Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Các quy tắc tính xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Có bao nhiêu số tự nhiên gồm 4 chữ số khác nhau:

    Số tự nhiên có 4 chữ số khác nhau có dạng: \overline {abcd} ,\left( {a e b e c e d} ight)

    Số cách chọn a là 9 cách

    Số cách chọn b là 9 cách

    Số cách chọn c là 8 cách

    Số cách chọn d là 7 cách

    => Số các số tự nhiên có 4 chữ số được tạo thành là: 9 . 9 . 8 . 7 = 4536 số

  • Câu 2: Thông hiểu

    Rút đồng thời ngẫu nhiên 2 thẻ từ hộp có 9 thẻ được đánh số từ 1 đến 9. Tính xác suất để tích các số ghi trên thẻ rút được là số chẵn?

    Ta có: 4 thẻ ghi số chẵn là {2; 4; 6; 8} và 5 thẻ ghi số lẻ là {1; 3; 5; 7; 9}

    Rút ngẫu nhiên 2 thẻ từ 9 thẻ thì ta có số cách là C_{9}^{2}

    Số phần tử của không gian mẫu là n(\Omega) = C_{9}^{2} = 36

    Gọi A là biến cố tích các số trên thẻ rút được là số chẵn

    Số phần tử của biến cố A là: n(A) =
C_{4}^{2} + C_{4}^{1}.C_{5}^{1} = 26

    \Rightarrow P(A) = \frac{26}{36} =
\frac{13}{18}

  • Câu 3: Nhận biết

    Một hộp chứa 7 quả cầu đỏ và 5 quả cầu xanh. Lấy ngẫu nhiên 3 quả cầu trong hộp. Số phần tử không gian mẫu là:

    Số phần tử không gian mẫu là:

    n(\Omega) = C_{12}^{3} =
220

  • Câu 4: Nhận biết

    Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:

    Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = 6

    Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}

    => P\left( D ight) = \frac{{n\left( D ight)}}{{n\left( \Omega  ight)}} = \frac{3}{6} = \frac{1}{2}

  • Câu 5: Thông hiểu

    Trên giá sách muốn xếp 20 cuốn sách khác nhau gồm sách tập 1 và sách tập 2. Có bao nhiêu cách sắp xếp sao cho tập 1 và tập 2 đặt cạnh nhau?

    Sắp xếp 20 cuốn sách trên giá là một hoán vị của 20 phần tử nên ta có 20! cách sắp xếp.

    Khi hai cuốn tập 1 và tập 2 đặt cạnh nhau (thay đổi vị trí cho nhau), ta coi đó là một phần tử và cùng sắp xếp với 18 cuốn sách còn lại trên giá nên có 2 . 19! cách sắp xếp.

    Vậy có tất cả 20! − 2 . 19! = 19! . 18 cách sắp xếp theo yêu cầu bài toán.

  • Câu 6: Nhận biết

    Một phép thử có không gian mẫu là: \Omega = \left\{ 1;2;3;4;5;6 ight\}. Cặp biến cố nào sau đây không đối nhau?

    Cặp biến cố không đối nhau là: E =
\left\{ 1;4;6 ight\},F = \left\{ 2;3 ight\}\left\{ \begin{matrix}
E \cap F = \varnothing \\
E \cup F eq \Omega \\
\end{matrix} ight.

  • Câu 7: Vận dụng

    Lập số có 5 chữ số khác nhau \overline{a_{1}a_{2}a_{3}a_{4}a_{5}} từ các chữ số 1;2;3;4;5. Chọn ngẫu nhiên một số trong các số được tạo thành. Tính xác suất để số chọn được thỏa mãn a_{1} + a_{2} < a_{3} +a_{4}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Lập số có 5 chữ số khác nhau \overline{a_{1}a_{2}a_{3}a_{4}a_{5}} từ các chữ số 1;2;3;4;5. Chọn ngẫu nhiên một số trong các số được tạo thành. Tính xác suất để số chọn được thỏa mãn a_{1} + a_{2} < a_{3} +a_{4}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Vận dụng

    Nếu tất cả các đường chéo của đa giác đều 12 cạnh được vẽ thì số đường chéo là:

    Đa giác đều có 12 cạnh tương ứng với 12 đỉnh

    Cứ nối 2 đỉnh của đa giác được một đoạn thẳng (là cạnh hoặc đường chéo)

    Số đoạn thẳng được tạo thành khi nối hai điểm bất kì của đa giác là: C_{12}^2 = 66 đoạn thẳng

    Mà số cạnh của đa giác là 12 cạnh

    => Số đường chéo thu được là: 66 - 12 = 54 đường chéo

  • Câu 9: Thông hiểu

    Cho P(A) =
0,5;P(B) = 0,4;P(AB) = 0,2. Chọn khẳng định đúng?

    Theo giả thiết ta có:

    P(A.B) = P(A).P(B)

    = 0,5.0,4 = 0,2 = P(AB)

    Vậy hai biến cố A và B là hai biến cố độc lập.

  • Câu 10: Vận dụng cao

    Cho tập hợp A = \left\{ {1;2;3;4;5;6;7;8} ight\}. Lập từ A số tự nhiên có chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 2222?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tập hợp A = \left\{ {1;2;3;4;5;6;7;8} ight\}. Lập từ A số tự nhiên có chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ A. Tính xác suất để chọn được số chia hết cho 2222?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Nhận biết

    Có bao nhiêu số tự nhiên có 3 chữ số:

    Ta có:

    Các số tự nhiên có ba chữ số là 100; 101; ...; 998; 999

    => Có 999 − 100 + 1 = 900 số tự nhiên có ba chữ số.

  • Câu 12: Nhận biết

    Giả sử M,N là hai biến cố xung khắc. Khẳng định nào sau đây đúng?

    Ta có:

    P(M \cup N) = P(M) + P(N) - P(M \capN)

    Vì M và N là hai biến cố xung khắc nên M\cap N = \varnothing

    \Rightarrow P(M \cup N) = P(M) +P(N)

  • Câu 13: Thông hiểu

    Hai bệnh nhân A và B bị bệnh tiểu đường type 2. Biết rằng biến chứng về suy thận của bệnh nhân A và B lần lượt là 0,20,1. Khả năng bị biến chứng suy thận của hai bệnh nhân là độc lập.

    a) Xác suất để bệnh nhân A không bị biến chứng suy thận là 0,8Đúng||Sai

    b) Xác suất để cả hai bệnh nhân đều bị biến chứng suy thận 0,02 Đúng||Sai

    c) Xác suất để cả hai bệnh nhân đều không bị biến chứng suy thận là 0,85 Sai||Đúng

    d) Xác suất để bệnh nhân A bị biến chứng suy thận, bệnh nhân B không bị biến chứng suy thận là 0,16 Sai||Đúng

    Đáp án là:

    Hai bệnh nhân A và B bị bệnh tiểu đường type 2. Biết rằng biến chứng về suy thận của bệnh nhân A và B lần lượt là 0,20,1. Khả năng bị biến chứng suy thận của hai bệnh nhân là độc lập.

    a) Xác suất để bệnh nhân A không bị biến chứng suy thận là 0,8Đúng||Sai

    b) Xác suất để cả hai bệnh nhân đều bị biến chứng suy thận 0,02 Đúng||Sai

    c) Xác suất để cả hai bệnh nhân đều không bị biến chứng suy thận là 0,85 Sai||Đúng

    d) Xác suất để bệnh nhân A bị biến chứng suy thận, bệnh nhân B không bị biến chứng suy thận là 0,16 Sai||Đúng

    Gọi A là biến cố “Bệnh nhân A bị suy thận” ta có: P(A) = 0,2;P\left( \overline{A} ight) =0,8

    B là biến cố “Bệnh nhân B bị suy thận” ta có: P(B) = 0,1;P\left( \overline{B} ight) =0,9

    Khi đó A \cap B là biến cố “Cả hai bệnh nhân đều bị biến chứng suy thận”

    Khi đó \overline{A}\overline{B} là biến cố “Cả hai bệnh nhân đều không bị biến chứng suy thận.

    Khi đó A\overline{B} là biến cố “Bệnh nhân A bị biến chứng suy thận, bệnh nhân B không bị biến chứng suy thận”.

    b) Hai biến cố A, B độc lập nên ta có:

    P(A \cap B) = P(AB) = P(A).P(B) =0,2.0,1 = 0,02

    b) Hai biến cố \overline{A};\overline{B} độc lập nên ta có:

    P\left( \overline{A}\overline{B} ight)= P\left( \overline{A} ight).P\left( \overline{B} ight) = 0,8.0,9 =0,72

    c) Hai biến cố A;\overline{B} độc lập nên ta có:

    P\left( A\overline{B} ight) =P(A).P\left( \overline{B} ight) = 0,2.0,9 = 0,18

  • Câu 14: Thông hiểu

    Một lớp gồm 30 học sinh trong đó có 27 học sinh đạt yêu cầu và 3 học sinh không đạt yêu cầu trong kì thi. Chọn ngẫu nhiên 2 hoc sinh. Tính xác suất để "Cả 2 học sinh đều đạt yêu cầu"?

    Số cách chọn 2 học sinh từ 30 học sinh là C_{30}^{2} = 435 cách

    Vậy số phần tử không gian mẫu là 345 cách.

    Gọi C là biến cố: "Cả 2 học sinh đều đạt yêu cầu".

    Khi đó số kết quả thuận lợi cho biến cố C là C_{27}^{2} = 351

    Vậy xác suất để cần tìm là: P(C) =
\frac{351}{435} = \frac{119}{145}

  • Câu 15: Nhận biết

    Thực hiện tung ngẫu nhiên một con xúc xắc một lần. Biết H là biến cố mặt xuất hiện có số chấm chẵn, K là biến cố mặt xuất hiện có số chấm lẻ. Khẳng định nào sau đây đúng?

    \left\{ \begin{matrix}H \cap K = \varnothing \\H \cup K = \Omega \\\end{matrix} ight. nên hai biến cố H và K là hai biến cố đối nhau.

  • Câu 16: Vận dụng

    Với các chữ số 0;1;2;3;4;5;6. Có thể lập được bao nhiêu số có mười chữ số mà trong mỗi số chữ số 5 có mặt đúng 4 lần và các chữ số khác có mặt đúng 1 lần?

    Trường hợp 1: Số 5 ở vị trí đầu tiên và 3 số 5 còn lại có C_{9}^{3} = 84 cách xếp

    Sáu chữ số còn lại có P_{6} =
720 cách xếp.

    => Có 84.720 = 60480 số.

    Trường hợp 2: Số 5 không ở vị trí đầu tiên có C_{9}^{4} = 126 cách sắp xếp 4 số 5.

    Vị trí đầu tiên có 5 cách xếp (trừ số 0).

    5 vị trí còn lại có P_{5} = 120 cách xếp.

    => Có 126.5.12 = 75600 số.

    Vậy có thể lập được 60480 + 75600 = 136080 số thỏa mãn bài toán.

  • Câu 17: Thông hiểu

    Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Thăm một bạn không quá một ngày).

    Ta có: 1 tuần = 7 ngày

    Mà mỗi ngày A đến thăm một bạn.

    Ngày thứ nhất có 12 cách chọn

    Ngày thứ hai có 11 cách chọn

    Ngày thứ ba có 10 cách chọn

    Ngày thứ tư có 9 cách chọn

    Ngày thứ năm có 8 cách chọn

    Ngày thứ sáu có 7 cách chọn

    Ngày thứ bảy có 6 cách chọn

    => Số kế hoạch có thể lập được là: 12 . 11 . 10 . 9 . 8 . 7 . 6 = 3 991 680 kế hoạch

  • Câu 18: Thông hiểu

    Cho sơ đồ mạch điện gồm 4 bóng đèn như hình vẽ sau:

    Biết xác suất hỏng của mỗi bóng đèn là 0,05. Tính xác suất để khi cho dòng diện chạy qua thì mạch điện chỉ có 1 bóng đèn sáng?

    Xác suất để có 3 bóng đèn hỏng và 1 bóng đèn sáng là:

    P =
C_{4}^{3}.(0,05)^{3}.0,95

  • Câu 19: Thông hiểu

    Có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau lấy từ các số 0, 1, 2, 3, 4, 5:

    Số tự nhiên có 5 chữ số khác nhau có dạng: \overline {abcde} ;\left( {a e b e c e d e e} ight)

    Số cách chọn a là: 5 cách (vì a khác 0)

    Số cách chọn b là: 5 cách

    Số cách chọn c là: 4 cách

    Số cách chọn d là 3 cách

    Số cách chọn e là: 2 cách

    => Có thể lập được số các số tự nhiên gồm 5 chữ số khác nhau lấy từ dãy số là: 5 . 5 . 4 . 3 . 2 = 600 số

  • Câu 20: Nhận biết

    Ma trận đề kiểm tra 15 phút môn Toán của lớp 11A gồm 10 câu trắc nghiệm. Mỗi câu trắc nghiệm gồm 4 đáp án và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng học sinh được 1 điểm. Hùng không ôn tập trước khi kiểm tra nên khi làm bài đã chọn ngẫu nhiên 1 đáp án. Tính số phần tử không gian mẫu?

    Với câu hỏi 1, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 2, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 3, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Với câu hỏi 10, học sinh có 4 cách chọn đáp án A; B; C; hoặc D

    Theo quy tắc nhân có: n\left( \Omega  ight) = \underbrace {4.4......4}_{10} = {4^{10}}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo