Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số y = f(x) có đạo hàm f’(x) = x2 + 1, \forall x \in \mathbb{R}. Mệnh đề nào dưới đây đúng?

    Ta có:

    f’(x) = x2 + 1 > 0, \forall x \in \mathbb{R}

    => Hàm số đống biến trên khoảng (-∞; +∞)

  • Câu 2: Thông hiểu

    Đồ thị của hàm số nào trong bốn hàm số sau có đường tiệm ngang?

    Ta có:

    y = \frac{x}{1 + \sqrt{x}} không có tiệm cận ngang vì \lim_{x ightarrow +
\infty}\frac{x}{1 + \sqrt{x}} = + \infty

    y = x^{3} - 3x không có tiệm cận ngang vì \lim_{x ightarrow \pm
\infty}\left( x^{3} - 3x ight) = \pm \infty

    y = \log_{2}x không có tiệm cận ngang vì \lim_{x ightarrow + \infty}\left(\log_{2}x ight) = + \infty

    y = x + \sqrt{x^{2} + 4} có tiệm cận ngang vì \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } \left( {x + \sqrt {{x^2} + 4} } ight) =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } \left( {x + \sqrt {{x^2} + 4} } ight) = 0 \hfill \\ 
\end{gathered}  ight.

  • Câu 3: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Có bao nhiêu giá trị nguyên của tham số m để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt?

    Ta có: 2f(x) + 3m = 0 \Leftrightarrow
f(x) = \frac{- 3m}{2}

    Để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt thì - \frac{3m}{2} =
- 3 \Leftrightarrow m = 2

    Vậy có 1 giá trị nguyên của m thỏa mãn yêu cầu.

  • Câu 4: Vận dụng

    Cho hàm số f(x), hàm số f'(x) liên tục trên \mathbb{R} và có đồ thị như sau:

    Bất phương trình f(x) < x + m (với m là một số thực) nghiệm đúng với mọi x \in ( - 1;0) khi và chỉ khi:

    Ta có:

    f(x) < x + m \Leftrightarrow f(x) - x< m

    Xét hàm số g(x) = f(x) - x ta có:

    g'(x) = f'(x) - 1. Với \forall x \in ( - 1;0) thì - 1 < f'(x) < 1

    Từ đó g'(x) = f'(x) - 1 <0 nên hàm số nghịch biến trên ( -1;0)

    Suy ra g(x) = f(x) - x < f( - 1) +1. Yêu cầu bài toán tương đương với m \geq f( - 1) + 1.

  • Câu 5: Nhận biết

    Cho hàm số f(x) = x^{3} + 3x^{2} + x -
1. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;2brack lần lượt là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} + 6x + 1\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{- 3 - \sqrt{6}}{3} \\x = \dfrac{- 3 + \sqrt{6}}{3} \\\end{matrix} ight.

    Khi đó: y( - 1) = 0;y\left( \frac{- 3 +
\sqrt{6}}{3} ight) = - \frac{4\sqrt{6}}{9};y(2) = 21

    \Rightarrow \left\{ \begin{gathered}
  \mathop {\max }\limits_{\left[ { - 1;2} ight]} y = y\left( 2 ight) = 21 \hfill \\
  \mathop {\min }\limits_{\left[ { - 1;2} ight]} y = y\left( {\frac{{ - 3 + \sqrt 6 }}{3}} ight) =  - \frac{{4\sqrt 6 }}{9} \hfill \\ 
\end{gathered}  ight.

  • Câu 6: Vận dụng cao

    Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm X cách điểm A một khoảng 3 km. Điểm A nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí Y cách điểm B một khoảng 3 km. Điểm B cũng thuộc đường bờ biển. Biết rằng AB = 3(km),AM = NB = x(km)AX = BY = 3(km) (minh hoạ như hình vẽ sau).

    Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình y = 50\log(t +2). Trong đó, y là nồng độ, t là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là 5km/h13km/h. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm M,N trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm X cách điểm A một khoảng 3 km. Điểm A nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí Y cách điểm B một khoảng 3 km. Điểm B cũng thuộc đường bờ biển. Biết rằng AB = 3(km),AM = NB = x(km)AX = BY = 3(km) (minh hoạ như hình vẽ sau).

    Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình y = 50\log(t +2). Trong đó, y là nồng độ, t là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là 5km/h13km/h. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm M,N trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Vận dụng

    Gọi S là tập hợp các giá trị thực của tham số m để hàm số y = \frac{1}{3}x^{3} - \frac{1}{2}mx^{2} + 2mx -
3m + 4 nghịch biến trên một đoạn có độ dài bằng 3. Khi đó tổng tất cả các giá trị của các phần tử trong tập hợp S bằng:

    Ta có: y' = x^{2} - mx +
2m

    \Leftrightarrow y' = 0
\Leftrightarrow x^{2} - mx + 2m = 0(*)

    Gọi x_{1};x_{2} là nghiệm của phương trình (*) ta có bảng biến thiên:

    Hàm số y nghịch biến trên một khoảng có độ dài bằng 3 khi và chỉ khi phương trình (*) có hai nghiệm phân biệt x_{1};x_{2} thỏa mãn \left| x_{1} - x_{2} ight| = 3

    (*) có hai nghiệm phân biệt \Leftrightarrow \Delta = m^{2} - 8m > 0
\Leftrightarrow \left\lbrack \begin{matrix}
m < 0 \\
m > 8 \\
\end{matrix} ight.\ (**)

    \left| x_{1} - x_{2} ight| = 3
\Leftrightarrow \left( x_{1} - x_{2} ight)^{2} = 9 \Leftrightarrow
\left( x_{1} + x_{2} ight)^{2} - 4x_{1}.x_{2} = 9

    \Leftrightarrow m^{2} - 8m - 9 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 9 \\
m = - 1 \\
\end{matrix} ight.\ \left( tm(**) ight)

    Suy ra S = \left\{ 9; - 1
ight\}

    Vậy tổng tất cả các phần tử của tập S bằng 8.

  • Câu 8: Thông hiểu

    Hàm số nào sau đây đồng biến trên \mathbb{R}?

    Ta có hàm số y = \left( \frac{5}{4}
ight)^{x} có cơ số a =
\frac{5}{4} > 1 nên đồng biến trên \mathbb{R}.

    Ngoài ra các hàm số y = \frac{x + 4}{x +
3}; y = x^{4} - 2x^{2} +
1; y = \tan x không thể đồng biến hoặc nghịch biến trên \mathbb{R}.

  • Câu 9: Vận dụng

    Cho hàm số y = f\left( x ight) có đạo hàm f'\left( x ight) = \left( {{x^2} - 1} ight)\left( {x - 4} ight),\forall x \in \mathbb{R}. Hàm số g\left( x ight) = f\left( {3 - x} ight) có bao nhiêu điểm cực đại?

    Từ giả thiết ta có bảng biến thiên của hàm số f(x)

    Tinh số điểm cực đại của hàm số

    Ta có:

    g(x) = f(3 – x)

    => g’(x) = -f’(3 – x)

    Từ bảng biến thiên của hàm số f(x) ta có:

    g'\left( x ight) \geqslant 0 \Leftrightarrow f'\left( {3 - x} ight) \leqslant 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {3 - x \leqslant 1} \\   {1 \leqslant 3 - x \leqslant 4} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x \geqslant 4} \\   { - 1 \leqslant x \leqslant 2} \end{array}} ight.

    => Ta có bảng biến thiên của hàm số g(x) là:

    Tinh số điểm cực đại của hàm số

    Từ bảng biến thiên ta nhận thấy hàm số g(x) có một điểm cực đại.

  • Câu 10: Thông hiểu

    Hàm số nào sau đây đồng biến trên \mathbb{R}?

    Hàm số y = \frac{1}{3}{x^3} - \frac{1}{2}{x^2} + 3x + 1

    y' = {x^2} - x + 3 = {\left( {x - \frac{1}{2}} ight)^2} + \frac{{11}}{4} > 0,\forall x \in \mathbb{R}

  • Câu 11: Thông hiểu

    Cho hàm số y = \frac{{\sqrt {{x^2} - x + 3}  - \sqrt {2x + 1} }}{{{x^3} - 2{x^2} - x + 2}}. Trong các khẳng định sau, khẳng định nào là khẳng định đúng?

     

    Điều kiện \left\{ {\begin{array}{*{20}{c}}  {{x^2} - x + 3 \geqslant 0} \\   {2x + 1 \geqslant 0} \\   {{x^3} - 2{x^2} - x + 2 e 0} \end{array} \Rightarrow } ight.\left\{ {\begin{array}{*{20}{c}}  {x \geqslant \frac{{ - 1}}{2}} \\   {x e 2} \\   {x e  \pm 1} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant \frac{{ - 1}}{2}} \\   {x e 2} \\   {x e 1} \end{array}} ight.

    Từ điều kiện ta có:

    \begin{matrix}  y = \dfrac{{\left( {{x^2} - x + 3} ight) - \left( {2x + 1} ight)}}{{\left( {{x^2} - 3x + 2} ight)\left( {x + 1} ight)\left( {\sqrt {{x^2} - x - 3}  + \sqrt {2x + 1} } ight)}} \hfill \\  y = \dfrac{{{x^2} - 3x + 2}}{{\left( {{x^2} - 3x + 2} ight)\left( {x + 1} ight)\left( {\sqrt {{x^2} - x + 3}  + \sqrt {2x + 1} } ight)}} \hfill \\  y = \dfrac{1}{{\left( {x + 1} ight)\left( {\sqrt {{x^2} - x + 3}  + \sqrt {2x + 1} } ight)}} \hfill \\ \end{matrix}

    Đồ thị hàm số không có tiệm cận đứng

    Mặt khác

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{1}{{{x^2}.\left( {1 + \dfrac{1}{x}} ight)\left( {\sqrt {1 - \dfrac{1}{x} + \dfrac{3}{{{x^2}}}}  + \sqrt {\dfrac{2}{x} + \dfrac{1}{{{x^2}}}} } ight)}} = 0

    => y = 0 là tiệm cận ngang của đồ thị hàm số

    Không tồn tại \mathop {\lim }\limits_{x \to  - \infty } f\left( x ight)

    Vậy đồ thị hàm số không có tiệm cận đứng và có đúng một tiệm cận ngang

  • Câu 12: Thông hiểu

    Cho hàm số f(x) = x^{3} - 3x +
e^{m} với m là tham số. Biết rằng giá trị nhỏ nhất của hàm số đã cho trên \lbrack 0;2brack bằng 0. Khi đó giá trị lớn nhất của hàm số đó là:

    Ta có: f'(x) = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 1 \\
\end{matrix} ight. do xét trên \lbrack 0;2brack nên nhận x = 1

    \left\{ \begin{matrix}
f(1) = e^{m} - 2 \\
f(0) = e^{m} \\
f(2) = e^{m} + 2 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;2brack}f(x) = e^{m}
- 2 = 0 \Leftrightarrow e^{m} = 2

    Từ đó \max_{\lbrack 0;2brack}f(x) =
e^{m} + 2 = 4.

  • Câu 13: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m
\in \lbrack - 5;5brack để đồ thị hàm số y = \frac{x + 1}{x^{3} - 3x^{2} - m} có đúng một tiệm cận đứng?

    Đồ thị hàm số y = \frac{x + 1}{x^{3} -
3x^{2} - m} có đúng một tiệm cận đứng khi và chỉ khi phương trình x^{3} - 3x^{2} - m = 0 có đúng một nghiệm x eq - 1

    Ta có: x^{3} - 3x^{2} - m = 0
\Leftrightarrow x^{3} - 3x^{2} = m

    Xét hàm số x^{3} - 3x^{2} = g(x) ta có: g'(x) = 3x^{2} - 6x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Từ bảng biến thiên suy ra \left\lbrack
\begin{matrix}
m > 0 \\
m < - 4 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 5;5brack \\
\end{matrix} ight. nên m \in
\left\{ - 5;1;2;3;4;5 ight\}

    Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 14: Thông hiểu

    Hàm số nào sau đây có đồ thị như hình vẽ:

    Dựa vào hình dáng đồ thị ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số a < 0 nên loại đáp án y = x^{4} - 2x^{2} - 1

    Đồ thị hàm số đi qua điểm có tọa độ (0; -1) nên loại đáp án y = - x^{4} +2x^{2}

    Lại có đồ thị hàm số có các điểm cực trị (1;1),( - 1,1) nên loại đáp án y = - x^{4} + 2x^{2} - 1

    Vậy hàm số cần tìm là y = - 2x^{4} +4x^{2} - 1.

  • Câu 15: Nhận biết

    Với giá trị nào của tham số m để đồ thị hàm số y = \frac{2x^{2} + 6mx + 4}{mx
+ 2} đi qua điểm A( -
1;4)?

    Thay tọa độ điểm A( - 1;4) vào y = \frac{2x^{2} + 6mx + 4}{mx + 2} ta được:

    4 = \frac{2.( - 1)^{2} + 6m.( - 1) +
4}{m.( - 1) + 2} \Leftrightarrow 2m = - 2 \Leftrightarrow m = -
1

    Vậy giá trị m cần tìm là m = -
1.

  • Câu 16: Nhận biết

    Hàm số y = \frac{ 2x + 3 }{ x + 1 } có bao nhiêu điểm cực trị?

    y' = \frac{- 1}{(x + 1)^{2}} >
0,\forall x eq - 1 nên hàm số không có cực trị.

  • Câu 17: Thông hiểu

    Cho hàm số y = \frac{2x + 1}{x -
2} có đồ thị là (C). Số điểm thuộc (C) có hoành độ và tung độ đều là các số nguyên là

    Ta có:

    y = \frac{2x + 1}{x - 2} = 2 +
\frac{5}{x - 2}(C)

    Gọi M\left( x_{0};y_{0} ight) \in
(C);\left( x_{0};y_{0}\mathbb{\in Z} ight)

    \Rightarrow \left\{ \begin{matrix}x_{0}\in\mathbb{ Z} \\y_{0} = 2 + \dfrac{5}{x_{0} - 2}\in\mathbb{ Z} \\\end{matrix} ight.\  \Rightarrow x_{0} - 2 \in \left\{ \pm 1; \pm 5ight\}

    \Rightarrow \left\lbrack \begin{matrix}
x_{0} - 2 = 1 \\
x_{0} - 2 = - 1 \\
x_{0} - 2 = 5 \\
x_{0} - 2 = - 5 \\
\end{matrix} ight.\  \Rightarrow \left\lbrack \begin{matrix}
x_{0} = 3 \Rightarrow y_{0} = 7(tm) \\
x_{0} = 1 \Rightarrow y_{0} = - 3(tm) \\
x_{0} = 7 \Rightarrow y_{0} = 3(tm) \\
x_{0} = - 3 \Rightarrow y_{0} = 1(tm) \\
\end{matrix} ight.

    Vậy có 4 điểm thỏa mãn yêu cầu.

  • Câu 18: Nhận biết

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} có bảng biến thiên như sau:

    Giá trị lớn nhất của hàm số y =
f(x) trên \lbrack
1;5brack là:

    Dựa vào bảng biến thiên ta suy ra giá trị lớn nhất của hàm số trên đoạn \lbrack 1;5brack3.

  • Câu 19: Thông hiểu

    Cho hàm số y = x^{4} + 2(m - 2)x +
1 với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m \in \lbrack -
20;20brack để hàm số đã cho có duy nhất một cực tiểu. Hỏi tập S có bao nhiêu phần tử?

    Điều kiện để hàm số y = x^{4} + 2(m - 2)x
+ 1 có duy nhất một cực tiểu là a =
1 > 0 và phương trình y' =
0 có duy nhất một nghiệm.

    y' = 4x^{3} + 4(m - 2)x

    y' = 0 \Leftrightarrow 4x^{3} + 4(m
- 2)x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = 2 - m(*) \\
\end{matrix} ight.

    Để phương trình y' = 0 có duy nhất một nghiệm thì phương trình (*) vô nghiệm hoặc có nghiệm duy nhất x = 0.

    \Leftrightarrow 2 - m \leq 0
\Leftrightarrow m \geq 2

    Mặt khác \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 20;20brack \\
\end{matrix} ight.\  \Rightarrow m \in \left\{ 2;3;....20
ight\}

    Vậy có tất cả 19 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 20: Nhận biết

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{x^{3}}{3} + 2x^{2} - mx + 2020 đồng biến trên \mathbb{R}?

    Ta có:

    Hàm số y = \frac{x^{3}}{3} + 2x^{2} - mx
+ 2020 đồng biến trên \mathbb{R}

    \Leftrightarrow y' = x^{2} + 4x - m
\geq 0;\forall x\mathbb{\in R}

    Dễ thấy x^{2} + 4x - m \geq 0;\forall
x\mathbb{\in R \Leftrightarrow}\left\{ \begin{matrix}
1 > 0 \\
\Delta' = 4 + m \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \leq - 4

    Vậy hàm số đã cho đồng biến trên \mathbb{R} khi m \leq - 4.

  • Câu 21: Vận dụng

    Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= \sqrt {1 + x}  + \sqrt {1 - x}. Giá trị của M – 2m2 bằng:

    Điều kiện xác định \left\{ {\begin{array}{*{20}{c}}  {1 + x \geqslant 0} \\   {1 - x \geqslant 0} \end{array}} ight. \Leftrightarrow  - 1 \leqslant x \leqslant 1

    Xét hàm số y = \sqrt {1 + x}  + \sqrt {1 - x} trên [-1; 1] có:

    \begin{matrix}  y' = \dfrac{{ - 1}}{{2\sqrt {1 + x} }} + \dfrac{1}{{2\sqrt {1 - x} }} \hfill \\  y' = 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 1 \leqslant x \leqslant 1} \\   {\sqrt {1 + x}  = \sqrt {1 - x} } \end{array}} ight. \Leftrightarrow x = 0 \hfill \\ \end{matrix}

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 1} ight) = f\left( 1 ight) = \sqrt 2 } \\   {f\left( 0 ight) = 2} \end{array}} ight.

    Vậy \left\{ {\begin{array}{*{20}{c}}  {m = \mathop {\min }\limits_{\left[ { - 1;1} ight]} f\left( x ight) = \sqrt 2 } \\   {M = \mathop {\max }\limits_{\left[ { - 1;1} ight]} f\left( x ight) = 2} \end{array}} ight. \Rightarrow M - 2{m^2} = 2 - 2.2 =  - 2

  • Câu 22: Nhận biết

    Cho hàm số có đạo hàm f'(x) = (x + 2)^{3}(x - 2)^{3}(3 -
x). Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

    Ta có: f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 2 \\
x = 2 \\
x = 3 \\
\end{matrix} ight. ta có bảng xét dấu như sau:

    Vậy hàm số đồng biến trên khoảng (2;3).

  • Câu 23: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới đây

    Số đường tiệm cận của đồ thị hàm số

    Số đường tiệm cận của đồ thị hàm số y = f(x) là

    Dựa vào bảng biến thiên ta thấy

    \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} y =  + \infty => x = -2 là tiệm cận đúng của đồ thị hàm số

    Ta cũng có \mathop {\lim }\limits_{x \to \infty } y = 5 = > y = 5 là tiệm cận ngang của đồ thị hàm số

    Do đó đồ thị hàm số có 2 đường tiệm cận

  • Câu 24: Thông hiểu

    Người ta muốn xây một cái bể hình hộp đứng có thể tích 18m^{3}, biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Người ta muốn xây một cái bể hình hộp đứng có thể tích 18m^{3}, biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 25: Nhận biết

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x - 1)^{2020}(x - 2)^{2021}(x -
3)^{2022};\forall x\mathbb{\in R}. Số điểm cực trị của hàm số đã cho là:

    Ta có: f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Ta có bảng xét dấu:

    Vậy hàm số đã cho có một điểm cực trị.

  • Câu 26: Thông hiểu

    Cho hàm số y = f(x) = \frac{1}{3}x^{3} -
mx^{2} + \left( m^{2} - m + 1 ight)x + 1. Tìm m để hàm số đã cho đạt cực đại tại x = 1?

    Tập xác định D\mathbb{= R}

    Ta có: y' = x^{2} - 2mx + m^{2} - m +
1

    Để x = 1 là điểm cực đại của hàm số thì y'(1) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
m = 1 \\
m = 2 \\
\end{matrix} ight.

    Với m = 1 thì y' = x^{2} - 2x + 1 = (x - 1)^{2} \geq
0;\forall x\mathbb{\in R}. Vậy m =
1 không thỏa mãn.

    Với m = 2 thì y' = x^{2} - 4x + 3 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 3 \\
\end{matrix} ight.

    Xét dấu y' ta được y'  có điểm cực đại.

    Vậy m = 2 là giá trị cần tìm.

  • Câu 27: Thông hiểu

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số y = x^{4} - \left( m^{2} - 9 ight)x^{2} +
2021 có một cực trị. Xác định số phần tử của tập S?

    Để hàm số có một cực trị thì - \left(
m^{2} - 9 ight) \geq 0 \Leftrightarrow m^{2} - 9 \leq 0
\Leftrightarrow - 3 \leq m \leq 3

    Vậy có 7 giá trị nguyên thỏa mãn yêu cầu bài toán.

  • Câu 28: Nhận biết

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Mệnh đề nào sau dây đúng?

    Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.

  • Câu 29: Thông hiểu

    Đồ thị hàm số y = \frac{x^{3} - 4x}{x^{3}
- 3x - 2} có bao nhiêu đường tiệm cận?

    Ta có: y = \frac{x^{3} - 4x}{x^{3} - 3x -
2} = \frac{(x - 2)\left( x^{2} + 2x ight)}{(x - 2)\left( x^{2} + 2x +
1 ight)} = \frac{x^{2} + 2x}{x^{2} + 2x + 1}

    \lim_{x ightarrow ( - 1)^{+}}y =
\lim_{x ightarrow ( - 1)^{+}}\frac{x^{2} + 2x}{x^{2} + 2x + 1} =
\lim_{x ightarrow ( - 1)^{+}}\frac{x(x + 2)}{(x + 1)^{2}} = -
\infty suy ra x = - 1 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow \pm \infty}y =\lim_{x ightarrow \pm \infty}\left( \dfrac{x^{2} + 2x}{x^{2} + 2x + 1}ight) = \lim_{x ightarrow \pm \infty}\left( \dfrac{1 + \dfrac{2}{x}}{1+ \dfrac{2}{x} + \dfrac{1}{x^{2}}} ight) = 1 suy ra đồ thị hàm số có tiệm cận ngang là y = 1.

    Vậy đồ thị hàm số có hai đường tiệm cận.

  • Câu 30: Vận dụng cao

    Cho hàm số y = \left| 3x^{4} - 4x^{3} -12x^{2} + m^{2} ight| với m là tham số. Tìm tất cả các giá trị nguyên của tham số m để hàm số đã cho có đúng 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \left| 3x^{4} - 4x^{3} -12x^{2} + m^{2} ight| với m là tham số. Tìm tất cả các giá trị nguyên của tham số m để hàm số đã cho có đúng 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 31: Nhận biết

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ cho sau đây?

    Đồ thị hàm số bậc 4 có hệ số a <
0 và có ba điểm cực trị nên ab <
0 nên chọn y = - x^{4} + 2x^{2} +
1.

  • Câu 32: Nhận biết

    Cho hàm số y = \frac{{\sqrt {{x^2} - 4} }}{{x - 1}}. Đồ thị hàm số có mấy đường tiệm cận?

    Tập xác định: D = \left( { - \infty ;2} ight] \cup \left[ {2; + \infty } ight)

    Ta thấy rằng x = 1 không thuộc D => Đồ thị hàm số không có tiệm cận đứng.

    \begin{matrix}  \mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\sqrt {{x^2} - 4} }}{{x - 1}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left| x ight|\sqrt {1 - \dfrac{4}{{{x^2}}}} }}{{x\left( {1 - \dfrac{1}{x}} ight)}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left| x ight|}}{x} \hfill \\   = \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } y = 1} \\   {\mathop {\lim }\limits_{x \to  - \infty } y =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    => y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.

  • Câu 33: Vận dụng

    Tìm các giá trị của tham số m để bất phương trình \frac{{{x^2} + 3x + 3}}{{x + 1}} \geqslant m nghiệm đúng với mọi x \in \left[ {0;1} ight]

    Xét hàm số g\left( x ight) = \frac{{{x^2} + 3x + 3}}{{x + 1}},x \in \left[ {0;1} ight] ta có:

    \begin{matrix}  g\left( x ight) = x + 2 + \dfrac{1}{{x + 1}} \hfill \\   \Rightarrow g'\left( x ight) = 1 - \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} \hfill \\  g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0\left( {tm} ight)} \\   {x =  - 2\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => \left\{ {\begin{array}{*{20}{c}}  {g\left( 0 ight) = 3} \\   {g\left( 1 ight) = \dfrac{7}{2}} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ {0;1} ight]} g\left( x ight) = \frac{7}{2};\mathop {\min }\limits_{\left[ {0;1} ight]} g\left( x ight) = 3

    Ta có:

    \frac{{{x^2} + 3x + 3}}{{x + 1}} \geqslant m,\left( {\forall x \in \left[ {0;1} ight]} ight) \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {g\left( 0 ight) = 3} \\   {g\left( 1 ight) = \dfrac{7}{2}} \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left[ {0;1} ight]} g\left( x ight) \geqslant m \Leftrightarrow m \leqslant 3

  • Câu 34: Thông hiểu

    Hàm số y = 2x^{3} - 3(m + 1)x^{2} + 6mx +
1 nghịch biến trên khoảng (1;3) khi và chỉ khi:

    Tập xác định D\mathbb{= R}

    Ta có: y = 2x^{3} - 3(m + 1)x^{2} + 6mx +
1

    \Rightarrow y' = 6x^{2} - 6(m + 1)x
+ 6m

    Hàm số nghịch biến trên khoảng (1;3)

    \Leftrightarrow y' \leq 0;\forall x
\in (1;3)

    \Leftrightarrow 6x^{2} - 6(m + 1)x + 6m
\leq 0;\forall x \in (1;3)

    \Leftrightarrow x^{2} - (m + 1)x + m
\leq 0;\forall x \in (1;3)

    \Leftrightarrow m \geq x;\forall x \in
(1;3)

    Vậy m \geq 3 là giá trị cần tìm.

  • Câu 35: Thông hiểu

    Gọi m,n lần lượt là số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = \frac{\sqrt{2 - x}}{(x - 1)\sqrt{x}}. Khẳng định nào sau đây đúng?

    Tập xác định D =
(0;2brack\backslash\left\{ 1 ight\}

    Đồ thị hàm số không có tiệm cận ngang.

    \lim_{x ightarrow 1^{+}}\frac{\sqrt{2 -
x}}{(x - 1)\sqrt{x}} = + \infty;\lim_{x ightarrow 1^{-}}\frac{\sqrt{2
- x}}{(x - 1)\sqrt{x}} = - \infty ta có x = 1 là tiệm cận đứng.

    \lim_{x ightarrow 0^{+}}\frac{\sqrt{2 -
x}}{(x - 1)\sqrt{x}} = - \infty ta có: x = 0 là tiệm cận đứng.

    Vậy m = 0;n = 2.

  • Câu 36: Vận dụng cao

    Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên.

    Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = g(x) = \frac{(x + 1)\left( x^{2} - 1
ight)}{f^{2}(x) - 2f(x)} là bao nhiêu?

    Đáp án: 6

    Đáp án là:

    Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên.

    Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = g(x) = \frac{(x + 1)\left( x^{2} - 1
ight)}{f^{2}(x) - 2f(x)} là bao nhiêu?

    Đáp án: 6

    Ta có: f^{2}(x) - 2f(x) = 0\Leftrightarrow \left\lbrack \begin{matrix}f(x) = 0\ \ \ (1) \\f(x) = 2\ \ \ (2) \\\end{matrix} ight.

    Dựa vào đồ thị hàm số, ta thấy:

    (1) có nghiệm x_{1} = a < - 1 (nghiệm đơn) và x_{2} = 1 (nghiệm kép)

    \Rightarrow f(x) = k(x - a)(x - 1)^{2}(k
> 0)

    (2) có nghiệm ba nghiệm đơn x_{1},x_{2},x_{3} với x_{1} = b < - 1 < x_{2} = 0 < 1 <
x_{3} = c\ \ \ (b > a)

    \Rightarrow f(x) - 2 = k(x - b)x(x -
c)(k > 0).

    \Rightarrow Hàm số y = g(x) có tập xác định D\mathbb{= R}\backslash\left\{ a;b;0;1;c
ight\}

    +) Tìm tiệm cận ngang:

    g(x) = \frac{(x + 1)\left( x^{2} - 1
ight)}{f^{2}(x) - 2f(x)} = \frac{(x + 1)\left( x^{2} - 1
ight)}{f(x)\left\lbrack f(x) - 2 ightbrack} = \frac{(x + 1)^{2}}{k^{2}(x - 1)(x - b)x(x - c)(x
- a)}

    Nên \lim_{x ightarrow + \infty}g(x) =
0,\lim_{x ightarrow - \infty}g(x) = 0 \Rightarrow Đồ thị hàm số y = g(x) nhận đường thẳng y = 0 làm TCN.

    +) Tìm tiệm cận đứng:

    Tại các điểm x = a,x = b,x = 0,x = 1,x =
c mẫu của g(x) nhận giá trị bằng 0 còn tử nhận các giá trị khác 0.

    Và do hàm số xác định trên D\mathbb{=R}\backslash\left\{ a; b ; 0; 1; c ight\} nên giới hạn một bên của hàm số y = g(x) tại các điểm x = a,x = b,x = 0,x = 1,x = c là các giới hạn vô cực.

    Do đó, đồ thị hàm số y = g(x) có 5 TCĐ: x = a,x = b,x = 0,x = 1x = c.

    Vậy ĐTHS y = g(x) có 6 đường tiệm cận: 1 TCN: y = 0 và 5 TCĐx = a,x
= b,x = 0,x = 1,x = c.

  • Câu 37: Thông hiểu

    Cho hàm số y = mx^{4} + (m - 1)x^{2} +
1, m là tham số thực. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số có ba điểm cực trị khi và chỉ 0 < m < 1. Đúng||Sai

    b) Hàm số có hai điểm cực trị khi m = 0. Sai|| Đúng

    c) Hàm số có ba điểm cực trị khi và chỉ 0 ≤ m ≤ 1. Sai|| Đúng

    d) Hàm số có một điểm cực trị khi . Đúng||Sai

    Đáp án là:

    Cho hàm số y = mx^{4} + (m - 1)x^{2} +
1, m là tham số thực. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số có ba điểm cực trị khi và chỉ 0 < m < 1. Đúng||Sai

    b) Hàm số có hai điểm cực trị khi m = 0. Sai|| Đúng

    c) Hàm số có ba điểm cực trị khi và chỉ 0 ≤ m ≤ 1. Sai|| Đúng

    d) Hàm số có một điểm cực trị khi . Đúng||Sai

    Nếu m = 0 thì hàm số đã cho trở thànhy =
- x^{2} + 1.

    Đây là hàm số đa thức bậc hai nên có 1 điểm cực trị.

    Nếu m eq 0 thì hàm số đã cho là hàm số trùng phương có:

    y' = 4mx^{3} +
2(m - 1)x = 2x\left( 2mx^{2} + m - 1 ight).

    Ta có y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
2mx^{2} + m - 1 = 0(*) \\
\end{matrix} ight.

    Hàm số đã cho có ba điểm cực trị khi và chỉ khi phương trình (∗) có hai nghiệm phân biệt khác 0.

    Điều kiện tương đương là:

    \left\{ \begin{matrix}
m eq 0 \\
m(m - 1) < 0 \\
2m.0^{2} + m - 1 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m eq 0 \\
0 < m < 1 \\
m eq 1 \\
\end{matrix} ight.\  \Leftrightarrow 0 < m < 1

  • Câu 38: Thông hiểu

    Cho hàm số y = f(x) xác định trên tập số thực và có đạo hàm f'(x) =
3x^{3} - 3x^{2};\left( x\mathbb{\in R} ight). Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên khoảng (1; +∞). Đúng||Sai

    b) Hàm số nghịch biến trên khoảng (−1; 1). Đúng||Sai

    c) Đồ thị hàm số có hai điểm cực trị. Sai|| Đúng

    d) Đồ thị hàm số có một điểm cực tiểu. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) xác định trên tập số thực và có đạo hàm f'(x) =
3x^{3} - 3x^{2};\left( x\mathbb{\in R} ight). Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên khoảng (1; +∞). Đúng||Sai

    b) Hàm số nghịch biến trên khoảng (−1; 1). Đúng||Sai

    c) Đồ thị hàm số có hai điểm cực trị. Sai|| Đúng

    d) Đồ thị hàm số có một điểm cực tiểu. Đúng||Sai

    Ta có: f'(x) = 0 \Leftrightarrow
3x^{3} - 3x^{2} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Bảng biến thiên:

    a) Hàm số đồng biến trên khoảng (1; +∞).

    b) Hàm số nghịch biến trên khoảng (−∞; 1) nên nghịch biến trên (−1; 1).

    c) Hàm số có đúng một điểm cực trị.

    d) Hàm số có đúng một điểm cực tiểu x = 1.

  • Câu 39: Thông hiểu

    Số các giá trị nguyên của tham số m \in
\lbrack - 20;20brack để hàm số y
= \frac{mx - 16}{x - m} nghịch biến trên khoảng ( - \infty;8) là:

    Ta có: y' = \frac{- m^{2} + 16}{(x -
m)^{2}}. Hàm số nghịch biến trên khoảng ( - \infty;8) khi

    \left\{ \begin{matrix}
y' < 0;\forall x < 8 \\
x eq m \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- m^{2} + 16 < 0 \\
m otin ( - \infty;8) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m < - 4 \\
m > 4 \\
\end{matrix} ight.\  \\
m \geq 8 \\
\end{matrix} ight.\  \Leftrightarrow m \geq 8

    \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 20;20brack \\
\end{matrix} ight.\  \Rightarrow m \in \left\{ 8;9;10;...;20
ight\}

    Vậy có tất cả 13 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 40: Vận dụng cao

    Tập hợp tất cả các giá trị của tham số m để hàm số y
= \frac{\sqrt{x^{2} - 8x} - 4}{\sqrt{x^{2} - 8x} + m} nghịch biến trên ( - 1;0) là:

    Đặt t = \sqrt{x^{2} - 8x}

    Điều kiện xác định x^{2} - 8x \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
x \leq 0 \\
x \geq 8 \\
\end{matrix} ight.

    Xét hàm t = \sqrt{x^{2} - 8x};x \in ( -
1;0) ta có:

    t' = \frac{2x - 8}{2\sqrt{x^{2} -
8x}} = \frac{x - 4}{\sqrt{x^{2} - 8x}} < 0;\forall x \in ( -
1;0)

    Ta có bảng biến thiên

    Từ bảng biến thiên ta thấy hàm số t =
\sqrt{x^{2} - 8x} nghịch biến trên khoảng ( - 1;0)t
\in (0;3)

    Khi đó yêu cầu bài toán \Leftrightarrow y
= \frac{t - 4}{t + m} đồng biến trên (0;3)

    Điều kiện xác định D\mathbb{=
R}\backslash\left\{ - m ight\}

    Ta có: y' = \frac{m + 4}{(t +
m)^{2}};\forall x \in D

    Để hàm số đồng biến trên (0;3) thì

    \left\{ \begin{matrix}
y' > 0 \\
- m otin (0;3) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m + 4 > 0 \\
\left\lbrack \begin{matrix}
- m \leq 0 \\
- m \geq 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > - 4 \\
\left\lbrack \begin{matrix}
m \geq 0 \\
m \leq - 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
- 4 < m \leq - 3 \\
m \geq 0 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là m \in ( - 4; -
3brack \cup \lbrack 0; + \infty)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo