Biết hai biến cố
độc lập với nhau và
. Tính giá trị
?
Do A và B là hai biến cố độc lập với nhau nên
Biết hai biến cố
độc lập với nhau và
. Tính giá trị
?
Do A và B là hai biến cố độc lập với nhau nên
Gieo hai con súc sắc. Xác suất để tổng số chấm trên hai mặt chia hết cho 3 là:
Số phần tử không gian mẫu là:
Giả sử N là biến cố " Tổng số chấm trên hai mặt chia hết cho 3"
Trường hợp 1: Số chấm xuất hiện trong hai lần gieo là giống nhau
(3; 3), (6; 6)
Trường hợp 2: Số chấm xuất hiện trong hai lần gieo là khác nhau
(1; 2), (1; 5); (2; 4), (3; 6), (4; 5)
Mỗi khả năng xảy ra có 2 hoán vị nên số phần tử của biến cố là 10 khả năng xảy ra.
=> Số khả năng xảy ra của biến cố N là: 10 + 2 = 12
=> Xác suất để tổng số chấm trên hai mặt chia hết cho 3 là:
Có bao nhiêu số tự nhiên có 3 chữ số:
Ta có:
Các số tự nhiên có ba chữ số là 100; 101; ...; 998; 999
=> Có 999 − 100 + 1 = 900 số tự nhiên có ba chữ số.
Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:
a) Xác suất để lấy được chỉ màu đỏ
Đúng||Sai
b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai
c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng
Sai||Đúng
d) Xác suất lấy các viên bi có đủ ba màu
Sai||Đúng
Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:
a) Xác suất để lấy được chỉ màu đỏ Đúng||Sai
b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai
c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng Sai||Đúng
d) Xác suất lấy các viên bi có đủ ba màu Sai||Đúng
Số cách chọn 5 viên bi trong 15 viên bi là .
Gọi : “5 viên bi lấy được có đủ 3 màu "
Gọi : " 5 viên bi lấy được có không đủ 3 màu "
Chọn 5 viên bi không đủ 3 màu xảy ra các trường hợp
+ 5 viên màu đỏ có 1 cách
+ 5 viên màu vàng và 1 viên màu xanh hoặc đỏ có cách.
Chỉ có xanh và đỏ có .
Chỉ có xanh và vàng có .
Chỉ có đỏ và vàng có .
Vậy .
Có bao nhiêu cách sắp xếp 5 nam và 4 nữ thành một hàng ngang sao cho giữa hai nữ có đúng 1 nam?
Vì giữa 4 nữ có vị trí trống để xếp thỏa mãn yêu cầu phải yêu cầu có dạng trong đó
là 4 bạn nữ và
là 3 bạn nam.
Bước 1: Chọn 3 bạn nam trong 5 bạn nam có cách.
Bước 2: Gọi nhóm là X. Xếp X và 2 nam còn lại thành một hàng ngang có 3! Cách.
Bước 3: Ứng với mỗi cách xếp ở bước 1 có 4! cách xếp các bạn nữ trong X và 3! cách các bạn nam trong X.
Do đó ta có: cách xếp thỏa mãn yêu cầu bài toán.
Có bao nhiêu cách chọn một tổ tưởng tổ dân phố từ một nhóm cư dân gồm 25 nam và 20 nữ?
Số cách chọn một người từ 45 người là: (cách)
Vậy có 45 cách chọn tổ trưởng tổ dân phố.
Với 4 chữ số 1; 2; 3; 4 có thể lập được bao nhiêu số có các chữ số phân biệt?
Với 4 chữ số 1; 2; 3; 4 có thể lập được số có tối đa 4 chữ số
Trường hợp số có 1 chữ số ta được 4 số
Trường hợp số có 2 chữ số ta được 4 . 3 = 12 số
Trường hợp số có 3 chữ số ta được: 4 . 3 . 2 = 24 số
Trường hợp số có 4 chữ số ta được: 4! = 24 số
=> Có thể lập được số các số có các chữ số phân biệt là: 4 + 12 + 24 + 24 = 64 số
Một hộp đựng 4 bi xanh và 6 bi đỏ lần lượt rút 2 viên bi. Xác suất để rút được một bi xanh và một bi đỏ là:
Tổng số viên bi là 4 + 6 = 10 (viên bi)
Số cách lấy hai viên bi từ số viên bi đã cho là: (Số phần tử không gian mẫu)
Số cách để rút được một bi xanh và 1 bi đỏ là:
=> Xác suất để rút được một bi xanh và 1 bi đỏ là:
Một người bỏ ngẫy nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Xác suất để có ít nhất một lá thư được bỏ đúng phong bì:
Số phần tử không gian mẫu là 3! = 6
Gọi A là biến cố có ít nhất một lá thư được bỏ đúng phong bì.
Ta xét các trường hợp sau:
Nếu lá thư thứ nhất bỏ đúng phong vì, hai lá thư còn lại để sai thì có duy nhất 1 cách.
Nếu lá thư thứ hai bỏ đúng phong bì, hai lá thư còn lại để sai thì có duy nhất 1 cách
Nếu lá thư thứ ba bỏ đúng phong big, hai lá thư còn lại để sai thì chỉ có duy nhất 1 cách.
Không thể có trường hợp 2 lá thứ bỏ đúng và 1 lá thư bỏ sai.
Cả ba lá thư đều bỏ đúng có duy nhất 1 cách
=> n(A) = 4
Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là:
Có 10 hộp sữa trong đó có 3 hộp hư. Chọn ngẫu nhiên 4 hộp. Xác suất để được ít nhất 1 hộp hư.
Số phần tử không gian mẫu là:
Số hộp sữa không bị hư là: 10 - 3 = 7 (hộp)
Số cách chọn 4 hộp sữa mà không hộp sữa nào bị hư nào là:
Số cách để chọn 4 hôp sữa ít nhất một hộp hư là: (cách chọn)
=> Xác suất để được ít nhất 1 hộp hư là:
Cho
. Từ tập A có thể lập được bao nhiêu số tự nhiên có 3 chữ số đôi một khác nhau chia hết cho 5?
Số tự nhiên có 3 chữ số đôi một khác nhau có dạng:
Do số cần tìm chia hết cho 5 => c = 5
Số cách chọn a là 4 cách
Số cách chọn b là 3 cách
=> Số các số tự nhiên có 3 chữ số đôi một khác nhau chia hết cho 5 là: số
Gieo một đồng tiền liên tiếp 3 lần. Tính xác suất của biến cố A: “kết quả của 3 lần gieo là như nhau”. Tính xác suất của biến cố A?
Gieo một đồng tiền liên tiếp 3 lần
=> Số phần tử không gian mẫu là:
Ta có:
Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để một trong hai con súc sắc xuất hiện mặt 5 chấm?
Gọi hai súc sắc là M; N
Gọi C là biến cố "Có đúng một trong hai con súc sắc xuất hiện mặt 5 chấm".
Ta có C là hợp của hai biến cố xung khắc tức là
Ta có
Vì A, B là hai biến cố độc lập với nhau
Nên và B độc lập với nhau;
và A độc lập với nhau
Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi bất kỳ?
Trong hộp có số viên bi là: 5 + 7 = 12 viên bi
Số cách lấy ra 6 viên bi bất kỳ là tổ hợp chập 6 của 12 phần tử:
Trong một hộp có 7 quả cầu xanh, 5 quả cầu đỏ, 4 quả cầu vàng. Chọn ngẫu nhiên 4 quả trong hộp. Hỏi có bao nhiêu cách chọn sao cho trong 4 quả cầu chọn ra có đủ 3 màu?
Số cách chọn 2 quả xanh, 1 quả đỏ, 1 quả vàng là: cách
Số cách chọn 1 quả xanh, 2 quả đỏ, 1 quả vàng là: cách
Số cách chọn 1 quả xanh, 1 quả đỏ, 2 quả vàng là: cách
=> Số cách chọn sao cho trong 4 quả cầu chọn ra có đủ 3 màu là 420 + 280 + 210 = 910 cách
Số cách xếp 6 học sinh
ngồi bất kì vào một ghế dài là:
Sắp xếp 6 học sinh vào một ghế dài là hoán vị của 6 phần tử
Vậy số cách sắp xếp là cách.
Trên giá sách có 3 quyển sách giáo khoa và 4 quyển sách tham khảo. Gọi B là biến cố “Hai quyển sách cùng loại nằm cạnh nhau”. Tính số phần tử của biến cố B?
Ta có:
Biến cố B là hai quyển sách cùng loại nằm cạnh nhau
là biến cố các quyển sách không cùng loại nằm cạnh nhau.
Do số sách tham khảo có số lượng nhiều hơn sách giáo khoa nên để các quyển sách cùng loại không nằm cạnh nhau thì ta cần sắp xếp sách tham khảo ở các vị trí 1; 3; 5; 7 và các quyển sách kháo khoa nằm ở vị trí 2; 4; 6.
Sau bữa tiệc, mỗi người bắt tay một lần với mỗi người khác trong phòng. Có tất cả 66 người lần lượt bắt tay. Hỏi trong phòng có bao nhiêu người:
Ta có:
Cứ 2 người sẽ bắt tay nhau 1 lần => Số lần bắt tay là:
Mà có tất cả 66 người lần lượt bắt tay nên ta có phương trình:
Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và
viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là
?
Kết quả: 177/182
(Kết quả ghi dưới dạng phân số tối giản a/b)
Lấy ngẫu nhiên 3 viên bi từ hộp chứa 5 viên bi đỏ, 3 viên bi xanh và viên bi vàng. Tính xác suất để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ. Biết xác suất để trong 3 viên bi lấy được đủ ba màu là
?
Kết quả: 177/182
(Kết quả ghi dưới dạng phân số tối giản a/b)
Theo bài ra ta có tổng số viên bi trong hộp là
Láy ngẫu nhiên 3 viên bi từ hộp. Số kết quả có thể xảy ra là
Gọi A là biến cố 3 viên bi lấy được có đủ 3 màu. Số kết quả thuận lợi cho biến cố A là:
=> Xác suất lấy được 3 viên bi có đủ 3 màu là:
Do đó trong hộp có 14 viên bi và
Gọi B là biến cố 3 viên bi lấy được có nhiều nhất hai viên bi đỏ
Suy ra là biến cố 3 viên bi lấy được đều là bi đỏ.
Số kết quả thuận lợi cho là:
Khi đó xác suất P để trong 3 viên bi lấy được nhiều nhất 2 viên bi đỏ là:
Từ các chữ số 0, 1, 2, 3, 4, 5, 6 viết ngẫu nhiên một số tự nhiên có 5 chữ số đôi một khác nhau. Tính xác suất để các chữ số 1 và 2 có mặt trong số viết được.
Gọi A là. biến cố: "Số được viết có mặt các chữ số 1 và 2"
Tìm
Giả sử số được viết có dạng .
Có 6 cách chọn a.
Tiếp theo có cách chọn
Vậy số phần tử không gian mẫu là:
Tìm
Trường hợp 1: không có mặt chữ số 0:
Có cách chọn vị trí cho hai chữ số 1 và 2.
Sau đó có cách xếp 3 trong 4 chữ số 3, 4, 5, 6 vào ba vị trí còn lại.
Vậy trường hợp này có khả năng.
Trường hợp 2: có mặt ba chữ số 0, 1, 2:
Có 4 cách chọn vị trí cho chữ số 0.
Tiếp theo có cách chọn vị trí cho hai chữ số 1 và 2.
Cuối cùng có cách chọn 2 trong 4 chữ số 3, 4, 5, 6 để viết vào hai vị trí còn lại.
Vậy trường hợp này có khả năng.
Số kết quả thuận lợi cho biến cố A là
Vậy xác suất cần tính là: