Trong một hộp bánh có 6 loại bánh nhân thịt và 4 loại bánh nhân đậu xanh. Có bao nhiêu cách lấy ra 6 bánh để phát cho các em thiếu nhi:
Số bánh có trong hộp bánh là 6 + 4 = 10 chiếc
=> Số cách lấy ra 6 bánh để phát cho các em thiếu nhi là: cách
Trong một hộp bánh có 6 loại bánh nhân thịt và 4 loại bánh nhân đậu xanh. Có bao nhiêu cách lấy ra 6 bánh để phát cho các em thiếu nhi:
Số bánh có trong hộp bánh là 6 + 4 = 10 chiếc
=> Số cách lấy ra 6 bánh để phát cho các em thiếu nhi là: cách
Giả sử hai biến cố
là hai biến cố xung khắc. Công thức nào sau đây đúng?
Vì hai biến cố A và B là hai biến cố xung khắc nên theo công thức cộng xác suất ta có: .
Thực hiện tung ngẫu nhiên một con xúc xắc một lần. Biết H là biến cố mặt xuất hiện có số chấm chẵn, K là biến cố mặt xuất hiện có số chấm lẻ. Khẳng định nào sau đây đúng?
Vì nên hai biến cố H và K là hai biến cố đối nhau.
Gieo liên tiếp ba lần con súc sắc. Tìm xác suất để tổng số chấm trên mặt xuất hiện là một số nguyên tố nhỏ hơn 9?
Không gian mẫu là số cách xuất hiện các mặt của con súc sắc trong ba lần gieo liên tiếp
Suy ra số phần tử của không gian mẫu là
Gọi B là biến cố '' Tổng số chấm trên các mặt của ba lần gieo là một số nguyên tố nhỏ hơn 9 ''
Ta có các số nguyên tố nhỏ hơn 9 gồm: 2, 3, 5, 7.
Bộ các số tương ứng với số chấm có tổng bằng 2: không có.
Bộ các số tương ứng với số chấm có tổng bằng 3: (1,1,1): 1 cách
Bộ các số tương ứng với số chấm có tổng bằng 5: (1,1,3): 3 cách; (1,2,2): 3 cách
Bộ các số tương ứng với số chấm có tổng bằng 7: (1,1,5): 3 cách; (1,2,4): 6 cách; (1,3,3): 3 cách; (2,3,2): 3 cách.
Do đó số phần tử của biến cố B là
Vậy xác suất cần tìm là:
Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Gọi B là biến cố Hùng thi được ít nhất 8 điểm. Tính số phần tử của biến cố B?
Trường hợp 1: Hùng thi được 8 điểm, tức là Hùng trả lời 8 câu đúng, 2 câu sai.
Trong 10 câu số khả năng của 2 câu mà học sinh trả lời sai là
Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng
Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai
Vậy trường hợp này số khả năng xảy ra là .
Trường hợp 2: Hùng thi được 9 điểm, tức là Hùng trả lời 9 câu đúng, 1 câu sai.
Trong 10 câu số khả năng của 1 câu mà học sinh trả lời sai là
Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng
Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai
Vậy trường hợp này số khả năng xảy ra là .
Trường hợp 3: Hùng thi được 10 điểm, tức là Hùng trả lời 10 câu đúng, 0 câu sai.
Trường hợp này có 1 khả năng xảy ra.
Vậy số phần tử của biến cố B là:
Có 4 nữ sinh tên là Linh, Hoa, Lan, Hiền và 4 nam sinh tên là Tuấn, Bình, Trung, Cường cùng ngồi quanh một bàn tròn có 8 chỗ ngồi. Hỏi có bao nhiêu cách sắp xếp biết nam và nữ ngồi xen kẽ nhau?
Giả sử các ghế ngồi đánh số từ 1 đến 8.
Chọn 1 bạn bất kì ngồi vào 1 vị trí ngẫu nhiên trên bàn tròn có 1 cách. (Nếu chọn 8 cách thì tức là nhầm với bàn dài).
Xếp 3 bạn cùng giới tính còn lại vào 3 ghế (có số ghế cùng tính chẵn hoặc lẻ với bạn đầu) có 3! cách.
Xếp 4 bạn còn lại ngồi xen kẽ 4 bạn đã xếp ở trên có 4! cách.
Vậy có 3! · 4! = 144 cách.
Bạn An có 6 quyển sách giáo khoa khác nhau và 4 quyển vở bài tập khác nhau. Có bao nhiêu cách sắp xếp các quyển vở trên một kệ dài biết rằng các quyển sách giáo khoa xếp kề nhau?
Ta có 6 quyển sách giáo khoa là một nhóm và xếp nhóm này với 4 quyển vở khác nhau, khi đó ta có 5! cách xếp.
Mỗi cách đổi vị trí các quyển sách giáo khoa cho nhau thì tương ứng sinh ra một cách sắp xếp mới mà có 6! cách đổi vị trí các quyển sách giáo khoa. Vậy số cách sắp xếp là 6!.5!
Lấy ngẫu nhiên một số có 5 chữ số. Tính xác suất để chọn được số có dạng
thỏa mãn
hoặc
.
Lấy ngẫu nhiên một số có 5 chữ số. Tính xác suất để chọn được số có dạng thỏa mãn
hoặc
.
Cho dãy số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số có chẵn, mỗi số có 5 chữ số trong đó có đúng hai số lẻ, 2 số lẻ đó đứng cạnh nhau.
Gọi số tự nhiên có hai chữ số lẻ khác nhau từ các số 0, 1, 2, 3, 4, 5, 6 là m
Số cách chọn được m là:
Số chẵn có 5 chữ số mà hai số lẻ đứng kề nhau phải chứa M và ba trong bốn chữ số 0; 2; 4; 6
Gọi là số thỏa mãn yêu cầu bài toán
Trường hợp 1: Nếu a = m ta có:
Số cách chọn a là 1 cách
Số cách chọn b, c, d là cách
Trướng hợp 2: Nếu a khác m thì ta có:
Số cách chọn a là 3 cách
Nếu b = m thì có 1 cách chọn b và cách chọn c, d
Nếu c = m thì có 1 cách chọn c và cach chọn b, d
=> Số các số được tạo thành là:
Giả sử có bảy bông hoa khác nhau và ba lọ hoa khác nhau. Hỏi có bao nhiêu cách cắm ba bông hoa vào ba lọ đã cho (mỗi lọ cắm một bông)?
Số cách xếp bảy bông hoa khác nhau vào ba lọ hoa khác nhau là số chỉnh hợp chập 3 của 7 phần tử.
=> Có cách.
Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.
Ta có:
gọi B: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”
Ta có:
Có bao nhiêu cách chọn một tổ tưởng tổ dân phố từ một nhóm cư dân gồm 25 nam và 20 nữ?
Số cách chọn một người từ 45 người là: (cách)
Vậy có 45 cách chọn tổ trưởng tổ dân phố.
Ngân hàng đề thi gồm 100 câu hỏi. Mỗi đề thi có 5 câu. Một học sinh thuộc 80 câu. Tìm xác suất để học sinh đó ngẫu nhiên làm được một đề thi trong đó có 4 câu mình đã học thuộc.
Số cách chọn 1 đề thi bất ki (gồm 5 câu trong 100 câu) là
Gọi biến cố A: “học sinh đó làm được một đề thi trong đó có 4 câu mình đã học thuộc”.
Học sinh đã học thuộc 80 câu nên có cách chọn ra 4 câu đã học thuộc và có
cách chọn ra 1 câu hỏi còn lại chưa học thuộc.
Do đó
Gieo ngẫu nhiên một con xúc xắc. Hãy liệt kê các phần tử của biến cố mặt xuất hiện có số chấm chẵn?
Ta có:
Vì mặt xuất hiện có số chấm chẵn nên các phần tử của biến cố cần tìm là:
Rút ngẫu nhiên 2 tấm thẻ từ một hộp chứa 20 thẻ được đánh số từ 1 đến 20. Tính số phần tử của biến cố M “tích hai tấm thẻ rút được là số chẵn”?
Tích hai số trên tấm thẻ được rút ra là số chẵn khi có ít nhất một số chẵn.
Trường hợp 1: Cả hai số lấy được đều là số chẵn
=> Số cách sắp xếp là: cách
Trường hợp 2: Hai tấm thẻ lấy được gồm một số chẵn và một số lẻ ta có: 10 . 10 = 100 cách
Suy ra phần tử.
Một kệ sách có 15 quyển sách (4 quyển sách Toán khác nhau, 5 quyển sách Lý khác nhau và 6 quyển sách Văn khác nhau). Người ta lấy ngẫu nhiên 4 quyển sách từ kệ. Tính xác suất để số sách lấy ra không đủ ba môn.
Số phần tử của không gian mẫu là
Gọi A là biến cố “Lấy ra 4 quyển sách có đủ 3 môn”.
Trường hợp 1: 2 sách Toán, 1 sách Lý, 1 sách Văn có cách lấy.
Trường hợp 2: 1 sách Toán, 2 sách Lý, 1 sách Văn có cách lấy.
Trường hợp 3: 1 sách Toán, 1 sách Lý, 2 sách Văn có cách lấy.
Vậy kết quả thuận lợi cho biến cố A là
Xác suất của biến cố A là:
Xác suất cần tìm là:
Chọn ngẫu nhiên 3 giáo viên trong tổ chuyên môn Hóa – Sinh - Thể dục để thành lập một đoàn công tác sao cho mỗi môn phải có một giáo viên. Biết tổ có 6 giáo viên Hóa, 5 giáo viên Sinh, 3 giáo viên Thể dục, trong môn Hóa có 3 giáo viên nữ, môn Sinh có 2 giáo viên nữ và môn Thể dục có 1 giáo viên nữ. Tính xác suất để đoàn công tác có đúng một giáo viên nữ?
Gọi H là biến cố “Có một giáo viên nữ môn Hóa trong đoàn”
S là biến cố “Có một giáo viên nữ môn Sinh trong đoàn”
T là biến cố “Có một giáo viên nữ môn Thể dục trong đoàn”
Ta có:
Gọi X là biến cố “Có đúng một giáo viên nữ trong đoàn”.
Ta có
Lại có:
Cho tập hợp
. Lập từ
số tự nhiên có
chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ
. Tính xác suất để chọn được số chia hết cho
?
Cho tập hợp . Lập từ
số tự nhiên có
chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ
. Tính xác suất để chọn được số chia hết cho
?
Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:
a) Xác suất để lấy được chỉ màu đỏ
Đúng||Sai
b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai
c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng
Sai||Đúng
d) Xác suất lấy các viên bi có đủ ba màu
Sai||Đúng
Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:
a) Xác suất để lấy được chỉ màu đỏ Đúng||Sai
b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai
c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng Sai||Đúng
d) Xác suất lấy các viên bi có đủ ba màu Sai||Đúng
Số cách chọn 5 viên bi trong 15 viên bi là .
Gọi : “5 viên bi lấy được có đủ 3 màu "
Gọi : " 5 viên bi lấy được có không đủ 3 màu "
Chọn 5 viên bi không đủ 3 màu xảy ra các trường hợp
+ 5 viên màu đỏ có 1 cách
+ 5 viên màu vàng và 1 viên màu xanh hoặc đỏ có cách.
Chỉ có xanh và đỏ có .
Chỉ có xanh và vàng có .
Chỉ có đỏ và vàng có .
Vậy .
Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn 3 học sinh trong đó có nhiều nhất 1 học sinh nam?
Số cách chọn ba học sinh trong đó có 1 học sinh nam là: cách
Số cách chọn ba học sinh trong đó không có học sinh nam là: cách
=> Số cách chọn 3 học sinh trong đó có nhiều nhất một học sinh nam là: cách