Giá trị lớn nhất của hàm số
trên khoảng ![]()
Ta có:
=> Giá trị lớn nhất của hàm số trên khoảng đã cho bằng 3 khi x = 1
Giá trị lớn nhất của hàm số
trên khoảng ![]()
Ta có:
=> Giá trị lớn nhất của hàm số trên khoảng đã cho bằng 3 khi x = 1
Cho hàm số bậc ba
có bảng biến thiên như hình dưới đây.

Hỏi đồ thị hàm số
có bao nhiêu tiệm cận đứng?
Ta có:
Đồng nhất hai vế ta có:
Mặt khác
Giải phương trình
Hàm số có tập xác định là
Khi đó
=> Đồ thị hàm số có 2 đường tiệm cận đứng là
Cho hàm số
. Có bao nhiêu giá trị nguyên dương của tham số
luôn đồng biến trên
?
Ta có:
Khi đó:
Do nguyên dương nên
.
Vậy có 1 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Cho đồ thị hàm số
:

Có bao nhiêu giá trị nguyên của tham số
để phương trình
có ba nghiệm phân biệt?
Ta có:
Để phương trình có ba nghiệm ta phải có
Vậy có 2 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có 7 điểm cực trị?
Có tất cả bao nhiêu giá trị nguyên của tham số để hàm số
có 7 điểm cực trị?
Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
có đúng ba đường tiệm cận?
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng ba đường tiệm cận?
Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?
Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ cho sau đây?

Đồ thị hàm số bậc 4 có hệ số và có ba điểm cực trị nên
nên chọn
.
Cho hàm số
có đạo hàm
. Hàm số
đồng biến trên khoảng:
Ta có:
Ta có bảng xét dấu:
Hàm số đồng biến khi và chỉ khi
Vậy đáp án cần tìm là .
Cho hàm số
(với m là tham số thực). Tìm giá trị lớn nhất của tham số m để hàm số có giá trị nhỏ nhất bằng -2 trên đoạn [0; 3].
Xét hàm số trên đoạn [0; 3] ta có:
=> Hàm số f(x) đồng biến trên (0; 3)
=>
Theo bài ra ta có:
Cho hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Ta có:
Suy ra hàm số nghịch biến trên tập xác định
Hay hàm số nghịch biến trên các khoảng .
Số các giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
là:
Ta có: . Hàm số nghịch biến trên khoảng
khi
Vì
Vậy có tất cả 13 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ:

Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là
. Kết luận nào sau đây đúng?
Quan sát đồ thị ta thấy
Tìm tất cả các giá trị thực của tham số
để hàm số
đạt cực tiểu tại điểm
?
Ta có:
Điều kiện cần
Điều kiện đủ:
Khi suy ra
là điểm cực đại của hàm số.
Khi suy ra
là điểm cực tiểu của hàm số.
Vậy giá trị m thỏa mãn yêu cầu bài toán là .
Hàm số
đồng biến trên các khoảng
và
khi nào?
Tập xác định
Ta có: . Để hàm số đồng biến trên từng khoảng xác định thì
Vậy hàm số đồng biến trên các khoảng
và
khi
.
Tìm điểm M thuộc đồ thị hàm số
sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ điểm M đến trục hoành:
Do M thuộc đồ thị hàm số nên tọa độ điểm
Phương trình tiệm cận đứng là x – 1 = 0 (d’)
Giải phương trình d(M,d’) = d(M, Ox)
=>
Cho hàm số
có bảng biến thiên như sau:

Đồ thị hàm số có đường tiệm cận ngang là:
Dựa vào bảng biến thiên ta có: nên đồ thị hàm số có đường tiệm cận ngang là
.
Cho hàm số
liên tục trên đoạn
và có đồ thị là đường cong trong hình bên dưới.

Hàm số
đạt cực tiểu tại điểm
Theo hình vẽ thì hàm số đạt cực tiểu tại điểm
.
Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ dưới đây?

Quan sát đồ thị hàm số ta suy ra hàm số có dạng hàm số phân thức
=> Loại đáp án B và D
Ta có: => Loại đáp án B
Đồ thị hàm số
có bao nhiêu tiệm cận đứng và tiệm cận ngang?
Ta có: nên đường thẳng
là tiệm cận ngang của đồ thị hàm số.
nên đường thẳng
là tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số có số tiệm cận đứng và tiệm cận ngang là 2.
Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
cắt trục hoành tại ba điểm phân biệt?
Phương trình hoành độ giao điểm của đồ thị hàm số
Ta cps:
Đặt . Khi đó số nghiệm của phương trình (*) bằng số giao điểm của đồ thị hàm số
và đường thẳng
.
Khảo sát sự biến thiên của hàm số ta có:
Ta có bảng biến thiên
Với thì phương trình (*) có ba nghiệm phân biệt. Mặt khác do m nguyên nên
.
Vậy có 31 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Đồ thị hàm số nào sau đây có ba đường tiệm cận?
Ta có: Đồ thị hàm số có 3 đường tiệm cận trong đó
Tiệm cận đứng là x = 2 và x = -2
Tiệm cận ngang là y = 0
Cho hàm số
. Mệnh đề nào sau đây đúng?
Ta có:
Ta có bảng xét dấu:

Quan sát bảng xét dấu ta thấy:
+ Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞)
+ Hàm số nghịch biến trên các khoảng (0; 2)
Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Chọn kết luận đúng?
Ta có:
Mà
.
Tìm tất cả các giá trị thực của tham số
để giá trị nhỏ nhất của hàm số
trên
bằng
?
Ta có:
Xét
Mà và
Khi đó
Theo đề bài ra ta có:
Vậy đáp án cần tìm là .
Cho hàm số
. Tìm tất cả các giá trị thực của tham số
để đường tiệm cận ngang của đồ thị hàm số cùng với hai trục tọa độ tạo thành một hình chữ nhật có diện tích bằng
.
Điều kiện để đồ thị hàm số có tiệm cận là
Khi đó đồ thị hàm số có:
Tiệm cận đúng: , song song với
và cắt
tại điểm
Tiệm cận ngang: song song với
và cắt
tại điểm
Diện tích hình chữ nhật tạo bởi hai đường tiệm cận cùng với hai trục tọa độ là
Cho đồ thị hàm số như hình vẽ dưới đây:

Đồ thị hàm số tương ứng với hàm số nào sau đây?
Từ đồ thị hàm số ta có tiệm cận đứng là x = 1, tiệm cận ngang là y = 1
=> Loại A và B
Xét thấy giao điểm của đồ thị hàm số với trục tung là (0; -2) => Chọn đáp án C
Cho hàm số
(với
là tham số) đạt cực tiểu tại
. Tìm giá trị tham số
?
Tập xác định
Ta có:
Hàm số đạt cực tiểu tại suy ra
Với
. Khi đó
suy ra
là điểm cực tiểu của hàm số.
Vậy là giá trị cần tìm.
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên
bằng:
Ta có:
Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn bằng
.
Cho hàm số
với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?
Cho hàm số với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?
Giá trị thực của tham số
để hàm số
đạt cực tiểu tại điểm
thuộc khoảng nào sau đây?
Tập xác định
Ta có:
Để hàm số đạt cực tiểu tại thì
Vậy .
Cho hàm số
liên tục, có đạo hàm trên
. Đồ thị hàm số
như sau:

Hàm số
nghịch biến trên khoảng
. Giá trị lớn nhất của
bằng bao nhiêu?
Cho hàm số liên tục, có đạo hàm trên
. Đồ thị hàm số
như sau:
Hàm số nghịch biến trên khoảng
. Giá trị lớn nhất của
bằng bao nhiêu?
Trong các hàm số sau đây, hàm số nào không nghịch biến trên
?
Với
y’ > 0 khi x > 0 và y’ < 0 khi x < 0 nên hàm số không nghịch biến trên
Cho hàm số y = f(x) liên tục trên và có bảng biến thiên như hình vẽ.

Biết f(-4) > f(8), khi đó giá trị nhỏ nhất của hàm số đã cho trên bằng:
Từ bảng biến thiên ta có:
Mặt khác f(-4) > f(8) => thì
Vậy
Cho hàm số
.
a) Đạo hàm của hàm số đã cho là
. Đúng||Sai
b) Đạo hàm của hàm số đã cho nhận giá trị âm với mọi
. Đúng||Sai
c) Bảng biến thiên của hàm số đã cho như sau:
Sai||Đúng
d) Đồ thị của hàm số đã cho là đường cong trong hình sau:
Đúng||Sai
Cho hàm số .
a) Đạo hàm của hàm số đã cho là . Đúng||Sai
b) Đạo hàm của hàm số đã cho nhận giá trị âm với mọi . Đúng||Sai
c) Bảng biến thiên của hàm số đã cho như sau:
Sai||Đúng
d) Đồ thị của hàm số đã cho là đường cong trong hình sau:
Đúng||Sai
Ta có: ,
nên đạo hàm của hàm số đã cho nhận giá trị âm với mọi
.
Bảng biến thiên:
Hàm số đã cho nghịch biến trên các khoảng và
.
Đồ thị của hàm số có tiệm cận đứng , tiệm cận ngang
, nhận điểm
là giao điểm của hai đường tiệm cận làm tâm đối xứng.
Đồ thị hàm số cắt trục tại điểm
và đi qua điểm có tọa độ
.
Cho hàm số
có đạo hàm
. Tìm số điểm cực đại của hàm số đã cho.
Ta có:
Ta có bảng xét dấu:
Suy ra hàm số có một điểm cực đại.
Cho hình vẽ sau:

Đường cong trong hình vẽ là đồ thị của hàm số có dạng
. Mệnh đề nào dưới đây đúng?
Từ đồ thị hàm số ta thấy hàm số đồng biến trên các khoảng và
suy ra
.
Cho hai số thực x, y thỏa mãn
và x + y = 1. Giá trị nhỏ nhất và giá trị lớn nhất của biểu thức
lần lượt là:
Ta có:
Đặt t = xy ta được
Vì
Mặt khác
Khi đó bài toán trở thành tìm giá trị lớn nhất của hàm số trên
Xét hàm số xác định và liên tục trên
Ta có:
=> Hàm số g(t) nghịch biến trên đoạn
=>
Đường thẳng
cắt đồ thị hàm số
tại hai điểm phân biệt sao cho tam giác
vuông (với
là gốc tọa độ). Mệnh đề nào sau đây đúng?
Xét hàm số ta có
Ta có bảng biến thiên như sau:
Vì nên từ bảng biến thiên ta thấy đường thẳng
luôn cắt đồ thị hàm số
tại những cặp điểm đối xứng nhau qua trục tung.
Giả sử . Tam giác OAB vuông
Suy ra vì
thuộc đồ thị hàm số nên
Cho f(x) mà đồ thị hàm số y = f’(x) như hình vẽ.
Hàm số
đồng biến trên khoảng nào trong các đáp án dưới đây?
Ta có:
=>
Hàm số đồng biến khi
Đặt t = x – 1 thì (*) trở thành
Quan sát đồ thị hàm số y = f’(t) và y = -2t trên cùng một hệ tọa độ như hình vẽ

Khi đó ta thấy với thì độ thì hàm số y = f’(t) luôn nằm trên đường thẳng y = -2t
=>
Do đó với thì hàm số
đồng biến.