Cho tứ diện
có các cạnh
đôi một vuông góc với nhau. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
, biết
.
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
, biết
.
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho tứ diện
có
đôi một vuông góc. Gọi
là trực tâm tam giác
. Kết luận nào sai?
Hình vẽ minh họa
Ta có: đúng
Ta có: đúng
Ta có:
Mà đúng
Vậy hay tam giác HOA vuông tại H sai
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng 4a. Cạnh bên hình chóp SA = 2a. Hình chiếu vuông góc của đỉnh S trên mặt phẳng đáy là trung điểm M của OA. Gọi α là góc giữa SD và mặt phẳng đáy. Chọn mệnh đề đúng trong các mệnh đề dưới đây.
Hình vẽ minh họa:
Ta có: SM ⊥ (ABCD)
=> Hình chiếu vuông góc của SD trên mặt phẳng (ABCD) là cạnh MD.
Ta tính được:
Xét tam giác ADM có:
=>
Cho hình chóp S.ABC có SA ⊥ (ABC) và đáy ABC là tam giác vuông tại B. Xác định góc α giữa hai mặt phẳng (ABC) và (SBC).
Hình vẽ minh họa:
Ta có:
Giao tuyến của hai mặt phẳng (SBC) và (ABC) là BC. (1)
Ta có: SA ⊥ (ABC), mà đường thẳng BC nằm trong (ABC) => SA ⊥ BC.
Ta có:
Lại có:
Từ (1), (2), (3) =>
Cho hình chóp
có đáy
là tam giác vuông cân tại
. Tam giác
vuông cân tại
có
là trung điểm của
và
. Gọi góc giữa hai đường thẳng
và
là
. Chọn kết luận đúng?
Hình vẽ minh họa
Giả sử
Lại có: suy ra tam giác SBC đều suy ra
Suy ra hay
Khi đó
Áp dụng định lí cosin cho tam giác MNC ta có:
Cho hình chóp
có đáy
là hình thang vuông tại
;
. Gọi
là trung điểm của
, biết hai mặt phẳng
và
cùng vuông góc với đáy và mặt phẳng
tạo với đáy một góc
. Tính khoảng cách từ trung điểm của cạnh
đến mặt phẳng
?
Từ I kẻ
Gọi K là trung điểm của SD.
Gọi , kẻ
Ta có:
Xét tam giác ICQ có
Xét tam giác SIP vuông tại I có
Cho hình chóp
có đáy
là tam giác đều cạnh
, SA vuông góc với đáy và
. Tính chiều cao hình chóp
?
Ta có nên SA là đường cao của hình chóp
Tam giác ABC đều cạnh x nên
Vậy thể tích hình chóp là:
Cho hình chóp S.ABCD có
và
. Đáy ABCD là hình chữ nhật có
. Gọi M là trung điểm của CD, góc giữa SA và mặt phẳng (SBM) bằng \alpha . Giá trị
bằng:

Gọi K, I lần lượt là hình chiếu vuông góc của A lên BM và SK.
Ta có
Mà
Ta có
Suy ra hình chiếu vuông góc của điểm A lên mặt phẳng (SBM) là điểm I. Do đó bằng góc giữa hai đường thẳng SA và SI và bằng góc .
Ta có

Có
Ta có
Xét tam giác vuông SAK có
Cho lăng trụ đều ABC.A’B’C’ có AB = 1; AA’ = m (m > 0). Để góc giữa AB’ và BC’ bằng 600 thì m có giá trị là bao nhiêu?
Hình vẽ minh họa

Giả sử M, N, O lần lượt là trung điểm của BB’; B’C’; AB
=> MP // AB’; MN // BC’
=> Góc cần tìm là góc giữa MP và MN
=>
Lấy Q là trung điểm của A’B’ khi đó suy ra:
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh bằng a. Cạnh bên SA vuông góc với đáy, SB hợp với mặt đáy một góc 600. Tính khoảng cách d từ điểm D đến mặt phẳng (SBC)
Hình vẽ minh họa

Ta có:
Ta có:
=>
Kẻ (1)
Ta có:
Từ (1) và (2) =>
Cho khối lăng trụ
có đáy
là tam giác vuông cân tại A. Biết góc giữa mặt phẳng
và mặt phẳng
bằng
và cạnh
. Tính thể tích khối lăng trụ đã cho bằng:
Hình vẽ minh họa
Gọi M là trung điểm của BC. Khi đó
Ta có:
Một khối chóp tứ giác đều có các cạnh bằng
(cm). Khi đó thể tích của khối chóp đã cho bằng bao nhiêu?
Hình vẽ minh họa
Gọi hình chóp tứ giác đều có tất cả các cạnh bằng 2t là S.ABCD với I là tâm của đáy ta có:
lần lượt vuông tại S; B; D
I là trung điểm của AC suy ra
Vậy thể tích hình chóp là:
Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.
Hình vẽ minh họa:
Ta có:
SA ⊥ BC
AB ⊥ BC
=> BC ⊥ (SAB) => BC ⊥ AH
Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC
Khẳng định nào sau đây sai?
Đường thẳng vuông góc với hai đường thẳng nằm trong
thì
chỉ đúng khi hai đường thẳng đó cắt nhau.
Cho hai tam giác đều DAC và BAC lần lượt nằm trong hai mặt phẳng vuông góc với nhau. Gọi α là góc giữa hai mặt phẳng (DAB) và (DBC). Tính giá trị cos α.

Giả sử cạnh của tam giác đều bằng 2a. Khi đó AB = AD = CB = CD = 2a
Gọi H là trung điểm của AC. Tam giác DAC đều suy ra DH ⊥ AC.
Tương tự BH ⊥ AC.
Ta có:
Gọi K là trung điểm của DB.
Ta có: ABD cân tại A nên
Và CBD cân tại C nên
Ta có:
Suy ra góc giữa hai mặt phẳng (DAB) và (DBC) là góc giữa hai đường thẳng AK và CK.
Ta có nên BDH vuông cân tại H.
Từ đó ta có:
Ta có: mà
Xét tam giác ACK có KH vừa là trung tuyến, vừa là đường cao nên tam giác ACK cân tại K.
Nên ta có: KH là phân giác của góc suy ra
Ta có:
Vậy
Cho hình chóp
có đáy
là hình thoi tâm
,
. Mặt phẳng
vuông góc với mặt phẳng nào dưới đây?
Hình vẽ minh họa
Ta có: O là tâm hình thoi ABCD
Mặt khác (tính chất tam giác cân)
Và (tính chất hình thoi)
Từ (1) và (2) suy ra
Cho hình chóp S.ABC có AB = AC và
. Tính số đo góc giữa hai đường thẳng chéo chau SA và BC.
Hình vẽ minh họa:

Xét
Ta có:
Từ (1) và (2)
Tìm mệnh đề sai trong các mệnh đề sau:
Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”
Cho tứ diện ABCD có AB vuông góc với CD, AB = a, CD = 6. M là điểm thuộc cạnh BC sao cho MC = 2BM. Mặt phẳng (P) đi qua M song song với AB và CD. Diện tích thiết diện của P với tứ diện là:
Hình vẽ minh họa:
Ta có:
Tương tự ta có: MQ // CD, NP // CD, QP // AB
Do đó tứ giác MNPQ là hình bình hành
Ta có: (AB, CD) = (MN, MQ) = 900
=> ABCD là hình bình hành
Ta lại có:
=>
Cho ba đường thẳng phân biệt a, b, c. Mệnh đề nào sau đây đúng?
Khi cho ba đường thẳng phân biệt a, b, c thì mệnh đề : “Nếu a song song với b và c vuông góc với a thì c vuông góc với b” là mệnh đề đúng.