Đề kiểm tra 45 phút Chương 1 Hàm số - Sự biến thiên của hàm số

Mô tả thêm: Nội dung các câu hỏi trong Đề kiểm tra được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng một cách tốt hơn
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Hàm số nào sau đây có đồ thị như hình vẽ:

    Dựa vào hình dáng đồ thị ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số a < 0 nên loại đáp án y = x^{4} - 2x^{2} - 1

    Đồ thị hàm số đi qua điểm có tọa độ (0; -1) nên loại đáp án y = - x^{4} +2x^{2}

    Lại có đồ thị hàm số có các điểm cực trị (1;1),( - 1,1) nên loại đáp án y = - x^{4} + 2x^{2} - 1

    Vậy hàm số cần tìm là y = - 2x^{4} +4x^{2} - 1.

  • Câu 2: Thông hiểu

    Gọi M và m lần lượt là giá trị lớn nhất và giá tị nhỏ nhất của hàm số y = \frac{{\sqrt {{x^2} - 1} }}{{x - 2}} trên tập D = \left( { - \infty ; - 1} ight] \cup \left[ {1;\frac{3}{2}} ight]. Tính giá trị H của m.M

    Tập xác định của hàm số y là: \left( { - \infty ; - 1} ight] \cup \left( {1; + \infty } ight]\backslash \left\{ 2 ight\}

    Ta có:

    \begin{matrix}  y' = \dfrac{{\dfrac{{x\left( {x - 2} ight)}}{{\sqrt {{x^2} - 1} }} - \sqrt {{x^2} - 1} }}{{{{\left( {x - 2} ight)}^2}}} = \dfrac{{ - 2x + 1}}{{\sqrt {{x^2} - 1} {{\left( {x - 2} ight)}^2}}} \hfill \\  y' = 0 \Rightarrow x = \dfrac{1}{2} \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Tìm GTLN, GTNN của hàm số

    Từ bảng biến thiên ta được:

    M = 0,m =  - \sqrt 5  \Rightarrow H = m.M = 0

  • Câu 3: Vận dụng

    Cho hàm số y = x^{3} - 2x^{2} -1 có đồ thị (C), đường thẳng (d):y = mx - 1 và điểm K(4;11). Biết rằng (C);(d) cắt nhau tại ba điểm phân biệt A;B;C trong đó A(0; - 1) còn trọng tâm tam giác KBC nằm trên đường thẳng y = 2x + 1. Tìm giá trị của tham số m thỏa mãn yêu cầu đề bài?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = x^{3} - 2x^{2} -1 có đồ thị (C), đường thẳng (d):y = mx - 1 và điểm K(4;11). Biết rằng (C);(d) cắt nhau tại ba điểm phân biệt A;B;C trong đó A(0; - 1) còn trọng tâm tam giác KBC nằm trên đường thẳng y = 2x + 1. Tìm giá trị của tham số m thỏa mãn yêu cầu đề bài?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Vận dụng

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Tìm số điểm cực trị của hàm số g(x) =
f\left( x^{2} - 2x ight) trên khoảng (0; + \infty)?

    Đặt g(x) = f\left( x^{2} - 2x ight)
\Rightarrow g'(x) = (2x - 2)f'\left( x^{2} - 2x
ight)

    Từ bảng xét dấu của hàm số f'(x)

    g'(x) = 0 \Leftrightarrow g(x) =
f\left( x^{2} - 2x ight) \Rightarrow \left\lbrack \begin{matrix}
2x - 2 = 0 \\
f'\left( x^{2} - 2x ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 2x = - 1\  \\
x^{2} - 2x = 2\ \  \\
2x - 2 = 0\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 1 \pm \sqrt{3} \\
x = 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Từ bảng biến thiên suy ra hàm số g(x) =
f\left( x^{2} - 2x ight) có hai cực trị trên khoảng (0; + \infty).

  • Câu 5: Thông hiểu

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) = x + \sqrt{4 - x^{2}} lần lượt là M;m. Tính giá trị biểu thức P = M^{2} - m^{2}?

    Tập xác định D = \lbrack -
2;2brack

    Ta có: y' = 1 - \frac{x}{\sqrt{4 -
x^{2}}} \Rightarrow y' = 0 \Leftrightarrow 1 - \frac{x}{\sqrt{4 -
x^{2}}} = 0

    \Leftrightarrow x = \sqrt{4 - x^{2}}
\Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x^{2} = 4 - x^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x = \pm \sqrt{2} \\
\end{matrix} ight.\  \Leftrightarrow x = \sqrt{2}

    Khi đó: \left\{ \begin{matrix}
f(2) = 2;f( - 2) = - 2 \\
f\left( \sqrt{2} ight) = 2\sqrt{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\max_{\lbrack - 2;2brack}f(x) = M = 2\sqrt{2} \\
\min_{\lbrack - 2;2brack}f(x) = m = - 2 \\
\end{matrix} ight.

    \Rightarrow P = M^{2} - m^{2} =
4

  • Câu 6: Vận dụng

    Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số y = {x^3} - 3\left( {m - 2} ight){x^2} + 12x + 1 đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:

    Ta có: y' = 3{x^2} - 6\left( {m - 2} ight)x + 12

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 3 > 0} \\   {\left( {{\Delta _{y'}}} ight)' = 9{{\left( {m - 2} ight)}^2} - 36 \leqslant 0} \end{array}} ight. \Leftrightarrow 0 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với điều kiện m \in \mathbb{Z}

    => m \in \left\{ {0;1;2;3;4} ight\}

    => Tổng P bằng 10

  • Câu 7: Vận dụng cao

    Cho tập hợp A = \left\{ n\mathbb{\in Z}|0
\leq n \leq 20 ight\}F là tập hợp các hàm số f(x) = x^{3} + \left( 2m^{2} - 5 ight)x^{2} + 6x
- 8m^{2}m \in A. Chọn ngẫu nhiên một hàm số f(x) \in F. Tính xác suất để đồ thị hàm số y =
f(x) có hai điểm cực trị nằm khác phía đối với trục Ox?

    Không gian mẫu |\Omega| = 21

    Ta có: f(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 2 \\
x^{2} + \left( 2m^{2} - 3 ight)x + 4m^{2} = 0(*) \\
\end{matrix} ight.

    Đồ thị của hàm số y = f(x) có hai điểm cực trị nằm khác phía đối với trục Ox suy ra phương trình (*) có hai nghiệm phân biệt khác 2.

    \Leftrightarrow \left\{ \begin{gathered}
  m \in A \hfill \\
  {\left( {2{m^2} - 3} ight)^2} - 16{m^2} > 0 \hfill \\
  {2^2} + \left( {2{m^2} - 3} ight).2 + 4{m^2} e 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m \in A \hfill \\
  \left[ \begin{gathered}
  m > \sqrt {\dfrac{{7 + 2\sqrt {10} }}{2}}  \approx 2,58 \hfill \\
  0 \leqslant m < \sqrt {\dfrac{{7 - 2\sqrt {10} }}{2}}  \approx 0,58 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight.

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 0;3;4;...;20 ight\}

    Vậy xác suất cần tìm là P =
\frac{19}{21}.

  • Câu 8: Vận dụng

    Cho hình vẽ là đồ thị hàm số có dạng y = a{x^4} + b{x^2} + c

    Giá trị của biểu thức

    Giá trị của biểu thức B = {a^2} + {b^2} + {c^2} có thể nhận giá trị nào trong các giá trị sau?

    Đồ thị hàm số đi qua điểm \left( {0; - 1} ight) => c =  - 1

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{y_{CD}} = y\left( {\sqrt {\dfrac{{ - b}}{{2a}}} } ight) = \dfrac{{ - {b^2}}}{{4a}} + c = 3} \\   {y\left( 1 ight) = a + b + c = 2} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  { - {b^2} = 16a} \\   {a + b = 3} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - {b^2} = 16\left( {3 - b} ight)} \\   {a = 3 - b} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {b = 12;a = 9} \\   {b = 4;a =  - 1} \end{array}} ight. \hfill \\   \Rightarrow B = {a^2} + {b^2} + {c^2} = 18 \hfill \\ \end{matrix}

  • Câu 9: Thông hiểu

    Hàm số y = \frac{2x + 2021}{x -
2} có bao nhiêu điểm cực trị?

    Tập xác định D = ( - \infty;2) \cup (2; +
\infty)

    Ta có: y' = \frac{- 2025}{(x -
2)^{2}} < 0;\forall x eq 2 suy ra hàm số nghịch biến trên mỗi khoảng ( - \infty;2)(2; + \infty)

    Do đó hàm số không có điểm cực trị.

  • Câu 10: Thông hiểu

    Cho hàm số f(x) có bảng xét dấu đạo hàm như hình vẽ:

    Hàm số y = f\left( 1 - x^{2}
ight) nghịch biến trên khoảng:

    Ta có: y' = - 2xf'\left( 1 -
x^{2} ight)

    y' = 0 \Leftrightarrow -
2xf'\left( 1 - x^{2} ight) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
- 2x = 0 \\
f'\left( 1 - x^{2} ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
1 - x^{2} = - 3 \\
1 - x^{2} = - 2 \\
1 - x^{2} = 0 \\
1 - x^{2} = 1 \\
1 - x^{2} = 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 2 \\
x = \pm \sqrt{3} \\
x = \pm 1 \\
\end{matrix} ight.. Khi đó ta có bảng biến thiên:

    Hàm số y = f\left( 1 - x^{2}
ight) nghịch biến trên khoảng \left( \sqrt{3};2 ight).

  • Câu 11: Thông hiểu

    Tìm GTLN, GTNN của hàm số lượng giác y = f\left( x ight) = \sin x + \cos x + \sin x.\cos x trên đoạn

    \left[ {0,\pi } ight]

    Đặt t = \sin x + \cos x = \sqrt 2 \sin \left( {x + \frac{\pi }{4}} ight)

    x \in \left[ {0,\pi } ight] \Rightarrow t \in \left[ { - 1,\sqrt 2 } ight]

    Ta có:

    \begin{matrix}  {t^2} = {\left( {\sin x + \cos x} ight)^2} \hfill \\   = {\sin ^2}x + co{x^2}x + 2\sin x.\cos x \hfill \\   = 1 + 2\sin x.\cos x \hfill \\   \Rightarrow \sin x.\cos x = \dfrac{{{t^2} - 1}}{2} \hfill \\ \end{matrix}

    \begin{matrix}  f\left( x ight) = g\left( t ight) = t + \dfrac{{{t^2} - 1}}{2} = \dfrac{{{t^2}}}{2} + t - \dfrac{1}{2} \hfill \\  g'\left( t ight) = t + 1,g'\left( t ight) = 0 \Leftrightarrow t =  - 1 \hfill \\  g\left( { - 1} ight) =  - 1,g\left( {\sqrt 2 } ight) = \sqrt 2  + \dfrac{1}{2} \hfill \\ \end{matrix}

    \mathop { \Rightarrow \max f\left( x ight)}\limits_{\left[ {0,\pi } ight]}  = \sqrt 2  + \frac{1}{2},\mathop {\min f\left( x ight)}\limits_{\left[ {0,\pi } ight]}  =  - 1

     

  • Câu 12: Vận dụng cao

    Hành lang trong một tòa nhà có dạng chữ L (hình vẽ) có chiều cao 2m, một phía rộng 1m, một phía rộng 1,2m. Một người thợ cần mang một số ống thép cứng các loại có độ dài 2m, 2,5m, 3m, 3,5m, 4m, từ bên này qua bên kia. Hỏi có thể mang được mấy loại qua lối đi đó?

    Đáp án: 4

    Đáp án là:

    Hành lang trong một tòa nhà có dạng chữ L (hình vẽ) có chiều cao 2m, một phía rộng 1m, một phía rộng 1,2m. Một người thợ cần mang một số ống thép cứng các loại có độ dài 2m, 2,5m, 3m, 3,5m, 4m, từ bên này qua bên kia. Hỏi có thể mang được mấy loại qua lối đi đó?

    Đáp án: 4

    Ống thép muốn qua được hành lang (bên này qua bên kia) phải qua được góc vuông giữa hành lang.

    Vì vậy chiều dài l của ống thép phải thỏa mãn l \leq AN, \forall a \in \left( 0;\frac{\pi}{2} ight)
\Leftrightarrow l \leq \min_{\left( 0;\frac{\pi}{2}
ight)}AN(*)

    Ta có AN = \sqrt{AB^{2} + BN^{2}} =
\sqrt{AB^{2} + 4}

    Trong đó AB = AM + MB =
\frac{AH}{\sin\alpha} + \frac{BK}{\cos\alpha} = \frac{1}{\sin\alpha} +
\frac{1,2}{\cos\alpha}

    Xét hàm số g(\alpha) =
\frac{1}{\sin\alpha} + \frac{1,2}{\cos\alpha}

    \Rightarrow g'(\alpha) = -
\frac{\cos\alpha}{sin^{2}\alpha} + \frac{1,2sina}{cos^{2}a} =
0

    \Leftrightarrow 1,2sin^{3}\alpha =
cos^{3}\alpha

    \Leftrightarrow \tan\alpha =
\frac{1}{\sqrt[3]{1,2}} \Leftrightarrow \alpha =
\arctan\frac{1}{\sqrt[3]{1,2}}

    Vì vậy \min_{\left( 0;\frac{\pi}{2}
ight)}g(\alpha) = g\left( \arctan\frac{1}{\sqrt[3]{1,2}}
ight)

    \Rightarrow (*) \Leftrightarrow l \leq
\sqrt{\left\lbrack g\left( \arctan\frac{1}{\sqrt[3]{1,2}} ight)
ightbrack^{2} + 4} \approx 3,69504

  • Câu 13: Nhận biết

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{x + 1}{x^{2} - 3x + 4} bằng:

    Tập xác định D\mathbb{= R}

    Đồ thị hàm số y = \frac{x + 1}{x^{2} - 3x
+ 4} không có tiệm cận đứng.

    Ta có: \lim_{x ightarrow \pm \infty}y =\lim_{x ightarrow \pm \infty}\left( \dfrac{x + 1}{x^{2} - 3x + 4}ight) = \lim_{x ightarrow \pm \infty}\left( \dfrac{\dfrac{1}{x} +\dfrac{1}{x^{2}}}{1 - \dfrac{3}{x} + \dfrac{4}{x^{2}}} ight) = 0 suy ra y = 0 là tiệm cận ngang của đồ thị hàm số.

    Vậy tổng số đường tiệm cận của đồ thị hàm số đã cho bằng 1.

  • Câu 14: Nhận biết

    Số giao điểm của hai đồ thị hàm số y =
f(x)y = g(x) bằng số nghiệm phân biệt của phương trình nào sau đây?

    Hoành độ giao điểm là nghiệm của phương trình f(x) = g(x) hay f(x) - g(x) = 0.

  • Câu 15: Thông hiểu

    Tìm các giá trị của tham số m để hàm số y = x^{4} - 2mx^{2} + 1 có ba điểm cực trị A(0;1); B;C thỏa mãn BC = 4?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 4x^{3} - 4mx = 4x\left(
x^{2} - m ight)

    Để hàm số có ba cực trị thì m >
0

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow y(0) = 1 \\
x = \pm \sqrt{m} \Rightarrow y\left( \pm \sqrt{m} ight) = 1 - m^{2} \\
\end{matrix} ight.

    Suy ra A(0;1); B\left( \sqrt{m};1 - m^{2} ight);C\left( -
\sqrt{m};1 - m^{2} ight)

    BC = 4 \Rightarrow \sqrt{4m} = 4
\Leftrightarrow m = 4

    Vậy đáp án đúng là m = 4

  • Câu 16: Vận dụng cao

    Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:

    Xét hàm số g\left( x ight) = f\left( {\frac{{x - 1}}{2}} ight) - \frac{{{x^3}}}{3} + \frac{{3{x^2}}}{2} - 2x + 3. Khẳng định nào sau đây sai?

    Ta có:

    g'\left( x ight) = \frac{1}{2}f'\left( {\frac{{x - 1}}{2}} ight) - \left( {{x^2} - 3x + 2} ight)

    f'\left( {\frac{{x - 1}}{2}} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\dfrac{{x - 1}}{2} = \dfrac{{ - 5}}{2}} \\   {\dfrac{{x - 1}}{2} =  - 1} \\   {\dfrac{{x - 1}}{2} = \frac{1}{2}} \\   {\dfrac{{x - 1}}{2} = 3} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 4} \\   {x =  - 1} \\   {x = 2} \\   {x = 7} \end{array}} ight.

    f'\left( {\frac{{x - 1}}{2}} ight) > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\dfrac{{x - 1}}{2} <  - \dfrac{5}{2}} \\   {\dfrac{1}{2} < \dfrac{{x - 1}}{2} < 3} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x <  - 4} \\   {2 < x < 7} \end{array}} ight.

    Ta có bảng xét dấu cho các biểu thức

    Tìm khẳng định sai

    Từ bảng xét dấu ta thấy

    x \in \left( {0;1} ight) \subset \left( {0;2} ight) \Rightarrow g'\left( x ight) < 0

    Khi đó hàm số nghịch biến

    => Đáp án B sai

  • Câu 17: Nhận biết

    Cho hàm số y =
f(x) có đồ thị như hình vẽ như sau:

    Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Dựa vào đồ thị dễ dàng thấy hàm số đồng biến trên (0;1).

  • Câu 18: Nhận biết

    Cho hàm số y = f(x) liên tục trên \lbrack - 1;5brack và có đồ thị như hình vẽ:

    Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack -
1;5brack?

    Từ đồ thị hàm số ta có: \max_{\lbrack -
1;5brack}y = 3;\min_{\lbrack - 1;5brack}y = - 2

    Khi đó \max_{\lbrack - 1;5brack}y -
\min_{\lbrack - 1;5brack}y = 5.

  • Câu 19: Thông hiểu

    Xác định giá trị thực của tham số m để hàm số y
= \frac{x + 5}{x + m} đồng biến trên khoảng ( - \infty; - 8)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - m ight\}

    Hàm số y = \frac{x + 5}{x + m} đồng biến trên khoảng ( - \infty; -
8)

    \Leftrightarrow \left\{ \begin{matrix}
y' > 0;\forall x \in ( - \infty; - 8) \\
x eq - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{m - 5}{(x + m)^{2}} > 0;\forall x \in ( - \infty; - 8) \\- m otin ( - \infty; - 8) \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > 5 \\
- m \geq - 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 5 \\
m \leq 8 \\
\end{matrix} ight.\  \Leftrightarrow 5 < m \leq 8

    Vậy đáp án cần tìm là (5;8brack.

  • Câu 20: Nhận biết

    Cho hàm số y = \frac{{x + 1}}{{1 - x}}. Khẳng định nào dưới đây là khẳng định đúng?

    Hàm số y = \frac{{x + 1}}{{1 - x}} có tập xác định D = \mathbb{R}\backslash \left\{ 1 ight\} và có đạo hàm

    y' = \frac{2}{{{{\left( {x - 1} ight)}^2}}} > 0,\forall x \in D

    => A là khẳng định đúng

  • Câu 21: Vận dụng

    Cho hàm số f(x) liên tục trên \lbrack - 1;3brack và có đồ thị như hình vẽ:

    Giá trị lớn nhất của hàm số y = g(x) =f\left( 3\left| \cos x ight| - 1 ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) liên tục trên \lbrack - 1;3brack và có đồ thị như hình vẽ:

    Giá trị lớn nhất của hàm số y = g(x) =f\left( 3\left| \cos x ight| - 1 ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 22: Vận dụng cao

    Cho hàm số y = f\left( x ight) có bảng biến như sau:

    Tìm tất cả các giá trị của tham số m để bất phương trình có một nghiệm

    Tìm tất cả các giá trị của tham số m để bất phương trình f\left( {\sqrt {x + 1}  + 1} ight) \leqslant m có một nghiệm?

    Đặt t = \sqrt {x + 1}  + 1 \Rightarrow t \geqslant 1

    Khi đó bất phương trình f\left( {\sqrt {x + 1}  + 1} ight) \leqslant m trở thành f\left( t ight) \leqslant m{\text{ }}\left( * ight)

    Bất phương trình f\left( {\sqrt {x + 1}  + 1} ight) \leqslant m có nghiệm khi bất phương trình f\left( t ight) \leqslant m có nghiệm t \geqslant 1

    \Leftrightarrow m \geqslant \mathop {\min \left( t ight)}\limits_{t \geqslant 1}  \Leftrightarrow m \geqslant  - 4

  • Câu 23: Nhận biết

    Cho hình vẽ:

    Đồ thị trong hình đã cho là đồ thị của hàm số nào?

    Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng y = ax^{3} + bx^{2} + cx + d với a > 0 và đồ thị hàm số đi qua điểm (2; - 3) nên hàm số tương ứng với đồ thị trong hình vẽ đã cho là y = x^{3} -3x^{2} + 1.

  • Câu 24: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = \left( {{x^2} - 9} ight){\left( {{x^2} - 3x} ight)^2},\forall x \in \mathbb{R}. Gọi M là giá trị cực đại của hàm số đã cho. Chọn khẳng định đúng?

    Ta có: 

    \begin{matrix}  f'\left( x ight) = 0 \hfill \\   \Leftrightarrow \left( {{x^2} - 9} ight){\left( {{x^2} - 3x} ight)^2} = 0 \hfill \\   \Leftrightarrow {x^2}{\left( {x - 3} ight)^3}\left( {x + 3} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm 3} \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Chọn khẳng định đúng

    Dựa vào bảng biến thiên ta có giá trị cực đại của hàm số là M = f(-3)

  • Câu 25: Vận dụng

    Cho hàm số bậc ba f\left( x ight) = a{x^3} + b{x^2} + cx + d;\left( {a,b,c,d \in \mathbb{R}} ight) có đồ thị như hình vẽ dưới đây.

    Xác định số TCĐ và TCN của đồ thị hàm số

    Đồ thị hàm số g\left( x ight) = \frac{1}{{f\left( {4 - {x^2}} ight) - 3}} có bao nhiêu đường tiệm cận đứng và tiệm cận ngang.

    Đặt t = 4 - {x^2} khi đó x \to  \pm \infty thì t \to \infty

    Khi đó \mathop {\lim }\limits_{x \to  \pm \infty } g\left( x ight) = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{1}{{f\left( t ight) - 3}} = 0

    => y = 0 là tiệm cận ngang của đồ thị hàm số g(x)

    Mặt khác

    \begin{matrix}  f\left( {4 - {x^2}} ight) - 3 = 0 \hfill \\   \Leftrightarrow f\left( {4 - {x^2}} ight) = 3 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {4 - {x^2} =  - 2} \\   {4 - {x^2} = 4} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm \sqrt 6 } \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    => Đồ thị hàm số g(x) có ba đường tiệm cận đứng.

    Vậy đồ thị hàm số g(x) có bốn đường tiệm cận.

  • Câu 26: Vận dụng

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ tf(t) = 4t^{3} - \frac{t^{4}}{2}(người). Nếu xem f'(t) là tốc độ truyền bệnh (người/ngày) tại thời điểm t. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?

    Đáp án: Ngày thứ 4||tư

    Đáp án là:

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ tf(t) = 4t^{3} - \frac{t^{4}}{2}(người). Nếu xem f'(t) là tốc độ truyền bệnh (người/ngày) tại thời điểm t. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?

    Đáp án: Ngày thứ 4||tư

    Điều kiện t \geq 0.

    Ta có g(t) = f'(t) = 12t^{2} -
2t^{3}, g'(t) = 24t -
6t^{2}, g'(t) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = 0 \\
t = 4 \\
\end{matrix} ight..

    Bảng biến thiên:

    Vậy tốc độ truyền bệnh lớn nhất vào ngày thứ 4.

    Đáp số: 4.

  • Câu 27: Vận dụng cao

    Cho x, y là các số thực dương thỏa mãn điều kiện \left\{ {\begin{array}{*{20}{c}}  {{x^2} - xy + 3 = 0} \\   {2x + 3y - 14 \leqslant 0} \end{array}} ight.. Tổng giá trị lớn nhất và nhỏ nhất của biểu thức P = 3{x^2}y - x{y^2} - 2{x^3} + 2x bằng:

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {x > 0,y > 0} \\   {{x^2} - xy + 3 = 0} \end{array}} ight. \Rightarrow y = \frac{{{x^2} + 3}}{x} = x + \frac{3}{x}

    Lại có: 2x + 3y - 14 \leqslant 0

    \begin{matrix}   \Leftrightarrow 2x + 3\left( {x + \dfrac{3}{x} - 14} ight) \leqslant 0 \hfill \\   \Leftrightarrow 5{x^2} - 14x + 9 \leqslant 0 \Leftrightarrow x \in \left[ {1;\dfrac{9}{5}} ight] \hfill \\ \end{matrix}

    Từ đó P = 3{x^2}\left( {x + \frac{3}{x}} ight) - x\left( {x + \frac{3}{x}} ight) - 2{x^3} + 2x = 5x - \frac{9}{x}

    Xét hàm số f\left( x ight) = 5x - \frac{9}{x};\forall x \in \left[ {1;\frac{9}{5}} ight]

    f'\left( x ight) = 5 + \frac{9}{{{x^2}}} > 0;\forall x \in \left[ {1;\frac{9}{5}} ight]

    => Hàm số đồng biến trên \left[ {1;\frac{9}{5}} ight]

    => f\left( 1 ight) \leqslant f\left( x ight) \leqslant f\left( {\frac{9}{5}} ight) \Rightarrow  - 4 \leqslant f\left( x ight) \leqslant 4

    => \max P + \min P = 4 + \left( { - 4} ight) = 0

  • Câu 28: Nhận biết

    Hàm số y = f(x) liên tục trên đoạn \lbrack - 1;3brack và có bảng biến thiên như sau.

    Gọi Mm lần lượt là GTLN và GTNN của hàm số trên \lbrack - 1;3brack. Xét tính đúng sai của các khẳng định sau:

    a) m = f(2) Sai|| Đúng

    b) M = f(4) Sai|| Đúng

    c) m = f( - 1) Đúng||Sai

    d) M = f(0) Đúng||Sai

    Đáp án là:

    Hàm số y = f(x) liên tục trên đoạn \lbrack - 1;3brack và có bảng biến thiên như sau.

    Gọi Mm lần lượt là GTLN và GTNN của hàm số trên \lbrack - 1;3brack. Xét tính đúng sai của các khẳng định sau:

    a) m = f(2) Sai|| Đúng

    b) M = f(4) Sai|| Đúng

    c) m = f( - 1) Đúng||Sai

    d) M = f(0) Đúng||Sai

    Dựa vào bảng biến thiên trên \lbrack -
1;3brack ta có:

    m = f( - 1) = 0

    M = f(0) = 5

  • Câu 29: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và hàm số y = f'(x) có đồ thị như hình vẽ:

    Tìm số điểm cực trị của hàm số y =
f(x)?

    Từ đồ thị hàm số y = f'(x) ta có đồ thị hàm số y = f'(x) cắt trục hoành tại 4 điểm phân biệt.

    Do đó phương trình f'(x) = 0 có bốn nghiệm phân biệt. Qua các nghiệm này f'(x) đều đổi dấu nên số cực trị của hàm số y = f(x) là bốn cực trị.

  • Câu 30: Thông hiểu

    Xác định giá trị của a để hàm số f\left( x ight) = \sin x - ax + b nghịch biến trên trục số.

     Ta có: y' = \cos x - a

    Hàm số nghịch biến trên \mathbb{R}

    \begin{matrix}   \Rightarrow \cos x - a \leqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow a \geqslant \cos x,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow a \geqslant 1 \hfill \\ \end{matrix}

  • Câu 31: Thông hiểu

    Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số y = \frac{1}{3}x^{3} - 2mx^{2} + 4x - 5 đồng biến trên tập số thực?

    Ta có: y' = x^{2} - 4m +
4

    Hàm số y = \frac{1}{3}x^{3} - 2mx^{2} +
4x - 5 đồng biến trên \mathbb{R}

    y' \geq 0;\forall x \Leftrightarrow
x^{2} - 4m + 4 \geq 0

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 > 0 \\
\Delta' = 4m^{2} - 4 \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow - 1 \leq m \leq 1

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1 ight\}

    Vậy số giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán là 3.

  • Câu 32: Nhận biết

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0
ight\} và có bảng xét dấu đạo hàm f'(x) như sau:

    Hàm số y = f(x) có bao nhiêu điểm cực trị?

    Dựa vào bảng xét dấu đạo hàm ta thấy hàm số y = f(x) có 1 điểm cực trị.

  • Câu 33: Thông hiểu

    Số đường tiệm cận của đồ thị hàm số y =
\frac{\sqrt{x - 1}}{x^{2} - 2x} là:

    Điều kiện xác định x \geq 1;x eq
2

    Ta có: \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow + \infty}\frac{\sqrt{x - 1}}{x^{2} - 2x} =
0 suy ra y = 0 là tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow 2^{+}}y = \lim_{x
ightarrow 2^{+}}\frac{\sqrt{x - 1}}{x^{2} - 2x} = + \infty nên đồ thị hàm số có 1 tiệm cận đứng x =
2.

    Vậy đồ thị hàm số có 2 đường tiệm cận.

  • Câu 34: Thông hiểu

    Đồ thị hàm số nào sau đây có ba đường tiệm cận?

    Ta có: Đồ thị hàm số y = \frac{1}{{4 - {x^2}}} có 3 đường tiệm cận trong đó

    Tiệm cận đứng là x = 2 và x = -2

    Tiệm cận ngang là y = 0

  • Câu 35: Nhận biết

    Đồ thị hàm số y = \frac{\sqrt{x -
7}}{x^{2} + 3x - 4} có bao nhiêu đường tiệm cận đứng?

    Tập xác định D = \lbrack 7; +
\infty)

    Phương trình x^{2} + 3x - 4 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 4 \\
\end{matrix} ight.

    Do đó không tồn tại các giới hạn \lim_{x
ightarrow - 4^{-}}y;\lim_{x ightarrow - 4^{+}}y;\lim_{x ightarrow
1^{-}}y;\lim_{x ightarrow 1^{+}}y. Vì vậy đồ thị hàm số không có đường tiệm cận đứng.

  • Câu 36: Thông hiểu

    Cho hàm số y = f(x) xác định trên \mathbb{R}\left\{ - 1
ight\}, liên tục trên các khoảng xác định và có bảng biến thiên như sau:

    Tìm tập hợp các giá trị của tham số m để phương trình f(x) = m có ba nghiệm phân biệt?

    Số nghiệm của phương trình f(x) =
m là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m

    Dựa vào bảng biến thiên ta suy ra để phương trình đã cho có ba nghiệm phân biệt thì - 4 < m <
2.

  • Câu 37: Vận dụng

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 38: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm trên khoảng ( - \infty; + \infty) và có bảng biến thiên như sau:

    Hàm số y = f(x) là hàm số nào dưới đây?

    Nhận diện đồ thị hàm số bậc 4 trùng phương y = ax^{4} + bx^{2} + c;(a > 0) nên loại hàm số y = - x^{4} + 2x^{2} -
3

    Hàm số có 3 cực trị nên ab <
0 nên loại hàm số y = x^{4} +
2x^{2} - 3.

    x_{0} = 0 \Rightarrow y_{0} =
3 nên hàm số cần tìm là y = x^{4} -
2x^{2} - 3.

  • Câu 39: Vận dụng

    Cho hàm số y =
f(x) có đạo hàm liên tục trên \mathbb{R} và có đồ thị của hàm số y = f'(x) như hình vẽ sau:

    Xét hàm g(x) = f\left( x^{2} - 2
ight). Mệnh đề nào dưới đây sai?

    Ta có: g'(x) = 2x.f'\left( x^{2}
- 2 ight)

    g'(x) = 0 \Leftrightarrow
2x.f'\left( x^{2} - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x = 0 \\
f'\left( x^{2} - 2 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} - 2 = - 1 \\
x^{2} - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Dựa vào đồ thị ta thấy f'\left( x^{2}
- 2 ight) > 0

    \Leftrightarrow x^{2} - 2 > 2
\Leftrightarrow x^{2} > 4 \Leftrightarrow \left\lbrack \begin{matrix}
x < - 2 \\
x > 2 \\
\end{matrix} ight.

    Vậy hàm số g(x) nghịch biến trên ( - 1;0) là sai.

  • Câu 40: Nhận biết

    Điểm cực đại của đồ thị hàm số y = x^{3}
- 3x + 5 là điểm

    Tập xác định: D\mathbb{= R}

    Ta có: y' = 3x^{2} - 3;y' = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Dựa vào bảng biến thiên ta có điểm cực đại của đồ thị hàm số là N( - 1;7).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Hàm số - Sự biến thiên của hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 35 lượt xem
Sắp xếp theo