Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Các quy tắc tính xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Lấy ngẫu nhiên 5 quả cầu từ hộp có 4 quả xanh, 5 quả đỏ và 6 quả vàng. Xác suất để lấy được 5 quả cầu có đủ 3 màu?

    Kết quả: 310/429

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Lấy ngẫu nhiên 5 quả cầu từ hộp có 4 quả xanh, 5 quả đỏ và 6 quả vàng. Xác suất để lấy được 5 quả cầu có đủ 3 màu?

    Kết quả: 310/429

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Số phần tử không gian mẫu n(\Omega) =C_{15}^{5} = 3003

    Gọi A là biến cố lấy được 5 quả cầu đủ 3 màu

    => \overline{A} là biến cố 5 quả cầu lấy được không đủ 3 màu. Khi đó ta có các trường hợp như sau:

    TH1: lấy được 5 quả cầu đỏ có 1 cách

    TH2: lấy được 5 quả màu vàng có C_{6}^{5}= 6 cách

    TH3: lấy được chỉ có xanh và đỏ C_{4}^{4}.C_{5}^{1} + C_{4}^{3}.C_{5}^{2} +C_{4}^{2}.C_{5}^{3} + C_{4}^{1}.C_{5}^{4} = 125 cách

    TH4: lấy được chỉ có xanh và vàng C_{4}^{4}.C_{6}^{1} + C_{4}^{3}.C_{6}^{2} +C_{4}^{2}.C_{6}^{3} + C_{4}^{1}.C_{6}^{4} = 246 cách

    TH5: lấy được chỉ có đỏ và vàng C_{5}^{4}.C_{6}^{1} + C_{5}^{3}.C_{6}^{2} +C_{5}^{2}.C_{6}^{3} + C_{5}^{1}.C_{6}^{4} = 455 cách

    Vậy n\left( \overline{A} ight) = 833\Rightarrow n(A) = n(\Omega) - n\left( \overline{A} ight) =2170

    \Rightarrow P(A) =\frac{310}{429}

  • Câu 2: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để một trong hai con súc sắc xuất hiện mặt 5 chấm?

    Gọi hai súc sắc là M; N

    Gọi C là biến cố "Có đúng một trong hai con súc sắc xuất hiện mặt 5 chấm".

    Ta có C là hợp của hai biến cố xung khắc A\overline{B};\overline{A}B tức là C = A\overline{B} \cup \overline{A}B

    \Rightarrow P(C) = P\left( A\overline{B}
\cup \overline{A}B ight) = P\left( A\overline{B} ight) + P\left(
\overline{A}B ight)

    Ta có \left\{ \begin{matrix}
P\left( \overline{A} ight) = 1 - P(A) = \frac{5}{6} \\
P\left( \overline{B} ight) = 1 - P(B) = \frac{5}{6} \\
\end{matrix} ight.

    Vì A, B là hai biến cố độc lập với nhau

    Nên \overline{A} và B độc lập với nhau; \overline{B} và A độc lập với nhau

    \Rightarrow P(C) = P\left( A\overline{B}
ight) + P\left( \overline{A}B ight)

    = P(A)P\left( \overline{B} ight) +
P\left( \overline{A} ight).P(B) = \frac{1}{6}.\frac{5}{6} +
\frac{5}{6}.\frac{1}{6} = \frac{5}{18}

  • Câu 3: Thông hiểu

    Lấy ngẫu nhiên 3 tấm thẻ trong hộp đựng 10 thẻ trắng, 8 thẻ đỏ và 7 thẻ xanh. Tính xác suất để lấy được 3 tấm thẻ trong đó có ít nhất một thẻ xanh?

    Gọi B là biến cố có ít nhất một tấm thẻ xanh

    Suy ra \overline{B} là biến cố lấy được 3 tấm thẻ không có thẻ xanh nào.

    \Rightarrow P\left( \overline{B} ight)
= P\frac{C_{18}^{3}}{C_{25}^{3}}

    \Rightarrow \Rightarrow P(B) = 1 -
P\left( \overline{B} ight) = 1 - \frac{C_{18}^{3}}{C_{25}^{3}} \approx
0,645

  • Câu 4: Vận dụng

    Xác suất để thắng một trận game là \frac{2}{5} . Hỏi người chơi phải chơi ít nhất bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi lớn hơn \frac{19}{20} ?

    Đáp án: 6 trận

    Đáp án là:

    Xác suất để thắng một trận game là \frac{2}{5} . Hỏi người chơi phải chơi ít nhất bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi lớn hơn \frac{19}{20} ?

    Đáp án: 6 trận

    Gọi n là số trận người đó chơi.

    A là biến cố người đó thắng ít nhất 1 trận

    Suy ra \overline{A} là biến cố người đó không thắng trận nào.

    \overline{A} =
\overline{A_{1}}.\overline{A_{2}}.\overline{A_{3}}...\overline{A_{n}} trong đó \overline{A_{i}} là biến cố người đó thắng trận thứ i và P\left(
\overline{A_{i}} ight) = 0,6;i = \overline{1,n}

    \Rightarrow \left\{ \begin{matrix}
P\left( \overline{A} ight) = P\left( \overline{A_{1}} ight).P\left(
\overline{A_{2}} ight).P\left( \overline{A_{3}} ight)...P\left(
\overline{A_{n}} ight) = 0,6^{n} \\
P(A) = 1 - P\left( \overline{A} ight) = 1 - 0,6^{n} \\
\end{matrix} ight.

    Ta có bất phương trình

    1 - 0,6^{n} > 0,95

    \Leftrightarrow 0,6^{n} <
0,05

    \Leftrightarrow n >\log_{0,6}0,05

    Vậy giá trị nhỏ nhất của n bằng 6.

  • Câu 5: Nhận biết

    Một nhóm gồm 20 học sinh. Giáo viên chủ nhiệm muốn chọn một nhóm nhỏ gồm 3 thành viên giữ các chức vụ trưởng ban, phó ban và thư kí trong sự kiện sắp tới. Hỏi có bao nhiêu cách chọn?

    Chọn trưởng ban có 20 cách chọn.

    Chọn phó ban có 19 cách chọn.

    Chọn thư kí có 18 cách chọn.

    Theo quy tắc nhân ta có số cách chọn là: 20.19.18 = 6840 = A_{20}^{3}.

  • Câu 6: Nhận biết

    Một hộp đựng 8 viên bi màu xanh, 5 viên bi đỏ, 3 viên bi màu vàng. Có bao nhiêu cách chọn từ hộp đó ra 4 viên bi trong đó có đúng 2 viên bi xanh?

    Trong 4 viên bi có đúng 2 viên bi màu xanh

    => 2 viên bi còn lại nằm trong 8 viên bi (màu đỏ và màu vàng)

    => Số cách chọn 4 viên bi trong đó có đúng 2 viên bi xanh là: C_8^2.C_8^2 = 784 cách

  • Câu 7: Thông hiểu

    Cho tập hợp A =
\left\{ 1;2;3;4 ight\}. Có thể lập được bao nhiêu số có các chữ số phân biệt từ tập hợp A?

    Ta có:

    Số có 1 chữ số có 4 số.

    Số có 2 chữ số có A_{4}^{2} = 12 số.

    Số có 3 chữ số có A_{4}^{3} = 24 số.

    Số có 4 chữ số có P_{4} = 24 số.

    Vậy các số lập được là 4 + 12 + 24 + 24 = 64 số.

  • Câu 8: Vận dụng

    Đội học sinh giỏi toán 10 có tất cả 18 học sinh, trong đó có 7 học sinh giỏi môn Toán, 6 học sinh giỏi môn Văn và 5 học sinh giỏi môn Hóa. Hỏi có bao nhiêu cách chọn 8 học sinh đi dự thi chính thức, biết rằng mỗi môn có ít nhất 1 học sinh.

    Số cách chọn 8 học sinh gồm hai khối là phần bù của cách chọn 8 học sinh đi dự đại hội sao cho mỗi khối có ít nhất 1 học sinh được chọn.

    Số cách chọn 8 học sinh từ hai khối là: C_{13}^8 + C_{11}^8 + C_{12}^8 = 1947

    Số cách chọn 8 học sinh bất kì là: C_{18}^8

    Số cách chọn thỏa yêu cầu bài toán: C_{18}^8 -1947=41811

  • Câu 9: Nhận biết

    Giả sử hai biến cố A;B là hai biến cố xung khắc. Công thức nào sau đây đúng?

    Vì hai biến cố A và B là hai biến cố xung khắc nên theo công thức cộng xác suất ta có: P(A \cup B) = P(A) +
P(B).

  • Câu 10: Thông hiểu

    Một tổ có 9 học sinh, trong đó có 5 nam và 4 nữ được xếp thành một hàng dọc. Tính xác suất sao cho không có 2 bạn nam nào đứng kề nhau.

    Gọi A là biến cố "Xếp 9 học sinh thành một hàng dọc trong đó không có 2 bạn nam nào đứng kề nhau".

    Tìm |\Omega|

    Xếp 9 học sinh thành môt hàng dọc, có 9! cách xếp \Rightarrow |\Omega| = 9!

    Tìm \left| \Omega_{A}
ight|

    Xếp 9 học sinh thành một hàng dọc trong đó không có 2 ban nam nào đứng kề nhau.

    Vì số nam lớn hơn số nữ nên ta phải xếp một học sinh nam đứng trước rồi đến một học sinh nữ, tiếp tục cứ xếp nam nữ xen kẽ nhau, học sinh xếp cuối cùng là nam.

    Vậy số cách xếp là 5!.4! cách xếp.

    Vậy xác suất cần tính là: P(A) =
\frac{\left| \Omega_{A} ight|}{|\Omega|} = \frac{5!.4!}{9!} =
\frac{1}{126}

  • Câu 11: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nữ?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Số cách chọn 2 nữ trong 4 nữ là C_{4}^{2}
= 6 do đó xác suất của biến cố này là \frac{6}{15} = \frac{2}{5}.

  • Câu 12: Thông hiểu

    Phát biểu biến cố A = {123, 234, 124,134} dưới dạng mệnh đề

    Mệnh đề đúng được phát biểu như sau:

    "Số tự nhiên có ba chữ số được thành lập có chữ số đứng sau lớn hơn chữ số đứng trước" 

  • Câu 13: Vận dụng

    Nếu tất cả các đường chéo của đa giác đều 12 cạnh được vẽ thì số đường chéo là:

    Đa giác đều có 12 cạnh tương ứng với 12 đỉnh

    Cứ nối 2 đỉnh của đa giác được một đoạn thẳng (là cạnh hoặc đường chéo)

    Số đoạn thẳng được tạo thành khi nối hai điểm bất kì của đa giác là: C_{12}^2 = 66 đoạn thẳng

    Mà số cạnh của đa giác là 12 cạnh

    => Số đường chéo thu được là: 66 - 12 = 54 đường chéo

  • Câu 14: Thông hiểu

    Cho các chữ số 0, 1, 2, 3, 4, 5. Từ các chữ số đã cho lập được bao nhiêu số chẵn có 4 chữ số và các chữ số đó phải khác nhau:

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ,\left( {a e b e c e d} ight)

    Do số cần tìm là số chẵn => d = {0; 2; 4}

    Trường hợp 1: d = 0 => Có 1 cách chọn d

    Số cách chọn a là 5 cách

    Số cách chọn b là 4 cách

    Số cách chọn c là 3 cách

    => Trường hợp 1 lập được 5 . 4 . 3 . 1 = 60 số

    Trường hợp 2: d ∈ {2; 4} => Có 2 cách chọn d

    Số cách chọn a là 4 cách

    Số cách chọn b là 4 cách

    Số cách chọn c là 3 cách

    => Trường hợp 2 lập được 4 . 4 . 3 . 2 = 96 số

    => Từ các chữ số đã cho lập được bao nhiêu số chẵn có 4 chữ số và các chữ số đó phải khác nhau: 60 + 96 = 156 số

  • Câu 15: Nhận biết

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn 3 học sinh trong đó có 1 học sinh nam và 2 học sinh nữ?

    Số cách chọn 1 học sinh nam là: C_{25}^1 = 25 cách

    Số cách chọn 2 học sinh nữ là: C_{15}^2 = 105 cách

    Áp dụng quy tắc nhân ta có:

    Số cách chọn 3 học sinh trong đó có 1 học sinh nam và 2 học sinh nữ là:

    C_{25}^1.C_{15}^2 = 25.105 = 2625 cách

  • Câu 16: Nhận biết

    Một nhóm học sinh gồm 15 người. Cần chọn 3 người lần lượt làm các chức vụ nhóm trưởng, nhóm phó và kiểm soát. Số cách chọn là:

    Số cách chọn 3 người đảm nhiệm 3 chức vụ khác nhau từ 15 người là:

    A_{15}^{3} = 2730 (cách)

    Vậy có tất cả 2730 cách chọn.

  • Câu 17: Thông hiểu

    Một bình đựng 5 quả cầu xanh và 4 quả cầu đỏ và 3 quả cầu vàng. Chọn ngẫu nhiên 3 quả cầu. Xác suất để được 3 quả cầu khác màu là:

    Số quả cầu có trong bình là: 5 + 4 + 3 = 12 quả

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{12}^3

    Giả sử A là biến cố "3 quả cầu khác màu"

    => Số phần tử của biến cố A là: n\left( A ight) = C_5^1.C_4^1.C_3^1

    => Xác suất để được 3 quả cầu khác màu là P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{C_5^1.C_4^1.C_3^1}}{{C_{12}^3}} = \frac{3}{{11}}

  • Câu 18: Thông hiểu

    Ông và bà An cùng có 6 đứa con đang lên máy bay theo một hàng dọc. Có bao nhiêu cách xếp hàng khác nhau nếu ông An hay bà An đứng ở đầu hoặc cuối hàng:

    Ta có:

    Ông An hay bà An đứng ở dầu hoặc cuối hàng

    => Có hai cách sắp xếp

    Tiếp theo xếp 6 đứa con đang lên máy bay theo một hàng dọc

    => Có 6! cách sắp xếp

    => Có tất cả 2 . 6! = 1440 cách 

  • Câu 19: Thông hiểu

    Một hộp đựng 4 bi xanh và 6 bi đỏ lần lượt rút 2 viên bi. Xác suất để rút được một bi xanh và một bi đỏ là:

    Tổng số viên bi là 4 + 6 = 10 (viên bi)

    Số cách lấy hai viên bi từ số viên bi đã cho là: C_{10}^2 (Số phần tử không gian mẫu)

    Số cách để rút được một bi xanh và 1 bi đỏ là: C_4^1.C_6^1

    => Xác suất để rút được một bi xanh và 1 bi đỏ là: P = \frac{{C_4^1.C_6^1}}{{C_{10}^2}} = \frac{8}{{15}}

  • Câu 20: Thông hiểu

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Hãy mô tả biến cố bắn trúng mục tiêu ít nhất một lần qua các biến cố M_{1};M_{2};M_{3};M_{4}.

    Gọi M là biến cố bắn trúng mục tiêu ít nhất 1 lần

    Khi đó \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = M_{1} \cup M_{2} \cup
M_{3} \cup M_{4}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 42 lượt xem
Sắp xếp theo