Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Cho hình chóp
có đáy
là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên
và
cùng vuông góc với mặt phẳng đáy
. Tính theo a thể tích V của khối chóp ![]()

Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra . Do đó chiều cao khối chóp là
.
Diện tích hình chữ nhật ABCD là
Vậy thể tích khối chóp
Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại
là:

Khối đa diện đều loại là khối lập phương, gồm 6 mặt là các hình vuông nên tổng các góc bằng:
Tổng độ dài
của tất cả các cạnh của một tứ diện đều cạnh
.

Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là
Tính thể tích
của khối lăng trụ
biết thể tích khối chóp
bằng ![]()
Ta có thể tích khối chóp:
Suy ra:
Cho hình chóp đều
có cạnh đáy bằng
, cạnh bên gấp hai lần cạnh đáy. Tính thể tích
của khối chóp đã cho.

Gọi là tâm đường tròn ngoại tiếp tam giác
. Vì
là khối chóp đều nên suy ra
.
Gọi là trung điểm của
Tam giác vuông tại
, có:
Diện tích tam giác là:
Vậy thể tích khối chóp:
Trong các mệnh đề sau, mệnh đề nào saì?
Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có:
- Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.
- Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy (ABCD) và
. Tính theo a thể tích V khối chóp S.ABCD.

Đường chéo hình vuông
Xét tam giác SAC, ta có .
Chiều cao khối chóp là .
Diện tích hình vuông ABCD là
Vậy thể tích khối chóp .
Trong các mệnh đề sau, mệnh đề nào đúng?
Xét các đáp án, ta có:
- A Đúng: Ta chứng minh như sau:
Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.
M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)
Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)
Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.
- B Sai.
- C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.
- D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh
Cho các hình sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:
Các hình đa diện là:
;
; 
Cho hình chóp
có đáy
là tam giác vuông tại A và có
,
. Mặt bên
là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng
. Tính theo
thể tích
của khối chóp
.

Gọi là trung điểm của
, suy ra
.
Do theo giao tuyến
nên
.
Tam giác là đều cạnh
nên
.
Tam giác vuông , có
.
Diện tích tam giác vuông .
Vậy .
Cho tứ diện có thể tích bằng
. Gọi
là thể tích của khối đa diện có các đỉnh là các trung điểm của các cạnh của khối tứ diện đã cho, tính tỉ số
.

Xét khối tứ diện và các điểm được kí hiệu như hình vẽ trên, ta có:
Tương tự .
Do đó
.
Mặt phẳng đi qua trọng tâm của tứ diện, song song với một mặt phẳng của tứ diện và chia khối tứ diện thành hai phần. Tính tỉ số thể tích (phần bé chia phần lớn) của hai phần đó.

Gọi lần lượt là trung điểm của các cạnh
khi đó
là trọng tâm của tứ diện
. Ta sẽ dựng mặt phẳng qua
song song với
.
Trong mặt phẳng dựng đường thẳng qua
song song với
cắt
lần lượt tại
.
Qua lần lượt kẻ các đường thẳng lần lượt song song với
cắt
lần lượt tại
.
Do là trung điểm của
suy ra
Ta có
Cho lăng trụ đứng
có đáy
là tam giác vuông tại
và
. Cạnh
tạo với mặt đáy
góc
. Tính thể tích
của khối lăng trụ đã cho.

Vì là lăng trụ đứng nên
, suy ra hình chiếu vuông góc của
trên mặt đáy
là
.
Do đó .
Tam giác vuông , ta có
Diện tích tam giác là
Vậy .
Mệnh đề nào sau đây đúng?
Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

- Khối lập phương có 6 mặt.
"Mọi khối đa diện đều có số mặt là những số chia hết cho 4"
Sai.
- Khối lập phương và khối bát diện đều có cùng số cạnh là 12. Đúng
- Khối tứ diện đều không có tâm đối xứng.
"Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.
- Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.
"Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai
Cho hình bát diện đều cạnh
. Gọi
là tổng diện tích tất cả các mặt của hình bát diện đó. Mệnh đề nào dưới đây đúng?

Hình bát diện đều là hình có tám mặt bằng nhau và mỗi mặt là một tam giác đều. Gọi là diện tích tam giác đều cạnh
Vậy diện tích S cần tính là: .
Cho hình chóp
có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1
Cho hình chóp có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1

Diện tích hình thang ABCD là
Chiều cao khối chóp là .
Vậy thể tích khối chóp
Khối đa diện nào sau đây có số mặt nhỏ nhất?
Khối tứ diện đều có 4 mặt là 4 tam giác đều.
Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.
Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông
Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.
Cho các hình sau:
Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình không phải đa diện là:
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho S0 trùng với S, Sn trùng với S’ và bất kì hai mặt
nào
cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Tổng độ dài
của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2
60 || sáu mươi || Sáu mươi
Tổng độ dài của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2
60 || sáu mươi || Sáu mươi
Khối mười hai mặt đều có tất cả 30 cạnh:

Suy ra ta có tổng độ dài tất cả các cạnh bằng .
Cho hình chóp 22 cạnh. Tính số mặt của hình chóp đó?
Gọi số cạnh đáy là với
Đáy của chóp là
– giác.
Ứng với mỗi đỉnh của đáy của 1 cạnh nối đỉnh của hình chóp với đỉnh của chóp.
Suy ra hình chóp có tổng số cạnh là .
Theo đề bài, hình chóp có 22 cạnh nên ta được (TMĐK)
Do đó, hình chóp có đáy là 11 – giác.
Do đó chóp có 11 mặt bên cộng 1 đáy.
Vậy hình chóp có tổng 12 mặt.
Tìm số mặt của hình đa diện dưới đây là?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai

Hình bát diện đều có 12 cạnh.
Số mặt phẳng đối xứng của hình tứ diện đều là:
Các mặt phẳng đối xứng của hình tứ diện đều là các mặt phẳng chứa một cạnh và qua trung điểm cạnh đối diện.

Vậy hình tứ diện đều có 6 mặt phẳng đối xứng.
Cho hình chóp
có đáy
là tam giác vuông cân ở
,
,
và vuông góc với đáy
. Gọi
là trọng tâm tam giác
. Mặt phẳng
qua
và song song với
cắt
lần lượt tại
. Tính theo
thể tích
của khối chóp
.

Từ giả thiết suy ra .
Diện tích tam giác . Do đó
.
Gọi là trung điểm
.
Do là trọng tâm
nên
.
Vì song song với giao tuyến
theo tỉ số
Vậy thể tích khối chóp .
Hình lập phương có tất cả bao nhiêu mặt phẳng đối xứng?
Có 9 mặt đối xứng (như hình vẽ sau):

Cho hình chóp
có đáy
là hình vuông cạnh
. Gọi
và
lần lượt là trung điểm của các cạnh
và
;
là giao điểm của
và
. Biết
vuông góc với mặt phẳng
và
. Tính thể tích khối chóp
.

Theo giả thiết, ta có .
Diện tích tứ giác:
Vậy .
Cho hình đa diện đều loại
cạnh
. Gọi
là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?
Đa diện đều loại là khối lập phương nên có 6 mặt là các hình vuông cạnh
.
Vậy hình lập phương có tổng diện tích tất cả các mặt là

Cho lăng trụ đứng
có đáy
là hình thoi cạnh bằng 1,
. Góc giữa đường thẳng
và mặt phẳng
bằng
. Tính thể tích
của khối lăng trụ.

Hình thoi có
, suy ra
. Do đó tam giác
và
là các tam giác đều. Gọi N là trung điểm A'B' nên
Suy ra .
Tam giác vuông , có
Tam giác vuông , có
.
Diện tích hình thoi .
Vậy .
Hình đa diện trong hình vẽ sau có bao nhiêu cạnh?

Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được.
Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?
Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.
Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức .
Trong các mệnh đề sau, mệnh đề nào sai?
Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Có hai khối đa diện lồi là: Hình 1 & Hình 4
Số cạnh của hình đa diện luôn luôn là một số tự nhiên
Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.
Hình đa diện nào dưới đây không có tâm đối xứng?
Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)
Hình lăng trụ tam giác cũng không có tâm đối xứng.
Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng
Bát diện đều cũng có tâm đối xứng.
Trong các hình dưới đây, hình nào không phải đa diện lồi?
Áp dụng dấu hiệu nhận biết của khối đa diện lồi : Đoạn thẳng nối hai điểm bất kì của
luôn thuộc
. Ta thấy có hình sau vi phạm tính chất đó:

Cho hình chóp
có tam giác
là tam giác vuông cân tại S,
và khoảng cách từ A đến mặt phẳng
bằng
. Tính theo a thể tích V của khối chóp
.
Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là
Tam giác SBC vuông cân tại S nên
Vậy thể tích khối chóp
Cho khối chóp
có đáy
là hình vuông cạnh
, tam giác
cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy,
. Tính theo
thể tích của khối chóp
.

Gọi là trung điểm của
. Tam giác
cân tại
và có
là trung điểm
nên
. Do
theo giao tuyến
nên
.
Tam giác vuông , có:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành; điểm I nằm trên SC sao cho
. Mặt phẳng
chứa cạnh
cắt cạnh
lần lượt tại
. Gọi
lần lượt là thể tích khối chóp
và
. Tính giá trị nhỏ nhất của tỉ số thể tích
.

Đặt .
Ta có .
Ta có .
Dấu bằng xảy ra khi .
Vậy giá trị nhỏ nhất cử tỉ số thể tích cần tìm là .
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:
