Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Các quy tắc tính xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Rút ngẫu nhiên hai tấm thẻ trong chiếc hộp có 9 tấm thẻ được đánh số thứ tự từ 1 đến 9. Xét các biến cố sau:

    A: “Cả hai tấm thẻ đều mang số chẵn”.

    B “Chỉ có một tấm thẻ mang số chẵn”.

    C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”

    Khẳng định nào sau đây đúng?

    Biến cố C xảy ra khi và chỉ khi trong hai tấm thẻ có ít nhất 1 tấm thẻ mang số chẵn.

    Nếu cả hai tấm thẻ ghi số chẵn thì biến cố A xảy ra.

    Nếu chỉ có một tấm thử ghi số chẵn thì biến cố B xảy ra.

    Vậy biến cố C là biến cố hợp của A và B.

  • Câu 2: Thông hiểu

    Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên gồm 3 chữ số đôi một khác nhau

    Gọi số tự nhiên có ba chữ số khác nhau có dạng: \overline {abc} ,\left( {a e b e c} ight)

    Số cách chọn a là 6 cách

    Số cách chọn b là 5 cách

    Số cách chọn c là 4 cách

    => Số các số tự nhiên có ba chữ số khác nhau được tạo thành là: 6 . 5 . 4 = 120 số

  • Câu 3: Vận dụng

    Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một đồng tiền xuất hiện mặt sấp là:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = {2^5} = 32

    Giả sử C là biến cố "được ít nhất một đồng tiền xuất hiện mặt sấp"

    => Biến cố \overline C " không có đồng tiền xuất hiện mặt sấp"

    => \overline C  = \left\{ {N,N,N,N,N} ight\}

    => n\left( {\overline C } ight) = 1 \Rightarrow P\left( {\overline C } ight) = \frac{1}{{32}}

    => P\left( C ight) = 1 - P\left( {\overline C } ight) = 1 - \frac{1}{{32}} = \frac{{31}}{{32}}

  • Câu 4: Thông hiểu

    Từ các số 0, 1, 2, 7, 8, 9 tạo được bao nhiêu số chẵn có 5 chữ số khác nhau?

    Số tự nhiên có 5 chữ số khác nhau được tạo thành từ dãy số có dạng:

    \overline {abcde} ;\left( {a e b e c e d e e} ight)

    Trường hợp 1: e = 0

    Số cách chọn a là 5 cách

    Số cách chọn b là 4 cách

    Số cách chọn c là 3 cách

    Số cách chọn d là 2 cách

    => Số các số được tạo thành là: 5 . 4 . 3 . 2 = 120 số

    Trường hợp 2: e ≠ 0

    => e = {2; 8}

    => Số cách chọn e là 2 cách

    Số cách chọn a là 4 cách

    Số cách chọn b là 4 cách

    Số cách chọn c là 3 cách

    Số cách chọn d là 2 cách

    => Số các số được tạo thành là: 2 .4. 4. 3 . 2 = 192 số

    => Từ dãy số tạo được số các số chẵn có 5 chữ số khác nhau là 120 + 192 = 312 số

  • Câu 5: Thông hiểu

    Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được lá bích là:

    Số phần tử không gian mẫu là: 52

    Một bộ bài 52 lá có 13 bộ 4 lá bài trong đó có mỗi bộ có 1 lá bích

    => Số lá bích trong bộ bài là 13 lá

    => Xác suất để được lá bích là: P = \frac{{13}}{{52}} = \frac{1}{4}

  • Câu 6: Thông hiểu

    Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn có đúng một người nữ.

     Số học sinh trong tổ là: 7 + 3 = 10 học sinh

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = C_{10}^2 = 45

    Giả sử A là biến cố "2 người được chọn có đúng một người nữ"

    => n\left( A ight) = C_3^1 .C_7^1= 21

    => Xác suất sao cho 2 người được chọn có đúng một người nữ là:

    P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{21}}{{45}} = \frac{7}{{15}}

  • Câu 7: Thông hiểu

    Một tổ có 9 học sinh, trong đó có 5 nam và 4 nữ được xếp thành một hàng dọc. Tính xác suất sao cho không có 2 bạn nam nào đứng kề nhau.

    Gọi A là biến cố "Xếp 9 học sinh thành một hàng dọc trong đó không có 2 bạn nam nào đứng kề nhau".

    Tìm |\Omega|

    Xếp 9 học sinh thành môt hàng dọc, có 9! cách xếp \Rightarrow |\Omega| = 9!

    Tìm \left| \Omega_{A}
ight|

    Xếp 9 học sinh thành một hàng dọc trong đó không có 2 ban nam nào đứng kề nhau.

    Vì số nam lớn hơn số nữ nên ta phải xếp một học sinh nam đứng trước rồi đến một học sinh nữ, tiếp tục cứ xếp nam nữ xen kẽ nhau, học sinh xếp cuối cùng là nam.

    Vậy số cách xếp là 5!.4! cách xếp.

    Vậy xác suất cần tính là: P(A) =
\frac{\left| \Omega_{A} ight|}{|\Omega|} = \frac{5!.4!}{9!} =
\frac{1}{126}

  • Câu 8: Vận dụng cao

    Cho tập hợp A = \left\{ {1;2;3;4;5;6;7;8} ight\}. Lập từ A số tự nhiên có chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 2222?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tập hợp A = \left\{ {1;2;3;4;5;6;7;8} ight\}. Lập từ A số tự nhiên có chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 2222?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Vận dụng

    Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi M_{k} là biến cố cung thủ bắn trúng lần thứ k,k \in
\left\{ 1;2;3;4 ight\}. Biến cố nào sau đây biểu diễn biến cố chỉ bắn trúng mục tiêu 2 lần?

    Ta có: \overline{M_{k}} là biến cố lần thứ k bắn không trúng mục tiêu.

    Khi đó ta có: M = M_{i} \cap M_{j} \cap
\overline{M_{k}} \cap \overline{M_{m}} với i;j;k \in \left\{ 1;2;3;4 ight\} và đôi một khác nhau có ý nghĩa chỉ có lần thứ i; j bắn trúng bia và lần thứ k, m thì không bắn trúng.

  • Câu 10: Vận dụng

    Đội học sinh giỏi toán 10 có tất cả 18 học sinh, trong đó có 7 học sinh giỏi môn Toán, 6 học sinh giỏi môn Văn và 5 học sinh giỏi môn Hóa. Hỏi có bao nhiêu cách chọn 8 học sinh đi dự thi chính thức, biết rằng mỗi môn có ít nhất 1 học sinh.

    Số cách chọn 8 học sinh gồm hai khối là phần bù của cách chọn 8 học sinh đi dự đại hội sao cho mỗi khối có ít nhất 1 học sinh được chọn.

    Số cách chọn 8 học sinh từ hai khối là: C_{13}^8 + C_{11}^8 + C_{12}^8 = 1947

    Số cách chọn 8 học sinh bất kì là: C_{18}^8

    Số cách chọn thỏa yêu cầu bài toán: C_{18}^8 -1947=41811

  • Câu 11: Nhận biết

    Số cách chọn một ban chấp hành gồm một trưởng ban, một phó ban, một thư kí và một thủ quỹ được chọn từ 16 thành viên là:

    Số cách chọn ban chấp hành (4 thành viên) từ 16 thành viên là: C_{16}^4 = 1820

  • Câu 12: Nhận biết

    Giả sử từ tỉnh A đến tỉnh B có thể đi bằng các phương tiện: ô tô, tàu hỏa, tàu thủy hoặc máy bay. Mỗi ngày có 10 chuyến ô tô, 5 chuyến tàu hỏa, 3 chuyến tàu thủy và 2 chuyến máy bay. Hỏi có bao nhiêu cách đi từ tỉnh A đến tỉnh B?

    Nếu đi bằng ô tô có 10 cách

    Nếu đi bằng tàu hỏa có 5 cách

    Nếu đi bằng tàu thủy có 3 cách

    Nếu đi bằng máy bay có 2 cách

    Theo quy tắc cộng, ta có 10 + 5 + 3 + 2 = 20 cách chọn

  • Câu 13: Thông hiểu

    Sau bữa tiệc, mỗi người bắt tay một lần với mỗi người khác trong phòng. Có tất cả 66 người lần lượt bắt tay. Hỏi trong phòng có bao nhiêu người:

     Ta có:

    Cứ 2 người sẽ bắt tay nhau 1 lần => Số lần bắt tay là: C_n^2

    Mà có tất cả 66 người lần lượt bắt tay nên ta có phương trình:

    C_n^2 = 66 \Rightarrow n = 12

  • Câu 14: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    Gọi A: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5”

    Ta có: A = \left\{
(1;1),(1;2),(2;1),(1;3),(3;1),(1;4),(4;1),(2;2),(2;3),(3;2)
ight\}

    \Rightarrow n(A) = 10 \Rightarrow P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{36} = \frac{5}{18}

  • Câu 15: Nhận biết

    Từ các số 0, 1, 2, 7, 8, 9 tạo được bao nhiêu số lẻ có 5 chữ số khác nhau?

     Gọi số tự nhiên có 5 chữ số khác nhau là: \overline {abcde} ;\left( {a e b e c e d e e} ight)

    Do số tạo thành là số lẻ => e = {1; 7; 9}

    => Số cách chọn e là: 3 cách

    Số cách chọn a là 4 cách

    Số cách chọn b là 4 cách

    Số cách chọn c là 3 cách

    Số cách chọn d là 2 cách

    => Số các số có 5 chữ số khác nhau được tạo thành là: 3 . 4 . 4 . 3 . 2 = 288 số

  • Câu 16: Nhận biết

    Một liên đoàn bóng đá có 10 đội, mỗi đội phải đá 4 trận với mỗi đội khác, 2 trận ở sân nhà và 2 trận ở sân khách. Số trận đấu được sắp xếp là:

    Mỗi đội sẽ gặp 9 đội khác trong hai lượt trận sân nhà và sân khách

    => Có 10 . 9 = 90 trận

    Mỗi đội đá 2 trận sân nhà, 2 trận sân khách

    => Số trận đấu là 2.90 =180 trận

  • Câu 17: Thông hiểu

    Trên giá sách muốn xếp 20 cuốn sách khác nhau gồm sách tập 1 và sách tập 2. Có bao nhiêu cách sắp xếp sao cho tập 1 và tập 2 đặt cạnh nhau?

    Sắp xếp 20 cuốn sách trên giá là một hoán vị của 20 phần tử nên ta có 20! cách sắp xếp.

    Khi hai cuốn tập 1 và tập 2 đặt cạnh nhau (thay đổi vị trí cho nhau), ta coi đó là một phần tử và cùng sắp xếp với 18 cuốn sách còn lại trên giá nên có 2 . 19! cách sắp xếp.

    Vậy có tất cả 20! − 2 . 19! = 19! . 18 cách sắp xếp theo yêu cầu bài toán.

  • Câu 18: Thông hiểu

    Mộp hộp chứa 4 bông hoa màu đỏ và 6 bông hoa màu xanh, các bông hoa có hình dáng khác nhau. Lấy ngẫu nhiên 5 bông hoa trong hộp. Tính xác suất để 5 bông hoa lấy được có ít nhất 3 bông màu đỏ?

    Lấy ngẫu nhiên 5 bông hoa từ 10 bông hoa ta có: n(\Omega) = C_{10}^{5}

    Gọi A là biến cố lấy được ít nhất 3 bông hoa đỏ.

    TH1: Lấy 3 bông hoa đỏ từ 4 bông hoa đỏ và 2 bông hoa xanh từ 6 bông hoa xanh có C_{4}^{3}.C_{6}^{2} cách.

    TH2: Lấy 4 bông hoa đỏ từ 4 bông hoa đỏ và 1 bông hoa xanh từ 6 bông hoa xanh có C_{4}^{4}.C_{6}^{1} cách.

    Suy ra n(\Omega) = C_{4}^{3}.C_{6}^{2} +
C_{4}^{4}.C_{6}^{1}

    Vậy xác suất để lấy được 5 bông hoa trong đó có ít nhất 3 bông hoa đỏ là: P(A) = \frac{n(A)}{n(\Omega)} =
\frac{11}{42}

  • Câu 19: Thông hiểu

    Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?

     Số tự nhiên có hai chữ số có dạng: \overline {ab}

    Nếu a = 9 => Số cách chọn b là 9 cách => Số các số tạo thành là 9 số

    Nếu a = 8 => Số cách chọn b là 8 cách => Số các số tạo thành là 8 số

    Nếu a = 7 => Số cách chọn b là 7 cách => Số các số tạo thành là 7 số

    Nếu a = 6 => Số cách chọn b là 6 cách => Số các số tạo thành là 6 số

    Nếu a = 5 => Số cách chọn b là 5 cách => Số các số tạo thành là 5 số

    Nếu a = 4 => Số cách chọn b là 4 cách => Số các số tạo thành là 4 số

    Nếu a = 3 => Số cách chọn b là 3 cách => Số các số tạo thành là 3 số

    Nếu a = 2 => Số cách chọn b là 2 cách => Số các số tạo thành là 2 số

    Nếu a = 1 => Số cách chọn b là 1 cách => Số các số tạo thành là 1 số

    => Số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là: 9 + 8 + ... + 2 + 1 = 45 số

  • Câu 20: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    gọi B: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”

    Ta có: B = \left\{
(3;6),(6;3),(4;6),(6;4),(5;6),(6;5),(6;6) ight\}

    \Rightarrow n(B) = 7 \Rightarrow P(B) =
\frac{n(B)}{n(\Omega)} = \frac{7}{36}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 47 lượt xem
Sắp xếp theo