Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Các quy tắc tính xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hai biến cố A và B có P\left( A ight) = \frac{1}{3},P\left( B ight) = \frac{1}{4},P\left( {A \cup B} ight) = \frac{1}{2} ta kết luận hai biến cố A và B là:

    Ta có: P(A) + P(B) = 1/3 + 1/4 = 7/12 ≠ 1/2 = P(A ∪ B)

    Suy ra P(A) + P(B) ≠ P(A ∪ B)

    => Hai biến cố A và B không xung khắc

    Áp dụng công thức xác suất tổng hai biến cố ta có: 

    \begin{matrix}  P\left( A ight) + P\left( B ight) - P\left( {AB} ight) = P\left( {A \cup B} ight) \hfill \\   \Rightarrow P\left( {AB} ight) = \left[ {P\left( A ight) + P\left( B ight)} ight] - P\left( {A \cup B} ight) \hfill \\   \Rightarrow P\left( {AB} ight) = \left( {\dfrac{1}{3} + \dfrac{1}{4}} ight) - \dfrac{1}{2} = \dfrac{1}{2} \hfill \\ \end{matrix}

    P\left( A ight).P\left( B ight) = \frac{1}{3}.\frac{1}{4} = \frac{1}{{12}} = P\left( {AB} ight)

    => Hai biến cố A và B là hai biến cố độc lập.

  • Câu 2: Nhận biết

    Biết M\overline{M} là hai biến cố đối nhau. Chọn khẳng định đúng?

    Ta có:

    P(M) = 1 - P\left( \overline{M}
ight)

  • Câu 3: Thông hiểu

    Có bao nhiêu cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau?

     Xếp 5 quyển sách Văn kề nhau có 5! cách

    Coi 5 quyển sách văn là một quyển sách và xếp cùng 7 quyển sách Toán khác có 8! cách

    Áp dụng quy tắc nhân ta có: 5! . 8! cách xếp 5 sách Văn khác nhau và 7 sách Toán khác nhau trên một kệ sách dài nếu các sách Văn phải xếp kề nhau.

  • Câu 4: Thông hiểu

    Lẫy ngẫu nhiên 5 viên bi trong hộp có 13 viên bi gồm 6 bi xanh, 7 bi đỏ. Tính xác suất để 5 viên bi lấy được có số bi xanh nhiều hơn số bi đỏ?

    Gọi A là biến cố lấy số bi xanh nhiều hơn bi đỏ

    Khi đó ta có: n(\Omega) =
C_{13}^{5}

    TH1: lấy được 5 viên bi xanh C_{6}^{5} cách

    TH2: lấy được 4 viên bi xanh; 1 viên bi đỏ C_{6}^{4}.C_{7}^{1} cách

    TH3: lấy được 3 viên bi xanh; 2 viên bi đỏ C_{6}^{3}.C_{7}^{2} cách

    Do đó xác suất của biến cố A là:

    \Rightarrow P(A) =
\frac{n(A)}{n(\Omega)} = \frac{59}{143}

  • Câu 5: Thông hiểu

    Số tam giác xác định bởi các đỉnh của một đa giác đều 10 cạnh là:

    Cứ 3 đỉnh của đa giác sẽ tạo thành một tam giác

    Số cách chọn 3 trong 10 đỉnh của đa giác là: C_{10}^3 = 120

    Vậy số tam giác xác định bởi các đỉnh của một đa giác đều 10 cạnh là: 120 tam giác

  • Câu 6: Nhận biết

    Một hộp dựng 10 viên bi xanh và 5 viên bi vàng. Có bao nhiêu cách lấy ra 5 viên bi trong đó có 3 viên bi màu xanh?

    Số cách chọn 5 viên bi trong đó có 3 viên bi màu xanh là: C_{10}^3.C_5^2 = 1200 cách

  • Câu 7: Thông hiểu

    Trong kho hàng có n sản phẩm công nghệ, trong đó có một số sản phẩm bị lỗi. Giả sử X_{i} là biến cố sản phẩm thứ i bị lỗi với i \in \overline{1,n}. Biến cố X cả n sản phẩm đều tốt là:

    Ta có:

    X_{i} là biến cố sản phẩm thứ i bị lỗi với i \in \overline{1,n}

    Nên \overline{X_{i}} là biến cố sản phẩm thứ i tốt với i \in \overline{1,n}

    Biến cố X cả n sản phẩm đều tốt là: X =
\overline{X_{1}}.\overline{X_{2}}....\overline{X_{n}}

  • Câu 8: Thông hiểu

    Với 4 chữ số 1; 2; 3; 4 có thể lập được bao nhiêu số có các chữ số phân biệt?

     Với 4 chữ số 1; 2; 3; 4 có thể lập được số có tối đa 4 chữ số 

    Trường hợp số có 1 chữ số ta được 4 số

    Trường hợp số có 2 chữ số ta được 4 . 3 = 12 số

    Trường hợp số có 3 chữ số ta được: 4 . 3 . 2 = 24 số

    Trường hợp số có 4 chữ số ta được: 4! = 24 số

    => Có thể lập được số các số có các chữ số phân biệt là: 4 + 12 + 24 + 24 = 64 số

  • Câu 9: Vận dụng

    Một lớp gồm 40 học sinh trong đó có 12 học sinh giỏi môn Toán và 13 học sinh giỏi môn Vật lí. Biết rằng khi chọn một học sinh giỏi môn Toán hoặc Vật lí có xác suất là \frac{1}{2} . Số học sinh giỏi cả hai môn Toán và Vật lí là 5

    Đáp án là:

    Một lớp gồm 40 học sinh trong đó có 12 học sinh giỏi môn Toán và 13 học sinh giỏi môn Vật lí. Biết rằng khi chọn một học sinh giỏi môn Toán hoặc Vật lí có xác suất là \frac{1}{2} . Số học sinh giỏi cả hai môn Toán và Vật lí là 5

    Gọi A là biến cố học sinh được chọn giỏi môn Toán, B là biến cố học sinh được chọn giỏi môn Vật lí.

    Ta có:

    A \cup B là biến cố học sinh được chọn giỏi môn Toán hoặc Vật lí

    A \cap B là biến cố học sinh được chọn giỏi cả 2 môn Toán và Vật lí

    Ta có:

    \left\{ \begin{matrix}
n(A \cup B) = 0,5.40 = 20 \\
n(A \cup B) = n(A) + n(B) - n(A.B) \\
\end{matrix} ight.

    n(A.B) = n(A) + n(B) - n(A \cup
B)

    = 12 + 13 - 20 = 5

  • Câu 10: Nhận biết

    Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6

    Biến cố A là biến cố "mặt 6 chấm xuất hiện"

    => n\left( A ight) = 1

    => Xác suất để mặt 6 chấm xuất hiện: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{1}{6}

  • Câu 11: Vận dụng

    Đội học sinh giỏi toán 10 có tất cả 18 học sinh, trong đó có 7 học sinh giỏi môn Toán, 6 học sinh giỏi môn Văn và 5 học sinh giỏi môn Hóa. Hỏi có bao nhiêu cách chọn 8 học sinh đi dự thi chính thức, biết rằng mỗi môn có ít nhất 1 học sinh.

    Số cách chọn 8 học sinh gồm hai khối là phần bù của cách chọn 8 học sinh đi dự đại hội sao cho mỗi khối có ít nhất 1 học sinh được chọn.

    Số cách chọn 8 học sinh từ hai khối là: C_{13}^8 + C_{11}^8 + C_{12}^8 = 1947

    Số cách chọn 8 học sinh bất kì là: C_{18}^8

    Số cách chọn thỏa yêu cầu bài toán: C_{18}^8 -1947=41811

  • Câu 12: Nhận biết

    Trong bài kiểm tra 15 phút, Minh tô ngẫu nhiên 5 câu trắc nghiệm. Tính xác suất để Minh tô sai cả 5 câu?

    Xác suất tô sai 1 câu là \frac{3}{4}

    Vậy xác suất để Minh tô sai cả 5 câu là \left( \frac{3}{4} ight)^{5} =
\frac{243}{1024}

  • Câu 13: Nhận biết

    Hai người đi săn cùng bắn vào một con mồi. Gọi A là biến cố người thứ nhất bắn trúng con mồi. B là biến cố người thứ hai bắn trúng con mồi. Mối quan hệ giữa hai biến cố A và B là:

    Hai biến cố A và B là hai biến cố độc lập vì việc người thứ nhất bắn trúng con mồi không phụ thuộc vào người thứ hai bắn trúng con mồi.

  • Câu 14: Nhận biết

    Có bao nhiêu số có 2 chữ số mà tất cả các chữ số đều lẻ:

    Số tự nhiên có hai chữ số có dạng: \overline {ab}

    Do tất cả các chữ số đều lẻ => a,b \in \left\{ {1;3;5;7;9} ight\}

    Số cách chọn a là 5 cách

    Số cách chọn b là 5 cách

    => Số các số có 2 chữ số mà tất cả các chữ số đều lẻ là  5 . 5 = 25 số

  • Câu 15: Thông hiểu

    Trong một thùng giấy có chứa 8 bóng đèn màu đỏ, 12 bóng đèn màu xanh. Lấy ngẫu nhiên 2 bóng đèn trong thùng. Tính xác suất để lấy được 2 bóng đèn cùng màu?

    Ta có:

    n(\Omega) = C_{20}^{2} = 190

    Gọi A là biến cố lấy được hai bóng đèn cùng màu.

    A1 là biến cố lấy được hai bóng đèn màu đỏ. \Rightarrow n\left( A_{1} ight) =
C_{8}^{2}

    A2 là biến cố lấy được hai bóng đèn màu xanh \Rightarrow n\left( A_{1} ight) =
C_{12}^{2}

    Do A1, A2 là hai biến cố xung khắc nên theo quy tắc cộng xác suất ta có:

    P(A) = P\left( A_{1} ight) + P\left(
A_{2} ight) = \frac{C_{8}^{2}}{C_{20}^{2}} +
\frac{C_{12}^{2}}{C_{20}^{2}} = \frac{47}{95}

  • Câu 16: Nhận biết

    Trong một hộp bánh có 6 loại bánh nhân thịt và 4 loại bánh nhân đậu xanh. Có bao nhiêu cách lấy ra 6 bánh để phát cho các em thiếu nhi:

    Số bánh có trong hộp bánh là 6 + 4 = 10 chiếc

    => Số cách lấy ra 6 bánh để phát cho các em thiếu nhi là: C_{10}^6 = 210 cách

  • Câu 17: Vận dụng cao

    Lấy ngẫu nhiên 5 quả cầu từ hộp có 4 quả xanh, 5 quả đỏ và 6 quả vàng. Xác suất để lấy được 5 quả cầu có đủ 3 màu?

    Kết quả: 310/429

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Lấy ngẫu nhiên 5 quả cầu từ hộp có 4 quả xanh, 5 quả đỏ và 6 quả vàng. Xác suất để lấy được 5 quả cầu có đủ 3 màu?

    Kết quả: 310/429

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Số phần tử không gian mẫu n(\Omega) =C_{15}^{5} = 3003

    Gọi A là biến cố lấy được 5 quả cầu đủ 3 màu

    => \overline{A} là biến cố 5 quả cầu lấy được không đủ 3 màu. Khi đó ta có các trường hợp như sau:

    TH1: lấy được 5 quả cầu đỏ có 1 cách

    TH2: lấy được 5 quả màu vàng có C_{6}^{5}= 6 cách

    TH3: lấy được chỉ có xanh và đỏ C_{4}^{4}.C_{5}^{1} + C_{4}^{3}.C_{5}^{2} +C_{4}^{2}.C_{5}^{3} + C_{4}^{1}.C_{5}^{4} = 125 cách

    TH4: lấy được chỉ có xanh và vàng C_{4}^{4}.C_{6}^{1} + C_{4}^{3}.C_{6}^{2} +C_{4}^{2}.C_{6}^{3} + C_{4}^{1}.C_{6}^{4} = 246 cách

    TH5: lấy được chỉ có đỏ và vàng C_{5}^{4}.C_{6}^{1} + C_{5}^{3}.C_{6}^{2} +C_{5}^{2}.C_{6}^{3} + C_{5}^{1}.C_{6}^{4} = 455 cách

    Vậy n\left( \overline{A} ight) = 833\Rightarrow n(A) = n(\Omega) - n\left( \overline{A} ight) =2170

    \Rightarrow P(A) =\frac{310}{429}

  • Câu 18: Thông hiểu

    Mộp hộp chứa 4 bông hoa màu đỏ và 6 bông hoa màu xanh, các bông hoa có hình dáng khác nhau. Lấy ngẫu nhiên 5 bông hoa trong hộp. Tính xác suất để 5 bông hoa lấy được có ít nhất 3 bông màu đỏ?

    Lấy ngẫu nhiên 5 bông hoa từ 10 bông hoa ta có: n(\Omega) = C_{10}^{5}

    Gọi A là biến cố lấy được ít nhất 3 bông hoa đỏ.

    TH1: Lấy 3 bông hoa đỏ từ 4 bông hoa đỏ và 2 bông hoa xanh từ 6 bông hoa xanh có C_{4}^{3}.C_{6}^{2} cách.

    TH2: Lấy 4 bông hoa đỏ từ 4 bông hoa đỏ và 1 bông hoa xanh từ 6 bông hoa xanh có C_{4}^{4}.C_{6}^{1} cách.

    Suy ra n(\Omega) = C_{4}^{3}.C_{6}^{2} +
C_{4}^{4}.C_{6}^{1}

    Vậy xác suất để lấy được 5 bông hoa trong đó có ít nhất 3 bông hoa đỏ là: P(A) = \frac{n(A)}{n(\Omega)} =
\frac{11}{42}

  • Câu 19: Thông hiểu

    Cho B = \{1, 2, 3, 4, 5, 6\}. Từ tập B có thể lập được bao nhiêu số chẵn có 6 chữ số đôi một khác nhau lấy từ tập B?

    Số tự nhiên có 6 chữ số có dạng: \overline {abcdef}

    Số tự nhiên chẵn => f ∈ {2; 4; 6}

    => Có 3 cách chọn f

    Số cách chọn a, b, c, d, e là: A_5^5 = 120

    => Số các số chẵn có 6 chữ số đôi một khác nhau là: 3.120 = 360 số

  • Câu 20: Thông hiểu

    Gieo hai con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3 là:

    Gieo hai con súc sắc cân đối và đồng chất

    => Số phần tử không gian mẫu là: n\left( \Omega  ight) = {6^2} = 36

    Giả sử D là biến cố "tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3"

    Các bộ số chia hết cho 3 là (1; 2), (3; 3); (2; 4), (1; 5), (5; 4), (3; 6), (6; 6)

    Ngoài bộ số (6; 6) và (3; 3) ta có các bộ số còn lại hoán vị 

    => n\left( D ight) = 12

    => Xác suất để tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3 là: 

    P\left( D ight) = \frac{{n\left( D ight)}}{{n\left( \Omega  ight)}} = \frac{{12}}{{36}} = \frac{1}{3}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 47 lượt xem
Sắp xếp theo