Có bao nhiêu mệnh đề trong các câu sau?
Ở đây đẹp quá!
Phương trình vô nghiệm.
16 không là số nguyên tố.
Số có lớn hơn
hay không?
Câu “Phương trình vô nghiệm.” và “16 không là số nguyên tố.” là mệnh đề.
Có bao nhiêu mệnh đề trong các câu sau?
Ở đây đẹp quá!
Phương trình vô nghiệm.
16 không là số nguyên tố.
Số có lớn hơn
hay không?
Câu “Phương trình vô nghiệm.” và “16 không là số nguyên tố.” là mệnh đề.
Sử dụng các kí hiệu khoảng, đoạn để viết tập hợp
Vậy .
Trong các mệnh đề sau, mệnh đề nào sai?
Mệnh đề: "Số 23 là hợp số" sai vì => 23 là số nguyên tố.
Tập hợp bằng tập hợp nào sau đây?
Xác định kết quả tập hợp bằng hình vẽ như sau:
Vậy
Hai mệnh đề sau là mệnh đề gì: “x chia hết cho 9” và “x chia hết cho 3”.
Nếu x chia hết cho 9 thì x chia hết cho 3.
Nếu x chia hết cho 3 thì x có thể không chia hết cho 9.
=> Hai mệnh đề “x chia hết cho 9” và “x chia hết cho 3” là mệnh đề kéo theo.
Vùng tô đậm thể hiện mối quan hệ gì giữa 2 tập hợp A, B:
Hình vẽ mô tả các phần tử thuộc tập hợp A nhưng không thuộc tập hợp B
=> Vùng tô đậm thể hiện .
Cho hai tập hợp . Tìm a để
có đúng một phần tử.
Để có đúng một phần tử khi và chỉ khi
. Khi đó
.
Vậy là giá trị cần tìm.
Tập có bao nhiêu tập hợp con, biết
có 3 phần tử ?
Tập có
phần tử
số tập con của
bằng:
.
Khẳng định nào đúng trong các khẳng định sau:
Khẳng định đúng: "Nếu và
thì
"
Số phần tử của tập hợp A = là
Ta có:
Câu nào là mệnh đề toán học?
Mệnh đề toán học là: "2 là số tự nhiên"
Tìm phát biểu không phải mệnh đề.
“Buồn ngủ quá!” là mệnh đề.
Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp .
Ta có: .
Có bao nhiêu mệnh đề trong các câu sau?
Hôm nay trời đẹp quá!
Trung Quốc là nước đông dân nhất thế giới.
Năm 2018 là năm nhuận.
Câu “Hôm nay trời đẹp quá!” không phải là mệnh đề. Các câu còn lại đều là mệnh đề.
Tìm mệnh đề phủ định của mệnh đề
Mệnh đề phủ định là:
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Cho là tập hợp các số tự nhiên chẵn không lớn hơn
,
. Mệnh đề nào sau đây là đúng?
Liệt kê các phần tử của tập hợp đã cho ta có kết luận đúng là:
Trong các câu sau, câu nào không phải là mệnh đề toán học?
Đáp án “2x + y = −5” không phải mệnh đề vì nó không có tính đúng hoặc sai. Suy ra nó cũng không phải mệnh đề toán học.
Cho mệnh đề P: “∆ABC cân tại A ⇔ AB = AC”. Chọn khẳng định đúng nhất trong các khẳng định sau?
Vì AB = AC nên suy ra ∆ABC cân tại A.
Vì ∆ABC cân tại A nên suy ra AB = AC.
Do đó đáp án đúng là “∆ABC cân tại A” là điều kiện cần và đủ để “AB = AC”.
Xác định tập hợp
Xác định kết quả tập hợp bằng hình vẽ như sau:
Vậy
Phát biểu lại mệnh đề "Nếu n = 2 thì là một hợp số".
Phát biểu lại mệnh đề trên: "n = 2 là điều kiện đủ để là một hợp số".
Xác định A ∩ B trong trường hợp sau:
Tập hợp là tập hợp cặp số (x; y) thỏa mãn hệ phương trình:
Vậy
Cho và
. Khi đó,
bằng:
Ta có:
.
Cho tập Tập
có bao nhiêu tập hợp con?
Tập có
phần tử
số tập con của
bằng:
.
Cho là số tự nhiên, mệnh đề nào sau đây đúng?
Với thì
là hai số tự nhiên liên tiếp
là số chẵn
Với thì
là ba số tự nhiên liên tiếp
trong 3 số
có 1 số chia hết cho
Chọn đáp án là số chia hết cho
Cho hai tập hợp khác rỗng và
với
. Tìm
để
.
Ta có
Từ (*) và (**) suy ra .
Biết A là mệnh đề đúng, B là mệnh đề sai, C là mệnh đề đúng. Mệnh đề nào sau đây sai?
Ta có: là mệnh đề đúng,
là mệnh đề sai nên
là mệnh đề sai.
là mệnh đề đúng,
là mệnh đề sai nên
là mệnh đề sai.
Chọn đáp án
Cho Tập nào sau đây bằng tập
Tập hợp gồm những phần tử vừa thuộc
vừa thuộc
Cho mệnh đề P: “∀ x ∈ R: |x| ≥ 0” . Phủ định của mệnh đề P là:
Phủ định của mệnh đề P là: “∃ x ∈ R: |x| < 0”.
Kí hiệu nào sau đây dùng để viết đúng mệnh đề “ không phải là số hữu tỉ”
Ta có:
Cho tập hợp ,
, (
là tham số thực). Tìm tất cả các giá trị của tham số
để
.
Vì nên tồn tại
. Khi đó:
Nếu thử lại thấy
nên không thỏa mãn.
Nếu thay vào tập
tìm được
. Thử lại khi
thấy
.
Vậy .
Với giá trị thực nào của mệnh đề chứa biến
là mệnh đề đúng?
Thay vào
ta được
là mệnh đề đúng.
Điền vào chỗ trống: “Hiệu của tập hợp A và tập hợp B là ….”
Hiệu của tập hợp A và tập hợp B là tập hợp các phần tử thuộc A nhưng không thuộc B.
Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?
Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.
Cho hai tập hợp khác rỗng với
. Tìm tất cả các giá trị của tham số
để tập
là tập con của tập
.
Vì khác rỗng và
nên
Vậy giá trị cần tìm là
.
Cho định lí “Nếu thì
”. Giả thiết của định lí này là gì?
Khi mệnh đề là định lí, ta nói:
là giả thiết,
là kết luận của định lí
Từ đó ta suy ra: Giả thiết của định lí là
Mệnh đề nào sau đây là mệnh đề tương đương?
Mệnh đề tương đương là: “Hình thang nội tiếp đường tròn khi và chỉ khi nó là hình thang cân”.
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Tập bằng tập nào sau đây?
Ta có:
Cho ,
và
. Khi đó,
là:
Ta có:
Suy ra