Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian. Phép chiếu vuông góc gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a\sqrt 2 và cạnh bên bằng 2a. Góc giữa đường thẳng SB với mặt phẳng (SAC) bằng

    Gọi O = AC \cap BD. Ta có S.ABCD là hình chóp tứ giác đều suy ra SO \bot \left( {ABCD} ight).

    \left\{ \begin{gathered}  SO \bot \left( {ABCD} ight) \hfill \\  BD \subset \left( {ABCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow SO \bot BD

    \left\{ \begin{gathered}  BD \bot SO \hfill \\  BD \bot AC \hfill \\  SO,AC \subset \left( {SAC} ight) \hfill \\  SO \cap AC = \left\{ O ight\} \hfill \\ \end{gathered}  ight. \Rightarrow BD \bot \left( {SAC} ight)

    Suy ra hình chiếu vuông góc của đường thẳng SB lên mặt phẳng (SAC) là đường thẳng SO.

    Do đó góc giữa SB và mặt phẳng (SAC) bằng góc giữa hai đường thẳng SB và SO và bằng góc \widehat {BSO}.

    BO = \frac{{BD}}{2} = \frac{{a\sqrt 2 .\sqrt 2 }}{2} = a

    \left\{ \begin{gathered}  SO \bot \left( {ABCD} ight) \hfill \\  OB \subset \left( {ABCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow SO \bot OB

    Xét tam giác SOB có

    Ta có \sin \widehat {BSO} = \frac{{BO}}{{SB}} = \frac{a}{{2a}} = \frac{1}{2} \Rightarrow BSO = {30^0}

  • Câu 2: Nhận biết

    Cho tứ diện ABCD có đáy BCD là tam giác vuông cân tại C. Gọi trung điểm các cạnh AB,AC,BC,CD lần lượt là M,N,P,Q. Khi đó (MN,PQ) bằng:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
MN//BC \\
PQ//BD \\
\end{matrix} ight.

    \Rightarrow (MN,PQ) = (BC,BD) =
\widehat{DBC} = 45^{0}

  • Câu 3: Thông hiểu

    Cho khối chóp tam giác đều S.ABC có cạnh đáy bằng 1cm và các cạnh bên bằng 2cm. Khi đó thể tích khối chóp bằng bao nhiêu?

    Hình vẽ minh họa

    Do đáy là tam giác đều nên gọi I là trung điểm của BC khi đó AI là đường cao của tam giác đáy.

    Theo định lí Pythagore ta có:

    AI = \sqrt{1 - \frac{1}{4}} =
\frac{\sqrt{3}}{2}cm

    \Rightarrow AO = \frac{2}{3}AI =
\frac{\sqrt{3}}{3}cm

    Trong tam giác SOA vuông tại O ta có: SO
= \sqrt{4 - \frac{1}{3}} = \frac{\sqrt{11}}{\sqrt{3}}cm

    Vậy thể tích khối chóp tam giác là: V =
\frac{1}{3}.\frac{1}{2}.\frac{\sqrt{3}}{2}.\frac{\sqrt{11}}{\sqrt{3}} =
\frac{\sqrt{11}}{12}cm^{3}

  • Câu 4: Nhận biết

    Tìm mệnh đề sai trong các mệnh đề sau:

    Mệnh đề sai: “Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kì trên b.”

  • Câu 5: Vận dụng

    Cho hình chóp S.ABCD có thể tích bằng \frac{4}{3}a^{3}, đáy ABCD là hình vuông cạnh bằng a\sqrt{2}; SA
= SD. Biết mặt bên (SAD) vuông góc với mặt phẳng (ABCD). Xác định khoảng cách d\left( B;(SCD)
ight)?

    Hình vẽ minh họa

    Gọi I là trung điểm của AD

    Tam giác SAD cân tại S suy ra SI\bot
AD

    Ta có \left\{ \begin{matrix}
SI\bot AD \\
(SAD)\bot(ABCD) \\
\end{matrix} ight.\  \Rightarrow SI\bot(ABCD)

    Suy ra SI là đường cao của hình chóp

    Theo giả thiết

    V_{S.ABCD} =
\frac{1}{3}SI.S_{ABCD}

    \Leftrightarrow \frac{4a^{3}}{3} =
\frac{1}{2}SI.2a^{2}

    \Leftrightarrow SI = 2a

    AB//(SCD) \Rightarrow d\left( B;(SCD)
ight) = d\left( A;(SCD) ight) = 2d\left( I;(SCD)
ight)

    Gọi H là hình chiếu vuông góc của I lên SD

    Mặt khác \left\{ \begin{matrix}
SI\bot DC \\
ID\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot DC. Ta có: \left\{ \begin{matrix}
IH\bot SD \\
IH\bot DC \\
\end{matrix} ight.\  \Rightarrow IH\bot(SCD)

    \Rightarrow d\left( I;(SCD) ight) =
IH

    Xét tam giác SID vuông tại I có:

    \frac{1}{IH^{2}} = \frac{1}{SI^{2}} +
\frac{1}{ID^{2}} = \frac{1}{4a^{2}} + \frac{4}{2a^{2}} \Rightarrow IH =
\frac{2a}{3}

    \Rightarrow d\left( B;(SCD) ight) =
d\left( A;(SCD) ight) = 2d\left( I;(SCD) ight) =
\frac{4a}{3}

  • Câu 6: Vận dụng

    Cho vecto \vec{n}\vec{0} và hai vecto \vec{a}\vec{b} không cùng phương. Nếu vecto \vec{n} vuông góc với cả hai vecto \vec{a}\vec{b} thì \vec{n} , \vec{a}\vec{b}:

    Trường hợp "Đồng phẳng" và " Có thể đồng phẳng" sai vì có thể xảy ra trường hợp như hình vẽ sau:

    Hoàn thành mệnh đề

    Giả sử trường hợp "Không đồng phẳng" sai tức là ba vecto  \vec{n} , \vec{a}\vec{b} đồng phẳng. 

    Khi đó vì \left\{ {\begin{array}{*{20}{c}}  {\overrightarrow n  \bot \overrightarrow a } \\   {\overrightarrow n  \bot \overrightarrow b } \end{array}} ight. \Rightarrow \overrightarrow a //\overrightarrow bđiều này mẫu thuẫn với giả thiết hai vecto  \vec{a}\vec{b} không cùng phương.

    Vậy đáp án đúng là "Không đồng phẳng"

  • Câu 7: Nhận biết

    Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là VV' . Khi đó tỉ số \frac{V}{V'} = 1/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Cho khối chóp và lăng trụ có diện tích đáy, chiều cao tương ứng với nhau và thể tích lần lượt là VV' . Khi đó tỉ số \frac{V}{V'} = 1/3

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Ta có:

    Thể tích khối chóp là: V =
\frac{1}{3}B.h

    Thể tích hình lăng trụ là: V' =
B.h

    Khi đó: \dfrac{V}{V'} =\dfrac{\dfrac{1}{3}B.h}{B.h} = \dfrac{1}{3}

  • Câu 8: Nhận biết

    Cho hình chóp ABCD có đáy ABCD là hình thoi tâm O, cạnh bên SA vuông góc với mặt phẳng đáy. Góc giữa SB và mặt phẳng (SAC) là góc nào dưới đây?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
BO\bot SA \\
BO\bot AC \\
\end{matrix} ight.\  \Rightarrow BO\bot(SAC)

    Hình chiếu của SB lên mặt phẳng (SAC) là SO.

    Vậy \widehat{\left( SC;(SAC) ight)} =
\widehat{BSO}

  • Câu 9: Nhận biết

    Chọn mệnh đề đúng trong các mệnh đề sau?

    Mệnh đề đúng: “Góc giữa hai mặt phẳng bằng góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó.”

    NB

     

    0

  • Câu 10: Thông hiểu

    Trong không gian cho tam giác đều SAB và hình vuông ABCD cạnh a nằm trên hai mặt phẳng vuông góc. Gọi H, K lần lượt là trung điểm của AB, CD. Gọi ϕ là góc giữa hai mặt phẳng (SAB) và (SCD). Mệnh đề nào sau đây đúng?

    Hình ảnh minh họa:

    Dễ dàng xác định giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng d đi qua S và song song với AB.

    Trong mặt phẳng (SAB) có SH ⊥ AB => SH ⊥ d.

    Ta có: \left\{ \begin{matrix}
CD\bot HK \\
CD\bot SH \\
\end{matrix} \Rightarrow CD\bot(SHK) \Rightarrow CD\bot SK ight.

    => d ⊥ SK. Từ đó suy ra ((SAB), (SCD)) = (SH, SK) = \widehat{HSK}

    Trong tam giác vuông SHK ta có: \tan\widehat{HSK} = \frac{HK}{SH} =
\frac{2\sqrt{3}}{3}

  • Câu 11: Thông hiểu

    Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc với nhau và AB = a, BC = b, CD = c. Khẳng định nào sau đây là đúng?

    Đáp án "AB ⊥ (ACD)" sai vì chỉ có AB ⊥ CD

    Đáp án "BC ⊥ (ACD)" sai vì chỉ có: BC ⊥ CD

    Đáp án "CD ⊥ (ABC)" đúng vì \left\{ {\begin{array}{*{20}{l}}  {CD \bot AB} \\   {CD \bot BC} \end{array}} ight. ⇒CD⊥(ABC)

    Đáp án "AD ⊥ (BCD)" sai vì AD không vuông góc với đường thẳng nào thuộc mặt phẳng (BCD).

  • Câu 12: Vận dụng cao

    Cho tứ diện ABCD có AB vuông góc với CD, AB = CD = 6. Gọi M là điểm thuộc cạnh BC sau đó MC = x.BC (0 < x < 1). Mặt phẳng (P) song song với AB và CD lần lượt cắt BC, DB, AD, AC tại M, N, P, Q. Diện tích lớn nhất của tứ giác bằng bao nhiêu?

    Xét tứ giác MNPQ có: \left\{
\begin{matrix}
PQ//NP//AB \\
MN//PQ//CD \\
\end{matrix} ight.

    => MNPQ là hình bình hành

    Mặt khác AB\bot CD \Rightarrow MQ\bot
MN

    => MNPQ là hình chữ nhật

    Vì MQ // AB nên \frac{MQ}{AB} =
\frac{CM}{CB} = x \Rightarrow MQ = x.AB = 6x

    Theo giả thiết MC = x.BC => MB = (1 – x).BC

    Vì MN // CD nên \frac{MN}{CD} =
\frac{BM}{BC} = 1 - x

    => MN = (1 - x).DC = 6(1 -
x)

    Diện tích hình chữ nhật MNPQ là:

    \begin{matrix}S_{MNPQ} = MN.MQ \hfill\\= 6(1 - x).6x \hfill\\= 36x.(1 - x) \hfill\\\leq 36.\left( \dfrac{x + 1 - x}{2} ight)^{2} = 9 \hfill \\\Rightarrow S_{MNPQ} = 9 \hfill\\\end{matrix}

    Khi x = 1 – x => x = 1/2

    Vậy diện tích tứ giác MNPQ lớn nhất bằng 9 khi M là trung điểm của BC.

  • Câu 13: Thông hiểu

    Khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A. Biết AB = 2a và góc giữa đường thẳng BC' và mặt phẳng (ACC'A') bằng 30^{0}. Tính thể tích khối lăng trụ đứng ABC.A'B'C'.

    Hình vẽ minh họa

    Ta có:

    \left\{ \begin{matrix}
AB\bot AC \\
AB\bot AA' \\
\end{matrix} ight.\  \Rightarrow AB\bot(ACC'A')

    Suy ra \left( BC';(ACC'A')
ight) = (BC';AC') = \widehat{AC'B} = 30^{0}

    Ta có: AC' = \frac{AB}{tan30^{0}} =
2\sqrt{3}a

    \Rightarrow AA' = \sqrt{12a^{2} -
4a^{2}} = 2\sqrt{2}a

    Vậy V_{ABC.A'B'C'} =
AA'.S_{ABC} = 2\sqrt{2}a.\frac{1}{2}.2a.2a =
4\sqrt{2}a^{3}

  • Câu 14: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = a, AC=a\sqrt{3}. Tam giác SBC đều và nằm trong mặt phẳng vuông với đáy. Tính khoảng cách d từ B đến mặt phẳng (SAC). 

    Hình vẽ minh họa:

    Tính khoảng cách d từ B đến mặt phẳng (SAC)

    Gọi M là trung điểm của BC

    => SH \bot BC \Rightarrow SH \bot \left( {ABC} ight)

    Gọi N là trung điểm của AC

    => MN \bot AC

    Kẻ ME \bot SN,\left( {E \in SN} ight)

     \begin{matrix} d\left( {B,\left( {SAC} ight)} ight) = 2d\left( {M;\left( {SAC} ight)} ight) \hfill \\   = 2ME = 2.\dfrac{{SM.MN}}{{\sqrt {S{M^2} + M{N^2}} }} = \dfrac{{2a\sqrt {39} }}{{13}} \hfill \\ \end{matrix}

  • Câu 15: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách d giữa hai đường thẳng SA và BD.

    Hình vẽ minh họa:

    Gọi I là trung điểm của AD

    => SI ⊥ AD => SI ⊥ (ABCD)

    Kẻ Ax // BD

    Ta có d(BD, SA) = d (BD, (SAx)) = d (D, (SAx)) = 2d (I, (SAx))

    Kẻ IE ⊥ Ax, kẻ IK ⊥ SE

    Khi đó d (I, (SAx)) = IK

    Gọi F là hình chiếu của I trên BD, ta có: IE = IF = \frac{AO}{2} =\frac{a\sqrt{2}}{4}

    Xét tam giác vuông SIE ta có:

    IK = \frac{SI.IE}{\sqrt{SI^{2} +IE^{2}}} = \frac{a\sqrt{21}}{14}

    => d(BD;SA) = 2IK =\frac{a\sqrt{21}}{7}

  • Câu 16: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD, cạnh đáy bằng 2a, đường cao bằng a\sqrt{2}. Giả sử \left( (SCD);(ABCD) ight) = \alpha. Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa

    Gọi O = AC \cap BC, M là trung điểm của CD.

    Ta có:

    \left\{ \begin{matrix}
(SCD) \cap (ABCD) = CD \\
OM\bot CD \\
SM\bot CD \\
\end{matrix} ight.\  \Rightarrow \alpha = (OM;SM) =
\widehat{SMO}

    Trong tam giác SMO có \tan\widehat{SMO} =
\frac{SO}{OM} = \frac{a\sqrt{2}}{a} = \sqrt{2}

    \Rightarrow \tan\alpha =
\sqrt{2}

  • Câu 17: Thông hiểu

    Cho tứ diện đều ABCD, M là trung điểm của CD, N là điểm nằm trên AD sao cho BN vuông góc với AM. Tính tỉ số \frac{{DN}}{{DA}}

    Hình vẽ minh họa:

    Tính tỉ số giữa DN và DA

    Đặt \overrightarrow {AB}  = \overrightarrow b ;\overrightarrow {AC}  = \overrightarrow c ;\overrightarrow {AD}  = \overrightarrow d. Ta có:

    \begin{matrix}  \left| {\overrightarrow b } ight| = \left| {\overrightarrow c } ight| = \left| {\overrightarrow d } ight| = AB = a \hfill \\  \widehat {\left( {\overrightarrow b ;\overrightarrow c } ight)} = \widehat {\left( {\overrightarrow c ;\overrightarrow d } ight)} = \widehat {\left( {\overrightarrow d ;\overrightarrow b } ight)} = {60^0} \hfill \\   \Rightarrow \overrightarrow b .\overrightarrow c  = \overrightarrow c .\overrightarrow d  = \overrightarrow d .\overrightarrow b  = \dfrac{{{a^2}}}{2} \hfill \\ \end{matrix}

    Giả sử AN = k.AD. Khi đó:

    \overrightarrow {BN}  = \overrightarrow {BA}  + \overrightarrow {AN}  =  - \overrightarrow b  + k.\overrightarrow d

    Vì M là trung điểm của CD nên 2\overrightarrow {AM}  = \overrightarrow {AC}  + \overrightarrow {AD}  = \overrightarrow c  + \overrightarrow d

    Khi đó: BN ⊥ AM => \overrightarrow {BN} .\overrightarrow {AM}  = 0

    \begin{matrix}  \left( { - \overrightarrow b  + k.\overrightarrow d } ight).\left( {\overrightarrow c  + \overrightarrow d } ight) = 0 \hfill \\   \Rightarrow  - \dfrac{{{a^2}}}{2} - \dfrac{{{a^2}}}{2} + k.\dfrac{{{a^2}}}{2} + k.{a^2} = 0 \hfill \\   \Rightarrow k = \dfrac{2}{3} \hfill \\   \Rightarrow AN = \dfrac{2}{3}AD \hfill \\   \Rightarrow \dfrac{{DN}}{{DA}} = \dfrac{1}{3} \hfill \\ \end{matrix}

  • Câu 18: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với mặt phẳng (ABCD). Tìm khẳng định đúng trong các khẳng định sau:

    Khẳng định đúng là “AB vuông góc với mặt phẳng (SAD)”

    Thật vậy, do SA ⊥ (ABCD) nên SA ⊥ AB

    Mặt khác AB ⊥ AD.

    Từ đó suy ra AB ⊥ (SDA)

  • Câu 19: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA = a\sqrt{6} và SA ⊥ (ABCD). Gọi α là góc giữa đường thẳng SC và mặt phẳng (SAB). Chọn khẳng định đúng trong các khẳng định sau.

    Ta có:

    \left\{ \begin{matrix}
BC\bot AB \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB)

    => Hình chiếu vuông góc của BC trên mặt phẳng (SAB) là SB

    => \left( SC;(SAB) ight) = (SC;SB) =
\widehat{CSB}

    Xét tam giác SAB vuông ta có:

    SB = \sqrt{SA^{2} + AB^{2}} =
a\sqrt{7}

    Xét tam giác SBC vuông ta có:

    \tan\widehat{CSB} = \frac{BC}{SB} =
\frac{1}{\sqrt{7}}

  • Câu 20: Thông hiểu

    Cho tứ diện ABCD có AC = a, BD = 3a. Gọi M, N lần lượt là trung điểm của AD và BC. Biết AC vuông góc với BD. Tính MN.

    Hình vẽ minh họa:

    Gọi P là trung điểm của AB => PN, PM lần lượt là đường trung bình của tam giác ABC và tam giác ABD.

    => \left\{ \begin{matrix}PN = \dfrac{1}{2}AC = \dfrac{a}{2} \\PM = \dfrac{1}{2}BD = \dfrac{3a}{2} \\\end{matrix} ight.

    Ta có: AC\bot BD \Rightarrow PN\botPM

    => MN = \sqrt{PN^{2} + PM^{2}} =\sqrt{\frac{a^{2}}{4} + \frac{9a^{2}}{4}} =\frac{a\sqrt{10}}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 37 lượt xem
Sắp xếp theo