Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho tứ diện đều ABCD. Gọi trung điểm của các cạnh AB;BC lần lượt là M;N. Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Gọi P là trung điểm của BD.

    Ta có: MN;NP;MP lần lượt là đường trung bình của tam giác ABC;BCD;ABD.

    Do đó:

    MN//AC;MN = \frac{1}{2}AC

    NP//CD;NP = \frac{1}{2}CD

    ABCD là tứ diện đều \Rightarrow AC = CD = AD

    \Rightarrow MN = NP = MP nên tam giác MNP là tam giác đều.

    \Rightarrow (MN;CD) = (MN;NP) =
\widehat{MNP} = 60^{0}

  • Câu 2: Thông hiểu

    Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B, AC = 2, BC = 1, AA’ = 1. Tính góc giữa AB’ và (BCC’B’).

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}AB\bot BC \\AB\bot BB’ \\\end{matrix} ight.

    => BA ⊥ (BCC’B’)

    Khi đó BB’ là hình chiếu vuông góc của AB’ lên (BCC’B’)

    Hay góc giữa AB’ và (BCC’B’) là \widehat{AB'B}

    Ta có: AB = \sqrt{AC^{2} - BC^{2}} =\sqrt{2^{2} - 1^{2}} = \sqrt{3}

    \tan\widehat{AB'B} =\frac{AB}{BB'} = \sqrt{3}

    Vậy góc giữa AB’ và (BCC’B’) là 600

  • Câu 3: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.

    Hình vẽ minh họa:

    Ta có:

    SA ⊥ BC

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC

  • Câu 4: Vận dụng

    Cho hình chóp S.ABCD có thể tích bằng \frac{4}{3}a^{3}, đáy ABCD là hình vuông cạnh bằng a\sqrt{2}; SA
= SD. Biết mặt bên (SAD) vuông góc với mặt phẳng (ABCD). Xác định khoảng cách d\left( B;(SCD)
ight)?

    Hình vẽ minh họa

    Gọi I là trung điểm của AD

    Tam giác SAD cân tại S suy ra SI\bot
AD

    Ta có \left\{ \begin{matrix}
SI\bot AD \\
(SAD)\bot(ABCD) \\
\end{matrix} ight.\  \Rightarrow SI\bot(ABCD)

    Suy ra SI là đường cao của hình chóp

    Theo giả thiết

    V_{S.ABCD} =
\frac{1}{3}SI.S_{ABCD}

    \Leftrightarrow \frac{4a^{3}}{3} =
\frac{1}{2}SI.2a^{2}

    \Leftrightarrow SI = 2a

    AB//(SCD) \Rightarrow d\left( B;(SCD)
ight) = d\left( A;(SCD) ight) = 2d\left( I;(SCD)
ight)

    Gọi H là hình chiếu vuông góc của I lên SD

    Mặt khác \left\{ \begin{matrix}
SI\bot DC \\
ID\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot DC. Ta có: \left\{ \begin{matrix}
IH\bot SD \\
IH\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot(SCD)

    \Rightarrow d\left( I;(SCD) ight) =
IH

    Xét tam giác SID vuông tại I có:

    \frac{1}{IH^{2}} = \frac{1}{SI^{2}} +
\frac{1}{ID^{2}} = \frac{1}{4a^{2}} + \frac{4}{2a^{2}} \Rightarrow IH =
\frac{2a}{3}

    \Rightarrow d\left( B;(SCD) ight) =
d\left( A;(SCD) ight) = 2d\left( I;(SCD) ight) =
\frac{4a}{3}

  • Câu 5: Vận dụng

    Cho tứ diện ABCD có AC = AD = BC = BD = a, (ACD) ⊥ (BCD) và (ABC) ⊥ (ABD). Tính độ dài cạnh CD.

    Gọi M, N lần lượt là trung điểm của CD, AB, ∆ACD và ∆BCD cân

    => AM ⊥ CD, BM ⊥ CD. Ta có:

    \left\{ \begin{matrix}(ACD)\  \cap \ (BCD) \\CD\bot AM \subset (ACD) \\CD\bot BM \subset (BCD) \\\end{matrix} ight.

    \Rightarrow \widehat{\left( (ACD);\(BCD) ight)} = \widehat{(AM;\ BM)} = 90^{0}

    => AM ⊥ BM

    Và ta dễ dàng chứng minh được ∆ACD = ∆BCD (c – c - c)

    => AM = BM => ∆ABM vuông cân tại M

    => MN ⊥ AB

    Đặt CD = x

    Áp dụng định lý Py-ta-go ta có:

    AM^{2} = a^{2} -\frac{x^{2}}{4}

    Xét ∆ABM vuông cân tại M

    \Rightarrow AB^{2} = 2AM^{2} = 2a^{2} -\frac{x^{2}}{2}

    \Rightarrow AN^{2} = \frac{1}{4}AB^{2} =\frac{a^{2}}{2} - \frac{x^{2}}{8}

    Áp dụng định lý Py-ta-go ta có:

    DN^{2} = AD^{2} - AN^{2}

    \Rightarrow DN^{2} = a^{2} -\frac{a^{2}}{2} + \frac{x^{2}}{8} = \frac{a^{2}}{2} +\frac{x^{2}}{8}

    Xét ∆CDN vuông cân tại N

    \Rightarrow CD^{2} = 2DN^{2} = a^{2} +\frac{x^{2}}{4}

    \Rightarrow a^{2} + \frac{x^{2}}{4} =x^{2} \Leftrightarrow x = \frac{2a\sqrt{3}}{3}

  • Câu 6: Vận dụng

    Cho tứ diện đều ABCD có M là trung điểm của cạnh CD, gọi \varphi là góc giữa hai đường thẳng AM và BC. Giá trị \cos \varphi bằng:

    Tính cosin góc giữa hai đường thẳng

    Giả sử cạnh của tứ diện đều bằng a

    Vì M là trung điểm của CD. Nên AM là đường cao trong tam giác ACD đều.

    => AM = \frac{{a\sqrt 3 }}{2}

    Ta có:

    \begin{matrix}  \overrightarrow {CB} .\overrightarrow {AM}  = \overrightarrow {CB} .\left( {\overrightarrow {CM}  - \overrightarrow {CA} } ight) = \overrightarrow {CB} .\overrightarrow {CM}  - \overrightarrow {CB} .\overrightarrow {CA}  \hfill \\   = CB.CM.\cos \widehat {BCM} - CB.CA.\cos \widehat {ACB} \hfill \\   = a.\dfrac{a}{2}.\cos {60^o} - a.a.\cos {60^o} =  - \dfrac{{{a^2}}}{4} \hfill \\ \end{matrix}

    => \cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight) = \dfrac{{\overrightarrow {BC} .\overrightarrow {AM} }}{{\left| {\overrightarrow {BC} } ight|.\left| {\overrightarrow {AM} } ight|}} = \dfrac{{\dfrac{{ - {a^2}}}{4}}}{{a.\dfrac{{a\sqrt 3 }}{2}}} = \dfrac{{ - \sqrt 3 }}{6}

     

    => \cos \varphi  = \left| {\cos \left( {\overrightarrow {BC} ,\overrightarrow {AM} } ight)} ight| = \frac{{\sqrt 3 }}{6}

  • Câu 7: Thông hiểu

    Trong mặt phẳng (P) cho tam giác ABC, M là điểm không nằm trên (P) sao cho MA = MB = MC, d là đường thẳng đi qua M và vuông góc với (P). Khi đó đường thẳng d đi qua:

    Gọi H là giao điểm của đường thẳng d và mặt phẳng (P)

    => H là hình chiếu của M trên (P) nên từ MA = MB = MC

    => HA = HB = HC

    => Khi đó đường thẳng d đi qua tâm đường tròn ngoại tiếp tam giác ABC.

  • Câu 8: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình thoi tâm O. Biết rằng SA = SC;SB = SD. Hãy chọn kết luận sai dưới đây?

    Hình vẽ minh họa

    Ta có tam giác SAC cân tại S và SO là đường trung tuyến cũng đồng thời là đường cao

    => SO\bot AC

    Trong tam giác SOA thì AC và SA không thể vuông tại A

    Vậy khẳng định sai là: AC\bot
SA.

  • Câu 9: Thông hiểu

    Nếu ba vecto \vec{a}, \vec{b}, \vec{c} cùng vuông góc với vecto \vec{n} khác \vec{0} thì chúng: 

    "Nếu ba vecto \vec{a}, \vec{b}, \vec{c} cùng vuông góc với vecto \vec{n} khác \vec{0} thì chúng đồng phẳng"

    Giải thích:

    Giả sử \vec{a}, \vec{b}, \vec{c} không đồng phẳng, khi đó tồn tại duy nhất bộ số thực (x; y; z) sao cho:

    \overrightarrow n  = x\overrightarrow a  + y\overrightarrow b  + z\overrightarrow c

    Nhân cả hai vế với \overrightarrow n ta có:

    \begin{matrix}  \overrightarrow n .\overrightarrow n  = x\overrightarrow a .\overrightarrow n  + y\overrightarrow b .\overrightarrow n  + z\overrightarrow c .\overrightarrow n  = 0 \hfill \\   \Rightarrow \overrightarrow n  = \overrightarrow 0  \hfill \\ \end{matrix} 

    (Mâu thuẫn với giả thiết)

  • Câu 10: Vận dụng

    Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng a (hình hộp như thế gọi là hình hộp thoi) và \widehat {ABC} = \widehat {B'BA} = \widehat {B'BC} = {60^0}. Tính diện tích tứ giác A’B’CD.

    Hình vẽ minh họa:

    Tính diện tích tứ giác

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {A'B'//C'D} \\   {A'B' = C'D'} \end{array}} ight.;\left\{ {\begin{array}{*{20}{c}}  {CD//C'D'} \\   {CD = C'D'} \end{array}} ight.

    => A’B’ // CD và A’B’ = CD

    => Tứ giác A’B’CD là hình bình hành

    Ngoài ra B’C = a = CD

    => => Tứ giác A’B’CD là hình thoi

    Ta sẽ chứng minh tứ giác A’B’CD là hình vuông.

    Ta có:

    \begin{matrix}  \overrightarrow {CB'} .\overrightarrow {CD}  = \left( {\overrightarrow {CB}  + \overrightarrow {BB'} } ight).\overrightarrow {BA}  \hfill \\   = \overrightarrow {CB} .\overrightarrow {BA}  + \overrightarrow {BB'} .\overrightarrow {BA}  \hfill \\   = \overrightarrow {BB'} .\overrightarrow {BA}  - \overrightarrow {BC} .\overrightarrow {BA}  \hfill \\   = a.a.\cos {60^0} - a.a.\cos {60^0} = 0 \hfill \\   \Rightarrow CB' \bot CD \hfill \\ \end{matrix}

    => Tứ giác A’B’CD là hình vuông.

    Diện tích hình vuông đó là a2

  • Câu 11: Nhận biết

    Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó \frac{d\left( A;(P)
ight)}{d\left( B;(P) ight)} bằng:

    \frac{d\left( A;(P) ight)}{d\left(
B;(P) ight)} = \frac{AM}{BM}

  • Câu 12: Thông hiểu

    Cho một khối chóp tứ giác đều có cạnh đáy bằng x(cm), biết độ dài cạnh bên và cạnh đáy tỉ lệ 2:1. Tính thể tích V của khối chóp?

    Hình vẽ minh họa

    Gọi O là tâm hình vuông ABCD

    OC = \frac{1}{2}AC =
\frac{1}{2}\sqrt{AB^{2} + BC^{2}} = \frac{1}{2}\sqrt{x^{2} + x^{2}} =
\frac{x\sqrt{2}}{2}

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Trong tam giác SOC vuông tại O ta có:

    SO = \sqrt{SC^{2} - OC^{2}} =
\sqrt{(2x)^{2} - \left( \frac{x\sqrt{2}}{2} ight)^{2}} =
\frac{x\sqrt{14}}{2}

    Vậy thể tích hình chóp là: V_{S.ABCD} =
\frac{1}{3}S_{ABCD}.SO = \frac{1}{3}.\frac{x\sqrt{14}}{2}.x^{2} =
\frac{x^{3}\sqrt{14}}{6}

  • Câu 13: Vận dụng cao

    Cho hình lập phương ABCD. A’B’C’D’ có cạnh bằng a. Gọi I là điểm thuộc AB sao cho AI = x, (0 < x < a). Tìm x theo a để góc giữa hai đường thẳng DI và AC’ bằng 600.

    Hình vẽ minh họa:

    Ta có:

    \begin{matrix}DI = \sqrt{AD^{2} + AI^{2}} = \sqrt{a^{2} + x^{2}};AC' = a\sqrt{3} \hfill\\\overrightarrow{AC'}.\overrightarrow{DI} = \left(\overrightarrow{AA'} + \overrightarrow{AB} + \overrightarrow{AD}ight)\left( \overrightarrow{AI} - \overrightarrow{AD} ight) \hfill\\= \overrightarrow{AB}.\overrightarrow{AI} - {\overrightarrow{AD}}^{2} =ax - a^{2} \hfill \\\cos(AC';DI) = \dfrac{\left|\overrightarrow{AC'}.\overrightarrow{DI} ight|}{AC'.DI} \hfill \\\Leftrightarrow cos60^{0} = \dfrac{\left| ax - a^{2} ight|}{\sqrt{a^{2}+ x^{2}}.a\sqrt{3}} \hfill \\\Leftrightarrow \sqrt{3\left( a^{2} + x^{2} ight)} = 2|x - a| \hfill\\\Leftrightarrow 3a^{2} + 3x^{2} = 4\left( x^{2} - 2ax + a^{2} ight)\hfill \\\Leftrightarrow x^{2} - 8ax + a^{2} = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = \left( 4 - \sqrt{15} ight)a \\x = \left( 4 + \sqrt{15} ight)a \hfill \\\end{matrix} ight.\ \hfill \\\end{matrix}

    0 < x < a \Rightarrow x = \left(
4 - \sqrt{15} ight)a

  • Câu 14: Nhận biết

    Cho hai mặt phẳng (P) và (Q) vuông góc với nhau. Mệnh đề nào sau đây là mệnh đề sai?

    Mệnh đề sai là: “Nếu đường thẳng a vuông góc với giao tuyến của (P) và (Q) thì a vuông góc với mặt phẳng (P) và vuông góc với mặt phẳng (Q).”

  • Câu 15: Nhận biết

    Công thức tính thể tích khối lăng trụ có diện tích đáy B và chiều cao h là:

    Thể tích khối lăng trụ có diện tích đáy B và chiều cao h là:

    V = B.h

  • Câu 16: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA ⊥ (ABCD). Gọi I, J, K lần lượt là trung điểm của các cạnh AB, BC, SB. Khẳng định nào sau đây là khẳng định đúng?

    Hình vẽ minh họa:

    Xác định góc giữa đường thẳng và mặt phẳng

    Xét tam giác SBC ta có: \frac{{BK}}{{BS}} = \frac{{BJ}}{{BC}} = \frac{1}{2}

    => KJ // SC (*)

    Xét tam giác SAB ta có: \frac{{BI}}{{BA}} = \frac{{BK}}{{BS}} = \frac{1}{2}

    => KI // SA (**)

    Từ (*) và (**) => (IJK) // (SAC) (1)

    Vì ABCD là hình vuông => BD ⊥ AC

    Mà SA ⊥ BD => BD ⊥ (SAC)

    Kết hợp với (1) => BD ⊥ (IJK)

    => \widehat {\left( {SC;BD} ight)} = {90^0}

  • Câu 17: Thông hiểu

    Cho hình chóp SABCD có SA ⊥ (ABCD), đáy ABCD là hình thang vuông tại A và B có độ dài cạnh AB = a. Gọi I, J lần lượt là trung điểm của AB và CD. Tính khoảng cách giữa hai đường thẳng IJ và SD.

    Hình vẽ minh họa:

    Ta có AD // (IJ) ⇒ IJ // (SAD) ⇒ d(IJ, SD) = d(IJ, (SAD)) = d(I, (SAD)) = IA = a/2

  • Câu 18: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD, cạnh đáy bằng 2a, đường cao bằng a\sqrt{2}. Giả sử \left( (SCD);(ABCD) ight) = \alpha. Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa

    Gọi O = AC \cap BC, M là trung điểm của CD.

    Ta có:

    \left\{ \begin{matrix}
(SCD) \cap (ABCD) = CD \\
OM\bot CD \\
SM\bot CD \\
\end{matrix} ight.\  \Rightarrow \alpha = (OM;SM) =
\widehat{SMO}

    Trong tam giác SMO có \tan\widehat{SMO} =
\frac{SO}{OM} = \frac{a\sqrt{2}}{a} = \sqrt{2}

    \Rightarrow \tan\alpha =
\sqrt{2}

  • Câu 19: Nhận biết

    Đường thẳng a vuông góc với hai đường thẳng phân biệt trong mặt phẳng (P) thì:

    "a vuông góc với mặt phẳng (P)" sai vì có thể có trường hợp

    a ⊥ b ⊂ (P); a⊥c ⊂ (P); b // c

    "a không vuông góc với mặt phẳng (P)" sai vì có thể xảy ra trường hợp

    a ⊥ b ⊂ (P); a⊥ c ⊂ (P); b ∩ c ≠ ∅

    =>a⊥(P)

    => "a không thể vuông góc với mặt phẳng (P)" là sai.

  • Câu 20: Thông hiểu

    Cho khối hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông, đường chéo BD = 4a. Biết góc giữa hai mặt phẳng (A'BD) và mặt phẳng (ABCD) bằng 30^{0}. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi góc giữa mặt phẳng (A'BD) và mặt phẳng (ABCD)\alphaO =
AC \cap BD

    Ta có: \left\{ \begin{matrix}
AO\bot BD \\
AA'\bot BD \\
\end{matrix} ight.\  \Rightarrow A'O\bot BD

    \Rightarrow \alpha = (AO;A'O) =
\widehat{AOA'} = 30^{0}

    Ta có ABCD là hình vuông, BD = 4a nên AB
= AD = 2a\sqrt{2}

    Ta có: AO = \frac{1}{2}AC = \frac{1}{2}BD
= 2a

    Xét tam giác AOA’ có AA' =
AO.tan30^{0} = \frac{2a\sqrt{3}}{3}

    \Rightarrow
V_{ABCD.A'B'C'D'} = AA'.S_{ABCD} =
\frac{2a\sqrt{3}}{3}.8a^{2} = \frac{16a^{3}\sqrt{3}}{3}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 39 lượt xem
Sắp xếp theo