Số cách chọn một ban chấp hành gồm một trưởng ban, một phó ban, một thư kí và một thủ quỹ được chọn từ 16 thành viên là:
Số cách chọn ban chấp hành (4 thành viên) từ 16 thành viên là:
Số cách chọn một ban chấp hành gồm một trưởng ban, một phó ban, một thư kí và một thủ quỹ được chọn từ 16 thành viên là:
Số cách chọn ban chấp hành (4 thành viên) từ 16 thành viên là:
Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:
Số phần tử không gian mẫu là:
Biến cố A là biến cố "mặt 6 chấm xuất hiện"
=>
=> Xác suất để mặt 6 chấm xuất hiện:
Tung hai lần liên tiếp một đồng xu. Giả sử biến cố B là biến cố mặt sấp xuất hiện ít nhất một lần. Khi đó biến cố đối của biến cố B là:
Biến cố đối của biến cố B là : “Mặt sấp không xuất hiện lần nào” nghĩa là mặt xuất hiện ở cả hai lần đều cho mặt ngửa”.
Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để một trong hai con súc sắc xuất hiện mặt 5 chấm?
Gọi hai súc sắc là M; N
Gọi C là biến cố "Có đúng một trong hai con súc sắc xuất hiện mặt 5 chấm".
Ta có C là hợp của hai biến cố xung khắc tức là
Ta có
Vì A, B là hai biến cố độc lập với nhau
Nên và B độc lập với nhau;
và A độc lập với nhau
Một đề thi trắc nghiệm môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm, mỗi câu hỏi có 4 đáp án và chỉ có đúng 1 đáp án đúng. Nếu trả lời đúng được 0,2 điểm và trả lời sai sẽ không có điểm. Bạn H làm bài bằng cách chọn ngẫu nhiêu đáp án cho tất cả 50 câu hỏi. Biết rằng xác suất làm đúng
câu hỏi của H đạt giá trị lớn nhất. Tính giá trị của
?
Đáp án: 12
Một đề thi trắc nghiệm môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm, mỗi câu hỏi có 4 đáp án và chỉ có đúng 1 đáp án đúng. Nếu trả lời đúng được 0,2 điểm và trả lời sai sẽ không có điểm. Bạn H làm bài bằng cách chọn ngẫu nhiêu đáp án cho tất cả 50 câu hỏi. Biết rằng xác suất làm đúng câu hỏi của H đạt giá trị lớn nhất. Tính giá trị của
?
Đáp án: 12
Gọi A là biến cố làm đúng x câu hỏi của bạn H
Ta có xác suất để làm đúng 1 câu là , xác suất làm sai 1 câu là
Theo quy tắc nhân xác suất ta có:
Xác suất của biến cố A là
Xét hệ bất phương trình sau:
Cho 4 chữ số
có thể lập được bao nhiêu chữ số biết rằng các số tạo thành thuộc khoảng
?
Gọi số cần tìm có dạng với
.
Theo giả thiết ta có hai cách chọn a
Với mỗi cách chọn a ta có 4 cách chọn b và 4 cách chọn x.
Vậy có số thỏa mãn yêu cầu đề bài.
Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn 3 học sinh trong đó có nhiều nhất 1 học sinh nam?
Số cách chọn ba học sinh trong đó có 1 học sinh nam là: cách
Số cách chọn ba học sinh trong đó không có học sinh nam là: cách
=> Số cách chọn 3 học sinh trong đó có nhiều nhất một học sinh nam là: cách
Một hộp chứa 10 quả cầu xanh và 5 quả cầu đỏ. Lấy ngẫu nhiên 5 quả cầu trong hộp. Tính xác suất của biến cố lấy được 5 quả cầu có đủ hai màu.
Số phần tử không gian mẫu là:
Gọi biến cố A lấy được 5 quả cầu có đủ 2 màu
=> lấy được 5 quả cầu lấy ra chỉ có 1 màu.
TH1: Lấy ra từ hộp 5 quả cầu xanh có cách
TH2: Lấy ra từ hộp 5 quả cầu đỏ có cách
Suy ra
Xác suất để được 5 quả đủ 2 màu là:
Vậy xác suất cần tìm là .
Tung một đồng tiền xu cân đối và đồng chất 5 lần liên tiếp. Tính số phần tử của biến cố “Mặt sấp xuất hiện ít nhất 1 lần”.
Số phần tử không gian mẫu là:
Gọi A là biến cố “Mặt sấp xuất hiện ít nhất 1 lần” khi đó là biến cố “Mặt sấp không xuất hiện”
Khi đó
Khi đó
Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi
là biến cố cung thủ bắn trúng lần thứ
. Hãy mô tả biến cố lần thứ tư mới bắn trúng mục tiêu qua các biến cố
.
Gọi M là biến cố lần thứ tư mới bắn trúng mục tiêu
Khi đó là biến cố lần thứ
bắn không trúng mục tiêu.
Khi đó ta có:
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra thuộc 3 môn khác nhau.
Trên giá sách có 4 + 3 + 2 = 9 quyển sách
Số phần tử của không gian mẫu là:
Gọi A là biến cố "3 quyển được lấy ra thuộc 3 môn khác nhau"
=>
=> Xác suất để 3 quyển được lấy ra thuộc 3 môn khác nhau là:
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên gồm 3 chữ số đôi một khác nhau
Gọi số tự nhiên có ba chữ số khác nhau có dạng:
Số cách chọn a là 6 cách
Số cách chọn b là 5 cách
Số cách chọn c là 4 cách
=> Số các số tự nhiên có ba chữ số khác nhau được tạo thành là: 6 . 5 . 4 = 120 số
Với các chữ số 0; 1; 2; 3; 4; 5; 6. Lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 5 có mặt đúng 4 lần, các chữ số khác mỗi chữ số có mặt đúng 1 lần.
Số các số có bằng hoán vị của 10 chữ số trong đó chữ số 5 có mặt đúng 4 lần là:
Ta phải bỏ đi các số có chữ số 0 đứng đầu ví dụ: 0555512346
Số các số có bằng hoán vị của 9 chữ số trong đó chữ số 5 có mặt đúng 4 lần là:
=> Số các số cần phải tìm thỏa mãn điều kiện là:
Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một đồng tiền xuất hiện mặt sấp là:
Số phần tử không gian mẫu là:
Giả sử C là biến cố "được ít nhất một đồng tiền xuất hiện mặt sấp"
=> Biến cố " không có đồng tiền xuất hiện mặt sấp"
=>
=>
=>
Với 4 chữ số 1; 2; 3; 4 có thể lập được bao nhiêu số có các chữ số phân biệt?
Với 4 chữ số 1; 2; 3; 4 có thể lập được số có tối đa 4 chữ số
Trường hợp số có 1 chữ số ta được 4 số
Trường hợp số có 2 chữ số ta được 4 . 3 = 12 số
Trường hợp số có 3 chữ số ta được: 4 . 3 . 2 = 24 số
Trường hợp số có 4 chữ số ta được: 4! = 24 số
=> Có thể lập được số các số có các chữ số phân biệt là: 4 + 12 + 24 + 24 = 64 số
Sắp xếm 4 bạn nam và 4 bạn nữ vào một bàn tròn. Biết mỗi bạn chỉ ngồi 1 chỗ và bàn có đủ 8 chỗ ngồi. Tính xác suất sao cho hai bạn cùng giới không ngồi cạnh nhau?
Gọi A là biến cố 2 người không cùng giới ngồi cạnh nhau
n là số cách sắp xếp người xung quanh bàn tròn
Mỗi cách sắp xếm là hoán vị của 8 vị trí, khi đó số hoán vị cần tìm là 8!
Mỗi hoán vị không đổi nếu ta thực hiện vòng quanh nên mỗi hoán vị đã được tính 8 lần.
Vậy
Xếp 4 nữ vào 4 vị trí ta có: cách
Xếp 4 nam vào 4 vị trí qua 4 khoảng, số cách sắp xếp
Vậy
Trong bài kiểm tra 15 phút, Minh tô ngẫu nhiên 5 câu trắc nghiệm. Tính xác suất để Minh tô sai cả 5 câu?
Xác suất tô sai 1 câu là
Vậy xác suất để Minh tô sai cả 5 câu là
Có bao nhiêu số tự nhiên lẻ có 6 chữ số đôi một khác nhau được lập từ các chữ số
mà chữ số đứng ở vị trí thứ ba luôn chia hết cho
?
Gọi số cần tìm có dạng
Vì số được chọn là một số lẻ và chữ số đứng ở vị trí thứ ba luôn chia hết cho 6.
Suy ra
TH1: Với chữ số
có 4 cách chọn,
có 6 cách chọn, ba chữ số còn lại có
cách chọn.
Do đó số.
TH2: Với chữ số
có 4 cách chọn,
có 5 cách chọn, ba chữ số còn lại có
cách chọn.
Do đó số.
Vậy các số tự nhiên tạo thành thỏa mãn yêu cầu bài toán là: .
Gieo ngẫu nhiên 2 con súc sắc cân đối và đồng chất. Xác suất để sau hai lần gieo kết quả như nhau là:
Gieo ngẫu nhiên 2 con súc sắc cân đối và đồng chất ta có:
Số phần tử của không gian mẫu là:
Giả sử B là biến cố "sau hai lần gieo kết quả như nhau"
=> B = {(1; 1), (2; 2), (3; 3), (4; 4), (5; 5), (6; 6)}
=>
=> Xác suất để sau hai lần gieo kết quả như nhau là:
Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn 3 học sinh trong đó có 1 học sinh nam và 2 học sinh nữ?
Số cách chọn 1 học sinh nam là: cách
Số cách chọn 2 học sinh nữ là: cách
Áp dụng quy tắc nhân ta có:
Số cách chọn 3 học sinh trong đó có 1 học sinh nam và 2 học sinh nữ là:
cách