Cho hình chóp
có đáy
là hình bình hành và mặt bên
là tam giác vuông tại
. Tính số đo góc giữa hai đường thẳng
và
.
Hình vẽ minh họa
Vì là hình bình hành nên
Cho hình chóp
có đáy
là hình bình hành và mặt bên
là tam giác vuông tại
. Tính số đo góc giữa hai đường thẳng
và
.
Hình vẽ minh họa
Vì là hình bình hành nên
Trong không gian cho tam giác ABC. Xác định vị trí của điểm M sao cho giá trị của biểu thức P = MA2 + MB2 + MC2 đạt giá trị nhỏ nhất
Gọi G là trọng tâm giác ABC =>
Ta có:
Dấu bằng xảy ra khi M trùng với G
Vậy với M trùng G là trọng tâm tam giác ABC
Cho hình chóp đều, các cạnh bên có độ dài bằng
và tạo với đáy một góc
. Tính chu vi đáy P của hình chóp đó.
Hình vẽ minh họa
Kẻ
H là tâm đường tròn ngoại tiếp đồng thời là trọng tâm tam giác ABC
Ta có:
Gọi M là trung điểm của BC
Gọi
Vì M là trung điểm của BC nên
Chu vi đáy ABC bằng
Cho hình chóp
có đáy
là hình vuông cạnh
;
. Góc tạo bởi cạnh
và mặt phẳng
bằng
. Xác định thể tích khối chóp
.
Hình vẽ minh họa
Do ABCD là hình vuông cạnh bằng x nên
Dễ dàng chứng minh được
Đặt
Tam giác SBC vuông tại B nên
Ta được:
Vậy diện tích hình chóp là:
Cho tứ diện đều ABCD có M là trung điểm của cạnh CD, gọi
là góc giữa hai đường thẳng AM và BC. Giá trị
bằng:

Giả sử cạnh của tứ diện đều bằng a
Vì M là trung điểm của CD. Nên AM là đường cao trong tam giác ACD đều.
=>
Ta có:
=>
=>
Cho hình chóp
có đáy
là tam giác vuông cân tại
và
. Biết
và
. Góc nhị diện
có số đo bằng:
Hình vẽ minh họa
Kẻ tại
là trung điểm của
và
.
Ta có
.
Suy ra góc giữa và
bằng góc
.
Ta có:
Suy ra góc nhị diện có số đo bằng
.
Cho hình lập phương ABCD.A’B’C’D’. Tan góc giữa đường thẳng BD’ và mặt phẳng (ADD’A’) bằng bao nhiêu?
Hình vẽ minh họa:
Do ABCD.A’B’C’D’ là hình lập phương nên BA ⊥ (ADD’A’)
Do đó góc giữa đường thẳng BD’ và mặt phẳng (ADD’A’) là góc
Gọi độ dài cạnh của hình lập phương là a
Khi đó
=>
Vậy tan góc giữa đường thẳng BD’ và mặt phẳng (ADD’A’) là
Cho hình chóp tứ giác
có tất cả các cạnh bằng
. Gọi
lần lượt là trung điểm của
. Tính số đo góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Từ giả thiết ta có: (do IJ là đường trung bình tam giác SAB)
Mặt khác ta lại có tam giác SAB đều nên
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho tứ diện
có
, trung điểm các cạnh
lần lượt là
. Xác định độ dài đoạn thẳng
để góc giữa hai đường thẳng
và
bằng
.
Hình vẽ minh họa
Gọi P là trung điểm của AC
Ta có:
Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.
Hình vẽ minh họa:
Ta có:
SA ⊥ BC
AB ⊥ BC
=> BC ⊥ (SAB) => BC ⊥ AH
Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC
Cho hình lăng trụ đứng tam giác
có đáy
là tam giác cân,
và cạnh bên
. Tính góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có:
Xét tam giác ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
Vậy tam giác đều
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Gọi K là trung điểm của DD’. Tính khoảng cách giữa hai đường thẳng CK, A’D.
Hình vẽ minh họa:
Trong mặt phẳng (CDD’C), gọi P là giao điểm của CK và C’D’
=> KD’ là đường trung bình của ∆PCC’
=> D’ là trung điểm của PC’
Trong mặt phẳng (A’B’C’D’), gọi M là giao điểm của PB’ và A’D’
Ta có: A’D // B’C => A’D // (AKB’)
=> d(CK, A’D) = d (A’,(CKB’)) = d(C’,(CPB’))
Xét tứ diện PCC’B’ ta có:
C’P, C’B và C’B đôi một vuông góc với nhau
Đặt d(C’, (CPB’)) = x, thì:
Cho hình chóp
có đáy
là tam giác vuông tại
,
vuông góc với mặt phẳng đáy. Giả sử
là hình chiếu của
trên cạnh
. Ta có các khẳng định sau:
| a) |
b) |
c) |
Có bao nhiêu khẳng định đúng trong các khẳng định đã cho?
Hình vẽ minh họa
Ta có:
Lại có:
Vậy có 2 khẳng định đúng.
Tính thể tích khối tứ diện đều
, biết
?
Hình vẽ minh họa
Gọi E là trung điểm của CD, H là trọng tâm giác giác BCD
Tam giác BCD đều cạnh bằng 5
Tam giác ABH vuông tại H nên
Vậy thể tích khối chóp tam giác là:
Cho hình chóp
có đáy
là hình thoi tâm
,
. Mặt phẳng
vuông góc với mặt phẳng nào dưới đây?
Hình vẽ minh họa
Ta có: O là tâm hình thoi ABCD
Mặt khác (tính chất tam giác cân)
Và (tính chất hình thoi)
Từ (1) và (2) suy ra
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau;
. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
?
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho hình chóp
có đáy
là hình bình hành tâm
, tam giác
cân. Giả sử
lần lượt là trung điểm các cạnh
. Khẳng định nào dưới đây sai?
Hình vẽ minh họa
Vì tam giác SAB là tam giác cân tại S nên
Ta có:
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Cạnh bên
và vuông góc với mặt đáy (ABC). Tính khoảng cách d từ A đến mặt phẳng (SBC).
Hình vẽ minh họa:

Gọi M là trung điểm BC
=>AM ⊥ BC và
Gọi K là hình chiếu của A trên SM => AK ⊥ SM (1)
Ta có:
Từ (1) và (2)
Xét tam giác SAM ta có:
Vậy
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Chiều cao của hình chóp bằng:
Hình vẽ minh họa:
Do S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông và các cạnh bên bằng nhau.
Gọi O là hình chiếu của S trên mặt phẳng (ABCD).
Khi đó các tam giác SOA, SOB, SOC, SOD bằng nhau nên bốn đoạn thẳng OA, OB, OC, OD bằng nhau.
Suy ra O trùng với tâm của hình vuông ABCD, hay O là giao điểm của AC và BD. Vậy chiều cao của hình chóp là: