Đề kiểm tra 45 phút Chương 1 Khối đa diện

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Khối đa diện được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {4;3} ight\} là:

    Khối đa diện đều loại \left\{ {4;3} ight\} là khối lập phương, gồm 6 mặt là các hình vuông nên tổng các góc bằng:  6.2\pi  = 12\pi

  • Câu 2: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi MN lần lượt là trung điểm của các cạnh ABAD; H là giao điểm của CNDM. Biết SH vuông góc với mặt phẳng (ABCD)SH =a \sqrt 3. Tính thể tích khối chóp S.CDNM.

     

    Theo giả thiết, ta có SH = a\sqrt 3.

    Diện tích tứ giác:

    {S_{CDNM}} = {S_{ABCD}} - {S_{\Delta AMN}} - {S_{\Delta BMC}}

    = A{B^2} - \frac{1}{2}AM.AN - \frac{1}{2}BM.BC = {a^2} - \frac{{{a^2}}}{8} - \frac{{{a^2}}}{4} = \frac{{5{a^2}}}{8}

    Vậy  {V_{S.CDNM}} = \frac{1}{3}{S_{CDNM}}.SH = \frac{{5{a^3}\sqrt 3 }}{{24}}.

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên (SAB)(SAD) cùng vuông góc với mặt phẳng đáy (ABCD). Tính theo a thể tích V của khối chóp S.ABCD.

     

    Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra SA \bot \left( {ABCD} ight). Do đó chiều cao khối chóp là SA = a\sqrt {15}.

    Diện tích hình chữ nhật ABCD là {S_{ABCD}} = AB.BC = 2{a^2}

    Vậy thể tích khối chóp {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{2{a^3}\sqrt {15} }}{3}

  • Câu 4: Vận dụng cao

    Cho lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a, tâm O và \widehat {ABC} = {120^0}. Góc giữa cạnh bên AA' và mặt đáy bằng 60^0. Đỉnh A' cách đều các điểm A, B, D. Tính theo a thể tích V của khối lăng trụ đã cho.

     

    Từ giả thiết suy ra tam giác ABD đều cạnh a.

    Gọi H là tâm tam giác ABD. Vì A' cách đều các điểm A,B, D nên A'H \bot \left( {ABD} ight).

    Do đó {60^0} = \widehat {AA',\left( {ABCD} ight)} = \widehat {AA',HA} = \widehat {A'AH}.

    Ta có AH = \frac{2}{3}AO = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}.

    Tam giác vuông A'AH, có A'H = AH.\tan \widehat {A'AH} = a.

    Diện tích hình thoi {S_{ABCD}} = 2{S_{\Delta ABD}} = \frac{{{a^2}\sqrt 3 }}{2}.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.A'H = \frac{{{a^3}\sqrt 3 }}{2}.

  • Câu 5: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

  • Câu 6: Vận dụng

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {3;5} ight\} là:

    Khối đa diện đều loại \left\{ {3;5} ight\} là khối hai mươi mặt đều:

    Gồm 20 mặt là các tam giác đều nên tổng các góc bằng: 20.\pi  = 20\pi

  • Câu 7: Thông hiểu

    Số cạnh của hình đa diện luôn luôn là một số tự nhiên

     Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.

  • Câu 8: Vận dụng cao

    Có thể chia một hình lập phương thành bao nhiêu khối tứ diện bằng nhau?

    Chia hình lập phương

    Lần lượt dùng mặt phẳng (BDD'B') ta chia khối lập phương thành hai khối lăng trụ ABD.A'B'D' và BCD,B'C'D'.

    +) Với khối ABD.A'B'D' ta lần lượt dùng các mặt phẳng (AB'D') và (AB'D) chia thành ba khối tứ diện bằng nhau.

    +) Tương tự với khối BCD.B'C'D'

    Vậy có tất cả 6 khối tứ diện bằng nhau.

  • Câu 9: Thông hiểu

    Chọn khẳng định đúng trong các khẳng định sau:

    Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

  • Câu 10: Nhận biết

    Mệnh đề nào sau đây đúng?

     Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

    - Khối lập phương có 6 mặt.

    \Rightarrow "Mọi khối đa diện đều có số mặt là những số chia hết cho 4" \Rightarrow Sai.

    - Khối lập phương và khối bát diện đều có cùng số cạnh là 12. \Rightarrow Đúng

    - Khối tứ diện đều không có tâm đối xứng.

    \Rightarrow "Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.

    - Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.

    \Rightarrow "Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai

     

  • Câu 11: Nhận biết

    Tính thể tích V của khối lăng trụ tam giác đều có tất cả các cạnh bằng a?

     

    Xét khối lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a.

  • Câu 12: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy (ABCD) và SC = a\sqrt 5. Tính theo a thể tích V khối chóp S.ABCD.

     Thể tích khối chóp

    Đường chéo hình vuông AC = a\sqrt 2

    Xét tam giác SAC, ta có SA = \sqrt {S{C^2} - A{C^2}}  = a\sqrt 3.

    Chiều cao khối chóp là SA = a\sqrt 3.

    Diện tích hình vuông ABCD là {S_{ABCD}} = {a^2}

    Vậy thể tích khối chóp {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{{a^3}\sqrt 3 }}{3}.

  • Câu 13: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Đáp án là:

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Diện tích hình thang ABCD là

    {S_{ABCD}} = \left( {\frac{{AD + BC}}{2}} ight).AB = \frac{3}{2}

    Chiều cao khối chóp là SA=2.

    Vậy thể tích khối chóp  {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = 1

  • Câu 14: Nhận biết

    Cho khối lăng trụ đứng ABC.A'B'C'BB'=a, đáy ABC là tam giác vuông cân tại BAC = a\sqrt 2. Tính thể tích của khối lăng trụ đã cho.

     

    Tam giác ABC vuông cân tại B,

    suy ra BA = BC = \frac{{AC}}{{\sqrt 2 }} = a \Rightarrow {S_{\Delta ABC}} = \frac{{{a^2}}}{2}

    Vậy thể tích khối lăng trụ V = {S_{\Delta ABC}}.BB' = \frac{{{a^3}}}{2}

  • Câu 15: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!

  • Câu 16: Vận dụng

    Cho hình đa diện đều loại \left\{ {4;3} ight\} cạnh a. Gọi S là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?

    Đa diện đều loại \left\{ {4;3} ight\} là khối lập phương nên có 6 mặt là các hình vuông cạnh a.

    Vậy hình lập phương có tổng diện tích tất cả các mặt là S=6a^2

  • Câu 17: Thông hiểu

    Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?

    Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:

    Đ=4; M=4; C=6

  • Câu 18: Nhận biết

    Cho hình hộp chữ nhật có diện tích ba mặt cùng xuất phát từ cùng một đỉnh là 10{\text{c}}{{\text{m}}^2},\,\,20{\text{c}}{{\text{m}}^2},\,\,32{\text{c}}{{\text{m}}^2}. Tính thể tích V của hình hộp chữ nhật đã cho.

     

    Xét hình hộp chữ nhật ABCD.A'B'C'D' có đáy ABCD là hình chữ nhật.

    Theo bài ra, ta có \left\{ \begin{gathered}  {S_{ABCD}} = 10\,{\text{c}}{{\text{m}}^{\text{2}}} \hfill \\  {S_{ABB'A'}} = 20\,{\text{c}}{{\text{m}}^2} \hfill \\  {S_{ADD'A'}} = 30\,{\text{c}}{{\text{m}}^2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  AB.AD = 10 \hfill \\  AB.AA' = 20 \hfill \\  AA'.AD = 32 \hfill \\ \end{gathered}  ight.

    Nhân vế theo vế, ta được {\left( {AA'.AB.AD} ight)^2} = 6400 \Rightarrow AA'.AB.AD = 80.

    Vậy  {V_{ABCD.A'B'C'D'}} = AA'.AB.AD = 80\,{\text{c}}{{\text{m}}^{\text{3}}}.

  • Câu 19: Thông hiểu

    Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?

     Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

  • Câu 20: Thông hiểu

    Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa mặt bên và mặt đáy bằng 60^{0}. Thể tích V của khối chóp S.ABCD bằng

    Hình vẽ minh họa

    Gọi O là tâm của đáy, gọi M là trung điểm của BC.

    Ta có \left\{ \begin{matrix}
SO\bot BC \\
OM\bot BC \\
\end{matrix} ight. nên (SOM)\bot BC

    Suy ra \left\lbrack (SCD),(ABCD)
ightbrack = (SM,OM) = \widehat{SMO} = 60^{0}.

    OM = \frac{1}{2}BC =
\frac{a}{2}, SO = OMtan60^{0} =
\frac{a\sqrt{3}}{2}.

    Thể tích khối chóp S.ABCD

    V_{S.ABCD} = \frac{1}{3}SO.S_{ABCD} =
\frac{1}{3}.\frac{a\sqrt{3}}{2}.a^{2} =
\frac{a^{3}\sqrt{3}}{6}.

  • Câu 21: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA=SB, SC=SD\left( {SAB} ight) \bot \left( {SCD} ight). Tổng diện tích hai tam giác SABSCD bằng \frac{{7{a^2}}}{{10}}. Tính thể tích V của khối chóp  S.ABCD?

     

    Gọi M, N lần lượt là trung điểm của ABCD.

    Tam giác SAB cân tại S suy ra SM \bot AB \Rightarrow SM \bot d với d = \left( {SAB} ight) \cap \left( {SCD} ight).

    \left( {SAB} ight) \bot \left( {SCD} ight) suy ra SM \bot \left( {SCD} ight) \Rightarrow SM \bot SN\left( {SMN} ight) \bot \left( {ABCD} ight)

    Kẻ SH \bot MN\xrightarrow{{}}SH \bot \left( {ABCD} ight).

    Ta có {S_{\Delta SAB}} + {S_{\Delta SCD}} = \frac{{7{a^2}}}{{10}}

    \Leftrightarrow \frac{1}{2}AB.SM + \frac{1}{2}CD.SN = \frac{{7{a^2}}}{{10}}\xrightarrow{{}}SM + SN = \frac{{7a}}{5}.

    Tam giác SMN vuông tại S nên S{M^2} + S{N^2} = M{N^2} = {a^2}

    Giải hệ:

    \left\{ \begin{gathered}  SM + SN = \frac{{7a}}{5} \hfill \\  S{M^2} + S{N^2} = {a^2} \hfill \\ \end{gathered}  ight.  \Leftrightarrow SM = \frac{{3a}}{5}{\text{ }} hoặc  SN = \frac{{4a}}{5}

    \xrightarrow{{}}SH = \frac{{SM.SN}}{{MN}} = \frac{{12a}}{{25}}

    Vậy thể tích khối chóp V_{S.ABCD} = \frac{1}{3}.{S_{ABCD}}.SH = \frac{{4{a^3}}}{{25}}.

  • Câu 22: Thông hiểu

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = AA' = a, đường chéo AC'hợp với mặt đáy (ABCD) một góc \alpha thỏa mãn \cot \alpha  = \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Ta có AA' \bot \left( {ABCD} ight) nên \widehat {A'C,\left( {ABCD} ight)} = \widehat {A'C,AC} = \widehat {A'CA}.

    Tam giác vuông A'AC, ta có AC = AA'.\cot \alpha  = a\sqrt 5.

    Tam giác vuông ABC, ta có BC = \sqrt {A{C^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.BC = 2{a^2}.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.AA' = 2{a^3}.

  • Câu 23: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

     Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 24: Thông hiểu

    Trong các hình dưới đây, hình nào không phải đa diện lồi?

     Áp dụng dấu hiệu nhận biết của khối đa diện lồi (H): Đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Ta thấy có hình sau vi phạm tính chất đó:

     

  • Câu 25: Nhận biết

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 26: Vận dụng

    Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?

    Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.

    Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3Đ =2C.

  • Câu 27: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

     Xét các đáp án, ta có: 

    - A Đúng: Ta chứng minh như sau:

    Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.

    M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)

    Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)

    Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.

    - B Sai.

    - C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.

    - D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh

  • Câu 28: Thông hiểu

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

    Đáp án là:

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

     Có hai khối đa diện lồi là: Hình 1 & Hình 4

  • Câu 29: Thông hiểu

    Hình đa diện nào dưới đây không có tâm đối xứng?

     Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)

    Hình lăng trụ tam giác cũng không có tâm đối xứng.

    Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng

    Bát diện đều cũng có tâm đối xứng.

  • Câu 30: Vận dụng

    Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng ?

    Hình lăng trụ tam giác đều có 1 mặt phẳng đối xứng đi qua trung điểm của các cạnh bên (song song với đáy) và 3 mặt phẳng đối xứng vuông góc với đáy ( giao với 2 đáy theo các đường trung tuyến của tam giác đáy).

    Vậy hình lăng trụ tam giác đều có mặt phẳng đối xứng (hình vẽ bên dưới).

    Mp đối xứng trong lăng trụ

  • Câu 31: Vận dụng

    Tính theo a thể tích V của khối hộp chữ nhật ABCD.A'B'C'D'. Biết rằng mặt phẳng \left( {A'BC} ight) hợp với đáy \left( {ABCD} ight) một góc 60^0, A'C hợp với đáy \left( {ABCD} ight) một góc 30^0AA' = a\sqrt 3.

     

    Ta có

    {30^0} = \widehat {A'C,\left( {ABCD} ight)} = \widehat {A'C,AC} = \widehat {A'CA};

    {60^0} = \widehat {\left( {A'BC} ight),\left( {ABCD} ight)} = \widehat {A'B,AB} = \widehat {A'BA}

    Tam giác vuông A'AB, có AB = \frac{{AA'}}{{\tan \widehat {A'BA}}} = a.

    Tam giác vuông A'AC, có AC = \frac{{AA'}}{{\tan \widehat {A'CA}}} = 3a.

    Tam giác vuông ABC, có BC = \sqrt {A{C^2} - A{B^2}}  = 2a\sqrt 2.

    Diện tích hình chữ nhật {S_{ABCD}} = AB.BC = 2{a^2}\sqrt 2.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.AA' = 2{a^3}\sqrt 6

  • Câu 32: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C'có thể tích bằng 60 \,\text{cm}^3, các điểm M, N, P lần lượt thuộc các cạnh AA',BB',CC' sao cho AM = 2MA',BN = 3NB',CP = 4PC'. Thể tích của khối đa diện BC.MNP là bao nhiêu? (Đơn vị: cm^3)

    31 || 31 cm^3 || ba mươi mốt xăng ti mét khối || Ba mươi mốt xăng ti mét khối

    Đáp án là:

    Cho khối lăng trụ ABC.A'B'C'có thể tích bằng 60 \,\text{cm}^3, các điểm M, N, P lần lượt thuộc các cạnh AA',BB',CC' sao cho AM = 2MA',BN = 3NB',CP = 4PC'. Thể tích của khối đa diện BC.MNP là bao nhiêu? (Đơn vị: cm^3)

    31 || 31 cm^3 || ba mươi mốt xăng ti mét khối || Ba mươi mốt xăng ti mét khối

     

    Ta có   MA = 2MA' \Rightarrow \frac{{AM}}{{AA'}} = \frac{2}{3};

               BN = 3NB' \Rightarrow \frac{{BN}}{{BB'}} = \frac{3}{4};

               CP = 4PC' \Rightarrow \frac{{CP}}{{CC'}} = \frac{4}{5}

    Nên \dfrac{{{V_{ABCMNP}}}}{{{V_{ABCA'B'C'}}}} = \frac{{\dfrac{2}{3} + \dfrac{3}{4} + \dfrac{4}{5}}}{3} = \dfrac{{133}}{{180}} \Rightarrow {V_{ABCMNP}} = \dfrac{{133}}{{180}}.60 = \dfrac{{133}}{3}

    Mà  {V_{M.ABC}} = \frac{1}{3}d\left( {M;\left( {ABC} ight)} ight).{S_{ABC}}

         = \frac{1}{3}.\frac{2}{3}d\left( {A';\left( {ABC} ight)} ight).{S_{ABC}} = \frac{2}{9}.{V_{ABC.A'B'C'}} = \frac{{40}}{3}.

    Vậy {V_{BCMNP}} = \frac{{133}}{3} - \frac{{40}}{3} = 31\left( {c{m^3}} ight).

  • Câu 33: Vận dụng cao

    Cho tứ diện đều SABC có cạnh bằng 1. Mặt phẳng (P) đi qua điểm S và trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Tính thể tích nhỏ nhất {V_{\min }} của khối tứ diện SAMN.

    Gọi E là trung điểm của BC.

    Qua B, C lần lượt kẻ đường thẳng song song với MN và cắt đường thẳng AE tại P, Q.

    Theo định lí Talet, ta có:

    \left\{ \begin{gathered}  \frac{{AB}}{{AM}} = \frac{{AP}}{{AG}} \hfill \\  \frac{{AC}}{{AN}} = \frac{{AQ}}{{AG}} \hfill \\ \end{gathered}  ight. \Rightarrow \frac{{AB}}{{AM}} + \frac{{AC}}{{AN}} = \frac{{AP}}{{AG}} + \frac{{AQ}}{{AG}} = \frac{{AP + AQ}}{{AG}}

    Mặt khác \Delta BPE = \Delta CQE\xrightarrow{{}}PE = QE\,

    \Rightarrow \,\,AP + AQ = \left( {AE - PE} ight) + \left( {AE + QE} ight) = 2AE

    Do đó \frac{{AB}}{{AM}} + \frac{{AC}}{{AN}} = \frac{{2AE}}{{AG}} = 2.\frac{3}{2} = 3 \Rightarrow \frac{1}{{AM}} + \frac{1}{{AN}} = 3.

    Đặt \left\{ \begin{gathered}  AM = x \hfill \\  AN = y \hfill \\ \end{gathered}  ight. \Rightarrow \frac{1}{x} + \frac{1}{y} = 3

    SABC là tứ diện đều \Rightarrow \,\,SG \bot \left( {ABC} ight)  và SG = \frac{{\sqrt 2 }}{{\sqrt 3 }}

    Do đó   {V_{SAMN}} = \frac{1}{3}{S_{\Delta AMN}}.SG

    = \frac{1}{3}\left( {\frac{1}{2}AM.AN\sin {{60}^0}} ight).SG

    = \frac{{\sqrt 2 }}{{12}}AM.AN = \frac{{\sqrt 2 }}{{12}}xy

    Ta có 3 = \frac{1}{x} + \frac{1}{y} \geqslant \frac{2}{{\sqrt {xy} }}

    \Leftrightarrow \sqrt {xy}  \geqslant \frac{2}{3} \Leftrightarrow xy \geqslant \frac{4}{9}

    \Rightarrow {V_{\min }} = \frac{{\sqrt 2 }}{{27}}

  • Câu 34: Thông hiểu

    Một hình đa diện có các mặt là những tam giác. Gọi M là tổng số mặt và C là tổng số cạnh của đa diện đó. Mệnh đề nào sau đây đúng.

     Vì mỗi mặt là những tam giác nên có tổng số cạnh là 3M.  Mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3M = 2C.

  • Câu 35: Nhận biết

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

    Đáp án là:

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

     

    Hình bát diện đều có 12 cạnh.

  • Câu 36: Nhận biết

    Vật thể nào trong các vật thể sau không phải là khối đa diện?

    Vì đáp án đã vi phạm tính chất sau: 

    Mỗi cạnh của miền đa giác nào cũng là cạnh chung của đúng hai miền đa giác

  • Câu 37: Nhận biết

    Khái niệm chính xác nhất về khối đa diện là:

     Áp dụng định nghĩa khối đa diện, ta có:

    “Khối đa diện là phần không gian được giới hạn bởi 1 hình đa diện, kể cả hình đa diện đó.”

  • Câu 38: Vận dụng

    Gọi {n_1},{m{ }}{n_2},{m{ }}{n_3} lần lượt là số trục đối xứng của khối tứ diện đều, khối chóp tứ giác đều và khối lập phương. Mệnh đề nào sau đây là đúng? 

    Khối tứ diện đều có 3 trục đối xứng (đi qua trung điểm của các cặp cạnh đối diện).

    Khối chóp tứ giác đều có 1 trục đối xứng (đi qua đỉnh và tâm của mặt tứ giác).

    Khối lập phương có 9 trục đối xứng

    (Loại 1: đi qua tâm của các mặt đối diện ;

    Loại 2: đi qua trung điểm các cặp cạnh đối diện).

  • Câu 39: Thông hiểu

    Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên gấp hai lần cạnh đáy. Tính thể tích V của khối chóp đã cho.

     

    Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Vì S.ABC là khối chóp đều nên suy ra \,SI \bot \left( {ABC} ight).

    Gọi M là trung điểm của BC\,\, \Rightarrow \,\,AI = \frac{2}{3}AM = \frac{{a\sqrt 3 }}{3}

    Tam giác SAI vuông tại I, có:

    SI = \sqrt {S{A^2} - S{I^2}}  = \sqrt {{{\left( {2a} ight)}^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} ight)}^2}}  = \frac{{a\sqrt {33} }}{3}

    Diện tích tam giác ABC là:  {S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}

    Vậy thể tích khối chóp:  {V_{S.ABCD}} = \frac{1}{3}{S_{\Delta ABC}}.SI = \frac{{\sqrt {11} \,{a^3}}}{{12}}

  • Câu 40: Vận dụng cao

    Cho hình 20 mặt đều có cạnh bằng 2. Gọi S là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?

    Hình 20 đều là hình có 20 mặt bằng nhau và mỗi mặt là một tam giác đều. 

    Gọi S_0 là diện tích tam giác đều cạnh 2 \xrightarrow{{}}\,{S_0} = \frac{{{2^2}.\sqrt 3 }}{4} = \sqrt 3

    Vậy diện tích S cần tính là: S = 20.{S_0} = 20\sqrt 3.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Khối đa diện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo