Giá trị nhỏ nhất của hàm số
trên
là:
Ta có: nên hàm đồng biến trên
Do đó
Giá trị nhỏ nhất của hàm số
trên
là:
Ta có: nên hàm đồng biến trên
Do đó
Cho hàm số y = f(x) liên tục trên và y = f’(x) có bảng biến thiên như sau:

Đồ thị hàm số
có nhiều nhất bao nhiêu tiệm cận đứng:
Điều kiện
Để đồ thị hàm số có đường tiệm cận đứng
thì phải có nghiệm.
Từ bảng biến thiên của hàm số y = f’(x) suy ra phương trình f’(x) = 0 có đúng hai nghiệm là với
Từ đó ta có bảng biến thiên của hàm số y = f(x) như sau:

=> Phương trình y = f(x) có nhiều nhất ba nghiệm phân biệt
Vậy đồ thị hàm số có nhiều nhất ba đường tiệm cận đứng.
Cho hàm số
có bảng biến thiên như sau:

Hàm số đã cho đạt cực đại tại điểm nào dưới đây?
Từ bảng biến thiên ta thấy hàm số đạt cực đại tại .
Hàm số
nghịch biến trên khoảng
khi và chỉ khi:
Tập xác định
Ta có:
Hàm số nghịch biến trên khoảng
Vậy là giá trị cần tìm.
Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm
với mọi
. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số
nghịch biến trên khoảng
?
Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm với mọi
. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số
nghịch biến trên khoảng
?
Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?

Đồ thị hàm số là hàm số bậc với
.
Cho hàm số
xác định trên
liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:

Số đường tiệm cận của đồ thị hàm số
bằng:
Dựa vào bảng biến thiên ta thấy có 4 nghiệm phân biệt nên đồ thị hàm số
có 4 đường tiệm cận đứng.
Ngoài ra nên đồ thị hàm số
có hai đường tiệm cận ngang.
Vậy số đường tiệm cận của đồ thị hàm số bằng 6.
Tìm hàm số tương ứng với đồ thị được cho trong hình vẽ sau?

Dựa vào đồ thị đã cho trong hình vẽ ta thấy đường tiệm cận ngang của đồ thị là và đường tiệm cận đứng của đồ thị là
.
Đồ thị hàm số đi qua điểm nên hàm số cần tìm là
.
Cho một tấm nhôm hình vuông có cạnh là
. Người ta cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là
, sau đó gập tấm nhôm lại để tạo thành một chiếc hộp không nắp. Tìm
để thể tích chiếc hộp là lớn nhất.
Đáp án: 5
Cho một tấm nhôm hình vuông có cạnh là . Người ta cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là
, sau đó gập tấm nhôm lại để tạo thành một chiếc hộp không nắp. Tìm
để thể tích chiếc hộp là lớn nhất.
Đáp án: 5
Chiều cao của chiếc hộp khi gập tấm nhôm là .
Kích thước đáy hai đáy của chiếc hộp là .
Ta có .
Thể tích chiếc hộp là .
.
Bài toán trở thành, tìm
sao cho
là lớn nhất.
Vậy cần cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là để chiếc hộp tạo thành có thể tích lớn nhất.
Có bao nhiêu giá trị nguyên của tham số
để phương trình
có ba nghiệm thực phân biệt?
Đặt
Để có ba nghiệm thực phân biệt thì
có ba nghiệm thực phân biệt
thỏa mãn
Ta có:
Ta có: .
Khi đó
Vậy không có giá trị nguyên của tham số m thỏa mãn.
Cho hàm số
. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là:
Tập xác định
Ta có:
Khi đó:
Gọi
là giá trị của tham số
để đồ thị hàm số
có hai điểm cực trị là
sao cho diện tích tam giác
bằng
(
là gốc tọa độ). Khi đó giá trị biểu thức
bằng:
Tập xác định .
Ta có:
Ta có bảng biến thiên như sau:
Suy ra
Đường thẳng (PQ) đi qua điểm và nhận
làm một vecto pháp tuyến nên có phương trình
Theo bài ra ta có diện tích tam giác OPQ bằng 2 nên ta có phương trình:
Vậy .
Đồ thị hàm số
có bao nhiêu đường tiệm cận?
Điều kiện xác định
Vậy
Xét
Vậy là tiệm cận ngang của đồ thị hàm số.
Xét
Vậy là tiệm cận ngang của đồ thị hàm số.
Vì không tồn tại nên đồ thị hàm số đã cho không có tiệm cận đứng.
Vậy đồ thị hàm số có 2 tiệm cận.
Tìm giá trị của tham số
để hàm số
nghịch biến trên
?
Đặt
hay
Bài toán trở thành tìm m để hàm số đồng biến trên
Tập xác định
Ta có: . Hàm số
đồng biến trên
Vậy đáp án cần tìm là .
Cho hàm số
có hai điểm cực trị
. Tính độ dài đoạn thẳng
?
Ta có:
Nhận thấy phương trình có hai nghiệm phân biệt nên đồ thị hàm số có hai điểm cực trị là
Số nào sau đây là điểm cực đại của hàm số
?
Tập xác định
Ta có:
Ta có bảng biến thiên như sau:

Từ bảng biến thiên ta có điểm cực đại của hàm số đã cho là
Cho hàm số
. Hãy chọn khẳng định đúng?
Tập xác định
Ta có: nên hàm số đồng biến trên các khoảng
và
.
Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Chọn kết luận đúng?
Ta có:
Mà
.
Tìm giá trị lớn nhất của hàm số
trên đoạn [-6; 6]
Xét hàm số g(x) = -x2 – 4x + 5 liên tục trên đoạn [-6; 6]
Ta có: g’(x) = -2x – 4
=> g’(x) = 0 => x = -2 thuộc [-6; 6]
Ta lại có g(x) = 0 => x2 – 4x + 5 = 0 => x = 1 (tm) hoặc x = -5 (tm)
Ta tính được:
Tìm tất cả các giá trị của tham số
để hàm số
nghịch biến trên khoảng
?
Ta có:
Hàm số đã cho nghịch biến trên khoảng khi
nằm trong khoảng hai nghiệm
Vậy đáp án cần tìm là .
Kết luận nào sau đây về tính đơn điệu của hàm số
là đúng?
Ta có:
Do đó hàm số nghịch biến trên các khoảng (-∞; 2) và (2; +∞)
Cho các hàm số sau:
![]()
![]()
Có bao nhiêu hàm số mà đồ thị hàm số tương ứng có đúng một tiệm cận ngang?
Ta có:
có
nên có 1 tiệm cận ngang là
.
có
nên có 2 tiệm cận ngang là
.
có
nên có 1 tiệm cận ngang là
.
có
nên có 1 tiệm cận ngang là
.
Vậy có 3 hàm số mà đồ thị có đúng 1 tiệm cận đứng.
Cho hàm số
có đồ thị của hàm số
như hình vẽ:

Xác định khoảng đồng biến của hàm số
?
Ta có:
Với
Kết hợp với điều kiện ta có:
Với
Kết hợp với điều kiện ta có:
Vậy hàm số đồng biến trên mỗi khoảng
Tính tổng tất cả các nghiệm của phương trình
là:
Xét hàm số
Nên hàm số đồng biến trên
Phương trình có dạng
Vậy tổng tất cả các nghiệm bằng .
Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
cắt trục hoành tại ba điểm phân biệt?
Phương trình hoành độ giao điểm của đồ thị hàm số
Ta cps:
Đặt . Khi đó số nghiệm của phương trình (*) bằng số giao điểm của đồ thị hàm số
và đường thẳng
.
Khảo sát sự biến thiên của hàm số ta có:
Ta có bảng biến thiên
Với thì phương trình (*) có ba nghiệm phân biệt. Mặt khác do m nguyên nên
.
Vậy có 31 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Xác định giá trị thực của tham số
để hàm số
đồng biến trên khoảng
?
Tập xác định
Hàm số đồng biến trên khoảng
Vậy đáp án cần tìm là .
Cho hàm số
có đồ thị như sau:

Hỏi số nghiệm của phương trình
bằng bao nhiêu?
Ta có:
Lại có đường thẳng nằm phía trên gốc tọa độ; song song với trục Ox và cắt đồ thị hàm số
tại 4 điểm nên phương trình
có hai nghiệm.
Trong các hàm số sau, hàm số nào đồng biến trên tập số thực?
Xét hàm số có:
Suy ra hàm số đồng biến trên tập số thực.
Tìm tất cả các giá trị thực của tham số m để hàm số
đồng biến trên khoảng
?
Ta có:
Hàm số đồng biến trên khoảng
Vậy đáp án cần tìm là: .
Hệ thức liên hệ giữa giá trị cực đại
và giá trị cực tiểu
của hàm số
là:
Tập xác định
Ta có:
Lại có nên
là điểm cực tiểu của hàm số.
nên
là điểm cực đại của hàm số.
Do đó .
Đồ thị hàm số
có bao nhiêu đường tiệm cận?
Ta có:
suy ra
là tiệm cận đứng của đồ thị hàm số.
suy ra đồ thị hàm số có tiệm cận ngang là
.
Vậy đồ thị hàm số có hai đường tiệm cận.
Đồ thị hàm số nào sau đây có ba đường tiệm cận?
Ta có: Đồ thị hàm số có 3 đường tiệm cận trong đó
Tiệm cận đứng là x = 2 và x = -2
Tiệm cận ngang là y = 0
Cho hàm số
có đồ thị như hình vẽ sau:

Khi đó, giá trị lớn nhất của hàm số
trên
là:
Đặt
Đồ thị hàm số
cắt trục tung tại điểm:
Ta có:
Vậy đồ thị hàm số cắt trục tung tại điểm
.
Cho hàm số y = f(x) có
và
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: => Đồ thị hàm số đã cho có TCĐ là x = 0
=> Đồ thị hàm số đã cho có TCĐ là x = 2
Cho hàm số
có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Dựa vào bảng biến thiên, hàm số đã cho nghịch biến trên các khoảng và
.
Cho hàm số
liên tục và có đạo hàm trên
. Biết
. Đồ thị hàm số
như hình vẽ:

Hàm số
có bao nhiêu điểm cực trị?
Xét .
Từ đồ thị ta thấy:
Vì hệ số cao nhất của nhỏ hơn 0 nên hệ số cao nhất của
cùng nhỏ hơn 0. Ta có bảng biến thiên:
luôn có đúng 2 nghiệm bội lé.
Số điểm cực trị của hàm số là 5.
Cho hàm số
với
là tham số. Gọi
tập hợp tất cả các giá trị nguyên của tham số
thỏa mãn
. Số phần tử của tập hợp
bằng:
Ta có:
Đạo hàm
và
Suy ra
Mà
Vậy có tất cả 11 giá trị nguyên của tham số m.
Cho hàm số
có bảng biến thiên như sau:

Đồ thị hàm số đã cho có tất cả bao nhiêu đường tiệm cận?
Dựa vào bảng biến thiên ta có: nên đồ thị hàm số đã cho có hai tiệm cận đứng là
và
.
nên đồ thị hàm số đã cho có một tiệm cận ngang là
Vậy đồ thị hàm số đã cho có 3 đường tiệm cận.
Để hàm số
đạt cực tiểu tại
thì tham số
thuộc khoảng nào sau đây?
Ta có: . Để hàm số
đạt cực tiểu tại
thì
Vậy đáp án cần tìm là .