Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Mệnh đề nào sau đây là đúng?
nhưng
sai.
nhưng
sai.
nhưng
sai.
Cho mệnh đề P: “∀ x ∈ R: |x| ≥ 0” . Phủ định của mệnh đề P là:
Phủ định của mệnh đề P là: “∃ x ∈ R: |x| < 0”.
Tập hợp C = (2;+∞) \ [-3;8] bằng tập hợp nào sau đây?
Ta có: C = (2;+∞) \ [-3;8] = (8;+∞).
Cho mệnh đề: “Một tứ giác là hình thang cân khi và chỉ khi tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?
Mệnh đề tương đương với mệnh đề đã cho là: Điều kiện cần và đủ để một tứ giác có hai đường chéo bằng nhau là tứ giác đó là một hình thang cân.
Cách viết tập hợp nào đúng trong các cách viết sau để xác định tập hợp A các ước dương của 12:
Các ước dương của 12 là: 1; 2; 3; 4; 6; 12
=> Cách viết tập hợp đúng là:
Cho biết
là một phần tử của tập hợp
xét các mệnh đề sau:
(I) ![]()
(II)
.
(III) ![]()
(IV) ![]()
Trong các mệnh đề sau, mệnh đề nào là đúng:
I đúng.
II sai vì không có khái niệm tập hợp này thuộc tập hợp kia.
III sai vì phần tử thì không thể là con của
tập hợp.
IV đúng.
Cho hai tập hợp
,
. Tìm tất cả các giá trị của tham số
để
.
Ta có:
Do đó để
Nếu A và B là tập hợp hữu hạn thì công thức nào sau đây đúng?
Nếu A và B là tập hợp hữu hạn thì
Số tập hợp con của tập hợp
là:
Các tập hợp con của tập A:
Số tập con có 3 phần tử là
Số tập con có 2 phần tử là
Số tập con có 1 phần tử là
Vậy tập hơp A có tất cả 8 tập con.
Cho hai mệnh đề A: “∀ x ∈ R:
” và B: “∃ n ∈ Z:
”. Xét tính đúng, sai của hai mệnh đề A và B.
Với mệnh đề A, thay nên A sai.
Với mệnh đề B, thay nên B đúng.
Tập hợp
bằng tập hợp nào sau đây?
Ta có: .
Điền vào chỗ trống: “Hiệu của tập hợp A và tập hợp B là ….”
Hiệu của tập hợp A và tập hợp B là tập hợp các phần tử thuộc A nhưng không thuộc B.
Tập hợp
bằng tập hợp nào sau đây?
Xác định kết quả tập hợp bằng trục số như sau:

Vậy
Viết mệnh đề sau bằng cách sử dụng kí hiệu
hoặc
: “Mọi số nhân với 1 đều bằng chính nó”.
Mệnh đề được viết lại bằng kí hiệu: .
Trong định lí ta nói: "P là điều kiện cần để có Q". Khi đó P là gì của định lí?
Trong định lí ta nói: " là điều kiện cần để có
". Khi đó P là kết luận của định lí.
Tập
bằng tập nào sau đây?
Ta có:
Phủ định của mệnh đề "
là số vô tỷ" là mệnh đề nào sau đây?
Phủ định của mệnh đề P là mệnh đề “không phải P".
Chọn đáp án không là số vô tỷ.
Sử dụng các kí hiệu khoảng, đoạn để viết tập hợp ![]()
Vậy .
Tập
bằng tập nào sau đây?
Cho số thực
Điều kiện cần và đủ để
là:
Ta có: (vì
nên khi quy đồng bỏ mẫu dấu bất phương trình bị đổi)
Vì
Mệnh đề: "
" khẳng định là
Mệnh đề: " " khẳng định là có ít nhất một số thực mà bình phương của nó lớn hơn 33.
Cho mệnh đề
“
”. Mệnh đề phủ định của
là:
Phủ định của là
.
Phủ định của là
.
Mệnh đề phủ định của :
.
Phát biểu lại mệnh đề "Nếu n = 2 thì
là một hợp số".
Phát biểu lại mệnh đề trên: "n = 2 là điều kiện đủ để là một hợp số".
Phủ định của mệnh đề “Phương trình
có 2 nghiệm phân biệt” là mệnh đề nào?
Phủ định của mệnh đề P là mệnh đề "không phải P".
Chọn đáp án Phương trình không phải có 2 nghiệm phân biệt.
Cho
là số tự nhiên, mệnh đề nào sau đây đúng?
Với thì
là hai số tự nhiên liên tiếp
là số chẵn
Với thì
là ba số tự nhiên liên tiếp
trong 3 số
có 1 số chia hết cho
Chọn đáp án là số chia hết cho
Cho
và
Khi đó:
Ta có:
Ta có:
Cho tập hợp A = {
, với
là số thực dương}. Tìm số nhỏ nhất của tập hợp A?
Ta có:
Đẳng thức xảy ra khi .
Vậy số nhỏ nhất là
Trong các tập hợp sau, tập hợp nào là tập hợp rỗng:
Xét: Không có
thỏa mãn.
Tìm mệnh đề trong các câu sau.
Các câu “Hôm nay, trời đẹp quá!”, “Bạn ăn cơm chưa?”, “Mấy giờ rồi?” là các câu cảm thán hoặc nghi vấn nên không phải là mệnh đề.
Chọn đáp án Paris là thủ đô của Đức.
Trong các câu sau, câu nào không phải là mệnh đề toán học?
Đáp án “2x + y = −5” không phải mệnh đề vì nó không có tính đúng hoặc sai. Suy ra nó cũng không phải mệnh đề toán học.
Tìm mệnh đề chứa biến.
“” là mệnh đề chứa biến.
Chọn phát biểu đúng về mệnh đề sau: "
,
"?
Phát biểu đúng của mệnh đề ",
" là: “Với mọi số tự nhiên x, bình phương của nó đều nhỏ hơn 0”.
Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:
Ta có:
Tìm các giá trị của
để
là đoạn có độ dài bằng 10. Biết
và
, với
là tham số.
Nếu thì
, suy ra loại.
Nếu thì
Để là một đoạn có độ dài bằng 10 khi và chỉ khi
Người ta thường kí hiệu tập hợp số như thế nào?
Người ta thường kí hiệu các tập hợp số như sau:
Chọn mệnh đề đúng trong các mệnh đề sau đây:
Với nhưng
Mệnh đề
sai.
Với nhưng
là mệnh đề sai
Mệnh đề
sai.
Với nhưng
là mệnh đề sai
Mệnh đề
sai.
Chọn đáp án
Số tập hợp con có 2 phần tử của tập hợp
là:
Các tập hợp con của tập hợp là:
Có tất cả 15 tập con của tập hợp A.
Mệnh đề nào sau đây là mệnh đề tương đương?
Mệnh đề tương đương là: “Hình thang nội tiếp đường tròn khi và chỉ khi nó là hình thang cân”.
Tìm mệnh đề đúng.
Tổng của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: là số chẵn nhưng
là số lẻ.
Tích của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: là số chẵn nhưng
là số lẻ.
Tổng của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ. là mệnh đề sai: Ví dụ: là số chẵn nhưng
là số lẻ.
Chọn Tích của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ.