Đề kiểm tra 15 phút Toán 11 Chương 8 Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên \left\{ \begin{matrix}SO\bot AC \\SO\bot BD \\\end{matrix} ight. => SO ⊥ (ABCD)

    Từ \left\{ \begin{matrix}SO\bot AC \\AC\bot BD \\\end{matrix} ight.=> AC ⊥ (SBD)

    Từ \left\{ \begin{matrix}SO\bot BD \\AC\bot BD \\\end{matrix} ight.=> BD ⊥ (SAC)

    Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.

    Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).

  • Câu 2: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và SA =a\sqrt{6}. Gọi α là góc giữa SC và (SAB). Giá trị tan α bằng:

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}BC\bot SA \\BC\bot AB \\\end{matrix} ight.=> BC ⊥ (SAB)

    => SB là hình chiếu của SC lên mặt phẳng (SAB)

    => \alpha = \widehat{BSC}

    SB = \sqrt{SA^{2} + AB^{2}} =a\sqrt{7}

    Vậy \tan\alpha = \frac{BC}{SB} =\frac{\sqrt{7}}{7}

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Khẳng định nào dưới đây là sai?

    Hình vẽ minh họa

    Chọn khẳng định sai

    Vì H là trung điểm của AB, tam giác ABC cân => CH⊥AB

    Ta có: SA⊥(ABC) => SA⊥CHCH⊥AB => CH⊥(SAB)

    Mặt khác AK⊂(SAB) => CH vuông góc với các đường thẳng SA,SB,AK

    AK⊥SB chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.

  • Câu 4: Vận dụng

    Cho hình lăng trụ ABC.A’B’C’ có AA' = \frac{{a\sqrt {10} }}{4}';AC = a\sqrt 2 ;BC = a;\widehat {ACB} = {135^0}$. Hình chiếu vuông góc của C’ lên mặt phẳng (ABC) trùng với trung điểm M của AB. Tính góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’)

    Góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’)

    Trong (ABC) kẻ MN \bot AC \Rightarrow AC \bot \left( {MNC'} ight) ( điểm N thuộc cạnh AC)

    Vậy NC’ là hinh chiếu của MC’ trên mp(ACC’A’)

    Góc giữa MC’ và mp(ACC’A’) là góc \widehat {MC'N}

    Ta có

    \begin{matrix}  A{B^2} = A{C^2} + B{C^2} - 2.AC.BC.\cos \widehat {ACB} = 5{a^2} \hfill \\   \Rightarrow AB = a\sqrt 5  \Rightarrow AM = \dfrac{{a\sqrt 5 }}{2} \hfill \\ \end{matrix}

    CM là đường trung tuyến của tam giác ABC, nên có

    C{M^2} = \frac{{C{A^2} + C{B^2}}}{2} - \frac{{A{B^2}}}{4} = \frac{{{a^2}}}{4} \Rightarrow CM = \frac{a}{2}

    Tam giác CMC’ vuông tại M, nên C'M = \sqrt {C{{C'}^2} - C{M^2}}  = \frac{{a\sqrt 6 }}{4}

    Diện tích {S_{\Delta AMC}} = \frac{1}{2}{S_{\Delta ABC}} = \frac{{{a^2}}}{4} = \frac{1}{2}MN \cdot AC \Rightarrow MN = \frac{a}{{2\sqrt 2 }}

    Xét tam giác vuông MC’N, có

    \tan \widehat {MC'N} = \frac{{MN}}{{MC'}} = \frac{1}{{\sqrt 3 }} \Rightarrow \widehat {MC'N} = {30^o}

    Vậy góc tạo bởi đường thẳng C’M với mặt phẳng (ACC’A’) là \widehat {MC'N} = {30^o}

  • Câu 5: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. Cạnh bện SA vuông góc với mặt phẳng (ABCD) và SC =10\sqrt{5}. Gọi M, N lần lượt là trung điểm của SA và CD. Tính khoảng cách d giữa BD và MN.

    Hình vẽ minh họa:

    Gọi P là trung điểm BC và E = NP ∩ AC

    => PN // BD => BD // (MNP)

    => d(BD, MN) = d(BD, (MNP)) = d(O, (MNP)) = \frac{1}{3}d(A, (MNP))

    Kẻ AK ⊥ ME

    Khi đó d(A, (MNP)) = AK.

    Ta tính được:

    \begin{matrix}SA = \sqrt{SC^{2} - AC^{2}} = 10\sqrt{3} \\\Rightarrow MA = 5\sqrt{3};AE = \dfrac{3}{4}AC = \dfrac{15\sqrt{2}}{2} \\\end{matrix}

    Xét tam giác vuông MAE ta có:

    AK = \frac{MA.AE}{\sqrt{MA^{2} +AE^{2}}} = 3\sqrt{5}

    \Rightarrow d(BD;MN) = \frac{1}{3}AK =\sqrt{5}

  • Câu 6: Nhận biết

    Cho ABCD.A'B'C'D' là hình hộp. Khẳng định nào sau đây đúng?

    Nếu ABCD.A'B'C'D' là hình hộp thì tất cả các mặt là bình bình hành nên mặt bên cũng là hình bình hành.

  • Câu 7: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề “Hai mặt phẳng cùng song song với một mặt phẳng thứ ba thì song song với nhau” là sai. Hai mặt phẳng cùng song song với một mặt phẳng thứ ba thì song song hoặc trùng nhau.

    Mệnh đề “Qua một đường thẳng cho trước có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước” là sai. Nếu đường thẳng vuông góc với mặt phẳng cho trước thì có vô số mặt phẳng qua đường thẳng và vuông góc với mặt phẳng đó. Nếu đường thẳng không vuông góc với mặt phẳng cho trước thì không có mặt phẳng nào vuông góc với mặt phẳng đó.

    Mệnh đề “Hai mặt phẳng cùng vuông góc với một mặt phẳng thứ ba thì vuông góc với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau (giao truyến vuông góc với mặt phẳng kia).

    Vậy mệnh đề đúng là: “Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với hai mặt phẳng cắt nhau cho trước.”

  • Câu 8: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Cắt hình lập phương bởi mặt phẳng trung trực của BD'. Diện tích thiết diện tạo thành bằng:

    Hình vẽ minh họa

    Gọi E là trung điểm của AD. Ta có: EB
= ED' nên E thuộc mặt phẳng trung trực của BD'.

    Gọi F;G;H;I;K lần lượt là trung điểm của CD;CC';B'C';A'B';AA'

    Chứng minh tương tự ta có các điểm trên đều thuộc mặt phẳng trung trực của BD'

    Vậy thiết diện của hình lập phương cắt bởi mặt phẳng trung trực của BD' là hình lục giác đều EFGHIK có cạnh bằng \frac{a\sqrt{2}}{2}.

    Vậy diện tích thiết diện là: S = 6.\left(
\frac{a\sqrt{2}}{2} ight)^{2}.\frac{\sqrt{3}}{4} =
\frac{3a^{2}\sqrt{3}}{4}

  • Câu 9: Thông hiểu

    Cho tứ diện ABCD;AC = 6a;BD = 8a. Gọi trung điểm của AD,BC lần lượt là M,N. Biết AC\bot DB. Độ dài đoạn thẳng MN là:

    Hình vẽ minh họa

    Gọi P là trung điểm của CD. Khi đó \left\{ \begin{matrix}MP = \dfrac{1}{2}AC = 3a \\NP = \dfrac{1}{2}BD = 4a \\\end{matrix} ight.

    Lại có \left\{ \begin{matrix}
NP//BD;MP//AC \\
AC\bot BD \\
\end{matrix} ight.\  \Rightarrow MP\bot NP hay tam giác MNP vuông tại P

    Theo định lí Pythagore ta có:

    MN = \sqrt{NP^{2} + MP^{2}} =
5a

  • Câu 10: Nhận biết

    Công thức tính thể tích V của khối nón có bán kính r và chiều cao h là:

    Công thức tính thể tích là: V =
\frac{1}{3}\pi r^{2}h

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABC, có đáy ABC là tam giác đều và SA\bot(ABC). Gọi M là trung điểm của cạnh ACN là hình chiếu của B lên SC. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) \Rightarrow BM\bot
SA

    BM\bot AC \Rightarrow BM\bot(SAC)
\supset SC \Rightarrow SC\bot BM(1)

    Theo giả thiết SC\bot BN(2)

    Từ (1) và (2) suy ra SC\bot(BMN)

    SC \subset (SBC) \Rightarrow
(BMN)\bot(SBC)

  • Câu 12: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là hình tam giác vuông tại A, SA\bot(ABC). Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Ta có:

    \left\{ \begin{matrix}
AC\bot AB \\
AC\bot SA \\
\end{matrix} ight.\  \Rightarrow AC\bot(SAB)

    \left\{ \begin{matrix}
AC\bot(SAB) \\
AC \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow (SAC)\bot(SAB)

  • Câu 13: Vận dụng cao

    Cho hình chóp S.ABCD có đáy là hình bình hành và SA = SB = SC = 11, \widehat{SAB} = 30^{0}, \widehat{SBC} = 60^{0};\widehat{SCA} =45^{0}. Tính khoảng cách d giữa hai đường thẳng AB và SD?

    Hình vẽ minh họa:

    Dựa vào định lý cosin ta dễ dàng tính được BC = 11, AB = 11\sqrt{3};AC = 11\sqrt{2}

    => ∆ABC vuông tại C

    Do SA = SB = SC, nên hình chiếu của S xuống mặt phẳng (ABC) trùng với trung điểm H của AB

    => SH ⊥ (ABCD) và SH =SA.sin\widehat{SAB} = \frac{11}{2}

    Kẻ HK ⊥ CD, AP ⊥ CD, tứ giác APKH là hình chữ nhật, HK = AP = \frac{11\sqrt{6}}{3}(Do \frac{1}{AP^{2}} = \frac{1}{AD^{2}} +\frac{1}{AC^{2}})

    Trong tam giác vuông SHK, kẻ HI ⊥ SK

    Do AB // CD => d(AB, SD) = d(H, SD) = HI

    Ta có: \frac{1}{HI^{2}} =\frac{1}{SH^{2}} + \frac{1}{SK^{2}} \Rightarrow HI =\sqrt{22}

  • Câu 14: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng B'D'AA' bằng:

    Hình vẽ minh họa

    Ta có: ABCD.A'B'C'D' là hình lập phương nên các tứ giác AA'D'D;AA'B'B đều là hình vuông

    Do đó \overrightarrow{AA'}.\overrightarrow{A'D}
= \overrightarrow{AA'}.\overrightarrow{A'B'} =
0

    \Rightarrow
\overrightarrow{AA'}.\overrightarrow{B'D'} =
\overrightarrow{AA'}.\left( \overrightarrow{A'D} -
\overrightarrow{A'B'} ight)

    =
\overrightarrow{AA'}.\overrightarrow{A'D} -
\overrightarrow{AA'}.\overrightarrow{A'B'} = 0

    Suy ra \overrightarrow{AA'}\bot\overrightarrow{B'D'}
\Rightarrow \left(
\overrightarrow{AA'};\overrightarrow{B'D'} ight) =
90^{0}

    \Rightarrow (AA';B'D') =
90^{0}

  • Câu 15: Thông hiểu

    Tính thể tích khối chóp tứ giác đều có tất cả các cạnh bằng 1cm?

    Hình vẽ minh họa

    Giả sử khối chóp tứ giác đều đã cho là S.ABCD

    Khi đó ABCD là hình vuông cạnh bằng 1 cm và SA = SB = SC = SD = 1cm

    Gọi H là tâm hình vuông ABCD thì SH\bot(ABCD) nên SH là chiều cao của khối chóp S.ABCD.

    Tính SH

    Xét tam giác ABC vuông tại B ta có:

    AC = \sqrt{AB^{2} + BC^{2}} =
\sqrt{1^{2} + 1^{2}} = \sqrt{2}(cm)

    Nhận thấy AC^{2} = SA^{2} +
SC^{2} nên tam giác SAC vuông tại S

    \Rightarrow SH = \frac{AC}{2} =
\frac{1}{\sqrt{2}}(cm)

    Diện tích đáy của khối chóp là S_{ABCD} =
1^{2} = 1\left( cm^{2} ight)

    Thể tích khối chóp S.ABCDV = \frac{1}{3}.S_{ABCD}.SH =
\frac{1}{3}.1.\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{6}\left( cm^{3}
ight)

  • Câu 16: Vận dụng

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Hình vẽ minh họa

    Giả sử tứ diện đều cạnh bằng a

    Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện

    Mỗi góc cũng là một tứ diện đều có cạnh bằng \frac{a}{2}

    Do đó thể tích phần cắt bỏ là V''
= 4.\frac{V}{8} = \frac{V}{2}

    (Vì tứ diện cạnh giảm một nưả thì thể tích giảm \left( \frac{1}{2} ight)^{3} =
\frac{1}{8}

    Vậy V' = \frac{V}{2} \Rightarrow
\frac{V'}{V} = \frac{1}{2}

  • Câu 17: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O, SA ⊥ (ABCD). I là trung điểm của SC. Khẳng định nào dưới đây sai?

    Hình vẽ minh họa:

    Ta có: O và I lần lượt là trung điểm của AC và SC

    => OI là đường trung bình của tam giác SAC

    => OI // SA

    Mà SA ⊥ (ABCD) => OI ⊥ (ABCD)

    Ta có: ABCD là hình chữ nhật => BC ⊥ AB

    Mà SA ⊥ BC => BC ⊥ SB

    Tương tự ta có: CD ⊥ AD, CD ⊥ SA => CD ⊥ SD

    Nếu (SAC) là mặt phẳng trung trực của BD => BD ⊥ AC điều này không thể xảy ra vì ABCD là hình chữ nhật.

    Vậy khẳng định sai là: “Mặt phẳng (SAC) là mặt phẳng trung trực của BD.”

  • Câu 18: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:

    Hình vẽ minh họa:

    Theo bài ta có AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB,(ABC) ight)} =\widehat{(SB,\ AB)} = \widehat{SBA}

    Mà ∆SBA vuông cân tại A nên \widehat{SBA}= 45^{0}

  • Câu 19: Nhận biết

    Đường thẳng a vuông góc với hai đường thẳng phân biệt trong mặt phẳng (P) thì:

    "a vuông góc với mặt phẳng (P)" sai vì có thể có trường hợp

    a ⊥ b ⊂ (P); a⊥c ⊂ (P); b // c

    "a không vuông góc với mặt phẳng (P)" sai vì có thể xảy ra trường hợp

    a ⊥ b ⊂ (P); a⊥ c ⊂ (P); b ∩ c ≠ ∅

    =>a⊥(P)

    => "a không thể vuông góc với mặt phẳng (P)" là sai.

  • Câu 20: Nhận biết

    Tìm mệnh đề đúng trong các mệnh đề sau:

    Đáp án đúng: Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.”

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 32 lượt xem
Sắp xếp theo