Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Giá trị của tham số m để đồ thị hàm số y = \frac{{\left( {2m - 1} ight)x + 1}}{{x - m}} có đường tiệm cận ngang y = 3 là:

    Điều kiện để đồ thị hàm số có tiệm cận là:

    - m\left( {2m - 1} ight) - 1 e 0 \Rightarrow 2{m^2} - m + 1 e 0 luôn đúng với \forall x \in \mathbb{R}

    Phương trình đường tiệm cận ngang là y = 2m - 1 nên ta có 2x - 1 = 3 \Rightarrow m = 2

  • Câu 2: Thông hiểu

    Tất cả các giá trị của tham số m để hàm số y = - x^{4} + (m +
1)x^{2} đạt cực đại tại x =
0 là:

    Ta có: y' = - 4x^{3} + 2(m +
1)x

    \Rightarrow y' = 0 \Leftrightarrow\left\lbrack \begin{matrix}x = 0 \\x^{2} = \dfrac{1}{2}(m + 1)(*) \\\end{matrix} ight.

    Ta thấy hệ số a = - 1 < 0 nên nếu hàm số có ba cực trị thì hàm số có hai cực đại và một cực tiểu nên không thể đạt cực đại tại x =
0.

    Để hàm số đạt cực đại tại x = 0 thì hàm số có một cực trị hay phương trình (*) vô nghiệm hoặc có nghiệm kép

    \Leftrightarrow m + 1 \leq 0 \Leftrightarrow m
\leq - 1.

  • Câu 3: Thông hiểu

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Hỏi đồ thị hàm số g(x) =
\frac{2020}{2f(x) + 1} có bao nhiêu đường tiệm cận đứng?

    Số đường tiệm cận đứng là số nghiệm của phương trình f(x) = - \frac{1}{2}

    Nhìn vào đồ thị ta thấy phương trình trên có 4 nghiệm tương ứng với 4 đường tiệm cận đứng.

  • Câu 4: Thông hiểu

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{3x^{2} - 4x + 1}{x^{2} - 1} là:

    Điều kiện xác định của hàm số x^{2} - 1
eq 0 \Leftrightarrow x eq \pm 1

    Tập xác định D\mathbb{=
R}\backslash\left\{ \pm 1 ight\}

    \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{3x^{2} - 4x + 1}{x^{2} - 1} =
3 suy ra đồ thị hàm số có tiệm cận ngang là y = 3.

    \lim_{x ightarrow ( - 1)^{\pm}}y =
\lim_{x ightarrow ( - 1)^{\pm}}\frac{3x^{2} - 4x + 1}{x^{2} - 1} = \mp
\infty suy ra x = - 1 là tiệm cận đứng của đồ thị hàm số

    \lim_{x ightarrow 1}y = \lim_{x
ightarrow 1}\frac{(x - 1)(3x + 1)}{(x - 1)(x + 1)} = \lim_{x
ightarrow 1}\frac{3x + 1}{x + 1} = 1 suy ra x = 1 không là tiệm cận đứng.

    Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hám số là 2.

  • Câu 5: Thông hiểu

    Cho hàm số y = 2x^{3} - 3x^{2} -
m. Trên đoạn \lbrack -
1;1brack hàm số có giá trị nhỏ nhất là - 1. Tìm giá trị của m?

    Ta có: y' = 6x^{2} - 6x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Từ bảng biến thiên suy ra \min_{\lbrack -
1;1brack}y = - 5 - m \Leftrightarrow - 1 = - 5 - m \Leftrightarrow m =
- 4.

    Vậy m = - 4 là giá trị cần tìm.

  • Câu 6: Thông hiểu

    Trong các hàm số sau hàm số nào đồng biến trên (1; +∞)?

    Ta có hàm số y = ax, y = log­ax đồng biến trên tập xác định nếu a > 0

    Do đó hàm số y = log­3x đồng biến trên (1; +∞)

  • Câu 7: Thông hiểu

    Cho hàm số y =
f(3 - 2x) có bảng xét dấu như sau:

    Hỏi hàm số y = f(x) nghịch biến trên các khoảng nào dưới đây?

    Ta có:

    y' = f'(3 - 2x) = - 2f'(3 -
2x)

    f'( - 1) = f'(3) = f'(5) =
0

    f'(x) = k(x - 5)(x - 3)(x -
1)

    Xét x = 3 \Rightarrow y' = - 2f'(
- 3) > 0

    \Rightarrow f'( - 3) <
0

    Bảng xét dấu y = f'(x) là:

    Căn cứ vào bảng xét dấu ta thấy

    Hàm số y = f(x) nghịch biến trên khoảng (3;5).

  • Câu 8: Nhận biết

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{x + 1}{x^{2} - 3x + 4} bằng:

    Tập xác định D\mathbb{= R}

    Đồ thị hàm số y = \frac{x + 1}{x^{2} - 3x
+ 4} không có tiệm cận đứng.

    Ta có: \lim_{x ightarrow \pm \infty}y =\lim_{x ightarrow \pm \infty}\left( \dfrac{x + 1}{x^{2} - 3x + 4}ight) = \lim_{x ightarrow \pm \infty}\left( \dfrac{\dfrac{1}{x} +\dfrac{1}{x^{2}}}{1 - \dfrac{3}{x} + \dfrac{4}{x^{2}}} ight) = 0 suy ra y = 0 là tiệm cận ngang của đồ thị hàm số.

    Vậy tổng số đường tiệm cận của đồ thị hàm số đã cho bằng 1.

  • Câu 9: Thông hiểu

    Số tiệm cận của đồ thị hàm số y =
\frac{(2x - 1)\sqrt{x^{2} + 1}}{x^{2} - 1} là:

    Ta có:

    \lim_{x ightarrow + \infty}y = \lim_{xightarrow + \infty}\dfrac{\left( 2x^{2} - x ight)\sqrt{1 +\dfrac{1}{x^{2}}}}{x^{2} - 1}= \lim_{x ightarrow + \infty}\dfrac{\left(2 - \dfrac{1}{x} ight)\sqrt{1 + \dfrac{1}{x^{2}}}}{1 - \dfrac{1}{x^{2}}}= 2

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{\left( - 2x^{2} + x ight)\sqrt{1 +
\frac{1}{x^{2}}}}{x^{2} - 1} = \lim_{x ightarrow - \infty}\frac{\left(
- 2 + \frac{1}{x} ight)\sqrt{1 + \frac{1}{x^{2}}}}{1 -
\frac{1}{x^{2}}} = - 2

    Suy ra y = \pm 2 là tiệm cận ngang.

    \lim_{x ightarrow 1^{\pm}}y = \lim_{x
ightarrow 1^{\pm}}\frac{(2x - 1)\sqrt{x^{2} + 1}}{x^{2} - 1} = \pm
\infty suy ra x = 1 là tiệm cận đứng.

    \lim_{x ightarrow ( - 1)^{\pm}}y =
\lim_{x ightarrow ( - 1)^{\pm}}\frac{(2x - 1)\sqrt{x^{2} + 1}}{x^{2} -
1} = \pm \infty suy ra x = -
1 là tiệm cận đứng.

    Vậy đồ thị hàm số có tất cả 4 đường tiệm cận.

  • Câu 10: Nhận biết

    Tìm các khoảng nghịch biến của hàm số y = \frac{1 - x}{x + 1}?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    Ta có: y = \frac{1 - x}{x + 1}
\Rightarrow y' = \frac{- 2}{(x + 1)^{2}} < 0;\forall x \in
D

    Do đó hàm số luôn nghịch biến trên từng khoảng xác định.

  • Câu 11: Thông hiểu

    Hàm số y = f(x) = - x^{3} + 3x^{2} + (2m
- 1)x - 1 nghịch biến trên khoảng (0; + \infty) khi và chỉ khi:

    Tập xác định D\mathbb{= R}

    Ta có:y' = - 3x^{2} + 6x + 2m -
1

    Hàm số đã cho nghịch biến trên khoảng (0;
+ \infty)

    y' \leq 0;\forall x \in (0; +
\infty) khi và chỉ khi

    \Leftrightarrow 2m \leq 3x^{2} - 6x +
1;\forall x \in (0; + \infty)

    Xét hàm số g(x) = 3x^{2} - 6x +
1 trên (0; + \infty) ta có bảng biến thiên như sau:

    Dựa vào bảng biến thiên ta có:

    \min_{(0; + \infty)}g(x) = -
2

    Do đó \Leftrightarrow 2m \leq \min_{(0; +
\infty)}g(x) \Leftrightarrow 2m \leq - 2 \Leftrightarrow m \leq -
1

    Vậy m \leq - 1 thỏa mãn yêu cầu bài toán.

  • Câu 12: Vận dụng cao

    Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm X cách điểm A một khoảng 3 km. Điểm A nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí Y cách điểm B một khoảng 3 km. Điểm B cũng thuộc đường bờ biển. Biết rằng AB = 3(km),AM = NB = x(km)AX = BY = 3(km) (minh hoạ như hình vẽ sau).

    Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình y = 50\log(t +2). Trong đó, y là nồng độ, t là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là 5km/h13km/h. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm M,N trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm X cách điểm A một khoảng 3 km. Điểm A nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí Y cách điểm B một khoảng 3 km. Điểm B cũng thuộc đường bờ biển. Biết rằng AB = 3(km),AM = NB = x(km)AX = BY = 3(km) (minh hoạ như hình vẽ sau).

    Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình y = 50\log(t +2). Trong đó, y là nồng độ, t là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là 5km/h13km/h. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm M,N trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Nhận biết

    Tìm giá trị nhỏ nhất của hàm số y = x^{2}
+ \frac{8}{x} trên đoạn \left\lbrack \frac{1}{2};2
ightbrack?

    Ta có: y' = 2x - \frac{8}{x^{2}} =
\frac{2x^{3} - 8}{x^{2}}

    \Rightarrow y' = 0 \Leftrightarrow
\frac{2x^{3} - 8}{x^{2}} = 0 \Leftrightarrow x^{3} = 4 \Leftrightarrow x
= \sqrt[3]{4}

    Ta có: \left| \begin{matrix}f\left( \dfrac{1}{2} ight) = \dfrac{65}{4} \\f(2) = 8 \\f\left( \sqrt[3]{4} ight) = 6\sqrt[3]{2} \\\end{matrix} ight.\  \Rightarrow \min_{\left\lbrack\frac{1}{2};\frac{1}{2} ightbrack}y = 6\sqrt[3]{2}.

  • Câu 14: Nhận biết

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Điểm cực đại của đồ thị hàm số là:

    Điểm cực đại của đồ thị hàm số đã cho là ( - 1;2).

  • Câu 15: Thông hiểu

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0
ight\}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

    Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m - 1 có ba nghiệm thực phân biệt?

    Dựa vào bảng biến thiên ta thấy phương trình f(x) = m - 1 có ba nghiệm thực phân biệt khi và chỉ khi 1 < m - 1 < 3
\Leftrightarrow 2 < m < 4 \Rightarrow m \in (2;4)

  • Câu 16: Nhận biết

    Cho hàm số y = \frac{{2{x^2} - 3x + 2}}{{{x^2} - 2x - 3}}. Khẳng định nào sau đây sai?

    Ta có:

    \mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2{x^2} - 3x + 2}}{{{x^2} - 2x - 3}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{2 - \dfrac{3}{x} + \dfrac{2}{{{x^2}}}}}{{1 - \dfrac{2}{x} - \dfrac{3}{{{x^2}}}}} = 2

    => y = 2 là tiệm cận ngang của đồ thị hàm số

    Ta cũng có: \mathop {\lim }\limits_{x \to \left( { - 1} ight)} y = \infty ;\mathop {\lim }\limits_{x \to 3} y = \infty => x = 1; x = 32 là tiệm cận đứng của đồ thị hàm số

  • Câu 17: Vận dụng

    Cho hàm số y = \frac{x + m}{x -
1} thỏa mãn \min_{\lbrack
2;4brack}y = 3. Chọn mệnh đề đúng?

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    Ta có: y' = \frac{- 1 - m}{(x -
1)^{2}}. Vì hàm số đơn điệu trên \lbrack 2;4brack nên

    \left[ \begin{gathered}
  \mathop {\min }\limits_{\left[ {2;4} ight]} y = y\left( 2 ight); - 1 - m > 0 \hfill \\
  \mathop {\min }\limits_{\left[ {2;4} ight]} y = y\left( 4 ight); - 1 - m < 0 \hfill \\ 
\end{gathered}  ight.\mathop  \to \limits^{\mathop {\min }\limits_{\left[ {2;4} ight]} y = 3} \left[ \begin{gathered}
  3 = 2 + m;m <  - 1 \hfill \\
  3 = \dfrac{{4 + m}}{3};m >  - 1 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m = 1;m < - 1 \\
m = 5;m > - 1 \\
\end{matrix} ight.\  \Leftrightarrow m = 5

    Nếu m = - 1 ightarrow y = 1 Hàm số không có giá trị lớn nhất

    Vậy m > 4

  • Câu 18: Vận dụng

    Hàm số f\left( x ight) = C_{2019}^0 + C_{2019}^1x + C_{2019}^2{x^2} + C_{2019}^3{x^3} + ... + C_{2019}^{2019}{x^{2019}} có bao nhiêu điểm cực trị?

    Ta có:

    \begin{matrix}  f\left( x ight) = C_{2019}^0 + C_{2019}^1x + C_{2019}^2{x^2} + C_{2019}^3{x^3} + ... + C_{2019}^{2019}{x^{2019}} = {\left( {1 + x} ight)^{2019}} \hfill \\   \Rightarrow f'\left( x ight) = 2019.{\left( {1 + x} ight)^{2018}} \hfill \\  f'\left( x ight) = 0 \Leftrightarrow x =  - 1 \hfill \\ \end{matrix}

    Vì x = -1 là nghiệm bội chẵn nên x = -1 không phải là điểm cực trị của hàm số.

  • Câu 19: Vận dụng cao

    Cho hàm bậc ba y = f(x) có đồ thị như hình vẽ:

    Hỏi đồ thị hàm số y = \frac{\left( x^{2}+ 4x + 3 ight).\sqrt{x^{2} + x}}{x\left\lbrack f^{2}(x) - 2f(x)ightbrack} có bao nhiêu đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm bậc ba y = f(x) có đồ thị như hình vẽ:

    Hỏi đồ thị hàm số y = \frac{\left( x^{2}+ 4x + 3 ight).\sqrt{x^{2} + x}}{x\left\lbrack f^{2}(x) - 2f(x)ightbrack} có bao nhiêu đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Nhận biết

    Tìm giá trị nhỏ nhất a của hàm số y = x^{4} - x^{2} + 13 trên đoạn \lbrack - 2;3brack?

    Hàm số đã cho liên tục trên \lbrack -
2;3brack

    Ta có: y' = 4x^{3} - 2x = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = \dfrac{1}{\sqrt{2}} \\x = - \dfrac{1}{\sqrt{2}} \\\end{matrix} ight.

    Khi đó: \left\{ \begin{matrix}y( - 2) = 25;y\left( \pm \dfrac{1}{\sqrt{2}} ight) = \dfrac{51}{4} \\y(0) = 13;y(3) = 85 \\\end{matrix} ight.

    Vậy giá trị nhỏ nhất của hàm số là a =
\frac{51}{4}.

  • Câu 21: Thông hiểu

    Cho hàm số y = f(x) xác định trên \mathbb{R}\left\{ - 1
ight\}, liên tục trên các khoảng xác định và có bảng biến thiên như sau:

    Tìm tập hợp các giá trị của tham số m để phương trình f(x) = m có ba nghiệm phân biệt?

    Số nghiệm của phương trình f(x) =
m là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m

    Dựa vào bảng biến thiên ta suy ra để phương trình đã cho có ba nghiệm phân biệt thì - 4 < m <
2.

  • Câu 22: Vận dụng

    Cho hàm số y = f(x) có bảng biến thiên trên đoạn \lbrack -
4;4brack như hình vẽ:

    Có bao nhiêu giá trị của tham số m trên đoạn \lbrack - 4;4brack sao cho giá trị lớn nhất của hàm số y = f\left( \left| x^{3}
ight| + 3|x| ight) + f(m) trên đoạn \lbrack - 1;1brack bằng 1?

    Ta có: x \in \lbrack - 1;1brack
\Rightarrow |x| \in \lbrack 0;1brack \Rightarrow \left| x^{3} ight|
\in \lbrack 0;1brack

    Suy ra t = \left| x^{3} ight| + 3|x|
\in \lbrack 0;4brack

    Khi đó f\left( \left| x^{3} ight| +
3|x| ight) \in \lbrack - 3;3brack hay f\left( \left| x^{3} ight| + 3|x| ight) + f(m)
\in \left\lbrack - 3 + f(m);3 + f(m) ightbrack

    Theo yêu cầu bài toán \Leftrightarrow 3 +
f(m) = 1 \Leftrightarrow f(m) = - 2

    Nhìn vào bảng biến thiên ta thấy f(m) = -
2 có ba nghiệm

    Vậy có 3 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 23: Thông hiểu

    Biết rằng đồ thị hàm số y =\frac{1}{3}x^{3} - \frac{1}{2}mx^{2} + x - 2 có giá trị tuyệt đối của hoành độ hai điểm cực trị là độ dài hai cạnh của tam giác vuông có cạnh huyền bằng \sqrt{7}. Hỏi có bao nhiêu giá trị của tham số m thỏa mãn yêu cầu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Biết rằng đồ thị hàm số y =\frac{1}{3}x^{3} - \frac{1}{2}mx^{2} + x - 2 có giá trị tuyệt đối của hoành độ hai điểm cực trị là độ dài hai cạnh của tam giác vuông có cạnh huyền bằng \sqrt{7}. Hỏi có bao nhiêu giá trị của tham số m thỏa mãn yêu cầu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 24: Thông hiểu

    Tất cả các giá trị của tham số m để đồ thị hàm số y = \frac{x + 1}{x^{2} + 4x
+ m} có duy nhất một đường tiệm cận là:

    Ta có: \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow - \infty}y = 0 nên đồ thị hàm số luôn có một đường tiệm cận ngang là y =
0.

    Vậy để đồ thị hàm số y = \frac{x +
1}{x^{2} + 4x + m} có duy nhất một đường tiệm cận thì đồ thị hàm số không có đường tiệm cận đứng, hay phương trình x^{2} + 4x + m vô nghiệm

    \Leftrightarrow \Delta' < 0 \Leftrightarrow
4 - m < 0 \Leftrightarrow m > 4

  • Câu 25: Thông hiểu

    Cho hàm số y = f(x) = x^{3} - 3mx^{2} +
4m^{2} - 2(*). Tìm tất cả các giá trị của m để hàm số (*) có hai điểm cực trị?

    Ta có: y' = 3x^{2} - 6mx

    y' = 0 \Leftrightarrow 3x^{2} - 6mx
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2m \\
\end{matrix} ight.

    Để hàm số có hai cực trị thì phương trình y' = 0 có hai nghiệm phân biệt \Leftrightarrow 2m eq 0 \Leftrightarrow m eq
0.

    Vậy đáp án cần tìm là m eq
0.

  • Câu 26: Vận dụng

    Cho hàm số y =f(x) có đồ thị của hàm số y =f'(x) như hình vẽ:

    Xác định khoảng đồng biến của hàm số y =f\left( |3 - x| ight)?

    Ta có: y = f\left( |3 - x| ight) =\left\{ \begin{matrix}f(3 - x)\ \ khi\ x \leq 3 \\f(x - 3)\ \ khi\ x > 3 \\\end{matrix} ight.

    y' = \left\{ \begin{matrix}- f'(3 - x)\ \ khi\ x \leq 3 \\f'(x - 3)\ \ khi\ x > 3 \\\end{matrix} ight.

    Với x < 3 \Rightarrow y' = -f'(3 - x) > 0

    \Leftrightarrow f'(3 - x) < 0\Leftrightarrow \left\lbrack \begin{matrix}3 - x < - 1 \\1 < 3 - x < 4 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x > 4 \\- 1 < x < 2 \\\end{matrix} ight.

    Kết hợp với điều kiện x < 3 ta có: - 1 < x < 2

    Với x > 3 \Rightarrow y' =f'(x - 3) > 0

    \Leftrightarrow f'(3 - x) > 0\Leftrightarrow \left\lbrack \begin{matrix}3 - x > 4 \\- 1 < 3 - x < 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x > 7 \\2 < x < 4 \\\end{matrix} ight.

    Kết hợp với điều kiện x > 3 ta có: \left\lbrack \begin{matrix}x > 7 \\3 < x < 4 \\\end{matrix} ight.

    Vậy hàm số y = f\left( |3 - x|ight) đồng biến trên mỗi khoảng (- 1;2),(3;4),(7; + \infty)

  • Câu 27: Nhận biết

    Cho hàm số y = ax^{3} + bx^{2} + cx +
d;\left( a;b;c;d\mathbb{\in R} ight) có đồ thị hàm số như hình vẽ:

    Mệnh đề nào sau đây sai?

    Giá trị cực đại của hàm số là 4 suy ra mệnh đề sai là: “Giá trị cực đại của hàm số là - 1.”

  • Câu 28: Nhận biết

    Đồ thị hàm số nào dưới đây có dạng như hình vẽ?

    Đồ thị hàm số bậc 4 có hệ số a <
0 và có ba điểm cực trị nên ab <
0nên chọn y = - x^{4} +
4x^{2}.

  • Câu 29: Thông hiểu

    Xác định số giá trị nguyên của tham số m để hàm số y = \frac{mx - 2}{- 2x +m} nghịch biến trên khoảng \left(\frac{1}{2}; + \infty ight)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Xác định số giá trị nguyên của tham số m để hàm số y = \frac{mx - 2}{- 2x +m} nghịch biến trên khoảng \left(\frac{1}{2}; + \infty ight)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 30: Nhận biết

    Giá trị nhỏ nhất của hàm số y =
\frac{x^{3} - 3x}{x + 1} trên đoạn \lbrack 0;2brack bằng:

    Ta có: y' = \frac{x^{2} + 2x - 3}{(x
+ 1)^{2}}

    \Rightarrow y' = 0 \Leftrightarrow
\frac{x^{2} + 2x - 3}{(x + 1)^{2}} = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 3 \\
\end{matrix} ight.. Khi đó \left\{ \begin{matrix}y(0) = 0 \\y(2) = - \dfrac{2}{3} \\y(1) = - 1 \\\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;2brack}y = y(1) = -1.

  • Câu 31: Thông hiểu

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hàm số g(x) = \frac{1}{f(x)} đồng biến trên khoảng nào sau đây?

    Ta có: g'(x) = -
\frac{f'(x)}{\left\lbrack f(x) ightbrack^{2}} >
0

    \Leftrightarrow \left\{ \begin{matrix}
f'(x) < 0 \\
f(x) eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 1 \\
1 < x < 3 \\
x eq \left\{ - 2;0;3 ight\} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 2 \\
- 2 < x < - 1 \\
1 < x < 3 \\
\end{matrix} ight.

    Vậy hàm số g(x) = \frac{1}{f(x)} đồng biến trên các khoảng ( - \infty; - 2),(
- 2; - 1),(1;3)

    Suy ra hàm số g(x) =
\frac{1}{f(x)} đồng biến trên khoảng (1;2).

  • Câu 32: Nhận biết

    Hàm số tương ứng với đồ thị trong hình vẽ dưới đây là:

    Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng y = ax^{3} + bx^{2} + cx + d với a < 0 nên hàm số tương ứng là y = - x^{3} + 3x.

  • Câu 33: Thông hiểu

    Một loại thuốc được dùng cho bệnh nhân và nồng độ thuốc trong máu của bệnh nhân sau khi tiêm vào cơ thể trong t giờ được cho bởi công thức c(t) = \frac{t}{t^{2} + 1}(mg/L). Sau khi tiêm thuốc bao lâu thì nồng độ thuốc trong máu của bệnh nhân cao nhất?

    Ta có: c'(t) = \frac{- t^{2} +
1}{\left( t^{2} + 1 ight)^{2}};\forall t \in (0; + \infty). Cho c'(t) = 0 \Leftrightarrow \frac{-
t^{2} + 1}{\left( t^{2} + 1 ight)^{2}} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = 1 \\
t = - 1 \\
\end{matrix} ight.

    Bảng biến thiên:

    Vậy sau khi tiêm 1 giờ, nồng độ thuốc trong máu bệnh nhân cao nhất.

  • Câu 34: Nhận biết

    Cho hàm số sau, hàm số nào đồng biến trên \mathbb{R}?

    Xét hàm số f(x) = x^{3} - 3x^{2} + 3x -
4 ta có:

    f'(x) = 3x^{2} - 6x + 3 = 3(x -
1)^{2} \geq 0;\forall x\mathbb{\in R}

    \Rightarrow f(x) = x^{3} - 3x^{2} + 3x -
4 đồng biến trên \mathbb{R}.

  • Câu 35: Vận dụng

    Cho hàm số y =
f(x) có đạo hàm liên tục trên \mathbb{R} và có đồ thị của hàm số y = f'(x) như hình vẽ sau:

    Xét hàm g(x) = f\left( x^{2} - 2
ight). Mệnh đề nào dưới đây sai?

    Ta có: g'(x) = 2x.f'\left( x^{2}
- 2 ight)

    g'(x) = 0 \Leftrightarrow
2x.f'\left( x^{2} - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x = 0 \\
f'\left( x^{2} - 2 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} - 2 = - 1 \\
x^{2} - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Dựa vào đồ thị ta thấy f'\left( x^{2}
- 2 ight) > 0

    \Leftrightarrow x^{2} - 2 > 2
\Leftrightarrow x^{2} > 4 \Leftrightarrow \left\lbrack \begin{matrix}
x < - 2 \\
x > 2 \\
\end{matrix} ight.

    Vậy hàm số g(x) nghịch biến trên ( - 1;0) là sai.

  • Câu 36: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm f'(x) trên khoảng ( - \infty; + \infty). Đồ thị hàm số y = f'(x) như hình vẽ:

    Hàm số y = f(x) nghịch biến trên khoảng nào trong các khoảng sau?

    Quan sát hình vẽ ta thấy:

    y = f'(x) \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 3 \\
\end{matrix} ight.f'(x)
\leq 0 \Leftrightarrow 0 \leq x \leq 3

    Vậy hàm số y = f(x) nghịch biến trên khoảng (0;3).

  • Câu 37: Nhận biết

    Đồ thị hàm số nào sau đây nhận điểm A(1;3) làm tâm đối xứng?

    Đồ thị hàm số y = \frac{3x + 4}{x -
1} có tiệm cận đứng là đường thẳng x = 1 và tiệm cận ngang là y = 3 suy ra giao điểm của hai đường tiệm cận là (1;3)

    Vậy điểm A(1;3) là tâm đối xứng của đồ thị hàm số y = \frac{3x + 4}{x -
1}.

  • Câu 38: Vận dụng cao

    Có bao nhiêu giá trị nguyên của m \in\lbrack - 10;10brack để hàm số y= \left| x^{4} + 2mx^{3} + (3 - 3m)x^{2} - 2mx + 3m - 4 ight|7 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu giá trị nguyên của m \in\lbrack - 10;10brack để hàm số y= \left| x^{4} + 2mx^{3} + (3 - 3m)x^{2} - 2mx + 3m - 4 ight|7 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 39: Thông hiểu

    Cho hàm số y = - x^{3} + 3x^{2} -
1. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số có 2 cực trị. Đúng||Sai

    b) Điểm cực đại của hàm số là x = 2. Đúng||Sai

    c) Hàm số đồng biến trên khoảng (−1; 3).Sai||Đúng

    d) Giá trị lớn nhất của hàm số là 3. Sai||Đúng

    Đáp án là:

    Cho hàm số y = - x^{3} + 3x^{2} -
1. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số có 2 cực trị. Đúng||Sai

    b) Điểm cực đại của hàm số là x = 2. Đúng||Sai

    c) Hàm số đồng biến trên khoảng (−1; 3).Sai||Đúng

    d) Giá trị lớn nhất của hàm số là 3. Sai||Đúng

    Hàm số y = - x^{3} + 3x^{2} - 1 có đồ thị như sau:

    a) Đúng. Từ đồ thị, ta khẳng định hàm số có 2 cực trị.

    b) Đúng. Từ đồ thị, ta khẳng định hàm số có điểm cực đại là x = 2.

    c) Sai. Trên khoảng (−1; 3) hàm số có đồng biến và nghịch biến.

    d) Sai. Trên R không tồn tại giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên

  • Câu 40: Vận dụng cao

    Tổng tất cả các giá trị thực của m để hàm số y = \frac{1}{5}{m^2}{x^5} - \frac{1}{3}m{x^3} + 10{x^2} - \left( {{m^2} - m - 20} ight)x + 1 đồng biến trên R bằng:

    Ta có:

    \begin{matrix}  y = \dfrac{1}{5}{m^2}{x^5} - \dfrac{1}{3}m{x^3} + 10{x^2} - \left( {{m^2} - m - 20} ight)x + 1 \hfill \\   \Rightarrow y' = {m^2}{x^4} - m{x^2} + 20x - {m^2} + m + 20 \hfill \\ \end{matrix}

    Hàm số đã cho đồng biến trên R khi và chỉ khi

    \begin{matrix}   \Rightarrow y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Rightarrow {m^2}{x^4} - m{x^2} + 20x - {m^2} + m + 20 \geqslant 0,\forall x \in \mathbb{R} \hfill \\ \end{matrix}

    Và dấu bằng xảy ra chỉ tại một số hữu hạn điểm.

    Điều kiện cần

    Ta thấy phương trình y ‘ = 0 có một nghiệm x = -1 nên để y' \geqslant 0,\forall x \in \mathbb{R} thì y’ không đổi dấu qua khi x = -1 khi đó phương trình y’ = 0 có nghiệm kép là x = -1 (x = -1 không thể laf nghiệm bội 4 của phương trình y’ = 0 vì y’ không chứa số hạng x3)

    Ta suy ra được y’’(-1) = 0

    => - 4{m^2} + 2m + 20 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m =  - 2} \\   {m = \dfrac{5}{2}} \end{array}} ight.

    Điều kiện đủ:

    Với m = - 2 ta có:

    y' = 4{x^4} + 2{x^2} + 20x + 14 = 4{\left( {x + 1} ight)^2}\left[ {{{\left( {x - 1} ight)}^2} + \frac{5}{2}} ight] \geqslant 0,\forall x \in \mathbb{R}

    => Hàm số đồng biến trên R

    => m = -2 thỏa mãn điều kiện đề bài.

    Với m = \frac{5}{2} ta có:

    y' = \frac{{25}}{4}{x^4} - \frac{5}{2}{x^2} + 20x + \frac{{65}}{4} = \frac{{25}}{4}{\left( {x + 1} ight)^2}\left[ {{{\left( {x - 1} ight)}^2} + \frac{8}{5}} ight] \geqslant 0,\forall x \in \mathbb{R}

    => Hàm số đồng biến trên R

    => m = \frac{5}{2} thỏa mãn điều kiện đề bài

    Vậy m =  - 2;m = \frac{5}{2} là các giá trị cần tìm.

    => Tổng các giá trị thực của m cần tìm thỏa mãn yêu cầu bài toán là - 2 + \frac{5}{2} = \frac{1}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 4 lượt xem
Sắp xếp theo