Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Mệnh đề nào là mệnh đề đúng?

    Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”

  • Câu 2: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.

    Hình vẽ minh họa:

    Ta có:

    SA ⊥ BC

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC

  • Câu 3: Nhận biết

    Cho hình lập phương ABCD.A1B1C1D1. Tính \cos \left( {\overrightarrow {A{C_1}} ;\overrightarrow {BD} } ight)

    Tính cosin góc giữa hai vecto

    Ta có:

    \begin{matrix}  \overrightarrow {A{C_1}} .\overrightarrow {BD}  = \left( {\overrightarrow {A{A_1}}  + \overrightarrow {AC} } ight).\left( {\overrightarrow {AD}  - \overrightarrow {AB} } ight) \hfill \\   = \overrightarrow {AC} .\overrightarrow {AD}  - \overrightarrow {AC} .\overrightarrow {AB}  \hfill \\   = \overrightarrow {AC} .\overrightarrow {BD}  \hfill \\   = 0 \hfill \\   \Rightarrow \overrightarrow {A{C_1}} .\overrightarrow {BD}  = 0 \hfill \\ \end{matrix}

  • Câu 4: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD, cạnh bên bằng cạnh đáy và bằng a. Gọi M là trung điểm của SC. Tính góc giữa hai mặt phẳng (MBD) và (ABCD).

    Tính góc giữa hai mặt phẳng (MBD) và(ABCD)

    Gọi O là tâm hình vuông ABCD, suy ra SO ⊥ (ABCD).

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BD \bot SO} \\   {BD \bot AO} \end{array}} ight. \Rightarrow BD \bot \left( {SAC} ight) \Rightarrow BD \bot OM

    Do \left\{ {\begin{array}{*{20}{l}}  {(MBD) \cap (ABCD) = BD} \\   {OM \subset (MBD)} \\   {OM \bot BD} \\   {OC \subset (ABCD)} \\   {OC \bot BD} \end{array}} ight.

    \Rightarrow \widehat {\left( {MBD),(ABCD)} ight)} = (\widehat {OM,OC}) = \widehat {MOC}

    Tam giác SOC vuông tại O, trung tuyến OM, suy ra OM = MC = \frac{{CS}}{2} = \frac{a}{2}

    => Tam giác MOC cân tại M.

    => OC = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}

    Khi đó \cos \widehat {MOC} = \frac{{OC}}{{SC}} = \frac{{\frac{{a\sqrt 2 }}{2}}}{a} = \frac{{\sqrt 2 }}{2} \Rightarrow \widehat {MOC} = {45^{^0}}

    Vậy \widehat {\left( {\left( {MDB} ight);\left( {ABCD} ight)} ight)} = {45^0}

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = a, AC=a\sqrt{3}. Tam giác SBC đều và nằm trong mặt phẳng vuông với đáy. Tính khoảng cách d từ B đến mặt phẳng (SAC). 

    Hình vẽ minh họa:

    Tính khoảng cách d từ B đến mặt phẳng (SAC)

    Gọi M là trung điểm của BC

    => SH \bot BC \Rightarrow SH \bot \left( {ABC} ight)

    Gọi N là trung điểm của AC

    => MN \bot AC

    Kẻ ME \bot SN,\left( {E \in SN} ight)

     \begin{matrix} d\left( {B,\left( {SAC} ight)} ight) = 2d\left( {M;\left( {SAC} ight)} ight) \hfill \\   = 2ME = 2.\dfrac{{SM.MN}}{{\sqrt {S{M^2} + M{N^2}} }} = \dfrac{{2a\sqrt {39} }}{{13}} \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu

    Cho tứ diện ABCD có AB = AC = AD và \widehat {BAC} = \widehat {BAD} = {60^0};\widehat {CAD} = {90^0}. Gọi I và J lần lượt là trung điểm của AB và CD. Hãy xác định góc giữa cặp vecto \overrightarrow {AB} ;\overrightarrow {IJ}?

    Hình vẽ minh họa:

    Hãy xác định góc giữa cặp vecto

    Xét tam giác ICD có J là trung điểm của CD => \overrightarrow {IJ}  = \frac{1}{2}\left( {\overrightarrow {JC}  + \overrightarrow {ID} } ight)

    Tam giác ABC có AB = AC và \widehat {BAC} = {60^0} => Tam giác ABC đều => CI ⊥ AB

    Tương tự ta chứng minh được tam giác aBD đều => DI ⊥ AB

    Ta có:

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {IJ}  = \dfrac{1}{2}\overrightarrow {AB} .(\overrightarrow {IC}  + \overrightarrow {ID} ) \hfill \\   = \dfrac{1}{2}\overrightarrow {AB} .\overrightarrow {IC}  + \dfrac{1}{2}\overrightarrow {AB} .\overrightarrow {ID}  = 0 \hfill \\   \Rightarrow \overrightarrow {AB}  \bot \overrightarrow {IJ}  \Rightarrow \left( {\overrightarrow {AB} ;\overrightarrow {IJ} } ight) = {90^0} \hfill \\ \end{matrix}

  • Câu 7: Vận dụng

    Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của BC và DD’. Tính theo a khoảng cách giữa hai đường thẳng MN và BD.

    Hình vẽ minh họa:

    Gọi O, P, K lần lượt là trung điểm của AC, CD, OC

    Kẻ DI ⊥ MP, DH ⊥ NI

    Ta có: ND = \frac{a}{2}, BD // MP, tứ giác DIKO là hình chữ nhật

    => DI = OK = \frac{OC}{2} =\frac{a\sqrt{2}}{4}

    Khi đó: d(MN, BD) = d(BD, (MNP)) = d(D, (MNP)) = DH

    Xét tam giác vuông NDI ta có:

    \begin{matrix}\dfrac{1}{DH^{2}} = \dfrac{1}{DN^{2}} + \dfrac{1}{DI^{2}} \Rightarrow DH =\dfrac{a\sqrt{3}}{6} \hfill \\\Rightarrow d(MN,BD) = \dfrac{a\sqrt{3}}{6} \hfill\\\end{matrix}

  • Câu 8: Vận dụng

    Cho hình lăng trụ ABC. MNP có tất cả các cạnh bằng nhau. Gọi I là trung điểm của cạnh AC. Cosin của góc tạo bởi NC và BI bằng bao nhiêu?

     Gọi E là trung điểm MP => NE // BI

    => Góc giữa hai đường thẳng NC và BI bằng góc giữa hai đường thẳng NC và NE

    => Góc cần tính là \widehat {CNE}

    Đặt a là chiều dài cạnh của hình lăng trụ ta có:

    \begin{matrix}  NC = a\sqrt 2  \hfill \\  NE = \dfrac{{a\sqrt 3 }}{2} \hfill \\  CE = \sqrt {C{P^2} + E{P^2}}  = \dfrac{{a\sqrt 5 }}{2} \hfill \\ \end{matrix}

    => \cos \widehat {CNE} = \frac{{N{C^2} + N{E^2} - C{E^2}}}{{2NC.NE}} = \frac{{\sqrt 6 }}{4}

  • Câu 9: Nhận biết

    Cho a, b, c là các đường thẳng trong không gian. Mệnh đề nào dưới đây sai?

    Nếu a ⊥ b, b ⊥ c thì a // c hoặc a cắt c hoặc a trùng với c hoặc a chéo c.

  • Câu 10: Thông hiểu

    Cho khối lăng trụ tam giác đều ABC.A'B'C'AA' = 4a. Tính thể tích khối lăng trụ biết góc giữa mặt phẳng (A'BC) và mặt phẳng (ABC) bằng 30^{0}.

    Hình vẽ minh họa

    Gọi M là trung điểm của BC.

    Khi đó \left( (A'BC);(ABC) ight) =
\widehat{A'MA} = 30^{0}

    Trong tam giác vuông A’MA có:

    \tan\widehat{A'MA} =
\frac{A'A}{AM} \Rightarrow AM = \frac{A'A}{tan30^{0}} =
4\sqrt{3}a

    Tam giác ABC đều nên AM =
\frac{AB\sqrt{3}}{2} \Rightarrow AB = 8a

    Vậy thể tích khối lăng trụ là: V =
S_{ABC}.AA' = \frac{(8a)^{2}\sqrt{3}}{4} =
64\sqrt{3}a^{3}

  • Câu 11: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau; AB = 8a;AC = 5a;AD = 6a. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK?

    Hình vẽ minh họa

    Ta có: V_{ABCD} =
\frac{1}{2}AB.\frac{1}{2}AD.AC = 60a^{3}

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =
\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}.V_{ABCD} =
15a^{3}

  • Câu 12: Vận dụng cao

    Cho hình lập phương ABCD. A’B’C’D’ có cạnh bằng a. Gọi I là điểm thuộc AB sao cho AI = x, (0 < x < a). Tìm x theo a để góc giữa hai đường thẳng DI và AC’ bằng 600.

    Hình vẽ minh họa:

    Ta có:

    \begin{matrix}DI = \sqrt{AD^{2} + AI^{2}} = \sqrt{a^{2} + x^{2}};AC' = a\sqrt{3} \hfill\\\overrightarrow{AC'}.\overrightarrow{DI} = \left(\overrightarrow{AA'} + \overrightarrow{AB} + \overrightarrow{AD}ight)\left( \overrightarrow{AI} - \overrightarrow{AD} ight) \hfill\\= \overrightarrow{AB}.\overrightarrow{AI} - {\overrightarrow{AD}}^{2} =ax - a^{2} \hfill \\\cos(AC';DI) = \dfrac{\left|\overrightarrow{AC'}.\overrightarrow{DI} ight|}{AC'.DI} \hfill \\\Leftrightarrow cos60^{0} = \dfrac{\left| ax - a^{2} ight|}{\sqrt{a^{2}+ x^{2}}.a\sqrt{3}} \hfill \\\Leftrightarrow \sqrt{3\left( a^{2} + x^{2} ight)} = 2|x - a| \hfill\\\Leftrightarrow 3a^{2} + 3x^{2} = 4\left( x^{2} - 2ax + a^{2} ight)\hfill \\\Leftrightarrow x^{2} - 8ax + a^{2} = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = \left( 4 - \sqrt{15} ight)a \\x = \left( 4 + \sqrt{15} ight)a \hfill \\\end{matrix} ight.\ \hfill \\\end{matrix}

    0 < x < a \Rightarrow x = \left(
4 - \sqrt{15} ight)a

  • Câu 13: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = a\sqrt{3} chiếu vuông góc H của S trên mặt phẳng đáy trùng với trọng tâm tam giác ABC và SH = \frac{a}{2}. Gọi M và N lần lượt là trung điểm của các cạnh BC và SC. Gọi α là góc giữa đường thẳng MN với mặt phẳng (ABCD). Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa:

    Ta có: MN // SB

    => \left( MN,(ABCD)
ight) = \left( SB;(ABCD) ight)

    Do SH ⊥ (ABCD)

    \begin{matrix}
\Rightarrow \left( MN,(ABCD) ight) = \left( SB;(ABCD) ight) \\
= (SB;HB) = \widehat{SBH} \\
\end{matrix}

    Ta có: \left\{ \begin{matrix}BD = \sqrt{AB^{2} + AD^{2}} = 2a \\BH = \dfrac{BD}{3} = \dfrac{2a}{3} \\\end{matrix} ight.

    => \tan\widehat{SBH} = \frac{SH}{BH} =
\frac{3}{4}

  • Câu 14: Nhận biết

    Công thức tính thể tích khối lăng trụ có diện tích đáy B và chiều cao h là:

    Thể tích khối lăng trụ có diện tích đáy B và chiều cao h là:

    V = B.h

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA\bot(ABCD), SA = AB = a. Gọi M là trung điểm cạnh SB. Tính (AM,BD)?

    Hình vẽ minh họa

    Xét tam giác SAB vuông tại A có: SB =
\sqrt{SA^{2} + AB^{2}} = a\sqrt{2}

    Gọi E là trung điểm cạnh MC, ta có:

    OE//AM \Rightarrow (AM;BD) =
(OE,BD)OE = \frac{1}{2}AM =
\frac{1}{4}SB = \frac{a\sqrt{2}}{4}

    Lại có: CB\bot AB;SA\bot CB \Rightarrow
CB\bot SB

    Suy ra tam giác SBC vuông tại B.

    Xét tam giá MBC vuông tại B ta có:

    MC = \sqrt{MB^{2} + BC^{2}} =
\sqrt{\frac{1}{4}.2a^{2} + a^{2}} = \frac{a\sqrt{6}}{2}

    BE = \frac{1}{2}MC =
\frac{a\sqrt{6}}{4}

    Xét tam giác EBOcó:

    \cos\widehat{EOB} = \frac{EO^{2} +
OB^{2} - EB^{2}}{2.EO.OB} = \frac{1}{2}

    \Rightarrow \widehat{EOB} = 60^{0}
\Rightarrow OE//AM \Rightarrow (AM;BD) = 60^{0}

  • Câu 16: Nhận biết

    Cho hình hộp chữ nhật ABCD.A'B'C'D'. Mặt phẳng (BCD'A') vuông góc với mặt phẳng nào trong các mặt phẳng dưới đây?

    Hình vẽ minh họa

    Ta có: ABCD.A'B'C'D' là hình hộp chữ nhật suy ra \left\{ \begin{matrix}
BC\bot AB \\
BC\bot BB' \\
\end{matrix} ight.\  \Rightarrow BC\bot(ABB'A')

    \Rightarrow
(BCD'A')\bot(ABB'A')

  • Câu 17: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình chữ nhật, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi H,K lần lượt là hình chiếu vuông của A lên SC,SD. Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
SA\bot CD \\
AD\bot CD \\
\end{matrix} ight.\  \Rightarrow CD\bot(SAD) \Rightarrow CD\bot
AK

    Lại có: SD\bot AK

    \Rightarrow AK\bot(SCD)

  • Câu 18: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a\sqrt{2}. Tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với đáy. Cạnh SC tạo với đáy một góc bằng 60^{0}. Tính thể tích của hình chóp S.ABCD?

    Hình vẽ minh họa

    Kẻ SH\bot AC;H \in (AC) ta có:

    \left\{ \begin{matrix}
SH\bot AC \\
SH \subset (SAC) \\
(SAC)\bot(ABCD) \\
AC = (SAC) \cap (ABCD) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    Vậy SH là đường cao của hình chóp

    Lại có AC = 2a, tam giác SAC vuông tại S và \widehat{SAC} =
60^{0} nên \left\{ \begin{matrix}SA = a \\SC = a\sqrt{3} \\SH = \dfrac{a\sqrt{3}}{2} \\\end{matrix} ight.

    Thể tích hình chóp là V =
\frac{1}{3}.\left( a\sqrt{2} ight)^{2}.\frac{a\sqrt{3}}{2} =
\frac{a^{3}\sqrt{3}}{3}

  • Câu 19: Vận dụng

    Cho hình vuông ABCD và tam giác đều SAB cạnh a nằm trong hai mặt phẳng vuông góc với nhau. Tính sin góc giữa đường thẳng SC và mặt phẳng (SAD).

    Tính sin góc giữa đường thẳng SC và mặt phẳng (SAD)

    Gọi I là trung điểm của AB. Khi đó SI \bot \left( {ABCD} ight)

    Ta có \left\{ \begin{gathered}  AD \bot AB \hfill \\  AD \bot SI \hfill \\ \end{gathered}  ight. \Rightarrow AD \bot \left( {SAB} ight)AD \subset \left( {SAD} ight) \Rightarrow \left( {SAD} ight) \bot \left( {SAB} ight)

    Dựng BH \bot SA tại H suy ra SH \bot \left( {SAD} ight)

    Trong mặt phẳng (SAD) kẻ Hx // AD. Trong mặt phẳng (BC, Hx) qua C kẻ đường thẳng song song với BH cắt Hx tại K thì CK \bot \left( {SAD} ight)

    Suy ra SK là hình chiếu vuông góc của SC trên mặt phẳng (SAD) nên góc giữa đường thẳng SC và mặt phẳng (SAD) là góc \widehat {CSK}

    Ta có BH = CK = \frac{{a\sqrt 3 }}{2}

    Trong tam giác SCI có

    SC = \sqrt {S{I^2} + I{C^2}}  = \sqrt {\frac{{3{a^2}}}{4} + \frac{{5{a^2}}}{4}}  = a\sqrt 2

    Suy ra \sin \widehat {CSK} = \frac{{CK}}{{SC}} = \dfrac{{\dfrac{{a\sqrt 3 }}{2}}}{{a\sqrt 2 }} = \frac{{\sqrt 6 }}{4}

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCD, có đáy ABCD là hình thang vuông tại AD. Biết SA\bot(ABCD);AD = BC = a;AB = 2a. Xác định kết luận sai?

    Hình vẽ minh họa

    Gọi M là trung điểm của AB. Ta có: CM =
MA = MB = a

    Suy ra tam giác ACB vuông tại C.

    \left\{ \begin{matrix}
BC\bot AC \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAC) \Rightarrow
(SBC)\bot(SAC)

    \left\{ \begin{matrix}
AB\bot AD \\
AB\bot SA \\
\end{matrix} ight.\  \Rightarrow AB\bot(SAD) \Rightarrow
(SAB)\bot(SAD)

    \left\{ \begin{matrix}
CD\bot AD \\
CD\bot SA \\
\end{matrix} ight.\  \Rightarrow CD\bot(SAD) \Rightarrow
(SCD)\bot(SAD)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 40 lượt xem
Sắp xếp theo