Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:
Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}
Số phần tử không gian mẫu là:
Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}
=>
Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:
Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}
Số phần tử không gian mẫu là:
Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}
=>
Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để một trong hai con súc sắc xuất hiện mặt 5 chấm?
Gọi hai súc sắc là M; N
Gọi C là biến cố "Có đúng một trong hai con súc sắc xuất hiện mặt 5 chấm".
Ta có C là hợp của hai biến cố xung khắc tức là
Ta có
Vì A, B là hai biến cố độc lập với nhau
Nên và B độc lập với nhau;
và A độc lập với nhau
Số các số tự nhiên gồm 5 chữ số chia hết cho 10 là:
Số tự nhiên có 5 chữ số có dạng:
Số cần tìm chia hết cho 10 => e = 0 => Có 1 cách chọn e
Số cách chọn a là 9 cách
Số cách chọn b là 10 cách
Số cách chọn c là 10 cách
Số cách chọn d là 10 cách
=> Số các số tự nhiên gồm 5 chữ số chia hết cho 10 là: 9 . 10 . 10 . 10 = 9000 số
Lấy ngẫu nhiên 3 số từ tập . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5
Lấy ngẫu nhiên 3 số từ tập . Xác định số phần tử của biến cố F lấy được ba số là số đo ba cạnh của một tam giác có góc tù? 4||8||10||5
Giả sử lấy được ba số là: với
do đó
Lại có là ba cạnh của tam giác ABC, với
có góc C tù.
với
Xét c = 4 thì bộ thỏa mãn
Xét c = 6 do
thỏa mãn
Xét c = 8 do
thỏa mãn
Vậy số phần tử của biến cố F là
Số cách chọn một tập hợp gồm 5 chữ cái từ bảng chữ cái Tiếng Anh là:
Bảng chữ cái Tiếng Anh có 26 chữ cái.
Suy ra số cách chọn 1 tập hợp gồm 5 chữ cái từ 26 chữ cái là: cách chọn.
Trên giá sách có 4 quyển sách Toán, 3 quyển sách Lí, 2 quyển sách Hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra có ít nhất một quyển là Toán.
Trên giá sách có 4 + 3 + 2 = 9 quyển sách
Số phần tử của không gian mẫu là:
Gọi C là biến cố "3 quyển lấy ra có ít nhất một quyển là Toán"
=> là biến cố "3 quyển lấy ra không có quyển Toán"
Trường hợp lấy được 1 quyển sách Lí, 2 quyển sách Hóa có: cách
Trường hợp lấy được 2 quyển sách Lí, 1 quyển sách Hóa có: cách
Trường hợp lấy được 3 quyển sách Lí có: cách
=>
=> Xác suất để 3 quyển lấy ra không có quyển Toán là:
=> Xác suất để 3 quyển được lấy ra có ít nhất một quyển là Toán là:
Trong tủ sách có tất cả 10 cuốn sách. Hỏi có bao nhiêu cách sắp xếp sao cho quyển thứ nhất ở kề quyển thứ hai:
Coi quyển sách thứ nhất và quyển sách thứ hai thành một quyển sách
=> Khi đó ta có 9 quyển sách
Hoán vị hai quyển sách ban đầu ta có 2! = 2 cách
Sắp xếp 9 quyển sách vào 9 vị trí => Có 9! cách
=> Có 2.9! = 725760 cách sắp xếp sao cho quyển thứ nhất ở kề quyển thứ hai:
Gieo 3 lần đồng thời một con xúc xắc và một đồng xu. Ta có P là biến cố trong ba lượt gieo có ít nhất một lần kết quả con xúc xắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp. Tính số phần tử của biến cố đối của biến cố P?
Xét phép thử gieo ba lần một con xúc xắc và một đồng xu với không gian mẫu có số phần tử là
Xét biến cố P trong ba lượt gieo có ít nhất một lần kết quả con xúc xắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp.
TH1: trong cả ba lần gieo đều được kết quả: con súc sắc xuất hiện mặt 1 chấm và đồng xu xuất hiện mặt sấp. Có 1 khả năng xảy ra.
TH2: trong ba lần gieo có đúng 2 lần gieo con súc sắc xuất hiện mặt 1 chấm và đồng tiền xu xuất hiện mặt sấp. Có khả năng.
TH3: trong ba lần gieo có đúng 1 lần gieo con súc sắc xuất hiện mặt 1 chấm và đồng tiền xu xuất hiện mặt sấp. Có khả năng.
Một hộp chứa 7 quả cầu đỏ và 5 quả cầu xanh. Lấy ngẫu nhiên 3 quả cầu trong hộp. Số phần tử không gian mẫu là:
Số phần tử không gian mẫu là:
Cho 6 chữ số 2, 3, 4, 5, 6, 7. Số các số tự nhiên chẵn có 3 chữ số lập thành từ 6 chữ số đó:
Gọi số tự nhiên có 3 chữ số có dạng:
Do số tự nhiên cần tìm là số chẵn => c = {2; 4; 6}
=> Số cách chọn c là 3 cách
Số cách chọn a là 6 cách
Số cách chọn b là 6 cách
=> Số các số các số tự nhiên chẵn có 3 chữ số lập thành từ 6 chữ số đã cho là: 3 . 6 . 6 = 108 số
Trong một hộp giấy chứa 15 viên bi gồm 4 viên bi xanh, 5 viên bi đỏ và 6 viên bi vàng. Lấy ngẫu nhiên 4 viên bi. Tính xác suất để lấy được 4 viên bi có đủ màu?
Chọn 4 viên bi từ 15 viên bi ta có:
Gọi A là biến cố lấy được 4 viên bi có đủ ba màu.
Chọn 1 xanh, 1 đỏ và 2 vàng:
Chọn 1 xanh, 2 đỏ và 1 vàng:
Chọn 2 xanh, 1 đỏ và 1 vàng:
Rút đồng thời 5 tấm thẻ từ một chiếc hộp có 12 tấm thẻ được đánh số từ 1 đến 12. Xác định số kết quả thuận lợi cho biến cố “Tổng các số ghi trên 5 tấm thẻ rút được là số lẻ?
Đáp án: 396
Rút đồng thời 5 tấm thẻ từ một chiếc hộp có 12 tấm thẻ được đánh số từ 1 đến 12. Xác định số kết quả thuận lợi cho biến cố “Tổng các số ghi trên 5 tấm thẻ rút được là số lẻ?
Đáp án: 396
Gọi A là biến cố tổng các số ghi trên 5 tấm thẻ rút được là số lẻ.
Ta có trong 12 tấm thẻ được đánh số từ 1 đến 12 thì có 6 tấm thẻ ghi số chẵn và 6 tấm thẻ ghi số lẻ
Để tổng các số ghi trên 5 tấm thẻ rút được là số lẻ thì số thẻ ghi số lẻ là lẻ.
Ta có các trường hợp như sau:
TH1: 1 thẻ ghi số lẻ và 4 thẻ ghi số chẵn
Có
TH2: 3 thẻ ghi số lẻ và 2 thẻ ghi số chẵn
Có
TH3: 5 thẻ đều ghi số lẻ
Một nhóm học sinh có 6 bạn nam và 5 bạn nữ có bao nhiêu cách chọn ra 5 bạn trong đó có cả nam và nữ?
Số học sinh có trong nhóm là: học sinh
Số cách chọn 5 học sinh trong nhóm là: cách
Số cách chọn số học sinh chỉ có nam là cách
Số cách chọn số học sinh chỉ có nữ là: cách
=> Số cách chọn ra 5 bạn trong đó có cả nam và nữ là: cách
Hai cung thủ thực hiện bắn mỗi người một mũi tên vào bia điểm. Biết xác suất bắn trúng 10 điểm của người thứ nhất và người thứ hai lần lượt là và
. Tính xác suất để có ít nhất một cung thủ bắn trúng 10 điểm?
Gọi A là biến cố có ít nhất một cung thủ bắn trúng 10 điểm
Suy ra là biến cố không có cung thủ nào trúng 10 điểm
Một công ti cần tuyển hai nhân viên. Có 6 người nộp đơn, trong đó có 4 nữ và 2 nam. Giả sử rằng khả năng trúng tuyển của 6 người là như nhau. Tính xác suất để 2 người trúng tuyển có ít nhất một nữ?
Số cách chọn 2 trong 6 người có cách
Vậy số phần tử không gian mẫu là 15.
Chọn 2 người trong số 6 người nói trên sao cho có ít nhất một nữ là
Do đó xác suất của biến cố này là .
Có hai hòm, mỗi hòm chứa 5 tấm thẻ đánh số từ 1 đến 5. Rút ngẫu nhiên từ mỗi hòm một tấm thẻ. Tính xác suất để tổng các số ghi trên hai tấm thẻ rút ra không nhỏ hơn 3.
Không gian mẫu
Vì có 5 cách chọn x và có 5 cách chọn y nên
Gọi A là biến cố “Tổng hai số ghi trên hai tấm thẻ không nhỏ hơn 3”.
Khi đó là biến cố “Tổng hai số ghi trên tấm thẻ nhỏ hơn 3”.
Ta có:
Xác suất cần tìm là
Có bao nhiêu số tự nhiên gồm 5 chữ số khác nhau được lập từ các số ?
Mỗi cách xếp số tự nhiên có 5 chữ số khác nhau từ các số 1, 2, . . . , 9 là một chỉnh hợp chập 5 của 9 phần tử.
Vậy có số được tạo thành.
Gieo hai con súc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm.
Ta có:
gọi B: “Tổng số chấm trên mặt xuất hiện của hai con súc sắc lớn hơn hay bằng 9 mà trong đó có ít nhất một con súc sắc xuất hiện mặt 6 chấm”
Ta có:
Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:
a) Xác suất để lấy được chỉ màu đỏ Đúng||Sai
b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai
c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng Sai||Đúng
d) Xác suất lấy các viên bi có đủ ba màu Sai||Đúng
Một hộp đựng 4 viên bi màu xanh, 5 viên bi đỏ và 6 viên bi vàng hoàn toàn giống nhau về hình thức. Lấy ngẫu nhiên từ hộp 5 viên bi:
a) Xác suất để lấy được chỉ màu đỏ Đúng||Sai
b) Có 125 cách để lấy được các viên bi không có màu vàng. Đúng||Sai
c) Xác suất lấy được các viên bi chỉ có màu xanh và màu vàng Sai||Đúng
d) Xác suất lấy các viên bi có đủ ba màu Sai||Đúng
Số cách chọn 5 viên bi trong 15 viên bi là .
Gọi : “5 viên bi lấy được có đủ 3 màu "
Gọi : " 5 viên bi lấy được có không đủ 3 màu "
Chọn 5 viên bi không đủ 3 màu xảy ra các trường hợp
+ 5 viên màu đỏ có 1 cách
+ 5 viên màu vàng và 1 viên màu xanh hoặc đỏ có cách.
Chỉ có xanh và đỏ có .
Chỉ có xanh và vàng có .
Chỉ có đỏ và vàng có .
Vậy .
Biết rằng xác suất để thắng một trận game là . Hỏi người chơi phải chơi ít nhất bao nhiêu trận để xác suất thắng ít nhất một trận trong loạt chơi lớn hơn
?
Gọi n là số trận người đó chơi.
A là biến cố người đó thắng ít nhất 1 trận
Suy ra là biến cố người đó không thắng trận nào.
trong đó
là biến cố người đó thắng trận thứ i và
Ta có bất phương trình
Vậy giá trị nhỏ nhất của n bằng 9.