Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Các quy tắc tính xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Một người bỏ ngẫy nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Xác suất để có ít nhất một lá thư được bỏ đúng phong bì:

    Số phần tử không gian mẫu là 3! = 6

    Gọi A là biến cố có ít nhất một lá thư được bỏ đúng phong bì.

    Ta xét các trường hợp sau:

    Nếu lá thư thứ nhất bỏ đúng phong vì, hai lá thư còn lại để sai thì có duy nhất 1 cách.

    Nếu lá thư thứ hai bỏ đúng phong bì, hai lá thư còn lại để sai thì có duy nhất 1 cách

    Nếu lá thư thứ ba bỏ đúng phong big, hai lá thư còn lại để sai thì chỉ có duy nhất 1 cách.

    Không thể có trường hợp 2 lá thứ bỏ đúng và 1 lá thư bỏ sai.

    Cả ba lá thư đều bỏ đúng có duy nhất 1 cách

    => n(A) = 4

    Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{4}{6} =
\frac{2}{3}

  • Câu 2: Vận dụng cao

    Cho tập hợp A = \left\{ {1;2;3;4;5;6;7;8} ight\}. Lập từ A số tự nhiên có chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 2222?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tập hợp A = \left\{ {1;2;3;4;5;6;7;8} ight\}. Lập từ A số tự nhiên có chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 2222?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Nhận biết

    Có bao nhiêu cách chọn một tổ trưởng và một tổ phó từ một nhóm 12 học sinh? Biết khả năng được chọn của mỗi học sinh trong nhóm là như nhau.

    Mỗi cách chọn 2 người từ 12 người để làm một tổ trưởng và một tổ phó là một chỉnh hợp chập 2 của 12

    Vậy số cách chọn là A_{12}^{2} =
132.

  • Câu 4: Vận dụng

    Có ba chiếc hộp:

    Hộp 1 gồm 4 viên bi đỏ và 5 viên bi xanh.

    Hộp 2 gồm 3 viên bi đỏ và 2 viên bi đen.

    Hộp 3 gồm 5 viên bi đỏ và 3 viên bi vàng.

    Lấy ngẫu nhiên ra một hộp rồi lấy một viên bi từ hộp đó. Xác suất để viên bi lấy được có màu đỏ bằng:

    Lấy ngẫu nhiên một hộp:

    Gọi B là biến cố lấy được hộp 1

    C là biến cố lấy được hộp 2

    D là biến cố lấy được hộp 3

    Suy ra P(B) = P(C) = P(D) =
\frac{1}{3}

    Gọi A là biến cố lấy ngẫu nhiên một hộp, trong hộp đó lấy ngẫu nhiên một viên bi và được bi màu đỏ.

    Ta có:

    A = (A \cap B) \cup (A \cap C) \cup (A
\cap D)

    => P(A) = P(A \cap B) + P(A \cap C) +
P(A \cap D)

    = \frac{1}{3}.\frac{4}{9} +
\frac{1}{3}.\frac{3}{5} + \frac{1}{3}.\frac{5}{8} =
\frac{601}{1080}

  • Câu 5: Thông hiểu

    Trong một hộp giấy chứa 15 viên bi gồm 4 viên bi xanh, 5 viên bi đỏ và 6 viên bi vàng. Lấy ngẫu nhiên 4 viên bi. Tính xác suất để lấy được 4 viên bi có đủ màu?

    Chọn 4 viên bi từ 15 viên bi ta có: n\left( \Omega  ight) = C_{15}^4

    Gọi A là biến cố lấy được 4 viên bi có đủ ba màu.

    Chọn 1 xanh, 1 đỏ và 2 vàng: C_4^1.C_5^1.C_6^2

    Chọn 1 xanh, 2 đỏ và 1 vàng: C_4^1.C_5^2.C_6^1

    Chọn 2 xanh, 1 đỏ và 1 vàng: C_4^2.C_5^1.C_6^1

    \Rightarrow n(A) =
C_{4}^{1}.C_{5}^{1}.C_{6}^{2} + C_{4}^{1}.C_{5}^{2}.C_{6}^{1} +
C_{4}^{2}.C_{5}^{1}.C_{6}^{1}

    \Rightarrow P(A) =
\frac{n(A)}{n(\Omega)} = \frac{48}{91}

  • Câu 6: Thông hiểu

    Lấy ngẫu nhiên 3 tấm thẻ trong hộp đựng 10 thẻ trắng, 8 thẻ đỏ và 7 thẻ xanh. Tính xác suất để lấy được 3 tấm thẻ trong đó có ít nhất một thẻ xanh?

    Gọi B là biến cố có ít nhất một tấm thẻ xanh

    Suy ra \overline{B} là biến cố lấy được 3 tấm thẻ không có thẻ xanh nào.

    \Rightarrow P\left( \overline{B} ight)
= P\frac{C_{18}^{3}}{C_{25}^{3}}

    \Rightarrow \Rightarrow P(B) = 1 -
P\left( \overline{B} ight) = 1 - \frac{C_{18}^{3}}{C_{25}^{3}} \approx
0,645

  • Câu 7: Nhận biết

    Một tổ gồm 12 học sinh trong đó có bạn An. Hỏi có bao nhiêu cách chọn 4 em đi trực trong đó phải có An:

    Số cách chọn bạn An là 1 cách.

    => Số cách chọn 3 bạn đi trực (không có An) là: C_{11}^3 = 165 cách

    Vậy có 165 cách chọn 4 em đi trực trong đó phải có An.

  • Câu 8: Vận dụng

    Gieo 3 lần đồng thời một con xúc xắc và một đồng xu. Ta có P là biến cố trong ba lượt gieo có ít nhất một lần kết quả con xúc xắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp. Tính số phần tử của biến cố đối của biến cố P?

    Xét phép thử gieo ba lần một con xúc xắc và một đồng xu với không gian mẫu \Omega có số phần tử là n(\Omega) = (6.2)^{3} = 1728

    Xét biến cố P trong ba lượt gieo có ít nhất một lần kết quả con xúc xắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp.

    TH1: trong cả ba lần gieo đều được kết quả: con súc sắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp. Có 1 khả năng xảy ra.

    TH2: trong ba lần gieo có đúng 2 lần gieo con súc sắc xuất hiện mặt 1 chấm và đồng tiền xu xuất hiện mặt sấp. Có C_{3}^{2}.1.1.(12 - 1) = 33 khả năng.

    TH3: trong ba lần gieo có đúng 1 lần gieo con súc sắc xuất hiện mặt 1 chấm và đồng tiền xu xuất hiện mặt sấp. Có C_{3}^{1}.1.(12 - 1)(12 - 1) = 3.11.11 =
363 khả năng.

    \Rightarrow n(P) = 1 + 33 + 363 =
397

    \Rightarrow n\left( \overline{P} ight)
= 1728 - 397 = 1331

  • Câu 9: Thông hiểu

    Sau bữa tiệc, mỗi người bắt tay một lần với mỗi người khác trong phòng. Có tất cả 66 người lần lượt bắt tay. Hỏi trong phòng có bao nhiêu người:

     Ta có:

    Cứ 2 người sẽ bắt tay nhau 1 lần => Số lần bắt tay là: C_n^2

    Mà có tất cả 66 người lần lượt bắt tay nên ta có phương trình:

    C_n^2 = 66 \Rightarrow n = 12

  • Câu 10: Thông hiểu

    Có ba chiếc hộp đựng những tấm thẻ màu xanh và màu đỏ. Từ mỗi hộp lấy ngẫu nhiên 1 chiếc thẻ. Giả sử Q_{i} là biến cố lấy được tấm thẻ màu xanh từ hộp thứ i;i \in \left\{ 1;2;3
ight\}. Em hãy chọn đáp án đúng biểu diễn biến cố lấy được ít nhất một tấm thẻ màu đỏ dưới đây?

    Biểu diễn đúng là: \overline{Q_{1}} \cup
\overline{Q_{2}} \cup \overline{Q_{3}}

  • Câu 11: Thông hiểu

    Một nhóm học sinh gồm 4 nam và 6 nữ. Chọn ngẫu nhiên 4 học sinh. Gọi M là biến cố 4 học sinh được chọn được có cả nam và nữ. Khi đó số phần tử của biến cố đối của A là:

    Ta có: \overline{M} là biến cố cả 4 bạn được chọn đều là nam hoặc 4 bạn đều là nữ.

    Do đó số phần tử của \overline{M} =
C_{4}^{4} + C_{6}^{4} = 16

  • Câu 12: Thông hiểu

    Từ một nhóm 5 người, chọn ra các nhóm ít nhất 2 người. Hỏi có bao nhiêu cách chọn:

    Số cách chọn nhóm có 2 người: C_5^2 = 10

    Số cách chọn nhóm có 3 người: C_5^3 = 10

    Số cách chọn nhóm có 4 người: C_5^4= 5

    Số cách chọn nhóm có 5 người: 1

    => Số cách chọn ra các nhóm mà có ít nhất 2 người là: 10 + 10 + 5 + 1 = 26 nhóm

  • Câu 13: Nhận biết

    Người ta gieo 8000 lần một đồng xu cân đối thì tần số xuất hiện của mặt ngửa là 4013. Xác suất thực nghiệm mặt ngửa là:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 8000

    Theo bài ra ta có: Tần số xuất hiện của mặt ngửa là 4 013 lần

    => Xác suất thực nghiệm mặt ngửa là: P = \frac{{4013}}{{8000}}

  • Câu 14: Nhận biết

    Một nhóm học sinh gồm 20 học sinh nam và 10 học sinh nữ. Có bao nhiêu cách chọn một học sinh trong nhóm đó tham gia đội thanh niên tình nguyện của trường?

    10 + 20 = 30 cách chọn một học sinh.

  • Câu 15: Nhận biết

    Gieo hai lần liên tiếp một đồng xu. Gọi M là biến cố có ít nhất một lần mặt sấp xuất hiện, N là biến cố kết quả hai lần gieo giống nhau. Chọn khẳng định đúng?

    Ta có:

    M = \left\{ SS;SN;NS
ight\}

    N = \left\{ SS;NN ight\}

    \Rightarrow M \cup N = \left\{
SS;SN;NS;NN ight\}

  • Câu 16: Thông hiểu

    Một tổ có 9 hoc sinh, trong đó có 5 nam và 4 nữ được xếp thành một hàng doc. Tính xác suất sao cho 5 ban nam phải đứng kề nhau?

    Gọi A là biến cố "Xếp 9 học sinh thành một hàng dọc trong đó 5 bạn nam phải đứng kề nhau".

    Tìm |\Omega|

    Xếp 9 học sinh thành một hàng dọc, có 9! cách xếp \Rightarrow |\Omega| = 9!

    Tìm \left| \Omega_{A}
ight|

    Năm học sinh nam đứng kề nhau ta coi như 1 phần tử, cùng với 4 nữ là 5 phần tử.

    Xếp 5 phần tử này thành một hàng dọc có 5! = 120 cách xếp.

    Năm học sinh nam đứng kề nhau hoán vị cho nhau: 5! cách xếp.

    Do đó có 5!.120 = 14400 cách xếp.

    Vậy số phần tử của tập \Omega_{A}­­ là 14400.

    Vậy xác suất cần tính là: P(A) =
\frac{\left| \Omega_{A} ight|}{|\Omega|} = \frac{5!.4!}{9!} =
\frac{1}{126}

  • Câu 17: Nhận biết

    Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để cả 2 học sinh đều không đạt yêu cầu?

    Số cách chọn 2 học sinh từ 30 học sinh là C_{30}^{2} = 435 cách

    Vậy số phần tử không gian mẫu là 345 cách.

    Gọi A là biến cố cả 2 học sinh đều không đạt yêu cầu

    Khi đó số kết quả thuận lợi cho biến cố A là: C_{3}^{2} = 3

    Vậy xác suất để cần tìm là: \frac{3}{345}

  • Câu 18: Thông hiểu

    Gieo một đồng tiền liên tiếp 3 lần. Tính xác suất của biến cố A: “kết quả của 3 lần gieo là như nhau”. Tính xác suất của biến cố A?

    Gieo một đồng tiền liên tiếp 3 lần

    => Số phần tử không gian mẫu là: n(Ω) = 2 . 2 . 2 = 8

    Ta có:

    \begin{matrix}  A = \left\{ {\left( {S;S;S} ight),\left( {N;N;N} ight)} ight\} \hfill \\   \Rightarrow n\left( A ight) = 2 \hfill \\   \Rightarrow P\left( A ight) = \dfrac{2}{8} = \dfrac{1}{4} \hfill \\ \end{matrix}

  • Câu 19: Vận dụng

    Từ tập hợp các chữ số 1;2;3;4;5;6;7;8;9 có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau sao cho không có hai chữ số liên tiếp nào cùng lẻ?

    Gọi \left\{ \begin{matrix}
A = \left\{ 1;3;5;7;9 ight\} \\
B = \left\{ 2;4;6;8 ight\} \\
\end{matrix} ight.

    Gọi số có 4 chữ số là \overline{abcd} khi đó có 3 trường hợp xảy ra:

    TH1: Số cần tìm có 2 chữ số chẵn và 2 chữ số lẻ

    C_{4}^{2} cách chọn 2 chữ số chẵn.

    C_{5}^{2} cách chọn 2 chữ số lẻ.

    Có 2! cách xếp 2 chữ số chẵn (tạo ra 3 khoảng trống kể cả hai đầu)

    A_{3}^{2} cách sắp xếp 2 chữ số lẻ vào 3 khoảng trống.

    Vậy trường hợp này có: C_{4}^{2}.C_{5}^{2}.2!.A_{3}^{2} = 720 cách.

    TH2: Số cần tìm có 3 chữ số chẵn và 1 chữ số lẻ

    C_{4}^{3} cách chọn 3 chữ số chẵn.

    5 cách chọn 1 chữ số lẻ.

    Có 4! cách xếp các số sau khi chọn

    Vậy trường hợp này có: C_{4}^{3}.5.4! =
480 cách.

    TH3: Số cần tìm có 4 chữ số chẵn

    Có 4! = 24 cách xếp các số sau khi chọn

    Suy ra số các số thỏa mãn yêu cầu bài toán là 720 + 480 + 24 = 1224 số.

  • Câu 20: Thông hiểu

    Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi trong đó có 2 viên bi màu xanh, 4 viên bi màu vàng?

    Số cách lấy 2 viên bi màu xanh là: C_5^2 = 10 cách

    Số cách lấy 4 viên bi màu vàng là: C_7^4 = 35 cách 

    Áp dụng quy tắc nhân ta có số cách lấy ra 6 viên bi thỏa mãn đề bài là:

    C_5^2.C_7^4 = 10.35 = 350 cách

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 41 lượt xem
Sắp xếp theo