Đề kiểm tra 45 phút Chương 1 Mệnh đề toán học. Tập hợp

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Mệnh đề toán học. Tập hợp gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Xác định M = A ∪ B trong trường hợp A = {x | x ∈ \mathbb{ℕ}, x ⋮ 4x < 10}, B là tập hợp các số tự nhiên chia hết cho 3 và nhỏ hơn 12.

    Liệt kê các phần tử ta có:

    A = \left \{ {0; 4; 8} ight \}

    B = \left \{ {0; 3; 6; 9} ight \}

    Vậy M = A ∪ B = \left \{ {0; 3; 4; 6; 8; 9} ight \}.

  • Câu 2: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?

     Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.

  • Câu 3: Vận dụng

    Cho tập hợp C_{\mathbb{R}}A = \left\lbrack - 3;\sqrt{8}
ight)C_{\mathbb{R}}B = ( -
5;2) \cup \left( \sqrt{3};\sqrt{11} ight). Tập C_{\mathbb{R}}(A \cap B) là:

    C_{\mathbb{R}}A\mathbb{= R}\backslash A
= \left\lbrack - 3;\sqrt{8} ight) \Rightarrow A = ( - \infty; - 3)
\cup \left\lbrack \sqrt{8}; + \infty ight)

    C_{\mathbb{R}}B\mathbb{= R}\backslash B= ( - 5;2) \cup \left( \sqrt{3};\sqrt{11} ight) = \left( - 5;\sqrt{11}ight)\Rightarrow B = ( - \infty; - 5brack \cup \left\lbrack\sqrt{11}; + \infty ight).

    \Rightarrow A \cap B = ( - \infty; -
5brack \cup \left\lbrack \sqrt{11}; + \infty ight)

    \Rightarrow C_{\mathbb{R}}(A \cap
B)\mathbb{= R}\backslash(A \cap B) = \left( - 5;\sqrt{11}
ight).

  • Câu 4: Nhận biết

    Cho A = \left\{
0;1;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp B\backslash A bằng

    Tập hợp B\backslash A gồm những phần tử thuộc B nhưng không thuộc A

    \Rightarrow B\backslash A = \left\{ 5;6
ight\}.

  • Câu 5: Nhận biết

    Trong các câu sau, câu nào không phải là mệnh đề toán học?

     Đáp án “2x + y = −5” không phải mệnh đề vì nó không có tính đúng hoặc sai. Suy ra nó cũng không phải mệnh đề toán học.

  • Câu 6: Vận dụng

    Cho A = \lbrack
1;4brack,B = (2;6),C = (1;2). Tìm A \cap B \cap C.

    Vậy A \cap B \cap C =
\varnothing.

  • Câu 7: Nhận biết

    Cách viết tập hợp nào đúng trong các cách viết sau để xác định tập hợp A các ước dương của 12:

    Các ước dương của 12 là: 1; 2; 3; 4; 6; 12

    => Cách viết tập hợp đúng là: A = \left \{ 1; 2; 3; 4; 6; 12ight \}

  • Câu 8: Thông hiểu

    Viết mệnh đề sau bằng cách sử dụng kí hiệu \forall hoặc \exists: “Mọi số nhân với 1 đều bằng chính nó”.

    Mệnh đề được viết lại bằng kí hiệu: \forall x \in R,\ x.1 = x.

  • Câu 9: Nhận biết

    Tập X = \left\{
x\mathbb{\in Z}|2x^{2} - 5x + 2 = 0 ight\} bằng tập nào sau đây?

    Ta có: 2x^{2} - 5x + 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2\mathbb{\in Z} \\
x = \frac{1}{2}\mathbb{otin Z} \\
\end{matrix} ight.\  \Rightarrow X = \left\{ 2 ight\}.

  • Câu 10: Nhận biết

    Tìm mệnh đề phủ định của mệnh đề: “Vịt là một loài chim”.

    Phủ định của mệnh đề P là mệnh đề “không phải P"

    Chọn đáp án Vịt không phải là một loài chim.

  • Câu 11: Thông hiểu

    Trong các tập hợp sau đây, tập hợp nào không phải là con của tập hợp A với A = {x | x ∈ \mathbb{ℕ}, x ⋮ 4x < 20}

    Ta liệt kê các phần tử của tập A: A = \left \{ {0; 4; 8; 12; 16} ight \}.

    Như vậy chỉ có phương án \left \{ {0; 1; 2; 3; 4} ight \} là tập hợp có các phần tử 1, 2, 3 không thuộc tập A nên không là tập con của A.

  • Câu 12: Thông hiểu

    Với giá trị nào của x thì mệnh đề chứa biến "\sqrt{x^{2}-3x+5}>2x+3" là đúng?

     Thay x=-1 vào 2 vế, ta được: 3>1 (đúng).

  • Câu 13: Vận dụng

    Cho số thực a
< 0. Điều kiện cần và đủ để ( -
\infty;a) \cup \left\lbrack \frac{4}{a}; + \infty ight)\mathbb{=
R} là:

    Ta có: ( - \infty;a) \cup \left\lbrack
\frac{4}{a}; + \infty ight)\mathbb{= R \Leftrightarrow}a \geq
\frac{4}{a} \Leftrightarrow a^{2} \leq 4 (vì a < 0 nên khi quy đồng bỏ mẫu dấu bất phương trình bị đổi)

    \Leftrightarrow - 2 \leq a \leq
2

    a < 0 \Rightarrow - 2 \leq a <
0.

  • Câu 14: Nhận biết

    Kí hiệu nào sau đây dùng để viết đúng mệnh đề “\sqrt{2} không phải là số hữu tỉ”

    Ta có: \sqrt{\mathbf{2}}\mathbb{otin
Q}\mathbf{.}

  • Câu 15: Vận dụng

    Biết A là mệnh đề đúng, B là mệnh đề sai, C là mệnh đề đúng. Mệnh đề nào sau đây sai?

    Ta có: A là mệnh đề đúng, B là mệnh đề sai nên A \Rightarrow B là mệnh đề sai.

    C là mệnh đề đúng, A \Rightarrow B là mệnh đề sai nên C \Rightarrow (A \Rightarrow B)là mệnh đề sai.

    Chọn đáp án C \Rightarrow (A \Rightarrow
B).

  • Câu 16: Nhận biết

    Tìm phát biểu là mệnh đề.

    Ta có:

    Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.

    Suy ra “Hà Nội là thủ đô của Việt Nam.” là mệnh đề.

  • Câu 17: Nhận biết

    Cho X = \left\{
7;2;8;4;9;12 ight\};Y = \left\{ 1;3;7;4 ight\}. Tập nào sau đây bằng tập X \cap Y?

    Tập hợp X \cap Y gồm những phần tử vừa thuộc X vừa thuộc Y

    \Rightarrow X \cap Y = \left\{ 4;7
ight\}.

  • Câu 18: Thông hiểu

    Cho 2 mệnh đề: “Quyển vở này của Nam” và “Quyển vở này có 118 trang”.

    Cho biết 2 mệnh đề trên đều đúng, tìm mệnh đề sai trong các mệnh đề sau:

    Đặt P: “Quyển vở này của Nam”, Q: “Quyển vở này có 118 trang”

    Theo đề bài, P đúng, Q đúng nên \overline{P} sai, \overline{Q} sai.

    Mệnh đề P \Rightarrow Q chỉ sai khi P đúng Q sai.

    Chọn đáp án Quyển vở này của Nam nên nó không có 118 trang.

  • Câu 19: Thông hiểu

    Số tập hợp con có 2 phần tử của tập hợp A = \left\{ {1,2,3,4,5,6} ight\} là:

    Các tập hợp con của tập hợp A là: \left\{ {1;2} ight\},\left\{ {1;3} ight\},\left\{ {1;4} ight\},\left\{ {1;5} ight\}, \left\{ {1;6} ight\},\left\{ {2;3} ight\},\left\{ {2;4} ight\},\left\{ {2;5} ight\}, \left\{ {4;5} ight\},\left\{ {4;{\text{ }}6} ight\},\left\{ {5;{\text{ }}6} ight\} ,\left\{ {2;6} ight\},\left\{ {3;4} ight\},\left\{ {3;5} ight\},\left\{ {3;6} ight\}.

    Có tất cả 15 tập con của tập hợp A.

  • Câu 20: Thông hiểu

    Cho C_{R}A = ( -\infty;2) \cup \lbrack 6; + \infty)C_{R}B = \lbrack 5;9). Tập hợp X = A \cap B

    A = \lbrack 2;6),B = ( - \infty;5) \cup\lbrack 9; + \infty).

    Suy ra X = A \cap B = \lbrack2;5).

  • Câu 21: Nhận biết

    Cho định lí “Nếu a < b thì a + c < b + c”. Giả thiết của định lí này là gì?

    Khi mệnh đề P ⇒ Q là định lí, ta nói: P là giả thiết, Q là kết luận của định lí

    Từ đó ta suy ra: Giả thiết của định lí là a < b

  • Câu 22: Nhận biết

    Cho A = \left\{
0;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp A\setminus  B bằng

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B

    \Rightarrow A\backslash B = \left\{ 0
ight\}.

  • Câu 23: Nhận biết

    Cho A = {1; 3; 4; 7} và B = {3; 5; 7; 10} . Tập A\ B là:

     Ta có: A\ B = {1; 4}.

  • Câu 24: Vận dụng cao

    Cho hai tập hợp A
= ( - \infty;m), B = \lbrack 3m -
1;3m + 3brack. Tìm tất cả các giá trị của tham số m để A
\subset C_{\mathbb{R}}B.

    Ta có: {C_\mathbb{R}}B = \left( { - \infty ;3m - 1} ight) \cup \left( {3m + 3; + \infty } ight)

    Do đó để A \subset {C_\mathbb{R}}B

    \Leftrightarrow m \leqslant 3m - 1 \Leftrightarrow m \geqslant \frac{1}{2}

  • Câu 25: Vận dụng

    A, B, C là ba mệnh đề đúng, mệnh đề nào sau đây là đúng?

    B đúng, \overline{C} sai nên B \Rightarrow \overline{C} sai. A đúng, B \Rightarrow \overline{C} sai nên A \Rightarrow \left( B \Rightarrow \overline{C}
ight)là mệnh đề sai.

    C đúng, \overline{A} sai nên C \Rightarrow \overline{A} là mệnh đề sai.

    A đúng, C đúng nên A
\Rightarrow C đúng. B đúng, \overline{A \Rightarrow C} sai nên B \Rightarrow \left( \overline{A
\Rightarrow C} ight) sai.

    A đúng, B đúng nên A \Rightarrow
B là mệnh đề đúng. C đúng, A \Rightarrow B là mệnh đề đúng nên C \Rightarrow (A \Rightarrow B)là mệnh đề đúng.

    Chọn đáp án C \Rightarrow (A \Rightarrow
B).

  • Câu 26: Thông hiểu

    Cho mệnh đề P: “∀ x ∈ R: |x| ≥ 0” . Phủ định của mệnh đề P là:

     Phủ định của mệnh đề P là: “∃ x ∈ R: |x| < 0”.

  • Câu 27: Thông hiểu

    Cho các mệnh đề sau đây:

    (I). Nếu tam giác ABC đều thì tam giác ABCAB = AC.

    (II). Nếu a\ và\ b đều là các số chẵn thì (a + b) là một số chẵn.

    (III). Nếu tam giác ABC có tổng hai góc bằng 90^{\circ} thì tam giác ABC là tam giác vuông.

    Trong các mệnh đề đảo của (I), (II) và (III), có bao nhiêu mệnh đề đúng?

    Mệnh đề đảo của

    (I). Nếu tam giác ABCAB = ACthì tam giác ABC đều \Rightarrow Mệnh đề sai.

    (II). Nếu (a + b) là một số chẵn thì a\ và\ b đều là các số chẵn \Rightarrow Mệnh đề sai.

    (III). Nếu tam giác ABC là tam giác vuông thì tam giác ABC có tổng hai góc bằng 90^{\circ}

    \Rightarrow Mệnh đề đúng.

    \Rightarrow Có 1 mệnh đề đảo là đúng.

  • Câu 28: Nhận biết

    Đâu là kí hiệu của hai mệnh đề kéo theo?

    Mệnh đề kéo theo được kí hiệu là: P ⇒ Q

  • Câu 29: Nhận biết

    Chọn phát biểu đúng về mệnh đề sau: "∀x ∈ \mathbb{N}, x^{2} <0"?

    Phát biểu đúng của mệnh đề "∀x ∈ \mathbb{N}, x^{2} <0" là: “Với mọi số tự nhiên x, bình phương của nó đều nhỏ hơn 0”.

  • Câu 30: Nhận biết

    Với giá trị thực nào của x mệnh đề chứa biến P(x):2x^{2} - 1 < 0 là mệnh đề đúng?

    Thay x = 0 vào P(x) ta được - 1 < 0 là mệnh đề đúng.

  • Câu 31: Thông hiểu

    Hãy liệt kê các phần tử của tập hợp \mathbf{X =}\left\{ \mathbf{x}\mathbb{\in
R}\mathbf{|}\mathbf{x}^{\mathbf{2}}\mathbf{+ x
+}\mathbf{1}\mathbf{=}\mathbf{0} ight\}\mathbf{.}

    Ta có: x^{2} + x + 1 = 0 không có nghiệm thực.

  • Câu 32: Nhận biết

    Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:

    Ta có: \mathbf{7}\mathbb{\in N}\mathbf{.}

  • Câu 33: Thông hiểu

    Tập hợp A = (2;+∞)\cap [-3;8] bằng tập hợp nào sau đây?

     Ta có: A = (2;+∞)\cap [-3;8] =(2;8].

  • Câu 34: Thông hiểu

    Cho A là tập hợp các bội của 2, B là tập hợp các bội của 8. Chọn khẳng định đúng:

     Số lượng phần tử của tập hợp các bội của 2 nhiều hơn số lượng phần tử tập hợp các bội của 8. Mà đã là bội của 8 thì cũng là bội của 2. 

    Do đó B\subset A

  • Câu 35: Nhận biết

    Có bao nhiêu câu là mệnh đề trong các câu sau:

    (1) Môn toán khó quá!

    (2) Bạn có đói không?

    (3) 2 > 3 hoặc 1 \leq 4.

    (4) \pi < 2.

    Câu (1) là câu cảm thán, câu (2) là câu nghi vấn nên không phải mệnh đề.

    Các câu còn lại là mệnh đề.

    \Rightarrow2 câu là mệnh đề.

  • Câu 36: Vận dụng cao

    Cho tập hợp A = {y\in\mathbb{ R}|y = \frac{a^{2} + b^{2} +c^{2}}{ab + bc + ca}, với a,b,c là số thực dương}. Tìm số nhỏ nhất của tập hợp A?

    Ta có:

    a^{2} + b^{2} + c^{2} \geq ab + bc +
ca

    \Leftrightarrow \frac{a^{2} + b^{2} +
c^{2}}{ab + bc + ca} \geq 1

    Đẳng thức xảy ra khi a = b =
c.

    Vậy số nhỏ nhất là 1

  • Câu 37: Thông hiểu

    Trong định lí ta nói: "P là điều kiện cần để có Q". Khi đó P là gì của định lí?

     Trong định lí ta nói: "P là điều kiện cần để có Q". Khi đó P là kết luận của định lí.

  • Câu 38: Vận dụng cao

    Cho hai tập hợp khác rỗng A = (m - 1;4brackB = ( - 2;2m + 2)với m\mathbb{\in R}. Tìm m để A \cap B
eq \varnothing.

    \Leftrightarrow \left\{ \begin{matrix}
m - 1 < 4 \\
2m + 2 > - 2 \\
\end{matrix} ight.\  \Leftrightarrow - 2 < m < 5(*)

    Ta có A \cap B = \varnothing
\Leftrightarrow 2m + 2 \leq m - 1 \Leftrightarrow m \leq - 3\
(**)

    Từ (*) và (**) suy ra A \cap B eq
\varnothing \Leftrightarrow - 2 < m < 5.

  • Câu 39: Nhận biết

    Vùng tô đậm thể hiện mối quan hệ gì giữa 2 tập hợp A, B:

    Tìm mối quan hệ giữa hai tập hợp

    Hình vẽ mô tả các phần tử thuộc tập hợp A nhưng không thuộc tập hợp B

    => Vùng tô đậm thể hiện A\setminus B.

  • Câu 40: Thông hiểu

    Cho mệnh đề chứa biến P(n):``n^{2} - 1 chia hết cho 4” với n là số nguyên. Xét xem các mệnh đề P(5)P(2) đúng hay sai?

    Thay n = 5n = 2 vào P(n) ta được các số 24 \vdots 43 không chia hết cho 4. Vậy P(5) đúng và P(2) sai.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Mệnh đề toán học. Tập hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 49 lượt xem
Sắp xếp theo