Đề kiểm tra 45 phút Chương 1 Mệnh đề toán học. Tập hợp

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Mệnh đề toán học. Tập hợp gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hai khoảng A
= ( - \infty;m)B = (5; +
\infty). Khẳng định nào sau đây là sai?

    Vậy A \cap B = (5;m) khi m\ \  \geq 5.

  • Câu 2: Thông hiểu

    Số tập hợp con có 2 phần tử của tập hợp A = \left\{ {1,2,3,4,5,6} ight\} là:

    Các tập hợp con của tập hợp A là: \left\{ {1;2} ight\},\left\{ {1;3} ight\},\left\{ {1;4} ight\},\left\{ {1;5} ight\}, \left\{ {1;6} ight\},\left\{ {2;3} ight\},\left\{ {2;4} ight\},\left\{ {2;5} ight\}, \left\{ {4;5} ight\},\left\{ {4;{\text{ }}6} ight\},\left\{ {5;{\text{ }}6} ight\} ,\left\{ {2;6} ight\},\left\{ {3;4} ight\},\left\{ {3;5} ight\},\left\{ {3;6} ight\}.

    Có tất cả 15 tập con của tập hợp A.

  • Câu 3: Thông hiểu

    Cho tập hợp A = (
- 3;mbrackB = \{ x \in
\mathbb{Z} \parallel x \mid \leq 3\}. Giá trị nguyên dương của m để tập hợp \mathbb{Z} \cap (A \setminus  B) có đúng 10 phần tử là:

    Ta có B = \lbrack -
3;3brack.

    Theo giả thiết thì A \smallsetminus B
eq \varnothing nên m >
3A \smallsetminus B =
(3;mbrack.

    Như vậy, để tập hợp \mathbb{Z} \cap (A
\smallsetminus B) có 10 phần tử thì

    \mathbb{Z} \cap (A \smallsetminus B) = \{
4;5;\ldots;13\}

    Do đó m = 13.

  • Câu 4: Nhận biết

    Cho A = {1; 3; 4; 7} và B = {3; 5; 7; 10} . Tập A\ B là:

     Ta có: A\ B = {1; 4}.

  • Câu 5: Thông hiểu

    Với giá trị nào của x thì mệnh đề chứa biến "\sqrt{x^{2}-3x+5}>2x+3" là đúng?

     Thay x=-1 vào 2 vế, ta được: 3>1 (đúng).

  • Câu 6: Nhận biết

    Trong các đáp án dưới đây, cách viết khác của tập D = {x ∈ ℝ | x ≠ -3} là

    Ta có: D = {x ∈ ℝ | x ≠ -3} = ℝ \ {-3}.

  • Câu 7: Nhận biết

    Mệnh đề nào sau đây là mệnh đề tương đương?

    Mệnh đề tương đương là: “Hình thang nội tiếp đường tròn khi và chỉ khi nó là hình thang cân”.

  • Câu 8: Vận dụng

    Mệnh đề nào sau đây có mệnh đề phủ định là mệnh đề đúng:

    Ta có: mệnh đề "\exists x\mathbb{\in
Q}:x^{2} = 2" là mệnh đề sai vì x^{2} = 2 \Leftrightarrow x = \pm
\sqrt{2}\mathbb{otin Q} nên không có bất kì giá trị x\mathbb{\in Q} nào thỏa mãn x^{2} = 2. Vì mệnh đề "\exists x\mathbb{\in Q}:x^{2} =
2" là mệnh đề sai nên mệnh đề phủ định của nó là mệnh đề đúng.

    \Rightarrow Chọn đáp án \exists x\mathbb{\in Q}:x^{2} = 2.

  • Câu 9: Thông hiểu

    Cho A là tập hợp các số tự nhiên chẵn không lớn hơn 12,B = \{ n \in \mathbb{N} \mid n \leq
6\}, C = \{ n \in \mathbb{N} \mid 4
\leq n \leq 12\}. Mệnh đề nào sau đây là đúng?

    Liệt kê các phần tử của tập hợp đã cho ta có kết luận đúng là:

    A \cap (B \cup C) = A

  • Câu 10: Thông hiểu

    Số tập hợp con của tập hợp A= \left \{ {-1;2;b} ight \} là:

    Các tập hợp con của tập A:

    Số tập con có 3 phần tử là \left\{ { - 1;2;b} ight\}

    Số tập con có 2 phần tử là \left\{ { - 1;2} ight\};\left\{ { - 1;b} ight\};\left\{ {2;b} ight\}

    Số tập con có 1 phần tử là \left\{ { - 1} ight\};\left\{ 2 ight\};\left\{ b ight\};\left\{ \emptyset  ight\}

    Vậy tập hơp A có tất cả 8 tập con.

  • Câu 11: Vận dụng cao

    Cho hai tập hợp A
= ( - \infty;m), B = \lbrack 3m -
1;3m + 3brack. Tìm tất cả các giá trị của tham số m để A
\subset C_{\mathbb{R}}B.

    Ta có: {C_\mathbb{R}}B = \left( { - \infty ;3m - 1} ight) \cup \left( {3m + 3; + \infty } ight)

    Do đó để A \subset {C_\mathbb{R}}B

    \Leftrightarrow m \leqslant 3m - 1 \Leftrightarrow m \geqslant \frac{1}{2}

  • Câu 12: Vận dụng

    Cho A = \lbrack
1;4brack,B = (2;6),C = (1;2). Tìm A \cap B \cap C.

    Vậy A \cap B \cap C =
\varnothing.

  • Câu 13: Nhận biết

    Cho A = \left\{
0;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp A\setminus  B bằng

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B

    \Rightarrow A\backslash B = \left\{ 0
ight\}.

  • Câu 14: Nhận biết

    Tìm mệnh đề trong các câu sau.

    Các câu “Hôm nay, trời đẹp quá!”, “Bạn ăn cơm chưa?”, “Mấy giờ rồi?” là các câu cảm thán hoặc nghi vấn nên không phải là mệnh đề.

    Chọn đáp án Paris là thủ đô của Đức.

  • Câu 15: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?

     Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.

  • Câu 16: Nhận biết

    Chọn phát biểu đúng về mệnh đề sau: "∀x ∈ \mathbb{N}, x^{2} <0"?

    Phát biểu đúng của mệnh đề "∀x ∈ \mathbb{N}, x^{2} <0" là: “Với mọi số tự nhiên x, bình phương của nó đều nhỏ hơn 0”.

  • Câu 17: Thông hiểu

    Khi x là số lẻ, mệnh đề nào sau đây là mệnh đề sai:

    Khi x là số lẻ => “x không chia hết cho 4” là mệnh đề đúng.

    Khi x là số lẻ “x không chia hết cho 3” và “x chia hết cho 3” là một khẳng định nhưng không xác định được tính hoặc đúng hoặc sai tùy theo giá trị của x => Không phải mệnh đề.

    Khi x là số lẻ “x chia hết cho 2” là mệnh đề sai.

  • Câu 18: Nhận biết

    Điền vào chỗ trống: “Hiệu của tập hợp A và tập hợp B là ….”

    Hiệu của tập hợp A và tập hợp B là tập hợp các phần tử thuộc A nhưng không thuộc B.

  • Câu 19: Nhận biết

    Mệnh đề nào sau đây là đúng?

    x = 3 \in (2;3brack nhưng x = 3 otin (2;3) \Rightarrow A sai.

    x = 2 \in \lbrack 2;3brack nhưng x = 2 otin (2;3brack \Rightarrow
C sai.

    x = 3 \in \lbrack 2;3brack nhưng x = 3 otin \lbrack 2;3) \Rightarrow
D sai.

  • Câu 20: Thông hiểu

    Cho mệnh đề P: “∀ x ∈ R: |x| ≥ 0” . Phủ định của mệnh đề P là:

     Phủ định của mệnh đề P là: “∃ x ∈ R: |x| < 0”.

  • Câu 21: Vận dụng cao

    Cho hai số thực x, y thoả mãn x \in \lbrack 1;2brack,y \in \lbrack
5;7brack. Hãy tìm giá trị nhỏ nhất m và lớn nhất M của biểu thức P = |2x - y|.

    Từ giả thiết suy ra 2x \in \lbrack
2;4bracky \in \lbrack
5;7brack, P chính là khoảng cách giữa 2 số 2xy trên trục số.

    P nhỏ nhất khi 2x = 4y =
5; P lớn nhất khi 2x = 2y =
7.

    Vậy m = 1,M = 5.

  • Câu 22: Thông hiểu

    Có bao nhiêu mệnh đề trong các câu sau?

    Ở đây đẹp quá!

    Phương trình x^{2} - 9x + 2 = 0 vô nghiệm.

    16 không là số nguyên tố.

    Số \pi có lớn hơn 3 hay không?

    Câu “Phương trình x^{2} - 9x + 2 =
0 vô nghiệm.” và “16 không là số nguyên tố.” là mệnh đề.

  • Câu 23: Thông hiểu

    Có bao nhiêu mệnh đề trong các câu sau?

    Số nguyên dương là số tự nhiên khác 0.

    Bạn hãy cố gắng, nhất định bạn sẽ thành công.

    Tổng các góc của một tam giác là 180{^\circ}.

    Cố lên, sắp đến nơi rồi!

    Câu “Số nguyên dương là số tự nhiên khác 0.” và “Tổng các góc của một tam giác là 180{^\circ}.” là mệnh đề.

  • Câu 24: Nhận biết

    Kí hiệu nào sau đây dùng để viết đúng mệnh đề “\sqrt{2} không phải là số hữu tỉ”

    Ta có: \sqrt{\mathbf{2}}\mathbb{otin
Q}\mathbf{.}

  • Câu 25: Nhận biết

    Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:

    Ta có: \mathbf{7}\mathbb{\in N}\mathbf{.}

  • Câu 26: Nhận biết

    Trong các câu sau, câu nào không phải là mệnh đề toán học?

     Đáp án “2x + y = −5” không phải mệnh đề vì nó không có tính đúng hoặc sai. Suy ra nó cũng không phải mệnh đề toán học.

  • Câu 27: Nhận biết

    Tìm phát biểu là mệnh đề.

    Ta có:

    Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.

    Suy ra “Hà Nội là thủ đô của Việt Nam.” là mệnh đề.

  • Câu 28: Vận dụng

    Mệnh đề nào sau đây có mệnh đề phủ định là mệnh đề đúng:

    Ta có: mệnh đề "\exists x\mathbb{\in
Q}:x^{2} = 2" là mệnh đề sai vì x^{2} = 2 \Leftrightarrow x = \pm
\sqrt{2}\mathbb{otin Q} nên không có bất kì giá trị x\mathbb{\in Q} nào thỏa mãn x^{2} = 2. Vì mệnh đề "\exists x\mathbb{\in Q}:x^{2} =
2" là mệnh đề sai nên mệnh đề phủ định của nó là mệnh đề đúng.

    \Rightarrow Chọn đáp án \exists x\mathbb{\in Q}:x^{2} = 2.

  • Câu 29: Thông hiểu

    Số phần tử của tập hợp A = \left\{ k^{2} + 1|k \in \mathbb{Z,}|k| \leq 2
ight\}

    Ta có: \left\{ \begin{matrix}
\mathbf{k \in}\mathbf{Z} \\
\left| \mathbf{k} ight|\mathbf{\leq}\mathbf{2} \\
\end{matrix} ight.\ \mathbf{\Leftrightarrow k =}\left\{
\mathbf{\pm}\mathbf{2;}\mathbf{\pm}\mathbf{1;0}
ight\}\mathbf{\Rightarrow A =}\left\{ \mathbf{5;2;1}
ight\}

  • Câu 30: Nhận biết

    Cho định lí “Nếu a < b thì a + c < b + c”. Giả thiết của định lí này là gì?

    Khi mệnh đề P ⇒ Q là định lí, ta nói: P là giả thiết, Q là kết luận của định lí

    Từ đó ta suy ra: Giả thiết của định lí là a < b

  • Câu 31: Nhận biết

    Cho X = \left\{
7;2;8;4;9;12 ight\};Y = \left\{ 1;3;7;4 ight\}. Tập nào sau đây bằng tập X \cap Y?

    Tập hợp X \cap Y gồm những phần tử vừa thuộc X vừa thuộc Y

    \Rightarrow X \cap Y = \left\{ 4;7
ight\}.

  • Câu 32: Vận dụng

    Cho hai tập hợp A = \left\{ x\mathbb{\in R}:x + 3 < 4 + 2x
ight\}B = \left\{
x\mathbb{\in R};5x - 3 < 4x - 1 ight\}. Tìm tất cả các số tự nhiên thuộc cả hai tập AB.

    x + 3 < 4 + 2x \Leftrightarrow x >
- 1 \Rightarrow A = ( - 1; + \infty).

    5x - 3 < 4x - 1 \Leftrightarrow x <
2 \Rightarrow B = ( - \infty;2).

    \Rightarrow A \cap B = ( - 1;2) \Rightarrow Có hai số tự nhiên thuộc cả hai tập AB01.

  • Câu 33: Thông hiểu

    Tập X = \left\{
x\mathbb{\in Q}|\left( x^{2} - 2 ight)\left( x^{2} - x - 6 ight) = 0
ight\}bằng tập nào sau đây?

    \left(
\mathbf{x}^{\mathbf{2}}\mathbf{-}\mathbf{2} ight)\left(
\mathbf{x}^{\mathbf{2}}\mathbf{- x -}\mathbf{6}
ight)\mathbf{=}\mathbf{0}\mathbf{\Leftrightarrow}\left\lbrack
\begin{matrix}
\mathbf{x = \pm}\sqrt{\mathbf{2}}\mathbb{otin Q} \\
\mathbf{x =}\mathbf{3}\mathbb{\in Q} \\
\mathbf{x = -}\mathbf{2}\mathbb{\in Q} \\
\end{matrix} ight.\ \mathbf{\Rightarrow X =}\left\{
\mathbf{3;}\mathbf{-}\mathbf{2} ight\}\mathbf{.}

  • Câu 34: Vận dụng cao

    Lớp 10A có 7 học sinh thích Táo, 5 học sinh thích Cam, 6 học sinh thích Mận, 3 học sinh thích Táo và Cam, 4 học sinh thích cả Táo và Mận, 2 học sinh thích cả Cam và Mân, 1 học sinh thích cả ba loại quả. Số học sinh thích ít nhất một loại quả (Táo hoặc Cam hoặc Mận) của lớp 10A là

    Vẽ biểu đồ Ven biểu diễn mối liên hệ giữa các tập hợp thích Táo, Cam, Mận.

    Gọi a,b,c,x,y,z,m là số phần tử của mỗi tập hợp thành phần như hình vẽ:

    Theo giả thiết ta có: \left\{
\begin{matrix}
x + m = 3 \\
y + m = 2 \\
z + m = 4 \\
m = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 1 \\
z = 3 \\
m = 1 \\
\end{matrix} ight.

    Cũng theo giả thiết ta có: \left\{
\begin{matrix}
a + x + z + m = 7 \\
b + x + y + m = 5 \\
c + y + z + m = 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
c = 1 \\
\end{matrix} ight.

    Vậy số học sinh thích ít nhất một tong ba loại quả là

    a + b + c + x + y + z + m =
10

  • Câu 35: Thông hiểu

    Tập hợp A = (2;+∞)\cap [-3;8] bằng tập hợp nào sau đây?

     Ta có: A = (2;+∞)\cap [-3;8] =(2;8].

  • Câu 36: Thông hiểu

    Hãy liệt kê các phần tử của tập hợp \mathbf{X =}\left\{ \mathbf{x}\mathbb{\in
R}\mathbf{|}\mathbf{x}^{\mathbf{2}}\mathbf{+ x
+}\mathbf{1}\mathbf{=}\mathbf{0} ight\}\mathbf{.}

    Ta có: x^{2} + x + 1 = 0 không có nghiệm thực.

  • Câu 37: Nhận biết

    Tìm mệnh đề phủ định của mệnh đề: “Vịt là một loài chim”.

    Phủ định của mệnh đề P là mệnh đề “không phải P"

    Chọn đáp án Vịt không phải là một loài chim.

  • Câu 38: Thông hiểu

    Cho mệnh đề chứa biến P(n):``n^{2} - 1 chia hết cho 4” với n là số nguyên. Xét xem các mệnh đề P(5)P(2) đúng hay sai?

    Thay n = 5n = 2 vào P(n) ta được các số 24 \vdots 43 không chia hết cho 4. Vậy P(5) đúng và P(2) sai.

  • Câu 39: Nhận biết

    Người ta thường kí hiệu tập hợp số như thế nào?

     Người ta thường kí hiệu các tập hợp số như sau:

    • \mathbb{ℕ} là tập hợp các số tự nhiên.
    • \mathbb{ℤ} là tập hợp các số nguyên.
    • \mathbb{ℝ} là tập hợp các số thực.
  • Câu 40: Nhận biết

    Tập X = \left\{
x\mathbb{\in Z}|2x^{2} - 5x + 2 = 0 ight\} bằng tập nào sau đây?

    Ta có: 2x^{2} - 5x + 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2\mathbb{\in Z} \\
x = \frac{1}{2}\mathbb{otin Z} \\
\end{matrix} ight.\  \Rightarrow X = \left\{ 2 ight\}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Mệnh đề toán học. Tập hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 43 lượt xem
Sắp xếp theo