Có bao nhiêu giá trị nguyên của tham số
để hàm số
không có điểm cực trị?
Ta có:
Hàm số đã cho không có cực trị khi và chỉ khi vô nghiệm hoặc có nghiệm kép.
Vì
Vậy có bốn giá trị của tham số thỏa mãn yêu cầu bài toán.
Có bao nhiêu giá trị nguyên của tham số
để hàm số
không có điểm cực trị?
Ta có:
Hàm số đã cho không có cực trị khi và chỉ khi vô nghiệm hoặc có nghiệm kép.
Vì
Vậy có bốn giá trị của tham số thỏa mãn yêu cầu bài toán.
Tất cả các giá trị của tham số
để hàm số
có ba điểm cực trị phân biệt là:
Hàm số có ba điểm cực trị khi và chỉ khi
.
Để hàm số đa cho có ba điểm cực trị khi và chỉ khi .
Cho bảng biến thiên như hình vẽ:

Bảng biến thiên trên là của hàm số nào?
Đồ thị hàm số đạt cực trị tại điểm x = 0 và x = 2
=> Loại đáp án C và D
Quan sát bảng biến thiên
=> Loại đáp án B
Đường cong ở hình dưới đây là đồ thị của hàm số nào?

Dựa vào hình vẽ ta thấy đây là hàm số bậc ba có dạng
Cho hàm số
có đồ thị là (C). Xét tính đúng sai của các khẳng định sau:
a) Số khoảng đồng biến và nghịch biến của hàm số là bằng nhau. Đúng||Sai
b) Hàm số
đạt cực đại tại điểm có toạ độ (−1; 2). Đúng||Sai
c) Đường thẳng x = 1 là đường tiệm cận đứng của đồ thị hàm số
. Đúng||Sai
d) Phương trình đường tiệm cận xiên của đồ thị hàm số
là
. Sai||Đúng
Cho hàm số có đồ thị là (C). Xét tính đúng sai của các khẳng định sau:
a) Số khoảng đồng biến và nghịch biến của hàm số là bằng nhau. Đúng||Sai
b) Hàm số đạt cực đại tại điểm có toạ độ (−1; 2). Đúng||Sai
c) Đường thẳng x = 1 là đường tiệm cận đứng của đồ thị hàm số . Đúng||Sai
d) Phương trình đường tiệm cận xiên của đồ thị hàm số là
. Sai||Đúng
Hàm số có tập xác định
Ta có:
Bảng biến thiên
a) Đúng: Hàm số đồng biến trên các khoảng (−∞; -1) và (3;+∞) và nghịch biến trên các khoảng (−1;1) và (1;3) .
b) Đúng: Đồ thị hàm số đạt cực đại tại điểm (−1;2)
c) Đúng: Xét nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số
.
d) Sai: Xét nên đường thẳng y = x + 5 là tiệm cận xiên của đồ thị hàm số
.
Cho hàm số
liên tục và có đạo hàm trên
. Biết
. Đồ thị hàm số
như hình vẽ:

Hàm số
có bao nhiêu điểm cực trị?
Xét .
Từ đồ thị ta thấy:
Vì hệ số cao nhất của nhỏ hơn 0 nên hệ số cao nhất của
cùng nhỏ hơn 0. Ta có bảng biến thiên:
luôn có đúng 2 nghiệm bội lé.
Số điểm cực trị của hàm số là 5.
Một bể bơi chứa
lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng đồ
gam muối cho mỗi lít nước với tốc độ
lít/phút.
a) Sau
phút khối lượng muối trong bể là
(gam). Đúng||Sai
b) Nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là
. Sai||Đúng
c) Xem
là một hàm số xác định trên nửa khoảng
, tiệm cận ngang của đồ thị hàm số đó có phương trình là
. Đúng||Sai
d) Khi
ngày càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức
(gam/lít). Đúng||Sai
Một bể bơi chứa lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng đồ
gam muối cho mỗi lít nước với tốc độ
lít/phút.
a) Sau phút khối lượng muối trong bể là
(gam). Đúng||Sai
b) Nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là . Sai||Đúng
c) Xem là một hàm số xác định trên nửa khoảng
, tiệm cận ngang của đồ thị hàm số đó có phương trình là
. Đúng||Sai
d) Khi ngày càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức
(gam/lít). Đúng||Sai
Sau t phút, khối lượng muối trong bể là (gam)
Thể tích của lượng nước trong bể là (lít).
Vậy nồng độ muối sau phút là:
(gam/lít).
Ta có
Vậy đường thẳng là tiệm cận ngang của đồ thị hàm số
:
Ta có đồ thị hàm số nhận đường thẳng
làm đường tiệm cận ngang, tức là khi t càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít).
Lúc đó, nồng độ muối trong bể sẽ gần như bằng nồng độ nước muối bơm vào bể.
a) Đúng. b) Sai. c) Đúng. d) Đúng.
Bác H cần xây dựng một bể nước mưa có thể tích
dạng hình hộp chữ nhật với chiều dài gấp
lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là
đồng trên một mét vuông và ở nắp để hở một khoảng hình vuông có diện tích bằng
diện tích nắp bể. Tính chi phí thấp nhất mà bác H phải chi trả (làm tròn đến hàng triệu đồng).
Bác H cần xây dựng một bể nước mưa có thể tích dạng hình hộp chữ nhật với chiều dài gấp
lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là
đồng trên một mét vuông và ở nắp để hở một khoảng hình vuông có diện tích bằng
diện tích nắp bể. Tính chi phí thấp nhất mà bác H phải chi trả (làm tròn đến hàng triệu đồng).
Điều kiện của tham số
để hàm số
đồng biến trên
là:
Tập xác định:
Ta có:
Hàm số đồng biến trên
Vậy giá trị của tham số m thỏa mãn yêu cầu bài toán là .
Cho hàm số
có đạo hàm
. Hàm số
có bao nhiêu điểm cực đại?
Từ giả thiết ta có bảng biến thiên của hàm số f(x)

Ta có:
g(x) = f(3 – x)
=> g’(x) = -f’(3 – x)
Từ bảng biến thiên của hàm số f(x) ta có:
=> Ta có bảng biến thiên của hàm số g(x) là:

Từ bảng biến thiên ta nhận thấy hàm số g(x) có một điểm cực đại.
Đồ thị hàm số
có bao nhiêu đường tiệm cận?
Điều kiện xác định
Vậy
Xét
Vậy là tiệm cận ngang của đồ thị hàm số.
Xét
Vậy là tiệm cận ngang của đồ thị hàm số.
Vì không tồn tại nên đồ thị hàm số đã cho không có tiệm cận đứng.
Vậy đồ thị hàm số có 2 tiệm cận.
Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Giá trị biểu thức
là:
Ta có: nên hàm số đồng biến trên
.
Cho hàm số
. Trong các khẳng định sau, khẳng định nào là khẳng định đúng?
Điều kiện
Từ điều kiện ta có:
Đồ thị hàm số không có tiệm cận đứng
Mặt khác
=> y = 0 là tiệm cận ngang của đồ thị hàm số
Không tồn tại
Vậy đồ thị hàm số không có tiệm cận đứng và có đúng một tiệm cận ngang
Cho hàm số
có đồ thị như hình dưới đây:

Số nghiệm của phương trình
là:
Ta có:
Số nghiệm của phương trình chính là số giao điểm của đồ thị hàm số
với đường thẳng
Quan sát đồ thị ta thấy đường thẳng cắt đồ thị tại hai điểm
=> Phương trình có 2 nghiệm.
Gia đình bác T muốn xây một bình chứa hình trụ có thể tích
. Đáy làm bằng bê tông giá 100 nghìn đồng/m2, thành làm bằng tôn giá 90 nghìn đồng/m2, nắp bằng nhôm giá 140 nghìn đồng/m2. Vậy đáy của hình trụ có bán kính bằng bao nhiêu để chi phí xây dựng là thấp nhất?
Gọi là bán kính đáy của bình chứa hình trụ
Khi đó tổng số tiền phải trả là
Đặt
Vậy để chi phí xây dựng là thấp nhất thì bán kính đáy bằng .
Có bao nhiêu giá trị nguyên dương của tham số
để đồ thị hàm số
có ba đường tiệm cận?
Ta có: nên suy ra hàm số có 1 đường tiệm cận ngang là
Để đồ thị hàm số có 3 đường tiệm cận thì phải có 2 tiệm cận đứng hay phương trình có hai nghiệm phân biệt khác
Do m nguyên dương nên có 14 giá trị m thỏa mãn.
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:

Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:
Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).
Cho hai số thực
thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Cho hai số thực thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Giả thiết cho
Xét hàm số trên
Suy ra
Vậy hàm số luôn đồng biến trên
nên ta có:
Suy ra:
Xét hàm số
luôn nghịch biến trên
luôn nghịch biến trên
Vậy khi
.
Số đường tiệm cận của đồ thị hàm số
là:
Tập xác định
Ta có: suy ra tiệm cận ngang của đồ thị hàm số
là
.
Lại có suy ra
là tiệm cận đứng của đồ thị hàm số.
suy ra
là tiệm cận đứng của đồ thị hàm số.
Vậy có tất cả 3 đường tiệm cận.
Cho hàm số
. Xác định số điểm cực trị của hàm số?
Ta có:
Vì nên hàm số đã cho có 3 cực trị.
Cho hàm số
xác định, liên tục trên
và có đồ thị như hình vẽ

Giá trị lớn nhất của hàm số
trên
là
Từ đồ thị hàm số, ta thấy hàm số đạt giá trị lớn nhất bằng 3 tại x = 1.
Trên đoạn
hàm số
có giá trị nhỏ nhất bằng bao nhiêu?
Tập xác định
Ta có:
Trên đoạn hàm số đã cho nghịch biến
Cho hàm số bậc ba
có đồ thị như hình vẽ:

Có bao nhiêu giá trị của m để hàm số
có 3 tiệm cận đứng?
Cho hàm số bậc ba có đồ thị như hình vẽ:

Có bao nhiêu giá trị của m để hàm số có 3 tiệm cận đứng?
Đồ thị hàm số
có đường tiệm cận ngang là
Ta có:
Suy ra tiệm cận ngang là .
Tìm tập hợp các giá trị thực của m để đồ thị hàm số
có tiệm cận đứng là:
Điều kiện để đồ thị hàm số có tiệm cận là
Cho hàm số
. Tập hợp các giá trị của tham số
để hàm số
nghịch biến trên
là
. Tính giá trị biểu thức
?
Cho hàm số . Tập hợp các giá trị của tham số
để hàm số
nghịch biến trên
là
. Tính giá trị biểu thức
?
Trong các hàm số dưới đây, hàm số nào đồng biến trên
?
Hàm số y = x – sinx có tập các định và
Nên hàm số luôn đồng biến trên
Tập hợp tất cả các giá trị của tham số
để hàm số
nghịch biến trên
là:
Đặt
Điều kiện xác định
Xét hàm ta có:
Ta có bảng biến thiên
Từ bảng biến thiên ta thấy hàm số nghịch biến trên khoảng
và
Khi đó yêu cầu bài toán đồng biến trên
Điều kiện xác định
Ta có:
Để hàm số đồng biến trên thì
Vậy đáp án cần tìm là
Trong các hàm số sau hàm số nào đồng biến trên (1; +∞)?
Ta có hàm số y = ax, y = logax đồng biến trên tập xác định nếu a > 0
Do đó hàm số y = log3x đồng biến trên (1; +∞)
Biết rằng giá trị nhỏ nhất của hàm số
trên đoạn
bằng
. mệnh đề nào sau đây đúng?
Ta có:
Suy ra hàm số luôn nghịch biến trên các khoảng và
Vì hàm số có giá trị nhỏ nhất trên đoạn nên
Hàm số có giá trị nhỏ nhất trên đoạn bằng
nên suy ra
Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?

Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Tìm các khoảng nghịch biến của hàm số
?
Tập xác định
Ta có:
Do đó hàm số luôn nghịch biến trên từng khoảng xác định.
Cho hàm số
có đạo hàm trên
và đồ thị như hình vẽ.

a) Hàm số nghịch biến trên khoảng
. Đúng||Sai
b) Hàm số đạt cực tiểu tại điểm
. Đúng||Sai
c) Đạo hàm của hàm số nhận giá trị không âm trên khoảng
. Đúng||Sai
d) Giá trị lớn nhất của hàm số trên đoạn
bằng
. Sai||Đúng
Cho hàm số có đạo hàm trên
và đồ thị như hình vẽ.
a) Hàm số nghịch biến trên khoảng . Đúng||Sai
b) Hàm số đạt cực tiểu tại điểm . Đúng||Sai
c) Đạo hàm của hàm số nhận giá trị không âm trên khoảng . Đúng||Sai
d) Giá trị lớn nhất của hàm số trên đoạn bằng
. Sai||Đúng
Theo hình vẽ, hàm số nghịch biến trên khoảng và đạt cực tiểu tại điểm
.
Vì hàm số đồng biến trên khoảng nên đạo hàm của hàm số nhận giá trị không âm trên khoảng đó.
Giá trị lớn nhất của hàm số trên đoạn bằng
.
Cho hàm số
với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của tham số
để ham số đã cho đạt cực trị tại hai điểm
thỏa mãn
. Tìm số phần tử của tập hợp
?
Cho hàm số với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của tham số
để ham số đã cho đạt cực trị tại hai điểm
thỏa mãn
. Tìm số phần tử của tập hợp
?
Cho các hàm số sau:
![]()
![]()
Có bao nhiêu hàm số mà đồ thị hàm số tương ứng có đúng một tiệm cận ngang?
Ta có:
có
nên có 1 tiệm cận ngang là
.
có
nên có 2 tiệm cận ngang là
.
có
nên có 1 tiệm cận ngang là
.
có
nên có 1 tiệm cận ngang là
.
Vậy có 3 hàm số mà đồ thị có đúng 1 tiệm cận đứng.
Hàm số nào sau đây có đồ thị như hình vẽ:

Dựa vào hình dáng đồ thị ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên loại đáp án
Đồ thị hàm số đi qua điểm có tọa độ nên loại đáp án
Lại có đồ thị hàm số có các điểm cực trị nên loại đáp án
Vậy hàm số cần tìm là .
Tìm giá trị thực của tham số
để hàm số
đạt cực tiểu tại
?
Ta có:
Để hàm số đạt cực tiểu tại thì
Vậy giá trị tham số m cần tìm là .
Cho hàm số
có đạo hàm liên tục trên
và có đồ thị của hàm số
như hình vẽ sau:

Xét hàm
. Mệnh đề nào dưới đây sai?
Ta có:
Dựa vào đồ thị ta thấy
Vậy hàm số nghịch biến trên
là sai.
Tính tổng tất cả các nghiệm của phương trình
là:
Xét hàm số
Nên hàm số đồng biến trên
Phương trình có dạng
Vậy tổng tất cả các nghiệm bằng .
Cho hàm số
có đồ thị như hình vẽ sau. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Dựa vào đồ thị ta có hàm số đồng biến trên khoảng