Cho
,
và
. Khi đó,
là:
Ta có:
Suy ra
Cho
,
và
. Khi đó,
là:
Ta có:
Suy ra
Có bao nhiêu mệnh đề trong các câu sau?
Hôm nay trời đẹp quá!
Trung Quốc là nước đông dân nhất thế giới.
Năm 2018 là năm nhuận.
Câu “Hôm nay trời đẹp quá!” không phải là mệnh đề. Các câu còn lại đều là mệnh đề.
Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:
Ta có:
Cho tập hợp
và
Tập hợp
bằng tập nào sau đây?
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
.
Có bao nhiêu câu là mệnh đề trong các câu sau:
(1) Chăm chỉ lên nhé!
(2) Số 20 chia hết cho 6.
(3) Số
là số nguyên tố.
(4) Số
là một số chẵn.
Câu (1) là câu cảm thán nên không phải mệnh đề.
Các câu còn lại là mệnh đề.
Có
câu là mệnh đề.
Xác định tập hợp
Xác định kết quả tập hợp bằng hình vẽ như sau:

Vậy
Kí hiệu nào sau đây dùng để viết đúng mệnh đề “
không phải là số hữu tỉ”
Ta có:
Có bao nhiêu câu là mệnh đề trong các câu sau:
(1) Môn toán khó quá!
(2) Bạn có đói không?
(3)
hoặc ![]()
(4) ![]()
Câu (1) là câu cảm thán, câu (2) là câu nghi vấn nên không phải mệnh đề.
Các câu còn lại là mệnh đề.
Có
câu là mệnh đề.
Lớp
có
học sinh giỏi Toán,
học sinh giỏi Lý,
học sinh giỏi Hóa,
học sinh giỏi cả Toán và Lý,
học sinh giỏi cả Toán và Hóa,
học sinh giỏi cả Lý và Hóa,
học sinh giỏi cả
môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) của lớp
là:
Ta dùng biểu đồ Ven để giải

Nhìn vào biểu đồ, số học sinh giỏi ít nhất trong
môn là:
Cho mệnh đề: “Một tứ giác là hình thang cân khi và chỉ khi tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?
Mệnh đề tương đương với mệnh đề đã cho là: Điều kiện cần và đủ để một tứ giác có hai đường chéo bằng nhau là tứ giác đó là một hình thang cân.
Cho mệnh đề
“
”. Mệnh đề phủ định của
là:
Phủ định của là
.
Phủ định của là
.
Mệnh đề phủ định của :
.
Cho hai tập hợp
và
với
. Tìm a để
là một khoảng?
Vì nên
và
, tức là A và B luôn là các khoảng.
Xét các trường hợp sau:
Nếu
Khi đó , đương nhiên là một khoảng.
Nếu
Nếu
Khi đó là một khoảng.
Nếu
Khi đó là một khoảng. Vậy các giá trị của a thỏa yêu cầu bài toán là
.
Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp
.
Ta có: .
Tập hợp
bằng tập hợp nào sau đây?
Xác định kết quả tập hợp bằng trục số như sau:

Vậy
Cho tập hợp
và
. Giá trị nguyên dương của
để tập hợp
có đúng 10 phần tử là:
Ta có .
Theo giả thiết thì nên
và
.
Như vậy, để tập hợp có 10 phần tử thì
Do đó .
Chọn phát biểu đúng về mệnh đề sau: "
,
"?
Phát biểu đúng của mệnh đề ",
" là: “Với mọi số tự nhiên x, bình phương của nó đều nhỏ hơn 0”.
Mệnh đề nào sau đây có mệnh đề phủ định là mệnh đề đúng:
Ta có: mệnh đề là mệnh đề sai vì
nên không có bất kì giá trị
nào thỏa mãn
Vì mệnh đề
là mệnh đề sai nên mệnh đề phủ định của nó là mệnh đề đúng.
Chọn đáp án
Trong các đáp án dưới đây, cách viết khác của tập D = {x ∈ ℝ | x ≠ -3} là
Ta có: D = {x ∈ ℝ | x ≠ -3} = ℝ \ {-3}.
Trong các mệnh đề sau, mệnh đề nào sai?
Mệnh đề: "Số 23 là hợp số" sai vì => 23 là số nguyên tố.
Cho mệnh đề P: “∀ x ∈ R: |x| ≥ 0” . Phủ định của mệnh đề P là:
Phủ định của mệnh đề P là: “∃ x ∈ R: |x| < 0”.
Cho A = {a, b}. Số tập con của A là:
Ta có: Số tập hợp con của tập có phần tử là
. Do đó số tập con của A là
.
Hai mệnh đề sau là mệnh đề gì: “x chia hết cho 9” và “x chia hết cho 3”.
Nếu x chia hết cho 9 thì x chia hết cho 3.
Nếu x chia hết cho 3 thì x có thể không chia hết cho 9.
=> Hai mệnh đề “x chia hết cho 9” và “x chia hết cho 3” là mệnh đề kéo theo.
Tập
bằng tập nào sau đây?
Điền vào chỗ trống: “Hiệu của tập hợp A và tập hợp B là ….”
Hiệu của tập hợp A và tập hợp B là tập hợp các phần tử thuộc A nhưng không thuộc B.
Tìm mệnh đề phủ định của mệnh đề: “Vịt là một loài chim”.
Phủ định của mệnh đề P là mệnh đề “không phải P"
Chọn đáp án Vịt không phải là một loài chim.
Cho số thực
Điều kiện cần và đủ để
là:
Ta có: (vì
nên khi quy đồng bỏ mẫu dấu bất phương trình bị đổi)
Vì
Vùng tô đậm thể hiện mối quan hệ gì giữa 2 tập hợp A, B:

Hình vẽ mô tả các phần tử thuộc tập hợp A nhưng không thuộc tập hợp B
=> Vùng tô đậm thể hiện .
Xác định
trong trường hợp
{
,
và
}, B là tập hợp các số tự nhiên chia hết cho 3 và nhỏ hơn 12.
Liệt kê các phần tử ta có:
Vậy .
Cho mệnh đề P: “∆ABC cân tại A ⇔ AB = AC”. Chọn khẳng định đúng nhất trong các khẳng định sau?
Vì AB = AC nên suy ra ∆ABC cân tại A.
Vì ∆ABC cân tại A nên suy ra AB = AC.
Do đó đáp án đúng là “∆ABC cân tại A” là điều kiện cần và đủ để “AB = AC”.
Cho 2 mệnh đề: “Quyển vở này của Nam” và “Quyển vở này có 118 trang”.
Cho biết 2 mệnh đề trên đều đúng, tìm mệnh đề sai trong các mệnh đề sau:
Đặt “Quyển vở này của Nam”,
“Quyển vở này có 118 trang”
Theo đề bài, đúng,
đúng nên
sai,
sai.
Mệnh đề chỉ sai khi
đúng
sai.
Chọn đáp án Quyển vở này của Nam nên nó không có 118 trang.
Cho
Tập hợp
bằng
Tập hợp gồm những phần tử thuộc
nhưng không thuộc
Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?
Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.
Cho
. Tập A có bao nhiêu tập con có 2 phần tử?
Tập con có phần tử của
là:
có
tập con có
phần tử.
Với giá trị thực nào của
mệnh đề chứa biến
là mệnh đề đúng?
Thay vào
ta được
là mệnh đề đúng.
Cho hai tập hợp
,
. Tìm tất cả các giá trị của tham số
để
.
Ta có:
Do đó để
Mệnh đề nào sau đây sai?
Mệnh đề đúng khi
đúng và
đúng.
là tam giác đều
là mệnh đề đúng.
là tam giác đều là mệnh đề sai
“
là tam giác đều
” là mệnh đề sai.
Chọn đáp án là tam giác đều
Nếu A và B là tập hợp hữu hạn thì công thức nào sau đây đúng?
Nếu A và B là tập hợp hữu hạn thì
Tìm tất cả các giá trị thực âm của tham số
để hai khoảng
và
có khoảng giao khác rỗng.
Với thì
luôn có nghĩa.
Giao của hai tập đã cho khác rỗng khi hai tập hợp này có phần tử chung
(vì m < 0)
Vì nên ta xét các trường hợp sau
Nếu thì
Vậy không thỏa yêu cầu bài toán.
Nếu −1 < m < 0 thì
Vậy giá trị cần tìm của m là .
Xác định tập hợp
bằng cách liệt kê các phần tử.
Ta có: .
Có bao nhiêu mệnh đề trong các câu sau?
Số nguyên dương là số tự nhiên khác 0.
Bạn hãy cố gắng, nhất định bạn sẽ thành công.
Tổng các góc của một tam giác là ![]()
Cố lên, sắp đến nơi rồi!
Câu “Số nguyên dương là số tự nhiên khác 0.” và “Tổng các góc của một tam giác là ” là mệnh đề.