Tìm đáp án không phải mệnh đề trong các câu sau.
Câu “Bộ phim quá hay!” là câu cảm thán nên không phải là mệnh đề.
Tìm đáp án không phải mệnh đề trong các câu sau.
Câu “Bộ phim quá hay!” là câu cảm thán nên không phải là mệnh đề.
Cho
và
Khi đó,
là:
Vậy
Cho
Tập nào sau đây bằng tập ![]()
Tập hợp gồm những phần tử vừa thuộc
vừa thuộc
Cho mệnh đề P: “∀ x ∈ R: |x| ≥ 0” . Phủ định của mệnh đề P là:
Phủ định của mệnh đề P là: “∃ x ∈ R: |x| < 0”.
Trong các tập hợp sau, tập hợp nào bằng nhau:
=> ;
. Vậy tập hợp
không bằng tập hợp
.
=> . Vậy tập hợp
bằng tập hợp
. Đáp án đúng
=> ;
. Vậy tập hợp
không bằng tập hợp
.
=> ;
. Vậy tập hợp
không bằng tập hợp
.
Cho tập hợp A = {
, với
là số thực dương}. Tìm số nhỏ nhất của tập hợp A?
Ta có:
Đẳng thức xảy ra khi .
Vậy số nhỏ nhất là
Cho định lí “Nếu
thì
”. Giả thiết của định lí này là gì?
Khi mệnh đề là định lí, ta nói:
là giả thiết,
là kết luận của định lí
Từ đó ta suy ra: Giả thiết của định lí là
Tập
bằng tập nào sau đây?
Có bao nhiêu mệnh đề trong các câu sau?
Ở đây đẹp quá!
Phương trình
vô nghiệm.
16 không là số nguyên tố.
Số
có lớn hơn
hay không?
Câu “Phương trình vô nghiệm.” và “16 không là số nguyên tố.” là mệnh đề.
Cho mệnh đề P: “∆ABC cân tại A ⇔ AB = AC”. Chọn khẳng định đúng nhất trong các khẳng định sau?
Vì AB = AC nên suy ra ∆ABC cân tại A.
Vì ∆ABC cân tại A nên suy ra AB = AC.
Do đó đáp án đúng là “∆ABC cân tại A” là điều kiện cần và đủ để “AB = AC”.
Có bao nhiêu mệnh đề trong các câu sau?
Hôm nay trời đẹp quá!
Trung Quốc là nước đông dân nhất thế giới.
Năm 2018 là năm nhuận.
Câu “Hôm nay trời đẹp quá!” không phải là mệnh đề. Các câu còn lại đều là mệnh đề.
Tìm mệnh đề chứa biến.
“” là mệnh đề chứa biến.
Nếu cả hai mệnh đề P ⇒ Q và Q ⇒ P đều sai thì ta suy ra điều gì?
Ta có:
Mệnh đề đúng khi cả hai mệnh đề
và
cùng đúng hoặc cùng sai. (Hay
đúng khi cả hai mệnh đề
và
cùng đúng hoặc cùng sai).
Cho A là tập hợp các bội của 2, B là tập hợp các bội của 8. Chọn khẳng định đúng:
Số lượng phần tử của tập hợp các bội của 2 nhiều hơn số lượng phần tử tập hợp các bội của 8. Mà đã là bội của 8 thì cũng là bội của 2.
Do đó
Cho biết
là một phần tử của tập hợp
xét các mệnh đề sau:
(I) ![]()
(II)
.
(III) ![]()
(IV) ![]()
Trong các mệnh đề sau, mệnh đề nào là đúng:
I đúng.
II sai vì không có khái niệm tập hợp này thuộc tập hợp kia.
III sai vì phần tử thì không thể là con của
tập hợp.
IV đúng.
Khi x là số lẻ, mệnh đề nào sau đây là mệnh đề sai:
Khi x là số lẻ => “x không chia hết cho 4” là mệnh đề đúng.
Khi x là số lẻ “x không chia hết cho 3” và “x chia hết cho 3” là một khẳng định nhưng không xác định được tính hoặc đúng hoặc sai tùy theo giá trị của x => Không phải mệnh đề.
Khi x là số lẻ “x chia hết cho 2” là mệnh đề sai.
Trong các mệnh đề sau, mệnh đề nào sai?
Với ta có:
là mệnh đề sai
Mệnh đề
n"" alt=""\forall n\mathbb{\in N},n^{2} > n"" /> là mệnh đề sai.
Số phần tử của tập hợp A =
là
Ta có:
Trong các đáp án dưới đây, cách viết khác của tập D = {x ∈ ℝ | x ≠ -3} là
Ta có: D = {x ∈ ℝ | x ≠ -3} = ℝ \ {-3}.
Cho hai tập hợp
. Tìm giá trị của a để
.
Để khi và chỉ khi
.
Vậy là giá trị cần tìm.
Sử dụng các kí hiệu khoảng, đoạn để viết tập hợp ![]()
Vậy .
Cho tập hợp
và
Tập hợp
bằng tập nào sau đây?
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
.
Câu nào là mệnh đề toán học?
Mệnh đề toán học là: "2 là số tự nhiên"
Xác định A ∩ B trong trường hợp sau:
![]()
Tập hợp là tập hợp cặp số (x; y) thỏa mãn hệ phương trình:
Vậy
Tìm phát biểu không phải mệnh đề.
“Buồn ngủ quá!” là mệnh đề.
Cho hai tập hợp
,
. Tìm tất cả các giá trị của tham số
để
.
Ta có:
Do đó để
Người ta thường kí hiệu tập hợp số như thế nào?
Người ta thường kí hiệu các tập hợp số như sau:
Có bao nhiêu câu là mệnh đề trong các câu sau:
(1) Môn toán khó quá!
(2) Bạn có đói không?
(3)
hoặc ![]()
(4) ![]()
Câu (1) là câu cảm thán, câu (2) là câu nghi vấn nên không phải mệnh đề.
Các câu còn lại là mệnh đề.
Có
câu là mệnh đề.
Cho A = {1; 3; 4; 7} và B = {3; 5; 7; 10} . Tập A\ B là:
Ta có: A\ B = {1; 4}.
Cho
là tập hợp các số tự nhiên chẵn không lớn hơn
,
. Mệnh đề nào sau đây là đúng?
Liệt kê các phần tử của tập hợp đã cho ta có kết luận đúng là:
Với giá trị nào của x thì mệnh đề chứa biến "
" là đúng?
Thay vào 2 vế, ta được:
(đúng).
Trong các câu sau, câu nào không phải là mệnh đề toán học?
Đáp án “2x + y = −5” không phải mệnh đề vì nó không có tính đúng hoặc sai. Suy ra nó cũng không phải mệnh đề toán học.
Phủ định của mệnh đề “Phương trình
có 2 nghiệm phân biệt” là mệnh đề nào?
Phủ định của mệnh đề P là mệnh đề "không phải P".
Chọn đáp án Phương trình không phải có 2 nghiệm phân biệt.
Cho hai tập hợp: X =
là bội của
và
và Y=
n là bội số của 12}
Trong các mệnh đề nào sau đây, mệnh đề nào là sai?
là bội của
và
là số tự nhiên chia hết cho
và
chia hết cho
Tập hợp các số tự nhiên chia hết cho
là bội của
chia hết cho
Tập hợp các số tự nhiên chia hết cho
đáp án sai là
và
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Điền vào chỗ trống: “Hiệu của tập hợp A và tập hợp B là ….”
Hiệu của tập hợp A và tập hợp B là tập hợp các phần tử thuộc A nhưng không thuộc B.
Tập hợp
có bao nhiêu tập hợp con gồm 2 phần tử:
Tập gồm
phần tử.
Mỗi phần tử ghép với phần tử còn lại ta được
tập con của
có
phần tử.
Số tập con của có
phần tử bằng:
Cho A = {a, b}. Số tập con của A là:
Ta có: Số tập hợp con của tập có phần tử là
. Do đó số tập con của A là
.
Cho hai tập hợp khác rỗng
và
với
. Tìm
để
.
Ta có
Từ (*) và (**) suy ra .