Cho hàm số
có đạo hàm
. Hỏi hàm số
có bao nhiêu cực trị?
Cho hàm số có đạo hàm
. Hỏi hàm số
có bao nhiêu cực trị?
Cho hàm số
có đạo hàm
. Hỏi hàm số
có bao nhiêu cực trị?
Cho hàm số có đạo hàm
. Hỏi hàm số
có bao nhiêu cực trị?
Tìm giá trị của tham số m để hàm số
đồng biến trên ![]()
Ta có:
Hàm số đồng biến trên
Cho hàm số
, đồ thị của hàm số
là đường cong như hình vẽ:

Giá trị nhỏ nhất của hàm số
trên đoạn
bằng:
Ta có:
trong đó các nghiệm
là nghiệm đơn và
là nghiệm kép.
nên ta có bảng biến thiên của hàm
như sau:
Vậy .
Cho một tấm nhôm hình vuông có cạnh là
. Người ta cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là
, sau đó gập tấm nhôm lại để tạo thành một chiếc hộp không nắp. Tìm
để thể tích chiếc hộp là lớn nhất.
Đáp án: 5
Cho một tấm nhôm hình vuông có cạnh là . Người ta cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là
, sau đó gập tấm nhôm lại để tạo thành một chiếc hộp không nắp. Tìm
để thể tích chiếc hộp là lớn nhất.
Đáp án: 5
Chiều cao của chiếc hộp khi gập tấm nhôm là .
Kích thước đáy hai đáy của chiếc hộp là .
Ta có .
Thể tích chiếc hộp là .
.
Bài toán trở thành, tìm
sao cho
là lớn nhất.
Vậy cần cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là để chiếc hộp tạo thành có thể tích lớn nhất.
Cho hàm số
có bảng biến thiên như sau:

Mệnh đề nào sau đây đúng?
Dựa vào bảng biến thiên ta suy ra mệnh đề đúng là: “Điểm cực tiểu của đồ thị hàm số là ”.
Cho hàm số
. Tập hợp các giá trị của tham số
để hàm số
nghịch biến trên
là
. Tính giá trị biểu thức
?
Cho hàm số . Tập hợp các giá trị của tham số
để hàm số
nghịch biến trên
là
. Tính giá trị biểu thức
?
Cho hàm số
liên tục trên tập số thực và có bảng biến thiên như sau:

Hỏi có bao nhiêu giá trị nguyên của tham số
để phương trình
có đúng ba nghiệm phân biệt?
Ta có:
Để phương trình có ba nghiệm phân biệt
Vậy có đúng một giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Ta có:
Ta có bảng xét dấu
Suy ra hàm số đồng biến trên khoảng .
Cho hàm số
với
là tham số. Định điều kiện của tham số
để hàm số
có ba điểm cực trị?
Ta có:
Để hàm số có ba điểm cực trị thì đồ thị hàm số
có đúng một cực trị nằm bên phải trục tung => phương trình (*) có 1 nghiệm dương => phương trình (*) có hai nghiệm dương
thỏa mãn
Xác định tâm đối xứng của đồ thị hàm số
?
Ta có:
suy ra tiệm cận ngang là
suy ra tiệm cận đứng là
Tâm đối xứng của đồ thị hàm số là .
Cho hàm số
có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Dựa vào bảng biến thiên, hàm số đã cho nghịch biến trên các khoảng và
.
Cho hàm số
có bảng biến thiên như sau:

Số nghiệm thuộc đoạn
của phương trình
bằng:
Dựa vào bảng biến thiến ta suy ra
Các phương trình (1) và (4) vô nghiệm
Ta có bảng sau:
Phương trình có 4 nghiệm thuộc
Phương trình có 3 nghiệm thuộc
Vậy phương trình đã cho có tất cả 7 nghiệm thuộc đoạn .
Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.
Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.
Cho hàm số
. Tìm
để hàm số đã cho đạt cực đại tại
?
Tập xác định
Ta có:
Để là điểm cực đại của hàm số thì
Với thì
. Vậy
không thỏa mãn.
Với thì
Xét dấu ta được
có điểm cực đại.
Vậy là giá trị cần tìm.
Tìm hàm số tương ứng với đồ thị hàm số sau đây?

Đồ thị hàm số có hệ số và có hai điểm cực trị là
nên chỉ có hàm số
thỏa mãn vì
Khi đó .
Vậy hàm số xác định được là .
Cho hàm số
với
là tham số. Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số nghịch biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Ta có:
Theo yêu cầu bài toán
Mà
Vậy tập hợp T có tất cả 3 phần tử.
Cho hàm số
. Tính giá trị nhỏ nhất của hàm số đã cho trên đoạn
?
Hàm số liên tục trên đoạn
Ta có:
Khi đó nên
.
Cho hàm số
với
là tham số. Gọi
là tập hợp tất cả các giá trị của tham số
để hàm số có giá trị nhỏ nhất trên đoạn
bằng
. Tổng các phần tử của tập hợp
bằng:
Điều kiện
Ta có: . Vì
nên
Suy ra giá trị nhỏ nhất trên đoạn bằng
Kết hợp điều kiện
Vậy nên tổng các phần tử thuộc tập S bằng 1.
Đường cong trong hình vẽ là đồ thị của hàm số nào sau đây?

Từ hình vẽ suy ra đồ thị hàm số bậc 4 trùng phương có hệ số
Đồ thị hàm số đi qua điểm nên hàm số cần tìm là
.
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ:

Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn
?
Từ đồ thị hàm số ta có:
Khi đó .
Cho hàm số
với
là tham số. Có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba cực trị?
Cho hàm số với
là tham số. Có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba cực trị?
Cho hàm số
có đạo hàm liên tục trên
. Biết đồ thị của hàm số
biểu diễn như hình vẽ:

Khi đó hàm số
nghịch biến trên khoảng nào sau đây?
Ta có:
Vậy đáp án cần tìm là .
Hình vẽ nào sau đây là đồ thị của hàm số
với
?
Với thì đồ thị hàm số
theo thứ tự tiếp xúc với trục hoành tại điểm có hoành độ
và
Mặt khác với thì
nên khi
thì đồ thị hàm số nằm phía dưới trục hoành
Vậy đồ thị hàm số cần tìm là .
Biết rằng
. Định giá trị tham số
?
Xét hàm số trên
Hàm số liên tục trên
Ta có:
Do đó hàm số nghịch biến trên khoảng
Vậy là giá trị cần tìm.
Tìm các khoảng nghịch biến của hàm số
?
Tập xác định
Ta có:
Do đó hàm số luôn nghịch biến trên từng khoảng xác định.
Cho hàm số
có đồ thị
. Tìm giá trị
để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của
một khoảng bằng
?
Cho hàm số có đồ thị
. Tìm giá trị
để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của
một khoảng bằng
?
Đồ thị hàm số
có đường tiệm cận ngang qua điểm
khi:
Để đồ thị hàm số có đường tiệm cận ngang là
Đường tiệm cận ngang đi qua nên ta có:
Vậy đáp án đúng là .
Cho hàm số
có bảng biến thiên như sau:

Giá trị cực đại của hàm số đã cho bằng:
Quan sát bảng biến thiên dễ thấy giá trị cực đại của hàm số đã cho bằng 3.
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào dưới đây?
![]() |
Dựa vào đồ thị hàm số ta thấy
=> Hệ số a > 0
=> Loại đáp án B và đáp án D
Mặt khác hàm số có ba điểm cực trị
=> Loại đáp án C
Cho hàm số bậc ba
có đồ thị như hình vẽ:

Có bao nhiêu giá trị của m để hàm số
có 3 tiệm cận đứng?
Cho hàm số bậc ba có đồ thị như hình vẽ:

Có bao nhiêu giá trị của m để hàm số có 3 tiệm cận đứng?
Cho hàm số
có đồ thị
như hình vẽ:

Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên
. Sai||Đúng
b) Hàm số đạt cực đại tại x = −2. Sai||Đúng
c) Giá trị nhỏ nhất của hàm số trên
là
. Đúng||Sai
d) Điểm cực tiểu của hàm số là
. Đúng||Sai
Cho hàm số có đồ thị
như hình vẽ:
Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên . Sai||Đúng
b) Hàm số đạt cực đại tại x = −2. Sai||Đúng
c) Giá trị nhỏ nhất của hàm số trên là
. Đúng||Sai
d) Điểm cực tiểu của hàm số là . Đúng||Sai
a) Sai. Hàm số đồng biến trên và nghịch biến trên
.
b) Sai. Hàm số đạt cực tiểu tại .
c) Đúng.
d) Đúng.
Số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số
là:
Tập xác định
Ta có: nên
là tiện cận ngang của đồ thị hàm số.
suy ra
là tiệm cận đứng của đồ thị hàm số.
Vậy tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là .
Cho hình vẽ:

Đồ thị hàm số tương ứng với hàm số nào sau đây?
Đồ thị hàm số đi qua điểm (1; 3) chỉ có hàm số thỏa mãn.
Giá trị nhỏ nhất của hàm số
trên đoạn
là:
Ta có:
Lại có:
Gọi giá trị nhỏ nhất của hàm số
trên đoạn
là
. Chọn khẳng định đúng?
Tập xác định
Ta có:
Suy ra hàm số đồng biến trên suy ra
Cho hàm số
. Tìm khẳng định đúng?
Ta có:
. Ta có bảng xét dấu như sau:
Dựa vào bảng xét dấu ta suy ra hàm số nghịch biến trên khoảng .
Tìm tiệm cận ngang của đồ thị hàm số
?
Ta có:
Vậy tiệm cận ngang của đồ thị hàm số là đường thẳng
.
Cho đồ thị hàm số
như hình vẽ:

Hỏi hàm số
nghịch biến trên khoảng nào dưới đây?
Theo đồ thị hàm số ta có hàm số đồng biến trên khoảng
và
khi đó:
Mặt khác
Do hàm số nghịch biến nên
Vậy hàm số nghịch biến trên khoảng
.
Số các giá trị nguyên của tham số
để đồ thị hàm số
có ba đường tiệm cận bằng:
Ta có:
nên
là tiệm cận ngang của đồ thị hàm số
Theo yêu cầu bài toán ta suy ra có hai nghiệm phân biệt
Mà
Vậy có 7 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Khoảng cách giữa hai điểm cực trị của đồ thị hàm số
là
Ta có:
⇒ Khoảng cách giữa hai điểm cực trị là .