Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho đồ thị hàm số sau:

    Xác định hàm số tương ứng với đồ thị đã cho?

    Dựa vào đồ thị hàm số đã cho, ta thấy đồ thị này là đồ thị hàm số bậc 4 có hệ số a < 0 nên hàm số tương ứng là y = - x^{4} + 2x^{2} + 2.

  • Câu 2: Vận dụng cao

    Cho hàm số y =f(x) có bảng xét dấu f'(x) như sau:

    Hàm số y = f\left( 2 - e^{x} ight) -\frac{1}{3}e^{3x} + 3e^{2x} - 5e^{x} + 1 đồng biến trong khoảng nào dưới đây?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x) có bảng xét dấu f'(x) như sau:

    Hàm số y = f\left( 2 - e^{x} ight) -\frac{1}{3}e^{3x} + 3e^{2x} - 5e^{x} + 1 đồng biến trong khoảng nào dưới đây?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Thông hiểu

    Đồ thị hàm số y = \frac{x^{3} - 4x}{x^{3}
- 3x - 2} có bao nhiêu đường tiệm cận?

    Ta có: y = \frac{x^{3} - 4x}{x^{3} - 3x -
2} = \frac{(x - 2)\left( x^{2} + 2x ight)}{(x - 2)\left( x^{2} + 2x +
1 ight)} = \frac{x^{2} + 2x}{x^{2} + 2x + 1}

    \lim_{x ightarrow ( - 1)^{+}}y =
\lim_{x ightarrow ( - 1)^{+}}\frac{x^{2} + 2x}{x^{2} + 2x + 1} =
\lim_{x ightarrow ( - 1)^{+}}\frac{x(x + 2)}{(x + 1)^{2}} = -
\infty suy ra x = - 1 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow \pm \infty}y =\lim_{x ightarrow \pm \infty}\left( \dfrac{x^{2} + 2x}{x^{2} + 2x + 1}ight) = \lim_{x ightarrow \pm \infty}\left( \dfrac{1 + \dfrac{2}{x}}{1+ \dfrac{2}{x} + \dfrac{1}{x^{2}}} ight) = 1 suy ra đồ thị hàm số có tiệm cận ngang là y = 1.

    Vậy đồ thị hàm số có hai đường tiệm cận.

  • Câu 4: Thông hiểu

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hàm số g(x) = \frac{1}{f(x)} đồng biến trên khoảng nào sau đây?

    Ta có: g'(x) = -
\frac{f'(x)}{\left\lbrack f(x) ightbrack^{2}} >
0

    \Leftrightarrow \left\{ \begin{matrix}
f'(x) < 0 \\
f(x) eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 1 \\
1 < x < 3 \\
x eq \left\{ - 2;0;3 ight\} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 2 \\
- 2 < x < - 1 \\
1 < x < 3 \\
\end{matrix} ight.

    Vậy hàm số g(x) = \frac{1}{f(x)} đồng biến trên các khoảng ( - \infty; - 2),(
- 2; - 1),(1;3)

    Suy ra hàm số g(x) =
\frac{1}{f(x)} đồng biến trên khoảng (1;2).

  • Câu 5: Vận dụng

    Có bao nhiêu giá trị nguyên âm của a để đồ thị hàm số y = x^{3} + (x + 10)x^{2} - x + 1 cắt trục hoành tại đúng một điểm?

    Phương trình hoành độ giao điểm của đồ thị và trục hoành là:

    x^{3} + (a + 10)x^{2} - x + 1 =
0(*)

    \Leftrightarrow x^{3} + 10x^{2} - x + 1
= - ax^{2}

    Ta thấy x = 0 không là nghiệm của phương trình nên (*) \Leftrightarrow -
\frac{x^{3} + 10x^{2} - x + 1}{x^{2}} = a

    Xét hàm số f(x) = - \frac{x^{3} + 10x^{2}
- x + 1}{x^{2}};\left( \forall x\mathbb{\in R}\backslash\left\{ 0
ight\} ight)

    Ta có: f'(x) = - \frac{x^{3} + x -
2}{x^{3}} = - \frac{(x - 1)\left( x^{2} + x + 2
ight)}{x^{3}}

    f'(x) = 0 \Leftrightarrow x =
1

    Bảng biến thiên của hàm số f(x) như sau:

    Từ bảng biến thiên ta thấy đồ thị hàm số đã cho cắt trục hoành tại đúng một điểm khi (*) có đúng 1 nghiệm \Leftrightarrow a > - 11

    a nguyên âm nên a \in \left\{ - 10; - 9; - 8;...; - 1
ight\}

    Vậy có 10 giá trị của a thỏa mãn yêu cầu bài toán.

  • Câu 6: Nhận biết

    Xác định giá trị lớn nhất của hàm số f(x)
= x^{3} - 3x + 2 trên đoạn \lbrack
- 1;3brack?

    Ta có: f'(x) = 3x^{2} -
3

    \Rightarrow f'(x) = 0
\Leftrightarrow 3x^{2} - 3 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \in \lbrack - 1;3brack \\
x = - 1 \in \lbrack - 1;3brack \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
f( - 1) = 4 \\
f(1) = 0 \\
f(3) = 20 \\
\end{matrix} ight.\  \Rightarrow \underset{\lbrack - 1;3brack}{\max
f(x)} = 20 \Leftrightarrow x = 3

    Vậy đáp án cần tìm là 20.

  • Câu 7: Thông hiểu

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 1
ight\} và có bảng biến thiên như sau:

    Số giá trị nguyên của tham số m để phương trình m - f(x) = 0 có ba nghiệm phân biệt là:

    Phương trình m - f(x) = 0 là phương trình hoành độ giao điểm của hai đồ thị (C):y = f(x) và đường thẳng (d):y = m

    Để phương trình m - f(x) = 0 có ba nghiệm phân biệt khi và chỉ khi (C);(d) có ba giao điểm \Leftrightarrow 1 < m < 4

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 2;3 ight\}

    Vậy có 2 giá trị nguyên của tham số m thỏa mãn điều kiện đề bài.

  • Câu 8: Nhận biết

    Cho hàm số y = f(x) và có bảng biến thiên trên [-5; 7) như sau:

    Chọn khẳng định đúng

    Mệnh đề nào sau đây đúng?

    Dựa vào bảng biến thiên dễ dàng ta thấy \mathop {\min }\limits_{\left[ { - 5;7} ight)} f\left( x ight) = 2

    \mathop {\max }\limits_{\left[ { - 5;7} ight)} f\left( x ight) = 6 là sai vì f(x) sẽ nhận các giá trị 7; 8 lớn hơn 6 khi x tiến tới 7

    \mathop {\max }\limits_{\left[ { - 5;7} ight)} f\left( x ight) = 9 là sai vì f(x) không bằng 9 mà chỉ tiến đến 9 khi x dần đến 7 (x khác 7)

    Vậy chọn đáp án A.

  • Câu 9: Thông hiểu

    Cho hàm số y = - x^{3} - mx^{2} + (4m +
9)x + 5. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số đã cho đồng biến trên \mathbb{R}?

    Ta có: y' = - 3x^{2} - 2mx + 4m +
9

    Hàm số đã cho nghịch biến trên \mathbb{R} khi và chỉ khi \left\{ \begin{matrix}
a < 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 1 < 0 \\
m^{2} + 3(4m + 9) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow m^{2} + 12m + 27 \leq 0
\Leftrightarrow m \in \lbrack - 9; - 3brack

    m\mathbb{\in Z \Rightarrow}m = \left\{
- 9; - 8;...; - 3 ight\}

    Vậy có tất cả 7 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 10: Nhận biết

    Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?

    Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số a < 0 nên hàm số cần tìm là y = - 2x^{4} + 4x^{2} + 1.

  • Câu 11: Thông hiểu

    Số đường tiệm cận của đồ thị hàm số y = \frac{x}{{{x^2} - 3x - 4}} + x

    Quy đồng biến đổi hàm số đã cho trở thành y = \frac{{{x^3} - 3{x^2} - 3x}}{{{x^2} - 3x - 4}}

    Tìm được tiệm cận đứng là x = -1 và x = 4 và không có tiệm cận ngang

    => Số tiệm cận là 2 đường

  • Câu 12: Vận dụng

    Cho hàm số f(x) có bảng biến thiên của hàm số y = f^{'}(x) như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số m \in ( - 10;10) để hàm số y = f(3x - 1) + x^{3} - 3mx đồng biến trên khoảng ( - 2;1)?

    Đáp án: 6

    Đáp án là:

    Cho hàm số f(x) có bảng biến thiên của hàm số y = f^{'}(x) như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số m \in ( - 10;10) để hàm số y = f(3x - 1) + x^{3} - 3mx đồng biến trên khoảng ( - 2;1)?

    Đáp án: 6

    Để hàm số y = f(3x - 1) + x^{3} -
3mx đồng biến trên khoảng ( -
2;1)

    \Leftrightarrow y' \geq 0,\forall x
\in ( - 2;1)

    \Leftrightarrow 3f'(3x - 1) + 3x^{2}
- 3m \geq 0,\forall x \in ( - 2;1)

    \Leftrightarrow m \leq f^{'}(3x - 1)
+ x^{2},\forall x \in ( - 2;1)(*)

    Đặt k(x) = f^{'}(3x - 1),h(x) =
x^{2}g(x) = f^{'}(3x - 1) +
x^{2} = k(x) + h(x).

    Ta có: \min_{( - 2;1)}k(x) = k(0) = -
4.

    Do đó, ta có: \min_{( - 2;1)}f^{'}(3x
- 1) = f^{'}( - 1) = - 4 khi 3x
- 1 = - 1 \Leftrightarrow x = 0.

    \Rightarrow \min_{( - 2;1)}k(x) = k(0) =
- 4.

    Do đó, \min_{( - 2;1)}g(x) = g(0) = k(0)
+ h(0) = 0 - 4 = - 4.

    Từ (*) ta có m \leq f^{'}(3x - 1) + x^{2},\forall x \in ( -
2;1)

    \Leftrightarrow m \leq \min_{( -
2;1)}g(x) \Leftrightarrow m \leq - 4.

    m \in ( - 10;10) \Rightarrow m \in \{- 9;\ldots; - 4\}.

    Vậy có tất cả 6 số nguyên thỏa mãn.

  • Câu 13: Nhận biết

    Đồ thị hàm số y = \frac{x - 1}{x^{2} +
1} có bao nhiêu đường tiệm cận ngang và tiệm cận đứng?

    Tập xác định D\mathbb{= R}

    Đồ thị hàm số không có đường tiệm cận đứng.

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x - 1}}{{{x^2} + 1}} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\dfrac{1}{x} - \dfrac{1}{{{x^2}}}}}{{1 + \dfrac{1}{{{x^2}}}}} = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{x - 1}}{{{x^2} + 1}} = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\dfrac{1}{x} - \dfrac{1}{{{x^2}}}}}{{1 + \dfrac{1}{{{x^2}}}}} = 0 \hfill \\ 
\end{gathered}  ight. suy ra y =
0 là tiệm cận ngang của đồ thị hàm số.

  • Câu 14: Nhận biết

    Giá trị nhỏ nhất của hàm số y =
\frac{x^{2} + x + 4}{x} trên đoạn \lbrack - 3; - 1brack bằng:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 0 ight\} nên hàm số xác định và liên tục trên \lbrack - 3; - 1brack

    Ta có: y' = \frac{x^{2} -
4}{x^{2}};\forall x eq 0

    y' = 0 \Leftrightarrow \frac{x^{2} -
4}{x^{2}} = 0 \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
x = - 2 \\
\end{matrix} ight.

    y( - 3) = - \frac{10}{3};y( - 1) = -
4;y( - 2) = - 3

    \Rightarrow \min_{\lbrack - 3; -
1brack}y = y( - 1) = - 4

  • Câu 15: Thông hiểu

    Cho hàm số y = \frac{2mx + m^{2} + m -
2}{x + m}với m là tham số. Gọi S là tập hợp tất cả các giá trị của tham số m để hàm số có giá trị nhỏ nhất trên đoạn \lbrack
1;4brack bằng 1. Tổng các phần tử của tập hợp S bằng:

    Điều kiện x eq - m

    Ta có: y' = \frac{m^{2} - m + 2}{(x +
m)^{2}}. Vì \left\{ \begin{matrix}
a = 1 \\
\Delta_{m} = ( - 1)^{2} - 4.1.2 < 0 \\
\end{matrix} ight. nên m^{2} -
m + 2 > 0;\forall \in m

    \Rightarrow y' > 0;\forall x \in
\lbrack 1;4brack

    Suy ra giá trị nhỏ nhất trên đoạn \lbrack
1;4brack bằng y(1) = 1
\Leftrightarrow \frac{m^{2} + 3m - 2}{1 + m} = 1

    \Leftrightarrow \left\{ \begin{matrix}
m eq - 1 \\
m^{2} + 2m - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow m \in \left\{ 1; - 3
ight\}

    Kết hợp điều kiện \left\{ \begin{matrix}
x eq - m \\
x \in \lbrack 1;4brack \\
\end{matrix} ight.\  \Rightarrow m = - 3(ktm)

    Vậy S = \left\{ 1 ight\} nên tổng các phần tử thuộc tập S bằng 1.

  • Câu 16: Thông hiểu

    Đồ thị hàm số y = \frac{x + 1}{x^{2} -
2020x - 2021} có bao nhiêu tiệm cận đứng?

    Ta có: x^{2} - 2020x - 2021 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 2021 \\
\end{matrix} ight.

    \lim_{x ightarrow - 1}y = \lim_{x
ightarrow - 1}\frac{x + 1}{x^{2} - 2020x - 2021}

    = \lim_{x ightarrow - 1}\frac{x +
1}{(x + 1)(x - 2021)} = \lim_{x ightarrow - 1}\frac{1}{x - 2021} = -
\frac{1}{2022}

    Lại có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{2021}^ + }} \frac{{x + 1}}{{\left( {x + 1} ight)\left( {x - 2021} ight)}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {{2021}^ - }} \frac{{x + 1}}{{\left( {x + 1} ight)\left( {x - 2021} ight)}} =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x =
2021 là tiệm cận đứng của đồ thị hàm số

    Vậy hàm số đã cho có 1 tiệm cận đứng.

  • Câu 17: Nhận biết

    Tâm đối xứng của đồ thị hàm số y =
\frac{3x - 1}{x + 2} là điểm nào trong các điểm cho sau đây?

    Đồ thị hàm số y = \frac{3x - 1}{x +
2} nhận giao của hai tiệm cận làm tâm đối xứng

    Đồ thị hàm số có tiệm cận ngang là y =
3 và tiệm cận đứng là x = -
2

    Do đó tâm đối xứng của đồ thị hàm số là điểm ( - 2;3).

  • Câu 18: Thông hiểu

    Cho hàm số y = \frac{1}{3}{x^3} - \frac{3}{2}{x^2} + 2x + 1. Giả sử hàm số đạt cứ đại tại x = a và đạt cực tiểu tại x = b thì giá trị biểu thức 2a – 5b là

    Tập xác định D = \mathbb{R}

    Ta có:

    \begin{matrix}  y' = {x^2} - 3x + 2 \hfill \\  y' = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 2} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng xét dấu như sau:

    Tính giá trị biểu thức

    Do y’ thay đổi dấu từ dương sang âm khi đi qua điểm x = 1

    => x = 1 là điểm cực đại của hàm số

    y’ đổi dấu từ âm sang dương khi đi qua điểm x = 2

    => x = 2 là điểm cực tiểu của hàm số

    => 2a – 5b = -8

  • Câu 19: Thông hiểu

    Tìm GTLN, GTNN của hàm số lượng giác y = f\left( x ight) = \sin x + \cos x + \sin x.\cos x trên đoạn

    \left[ {0,\pi } ight]

    Đặt t = \sin x + \cos x = \sqrt 2 \sin \left( {x + \frac{\pi }{4}} ight)

    x \in \left[ {0,\pi } ight] \Rightarrow t \in \left[ { - 1,\sqrt 2 } ight]

    Ta có:

    \begin{matrix}  {t^2} = {\left( {\sin x + \cos x} ight)^2} \hfill \\   = {\sin ^2}x + co{x^2}x + 2\sin x.\cos x \hfill \\   = 1 + 2\sin x.\cos x \hfill \\   \Rightarrow \sin x.\cos x = \dfrac{{{t^2} - 1}}{2} \hfill \\ \end{matrix}

    \begin{matrix}  f\left( x ight) = g\left( t ight) = t + \dfrac{{{t^2} - 1}}{2} = \dfrac{{{t^2}}}{2} + t - \dfrac{1}{2} \hfill \\  g'\left( t ight) = t + 1,g'\left( t ight) = 0 \Leftrightarrow t =  - 1 \hfill \\  g\left( { - 1} ight) =  - 1,g\left( {\sqrt 2 } ight) = \sqrt 2  + \dfrac{1}{2} \hfill \\ \end{matrix}

    \mathop { \Rightarrow \max f\left( x ight)}\limits_{\left[ {0,\pi } ight]}  = \sqrt 2  + \frac{1}{2},\mathop {\min f\left( x ight)}\limits_{\left[ {0,\pi } ight]}  =  - 1

     

  • Câu 20: Vận dụng cao

    Tồn tại bao nhiêu giá trị nguyên của tham số m \in \lbrack - 30;30brack sao cho đồ thị hàm số y = \frac{2x^{2} + 5}{x^{3} + (m
- 4)x + 2m} có ít nhất một tiệm cận đứng nằm bên phải trục tung?

    Để đồ thị hàm số có ít nhất một tiệm cận đứng nằm bên phải trục tung thì phương trình x^{3} + (m - 4)x + 2m =
0 có ít nhất 1 nghiệm dương.

    Ta có:

    x^{3} + (m - 4)x + 2m = 0

    \Leftrightarrow x^{3} - 4x + mx + 2m =
0

    \Leftrightarrow x(x - 2)(x + 2) + m(x +
2) = 0

    \Leftrightarrow (x + 2)\left( x^{2} - 2x
+ m ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x^{2} - 2x + m = 0(*) \\
\end{matrix} ight.

    Để (∗) có ít nhất 1 nghiệm dương thì:

    TH1: (*) có 2 nghiệm trái dấu \Leftrightarrow m < 0

    m \in \lbrack -
30;30brack;m\mathbb{\in Z} nên m
\in \{ - 30; - 29;\ldots; - 1\}.

    TH2: (*) có 2 nghiệm phân biệt 0 \leq
x_{1} < x_{2}

    \Leftrightarrow \left\{ \begin{matrix}
\Delta^{'} = 1 - m > 0 \\
x_{1}x_{2} = m \geq 0 \\
x_{1} + x_{2} = 2 > 0 \\
\end{matrix} \Leftrightarrow 0 \leq m < 1. ight.

    m \in \lbrack -
30;30brack;m\mathbb{\in Z} nên m
= 0.

    TH3: (*) có nghiệm kép lớn hơn 0.

    \Leftrightarrow \left\{ \begin{matrix}
\Delta^{'} = 1 - m = 0 \\
x_{1}x_{2} = m > 0 \\
x_{1}x_{2} > 0 \\
\end{matrix} \Leftrightarrow 0 < m \leq 1 ight..

    m \in \lbrack -
30;30brack;m\mathbb{\in Z} nên m
= 1.

    Vậy m \in \{ - 30; - 29;\ldots;1\}
\Rightarrow có 32 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

  • Câu 21: Nhận biết

    Cho hàm số y =
f(x) có đồ thị như hình vẽ như sau:

    Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Dựa vào đồ thị dễ dàng thấy hàm số đồng biến trên (0;1).

  • Câu 22: Vận dụng

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Tìm số điểm cực trị của hàm số g(x) =
f\left( x^{2} - 2x ight) trên khoảng (0; + \infty)?

    Đặt g(x) = f\left( x^{2} - 2x ight)
\Rightarrow g'(x) = (2x - 2)f'\left( x^{2} - 2x
ight)

    Từ bảng xét dấu của hàm số f'(x)

    g'(x) = 0 \Leftrightarrow g(x) =
f\left( x^{2} - 2x ight) \Rightarrow \left\lbrack \begin{matrix}
2x - 2 = 0 \\
f'\left( x^{2} - 2x ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 2x = - 1\  \\
x^{2} - 2x = 2\ \  \\
2x - 2 = 0\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 1 \pm \sqrt{3} \\
x = 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Từ bảng biến thiên suy ra hàm số g(x) =
f\left( x^{2} - 2x ight) có hai cực trị trên khoảng (0; + \infty).

  • Câu 23: Thông hiểu

    Đồ thị hàm số y = x - \sqrt {{x^2} - 4x + 2} có tiệm cận ngang là:

    Tập xác định D = \mathbb{R}

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \left( {x - \sqrt {{x^2} - 4x + 2} } ight) = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{4x - 2}}{{x + \sqrt {{x^2} - 4x + 2} }} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{4 - \dfrac{2}{x}}}{{1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{2}{{{x^2}}}} }} = 2 \hfill \\  \mathop {\lim }\limits_{x \to  - \infty } \left( {x - \sqrt {{x^2} - 4x + 2} } ight) = \mathop {\lim }\limits_{x \to \infty } \left( {1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{4}{{{x^2}}}} } ight) =  - \infty  \hfill \\ \end{matrix}

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  - \infty } x =  - \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } \left( {1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{2}{{{x^2}}}} } ight) = 2 > 0} \end{array}} ight. nên đồ thị hàm số có đường tiệm cận ngang là y = 2.

  • Câu 24: Thông hiểu

    Biết rằng đồ thị hàm số y = f(x) = ax^{4}
+ bx^{2} + c có hai điểm cực trị là A(0;2)B(2; - 14). Khi đó giá trị của hàm số y = f(x) tại x = 3 bằng:

    Ta có: y = f(x) = ax^{4} + bx^{2} + c
\Rightarrow y' = 4ax^{3} + 2bx

    Đồ thị hàm số y = f(x) = ax^{4} + bx^{2}
+ c có hai điểm cực trị là A(0;2)B(2; - 14) nên ta có

    \left\{ \begin{matrix}
y(0) = 2 \\
y(2) = - 14 \\
y'(2) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 2 \\
16a + 4b + c = - 14 \\
32a + 4b = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 2 \\
b = - 8 \\
a = 1 \\
\end{matrix} ight.

    Suy ra y = f(x) = x^{4} - 8x^{2} + 2
\Rightarrow f(3) = 11.

  • Câu 25: Thông hiểu

    Tìm giá trị nhỏ nhất của hàm số f\left( x ight) = \frac{2}{{{x^2}}} - \frac{1}{{2x - 2}} trên khoảng (0; 1)

    Hàm số xác định và liên tục trên (0; 1) ta có:

    \begin{matrix}  f'\left( x ight) = \dfrac{{ - 4}}{{{x^3}}} + \dfrac{1}{{2{{\left( {x - 1} ight)}^2}}} \hfill \\  f'\left( x ight) = 0 \hfill \\   \Leftrightarrow {x^3} - 8{x^2} + 16x - 8 = 0 \hfill \\   \Leftrightarrow \left( {x - 2} ight)\left( {{x^2} - 6x + 4} ight) = 0 \hfill \\   \Rightarrow x = 3 - \sqrt 5  \hfill \\ \end{matrix}

    Lập bảng biến thiên:

    Tìm Min của f(x) trên khoảng

    Từ bảng biến thiên ta có: \mathop {\min }\limits_{\left( {0;1} ight)} f\left( x ight) = \frac{{11 + 5\sqrt 5 }}{4}

  • Câu 26: Nhận biết

    Hàm số y = f(x) có đạo hàm f'(x) = (x - 2)\left( x^{2} - 3 ight)\left(
x^{4} - 9 ight), với \forall
x\mathbb{\in R}. Hỏi hàm số y =
f(x) có bao nhiêu điểm cực trị?

    Ta có: f'(x) = 0 \Leftrightarrow (x -
2)\left( x^{2} - 3 ight)\left( x^{4} - 9 ight) = 0

    \Leftrightarrow (x - 2)\left( x +
\sqrt{3} ight)^{2}\left( x - \sqrt{3} ight)^{2}\left( x^{2} + 3
ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 2 \\
x = - \sqrt{3} \\
x = \sqrt{3} \\
\end{matrix} ight.

    Bảng biến thiên

    Từ bảng biến thiên của hàm số y =
f(x) ta thấy hàm số y =
f(x) có đúng một cực trị.

  • Câu 27: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R}. Biết rằng hàm số y = f'(x) có đồ thị như sau:

    Đặt g(x) = f(x) - x. Hỏi hàm số g(x) có bao nhiêu điểm cực trị?

    Hàm số y = f(x) có đạo hàm trên \mathbb{R} nên g(x) = f(x) - x cũng có đạo hàm trên \mathbb{R}

    Ta có: g'(x) = f'(x) -
1

    \Rightarrow g'(x) = 0
\Leftrightarrow f'(x) = 1

    Dựa vào đồ thị f'(x) ta có: f'(x) = 1 \Leftrightarrow \left\lbrack
\begin{matrix}
x = x_{1} \in ( - 1;0) \\
x = x_{2} \in (1;3) \\
x = x_{3} \in (2;3) \\
\end{matrix} ight. suy ra x_{1};x_{2};x_{3} là ba nghiệm phân biệt và x_{1} < x_{2} < x_{3}

    Bảng biến thiên của hàm g(x)

    Vậy hàm số g(x) = f(x) - x có 3 điểm cực trị.

  • Câu 28: Vận dụng cao

    Hai thành phố AB cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 16 km

    Đáp án là:

    Hai thành phố AB cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 16 km

    Đặt HE = x_{}và_{}FK = y, với x,\ y > 0

    Ta có: HE + KF = 24 \Rightarrow x + y =24 \Rightarrow y = 24 - x

    \left\{ \begin{matrix}AE = \sqrt{25 + x^{2}} \\BF = \sqrt{49 + y^{2}} = \sqrt{49 + (24 - x)^{2}} \\\end{matrix} ight.

    Nhận định AB ngắn nhất khi AE + BF nhỏ nhất ( vì EF không đổi).

    Xét hàm số f(x) = \sqrt{x^{2} + 25} +\sqrt{(24 - x)^{2} + 49}

    f'(x) = \frac{x}{\sqrt{x^{2} + 25}} +\frac{x - 24}{\sqrt{x^{2} - 48x + 625}},\ \forall x \in(0;24).

    Cho f'(x) = 0 \Rightarrow x =10

    Bảng biến thiên

    Vậy\underset{(0;24)\ \ \ \ \ \ \ \ \ \}{\min f(x)} = f(10) = 12\sqrt{5}

    Khi đó BF = \sqrt{49 + (24 - 10)^{2}} =7\sqrt{5} \approx 16\ km

  • Câu 29: Vận dụng cao

    Cho hàm số f\left( x ight) = a{x^4} + b{x^3} + c{x^2} + dx + e,\left( {a e 0} ight) có đồ thị của đạo hàm f’(x) như hình vẽ:

    Xác định số điểm cực trị của hàm số

    Biết rằng e > n. Số điểm cực trị của hàm số y = f'\left( {f\left( x ight) - 2x} ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f\left( x ight) = a{x^4} + b{x^3} + c{x^2} + dx + e,\left( {a e 0} ight) có đồ thị của đạo hàm f’(x) như hình vẽ:

    Xác định số điểm cực trị của hàm số

    Biết rằng e > n. Số điểm cực trị của hàm số y = f'\left( {f\left( x ight) - 2x} ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 30: Nhận biết

    Cho hàm số y = f(x) là hàm đa thức có đạo hàm f'(x) = (x - 1)(x -
2)^{2}(x + 1)^{3}. Số điểm cực trị của hàm số là:

    Ta có:

    f'(x) = (x - 1)(x - 2)^{2}(x +
1)^{3} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
x = - 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Vậy hàm số có hai điểm cực trị.

  • Câu 31: Vận dụng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = \frac{1}{2f(x) - 1} là:

    Điều kiện xác định của hàm số y =
\frac{1}{2f(x) - 1}2f(x) - 1
eq 0 \Leftrightarrow f(x) eq \frac{1}{2}

    Từ bảng biến thiên ta có: f(x) =
\frac{1}{2} \Leftrightarrow \left\lbrack \begin{matrix}
x = x_{1} \in ( - \infty; - 0,5) \\
x = x_{2} \in ( - 0,5; - \infty) \\
\end{matrix} ight.

    Tập xác định \mathbb{R}\backslash\left\{
x_{1};x_{2} ight\}

    Ta có:

    \lim_{x ightarrow -
\infty}\frac{1}{2f(x) - 1} = \frac{1}{2.1 - 1} = 1 suy ra đồ thị hàm số có tiệm cận ngang y =
1.

    \lim_{x ightarrow +
\infty}\frac{1}{2f(x) - 1} = \frac{1}{2.1 - 1} = 1 suy ra đồ thị hàm số có tiệm cận ngang y =
1.

    \lim_{x ightarrow
{x_{1}}^{\pm}}\frac{1}{2f(x) - 1} = \mp \infty suy ra đồ thị hàm số có tiệm cận đứng x =
x_{1}.

    \lim_{x ightarrow
{x_{2}}^{\pm}}\frac{1}{2f(x) - 1} = \pm \infty suy ra đồ thị hàm số có tiệm cận đứng x =
x_{2}.

    Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{1}{2f(x) - 1}3.

  • Câu 32: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:

    Ta có:

    \lim_{x ightarrow - \infty}f(x) =
2;\lim_{x ightarrow 0^{+}}f(x) = + \infty nên hàm số có tiệm cận ngang là y = 2 và tiệm cận đứng là x = 0.

  • Câu 33: Vận dụng

    Cho hàm số y =f(x) liên tục, có đạo hàm trên \mathbb{R}. Đồ thị hàm số y = f'(x) như sau:

    Hàm số y = f(3 - x) nghịch biến trên khoảng (2;b). Giá trị lớn nhất của b bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x) liên tục, có đạo hàm trên \mathbb{R}. Đồ thị hàm số y = f'(x) như sau:

    Hàm số y = f(3 - x) nghịch biến trên khoảng (2;b). Giá trị lớn nhất của b bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 34: Thông hiểu

    Cho hàm số y = f(x) = \frac{2x^{2} + 26x
+ 18}{x + 13} có điểm cực tiểu và điểm cực đại lần lượt là x_{1};x_{2}. Tính P = - 2x_{1} + x_{2}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = \frac{2x^{2} + 26x
+ 18}{x + 13} có điểm cực tiểu và điểm cực đại lần lượt là x_{1};x_{2}. Tính P = - 2x_{1} + x_{2}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 35: Vận dụng

    Người ta cần xây một bể chứa nước sản xuất dạng khối hộp chữ nhật không nắp có thể tích bằng 200m^{2}. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng. Chi phí để xây bể là 300 nghìn đồng/m2. Hãy xác định chi phí thấp nhất để xây bể.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Người ta cần xây một bể chứa nước sản xuất dạng khối hộp chữ nhật không nắp có thể tích bằng 200m^{2}. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng. Chi phí để xây bể là 300 nghìn đồng/m2. Hãy xác định chi phí thấp nhất để xây bể.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 36: Nhận biết

    Cho hàm số y =
f(x) có đồ thị như hình vẽ:

    Hàm số y = f(x) đồng biến trên khoảng nào sau đây?

    Từ đồ thị của hàm số y = f(x) ta xác định được hàm số đồng biến trên các khoảng ( - 2; - 1).

  • Câu 37: Thông hiểu

    Cho hàm số y = x^{3} + mx^{2} +
m. Điều kiện cần và đủ của tham số m để hàm số nghịch biến trên (0;2) là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} + 2mx

    Để hàm số đã cho nghịch biến trên (0;2) thì y' \leq 0;\forall x \in (0;2)

    \Leftrightarrow 3x^{2} + 2mx \leq
0;\forall x \in (0;2)

    \Leftrightarrow 2mx \leq - 3x^{2}
\Leftrightarrow m \leq - \frac{3}{2}x^{2};\forall x \in
(0;2)

    \Leftrightarrow m \leq
\min_{(0;2)}\left\{ - \frac{3}{2}x ight\} = - 3

    Vậy giá trị cần tìm là m \leq -
3.

  • Câu 38: Nhận biết

    Trong các hàm số sau, hàm số nào nghịch biến trên từng khoảng xác định?

    Xét hàm số y = \frac{2x + 1}{x -
3} ta có:

    Điều kiện xác định D\mathbb{=
R}\backslash\left\{ 3 ight\}

    Lại có: y' = \frac{- 7}{(x - 3)^{2}}
< 0;\forall x \in D nên hàm số y
= \frac{2x + 1}{x - 3} nghịch biến trên từng khoảng xác định của nó.

  • Câu 39: Thông hiểu

    Hàm số y = f(x) liên tục trên tập số thực và có bảng biến thiên như sau:

    Phương trình \left| f\left( 2x^{2} + 3
ight) - 2 ight| = 5 có bao nhiêu nghiệm?

    Gọi g(x) = f\left( 2x^{2} + 3 ight) -
2 ta có: g'(x) =
4x.f'\left( 2x^{2} + 3 ight)

    Suy ra g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
2x^{2} + 3 = - 1 \\
2x^{2} + 3 = 3 \\
\end{matrix} ight.\  \Leftrightarrow x = 0

    Ta có bảng biến thiên

    \left| g(x) ight| = 5
\Leftrightarrow \left\lbrack \begin{matrix}
g(x) = 5 \\
g(x) = - 5 \\
\end{matrix} ight. từ bảng biến thiên ta thấy phương trình có ba nghiệm.

  • Câu 40: Thông hiểu

    Tính tổng S tất cả các giá trị nguyên của tham số m để hàm số y = \frac{1}{3}x^{3} - (m - 1)x^{2} + x -
m đồng biến trên tập xác định?

    Tập xác định D\mathbb{= R}

    Ta có: y' = x^{2} - 2(m - 1)x +
1

    Để hàm số đồng biến trên tập xác định thì y' \geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \Delta' \geq 0
\Leftrightarrow m^{2} - 2m \geq 0 \Leftrightarrow 0 \leq m \leq
2

    m\mathbb{\in Z} nên m \in \left\{ 0;1;2 ight\}

    Vậy S = 0 + 1 + 2 = 3.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo