Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số f(x) = x^{3} - 3x. Tìm giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack - 2;1brack?

    Xét hàm số f(x) = x^{3} - 3x xác định trên tập số thực có:

    f'(x) = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
f( - 2) = - 2 \\
f(1) = - 2 \\
f( - 1) = 2 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack - 2;1brack}f(x) = -
2

    Vậy giá trị nhỏ nhất của hàm số là -2 khi x = 1 hoặc x = -2.

  • Câu 2: Thông hiểu

    Giá trị thực của tham số m để hàm số y = - x^{3} + mx^{2} + \left( m^{2} -
12 ight)x + 2 đạt cực tiểu tại điểm x = - 1 thuộc khoảng nào sau đây?

    Tập xác định D\mathbb{= R}

    Ta có: \left\{ \begin{matrix}
y' = - 3x^{2} + 2mx + m^{2} - 12 \\
y'' = - 6x + 2m \\
\end{matrix} ight.

    Để hàm số đạt cực tiểu tại x = -
1 thì

    \left\{ \begin{matrix}
y'(1) = 0 \\
y''(1) > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 2m - 15 = 0 \\
m > - 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m = 5(tm) \\
m = - 3(ktm) \\
\end{matrix} ight.\  \\
m > - 3 \\
\end{matrix} ight.\  \Leftrightarrow m = 5

    Vậy m = 5 \in (3;6).

  • Câu 3: Nhận biết

    Cho hàm số sau, hàm số nào đồng biến trên \mathbb{R}?

    Xét hàm số f(x) = x^{3} - 3x^{2} + 3x -
4 ta có:

    f'(x) = 3x^{2} - 6x + 3 = 3(x -
1)^{2} \geq 0;\forall x\mathbb{\in R}

    \Rightarrow f(x) = x^{3} - 3x^{2} + 3x -
4 đồng biến trên \mathbb{R}.

  • Câu 4: Nhận biết

    Trên đoạn \lbrack 0;1brack hàm số y = \sqrt{4 - 3x} có giá trị nhỏ nhất bằng bao nhiêu?

    Tập xác định D = \left( -
\infty;\frac{4}{3} ightbrack

    Ta có: y' = \frac{- 3}{2\sqrt{4 -
3x}} < 0;\forall x < \frac{4}{3}

    Trên đoạn \lbrack 0;1brack hàm số đã cho nghịch biến

    \Rightarrow \min_{\lbrack 0;1brack}y =
y(1) = 1

  • Câu 5: Vận dụng cao

    Cho hàm số f(x) liên tục trên khoảng (0; +∞) thỏa mãn 3x.f\left( x ight) - {x^2}.f'\left( x ight) = 2{f^2}\left( x ight), với f(x) ≠ 0 với ∀x ∈ (0; +∞) và f\left( 1 ight) = \frac{1}{3}. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [1;2]. Tính tổng M + m.

    Ta có:

    \begin{matrix}  3x.f\left( x ight) - {x^2}.f'\left( x ight) = 2{f^2}\left( x ight) \hfill \\   \Rightarrow 3{x^2}f\left( x ight) - {x^3}f'\left( x ight) = 2x{f^2}\left( x ight) \hfill \\   \Rightarrow \dfrac{{3{x^2}f\left( x ight) - {x^3}f'\left( x ight)}}{{{f^2}\left( x ight)}} = 2x \hfill \\   \Rightarrow \left( {\dfrac{{{x^3}}}{{f\left( x ight)}}} ight)' = 2x \Rightarrow \dfrac{{{x^3}}}{{f\left( x ight)}} = {x^2} + C \hfill \\ \end{matrix}

    Thay x = 1 vào ta có: \left\{ {\begin{array}{*{20}{c}}  {\dfrac{1}{{f\left( 1 ight)}} = 1 + C} \\   {f\left( 1 ight) = \dfrac{1}{3}} \end{array}} ight. \Rightarrow C = 2

    \begin{matrix}   \Rightarrow f\left( x ight) = \dfrac{{{x^3}}}{{{x^2} + 2}} \hfill \\  f'\left( x ight) = \dfrac{{{x^4} + 6{x^2}}}{{{{\left( {{x^2} + 2} ight)}^2}}} \hfill \\  f'\left( x ight) = 0 \Rightarrow x = 0 \hfill \\ \end{matrix}

    Ta có bảng biến thiên

    Tính tổng GTLN và GTNN của hàm số

    Khi đó f(x) đồng biến trên [1; 2]

    => \left\{ {\begin{array}{*{20}{c}}  {m = f\left( 1 ight) = \dfrac{1}{3}} \\   {M = f\left( 2 ight) = \dfrac{4}{3}} \end{array}} ight. \Rightarrow m + M = \dfrac{5}{3}

  • Câu 6: Thông hiểu

    Đồ thị hàm số y = \frac{2x - 1}{3x +
4} có bao nhiêu điểm có tọa độ nguyên?

    Ta có: y\mathbb{\in Z\Rightarrow}3y\in\mathbb{ Z }\Rightarrow\frac{6x - 3}{3x + 4} = 2 -\frac{11}{3x + 4}\mathbb{\in Z}

    \Rightarrow \frac{11}{3x + 4}\mathbb{\in
Z \Rightarrow}3x + 4 \in U(11)

    \Rightarrow \left\lbrack \begin{matrix}3x + 4 = 1 \\3x + 4 = - 1 \\3x + 4 = 11 \\3x + 4 = - 11 \\\end{matrix} ight.\  \Rightarrow \left\lbrack \begin{matrix}x = - 1 \Rightarrow y = \dfrac{1}{7}(L) \\x = - \dfrac{5}{3}(L) \\x = \dfrac{7}{3}(L) \\x = - 5 \Rightarrow y = 1(TM) \\\end{matrix} ight.

    Với đồ thị hàm số đã cho có đúng 1 điểm có tọa độ nguyên.

  • Câu 7: Nhận biết

    Cho hàm số y = f(x) có đồ thị là đường cong như hình vẽ:

    Tìm số nghiệm của phương trình 2f(x) - 3
= 0?

    Ta có: 2f(x) - 3 = 0 \Leftrightarrow f(x)
= \frac{3}{2}

    Số nghiệm của phương trình bằng số giao điểm của hàm số y = f(x) và đường thẳng y = \frac{3}{2}

    Quan sát đồ thị hàm số ta thấy hai đồ thị hàm số cắt nhau tại 3 điểm nên phương trình có ba nghiệm.

  • Câu 8: Thông hiểu

    Cho hàm số y = \frac{ax^{2} + bx + c}{ex
+ f} có đồ thị (C) như hình vẽ:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên (−∞; −1). Sai||Đúng

    b) Hàm số đạt cực đại tại x = −2. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số trên (−∞; −1)\frac{3}{2}. Đúng||Sai

    d) Điểm cực tiểu của hàm số là x = −2. Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{ax^{2} + bx + c}{ex
+ f} có đồ thị (C) như hình vẽ:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên (−∞; −1). Sai||Đúng

    b) Hàm số đạt cực đại tại x = −2. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số trên (−∞; −1)\frac{3}{2}. Đúng||Sai

    d) Điểm cực tiểu của hàm số là x = −2. Đúng||Sai

    a) Sai. Hàm số đồng biến trên (−2; −1), (−1; 0) và nghịch biến trên (−∞; −2), (0; +∞).

    b) Sai. Hàm số đạt cực tiểu tại x = −2.

    c) Đúng.

    d) Đúng.

  • Câu 9: Nhận biết

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x - 1)^{2020}(x - 2)^{2021}(x -
3)^{2022};\forall x\mathbb{\in R}. Số điểm cực trị của hàm số đã cho là:

    Ta có: f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Ta có bảng xét dấu:

    Vậy hàm số đã cho có một điểm cực trị.

  • Câu 10: Nhận biết

    Đồ thị hàm số y = f(x) được biểu diễn bởi hình vẽ:

    Điểm cực tiểu của hàm số đã cho là:

    Quan sát đồ thị của hàm số ta thấy hàm số có điểm cực tiểu là x = 2.

  • Câu 11: Nhận biết

    Đồ thị của hàm số nào dưới đây có dạng như trong hình vẽ?

    Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng y = ax^{3} + bx^{2} + cx + d với a < 0

    Vậy hàm số cần tìm là y = - x^{3} +
3x^{2} - 1.

  • Câu 12: Thông hiểu

    Một công ty bất động sản có 50 căn hộ cho thuê. Nếu giá cho thuê mỗi căn là 3000000 đồng/tháng thì không có phòng trống, còn nếu cho thuê mỗi căn hộ thêm 200000 đồng/tháng thì sẽ có 2 căn bị bỏ trống. Hỏi công ty phải niêm yếu bao nhiêu để doanh thu là lớn nhất?

    Đặt số tiền tăng thêm là 200000x (đồng)

    Giá tiền mỗi căn hộ một tháng là 3000000 + 200000x (đồng)

    Số căn hộ bị trống là 50 - 2x (phòng)

    Số tiền thu được mỗi tháng là: \left(
3.10^{6} + 2.10^{5}x ight)(50 - 2x) (đồng)

    Đặt f(x) = \left( 3.10^{6} + 2.10^{5}x
ight)(50 - 2x)

    Để doanh thu là lớn nhất thì ta tìm giá trị lớn nhất của hàm số f(x), giá trị lớn nhất của hàm số f(x) tại đỉnh của parabol.

    Hay:

    f'(x) = 2.10^{5}(50 - 2x) - 2\left(
3.10^{6} + 2.10^{5}x ight) = 0 \Leftrightarrow x = 5

    Vậy công ty niêm yết giá tiền là: 3.10^{6} + 2.10^{5}.5 = 4.10^{6} đồng để được doanh thu là lớn nhất.

  • Câu 13: Vận dụng cao

    Cho hàm số y =f(x) có bảng xét dấu f'(x) như sau:

    Hàm số y = f\left( 2 - e^{x} ight) -\frac{1}{3}e^{3x} + 3e^{2x} - 5e^{x} + 1 đồng biến trong khoảng nào dưới đây?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x) có bảng xét dấu f'(x) như sau:

    Hàm số y = f\left( 2 - e^{x} ight) -\frac{1}{3}e^{3x} + 3e^{2x} - 5e^{x} + 1 đồng biến trong khoảng nào dưới đây?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Thông hiểu

    Cho hàm số y = \frac{(2m + 1)x^{2} +
3}{\sqrt{x^{4} + 1}} với m là tham số. Tìm giá trị của m để đường tiệm cận ngang của đồ thị hàm số đi qua điểm A(1; - 3)?

    Ta có: \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow - \infty}y = 2m + 1 suy ra d:y = 2m + 1 là tiệm cận ngang của đồ thị hàm số đã cho.

    Do A(1; - 3) \in d \Leftrightarrow 2m + 1
= - 3 \Leftrightarrow m = - 2

  • Câu 15: Vận dụng

    Giá trị của tham số m để đồ thị hàm số y = \frac{{\left( {2m - 1} ight)x + 1}}{{x - m}} có đường tiệm cận ngang y = 3 là:

    Điều kiện để đồ thị hàm số có tiệm cận là:

    - m\left( {2m - 1} ight) - 1 e 0 \Rightarrow 2{m^2} - m + 1 e 0 luôn đúng với \forall x \in \mathbb{R}

    Phương trình đường tiệm cận ngang là y = 2m - 1 nên ta có 2x - 1 = 3 \Rightarrow m = 2

  • Câu 16: Thông hiểu

    Cho hàm số y = f(x) = \frac{\sqrt{x^{2} -
x + 2}}{x - 1}. Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định của hàm số là \mathbb{R}\backslash\left\{ 1 ight\}. Đúng||Sai

    b) Đồ thị hàm số có các đường tiệm cận ngang là y = 1,\ y = - 1. Đúng||Sai

    c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng

    d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = \frac{\sqrt{x^{2} -
x + 2}}{x - 1}. Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định của hàm số là \mathbb{R}\backslash\left\{ 1 ight\}. Đúng||Sai

    b) Đồ thị hàm số có các đường tiệm cận ngang là y = 1,\ y = - 1. Đúng||Sai

    c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng

    d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng

    a) Điều kiện xác định của hàm số \left\{
\begin{matrix}
x^{2} - x + 2 > 0;\forall x \\
x - 1 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow x eq 1.

    Vậy tập xác định của hàm số là \mathbb{R}\backslash\left\{ 1
ight\}.

    b) Ta có: \lim_{x ightarrow -
\infty}f(x) = - 1 nên y = −1 là đường tiệm cận ngang.

    \lim_{x ightarrow + \infty}f(x) =
1 nên y = 1 là đường tiệm cận ngang.

    c) Do \lim_{x ightarrow 1^{+}}f(x) = +
\infty nên x = 1 là đường tiệm cận đứng.

    Vậy đồ thị hàm số có tất cả 3 đường tiệm cận (2 TCN và 1 TCĐ).

    d) Minh họa miền giới hạn của các đường tiệm cận và trục Oy như sau:


    Miền giới hạn là hình chữ nhật có diện tích là S = 2.1 = 2

  • Câu 17: Nhận biết

    Giá trị nhỏ nhất của hàm số y = x3 – 3x + 5 trên đoạn [0; 2] là:

    Xét hàm số f(x) = x3 – 3x + 5 trên [0; 2] có:

    f’(x) = 3x3 – 3

    f’(x) = 0 =>\left\{ {\begin{array}{*{20}{c}}  {0 \leqslant x \leqslant 2} \\   {3{x^2} - 3 = 0} \end{array}} ight. \Rightarrow x = 1

    Tính được f(0) = 5; f(1) = 3; f(2) = 7

    Vậy \mathop {\min }\limits_{\left[ {0;2} ight]} f\left( x ight) = f\left( 1 ight) = 3

  • Câu 18: Thông hiểu

    Đồ thị hàm số y = {x^3} - 3{x^2} - 9x + 1 có hai điểm cực trị là A và B. Điểm nào dưới đây thuộc đường thẳng AB?

     Cách 1: Xét hàm số f\left( x ight) = {x^3} - 3{x^2} - 9x + 1

    Ta có: f\left( x ight) = \left( {\frac{1}{3}x - \frac{1}{3}} ight).f'\left( x ight) - 8x - 2

    Đồ thị hàm số f(x) có hai điểm cực trị A và B nên f’(A) = f’(B) = 0

    Suy ra \left\{ {\begin{array}{*{20}{c}}  {{y_A} = f\left( {{x_A}} ight) =  - 8{x_A} - 2} \\   {{y_B} = f\left( {{x_B}} ight) =  - 8{x_B} - 2} \end{array}} ight.

    Do đó phương trình đường thẳng AB là y = -8x – 2

    Khi đó ta có điểm có tọa độ (1; -10) thuộc đường thẳng AB.

    Cách 2: Xét hàm số y = f\left( x ight) = {x^3} - 3{x^2} - 9x + 1

    \begin{matrix}  f'\left( x ight) = 3{x^2} - 6x - 9 \hfill \\  f'\left( x ight) = 0 \Rightarrow 3{x^2} - 6x - 9 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 3} \\   {x =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    => Tọa độ hai điểm cực trị của hàm số là A(3; -26) và B(-1; 6)

    Ta có: \overrightarrow {AB}  = \left( { - 4;32} ight) \Rightarrow \overrightarrow u  = \left( { - 1;8} ight)

    Phương trình đường thẳng AB đ qua B(-1; 6) nhận vecto \overrightarrow u làm vecto chỉ phương là \left\{ {\begin{array}{*{20}{c}}  {x =  - 1 - t} \\   {y = 6 + 8t} \end{array}} ight.;\left( {t \in \mathbb{R}} ight)

    Khi đó ta có điểm có tọa độ (1; -10) thuộc đường thẳng AB.

  • Câu 19: Vận dụng

    Tổng các giá trị nguyên âm của tham số m để hàm số y
= x^{3} + mx - \frac{1}{5x^{5}} đồng biến trên khoảng (0; + \infty) bằng:

    Hàm số đồng biến trên khoảng (0; +
\infty)

    \Leftrightarrow y' = 3x^{2} + m +
\frac{1}{x^{6}} \geq 0;\forall x \in (0; + \infty)

    Theo bất đẳng thức Cauchy ta có:

    \Leftrightarrow y' = 3x^{2} +
\frac{1}{x^{6}} + m = \left( x^{2} + x^{2} + x^{2} + \frac{1}{x^{6}}
ight) + m

    \geq
4\sqrt[4]{x^{2}.x^{2}.x^{2}.\frac{1}{x^{6}}} = 4 + m;\forall x \in (0; +
\infty)

    (*) \Leftrightarrow m + 4 \geq 0
\Leftrightarrow m \geq - 4

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 4; - 3; - 2; - 1 ight\}

    Vậy tổng các giá trị của tham số m là -
10.

  • Câu 20: Nhận biết

    Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Từ đồ thị, ta thấy hàm số đồng biến trên các khoảng ( - 1;0)(1; + \infty).

  • Câu 21: Nhận biết

    Một đường tiệm cận đứng của đồ thị hàm số y = \frac{x^{2} + 4x + 3}{(x - 2)\left( x^{2} - 1
ight)} là:

    Ta có:

    \lim_{x ightarrow 1^{+}}y = \lim_{x
ightarrow 1^{+}}\frac{x^{2} + 4x + 3}{(x - 2)\left( x^{2} - 1 ight)}
= \lim_{x ightarrow 1^{+}}\frac{x + 3}{(x - 2)(x - 1)} = -
\infty

    \lim_{x ightarrow 2^{+}}y = \lim_{x
ightarrow 2^{+}}\frac{x^{2} + 4x + 3}{(x - 2)\left( x^{2} - 1 ight)}
= \lim_{x ightarrow 2^{+}}\frac{x + 3}{(x - 2)(x - 1)} = +
\infty

    Vậy một đường tiệm cận đứng của đồ thị hàm số là x = 1.

  • Câu 22: Nhận biết

    Hàm số y = \frac{1}{3}{x^3} - \frac{5}{2}{x^2} + 6x nghịch biến trên khoảng nào?

     Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {y' = {x^2} - 2x + 6} \\   {y' < 0} \end{array} \Rightarrow } ight.{x^2} - 2x + 6 < 0 \Rightarrow 2 < x < 3

    => Hàm số nghịch biến trên khoảng (2; 3)

  • Câu 23: Vận dụng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đạo hàm f'(x) = x^{2}(x - 2)\left( x^{2} - 6x + might) với mọi x\mathbb{\inR}. Có bao nhiêu số nguyên m \in\lbrack - 2019;2019brack để hàm số g(x) = f(1 - x) nghịch biến trên khoảng ( - \infty; - 1)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đạo hàm f'(x) = x^{2}(x - 2)\left( x^{2} - 6x + might) với mọi x\mathbb{\inR}. Có bao nhiêu số nguyên m \in\lbrack - 2019;2019brack để hàm số g(x) = f(1 - x) nghịch biến trên khoảng ( - \infty; - 1)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 24: Vận dụng cao

    Cho hàm số y = f(x) là một hàm đa thức có bảng xét dấu f^{'}(x) như sau:

    Số điểm cực trị của hàm số g(x) = f\left(
- 2x^{2} + |x| ight).

    Ta có g(x) = f\left( - 2x^{2} + |x|
ight) = f\left( - 2|x|^{2} + |x| ight).

    Số điểm cực trị của hàm số h(|x|) bằng hai lần số điểm cực trị dương của hàm số h(x) cộng thêm 1.

    Xét hàm số h(x) = f\left( - 2x^{2} + x
ight)

    \Rightarrow h'(x) = ( - 4x +1)f^{'}\left( - 2x^{2} + x ight) = 0

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{1}{4} \\- 2x^{2} + x = - 1 \\- 2x^{2} + x = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{1}{4} \\x = 1 \\x = \dfrac{- 1}{2} \\\end{matrix} ight.

    Bảng xét dấu hàm số h(x) = f\left( -
2x^{2} + x ight):

    Hàm số h(x) = f\left( - 2x^{2} + x
ight) có 2 điểm cực trị dương.

    Vậy hàm số g(x) = f\left( - 2x^{2} + |x|
ight) = f\left( - 2|x|^{2} + |x| ight) có 5 điểm cực trị.

  • Câu 25: Vận dụng

    Số điểm cực trị của hàm số y = \left| {\sin x - \frac{\pi }{4}} ight|,x \in \left( { - \pi ;\pi } ight) là?

    Xét hàm số y = f\left( x ight) = \sin x - \frac{x}{4};x \in \left( { - \pi ;\pi } ight)

    Ta có:

    \begin{matrix}  f'\left( x ight) = \cos x - \dfrac{1}{4} \hfill \\  f'\left( x ight) = 0 \Leftrightarrow \cos x = \dfrac{1}{4} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = {x_1} \in \left( { - \dfrac{\pi }{2};0} ight)} \\   {x = {x_1} \in \left( {0;\dfrac{\pi }{2}} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    \begin{matrix}  f\left( {{x_1}} ight) = \sin {x_1} - \dfrac{{{x_1}}}{4} =  - \dfrac{{\sqrt {15} }}{4} - \dfrac{{{x_1}}}{4} <  - \dfrac{{\sqrt {15} }}{4} + \dfrac{\pi }{8} < 0 \hfill \\  f\left( {{x_2}} ight) = \sin {x_2} - \dfrac{{{x_2}}}{4} = \dfrac{{\sqrt {15} }}{4} - \dfrac{{{x_1}}}{4} < \dfrac{{\sqrt {15} }}{4} - \dfrac{\pi }{8} < 0 \hfill \\ \end{matrix}

    Ta có bảng biến thiên:

    Tìm số điểm cực trị của hàm số

    Dựa vào bảng biến thiên, ta thấy hàm số có hai điểm cực trị và đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khác x1; x2

    => Hàm số y = \left| {\sin x - \frac{x}{4}} ight|,x \in \left( { - \pi ,\pi } ight) có 5 điểm cực trị

  • Câu 26: Thông hiểu

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{3x^{2} - 4x + 1}{x^{2} - 1} là:

    Điều kiện xác định của hàm số x^{2} - 1
eq 0 \Leftrightarrow x eq \pm 1

    Tập xác định D\mathbb{=
R}\backslash\left\{ \pm 1 ight\}

    \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{3x^{2} - 4x + 1}{x^{2} - 1} =
3 suy ra đồ thị hàm số có tiệm cận ngang là y = 3.

    \lim_{x ightarrow ( - 1)^{\pm}}y =
\lim_{x ightarrow ( - 1)^{\pm}}\frac{3x^{2} - 4x + 1}{x^{2} - 1} = \mp
\infty suy ra x = - 1 là tiệm cận đứng của đồ thị hàm số

    \lim_{x ightarrow 1}y = \lim_{x
ightarrow 1}\frac{(x - 1)(3x + 1)}{(x - 1)(x + 1)} = \lim_{x
ightarrow 1}\frac{3x + 1}{x + 1} = 1 suy ra x = 1 không là tiệm cận đứng.

    Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hám số là 2.

  • Câu 27: Thông hiểu

    Cho hàm số y = \frac{2x + 1}{x -
2} có đồ thị là (C). Số điểm thuộc (C) có hoành độ và tung độ đều là các số nguyên là

    Ta có:

    y = \frac{2x + 1}{x - 2} = 2 +
\frac{5}{x - 2}(C)

    Gọi M\left( x_{0};y_{0} ight) \in
(C);\left( x_{0};y_{0}\mathbb{\in Z} ight)

    \Rightarrow \left\{ \begin{matrix}x_{0}\in\mathbb{ Z} \\y_{0} = 2 + \dfrac{5}{x_{0} - 2}\in\mathbb{ Z} \\\end{matrix} ight.\  \Rightarrow x_{0} - 2 \in \left\{ \pm 1; \pm 5ight\}

    \Rightarrow \left\lbrack \begin{matrix}
x_{0} - 2 = 1 \\
x_{0} - 2 = - 1 \\
x_{0} - 2 = 5 \\
x_{0} - 2 = - 5 \\
\end{matrix} ight.\  \Rightarrow \left\lbrack \begin{matrix}
x_{0} = 3 \Rightarrow y_{0} = 7(tm) \\
x_{0} = 1 \Rightarrow y_{0} = - 3(tm) \\
x_{0} = 7 \Rightarrow y_{0} = 3(tm) \\
x_{0} = - 3 \Rightarrow y_{0} = 1(tm) \\
\end{matrix} ight.

    Vậy có 4 điểm thỏa mãn yêu cầu.

  • Câu 28: Vận dụng cao

    Cho hàm số y = f(x) liên tục trên và y = f’(x) có bảng biến thiên như sau:

    Tính số tiệm cận đứng của đồ thị hàm số

    Đồ thị hàm số g\left( x ight) = \frac{{2020}}{{f\left( x ight) - m}} có nhiều nhất bao nhiêu tiệm cận đứng:

    Điều kiện f\left( x ight) e m

    Để đồ thị hàm số g\left( x ight) = \frac{{2020}}{{f\left( x ight) - m}} có đường tiệm cận đứng f\left( x ight) = m thì phải có nghiệm.

    Từ bảng biến thiên của hàm số y = f’(x) suy ra phương trình f’(x) = 0 có đúng hai nghiệm là \left[ {\begin{array}{*{20}{c}}  {x = a} \\   {x = b} \end{array}} ight. với - 1 < a < 0 < b

    Từ đó ta có bảng biến thiên của hàm số y = f(x) như sau:

    Tính số tiệm cận đứng của đồ thị hàm số

    => Phương trình y = f(x) có nhiều nhất ba nghiệm phân biệt

    Vậy đồ thị hàm số g\left( x ight) = \frac{{2020}}{{f\left( x ight) - m}} có nhiều nhất ba đường tiệm cận đứng.

  • Câu 29: Thông hiểu

    Cho hàm số y =
f(x) có đạo hàm f'(x) xác định và liên tục trên \mathbb{R}. Hình vẽ sau đây là đồ thị của hàm số y = f'(x):

    Hàm số g(x) = f\left( x - x^{2}
ight) nghịch biến trên khoảng:

    Ta có:

    g'(x) = f'\left( x - x^{2}
ight).(1 - 2x)

    g'(x) = 0 \Leftrightarrow
f'\left( x - x^{2} ight).(1 - 2x) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
f'\left( x - x^{2} ight) = 0 \\
1 - 2x = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x - x^{2} = 1 \\
x - x^{2} = 2 \\
1 - 2x = 0 \\
\end{matrix} ight.\  \Leftrightarrow x = \frac{1}{2}

    Với x = 0 ta có: g'(0) = f'\left( 0 - 0^{2} ight).(1 -
2.0) = 2 > 0 ta có bảng xét dấu của g'(x) như sau:

    Suy ra hàm số g(x) nghịch biến trên khoảng \left( \frac{1}{2}; + \infty
ight).

  • Câu 30: Thông hiểu

    Cho hàm số y = f(x) = \frac{x - 1}{x -
m} với m là tham số thực. Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}. Đúng||Sai

    b) y' = \frac{m - 1}{(x -
m)^{2}};\forall x eq m. Sai|| Đúng

    c) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi m < 1. Sai|| Đúng

    d) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi 0 ≤ m < 1. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = \frac{x - 1}{x -
m} với m là tham số thực. Xét tính đúng sai của các khẳng định sau:

    a) Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}. Đúng||Sai

    b) y' = \frac{m - 1}{(x -
m)^{2}};\forall x eq m. Sai|| Đúng

    c) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi m < 1. Sai|| Đúng

    d) Hàm số đồng biến trên (−∞; 0) khi và chỉ khi 0 ≤ m < 1. Đúng||Sai

    a) Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}.

    b) y' = \frac{- m + 1}{(x -
m)^{2}};\forall x eq m

    c) Sai.

    Hàm số đã cho đồng biến trên (−∞; 0) khi và chỉ khi

    \left\{ \begin{matrix}
m otin ( - \infty;0) \\
- m + 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \geq 0 \\
m < 1 \\
\end{matrix} ight.\  \Leftrightarrow 0 \leq m < 1.

    d) Đúng

  • Câu 31: Nhận biết

    Cho hàm số f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận ngang

    Đồ thị hàm số có đường tiệm cận ngang là:

    Dựa vào bảng biến thiên ta có \mathop {\lim }\limits_{x \to \infty } f\left( x ight) = 2

    => Đồ thị hàm số đường tiệm cận ngang là y = 2

  • Câu 32: Vận dụng

    Cho hàm số y = \frac{1}{3}x^{3} - mx^{2}
+ (3 - 2m)x với m là tham số. Gọi S là tập hợp tất cả các giá trị của tham số m để hàm số nghịch biến trên một khoảng có độ dài bằng 2\sqrt{5}. Tính tổng các phần tử của tập hợp S?

    Ta có: y' = x^{2} - 2mx + 3 - 2m
\Rightarrow \Delta' = m^{2} + 2m - 3

    Dễ thấy nếu \Delta' \leq 0 suy ra hàm số đồng biến trên \mathbb{R} nên trường hợp này không thỏa mãn

    Theo yêu cầu bài toán

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
\left| x_{1} - x_{2} ight| = 2\sqrt{5} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} + 2m - 3 > 0 \\
\left( x_{1} + x_{2} ight)^{2} - 4x_{1}x_{2} = 20 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m \in ( - \infty; - 3) \cup (1; + \infty) \\
4m^{2} - 4(3 - 2m) = 20 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \in ( - \infty; - 3) \cup (1; + \infty) \\
\left\lbrack \begin{matrix}
m = - 4 \\
m = 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m = - 4 \\
m = 2 \\
\end{matrix} ight.\  \Rightarrow S = \left\{ - 4;2
ight\}

    Vậy tổng tất cả các phần tử của tập S bằng -2.

  • Câu 33: Nhận biết

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình sau:

    Đồ thị của hàm số y = - x^{3} + 3x +
1 thỏa mãn bài toán.

  • Câu 34: Thông hiểu

    Hai điểm cực trị của đồ thị hàm số y = (x
- 2)^{2}(x + 1)

    Ta có:

    f^{'}(x) = 2(x - 2)(x + 1) + (x -
2)^{2}

    = 2x^{2} - 2x - 4 + x^{2} - 4x + 4 =
3x^{2} - 6x

    f^{'}(x) = 0 = > x = 1;x =
2

    Vậy hai điểm cực trị cần tìm là: A(0;4),B(2;0)

  • Câu 35: Thông hiểu

    Cho hàm số y =x^{3} - x^{2} + 3mx - 1 với m là tham số. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m \in \lbrack -10;2brack để hàm số đã cho đồng biến trên \mathbb{R}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =x^{3} - x^{2} + 3mx - 1 với m là tham số. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m \in \lbrack -10;2brack để hàm số đã cho đồng biến trên \mathbb{R}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 36: Thông hiểu

    Tìm giá trị của tham số m để hàm số y = \frac{1}{3}x^{3} - (m + 1)x^{2} +
\left( m^{2} + 2m ight)x - 3 nghịch biến trên khoảng ( - 1;1)

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tìm giá trị của tham số m để hàm số y = \frac{1}{3}x^{3} - (m + 1)x^{2} +
\left( m^{2} + 2m ight)x - 3 nghịch biến trên khoảng ( - 1;1)

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 37: Thông hiểu

    Có bao nhiêu số nguyên m để hàm số y = \frac{x + 3}{x - m} nghịch biến trên khoảng (1; + \infty)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}

    Hàm số đã cho nghịch biến trên khoảng (1;
+ \infty) \Leftrightarrow y'
< 0;\forall x \in (1; + \infty)

    \Leftrightarrow \left\{ \begin{matrix}
- m - 3 < 0 \\
m \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow - 3 < m \leq 1

    Vậy có tất cả 4 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 38: Vận dụng

    Biết hàm số y = (x - 1)(x + 1)\left(x^{2} - 7 ight) cắt trục hoành tại 4 điểm phân biệt có hoành độ là x_{1};x_{2};x_{3};x_{4}. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để \frac{1}{1 - x_{1}} + \frac{1}{1 - x_{2}} +\frac{1}{1 - x_{3}} + \frac{1}{1 - x_{4}} > 1?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Biết hàm số y = (x - 1)(x + 1)\left(x^{2} - 7 ight) cắt trục hoành tại 4 điểm phân biệt có hoành độ là x_{1};x_{2};x_{3};x_{4}. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để \frac{1}{1 - x_{1}} + \frac{1}{1 - x_{2}} +\frac{1}{1 - x_{3}} + \frac{1}{1 - x_{4}} > 1?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 39: Thông hiểu

    Cho hàm số y = \frac{x^{2} - 4x}{2x +
1}. Tính giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack 0;3brack?

    Hàm số y = \frac{x^{2} - 4x}{2x +
1} liên tục trên đoạn \lbrack
0;3brack

    Ta có: y' = \frac{2x^{2} + 2x -
4}{(2x + 1)^{2}} \Rightarrow y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}
f(0) = 0 \\
f(1) = - 1 \\
f(3) = - \frac{3}{7} \\
\end{matrix} ight.\  \Rightarrow f(1) < f(3) < f(0) nên \min_{\lbrack 0;3brack}y = y(1) = -
1.

  • Câu 40: Thông hiểu

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) = \frac{x}{2} - \sqrt{x + 2} trên đoạn \lbrack - 1;34brack lần lượt là Mm. Tính giá trị của biểu thức A = M + 3m?

    Ta có: y' = \frac{1}{2} -
\frac{1}{2\sqrt{x + 2}} = \frac{\sqrt{x + 2} - 1}{2\sqrt{x +
2}}

    y' = 0 \Leftrightarrow \sqrt{x + 2}
= 1 \Leftrightarrow x = - 1

    \left\{ \begin{matrix}f( - 1) = - \dfrac{3}{2} \\f(34) = 11 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}m = - \dfrac{3}{2} \\M = 11 \\\end{matrix} ight.\  \Rightarrow A = \frac{13}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo