Cho tập
Tập
có bao nhiêu tập hợp con?
Tập có
phần tử
số tập con của
bằng:
.
Cho tập
Tập
có bao nhiêu tập hợp con?
Tập có
phần tử
số tập con của
bằng:
.
Khẳng định nào đúng trong các khẳng định sau:
Khẳng định đúng: "Nếu và
thì
"
Cho tập hợp A = {
, với
là số thực dương}. Tìm số lớn nhất của tập hợp A?
Ta có:
Đẳng thức xảy ra khi .
Vậy số nhỏ nhất là 3.
Tìm mệnh đề chứa biến.
“” là mệnh đề chứa biến.
Cho hai tập hợp
và
Tìm tất cả các số tự nhiên thuộc cả hai tập
và ![]()
Có hai số tự nhiên thuộc cả hai tập
và
là
và
Cho 2 mệnh đề: “Quyển vở này của Nam” và “Quyển vở này có 118 trang”.
Cho biết 2 mệnh đề trên đều đúng, tìm mệnh đề sai trong các mệnh đề sau:
Đặt “Quyển vở này của Nam”,
“Quyển vở này có 118 trang”
Theo đề bài, đúng,
đúng nên
sai,
sai.
Mệnh đề chỉ sai khi
đúng
sai.
Chọn đáp án Quyển vở này của Nam nên nó không có 118 trang.
Cho hai tập hợp
,
. Tìm tất cả các giá trị của tham số
để
.
Ta có:
Do đó để
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Kí hiệu
có nghĩa là gì?
Cho hai tập hợp và
. Nếu
là tập con của
thì hiệu
gọi là phần bù của
trong
, kí hiệu
.
Số phần tử của tập hợp A =
là
Ta có:
Mệnh đề nào sau đây là đúng?
nhưng
sai.
nhưng
sai.
nhưng
sai.
Trong các mệnh đề sau tìm mệnh đề đúng?
Với thì
mệnh đề
là mệnh đề đúng.
Chọn đáp án
Có bao nhiêu mệnh đề trong các câu sau?
Số nguyên dương là số tự nhiên khác 0.
Bạn hãy cố gắng, nhất định bạn sẽ thành công.
Tổng các góc của một tam giác là ![]()
Cố lên, sắp đến nơi rồi!
Câu “Số nguyên dương là số tự nhiên khác 0.” và “Tổng các góc của một tam giác là ” là mệnh đề.
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Có bao nhiêu câu là mệnh đề trong các câu sau:
(1) Chăm chỉ lên nhé!
(2) Số 20 chia hết cho 6.
(3) Số
là số nguyên tố.
(4) Số
là một số chẵn.
Câu (1) là câu cảm thán nên không phải mệnh đề.
Các câu còn lại là mệnh đề.
Có
câu là mệnh đề.
Cho
và
. Tập hợp
là
.
Suy ra .
Cho mệnh đề P: “∀ x ∈ R: |x| ≥ 0” . Phủ định của mệnh đề P là:
Phủ định của mệnh đề P là: “∃ x ∈ R: |x| < 0”.
Trong các mệnh đề sau, mệnh đề nào sai?
Mệnh đề: "Số 23 là hợp số" sai vì => 23 là số nguyên tố.
Có bao nhiêu câu là mệnh đề trong các câu sau:
(1) Môn toán khó quá!
(2) Bạn có đói không?
(3)
hoặc ![]()
(4) ![]()
Câu (1) là câu cảm thán, câu (2) là câu nghi vấn nên không phải mệnh đề.
Các câu còn lại là mệnh đề.
Có
câu là mệnh đề.
Tìm mệnh đề phủ định của mệnh đề: “Vịt là một loài chim”.
Phủ định của mệnh đề P là mệnh đề “không phải P"
Chọn đáp án Vịt không phải là một loài chim.
Với giá trị thực nào của
mệnh đề chứa biến
là mệnh đề đúng?
Thay vào
ta được
là mệnh đề đúng.
Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:
Ta có:
Cho
là tập hợp các số tự nhiên chẵn không lớn hơn
,
. Mệnh đề nào sau đây là đúng?
Liệt kê các phần tử của tập hợp đã cho ta có kết luận đúng là:
Cho
và
Khi đó:
Ta có:
Cho hai khoảng
và
. Khẳng định nào sau đây là sai?

Vậy khi
Người ta thường kí hiệu tập hợp số như thế nào?
Người ta thường kí hiệu các tập hợp số như sau:
Cách phát biểu nào sau đây dùng để phát biểu mệnh đề: ![]()
không phải là điều kiện cần để có
Chọn đáp án là điều kiện cần để có
Trong các tập hợp sau, tập hợp nào là tập hợp rỗng:
Xét: Không có
thỏa mãn.
Tìm phát biểu không phải mệnh đề.
“Buồn ngủ quá!” là mệnh đề.
Tìm mệnh đề phủ định của mệnh đề ![]()
Mệnh đề phủ định là:
Điền vào chỗ trống: “Hiệu của tập hợp A và tập hợp B là ….”
Hiệu của tập hợp A và tập hợp B là tập hợp các phần tử thuộc A nhưng không thuộc B.
Trong các tập hợp sau đây, tập hợp nào không phải là con của tập hợp A với
{
,
và
}
Ta liệt kê các phần tử của tập A: .
Như vậy chỉ có phương án là tập hợp có các phần tử 1, 2, 3 không thuộc tập A nên không là tập con của A.
Cho tập hợp
,
, (
là tham số thực). Tìm tất cả các giá trị của tham số
để
.
Vì nên tồn tại
. Khi đó:
Nếu thử lại thấy
nên không thỏa mãn.
Nếu thay vào tập
tìm được
. Thử lại khi
thấy
.
Vậy .
Trong các câu sau, câu nào không phải là mệnh đề toán học?
Đáp án “2x + y = −5” không phải mệnh đề vì nó không có tính đúng hoặc sai. Suy ra nó cũng không phải mệnh đề toán học.
Tìm mệnh đề trong các câu sau.
Các câu “Hôm nay, trời đẹp quá!”, “Bạn ăn cơm chưa?”, “Mấy giờ rồi?” là các câu cảm thán hoặc nghi vấn nên không phải là mệnh đề.
Chọn đáp án Paris là thủ đô của Đức.
Tìm phát biểu là mệnh đề.
Ta có:
Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.
Suy ra “Hà Nội là thủ đô của Việt Nam.” là mệnh đề.
Tập hợp C = (2;+∞) \ [-3;8] bằng tập hợp nào sau đây?
Ta có: C = (2;+∞) \ [-3;8] = (8;+∞).
Tập
bằng tập nào sau đây?
Ta có:
Lớp
có
học sinh giỏi Toán,
học sinh giỏi Lý,
học sinh giỏi Hóa,
học sinh giỏi cả Toán và Lý,
học sinh giỏi cả Toán và Hóa,
học sinh giỏi cả Lý và Hóa,
học sinh giỏi cả
môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) của lớp
là:
Ta dùng biểu đồ Ven để giải

Nhìn vào biểu đồ, số học sinh giỏi ít nhất trong
môn là:
Phủ định của mệnh đề “Phương trình
có 2 nghiệm phân biệt” là mệnh đề nào?
Phủ định của mệnh đề P là mệnh đề "không phải P".
Chọn đáp án Phương trình không phải có 2 nghiệm phân biệt.