Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Các quy tắc tính xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Một bó hoa có 5 hoa hồng trắng, 6 hoa hồng đỏ và 7 hoa hồng vàng. Hỏi có mấy cách chọn lấy ba bông hoa có đủ cả ba màu?

    Để chọn ba bông hoa có đủ cả ba màu (nghĩa là chọn một bông hoa hồng trắng - một bông hoa hồng đỏ - một bông hoa hồng vàng), ta có:

    Có 5 cách chọn hoa hồng trắng.

    Có 6 cách chọn hoa hồng đỏ.

    Có 7 cách chọn hoa hồng vàng.

    Vậy theo quy tắc nhân ta có 5 . 6 . 7 = 210 cách

  • Câu 2: Nhận biết

    Ban chấp hành liên chi đoàn khối 11 có 3 nam, 2 nữ. Cần thành lập một ban kiểm tra gồm 3 người trong đó có ít nhất 1 nữ. Số cách thành lập ban kiểm tra là:

    Số cách lập ban kiểm tra có 3 người là: C_5^3 = 10 cách

    Sô cách lập ban kiểm tra có 3 người trong đó không có nữ là: C_3^3 = 1 cách

    => Số cách thành lập ban kiểm tra có ít nhất một nữ là: 10 - 1 = 9 cách

  • Câu 3: Vận dụng cao

    Một đề thi trắc nghiệm môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm, mỗi câu hỏi có 4 đáp án và chỉ có đúng 1 đáp án đúng. Nếu trả lời đúng được 0,2 điểm và trả lời sai sẽ không có điểm. Bạn H làm bài bằng cách chọn ngẫu nhiêu đáp án cho tất cả 50 câu hỏi. Biết rằng xác suất làm đúng x câu hỏi của H đạt giá trị lớn nhất. Tính giá trị của x?

    Đáp án: 12

    Đáp án là:

    Một đề thi trắc nghiệm môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm, mỗi câu hỏi có 4 đáp án và chỉ có đúng 1 đáp án đúng. Nếu trả lời đúng được 0,2 điểm và trả lời sai sẽ không có điểm. Bạn H làm bài bằng cách chọn ngẫu nhiêu đáp án cho tất cả 50 câu hỏi. Biết rằng xác suất làm đúng x câu hỏi của H đạt giá trị lớn nhất. Tính giá trị của x?

    Đáp án: 12

    Gọi A là biến cố làm đúng x câu hỏi của bạn H

    Ta có xác suất để làm đúng 1 câu là \frac{1}{4}, xác suất làm sai 1 câu là \frac{3}{4}

    Theo quy tắc nhân xác suất ta có:

    Xác suất của biến cố A là P(A) =C_{50}^{x}.\left( \frac{1}{4} ight)^{x}.\left( \frac{3}{4} ight)^{50- x} = \frac{C_{50}^{x}}{3^{x}}.\left( \frac{3}{4}ight)^{50}

    Xét hệ bất phương trình sau:

    \left\{ \begin{matrix}\dfrac{C_{50}^{x}}{3^{x}}.\left( \dfrac{3}{4} ight)^{50} \geq\dfrac{C_{50}^{x + 1}}{3^{x + 1}}.\left( \dfrac{3}{4} ight)^{50} \\\dfrac{C_{50}^{x}}{3^{x}}.\left( \dfrac{3}{4} ight)^{50} \geq\dfrac{C_{50}^{x - 1}}{3^{x - 1}}.\left( \dfrac{3}{4} ight)^{50} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}3C_{50}^{x} \geq C_{50}^{x + 1} \\C_{50}^{x} \geq 3C_{50}^{x - 1} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}3.\dfrac{50!}{x!(50 - x)!} \geq \dfrac{50!}{(x + 1)!(49 - x)!} \\\dfrac{50!}{x!(50 - x)!} \geq \dfrac{50!}{(x - 1)!(51 - x)!} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{3}{50 - x} \geq \dfrac{1}{x + 1} \\\dfrac{1}{x} \geq \dfrac{3}{51 - x} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq \dfrac{47}{4} \\x \leq \dfrac{51}{4} \\\end{matrix} ight.\ ;\left( x\mathbb{\in Z} ight) \Rightarrow x =12

  • Câu 4: Vận dụng

    Một lớp có 20 học sinh nữ, 26 học sinh nam. Giáo viên cần chọn ban cán sự lớp gồm 3 học sinh. Hỏi có bao nhiêu cách chọn biết trong ban cán sự có ít nhất một nữ.

    Số học sinh của lớp là: 20 + 26 = 46 (học sinh)

    Số cách chọn 3 học sinh làm cán bộ lớp là: C_{46}^3

    Số cách chọn 3 học sinh làm cán bộ lớp trong đó không có bạn nữ là: C_{26}^3

    Số cách chọn 3 học sinh trong đó có ít nhất một bạn nữ là:

     C_{46}^3 -C_{26}^3 =12580 cách chọn

  • Câu 5: Vận dụng

    Một lớp gồm 40 học sinh trong đó có 12 học sinh giỏi môn Toán và 13 học sinh giỏi môn Vật lí. Biết rằng khi chọn một học sinh giỏi môn Toán hoặc Vật lí có xác suất là \frac{1}{2} . Số học sinh giỏi cả hai môn Toán và Vật lí là 5

    Đáp án là:

    Một lớp gồm 40 học sinh trong đó có 12 học sinh giỏi môn Toán và 13 học sinh giỏi môn Vật lí. Biết rằng khi chọn một học sinh giỏi môn Toán hoặc Vật lí có xác suất là \frac{1}{2} . Số học sinh giỏi cả hai môn Toán và Vật lí là 5

    Gọi A là biến cố học sinh được chọn giỏi môn Toán, B là biến cố học sinh được chọn giỏi môn Vật lí.

    Ta có:

    A \cup B là biến cố học sinh được chọn giỏi môn Toán hoặc Vật lí

    A \cap B là biến cố học sinh được chọn giỏi cả 2 môn Toán và Vật lí

    Ta có:

    \left\{ \begin{matrix}
n(A \cup B) = 0,5.40 = 20 \\
n(A \cup B) = n(A) + n(B) - n(A.B) \\
\end{matrix} ight.

    n(A.B) = n(A) + n(B) - n(A \cup
B)

    = 12 + 13 - 20 = 5

  • Câu 6: Nhận biết

    Từ thành phố A đến thành phố B có 3 con đường, từ thành phố A đến thành phố C có 2 con đường, từ thành phố B đến thành phố D có 2 con đường, từ thành phố C đến thành phố D có 3 con đường. không có con đường nào nối từ thành phố C đến thành phố B. Hỏi có bao nhiêu con đường đi từ thành phố A đến thành phố D:

     Số cách đi từ A đến D bằng cách đi từ A đến B rồi đến D là 3.2 = 6

    Số cách đi từ A đến D bằng cách đi từ A đến C rồi đến D là 2.3 = 6

    => Số con đường đi từ thành phố A đến thành phố D là: 6 + 6 = 12 đường

  • Câu 7: Nhận biết

    Viết ngẫu nhiên 2 số tự nhiên có ba chữ số đôi một khác nhau thuộc tập hợp S = \left\{1;2;3;4;5;6;7 ight\}. Gọi C là biến cố hai số được viết đều có mặt chữ số 4. Hỏi biến cố nào sau đây là biến cố xung khắc của biến cố C?

    Ta có: C là biến cố hai số được viết đều có mặt chữ số 4 thì biến cố xung khắc của C là hai số được viết không có mặt chữ số 4.

  • Câu 8: Thông hiểu

    Gieo ngẫu nhiên 2 con súc sắc cân đối và đồng chất. Xác suất để sau hai lần gieo kết quả như nhau là:

    Gieo ngẫu nhiên 2 con súc sắc cân đối và đồng chất ta có:

    Số phần tử của không gian mẫu là: n\left( \Omega  ight) = {6^2} = 36

    Giả sử B là biến cố "sau hai lần gieo kết quả như nhau"

    => B = {(1; 1), (2; 2), (3; 3), (4; 4), (5; 5), (6; 6)}

    => n\left( B ight) = 6

    => Xác suất để sau hai lần gieo kết quả như nhau là: P\left( B ight) = \frac{{n\left( B ight)}}{{n\left( \Omega  ight)}} = \frac{6}{{36}} = \frac{1}{6}

  • Câu 9: Thông hiểu

    Một nhóm học sinh có 4 nam và 3 nữ. Có bao nhiêu cách chọn 3 bạn trong đó có đúng một bạn là nữ?

    Ta có:

    Ba bạn được chọn có 1 nữ và 2 nam

    => Số cách chọn là: C_3^1.C_4^2 = 18 cách

  • Câu 10: Thông hiểu

    Cho A = \{1, 2, 3, 4, 5, 6, 7\}. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số đôi một khác nhau?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Số cần tìm là số chẵn => e ∈ {2; 4; 6}

    => Có 3 cách chọn e

    Số cách chọn a, b, c, d là: A_6^4 = 360

    => Có thể lập được số các số chẵn có 5 chữ số đôi một khác nhau là: 3 . 360 = 1080 số

  • Câu 11: Thông hiểu

    Lấy ngẫu nhiên 3 tấm thẻ trong hộp đựng 10 thẻ trắng, 8 thẻ đỏ và 7 thẻ xanh. Tính xác suất để lấy được 3 tấm thẻ cùng màu?

    Gọi A là biến cố lấy được 3 thẻ trắng \Rightarrow P(A) =
\frac{C_{10}^{3}}{C_{25}^{3}}

    B là biến cố lấy được 3 thẻ đỏ \Rightarrow P(B) =
\frac{C_{8}^{3}}{C_{25}^{3}}

    C là biến cố lấy được 3 thẻ xanh \Rightarrow P(C) =
\frac{C_{7}^{3}}{C_{25}^{3}}

    Gọi D là biến cố lấy được 3 thẻ cùng màu

    Khi đó D = A \cup B \cup C

    \Rightarrow P(D) = P(A) + P(B) + P(C)
\approx 0,092

  • Câu 12: Nhận biết

    Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6

    Biến cố A là biến cố "mặt 6 chấm xuất hiện"

    => n\left( A ight) = 1

    => Xác suất để mặt 6 chấm xuất hiện: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{1}{6}

  • Câu 13: Vận dụng

    Sơ đồ phân phối điện như hình vẽ:

    Điện được tải từ trạm điện P đến nơi tiêu thụ Q qua các trạm tải nhỏ A, B, C, D, V. Xác suất có sự cố kĩ thuật sau một thời gian hoạt động của các trạm tải nhỏ A, B, C là \frac{1}{5} và của các trạm D, V là \frac{1}{10}. Hãy tính xác suất để nơi tiêu thụ Q không bị mất điện (biết rằng các trạm tải nhỏ hoạt động độc lập với nhau).

    Gọi Q là biến cố nơi tiêu thụ Q không mất điện

    A, B, C, D, V là biến cố các trạm tải nhỏ A, B, C, D, V gặp sự cố kĩ thuật.

    Ta có:

    \overline{Q} = (A \cap B \cap C) \cup (D
\cap V)

    Suy ra P\left( \overline{Q} ight) =
P(ABC) + P(DV) - P(ABCDV)

    P\left( \overline{Q} ight) =
P(A).P(B).P(C) + P(D).P(V)

    - P(A).P(B).P(C).P(D).P(V)

    = 0,2.0,2.0,2 + 0,1.0,1 -
0,2.0,2.0,2.0,1.0,1 = 0,01792

    Vậy P\left( \overline{Q} ight) = 1 -
P(Q) = 0,98208

  • Câu 14: Thông hiểu

    Bạn An có 6 quyển sách giáo khoa khác nhau và 4 quyển vở bài tập khác nhau. Có bao nhiêu cách sắp xếp các quyển vở trên một kệ dài biết rằng các quyển sách giáo khoa xếp kề nhau?

    Ta có 6 quyển sách giáo khoa là một nhóm và xếp nhóm này với 4 quyển vở khác nhau, khi đó ta có 5! cách xếp.

    Mỗi cách đổi vị trí các quyển sách giáo khoa cho nhau thì tương ứng sinh ra một cách sắp xếp mới mà có 6! cách đổi vị trí các quyển sách giáo khoa. Vậy số cách sắp xếp là 6!.5!

  • Câu 15: Nhận biết

    Thực hiện gieo con xúc xắc sau đó gieo một đồng tiền xu. Mô tả không gian mẫu.

    Mỗi kết quả của phép thử là cặp kết quả của phép thử gieo xúc xắc viết trước và gieo đồng tiền viết sau nên không gian mẫu là:

    \Omega =
\{(1,S);(1,N);(2,S);(2,N);(3,S);(3,N);(4,S);(4,N);(5,S);(5,N);(6,S);(6,N)\}

  • Câu 16: Thông hiểu

    Một nhóm học sinh có 6 bạn nam và 5 bạn nữ có bao nhiêu cách chọn ra 5 bạn trong đó có cả nam và nữ?

    Số học sinh có trong nhóm là: 6 + 5 = 11 học sinh

    Số cách chọn 5 học sinh trong nhóm là: C_{11}^5 = 462 cách

    Số cách chọn số học sinh chỉ có nam là C_6^5 = 6 cách

    Số cách chọn số học sinh chỉ có nữ là: C_5^5 = 1 cách

    => Số cách chọn ra 5 bạn trong đó có cả nam và nữ là: 462 - 6 - 1 = 455 cách

  • Câu 17: Thông hiểu

    Một hộp dựng 10 viên bi xanh và 5 viên bi vàng. Có bao nhiêu cách lấy ngẫu nhiên 4 viên bi trong đó có ít nhất 2 viên bi màu xanh?

    Hộp chứa 10 + 5 = 15 viên bi

    Số cách lấy 4 viên bi trong hộp là: C_{15}^4 = 1365 cách

    Số cách lấy 4 viên bi không có viên bi xanh là: C_5^4 = 5 cách

    Số cách lấy 4 viên bi có 1 viên bi xanh là: C_{10}^1.C_5^3 = 100 cách

    => Số lấy ngẫu nhiên 4 viên bi trong đó có ít nhất 2 viên bi màu xanh là: 1365 - 5 - 100 = 1260 cách

  • Câu 18: Nhận biết

    Hai xạ thủ cùng bắn mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là \frac{1}{2}\frac{1}{3}. Tính xác suất để có ít nhất một xạ thủ không bắn trúng bia?

    Gọi A là biến cố có ít nhất một xạ thủ không bắn trúng bia

    Khi đó \overline{A} là biến cố cả hai xạ thủ đều bắn trúng bia.

    P\left( \overline{A} ight) =
\frac{1}{2}.\frac{1}{3} = \frac{1}{6} \Rightarrow P(A) = 1 - \frac{1}{6}
= \frac{5}{6}

  • Câu 19: Thông hiểu

    Chọn ngẫu nhiên một biển số xe gắn máy cùng một họ F1, mỗi biển số có 4 chữ số. Tính xác suất để biển số có hai chữ số đầu giống nhau và hai chữ số sau giống nhau, biết 4 chữ số đó không hoàn toàn giống nhau?

    Gọi A là biến cố "Biển số có hai chữ số đầu giống nhau, hai chữ số sau giống nhau và 4 chữ số đó không hoàn toàn giống nhau"

    Tìm |\Omega|

    Ta tìm "số" có 4 chữ số, chữ số đầu tiên có thể bằng 0

    Giả sử \overline{abcd} có bốn chữ số chữ số đầu tiên có thể bằng 0.

    Có 10 cách chọn a, 10 cách chọn b, 10 cách chọn c và 10 cách chọn d.

    Vậy có 104 số có 4 chữ số, chữ số đầu tiên có thể bằng

    \Rightarrow |\Omega| =
10^{4}

    Tìm \left| \Omega_{A}
ight|

    Ta tìm "số" các số có 4 chữ số, trong đó hai chữ số đầu giống nhau, hai chữ số sau giống nhau và 4 chữ số đó không hoàn toàn giống nhau, chữ số đầu tiên có thể bằng 0.

    Giả sử \overline{mmpp} là một số như mô tả

    Có 10 cách chọn m và 9 cách chọn p

    Khi đó \left| \Omega_{A} ight| = 10.9 =
90 phần tử.

    Xác suất cần tính là: P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{10.9}{10^{4}} = \frac{9}{1000} =
0,009.

  • Câu 20: Thông hiểu

    Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn có đúng một người nữ.

     Số học sinh trong tổ là: 7 + 3 = 10 học sinh

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{10}^2 = 45

    Giả sử A là biến cố "2 người được chọn có đúng một người nữ"

    => n\left( A ight) = C_3^1 .C_7^1= 21

    => Xác suất sao cho 2 người được chọn có đúng một người nữ là:

    P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{21}}{{45}} = \frac{7}{{15}}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo