Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK, biết AB = 6cm;AC = 7cm;AD = 4cm.

    Hình vẽ minh họa

    Ta có: V_{ABCD} =\frac{1}{2}AB.\frac{1}{2}AD.AC = \frac{1}{2}.6.7.4 = 28\left( cm^{3}ight)

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}V_{ABCD} = 7\left(cm^{3} ight)

  • Câu 2: Thông hiểu

    Cho tứ diện OABCOA;OB;OC đôi một vuông góc. Gọi H là trực tâm tam giác ABC. Kết luận nào sai?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
OA\bot OC \\
OB\bot OC \\
\end{matrix} ight.\  \Rightarrow OC\bot(OAB) \Rightarrow OC\bot
AB đúng

    Ta có: \left\{ \begin{matrix}
BC\bot AH \\
BC\bot OA \\
\end{matrix} ight.\  \Rightarrow BC\bot(OAH) \Rightarrow BC\bot
OH đúng

    Ta có: \left\{ \begin{matrix}
AB\bot CH \\
AB\bot OC \\
\end{matrix} ight.\  \Rightarrow AB\bot(OCH) \Rightarrow AB\bot
OH

    BC\bot OH \Rightarrow
OH\bot(ABC) đúng

    Vậy OH\bot OA hay tam giác HOA vuông tại H sai

  • Câu 3: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 4a. Cạnh bên hình chóp SA = 2a. Hình chiếu vuông góc của đỉnh S trên mặt phẳng đáy là trung điểm M của OA. Gọi α là góc giữa SD và mặt phẳng đáy. Chọn mệnh đề đúng trong các mệnh đề dưới đây.

    Hình vẽ minh họa:

    Ta có: SM ⊥ (ABCD)

    => Hình chiếu vuông góc của SD trên mặt phẳng (ABCD) là cạnh MD.

    \Rightarrow \alpha = \left( SD,(ABCD)
ight) = (SD;MD) = \widehat{SDM}

    Ta tính được: SM = \sqrt{SA^{2} - AM^{2}}
= a\sqrt{2}

    Xét tam giác ADM có:

    MD = \sqrt{AM^{2} + AD^{2} -
2AM.AD.cos45^{0}} = a\sqrt{10}

    => \tan\alpha = \tan\widehat{SDM} =
\frac{SM}{MD} = \frac{\sqrt{5}}{5}

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABC có SA ⊥ (ABC) và đáy ABC là tam giác vuông tại B. Xác định góc α giữa hai mặt phẳng (ABC) và (SBC).

    Hình vẽ minh họa:

    Ta có:

    Giao tuyến của hai mặt phẳng (SBC) và (ABC) là BC. (1)

    Ta có: SA ⊥ (ABC), mà đường thẳng BC nằm trong (ABC) => SA ⊥ BC.

    Ta có:\left\{ \begin{matrix}
BC\bot BA \subset (SAB) \\
BC\bot SA \subset (SAB) \\
BA\  \cap \ SA\  = \ A \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB)\ \ \ (2)

    Lại có: \left\{ \begin{matrix}
(SBA)\  \cap \ (ABC)\  = \ BA \\
(SBA)\  \cap \ (SBC)\  = \ BS \\
\end{matrix} ight.\ (3)

    Từ (1), (2), (3) => \alpha =
\widehat{SBA}

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C. Tam giác SAB vuông cân tại SM là trung điểm của BC\widehat{BSC} = 60^{0}. Gọi góc giữa hai đường thẳng ABCM\alpha. Chọn kết luận đúng?

    Hình vẽ minh họa

    Giả sử SA = a \Rightarrow \left\{
\begin{matrix}
SB = CA = CB = a \\
AB = a\sqrt{2} \\
\end{matrix} ight.

    Lại có: \widehat{BSC} = 60^{0} suy ra tam giác SBC đều suy ra SC =
a

    Suy ra CM = CN =
\frac{a\sqrt{3}}{2} hay MN//AB

    Khi đó (AB;CM) = (MN,CM)

    Áp dụng định lí cosin cho tam giác MNC ta có:

    \cos\widehat{CMN} = \frac{MC^{2} +
MN^{2} - NC^{2}}{2.MC.MN} = \frac{\sqrt{6}}{6}

    \Rightarrow \cos(AB;CM) = \left|
\cos\widehat{CMN} ight| = \frac{\sqrt{6}}{6}

  • Câu 6: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A;D; AB =
a;AD = DC = a. Gọi I là trung điểm của AD, biết hai mặt phẳng (SBI)(SCI) cùng vuông góc với đáy và mặt phẳng (SBC) tạo với đáy một góc 60^{0}. Tính khoảng cách từ trung điểm của cạnh SD đến mặt phẳng (SBC)?

    Từ I kẻ IP\bot BC \Rightarrow BC\bot
SP

    \Rightarrow \left( (SBC);(ABCD) ight)
= \widehat{SPI} = 60^{0}

    Gọi K là trung điểm của SD.

    Gọi Q = BC \cap AD, kẻ IH\bot SP

    Ta có:

    d\left( K;(SBC) ight) =
\frac{1}{2}d\left( D;(SBC) ight)

    = \frac{1}{4}d\left( I;(SBC) ight) =
\frac{1}{4}IH

    Xét tam giác ICQ có IP = \frac{CD.IQ}{QC}
= \frac{2a}{\sqrt{5}}

    Xét tam giác SIP vuông tại I có SI =
IP.tan60^{0} = \frac{2a\sqrt{3}}{5}

    \frac{1}{IH^{2}} = \frac{1}{IS^{2}} +
\frac{1}{IP^{2}} \Rightarrow IH = \frac{3a^{2}}{5}

    \Rightarrow IH =
\frac{a\sqrt{15}}{5}

    \Rightarrow d\left( K;(SBC) ight) =
\frac{a\sqrt{15}}{20}

  • Câu 7: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh x, SA vuông góc với đáy và SA = x\sqrt{3}. Tính chiều cao hình chóp S.ABC?

    Ta có SA\bot(ABC) nên SA là đường cao của hình chóp

    Tam giác ABC đều cạnh x nên S_{ABC} =
\frac{x^{2}\sqrt{3}}{4}

    Vậy thể tích hình chóp là: V_{S.ABC} =
\frac{1}{3}SA.S_{ABC} = \frac{1}{3}.\frac{x^{2}\sqrt{3}}{4}.x\sqrt{3} =
\frac{x^{3}}{4}

  • Câu 8: Vận dụng

    Cho hình chóp S.ABCD có SA \bot \left( {ABCD} ight)SA = a\sqrt 3. Đáy ABCD là hình chữ nhật có AB = a,\,AD = a\sqrt 3. Gọi M là trung điểm của CD, góc giữa SA và mặt phẳng (SBM) bằng \alpha . Giá trị \tan \alpha bằng:

    Tính tan của góc giữa SA và mặt phẳng (SBM)

    Gọi K, I lần lượt là hình chiếu vuông góc của A lên BM và SK.

    Ta có \left\{ \begin{gathered}  BM \bot AK \hfill \\  BM \bot SA\left( {V\`i \,SA \bot \left( {ABCD} ight)} ight) \hfill \\  AK,SA \subset \left( {SAK} ight) \hfill \\  AK \cap SA = \left\{ A ight\} \hfill \\ \end{gathered}  ight. \Rightarrow BM \bot \left( {SAK} ight)

    AI \subset \left( {SAK} ight) \Rightarrow BM \bot AI

    Ta có \left\{ \begin{gathered}  AI \bot BM \hfill \\  AI \bot SK \hfill \\  BM,SK \subset \left( {SBM} ight) \hfill \\  BM \cap SK = \left\{ K ight\} \hfill \\ \end{gathered}  ight. \Rightarrow AI \bot \left( {SBM} ight)

    Suy ra hình chiếu vuông góc của điểm A lên mặt phẳng (SBM) là điểm I. Do đó bằng góc giữa hai đường thẳng SA và SI và bằng góc \widehat {ASK}.

    Ta có \left\{ \begin{gathered}  SA \bot \left( {ABCD} ight) \hfill \\  AK \subset \left( {ABCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow SA \bot AK

    Tính tan của góc giữa SA và mặt phẳng (SBM)

    \begin{matrix}  {S_{\Delta ABM}} = {S_{ABCD}} - {S_{\Delta AMD}} - {S_{\Delta BMC}} \hfill \\   = {a^2}\sqrt 3  - {a^2}\dfrac{{\sqrt 3 }}{4} - {a^2}\dfrac{{\sqrt 3 }}{4} = {a^2}\dfrac{{\sqrt 3 }}{2} \hfill \\  BM = \sqrt {B{C^2} + M{C^2}}  = \sqrt {3{a^2} + \frac{{{a^2}}}{4}}  = \dfrac{{a\sqrt {13} }}{2} \hfill \\ \end{matrix}

    Ta có

    \begin{matrix}  {S_{\Delta ABM}} = \dfrac{1}{2}AK.BM \hfill \\   \Rightarrow AK = \dfrac{{2{S_{\Delta ABM}}}}{{BM}} = \dfrac{{{a^2}\sqrt 3 }}{{a\dfrac{{\sqrt {13} }}{2}}} = a\dfrac{{2\sqrt 3 }}{{\sqrt {13} }} \hfill \\ \end{matrix}

    Xét tam giác vuông SAK có \tan \widehat {ASK} = \frac{{AK}}{{SA}} = \frac{{a\frac{{2\sqrt 3 }}{{\sqrt {13} }}}}{{a\sqrt 3 }} = \frac{2}{{\sqrt {13} }}

  • Câu 9: Vận dụng

    Cho lăng trụ đều ABC.A’B’C’ có AB = 1; AA’ = m (m > 0). Để góc giữa AB’ và BC’ bằng 600 thì m có giá trị là bao nhiêu?

    Hình vẽ minh họa

    Tìm giá trị của m để góc tạo bời 2 đường thẳng thỏa mãn điều kiện

    Giả sử M, N, O lần lượt là trung điểm của BB’; B’C’; AB

    => MP // AB’; MN // BC’

    => Góc cần tìm là góc giữa MP và MN

    => MP = MN = \frac{{\sqrt {{m^2} + 1} }}{2}

    Lấy Q là trung điểm của A’B’ khi đó suy ra:

    \begin{matrix}  PN = \sqrt {P{Q^2} + Q{N^2}}  = \sqrt {{m^2} + \dfrac{1}{4}}  \hfill \\   \Rightarrow \cos \widehat {PMN} = \dfrac{{P{M^2} + M{N^2} - P{N^2}}}{{2.PM.MN}} =  \pm \dfrac{1}{2} \hfill \\   \Rightarrow m = \sqrt 2  \hfill \\ \end{matrix}

  • Câu 10: Thông hiểu

    Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh bằng a. Cạnh bên SA vuông góc với đáy, SB hợp với mặt đáy một góc 600. Tính khoảng cách d từ điểm D đến mặt phẳng (SBC)

    Hình vẽ minh họa

    Tính khoảng cách d từ điểm D đến mặt phẳng (SBC)

    Ta có:

    \begin{matrix}  {60^0} = \left( {SB;\left( {ABCD} ight)} ight) = \left( {SB;AB} ight) = \widehat {SBA} \hfill \\   \Rightarrow SA = AB.\tan \widehat {SBA} = a\sqrt 3  \hfill \\ \end{matrix}

    Ta có: AD // BC => AD // (SBC)

    => d(D,(SBC)) = d(A; (SBC))

    Kẻ AK \bot SB (1)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BC \bot SA} \\   {BC \bot AB} \end{array}} ight. \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow BC \bot AK\left( 2 ight)

    Từ (1) và (2) => AK \bot \left( {SBC} ight)

    \begin{matrix}   \Rightarrow d\left( {A;\left( {SBC} ight)} ight) = AK \hfill \\  AK = \dfrac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \dfrac{{a\sqrt 3 }}{2} \hfill \\ \end{matrix}

    d\left( {D;\left( {SBC} ight)} ight) = AK = \frac{{a\sqrt 3 }}{2}

  • Câu 11: Thông hiểu

    Cho khối lăng trụ ABC.A'B'C có đáy ABC là tam giác vuông cân tại A. Biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 30^{0} và cạnh AA' = 2a. Tính thể tích khối lăng trụ đã cho bằng:

    Hình vẽ minh họa

    Gọi M là trung điểm của BC. Khi đó

    \left\{ \begin{matrix}
AM\bot BC \\
AA'\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot(A'AM)

    \Rightarrow \left( (A'BC);(ABC)
ight) = \widehat{A'MA} = 30^{0}

    Ta có: AM = \frac{AA'}{tan30^{0}} =
2a\sqrt{3}

    \Rightarrow BC = 2AM =
4a\sqrt{3}

    \Rightarrow S_{ABC} = \frac{1}{2}.AM.BC
= 12a^{3}

    \Rightarrow V_{ABC.A'B'C'} =
AA'.S_{ABC} = 24a^{3}

  • Câu 12: Thông hiểu

    Một khối chóp tứ giác đều có các cạnh bằng 2t (cm). Khi đó thể tích của khối chóp đã cho bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi hình chóp tứ giác đều có tất cả các cạnh bằng 2t là S.ABCD với I là tâm của đáy ta có:

    SA = BA = BC = DA = DC

    \Rightarrow \Delta SAC = \Delta BAC =
\Delta DBC

    \Rightarrow \Delta SAC;\Delta BAC;\Delta
DBC lần lượt vuông tại S; B; D

    I là trung điểm của AC suy ra SA =
\frac{1}{2}AC = \frac{1}{2}.2t.\sqrt{2} = t\sqrt{2}

    Vậy thể tích hình chóp là: V_{S.ABCD} =
\frac{1}{3}S_{ABCD}.SI = \frac{1}{3}.(2t)^{2}.t\sqrt{2} =
\frac{4t^{3}\sqrt{2}}{3}

  • Câu 13: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.

    Hình vẽ minh họa:

    Ta có:

    SA ⊥ BC

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC

  • Câu 14: Nhận biết

    Khẳng định nào sau đây sai?

    Đường thẳng d vuông góc với hai đường thẳng nằm trong (\alpha) thì d\bot(\alpha) chỉ đúng khi hai đường thẳng đó cắt nhau.

  • Câu 15: Thông hiểu

    Cho hai tam giác đều DAC và BAC lần lượt nằm trong hai mặt phẳng vuông góc với nhau. Gọi α là góc giữa hai mặt phẳng (DAB) và (DBC). Tính giá trị cos α.

    Tính giá trị cos α

    Giả sử cạnh của tam giác đều bằng 2a. Khi đó AB = AD = CB = CD = 2a

    Gọi H là trung điểm của AC. Tam giác DAC đều suy ra DH ⊥ AC.

    Tương tự BH ⊥ AC.

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\left( {DAC} ight) \bot \left( {ABC} ight)} \\   {\left( {DAC} ight) \cap \left( {ABC} ight)} \\   {DH \bot AC} \\   {DH \subset \left( {DAC} ight)} \end{array}} ight. \Rightarrow DH \bot \left( {ABC} ight)

    Gọi K là trung điểm của DB.

    Ta có: ABD cân tại A nên AK \bot BD

    Và CBD cân tại C nên CK \bot DB

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\left( {DAB} ight) \cap \left( {DBC} ight) = BD} \\   {AK \bot BD;AK \subset \left( {DAB} ight)} \\   {CK \bot BD;CK \subset \left( {DAB} ight)} \end{array}} ight.

    Suy ra góc giữa hai mặt phẳng (DAB) và (DBC) là góc giữa hai đường thẳng AK và CK.

    Ta có DH = a\sqrt 3 ;BH = a\sqrt 3 nên BDH vuông cân tại H.

    Từ đó ta có: \left\{ {\begin{array}{*{20}{c}}  {DB = \sqrt {D{H^2} + H{B^2}}  = a\sqrt 6 } \\   {HK = \dfrac{1}{2}BD = \dfrac{{a\sqrt 6 }}{2}} \end{array}} ight.

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {AC \bot DH} \\   {AC \bot BH} \\   {DH \cap BH = H} \\   {DH;BH \subset \left( {DBH} ight)} \end{array}} ight. \Rightarrow AC \bot \left( {DBH} ight)HK \subset \left( {DBH} ight) \Rightarrow AC \bot HK

    Xét tam giác ACK có KH vừa là trung tuyến, vừa là đường cao nên tam giác ACK cân tại K.

    Nên ta có: KH là phân giác của góc \widehat {AKC} suy ra \widehat {AKC} = 2\widehat {CKH}

    Ta có: t = \tan \widehat {CKH} = \frac{{HC}}{{HK}} = \frac{a}{{a\sqrt 6 :3}} = \frac{{\sqrt 6 }}{3}

    Vậy \cos \alpha  = \frac{{1 - {t^2}}}{{1 + {t^2}}} = \frac{{1 - \frac{6}{9}}}{{1 + \frac{6}{9}}} = \frac{1}{5}

  • Câu 16: Nhận biết

    Cho hình chóp ABCD có đáy ABCD là hình thoi tâm O, SA =
SC. Mặt phẳng (SAC) vuông góc với mặt phẳng nào dưới đây?

    Hình vẽ minh họa

    Ta có: O là tâm hình thoi ABCD \Rightarrow \left\{ \begin{matrix}
OB = OD \\
OA = OC \\
\end{matrix} ight.

    Mặt khác SA = SC \Rightarrow SO\bot
AC (tính chất tam giác cân)

    AC\bot BD (tính chất hình thoi)

    Từ (1) và (2) suy ra AC\bot(SBD)
\Rightarrow (SAC)\bot(SBD)

  • Câu 17: Thông hiểu

    Cho hình chóp S.ABC có AB = AC và \widehat {SAC} = \widehat {SAB}. Tính số đo góc giữa hai đường thẳng chéo chau SA và BC.

    Hình vẽ minh họa:

    Tính số đo góc giữa hai đường thẳng chéo chau

    Xét

    \begin{matrix}  \overrightarrow {SA} .\overrightarrow {BC}  = \overrightarrow {SA} .(\overrightarrow {SC}  - \overrightarrow {SB} ) \hfill \\   = \overrightarrow {SA} .\overrightarrow {SC}  - \overrightarrow {SA} .\overrightarrow {SB}  \hfill \\   = |\overrightarrow {SA} |.|\overrightarrow {SC} |.\cos (\overrightarrow {SA} ,\overrightarrow {SC} ) - |\overrightarrow {SA} |.|\overrightarrow {SB} |.\cos \widehat {SAB} \hfill \\   = SA.SC.\cos \widehat {ASC} - SASB\cos \widehat {ASB}{\text{  }}\left( 1 ight) \hfill \\ \end{matrix}

    Ta có:

    \begin{matrix}   \Rightarrow \left\{ {\begin{array}{*{20}{l}}  {SA{\text{ chung }}} \\   {AB = AC} \\   {\widehat {SAB} = \widehat {SAC}} \end{array} \Rightarrow \Delta SAB = \Delta SAC(c - g - c)} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{l}}  {SC = SB} \\   {\widehat {ASC} = \widehat {ASB}} \end{array}} ight.(2) \hfill \\ \end{matrix}

    Từ (1) và (2) \Rightarrow \overrightarrow {SA} .\overrightarrow {BC}  = 0 \Rightarrow SA \bot BC

  • Câu 18: Nhận biết

    Tìm mệnh đề sai trong các mệnh đề sau:

    Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”

  • Câu 19: Vận dụng cao

    Cho tứ diện ABCD có AB vuông góc với CD, AB = a, CD = 6. M là điểm thuộc cạnh BC sao cho MC = 2BM. Mặt phẳng (P) đi qua M song song với AB và CD. Diện tích thiết diện của P với tứ diện là:

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
(MNPQ)//AB \\
(MNPQ) \cap (ABC) = MN \\
\end{matrix} ight.\  \Rightarrow MN//AB

    Tương tự ta có: MQ // CD, NP // CD, QP // AB

    Do đó tứ giác MNPQ là hình bình hành

    Ta có: (AB, CD) = (MN, MQ) = 900

    => ABCD là hình bình hành

    Ta lại có:

    \begin{matrix}\Delta CMN\sim\Delta CBA \hfill \\\Rightarrow \dfrac{CM}{CB} = \dfrac{MN}{AB} = \dfrac{1}{3} \hfill \\\Rightarrow MN = \dfrac{4}{3}  \hfill\\\Delta ANP\sim\Delta ACD \hfill \\\Rightarrow \dfrac{AN}{AC} = \dfrac{NP}{CD} = \dfrac{2}{3} \hfill \\\Rightarrow MP = 4 \\\end{matrix}

    => S_{MNPQ} = MN.NP =
\frac{16}{3}

  • Câu 20: Nhận biết

    Cho ba đường thẳng phân biệt a, b, c. Mệnh đề nào sau đây đúng?

    Khi cho ba đường thẳng phân biệt a, b, c thì mệnh đề : “Nếu a song song với b và c vuông góc với a thì c vuông góc với b” là mệnh đề đúng.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 52 lượt xem
Sắp xếp theo