Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp
.
Ta có: .
Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp
.
Ta có: .
Cho
là tập hợp các số tự nhiên chẵn không lớn hơn
,
. Mệnh đề nào sau đây là đúng?
Liệt kê các phần tử của tập hợp đã cho ta có kết luận đúng là:
Sử dụng các kí hiệu khoảng, đoạn để viết tập hợp ![]()

Vậy .
Cho
. Tập A có bao nhiêu tập con có 2 phần tử?
Tập con có phần tử của
là:
có
tập con có
phần tử.
Tìm mệnh đề phủ định của mệnh đề: “Vịt là một loài chim”.
Phủ định của mệnh đề P là mệnh đề “không phải P"
Chọn đáp án Vịt không phải là một loài chim.
Cho tập hợp
và
Tập hợp
bằng tập nào sau đây?
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
.
Tìm mệnh đề trong các câu sau.
Các câu “Hôm nay, trời đẹp quá!”, “Bạn ăn cơm chưa?”, “Mấy giờ rồi?” là các câu cảm thán hoặc nghi vấn nên không phải là mệnh đề.
Chọn đáp án Paris là thủ đô của Đức.
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Cho mệnh đề P: “∆ABC cân tại A ⇔ AB = AC”. Chọn khẳng định đúng nhất trong các khẳng định sau?
Vì AB = AC nên suy ra ∆ABC cân tại A.
Vì ∆ABC cân tại A nên suy ra AB = AC.
Do đó đáp án đúng là “∆ABC cân tại A” là điều kiện cần và đủ để “AB = AC”.
Tập hợp
bằng tập hợp nào sau đây?
Xác định kết quả tập hợp bằng trục số như sau:

Vậy
Cho
Tìm ![]()
Vậy
Cho tập hợp A = {
, với
là số thực dương}. Tìm số lớn nhất của tập hợp A?
Ta có:
Đẳng thức xảy ra khi .
Vậy số nhỏ nhất là 3.
Cách viết tập hợp nào đúng trong các cách viết sau để xác định tập hợp A các ước dương của 12:
Các ước dương của 12 là: 1; 2; 3; 4; 6; 12
=> Cách viết tập hợp đúng là:
Câu nào là mệnh đề toán học?
Mệnh đề toán học là: "2 là số tự nhiên"
Cho A = {a, b}. Số tập con của A là:
Ta có: Số tập hợp con của tập có phần tử là
. Do đó số tập con của A là
.
Cho các mệnh đề sau đây:
(I). Nếu tam giác
đều thì tam giác
có
.
(II). Nếu
đều là các số chẵn thì
là một số chẵn.
(III). Nếu tam giác
có tổng hai góc bằng
thì tam giác
là tam giác vuông.
Trong các mệnh đề đảo của (I), (II) và (III), có bao nhiêu mệnh đề đúng?
Mệnh đề đảo của
(I). Nếu tam giác có
thì tam giác
đều
Mệnh đề sai.
(II). Nếu là một số chẵn thì
đều là các số chẵn
Mệnh đề sai.
(III). Nếu tam giác là tam giác vuông thì tam giác
có tổng hai góc bằng
Mệnh đề đúng.
Có 1 mệnh đề đảo là đúng.
Có bao nhiêu câu là mệnh đề trong các câu sau:
(1) Môn toán khó quá!
(2) Bạn có đói không?
(3)
hoặc ![]()
(4) ![]()
Câu (1) là câu cảm thán, câu (2) là câu nghi vấn nên không phải mệnh đề.
Các câu còn lại là mệnh đề.
Có
câu là mệnh đề.
Cho A = {1; 3; 4; 7} và B = {3; 5; 7; 10} . Tập A\ B là:
Ta có: A\ B = {1; 4}.
Tìm mệnh đề phủ định của mệnh đề ![]()
Mệnh đề phủ định là:
Mệnh đề nào sau đây là mệnh đề tương đương?
Mệnh đề tương đương là: “Hình thang nội tiếp đường tròn khi và chỉ khi nó là hình thang cân”.
Cách biểu diễn nào sau đây đúng cho tập số [‒5; 5]
Ta có:
Dấu “[” và “]” kí hiệu cho nửa đoạn trên trục số.
Biểu diễn tập [‒5; 5] trên trục số đúng là:

Cho định lí “Nếu
thì
”. Giả thiết của định lí này là gì?
Khi mệnh đề là định lí, ta nói:
là giả thiết,
là kết luận của định lí
Từ đó ta suy ra: Giả thiết của định lí là
Mệnh đề nào sau đây sai?
Mệnh đề đúng khi
đúng và
đúng.
là tam giác đều
là mệnh đề đúng.
là tam giác đều là mệnh đề sai
“
là tam giác đều
” là mệnh đề sai.
Chọn đáp án là tam giác đều
Cho mệnh đề chứa biến
chia hết cho 4” với
là số nguyên. Xét xem các mệnh đề
và
đúng hay sai?
Thay và
vào
ta được các số
và
không chia hết cho
. Vậy
đúng và
sai.
Trong các mệnh đề sau, mệnh đề nào sai?
Mệnh đề: "Số 23 là hợp số" sai vì => 23 là số nguyên tố.
Cho hai tập hợp
và
với
. Tìm a để
là một khoảng?
Vì nên
và
, tức là A và B luôn là các khoảng.
Xét các trường hợp sau:
Nếu
Khi đó , đương nhiên là một khoảng.
Nếu
Nếu
Khi đó là một khoảng.
Nếu
Khi đó là một khoảng. Vậy các giá trị của a thỏa yêu cầu bài toán là
.
Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:
Ta có:
Đâu là kí hiệu của hai mệnh đề kéo theo?
Mệnh đề kéo theo được kí hiệu là:
Khẳng định nào đúng trong các khẳng định sau:
Khẳng định đúng: "Nếu và
thì
"
Cho 2 mệnh đề: “Quyển vở này của Nam” và “Quyển vở này có 118 trang”.
Cho biết 2 mệnh đề trên đều đúng, tìm mệnh đề sai trong các mệnh đề sau:
Đặt “Quyển vở này của Nam”,
“Quyển vở này có 118 trang”
Theo đề bài, đúng,
đúng nên
sai,
sai.
Mệnh đề chỉ sai khi
đúng
sai.
Chọn đáp án Quyển vở này của Nam nên nó không có 118 trang.
Cho A là tập hợp các bội của 2, B là tập hợp các bội của 8. Chọn khẳng định đúng:
Số lượng phần tử của tập hợp các bội của 2 nhiều hơn số lượng phần tử tập hợp các bội của 8. Mà đã là bội của 8 thì cũng là bội của 2.
Do đó
Trong các mệnh đề sau, mệnh đề nào sai?
Xét mệnh đề . Ta thấy
sai nên mệnh đề này sai.
Cho số thực
Điều kiện cần và đủ để
là:
Ta có: (vì
nên khi quy đồng bỏ mẫu dấu bất phương trình bị đổi)
Vì
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Cho mệnh đề
“
”. Mệnh đề phủ định của
là:
Phủ định của là
.
Phủ định của là
.
Mệnh đề phủ định của :
.
Tập hợp
bằng tập hợp nào sau đây?
Xác định kết quả tập hợp bằng hình vẽ như sau:

Vậy
Cho
là số tự nhiên, mệnh đề nào sau đây đúng?
Với thì
là hai số tự nhiên liên tiếp
là số chẵn
Với thì
là ba số tự nhiên liên tiếp
trong 3 số
có 1 số chia hết cho
Chọn đáp án là số chia hết cho
Cho tập hợp
và
. Giá trị nguyên dương của
để tập hợp
có đúng 10 phần tử là:
Ta có .
Theo giả thiết thì nên
và
.
Như vậy, để tập hợp có 10 phần tử thì
Do đó .
Cho tập hợp
và
, với
là tham số. Tìm
để
có đúng hai tập con và
?
có đúng hai tập con và
khi và chỉ khi phương trình
(1) có đúng một nghiệm dương.
Trường hợp 1. , phương trình (1) trở thành
Do đó không thỏa đề bài.
Trường hợp 2. , khi đó phương trình (1) có đúng một nghiệm dương khi và chỉ khi
Vậy là giá trị duy nhất thỏa mãn yêu cầu đề bài.
Xác định tập hợp sau đây trên trục số:
:
Xác định tập hợp trên trục số như sau:
