Trong các hàm số sau, hàm số nào nghịch biến trên từng khoảng xác định?
Xét hàm số ta có:
Điều kiện xác định
Lại có: nên hàm số
nghịch biến trên từng khoảng xác định của nó.
Trong các hàm số sau, hàm số nào nghịch biến trên từng khoảng xác định?
Xét hàm số ta có:
Điều kiện xác định
Lại có: nên hàm số
nghịch biến trên từng khoảng xác định của nó.
Cho hình vẽ:

Hàm số nào sau đây có đồ thị như hình vẽ bên?
Nhận thấy dạng đồ thị của hàm số bậc ba
Mặt khác đồ thị cắt trục tung tại điểm có tung độ âm nên hàm số tương ứng với đồ thị là .
Cho hàm số
có đồ thị như hình 1. Điểm cực tiểu của hàm số đã cho là:

Điểm cực tiểu của hàm số là 2.
Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Giá trị biểu thức
là:
Ta có: nên hàm số đồng biến trên
.
Tìm hàm số luôn đồng biến trên từng khoảng xác định?
Xét hàm số
Tập xác định . Ta có:
Vậy hàm số đồng biến trên các khoảng .
Cho hai số thực
thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Cho hai số thực thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Giả thiết cho
Xét hàm số trên
Suy ra
Vậy hàm số luôn đồng biến trên
nên ta có:
Suy ra:
Xét hàm số
luôn nghịch biến trên
luôn nghịch biến trên
Vậy khi
.
Cho hàm số
liên tục trên tập số thực và có bảng biến thiên như sau:

Đặt
với
là tham số. Tìm điều kiện của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số liên tục trên tập số thực và có bảng biến thiên như sau:
Đặt với
là tham số. Tìm điều kiện của tham số
để hàm số
có đúng ba điểm cực trị?
Đồ thị hàm số
có bao nhiêu điểm có tọa độ nguyên?
Ta có:
Với đồ thị hàm số đã cho có đúng 1 điểm có tọa độ nguyên.
Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
có đúng một tiệm cận đứng?
Đồ thị hàm số có đúng một tiệm cận đứng khi và chỉ khi phương trình
có đúng một nghiệm
Ta có:
Xét hàm số ta có:
Ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra
Mà nên
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Đồ thị hàm số
có bao nhiêu đường tiệm cận?
Điều kiện xác định
Vậy
Xét
Vậy là tiệm cận ngang của đồ thị hàm số.
Xét
Vậy là tiệm cận ngang của đồ thị hàm số.
Vì không tồn tại nên đồ thị hàm số đã cho không có tiệm cận đứng.
Vậy đồ thị hàm số có 2 tiệm cận.
Cho hàm số
. Tìm
để hàm số đã cho đạt cực đại tại
?
Tập xác định
Ta có:
Để là điểm cực đại của hàm số thì
Với thì
. Vậy
không thỏa mãn.
Với thì
Xét dấu ta được
có điểm cực đại.
Vậy là giá trị cần tìm.
Gọi M, N lần lượt là số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
. Khi đó m + n bằng:
Điều kiện
Tiệm cận ngang:
=> Đồ thị hàm số có 1 tiệm cận ngang là y = 1
Tiệm cận đứng:
Điều kiện cần: Xét phương trình x2 – 4 = 0 => x = 2 hoặc x = -2
Điều kiện đủ
Đặt
Xét x = 2 ta có f(2) = 0 nên ta sẽ đi tìm bậc của x – 2 của f(x)
=> x = 2 không phải là tiệm cận đứng
Xét x = -2 ta có f(-2) không tồn tại hay x = -2 không phải là tiệm cận đứng.
Vậy M = 1, N = 0 => M + N = 1
Hàm số nào sau đây đồng biến trên
?
Hàm số có
Cho hàm số
. Hàm số có bao nhiêu điểm cực trị?
Ta có:
Ta có bảng xét dấu như sau:
Vậy hàm số có hai điểm cực trị.
Cho hàm số
Khoảng cách từ điểm
đến đường tiệm cận xiên của đồ thị hàm số này bằng bao nhiêu![]()
Đáp án: 3,2
Cho hàm số Khoảng cách từ điểm
đến đường tiệm cận xiên của đồ thị hàm số này bằng bao nhiêu
Đáp án: 3,2
Ta có:
Xét
Vậy đường tiệm cận xiên có phương trình
Khoảng cách từ điểm đến đường tiệm cận xiên là:
Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:

Đồ thị hàm số bậc 4 có hệ số cắt trục tung tại điểm có tung độ lớn hơn
nên hàm số cần tìm là
.
Cho f(x) mà đồ thị hàm số y = f’(x) như hình vẽ.
Hàm số
đồng biến trên khoảng nào trong các đáp án dưới đây?
Ta có:
=>
Hàm số đồng biến khi
Đặt t = x – 1 thì (*) trở thành
Quan sát đồ thị hàm số y = f’(t) và y = -2t trên cùng một hệ tọa độ như hình vẽ

Khi đó ta thấy với thì độ thì hàm số y = f’(t) luôn nằm trên đường thẳng y = -2t
=>
Do đó với thì hàm số
đồng biến.
Cho hàm số
có bảng biến thiên như sau:

Hàm số
đồng biến trên khoảng:
Ta có:
Lại có: nên ta có bảng xét dấu như sau:
Từ bảng biến thiên ta thấy hàm số đồng biến trên khoảng và
.
Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên
. Tính giá trị biểu thức
?
Vì trên đoạn thì
Tìm tất cả các giá trị của tham số
để hàm số
nghịch biến trên
?
Ta có:
Hàm số nghịch biến trên
Vậy đáp án cần tìm là
Tìm tất cả các giá trị thực của tham số
để hàm số
đồng biến trên khoảng
?
Điều kiện xác định
Ta có:
Hàm số đồng biến trên khoảng khi và chỉ khi
Vậy đáp án cần tìm là .
Hàm số
có đồ thị như sau:

Tìm điều kiện của tham số
để phương trình
có
nghiệm dương?
Để số nghiệm dương của phương trình đã cho bằng 1 thì đường thẳng cắt đồ thị hàm số
tại một điểm có hoành độ dương
.
Đường tiệm cận xiên của đồ thị hàm số
là đường thẳng có phương trình
Tập xác định: .
Phương trình đường tiệm cận xiên có dạng: .
Trong đó,
.
Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng
Trên khoảng (0; +∞) thì hàm số y = -x3 + 3x + 1
Ta có:
Từ bảng biến thiên => Hàm số có giá trị lớn nhất bằng 3
Người ta cần xây một bể chứa nước sản xuất dạng khối hộp chữ nhật không nắp có thể tích bằng
. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng. Chi phí để xây bể là 300 nghìn đồng/m2. Hãy xác định chi phí thấp nhất để xây bể.
Người ta cần xây một bể chứa nước sản xuất dạng khối hộp chữ nhật không nắp có thể tích bằng . Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng. Chi phí để xây bể là 300 nghìn đồng/m2. Hãy xác định chi phí thấp nhất để xây bể.
Để hàm số
(với
là tham số) đạt cực tiểu tại
thì tham số
thuộc khoảng nào sau đây?
Tập xác định
Ta có:
Hàm số đạt cực tiểu tại
Khi
Ta có: suy ra hàm số đạt cực tiểu tại
Vậy thì hàm số đạt cực tiểu tại
.
Tìm tất cả các giá trị của tham số
để hàm số
đạt cực tiểu tại
?
Tập xác định
Ta có:
Hàm số đạt cực tiểu tại
Lại có:
Để hàm số đạt cực tiểu tại thì
thỏa mãn.
vậy giá trị m cần tìm là .
Cho hàm số
có đồ thị
và đường thẳng
. Tất cả các giá trị của tham số
để
cắt
tại bốn điểm phân biệt?
Ta có:
Ta có bảng biến thiên
Từ bảng biến thiên ta thấy đồ thị hàm số cắt đường thẳng
tại
điểm phân biệt
.
Cho hàm số
với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của
sao cho đồ thị của hàm số có
điểm cực trị. Tính tổng tất cả các phần tử của tập hợp
?
Cho hàm số với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của
sao cho đồ thị của hàm số có
điểm cực trị. Tính tổng tất cả các phần tử của tập hợp
?
Cho hàm số
(với
). Hỏi đồ thị hàm số có tối đa bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
Ta có:
Phương trình có tối đa 2 nghiệm
Nên đồ thị hàm số có nhiều nhất hai đường tiệm cận đứng.
nên
là đường tiệm cận ngang.
Vậy đồ thị hàm số có nhiều nhất 3 đường tiệm cận ngang và tiệm cận đứng.
Tìm tiệm cận ngang của đồ thị hàm số
?
Ta có:
Do đó tiệm cận ngang của đồ thị hàm số là
.
Cho hàm số
có bảng biến thiên như hình vẽ:

Hàm số
nghịch biến trong khoảng nào dưới đây?
Ta có:
Xét
Ta có bảng xét dấu:
Vậy đáp án cần tìm là .
Tịnh tiến liên tiếp đồ thị hàm số
theo trục
lên hai đơn vị và theo trục
sang trái
đơn vị ta được đồ thị hàm số
. Hỏi có bao nhiêu điểm trên đồ thị hàm số
có các tọa độ đều là số nguyên?
Tịnh tiến liên tiếp đồ thị hàm số theo trục
lên hai đơn vị và theo trục
sang trái
đơn vị ta được đồ thị hàm số
. Hỏi có bao nhiêu điểm trên đồ thị hàm số
có các tọa độ đều là số nguyên?
Một chủ trang trại nuôi gia cầm muốn rào thành 2 chuồng hình chữ nhật sát nhau và sát một con sông, một chuồng nuôi gà và một chuồng nuôi vịt. Biết rằng đã có sẵn 240 m hàng rào. Hỏi diện tích lớn nhất có thể bao quanh chuồng là bao nhiêu?

Đáp án: 2400 m2
Một chủ trang trại nuôi gia cầm muốn rào thành 2 chuồng hình chữ nhật sát nhau và sát một con sông, một chuồng nuôi gà và một chuồng nuôi vịt. Biết rằng đã có sẵn 240 m hàng rào. Hỏi diện tích lớn nhất có thể bao quanh chuồng là bao nhiêu?
Đáp án: 2400 m2
Xét hình chữ nhật ABCD như hình vẽ, và đặtv AB = x (x > 0)
Khi đó BC = 240 – 3x > 0 ⇒ x < 80.
Diện tích của hình chữ nhật ABCD là S = x.(240 – 3x ) = 240x – 3x2
Bài toán trở thành tìm giá trị lớn nhất của hàm số f(x) với 0 < x < 80.
Xét f(x) = 240x – 3x2 ⇒ f’(x) = 240 – 6x , f’(x) = 0 ⟺ x = 40.
Do f’’(x) = - 6 < 0, ∀ x∈ (0; 80)
Do đó
Vậy diện tích lớn nhất có thể bao quanh là 4800m2 .
Cho hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Ta có:
Suy ra hàm số đồng biến trên mỗi khoảng và
.
Cho hàm số
. Xác định giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [2; 4].
Xét hàm số trên [2; 4] ta có:
Tính f(2) = 7; f(3) = 6; f(4) = 19/3
Vậy
Có bao nhiêu giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
?
Ta có:
Xét trên khoảng
ta có bảng biến thiên:
Suy ra mà
nên
Vậy có tất cả giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Một chất điểm chuyển động với vận tốc được cho bởi công thức
với
(giây) là khoảng thời gian tính từ khi chất điểm bắt đầu chuyển động. Hỏi tại thời điểm nào thì vận tốc của chất điểm là lớn nhất?
Ta có: với
.
(thỏa mãn).
Bảng biến thiên
Dựa vào bảng biến thiên, tại thời điểm giây thì vận tốc của chất điểm là lớn nhất.
Cho đồ thị hàm số sau:

Xác định hàm số tương ứng với đồ thị đã cho?
Dựa vào đồ thị hàm số đã cho, ta thấy đồ thị này là đồ thị hàm số bậc có hệ số
nên hàm số tương ứng là
.
Cho hàm số
xác định và liên tục trên các khoảng
và
có bảng biến thiên như hình vẽ:

Mệnh đề nào sau đây đúng?
Vì nên
là tiệm cận ngang của đồ thị hàm số.
Vì nên
là tiệm cận đứng của đồ thị hàm số.