Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như hình bên. Giá trị nhỏ nhất của hàm số y = f(x) trên \lbrack - 1\ ;\ 1brack bằng:

    Dựa vào bảng biến thiên ta có giá trị nhỏ nhất của hàm số y = f(x) trên \lbrack - 1\ ;\ 1brack bằng - 2.

  • Câu 2: Vận dụng

    Cho hàm số y =
f(x) có bảng biến thiên như hình vẽ:

    Hàm số g(x) = f\left( 2x^{2} -
\frac{5}{2}x - \frac{3}{2} ight) nghịch biến trong khoảng nào dưới đây?

    Ta có:

    g'(x) = \left( 4x - \frac{5}{2}
ight).f'\left( 2x^{2} - \frac{5}{2}x - \frac{3}{2}
ight)

    Xét g'(x) = 0 \Leftrightarrow\left\lbrack \begin{matrix}4x - \dfrac{5}{2} = 0 \\f'\left( 2x^{2} - \dfrac{5}{2}x - \dfrac{3}{2} ight) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{5}{8} \\2x^{2} - \dfrac{5}{2}x - \dfrac{3}{2} = - 2 \\2x^{2} - \dfrac{5}{2}x - \dfrac{3}{2} = 3 \\\end{matrix} ight.\  \Leftrightarrow x \in \left\{ -1;\dfrac{1}{4};\dfrac{5}{8};1;\dfrac{9}{4} ight\}

    Ta có bảng xét dấu:

    g'(0) = - \frac{5}{2}.f'\left( -
\frac{3}{2} ight) > 0 \Rightarrow g'(x) > 0;\forall x \in
\left( - 1;\frac{1}{4} ight)

    Vậy đáp án cần tìm là \left(
1;\frac{5}{4} ight).

  • Câu 3: Thông hiểu

    Cho hàm số y =
f(x) có đạo hàm f'(x) xác định và liên tục trên \mathbb{R}. Hình vẽ sau đây là đồ thị của hàm số y = f'(x):

    Hàm số g(x) = f\left( x - x^{2}
ight) nghịch biến trên khoảng:

    Ta có:

    g'(x) = f'\left( x - x^{2}
ight).(1 - 2x)

    g'(x) = 0 \Leftrightarrow
f'\left( x - x^{2} ight).(1 - 2x) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
f'\left( x - x^{2} ight) = 0 \\
1 - 2x = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x - x^{2} = 1 \\
x - x^{2} = 2 \\
1 - 2x = 0 \\
\end{matrix} ight.\  \Leftrightarrow x = \frac{1}{2}

    Với x = 0 ta có: g'(0) = f'\left( 0 - 0^{2} ight).(1 -
2.0) = 2 > 0 ta có bảng xét dấu của g'(x) như sau:

    Suy ra hàm số g(x) nghịch biến trên khoảng \left( \frac{1}{2}; + \infty
ight).

  • Câu 4: Thông hiểu

    Tính giá trị của tham số m biết rằng giá trị lớn nhất của hàm số y = x + \sqrt{4 - x^{2}} + m3\sqrt{2}?

    Ta có: y = x + \sqrt{4 - x^{2}} +
m có tập xác định D = \lbrack -
2;2brack

    y' = 1 + \frac{- x}{\sqrt{4 -
x^{2}}};\forall x \in ( - 2;2)

    y' = 0 \Leftrightarrow 1 + \frac{-
x}{\sqrt{4 - x^{2}}} = 0 \Leftrightarrow \sqrt{4 - x^{2}} =
x

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
4 - x^{2} = x^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x = \pm \sqrt{2} \\
\end{matrix} ight.\  \Leftrightarrow x = \sqrt{2}

    Ta có: \left\{ \begin{matrix}
y(2) = 2 + m \\
y( - 2) = 2 + m \\
y\left( \sqrt{2} ight) = 2\sqrt{2} + m \\
\end{matrix} ight. . Theo bài ra ta có: 2\sqrt{2} + m = 3\sqrt{2} \Leftrightarrow m =
\sqrt{2}

    Vậy đáp án cần tìm là m =
\sqrt{2}

  • Câu 5: Nhận biết

    Cho hàm số y =
f(x) xác định và liên tục trên khoảng ( - \infty; + \infty), có bảng biến thiên như hình sau:

    Mệnh đề nào sau đây đúng?

    Dựa vào bảng biến thiên ta thấy:

    Hàm số nghịch biến trên khoảng ( -
1;1)

    Hàm số đồng biến trên khoảng ( - \infty;
- 1) \cup (1; + \infty)

    Vậy đáp án cần tìm là: “Hàm số đồng biến trên khoảng ( - \infty; - 2)”.

  • Câu 6: Vận dụng cao

    Cho hàm số y = f(x). Đồ thị của hàm số y = f'\left( x ight) như hình bên. Đặt g\left( x ight) = f\left( x ight) - x. Mệnh đề nào sau đây đúng?

    Xét hàm số g\left( x ight) = f\left( x ight) - x

    \begin{matrix}g'\left( x ight) = f'\left( x ight) - 1 \hfill \\  g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = 1} \\   {x = 2} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Chọn mệnh đề đúng

     

    Vậy g\left( 2 ight) < g\left( 1 ight) < g\left( { - 1} ight)

  • Câu 7: Vận dụng

    Cho hàm số bậc ba f\left( x ight) = a{x^3} + b{x^2} + cx + d;\left( {a,b,c,d \in \mathbb{R}} ight) có đồ thị như hình vẽ dưới đây.

    Xác định số TCĐ và TCN của đồ thị hàm số

    Đồ thị hàm số g\left( x ight) = \frac{1}{{f\left( {4 - {x^2}} ight) - 3}} có bao nhiêu đường tiệm cận đứng và tiệm cận ngang.

    Đặt t = 4 - {x^2} khi đó x \to  \pm \infty thì t \to \infty

    Khi đó \mathop {\lim }\limits_{x \to  \pm \infty } g\left( x ight) = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{1}{{f\left( t ight) - 3}} = 0

    => y = 0 là tiệm cận ngang của đồ thị hàm số g(x)

    Mặt khác

    \begin{matrix}  f\left( {4 - {x^2}} ight) - 3 = 0 \hfill \\   \Leftrightarrow f\left( {4 - {x^2}} ight) = 3 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {4 - {x^2} =  - 2} \\   {4 - {x^2} = 4} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm \sqrt 6 } \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    => Đồ thị hàm số g(x) có ba đường tiệm cận đứng.

    Vậy đồ thị hàm số g(x) có bốn đường tiệm cận.

  • Câu 8: Thông hiểu

    Cho hàm số y = f(x) = \frac{x^{2} + 4x -
1}{x - 1} có đồ thị là (C). Xét tính đúng sai của các khẳng định sau:

    a) Số khoảng đồng biến và nghịch biến của hàm số là bằng nhau. Đúng||Sai

    b) Hàm số y = f(x) đạt cực đại tại điểm có toạ độ (−1; 2). Đúng||Sai

    c) Đường thẳng x = 1 là đường tiệm cận đứng của đồ thị hàm số y = f(x). Đúng||Sai

    d) Phương trình đường tiệm cận xiên của đồ thị hàm số y = f(x)y
= 2x + 5. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = \frac{x^{2} + 4x -
1}{x - 1} có đồ thị là (C). Xét tính đúng sai của các khẳng định sau:

    a) Số khoảng đồng biến và nghịch biến của hàm số là bằng nhau. Đúng||Sai

    b) Hàm số y = f(x) đạt cực đại tại điểm có toạ độ (−1; 2). Đúng||Sai

    c) Đường thẳng x = 1 là đường tiệm cận đứng của đồ thị hàm số y = f(x). Đúng||Sai

    d) Phương trình đường tiệm cận xiên của đồ thị hàm số y = f(x)y
= 2x + 5. Sai||Đúng

    Hàm số y = f(x) = \frac{x^{2} + 4x - 1}{x
- 1} có tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    Ta có: y' = \frac{x^{2} - 2x - 3}{(x
- 1)^{2}} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    Bảng biến thiên

    a) Đúng: Hàm số đồng biến trên các khoảng (−∞; -1) và (3;+∞) và nghịch biến trên các khoảng (−1;1) và (1;3) .

    b) Đúng: Đồ thị hàm số đạt cực đại tại điểm (−1;2)

    c) Đúng: Xét \lim_{x ightarrow 1^{-}}y
= - \infty;\lim_{x ightarrow 1^{+}}y = + \infty nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số y = f(x) = \frac{x^{2} + 4x - 1}{x -
1}.

    d) Sai: Xét \lim_{x ightarrow
\infty}\left\lbrack y - (x + 5) ightbrack = \lim_{x ightarrow
\infty}\left\lbrack \frac{4}{x - 1} ightbrack = 0 nên đường thẳng y = x + 5 là tiệm cận xiên của đồ thị hàm số y = f(x) = \frac{x^{2} + 4x - 1}{x -
1}.

  • Câu 9: Nhận biết

    Tiệm cận ngang của đồ thị hàm số y =
\frac{5}{x - 1} là đường thẳng có phương trình là:

    Ta có: \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{5}{x - 1} = 0

    Vậy tiệm cận ngang của đồ thị hàm số y =
\frac{5}{x - 1} là đường thẳng có phương trình y = 0.

  • Câu 10: Vận dụng

    Một khối gỗ có dạng hình khối nón có bán kính đáy bằng r = 2m, chiều cao h = 6m. Bác thợ mộc chế tác từ khúc gỗ thành một khúc gỗ có dạng hình khối trụ như hình vẽ:

    Gọi V là thể tích lớn nhất của khúc gỗ hình trụ sau khi chế tác. Xác định giá trị của V

    Gọi r_{t};h_{t} lần lượt là bán kính và chiều cao của khối trụ.

    Ta có: \frac{r_{t}}{2} = \frac{6 -
h_{t}}{6} \Rightarrow 2\left( 6 - h_{t} ight) = 6r_{t} \Leftrightarrow
h_{t} = 6 - 3r_{t}

    Ta lại có: V = \pi{r_{t}}^{2}.h_{t} =
\pi{r_{t}}^{2}.\left( 6 - 3r_{t} ight) = \pi.\left( 6{r_{t}}^{2} -
3{r_{t}}^{3} ight)

    Xét hàm số f\left( r_{t} ight) =
6{r_{t}}^{2} - 3{r_{t}}^{3} với r_{t} \in (0;2)có:

    f'\left( r_{t} ight) = 12r_{t} -
9{r_{t}}^{2}

    f'\left( r_{t} ight) = 0
\Leftrightarrow 12r_{t} - 9{r_{t}}^{2} = 0 \Leftrightarrow r_{t} =
\frac{4}{3}

    Ta có bảng biến thiên như sau:

    Dựa vào bảng biến thiên ta có \max
f\left( r_{t} ight) = \frac{32}{9} đạt tại r_{t} = \frac{4}{3}

    Vậy V = \frac{32\pi}{9}\left( m^{3}
ight) là giá trị cần tìm.

  • Câu 11: Thông hiểu

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} có đồ thị như hình vẽ

    Các mệnh đề sau đây đúng hay sai?

    a) Hàm số nghịch biến trên khoảng ( -
1;1). Đúng||Sai

    b) Hàm số có f'(x) > 0 \forall x \in ( - \infty; - 1) \cup (1; +
\infty). Đúng||Sai

    c) Hàm số g(x) = f(x) + 1 nghịch biến trên khoảng (0;2). Sai||Đúng

    d) Hàm số y = f\left( |x|
ight) đồng biến trên ( -
1;0) (1; + \infty). Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} có đồ thị như hình vẽ

    Các mệnh đề sau đây đúng hay sai?

    a) Hàm số nghịch biến trên khoảng ( -
1;1). Đúng||Sai

    b) Hàm số có f'(x) > 0 \forall x \in ( - \infty; - 1) \cup (1; +
\infty). Đúng||Sai

    c) Hàm số g(x) = f(x) + 1 nghịch biến trên khoảng (0;2). Sai||Đúng

    d) Hàm số y = f\left( |x|
ight) đồng biến trên ( -
1;0) (1; + \infty). Đúng||Sai

    a) Từ đồ thị ta có hàm số nghịch biến trên khoảng ( - 1;1) suy ra mệnh đề đúng.

    b) Từ đồ thị ta thấy hàm số đồng biến trên ( - \infty; - 1)(1; + \infty) suy ra hàm số có f'(x) > 0 \forall x \in ( - \infty; - 1) \cup (1; +
\infty). Vậy mệnh đề đúng.

    c) Ta có g'(x) = \left\lbrack f(x) +
1 ightbrack^{'} = f'(x)

    Hàm số g(x) nghịch biến khi g'(x) < 0 \Leftrightarrow f'(x)
< 0 \Leftrightarrow x \in ( - 1;1) suy ra mệnh đề sai.

    d) Từ đồ thị hàm số y = f(x) ta có đồ thị của hàm số y = f\left( |x|
ight) như hình vẽ.

    Từ đồ thị ta có hàm số y = f\left( |x|
ight) đồng biến trên ( -
1;0)(1; + \infty) suy ra mệnh đề đúng.

  • Câu 12: Thông hiểu

    Giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là:

    Tập xác định D = \left[ {1;9} ight]

    Ta có:

    \begin{matrix}  y' = \dfrac{1}{{2\sqrt {x - 1} }} - \dfrac{1}{{2\sqrt {9 - x} }} \hfill \\  y' = 0 \Rightarrow \sqrt {x - 1}  = \sqrt {9 - x}  \Rightarrow x = 5\left( {tm} ight) \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {y\left( 1 ight) = y\left( 9 ight) = 2\sqrt 2 } \\   {y\left( 5 ight) = 4} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\min y = 2\sqrt 2 } \\   {\max y = 4} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 13: Nhận biết

    Cho hàm số y =\frac{2x + 1}{x - 3}. Mệnh đề nào dưới đây là mệnh đề sai?

    f'(x) = \frac{- 7}{(x - 3)^{2}}< 0;\forall x \in D nên đồ thị hàm số luôn nghịch biến trên các khoảng ( - \infty;3),(3; +\infty).

    Vậy mệnh đề sai là: "Hàm số đồng biến trên \mathbb{R}\backslash\left\{ 3 ight\}".

  • Câu 14: Thông hiểu

    Cho hàm số y = \frac{x}{\sqrt{x^{2} -
4}}. Khi đó tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

    Tập xác định D = ( - \infty; - 2) \cup
(2; + \infty)

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = 1 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y =  - 1 \hfill \\ 
\end{gathered}  ight. suy ra đồ thị hàm số có hai tiệm cận ngang là y = \pm 1

    Lại có \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} y =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} y =  + \infty  \hfill \\ 
\end{gathered}  ight. suy ra đồ thị hàm số có hai tiệm cận đứng là x = \pm 2

    Vậy đồ thị hàm số có tổng số đường tiệm cận đứng và đường tiệm cận ngang bằng 4.

  • Câu 15: Nhận biết

    Cho hàm số y = f(x) liên tục và có bảng biến thiên trên đoạn \lbrack - 1\ ;\
3brack như hình vẽ bên. Khẳng định nào sau đây đúng?

    Dựa vào bảng biến thiên ta thấy: \max_{\lbrack - 1;3brack}f(x) = 5 tại x = 0.

    Suy ra \max_{\lbrack - 1;3brack}f(x) =
f(0).

  • Câu 16: Thông hiểu

    Cho hàm số y = f(x) = x^{3} - 2x^{2} + mx
+ 3 (với m là tham số) đạt cực tiểu tại x = 1. Tìm giá trị tham số m?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} - 4x +
m

    Hàm số đạt cực tiểu tại x = 1 suy ra y'(1) = 0 \Rightarrow - 1 + m = 0
\Leftrightarrow m = 1

    Với m = 1 \Rightarrow y = x^{3} - 2x^{2}
+ x + 3

    \Rightarrow \left\{ \begin{matrix}
y' = 3x^{2} - 4x + 1 \\
y'' = 6x - 4 \\
\end{matrix} ight.. Khi đó \left\{ \begin{matrix}
y'(1) = 0 \\
y''(1) > 0 \\
\end{matrix} ight. suy ra x =
1 là điểm cực tiểu của hàm số.

    Vậy m = 1 là giá trị cần tìm.

  • Câu 17: Thông hiểu

    Số đường tiệm cận của đồ thị hàm số y = \frac{x}{{{x^2} - 3x - 4}} + x

    Quy đồng biến đổi hàm số đã cho trở thành y = \frac{{{x^3} - 3{x^2} - 3x}}{{{x^2} - 3x - 4}}

    Tìm được tiệm cận đứng là x = -1 và x = 4 và không có tiệm cận ngang

    => Số tiệm cận là 2 đường

  • Câu 18: Vận dụng

    Cho hàm số y = f(x) liên tục trên tập số thực và có bảng biến thiên như sau:

    Đặt g(x) = \left| f(x + 1) + might| với m là tham số. Tìm điều kiện của tham số m để hàm số y = g(x) có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên tập số thực và có bảng biến thiên như sau:

    Đặt g(x) = \left| f(x + 1) + might| với m là tham số. Tìm điều kiện của tham số m để hàm số y = g(x) có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Nhận biết

    Tất cả các giá trị của tham số m để hàm số y = x^{3} - 3x^{2} + mx +
5 có hai điểm cực trị?

    Ta có: y' = 3x^{2} - 6x +
m

    Để hàm số có hai điểm cực trị thì y'
= 0 có hai nghiệm phân biệt khi đó

    \Delta'_{y'} = 9 - 3m > 0
\Leftrightarrow m < 3

  • Câu 20: Thông hiểu

    Có bao nhiêu giá trị tham số m để hàm số y = x^{3} + \frac{1}{2}\left(
m^{2} - 1 ight)x^{2} + 1 - m có điểm cực đại là x = - 1?

    Tập xác định D\mathbb{= R}

    Ta có: \left\{ \begin{matrix}
y' = 3x^{2} + \left( m^{2} - 1 ight)x \\
y'' = 6x + m^{2} - 1 \\
\end{matrix} ight.. Để hàm số đạt cực đại tại x = - 1 thì

    y'( - 1) = 0 \Leftrightarrow 3 +
\left( m^{2} - 1 ight).( - 1) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
m = 2 \\
m = - 2 \\
\end{matrix} ight.

    Lúc này y''( - 1) = - 6 + 4 - 1
< 0 nên hàm số đạt cực đại tại x
= - 1

    Vậy có hai giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 21: Thông hiểu

    Số các giá trị nguyên của tham số m \in
\lbrack - 20;20brack để hàm số y
= \frac{mx - 16}{x - m} nghịch biến trên khoảng ( - \infty;8) là:

    Ta có: y' = \frac{- m^{2} + 16}{(x -
m)^{2}}. Hàm số nghịch biến trên khoảng ( - \infty;8) khi

    \left\{ \begin{matrix}
y' < 0;\forall x < 8 \\
x eq m \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- m^{2} + 16 < 0 \\
m otin ( - \infty;8) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m < - 4 \\
m > 4 \\
\end{matrix} ight.\  \\
m \geq 8 \\
\end{matrix} ight.\  \Leftrightarrow m \geq 8

    \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 20;20brack \\
\end{matrix} ight.\  \Rightarrow m \in \left\{ 8;9;10;...;20
ight\}

    Vậy có tất cả 13 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 22: Thông hiểu

    Tập hợp tất cả các giá trị của tham số m để hàm số y
= x^{3} + 2x^{2} + (m + 1)x - m^{2} đồng biến trên khoảng ( - \infty; + \infty) là:

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi y' = 3x^{2} + 4x + m + 1
\geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
a = 3 > 0 \\
\Delta' = 2^{2} - 3(m + 1) \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \geq \frac{1}{3}

    Vậy m \in \left( \frac{1}{3}; + \infty
ight) là giá trị cần tìm.

  • Câu 23: Thông hiểu

    Đồ thị hàm số y = x - \sqrt {{x^2} - 4x + 2} có tiệm cận ngang là:

    Tập xác định D = \mathbb{R}

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \left( {x - \sqrt {{x^2} - 4x + 2} } ight) = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{4x - 2}}{{x + \sqrt {{x^2} - 4x + 2} }} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{4 - \dfrac{2}{x}}}{{1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{2}{{{x^2}}}} }} = 2 \hfill \\  \mathop {\lim }\limits_{x \to  - \infty } \left( {x - \sqrt {{x^2} - 4x + 2} } ight) = \mathop {\lim }\limits_{x \to \infty } \left( {1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{4}{{{x^2}}}} } ight) =  - \infty  \hfill \\ \end{matrix}

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  - \infty } x =  - \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } \left( {1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{2}{{{x^2}}}} } ight) = 2 > 0} \end{array}} ight. nên đồ thị hàm số có đường tiệm cận ngang là y = 2.

  • Câu 24: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    A picture containing tableDescription automatically generated

    Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Dựa vào bảng biến thiên, hàm số đã cho nghịch biến trên các khoảng ( - \infty; - 1)(0;1).

  • Câu 25: Nhận biết

    Giả sử M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y =
x^{3} - 3x + 2 trên đoạn \lbrack
0;2brack. Khi đó tổng của Mm bằng bao nhiêu?

    Ta có: y' = 3x^{2} - 3 \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
y(0) = 2 \\
y(1) = 0 \\
y(2) = 4 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
M = 4 \\
m = 0 \\
\end{matrix} ight.\  \Rightarrow M + m = 4

  • Câu 26: Nhận biết

    Cho hình vẽ:

    Hàm số nào sau đây có đồ thị như hình vẽ bên?

    Nhận thấy dạng đồ thị của hàm số bậc ba y
= ax^{3} + bx^{2} + cx + d;(a eq 0)

    Mặt khác đồ thị cắt trục tung tại điểm có tung độ âm nên hàm số tương ứng với đồ thị là y = - x^{3} + 2x -
2.

  • Câu 27: Thông hiểu

    Cho hàm số y = f(x) có đồ thị như hình vẽ như sau:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đã cho nghịch biến trên khoảng (−2, 0). Đúng||Sai

    b) Hàm số đã cho đồng biến trên khoảng (−1; +∞). Sai|| Đúng

    c) Hàm số đã cho đồng biến trên khoảng (2; +∞). Đúng||Sai

    d) Hàm số đạt cực tiểu tại x = −1.Sai|| Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đồ thị như hình vẽ như sau:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đã cho nghịch biến trên khoảng (−2, 0). Đúng||Sai

    b) Hàm số đã cho đồng biến trên khoảng (−1; +∞). Sai|| Đúng

    c) Hàm số đã cho đồng biến trên khoảng (2; +∞). Đúng||Sai

    d) Hàm số đạt cực tiểu tại x = −1.Sai|| Đúng

    Ta có thể từ đồ thị thiết lập lại bảng biến thiên như sau:

    a) Hàm số nghịch biến trên khoảng (−2, 0).

    b) Hàm số đồng biến trên khoảng (0; +∞) nên khẳng định đồng biến trên khoảng (−1; +∞) là sai.

    c) Hàm số đồng biến trên khoảng (0; +∞) nên nên hàm số đồng biến trên khoảng (2; +∞).

    d) Hàm số đạt cực tiểu tại x = 0 (chú ý: y = −1 gọi là giá trị cực tiểu).

  • Câu 28: Nhận biết

    Đường tiệm cận ngang của đồ thị hàm số y
= \frac{- x - 1}{x + 3} cắt đường thẳng y = 2021x tại điểm có tung độ bằng:

    Do \lim_{x ightarrow + \infty}\frac{- x- 1}{x + 3} = \lim_{x ightarrow + \infty}\dfrac{- 1 - \dfrac{1}{x}}{1 +\dfrac{3}{x}} = - 1\lim_{xightarrow - \infty}\frac{- x - 1}{x + 3} = \lim_{x ightarrow -\infty}\dfrac{- 1 - \dfrac{1}{x}}{1 + \dfrac{3}{x}} = - 1 nên đồ thị hàm số có đường tiệm cận ngang là y = -
1.

    Xét phương trình có hoành độ giao điểm 2021x = - 1 \Leftrightarrow x = \frac{-
1}{2021}

    Vậy tung độ giao điểm là y = -
1.

  • Câu 29: Vận dụng cao

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ:

    Có bao nhiêu giá trị nguyên của tham số m\in \lbrack - 200;200brack để hàm số g(x) = \left| f^{2}(x) + 8f(x) - might| có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ:

    Có bao nhiêu giá trị nguyên của tham số m\in \lbrack - 200;200brack để hàm số g(x) = \left| f^{2}(x) + 8f(x) - might| có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 30: Vận dụng cao

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Số TCĐ và TCN của đồ thị hàm số

    Hỏi đồ thị hàm số y = \frac{{{f^2}\left( x ight)\sqrt {{x^2} + x} }}{{\left[ {{f^2}\left( x ight) - 2f\left( x ight)} ight]\left( {2{x^5} + {x^4} - 10{x^3} - 5{x^2} + 8x + 4} ight)}} có bao nhiêu tiệm cận đứng và tiệm cận ngang?

    Dựa vào bảng biến thiên ta có: f\left( x ight) = a{x^2}\left( {x + 1} ight)\left( {x - 2} ight)

    Ta có:

    \begin{matrix}  y = \dfrac{{{f^2}\left( x ight)\sqrt {{x^2} + x} }}{{\left[ {{f^2}\left( x ight) - 2f\left( x ight)} ight]\left( {2{x^5} + {x^4} - 10{x^3} - 5{x^2} + 8x + 4} ight)}} \hfill \\   \Rightarrow y = \dfrac{{a{x^2}\left( {x + 1} ight)\left( {x - 2} ight)\sqrt {{x^2} + x} }}{{\left[ {f\left( x ight) - 2} ight]\left( {{x^2} - 4} ight)\left( {{x^2} - 1} ight)\left( {2x + 1} ight)}} \hfill \\   \Rightarrow y = \dfrac{{a{x^2}\sqrt {{x^2} + x} }}{{\left[ {f\left( x ight) - 2} ight]\left( {x + 2} ight)\left( {x - 1} ight)\left( {2x + 1} ight)}} \hfill \\ \end{matrix}

    Dựa vào bảng biến thiên suy ra phương trình f(x) = 2 có 2 nghiệm x = a hoặc x = b trong đó a < 0, b > 2

    Với điều kiện thì phương trình

    \left[ {f\left( x ight) - 2} ight]\left( {x + 2} ight)\left( {x - 1} ight)\left( {2x + 1} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 2} \\   {x = 1} \\   {x = a} \\   {x = b} \end{array}} ight.

    Do đó đồ thị hàm số có 4 đường tiệm cận đứng

    Mặt khác bậc của tử số nhỏ hơn bậc của mẫu số nên đồ thị hàm số có một tiệm cận ngang là y = 0 => Đồ thị hàm số có 5 đường tiệm cận.

  • Câu 31: Vận dụng

    Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 32: Thông hiểu

    Cho hàm số y = \frac{\sqrt{4 -
x}}{\sqrt{x + 1}}. Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?

    Tập xác định D = ( - 1;4brack suy ra đồ thị hàm số không có đường tiệm cận ngang và đường tiệm cận xiên

    \lim_{x ightarrow ( - 1)^{+}}y = +
\infty suy ra đồ thị nhận đường thẳng x = - 1 làm tiệm cận đứng.

    Vậy đồ thị hàm số có một đường tiệm cận.

  • Câu 33: Thông hiểu

    Cho hàm số y = 2x^{3} - 5x^{2} + 4x -
2021. Gọi x_{1};x_{2} lần lượt là hoành độ tại hai điểm cực đại và cực tiểu của hàm số. Kết luận nào sau đây đúng?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 6x^{2} - 10x + 4 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = \dfrac{2}{3} \\\end{matrix} ight.

    y'' = 12x - 10

    \Rightarrow y''(1) = 1 >
0 nên x_{2} = 1 là điểm cực tiểu của hàm số.

    y''\left( \frac{2}{3} ight) = -
2 < 0 nên x_{1} =
\frac{2}{3} là điểm cực đại của hàm số.

    Vậy kết luận đúng là: 2x_{1} - x_{2} =
\frac{1}{3}.

  • Câu 34: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Giá trị cực đại của hàm số đã cho là:

    Quan sát bảng biến thiên dễ thấy giá trị cực đại của hàm số đã cho bằng 3.

  • Câu 35: Thông hiểu

    Vận tốc của một chất điểm được xác định bởi công thức v(t) = t^{3} - 10t^{2} + 29t - 20 (với v được tính bằng giây). Vận tốc của chất điểm tại thời điểm gia tốc nhỏ nhất gần bằng:

    Gia tốc của chất điểm a(t) = v'(t) =
3t^{2} - 20t + 29 gia tốc là hàm số bậc hai ẩn t đạt giá trị nhỏ nhất tại t = \frac{10}{3}

    Tại đó, vận tốc của chất điểm bằng v\left( \frac{10}{3} ight) = \frac{70}{27}
\approx 2,59.

  • Câu 36: Nhận biết

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào dưới đây?

    Xác định hàm số y = f(x)

    Dựa vào đồ thị hàm số ta thấy

    \mathop {\lim }\limits_{x \to \infty } y =  + \infty => Hệ số a > 0

    => Loại đáp án B và đáp án D

    Mặt khác hàm số có ba điểm cực trị

    => Loại đáp án C

  • Câu 37: Vận dụng

    Cho hàm số f(x), hàm số f'(x) liên tục trên \mathbb{R} và có đồ thị như sau:

    Bất phương trình f(x) < x + m (với m là một số thực) nghiệm đúng với mọi x \in ( - 1;0) khi và chỉ khi:

    Ta có:

    f(x) < x + m \Leftrightarrow f(x) - x< m

    Xét hàm số g(x) = f(x) - x ta có:

    g'(x) = f'(x) - 1. Với \forall x \in ( - 1;0) thì - 1 < f'(x) < 1

    Từ đó g'(x) = f'(x) - 1 <0 nên hàm số nghịch biến trên ( -1;0)

    Suy ra g(x) = f(x) - x < f( - 1) +1. Yêu cầu bài toán tương đương với m \geq f( - 1) + 1.

  • Câu 38: Nhận biết

    Đồ thị sau đây là của hàm số nào?

    Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là y = 2 và tiệm cận đứng của đồ thị hàm số x = - 1.

    Đồ thị hàm số cắt trục tung tại điểm A(0;1)

    Vậy hàm số cần tìm là y = \frac{2x + 1}{x
+ 1}.

  • Câu 39: Thông hiểu

    Cho hàm số y = f(x) = \frac{x - 1}{x -
m} với m là tham số thực. Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}. Đúng||Sai

    b) y' = \frac{m - 1}{(x -
m)^{2}};\forall x eq m. Sai|| Đúng

    c) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi m < 1. Sai|| Đúng

    d) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi 0 ≤ m < 1. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = \frac{x - 1}{x -
m} với m là tham số thực. Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}. Đúng||Sai

    b) y' = \frac{m - 1}{(x -
m)^{2}};\forall x eq m. Sai|| Đúng

    c) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi m < 1. Sai|| Đúng

    d) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi 0 ≤ m < 1. Đúng||Sai

    a) Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}.

    b) y' = \frac{- m + 1}{(x -
m)^{2}};\forall x eq m

    c) Sai.

    Hàm số đã cho đồng biến trên (−∞; 0) khi và chỉ khi

    \left\{ \begin{matrix}
m otin ( - \infty;0) \\
- m + 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \geq 0 \\
m < 1 \\
\end{matrix} ight.\  \Leftrightarrow 0 \leq m < 1.

    d) Đúng

  • Câu 40: Vận dụng cao

    Gọi K là tập hợp các giá trị nguyên của tham số m \in \left[ {0;2019} ight] để bất phương trình {x^2} - m + \sqrt {{{\left( {1 - {x^2}} ight)}^3}}  \leqslant 0 nghiệm đúng với mọi x \in \left[ { - 1;1} ight] . Số các phần tử của tập hợp K là:

    Đặt t = \sqrt {1 - {x^2}} ;x \in \left[ { - 1;1} ight] \Rightarrow t \in \left[ {0;1} ight]

    Bất phương trình đã cho trở thành {t^3} - {t^2} + 1 - m \leqslant 0 \Leftrightarrow m \geqslant {t^3} - {t^2} + 1\left( * ight)

    Yêu cầu bài toán tương đương với bất phương trình (*) nghiệm đúng với mọi t \in \left[ {0;1} ight]

    Xét hàm số f\left( t ight) = {t^3} - {t^2} + 1 \Rightarrow f'\left( t ight) = 3{t^3} - 2t

    f'\left( t ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {t = 0\left( L ight)} \\   {t = \dfrac{2}{3}\left( {tm} ight)} \end{array}} ight.

    \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) = f\left( 1 ight) = 1} \\   {f\left( {\dfrac{2}{3}} ight) = \dfrac{{23}}{{27}}} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ {0;1} ight]} f\left( t ight) = 1

    Do đó bất phương trình (*) nghiệm đúng với mọi t \in \left[ {0;1} ight] khi và chỉ khi m \geqslant 1

    Mặt khác m là số nguyên thuộc [0; 2019] nên m \in \left\{ {1;2;3;...;2019} ight\}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo