Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho đồ thị:

    Xác định hàm số tương ứng với đồ thị hàm số đã cho?

    Nhận diện đồ thị hàm số bậc 4 trùng phương có a < 0

    Đồ thị hàm số đi qua điểm (0; -
1) nên loại hàm số y = - x^{4} +
2x^{2} - 3.

    Đồ thị hàm số có các cực trị là (1;0),( -
1;0) nên hàm số cần tìm là y = -
x^{4} + 2x^{2} - 1.

  • Câu 2: Thông hiểu

    Cho hàm số y = f(x) = ax^{3} + bx^{2} +
cx + d có đồ thị cắt trục Ox tại ba điểm phân biệt. Hỏi số cực trị của hàm số y = \left| f(x) ight| bằng bao nhiêu?

    Vì đồ thị hàm số y = f(x) = ax^{3} +
bx^{2} + cx + d cắt trục hoành tại ba điểm phân biệt nên hàm số có 2 điểm cực trị giả sử đồ thị của hàm số đó như sau:

    Số điểm cực trị của hàm số là 2

    Số nghiệm bội lẻ của phương trình là 3

    Khi đó số điểm cực trị của hàm số y =
\left| f(x) ight| là 2 + 3 = 5

  • Câu 3: Thông hiểu

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) = \frac{x}{2} - \sqrt{x + 2} trên đoạn \lbrack - 1;34brack lần lượt là Mm. Tính giá trị của biểu thức A = M + 3m?

    Ta có: y' = \frac{1}{2} -
\frac{1}{2\sqrt{x + 2}} = \frac{\sqrt{x + 2} - 1}{2\sqrt{x +
2}}

    y' = 0 \Leftrightarrow \sqrt{x + 2}
= 1 \Leftrightarrow x = - 1

    \left\{ \begin{matrix}f( - 1) = - \dfrac{3}{2} \\f(34) = 11 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}m = - \dfrac{3}{2} \\M = 11 \\\end{matrix} ight.\  \Rightarrow A = \frac{13}{2}

  • Câu 4: Thông hiểu

    Tập hợp tất cả các giá trị của tham số m để hàm số y
= x^{3} + 2x^{2} + (m + 1)x - m^{2} đồng biến trên khoảng ( - \infty; + \infty) là:

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi y' = 3x^{2} + 4x + m + 1
\geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
a = 3 > 0 \\
\Delta' = 2^{2} - 3(m + 1) \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \geq \frac{1}{3}

    Vậy m \in \left( \frac{1}{3}; + \infty
ight) là giá trị cần tìm.

  • Câu 5: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như hình vẽ sau

    Hàm số y = f(x) đồng biến trên khoảng nào dưới đây

    Từ bảng biến thiên suy ra hàm số đồng biến trên khoảng (0;2).

  • Câu 6: Thông hiểu

    Cho hàm số y = - x^{3} + 3x^{2} -
1. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số có 2 cực trị. Đúng||Sai

    b) Điểm cực đại của hàm số là x = 2. Đúng||Sai

    c) Hàm số đồng biến trên khoảng (−1; 3).Sai||Đúng

    d) Giá trị lớn nhất của hàm số là 3. Sai||Đúng

    Đáp án là:

    Cho hàm số y = - x^{3} + 3x^{2} -
1. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số có 2 cực trị. Đúng||Sai

    b) Điểm cực đại của hàm số là x = 2. Đúng||Sai

    c) Hàm số đồng biến trên khoảng (−1; 3).Sai||Đúng

    d) Giá trị lớn nhất của hàm số là 3. Sai||Đúng

    Hàm số y = - x^{3} + 3x^{2} - 1 có đồ thị như sau:

    a) Đúng. Từ đồ thị, ta khẳng định hàm số có 2 cực trị.

    b) Đúng. Từ đồ thị, ta khẳng định hàm số có điểm cực đại là x = 2.

    c) Sai. Trên khoảng (−1; 3) hàm số có đồng biến và nghịch biến.

    d) Sai. Trên R không tồn tại giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên

  • Câu 7: Nhận biết

    Cho hàm số y = f(x) xác định, liên tục trên \lbrack - 1;4brack và có đồ thị như hình vẽ

    Giá trị lớn nhất của hàm số y =
f(x) trên \lbrack -
1;4brack

    Từ đồ thị hàm số, ta thấy hàm số đạt giá trị lớn nhất bằng 3 tại x = 1.

  • Câu 8: Thông hiểu

    Cho hàm số y = \frac{m^{2}x + 5}{2mx +
1} với m là tham số. Gọi S là tập hợp các số nguyên m \in \lbrack - 2020;2020brack để hàm số đã cho nghịch biến trên khoảng (3; +
\infty). Xác định số phần tử của tập hợp S?

    Xét m = 0 \Rightarrow y = 5 là hàm hằng nên hàm số không nghịch biến. Vậy m
= 0 không thỏa mãn.

    Xét m eq 0

    Tập xác định D = \left( - \infty; -
\frac{1}{2m} ight) \cup \left( - \frac{1}{2m}; + \infty
ight)

    Để hàm số nghịch biến trên khoảng (3; +
\infty) khi và chỉ khi

    \left\{ \begin{matrix}
y' = \frac{m^{2} - 10m}{(2mx + 1)^{2}} < 0 \\
- \frac{1}{2m} \leq 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 10m < 0 \\
\frac{6m + 1}{2m} \geq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
0 < m < 10 \\
\left\lbrack \begin{matrix}
m \leq - \frac{1}{6} \\
m > 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow 0 < m < 10

    \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 2020;2020brack \\
\end{matrix} ight. nên m \in
\left\{ 1;2;3;...;9 ight\}

    Vậy tập hợp S có tất cả 9 giá trị.

  • Câu 9: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y
= - \frac{1}{3}x^{3} - 2x^{2} + mx - 1 nghịch biến trên \mathbb{R}?

    Ta có:

    y' = - x^{2} - 4x + m

    Hàm số nghịch biến trên \mathbb{R} \Leftrightarrow - x^{2} - 4x + m \leq 0;\forall
x

    \Rightarrow \left\{ \begin{matrix}
- 1 < 0 \\
\Delta \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow 16 + 4m \leq 0 \Leftrightarrow m
\leq - 4

    Vậy đáp án cần tìm là m \leq -
4

  • Câu 10: Nhận biết

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:

    Đồ thị hàm số bậc 4 có hệ số a >
0 cắt trục tung tại điểm có tung độ lớn hơn 0 nên hàm số cần tìm là y = x^{4} - 2x^{2} - 1.

  • Câu 11: Thông hiểu

    Một loại thuốc được dùng cho bệnh nhân và nồng độ thuốc trong máu của bệnh nhân sau khi tiêm vào cơ thể trong t giờ được cho bởi công thức c(t) = \frac{t}{t^{2} + 1}(mg/L). Sau khi tiêm thuốc bao lâu thì nồng độ thuốc trong máu của bệnh nhân cao nhất?

    Ta có: c'(t) = \frac{- t^{2} +
1}{\left( t^{2} + 1 ight)^{2}};\forall t \in (0; + \infty). Cho c'(t) = 0 \Leftrightarrow \frac{-
t^{2} + 1}{\left( t^{2} + 1 ight)^{2}} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = 1 \\
t = - 1 \\
\end{matrix} ight.

    Bảng biến thiên:

    Vậy sau khi tiêm 1 giờ, nồng độ thuốc trong máu bệnh nhân cao nhất.

  • Câu 12: Nhận biết

    Hàm số y = x^{4}
+ 2x^{2} - 3 đồng biến trên khoảng nào dưới dây?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 4x^{3} + 4x = 4x\left(
x^{2} + 1 ight);\forall x\mathbb{\in R}

    y' = 0 \Leftrightarrow x =
0

    Ta có bảng xét dấu

    Vậy hàm số đồng biến trên khoảng (0; +
\infty)

  • Câu 13: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:

    Ta có:

    \lim_{x ightarrow - \infty}f(x) =
2;\lim_{x ightarrow 0^{+}}f(x) = + \infty nên hàm số có tiệm cận ngang là y = 2 và tiệm cận đứng là x = 0.

  • Câu 14: Vận dụng

    Cho đồ thị hàm số (C):y = \frac{2x + 1}{x
+ 2}. Giả sử M(a;b) \in
(C) có khoảng cách đến đường thẳng d:y = 3x + 6 nhỏ nhất. Chọn khẳng định đúng?

    Ta có: M\left( a;\frac{2a + 1}{a + 2}
ight);(a eq - 2)

    Khoảng cách từ M đến đường thẳng (d) bằng:

    d(M;d) = \dfrac{\left| 3a - \dfrac{2a +1}{a + 2} + 6 ight|}{\sqrt{3^{2} + 1}}= \frac{1}{\sqrt{10}}.\left| 3a+ 6 - \frac{2a + 1}{a + 2} ight|= \frac{1}{\sqrt{10}}.\left|\frac{3a^{2} + 10a + 11}{a + 2} ight|

    Xét hàm số f(a) = \frac{3a^{2} + 10a +
11}{a + 2};(a eq - 2)

    f'(a) = \frac{3\left( a^{2} + 4a + 3
ight)}{(a + 2)^{2}} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
a = - 1 \\
a = - 3 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Vậy giá trị nhỏ nhất của hàm số \left|
f(a) ight| = 4 tại a = -
1

    Vậy \left\{ \begin{matrix}
a = - 1 \\
b = - 1 \\
\end{matrix} ight.\  \Rightarrow a + b = - 2

  • Câu 15: Vận dụng

    Có bao nhiêu giá trị thực của tham số m để hàm số y
= \frac{1}{3}x^{3} - \frac{1}{2}(3m + 2)x^{2} + \left( 2m^{2} + 3m + 1
ight)x - 2 có điểm cực đại x_{CÐ} và điểm cực tiểu x_{CT} thỏa mãn biểu thức 3{x_{CÐ}}^{2} - 4x_{CT} = 0?

    Ta có: y' = x^{2} - (3m + 2)x +
\left( 2m^{2} + 3m + 1 ight)\Delta = m^{2} \geq 0;\forall m\mathbb{\in
R} nên y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 2m + 1 \\
x = m + 1 \\
\end{matrix} ight..

    Hàm số có cực đại và cực tiểu khi và chỉ khi m eq 0.

    Trường hợp 1: \left\{ \begin{matrix}
x_{CÐ} = 2m + 1 \\
x_{CT} = m + 1 \\
\end{matrix} ight.

    Do a = \frac{1}{3} > 0 \Rightarrow
x_{CÐ} < x_{CT} \Leftrightarrow 2m + 1 < m + 1 \Leftrightarrow m
< 0

    Lại có 3{x_{CÐ}}^{2} - 4x_{CT} = 0
\Leftrightarrow 3(2m + 1)^{2} - 4(m + 1) = 0

    \Leftrightarrow 12m^{2} + 8m - 1 = 0
\Leftrightarrow m = \frac{- 2 \pm \sqrt{7}}{6}

    Với điều kiện m < 0 \Rightarrow m =
\frac{- 2 - \sqrt{7}}{6} thỏa mãn.

    Trường hợp 2: \left\{ \begin{matrix}
x_{CT} = 2m + 1 \\
x_{CÐ} = m + 1 \\
\end{matrix} ight.

    Do a = \frac{1}{3} > 0 \Rightarrow
x_{CÐ} < x_{CT} \Leftrightarrow m + 1 < 2m + 1 \Leftrightarrow m
> 0

    Lại có 3{x_{CÐ}}^{2} - 4x_{CT} = 0
\Leftrightarrow 3(m + 1)^{2} - 4(2m + 1) = 0

    \Leftrightarrow 3m^{2} - 2m - 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = 1 \\m = - \dfrac{1}{3} \\\end{matrix} ight.

    Với điều kiện m > 0 \Rightarrow m =
1 thỏa mãn.

    Vậy có 2 giá trị thực của tham số m thỏa mãn.

  • Câu 16: Nhận biết

    Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x^{3} - 3x trên \lbrack 1;2brack bằng:

    Ta có: y' = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
y(1) = - 2 \\
y(2) = 2 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\max_{\lbrack 1;2brack}y = 2 \\
\min_{\lbrack 1;2brack}y = - 2 \\
\end{matrix} ight.

    Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 1;2brack bằng 0.

  • Câu 17: Thông hiểu

    Gọi A;B;C là ba điểm cực trị của đồ thị hàm số y = \frac{1}{2}x^{4} - x^{2} -
1. Tính diện tích tam giác ABC?

    Ta có: y' = 2x^{3} - 2x;y' = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Ba điểm cực trị của hàm số là A(0; -
1),B\left( 1; - \frac{3}{2} ight),C\left( - 1; - \frac{3}{2}
ight)

    Tam giác ABC có điểm A \in Oy, hai điểm B;C đối xứng nhau qua trục tung nên tam giác ABC cân tại A. Trung điểm H\left( 0; - \frac{3}{2} ight) của BC thuộc trục Oy và là chân đường cao hạ từ A của tam giác, suy ra:

    S_{ABC} = \frac{1}{2}AH.BC =
\frac{1}{2}\left| y_{A} - y_{B} ight|.\left| x_{B} - x_{C}
ight|

    = \frac{1}{2}.\left| - 1 + \frac{3}{2}
ight|.2 = \frac{1}{2}

    Vậy diện tích tam giác ABC bằng \frac{1}{2}.

  • Câu 18: Thông hiểu

    Cho hàm số y = f(x) = \frac{2x^{2} + 2x +
5}{2x + 1}. Xét tính đúng sai của các khẳng định sau:

    a) Đạo hàm của hàm số đã cho là f'(x) = \frac{4\left( x^{2} + x + 2
ight)}{(2x + 1)^{2}}. Đúng||Sai

    b) Các điểm cực trị của đồ thị hàm số có toạ độ là (−2; −3) và (1; 3. Đúng||Sai

    c) Đường tiệm cận đứng của đồ thị hàm số có phương trình là: x = - \frac{1}{2}. Đúng||Sai

    d) Đường tiệm cận xiên của đồ thị hàm số có phương trình là y = x + \frac{1}{2}. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = \frac{2x^{2} + 2x +
5}{2x + 1}. Xét tính đúng sai của các khẳng định sau:

    a) Đạo hàm của hàm số đã cho là f'(x) = \frac{4\left( x^{2} + x + 2
ight)}{(2x + 1)^{2}}. Đúng||Sai

    b) Các điểm cực trị của đồ thị hàm số có toạ độ là (−2; −3) và (1; 3. Đúng||Sai

    c) Đường tiệm cận đứng của đồ thị hàm số có phương trình là: x = - \frac{1}{2}. Đúng||Sai

    d) Đường tiệm cận xiên của đồ thị hàm số có phương trình là y = x + \frac{1}{2}. Đúng||Sai

    a) Ta có:

    f'(x) = \frac{\left( 2x^{2} + 2x + 5
ight)'.(2x + 1) - (2x + 1)'\left( 2x^{2} + 2x + 5 ight)}{(2x
+ 1)^{2}}

    = \frac{4\left( x^{2} + x - 2
ight)}{(2x + 1)^{2}}

    b) f'(x) = 0 \Leftrightarrow
\frac{4\left( x^{2} + x - 2 ight)}{(2x + 1)^{2}} = 0

    \Leftrightarrow x^{2} + x - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    Thay vào hàm số, ta tính được toạ độ các điểm cực trị là (−2; −3) và (1; 3)

    c) Điều kiện xác định: x eq -
\frac{1}{2}

    \lim_{x ightarrow \left( - \frac{1}{2}
ight)^{+}}f(x) = + \inftynên x =
- \frac{1}{2} là tiệm cận đứng.

    d) y = f(x) = \frac{2x^{2} + 2x + 5}{2x +
1} = x + \frac{1}{2} + \frac{9}{2(2x + 1)}

    Suy ra đồ thị có đường tiệm cận xiên là y
= x + \frac{1}{2}.

  • Câu 19: Vận dụng cao

    Một sợi dây kim loại dài 60cm được cắt thành hai đoạn. Đoạn thứ nhất được uốn thành một hình vuông, đoạn thứ hai được uốn thành một vòng tròn. Hỏi khi tổng diện tích của hình vuông và hình tròn ở trên nhỏ nhất thì chiều dài đoạn dây uốn thành hình vuông bằng bao nhiêu (làm tròn đến hàng phần trăm)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một sợi dây kim loại dài 60cm được cắt thành hai đoạn. Đoạn thứ nhất được uốn thành một hình vuông, đoạn thứ hai được uốn thành một vòng tròn. Hỏi khi tổng diện tích của hình vuông và hình tròn ở trên nhỏ nhất thì chiều dài đoạn dây uốn thành hình vuông bằng bao nhiêu (làm tròn đến hàng phần trăm)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Thông hiểu

    Có bao nhiêu số thực dương m để giá trị lớn nhất của hàm số y = x^{3} - 3x +
1 trên đoạn \lbrack m + 1;m +
2brack bằng 53?

    Ta có: y' = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên:

    Dựa vào bảng biến thiên thì để giá trị lớn nhất của hàm số y = x^{3} - 3x + 1 trên đoạn \lbrack m + 1;m + 2brack bằng 53 thì m + 1
> 1 \Leftrightarrow m > 0.

    Khi đó \max_{\lbrack m + 1;m +
2brack}f(x) = f(m + 2) = (x + 2)^{3} - 3(m + 2) + 1 = 53

    \Leftrightarrow m^{3} + 6m^{2} + 9m - 50
= 0 \Leftrightarrow m = 2

    Khi đó chỉ có duy nhất một giá trị của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 21: Vận dụng

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = {x^2} - 2x,\forall x \in \mathbb{R}. Hàm số g\left( x ight) = f\left( {2 - \sqrt {{x^2} + 1} } ight) - \sqrt {{x^2} + 1}  - 3 đồng biến trên các khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = {x^2} - 2x,\forall x \in \mathbb{R}. Hàm số g\left( x ight) = f\left( {2 - \sqrt {{x^2} + 1} } ight) - \sqrt {{x^2} + 1}  - 3 đồng biến trên các khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 22: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Khẳng định nào sau đây đúng?

    Điểm cực tiểu của hàm số là x = - 1;x =
1

    Điểm cực tiểu của đồ thị hàm số là ( -
1;0),(1;0)

    Điểm cực đại của hàm số là x =
0.

  • Câu 23: Vận dụng

    Cho hàm số y = \frac{x + 1}{\sqrt{ax^{2}+ 1}} có đồ thị (C). Tìm giá trị a để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của (C) một khoảng bằng \sqrt{2} - 1?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \frac{x + 1}{\sqrt{ax^{2}+ 1}} có đồ thị (C). Tìm giá trị a để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của (C) một khoảng bằng \sqrt{2} - 1?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 24: Thông hiểu

    Cho hàm số y = \frac{\sqrt{x - 1} - 1}{x
- 2}. Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?

    Tập xác định D = \lbrack 1;2) \cup (2; +
\infty)

    Ta có:

    \lim_{x ightarrow 1^{+}}y = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x - 1} - 1}{x - 2} = 1

    \lim_{x ightarrow 2^{-}}y = \lim_{x
ightarrow 2^{-}}\frac{\sqrt{x - 1} - 1}{x - 2} = \lim_{x ightarrow
2^{-}}\frac{x - 2}{(x - 2)\left( \sqrt{x - 1} + 1 ight)} = \lim_{x
ightarrow 2^{-}}\frac{1}{\sqrt{x - 1} + 1} = \frac{1}{2}

    \lim_{x ightarrow 2^{+}}y = \lim_{x
ightarrow 2^{+}}\frac{\sqrt{x - 1} - 1}{x - 2} = \lim_{x ightarrow
2^{+}}\frac{x - 2}{(x - 2)\left( \sqrt{x - 1} + 1 ight)} = \lim_{x
ightarrow 2^{+}}\frac{1}{\sqrt{x - 1} + 1} = \frac{1}{2}

    \lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\frac{\sqrt{x - 1} - 1}{x - 2} = 0

    Vậy đồ thị có một tiệm cận ngang y =
0.

  • Câu 25: Vận dụng

    Tìm các giá trị của tham số m để bất phương trình \frac{{{x^2} + 3x + 3}}{{x + 1}} \geqslant m nghiệm đúng với mọi x \in \left[ {0;1} ight]

    Xét hàm số g\left( x ight) = \frac{{{x^2} + 3x + 3}}{{x + 1}},x \in \left[ {0;1} ight] ta có:

    \begin{matrix}  g\left( x ight) = x + 2 + \dfrac{1}{{x + 1}} \hfill \\   \Rightarrow g'\left( x ight) = 1 - \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} \hfill \\  g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0\left( {tm} ight)} \\   {x =  - 2\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => \left\{ {\begin{array}{*{20}{c}}  {g\left( 0 ight) = 3} \\   {g\left( 1 ight) = \dfrac{7}{2}} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ {0;1} ight]} g\left( x ight) = \frac{7}{2};\mathop {\min }\limits_{\left[ {0;1} ight]} g\left( x ight) = 3

    Ta có:

    \frac{{{x^2} + 3x + 3}}{{x + 1}} \geqslant m,\left( {\forall x \in \left[ {0;1} ight]} ight) \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {g\left( 0 ight) = 3} \\   {g\left( 1 ight) = \dfrac{7}{2}} \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left[ {0;1} ight]} g\left( x ight) \geqslant m \Leftrightarrow m \leqslant 3

  • Câu 26: Thông hiểu

    Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y
= x^{3} - 3mx^{2} + 3\left( m^{2} - 2 ight)x đồng biến trên khoảng (12; + \infty)?

    Ta có: y' = 3x^{2} - 6mx + 3\left(
m^{2} - 2 ight)

    Hàm số y = x^{3} - 3mx^{2} + 3\left(
m^{2} - 2 ight)x đồng biến trên khoảng (12; + \infty)

    \Leftrightarrow y' \geq 0
\Leftrightarrow 3x^{2} - 6mx + 3\left( m^{2} - 2 ight) \geq
0

    \Leftrightarrow x^{2} - 2mx + m^{2} - 2
\geq 0

    \Leftrightarrow (x - m)^{2} \geq 2
\Leftrightarrow \left\lbrack \begin{matrix}
x - m \geq \sqrt{2} \\
x - m \leq - \sqrt{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x \geq m + \sqrt{2} \\
x \leq m - \sqrt{2} \\
\end{matrix} ight.

    Theo yêu cầu bài toán ta có: \sqrt{2} + m
\leq 12 \Leftrightarrow m \leq 12 - \sqrt{2}

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 1;2;3;...;9;10 ight\}

    Suy ra có tất cả 10 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 27: Thông hiểu

    Cho hàm số y = f(x) có: \lim_{x ightarrow 3^{-}}f(x) = 1;\lim_{xightarrow 3^{+}}f(x) = + \infty;\lim_{x ightarrow - \infty}f(x) =1;\lim_{x ightarrow + \infty}f(x) = + \infty

    Xét tính đúng sai của các khẳng định sau:

    a) Đồ thị của hàm số y = f(x) có tiệm cận ngang là đường thẳng y =
1. Đúng||Sai

    b) Đồ thị của hàm số y = f(x) có tiệm cận đứng là đường thẳng x =
3. Đúng||Sai

    c) Đồ thị của hàm số y = f(x) không có tiệm cận ngang. Sai|| Đúng

    d) Đồ thị của hàm số y = f(x) không có tiệm cận đứng. Sai|| Đúng

    Đáp án là:

    Cho hàm số y = f(x) có: \lim_{x ightarrow 3^{-}}f(x) = 1;\lim_{xightarrow 3^{+}}f(x) = + \infty;\lim_{x ightarrow - \infty}f(x) =1;\lim_{x ightarrow + \infty}f(x) = + \infty

    Xét tính đúng sai của các khẳng định sau:

    a) Đồ thị của hàm số y = f(x) có tiệm cận ngang là đường thẳng y =
1. Đúng||Sai

    b) Đồ thị của hàm số y = f(x) có tiệm cận đứng là đường thẳng x =
3. Đúng||Sai

    c) Đồ thị của hàm số y = f(x) không có tiệm cận ngang. Sai|| Đúng

    d) Đồ thị của hàm số y = f(x) không có tiệm cận đứng. Sai|| Đúng

    a) Do \lim_{x ightarrow - \infty}f(x) =
1 nên y = 1 là đường tiệm cận ngang của đồ thị hàm số. (*)

    b) Do \lim_{x ightarrow 3^{+}}f(x) = +
\infty nên x = 3 là đường tiệm cận đứng của đồ thị hàm số. (**)

    c) Từ (*) suy ra khẳng định này sai.

    d) Từ (**) suy ra khẳng định này sai.

  • Câu 28: Nhận biết

    Hàm số tương ứng với đồ thị trong hình vẽ dưới đây là:

    Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng y = ax^{3} + bx^{2} + cx + d với a < 0 nên hàm số tương ứng là y = - x^{3} + 3x.

  • Câu 29: Thông hiểu

    Cho hàm số y = \frac{(2m + 1)x^{2} +
3}{\sqrt{x^{4} + 1}} với m là tham số. Tìm giá trị của m để đường tiệm cận ngang của đồ thị hàm số đi qua điểm A(1; - 3)?

    Ta có: \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow - \infty}y = 2m + 1 suy ra d:y = 2m + 1 là tiệm cận ngang của đồ thị hàm số đã cho.

    Do A(1; - 3) \in d \Leftrightarrow 2m + 1
= - 3 \Leftrightarrow m = - 2

  • Câu 30: Nhận biết

    Trên khoảng (0; +∞) thì hàm số y = -x3 + 3x + 1

    Ta có:

    \begin{matrix}  y' =  - 3{x^2} + 3 \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    Từ bảng biến thiên => Hàm số có giá trị lớn nhất bằng 3

  • Câu 31: Nhận biết

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 2;2brack và có đồ thị là đường cong trong hình bên dưới.

    Hàm số y = f(x) đạt cực tiểu tại điểm

    Theo hình vẽ thì hàm số y = f(x) đạt cực tiểu tại điểm x = 1.

  • Câu 32: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)\left( x^{2} - 1ight)(x - 3)^{3};\forall x\mathbb{\in R}. Hỏi hàm số y = f\left( |x| ight) có bao nhiêu cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)\left( x^{2} - 1ight)(x - 3)^{3};\forall x\mathbb{\in R}. Hỏi hàm số y = f\left( |x| ight) có bao nhiêu cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 33: Vận dụng cao

    Tồn tại bao nhiêu giá trị nguyên của tham số m \in \lbrack - 30;30brack sao cho đồ thị hàm số y = \frac{2x^{2} + 5}{x^{3} + (m
- 4)x + 2m} có ít nhất một tiệm cận đứng nằm bên phải trục tung?

    Để đồ thị hàm số có ít nhất một tiệm cận đứng nằm bên phải trục tung thì phương trình x^{3} + (m - 4)x + 2m =
0 có ít nhất 1 nghiệm dương.

    Ta có:

    x^{3} + (m - 4)x + 2m = 0

    \Leftrightarrow x^{3} - 4x + mx + 2m =
0

    \Leftrightarrow x(x - 2)(x + 2) + m(x +
2) = 0

    \Leftrightarrow (x + 2)\left( x^{2} - 2x
+ m ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x^{2} - 2x + m = 0(*) \\
\end{matrix} ight.

    Để (∗) có ít nhất 1 nghiệm dương thì:

    TH1: (*) có 2 nghiệm trái dấu \Leftrightarrow m < 0

    m \in \lbrack -
30;30brack;m\mathbb{\in Z} nên m
\in \{ - 30; - 29;\ldots; - 1\}.

    TH2: (*) có 2 nghiệm phân biệt 0 \leq
x_{1} < x_{2}

    \Leftrightarrow \left\{ \begin{matrix}
\Delta^{'} = 1 - m > 0 \\
x_{1}x_{2} = m \geq 0 \\
x_{1} + x_{2} = 2 > 0 \\
\end{matrix} \Leftrightarrow 0 \leq m < 1. ight.

    m \in \lbrack -
30;30brack;m\mathbb{\in Z} nên m
= 0.

    TH3: (*) có nghiệm kép lớn hơn 0.

    \Leftrightarrow \left\{ \begin{matrix}
\Delta^{'} = 1 - m = 0 \\
x_{1}x_{2} = m > 0 \\
x_{1}x_{2} > 0 \\
\end{matrix} \Leftrightarrow 0 < m \leq 1 ight..

    m \in \lbrack -
30;30brack;m\mathbb{\in Z} nên m
= 1.

    Vậy m \in \{ - 30; - 29;\ldots;1\}
\Rightarrow có 32 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

  • Câu 34: Nhận biết

    Số giao điểm của hai đồ thị hàm số y =
f(x)y = g(x) bằng số nghiệm phân biệt của phương trình nào sau đây?

    Hoành độ giao điểm là nghiệm của phương trình f(x) = g(x) hay f(x) - g(x) = 0.

  • Câu 35: Vận dụng cao

    Gọi S là tập hợp chứa tất cả các giá trị thực của tham số m để hàm số y = f\left( x ight) = \left| {{x^2} - 3mx + 1} ight| + 4x có điểm cực đại với giá trị cực đại tương ứng nằm trong khoảng (3; 4) và đồng thời thỏa mãn 10m là số nguyên. Số phần tử của tập hợp S là:

    Xét phương trình {m^3} - 3mx + 1 = 0;\left( * ight) \Rightarrow \Delta ' = {m^2} - 1

    Nếu \Delta ' = {m^2} - 1 \leqslant 0 thì hàm số y = f\left( x ight) = {x^2} - 2mx + 1 + 4x = {x^2} - 2\left( {m - 2} ight)x + 1 không có điểm cực đại.

    Nếu \Delta ' = {m^2} - 1 > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m <  - 1} \\   {m > 1} \end{array}} ight. thì phương trình (*) có hai nghiệm phân biệt là \left[ {\begin{array}{*{20}{c}}  {{x_1} = m - \sqrt {{m^2} - 1} } \\   {{x_2} = m + \sqrt {{m^2} - 1} } \end{array}} ight.

    Với \left[ {\begin{array}{*{20}{c}}  {x \leqslant {x_1}} \\   {x \geqslant {x_2}} \end{array}} ight. thì y = f\left( x ight) = {x^2} - 2mx + 1 + 4x = {x^2} - 2\left( {m - 2} ight)x + 1 không có điểm cực đại.

    Với {x_1} < x < {x_2} thì y =  - {x^2} + 2mx - 1 + 4x =  - {x^2} + 2\left( {m + 2} ight)x - 1

    Hàm số này đạt cực đại tại x = m + 2 và giá trị cực đại là {y_{cd}} = {m^2} + 4m + 3

    Vậy điều kiện để hàm số có cực đại là:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_1} < x = m + 2 < {x_2}} \\   {3 < {m^2} + 4m + 3 < 4} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m - \sqrt {{m^2} - 1}  < m + 2 < m + \sqrt {{m^2} - 1} } \\   {0 < {m^2} + 4m < 1} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {\sqrt {{m^2} - 1}  > 2} \\   \begin{gathered}  {m^2} + 4m - 1 < 0 \hfill \\  {m^2} + 4m > 0 \hfill \\ \end{gathered}  \end{array}} ight. \Leftrightarrow \left\{ \begin{gathered}   - 2 - \sqrt 5  < m <  - 2 + \sqrt 5  \hfill \\  \begin{array}{*{20}{c}}  {\left[ {\begin{array}{*{20}{c}}  {m <  - \sqrt 5 } \\   {m > \sqrt 5 } \end{array}} ight.} \\   {\left[ {\begin{array}{*{20}{c}}  {m <  - 4} \\   {m > 0} \end{array}} ight.} \end{array} \hfill \\ \end{gathered}  ight. \Leftrightarrow  - 2 - \sqrt 5  < m <  - 4 \hfill \\ \end{matrix}

    Do 10m là số nguyên nên có hai giá trị thỏa mãn là m =  - \frac{{42}}{{10}};m =  - \frac{{41}}{{10}}

  • Câu 36: Vận dụng cao

    Cho y = f\left( x ight) hàm số có f'\left( x ight) = \left( {x - 2} ight)\left( {x + 5} ight)\left( {x + 1} ight). Hàm số y = f\left( {{x^2}} ight) đồng biến trên khoảng nào dưới đây?

    Xét dấu f’(x) như sau:

    Tìm khoảng đồng biến của hàm số

    Ta có:

    \begin{matrix}  y' = \left( {f\left( {{x^2}} ight)} ight)' = 2xf'\left( {{x^2}} ight) \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {f'\left( {{x^2}} ight) = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = \sqrt 2 } \\   {x =  - \sqrt 2 } \end{array}} ight. \hfill \\ \end{matrix}

    Chọn x = 1 \in \left( {0;\sqrt 2 } ight) ta có: y'\left( 1 ight) = 2.1.f'\left( {{1^2}} ight) = 2.f'\left( {{1^2}} ight) < 0

    => \left( {0;\sqrt 2 } ight) là khoảng âm

    Khi đó bảng xét dấu của y’ = (f(x2))’ như sau:

    Tìm khoảng đồng biến của hàm số

    Từ trục xét dấu ta thấy. Hàm số y = f(x2) đồng biến trên (-1; 0)

  • Câu 37: Thông hiểu

    Có bao nhiêu điểm M thuộc đồ thị hàm số y = \frac{x + 2}{x - 1} sao cho khoảng cách từ điểm M đến trục tung bằng hai lần khoảng cách từ điểm M đến trục hoành?

    Gọi M\left( a;\frac{a + 2}{a - 1}
ight);(a eq 1) là điểm thuộc đồ thị hàm số y = \frac{x + 2}{x - 1}

    Ta có: \left\{ \begin{matrix}d(M;Oy) = |a| \\d(M;Ox) = \left| \dfrac{a + 2}{a - 1} ight| \\\end{matrix} ight.. Theo bài ra ta có phương trình:

    |a| = 2.\left| \frac{a + 2}{a - 1}ight| \Leftrightarrow \left\lbrack \begin{matrix}a = 2.\left( \dfrac{a + 2}{a - 1} ight) \\a = - 2.\left( \dfrac{a + 2}{a - 1} ight) \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}a^{2} - 3a - 4 = 0 \\a^{2} + a + 4 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}a = - 1 \Rightarrow M\left( - 1; - \dfrac{1}{2} ight) \\a = 4 \Rightarrow M(4;2) \\\end{matrix} ight.

    Vậy có 2 điểm M thỏa mãn yêu cầu bài toán.

  • Câu 38: Nhận biết

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{x^{3}}{3} + 2x^{2} - mx + 2020 đồng biến trên \mathbb{R}?

    Ta có:

    Hàm số y = \frac{x^{3}}{3} + 2x^{2} - mx
+ 2020 đồng biến trên \mathbb{R}

    \Leftrightarrow y' = x^{2} + 4x - m
\geq 0;\forall x\mathbb{\in R}

    Dễ thấy x^{2} + 4x - m \geq 0;\forall
x\mathbb{\in R \Leftrightarrow}\left\{ \begin{matrix}
1 > 0 \\
\Delta' = 4 + m \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \leq - 4

    Vậy hàm số đã cho đồng biến trên \mathbb{R} khi m \leq - 4.

  • Câu 39: Nhận biết

    Cho hàm số y = f(x) có đồ thị như hình vẽ.

    Đồ thị hàm số đã cho có đường tiệm cận ngang bằng:

    Dựa vào đồ thị hàm số ta có: \lim_{x
ightarrow \pm \infty}f(x) = - 1.

    Do đó, đồ thị hàm số y = f(x) có đường tiệm cận ngang là y = -
1.

  • Câu 40: Vận dụng

    Cho một tấm nhôm hình vuông có cạnh là 30\ cm. Người ta cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là x\ cm, sau đó gập tấm nhôm lại để tạo thành một chiếc hộp không nắp. Tìm x để thể tích chiếc hộp là lớn nhất.

    Đáp án: 5

    Đáp án là:

    Cho một tấm nhôm hình vuông có cạnh là 30\ cm. Người ta cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là x\ cm, sau đó gập tấm nhôm lại để tạo thành một chiếc hộp không nắp. Tìm x để thể tích chiếc hộp là lớn nhất.

    Đáp án: 5

    Chiều cao của chiếc hộp khi gập tấm nhôm là x\ cm.

    Kích thước đáy hai đáy của chiếc hộp là (30 - 2x)\ cm.

    Ta có \left\{ \begin{matrix}
x > 0 \\
30 - 2x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 0 \\
x < 15 \\
\end{matrix} ight.\  \Leftrightarrow 0 < x < 15.

    Thể tích chiếc hộp là V(x) = x(30 -
2x)^{2} = 4x^{3} - 120x^{2} + 900x.

    V'(x) = 12x^{2} - 240x +
900.

    V'(x) = 0 \Leftrightarrow 12x^{2} -
240x + 900 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 5 \\
x = 15 \\
\end{matrix} ight.

    Bài toán trở thành, tìm x (0 < x < 15) sao cho V(x) là lớn nhất.

    Vậy cần cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là 5\ cmđể chiếc hộp tạo thành có thể tích lớn nhất.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo