Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho hàm số bậc bốn y = f(x) có đồ thị (C1) và hàm số y = f’(x) có đồ thị (C2) như hình vẽ bên. Số điểm cực trị của đồ thị hàm số g\left( x ight) = f\left[ {{e^{ - x}}.f\left( x ight)} ight] trên khoảng \left( { - \infty ;3} ight) là:

    Số điểm cực trị của hàm số thuộc khoảng cho trước

    Ta có: g'\left( x ight) = {e^{ - x}}.\left[ {f'\left( x ight) - f\left( x ight)} ight].f'\left[ {{e^{ - x}}.f\left( x ight)} ight]

    Số điểm cực trị của hàm số thuộc khoảng cho trước

    Xét g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f'\left( x ight) - f\left( x ight) = 0} \\   {f\left( {{e^{ - x}}.f\left( x ight)} ight) = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f'\left( x ight) = f\left( x ight)} \\   {f\left( {{e^{ - x}}.f\left( x ight)} ight) = 0} \end{array}} ight.

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = a} \\   {x = 0} \\   {x = b} \\   \begin{gathered}  {e^{ - x}}.f\left( x ight) =  - 2 \hfill \\  {e^{ - x}}.f\left( x ight) = 0 \hfill \\  {e^{ - x}}.f\left( x ight) = 2 \hfill \\ \end{gathered}  \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = a} \\   {x = 0} \\   {x = b} \\   \begin{gathered}  f\left( x ight) =  - 2.{e^x} \hfill \\  f\left( x ight) = 0 \hfill \\  f\left( x ight) = 2.{e^x} \hfill \\ \end{gathered}  \end{array}} ight.

    Từ đồ thị ta được:

    Phương trình f\left( x ight) =  - 2.{e^x} có nghiệm đơn

    Phương trình f\left( x ight) = 0 có 2 nghiệm đơn và 1 nghiệm bội chẵn (x = 0)

    Phương trình f\left( x ight) = 2.{e^x} có 1 nghiệm đơn.

    Vậy g’(x) = 0 có 8 nghiệm đơn nên hàm số g(x) có 8 điểm cực trị.

  • Câu 2: Vận dụng

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và hàm số y = f'(x) là hàm số bậc ba có đồ thị là đường cong trong hình vẽ. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số y = f(x) đồng biến trên khoảng (−∞; -2). Sai||Đúng

    b) Hàm số y = f(x) có hai điểm cực trị. Sai||Đúng

    c) f'(2) = 4. Sai||Đúng

    d) Hàm số g(x) = f(x) - \frac{1}{2}x^{2}
+ x + 2024 đồng biến trên khoảng \left( - \frac{5}{2}; - \frac{3}{2}
ight). Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và hàm số y = f'(x) là hàm số bậc ba có đồ thị là đường cong trong hình vẽ. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số y = f(x) đồng biến trên khoảng (−∞; -2). Sai||Đúng

    b) Hàm số y = f(x) có hai điểm cực trị. Sai||Đúng

    c) f'(2) = 4. Sai||Đúng

    d) Hàm số g(x) = f(x) - \frac{1}{2}x^{2}
+ x + 2024 đồng biến trên khoảng \left( - \frac{5}{2}; - \frac{3}{2}
ight). Đúng||Sai

    a) Sai: Vì từ đồ thị của hàm số y =
f'(x) ta thấy f'(x) \geq
0;\forall x \geq 1 nên hàm số đồng biến trên khoảng (1; +∞).

    b) Sai: Vì từ đồ thị của hàm số y =
f'(x) ta thấy f'(x) chỉ đổi dấu một lần qua x = 1 nên hàm số có một điểm cực trị.

    c) Sai: Từ đồ thị ta có hàm số f'(x) có dạng f'(x) = a(x + 2)^{2}(x - 1)

    Đồ thị hàm số y = f'(x) đi qua (0; - 4) nên - 4 = a(0 + 2)^{2}(0 - 1) \Leftrightarrow a =
1

    Vậy f'(x) = (x + 2)^{2}(x - 1)
\Rightarrow f'(2) = 16

    d) Đúng: Ta có: g'(x) = f'(x) - x
+ 1

    g'(x) = 0 \Leftrightarrow f'(x)
= x - 1

    Vẽ đường thẳng y = x − 1 trên cùng hệ trục tọa độ với đồ thị hàm số y = f'(x)

    Khi đó f'(x) = x - 1 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 3 \\
x = - 1 \\
x = 1 \\
\end{matrix} ight.

    Bảng biến thiên của hàm số g(x) như sau:

    Hàm số g(x) đồng biến trên khoảng (−3; -1) nên g(x) đồng biến trên khoảng \left( - \frac{5}{2}; - \frac{3}{2}
ight)

  • Câu 3: Nhận biết

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} có bảng xét dấu như sau:

    Số điểm cực trị của hàm số đã cho là:

    Dựa vào bảng xét dấu của f'(x) ta thấy f'(x) đổi dấu 4 lần và hàm số y = f(x) xác định và liên tục trên \mathbb{R}

    Suy ra hàm số có 4 điểm cực trị.

  • Câu 4: Thông hiểu

    Cho hàm số y = f(x) = x^{4} - 2x^{2} -
3. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đã cho đạt cực đại tại x = 0. Đúng||Sai

    b) Hàm số đã cho đạt cực tiểu tại x = −3. Sai|| Đúng

    c) Hàm số đã cho có giá trị cực đại và cực tiểu lần lượt là −4, −3. Sai|| Đúng

    d) Đồ thị hàm số g(x) = f(x) + 3 có điểm cực đại là (0; 0). Sai|| Đúng

    Đáp án là:

    Cho hàm số y = f(x) = x^{4} - 2x^{2} -
3. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đã cho đạt cực đại tại x = 0. Đúng||Sai

    b) Hàm số đã cho đạt cực tiểu tại x = −3. Sai|| Đúng

    c) Hàm số đã cho có giá trị cực đại và cực tiểu lần lượt là −4, −3. Sai|| Đúng

    d) Đồ thị hàm số g(x) = f(x) + 3 có điểm cực đại là (0; 0). Sai|| Đúng

    Ta có:

    f'(x) = 4x^{3} - 4x
\Rightarrow f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Bảng biến thiên

    a) Dựa vào bảng biến thiên ta thấy hàm số đạt cực đại tại x = 0

    b) Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại x = −3

    c) Dựa vào bảng biến thiên ta thấy hàm số giá trị cực đại và cực tiểu lần lượt là −4, −3

    d) Dựa vào bảng biến thiên ta thấy hàm số g(x) = f(x) + 3 có được bằng cách tịnh tiến đồ thị y = f(x) lên trên 3 đơn vị. Suy ra đồ thị hàm số g(x) = f(x) + 3 có điểm cực đại là (0; 0).

  • Câu 5: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có đồ thị hàm số y = f'(x) như sau:

    Xét hàm số g(x) = f\left( x^{2} - 3
ight) và các mệnh đề sau:

    (i) Hàm số g(x) có ba điểm cực trị.

    (ii) Hàm số g(x) đạt cực tiểu tại x = 0.

    (iii) Hàm số g(x) đạt cực đại tại x = 2.

    (iv) Hàm số g(x) đồng biến trên khoảng ( - 2;0).

    (v) Hàm số g(x) nghịch biến trên khoảng ( - 1;1).

    Có bao nhiêu mệnh đề đúng trong các mệnh đề đã cho?

    Ta có: g'(x) = 2x.f'\left( x^{2}
- 3 ight)

    g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
f'\left( x^{2} - 3 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} - 3 = - 2 \\
x^{2} - 3 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = 1 \\
x^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Từ đồ thị ta nhận thấy x = \pm 1 là nghiệm kép nên ta có bảng biến thiên

    Dựa vào bảng biến thiên ta có hàm số g(x) ta thấy hàm số có 3 cực trị và đồng biến trên khoảng ( - 2;0).

    Vậy có tất cả 2 mệnh đề đúng.

  • Câu 6: Nhận biết

    Tiệm cận đứng của đồ thị hàm số y =
\frac{2x + 3}{x - 1} là đường thẳng có phương trình

    Ta có:

    \lim_{x ightarrow 1^{+}}y = \lim_{x
ightarrow 1^{+}}\frac{2x + 3}{x - 1} = + \infty \Rightarrow x =
1 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow 1^{-}}y = \lim_{xightarrow 1^{-}}\frac{2x + 3}{x - 1} = - \infty \Rightarrow x =1 là tiệm cận đứng của đồ thị hàm số.

  • Câu 7: Nhận biết

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ - 1
ight\} liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

    Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?

    Từ bảng biến thiên ta thấy:

    \lim_{x ightarrow - 1^{+}}y = -
\infty suy ra x = - 1 là tiệm cận đứng.

    \lim_{x ightarrow - \infty}y =
2 suy ra y = 2 là tiệm cận ngang

    \lim_{x ightarrow - \infty}y = -
1 suy ra y = - 1 là tiệm cận ngang

    Vậy đồ thị hàm số đã cho có tất cả ba đường tiệm cận.

  • Câu 8: Vận dụng

    Số giá trị nguyên của tham số m \in \left[ { - 20;20} ight] để hàm số y = \frac{1}{3}{x^3} + 2{x^2} + \left( {m + 3} ight)x + 2 đồng biến trên \mathbb{R} là:

    Ta có: y' = {x^2} + 4x + m + 3

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 1 > 0} \\   {\left( {{\Delta _{y'}}} ight)' = 4 - \left( {m + 3} ight) < 0} \end{array}} ight. \Leftrightarrow m \geqslant 1 \hfill \\ \end{matrix}

    Kết hợp với điều kiện \left\{ {\begin{array}{*{20}{c}}  {m \in \left[ { - 20;20} ight]} \\   {m \in \mathbb{Z}} \end{array}} ight.

    => Có 20 giá trị của tham số m thỏa mãn điều kiện đề bài.

  • Câu 9: Nhận biết

    Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?

    Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số a < 0 nên hàm số cần tìm là y = - 2x^{4} + 4x^{2} + 1.

  • Câu 10: Vận dụng cao

    Cho x, y, z là ba số thực thuộc đoạn [1; 9] và x \geqslant y,x \geqslant z. Giá trị nhỏ nhất của biểu thức P = \frac{y}{{10y - x}} + \frac{1}{2}\left( {\frac{y}{{y + z}} + \frac{x}{{z + x}}} ight) bằng:

    Ta có:

    \frac{1}{{1 + a}} + \frac{1}{{a + b}} \geqslant \frac{2}{{1 + \sqrt {ab} }} \Rightarrow {\left( {\sqrt a  - \sqrt b } ight)^2}\left( {\sqrt {ab}  - 1} ight) \geqslant 0(đúng do ab \geqslant 1)

    Dấu bằng xảy ra khi và chỉ khi a = b hoặc ab = 1

    Áp dụng bất đẳng thức trên ta có:

    P = \dfrac{1}{{10 - \dfrac{x}{y}}} + \dfrac{1}{2}\left( {\dfrac{1}{{1 + \dfrac{z}{y}}} + \dfrac{1}{{1 + \dfrac{x}{z}}}} ight) \geqslant \dfrac{1}{{10 - \dfrac{x}{y}}} + \dfrac{1}{{1 + \sqrt {\frac{x}{y}} }}

    Đặt \sqrt {\frac{x}{y}}  = t \in \left[ {1;3} ight]. Xét hàm số f\left( t ight) = \frac{1}{{10 - {t^2}}} + \frac{1}{{1 + t}} trên đoạn [1; 3]

    \begin{matrix}  f'\left( t ight) = \dfrac{{2t}}{{{{\left( {10 - {t^2}} ight)}^2}}} - \dfrac{1}{{{{\left( {1 + t} ight)}^2}}} \hfill \\  f'\left( t ight) = 0 \hfill \\   \Rightarrow {t^4} - 2{t^3} - 24{t^2} - 2t + 100 = 0 \hfill \\   \Rightarrow \left( {t - 2} ight)\left( {{t^3} - 24t - 50} ight) = 0 \Rightarrow t = 2 \hfill \\ \end{matrix}

    Do {t^3} - 24t - 50 < 0,\forall t \in \left[ {1;3} ight]

    Ta có bảng biến thiên

    Tính giá trị nhỏ nhất của biểu thức

    Suy ra {P_{\min }} = \frac{1}{2} khi và chỉ khi \left\{ {\begin{array}{*{20}{c}}  {x = 4y} \\   {\left[ {\begin{array}{*{20}{c}}  {\dfrac{z}{y} = \dfrac{x}{z}} \\   {\dfrac{x}{y} = 1} \end{array}} ight.} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {x = 4y} \\   {z = 2y} \end{array}} ight.

  • Câu 11: Nhận biết

    Hàm số y = \frac{1}{3}{x^3} + {x^2} - 3x + 1 đạt cực tiểu tại điểm 

     Ta có: y = \frac{1}{3}{x^3} + {x^2} - 3x + 1 có tập xác định D = \mathbb{R}

    \begin{matrix}  y' = {x^2} + 2x - 3 \Rightarrow y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x =  - 3} \end{array}} ight. \hfill \\  y'' = 2x + 2 \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y''\left( { - 3} ight) =  - 4 < 0} \\   {y''\left( 1 ight) = 4 > 0} \end{array}} ight. \hfill \\ \end{matrix}

    => Hàm số đạt cực tiểu tại điểm x = 1

  • Câu 12: Thông hiểu

    Cho hình vẽ:

    Biết rằng đường trong trong hình vẽ trên là đồ thị của một trong các hàm số nào dưới đây, đó là hàm số nào?

    Đây là đồ thị hàm số bậc ba có dạng y =
ax^{3} + bx^{2} + cx + d với hệ số a > 0

    Đồ thị hàm số cắt trục hoành tại điểm (3;0) nên hàm số thích hợp là y = x^{3} - 5x^{2} + 6x.

  • Câu 13: Vận dụng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = \frac{1}{2f(x) - 1} là:

    Điều kiện xác định của hàm số y =
\frac{1}{2f(x) - 1}2f(x) - 1
eq 0 \Leftrightarrow f(x) eq \frac{1}{2}

    Từ bảng biến thiên ta có: f(x) =
\frac{1}{2} \Leftrightarrow \left\lbrack \begin{matrix}
x = x_{1} \in ( - \infty; - 0,5) \\
x = x_{2} \in ( - 0,5; - \infty) \\
\end{matrix} ight.

    Tập xác định \mathbb{R}\backslash\left\{
x_{1};x_{2} ight\}

    Ta có:

    \lim_{x ightarrow -
\infty}\frac{1}{2f(x) - 1} = \frac{1}{2.1 - 1} = 1 suy ra đồ thị hàm số có tiệm cận ngang y =
1.

    \lim_{x ightarrow +
\infty}\frac{1}{2f(x) - 1} = \frac{1}{2.1 - 1} = 1 suy ra đồ thị hàm số có tiệm cận ngang y =
1.

    \lim_{x ightarrow
{x_{1}}^{\pm}}\frac{1}{2f(x) - 1} = \mp \infty suy ra đồ thị hàm số có tiệm cận đứng x =
x_{1}.

    \lim_{x ightarrow
{x_{2}}^{\pm}}\frac{1}{2f(x) - 1} = \pm \infty suy ra đồ thị hàm số có tiệm cận đứng x =
x_{2}.

    Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{1}{2f(x) - 1}3.

  • Câu 14: Thông hiểu

    Tìm hàm số tương ứng với đồ thị được cho trong hình vẽ sau?

    Dựa vào đồ thị đã cho trong hình vẽ ta thấy đường tiệm cận ngang của đồ thị là y = - 1 và đường tiệm cận đứng của đồ thị là x = - 1.

    Đồ thị hàm số đi qua điểm (1;1) nên hàm số cần tìm là y = \frac{- x + 1}{x +
1}.

  • Câu 15: Thông hiểu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Mệnh đề nào sau đây đúng?

    Từ bảng biến thiên của hàm số y =
f(x) ta có: \lim_{x ightarrow -
\infty}f(x) = - \infty;\lim_{x ightarrow + \infty}f(x) = +
\infty nên đồ thị hàm số đã cho không có tiệm cận ngang.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = 4;\mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = 4 \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} f\left( x ight) =  - 1;\mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) =  - 1 \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho không có tiệm cận đứng.

    Vậy đồ thị hàm số đã cho không có tiệm cận.

  • Câu 16: Nhận biết

    Cho hàm số có đạo hàm f'(x) = (x + 2)^{3}(x - 2)^{3}(3 -
x). Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

    Ta có: f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 2 \\
x = 2 \\
x = 3 \\
\end{matrix} ight. ta có bảng xét dấu như sau:

    Vậy hàm số đồng biến trên khoảng (2;3).

  • Câu 17: Thông hiểu

    Tập hợp tất cả các giá trị thực của tham số m để hàm số y
= - x^{3} - 6x^{2} + (4m - 9)x + 4 nghịch biến trên khoảng ( - \infty; - 3) là:

    Ta có: y' = - 3x^{2} - 12x + 4m -
9

    Hàm số nghịch biến trên khoảng ( -
\infty; - 3) khi y' \leq
0;\forall x \in ( - \infty; - 3)

    \Leftrightarrow - 3x^{2} - 12x + 4m - 9
\leq 0;\forall x \in ( - \infty; - 3)

    \Leftrightarrow 4m \leq 3x^{2} + 12x +
9;\forall x \in ( - \infty; - 3)

    Đặt f(x) = 3x^{2} + 12x + 9 ta có: f'(x) = 6x + 12. Ta có bảng biến thiên của f(x) như sau:

    Dựa vào bảng biến thiên ta thấy

    4m \leq 3x^{2} + 12x + 9;\forall x \in (
- \infty; - 3)

    \Leftrightarrow 4m \leq 0
\Leftrightarrow m \leq 0

    Vậy ( - \infty;0brack là giá trị của tham số m cần tìm.

  • Câu 18: Nhận biết

    Cho hình vẽ sau:

    Đường cong trong hình vẽ là đồ thị của hàm số có dạng y = \frac{ax + b}{cx + d};\left(
a;b;c;d\mathbb{\in R} ight). Mệnh đề nào dưới đây đúng?

    Từ đồ thị hàm số ta thấy hàm số đồng biến trên các khoảng ( - \infty; - 1)( - 1; + \infty) suy ra y' > 0;\forall x eq 1.

  • Câu 19: Nhận biết

    Tìm giá trị lớn nhất của hàm số y = f(x)
= x^{3} - x^{2} - 8x trên đoạn \lbrack 1;3brack?

    Ta có: y' = 3x^{2} - 2x -
8

    \Leftrightarrow y' = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\x = - \dfrac{4}{3} \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
f(1) = - 8 \\
f(2) = - 12 \\
f(33) = - 6 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack 1;3brack}f(x) = -
6.

  • Câu 20: Thông hiểu

    Cho hàm số y = \frac{m^{2}x + 5}{2mx +
1} với m là tham số. Gọi S là tập hợp các số nguyên m \in \lbrack - 2020;2020brack để hàm số đã cho nghịch biến trên khoảng (3; +
\infty). Xác định số phần tử của tập hợp S?

    Xét m = 0 \Rightarrow y = 5 là hàm hằng nên hàm số không nghịch biến. Vậy m
= 0 không thỏa mãn.

    Xét m eq 0

    Tập xác định D = \left( - \infty; -
\frac{1}{2m} ight) \cup \left( - \frac{1}{2m}; + \infty
ight)

    Để hàm số nghịch biến trên khoảng (3; +
\infty) khi và chỉ khi

    \left\{ \begin{matrix}
y' = \frac{m^{2} - 10m}{(2mx + 1)^{2}} < 0 \\
- \frac{1}{2m} \leq 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 10m < 0 \\
\frac{6m + 1}{2m} \geq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
0 < m < 10 \\
\left\lbrack \begin{matrix}
m \leq - \frac{1}{6} \\
m > 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow 0 < m < 10

    \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 2020;2020brack \\
\end{matrix} ight. nên m \in
\left\{ 1;2;3;...;9 ight\}

    Vậy tập hợp S có tất cả 9 giá trị.

  • Câu 21: Thông hiểu

    Đồ thị hàm số y = \frac{\sqrt{1 -
x^{2}}}{x^{2} + 2x} có bao nhiêu đường tiệm cận?

    Tập xác định D = \lbrack -
1;1brack\backslash\left\{ 0 ight\}

    Vì tập xác định của hàm số không chứa -
\infty+ \infty nên đồ thị hàm số không có đường tiệm cận ngang.

    Lại có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}} =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}} =  + \infty  \hfill \\ 
\end{gathered}  ight.. Vậy đồ thị hàm số có 1 đường tiệm cận đứng x = 0.

  • Câu 22: Vận dụng

    Cho hàm số y = f(x) xác định và liên tục trên [-2; 2], có đồ thị của hàm số y f’(x) như hình vẽ sau:

    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Tìm giá trị của x0 để hàm số y = f(x) đạt giá trị lớn nhất trên [-2; 2]

     Từ đồ thị ta có: f’(x) = 0 => \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = 1} \end{array}} ight.

    Ta có bảng biến thiên như sau:

    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Từ bảng biến thiên ta có x0 = 1 thỏa mãn điều kiện

  • Câu 23: Vận dụng

    Ông A dự định sử dụng hết 8\ \
m^{2} kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu m^{3}? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 2,1

    Đáp án là:

    Ông A dự định sử dụng hết 8\ \
m^{2} kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu m^{3}? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 2,1

    Gọi x,h (m) lần lượt là chiều rộng và chiều cao của bể cá.

    Ta có thể tích bể cá V =
2x^{2}h.

    Theo đề bài ta có:

    2xh + 2.2xh + 2x^{2} = 8

    \Leftrightarrow 6xh + 2x^{2} =
8

    \Leftrightarrow h = \frac{8 -
2x^{2}}{6x}

    V = 2x^{2}\frac{8 - 2x^{2}}{6x} =
\frac{8x - 2x^{3}}{3}

    \Rightarrow V' = \frac{8 -
6x^{2}}{3}

    \Rightarrow V' = 0

    \Leftrightarrow 8 - 6x^{2} = 0
\Leftrightarrow x^{2} = \frac{4}{3} \Leftrightarrow x =
\frac{2\sqrt{3}}{3}

    Ta có bảng biển thiên

    \Rightarrow V_{\max} =
\frac{32\sqrt{3}}{27} \approx 2,1\ \ m^{3}

  • Câu 24: Nhận biết

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hàm số y = f(x) nghịch biến trên khoảng nào dưới dây?

    Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên (0;1).

  • Câu 25: Thông hiểu

    Số đường tiệm cận của đồ thị hàm số y = \frac{x}{{{x^2} - 3x - 4}} + x

    Quy đồng biến đổi hàm số đã cho trở thành y = \frac{{{x^3} - 3{x^2} - 3x}}{{{x^2} - 3x - 4}}

    Tìm được tiệm cận đứng là x = -1 và x = 4 và không có tiệm cận ngang

    => Số tiệm cận là 2 đường

  • Câu 26: Vận dụng cao

    Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm f'\left( x ight) = {x^2}\left( {x - 2} ight)\left( {{x^2} - 6x + m} ight) với mọi x \in \mathbb{R}. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số g\left( x ight) = f\left( {1 - x} ight) nghịch biến trên khoảng \left( { - \infty ; - 1} ight)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm f'\left( x ight) = {x^2}\left( {x - 2} ight)\left( {{x^2} - 6x + m} ight) với mọi x \in \mathbb{R}. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số g\left( x ight) = f\left( {1 - x} ight) nghịch biến trên khoảng \left( { - \infty ; - 1} ight)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 27: Thông hiểu

    Biết m_{0} là giá trị của tham số m để hàm số y = x^{3} - 3x^{2} + mx - 1 có hai điểm cực trị x_{1};x_{2} sao cho {x_{1}}^{2} + {x_{2}}^{2} - x_{1}x_{2} =
13. Mệnh đề nào sau đây đúng?

    Ta có: y' = 3x^{2} - 6x +
m

    Hàm số có hai cực trị \Leftrightarrow
\Delta' = 9 - 3m > 0 \Leftrightarrow m < 3

    x_{1};x_{2} là hai nghiệm của phương trình 3x^{2} - 6x + m =
0

    Áp dụng hệ thức Vi – et ta có: \left\{\begin{matrix}S = x_{1} + x_{2} = 2 \\P = x_{1}.x_{2} = \dfrac{m}{3} \\\end{matrix} ight.

    Ta có: {x_{1}}^{2} + {x_{2}}^{2} -
x_{1}x_{2} = 13

    \Leftrightarrow \left( x_{1} + x_{2}
ight)^{2} - 3x_{1}x_{2} = 13

    \Leftrightarrow m = - 9 \in ( - 15; -
7).

  • Câu 28: Thông hiểu

    Cho hàm số y =
f(x) có đồ thị như hình vẽ:

    Hàm số y = f( - x) nghịch biến trên khoảng nào dưới đây?

    Từ đồ thị hàm số y = f(x) ta thấy hàm số đồng biến trên khoảng (0;2)

    \Leftrightarrow f'(x) > 0
\Leftrightarrow 0 < x < 2

    Xét hàm số y = f( - x) ta có: y' = - f'( - x)

    y' < 0 \Leftrightarrow - f'(
- x) < 0 \Leftrightarrow f'( - x) > 0

    \Leftrightarrow 0 < - x < 2
\Leftrightarrow - 2 < x < 0

    Suy ra hàm số y = f( - x) nghịch biến trên khoảng ( - 2;0).

  • Câu 29: Thông hiểu

    Cho hàm số y = \frac{x^{2} - 4x}{2x +
1}. Tính giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack 0;3brack?

    Hàm số y = \frac{x^{2} - 4x}{2x +
1} liên tục trên đoạn \lbrack
0;3brack

    Ta có: y' = \frac{2x^{2} + 2x -
4}{(2x + 1)^{2}} \Rightarrow y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}
f(0) = 0 \\
f(1) = - 1 \\
f(3) = - \frac{3}{7} \\
\end{matrix} ight.\  \Rightarrow f(1) < f(3) < f(0) nên \min_{\lbrack 0;3brack}y = y(1) = -
1.

  • Câu 30: Nhận biết

    Cho hàm số y = f(x) liên tục trên \lbrack 2;5brack và có đồ thị như hình vẽ:

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 2;5brack lần lượt là M;m. Kết luận nào sau đây đúng?

    Quan sát đồ thị ta thấy \left\{\begin{matrix}\max_{\lbrack 2;5brack}y = M = 4 \\\min_{\lbrack 2;5brack}y = m = - 6 \\\end{matrix} ight.\  \Rightarrow M - m = 10

  • Câu 31: Thông hiểu

    Đồ thị hàm số y = f(x) được biểu diễn trong hình vẽ như sau:

    Tìm tất cả các giá trị thực của tham số m để phương trình \left| f(x) ight| = m có đúng hai nghiệm phân biệt?

    Số nghiệm của phương trình \left| f(x)
ight| = m chính là giao điểm của hai đồ thị \left\{ \begin{matrix}
y = \left| f(x) ight| \\
y = m \\
\end{matrix} ight.

    Minh họa trực quan:

    Vậy để hàm số \left| f(x) ight| =
m có đúng hai nghiệm thì \left\lbrack \begin{matrix}
m > 5 \\
0 < m < 1 \\
\end{matrix} ight..

  • Câu 32: Thông hiểu

    Để hàm số y = x^{3} - 3x^{2} + m (với m là tham số) đạt cực tiểu tại x = 2 thì tham số m thuộc khoảng nào sau đây?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} - 6x +
m

    Hàm số đạt cực tiểu tại x = 2 \Rightarrow
y'(2) = 0 \Leftrightarrow m = 0

    Khi m = 0 \Rightarrow y' = 3x^{2} -
6x \Rightarrow y'' = 6x - 6

    Ta có: y''(2) = 6.2 - 6 = 6 >
0 suy ra hàm số đạt cực tiểu tại x
= 2

    Vậy m \in ( - 1;1) thì hàm số đạt cực tiểu tại x = 2.

  • Câu 33: Thông hiểu

    Sự ảnh hưởng khi sử dụng một loại thuốc với cá thể X được một nhà sinh học mô tả bởi hàm số P(t) = \frac{t + 1}{t^{2} + t + 4}, trong đó P(t) là số lượng cá thể sau t giờ sử dụng thuốc. Vào thời điểm nào thì số lượng cá thể X bắt đầu giảm?

    Xét P(t) = \frac{t + 1}{t^{2} + t +
4} ta có: P'(t) = \frac{- t^{2}
- 2t + 3}{\left( t^{2} + t + 4 ight)^{2}} = \frac{(t - 1)( - t -
3)}{\left( t^{2} + t + 4 ight)^{2}}

    P'(t) = 0 \Leftrightarrow \frac{(t -
1)( - t - 3)}{\left( t^{2} + t + 4 ight)^{2}} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = - 3 \\
t = 1 \\
\end{matrix} ight.

    Ta thấy hàm số đạt cực đại tại t =
1P'(t) < 0;\forall t \in
(1; + \infty) nên sau 1 giờ thì cá thể bắt đầu giảm.

  • Câu 34: Nhận biết

    Đồ thị hàm số nào dưới đây có dạng như hình vẽ?

    Đồ thị hàm số bậc 4 có hệ số a <
0 và có ba điểm cực trị nên ab <
0nên chọn y = - x^{4} +
4x^{2}.

  • Câu 35: Nhận biết

    Biết rằng hàm số f(x) = x^{3} - 3x^{2} -
9x + 28 đạt giá trị nhỏ nhất trên \lbrack 0;4brack tại điểm x_{0}. Khi đó giá trị biểu thức P = x_{0} + 2021 bằng:

    Ta có: y' = 3x^{2} - 6x -
9

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
f(0) = 28 \\
f(3) = 1 \\
f(4) = 8 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;4brack}f(x) =
1 khi x = 3

    Suy ra x_{0} = 3 \Rightarrow P = x_{0} +
2021 = 2024.

  • Câu 36: Thông hiểu

    Đồ thị của hàm số nào trong bốn hàm số sau có đường tiệm ngang?

    Ta có:

    y = \frac{x}{1 + \sqrt{x}} không có tiệm cận ngang vì \lim_{x ightarrow +
\infty}\frac{x}{1 + \sqrt{x}} = + \infty

    y = x^{3} - 3x không có tiệm cận ngang vì \lim_{x ightarrow \pm
\infty}\left( x^{3} - 3x ight) = \pm \infty

    y = \log_{2}x không có tiệm cận ngang vì \lim_{x ightarrow + \infty}\left(\log_{2}x ight) = + \infty

    y = x + \sqrt{x^{2} + 4} có tiệm cận ngang vì \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } \left( {x + \sqrt {{x^2} + 4} } ight) =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } \left( {x + \sqrt {{x^2} + 4} } ight) = 0 \hfill \\ 
\end{gathered}  ight.

  • Câu 37: Vận dụng

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)^{2}\left( x^{2} - 3x + 2
ight) với mọi x\mathbb{\in
R}.

    a) Phương trình f'(x) = 0 có duy nhất một nghiệm x = 2. Sai||Đúng

    b) Hàm số f(x) đồng biến trên khoảng ( - 3;0). Đúng||Sai

    c) Hàm số f(x) có hai điểm cực trị. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 6x + 1
ight) có ba điểm cực đại. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)^{2}\left( x^{2} - 3x + 2
ight) với mọi x\mathbb{\in
R}.

    a) Phương trình f'(x) = 0 có duy nhất một nghiệm x = 2. Sai||Đúng

    b) Hàm số f(x) đồng biến trên khoảng ( - 3;0). Đúng||Sai

    c) Hàm số f(x) có hai điểm cực trị. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 6x + 1
ight) có ba điểm cực đại. Sai||Đúng

    a) Sai

    Ta có f'(x) = (x - 1)^{2}\left( x^{2}
- 3x + 2 ight) = (x - 1)^{3}(x - 2).

    f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight..

    Vậy phương trình f'(x) = 0 có hai nghiệm.

    b) Đúng

    Bảng biến thiên y = f(x)

    Dựa vào bảng biến thiên của hàm số y =
f(x) ta thấy hàm số đồng biến trên các khoảng ( - \infty;1),(2; + \infty).

    Ta có ( - 3;0) \subset ( -
\infty;1) nên hàm số f(x) đồng biến trên khoảng ( - 3;0).

    c) Đúng

    Dựa vào bảng biến thiên của hàm số y =
f(x) ta thấy hàm số có hai điểm cực trị.

    d) Sai

    Ta có:

    y = f\left( x^{2} - 6x + 1
ight)

    \Rightarrow y^{'} = \left( x^{2} - 6x
+ 1 ight)^{'}f^{'\left( x^{2} - 6x + 1 ight)} = (2x -
6)f'\left( x^{2} - 6x + 1 ight).

    y' = 0 \Leftrightarrow (2x -
6)f'\left( x^{2} - 6x + 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x - 6 = 0 \\
x^{2} - 6x + 1 = 1 \\
x^{2} - 6x + 1 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 3 \\
x = 0 \\
x = 6 \\
x = - 3 + \sqrt{10} \\
x = - 3 - \sqrt{10} \\
\end{matrix} ight..

    Bảng biến thiên y = f\left( x^{2} - 6x +
1 ight)

    Dựa vào bảng biến thiên của hàm số y =
f\left( x^{2} - 6x + 1 ight) ta thấy hàm số có hai điểm cực đại.

  • Câu 38: Vận dụng cao

    Cho hàm số y = \frac{{x - 1}}{{\sqrt {4{x^2} - 2x - m}  - x - 1}}. Xác định tất cả giá trị của tham số m để đồ thị hàm số có đúng 4 đường tiệm cận.

    Ta có: \mathop {\lim }\limits_{x \to  + \infty } y = 1;\mathop {\lim }\limits_{x \to  - \infty } y =  - \frac{1}{3}=> Đồ thị hàm số có 2 đường tiệm cận ngang là y = 1 và y =  - \frac{1}{3}

    Đồ thị có đúng 4 đường tiệm cận thì phương trình \sqrt {4{x^2} - 2x - m}  - x - 1 = 0 có hai nghiệm phân biệt khác 1

    Ta có:

    \begin{matrix}  \sqrt {4{x^2} - 2x - m}  - x - 1 = 0 \hfill \\   \Leftrightarrow \sqrt {4{x^2} - 2x - m}  = x + 1 \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant  - 1} \\   {3{x^2} - 4x - 1 = m\left( * ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Theo yêu cầu bài toán tương đương phương trình (*) có hai nghiệm phân biệt x \geqslant  - 1,x e 1

    Xét hàm số y = 3{x^2} - 4x - 1;\left( {x \geqslant  - 1;x e 1} ight)

    Bảng biến thiên

    Tìm m để đồ thị hàm số có đúng 4 đường tiệm cận

    Dựa vào bảng biến thiên phương trình 3{x^2} - 4x - 1 = m;\left( {x \geqslant  - 1;x e 1} ight) có hai nghiệm thì m \in \left( {\frac{{ - 7}}{3};6} ight]\backslash \left\{ { - 2} ight\}

  • Câu 39: Nhận biết

    Cho hình vẽ là đồ thị hàm số y = f'(x). Hỏi hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

    Từ đồ thị y = f'(x) ta có bảng xét dấu y = f'(x) như sau:

    Vậy hàm số đồng biến trên khoảng (0;1)

  • Câu 40: Thông hiểu

    Hàm số y =
f(x) có đạo hàm và liên tục trên \mathbb{R}. Hàm số y = f'(1 - x) có đồ thị như hình vẽ:

    Hàm số y = f(x) nghịch biến trên khoảng nào dưới đây?

    Hàm số y = f(x) nghịch biến

    \Leftrightarrow f'(x) < 0
\Leftrightarrow f'(1 - t) < 0 với x = 1 - t

    \Leftrightarrow \left\lbrack
\begin{matrix}
t < 0 \\
1 < t < 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
1 - x < 0 \\
1 < 1 - x < 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x > 1 \\
- 1 < x < 0 \\
\end{matrix} ight.

    Vậy hàm số y = f(x) nghịch biến trên khoảng ( - 1;0).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo