Giả sử
là hai biến cố xung khắc. Khẳng định nào sau đây đúng?
Ta có:
Vì M và N là hai biến cố xung khắc nên
Giả sử
là hai biến cố xung khắc. Khẳng định nào sau đây đúng?
Ta có:
Vì M và N là hai biến cố xung khắc nên
Cho 6 chữ số 2, 3, 4, 5, 6, 7. Số các số tự nhiên chẵn có 3 chữ số lập thành từ 6 chữ số đó:
Gọi số tự nhiên có 3 chữ số có dạng:
Do số tự nhiên cần tìm là số chẵn => c = {2; 4; 6}
=> Số cách chọn c là 3 cách
Số cách chọn a là 6 cách
Số cách chọn b là 6 cách
=> Số các số các số tự nhiên chẵn có 3 chữ số lập thành từ 6 chữ số đã cho là: 3 . 6 . 6 = 108 số
Gọi
là tập hợp các số tự nhiên có 5 chữ số khác nhau được tạo thành từ các phần tử của tập
. Chọn ngẫu nhiên một số từ tập
. Tính số phần tử của biến cố H “chọn được số tự nhiên chia hết cho 15”.
Ta có H là biến cố số tự nhiên được chọn chia hết cho 15.
Số tự nhiên có 5 chữ số khác nhau và chia hết cho 15 được tạo thành từ tập A có dạng
Ta có: do đó
suy ra
khi và chỉ khi
TH1: khi đó
khi và chỉ khi
Vậy trong trường hợp này có 5.4! = 120 số tự nhiên
TH2: khi đó
dư 1 khi và chỉ khi
Vậy trong trường hợp này có 3.3.3.2.1 + 2.4! = 102 số tự nhiên
Do đó
Biết rằng xác suất để thắng một trận game là
. Hỏi người chơi phải chơi ít nhất bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi lớn hơn
?
Gọi n là số trận người đó chơi.
A là biến cố người đó thắng ít nhất 1 trận
Suy ra là biến cố người đó không thắng trận nào.
trong đó
là biến cố người đó thắng trận thứ i và
Ta có bất phương trình
Vậy giá trị nhỏ nhất của n bằng 9.
Tung một đồng xu hai lần liên tiếp. Tập hợp không gian mẫu là:
Không gian mẫu là: .
Giả sử hai biến cố
là hai biến cố xung khắc. Công thức nào sau đây đúng?
Vì hai biến cố A và B là hai biến cố xung khắc nên theo công thức cộng xác suất ta có: .
Phát biểu biến cố A = {123, 234, 124,134} dưới dạng mệnh đề
Mệnh đề đúng được phát biểu như sau:
"Số tự nhiên có ba chữ số được thành lập có chữ số đứng sau lớn hơn chữ số đứng trước"
Học sinh A làm bài kiểm tra 15 phút môn Toán gồm 10 câu hỏi trắc nghiệm, mỗi câu hỏi gồm 4 phương án trả lời và chỉ có một phương án đúng. Nếu trả lời đúng 1 câu hỏi được 1 điểm, trả lời sai không có điểm. Biết A đã làm đúng 5 câu hỏi, vì thời gian hạn chế nên A đã khoanh trả lời ngẫu nhiên các câu hỏi còn lại. Tính xác suất để A đạt được ít nhất 8 điểm?
Bạn A trả lời đúng 5 câu hỏi nên A đã đạt được 5 điểm
Để được ít nhất 8 điểm thì A phải trả lời đúng ít nhất 3 câu trong 5 câu còn lại.
TH1: 3 câu đúng, 2 câu sai
TH2: 4 câu đúng, 1 câu sai
TH3: 5 câu đúng
Vậy xác suất cần tìm là:
Gọi
là tập hợp các số tự nhiên có 6 chữ số. Chọn ngẫu nhiên một số từ
, xác suất để các chữ số của số đó đôi một khác nhau và phải có mặt chữ số 0 và 1 bằng bao nhiêu?
+ Gọi số tự nhiên có 6 chữ số là .
Chọn : có 9 cách.
Chọn : có 10 cách.
Chọn : có 10 cách.
Chọn : có 10 cách.
Chọn : có 10 cách.
Chọn : có 10 cách.
Suy ra số các phần tử của là:
cách.
Chọn ngẫu nhiên một số từ .
+ Gọi là biến cố: "Số được chọn có 6 chữ số đôi một khác nhau và có mặt chữ số 0 và 1 ".
TH1: .
Có 5 vị trí để xếp số 0.
Và có cách chọn 4 vị trí còn lại.
Suy ra có: số.
TH2:
Chọn : có 8 cách.
Xếp hai số 0 và 1 có: cách.
Xếp vào 3 vị trí còn lại có: cách.
Suy ra có: số.
.
Cho tập hợp
. Có thể lập được bao nhiêu số có các chữ số phân biệt từ tập hợp A?
Ta có:
Số có 1 chữ số có 4 số.
Số có 2 chữ số có số.
Số có 3 chữ số có số.
Số có 4 chữ số có số.
Vậy các số lập được là 4 + 12 + 24 + 24 = 64 số.
Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn không có nữ nào cả.
Số học sinh trong tổ là: 7 + 3 = 10 học sinh
Số phần tử không gian mẫu là:
Giả sử A là biến cố "2 người được chọn không có nữ"
=>
=> Xác suất sao cho 2 người được chọn không có nữ là:
Một nhóm học sinh gồm 2 nam và 2 nữ được được sắp xếp ngẫu nhiên vào một ghế dài. Hỏi biến cố A “xếp nam và nữ ngồi xen kẽ nhau” có bao nhiêu phần tử?
Trường hợp 1: bạn nam ngồi đầu, khi đó 2 bạn nam xếp vào 2 chỗ, nữ xếp nốt vào hai chỗ còn lại
Số cách sắp xếp là 2!.2! = 4
Trường hợp 2: Bạn nữ ngồi đầu, tương tự ta có 4 cách sắp xếp.
Vậy theo quy tắc cộng số phần tử của biến cố A là 4 + 4 = 8 cách
Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:
Số phần tử không gian mẫu là:
Biến cố A là biến cố "mặt 6 chấm xuất hiện"
=>
=> Xác suất để mặt 6 chấm xuất hiện:
Cho tập hợp
. Lập từ
số tự nhiên có
chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ
. Tính xác suất để chọn được số chia hết cho
?
Cho tập hợp . Lập từ
số tự nhiên có
chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ
. Tính xác suất để chọn được số chia hết cho
?
Truớc cổng trưòng đại học có 3 quán cơm bình dân chất lượng như nhau. Ba sinh viên A, B, C độc lập với nhau chọn ngẫu nhiên một quán để ăn trưa. Tính xác suất của các biến cố ba sinh viên vào cùng một quán?
Ta đánh số 3 quán cơm là
Gọi lần lượt là quán cơm sinh viên A; B; C chọn.
Như vậy không gian mẫu là
Vì có 3 cách chon a và có 3 cách chọn b và có 3 cách chọn c nên
Kết quả thuận lợi cho biến cố "3 sinh viên vào cù môt quán" là
Vậy xác suất của biến cố này là
Một hộp chứa 3 viên bi đen khác nhau, 4 viên bi đỏ khác nhau và 5 viên bi xanh khác nhau. Gọi A là biến cố “Sắp xếp các viên bi thành một dãy sao cho các viên bi cùng màu nằm cạnh nhau”. Các kết quả thuận lợi của biến cố A là:
Ta có:
Số cách sắp xếp 3 viên bi đen thành một dãy bằng
Số cách sắp xếp 3 viên bi đỏ thành một dãy bằng
Số cách sắp xếp 3 viên bi xanh thành một dãy bằng
Số cách sắp xếp 3 viên bi nhóm thành một dãy bằng
Vậy số phần tử của tập hợp A là:
Có bao nhiêu số tự nhiên có 3 chữ số:
Ta có:
Các số tự nhiên có ba chữ số là 100; 101; ...; 998; 999
=> Có 999 − 100 + 1 = 900 số tự nhiên có ba chữ số.
Trên bàn có 8 cây bút chì khác nhau, 6 cây bút bi khác nhau và 10 cuốn tập khác nhau. Số cách khác nhau để chọn được đồng thời một cây bút chì, một cây bút bi và một cuốn tập.
Để chọn “một cây bút chì - một cây bút bi - một cuốn tập”, ta có:
Có 8 cách chọn bút chì.
Có 6 cách chọn bút bi.
Có 10 cách chọn cuốn tập.
Vậy theo quy tắc nhân ta có 8 . 6 . 10 = 480 cách.
Có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau lấy từ các số 0, 1, 2, 3, 4, 5:
Số tự nhiên có 5 chữ số khác nhau có dạng:
Số cách chọn a là: 5 cách (vì a khác 0)
Số cách chọn b là: 5 cách
Số cách chọn c là: 4 cách
Số cách chọn d là 3 cách
Số cách chọn e là: 2 cách
=> Có thể lập được số các số tự nhiên gồm 5 chữ số khác nhau lấy từ dãy số là: 5 . 5 . 4 . 3 . 2 = 600 số
Một lớp có 20 học sinh nữ, 26 học sinh nam. Giáo viên cần chọn ban cán sự lớp gồm 3 học sinh. Hỏi có bao nhiêu cách chọn biết trong ban cán sự có ít nhất một nữ.
Số học sinh của lớp là: 20 + 26 = 46 (học sinh)
Số cách chọn 3 học sinh làm cán bộ lớp là:
Số cách chọn 3 học sinh làm cán bộ lớp trong đó không có bạn nữ là:
Số cách chọn 3 học sinh trong đó có ít nhất một bạn nữ là:
cách chọn