Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong các hàm số sau, hàm số nào đồng biến trên \mathbb{R}?

    Ta có: y = {x^3} + {x^2} + 2x + 1 \Rightarrow y' = 3{x^2} - 6x + 3 \geqslant 0,\forall x \in \mathbb{R}

    Ta có: y’ = 0 chỉ tại x = 1

    Vậy y = {x^3} + {x^2} + 2x + 1 đồng biến trên

  • Câu 2: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y= \dfrac{2\cot x + 1}{\cot x + m} đồng biến trên khoảng \left( \frac{\pi}{4};\frac{\pi}{2}
ight)?

    Điều kiện xác định \cot x eq -
m

    Ta có: y' = \dfrac{-\dfrac{2}{\sin^{2}x}\left( \cot x + m ight) + \dfrac{1}{\sin^{2}}(2\cot x +1)}{\left( \cot x + m ight)^{2}}

    = \dfrac{1 - 2m}{\sin^{2}x.\left( \cot x +m ight)^{2}}

    Hàm số đồng biến trên khoảng \left(
\frac{\pi}{4};\frac{\pi}{2} ight) khi và chỉ khi

    \left\{ \begin{matrix}
y' > 0 \\
- m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 - 2m > 0 \\
\left\lbrack \begin{matrix}
m \leq - 1 \\
m \geq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m \leq - 1 \\
m \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \in ( - \infty; - 1brack \cup
\left\lbrack 0;\frac{1}{2} ight)

    Vậy đáp án cần tìm là m \in ( - \infty; -
1brack \cup \left\lbrack 0;\frac{1}{2} ight).

  • Câu 3: Thông hiểu

    Cho hàm số y = f\left( x ight) = a{x^4} + b{x^2} + c có đồ thị như hình dưới đây:

    Số nghiệm của phương trình

    Số nghiệm của phương trình 2f\left( x ight) =  - 1 là:

    Ta có: 2f\left( x ight) =  - 1 \Rightarrow f\left( x ight) = \frac{{ - 1}}{2}

    Số nghiệm của phương trình 2f\left( x ight) =  - 1 chính là số giao điểm của đồ thị hàm số y = f\left( x ight) với đường thẳng y =  - \frac{1}{2}

    Quan sát đồ thị ta thấy đường thẳng y =  - \frac{1}{2} cắt đồ thị tại hai điểm

    => Phương trình 2f\left( x ight) =  - 1 có 2 nghiệm.

  • Câu 4: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tìm giá trị cực đại và giá trị cực tiểu của hàm số đã cho.

    Từ bảng biến thiên ta có: y_{CÐ} =
0;y_{CT} = - 3.

  • Câu 5: Thông hiểu

    Hàm số y = x3 – 3x2 nghịch biến trên khoảng nào dưới đây?

    Ta có:

    \begin{matrix}  y' = 3{x^2} - 6x = 3x\left( {x - 2} ight) \hfill \\   \Rightarrow y' < 0 \Rightarrow 0 < x < 2 \hfill \\ \end{matrix}

    Theo dấu hiệu nhận biết tính đơn điệu của hàm số, hàm số nghịch biến trên (0; 2)

  • Câu 6: Nhận biết

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào?

    Đồ thị trong hình vẽ là hàm số có dạng y= \frac{ax + b}{cx + d}

    Đồ thị hàm số có tiệm cận ngang là y =1 và tiệm cận đứng x = 2 nên hàm số cần tìm là y = \frac{x + 3}{x -2}.

  • Câu 7: Thông hiểu

    Cho hàm số y = f(x) = x^{3} - 3mx^{2} +
4m^{2} - 2(*). Tìm tất cả các giá trị của m để hàm số (*) có hai điểm cực trị?

    Ta có: y' = 3x^{2} - 6mx

    y' = 0 \Leftrightarrow 3x^{2} - 6mx
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2m \\
\end{matrix} ight.

    Để hàm số có hai cực trị thì phương trình y' = 0 có hai nghiệm phân biệt \Leftrightarrow 2m eq 0 \Leftrightarrow m eq
0.

    Vậy đáp án cần tìm là m eq
0.

  • Câu 8: Thông hiểu

    Cho hàm số f(x) có đạo hàm trên \mathbb{R}. Đồ thị của hàm số y = f'(x) trên đoạn \lbrack - 2;2brack là đường cong hình bên. Mệnh đề nào dưới đây đúng?

    Dựa vào thị của hàm số y =
f^{'}(x) trên đoạn \lbrack -
2;2brack ta thấy f'(x) = 0\Leftrightarrow x = 1.

    Ta có bảng BBT:

    Do đó \max_{\lbrack - 2;2brack}f(x) =f(1).

  • Câu 9: Vận dụng

    Có bao nhiêu giá trị nguyên âm của a để đồ thị hàm số y = x^{3} + (x + 10)x^{2} - x + 1 cắt trục hoành tại đúng một điểm?

    Phương trình hoành độ giao điểm của đồ thị và trục hoành là:

    x^{3} + (a + 10)x^{2} - x + 1 =
0(*)

    \Leftrightarrow x^{3} + 10x^{2} - x + 1
= - ax^{2}

    Ta thấy x = 0 không là nghiệm của phương trình nên (*) \Leftrightarrow -
\frac{x^{3} + 10x^{2} - x + 1}{x^{2}} = a

    Xét hàm số f(x) = - \frac{x^{3} + 10x^{2}
- x + 1}{x^{2}};\left( \forall x\mathbb{\in R}\backslash\left\{ 0
ight\} ight)

    Ta có: f'(x) = - \frac{x^{3} + x -
2}{x^{3}} = - \frac{(x - 1)\left( x^{2} + x + 2
ight)}{x^{3}}

    f'(x) = 0 \Leftrightarrow x =
1

    Bảng biến thiên của hàm số f(x) như sau:

    Từ bảng biến thiên ta thấy đồ thị hàm số đã cho cắt trục hoành tại đúng một điểm khi (*) có đúng 1 nghiệm \Leftrightarrow a > - 11

    a nguyên âm nên a \in \left\{ - 10; - 9; - 8;...; - 1
ight\}

    Vậy có 10 giá trị của a thỏa mãn yêu cầu bài toán.

  • Câu 10: Vận dụng

    Cho biết \left( P ight):y = {x^2} và điểm A\left( { - 2;\frac{1}{2}} ight). Gọi M là điểm bất kì thuộc (P). Khoảng cách MA nhỏ nhất là:

    M thuộc (P)

    => \begin{matrix}  M\left( {a;{a^2}} ight) \Rightarrow \overrightarrow {AM}  = \left( {a + 2;{a^2} - \dfrac{1}{2}} ight) \hfill \\   \hfill \\ \end{matrix}

    \Rightarrow M{A^2} = {\left( {a + 2} ight)^2} + {\left( {{a^2} - \frac{1}{2}} ight)^2} = {a^4} - 4a + \frac{{17}}{4}

    Xét hàm số f\left( a ight) = {a^4} + 4a + \frac{{17}}{4} ta có:

    \begin{matrix}  f'\left( a ight) = 4{a^3} + a \hfill \\  f'\left( a ight) = 0 \Rightarrow a =  - 1 \hfill \\   \Rightarrow \min f\left( a ight) = f\left( { - 1} ight) = 1 - 4 + \dfrac{{17}}{4} = \dfrac{5}{4} \hfill \\   \Rightarrow M{A_{\min }} = \sqrt {\dfrac{5}{4}}  = \dfrac{{\sqrt 5 }}{2} \hfill \\ \end{matrix}

  • Câu 11: Vận dụng

    Cho hàm số y = f(x) = x^{3} - mx^{2} -m^{2}x + 8 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = x^{3} - mx^{2} -m^{2}x + 8 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Thông hiểu

    Cho hàm số y = x^{4} - 2(m + 2)x^{2} + 3m
- 1. Tìm m để hàm số đã cho có cực tiểu nhưng không có cực đại?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 4x^{3} - 4(m +
2)x

    y' = 0 \Leftrightarrow 4x^{3} - 4(m
+ 2)x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = m + 2 \\
\end{matrix} ight.

    Để hàm số đã cho chỉ có điểm cực tiểu và không có điểm cực đại thì m + 2 \leq 0 \Leftrightarrow m \leq -
2.

    Vậy đáp án cần tìm là ( - \infty; -
2brack.

  • Câu 13: Thông hiểu

    Cho hàm số y = - x^{3} + 6(m + 2)x^{2} -
m + 1 với m là tham số. Tìm tất cả các giá trị của tham số m để hàm số đã cho đồng biến trên ( - 2; - 1)?

    Ta có: y' = - 3x^{2} + 12(m +
2)x

    Hàm số y = - x^{3} + 6(m + 2)x^{2} - m +
1 đồng biến trên khoảng ( - 2; -
1) khi và chỉ khi:

    y' = - 3x^{2} + 12(m + 2)x \geq
0;\forall x \in ( - 2; - 1)

    \Leftrightarrow - x^{2} + 4mx + 8x \geq
0;\forall x \in ( - 2; - 1)

    \Leftrightarrow 4mx \geq x^{2} -
8x;\forall x \in ( - 2; - 1)

    \Leftrightarrow m \leq \frac{x}{4} - 2
\Leftrightarrow m \leq \frac{- 2}{4} - 2 = - \frac{5}{2}

    Vậy đáp án cần tìm là m \in \left( -
\infty; - \frac{5}{2} ightbrack.

  • Câu 14: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= \frac{x + 6}{x + 5m} nghịch biến trên khoảng (15; + \infty)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 5m ight\}

    Ta có: y' = \frac{5m - 6}{(x +
5m)^{2}}

    Hàm số y = \frac{x + 6}{x + 5m} nghịch biến trên khoảng (15; +
\infty) khi và chỉ khi

    \left\{ \begin{matrix}
5m - 6 < 0 \\
- 5m \leq 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < \frac{6}{5} \\
m \geq - 3 \\
\end{matrix} ight.\  \Leftrightarrow - 3 \leq m <
\frac{6}{5}

    m\mathbb{\in Z} nên có tất cả 5 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 15: Vận dụng cao

    Cho hai số thực a, b dương thỏa mãn 2\left( {{a^2} + {b^2}} ight) + ab = \left( {a + b} ight)\left( {ab + 2} ight). Giá trị nhỏ nhất của biểu thức T = 4\left( {\frac{{{a^3}}}{{{b^3}}} + \frac{{{b^3}}}{{{a^3}}}} ight) - 9\left( {\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{a^2}}}} ight) bằng:

    Ta có:

    2\left( {\frac{a}{b} + \frac{b}{a}} ight) + 1 = \left( {a + b} ight)\left( {1 + \frac{2}{{ab}}} ight) = a + b + \frac{2}{a} + \frac{2}{b}

    \geqslant 2\sqrt {2\left( {a + b} ight)\left( {\frac{1}{a} + \frac{1}{b}} ight)}  = 2\sqrt {2\left( {2 + \frac{a}{b} + \frac{b}{a}} ight)}

    Đặt t = \frac{a}{b} + \frac{b}{a} \Rightarrow t \geqslant \frac{5}{2}

    \Rightarrow P = 4\left( {{t^3} - 3t} ight) - 9\left( {{t^2} - 2} ight) = 4{t^3} - 9{t^2} - 12t + 18 = f\left( t ight)

    \begin{matrix}  f'\left( t ight) = 12{t^2} - 18t - 12 > 0,\forall t > \dfrac{5}{2} \hfill \\   \Rightarrow f\left( t ight) \geqslant f\left( {\dfrac{5}{2}} ight) =  - \dfrac{{23}}{4} \hfill \\ \end{matrix}

  • Câu 16: Nhận biết

    Đồ thị hàm số nào dưới đây có dạng như hình vẽ?

    Đồ thị hàm số bậc 4 có hệ số a <
0 và có ba điểm cực trị nên ab <
0nên chọn y = - x^{4} +
4x^{2}.

  • Câu 17: Thông hiểu

    Đồ thị hàm số y = x - \sqrt {{x^2} - 4x + 2} có tiệm cận ngang là:

    Tập xác định D = \mathbb{R}

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \left( {x - \sqrt {{x^2} - 4x + 2} } ight) = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{4x - 2}}{{x + \sqrt {{x^2} - 4x + 2} }} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{4 - \dfrac{2}{x}}}{{1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{2}{{{x^2}}}} }} = 2 \hfill \\  \mathop {\lim }\limits_{x \to  - \infty } \left( {x - \sqrt {{x^2} - 4x + 2} } ight) = \mathop {\lim }\limits_{x \to \infty } \left( {1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{4}{{{x^2}}}} } ight) =  - \infty  \hfill \\ \end{matrix}

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  - \infty } x =  - \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } \left( {1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{2}{{{x^2}}}} } ight) = 2 > 0} \end{array}} ight. nên đồ thị hàm số có đường tiệm cận ngang là y = 2.

  • Câu 18: Thông hiểu

    Cho hàm số y = f(x) = \frac{\sqrt{x^{2} -
x + 2}}{x - 1}. Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định của hàm số là \mathbb{R}\backslash\left\{ 1 ight\}. Đúng||Sai

    b) Đồ thị hàm số có các đường tiệm cận ngang là y = 1,\ y = - 1. Đúng||Sai

    c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng

    d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = \frac{\sqrt{x^{2} -
x + 2}}{x - 1}. Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định của hàm số là \mathbb{R}\backslash\left\{ 1 ight\}. Đúng||Sai

    b) Đồ thị hàm số có các đường tiệm cận ngang là y = 1,\ y = - 1. Đúng||Sai

    c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng

    d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng

    a) Điều kiện xác định của hàm số \left\{
\begin{matrix}
x^{2} - x + 2 > 0;\forall x \\
x - 1 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow x eq 1.

    Vậy tập xác định của hàm số là \mathbb{R}\backslash\left\{ 1
ight\}.

    b) Ta có: \lim_{x ightarrow -
\infty}f(x) = - 1 nên y = −1 là đường tiệm cận ngang.

    \lim_{x ightarrow + \infty}f(x) =
1 nên y = 1 là đường tiệm cận ngang.

    c) Do \lim_{x ightarrow 1^{+}}f(x) = +
\infty nên x = 1 là đường tiệm cận đứng.

    Vậy đồ thị hàm số có tất cả 3 đường tiệm cận (2 TCN và 1 TCĐ).

    d) Minh họa miền giới hạn của các đường tiệm cận và trục Oy như sau:


    Miền giới hạn là hình chữ nhật có diện tích là S = 2.1 = 2

  • Câu 19: Thông hiểu

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{x - 3}{\sqrt{9 - x^{2}}} là:

    Tập xác định D = ( - 3;3) suy ra đồ thị hàm số không có tiệm cận ngang.

    \lim_{x ightarrow 3^{-}}\frac{x -
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow 3^{-}}\frac{x - 3}{\sqrt{(3 -
x)(3 + x)}} = \lim_{x ightarrow 3^{-}}\frac{- \sqrt{3 - x}}{\sqrt{3 +
x}} = 0

    Suy ra x = 3 không là đường tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow - 3^{+}}\frac{x -
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow - 3^{+}}\frac{x - 3}{\sqrt{(3
- x)(3 + x)}} = \lim_{x ightarrow - 3^{+}}\frac{- \sqrt{3 -
x}}{\sqrt{3 + x}} = - \infty

    Suy ra x = - 3 là đường tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số có 1 đường tiệm cận.

  • Câu 20: Nhận biết

    Cho hàm số y = {x^3} - 3{x^2} + 2. Mệnh đề nào sau đây đúng?

     Ta có:

    \begin{matrix}  y' = 3{x^2} - 6x \hfill \\   \Rightarrow y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 2} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng xét dấu:

    Chọn mệnh đề đúng trong các mệnh đề dưới đây

    Quan sát bảng xét dấu ta thấy:

    + Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞)

    + Hàm số nghịch biến trên các khoảng (0; 2)

  • Câu 21: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = {x^2}\left( {x - 9} ight){\left( {x - 4} ight)^2}. Khi đó hàm số y = f\left( {{x^2}} ight) nghịch biến trên khoảng nào dưới đây?

    Ta có:

    \begin{matrix}  y' = \left[ {f\left( {{x^2}} ight)} ight]\prime  \hfill \\   = \left( {{x^2}} ight)'{x^4}\left( {x - 9} ight)\left( {{x^2} - 4} ight) \hfill \\   = 2{x^5}\left( {x - 3} ight)\left( {x - 3} ight){\left( {x - 2} ight)^2}.{\left( {x + 2} ight)^2} \hfill \\  y' = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x =  \pm 2} \\   {x =  \pm 3} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng xét dấu như sau:

    Tìm khoảng nghịch biến của hàm số

    Dựa vào bảng xét dấu, hàm số y = f\left( {{x^2}} ight) nghịch biến trên các khoảng (-∞; -3) và (-0; 3)

  • Câu 22: Thông hiểu

    Khoảng cách giữa hai điểm cực trị của đồ thị hàm số y = (x - 2)^{2}(x + 1)

    Ta có:

    f'(x) = 2(x - 2)(x + 1) + (x -
2)^{2}

    = 2x^{2} - 2x - 4 + x^{2} - 4x + 4 =
3x^{2} - 6x

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \Rightarrow y = 4 \\
x = 2 \Rightarrow y = 0 \\
\end{matrix} ight.

    ⇒ Khoảng cách giữa hai điểm cực trị là \sqrt{(0 - 2)^{2} + (4 - 0)^{2}} =
2\sqrt{5}.

  • Câu 23: Nhận biết

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Đồ thị hàm số y = f(x) có mấy điểm cực trị?

    Từ đồ thị suy ra đồ thị có điểm một điểm cực tiểu và một điểm cực đại.

  • Câu 24: Thông hiểu

    Cho hàm số y = f(x) xác định trên \mathbb{R}\left\{ - 1
ight\}, liên tục trên các khoảng xác định và có bảng biến thiên như sau:

    Tìm tập hợp các giá trị của tham số m để phương trình f(x) = m có ba nghiệm phân biệt?

    Số nghiệm của phương trình f(x) =
m là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m

    Dựa vào bảng biến thiên ta suy ra để phương trình đã cho có ba nghiệm phân biệt thì - 4 < m <
2.

  • Câu 25: Vận dụng

    Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số y = \frac{{{x^2} - {m^2} - 2}}{{x - m}} trên đoạn [0; 4] bằng -1?

    Ta có: f'\left( x ight) = \frac{{{m^2} - m + 2}}{{{{\left( {x - m} ight)}^2}}} > 0;\forall m e 0

    Với x = m e \left[ {0;4} ight] \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m > 4} \\   {m < 0} \end{array}} ight. ta được hàm số f(x) đồng biến trên khoảng (0; 4)

    => \mathop {\max }\limits_{\left[ {0;4} ight]} f\left( x ight) = f\left( 4 ight) = \frac{{2 - {m^2}}}{{4 - m}}

    Theo bài ra ta có: \frac{{2 - {m^2}}}{{4 - m}} =  - 1 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m = 2} \\   {m =  - 3} \end{array}} ight.

    Kết hợp với điều kiện \left[ {\begin{array}{*{20}{c}}  {m > 4} \\   {m < 0} \end{array}} ight. => m = -3 là giá trị cần tìm

    Vậy có 1 giá trị của tham số m thỏa mãn yêu bài toán đề bài.

  • Câu 26: Vận dụng

    Tìm giá trị của tham số m để hàm số y
= \frac{\cot x - 2}{\cot x - m} nghịch biến trên \left( \frac{\pi}{4};\frac{\pi}{2}
ight)?

    Đặt t = \cot x \Rightarrow t' =
\frac{- 1}{sin^{2}x} < 0;\forall x \in \left(
\frac{\pi}{4};\frac{\pi}{2} ight)

    \Rightarrow \cot\frac{\pi}{2} < t <
\cot\frac{\pi}{4} hay 0 < t <
1

    Bài toán trở thành tìm m để hàm số y =
\frac{t - 2}{t - m} đồng biến trên (0;1)

    Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}

    Ta có: y' = \frac{2 - m}{(t -
m)^{2}}. Hàm số y = \frac{t - 2}{t
- m} đồng biến trên (0;1)

    \Leftrightarrow y' > 0;\forall t
\in (0;1) \Leftrightarrow \left\{ \begin{matrix}
2 - m > 0 \\
m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 2 \\
\left\lbrack \begin{matrix}
m \geq 1 \\
m \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Vậy đáp án cần tìm là \left\lbrack
\begin{matrix}
m \leq 0 \\
1 \leq m < 2 \\
\end{matrix} ight..

  • Câu 27: Nhận biết

    Cho hàm số f(x) = x^{3} - 3x. Tìm giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack - 2;1brack?

    Xét hàm số f(x) = x^{3} - 3x xác định trên tập số thực có:

    f'(x) = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
f( - 2) = - 2 \\
f(1) = - 2 \\
f( - 1) = 2 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack - 2;1brack}f(x) = -
2

    Vậy giá trị nhỏ nhất của hàm số là -2 khi x = 1 hoặc x = -2.

  • Câu 28: Thông hiểu

    Số đường tiệm cận của đồ thị hàm số y = \frac{x}{{{x^2} - 3x - 4}} + x

    Quy đồng biến đổi hàm số đã cho trở thành y = \frac{{{x^3} - 3{x^2} - 3x}}{{{x^2} - 3x - 4}}

    Tìm được tiệm cận đứng là x = -1 và x = 4 và không có tiệm cận ngang

    => Số tiệm cận là 2 đường

  • Câu 29: Nhận biết

    Cho hình vẽ là đồ thị hàm số y = f'(x). Hỏi hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

    Từ đồ thị y = f'(x) ta có bảng xét dấu y = f'(x) như sau:

    Vậy hàm số đồng biến trên khoảng (0;1)

  • Câu 30: Nhận biết

    Tọa độ tâm đối xứng của đồ thị hàm số y =
x^{3} - 3x + 2 là:

    Ta có: y = x^{3} - 3x + 2 \Rightarrow
\left\{ \begin{matrix}
y' = 3x^{2} - 3 \\
y'' = 6x \\
\end{matrix} ight.

    y'' = 0 \Leftrightarrow x = 0
\Rightarrow y = 2

    Tọa độ tâm đối xứng của đồ thị hàm số là (0;2)

  • Câu 31: Nhận biết

    Cho đồ thị hàm số y = f(x) có đồ thị như hình sau:

    Đồ thị hàm số trên có đường tiệm cận đứng là:

    Dựa vào đồ thị hàm số, đường tiệm cận đứng của đồ thị hàm số đã cho là x = - 1.

  • Câu 32: Vận dụng cao

    Cho hàm số f(x) liên tục và có đạo hàm trên \mathbb{R}. Biết f(0) > 0. Đồ thị hàm số y = f'(x) như hình vẽ:

    Hàm số y = \left| f(x) - \frac{x^{2}}{2}
ight| có bao nhiêu điểm cực trị?

    Xét g(x) = f(x) - \frac{x^{2}}{2}
\Rightarrow g'(x) = f'(x) - x.

    Từ đồ thị ta thấy: g'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Vì hệ số cao nhất của f(x) nhỏ hơn 0 nên hệ số cao nhất của g(x) cùng nhỏ hơn 0. Ta có bảng biến thiên:

    \Rightarrow g( x )=0 luôn có đúng 2 nghiệm bội lé.

    Số điểm cực trị của hàm số y = \left|
f(x) - \frac{x^{2}}{2} ight| là 5.

  • Câu 33: Thông hiểu

    Xác định giá trị lớn nhất của hàm số y = \sqrt {x - 1}  + \sqrt {3 - x}  - 2\sqrt { - {x^2} + 4x - 3}

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {x - 1 \geqslant 0} \\   {3 - x \geqslant 0} \end{array} \Rightarrow x \in \left[ {1;3} ight]} ight.

    Đặt \sqrt {x - 1}  + \sqrt {3 - x}  = t ta có:

    \begin{matrix}  t' = \dfrac{1}{{2\sqrt {x - 1} }} - \dfrac{1}{{\sqrt {3 - x} }} \hfill \\  t' = 0 \Rightarrow x = 2 \hfill \\ \end{matrix}

    Ta có: t\left( 1 ight) = t\left( 3 ight) = \sqrt 2  \to \sqrt 2  \leqslant t \leqslant 2

    Khi đó:

    \begin{matrix}  {t^2} = 2 + 2\sqrt {\left( {x - 1} ight)\left( {3 - x} ight)}  \hfill \\   = 2 + 2\sqrt { - {x^2} + 4x - 3}  \hfill \\   \Leftrightarrow 2\sqrt { - {x^2} + 4x - 3}  = {t^2} - 2 \hfill \\ \end{matrix}

    Do đó: y = f\left( t ight) = t - \left( {{t^2} - 2} ight) =  - {t^2} + t + 2

    Xét hàm số f\left( t ight) = t - \left( {{t^2} - 2} ight);\forall t \in \left[ {\sqrt 2 ;2} ight]

    Ta xác được \mathop {\max f\left( t ight) = \sqrt 2 }\limits_{\left[ {\sqrt 2 ;2} ight]}  \Rightarrow \mathop {\max y = \sqrt 2 }\limits_{\left[ {\sqrt 2 ;2} ight]}

  • Câu 34: Nhận biết

    Đồ thị hàm số y = \frac{x - 2}{x^{2} -
4} có đường tiệm cận ngang là

    Ta có: \lim_{x ightarrow \pm \infty}y =\lim_{x ightarrow \pm \infty}\dfrac{x - 2}{x^{2} - 4} = \lim_{xightarrow \pm \infty}\dfrac{\dfrac{x}{x^{2}} -\dfrac{2}{x^{2}}}{\dfrac{x^{2}}{x^{2}} - \dfrac{4}{x^{2}}} = 0

    Suy ra tiệm cận ngang là y =
0.

  • Câu 35: Thông hiểu

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như hình vẽ. Tìm tất cả các giá trị của tham số m để phương trình f\left( x ight) = 2m có đúng hai nghiệm phân biệt.

    Tìm m để phương trình có hai nghiệm phân biệt

    Để phương trình f\left( x ight) = 2m có hai nghiệm phân biệt thì \left[ {\begin{array}{*{20}{c}}  {2m = 0} \\   {2m <  - 3} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m = 0} \\   {m < \dfrac{{ - 3}}{2}} \end{array}} ight.

  • Câu 36: Vận dụng cao

    Cho hàm bậc ba y = f(x) có đồ thị như hình vẽ:

    Hỏi đồ thị hàm số y = \frac{\left( x^{2}+ 4x + 3 ight).\sqrt{x^{2} + x}}{x\left\lbrack f^{2}(x) - 2f(x)ightbrack} có bao nhiêu đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm bậc ba y = f(x) có đồ thị như hình vẽ:

    Hỏi đồ thị hàm số y = \frac{\left( x^{2}+ 4x + 3 ight).\sqrt{x^{2} + x}}{x\left\lbrack f^{2}(x) - 2f(x)ightbrack} có bao nhiêu đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 37: Nhận biết

    Cho hàm số y = f(x) xác định, liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Chọn câu đúng

    Khẳng định nào sau đây là đúng?

    Từ bảng biến thiên, ta dễ dàng thấy được A, B, D sai, C đúng

  • Câu 38: Nhận biết

    Cho hàm số y =
f(x) có đồ thị như hình vẽ như sau:

    Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Dựa vào đồ thị dễ dàng thấy hàm số đồng biến trên (0;1).

  • Câu 39: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như hình bên. Giá trị nhỏ nhất của hàm số y = f(x) trên \lbrack - 1\ ;\ 1brack bằng:

    Dựa vào bảng biến thiên ta có giá trị nhỏ nhất của hàm số y = f(x) trên \lbrack - 1\ ;\ 1brack bằng - 2.

  • Câu 40: Vận dụng

    Biết đồ thị hàm số y = \frac{{\left( {2m - n} ight){x^2} + mx + 1}}{{{x^2} + mx + n - 6}} nhận trục hoành và trục tung làm hai tiệm cận. Giá trị m + n là:

    Điều kiện {x^2} + mx + n - 6 e 0

    Phương trình đường tiệm cận ngang của đồ thị hàm số là y = 2m - n

    => 2m - n = 0\left( * ight)

    Đặt \left\{ {\begin{array}{*{20}{c}}  {f\left( x ight) = \left( {2m - n} ight){x^2} + mx + 1} \\   {g\left( x ight) = {x^2} + mx + n - 6} \end{array}} ight.

    Nhận thấy f\left( x ight) e 0 với mọi m, n nên đồ thị nhận trục tung x = 0 làm tiệm cận đứng thì g(0) = 0

    => n – 6 = 0 => n = 6

    Kết hợp với (*) => m = 3

    Vậy m + n = 9

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo