Đề kiểm tra 45 phút Chương 1 Hàm số - Sự biến thiên của hàm số

Mô tả thêm: Nội dung các câu hỏi trong Đề kiểm tra được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng một cách tốt hơn
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Tìm tập hợp T tất cả các giá trị của tham số thực m để hàm số y = \frac{1}{3}{x^3} - \left( {m + 1} ight){x^2} + \left( {{m^2} + 2m} ight)x - 3 nghịch biến trên khoảng (-1; 1)

     Ta có: y' = {x^2} - 2\left( {m + 1} ight)x + \left( {{m^2} + 2m} ight)

    Để hàm số nghịch biến trên khoảng (-1; 1) thì

    \begin{matrix}  y' \leqslant 0,\forall x \in \left( { - 1;1} ight) \hfill \\   \Leftrightarrow {x^2} - 2\left( {m + 1} ight)x + \left( {{m^2} + 2m} ight) \leqslant 0,\forall x \in \left( { - 1;1} ight) \hfill \\ \end{matrix}

    Ta có y’ = 0 => x = m hoặc x = m + 2

    Bảng xét dấu

    Tìm điều kiện để hàm số nghịch biến trên khoảng

    Từ bảng xét dấu ta thấy để hàm số nghịch biến trên khoảng (-1; 1) thì

    \left\{ {\begin{array}{*{20}{c}}  {m \leqslant  - 1} \\   {m + 2 \geqslant 1} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m \leqslant  - 1} \\   {m \geqslant  - 1} \end{array}} ight. \Leftrightarrow m =  - 1

  • Câu 2: Nhận biết

    Cho hàm số y = x^{4} - x^{3} +
3. Khẳng định nào sau đây đúng?

    Ta có: y' = 4x^{3} - 3x^{2} = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = \dfrac{3}{4} \\\end{matrix} ight.

    Ta có bảng xét dấu như sau:

    Vậy hàm số có đúng một cực trị.

  • Câu 3: Vận dụng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = \frac{1}{2f(x) - 1} là:

    Điều kiện xác định của hàm số y =
\frac{1}{2f(x) - 1}2f(x) - 1
eq 0 \Leftrightarrow f(x) eq \frac{1}{2}

    Từ bảng biến thiên ta có: f(x) =
\frac{1}{2} \Leftrightarrow \left\lbrack \begin{matrix}
x = x_{1} \in ( - \infty; - 0,5) \\
x = x_{2} \in ( - 0,5; - \infty) \\
\end{matrix} ight.

    Tập xác định \mathbb{R}\backslash\left\{
x_{1};x_{2} ight\}

    Ta có:

    \lim_{x ightarrow -
\infty}\frac{1}{2f(x) - 1} = \frac{1}{2.1 - 1} = 1 suy ra đồ thị hàm số có tiệm cận ngang y =
1.

    \lim_{x ightarrow +
\infty}\frac{1}{2f(x) - 1} = \frac{1}{2.1 - 1} = 1 suy ra đồ thị hàm số có tiệm cận ngang y =
1.

    \lim_{x ightarrow
{x_{1}}^{\pm}}\frac{1}{2f(x) - 1} = \mp \infty suy ra đồ thị hàm số có tiệm cận đứng x =
x_{1}.

    \lim_{x ightarrow
{x_{2}}^{\pm}}\frac{1}{2f(x) - 1} = \pm \infty suy ra đồ thị hàm số có tiệm cận đứng x =
x_{2}.

    Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{1}{2f(x) - 1}3.

  • Câu 4: Vận dụng

    Cho biết \left( P ight):y = {x^2} và điểm A\left( { - 2;\frac{1}{2}} ight). Gọi M là điểm bất kì thuộc (P). Khoảng cách MA nhỏ nhất là:

    M thuộc (P)

    => \begin{matrix}  M\left( {a;{a^2}} ight) \Rightarrow \overrightarrow {AM}  = \left( {a + 2;{a^2} - \dfrac{1}{2}} ight) \hfill \\   \hfill \\ \end{matrix}

    \Rightarrow M{A^2} = {\left( {a + 2} ight)^2} + {\left( {{a^2} - \frac{1}{2}} ight)^2} = {a^4} - 4a + \frac{{17}}{4}

    Xét hàm số f\left( a ight) = {a^4} + 4a + \frac{{17}}{4} ta có:

    \begin{matrix}  f'\left( a ight) = 4{a^3} + a \hfill \\  f'\left( a ight) = 0 \Rightarrow a =  - 1 \hfill \\   \Rightarrow \min f\left( a ight) = f\left( { - 1} ight) = 1 - 4 + \dfrac{{17}}{4} = \dfrac{5}{4} \hfill \\   \Rightarrow M{A_{\min }} = \sqrt {\dfrac{5}{4}}  = \dfrac{{\sqrt 5 }}{2} \hfill \\ \end{matrix}

  • Câu 5: Nhận biết

    Cho hàm số y = f(x) có đồ thị như sau:

    Hỏi số nghiệm của phương trình 2f(x) - 1
= 0 bằng bao nhiêu?

    Ta có: 2f(x) - 1 = 0 \Leftrightarrow f(x)
= \frac{1}{2}

    Lại có đường thẳng y =
\frac{1}{2} nằm phía trên gốc tọa độ; song song với trục Ox và cắt đồ thị hàm số y = f(x) tại 4 điểm nên phương trình 2f(x) - 1 = 0 có hai nghiệm.

  • Câu 6: Thông hiểu

    Cho hàm số y = \frac{ax - b}{x -
c} có đồ thị như hình vẽ:

    Tính giá trị biểu thức T = a + b +
c?

    Từ đồ thị hàm số đã cho ta thấy đường tiệm cận đứng x = 2, đường tiệm cận ngang y = - 1

    Xét hàm số y = \frac{ax - b}{x -
c} đồ thị có tiệm cận đứng x =
c và tiệm cận ngang y =
a

    suy ra c = 2;a = - 1

    Đồ thị hàm số y = \frac{ax - b}{x -
c} đi qua điểm (1;0) \Rightarrow \frac{a.1 - b}{1 - c} = 0
\Leftrightarrow a + b = 0 \Leftrightarrow b = 1

    Vậy T = - 1 + 1 + 2 = 2.

  • Câu 7: Nhận biết

    Cho hàm số y = f(x) có đồ thị như sau:

    Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là:

    Dựa vào đồ thị hàm số ta thấy đồ thị đã cho có đường tiệm cận đứng là x = 1 và đường tiệm cận ngang là y = 1.

  • Câu 8: Thông hiểu

    Tìm giá trị của tham số m để giá trị nhỏ nhất của hàm số y = \frac{2x + m}{x
+ 1} trên đoạn \lbrack
0;4brack bằng 5?

    Ta có: y' = \frac{2 - m}{(x +
1)^{2}};y(0) = m;y(4) = \frac{8 + m}{5}

    \mathop {\min }\limits_{\left[ {0;4} ight]} f\left( x ight) = 5 \Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  y' < 0 \hfill \\
  y\left( 4 ight) = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  y' > 0 \hfill \\
  y\left( 0 ight) = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  2 - m < 0 \hfill \\
  \frac{{8 + m}}{5} = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  2 - m > 0 \hfill \\
  m = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  m > 2 \hfill \\
  m = 17 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  m < 2 \hfill \\
  m = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow m = 17

    Vậy giá trị cần tìm là m =
17.

  • Câu 9: Nhận biết

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Mệnh đề nào sau dây đúng?

    Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.

  • Câu 10: Vận dụng cao

    Độ giảm huyết áp của một bệnh nhân được cho bởi công thức G\left( x ight) = 0,035{x^2}.\left( {15 - x} ight), trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất.

    Xét G\left( x ight) = 0,035{x^2}.\left( {15 - x} ight) ta có:

    \begin{matrix}  G'\left( x ight) = 0,035\left( {30x - 3{x^2}} ight) \hfill \\  G'\left( x ight) = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 10} \end{array}} ight. \hfill \\ \end{matrix}

    Mặt khác \left\{ {\begin{array}{*{20}{c}}  {G\left( 0 ight) = G\left( {15} ight) = 0} \\   {G\left( {10} ight) = 17,5} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ {0;15} ight]}  = 17,5 \Rightarrow x = 10

  • Câu 11: Thông hiểu

    Cho hàm số y = \frac{2mx + m^{2} + m -
2}{x + m}với m là tham số. Gọi S là tập hợp tất cả các giá trị của tham số m để hàm số có giá trị nhỏ nhất trên đoạn \lbrack
1;4brack bằng 1. Tổng các phần tử của tập hợp S bằng:

    Điều kiện x eq - m

    Ta có: y' = \frac{m^{2} - m + 2}{(x +
m)^{2}}. Vì \left\{ \begin{matrix}
a = 1 \\
\Delta_{m} = ( - 1)^{2} - 4.1.2 < 0 \\
\end{matrix} ight. nên m^{2} -
m + 2 > 0;\forall \in m

    \Rightarrow y' > 0;\forall x \in
\lbrack 1;4brack

    Suy ra giá trị nhỏ nhất trên đoạn \lbrack
1;4brack bằng y(1) = 1
\Leftrightarrow \frac{m^{2} + 3m - 2}{1 + m} = 1

    \Leftrightarrow \left\{ \begin{matrix}
m eq - 1 \\
m^{2} + 2m - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow m \in \left\{ 1; - 3
ight\}

    Kết hợp điều kiện \left\{ \begin{matrix}
x eq - m \\
x \in \lbrack 1;4brack \\
\end{matrix} ight.\  \Rightarrow m = - 3(ktm)

    Vậy S = \left\{ 1 ight\} nên tổng các phần tử thuộc tập S bằng 1.

  • Câu 12: Thông hiểu

    Cho hàm số y = - x^{3} + 3x^{2} +
5 có hai điểm cực trị M;N. Tính độ dài đoạn thẳng AB?

    Ta có: y' = - 3x^{2} + 6x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \Rightarrow y = 5 \\
x = 2 \Rightarrow y = 9 \\
\end{matrix} ight.

    Nhận thấy phương trình y' =
0 có hai nghiệm phân biệt nên đồ thị hàm số có hai điểm cực trị là M(0;5),N(2;9)

    \Rightarrow MN = \sqrt{2^{2} + 4^{2}} =
2\sqrt{5}

  • Câu 13: Thông hiểu

    Cho hàm số y = x^{4} - (3m + 2)x^{2} +
3m có đồ thị \left( C_{m}
ight). Xác định tất cả các giá trị thực của tham số m để \left(
C_{m} ight) cắt đường thẳng y = -
1 tại bốn điểm phân biệt?

    Phương trình hoành độ giao điểm là nghiệm của phương trình:

    x^{4} - (3m + 2)x^{2} + 3m = -
1

    \Leftrightarrow x^{4} - (3m + 2)x^{2} +
3m + 1 = 0

    \Leftrightarrow \left( x^{2} - 1
ight)^{2} - 3m\left( x^{2} - 1 ight) = 0

    \Leftrightarrow \left( x^{2} - 1
ight)\left( x^{2} - 3m - 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 1 = 0 \\
x^{2} - 3m - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \pm 1 \\
x^{2} = 3m + 1 \\
\end{matrix} ight.

    Đồ thị \left( C_{m} ight) cắt y = - 1 tại bốn điểm phân biệt khi và chỉ khi x^{2} = 3m + 1 có hai nghiệm phân biệt khác \pm 1

    Khi đó ta có: \left\{ \begin{matrix}3m + 1 > 0 \\3m + 1 eq 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m > - \dfrac{1}{3} \\m eq 0 \\\end{matrix} ight..

  • Câu 14: Vận dụng cao

    Đồ thị của hàm số y = x^{4} - 2(m +
1)x^{2} + 2m + 1 (với m là tham số) cắt trục hoành tại bốn điểm phân biệt có hoành độ lập thành một cấp số cộng. Kết luận nào sau đây đúng?

    Phương trình hoành độ giao điểm y = x^{4}
- 2(m + 1)x^{2} + 2m + 1 = 0\ \ (1)

    Đặt t = x^{2};t \geq 0. Phương trình trở thành t^{2} - 2(m + 1)t + 2m + 1 =
0\ \ \ (2)

    Phương trình (1) có 4 nghiệm phân biệt khi và chỉ khi phương trình (2) có hai nghiệm dương phân biệt, nghĩa là \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
S > 0 \\
P > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
(m + 1)^{2} - (2m + 1) > 0 \\
m + 1 > 0 \\
2m + 1 > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}m eq 0 \\m > - 1 \\m > - \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m eq 0 \\m > - \dfrac{1}{2} \\\end{matrix} ight.

    Gọi x_{1};x_{2};x_{3};x_{4};\left( x_{1} < x_{2} < x_{3} < x_{4}
ight) là nghiệm cỉa phương trình (1) và t_{1};t_{2};\left( t_{1} < t_{2}
ight) là nghiệm của phương trình (2)

    Theo giả thiết ta có:

    x_{4} - x_{3} = x_{3} - x_{2} = x_{2} -
x_{1}

    \Leftrightarrow x_{4} - x_{3} = x_{3} -
x_{2}

    \Leftrightarrow \sqrt{t_{2}} -
\sqrt{t_{1}} = \sqrt{t_{1}} + \sqrt{t_{1}} \Leftrightarrow t_{2} =
9t_{1} > 0

    Ta có hệ:

    \left\{ \begin{matrix}t_{1} + t_{2} = 2(m + 1) \\t_{1}.t_{2} = 2m + 1 \\t_{1} = 9t_{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}t_{1} = \dfrac{m}{5} + \dfrac{1}{5} \\t_{2} = \dfrac{9m}{5} + \dfrac{9}{5} \\t_{1}.t_{2} = 2m + 1 \\\end{matrix} ight.

    \Leftrightarrow \left( \dfrac{m}{5} +\dfrac{1}{5} ight)\left( \dfrac{9m}{5} + \dfrac{9}{5} ight) = 2m + 1\Leftrightarrow \left\lbrack \begin{matrix}m = 4 \\m = - \dfrac{4}{9} \\\end{matrix} ight.

    Vậy m \in (2;6)

  • Câu 15: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm f'(x) trên khoảng ( - \infty; + \infty). Đồ thị hàm số y = f'(x) như hình vẽ:

    Hàm số y = f(x) nghịch biến trên khoảng nào trong các khoảng sau?

    Quan sát hình vẽ ta thấy:

    y = f'(x) \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 3 \\
\end{matrix} ight.f'(x)
\leq 0 \Leftrightarrow 0 \leq x \leq 3

    Vậy hàm số y = f(x) nghịch biến trên khoảng (0;3).

  • Câu 16: Thông hiểu

    Tìm điều kiện của tham số m để đồ thị hàm số y = mx^{4} + (2m - 1)x^{2} + m
- 2 chỉ có một điểm cực đại mà không có điểm cực tiểu?

    Xét m = 0 khi đó y = - x^{2} - 2 là hàm số bậc hai có a = -1 < 0 nên đồ thị của hàm số là parabol có bề lõm hướng xuống nên có 1 cực đại mà không có cực tiểu. Suy ra m =
0 thỏa mãn.

    Xét m eq 0 khi đó y = mx^{4} + (2m - 1)x^{2} + m - 2 là hàm số bậc 4 dạng trùng phươn

    Để đồ thị hàm số có một cực đại mà không có cực tiểu thì

    \left\{ \begin{gathered}
  m < 0 \hfill \\
  m\left( {2m - 1} ight) \geqslant 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m < 0 \hfill \\
  \left[ \begin{gathered}
  m \leqslant 0 \hfill \\
  m \geqslant \frac{1}{2} \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow m < 0

    Vậy đáp án cần tìm là m \leq
0.

  • Câu 17: Nhận biết

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R}\backslash\left\{ -
1 ight\} có bảng biến thiên như sau:

    Khẳng định nào sau đây đúng?

    Từ bảng biến thiên ta có:

    \lim_{x ightarrow + \infty}y = -
2 suy ra đồ thị hàm số có tiệm cận ngang y = - 2

    \lim_{x ightarrow ( - 1)^{+}}y = +
\infty suy ra đồ thị hàm số có tiệm cận đứng x = - 1

    Vậy khẳng định đúng: " Đồ thị hàm số có tiệm cận đứng x = - 1 và tiệm cận ngang y = - 2”.

  • Câu 18: Nhận biết

    Trong các hàm số sau, hàm số nào nghịch biến trên từng khoảng xác định?

    Xét hàm số y = \frac{2x + 1}{x -
3} ta có:

    Điều kiện xác định D\mathbb{=
R}\backslash\left\{ 3 ight\}

    Lại có: y' = \frac{- 7}{(x - 3)^{2}}
< 0;\forall x \in D nên hàm số y
= \frac{2x + 1}{x - 3} nghịch biến trên từng khoảng xác định của nó.

  • Câu 19: Vận dụng

    Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (-1; +∞)

    Ta có: y' = 2mx - \left( {m + 6} ight). Theo yêu cầu bài toán ta có:

    y' \leqslant 0;\forall x \in \left( { - 1; + \infty } ight)

    => 2mx - \left( {m + 6} ight) \leqslant 0 \Leftrightarrow m \leqslant \frac{6}{{2x - 1}}

    Xét hàm số g\left( x ight) = \frac{6}{{2x - 1}},x \in \left( { - 1; + \infty } ight)

    Ta có bảng biến thiên như sau:

    Tìm m để hàm số nghịch biến trên khoảng

    Vậy - 2 \leqslant m \leqslant 0

  • Câu 20: Thông hiểu

    Hàm số nào sau đây đồng biến trên \mathbb{R}?

    Ta có hàm số y = \left( \frac{5}{4}
ight)^{x} có cơ số a =
\frac{5}{4} > 1 nên đồng biến trên \mathbb{R}.

    Ngoài ra các hàm số y = \frac{x + 4}{x +
3}; y = x^{4} - 2x^{2} +
1; y = \tan x không thể đồng biến hoặc nghịch biến trên \mathbb{R}.

  • Câu 21: Thông hiểu

    Đồ thị hàm số y = x - \sqrt {{x^2} - 4x + 2} có tiệm cận ngang là:

    Tập xác định D = \mathbb{R}

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \left( {x - \sqrt {{x^2} - 4x + 2} } ight) = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{4x - 2}}{{x + \sqrt {{x^2} - 4x + 2} }} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{4 - \dfrac{2}{x}}}{{1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{2}{{{x^2}}}} }} = 2 \hfill \\  \mathop {\lim }\limits_{x \to  - \infty } \left( {x - \sqrt {{x^2} - 4x + 2} } ight) = \mathop {\lim }\limits_{x \to \infty } \left( {1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{4}{{{x^2}}}} } ight) =  - \infty  \hfill \\ \end{matrix}

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  - \infty } x =  - \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } \left( {1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{2}{{{x^2}}}} } ight) = 2 > 0} \end{array}} ight. nên đồ thị hàm số có đường tiệm cận ngang là y = 2.

  • Câu 22: Thông hiểu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Số điểm cực trị của hàm số g(x) = \left|
f(x) - 2 ight| là:

    Số điểm cực trị của hàm số g(x) = \left|
f(x) - 2 ight| = m + n

    Với m là số điểm cực trị của hàm số y =
f(x) - 2 \Rightarrow m = 2

    n là số nghiệm bội lẻ của phương trình f(x) = 2 \Rightarrow n = 3

    Suy ra số điểm cực trị của hàm số g(x) =
\left| f(x) - 2 ight| = 2 + 3 = 5

  • Câu 23: Vận dụng cao

    Cho hai số thực x, y thỏa mãn x \geqslant 0;y \geqslant 0 và x + y = 1. Giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P = \frac{x}{{y + 1}} + \frac{y}{{x + 1}} lần lượt là:

    Ta có: 

    P = \frac{x}{{y + 1}} + \frac{y}{{x + 1}} = \frac{{x\left( {x + 1} ight) + y\left( {y + 1} ight)}}{{\left( {x + 1} ight)\left( {y + 1} ight)}} = \frac{{{{\left( {x + y} ight)}^2} - 2xy + 1}}{{xy + x + y + 1}} = \frac{{2 - 2xy}}{{2 + xy}}

    Đặt t = xy ta được P = \frac{{2 - 2t}}{{2 + t}}

    x \geqslant 0;y \geqslant 0 \Rightarrow t \geqslant 0

    Mặt khác 1 = x + y \geqslant 2\sqrt {xy}  \Leftrightarrow xy \leqslant \frac{1}{4} \Rightarrow t \leqslant \frac{1}{4}

    Khi đó bài toán trở thành tìm giá trị lớn nhất của hàm số g\left( t ight) = \frac{{2 - 2t}}{{2 + t}} trên \left[ {0;\frac{1}{4}} ight]

    Xét hàm số g\left( t ight) = \frac{{2 - 2t}}{{2 + t}} xác định và liên tục trên \left[ {0;\frac{1}{4}} ight]

    Ta có: g'\left( t ight) = \frac{{ - 6}}{{{{\left( {2 + t} ight)}^2}}} < 0,\forall t \in \left( {0;\frac{1}{4}} ight)

    => Hàm số g(t) nghịch biến trên đoạn \left[ {0;\frac{1}{4}} ight]

    => \left\{ {\begin{array}{*{20}{c}}  {\mathop {\min }\limits_{\left[ {0;\frac{1}{4}} ight]} g\left( t ight) = g\left( {\dfrac{1}{4}} ight) = \dfrac{2}{3}} \\   {\mathop {\max }\limits_{\left[ {0;\frac{1}{4}} ight]} g\left( t ight) = g\left( 0 ight) = 1} \end{array}} ight.

  • Câu 24: Vận dụng

    Có bao nhiêu giá trị thực của tham số m để hàm số y
= \frac{1}{3}x^{3} - \frac{1}{2}(3m + 2)x^{2} + \left( 2m^{2} + 3m + 1
ight)x - 2 có điểm cực đại x_{CÐ} và điểm cực tiểu x_{CT} thỏa mãn biểu thức 3{x_{CÐ}}^{2} - 4x_{CT} = 0?

    Ta có: y' = x^{2} - (3m + 2)x +
\left( 2m^{2} + 3m + 1 ight)\Delta = m^{2} \geq 0;\forall m\mathbb{\in
R} nên y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 2m + 1 \\
x = m + 1 \\
\end{matrix} ight..

    Hàm số có cực đại và cực tiểu khi và chỉ khi m eq 0.

    Trường hợp 1: \left\{ \begin{matrix}
x_{CÐ} = 2m + 1 \\
x_{CT} = m + 1 \\
\end{matrix} ight.

    Do a = \frac{1}{3} > 0 \Rightarrow
x_{CÐ} < x_{CT} \Leftrightarrow 2m + 1 < m + 1 \Leftrightarrow m
< 0

    Lại có 3{x_{CÐ}}^{2} - 4x_{CT} = 0
\Leftrightarrow 3(2m + 1)^{2} - 4(m + 1) = 0

    \Leftrightarrow 12m^{2} + 8m - 1 = 0
\Leftrightarrow m = \frac{- 2 \pm \sqrt{7}}{6}

    Với điều kiện m < 0 \Rightarrow m =
\frac{- 2 - \sqrt{7}}{6} thỏa mãn.

    Trường hợp 2: \left\{ \begin{matrix}
x_{CT} = 2m + 1 \\
x_{CÐ} = m + 1 \\
\end{matrix} ight.

    Do a = \frac{1}{3} > 0 \Rightarrow
x_{CÐ} < x_{CT} \Leftrightarrow m + 1 < 2m + 1 \Leftrightarrow m
> 0

    Lại có 3{x_{CÐ}}^{2} - 4x_{CT} = 0
\Leftrightarrow 3(m + 1)^{2} - 4(2m + 1) = 0

    \Leftrightarrow 3m^{2} - 2m - 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = 1 \\m = - \dfrac{1}{3} \\\end{matrix} ight.

    Với điều kiện m > 0 \Rightarrow m =
1 thỏa mãn.

    Vậy có 2 giá trị thực của tham số m thỏa mãn.

  • Câu 25: Vận dụng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ:

    Tìm tập hợp tất cả các giá trị của tham số m để phương trình f\left( \cos x ight) = - 2m + 1 có nghiệm thuộc khoảng \left( 0;\frac{\pi}{2}ight)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ:

    Tìm tập hợp tất cả các giá trị của tham số m để phương trình f\left( \cos x ight) = - 2m + 1 có nghiệm thuộc khoảng \left( 0;\frac{\pi}{2}ight)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 26: Nhận biết

    Cho hàm số y = f(x) liên tục trên \lbrack 2;5brack và có đồ thị như hình vẽ:

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 2;5brack lần lượt là M;m. Kết luận nào sau đây đúng?

    Quan sát đồ thị ta thấy \left\{\begin{matrix}\max_{\lbrack 2;5brack}y = M = 4 \\\min_{\lbrack 2;5brack}y = m = - 6 \\\end{matrix} ight.\  \Rightarrow M - m = 10

  • Câu 27: Vận dụng

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)^{2}\left( x^{2} - 3x + 2
ight) với mọi x\mathbb{\in
R}.

    a) Phương trình f'(x) = 0 có duy nhất một nghiệm x = 2. Sai||Đúng

    b) Hàm số f(x) đồng biến trên khoảng ( - 3;0). Đúng||Sai

    c) Hàm số f(x) có hai điểm cực trị. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 6x + 1
ight) có ba điểm cực đại. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)^{2}\left( x^{2} - 3x + 2
ight) với mọi x\mathbb{\in
R}.

    a) Phương trình f'(x) = 0 có duy nhất một nghiệm x = 2. Sai||Đúng

    b) Hàm số f(x) đồng biến trên khoảng ( - 3;0). Đúng||Sai

    c) Hàm số f(x) có hai điểm cực trị. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 6x + 1
ight) có ba điểm cực đại. Sai||Đúng

    a) Sai

    Ta có f'(x) = (x - 1)^{2}\left( x^{2}
- 3x + 2 ight) = (x - 1)^{3}(x - 2).

    f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight..

    Vậy phương trình f'(x) = 0 có hai nghiệm.

    b) Đúng

    Bảng biến thiên y = f(x)

    Dựa vào bảng biến thiên của hàm số y =
f(x) ta thấy hàm số đồng biến trên các khoảng ( - \infty;1),(2; + \infty).

    Ta có ( - 3;0) \subset ( -
\infty;1) nên hàm số f(x) đồng biến trên khoảng ( - 3;0).

    c) Đúng

    Dựa vào bảng biến thiên của hàm số y =
f(x) ta thấy hàm số có hai điểm cực trị.

    d) Sai

    Ta có:

    y = f\left( x^{2} - 6x + 1
ight)

    \Rightarrow y^{'} = \left( x^{2} - 6x
+ 1 ight)^{'}f^{'\left( x^{2} - 6x + 1 ight)} = (2x -
6)f'\left( x^{2} - 6x + 1 ight).

    y' = 0 \Leftrightarrow (2x -
6)f'\left( x^{2} - 6x + 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x - 6 = 0 \\
x^{2} - 6x + 1 = 1 \\
x^{2} - 6x + 1 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 3 \\
x = 0 \\
x = 6 \\
x = - 3 + \sqrt{10} \\
x = - 3 - \sqrt{10} \\
\end{matrix} ight..

    Bảng biến thiên y = f\left( x^{2} - 6x +
1 ight)

    Dựa vào bảng biến thiên của hàm số y =
f\left( x^{2} - 6x + 1 ight) ta thấy hàm số có hai điểm cực đại.

  • Câu 28: Thông hiểu

    Số giá trị nguyên của tham số m để hàm số y = \frac{1}{3}x^{3} - 2mx^{2} +
4x - 5 đồng biến trên \mathbb{R}?

    Theo yêu cầu bài toán \Leftrightarrow
y' = x^{2} - 4mx + 4 \geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 > 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow 4m^{2} - 4 \leq 0 \Leftrightarrow
- 1 \leq m \leq 1

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1 ight\}

    Vậy có tất cả 3 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 29: Vận dụng

    Cho hàm số y = \frac{{x + m}}{{x + 1}} với m là tham số thực thỏa mãn 3.\left( {\mathop {\min y}\limits_{\left[ {1;2} ight]}  + \mathop {\max y}\limits_{\left[ {1;2} ight]} } ight) = 16. Mệnh đề nào dưới đây là đúng?

    Xét hàm số y = \frac{{x + m}}{{x + 1}} trên [1; 2] ta có:

    f'\left( x ight) = \frac{{1 - m}}{{{{\left( {x + 1} ight)}^2}}};\forall x \in \left[ {1;2} ight]

    Khi đó:

    \begin{matrix}  \mathop {\min y}\limits_{\left[ {1;2} ight]}  + \mathop {\max y}\limits_{\left[ {1;2} ight]}  = \dfrac{{16}}{3} \hfill \\   \Rightarrow f\left( 1 ight) + f\left( 3 ight) = \dfrac{{16}}{3} \hfill \\   \Rightarrow \dfrac{{1 + m}}{2} + \dfrac{{2 + m}}{3} = \dfrac{{16}}{3} \hfill \\   \Rightarrow m = 5 \hfill \\ \end{matrix}

  • Câu 30: Thông hiểu

    Đồ thị hàm số y = {x^3} - 3{x^2} - 9x + 1 có hai điểm cực trị là A và B. Điểm nào dưới đây thuộc đường thẳng AB?

     Cách 1: Xét hàm số f\left( x ight) = {x^3} - 3{x^2} - 9x + 1

    Ta có: f\left( x ight) = \left( {\frac{1}{3}x - \frac{1}{3}} ight).f'\left( x ight) - 8x - 2

    Đồ thị hàm số f(x) có hai điểm cực trị A và B nên f’(A) = f’(B) = 0

    Suy ra \left\{ {\begin{array}{*{20}{c}}  {{y_A} = f\left( {{x_A}} ight) =  - 8{x_A} - 2} \\   {{y_B} = f\left( {{x_B}} ight) =  - 8{x_B} - 2} \end{array}} ight.

    Do đó phương trình đường thẳng AB là y = -8x – 2

    Khi đó ta có điểm có tọa độ (1; -10) thuộc đường thẳng AB.

    Cách 2: Xét hàm số y = f\left( x ight) = {x^3} - 3{x^2} - 9x + 1

    \begin{matrix}  f'\left( x ight) = 3{x^2} - 6x - 9 \hfill \\  f'\left( x ight) = 0 \Rightarrow 3{x^2} - 6x - 9 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 3} \\   {x =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    => Tọa độ hai điểm cực trị của hàm số là A(3; -26) và B(-1; 6)

    Ta có: \overrightarrow {AB}  = \left( { - 4;32} ight) \Rightarrow \overrightarrow u  = \left( { - 1;8} ight)

    Phương trình đường thẳng AB đ qua B(-1; 6) nhận vecto \overrightarrow u làm vecto chỉ phương là \left\{ {\begin{array}{*{20}{c}}  {x =  - 1 - t} \\   {y = 6 + 8t} \end{array}} ight.;\left( {t \in \mathbb{R}} ight)

    Khi đó ta có điểm có tọa độ (1; -10) thuộc đường thẳng AB.

  • Câu 31: Nhận biết

    Cho hàm số y = f(x) có đạo hàm f'(x) = (3x - 1)(x + 3) trên \mathbb{R}. Tìm số điểm cực trị của hàm số y = f(x)?

    Ta có: f'(x) = 0 \Leftrightarrow\left\lbrack \begin{matrix}x = - 3 \\x = \dfrac{1}{3} \\\end{matrix} ight.

    f'(x) có hai nghiệm đơn nên hàm số y = f(x) có hai điểm cực trị.

  • Câu 32: Thông hiểu

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) = \frac{x}{2} - \sqrt{x + 2} trên đoạn \lbrack - 1;34brack lần lượt là Mm. Tính giá trị của biểu thức A = M + 3m?

    Ta có: y' = \frac{1}{2} -
\frac{1}{2\sqrt{x + 2}} = \frac{\sqrt{x + 2} - 1}{2\sqrt{x +
2}}

    y' = 0 \Leftrightarrow \sqrt{x + 2}
= 1 \Leftrightarrow x = - 1

    \left\{ \begin{matrix}f( - 1) = - \dfrac{3}{2} \\f(34) = 11 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}m = - \dfrac{3}{2} \\M = 11 \\\end{matrix} ight.\  \Rightarrow A = \frac{13}{2}

  • Câu 33: Vận dụng

    Số giá trị nguyên của tham số m \in \left[ { - 20;20} ight] để hàm số y = \frac{1}{3}{x^3} + 2{x^2} + \left( {m + 3} ight)x + 2 đồng biến trên \mathbb{R} là:

    Ta có: y' = {x^2} + 4x + m + 3

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 1 > 0} \\   {\left( {{\Delta _{y'}}} ight)' = 4 - \left( {m + 3} ight) < 0} \end{array}} ight. \Leftrightarrow m \geqslant 1 \hfill \\ \end{matrix}

    Kết hợp với điều kiện \left\{ {\begin{array}{*{20}{c}}  {m \in \left[ { - 20;20} ight]} \\   {m \in \mathbb{Z}} \end{array}} ight.

    => Có 20 giá trị của tham số m thỏa mãn điều kiện đề bài.

  • Câu 34: Thông hiểu

    Hỏi đồ thị hàm số y = \frac{x^{2} -
\sqrt{2 - x}}{x - 1} - x có tất cả bao nhiêu đường tiệm cận?

    Tập xác định D = ( -
\infty;2)\backslash\left\{ 1 ight\}

    Ta có:

    \lim_{x ightarrow - \infty}\left(
\frac{x^{2} - \sqrt{2 - x}}{x - 1} - x ight) = \lim_{x ightarrow -
\infty}\frac{x^{2} - \sqrt{2 - x}}{x - 1}

    = \lim_{x ightarrow -\infty}\dfrac{x\left( 1 + \sqrt{\dfrac{2}{x^{2}} - \dfrac{1}{x}}ight)}{x\left( 1 - \dfrac{1}{x} ight)} = \lim_{x ightarrow -\infty}\dfrac{1 + \sqrt{\dfrac{2}{x^{2}} - \dfrac{1}{x}}}{1 - \dfrac{1}{x}}= 1

    Suy ra y = 1 là tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow 1}\left( \frac{x^{2}
- \sqrt{2 - x}}{x - 1} - x ight) = \lim_{x ightarrow 1}\frac{x^{2} -
\sqrt{2 - x}}{x - 1}

    = \lim_{x ightarrow 1}\frac{x^{2} - 2
+ x}{(x - 1)\left( x + \sqrt{2 - x} ight)} = \lim_{x ightarrow
1}\frac{x + 2}{x + \sqrt{2 - x}} = \frac{3}{2}

    Suy ra hàm số không có tiệm cận đứng

    Vậy hàm số có 1 đường tiệm cận.

  • Câu 35: Vận dụng

    Một máy bay bắt đầu hạ cánh, biết quỹ đạo đường bay của nó được mô hình hóa toán học trong mặt phẳng với hệ tọa độ Oxy(với mỗi đơn vị trên mỗi trục có độ dài bằng 1 dặm) có dạng đồ thị của hàm bậc ba. Vị trí bắt đầu hạ cánh có tọa độ là ( - 4;1) là điểm cực đại của đồ thị hàm số và máy bay này tiếp đất tại vị trí gốc tọa độ là điểm cực tiểu của đồ thị hàm số. Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất bao nhiêu dặm (kết quả làm tròn đến hàng phần trăm)?

    Đáp án: 0,84 dặm

    Đáp án là:

    Một máy bay bắt đầu hạ cánh, biết quỹ đạo đường bay của nó được mô hình hóa toán học trong mặt phẳng với hệ tọa độ Oxy(với mỗi đơn vị trên mỗi trục có độ dài bằng 1 dặm) có dạng đồ thị của hàm bậc ba. Vị trí bắt đầu hạ cánh có tọa độ là ( - 4;1) là điểm cực đại của đồ thị hàm số và máy bay này tiếp đất tại vị trí gốc tọa độ là điểm cực tiểu của đồ thị hàm số. Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất bao nhiêu dặm (kết quả làm tròn đến hàng phần trăm)?

    Đáp án: 0,84 dặm

    Gọi hàm số mô phỏng đường bay của máy bay là y = ax^{3} + bx^{2} + cx + d\ (a eq0).

    Đồ thị hàm số đi qua điểm O(0;0) nên ta có d = 0.

    Đồ thị hàm số đi qua điểm ( -4;1) nên ta có phương trình - 64a +16b - 4c = 1\ \ (1).

    Mặt khác, ta có ( - 4;1)O(0;0) là hai điểm cực trị của đồ thị hàm số nên ta có y'( - 4) = 0;\y'(0) = 0 tức là \left\{\begin{matrix}48a - 8b + c = 0 \\c = 0 \\\end{matrix} ight. (2).

    Từ (1)(2) ta có a =\frac{1}{32};\ b = \frac{3}{16};\ c = 0.

    Suy ra y = \frac{1}{32}x^{3} +\frac{3}{16}x^{2}.

    Thay x = - 3 ta được y = \frac{27}{32} \approx 0,84.

    Vậy khi máy bay ha cánh theo phương ngang 3 dặm thì máy bay cách mặt đất khoảng 0,84 dặm.

  • Câu 36: Nhận biết

    Đồ thị của hàm số nào có dạng như hình vẽ sau đây?

    Ta thấy hình vẽ là đồ thị của hàm bậc ba có hệ số a > 0 nên hàm số cần tìm là y = x^{3} - 3x - 1.

  • Câu 37: Thông hiểu

    Cho hàm số y = \frac{mx + 9}{4x +
m} với m là tham số, khi đó có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng (0;4)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ \frac{- m}{4} ight\}

    Ta có: y' = \frac{m^{2} - 36}{(4x +
m)^{2}}

    Hàm số nghịch biến trên (0;4) khi và chỉ khi

    \left\{ \begin{matrix}
m^{2} - 36 < 0 \\
- \frac{m}{4} otin (0;4) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 6 < m < 6 \\
\left\lbrack \begin{matrix}
m \geq 0 \\
m \leq - 16 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow 0 \leq m < 6

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 0;1;2;...;5 ight\}

    Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 38: Vận dụng cao

    Có bao nhiêu giá trị nguyên của m \in\lbrack - 10;10brack để hàm số y= \left| x^{4} + 2mx^{3} + (3 - 3m)x^{2} - 2mx + 3m - 4 ight|7 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu giá trị nguyên của m \in\lbrack - 10;10brack để hàm số y= \left| x^{4} + 2mx^{3} + (3 - 3m)x^{2} - 2mx + 3m - 4 ight|7 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 39: Thông hiểu

    Cho hàm số y = - x^{3} - 3(m + 1)x^{2} +
3(2m - 1)x + 2020. Có bao nhiêu giá trị nguyên của tham số m để hàm số nghịch biến trên ( - \infty; +
\infty)?

    Ta có: y' = - 3x^{2} - 6(m + 1)x +
3(2m - 1)

    Để hàm số đã cho nghịch biến trên ( -
\infty; + \infty)

    \Leftrightarrow y' \leq 0
\Leftrightarrow \Delta' \leq 0

    \Leftrightarrow 9\left( m^{2} + 2m + 1
ight) + 18m - 9 \leq 0

    \Leftrightarrow 9m^{2} + 36m \leq 0
\Leftrightarrow - 4 \leq m \leq 0

    Do m\mathbb{\in Z} nên có tất cả 5 giá trị của m thỏa mãn điều kiện.

  • Câu 40: Thông hiểu

    Tìm hàm số tương ứng với đồ thị hàm số sau đây?

    Đồ thị hàm số có hệ số a < 0 và có hai điểm cực trị là A(0;1),B(2;5) nên chỉ có hàm số y = - x^{3} + 3x^{2} + 1 thỏa mãn vì

    y' = - 3x^{2} + 6x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}
x = 0 \Rightarrow y = 1 \Rightarrow A(0;1) \\
x = 2 \Rightarrow y = 5 \Rightarrow B(2;5) \\
\end{matrix} ight..

    Vậy hàm số xác định được là y = - x^{3} +
3x^{2} + 1.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Hàm số - Sự biến thiên của hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 33 lượt xem
Sắp xếp theo