Cho hàm số
xác định, liên tục trên
và có đồ thị như hình vẽ

Giá trị lớn nhất của hàm số
trên
là
Từ đồ thị hàm số, ta thấy hàm số đạt giá trị lớn nhất bằng 3 tại x = 1.
Cho hàm số
xác định, liên tục trên
và có đồ thị như hình vẽ

Giá trị lớn nhất của hàm số
trên
là
Từ đồ thị hàm số, ta thấy hàm số đạt giá trị lớn nhất bằng 3 tại x = 1.
Đồ thị của hàm số nào trong bốn hàm số sau có đường tiệm ngang?
Ta có:
không có tiệm cận ngang vì
không có tiệm cận ngang vì
không có tiệm cận ngang vì
có tiệm cận ngang vì
Cho đồ thị hàm số như hình vẽ dưới đây:

Đồ thị hàm số tương ứng với hàm số nào sau đây?
Từ đồ thị hàm số ta có tiệm cận đứng là x = 1, tiệm cận ngang là y = 1
=> Loại A và B
Xét thấy giao điểm của đồ thị hàm số với trục tung là (0; -2) => Chọn đáp án C
Cho hàm số bậc ba có bảng biến thiên như sau:

Chọn khẳng định đúng?
Quan sát bảng biến thiên ta suy ra a < 0
Ta có: có hai nghiệm dương nên
Trong các hàm số sau, hàm số nào đồng biến trên
?
Ta có:
Ta có: y’ = 0 chỉ tại x = 1
Vậy đồng biến trên
Cho hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Ta có:
Suy ra hàm số đồng biến trên mỗi khoảng và
.
Tìm giá trị của tham số
để hàm số
nghịch biến trên
?
Đặt
hay
Bài toán trở thành tìm m để hàm số đồng biến trên
Tập xác định
Ta có: . Hàm số
đồng biến trên
Vậy đáp án cần tìm là .
Cho hàm số
xác định và liên tục trên đoạn
và có đạo hàm
trên khoảng
. Đồ thị của hàm số
như hình vẽ sau:

Mệnh đề nào sau đây đúng?
Dựa vào đồ thị ta thấy và dấu “=” chỉ xảy ra tại
nên hàm số đồng biến trên khoảng
.
Cho hàm số
với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của
sao cho đồ thị của hàm số có
điểm cực trị. Tính tổng tất cả các phần tử của tập hợp
?
Cho hàm số với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của
sao cho đồ thị của hàm số có
điểm cực trị. Tính tổng tất cả các phần tử của tập hợp
?
Cho hàm số
có bảng biến thiên như sau:

Hàm số đạt cực tiểu tại điểm
Từ bảng biến thiên, hàm số đạt cực tiểu tại điểm .
Hình vẽ nào sau đây là đồ thị của hàm số
với
?
Với thì đồ thị hàm số
theo thứ tự tiếp xúc với trục hoành tại điểm có hoành độ
và
Mặt khác với thì
nên khi
thì đồ thị hàm số nằm phía dưới trục hoành
Vậy đồ thị hàm số cần tìm là .
Cho hình vẽ là đồ thị hàm số có dạng ![]()

Giá trị của biểu thức
có thể nhận giá trị nào trong các giá trị sau?
Đồ thị hàm số đi qua điểm =>
Ta có:
Chi phí nhiên liệu của một chiếc thuyền chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng
nghìn đồng trên một giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi
thì phần thứ hai bằng
nghìn đồng/giờ.
Xét tính đúng sai của các mệnh đề sau:
a) Khi vận tốc
thì chi phí nguyên liệu cho phần thứ nhất trên
đường sông là
đồng. Đúng||Sai
b) Hàm số xác định tổng chi phí nguyên liệu trên
đường sông với vận tốc
là
. Sai||Đúng
c) Khi vận tốc
thì tổng chi phí nguyên liệu trên
đường sông là
đồng. Đúng||Sai
d) Vận tốc của tàu để tổng chi phí nguyên liệu trên
đường sông nhỏ nhất là
. Đúng||Sai
Chi phí nhiên liệu của một chiếc thuyền chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng nghìn đồng trên một giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi
thì phần thứ hai bằng
nghìn đồng/giờ.
Xét tính đúng sai của các mệnh đề sau:
a) Khi vận tốc thì chi phí nguyên liệu cho phần thứ nhất trên
đường sông là
đồng. Đúng||Sai
b) Hàm số xác định tổng chi phí nguyên liệu trên đường sông với vận tốc
là
. Sai||Đúng
c) Khi vận tốc thì tổng chi phí nguyên liệu trên
đường sông là
đồng. Đúng||Sai
d) Vận tốc của tàu để tổng chi phí nguyên liệu trên đường sông nhỏ nhất là
. Đúng||Sai
a) Đúng: Thời gian tàu chạy quãng đường 1 km là: (giờ)
Chi phí tiền nhiên liệu cho phần thứ nhất là: (đồng).
b) Sai: Gọi x (km/h) là vận tốc của tàu, x > 0
Thời gian tàu chạy quãng đường 1 km là: (giờ)
Chi phí tiền nhiên liệu cho phần thứ nhất là: (nghìn đồng)
Hàm chi phí cho phần thứ hai là (nghìn đồng/ giờ)
Khi (nghìn đồng/ giờ)
Do đó chi phí phần 2 để chạy 1 km là: (nghìn đồng)
Vậy tổng chi phí ,
c) Đúng. Tổng chi phí
Thay ta được
(nghìn đồng).
d) Đúng
Dấu ’’=’’ xảy ra khi x = 20.
Cho hàm số y = f(x) liên tục trên
và có bảng biến thiên như hình vẽ. Tìm tất cả các giá trị của tham số m để phương trình
có đúng hai nghiệm phân biệt.

Để phương trình có hai nghiệm phân biệt thì
Trong các hàm số sau, đồ thị của hàm số nào có tiệm cận đứng?
Xét hàm số có
Tập xác định
suy ra
là tiệm cận đứng của hàm số.
Tìm tất cả các giá trị của tham số
để hàm số
đạt cực tiểu tại
?
Tập xác định
Ta có:
Hàm số đạt cực tiểu tại
Lại có:
Để hàm số đạt cực tiểu tại thì
thỏa mãn.
vậy giá trị m cần tìm là .
Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Giá trị biểu thức
là:
Ta có: nên hàm số đồng biến trên
.
Cho hàm số y = f(x) có đạo hàm f’(x) = x2 + 1,
. Mệnh đề nào dưới đây đúng?
Ta có:
f’(x) = x2 + 1 > 0,
=> Hàm số đống biến trên khoảng (-∞; +∞)
Tập hợp tất cả các giá trị thực của tham số
để hàm số
đồng biến trên khoảng
là:
Tập xác định
Ta có:
Hàm số đồng biến trên khoảng
Xét hàm số trên khoảng
.
Ta có:
Ta có bảng biến thiên
Dựa vào bảng biến thiên ta có:
Vậy thỏa mãn yêu cầu bài toán.
Cho
hàm số có
. Hàm số
đồng biến trên khoảng nào dưới đây?
Xét dấu f’(x) như sau:

Ta có:
Chọn ta có:
=> là khoảng âm
Khi đó bảng xét dấu của y’ = (f(x2))’ như sau:

Từ trục xét dấu ta thấy. Hàm số y = f(x2) đồng biến trên (-1; 0)
Đồ thị của hàm số nào dưới đây có dạng như trong hình vẽ?

Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng với
Vậy hàm số cần tìm là .
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
là:
Điều kiện xác định của hàm số
Tập xác định
suy ra đồ thị hàm số có tiệm cận ngang là
.
suy ra
là tiệm cận đứng của đồ thị hàm số
suy ra
không là tiệm cận đứng.
Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hám số là .
Cho hàm số
có đồ thị là đường cong như hình vẽ:

Tìm số nghiệm của phương trình
?
Ta có:
Số nghiệm của phương trình bằng số giao điểm của hàm số và đường thẳng
Quan sát đồ thị hàm số ta thấy hai đồ thị hàm số cắt nhau tại 3 điểm nên phương trình có ba nghiệm.
Tìm giá trị lớn nhất của hàm số ![]()
Dễ thấy nên hàm số xác định trên toàn trục số.
Gọi m là một giá trị tùy ý của hàm số, khi đó phương trình
Ta xét hai trường hợp sau:
TH1: Nếu m = 2 phương trình trở thành
Vậy phương trình có nghiệm khi m = 2
TH2: Nếu khi đó phương trình bậc 2 có nghiệm khi và chỉ khi:
Cho hình vẽ là đồ thị hàm số
. Hỏi hàm số
đồng biến trên khoảng nào dưới đây?

Từ đồ thị ta có bảng xét dấu
như sau:
Vậy hàm số đồng biến trên khoảng
Cho hàm số
có đồ thị (C). Biết rằng đồ thị (C) có ba điểm cực trị tạo thành ba đỉnh của tam giác ABC. Diện tích tam giác ABC bằng:
Ta có:
Tọa độ các điểm cực trị của đồ thị hàm số là
=> Tam giác ABC vuông cân tại A =>
Cho hàm số y = f(x) liên tục trên và có bảng biến thiên như hình vẽ.

Biết f(-4) > f(8), khi đó giá trị nhỏ nhất của hàm số đã cho trên bằng:
Từ bảng biến thiên ta có:
Mặt khác f(-4) > f(8) => thì
Vậy
Số nào sau đây là điểm cực đại của hàm số
?
Tập xác định
Ta có:
Ta có bảng biến thiên như sau:

Từ bảng biến thiên ta có điểm cực đại của hàm số đã cho là
Giá trị nhỏ nhất của hàm số y = x3 – 3x + 5 trên đoạn [0; 2] là:
Xét hàm số f(x) = x3 – 3x + 5 trên [0; 2] có:
f’(x) = 3x3 – 3
f’(x) = 0 =>
Tính được f(0) = 5; f(1) = 3; f(2) = 7
Vậy
Gọi
là tập tất cả các giá trị nguyên của tham số
để đồ thị hàm số
có đúng ba đường tiệm cận. Tìm số phần tử của tập hợp
?
có một đường tiệm cận ngang là
Để có ba đường tiệm cận thì phải có hai nghiệm phân biệt khác
.
Tức là
Gọi M và m lần lượt là giá trị lớn nhất và giá tị nhỏ nhất của hàm số
trên tập
. Tính giá trị H của m.M
Tập xác định của hàm số y là:
Ta có:
Ta có bảng biến thiên như sau:

Từ bảng biến thiên ta được:
Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
có đúng một tiệm cận đứng?
Đồ thị hàm số có đúng một tiệm cận đứng khi và chỉ khi phương trình
có đúng một nghiệm
Ta có:
Xét hàm số ta có:
Ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra
Mà nên
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho bảng biến thiên như hình vẽ:

Bảng biến thiên trên là của hàm số nào?
Đồ thị hàm số đạt cực trị tại điểm x = 0 và x = 2
=> Loại đáp án C và D
Quan sát bảng biến thiên
=> Loại đáp án B
Để hàm số
đạt cực tiểu tại
thì tham số
thuộc khoảng nào sau đây?
Ta có: . Để hàm số
đạt cực tiểu tại
thì
Vậy đáp án cần tìm là .
Đường thẳng
là đường tiệm cận của đồ thị hàm số nào sau đây?
có
suy ra
là tiệm cận ngang của đồ thị hàm số. (Loại)
có
nên đồ thị hàm số không có tiệm cận ngang (loại)
có
suy ra
là tiệm cận ngang (Thỏa mãn).
Vậy đường thẳng là đường tiệm cận của đồ thị hàm số
.
Cho hàm số
xác định và liên tục trên
và có đồ thị của hàm số
là đường cong như hình vẽ sau:

Chọn khẳng định đúng?
Từ đồ thị hàm số ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra khẳng định đúng là: “Hàm số nghịch biến trên khoảng
”.
Cho hàm bậc ba
có đồ thị như hình vẽ:

Hỏi đồ thị hàm số
có bao nhiêu đường tiệm cận?
Cho hàm bậc ba có đồ thị như hình vẽ:
Hỏi đồ thị hàm số có bao nhiêu đường tiệm cận?
Gọi
là giá trị của tham số
để đồ thị hàm số
có hai điểm cực trị là
sao cho diện tích tam giác
bằng
(
là gốc tọa độ). Khi đó giá trị biểu thức
bằng:
Tập xác định .
Ta có:
Ta có bảng biến thiên như sau:
Suy ra
Đường thẳng (PQ) đi qua điểm và nhận
làm một vecto pháp tuyến nên có phương trình
Theo bài ra ta có diện tích tam giác OPQ bằng 2 nên ta có phương trình:
Vậy .
Cho hàm số
có bảng biến thiên như sau:

Hàm số
đồng biến trên khoảng nào sau đây?
Ta có:
Vậy hàm số đồng biến trên các khoảng
Suy ra hàm số đồng biến trên khoảng
.
Cho hàm số
với
là tham số. Gọi
tập hợp tất cả các giá trị nguyên của tham số
thỏa mãn
. Số phần tử của tập hợp
bằng:
Ta có:
Đạo hàm
và
Suy ra
Mà
Vậy có tất cả 11 giá trị nguyên của tham số m.