Đề kiểm tra 45 phút Chương 1 Mệnh đề toán học. Tập hợp

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Mệnh đề toán học. Tập hợp gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Có bao nhiêu câu là mệnh đề trong các câu sau:

    (1) Chăm chỉ lên nhé!

    (2) Số 20 chia hết cho 6.

    (3) Số 7 là số nguyên tố.

    (4) Số 3 là một số chẵn.

    Câu (1) là câu cảm thán nên không phải mệnh đề.

    Các câu còn lại là mệnh đề.

    \Rightarrow3 câu là mệnh đề.

  • Câu 2: Thông hiểu

    Cho 2 mệnh đề: “Quyển vở này của Nam” và “Quyển vở này có 118 trang”.

    Cho biết 2 mệnh đề trên đều đúng, tìm mệnh đề sai trong các mệnh đề sau:

    Đặt P: “Quyển vở này của Nam”, Q: “Quyển vở này có 118 trang”

    Theo đề bài, P đúng, Q đúng nên \overline{P} sai, \overline{Q} sai.

    Mệnh đề P \Rightarrow Q chỉ sai khi P đúng Q sai.

    Chọn đáp án Quyển vở này của Nam nên nó không có 118 trang.

  • Câu 3: Nhận biết

    Cho hai mệnh đề A: “∀ x ∈ R: x^{2} – 1 ≠ 0” và B: “∃ n ∈ Z: n = n^{2}”. Xét tính đúng, sai của hai mệnh đề A và B.

     Với mệnh đề A, thay x=1 \Rightarrow 1^2-1=0 nên A sai.

    Với mệnh đề B, thay n=0 \Rightarrow 0^2=0 nên B đúng.

  • Câu 4: Nhận biết

    Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp A=\{x∈R|−3≤x≤5\}.

     Ta có: A=\{x∈R|−3≤x≤5\} =[-3;5].

  • Câu 5: Nhận biết

    Cho A = \left\{
0;1;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp B\backslash A bằng

    Tập hợp B\backslash A gồm những phần tử thuộc B nhưng không thuộc A

    \Rightarrow B\backslash A = \left\{ 5;6
ight\}.

  • Câu 6: Thông hiểu

    Cho tập X =
\left\{ 2,3,4 ight\}. Tập X có bao nhiêu tập hợp con?

    Tập X3 phần tử \Rightarrow số tập con của X bằng: 2^{3}
= 8.

  • Câu 7: Vận dụng

    Cho A = ( -
\infty; - 2brack, B = \lbrack 3;
+ \infty)C = (0;4). Khi đó, (A \cup B) \cap C là:

    Ta có: A \cup B = ( - \infty; - 2brack
\cup \lbrack 3; + \infty)

    Suy ra (A \cup B) \cap C = \lbrack
3;4).

  • Câu 8: Nhận biết

    Mệnh đề nào sau đây là mệnh đề tương đương?

    Mệnh đề tương đương là: “Hình thang nội tiếp đường tròn khi và chỉ khi nó là hình thang cân”.

  • Câu 9: Nhận biết

    Cho X = \left\{
7;2;8;4;9;12 ight\};Y = \left\{ 1;3;7;4 ight\}. Tập nào sau đây bằng tập X \cap Y?

    Tập hợp X \cap Y gồm những phần tử vừa thuộc X vừa thuộc Y

    \Rightarrow X \cap Y = \left\{ 4;7
ight\}.

  • Câu 10: Nhận biết

    Tìm mệnh đề chứa biến.

    x + 2 = 11.” là mệnh đề chứa biến.

  • Câu 11: Vận dụng

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Xét: ∃x ∈ R, x > x2. Với x
= \frac{1}{2} thì \frac{1}{2} >
\frac{1}{4}.

    Xét: ∀x ∈ R, |x| < 3 \Leftrightarrow x
< 3. Sai. Tồn tại x = -
4 thì - 4 < 3 \Rightarrow | - 4|
< 3 là mệnh đề sai.

    Xét: ∀n ∈ N, n2 + 1 chia hết cho 3. . Sai. Vì tồn tại n = 2\ thì\ x^{2}\  + \ 1không chia hết cho 3.

    Xét: ∃ a∈ Q, a2 = 2. . Sai. Vì a = \pm \sqrt{2} không là số hữu tỉ.

  • Câu 12: Nhận biết

    Cho A = \left\{
0;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp A\setminus  B bằng

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B

    \Rightarrow A\backslash B = \left\{ 0
ight\}.

  • Câu 13: Nhận biết

    Tập X = \left\{
x\mathbb{\in R}|2x^{2} - 5x + 3 = 0 ight\} bằng tập nào sau đây?

    Ta có: 2x^{2} - 5x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = \frac{3}{2} \\
\end{matrix} ight.\  \Rightarrow X = \left\{ 1;\frac{3}{2}
ight\}.

  • Câu 14: Thông hiểu

    Trong định lí ta nói: "P là điều kiện cần để có Q". Khi đó P là gì của định lí?

     Trong định lí ta nói: "P là điều kiện cần để có Q". Khi đó P là kết luận của định lí.

  • Câu 15: Nhận biết

    Trong các đáp án dưới đây, cách viết khác của tập D = {x ∈ ℝ | x ≠ -3} là

    Ta có: D = {x ∈ ℝ | x ≠ -3} = ℝ \ {-3}.

  • Câu 16: Thông hiểu

    Cách biểu diễn nào sau đây đúng cho tập số [‒5; 5]

    Ta có:

    Dấu “[” và “]” kí hiệu cho nửa đoạn trên trục số.

    Biểu diễn tập [‒5; 5] trên trục số đúng là:

    Biểu diễn tập hợp

  • Câu 17: Nhận biết

    Tìm mệnh đề trong các câu sau.

    Các câu “Hôm nay, trời đẹp quá!”, “Bạn ăn cơm chưa?”, “Mấy giờ rồi?” là các câu cảm thán hoặc nghi vấn nên không phải là mệnh đề.

    Chọn đáp án Paris là thủ đô của Đức.

  • Câu 18: Thông hiểu

    Cho mệnh đề chứa biến P(n):``n^{2} - 1 chia hết cho 4” với n là số nguyên. Xét xem các mệnh đề P(5)P(2) đúng hay sai?

    Thay n = 5n = 2 vào P(n) ta được các số 24 \vdots 43 không chia hết cho 4. Vậy P(5) đúng và P(2) sai.

  • Câu 19: Nhận biết

    Cho A = {a, b}. Số tập con của A là:

     Ta có: Số tập hợp con của tập có n phần tử là 2^n. Do đó số tập con của A là 2^2=4.

  • Câu 20: Thông hiểu

    Trong các tập hợp sau đây, tập hợp nào không phải là con của tập hợp A với A = {x | x ∈ \mathbb{ℕ}, x ⋮ 4x < 20}

    Ta liệt kê các phần tử của tập A: A = \left \{ {0; 4; 8; 12; 16} ight \}.

    Như vậy chỉ có phương án \left \{ {0; 1; 2; 3; 4} ight \} là tập hợp có các phần tử 1, 2, 3 không thuộc tập A nên không là tập con của A.

  • Câu 21: Thông hiểu

    Mệnh đề: " \exists x \in \mathbb{R},x^{2} > 33 " khẳng định là

    Mệnh đề: " \exists x \in \mathbb{R},x^{2}
> 33 " khẳng định là có ít nhất một số thực mà bình phương của nó lớn hơn 33.

  • Câu 22: Nhận biết

    Khẳng định nào đúng trong các khẳng định sau:

    Khẳng định đúng: "Nếu A ⊂ BB ⊂ C thì A ⊂ C

  • Câu 23: Vận dụng

    Cho hai khoảng A
= ( - \infty;m)B = (5; +
\infty). Khẳng định nào sau đây là sai?

    Vậy A \cap B = (5;m) khi m\ \  \geq 5.

  • Câu 24: Thông hiểu

    Phủ định của mệnh đề  "\sqrt3 là số vô tỷ" là mệnh đề nào sau đây?

    Phủ định của mệnh đề P là mệnh đề “không phải P".

    Chọn đáp án \sqrt{3} không là số vô tỷ.

  • Câu 25: Vận dụng

    Sử dụng các kí hiệu khoảng, đoạn để viết tập hợp A = \lbrack - 4;4brack \cup \lbrack
7;9brack \cup \lbrack 1;7).

    Vậy A = \lbrack - 4;4brack \cup \lbrack
7;9brack \cup \lbrack 1;7) = \lbrack - 4;9brack.

  • Câu 26: Thông hiểu

    Xác định tập hợp C = (2;+∞) \setminus  [-3;8] 

    Xác định kết quả tập hợp bằng hình vẽ như sau:

    Xác định tập hợp C

    Vậy C = (2;+∞) \setminus  [-3;8] =(8;+∞)

  • Câu 27: Thông hiểu

    Số tập hợp con của tập hợp A= \left \{ {-1;2;b} ight \} là:

    Các tập hợp con của tập A:

    Số tập con có 3 phần tử là \left\{ { - 1;2;b} ight\}

    Số tập con có 2 phần tử là \left\{ { - 1;2} ight\};\left\{ { - 1;b} ight\};\left\{ {2;b} ight\}

    Số tập con có 1 phần tử là \left\{ { - 1} ight\};\left\{ 2 ight\};\left\{ b ight\};\left\{ \emptyset  ight\}

    Vậy tập hơp A có tất cả 8 tập con.

  • Câu 28: Thông hiểu

    Cho mệnh đề A:\forall x
\in R,x^{2} - x + 7 < 0”. Mệnh đề phủ định của A là:

    Phủ định của \forall\exists.

    Phủ định của <\geq.

    Mệnh đề phủ định của A: \exists x \in R,x^{2} - \ x + 7 \geq
0.

  • Câu 29: Thông hiểu

    Cho tập hợp A biểu thị trên trục số như hình dưới. Chọn khẳng định đúng:

    Chọn khẳng định đúng

     Tập hợp A biểu thị trên trục số là nửa khoảng A = [-2;3)

  • Câu 30: Vận dụng cao

    Cho tập hợp khác rỗng \left\lbrack m - 1;\frac{m + 3}{2}
ightbrackB = ( - \infty -
3) \cup \lbrack 3; + \infty). Tập hợp các giá trị thực của tham số m để A \cap B eq
\varnothing

    Để A \cap B eq \varnothing thì điều kiện là: \left\{ \begin{gathered}
  m - 1 < \dfrac{{m + 3}}{2} \hfill \\
  \left[ {\begin{array}{*{20}{c}}
  {m - 1 <  - 3} \\ 
  {\dfrac{{m + 3}}{2} \geqslant 3} 
\end{array}} ight. \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {m < 5} \\ 
  {\left[ {\begin{array}{*{20}{c}}
  {m <  - 2} \\ 
  {m \geqslant 3} 
\end{array}} ight.} 
\end{array}} ight.

    Vậy m \in ( - \infty; - 2) \cup \lbrack
3;5) thỏa mãn điều kiện.

  • Câu 31: Thông hiểu

    Khi x là số lẻ, mệnh đề nào sau đây là mệnh đề sai:

    Khi x là số lẻ => “x không chia hết cho 4” là mệnh đề đúng.

    Khi x là số lẻ “x không chia hết cho 3” và “x chia hết cho 3” là một khẳng định nhưng không xác định được tính hoặc đúng hoặc sai tùy theo giá trị của x => Không phải mệnh đề.

    Khi x là số lẻ “x chia hết cho 2” là mệnh đề sai.

  • Câu 32: Vận dụng cao

    Cho hai tập hợp A = (2a + 3;1 + a)B = (a - 3; - 3 - 2a) với a < - \frac{2}{3}. Tìm a để A \cup B là một khoảng?

    a < - \frac{2}{3} nên 2a + 3 < 1 - aa - 3 < - 3 - 2a, tức là A và B luôn là các khoảng.

    Xét các trường hợp sau:

    Nếu a - 3 \leq 2a + 3 < 1 - a \leq - 3
- 2a

    \Leftrightarrow \left\{ \begin{matrix}
2a + 3 \geq a - 3 \\
1 - a \leq - 3 - 2a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a \geq - 6 \\
a \leq - 4 \\
\end{matrix} ight.

    \Leftrightarrow - 6 \leq a \leq -
4

    Khi đó A \subset B \Rightarrow A \cup B =
B, đương nhiên là một khoảng.

    Nếu 2a + 3 \leq a - 3 < - 3 - 2a \leq
1 - a

    \Leftrightarrow \left\{ \begin{matrix}
2a + 3 \leq a - 3 \\
1 - a \geq - 3 - 2a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a \leq - 6 \\
a \geq - 4\  \\
\end{matrix} ight.\ (ktm)

    Nếu 2a + 3 \leq a - 3 < 1 - a \leq - 3
- 2a

    \Leftrightarrow \left\{ \begin{matrix}
2a + 3 \leq a - 3 \\
a - 3 < 1 - a \\
1 - a \leq - 3 - 2a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a \leq - 6 \\
a < 2 \\
a \leq - 4 \\
\end{matrix} ight.\  \Leftrightarrow a \leq - 6

    Khi đó A \cup B = (2a + 3; - 3 -
2a) là một khoảng.

    Nếu a - 3 \leq 2a + 3 < - 3 - 2a \leq
1 - a

    \Leftrightarrow \left\{ \begin{matrix}
a - 3 \leq 2a + 3 \\
2a + 3 < - 3 - 2a \\
- 3 - 2a \leq 1 - a \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a \geq - 6 \\
a < - 3 \\
2a \geq - 4 \\
\end{matrix} ight.

    \Leftrightarrow - 4 \leq a < -
\frac{3}{2}

    Khi đó A \cup B = (a - 3;1 - a) là một khoảng. Vậy các giá trị của a thỏa yêu cầu bài toán là a < - \frac{3}{2}.

  • Câu 33: Nhận biết

    Trong các câu sau, câu nào không phải là mệnh đề toán học?

     Đáp án “2x + y = −5” không phải mệnh đề vì nó không có tính đúng hoặc sai. Suy ra nó cũng không phải mệnh đề toán học.

  • Câu 34: Thông hiểu

    Tập X = \left\{
x\mathbb{\in Q}|\left( x^{2} - 2 ight)\left( x^{2} - x - 6 ight) = 0
ight\}bằng tập nào sau đây?

    \left(
\mathbf{x}^{\mathbf{2}}\mathbf{-}\mathbf{2} ight)\left(
\mathbf{x}^{\mathbf{2}}\mathbf{- x -}\mathbf{6}
ight)\mathbf{=}\mathbf{0}\mathbf{\Leftrightarrow}\left\lbrack
\begin{matrix}
\mathbf{x = \pm}\sqrt{\mathbf{2}}\mathbb{otin Q} \\
\mathbf{x =}\mathbf{3}\mathbb{\in Q} \\
\mathbf{x = -}\mathbf{2}\mathbb{\in Q} \\
\end{matrix} ight.\ \mathbf{\Rightarrow X =}\left\{
\mathbf{3;}\mathbf{-}\mathbf{2} ight\}\mathbf{.}

  • Câu 35: Nhận biết

    Cho định lí “Nếu a < b thì a + c < b + c”. Giả thiết của định lí này là gì?

    Khi mệnh đề P ⇒ Q là định lí, ta nói: P là giả thiết, Q là kết luận của định lí

    Từ đó ta suy ra: Giả thiết của định lí là a < b

  • Câu 36: Vận dụng cao

    Cho tập hợp A = {y\in\mathbb{\in R}|y = \frac{(a + b + c)^{2}}{a^{2} +b^{2} + c^{2}}, với a,b,c là số thực dương}. Tìm số lớn nhất của tập hợp A?

    Ta có:

    (a + b + c)^{2} \leq a^{2} + b^{2} +
c^{2}

    \Leftrightarrow \frac{(a + b +
c)^{2}}{a^{2} + b^{2} + c^{2}} \leq 3

    Đẳng thức xảy ra khi a = b =
c.

    Vậy số nhỏ nhất là 3.

  • Câu 37: Nhận biết

    Kí hiệu C_{U}A có nghĩa là gì?

    Cho hai tập hợp AU. Nếu A là tập con của U thì hiệu U\setminus A gọi là phần bù của A trong U, kí hiệu {C_U}A.

  • Câu 38: Nhận biết

    Cho biết x là một phần tử của tập hợp A, xét các mệnh đề sau:

    (I) x \in A.

    (II) \left\{ x ight\} \in
A.

    (III) x \subset A.

    (IV) \left\{ x ight\} \subset
A.

    Trong các mệnh đề sau, mệnh đề nào là đúng:

    I đúng.

    II sai vì không có khái niệm tập hợp này thuộc tập hợp kia.

    III sai vì 1 phần tử thì không thể là con của 1 tập hợp.

    IV đúng.

  • Câu 39: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Xét mệnh đề −π < −2 ⇔ π^{2} < 4. Ta thấy π^{2} < 4 sai nên mệnh đề này sai.

  • Câu 40: Vận dụng

    Trong các mệnh đề sau, mệnh đề nào sai?

    Với n = 1\mathbb{\in N} ta có: 1^{2} > 1 là mệnh đề sai

    \Rightarrow Mệnh đề n"" alt=""\forall n\mathbb{\in N},n^{2} > n"" /> là mệnh đề sai.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Mệnh đề toán học. Tập hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 43 lượt xem
Sắp xếp theo