Đề kiểm tra 45 phút Chương 1 Mệnh đề toán học. Tập hợp

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Mệnh đề toán học. Tập hợp gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Chọn phát biểu đúng về mệnh đề sau: "∀x ∈ \mathbb{N}, x^{2} <0"?

    Phát biểu đúng của mệnh đề "∀x ∈ \mathbb{N}, x^{2} <0" là: “Với mọi số tự nhiên x, bình phương của nó đều nhỏ hơn 0”.

  • Câu 2: Thông hiểu

    Xác định tập hợp sau đây trên trục số: C = \left( {7;12} ight] \cap \left( { - \infty ;9} ight]:

    Xác định tập hợp trên trục số như sau:

    Xác định tập hợp trên trục số

  • Câu 3: Vận dụng

    Cho n là số tự nhiên, mệnh đề nào sau đây đúng?

    Với n\mathbb{\in N} thì n(n + 1) là hai số tự nhiên liên tiếp \Rightarrow n(n + 1) là số chẵn\Rightarrow n(n + 1) \vdots
2

    Với n\mathbb{\in N} thì n(n + 1)(n + 2) là ba số tự nhiên liên tiếp \Rightarrow trong 3 số n,n + 1,n + 2 có 1 số chia hết cho 3.

    \Rightarrow n(n + 1)(n + 2) \vdots
3

    \Rightarrow \left\{ \begin{matrix}
n(n + 1)(n + 2) \vdots 3 \\
n(n + 1)(n + 2) \vdots 2 \\
\end{matrix} ight.

    \Rightarrow n(n + 1)(n + 2) \vdots
6.

    Chọn đáp án \forall n,n(n + 1)(n +
2)là số chia hết cho 6.

  • Câu 4: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Xét mệnh đề −π < −2 ⇔ π^{2} < 4. Ta thấy π^{2} < 4 sai nên mệnh đề này sai.

  • Câu 5: Thông hiểu

    Cho mệnh đề P: “∀ x ∈ R: |x| ≥ 0” . Phủ định của mệnh đề P là:

     Phủ định của mệnh đề P là: “∃ x ∈ R: |x| < 0”.

  • Câu 6: Vận dụng

    Sử dụng các kí hiệu khoảng, đoạn để viết tập hợp A = \lbrack - 4;4brack \cup \lbrack
7;9brack \cup \lbrack 1;7).

    Vậy A = \lbrack - 4;4brack \cup \lbrack
7;9brack \cup \lbrack 1;7) = \lbrack - 4;9brack.

  • Câu 7: Vận dụng

    Biết A là mệnh đề đúng, B là mệnh đề sai, C là mệnh đề đúng. Mệnh đề nào sau đây sai?

    Ta có: A là mệnh đề đúng, B là mệnh đề sai nên A \Rightarrow B là mệnh đề sai.

    C là mệnh đề đúng, A \Rightarrow B là mệnh đề sai nên C \Rightarrow (A \Rightarrow B)là mệnh đề sai.

    Chọn đáp án C \Rightarrow (A \Rightarrow
B).

  • Câu 8: Nhận biết

    Với giá trị thực nào của x mệnh đề chứa biến P(x):2x^{2} - 1 < 0 là mệnh đề đúng?

    Thay x = 0 vào P(x) ta được - 1 < 0 là mệnh đề đúng.

  • Câu 9: Vận dụng cao

    Cho tập hợp khác rỗng \left\lbrack m - 1;\frac{m + 3}{2}
ightbrackB = ( - \infty -
3) \cup \lbrack 3; + \infty). Tập hợp các giá trị thực của tham số m để A \cap B eq
\varnothing

    Để A \cap B eq \varnothing thì điều kiện là: \left\{ \begin{gathered}
  m - 1 < \dfrac{{m + 3}}{2} \hfill \\
  \left[ {\begin{array}{*{20}{c}}
  {m - 1 <  - 3} \\ 
  {\dfrac{{m + 3}}{2} \geqslant 3} 
\end{array}} ight. \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {m < 5} \\ 
  {\left[ {\begin{array}{*{20}{c}}
  {m <  - 2} \\ 
  {m \geqslant 3} 
\end{array}} ight.} 
\end{array}} ight.

    Vậy m \in ( - \infty; - 2) \cup \lbrack
3;5) thỏa mãn điều kiện.

  • Câu 10: Nhận biết

    Vùng tô đậm thể hiện mối quan hệ gì giữa 2 tập hợp A, B:

    Tìm mối quan hệ giữa hai tập hợp

    Hình vẽ mô tả các phần tử thuộc tập hợp A nhưng không thuộc tập hợp B

    => Vùng tô đậm thể hiện A\setminus B.

  • Câu 11: Nhận biết

    Tìm phát biểu là mệnh đề.

    Ta có:

    Mệnh đề là câu khẳng định có thể xác định được tính đúng hay sai của nó. Một mệnh đề không thể vừa đúng, vừa sai.

    Suy ra “Hà Nội là thủ đô của Việt Nam.” là mệnh đề.

  • Câu 12: Nhận biết

    Câu nào là mệnh đề toán học?

     Mệnh đề toán học là: "2 là số tự nhiên"

  • Câu 13: Nhận biết

    Mệnh đề nào sau đây là đúng?

    x = 3 \in (2;3brack nhưng x = 3 otin (2;3) \Rightarrow A sai.

    x = 2 \in \lbrack 2;3brack nhưng x = 2 otin (2;3brack \Rightarrow
C sai.

    x = 3 \in \lbrack 2;3brack nhưng x = 3 otin \lbrack 2;3) \Rightarrow
D sai.

  • Câu 14: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề: "Số 23 là hợp số" sai Ư(23) = {1;23} => 23 là số nguyên tố.

  • Câu 15: Nhận biết

    Tập X = \left\{
x\mathbb{\in Z}|2x^{2} - 5x + 2 = 0 ight\} bằng tập nào sau đây?

    Ta có: 2x^{2} - 5x + 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2\mathbb{\in Z} \\
x = \frac{1}{2}\mathbb{otin Z} \\
\end{matrix} ight.\  \Rightarrow X = \left\{ 2 ight\}.

  • Câu 16: Thông hiểu

    Tập hợp A=(2;+∞)\cap [-3;8] bằng tập hợp nào sau đây?

    Xác định kết quả tập hợp bằng trục số như sau:

    Tìm kết quả của phép toán

    Vậy A=(2;+∞)\cap [-3;8] =(2;8]

  • Câu 17: Vận dụng cao

    Cho tập hợp A =
(0; + \infty)B = \left\{x\in\mathbb{ R}|mx^{2} - 4x + m - 3 = 0 ight\}, với m là tham số. Tìm m để B có đúng hai tập con và B \subset A?

    B có đúng hai tập con và B \subset A khi và chỉ khi phương trình mx^{2} - 4x + m - 3 = 0 (1) có đúng một nghiệm dương.

    Trường hợp 1. m = 0, phương trình (1) trở thành - 4x - 3 = 0
\Leftrightarrow x = - \frac{3}{4}

    Do đó m = 0 không thỏa đề bài.

    Trường hợp 2. m eq 0, khi đó phương trình (1) có đúng một nghiệm dương khi và chỉ khi

    \left\{ \begin{matrix}\Delta' = 0 \\S > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}4 - m(m - 3) = 0 \\\dfrac{4}{m} > 0 \\\end{matrix} ight.

    \Leftrightarrow m = 4

    Vậy m = 4 là giá trị duy nhất thỏa mãn yêu cầu đề bài.

  • Câu 18: Thông hiểu

    Xác định tập hợp B=\{x∈Z|−2≤x<3\} bằng cách liệt kê các phần tử.

     Ta có: B=\{x∈Z|−2≤x<3\} =\{–2; –1; 0; 1; 2\}.

  • Câu 19: Vận dụng cao

    Tìm tất cả các giá trị thực âm của tham số m để hai khoảng ( - \infty;2m)\left( \frac{2}{m}; + \infty ight) có khoảng giao khác rỗng.

    Với m < 0 thì \frac{2}{m} luôn có nghĩa. 

    Giao của hai tập đã cho khác rỗng khi hai tập hợp này có phần tử chung 

    \Leftrightarrow 2m > \frac{2}{m}
\Leftrightarrow 2m^{2} < 2 (vì m < 0) \Leftrightarrow 2(m - 1)(m + 1) <
0

    m < 0 nên ta xét các trường hợp sau

    Nếu m < - 1 thì m + 1 < 0,m - 1 < 0 = > 2(m - 1)(m + 1)
> 0

    Vậy m < - 1 không thỏa yêu cầu bài toán.

    Nếu −1 < m < 0 thì m + 1 > 0,m -
1 < 0 \Rightarrow 2(m - 1)(m +
1) < 0

    Vậy giá trị cần tìm của m là - 1 < m
< 0.

  • Câu 20: Nhận biết

    Tìm mệnh đề chứa biến.

    x + 2 = 11.” là mệnh đề chứa biến.

  • Câu 21: Nhận biết

    Khẳng định nào đúng trong các khẳng định sau:

    Khẳng định đúng: "Nếu A ⊂ BB ⊂ C thì A ⊂ C

  • Câu 22: Nhận biết

    Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp A=\{x∈R|−3≤x≤5\}.

     Ta có: A=\{x∈R|−3≤x≤5\} =[-3;5].

  • Câu 23: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?

     Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.

  • Câu 24: Nhận biết

    Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:

    Ta có: \mathbf{7}\mathbb{\in N}\mathbf{.}

  • Câu 25: Nhận biết

    Cho A = \left\{
0;1;2;3;4 ight\}, B = \left\{
2;3;4;5;6 ight\}. Tập hợp B\backslash A bằng

    Tập hợp B\backslash A gồm những phần tử thuộc B nhưng không thuộc A

    \Rightarrow B\backslash A = \left\{ 5;6
ight\}.

  • Câu 26: Thông hiểu

    Cho các mệnh đề sau đây:

    (I). Nếu tam giác ABC đều thì tam giác ABCAB = AC.

    (II). Nếu a\ và\ b đều là các số chẵn thì (a + b) là một số chẵn.

    (III). Nếu tam giác ABC có tổng hai góc bằng 90^{\circ} thì tam giác ABC là tam giác vuông.

    Trong các mệnh đề đảo của (I), (II) và (III), có bao nhiêu mệnh đề đúng?

    Mệnh đề đảo của

    (I). Nếu tam giác ABCAB = ACthì tam giác ABC đều \Rightarrow Mệnh đề sai.

    (II). Nếu (a + b) là một số chẵn thì a\ và\ b đều là các số chẵn \Rightarrow Mệnh đề sai.

    (III). Nếu tam giác ABC là tam giác vuông thì tam giác ABC có tổng hai góc bằng 90^{\circ}

    \Rightarrow Mệnh đề đúng.

    \Rightarrow Có 1 mệnh đề đảo là đúng.

  • Câu 27: Thông hiểu

    Cho tập hợp A biểu thị trên trục số như hình dưới. Chọn khẳng định đúng:

    Chọn khẳng định đúng

     Tập hợp A biểu thị trên trục số là nửa khoảng A = [-2;3)

  • Câu 28: Thông hiểu

    Phủ định của mệnh đề “Phương trình x^{2} + bx + c = 0 có 2 nghiệm phân biệt” là mệnh đề nào?

    Phủ định của mệnh đề P là mệnh đề "không phải P".

    Chọn đáp án Phương trình x^{2} + bx + c =
0 không phải có 2 nghiệm phân biệt.

  • Câu 29: Vận dụng

    Cho A = \lbrack
1;4brack,B = (2;6),C = (1;2). Tìm A \cap B \cap C.

    Vậy A \cap B \cap C =
\varnothing.

  • Câu 30: Thông hiểu

    Tìm mệnh đề phủ định của mệnh đề P:\sqrt{2} \leq 2.

    Mệnh đề phủ định là: \overline{P}:\sqrt{2} > 2.

  • Câu 31: Thông hiểu

    Số phần tử của tập hợp A = \left\{ k^{2} + 1|k \in \mathbb{Z,}|k| \leq 2
ight\}

    Ta có: \left\{ \begin{matrix}
\mathbf{k \in}\mathbf{Z} \\
\left| \mathbf{k} ight|\mathbf{\leq}\mathbf{2} \\
\end{matrix} ight.\ \mathbf{\Leftrightarrow k =}\left\{
\mathbf{\pm}\mathbf{2;}\mathbf{\pm}\mathbf{1;0}
ight\}\mathbf{\Rightarrow A =}\left\{ \mathbf{5;2;1}
ight\}

  • Câu 32: Thông hiểu

    Trong các tập hợp sau đây, tập hợp nào bằng tập hợp M = \mathbb{ℝ}\setminus  (-∞; 2):

    Ta có: 

    Tập hợp M = \mathbb{ℝ}\setminus  (-∞; 2) là tập hợp [2; +∞).

    Vậy tập hợp M=D

  • Câu 33: Nhận biết

    Tìm mệnh đề phủ định của mệnh đề: “Vịt là một loài chim”.

    Phủ định của mệnh đề P là mệnh đề “không phải P"

    Chọn đáp án Vịt không phải là một loài chim.

  • Câu 34: Thông hiểu

    Hai mệnh đề sau là mệnh đề gì: “x chia hết cho 9” và “x chia hết cho 3”.

     Nếu x chia hết cho 9 thì x chia hết cho 3.

    Nếu x chia hết cho 3 thì x có thể không chia hết cho 9.

    => Hai mệnh đề “x chia hết cho 9” và “x chia hết cho 3” là mệnh đề kéo theo.

  • Câu 35: Thông hiểu

    Có bao nhiêu mệnh đề trong các câu sau?

    Ở đây đẹp quá!

    Phương trình x^{2} - 9x + 2 = 0 vô nghiệm.

    16 không là số nguyên tố.

    Số \pi có lớn hơn 3 hay không?

    Câu “Phương trình x^{2} - 9x + 2 =
0 vô nghiệm.” và “16 không là số nguyên tố.” là mệnh đề.

  • Câu 36: Nhận biết

    Cho mệnh đề: “Một tứ giác là hình thang cân khi và chỉ khi tứ giác đó có hai đường chéo bằng nhau”. Mệnh đề nào sau đây tương đương với mệnh đề đã cho?

     Mệnh đề tương đương với mệnh đề đã cho là: Điều kiện cần và đủ để một tứ giác có hai đường chéo bằng nhau là tứ giác đó là một hình thang cân.

  • Câu 37: Nhận biết

    Cho tập hợp A =
\left\{ 2;4;6;9 ight\}B =
\left\{ 1;2;3;4 ight\}. Tập hợp A\backslash B bằng tập nào sau đây?

    Tập hợp A\backslash B gồm những phần tử thuộc A nhưng không thuộc B.

    \Rightarrow A\backslash B = \left\{ 6;9
ight\}.

  • Câu 38: Vận dụng

    Sử dụng các kí hiệu khoảng, đoạn để viết tập hợp A = \lbrack - 4;4brack \cup \lbrack
7;9brack \cup \lbrack 1;7).

    Vậy A = \lbrack - 4;4brack \cup \lbrack
7;9brack \cup \lbrack 1;7) = \lbrack - 4;9brack.

  • Câu 39: Thông hiểu

    Cho C_{R}A = ( -\infty;2) \cup \lbrack 6; + \infty)C_{R}B = \lbrack 5;9). Tập hợp X = A \cap B

    A = \lbrack 2;6),B = ( - \infty;5) \cup\lbrack 9; + \infty).

    Suy ra X = A \cap B = \lbrack2;5).

  • Câu 40: Nhận biết

    Kí hiệu nào sau đây dùng để viết đúng mệnh đề “\sqrt{2} không phải là số hữu tỉ”

    Ta có: \sqrt{\mathbf{2}}\mathbb{otin
Q}\mathbf{.}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Mệnh đề toán học. Tập hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 45 lượt xem
Sắp xếp theo