Đề kiểm tra 45 phút Chương 1 Mệnh đề toán học. Tập hợp

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Mệnh đề toán học. Tập hợp gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho A = \lbrack
- 4;7brackB = ( - \infty; -
2) \cup (3; + \infty). Khi đó, A
\cap B là:

    Vậy A \cap B = \lbrack - 4; - 2) \cup
(3;7brack.

  • Câu 2: Nhận biết

    Tìm mệnh đề phủ định của mệnh đề: “Vịt là một loài chim”.

    Phủ định của mệnh đề P là mệnh đề “không phải P"

    Chọn đáp án Vịt không phải là một loài chim.

  • Câu 3: Nhận biết

    Cho A = {1; 3; 4; 7} và B = {3; 5; 7; 10} . Tập A\ B là:

     Ta có: A\ B = {1; 4}.

  • Câu 4: Nhận biết

    Cho mệnh đề P: “∆ABC cân tại A ⇔ AB = AC”. Chọn khẳng định đúng nhất trong các khẳng định sau?

     Vì AB = AC nên suy ra ∆ABC cân tại A.

    Vì ∆ABC cân tại A nên suy ra AB = AC.

    Do đó đáp án đúng là “∆ABC cân tại A” là điều kiện cần và đủ để “AB = AC”.

  • Câu 5: Thông hiểu

    Số phần tử của tập hợp A = \left\{ k^{2} + 1|k \in \mathbb{Z,}|k| \leq 2
ight\}

    Ta có: \left\{ \begin{matrix}
\mathbf{k \in}\mathbf{Z} \\
\left| \mathbf{k} ight|\mathbf{\leq}\mathbf{2} \\
\end{matrix} ight.\ \mathbf{\Leftrightarrow k =}\left\{
\mathbf{\pm}\mathbf{2;}\mathbf{\pm}\mathbf{1;0}
ight\}\mathbf{\Rightarrow A =}\left\{ \mathbf{5;2;1}
ight\}

  • Câu 6: Thông hiểu

    Cho các mệnh đề sau đây:

    (I). Nếu tam giác ABC đều thì tam giác ABCAB = AC.

    (II). Nếu a\ và\ b đều là các số chẵn thì (a + b) là một số chẵn.

    (III). Nếu tam giác ABC có tổng hai góc bằng 90^{\circ} thì tam giác ABC là tam giác vuông.

    Trong các mệnh đề đảo của (I), (II) và (III), có bao nhiêu mệnh đề đúng?

    Mệnh đề đảo của

    (I). Nếu tam giác ABCAB = ACthì tam giác ABC đều \Rightarrow Mệnh đề sai.

    (II). Nếu (a + b) là một số chẵn thì a\ và\ b đều là các số chẵn \Rightarrow Mệnh đề sai.

    (III). Nếu tam giác ABC là tam giác vuông thì tam giác ABC có tổng hai góc bằng 90^{\circ}

    \Rightarrow Mệnh đề đúng.

    \Rightarrow Có 1 mệnh đề đảo là đúng.

  • Câu 7: Nhận biết

    Tìm mệnh đề đúng.

    Tổng của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,\ 3 là số lẻ.

    Tích của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 2.3 =
6 là số chẵn nhưng 3 là số lẻ.

    Tổng của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,3 là số lẻ.

    Chọn Tích của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ.

  • Câu 8: Nhận biết

    Mệnh đề nào sau đây là đúng?

    x = 3 \in (2;3brack nhưng x = 3 otin (2;3) \Rightarrow A sai.

    x = 2 \in \lbrack 2;3brack nhưng x = 2 otin (2;3brack \Rightarrow
C sai.

    x = 3 \in \lbrack 2;3brack nhưng x = 3 otin \lbrack 2;3) \Rightarrow
D sai.

  • Câu 9: Nhận biết

    Phát biểu lại mệnh đề "Nếu n = 2 thì 2n^{2}+1 là một hợp số".

     Phát biểu lại mệnh đề trên: "n = 2 là điều kiện đủ để 2n^{2}+1 là một hợp số".

  • Câu 10: Vận dụng

    Chọn mệnh đề đúng trong các mệnh đề sau đây:

    Với x = 0 > - 3 nhưng x^{2} = 0 < 9 \Rightarrow Mệnh đề \forall x\mathbb{\in R},x > - 3
\Rightarrow x^{2} > 9 sai.

    Với x = - 4 \Rightarrow x^{2} = 16 >
9 nhưng - 4 = x > 3 là mệnh đề sai \Rightarrow Mệnh đề \forall x\mathbb{\in R},x^{2} > 9
\Rightarrow x > 3 sai.

    Với x = - 4 \Rightarrow x^{2} = 16 >
9 nhưng - 4 = x > - 3 là mệnh đề sai \Rightarrow Mệnh đề \forall x\mathbb{\in R},x^{2} > 9
\Rightarrow x > - 3 sai.

    Chọn đáp án \forall x\mathbb{\in R},x
> 3 \Rightarrow x^{2} > 9.

  • Câu 11: Thông hiểu

    Cho tập hợp A = (
- 3;mbrackB = \{ x \in
\mathbb{Z} \parallel x \mid \leq 3\}. Giá trị nguyên dương của m để tập hợp \mathbb{Z} \cap (A \setminus  B) có đúng 10 phần tử là:

    Ta có B = \lbrack -
3;3brack.

    Theo giả thiết thì A \smallsetminus B
eq \varnothing nên m >
3A \smallsetminus B =
(3;mbrack.

    Như vậy, để tập hợp \mathbb{Z} \cap (A
\smallsetminus B) có 10 phần tử thì

    \mathbb{Z} \cap (A \smallsetminus B) = \{
4;5;\ldots;13\}

    Do đó m = 13.

  • Câu 12: Nhận biết

    Trong các câu sau, câu nào không phải là mệnh đề toán học?

     Đáp án “2x + y = −5” không phải mệnh đề vì nó không có tính đúng hoặc sai. Suy ra nó cũng không phải mệnh đề toán học.

  • Câu 13: Nhận biết

    Tìm phát biểu là mệnh đề.

    Ta có:

    Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.

    Suy ra “Hà Nội là thủ đô của Việt Nam.” là mệnh đề.

  • Câu 14: Vận dụng

    Cho hai tập hợp A = \left\{ x\mathbb{\in R}:x + 3 < 4 + 2x
ight\}B = \left\{
x\mathbb{\in R};5x - 3 < 4x - 1 ight\}. Tìm tất cả các số tự nhiên thuộc cả hai tập AB.

    x + 3 < 4 + 2x \Leftrightarrow x >
- 1 \Rightarrow A = ( - 1; + \infty).

    5x - 3 < 4x - 1 \Leftrightarrow x <
2 \Rightarrow B = ( - \infty;2).

    \Rightarrow A \cap B = ( - 1;2) \Rightarrow Có hai số tự nhiên thuộc cả hai tập AB01.

  • Câu 15: Vận dụng cao

    Lớp 10A có 7 học sinh thích Táo, 5 học sinh thích Cam, 6 học sinh thích Mận, 3 học sinh thích Táo và Cam, 4 học sinh thích cả Táo và Mận, 2 học sinh thích cả Cam và Mân, 1 học sinh thích cả ba loại quả. Số học sinh thích ít nhất một loại quả (Táo hoặc Cam hoặc Mận) của lớp 10A là

    Vẽ biểu đồ Ven biểu diễn mối liên hệ giữa các tập hợp thích Táo, Cam, Mận.

    Gọi a,b,c,x,y,z,m là số phần tử của mỗi tập hợp thành phần như hình vẽ:

    Theo giả thiết ta có: \left\{
\begin{matrix}
x + m = 3 \\
y + m = 2 \\
z + m = 4 \\
m = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 1 \\
z = 3 \\
m = 1 \\
\end{matrix} ight.

    Cũng theo giả thiết ta có: \left\{
\begin{matrix}
a + x + z + m = 7 \\
b + x + y + m = 5 \\
c + y + z + m = 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
c = 1 \\
\end{matrix} ight.

    Vậy số học sinh thích ít nhất một tong ba loại quả là

    a + b + c + x + y + z + m =
10

  • Câu 16: Thông hiểu

    Với giá trị nào của x thì mệnh đề chứa biến "\sqrt{x^{2}-3x+5}>2x+3" là đúng?

     Thay x=-1 vào 2 vế, ta được: 3>1 (đúng).

  • Câu 17: Nhận biết

    Cho A = \left\{
0;1;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp (A\backslash B \cap B) bằng

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B

    \Rightarrow A\backslash B \cap B =
\varnothing.

  • Câu 18: Vận dụng cao

    Tìm tất cả các giá trị thực âm của tham số m để hai khoảng ( - \infty;2m)\left( \frac{2}{m}; + \infty ight) có khoảng giao khác rỗng.

    Với m < 0 thì \frac{2}{m} luôn có nghĩa. 

    Giao của hai tập đã cho khác rỗng khi hai tập hợp này có phần tử chung 

    \Leftrightarrow 2m > \frac{2}{m}
\Leftrightarrow 2m^{2} < 2 (vì m < 0) \Leftrightarrow 2(m - 1)(m + 1) <
0

    m < 0 nên ta xét các trường hợp sau

    Nếu m < - 1 thì m + 1 < 0,m - 1 < 0 = > 2(m - 1)(m + 1)
> 0

    Vậy m < - 1 không thỏa yêu cầu bài toán.

    Nếu −1 < m < 0 thì m + 1 > 0,m -
1 < 0 \Rightarrow 2(m - 1)(m +
1) < 0

    Vậy giá trị cần tìm của m là - 1 < m
< 0.

  • Câu 19: Thông hiểu

    Viết mệnh đề sau bằng cách sử dụng kí hiệu \forall hoặc \exists: “Mọi số nhân với 1 đều bằng chính nó”.

    Mệnh đề được viết lại bằng kí hiệu: \forall x \in R,\ x.1 = x.

  • Câu 20: Nhận biết

    Cách viết tập hợp nào đúng trong các cách viết sau để xác định tập hợp A các ước dương của 12:

    Các ước dương của 12 là: 1; 2; 3; 4; 6; 12

    => Cách viết tập hợp đúng là: A = \left \{ 1; 2; 3; 4; 6; 12ight \}

  • Câu 21: Nhận biết

    Vùng tô đậm thể hiện mối quan hệ gì giữa 2 tập hợp A, B:

    Tìm mối quan hệ giữa hai tập hợp

    Hình vẽ mô tả các phần tử thuộc tập hợp A nhưng không thuộc tập hợp B

    => Vùng tô đậm thể hiện A\setminus B.

  • Câu 22: Thông hiểu

    Cho A = \left\{
x\mathbb{\in R}:x^{2} - 7x + 6 = 0 ight\}B = \left\{ x\mathbb{\in R}:|x| < 4
ight\}. Khi đó:

    x^{2} - 7x + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 6 \\
\end{matrix} ight.\  \Rightarrow A = \left\{ 1;6
ight\}.

    |x| < 4 \Rightarrow - 4 < x < 4
\Rightarrow B = ( - 4;4).

    Ta có: A\backslash B = \left\{ 6 ight\}
\subset A.

  • Câu 23: Thông hiểu

    Hai mệnh đề sau là mệnh đề gì: “x chia hết cho 9” và “x chia hết cho 3”.

     Nếu x chia hết cho 9 thì x chia hết cho 3.

    Nếu x chia hết cho 3 thì x có thể không chia hết cho 9.

    => Hai mệnh đề “x chia hết cho 9” và “x chia hết cho 3” là mệnh đề kéo theo.

  • Câu 24: Nhận biết

    Khẳng định nào đúng trong các khẳng định sau:

    Khẳng định đúng: "Nếu A ⊂ BB ⊂ C thì A ⊂ C

  • Câu 25: Thông hiểu

    Tập hợp C = (2;+∞) \ [-3;8] bằng tập hợp nào sau đây?

     Ta có: C = (2;+∞) \ [-3;8] = (8;+∞).

  • Câu 26: Nhận biết

    Trong các đáp án dưới đây, cách viết khác của tập D = {x ∈ ℝ | x ≠ -3} là

    Ta có: D = {x ∈ ℝ | x ≠ -3} = ℝ \ {-3}.

  • Câu 27: Nhận biết

    Kí hiệu C_{U}A có nghĩa là gì?

    Cho hai tập hợp AU. Nếu A là tập con của U thì hiệu U\setminus A gọi là phần bù của A trong U, kí hiệu {C_U}A.

  • Câu 28: Nhận biết

    Cho tập hợp A =
\left\{ 2;4;6;9 ight\}B =
\left\{ 1;2;3;4 ight\}. Tập hợp A\backslash B bằng tập nào sau đây?

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B.

    \Rightarrow A\backslash B = \left\{ 6;9
ight\}.

  • Câu 29: Vận dụng

    Biết A là mệnh đề đúng, B là mệnh đề sai, C là mệnh đề đúng. Mệnh đề nào sau đây sai?

    Ta có: A là mệnh đề đúng, B là mệnh đề sai nên A \Rightarrow B là mệnh đề sai.

    C là mệnh đề đúng, A \Rightarrow B là mệnh đề sai nên C \Rightarrow (A \Rightarrow B)là mệnh đề sai.

    Chọn đáp án C \Rightarrow (A \Rightarrow
B).

  • Câu 30: Nhận biết

    Có bao nhiêu câu là mệnh đề trong các câu sau:

    (1) Chăm chỉ lên nhé!

    (2) Số 20 chia hết cho 6.

    (3) Số 7 là số nguyên tố.

    (4) Số 3 là một số chẵn.

    Câu (1) là câu cảm thán nên không phải mệnh đề.

    Các câu còn lại là mệnh đề.

    \Rightarrow3 câu là mệnh đề.

  • Câu 31: Vận dụng

    Cho hai tập hợp: X = \left\{ n\mathbb{\in N}| ight.\ n là bội của 46\}và Y= \left\{ n\mathbb{\in N}| ight. n là bội số của 12}

    Trong các mệnh đề nào sau đây, mệnh đề nào là sai?

    n là bội của 46
\Rightarrow n là số tự nhiên chia hết cho 46

    \Rightarrow n chia hết cho 12.

    \Rightarrow X = Tập hợp các số tự nhiên chia hết cho 12.

    n là bội của 12 \Rightarrow n chia hết cho 12.

    \Rightarrow Y = Tập hợp các số tự nhiên chia hết cho 12.

    X = Y \Rightarrow đáp án sai là \exists n:n \in Xn otin Y.

  • Câu 32: Vận dụng cao

    Cho tập hợp A =\left\{ x\in\mathbb{ R}|x^{2} + x - m = 0 ight\}, B = \left\{ x\in\mathbb{ R}|x^{2} - mx + 1 = 0ight\}, (m là tham số thực). Tìm tất cả các giá trị của tham số m để A \cap B
eq \varnothing.

    A \cap B eq \varnothing nên tồn tại a \in A \cap B. Khi đó:

    \left\{ \begin{matrix}
a^{2} + a - m = 0 \\
a^{2} - ma + 1 = 0 \\
\end{matrix} ight.

    \Rightarrow (1 + m)a - (1 + m) =
0

    \Rightarrow \left\lbrack \begin{matrix}
m = - 1 \\
a = 1 \\
\end{matrix} ight.

    Nếu m = - 1 thử lại thấy B eq \varnothing nên không thỏa mãn.

    Nếu a = 1 thay vào tập A tìm được m
= 2. Thử lại khi m = 2 thấy A \cap B = \left\{ 1
ight\}.

    Vậy m = 2.

  • Câu 33: Thông hiểu

    Phủ định của mệnh đề  "\sqrt3 là số vô tỷ" là mệnh đề nào sau đây?

    Phủ định của mệnh đề P là mệnh đề “không phải P".

    Chọn đáp án \sqrt{3} không là số vô tỷ.

  • Câu 34: Thông hiểu

    Tập hợp A = (2;+∞)\cap [-3;8] bằng tập hợp nào sau đây?

     Ta có: A = (2;+∞)\cap [-3;8] =(2;8].

  • Câu 35: Nhận biết

    Tìm mệnh đề chứa biến.

    x + 2 = 11.” là mệnh đề chứa biến.

  • Câu 36: Nhận biết

    Cho A = {a, b}. Số tập con của A là:

     Ta có: Số tập hợp con của tập có n phần tử là 2^n. Do đó số tập con của A là 2^2=4.

  • Câu 37: Thông hiểu

    Có bao nhiêu mệnh đề trong các câu sau?

    Hôm nay trời đẹp quá!

    Trung Quốc là nước đông dân nhất thế giới.

    Năm 2018 là năm nhuận.

    Câu “Hôm nay trời đẹp quá!” không phải là mệnh đề. Các câu còn lại đều là mệnh đề.

  • Câu 38: Thông hiểu

    Tập hợp A=(2;+∞)\cap [-3;8] bằng tập hợp nào sau đây?

    Xác định kết quả tập hợp bằng trục số như sau:

    Tìm kết quả của phép toán

    Vậy A=(2;+∞)\cap [-3;8] =(2;8]

  • Câu 39: Thông hiểu

    Mệnh đề: " \exists x \in \mathbb{R},x^{2} > 33 " khẳng định là

    Mệnh đề: " \exists x \in \mathbb{R},x^{2}
> 33 " khẳng định là có ít nhất một số thực mà bình phương của nó lớn hơn 33.

  • Câu 40: Thông hiểu

    Cho tập X =
\left\{ 2,3,4 ight\}. Tập X có bao nhiêu tập hợp con?

    Tập X3 phần tử \Rightarrow số tập con của X bằng: 2^{3}
= 8.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Mệnh đề toán học. Tập hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 43 lượt xem
Sắp xếp theo