Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng a và các góc tại đỉnh B đều bằng 600.
Đường thẳng B’C vuông góc với đường thẳng:
Hình vẽ minh họa:

Ta có:
Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh bằng a và các góc tại đỉnh B đều bằng 600.
Đường thẳng B’C vuông góc với đường thẳng:
Hình vẽ minh họa:

Ta có:
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề “Hai mặt phẳng cùng song song với một mặt phẳng thứ ba thì song song với nhau” là sai. Hai mặt phẳng cùng song song với một mặt phẳng thứ ba thì song song hoặc trùng nhau.
Mệnh đề “Qua một đường thẳng cho trước có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước” là sai. Nếu đường thẳng vuông góc với mặt phẳng cho trước thì có vô số mặt phẳng qua đường thẳng và vuông góc với mặt phẳng đó. Nếu đường thẳng không vuông góc với mặt phẳng cho trước thì không có mặt phẳng nào vuông góc với mặt phẳng đó.
Mệnh đề “Hai mặt phẳng cùng vuông góc với một mặt phẳng thứ ba thì vuông góc với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau (giao truyến vuông góc với mặt phẳng kia).
Vậy mệnh đề đúng là: “Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với hai mặt phẳng cắt nhau cho trước.”
Cho hình lăng trụ đứng ABC.A’B’C’ có cạnh bên
. Biết đáy ABC là tam giác vuông có BA = BC = a, gọi M là trung điểm của BC. Tính khoảng cách giữa hai đường thẳng AM và B’C.
Hình vẽ minh họa:
Gọi N là trung điểm của BB’ => MN // B’C
=> B’C // (AMN)
=> d(AM, B’C) = d(B’C, (AMN)) = d(B’, (AMN)) = d(B, (AMN))
Kẻ BH ⊥ AM, BK ⊥ HN
=> BK ⊥ (AMN)
=> d(AM, B’C) = d(B, (AMN)) = BK
Ta có:
Ta có:
Do tam giác ABM vuông tại B
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a,
, SA vuông góc với mặt phẳng đáy và SA = 2a. Góc giữa hai đường thẳng SC và BD nằm trong khoảng nào?

Gọi O là giao điểm của AC và BD và M là trung điểm của SA.
Trong hình chữ nhật ABCD ta có
Xét tam giác MAB vuông tại A, ta có:
Xét tam giác MAO vuông tại O, ta có:
Do MO // SC nên góc giữa hai đường thẳng SC và BD là góc giữa hai đường thẳng MO và BD.
Áp dụng định lý cosin vào tam giác MOB ta có
Cho hình chóp
có
, đáy
là tam giác cân tại
. Gọi
là trung điểm của
,
là trung điểm của
. Chọn khẳng định đúng?
Hình vẽ minh họa
Do tam giác ABC cân tại A, M là trung điểm của BC nên
Ta có:
Tính thể tích khối chóp tam giác đều cạnh đáy bằng
. Biết độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ
?
Hình vẽ minh họa
Gọi H là trọng tâm tam giác ABC suy ra
Gọi M là trung điểm của BC
Vì độ dài chiều cao của tam giác đáy và cạnh bên của hình chóp tỉ lệ 1 : 2
Hay
Xét tam giác SAH vuông tại H ta có:
Vậy
Cho khối hộp chữ nhật
có đáy là hình vuông, đường chéo
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
. Khi đó thể tích hình hộp chữ nhật bằng bao nhiêu?
Hình vẽ minh họa
Gọi góc giữa mặt phẳng và mặt phẳng
là
và
Ta có:
Ta có ABCD là hình vuông, BD = 2a nên
Ta có:
Xét tam giác AOA’ có
Cho tứ diện ABCD có AB = AC = AD và
. Hãy xác định góc giữa cặp vecto
?
Hình vẽ minh họa:

Ta có:
Cho hình chóp S.ABCD có
và
. Đáy ABCD là hình chữ nhật có
. Gọi M là trung điểm của CD, góc giữa SA và mặt phẳng (SBM) bằng \alpha . Giá trị
bằng:

Gọi K, I lần lượt là hình chiếu vuông góc của A lên BM và SK.
Ta có
Mà
Ta có
Suy ra hình chiếu vuông góc của điểm A lên mặt phẳng (SBM) là điểm I. Do đó bằng góc giữa hai đường thẳng SA và SI và bằng góc .
Ta có

Có
Ta có
Xét tam giác vuông SAK có
Cho tứ diện đều ABCD. Số đo góc giữa hai đường thẳng AB và CD là:
Gọi a là độ dài cạnh tứ diện. Khi đó
Cho tứ diện ABCD có AB = AC = AD và
. Gọi I và J lần lượt là trung điểm của AB và CD. Hãy xác định góc giữa cặp vecto
?
Hình vẽ minh họa:

Xét tam giác ICD có J là trung điểm của CD =>
Tam giác ABC có AB = AC và => Tam giác ABC đều => CI ⊥ AB
Tương tự ta chứng minh được tam giác aBD đều => DI ⊥ AB
Ta có:
Một hình chóp
có đáy
là cân
. Tam giác
đều và nằm trong mặt phẳng vuông góc với mặt phẳng
. Tính thể tích khối chóp
theo
.
Hình vẽ minh họa
Gọi H là trung điểm của AB
Tam giác SAB đều nên
Ta có:
Vậy SH là đường cao của hình chóp tam giác S.ABC
Xét tam giác AHS vuông tại H ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?
Hình vẽ minh họa:
Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).
Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.
Biết khối chóp có diện tích đáy và chiều cao lần lượt bằng
. Thể tích khối chóp bằng:
Ta có:
Thể tích khối chóp là:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm I, cạnh a,
. Gọi ϕ là góc giữa hai mặt phẳng (SBD) và (ABCD). Mệnh đề nào sau đây đúng?
Hình vẽ minh họa:
Từ giả thiết suy ra tam giác ABD đều cạnh a.
Gọi H là hình chiếu của S trên mặt phẳng (ABCD).
Do SA = SB = SD nên suy ra H cách đều các đỉnh của tam giác ABD hay H là tâm của tam giác đều ABD.
Suy ra:
Vì ABCD là hình thoi nên HI ⊥ BD.
Tam giác SBD cân tại S nên SI ⊥ BD
=> ((SBD), (ABCD)) = (SI, AI) =
Trong tam vuông SHI ta có:
Giả sử đường thẳng ∆ cắt mặt phẳng (P) tại M. Trên ∆ lấy hai điểm A và B. Khi đó
bằng:

Cho hình chóp
có đáy là tam giác vuông cân tại
. Tam giác
là tam giác đều cạnh
và nằm trong mặt phẳng vuông góc với mặt đáy. Tính
?
Hình vẽ minh họa
Gọi H là trung điểm của . Suy ra
Kẻ
Ta có:
Từ (1) và (2) suy ra HK là đoạn vuông góc chung của SA và BC
Do đó
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc. Nếu H là hình chiếu vuông góc của điểm O trên mặt phẳng (ABC) thì H là:
Vì
Tương tự:
Vậy H là trực tâm tam giác ABC.
Cho tứ diện ABCD có AB vuông góc với CD, AB = a, CD = 6. M là điểm thuộc cạnh BC sao cho MC = 2BM. Mặt phẳng (P) đi qua M song song với AB và CD. Diện tích thiết diện của P với tứ diện là:
Hình vẽ minh họa:
Ta có:
Tương tự ta có: MQ // CD, NP // CD, QP // AB
Do đó tứ giác MNPQ là hình bình hành
Ta có: (AB, CD) = (MN, MQ) = 900
=> ABCD là hình bình hành
Ta lại có:
=>
Cho hình chóp
có đáy
là tam giác vuông cân tại
và
. Biết
và
. Góc nhị diện
có số đo bằng:
Hình vẽ minh họa
Kẻ tại
là trung điểm của
và
.
Ta có
.
Suy ra góc giữa và
bằng góc
.
Ta có:
Suy ra góc nhị diện có số đo bằng
.