Đề kiểm tra 45 phút Chương 1 Khối đa diện

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Khối đa diện được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong các hình dưới đây hình nào không phải khối đa diện lồi?

     

    Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.

  • Câu 2: Vận dụng

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {3;5} ight\} là:

    Khối đa diện đều loại \left\{ {3;5} ight\} là khối hai mươi mặt đều:

    Gồm 20 mặt là các tam giác đều nên tổng các góc bằng: 20.\pi  = 20\pi

  • Câu 3: Nhận biết

    Mệnh đề nào sau đây đúng?

     Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

    - Khối lập phương có 6 mặt.

    \Rightarrow "Mọi khối đa diện đều có số mặt là những số chia hết cho 4" \Rightarrow Sai.

    - Khối lập phương và khối bát diện đều có cùng số cạnh là 12. \Rightarrow Đúng

    - Khối tứ diện đều không có tâm đối xứng.

    \Rightarrow "Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.

    - Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.

    \Rightarrow "Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai

     

  • Câu 4: Vận dụng

    Tổng diện tích tất cả các mặt của hình tứ diện đều cạnh a bằng là?

    Diện tích 1 mặt của tứ diện đều là diện tích của 1 tam giác đều cạnh a là: \frac{{{a^2}\sqrt 3 }}{4}

    Tổng diện tích tất cả các mặt của hình tứ diện đều cạnh a bằng: 4.\frac{{{a^2}\sqrt 3 }}{4} ={a^2}\sqrt 3

  • Câu 5: Vận dụng

    Gọi {n_1},{m{ }}{n_2},{m{ }}{n_3} lần lượt là số trục đối xứng của khối tứ diện đều, khối chóp tứ giác đều và khối lập phương. Mệnh đề nào sau đây là đúng? 

    Khối tứ diện đều có 3 trục đối xứng (đi qua trung điểm của các cặp cạnh đối diện).

    Khối chóp tứ giác đều có 1 trục đối xứng (đi qua đỉnh và tâm của mặt tứ giác).

    Khối lập phương có 9 trục đối xứng

    (Loại 1: đi qua tâm của các mặt đối diện ;

    Loại 2: đi qua trung điểm các cặp cạnh đối diện).

  • Câu 6: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

  • Câu 7: Thông hiểu

    Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?

    Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:

    Đ=4; M=4; C=6

  • Câu 8: Thông hiểu

    Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên gấp hai lần cạnh đáy. Tính thể tích V của khối chóp đã cho.

     

    Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Vì S.ABC là khối chóp đều nên suy ra \,SI \bot \left( {ABC} ight).

    Gọi M là trung điểm của BC\,\, \Rightarrow \,\,AI = \frac{2}{3}AM = \frac{{a\sqrt 3 }}{3}

    Tam giác SAI vuông tại I, có:

    SI = \sqrt {S{A^2} - S{I^2}}  = \sqrt {{{\left( {2a} ight)}^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} ight)}^2}}  = \frac{{a\sqrt {33} }}{3}

    Diện tích tam giác ABC là:  {S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}

    Vậy thể tích khối chóp:  {V_{S.ABCD}} = \frac{1}{3}{S_{\Delta ABC}}.SI = \frac{{\sqrt {11} \,{a^3}}}{{12}}

  • Câu 9: Vận dụng

    Cho khối đa diện đều loại \{ 3; 4 \}. Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng?

     Khối đa diện đều loại \{ 3; 4 \} là khối bát diện đều.

    Mỗi đỉnh là đỉnh chung của 4 mặt.

    Vậy tổng các góc phẳng tại một đỉnh của khối đa diện đó bằng 60^∘⋅4=240^∘.

  • Câu 10: Thông hiểu

    Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại BBA=BC=1. Cạnh A'B tạo với mặt đáy (ABC) góc 60^0. Tính thể tích V của khối lăng trụ đã cho.

     

    ABC.A'B'C' là lăng trụ đứng nên AA' \bot \left( {ABC} ight), suy ra hình chiếu vuông góc của A'B trên mặt đáy (ABC)AB.

    Do đó {60^0} = \widehat {A'B,\left( {ABC} ight)} = \widehat {A'B,AB} = \widehat {A'BA}.

    Tam giác vuông A'AB, ta có AA' = AB.\tan \widehat {A'BA} = \sqrt 3

    Diện tích tam giác là {S_{\Delta ABC}} = \frac{1}{2}BA.BC = \frac{1}{2}

    Vậy V = {S_{\Delta ABC}}.AA' = \frac{{\sqrt 3 }}{2}.

  • Câu 11: Vận dụng

    Tổng độ dài \ell của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2

    60 || sáu mươi || Sáu mươi

    Đáp án là:

    Tổng độ dài \ell của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2

    60 || sáu mươi || Sáu mươi

     Khối mười hai mặt đều có tất cả 30 cạnh:

     Suy ra ta có tổng độ dài tất cả các cạnh bằng \ell  = 30.2 = 60.

  • Câu 12: Nhận biết

    Khái niệm chính xác nhất về khối đa diện là:

     Áp dụng định nghĩa khối đa diện, ta có:

    “Khối đa diện là phần không gian được giới hạn bởi 1 hình đa diện, kể cả hình đa diện đó.”

  • Câu 13: Thông hiểu

    Khối lăng trụ ngũ giác có bao nhiêu cạnh?

    Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh

    Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.

  • Câu 14: Vận dụng cao

    Cho tứ diện đều SABC có cạnh bằng 1. Mặt phẳng (P) đi qua điểm S và trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Tính thể tích nhỏ nhất {V_{\min }} của khối tứ diện SAMN.

    Gọi E là trung điểm của BC.

    Qua B, C lần lượt kẻ đường thẳng song song với MN và cắt đường thẳng AE tại P, Q.

    Theo định lí Talet, ta có:

    \left\{ \begin{gathered}  \frac{{AB}}{{AM}} = \frac{{AP}}{{AG}} \hfill \\  \frac{{AC}}{{AN}} = \frac{{AQ}}{{AG}} \hfill \\ \end{gathered}  ight. \Rightarrow \frac{{AB}}{{AM}} + \frac{{AC}}{{AN}} = \frac{{AP}}{{AG}} + \frac{{AQ}}{{AG}} = \frac{{AP + AQ}}{{AG}}

    Mặt khác \Delta BPE = \Delta CQE\xrightarrow{{}}PE = QE\,

    \Rightarrow \,\,AP + AQ = \left( {AE - PE} ight) + \left( {AE + QE} ight) = 2AE

    Do đó \frac{{AB}}{{AM}} + \frac{{AC}}{{AN}} = \frac{{2AE}}{{AG}} = 2.\frac{3}{2} = 3 \Rightarrow \frac{1}{{AM}} + \frac{1}{{AN}} = 3.

    Đặt \left\{ \begin{gathered}  AM = x \hfill \\  AN = y \hfill \\ \end{gathered}  ight. \Rightarrow \frac{1}{x} + \frac{1}{y} = 3

    SABC là tứ diện đều \Rightarrow \,\,SG \bot \left( {ABC} ight)  và SG = \frac{{\sqrt 2 }}{{\sqrt 3 }}

    Do đó   {V_{SAMN}} = \frac{1}{3}{S_{\Delta AMN}}.SG

    = \frac{1}{3}\left( {\frac{1}{2}AM.AN\sin {{60}^0}} ight).SG

    = \frac{{\sqrt 2 }}{{12}}AM.AN = \frac{{\sqrt 2 }}{{12}}xy

    Ta có 3 = \frac{1}{x} + \frac{1}{y} \geqslant \frac{2}{{\sqrt {xy} }}

    \Leftrightarrow \sqrt {xy}  \geqslant \frac{2}{3} \Leftrightarrow xy \geqslant \frac{4}{9}

    \Rightarrow {V_{\min }} = \frac{{\sqrt 2 }}{{27}}

  • Câu 15: Thông hiểu

    Trong các hình dưới đây, hình nào không phải đa diện lồi?

     Áp dụng dấu hiệu nhận biết của khối đa diện lồi (H): Đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Ta thấy có hình sau vi phạm tính chất đó:

     

  • Câu 16: Vận dụng

    Để chuẩn bị cho hoạt động cắm trại, bạn An tìm hiểu các mẫu lều cắm trại có kích thước như trong hình vẽ.

    Bạn An muốn biết thể tích chênh lệch của hai lều nên thực hiện tính V_{1} -
V_{2}, trong đó V_{1},V_{2} lần lượt là thể tích của mẫu lều cắm trại ở hình a, hình b. Giá trị của V_{1} - V_{2} bằng bao nhiêu decimét khối (làm tròn kết quả đến hàng đơn vị)?

    Đáp án: 961 dm3

    Đáp án là:

    Để chuẩn bị cho hoạt động cắm trại, bạn An tìm hiểu các mẫu lều cắm trại có kích thước như trong hình vẽ.

    Bạn An muốn biết thể tích chênh lệch của hai lều nên thực hiện tính V_{1} -
V_{2}, trong đó V_{1},V_{2} lần lượt là thể tích của mẫu lều cắm trại ở hình a, hình b. Giá trị của V_{1} - V_{2} bằng bao nhiêu decimét khối (làm tròn kết quả đến hàng đơn vị)?

    Đáp án: 961 dm3

    Cả hai lều đều có dạng khối lăng trụ đứng ngũ giác.

    Xét khối lăng trụ ở hình a. Chia mặt đáy thành hai phần bao gồm: hình chữ nhật có chiều rộng 180\ cm, chiều dài 350\ cm; tam giác cân có cạnh đáy dài 350\ cm, chiều cao 40\ cm như hình dưới đây.

    Diện tích mặt đáy của lăng trụ đó là:

    S_{1} = 180 \cdot 350 + \frac{1}{2} \cdot
40 \cdot 350 = 70000\left( \ cm^{2} ight)

    Vậy thể tích của khối lăng trụ ngũ giác đó là:

    V_{1} = S_{1} \cdot h_{1} = 70000.460 =
32200000\left( \ cm^{3} ight).

    Xét khối lăng trụ ở hình b. Chia mặt đáy thành hai phần bao gồm: hình thang cân có đáy lớn đài 370\ cm, đáy nhỏ dài 260\ cm , chiều cao 210\ cm; tam giác cân có cạnh đáy dài 260\ cm, chiều cao 50\ cm như hình vẽ .

    Diện tích mặt đáy của lăng trụ đó là:

    S_{2} = \frac{1}{2}(370 + 260) \cdot 210
+ \frac{1}{2} \cdot 260 \cdot 50 = 72650\left( \ cm^{2}
ight)

    Vậy thể tích của khối lăng trụ ngũ giác đó là:

    V_{2} = S_{2} \cdot h_{2} = 72650.430 =
31239500\left( \ cm^{3} ight)

    Do đó V_{1} - V_{2} = 960500\left( \
cm^{3} ight) \approx 961\left( dm^{3} ight).

  • Câu 17: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Đáp án là:

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Diện tích hình thang ABCD là

    {S_{ABCD}} = \left( {\frac{{AD + BC}}{2}} ight).AB = \frac{3}{2}

    Chiều cao khối chóp là SA=2.

    Vậy thể tích khối chóp  {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = 1

  • Câu 18: Thông hiểu

    Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa mặt bên và mặt đáy bằng 60^{0}. Thể tích V của khối chóp S.ABCD bằng

    Hình vẽ minh họa

    Gọi O là tâm của đáy, gọi M là trung điểm của BC.

    Ta có \left\{ \begin{matrix}
SO\bot BC \\
OM\bot BC \\
\end{matrix} ight. nên (SOM)\bot BC

    Suy ra \left\lbrack (SCD),(ABCD)
ightbrack = (SM,OM) = \widehat{SMO} = 60^{0}.

    OM = \frac{1}{2}BC =
\frac{a}{2}, SO = OMtan60^{0} =
\frac{a\sqrt{3}}{2}.

    Thể tích khối chóp S.ABCD

    V_{S.ABCD} = \frac{1}{3}SO.S_{ABCD} =
\frac{1}{3}.\frac{a\sqrt{3}}{2}.a^{2} =
\frac{a^{3}\sqrt{3}}{6}.

  • Câu 19: Thông hiểu

    Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?

     Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

  • Câu 20: Nhận biết

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

    Đáp án là:

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

     

    Hình bát diện đều có 12 cạnh.

  • Câu 21: Vận dụng cao

    Mặt phẳng đi qua trọng tâm của tứ diện, song song với một mặt phẳng của tứ diện và chia khối tứ diện thành hai phần. Tính tỉ số thể tích (phần bé chia phần lớn) của hai phần đó. 

     

    Gọi E,{\text{ }}F,{\text{ }}I lần lượt là trung điểm của các cạnh AC,{\text{ }}BD,{\text{ }}EF khi đó I là trọng tâm của tứ diện ABCD. Ta sẽ dựng mặt phẳng qua I song song với (BCD).

    Trong mặt phẳng (EBD) dựng đường thẳng qua I song song với BD cắt FB,{\text{ }}FD lần lượt tại M, N.

    Qua M, N lần lượt kẻ các đường thẳng lần lượt song song với BC,{\text{ }}CD cắt AB,{\text{ }}AC,{\text{ }}AD lần lượt tại P,{\text{ }}Q,{\text{ }}J.

    Do Q là trung điểm của EC \Rightarrow \frac{{AQ}}{{AC}} = \frac{3}{4}, suy ra \frac{{AP}}{{AB}} = \frac{{AJ}}{{AD}} = \frac{{AQ}}{{AC}} = \frac{3}{4}.

    Ta có \frac{{{V_{A.PQJ}}}}{{{V_{A.BCD}}}} = \frac{{AP}}{{AB}}.\frac{{AQ}}{{AC}}.\frac{{AJ}}{{AD}} = \frac{3}{4}.\frac{3}{4}.\frac{3}{4} = \frac{{27}}{{64}}

    \Rightarrow \frac{{{V_{A.PQJ}}}}{{{V_{PQJBCD}}}} = \frac{{27}}{{37}}

  • Câu 22: Nhận biết

    Cho các hình sau:

    Đếm số hình đa diện

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:

     Các hình đa diện là:

    Đếm số hình đa diện; Đếm số hình đa diện; Đếm số hình đa diện

  • Câu 23: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C'có thể tích bằng 60 \,\text{cm}^3, các điểm M, N, P lần lượt thuộc các cạnh AA',BB',CC' sao cho AM = 2MA',BN = 3NB',CP = 4PC'. Thể tích của khối đa diện BC.MNP là bao nhiêu? (Đơn vị: cm^3)

    31 || 31 cm^3 || ba mươi mốt xăng ti mét khối || Ba mươi mốt xăng ti mét khối

    Đáp án là:

    Cho khối lăng trụ ABC.A'B'C'có thể tích bằng 60 \,\text{cm}^3, các điểm M, N, P lần lượt thuộc các cạnh AA',BB',CC' sao cho AM = 2MA',BN = 3NB',CP = 4PC'. Thể tích của khối đa diện BC.MNP là bao nhiêu? (Đơn vị: cm^3)

    31 || 31 cm^3 || ba mươi mốt xăng ti mét khối || Ba mươi mốt xăng ti mét khối

     

    Ta có   MA = 2MA' \Rightarrow \frac{{AM}}{{AA'}} = \frac{2}{3};

               BN = 3NB' \Rightarrow \frac{{BN}}{{BB'}} = \frac{3}{4};

               CP = 4PC' \Rightarrow \frac{{CP}}{{CC'}} = \frac{4}{5}

    Nên \dfrac{{{V_{ABCMNP}}}}{{{V_{ABCA'B'C'}}}} = \frac{{\dfrac{2}{3} + \dfrac{3}{4} + \dfrac{4}{5}}}{3} = \dfrac{{133}}{{180}} \Rightarrow {V_{ABCMNP}} = \dfrac{{133}}{{180}}.60 = \dfrac{{133}}{3}

    Mà  {V_{M.ABC}} = \frac{1}{3}d\left( {M;\left( {ABC} ight)} ight).{S_{ABC}}

         = \frac{1}{3}.\frac{2}{3}d\left( {A';\left( {ABC} ight)} ight).{S_{ABC}} = \frac{2}{9}.{V_{ABC.A'B'C'}} = \frac{{40}}{3}.

    Vậy {V_{BCMNP}} = \frac{{133}}{3} - \frac{{40}}{3} = 31\left( {c{m^3}} ight).

  • Câu 24: Nhận biết

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 25: Vận dụng cao

    Cho hình bát diện đều cạnh a. Gọi S là tổng diện tích tất cả các mặt của hình bát diện đó. Mệnh đề nào dưới đây đúng?

     

    Hình bát diện đều là hình có tám mặt bằng nhau và mỗi mặt là một tam giác đều. Gọi S_0 là diện tích tam giác đều cạnh a \xrightarrow{{}}\,{S_0} = \frac{{{a^2}\sqrt 3 }}{4}

    Vậy diện tích S cần tính là: S = 8.{S_0} = 8.\frac{{{a^2}\sqrt 3 }}{4} = 2\sqrt 3 \,{a^2}.

  • Câu 26: Vận dụng

    Cho hình chóp S.ABC\widehat {ASB} = \widehat {CSB} = {60^0},{\text{ }}\widehat {ASC} = {90^0}SA = SB = a,SC = 3a. Tính thể tích V của khối chóp S.ABC.

     Gọi M là trung điểm của AB \Rightarrow SM \bot AB

    Ta có \left\{ \begin{gathered}  SA = SB \hfill \\  \widehat {ASB} = {60^0} \hfill \\ \end{gathered}  ight. \Rightarrow \Delta SAB đều \xrightarrow{{}}\left\{ \begin{gathered}  AB = a \hfill \\  SM = \frac{{a\sqrt 3 }}{2} \hfill \\ \end{gathered}  ight.

    Tam giác SAC, có AC = \sqrt {S{A^2} + S{C^2}}  = a\sqrt {10}

    Tam giác SBC, có BC = \sqrt {S{B^2} + S{C^2} - 2SB.SC.\cos \widehat {BSC}}  = a\sqrt 7 .

    Tam giác ABC, có cos \widehat {BAC} = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} = \frac{{\sqrt {10} }}{5}

    \xrightarrow{{}}CM = \sqrt {A{M^2} + A{C^2} - 2AM.AC.\cos \widehat {BAC}}  = \frac{{a\sqrt {33} }}{2}

    Ta có S{M^2} + M{C^2} = S{C^2} = 9{a^2}\xrightarrow{{}}\Delta SMC vuông tại M.

    \xrightarrow{{}}SM \bot MC

    Từ (1) và (2) , ta có SM \bot \left( {ABC} ight)

    Diện tích tam giác {S_{\Delta ABC}} = \frac{1}{2}AB.AC.\sin \widehat {BAC} = \frac{{{a^2}\sqrt 6 }}{2}

    Vậy thể tích khối chop {V_{SABC}} = \frac{1}{3}{S_{\Delta ABC}}.SM = \frac{{{a^3}\sqrt 2 }}{4}.

  • Câu 27: Thông hiểu

    Tổng độ dài \ell của tất cả các cạnh của một tứ diện đều cạnh a.

     

    Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là  \ell  = 6a

  • Câu 28: Vận dụng cao

    Một hình lăng trụ có 2024 mặt. Hỏi hình lăng trụ đó có tất cả bao nhiêu cạnh?

    Gọi số cạnh của 1 đáy hình lăng tụ là n cạnh, nên số cạnh đáy của hình lăng trụ (2 mặt đáy ) là 2n cạnh

    Số cạnh bên là n cạnh.

    => Tổng số cạnh của lăng trụ là 3n cạnh.

    Mặt khác, ta lại có Đ + M = C + 2 (Euler)

    Nên suy ra:  2n +2024=3n+2 \Leftrightarrow n=2022

    Vậy ta tính được số cạnh của hình lăng trụ là 3.2022= 6066 (cạnh)

  • Câu 29: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy (ABCD) và SC = a\sqrt 5. Tính theo a thể tích V khối chóp S.ABCD.

     Thể tích khối chóp

    Đường chéo hình vuông AC = a\sqrt 2

    Xét tam giác SAC, ta có SA = \sqrt {S{C^2} - A{C^2}}  = a\sqrt 3.

    Chiều cao khối chóp là SA = a\sqrt 3.

    Diện tích hình vuông ABCD là {S_{ABCD}} = {a^2}

    Vậy thể tích khối chóp {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{{a^3}\sqrt 3 }}{3}.

  • Câu 30: Thông hiểu

    Cho tứ diện ABCD có thể tích bằng 12G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp .A.GBC

    4 || Bốn || bốn

    Đáp án là:

    Cho tứ diện ABCD có thể tích bằng 12G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp .A.GBC

    4 || Bốn || bốn

     Vì G là trọng tâm của tam giác BCD nên S_{\triangle GBC}= \frac{1}{3}S_{\triangle DBC}.

    Suy ra {V_{A.GBC}} = \frac{1}{3}{V_{ABCD}} = \frac{1}{3}.12 = 4.

  • Câu 31: Thông hiểu

    Chọn khẳng định đúng trong các khẳng định sau:

    Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

  • Câu 32: Nhận biết

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy, SA=2a. Tính theo a thể tích của khối chóp S.ABCD.

     

    Gọi I là trung điểm của AB. Tam giác SAB cân tại S và có I là trung điểm AB nên SI \bot AB. Do (SAB) \bot (ABCD) theo giao tuyến AB nên SI \bot (ABCD).

    Tam giác vuông SIA, có:

    SI = \sqrt {S{A^2} - I{A^2}}  = \sqrt {S{A^2} - {{\left( {\frac{{AB}}{2}} ight)}^2}}  = \frac{{a\sqrt {15} }}{2}

  • Câu 33: Thông hiểu

    Hình đa diện trong hình vẽ sau có bao nhiêu cạnh? 

    Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 34: Thông hiểu

    Tính thể tích V của khối lập phương ABCD.A'B'C'D', biết AC' = a\sqrt 3.

     

    Đặt cạnh của khối lập phương là x  ( x > 0)

    Suy ra CC' = x;\,{\text{ }}AC = x\sqrt 2.

    Tam giác vuông ACC', có

    AC' = \sqrt {A{C^2} + CC{'^2}}  \Leftrightarrow x\sqrt 3  = a\sqrt 3  \Rightarrow x = a

    Vậy thể tích khối lập phương V = a^3.

  • Câu 35: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 36: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A và có AB=a, BC = a\sqrt 3. Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Tính theo a thể tích V của khối chóp S.ABC.

     

    Gọi H là trung điểm của AB, suy ra SH \bot AB.

    Do \left( {SAB} ight) \bot \left( {ABC} ight) theo giao tuyến AB nên SH \bot (ABC).

    Tam giác SAB là đều cạnh AB=a  nên SH = \frac{{a\sqrt 3 }}{2}.

    Tam giác vuông ABC, có AC = \sqrt {B{C^2} - A{B^2}}  = a\sqrt 2.

    Diện tích tam giác vuông {S_{\Delta ABC}} = \frac{1}{2}AB.AC = \frac{{{a^2}\sqrt 2 }}{2}.

    Vậy {V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SH = \frac{{{a^3}\sqrt 6 }}{{12}}.

  • Câu 37: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và BA=BC=a. Cạnh bên SA=2a và vuông góc với mặt phẳng đáy. Tính theo a thể tích V của khối chóp S.ABC.

    Chóp tam giác

    Diện tích tam giác vuông {S_{\Delta ABC}} = \frac{1}{2}BA.BC = \frac{{{a^2}}}{2}

    Chiều cao khối chóp là SA=2a.

    Vậy thể tích khối chóp {V_{S.ABC}} = \frac{1}{3}{S_{ABC}}.SA = \frac{{{a^3}}}{3}

  • Câu 38: Vận dụng

    Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?

    Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.

    Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3Đ =2C.

  • Câu 39: Thông hiểu

    Một hình đa diện có các mặt là những tam giác. Gọi M là tổng số mặt và C là tổng số cạnh của đa diện đó. Mệnh đề nào sau đây đúng.

     Vì mỗi mặt là những tam giác nên có tổng số cạnh là 3M.  Mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3M = 2C.

  • Câu 40: Thông hiểu

    Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0, S_1,... , S_n sao cho S_0 trùng với S, S_n trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

    Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại  đều đúng dựa vào khái niệm hình đa diện.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Khối đa diện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 23 lượt xem
Sắp xếp theo