Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Giả sử m là giá trị nhỏ nhất của hàm số y = x + \frac{4}{x} trên khoảng \left( {0; + \infty } ight). Tính giá trị của m.

    Ta có:

    \begin{matrix}  y' = 1 - \dfrac{4}{{{x^2}}} \hfill \\  y' = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 2\left( {tm} ight)} \\   {x =  - 2\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Tính GTNN của hàm số trên khoảng

    => Giá trị nhỏ nhất của hàm số bằng 4

    => y(2) = 4

    => m = 4

  • Câu 2: Nhận biết

    Cho hàm số f(x) có bảng xét dấu của đạo hàm f'(x) như sau:

    Hàm số f(x) có bao nhiêu điểm cực trị?

    Dựa vào bảng xét dấu ta thấy hàm số có bốn điểm cực trị.

  • Câu 3: Nhận biết

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x - 1)^{2020}(x - 2)^{2021}(x -
3)^{2022};\forall x\mathbb{\in R}. Số điểm cực trị của hàm số đã cho là:

    Ta có: f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Ta có bảng xét dấu:

    Vậy hàm số đã cho có một điểm cực trị.

  • Câu 4: Thông hiểu

    Tính tổng số đường tiệm cận của đồ thị hàm số y = \frac{\sqrt{x - 3}(x + 4)}{\left( 2x^{2} - 5x
+ 2 ight)\sqrt{x^{2} - 16}}?

    Tập xác định D = (4; +
\infty)

    Ta có:

    \lim_{x ightarrow +\infty}\frac{\sqrt{x - 3}(x + 4)}{\left( 2x^{2} - 5x + 2ight)\sqrt{x^{2} - 16}}= \lim_{x ightarrow + \infty}\dfrac{\sqrt{x -3}(x + 4)}{\left( 2x^{2} - 5x + 2 ight).x\sqrt{1 - \dfrac{16}{x^{2}}}}= 0

    Suy ra đồ thị hàm số có tiệm cận ngang y
= 0

    Mặt khác \lim_{x ightarrow
4^{+}}\frac{\sqrt{x - 3}(x + 4)}{\left( 2x^{2} - 5x + 2
ight)\sqrt{x^{2} - 16}} = + \infty suy ra x = 4 là tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số đã cho có hai đường tiệm cận.

  • Câu 5: Thông hiểu

    Số các giá trị nguyên của tham số m để đồ thị hàm số y = \frac{1}{x^{2} - 2mx + 2m^{2} - 4m -
12} có ba đường tiệm cận bằng:

    Ta có:

    \lim_{x ightarrow \pm \infty}f(x) =
\lim_{x ightarrow \pm \infty}\frac{1}{x^{2} - 2mx + 2m^{2} - 4m - 12}
= 0 nên y = 0 là tiệm cận ngang của đồ thị hàm số

    Theo yêu cầu bài toán ta suy ra x^{2} -
2mx + 2m^{2} - 4m - 12 = 0 có hai nghiệm phân biệt

    \Leftrightarrow \Delta' > 0
\Leftrightarrow m^{2} - \left( 2m^{2} - m - 12 ight) >
0

    \Leftrightarrow - m^{2} + 4m + 12 > 0
\Leftrightarrow - 2 < m < 6

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1;2;3;4;5 ight\}

    Vậy có 7 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 6: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm f'(x) = (x -
1)^{2}(x - 1)^{3}(2 - x). Hàm số y
= f(x) đồng biến trên khoảng nào sau đây?

    Ta có bảng xét dấu:

    Từ bảng xét dấu trên ta có hàm số y =
f(x) đồng biến trên (1;2).

  • Câu 7: Vận dụng

    Bác H cần xây dựng một bể nước mưa có thể tích V = 8\left( m^{3} ight) dạng hình hộp chữ nhật với chiều dài gấp \frac{4}{3} lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là 980000 đồng trên một mét vuông và ở nắp để hở một khoảng hình vuông có diện tích bằng \frac{2}{9} diện tích nắp bể. Tính chi phí thấp nhất mà bác H phải chi trả (làm tròn đến hàng triệu đồng).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Bác H cần xây dựng một bể nước mưa có thể tích V = 8\left( m^{3} ight) dạng hình hộp chữ nhật với chiều dài gấp \frac{4}{3} lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là 980000 đồng trên một mét vuông và ở nắp để hở một khoảng hình vuông có diện tích bằng \frac{2}{9} diện tích nắp bể. Tính chi phí thấp nhất mà bác H phải chi trả (làm tròn đến hàng triệu đồng).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Thông hiểu

    Cho hàm số y = \frac{2mx + m}{x -
1}. Tìm tất cả các giá trị thực của tham số m để đường tiệm cận ngang của đồ thị hàm số cùng với hai trục tọa độ tạo thành một hình chữ nhật có diện tích bằng 8.

    Điều kiện để đồ thị hàm số có tiệm cận là - 2m - m eq 0 \Leftrightarrow m eq
0

    Khi đó đồ thị hàm số có:

    Tiệm cận đúng: x = 1, song song với Oy và cắt Ox tại điểm A(1;0)

    Tiệm cận ngang: y = 2m song song với Ox và cắt Oy tại điểm B(2m;0)

    Diện tích hình chữ nhật tạo bởi hai đường tiệm cận cùng với hai trục tọa độ là S = OA.OB = 1.|2m| = 8
\Leftrightarrow m = \pm 4

  • Câu 9: Thông hiểu

    Hàm số y = - x^{4} + 2mx^{2} + 1 đạt cực tiểu tại x = 0 khi:

    Hàm số xác định với mọi x\mathbb{\in
R}

    Ta có: \left\{ \begin{matrix}
y' = - 4x^{3} + 4mx \\
y'' = - 12x^{2} + 4m \\
\end{matrix} ight.

    Hàm số đạt cực tiểu tại x = 0 khi

    \left\{ \begin{matrix}
y'(0) = 0 \\
y''(0) > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 4.0^{3} + 4m.0 = 0(TM) \\
- 12.^{2} + 4m > 0 \\
\end{matrix} ight.\  \Leftrightarrow m > 0

    Vậy m > 0 thỏa mãn yêu cầu bài toán.

  • Câu 10: Nhận biết

    Cho hàm số y = f(x) có đồ thị như hình vẽ.

    Đồ thị hàm số đã cho có đường tiệm cận ngang bằng:

    Dựa vào đồ thị hàm số ta có: \lim_{x
ightarrow \pm \infty}f(x) = - 1.

    Do đó, đồ thị hàm số y = f(x) có đường tiệm cận ngang là y = -
1.

  • Câu 11: Thông hiểu

    Số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = \frac{x^{2} - 3x + 2}{4 - x^{2}} là:

    Tập xác định D\mathbb{=
R}\backslash\left\{ \pm 2 ight\}

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \left( {\dfrac{{{x^2} - 3x + 2}}{{4 - {x^2}}}} ight) =  - 1 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \left( {\dfrac{{{x^2} - 3x + 2}}{{4 - {x^2}}}} ight) =  - 1 \hfill \\ 
\end{gathered}  ight. nên y = -
1 là tiện cận ngang của đồ thị hàm số.

    \lim_{x ightarrow 2}y = \lim_{x
ightarrow 2}\frac{(x - 1)(x - 2)}{(2 - x)(2 + x)} = \lim_{x
ightarrow 2}\frac{1 - x}{x + 2} = - \frac{1}{4}

    \lim_{x ightarrow ( - 2)^{+}}y =
\lim_{x ightarrow ( - 2)^{+}}\frac{(x - 1)(x - 2)}{(2 - x)(2 + x)} = -
\infty suy ra x = - 2 là tiệm cận đứng của đồ thị hàm số.

    Vậy tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là 2.

  • Câu 12: Thông hiểu

    Cho hàm số y = f(x) = x^{3} -3x.

    a) Tập xác định của hàm số là \mathbb{R}. Đúng||Sai

    b) f'(x) = 3x^{2} + 3. Sai||Đúng

    c) f'(x) < 0 khi x \in ( - \infty; - 1) \cup (1; +\infty), f'(x) > 0 khi x \in ( - 1;1). Sai||Đúng

    d) Hàm số đã cho có đồ thị như hình vẽ.

    Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = x^{3} -3x.

    a) Tập xác định của hàm số là \mathbb{R}. Đúng||Sai

    b) f'(x) = 3x^{2} + 3. Sai||Đúng

    c) f'(x) < 0 khi x \in ( - \infty; - 1) \cup (1; +\infty), f'(x) > 0 khi x \in ( - 1;1). Sai||Đúng

    d) Hàm số đã cho có đồ thị như hình vẽ.

    Đúng||Sai

    Tập xác định: \mathbb{R}.

    Sự biến thiên

    Giới hạn tại vô cực: lim_{x ightarrow +\infty}y = + \infty,lim_{x ightarrow - \infty}y = -\infty.

    y' = 3x^{2} - 3y' = 0 \Leftrightarrow x = - 1 hoặc x = 1

    Hàm số đồng biến trên mỗi khoảng ( -\infty; - 1)(1; +\infty), nghịch biến trên khoảng (- 1;1).

    Hàm số đạt cực đại tại x = - 1,y_{CD} =2; hàm số đạt cực tiểu tại x =1,y_{CT} = - 2.

    Đồ thị:

    Giao điểm của đồ thị với trục tung: (0;0).

    Giao điểm của đồ thị với trục hoành tại x= 0 hoặc x = \pm \sqrt{3}. Vậy đồ thị hàm số giao với trục hoành tại ba điểm (0;0),\left( - \sqrt{3};0 ight)\left( \sqrt{3};0 ight).

    Vậy đồ thị hàm số y = f(x) = x^{3} -3x được cho ở hình vẽ.

  • Câu 13: Thông hiểu

    Gọi M,N lần lượt là giá trị cực đại và giá trị cực tiểu của hàm số y = -
x^{3} - 3x^{2} + 9x - 1. Chọn biểu thức đúng?

    Ta có: y' = - 3x^{2} - 6x + 9
\Rightarrow y'' = - 6x - 6

    y' = 0 \Leftrightarrow x^{2} + 2x -
3 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 3 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
y''(1) = - 12 \Rightarrow x_{CD} = 1;y_{CD} = 4 = M \\
y''( - 3) = 12 \Rightarrow x_{CD} = - 3;y_{CD} = - 28 = N \\
\end{matrix} ight.

    Vậy 7M + N = 7.4 - 28 = 0

  • Câu 14: Thông hiểu

    Cho đồ thị của hàm số y = ax^{4} + bx^{2}
+ c;(a eq 0) có điểm cực đại A(0;
- 3) và điểm cực tiểu B( - 1; -
5). Tính giá trị biểu thức T = a +
2b + 3c?

    Đồ thị hàm số đi qua điểm A(0; -
3)B( - 1; - 5) nên \left\{ \begin{matrix}
c = - 3 \\
a + b + c = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = - 3 \\
a + b = - 2 \\
\end{matrix} ight.\ (*)

    y = ax^{4} + bx^{2} + c \Rightarrow
y' = 4ax^{3} + 2bx

    Đồ thị hàm số có điểm cực tiểu B( - 1; -
5) nên - 4a - 2b =
0(**)

    Từ (*) và (**) ta có hệ phương trình \left\{ \begin{matrix}
a + b = - 2 \\
- 4a - 2b = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = - 4 \\
\end{matrix} ight.

    Với \left\{ \begin{matrix}
a = 2 \\
b = - 4 \\
c = - 3 \\
\end{matrix} ight.\  \Rightarrow y = 2x^{4} - 4x^{2} - 3 \Rightarrow
\left\{ \begin{matrix}
y' = 8x^{3} - 8x \\
y'' = 24x^{2} - 8 \\
\end{matrix} ight.

    y''(0) = - 8 < 0 suy ra A(0; - 3) là điểm cực đại.

    y''( - 1) = 16 > 0 suy ra B( - 1; - 5) là điểm cực tiểu

    Vậy T = a + 2b + 3c = - 15

  • Câu 15: Vận dụng

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = {x^2} - 2x,\forall x \in \mathbb{R}. Hàm số g\left( x ight) = f\left( {2 - \sqrt {{x^2} + 1} } ight) - \sqrt {{x^2} + 1}  - 3 đồng biến trên các khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = {x^2} - 2x,\forall x \in \mathbb{R}. Hàm số g\left( x ight) = f\left( {2 - \sqrt {{x^2} + 1} } ight) - \sqrt {{x^2} + 1}  - 3 đồng biến trên các khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Vận dụng

    Cho hàm số y = \frac{{x + m}}{{x + 1}} với m là tham số thực thỏa mãn 3.\left( {\mathop {\min y}\limits_{\left[ {1;2} ight]}  + \mathop {\max y}\limits_{\left[ {1;2} ight]} } ight) = 16. Mệnh đề nào dưới đây là đúng?

    Xét hàm số y = \frac{{x + m}}{{x + 1}} trên [1; 2] ta có:

    f'\left( x ight) = \frac{{1 - m}}{{{{\left( {x + 1} ight)}^2}}};\forall x \in \left[ {1;2} ight]

    Khi đó:

    \begin{matrix}  \mathop {\min y}\limits_{\left[ {1;2} ight]}  + \mathop {\max y}\limits_{\left[ {1;2} ight]}  = \dfrac{{16}}{3} \hfill \\   \Rightarrow f\left( 1 ight) + f\left( 3 ight) = \dfrac{{16}}{3} \hfill \\   \Rightarrow \dfrac{{1 + m}}{2} + \dfrac{{2 + m}}{3} = \dfrac{{16}}{3} \hfill \\   \Rightarrow m = 5 \hfill \\ \end{matrix}

  • Câu 17: Vận dụng cao

    Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:

    Xét hàm số g\left( x ight) = f\left( {\frac{{x - 1}}{2}} ight) - \frac{{{x^3}}}{3} + \frac{{3{x^2}}}{2} - 2x + 3. Khẳng định nào sau đây sai?

    Ta có:

    g'\left( x ight) = \frac{1}{2}f'\left( {\frac{{x - 1}}{2}} ight) - \left( {{x^2} - 3x + 2} ight)

    f'\left( {\frac{{x - 1}}{2}} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\dfrac{{x - 1}}{2} = \dfrac{{ - 5}}{2}} \\   {\dfrac{{x - 1}}{2} =  - 1} \\   {\dfrac{{x - 1}}{2} = \frac{1}{2}} \\   {\dfrac{{x - 1}}{2} = 3} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 4} \\   {x =  - 1} \\   {x = 2} \\   {x = 7} \end{array}} ight.

    f'\left( {\frac{{x - 1}}{2}} ight) > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\dfrac{{x - 1}}{2} <  - \dfrac{5}{2}} \\   {\dfrac{1}{2} < \dfrac{{x - 1}}{2} < 3} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x <  - 4} \\   {2 < x < 7} \end{array}} ight.

    Ta có bảng xét dấu cho các biểu thức

    Tìm khẳng định sai

    Từ bảng xét dấu ta thấy

    x \in \left( {0;1} ight) \subset \left( {0;2} ight) \Rightarrow g'\left( x ight) < 0

    Khi đó hàm số nghịch biến

    => Đáp án B sai

  • Câu 18: Thông hiểu

    Gọi S là tập hợp các giá trị của tham số m để giá trị lớn nhất của hàm số y = \frac{x - m^{2}}{x + 2} trên đoạn \lbrack 1;5brack bằng - 4. Tính tổng các phần tử của tập S?

    Ta có: y' = \frac{2 + m^{2}}{(x +
2)^{2}} > 0;\forall x eq - 2. Suy ra hàm số y = \frac{x - m^{2}}{x + 2} đồng biến trên đoạn \lbrack 1;5brack do đó \max_{\lbrack 1;5brack}y = y(5) = \frac{5
- m^{2}}{7}

    Theo giả thiết \frac{5 - m^{2}}{7} = - 4
\Leftrightarrow m^{2} = 33 \Leftrightarrow m = \pm
\sqrt{33}

    Vậy S = \left\{ \sqrt{33}; - \sqrt{33}
ight\} nên tổng các phần tử của tập hợp S bằng 0.

  • Câu 19: Thông hiểu

    Hàm số y = \frac{x - 2}{x - m} nghịch biến trên khoảng ( -
\infty;3) khi:

    Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}

    Ta có: y' = \frac{- m + 2}{(x -
m)^{2}}

    Hàm số nghịch biến trên khoảng ( -
\infty;3) khi \left\{ \begin{matrix}
m otin ( - \infty;3) \\
- m + 2 < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \geq 3 \\
m > 2 \\
\end{matrix} ight.\  \Leftrightarrow m \geq 3

    Vậy đáp án cần tìm là m \geq
3.

  • Câu 20: Vận dụng

    Cho hình vẽ là đồ thị hàm số có dạng y = a{x^4} + b{x^2} + c

    Giá trị của biểu thức

    Giá trị của biểu thức B = {a^2} + {b^2} + {c^2} có thể nhận giá trị nào trong các giá trị sau?

    Đồ thị hàm số đi qua điểm \left( {0; - 1} ight) => c =  - 1

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{y_{CD}} = y\left( {\sqrt {\dfrac{{ - b}}{{2a}}} } ight) = \dfrac{{ - {b^2}}}{{4a}} + c = 3} \\   {y\left( 1 ight) = a + b + c = 2} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  { - {b^2} = 16a} \\   {a + b = 3} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - {b^2} = 16\left( {3 - b} ight)} \\   {a = 3 - b} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {b = 12;a = 9} \\   {b = 4;a =  - 1} \end{array}} ight. \hfill \\   \Rightarrow B = {a^2} + {b^2} + {c^2} = 18 \hfill \\ \end{matrix}

  • Câu 21: Nhận biết

    Cho hàm số y =
f(x) xác định và liên tục trên khoảng ( - \infty; + \infty), có bảng biến thiên như hình sau:

    Mệnh đề nào sau đây đúng?

    Dựa vào bảng biến thiên ta thấy:

    Hàm số nghịch biến trên khoảng ( -
1;1)

    Hàm số đồng biến trên khoảng ( - \infty;
- 1) \cup (1; + \infty)

    Vậy đáp án cần tìm là: “Hàm số đồng biến trên khoảng ( - \infty; - 2)”.

  • Câu 22: Vận dụng cao

    Tìm giá trị của tham số m để đồ thị hàm số y = f\left( x ight) = \frac{{2x + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} có hai đường tiệm cận đứng và hai đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2.

    Tập xác định D = \left( { - \infty ; - 1} ight) \cup \left( {0; + \infty } ight)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{m - \sqrt {{1^2} + \dfrac{3}{{{x^2}}}}  - \dfrac{1}{x}}}{{ - \sqrt {{1^2} + \dfrac{1}{x}} }} = 1 - m \hfill \\  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{m + \sqrt {{1^2} + \dfrac{3}{{{x^2}}}}  - \frac{1}{x}}}{{\sqrt {{1^2} + \dfrac{1}{x}} }} = m + 1 \hfill \\ \end{matrix}

    => Để đồ thị hàm số có 2 đường tiệm cận ngang thì m + 1 e 1 - m \Leftrightarrow m e 0

    \begin{matrix}  \mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{mx + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} =  + \infty  \hfill \\  \mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{mx + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} = \left\{ {\begin{array}{*{20}{c}}  { + \infty {\text{  khi m  <  1}}} \\   { - \infty {\text{  khi m  >  1}}} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy khi m e 0;m e 1 thì đồ thị hàm số có 2 đường tiệm cận ngang là y = m + 1; y = - m và 2 đường tiệm cận đứng là x = 0 và x = -1

    Để hai đường tiệm cận đứng và 2 đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2 thì 1.2\left| m ight| = 2 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {m = 1\left( L ight)} \\   {m =  - 1\left( {tm} ight)} \end{array}} ight.

  • Câu 23: Vận dụng

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 24: Nhận biết

    Cho hàm số y = f(x) liên tục và có bảng biến thiên trên đoạn \lbrack - 1\ ;\
3brack như hình vẽ bên. Khẳng định nào sau đây đúng?

    Dựa vào bảng biến thiên ta thấy: \max_{\lbrack - 1;3brack}f(x) = 5 tại x = 0.

    Suy ra \max_{\lbrack - 1;3brack}f(x) =
f(0).

  • Câu 25: Nhận biết

    Cho hàm số y = f(x) có đồ thị như sau:

    Hỏi số nghiệm của phương trình 2f(x) - 1
= 0 bằng bao nhiêu?

    Ta có: 2f(x) - 1 = 0 \Leftrightarrow f(x)
= \frac{1}{2}

    Lại có đường thẳng y =
\frac{1}{2} nằm phía trên gốc tọa độ; song song với trục Ox và cắt đồ thị hàm số y = f(x) tại 4 điểm nên phương trình 2f(x) - 1 = 0 có hai nghiệm.

  • Câu 26: Thông hiểu

    Trong các hàm số sau hàm số nào đồng biến trên (1; +∞)?

    Ta có hàm số y = ax, y = log­ax đồng biến trên tập xác định nếu a > 0

    Do đó hàm số y = log­3x đồng biến trên (1; +∞)

  • Câu 27: Nhận biết

    Xác định giá trị lớn nhất của hàm số f(x)
= x^{3} - 3x + 2 trên đoạn \lbrack
- 1;3brack?

    Ta có: f'(x) = 3x^{2} -
3

    \Rightarrow f'(x) = 0
\Leftrightarrow 3x^{2} - 3 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \in \lbrack - 1;3brack \\
x = - 1 \in \lbrack - 1;3brack \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
f( - 1) = 4 \\
f(1) = 0 \\
f(3) = 20 \\
\end{matrix} ight.\  \Rightarrow \underset{\lbrack - 1;3brack}{\max
f(x)} = 20 \Leftrightarrow x = 3

    Vậy đáp án cần tìm là 20.

  • Câu 28: Vận dụng

    Cho hàm số y = \frac{x + 1}{\sqrt{ax^{2}+ 1}} có đồ thị (C). Tìm giá trị a để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của (C) một khoảng bằng \sqrt{2} - 1?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \frac{x + 1}{\sqrt{ax^{2}+ 1}} có đồ thị (C). Tìm giá trị a để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của (C) một khoảng bằng \sqrt{2} - 1?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 29: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y = - x^{3} - 3(m + 1)x + 3(2m - 1) +
2020 đồng biến trên ( - \infty; +
\infty)?

    Tập xác định D\mathbb{= R}

    Ta có: y' = - 3x^{2} - 6(m + 1)x +
3(2m - 1)

    Hàm số nghịch biến trên ( - \infty; +
\infty) khi và chỉ khi y' \leq
0;\forall x \in ( - \infty; + \infty)

    \Leftrightarrow \left\{ \begin{matrix}
a = - 3 < 0 \\
\Delta' = 9(m + 1)^{2} + 9(2m - 1) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow 9m^{2} + 36m \leq 0
\Leftrightarrow - 4 \leq m \leq 0

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 4; - 3; - 2; - 1;0 ight\}

    Vậy có tất cả 5 giá trị của tham số m thỏa mãn yêu cầu đề bài đưa ra.

  • Câu 30: Nhận biết

    Tìm giá trị của tham số m để đồ thị hàm số y = x^{4} - (3 - m)x^{2} -
7 đi qua điểm A( -
2;1)?

    Đồ thị hàm số đi qua điểm A( -
2;1) nên ta có:

    1 = ( - 2)^{4} - (3 - m)( - 2)^{2} - 7
\Leftrightarrow m = 1

  • Câu 31: Vận dụng cao

    Độ giảm huyết áp của một bệnh nhân được cho bởi công thức G\left( x ight) = 0,035{x^2}.\left( {15 - x} ight), trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất.

    Xét G\left( x ight) = 0,035{x^2}.\left( {15 - x} ight) ta có:

    \begin{matrix}  G'\left( x ight) = 0,035\left( {30x - 3{x^2}} ight) \hfill \\  G'\left( x ight) = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 10} \end{array}} ight. \hfill \\ \end{matrix}

    Mặt khác \left\{ {\begin{array}{*{20}{c}}  {G\left( 0 ight) = G\left( {15} ight) = 0} \\   {G\left( {10} ight) = 17,5} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ {0;15} ight]}  = 17,5 \Rightarrow x = 10

  • Câu 32: Nhận biết

    Cho hàm số y = f(x) xác định trên tập D và một số thực M. Xét tính đúng sai của các khẳng định sau:

    a) Nếu f(x) \leq M,\forall x \in
D thì \underset{D}{\max f(x)} =
M. Sai|| Đúng

    b) Nếu f(x) \geq M,\forall x \in
D thì \underset{D}{\min f(x)} =
M. Sai|| Đúng

    c) Nếu f(x) = M,\forall x \in D thì \underset{D}{\max f(x)} = M. Đúng||Sai

    d) Nếu f(x) = M,\forall x \in D thì \underset{D}{\min f(x)} = M. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) xác định trên tập D và một số thực M. Xét tính đúng sai của các khẳng định sau:

    a) Nếu f(x) \leq M,\forall x \in
D thì \underset{D}{\max f(x)} =
M. Sai|| Đúng

    b) Nếu f(x) \geq M,\forall x \in
D thì \underset{D}{\min f(x)} =
M. Sai|| Đúng

    c) Nếu f(x) = M,\forall x \in D thì \underset{D}{\max f(x)} = M. Đúng||Sai

    d) Nếu f(x) = M,\forall x \in D thì \underset{D}{\min f(x)} = M. Đúng||Sai

    a) Khẳng định này sai, cần bổ sung thêm điều kiện \exists x_{0} \in D để f\left( x_{0} ight) = M.

    b) Khẳng định này sai, cần bổ sung thêm điều kiện \exists x_{0} \in D để f\left( x_{0} ight) = M.

    c) Nếu f(x) = M,\forall x \in D thì f(x) là hàm hằng trên D (đồ thị là đường thẳng nằm ngang).

    Suy ra \underset{D}{\max f(x)} = M.

    d) Nếu f(x) = M,\forall x \in D thì f(x) là hàm hằng trên D (đồ thị là đường thẳng nằm ngang).

    Suy ra\underset{D}{\min f(x)} = M.

  • Câu 33: Nhận biết

    Cho hình vẽ sau:

    Đường cong trong hình vẽ là đồ thị của hàm số có dạng y = \frac{ax + b}{cx + d};\left(
a;b;c;d\mathbb{\in R} ight). Mệnh đề nào dưới đây đúng?

    Từ đồ thị hàm số ta thấy hàm số đồng biến trên các khoảng ( - \infty; - 1)( - 1; + \infty) suy ra y' > 0;\forall x eq 1.

  • Câu 34: Thông hiểu

    Tìm hàm số tương ứng với đồ thị hàm số sau đây?

    Đồ thị hàm số có hệ số a < 0 và có hai điểm cực trị là A(0;1),B(2;5) nên chỉ có hàm số y = - x^{3} + 3x^{2} + 1 thỏa mãn vì

    y' = - 3x^{2} + 6x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}
x = 0 \Rightarrow y = 1 \Rightarrow A(0;1) \\
x = 2 \Rightarrow y = 5 \Rightarrow B(2;5) \\
\end{matrix} ight..

    Vậy hàm số xác định được là y = - x^{3} +
3x^{2} + 1.

  • Câu 35: Nhận biết

    Trong các hàm số dưới đây, hàm số nào đồng biến trên \mathbb{R}?

     Hàm số y = x – sinx có tập các định D = \mathbb{R}y' = 1 - \cos x \geqslant 0, \vee x \in \mathbb{R}

    Nên hàm số luôn đồng biến trên \mathbb{R}

  • Câu 36: Nhận biết

    Cho hàm số y = f(x) có \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) =  - \infty\mathop {\lim }\limits_{x \to {2^ + }} f\left( x ight) =  - \infty. Khẳng định nào sau đây là khẳng định đúng?

    Ta có: \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) =  - \infty => Đồ thị hàm số đã cho có TCĐ là x = 0

    \mathop {\lim }\limits_{x \to {2^ + }} f\left( x ight) =  - \infty => Đồ thị hàm số đã cho có TCĐ là x = 2

  • Câu 37: Thông hiểu

    Gia đình bác T muốn xây một bình chứa hình trụ có thể tích 75m^{3}. Đáy làm bằng bê tông giá 100 nghìn đồng/m2, thành làm bằng tôn giá 90 nghìn đồng/m2, nắp bằng nhôm giá 140 nghìn đồng/m2. Vậy đáy của hình trụ có bán kính bằng bao nhiêu để chi phí xây dựng là thấp nhất?

    Gọi x(m);(x > 0) là bán kính đáy của bình chứa hình trụ

    Khi đó tổng số tiền phải trả là 14.10^{4}.\pi x^{2} + 10^{5}.\pi x^{2} +\frac{144.9.10^{4}}{x}

    Đặt f(x) = 14.10^{4}.\pi x^{2} +10^{5}.\pi x^{2} + \frac{144.9.10^{4}}{x}

    \Rightarrow f'(x) = 48.10^{4}\pi x -\frac{1296.10^{4}}{x}

    \Rightarrow f'(x) = 0\Leftrightarrow 48.10^{4}\pi x - \frac{1296.10^{4}}{x} = 0\Leftrightarrow x = \frac{3}{\sqrt[3]{\pi}}

    Vậy để chi phí xây dựng là thấp nhất thì bán kính đáy bằng \frac{3}{\sqrt[3]{\pi}}m.

  • Câu 38: Thông hiểu

    Cho đồ thị:

    Xác định hàm số tương ứng với đồ thị hàm số đã cho?

    Nhận diện đồ thị hàm số bậc 4 trùng phương có a < 0

    Đồ thị hàm số đi qua điểm (0; -
1) nên loại hàm số y = - x^{4} +
2x^{2} - 3.

    Đồ thị hàm số có các cực trị là (1;0),( -
1;0) nên hàm số cần tìm là y = -
x^{4} + 2x^{2} - 1.

  • Câu 39: Vận dụng cao

    Cho hàm số y = x^{4} - 2mx^{2} +2. Giả sử S là tổng bình phương các giá trị của tham số m để hàm số có ba cực trị và đường tròn đi qua ba cực trị đó có bán kính bằng 4. Tính giá trị S? (Kết quả làm tròn đến chữ số thập phân thứ ba).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = x^{4} - 2mx^{2} +2. Giả sử S là tổng bình phương các giá trị của tham số m để hàm số có ba cực trị và đường tròn đi qua ba cực trị đó có bán kính bằng 4. Tính giá trị S? (Kết quả làm tròn đến chữ số thập phân thứ ba).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 40: Thông hiểu

    Xác định giá trị của a để hàm số f\left( x ight) = \sin x - ax + b nghịch biến trên trục số.

     Ta có: y' = \cos x - a

    Hàm số nghịch biến trên \mathbb{R}

    \begin{matrix}   \Rightarrow \cos x - a \leqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow a \geqslant \cos x,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow a \geqslant 1 \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo