Tập bằng tập nào sau đây?
Ta có:
Tập bằng tập nào sau đây?
Ta có:
Biết A là mệnh đề đúng, B là mệnh đề sai, C là mệnh đề đúng. Mệnh đề nào sau đây sai?
Ta có: là mệnh đề đúng,
là mệnh đề sai nên
là mệnh đề sai.
là mệnh đề đúng,
là mệnh đề sai nên
là mệnh đề sai.
Chọn đáp án
Kí hiệu có nghĩa là gì?
Cho hai tập hợp và
. Nếu
là tập con của
thì hiệu
gọi là phần bù của
trong
, kí hiệu
.
Tìm phát biểu là mệnh đề.
Ta có:
Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.
Suy ra “Hà Nội là thủ đô của Việt Nam.” là mệnh đề.
Cho hai tập hợp khác rỗng và
với
. Tìm
để
.
Ta có
Từ (*) và (**) suy ra .
Cho tập hợp và
Tập hợp
bằng tập nào sau đây?
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
.
Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp .
Ta có: .
Cho hai mệnh đề A: “∀ x ∈ R: ” và B: “∃ n ∈ Z:
”. Xét tính đúng, sai của hai mệnh đề A và B.
Với mệnh đề A, thay nên A sai.
Với mệnh đề B, thay nên B đúng.
Cho Tìm
Vậy .
Hai mệnh đề sau là mệnh đề gì: “x chia hết cho 9” và “x chia hết cho 3”.
Nếu x chia hết cho 9 thì x chia hết cho 3.
Nếu x chia hết cho 3 thì x có thể không chia hết cho 9.
=> Hai mệnh đề “x chia hết cho 9” và “x chia hết cho 3” là mệnh đề kéo theo.
Cho 2 mệnh đề: “Quyển vở này của Nam” và “Quyển vở này có 118 trang”.
Cho biết 2 mệnh đề trên đều đúng, tìm mệnh đề sai trong các mệnh đề sau:
Đặt “Quyển vở này của Nam”,
“Quyển vở này có 118 trang”
Theo đề bài, đúng,
đúng nên
sai,
sai.
Mệnh đề chỉ sai khi
đúng
sai.
Chọn đáp án Quyển vở này của Nam nên nó không có 118 trang.
Cho và
Khi đó:
Ta có:
Ta có:
Trong các đáp án dưới đây, cách viết khác của tập D = {x ∈ ℝ | x ≠ -3} là
Ta có: D = {x ∈ ℝ | x ≠ -3} = ℝ \ {-3}.
Xác định tập hợp bằng cách liệt kê các phần tử.
Ta có: .
Xác định tập hợp sau đây trên trục số: :
Xác định tập hợp trên trục số như sau:
Biết là mệnh đề sai, còn
là mệnh đề đúng. Mệnh đề nào sau đây đúng?
B đúng, A sai nên ,
là mệnh đề sai.
đúng,
sai nên
là mệnh đề sai do đó
là mệnh đề sai.
Chọn đáp án
Tìm mệnh đề phủ định của mệnh đề
Mệnh đề phủ định là:
Viết mệnh đề sau bằng cách sử dụng kí hiệu hoặc
: “Mọi số nhân với 1 đều bằng chính nó”.
Mệnh đề được viết lại bằng kí hiệu: .
Cho A = {a, b}. Số tập con của A là:
Ta có: Số tập hợp con của tập có phần tử là
. Do đó số tập con của A là
.
Số phần tử của tập hợp A = là
Ta có:
Với giá trị thực nào của mệnh đề chứa biến
là mệnh đề đúng?
Thay vào
ta được
là mệnh đề đúng.
Cho hai số thực x, y thoả mãn . Hãy tìm giá trị nhỏ nhất m và lớn nhất M của biểu thức
.
Từ giả thiết suy ra và
,
chính là khoảng cách giữa
số
và
trên trục số.
nhỏ nhất khi
và
;
lớn nhất khi
và
.
Vậy .
Có bao nhiêu câu là mệnh đề trong các câu sau:
(1) Chăm chỉ lên nhé!
(2) Số 20 chia hết cho 6.
(3) Số là số nguyên tố.
(4) Số là một số chẵn.
Câu (1) là câu cảm thán nên không phải mệnh đề.
Các câu còn lại là mệnh đề.
Có
câu là mệnh đề.
Tìm mệnh đề chứa biến.
“” là mệnh đề chứa biến.
Tìm mệnh đề phủ định của mệnh đề: “Vịt là một loài chim”.
Phủ định của mệnh đề P là mệnh đề “không phải P"
Chọn đáp án Vịt không phải là một loài chim.
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Trong các mệnh đề sau, mệnh đề nào là sai:
Ta thấy mệnh đề sai vì giữa hai tập hợp không có quan hệ phụ thuộc.
Cách viết tập hợp nào đúng trong các cách viết sau để xác định tập hợp A các ước dương của 12:
Các ước dương của 12 là: 1; 2; 3; 4; 6; 12
=> Cách viết tập hợp đúng là:
Tập có bao nhiêu tập hợp con, biết
có 3 phần tử ?
Tập có
phần tử
số tập con của
bằng:
.
Khẳng định nào đúng trong các khẳng định sau:
Khẳng định đúng: "Nếu và
thì
"
Cho và
Khi đó:
Ta có:
Cho hai tập hợp ,
. Tìm tất cả các giá trị của tham số
để
.
Ta có:
Do đó để
Có bao nhiêu mệnh đề trong các câu sau?
Số nguyên dương là số tự nhiên khác 0.
Bạn hãy cố gắng, nhất định bạn sẽ thành công.
Tổng các góc của một tam giác là
Cố lên, sắp đến nơi rồi!
Câu “Số nguyên dương là số tự nhiên khác 0.” và “Tổng các góc của một tam giác là ” là mệnh đề.
Cho mệnh đề chứa biến chia hết cho 4” với
là số nguyên. Xét xem các mệnh đề
và
đúng hay sai?
Thay và
vào
ta được các số
và
không chia hết cho
. Vậy
đúng và
sai.
Tập hợp bằng tập hợp nào sau đây?
Xác định kết quả tập hợp bằng trục số như sau:
Vậy
Cho hai khoảng và
. Khẳng định nào sau đây là sai?
Vậy khi
Cho định lí “Nếu thì
”. Giả thiết của định lí này là gì?
Khi mệnh đề là định lí, ta nói:
là giả thiết,
là kết luận của định lí
Từ đó ta suy ra: Giả thiết của định lí là
Cho mệnh đề: “Một tứ giác là hình thang cân khi và chỉ khi tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?
Mệnh đề tương đương với mệnh đề đã cho là: Điều kiện cần và đủ để một tứ giác có hai đường chéo bằng nhau là tứ giác đó là một hình thang cân.
Với giá trị nào của x thì mệnh đề chứa biến "" là đúng?
Thay vào 2 vế, ta được:
(đúng).
Người ta thường kí hiệu tập hợp số như thế nào?
Người ta thường kí hiệu các tập hợp số như sau: