Chọn ngẫu nhiên 2 học sinh trong một nhóm học sinh gồm 6 nam và 4 nữ. Gọi X là biến cố “Hai học sinh được chọn đều là nam”. Khẳng định nào sau đây đúng?
Sử dụng định nghĩa biến cố đối ta được:
là biến cố “Hai học sinh được chọn đều là nữ”.
Chọn ngẫu nhiên 2 học sinh trong một nhóm học sinh gồm 6 nam và 4 nữ. Gọi X là biến cố “Hai học sinh được chọn đều là nam”. Khẳng định nào sau đây đúng?
Sử dụng định nghĩa biến cố đối ta được:
là biến cố “Hai học sinh được chọn đều là nữ”.
Cho các số 1, 2, 4, 5, 7 có bao nhiêu cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho:
Số tự nhiên có ba chữ số khác nhau có dạng:
Số được chọn là số chẵn => c = {2; 4}
=> Số cách chọn c là 2 cách
Số cách chọn a là 4 cách
Số cách chọn b là 3 cách
=> Số cách chọn ra một số chẵn gồm 3 chữ số khác nhau từ năm chữ số đã cho là 2 . 4 . 3 = 24 số
Truớc cổng trưòng đại học có 3 quán cơm bình dân chất lượng như nhau. Ba sinh viên A, B, C độc lập với nhau chọn ngẫu nhiên một quán để ăn trưa. Tính xác suất của các biến cố ba sinh viên vào cùng một quán?
Ta đánh số 3 quán cơm là
Gọi lần lượt là quán cơm sinh viên A; B; C chọn.
Như vậy không gian mẫu là
Vì có 3 cách chon a và có 3 cách chọn b và có 3 cách chọn c nên
Gọi B là biến cố "2 sinh viên vào cùng một quán, còn người kia thì vào quán khác".
Các kết quả thuận lợi cho biến cố B là
và 2 hoán vị của nó,
và 2 hoán vị của nó,
và 2 hoán vị của nó,
và hai hoán vị của nó,
và 2 hoán vị của nó,
và 2 hoán vị của nó.
Khi đó các kết quả thuận lợi cho biến cố B là:
Vậy xác suất của biến cố này là
Sơ đồ phân phối điện như hình vẽ:
Điện được tải từ trạm điện P đến nơi tiêu thụ Q qua các trạm tải nhỏ A, B, C. Xác suất có sự cố kĩ thuật sau một thời gian hoạt động của các trạm tải nhỏ A, B, C lần lượt là . Hãy tính xác suất để nơi tiêu thụ Q không bị mất điện (biết rằng các trạm tải nhỏ hoạt động độc lập với nhau).
Gọi Q là biến cố nơi tiêu thụ Q không mất điện
A, B, C là biến cố các trạm tải nhỏ A, B, C gặp sự cố kĩ thuật.
Ta có:
Suy ra
Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nam?
Số cách chọn 2 trong 6 người có cách
Vậy số phần tử không gian mẫu là 15.
Vì chỉ có một trường hợp cả 2 nam trúng tuyển nên xác suất của biến cố này là:
Cho tập hợp . Có thể lập được bao nhiêu số có các chữ số phân biệt từ tập hợp A?
Ta có:
Số có 1 chữ số có 4 số.
Số có 2 chữ số có số.
Số có 3 chữ số có số.
Số có 4 chữ số có số.
Vậy các số lập được là 4 + 12 + 24 + 24 = 64 số.
Gieo hai lần liên tiếp một con xúc xắc. Giả sử H là biến cố kết quả ít nhất một lần xuất hiện mặt 3 chấm. Biến cố đối của biến cố H là:
H là biến cố kết quả ít nhất một lần xuất hiện mặt 3 chấm thì biến cố đối của biến cố H là không xuất hiện mặt 3 chấm.
Cho hai thùng giấy đựng các viên bi trong đó:
Thùng 1 chứa 4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh.
Thùng 2 chứa 7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh.
Lấy ngẫu nhiên 1 viên trong mỗi thùng. Gọi A là biến cố “Hai viên bi lấy được cùng màu”. Số kết quả thuận lợi của biến cố A là: 88
Cho hai thùng giấy đựng các viên bi trong đó:
Thùng 1 chứa 4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh.
Thùng 2 chứa 7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh.
Lấy ngẫu nhiên 1 viên trong mỗi thùng. Gọi A là biến cố “Hai viên bi lấy được cùng màu”. Số kết quả thuận lợi của biến cố A là: 88
Ta có các kết quả thuận lợi cho biến cố A như sau:
Thùng 1 lấy ra 1 viên bi trắng, thùng 2 lấy được 1 viên bi trắng có: cách.
Thùng 1 lấy ra 1 viên bi đỏ, thùng 2 lấy được 1 viên bi đỏ có: cách.
Thùng 1 lấy ra 1 viên bi xanh, thùng 2 lấy được 1 viên bi xanh có: cách.
Suy ra số phần tử của biến cố A là:
Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:
Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}
Số phần tử không gian mẫu là:
Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}
=>
Có 30 tấm thẻ đánh số từ 1 đến 30. Chọn ngẫu nhiên ra 10 tấm thẻ. Tính xác suất để có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có một tấm thẻ mang số chia hết cho 10.
Gọi A là. biến cố: "Trong 10 tấm thẻ lấy ra có 5 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có một tấm thẻ mang số chia hết cho 10".
Tìm
Chọn 10 tấm thẻ trong 30 tấm thẻ: có cách chọn
Tìm
Chọn 5 tấm thẻ mang số lẻ trong 15 tấm thẻ mang số lẻ có cách chọn.
Chọn 1 tấm thẻ mang số chia hết cho 10 trong 3 tấm thẻ mang số chia hết cho 10 có 3 cách chọn.
Chọn 4 tấm thẻ mang số chẵn nhưng không chia hết cho 10 trong 12 tấm thẻ như vậy có cách chọn.
Vậy số kết quả thuận lợi cho biến cố A là
Vậy xác suất cần tìm là:
Cho 3 con xúc xắc trong đó con xúc xắc thứ nhất cân đối. Xúc xắc thứ hai không cân đối, có xác suất mặt 3 chấm là 0,2; các mặt còn lại có xác suất bằng nhau. Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau. Gieo đồng thời ba con xúc xắc đã cho. Tính xác suất để hai con xúc xắc xuất hiện mặt 2 chấm và một con xúc xắc xuất hiện mặt 1 chấm?
Con xúc xắc thứ nhất cân đối nên xác suất xuất hiện mỗi mặt là
Xúc xắc thứ hai không cân đối, có xác xuất mặt 3 chấm là 0,2 và các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là
Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là
Gọi A là biến cố gieo một lần 3 con xúc xắc hai con xúc xắc xuất hiện mặt 2 chấm và một xúc xắc xuất hiện mặt 1 chấm là:
Biến cố |
Xúc xắc 1; 2; 3 |
Xác suất |
B |
2 chấm, 2 chấm, 1 chấm |
|
C |
2 chấm, 1 chấm, 2 chấm |
|
D |
1 chấm, 2 chấm, hai chấm |
Do và các biến cố B, C, D đôi một xung khắc nên ta có:
Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5.
Ta có:
Gọi A: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5”
Ta có:
Trên bàn có 8 cây bút chì khác nhau, 6 cây bút bi khác nhau và 10 cuốn tập khác nhau. Số cách khác nhau để chọn được đồng thời một cây bút chì, một cây bút bi và một cuốn tập.
Để chọn “một cây bút chì - một cây bút bi - một cuốn tập”, ta có:
Có 8 cách chọn bút chì.
Có 6 cách chọn bút bi.
Có 10 cách chọn cuốn tập.
Vậy theo quy tắc nhân ta có 8 . 6 . 10 = 480 cách.
Cho 6 chữ số 4, 5, 6, 7, 8, 9. Số các số tự nhiên chẵn có 3 chữ số khác nhau lập thành từ 6 chữ số đó:
Gọi số tự nhiên có 3 chữ số có dạng:
Do số tự nhiên cần tìm là số chẵn => c = {4; 6; 8}
=> Số cách chọn c là 3 cách
Số cách chọn a là 5 cách
Số cách chọn b là 4 cách
=> Số các số các số tự nhiên chẵn có 3 chữ số khác nhau lập thành từ 6 chữ số đã cho là: 3 . 5 . 4 = 60 số
Rút đồng thời 5 tấm thẻ từ một chiếc hộp có 12 tấm thẻ được đánh số từ 1 đến 12. Xác định số kết quả thuận lợi cho biến cố “Tổng các số ghi trên 5 tấm thẻ rút được là số lẻ?
Đáp án: 396
Rút đồng thời 5 tấm thẻ từ một chiếc hộp có 12 tấm thẻ được đánh số từ 1 đến 12. Xác định số kết quả thuận lợi cho biến cố “Tổng các số ghi trên 5 tấm thẻ rút được là số lẻ?
Đáp án: 396
Gọi A là biến cố tổng các số ghi trên 5 tấm thẻ rút được là số lẻ.
Ta có trong 12 tấm thẻ được đánh số từ 1 đến 12 thì có 6 tấm thẻ ghi số chẵn và 6 tấm thẻ ghi số lẻ
Để tổng các số ghi trên 5 tấm thẻ rút được là số lẻ thì số thẻ ghi số lẻ là lẻ.
Ta có các trường hợp như sau:
TH1: 1 thẻ ghi số lẻ và 4 thẻ ghi số chẵn
Có
TH2: 3 thẻ ghi số lẻ và 2 thẻ ghi số chẵn
Có
TH3: 5 thẻ đều ghi số lẻ
Cho . Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số đôi một khác nhau?
Số tự nhiên có 5 chữ số có dạng:
Ta có: Số tự nhiên chẵn => e ∈ {0; 2; 4; 6}
Trướng hợp 1: e ∈ {2; 4; 6}
=> Có 3 cách chọn e
Ta có: => Có 5 cách chọn a
Số cách chọn b là 5 cách
Số cách chọn c là 4 cách
Số cách chọn d là 3 cách
=> Số các số được tạo thành là: số
Trường hợp 2: e = 0 => Có 1 cách chọn e
Ta có: => Có 6 cách chọn a
Số cách chọn b là 5 cách
Số cách chọn c là 4 cách
Số cách chọn d là 3 cách
=> Số các số được tạo thành là: số
=> Có thể lập được số các số chẵn có 5 chữ số đôi một khác nhau là: số
Khu vực chờ nhận phần thưởng có 6 chiếc ghế được kê thành 1 hàng ngang. Xếp ngẫu nhiên 6 học sinh gồm 3 học sinh lớp 10, 2 học sinh lớp 11 và 1 học sinh lớp 12 ngồi vào chiếc ghế kê thành một hàng ngang sao cho mỗi ghế có đúng 1 học sinh ngồi. Hãy xác định số kết quả thuận lợi cho biến cố W: “Xếp học sinh lớp 12 chỉ ngồi cạnh học sinh lớp 11”?
Xét các trường hợp:
TH1: Học sinh lớp 12 ngồi đầu dãy:
Chọn vị trí cho học sinh lớp 12 có 2 cách
Chọn 1 vị trí cho học sinh lớp 11 ngồi cạnh học sinh lớp 12 có 2 cách
Hoán vị các học sinh còn lại cho nhau có 4! Cách.
Trường hợp này được: 2.2.4! = 96 cách.
TH2: Học sinh lớp 12 ngồi giữa hai học sinh lớp 11, ta gộp thành một nhóm, khi đó:
Hoán vị 4 phần tử gồm 3 học sinh lớp 10 và nhóm gồm học sinh lớp 11 và lớp 12 có 4! Cách.
Hoán vị hai học sinh lớp 11 cho nhau có 2! Cách
Trường hợp này được 4!.2! = 48 cách
Như vậy số cách sắp xếp là 48 + 96 = 144
Gọi S là tập hợp các ước nguyên dương của 1605632. Chọn ngẫu nhiên một số từ S. Xác suất để số được chọn chia hết cho 7 là
Đáp án: 2/3 (Kết quả ghi dưới dạng phân số tối giản a/b).
Gọi S là tập hợp các ước nguyên dương của 1605632. Chọn ngẫu nhiên một số từ S. Xác suất để số được chọn chia hết cho 7 là
Đáp án: 2/3 (Kết quả ghi dưới dạng phân số tối giản a/b).
Ta có:
Suy ra số các ước nguyên dương của 1605632 là .
Số phần tử của không gian mẫu: .
Trong đó, số các số chia hết cho 7 là: .
Xác xuất cần tìm là: .
Cho dãy số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số có chẵn, mỗi số có 5 chữ số trong đó có đúng hai số lẻ, 2 số lẻ đó đứng cạnh nhau.
Gọi số tự nhiên có hai chữ số lẻ khác nhau từ các số 0, 1, 2, 3, 4, 5, 6 là m
Số cách chọn được m là:
Số chẵn có 5 chữ số mà hai số lẻ đứng kề nhau phải chứa M và ba trong bốn chữ số 0; 2; 4; 6
Gọi là số thỏa mãn yêu cầu bài toán
Trường hợp 1: Nếu a = m ta có:
Số cách chọn a là 1 cách
Số cách chọn b, c, d là cách
Trướng hợp 2: Nếu a khác m thì ta có:
Số cách chọn a là 3 cách
Nếu b = m thì có 1 cách chọn b và cách chọn c, d
Nếu c = m thì có 1 cách chọn c và cach chọn b, d
=> Số các số được tạo thành là:
Đề thi Tiếng anh thi THPT Quốc Gia gồm 50 câu trắc nghiệm, mỗi câu có 4 đáp án trắc nghiệm và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng được 0,2 điểm. Một học sinh đã chắc chắn làm đúng 40 câu hỏi và chọn ngẫu nhiên đáp án cho 10 câu hỏi còn lại. Hỏi xác suất để học sinh đó có điểm thi không dưới 9 điểm?
Xác suất để học sinh thi được 9 điểm là: .
Xác suất để học sinh thi được 9,2 điểm là: .
Xác suất để học sinh thi được 9,4 điểm là: .
Xác suất để học sinh thi được 9,6 điểm là: .
Xác suất để học sinh thi được 9,8 điểm là: .
Xác suất để học sinh thi được 10 điểm là: .
Vậy xác suất để học sinh thi được không dưới 9 điểm là: