Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho tứ diện ABCDAB =
CD = a, trung điểm các cạnh AD,BC lần lượt là M,N. Xác định độ dài đoạn thẳng MN để góc giữa hai đường thẳng ABMN bằng 30^{0}.

    Hình vẽ minh họa

    Gọi P là trung điểm của AC

    Ta có: \left\{ \begin{matrix}NP//AB \\MP//CD \\NP = NP = \dfrac{a}{2} \\\end{matrix} ight.\  \Rightarrow (AB,CD) = (NP,MN)

    \cos\widehat{MNP} = \frac{MN^{2} +
NP^{2} - MP^{2}}{2MN.NP}

    = \dfrac{MN^{2} + \dfrac{a}{4}^{2} -\dfrac{a}{4}^{2}}{2MN.\dfrac{a}{2}} = \dfrac{MN}{a}

    (AB,MN) = 30^{0} \Rightarrow \left\{
\begin{matrix}
\widehat{MNP} = 30^{0} \\
\widehat{MNP} = 150^{0} \\
\end{matrix} ight.

    \widehat{MNP} = 30^{0} \Rightarrow
\frac{MN}{a} = \frac{\sqrt{3}}{2} \Rightarrow MN =
\frac{a\sqrt{3}}{2}(TM)

    \widehat{MNP} = 150^{0} \Rightarrow
\frac{MN}{a} = - \frac{\sqrt{3}}{2} \Rightarrow MN = -
\frac{a\sqrt{3}}{2}(KTM)

  • Câu 2: Thông hiểu

    Cho tứ diện ABCD có AB = AC = AD và \widehat {BAC} = \widehat {BAD} = {60^0}. Hãy xác định góc giữa cặp vecto \overrightarrow {AB} ;\overrightarrow {CD}?

     Hình vẽ minh họa:

    Xác định góc giữa cặp vecto

    Ta có:

    \begin{matrix}  \overrightarrow {AB} .\overrightarrow {CD}  = \overrightarrow {AB} .(\overrightarrow {AD}  - \overrightarrow {AC} ) \hfill \\   = \overrightarrow {AB} .\overrightarrow {AD}  - \overrightarrow {AB} .\overrightarrow {AC}  \hfill \\   = |\overrightarrow {AB} |.|\overrightarrow {AD} |.\cos (\overrightarrow {AB} ;\overrightarrow {AD} ) \hfill \\   - |\overrightarrow {AB} |.|\overrightarrow {AC} |.\cos (\overrightarrow {AB} ;\overrightarrow {AC} ) \hfill \\   = |\overrightarrow {AB} |.|\overrightarrow {AD} |.\cos {60^0} - |\overrightarrow {AB} |.|\overrightarrow {AC} |.\cos {60^0}{\text{ }} \hfill \\  {\text{Do }}AC = AD \hfill \\   \Rightarrow \overrightarrow {AB} .\overrightarrow {CD}  = 0 \hfill \\   \Rightarrow (\overrightarrow {AB} ,\overrightarrow {CD} ) = {90^0} \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu

    Nếu ba vecto \vec{a}, \vec{b}, \vec{c} cùng vuông góc với vecto \vec{n} khác \vec{0} thì chúng: 

    "Nếu ba vecto \vec{a}, \vec{b}, \vec{c} cùng vuông góc với vecto \vec{n} khác \vec{0} thì chúng đồng phẳng"

    Giải thích:

    Giả sử \vec{a}, \vec{b}, \vec{c} không đồng phẳng, khi đó tồn tại duy nhất bộ số thực (x; y; z) sao cho:

    \overrightarrow n  = x\overrightarrow a  + y\overrightarrow b  + z\overrightarrow c

    Nhân cả hai vế với \overrightarrow n ta có:

    \begin{matrix}  \overrightarrow n .\overrightarrow n  = x\overrightarrow a .\overrightarrow n  + y\overrightarrow b .\overrightarrow n  + z\overrightarrow c .\overrightarrow n  = 0 \hfill \\   \Rightarrow \overrightarrow n  = \overrightarrow 0  \hfill \\ \end{matrix} 

    (Mâu thuẫn với giả thiết)

  • Câu 4: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 4a. Cạnh bên hình chóp SA = 2a. Hình chiếu vuông góc của đỉnh S trên mặt phẳng đáy là trung điểm M của OA. Gọi α là góc giữa SD và mặt phẳng đáy. Chọn mệnh đề đúng trong các mệnh đề dưới đây.

    Hình vẽ minh họa:

    Ta có: SM ⊥ (ABCD)

    => Hình chiếu vuông góc của SD trên mặt phẳng (ABCD) là cạnh MD.

    \Rightarrow \alpha = \left( SD,(ABCD)
ight) = (SD;MD) = \widehat{SDM}

    Ta tính được: SM = \sqrt{SA^{2} - AM^{2}}
= a\sqrt{2}

    Xét tam giác ADM có:

    MD = \sqrt{AM^{2} + AD^{2} -
2AM.AD.cos45^{0}} = a\sqrt{10}

    => \tan\alpha = \tan\widehat{SDM} =
\frac{SM}{MD} = \frac{\sqrt{5}}{5}

  • Câu 5: Vận dụng

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Hình vẽ minh họa

    Giả sử tứ diện đều cạnh bằng a

    Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện

    Mỗi góc cũng là một tứ diện đều có cạnh bằng \frac{a}{2}

    Do đó thể tích phần cắt bỏ là V''
= 4.\frac{V}{8} = \frac{V}{2}

    (Vì tứ diện cạnh giảm một nưả thì thể tích giảm \left( \frac{1}{2} ight)^{3} =
\frac{1}{8}

    Vậy V' = \frac{V}{2} \Rightarrow
\frac{V'}{V} = \frac{1}{2}

  • Câu 6: Thông hiểu

    Cho tứ diện ABCD có độ dài các cạnh AB =
AC = AD = BC = BD = aCD =
a\sqrt{2}. Tính góc giữa hai đường thẳng AD và BC.

    Hình vẽ minh họa

    Gọi I, K, H lần lượt là trung điểm các cạnh DC, DB, AB.

    Khi đó: KH//AD,KI//BC \Rightarrow (AD;BC)
= (KH;KI).

    Xét \Delta BIC,BI = \sqrt{BC^{2} -
AC^{2}} = \sqrt{a^{2} - \frac{a^{2}}{2}} =
\frac{a}{\sqrt{2}}.

    Ta có \left\{ \begin{matrix}
AB\bot DH \\
AB\bot HC \\
\end{matrix} \Rightarrow AB\bot(DHC) \Rightarrow AB\bot HI ight..

    Xét \Delta BIH,HI = \sqrt{IB^{2} -
HB^{2}} = \sqrt{\frac{a^{2}}{2} - \frac{a^{2}}{4}} =
\frac{a}{2}. (1)

    Xét \Delta IHK, ta có: \left\{ \begin{matrix}
IK = \frac{BC}{2} = \frac{a}{2} \\
HK = \frac{AD}{2} = \frac{a}{2} \\
\end{matrix} \Rightarrow IK = HK = \frac{a}{2} ight.. (2)

    Từ (1),(2) \Rightarrow HI = IK = HK
\Rightarrow \Delta IHK là tam giác đều

    \Rightarrow \widehat{IKH} = 60^{0} \Rightarrow
(KH;KI) = 60^{0}.

  • Câu 7: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.

    Hình vẽ minh họa:

    Ta có:

    SA ⊥ BC

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC

  • Câu 8: Nhận biết

    Cho hình chóp S.ABC có đường thẳng SA vuông góc với đáy (ABC), SA =
2a. Khoảng cách từ điểm S đến đường thẳng AB bằng:

    SA vuông góc với đáy (ABC) nên SA\bot AB \Rightarrow d(S,AB) = SA =
2a

  • Câu 9: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác cân tại B, SA\bot(ABC). Gọi I là trung điểm của AC, H là hình chiếu của I trên SC. Chọn khẳng định đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
BI\bot AC \\
BI\bot SA;\left( SA\bot(ABC) ight) \\
\end{matrix} ight.\  \Rightarrow BI\bot(SAC) \Rightarrow BI\bot
SC(1)

    Theo giả thiết ta có: SC\bot
IH(2)

    Từ (1) và (2) suy ra SC\bot(BHI)

    SC \subset (SBC) nên (BHI)\bot(SBC)

  • Câu 10: Vận dụng cao

    Trong không gian cho tam giác ABC. Xác định vị trí của điểm M sao cho giá trị của biểu thức P = MA2 + MB2 + MC2 đạt giá trị nhỏ nhất

    Gọi G là trọng tâm giác ABC => \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} = \overrightarrow{0}

    Ta có:

    \begin{matrix}P = \left( \overrightarrow{MG} + \overrightarrow{GA} ight)^{2} +\left( \overrightarrow{MG} + \overrightarrow{GB} ight)^{2} + \left(\overrightarrow{MG} + \overrightarrow{GC} ight)^{2}\hfill \\= 3MG^{2} + 2\overrightarrow{MG}.\left( \overrightarrow{GA} +\overrightarrow{GB} + \overrightarrow{GC} ight) + GA^{2} + GB^{2} +GC^{2}\hfill \\= 3MG^{2} + GA^{2} + GB^{2} + GC^{2} \hfill \\\geq GA^{2} + GB^{2} + GC^{2}\hfill \\\end{matrix}

    Dấu bằng xảy ra khi M trùng với G

    Vậy P_{\min} = GA^{2} + GB^{2} +
GC^{2} với M trùng G là trọng tâm tam giác ABC

  • Câu 11: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD, đáy ABCD cạnh bằng 2a, cạnh bên SB = a\sqrt{5}. Tính thể tích hình chóp S.ABCD?

    Hình vẽ minh họa

    Gọi O là tâm hai đường chéo AC và BD

    Ta có: tam giác SAC cân, O là trung điểm của AC nên SO\bot CA

    Tương tự tam giác SBD cân, O là trung điểm của BD nên SO\bot BD

    \Rightarrow SO\bot(ABCD)

    Ta có: \left\{ \begin{matrix}
S_{ABCD} = 4a^{2} \\
SO = \sqrt{SB^{2} - OB^{2}} = \sqrt{5a^{2} - 2a^{2}} = a\sqrt{3} \\
\end{matrix} ight.

    Vậy thể tích hình chóp là: V =
\frac{1}{3}SO.S_{ABCD} = \frac{a\sqrt{3}.4a^{2}}{3} =
\frac{4\sqrt{3}a^{3}}{3}

  • Câu 12: Vận dụng

    Cho hình lăng trụ ABC.A’B’C’ có AA' = \frac{{a\sqrt {10} }}{4}';AC = a\sqrt 2 ;BC = a;\widehat {ACB} = {135^0}$. Hình chiếu vuông góc của C’ lên mặt phẳng (ABC) trùng với trung điểm M của AB. Tính góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’)

    Góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’)

    Trong (ABC) kẻ MN \bot AC \Rightarrow AC \bot \left( {MNC'} ight) ( điểm N thuộc cạnh AC)

    Vậy NC’ là hinh chiếu của MC’ trên mp(ACC’A’)

    Góc giữa MC’ và mp(ACC’A’) là góc \widehat {MC'N}

    Ta có

    \begin{matrix}  A{B^2} = A{C^2} + B{C^2} - 2.AC.BC.\cos \widehat {ACB} = 5{a^2} \hfill \\   \Rightarrow AB = a\sqrt 5  \Rightarrow AM = \dfrac{{a\sqrt 5 }}{2} \hfill \\ \end{matrix}

    CM là đường trung tuyến của tam giác ABC, nên có

    C{M^2} = \frac{{C{A^2} + C{B^2}}}{2} - \frac{{A{B^2}}}{4} = \frac{{{a^2}}}{4} \Rightarrow CM = \frac{a}{2}

    Tam giác CMC’ vuông tại M, nên C'M = \sqrt {C{{C'}^2} - C{M^2}}  = \frac{{a\sqrt 6 }}{4}

    Diện tích {S_{\Delta AMC}} = \frac{1}{2}{S_{\Delta ABC}} = \frac{{{a^2}}}{4} = \frac{1}{2}MN \cdot AC \Rightarrow MN = \frac{a}{{2\sqrt 2 }}

    Xét tam giác vuông MC’N, có

    \tan \widehat {MC'N} = \frac{{MN}}{{MC'}} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {MC'N} = {30^o}

    Vậy góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’) là \widehat {MC'N} = {30^o}

  • Câu 13: Thông hiểu

    Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh bằng a. Cạnh bên SA vuông góc với đáy, SB hợp với mặt đáy một góc 600. Tính khoảng cách d từ điểm D đến mặt phẳng (SBC)

    Hình vẽ minh họa

    Tính khoảng cách d từ điểm D đến mặt phẳng (SBC)

    Ta có:

    \begin{matrix}  {60^0} = \left( {SB;\left( {ABCD} ight)} ight) = \left( {SB;AB} ight) = \widehat {SBA} \hfill \\   \Rightarrow SA = AB.\tan \widehat {SBA} = a\sqrt 3  \hfill \\ \end{matrix}

    Ta có: AD // BC => AD // (SBC)

    => d(D,(SBC)) = d(A; (SBC))

    Kẻ AK \bot SB (1)

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {BC \bot SA} \\   {BC \bot AB} \end{array}} ight. \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow BC \bot AK\left( 2 ight)

    Từ (1) và (2) => AK \bot \left( {SBC} ight)

    \begin{matrix}   \Rightarrow d\left( {A;\left( {SBC} ight)} ight) = AK \hfill \\  AK = \dfrac{{SA.AB}}{{\sqrt {S{A^2} + A{B^2}} }} = \dfrac{{a\sqrt 3 }}{2} \hfill \\ \end{matrix}

    d\left( {D;\left( {SBC} ight)} ight) = AK = \frac{{a\sqrt 3 }}{2}

  • Câu 14: Nhận biết

    Cho hai đường thẳng phân biệt a,b và mặt phẳng (M). Biết rằng a//(M). Mệnh đề nào sau đây đúng?

    Nếu a//(M);b\bot(M) thì b\bot a.

  • Câu 15: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA vuông góc với đáy, góc \widehat{SBD}=60^0. Tính khoảng cách d giữa hai đường thẳng AB và SO.

    Hình vẽ minh họa:

    Tính khoảng cách d giữa hai đường thẳng AB và SO

    Ta có ΔSAB = ΔSAD(c−g−c) suy ra SB=SD

    \widehat {SBD} = {60^0} => ΔSBD đều cạnh SB=SD=BD=a\sqrt2

    Xét tam giác vuông SAB có:

    SA = \sqrt {S{B^2} - A{B^2}}  = a

    Gọi E là trung điểm AD, suy ra OE//ABAE⊥OE

    Do đó d(AB;SO)=d(AB;(SOE))=d(A;(SOE))

    Kẻ AK⊥SE(1)

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {OE \bot AD} \\   {OE \bot SA} \end{array}} ight.

    ⇒ OE⊥(SAD)⇒OE⊥AK(2)

    Từ (1) và (2) ⇒ AK⊥(SOE)

    => d\left( {A;\left( {SOE} ight)} ight) = AK = \frac{{SA.AE}}{{\sqrt {S{A^2} + A{E^2}} }} = \frac{{a\sqrt 5 }}{5}

  • Câu 16: Nhận biết

    Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác cân tại A. Gọi M là trung điểm cạnh BC. Chọn kết luận đúng?

    Hình vẽ minh họa

    Vì tam giác ABC cân tại A và M là trung điểm của BC

    => AM\bot BC

    Ta có: BC//B'C'

    \Rightarrow (B'C';AM) = (BC;AM)
= 90^{0}

  • Câu 17: Nhận biết

    Cho một khối chóp có diện tích đáy bằng 8a^{2}, chiều cao bằng a. Thể tích khối chóp đã cho là:

    Ta có: \left\{ \begin{matrix}
B = 8a^{2} \\
h = a \\
\end{matrix} ight.

    Thể tích khối chóp là: V = \frac{1}{3}B.h
= \frac{8}{3}a^{3}

  • Câu 18: Thông hiểu

    Khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A. Biết AB = 2a và góc giữa đường thẳng BC' và mặt phẳng (ACC'A') bằng 30^{0}. Tính thể tích khối lăng trụ đứng ABC.A'B'C'.

    Hình vẽ minh họa

    Ta có:

    \left\{ \begin{matrix}
AB\bot AC \\
AB\bot AA' \\
\end{matrix} ight.\  \Rightarrow AB\bot(ACC'A')

    Suy ra \left( BC';(ACC'A')
ight) = (BC';AC') = \widehat{AC'B} = 30^{0}

    Ta có: AC' = \frac{AB}{tan30^{0}} =
2\sqrt{3}a

    \Rightarrow AA' = \sqrt{12a^{2} -
4a^{2}} = 2\sqrt{2}a

    Vậy V_{ABC.A'B'C'} =
AA'.S_{ABC} = 2\sqrt{2}a.\frac{1}{2}.2a.2a =
4\sqrt{2}a^{3}

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B. cạn bên SA vuông góc với đáy. Gọi H là chân đường cao kẻ từ A của tam giác SAB. Khẳng định nào dưới đây là sai?

    Hình vẽ minh họa

    Chọn khẳng định sai

    Theo bài ra, ta có SA⊥(ABC)BC⊂(ABC)⇒SA⊥BC

    Tam giác ABC vuông tại B, có AB⊥BC => BC⊥(SAB)⇒BC⊥AH

    Khi đó \left\{ {\begin{array}{*{20}{l}}  {AH \bot SB} \\   {AH \bot BC} \end{array}} ight.

    ⇒AH⊥(SBC)⇒AH⊥SC

    Nếu AH⊥ACSA⊥AC suy ra AC⊥(SAH)⇒AC⊥AB (vô lý).

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông với AC = 5\sqrt{2}. Biết SA\bot(ABCD);SA = 5. Góc giữa SD và mặt phẳng (SAB) bằng:

    Ta có: \left\{ \begin{matrix}
AD\bot AB \\
AD\bot SA \\
\end{matrix} ight.\  \Rightarrow AD\bot(SAB)

    \Rightarrow \left( SD;(SAB) ight) =
(SD;SA) = \widehat{DSA}

    ABCD là hình vuông nên AC = AB.\sqrt{2} \Rightarrow AB = 5

    \Rightarrow \tan\widehat{DSA} =
\frac{AD}{SA} = \frac{5}{5} = 1

    \Rightarrow \widehat{DSA} = 45^{0}
\Rightarrow \left( SD;(SAB) ight) = 45^{0}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 45 lượt xem
Sắp xếp theo