Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ:

    Tìm tập hợp tất cả các giá trị của tham số m để phương trình f\left( \cos x ight) = - 2m + 1 có nghiệm thuộc khoảng \left( 0;\frac{\pi}{2}ight)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ:

    Tìm tập hợp tất cả các giá trị của tham số m để phương trình f\left( \cos x ight) = - 2m + 1 có nghiệm thuộc khoảng \left( 0;\frac{\pi}{2}ight)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Thông hiểu

    Gọi P là tập tất cả các số nguyên dương của tham số m để hàm số y = x^{4} - 2mx^{2} + 1 đồng biến trên khoảng (3; + \infty). Tính tổng tất cả các phần tử của tập P?

    Theo yêu cầu bài toán \Leftrightarrow
y' = 4x^{3} - 4mx \geq 0;\forall x \in (3; + \infty)

    \Leftrightarrow 4x\left( x^{2} - m
ight) \geq 0;\forall x \in (3; + \infty)

    \Leftrightarrow m \leq x^{2};\forall x
\in (3; + \infty)

    Do đó m \leq 9 \Rightarrow P = \left\{
1;2;3;...;9 ight\}

    Vậy tổng tất cả các phần tử của tập P bằng 45.

  • Câu 3: Nhận biết

    Cho hàm số y = f(x) liên tục trên \lbrack - 1;5brack và có đồ thị như hình vẽ:

    Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack -
1;5brack?

    Từ đồ thị hàm số ta có: \max_{\lbrack -
1;5brack}y = 3;\min_{\lbrack - 1;5brack}y = - 2

    Khi đó \max_{\lbrack - 1;5brack}y -
\min_{\lbrack - 1;5brack}y = 5.

  • Câu 4: Nhận biết

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:

    Đồ thị hàm số bậc 4 có hệ số a >
0 cắt trục tung tại điểm có tung độ lớn hơn 0 nên hàm số cần tìm là y = x^{4} - 2x^{2} - 1.

  • Câu 5: Thông hiểu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Mệnh đề nào sau đây đúng?

    Từ bảng biến thiên của hàm số y =
f(x) ta có: \lim_{x ightarrow -
\infty}f(x) = - \infty;\lim_{x ightarrow + \infty}f(x) = +
\infty nên đồ thị hàm số đã cho không có tiệm cận ngang.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = 4;\mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = 4 \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} f\left( x ight) =  - 1;\mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) =  - 1 \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho không có tiệm cận đứng.

    Vậy đồ thị hàm số đã cho không có tiệm cận.

  • Câu 6: Thông hiểu

    Để hàm số y = x^{3} - 3x^{2} +
mx đạt cực tiểu tại x = 2 thì tham số m thuộc khoảng nào sau đây?

    Ta có: \left\{ \begin{matrix}
y' = 3x^{2} - 6x + m \\
y'' = 6x - 6 \\
\end{matrix} ight.. Để hàm số y
= x^{3} - 3x^{2} + mx đạt cực tiểu tại x = 2 thì

    \left\{ \begin{matrix}
y' = 0 \\
y'' > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y'(2) = 0 \\
y''(2) > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = 0 \\
6.2 - 6 > 0 \\
\end{matrix} ight.\  \Leftrightarrow m = 0

    Vậy đáp án cần tìm là m \in ( -
1;1).

  • Câu 7: Thông hiểu

    Hàm số y = x3 – 3x2 nghịch biến trên khoảng nào dưới đây?

    Ta có:

    \begin{matrix}  y' = 3{x^2} - 6x = 3x\left( {x - 2} ight) \hfill \\   \Rightarrow y' < 0 \Rightarrow 0 < x < 2 \hfill \\ \end{matrix}

    Theo dấu hiệu nhận biết tính đơn điệu của hàm số, hàm số nghịch biến trên (0; 2)

  • Câu 8: Thông hiểu

    Biết \frac{a}{b} là giá trị của tham số m để hàm số y = 2x^{3} - 3mx^{2} - 6\left( 3m^{2} - 1 ight)x
+ 2020 có hai điểm cực trị x_{1};x_{2} thỏa mãn x_{1}x_{2} + 2\left( x_{1} + x_{2} ight) =
1. Tính giá trị biểu thức Q = a +
2b?

    Xét hàm số y = 2x^{3} - 3mx^{2} - 6\left(
3m^{2} - 1 ight)x + 2020

    Ta có: y' = 6x^{2} - 6mx - 6\left(
3m^{2} - 1 ight)

    y' = 0 \Leftrightarrow x^{2} - mx -
3m^{2} + 1 = 0(*)

    Hàm số có hai điểm cực trị x_{1};x_{2} khi và chỉ khi phương trình (*) có hai nghiệm phân biệt:

    \Leftrightarrow 13{m^2} - 4 > 0 \Leftrightarrow \left[ \begin{gathered}
  m <  - \frac{2}{{\sqrt {13} }} \hfill \\
  m > \frac{2}{{\sqrt {13} }} \hfill \\ 
\end{gathered}  ight.

    Khi đó theo định lí Vi – et ta có: \left\{ \begin{matrix}
x_{1} + x_{2} = m \\
x_{1}.x_{2} = - 3m^{2} + 1 \\
\end{matrix} ight.

    Theo giả thiết:

    x_{1}.x_{2} + 2\left( x_{1} + x_{2}
ight) = 1

    \Leftrightarrow - 3m^{2} + 1 + 2m = 1
\Leftrightarrow - 3m^{2} + 2m = 0

    \Leftrightarrow \left\lbrack\begin{matrix}m = 0 \\m = \dfrac{2}{3} \\\end{matrix} ight.\  \Rightarrow a = 2;b = 3 \Rightarrow Q = a + 2b =8

  • Câu 9: Thông hiểu

    Xác định giá trị lớn nhất của hàm số y = \sqrt {x - 1}  + \sqrt {3 - x}  - 2\sqrt { - {x^2} + 4x - 3}

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {x - 1 \geqslant 0} \\   {3 - x \geqslant 0} \end{array} \Rightarrow x \in \left[ {1;3} ight]} ight.

    Đặt \sqrt {x - 1}  + \sqrt {3 - x}  = t ta có:

    \begin{matrix}  t' = \dfrac{1}{{2\sqrt {x - 1} }} - \dfrac{1}{{\sqrt {3 - x} }} \hfill \\  t' = 0 \Rightarrow x = 2 \hfill \\ \end{matrix}

    Ta có: t\left( 1 ight) = t\left( 3 ight) = \sqrt 2  \to \sqrt 2  \leqslant t \leqslant 2

    Khi đó:

    \begin{matrix}  {t^2} = 2 + 2\sqrt {\left( {x - 1} ight)\left( {3 - x} ight)}  \hfill \\   = 2 + 2\sqrt { - {x^2} + 4x - 3}  \hfill \\   \Leftrightarrow 2\sqrt { - {x^2} + 4x - 3}  = {t^2} - 2 \hfill \\ \end{matrix}

    Do đó: y = f\left( t ight) = t - \left( {{t^2} - 2} ight) =  - {t^2} + t + 2

    Xét hàm số f\left( t ight) = t - \left( {{t^2} - 2} ight);\forall t \in \left[ {\sqrt 2 ;2} ight]

    Ta xác được \mathop {\max f\left( t ight) = \sqrt 2 }\limits_{\left[ {\sqrt 2 ;2} ight]}  \Rightarrow \mathop {\max y = \sqrt 2 }\limits_{\left[ {\sqrt 2 ;2} ight]}

  • Câu 10: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận đứng là:

    Từ bảng biến thiên ta có:

    \lim_{x ightarrow - 1^{-}}f(x) = +
\infty;\lim_{x ightarrow - 1^{+}}f(x) = - \infty

    Suy ra đồ thị hàm số có tiệm cận đứng là đường thẳng x = - 1

  • Câu 11: Thông hiểu

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = f(x) = \frac{x}{|x| - 1} là:

    Khi x \geq 0;x eq 1 \Rightarrow f(x) =
\frac{x}{x - 1}

    Suy ra đồ thị hàm số có 1 tiệm cận ngang y = 1 và 1 tiệm cận đứng x = 1

    Khi x < 0;x eq - 1 \Rightarrow f(x)
= \frac{x}{- x - 1}

    Suy ra đồ thị hàm số có 1 tiệm cận ngang y = - 1 và 1 tiệm cận đứng x = - 1

    Vậy đồ thị hàm số y = f(x) = \frac{x}{|x|
- 1} có tất cả 4 đường tiệm cận.

  • Câu 12: Nhận biết

    Cho hàm số y = f(x) có đồ thị như hình 1. Điểm cực tiểu của hàm số đã cho là:

    Điểm cực tiểu của hàm số là 2.

  • Câu 13: Nhận biết

    Đường thẳng nào sau đây là tiệm cận ngang của đồ thị hàm số y = \frac{2}{- x + 3}?

    Ta có: \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{2}{- x + 3} = 0

    Vậy tiệm cận ngang của đồ thị hàm số y =
\frac{2}{- x + 3} là đường thẳng có phương trình y = 0.

  • Câu 14: Thông hiểu

    Trong các hàm số sau, hàm số nào đồng biến trên \mathbb{R}?

    Ta có: y = {x^3} + {x^2} + 2x + 1 \Rightarrow y' = 3{x^2} - 6x + 3 \geqslant 0,\forall x \in \mathbb{R}

    Ta có: y’ = 0 chỉ tại x = 1

    Vậy y = {x^3} + {x^2} + 2x + 1 đồng biến trên

  • Câu 15: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau.

    Xét tính đúng sai của các khẳng định sau.

    a) Hàm số đồng biến trên (−∞; 2). Sai|| Đúng

    b) Hàm số nghịch biến trên (1; +∞). Đúng||Sai

    c) Hàm số có hai điểm cực trị. Sai|| Đúng

    d) Hàm số đạt cực đại tại x = 1. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) có bảng biến thiên như sau.

    Xét tính đúng sai của các khẳng định sau.

    a) Hàm số đồng biến trên (−∞; 2). Sai|| Đúng

    b) Hàm số nghịch biến trên (1; +∞). Đúng||Sai

    c) Hàm số có hai điểm cực trị. Sai|| Đúng

    d) Hàm số đạt cực đại tại x = 1. Đúng||Sai

    Quan sát bảng biến thiên, ta có các kết quả sau:

    a) Hàm số đồng biến trên (−∞; 1) nên khẳng định hàm số đồng biến trên (−∞; 2) là sai.

    b) Hàm số nghịch biến trên (1; +∞).

    c) Hàm số có đúng 1 điểm cực trị là x = 1.

    d) Hàm số có đạt cực đại tại x = 1.

  • Câu 16: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Giá trị cực đại của hàm số đã cho là:

    Quan sát bảng biến thiên dễ thấy giá trị cực đại của hàm số đã cho bằng 3.

  • Câu 17: Vận dụng cao

    Cho hai số thực x, y thỏa mãn x \geqslant 0;y \geqslant 0 và x + y = 1. Giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P = \frac{x}{{y + 1}} + \frac{y}{{x + 1}} lần lượt là:

    Ta có: 

    P = \frac{x}{{y + 1}} + \frac{y}{{x + 1}} = \frac{{x\left( {x + 1} ight) + y\left( {y + 1} ight)}}{{\left( {x + 1} ight)\left( {y + 1} ight)}} = \frac{{{{\left( {x + y} ight)}^2} - 2xy + 1}}{{xy + x + y + 1}} = \frac{{2 - 2xy}}{{2 + xy}}

    Đặt t = xy ta được P = \frac{{2 - 2t}}{{2 + t}}

    x \geqslant 0;y \geqslant 0 \Rightarrow t \geqslant 0

    Mặt khác 1 = x + y \geqslant 2\sqrt {xy}  \Leftrightarrow xy \leqslant \frac{1}{4} \Rightarrow t \leqslant \frac{1}{4}

    Khi đó bài toán trở thành tìm giá trị lớn nhất của hàm số g\left( t ight) = \frac{{2 - 2t}}{{2 + t}} trên \left[ {0;\frac{1}{4}} ight]

    Xét hàm số g\left( t ight) = \frac{{2 - 2t}}{{2 + t}} xác định và liên tục trên \left[ {0;\frac{1}{4}} ight]

    Ta có: g'\left( t ight) = \frac{{ - 6}}{{{{\left( {2 + t} ight)}^2}}} < 0,\forall t \in \left( {0;\frac{1}{4}} ight)

    => Hàm số g(t) nghịch biến trên đoạn \left[ {0;\frac{1}{4}} ight]

    => \left\{ {\begin{array}{*{20}{c}}  {\mathop {\min }\limits_{\left[ {0;\frac{1}{4}} ight]} g\left( t ight) = g\left( {\dfrac{1}{4}} ight) = \dfrac{2}{3}} \\   {\mathop {\max }\limits_{\left[ {0;\frac{1}{4}} ight]} g\left( t ight) = g\left( 0 ight) = 1} \end{array}} ight.

  • Câu 18: Thông hiểu

    Tìm điều kiện cần và đủ của tham số thực ủa tham số m để đường thẳng y = 3x + m - 2 cắt đồ thị y = (x - 1)^{3} tại ba điểm phân biệt là:

    Phương trình hoành độ giao điểm của hai đồ thị:

    (x - 1)^{3} = 3x + m - 2 \Leftrightarrow
m = x^{3} - 3x^{2} + 1(*)

    (*) là phương trình hoành độ giao điểm của hai đồ thị (d):y = m,(C):y = x^{3} - 3x^{2} + 1

    Xét hàm số f(x) = x^{3} - 3x^{2} +
1

    f'(x) = 3x^{2} - 6x \Rightarrow
f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Bảng biến thiên

    Vậy theo yêu cầu bài toán \Leftrightarrow
- 3 < m < 1

  • Câu 19: Nhận biết

    Cho hàm số y =
\frac{2x + 2}{x - 1}. Khẳng định nào sau đây đúng?

    Ta có: y' = \frac{- 4}{(x - 1)^{2}}
< 0;\forall x eq 1

    Suy ra hàm số nghịch biến trên khoảng ( -
\infty;1),(1; + \infty)

    (2; + \infty) \subset (1; +
\infty) nên hàm số cũng nghịch biến trên khoảng (2; + \infty).

  • Câu 20: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như hình vẽ.

    Đặt g(x) = f\left( \frac{x^{2} + 1}{x}
ight). Tìm số điểm cực trị của hàm số y = g(x).

    Đáp án: 6

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như hình vẽ.

    Đặt g(x) = f\left( \frac{x^{2} + 1}{x}
ight). Tìm số điểm cực trị của hàm số y = g(x).

    Đáp án: 6

    Đặt g'(x) = \left( \frac{x^{2} -
1}{x^{2}} ight)f'\left( \frac{x^{2} + 1}{x} ight)

    g'\left( x ight) = 0 \Leftrightarrow \left[ \begin{gathered}
  \left( {\frac{{{x^2} - 1}}{{{x^2}}}} ight) = 0 \hfill \\
  f'\left( {\frac{{{x^2} + 1}}{x}} ight) = 0 \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left[ \begin{gathered}
  x =  \pm 1 \hfill \\
  \frac{{{x^2} + 1}}{x} = a\,\,\left( {a <  - 2} ight) \hfill \\
  \frac{{{x^2} + 1}}{x} = b\,\,\left( { - 2 < b < 2} ight) \hfill \\
  \frac{{{x^2} + 1}}{x} = c\,\,\left( {c > 2} ight) \hfill \\ 
\end{gathered}  ight.

    Xét hàm số h(x) = \frac{x^{2} +
1}{x},h'(x) = \frac{x^{2} - 1}{x^{2}},h'(x) = 0 \Leftrightarrow
x = \pm 1

    Bảng biến thiên của hàm số h(x) =
\frac{x^{2} + 1}{x}

    Dựa vào bảng biến thiến trên ta thấy phương trình h(x) = a,h(x) = c.

    Mỗi phương trình có hai nghiệm phân biệt khác \pm 1, mà a eq c \Rightarrow f'\left(
\frac{x^{2} + 1}{x} ight) = 0 có 4 nghiệm đơn phân biệt x_{1},x_{2},x_{3},x_{4} khác \pm 1 và phương trình h(x) = b vô nghiệm.

    Do đó phương trình g'(x) = 0 có 6 nghiệm đơn phân biệt lần lượt theo thứ tự từ nhỏ đến lớn là x_{1},- 1,x_{2},x_{3},1,x_{4}.

    Vậy hàm số g(x) = f\left( \frac{x^{2} +
1}{x} ight)có 6 cực trị.

  • Câu 21: Vận dụng cao

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Số TCĐ và TCN của đồ thị hàm số

    Hỏi đồ thị hàm số y = \frac{{{f^2}\left( x ight)\sqrt {{x^2} + x} }}{{\left[ {{f^2}\left( x ight) - 2f\left( x ight)} ight]\left( {2{x^5} + {x^4} - 10{x^3} - 5{x^2} + 8x + 4} ight)}} có bao nhiêu tiệm cận đứng và tiệm cận ngang?

    Dựa vào bảng biến thiên ta có: f\left( x ight) = a{x^2}\left( {x + 1} ight)\left( {x - 2} ight)

    Ta có:

    \begin{matrix}  y = \dfrac{{{f^2}\left( x ight)\sqrt {{x^2} + x} }}{{\left[ {{f^2}\left( x ight) - 2f\left( x ight)} ight]\left( {2{x^5} + {x^4} - 10{x^3} - 5{x^2} + 8x + 4} ight)}} \hfill \\   \Rightarrow y = \dfrac{{a{x^2}\left( {x + 1} ight)\left( {x - 2} ight)\sqrt {{x^2} + x} }}{{\left[ {f\left( x ight) - 2} ight]\left( {{x^2} - 4} ight)\left( {{x^2} - 1} ight)\left( {2x + 1} ight)}} \hfill \\   \Rightarrow y = \dfrac{{a{x^2}\sqrt {{x^2} + x} }}{{\left[ {f\left( x ight) - 2} ight]\left( {x + 2} ight)\left( {x - 1} ight)\left( {2x + 1} ight)}} \hfill \\ \end{matrix}

    Dựa vào bảng biến thiên suy ra phương trình f(x) = 2 có 2 nghiệm x = a hoặc x = b trong đó a < 0, b > 2

    Với điều kiện thì phương trình

    \left[ {f\left( x ight) - 2} ight]\left( {x + 2} ight)\left( {x - 1} ight)\left( {2x + 1} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 2} \\   {x = 1} \\   {x = a} \\   {x = b} \end{array}} ight.

    Do đó đồ thị hàm số có 4 đường tiệm cận đứng

    Mặt khác bậc của tử số nhỏ hơn bậc của mẫu số nên đồ thị hàm số có một tiệm cận ngang là y = 0 => Đồ thị hàm số có 5 đường tiệm cận.

  • Câu 22: Nhận biết

    Cho hàm số y =
\frac{x + 1}{- x + 1}. Hãy chọn khẳng định đúng?

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    Ta có: y' = \frac{2}{( - x + 1)^{2}}
> 0;\forall x\mathbb{\in R} nên hàm số đồng biến trên các khoảng ( - \infty;1)(1; + \infty).

  • Câu 23: Vận dụng

    Một tạp chí bán được 25 000 đồng một cuốn. Chi phía xuất bản x cuốn tạp chí (bao gồm: lương cán bộ, công nhân viên, …) được cho bởi công thức C\left( x ight) = 0,0001{x^2} - 0,2x + 11000, C(x) được tính theo đơn vị vạn đồng. Chi phí phát hành cho mỗi cuốn là 6 000 đồng. Các khoản thu khi bán tạp chí bao gồm tiền bán tạp chí và 100 triệu đồng nhận được từ quảng cá. Giả sử số cuốn in ra đều được bán hết. Tính số tiền lãi lớn nhất có thể có khi bán tạp chí.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một tạp chí bán được 25 000 đồng một cuốn. Chi phía xuất bản x cuốn tạp chí (bao gồm: lương cán bộ, công nhân viên, …) được cho bởi công thức C\left( x ight) = 0,0001{x^2} - 0,2x + 11000, C(x) được tính theo đơn vị vạn đồng. Chi phí phát hành cho mỗi cuốn là 6 000 đồng. Các khoản thu khi bán tạp chí bao gồm tiền bán tạp chí và 100 triệu đồng nhận được từ quảng cá. Giả sử số cuốn in ra đều được bán hết. Tính số tiền lãi lớn nhất có thể có khi bán tạp chí.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 24: Nhận biết

    Cho hình vẽ sau:

    Đường cong trong hình vẽ là đồ thị của hàm số có dạng y = \frac{ax + b}{cx + d};\left(
a;b;c;d\mathbb{\in R} ight). Mệnh đề nào dưới đây đúng?

    Từ đồ thị hàm số ta thấy hàm số đồng biến trên các khoảng ( - \infty; - 1)( - 1; + \infty) suy ra y' > 0;\forall x eq 1.

  • Câu 25: Nhận biết

    Điểm nào sau đây thuộc đồ thị hàm số y =
x^{3} - 3x?

    Thay (1; - 2) vào y = x^{3} - 3x ta được:

    - 2 = 1^{3} - 3.1

    Vậy (1; - 2) thuộc đồ thị hàm số y = x^{3} - 3x.

  • Câu 26: Vận dụng

    Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức h(t) = 24t +5t^{2} - \frac{t^{3}}{3}. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.

    Đáp án: 15

    Đáp án là:

    Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức h(t) = 24t +5t^{2} - \frac{t^{3}}{3}. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.

    Đáp án: 15

    Ta có:

    h'(t) = 24 + 10t -t^{2}

    h'(t) = 0

    \Leftrightarrow 24 + 10t - t^{2} = 0\Leftrightarrow \left\lbrack \begin{matrix}t = - 2(ktm) \\t = 12(tm) \\\end{matrix} ight.

    Bảng biến thiên:

    Mực nước lên cao nhất thì phải mất 12 giờ.

    Hay mực nước lên cao nhất là lúc 20 giờ.

    Vậy phải thông báo cho dân di dời vào 15giờ chiều cùng ngày.

  • Câu 27: Thông hiểu

    Đồ thị hàm số y = \frac{\left( m^{2} - 3m
ight)x - 1}{x - 2} có đường tiệm cận ngang qua điểm A(1; - 2) khi:

    Để đồ thị hàm số y = \frac{\left( m^{2} -
3m ight)x - 1}{x - 2} có đường tiệm cận ngang là y = m^{2} - 3m

    Đường tiệm cận ngang đi qua A(1; -
2) nên ta có:

    m^{2} - 3m = - 2 \Leftrightarrow m^{2} -
3m + 2 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 2 \\
\end{matrix} ight.

    Vậy đáp án đúng là \left\lbrack
\begin{matrix}
m = 1 \\
m = 2 \\
\end{matrix} ight..

  • Câu 28: Thông hiểu

    Một công ty bất động sản có 50 căn hộ cho thuê. Nếu giá cho thuê mỗi căn là 3000000 đồng/tháng thì không có phòng trống, còn nếu cho thuê mỗi căn hộ thêm 200000 đồng/tháng thì sẽ có 2 căn bị bỏ trống. Hỏi công ty phải niêm yếu bao nhiêu để doanh thu là lớn nhất?

    Đặt số tiền tăng thêm là 200000x (đồng)

    Giá tiền mỗi căn hộ một tháng là 3000000 + 200000x (đồng)

    Số căn hộ bị trống là 50 - 2x (phòng)

    Số tiền thu được mỗi tháng là: \left(
3.10^{6} + 2.10^{5}x ight)(50 - 2x) (đồng)

    Đặt f(x) = \left( 3.10^{6} + 2.10^{5}x
ight)(50 - 2x)

    Để doanh thu là lớn nhất thì ta tìm giá trị lớn nhất của hàm số f(x), giá trị lớn nhất của hàm số f(x) tại đỉnh của parabol.

    Hay:

    f'(x) = 2.10^{5}(50 - 2x) - 2\left(
3.10^{6} + 2.10^{5}x ight) = 0 \Leftrightarrow x = 5

    Vậy công ty niêm yết giá tiền là: 3.10^{6} + 2.10^{5}.5 = 4.10^{6} đồng để được doanh thu là lớn nhất.

  • Câu 29: Thông hiểu

    Hàm số y = f(x) có đồ thị như sau:

    Tìm điều kiện của tham số m để phương trình f(x) = m1 nghiệm dương?

    Để số nghiệm dương của phương trình đã cho bằng 1 thì đường thẳng y = m cắt đồ thị hàm số y = f(x) tại một điểm có hoành độ dương \Leftrightarrow \left\lbrack \begin{matrix}
m \leq 0 \\
m = 1 \\
\end{matrix} ight..

  • Câu 30: Thông hiểu

    Xác định số điểm cực trị của hàm số y =\left| (x - 1)^{3}(x + 1) ight|?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Xác định số điểm cực trị của hàm số y =\left| (x - 1)^{3}(x + 1) ight|?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 31: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = x\left( {x - 1} ight)\left( {x - 2} ight),\forall x \in \mathbb{R}. Hàm số g\left( x ight) = f\left( {\frac{{5x}}{{{x^2} + 4}}} ight) đồng biến trên khoảng nào trong các khoảng sau?

    Ta có: f'\left( x ight) = 0 \Leftrightarrow x{\left( {x - 1} ight)^2}\left( {x - 2} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \\   {x = 2} \end{array}} ight.

    Ta có: g'\left( x ight) = \frac{{ - 5{x^2} + 20}}{{{{\left( {{x^2} + 4} ight)}^2}}}.f'\left( {\frac{{5x}}{{{x^2} + 4}}} ight)

    Cho g’(x) = 0 => \frac{{ - 5{x^2} + 20}}{{{{\left( {{x^2} + 4} ight)}^2}}}.f'\left( {\frac{{5x}}{{{x^2} + 4}}} ight) = 0

    Dựa vào f’(x) ta có:

    \left[ {\begin{array}{*{20}{c}}  { - 5{x^2} + 20 = 0} \\   {\dfrac{{5x}}{{{x^2} + 4}} = 0} \\   {\dfrac{{5x}}{{{x^2} + 4}} = 1} \\   {\dfrac{{5x}}{{{x^2} + 4}} = 2} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm 2} \\   {x = 0} \\   {x = 1} \\   {x = 4} \end{array}} ight.

    Lập bảng xét dấu như sau:

    Xét khoảng đồng biến của hàm số

    Quan sát bảng xét dấy ta suy ra hàm số đồng biến trên khoảng (2; 4)

  • Câu 32: Vận dụng

    Tìm tập hợp các giá trị thực của m để đồ thị hàm số y = \frac{{x - 1}}{{mx - 1}} có tiệm cận đứng là:

     Điều kiện để đồ thị hàm số có tiệm cận là \left\{ {\begin{array}{*{20}{c}}  {m e 0} \\   { - 1 + m e 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m e 0} \\   {m e 1} \end{array}} ight.

  • Câu 33: Thông hiểu

    Hàm số y =
f(x) có đạo hàm và liên tục trên \mathbb{R}. Hàm số y = f'(1 - x) có đồ thị như hình vẽ:

    Hàm số y = f(x) nghịch biến trên khoảng nào dưới đây?

    Hàm số y = f(x) nghịch biến

    \Leftrightarrow f'(x) < 0
\Leftrightarrow f'(1 - t) < 0 với x = 1 - t

    \Leftrightarrow \left\lbrack
\begin{matrix}
t < 0 \\
1 < t < 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
1 - x < 0 \\
1 < 1 - x < 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x > 1 \\
- 1 < x < 0 \\
\end{matrix} ight.

    Vậy hàm số y = f(x) nghịch biến trên khoảng ( - 1;0).

  • Câu 34: Vận dụng

    Cho hàm số y =
f(x) xác định trên y =
f(x) và có đạo hàm f'(x) = (2 -
x)(x + 3)g(x) + 2021 trong đó g(x)
< 0;\forall x\mathbb{\in R}. Hàm số y = f(1 - x) + 2021x + 2022 đồng biến trên khoảng nào?

    Ta có:

    y' = - f'(1 - x) +
2021

    y' = - \left\lbrack (1 + x)(4 -
x)g(1 - x) + 2021 ightbrack + 2021

    y' = (x + 1)(x - 4).g(1 - x)
\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 4 \\
\end{matrix} ight.

    g(x) < 0;\forall x\mathbb{\in
R} nên y' > 0;\forall x \in
( - 1;4)

    Suy ra hàm số đồng biến trên ( -
1;4).

  • Câu 35: Thông hiểu

    Đồ thị hàm số nào sau đây không có tiệm cận đứng?

    Phương trình x2 + 1 = 0 vô nghiệm nên không tìm được x0 để \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty

    => Hàm số không có tiệm cận đứng.

    Các đồ thị hàm số ở B, C, D lần lượt có các tiệm cận đứng là x = 0, x = -2 và x = 1

  • Câu 36: Vận dụng

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 37: Nhận biết

    Cho hàm số có bảng biến thiên như hình dưới đây.

    Chọn khẳng định đúng

    Khẳng định nào sau đây là đúng?

    Từ bảng biến thiên ta nhận thấy đạo hàm của hàm số đổi dấu từ dương sang âm qua nghiệm 0 nên hàm số đạt cực đại tại 0 và giá trị cực đại của hàm số bằng 0.

  • Câu 38: Nhận biết

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Mệnh đề nào sau dây đúng?

    Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.

  • Câu 39: Thông hiểu

    Cho hàm số y = x^{4} - (3m + 2)x^{2} +
3m có đồ thị \left( C_{m}
ight). Xác định tất cả các giá trị thực của tham số m để \left(
C_{m} ight) cắt đường thẳng y = -
1 tại bốn điểm phân biệt?

    Phương trình hoành độ giao điểm là nghiệm của phương trình:

    x^{4} - (3m + 2)x^{2} + 3m = -
1

    \Leftrightarrow x^{4} - (3m + 2)x^{2} +
3m + 1 = 0

    \Leftrightarrow \left( x^{2} - 1
ight)^{2} - 3m\left( x^{2} - 1 ight) = 0

    \Leftrightarrow \left( x^{2} - 1
ight)\left( x^{2} - 3m - 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 1 = 0 \\
x^{2} - 3m - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \pm 1 \\
x^{2} = 3m + 1 \\
\end{matrix} ight.

    Đồ thị \left( C_{m} ight) cắt y = - 1 tại bốn điểm phân biệt khi và chỉ khi x^{2} = 3m + 1 có hai nghiệm phân biệt khác \pm 1

    Khi đó ta có: \left\{ \begin{matrix}3m + 1 > 0 \\3m + 1 eq 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m > - \dfrac{1}{3} \\m eq 0 \\\end{matrix} ight..

  • Câu 40: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= \frac{x + 6}{x + 5m} nghịch biến trên khoảng (15; + \infty)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 5m ight\}

    Ta có: y' = \frac{5m - 6}{(x +
5m)^{2}}

    Hàm số y = \frac{x + 6}{x + 5m} nghịch biến trên khoảng (15; +
\infty) khi và chỉ khi

    \left\{ \begin{matrix}
5m - 6 < 0 \\
- 5m \leq 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < \frac{6}{5} \\
m \geq - 3 \\
\end{matrix} ight.\  \Leftrightarrow - 3 \leq m <
\frac{6}{5}

    m\mathbb{\in Z} nên có tất cả 5 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo