Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Cho mệnh đề: “Một tứ giác là hình thang cân khi và chỉ khi tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?
Mệnh đề tương đương với mệnh đề đã cho là: Điều kiện cần và đủ để một tứ giác có hai đường chéo bằng nhau là tứ giác đó là một hình thang cân.
Trong các đáp án dưới đây, cách viết khác của tập D = {x ∈ ℝ | x ≠ -3} là
Ta có: D = {x ∈ ℝ | x ≠ -3} = ℝ \ {-3}.
Xác định
trong trường hợp
{
,
và
}, B là tập hợp các số tự nhiên chia hết cho 3 và nhỏ hơn 12.
Liệt kê các phần tử ta có:
Vậy .
Trong các mệnh đề sau, mệnh đề nào sai?
Mệnh đề: "Số 23 là hợp số" sai vì => 23 là số nguyên tố.
Cho
,
Khi đó,
là:
Ta có:
Cho mệnh đề chứa biến
chia hết cho 4” với
là số nguyên. Xét xem các mệnh đề
và
đúng hay sai?
Thay và
vào
ta được các số
và
không chia hết cho
. Vậy
đúng và
sai.
Cho hai mệnh đề A: “∀ x ∈ R:
” và B: “∃ n ∈ Z:
”. Xét tính đúng, sai của hai mệnh đề A và B.
Với mệnh đề A, thay nên A sai.
Với mệnh đề B, thay nên B đúng.
Trong các mệnh đề sau, mệnh đề nào đúng?
Xét: ∃x ∈ R, x > x2. Với thì
.
Xét: ∀x ∈ R, . Sai. Tồn tại
thì
là mệnh đề sai.
Xét: ∀n ∈ N, n2 + 1 chia hết cho 3. . Sai. Vì tồn tại không chia hết cho 3.
Xét: ∃ a∈ Q, a2 = 2. . Sai. Vì không là số hữu tỉ.
Tìm mệnh đề phủ định của mệnh đề ![]()
Mệnh đề phủ định là:
Cho A = {a, b}. Số tập con của A là:
Ta có: Số tập hợp con của tập có phần tử là
. Do đó số tập con của A là
.
Cho định lí “Nếu
thì
”. Giả thiết của định lí này là gì?
Khi mệnh đề là định lí, ta nói:
là giả thiết,
là kết luận của định lí
Từ đó ta suy ra: Giả thiết của định lí là
Cho hai khoảng
và
. Khẳng định nào sau đây là sai?

Vậy khi
Tìm tất cả các giá trị thực âm của tham số
để hai khoảng
và
có khoảng giao khác rỗng.
Với thì
luôn có nghĩa.
Giao của hai tập đã cho khác rỗng khi hai tập hợp này có phần tử chung
(vì m < 0)
Vì nên ta xét các trường hợp sau
Nếu thì
Vậy không thỏa yêu cầu bài toán.
Nếu −1 < m < 0 thì
Vậy giá trị cần tìm của m là .
Tập hợp
có bao nhiêu tập hợp con gồm 2 phần tử:
Tập gồm
phần tử.
Mỗi phần tử ghép với phần tử còn lại ta được
tập con của
có
phần tử.
Số tập con của có
phần tử bằng:
Hãy liệt kê các phần tử của tập hợp ![]()
Ta có: không có nghiệm thực.
Số tập hợp con của tập hợp
là:
Các tập hợp con của tập A:
Số tập con có 3 phần tử là
Số tập con có 2 phần tử là
Số tập con có 1 phần tử là
Vậy tập hơp A có tất cả 8 tập con.
Vùng tô đậm thể hiện mối quan hệ gì giữa 2 tập hợp A, B:

Hình vẽ mô tả các phần tử thuộc tập hợp A nhưng không thuộc tập hợp B
=> Vùng tô đậm thể hiện .
Mệnh đề: "
" khẳng định là
Mệnh đề: " " khẳng định là có ít nhất một số thực mà bình phương của nó lớn hơn 33.
Tìm mệnh đề :
chia hết cho
là mệnh đề đúng, Hình bình hành có hai đường chéo vuông góc nhau là mệnh đề sai
“
chia hết cho
Hình bình hành có hai đường chéo vuông góc nhau” là mệnh đề sai.
Chọn đáp án chia hết cho
Hình bình hành có hai đường chéo vuông góc nhau.
Cho các mệnh đề sau đây:
(I). Nếu tam giác
đều thì tam giác
có
.
(II). Nếu
đều là các số chẵn thì
là một số chẵn.
(III). Nếu tam giác
có tổng hai góc bằng
thì tam giác
là tam giác vuông.
Trong các mệnh đề đảo của (I), (II) và (III), có bao nhiêu mệnh đề đúng?
Mệnh đề đảo của
(I). Nếu tam giác có
thì tam giác
đều
Mệnh đề sai.
(II). Nếu là một số chẵn thì
đều là các số chẵn
Mệnh đề sai.
(III). Nếu tam giác là tam giác vuông thì tam giác
có tổng hai góc bằng
Mệnh đề đúng.
Có 1 mệnh đề đảo là đúng.
Cho biết
là một phần tử của tập hợp
xét các mệnh đề sau:
(I) ![]()
(II)
.
(III) ![]()
(IV) ![]()
Trong các mệnh đề sau, mệnh đề nào là đúng:
I đúng.
II sai vì không có khái niệm tập hợp này thuộc tập hợp kia.
III sai vì phần tử thì không thể là con của
tập hợp.
IV đúng.
Đâu là kí hiệu của hai mệnh đề kéo theo?
Mệnh đề kéo theo được kí hiệu là:
Tập hợp C = (2;+∞) \ [-3;8] bằng tập hợp nào sau đây?
Ta có: C = (2;+∞) \ [-3;8] = (8;+∞).
Cho hai tập hợp
và
Tìm tất cả các số tự nhiên thuộc cả hai tập
và ![]()
Có hai số tự nhiên thuộc cả hai tập
và
là
và
Khẳng định nào đúng trong các khẳng định sau:
Khẳng định đúng: "Nếu và
thì
"
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Câu nào là mệnh đề toán học?
Mệnh đề toán học là: "2 là số tự nhiên"
Cho mệnh đề P: “∀ x ∈ R: |x| ≥ 0” . Phủ định của mệnh đề P là:
Phủ định của mệnh đề P là: “∃ x ∈ R: |x| < 0”.
Cho tập hợp
,
, (
là tham số thực). Tìm tất cả các giá trị của tham số
để
.
Vì nên tồn tại
. Khi đó:
Nếu thử lại thấy
nên không thỏa mãn.
Nếu thay vào tập
tìm được
. Thử lại khi
thấy
.
Vậy .
Cách viết tập hợp nào đúng trong các cách viết sau để xác định tập hợp A các ước dương của 12:
Các ước dương của 12 là: 1; 2; 3; 4; 6; 12
=> Cách viết tập hợp đúng là:
Tập
bằng tập nào sau đây?
Ta có:
Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?
Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.
Tìm phát biểu là mệnh đề.
Ta có:
Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.
Suy ra “Hà Nội là thủ đô của Việt Nam.” là mệnh đề.
Xác định A ∩ B trong trường hợp sau:
![]()
Tập hợp là tập hợp cặp số (x; y) thỏa mãn hệ phương trình:
Vậy
Hai mệnh đề sau là mệnh đề gì: “x chia hết cho 9” và “x chia hết cho 3”.
Nếu x chia hết cho 9 thì x chia hết cho 3.
Nếu x chia hết cho 3 thì x có thể không chia hết cho 9.
=> Hai mệnh đề “x chia hết cho 9” và “x chia hết cho 3” là mệnh đề kéo theo.
Người ta thường kí hiệu tập hợp số như thế nào?
Người ta thường kí hiệu các tập hợp số như sau:
Cho hai tập hợp khác rỗng
và
với
. Tìm
để
.
Ta có
Từ (*) và (**) suy ra .
Cách biểu diễn nào sau đây đúng cho tập số [‒5; 5]
Ta có:
Dấu “[” và “]” kí hiệu cho nửa đoạn trên trục số.
Biểu diễn tập [‒5; 5] trên trục số đúng là:

Tìm đáp án không phải mệnh đề trong các câu sau.
Câu “Bộ phim quá hay!” là câu cảm thán nên không phải là mệnh đề.