Cho
. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau?
Số các số tự nhiên gồm 5 chữ số đôi một khác nhau là:
Cho
. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau?
Số các số tự nhiên gồm 5 chữ số đôi một khác nhau là:
Hai người đi săn cùng bắn vào một con mồi. Gọi A là biến cố người thứ nhất bắn trúng con mồi. B là biến cố người thứ hai bắn trúng con mồi. Mối quan hệ giữa hai biến cố A và B là:
Hai biến cố A và B là hai biến cố độc lập vì việc người thứ nhất bắn trúng con mồi không phụ thuộc vào người thứ hai bắn trúng con mồi.
Có bao nhiêu số tự nhiên có 7 chữ số biết rằng chữ số 2 có mặt 2 lần, chữ số 3 có mặt 3 lần, chữ số còn lại có mặt nhiều nhất 1 lần.
Số tự nhiên có 7 chữ số có dạng:
Xét trường hợp có chữ số 0 đứng đầu
Số cách chọn vị trí cho chữ số 2 là:
Số cách chọn vị trí cho chữ số 3 là:
Số cách chọn 2 chữ số còn lại trong tập hợp các số đã cho để xếp vào hai vị trí cuối là
=> Số các số được tạo thành là:
Xét trường hợp không có chữ số 0 đứng đầu
Ta có:
Vì a = 0 => a có 1 cách chọn
Số cách chọn vị trí cho chữ số 2 là:
Số cách chọn vị trí cho chữ số 3 là:
Số cách chọn chữ số cuối trong tập hợp dãy số đã cho là 7 cách
=> Số các số được tạo thành là:
Vậy số các số được lập thành thỏa mãn yêu cầu đề bài là: 11760 - 420 = 11340 số
Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Tính số phần tử không gian mẫu?
Với câu hỏi 1, học sinh có 4 cách chọn đáp án A; B; C; hoặc D
Với câu hỏi 2, học sinh có 4 cách chọn đáp án A; B; C; hoặc D
Với câu hỏi 3, học sinh có 4 cách chọn đáp án A; B; C; hoặc D
…
Với câu hỏi 10, học sinh có 4 cách chọn đáp án A; B; C; hoặc D
Theo quy tắc nhân có:
Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?
Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “ là hai biến cố xung khắc.”
Cho tập hợp T gồm các số tự nhiên có 9 chữ số. Lấy ngẫu nhiên một số thuộc tập T. Giả sử H là biến cố lấy được một số lẻ và chia hết cho 9. Tính
?
Gọi số tự nhiên có 9 chữ số có dạng
Ta có: khi đó số phần tử không gian mẫu là
H là biến cố lấy được từ tập A một số lẻ và chia hết cho 9.
Số có 5 cách chọn
Các số từ mỗi số có 10 cách chọn
Xét tổng . Vì số dư của
khi chia cho 9 thuộc tập
nên luôn tồn tại một cách chọn số
để
chia hết cho 9 hay
Do đó
Xác suất của biến cố H là
Nhóm bạn gồm 4 người muốn tham gia sự kiện âm nhạc vào hai ngày cuối tuần, họ có thể chọn tham gia vào thứ bảy hoặc chủ nhật. Tính xác suất để vào ngày thứ bảy và ngày chủ nhật có ít nhất một bạn tham gia?
Đáp án: 0,875
(Kết quả ghi dưới dạng số thập phân)
Nhóm bạn gồm 4 người muốn tham gia sự kiện âm nhạc vào hai ngày cuối tuần, họ có thể chọn tham gia vào thứ bảy hoặc chủ nhật. Tính xác suất để vào ngày thứ bảy và ngày chủ nhật có ít nhất một bạn tham gia?
Đáp án: 0,875
(Kết quả ghi dưới dạng số thập phân)
Vì mỗi bạn có thể tham gia sự kiện vào một trong hai ngày thứ bảy hoặc chủ nhật nên xác suất để nhóm bạn tham gia trong mỗi ngày là 0,5
Xác suất không tham gia trong mỗi ngày là 0,5
Gọi A là biến cố cả hai ngày thứ bảy và chủ nhật có ít nhất một bạn tham gia.
Ta có:
Xác suất cần tìm là
Quản lí xưởng kiểm tra 4 sản phẩm trong kho gồm hai loại là đạt và không đạt. Gọi
là biến cố sản phẩm được kiểm tra lần thứ
thuộc loại không đạt,
. Mô tả nào sau đây mô tả đúng biến cố chỉ có một sản phẩm thuộc loại đạt qua các
?
Mô tả đúng là:
Hai học sinh ném mỗi người một phi tiêu vào bia một cách độc lập. Tính xác suất của biến cố có ít nhất một học sinh không ném trúng bia. Biết rằng xác suất ném trúng bia của hai học sinh lần lượt là
và
.
Giả sử có hai học sinh là A và B
Ta có xác suất để ném trúng mục tiêu của hai bạn A và B tương ứng là
Gọi biến cố D là biến cố có ít nhất một bạn không ném trúng bia.
Suy ra là biến cố cả hai bạn đều ném trúng bia, khi đó
Giả sử hai biến cố
là hai biến cố xung khắc. Công thức nào sau đây đúng?
Vì hai biến cố A và B là hai biến cố xung khắc nên theo công thức cộng xác suất ta có: .
Trong tủ sách có tất cả 10 cuốn sách. Hỏi có bao nhiêu cách sắp xếp sao cho quyển thứ nhất ở kề quyển thứ hai:
Coi quyển sách thứ nhất và quyển sách thứ hai thành một quyển sách
=> Khi đó ta có 9 quyển sách
Hoán vị hai quyển sách ban đầu ta có 2! = 2 cách
Sắp xếp 9 quyển sách vào 9 vị trí => Có 9! cách
=> Có 2.9! = 725760 cách sắp xếp sao cho quyển thứ nhất ở kề quyển thứ hai:
Một túi chứa 2 bi trắng và 3 bi đen. Rút ra 3 bi. Xác suất để được ít nhất 1 bi trắng là:
Số phần tử không gian mẫu là:
Gọi A là biến cố " được ít nhất 1 bi trắng"
=> là biến cố không lấy được viên bi trắng nào
=> Số phần tử của là:
=> Xác suất lấy 3 viên bi không có viên bi trắng là:
=> Xác suất để được ít nhất 1 bi trắng là:
Có 15 đội bóng đá thi đấu theo thể thức vòng tròn tính điểm. Hỏi cần phải tổ chức bao nhiêu trận đấu?
Lấy hai đội bất kỳ trong 15 đội bóng tham gia thi đấu ta được một trận đấu. Vậy số trận đấu chính là một tổ hợp chập 2 của 15 phần tử (đội bóng đá).
Như vậy, ta có trận đấu.
Cho
. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số đôi một khác nhau?
Số tự nhiên có 5 chữ số có dạng:
Số cần tìm là số chẵn => e ∈ {2; 4; 6}
=> Có 3 cách chọn e
Số cách chọn a, b, c, d là:
=> Có thể lập được số các số chẵn có 5 chữ số đôi một khác nhau là: số
Biết
và
là hai biến cố đối nhau. Chọn khẳng định đúng?
Ta có:
Cho các số 1, 2, 3, 4, 5, 6, 7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:
Số các số tự nhiên gồm 5 chữ số có chữ số 3 đứng đầu tiên có dạng là:
Do không có điều kiện về các chữ số còn lại
=> Số cách chọn các chữ số b, c, d, e là cách
=> Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là: 1 . 2401 = 2401 số
Trong công xưởng có một nhóm công nhân gồm 15 nữ và 5 nam. Chủ quản muốn chọn một nhóm gồm 5 công nhân để lập thành một tổ gồm 1 tổ trưởng nữ, 1 tổ phó nữ và có ít nhất 1 công nhân nam. Hãy xác định số cách lập tổ công nhân theo yêu cầu?
Ta có:
Số cách chọn 2 nữ làm tổ trưởng và tổ phó là cách.
Số cách chọn 3 công nhân còn lại là nữ là: cách.
Số cách chọn 3 công nhân còn lại trong 18 công nhân là cách.
Vậy số cách chọn 1 tổ trưởng nữ, 1 tổ phó và có ít nhất 1 nam là:
.
Từ các chữ số 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số:
Số tự nhiên có 4 chữ số có dạng:
Số cách chọn a là 4 cách
Số cách chọn b là 4 cách
Số cách chọn c là 4 cách
Số cách chọn d là 4 cách
=> Từ các chữ số 2, 3, 4, 5 có thể lập được số các số gồm 4 chữ số là 44 = 256 số
Truớc cổng trưòng đại học có 3 quán cơm bình dân chất lượng như nhau. Ba sinh viên A, B, C độc lập với nhau chọn ngẫu nhiên một quán để ăn trưa. Tính xác suất của các biến cố ba sinh viên vào cùng một quán?
Ta đánh số 3 quán cơm là
Gọi lần lượt là quán cơm sinh viên A; B; C chọn.
Như vậy không gian mẫu là
Vì có 3 cách chon a và có 3 cách chọn b và có 3 cách chọn c nên
Gọi B là biến cố "2 sinh viên vào cùng một quán, còn người kia thì vào quán khác".
Các kết quả thuận lợi cho biến cố B là
và 2 hoán vị của nó,
và 2 hoán vị của nó,
và 2 hoán vị của nó,
và hai hoán vị của nó,
và 2 hoán vị của nó,
và 2 hoán vị của nó.
Khi đó các kết quả thuận lợi cho biến cố B là:
Vậy xác suất của biến cố này là
Một đề kiểm tra trắc nghiệm 45 phút môn Tiếng Anh của lớp 10 là một đề gồm 25 câu hỏi độc lập, mỗi câu hỏi có 4 đáp án trả lời trong đó chỉ có một đáp án đúng. Mỗi câu trả lời đúng được 0,4 điểm, câu trả lời sai không được điểm. Bạn Bình vì học rất kém môn Tiếng Anh nên làm bài bằng cách chọn ngẫu nhiên câu trả lời cho tất cả 25 câu. Gọi A là biến cố “Bình làm đúng k câu”, biết xác suất của biến cố A đạt giá trị lớn nhất. Tính k.
Đáp án: 6
Một đề kiểm tra trắc nghiệm 45 phút môn Tiếng Anh của lớp 10 là một đề gồm 25 câu hỏi độc lập, mỗi câu hỏi có 4 đáp án trả lời trong đó chỉ có một đáp án đúng. Mỗi câu trả lời đúng được 0,4 điểm, câu trả lời sai không được điểm. Bạn Bình vì học rất kém môn Tiếng Anh nên làm bài bằng cách chọn ngẫu nhiên câu trả lời cho tất cả 25 câu. Gọi A là biến cố “Bình làm đúng k câu”, biết xác suất của biến cố A đạt giá trị lớn nhất. Tính k.
Đáp án: 6
Vì đề thi có 25 câu và mỗi câu có 4 phương án trả lời nên xác suất để Bình làm đúng câu là
Với .
Xét hàm với
và
.
Ta có lớn nhất
.
Suy ra .
Vậy .