Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Đồ thị được cho dưới đây là đồ thị của hàm số nào?

    Đồ thị được cho dưới đây là đồ thị của hàm số nào

     Đồ thị hàm số hình chữ N ngược => Đây là hàm số bậc 3 dạng

    y = a{x^3} + b{x^2} + cx + d;\left( {a < 0} ight)

  • Câu 2: Nhận biết

    Trên khoảng (0; +∞) thì hàm số y = -x3 + 3x + 1

    Ta có:

    \begin{matrix}  y' =  - 3{x^2} + 3 \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    Từ bảng biến thiên => Hàm số có giá trị lớn nhất bằng 3

  • Câu 3: Vận dụng

    Cho hàm số y = f(x) và đồ thị của hàm số y = f'(x) như hình vẽ sau:

    Hàm số g(x) = f\left( |x| ight) +2021 có bao nhiêu điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) và đồ thị của hàm số y = f'(x) như hình vẽ sau:

    Hàm số g(x) = f\left( |x| ight) +2021 có bao nhiêu điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Thông hiểu

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} và có bảng biến thiên như hình vẽ:

    Tìm giá trị của tham số thực m để phương trình f(x) = m có ít nhất hai nghiệm thực phân biệt?

    Phương trình f(x) = m có ít nhất hai nghiệm thực phân biệt khi và chỉ khi đường thẳng y = m cắt đồ thị hàm số y = f(x) tại ít nhất hai điểm phân biệt

    \Leftrightarrow - 1 \leq m \leq
3

  • Câu 5: Nhận biết

    Cho hàm số y = x^{4} - 2x^{2} +
3. Khẳng định nào sau đây đúng?

    Ta thấy hàm số đã cho là hàm trùng phương y = ax^{4} + bx^{2} + c;(a eq 0) với ab < 0 nên đây là trường hợp hàm số có ba điểm cực trị.

  • Câu 6: Nhận biết

    Tất cả các giá trị của tham số m để hàm số y = x^{4} + (2020 - m)x^{2} +
1 có ba điểm cực trị phân biệt là:

    Hàm số y = ax^{4} + bx^{2} + c có ba điểm cực trị khi và chỉ khi a.b <
0.

    Để hàm số đa cho có ba điểm cực trị khi và chỉ khi 2020 - m < 0 \Leftrightarrow m >
2020.

  • Câu 7: Thông hiểu

    Đồ thị hàm số y = ax^{3} + bx^{2} + cx +
d có hai điểm cực trị A(1; -
7),B(2; - 8). Khi đó y( -
1) có giá trị là:

    Gọi đồ thị hàm số y = ax^{3} + bx^{2} +
cx + d(C)

    Ta có: y' = 3ax^{2} + 2bx +
c.

    A(1; - 7),B(2; - 8) là hai điểm cực trị của đồ thị hàm số y =
ax^{3} + bx^{2} + cx + d nên ta có:

    \left\{ \begin{matrix}
A \in (C) \\
y'\left( x_{A} ight) = 0 \\
B \in (C) \\
y'\left( x_{B} ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 7 = a.1^{3} + b.1^{2} + c.1 + d \\
0 = 3a.1^{3} + 2b.1^{2} + c \\
- 8 = a.2^{3} + b.2^{2} + c.2 + d \\
0 = 3a.2^{3} + 2.b.2^{2} + c \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = - 9 \\
c = 12 \\
d = - 12 \\
\end{matrix} ight.

    Vậy y = 2x^{3} - 9x^{2} + 12x -
12 do đó y( - 1) = -
35.

  • Câu 8: Vận dụng

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ tf(t) = 4t^{3} - \frac{t^{4}}{2}(người). Nếu xem f'(t) là tốc độ truyền bệnh (người/ngày) tại thời điểm t. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?

    Đáp án: Ngày thứ 4||tư

    Đáp án là:

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ tf(t) = 4t^{3} - \frac{t^{4}}{2}(người). Nếu xem f'(t) là tốc độ truyền bệnh (người/ngày) tại thời điểm t. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?

    Đáp án: Ngày thứ 4||tư

    Điều kiện t \geq 0.

    Ta có g(t) = f'(t) = 12t^{2} -
2t^{3}, g'(t) = 24t -
6t^{2}, g'(t) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = 0 \\
t = 4 \\
\end{matrix} ight..

    Bảng biến thiên:

    Vậy tốc độ truyền bệnh lớn nhất vào ngày thứ 4.

    Đáp số: 4.

  • Câu 9: Thông hiểu

    Cho hàm số y = \frac{x + m}{x^{2} +
1}. Biết \min_{\mathbb{R}}y = -
2. Mệnh đề nào dưới đây đúng?

    Tập xác định D\mathbb{= R}

    Ta có: \min_{\mathbb{R}}y = - 2\Leftrightarrow \left\{ \begin{matrix}\forall x\mathbb{\in R}:\dfrac{x + m}{x^{2} + 1} \geq - 2(*) \\\exists x_{0}:\dfrac{x_{0} + m}{{x_{0}}^{2} + 1} = - 2(**) \\\end{matrix} ight.

    Từ (*) \Leftrightarrow \frac{x + m}{x^{2}
+ 1} \geq - 2 \Leftrightarrow 2x^{2} + x + m + 2 \geq 0;\forall
x\mathbb{\in R}

    \Leftrightarrow 1 - 4.2.(m + 2) \leq 0
\Leftrightarrow m \geq \frac{- 15}{8}

    Từ (**) suy ra m = \frac{- 15}{8} \in ( -
2;0).

    Vậy - 2 < m < 0 là đáp án cần tìm.

  • Câu 10: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau.

    Xét tính đúng sai của các khẳng định sau.

    a) Hàm số đồng biến trên (−∞; 2). Sai|| Đúng

    b) Hàm số nghịch biến trên (1; +∞). Đúng||Sai

    c) Hàm số có hai điểm cực trị. Sai|| Đúng

    d) Hàm số đạt cực đại tại x = 1. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) có bảng biến thiên như sau.

    Xét tính đúng sai của các khẳng định sau.

    a) Hàm số đồng biến trên (−∞; 2). Sai|| Đúng

    b) Hàm số nghịch biến trên (1; +∞). Đúng||Sai

    c) Hàm số có hai điểm cực trị. Sai|| Đúng

    d) Hàm số đạt cực đại tại x = 1. Đúng||Sai

    Quan sát bảng biến thiên, ta có các kết quả sau:

    a) Hàm số đồng biến trên (−∞; 1) nên khẳng định hàm số đồng biến trên (−∞; 2) là sai.

    b) Hàm số nghịch biến trên (1; +∞).

    c) Hàm số có đúng 1 điểm cực trị là x = 1.

    d) Hàm số có đạt cực đại tại x = 1.

  • Câu 11: Thông hiểu

    Cho hàm số y = f(x) = x^{3} - 2x^{2} + mx
+ 3 (với m là tham số) đạt cực tiểu tại x = 1. Tìm giá trị tham số m?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} - 4x +
m

    Hàm số đạt cực tiểu tại x = 1 suy ra y'(1) = 0 \Rightarrow - 1 + m = 0
\Leftrightarrow m = 1

    Với m = 1 \Rightarrow y = x^{3} - 2x^{2}
+ x + 3

    \Rightarrow \left\{ \begin{matrix}
y' = 3x^{2} - 4x + 1 \\
y'' = 6x - 4 \\
\end{matrix} ight.. Khi đó \left\{ \begin{matrix}
y'(1) = 0 \\
y''(1) > 0 \\
\end{matrix} ight. suy ra x =
1 là điểm cực tiểu của hàm số.

    Vậy m = 1 là giá trị cần tìm.

  • Câu 12: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số trên có tiệm cận ngang là:

    Dựa vào bảng biến thiên ta có: \lim_{x
ightarrow + \infty}f(x) = 1;\lim_{x ightarrow - \infty}f(x) =
1

    Suy ra tiệm cận ngang của đồ thị hàm số là y = 1.

  • Câu 13: Thông hiểu

    Giá trị nhỏ nhất của hàm số y = 2{\cos ^3}x - \frac{9}{2}{\cos ^2}x + 3\cos x + \frac{1}{2} là:

    Đặt t = \cos x;t \in \left[ { - 1;1} ight]

    Khi đó hàm số trở thành:

    f\left( t ight) = 2{t^3} - \frac{9}{2}{t^2} + 3t + \frac{1}{2}

    Xét hàm số f\left( t ight) = 2{t^3} - \frac{9}{2}{t^2} + 3t + \frac{1}{2} trên đoạn \left[ { - 1;1} ight] ta có:

    f'\left( t ight) = 8{t^2} - 9t + 3 > 0;\forall t \in \left[ { - 1;1} ight]

    => Hàm số f(t) đồng biến trên \left( { - 1;1} ight)

    => \mathop {\min f\left( t ight)}\limits_{\left[ { - 1;1} ight]}  = f\left( { - 1} ight) = 1

  • Câu 14: Thông hiểu

    Cho một tấm nhôm hình vuông cạnh 12\
dm, người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng x(\ dm), rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của x bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).

    Đáp án: 2 dm

    Đáp án là:

    Cho một tấm nhôm hình vuông cạnh 12\
dm, người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng x(\ dm), rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của x bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).

    Đáp án: 2 dm

    Ta có:

    V(x) = (12 - 2x)^{2}.x \Leftrightarrow
V(x) = 4x^{3} - 48x^{2} + 144x

    \max V(x) = 128 tại x = 2\ dm

  • Câu 15: Thông hiểu

    Cho hàm số y = \frac{{\sqrt {{x^2} - x + 3}  - \sqrt {2x + 1} }}{{{x^3} - 2{x^2} - x + 2}}. Trong các khẳng định sau, khẳng định nào là khẳng định đúng?

     

    Điều kiện \left\{ {\begin{array}{*{20}{c}}  {{x^2} - x + 3 \geqslant 0} \\   {2x + 1 \geqslant 0} \\   {{x^3} - 2{x^2} - x + 2 e 0} \end{array} \Rightarrow } ight.\left\{ {\begin{array}{*{20}{c}}  {x \geqslant \frac{{ - 1}}{2}} \\   {x e 2} \\   {x e  \pm 1} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant \frac{{ - 1}}{2}} \\   {x e 2} \\   {x e 1} \end{array}} ight.

    Từ điều kiện ta có:

    \begin{matrix}  y = \dfrac{{\left( {{x^2} - x + 3} ight) - \left( {2x + 1} ight)}}{{\left( {{x^2} - 3x + 2} ight)\left( {x + 1} ight)\left( {\sqrt {{x^2} - x - 3}  + \sqrt {2x + 1} } ight)}} \hfill \\  y = \dfrac{{{x^2} - 3x + 2}}{{\left( {{x^2} - 3x + 2} ight)\left( {x + 1} ight)\left( {\sqrt {{x^2} - x + 3}  + \sqrt {2x + 1} } ight)}} \hfill \\  y = \dfrac{1}{{\left( {x + 1} ight)\left( {\sqrt {{x^2} - x + 3}  + \sqrt {2x + 1} } ight)}} \hfill \\ \end{matrix}

    Đồ thị hàm số không có tiệm cận đứng

    Mặt khác

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{1}{{{x^2}.\left( {1 + \dfrac{1}{x}} ight)\left( {\sqrt {1 - \dfrac{1}{x} + \dfrac{3}{{{x^2}}}}  + \sqrt {\dfrac{2}{x} + \dfrac{1}{{{x^2}}}} } ight)}} = 0

    => y = 0 là tiệm cận ngang của đồ thị hàm số

    Không tồn tại \mathop {\lim }\limits_{x \to  - \infty } f\left( x ight)

    Vậy đồ thị hàm số không có tiệm cận đứng và có đúng một tiệm cận ngang

  • Câu 16: Vận dụng

    Số đường tiệm cận của đồ thị hàm số y =
\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3} là:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1;3 ight\}

    \lim_{x ightarrow +\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow +\infty}\dfrac{x^{2}\left( \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow +\infty}\dfrac{\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 -\dfrac{2}{x} - \dfrac{3}{x^{2}}} = 2 suy ra y = 2 là tiệm cận ngang.

    \lim_{x ightarrow -\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow -\infty}\dfrac{x^{2}\left( - \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 - \dfrac{2}{x} -\dfrac{3}{x^{2}}} = 0 suy ra y =
0 là tiệm cận ngang.

    \lim_{x ightarrow - 1}\left\lbrack\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3}ightbrack= \lim_{x ightarrow - 1}\frac{x\left( \sqrt{x^{2} + 3} +x - 1 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}{\left( x^{2} - 2x- 3 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x(x +
1)}{(x - 3)(x + 1)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x}{(x -
3)\left( \sqrt{x^{2} + 3} - x + 1 ight)} = \frac{- 2}{16} =
\frac{1}{8}

    Vậy x = - 1 không là tiệm cận đứng của đồ thị hàm số đã cho.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x =
3 là tiệm cận đứng của đồ thị hàm số đã cho

    Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.

  • Câu 17: Vận dụng

    Hình vẽ nào dưới đây là đồ thị của hàm số y =  - \left( {a - x} ight){\left( {b - x} ight)^2} biết a > b > 0

    Xét hàm số y = f\left( x ight) =  - \left( {a - x} ight){\left( {b - x} ight)^2} = \left( {x - a} ight){\left( {x - b} ight)^2} ta có:

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) =  + \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) =  - \infty } \end{array}} ight. => Đồ thị hàm số có dạng chữ N xuôi

    Đồ thị hàm số cắt trục Oy tại điểm có tung độ y\left( 0 ight) =  - a{b^2} mà a > 0 => y\left( 0 ight) < 0

    Mặt khác f'\left( x ight) = {\left( {x - b} ight)^2} + 2\left( {x - a} ight)\left( {a - b} ight) = \left( {x - b} ight)\left( {3x - 2a - b} ight)

    => \left\{ {\begin{array}{*{20}{c}}  {f\left( b ight) = 0} \\   {f'\left( b ight) = 0} \end{array}} ight.

    => Đồ thị hàm số y = f(x) tiếp xúc với Ox tại điểm M\left( {b;0} ight)

  • Câu 18: Thông hiểu

    Cho hàm số y = \frac{mx + 2m + 3}{x +
m} với m là tham số. Gọi T là tập hợp tất cả các giá trị nguyên của tham số m để hàm số nghịch biến trên khoảng (2; +
\infty). Hỏi tập hợp T có tất cả bao nhiêu phần tử?

    Ta có: y' = \frac{m^{2} - (2m +
3)}{(x + m)^{2}} = \frac{m^{2} - 2m - 3}{(x + m)^{2}}

    Theo yêu cầu bài toán \Leftrightarrow
y' < 0;\forall x \in (2; + \infty)

    \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 2m - 3 < 0 \\
- m \leq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 1 < m < 3 \\
m \geq - 2 \\
\end{matrix} ight.\  \Leftrightarrow - 1 < m < 3

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 0;1;2 ight\}

    \Rightarrow T = \left\{ 0;1;2
ight\}

    Vậy tập hợp T có tất cả 3 phần tử.

  • Câu 19: Thông hiểu

    Cho hàm số y = f(x) có đồ thị như hình vẽ như sau:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đã cho nghịch biến trên khoảng (−2, 0). Đúng||Sai

    b) Hàm số đã cho đồng biến trên khoảng (−1; +∞). Sai|| Đúng

    c) Hàm số đã cho đồng biến trên khoảng (2; +∞). Đúng||Sai

    d) Hàm số đạt cực tiểu tại x = −1.Sai|| Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đồ thị như hình vẽ như sau:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đã cho nghịch biến trên khoảng (−2, 0). Đúng||Sai

    b) Hàm số đã cho đồng biến trên khoảng (−1; +∞). Sai|| Đúng

    c) Hàm số đã cho đồng biến trên khoảng (2; +∞). Đúng||Sai

    d) Hàm số đạt cực tiểu tại x = −1.Sai|| Đúng

    Ta có thể từ đồ thị thiết lập lại bảng biến thiên như sau:

    a) Hàm số nghịch biến trên khoảng (−2, 0).

    b) Hàm số đồng biến trên khoảng (0; +∞) nên khẳng định đồng biến trên khoảng (−1; +∞) là sai.

    c) Hàm số đồng biến trên khoảng (0; +∞) nên nên hàm số đồng biến trên khoảng (2; +∞).

    d) Hàm số đạt cực tiểu tại x = 0 (chú ý: y = −1 gọi là giá trị cực tiểu).

  • Câu 20: Thông hiểu

    Số đường tiệm cận của đồ thị hàm số y = \frac{x}{{{x^2} - 3x - 4}} + x

    Quy đồng biến đổi hàm số đã cho trở thành y = \frac{{{x^3} - 3{x^2} - 3x}}{{{x^2} - 3x - 4}}

    Tìm được tiệm cận đứng là x = -1 và x = 4 và không có tiệm cận ngang

    => Số tiệm cận là 2 đường

  • Câu 21: Thông hiểu

    Tìm điểm M thuộc đồ thị hàm số y = \frac{{2x + 1}}{{x - 1}} sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ điểm M đến trục hoành:

    Do M thuộc đồ thị hàm số nên tọa độ điểm M\left( {{x_0};\frac{{2{x_0} + 1}}{{{x_0} - 1}}} ight);{x_0} e 1

    Phương trình tiệm cận đứng là x – 1 = 0 (d’)

    Giải phương trình d(M,d’) = d(M, Ox)

    => \left| {{x_0} - 1} ight| = \left| {\frac{{2{x_0} + 1}}{{{x_0} - 1}}} ight| \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x_0} = 0} \\   {{x_0} = 4} \end{array}} ight.

  • Câu 22: Thông hiểu

    Hàm số y = x4 - 2x2 + 1 đồng biến trên khoảng nào?

     Ta có bảng biến thiên như sau:

    Tìm khoảng đồng biến của hàm số

    Hàm số y = x4 – 2x2 + 1 đồng biến trên mỗi khoảng (-1; 0) và (1; +∞)

  • Câu 23: Nhận biết

    Cho hàm số y =
\frac{x + 1}{- x + 1}. Hãy chọn khẳng định đúng?

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    Ta có: y' = \frac{2}{( - x + 1)^{2}}
> 0;\forall x\mathbb{\in R} nên hàm số đồng biến trên các khoảng ( - \infty;1)(1; + \infty).

  • Câu 24: Nhận biết

    Đồ thị hàm số y = \frac{x - 2}{x^{2} -
4} có đường tiệm cận ngang là

    Ta có: \lim_{x ightarrow \pm \infty}y =\lim_{x ightarrow \pm \infty}\dfrac{x - 2}{x^{2} - 4} = \lim_{xightarrow \pm \infty}\dfrac{\dfrac{x}{x^{2}} -\dfrac{2}{x^{2}}}{\dfrac{x^{2}}{x^{2}} - \dfrac{4}{x^{2}}} = 0

    Suy ra tiệm cận ngang là y =
0.

  • Câu 25: Vận dụng cao

    Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ:

    Tình tổng các giá trị nguyên của tham số m

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số y = f\left( {{{\left( {x - 1} ight)}^2} + m} ight) có 3 điểm cực trị. Tổng các phần tử của S là:

    Xét hàm số y = f\left( {{{\left( {x - 1} ight)}^2} + m} ight) có đạo hàm

    \begin{matrix}  y' = 2\left( {x - 1} ight)f'\left( {{{\left( {x - 1} ight)}^2} + m} ight) \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {{{\left( {x - 1} ight)}^2} + m =  - 1} \\   {{{\left( {x - 1} ight)}^2} + m = 3} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {{{\left( {x - 1} ight)}^2} =  - 1 - m} \\   {{{\left( {x - 1} ight)}^2} = 3 - m} \end{array}} ight. \hfill \\ \end{matrix}

    Để hàm số có 3 điểm cực trị thì

    \begin{matrix}   - 1 - m \leqslant 0 < 3 - m \hfill \\   \Leftrightarrow  - 1 \leqslant m < 3 \hfill \\   \Rightarrow m \in \left\{ { - 1;0;1;2} ight\} \hfill \\ \end{matrix}

    Vậy tổng các phần tử của S là 2

  • Câu 26: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m để phương trình - x^{3} + 4x + 1 = m có ba nghiệm phân biệt?

    Phương trình đã cho là phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) = - x^{3} + 4x + 1 và đường thẳng y = m

    Xét y = f(x) = - x^{3} + 4x + 1f'(x) = - 3x^{2} + 4

    Phương trình f'(x) = 0\Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{2\sqrt{3}}{3} \\x = - \dfrac{2\sqrt{3}}{3} \\\end{matrix} ight.

    Lập bảng biến thiên

    Đường thẳng y = m cắt đồ thị y = f(x) tại ba điểm phân biệt khi và chỉ khi

    1 - \frac{16\sqrt{3}}{3} < m < 1 +
\frac{16\sqrt{3}}{3}

    Do m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 2; - 1;...;4 ight\}

    Vậy có 7 giá trị nguyên của tham số m thỏa mãn.

  • Câu 27: Nhận biết

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ cho sau đây?

    Đồ thị hàm số bậc 4 có hệ số a <
0 và có ba điểm cực trị nên ab <
0 nên chọn y = - x^{4} + 2x^{2} +
1.

  • Câu 28: Thông hiểu

    Cho hàm số y = f(x) = x^{3} -3x.

    a) Tập xác định của hàm số là \mathbb{R}. Đúng||Sai

    b) f'(x) = 3x^{2} + 3. Sai||Đúng

    c) f'(x) < 0 khi x \in ( - \infty; - 1) \cup (1; +\infty), f'(x) > 0 khi x \in ( - 1;1). Sai||Đúng

    d) Hàm số đã cho có đồ thị như hình vẽ.

    Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = x^{3} -3x.

    a) Tập xác định của hàm số là \mathbb{R}. Đúng||Sai

    b) f'(x) = 3x^{2} + 3. Sai||Đúng

    c) f'(x) < 0 khi x \in ( - \infty; - 1) \cup (1; +\infty), f'(x) > 0 khi x \in ( - 1;1). Sai||Đúng

    d) Hàm số đã cho có đồ thị như hình vẽ.

    Đúng||Sai

    Tập xác định: \mathbb{R}.

    Sự biến thiên

    Giới hạn tại vô cực: lim_{x ightarrow +\infty}y = + \infty,lim_{x ightarrow - \infty}y = -\infty.

    y' = 3x^{2} - 3y' = 0 \Leftrightarrow x = - 1 hoặc x = 1

    Hàm số đồng biến trên mỗi khoảng ( -\infty; - 1)(1; +\infty), nghịch biến trên khoảng (- 1;1).

    Hàm số đạt cực đại tại x = - 1,y_{CD} =2; hàm số đạt cực tiểu tại x =1,y_{CT} = - 2.

    Đồ thị:

    Giao điểm của đồ thị với trục tung: (0;0).

    Giao điểm của đồ thị với trục hoành tại x= 0 hoặc x = \pm \sqrt{3}. Vậy đồ thị hàm số giao với trục hoành tại ba điểm (0;0),\left( - \sqrt{3};0 ight)\left( \sqrt{3};0 ight).

    Vậy đồ thị hàm số y = f(x) = x^{3} -3x được cho ở hình vẽ.

  • Câu 29: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Dựa vào bảng biến thiên ta thấy: f'(x) > 0, \forall x \in (0;1).

    Suy ra, hàm số y = f(x) đồng biến trên khoảng (0;1).

  • Câu 30: Thông hiểu

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số y = \frac{ax + b}{cx + d};\left(
a;b;c;d\mathbb{\in R} ight). Chọn mệnh đề đúng?

    Dựa vào đồ thị ta thấy hàm số có tập xác định là D\mathbb{= R}\backslash\left\{ 1 ight\} hàm số luôn nghịch biến trên khoảng ( -
\infty;1),(1; + \infty) nên y'
< 0;\forall x eq 1.

  • Câu 31: Nhận biết

    Cho hàm số y = f(x) liên tục trên \lbrack - 1;5brack và có đồ thị như hình vẽ:

    Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack -
1;5brack?

    Từ đồ thị hàm số ta có: \max_{\lbrack -
1;5brack}y = 3;\min_{\lbrack - 1;5brack}y = - 2

    Khi đó \max_{\lbrack - 1;5brack}y -
\min_{\lbrack - 1;5brack}y = 5.

  • Câu 32: Vận dụng

    Cho một tấm nhôm hình vuông có cạnh là 30\ cm. Người ta cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là x\ cm, sau đó gập tấm nhôm lại để tạo thành một chiếc hộp không nắp. Tìm x để thể tích chiếc hộp là lớn nhất.

    Đáp án: 5

    Đáp án là:

    Cho một tấm nhôm hình vuông có cạnh là 30\ cm. Người ta cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là x\ cm, sau đó gập tấm nhôm lại để tạo thành một chiếc hộp không nắp. Tìm x để thể tích chiếc hộp là lớn nhất.

    Đáp án: 5

    Chiều cao của chiếc hộp khi gập tấm nhôm là x\ cm.

    Kích thước đáy hai đáy của chiếc hộp là (30 - 2x)\ cm.

    Ta có \left\{ \begin{matrix}
x > 0 \\
30 - 2x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 0 \\
x < 15 \\
\end{matrix} ight.\  \Leftrightarrow 0 < x < 15.

    Thể tích chiếc hộp là V(x) = x(30 -
2x)^{2} = 4x^{3} - 120x^{2} + 900x.

    V'(x) = 12x^{2} - 240x +
900.

    V'(x) = 0 \Leftrightarrow 12x^{2} -
240x + 900 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 5 \\
x = 15 \\
\end{matrix} ight.

    Bài toán trở thành, tìm x (0 < x < 15) sao cho V(x) là lớn nhất.

    Vậy cần cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là 5\ cmđể chiếc hộp tạo thành có thể tích lớn nhất.

  • Câu 33: Vận dụng cao

    Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm X cách điểm A một khoảng 3 km. Điểm A nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí Y cách điểm B một khoảng 3 km. Điểm B cũng thuộc đường bờ biển. Biết rằng AB = 3(km),AM = NB = x(km)AX = BY = 3(km) (minh hoạ như hình vẽ sau).

    Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình y = 50\log(t +2). Trong đó, y là nồng độ, t là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là 5km/h13km/h. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm M,N trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm X cách điểm A một khoảng 3 km. Điểm A nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí Y cách điểm B một khoảng 3 km. Điểm B cũng thuộc đường bờ biển. Biết rằng AB = 3(km),AM = NB = x(km)AX = BY = 3(km) (minh hoạ như hình vẽ sau).

    Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình y = 50\log(t +2). Trong đó, y là nồng độ, t là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là 5km/h13km/h. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm M,N trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 34: Vận dụng cao

    Tìm giá trị của tham số m để đồ thị hàm số y = f\left( x ight) = \frac{{2x + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} có hai đường tiệm cận đứng và hai đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2.

    Tập xác định D = \left( { - \infty ; - 1} ight) \cup \left( {0; + \infty } ight)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{m - \sqrt {{1^2} + \dfrac{3}{{{x^2}}}}  - \dfrac{1}{x}}}{{ - \sqrt {{1^2} + \dfrac{1}{x}} }} = 1 - m \hfill \\  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{m + \sqrt {{1^2} + \dfrac{3}{{{x^2}}}}  - \frac{1}{x}}}{{\sqrt {{1^2} + \dfrac{1}{x}} }} = m + 1 \hfill \\ \end{matrix}

    => Để đồ thị hàm số có 2 đường tiệm cận ngang thì m + 1 e 1 - m \Leftrightarrow m e 0

    \begin{matrix}  \mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{mx + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} =  + \infty  \hfill \\  \mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{mx + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} = \left\{ {\begin{array}{*{20}{c}}  { + \infty {\text{  khi m  <  1}}} \\   { - \infty {\text{  khi m  >  1}}} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy khi m e 0;m e 1 thì đồ thị hàm số có 2 đường tiệm cận ngang là y = m + 1; y = - m và 2 đường tiệm cận đứng là x = 0 và x = -1

    Để hai đường tiệm cận đứng và 2 đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2 thì 1.2\left| m ight| = 2 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {m = 1\left( L ight)} \\   {m =  - 1\left( {tm} ight)} \end{array}} ight.

  • Câu 35: Thông hiểu

    Tiếp tuyến tại điểm cực tiểu của đồ thị hàm số y = \frac{1}{3}x^{3} - 3x^{2} + 5x -
1

    Ta có: y' = x^{2} - 6x + 5 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 5 \\
\end{matrix} ight.

    y'' = 2x - 6 \Rightarrow \left\{
\begin{matrix}
y''(1) = - 4 < 0 \\
y''(5) = 4 > 0 \\
\end{matrix} ight. nên hàm số đạt cực đại tại điểm x = 1 và đạt cực tiểu tại x = 5;y_{CT} = - \frac{28}{3}
    y'(5) = 0 suy ra tiếp tuyến tại điểm cực tiểu của đồ thị hàm số y = -
\frac{28}{3}

    Vậy tiếp tuyến song song với trục hoành.

  • Câu 36: Vận dụng cao

    Cho y = f\left( x ight) hàm số có f'\left( x ight) = \left( {x - 2} ight)\left( {x + 5} ight)\left( {x + 1} ight). Hàm số y = f\left( {{x^2}} ight) đồng biến trên khoảng nào dưới đây?

    Xét dấu f’(x) như sau:

    Tìm khoảng đồng biến của hàm số

    Ta có:

    \begin{matrix}  y' = \left( {f\left( {{x^2}} ight)} ight)' = 2xf'\left( {{x^2}} ight) \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {f'\left( {{x^2}} ight) = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = \sqrt 2 } \\   {x =  - \sqrt 2 } \end{array}} ight. \hfill \\ \end{matrix}

    Chọn x = 1 \in \left( {0;\sqrt 2 } ight) ta có: y'\left( 1 ight) = 2.1.f'\left( {{1^2}} ight) = 2.f'\left( {{1^2}} ight) < 0

    => \left( {0;\sqrt 2 } ight) là khoảng âm

    Khi đó bảng xét dấu của y’ = (f(x2))’ như sau:

    Tìm khoảng đồng biến của hàm số

    Từ trục xét dấu ta thấy. Hàm số y = f(x2) đồng biến trên (-1; 0)

  • Câu 37: Nhận biết

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như hình vẽ dưới đây

    Hàm số y = f(x) là hàm số nào

    Hàm số y = f(x) là hàm số nào trong các hàm số sau:

     Dựa vào bảng biến thiên ta thấy:

    \mathop {\lim }\limits_{x \to \infty } y =  + \infty => Hệ số a > 0

    => Loại đáp án B và C

    Mặt khác hàm số đạt cực trị tại x = 0 và x = 2

    => Loại đáp án D

  • Câu 38: Nhận biết

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 1;4brack và có đồ thị như hình vẽ:

    Giả sử M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;4brack. Khi đó giá trị của biểu thức S = M + m bằng bao nhiêu?

    Từ đồ thị hàm số y = f(x) liên tục trên \lbrack - 1;4brack

    \Rightarrow \left\{ \begin{matrix}
M = 3 \\
m = - 1 \\
\end{matrix} ight.\  \Rightarrow S = M + m = 2

  • Câu 39: Thông hiểu

    Cho hàm số y = \frac{x}{\sqrt{x^{2} -
4}}. Khi đó tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:

    Tập xác định D = ( - \infty; - 2) \cup
(2; + \infty)

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = 1 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y =  - 1 \hfill \\ 
\end{gathered}  ight. suy ra đồ thị hàm số có hai tiệm cận ngang là y = \pm 1

    Lại có \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} y =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} y =  + \infty  \hfill \\ 
\end{gathered}  ight. suy ra đồ thị hàm số có hai tiệm cận đứng là x = \pm 2

    Vậy đồ thị hàm số có tổng số đường tiệm cận đứng và đường tiệm cận ngang bằng 4.

  • Câu 40: Vận dụng

    Cho hàm số y =
f(x) xác định trên y =
f(x) và có đạo hàm f'(x) = (2 -
x)(x + 3)g(x) + 2021 trong đó g(x)
< 0;\forall x\mathbb{\in R}. Hàm số y = f(1 - x) + 2021x + 2022 đồng biến trên khoảng nào?

    Ta có:

    y' = - f'(1 - x) +
2021

    y' = - \left\lbrack (1 + x)(4 -
x)g(1 - x) + 2021 ightbrack + 2021

    y' = (x + 1)(x - 4).g(1 - x)
\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 4 \\
\end{matrix} ight.

    g(x) < 0;\forall x\mathbb{\in
R} nên y' > 0;\forall x \in
( - 1;4)

    Suy ra hàm số đồng biến trên ( -
1;4).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo