Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = f(x) = \frac{x}{|x| - 1} là:

    Khi x \geq 0;x eq 1 \Rightarrow f(x) =
\frac{x}{x - 1}

    Suy ra đồ thị hàm số có 1 tiệm cận ngang y = 1 và 1 tiệm cận đứng x = 1

    Khi x < 0;x eq - 1 \Rightarrow f(x)
= \frac{x}{- x - 1}

    Suy ra đồ thị hàm số có 1 tiệm cận ngang y = - 1 và 1 tiệm cận đứng x = - 1

    Vậy đồ thị hàm số y = f(x) = \frac{x}{|x|
- 1} có tất cả 4 đường tiệm cận.

  • Câu 2: Thông hiểu

    Hàm số y = f(x) = - x^{3} + 3x^{2} + (2m
- 1)x - 1 nghịch biến trên khoảng (0; + \infty) khi và chỉ khi:

    Tập xác định D\mathbb{= R}

    Ta có:y' = - 3x^{2} + 6x + 2m -
1

    Hàm số đã cho nghịch biến trên khoảng (0;
+ \infty)

    y' \leq 0;\forall x \in (0; +
\infty) khi và chỉ khi

    \Leftrightarrow 2m \leq 3x^{2} - 6x +
1;\forall x \in (0; + \infty)

    Xét hàm số g(x) = 3x^{2} - 6x +
1 trên (0; + \infty) ta có bảng biến thiên như sau:

    Dựa vào bảng biến thiên ta có:

    \min_{(0; + \infty)}g(x) = -
2

    Do đó \Leftrightarrow 2m \leq \min_{(0; +
\infty)}g(x) \Leftrightarrow 2m \leq - 2 \Leftrightarrow m \leq -
1

    Vậy m \leq - 1 thỏa mãn yêu cầu bài toán.

  • Câu 3: Nhận biết

    Cho hàm số bậc ba có đồ thị như hình vẽ:

    Số nghiệm thực của phương trình

    Số nghiệm thực của phương trình 2f\left( x ight) - 5 = 0 là:

    Ta có: 2f\left( x ight) - 5 = 0 \Rightarrow f\left( x ight) = \frac{5}{2}

    Quan sát đồ thị ta thấy y = \frac{5}{2} cắt đồ thị hàm số y = f\left( x ight) tại ba điểm phân biệt

    => Phương trình 2f\left( x ight) - 5 = 0 có ba nghiệm thực phân biệt.

  • Câu 4: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{1}{3}x^{3} - mx^{2} + (2m - 1)x - m + 2 nghịch biến trên khoảng ( - 3;0)?

    Ta có: y' = x^{2} - 2mx + 2m -
1

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = 2m - 1 \\
\end{matrix} ight.

    Hàm số đã cho nghịch biến trên khoảng ( -
3;0) khi ( - 3;0) nằm trong khoảng hai nghiệm

    \Leftrightarrow \left\lbrack
\begin{matrix}
1 \leq - 3 < 0 \leq 2m - 1 \\
2m - 1 \leq - 3 < 0 \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow 2m - 1 \leq - 3 \Leftrightarrow m
\leq - 1

    Vậy đáp án cần tìm là m \leq -
1.

  • Câu 5: Nhận biết

    Cho hàm số y = \frac{{\sqrt {{x^2} - 4} }}{{x - 1}}. Đồ thị hàm số có mấy đường tiệm cận?

    Tập xác định: D = \left( { - \infty ;2} ight] \cup \left[ {2; + \infty } ight)

    Ta thấy rằng x = 1 không thuộc D => Đồ thị hàm số không có tiệm cận đứng.

    \begin{matrix}  \mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\sqrt {{x^2} - 4} }}{{x - 1}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left| x ight|\sqrt {1 - \dfrac{4}{{{x^2}}}} }}{{x\left( {1 - \dfrac{1}{x}} ight)}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left| x ight|}}{x} \hfill \\   = \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } y = 1} \\   {\mathop {\lim }\limits_{x \to  - \infty } y =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    => y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.

  • Câu 6: Vận dụng

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Tìm số điểm cực trị của hàm số g(x) =
f\left( x^{2} - 2x ight) trên khoảng (0; + \infty)?

    Đặt g(x) = f\left( x^{2} - 2x ight)
\Rightarrow g'(x) = (2x - 2)f'\left( x^{2} - 2x
ight)

    Từ bảng xét dấu của hàm số f'(x)

    g'(x) = 0 \Leftrightarrow g(x) =
f\left( x^{2} - 2x ight) \Rightarrow \left\lbrack \begin{matrix}
2x - 2 = 0 \\
f'\left( x^{2} - 2x ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 2x = - 1\  \\
x^{2} - 2x = 2\ \  \\
2x - 2 = 0\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 1 \pm \sqrt{3} \\
x = 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Từ bảng biến thiên suy ra hàm số g(x) =
f\left( x^{2} - 2x ight) có hai cực trị trên khoảng (0; + \infty).

  • Câu 7: Thông hiểu

    Có bao nhiêu số nguyên m để hàm số y = \frac{x + 3}{x - m} nghịch biến trên khoảng (1; + \infty)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}

    Hàm số đã cho nghịch biến trên khoảng (1;
+ \infty) \Leftrightarrow y'
< 0;\forall x \in (1; + \infty)

    \Leftrightarrow \left\{ \begin{matrix}
- m - 3 < 0 \\
m \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow - 3 < m \leq 1

    Vậy có tất cả 4 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 8: Vận dụng cao

    Cho x, y, z là ba số thực thuộc đoạn [1; 9] và x \geqslant y,x \geqslant z. Giá trị nhỏ nhất của biểu thức P = \frac{y}{{10y - x}} + \frac{1}{2}\left( {\frac{y}{{y + z}} + \frac{x}{{z + x}}} ight) bằng:

    Ta có:

    \frac{1}{{1 + a}} + \frac{1}{{a + b}} \geqslant \frac{2}{{1 + \sqrt {ab} }} \Rightarrow {\left( {\sqrt a  - \sqrt b } ight)^2}\left( {\sqrt {ab}  - 1} ight) \geqslant 0(đúng do ab \geqslant 1)

    Dấu bằng xảy ra khi và chỉ khi a = b hoặc ab = 1

    Áp dụng bất đẳng thức trên ta có:

    P = \dfrac{1}{{10 - \dfrac{x}{y}}} + \dfrac{1}{2}\left( {\dfrac{1}{{1 + \dfrac{z}{y}}} + \dfrac{1}{{1 + \dfrac{x}{z}}}} ight) \geqslant \dfrac{1}{{10 - \dfrac{x}{y}}} + \dfrac{1}{{1 + \sqrt {\frac{x}{y}} }}

    Đặt \sqrt {\frac{x}{y}}  = t \in \left[ {1;3} ight]. Xét hàm số f\left( t ight) = \frac{1}{{10 - {t^2}}} + \frac{1}{{1 + t}} trên đoạn [1; 3]

    \begin{matrix}  f'\left( t ight) = \dfrac{{2t}}{{{{\left( {10 - {t^2}} ight)}^2}}} - \dfrac{1}{{{{\left( {1 + t} ight)}^2}}} \hfill \\  f'\left( t ight) = 0 \hfill \\   \Rightarrow {t^4} - 2{t^3} - 24{t^2} - 2t + 100 = 0 \hfill \\   \Rightarrow \left( {t - 2} ight)\left( {{t^3} - 24t - 50} ight) = 0 \Rightarrow t = 2 \hfill \\ \end{matrix}

    Do {t^3} - 24t - 50 < 0,\forall t \in \left[ {1;3} ight]

    Ta có bảng biến thiên

    Tính giá trị nhỏ nhất của biểu thức

    Suy ra {P_{\min }} = \frac{1}{2} khi và chỉ khi \left\{ {\begin{array}{*{20}{c}}  {x = 4y} \\   {\left[ {\begin{array}{*{20}{c}}  {\dfrac{z}{y} = \dfrac{x}{z}} \\   {\dfrac{x}{y} = 1} \end{array}} ight.} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {x = 4y} \\   {z = 2y} \end{array}} ight.

  • Câu 9: Nhận biết

    Cho hàm số f(x) xác định, liên tục trên tập số thực và đồ thị của hàm số f'(x) là đường cong như hình vẽ bên dưới.

    Khẳng định nào sau đây là khẳng định đúng?

    Từ đồ thị của hàm số f'(x) ta có:

    f'(x) \leq 0;\forall x \in ( -
\infty; - 3) \cup ( - 2; + \infty)

    Vậy hàm số y = f(x) nghịch biến trên khoảng (0; + \infty).

  • Câu 10: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R}. Biết đồ thị của hàm số y = f'(x) biểu diễn như hình vẽ:

    Khi đó hàm số y = f\left( x^{2} - 1
ight) nghịch biến trên khoảng nào sau đây?

    Ta có: y' = 2x.f'\left( x^{2} - 1
ight) \leq 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x \leq 0 \\
f'\left( x^{2} - 1 ight) \geq 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \geq 0 \\
f'\left( x^{2} - 1 ight) \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x \leq 0 \\
x^{2} - 1 \leq 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \geq 0 \\
x^{2} - 1 \geq 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x \leq 0 \\
- 2 \leq x \leq 2 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \geq 0 \\
\left\lbrack \begin{matrix}
x \leq - 2 \\
x \geq 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
- 2 \leq x \leq 0 \\
x \geq 2 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là ( -
2;0).

  • Câu 11: Nhận biết

    Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như hình vẽ dưới đây:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên khoảng (−2; 5). Sai|| Đúng

    b) Hàm số đạt cực đại tại điểm x = −2. Đúng||Sai

    c) Hàm số có giá trị nhỏ nhất bằng −2. Sai|| Đúng

    d) Hàm số có giá trị lớn nhất bằng 5. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như hình vẽ dưới đây:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên khoảng (−2; 5). Sai|| Đúng

    b) Hàm số đạt cực đại tại điểm x = −2. Đúng||Sai

    c) Hàm số có giá trị nhỏ nhất bằng −2. Sai|| Đúng

    d) Hàm số có giá trị lớn nhất bằng 5. Đúng||Sai

    Hàm số y = f(x) không có giá trị nhỏ nhất nên phát biểu “Hàm số y =
f(x) có giá trị nhỏ nhất bằng −2” là phát biểu sai.

  • Câu 12: Nhận biết

    Đồ thị sau đây là của hàm số nào?

    Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là y = 2 và tiệm cận đứng của đồ thị hàm số x = - 1.

    Đồ thị hàm số cắt trục tung tại điểm A(0;1)

    Vậy hàm số cần tìm là y = \frac{2x + 1}{x
+ 1}.

  • Câu 13: Thông hiểu

    Cho hàm số y = \frac{{\sin x + 1}}{{{{\sin }^2}x + \sin x + 1}}. Gọi M là giá trị lớn nhất và m là giá trị nhỏ nhất của hàm số đã cho. Chọn mệnh đề đúng.

    Đặt t = \sin x,t \in \left[ { - 1;1} ight]

    Khi đó y = f\left( t ight) = \frac{{t + 1}}{{{t^2} + t + 1}}

    \begin{matrix}  f'\left( t ight) = \dfrac{{ - {t^2} - 2t}}{{{{\left( {{t^2} + t + 1} ight)}^2}}} \hfill \\  f'\left( t ight) = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {t = 0\left( {tm} ight)} \\   {t =  - 2\left( L ight)} \end{array}} ight. \hfill \\  f\left( 0 ight) = 1;f\left( { - 1} ight) = 0;f\left( 1 ight) = \frac{2}{3} \hfill \\ \end{matrix}

    Vậy M = 1; m = 0 => M = m + 1

  • Câu 14: Thông hiểu

    Cho hàm số y = f(x) liên tục trên tập số thực và có bảng biến thiên như sau:

    Hỏi có bao nhiêu giá trị nguyên của tham số m để phương trình 2f(x) - m + 2 = 0 có đúng ba nghiệm phân biệt?

    Ta có:

    2f(x) - m + 2 = 0 \Leftrightarrow 2f(x)
= m - 2 \Leftrightarrow f(x) = \frac{m - 2}{2}

    Để phương trình có ba nghiệm phân biệt

    \Leftrightarrow \left\lbrack\begin{matrix}f(x) = - 1 \\f(x) = \dfrac{3}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}\dfrac{m - 2}{2} = - 1 \\\dfrac{m - 2}{2} = \dfrac{3}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}m = 0 \\m = 5 \\\end{matrix} ight.

    Vậy có đúng một giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 15: Nhận biết

    Giá trị nhỏ nhất của hàm số f(x) = x^{3}
- 3x + 2 trên đoạn \lbrack -
3;2brack bằng

    Ta có:

    f'(x) = 3x^{2} - 3; f'(x) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight..

    \left\{ \begin{matrix}
f( - 3) = - 16 \\
f( - 1) = 4 \\
f(1) = 0 \\
f(3) = 20 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack - 3;3brack}f(x) = -
16.

  • Câu 16: Nhận biết

    Điểm nào sau đây thuộc đồ thị hàm số y =
x^{3} - 3x?

    Thay (1; - 2) vào y = x^{3} - 3x ta được:

    - 2 = 1^{3} - 3.1

    Vậy (1; - 2) thuộc đồ thị hàm số y = x^{3} - 3x.

  • Câu 17: Thông hiểu

    Đồ thị hàm số y = x^{3} - 3x + 2 là hình nào trong 4 hình dưới đây?

    Ta có: y = x^{3} - 3x + 2 \Rightarrow
y' = 3x^{2} - 3

    Khi đó \mathbf{y'
=}\mathbf{0}\mathbf{\Leftrightarrow}\left\lbrack \begin{matrix}
\mathbf{x = -}\mathbf{1} \\
\mathbf{x =}\mathbf{1} \\
\end{matrix} ight.\ \mathbf{\Rightarrow}\left\lbrack \begin{matrix}
\mathbf{y}\mathbf{(}\mathbf{-}\mathbf{1)}\mathbf{=}\mathbf{4} \\
\mathbf{y}\mathbf{(1)}\mathbf{=}\mathbf{0} \\
\end{matrix} ight..

    Do đó, chọn đáp án là: Hình 2

  • Câu 18: Nhận biết

    Cho hàm số y = \frac{ax^{2} + bx + c}{mx
+ n},(am eq 0) có đồ thị như hình vẽ. Phương trình đường tiệm cận xiên của đồ thị hàm số đã cho là:

    Dựa vào đồ thị hàm số, ta thấy đường tiệm cận xiên của đồ thị hàm số đi qua 2 điểm (1;1)( - 1; - 1) nên đường tiệm cận xiên của đồ thị hàm số có phương trình y =
x.

  • Câu 19: Vận dụng

    Tìm giá trị của tham số m để hàm số y = \sin 2x + mx + c đồng biến trên \mathbb{R}

    Ta có: y' = 2\cos 2x + m

    Hàm số đồng biến trên \mathbb{R}

    \begin{matrix}   \Leftrightarrow y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \mathop {\min }\limits_\mathbb{R} y' =  - 2 + m \geqslant 0 \Leftrightarrow m \geqslant 2 \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Cho hàm số y = \frac{{x + 2}}{{x - 3}}. Khẳng định nào sau đây sai?

    Ta có tiệm cận đứng của hàm số là y = 3 và tiệm cận ngang là y = 1

    Giao điểm của hai đường tiệm cận I(3; 1) là tâm đối xứng của đồ thị

    => A, C, D đúng và B sai

  • Câu 21: Vận dụng

    Cho hàm số y = \frac{x + 1}{\sqrt{ax^{2}+ 1}} có đồ thị (C). Tìm giá trị a để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của (C) một khoảng bằng \sqrt{2} - 1?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \frac{x + 1}{\sqrt{ax^{2}+ 1}} có đồ thị (C). Tìm giá trị a để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của (C) một khoảng bằng \sqrt{2} - 1?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 22: Vận dụng

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 23: Thông hiểu

    Đồ thị của hàm số y = \frac{x - 1}{x^{2}
+ 2x - 3} có bao nhiêu đường tiệm cận?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3;1 ight\}

    \left\{ \begin{matrix}
\lim_{x ightarrow + \infty}y = 0 \\
\lim_{x ightarrow - \infty}y = 0 \\
\end{matrix} ight. suy ra y =
0 là tiệm cận ngang của đồ thị hàm số đã cho.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{1}{{x + 3}} = \frac{1}{4} \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{1}{{x + 3}} = \frac{1}{4} \hfill \\ 
\end{gathered}  ight. suy ra đường thẳng x = 1 không là đường tiệm cận đứng của đồ thị hàm số đã cho.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{\left( { - 3} ight)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 3} ight)}^ + }} \frac{{x - 1}}{{\left( {x - 1} ight)\left( {x + 3} ight)}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {{\left( { - 3} ight)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( { - 3} ight)}^ - }} \frac{{x - 1}}{{\left( {x - 1} ight)\left( {x + 3} ight)}} =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra đường thẳng x = - 3 là đường tiệm cận đứng của đồ thị hàm số đã cho.

    Vậy đồ thị hàm số đã cho có 2 đường tiệm cận.

  • Câu 24: Nhận biết

    Cho hàm số y = f(x) là hàm đa thức có đạo hàm f'(x) = (x - 1)(x -
2)^{2}(x + 1)^{3}. Số điểm cực trị của hàm số là:

    Ta có:

    f'(x) = (x - 1)(x - 2)^{2}(x +
1)^{3} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
x = - 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Vậy hàm số có hai điểm cực trị.

  • Câu 25: Nhận biết

    Cho hàm số y =
\frac{2x + 2}{x - 1}. Khẳng định nào sau đây đúng?

    Ta có: y' = \frac{- 4}{(x - 1)^{2}}
< 0;\forall x eq 1

    Suy ra hàm số nghịch biến trên khoảng ( -
\infty;1),(1; + \infty)

    (2; + \infty) \subset (1; +
\infty) nên hàm số cũng nghịch biến trên khoảng (2; + \infty).

  • Câu 26: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm trên \mathbb{R}f'(x) = x^{2}(x - 1). Hàm số y = f(x) đồng biến trên khoảng nào sau đây?

    Ta có: f'(x) = 0 \Leftrightarrow
x^{2}(x - 1) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.. Lập bảng xét dấu như sau:

    Suy ra hàm số y = f(x) đồng biến trên khoảng (1; + \infty)

  • Câu 27: Thông hiểu

    Khoảng cách giữa hai điểm cực trị của đồ thị hàm số y = (x - 2)^{2}(x + 1)

    Ta có:

    f'(x) = 2(x - 2)(x + 1) + (x -
2)^{2}

    = 2x^{2} - 2x - 4 + x^{2} - 4x + 4 =
3x^{2} - 6x

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \Rightarrow y = 4 \\
x = 2 \Rightarrow y = 0 \\
\end{matrix} ight.

    ⇒ Khoảng cách giữa hai điểm cực trị là \sqrt{(0 - 2)^{2} + (4 - 0)^{2}} =
2\sqrt{5}.

  • Câu 28: Thông hiểu

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hỏi hàm số y = 2021 - f(x) đồng biến trên khoảng nào?

    Hàm số y = 2021 - f(x)y' = - f'(x)

    y' = 0 \Leftrightarrow - f'(x) =
0 \Leftrightarrow f'(x) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = 0 \\
\end{matrix} ight.

    Từ bảng biến thiên của hàm số y =
f(x) ta có bảng biến thiên của hàm số y = 2021 - f(x)

    Dựa vào bảng biến thiên ta có hàm số y =
2021 - f(x) đồng biến trong khoảng ( - 1;0).

  • Câu 29: Nhận biết

    Hàm số y = \frac{{2x + 5}}{{x + 1}} có bao nhiêu điểm cực trị?

    Tập xác định D = \mathbb{R}\backslash \left\{ { - 1} ight\}

    Ta có:

    y' = \frac{{ - 3}}{{{{\left( {x + 1} ight)}^2}}} < 0,\forall x \in D

    Do y’ không đổi dấu nên hàm số không có cực trị.

  • Câu 30: Vận dụng

    Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 31: Vận dụng cao

    Cho hàm số y = f(x) như hình vẽ. Hỏi có tất cả bao nhiêu giá trị thực của tham số m để hàm số f\left( {{x^3} - m{x^2} - 2x + m} ight) có đúng 6 điểm cực trị?

    Điều kiện của m để hàm số có 6 cực trị

    Xét hàm số g\left( x ight) = f\left( {{x^3} - m{x^2} - 2x + m} ight)

    g'\left( x ight) = \left( {3{x^2} - 2mx - 2} ight).f'\left( {{x^3} - m{x^2} - 2x + m} ight)

    Yêu cầu bài toán xảy ra khi phương trình đạo hàm phải có 6 nghiệm bội lẻ:

    Ta có:

    g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {3{x^2} - 2mx - 2 = 0} \\   {f'\left( {{x^3} - m{x^2} - 2x + m} ight) = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {3{x^2} - 2mx - 2 = 0\left( * ight)} \\   \begin{gathered}  {x^3} - m{x^2} - 2x + m =  - 1{\text{  }} \hfill \\  {x^3} - m{x^2} - 2x + m = 1{\text{    }} \hfill \\ \end{gathered}  \end{array}} ight.

    Phương trình (*) luôn có hai nghiệm phân biệt => Hai phương trình còn lại phải cho đúng 4 nghiệm nghiệm bội lẻ.

    \left[ {\begin{array}{*{20}{c}}  {{x^3} - m{x^2} - 2x + m =  - 1{\text{ }}} \\   {{x^3} - m{x^2} - 2x + m = 1{\text{ }}} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\left( {x - 1} ight)\left[ {{x^2} - \left( {m - 1} ight)x - m - 1} ight] = 0{\text{   }}\left( 1 ight)} \\   {\left( {x - 1} ight)\left[ {{x^2} - \left( {m + 1} ight)x + m - 1} ight] = 0{\text{    }}\left( 2 ight)} \end{array}} ight.

    Nhận thấy hai phương trình (1), (2) luôn cho hai nghiệm phân biệt vafcacs nghiệm của hai phương trình này không trùng nhau.

    Để hai phương trình có đúng 4 nghiệm bội lẻ thì:

    TH1: x = 1 là nghiệm của (x – 1)[x2 – (m – 1)x – m – 1] = 0 và x = -1 không phải là nghiệm của (x – 1)[x2 – (m + 1)x + m – 1] = 0

    TH2: x = -1 là nghiệm của (x – 1)[x2 – (m + 1)x + m – 1] = 0 và x = 1 không phải là nghiệm của (x – 1)[x2 – (m – 1)x - m – 1] = 0

    => \left[ {\begin{array}{*{20}{c}}  {\left\{ {\begin{array}{*{20}{c}}  {1 - \left( {m - 1} ight) - m - 1 = 0} \\   {1 + \left( {m + 1} ight) + m - 1 e 0} \end{array}} ight.} \\   {\left\{ {\begin{array}{*{20}{c}}  {1 - \left( {m - 1} ight) - m - 1 e 0} \\   {1 + \left( {m + 1} ight) + m - 1 = 0} \end{array}} ight.} \end{array}} ight.\left[ {\begin{array}{*{20}{c}}  {\left\{ {\begin{array}{*{20}{c}}  {m = \dfrac{1}{2}} \\   {m e  - \dfrac{1}{2}} \end{array}} ight.} \\   {\left\{ {\begin{array}{*{20}{c}}  {m e \dfrac{1}{2}} \\   {m =  - \dfrac{1}{2}} \end{array}} ight.} \end{array}} ight. \Rightarrow m \pm \frac{1}{2}

    Vậy có hai giá thực của m thỏa mãn

  • Câu 32: Vận dụng cao

    Cho hàm số y = f(x) liên tục trên và y = f’(x) có bảng biến thiên như sau:

    Tính số tiệm cận đứng của đồ thị hàm số

    Đồ thị hàm số g\left( x ight) = \frac{{2020}}{{f\left( x ight) - m}} có nhiều nhất bao nhiêu tiệm cận đứng:

    Điều kiện f\left( x ight) e m

    Để đồ thị hàm số g\left( x ight) = \frac{{2020}}{{f\left( x ight) - m}} có đường tiệm cận đứng f\left( x ight) = m thì phải có nghiệm.

    Từ bảng biến thiên của hàm số y = f’(x) suy ra phương trình f’(x) = 0 có đúng hai nghiệm là \left[ {\begin{array}{*{20}{c}}  {x = a} \\   {x = b} \end{array}} ight. với - 1 < a < 0 < b

    Từ đó ta có bảng biến thiên của hàm số y = f(x) như sau:

    Tính số tiệm cận đứng của đồ thị hàm số

    => Phương trình y = f(x) có nhiều nhất ba nghiệm phân biệt

    Vậy đồ thị hàm số g\left( x ight) = \frac{{2020}}{{f\left( x ight) - m}} có nhiều nhất ba đường tiệm cận đứng.

  • Câu 33: Vận dụng

    Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức h(t) = 24t +5t^{2} - \frac{t^{3}}{3}. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.

    Đáp án: 15

    Đáp án là:

    Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức h(t) = 24t +5t^{2} - \frac{t^{3}}{3}. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.

    Đáp án: 15

    Ta có:

    h'(t) = 24 + 10t -t^{2}

    h'(t) = 0

    \Leftrightarrow 24 + 10t - t^{2} = 0\Leftrightarrow \left\lbrack \begin{matrix}t = - 2(ktm) \\t = 12(tm) \\\end{matrix} ight.

    Bảng biến thiên:

    Mực nước lên cao nhất thì phải mất 12 giờ.

    Hay mực nước lên cao nhất là lúc 20 giờ.

    Vậy phải thông báo cho dân di dời vào 15giờ chiều cùng ngày.

  • Câu 34: Thông hiểu

    Cho hàm số y = \frac{ax - b}{x -
c} có đồ thị như hình vẽ:

    Tính giá trị biểu thức T = a + b +
c?

    Từ đồ thị hàm số đã cho ta thấy đường tiệm cận đứng x = 2, đường tiệm cận ngang y = - 1

    Xét hàm số y = \frac{ax - b}{x -
c} đồ thị có tiệm cận đứng x =
c và tiệm cận ngang y =
a

    suy ra c = 2;a = - 1

    Đồ thị hàm số y = \frac{ax - b}{x -
c} đi qua điểm (1;0) \Rightarrow \frac{a.1 - b}{1 - c} = 0
\Leftrightarrow a + b = 0 \Leftrightarrow b = 1

    Vậy T = - 1 + 1 + 2 = 2.

  • Câu 35: Thông hiểu

    Đồ thị hàm số nào sau đây có ba đường tiệm cận?

    Ta có: Đồ thị hàm số y = \frac{1}{{4 - {x^2}}} có 3 đường tiệm cận trong đó

    Tiệm cận đứng là x = 2 và x = -2

    Tiệm cận ngang là y = 0

  • Câu 36: Thông hiểu

    Cho hàm số y = f(x)f'(x) = x^{2021}.(x - 1)^{2020}(x + 1);\forall
x\mathbb{\in R}. Hàm số đã cho có bao nhiêu điểm cực trị?

    Ta có: f'(x) = 0 \Rightarrow
x^{2021}.(x - 1)^{2020}(x + 1) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Dựa vào bảng biến thiên ta có hàm số y =
f(x) có hai điểm cực trị.

  • Câu 37: Thông hiểu

    Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ sau:

    Khi đó số điểm cực trị của hàm số y =
\left| f(x) ight| là:

    Từ giả thiết ta có đồ thị của hàm số y =
\left| f(x) ight| như sau:

    Vậy hàm số y = \left| f(x)
ight| có ba điểm cực trị.

  • Câu 38: Thông hiểu

    Tính tổng S tất cả các giá trị nguyên của tham số m để hàm số y = \frac{1}{3}x^{3} - (m - 1)x^{2} + x -
m đồng biến trên tập xác định?

    Tập xác định D\mathbb{= R}

    Ta có: y' = x^{2} - 2(m - 1)x +
1

    Để hàm số đồng biến trên tập xác định thì y' \geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \Delta' \geq 0
\Leftrightarrow m^{2} - 2m \geq 0 \Leftrightarrow 0 \leq m \leq
2

    m\mathbb{\in Z} nên m \in \left\{ 0;1;2 ight\}

    Vậy S = 0 + 1 + 2 = 3.

  • Câu 39: Thông hiểu

    Tìm giá trị nhỏ nhất của hàm số f\left( x ight) = \frac{2}{{{x^2}}} - \frac{1}{{2x - 2}} trên khoảng (0; 1)

    Hàm số xác định và liên tục trên (0; 1) ta có:

    \begin{matrix}  f'\left( x ight) = \dfrac{{ - 4}}{{{x^3}}} + \dfrac{1}{{2{{\left( {x - 1} ight)}^2}}} \hfill \\  f'\left( x ight) = 0 \hfill \\   \Leftrightarrow {x^3} - 8{x^2} + 16x - 8 = 0 \hfill \\   \Leftrightarrow \left( {x - 2} ight)\left( {{x^2} - 6x + 4} ight) = 0 \hfill \\   \Rightarrow x = 3 - \sqrt 5  \hfill \\ \end{matrix}

    Lập bảng biến thiên:

    Tìm Min của f(x) trên khoảng

    Từ bảng biến thiên ta có: \mathop {\min }\limits_{\left( {0;1} ight)} f\left( x ight) = \frac{{11 + 5\sqrt 5 }}{4}

  • Câu 40: Nhận biết

    Gọi giá trị nhỏ nhất của hàm số y =
\frac{x - 1}{x + 1} trên đoạn \lbrack 0;3brackm. Chọn khẳng định đúng?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    Ta có: y' = \frac{2}{(x + 1)^{2}}
> 0;\forall x \in D

    Suy ra hàm số đồng biến trên \lbrack
0;3brack suy ra \min_{\lbrack
0;3brack}y = f(0) = - 1 = m

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo