Đồ thị hàm số nào sau đây không có tiệm cận đứng?
Phương trình x2 + 1 = 0 vô nghiệm nên không tìm được x0 để
=> Hàm số không có tiệm cận đứng.
Các đồ thị hàm số ở B, C, D lần lượt có các tiệm cận đứng là x = 0, x = -2 và x = 1
Đồ thị hàm số nào sau đây không có tiệm cận đứng?
Phương trình x2 + 1 = 0 vô nghiệm nên không tìm được x0 để
=> Hàm số không có tiệm cận đứng.
Các đồ thị hàm số ở B, C, D lần lượt có các tiệm cận đứng là x = 0, x = -2 và x = 1
Người ta muốn xây một cái bể hình hộp đứng có thể tích
, biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao
bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?
Người ta muốn xây một cái bể hình hộp đứng có thể tích , biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao
bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?
Hàm số
có đạo hàm
, với
. Hỏi hàm số
có bao nhiêu điểm cực trị?
Ta có:
Bảng biến thiên
Từ bảng biến thiên của hàm số ta thấy hàm số
có đúng một cực trị.
Đường tiệm cận xiên của đồ thị hàm số
là đường thẳng có phương trình
Tập xác định: .
Phương trình đường tiệm cận xiên có dạng: .
Trong đó,
.
Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng
Cho hàm số
xác định trên
và có đạo hàm
trong đó
. Hàm số
đồng biến trên khoảng nào?
Ta có:
Vì nên
Suy ra hàm số đồng biến trên .
Cho hàm số
với
là tham số. Điều kiện cần và đủ của tham số
để hàm số nghịch biến trên khoảng
là:
Tập xác định
Ta có:
Hàm số nghịch biến trên khi và chỉ khi
Xét hàm số trên khoảng
ta có bảng biến thiên như sau:
Vậy để hàm số nghịch biến trên thì
.
Cho hàm số
với
là tham số. Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số đã cho có duy nhất một cực tiểu. Hỏi tập
có bao nhiêu phần tử?
Điều kiện để hàm số có duy nhất một cực tiểu là
và phương trình
có duy nhất một nghiệm.
Để phương trình có duy nhất một nghiệm thì phương trình (*) vô nghiệm hoặc có nghiệm duy nhất x = 0.
Mặt khác
Vậy có tất cả 19 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số f(x) liên tục trên khoảng (0; +∞) thỏa mãn
, với f(x) ≠ 0 với ∀x ∈ (0; +∞) và
. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [1;2]. Tính tổng M + m.
Ta có:
Thay x = 1 vào ta có:
Ta có bảng biến thiên

Khi đó f(x) đồng biến trên [1; 2]
=>
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào?

Đồ thị trong hình vẽ là hàm số có dạng
Đồ thị hàm số có tiệm cận ngang là và tiệm cận đứng
nên hàm số cần tìm là
.
Số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số
là:
Tập xác định
Ta có: nên
là tiện cận ngang của đồ thị hàm số.
suy ra
là tiệm cận đứng của đồ thị hàm số.
Vậy tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là .
Cho hàm số
xác định trên tập số thực và có bảng xét dấu của đạo hàm như sau:

Hàm số có bao nhiêu điểm cực trị?
Ta có:
Hàm số xác định trên và bảng xét dấu đã cho ta suy ra bảng biến thiên:
Từ đó suy ra hàm số có bốn điểm cực trị.
Cho hàm số
có bảng biến thiên trên đoạn
như sau:

Mệnh đề nào sau đây đúng?
Từ bảng biến thiên ta suy ra
Hàm số
nghịch biến trên khoảng nào dưới đây?
Ta có:
Ta có bảng xét dấu như sau:
Suy ra hàm số nghịch biến trên khoảng và
.
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số
:

Hàm số
là hàm số:
Đồ thị hàm số bậc ba có dạng có hệ số
nên hàm số cần tìm là
.
Cho hàm số
. Biết hàm số nghịch biến trên đoạn
. Tính
.
Đáp án: 5
Cho hàm số . Biết hàm số nghịch biến trên đoạn
. Tính
.
Đáp án: 5
Tập xác định: .
Ta có: .
Bảng xét dấu:
Từ bảng xét dấu, ta thấy hàm số nghịch biến trên .
Khi đó: .
Cho hàm số bậc ba
có đồ thị như hình vẽ bên.

Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số
là bao nhiêu?
Đáp án: 6
Cho hàm số bậc ba có đồ thị như hình vẽ bên.
Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số là bao nhiêu?
Đáp án: 6
Ta có:
Dựa vào đồ thị hàm số, ta thấy:
(1) có nghiệm (nghiệm đơn) và
(nghiệm kép)
(2) có nghiệm ba nghiệm đơn với
Hàm số
có tập xác định
+) Tìm tiệm cận ngang:
Vì
Nên Đồ thị hàm số
nhận đường thẳng
làm TCN.
+) Tìm tiệm cận đứng:
Tại các điểm mẫu của
nhận giá trị bằng 0 còn tử nhận các giá trị khác 0.
Và do hàm số xác định trên nên giới hạn một bên của hàm số
tại các điểm
là các giới hạn vô cực.
Do đó, đồ thị hàm số có 5 TCĐ:
và
.
Vậy ĐTHS có 6 đường tiệm cận: 1
và
TCĐ
.
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
là:
Tập xác định suy ra đồ thị hàm số không có tiệm cận ngang.
Suy ra không là đường tiệm cận đứng của đồ thị hàm số.
Suy ra là đường tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số có 1 đường tiệm cận.
Cho hàm số
có bảng biến thiên như hình vẽ dưới đây:

Số nghiệm của phương trình
là:
Ta có:
Khi đó suy ra phương trình (1) có 1 nghiệm; phương trình (2) có 3 nghiệm và phương trình (3) có 1 nghiệm.
=> Phương trình có 5 nghiệm
Hai đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
cắt nhau tại điểm
. Xác định tọa độ điểm
?
Đồ thị hàm số có đường tiệm cận đứng
và đường tiệm cận ngang
. Do đó giao điểm của hai đường tiệm cận là
.
Cho hàm số
xác định trên R và có đồ thị hàm số
là đường cong như hình vẽ:

Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.
a) Hàm số
nghịch biến trên khoảng
. Sai||Đúng
b) Hàm số
nghịch biến trên khoảng
. Đúng||Sai
c) Hàm số
đạt cực đại tại
. Đúng||Sai
d) Hàm số
đạt cực tiểu tại
. Sai||Đúng
Cho hàm số xác định trên R và có đồ thị hàm số
là đường cong như hình vẽ:
Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.
a) Hàm số nghịch biến trên khoảng
. Sai||Đúng
b) Hàm số nghịch biến trên khoảng
. Đúng||Sai
c) Hàm số đạt cực đại tại
. Đúng||Sai
d) Hàm số đạt cực tiểu tại
. Sai||Đúng
Từ đồ thị hàm số , ta có bảng biến thiên
a) Từ bảng biến thiên hàm số đồng biến trên khoảng (−1; 0) và nghịch biến trên khoảng (0; 1).
b) Từ bảng biến thiên ta thấy hàm số y = f(x) nghịch biến trên (0; 2).
c) Từ bảng biến thiên ta thấy hàm số f(x) đạt cực đại tại x = 0.
d) Từ bảng biến thiên ta thấy hàm số f(x) đạt cực tiểu tại x = −2 và x = 2.
Cho hàm số
có đồ thị là
. Số điểm thuộc
có hoành độ và tung độ đều là các số nguyên là
Ta có:
Gọi
Vậy có 4 điểm thỏa mãn yêu cầu.
Cho hàm số y = f(x) có đạo hàm liên tục trên
. Đồ thị hàm số y f’(x) như hình vẽ bên:

Số điểm cực trị của hàm số y = f(x) + 2x là:
Xét hàm số g(x) = f(x) + 2x. Từ đồ thị hàm số f’(x) ta thấy:
Từ đó suy ra hàm số y = f(x) + 2x liên tục và có đạo hàm chỉ đổi dấu khi qua giá trị
Từ đó ta có bảng xét dấu như sau:

Vậy hàm số đã cho có đúng một cực trị
Một công ty du lịch tổ chức tour du lịch với giá mỗi tour là
đồng một khách cho
khách. Từ khách thứ
, cứ thêm một khách, giá của tour lại được giảm
nghìn (
là số nguyên dương). Số khách thêm của tour không quá
người. Biết rằng nếu nhận thêm từ
đến
khách thì doanh thu tăng dần theo số khách nhận thêm. Tìm giá trị lớn nhất của
.
Một công ty du lịch tổ chức tour du lịch với giá mỗi tour là đồng một khách cho
khách. Từ khách thứ
, cứ thêm một khách, giá của tour lại được giảm
nghìn (
là số nguyên dương). Số khách thêm của tour không quá
người. Biết rằng nếu nhận thêm từ
đến
khách thì doanh thu tăng dần theo số khách nhận thêm. Tìm giá trị lớn nhất của
.
Điều kiện của tham số
để hàm số
đồng biến trên
là:
Tập xác định:
Ta có:
Hàm số đồng biến trên
Vậy giá trị của tham số m thỏa mãn yêu cầu bài toán là .
Cho hàm số
có đồ thị như hình vẽ sau:

Khi đó, giá trị lớn nhất của hàm số
trên
là:
Đặt
Cho hàm số
với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của
sao cho đồ thị của hàm số có
điểm cực trị. Tính tổng tất cả các phần tử của tập hợp
?
Cho hàm số với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của
sao cho đồ thị của hàm số có
điểm cực trị. Tính tổng tất cả các phần tử của tập hợp
?
Cho hàm số
có đồ thị như hình vẽ:

Hàm số
đồng biến trên khoảng nào sau đây?
Từ đồ thị của hàm số ta xác định được hàm số đồng biến trên các khoảng
.
Số đường tiệm cận ngang của đồ thị hàm số
bằng:
Ta có:
suy ra
là một tiệm cận ngang của đồ thị hàm số.
suy ra
là một tiệm cận ngang của đồ thị hàm số.
Vậy tổng số đường tiệm cận ngang của đồ thị hàm số đã cho bằng 2.
Cho hàm số bậc ba
có đồ thị là đường cong hình bên.

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Từ đồ thị đã cho ta thấy hàm số nghịch biến trên khoảng .
Với giá trị nào của tham số
để đồ thị hàm số
đi qua điểm
?
Thay tọa độ điểm vào
ta được:
Vậy giá trị m cần tìm là .
Cho f(x) mà đồ thị hàm số y = f’(x) như hình vẽ.
Hàm số
đồng biến trên khoảng nào trong các đáp án dưới đây?
Ta có:
=>
Hàm số đồng biến khi
Đặt t = x – 1 thì (*) trở thành
Quan sát đồ thị hàm số y = f’(t) và y = -2t trên cùng một hệ tọa độ như hình vẽ

Khi đó ta thấy với thì độ thì hàm số y = f’(t) luôn nằm trên đường thẳng y = -2t
=>
Do đó với thì hàm số
đồng biến.
Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên
. Tính giá trị biểu thức
?
Vì trên đoạn thì
Cho hàm số
.
a) Tập xác định của hàm số là
. Đúng||Sai
b)
. Sai||Đúng
c)
khi
,
khi
. Sai||Đúng
d) Hàm số đã cho có đồ thị như hình vẽ.
Đúng||Sai
Cho hàm số .
a) Tập xác định của hàm số là . Đúng||Sai
b) . Sai||Đúng
c) khi
,
khi
. Sai||Đúng
d) Hàm số đã cho có đồ thị như hình vẽ.
Đúng||Sai
Tập xác định: .
Sự biến thiên
Giới hạn tại vô cực: .
và
hoặc
Hàm số đồng biến trên mỗi khoảng và
, nghịch biến trên khoảng
.
Hàm số đạt cực đại tại ; hàm số đạt cực tiểu tại
.
Đồ thị:
Giao điểm của đồ thị với trục tung: .
Giao điểm của đồ thị với trục hoành tại hoặc
. Vậy đồ thị hàm số giao với trục hoành tại ba điểm
và
.
Vậy đồ thị hàm số được cho ở hình vẽ.
Để uốn
thanh kim loại thành hình như sau:

Gọi
bán kính của nửa đường tròn. Tìm
để diện tích tạo thành đạt giá trị lớn nhất?
Để uốn thanh kim loại thành hình như sau:
Gọi bán kính của nửa đường tròn. Tìm
để diện tích tạo thành đạt giá trị lớn nhất?
Cho hàm số
. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có hai tiệm cận đứng.
Ta có:
Đồ thị hàm số có hai tiệm cận đứng khi và chỉ khi phương trình có hai nghiệm phân biệt thỏa mãn
Cho hàm số
. Giả sử
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
. Khi đó giá trị của biểu thức
là:
Ta có:
Vậy
Cho hàm số y = f(x) và có bảng biến thiên trên [-5; 7) như sau:

Mệnh đề nào sau đây đúng?
Dựa vào bảng biến thiên dễ dàng ta thấy
là sai vì f(x) sẽ nhận các giá trị 7; 8 lớn hơn 6 khi x tiến tới 7
là sai vì f(x) không bằng 9 mà chỉ tiến đến 9 khi x dần đến 7 (x khác 7)
Vậy chọn đáp án A.
Cho hàm số có đạo hàm
. Hàm số
đồng biến trên khoảng nào dưới đây?
Ta có: ta có bảng xét dấu như sau:
Vậy hàm số đồng biến trên khoảng .
Cho hàm số
có đạo hàm
. Hỏi hàm số có bao nhiêu điểm cực tiểu?
Ta có:
Bảng biến thiên
Dựa vào bảng biến thiên suy ra hàm số có một điểm cực tiểu.
Tìm giá trị thực của tham số
để hàm số
đạt cực tiểu tại
?
Ta có:
Để hàm số đạt cực tiểu tại thì
Vậy giá trị tham số m cần tìm là .