Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng sau:

    Do f'(x) < 0\forall x \in ( -
1;3) nên hàm số f(x) nghịch biến trên khoảng ( -
1;3).

  • Câu 2: Thông hiểu

    Cho hàm số y = \frac{mx - 18}{x -2m}. Giả sử S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng (2; + \infty). Xác định tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \frac{mx - 18}{x -2m}. Giả sử S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng (2; + \infty). Xác định tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Thông hiểu

    Cho hàm số y = - x^{4} + (m - 5)x^{2} +
3m - 1 với m là tham số. Tìm các giá trị nguyên dương tham số m không vượt quá 2020 để hàm số đã cho có ba điểm cực trị?

    Hàm số y = ax^{4} + bx^{2} + c có ba điểm cực trị khi và chỉ khi a.b <
0.

    Để hàm số đa cho có ba điểm cực trị khi và chỉ khi m - 5 > 0 \Leftrightarrow m > 5

    m \in \mathbb{Z}^{+} không vượt quá 2020 nên m \in \left\{ 6;7;...;2019;2020 ight\} suy ra có 2015 giá trị thỏa mãn yêu cầu.

  • Câu 4: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y
= - \frac{1}{3}x^{3} - 2x^{2} + mx - 1 nghịch biến trên \mathbb{R}?

    Ta có:

    y' = - x^{2} - 4x + m

    Hàm số nghịch biến trên \mathbb{R} \Leftrightarrow - x^{2} - 4x + m \leq 0;\forall
x

    \Rightarrow \left\{ \begin{matrix}
- 1 < 0 \\
\Delta \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow 16 + 4m \leq 0 \Leftrightarrow m
\leq - 4

    Vậy đáp án cần tìm là m \leq -
4

  • Câu 5: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)\left( x^{2} - 1ight)(x - 3)^{3};\forall x\mathbb{\in R}. Hỏi hàm số y = f\left( |x| ight) có bao nhiêu cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)\left( x^{2} - 1ight)(x - 3)^{3};\forall x\mathbb{\in R}. Hỏi hàm số y = f\left( |x| ight) có bao nhiêu cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    A picture containing tableDescription automatically generated

    Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Dựa vào bảng biến thiên, hàm số đã cho nghịch biến trên các khoảng ( - \infty; - 1)(0;1).

  • Câu 7: Vận dụng

    Cho hàm số y = f(x) xác định trên \mathbb{R}\left\{ - 1;2
ight\} liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:

    Số đường tiệm cận của đồ thị hàm số y =
\frac{1}{f(x) - 1} bằng:

    Dựa vào bảng biến thiên ta thấy f(x) - 1
= 0 có 4 nghiệm phân biệt nên đồ thị hàm số y = \frac{1}{f(x) - 1} có 4 đường tiệm cận đứng.

    Ngoài ra \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{{f\left( x ight) - 1}} = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{f\left( x ight) - 1}} =  - \frac{1}{2} \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số y = \frac{1}{f(x) - 1} có hai đường tiệm cận ngang.

    Vậy số đường tiệm cận của đồ thị hàm số y
= \frac{1}{f(x) - 1} bằng 6.

  • Câu 8: Thông hiểu

    Đồ thị hàm số nào sau đây có ba đường tiệm cận?

    Ta có: Đồ thị hàm số y = \frac{1}{{4 - {x^2}}} có 3 đường tiệm cận trong đó

    Tiệm cận đứng là x = 2 và x = -2

    Tiệm cận ngang là y = 0

  • Câu 9: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có tiệm cận đứng là:

    Từ bảng biến thiên ta có đồ thị hàm số có đường tiệm cận đứng là x = - 1.

  • Câu 10: Vận dụng cao

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Số TCĐ và TCN của đồ thị hàm số

    Hỏi đồ thị hàm số y = \frac{{{f^2}\left( x ight)\sqrt {{x^2} + x} }}{{\left[ {{f^2}\left( x ight) - 2f\left( x ight)} ight]\left( {2{x^5} + {x^4} - 10{x^3} - 5{x^2} + 8x + 4} ight)}} có bao nhiêu tiệm cận đứng và tiệm cận ngang?

    Dựa vào bảng biến thiên ta có: f\left( x ight) = a{x^2}\left( {x + 1} ight)\left( {x - 2} ight)

    Ta có:

    \begin{matrix}  y = \dfrac{{{f^2}\left( x ight)\sqrt {{x^2} + x} }}{{\left[ {{f^2}\left( x ight) - 2f\left( x ight)} ight]\left( {2{x^5} + {x^4} - 10{x^3} - 5{x^2} + 8x + 4} ight)}} \hfill \\   \Rightarrow y = \dfrac{{a{x^2}\left( {x + 1} ight)\left( {x - 2} ight)\sqrt {{x^2} + x} }}{{\left[ {f\left( x ight) - 2} ight]\left( {{x^2} - 4} ight)\left( {{x^2} - 1} ight)\left( {2x + 1} ight)}} \hfill \\   \Rightarrow y = \dfrac{{a{x^2}\sqrt {{x^2} + x} }}{{\left[ {f\left( x ight) - 2} ight]\left( {x + 2} ight)\left( {x - 1} ight)\left( {2x + 1} ight)}} \hfill \\ \end{matrix}

    Dựa vào bảng biến thiên suy ra phương trình f(x) = 2 có 2 nghiệm x = a hoặc x = b trong đó a < 0, b > 2

    Với điều kiện thì phương trình

    \left[ {f\left( x ight) - 2} ight]\left( {x + 2} ight)\left( {x - 1} ight)\left( {2x + 1} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 2} \\   {x = 1} \\   {x = a} \\   {x = b} \end{array}} ight.

    Do đó đồ thị hàm số có 4 đường tiệm cận đứng

    Mặt khác bậc của tử số nhỏ hơn bậc của mẫu số nên đồ thị hàm số có một tiệm cận ngang là y = 0 => Đồ thị hàm số có 5 đường tiệm cận.

  • Câu 11: Nhận biết

    Cho hình vẽ:

    Hàm số nào sau đây có đồ thị như hình vẽ bên?

    Nhận thấy dạng đồ thị của hàm số bậc ba y
= ax^{3} + bx^{2} + cx + d;(a eq 0)

    Mặt khác đồ thị cắt trục tung tại điểm có tung độ âm nên hàm số tương ứng với đồ thị là y = - x^{3} + 2x -
2.

  • Câu 12: Nhận biết

    Cho hàm số y = f(x) có đồ thị như hình vẽ. Toạ độ điểm cực đại của đồ thị hàm số đã cho là:

    Dựa vào đồ thị hàm số đã cho, tọa độ điểm cực đại của đồ thị hàm số có tọa độ (1;3).

  • Câu 13: Vận dụng cao

    Cho hàm số f(x) có đạo hàm trên \mathbb{R}f'(x) = (x - 1)(x + 3). Có bao nhiêu giá trị nguyên của tham số m \in \lbrack -10;2021brack để hàm số y =f\left( x^{2} + 3x - m ight) đồng biến trên khoảng (0;2)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) có đạo hàm trên \mathbb{R}f'(x) = (x - 1)(x + 3). Có bao nhiêu giá trị nguyên của tham số m \in \lbrack -10;2021brack để hàm số y =f\left( x^{2} + 3x - m ight) đồng biến trên khoảng (0;2)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Thông hiểu

    Đợt xuất khẩu gạo của tính B kéo dài trong 20 ngày. Người ta nhận thấy có lượng xuất khẩu gạo tính theo ngày thứ t được xác định bởi công thức S(t) = t^{3} - 24t^{2} + 144t +
2500. Hỏi trong mấy ngày đó, ngày thứ mấy có số lượng xuất khẩu gạo cao nhất?

    Xét hàm số S(t) = t^{3} - 24t^{2} + 144t
+ 2500 với 1 \leq t \leq
20.

    Ta có: S^{'}(t) = 3t^{2} - 48t +
144

    S^{'}(t) = 0 \Rightarrow 3t^{2} -
48t + 144 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 4 \in \lbrack 1;20brack \\
t = 12 \in \lbrack 1;20brack \\
\end{matrix} ight.

    Lại có: S(1) = 2621;S(4) = 2756;S(12) =
2500;S(20) = 3780.

    Do đó: \max_{\lbrack 1;20brack}S(t) =
S(20) = 3780.

    Vậy ngày thứ 20 là ngày có số lượng gạo xuất khẩu cao nhất.

  • Câu 15: Vận dụng

    Xác định giá trị nhỏ nhất của biểu thức P = 4\left( {{m^2} + {n^2}} ight) - m - n, biết y = {\left( {x + m} ight)^3} + {\left( {x + n} ight)^3} - {x^3} với m,n là tham số và hàm số đồng biến trên \left( { - \infty ; + \infty } ight).

    Ta có:

    \begin{matrix}  y' = 3{\left( {x + m} ight)^2} + 3{\left( {x + n} ight)^2} - 3{x^2} \hfill \\   = 3\left[ {{x^2} + 2\left( {m + n} ight)x + {m^2} + {n^2}} ight] \hfill \\ \end{matrix}

    Hàm số đã cho đồng biến trên \mathbb{R}

    \begin{matrix} y' \geqslant 0;\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \Delta ' = {\left( {m + n} ight)^2} - {m^2} - {n^2} \leqslant 0 \hfill \\   \Rightarrow mn \leqslant 0 \hfill \\ \end{matrix}

    Ta lại có:

    \begin{matrix}  P = 4\left( {{m^2} + {n^2}} ight) - \left( {m + n} ight) \hfill \\   = 4{\left( {m + n} ight)^2} - 8mn - \left( {m + n} ight) \hfill \\   \geqslant 4{\left( {m + n} ight)^2} - \left( {m + n} ight) \hfill \\   = 4{\left( {m + n} ight)^2} - 2.2\left( {m + n} ight).\dfrac{1}{4} + \dfrac{1}{{16}} - \dfrac{1}{{16}} \hfill \\   = {\left[ {2\left( {m + n} ight) - \dfrac{1}{4}} ight]^2} - \dfrac{1}{{16}} \geqslant  - \dfrac{1}{{16}} \hfill \\   \Rightarrow {P_{\min }} =  - \dfrac{1}{{16}} \hfill \\ \end{matrix}

  • Câu 16: Nhận biết

    Cho hàm số y = x^{4} - mx^{2} +
m có đồ thị (C). Tìm tham số m để (C) đi qua điểm M(2;16)?

    Ta có: M(2;16) \in (C) \Leftrightarrow 16
= 2^{4} - m.2^{2} + m \Leftrightarrow 3m = 0 \Leftrightarrow m =
0

    Vậy m = 0.

  • Câu 17: Vận dụng

    Một tạp chí bán được 25 000 đồng một cuốn. Chi phía xuất bản x cuốn tạp chí (bao gồm: lương cán bộ, công nhân viên, …) được cho bởi công thức C\left( x ight) = 0,0001{x^2} - 0,2x + 11000, C(x) được tính theo đơn vị vạn đồng. Chi phí phát hành cho mỗi cuốn là 6 000 đồng. Các khoản thu khi bán tạp chí bao gồm tiền bán tạp chí và 100 triệu đồng nhận được từ quảng cá. Giả sử số cuốn in ra đều được bán hết. Tính số tiền lãi lớn nhất có thể có khi bán tạp chí.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một tạp chí bán được 25 000 đồng một cuốn. Chi phía xuất bản x cuốn tạp chí (bao gồm: lương cán bộ, công nhân viên, …) được cho bởi công thức C\left( x ight) = 0,0001{x^2} - 0,2x + 11000, C(x) được tính theo đơn vị vạn đồng. Chi phí phát hành cho mỗi cuốn là 6 000 đồng. Các khoản thu khi bán tạp chí bao gồm tiền bán tạp chí và 100 triệu đồng nhận được từ quảng cá. Giả sử số cuốn in ra đều được bán hết. Tính số tiền lãi lớn nhất có thể có khi bán tạp chí.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Nhận biết

    Cho hàm số y = f(x) có đồ thị như hình 2. Đường thẳng nào sau đây là đường tiệm cận đứng của đồ thị hàm số đã cho?

    Đường tiệm cận đứng của hàm số là: x =
2

  • Câu 19: Vận dụng cao

    Cho hàm số y = \left| 3x^{4} - 4x^{3} -12x^{2} + m^{2} ight| với m là tham số. Tìm tất cả các giá trị nguyên của tham số m để hàm số đã cho có đúng 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \left| 3x^{4} - 4x^{3} -12x^{2} + m^{2} ight| với m là tham số. Tìm tất cả các giá trị nguyên của tham số m để hàm số đã cho có đúng 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Nhận biết

    Tìm giá trị nhỏ nhất a của hàm số y = x^{4} - x^{2} + 13 trên đoạn \lbrack - 2;3brack?

    Hàm số đã cho liên tục trên \lbrack -
2;3brack

    Ta có: y' = 4x^{3} - 2x = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = \dfrac{1}{\sqrt{2}} \\x = - \dfrac{1}{\sqrt{2}} \\\end{matrix} ight.

    Khi đó: \left\{ \begin{matrix}y( - 2) = 25;y\left( \pm \dfrac{1}{\sqrt{2}} ight) = \dfrac{51}{4} \\y(0) = 13;y(3) = 85 \\\end{matrix} ight.

    Vậy giá trị nhỏ nhất của hàm số là a =
\frac{51}{4}.

  • Câu 21: Thông hiểu

    Cho hàm số có bảng biến thiên như hình vẽ:

    Khẳng định nào sau đây là sai

    Khẳng định nào sau đây là sai?

    Dựa vào bảng biến thiên suy ra hàm số đã cho có hai điểm cực đại và một điểm cực tiểu

    Giá trị lớn nhất của hàm số trên tập số thực bằng 4

    Hàm số có ba cực trị nên ab < 0 mà c = 0 => ab\left( {c + 1} ight) < 0

  • Câu 22: Nhận biết

    Cho hàm số y =\frac{2x + 1}{x - 3}. Mệnh đề nào dưới đây là mệnh đề sai?

    f'(x) = \frac{- 7}{(x - 3)^{2}}< 0;\forall x \in D nên đồ thị hàm số luôn nghịch biến trên các khoảng ( - \infty;3),(3; +\infty).

    Vậy mệnh đề sai là: "Hàm số đồng biến trên \mathbb{R}\backslash\left\{ 3 ight\}".

  • Câu 23: Nhận biết

    Hàm số y = f(x) liên tục trên đoạn \lbrack - 1;3brack và có bảng biến thiên như sau.

    Gọi Mm lần lượt là GTLN và GTNN của hàm số trên \lbrack - 1;3brack. Xét tính đúng sai của các khẳng định sau:

    a) m = f(2) Sai|| Đúng

    b) M = f(4) Sai|| Đúng

    c) m = f( - 1) Đúng||Sai

    d) M = f(0) Đúng||Sai

    Đáp án là:

    Hàm số y = f(x) liên tục trên đoạn \lbrack - 1;3brack và có bảng biến thiên như sau.

    Gọi Mm lần lượt là GTLN và GTNN của hàm số trên \lbrack - 1;3brack. Xét tính đúng sai của các khẳng định sau:

    a) m = f(2) Sai|| Đúng

    b) M = f(4) Sai|| Đúng

    c) m = f( - 1) Đúng||Sai

    d) M = f(0) Đúng||Sai

    Dựa vào bảng biến thiên trên \lbrack -
1;3brack ta có:

    m = f( - 1) = 0

    M = f(0) = 5

  • Câu 24: Thông hiểu

    Hỏi đồ thị của hàm số y = \frac{|x +
1|}{\sqrt{x^{2} + 3} - 2} có tất cả bao nhiêu đường tiệm cận (không xét tiệm cận xiên)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1;1 ight\}

    Ta có: \lim_{x ightarrow \pm
\infty}\frac{|x + 1|}{\sqrt{x^{2} + 3} - 2} = 1 nên đồ thị hàm số có tiệm cận ngang là y = 1

    y = \frac{{\left| {x + 1} ight|}}{{\sqrt {{x^2} + 3}  - 2}} = \frac{{\left| {x + 1} ight|.\left( {\sqrt {{x^2} + 3}  + 2} ight)}}{{{x^2} - 1}}= \left\{ \begin{gathered}
  \frac{{\sqrt {{x^2} + 3}  + 2}}{{x - 1}};x \geqslant  - 1 \hfill \\
   - \frac{{\sqrt {{x^2} + 3}  + 2}}{{x - 1}};x <  - 1 \hfill \\ 
\end{gathered}  ight.

    \lim_{x ightarrow 1^{+}}y = +
\infty;\lim_{x ightarrow 1^{-}}y = + \infty nên đồ thị hàm số có tiệm cận đứng là x = 1

    Vậy đồ thị hàm số có 2 đường tiệm cận.

  • Câu 25: Thông hiểu

    Cho hàm số y = - x^{3} - 3(m + 1)x^{2} +
3(2m - 1)x + 2020. Có bao nhiêu giá trị nguyên của tham số m để hàm số nghịch biến trên ( - \infty; +
\infty)?

    Ta có: y' = - 3x^{2} - 6(m + 1)x +
3(2m - 1)

    Để hàm số đã cho nghịch biến trên ( -
\infty; + \infty)

    \Leftrightarrow y' \leq 0
\Leftrightarrow \Delta' \leq 0

    \Leftrightarrow 9\left( m^{2} + 2m + 1
ight) + 18m - 9 \leq 0

    \Leftrightarrow 9m^{2} + 36m \leq 0
\Leftrightarrow - 4 \leq m \leq 0

    Do m\mathbb{\in Z} nên có tất cả 5 giá trị của m thỏa mãn điều kiện.

  • Câu 26: Thông hiểu

    Cho các hàm số sau:

    y = \frac{\sin x}{x};y =\frac{\sqrt{x^{2} + x + 1}}{x};y = \frac{\sqrt{1 - x}}{x + 1};y = x + 1+ \sqrt{x^{2} - 1}

    Có bao nhiêu hàm số mà đồ thị hàm số tương ứng có đúng một tiệm cận ngang?

    Ta có:

    y = \frac{\sin x}{x}\lim_{x ightarrow \infty}\frac{\sin x}{x} =
0 nên có 1 tiệm cận ngang là y =
0.

    y = \frac{\sqrt{x^{2} + x +
1}}{x}\lim_{x ightarrow +
\infty}\frac{\sqrt{x^{2} + x + 1}}{x} = 1;\lim_{x ightarrow -
\infty}\frac{\sqrt{x^{2} + x + 1}}{x} = - 1 nên có 2 tiệm cận ngang là y = 1;y = - 1.

    y = \frac{\sqrt{1 - x}}{x + 1}\lim_{x ightarrow -
\infty}\frac{\sqrt{1 - x}}{x + 1} = 0 nên có 1 tiệm cận ngang là y = 0.

    y = x + 1 + \sqrt{x^{2} - 1}\lim_{x ightarrow - \infty}\left( x + 1 +
\sqrt{x^{2} - 1} ight) = 1 nên có 1 tiệm cận ngang là y = 1.

    Vậy có 3 hàm số mà đồ thị có đúng 1 tiệm cận đứng.

  • Câu 27: Thông hiểu

    Số điểm cực trị của hàm số f(x) = (x +
2)^{3}(x - 3)^{2}(x - 2)^{5} là:

    Ta có:

    f'(x) = 3(x + 2)^{2}(x - 3)^{2}(x -2)^{5}+ 2(x + 2)^{3}(x - 3)(x - 2)^{5}+ 5(x + 2)^{3}(x - 3)^{2}(x -2)^{4}

    \Leftrightarrow f'(x) = \left\lbrack(x + 2)^{2}(x - 3)(x - 2)^{4} ight brack\left\lbrack 3(x - 3) + 2(x +2)(x - 2) + 5(x + 2)(x - 3) ightbrack

    \Leftrightarrow f'(x) = \left\lbrack(x + 2)^{2}(x - 3)(x - 2)^{4} ightbrack\left\lbrack 3\left( x^{2} -5x + 6 ight) + 2\left( x^{2} - 4 ight) + 5\left( x^{2} - x - 6ight) ightbrack

    \Leftrightarrow f'(x) = \left\lbrack(x + 2)^{2}(x - 3)(x - 2)^{4} ightbrack\left( 3x^{2} - 15x + 18 +2x^{2} - 8 + 5x^{2} - 5x - 30 ight)

    \Leftrightarrow f'(x) = \left\lbrack
(x + 2)^{2}(x - 3)(x - 2)^{4} ightbrack\left( 10x^{2} - 20x - 20
ight)

    Khi đó

    f'(x) = 0

    \Leftrightarrow \left\lbrack (x +
2)^{2}(x - 3)(x - 2)^{4} ightbrack\left( 10x^{2} - 20x - 20 ight)
= 0(*)

    Phương trình (*) có ba nghiệm bội lẻ x =
3;x = 1 \pm \sqrt{3}

    Vậy hàm số ban đầu có ba điểm cực trị.

  • Câu 28: Thông hiểu

    Quan sát đồ thị hàm số y =
f(x):

    Số giá trị nguyên của tham số m để phương trình f(x) + m - 2020 = 0 có hai nghiệm phân là:

    Ta có:

    f(x) + m - 2020 = 0 \Leftrightarrow f(x)
= 2020 - m

    Để phương trình có hai nghiệm \Leftrightarrow \left\lbrack \begin{matrix}
2020 - m = - 4 \\
2020 - m > - 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 2020 \\
m < 2023 \\
\end{matrix} ight.

    m\mathbb{\in Z} nên có tất cả 2023 giá trị của tham số m thỏa mãn yêu cầu để bài.

  • Câu 29: Vận dụng

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số y = {x^3} - 3\left( {m + 1} ight){x^2} + 3\left( {7m - 3} ight)x không có cực trị. Số phần tử của S là:

    Xét hàm số y = {x^3} - 3\left( {m + 1} ight){x^2} + 3\left( {7m - 3} ight)x ta có:

    \begin{matrix}  y' = 3{x^2} - 6\left( {m + 1} ight)x + 3\left( {7m - 3} ight) \hfill \\  y' = 0 \Leftrightarrow {x^2} - 2\left( {m + 1} ight)x + 7m - 3 = 0 \hfill \\ \end{matrix}

    Hàm số đã cho không có cực trị

    => Phương trình y’ = 0 vô nghiệm hoặc có nghiệm kép

    => \Delta ' \leqslant 0 \Rightarrow {\left( {m + 1} ight)^2} - 1\left( {7m - 3} ight) \leqslant 0 \Rightarrow 1 \leqslant m \leqslant 4

    Do m là số nguyên nên m \in \left\{ {1;2;3;4} ight\}

    Vậy tập S có 4 phần tử.

  • Câu 30: Thông hiểu

    Đồ thị hàm số y = \frac{\sqrt{x^{2} - 3x
- 10}}{x - 2} có bao nhiêu đường tiệm cận?

    Điều kiện xác định \left\{ \begin{matrix}
x^{2} - 3x - 10 \geq 0 \\
x - 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x \leq - 2 \\
x \geq 5 \\
\end{matrix} ight.\  \\
x eq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x \leq - 2 \\
x \geq 5 \\
\end{matrix} ight.

    Vậy D = ( - \infty; - 2brack \cup
\lbrack 5; + \infty)

    Xét \lim_{x ightarrow +\infty}\dfrac{\sqrt{x^{2} - 3x - 10}}{x - 2} = \lim_{x ightarrow +\infty}\dfrac{x\sqrt{1 - \dfrac{3}{x} - \dfrac{10}{x^{2}}}}{x - 2}=\lim_{x ightarrow + \infty}\dfrac{\sqrt{1 - \dfrac{3}{x} -\dfrac{10}{x^{2}}}}{1 - \dfrac{2}{x}} = 1

    Vậy y = 1 là tiệm cận ngang của đồ thị hàm số.

    Xét \lim_{x ightarrow -\infty}\dfrac{\sqrt{x^{2} - 3x - 10}}{x - 2} = \lim_{x ightarrow -\infty}\dfrac{- x\sqrt{1 - \dfrac{3}{x} - \dfrac{10}{x^{2}}}}{x - 2}=\lim_{x ightarrow + \infty}\dfrac{- \sqrt{1 - \dfrac{3}{x} -\dfrac{10}{x^{2}}}}{1 - \dfrac{2}{x}} = - 1

    Vậy y = - 1 là tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow
2^{+}}\frac{\sqrt{x^{2} - 3x - 10}}{x - 2};\lim_{x ightarrow
2^{-}}\frac{\sqrt{x^{2} - 3x - 10}}{x - 2} không tồn tại nên đồ thị hàm số đã cho không có tiệm cận đứng.

    Vậy đồ thị hàm số có 2 tiệm cận.

  • Câu 31: Thông hiểu

    Giá trị lớn nhất của hàm số y = \sqrt { - {x^2} + 4x} trên khoảng (0; 3)

    Tập xác định D = \left[ {0;4} ight]

    Xét hàm số y = \sqrt { - {x^2} + 4x} trên khoảng (0;3)

    Ta có:

    \begin{matrix}  y' = \frac{{ - x + 2}}{{\sqrt { - {x^2} + 4x} }} \hfill \\  y' = 0 \Leftrightarrow x = 2 \hfill \\ \end{matrix}

    Ta có bảng biến thiên:

    Tìm GTLN của hàm số

    Trên khoảng (0; 3) giá trị lớn nhất của hàm số y = 2

  • Câu 32: Thông hiểu

    Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) =
\frac{1}{2}x - \sqrt{x + 1} trên đoạn \lbrack 0;3brack. Tổng S = 2M - m bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) =
\frac{1}{2}x - \sqrt{x + 1} trên đoạn \lbrack 0;3brack. Tổng S = 2M - m bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 33: Vận dụng

    Cho hàm số y = \frac{x + 1}{x -
1} có đồ thị như sau:

    Xét tính đúng sai của các khẳng định sau:

    a) là đồ thị của hàm số y = \left| \frac{x + 1}{x - 1} ight|. Đúng||Sai

    b) là đồ thị của hàm số y = \frac{|x + 1|}{x - 1}. Đúng||Sai

    c) là đồ thị của hàm số y = \left| \frac{|x + 1|}{x - 1} ight|. Sai|| Đúng

    d) Đồ thị của hàm số y = \left| \frac{x
+ 1}{x - 1} ight|y = \left|
\frac{|x + 1|}{x - 1} ight| là khác nhau. Sai|| Đúng

    Đáp án là:

    Cho hàm số y = \frac{x + 1}{x -
1} có đồ thị như sau:

    Xét tính đúng sai của các khẳng định sau:

    a) là đồ thị của hàm số y = \left| \frac{x + 1}{x - 1} ight|. Đúng||Sai

    b) là đồ thị của hàm số y = \frac{|x + 1|}{x - 1}. Đúng||Sai

    c) là đồ thị của hàm số y = \left| \frac{|x + 1|}{x - 1} ight|. Sai|| Đúng

    d) Đồ thị của hàm số y = \left| \frac{x
+ 1}{x - 1} ight|y = \left|
\frac{|x + 1|}{x - 1} ight| là khác nhau. Sai|| Đúng

    a) Đồ thị hàm số y = \left| \frac{x +
1}{x - 1} ight|

    - Giữ nguyên phần trên trục Ox.

    - Đối xứng với phần bị bỏ của đồ thị y =
\frac{x + 1}{x - 1} qua trục Ox.

    b) Ta có: y = \frac{|x + 1|}{x - 1} =
\left\{ \begin{matrix}
\frac{x + 1}{x - 1};\ \ \ khi\ x \geq - 1;x eq 1 \\
- \frac{x + 1}{x - 1};\ \ \ khi\ x < - 1 \\
\end{matrix} ight.

    Do đó đồ thị hàm số y = \frac{|x + 1|}{x
- 1} gồm hai phần:

    Phần 1: Đồ thị hàm số y = \frac{x + 1}{x
- 1} với x \geq - 1;x eq
1.

    Phần 2: Đối xứng với phần còn lại của đồ thị y = f(x)với x < −1 qua trục Ox.

    c) Đồ thị y = \left| \frac{|x + 1|}{x -
1} ight| gồm hai phần:

    Phần 1: Giữ nguyên phần trên Ox

    Phần 2: Đối xứng với phần bị bỏ của đồ thị y = \frac{|x + 1|}{x - 1} qua trục Ox.

    d) Đồ thị của hàm số y = \left| \frac{x +
1}{x - 1} ight|y = \left|
\frac{|x + 1|}{x - 1} ight| là giống nhau.

  • Câu 34: Nhận biết

    Cho hình vẽ:

    Đồ thị trong hình đã cho là đồ thị của hàm số nào?

    Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng y = ax^{3} + bx^{2} + cx + d với a > 0 và đồ thị hàm số đi qua điểm (2; - 3) nên hàm số tương ứng với đồ thị trong hình vẽ đã cho là y = x^{3} -3x^{2} + 1.

  • Câu 35: Vận dụng cao

    Cho hai số thực a, b dương thỏa mãn 2\left( {{a^2} + {b^2}} ight) + ab = \left( {a + b} ight)\left( {ab + 2} ight). Giá trị nhỏ nhất của biểu thức T = 4\left( {\frac{{{a^3}}}{{{b^3}}} + \frac{{{b^3}}}{{{a^3}}}} ight) - 9\left( {\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{a^2}}}} ight) bằng:

    Ta có:

    2\left( {\frac{a}{b} + \frac{b}{a}} ight) + 1 = \left( {a + b} ight)\left( {1 + \frac{2}{{ab}}} ight) = a + b + \frac{2}{a} + \frac{2}{b}

    \geqslant 2\sqrt {2\left( {a + b} ight)\left( {\frac{1}{a} + \frac{1}{b}} ight)}  = 2\sqrt {2\left( {2 + \frac{a}{b} + \frac{b}{a}} ight)}

    Đặt t = \frac{a}{b} + \frac{b}{a} \Rightarrow t \geqslant \frac{5}{2}

    \Rightarrow P = 4\left( {{t^3} - 3t} ight) - 9\left( {{t^2} - 2} ight) = 4{t^3} - 9{t^2} - 12t + 18 = f\left( t ight)

    \begin{matrix}  f'\left( t ight) = 12{t^2} - 18t - 12 > 0,\forall t > \dfrac{5}{2} \hfill \\   \Rightarrow f\left( t ight) \geqslant f\left( {\dfrac{5}{2}} ight) =  - \dfrac{{23}}{4} \hfill \\ \end{matrix}

  • Câu 36: Vận dụng

    Số giá trị nguyên của tham số m \in \left[ { - 20;20} ight] để hàm số y = \frac{1}{3}{x^3} + 2{x^2} + \left( {m + 3} ight)x + 2 đồng biến trên \mathbb{R} là:

    Ta có: y' = {x^2} + 4x + m + 3

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 1 > 0} \\   {\left( {{\Delta _{y'}}} ight)' = 4 - \left( {m + 3} ight) < 0} \end{array}} ight. \Leftrightarrow m \geqslant 1 \hfill \\ \end{matrix}

    Kết hợp với điều kiện \left\{ {\begin{array}{*{20}{c}}  {m \in \left[ { - 20;20} ight]} \\   {m \in \mathbb{Z}} \end{array}} ight.

    => Có 20 giá trị của tham số m thỏa mãn điều kiện đề bài.

  • Câu 37: Thông hiểu

    Cho hàm số y =
\frac{mx + 7m - 6}{x + m} với m là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho nghịch biến trên từng khoảng xác định?

    Ta có: y' = \frac{m^{2} - 7m + 6}{(x
+ m)^{2}};\forall x eq - m

    Để hàm số nghịch biến trên từng khoảng xác định thì y' < 0;\forall x eq - m

    \Leftrightarrow m^{2} - 7m + 6 < 0
\Leftrightarrow 1 < m < 6

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 2;3;4;5 ight\}

    Vậy có tất cả 4 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 38: Thông hiểu

    Tìm tất cả các giá trị của tham số m để đường thẳng y = my =
- x^{3} + 6x^{2} tại ba điểm phân biệt?

    Ta có: y = - x^{3} + 6x^{2} \Rightarrow
y' = - 3x^{2} + 12x

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 4 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Để đường thẳng y = - x^{3} +
6x^{2}y = m tại ba điểm phân biệt thì 0 < m <
32.

  • Câu 39: Nhận biết

    Giá trị nhỏ nhất của hàm số y = x^{3} -
3x + 4 trên đoạn \lbrack
0;2brack là:

    Ta có: y' = 3x^{2} - 3 = 0
\Leftrightarrow x = \pm 1

    Lại có: \left\{ \begin{matrix}
f(0) = 4 \\
f(1) = 2 \\
f(2) = 6 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;2brack}y =
2

  • Câu 40: Nhận biết

    Cho hàm số y = f(x) xác định trên \mathbb{R} và có đạo hàm f'(x) = x(x - 1)^{3}(x + 2)^{2}. Tìm số điểm cực trị của hàm số đó?

    Ta có: f'(x) = x(x - 1)^{3}(x +
2)^{2} nên f'(x) = 0 có các nghiệm là x = 0;x = 1;x = -
2f'(x) chỉ đổi dấu khi x qua các nghiệm x = 0;x =
1

    Vậy hàm số đã cho có hai điểm cực trị.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo