Tìm điểm M thuộc đồ thị hàm số
sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ điểm M đến trục hoành:
Do M thuộc đồ thị hàm số nên tọa độ điểm
Phương trình tiệm cận đứng là x – 1 = 0 (d’)
Giải phương trình d(M,d’) = d(M, Ox)
=>
Tìm điểm M thuộc đồ thị hàm số
sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ điểm M đến trục hoành:
Do M thuộc đồ thị hàm số nên tọa độ điểm
Phương trình tiệm cận đứng là x – 1 = 0 (d’)
Giải phương trình d(M,d’) = d(M, Ox)
=>
Cho hai số thực x, y thỏa mãn
và x + y = 1. Giá trị nhỏ nhất và giá trị lớn nhất của biểu thức
lần lượt là:
Ta có:
Đặt t = xy ta được
Vì
Mặt khác
Khi đó bài toán trở thành tìm giá trị lớn nhất của hàm số trên
Xét hàm số xác định và liên tục trên
Ta có:
=> Hàm số g(t) nghịch biến trên đoạn
=>
Cho hàm số
có bảng biến thiên như sau:

Giá trị cực đại của hàm số đã cho bằng:
Quan sát bảng biến thiên dễ thấy giá trị cực đại của hàm số đã cho bằng 3.
Giá trị lớn nhất của hàm số
trên đoạn
bằng
Ta có:
Suy ra hàm số nghịch biến trên đoạn .
Do đó
Quan sát đồ thị hàm số
:

Số giá trị nguyên của tham số
để phương trình
có hai nghiệm phân là:
Ta có:
Để phương trình có hai nghiệm
Mà nên có tất cả 2023 giá trị của tham số m thỏa mãn yêu cầu để bài.
Có bao nhiêu giá trị nguyên của tham số
để phương trình
có 4 nghiệm thực phân biệt?
Đặt . Ta được phương trình
Phương trình đã cho có 4 nghiệm thực phân biệt khi và chỉ khi phương trình có 2 nghiệm dương phân biệt
Do
Vậy có 2 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Hàm số
đồng biến trên các khoảng
và
khi nào?
Tập xác định
Ta có: . Để hàm số đồng biến trên từng khoảng xác định thì
Vậy hàm số đồng biến trên các khoảng
và
khi
.
Cho hàm số
với
là tham số. Gọi
là tập hợp tất cả các giá trị của tham số
để hàm số nghịch biến trên một khoảng có độ dài bằng
. Tính tổng các phần tử của tập hợp
?
Ta có:
Dễ thấy nếu suy ra hàm số đồng biến trên
nên trường hợp này không thỏa mãn
Theo yêu cầu bài toán
Vậy tổng tất cả các phần tử của tập S bằng -2.
Cho hàm số
(với m là tham số thực). Tìm giá trị lớn nhất của tham số m để hàm số có giá trị nhỏ nhất bằng -2 trên đoạn [0; 3].
Xét hàm số trên đoạn [0; 3] ta có:
=> Hàm số f(x) đồng biến trên (0; 3)
=>
Theo bài ra ta có:
Trên khoảng (0; +∞) thì hàm số y = -x3 + 3x + 1
Ta có:
Từ bảng biến thiên => Hàm số có giá trị lớn nhất bằng 3
Cho hàm số f(x) có đạo hàm . Gọi P là giá trị cực đại của hàm số đã cho. Chọn khẳng định đúng.
Ta có:
Ta có bảng biến thiên như sau:

Dựa vào bảng biến thiên ta có giá trị cực đại của hàm số là P = f(-3)
Tìm tất cả các giá trị của tham số
để hàm số
nghịch biến trên khoảng
?
Ta có:
Hàm số đã cho nghịch biến trên khoảng khi
nằm trong khoảng hai nghiệm
Vậy đáp án cần tìm là .
Cho hàm số
có bảng xét dấu
như sau:

Hàm số
đồng biến trong khoảng nào dưới đây?
Cho hàm số có bảng xét dấu
như sau:
Hàm số đồng biến trong khoảng nào dưới đây?
Gia đình bác T muốn xây một bình chứa hình trụ có thể tích
. Đáy làm bằng bê tông giá 100 nghìn đồng/m2, thành làm bằng tôn giá 90 nghìn đồng/m2, nắp bằng nhôm giá 140 nghìn đồng/m2. Vậy đáy của hình trụ có bán kính bằng bao nhiêu để chi phí xây dựng là thấp nhất?
Gọi là bán kính đáy của bình chứa hình trụ
Khi đó tổng số tiền phải trả là
Đặt
Vậy để chi phí xây dựng là thấp nhất thì bán kính đáy bằng .
Cho hàm số
có bảng biến như sau:

Tìm tất cả các giá trị của tham số m để bất phương trình
có một nghiệm?
Đặt
Khi đó bất phương trình trở thành
Bất phương trình có nghiệm khi bất phương trình
có nghiệm
Cho hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Ta có:
Ta có bảng xét dấu
Suy ra hàm số đồng biến trên khoảng .
Cho hàm số
, hàm số
liên tục trên
và có đồ thị như sau:

Bất phương trình
(với
là một số thực) nghiệm đúng với mọi
khi và chỉ khi:
Ta có:
Xét hàm số ta có:
. Với
thì
Từ đó nên hàm số nghịch biến trên
Suy ra . Yêu cầu bài toán tương đương với
.
Tìm giá trị nhỏ nhất của hàm số
trên khoảng (0; 1)
Hàm số xác định và liên tục trên (0; 1) ta có:
Lập bảng biến thiên:

Từ bảng biến thiên ta có:
Có bao nhiêu giá trị nguyên âm của
để đồ thị hàm số
cắt trục hoành tại đúng một điểm?
Phương trình hoành độ giao điểm của đồ thị và trục hoành là:
Ta thấy không là nghiệm của phương trình nên
Xét hàm số
Ta có:
Bảng biến thiên của hàm số như sau:
Từ bảng biến thiên ta thấy đồ thị hàm số đã cho cắt trục hoành tại đúng một điểm khi (*) có đúng 1 nghiệm
Vì nguyên âm nên
Vậy có 10 giá trị của a thỏa mãn yêu cầu bài toán.
Cho hàm số y = f’(x) như hình vẽ. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng 11 điểm cực trị?

Hàm số đạt cực trị tại
Xét hàm số
Bảng biến thiên của hàm số suy ra chỉ có phương trình
cho ta nghiệm bội lẻ.
Nếu
=> Số điểm cực trị u là 1
=> Số nghiệm bội lẻ của phương trình u = 4 tối đa 2 nghiệm bội lẻ (Không thỏa yêu cầu)
Khi m > 0 => Số điểm cực trị u là 5 ta có bảng biến thiên của hàm số

Áp dụng công thức:
Số điểm cực trị của hàm số f(u) = số nghiệm bội lẻ của phương trình (u = 4) + số điểm cực trị của u
=> . Kết hợp với điều kiện
=> Có 29 giá trị nguyên thỏa mãn yêu cầu.
Tìm điều kiện của tham số
để hàm số
có ba điểm cực trị?
Hàm số có ba điểm cực trị khi và chỉ khi
.
Để hàm số đa cho có ba điểm cực trị khi và chỉ khi .
Hàm số y = x3 – 3x2 nghịch biến trên khoảng nào dưới đây?
Ta có:
Theo dấu hiệu nhận biết tính đơn điệu của hàm số, hàm số nghịch biến trên (0; 2)
Cho hình vẽ:

Đường trong trong hình vẽ là đồ thị của hàm số nào?
Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng với
Vậy hàm số cần tìm là .
Cho hàm số
liên tục, có đạo hàm trên
. Đồ thị hàm số
như sau:

Hàm số
nghịch biến trên khoảng
. Giá trị lớn nhất của
bằng bao nhiêu?
Cho hàm số liên tục, có đạo hàm trên
. Đồ thị hàm số
như sau:
Hàm số nghịch biến trên khoảng
. Giá trị lớn nhất của
bằng bao nhiêu?
Cho hàm số
biết
. Có thể có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng ba điểm cực trị?
Cho hàm số biết
. Có thể có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng ba điểm cực trị?
Cho hàm số
, đồ thị của hàm số
là đường cong như hình vẽ:

Giá trị nhỏ nhất của hàm số
trên đoạn
bằng:
Ta có:
trong đó các nghiệm
là nghiệm đơn và
là nghiệm kép.
nên ta có bảng biến thiên của hàm
như sau:
Vậy .
Cho x, y, z là ba số thực thuộc đoạn [1; 9] và
. Giá trị nhỏ nhất của biểu thức
bằng:
Ta có:
(đúng do
)
Dấu bằng xảy ra khi và chỉ khi a = b hoặc ab = 1
Áp dụng bất đẳng thức trên ta có:
Đặt . Xét hàm số
trên đoạn [1; 3]
Do
Ta có bảng biến thiên

Suy ra khi và chỉ khi
Cho hàm số
có bảng biến thiên như sau:

Hàm số đạt cực tiểu tại điểm
Từ bảng biến thiên, hàm số đạt cực tiểu tại điểm .
Hàm số tương ứng với đồ thị trong hình vẽ dưới đây là:

Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng với
nên hàm số tương ứng là
.
Cho hàm số
xác định trên
và có bảng biến thiên như sau:

Số giá trị nguyên của tham số
để phương trình
có ba nghiệm phân biệt là:
Phương trình là phương trình hoành độ giao điểm của hai đồ thị
và đường thẳng
Để phương trình có ba nghiệm phân biệt khi và chỉ khi
có ba giao điểm
Mà
Vậy có 2 giá trị nguyên của tham số m thỏa mãn điều kiện đề bài.
Đường tiệm cận ngang của đồ thị hàm số
có phương trình là:
Ta có:
Vậy đường thẳng là tiệm cận ngang của đồ thị hàm số.
Cho hàm số
. Điều kiện cần và đủ của tham số
để hàm số nghịch biến trên
là:
Tập xác định
Ta có:
Để hàm số đã cho nghịch biến trên thì
Vậy giá trị cần tìm là .
Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
có đúng ba đường tiệm cận?
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng ba đường tiệm cận?
Tìm tất cả các giá trị thực của tham số
để hàm số
đạt cực tiểu tại điểm
?
Ta có:
Điều kiện cần
Điều kiện đủ:
Khi suy ra
là điểm cực đại của hàm số.
Khi suy ra
là điểm cực tiểu của hàm số.
Vậy giá trị m thỏa mãn yêu cầu bài toán là .
Cho hàm số
có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Từ bảng biến thiên ta thấy hàm số nghịch biến trên
Suy ra hàm số nghịch biến trên .
Số các giá trị nguyên của tham số
để hàm số
có giá trị nhỏ nhất trên đoạn
thuộc khoảng
là:
Xét hàm số trên
ta có:
Mà
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu.
Cho hàm số
có: ![]()
![]()
Xét tính đúng sai của các khẳng định sau:
a) Đồ thị của hàm số
có tiệm cận ngang là đường thẳng
. Đúng||Sai
b) Đồ thị của hàm số
có tiệm cận đứng là đường thẳng
. Đúng||Sai
c) Đồ thị của hàm số
không có tiệm cận ngang. Sai|| Đúng
d) Đồ thị của hàm số
không có tiệm cận đứng. Sai|| Đúng
Cho hàm số có:
Xét tính đúng sai của các khẳng định sau:
a) Đồ thị của hàm số có tiệm cận ngang là đường thẳng
. Đúng||Sai
b) Đồ thị của hàm số có tiệm cận đứng là đường thẳng
. Đúng||Sai
c) Đồ thị của hàm số không có tiệm cận ngang. Sai|| Đúng
d) Đồ thị của hàm số không có tiệm cận đứng. Sai|| Đúng
a) Do nên
là đường tiệm cận ngang của đồ thị hàm số. (*)
b) Do nên
là đường tiệm cận đứng của đồ thị hàm số. (**)
c) Từ (*) suy ra khẳng định này sai.
d) Từ (**) suy ra khẳng định này sai.
Cho hàm số
có đồ thị (C). Biết rằng đồ thị (C) có ba điểm cực trị tạo thành ba đỉnh của tam giác ABC. Diện tích tam giác ABC bằng:
Ta có:
Tọa độ các điểm cực trị của đồ thị hàm số là
=> Tam giác ABC vuông cân tại A =>
Cho hàm số y = f(x) có đúng ba điểm cực trị -2; -1; 0 và có đạo hàm liên tục trên
. Khi đó hàm số
có bao nhiêu điểm cực trị?
Ta có hàm số y = f(x) có đúng ba điểm cực trị -2; -1; 0 và có đạo hàm liên tục trên nên f’(x) = 0 có ba nghiệm x = -2; x = -1, x = 0
Đặt
Vì f’(x) liên tục trên nên g’(x) cũng liên tục trên
. Do đó những điểm g’(x) có thể đổi dấu thuộc tập các điểm thỏa mãn.
Ba nghiệm trên đều là nghiệm đơn hoặc bội lẻ nên hàm số g(x) có ba điểm cực trị.
Đồ thị hàm số nào có đường tiệm cận đứng đi qua điểm
?
Xét hàm số
Ta có: suy ra
là tiệm cận đứng của đồ thị hàm số.
Tiệm cận đứng đi qua điểm .