Đề kiểm tra 15 phút Toán 11 Chương 8 Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Quan hệ vuông góc trong không gian gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho tứ diện OABC với các đường thẳng OA, OB, OC đôi một vuông góc. Bộ ba mặt phẳng vuông góc với nhau từng đôi một là

    Dễ thấy rằng OA ⊥ (OBC), OB ⊥ (OCA), OC ⊥ (OAB)

    Vậy bộ ba mặt phẳng vuông góc với nhau từng đôi một là (OAB), (OBC), (OCA).

  • Câu 2: Vận dụng

    Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. H là hình chiếu vuông góc của O trên mặt phẳng (ABC). Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa:

    Chọn khẳng định sai

    Ta có: OA ⊥ OB, OA ⊥ OC => OA ⊥ (OBC) => OA ⊥ BC (*)

    Gọi M là giao điểm của AH và BC

    Theo giả thiết ta có: OH ⊥ (ABC) => OH ⊥ BC (**)

    Từ (*) và (**) suy ra: BC ⊥ (AOM) => BC ⊥ OM

    Xét tam giác BOC vuông ta có:

    \frac{1}{{O{I^2}}} = \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}

    Xét tam giác AOI vuông ta có:

    \frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{M^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} + \frac{1}{{O{C^2}}}

    Từ chứng minh trên ta có: BC ⊥ (AOM) => BC ⊥ AM (1)

    Gọi N là giao điểm của BH và AC. Chứng minh tương tự ta có: AC ⊥ BN (2)

    Từ (1) và (2) => H là trực tâm tam giác ABC

    Vậy 3O{H^2} = A{B^2} + A{C^2} + B{C^2} là kết quả sai.

  • Câu 3: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD, SA vuông góc với đáy. Kẻ AH vuông góc với SB (H ∈ SB). Chọn mệnh đề đúng.

    Hình vẽ minh họa:

    Ta có:

    SA ⊥ BC

    AB ⊥ BC

    => BC ⊥ (SAB) => BC ⊥ AH

    Mà AH ⊥ SB nên AH ⊥ (SBC) => AH ⊥ SC

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA\bot(ABC). Gọi H là chân đường cao kẻ từ đỉnh A của tam giác SAB. Xác định kết luận sai?

    Hình vẽ minh họa

    Ta có: SA\bot(ABC) ightarrow SA\bot
BC

    Ta có: \left\{ \begin{matrix}
BC\bot AB(gt) \\
BC\bot SA;\left( do\ \ SA\bot(ABC) ight) \\
AB \cap SA = A \\
AB;SA \subset (SAB) \\
\end{matrix} ight.

    \Rightarrow BC\bot(SAB)

    Lại có: \left\{ \begin{matrix}
AH\bot SB \\
AH\bot BC;\left( do\ \ BC\bot(SAB) ight) \\
SB \cap BC = B \\
AB;BC \subset (SBC) \\
\end{matrix} ight.

    \Rightarrow AH\bot(SBC) \Rightarrow
AH\bot BC \Rightarrow AH\bot BC

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnha, cạnh bên SA vuông góc với mặt đáy và SA = 2a. Gọi M là trung điểm của SC. Tính côsin của góc \alpha là góc giữa đường thẳng BM và mặt phẳng (ABC)?

    Hình vẽ minh họa

    Gọi H là trung điểm cạnh AC.

    Khi đó HM//SA nên HM vuông góc (ABC) tại H.

    Do đó \left( \widehat{BM,(ABC)} ight) =
\left( \widehat{BM,BH} ight) = \widehat{MBH} do \Delta MBH vuông tại H.

    Ta có:

    \cos\widehat{MBH} = \frac{BH}{BM}
= \frac{BH}{\sqrt{HM^{2} + BH^{2}}} = \dfrac{\dfrac{a\sqrt{3}}{2}}{\sqrt{a^{2} + \left(\dfrac{a\sqrt{3}}{2} ight)^{2}}} = \dfrac{\sqrt{21}}{7}.

  • Câu 6: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2a. Biết góc giữa hai mặt phẳng (SAB) và mặt phẳng (ABCD) bằng 90^{0}, SA =
SB. Tính tan góc giữa SC và mặt phẳng (ABCD), biết thể tích khối chóp S.ABCD bằng \frac{4a^{3}}{3}?

    Hình vẽ minh họa

    Kẻ SH\bot AB , gọi \alpha = \left( SC;(ABCD) ight)

    Ta có: \left\{ \begin{matrix}
(SAB)\bot(ABCD) \\
(SAB) \cap (ABCD) = AB \\
SH \subset (SAB) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    \Rightarrow \alpha =
\widehat{SCH}

    Lại có: V_{S.ABCD} =
\frac{1}{3}SH.S_{ABCD} = \frac{4a^{3}}{3} \Rightarrow SH =
a

    Do tam giác SAB cân tại S nên H là trung điểm của AB

    \Rightarrow HC = \sqrt{BH^{2} + BC^{2}}
= a\sqrt{5}

    \Rightarrow \tan\alpha =
\tan\widehat{SCH} = \frac{SH}{HC} = \frac{a}{a\sqrt{5}} =
\frac{\sqrt{5}}{5}

  • Câu 7: Vận dụng

    Cho S.ABCD là hình chóp có đáy là hình chữ nhật. SA \bot \left( {ABCD} ight). Gọi K nằm trên cạnh BC sao cho KC = 2KB, Q nằm trên cạnh CD sao cho QD = 3QC và M là trung điểm của cạnh SD. Biết AB = a,AD = 2aKM = \frac{{a\sqrt {67} }}{6}. Tính cosin góc giữa KM và SQ.

    Gọi N là trung điểm AD. Như vậy MN là đường trung bình của tam giác SAD nên MB // SA.

    Vậy MN \bot \left( {ABCD} ight)

    Ta có:

    \begin{matrix}  \overrightarrow {NK}  = \overrightarrow {NA}  + \overrightarrow {AB}  + \overrightarrow {BK}  \hfill \\   =  - \dfrac{1}{2}\overrightarrow {AD}  + \overrightarrow {AB}  + \dfrac{1}{3}\overrightarrow {AD}  = \overrightarrow {AB}  - \dfrac{1}{6}\overrightarrow {AD}  \hfill \\ \end{matrix}

    Suy ra

    \begin{matrix}  N{K^2} = {\left( {\overrightarrow {AB}  - \dfrac{1}{6}\overrightarrow {AD} } ight)^2} = A{B^2} + \dfrac{1}{{36}}A{D^2} \hfill \\   = {a^2} + \dfrac{1}{{36}}.4{a^2} = \dfrac{{10}}{9}{a^2} \hfill \\ \end{matrix}

    Xét tam giác MNK vuông tại N (do MN \bot \left( {ABCD} ight)) ta có:

    \begin{matrix}  M{N^2} = M{K^2} - N{K^2} = \dfrac{{67}}{{36}}{a^2} - \dfrac{{10}}{9}{a^2} = \dfrac{3}{4}{a^2} \hfill \\   \Rightarrow MN = \dfrac{{a\sqrt 3 }}{2} \Rightarrow SA = a\sqrt 3  \hfill \\ \end{matrix}

    Lại có

    \begin{matrix}  \overrightarrow {AQ}  = \overrightarrow {AD}  + \overrightarrow {DQ}  = \overrightarrow {AD}  + \dfrac{3}{4}\overrightarrow {AB}  \hfill \\   \Rightarrow A{Q^2} = {\left( {\overrightarrow {AD}  + \dfrac{3}{4}\overrightarrow {AB} } ight)^2} \hfill \\   = A{D^2} + \dfrac{9}{{16}}A{B^2} \hfill \\   = {(2a)^2} + \dfrac{9}{{16}}{a^2} = \dfrac{{73}}{{16}}{a^2} \hfill \\ \end{matrix}

    Xét tam giác SAQ vuông tại A nên

    \begin{matrix}  S{Q^2} = A{S^2} + A{Q^2} = 3{a^2} + \dfrac{{73}}{{16}}{a^2} = \dfrac{{121}}{{16}}{a^2} \hfill \\   \Rightarrow SQ = \dfrac{{11}}{4}a \hfill \\ \end{matrix}

    Ta có

    \begin{matrix}  \overrightarrow {KM}  = \overrightarrow {NM}  - \overrightarrow {NK}  = \dfrac{1}{2}\overrightarrow {AS}  - \overrightarrow {AB}  + \dfrac{1}{6}\overrightarrow {AD}  \hfill \\  \overrightarrow {SQ}  = \overrightarrow {AQ}  - \overrightarrow {AS}  = \overrightarrow {AD}  + \dfrac{3}{4}\overrightarrow {AB}  - \overrightarrow {AS}  \hfill \\ \end{matrix}

    Khi đó

    \begin{matrix}  \overrightarrow {KM} .\overrightarrow {SQ}  =  - \dfrac{3}{4}A{B^2} + \dfrac{1}{6}A{D^2} - \dfrac{1}{2}A{S^2} \hfill \\   =  - \dfrac{3}{4}{a^2} + \dfrac{1}{6}.4{a^2} - \dfrac{1}{2}.3{a^2} = \dfrac{{ - 19}}{{12}}{a^2} \hfill \\ \end{matrix}

    Vậy

    \begin{matrix}  \cos \left( {KM,SQ} ight) = \left| {\cos \left( {\overrightarrow {KM} ,\overrightarrow {SQ} } ight)} ight| \hfill \\   = \dfrac{{\left| {\overrightarrow {KM} .\overrightarrow {SQ} } ight|}}{{KM.SQ}} = \dfrac{{\left| {\dfrac{{ - 19}}{{12}}{a^2}} ight|}}{{\dfrac{{a\sqrt {67} }}{6}.\dfrac{{11a}}{4}}} = \dfrac{{38}}{{11\sqrt {67} }} \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:

    Hình vẽ minh họa:

    Theo bài ta có AB là hình chiếu của SB trên (ABC)

    Vậy \widehat{\left( SB,(ABC) ight)} =\widehat{(SB,\ AB)} = \widehat{SBA}

    Mà ∆SBA vuông cân tại A nên \widehat{SBA}= 45^{0}

  • Câu 9: Nhận biết

    Mệnh đề nào sau đây đúng?

    Mệnh đề đúng là: Hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì có thể vuông góc với nhau

  • Câu 10: Vận dụng

    Cho hình hộp chữ nhật ABCD.A'B'C'D' có các kích thước AB = 4,AD = 3,AA' = 5. Khoảng cách giữa hai đường thẳng AC'B'C bằng:

    Đáp án: 30/19 (Ghi kết quả dưới dạng phân số tối giản a/b).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D' có các kích thước AB = 4,AD = 3,AA' = 5. Khoảng cách giữa hai đường thẳng AC'B'C bằng:

    Đáp án: 30/19 (Ghi kết quả dưới dạng phân số tối giản a/b).

    Hình vẽ minh họa

    Trong (BB'C'C) kẻ C'M//B'C;(M \in BC).

    \Rightarrow B^{'}C//\left(
AC^{'}M ight) \Rightarrow d\left( A^{'}C;B^{'}C ight) =
d\left( B^{'}C;\left( AC^{'}M ight) ight) = d\left( C;\left(
AC^{'}M ight) ight)

    Kẻ CH\bot AM;CK\bot
C^{'}H.

    Do \left\{ \begin{matrix}
CH\bot AM \\
CC^{'}\bot AM \\
\end{matrix} \Rightarrow AM\bot\left( CC^{'}H ight) \Rightarrow
AM\bot CK ight.

    CK\bot C^{'}H \Rightarrow
CK\bot\left( AC^{'}M ight) \Rightarrow d\left( C;\left(
AC^{'}M ight) ight) = CK.

    Ta có: B^{'}C^{'}MC là hình bình hành nên CM = B'C' =3.

    \frac{1}{d^{2}(B;AM)} = \frac{1}{AB^{2}}
+ \frac{1}{BM^{2}} \Rightarrow d(B;AM) =
\frac{12}{\sqrt{13}}

    \Rightarrow CH = \frac{1}{2}d(B;AM) =
\frac{6}{\sqrt{13}}.

    Áp dụng hệ thức lượng trong tam giác vuông C^{'}CH ta có:

    \frac{1}{CK^{2}} = \frac{1}{CH^{2}} +
\frac{1}{CC^{'2}} \Rightarrow CK = \frac{30}{19}.

  • Câu 11: Nhận biết

    Cho khối chóp S.ABCSA\bot(ABC) biết độ dài các cạnh SA = 4cm,AB = 6cm, BC = 10cm;CA = 8cm. Thể tích khối chóp S.ABC là:

    Hình vẽ minh họa

    Ta có:

    AB^{2} + AC^{2} = 6^{2} + 8^{2} = 10^{2}
= BC^{2}

    Nên tam giác ABC vuông tại A

    Suy ra S_{ABC} = \frac{1}{2}AB.AC =
24

    Vậy V_{S.ABC} = \frac{1}{3}.S_{ABC}.SA =
32cm^{3}

  • Câu 12: Nhận biết

    Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OB = OC = a. Tính khoảng cách giữa hai đường thẳng OA và BC.

    Hình vẽ minh họa:

    Gọi M là trung điểm CB, ta có: OM ⊥ BC.

    Mặt khác vì OA, OB, OC đôi một vuông góc nên OA ⊥ (OBC)

    => OA ⊥ OM. Do đó khoảng cách giữa OA và BC là OM.

    Ta có: OM = \frac{1}{2}BC =
\frac{a\sqrt{2}}{2}

  • Câu 13: Thông hiểu

    Cho hình chóp S.ABCD có ABCD là hình thoi tâm O, SA = SC; SB = SD. Khẳng định nào dưới đây là khẳng định sai?

    Hình vẽ minh họa:

    Ta có: Tam giác SAC và tam giác SBD lần lượt là tam giác cân tại S

    => SO ⊥ AC, SO ⊥ BD

    => SO ⊥ (ABCD)

    Dễ thấy:

    SO ⊥ (ABCD)

    AC ⊥ BD

    BD ⊥ (SAC)

    Là những khẳng định đúng.

  • Câu 14: Thông hiểu

    Cho tứ diện ABCDAB =
CD = a;IJ = \frac{a\sqrt{3}}{2}. Gọi trung điểm của AD;BC lần lượt là AD;BC. Khi đó cosin góc giữa hai đường thẳng ABCD bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi M là trung điểm của AC khi đó góc giữa hai đường thẳng AB và CD bằng góc giữa hai đường thẳng MI và MJ.

    Ta có:

    \cos\widehat{IMJ} = \frac{IM^{2} +
MJ^{2} - IJ^{2}}{2MI.MJ} = - \frac{1}{2}

    \Rightarrow \cos(AB;CD) =
\frac{1}{2}

  • Câu 15: Vận dụng

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Giả sử V là thể tích khối tứ diện đều ABCD . Trung điểm tất cả các cạnh của tứ diện tạo thành một đa diện có thể tích V' . Tỉ số \frac{V'}{V} = 1/2

    (Kết quả được ghi dưới dạng phân số tối giản a/b)

    Hình vẽ minh họa

    Giả sử tứ diện đều cạnh bằng a

    Hình đa diện cần tính có được bằng cách cắt 4 góc tứ diện

    Mỗi góc cũng là một tứ diện đều có cạnh bằng \frac{a}{2}

    Do đó thể tích phần cắt bỏ là V''
= 4.\frac{V}{8} = \frac{V}{2}

    (Vì tứ diện cạnh giảm một nưả thì thể tích giảm \left( \frac{1}{2} ight)^{3} =
\frac{1}{8}

    Vậy V' = \frac{V}{2} \Rightarrow
\frac{V'}{V} = \frac{1}{2}

  • Câu 16: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AC =
a\sqrt{3}AA' = 3a. Chọn kết luận đúng về số đo góc giữa A'C(ABC)?

    Hình vẽ minh họa

    Ta có hình chiếu của A”C lên mặt phẳng (ABC) là AC

    Suy ra \left( A'C;(ABC) ight) =
(A'C;AC) = \widehat{A'CA}

    Ta có: \tan\widehat{A'CA} =
\frac{AA'}{AC} = \frac{3a}{a\sqrt{3}} = \sqrt{3}

    \Rightarrow \widehat{A'CA} = 60^{0}
\Rightarrow \left( A'C;(ABC) ight) = 60^{0}

  • Câu 17: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Qua một điểm cho trước có thể kẻ được vô số mặt phẳng vuông góc với mặt phẳng cho trước.

  • Câu 18: Vận dụng cao

    Cho hình chóp S.ABCD có đáy là hình bình hành và SA = SB = SC = 11, \widehat{SAB} = 30^{0}, \widehat{SBC} = 60^{0};\widehat{SCA} =45^{0}. Tính khoảng cách d giữa hai đường thẳng AB và SD?

    Hình vẽ minh họa:

    Dựa vào định lý cosin ta dễ dàng tính được BC = 11, AB = 11\sqrt{3};AC = 11\sqrt{2}

    => ∆ABC vuông tại C

    Do SA = SB = SC, nên hình chiếu của S xuống mặt phẳng (ABC) trùng với trung điểm H của AB

    => SH ⊥ (ABCD) và SH =SA.sin\widehat{SAB} = \frac{11}{2}

    Kẻ HK ⊥ CD, AP ⊥ CD, tứ giác APKH là hình chữ nhật, HK = AP = \frac{11\sqrt{6}}{3}(Do \frac{1}{AP^{2}} = \frac{1}{AD^{2}} +\frac{1}{AC^{2}})

    Trong tam giác vuông SHK, kẻ HI ⊥ SK

    Do AB // CD => d(AB, SD) = d(H, SD) = HI

    Ta có: \frac{1}{HI^{2}} =\frac{1}{SH^{2}} + \frac{1}{SK^{2}} \Rightarrow HI =\sqrt{22}

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; SA\bot(ABCD);SA = a\sqrt{2}. Tính khoảng cách giữa hai đường chéo nhau ACSB bằng:

    Hình vẽ minh họa

    Kẻ đường thẳng d qua B và song song AC

    Gọi M là hình chiếu vuông góc của A lên d

    Gọi H là hình chiếu của A lên SM.

    Ta có: \left\{ \begin{matrix}
SA\bot BM \\
BM\bot AM \\
\end{matrix} ight.\  \Rightarrow BM\bot(SAM) \Rightarrow
AH\bot(SBM)

    \Rightarrow d(AC;SB) = d\left( A;(SBM)
ight) = AH

    Xét tam giác SAM có đường cao AH nên

    \frac{1}{AH^{2}} = \frac{1}{AS^{2}} +
\frac{1}{AM^{2}} = \frac{5}{2a^{2}}

    \Rightarrow AH =
\frac{a\sqrt{10}}{5}

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, SA vuông góc với đáy. Gọi M là trung điểm của AC. Khẳng định nào sau đây sai?

    Hình vẽ minh họa

    Ta có: tam giác ABC vuông cân tại B, BM là đường trung tuyến nên cũng là đường cao.

    \Rightarrow BM\bot SA

    Lại có: BM\bot SA \Rightarrow BM\bot(SAC)
\Rightarrow BM\bot AC

    Ta có: \left\{ \begin{matrix}
BM\bot(SAC) \\
BM \subset (SBM) \\
\end{matrix} ight.\  \Rightarrow (SBM)\bot(SAC)

    Ta có: \left\{ \begin{matrix}
BC\bot AB \\
BC\bot SA \\
\end{matrix} ight.\  \Rightarrow BC\bot(SAB)

    BC \subset (SBC) \Rightarrow
(SAB)\bot(SBC)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 34 lượt xem
Sắp xếp theo