Công thức tính thể tích
của khối nón có bán kính
và chiều cao
là:
Công thức tính thể tích là:
Công thức tính thể tích
của khối nón có bán kính
và chiều cao
là:
Công thức tính thể tích là:
Cho hình chóp tam giác
có đáy
là tam giác vuông tại
,
,
. Tính góc tạo bởi
và mặt phẳng đáy?
Hình vẽ minh họa
Ta có: nên AB là hình chiếu của SA trên mặt phẳng đáy.
Mặt khác tam giác ABC vuông tại C nên
Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình chữ nhật với AC =
và BC = . Tính khoảng cách giữa SD và BC.
Hình vẽ minh họa:
Theo giả thiết, suy ra AD là hình chiếu vuông góc của SD lên mặt phẳng (ABCD) và CD ⊥ AD (do ABCD là hình chữ nhật), nên theo định lý ba đường vuông góc suy ra CD ⊥ SD. Vì CD cũng vuông góc với BC nên CD là đoạn vuông góc chung của SD và BC.
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của BC và DD’. Tính theo a khoảng cách giữa hai đường thẳng MN và BD.
Hình vẽ minh họa:
Gọi O, P, K lần lượt là trung điểm của AC, CD, OC
Kẻ DI ⊥ MP, DH ⊥ NI
Ta có: , BD // MP, tứ giác DIKO là hình chữ nhật
=>
Khi đó: d(MN, BD) = d(BD, (MNP)) = d(D, (MNP)) = DH
Xét tam giác vuông NDI ta có:
Cho hình chóp
có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.
Hình vẽ minh họa:
Ta có:
SA ⊥ BC
AB ⊥ BC
=> BC ⊥ (SAB) => BC ⊥ AH
Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC
Cho hình chóp
có đáy
là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC. Giả sử HK cắt BC tại D. Khi đó:
a)
Đúng||Sai
b)
Đúng||Sai
c)
Đúng||Sai
d) Tam giác SBC cân tại B. Sai||Đúng
Cho hình chóp có đáy
là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các cạnh SB, SC. Giả sử HK cắt BC tại D. Khi đó:
a) Đúng||Sai
b) Đúng||Sai
c) Đúng||Sai
d) Tam giác SBC cân tại B. Sai||Đúng
đúng
đúng
đúng
Tam giác SBC cân tại B. sai
Cho tứ diện ABCD có AC = a, BD = 3a. Gọi M, N lần lượt là trung điểm của AD và BC. Biết AC vuông góc với BD. Tính MN.
Hình vẽ minh họa:
Gọi P là trung điểm của AB => PN, PM lần lượt là đường trung bình của tam giác ABC và tam giác ABD.
=>
Ta có:
=>
Cho hình hộp thoi
có tất cả các cạnh bằng
và
. Tứ giác
là hình gì?
Hình vẽ minh họa
Ta có tứ giác A’B’CD là hình bình hành
Do nên tam giác BB’C đều
Do đó nên tứ giác A’B’CD là hình thoi
Ta có
Suy ra
Vậy tứ giác là hình vuông.
Cho hình chóp S.ABCD có
và
. Đáy ABCD là hình chữ nhật có
. Gọi M là trung điểm của CD, góc giữa SA và mặt phẳng (SBM) bằng \alpha . Giá trị
bằng:

Gọi K, I lần lượt là hình chiếu vuông góc của A lên BM và SK.
Ta có
Mà
Ta có
Suy ra hình chiếu vuông góc của điểm A lên mặt phẳng (SBM) là điểm I. Do đó bằng góc giữa hai đường thẳng SA và SI và bằng góc .
Ta có

Có
Ta có
Xét tam giác vuông SAK có
Cho hình chóp S.ABCD có đáy là ABCD là hình vuông, cạnh bên SA vuông góc với mặt phẳng đáy. Đường thẳng SD tạo với mặt phẳng (SAB) một góc 450. Gọi I là trung điểm của cạnh CD. Góc giữa hai đường thẳng BI và SD bằng (số đo góc được làm tròn đến hàng đơn vị).
Hình vẽ minh họa:
Gọi a là số đo cạnh của hình vuông ABCD
Ta có:
Ta lại có:
I là trung điểm của CH nên
Xét tam giác BCI vuông tại C ta có:
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
, biết
.
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho hình chóp S.ABC có
và SA = SB = SC. Gọi H là hình chiếu vuông góc của S trên mặt phẳng (ABC), khi đó:
Hình vẽ minh họa:
Đặt SA = a
Xét tam giác SAB vuông cân tại S ta có:
Xét tam giác SAC cân tại S ta có:
=> SA = SC = AC = a
Áp dụng định lí cosin cho tam giác SBC ra có:
Vậy tam giác ABC vuông tại A mà H là hình chiếu của S trên (ABC) nên H là tâm đường tròn ngoại tiếp tam giác ABC
Hay H là trung điểm của BC.
Cho hình chóp
có đáy
là hình vuông cạnh
,
vuông góc với mặt phẳng đáy,
. Gọi
là trung điểm của
và
là góc giữa hai đường thẳng
và
. Chọn kết luận đúng?
Hình vẽ minh họa
Gọi O là giao điểm của AC và BD, I là giao điểm của SO và BM.
Trong mặt phẳng (SAC) kẻ NK // AC,
Ta có: I là trọng tâm tam giác SBD.
Ta có:
Tam giác SBD đều cạnh bằng
Tam giác SBC vuông tại B
Lại có:
Vậy cosin góc giữa hai đường thẳng và
là
.
VD
1
Cho hình chóp
,
vuông góc với mặt
. Khi đó, góc hợp giữa đường thẳng
và mặt phẳng
là:
Ta có:
nên hình chiếu của SB lên mặt phẳng (ABC) là AB.
Do đó
Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Góc giữa SB và mặt phẳng (SCA) bằng 600. Gọi M là trung điểm của SB. Tính của góc giữa mặt phẳng (AMO) và mặt phẳng (SAB).

Hình chóp S.ABCD đều, O là tâm của đáy nên
ABCD là hình vuông cạnh a nên
Ta có:
Khi đó: với
là góc giữa hai mặt phẳng (AMO) và (SAB).
Do suy ra góc giữa SB và (SAC) là góc giữa SB và SO và bằng góc
.
Tam giác SBO vuông tại O nên ta có:
Gọi I là trung điểm của AB. Kẻ OH ⊥ SI (1)
Ta có: (2)
Từ (1) và (2) suy ra
Vì OI là đường trung bình của tam giác ABD nên
Tam giác SOI vuông tại O, đường cao OH, có
Áp dụng công thức tính độ dài đường trung tuyến trong các tam giác SAB và SBC, ta có:
Trong tam giác AMC, có:
Cho khối lăng trụ
có đáy
là tam giác vuông cân tại A. Biết góc giữa mặt phẳng
và mặt phẳng
bằng
và cạnh
. Tính thể tích khối lăng trụ đã cho bằng:
Hình vẽ minh họa
Gọi M là trung điểm của BC. Khi đó
Ta có:
Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
“Trong không gian hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau” sai do hai đường thẳng phân biệt cùng vuông góc với một đường thẳng có thể cắt nhau hoặc chéo nhau.
“Trong không gian hai mặt phẳng cùng vuông góc với một đường thẳng thì song song với nhau” sai do hai mặt phẳng cùng vuông góc với một đường thẳng có thể trùng nhau.
“Trong không gian hai đường thẳng không có điểm chung thì song song với nhau” sai do trong không gian hai đường thẳng không có điểm chung có thể chéo nhau.
Vậy khẳng định đúng là: “Trong không gian hai đường thẳng vuông góc với nhau có thể cắt nhau hoặc chéo nhau.”
Một khối chóp tứ giác đều có các cạnh bằng
(cm). Khi đó thể tích của khối chóp đã cho bằng bao nhiêu?
Hình vẽ minh họa
Gọi hình chóp tứ giác đều có tất cả các cạnh bằng 2t là S.ABCD với I là tâm của đáy ta có:
lần lượt vuông tại S; B; D
I là trung điểm của AC suy ra
Vậy thể tích hình chóp là:
Trong các mệnh đề sau, mênh đề nào đúng?
Mệnh đề: “Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này sẽ vuông góc với mặt phẳng kia.” Sai vì nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này vuông góc với giao tuyến sẽ vuông góc với mặt phẳng kia.
Mệnh đề: “Hai mặt phẳng phân biệt vuông góc với một mặt phẳng thứ ba thì song song với nhau.” sai vì còn trường hợp hai mặt phẳng cắt nhau.
Mệnh đề: “Với mỗi điểm A ∊ (α) và mỗi điểm B ∊ (β) thì ta có đường thẳng AB vuông góc với giao tuyến d của (α) và (β).” Sai vì ít nhất nếu cả A và B đều thuộc giao tuyến của (α) và (β) thì AB trùng với (α) ⋂ (β).