Đề kiểm tra 45 phút Chương 1 Mệnh đề toán học. Tập hợp

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Mệnh đề toán học. Tập hợp gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Người ta thường kí hiệu tập hợp số như thế nào?

     Người ta thường kí hiệu các tập hợp số như sau:

    • \mathbb{ℕ} là tập hợp các số tự nhiên.
    • \mathbb{ℤ} là tập hợp các số nguyên.
    • \mathbb{ℝ} là tập hợp các số thực.
  • Câu 2: Thông hiểu

    Cho A = \left\{
0;2;4;6 ight\}. Tập A có bao nhiêu tập con có 2 phần tử?

    Tập con có 2 phần tử của A là: \left\{
0;2 ight\};\left\{ 0;4 ight\};\left\{ 0;6 ight\};\left\{ 2;4
ight\};\left\{ 2;6 ight\};\left\{ 4;6 ight\}

    \Rightarrow6 tập con có 2 phần tử.

  • Câu 3: Thông hiểu

    Cho mệnh đề chứa biến P(n):``n^{2} - 1 chia hết cho 4” với n là số nguyên. Xét xem các mệnh đề P(5)P(2) đúng hay sai?

    Thay n = 5n = 2 vào P(n) ta được các số 24 \vdots 43 không chia hết cho 4. Vậy P(5) đúng và P(2) sai.

  • Câu 4: Nhận biết

    Tìm mệnh đề phủ định của mệnh đề: “Vịt là một loài chim”.

    Phủ định của mệnh đề P là mệnh đề “không phải P"

    Chọn đáp án Vịt không phải là một loài chim.

  • Câu 5: Nhận biết

    Cho A = {a, b}. Số tập con của A là:

     Ta có: Số tập hợp con của tập có n phần tử là 2^n. Do đó số tập con của A là 2^2=4.

  • Câu 6: Thông hiểu

    Hai mệnh đề sau là mệnh đề gì: “x chia hết cho 9” và “x chia hết cho 3”.

     Nếu x chia hết cho 9 thì x chia hết cho 3.

    Nếu x chia hết cho 3 thì x có thể không chia hết cho 9.

    => Hai mệnh đề “x chia hết cho 9” và “x chia hết cho 3” là mệnh đề kéo theo.

  • Câu 7: Nhận biết

    Cho mệnh đề P: “∆ABC cân tại A ⇔ AB = AC”. Chọn khẳng định đúng nhất trong các khẳng định sau?

     Vì AB = AC nên suy ra ∆ABC cân tại A.

    Vì ∆ABC cân tại A nên suy ra AB = AC.

    Do đó đáp án đúng là “∆ABC cân tại A” là điều kiện cần và đủ để “AB = AC”.

  • Câu 8: Thông hiểu

    Cho hai tập hợp A = ( - 3;5brack,B = \lbrack a; +
\infty). Tìm a để A \cap B có đúng một phần tử.

    Để A \cap B có đúng một phần tử khi và chỉ khi a = 5. Khi đó A \cap B = \{ 5\}.

    Vậy a = 5 là giá trị cần tìm.

  • Câu 9: Vận dụng

    Cho A = \lbrack
1;4brack,B = (2;6),C = (1;2). Tìm A \cap B \cap C.

    Vậy A \cap B \cap C =
\varnothing.

  • Câu 10: Nhận biết

    Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp A=\{x∈R|−3≤x≤5\}.

     Ta có: A=\{x∈R|−3≤x≤5\} =[-3;5].

  • Câu 11: Vận dụng

    Cho A = ( -
\infty; - 2brack, B = \lbrack 3;
+ \infty)C = (0;4). Khi đó, (A \cup B) \cap C là:

    Ta có: A \cup B = ( - \infty; - 2brack
\cup \lbrack 3; + \infty)

    Suy ra (A \cup B) \cap C = \lbrack
3;4).

  • Câu 12: Thông hiểu

    Có bao nhiêu mệnh đề trong các câu sau?

    Hôm nay trời đẹp quá!

    Trung Quốc là nước đông dân nhất thế giới.

    Năm 2018 là năm nhuận.

    Câu “Hôm nay trời đẹp quá!” không phải là mệnh đề. Các câu còn lại đều là mệnh đề.

  • Câu 13: Vận dụng cao

    Cho hai tập hợp A = (2a + 3;1 + a)B = (a - 3; - 3 - 2a) với a < - \frac{2}{3}. Tìm a để A \cup B là một khoảng?

    a < - \frac{2}{3} nên 2a + 3 < 1 - aa - 3 < - 3 - 2a, tức là A và B luôn là các khoảng.

    Xét các trường hợp sau:

    Nếu a - 3 \leq 2a + 3 < 1 - a \leq - 3
- 2a

    \Leftrightarrow \left\{ \begin{matrix}
2a + 3 \geq a - 3 \\
1 - a \leq - 3 - 2a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a \geq - 6 \\
a \leq - 4 \\
\end{matrix} ight.

    \Leftrightarrow - 6 \leq a \leq -
4

    Khi đó A \subset B \Rightarrow A \cup B =
B, đương nhiên là một khoảng.

    Nếu 2a + 3 \leq a - 3 < - 3 - 2a \leq
1 - a

    \Leftrightarrow \left\{ \begin{matrix}
2a + 3 \leq a - 3 \\
1 - a \geq - 3 - 2a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a \leq - 6 \\
a \geq - 4\  \\
\end{matrix} ight.\ (ktm)

    Nếu 2a + 3 \leq a - 3 < 1 - a \leq - 3
- 2a

    \Leftrightarrow \left\{ \begin{matrix}
2a + 3 \leq a - 3 \\
a - 3 < 1 - a \\
1 - a \leq - 3 - 2a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a \leq - 6 \\
a < 2 \\
a \leq - 4 \\
\end{matrix} ight.\  \Leftrightarrow a \leq - 6

    Khi đó A \cup B = (2a + 3; - 3 -
2a) là một khoảng.

    Nếu a - 3 \leq 2a + 3 < - 3 - 2a \leq
1 - a

    \Leftrightarrow \left\{ \begin{matrix}
a - 3 \leq 2a + 3 \\
2a + 3 < - 3 - 2a \\
- 3 - 2a \leq 1 - a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a \geq - 6 \\
a < - 3 \\
2a \geq - 4 \\
\end{matrix} ight.

    \Leftrightarrow - 4 \leq a < -
\frac{3}{2}

    Khi đó A \cup B = (a - 3;1 - a) là một khoảng. Vậy các giá trị của a thỏa yêu cầu bài toán là a < - \frac{3}{2}.

  • Câu 14: Nhận biết

    Tìm phát biểu là mệnh đề.

    Ta có:

    Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.

    Suy ra “Hà Nội là thủ đô của Việt Nam.” là mệnh đề.

  • Câu 15: Nhận biết

    Cho X = \left\{
7;2;8;4;9;12 ight\};Y = \left\{ 1;3;7;4 ight\}. Tập nào sau đây bằng tập X \cap Y?

    Tập hợp X \cap Y gồm những phần tử vừa thuộc X vừa thuộc Y

    \Rightarrow X \cap Y = \left\{ 4;7
ight\}.

  • Câu 16: Vận dụng cao

    Cho tập hợp A = {y\in\mathbb{\in R}|y = \frac{(a + b + c)^{2}}{a^{2} +b^{2} + c^{2}}, với a,b,c là số thực dương}. Tìm số lớn nhất của tập hợp A?

    Ta có:

    (a + b + c)^{2} \leq a^{2} + b^{2} +
c^{2}

    \Leftrightarrow \frac{(a + b +
c)^{2}}{a^{2} + b^{2} + c^{2}} \leq 3

    Đẳng thức xảy ra khi a = b =
c.

    Vậy số nhỏ nhất là 3.

  • Câu 17: Thông hiểu

    Xác định tập hợp B=\{x∈Z|−2≤x<3\} bằng cách liệt kê các phần tử.

     Ta có: B=\{x∈Z|−2≤x<3\} =\{–2; –1; 0; 1; 2\}.

  • Câu 18: Thông hiểu

    Cho C_{R}A = ( -\infty;2) \cup \lbrack 6; + \infty)C_{R}B = \lbrack 5;9). Tập hợp X = A \cap B

    A = \lbrack 2;6),B = ( - \infty;5) \cup\lbrack 9; + \infty).

    Suy ra X = A \cap B = \lbrack2;5).

  • Câu 19: Nhận biết

    Cách viết tập hợp nào đúng trong các cách viết sau để xác định tập hợp A các ước dương của 12:

    Các ước dương của 12 là: 1; 2; 3; 4; 6; 12

    => Cách viết tập hợp đúng là: A = \left \{ 1; 2; 3; 4; 6; 12ight \}

  • Câu 20: Thông hiểu

    Tập hợp B=(2;+∞)\cup [-3;8] bằng tập hợp nào sau đây?

     Xác định kết quả tập hợp bằng hình vẽ như sau:

    Xác định tập hợp

    Vậy B=(2;+∞)\cup [-3;8] =[-3;+∞)

  • Câu 21: Thông hiểu

    Trong các tập hợp sau, tập hợp nào bằng nhau:

    • A = \left \{ {0; 2; 4; 6; 8} ight \}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 2 và x < 12}

    => A = \left \{ {0; 2; 4; 6; 8} ight \}; B = \left \{ {0; 2; 4; 6; 8; 10} ight \}. Vậy tập hợp A không bằng tập hợp B.

    • A = {x| x ∈ \mathbb{ℕ}, x ⋮ 22< x < 6}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 4 và 1 < x < 5}

    => A = \left \{ {4} ight \} ; B = \left \{ {4} ight \}. Vậy tập hợp A bằng tập hợp B. Đáp án đúng

    • A = \left \{ {2; 4; 6; 8} ight \}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 2 và x < 10}

    => A = \left \{ {2; 4; 6; 8} ight \}; B =\left \{  {0; 2; 4; 6; 8} ight \}. Vậy tập hợp A không bằng tập hợp B.

    • A = {x| x ∈ \mathbb{ℕ}, x chia hết cho 3 và x < 12}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 4 và x < 12}

    => A = \left \{{0; 3; 6; 9} ight \}; B =\left \{  {0; 4; 8} ight \}. Vậy tập hợp A không bằng tập hợp B.

  • Câu 22: Vận dụng

    Mệnh đề nào sau đây sai?

    Mệnh đề P \Leftrightarrow Q đúng khi P \Rightarrow Q đúng và Q \Rightarrow P đúng.

    ABC là tam giác đều \Rightarrow A
= 60^{0}là mệnh đề đúng. A = 60^{0}
\Rightarrow ABC là tam giác đều là mệnh đề sai

    \RightarrowABC là tam giác đều \Leftrightarrow A = 60^{0}” là mệnh đề sai.

    Chọn đáp án ABC là tam giác đều \Leftrightarrow A = 60^{0}.

  • Câu 23: Thông hiểu

    Tìm mệnh đề phủ định của mệnh đề P:\sqrt{2} \leq 2.

    Mệnh đề phủ định là: \overline{P}:\sqrt{2} > 2.

  • Câu 24: Nhận biết

    Nếu A và B là tập hợp hữu hạn thì công thức nào sau đây đúng?

     Nếu A và B là tập hợp hữu hạn thì  n\left( {A \cup B} ight) = n\left( A ight) + n\left( B ight) - n\left( {A \cap B} ight)

  • Câu 25: Thông hiểu

    Cho mệnh đề A:\forall x
\in R,x^{2} - x + 7 < 0”. Mệnh đề phủ định của A là:

    Phủ định của \forall\exists.

    Phủ định của <\geq.

    Mệnh đề phủ định của A: \exists x \in R,x^{2} - \ x + 7 \geq
0.

  • Câu 26: Nhận biết

    Tìm phát biểu không phải mệnh đề.

    Buồn ngủ quá!” là mệnh đề.

  • Câu 27: Nhận biết

    Chọn phát biểu đúng về mệnh đề sau: "∀x ∈ \mathbb{N}, x^{2} <0"?

    Phát biểu đúng của mệnh đề "∀x ∈ \mathbb{N}, x^{2} <0" là: “Với mọi số tự nhiên x, bình phương của nó đều nhỏ hơn 0”.

  • Câu 28: Thông hiểu

    Mệnh đề: " \exists x \in \mathbb{R},x^{2} > 33 " khẳng định là

    Mệnh đề: " \exists x \in \mathbb{R},x^{2}
> 33 " khẳng định là có ít nhất một số thực mà bình phương của nó lớn hơn 33.

  • Câu 29: Vận dụng

    A, B, C là ba mệnh đề đúng, mệnh đề nào sau đây là đúng?

    B đúng, \overline{C} sai nên B \Rightarrow \overline{C} sai. A đúng, B \Rightarrow \overline{C} sai nên A \Rightarrow \left( B \Rightarrow \overline{C}
ight)là mệnh đề sai.

    C đúng, \overline{A} sai nên C \Rightarrow \overline{A} là mệnh đề sai.

    A đúng, C đúng nên A
\Rightarrow C đúng. B đúng, \overline{A \Rightarrow C} sai nên B \Rightarrow \left( \overline{A
\Rightarrow C} ight) sai.

    A đúng, B đúng nên A \Rightarrow
B là mệnh đề đúng. C đúng, A \Rightarrow B là mệnh đề đúng nên C \Rightarrow (A \Rightarrow B)là mệnh đề đúng.

    Chọn đáp án C \Rightarrow (A \Rightarrow
B).

  • Câu 30: Nhận biết

    Có bao nhiêu câu là mệnh đề trong các câu sau:

    (1) Môn toán khó quá!

    (2) Bạn có đói không?

    (3) 2 > 3 hoặc 1 \leq 4.

    (4) \pi < 2.

    Câu (1) là câu cảm thán, câu (2) là câu nghi vấn nên không phải mệnh đề.

    Các câu còn lại là mệnh đề.

    \Rightarrow2 câu là mệnh đề.

  • Câu 31: Vận dụng

    Cho A = \left\{
x|\left( 2x - x^{2} ight)\left( 2x^{2} - 3x - 2 ight) = 0
ight\}B = \left\{
n\mathbb{\in N}*|3 < n^{2} < 30 ight\}. Khi đó, A \cap B bằng:

    Ta có: \left( 2x - x^{2} ight)\left(2x^{2} - 3x - 2 ight) = 0\Leftrightarrow \left\lbrack \begin{matrix}2x - x^{2} = 0 \\2x^{2} - 3x - 2 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = 2 \\x = - \frac{1}{2} \\\end{matrix} ight.

    \Rightarrow A = \left\{ - \frac{1}{2};0;2
ight\}

    \left\{ \begin{matrix}
n\mathbb{\in N}* \\
3 < n^{2} < 30 \\
\end{matrix} ight. \mathbf{\Leftrightarrow}\left\{ \begin{matrix}
n\mathbb{\in N}* \\
\sqrt{3} < n < \sqrt{30} \\
\end{matrix} ight.\ \mathbf{\Rightarrow}B = \left\{ 2;3;4;5
ight\}.

    \Rightarrow A \cap B = \left\{ 2
ight\}.

  • Câu 32: Thông hiểu

    Trong các tập hợp sau, tập hợp nào là tập hợp rỗng:

    Xét: \left\{ \begin{matrix}
\mathbf{x \in}\mathbf{Q} \\
\mathbf{x}^{\mathbf{2}}\mathbf{-}\mathbf{4}\mathbf{x
+}\mathbf{2}\mathbf{=}\mathbf{0} \\
\end{matrix} ight.\ \mathbf{\Leftrightarrow}\left\{ \begin{matrix}
\mathbf{x \in}\mathbf{Q} \\
\mathbf{x =}\mathbf{2}\mathbf{\pm}\sqrt{\mathbf{2}} \\
\end{matrix} ight.\ \mathbf{\Leftrightarrow} Không có x thỏa mãn.

  • Câu 33: Thông hiểu

    Phủ định của mệnh đề  "\sqrt3 là số vô tỷ" là mệnh đề nào sau đây?

    Phủ định của mệnh đề P là mệnh đề “không phải P".

    Chọn đáp án \sqrt{3} không là số vô tỷ.

  • Câu 34: Nhận biết

    Tìm đáp án không phải mệnh đề trong các câu sau.

    Câu “Bộ phim quá hay!” là câu cảm thán nên không phải là mệnh đề.

  • Câu 35: Nhận biết

    Cho tập hợp A =
\left\{ 2;4;6;9 ight\}B =
\left\{ 1;2;3;4 ight\}. Tập hợp A\backslash B bằng tập nào sau đây?

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B.

    \Rightarrow A\backslash B = \left\{ 6;9
ight\}.

  • Câu 36: Vận dụng cao

    Tìm các giá trị của a để A \cap
B là đoạn có độ dài bằng 10. Biết A= \left\{ x\in\mathbb{ R}|x \leq 4 ight\} và B = \lbrack a + 1;10), với a là tham số.

    Nếu a + 1 > 4 \Leftrightarrow a >
3 thì A \cap B =
\varnothing, suy ra loại.

    Nếu a + 1 \leq 4 \Leftrightarrow a \leq
3 thì A \cap B = \lbrack a +
1;4brack

    Để A \cap B là một đoạn có độ dài bằng 10 khi và chỉ khi

    4 - (a + 1) = 10 \Leftrightarrow a = -
7

  • Câu 37: Nhận biết

    Tìm mệnh đề trong các câu sau.

    Các câu “Hôm nay, trời đẹp quá!”, “Bạn ăn cơm chưa?”, “Mấy giờ rồi?” là các câu cảm thán hoặc nghi vấn nên không phải là mệnh đề.

    Chọn đáp án Paris là thủ đô của Đức.

  • Câu 38: Nhận biết

    Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:

    Ta có: \mathbf{7}\mathbb{\in N}\mathbf{.}

  • Câu 39: Nhận biết

    Đâu là kí hiệu của hai mệnh đề kéo theo?

    Mệnh đề kéo theo được kí hiệu là: P ⇒ Q

  • Câu 40: Nhận biết

    Kí hiệu C_{U}A có nghĩa là gì?

    Cho hai tập hợp AU. Nếu A là tập con của U thì hiệu U\setminus A gọi là phần bù của A trong U, kí hiệu {C_U}A.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Mệnh đề toán học. Tập hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 46 lượt xem
Sắp xếp theo