Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Các quy tắc tính xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Thực hiện tung ngẫu nhiên một con xúc xắc một lần. Biết H là biến cố mặt xuất hiện có số chấm chẵn, K là biến cố mặt xuất hiện có số chấm lẻ. Khẳng định nào sau đây đúng?

    \left\{ \begin{matrix}H \cap K = \varnothing \\H \cup K = \Omega \\\end{matrix} ight. nên hai biến cố H và K là hai biến cố đối nhau.

  • Câu 2: Vận dụng

    Trong một phép lai, cho hai giống vịt lông đen thuần chủng và lông trắng thuần chủng giao phối với nhau được đời cây F1 toàn là lông đen. Tiếp tục cho con đời F1 giao phối với nhau được một đàn con mới. Chọn ngẫu nhiên 2 con trong đàn vịt con mới. Ước lượng xác suất của biến cố trong 2 con vịt được chọn có ít nhất một con lông đen?

    Quy ước gene A: lông đen và gene a: lông trắng

    Ở thế hệ F2 ba kiểu gene AA, Aa, aa xuất hiện với tỉ lệ 1: 2: 1 nên tỉ lệ lông đen với lông trắng là 3 : 1

    Trong đàn vịt mới xác suất để được một con lông đen là \frac{3}{4} và con lông trắng là \frac{1}{4}

    Gọi A là biến cố có đúng 1 con lông đen trong 2 con được chọn

    \Rightarrow P(A) =
\frac{3}{4}.\frac{1}{4} = \frac{3}{16}

    Gọi B là biến cố có 2 con vịt lông đen trong 2 con được chọn

    \Rightarrow P(B) =
\frac{3}{4}.\frac{3}{4} = \frac{9}{16}

    Khi đó A \cup B là biến cố có ít nhất 1 con lông đen trong 2 con được chọn

    Do A và B là hai biến cố xung khắc nên

    P(A \cup B) = P(A) + P(B) = \frac{3}{16}
+ \frac{9}{16} = \frac{3}{4}

  • Câu 3: Vận dụng cao

    Lấy ngẫu nhiên 5 quả cầu từ hộp có 4 quả xanh, 5 quả đỏ và 6 quả vàng. Xác suất để lấy được 5 quả cầu có đủ 3 màu?

    Kết quả: 310/429

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Lấy ngẫu nhiên 5 quả cầu từ hộp có 4 quả xanh, 5 quả đỏ và 6 quả vàng. Xác suất để lấy được 5 quả cầu có đủ 3 màu?

    Kết quả: 310/429

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Số phần tử không gian mẫu n(\Omega) =C_{15}^{5} = 3003

    Gọi A là biến cố lấy được 5 quả cầu đủ 3 màu

    => \overline{A} là biến cố 5 quả cầu lấy được không đủ 3 màu. Khi đó ta có các trường hợp như sau:

    TH1: lấy được 5 quả cầu đỏ có 1 cách

    TH2: lấy được 5 quả màu vàng có C_{6}^{5}= 6 cách

    TH3: lấy được chỉ có xanh và đỏ C_{4}^{4}.C_{5}^{1} + C_{4}^{3}.C_{5}^{2} +C_{4}^{2}.C_{5}^{3} + C_{4}^{1}.C_{5}^{4} = 125 cách

    TH4: lấy được chỉ có xanh và vàng C_{4}^{4}.C_{6}^{1} + C_{4}^{3}.C_{6}^{2} +C_{4}^{2}.C_{6}^{3} + C_{4}^{1}.C_{6}^{4} = 246 cách

    TH5: lấy được chỉ có đỏ và vàng C_{5}^{4}.C_{6}^{1} + C_{5}^{3}.C_{6}^{2} +C_{5}^{2}.C_{6}^{3} + C_{5}^{1}.C_{6}^{4} = 455 cách

    Vậy n\left( \overline{A} ight) = 833\Rightarrow n(A) = n(\Omega) - n\left( \overline{A} ight) =2170

    \Rightarrow P(A) =\frac{310}{429}

  • Câu 4: Thông hiểu

    Chọn ngẫu nhiên 2 quả cầu trong một hộp giấy có chứa 4 quả cầu xanh, 3 quả cầu đỏ và 2 quả cầu vàng. Giả sử T là biến cố chọn được 2 quả khác màu, Z là biến cố đối của biến cố T. Tính số kết quả thuận lợi cho biến cố Z?

    Ta có: T là biến cố chọn được 2 quả khác màu

    Khi đó \overline{T} là biến cố chọn được hai quả cùng màu.

    Ta có: n\left( \overline{T} ight) =
C_{4}^{2} + C_{3}^{2} + C_{2}^{2} = 10

    Mà Z là biến cố đối của biến cố T

    \Rightarrow n\left( \overline{T} ight)
= n(Z) = 10

  • Câu 5: Thông hiểu

    Trong một bể cá cảnh có chứa 40 con gồm 10 cá đỏ, 15 cá vàng; 8 cá đen, còn lại là cá bạc. Chọn ngẫu nhiên 6 con cá trong bể. Tính xác suất để lấy được 6 con cá có cùng màu?

    Gọi A là biến cố lấy được 6 con cá đỏ \Rightarrow P(A) =
\frac{C_{10}^{6}}{C_{40}^{6}}

    B là biến cố lấy được 6 con cá vàng \Rightarrow P(B) =
\frac{C_{15}^{6}}{C_{40}^{6}}

    C là biến cố lấy được 6 con cá đen \Rightarrow P(C) =
\frac{C_{8}^{6}}{C_{40}^{6}}

    D là biến cố lấy được 6 con cá bạc \Rightarrow P(D) =
\frac{C_{7}^{6}}{C_{40}^{6}}

    E là biến cố lấy được 6 con cá cùng màu

    \Rightarrow E = A \cup B \cup C \cup
D

    \Rightarrow P(E) = P(A) + P(B) + P(C) +
P(D)

    \Rightarrow P(E) =
\frac{C_{10}^{6}}{C_{40}^{6}} + \frac{C_{15}^{6}}{C_{40}^{6}} +
\frac{C_{8}^{6}}{C_{40}^{6}} + \frac{C_{7}^{6}}{C_{40}^{6}} \approx
1,37.10^{- 3}

  • Câu 6: Nhận biết

    Có thể tạo thành bao nhiêu đoạn thẳng trong mặt mà 2 đầu mút thuộc tập hợp các điểm A;B;C;D;E;F phân biệt?

    Mỗi cách tạo ra một đoạn thẳng là một tổ hợp chập 2 của 7 phần tử.

    Số đoạn thẳng mà hai đầu mút thuộc tập hợp 7 điểm đã cho là: C_{7}^{2} = 21 (đoạn thẳng.

    Vậy đáp án là 21 đoạn thẳng.

  • Câu 7: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nam?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Vì chỉ có một trường hợp cả 2 nam trúng tuyển nên xác suất của biến cố này là: \frac{1}{15}

  • Câu 8: Thông hiểu

    Cho 4 chữ số 2;4;6;8 có thể lập được bao nhiêu chữ số biết rằng các số tạo thành thuộc khoảng (200;600)?

    Gọi số cần tìm có dạng \overline{abc} với a,b,c \in \left\{ 2;4;6;8 ight\}.

    Theo giả thiết ta có hai cách chọn a

    Với mỗi cách chọn a ta có 4 cách chọn b và 4 cách chọn x.

    Vậy có 2.4.4 = 32 số thỏa mãn yêu cầu đề bài.

  • Câu 9: Thông hiểu

    Cho B = \{1, 2, 3, 4, 5, 6\}. Từ tập B có thể lập được bao nhiêu số chẵn có 6 chữ số đôi một khác nhau lấy từ tập B?

    Số tự nhiên có 6 chữ số có dạng: \overline {abcdef}

    Số tự nhiên chẵn => f ∈ {2; 4; 6}

    => Có 3 cách chọn f

    Số cách chọn a, b, c, d, e là: A_5^5 = 120

    => Số các số chẵn có 6 chữ số đôi một khác nhau là: 3.120 = 360 số

  • Câu 10: Thông hiểu

    Cho sơ đồ mạch điện gồm 4 bóng đèn như hình vẽ sau:

    Biết xác suất hỏng của mỗi bóng đèn là 0,05. Tính xác suất để khi cho dòng diện chạy qua thì mạch điện chỉ có 1 bóng đèn sáng?

    Xác suất để có 3 bóng đèn hỏng và 1 bóng đèn sáng là:

    P =
C_{4}^{3}.(0,05)^{3}.0,95

  • Câu 11: Nhận biết

    Giả sử hai biến cố A;B là hai biến cố xung khắc. Công thức nào sau đây đúng?

    Vì hai biến cố A và B là hai biến cố xung khắc nên theo công thức cộng xác suất ta có: P(A \cup B) = P(A) +
P(B).

  • Câu 12: Thông hiểu

    Lấy ngẫu nhiên 3 tấm thẻ trong hộp đựng 10 thẻ trắng, 8 thẻ đỏ và 7 thẻ xanh. Tính xác suất để lấy được 3 tấm thẻ trong đó có ít nhất một thẻ xanh?

    Gọi B là biến cố có ít nhất một tấm thẻ xanh

    Suy ra \overline{B} là biến cố lấy được 3 tấm thẻ không có thẻ xanh nào.

    \Rightarrow P\left( \overline{B} ight)
= P\frac{C_{18}^{3}}{C_{25}^{3}}

    \Rightarrow \Rightarrow P(B) = 1 -
P\left( \overline{B} ight) = 1 - \frac{C_{18}^{3}}{C_{25}^{3}} \approx
0,645

  • Câu 13: Thông hiểu

    Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Gọi B là biến cố Hùng thi được ít nhất 8 điểm. Tính số phần tử của biến cố B?

    Trường hợp 1: Hùng thi được 8 điểm, tức là Hùng trả lời 8 câu đúng, 2 câu sai.

    Trong 10 câu số khả năng của 2 câu mà học sinh trả lời sai là C_{10}^{2}

    Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng

    Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai

    Vậy trường hợp này số khả năng xảy ra là C_{10}^{2}.1^{8}.3^{2}.

    Trường hợp 2: Hùng thi được 9 điểm, tức là Hùng trả lời 9 câu đúng, 1 câu sai.

    Trong 10 câu số khả năng của 1 câu mà học sinh trả lời sai là C_{10}^{1}

    Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng

    Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai

    Vậy trường hợp này số khả năng xảy ra là C_{9}^{1}.1^{9}.3^{1}.

    Trường hợp 3: Hùng thi được 10 điểm, tức là Hùng trả lời 10 câu đúng, 0 câu sai.

    Trường hợp này có 1 khả năng xảy ra.

    Vậy số phần tử của biến cố B là:

    n(B) = C_{10}^{2}.1^{8}.3^{2} +
C_{9}^{1}.1^{9}.3^{1} + 1 = 436

  • Câu 14: Vận dụng

    Nếu một đa giác đều có 44 đường chéo, thì số cạnh của đa giác là:

    Gọi số cạnh của đa giác đều là n (cạnh)

    => Đa giác đó có n đỉnh tương ứng

    Cứ nối 2 đỉnh của đa giác được một đoạn thẳng (là cạnh hoặc đường chéo)

    Số đoạn thẳng được tạo thành khi nối hai điểm bất kì của đa giác là: C_{n}^2 đoạn thẳng

    Mà đa giác đều có 44 đường chéo nên ta có phương trình

    44 + n = C_n^2 \Rightarrow n = 11

    Vậy đa giác đều có 11 cạnh

  • Câu 15: Thông hiểu

    Giáo viên trong lớp chuẩn bị 3 chiếc hộp:

    Hộp 1 chứa 3 quả cầu đỏ và 5 quả cầu trắng.

    Hộp 2 chứa 2 quả cầu đỏ và 2 quả cầu vàng.

    Hộp 3 chứa 2 quả cầu đỏ và 3 quả cầu xanh.

    Lấy ngẫu nhiên một hộp rồi lấy một quả cầu trong hộp đó. Gọi X_{1} là biến cố lấy được hộp 1, X_{2} là biến cố lấy được hộp 2, X_{3} là biến cố lấy được hộp 3. Khi đó biến cố lấy ngẫu nhiên một hộp rồi lấy được một quả màu đỏ trong hộp đó biểu diễn như thế nào?

    Lấy ngẫu nhiên một hộp trong hộp đó lấy ngẫu nhiên 1 quả cầu được quả màu đỏ thì hoặc là lấy được quả đỏ từ hộp 1 hoặc là lấy được quả đỏ từ hộp 2 hoặc lấy được quả đỏ từ hộp 3. Do đó ta biểu diễn biến cố cần tìm như sau:

    \left( X \cap X_{1} ight) \cup \left(
X \cap X_{2} ight) \cup \left( X \cap X_{3} ight)

  • Câu 16: Nhận biết

    Một hộp dựng 10 viên bi xanh và 5 viên bi vàng. Có bao nhiêu cách lấy 4 viên bi bất
    kỳ?

    Số viên bi có trong hộp là 10 + 5 = 15 viên bi

    Số cách lấy 4 viên bi bất kỳ trong hộp là tổ hợp chập 4 của 15 phần tử: C_{15}^4 = 1365

  • Câu 17: Thông hiểu

    Có hai hòm đựng thẻ, mỗi hòm đựng 13 thẻ đánh số từ 1 đến 13. Từ mỗi hòm rút ngẫu nhiên một thẻ. Tính xác suất để trong hai thẻ rút ra có ít nhất một thẻ đánh số 9.

    Gọi A là biến cố "Trong hai thẻ rút ra có ít nhất một thẻ đánh số 9 "; H là biến cố "Thẻ rút ra từ hòm thứ nhất không đánh số 9 "; K là biến cố "Thẻ rút ra từ hòm thứ hai không đánh số 9 ".

    Khi đó \overline{A} = HK. Ta có: P(H) = \frac{12}{13};P(K) =
\frac{12}{13}

    Vì H và K là hai biến cố độc lập nên P\left( \overline{A} ight) = P(HK) = P(H).P(K) =
\frac{144}{169}

    Do đó P(A) = 1 - P\left( \overline{A}
ight) = 1 - \frac{144}{169} = \frac{25}{169} đây là hợp của các biến cố xung khắc.

    Do đó: P(X) = P\left(
H\overline{S}\overline{T} \cup \overline{H}S\overline{T} \cup
\overline{H}\overline{S}T ight)

    = P\left( H\overline{S}\overline{T}
ight) + P\left( \overline{H}S\overline{T} ight) + P\left(
\overline{H}\overline{S}T ight)

    \left\{ \begin{matrix}P\left( H\overline{S}\overline{T} ight) =\dfrac{1}{2}.\dfrac{3}{5}.\dfrac{2}{3} = \dfrac{1}{5} \\P\left( \overline{H}S\overline{T} ight) =\dfrac{1}{2}.\dfrac{2}{5}.\dfrac{2}{3} = \dfrac{2}{15} \\\left( \overline{H}\overline{S}T ight) =\dfrac{1}{2}.\dfrac{3}{5}.\dfrac{1}{3} = \dfrac{1}{10} \\\end{matrix} ight.

    \Rightarrow P(X) = P\left(
H\overline{S}\overline{T} ight) + P\left( \overline{H}S\overline{T}
ight) + P\left( \overline{H}\overline{S}T ight) = \frac{1}{5} +
\frac{2}{15} + \frac{1}{10} = \frac{13}{30}

  • Câu 18: Nhận biết

    Một nhóm học sinh gồm 15 người. Cần chọn 3 người lần lượt làm các chức vụ nhóm trưởng, nhóm phó và kiểm soát. Số cách chọn là:

    Số cách chọn 3 người đảm nhiệm 3 chức vụ khác nhau từ 15 người là:

    A_{15}^{3} = 2730 (cách)

    Vậy có tất cả 2730 cách chọn.

  • Câu 19: Nhận biết

    Có 6 học sinh được xếp vào 6 chỗ ngồi đã được ghi thứ tự trên một bàn dài. Tìm số cách sắp xếp học sinh ngồi vào bàn sao cho hai học sinh A và B không được ngồi cạnh nhau?

    Sắp xếp 6 học sinh vào 6 chỗ ngồi trên một bàn dài có 6! = 720 cách

    Có 5 vị trí cạnh nhau, sắp xếp hai học sinh A và B vào 5 vị trí cạnh nhau đó có 5.2 = 10 cách

    Tiếp tục sắp xếp 4 học sinh còn lại có 4! = 24 cạc

    Vậy số cách sắp xếp 6 học sinh sao cho A và B ngồi cạnh nhau là 10.24 = 240 cách

    => Số cách sắp xếp 6 học sinh sao cho A và B không ngồi cạnh nhau là 720 – 240 = 480 cách.

  • Câu 20: Vận dụng

    Với các chữ số 0; 1; 2; 3; 4; 5; 6 lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần và các chữ số khác mỗi chữ số có mặt đúng 1 lần.

    Theo bài ra ta có:

    Số các số có dạng hoán vị của 10 chữ số, trong đó mỗi số chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần: \frac{{10!}}{{3!.2!}}

    Những số có chữ số 0 đứng tận cùng bên trái ví dụ 0222443156 ta phải bỏ đi

    Số các số có dạng bằng hoán vị của 9 chữ số trong đó chữ số 2 có mặt đúng 3 lần, chữ số 4 có mặt đúng 2 lần: \frac{{9!}}{{3!.2!}}

    Vậy số các số được tạo thành là: \frac{{10!}}{{3!.2!}} -\frac{{9!}}{{3!.2!}} =272160

     

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 44 lượt xem
Sắp xếp theo