Có bao nhiêu cách sắp xếp 4 người vào 4 ghế ngồi được bố trí quanh một bàn tròn?
Chọn 1 người ngồi vào 1 vị trí bất kì.
Xếp 3 người còn lại vào 3 ghế trống của bàn là một hoán vị của 3 phần tử nên có: cách.
Vậy số cách sắp xếp là 6 cách.
Có bao nhiêu cách sắp xếp 4 người vào 4 ghế ngồi được bố trí quanh một bàn tròn?
Chọn 1 người ngồi vào 1 vị trí bất kì.
Xếp 3 người còn lại vào 3 ghế trống của bàn là một hoán vị của 3 phần tử nên có: cách.
Vậy số cách sắp xếp là 6 cách.
Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để cả 2 học sinh đều không đạt yêu cầu?
Số cách chọn 2 học sinh từ 30 học sinh là cách
Vậy số phần tử không gian mẫu là 345 cách.
Gọi A là biến cố cả 2 học sinh đều không đạt yêu cầu
Khi đó số kết quả thuận lợi cho biến cố A là:
Vậy xác suất để cần tìm là:
Cho
. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số?
Số tự nhiên có 5 chữ số có dạng:
Do số đang xét là số chẵn
=> Có 3 cách chọn e
=> Số cách chọn là:
=> Từ tập A có thể lập được số các số chẵn có 5 chữ số là: số
Cho hai động cơ hoạt động độc lập nhau. Xác suất để động cơ 1 chạy tốt là
và xác suất để động cơ 2 chạy tốt là
. Tìm xác suất để có ít nhất một động cơ chạy tốt.
Đáp án: 0,94
(Ghi đáp án dưới dạng số thập phân)
Cho hai động cơ hoạt động độc lập nhau. Xác suất để động cơ 1 chạy tốt là và xác suất để động cơ 2 chạy tốt là
. Tìm xác suất để có ít nhất một động cơ chạy tốt.
Đáp án: 0,94
(Ghi đáp án dưới dạng số thập phân)
Gọi A là biến cố có ít nhất một động cơ chạy tốt
B là biến cố chỉ có động cơ 1 chạy tốt.
Gọi C là biến cố chỉ có động cơ 2 là chạy tốt.
Gọi D là biến cố cả hai động cơ đều chạy tốt
Vậy
Trong một phép lai, cho hai giống vịt lông đen thuần chủng và lông trắng thuần chủng giao phối với nhau được đời cây F1 toàn là lông đen. Tiếp tục cho con đời F1 giao phối với nhau được một đàn con mới. Chọn ngẫu nhiên 2 con trong đàn vịt con mới. Ước lượng xác suất của biến cố trong 2 con vịt được chọn có ít nhất một con lông đen?
Quy ước gene A: lông đen và gene a: lông trắng
Ở thế hệ F2 ba kiểu gene AA, Aa, aa xuất hiện với tỉ lệ 1: 2: 1 nên tỉ lệ lông đen với lông trắng là 3 : 1
Trong đàn vịt mới xác suất để được một con lông đen là và con lông trắng là
Gọi là biến cố có đúng 1 con lông đen trong 2 con được chọn
Gọi B là biến cố có 2 con vịt lông đen trong 2 con được chọn
Khi đó là biến cố có ít nhất 1 con lông đen trong 2 con được chọn
Do A và B là hai biến cố xung khắc nên
Cho 4 chữ số
có thể lập được bao nhiêu chữ số biết rằng các số tạo thành thuộc khoảng
?
Gọi số cần tìm có dạng với
.
Theo giả thiết ta có hai cách chọn a
Với mỗi cách chọn a ta có 4 cách chọn b và 4 cách chọn x.
Vậy có số thỏa mãn yêu cầu đề bài.
Một kệ sách có 15 quyển sách (4 quyển sách Toán khác nhau, 5 quyển sách Lý khác nhau và 6 quyển sách Văn khác nhau). Người ta lấy ngẫu nhiên 4 quyển sách từ kệ. Tính xác suất để số sách lấy ra không đủ ba môn.
Số phần tử của không gian mẫu là
Gọi A là biến cố “Lấy ra 4 quyển sách có đủ 3 môn”.
Trường hợp 1: 2 sách Toán, 1 sách Lý, 1 sách Văn có cách lấy.
Trường hợp 2: 1 sách Toán, 2 sách Lý, 1 sách Văn có cách lấy.
Trường hợp 3: 1 sách Toán, 1 sách Lý, 2 sách Văn có cách lấy.
Vậy kết quả thuận lợi cho biến cố A là
Xác suất của biến cố A là:
Xác suất cần tìm là:
Từ các số tự nhiên 1, 2, 3, 4 có thể lập được bao nhiêu số chẵn gồm 3 chữ số khác nhau?
Số tự nhiên có ba chữ số khác nhau có dạng:
Ta có: Số cần tạo là số chẵn => c ∈ {2; 4}
=> Có 2 cách chọn c
Số cách chọn a là 3 cách
Số cách chọn b là 2 cách
=> Số các số chẵn gồm 3 chữ số khác nhau được tạo thành là: 3 . 2 . 2 = 12 số
Người ta gieo 8000 lần một đồng xu cân đối thì tần số xuất hiện của mặt ngửa là 4013. Xác suất thực nghiệm mặt ngửa là:
Số phần tử không gian mẫu là:
Theo bài ra ta có: Tần số xuất hiện của mặt ngửa là 4 013 lần
=> Xác suất thực nghiệm mặt ngửa là:
Cho các số 1, 2, 3, 4, 5, 6, 7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:
Số các số tự nhiên gồm 5 chữ số có chữ số 3 đứng đầu tiên có dạng là:
Do không có điều kiện về các chữ số còn lại
=> Số cách chọn các chữ số b, c, d, e là cách
=> Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là: 1 . 2401 = 2401 số
Số cách chọn một ban chấp hành gồm một trưởng ban, một phó ban, một thư kí và một thủ quỹ được chọn từ 16 thành viên là:
Số cách chọn ban chấp hành (4 thành viên) từ 16 thành viên là:
Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:
a) Xác suất để lấy được chỉ màu đỏ
Đúng||Sai
b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai
c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng
Sai||Đúng
d) Xác suất lấy các viên bi có đủ ba màu
Sai||Đúng
Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:
a) Xác suất để lấy được chỉ màu đỏ Đúng||Sai
b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai
c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng Sai||Đúng
d) Xác suất lấy các viên bi có đủ ba màu Sai||Đúng
Số cách chọn 5 viên bi trong 15 viên bi là .
Gọi : “5 viên bi lấy được có đủ 3 màu "
Gọi : " 5 viên bi lấy được có không đủ 3 màu "
Chọn 5 viên bi không đủ 3 màu xảy ra các trường hợp
+ 5 viên màu đỏ có 1 cách
+ 5 viên màu vàng và 1 viên màu xanh hoặc đỏ có cách.
Chỉ có xanh và đỏ có .
Chỉ có xanh và vàng có .
Chỉ có đỏ và vàng có .
Vậy .
Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Thăm một bạn không quá một ngày).
Ta có: 1 tuần = 7 ngày
Mà mỗi ngày A đến thăm một bạn.
Ngày thứ nhất có 12 cách chọn
Ngày thứ hai có 11 cách chọn
Ngày thứ ba có 10 cách chọn
Ngày thứ tư có 9 cách chọn
Ngày thứ năm có 8 cách chọn
Ngày thứ sáu có 7 cách chọn
Ngày thứ bảy có 6 cách chọn
=> Số kế hoạch có thể lập được là: 12 . 11 . 10 . 9 . 8 . 7 . 6 = 3 991 680 kế hoạch
Một lô hàng có 10 sản phẩm, trong đó có 2 phế phẩm. Lấy tùy ý 6 sản phẩm từ lô hàng đó. Hãy tìm xác suất để trong 6 sản phẩm lấy ra có không quá một phế phẩm?
Số cách chọn ra 6 sản phẩm từ 10 sản phẩm là
Gọi biến cố A: “Lấy 6 sản phẩm từ lô hàng đó có không quá một phế phẩm”.
Trường hợp 1: Không có phế phẩm nào.
Số cách chọn 6 sản phẩm không phải là phế phẩm là cách.
Trường hợp 2: Có 1 phế phẩm và 5 sản phẩm còn lại.
Số cách chọn có 1 phế phẩm và 5 sản phẩm còn lại là cách.
Khi đó:
Cho
. Từ tập B có thể lập được bao nhiêu số chẵn có 6 chữ số đôi một khác nhau lấy từ tập B?
Số tự nhiên có 6 chữ số có dạng:
Số tự nhiên chẵn => f ∈ {2; 4; 6}
=> Có 3 cách chọn f
Số cách chọn a, b, c, d, e là:
=> Số các số chẵn có 6 chữ số đôi một khác nhau là: số
Trong một hộp giấy chứa 15 viên bi gồm 4 viên bi xanh, 5 viên bi đỏ và 6 viên bi vàng. Lấy ngẫu nhiên 4 viên bi. Tính xác suất để lấy được 4 viên bi có đủ màu?
Chọn 4 viên bi từ 15 viên bi ta có:
Gọi A là biến cố lấy được 4 viên bi có đủ ba màu.
Chọn 1 xanh, 1 đỏ và 2 vàng:
Chọn 1 xanh, 2 đỏ và 1 vàng:
Chọn 2 xanh, 1 đỏ và 1 vàng:
Một nhóm học sinh gồm
học sinh nam và
học sinh nữ. Có bao nhiêu cách chọn một học sinh trong nhóm đó tham gia đội thanh niên tình nguyện của trường?
Có cách chọn một học sinh.
Trong một phép thử có không gian mẫu kí hiệu là
và
là một biến cố của phép thử đó. Tìm phát biểu sai trong các phát biểu dưới đây?
Khẳng định sai là: “ khi và chỉ khi
chắc chắn”.
Vì B là biến cố chắc chắn thì P(B) = 1.
Có bao nhiêu số tự nhiên có 7 chữ số biết rằng chữ số 2 có mặt 2 lần, chữ số 3 có mặt 3 lần, chữ số còn lại có mặt nhiều nhất 1 lần.
Số tự nhiên có 7 chữ số có dạng:
Xét trường hợp có chữ số 0 đứng đầu
Số cách chọn vị trí cho chữ số 2 là:
Số cách chọn vị trí cho chữ số 3 là:
Số cách chọn 2 chữ số còn lại trong tập hợp các số đã cho để xếp vào hai vị trí cuối là
=> Số các số được tạo thành là:
Xét trường hợp không có chữ số 0 đứng đầu
Ta có:
Vì a = 0 => a có 1 cách chọn
Số cách chọn vị trí cho chữ số 2 là:
Số cách chọn vị trí cho chữ số 3 là:
Số cách chọn chữ số cuối trong tập hợp dãy số đã cho là 7 cách
=> Số các số được tạo thành là:
Vậy số các số được lập thành thỏa mãn yêu cầu đề bài là: 11760 - 420 = 11340 số
Một đề kiểm tra trắc nghiệm 45 phút môn Tiếng Anh của lớp 10 là một đề gồm 25 câu hỏi độc lập, mỗi câu hỏi có 4 đáp án trả lời trong đó chỉ có một đáp án đúng. Mỗi câu trả lời đúng được 0,4 điểm, câu trả lời sai không được điểm. Bạn Bình vì học rất kém môn Tiếng Anh nên làm bài bằng cách chọn ngẫu nhiên câu trả lời cho tất cả 25 câu. Gọi A là biến cố “Bình làm đúng k câu”, biết xác suất của biến cố A đạt giá trị lớn nhất. Tính k.
Đáp án: 6
Một đề kiểm tra trắc nghiệm 45 phút môn Tiếng Anh của lớp 10 là một đề gồm 25 câu hỏi độc lập, mỗi câu hỏi có 4 đáp án trả lời trong đó chỉ có một đáp án đúng. Mỗi câu trả lời đúng được 0,4 điểm, câu trả lời sai không được điểm. Bạn Bình vì học rất kém môn Tiếng Anh nên làm bài bằng cách chọn ngẫu nhiên câu trả lời cho tất cả 25 câu. Gọi A là biến cố “Bình làm đúng k câu”, biết xác suất của biến cố A đạt giá trị lớn nhất. Tính k.
Đáp án: 6
Vì đề thi có 25 câu và mỗi câu có 4 phương án trả lời nên xác suất để Bình làm đúng câu là
Với .
Xét hàm với
và
.
Ta có lớn nhất
.
Suy ra .
Vậy .