Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Các quy tắc tính xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho A = \{1, 2, 3, 4, 5, 6, 7\}. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau?

    Số các số tự nhiên gồm 5 chữ số đôi một khác nhau là: A_7^5 = 2520

  • Câu 2: Nhận biết

    Hai người đi săn cùng bắn vào một con mồi. Gọi A là biến cố người thứ nhất bắn trúng con mồi. B là biến cố người thứ hai bắn trúng con mồi. Mối quan hệ giữa hai biến cố A và B là:

    Hai biến cố A và B là hai biến cố độc lập vì việc người thứ nhất bắn trúng con mồi không phụ thuộc vào người thứ hai bắn trúng con mồi.

  • Câu 3: Vận dụng

    Có bao nhiêu số tự nhiên có 7 chữ số biết rằng chữ số 2 có mặt 2 lần, chữ số 3 có mặt 3 lần, chữ số còn lại có mặt nhiều nhất 1 lần.

    Số tự nhiên có 7 chữ số có dạng: \overline {abcdefg}

    Xét trường hợp có chữ số 0 đứng đầu

    Số cách chọn vị trí cho chữ số 2 là: C_7^2

    Số cách chọn vị trí cho chữ số 3 là: C_5^3

    Số cách chọn 2 chữ số còn lại trong tập hợp các số đã cho để xếp vào hai vị trí cuối là A_8^2

    => Số các số được tạo thành là:  C_7^2.C_5^3.A_8^2 = 11760

    Xét trường hợp không có chữ số 0 đứng đầu

    Ta có:

    Vì a = 0 => a có 1 cách chọn

    Số cách chọn vị trí cho chữ số 2 là: C_6^2

    Số cách chọn vị trí cho chữ số 3 là: C_4^3

    Số cách chọn chữ số cuối trong tập hợp dãy số đã cho là 7 cách

    => Số các số được tạo thành là: C_2^6.C_4^3.7 = 420

    Vậy số các số được lập thành thỏa mãn yêu cầu đề bài là: 11760 - 420 = 11340 số

  • Câu 4: Nhận biết

    Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Tính số phần tử không gian mẫu?

    Với câu hỏi 1, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 2, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 3, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 10, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Theo quy tắc nhân có: n\left( \Omega  ight) = \underbrace {4.4......4}_{10} = {4^{10}}

  • Câu 5: Nhận biết

    Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?

    Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “A;B là hai biến cố xung khắc.”

  • Câu 6: Vận dụng

    Cho tập hợp T gồm các số tự nhiên có 9 chữ số. Lấy ngẫu nhiên một số thuộc tập T. Giả sử H là biến cố lấy được một số lẻ và chia hết cho 9. Tính P(H)?

    Gọi số tự nhiên có 9 chữ số có dạng \overline{a_{1}a_{2}...a_{9}};\left( a_{1} eq 0
ight)

    Ta có: n(A) = 9.10^{8} khi đó số phần tử không gian mẫu là n(\Omega) =
C_{n(A)}^{1} = 9.10^{8}

    H là biến cố lấy được từ tập A một số lẻ và chia hết cho 9.

    Số a_{9} có 5 cách chọn

    Các số từ a_{2} ightarrow
a_{8}mỗi số có 10 cách chọn

    Xét tổng a_{2} + a_{3} + ... +
a_{9}. Vì số dư của a_{2} + a_{3} +
... + a_{9} khi chia cho 9 thuộc tập \left\{ 0;1;2;...;8 ight\} nên luôn tồn tại một cách chọn số a_{1} eq 0 để S = a_{2} + a_{3} + ... + a_{9} chia hết cho 9 hay \overline{a_{1}a_{2}...a_{9}} \vdots
9

    Do đó n(H) = 5.10^{7}

    Xác suất của biến cố H là P(H) =
\frac{n(H)}{n(\Omega)} = \frac{1}{18}

  • Câu 7: Thông hiểu

    Nhóm bạn gồm 4 người muốn tham gia sự kiện âm nhạc vào hai ngày cuối tuần, họ có thể chọn tham gia vào thứ bảy hoặc chủ nhật. Tính xác suất để vào ngày thứ bảy và ngày chủ nhật có ít nhất một bạn tham gia?

    Đáp án: 0,875

    (Kết quả ghi dưới dạng số thập phân)

    Đáp án là:

    Nhóm bạn gồm 4 người muốn tham gia sự kiện âm nhạc vào hai ngày cuối tuần, họ có thể chọn tham gia vào thứ bảy hoặc chủ nhật. Tính xác suất để vào ngày thứ bảy và ngày chủ nhật có ít nhất một bạn tham gia?

    Đáp án: 0,875

    (Kết quả ghi dưới dạng số thập phân)

    Vì mỗi bạn có thể tham gia sự kiện vào một trong hai ngày thứ bảy hoặc chủ nhật nên xác suất để nhóm bạn tham gia trong mỗi ngày là 0,5

    Xác suất không tham gia trong mỗi ngày là 0,5

    Gọi A là biến cố cả hai ngày thứ bảy và chủ nhật có ít nhất một bạn tham gia.

    Ta có: P\left( \overline{A} ight) =
\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2} +
\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2} =
\frac{1}{8}

    Xác suất cần tìm là P(A) = 1 - P\left(
\overline{A} ight) = 1 - \frac{1}{8} = \frac{7}{8}

  • Câu 8: Thông hiểu

    Quản lí xưởng kiểm tra 4 sản phẩm trong kho gồm hai loại là đạt và không đạt. Gọi N_{k} là biến cố sản phẩm được kiểm tra lần thứ k thuộc loại không đạt, k \in \left\{ 1;2;3;4 ight\}. Mô tả nào sau đây mô tả đúng biến cố chỉ có một sản phẩm thuộc loại đạt qua các N_{k}?

    Mô tả đúng là:

    N_{1}N_{2}N_{3}\overline{N_{4}} +
N_{1}N_{2}\overline{N_{3}}N_{4} + N_{1}\overline{N_{2}}N_{3}N_{4} +
\overline{N_{1}}N_{2}N_{3}N_{4}

  • Câu 9: Thông hiểu

    Hai học sinh ném mỗi người một phi tiêu vào bia một cách độc lập. Tính xác suất của biến cố có ít nhất một học sinh không ném trúng bia. Biết rằng xác suất ném trúng bia của hai học sinh lần lượt là \frac{1}{2}\frac{1}{3}.

    Giả sử có hai học sinh là A và B

    Ta có xác suất để ném trúng mục tiêu của hai bạn A và B tương ứng là P(A),P(B)

    Gọi biến cố D là biến cố có ít nhất một bạn không ném trúng bia.

    Suy ra \overline{D} là biến cố cả hai bạn đều ném trúng bia, khi đó \overline{D} = A \cap B

    \Rightarrow P\left( \overline{D} ight)
= P(A).P(B) = \frac{1}{2}.\frac{1}{3} = \frac{1}{6}

    \Rightarrow P(D) = 1 - \frac{1}{6} =
\frac{5}{6}

  • Câu 10: Nhận biết

    Giả sử hai biến cố A;B là hai biến cố xung khắc. Công thức nào sau đây đúng?

    Vì hai biến cố A và B là hai biến cố xung khắc nên theo công thức cộng xác suất ta có: P(A \cup B) = P(A) +
P(B).

  • Câu 11: Thông hiểu

    Trong tủ sách có tất cả 10 cuốn sách. Hỏi có bao nhiêu cách sắp xếp sao cho quyển thứ nhất ở kề quyển thứ hai:

    Coi quyển sách thứ nhất và quyển sách thứ hai thành một quyển sách

    => Khi đó ta có 9 quyển sách

    Hoán vị hai quyển sách ban đầu ta có 2! = 2 cách

    Sắp xếp 9 quyển sách vào 9 vị trí =>  Có 9! cách

    => Có 2.9! = 725760 cách sắp xếp sao cho quyển thứ nhất ở kề quyển thứ hai:

  • Câu 12: Thông hiểu

    Một túi chứa 2 bi trắng và 3 bi đen. Rút ra 3 bi. Xác suất để được ít nhất 1 bi trắng là:

     Số phần tử không gian mẫu là: C_5^3 = 10

    Gọi A là biến cố " được ít nhất 1 bi trắng"

    => \overline A là biến cố không lấy được viên bi trắng nào

    => Số phần tử của \overline A là: C_3^3 =1

    => Xác suất lấy 3 viên bi không có viên bi trắng là: P\left( {\overline A } ight) = \frac{1}{{10}}

    => Xác suất để được ít nhất 1 bi trắng là: 

    P\left( A ight) = 1 - P\left( {\overline A } ight) = 1 - \frac{1}{{10}} = \frac{9}{{10}}

  • Câu 13: Thông hiểu

    Có 15 đội bóng đá thi đấu theo thể thức vòng tròn tính điểm. Hỏi cần phải tổ chức bao nhiêu trận đấu?

    Lấy hai đội bất kỳ trong 15 đội bóng tham gia thi đấu ta được một trận đấu. Vậy số trận đấu chính là một tổ hợp chập 2 của 15 phần tử (đội bóng đá).

    Như vậy, ta có C_{15}^2 = \frac{{15!}}{{13!.2!}} = 105 trận đấu.

  • Câu 14: Thông hiểu

    Cho A = \{1, 2, 3, 4, 5, 6, 7\}. Từ tập A có thể lập được bao nhiêu số chẵn có 5 chữ số đôi một khác nhau?

    Số tự nhiên có 5 chữ số có dạng: \overline {abcde}

    Số cần tìm là số chẵn => e ∈ {2; 4; 6}

    => Có 3 cách chọn e

    Số cách chọn a, b, c, d là: A_6^4 = 360

    => Có thể lập được số các số chẵn có 5 chữ số đôi một khác nhau là: 3 . 360 = 1080 số

  • Câu 15: Nhận biết

    Biết M\overline{M} là hai biến cố đối nhau. Chọn khẳng định đúng?

    Ta có:

    P(M) = 1 - P\left( \overline{M}
ight)

  • Câu 16: Thông hiểu

    Cho các số 1, 2, 3, 4, 5, 6, 7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

    Số các số tự nhiên gồm 5 chữ số có chữ số 3 đứng đầu tiên có dạng là: \overline {3bcde}

    Do không có điều kiện về các chữ số còn lại

    => Số cách chọn các chữ số b, c, d, e là {7^4} = 2401 cách

    => Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là: 1 . 2401 = 2401 số

  • Câu 17: Vận dụng

    Trong công xưởng có một nhóm công nhân gồm 15 nữ và 5 nam. Chủ quản muốn chọn một nhóm gồm 5 công nhân để lập thành một tổ gồm 1 tổ trưởng nữ, 1 tổ phó nữ và có ít nhất 1 công nhân nam. Hãy xác định số cách lập tổ công nhân theo yêu cầu?

    Ta có:

    Số cách chọn 2 nữ làm tổ trưởng và tổ phó là A_{15}^{2} cách.

    Số cách chọn 3 công nhân còn lại là nữ là: C_{13}^{3} cách.

    Số cách chọn 3 công nhân còn lại trong 18 công nhân là C_{18}^{3} cách.

    Vậy số cách chọn 1 tổ trưởng nữ, 1 tổ phó và có ít nhất 1 nam là:

    A_{15}^{2}.\left( C_{18}^{3} - C_{13}^{3}
ight) = 111300.

  • Câu 18: Nhận biết

    Từ các chữ số 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số:

    Số tự nhiên có 4 chữ số có dạng: \overline {abcd}

    Số cách chọn a là 4 cách 

    Số cách chọn b là 4 cách

    Số cách chọn c là 4 cách

    Số cách chọn d là 4 cách

    => Từ các chữ số 2, 3, 4, 5 có thể lập được số các số gồm 4 chữ số là 44 = 256 số

  • Câu 19: Thông hiểu

    Truớc cổng trưòng đại học có 3 quán cơm bình dân chất lượng như nhau. Ba sinh viên A, B, C độc lập với nhau chọn ngẫu nhiên một quán để ăn trưa. Tính xác suất của các biến cố ba sinh viên vào cùng một quán?

    Ta đánh số 3 quán cơm là 1;2;3

    Gọi a;b;c lần lượt là quán cơm sinh viên A; B; C chọn.

    Như vậy không gian mẫu là \Omega =
\left\{ (a,b,c)|a,b,c\mathbb{\in Z},1 \leq a \leq 3,1 \leq b \leq 3,1
\leq c \leq 3 ight\}

    Vì có 3 cách chon a và có 3 cách chọn b và có 3 cách chọn c nên n_{\Omega} = 3.3.3 = 27

    Gọi B là biến cố "2 sinh viên vào cùng một quán, còn người kia thì vào quán khác".

    Các kết quả thuận lợi cho biến cố B là

    (1;1;2) và 2 hoán vị của nó,

    (1;1;3) và 2 hoán vị của nó,

    (2;2;1) và 2 hoán vị của nó,

    (2;2;3) và hai hoán vị của nó,

    (3;3;1) và 2 hoán vị của nó,

    (3;3;2) và 2 hoán vị của nó.

    Khi đó các kết quả thuận lợi cho biến cố B là: 3.6 = 18

    Vậy xác suất của biến cố này là P(B) =
\frac{18}{27} = \frac{2}{3}

  • Câu 20: Vận dụng cao

    Một đề kiểm tra trắc nghiệm 45 phút môn Tiếng Anh của lớp 10 là một đề gồm 25 câu hỏi độc lập, mỗi câu hỏi có 4 đáp án trả lời trong đó chỉ có một đáp án đúng. Mỗi câu trả lời đúng được 0,4 điểm, câu trả lời sai không được điểm. Bạn Bình vì học rất kém môn Tiếng Anh nên làm bài bằng cách chọn ngẫu nhiên câu trả lời cho tất cả 25 câu. Gọi A là biến cố “Bình làm đúng k câu”, biết xác suất của biến cố A đạt giá trị lớn nhất. Tính k.

    Đáp án: 6

    Đáp án là:

    Một đề kiểm tra trắc nghiệm 45 phút môn Tiếng Anh của lớp 10 là một đề gồm 25 câu hỏi độc lập, mỗi câu hỏi có 4 đáp án trả lời trong đó chỉ có một đáp án đúng. Mỗi câu trả lời đúng được 0,4 điểm, câu trả lời sai không được điểm. Bạn Bình vì học rất kém môn Tiếng Anh nên làm bài bằng cách chọn ngẫu nhiên câu trả lời cho tất cả 25 câu. Gọi A là biến cố “Bình làm đúng k câu”, biết xác suất của biến cố A đạt giá trị lớn nhất. Tính k.

    Đáp án: 6

    Vì đề thi có 25 câu và mỗi câu có 4 phương án trả lời nên xác suất để Bình làm đúng k câu là

    P = C_{25}^{k}.\left( \frac{1}{4}
ight)^{k}.\left( \frac{3}{4} ight)^{25 - k} = \frac{C_{25}^{k}.3^{25
- k}}{4^{25}}

    Với 0 \leq k \leq 25.

    Xét hàm f(k) = C_{25}^{k}.3^{25 -
k} với k\mathbb{\in N}k \leq 25.

    Ta có f(k) lớn nhất \Leftrightarrow \left\{ \begin{matrix}
f(k) \geq f(k - 1) \\
f(k) \geq f(k + 1) \\
\end{matrix} \Leftrightarrow 6,5 \geq k \geq 5,5 \Rightarrow k = 6
ight..

    Suy ra \max_{0 \leq k \leq 25}f(k) =
f(6).

    Vậy k = 6.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 39 lượt xem
Sắp xếp theo