Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Các quy tắc tính xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Có ba chiếc hộp đựng những tấm thẻ màu xanh và màu đỏ. Từ mỗi hộp lấy ngẫu nhiên 1 chiếc thẻ. Giả sử Q_{i} là biến cố lấy được tấm thẻ màu xanh từ hộp thứ i;i \in \left\{ 1;2;3
ight\}. Em hãy chọn đáp án đúng biểu diễn biến cố lấy được ít nhất một tấm thẻ màu đỏ dưới đây?

    Biểu diễn đúng là: \overline{Q_{1}} \cup
\overline{Q_{2}} \cup \overline{Q_{3}}

  • Câu 2: Thông hiểu

    Từ một nhóm 5 người, chọn ra các nhóm ít nhất 2 người. Hỏi có bao nhiêu cách chọn:

    Số cách chọn nhóm có 2 người: C_5^2 = 10

    Số cách chọn nhóm có 3 người: C_5^3 = 10

    Số cách chọn nhóm có 4 người: C_5^4= 5

    Số cách chọn nhóm có 5 người: 1

    => Số cách chọn ra các nhóm mà có ít nhất 2 người là: 10 + 10 + 5 + 1 = 26 nhóm

  • Câu 3: Thông hiểu

    Trong một trò chơi điện tử, có 38 con cá đói. Một con cá gọi là no nếu nó ăn được 3 con cá khác (con này có thể no hoặc không no). Một con cá no không ăn thêm con cá nào khác. Trò chơi kết thúc khi không còn con cá nào đói. Hỏi sau khi kết thúc trò chơi thì có tối đa bao nhiêu con cá no?

    Đáp án: 8

    Đáp án là:

    Trong một trò chơi điện tử, có 38 con cá đói. Một con cá gọi là no nếu nó ăn được 3 con cá khác (con này có thể no hoặc không no). Một con cá no không ăn thêm con cá nào khác. Trò chơi kết thúc khi không còn con cá nào đói. Hỏi sau khi kết thúc trò chơi thì có tối đa bao nhiêu con cá no?

    Đáp án: 8

     Đầu tiên, 9 con cá đói, mỗi con sẽ ăn 3 con cá đói khác để tạo thành 1 con cá no. Khi đó trong trò chơi còn lại 2 con cá đói và 9 con cá no.

    Để số con cá no là tối đa thì 1 con cá đói sẽ ăn 1 con cá đói còn lại và 2 con cá no khác.

    Khi đó, trong trò chơi sẽ không còn cá đói và có 8 con cá no.

  • Câu 4: Nhận biết

    Từ 7 chữ số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số từ 4 chữ số khác nhau?

     Số tự nhiên có 4 chữ số khác nhau được tạo thành từ dãy số đã cho có dạng:

    \overline {abcd} ;\left( {a e b e c e d} ight)

    Số cách chọn a là: 7 cách

    Số cách chọn b là 6 cách

    Số cách chọn c là 5 cách

    Số cách chọn d là 4 cách

    Áp dụng quy tắc nhân ta có số các chữ số được tạo thành thỏa mãn yêu cầu bài toán là: 7 . 6 . 5 . 4 (số)

  • Câu 5: Vận dụng

    Có bao nhiêu cách sắp xếp 5 nam và 4 nữ thành một hàng ngang sao cho giữa hai nữ có đúng 1 nam?

    Vì giữa 4 nữ có vị trí trống để xếp thỏa mãn yêu cầu phải yêu cầu có dạng \overline{AaBbCcD} trong đó A;B;C;D là 4 bạn nữ và a,b,c là 3 bạn nam.

    Bước 1: Chọn 3 bạn nam trong 5 bạn nam có C_{5}^{3} cách.

    Bước 2: Gọi nhóm \overline{AaBbCcD} là X. Xếp X và 2 nam còn lại thành một hàng ngang có 3! Cách.

    Bước 3: Ứng với mỗi cách xếp ở bước 1 có 4! cách xếp các bạn nữ trong X và 3! cách các bạn nam trong X.

    Do đó ta có: C_{5}^{3}.3!.3!.4! =
8640 cách xếp thỏa mãn yêu cầu bài toán.

  • Câu 6: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    gọi B: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”

    Ta có: B = \left\{
(3;6),(6;3),(4;6),(6;4),(5;6),(6;5),(6;6) ight\}

    \Rightarrow n(B) = 7 \Rightarrow P(B) =
\frac{n(B)}{n(\Omega)} = \frac{7}{36}

  • Câu 7: Thông hiểu

    Chọn ngẫu nhiên ba người, biết rằng không có ai sinh vào năm nhuận. Hãy tính xác suất để có ít nhất hai người có sinh nhật trùng nhau (cùng ngày, cùng tháng).

    Gọi A là biến cố “Trong 3 người được chọn, có ít nhất 2 người cùng sinh nhật”.

    Khi đó biến cố \overline{A} là “Ba người được chọn có ngày sinh đôi một khác nhau”.

    Số trường hợp có thể là 365^{3}

    Số trường hợp thuận lợi là cho biến cố \overline{A} là 365 364 363

    Vậy P\left( \overline{A} ight) =
\frac{365.3634.363}{365^{3}} \Rightarrow P(A) = 1 -
\frac{365.3634.363}{365^{3}} \approx 0,0082

  • Câu 8: Thông hiểu

    Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 3 và 2:

    Số chia hết cho 2 và 3 là 6k, với k là số tự nhiên.

    Theo đề bài ta có:

    0 ≤ 6k < 100

    => 0 ≤ k < 16,7

    Vậy có 17 chữ số thỏa mãn.

  • Câu 9: Nhận biết

    Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?

    Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “A;B là hai biến cố xung khắc.”

  • Câu 10: Thông hiểu

    Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra đều là môn toán.

    Trên giá sách có 4 + 3 + 2 = 9 quyển sách

    Số phần tử của không gian mẫu là: n\left( \Omega  ight) = C_9^3 = 84

    Gọi B là biến cố "3 quyển được lấy ra đều là môn toán"

    => n\left( B ight) = C_4^3=4

    => Xác suất để 3 quyển được lấy ra đều là môn toán là:

    P\left( B ight) = \frac{{n\left( B ight)}}{{n\left( \Omega  ight)}} = \frac{{4}}{{84}} = \frac{1}{21}

  • Câu 11: Nhận biết

    Từ các chữ số 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số:

    Số tự nhiên có 4 chữ số có dạng: \overline {abcd}

    Số cách chọn a là 4 cách 

    Số cách chọn b là 4 cách

    Số cách chọn c là 4 cách

    Số cách chọn d là 4 cách

    => Từ các chữ số 2, 3, 4, 5 có thể lập được số các số gồm 4 chữ số là 44 = 256 số

  • Câu 12: Vận dụng

    Với các chữ số 0;1;2;3;4;5;6. Có thể lập được bao nhiêu số có mười chữ số mà trong mỗi số chữ số 5 có mặt đúng 4 lần và các chữ số khác có mặt đúng 1 lần?

    Trường hợp 1: Số 5 ở vị trí đầu tiên và 3 số 5 còn lại có C_{9}^{3} = 84 cách xếp

    Sáu chữ số còn lại có P_{6} =
720 cách xếp.

    => Có 84.720 = 60480 số.

    Trường hợp 2: Số 5 không ở vị trí đầu tiên có C_{9}^{4} = 126 cách sắp xếp 4 số 5.

    Vị trí đầu tiên có 5 cách xếp (trừ số 0).

    5 vị trí còn lại có P_{5} = 120 cách xếp.

    => Có 126.5.12 = 75600 số.

    Vậy có thể lập được 60480 + 75600 = 136080 số thỏa mãn bài toán.

  • Câu 13: Vận dụng cao

    Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và x viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là \frac{45}{182} ?

    Kết quả: 177/182

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Đáp án là:

    Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và x viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là \frac{45}{182} ?

    Kết quả: 177/182

    (Kết quả ghi dưới dạng phân số tối giản a/b)

    Theo bài ra ta có tổng số viên bi trong hộp là x + 8;\left( x \in \mathbb{N}^{*}
ight)

    Láy ngẫu nhiên 3 viên bi từ hộp. Số kết quả có thể xảy ra là n(\Omega) = C_{x + 8}^{3}

    Gọi A là biến cố 3 viên bi lấy được có đủ 3 màu. Số kết quả thuận lợi cho biến cố A là: n(A) =
C_{5}^{1}.C_{3}^{1}.C_{x}^{1} = 15x

    => Xác suất lấy được 3 viên bi có đủ 3 màu là:

    P(A) = \frac{45}{182}

    \Leftrightarrow \frac{15x}{C_{x +
8}^{3}} = \frac{45}{182}

    \Leftrightarrow \frac{90x}{(x + 6)(x +
7)(x + 8)} = \frac{45}{182}

    \Leftrightarrow x^{3} + 21x^{2} - 218x +
336 = 0

    \Leftrightarrow x = 6(tm)

    Do đó trong hộp có 14 viên bi và n(\Omega) = C_{14}^{3}

    Gọi B là biến cố 3 viên bi lấy được có nhiều nhất hai viên bi đỏ

    Suy ra \overline{B} là biến cố 3 viên bi lấy được đều là bi đỏ.

    Số kết quả thuận lợi cho \overline{B} là: n\left( \overline{B} ight) =
C_{5}^{3}

    Khi đó xác suất P để trong 3 viên bi lấy được nhiều nhất 2 viên bi đỏ là:

    P = P(B) = 1 - P\left( \overline{B}
ight)

    = 1 - \frac{n\left( \overline{B}
ight)}{n(\Omega)} = 1 - \frac{C_{5}^{3}}{C_{14}^{3}} =
\frac{177}{182}

  • Câu 14: Vận dụng

    Biết rằng xác suất để thắng một trận game là 30\%. Hỏi người chơi phải chơi ít nhất bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi lớn hơn 0,95?

    Gọi n là số trận người đó chơi.

    A là biến cố người đó thắng ít nhất 1 trận

    Suy ra \overline A là biến cố người đó không thắng trận nào.

    \overline A  = \overline {{A_1}} .\overline {{A_2}} .\overline {{A_3}} ...\overline {{A_n}} trong đó \overline {{A_i}} là biến cố người đó thắng trận thứ i và P\left( {\overline {{A_i}} } ight) = 0,7;i = \overline {1,n}

    \Rightarrow \left\{ \begin{matrix}
P\left( \overline{A} ight) = P\left( \overline{A_{1}} ight).P\left(
\overline{A_{2}} ight).P\left( \overline{A_{3}} ight)...P\left(
\overline{A_{n}} ight) = 0,7^{n} \\
P(A) = 1 - P\left( \overline{A} ight) = 1 - 0,7^{n} \\
\end{matrix} ight.

    Ta có bất phương trình

    1 - 0,7^{n} > 0,95

    \Leftrightarrow 0,7^{n} <
0,05

    \Leftrightarrow n >\log_{0,7}0,05

    Vậy giá trị nhỏ nhất của n bằng 9.

  • Câu 15: Thông hiểu

    Ngân hàng đề thi gồm 100 câu hỏi. Mỗi đề thi có 5 câu. Một học sinh thuộc 80 câu. Tìm xác suất để học sinh đó ngẫu nhiên làm được một đề thi trong đó có 4 câu mình đã học thuộc.

    Số cách chọn 1 đề thi bất ki (gồm 5 câu trong 100 câu) là n(\Omega) = C_{100}^{5}

    Gọi biến cố A: “học sinh đó làm được một đề thi trong đó có 4 câu mình đã học thuộc”.

    Học sinh đã học thuộc 80 câu nên có C_{80}^{4} cách chọn ra 4 câu đã học thuộc và có C_{20}^{1} cách chọn ra 1 câu hỏi còn lại chưa học thuộc.

    Do đó n(A) = C_{80}^{4}.C_{20}^{1}\Rightarrow P(A) = \dfrac{C_{80}^{4}.C_{20}^{1}}{C_{100}^{5}} \approx0,42

  • Câu 16: Thông hiểu

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn 3 học sinh trong đó có nhiều nhất 1 học sinh nam?

    Số cách chọn ba học sinh trong đó có 1 học sinh nam là: C_{25}^1.C_{15}^2 = 2625 cách

    Số cách chọn ba học sinh trong đó không có học sinh nam là: C_{15}^3 = 455 cách

    => Số cách chọn 3 học sinh trong đó có nhiều nhất một học sinh nam là: 2625 + 455 = 3080 cách

  • Câu 17: Thông hiểu

    Hai cung thủ cùng bắn mũi tên vào mục tiêu một cách độc lập. Tính xác suất của biến cố hai cung thủ cùng bắn trúng mục tiêu. Biết rằng xác suất bắn trúng của người thứ nhất và người thứ hai lần lượt là 80\%70\%?

    Giả sử Ai là biến cố người thứ i bắn trúng với i = 1; 2

    A là biến cố cả hai người cùng bắn trúng.

    Lúc đó A = A_{1} \cap A_{2}

    A_{1};A_{2} là hai biến cố độc lập nên

    \Rightarrow P(A) = P\left( A_{1} \cap
A_{2} ight) = P\left( A_{1} ight).P\left( A_{2} ight)

    = 0,8.0,7 = 0,56 = 56\%

  • Câu 18: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nam?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Vì chỉ có một trường hợp cả 2 nam trúng tuyển nên xác suất của biến cố này là: \frac{1}{15}

  • Câu 19: Nhận biết

    Tên 15 học sinh được ghi vào 15 tờ giấy để vào trong hộp. Chọn tên 4 học sinh để cho đi du lịch. Hỏi có bao nhiêu cách chọn các học sinh:

     Số cách chọn 4 học sinh là tổ hợp chập 4 của 15 học sinh: C_{15}^4 = 1365

  • Câu 20: Nhận biết

    Từ các số tự nhiên 1, 2, 3, 4 có thể lập được bao nhiêu số chẵn gồm 3 chữ số khác nhau?

     Số tự nhiên có ba chữ số khác nhau có dạng: \overline {abc} ;\left( {a e b e c} ight)

    Ta có: Số cần tạo là số chẵn => c ∈ {2; 4}

    => Có 2 cách chọn c

    Số cách chọn a là 3 cách

    Số cách chọn b là 2 cách

    => Số các số chẵn gồm 3 chữ số khác nhau được tạo thành là: 3 . 2 . 2 = 12 số

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo