Cho tứ diện OABC với các đường thẳng OA, OB, OC đôi một vuông góc. Bộ ba mặt phẳng vuông góc với nhau từng đôi một là
Dễ thấy rằng OA ⊥ (OBC), OB ⊥ (OCA), OC ⊥ (OAB)
Vậy bộ ba mặt phẳng vuông góc với nhau từng đôi một là (OAB), (OBC), (OCA).
Cho tứ diện OABC với các đường thẳng OA, OB, OC đôi một vuông góc. Bộ ba mặt phẳng vuông góc với nhau từng đôi một là
Dễ thấy rằng OA ⊥ (OBC), OB ⊥ (OCA), OC ⊥ (OAB)
Vậy bộ ba mặt phẳng vuông góc với nhau từng đôi một là (OAB), (OBC), (OCA).
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. H là hình chiếu vuông góc của O trên mặt phẳng (ABC). Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa:

Ta có: OA ⊥ OB, OA ⊥ OC => OA ⊥ (OBC) => OA ⊥ BC (*)
Gọi M là giao điểm của AH và BC
Theo giả thiết ta có: OH ⊥ (ABC) => OH ⊥ BC (**)
Từ (*) và (**) suy ra: BC ⊥ (AOM) => BC ⊥ OM
Xét tam giác BOC vuông ta có:
Xét tam giác AOI vuông ta có:
Từ chứng minh trên ta có: BC ⊥ (AOM) => BC ⊥ AM (1)
Gọi N là giao điểm của BH và AC. Chứng minh tương tự ta có: AC ⊥ BN (2)
Từ (1) và (2) => H là trực tâm tam giác ABC
Vậy là kết quả sai.
Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.
Hình vẽ minh họa:
Ta có:
SA ⊥ BC
AB ⊥ BC
=> BC ⊥ (SAB) => BC ⊥ AH
Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC
Cho hình chóp
có đáy
là tam giác vuông tại
,
. Gọi
là chân đường cao kẻ từ đỉnh
của tam giác
. Xác định kết luận sai?
Hình vẽ minh họa
Ta có:
Ta có:
Lại có:
Cho hình chóp
có đáy
là tam giác đều cạnh
, cạnh bên
vuông góc với mặt đáy và
. Gọi
là trung điểm của
. Tính côsin của góc
là góc giữa đường thẳng
và mặt phẳng
?
Hình vẽ minh họa
Gọi là trung điểm cạnh
.
Khi đó nên
vuông góc
tại
.
Do đó do
vuông tại
.
Ta có:
.
Cho hình chóp
có đáy là hình vuông cạnh bằng
. Biết góc giữa hai mặt phẳng
và mặt phẳng
bằng
,
. Tính tan góc giữa
và mặt phẳng
, biết thể tích khối chóp
bằng
?
Hình vẽ minh họa
Kẻ , gọi
Ta có:
Lại có:
Do tam giác SAB cân tại S nên H là trung điểm của AB
Cho S.ABCD là hình chóp có đáy là hình chữ nhật.
. Gọi K nằm trên cạnh BC sao cho KC = 2KB, Q nằm trên cạnh CD sao cho QD = 3QC và M là trung điểm của cạnh SD. Biết
và
. Tính cosin góc giữa KM và SQ.
Gọi N là trung điểm AD. Như vậy MN là đường trung bình của tam giác SAD nên MB // SA.
Vậy
Ta có:
Suy ra
Xét tam giác MNK vuông tại N (do ) ta có:
Lại có
Xét tam giác SAQ vuông tại A nên
Ta có
Khi đó
Vậy
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:
Hình vẽ minh họa:
Theo bài ta có AB là hình chiếu của SB trên (ABC)
Vậy
Mà ∆SBA vuông cân tại A nên
Mệnh đề nào sau đây đúng?
Mệnh đề đúng là: Hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì có thể vuông góc với nhau
Cho hình hộp chữ nhật
có các kích thước
. Khoảng cách giữa hai đường thẳng
và
bằng:
Đáp án: 30/19 (Ghi kết quả dưới dạng phân số tối giản a/b).
Cho hình hộp chữ nhật có các kích thước
. Khoảng cách giữa hai đường thẳng
và
bằng:
Đáp án: 30/19 (Ghi kết quả dưới dạng phân số tối giản a/b).
Hình vẽ minh họa
Trong kẻ
.
Kẻ .
Do
Mà .
Ta có: là hình bình hành nên
.
Áp dụng hệ thức lượng trong tam giác vuông ta có:
Cho khối chóp
có
biết độ dài các cạnh
. Thể tích khối chóp
là:
Hình vẽ minh họa
Ta có:
Nên tam giác ABC vuông tại A
Suy ra
Vậy
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OB = OC = a. Tính khoảng cách giữa hai đường thẳng OA và BC.
Hình vẽ minh họa:
Gọi M là trung điểm CB, ta có: OM ⊥ BC.
Mặt khác vì OA, OB, OC đôi một vuông góc nên OA ⊥ (OBC)
=> OA ⊥ OM. Do đó khoảng cách giữa OA và BC là OM.
Ta có:
Cho hình chóp S.ABCD có ABCD là hình thoi tâm O, SA = SC; SB = SD. Khẳng định nào dưới đây là khẳng định sai?
Hình vẽ minh họa:
Ta có: Tam giác SAC và tam giác SBD lần lượt là tam giác cân tại S
=> SO ⊥ AC, SO ⊥ BD
=> SO ⊥ (ABCD)
Dễ thấy:
SO ⊥ (ABCD)
AC ⊥ BD
BD ⊥ (SAC)
Là những khẳng định đúng.
Cho tứ diện
có
. Gọi trung điểm của
lần lượt là
. Khi đó cosin góc giữa hai đường thẳng
và
bằng bao nhiêu?
Hình vẽ minh họa
Gọi M là trung điểm của AC khi đó góc giữa hai đường thẳng AB và CD bằng góc giữa hai đường thẳng MI và MJ.
Ta có:
Giả sử
là thể tích khối tứ diện đều
. Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích
. Tỉ số
1/2
(Kết quả được ghi dưới dạng phân số tối giản a/b)
Giả sử là thể tích khối tứ diện đều
. Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích
. Tỉ số
1/2
(Kết quả được ghi dưới dạng phân số tối giản a/b)
Hình vẽ minh họa
Giả sử tứ diện đều cạnh bằng a
Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện
Mỗi góc cũng là một tứ diện đều có cạnh bằng
Do đó thể tích phần cắt bỏ là
(Vì tứ diện cạnh giảm một nưả thì thể tích giảm
Vậy
Cho hình lăng trụ
có đáy
là tam giác vuông tại
,
và
. Chọn kết luận đúng về số đo góc giữa
và
?
Hình vẽ minh họa
Ta có hình chiếu của A”C lên mặt phẳng (ABC) là AC
Suy ra
Ta có:
Trong các mệnh đề sau, mệnh đề nào sai?
Qua một điểm cho trước có thể kẻ được vô số mặt phẳng vuông góc với mặt phẳng cho trước.
Cho hình chóp S.ABCD có đáy là hình bình hành và SA = SB = SC = 11,
,
. Tính khoảng cách d giữa hai đường thẳng AB và SD?
Hình vẽ minh họa:
Dựa vào định lý cosin ta dễ dàng tính được BC = 11,
=> ∆ABC vuông tại C
Do SA = SB = SC, nên hình chiếu của S xuống mặt phẳng (ABC) trùng với trung điểm H của AB
=> SH ⊥ (ABCD) và
Kẻ HK ⊥ CD, AP ⊥ CD, tứ giác APKH là hình chữ nhật, (Do
)
Trong tam giác vuông SHK, kẻ HI ⊥ SK
Do AB // CD => d(AB, SD) = d(H, SD) = HI
Ta có:
Cho hình chóp
có đáy
là hình vuông cạnh
;
. Tính khoảng cách giữa hai đường chéo nhau
và
bằng:
Hình vẽ minh họa
Kẻ đường thẳng d qua B và song song AC
Gọi M là hình chiếu vuông góc của A lên d
Gọi H là hình chiếu của A lên SM.
Ta có:
Xét tam giác SAM có đường cao AH nên
Cho hình chóp
có đáy
là tam giác vuông cân tại
,
vuông góc với đáy. Gọi
là trung điểm của
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
Ta có: tam giác ABC vuông cân tại B, BM là đường trung tuyến nên cũng là đường cao.
Lại có:
Ta có:
Ta có:
Mà