Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát hàm số CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số y = f(x) xác định trên \mathbb{R} và có bảng biến thiên như hình bên dưới

    Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

    Dựa vào bảng biến thiên, ta thấy hàm số đồng biến trên (3; + \infty).

  • Câu 2: Thông hiểu

    Tính tổng tất cả các nghiệm của phương trình x^{6} + 2020x^{2} = (5x - 6)^{3} - 2020(6 -
5x) là:

    Xét hàm số f(t) = t^{3} + 2020t
\Rightarrow f'(t) = 3t^{2} + 2020 > 0;\forall t\mathbb{\in
R}

    Nên hàm số y = f(t) đồng biến trên \mathbb{R}

    Phương trình x^{6} + 2020x^{2} = (5x -
6)^{3} - 2020(6 - 5x) có dạng

    f\left( x^{2} ight) = f(5x - 6)
\Leftrightarrow x^{2} = 5x - 6 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Vậy tổng tất cả các nghiệm bằng 5.

  • Câu 3: Nhận biết

    Đồ thị hàm số y = ax^{4} + bx^{2} +
c có điểm cực đại là A(0; -
3) và một điểm cực tiểu là B( - 1;
- 5). Tính giá trị biểu thức T = a
+ b + c?

    Do đồ thị hàm số y = ax^{4} + bx^{2} +
c có một cực tiểu B( - 1; -
5) nên y( - 1) = - 5 \Rightarrow a
+ b + c = - 5.

  • Câu 4: Nhận biết

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào dưới đây?

    Xác định hàm số y = f(x)

    Dựa vào đồ thị hàm số ta thấy

    \mathop {\lim }\limits_{x \to \infty } y =  + \infty => Hệ số a > 0

    => Loại đáp án B và đáp án D

    Mặt khác hàm số có ba điểm cực trị

    => Loại đáp án C

  • Câu 5: Thông hiểu

    Cho hàm số y = f\left( x ight) = a{x^4} + b{x^2} + c có đồ thị như hình dưới đây:

    Số nghiệm của phương trình

    Số nghiệm của phương trình 2f\left( x ight) =  - 1 là:

    Ta có: 2f\left( x ight) =  - 1 \Rightarrow f\left( x ight) = \frac{{ - 1}}{2}

    Số nghiệm của phương trình 2f\left( x ight) =  - 1 chính là số giao điểm của đồ thị hàm số y = f\left( x ight) với đường thẳng y =  - \frac{1}{2}

    Quan sát đồ thị ta thấy đường thẳng y =  - \frac{1}{2} cắt đồ thị tại hai điểm

    => Phương trình 2f\left( x ight) =  - 1 có 2 nghiệm.

  • Câu 6: Thông hiểu

    Cho hàm số y = \frac{m^{2}x + 5}{2mx +
1} với m là tham số. Gọi S là tập hợp các số nguyên m \in \lbrack - 2020;2020brack để hàm số đã cho nghịch biến trên khoảng (3; +
\infty). Xác định số phần tử của tập hợp S?

    Xét m = 0 \Rightarrow y = 5 là hàm hằng nên hàm số không nghịch biến. Vậy m
= 0 không thỏa mãn.

    Xét m eq 0

    Tập xác định D = \left( - \infty; -
\frac{1}{2m} ight) \cup \left( - \frac{1}{2m}; + \infty
ight)

    Để hàm số nghịch biến trên khoảng (3; +
\infty) khi và chỉ khi

    \left\{ \begin{matrix}
y' = \frac{m^{2} - 10m}{(2mx + 1)^{2}} < 0 \\
- \frac{1}{2m} \leq 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 10m < 0 \\
\frac{6m + 1}{2m} \geq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
0 < m < 10 \\
\left\lbrack \begin{matrix}
m \leq - \frac{1}{6} \\
m > 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow 0 < m < 10

    \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 2020;2020brack \\
\end{matrix} ight. nên m \in
\left\{ 1;2;3;...;9 ight\}

    Vậy tập hợp S có tất cả 9 giá trị.

  • Câu 7: Vận dụng

    Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số y = {x^3} - 3\left( {m - 2} ight){x^2} + 12x + 1 đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:

    Ta có: y' = 3{x^2} - 6\left( {m - 2} ight)x + 12

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 3 > 0} \\   {\left( {{\Delta _{y'}}} ight)' = 9{{\left( {m - 2} ight)}^2} - 36 \leqslant 0} \end{array}} ight. \Leftrightarrow 0 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với điều kiện m \in \mathbb{Z}

    => m \in \left\{ {0;1;2;3;4} ight\}

    => Tổng P bằng 10

  • Câu 8: Vận dụng

    Anh H dự định sử dụng hết 5,5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép nối không đáng kể).

    Gọi a và h lần lượt là kích thước chiều rộng và chiều cao (theo đơn vị mét).

    Xét tính đúng sai của các khẳng định sau:

    a) Tổng diện tích 5 mặt của bể là S =
2a^{2} + 6ah . Đúng||Sai

    b) Ta có h = \frac{5,5 +
2a^{2}}{6a} . Sai|| Đúng

    c) Thể tích của bể là V = \frac{5,5a}{3}
+ \frac{2a^{3}}{3} . Sai|| Đúng

    d) Bể cá có dung tích lớn nhất bằng \frac{11\sqrt{33}}{54} . Đúng||Sai

    Đáp án là:

    Anh H dự định sử dụng hết 5,5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép nối không đáng kể).

    Gọi a và h lần lượt là kích thước chiều rộng và chiều cao (theo đơn vị mét).

    Xét tính đúng sai của các khẳng định sau:

    a) Tổng diện tích 5 mặt của bể là S =
2a^{2} + 6ah . Đúng||Sai

    b) Ta có h = \frac{5,5 +
2a^{2}}{6a} . Sai|| Đúng

    c) Thể tích của bể là V = \frac{5,5a}{3}
+ \frac{2a^{3}}{3} . Sai|| Đúng

    d) Bể cá có dung tích lớn nhất bằng \frac{11\sqrt{33}}{54} . Đúng||Sai

    a) Đúng. Kích thước đáy của bể lần lượt là 2a, a; chiều cao bể là h (a, h > 0). Tổng diện tích 5 mặt của bể là:

    S = 2a^{2} + 2ah + 4ah = 2a^{2} +
6ah

    b) Sai. Theo đề bài ta có: 2a^{2} + 6ah =
5,5 \Rightarrow h = \frac{5,5 - 2a^{2}}{6a};\left( 0 < a <
\frac{5\sqrt{5}}{2} ight).

    c) Sai. Gọi V là thể tích của bể cá, ta có:

    V = 2a^{2}h = \frac{2a^{2}\left( 5,5 -
2a^{2} ight)}{6a} = \frac{5,5a}{3} - \frac{2a^{3}}{3}

    d) Đúng. Ta có: V' = \frac{5,5}{3} -
\frac{6a^{2}}{3}

    V' = 0 \Leftrightarrow \dfrac{5,5}{3}- \dfrac{6a^{2}}{3} = 0 \Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{\sqrt{33}}{6}(tm) \\a = - \dfrac{\sqrt{33}}{6}(ktm) \\\end{matrix} ight.

    Bảng biến thiên:

    Vậy dung tích lớn nhất của bể cá bằng \frac{11\sqrt{33}}{54}.

  • Câu 9: Thông hiểu

    Hai điểm cực trị của đồ thị hàm số y = (x
- 2)^{2}(x + 1)

    Ta có:

    f^{'}(x) = 2(x - 2)(x + 1) + (x -
2)^{2}

    = 2x^{2} - 2x - 4 + x^{2} - 4x + 4 =
3x^{2} - 6x

    f^{'}(x) = 0 = > x = 1;x =
2

    Vậy hai điểm cực trị cần tìm là: A(0;4),B(2;0)

  • Câu 10: Thông hiểu

    Xác định số điểm cực trị của hàm số y =\left| (x - 1)^{3}(x + 1) ight|?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Xác định số điểm cực trị của hàm số y =\left| (x - 1)^{3}(x + 1) ight|?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Vận dụng

    Cho hàm số y = f(x) = x^{3} - mx^{2} -m^{2}x + 8 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = x^{3} - mx^{2} -m^{2}x + 8 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Vận dụng cao

    Cho hàm số f(x) = x^{3} - (2m - 1)x^{2} +
(2 - m)x + 2 với m là tham số. Tìm điều kiện của tham số m để hàm số y = f\left( |x| ight)5 cực trị?

    Nhận thấy rằng nếu x_{0} là điểm cực trị dương của hàm số y = f(x) thì x_{0}; - x_{0} là điểm cực trị của hàm số y = f\left( |x|
ight)

    Lại thấy vì đồ thị hàm số y = f\left( |x|
ight) nhận trục tung làm trục đối xứng mà f(x) là hàm đa thức bậc ba nên x = 0 luôn là một điểm cực trị của hàm số y = f\left( |x| ight).

    Khi đó để hàm số y = f\left( |x|
ight) có 5 điểm cực trị thì hàm số f(x) = x^{3} - (2m - 1)x^{2} + (2 - m)x +
2 có hai cực trị dương phân biệt.

    Suy ra phương trình f'(x) = 3x^{2} -
2(2m - 1)x + 2 - m = 0 có hai nghiệm dương phân biệt:

    \Leftrightarrow \left\{ \begin{gathered}
  \Delta ' > 0 \hfill \\
  S > 0 \hfill \\
  P > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  {\left( {2m - 1} ight)^2} - 3\left( {2 - m} ight) > 0 \hfill \\
  \frac{{2m - 1}}{3} > 0 \hfill \\
  2 - m > 0 \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left\{ \begin{gathered}
  4{m^2} - m - 5 > 0 \hfill \\
  m > \frac{1}{2} \hfill \\
  m < 2 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \frac{5}{4} < m < 2

    Vậy đáp án cần tìm là \frac{5}{4} < m
< 2.

  • Câu 13: Vận dụng cao

    Tổng tất cả các giá trị thực của m để hàm số y = \frac{1}{5}{m^2}{x^5} - \frac{1}{3}m{x^3} + 10{x^2} - \left( {{m^2} - m - 20} ight)x + 1 đồng biến trên R bằng:

    Ta có:

    \begin{matrix}  y = \dfrac{1}{5}{m^2}{x^5} - \dfrac{1}{3}m{x^3} + 10{x^2} - \left( {{m^2} - m - 20} ight)x + 1 \hfill \\   \Rightarrow y' = {m^2}{x^4} - m{x^2} + 20x - {m^2} + m + 20 \hfill \\ \end{matrix}

    Hàm số đã cho đồng biến trên R khi và chỉ khi

    \begin{matrix}   \Rightarrow y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Rightarrow {m^2}{x^4} - m{x^2} + 20x - {m^2} + m + 20 \geqslant 0,\forall x \in \mathbb{R} \hfill \\ \end{matrix}

    Và dấu bằng xảy ra chỉ tại một số hữu hạn điểm.

    Điều kiện cần

    Ta thấy phương trình y ‘ = 0 có một nghiệm x = -1 nên để y' \geqslant 0,\forall x \in \mathbb{R} thì y’ không đổi dấu qua khi x = -1 khi đó phương trình y’ = 0 có nghiệm kép là x = -1 (x = -1 không thể laf nghiệm bội 4 của phương trình y’ = 0 vì y’ không chứa số hạng x3)

    Ta suy ra được y’’(-1) = 0

    => - 4{m^2} + 2m + 20 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m =  - 2} \\   {m = \dfrac{5}{2}} \end{array}} ight.

    Điều kiện đủ:

    Với m = - 2 ta có:

    y' = 4{x^4} + 2{x^2} + 20x + 14 = 4{\left( {x + 1} ight)^2}\left[ {{{\left( {x - 1} ight)}^2} + \frac{5}{2}} ight] \geqslant 0,\forall x \in \mathbb{R}

    => Hàm số đồng biến trên R

    => m = -2 thỏa mãn điều kiện đề bài.

    Với m = \frac{5}{2} ta có:

    y' = \frac{{25}}{4}{x^4} - \frac{5}{2}{x^2} + 20x + \frac{{65}}{4} = \frac{{25}}{4}{\left( {x + 1} ight)^2}\left[ {{{\left( {x - 1} ight)}^2} + \frac{8}{5}} ight] \geqslant 0,\forall x \in \mathbb{R}

    => Hàm số đồng biến trên R

    => m = \frac{5}{2} thỏa mãn điều kiện đề bài

    Vậy m =  - 2;m = \frac{5}{2} là các giá trị cần tìm.

    => Tổng các giá trị thực của m cần tìm thỏa mãn yêu cầu bài toán là - 2 + \frac{5}{2} = \frac{1}{2}

  • Câu 14: Thông hiểu

    Giá trị lớn nhất của hàm số y = \sqrt { - {x^2} + 4x} trên khoảng (0; 3)

    Tập xác định D = \left[ {0;4} ight]

    Xét hàm số y = \sqrt { - {x^2} + 4x} trên khoảng (0;3)

    Ta có:

    \begin{matrix}  y' = \frac{{ - x + 2}}{{\sqrt { - {x^2} + 4x} }} \hfill \\  y' = 0 \Leftrightarrow x = 2 \hfill \\ \end{matrix}

    Ta có bảng biến thiên:

    Tìm GTLN của hàm số

    Trên khoảng (0; 3) giá trị lớn nhất của hàm số y = 2

  • Câu 15: Nhận biết

    Cho hàm số f(x) = x^{3} - 3x. Tìm giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack - 2;1brack?

    Xét hàm số f(x) = x^{3} - 3x xác định trên tập số thực có:

    f'(x) = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
f( - 2) = - 2 \\
f(1) = - 2 \\
f( - 1) = 2 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack - 2;1brack}f(x) = -
2

    Vậy giá trị nhỏ nhất của hàm số là -2 khi x = 1 hoặc x = -2.

  • Câu 16: Nhận biết

    Cho hàm số y = f(x) có đồ thị như hình vẽ.

    Đồ thị hàm số đã cho có đường tiệm cận ngang bằng:

    Dựa vào đồ thị hàm số ta có: \lim_{x
ightarrow \pm \infty}f(x) = - 1.

    Do đó, đồ thị hàm số y = f(x) có đường tiệm cận ngang là y = -
1.

  • Câu 17: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận ngang là:

    Dựa vào bảng biến thiên ta có: \lim_{x
ightarrow \pm \infty}f(x) = 2 nên đồ thị hàm số có đường tiệm cận ngang là y =  2.

  • Câu 18: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Giá trị cực đại của hàm số đã cho bằng:

    Quan sát bảng biến thiên dễ thấy giá trị cực đại của hàm số đã cho bằng 3.

  • Câu 19: Thông hiểu

    Cho hàm số y = {x^3} - \frac{3}{2}{x^2} + 1. Gọi M là giá trị lớn nhất của hàm số trên khoảng \left( { - 25;\frac{{11}}{{10}}} ight). Tìm M.

    Ta có:

    \begin{matrix}  y' = 3{x^2} - 3x \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên

    Tìm GTLN của hàm số

    Từ bảng biến thiên ta có M = 1

  • Câu 20: Vận dụng

    Giá trị của tham số m để bất phương trình (x - 2 - m)\sqrt{x - 1} \leq m - 4 có nghiệm là:

    Đặt t = \sqrt{x - 1};(t \geq
0)

    Khi đó bất phương trình ban đầu trở thành:

    \left( t^{2} - m - 1 ight).t \leq m - 4
\Leftrightarrow m \geq \frac{t^{3} - t + 4}{t + 1}

    Xét hàm số f(t) = \frac{t^{3} - t + 4}{t
+ 1} trên \lbrack 0; +
\infty)

    Ta có: f'(t) = \frac{2t^{3} + 3t^{2}
- 5}{(t + 1)^{2}} = \frac{(t - 1)\left( 2t^{2} + 5t + 5 ight)}{(t +
1)^{2}}

    f'(t) = 0 \Leftrightarrow t =
1

    Bảng biến thiên của f(t) = \frac{t^{3} -
t + 4}{t + 1};t \in \lbrack 0; + \infty)

    Từ bảng biến thiên suy ra để bất phương trình có nghiệm thì m \geq 2.

  • Câu 21: Vận dụng cao

    Hai thành phố AB cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 16 km

    Đáp án là:

    Hai thành phố AB cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 16 km

    Đặt HE = x_{}và_{}FK = y, với x,\ y > 0

    Ta có: HE + KF = 24 \Rightarrow x + y =24 \Rightarrow y = 24 - x

    \left\{ \begin{matrix}AE = \sqrt{25 + x^{2}} \\BF = \sqrt{49 + y^{2}} = \sqrt{49 + (24 - x)^{2}} \\\end{matrix} ight.

    Nhận định AB ngắn nhất khi AE + BF nhỏ nhất ( vì EF không đổi).

    Xét hàm số f(x) = \sqrt{x^{2} + 25} +\sqrt{(24 - x)^{2} + 49}

    f'(x) = \frac{x}{\sqrt{x^{2} + 25}} +\frac{x - 24}{\sqrt{x^{2} - 48x + 625}},\ \forall x \in(0;24).

    Cho f'(x) = 0 \Rightarrow x =10

    Bảng biến thiên

    Vậy\underset{(0;24)\ \ \ \ \ \ \ \ \ \}{\min f(x)} = f(10) = 12\sqrt{5}

    Khi đó BF = \sqrt{49 + (24 - 10)^{2}} =7\sqrt{5} \approx 16\ km

  • Câu 22: Thông hiểu

    Cho hàm số y = f(x) = \frac{2x^{2} + 2x +
5}{2x + 1}. Xét tính đúng sai của các khẳng định sau:

    a) Đạo hàm của hàm số đã cho là f'(x) = \frac{4\left( x^{2} + x + 2
ight)}{(2x + 1)^{2}}. Đúng||Sai

    b) Các điểm cực trị của đồ thị hàm số có toạ độ là (−2; −3) và (1; 3. Đúng||Sai

    c) Đường tiệm cận đứng của đồ thị hàm số có phương trình là: x = - \frac{1}{2}. Đúng||Sai

    d) Đường tiệm cận xiên của đồ thị hàm số có phương trình là y = x + \frac{1}{2}. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = \frac{2x^{2} + 2x +
5}{2x + 1}. Xét tính đúng sai của các khẳng định sau:

    a) Đạo hàm của hàm số đã cho là f'(x) = \frac{4\left( x^{2} + x + 2
ight)}{(2x + 1)^{2}}. Đúng||Sai

    b) Các điểm cực trị của đồ thị hàm số có toạ độ là (−2; −3) và (1; 3. Đúng||Sai

    c) Đường tiệm cận đứng của đồ thị hàm số có phương trình là: x = - \frac{1}{2}. Đúng||Sai

    d) Đường tiệm cận xiên của đồ thị hàm số có phương trình là y = x + \frac{1}{2}. Đúng||Sai

    a) Ta có:

    f'(x) = \frac{\left( 2x^{2} + 2x + 5
ight)'.(2x + 1) - (2x + 1)'\left( 2x^{2} + 2x + 5 ight)}{(2x
+ 1)^{2}}

    = \frac{4\left( x^{2} + x - 2
ight)}{(2x + 1)^{2}}

    b) f'(x) = 0 \Leftrightarrow
\frac{4\left( x^{2} + x - 2 ight)}{(2x + 1)^{2}} = 0

    \Leftrightarrow x^{2} + x - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    Thay vào hàm số, ta tính được toạ độ các điểm cực trị là (−2; −3) và (1; 3)

    c) Điều kiện xác định: x eq -
\frac{1}{2}

    \lim_{x ightarrow \left( - \frac{1}{2}
ight)^{+}}f(x) = + \inftynên x =
- \frac{1}{2} là tiệm cận đứng.

    d) y = f(x) = \frac{2x^{2} + 2x + 5}{2x +
1} = x + \frac{1}{2} + \frac{9}{2(2x + 1)}

    Suy ra đồ thị có đường tiệm cận xiên là y
= x + \frac{1}{2}.

  • Câu 23: Thông hiểu

    Cho hàm số y = \frac{{\sqrt {{x^2} - x + 3}  - \sqrt {2x + 1} }}{{{x^3} - 2{x^2} - x + 2}}. Trong các khẳng định sau, khẳng định nào là khẳng định đúng?

     

    Điều kiện \left\{ {\begin{array}{*{20}{c}}  {{x^2} - x + 3 \geqslant 0} \\   {2x + 1 \geqslant 0} \\   {{x^3} - 2{x^2} - x + 2 e 0} \end{array} \Rightarrow } ight.\left\{ {\begin{array}{*{20}{c}}  {x \geqslant \frac{{ - 1}}{2}} \\   {x e 2} \\   {x e  \pm 1} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant \frac{{ - 1}}{2}} \\   {x e 2} \\   {x e 1} \end{array}} ight.

    Từ điều kiện ta có:

    \begin{matrix}  y = \dfrac{{\left( {{x^2} - x + 3} ight) - \left( {2x + 1} ight)}}{{\left( {{x^2} - 3x + 2} ight)\left( {x + 1} ight)\left( {\sqrt {{x^2} - x - 3}  + \sqrt {2x + 1} } ight)}} \hfill \\  y = \dfrac{{{x^2} - 3x + 2}}{{\left( {{x^2} - 3x + 2} ight)\left( {x + 1} ight)\left( {\sqrt {{x^2} - x + 3}  + \sqrt {2x + 1} } ight)}} \hfill \\  y = \dfrac{1}{{\left( {x + 1} ight)\left( {\sqrt {{x^2} - x + 3}  + \sqrt {2x + 1} } ight)}} \hfill \\ \end{matrix}

    Đồ thị hàm số không có tiệm cận đứng

    Mặt khác

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{1}{{{x^2}.\left( {1 + \dfrac{1}{x}} ight)\left( {\sqrt {1 - \dfrac{1}{x} + \dfrac{3}{{{x^2}}}}  + \sqrt {\dfrac{2}{x} + \dfrac{1}{{{x^2}}}} } ight)}} = 0

    => y = 0 là tiệm cận ngang của đồ thị hàm số

    Không tồn tại \mathop {\lim }\limits_{x \to  - \infty } f\left( x ight)

    Vậy đồ thị hàm số không có tiệm cận đứng và có đúng một tiệm cận ngang

  • Câu 24: Thông hiểu

    Cho hàm số y =
f(x) có đạo hàm f'(x) xác định và liên tục trên \mathbb{R}. Hình vẽ sau đây là đồ thị của hàm số y = f'(x):

    Hàm số g(x) = f\left( x - x^{2}
ight) nghịch biến trên khoảng:

    Ta có:

    g'(x) = f'\left( x - x^{2}
ight).(1 - 2x)

    g'(x) = 0 \Leftrightarrow
f'\left( x - x^{2} ight).(1 - 2x) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
f'\left( x - x^{2} ight) = 0 \\
1 - 2x = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x - x^{2} = 1 \\
x - x^{2} = 2 \\
1 - 2x = 0 \\
\end{matrix} ight.\  \Leftrightarrow x = \frac{1}{2}

    Với x = 0 ta có: g'(0) = f'\left( 0 - 0^{2} ight).(1 -
2.0) = 2 > 0 ta có bảng xét dấu của g'(x) như sau:

    Suy ra hàm số g(x) nghịch biến trên khoảng \left( \frac{1}{2}; + \infty
ight).

  • Câu 25: Nhận biết

    Cho hàm số f(x) xác định, liên tục trên tập số thực và đồ thị của hàm số f'(x) là đường cong như hình vẽ bên dưới.

    Khẳng định nào sau đây là khẳng định đúng?

    Từ đồ thị của hàm số f'(x) ta có:

    f'(x) \leq 0;\forall x \in ( -
\infty; - 3) \cup ( - 2; + \infty)

    Vậy hàm số y = f(x) nghịch biến trên khoảng (0; + \infty).

  • Câu 26: Nhận biết

    Hàm số nào dưới đây nghịch biến trên \mathbb{R}?

    Xét hàm số y = - x^{3} - 3x + 1 ta có: y' = - 3x^{2} - 3 < 0;\forall
x\mathbb{\in R}

    Do đó hàm số y = - x^{3} - 3x +
1 nghịch biến trên \mathbb{R}.

  • Câu 27: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị của hàm số đã cho có bao nhiêu tiệm cận?

    Đồ thị của hàm số đã cho có 2 đường tiệm cận.

  • Câu 28: Vận dụng

    Cho hàm số f\left( x ight) = \frac{{x - {m^2}}}{{x + 8}} (với m là tham số thực). Tìm giá trị lớn nhất của tham số m để hàm số có giá trị nhỏ nhất bằng -2 trên đoạn [0; 3].

    Xét hàm số f\left( x ight) = \frac{{x - {m^2}}}{{x + 8}} trên đoạn [0; 3] ta có:

    f'\left( x ight) = \frac{{8 + {m^2}}}{{{{\left( {x + 8} ight)}^2}}} > 0;\forall x \in \left[ {0;3} ight]

    => Hàm số f(x) đồng biến trên (0; 3)

    => \mathop {\min }\limits_{\left[ {0;3} ight]} f\left( x ight) = f\left( 0 ight) = \frac{{ - {m^2}}}{8}

    Theo bài ra ta có:

    \begin{matrix}  \mathop {\min }\limits_{\left[ {0;3} ight]} f\left( x ight) =  - 2 \hfill \\   \Leftrightarrow  - \dfrac{{{m^2}}}{8} =  - 2 \hfill \\   \Leftrightarrow {m^2} = 16 \Leftrightarrow m =  \pm 4 \hfill \\   \Rightarrow {m_{\max }} = 4 \hfill \\ \end{matrix}

  • Câu 29: Nhận biết

    Quan sát hình vẽ sau:

    Xác định hàm số tương ứng với đồ thị hàm số trong hình vẽ đã cho?

    Đồ thị hàm số có tiệm cận ngang y =\frac{1}{2} và tiệm cận đứng là x =1 nên hàm số tương ứng là y =\frac{x + 1}{2x - 2}.

  • Câu 30: Thông hiểu

    Cho hàm số y = \frac{(2m + 1)x^{2} +
3}{\sqrt{x^{4} + 1}} với m là tham số. Tìm giá trị của m để đường tiệm cận ngang của đồ thị hàm số đi qua điểm A(1; - 3)?

    Ta có: \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow - \infty}y = 2m + 1 suy ra d:y = 2m + 1 là tiệm cận ngang của đồ thị hàm số đã cho.

    Do A(1; - 3) \in d \Leftrightarrow 2m + 1
= - 3 \Leftrightarrow m = - 2

  • Câu 31: Nhận biết

    Tìm giá trị lớn nhất của hàm số y = 3\sin x - 4{\sin ^3}x trên khoảng \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) bằng:

    Đặt \sin x = t \Rightarrow t \in \left( { - 1;1} ight)

    Khi đó:

    \begin{matrix}  f'\left( t ight) =  - 12{t^2} + 3 \hfill \\  f'\left( t ight) = 0 \Leftrightarrow t =  \pm \dfrac{1}{2} \hfill \\ \end{matrix}

    So sánh f\left( {\frac{1}{2}} ight)f\left( { - \frac{1}{2}} ight) ta thấy GTLN là f\left( {\frac{1}{2}} ight) = 1

  • Câu 32: Nhận biết

    Số giao điểm của hai đồ thị hàm số y =
f(x)y = g(x) bằng số nghiệm phân biệt của phương trình nào sau đây?

    Hoành độ giao điểm là nghiệm của phương trình f(x) = g(x) hay f(x) - g(x) = 0.

  • Câu 33: Nhận biết

    Tâm đối xứng của đồ thị hàm số y =
\frac{3x - 1}{x + 2} là điểm nào trong các điểm cho sau đây?

    Đồ thị hàm số y = \frac{3x - 1}{x +
2} nhận giao của hai tiệm cận làm tâm đối xứng

    Đồ thị hàm số có tiệm cận ngang là y =
3 và tiệm cận đứng là x = -
2

    Do đó tâm đối xứng của đồ thị hàm số là điểm ( - 2;3).

  • Câu 34: Thông hiểu

    Người ta muốn xây một cái bể hình hộp đứng có thể tích 18m^{3}, biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Người ta muốn xây một cái bể hình hộp đứng có thể tích 18m^{3}, biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 35: Nhận biết

    Hàm số y = \frac{ 2x + 3 }{ x + 1 } có bao nhiêu điểm cực trị?

    y' = \frac{- 1}{(x + 1)^{2}} >
0,\forall x eq - 1 nên hàm số không có cực trị.

  • Câu 36: Thông hiểu

    Hàm số y = f(x) có đồ thị như sau:

    Tìm điều kiện của tham số m để phương trình f(x) = m1 nghiệm dương?

    Để số nghiệm dương của phương trình đã cho bằng 1 thì đường thẳng y = m cắt đồ thị hàm số y = f(x) tại một điểm có hoành độ dương \Leftrightarrow \left\lbrack \begin{matrix}
m \leq 0 \\
m = 1 \\
\end{matrix} ight..

  • Câu 37: Vận dụng cao

    Cho hàm số y = f(x) liên tục trên tập số thực và \mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = 1;\mathop {\lim }\limits_{x \to  -  + } f\left( x ight) =  + \infty. Có bao nhiêu giá trị nguyên của tham số m thuộc [-2020; 2020] để đồ thị hàm số g\left( x ight) = \frac{{\sqrt {{x^2} + 3x}  + x}}{{\sqrt {2f\left( x ight) - {f^2}\left( x ight)}  + m}} có tiệm cận ngang nằm bên dưới đường thẳng y = -1.

    Điều kiện \left\{ {\begin{array}{*{20}{c}}  {x \leqslant  - 3;x \geqslant 0} \\   {0 \leqslant f\left( x ight) \leqslant 2} \\   {\sqrt {2f\left( x ight) - {f^2}\left( x ight)}  + m e 0} \end{array}} ight.

    Do \mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = 1 \Rightarrow \mathop {\lim }\limits_{x \to  - \infty } \sqrt {2f\left( x ight) - {f^2}\left( x ight)}  = \sqrt {\mathop {\lim }\limits_{x \to  - \infty } \left[ {2f\left( x ight) - {f^2}\left( x ight)} ight]}  = 1

    \mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + 3x}  + x} ight) = \mathop {\lim }\limits_{x \to  + \infty } \frac{3}{{ - \left( {\sqrt {1 - \dfrac{3}{x}}  + 1} ight)}} =  - \frac{3}{2}

    Từ đó \mathop {\lim }\limits_{x \to  - \infty } g\left( x ight) =  - \frac{3}{{2m + 2}},\left( {m e  - 1} ight)

    Khi đó hàm số g(x) có tiệm cận ngang là đường thẳng y = \frac{{ - 3}}{{2m + 2}}

    Để tiệm cận ngang tìm được ở trên nằm dưới đường thẳng y = - thì \frac{{ - 3}}{{2m + 2}} <  - 1 \Rightarrow  - 1 < m < \frac{1}{2}

    m \in \mathbb{Z} \Rightarrow m = 0

  • Câu 38: Vận dụng

    Biết đồ thị hàm số y = \frac{{\left( {2m - n} ight){x^2} + mx + 1}}{{{x^2} + mx + n - 6}} nhận trục hoành và trục tung làm hai tiệm cận. Giá trị m + n là:

    Điều kiện {x^2} + mx + n - 6 e 0

    Phương trình đường tiệm cận ngang của đồ thị hàm số là y = 2m - n

    => 2m - n = 0\left( * ight)

    Đặt \left\{ {\begin{array}{*{20}{c}}  {f\left( x ight) = \left( {2m - n} ight){x^2} + mx + 1} \\   {g\left( x ight) = {x^2} + mx + n - 6} \end{array}} ight.

    Nhận thấy f\left( x ight) e 0 với mọi m, n nên đồ thị nhận trục tung x = 0 làm tiệm cận đứng thì g(0) = 0

    => n – 6 = 0 => n = 6

    Kết hợp với (*) => m = 3

    Vậy m + n = 9

  • Câu 39: Thông hiểu

    Cho hàm số y = f(x) = \frac{1}{3}x^{3} -
mx^{2} + \left( m^{2} - m + 1 ight)x + 1. Tìm m để hàm số đã cho đạt cực đại tại x = 1?

    Tập xác định D\mathbb{= R}

    Ta có: y' = x^{2} - 2mx + m^{2} - m +
1

    Để x = 1 là điểm cực đại của hàm số thì y'(1) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
m = 1 \\
m = 2 \\
\end{matrix} ight.

    Với m = 1 thì y' = x^{2} - 2x + 1 = (x - 1)^{2} \geq
0;\forall x\mathbb{\in R}. Vậy m =
1 không thỏa mãn.

    Với m = 2 thì y' = x^{2} - 4x + 3 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 3 \\
\end{matrix} ight.

    Xét dấu y' ta được y'  có điểm cực đại.

    Vậy m = 2 là giá trị cần tìm.

  • Câu 40: Nhận biết

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 1;4brack và có đồ thị như hình vẽ:

    Giả sử M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;4brack. Khi đó giá trị của biểu thức S = M + m bằng bao nhiêu?

    Từ đồ thị hàm số y = f(x) liên tục trên \lbrack - 1;4brack

    \Rightarrow \left\{ \begin{matrix}
M = 3 \\
m = - 1 \\
\end{matrix} ight.\  \Rightarrow S = M + m = 2

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát hàm số CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo