Có bao nhiêu số tự nhiên lẻ có 6 chữ số đôi một khác nhau được lập từ các chữ số
mà chữ số đứng ở vị trí thứ ba luôn chia hết cho
?
Gọi số cần tìm có dạng
Vì số được chọn là một số lẻ và chữ số đứng ở vị trí thứ ba luôn chia hết cho 6.
Suy ra
TH1: Với chữ số
có 4 cách chọn,
có 6 cách chọn, ba chữ số còn lại có
cách chọn.
Do đó số.
TH2: Với chữ số
có 4 cách chọn,
có 5 cách chọn, ba chữ số còn lại có
cách chọn.
Do đó số.
Vậy các số tự nhiên tạo thành thỏa mãn yêu cầu bài toán là: .
