Trong các câu sau, câu nào không phải là mệnh đề toán học?
Đáp án “2x + y = −5” không phải mệnh đề vì nó không có tính đúng hoặc sai. Suy ra nó cũng không phải mệnh đề toán học.
Trong các câu sau, câu nào không phải là mệnh đề toán học?
Đáp án “2x + y = −5” không phải mệnh đề vì nó không có tính đúng hoặc sai. Suy ra nó cũng không phải mệnh đề toán học.
Viết mệnh đề sau bằng cách sử dụng kí hiệu
hoặc
: “Mọi số nhân với 1 đều bằng chính nó”.
Mệnh đề được viết lại bằng kí hiệu: .
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Cho mệnh đề P: “∆ABC cân tại A ⇔ AB = AC”. Chọn khẳng định đúng nhất trong các khẳng định sau?
Vì AB = AC nên suy ra ∆ABC cân tại A.
Vì ∆ABC cân tại A nên suy ra AB = AC.
Do đó đáp án đúng là “∆ABC cân tại A” là điều kiện cần và đủ để “AB = AC”.
Cho
là tập hợp các số tự nhiên chẵn không lớn hơn
,
. Mệnh đề nào sau đây là đúng?
Liệt kê các phần tử của tập hợp đã cho ta có kết luận đúng là:
Cho
. Tập A có bao nhiêu tập con có 2 phần tử?
Tập con có phần tử của
là:
có
tập con có
phần tử.
Cách biểu diễn nào sau đây đúng cho tập số [‒5; 5]
Ta có:
Dấu “[” và “]” kí hiệu cho nửa đoạn trên trục số.
Biểu diễn tập [‒5; 5] trên trục số đúng là:

Hai mệnh đề sau là mệnh đề gì: “x chia hết cho 9” và “x chia hết cho 3”.
Nếu x chia hết cho 9 thì x chia hết cho 3.
Nếu x chia hết cho 3 thì x có thể không chia hết cho 9.
=> Hai mệnh đề “x chia hết cho 9” và “x chia hết cho 3” là mệnh đề kéo theo.
Cho hai tập hợp
. Tìm a để
có đúng một phần tử.
Để có đúng một phần tử khi và chỉ khi
. Khi đó
.
Vậy là giá trị cần tìm.
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Nếu A và B là tập hợp hữu hạn thì công thức nào sau đây đúng?
Nếu A và B là tập hợp hữu hạn thì
Với giá trị thực nào của
mệnh đề chứa biến
là mệnh đề đúng?
Thay vào
ta được
là mệnh đề đúng.
Người ta thường kí hiệu tập hợp số như thế nào?
Người ta thường kí hiệu các tập hợp số như sau:
Điền vào chỗ trống: “Hiệu của tập hợp A và tập hợp B là ….”
Hiệu của tập hợp A và tập hợp B là tập hợp các phần tử thuộc A nhưng không thuộc B.
Tập
bằng tập nào sau đây?
Ta có:
Cho hai tập hợp
và
Tìm tất cả các số tự nhiên thuộc cả hai tập
và ![]()
Có hai số tự nhiên thuộc cả hai tập
và
là
và
Xác định tập hợp
Xác định kết quả tập hợp bằng hình vẽ như sau:

Vậy
Sử dụng các kí hiệu khoảng, đoạn để viết tập hợp ![]()

Vậy .
Trong các mệnh đề sau, mệnh đề nào sai?
Xét mệnh đề . Ta thấy
sai nên mệnh đề này sai.
Tìm phát biểu là mệnh đề.
Ta có:
Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.
Suy ra “Hà Nội là thủ đô của Việt Nam.” là mệnh đề.
Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:
Ta có:
Mệnh đề: "
" khẳng định là
Mệnh đề: " " khẳng định là có ít nhất một số thực mà bình phương của nó lớn hơn 33.
Cho các mệnh đề sau đây:
(I). Nếu tam giác
đều thì tam giác
có
.
(II). Nếu
đều là các số chẵn thì
là một số chẵn.
(III). Nếu tam giác
có tổng hai góc bằng
thì tam giác
là tam giác vuông.
Trong các mệnh đề đảo của (I), (II) và (III), có bao nhiêu mệnh đề đúng?
Mệnh đề đảo của
(I). Nếu tam giác có
thì tam giác
đều
Mệnh đề sai.
(II). Nếu là một số chẵn thì
đều là các số chẵn
Mệnh đề sai.
(III). Nếu tam giác là tam giác vuông thì tam giác
có tổng hai góc bằng
Mệnh đề đúng.
Có 1 mệnh đề đảo là đúng.
Nếu cả hai mệnh đề P ⇒ Q và Q ⇒ P đều sai thì ta suy ra điều gì?
Ta có:
Mệnh đề đúng khi cả hai mệnh đề
và
cùng đúng hoặc cùng sai. (Hay
đúng khi cả hai mệnh đề
và
cùng đúng hoặc cùng sai).
Trong các tập hợp sau đây, tập hợp nào bằng tập hợp
:
Ta có:
Tập hợp là tập hợp
.
Vậy tập hợp
Phủ định của mệnh đề “Phương trình
có 2 nghiệm phân biệt” là mệnh đề nào?
Phủ định của mệnh đề P là mệnh đề "không phải P".
Chọn đáp án Phương trình không phải có 2 nghiệm phân biệt.
Cho A = {a, b}. Số tập con của A là:
Ta có: Số tập hợp con của tập có phần tử là
. Do đó số tập con của A là
.
Cho hai số thực x, y thoả mãn
. Hãy tìm giá trị nhỏ nhất m và lớn nhất M của biểu thức
.
Từ giả thiết suy ra và
,
chính là khoảng cách giữa
số
và
trên trục số.
nhỏ nhất khi
và
;
lớn nhất khi
và
.
Vậy .
Cho tập hợp
và
. Giá trị nguyên dương của
để tập hợp
có đúng 10 phần tử là:
Ta có .
Theo giả thiết thì nên
và
.
Như vậy, để tập hợp có 10 phần tử thì
Do đó .
Cho mệnh đề: “Một tứ giác là hình thang cân khi và chỉ khi tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?
Mệnh đề tương đương với mệnh đề đã cho là: Điều kiện cần và đủ để một tứ giác có hai đường chéo bằng nhau là tứ giác đó là một hình thang cân.
Trong các đáp án dưới đây, cách viết khác của tập D = {x ∈ ℝ | x ≠ -3} là
Ta có: D = {x ∈ ℝ | x ≠ -3} = ℝ \ {-3}.
Tập hợp
bằng tập hợp nào sau đây?
Ta có: .
Cho tập hợp khác rỗng
và
. Tập hợp các giá trị thực của tham số m để ![]()
Để thì điều kiện là:
Vậy thỏa mãn điều kiện.
Cho tập hợp
,
, (
là tham số thực). Tìm tất cả các giá trị của tham số
để
.
Vì nên tồn tại
. Khi đó:
Nếu thử lại thấy
nên không thỏa mãn.
Nếu thay vào tập
tìm được
. Thử lại khi
thấy
.
Vậy .
Cho biết
là một phần tử của tập hợp
xét các mệnh đề sau:
(I) ![]()
(II)
.
(III) ![]()
(IV) ![]()
Trong các mệnh đề sau, mệnh đề nào là đúng:
I đúng.
II sai vì không có khái niệm tập hợp này thuộc tập hợp kia.
III sai vì phần tử thì không thể là con của
tập hợp.
IV đúng.
Tìm phát biểu không phải mệnh đề.
“Buồn ngủ quá!” là mệnh đề.
Cho mệnh đề
“
”. Mệnh đề phủ định của
là:
Phủ định của là
.
Phủ định của là
.
Mệnh đề phủ định của :
.
Tìm đáp án không phải mệnh đề trong các câu sau.
Câu “Bộ phim quá hay!” là câu cảm thán nên không phải là mệnh đề.
Cho
là số tự nhiên, mệnh đề nào sau đây đúng?
Với thì
là hai số tự nhiên liên tiếp
là số chẵn
Với thì
là ba số tự nhiên liên tiếp
trong 3 số
có 1 số chia hết cho
Chọn đáp án là số chia hết cho
Cho số thực
Điều kiện cần và đủ để
là:
Ta có: (vì
nên khi quy đồng bỏ mẫu dấu bất phương trình bị đổi)
Vì