Đề kiểm tra 45 phút Chương 1 Khối đa diện

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Khối đa diện được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho khối đa diện đều loại \{ 3; 4 \}. Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng?

     Khối đa diện đều loại \{ 3; 4 \} là khối bát diện đều.

    Mỗi đỉnh là đỉnh chung của 4 mặt.

    Vậy tổng các góc phẳng tại một đỉnh của khối đa diện đó bằng 60^∘⋅4=240^∘.

  • Câu 2: Nhận biết

    Cho hình chóp S.ABC có tam giác SBC là tam giác vuông cân tại S, SB=2a  và khoảng cách từ A đến mặt phẳng (SBC) bằng 3a. Tính theo a thể tích V của khối chóp S.ABC.

     Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là d\left[ {A,\left( {SBC} ight)} ight] = 3a

    Tam giác SBC vuông cân tại  S nên {S_{\Delta SBC}} = \frac{1}{2}S{B^2} = 2{a^2}

    Vậy thể tích khối chóp V = \frac{1}{3}{S_{\Delta SBC}}.d\left[ {A,\left( {SBC} ight)} ight] = 2{a^3}

  • Câu 3: Thông hiểu

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

    Đáp án là:

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

     Có hai khối đa diện lồi là: Hình 1 & Hình 4

  • Câu 4: Vận dụng cao

    Mặt phẳng đi qua trọng tâm của tứ diện, song song với một mặt phẳng của tứ diện và chia khối tứ diện thành hai phần. Tính tỉ số thể tích (phần bé chia phần lớn) của hai phần đó. 

     

    Gọi E,{\text{ }}F,{\text{ }}I lần lượt là trung điểm của các cạnh AC,{\text{ }}BD,{\text{ }}EF khi đó I là trọng tâm của tứ diện ABCD. Ta sẽ dựng mặt phẳng qua I song song với (BCD).

    Trong mặt phẳng (EBD) dựng đường thẳng qua I song song với BD cắt FB,{\text{ }}FD lần lượt tại M, N.

    Qua M, N lần lượt kẻ các đường thẳng lần lượt song song với BC,{\text{ }}CD cắt AB,{\text{ }}AC,{\text{ }}AD lần lượt tại P,{\text{ }}Q,{\text{ }}J.

    Do Q là trung điểm của EC \Rightarrow \frac{{AQ}}{{AC}} = \frac{3}{4}, suy ra \frac{{AP}}{{AB}} = \frac{{AJ}}{{AD}} = \frac{{AQ}}{{AC}} = \frac{3}{4}.

    Ta có \frac{{{V_{A.PQJ}}}}{{{V_{A.BCD}}}} = \frac{{AP}}{{AB}}.\frac{{AQ}}{{AC}}.\frac{{AJ}}{{AD}} = \frac{3}{4}.\frac{3}{4}.\frac{3}{4} = \frac{{27}}{{64}}

    \Rightarrow \frac{{{V_{A.PQJ}}}}{{{V_{PQJBCD}}}} = \frac{{27}}{{37}}

  • Câu 5: Vận dụng

    Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?

    Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.

    Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3Đ =2C.

  • Câu 6: Nhận biết

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

    Đáp án là:

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

     

    Hình bát diện đều có 12 cạnh.

  • Câu 7: Thông hiểu

    Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa mặt bên và mặt đáy bằng 60^{0}. Thể tích V của khối chóp S.ABCD bằng

    Hình vẽ minh họa

    Gọi O là tâm của đáy, gọi M là trung điểm của BC.

    Ta có \left\{ \begin{matrix}
SO\bot BC \\
OM\bot BC \\
\end{matrix} ight. nên (SOM)\bot BC

    Suy ra \left\lbrack (SCD),(ABCD)
ightbrack = (SM,OM) = \widehat{SMO} = 60^{0}.

    OM = \frac{1}{2}BC =
\frac{a}{2}, SO = OMtan60^{0} =
\frac{a\sqrt{3}}{2}.

    Thể tích khối chóp S.ABCD

    V_{S.ABCD} = \frac{1}{3}SO.S_{ABCD} =
\frac{1}{3}.\frac{a\sqrt{3}}{2}.a^{2} =
\frac{a^{3}\sqrt{3}}{6}.

  • Câu 8: Vận dụng

    Một hình hộp đứng có đáy là hình thoi (không phải là hình vuông) có bao nhiêu mặt phẳng đối xứng?

    Hình hộp đứng có đáy là hình thoi (không phải là hình chữ nhật) có 3 mặt phẳng đối xứng bao gồm:

    Hình hộp đứng

    - Hai mặt phẳng chứa đường chéo của đáy và vuông góc với đáy.

    - Một mặt phẳng là mặt phẳng trung trực của cạnh bên.

  • Câu 9: Nhận biết

    Cho các hình sau: Tìm hình đa diện

    Mỗi hình sau gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình đa diện là:

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt {S_0},{S_1},...\,\,,{S_n} sao cho trùng với trùng với S’ và bất kì hai mặt {S_i},{S_{i + 1}} nào (0 \le i \le n - 1) cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

  • Câu 10: Nhận biết

    Cho hình chóp tam giác đều S.ABC. Mặt bên SBC là tam giác gì?

    Hình chóp tam giác đều có các mặt bên là các tam giác cân.

  • Câu 11: Thông hiểu

    Khối lăng trụ ngũ giác có bao nhiêu cạnh?

    Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh

    Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.

  • Câu 12: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi MN lần lượt là trung điểm của các cạnh ABAD; H là giao điểm của CNDM. Biết SH vuông góc với mặt phẳng (ABCD)SH =a \sqrt 3. Tính thể tích khối chóp S.CDNM.

     

    Theo giả thiết, ta có SH = a\sqrt 3.

    Diện tích tứ giác:

    {S_{CDNM}} = {S_{ABCD}} - {S_{\Delta AMN}} - {S_{\Delta BMC}}

    = A{B^2} - \frac{1}{2}AM.AN - \frac{1}{2}BM.BC = {a^2} - \frac{{{a^2}}}{8} - \frac{{{a^2}}}{4} = \frac{{5{a^2}}}{8}

    Vậy  {V_{S.CDNM}} = \frac{1}{3}{S_{CDNM}}.SH = \frac{{5{a^3}\sqrt 3 }}{{24}}.

  • Câu 13: Vận dụng

    Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

     Hình chóp tứ giác đều có 4 mặt phẳng đối xứng bao gồm:

    Chóp tứ giác đều

    +) 2 mặt phẳng đi qua đỉnh hình chóp và chứa đường trung bình của đáy.

    +) 2 mặt phẳng đi qua đỉnh hình chóp và chứa đường chéo của đáy.

  • Câu 14: Thông hiểu

    Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên gấp hai lần cạnh đáy. Tính thể tích V của khối chóp đã cho.

     

    Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Vì S.ABC là khối chóp đều nên suy ra \,SI \bot \left( {ABC} ight).

    Gọi M là trung điểm của BC\,\, \Rightarrow \,\,AI = \frac{2}{3}AM = \frac{{a\sqrt 3 }}{3}

    Tam giác SAI vuông tại I, có:

    SI = \sqrt {S{A^2} - S{I^2}}  = \sqrt {{{\left( {2a} ight)}^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} ight)}^2}}  = \frac{{a\sqrt {33} }}{3}

    Diện tích tam giác ABC là:  {S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}

    Vậy thể tích khối chóp:  {V_{S.ABCD}} = \frac{1}{3}{S_{\Delta ABC}}.SI = \frac{{\sqrt {11} \,{a^3}}}{{12}}

  • Câu 15: Thông hiểu

    Tổng độ dài \ell của tất cả các cạnh của một tứ diện đều cạnh a.

     

    Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là  \ell  = 6a

  • Câu 16: Vận dụng cao

    Cho hình chóp đều S.ABCD. Gọi N là trung điểm SB, M là điểm đối xứng với B qua A. Mặt phẳng (MNC) chia khối chóp S.ABCD thành hai phần có thể tích lần lượt là V_1, V_2 với {V_1} < {V_2}. Tính tỉ số \frac{{{V_1}}}{{{V_2}}}.

     

    Gọi h,\,\,S lần lượt là chiều cao và diện tích đáy của khối chóp S.ABCD. Khi đó {V_{S.ABCD}} = \frac{1}{3}S.h. Nối MN cắt SA tại E, MC cắt AD tại F. Tam giác SBM có A, N lần lượt là trung điểm của BM và SB.

    Suy ra E là trọng tâm tam giác SBM.

    Vì tứ giác ACDM là hình bình hành nên F là trung điểm MC.

    Ta có {V_{BNC.AEF}} = {V_{ABCEN}} + {V_{E.ACF}}. Xét tỉ số:

    \frac{{{V_{S.ENC}}}}{{{V_{S.ABC}}}} = \frac{{SE}}{{SA}}.\frac{{SN}}{{SB}} = \frac{2}{3} \times \frac{1}{2} = \frac{1}{3}\xrightarrow{{}}{V_{S.ENC}} = \frac{1}{3}{V_{S.ABC}}

    \xrightarrow[{}]{}{V_{ABCEN}} = \frac{2}{3}{V_{S.ABC}} = \frac{2}{3}\left( {\frac{1}{2}{V_{S.ABCD}}} ight) = \frac{1}{3}{V_{S.ABCD}}

    Mặt khác, áp dụng công thức tính thể tích khối chóp E.ACF là:

    {V_{E.ACF}} = \frac{1}{3}{S_{\Delta ACF}}.d\left[ {E,\left( {ACF} ight)} ight] = \frac{1}{3}.\frac{1}{4}S.\frac{1}{3}h = \frac{1}{{12}}{V_{S.ABCD}}

    Do đó {V_{BNC.AEF}} = {V_{ABCEN}} + {V_{E.ACF}}

    = \frac{1}{3}{V_{S.ABCD}} + \frac{1}{{12}}{V_{S.ABCD}}

    = \frac{5}{{12}}{V_{S.ABCD}} = {V_1}

    Suy ra {V_2} = \frac{7}{{12}}{V_{S.ABCD}}\xrightarrow{{}}\frac{{{V_1}}}{{{V_2}}} = \frac{5}{7}.

  • Câu 17: Vận dụng cao

    Cho hình bát diện đều cạnh a. Gọi S là tổng diện tích tất cả các mặt của hình bát diện đó. Mệnh đề nào dưới đây đúng?

     

    Hình bát diện đều là hình có tám mặt bằng nhau và mỗi mặt là một tam giác đều. Gọi S_0 là diện tích tam giác đều cạnh a \xrightarrow{{}}\,{S_0} = \frac{{{a^2}\sqrt 3 }}{4}

    Vậy diện tích S cần tính là: S = 8.{S_0} = 8.\frac{{{a^2}\sqrt 3 }}{4} = 2\sqrt 3 \,{a^2}.

  • Câu 18: Vận dụng

    Cho hình lăng trụ đứng ABC.A'B'C'có đáy là tam giác cân, AB =AC= a và \widehat {BAC} = {120^0}, góc giữa mặt phẳng \left( {AB'C'} ight) và mặt đáy \left( {ABC} ight) bằng 60^0. Tính theo a thể tích khối lăng trụ.

     

    Gọi M là trung điểm của đoạn thẳng B'C'. Tam giác ABC cân tại A  nên ta suy ra tam giác A'B'C' cân tại A'\xrightarrow{{}}A'M \bot B'C'.

    Lại có B'C' \bot AA'. Từ đó suy ra B'C' \bot \left( {AA'M} ight)\xrightarrow{{}}B'C' \bot AM.

    Do đó {60^0} = \widehat {\left( {AB'C'} ight),\left( {A'B'C'} ight)} = \widehat {\left( {AM;A'M} ight)} = \widehat {AMA'}

    Tam giác vuông A'B'M, có

    A'M = A'B'.\cos \widehat {MA'B'} = a.\cos {60^0} = \frac{a}{2}

    Tam giác vuông AA'M, có

    AA' = A'M.\tan \widehat {AMA'} = \frac{a}{2}.\tan {60^0} = \frac{{a\sqrt 3 }}{2}

    Diện tích tam giác {S_{\Delta ABC}} = \frac{1}{2}AB.AC.\sin \widehat {BAC} = \frac{{{a^2}\sqrt 3 }}{4}

    Vậy {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{3{a^3}}}{8}.

  • Câu 19: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân ở B, AC = a\sqrt 2, SA=a và vuông góc với đáy (ABC). Gọi G là trọng tâm tam giác SBC. Mặt phẳng (\alpha) qua AG và song song với BC cắt SB, SC lần lượt tại M, N. Tính theo a thể tích V của khối chóp S.AMN.

     

    Từ giả thiết suy ra AB=BC=a.

    Diện tích tam giác {S_{\Delta ABC}} = \frac{1}{2}AB.BC = \frac{{{a^2}}}{2}. Do đó {V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SA = \frac{{{a^3}}}{6}.

    Gọi I là trung điểm BC.

    Do G là trọng tâm \Delta SBC nên \frac{{SG}}{{SI}} = \frac{2}{3}.

    BC\parallel \left( \alpha  ight)\xrightarrow{{}}BC song song với giao tuyến MN

    ightarrow{{}}\Delta AMN \backsim \Delta ABC theo tỉ số \frac{2}{3}\xrightarrow{{}}{S_{\Delta AMN}} = \frac{4}{9}{S_{\Delta SBC}}

    Vậy thể tích khối chóp {V_{S.AMN}} = \frac{4}{9}.{V_{S.ABC}} = \frac{{2{a^3}}}{{27}}.

  • Câu 20: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và khoảng cách từ A đến mặt phẳng (SBC) bằng \frac{{a\sqrt 2 }}{2}. Tính thể tích V của khối chóp đã cho. 

     

    Gọi H là hình chiếu của A trên SB \Rightarrow AH \bot SB

    Ta có \left\{ \begin{gathered}  SA \bot \left( {ABCD} ight) \Rightarrow SA \bot BC \hfill \\  AB \bot BC \hfill \\ \end{gathered}  ight.

    \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow AH \bot BC

    Suy ra AH \bot \left( {SBC} ight) \Rightarrow d\left[ {A,\left( {SBC} ight)} ight] = AH = \frac{{a\sqrt 2 }}{2}

    Tam giác SAB vuông tại A, có \frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} \Rightarrow SA = a

    Vậy V = \frac{1}{3}.SA.{S_{ABCD}} = \frac{{{a^3}}}{3}.

  • Câu 21: Thông hiểu

    Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?

    Chia khối lăng trụ

    Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.

  • Câu 22: Vận dụng

    Tổng độ dài \ell của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2

    60 || sáu mươi || Sáu mươi

    Đáp án là:

    Tổng độ dài \ell của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2

    60 || sáu mươi || Sáu mươi

     Khối mười hai mặt đều có tất cả 30 cạnh:

     Suy ra ta có tổng độ dài tất cả các cạnh bằng \ell  = 30.2 = 60.

  • Câu 23: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Đáp án là:

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Diện tích hình thang ABCD là

    {S_{ABCD}} = \left( {\frac{{AD + BC}}{2}} ight).AB = \frac{3}{2}

    Chiều cao khối chóp là SA=2.

    Vậy thể tích khối chóp  {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = 1

  • Câu 24: Nhận biết

    Quan sát hình và chọn khẳng định đúng trong các khẳng định sau:

    Quan sát hình vẽ, ta thấy:

    Khối chóp tứ giác S.ABCD được phân chia thành 2 khối tứ diện C.SAB và C.SAD.

  • Câu 25: Thông hiểu

    Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?

     Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

  • Câu 26: Vận dụng

    Cho hình đa diện đều loại \left\{ {4;3} ight\} cạnh a. Gọi S là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?

    Đa diện đều loại \left\{ {4;3} ight\} là khối lập phương nên có 6 mặt là các hình vuông cạnh a.

    Vậy hình lập phương có tổng diện tích tất cả các mặt là S=6a^2

  • Câu 27: Thông hiểu

    Một hình đa diện có các mặt là những tam giác. Gọi M là tổng số mặt và C là tổng số cạnh của đa diện đó. Mệnh đề nào sau đây đúng.

     Vì mỗi mặt là những tam giác nên có tổng số cạnh là 3M.  Mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3M = 2C.

  • Câu 28: Thông hiểu

    Trong các hình dưới đây, hình nào không phải đa diện lồi?

     Áp dụng dấu hiệu nhận biết của khối đa diện lồi (H): Đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Ta thấy có hình sau vi phạm tính chất đó:

     

  • Câu 29: Nhận biết

    Cho hình lăng trụ đứng ABCD.A'B'C'D' có đáy là hình vuông cạnh 2a. Tính thể tích V của khối lăng trụ đã cho theo a, biết A'B=3a.

     

    Do ABCD.A'B'C'D'là lăng trụ đứng nên AA' \bot AB.

    Xét tam giác vuông A'AB, ta có A'A = \sqrt {A'{B^2} - A{B^2}}  = a\sqrt 5.

    Diện tích hình vuông ABCD{S_{ABCD}} = A{B^2} = 4{a^2}.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.A'A = 4\sqrt 5 {a^3}

  • Câu 30: Thông hiểu

    Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?

    Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:

    Đ=4; M=4; C=6

  • Câu 31: Thông hiểu

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = AA' = a, đường chéo AC'hợp với mặt đáy (ABCD) một góc \alpha thỏa mãn \cot \alpha  = \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Ta có AA' \bot \left( {ABCD} ight) nên \widehat {A'C,\left( {ABCD} ight)} = \widehat {A'C,AC} = \widehat {A'CA}.

    Tam giác vuông A'AC, ta có AC = AA'.\cot \alpha  = a\sqrt 5.

    Tam giác vuông ABC, ta có BC = \sqrt {A{C^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.BC = 2{a^2}.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.AA' = 2{a^3}.

  • Câu 32: Nhận biết

    Mệnh đề nào sau đây đúng?

     Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

    - Khối lập phương có 6 mặt.

    \Rightarrow "Mọi khối đa diện đều có số mặt là những số chia hết cho 4" \Rightarrow Sai.

    - Khối lập phương và khối bát diện đều có cùng số cạnh là 12. \Rightarrow Đúng

    - Khối tứ diện đều không có tâm đối xứng.

    \Rightarrow "Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.

    - Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.

    \Rightarrow "Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai

     

  • Câu 33: Nhận biết

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB =a, AD=a \sqrt 2, AB'=a \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Trong tam giác vuông ABB', có BB' = \sqrt {AB{'^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.AD = {a^2}\sqrt 2.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.BB' = 2{a^3}\sqrt 2

  • Câu 34: Thông hiểu

    Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0, S_1,... , S_n sao cho S_0 trùng với S, S_n trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

    Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại  đều đúng dựa vào khái niệm hình đa diện.

  • Câu 35: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy (ABCD) và SC = a\sqrt 5. Tính theo a thể tích V khối chóp S.ABCD.

     Thể tích khối chóp

    Đường chéo hình vuông AC = a\sqrt 2

    Xét tam giác SAC, ta có SA = \sqrt {S{C^2} - A{C^2}}  = a\sqrt 3.

    Chiều cao khối chóp là SA = a\sqrt 3.

    Diện tích hình vuông ABCD là {S_{ABCD}} = {a^2}

    Vậy thể tích khối chóp {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{{a^3}\sqrt 3 }}{3}.

  • Câu 36: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào saì?

    Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có: 

    - Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.

    - Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.

  • Câu 37: Vận dụng cao

    Cho tứ diện đều SABC có cạnh bằng 1. Mặt phẳng (P) đi qua điểm S và trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Tính thể tích nhỏ nhất {V_{\min }} của khối tứ diện SAMN.

    Gọi E là trung điểm của BC.

    Qua B, C lần lượt kẻ đường thẳng song song với MN và cắt đường thẳng AE tại P, Q.

    Theo định lí Talet, ta có:

    \left\{ \begin{gathered}  \frac{{AB}}{{AM}} = \frac{{AP}}{{AG}} \hfill \\  \frac{{AC}}{{AN}} = \frac{{AQ}}{{AG}} \hfill \\ \end{gathered}  ight. \Rightarrow \frac{{AB}}{{AM}} + \frac{{AC}}{{AN}} = \frac{{AP}}{{AG}} + \frac{{AQ}}{{AG}} = \frac{{AP + AQ}}{{AG}}

    Mặt khác \Delta BPE = \Delta CQE\xrightarrow{{}}PE = QE\,

    \Rightarrow \,\,AP + AQ = \left( {AE - PE} ight) + \left( {AE + QE} ight) = 2AE

    Do đó \frac{{AB}}{{AM}} + \frac{{AC}}{{AN}} = \frac{{2AE}}{{AG}} = 2.\frac{3}{2} = 3 \Rightarrow \frac{1}{{AM}} + \frac{1}{{AN}} = 3.

    Đặt \left\{ \begin{gathered}  AM = x \hfill \\  AN = y \hfill \\ \end{gathered}  ight. \Rightarrow \frac{1}{x} + \frac{1}{y} = 3

    SABC là tứ diện đều \Rightarrow \,\,SG \bot \left( {ABC} ight)  và SG = \frac{{\sqrt 2 }}{{\sqrt 3 }}

    Do đó   {V_{SAMN}} = \frac{1}{3}{S_{\Delta AMN}}.SG

    = \frac{1}{3}\left( {\frac{1}{2}AM.AN\sin {{60}^0}} ight).SG

    = \frac{{\sqrt 2 }}{{12}}AM.AN = \frac{{\sqrt 2 }}{{12}}xy

    Ta có 3 = \frac{1}{x} + \frac{1}{y} \geqslant \frac{2}{{\sqrt {xy} }}

    \Leftrightarrow \sqrt {xy}  \geqslant \frac{2}{3} \Leftrightarrow xy \geqslant \frac{4}{9}

    \Rightarrow {V_{\min }} = \frac{{\sqrt 2 }}{{27}}

  • Câu 38: Vận dụng cao

    Trong các lăng trụ sau, lăng trụ nào không nội tiếp được trong một mặt cầu?

    Để xét xem các lăng trụ có nội tiếp mặt cầu được hay không, ta sẽ xét các mặt đáy của lăng trụ đó xem có phải là hình nội tiếp được đường tròn không.

    Nếu lăng trụ có đáy là tứ giác nội tiếp được đường tròn thì lăng trụ đó sẽ nội tiếp được mặt cầu.

    Từ đây, ta sẽ xét 1 số tứ giác nội tiếp được đường tròn là: hình vuông, hình chữ nhật, hình thang cân,…

  • Câu 39: Nhận biết

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 40: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Khối đa diện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 23 lượt xem
Sắp xếp theo