Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Các quy tắc tính xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hai biến cố xung khắc với nhau. Biết xác suất của hai biến cố có giá trị lần lượt là \frac{1}{3}\frac{1}{4}. Tính xác suất của biến cố hợp hai biến cố đã cho?

    Gọi hai biến cố là A, B có P(A) =
\frac{1}{3};P(B) = \frac{1}{4}

    Vì hai biến cố A và B là hai biến cố xung khắc nên P(A \cup B) = P(A) + P(B) = \frac{1}{3} +
\frac{1}{4} = \frac{7}{12}

  • Câu 2: Nhận biết

    Cho A = \{1, 2, 3, 4, 5, 6, 7\}. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau?

    Số các số tự nhiên gồm 5 chữ số đôi một khác nhau là: A_7^5 = 2520

  • Câu 3: Nhận biết

    Một liên đoàn bóng rổ có 10 đội, mỗi đội đấu với mỗi đội khác hai lần, một lần ở sân nhà và một lần ở sân khách. Số trận đấu được sắp xếp là:

    Cứ hai đội đá với nhau lượt đi, lượt về sẽ có hai trận đấu diễn ra nên số trận đấu là:2.C_{10}^2 = 90

  • Câu 4: Nhận biết

    Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 7 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.

    Ta có: \Omega = \left\{ (i;j)|1 \leq i;j
\leq 6 ight\} \Rightarrow n(\Omega) = 36

    Gọi C: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hay bằng 7 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”

    Ta có: C = \left\{ (1;6),(6;1)
ight\}

    \Rightarrow n(C) = 2 \Rightarrow P(C) =
\frac{n(C)}{n(\Omega)} = \frac{2}{36} = \frac{1}{18}

  • Câu 5: Nhận biết

    Một nhóm học sinh gồm 20 học sinh nam và 10 học sinh nữ. Có bao nhiêu cách chọn một học sinh trong nhóm đó tham gia đội thanh niên tình nguyện của trường?

    10 + 20 = 30 cách chọn một học sinh.

  • Câu 6: Thông hiểu

    Cho 8 quả cân có khối lượng lần lượt là 1kg, 2kg, 3kg, 4kg, 5kg, 6kg, 7kg, 8kg. Chọn ngẫu nhiên ba quả cân trong số đó. Tính xác suất để trọng lượng ba quả cân được chọn không vượt quá 9kg.

    Không gian mẫu là số cách chọn ngẫu nhiên ba quả cân trong số 8 quả cân có khối lượng đã cho tương ứng. ω Do đó số phần tử của không gian mẫu là: n(\Omega) = C_{8}^{3} =
56

    Gọi C là biến cố “trọng lượng ba quả cân được chọn không vượt quá 9kg”

    Ta có các bộ 3 số có tổng khối lượng không vượt quá 9kg gồm:

    (1,2,3);(1,2,4);(1,2,5);(1,2,6);(1,3,4);(1,3,4);(2,3,4)

    n(A) = 7 \Rightarrow P(A) = \frac{7}{56}
= \frac{1}{8}

  • Câu 7: Vận dụng

    Một đa giác đều có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiêu cạnh?

    Gọi số cạnh của đa giác là n (cạnh)

    Điều kiện n \in \mathbb{N},n > 2

    => Số đỉnh tương ứng của đa giác là n đỉnh

    Cứ 2 đỉnh của đa giác tạo thành một đoạn thẳng (là cạnh hoặc đường chéo)

    => Số đoạn thẳng tạo thành là C_n^2 đoạn

    Mà số đường chéo gắp đôi số cạnh => Số đường chéo là 2n 

    Ta có phương trình:

    C_n^2 = n + 2n \Rightarrow n = 7

    Vậy đa giác đó có 7 cạnh.

  • Câu 8: Thông hiểu

    Hai hộp gỗ được đặt trên bàn. Hộp A chứa 3 bi đỏ và 4 bi xanh. Hộp B chứ 2 bi đỏ và 5 bi xanh. Lấy ngẫu nhiên 1 viên bi từ hộp A sang hộp B rồi lấy ngẫu nhiên 1 viên bi trong hộp B ra. Tính xác suất để viên bi lấy ra ở hộp thứ hai có màu đỏ?

    Xảy ra hai trường hợp:

    TH1: Viên bi lấy ra từ hộp thứ nhất màu đỏ và đưa vào hộp thứ hai, khi đó hộp thứ hai có 3 viên bi đỏ và 5 viên bi canh. Xác suất để lấy ra viên bi đỏ từ hộp thứ hai là:

    P_{1} =
\frac{3}{7}.\frac{3}{8} = \frac{9}{56}

    TH1: Viên bi lấy ra từ hộp thứ nhất màu xanh và đưa vào hộp thứ hai, khi đó hộp thứ hai có 2 viên bi đỏ và 6 viên bi canh. Xác suất để lấy ra viên bi đỏ từ hộp thứ hai là:

    P_{2} =
\frac{4}{7}.\frac{2}{8} = \frac{8}{56}

    Vậy xác suất cần tìm là: P = P_{1} +
P_{2} = \frac{9}{56} + \frac{8}{56} = \frac{17}{56}

  • Câu 9: Vận dụng

    Một con súc sắc cân đối đồng chất được gieo 5 lần. Xác suất để tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba:

     Một con súc sắc cân đối đồng chất được gieo 5 lần

    => Số phần tử của không gian mẫu là: {6^5} = 7776

    Giả sử H là biến cố "tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba"

    => Các bộ số là: (1; 1; 2), (1; 2; 3), (2; 1; 3), (1; 3; 4), (3; 1; 4), (2; 2; 4), (1; 4; 5), (4; 1; 5), (2; 3; 5), (3; 2; 5), (1; 5; 6), (5; 1; 6), (2; 4; 6), (4; 2; 6), (3; 3; 6)}

    => n\left( H ight) = 15.6.6 = 540

    => Xác suất để tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba là:

    P\left( H ight) = \frac{{n\left( H ight)}}{{n\left( \Omega  ight)}} = \frac{{540}}{{7776}} = \frac{{15}}{{126}}

  • Câu 10: Vận dụng cao

    Một đề kiểm tra trắc nghiệm 45 phút môn Tiếng Anh của lớp 10 là một đề gồm 25 câu hỏi độc lập, mỗi câu hỏi có 4 đáp án trả lời trong đó chỉ có một đáp án đúng. Mỗi câu trả lời đúng được 0,4 điểm, câu trả lời sai không được điểm. Bạn Bình vì học rất kém môn Tiếng Anh nên làm bài bằng cách chọn ngẫu nhiên câu trả lời cho tất cả 25 câu. Gọi A là biến cố “Bình làm đúng k câu”, biết xác suất của biến cố A đạt giá trị lớn nhất. Tính k.

    Đáp án: 6

    Đáp án là:

    Một đề kiểm tra trắc nghiệm 45 phút môn Tiếng Anh của lớp 10 là một đề gồm 25 câu hỏi độc lập, mỗi câu hỏi có 4 đáp án trả lời trong đó chỉ có một đáp án đúng. Mỗi câu trả lời đúng được 0,4 điểm, câu trả lời sai không được điểm. Bạn Bình vì học rất kém môn Tiếng Anh nên làm bài bằng cách chọn ngẫu nhiên câu trả lời cho tất cả 25 câu. Gọi A là biến cố “Bình làm đúng k câu”, biết xác suất của biến cố A đạt giá trị lớn nhất. Tính k.

    Đáp án: 6

    Vì đề thi có 25 câu và mỗi câu có 4 phương án trả lời nên xác suất để Bình làm đúng k câu là

    P = C_{25}^{k}.\left( \frac{1}{4}
ight)^{k}.\left( \frac{3}{4} ight)^{25 - k} = \frac{C_{25}^{k}.3^{25
- k}}{4^{25}}

    Với 0 \leq k \leq 25.

    Xét hàm f(k) = C_{25}^{k}.3^{25 -
k} với k\mathbb{\in N}k \leq 25.

    Ta có f(k) lớn nhất \Leftrightarrow \left\{ \begin{matrix}
f(k) \geq f(k - 1) \\
f(k) \geq f(k + 1) \\
\end{matrix} \Leftrightarrow 6,5 \geq k \geq 5,5 \Rightarrow k = 6
ight..

    Suy ra \max_{0 \leq k \leq 25}f(k) =
f(6).

    Vậy k = 6.

  • Câu 11: Nhận biết

    Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?

    Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “A;B là hai biến cố xung khắc.”

  • Câu 12: Nhận biết

    Một phép thử có không gian mẫu là: \Omega = \left\{ 1;2;3;4;5;6 ight\}. Cặp biến cố nào sau đây không đối nhau?

    Cặp biến cố không đối nhau là: E =
\left\{ 1;4;6 ight\},F = \left\{ 2;3 ight\}\left\{ \begin{matrix}
E \cap F = \varnothing \\
E \cup F eq \Omega \\
\end{matrix} ight.

  • Câu 13: Thông hiểu

    Cho A = \{1, 2, 3, 4, 5\}. Từ tập A có thể lập được bao nhiêu số lẻ có 2 chữ số đôi một khác nhau?

     Số tự nhiên có hai chữ số khác nhau có dạng: \overline {ab} ,\left( {a e b} ight)

    Do số cần tìm là số lẻ => b ∈ {1; 3; 5}

    => Có 3 cách chọn b

    Số cách chọn a là 4 cách

    => Có thể lập được số các số lẻ có 2 chữ số đôi một khác nhau là: 3 . 4 = 12 số

  • Câu 14: Thông hiểu

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Chọn 3 học sinh tham gia vệ sinh công cộng toàn trường, hỏi có bao nhiêu cách chọn 3 học sinh trong đó có nhiều nhất 1 học sinh nam?

    Số cách chọn ba học sinh trong đó có 1 học sinh nam là: C_{25}^1.C_{15}^2 = 2625 cách

    Số cách chọn ba học sinh trong đó không có học sinh nam là: C_{15}^3 = 455 cách

    => Số cách chọn 3 học sinh trong đó có nhiều nhất một học sinh nam là: 2625 + 455 = 3080 cách

  • Câu 15: Thông hiểu

    Một hộp đựng 4 bi xanh và 6 bi đỏ lần lượt rút 2 viên bi. Xác suất để rút được một bi xanh và một bi đỏ là:

    Tổng số viên bi là 4 + 6 = 10 (viên bi)

    Số cách lấy hai viên bi từ số viên bi đã cho là: C_{10}^2 (Số phần tử không gian mẫu)

    Số cách để rút được một bi xanh và 1 bi đỏ là: C_4^1.C_6^1

    => Xác suất để rút được một bi xanh và 1 bi đỏ là: P = \frac{{C_4^1.C_6^1}}{{C_{10}^2}} = \frac{8}{{15}}

  • Câu 16: Vận dụng

    Có bao nhiêu số tự nhiên có 7 chữ số biết rằng chữ số 2 có mặt 2 lần, chữ số 3 có mặt 3 lần, chữ số còn lại có mặt nhiều nhất 1 lần.

    Số tự nhiên có 7 chữ số có dạng: \overline {abcdefg}

    Xét trường hợp có chữ số 0 đứng đầu

    Số cách chọn vị trí cho chữ số 2 là: C_7^2

    Số cách chọn vị trí cho chữ số 3 là: C_5^3

    Số cách chọn 2 chữ số còn lại trong tập hợp các số đã cho để xếp vào hai vị trí cuối là A_8^2

    => Số các số được tạo thành là:  C_7^2.C_5^3.A_8^2 = 11760

    Xét trường hợp không có chữ số 0 đứng đầu

    Ta có:

    Vì a = 0 => a có 1 cách chọn

    Số cách chọn vị trí cho chữ số 2 là: C_6^2

    Số cách chọn vị trí cho chữ số 3 là: C_4^3

    Số cách chọn chữ số cuối trong tập hợp dãy số đã cho là 7 cách

    => Số các số được tạo thành là: C_2^6.C_4^3.7 = 420

    Vậy số các số được lập thành thỏa mãn yêu cầu đề bài là: 11760 - 420 = 11340 số

  • Câu 17: Thông hiểu

    Phát biểu biến cố A = {123, 234, 124,134} dưới dạng mệnh đề

    Mệnh đề đúng được phát biểu như sau:

    "Số tự nhiên có ba chữ số được thành lập có chữ số đứng sau lớn hơn chữ số đứng trước" 

  • Câu 18: Thông hiểu

    Một nhóm học sinh có 6 bạn nam và 5 bạn nữ có bao nhiêu cách chọn ra 5 bạn trong đó có cả nam và nữ?

    Số học sinh có trong nhóm là: 6 + 5 = 11 học sinh

    Số cách chọn 5 học sinh trong nhóm là: C_{11}^5 = 462 cách

    Số cách chọn số học sinh chỉ có nam là C_6^5 = 6 cách

    Số cách chọn số học sinh chỉ có nữ là: C_5^5 = 1 cách

    => Số cách chọn ra 5 bạn trong đó có cả nam và nữ là: 462 - 6 - 1 = 455 cách

  • Câu 19: Thông hiểu

    Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được lá bích là:

    Số phần tử không gian mẫu là: 52

    Một bộ bài 52 lá có 13 bộ 4 lá bài trong đó có mỗi bộ có 1 lá bích

    => Số lá bích trong bộ bài là 13 lá

    => Xác suất để được lá bích là: P = \frac{{13}}{{52}} = \frac{1}{4}

  • Câu 20: Thông hiểu

    Sau bữa tiệc, mỗi người bắt tay một lần với mỗi người khác trong phòng. Có tất cả 66 người lần lượt bắt tay. Hỏi trong phòng có bao nhiêu người:

     Ta có:

    Cứ 2 người sẽ bắt tay nhau 1 lần => Số lần bắt tay là: C_n^2

    Mà có tất cả 66 người lần lượt bắt tay nên ta có phương trình:

    C_n^2 = 66 \Rightarrow n = 12

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 42 lượt xem
Sắp xếp theo