Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho khối hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông, đường chéo BD = 2a. Biết góc giữa hai mặt phẳng (A'BD) và mặt phẳng (ABCD) bằng 30^{0}. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi góc giữa mặt phẳng (A'BD) và mặt phẳng (ABCD)\alphaO =
AC \cap BD

    Ta có: \left\{ \begin{matrix}
AO\bot BD \\
AA'\bot BD \\
\end{matrix} ight.\  \Rightarrow A'O\bot BD

    \Rightarrow \alpha = (AO;A'O) =
\widehat{AOA'} = 30^{0}

    Ta có ABCD là hình vuông, BD = 2a nên AB
= AD = a\sqrt{2}

    Ta có: AO = \frac{1}{2}AC = \frac{1}{2}BD
= a

    Xét tam giác AOA’ có AA' =
AO.tan30^{0} = \frac{a\sqrt{3}}{3}

    \Rightarrow
V_{ABCD.A'B'C'D'} = AA'.S_{ABCD} =
\frac{a\sqrt{3}}{3}.2a^{2} = \frac{2a^{3}\sqrt{3}}{3}

  • Câu 2: Vận dụng cao

    Cho tứ diện ABCD có AB vuông góc với CD, AB = CD = 6. Gọi M là điểm thuộc cạnh BC sau đó MC = x.BC (0 < x < 1). Mặt phẳng (P) song song với AB và CD lần lượt cắt BC, DB, AD, AC tại M, N, P, Q. Diện tích lớn nhất của tứ giác bằng bao nhiêu?

    Xét tứ giác MNPQ có: \left\{
\begin{matrix}
PQ//NP//AB \\
MN//PQ//CD \\
\end{matrix} ight.

    => MNPQ là hình bình hành

    Mặt khác AB\bot CD \Rightarrow MQ\bot
MN

    => MNPQ là hình chữ nhật

    Vì MQ // AB nên \frac{MQ}{AB} =
\frac{CM}{CB} = x \Rightarrow MQ = x.AB = 6x

    Theo giả thiết MC = x.BC => MB = (1 – x).BC

    Vì MN // CD nên \frac{MN}{CD} =
\frac{BM}{BC} = 1 - x

    => MN = (1 - x).DC = 6(1 -
x)

    Diện tích hình chữ nhật MNPQ là:

    \begin{matrix}S_{MNPQ} = MN.MQ \hfill\\= 6(1 - x).6x \hfill\\= 36x.(1 - x) \hfill\\\leq 36.\left( \dfrac{x + 1 - x}{2} ight)^{2} = 9 \hfill \\\Rightarrow S_{MNPQ} = 9 \hfill\\\end{matrix}

    Khi x = 1 – x => x = 1/2

    Vậy diện tích tứ giác MNPQ lớn nhất bằng 9 khi M là trung điểm của BC.

  • Câu 3: Nhận biết

    Biết khối chóp có diện tích đáy và chiều cao lần lượt bằng 9;4. Thể tích khối chóp bằng:

    Ta có: \left\{ \begin{matrix}
B = 9 \\
h = 4 \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{1}{3}.9.4 = 12

  • Câu 4: Vận dụng

    Cho hình chóp S.ABCD có mặt phẳng đáy là hình vuông cạnh a, SA = a\sqrt 3, SA vuông góc với mặt phẳng đáy. Tính góc giữa SB và AC?

    Hình vẽ minh họa

    Góc giữa hai đường thẳng SB và AC trong mặt phẳng

    Lấy M là trung điểm của SD

    Góc cần tìm là góc giữa OM và SC

    Ta có MC là trung tuyến của tam giác SCD

    \begin{matrix}  M{C^2} = \dfrac{{S{C^2} + D{C^2}}}{2} - \dfrac{{S{D^2}}}{4} = 2{a^2} \hfill \\   \Rightarrow MC = a\sqrt 2  \hfill \\ \end{matrix}

    Xét tam giác MOC ta có:

    \begin{matrix}  \cos \widehat {MOC} = \dfrac{{M{O^2} + O{C^2} - M{C^2}}}{{2.MO.OC}} =  - \dfrac{1}{{2\sqrt 2 }} \hfill \\   \Rightarrow \alpha  \approx {69^0}17\prime  \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu

    Cho khối hộp chữ nhật ABCD.A'B'C'D' có đáy là hình vuông, đường chéo BD = 4a. Biết góc giữa hai mặt phẳng (A'BD) và mặt phẳng (ABCD) bằng 30^{0}. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi góc giữa mặt phẳng (A'BD) và mặt phẳng (ABCD)\alphaO =
AC \cap BD

    Ta có: \left\{ \begin{matrix}
AO\bot BD \\
AA'\bot BD \\
\end{matrix} ight.\  \Rightarrow A'O\bot BD

    \Rightarrow \alpha = (AO;A'O) =
\widehat{AOA'} = 30^{0}

    Ta có ABCD là hình vuông, BD = 4a nên AB
= AD = 2a\sqrt{2}

    Ta có: AO = \frac{1}{2}AC = \frac{1}{2}BD
= 2a

    Xét tam giác AOA’ có AA' =
AO.tan30^{0} = \frac{2a\sqrt{3}}{3}

    \Rightarrow
V_{ABCD.A'B'C'D'} = AA'.S_{ABCD} =
\frac{2a\sqrt{3}}{3}.8a^{2} = \frac{16a^{3}\sqrt{3}}{3}

  • Câu 6: Vận dụng

    Cho hình hộp ABCD.A’B’C’D’ có mặt đáy ABCD là hình thoi tâm O, góc \widehat{BAD} = 60^{0} và A’A = A’B = A’D. Hình chiếu vuông góc của A’ trên mặt phẳng (ABCD) là:

    Hình vẽ minh họa:

    Ta có: ABCD là hình thoi =>AB = AD mà \widehat{BAD} = 60^{0} nên tam giác ABD là tam giác đều (*)

    Ta có: A’A = A’B = A’D nên hình chiếu vuông góc của A’ trên mặt phẳng (ABCD) trùng với tâm I của đường tròn ngoại tiếp tam giác ABD. (**)

    Từ (*) và (**) => I là tâm đường tròn ngoại tiếp tam giác ABD.

  • Câu 7: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD, cạnh bên bằng cạnh đáy và bằng a. Gọi M là trung điểm của SC. Tính góc giữa hai mặt phẳng (MBD) và (ABCD).

    Tính góc giữa hai mặt phẳng (MBD) và(ABCD)

    Gọi O là tâm hình vuông ABCD, suy ra SO ⊥ (ABCD).

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BD \bot SO} \\   {BD \bot AO} \end{array}} ight. \Rightarrow BD \bot \left( {SAC} ight) \Rightarrow BD \bot OM

    Do \left\{ {\begin{array}{*{20}{l}}  {(MBD) \cap (ABCD) = BD} \\   {OM \subset (MBD)} \\   {OM \bot BD} \\   {OC \subset (ABCD)} \\   {OC \bot BD} \end{array}} ight.

    \Rightarrow \widehat {\left( {MBD),(ABCD)} ight)} = (\widehat {OM,OC}) = \widehat {MOC}

    Tam giác SOC vuông tại O, trung tuyến OM, suy ra OM = MC = \frac{{CS}}{2} = \frac{a}{2}

    => Tam giác MOC cân tại M.

    => OC = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}

    Khi đó \cos \widehat {MOC} = \frac{{OC}}{{SC}} = \frac{{\frac{{a\sqrt 2 }}{2}}}{a} = \frac{{\sqrt 2 }}{2} \Rightarrow \widehat {MOC} = {45^{^0}}

    Vậy \widehat {\left( {\left( {MDB} ight);\left( {ABCD} ight)} ight)} = {45^0}

  • Câu 8: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D' có đáy là hình thoi. Gọi mặt phẳng (\alpha) chứa cạnh A'C' và cắt AB;BC lần lượt tại I;J. Chọn kết luận đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
(\alpha) \cap (ABCD) = IJ \\
(\alpha) \cap (A'B'C'D') = A'C' \\
(A'B'C'D')//(ABCD) \\
\end{matrix} ight.

    \Rightarrow A'C'//IJA'C'//AC

    \Rightarrow AC//IJ

    Mặt khác BD\bot AC

    \Rightarrow BD\bot IJ.

  • Câu 9: Thông hiểu

    Cho hình chóp O.ABC có OA = OB = OC = 1, các cạnh OB, OC, OA đối một vuông góc. Gọi M là trung điểm của AB. Tính góc giữa hai vecto \overrightarrow {OM} ;\overrightarrow {BC}?

    Tính góc giữa hai vecto

    Ta có:

    \begin{matrix}  \overrightarrow {OM} .\overrightarrow {BC}  = \dfrac{1}{2}\left( {\overrightarrow {OA}  - \overrightarrow {OB} } ight).\left( {\overrightarrow {OC}  - \overrightarrow {OB} } ight) \hfill \\   = \dfrac{1}{2}O{B^2} = \dfrac{{ - 1}}{2} \hfill \\   \Rightarrow \cos \left( {\overrightarrow {OM} .\overrightarrow {BC} } ight) = \dfrac{{\overrightarrow {OM} .\overrightarrow {BC} }}{{OM.BC}} = \dfrac{{ - \dfrac{1}{2}}}{{\dfrac{{\sqrt 2 .\sqrt 2 }}{2}}} =  - \dfrac{1}{2} \hfill \\   \Rightarrow \left( {\overrightarrow {OM} .\overrightarrow {BC} } ight) = {120^0} \hfill \\ \end{matrix}

  • Câu 10: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với mặt đáy và SA = AB = \sqrt{3}. Gọi G là trọng tâm của tam giác SAB. Khoảng cách từ G đến mặt phẳng (SBC) bằng:

    Hình vẽ minh họa

    Gọi M là trung điểm của SB \Rightarrow AM\bot SB (vì \Delta SAB cân)

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
BC\bot SA \\
\end{matrix} \Rightarrow BC\bot(SAB) \Rightarrow BC\bot AM ight.

    \left\{ \begin{matrix}
AM\bot SB \\
AM\bot BC \\
\end{matrix} \Rightarrow AM\bot(SBC) \Rightarrow GM\bot(SBC) ight. tại M.

    Do đó d(G;(SBC)) = GM.

    Ta có: SM = \sqrt{AB^{2} + SA^{2}} =
\sqrt{6} \Rightarrow AM = \frac{SB}{2} =
\frac{\sqrt{6}}{2}.

    G là trọng tâm của \Delta SAB nên GM = \frac{1}{3}AM =
\frac{\sqrt{6}}{6}.

  • Câu 11: Nhận biết

    Mệnh đề nào là mệnh đề đúng?

    Khẳng định đúng: “Khoảng cách từ một điểm A bất kì đến mặt phẳng (P) bằng độ dài đoạn AH với H là hình chiếu vuông góc của A trên (P).”

  • Câu 12: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông cạnh a , độ dài cạnh bên bằng a . Gọi M,N lần lượt là trung điểm của các cạnh SABC . Góc giữa MNSC bằng:

    Hình vẽ minh họa

    Gọi P là trung điểm của SB

    Ta có: SC//NP \Rightarrow (MN,SC) =
(MN,NP) = \widehat{MNP}

    MP = \frac{1}{2}AB = \frac{a}{2};NP =
\frac{1}{2}SC = \frac{a}{2}

    MC^{2} = \frac{2\left( SC^{2} + AC^{2}
ight) - SA^{2}}{4}

    = \frac{2\left( a^{2} + 2a^{2} ight) -
a^{2}}{4} = \frac{5a^{2}}{4}

    MB = \frac{a\sqrt{3}}{2}

    MN^{2} = \frac{2\left( MC^{2} + MB^{2}
ight) - BC^{2}}{4}

    = \dfrac{2\left( \dfrac{5a}{4}^{2} +\dfrac{3a}{4}^{2} ight) - a^{2}}{4} = \dfrac{3a^{2}}{4}

    \Rightarrow \cos\widehat{MNP} =
\frac{NP^{2} + MN^{2} - MP^{2}}{2NP.MN}

    = \dfrac{MN}{2NP} =\dfrac{\dfrac{a\sqrt{3}}{2}}{2.\dfrac{a}{2}} =\dfrac{\sqrt{3}}{2}

    \Rightarrow \widehat{MNP} =
30^{0}

  • Câu 13: Thông hiểu

    Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B, AC = 2, BC = 1, AA’ = 1. Tính góc giữa AB’ và (BCC’B’).

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}AB\bot BC \\AB\bot BB’ \\\end{matrix} ight.

    => BA ⊥ (BCC’B’)

    Khi đó BB’ là hình chiếu vuông góc của AB’ lên (BCC’B’)

    Hay góc giữa AB’ và (BCC’B’) là \widehat{AB'B}

    Ta có: AB = \sqrt{AC^{2} - BC^{2}} =\sqrt{2^{2} - 1^{2}} = \sqrt{3}

    \tan\widehat{AB'B} =\frac{AB}{BB'} = \sqrt{3}

    Vậy góc giữa AB’ và (BCC’B’) là 600

  • Câu 14: Nhận biết

    Cho hình chóp ABCD có đáy ABCD là hình thoi tâm O, SA =
SC. Mặt phẳng (SAC) vuông góc với mặt phẳng nào dưới đây?

    Hình vẽ minh họa

    Ta có: O là tâm hình thoi ABCD \Rightarrow \left\{ \begin{matrix}
OB = OD \\
OA = OC \\
\end{matrix} ight.

    Mặt khác SA = SC \Rightarrow SO\bot
AC (tính chất tam giác cân)

    AC\bot BD (tính chất hình thoi)

    Từ (1) và (2) suy ra AC\bot(SBD)
\Rightarrow (SAC)\bot(SBD)

  • Câu 15: Nhận biết

    Trong không gian cho ba đường thẳng phân biệt a, b, c. Khẳng định nào sau đây sai?

    Mệnh đề đúng: Nếu a và b cùng vuông góc với c thì a // b

  • Câu 16: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách d giữa hai đường thẳng SA và BD.

    Hình vẽ minh họa:

    Gọi I là trung điểm của AD

    => SI ⊥ AD => SI ⊥ (ABCD)

    Kẻ Ax // BD

    Ta có d(BD, SA) = d (BD, (SAx)) = d (D, (SAx)) = 2d (I, (SAx))

    Kẻ IE ⊥ Ax, kẻ IK ⊥ SE

    Khi đó d (I, (SAx)) = IK

    Gọi F là hình chiếu của I trên BD, ta có: IE = IF = \frac{AO}{2} =\frac{a\sqrt{2}}{4}

    Xét tam giác vuông SIE ta có:

    IK = \frac{SI.IE}{\sqrt{SI^{2} +IE^{2}}} = \frac{a\sqrt{21}}{14}

    => d(BD;SA) = 2IK =\frac{a\sqrt{21}}{7}

  • Câu 17: Vận dụng

    Cho hình lập phương ABCD.A’B’C’D’. Gọi M là trung điểm của BB’. Tính cosin của góc giữa hai đường thẳng AM và A’C’.

    Tính cosin của góc giữa hai đường thẳng

    + Ta có AC // A’C’ nên góc giữa AM và A’C’ là góc giữa AC và AM.

    + Xét tam giác AMC có:

    MA = MC = \sqrt {M{B^2} + A{B^2}}

    = \sqrt {{{\left( {\frac{a}{2}} ight)}^2} + {a^2}}  = \frac{{a\sqrt 5 }}{2}

    AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2

    Áp dụng định lí cosin trong tam giác AMC, ta có:

    \begin{gathered}  cos\left( {AM\,,\,AC} ight) = \left| {\dfrac{{A{M^2} + A{C^2} - M{C^2}}}{{2MA.AC}}} ight| \hfill \\   = \dfrac{{AC}}{{2MA}} = \dfrac{{a\sqrt 2 }}{{2.\dfrac{{a\sqrt 5 }}{2}}} = \dfrac{{\sqrt {10} }}{5} \hfill \\ \end{gathered}

  • Câu 18: Vận dụng

    Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau; AB = 8a;AC = 5a;AD = 6a. Gọi trung điểm của các cạnh BC,CD,DB lần lượt là J;Q;K. Tính thể tích tứ diện AJQK?

    Hình vẽ minh họa

    Ta có: V_{ABCD} =
\frac{1}{2}AB.\frac{1}{2}AD.AC = 60a^{3}

    Nhận thấy S_{JQK} = \frac{1}{2}S_{JQKD} =
\frac{1}{4}S_{BCD}

    V_{JQK} = \frac{1}{4}.V_{ABCD} =
15a^{3}

  • Câu 19: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:

    Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”

    Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB

    Mặt khác AB ⊥ AD.

    Từ đó suy ra AB ⊥ (SDA)

  • Câu 20: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi, O là giao điểm của hai đường chéo và SA = SC. Trong các khẳng định sau, khẳng định nào đúng?

    Ta có: SA = SC => SAC là tam giác cân. Mặt khác O là trung điểm của AC

    => AC ⊥ SO

    Ta có: AC ⊥ BD, AC ⊥ SO => AC ⊥ (SBD)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 52 lượt xem
Sắp xếp theo