Phát biểu biến cố A = {123, 234, 124,134} dưới dạng mệnh đề
Mệnh đề đúng được phát biểu như sau:
"Số tự nhiên có ba chữ số được thành lập có chữ số đứng sau lớn hơn chữ số đứng trước"
Phát biểu biến cố A = {123, 234, 124,134} dưới dạng mệnh đề
Mệnh đề đúng được phát biểu như sau:
"Số tự nhiên có ba chữ số được thành lập có chữ số đứng sau lớn hơn chữ số đứng trước"
Gọi S là tập hợp các ước nguyên dương của 1605632. Chọn ngẫu nhiên một số từ S. Xác suất để số được chọn chia hết cho 7 là
Đáp án: 2/3 (Kết quả ghi dưới dạng phân số tối giản a/b).
Gọi S là tập hợp các ước nguyên dương của 1605632. Chọn ngẫu nhiên một số từ S. Xác suất để số được chọn chia hết cho 7 là
Đáp án: 2/3 (Kết quả ghi dưới dạng phân số tối giản a/b).
Ta có:
Suy ra số các ước nguyên dương của 1605632 là .
Số phần tử của không gian mẫu: .
Trong đó, số các số chia hết cho 7 là: .
Xác xuất cần tìm là: .
Trong một hộp bánh có 6 loại bánh nhân thịt và 4 loại bánh nhân đậu xanh. Có bao nhiêu cách lấy ra 6 bánh để phát cho các em thiếu nhi:
Số bánh có trong hộp bánh là 6 + 4 = 10 chiếc
=> Số cách lấy ra 6 bánh để phát cho các em thiếu nhi là: cách
Sắp xếp 6 học sinh nam; 5 học sinh nữ cùng một giáo viên chủ nhiệm thành một vòng tròn sao cho giáo viên đứng giữa hai học sinh nam. Tính số cách sắp xếp?
Ta có:
Cố định giáo viên tại một vị trí
Chọn 2 học sinh nam để xếp cạnh giáo viên => Có cách.
Xếp hai học sinh nam vừa chọn cạnh giáo viên => Có cách.
Cuối cùng xếp 9 học sinh còn lại vào các vị trí còn trống => Có cách.
Vậy số cách sắp xếp theo yêu cầu bài toán là: .
Có bao nhiêu số tự nhiên có 3 chữ số lập từ các số 0, 2, 4, 6, 8 với điều kiện các chữ số đó không lặp lại:
Số tự nhiên có ba chữ số khác nhau có dạng:
Số cách chọn a là 4 cách (Do a khác 0)
Số cách chọn b là 4 cách
Số cách chọn c là 3 cách
=> Số các số tự nhiên có 3 chữ số lập từ các số 0, 2, 4, 6, 8 với điều kiện các chữ số đó không lặp lại là 4 . 4 . 3 = 48 số
Hai học sinh thi đấu chơi game với nhau. Người giành chiến thắng là người đầu tiên thắng được 5 hiệp. Tại thời điểm bạn A đã thắng 4 hiệp và bạn B mới thắng 2 hiệp. Tính xác suất để bạn A giành chiến thắng?
Gọi thời điểm bạn A đã thắng 4 hiệp và bạn B mới thắng 2 hiệp là hai người đá đánh được i hiệp và gọi là biến cố ở hiệp thứ I, người thứ j thắng
Vậy xác suất để bạn A giành chiến thắng là:
Lấy ngẫu nhiên 3 thẻ trong một hộp chứa 10 thẻ được đánh số từ 1 đến 10. Giả sử
là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Tính số phần tử của biến cố
?
Các phần tử của biến cố là:
Vậy
Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?
Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “ là hai biến cố xung khắc.”
Chọn ngẫu nhiên 2 số tự nhiên trong tập hợp S gồm các số tự nhiên có 5 chữ số đôi một khác nhau, trong đó chữ số 3 đứng liền giữa hai chữ số 2 và 4. Tìm số phần tử không gian mẫu?
Ta chia thành các trường hợp như sau:
TH1: Nếu số 234 đứng đầu thì có số
TH2: Nếu cố 432 đứng đầu thì có số
TH3: Nếu cố 234; 432 không đứng đầu
Khi đó có 6 cách chọn số đứng đầu, khi đó còn 4 vị trí có 2 cách sắp xếp 3 số 234 và 432, còn lại 1 vị trí có cách chọn số còn lại. Do đó trường hợp này có
Suy ra số phần tử của tập hợp S là
Vậy số phần tử không gian mẫu là
Một tổ học sinh có 7 nam và 3 nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn đều là nữ.
Số học sinh trong tổ là: 7 + 3 = 10 học sinh
Số phần tử không gian mẫu là:
Giả sử A là biến cố "2 người được chọn đều là nữ"
=>
=> Xác suất sao cho 2 người được chọn đều là nữ là:
Cho 3 con xúc xắc trong đó con xúc xắc thứ nhất cân đối. Xúc xắc thứ hai không cân đối, có xác suất mặt 3 chấm là 0,2; các mặt còn lại có xác suất bằng nhau. Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau. Gieo đồng thời ba con xúc xắc đã cho. Tính xác suất để hai con xúc xắc xuất hiện mặt 2 chấm và một con xúc xắc xuất hiện mặt 1 chấm?
Con xúc xắc thứ nhất cân đối nên xác suất xuất hiện mỗi mặt là
Xúc xắc thứ hai không cân đối, có xác xuất mặt 3 chấm là 0,2 và các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là
Xúc xắc thứ ba không cân đối có xác suất mặt 6 chấm là 0,25; các mặt còn lại có xác suất bằng nhau nên xác suất các mặt còn lại là
Gọi A là biến cố gieo một lần 3 con xúc xắc hai con xúc xắc xuất hiện mặt 2 chấm và một xúc xắc xuất hiện mặt 1 chấm là:
|
Biến cố |
Xúc xắc 1; 2; 3 |
Xác suất |
|
B |
2 chấm, 2 chấm, 1 chấm |
|
|
C |
2 chấm, 1 chấm, 2 chấm |
|
|
D |
1 chấm, 2 chấm, hai chấm |
Do và các biến cố B, C, D đôi một xung khắc nên ta có:
Với các chữ số 0; 1; 2; 3; 4; 5; 6. Lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 5 có mặt đúng 4 lần, các chữ số khác mỗi chữ số có mặt đúng 1 lần.
Số các số có bằng hoán vị của 10 chữ số trong đó chữ số 5 có mặt đúng 4 lần là:
Ta phải bỏ đi các số có chữ số 0 đứng đầu ví dụ: 0555512346
Số các số có bằng hoán vị của 9 chữ số trong đó chữ số 5 có mặt đúng 4 lần là:
=> Số các số cần phải tìm thỏa mãn điều kiện là:
Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5.
Ta có:
Gọi A: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 5”
Ta có:
Trong một trận thi đấu để giành chiến thắng chung cuộc, người thắng cuộc là người đầu tiên thắng được 6 hiệp. Kết thúc buổi sáng, tuyển thủ A thắng được 5 hiệp và tuyển thủ B chỉ thắng được 3 hiệp. Hai tuyển thủ sẽ tiếp tục thi đấu vào buổi chiều. Xác suất để tuyển thủ A thắng chung cuộc là:
Đáp án: 7/8
(Kết quả ghi dưới dạng phân số tối giản a/b)
Trong một trận thi đấu để giành chiến thắng chung cuộc, người thắng cuộc là người đầu tiên thắng được 6 hiệp. Kết thúc buổi sáng, tuyển thủ A thắng được 5 hiệp và tuyển thủ B chỉ thắng được 3 hiệp. Hai tuyển thủ sẽ tiếp tục thi đấu vào buổi chiều. Xác suất để tuyển thủ A thắng chung cuộc là:
Đáp án: 7/8
(Kết quả ghi dưới dạng phân số tối giản a/b)
Xét biến cố tuyển thủ A không chiến thắng chung cuộc khi tuyển thủ B thắng liên tiếp ba hiệp vào buổi chiều.
Xác suất là:
Vậy xác suất để tuyển thủ A thắng chung cuộc là .
Một hội đồng gồm 2 giáo viên và 3 học sinh được chọn từ một nhóm 5 giáo viên và 6 học sinh. Hỏi có bao nhiêu cách chọn?
Số cách chọn 2 giáo viên từ nhóm 5 giáo viên là: cách
Số cách chọn 3 học sinh từ nhóm 6 học sinh là: cách
Áp dụng quy tắc nhân ta có số cách chọn một hội đồng là: 10 . 20 = 200 cách
Một hộp có 1 viên bi, trong đó có 7 quả cầu màu đỏ được đánh số từ 1 đến 7, 6 quả cầu màu xanh được đánh số từ 1 đến 6 và 5 quả cầu màu vàng được đánh số từ 1 đến 5. Lấy ngẫu nhiên trong hộp ra 3 quả cầu.
a) Xác suất để lấy được 3 quả cầu màu đỏ là
Đúng||Sai
b) Xác suất để lấy được 3 quả cùng màu là
Sai||Đúng
c) Xác suất để lấy được 3 quả cầu có đủ ba màu là
Đúng||Sai
d) Xác suất để lấy được 3 quả cầu khác màu và khác số là
. Đúng||Sai
Một hộp có 1 viên bi, trong đó có 7 quả cầu màu đỏ được đánh số từ 1 đến 7, 6 quả cầu màu xanh được đánh số từ 1 đến 6 và 5 quả cầu màu vàng được đánh số từ 1 đến 5. Lấy ngẫu nhiên trong hộp ra 3 quả cầu.
a) Xác suất để lấy được 3 quả cầu màu đỏ là Đúng||Sai
b) Xác suất để lấy được 3 quả cùng màu là Sai||Đúng
c) Xác suất để lấy được 3 quả cầu có đủ ba màu là Đúng||Sai
d) Xác suất để lấy được 3 quả cầu khác màu và khác số là . Đúng||Sai
Có cách lấy 3 quả cầu từ hộp.
a) Số cách lấy được 3 quả cầu màu đỏ là:
Xác suất để lấy được 3 quả cầu màu đỏ là
b) Số cách lấy được 3 quả cầu cùng màu là:
Xác suất để lấy được 3 quả cùng màu là
c) Số cách lấy được 3 quả cầu có đủ 3 màu là:
Xác suất để lấy được 3 quả cầu có đủ ba màu là:
d) Bước 1: Lấy 1 quả cầu màu vàng có 5 cách.
Bước 2: Lấy 1 quả cầu màu xanh có 5 cách. (vì khác số với quả vàng).
Bước 3: Lấy một quả màu đỏ có 5 cách (vì khác số với quả xanh và quả vàng).
Suy ra có 5.5.5 = 125 cách lấy 3 quả cầu khác màu và khác số,
Suy ra xác suất của biến cố là:
Từ thành phố A đến thành phố B có 3 con đường, từ thành phố A đến thành phố C có 2 con đường, từ thành phố B đến thành phố D có 2 con đường, từ thành phố C đến thành phố D có 3 con đường. không có con đường nào nối từ thành phố C đến thành phố B. Hỏi có bao nhiêu con đường đi từ thành phố A đến thành phố D:
Số cách đi từ A đến D bằng cách đi từ A đến B rồi đến D là 3.2 = 6
Số cách đi từ A đến D bằng cách đi từ A đến C rồi đến D là 2.3 = 6
=> Số con đường đi từ thành phố A đến thành phố D là: 6 + 6 = 12 đường
Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Gọi B là biến cố Hùng thi được ít nhất 8 điểm. Tính số phần tử của biến cố B?
Trường hợp 1: Hùng thi được 8 điểm, tức là Hùng trả lời 8 câu đúng, 2 câu sai.
Trong 10 câu số khả năng của 2 câu mà học sinh trả lời sai là
Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng
Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai
Vậy trường hợp này số khả năng xảy ra là .
Trường hợp 2: Hùng thi được 9 điểm, tức là Hùng trả lời 9 câu đúng, 1 câu sai.
Trong 10 câu số khả năng của 1 câu mà học sinh trả lời sai là
Mỗi câu trả lời đúng học sinh có 1 cách chọn được đáp án đúng
Mỗi câu trả lời sai học sinh có 3 cách chọn được đáp án sai
Vậy trường hợp này số khả năng xảy ra là .
Trường hợp 3: Hùng thi được 10 điểm, tức là Hùng trả lời 10 câu đúng, 0 câu sai.
Trường hợp này có 1 khả năng xảy ra.
Vậy số phần tử của biến cố B là:
Cho
. Từ tập A có thể lập được bao nhiêu số lẻ có 2 chữ số đôi một khác nhau?
Số tự nhiên có hai chữ số khác nhau có dạng:
Do số cần tìm là số lẻ => b ∈ {1; 3; 5}
=> Có 3 cách chọn b
Số cách chọn a là 4 cách
=> Có thể lập được số các số lẻ có 2 chữ số đôi một khác nhau là: 3 . 4 = 12 số
Hai xạ thủ cùng bắn mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là
và
. Tính xác suất để có ít nhất một xạ thủ không bắn trúng bia?
Gọi A là biến cố có ít nhất một xạ thủ không bắn trúng bia
Khi đó là biến cố cả hai xạ thủ đều bắn trúng bia.