Cho
. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số?
Số tự nhiên có 5 chữ số có dạng:
Do số đang xét là số chẵn
=> Có 3 cách chọn e
=> Số cách chọn là:
=> Từ tập A có thể lập được số các số chẵn có 5 chữ số là: số
Cho
. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số?
Số tự nhiên có 5 chữ số có dạng:
Do số đang xét là số chẵn
=> Có 3 cách chọn e
=> Số cách chọn là:
=> Từ tập A có thể lập được số các số chẵn có 5 chữ số là: số
Cho 5 chữ số 0; 1; 2; 3; 4. Từ 5 chữ số đó có thể lập được bao nhiêu chữ số chẵn có năm chữ số sao cho trong mỗi số đó mỗi chữ số trên có mặt một lần?
Số tự nhiên có năm chữ số có dạng:
Do mỗi số đó mỗi chữ số trên có mặt một lần =>
Số cần tìm là số chẵn => e ∈ {0; 2; 4}
Trường hợp 1: e = 0 => e có 1 cách chọn
Số cách chọn a là 4 cách
Số cách chọn b là 3 cách
Số cách chọn c là 2 cách
Số cách chọn d là 1 cách
=> Số các số lập được ở trường hợp 1 là: 4.3.2 = 24 số
Trường hợp 2: e ∈ {2; 4} => Có 2 cách chọn e
Số cách chọn a là 3 cách (Do a khác 0)
Số cách chọn b là 3 cách
Số cách chọn c là 2 cách
Số cách chọn d là 1 cách
=> Số các số lập được ở trường hợp 2 là: 2.3.3.2 = 36 số
=> Có thể lập được số các chữ số chẵn có năm chữ số sao cho trong mỗi số đó mỗi chữ số trên có mặt một lần là 36 + 24 = 60 số
Có bao nhiêu cách sắp xếp 5 nam và 4 nữ thành một hàng ngang sao cho giữa hai nữ có đúng 1 nam?
Vì giữa 4 nữ có vị trí trống để xếp thỏa mãn yêu cầu phải yêu cầu có dạng trong đó
là 4 bạn nữ và
là 3 bạn nam.
Bước 1: Chọn 3 bạn nam trong 5 bạn nam có cách.
Bước 2: Gọi nhóm là X. Xếp X và 2 nam còn lại thành một hàng ngang có 3! Cách.
Bước 3: Ứng với mỗi cách xếp ở bước 1 có 4! cách xếp các bạn nữ trong X và 3! cách các bạn nam trong X.
Do đó ta có: cách xếp thỏa mãn yêu cầu bài toán.
Có bao nhiêu cách chọn một tổ tưởng tổ dân phố từ một nhóm cư dân gồm 25 nam và 20 nữ?
Số cách chọn một người từ 45 người là: (cách)
Vậy có 45 cách chọn tổ trưởng tổ dân phố.
Tung một đồng xu hai lần liên tiếp. Tập hợp không gian mẫu là:
Không gian mẫu là: .
Cho tập hợp
. Lập từ
số tự nhiên có
chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ
. Tính xác suất để chọn được số chia hết cho
?
Cho tập hợp . Lập từ
số tự nhiên có
chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ
. Tính xác suất để chọn được số chia hết cho
?
Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5.
Ta có:
Gọi A: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5”
Ta có:
Chọn ngẫu nhiên một gia đình có 3 con trong khu dân cư và quan sát giới tính của các con trong gia đình đó. Tính số phần tử của không gian mẫu.
Chọn ngẫu nhiên một gia đình có 3 con và quan sát giới tính của ba người con đó ta có sơ đồ như sau:
Không gian mẫu
Sắp 3 quyển sách Toán và 3 quyển sách Vật Lí lên một kệ dài. Xác suất để 3 quyển sách cùng một môn nằm cạnh nhau là:
Số phần tử của không gian mẫu (Số cách xếp 6 quyển sách lên một kệ dài) là: 6! = 720 cách.
Sắp xếp 3 sách Toán với nhau và 3 sách Vật lí với nhau
Coi 6 quyển sách là hai bộ sách Toán và Vật Lí
Số cách sắp xếp hai bộ sách là 2! = 2 (cách)
Cách sắp xếp bộ sách Toán là 3! = 6
Cách sắp xếp bộ sách Vật Lí là 3! = 6
=> Số cách sắp xếp để 3 quyển sách cùng một môn nằm cạnh nhau là: 2 . 6 . 6 = 72 (cách)
=> Xác suất để 3 quyển sách cùng một môn nằm cạnh nhau là:
Thực hiện gieo hai lần một con xúc xắc cân đối và đồng chất. Gọi A là biến cố xuất hiện ít nhất một lần mặt năm chấm. Tính xác suất của biến cố A?
Ta có: và A là biến cố xuất hiện ít nhất một lần mặt năm chấm
Suy ra là biến cố không lần nào xuất hiện mặt năm chấm.
Ta có:
Chọn ngẫu nhiên ba số từ tập các số tự nhiên sau:
. Tính xác suất để tổng ba số được chọn là số lẻ?
Không gian mẫu là số cách chọn ngẫu nhiên ba số tự nhiên từ 11 số tự nhiên sau:
Do đó số phần tử của không gian mẫu là:
Gọi B là biến cố “Tổng ba số được chọn là số lẻ”
Tổng ba số được chọn tạo thành số lẻ thì ba số được chọn cần thỏa điều kiện: 3 số đều là số lẻ, hai số chẵn và 1 số lẻ.
TH1: 3 số đều là số lẻ:
TH2: số cách chọn hai số chẵn và 1 số lẻ là
Suy ra ta có
Vậy xác suất cần tìm là:
Có bao nhiêu số tự nhiên có chín chữ số mà các chữ số của nó viết theo thứ tự giảm dần:
Vì số có chín chữ số viết theo thứ tự giảm dần nên chỉ có thể là chữ số 9 hoặc chữ số 8 đứng đầu.
Trường hợp 1: Số 9 đứng đầu
Từ các số 0; 1; 2; 3; 4; 5; 6; 7; 8 mỗi một lần ta bỏ đi một số ta sẽ lập được 1 số có 9 chữ số viết theo thứ tự giảm dần mà số 9 đứng đầu.
=> Trường hợp 1 có 9 số được lập
Trường hợp 2: Số 8 đứng đầu
Vì từ 0 đến 8 có chín chữ số nên ta chỉ lập được 1 số có 9 chữ số viết theo thứ tự giảm đần
Vậy cả 2 trường hợp có 9 + 1 = 10 số
Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn 3 học sinh trong đó có 1 học sinh nam và 2 học sinh nữ?
Số cách chọn 1 học sinh nam là: cách
Số cách chọn 2 học sinh nữ là: cách
Áp dụng quy tắc nhân ta có:
Số cách chọn 3 học sinh trong đó có 1 học sinh nam và 2 học sinh nữ là:
cách
Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nam?
Số cách chọn 2 trong 6 người có cách
Vậy số phần tử không gian mẫu là 15.
Vì chỉ có một trường hợp cả 2 nam trúng tuyển nên xác suất của biến cố này là:
Đội học sinh giỏi toán 10 có tất cả 18 học sinh, trong đó có 7 học sinh giỏi môn Toán, 6 học sinh giỏi môn Văn và 5 học sinh giỏi môn Hóa. Hỏi có bao nhiêu cách chọn 8 học sinh đi dự thi chính thức, biết rằng mỗi môn có ít nhất 1 học sinh.
Số cách chọn 8 học sinh gồm hai khối là phần bù của cách chọn 8 học sinh đi dự đại hội sao cho mỗi khối có ít nhất 1 học sinh được chọn.
Số cách chọn 8 học sinh từ hai khối là:
Số cách chọn 8 học sinh bất kì là:
Số cách chọn thỏa yêu cầu bài toán:
Chọn ngẫu nhiên một số có 2 chữ số từ các số 00 đến 99. Xác suất để có một con số tận cùng là 0 là:
Chọn một số có hai chữ số bất kì
Số phần tử không gian mẫu là:
Số cách chọn số có chữ số tận cùng là 0 là:
=> Xác suất để có một con số tận cùng là 0 là:
Chọn ngẫu nhiên 2 số tự nhiên trong tập hợp S gồm các số tự nhiên có 5 chữ số đôi một khác nhau, trong đó chữ số 3 đứng liền giữa hai chữ số 2 và 4. Tìm số phần tử không gian mẫu?
Ta chia thành các trường hợp như sau:
TH1: Nếu số 234 đứng đầu thì có số
TH2: Nếu cố 432 đứng đầu thì có số
TH3: Nếu cố 234; 432 không đứng đầu
Khi đó có 6 cách chọn số đứng đầu, khi đó còn 4 vị trí có 2 cách sắp xếp 3 số 234 và 432, còn lại 1 vị trí có cách chọn số còn lại. Do đó trường hợp này có
Suy ra số phần tử của tập hợp S là
Vậy số phần tử không gian mẫu là
Cho các số 1, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 4 chữ số với các chữ số khác nhau:
Số tự nhiên có 4 chữ số khác nhau có dạng:
Số cách chọn a là 4 cách
Số cách chọn b là 3 cách
Số cách chọn c là 2 cách
Số cách chọn d là 1 cách
=> Có thể lập được số các số tự nhiên có 4 chữ số với các chữ số khác nhau là 4! = 24 số
Có hai hộp, hộp thứ nhất đựng 3 bi đỏ, 2 bi xanh và 5 bi vàng, hộp thứ hai đựng 2 bi đỏ, 3 bi xanh và 2 bi vàng. Lấy ngẫu nhiên 2 bi, mỗi hộp một bi. Tính xác suất để trong một lần lấy ra được đúng một bi đỏ?
Gọi A là biến cố “Trong một lần lấy ra được đúng một bi đỏ”, là biến cố “Lấy được bi đỏ ở hộp thứ nhất”,
là biến cố “Lấy được bi đỏ ở hộp thứ hai”.
Ta có:
Suy ra
Rút ngẫu nhiên hai tấm thẻ trong chiếc hộp có 9 tấm thẻ được đánh số thứ tự từ 1 đến 9. Xét các biến cố sau:
A: “Cả hai tấm thẻ đều mang số chẵn”.
B “Chỉ có một tấm thẻ mang số chẵn”.
C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”
Khẳng định nào sau đây đúng?
Biến cố C xảy ra khi và chỉ khi trong hai tấm thẻ có ít nhất 1 tấm thẻ mang số chẵn.
Nếu cả hai tấm thẻ ghi số chẵn thì biến cố A xảy ra.
Nếu chỉ có một tấm thử ghi số chẵn thì biến cố B xảy ra.
Vậy biến cố C là biến cố hợp của A và B.