Cho tứ diện
có đáy
là tam giác vuông cân tại
. Gọi trung điểm các cạnh
lần lượt là
. Khi đó
bằng:
Hình vẽ minh họa
Ta có:
Cho tứ diện
có đáy
là tam giác vuông cân tại
. Gọi trung điểm các cạnh
lần lượt là
. Khi đó
bằng:
Hình vẽ minh họa
Ta có:
Cho hình chóp tam giác đều
có cạnh đáy bằng
. Góc tạo bởi cạnh bên
và mặt phẳng đáy bằng
. Thể tích khối chóp là:
Hình vẽ minh họa
Gọi H là tâm của tam giác đều ABC
Khi đó
Theo bài ra ta có:
Tam giác SBH vuông tại H có:
Cho hình chóp S.ABC có
và SA = SB = SC. Gọi H là hình chiếu vuông góc của S trên mặt phẳng (ABC), khi đó:
Hình vẽ minh họa:
Đặt SA = a
Xét tam giác SAB vuông cân tại S ta có:
Xét tam giác SAC cân tại S ta có:
=> SA = SC = AC = a
Áp dụng định lí cosin cho tam giác SBC ra có:
Vậy tam giác ABC vuông tại A mà H là hình chiếu của S trên (ABC) nên H là tâm đường tròn ngoại tiếp tam giác ABC
Hay H là trung điểm của BC.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách d giữa hai đường thẳng SA và BD.
Hình vẽ minh họa:
Gọi I là trung điểm của AD
=> SI ⊥ AD => SI ⊥ (ABCD)
Kẻ Ax // BD
Ta có d(BD, SA) = d (BD, (SAx)) = d (D, (SAx)) = 2d (I, (SAx))
Kẻ IE ⊥ Ax, kẻ IK ⊥ SE
Khi đó d (I, (SAx)) = IK
Gọi F là hình chiếu của I trên BD, ta có:
Xét tam giác vuông SIE ta có:
=>
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Tính khoảng cách d từ A đến (SCD).
Hình vẽ minh họa

Gọi H là trung điểm của AB =>
Ta có: AH // CD =>
Gọi M là trung điểm của CD, K là hình chiếu vuông góc của H trên SM
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề “Hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến d. Với mỗi điểm A thuộc (P) và mỗi điểm B thuộc (Q) thì ta có AB vuông góc với d” là sai. Trong trường hợp a ∈ d, b ∈ d, khi đó AB trùng với d.
Mệnh đề “Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau (giao tuyến vuông góc với mặt phẳng thứ ba).
Mệnh đề “Nếu hai mặt phẳng vuông góc với nhau thì mọi đường thẳng thuộc mặt phẳng này sẽ vuông góc với mặt phẳng kia” là sai. Hai mặt phẳng vuông góc với nhau, đường thẳng thuộc mặt phẳng này và vuông góc với giao tuyến thì vuông góc với mặt phẳng kia.
Vậy mệnh đề đúng là: ”Nếu hai mặt phẳng (P) và (Q) cùng vuông góc với mặt phẳng (R) thì giao tuyến của (P) và (Q) nếu có cũng sẽ vuông góc với (R).”
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên => SO ⊥ (ABCD)
Từ => AC ⊥ (SBD)
Từ => BD ⊥ (SAC)
Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.
Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).
Cho hình lập phương
có cạnh bằng
Khoảng cách từ
đến mp
bằng:
Hình vẽ minh họa
Ta có nên
.
Một hình chóp
có đáy
là tam giác đều cạnh
,
vuông góc với mặt phẳng đáy. Biết góc giữa
và mặt phẳng
bằng
. Tính thể tích khối chóp
đã cho.
Hình vẽ minh họa
Gọi M là trung điểm của BC thì
Từ đây dễ thấy góc cần tìm là
Do đó tam giác SAM vuông cân tại A và
Cho một khối chóp có diện tích đáy bằng
, chiều cao bằng
. Thể tích khối chóp đã cho là:
Ta có:
Thể tích khối chóp là:
Cho tứ diện S.ABC có SBC và ABC nằm trong hai mặt phẳng vuông góc với nhau. Tam giác SBC đều, tam giác ABC vuông tại A. Gọi H, I lần lượt là trung điểm của BC và AB. Khẳng định nào sau đây sai?
Hình vẽ minh họa:

Ta có: SBC là tam giác đều có H là trung điểm BC nên
Mà (SBC)⊥(ABC) theo giao tuyến BC
=> đúng.
Ta có HI là đường trung bình của ΔABC nên
=> đúng.
Ta có
=> đúng
Cho tứ diện
có
. Gọi trung điểm của các cạnh
lần lượt là
. Biết rằng
. Tính
?
Hình vẽ minh họa
Đặt
Vì trung điểm của các cạnh lần lượt là
Suy ra
Từ đó
Suy ra tam giác GEF vuông tại G.
Vì nên
Cho hình lăng trụ tam giác đều ABC.A’B’C’ có cạnh bằng a, chiều cao b. Biết góc giữa hai đường thẳng AC’ và A’B bằng 600. Tính b theo a.
Hình vẽ minh họa:
Lấy M, N, P, Q lần lượt là trung điểm của các cạnh AB, AA’, A’C’, A’B’ suy ra MN, NP, PQ và MQ lần lượt là đường trung bình của tam giác ABA’, AA’C’, A’B’C’ và hình chữ nhật ABB’A’. Suy ra:
Từ đó suy ra: tam giác MNP đều
=> MP = MN =
Kết hợp với
=> Tam giác MNP vuông tại Q
=>
=>
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA ⊥ (ABCD). I là trung điểm của SC. Khẳng định nào dưới đây sai?
Hình vẽ minh họa:
Ta có: O và I lần lượt là trung điểm của AC và SC
=> OI là đường trung bình của tam giác SAC
=> OI // SA
Mà SA ⊥ (ABCD) => OI ⊥ (ABCD)
Ta có: ABCD là hình chữ nhật => BC ⊥ AB
Mà SA ⊥ BC => BC ⊥ SB
Tương tự ta có: CD ⊥ AD, CD ⊥ SA => CD ⊥ SD
Nếu (SAC) là mặt phẳng trung trực của BD => BD ⊥ AC điều này không thể xảy ra vì ABCD là hình chữ nhật.
Vậy khẳng định sai là: “Mặt phẳng (SAC) là mặt phẳng trung trực của BD.”
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AD = 2BC = 2AB = 2a, SA = 2a và SA vuông góc với ABCD. Gọi M là trung điểm SB và
là góc tạo bởi đường thẳng MD và mặt phẳng (SCD). Khi đó
bằng:

Ta có tam giác SAB vuông tại A nên
Ta có:
Xét tam giác MDA vuông tại A theo định lí Pytago ta có:
Ta có
Gọi N là giao của AB và CD. Gọi P là trung điểm AD nên ABCP là hình vuông
=>
Ta có (hai đường chéo hình vuông)
Mặt khác BP // CD.
Do đó tam giác ACD vuông tại nên tam giác ACN vuông tại C, mặt khác nên B là trung điểm AN.
Ta có AB giao (SCB) tại N nên
Ta có
Trong (SAC) kẻ
Xét tam giác SAC vuông tại A nên
Do đó
Cho tứ diện
có các cạnh
đôi một vuông góc với nhau;
. Gọi trung điểm của các cạnh
lần lượt là
. Tính thể tích tứ diện
?
Hình vẽ minh họa
Ta có:
Nhận thấy
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và
. Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:
Hình vẽ minh họa:
Ta có: => BC ⊥ (SAB)
=> SB là hình chiếu của SC lên mặt phẳng (SAB)
=>
Mà
Vậy
Cho hình chóp tam giác
có đáy
vuông tại
,
. Khi đó:
Hình vẽ minh họa
Ta có:
Cho hình hộp
có độ dài tất cả các cạnh bằng
và
. Gọi
lần lượt là trung điểm câc các cạnh
. Tính cosin góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Gọi P là trung điểm của DC’. Ta có:
Suy ra
Xét tam giác ADA’ có suy ra tam giác ADA’ là tam giác đều
Xét tam giác A’AB có suy ra tam giác A’AB đều
Do đó tam giác DD’C đều
Vậy
Xét tam giác BAD có AD = AB và nên tam giác BAD là tam giác đều.
Vì tam giác BAD đều nên tam giác B’A’D’ cùng là tam giác đều.
Gọi A’I là đường cao của tam giác B’A’D’
Khi đó:
Dễ thấy A’P là đường trung tuyến của tam giác DA’C’ nên
Áp dụng định lí cosin cho tam giác A’DP có:
Cho tứ diện ABCD có AB = AC = AD và
. Hãy xác định góc giữa cặp vecto
?
Hình vẽ minh họa:

Ta có: