Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Các quy tắc tính xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Một đề thi trắc nghiệm môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm, mỗi câu hỏi có 4 đáp án và chỉ có đúng 1 đáp án đúng. Nếu trả lời đúng được 0,2 điểm và trả lời sai sẽ không có điểm. Bạn H làm bài bằng cách chọn ngẫu nhiêu đáp án cho tất cả 50 câu hỏi. Biết rằng xác suất làm đúng x câu hỏi của H đạt giá trị lớn nhất. Tính giá trị của x?

    Đáp án: 12

    Đáp án là:

    Một đề thi trắc nghiệm môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm, mỗi câu hỏi có 4 đáp án và chỉ có đúng 1 đáp án đúng. Nếu trả lời đúng được 0,2 điểm và trả lời sai sẽ không có điểm. Bạn H làm bài bằng cách chọn ngẫu nhiêu đáp án cho tất cả 50 câu hỏi. Biết rằng xác suất làm đúng x câu hỏi của H đạt giá trị lớn nhất. Tính giá trị của x?

    Đáp án: 12

    Gọi A là biến cố làm đúng x câu hỏi của bạn H

    Ta có xác suất để làm đúng 1 câu là \frac{1}{4}, xác suất làm sai 1 câu là \frac{3}{4}

    Theo quy tắc nhân xác suất ta có:

    Xác suất của biến cố A là P(A) =C_{50}^{x}.\left( \frac{1}{4} ight)^{x}.\left( \frac{3}{4} ight)^{50- x} = \frac{C_{50}^{x}}{3^{x}}.\left( \frac{3}{4}ight)^{50}

    Xét hệ bất phương trình sau:

    \left\{ \begin{matrix}\dfrac{C_{50}^{x}}{3^{x}}.\left( \dfrac{3}{4} ight)^{50} \geq\dfrac{C_{50}^{x + 1}}{3^{x + 1}}.\left( \dfrac{3}{4} ight)^{50} \\\dfrac{C_{50}^{x}}{3^{x}}.\left( \dfrac{3}{4} ight)^{50} \geq\dfrac{C_{50}^{x - 1}}{3^{x - 1}}.\left( \dfrac{3}{4} ight)^{50} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}3C_{50}^{x} \geq C_{50}^{x + 1} \\C_{50}^{x} \geq 3C_{50}^{x - 1} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}3.\dfrac{50!}{x!(50 - x)!} \geq \dfrac{50!}{(x + 1)!(49 - x)!} \\\dfrac{50!}{x!(50 - x)!} \geq \dfrac{50!}{(x - 1)!(51 - x)!} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{3}{50 - x} \geq \dfrac{1}{x + 1} \\\dfrac{1}{x} \geq \dfrac{3}{51 - x} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq \dfrac{47}{4} \\x \leq \dfrac{51}{4} \\\end{matrix} ight.\ ;\left( x\mathbb{\in Z} ight) \Rightarrow x =12

  • Câu 2: Thông hiểu

    Gọi S là tập hợp các ước nguyên dương của 1605632. Chọn ngẫu nhiên một số từ S. Xác suất để số được chọn chia hết cho 7 là

    Đáp án: 2/3 (Kết quả ghi dưới dạng phân số tối giản a/b).

    Đáp án là:

    Gọi S là tập hợp các ước nguyên dương của 1605632. Chọn ngẫu nhiên một số từ S. Xác suất để số được chọn chia hết cho 7 là

    Đáp án: 2/3 (Kết quả ghi dưới dạng phân số tối giản a/b).

    Ta có: 1605632 =
2^{15}.7^{2}

    Suy ra số các ước nguyên dương của 1605632 là (15 + 1)(2 + 1) = 48.

    Số phần tử của không gian mẫu: n(\Omega)
= 48.

    Trong đó, số các số chia hết cho 7 là: (15 + 1).2 = 32.

    Xác xuất cần tìm là: P = \frac{32}{48} =
\frac{2}{3}.

  • Câu 3: Thông hiểu

    Cho A = \{0, 1, 2, 3, 4, 5, 6\}. Từ tập A có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Ta có: {a e 0} => Có 6 cách chọn a

    Số cách chọn b, c, d, e là: A_6^4 = 360 cách

    => Số các số tự nhiên có 5 chữ số đôi một khác nhau được tạo thành là: 360 . 6 = 2160 số

  • Câu 4: Thông hiểu

    Chọn ngẫu nhiên một biển số xe gắn máy cùng một họ F1, mỗi biển số có 4 chữ số. Tính xác suất để biển số có hai chữ số đầu giống nhau và hai chữ số sau giống nhau, biết 4 chữ số đó không hoàn toàn giống nhau?

    Gọi A là biến cố "Biển số có hai chữ số đầu giống nhau, hai chữ số sau giống nhau và 4 chữ số đó không hoàn toàn giống nhau"

    Tìm |\Omega|

    Ta tìm "số" có 4 chữ số, chữ số đầu tiên có thể bằng 0

    Giả sử \overline{abcd} có bốn chữ số chữ số đầu tiên có thể bằng 0.

    Có 10 cách chọn a, 10 cách chọn b, 10 cách chọn c và 10 cách chọn d.

    Vậy có 104 số có 4 chữ số, chữ số đầu tiên có thể bằng

    \Rightarrow |\Omega| =
10^{4}

    Tìm \left| \Omega_{A}
ight|

    Ta tìm "số" các số có 4 chữ số, trong đó hai chữ số đầu giống nhau, hai chữ số sau giống nhau và 4 chữ số đó không hoàn toàn giống nhau, chữ số đầu tiên có thể bằng 0.

    Giả sử \overline{mmpp} là một số như mô tả

    Có 10 cách chọn m và 9 cách chọn p

    Khi đó \left| \Omega_{A} ight| = 10.9 =
90 phần tử.

    Xác suất cần tính là: P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{10.9}{10^{4}} = \frac{9}{1000} =
0,009.

  • Câu 5: Nhận biết

    Bạn muốn mua một cây bút mực và một cây bút chì. Các cây bút mực có 8 màu khác nhau, các cây bút chì cũng có 8 màu khác nhau. Như vậy bạn có bao nhiêu cách chọn

    Số cách chọn một cây bút mực là tổ hợp chập 1 của 8: C_8^1 = 8 cách 

    Số cách chọn một cây bút chì là tổ hợp chập 1 của 8: C_8^1 = 8 cách

    => Số cách chọn một cây bút mực và một cây bút chì là: 8 . 8 = 64 cách

  • Câu 6: Nhận biết

    Một người bỏ ngẫy nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Xác suất để có ít nhất một lá thư được bỏ đúng phong bì:

    Số phần tử không gian mẫu là 3! = 6

    Gọi A là biến cố có ít nhất một lá thư được bỏ đúng phong bì.

    Ta xét các trường hợp sau:

    Nếu lá thư thứ nhất bỏ đúng phong vì, hai lá thư còn lại để sai thì có duy nhất 1 cách.

    Nếu lá thư thứ hai bỏ đúng phong bì, hai lá thư còn lại để sai thì có duy nhất 1 cách

    Nếu lá thư thứ ba bỏ đúng phong big, hai lá thư còn lại để sai thì chỉ có duy nhất 1 cách.

    Không thể có trường hợp 2 lá thứ bỏ đúng và 1 lá thư bỏ sai.

    Cả ba lá thư đều bỏ đúng có duy nhất 1 cách

    => n(A) = 4

    Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{4}{6} =
\frac{2}{3}

  • Câu 7: Nhận biết

    Cho một tập hợp A gồm 12 phần tử. Hỏi số tập hợp con gồm 3 phần tử của tập hợp A bằng bao nhiêu?

    Ta có:

    Mỗi tập con gồm 3 phân tử của tập A là một tổ hợp chập 3 của 12.

    Vậy số tập con cần tìm là C_{12}^{3}.

  • Câu 8: Thông hiểu

    Một hộp có 1 viên bi, trong đó có 7 quả cầu màu đỏ được đánh số từ 1 đến 7, 6 quả cầu màu xanh được đánh số từ 1 đến 6 và 5 quả cầu màu vàng được đánh số từ 1 đến 5. Lấy ngẫu nhiên trong hộp ra 3 quả cầu.

    a) Xác suất để lấy được 3 quả cầu màu đỏ là \frac{35}{816} Đúng||Sai

    b) Xác suất để lấy được 3 quả cùng màu là \frac{67}{816} Sai||Đúng

    c) Xác suất để lấy được 3 quả cầu có đủ ba màu là \frac{35}{136} Đúng||Sai

    d) Xác suất để lấy được 3 quả cầu khác màu và khác số là \frac{121}{816}. Đúng||Sai

    Đáp án là:

    Một hộp có 1 viên bi, trong đó có 7 quả cầu màu đỏ được đánh số từ 1 đến 7, 6 quả cầu màu xanh được đánh số từ 1 đến 6 và 5 quả cầu màu vàng được đánh số từ 1 đến 5. Lấy ngẫu nhiên trong hộp ra 3 quả cầu.

    a) Xác suất để lấy được 3 quả cầu màu đỏ là \frac{35}{816} Đúng||Sai

    b) Xác suất để lấy được 3 quả cùng màu là \frac{67}{816} Sai||Đúng

    c) Xác suất để lấy được 3 quả cầu có đủ ba màu là \frac{35}{136} Đúng||Sai

    d) Xác suất để lấy được 3 quả cầu khác màu và khác số là \frac{121}{816}. Đúng||Sai

    C_{18}^{3} = 816 cách lấy 3 quả cầu từ hộp.

    a) Số cách lấy được 3 quả cầu màu đỏ là: C_{7}^{3}

    Xác suất để lấy được 3 quả cầu màu đỏ là P = \frac{C_{7}^{3}}{C_{18}^{3}} =
\frac{35}{816}

    b) Số cách lấy được 3 quả cầu cùng màu là: C_{7}^{3} + C_{6}^{3} + C_{5}^{3}

    Xác suất để lấy được 3 quả cùng màu là P
= \frac{C_{7}^{3} + C_{6}^{3} + C_{5}^{3}}{C_{18}^{3}} = \frac{65}{816}
eq \frac{67}{816}

    c) Số cách lấy được 3 quả cầu có đủ 3 màu là: C_{7}^{1}.C_{6}^{1}.C_{5}^{1}

    Xác suất để lấy được 3 quả cầu có đủ ba màu là: P =
\frac{C_{7}^{3}.C_{6}^{3}.C_{5}^{3}}{C_{18}^{3}} = \frac{210}{816} =
\frac{35}{136}

    d) Bước 1: Lấy 1 quả cầu màu vàng có 5 cách.

    Bước 2: Lấy 1 quả cầu màu xanh có 5 cách. (vì khác số với quả vàng).

    Bước 3: Lấy một quả màu đỏ có 5 cách (vì khác số với quả xanh và quả vàng).

    Suy ra có 5.5.5 = 125 cách lấy 3 quả cầu khác màu và khác số,

    Suy ra xác suất của biến cố là: P =
\frac{125}{C_{18}^{3}} = \frac{125}{816}

  • Câu 9: Vận dụng

    Sắp xếp 6 học sinh nam; 5 học sinh nữ cùng một giáo viên chủ nhiệm thành một vòng tròn sao cho giáo viên đứng giữa hai học sinh nam. Tính số cách sắp xếp?

    Ta có:

    Cố định giáo viên tại một vị trí

    Chọn 2 học sinh nam để xếp cạnh giáo viên => Có C_{6}^{2} cách.

    Xếp hai học sinh nam vừa chọn cạnh giáo viên => Có 2! cách.

    Cuối cùng xếp 9 học sinh còn lại vào các vị trí còn trống => Có 9! cách.

    Vậy số cách sắp xếp theo yêu cầu bài toán là: C_{6}^{2}.2!.9!.

  • Câu 10: Nhận biết

    Trong bài kiểm tra 15 phút, Minh tô ngẫu nhiên 5 câu trắc nghiệm. Tính xác suất để Minh tô sai cả 5 câu?

    Xác suất tô sai 1 câu là \frac{3}{4}

    Vậy xác suất để Minh tô sai cả 5 câu là \left( \frac{3}{4} ight)^{5} =
\frac{243}{1024}

  • Câu 11: Thông hiểu

    Cho A = \{1, 2, 3, 4, 5\}. Từ tập A có thể lập được bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau chia hết cho 5?

    Số tự nhiên có 3 chữ số đôi một khác nhau có dạng: \overline {abc} ;\left( {a e b e c} ight)

    Do số cần tìm chia hết cho 5 => c = 5

    Số cách chọn a là 4 cách

    Số cách chọn b là 3 cách

    => Số các số tự nhiên có 3 chữ số đôi một khác nhau chia hết cho 5 là: 1 . 4 . 3 = 12 số

  • Câu 12: Thông hiểu

    Sắp xếm 4 bạn nam và 4 bạn nữ vào một bàn tròn. Biết mỗi bạn chỉ ngồi 1 chỗ và bàn có đủ 8 chỗ ngồi. Tính xác suất sao cho hai bạn cùng giới không ngồi cạnh nhau?

    Gọi A là biến cố 2 người không cùng giới ngồi cạnh nhau

    n là số cách sắp xếp người xung quanh bàn tròn

    Mỗi cách sắp xếm là hoán vị của 8 vị trí, khi đó số hoán vị cần tìm là 8!

    Mỗi hoán vị không đổi nếu ta thực hiện vòng quanh nên mỗi hoán vị đã được tính 8 lần.

    Vậy n = \frac{8!}{8} = 7!

    Xếp 4 nữ vào 4 vị trí ta có: \frac{4!}{4}
= 3! cách

    Xếp 4 nam vào 4 vị trí qua 4 khoảng, số cách sắp xếp 4!

    Vậy P(A) = \frac{3!.4!}{7!} =
\frac{1}{35}

  • Câu 13: Thông hiểu

    Chọn ngẫu nhiên một gia đình có 3 con trong khu dân cư và quan sát giới tính của các con trong gia đình đó. Tính số phần tử của không gian mẫu.

    Chọn ngẫu nhiên một gia đình có 3 con và quan sát giới tính của ba người con đó ta có sơ đồ như sau:

    Không gian mẫu \Omega = \left\{
TTT;TTG;TGT;TGG;GGG;GGT;GTG;GTT ight\}

    \Rightarrow n(\Omega) = 8

  • Câu 14: Nhận biết

    Gieo đồng thời hai con xúc xắc cân đối và đồng chất. Chọn mô tả đúng dưới đây?

    Mô tả không gian mẫu đúng là: \Omega =
\left\{ (a;b)|a,b \in \left\{ 1;2;3;4;5;6 ight\} ight\}

  • Câu 15: Thông hiểu

    Có 15 đội bóng đá thi đấu theo thể thức vòng tròn tính điểm. Hỏi cần phải tổ chức bao nhiêu trận đấu?

    Lấy hai đội bất kỳ trong 15 đội bóng tham gia thi đấu ta được một trận đấu. Vậy số trận đấu chính là một tổ hợp chập 2 của 15 phần tử (đội bóng đá).

    Như vậy, ta có C_{15}^2 = \frac{{15!}}{{13!.2!}} = 105 trận đấu.

  • Câu 16: Vận dụng

    Trong một thí nghiệm lai tạo cây bơ, biết rằng quả tròn là tính trạng trội hoàn toàn so với quả dài. Cho cây quả tròn thuần chủng thụ phấn với cây quả dài ta được đời cây F1 toàn là cây quả tròn. Tiếp tục cho cây đời F1 thụ phấn với nhau và thu hoạch được các cây con mới. Lần lượt chọn ngẫu nhiên 2 cây con mới. Tính xác suất của biến cố trong 2 cây con mới được chọn có đúng 1 cây quả tròn?

    Quy ước gene A: quả tròn và gene a: quả dài

    Ở thế hệ F2 ba kiểu gene AA, Aa, aa xuất hiện với tỉ lệ 1: 2: 1 nên tỉ lệ quả tròn so với quả dài là 3 : 1

    Gọi A_{1} là biến cố cây được chọn lần thứ nhất là quả tròn

    A_{2} là biến cố cây được chọn lần thứ hai là quả tròn.

    Ta có: A_{1};A_{2} độc lập và P\left( A_{1} ight) = P\left( A_{2}
ight) = \frac{3}{4}

    Xác suất của biến cố có đúng 1 quả tròn trong 2 cây được lấy ra:

    P\left( A_{1}\overline{A_{2}} \cup
\overline{A_{1}}A_{2} ight) = P\left( A_{1}\overline{A_{2}} ight) +
P\left( \overline{A_{1}}A_{2} ight)

    = P\left( A_{1} ight)P\left(
\overline{A_{2}} ight) + P\left( \overline{A_{1}} ight)P\left( A_{2}
ight)

    = \frac{3}{4}.\frac{1}{4} +
\frac{1}{4}.\frac{3}{4} = \frac{3}{8}

  • Câu 17: Nhận biết

    Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?

    Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “A;B là hai biến cố xung khắc.”

  • Câu 18: Vận dụng

    Với các chữ số 0; 1; 2; 3; 4; 5; 6. Lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 5 có mặt đúng 4 lần, các chữ số khác mỗi chữ số có mặt đúng 1 lần.

     Số các số có bằng hoán vị của 10 chữ số trong đó chữ số 5 có mặt đúng 4 lần là: \frac{{10!}}{{4!}}

    Ta phải bỏ đi các số có chữ số 0 đứng đầu ví dụ: 0555512346

    Số các số có bằng hoán vị của 9 chữ số trong đó chữ số 5 có mặt đúng 4 lần là: \frac{{9!}}{{4!}}

     

    => Số các số cần phải tìm thỏa mãn điều kiện là: \frac{{10!}}{{4!}} -\frac{{9!}}{{4!}} = 136080

  • Câu 19: Nhận biết

    Trong một buổi hoà nhạc, có các ban nhạc của các trường đại học từ Huế, Đà Nẵng, Quy Nhơn, Nha Trang, Đà Lạt tham dự. Tìm số cách xếp đặt thứ tự để các ban nhạc Nha Trang sẽ biểu diễn đầu tiên.

     Theo bài ra ta có 5 ban nhạc đến từ các trường

    Chọn ban nhạc Nha Trang biểu diễn đầu tiên

    => Số cách sắp xếp 4 ban nhạc còn lại là: 4! = 24 cách

    => Số cách xếp đặt thứ tự để các ban nhạc Nha Trang sẽ biểu diễn đầu tiên là 24 cách.

  • Câu 20: Thông hiểu

    Số các số tự nhiên gồm 5 chữ số chia hết cho 10 là:

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Số cần tìm chia hết cho 10 => e = 0 => Có 1 cách chọn e

    Số cách chọn a là 9 cách

    Số cách chọn b là 10 cách

    Số cách chọn c là 10 cách

    Số cách chọn d là 10 cách

    => Số các số tự nhiên gồm 5 chữ số chia hết cho 10 là: 9 . 10 . 10 . 10 = 9000 số

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 42 lượt xem
Sắp xếp theo