Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số y = f(x) liên tục trên và có bảng biến thiên như hình vẽ.

    Giá trị nhỏ nhất của hàm số

    Biết f(-4) > f(8), khi đó giá trị nhỏ nhất của hàm số đã cho trên bằng:

    Từ bảng biến thiên ta có:

    \begin{matrix}  f\left( x ight) \geqslant f\left( { - 4} ight),\forall x \in \left( { - \infty ;0} ight] \hfill \\  f\left( x ight) \geqslant f\left( 8 ight),\forall x \in \left( { - \infty ;0} ight) \hfill \\ \end{matrix}

    Mặt khác f(-4) > f(8) => \forall x \in \left( { - \infty ; + \infty } ight) thì f\left( x ight) \geqslant f\left( 8 ight)

    Vậy \mathop {\min }\limits_\mathbb{R} f\left( x ight) = f\left( 8 ight)

  • Câu 2: Thông hiểu

    Gọi m,n lần lượt là số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = \frac{\sqrt{2 - x}}{(x - 1)\sqrt{x}}. Khẳng định nào sau đây đúng?

    Tập xác định D =
(0;2brack\backslash\left\{ 1 ight\}

    Đồ thị hàm số không có tiệm cận ngang.

    \lim_{x ightarrow 1^{+}}\frac{\sqrt{2 -
x}}{(x - 1)\sqrt{x}} = + \infty;\lim_{x ightarrow 1^{-}}\frac{\sqrt{2
- x}}{(x - 1)\sqrt{x}} = - \infty ta có x = 1 là tiệm cận đứng.

    \lim_{x ightarrow 0^{+}}\frac{\sqrt{2 -
x}}{(x - 1)\sqrt{x}} = - \infty ta có: x = 0 là tiệm cận đứng.

    Vậy m = 0;n = 2.

  • Câu 3: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có đồ thị hàm số y = f'(x) như sau:

    Xét hàm số g(x) = f\left( x^{2} - 3
ight) và các mệnh đề sau:

    (i) Hàm số g(x) có ba điểm cực trị.

    (ii) Hàm số g(x) đạt cực tiểu tại x = 0.

    (iii) Hàm số g(x) đạt cực đại tại x = 2.

    (iv) Hàm số g(x) đồng biến trên khoảng ( - 2;0).

    (v) Hàm số g(x) nghịch biến trên khoảng ( - 1;1).

    Có bao nhiêu mệnh đề đúng trong các mệnh đề đã cho?

    Ta có: g'(x) = 2x.f'\left( x^{2}
- 3 ight)

    g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
f'\left( x^{2} - 3 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} - 3 = - 2 \\
x^{2} - 3 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = 1 \\
x^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Từ đồ thị ta nhận thấy x = \pm 1 là nghiệm kép nên ta có bảng biến thiên

    Dựa vào bảng biến thiên ta có hàm số g(x) ta thấy hàm số có 3 cực trị và đồng biến trên khoảng ( - 2;0).

    Vậy có tất cả 2 mệnh đề đúng.

  • Câu 4: Thông hiểu

    Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ sau:

    Khi đó số điểm cực trị của hàm số y =
\left| f(x) ight| là:

    Từ giả thiết ta có đồ thị của hàm số y =
\left| f(x) ight| như sau:

    Vậy hàm số y = \left| f(x)
ight| có ba điểm cực trị.

  • Câu 5: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= \frac{mx - 3}{2x - m} đồng biến trên từng khoảng xác định?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= \frac{mx - 3}{2x - m} đồng biến trên từng khoảng xác định?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Nhận biết

    Giá trị nhỏ nhất của hàm số y = x3 – 3x + 5 trên đoạn [0; 2] là:

    Xét hàm số f(x) = x3 – 3x + 5 trên [0; 2] có:

    f’(x) = 3x3 – 3

    f’(x) = 0 =>\left\{ {\begin{array}{*{20}{c}}  {0 \leqslant x \leqslant 2} \\   {3{x^2} - 3 = 0} \end{array}} ight. \Rightarrow x = 1

    Tính được f(0) = 5; f(1) = 3; f(2) = 7

    Vậy \mathop {\min }\limits_{\left[ {0;2} ight]} f\left( x ight) = f\left( 1 ight) = 3

  • Câu 7: Thông hiểu

    Đường tiệm cận xiên của đồ thị hàm số y =
\frac{x^{2} - 2x + 3}{x + 1} là đường thẳng có phương trình

    Tập xác định: D = R\backslash\left\{ - 1
ight\}.

    Phương trình đường tiệm cận xiên có dạng: y = ax + b.

    Trong đó,

    a = \lim_{x ightarrow +
\infty}\frac{f(x)}{x} = \lim_{x ightarrow + \infty}\frac{x^{2} - 2x +
3}{x^{2} + x} = 1

    b = \lim_{x ightarrow +
\infty}\left\lbrack f(x) - ax ightbrack = \lim_{x ightarrow +
\infty}\left( \frac{x^{2} - 2x + 3}{x + 1} - x ight) = \lim_{x
ightarrow + \infty}\frac{- 3x + 3}{x + 1} = - 3.

    Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng y = x - 3.

  • Câu 8: Vận dụng cao

    Tìm tập hợp T tất cả các giá trị của tham số thực m để hàm số y = \frac{1}{3}{x^3} - \left( {m + 1} ight){x^2} + \left( {{m^2} + 2m} ight)x - 3 nghịch biến trên khoảng (-1; 1)

     Ta có: y' = {x^2} - 2\left( {m + 1} ight)x + \left( {{m^2} + 2m} ight)

    Để hàm số nghịch biến trên khoảng (-1; 1) thì

    \begin{matrix}  y' \leqslant 0,\forall x \in \left( { - 1;1} ight) \hfill \\   \Leftrightarrow {x^2} - 2\left( {m + 1} ight)x + \left( {{m^2} + 2m} ight) \leqslant 0,\forall x \in \left( { - 1;1} ight) \hfill \\ \end{matrix}

    Ta có y’ = 0 => x = m hoặc x = m + 2

    Bảng xét dấu

    Tìm điều kiện để hàm số nghịch biến trên khoảng

    Từ bảng xét dấu ta thấy để hàm số nghịch biến trên khoảng (-1; 1) thì

    \left\{ {\begin{array}{*{20}{c}}  {m \leqslant  - 1} \\   {m + 2 \geqslant 1} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m \leqslant  - 1} \\   {m \geqslant  - 1} \end{array}} ight. \Leftrightarrow m =  - 1

  • Câu 9: Nhận biết

    Tâm đối xứng của đồ thị hàm số y =
\frac{3x - 1}{x + 2} là điểm nào trong các điểm cho sau đây?

    Đồ thị hàm số y = \frac{3x - 1}{x +
2} nhận giao của hai tiệm cận làm tâm đối xứng

    Đồ thị hàm số có tiệm cận ngang là y =
3 và tiệm cận đứng là x = -
2

    Do đó tâm đối xứng của đồ thị hàm số là điểm ( - 2;3).

  • Câu 10: Nhận biết

    Điểm cực tiểu của đồ thị hàm số y = x^{3}
- 3x + 4 thuộc đường thẳng nào sau đây?

    Ta có: y' = 3x^{2} - 3. Do đó y' = 0 \Leftrightarrow 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    x = 1 là điểm cực tiểu của hàm số nên điểm A(1;2) là điểm cực tiểu của đồ thị hàm số.

    Nhận thấy A(1;2) thuộc đường thẳng y = x + 1.

    Vậy điểm cực tiểu của đồ thị hàm số y =
x^{3} - 3x + 4 thuộc đường thẳng y
= x + 1.

  • Câu 11: Thông hiểu

    Tìm số các giá trị nguyên của tham số m để hàm số y
= x^{4} + 2\left( m^{2} - m - 6 ight)x^{2} + m - 1 có ba điểm cực trị?

    Ta có: y' = 4x^{3} + 4\left( m^{2} -
m - 6 ight)x

    y' = 0 \Leftrightarrow 4x^{3} +
4\left( m^{2} - m - 6 ight)x = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
4x = 0 \\
x^{2} = - m^{2} + m + 6 \\
\end{matrix} ight.

    Hàm số có ba cực trị khi và chỉ khi -
m^{2} + m + 6 > 0 \Leftrightarrow - 2 < m < 3

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1;2 ight\}. Vậy có 4 giá trị của tham số m thỏa mãn.

  • Câu 12: Thông hiểu

    Số các giá trị nguyên của tham số m \in
\lbrack - 20;20brack để hàm số y
= \frac{mx - 16}{x - m} nghịch biến trên khoảng ( - \infty;8) là:

    Ta có: y' = \frac{- m^{2} + 16}{(x -
m)^{2}}. Hàm số nghịch biến trên khoảng ( - \infty;8) khi

    \left\{ \begin{matrix}
y' < 0;\forall x < 8 \\
x eq m \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- m^{2} + 16 < 0 \\
m otin ( - \infty;8) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m < - 4 \\
m > 4 \\
\end{matrix} ight.\  \\
m \geq 8 \\
\end{matrix} ight.\  \Leftrightarrow m \geq 8

    \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 20;20brack \\
\end{matrix} ight.\  \Rightarrow m \in \left\{ 8;9;10;...;20
ight\}

    Vậy có tất cả 13 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 13: Thông hiểu

    Có bao nhiêu số nguyên m để hàm số y = \frac{x + 3}{x - m} nghịch biến trên khoảng (1; + \infty)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}

    Hàm số đã cho nghịch biến trên khoảng (1;
+ \infty) \Leftrightarrow y'
< 0;\forall x \in (1; + \infty)

    \Leftrightarrow \left\{ \begin{matrix}
- m - 3 < 0 \\
m \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow - 3 < m \leq 1

    Vậy có tất cả 4 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 14: Nhận biết

    Cho hàm số f(x) = x^{3} + 3x^{2} + x -
1. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;2brack lần lượt là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} + 6x + 1\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{- 3 - \sqrt{6}}{3} \\x = \dfrac{- 3 + \sqrt{6}}{3} \\\end{matrix} ight.

    Khi đó: y( - 1) = 0;y\left( \frac{- 3 +
\sqrt{6}}{3} ight) = - \frac{4\sqrt{6}}{9};y(2) = 21

    \Rightarrow \left\{ \begin{gathered}
  \mathop {\max }\limits_{\left[ { - 1;2} ight]} y = y\left( 2 ight) = 21 \hfill \\
  \mathop {\min }\limits_{\left[ { - 1;2} ight]} y = y\left( {\frac{{ - 3 + \sqrt 6 }}{3}} ight) =  - \frac{{4\sqrt 6 }}{9} \hfill \\ 
\end{gathered}  ight.

  • Câu 15: Vận dụng cao

    Tồn tại bao nhiêu giá trị nguyên của tham số m \in \lbrack - 30;30brack sao cho đồ thị hàm số y = \frac{2x^{2} + 5}{x^{3} + (m
- 4)x + 2m} có ít nhất một tiệm cận đứng nằm bên phải trục tung?

    Để đồ thị hàm số có ít nhất một tiệm cận đứng nằm bên phải trục tung thì phương trình x^{3} + (m - 4)x + 2m =
0 có ít nhất 1 nghiệm dương.

    Ta có:

    x^{3} + (m - 4)x + 2m = 0

    \Leftrightarrow x^{3} - 4x + mx + 2m =
0

    \Leftrightarrow x(x - 2)(x + 2) + m(x +
2) = 0

    \Leftrightarrow (x + 2)\left( x^{2} - 2x
+ m ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x^{2} - 2x + m = 0(*) \\
\end{matrix} ight.

    Để (∗) có ít nhất 1 nghiệm dương thì:

    TH1: (*) có 2 nghiệm trái dấu \Leftrightarrow m < 0

    m \in \lbrack -
30;30brack;m\mathbb{\in Z} nên m
\in \{ - 30; - 29;\ldots; - 1\}.

    TH2: (*) có 2 nghiệm phân biệt 0 \leq
x_{1} < x_{2}

    \Leftrightarrow \left\{ \begin{matrix}
\Delta^{'} = 1 - m > 0 \\
x_{1}x_{2} = m \geq 0 \\
x_{1} + x_{2} = 2 > 0 \\
\end{matrix} \Leftrightarrow 0 \leq m < 1. ight.

    m \in \lbrack -
30;30brack;m\mathbb{\in Z} nên m
= 0.

    TH3: (*) có nghiệm kép lớn hơn 0.

    \Leftrightarrow \left\{ \begin{matrix}
\Delta^{'} = 1 - m = 0 \\
x_{1}x_{2} = m > 0 \\
x_{1}x_{2} > 0 \\
\end{matrix} \Leftrightarrow 0 < m \leq 1 ight..

    m \in \lbrack -
30;30brack;m\mathbb{\in Z} nên m
= 1.

    Vậy m \in \{ - 30; - 29;\ldots;1\}
\Rightarrow có 32 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

  • Câu 16: Vận dụng cao

    Cho hàm số f(x) liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như sau:

    Số cực trị của hàm số

    Hàm số g\left( x ight) = f\left( {\left| {\frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}} ight|} ight) có bao nhiêu điểm cực trị?

    Xét hàm số t\left( x ight) = \frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}, ta có bảng giá trị |t(x)|

    Số cực trị của hàm số

    Ta có: g\left( x ight) = f\left( {\left| {\frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}} ight|} ight) = f\left( {\left| {t\left( x ight)} ight|} ight)

    Hàm số không có đạo hàm tại điểm x =  \pm \sqrt {{e^2} - 1}

    Tại mọi điểm x =  \pm \sqrt {{e^2} - 1} ta có:

    g'\left( x ight) = f'\left( {\left| {t\left( x ight)} ight|} ight).\left( {\left| {t\left( x ight)} ight|} ight)'

    = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{f'\left( {\left| {t\left( x ight)} ight|} ight).x}}{{{x^2} + 1}}{\text{    khi x}} \in \left( { - \infty ; - \sqrt {{e^2} - 1} } ight) \cup \left( {\sqrt {{e^2} - 1} ; + \infty } ight)} \\   { - \dfrac{{f'\left( {\left| {t\left( x ight)} ight|} ight).x}}{{{x^2} + 1}}{\text{    khi x}} \in \left( { - \sqrt {{e^2} - 1} ;\sqrt {{e^2} - 1} } ight)} \end{array}} ight.\left( * ight)

    => g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {\left| {t\left( x ight)} ight| = {t_1};\left( {{t_1} < 1} ight){\text{   }}\left( 1 ight)} \\   {\left| {t\left( x ight)} ight| = {t_2};\left( { - 1 < {t_2} < 0} ight){\text{   }}\left( 2 ight)} \\   {\left| {t\left( x ight)} ight| = {t_3};\left( {0 < {t_3} < 1} ight){\text{   }}\left( 3 ight)} \\   {\left| {t\left( x ight)} ight| = {t_4};\left( {{t_4} > 1} ight){\text{   }}\left( 4 ight)} \end{array}} ight.

    Dựa vào bảng giá trị hàm |t| suy ra:

    + Phương trình (1), (2) vô nghiệm

    + Phương trình (3) có 4 nghiệm phân biệt khác 0

    + Phương trình (4) có hai nghiệm phân biệt khác 0 và khác các nghiệm của phương trình (3)

    => g’(x) = 0 có 7 nghiệm và qua các nghiệm này g’(x) đều đổi dấu

    Từ (*) ta thấy g’(x) cũng đổi dấu khi x đi qua 2 điểm x =  \pm \sqrt {{e^2} - 1}

    Vậy hàm số g(x) có 9 điểm cực trị.

  • Câu 17: Thông hiểu

    Xác định giá trị lớn nhất của hàm số y = \sqrt {x - 1}  + \sqrt {3 - x}  - 2\sqrt { - {x^2} + 4x - 3}

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {x - 1 \geqslant 0} \\   {3 - x \geqslant 0} \end{array} \Rightarrow x \in \left[ {1;3} ight]} ight.

    Đặt \sqrt {x - 1}  + \sqrt {3 - x}  = t ta có:

    \begin{matrix}  t' = \dfrac{1}{{2\sqrt {x - 1} }} - \dfrac{1}{{\sqrt {3 - x} }} \hfill \\  t' = 0 \Rightarrow x = 2 \hfill \\ \end{matrix}

    Ta có: t\left( 1 ight) = t\left( 3 ight) = \sqrt 2  \to \sqrt 2  \leqslant t \leqslant 2

    Khi đó:

    \begin{matrix}  {t^2} = 2 + 2\sqrt {\left( {x - 1} ight)\left( {3 - x} ight)}  \hfill \\   = 2 + 2\sqrt { - {x^2} + 4x - 3}  \hfill \\   \Leftrightarrow 2\sqrt { - {x^2} + 4x - 3}  = {t^2} - 2 \hfill \\ \end{matrix}

    Do đó: y = f\left( t ight) = t - \left( {{t^2} - 2} ight) =  - {t^2} + t + 2

    Xét hàm số f\left( t ight) = t - \left( {{t^2} - 2} ight);\forall t \in \left[ {\sqrt 2 ;2} ight]

    Ta xác được \mathop {\max f\left( t ight) = \sqrt 2 }\limits_{\left[ {\sqrt 2 ;2} ight]}  \Rightarrow \mathop {\max y = \sqrt 2 }\limits_{\left[ {\sqrt 2 ;2} ight]}

  • Câu 18: Vận dụng cao

    Cho hai số thực x \geq 0;1 \leq y \leq
3 thỏa mãn 2^{x - 2y}.(2x + 1) = 4y
+ 2x + 4. Tìm giá trị nhỏ nhất của biểu thức P = 2^{x - y - 2} - x - y^{2} + 2037?

    Đáp án: 2025

    Đáp án là:

    Cho hai số thực x \geq 0;1 \leq y \leq
3 thỏa mãn 2^{x - 2y}.(2x + 1) = 4y
+ 2x + 4. Tìm giá trị nhỏ nhất của biểu thức P = 2^{x - y - 2} - x - y^{2} + 2037?

    Đáp án: 2025

    Giả thiết cho 2^{x - 2y}.(2x + 1) = 4y +
2x + 4

    \Leftrightarrow 2^{x}.(2x + 1) = 2(2y +
x + 2)2^{2y}

    \Leftrightarrow 2^{x}.(2x + 1) = 2^{2y +
1}(2y + x + 2)

    \Leftrightarrow 2^{2x}.(2x + 1) = 2^{2y
+ x + 1}(2y + x + 1 + 1)

    Xét hàm số f(t) = 2^{t}.(t + 1) trên (0\ ; + \infty)

    Suy ra f'(t) = 2^{t}.(t + 1)ln2 + 2^{t} > 0,\
\forall t \in (0\ ; + \infty)

    Vậy hàm số f(t) luôn đồng biến trên (0\ ; + \infty) nên ta có:

    \Leftrightarrow 2^{2x}.(2x + 1) = 2^{2y
+ x + 1}(2y + x + 1 + 1)

    \Leftrightarrow 2x = 2y + x + 1
\Leftrightarrow x = 2y + 1

    Suy ra: P = 2^{x - y - 2} - x - y^{2} +
2037

    = 2^{y - 1} - \left( y^{2} + 2y + 1
ight) + 2037

    = \frac{1}{4}.2^{y + 1} - (y + 1)^{2} +
2037

    Xét hàm số g(a) = \frac{1}{4}.2^{a} -
a^{2};\ a \in \lbrack 2\ ;4brack

    g^{'(a)} = \frac{2^{a}.ln2}{4} -
2a

    \Rightarrow g''(a) =
\frac{2^{a}.ln^{2}2}{4} - 2 < 0,\forall\ a \in \lbrack 2\
;4brack

    \Rightarrow g'(a) luôn nghịch biến trên \lbrack 2\
;4brack

    \Rightarrow \max_{\lbrack 2\
;4brack}g'(a) = g'(2) = ln2 - 4 < 0

    \Rightarrow g(a) luôn nghịch biến trên \lbrack 2\ ;4brack

    \Rightarrow \min g(a) = g(4) = -
12

    Vậy \min P = - 12 + 2037 = 2025 khi y + 1 = 4 \Rightarrow y = 3\ ;x =
7.

  • Câu 19: Vận dụng

    Người ta cần xây một bể chứa nước sản xuất dạng khối hộp chữ nhật không nắp có thể tích bằng 200m^{2}. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng. Chi phí để xây bể là 300 nghìn đồng/m2. Hãy xác định chi phí thấp nhất để xây bể.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Người ta cần xây một bể chứa nước sản xuất dạng khối hộp chữ nhật không nắp có thể tích bằng 200m^{2}. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng. Chi phí để xây bể là 300 nghìn đồng/m2. Hãy xác định chi phí thấp nhất để xây bể.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Thông hiểu

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = f(x) = \frac{x}{|x| - 1} là:

    Khi x \geq 0;x eq 1 \Rightarrow f(x) =
\frac{x}{x - 1}

    Suy ra đồ thị hàm số có 1 tiệm cận ngang y = 1 và 1 tiệm cận đứng x = 1

    Khi x < 0;x eq - 1 \Rightarrow f(x)
= \frac{x}{- x - 1}

    Suy ra đồ thị hàm số có 1 tiệm cận ngang y = - 1 và 1 tiệm cận đứng x = - 1

    Vậy đồ thị hàm số y = f(x) = \frac{x}{|x|
- 1} có tất cả 4 đường tiệm cận.

  • Câu 21: Nhận biết

    Cho hàm số có đạo hàm f'(x) = (x + 2)^{3}(x - 2)^{3}(3 -
x). Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

    Ta có: f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 2 \\
x = 2 \\
x = 3 \\
\end{matrix} ight. ta có bảng xét dấu như sau:

    Vậy hàm số đồng biến trên khoảng (2;3).

  • Câu 22: Nhận biết

    Đường cong trong hình vẽ dưới đây là của hàm số nào?

    Xác định hàm số tương ứng với đồ thị hàm số

    Đường tiệm cận ngang: y = \frac{1}{2}

    Đường tiệm cận đứng: x = 1

     

  • Câu 23: Thông hiểu

    Số đường tiệm cận của đồ thị hàm số y =
\frac{\sqrt{x - 1}}{x^{2} - 2x} là:

    Điều kiện xác định x \geq 1;x eq
2

    Ta có: \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow + \infty}\frac{\sqrt{x - 1}}{x^{2} - 2x} =
0 suy ra y = 0 là tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow 2^{+}}y = \lim_{x
ightarrow 2^{+}}\frac{\sqrt{x - 1}}{x^{2} - 2x} = + \infty nên đồ thị hàm số có 1 tiệm cận đứng x =
2.

    Vậy đồ thị hàm số có 2 đường tiệm cận.

  • Câu 24: Vận dụng

    Cho hàm số y =  - {x^3} + 3{x^2} + 3mx - 1. Xác định tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trong khoảng (0; +∞)

    Ta có: y' =  - 3{x^2} + 6x + 3m

    Hàm số đã cho nghịch biến trên khoảng (0; +∞)

    =>  y' \leqslant 0,\forall x \in \left( {0; + \infty } ight)

    => m \leqslant {x^2} - 2x = g\left( x ight),\forall x \in \left( {0; + \infty } ight)

    => m \leqslant \mathop {\min }\limits_{\left( {0; + \infty } ight)} g\left( x ight)

    Xét  g\left( x ight) = {x^2} - 2x;\forall x \in \left( {0; + \infty } ight) ta có:

    \begin{matrix}  g'\left( x ight) = 2x - 2 \hfill \\  g'\left( x ight) = 0 \Rightarrow x = 1 \hfill \\ \end{matrix}

    Ta lại có:

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to 0} g\left( x ight) = 0} \\   {\mathop {\lim }\limits_{x \to \infty } g\left( x ight) =  + \infty } \\   {g\left( 1 ight) =  - 1} \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left( {0; + \infty } ight)} g\left( x ight) =  - 1 \Rightarrow m \leqslant  - 1

  • Câu 25: Vận dụng

    Một máy bay bắt đầu hạ cánh, biết quỹ đạo đường bay của nó được mô hình hóa toán học trong mặt phẳng với hệ tọa độ Oxy(với mỗi đơn vị trên mỗi trục có độ dài bằng 1 dặm) có dạng đồ thị của hàm bậc ba. Vị trí bắt đầu hạ cánh có tọa độ là ( - 4;1) là điểm cực đại của đồ thị hàm số và máy bay này tiếp đất tại vị trí gốc tọa độ là điểm cực tiểu của đồ thị hàm số. Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất bao nhiêu dặm (kết quả làm tròn đến hàng phần trăm)?

    Đáp án: 0,84 dặm

    Đáp án là:

    Một máy bay bắt đầu hạ cánh, biết quỹ đạo đường bay của nó được mô hình hóa toán học trong mặt phẳng với hệ tọa độ Oxy(với mỗi đơn vị trên mỗi trục có độ dài bằng 1 dặm) có dạng đồ thị của hàm bậc ba. Vị trí bắt đầu hạ cánh có tọa độ là ( - 4;1) là điểm cực đại của đồ thị hàm số và máy bay này tiếp đất tại vị trí gốc tọa độ là điểm cực tiểu của đồ thị hàm số. Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất bao nhiêu dặm (kết quả làm tròn đến hàng phần trăm)?

    Đáp án: 0,84 dặm

    Gọi hàm số mô phỏng đường bay của máy bay là y = ax^{3} + bx^{2} + cx + d\ (a eq0).

    Đồ thị hàm số đi qua điểm O(0;0) nên ta có d = 0.

    Đồ thị hàm số đi qua điểm ( -4;1) nên ta có phương trình - 64a +16b - 4c = 1\ \ (1).

    Mặt khác, ta có ( - 4;1)O(0;0) là hai điểm cực trị của đồ thị hàm số nên ta có y'( - 4) = 0;\y'(0) = 0 tức là \left\{\begin{matrix}48a - 8b + c = 0 \\c = 0 \\\end{matrix} ight. (2).

    Từ (1)(2) ta có a =\frac{1}{32};\ b = \frac{3}{16};\ c = 0.

    Suy ra y = \frac{1}{32}x^{3} +\frac{3}{16}x^{2}.

    Thay x = - 3 ta được y = \frac{27}{32} \approx 0,84.

    Vậy khi máy bay ha cánh theo phương ngang 3 dặm thì máy bay cách mặt đất khoảng 0,84 dặm.

  • Câu 26: Vận dụng

    Cho hàm số f(x) có đạo hàm f’(x). Đồ thị của hàm số y = f’(x) được biểu diễn trong hình vẽ dưới đây.

    Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số

    Biết rằng f\left( 0 ight) + f\left( 1 ight) + f\left( 3 ight) = f\left( 4 ight) + 2f\left( 2 ight). Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số f(x) trên đoạn [0; 4]?

    Ta có bảng xét dấu như sau:

    Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số

    Dựa vào bảng xét dấy ta có M = f(2), GTNN chỉ có thể là f(0) hoặc f(4)

    Ta lại có

    f(1) và f(3) nhỏ hơn f(2) => f(1) + f(3) < 2f(2)

    => 2f(2) – f(1) – f(3) > 0

    Theo bài ra ta có:

    f(0) + f(1) + f(3) = f(4) + 2f(2)

    => f(0) – f(4) = 2f(2) – f(1) – f(3) > 0

    => f(0) – f(4) > 0 => f(0) > f(4)

    => GTNN đạt được tại x = 4

  • Câu 27: Thông hiểu

    Cho hàm số y = f(x)xác định trên R và có đồ thị hàm số y = f'(x) là đường cong như hình vẽ:

    Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.

    a) Hàm số y = f(x) nghịch biến trên khoảng (−1; 1). Sai||Đúng

    b) Hàm số y = f(x) nghịch biến trên khoảng (0; 2). Đúng||Sai

    c) Hàm số y = f(x) đạt cực đại tại x = 0. Đúng||Sai

    d) Hàm số y = f(x) đạt cực tiểu tại x = 1. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x)xác định trên R và có đồ thị hàm số y = f'(x) là đường cong như hình vẽ:

    Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.

    a) Hàm số y = f(x) nghịch biến trên khoảng (−1; 1). Sai||Đúng

    b) Hàm số y = f(x) nghịch biến trên khoảng (0; 2). Đúng||Sai

    c) Hàm số y = f(x) đạt cực đại tại x = 0. Đúng||Sai

    d) Hàm số y = f(x) đạt cực tiểu tại x = 1. Sai||Đúng

    Từ đồ thị hàm số y = f'(x), ta có bảng biến thiên

    a) Từ bảng biến thiên hàm số đồng biến trên khoảng (−1; 0) và nghịch biến trên khoảng (0; 1).

    b) Từ bảng biến thiên ta thấy hàm số y = f(x) nghịch biến trên (0; 2).

    c) Từ bảng biến thiên ta thấy hàm số f(x) đạt cực đại tại x = 0.

    d) Từ bảng biến thiên ta thấy hàm số f(x) đạt cực tiểu tại x = −2 và x = 2.

  • Câu 28: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Giá trị cực tiểu của hàm số đã cho bằng:

    Dựa vào bảng biến thiên suy ra hàm số đạt cực tiểu tại x = - 1x
= 1; giá trị cực tiểu bằng -
4.

  • Câu 29: Nhận biết

    Cho hàm số y =\frac{2x + 1}{x - 3}. Mệnh đề nào dưới đây là mệnh đề sai?

    f'(x) = \frac{- 7}{(x - 3)^{2}}< 0;\forall x \in D nên đồ thị hàm số luôn nghịch biến trên các khoảng ( - \infty;3),(3; +\infty).

    Vậy mệnh đề sai là: "Hàm số đồng biến trên \mathbb{R}\backslash\left\{ 3 ight\}".

  • Câu 30: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y
= \frac{1}{3}x^{3} - (m - 1)x^{2} - 4mx đồng biến trên đoạn \lbrack 1;4brack?

    Theo yêu cầu bài toán ta có:

    y' = x^{2} - 2(m - 1)x - 4m \geq
0;\forall x \in \lbrack 1;4brack(*)

    Để hàm số đồng biến trên đoạn \lbrack
1;4brack

    \Leftrightarrow y' \geq 0;\forall x
\in \lbrack 1;4brack

    \Leftrightarrow x^{2} - 2(m - 1)x - 4m
\geq 0

    \Leftrightarrow m \leq \frac{x^{2} +
2x}{4 + 2x}

    Đặt g(x) = \frac{x^{2} + 2x}{4 + 2x}
\Rightarrow g'(x) = \frac{8x}{(4 + 2x)^{2}} > 0;\forall x \in
\lbrack 1;4brack

    \Rightarrow \min_{\lbrack
1;4brack}g(x) = g(1) = \frac{1}{2} \Rightarrow m \leq
\frac{1}{2}

    Vậy m \leq \frac{1}{2} là đáp án cần tìm.

  • Câu 31: Nhận biết

    Đường thẳng y = - 2 là đường tiệm cận của đồ thị hàm số nào sau đây?

    y = \frac{2}{3x + 2}\lim_{x ightarrow \infty}y = 0 suy ra y = 0 là tiệm cận ngang của đồ thị hàm số. (Loại)

    y = \frac{2x^{3} - 3}{x + 2}\lim_{x ightarrow \infty}y =
\infty nên đồ thị hàm số không có tiệm cận ngang (loại)

    y = \frac{2x^{2} + x - 1}{(x + 1)(3 - x)}
= \frac{2x^{2} + x - 1}{- x^{2} + 2x + 3}\lim_{x ightarrow \infty}y = - 2 suy ra y = - 2 là tiệm cận ngang (Thỏa mãn).

    Vậy đường thẳng y = - 2 là đường tiệm cận của đồ thị hàm số y = \frac{2x^{2}
+ x - 1}{(x + 1)(3 - x)}.

  • Câu 32: Vận dụng

    Số đường tiệm cận của đồ thị hàm số y =
\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3} là:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1;3 ight\}

    \lim_{x ightarrow +\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow +\infty}\dfrac{x^{2}\left( \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow +\infty}\dfrac{\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 -\dfrac{2}{x} - \dfrac{3}{x^{2}}} = 2 suy ra y = 2 là tiệm cận ngang.

    \lim_{x ightarrow -\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow -\infty}\dfrac{x^{2}\left( - \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 - \dfrac{2}{x} -\dfrac{3}{x^{2}}} = 0 suy ra y =
0 là tiệm cận ngang.

    \lim_{x ightarrow - 1}\left\lbrack\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3}ightbrack= \lim_{x ightarrow - 1}\frac{x\left( \sqrt{x^{2} + 3} +x - 1 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}{\left( x^{2} - 2x- 3 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x(x +
1)}{(x - 3)(x + 1)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x}{(x -
3)\left( \sqrt{x^{2} + 3} - x + 1 ight)} = \frac{- 2}{16} =
\frac{1}{8}

    Vậy x = - 1 không là tiệm cận đứng của đồ thị hàm số đã cho.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x =
3 là tiệm cận đứng của đồ thị hàm số đã cho

    Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.

  • Câu 33: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận ngang là:

    Dựa vào bảng biến thiên ta có: \lim_{x
ightarrow \pm \infty}f(x) = 2 nên đồ thị hàm số có đường tiệm cận ngang là y =  2.

  • Câu 34: Vận dụng

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)^{2}\left( x^{2} - 3x + 2
ight) với mọi x\mathbb{\in
R}.

    a) Phương trình f'(x) = 0 có duy nhất một nghiệm x = 2. Sai||Đúng

    b) Hàm số f(x) đồng biến trên khoảng ( - 3;0). Đúng||Sai

    c) Hàm số f(x) có hai điểm cực trị. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 6x + 1
ight) có ba điểm cực đại. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)^{2}\left( x^{2} - 3x + 2
ight) với mọi x\mathbb{\in
R}.

    a) Phương trình f'(x) = 0 có duy nhất một nghiệm x = 2. Sai||Đúng

    b) Hàm số f(x) đồng biến trên khoảng ( - 3;0). Đúng||Sai

    c) Hàm số f(x) có hai điểm cực trị. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 6x + 1
ight) có ba điểm cực đại. Sai||Đúng

    a) Sai

    Ta có f'(x) = (x - 1)^{2}\left( x^{2}
- 3x + 2 ight) = (x - 1)^{3}(x - 2).

    f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight..

    Vậy phương trình f'(x) = 0 có hai nghiệm.

    b) Đúng

    Bảng biến thiên y = f(x)

    Dựa vào bảng biến thiên của hàm số y =
f(x) ta thấy hàm số đồng biến trên các khoảng ( - \infty;1),(2; + \infty).

    Ta có ( - 3;0) \subset ( -
\infty;1) nên hàm số f(x) đồng biến trên khoảng ( - 3;0).

    c) Đúng

    Dựa vào bảng biến thiên của hàm số y =
f(x) ta thấy hàm số có hai điểm cực trị.

    d) Sai

    Ta có:

    y = f\left( x^{2} - 6x + 1
ight)

    \Rightarrow y^{'} = \left( x^{2} - 6x
+ 1 ight)^{'}f^{'\left( x^{2} - 6x + 1 ight)} = (2x -
6)f'\left( x^{2} - 6x + 1 ight).

    y' = 0 \Leftrightarrow (2x -
6)f'\left( x^{2} - 6x + 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x - 6 = 0 \\
x^{2} - 6x + 1 = 1 \\
x^{2} - 6x + 1 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 3 \\
x = 0 \\
x = 6 \\
x = - 3 + \sqrt{10} \\
x = - 3 - \sqrt{10} \\
\end{matrix} ight..

    Bảng biến thiên y = f\left( x^{2} - 6x +
1 ight)

    Dựa vào bảng biến thiên của hàm số y =
f\left( x^{2} - 6x + 1 ight) ta thấy hàm số có hai điểm cực đại.

  • Câu 35: Thông hiểu

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Hãy phương trình 2\left| f(x) ight| - 1
= 0 có bao nhiêu nghiệm thuộc khoảng (0; + \infty)?

    Ta có: 2\left| f(x) ight| - 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}f(x) = \dfrac{1}{2} \\f(x) = - \dfrac{1}{2} \\\end{matrix} ight.

    Từ đồ thị hàm số ta thấy đường thẳng y =
\frac{1}{2} cắt đồ thị tại hai điểm phân biệt, đường thẳng y = - \frac{1}{2} cắt đồ thị tại 4 điểm phân biệt do đó phương trình f(x) =
\frac{1}{2} có hai nghiệm phân biệt và phương trình f(x) = - \frac{1}{2} có 4 nghiệm phân biệt

    Vậy phương trình 2\left| f(x) ight| - 1
= 0 có tất cả 6 nghiệm thực phân biệt.

  • Câu 36: Nhận biết

    Chọn hàm số đồng biến trên \mathbb{R}?

    Xét hàm số y = 2x^{3} + 3x + 1 ta có:

    y' = 6x^{2} + 3 > 0;\forall
x\mathbb{\in R}

    Vậy hàm số y = 2x^{3} + 3x + 1 đồng biến trên \mathbb{R}.

  • Câu 37: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Có bao nhiêu giá trị nguyên của tham số m để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt?

    Ta có: 2f(x) + 3m = 0 \Leftrightarrow
f(x) = \frac{- 3m}{2}

    Để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt thì - \frac{3m}{2} =
- 3 \Leftrightarrow m = 2

    Vậy có 1 giá trị nguyên của m thỏa mãn yêu cầu.

  • Câu 38: Thông hiểu

    Cho hàm số có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?

    Mệnh đề nào dưới đây đúng

     Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } y =  - \infty } \end{array}} ight. \Rightarrow a > 0

    Đồ thị hàm số cắt trục tung tại điểm có tung độ dương => d > 0

    Ta có: y' = 3a{x^2} + 2bx + c, nhận thấy hoành độ hai điểm cực trị của đồ thị hàm số có

    \left\{ {\begin{array}{*{20}{c}}  {{x_1} + {x_2} = \dfrac{{ - b}}{a} > 0 \Rightarrow b < 0} \\   {{x_1}.{x_2} = \dfrac{c}{a} = 0 \Rightarrow c = 0} \end{array}} ight.

  • Câu 39: Nhận biết

    Giả sử M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y =
x^{3} - 3x + 2 trên đoạn \lbrack
0;2brack. Khi đó tổng của Mm bằng bao nhiêu?

    Ta có: y' = 3x^{2} - 3 \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
y(0) = 2 \\
y(1) = 0 \\
y(2) = 4 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
M = 4 \\
m = 0 \\
\end{matrix} ight.\  \Rightarrow M + m = 4

  • Câu 40: Thông hiểu

    Trong các hàm số sau, hàm số nào vừa có khoảng đồng biến vừa có khoảng nghịch biến trên tập xác định của nó. (I) y = \frac{{2x + 1}}{{x + 1}}; (II) y =  - {x^4} + {x^2} - 2; (III)

     (I) Tập xác định D = \mathbb{R}\backslash \left\{ { - 1} ight\}

    y' = \frac{1}{{{{\left( {x + 1} ight)}^2}}} > 0,\forall x \in \mathbb{R}\backslash \left\{ { - 1} ight\}

    => (I) không thỏa mãn 

    (II) Tập xác định D = \mathbb{R}

    y' =  - 4{x^3} + 2x \Rightarrow y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = \dfrac{{\sqrt 2 }}{2}} \\   {x =  - \dfrac{{\sqrt 2 }}{2}} \end{array}} ight.

    Bảng xét dấu

    Chọn các khẳng định đúng

    => (II) thỏa mãn

    (III) Tập xác định D = \mathbb{R}

    y' = 3{x^2} + 3 > 0,\forall x \in \mathbb{R}

    => Hàm số nghịch biến trên tập số thực

    => (III) không thỏa mãn

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo