Đề kiểm tra 45 phút Chương 1 Mệnh đề toán học. Tập hợp

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Mệnh đề toán học. Tập hợp gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho tập hợp khác rỗng \left\lbrack m - 1;\frac{m + 3}{2}
ightbrackB = ( - \infty -
3) \cup \lbrack 3; + \infty). Tập hợp các giá trị thực của tham số m để A \cap B eq
\varnothing

    Để A \cap B eq \varnothing thì điều kiện là: \left\{ \begin{gathered}
  m - 1 < \dfrac{{m + 3}}{2} \hfill \\
  \left[ {\begin{array}{*{20}{c}}
  {m - 1 <  - 3} \\ 
  {\dfrac{{m + 3}}{2} \geqslant 3} 
\end{array}} ight. \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {m < 5} \\ 
  {\left[ {\begin{array}{*{20}{c}}
  {m <  - 2} \\ 
  {m \geqslant 3} 
\end{array}} ight.} 
\end{array}} ight.

    Vậy m \in ( - \infty; - 2) \cup \lbrack
3;5) thỏa mãn điều kiện.

  • Câu 2: Nhận biết

    Nếu A và B là tập hợp hữu hạn thì công thức nào sau đây đúng?

     Nếu A và B là tập hợp hữu hạn thì  n\left( {A \cup B} ight) = n\left( A ight) + n\left( B ight) - n\left( {A \cap B} ight)

  • Câu 3: Thông hiểu

    Cho các mệnh đề sau đây:

    (I). Nếu tam giác ABC đều thì tam giác ABCAB = AC.

    (II). Nếu a\ và\ b đều là các số chẵn thì (a + b) là một số chẵn.

    (III). Nếu tam giác ABC có tổng hai góc bằng 90^{\circ} thì tam giác ABC là tam giác vuông.

    Trong các mệnh đề đảo của (I), (II) và (III), có bao nhiêu mệnh đề đúng?

    Mệnh đề đảo của

    (I). Nếu tam giác ABCAB = ACthì tam giác ABC đều \Rightarrow Mệnh đề sai.

    (II). Nếu (a + b) là một số chẵn thì a\ và\ b đều là các số chẵn \Rightarrow Mệnh đề sai.

    (III). Nếu tam giác ABC là tam giác vuông thì tam giác ABC có tổng hai góc bằng 90^{\circ}

    \Rightarrow Mệnh đề đúng.

    \Rightarrow Có 1 mệnh đề đảo là đúng.

  • Câu 4: Thông hiểu

    Viết mệnh đề sau bằng cách sử dụng kí hiệu \forall hoặc \exists: “Mọi số nhân với 1 đều bằng chính nó”.

    Mệnh đề được viết lại bằng kí hiệu: \forall x \in R,\ x.1 = x.

  • Câu 5: Thông hiểu

    Trong các tập hợp sau đây, tập hợp nào bằng tập hợp M = \mathbb{ℝ}\setminus  (-∞; 2):

    Ta có: 

    Tập hợp M = \mathbb{ℝ}\setminus  (-∞; 2) là tập hợp [2; +∞).

    Vậy tập hợp M=D

  • Câu 6: Nhận biết

    Cho tập hợp A =
\left\{ 2;4;6;9 ight\}B =
\left\{ 1;2;3;4 ight\}. Tập hợp A\backslash B bằng tập nào sau đây?

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B.

    \Rightarrow A\backslash B = \left\{ 6;9
ight\}.

  • Câu 7: Thông hiểu

    Tìm mệnh đề phủ định của mệnh đề P:\sqrt{2} \leq 2.

    Mệnh đề phủ định là: \overline{P}:\sqrt{2} > 2.

  • Câu 8: Nhận biết

    Trong các đáp án dưới đây, cách viết khác của tập D = {x ∈ ℝ | x ≠ -3} là

    Ta có: D = {x ∈ ℝ | x ≠ -3} = ℝ \ {-3}.

  • Câu 9: Vận dụng

    Lớp 10B_{1}7 học sinh giỏi Toán, 5 học sinh giỏi Lý, 6học sinh giỏi Hóa, 3 học sinh giỏi cả Toán và Lý, 4 học sinh giỏi cả Toán và Hóa, 2 học sinh giỏi cả Lý và Hóa, 1 học sinh giỏi cả 3 môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) của lớp 10B_{1} là:

    Ta dùng biểu đồ Ven để giải

    Nhìn vào biểu đồ, số học sinh giỏi ít nhất 1 trong 3 môn là:

    1 + 2 + 1 + 3 + 1 + 1 + 1 =
10.

  • Câu 10: Nhận biết

    Cho A = \left\{
0;1;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp (A\backslash B \cap B) bằng

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B

    \Rightarrow A\backslash B \cap B =
\varnothing.

  • Câu 11: Nhận biết

    Khẳng định nào đúng trong các khẳng định sau:

    Khẳng định đúng: "Nếu A ⊂ BB ⊂ C thì A ⊂ C

  • Câu 12: Nhận biết

    Cách viết tập hợp nào đúng trong các cách viết sau để xác định tập hợp A các ước dương của 12:

    Các ước dương của 12 là: 1; 2; 3; 4; 6; 12

    => Cách viết tập hợp đúng là: A = \left \{ 1; 2; 3; 4; 6; 12ight \}

  • Câu 13: Vận dụng

    Cho hai tập hợp A = \left\{ x\mathbb{\in R}:x + 3 < 4 + 2x
ight\}B = \left\{
x\mathbb{\in R};5x - 3 < 4x - 1 ight\}. Tìm tất cả các số tự nhiên thuộc cả hai tập AB.

    x + 3 < 4 + 2x \Leftrightarrow x >
- 1 \Rightarrow A = ( - 1; + \infty).

    5x - 3 < 4x - 1 \Leftrightarrow x <
2 \Rightarrow B = ( - \infty;2).

    \Rightarrow A \cap B = ( - 1;2) \Rightarrow Có hai số tự nhiên thuộc cả hai tập AB01.

  • Câu 14: Thông hiểu

    Cho mệnh đề P: “∀ x ∈ R: |x| ≥ 0” . Phủ định của mệnh đề P là:

     Phủ định của mệnh đề P là: “∃ x ∈ R: |x| < 0”.

  • Câu 15: Nhận biết

    Phát biểu lại mệnh đề "Nếu n = 2 thì 2n^{2}+1 là một hợp số".

     Phát biểu lại mệnh đề trên: "n = 2 là điều kiện đủ để 2n^{2}+1 là một hợp số".

  • Câu 16: Vận dụng

    Cho A = ( -
\infty; - 2brack, B = \lbrack 3;
+ \infty)C = (0;4). Khi đó, (A \cup B) \cap C là:

    Ta có: A \cup B = ( - \infty; - 2brack
\cup \lbrack 3; + \infty)

    Suy ra (A \cup B) \cap C = \lbrack
3;4).

  • Câu 17: Nhận biết

    Có bao nhiêu câu là mệnh đề trong các câu sau:

    (1) Môn toán khó quá!

    (2) Bạn có đói không?

    (3) 2 > 3 hoặc 1 \leq 4.

    (4) \pi < 2.

    Câu (1) là câu cảm thán, câu (2) là câu nghi vấn nên không phải mệnh đề.

    Các câu còn lại là mệnh đề.

    \Rightarrow2 câu là mệnh đề.

  • Câu 18: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề: "Số 23 là hợp số" sai Ư(23) = {1;23} => 23 là số nguyên tố.

  • Câu 19: Thông hiểu

    Số tập hợp con có 2 phần tử của tập hợp A = \left\{ {1,2,3,4,5,6} ight\} là:

    Các tập hợp con của tập hợp A là: \left\{ {1;2} ight\},\left\{ {1;3} ight\},\left\{ {1;4} ight\},\left\{ {1;5} ight\}, \left\{ {1;6} ight\},\left\{ {2;3} ight\},\left\{ {2;4} ight\},\left\{ {2;5} ight\}, \left\{ {4;5} ight\},\left\{ {4;{\text{ }}6} ight\},\left\{ {5;{\text{ }}6} ight\} ,\left\{ {2;6} ight\},\left\{ {3;4} ight\},\left\{ {3;5} ight\},\left\{ {3;6} ight\}.

    Có tất cả 15 tập con của tập hợp A.

  • Câu 20: Thông hiểu

    Xác định M = A ∪ B trong trường hợp A = {x | x ∈ \mathbb{ℕ}, x ⋮ 4x < 10}, B là tập hợp các số tự nhiên chia hết cho 3 và nhỏ hơn 12.

    Liệt kê các phần tử ta có:

    A = \left \{ {0; 4; 8} ight \}

    B = \left \{ {0; 3; 6; 9} ight \}

    Vậy M = A ∪ B = \left \{ {0; 3; 4; 6; 8; 9} ight \}.

  • Câu 21: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Xét mệnh đề −π < −2 ⇔ π^{2} < 4. Ta thấy π^{2} < 4 sai nên mệnh đề này sai.

  • Câu 22: Thông hiểu

    Trong các tập hợp sau đây, tập hợp nào không phải là con của tập hợp A với A = {x | x ∈ \mathbb{ℕ}, x ⋮ 4x < 20}

    Ta liệt kê các phần tử của tập A: A = \left \{ {0; 4; 8; 12; 16} ight \}.

    Như vậy chỉ có phương án \left \{ {0; 1; 2; 3; 4} ight \} là tập hợp có các phần tử 1, 2, 3 không thuộc tập A nên không là tập con của A.

  • Câu 23: Thông hiểu

    Cho hai tập hợp A = ( - 3;5brack,B = \lbrack a; +
\infty). Tìm a để A \cap B có đúng một phần tử.

    Để A \cap B có đúng một phần tử khi và chỉ khi a = 5. Khi đó A \cap B = \{ 5\}.

    Vậy a = 5 là giá trị cần tìm.

  • Câu 24: Nhận biết

    Chọn phát biểu đúng về mệnh đề sau: "∀x ∈ \mathbb{N}, x^{2} <0"?

    Phát biểu đúng của mệnh đề "∀x ∈ \mathbb{N}, x^{2} <0" là: “Với mọi số tự nhiên x, bình phương của nó đều nhỏ hơn 0”.

  • Câu 25: Vận dụng cao

    Cho hai tập hợp A = (2a + 3;1 + a)B = (a - 3; - 3 - 2a) với a < - \frac{2}{3}. Tìm a để A \cup B là một khoảng?

    a < - \frac{2}{3} nên 2a + 3 < 1 - aa - 3 < - 3 - 2a, tức là A và B luôn là các khoảng.

    Xét các trường hợp sau:

    Nếu a - 3 \leq 2a + 3 < 1 - a \leq - 3
- 2a

    \Leftrightarrow \left\{ \begin{matrix}
2a + 3 \geq a - 3 \\
1 - a \leq - 3 - 2a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a \geq - 6 \\
a \leq - 4 \\
\end{matrix} ight.

    \Leftrightarrow - 6 \leq a \leq -
4

    Khi đó A \subset B \Rightarrow A \cup B =
B, đương nhiên là một khoảng.

    Nếu 2a + 3 \leq a - 3 < - 3 - 2a \leq
1 - a

    \Leftrightarrow \left\{ \begin{matrix}
2a + 3 \leq a - 3 \\
1 - a \geq - 3 - 2a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a \leq - 6 \\
a \geq - 4\  \\
\end{matrix} ight.\ (ktm)

    Nếu 2a + 3 \leq a - 3 < 1 - a \leq - 3
- 2a

    \Leftrightarrow \left\{ \begin{matrix}
2a + 3 \leq a - 3 \\
a - 3 < 1 - a \\
1 - a \leq - 3 - 2a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a \leq - 6 \\
a < 2 \\
a \leq - 4 \\
\end{matrix} ight.\  \Leftrightarrow a \leq - 6

    Khi đó A \cup B = (2a + 3; - 3 -
2a) là một khoảng.

    Nếu a - 3 \leq 2a + 3 < - 3 - 2a \leq
1 - a

    \Leftrightarrow \left\{ \begin{matrix}
a - 3 \leq 2a + 3 \\
2a + 3 < - 3 - 2a \\
- 3 - 2a \leq 1 - a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a \geq - 6 \\
a < - 3 \\
2a \geq - 4 \\
\end{matrix} ight.

    \Leftrightarrow - 4 \leq a < -
\frac{3}{2}

    Khi đó A \cup B = (a - 3;1 - a) là một khoảng. Vậy các giá trị của a thỏa yêu cầu bài toán là a < - \frac{3}{2}.

  • Câu 26: Vận dụng

    Trong các mệnh đề sau tìm mệnh đề đúng?

    Với x = \frac{1}{2}\mathbb{\in
R} thì x > x^{2}
\Rightarrow mệnh đề \exists
x\mathbb{\in R}:x > x^{2} là mệnh đề đúng.

    Chọn đáp án \exists x\mathbb{\in R}:x
> x^{2}.

  • Câu 27: Vận dụng cao

    Cho hai tập hợp A
= ( - \infty;m), B = \lbrack 3m -
1;3m + 3brack. Tìm tất cả các giá trị của tham số m để A
\subset C_{\mathbb{R}}B.

    Ta có: {C_\mathbb{R}}B = \left( { - \infty ;3m - 1} ight) \cup \left( {3m + 3; + \infty } ight)

    Do đó để A \subset {C_\mathbb{R}}B

    \Leftrightarrow m \leqslant 3m - 1 \Leftrightarrow m \geqslant \frac{1}{2}

  • Câu 28: Thông hiểu

    Tập X có bao nhiêu tập hợp con, biết X có 3 phần tử ?

    Tập X3 phần tử \Rightarrow số tập con của X bằng: 2^{3}
= 8.

  • Câu 29: Nhận biết

    Có bao nhiêu câu là mệnh đề trong các câu sau:

    (1) Chăm chỉ lên nhé!

    (2) Số 20 chia hết cho 6.

    (3) Số 7 là số nguyên tố.

    (4) Số 3 là một số chẵn.

    Câu (1) là câu cảm thán nên không phải mệnh đề.

    Các câu còn lại là mệnh đề.

    \Rightarrow3 câu là mệnh đề.

  • Câu 30: Thông hiểu

    Phủ định của mệnh đề  "\sqrt3 là số vô tỷ" là mệnh đề nào sau đây?

    Phủ định của mệnh đề P là mệnh đề “không phải P".

    Chọn đáp án \sqrt{3} không là số vô tỷ.

  • Câu 31: Nhận biết

    Cho mệnh đề P: “∆ABC cân tại A ⇔ AB = AC”. Chọn khẳng định đúng nhất trong các khẳng định sau?

     Vì AB = AC nên suy ra ∆ABC cân tại A.

    Vì ∆ABC cân tại A nên suy ra AB = AC.

    Do đó đáp án đúng là “∆ABC cân tại A” là điều kiện cần và đủ để “AB = AC”.

  • Câu 32: Thông hiểu

    Mệnh đề: " \exists x \in \mathbb{R},x^{2} > 33 " khẳng định là

    Mệnh đề: " \exists x \in \mathbb{R},x^{2}
> 33 " khẳng định là có ít nhất một số thực mà bình phương của nó lớn hơn 33.

  • Câu 33: Nhận biết

    Tập X = \left\{
x\mathbb{\in R}|2x^{2} - 5x + 3 = 0 ight\} bằng tập nào sau đây?

    Ta có: 2x^{2} - 5x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = \frac{3}{2} \\
\end{matrix} ight.\  \Rightarrow X = \left\{ 1;\frac{3}{2}
ight\}.

  • Câu 34: Nhận biết

    Tìm phát biểu là mệnh đề.

    Ta có:

    Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.

    Suy ra “Hà Nội là thủ đô của Việt Nam.” là mệnh đề.

  • Câu 35: Nhận biết

    Đâu là kí hiệu của hai mệnh đề kéo theo?

    Mệnh đề kéo theo được kí hiệu là: P ⇒ Q

  • Câu 36: Thông hiểu

    Số tập hợp con của tập hợp A= \left \{ {-1;2;b} ight \} là:

    Các tập hợp con của tập A:

    Số tập con có 3 phần tử là \left\{ { - 1;2;b} ight\}

    Số tập con có 2 phần tử là \left\{ { - 1;2} ight\};\left\{ { - 1;b} ight\};\left\{ {2;b} ight\}

    Số tập con có 1 phần tử là \left\{ { - 1} ight\};\left\{ 2 ight\};\left\{ b ight\};\left\{ \emptyset  ight\}

    Vậy tập hơp A có tất cả 8 tập con.

  • Câu 37: Nhận biết

    Cho X = \left\{
7;2;8;4;9;12 ight\};Y = \left\{ 1;3;7;4 ight\}. Tập nào sau đây bằng tập X \cap Y?

    Tập hợp X \cap Y gồm những phần tử vừa thuộc X vừa thuộc Y

    \Rightarrow X \cap Y = \left\{ 4;7
ight\}.

  • Câu 38: Nhận biết

    Cho A = {1; 3; 4; 7} và B = {3; 5; 7; 10} . Tập A\ B là:

     Ta có: A\ B = {1; 4}.

  • Câu 39: Nhận biết

    Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp A=\{x∈R|−3≤x≤5\}.

     Ta có: A=\{x∈R|−3≤x≤5\} =[-3;5].

  • Câu 40: Vận dụng

    A, B, C là ba mệnh đề đúng, mệnh đề nào sau đây là đúng?

    B đúng, \overline{C} sai nên B \Rightarrow \overline{C} sai. A đúng, B \Rightarrow \overline{C} sai nên A \Rightarrow \left( B \Rightarrow \overline{C}
ight)là mệnh đề sai.

    C đúng, \overline{A} sai nên C \Rightarrow \overline{A} là mệnh đề sai.

    A đúng, C đúng nên A
\Rightarrow C đúng. B đúng, \overline{A \Rightarrow C} sai nên B \Rightarrow \left( \overline{A
\Rightarrow C} ight) sai.

    A đúng, B đúng nên A \Rightarrow
B là mệnh đề đúng. C đúng, A \Rightarrow B là mệnh đề đúng nên C \Rightarrow (A \Rightarrow B)là mệnh đề đúng.

    Chọn đáp án C \Rightarrow (A \Rightarrow
B).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Mệnh đề toán học. Tập hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 43 lượt xem
Sắp xếp theo