Đồ thị của hàm số nào có dạng như hình vẽ sau đây?
Ta thấy hình vẽ là đồ thị của hàm bậc ba có hệ số nên hàm số cần tìm là
.
Đồ thị của hàm số nào có dạng như hình vẽ sau đây?
Ta thấy hình vẽ là đồ thị của hàm bậc ba có hệ số nên hàm số cần tìm là
.
Cho hàm số . Biết
. Mệnh đề nào dưới đây đúng?
Tập xác định
Ta có:
Từ
Từ (**) suy ra .
Vậy là đáp án cần tìm.
Tìm giá trị của để bất phương trình
có nghiệm trên khoảng
?
Bất phương trình có nghiệm trên khoảng
Với
Ta có bảng biến thiên
Dựa vào bảng biến thiên ta suy ra .
Đồ thị của hàm số nào tương ứng với đồ thị trong hình vẽ sau:
Dựa vào đồ thị hàm số ta thấy
Đồ thị hàm số cắt trục tung tại điểm
=> => Loại đáp án
Mặt khác => Hệ số a > 0 => Loại đáp án
Hàm số đạt cực trị tại hai điểm , dựa vào hình vẽ ta thấy
trái dấu
=> Loại đáp án
Vậy đáp án là
Số tiệm cận của hàm số là:
Tập xác định:
Khi đó
=> Đồ thị hàm số có hai tiệm cận ngang
Mặt khác
=> Đồ thị hàm số có hai tiệm cận đứng
Vậy đồ thị hàm số đã cho có 4 đường tiệm cận.
Cho hàm số y = f(x) liên tục trên và y = f’(x) có bảng biến thiên như sau:
Đồ thị hàm số có nhiều nhất bao nhiêu tiệm cận đứng:
Điều kiện
Để đồ thị hàm số có đường tiệm cận đứng
thì phải có nghiệm.
Từ bảng biến thiên của hàm số y = f’(x) suy ra phương trình f’(x) = 0 có đúng hai nghiệm là với
Từ đó ta có bảng biến thiên của hàm số y = f(x) như sau:
=> Phương trình y = f(x) có nhiều nhất ba nghiệm phân biệt
Vậy đồ thị hàm số có nhiều nhất ba đường tiệm cận đứng.
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số . Chọn mệnh đề đúng?
Dựa vào đồ thị ta thấy hàm số có tập xác định là hàm số luôn nghịch biến trên khoảng
nên
.
Cho hàm số
Ta có: có hai nghiệm phân biệt là -2 và 3
=> f’(x) < 0 =>
Vậy hàm số nghịch biến trên khoảng (-2; 3)
Tìm giá trị của tham số m sao cho đồ thị hàm số có tiệm cận ngang.
Ta có:
Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số
Đồng thời
Tìm giá trị của tham số để hàm số
nghịch biến trên khoảng
Tìm giá trị của tham số để hàm số
nghịch biến trên khoảng
Cho hàm số . Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?
Tập xác định suy ra đồ thị hàm số không có đường tiệm cận ngang và đường tiệm cận xiên
suy ra đồ thị nhận đường thẳng
làm tiệm cận đứng.
Vậy đồ thị hàm số có một đường tiệm cận.
Cho hàm số có đồ thị là
. Số điểm thuộc
có hoành độ và tung độ đều là các số nguyên là
Ta có:
Gọi
Vậy có 4 điểm thỏa mãn yêu cầu.
Tìm tất cả các giá trị của tham số để hàm số
có cực trị?
Ta có:
Để hàm số có cực trị thì
có hai nghiệm phân biệt
.
Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.
Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.
Biết đường thẳng cắt đồ thị hàm số
tại ba điểm phân biệt sao cho một giao điểm cách đều hai giao điểm còn lại. Khi có
thuộc khoảng nào sau đây?
Phương trình hoành độ giao điểm là
Xét hàm số
Đồ thị có điểm uốn là
Để đường thẳng cắt đồ thị hàm số
tại ba điểm phân biệt sao cho một giao điểm cách đều hai giao điểm còn lại
Cho hàm số y = f(x) có đạo hàm . Hàm số y = -2f(x) đồng biến trên khoảng
Ta có:
=> Hàm số y = -2f(x) đồng biến trên khoảng (0; 2)
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho đạt cực đại tại điểm nào dưới đây?
Từ bảng biến thiên ta thấy hàm số đạt cực đại tại .
Cho hàm số xác định, liên tục trên tập số thực và đồ thị của hàm số
là đường cong như hình vẽ bên dưới.
Khẳng định nào sau đây là khẳng định đúng?
Từ đồ thị của hàm số ta có:
Vậy hàm số nghịch biến trên khoảng
.
Tìm giá trị của tham số để đồ thị hàm số
đi qua điểm
?
Đồ thị hàm số đi qua điểm nên ta có:
Đồ thị hàm số nào có đường tiệm cận đứng đi qua điểm ?
Xét hàm số
Ta có: suy ra
là tiệm cận đứng của đồ thị hàm số.
Tiệm cận đứng đi qua điểm .
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Tìm tập hợp tất cả các giá trị của tham số để phương trình
có nghiệm thuộc khoảng
?
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Tìm tập hợp tất cả các giá trị của tham số để phương trình
có nghiệm thuộc khoảng
?
Cho hai hàm số bậc bốn y = f(x) và y = g(x) có các đồ thị như hình dưới đây.
Số điểm cực trị của hàm số là:
Ta có:
Từ đồ thị ta thấy phương trình (*) có đùng 2 nghiệm phân biệt là x = -1; x = 3, x = x1, và f(x) – g(x) đổi dấu khi đi qua các nghiệm này
=> Các nghiệm trên là nghiệm bội lẻ của (*)
Mà f(x) và g(x) đều là đa thức bậc 4 nên bậc của phương trình (*) nhỏ hơn hoặc bằng 4
=> Phương trình (*) là phương trình bậc 3 có 3 nghiệm phân biệt nên phương trình (**) phải có 2 nghiệm phân biệt không trùng với các nghiệm của phương trình (*)
=> h’(x) = 0 có 5 nghiệm phân biệt và h’(x) đổi dấu khi đi qua các nghiệm đấy nên hàm số h(x) có 5 điểm cực trị.
Cho hàm số có đồ thị
là parabol như hình vẽ:
Khẳng định nào sau đây là đúng?
Từ đồ thị hàm số ta có bảng biến thiên như sau:
Vậy hàm số đồng biến trên các khoảng và
.
Cho hàm số xác định, liên tục trên
và có đồ thị như hình vẽ
Giá trị lớn nhất của hàm số trên
là
Từ đồ thị hàm số, ta thấy hàm số đạt giá trị lớn nhất bằng 3 tại x = 1.
Bác H cần xây dựng một bể nước mưa có thể tích dạng hình hộp chữ nhật với chiều dài gấp
lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là
đồng trên một mét vuông và ở nắp để hở một khoảng hình vuông có diện tích bằng
diện tích nắp bể. Tính chi phí thấp nhất mà bác H phải chi trả (làm tròn đến hàng triệu đồng).
Bác H cần xây dựng một bể nước mưa có thể tích dạng hình hộp chữ nhật với chiều dài gấp
lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là
đồng trên một mét vuông và ở nắp để hở một khoảng hình vuông có diện tích bằng
diện tích nắp bể. Tính chi phí thấp nhất mà bác H phải chi trả (làm tròn đến hàng triệu đồng).
Đồ thị hàm số có tiệm cận ngang là:
Tập xác định
Ta có:
Vì nên đồ thị hàm số có đường tiệm cận ngang là y = 2.
Giá trị nhỏ nhất của hàm số trên
là:
Ta có: nên hàm đồng biến trên
Do đó
Cho hàm số . Hàm số
có đồ thị như hình vẽ:
Gọi là tập hợp tất cả các giá trị nguyên dương của tham số
sao cho hàm số
đồng biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Cho hàm số . Hàm số
có đồ thị như hình vẽ:
Gọi là tập hợp tất cả các giá trị nguyên dương của tham số
sao cho hàm số
đồng biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Cho hàm số f(x) có đạo hàm . Số cực trị của hàm số đã cho là
Xét phương trình
Ta có bảng xét dấu:
Quan sát bảng xét dấu ta dễ thấy f’(x) đổi dấu khi qua c = -2 và f’(x) đổi dấu khi qua x = 1
=> Hàm số có hai điểm cực trị
Trong các hàm số sau, đồ thị hàm số nào có đường tiệm cận ngang?
Ta có: nên tiệm cận ngang của đồ thị hàm số
là đường thẳng có phương trình
.
Cho hàm số với
là tham số. Tìm tất cả các giá trị của tham số
để hàm số đã cho đồng biến trên
?
Ta có:
Hàm số đồng biến trên khoảng
khi và chỉ khi:
Vậy đáp án cần tìm là .
Đường tiệm cận xiên của đồ thị hàm số là đường thẳng có phương trình
Tập xác định: .
Phương trình đường tiệm cận xiên có dạng: .
Trong đó,
.
Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng
Hàm số trên đoạn
có giá trị nhỏ nhất bằng:
Ta có:
. Khi đó
suy ra
.
Ông A dự định sử dụng hết kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu
? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 2,1
Ông A dự định sử dụng hết kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu
? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 2,1
Gọi
lần lượt là chiều rộng và chiều cao của bể cá.
Ta có thể tích bể cá .
Theo đề bài ta có:
Ta có bảng biển thiên
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
Xét hàm số . Khẳng định nào sau đây sai?
Ta có:
Ta có bảng xét dấu cho các biểu thức
Từ bảng xét dấu ta thấy
Khi đó hàm số nghịch biến
=> Đáp án B sai
Cho hàm số có đạo hàm
. Hàm số
có bao nhiêu điểm cực đại?
Từ giả thiết ta có bảng biến thiên của hàm số f(x)
Ta có:
g(x) = f(3 – x)
=> g’(x) = -f’(3 – x)
Từ bảng biến thiên của hàm số f(x) ta có:
=> Ta có bảng biến thiên của hàm số g(x) là:
Từ bảng biến thiên ta nhận thấy hàm số g(x) có một điểm cực đại.
Cho hàm số có bảng biến thiên như hình vẽ:
a) Phương trình có 3 nghiệm. Đúng||Sai
b) Phương trình có 1 nghiệm. Đúng||Sai
c) Phương trình vô nghiệm. Sai||Đúng
d) Phương trình có 2 nghiệm. Đúng||Sai
Cho hàm số có bảng biến thiên như hình vẽ:
a) Phương trình có 3 nghiệm. Đúng||Sai
b) Phương trình có 1 nghiệm. Đúng||Sai
c) Phương trình vô nghiệm. Sai||Đúng
d) Phương trình có 2 nghiệm. Đúng||Sai
a) Ta có .
Dựa vào bảng biến thiên, ta có phương trình f(x) = 0 có 3 nghiệm.
b) Ta có
Dựa vào bảng biến thiên, ta có phương trình f(x) = 2 có 1 nghiệm.
c) Ta có .
Dựa vào bảng biến thiên, ta có phương trình f(x) = −4 có 1 nghiệm.
d) Ta có.
Dựa vào bảng biến thiên, ta có phương trình f(x) = −3 có 2 nghiệm.
Cho hàm số với
là tham số. Tìm tập hợp tất cả các giá trị của tham số
để hàm số đã cho đạt cực tiểu tại
?
Tập xác định .
Ta có: . Để hàm số đạt cực tiểu tại
thì
vậy tập hợp tất cả các giá trị của tham số m thỏa mãn yêu cầu bài toán là .
Tìm tất cả các giá trị thực của tham số để hàm số
đạt cực tiểu tại điểm
?
Ta có:
Điều kiện cần
Điều kiện đủ:
Khi suy ra
là điểm cực đại của hàm số.
Khi suy ra
là điểm cực tiểu của hàm số.
Vậy giá trị m thỏa mãn yêu cầu bài toán là .
Cho hàm số có đạo hàm trên
và
biết
. Khẳng định nào sau đây có thể xảy ra.
Do nên hàm số
nghịch biến trên
.
Khi đó ta có:
sai
sai
sai
Do đó, đúng.