Cho hàm số
với m là tham số thực thỏa mãn
. Mệnh đề nào dưới đây là đúng?
Xét hàm số trên [1; 2] ta có:
Khi đó:
Cho hàm số
với m là tham số thực thỏa mãn
. Mệnh đề nào dưới đây là đúng?
Xét hàm số trên [1; 2] ta có:
Khi đó:
Biết rằng giá trị nhỏ nhất của hàm số
trên đoạn
bằng
. mệnh đề nào sau đây đúng?
Ta có:
Suy ra hàm số luôn nghịch biến trên các khoảng và
Vì hàm số có giá trị nhỏ nhất trên đoạn nên
Hàm số có giá trị nhỏ nhất trên đoạn bằng
nên suy ra
Tìm tất cả các giá trị của tham số
để hàm số
có cực trị?
Ta có:
Để hàm số có cực trị thì
có hai nghiệm phân biệt
.
Hàm số
liên tục trên đoạn
và có bảng biến thiên như sau.

Gọi
và
lần lượt là GTLN và GTNN của hàm số trên
. Xét tính đúng sai của các khẳng định sau:
a)
Sai|| Đúng
b)
Sai|| Đúng
c)
Đúng||Sai
d)
Đúng||Sai
Hàm số liên tục trên đoạn
và có bảng biến thiên như sau.
Gọi và
lần lượt là GTLN và GTNN của hàm số trên
. Xét tính đúng sai của các khẳng định sau:
a) Sai|| Đúng
b) Sai|| Đúng
c) Đúng||Sai
d) Đúng||Sai
Dựa vào bảng biến thiên trên ta có:
Tìm các đường tiệm cận của đồ thị hàm số
.
Tập xác định của hàm số: .
+) Ta có: và
không tồn tại nên đồ thị hàm số không có đường tiệm cận đứng.
+) Ta có:
và là các đường tiệm cận ngang của đồ thị hàm số.
Cho hàm số y = f(x) liên tục trên tập số thực và
. Có bao nhiêu giá trị nguyên của tham số m thuộc [-2020; 2020] để đồ thị hàm số
có tiệm cận ngang nằm bên dưới đường thẳng y = -1.
Điều kiện
Do
Từ đó
Khi đó hàm số g(x) có tiệm cận ngang là đường thẳng
Để tiệm cận ngang tìm được ở trên nằm dưới đường thẳng y = - thì
Vì
Cho hàm số
có đồ thị như hình vẽ:

Đồ thị hàm số
có mấy điểm cực trị?
Từ đồ thị suy ra đồ thị có điểm một điểm cực tiểu và một điểm cực đại.
Cho hàm số
. Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là
. Khi đó
bằng:
Ta có:
Cho hàm số
. Mệnh đề nào sau đây đúng?
Tập xác định
Ta có:
Suy ra hàm số đồng biến trên từng khoảng và
.
Cho hàm số
. Hàm số
có đồ thị như hình vẽ:

Gọi
là tập hợp tất cả các giá trị nguyên dương của tham số
sao cho hàm số
đồng biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Cho hàm số . Hàm số
có đồ thị như hình vẽ:
Gọi là tập hợp tất cả các giá trị nguyên dương của tham số
sao cho hàm số
đồng biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Đồ thị hàm số nào dưới đây có đúng một đường tiệm cận ngang?
Xét hàm số có tập xác định
Ta có: suy ra
là một tiệm cận ngang của đồ thị hàm số.
Vậy hàm số có duy nhất một tiệm cận ngang là .
Hàm số
liên tục trên tập số thực và có bảng biến thiên như sau:

Phương trình
có bao nhiêu nghiệm?
Gọi ta có:
Suy ra
Ta có bảng biến thiên
Mà từ bảng biến thiên ta thấy phương trình có ba nghiệm.
Trong các hàm số dưới đây, hàm số nào đồng biến trên
?
Hàm số y = x – sinx có tập các định và
Nên hàm số luôn đồng biến trên
Cho hàm số
xác định trên
, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

Tìm tất cả các giá trị thực của tham số
để phương trình
có ba nghiệm thực phân biệt?
Dựa vào bảng biến thiên ta thấy phương trình có ba nghiệm thực phân biệt khi và chỉ khi
Đồ thị hàm số
có bao nhiêu đường tiệm cận ngang?
Điều kiện xác định
Tập xác định
Vì hàm số không tồn tại khi và
nên đồ thị hàm số không có tiệm cận ngang.
Cho hàm số
với
là tham số. Gọi
là tập hợp các số nguyên
để hàm số đã cho nghịch biến trên khoảng
. Xác định số phần tử của tập hợp
?
Xét là hàm hằng nên hàm số không nghịch biến. Vậy
không thỏa mãn.
Xét
Tập xác định
Để hàm số nghịch biến trên khoảng khi và chỉ khi
Mà nên
Vậy tập hợp S có tất cả 9 giá trị.
Cho
hàm số có
. Hàm số
đồng biến trên khoảng nào dưới đây?
Xét dấu f’(x) như sau:

Ta có:
Chọn ta có:
=> là khoảng âm
Khi đó bảng xét dấu của y’ = (f(x2))’ như sau:

Từ trục xét dấu ta thấy. Hàm số y = f(x2) đồng biến trên (-1; 0)
Đồ thị sau đây là của hàm số nào?

Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là và tiệm cận đứng của đồ thị hàm số
.
Đồ thị hàm số cắt trục tung tại điểm
Vậy hàm số cần tìm là .
Hình vẽ nào dưới đây là đồ thị của hàm số
biết ![]()
Xét hàm số ta có:
=> Đồ thị hàm số có dạng chữ N xuôi
Đồ thị hàm số cắt trục Oy tại điểm có tung độ mà a > 0 =>
Mặt khác
=>
=> Đồ thị hàm số y = f(x) tiếp xúc với Ox tại điểm
Giá trị nhỏ nhất của hàm số
trên đoạn
bằng:
Ta có:
. Khi đó
.
Hàm số y = x4 - 2x2 + 1 đồng biến trên khoảng nào?
Ta có bảng biến thiên như sau:

Hàm số y = x4 – 2x2 + 1 đồng biến trên mỗi khoảng (-1; 0) và (1; +∞)
Cho hàm số
có đồ thị
như hình vẽ:

Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên
. Sai||Đúng
b) Hàm số đạt cực đại tại x = −2. Sai||Đúng
c) Giá trị nhỏ nhất của hàm số trên
là
. Đúng||Sai
d) Điểm cực tiểu của hàm số là
. Đúng||Sai
Cho hàm số có đồ thị
như hình vẽ:
Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên . Sai||Đúng
b) Hàm số đạt cực đại tại x = −2. Sai||Đúng
c) Giá trị nhỏ nhất của hàm số trên là
. Đúng||Sai
d) Điểm cực tiểu của hàm số là . Đúng||Sai
a) Sai. Hàm số đồng biến trên và nghịch biến trên
.
b) Sai. Hàm số đạt cực tiểu tại .
c) Đúng.
d) Đúng.
Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là
. Nếu vận tốc bơi của cá khi nước đứng yên là
thì năng lượng tiêu hao của cá trong
giờ được cho bởi công thức
, trong đó
là hằng số dương,
được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng
thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của
(kết quả làm tròn tới hàng phần mười).
Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là . Nếu vận tốc bơi của cá khi nước đứng yên là
thì năng lượng tiêu hao của cá trong
giờ được cho bởi công thức
, trong đó
là hằng số dương,
được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng
thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của
(kết quả làm tròn tới hàng phần mười).
Đường thẳng nào dưới đây là tiệm cận đứng của đồ thị hàm số
?
Xét phương trình x + 1 = 0 => x = -1
Và => x = -1 là tiệm cận đứng của đồ thị hàm số.
Cho hàm số
có đồ thị như hình vẽ như sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Dựa vào đồ thị dễ dàng thấy hàm số đồng biến trên .
Cho hàm số y = f(x) xác định và liên tục trên [-2; 2], có đồ thị của hàm số y f’(x) như hình vẽ sau:

Tìm giá trị của x0 để hàm số y = f(x) đạt giá trị lớn nhất trên [-2; 2]
Từ đồ thị ta có: f’(x) = 0 =>
Ta có bảng biến thiên như sau:

Từ bảng biến thiên ta có x0 = 1 thỏa mãn điều kiện
Một chất điểm chuyển động với quy luật
. Thời điểm
(giây) tại vận tốc
của chuyển động đạt giá trị lớn nhất là:
Ta có:
Ta có bảng biến thiên như sau:
Vậy vận tốc của chuyển động đạt giá trị lớn nhất bằng khi
.
Cho hàm số
có bảng biến thiên như hình vẽ:

a) Phương trình
có 3 nghiệm. Đúng||Sai
b) Phương trình
có 1 nghiệm. Đúng||Sai
c) Phương trình
vô nghiệm. Sai||Đúng
d) Phương trình
có 2 nghiệm. Đúng||Sai
Cho hàm số có bảng biến thiên như hình vẽ:
a) Phương trình có 3 nghiệm. Đúng||Sai
b) Phương trình có 1 nghiệm. Đúng||Sai
c) Phương trình vô nghiệm. Sai||Đúng
d) Phương trình có 2 nghiệm. Đúng||Sai
a) Ta có .
Dựa vào bảng biến thiên, ta có phương trình f(x) = 0 có 3 nghiệm.
b) Ta có
Dựa vào bảng biến thiên, ta có phương trình f(x) = 2 có 1 nghiệm.
c) Ta có .
Dựa vào bảng biến thiên, ta có phương trình f(x) = −4 có 1 nghiệm.
d) Ta có.
Dựa vào bảng biến thiên, ta có phương trình f(x) = −3 có 2 nghiệm.
Có bao nhiêu số nguyên
để hàm số
nghịch biến trên khoảng
?
Tập xác định
Hàm số đã cho nghịch biến trên khoảng
Vậy có tất cả 4 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Cho hàm số
có một nguyên hàm là hàm số F(x). Số điểm cực trị của hàm số F(x) là
TXĐ: có một nguyên hàm là hàm số F(x)
=> F’(x) = f(x),
=>
Ta có bảng xét dấu F’(x) như sau:

Dựa vào bảng trên ta thấy hàm số F(x) có một điểm cực trị.
Cho hình vẽ:

Đường trong trong hình vẽ là đồ thị của hàm số nào?
Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng với
Vậy hàm số cần tìm là .
Cho hàm số
với
là tham số. Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số đã cho có duy nhất một cực tiểu. Hỏi tập
có bao nhiêu phần tử?
Điều kiện để hàm số có duy nhất một cực tiểu là
và phương trình
có duy nhất một nghiệm.
Để phương trình có duy nhất một nghiệm thì phương trình (*) vô nghiệm hoặc có nghiệm duy nhất x = 0.
Mặt khác
Vậy có tất cả 19 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Với giá trị nào của tham số
để đồ thị hàm số
đi qua điểm
?
Thay tọa độ điểm vào
ta được:
Vậy giá trị m cần tìm là .
Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
có đúng một tiệm cận đứng?
Đồ thị hàm số có đúng một tiệm cận đứng khi và chỉ khi phương trình
có đúng một nghiệm
Ta có:
Xét hàm số ta có:
Ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra
Mà nên
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Một chất điểm chuyển động với vận tốc được cho bởi công thức
với
(giây) là khoảng thời gian tính từ khi chất điểm bắt đầu chuyển động. Hỏi tại thời điểm nào thì vận tốc của chất điểm là lớn nhất?
Ta có: với
.
(thỏa mãn).
Bảng biến thiên
Dựa vào bảng biến thiên, tại thời điểm giây thì vận tốc của chất điểm là lớn nhất.
Đồ thị hàm số
có điểm cực đại là
và một điểm cực tiểu là
. Tính giá trị biểu thức
?
Do đồ thị hàm số có một cực tiểu
nên
.
Cho hàm số bậc bốn y = f(x) có đồ thị (C1) và hàm số y = f’(x) có đồ thị (C2) như hình vẽ bên. Số điểm cực trị của đồ thị hàm số
trên khoảng
là:

Ta có:

Xét
Từ đồ thị ta được:
Phương trình có nghiệm đơn
Phương trình có 2 nghiệm đơn và 1 nghiệm bội chẵn (x = 0)
Phương trình có 1 nghiệm đơn.
Vậy g’(x) = 0 có 8 nghiệm đơn nên hàm số g(x) có 8 điểm cực trị.
Xác định số giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
?
Xác định số giá trị nguyên của tham số để hàm số
nghịch biến trên khoảng
?
Định tất cả các giá trị thực của
để hàm số
có ba điểm cực trị?
Ta có:
Để hàm số có ba điểm cực trị thì có ba nghiệm phân biệt suy ra phương trình
có hai nghiệm phân biệt khác
Vậy đáp án cần tìm là .
Cho hàm số
. Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?
Tập xác định
Ta có:
Vậy đồ thị có một tiệm cận ngang .