Tính thể tích
của khối lăng trụ
biết thể tích khối chóp
bằng ![]()
Ta có thể tích khối chóp:
Suy ra:
Tính thể tích
của khối lăng trụ
biết thể tích khối chóp
bằng ![]()
Ta có thể tích khối chóp:
Suy ra:
Cho hình chóp
có đáy
là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên
và
cùng vuông góc với mặt phẳng đáy
. Tính theo a thể tích V của khối chóp ![]()

Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra . Do đó chiều cao khối chóp là
.
Diện tích hình chữ nhật ABCD là
Vậy thể tích khối chóp
Tính thể tích
của khối lập phương
, biết
.

Đặt cạnh của khối lập phương là
Suy ra .
Tam giác vuông , có
Vậy thể tích khối lập phương .
Hình đa diện trong hình vẽ sau có bao nhiêu cạnh?

Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được.
Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?
Hình {3;4} là khối bát diện đều, có 12 cạnh.
Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.
Vậy tổng số cạnh của hai hình trên là cạnh.
Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại
là:

Khối đa diện đều loại là khối lập phương, gồm 6 mặt là các hình vuông nên tổng các góc bằng:
Cho khối chóp
có đáy
là hình vuông cạnh
,
vuông góc với đáy và khoảng cách từ
đến mặt phẳng
bằng
. Tính thể tích
của khối chóp đã cho.

Gọi là hình chiếu của
trên
Ta có
Suy ra
Tam giác vuông tại
, có
Vậy .
Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại
là:
Khối đa diện đều loại là khối hai mươi mặt đều:

Gồm 20 mặt là các tam giác đều nên tổng các góc bằng:
Cho tứ diện
có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .![]()
4 || Bốn || bốn
Cho tứ diện có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .
4 || Bốn || bốn
Vì là trọng tâm của tam giác
nên
.
Suy ra
Số cạnh của hình đa diện luôn luôn là một số tự nhiên
Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.
Cho khối lăng trụ đứng
có
, đáy
là tam giác vuông cân tại
và
. Tính thể tích của khối lăng trụ đã cho.

Tam giác vuông cân tại
,
suy ra
Vậy thể tích khối lăng trụ
Cho tứ diện có thể tích bằng
. Gọi
là thể tích của khối đa diện có các đỉnh là các trung điểm của các cạnh của khối tứ diện đã cho, tính tỉ số
.

Xét khối tứ diện và các điểm được kí hiệu như hình vẽ trên, ta có:
Tương tự .
Do đó
.
Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?
Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.
Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức .
Chọn khẳng định đúng trong các khẳng định sau:
Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

Cho các hình sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:
Các hình đa diện là:
;
; 
Trong các hình dưới đây hình nào không phải khối đa diện lồi?

Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.
Số mặt phẳng đối xứng của hình bát diện đều là:
Gọi bát diện đều là ABCDEF

Có 9 mặt phẳng đối xứng, bao gồm: 3 mặt phẳng (ABCD), (BEDF), (AECF) và 6 mặt phẳng mà mỗi mặt phẳng là mặt phẳng trung trực của hai cạnh song song (chẳng hạn AB và CD).
Trong các mệnh đề sau, mệnh đề nào sai?
Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!
Để thiết kế một chiếc bể nuôi cá Koi trong sân vườn hình hộp chữ nhật không nắp có chiều cao
và thể tích chứa
. Biết giá thành để làm mặt bên là 2,8 triệu đồng/
và làm mặt đáy là 4 triệu đồng/
. Tính chi phí thấp nhất để hoàn thành bể cá (Làm tròn theo đơn vị triệu đồng).

Đáp án: 2812
Để thiết kế một chiếc bể nuôi cá Koi trong sân vườn hình hộp chữ nhật không nắp có chiều cao và thể tích chứa
. Biết giá thành để làm mặt bên là 2,8 triệu đồng/
và làm mặt đáy là 4 triệu đồng/
. Tính chi phí thấp nhất để hoàn thành bể cá (Làm tròn theo đơn vị triệu đồng).
Đáp án: 2812
Gọi lần lượt là chiều rộng và chiều dài của đáy hình hộp.
Điều kiện: .
Ta có thể tích của khối hộp:
.
Diện tích mặt đáy:
.
Giá tiền để làm mặt đáy là:
(đồng).
Diện tích xung quanh của bể cá:
.
Giá tiền để làm mặt bên là:
.
Tổng chi phí để xây dựng bể cá là:
(triệu đồng).
Mặt phẳng đi qua trọng tâm của tứ diện, song song với một mặt phẳng của tứ diện và chia khối tứ diện thành hai phần. Tính tỉ số thể tích (phần bé chia phần lớn) của hai phần đó.

Gọi lần lượt là trung điểm của các cạnh
khi đó
là trọng tâm của tứ diện
. Ta sẽ dựng mặt phẳng qua
song song với
.
Trong mặt phẳng dựng đường thẳng qua
song song với
cắt
lần lượt tại
.
Qua lần lượt kẻ các đường thẳng lần lượt song song với
cắt
lần lượt tại
.
Do là trung điểm của
suy ra
Ta có
Cho khối chóp S.ABC có SA vuông góc với đáy,
và
. Tính thể tích V của khối chóp
.
32
Cho khối chóp S.ABC có SA vuông góc với đáy, và
. Tính thể tích V của khối chóp
.
32

Xét tam giác , có:
Suy ra tam giác vuông tại A
Vậy thể tích khối chóp
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Tìm số mặt của hình đa diện dưới đây là?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Có hai khối đa diện lồi là: Hình 1 & Hình 4
Hình đa diện nào dưới đây không có tâm đối xứng?
Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)
Hình lăng trụ tam giác cũng không có tâm đối xứng.
Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng
Bát diện đều cũng có tâm đối xứng.
Hình lăng trụ có thể có số cạnh nào sau đây?
Giả sử hình lăng trụ có đáy là – giác.
Khi đó, số cạnh của hình lăng trụ là .
Như vậy số cạnh của hình lăng trụ phải chia hết cho 3, xét các đáp án thì chỉ có 2022 chia hết cho 3 nên số cạnh của hình lăng trụ chỉ có thể là 2022.
Tính thể tích
của khối lăng trụ tam giác đều có cạnh đáy bằng
và tổng diện tích các mặt bên bằng ![]()

Xét khối lăng trụ có đáy
là tam giác đều và
.
Diện tích xung quanh lăng trụ là
Diện tích tam giác là
.
Vậy thể tích khối lăng trụ là .
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai

Hình bát diện đều có 12 cạnh.
Cho khối chóp
có đáy
là hình vuông cạnh
, tam giác
cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy,
. Tính theo
thể tích của khối chóp
.

Gọi là trung điểm của
. Tam giác
cân tại
và có
là trung điểm
nên
. Do
theo giao tuyến
nên
.
Tam giác vuông , có:
Cho hình 20 mặt đều có cạnh bằng 2. Gọi S là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?
Hình 20 đều là hình có 20 mặt bằng nhau và mỗi mặt là một tam giác đều.
Gọi là diện tích tam giác đều cạnh 2
Vậy diện tích S cần tính là: .
Tổng độ dài
của tất cả các cạnh của một tứ diện đều cạnh
.

Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là
Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?
Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:
Đ=4; M=4; C=6
Một hình đa diện có các mặt là những tam giác. Gọi M là tổng số mặt và C là tổng số cạnh của đa diện đó. Mệnh đề nào sau đây đúng.
Vì mỗi mặt là những tam giác nên có tổng số cạnh là 3M. Mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3M = 2C.
Tổng diện tích tất cả các mặt của hình tứ diện đều cạnh a bằng là?
Diện tích 1 mặt của tứ diện đều là diện tích của 1 tam giác đều cạnh a là:
Tổng diện tích tất cả các mặt của hình tứ diện đều cạnh a bằng:
Tổng độ dài
của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2
60 || sáu mươi || Sáu mươi
Tổng độ dài của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2
60 || sáu mươi || Sáu mươi
Khối mười hai mặt đều có tất cả 30 cạnh:

Suy ra ta có tổng độ dài tất cả các cạnh bằng .
Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều (Hình bên dưới). Cạnh đáy dưới dài 5m, cạnh đáy trên dài 2m, cạnh bên dài 3m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1470000 đồng/m3. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị đồng.

Đáp án: 40538432
Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều (Hình bên dưới). Cạnh đáy dưới dài 5m, cạnh đáy trên dài 2m, cạnh bên dài 3m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1470000 đồng/m3. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị đồng.
Đáp án: 40538432
Hình vẽ minh họa:
Mô hình hoá chân tháp bằng cụt chóp tứ giác đều ABCD.A′B′C′D′ với O, O′ là tâm của hai đáy.
Vậy .
ABCD là hình vuông
là hình vuông
Kẻ
là hình chữ nhật
vuông tại
Diện tích đáy lớn là:
Diện tích đáy bé là:
Thể tích hình chóp cụt là:
Số tiền để mua bê tông tươi làm chân tháp là: (đồng).
Cho hình chóp
có đáy là hình vuông cạnh
,
, biết
. Gọi
lần lượt là trung điểm của
,
,
,
. Các mệnh đề sau đúng hay sai?
a) Thể tích của khối chóp
bằng
. Đúng||Sai
b) Thể tích của khối chóp
bằng thể tích của khối chóp
. Đúng||Sai
c) Thể tích của khối chóp
bằng
. Sai||Đúng
d) Thể tích của khối chóp
bằng
. Đúng||Sai
Cho hình chóp có đáy là hình vuông cạnh
,
, biết
. Gọi
lần lượt là trung điểm của
,
,
,
. Các mệnh đề sau đúng hay sai?
a) Thể tích của khối chóp bằng
. Đúng||Sai
b) Thể tích của khối chóp bằng thể tích của khối chóp
. Đúng||Sai
c) Thể tích của khối chóp bằng
. Sai||Đúng
d) Thể tích của khối chóp bằng
. Đúng||Sai
Hình vẽ minh họa
a) Ta có: . Suy ra mệnh đề đúng.
b) Từ giả thiết có ;
.
. Suy ra mệnh đề đúng.
c) Ta có .
Suy ra . Vậy mệnh đề sai.
d) Ta có .
Suy ra là hình bình hành; mặt khác, ta có:
Mà nên tứ giác
là hình chữ nhật.
Do nên ta có:
.
.
Với .
Ta có
Mà .
Vậy . Suy ra mệnh đề đúng.
Vật thể nào trong các vật thể sau không phải là khối đa diện?
Vì đáp án đã vi phạm tính chất sau:
Mỗi cạnh của miền đa giác nào cũng là cạnh chung của đúng hai miền đa giác
Trong các hình dưới đây, hình nào không phải đa diện lồi?
Áp dụng dấu hiệu nhận biết của khối đa diện lồi : Đoạn thẳng nối hai điểm bất kì của
luôn thuộc
. Ta thấy có hình sau vi phạm tính chất đó:

Cho hình chóp
có đáy
là hình vuông cạnh
. Gọi
và
lần lượt là trung điểm của các cạnh
và
;
là giao điểm của
và
. Biết
vuông góc với mặt phẳng
và
. Tính thể tích khối chóp
.

Theo giả thiết, ta có .
Diện tích tứ giác:
Vậy .