Biết hai biến cố
độc lập với nhau và
. Tính giá trị
?
Do A và B là hai biến cố độc lập với nhau nên
Biết hai biến cố
độc lập với nhau và
. Tính giá trị
?
Do A và B là hai biến cố độc lập với nhau nên
Thực hiện tung ngẫu nhiên một con xúc xắc một lần. Biết H là biến cố mặt xuất hiện có số chấm chẵn, K là biến cố mặt xuất hiện có số chấm lẻ. Khẳng định nào sau đây đúng?
Vì nên hai biến cố H và K là hai biến cố đối nhau.
Nhóm bạn gồm 4 người muốn tham gia sự kiện âm nhạc vào hai ngày cuối tuần, họ có thể chọn tham gia vào thứ bảy hoặc chủ nhật. Tính xác suất để vào ngày thứ bảy và ngày chủ nhật có ít nhất một bạn tham gia?
Đáp án: 0,875
(Kết quả ghi dưới dạng số thập phân)
Nhóm bạn gồm 4 người muốn tham gia sự kiện âm nhạc vào hai ngày cuối tuần, họ có thể chọn tham gia vào thứ bảy hoặc chủ nhật. Tính xác suất để vào ngày thứ bảy và ngày chủ nhật có ít nhất một bạn tham gia?
Đáp án: 0,875
(Kết quả ghi dưới dạng số thập phân)
Vì mỗi bạn có thể tham gia sự kiện vào một trong hai ngày thứ bảy hoặc chủ nhật nên xác suất để nhóm bạn tham gia trong mỗi ngày là 0,5
Xác suất không tham gia trong mỗi ngày là 0,5
Gọi A là biến cố cả hai ngày thứ bảy và chủ nhật có ít nhất một bạn tham gia.
Ta có:
Xác suất cần tìm là
Giả sử ta dùng 5 màu để tô cho 3 nước khác nhau trên bản đồ và không có màu nào
được dùng hai lần. Số các cách để chọn những màu cần dùng là:
Số các cách để chọn những màu cần dùng là:
Cho 6 chữ số 4, 5, 6, 7, 8, 9. Số các số tự nhiên chẵn có 3 chữ số khác nhau lập thành từ 6 chữ số đó:
Gọi số tự nhiên có 3 chữ số có dạng:
Do số tự nhiên cần tìm là số chẵn => c = {4; 6; 8}
=> Số cách chọn c là 3 cách
Số cách chọn a là 5 cách
Số cách chọn b là 4 cách
=> Số các số các số tự nhiên chẵn có 3 chữ số khác nhau lập thành từ 6 chữ số đã cho là: 3 . 5 . 4 = 60 số
Giả sử từ tỉnh A đến tỉnh B có thể đi bằng các phương tiện: ô tô, tàu hỏa, tàu thủy hoặc máy bay. Mỗi ngày có 10 chuyến ô tô, 5 chuyến tàu hỏa, 3 chuyến tàu thủy và 2 chuyến máy bay. Hỏi có bao nhiêu cách đi từ tỉnh A đến tỉnh B?
Nếu đi bằng ô tô có 10 cách
Nếu đi bằng tàu hỏa có 5 cách
Nếu đi bằng tàu thủy có 3 cách
Nếu đi bằng máy bay có 2 cách
Theo quy tắc cộng, ta có 10 + 5 + 3 + 2 = 20 cách chọn
Cho 8 quả cân có khối lượng lần lượt là 1kg, 2kg, 3kg, 4kg, 5kg, 6kg, 7kg, 8kg. Chọn ngẫu nhiên ba quả cân trong số đó. Tính xác suất để trọng lượng ba quả cân được chọn không vượt quá 9kg.
Không gian mẫu là số cách chọn ngẫu nhiên ba quả cân trong số 8 quả cân có khối lượng đã cho tương ứng. ω Do đó số phần tử của không gian mẫu là:
Gọi C là biến cố “trọng lượng ba quả cân được chọn không vượt quá 9kg”
Ta có các bộ 3 số có tổng khối lượng không vượt quá 9kg gồm:
Cho
. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số đôi một khác nhau?
Số tự nhiên có 5 chữ số có dạng:
Ta có: Số tự nhiên chẵn => e ∈ {0; 2; 4; 6}
Trướng hợp 1: e ∈ {2; 4; 6}
=> Có 3 cách chọn e
Ta có: => Có 5 cách chọn a
Số cách chọn b là 5 cách
Số cách chọn c là 4 cách
Số cách chọn d là 3 cách
=> Số các số được tạo thành là: số
Trường hợp 2: e = 0 => Có 1 cách chọn e
Ta có: => Có 6 cách chọn a
Số cách chọn b là 5 cách
Số cách chọn c là 4 cách
Số cách chọn d là 3 cách
=> Số các số được tạo thành là: số
=> Có thể lập được số các số chẵn có 5 chữ số đôi một khác nhau là: số
Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?
Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “ là hai biến cố xung khắc.”
Cho
. Từ tập A có thể lập được bao nhiêu số tự nhiên có 3 chữ số chia hết cho 5?
Số tự nhiên có 3 chữ số có dạng:
Do số cần tìm chia hết cho 5 => c ∈ {0; 5}
=> Có 2 cách chọn c
Số cách chọn a là 5 cách
Số cách chọn b là 6 cách
=> Số các số tự nhiên có ba chữ số chia hết cho 5 được tạo thành là: 2 . 5 . 6 = 60 số
Từ các số 0, 1, 2, 7, 8, 9 tạo được bao nhiêu số chẵn có 5 chữ số khác nhau?
Số tự nhiên có 5 chữ số khác nhau được tạo thành từ dãy số có dạng:
Trường hợp 1: e = 0
Số cách chọn a là 5 cách
Số cách chọn b là 4 cách
Số cách chọn c là 3 cách
Số cách chọn d là 2 cách
=> Số các số được tạo thành là: 5 . 4 . 3 . 2 = 120 số
Trường hợp 2: e ≠ 0
=> e = {2; 8}
=> Số cách chọn e là 2 cách
Số cách chọn a là 4 cách
Số cách chọn b là 4 cách
Số cách chọn c là 3 cách
Số cách chọn d là 2 cách
=> Số các số được tạo thành là: 2 .4. 4. 3 . 2 = 192 số
=> Từ dãy số tạo được số các số chẵn có 5 chữ số khác nhau là 120 + 192 = 312 số
Rút ngẫu nhiên 3 tấm thẻ từ một hộp chứa 12 thẻ được đánh số từ 1 đến 12. Tính số kết quả thuận lợi của biến cố M “trong ba tấm thẻ chọn ra không có hai tấm thẻ nào ghi hai số tự nhiên liên tiếp”?
Số phần tử không gian mẫu:
Biến cố M “trong ba tấm thẻ chọn ra không có hai tấm thẻ nào ghi hai số tự nhiên liên tiếp”
Suy ra biến cố “trong ba tấm thẻ chọn ra có ít nhất hai tâm thẻ ghi hai số tự nhiên liên tiếp”
Bộ ba có dạng với
có 10 bộ
Bộ ba số có dạng với
có 9 bộ
Tương tự mỗi bộ ba số có dạng đều có 9 bộ
Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và
viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là
?
Kết quả: 177/182
(Kết quả ghi dưới dạng phân số tối giản a/b)
Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là
?
Kết quả: 177/182
(Kết quả ghi dưới dạng phân số tối giản a/b)
Theo bài ra ta có tổng số viên bi trong hộp là
Láy ngẫu nhiên 3 viên bi từ hộp. Số kết quả có thể xảy ra là
Gọi A là biến cố 3 viên bi lấy được có đủ 3 màu. Số kết quả thuận lợi cho biến cố A là:
=> Xác suất lấy được 3 viên bi có đủ 3 màu là:
Do đó trong hộp có 14 viên bi và
Gọi B là biến cố 3 viên bi lấy được có nhiều nhất hai viên bi đỏ
Suy ra là biến cố 3 viên bi lấy được đều là bi đỏ.
Số kết quả thuận lợi cho là:
Khi đó xác suất P để trong 3 viên bi lấy được nhiều nhất 2 viên bi đỏ là:
Có bao nhiêu số tự nhiên lẻ có 6 chữ số đôi một khác nhau được lập từ các chữ số
mà chữ số đứng ở vị trí thứ ba luôn chia hết cho
?
Gọi số cần tìm có dạng
Vì số được chọn là một số lẻ và chữ số đứng ở vị trí thứ ba luôn chia hết cho 6.
Suy ra
TH1: Với chữ số
có 4 cách chọn,
có 6 cách chọn, ba chữ số còn lại có
cách chọn.
Do đó số.
TH2: Với chữ số
có 4 cách chọn,
có 5 cách chọn, ba chữ số còn lại có
cách chọn.
Do đó số.
Vậy các số tự nhiên tạo thành thỏa mãn yêu cầu bài toán là: .
Một tổ có 9 học sinh, trong đó có 5 nam và 4 nữ được xếp thành một hàng dọc. Tính xác suất sao cho không có 2 bạn nam nào đứng kề nhau.
Gọi A là biến cố "Xếp 9 học sinh thành một hàng dọc trong đó không có 2 bạn nam nào đứng kề nhau".
Tìm
Xếp 9 học sinh thành môt hàng dọc, có 9! cách xếp
Tìm
Xếp 9 học sinh thành một hàng dọc trong đó không có 2 ban nam nào đứng kề nhau.
Vì số nam lớn hơn số nữ nên ta phải xếp một học sinh nam đứng trước rồi đến một học sinh nữ, tiếp tục cứ xếp nam nữ xen kẽ nhau, học sinh xếp cuối cùng là nam.
Vậy số cách xếp là cách xếp.
Vậy xác suất cần tính là:
Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi
là biến cố cung thủ bắn trúng lần thứ
. Hãy mô tả biến cố lần thứ tư mới bắn trúng mục tiêu qua các biến cố
.
Gọi M là biến cố lần thứ tư mới bắn trúng mục tiêu
Khi đó là biến cố lần thứ
bắn không trúng mục tiêu.
Khi đó ta có:
Cho
. Từ tập B có thể lập được bao nhiêu số chẵn có 6 chữ số đôi một khác nhau lấy từ tập B?
Số tự nhiên có 6 chữ số có dạng:
Số tự nhiên chẵn => f ∈ {2; 4; 6}
=> Có 3 cách chọn f
Số cách chọn a, b, c, d, e là:
=> Số các số chẵn có 6 chữ số đôi một khác nhau là: số
Gieo ngẫu nhiên một đồng xu cân đối và đồng chất 5 lần. Không gian mẫu của phép thử có bao nhiêu phần tử?
Mỗi lần gieo đồng xu có hai khả năng xảy ra nên khi tung đồng xu đó 5 lần thì theo quy tắc nhân ta có:
Vậy số phần tử của không gian mẫu là
Trong một thí nghiệm lai tạo cây bơ, biết rằng quả tròn là tính trạng trội hoàn toàn so với quả dài. Cho cây quả tròn thuần chủng thụ phấn với cây quả dài ta được đời cây F1 toàn là cây quả tròn. Tiếp tục cho cây đời F1 thụ phấn với nhau và thu hoạch được các cây con mới. Lần lượt chọn ngẫu nhiên 2 cây con mới. Tính xác suất của biến cố trong 2 cây con mới được chọn có đúng 1 cây quả tròn?
Quy ước gene A: quả tròn và gene a: quả dài
Ở thế hệ F2 ba kiểu gene AA, Aa, aa xuất hiện với tỉ lệ 1: 2: 1 nên tỉ lệ quả tròn so với quả dài là 3 : 1
Gọi là biến cố cây được chọn lần thứ nhất là quả tròn
là biến cố cây được chọn lần thứ hai là quả tròn.
Ta có: độc lập và
Xác suất của biến cố có đúng 1 quả tròn trong 2 cây được lấy ra:
Bỏ 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước. Tính xác suất để lá thứ nhất đúng với người nhận?
Không gian mẫu là số cách chọn 5 lá thư vào 5 phong bì đã chuẩn bị địa chỉ trước.
Do đó số phần tử của không gian mẫu là: 5! = 120
Gọi B là biến cố “Lá thứ nhất đúng với người nhận”.
Lá thứ nhất có đúng 1 cách chọn.
Lá thứ 2 có 4 cách chọn.
Lá thứ 3 có 3 cách chọn
Lá thứ 4 có 2 cách chọn
Lá thứ 5 có 1 cách chọn
Suy ra