Cho hàm số
có đạo hàm
với
và
là tham số. Có bao nhiêu giá trị nguyên của
để hàm số
có 5 điểm cực trị?
Cho hàm số có đạo hàm
với
và
là tham số. Có bao nhiêu giá trị nguyên của
để hàm số
có 5 điểm cực trị?
Cho hàm số
có đạo hàm
với
và
là tham số. Có bao nhiêu giá trị nguyên của
để hàm số
có 5 điểm cực trị?
Cho hàm số có đạo hàm
với
và
là tham số. Có bao nhiêu giá trị nguyên của
để hàm số
có 5 điểm cực trị?
Biết
là giá trị của tham số
để hàm số
có hai điểm cực trị
sao cho
. Mệnh đề nào sau đây đúng?
Ta có:
Hàm số có hai cực trị
là hai nghiệm của phương trình
Áp dụng hệ thức Vi – et ta có:
Ta có:
.
Xác định số đường tiệm cận của đồ thị hàm số
?
Tập xác định
Vì nên đồ thị hàm số nhận đường thẳng
làm đường tiệm cận đứng.
Vì nên đồ thị hàm số nhận đường thẳng
làm đường tiệm cận ngang.
Vì nên đồ thị hàm số nhận đường thẳng
làm đường tiệm cận ngang.
vậy đồ thị hàm số có tổng số đường tiệm cận bằng 3.
Quan sát đồ thị hàm số
:

Số giá trị nguyên của tham số
để phương trình
có hai nghiệm phân là:
Ta có:
Để phương trình có hai nghiệm
Mà nên có tất cả 2023 giá trị của tham số m thỏa mãn yêu cầu để bài.
Đồ thị hàm số
có bao nhiêu đường tiệm cận ngang?
Điều kiện xác định
Tập xác định
Vì hàm số không tồn tại khi và
nên đồ thị hàm số không có tiệm cận ngang.
Cho hàm số
có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Dựa vào bảng biến thiên, hàm số đã cho nghịch biến trên các khoảng và
.
Cho hàm số
. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là:
Tập xác định
Ta có:
Khi đó:
Cho biết
và điểm
. Gọi
là điểm bất kì thuộc
. Khoảng cách
nhỏ nhất là:
Vì thuộc
=>
Xét hàm số ta có:
Cho hàm số
có đạo hàm
. Hàm số
đồng biến trên khoảng nào dưới đây?
Ta có:
Ta có bảng xét dấu:
Từ bảng xét dấu của suy ra hàm số đồng biến trên khoảng
.
Cho hàm số
có bảng xét dấu
như sau:

Hàm số
nghịch biến trên khoảng nào dưới đây?
Ta có:
Vậy khoảng nghịch biến của hàm số là:
Cho hàm số
có bảng biến thiên như sau:

Hỏi hàm số
đồng biến trên khoảng nào?
Hàm số có
Từ bảng biến thiên của hàm số ta có bảng biến thiên của hàm số
Dựa vào bảng biến thiên ta có hàm số đồng biến trong khoảng
.
Cho hàm số
có đồ thị
như hình vẽ:

Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên
. Sai||Đúng
b) Hàm số đạt cực đại tại x = −2. Sai||Đúng
c) Giá trị nhỏ nhất của hàm số trên
là
. Đúng||Sai
d) Điểm cực tiểu của hàm số là
. Đúng||Sai
Cho hàm số có đồ thị
như hình vẽ:
Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên . Sai||Đúng
b) Hàm số đạt cực đại tại x = −2. Sai||Đúng
c) Giá trị nhỏ nhất của hàm số trên là
. Đúng||Sai
d) Điểm cực tiểu của hàm số là . Đúng||Sai
a) Sai. Hàm số đồng biến trên và nghịch biến trên
.
b) Sai. Hàm số đạt cực tiểu tại .
c) Đúng.
d) Đúng.
Trong các hàm số dưới đây, hàm số nào đồng biến trên
?
Hàm số y = x – sinx có tập các định và
Nên hàm số luôn đồng biến trên
Đồ thị hàm số
có tiệm cận ngang là:
Tập xác định
Ta có:
Vì nên đồ thị hàm số có đường tiệm cận ngang là y = 2.
Hàm số
đạt cực tiểu tại
khi:
Hàm số xác định với mọi
Ta có:
Hàm số đạt cực tiểu tại khi
Vậy thỏa mãn yêu cầu bài toán.
Tập hợp tất cả các giá trị thực của tham số
để đồ thị hàm số
có đúng hai tiệm cận đứng?
Điều kiện xác định
Vì nên để đồ thị hàm số có đúng hai tiệm cận đứng thì phương trình
phải có hai nghiệm phân biệt lớn hơn
.
Xét hàm số trên
có:
Bảng biến thiên
Phương trình (*) có hai nghiệm phân biệt lớn hơn khi
.
Vậy đáp án cần tìm là .
Giá trị của tham số m sao cho hàm số
nghịch biến trên khoảng (0; 2)?
Ta có:
Hàm số nghịch biến trên khoảng (0; 2)
=>
=>
Xét hàm số
Ta có:
=> g(x) đồng biến trên đoạn [0; 2]
Ta có:
Cho hàm số
với
là tham số thực lớn hơn
thỏa mãn
. Mệnh đề nào sau đây đúng?
Ta có:
Do đó nghịch biến trên
.
Từ đó suy ra
Vậy đáp án đúng là .
Quan sát hình vẽ sau:

Xác định hàm số tương ứng với đồ thị hàm số trong hình vẽ đã cho?
Đồ thị hàm số có tiệm cận ngang và tiệm cận đứng là
nên hàm số tương ứng là
.
Cho hàm số bậc ba
với
là tham số. Gọi
là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức
?
Cho hàm số bậc ba với
là tham số. Gọi
là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức
?
Giá trị lớn nhất của hàm số
trên khoảng (0; 3)
Tập xác định
Xét hàm số trên khoảng (0;3)
Ta có:
Ta có bảng biến thiên:

Trên khoảng (0; 3) giá trị lớn nhất của hàm số y = 2
Cho hàm số
xác định và liên tục trên
, đạo hàm
có đồ thị như hình vẽ sau:

Tìm số điểm cực tiểu của hàm số
?
Hàm số đạt cực tiểu tại điểm có đổi dấu từ âm sang dương. Dựa vào đồ thị hàm số có 1 điểm cực tiểu.
Cho hàm số
. Gọi
là tập hợp các giá trị thực của tham số
sao cho giá trị nhỏ nhất của hàm số trên đoạn
bằng
. Tính tổng các phần tử của
.
Ta có:
Mà
=>
Do đó hàm số nghịch biến trên
=>
Ta lại có:
Đồ thị hàm số
có hai điểm cực trị là A và B. Điểm nào dưới đây thuộc đường thẳng AB?
Cách 1: Xét hàm số
Ta có:
Đồ thị hàm số f(x) có hai điểm cực trị A và B nên f’(A) = f’(B) = 0
Suy ra
Do đó phương trình đường thẳng AB là y = -8x – 2
Khi đó ta có điểm có tọa độ (1; -10) thuộc đường thẳng AB.
Cách 2: Xét hàm số
=> Tọa độ hai điểm cực trị của hàm số là A(3; -26) và B(-1; 6)
Ta có:
Phương trình đường thẳng AB đ qua B(-1; 6) nhận vecto làm vecto chỉ phương là
Khi đó ta có điểm có tọa độ (1; -10) thuộc đường thẳng AB.
Hai thành phố A và B cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

Đáp án: 16 km
Hai thành phố A và B cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 16 km
Đặt , với
Ta có:
Nhận định ngắn nhất khi
nhỏ nhất ( vì
không đổi).
Xét hàm số
.
Cho
Bảng biến thiên
Vậy
Khi đó
Hàm số y = x4 - 2x2 + 1 đồng biến trên khoảng nào?
Ta có bảng biến thiên như sau:

Hàm số y = x4 – 2x2 + 1 đồng biến trên mỗi khoảng (-1; 0) và (1; +∞)
Cho hình vẽ:

Đồ thị trong hình đã cho là đồ thị của hàm số nào?
Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng với
và đồ thị hàm số đi qua điểm
nên hàm số tương ứng với đồ thị trong hình vẽ đã cho là
.
Giá trị nhỏ nhất của hàm số y = x3 – 3x + 5 trên đoạn [0; 2] là:
Xét hàm số f(x) = x3 – 3x + 5 trên [0; 2] có:
f’(x) = 3x3 – 3
f’(x) = 0 =>
Tính được f(0) = 5; f(1) = 3; f(2) = 7
Vậy
Cho hàm số
có đạo hàm
. Số điểm cực tiểu của hàm số là:
Ta có:
Bảng xét dấu:
Suy ra số điểm cực tiểu của hàm số là 2 điểm.
Cho hàm số
xác định trên
và có bảng biến thiên như hình bên dưới

Hàm số
đồng biến trên khoảng nào dưới đây?
Dựa vào bảng biến thiên, ta thấy hàm số đồng biến trên .
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị của tham số m để phương trình
có bốn nghiệm thuộc đoạn
là:

Đặt
Ta có:
Ta có đồ thị hình vẽ như sau:

Dựa vào đồ thị hàm số, phương trình đã cho có 4 nghiệm thuộc đoạn khi phương trình (*) có hai nghiệm
Có bao nhiêu giá trị nguyên của tham số
để phương trình
có ba nghiệm thực phân biệt?
Đặt
Để có ba nghiệm thực phân biệt thì
có ba nghiệm thực phân biệt
thỏa mãn
Ta có:
Ta có: .
Khi đó
Vậy không có giá trị nguyên của tham số m thỏa mãn.
Tìm tất cả các giá trị thực của tham số
để hàm số
đồng biến trên đoạn
?
Theo yêu cầu bài toán ta có:
Để hàm số đồng biến trên đoạn
Đặt
Vậy là đáp án cần tìm.
Cho hàm số
có: ![]()
![]()
Xét tính đúng sai của các khẳng định sau:
a) Đồ thị của hàm số
có tiệm cận ngang là đường thẳng
. Đúng||Sai
b) Đồ thị của hàm số
có tiệm cận đứng là đường thẳng
. Đúng||Sai
c) Đồ thị của hàm số
không có tiệm cận ngang. Sai|| Đúng
d) Đồ thị của hàm số
không có tiệm cận đứng. Sai|| Đúng
Cho hàm số có:
Xét tính đúng sai của các khẳng định sau:
a) Đồ thị của hàm số có tiệm cận ngang là đường thẳng
. Đúng||Sai
b) Đồ thị của hàm số có tiệm cận đứng là đường thẳng
. Đúng||Sai
c) Đồ thị của hàm số không có tiệm cận ngang. Sai|| Đúng
d) Đồ thị của hàm số không có tiệm cận đứng. Sai|| Đúng
a) Do nên
là đường tiệm cận ngang của đồ thị hàm số. (*)
b) Do nên
là đường tiệm cận đứng của đồ thị hàm số. (**)
c) Từ (*) suy ra khẳng định này sai.
d) Từ (**) suy ra khẳng định này sai.
Cho hàm số
liên tục trên
và có bảng biến thiên như sau:

Mệnh đề nào sau dây đúng?
Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.
Cho
hàm số có
. Hàm số
đồng biến trên khoảng nào dưới đây?
Xét dấu f’(x) như sau:

Ta có:
Chọn ta có:
=> là khoảng âm
Khi đó bảng xét dấu của y’ = (f(x2))’ như sau:

Từ trục xét dấu ta thấy. Hàm số y = f(x2) đồng biến trên (-1; 0)
Cho hàm bậc ba
có đồ thị như hình vẽ:

Hỏi đồ thị hàm số
có bao nhiêu đường tiệm cận?
Cho hàm bậc ba có đồ thị như hình vẽ:
Hỏi đồ thị hàm số có bao nhiêu đường tiệm cận?
Cho hàm số y = f(x) liên tục trên
và có bảng biến thiên như hình vẽ. Tìm tất cả các giá trị của tham số m để phương trình
có đúng hai nghiệm phân biệt.

Để phương trình có hai nghiệm phân biệt thì
Cho hàm số
có bảng biến thiên như sau:

Đồ thị hàm số có đường tiệm cận ngang là:
Dựa vào bảng biến thiên ta có: nên đồ thị hàm số có đường tiệm cận ngang là
.
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số
:

Hàm số
là hàm số:
Đồ thị hàm số bậc ba có dạng có hệ số
nên hàm số cần tìm là
.