Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tính thể tích khối chóp tứ giác đều có tất cả các cạnh bằng 1cm?

    Hình vẽ minh họa

    Giả sử khối chóp tứ giác đều đã cho là S.ABCD

    Khi đó ABCD là hình vuông cạnh bằng 1 cm và SA = SB = SC = SD = 1cm

    Gọi H là tâm hình vuông ABCD thì SH\bot(ABCD) nên SH là chiều cao của khối chóp S.ABCD.

    Tính SH

    Xét tam giác ABC vuông tại B ta có:

    AC = \sqrt{AB^{2} + BC^{2}} =
\sqrt{1^{2} + 1^{2}} = \sqrt{2}(cm)

    Nhận thấy AC^{2} = SA^{2} +
SC^{2} nên tam giác SAC vuông tại S

    \Rightarrow SH = \frac{AC}{2} =
\frac{1}{\sqrt{2}}(cm)

    Diện tích đáy của khối chóp là S_{ABCD} =
1^{2} = 1\left( cm^{2} ight)

    Thể tích khối chóp S.ABCDV = \frac{1}{3}.S_{ABCD}.SH =
\frac{1}{3}.1.\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{6}\left( cm^{3}
ight)

  • Câu 2: Nhận biết

    Mệnh đề nào là mệnh đề đúng?

    Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”

  • Câu 3: Nhận biết

    Cho hình chóp S.ABCD ABCD là hình vuông cạnh a, tam giác SAD đều. góc giữa BCSA là:

    Hình vẽ minh họa

    BC//AD \Rightarrow (BC,SA) = (AD,SA) =
60^{0}

  • Câu 4: Vận dụng

    Cho tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau. Điểm nào cách đều bốn đỉnh của A, B, C, D của tứ diện ABCD?

    Hình vẽ minh họa:

    Ta có:

    \left\{ \begin{matrix}
BC\bot AB \\
CD\bot AB \\
\end{matrix} ight.\  \Rightarrow AB\bot(BCD)=> Tam giác ABD vuông tại B.

    => IA = IB = ID = AD/2 (với I là trung điểm của AD)

    Ta có: \left\{ \begin{matrix}
CD\bot AB \\
CD\bot BC \\
\end{matrix} ight.\  \Rightarrow CD\bot(ABC)

    => Tam giác BCD vuông tại C.

    => EA = EC = ED = AD/2 (E là trung điểm của AD)

    Vậy I trùng với E

    Vậy điểm cách đều bốn đỉnh của A, B, C, D của tứ diện ABCD là trung điểm của đoạn thẳng AD.

  • Câu 5: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại hai đỉnh \widehat{A};\widehat{D}. Biết rằng AD = CD = a, AB = 2a;SA\bot(ABCD). Chọn kết luận đúng dưới đây?

    Hình vẽ minh họa

    Ta có: \Delta ABC vuông cân tại C nên BC\bot ACBC\bot SA\left( do\ SA\bot(ABCD)
ight)

    \Rightarrow BC\bot(SAC)

  • Câu 6: Vận dụng

    Cho hình chóp S.ABCD có thể tích bằng \frac{4}{3}a^{3}, đáy ABCD là hình vuông cạnh bằng a\sqrt{2}; SA
= SD. Biết mặt bên (SAD) vuông góc với mặt phẳng (ABCD). Xác định khoảng cách d\left( B;(SCD)
ight)?

    Hình vẽ minh họa

    Gọi I là trung điểm của AD

    Tam giác SAD cân tại S suy ra SI\bot
AD

    Ta có \left\{ \begin{matrix}
SI\bot AD \\
(SAD)\bot(ABCD) \\
\end{matrix} ight.\  \Rightarrow SI\bot(ABCD)

    Suy ra SI là đường cao của hình chóp

    Theo giả thiết

    V_{S.ABCD} =
\frac{1}{3}SI.S_{ABCD}

    \Leftrightarrow \frac{4a^{3}}{3} =
\frac{1}{2}SI.2a^{2}

    \Leftrightarrow SI = 2a

    AB//(SCD) \Rightarrow d\left( B;(SCD)
ight) = d\left( A;(SCD) ight) = 2d\left( I;(SCD)
ight)

    Gọi H là hình chiếu vuông góc của I lên SD

    Mặt khác \left\{ \begin{matrix}
SI\bot DC \\
ID\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot DC. Ta có: \left\{ \begin{matrix}
IH\bot SD \\
IH\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot(SCD)

    \Rightarrow d\left( I;(SCD) ight) =
IH

    Xét tam giác SID vuông tại I có:

    \frac{1}{IH^{2}} = \frac{1}{SI^{2}} +
\frac{1}{ID^{2}} = \frac{1}{4a^{2}} + \frac{4}{2a^{2}} \Rightarrow IH =
\frac{2a}{3}

    \Rightarrow d\left( B;(SCD) ight) =
d\left( A;(SCD) ight) = 2d\left( I;(SCD) ight) =
\frac{4a}{3}

  • Câu 7: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 4a?

    Ta có: V = (4a)^{3} =
64a^{3}

  • Câu 8: Thông hiểu

    Cho khối lăng trụ ABC.A'B'C có đáy ABC là tam giác vuông cân tại A. Biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 60^{0} và cạnh AA' = 2a. Tính thể tích khối lăng trụ đã cho bằng:

    Hình vẽ minh họa

    Gọi M là trung điểm của BC. Khi đó

    \left\{ \begin{matrix}
AM\bot BC \\
AA'\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(A'AM)

    \Rightarrow \left( (A'BC);(ABC)
ight) = \widehat{A'MA} = 60^{0}

    Ta có: AM = \frac{AA'}{tan60^{0}} =
\frac{2a\sqrt{3}}{3}

    \Rightarrow BC = 2AM =
\frac{4a\sqrt{3}}{3}

    \Rightarrow V_{ABC.A'B'C'} =
AA'.S_{ABC} =
2a.\frac{1}{2}.\frac{2a\sqrt{3}}{3}.\frac{4a\sqrt{3}}{3} =
\frac{8}{3}a^{3}

  • Câu 9: Thông hiểu

    Cho hình chóp S.ABC, có đáy ABC là tam giác đều và SA\bot(ABC). Gọi M là trung điểm của cạnh ACN là hình chiếu của B lên SC. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) \Rightarrow BM\bot
SA

    BM\bot AC \Rightarrow BM\bot(SAC)
\supset SC \Rightarrow SC\bot BM(1)

    Theo giả thiết SC\bot BN(2)

    Từ (1) và (2) suy ra SC\bot(BMN)

    SC \subset (SBC) \Rightarrow
(BMN)\bot(SBC)

  • Câu 10: Thông hiểu

    Cho tứ diện ABCD có độ dài các cạnh AB =
AC = AD = BC = BD = aCD =
a\sqrt{2}. Tính góc giữa hai đường thẳng AD và BC.

    Hình vẽ minh họa

    Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.

    Khi đó: KH//AD,KI//BC \Rightarrow (AD;BC)
= (KH;KI).

    Xét \Delta BIC,BI = \sqrt{BC^{2} -
AC^{2}} = \sqrt{a^{2} - \frac{a^{2}}{2}} =
\frac{a}{\sqrt{2}}.

    Ta có \left\{ \begin{matrix}
AB\bot DH \\
AB\bot HC \\
\end{matrix} \Rightarrow AB\bot(DHC) \Rightarrow AB\bot HI ight..

    Xét \Delta BIH,HI = \sqrt{IB^{2} -
HB^{2}} = \sqrt{\frac{a^{2}}{2} - \frac{a^{2}}{4}} =
\frac{a}{2}. (1)

    Xét \Delta IHK, ta có: \left\{ \begin{matrix}
IK = \frac{BC}{2} = \frac{a}{2} \\
HK = \frac{AD}{2} = \frac{a}{2} \\
\end{matrix} \Rightarrow IK = HK = \frac{a}{2} ight.. (2)

    Từ (1),(2) \Rightarrow HI = IK = HK
\Rightarrow \Delta IHK là tam giác đều

    \Rightarrow \widehat{IKH} = 60^{0} \Rightarrow
(KH;KI) = 60^{0}.

  • Câu 11: Vận dụng cao

    Cho hình chóp tứ giác đều S.ABCD có AB = a, O là trung điểm của AC và SO = b. Gọi (∆) là đường thẳng đi qua C, (∆) chứa trong mặt phẳng (ABCD) và khoảng cách từ O đên (∆) là \frac{a\sqrt{14}}{6}. Giá trị lượng giác \cos\left( SA;(\Delta) ight) bằng bao nhiêu?

    Từ A kẻ (∆’) // (∆)

    Từ O kẻ (d) ⊥ (∆) cắt (∆) và (∆’) lần lượt tại H, K

    Ta có: \left\{ \begin{matrix}AK\bot OK \\AK\bot SO \\\end{matrix} ight.\  \Rightarrow AK\bot(SOK) \Rightarrow AK\botSK

    Ta được \cos\left( SA;(\Delta) ight) =\cos\left( SA;(\Delta') ight)

    Ta có: \left\{ \begin{matrix}SA = \dfrac{\sqrt{4b^{2} + 2a^{2}}}{2} \\AK = \dfrac{a}{3} \\\end{matrix} ight.

    => \cos\left( SA;(\Delta) ight) =\frac{AK}{SA} = \frac{2a}{3\sqrt{4b^{2} + 2a^{2}}}

  • Câu 12: Nhận biết

    Cho hai mặt phẳng (P) và (Q) song song với nhau và một điểm M không thuộc (P) và (Q). Qua M có bao nhiêu mặt phẳng vuông góc với (P) và (Q)?

    Gọi d là đường thẳng qua M và vuông góc với (P). Do (P)//(Q)⇒d⊥(Q)

    Giả sử (R) là mặt phẳng chứa d. Mà \left\{ {\begin{array}{*{20}{l}}  {d \bot \left( P ight)} \\   {d \bot \left( Q ight)} \end{array}} ight.

    \Rightarrow \left\{ {\begin{array}{*{20}{l}}  {\left( R ight) \bot \left( P ight)} \\   {\left( R ight) \bot \left( Q ight)} \end{array}} ight.

    Có vô số mặt phẳng (R) chứa d. Do đó có vô số mặt phẳng qua M, vuông góc với (P) và (Q).

  • Câu 13: Thông hiểu

    Cho tứ diện ABCD;AC = 6a;BD = 8a. Gọi trung điểm của AD,BC lần lượt là M,N. Biết AC\bot DB. Độ dài đoạn thẳng MN là:

    Hình vẽ minh họa

    Gọi P là trung điểm của CD. Khi đó \left\{ \begin{matrix}MP = \dfrac{1}{2}AC = 3a \\NP = \dfrac{1}{2}BD = 4a \\\end{matrix} ight.

    Lại có \left\{ \begin{matrix}
NP//BD;MP//AC \\
AC\bot BD \\
\end{matrix} ight.\  \Rightarrow MP\bot NP hay tam giác MNP vuông tại P

    Theo định lí Pythagore ta có:

    MN = \sqrt{NP^{2} + MP^{2}} =
5a

  • Câu 14: Thông hiểu

    Cho hình lăng trụ đứng tam giác ABC.A'B'C' có đáy ABC là tam giác cân, AB = AC = a,\widehat{BAC} = 120^{0} và cạnh bên AA' = a\sqrt{2}. Tính góc giữa hai đường thẳng AB'BC?

    Hình vẽ minh họa

    Ta có: BC//B'C' \Rightarrow
(AB',BC) = (AB',B'C')

    Xét tam giác AB'C' ta có: AB' = AC' = \sqrt{AB^{2} +
BB'^{2}} = a\sqrt{3}

    Áp dụng định lí cosin cho tam giác ABC ta có:

    BC^{2} = AB^{2} + AC^{2} -
2AB.AC.cos\widehat{BAC}

    = a^{2} + a^{2} - 2a.a.cos120^{0} =
3a^{2}

    \Rightarrow BC = B'C' =
a\sqrt{3}

    Vậy tam giác AB'C' đều

    \Rightarrow (AB',BC) =
(AB',B'C') = \widehat{AB'C'} = 60^{0}

  • Câu 15: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:

    Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”

    Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB

    Mặt khác AB ⊥ AD.

    Từ đó suy ra AB ⊥ (SDA)

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Khẳng định nào dưới đây là sai?

    Hình vẽ minh họa

    Chọn khẳng định sai

    Vì H là trung điểm của AB, tam giác ABC cân => CH⊥AB

    Ta có: SA⊥(ABC) => SA⊥CHCH⊥AB => CH⊥(SAB)

    Mặt khác AK⊂(SAB) => CH vuông góc với các đường thẳng SA,SB,AK

    AK⊥SB chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.

  • Câu 17: Vận dụng

    Cho tứ diện ABCD có AB vuông góc với mặt phẳng (BCD). Biết tam giác BCD vuông tại C và AB = \frac{{a\sqrt 6 }}{2}, CD = a. Gọi E là trung điểm của AD. Tính góc giữa hai đường thẳng AB và CE.

    Tính góc giữa hai đường thẳng

     Kí hiệu hình vẽ như sau:

    Tính góc giữa hai đường thẳng

    Gọi H là trung điểm của BD. Khi đó EH // AB, EH ⊥ (BCD)

    Góc giữa AB và CE bằng góc giữa EH và EC chính là góc \widehat {HEC}

    Ta có:

    \begin{matrix}  EH = \dfrac{1}{2}AB = \dfrac{{a\sqrt 6 }}{4} \hfill \\  BC = \sqrt {A{C^2} - A{B^2}}  = \dfrac{{a\sqrt 2 }}{2} \hfill \\  C{H^2} = \dfrac{{2\left( {C{B^2} + C{D^2}} ight) - B{D^2}}}{4} = \dfrac{{3{a^2}}}{8} \hfill \\   \Rightarrow CH = \dfrac{{a\sqrt 6 }}{4} \hfill \\ \end{matrix}

    Ta lại có: \tan \widehat {HEC} = \frac{{CH}}{{EH}} = 1 \Rightarrow \widehat {HEC} = {45^0}

    Vậy góc giữa AB và CE là 450

  • Câu 18: Thông hiểu

    Cho tứ diện đều ABCD cạnh bằng 1, M là trung điểm của BC. Khi đó \cos(AB;DM) là:

    Hình vẽ minh họa

    Gọi E là trung điểm cạnh AC. Khi đó ta có: EM // AB.

    \Rightarrow \cos(AB,DM) = \cos(EM;DM) =
\widehat{DME}

    Ta có: ABCD là tứ diện đều cạnh bằng 1 và EA = EC;BM = MC

    \Rightarrow DM = \frac{\sqrt{3}}{2};DE =
\frac{\sqrt{3}}{2};EM = \frac{AB}{2} = \frac{1}{2}

    \Rightarrow \cos\widehat{DME} =
\frac{DM^{2} + ME^{2} - DE^{2}}{2.DM.EM} = \frac{1}{2\sqrt{3}} =
\frac{\sqrt{3}}{6}

    \Rightarrow \cos(AB,DM) =
\frac{\sqrt{3}}{6}

  • Câu 19: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AD = 2BC = 2AB = 2a, SA = 2a và SA vuông góc với ABCD. Gọi M là trung điểm SB và \varphi là góc tạo bởi đường thẳng MD và mặt phẳng (SCD). Khi đó \sin\varphi bằng:

    Tính sin của góc tạo bởi đường thẳng MD và mặt phẳng (SCD)

    Ta có tam giác SAB vuông tại A nên AM = \frac{{2a}}{{\sqrt 5 }}

    Ta có: \left\{ \begin{gathered}  AD \bot AB \hfill \\  A{\text{D}} \bot SA \hfill \\ \end{gathered}  ight. \Rightarrow A{\text{D}} \bot \left( {SAB} ight) \Rightarrow A{\text{D}} \bot MA

    Xét tam giác MDA vuông tại A theo định lí Pytago ta có:

    MD = \sqrt {A{D^2} + A{M^2}}  = \sqrt {4\,{a^2} + \frac{{4\,{a^2}}}{5}}  = \frac{{2\sqrt {30} a}}{5}

    Ta có \frac{{{d_{\left( {M,\,\left( {SC{\text{D}}} ight)} ight)}}}}{{{d_{\left( {B,\,\left( {SC{\text{D}}} ight)} ight)}}}} = \frac{{SM}}{{SB}} = \frac{1}{2}

    Gọi N là giao của AB và CD. Gọi P là trung điểm AD nên ABCP là hình vuông

    => CP = a \Rightarrow CP = \frac{1}{2}AD

    Ta có (hai đường chéo hình vuông)

    Mặt khác BP // CD.

    Do đó tam giác ACD vuông tại nên tam giác ACN vuông tại C, mặt khác BC \bot AN nên B là trung điểm AN.

    Ta có AB giao (SCB) tại N nên

    \frac{{{d_{\left( {B,\,\left( {C{\text{SD}}} ight)} ight)}}}}{{{d_{\left( {A,\left( {SCA} ight)} ight)}}}} = \frac{{NB}}{{NA}} = \frac{1}{2} \Rightarrow {d_{\left( {M,\left( {SC{\text{D}}} ight)} ight)}} = \frac{1}{4}{d_{\left( {A,\left( {SCA} ight)} ight)}}

    Ta có \left\{ \begin{gathered}  CD \bot AC \hfill \\  CD \bot SA \hfill \\ \end{gathered}  ight. \Rightarrow CD \bot \left( {SAC} ight)

    Trong (SAC) kẻ AH \bot SC

    \Rightarrow AH \bot \left( {SC{\text{D}}} ight) \Rightarrow {d_{\left( {A,\left( {SC{\text{D}}} ight)} ight)}} = AH \Rightarrow {d_{\left( {M,\left( {SC{\text{D}}} ight)} ight)}} = \frac{1}{4}AH

    Xét tam giác SAC vuông tại A nên AH = \frac{{2a}}{{\sqrt 3 }}

    Do đó \sin \varphi  = \frac{{{d_{\left( {M,\left( {SC{\text{D}}} ight)} ight)}}}}{{MD}} = \frac{{1AH}}{{4MD}}=\frac{{\sqrt {10} }}{{24}}

  • Câu 20: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách d giữa hai đường thẳng SA và BD.

    Hình vẽ minh họa:

    Gọi I là trung điểm của AD

    => SI ⊥ AD => SI ⊥ (ABCD)

    Kẻ Ax // BD

    Ta có d(BD, SA) = d (BD, (SAx)) = d (D, (SAx)) = 2d (I, (SAx))

    Kẻ IE ⊥ Ax, kẻ IK ⊥ SE

    Khi đó d (I, (SAx)) = IK

    Gọi F là hình chiếu của I trên BD, ta có: IE = IF = \frac{AO}{2} =\frac{a\sqrt{2}}{4}

    Xét tam giác vuông SIE ta có:

    IK = \frac{SI.IE}{\sqrt{SI^{2} +IE^{2}}} = \frac{a\sqrt{21}}{14}

    => d(BD;SA) = 2IK =\frac{a\sqrt{21}}{7}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 41 lượt xem
Sắp xếp theo