Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình hộp ABCD.A'B'C'D' có độ dài tất cả các cạnh bằng x\widehat{BAD} = \widehat{DAA'} =
\widehat{A'AB} = 60^{0}. Gọi M,N lần lượt là trung điểm câc các cạnh AA';CD. Tính cosin góc giữa hai đường thẳng MNB'C?

    Hình vẽ minh họa

    Gọi P là trung điểm của DC’. Ta có: \left\{ \begin{matrix}
A'D//B'C \\
MN//A'P \\
\end{matrix} ight.

    Suy ra (MN,B'C) = (A'P,A'D) =
\widehat{DA'P}

    Xét tam giác ADA’ có \left\{
\begin{matrix}
AD = AA' \\
\widehat{DAA'} = 60^{0} \\
\end{matrix} ight. suy ra tam giác ADA’ là tam giác đều \Rightarrow A'D = x

    Xét tam giác A’AB có \left\{
\begin{matrix}
AB = AA' \\
\widehat{A'AB} = 60^{0} \\
\end{matrix} ight. suy ra tam giác A’AB đều

    Do đó tam giác DD’C đều

    Vậy DC' = 2DP = 2.\frac{x\sqrt{3}}{2}= x\sqrt{3}

    Xét tam giác BAD có AD = AB và \widehat{BAD} = 60^{0} nên tam giác BAD là tam giác đều.

    Vì tam giác BAD đều nên tam giác B’A’D’ cùng là tam giác đều.

    Gọi A’I là đường cao của tam giác B’A’D’

    Khi đó: A'C' = 2A'I =2.\frac{x\sqrt{2}}{2} = x\sqrt{3}

    Dễ thấy A’P là đường trung tuyến của tam giác DA’C’ nên A'P = \sqrt{\frac{A'D'^{2} +A'C'^{2}}{2} - \frac{DC'^{2}}{4}} =\frac{x\sqrt{5}}{2}

    Áp dụng định lí cosin cho tam giác A’DP có:

    \Rightarrow \cos\widehat{DA'P} =\frac{A'D^{2} + A'P^{2} - DP^{2}}{2.A'D.A'P} =\frac{x\sqrt{5}}{10}

    \Rightarrow \cos(MN,B'C) = \left|
\cos\widehat{DA'P} ight| = \frac{3\sqrt{5}}{10}

  • Câu 2: Thông hiểu

    Tính thể tích hình chóp đều S.ABCD biết chiều cao bằng a\sqrt{2} và độ dài cạnh bên bằng a\sqrt{6}?

    Hình vẽ minh họa

    Gọi O là tâm hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Tam giác SOA vuông tại O nên OA =
\sqrt{SA^{2} - SO^{2}} = 2a \Rightarrow AC = BD = 4a

    Vậy thể tích hình chóp là: V =
\frac{1}{3}SO.S_{ABCD} = \frac{1}{3}.a\sqrt{2}.\frac{4a.4a}{2} = V =
\frac{8\sqrt{2}a^{3}}{3}

  • Câu 3: Nhận biết

    Mệnh đề nào sau đây là đúng?

    Mệnh đề đúng: "Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau."

  • Câu 4: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông ABCD cạnh a. Gọi O là giao điểm hai đường chéo AC;BD. Biết rằng SO = \frac{a\sqrt{2}}{2}. Tính góc giữa hai đường thẳng ABSD?

    Hình vẽ minh họa

    Ta có: AB//CD \Rightarrow (AB;SD) =(CD;SD)

    OD = \frac{1}{2}BD =\frac{a\sqrt{2}}{2}

    SD = \sqrt{SO^{2} + OD^{2}} =\sqrt{\frac{a^{2}}{2} + \frac{a^{2}}{2}} = a

    \Rightarrow SC = SC = CD =a

    Suy ra tam giác SCD đều.

    \Rightarrow \widehat{SCD} =60^{0}

    \Rightarrow (AB;SD) = (CD;SD) =\widehat{SCD} = 60^{0}

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 2. Đường thẳng SO vuông góc với mặt phẳng đáy (ABCD) và SO=\sqrt{3}. Tính khoảng cách d giữa hai đường thẳng SA và BD.

    Hình vẽ minh họa:

    Tính khoảng cách d giữa hai đường thẳng SA và BD

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {BD \bot AC} \\   {BD \bot SO} \end{array} \Rightarrow BD \bot \left( {SAC} ight)} ight.

    Trong (SAC) kẻ OK⊥SA(1) ta có:

    OK⊂(SAC)⇒OK⊥BD(2) 

    Từ (1) và (2) ta có OK là đường vuông góc chung của SA và BD

    Khi đó d(SA;BD)=OK

    \begin{matrix}  OK = \dfrac{{SO.OA}}{{\sqrt {S{O^2} + O{A^2}} }} \hfill \\   = \dfrac{{\sqrt 3 .\dfrac{{2\sqrt 2 }}{2}}}{{\sqrt {{{\left( {\sqrt 3 } ight)}^2} + {{\left( {\dfrac{{2\sqrt 2 }}{2}} ight)}^2}} }} = \dfrac{{\sqrt {30} }}{5} \hfill \\ \end{matrix}

  • Câu 6: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = a\sqrt{3} chiếu vuông góc H của S trên mặt phẳng đáy trùng với trọng tâm tam giác ABC và SH = \frac{a}{2}. Gọi M và N lần lượt là trung điểm của các cạnh BC và SC. Gọi α là góc giữa đường thẳng MN với mặt phẳng (ABCD). Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa:

    Ta có: MN // SB

    => \left( MN,(ABCD)
ight) = \left( SB;(ABCD) ight)

    Do SH ⊥ (ABCD)

    \begin{matrix}
\Rightarrow \left( MN,(ABCD) ight) = \left( SB;(ABCD) ight) \\
= (SB;HB) = \widehat{SBH} \\
\end{matrix}

    Ta có: \left\{ \begin{matrix}BD = \sqrt{AB^{2} + AD^{2}} = 2a \\BH = \dfrac{BD}{3} = \dfrac{2a}{3} \\\end{matrix} ight.

    => \tan\widehat{SBH} = \frac{SH}{BH} =
\frac{3}{4}

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là hình tam giác vuông tại B, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi H;K lần lượt là hình chiếu của điểm A trên cạnh SB;SC. Kết luận nào sau đây sai?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}SA\bot(ABC) \\BC \subset (ABC) \\\end{matrix} ight.\  \Rightarrow SA\bot BC;AB\bot BC

    \Rightarrow BC\bot(SAB) đúng

    Ta có: \left\{ \begin{matrix}BC\bot AH \\SC\bot AH \\\end{matrix} ight.\  \Rightarrow AH\bot(SBC) đúng

    Ta có: \left\{ \begin{matrix}AH\bot SC \\AK\bot SC \\\end{matrix} ight.\  \Rightarrow SC\bot(AHK) đúng

    Vậy kết luận sai là: AK\bot(SBC).

  • Câu 8: Nhận biết

    Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là VV' . Khi đó tỉ số \frac{V}{V'} = 1/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là VV' . Khi đó tỉ số \frac{V}{V'} = 1/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Ta có:

    Thể tích khối chóp là: V =
\frac{1}{3}B.h

    Thể tích hình lăng trụ là: V' =
B.h

    Khi đó: \dfrac{V}{V'} =\dfrac{\dfrac{1}{3}B.h}{B.h} = \dfrac{1}{3}

  • Câu 9: Vận dụng

    Cho tứ diện đều ABCD có M là trung điểm của cạnh CD, gọi \varphi là góc giữa hai đường thẳng AM và BC. Giá trị \cos \varphi bằng:

    Tính cosin góc giữa hai đường thẳng

    Giả sử cạnh của tứ diện đều bằng a

    Vì M là trung điểm của CD. Nên AM là đường cao trong tam giác ACD đều.

    => AM = \frac{{a\sqrt 3 }}{2}

    Ta có:

    \begin{matrix}  \overrightarrow {CB} .\overrightarrow {AM}  = \overrightarrow {CB} .\left( {\overrightarrow {CM}  - \overrightarrow {CA} } ight) = \overrightarrow {CB} .\overrightarrow {CM}  - \overrightarrow {CB} .\overrightarrow {CA}  \hfill \\   = CB.CM.\cos \widehat {BCM} - CB.CA.\cos \widehat {ACB} \hfill \\   = a.\dfrac{a}{2}.\cos {60^o} - a.a.\cos {60^o} =  - \dfrac{{{a^2}}}{4} \hfill \\ \end{matrix}

    => \cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight) = \dfrac{{\overrightarrow {BC} .\overrightarrow {AM} }}{{\left| {\overrightarrow {BC} } ight|.\left| {\overrightarrow {AM} } ight|}} = \dfrac{{\dfrac{{ - {a^2}}}{4}}}{{a.\dfrac{{a\sqrt 3 }}{2}}} = \dfrac{{ - \sqrt 3 }}{6}

     

    => \cos \varphi  = \left| {\cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight)} ight| = \frac{{\sqrt 3 }}{6}

  • Câu 10: Nhận biết

    Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OB = OC = a. Tính khoảng cách giữa hai đường thẳng OA và BC.

    Hình vẽ minh họa:

    Gọi M là trung điểm CB, ta có: OM ⊥ BC.

    Mặt khác vì OA, OB, OC đôi một vuông góc nên OA ⊥ (OBC)

    => OA ⊥ OM. Do đó khoảng cách giữa OA và BC là OM.

    Ta có: OM = \frac{1}{2}BC =
\frac{a\sqrt{2}}{2}

  • Câu 11: Vận dụng

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Hình vẽ minh họa

    Giả sử tứ diện đều cạnh bằng a

    Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện

    Mỗi góc cũng là một tứ diện đều có cạnh bằng \frac{a}{2}

    Do đó thể tích phần cắt bỏ là V''
= 4.\frac{V}{8} = \frac{V}{2}

    (Vì tứ diện cạnh giảm một nưả thì thể tích giảm \left( \frac{1}{2} ight)^{3} =
\frac{1}{8}

    Vậy V' = \frac{V}{2} \Rightarrow
\frac{V'}{V} = \frac{1}{2}

  • Câu 12: Nhận biết

    Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác cân tại A. Gọi M là trung điểm cạnh BC. Chọn kết luận đúng?

    Hình vẽ minh họa

    Vì tam giác ABC cân tại A và M là trung điểm của BC

    => AM\bot BC

    Ta có: BC//B'C'

    \Rightarrow (B'C';AM) = (BC;AM)
= 90^{0}

  • Câu 13: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. Cạnh bện SA vuông góc với mặt phẳng (ABCD) và SC =10\sqrt{5}. Gọi M, N lần lượt là trung điểm của SA và CD. Tính khoảng cách d giữa BD và MN.

    Hình vẽ minh họa:

    Gọi P là trung điểm BC và E = NP ∩ AC

    => PN // BD => BD // (MNP)

    => d(BD, MN) = d(BD, (MNP)) = d(O, (MNP)) = \frac{1}{3}d(A, (MNP))

    Kẻ AK ⊥ ME

    Khi đó d(A, (MNP)) = AK.

    Ta tính được:

    \begin{matrix}SA = \sqrt{SC^{2} - AC^{2}} = 10\sqrt{3} \\\Rightarrow MA = 5\sqrt{3};AE = \dfrac{3}{4}AC = \dfrac{15\sqrt{2}}{2} \\\end{matrix}

    Xét tam giác vuông MAE ta có:

    AK = \frac{MA.AE}{\sqrt{MA^{2} +AE^{2}}} = 3\sqrt{5}

    \Rightarrow d(BD;MN) = \frac{1}{3}AK =\sqrt{5}

  • Câu 14: Thông hiểu

    Cho hình hộp thoi ABCD.A'B'C'D' có tất cả các cạnh bằng a\widehat{ABC} = \widehat{B'BA} =
\widehat{B'BC} = 60^{0}. Tứ giác A'B'CD là hình gì?

    Hình vẽ minh họa

    Ta có tứ giác A’B’CD là hình bình hành

    Do \widehat{B'BC} = 60^{0} nên tam giác BB’C đều \Rightarrow B'C =
a

    Do đó CD = B'C = a nên tứ giác A’B’CD là hình thoi

    Ta có

    \overrightarrow{CB'}.\overrightarrow{CD} =
\left( \overrightarrow{CB} + \overrightarrow{BB'}
ight).\overrightarrow{BA}

    =
\overrightarrow{CB}.\overrightarrow{BA} +
\overrightarrow{BB'}.\overrightarrow{BA} = - \frac{a^{2}}{2} +
\frac{a^{2}}{2} = 0

    Suy ra CB'\bot CD

    Vậy tứ giác A'B'CD là hình vuông.

  • Câu 15: Thông hiểu

    Cho hình chóp tam giác S.ABC có đáy ABC là tam giác vuông tại C, AC = a;BC
= a\sqrt{2}, SA\bot(ABC);SA =
a. Tính góc tạo bởi SB và mặt phẳng đáy?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) nên AB là hình chiếu của SA trên mặt phẳng đáy.

    \Rightarrow \left( SB;(ABC) ight) =
(SB;AB) = \widehat{SBA}

    Mặt khác tam giác ABC vuông tại C nên AB
= \sqrt{AC^{2} + BC^{2}} = a\sqrt{3}

    \Rightarrow \tan\widehat{SBA} =
\frac{SA}{AB} = \frac{1}{\sqrt{3}}

    \Rightarrow \left( SB;(ABC) ight) =
\widehat{SBA} = 30^{0}

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABCSA\bot(ABC). Gọi hình chiếu vuông góc của điểm A lên cạnh BC là điểm H. Xác định góc giữa hai mặt phẳng (SBC)(ABC)?

    Hình vẽ minh họa

    Ta có:

    BC = (SBC) \cap (ABC)

    \left\{ \begin{matrix}
BC\bot AS \\
BC\bot AH \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAH) \Rightarrow BC\bot
SH

    Vậy \left( (SBC);(ABC) ight) =
\widehat{SHA}

  • Câu 17: Nhận biết

    Cho hình chóp ABCD có đáy ABCD là hình thoi tâm O, SA =
SC. Mặt phẳng (SAC) vuông góc với mặt phẳng nào dưới đây?

    Hình vẽ minh họa

    Ta có: O là tâm hình thoi ABCD \Rightarrow \left\{ \begin{matrix}
OB = OD \\
OA = OC \\
\end{matrix} ight.

    Mặt khác SA = SC \Rightarrow SO\bot
AC (tính chất tam giác cân)

    AC\bot BD (tính chất hình thoi)

    Từ (1) và (2) suy ra AC\bot(SBD)
\Rightarrow (SAC)\bot(SBD)

  • Câu 18: Thông hiểu

    Cho một khối chóp tứ giác đều có cạnh đáy bằng x(cm), biết độ dài cạnh bên và cạnh đáy tỉ lệ 2:1. Tính thể tích V của khối chóp?

    Hình vẽ minh họa

    Gọi O là tâm hình vuông ABCD

    OC = \frac{1}{2}AC =
\frac{1}{2}\sqrt{AB^{2} + BC^{2}} = \frac{1}{2}\sqrt{x^{2} + x^{2}} =
\frac{x\sqrt{2}}{2}

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Trong tam giác SOC vuông tại O ta có:

    SO = \sqrt{SC^{2} - OC^{2}} =
\sqrt{(2x)^{2} - \left( \frac{x\sqrt{2}}{2} ight)^{2}} =
\frac{x\sqrt{14}}{2}

    Vậy thể tích hình chóp là: V_{S.ABCD} =
\frac{1}{3}S_{ABCD}.SO = \frac{1}{3}.\frac{x\sqrt{14}}{2}.x^{2} =
\frac{x^{3}\sqrt{14}}{6}

  • Câu 19: Vận dụng cao

    Cho tứ diện ABCD có AB vuông góc với CD, AB = a, CD = 6. M là điểm thuộc cạnh BC sao cho MC = 2BM. Mặt phẳng (P) đi qua M song song với AB và CD. Diện tích thiết diện của P với tứ diện là:

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
(MNPQ)//AB \\
(MNPQ) \cap (ABC) = MN \\
\end{matrix} ight.\  \Rightarrow MN//AB

    Tương tự ta có: MQ // CD, NP // CD, QP // AB

    Do đó tứ giác MNPQ là hình bình hành

    Ta có: (AB, CD) = (MN, MQ) = 900

    => ABCD là hình bình hành

    Ta lại có:

    \begin{matrix}\Delta CMN\sim\Delta CBA \hfill \\\Rightarrow \dfrac{CM}{CB} = \dfrac{MN}{AB} = \dfrac{1}{3} \hfill \\\Rightarrow MN = \dfrac{4}{3}  \hfill\\\Delta ANP\sim\Delta ACD \hfill \\\Rightarrow \dfrac{AN}{AC} = \dfrac{NP}{CD} = \dfrac{2}{3} \hfill \\\Rightarrow MP = 4 \\\end{matrix}

    => S_{MNPQ} = MN.NP =
\frac{16}{3}

  • Câu 20: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SB vuông góc với mặt phẳng (ABCD) (tham khảo hình vẽ). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Từ giả thiết ABCD là hình vuông và SB vuông góc với đáy

    Ta có: \left\{ \begin{matrix}AC\bot BD \\AC\bot SB \\\end{matrix} ight.\  \Rightarrow AC\bot(SBD)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 40 lượt xem
Sắp xếp theo