Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 15 phút Toán 11 Các quy tắc tính xác suất gồm 20 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra đều là môn toán.

    Trên giá sách có 4 + 3 + 2 = 9 quyển sách

    Số phần tử của không gian mẫu là: n\left( \Omega  ight) = C_9^3 = 84

    Gọi B là biến cố "3 quyển được lấy ra đều là môn toán"

    => n\left( B ight) = C_4^3=4

    => Xác suất để 3 quyển được lấy ra đều là môn toán là:

    P\left( B ight) = \frac{{n\left( B ight)}}{{n\left( \Omega  ight)}} = \frac{{4}}{{84}} = \frac{1}{21}

  • Câu 2: Vận dụng cao

    Một đề kiểm tra trắc nghiệm 45 phút môn Tiếng Anh của lớp 10 là một đề gồm 25 câu hỏi độc lập, mỗi câu hỏi có 4 đáp án trả lời trong đó chỉ có một đáp án đúng. Mỗi câu trả lời đúng được 0,4 điểm, câu trả lời sai không được điểm. Bạn Bình vì học rất kém môn Tiếng Anh nên làm bài bằng cách chọn ngẫu nhiên câu trả lời cho tất cả 25 câu. Gọi A là biến cố “Bình làm đúng k câu”, biết xác suất của biến cố A đạt giá trị lớn nhất. Tính k.

    Đáp án: 6

    Đáp án là:

    Một đề kiểm tra trắc nghiệm 45 phút môn Tiếng Anh của lớp 10 là một đề gồm 25 câu hỏi độc lập, mỗi câu hỏi có 4 đáp án trả lời trong đó chỉ có một đáp án đúng. Mỗi câu trả lời đúng được 0,4 điểm, câu trả lời sai không được điểm. Bạn Bình vì học rất kém môn Tiếng Anh nên làm bài bằng cách chọn ngẫu nhiên câu trả lời cho tất cả 25 câu. Gọi A là biến cố “Bình làm đúng k câu”, biết xác suất của biến cố A đạt giá trị lớn nhất. Tính k.

    Đáp án: 6

    Vì đề thi có 25 câu và mỗi câu có 4 phương án trả lời nên xác suất để Bình làm đúng k câu là

    P = C_{25}^{k}.\left( \frac{1}{4}
ight)^{k}.\left( \frac{3}{4} ight)^{25 - k} = \frac{C_{25}^{k}.3^{25
- k}}{4^{25}}

    Với 0 \leq k \leq 25.

    Xét hàm f(k) = C_{25}^{k}.3^{25 -
k} với k\mathbb{\in N}k \leq 25.

    Ta có f(k) lớn nhất \Leftrightarrow \left\{ \begin{matrix}
f(k) \geq f(k - 1) \\
f(k) \geq f(k + 1) \\
\end{matrix} \Leftrightarrow 6,5 \geq k \geq 5,5 \Rightarrow k = 6
ight..

    Suy ra \max_{0 \leq k \leq 25}f(k) =
f(6).

    Vậy k = 6.

  • Câu 3: Vận dụng

    Rút đồng thời 5 tấm thẻ từ một chiếc hộp có 12 tấm thẻ được đánh số từ 1 đến 12. Xác định số kết quả thuận lợi cho biến cố “Tổng các số ghi trên 5 tấm thẻ rút được là số lẻ?

    Đáp án: 396

    Đáp án là:

    Rút đồng thời 5 tấm thẻ từ một chiếc hộp có 12 tấm thẻ được đánh số từ 1 đến 12. Xác định số kết quả thuận lợi cho biến cố “Tổng các số ghi trên 5 tấm thẻ rút được là số lẻ?

    Đáp án: 396

    Gọi A là biến cố tổng các số ghi trên 5 tấm thẻ rút được là số lẻ.

    Ta có trong 12 tấm thẻ được đánh số từ 1 đến 12 thì có 6 tấm thẻ ghi số chẵn và 6 tấm thẻ ghi số lẻ

    Để tổng các số ghi trên 5 tấm thẻ rút được là số lẻ thì số thẻ ghi số lẻ là lẻ.

    Ta có các trường hợp như sau:

    TH1: 1 thẻ ghi số lẻ và 4 thẻ ghi số chẵn

    C_{6}^{1}.C_{6}^{4} = 90

    TH2: 3 thẻ ghi số lẻ và 2 thẻ ghi số chẵn

    C_{6}^{2}.C_{6}^{3} = 300

    TH3: 5 thẻ đều ghi số lẻ C_{6}^{5} =
6

    \Rightarrow n(A) = 90 + 300 + 6 =
396

  • Câu 4: Thông hiểu

    Cho hai động cơ hoạt động độc lập nhau. Xác suất để động cơ 1 chạy tốt là 0,8 và xác suất để động cơ 2 chạy tốt là 0,7 . Tìm xác suất để có ít nhất một động cơ chạy tốt.

    Đáp án: 0,94

    (Ghi đáp án dưới dạng số thập phân)

    Đáp án là:

    Cho hai động cơ hoạt động độc lập nhau. Xác suất để động cơ 1 chạy tốt là 0,8 và xác suất để động cơ 2 chạy tốt là 0,7 . Tìm xác suất để có ít nhất một động cơ chạy tốt.

    Đáp án: 0,94

    (Ghi đáp án dưới dạng số thập phân)

    Gọi A là biến cố có ít nhất một động cơ chạy tốt

    B là biến cố chỉ có động cơ 1 chạy tốt.

    P(B) = 0,8(1 - 0,7) = 0,24

    Gọi C là biến cố chỉ có động cơ 2 là chạy tốt.

    P(C) = 0,7(1 - 0,8) = 0,14

    Gọi D là biến cố cả hai động cơ đều chạy tốt

    P(D) = 0,8.0,7 = 0,56

    Vậy P(A) = P(B) + P(C) + P(D) =
0,94

  • Câu 5: Nhận biết

    Số cách chọn một ban chấp hành gồm một trưởng ban, một phó ban, một thư kí và một thủ quỹ được chọn từ 16 thành viên là:

    Số cách chọn ban chấp hành (4 thành viên) từ 16 thành viên là: C_{16}^4 = 1820

  • Câu 6: Thông hiểu

    Một đội tham gia tình nguyện của trường gồm 6 học sinh khối 12, 4 học sinh khối 11 và 5 học sinh khối 10 cùng tham gia. Để tăng tình đoàn kết giữa các học sinh, giáo viên tổ chức một trò chơi gồm 6 người. Hỏi có bao nhiêu cách để giáo viên chọn ra 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh?

    Số cách chọn 6 học sinh bất kì từ 15 học sinh là C_{15}^{6} = 5005

    Số cách chọn 6 học sinh chỉ có khối 12 là: C_{6}^{6} = 1

    Số cách chọn 6 học sinh chỉ có khối 11 và khối 10 là: C_{9}^{6} = 84

    Số cách chọn 6 học sinh chỉ có khối 10 và khối 12 là: C_{11}^{6} - C_{6}^{6} = 461

    Số cách chọn 6 học sinh chỉ có khối 11 và khối 12 là: C_{10}^{6} - C_{6}^{6} = 209

    Do đó số cách chọn 6 học sinh sao cho mỗi khối có ít nhất 1 học sinh là

    5005 - 1 - 84 - 461 - 209 =
4250 cách

  • Câu 7: Nhận biết

    Trong bài kiểm tra 15 phút, Minh tô ngẫu nhiên 5 câu trắc nghiệm. Tính xác suất để Minh tô sai cả 5 câu?

    Xác suất tô sai 1 câu là \frac{3}{4}

    Vậy xác suất để Minh tô sai cả 5 câu là \left( \frac{3}{4} ight)^{5} =
\frac{243}{1024}

  • Câu 8: Thông hiểu

    Đề thi Tiếng anh thi THPT Quốc Gia gồm 50 câu trắc nghiệm, mỗi câu có 4 đáp án trắc nghiệm và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng được 0,2 điểm, mỗi câu trả lời sai bị trừ 0,1 điểm. Một học sinh đã tô câu trả lời ngẫu nhiên cho cả 50 câu hỏi. Hỏi xác suất để học sinh đó đạt 4 điểm trong bài thi trên là bao nhiêu?

    Để đạt được điểm 4 học sinh đó cần trả lời đúng 30 câu và trả lời sai 20 câu.

    Theo đó xác suất trả lời đúng 1 câu là 0,25, xác suất trả lời sai mỗi câu là 0,75

    Vậy xác suất để học sinh đạt 4 điểm là: C_{50}^{30}.(0,25)^{30}.(0,75)^{20} \approx
1,3.10^{- 7}.

  • Câu 9: Thông hiểu

    Cho P(A) =
0,5;P(B) = 0,4;P(AB) = 0,2. Chọn khẳng định đúng?

    Theo giả thiết ta có:

    P(A.B) = P(A).P(B)

    = 0,5.0,4 = 0,2 = P(AB)

    Vậy hai biến cố A và B là hai biến cố độc lập.

  • Câu 10: Thông hiểu

    Có bao nhiêu số tự nhiên có chín chữ số mà các chữ số của nó viết theo thứ tự giảm dần:

     Vì số có chín chữ số viết theo thứ tự giảm dần nên chỉ có thể là chữ số 9 hoặc chữ số 8 đứng đầu.

    Trường hợp 1: Số 9 đứng đầu

    Từ các số 0; 1; 2; 3; 4; 5; 6; 7; 8 mỗi một lần ta bỏ đi một số ta sẽ lập được 1 số có 9 chữ số viết theo thứ tự giảm dần mà số 9 đứng đầu.

    => Trường hợp 1 có 9 số được lập

    Trường hợp 2: Số 8 đứng đầu

    Vì từ 0 đến 8 có chín chữ số nên ta chỉ lập được 1 số có 9 chữ số viết theo thứ tự giảm đần

    Vậy cả 2 trường hợp có 9 + 1 = 10 số

  • Câu 11: Thông hiểu

    Gieo đồng tiền 2 lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là:

    Gieo đồng tiền 2 lần nên ta có:

    Số phần tử không gian mẫu là: n\left( \Omega  ight) = {2^2} = 4

    Giả sử C là biến cố "sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần"

    => \overline C biến cố "sau hai lần gieo thì không có mặt sấp xuất hiện"

    => \overline C  = \left\{ {N,N} ight\}

    => P\left( {\overline C } ight) = \frac{{n\left( {\overline C } ight)}}{{n\left( \Omega  ight)}} = \frac{1}{4}

    => Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là:

    P\left( C ight) = 1 - P\left( {\overline C } ight) = 1 - \frac{1}{4} = \frac{3}{4}

  • Câu 12: Nhận biết

    Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển đều là nam?

    Số cách chọn 2 trong 6 người có C_{6}^{2}
= 15 cách

    Vậy số phần tử không gian mẫu là 15.

    Vì chỉ có một trường hợp cả 2 nam trúng tuyển nên xác suất của biến cố này là: \frac{1}{15}

  • Câu 13: Nhận biết

    Có bao nhiêu cách sắp xếp 4 người vào 4 ghế ngồi được bố trí quanh một bàn tròn?

    Chọn 1 người ngồi vào 1 vị trí bất kì.

    Xếp 3 người còn lại vào 3 ghế trống của bàn là một hoán vị của 3 phần tử nên có: 3! = 6 cách.

    Vậy số cách sắp xếp là 6 cách.

  • Câu 14: Thông hiểu

    Có bao nhiêu số tự nhiên có 3 chữ số lập từ các số 0, 2, 4, 6, 8 với điều kiện các chữ số đó không lặp lại:

    Số tự nhiên có ba chữ số khác nhau có dạng: \overline {abc} ,\left( {a e b e c} ight)

    Số cách chọn a là 4 cách (Do a khác 0)

    Số cách chọn b là 4 cách

    Số cách chọn c là 3 cách

    => Số các số tự nhiên có 3 chữ số lập từ các số 0, 2, 4, 6, 8 với điều kiện các chữ số đó không lặp lại là 4 . 4 . 3 = 48 số

  • Câu 15: Vận dụng

    Rút ngẫu nhiên 3 tấm thẻ từ một hộp chứa 12 thẻ được đánh số từ 1 đến 12. Tính số kết quả thuận lợi của biến cố M “trong ba tấm thẻ chọn ra không có hai tấm thẻ nào ghi hai số tự nhiên liên tiếp”?

    Số phần tử không gian mẫu: n(\Omega) =
C_{12}^{3} = 220

    Biến cố M “trong ba tấm thẻ chọn ra không có hai tấm thẻ nào ghi hai số tự nhiên liên tiếp”

    Suy ra biến cố \overline{M} “trong ba tấm thẻ chọn ra có ít nhất hai tâm thẻ ghi hai số tự nhiên liên tiếp”

    Bộ ba có dạng \left( 1;2;a_{1}
ight) với a_{1} \in
A\backslash\left\{ 1;2 ight\} có 10 bộ

    Bộ ba số có dạng \left( 2;3;a_{2}
ight) với a_{2} \in
A\backslash\left\{ 1;2;3 ight\} có 9 bộ

    Tương tự mỗi bộ ba số có dạng \left(
3;4;a_{3} ight),\left( 4;5;a_{4} ight),\left( 5;6;a_{4}
ight),...\left( 11;12;a_{11} ight) đều có 9 bộ

    \Rightarrow n\left( \overline{M} ight)
= 10 + 10.9 = 100

    \Rightarrow n(M) = 220 - 110 =
120

  • Câu 16: Nhận biết

    Một nhóm học sinh gồm 20 học sinh nam và 10 học sinh nữ. Có bao nhiêu cách chọn một học sinh trong nhóm đó tham gia đội thanh niên tình nguyện của trường?

    10 + 20 = 30 cách chọn một học sinh.

  • Câu 17: Vận dụng

    Một bình chứa 16 viên bi khác nhau trong đó có 7 viên bi đen, 5 viên bi đỏ và 4 viên bi trắng. Lấy ngẫu nhiên 4 viên bi.

    a) Xác suất để lấy được 4 viên bi đều màu trắng \frac{1}{1820}Đúng||Sai

    b) Xác suất để số bi trắng gấp hai lần số bi đen và đỏ \frac{4}{26} Sai||Đúng

    c) Xác suất để lấy được số bi có đủ 3 màu \frac{3}{4} Sai||Đúng

    d) Xác suất để lấy được số bi không đủ 3 màu \frac{1}{2}Đúng||Sai

    Đáp án là:

    Một bình chứa 16 viên bi khác nhau trong đó có 7 viên bi đen, 5 viên bi đỏ và 4 viên bi trắng. Lấy ngẫu nhiên 4 viên bi.

    a) Xác suất để lấy được 4 viên bi đều màu trắng \frac{1}{1820}Đúng||Sai

    b) Xác suất để số bi trắng gấp hai lần số bi đen và đỏ \frac{4}{26} Sai||Đúng

    c) Xác suất để lấy được số bi có đủ 3 màu \frac{3}{4} Sai||Đúng

    d) Xác suất để lấy được số bi không đủ 3 màu \frac{1}{2}Đúng||Sai

    Số phần tử không gian mẫu là C_{16}^{4} =
1820

    a) Gọi A là biến cố “Lấy được 4 viên bi màu trắng”

    Số phần tử của A là C_{4}^{4} =
1

    Vậy xác suất để lấy được cả 4 viên bi màu trắng là: \frac{1}{1820}

    b) Gọi D là biến cố lấy được số bi trắng gấp hai lần số bi đen và đỏ

    Ta có các kết quả thuận lợi cho biến cố D là lấy 2 bi trắng 1 bi đen và 1 bi đỏ

    Ta có số phần tử của biến cố D là: C_{4}^{2}.C_{5}^{1}.C_{7}^{1} = 210

    Vậy xác suất cần tìm là P(D) =
\frac{3}{26}.

    c) Gọi E là biến cố lấy được các viên bi có đủ 3 màu

    Ta có các trường hợp thuận lợi cho biến cố E:

    Th1: Chọn 1 bi đen, 1 bi đỏ và 2 bi trắng nên ta có: C_{7}^{1}.C_{5}^{1}.C_{4}^{2} cách

    Th2: Chọn 1 bi đen, 2 bi đỏ và 1 bi trắng nên ta có: C_{7}^{1}.C_{5}^{2}.C_{4}^{1} cách

    Th3: Chọn 2 bi đen, 1 bi đỏ và 1 bi trắng nên ta có: C_{7}^{2}.C_{5}^{1}.C_{4}^{1} cách

    Suy ra số phần tử của biến cố E là C_{7}^{1}.C_{5}^{1}.C_{4}^{2} +
C_{7}^{1}.C_{5}^{1}.C_{4}^{2} + C_{7}^{2}.C_{5}^{1}.C_{4}^{1} =
910

    Vậy P(E) = \frac{1}{2}

    d) Ta có: E là biến cố lấy được các viên bi có đủ 3 màu khi đó \overline{E} là biến cố lấy được các viên bi không đủ 3 màu

    \Rightarrow P\left( \overline{E} ight)
= 1 - P(E) = \frac{1}{2}

  • Câu 18: Nhận biết

    Một liên đoàn bóng đá có 10 đội, mỗi đội phải đá 4 trận với mỗi đội khác, 2 trận ở sân nhà và 2 trận ở sân khách. Số trận đấu được sắp xếp là:

    Mỗi đội sẽ gặp 9 đội khác trong hai lượt trận sân nhà và sân khách

    => Có 10 . 9 = 90 trận

    Mỗi đội đá 2 trận sân nhà, 2 trận sân khách

    => Số trận đấu là 2.90 =180 trận

  • Câu 19: Thông hiểu

    Trên giá sách có 3 quyển sách giáo khoa và 4 quyển sách tham khảo. Gọi B là biến cố “Hai quyển sách cùng loại nằm cạnh nhau”. Tính số phần tử của biến cố B?

    Ta có: n(\Omega) = 7! = 5040

    Biến cố B là hai quyển sách cùng loại nằm cạnh nhau

    \Rightarrow \overline{B} là biến cố các quyển sách không cùng loại nằm cạnh nhau.

    Do số sách tham khảo có số lượng nhiều hơn sách giáo khoa nên để các quyển sách cùng loại không nằm cạnh nhau thì ta cần sắp xếp sách tham khảo ở các vị trí 1; 3; 5; 7 và các quyển sách kháo khoa nằm ở vị trí 2; 4; 6.

    \Rightarrow n\left( \overline{B} ight)
= 3!.4! = 144

    \Rightarrow n(B) = n(\Omega) - n\left(
\overline{B} ight) = 5040 - 144 = 4896

  • Câu 20: Nhận biết

    Rút ngẫu nhiên hai tấm thẻ trong chiếc hộp có 9 tấm thẻ được đánh số thứ tự từ 1 đến 9. Xét các biến cố sau:

    A: “Cả hai tấm thẻ đều mang số chẵn”.

    B “Chỉ có một tấm thẻ mang số chẵn”.

    C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”

    Khẳng định nào sau đây đúng?

    Biến cố C xảy ra khi và chỉ khi trong hai tấm thẻ có ít nhất 1 tấm thẻ mang số chẵn.

    Nếu cả hai tấm thẻ ghi số chẵn thì biến cố A xảy ra.

    Nếu chỉ có một tấm thử ghi số chẵn thì biến cố B xảy ra.

    Vậy biến cố C là biến cố hợp của A và B.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Toán 11 Chương 8 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 43 lượt xem
Sắp xếp theo