Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 3a. Cạnh bên SA vuông góc với (ABCD), góc giữa đường thẳng SB và mặt phẳng (ABCD) bằng 30◦ . Tìm khoảng cách từ A đến mặt phẳng (SBC).

    Ta có:

    Gọi H là chân đường cao lên cạnh SB. Khi đó, ta có

    d(A, (SBC)) = AH. sin 30◦ => AH = AB . sin 30◦ = \frac{3a}{2}

  • Câu 2: Thông hiểu

    Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật, biết SA\bot(ABCD);AB = a;SA = AD = a\sqrt{3}. Xác định tính đúng sai của các kết luận sau?

    a) BC\bot(SAB) Đúng||Sai

    b) (SAD)\bot(SCD) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \widehat{\left( SC;(SAD) ight)} =
30^{0}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật, biết SA\bot(ABCD);AB = a;SA = AD = a\sqrt{3}. Xác định tính đúng sai của các kết luận sau?

    a) BC\bot(SAB) Đúng||Sai

    b) (SAD)\bot(SCD) Đúng||Sai

    c) \widehat{\left( (SCD);(ABCD) ight)}
= \widehat{SCA} Sai||Đúng

    d) \widehat{\left( SC;(SAD) ight)} =
30^{0}Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: \left\{ \begin{matrix}
BC\bot SA\left( do\ SA\bot(ABCD) ight) \\
BC\bot AB \\
SA\bigcap AB = \left\{ A ight\} \\
\end{matrix} ight.

    \Rightarrow BC\bot(SAB)

    b) Ta có: \left\{ \begin{matrix}
CD\bot SA\left( do\ SA\bot(ABCD) ight) \\
CD\bot AD \\
SA\bigcap AD = \left\{ A ight\} \\
\end{matrix} ight.

    \Rightarrow CD\bot(SAD)CD \subset (SCD)

    \Rightarrow (SCD)\bot(SAD)

    c) Ta có:

    \left\{ \begin{matrix}
(SCD) \cap (ABCD) = CD \\
AD\bot CD \equiv \left\{ D ight\} \\
SD\bot CD \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra góc giữa (SCD) và (ABCD) là góc giữa AD và SD đó là góc \widehat{SDA}.

    d) Ta có:

    \left\{ \begin{matrix}
SC \cap (SAD) = \left\{ S ight\} \\
CD\bot(SAD) \equiv \left\{ D ight\} \\
\end{matrix} ight.

    Suy ra SD là hình chiếu vuông góc của SC lên (SAD)

    Nên góc giữa SC và (SAD) là góc giữa SC và SD đó là góc \widehat{CSD} trong tam giác vuông SCD.

    Xét tam giác SCD vuông tại D ta có:

    \tan\widehat{SCD} = \sqrt{6} \Rightarrow
\widehat{\left( SC;(SAD) ight)} = \widehat{SCD} eq
30^{0}

  • Câu 3: Thông hiểu

    Cho tứ diện ABCD có độ dài các cạnh AB =
AC = AD = BC = BD = aCD =
a\sqrt{2}. Tính góc giữa hai đường thẳng AD và BC.

    Hình vẽ minh họa

    Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.

    Khi đó: KH//AD,KI//BC \Rightarrow (AD;BC)
= (KH;KI).

    Xét \Delta BIC,BI = \sqrt{BC^{2} -
AC^{2}} = \sqrt{a^{2} - \frac{a^{2}}{2}} =
\frac{a}{\sqrt{2}}.

    Ta có \left\{ \begin{matrix}
AB\bot DH \\
AB\bot HC \\
\end{matrix} \Rightarrow AB\bot(DHC) \Rightarrow AB\bot HI ight..

    Xét \Delta BIH,HI = \sqrt{IB^{2} -
HB^{2}} = \sqrt{\frac{a^{2}}{2} - \frac{a^{2}}{4}} =
\frac{a}{2}. (1)

    Xét \Delta IHK, ta có: \left\{ \begin{matrix}
IK = \frac{BC}{2} = \frac{a}{2} \\
HK = \frac{AD}{2} = \frac{a}{2} \\
\end{matrix} \Rightarrow IK = HK = \frac{a}{2} ight.. (2)

    Từ (1),(2) \Rightarrow HI = IK = HK
\Rightarrow \Delta IHK là tam giác đều

    \Rightarrow \widehat{IKH} = 60^{0} \Rightarrow
(KH;KI) = 60^{0}.

  • Câu 4: Thông hiểu

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a. Góc tạo bởi cạnh bên SB và mặt phẳng đáy bằng 60^{0}. Thể tích khối chóp là:

    Hình vẽ minh họa

    Gọi H là tâm của tam giác đều ABC

    Khi đó SH\bot(ABC);BH =
\frac{a\sqrt{3}}{3}

    Theo bài ra ta có:

    \left( SB;(ABC) ight) = \widehat{SBH}
= 60^{0}

    Tam giác SBH vuông tại H có: SH =
BH.tan60^{0} = \frac{a\sqrt{3}}{3}.\sqrt{3} = a

    \Rightarrow V_{S.ABC} =
\frac{1}{3}.SO.S_{ABC} = \frac{1}{3}.a.\frac{a^{2}\sqrt{3}}{4} =
\frac{\sqrt{3}a^{3}}{12}

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABCD có tất cả các cạnh bằng nhau và đáy ABCD là hình vuông tâm O. Kết quả nào sau đây đúng?

    Hình chóp S.ABCD có tất cả các cạnh bên và cạnh đáy bằng nhau

    Do đó: SA = SC suy ra tam giác SAC cân tại A

    Lại có ABCD là hình vuông

    => O là trung điểm cạnh AC

    => SO vừa là đường trung tuyến vừa là đường cao của tam giác SAC

    => SO\bot AC

    Tương tự SO vừa là đường trung tuyến vừa là đường cao của tam giác SBD

    => SO\bot BD

    Từ đó ta có: \left\{ \begin{matrix}
SO\bot AC \subset (ABCD) \\
SO\bot BD \subset (ABCD) \\
\end{matrix} ight.

    \Rightarrow SO\bot(ABCD)

     

  • Câu 6: Nhận biết

    Trong các khẳng định sai về lăng trụ đều, khẳng định nào là sai?

    Vì lăng trụ đều nên các cạnh bằng nhau. Do đó đáy là đa giác đều.

    Vì lăng trụ đều là lăng trụ đứng nên các mặt bên vuông góc với đáy.

    Vì lăng trụ đều là lăng trụ đứng nên các cạnh bên vuông góc với đáy.

    Vì lăng trụ đều là lăng trụ đứng nên các cạnh bên bằng nhau và cùng vuông góc với đáy. Do đó các mặt bên là những hình vuông.

  • Câu 7: Nhận biết

    Trong không gian cho đường thẳng a và điểm M. Có bao nhiêu đường thẳng đi qua M, cắt a và vuông góc với a?

    Có 1 nếu M không thuộc a, có vô số nếu M thuộc a

  • Câu 8: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?

    Hình vẽ minh họa:

    Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).

    Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.

  • Câu 9: Vận dụng

    Tính thể tích khối chóp tam giác đều cạnh đáy bằng a. Biết độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2?

    Hình vẽ minh họa

    Gọi H là trọng tâm tam giác ABC suy ra SH\bot(ABC)

    Gọi M là trung điểm của BC

    \Rightarrow AM\bot BC;AM =
\frac{a\sqrt{3}}{2}

    Vì độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2

    Hay AM = \frac{1}{2}SA

    \Rightarrow SA = a\sqrt{3}

    Xét tam giác SAH vuông tại H ta có:

    \Rightarrow SH = \sqrt{SA^{2} -
AH^{2}}

    = \sqrt{\left( a\sqrt{3} ight)^{2} -
\left( \frac{2}{3}.\frac{a\sqrt{3}}{2} ight)^{2}} =
\frac{2a\sqrt{6}}{2}

    Vậy V_{S.ABC} = \frac{1}{3}.S_{ABC}.SH =
\frac{1}{3}.\frac{a^{2}\sqrt{3}}{4}.\frac{2a\sqrt{6}}{3} =
\frac{a^{3}\sqrt{2}}{6}

  • Câu 10: Thông hiểu

    Cho hình hộp thoi ABCD.A'B'C'D' có tất cả các cạnh bằng a\widehat{ABC} = \widehat{B'BA} =
\widehat{B'BC} = 60^{0}. Tứ giác A'B'CD là hình gì?

    Hình vẽ minh họa

    Ta có tứ giác A’B’CD là hình bình hành

    Do \widehat{B'BC} = 60^{0} nên tam giác BB’C đều \Rightarrow B'C =
a

    Do đó CD = B'C = a nên tứ giác A’B’CD là hình thoi

    Ta có

    \overrightarrow{CB'}.\overrightarrow{CD} =
\left( \overrightarrow{CB} + \overrightarrow{BB'}
ight).\overrightarrow{BA}

    =
\overrightarrow{CB}.\overrightarrow{BA} +
\overrightarrow{BB'}.\overrightarrow{BA} = - \frac{a^{2}}{2} +
\frac{a^{2}}{2} = 0

    Suy ra CB'\bot CD

    Vậy tứ giác A'B'CD là hình vuông.

  • Câu 11: Vận dụng cao

    Cho hình chóp tứ giác đều S.ABCD có AB = a, O là trung điểm của AC và SO = b. Gọi (∆) là đường thẳng đi qua C, (∆) chứa trong mặt phẳng (ABCD) và khoảng cách từ O đên (∆) là \frac{a\sqrt{14}}{6}. Giá trị lượng giác \cos\left( SA;(\Delta) ight) bằng bao nhiêu?

    Từ A kẻ (∆’) // (∆)

    Từ O kẻ (d) ⊥ (∆) cắt (∆) và (∆’) lần lượt tại H, K

    Ta có: \left\{ \begin{matrix}AK\bot OK \\AK\bot SO \\\end{matrix} ight.\  \Rightarrow AK\bot(SOK) \Rightarrow AK\botSK

    Ta được \cos\left( SA;(\Delta) ight) =\cos\left( SA;(\Delta') ight)

    Ta có: \left\{ \begin{matrix}SA = \dfrac{\sqrt{4b^{2} + 2a^{2}}}{2} \\AK = \dfrac{a}{3} \\\end{matrix} ight.

    => \cos\left( SA;(\Delta) ight) =\frac{AK}{SA} = \frac{2a}{3\sqrt{4b^{2} + 2a^{2}}}

  • Câu 12: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 5a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 5a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{5}{3}a^{3}

  • Câu 13: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A;D; AB =
a;AD = DC = a. Gọi I là trung điểm của AD, biết hai mặt phẳng (SBI)(SCI) cùng vuông góc với đáy và mặt phẳng (SBC) tạo với đáy một góc 60^{0}. Tính khoảng cách từ trung điểm của cạnh SD đến mặt phẳng (SBC)?

    Từ I kẻ IP\bot BC \Rightarrow BC\bot
SP

    \Rightarrow \left( (SBC);(ABCD) ight)
= \widehat{SPI} = 60^{0}

    Gọi K là trung điểm của SD.

    Gọi Q = BC \cap AD, kẻ IH\bot SP

    Ta có:

    d\left( K;(SBC) ight) =
\frac{1}{2}d\left( D;(SBC) ight)

    = \frac{1}{4}d\left( I;(SBC) ight) =
\frac{1}{4}IH

    Xét tam giác ICQ có IP = \frac{CD.IQ}{QC}
= \frac{2a}{\sqrt{5}}

    Xét tam giác SIP vuông tại I có SI =
IP.tan60^{0} = \frac{2a\sqrt{3}}{5}

    \frac{1}{IH^{2}} = \frac{1}{IS^{2}} +
\frac{1}{IP^{2}} \Rightarrow IH = \frac{3a^{2}}{5}

    \Rightarrow IH =
\frac{a\sqrt{15}}{5}

    \Rightarrow d\left( K;(SBC) ight) =
\frac{a\sqrt{15}}{20}

  • Câu 14: Nhận biết

    Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó \frac{d\left( A;(P)
ight)}{d\left( B;(P) ight)} bằng:

    \frac{d\left( A;(P) ight)}{d\left(
B;(P) ight)} = \frac{AM}{BM}

  • Câu 15: Vận dụng

    Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. H là hình chiếu vuông góc của O trên mặt phẳng (ABC). Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa:

    Chọn khẳng định sai

    Ta có: OA ⊥ OB, OA ⊥ OC => OA ⊥ (OBC) => OA ⊥ BC (*)

    Gọi M là giao điểm của AH và BC

    Theo giả thiết ta có: OH ⊥ (ABC) => OH ⊥ BC (**)

    Từ (*) và (**) suy ra: BC ⊥ (AOM) => BC ⊥ OM

    Xét tam giác BOC vuông ta có:

    \frac{1}{{O{I^2}}} = \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}

    Xét tam giác AOI vuông ta có:

    \frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{M^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}

    Từ chứng minh trên ta có: BC ⊥ (AOM) => BC ⊥ AM (1)

    Gọi N là giao điểm của BH và AC. Chứng minh tương tự ta có: AC ⊥ BN (2)

    Từ (1) và (2) => H là trực tâm tam giác ABC

    Vậy 3O{H^2} = A{B^2} + A{C^2} + B{C^2} là kết quả sai.

  • Câu 16: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng \sqrt{6}cm . Góc tạo bởi cạnh bên SB và mặt phẳng đáy bằng 60^{0} . Thể tích khối chóp S.ABCD bằng bao nhiêu?

    Kết quả: 6 cm3

    Đáp án là:

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng \sqrt{6}cm . Góc tạo bởi cạnh bên SB và mặt phẳng đáy bằng 60^{0} . Thể tích khối chóp S.ABCD bằng bao nhiêu?

    Kết quả: 6 cm3

    Hình vẽ minh họa

    Gọi O là giao điểm của hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Diện tích đáy S_{ABCD} = AB^{2} = 6\left(
cm^{2} ight)

    Góc giữa SB và mặt phẳng đáy là \left(
SB;(ABCD) ight) = \widehat{SBO} = 60^{0}

    ABCD là hình vuông nên OB = \frac{1}{2}BD
= \frac{1}{2}AB\sqrt{2} = \frac{1}{2}.\sqrt{6}.\sqrt{2} =
\sqrt{3}(cm)

    Xét tam giác vuông SOB ta có:

    SO = BO.tan\widehat{SDO} =
\sqrt{3}.tan60^{0} = 3(cm)

    Khi đó thể tích khối chóp là: V =
\frac{1}{3}.SO.S_{ABC} = \frac{1}{3}.3.6 = 6cm^{3}

  • Câu 17: Vận dụng

    Cho tứ diện ABCD có AB = AC = AD, \widehat {BAC} = \widehat {BAD} = {60^0}. Hãy chứng mình AB ⊥ CD.

    Một bạn chứng mình qua các bước sau:

    Bước 1. \overrightarrow {CD}  = \overrightarrow {AC}  - \overrightarrow {AD}

    Bước 2. \overrightarrow {AB} .\overrightarrow {CD}  = \overrightarrow {AB} .\left( {\overrightarrow {AC}  - \overrightarrow {AD} } ight)

    Bước 3. \overrightarrow {AB} .\overrightarrow {AC}  - \overrightarrow {AB} .\overrightarrow {AD}  = |\overrightarrow {AB} |.|\overrightarrow {AD} |.\cos {60^0} - |\overrightarrow {AB} |.|\overrightarrow {AD} |.\cos {60^0} = 0

    Bước 4. Suy ra AB ⊥ CD

    Theo em. Lời giải trên sai từ:

    Bài toán sai từ bước 1 vì

    Theo quy tắc trừ hai vectơ ta có:

    \overrightarrow {CD}  = \overrightarrow {AD}  - \overrightarrow {AC} {\text{ }}

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABC là tam giác vuông \widehat{ABC} = 60^{0}. Tam giác SBC là tam giác đều có cạnh bằng 2a và hình chiếu vuông góc của S lên mặt phẳng (ABC) trùng với trung điểm của BC. Tính \left( SA;(ABC) ight)?

    Hình vẽ minh họa

    Gọi I là trung điểm của BC

    Suy ra \left\{ \begin{matrix}SI\bot(ABC) \\SI = a\sqrt{3} \\\end{matrix} ight.

    SI\bot(ABC) nên hình chiếu của SA trên (ABC) là AI

    Do đó góc giữa SA và mặt phẳng (ABC) bằng góc giữa SA và AI bằng \widehat{SAI}

    Tma giác SAI vuông tại I ta có:

    SI = a\sqrt{3};AI = \frac{1}{2}BC =a

    \Rightarrow \tan\widehat{SAI} =\frac{SA}{AI} = \sqrt{3} \Rightarrow \widehat{SAI} = 60^{0}

  • Câu 19: Nhận biết

    Cho tam giác ABC vuông tại A và có hai đỉnh B và C nằm trên mặt phẳng (P). Gọi C’ là hình chiếu vuông góc của đỉnh C lên mặt phẳng (P). Trong các mệnh đề sau mệnh đề nào đúng?

    Vì C’ trùng với C nên tam giác ABC’ là tam giác vuông tại A.

  • Câu 20: Vận dụng

    Cho hình lăng trụ ABC.A’B’C’ có AA' = \frac{{a\sqrt {10} }}{4}';AC = a\sqrt 2 ;BC = a;\widehat {ACB} = {135^0}$. Hình chiếu vuông góc của C’ lên mặt phẳng (ABC) trùng với trung điểm M của AB. Tính góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’)

    Góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’)

    Trong (ABC) kẻ MN \bot AC \Rightarrow AC \bot \left( {MNC'} ight) ( điểm N thuộc cạnh AC)

    Vậy NC’ là hinh chiếu của MC’ trên mp(ACC’A’)

    Góc giữa MC’ và mp(ACC’A’) là góc \widehat {MC'N}

    Ta có

    \begin{matrix}  A{B^2} = A{C^2} + B{C^2} - 2.AC.BC.\cos \widehat {ACB} = 5{a^2} \hfill \\   \Rightarrow AB = a\sqrt 5  \Rightarrow AM = \dfrac{{a\sqrt 5 }}{2} \hfill \\ \end{matrix}

    CM là đường trung tuyến của tam giác ABC, nên có

    C{M^2} = \frac{{C{A^2} + C{B^2}}}{2} - \frac{{A{B^2}}}{4} = \frac{{{a^2}}}{4} \Rightarrow CM = \frac{a}{2}

    Tam giác CMC’ vuông tại M, nên C'M = \sqrt {C{{C'}^2} - C{M^2}}  = \frac{{a\sqrt 6 }}{4}

    Diện tích {S_{\Delta AMC}} = \frac{1}{2}{S_{\Delta ABC}} = \frac{{{a^2}}}{4} = \frac{1}{2}MN \cdot AC \Rightarrow MN = \frac{a}{{2\sqrt 2 }}

    Xét tam giác vuông MC’N, có

    \tan \widehat {MC'N} = \frac{{MN}}{{MC'}} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {MC'N} = {30^o}

    Vậy góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’) là \widehat {MC'N} = {30^o}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 49 lượt xem
Sắp xếp theo