Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trên khoảng (0; +∞) thì hàm số y = -x3 + 3x + 1

    Ta có:

    \begin{matrix}  y' =  - 3{x^2} + 3 \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    Từ bảng biến thiên => Hàm số có giá trị lớn nhất bằng 3

  • Câu 2: Vận dụng

    Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Nhận biết

    Cho hàm số y = {x^3} - 3{x^2} + 2. Mệnh đề nào sau đây đúng?

     Ta có:

    \begin{matrix}  y' = 3{x^2} - 6x \hfill \\   \Rightarrow y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 2} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng xét dấu:

    Chọn mệnh đề đúng trong các mệnh đề dưới đây

    Quan sát bảng xét dấu ta thấy:

    + Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞)

    + Hàm số nghịch biến trên các khoảng (0; 2)

  • Câu 4: Nhận biết

    Cho hàm số f(x) có đạo hàm f'(x) = (x + 1)^{2}(x - 2)^{3}(2x +
3). Tìm số điểm cực trị của hàm số f(x)?

    Ta có: f'(x) = (x + 1)^{2}(x -
2)^{3}(2x + 3)

    (x + 1)^{2}(x - 2)^{3}(2x + 3) =
0

    \Leftrightarrow \left\lbrack\begin{matrix}x = - 1 \\x = 2 \\x = - \dfrac{3}{2} \\\end{matrix} ight.

    Ta có bảng biến thiên

    Vậy hàm số có hai điểm cực trị.

  • Câu 5: Vận dụng cao

    Gọi K là tập hợp các giá trị nguyên của tham số m \in \left[ {0;2019} ight] để bất phương trình {x^2} - m + \sqrt {{{\left( {1 - {x^2}} ight)}^3}}  \leqslant 0 nghiệm đúng với mọi x \in \left[ { - 1;1} ight] . Số các phần tử của tập hợp K là:

    Đặt t = \sqrt {1 - {x^2}} ;x \in \left[ { - 1;1} ight] \Rightarrow t \in \left[ {0;1} ight]

    Bất phương trình đã cho trở thành {t^3} - {t^2} + 1 - m \leqslant 0 \Leftrightarrow m \geqslant {t^3} - {t^2} + 1\left( * ight)

    Yêu cầu bài toán tương đương với bất phương trình (*) nghiệm đúng với mọi t \in \left[ {0;1} ight]

    Xét hàm số f\left( t ight) = {t^3} - {t^2} + 1 \Rightarrow f'\left( t ight) = 3{t^3} - 2t

    f'\left( t ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {t = 0\left( L ight)} \\   {t = \dfrac{2}{3}\left( {tm} ight)} \end{array}} ight.

    \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) = f\left( 1 ight) = 1} \\   {f\left( {\dfrac{2}{3}} ight) = \dfrac{{23}}{{27}}} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ {0;1} ight]} f\left( t ight) = 1

    Do đó bất phương trình (*) nghiệm đúng với mọi t \in \left[ {0;1} ight] khi và chỉ khi m \geqslant 1

    Mặt khác m là số nguyên thuộc [0; 2019] nên m \in \left\{ {1;2;3;...;2019} ight\}

  • Câu 6: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận ngang là:

    Dựa vào bảng biến thiên ta có: \lim_{x
ightarrow \pm \infty}f(x) = 2 nên đồ thị hàm số có đường tiệm cận ngang là y = - 2.

  • Câu 7: Nhận biết

    Cho hình vẽ:

    Đồ thị trong hình đã cho là đồ thị của hàm số nào?

    Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng y = ax^{3} + bx^{2} + cx + d với a > 0 và đồ thị hàm số đi qua điểm (2; - 3) nên hàm số tương ứng với đồ thị trong hình vẽ đã cho là y = x^{3} -3x^{2} + 1.

  • Câu 8: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm f'(x) = (x -
1)^{2}(x - 1)^{3}(2 - x). Hàm số y
= f(x) đồng biến trên khoảng nào sau đây?

    Ta có bảng xét dấu:

    Từ bảng xét dấu trên ta có hàm số y =
f(x) đồng biến trên (1;2).

  • Câu 9: Thông hiểu

    Cho hàm số y = \frac{(2m + 1)x^{2} +
3}{\sqrt{x^{4} + 1}} với m là tham số. Tìm giá trị của m để đường tiệm cận ngang của đồ thị hàm số đi qua điểm A(1; - 3)?

    Ta có: \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow - \infty}y = 2m + 1 suy ra d:y = 2m + 1 là tiệm cận ngang của đồ thị hàm số đã cho.

    Do A(1; - 3) \in d \Leftrightarrow 2m + 1
= - 3 \Leftrightarrow m = - 2

  • Câu 10: Thông hiểu

    Cho các hàm số sau:

    y = \frac{\sin x}{x};y =\frac{\sqrt{x^{2} + x + 1}}{x};y = \frac{\sqrt{1 - x}}{x + 1};y = x + 1+ \sqrt{x^{2} - 1}

    Có bao nhiêu hàm số mà đồ thị hàm số tương ứng có đúng một tiệm cận ngang?

    Ta có:

    y = \frac{\sin x}{x}\lim_{x ightarrow \infty}\frac{\sin x}{x} =
0 nên có 1 tiệm cận ngang là y =
0.

    y = \frac{\sqrt{x^{2} + x +
1}}{x}\lim_{x ightarrow +
\infty}\frac{\sqrt{x^{2} + x + 1}}{x} = 1;\lim_{x ightarrow -
\infty}\frac{\sqrt{x^{2} + x + 1}}{x} = - 1 nên có 2 tiệm cận ngang là y = 1;y = - 1.

    y = \frac{\sqrt{1 - x}}{x + 1}\lim_{x ightarrow -
\infty}\frac{\sqrt{1 - x}}{x + 1} = 0 nên có 1 tiệm cận ngang là y = 0.

    y = x + 1 + \sqrt{x^{2} - 1}\lim_{x ightarrow - \infty}\left( x + 1 +
\sqrt{x^{2} - 1} ight) = 1 nên có 1 tiệm cận ngang là y = 1.

    Vậy có 3 hàm số mà đồ thị có đúng 1 tiệm cận đứng.

  • Câu 11: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên trên đoạn \lbrack -
5;7brack như sau:

    Mệnh đề nào sau đây đúng?

    Từ bảng biến thiên ta suy ra \min_{\lbrack - 5;7brack}y = 2

  • Câu 12: Vận dụng

    Cho hàm số y =
f(x) có đạo hàm f'(x) = x^{2}(x
- 9)(x - 4)^{2}. Khi đó hàm số y =
f\left( x^{2} ight) nghịch biến trên khoảng nào?

    Ta có:

    y' = \left( f\left( x^{2} ight)
ight)' = 2x.f'\left( x^{2} ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x^{4}\left( x^{2} - 9 ight)\left( x^{2} - 4 ight)^{2} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 3 \\
x = \pm 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên:

    Dựa vào bảng biến thiên ta có hàm số nghịch biến trên ( - \infty; - 3)(0;3).

  • Câu 13: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như hình vẽ.

    Đặt g(x) = f\left( \frac{x^{2} + 1}{x}
ight). Tìm số điểm cực trị của hàm số y = g(x).

    Đáp án: 6

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như hình vẽ.

    Đặt g(x) = f\left( \frac{x^{2} + 1}{x}
ight). Tìm số điểm cực trị của hàm số y = g(x).

    Đáp án: 6

    Đặt g'(x) = \left( \frac{x^{2} -
1}{x^{2}} ight)f'\left( \frac{x^{2} + 1}{x} ight)

    g'\left( x ight) = 0 \Leftrightarrow \left[ \begin{gathered}
  \left( {\frac{{{x^2} - 1}}{{{x^2}}}} ight) = 0 \hfill \\
  f'\left( {\frac{{{x^2} + 1}}{x}} ight) = 0 \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left[ \begin{gathered}
  x =  \pm 1 \hfill \\
  \frac{{{x^2} + 1}}{x} = a\,\,\left( {a <  - 2} ight) \hfill \\
  \frac{{{x^2} + 1}}{x} = b\,\,\left( { - 2 < b < 2} ight) \hfill \\
  \frac{{{x^2} + 1}}{x} = c\,\,\left( {c > 2} ight) \hfill \\ 
\end{gathered}  ight.

    Xét hàm số h(x) = \frac{x^{2} +
1}{x},h'(x) = \frac{x^{2} - 1}{x^{2}},h'(x) = 0 \Leftrightarrow
x = \pm 1

    Bảng biến thiên của hàm số h(x) =
\frac{x^{2} + 1}{x}

    Dựa vào bảng biến thiến trên ta thấy phương trình h(x) = a,h(x) = c.

    Mỗi phương trình có hai nghiệm phân biệt khác \pm 1, mà a eq c \Rightarrow f'\left(
\frac{x^{2} + 1}{x} ight) = 0 có 4 nghiệm đơn phân biệt x_{1},x_{2},x_{3},x_{4} khác \pm 1 và phương trình h(x) = b vô nghiệm.

    Do đó phương trình g'(x) = 0 có 6 nghiệm đơn phân biệt lần lượt theo thứ tự từ nhỏ đến lớn là x_{1},- 1,x_{2},x_{3},1,x_{4}.

    Vậy hàm số g(x) = f\left( \frac{x^{2} +
1}{x} ight)có 6 cực trị.

  • Câu 14: Vận dụng

    Cho hàm số f\left( x ight) = 1 + C_{10}^1x + C_{10}^2{x^2} + ... + C_{10}^{10}{x^{10}}. Số điểm cực trị của hàm số đã cho là:

    Áp dụng công thức khai triển nhị thức Newton ta có:

    \begin{matrix}  f\left( x ight) = 1 + C_{10}^1x + C_{10}^2{x^2} + ... + C_{10}^{10}{x^{10}} = {\left( {1 + x} ight)^{10}} \hfill \\   \Rightarrow f'\left( x ight) = 10{\left( {1 + x} ight)^9} \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Xác định số điểm cực trị của hàm số

    Vậy hàm số đã cho có duy nhất một điểm cực trị x = -1

  • Câu 15: Vận dụng cao

    Cho f(x) mà đồ thị hàm số y = f’(x) như hình vẽ.

    Hàm số y = f\left( {x - 1} ight) + {x^2} - 2x đồng biến trên khoảng nào trong các đáp án dưới đây?

    Ta có: y = f\left( {x - 1} ight) + {x^2} - 2x

    => y' = f'\left( {x - 1} ight) + 2x - 2

    Hàm số đồng biến khi y' \geqslant 0 \Leftrightarrow f'\left( {x - 1} ight) + 2\left( {x - 1} ight) \geqslant 0\left( * ight)

    Đặt t = x – 1 thì (*) trở thành

    f'\left( t ight) + 2t \geqslant 0 \Leftrightarrow f'\left( t ight) \geqslant  - 2t

    Quan sát đồ thị hàm số y = f’(t) và y = -2t trên cùng một hệ tọa độ như hình vẽ

    Xác định khoảng đồng biến của hàm số

    Khi đó ta thấy với t \in \left( {0;1} ight) thì độ thì hàm số y = f’(t) luôn nằm trên đường thẳng y = -2t

    => f'\left( t ight) + 2t > 0,\forall t \in \left( {1;2} ight)

    Do đó với \forall x \in \left( {1;2} ight) thì hàm số y = f\left( {x - 1} ight) + {x^2} - 2x đồng biến.

  • Câu 16: Nhận biết

    Hàm số y = 2{x^4} - 4 đồng biến trên khoảng

    Ta có y’ = 8x => y’ = 0 => x = 0

    => y’ > 0 => x > 0

    => y’ < 0 => x < 0

    Vậy hàm số đồng biến trên khoảng \left( {0; + \infty } ight)

  • Câu 17: Thông hiểu

    Đồ thị hàm số f(x) = \frac{x + 1}{\sqrt{2
- x}.\sqrt{3 - x}} có tất cả bao nhiêu đường tiệm cận?

    Hàm số xác định \left\{ \begin{matrix}
2 - x > 0 \\
3 - x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x < 2 \\
x < 3 \\
\end{matrix} ight.\  \Leftrightarrow x < 2

    Tập xác định D = ( -
\infty;2)

    Ta có: \lim_{x ightarrow 2^{-}}f(x) = +
\infty suy ra x = 2 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow - \infty}f(x) =
\lim_{x ightarrow - \infty}\frac{x + 1}{\sqrt{2 - x}.\sqrt{3 - x}} =
\lim_{x ightarrow - \infty}\frac{x + 1}{\sqrt{x^{2} - 5x +
6}}

    = \lim_{x ightarrow -\infty}\dfrac{x\left( 1 + \dfrac{1}{x} ight)}{- x\sqrt{1 - \dfrac{5}{x} +\dfrac{6}{x^{2}}}} = \lim_{x ightarrow - \infty}\dfrac{1 +\dfrac{1}{x}}{- \sqrt{1 - \dfrac{5}{x} + \dfrac{6}{x^{2}}}} = -1

    Suy ra y = - 1 là tiệm cận ngang của đồ thị hàm số

    Vậy đồ thị hàm số có 2 đường tiệm cận.

  • Câu 18: Thông hiểu

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{x - 3}{\sqrt{9 - x^{2}}} là:

    Tập xác định D = ( - 3;3) suy ra đồ thị hàm số không có tiệm cận ngang.

    \lim_{x ightarrow 3^{-}}\frac{x -
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow 3^{-}}\frac{x - 3}{\sqrt{(3 -
x)(3 + x)}} = \lim_{x ightarrow 3^{-}}\frac{- \sqrt{3 - x}}{\sqrt{3 +
x}} = 0

    Suy ra x = 3 không là đường tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow - 3^{+}}\frac{x -
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow - 3^{+}}\frac{x - 3}{\sqrt{(3
- x)(3 + x)}} = \lim_{x ightarrow - 3^{+}}\frac{- \sqrt{3 -
x}}{\sqrt{3 + x}} = - \infty

    Suy ra x = - 3 là đường tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số có 1 đường tiệm cận.

  • Câu 19: Thông hiểu

    Một chất điểm chuyển động theo phương trình S(t) = - t^{3} + 12t^{2} - 30t + 10 trong đó t được tính bằng giây và S được tính bằng mét. Thời gian để vận tốc của chất điểm đạt giá trị lớn nhất là:

    Ta có: v(t) = S'(t) = - 3t^{2} + 24t
- 30 = - 3(t - 4)^{2} + 18 \leq 18

    Khi đó \max v(t) = 18 \Leftrightarrow t =
4(s)

  • Câu 20: Thông hiểu

    Giá trị nhỏ nhất của hàm số y = 2{\cos ^3}x - \frac{9}{2}{\cos ^2}x + 3\cos x + \frac{1}{2} là:

    Đặt t = \cos x;t \in \left[ { - 1;1} ight]

    Khi đó hàm số trở thành:

    f\left( t ight) = 2{t^3} - \frac{9}{2}{t^2} + 3t + \frac{1}{2}

    Xét hàm số f\left( t ight) = 2{t^3} - \frac{9}{2}{t^2} + 3t + \frac{1}{2} trên đoạn \left[ { - 1;1} ight] ta có:

    f'\left( t ight) = 8{t^2} - 9t + 3 > 0;\forall t \in \left[ { - 1;1} ight]

    => Hàm số f(t) đồng biến trên \left( { - 1;1} ight)

    => \mathop {\min f\left( t ight)}\limits_{\left[ { - 1;1} ight]}  = f\left( { - 1} ight) = 1

  • Câu 21: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và hàm số y = f'(x) có đồ thị như hình vẽ:

    Tìm số điểm cực trị của hàm số y =
f(x)?

    Từ đồ thị hàm số y = f'(x) ta có đồ thị hàm số y = f'(x) cắt trục hoành tại 4 điểm phân biệt.

    Do đó phương trình f'(x) = 0 có bốn nghiệm phân biệt. Qua các nghiệm này f'(x) đều đổi dấu nên số cực trị của hàm số y = f(x) là bốn cực trị.

  • Câu 22: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Có bao nhiêu giá trị nguyên của tham số m để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt?

    Ta có: 2f(x) + 3m = 0 \Leftrightarrow
f(x) = \frac{- 3m}{2}

    Để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt thì - \frac{3m}{2} =
- 3 \Leftrightarrow m = 2

    Vậy có 1 giá trị nguyên của m thỏa mãn yêu cầu.

  • Câu 23: Nhận biết

    Hàm số y = \frac{ 2x + 3 }{ x + 1 } có bao nhiêu điểm cực trị?

    y' = \frac{- 1}{(x + 1)^{2}} >
0,\forall x eq - 1 nên hàm số không có cực trị.

  • Câu 24: Thông hiểu

    Cho hàm số y = f(x) thỏa mãn f'(x) = x^{2}(x - 1);\forall
x\mathbb{\in R}. Mệnh đề nào sau đây đúng?

    Từ biểu thức của f'(x) ta có bảng xét dấu như sau:

    Dễ thấy hàm số đạt cực tiểu tại x =
1 nên mệnh đề “y = f(x) đạt cực tiểu tại x = 1” đúng và mệnh đề “y = f(x) đạt cực tiểu tại x = 0” sai.

    Hàm số có đúng một điểm cực trị nên mệnh đề “y = f(x) không có cực trị” sai và “y = f(x) có hai điểm cực trị” sai.

  • Câu 25: Thông hiểu

    Hình vẽ nào sau đây là đồ thị của hàm số y = (x - c)(d - x)^{2} với c > d > 0?

    Với c > d > 0 thì đồ thị hàm số y = (x - c)(d - x)^{2} theo thứ tự tiếp xúc với trục hoành tại điểm có hoành độ x = dx =
c

    Mặt khác với x \leq c thì y \leq 0 nên khi x \leq c thì đồ thị hàm số nằm phía dưới trục hoành

    Vậy đồ thị hàm số cần tìm là .

  • Câu 26: Vận dụng

    Cho hàm số y = f\left( x ight) có bảng biến thiên như hình vẽ dưới đây.

    Tìm số đường tiệm cận của hàm số

    Số đường tiệm cận của đồ thị hàm số y = \frac{2}{{f\left( x ight) - 2018}} là:

    Phương trình f\left( x ight) = 2018 có 2 nghiệm phân biệt

    => Đồ thị hàm số y = \frac{2}{{f\left( x ight) - 2018}} có 2 đường tiệm cận đứng.

    Khi x \to  - \infty thì y \to 5 \Rightarrow y = \frac{2}{{f\left( x ight) - 2018}} \to \frac{2}{{ - 2013}}

    Khi x \to  + \infty thì y \to 5 \Rightarrow y = \frac{2}{{f\left( x ight) - 2018}} \to \frac{2}{{ - 2013}}

    Vậy đồ thị hàm số y = \frac{2}{{f\left( x ight) - 2018}} có 1 tiệm cận ngang.

     

  • Câu 27: Thông hiểu

    Điều kiện của tham số m để hàm số y
= \frac{1}{3}x^{3} - mx^{2} + 3mx + 1 đồng biến trên \mathbb{R} là:

    Tập xác định: D\mathbb{= R}

    Ta có: y' = x^{2} - 2mx +
3m

    Hàm số đồng biến trên \mathbb{R}

    \Leftrightarrow y' \geq 0;\forall
x\mathbb{\in R \Leftrightarrow}x^{2} - 2mx + 3m \geq 0

    \Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow m^{2} - 3m \leq 0 \Leftrightarrow
m \in \lbrack 0;3brack

    Vậy giá trị của tham số m thỏa mãn yêu cầu bài toán là m \in \lbrack 0;3brack.

  • Câu 28: Thông hiểu

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hỏi hàm số y = 2021 - f(x) đồng biến trên khoảng nào?

    Hàm số y = 2021 - f(x)y' = - f'(x)

    y' = 0 \Leftrightarrow - f'(x) =
0 \Leftrightarrow f'(x) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = 0 \\
\end{matrix} ight.

    Từ bảng biến thiên của hàm số y =
f(x) ta có bảng biến thiên của hàm số y = 2021 - f(x)

    Dựa vào bảng biến thiên ta có hàm số y =
2021 - f(x) đồng biến trong khoảng ( - 1;0).

  • Câu 29: Thông hiểu

    Cho hàm số y = x^{3} - 3x^{2} + m -
1 với m là tham số. Tổng tất cả các giá trị nguyên của tham số m để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt bằng:

    Phương trình hoành độ giao điểm của đồ thị và trục hoành là:

    x^{3} - 3x^{2} + m - 1 = 0
\Leftrightarrow x^{3} - 3x^{2} + 1 = m

    Xét hàm số f(x) = - x^{3} + 3x^{2} +
1;\forall x\mathbb{\in R}

    Ta có: f'(x) = - 3x^{2} + 6x
\Rightarrow f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên:

    Dựa vào bảng biến thiên ta thấy để đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt khi và chỉ khi 1 < m <
5

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 2;3;4 ight\}

    Vậy tổng tất cả các giá trị nguyên của tham số m thỏa mãn yêu cầu bằng 9.

  • Câu 30: Nhận biết

    Số đường tiệm cận ngang của đồ thị hàm số y = \frac{x}{\sqrt{x^{2} + 1}} bằng:

    Ta có:

    \lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\left( \frac{x}{\sqrt{x^{2} + 1}} ight) =
1 suy ra y = 1 là một tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\left( \frac{x}{\sqrt{x^{2} + 1}} ight) = -
1 suy ra y = - 1 là một tiệm cận ngang của đồ thị hàm số.

    Vậy tổng số đường tiệm cận ngang của đồ thị hàm số đã cho bằng 2.

  • Câu 31: Vận dụng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Số nghiệm thuộc đoạn \left\lbrack
0;\frac{7}{2} ightbrack của phương trình f\left( \cos x ight) = 1 bằng:

    Dựa vào bảng biến thiến ta suy ra f\left(
\cos x ight) = 1 \Leftrightarrow \left\lbrack \begin{matrix}
\cos x = a < - 1\ \ \ \ (1) \\
\cos x = b \in ( - 1;0)\ \ \ (2) \\
\cos x = c \in (0;1)\ \ (3) \\
\cos x = d > 1\ \ (4) \\
\end{matrix} ight.

    Các phương trình (1) và (4) vô nghiệm

    Ta có bảng sau:

    Phương trình \cos x = b \in ( -
1;0) có 4 nghiệm thuộc \left\lbrack
0;\frac{7}{2} ightbrack

    Phương trình \cos x = c \in
(0;1) có 3 nghiệm thuộc \left\lbrack 0;\frac{7}{2}
ightbrack

    Vậy phương trình đã cho có tất cả 7 nghiệm thuộc đoạn \left\lbrack 0;\frac{7}{2}
ightbrack.

  • Câu 32: Vận dụng

    Cho hàm số y = f(x), đồ thị của hàm số y = f'(x) là đường cong như hình vẽ:

    Giá trị nhỏ nhất của hàm số g(x) = f(2x)
- 2x + 2021 trên đoạn \left\lbrack
- \frac{1}{2};1 ightbrack bằng:

    Ta có: g'(x) = 2.f'(2x) -
2

    \Rightarrow g'(x) = 0
\Leftrightarrow f'(2x) = 1

    \Leftrightarrow \left\lbrack\begin{matrix}2x = - 1 \\2x = 1 \\2x = 2 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = - \dfrac{1}{2} \\x = \dfrac{1}{2} \\x = 1 \\\end{matrix} ight. trong đó các nghiệm x = - \frac{1}{2};x = 1 là nghiệm đơn và x = \frac{1}{2} là nghiệm kép.

    g'(0) = 2.f'(0) - 2 = - 4 <
0 nên ta có bảng biến thiên của hàm g(x) như sau:

    Vậy \min_{\left\lbrack - \frac{1}{2};1
ightbrack}g(x) = g(1) = f(2) + 2019.

  • Câu 33: Thông hiểu

    Cho hàm số f(x) có bảng xét dấu f'(x) như sau:

    Hàm số y = f(2x + 1) nghịch biến trên khoảng nào dưới đây?

    Ta có:

    y' = \left\lbrack f(2x + 1)
ightbrack' = 2f'(2x + 1) < 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x + 1 < - 3 \\
- 1 < 2x + 1 < 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 2 \\
- 1 < x < 0 \\
\end{matrix} ight.

    Vậy khoảng nghịch biến của hàm số y =
f(2x + 1) là: ( - 1;0)

  • Câu 34: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = {x^2} - 2x,\forall x \in \mathbb{R}. Hàm số y = -2f(x) đồng biến trên khoảng

    Ta có:

    \begin{matrix}  y' =  - 2f'\left( x ight) =  - 2{x^2} + 4x \hfill \\  y' > 0 \Rightarrow x \in \left( {0;2} ight) \hfill \\ \end{matrix}

    => Hàm số y = -2f(x) đồng biến trên khoảng (0; 2)

  • Câu 35: Thông hiểu

    Cho hàm số có đồ thị hàm số như hình vẽ.

    Chọn khẳng định đúng trong các khẳng định dưới đây

    Chọn khẳng định đúng trong các khẳng định dưới đây?

    Dựa vào đồ thị hàm số ta thấy:

    \mathop {\lim }\limits_{x \to \infty } y =  - \infty => Hệ số a < 0 => Loại đáp án C và D

    Đồ thị hàm số đi qua điểm \left( {0;d} ight) => d > 0

    Hàm số có ba cực trị => ab < 0

    Do a < 0 => b > 0

    Đồ thị hàm số đi qua điểm có tọa độ \left( {0;c} ight) => c > 0

  • Câu 36: Thông hiểu

    Đồ thị hàm số y = ax^{3} + bx^{2} + cx +
d có hai điểm cực trị A(1; -
7),B(2; - 8). Khi đó y( -
1) có giá trị là:

    Gọi đồ thị hàm số y = ax^{3} + bx^{2} +
cx + d(C)

    Ta có: y' = 3ax^{2} + 2bx +
c.

    A(1; - 7),B(2; - 8) là hai điểm cực trị của đồ thị hàm số y =
ax^{3} + bx^{2} + cx + d nên ta có:

    \left\{ \begin{matrix}
A \in (C) \\
y'\left( x_{A} ight) = 0 \\
B \in (C) \\
y'\left( x_{B} ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 7 = a.1^{3} + b.1^{2} + c.1 + d \\
0 = 3a.1^{3} + 2b.1^{2} + c \\
- 8 = a.2^{3} + b.2^{2} + c.2 + d \\
0 = 3a.2^{3} + 2.b.2^{2} + c \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = - 9 \\
c = 12 \\
d = - 12 \\
\end{matrix} ight.

    Vậy y = 2x^{3} - 9x^{2} + 12x -
12 do đó y( - 1) = -
35.

  • Câu 37: Thông hiểu

    Tập hợp tất cả các giá trị thực của tham số m để hàm số y
= - x^{3} - 6x^{2} + (4m - 9)x + 4 nghịch biến trên khoảng ( - \infty; - 3) là:

    Ta có: y' = - 3x^{2} - 12x + 4m -
9

    Hàm số nghịch biến trên khoảng ( -
\infty; - 3) khi y' \leq
0;\forall x \in ( - \infty; - 3)

    \Leftrightarrow - 3x^{2} - 12x + 4m - 9
\leq 0;\forall x \in ( - \infty; - 3)

    \Leftrightarrow 4m \leq 3x^{2} + 12x +
9;\forall x \in ( - \infty; - 3)

    Đặt f(x) = 3x^{2} + 12x + 9 ta có: f'(x) = 6x + 12. Ta có bảng biến thiên của f(x) như sau:

    Dựa vào bảng biến thiên ta thấy

    4m \leq 3x^{2} + 12x + 9;\forall x \in (
- \infty; - 3)

    \Leftrightarrow 4m \leq 0
\Leftrightarrow m \leq 0

    Vậy ( - \infty;0brack là giá trị của tham số m cần tìm.

  • Câu 38: Vận dụng cao

    Cho hàm số bậc ba f\left( x ight) = a{x^3} + b{x^2} + cx + d có đồ thị như hình vẽ:

    Tìm giá trị m để đồ thị hàm số có 3 tiệm cận đứng

    Có bao nhiêu giá trị của m để hàm số g\left( x ight) = \frac{{\left( {{x^2} - 2mx + {m^2} + m + 1} ight)\sqrt {{x^2} - 3x} }}{{\left( {x - 4} ight)\left[ {{f^2}\left( x ight) - 4f\left( x ight)} ight]}} có 3 tiệm cận đứng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số bậc ba f\left( x ight) = a{x^3} + b{x^2} + cx + d có đồ thị như hình vẽ:

    Tìm giá trị m để đồ thị hàm số có 3 tiệm cận đứng

    Có bao nhiêu giá trị của m để hàm số g\left( x ight) = \frac{{\left( {{x^2} - 2mx + {m^2} + m + 1} ight)\sqrt {{x^2} - 3x} }}{{\left( {x - 4} ight)\left[ {{f^2}\left( x ight) - 4f\left( x ight)} ight]}} có 3 tiệm cận đứng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 39: Nhận biết

    Giá trị nhỏ nhất của hàm số y =
\frac{x^{3} - 3x}{x + 1} trên đoạn \lbrack 0;2brack bằng:

    Ta có: y' = \frac{x^{2} + 2x - 3}{(x
+ 1)^{2}}

    \Rightarrow y' = 0 \Leftrightarrow
\frac{x^{2} + 2x - 3}{(x + 1)^{2}} = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 3 \\
\end{matrix} ight.. Khi đó \left\{ \begin{matrix}y(0) = 0 \\y(2) = - \dfrac{2}{3} \\y(1) = - 1 \\\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;2brack}y = y(1) = -1.

  • Câu 40: Nhận biết

    Quan sát hình vẽ sau:

    Xác định hàm số tương ứng với đồ thị hàm số trong hình vẽ đã cho?

    Đồ thị hàm số có tiệm cận ngang y =\frac{1}{2} và tiệm cận đứng là x =1 nên hàm số tương ứng là y =\frac{x + 1}{2x - 2}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo