnh AB, AD sao cho BH = 3HA, AK = 3KD. Trên đường thẳng vuông góc với mặt phẳng (ABCD) tại H lấy điểm S sao cho
. Gọi E là giao điểm của CH và BK . Tính cosin của góc giữa hai đường thẳng SE và BC .
Gọi I là hình chiếu vuông góc của E lên AB ta có

Ta có:
Trong tam giác vuông SEI có:
=>
Cho hình lăng trụ ABC. MNP có tất cả các cạnh bằng nhau. Gọi I là trung điểm của cạnh AC. Cosin của góc tạo bởi NC và BI bằng bao nhiêu?
Gọi E là trung điểm MP => NE // BI
=> Góc giữa hai đường thẳng NC và BI bằng góc giữa hai đường thẳng NC và NE
=> Góc cần tính là
Đặt a là chiều dài cạnh của hình lăng trụ ta có:
=>
Cho hình lập phương
có cạnh bằng
Khoảng cách từ
đến mp
bằng:
Hình vẽ minh họa
Ta có nên
.
Mệnh đề nào sau đây là đúng?
Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau sai vì chúng có thể chéo nhau hoặc cắt nhau.
Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc với nhau thì song song với đường thẳng còn lại sai vì nó và đường thẳng còn lại có thể chéo nhau hoặc cắt nhau.
Hai đường thẳng cùng vuông góc với một đường thẳng thì vuông góc với nhau sai vì chúng có thể song song với nhau
Cho tứ diện ABCD có:
,
. Gọi M và N lần lượt là trung điểm của AB và CD. Góc giữa hai mặt phẳng (ACD) và (BCD) là:
Hình vẽ minh họa

Các tam giác ABC và ABD là tam giác đều
=> Tam giác ACD cân
=> BN ⊥ CD và AN ⊥ CD
=> là góc của hai mặt phẳng (ACD) và (BCD)
Cho tứ diện ABCD trong đó AB = 6; CD = 3, góc giữa AB và CD là 600 và điểm M trên BC sao cho BM = 2MC. Mặt phẳng (P) qua M song song với AB và CD cắt BD, AD, AC lần lượt tại M, N, Q. Diện tích MNPQ bằng:
Hình vẽ minh họa:
Ta có:
Tương tự ta có: MN // CD, NP // AB, QP // CD
Do đó tứ giác MNPQ là hình bình hành
Ta có: (AB, CD) = (QM, MP) = 600
Suy ra:
Ta có:
=>
Giả sử
là thể tích khối tứ diện đều
. Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích
. Tỉ số
1/2
(Kết quả được ghi dưới dạng phân số tối giản a/b)
Giả sử là thể tích khối tứ diện đều
. Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích
. Tỉ số
1/2
(Kết quả được ghi dưới dạng phân số tối giản a/b)
Hình vẽ minh họa
Giả sử tứ diện đều cạnh bằng a
Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện
Mỗi góc cũng là một tứ diện đều có cạnh bằng
Do đó thể tích phần cắt bỏ là
(Vì tứ diện cạnh giảm một nưả thì thể tích giảm
Vậy
Cho hình chóp
có đáy là hình chữ nhật. Gọi trung điểm các cạnh
lần lượt là
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có: MN là đường trung bình của tam giác SCD =>
Ta có: