Gieo ngẫu nhiên một đồng tiền xu ba lần liên tiếp. Gọi D là biến cố có ít nhất hai lần gieo xuất hiện mặt sấp. Tìm biến cố đối của biến cố D?
Ta có:
Biến cố là biến cố có đúng một lần xuất hiện mặt sấp hoặc không có lần nào xuất hiện mặt sấp.
Gieo ngẫu nhiên một đồng tiền xu ba lần liên tiếp. Gọi D là biến cố có ít nhất hai lần gieo xuất hiện mặt sấp. Tìm biến cố đối của biến cố D?
Ta có:
Biến cố là biến cố có đúng một lần xuất hiện mặt sấp hoặc không có lần nào xuất hiện mặt sấp.
Người ta gieo 8000 lần một đồng xu cân đối thì tần số xuất hiện của mặt ngửa là 4013. Xác suất thực nghiệm mặt ngửa là:
Số phần tử không gian mẫu là:
Theo bài ra ta có: Tần số xuất hiện của mặt ngửa là 4 013 lần
=> Xác suất thực nghiệm mặt ngửa là:
Có bao nhiêu số tự nhiên có chín chữ số mà các chữ số của nó viết theo thứ tự giảm dần:
Vì số có chín chữ số viết theo thứ tự giảm dần nên chỉ có thể là chữ số 9 hoặc chữ số 8 đứng đầu.
Trường hợp 1: Số 9 đứng đầu
Từ các số 0; 1; 2; 3; 4; 5; 6; 7; 8 mỗi một lần ta bỏ đi một số ta sẽ lập được 1 số có 9 chữ số viết theo thứ tự giảm dần mà số 9 đứng đầu.
=> Trường hợp 1 có 9 số được lập
Trường hợp 2: Số 8 đứng đầu
Vì từ 0 đến 8 có chín chữ số nên ta chỉ lập được 1 số có 9 chữ số viết theo thứ tự giảm đần
Vậy cả 2 trường hợp có 9 + 1 = 10 số
Trong một phép lai, cho hai giống vịt lông đen thuần chủng và lông trắng thuần chủng giao phối với nhau được đời cây F1 toàn là lông đen. Tiếp tục cho con đời F1 giao phối với nhau được một đàn con mới. Chọn ngẫu nhiên 2 con trong đàn vịt con mới. Ước lượng xác suất của biến cố trong 2 con vịt được chọn có ít nhất một con lông đen?
Quy ước gene A: lông đen và gene a: lông trắng
Ở thế hệ F2 ba kiểu gene AA, Aa, aa xuất hiện với tỉ lệ 1: 2: 1 nên tỉ lệ lông đen với lông trắng là 3 : 1
Trong đàn vịt mới xác suất để được một con lông đen là và con lông trắng là
Gọi là biến cố có đúng 1 con lông đen trong 2 con được chọn
Gọi B là biến cố có 2 con vịt lông đen trong 2 con được chọn
Khi đó là biến cố có ít nhất 1 con lông đen trong 2 con được chọn
Do A và B là hai biến cố xung khắc nên
Từ tập hợp các chữ số
có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau sao cho không có hai chữ số liên tiếp nào cùng lẻ?
Gọi
Gọi số có 4 chữ số là khi đó có 3 trường hợp xảy ra:
TH1: Số cần tìm có 2 chữ số chẵn và 2 chữ số lẻ
Có cách chọn 2 chữ số chẵn.
Có cách chọn 2 chữ số lẻ.
Có 2! cách xếp 2 chữ số chẵn (tạo ra 3 khoảng trống kể cả hai đầu)
Có cách sắp xếp 2 chữ số lẻ vào 3 khoảng trống.
Vậy trường hợp này có: cách.
TH2: Số cần tìm có 3 chữ số chẵn và 1 chữ số lẻ
Có cách chọn 3 chữ số chẵn.
Có cách chọn 1 chữ số lẻ.
Có 4! cách xếp các số sau khi chọn
Vậy trường hợp này có: cách.
TH3: Số cần tìm có 4 chữ số chẵn
Có 4! = 24 cách xếp các số sau khi chọn
Suy ra số các số thỏa mãn yêu cầu bài toán là 720 + 480 + 24 = 1224 số.
Một hộp chứa 7 quả cầu đỏ và 5 quả cầu xanh. Lấy ngẫu nhiên 3 quả cầu trong hộp. Số phần tử không gian mẫu là:
Số phần tử không gian mẫu là:
Một đề kiểm tra trắc nghiệm 45 phút môn Tiếng Anh của lớp 10 là một đề gồm 25 câu hỏi độc lập, mỗi câu hỏi có 4 đáp án trả lời trong đó chỉ có một đáp án đúng. Mỗi câu trả lời đúng được 0,4 điểm, câu trả lời sai không được điểm. Bạn Bình vì học rất kém môn Tiếng Anh nên làm bài bằng cách chọn ngẫu nhiên câu trả lời cho tất cả 25 câu. Gọi A là biến cố “Bình làm đúng k câu”, biết xác suất của biến cố A đạt giá trị lớn nhất. Tính k.
Đáp án: 6
Một đề kiểm tra trắc nghiệm 45 phút môn Tiếng Anh của lớp 10 là một đề gồm 25 câu hỏi độc lập, mỗi câu hỏi có 4 đáp án trả lời trong đó chỉ có một đáp án đúng. Mỗi câu trả lời đúng được 0,4 điểm, câu trả lời sai không được điểm. Bạn Bình vì học rất kém môn Tiếng Anh nên làm bài bằng cách chọn ngẫu nhiên câu trả lời cho tất cả 25 câu. Gọi A là biến cố “Bình làm đúng k câu”, biết xác suất của biến cố A đạt giá trị lớn nhất. Tính k.
Đáp án: 6
Vì đề thi có 25 câu và mỗi câu có 4 phương án trả lời nên xác suất để Bình làm đúng câu là
Với .
Xét hàm với
và
.
Ta có lớn nhất
.
Suy ra .
Vậy .
Có bao nhiêu số tự nhiên có 7 chữ số biết rằng chữ số 2 có mặt 2 lần, chữ số 3 có mặt 3 lần, chữ số còn lại có mặt nhiều nhất 1 lần.
Số tự nhiên có 7 chữ số có dạng:
Xét trường hợp có chữ số 0 đứng đầu
Số cách chọn vị trí cho chữ số 2 là:
Số cách chọn vị trí cho chữ số 3 là:
Số cách chọn 2 chữ số còn lại trong tập hợp các số đã cho để xếp vào hai vị trí cuối là
=> Số các số được tạo thành là:
Xét trường hợp không có chữ số 0 đứng đầu
Ta có:
Vì a = 0 => a có 1 cách chọn
Số cách chọn vị trí cho chữ số 2 là:
Số cách chọn vị trí cho chữ số 3 là:
Số cách chọn chữ số cuối trong tập hợp dãy số đã cho là 7 cách
=> Số các số được tạo thành là:
Vậy số các số được lập thành thỏa mãn yêu cầu đề bài là: 11760 - 420 = 11340 số
Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 7 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.
Ta có:
Gọi C: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 7 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”
Ta có:
Một đội tham gia tình nguyện của trường gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10 cùng tham gia. Để tăng tình đoàn kết giữa các học sinh, giáo viên tổ chức một trò chơi gồm 6 người. Hỏi có bao nhiêu cách để giáo viên chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh?
Số cách chọn 6 học sinh bất kì từ 15 học sinh là
Số cách chọn 6 học sinh chỉ có khối 12 là:
Số cách chọn 6 học sinh chỉ có khối 11 và khối 10 là:
Số cách chọn 6 học sinh chỉ có khối 10 và khối 12 là:
Số cách chọn 6 học sinh chỉ có khối 11 và khối 12 là:
Do đó số cách chọn 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh là
cách
Cho sơ đồ mạch điện gồm 4 bóng đèn như hình vẽ sau:

Biết xác suất hỏng của mỗi bóng đèn là
. Tính xác suất để khi cho dòng diện chạy qua thì mạch điện chỉ có 1 bóng đèn sáng?
Xác suất để có 3 bóng đèn hỏng và 1 bóng đèn sáng là:
Từ một nhóm 5 người, chọn ra các nhóm ít nhất 2 người. Hỏi có bao nhiêu cách chọn:
Số cách chọn nhóm có 2 người:
Số cách chọn nhóm có 3 người:
Số cách chọn nhóm có 4 người:
Số cách chọn nhóm có 5 người: 1
=> Số cách chọn ra các nhóm mà có ít nhất 2 người là: 10 + 10 + 5 + 1 = 26 nhóm
Chọn ngẫu nhiên 3 giáo viên trong tổ chuyên môn Hóa – Sinh - Thể dục để thành lập một đoàn công tác sao cho mỗi môn phải có một giáo viên. Biết tổ có 6 giáo viên Hóa, 5 giáo viên Sinh, 3 giáo viên Thể dục, trong môn Hóa có 3 giáo viên nữ, môn Sinh có 2 giáo viên nữ và môn Thể dục có 1 giáo viên nữ. Tính xác suất để đoàn công tác có đúng một giáo viên nữ?
Gọi H là biến cố “Có một giáo viên nữ môn Hóa trong đoàn”
S là biến cố “Có một giáo viên nữ môn Sinh trong đoàn”
T là biến cố “Có một giáo viên nữ môn Thể dục trong đoàn”
Ta có:
Gọi X là biến cố “Có đúng một giáo viên nữ trong đoàn”.
Ta có
Lại có:
Một tổ học sinh gồm 9 em, trong đó có 3 nữ được chia thành ba nhóm, mỗi nhóm ba em. Tính xác suất để mỗi nhóm có một nữ?
Gọi A là biến cố: "Ở 3 nhóm học sinh, mỗi nhóm có một nữ".
Tìm
Chọn ngẫu nhiên 3 trong 9 em đưa vào nhóm thứ nhất có cách.
Chọn 3 trong 6 em còn lại đưa vào nhóm thứ hai có cách.
Còn 3 em, đưa vào nhóm thứ 3 có 1 cách.
Vậy số phần tử của không gian mẫu là
Tìm
Phân 3 nữ vào ba nhóm có cách khác nhau.
Phân 6 nam vào ba nhóm theo cách trên có khác nhau
Vậy số kết quả thuận lợi cho biến cố A là:
Vậy xác suất cần tìm là:
Chọn ngẫu nhiên một số có 2 chữ số từ các số 00 đến 99. Xác suất để có một con số lẻ và chia hết cho 9:
Chọn một số có hai chữ số bất kì ta có:
Chọn các số lẻ và chia hết cho 9 là các số: 09; 27; 45; 63; 81; 99
=> Xác suất để có một con số lẻ và chia hết cho 9 là:
Một nhóm học sinh gồm
học sinh nam và
học sinh nữ. Có bao nhiêu cách chọn một học sinh trong nhóm đó tham gia đội thanh niên tình nguyện của trường?
Có cách chọn một học sinh.
Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn 3 học sinh trong lớp?
Số cách chọn ba học sinh trong lớp là tổ hợp chập 3 của 40 phần tử: cách
Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:
Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}
Số phần tử không gian mẫu là:
Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}
=>
Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 3 và 2:
Số chia hết cho 2 và 3 là 6k, với k là số tự nhiên.
Theo đề bài ta có:
0 ≤ 6k < 100
=> 0 ≤ k < 16,7
Vậy có 17 chữ số thỏa mãn.
Một nhóm học sinh có 4 nam và 3 nữ. Có bao nhiêu cách chọn 3 bạn trong đó có đúng một bạn là nữ?
Ta có:
Ba bạn được chọn có 1 nữ và 2 nam
=> Số cách chọn là: cách