Hàm số nào dưới dây nghịch biến trên
?
Xét hàm số có
suy ra hàm số
đồng biến trên
.
Hàm số nào dưới dây nghịch biến trên
?
Xét hàm số có
suy ra hàm số
đồng biến trên
.
Cho hàm số
với
là tham số. Tìm tất cả các giá trị nguyên của tham số
để hàm số đã cho có đúng
điểm cực trị?
Cho hàm số với
là tham số. Tìm tất cả các giá trị nguyên của tham số
để hàm số đã cho có đúng
điểm cực trị?
Ông A dự định sử dụng hết
kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu
? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 2,1
Ông A dự định sử dụng hết kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu
? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 2,1
Gọi
lần lượt là chiều rộng và chiều cao của bể cá.
Ta có thể tích bể cá .
Theo đề bài ta có:
Ta có bảng biển thiên
Cho hàm số
có đạo hàm trên
là
. Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Cho hàm số có đạo hàm trên
là
. Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Cho hàm số
có đồ thị (C). Gọi I là giao điểm của hai đường tiệm cận của (C). Tiếp tuyến của (C) cắt hai đường tiệm cận của (C) tại hai điểm A, B. Giá trị nhỏ nhất của chu vi đường tròn ngoại tiếp tam giác IAB bằng:
Đồ thị hàm số có tiệm cận đứng là x = 2 và tiệm cận ngang là y = 1 => I(2; 1)
Gọi khi đó ta có phương trình tiếp tuyến tại M là
Ta có:
Khi đó
Ta lại có tam giác IAB vuông tại I nên bán kính đường tròn ngoại tiếp tam giác IAB là
Mặt khác
Giá trị nhỏ nhất của chu vi đường tròn ngoại tiếp tam giác IAB bằng:
Đồ thị của hàm số nào tương ứng với đồ thị trong hình vẽ sau:

Dựa vào đồ thị hàm số ta thấy
Đồ thị hàm số cắt trục tung tại điểm
=> => Loại đáp án
Mặt khác => Hệ số a > 0 => Loại đáp án
Hàm số đạt cực trị tại hai điểm , dựa vào hình vẽ ta thấy
trái dấu
=> Loại đáp án
Vậy đáp án là
Cho đồ thị hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Ta có:
Do đó hàm số nghịch biến trên từng khoảng xác định.
Vậy khẳng định đúng là: “Hàm số nghịch biến trên các khoảng và
”.
Cho hàm số
có bảng biến thiên như sau:

Giá trị nhỏ nhất của hàm số đã cho trên đoạn
bằng bao nhiêu?
Giá trị nhỏ nhất của hàm số đã cho trên đoạn bằng
.
Cho hàm số
có bảng biến thiên như sau:

Hàm số
nghịch biến trên khoảng nào dưới dây?
Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên .
Điều kiện của tham số
để hàm số
nghịch biến trên từng khoảng xác định là:
Xét hàm số ta có:
Tập xác định
Ta có:
Hàm số nghịch biến trên từng khoảng xác định
Vậy đáp án cần tìm là .
Cho đồ thị của hàm số
có điểm cực đại
và điểm cực tiểu
. Tính giá trị biểu thức
?
Đồ thị hàm số đi qua điểm và
nên
Đồ thị hàm số có điểm cực tiểu nên
Từ (*) và (**) ta có hệ phương trình
Với
suy ra
là điểm cực đại.
suy ra
là điểm cực tiểu
Vậy
Một hòn đảo nằm trong một hồ nước. Biết rằng đường cong tạo nên hòn đảo được mô hình hóa vào hệ trục tọa độ
là một phần của đồ thị hàm số bậc ba
.

Vị trí điểm cực đại là
với đơn vị của hệ trục là
và vị trí điểm cực tiểu là
. Mặt đường chạy trên một đường thẳng có phương trình
. Người ta muốn làm một cây cầu có dạng một đoạn thẳng nối từ hòn đảo ra mặt đường. Độ dài ngắn nhất của cây cầu bằng bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 88,3 m
Một hòn đảo nằm trong một hồ nước. Biết rằng đường cong tạo nên hòn đảo được mô hình hóa vào hệ trục tọa độ là một phần của đồ thị hàm số bậc ba
.
Vị trí điểm cực đại là với đơn vị của hệ trục là
và vị trí điểm cực tiểu là
. Mặt đường chạy trên một đường thẳng có phương trình
. Người ta muốn làm một cây cầu có dạng một đoạn thẳng nối từ hòn đảo ra mặt đường. Độ dài ngắn nhất của cây cầu bằng bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 88,3 m
Gọi hàm số bậc ba
.
Vì đồ thị hàm số đi qua hai điểm .
Vì đồ thị hàm số đi qua hai điểm .
Vì hàm số có hai điểm cực trị
.
và
.
Gọi là điểm nằm trên hòn đảo và nối với mặt đường và
là tiếp tuyến của đồ thị hàm số song song với mặt đường.
Suy ra là tiếp điểm của
với
.
Đường thẳng có hệ số góc
.
Độ dài cây cầu ngắn nhất bằng khoảng cách từ điểm đến đường thẳng
.
.
Vì đơn vị của hệ trục là nên độ dài ngắn nhất của cây cầu là
.
Cho hàm số
. Tính giá trị nhỏ nhất của hàm số đã cho trên đoạn
?
Hàm số liên tục trên đoạn
Ta có:
Khi đó nên
.
Cho hàm số
có đồ thị như hình vẽ:

Hàm số
nghịch biến trên khoảng nào dưới đây?
Từ đồ thị hàm số ta thấy hàm số đồng biến trên khoảng
Xét hàm số ta có:
Suy ra hàm số nghịch biến trên khoảng
.
Cho hàm số
có bảng biến thiên trên đoạn
như sau:

Mệnh đề nào sau đây đúng?
Từ bảng biến thiên ta suy ra
Đồ thị hàm số
có bao nhiêu đường tiệm cận?
Tập xác định
Vì tập xác định của hàm số không chứa và
nên đồ thị hàm số không có đường tiệm cận ngang.
Lại có: . Vậy đồ thị hàm số có 1 đường tiệm cận đứng
.
Cho hàm số
có đồ thị kí hiệu là
. Tìm điểm thuộc
?
Ta thấy
Số giá trị nguyên của tham số m để hàm số
đồng biến trên
?
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
Vậy có tất cả 5 giá trị của m thỏa mãn điều kiện đề bài.
Đồ thị của hàm số
có bao nhiêu đường tiệm cận đứng?
Ta có:
Với thì
nên đồ thị hàm số có một tiệm cận đứng là
.
Cho hàm số
có đạo hàm
. Hàm số
đồng biến trên khoảng nào sau đây?
Ta có bảng xét dấu:
Từ bảng xét dấu trên ta có hàm số đồng biến trên
.
Cho đồ thị hàm số có đồ thị hàm số là đường cong trong hình vẽ:

Khẳng định nào dưới đây sai?
Quan sát đồ thị hàm số ta có:
Đáp án A sai vì hàm số không nghịch biến trên
Đáp án B sai vì hàm số chỉ đạt cực tiểu tại x = 2
Đáp án C sai vì trên đoạn [0; 2] hàm số vừa có khoảng đồng biến, vừa có khoảng nghịch biến.
Đáp án D đúng vì
Biết rằng đồ thị hàm số
có hai điểm cực trị là
và
. Khi đó giá trị của hàm số
tại
bằng:
Ta có:
Đồ thị hàm số có hai điểm cực trị là
và
nên ta có
Suy ra .
Cho hàm số
có bảng biến thiên như hình vẽ dưới đây.

Số đường tiệm cận của đồ thị hàm số
là:
Phương trình có 2 nghiệm phân biệt
=> Đồ thị hàm số có 2 đường tiệm cận đứng.
Khi thì
Khi thì
Vậy đồ thị hàm số có 1 tiệm cận ngang.
Tập hợp tất cả các giá trị thực của tham số
để hàm số
nghịch biến trên khoảng
là:
Ta có:
Hàm số nghịch biến trên khoảng khi
Đặt ta có:
. Ta có bảng biến thiên của
như sau:
Dựa vào bảng biến thiên ta thấy
Vậy là giá trị của tham số m cần tìm.
Hàm số nào dưới đây có dạng đồ thị như đường cong trong hình vẽ?

Dựa vào hình dáng đồ thị ta suy ra đồ thị của hàm số bậc 4 có hệ số .
Vậy hàm số cần tìm là .
Tìm giá trị thực của tham số m để hàm số f(x) = -x3 – 3x2 + m có giá trị nhỏ nhất trên đoạn [-1; 1] bằng 0.
Xét hàm số f(x) = -x3 – 3x2 + m trên đoạn [-1; 1] ta có:
f’(x) = -3x2 – 6x
f’(x) = 0 =>
Ta tính được
Đường tiệm cận ngang của đồ thị hàm số
cắt đường thẳng
tại điểm có tung độ bằng:
Do và
nên đồ thị hàm số có đường tiệm cận ngang là
.
Xét phương trình có hoành độ giao điểm
Vậy tung độ giao điểm là .
Tìm tất cả các khoảng đồng biến của hàm số ![]()
Tập xác định
Ta có:
=> Hàm số đồng biến trên (-3; 0)
Cho hàm số
. Giá trị lớn nhất của hàm số trên đoạn
bằng bao nhiêu?
Ta có: Hàm số đã cho xác định và liên túc trên đoạn
Suy ra hàm số đồng biến trên
Vậy .
Cho hàm số
có bảng biến thiên như hình vẽ:

Biết (C) cắt các trục tọa độ tại các điểm A, B thỏa mãn
. Tính giá trị của biểu thức
?
Do đồ thi hàm số có tiệm cận đứng x = -1 và tiệm cận ngang là y = 2
=> Hàm số có dạng
=>
Ta có:
Hàm số
nghịch biến trên khoảng
khi và chỉ khi:
Tập xác định
Ta có:
Hàm số nghịch biến trên khoảng
Vậy là giá trị cần tìm.
Điểm cực tiểu của đồ thị hàm số
thuộc đường thẳng nào sau đây?
Ta có: . Do đó
Vì là điểm cực tiểu của hàm số nên điểm
là điểm cực tiểu của đồ thị hàm số.
Nhận thấy thuộc đường thẳng
.
Vậy điểm cực tiểu của đồ thị hàm số thuộc đường thẳng
.
Cho hàm số
có đồ thị
. Gọi
và đối xứng nhau qua gốc tọa độ
. Độ dài
bằng:
Gọi là hai điểm đối xứng nhau qua gốc tọa độ (
)
Vì A và B thuộc (C) nên
. Khi đó
Độ dài đoạn AB là: .
Cho hàm số
có bảng biến thiên như sau:

Giá trị cực đại của hàm số đã cho bằng:
Quan sát bảng biến thiên dễ thấy giá trị cực đại của hàm số đã cho bằng 3.
Cho hàm số
có bảng biến thiên như sau:

Mệnh đề nào sau đây đúng?
Từ bảng biến thiên của hàm số ta có:
nên đồ thị hàm số đã cho không có tiệm cận ngang.
Và nên đồ thị hàm số đã cho không có tiệm cận đứng.
Vậy đồ thị hàm số đã cho không có tiệm cận.
Hệ thức liên hệ giữa giá trị cực đại
và giá trị cực tiểu
của hàm số
là:
Tập xác định
Ta có:
Lại có nên
là điểm cực tiểu của hàm số.
nên
là điểm cực đại của hàm số.
Do đó .
Cho hàm số
có đồ thị như hình vẽ:

Hỏi đồ thị hàm số
có bao nhiêu đường tiệm cận đứng?
Số đường tiệm cận đứng là số nghiệm của phương trình
Nhìn vào đồ thị ta thấy phương trình trên có 4 nghiệm tương ứng với 4 đường tiệm cận đứng.
Cho hàm số
. Khẳng định nào sau đây sai?
Ta có tiệm cận đứng của hàm số là y = 3 và tiệm cận ngang là y = 1
Giao điểm của hai đường tiệm cận I(3; 1) là tâm đối xứng của đồ thị
=> A, C, D đúng và B sai
Cho hàm số
thỏa mãn
. Mệnh đề nào sau đây đúng?
Từ biểu thức của ta có bảng xét dấu như sau:
Dễ thấy hàm số đạt cực tiểu tại nên mệnh đề “
đạt cực tiểu tại
” đúng và mệnh đề “
đạt cực tiểu tại
” sai.
Hàm số có đúng một điểm cực trị nên mệnh đề “ không có cực trị” sai và “
có hai điểm cực trị” sai.
Cho hàm số bậc ba
với
là tham số. Gọi
là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức
?
Cho hàm số bậc ba với
là tham số. Gọi
là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức
?