Cho hàm số
liên tục trên
và có đồ thị như hình vẽ:

Giá trị lớn nhất của hàm số
bằng bao nhiêu?
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Giá trị lớn nhất của hàm số bằng bao nhiêu?
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ:

Giá trị lớn nhất của hàm số
bằng bao nhiêu?
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Giá trị lớn nhất của hàm số bằng bao nhiêu?
Tìm giá trị thực của tham số m để hàm số f(x) = -x3 – 3x2 + m có giá trị nhỏ nhất trên đoạn [-1; 1] bằng 0.
Xét hàm số f(x) = -x3 – 3x2 + m trên đoạn [-1; 1] ta có:
f’(x) = -3x2 – 6x
f’(x) = 0 =>
Ta tính được
Đồ thị của hàm số nào tương ứng với đồ thị trong hình vẽ sau:

Dựa vào đồ thị hàm số ta thấy
Đồ thị hàm số cắt trục tung tại điểm
=> => Loại đáp án
Mặt khác => Hệ số a > 0 => Loại đáp án
Hàm số đạt cực trị tại hai điểm , dựa vào hình vẽ ta thấy
trái dấu
=> Loại đáp án
Vậy đáp án là
Cho hàm số
xác định và liên tục trên
và có bảng biến thiên như hình vẽ:

Tìm giá trị của tham số thực
để phương trình
có ít nhất hai nghiệm thực phân biệt?
Phương trình có ít nhất hai nghiệm thực phân biệt khi và chỉ khi đường thẳng
cắt đồ thị hàm số
tại ít nhất hai điểm phân biệt
Giá trị nhỏ nhất của hàm số
trên đoạn
là:
Ta có:
Lại có:
Cho hàm số
có bảng biến thiên như sau:

Hỏi hàm số
đồng biến trên khoảng nào?
Hàm số có
Từ bảng biến thiên của hàm số ta có bảng biến thiên của hàm số
Dựa vào bảng biến thiên ta có hàm số đồng biến trong khoảng
.
Tìm tiệm cận ngang của đồ thị hàm số
?
Ta có:
Vậy tiệm cận ngang của đồ thị hàm số là đường thẳng
.
Cho hàm số
. Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?
Tập xác định suy ra đồ thị hàm số không có đường tiệm cận ngang và đường tiệm cận xiên
suy ra đồ thị nhận đường thẳng
làm tiệm cận đứng.
Vậy đồ thị hàm số có một đường tiệm cận.
Hàm số tương ứng với đồ thị trong hình vẽ dưới đây là:

Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng với
nên hàm số tương ứng là
.
Cho hàm số
với
là tham số. Gọi
là tập hợp tất cả các giá trị của tham số
để hàm số có giá trị nhỏ nhất trên đoạn
bằng
. Tổng các phần tử của tập hợp
bằng:
Điều kiện
Ta có: . Vì
nên
Suy ra giá trị nhỏ nhất trên đoạn bằng
Kết hợp điều kiện
Vậy nên tổng các phần tử thuộc tập S bằng 1.
Hàm số
nghịch biến trên khoảng
khi:
Tập xác định
Ta có:
Hàm số nghịch biến trên khoảng khi
Vậy đáp án cần tìm là .
Với giá trị nào của tham số
để đồ thị hàm số
đi qua điểm
?
Thay tọa độ điểm vào
ta được:
Vậy giá trị m cần tìm là .
Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm
cách điểm
một khoảng 3 km. Điểm
nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí
cách điểm
một khoảng 3 km. Điểm
cũng thuộc đường bờ biển. Biết rằng
và
(minh hoạ như hình vẽ sau).

Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình
. Trong đó,
là nồng độ,
là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là
và
. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm
trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).
Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm cách điểm
một khoảng 3 km. Điểm
nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí
cách điểm
một khoảng 3 km. Điểm
cũng thuộc đường bờ biển. Biết rằng
và
(minh hoạ như hình vẽ sau).
Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình . Trong đó,
là nồng độ,
là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là
và
. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm
trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).
Cho đồ thị hàm số
như sau:

Hỏi phương trình
có tối đa bao nhiêu nghiệm thực?
Phương trình là phương trình hoành độ giao điểm của đồ thị hàm số
và đường thẳng
Số giao điểm của hai đường bằng số nghiệm của phương trình .
Dựa vào đồ thị hàm số ta thấy đường thẳng cắt đồ thị tại nhiều nhất 5 điểm.
Vậy phương trình có tối đa 5 nghiệm.
Tìm giá trị nhỏ nhất của hàm số
trên
?
Ta có:
. Khi đó:
Vậy .
Đồ thị hàm số
có bao nhiêu đường tiệm cận?
Tập xác định
Vì tập xác định của hàm số không chứa và
nên đồ thị hàm số không có đường tiệm cận ngang.
Lại có: . Vậy đồ thị hàm số có 1 đường tiệm cận đứng
.
Đồ thị (C) của hàm số
có bảng biến thiên như hình vẽ.

Biết tiếp tuyến (C) tại giao điểm của (C) với trục tung song song với đường thẳng
. Giá trị của biểu thức
là:
Do đồ thị hàm số có tiệm cận đứng là x = -1 và tiệm cận ngang y = -3
=> Hàm số có dạng
Do tiếp tuyến song song với đường thẳng
=> 3 – b = 2 => b = 1
Vậy a = -3; b = 1; c = 1 => K = 2
Hàm số
đạt cực tiểu tại
khi:
Ta có: .
Hàm số đạt cực tiểu tại suy ra
Với
Với
Vậy với thì hàm số
đạt cực tiểu tại
.
Cho hàm số
. Hãy chọn khẳng định đúng?
Tập xác định
Ta có: nên hàm số đồng biến trên các khoảng
và
.
Cho hàm số
với
là tham số. Tìm tất cả các giá trị nguyên của tham số
để đồ thị hàm số đã cho có ba đường tiệm cận?
Ta có: suy ra
là một tiệm cận ngang của đồ thị hàm số.
Do đó để đồ thị hàm số có ba đường tiệm cận thì đồ thị hàm số phải có hai tiệm cận đứng.
có hai nghiệm phân biệt khác
Mà nên không tồn tại giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Cho đồ thị hàm số
:

Có bao nhiêu giá trị nguyên của tham số
để phương trình
có ba nghiệm phân biệt?
Ta có:
Để phương trình có ba nghiệm ta phải có
Vậy có 2 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Giá trị lớn nhất của hàm số
trên khoảng ![]()
Ta có:
=> Giá trị lớn nhất của hàm số trên khoảng đã cho bằng 3 khi x = 1
Hàm số nào sau đây đồng biến trên
?
Hàm số có
Tìm các giá trị của tham số
để hàm số
có ba điểm cực trị
;
thỏa mãn
?
Tập xác định
Ta có:
Để hàm số có ba cực trị thì
Suy ra ;
Vậy đáp án đúng là
Hàm số
có bao nhiêu điểm cực trị?
Hàm số là hàm trùng phương có
nên hàm số có ba điểm cực trị.
Một chất điểm chuyển động với quy luật
. Thời điểm
(giây) tại vận tốc
của chuyển động đạt giá trị lớn nhất là:
Ta có:
Ta có bảng biến thiên như sau:
Vậy vận tốc của chuyển động đạt giá trị lớn nhất bằng khi
.
Cho hàm số
là một hàm đa thức có bảng xét dấu
như sau:

Số điểm cực trị của hàm số
.
Ta có .
Số điểm cực trị của hàm số bằng hai lần số điểm cực trị dương của hàm số
cộng thêm 1.
Xét hàm số
Bảng xét dấu hàm số :
Hàm số có 2 điểm cực trị dương.
Vậy hàm số có 5 điểm cực trị.
Cho hàm số
có bảng biến thiên trên đoạn
như sau:

Mệnh đề nào sau đây đúng?
Từ bảng biến thiên ta suy ra
Cho hàm số
có bảng biến thiên như sau:

Đồ thị của hàm số đã cho có bao nhiêu tiệm cận?
Đồ thị của hàm số đã cho có đường tiệm cận.
Hàm số
có bao nhiêu điểm cực trị?
Ta có:
Vì x = -1 là nghiệm bội chẵn nên x = -1 không phải là điểm cực trị của hàm số.
Cho hàm số y = f(x) liên tục trên tập số thực và
. Có bao nhiêu giá trị nguyên của tham số m thuộc [-2020; 2020] để đồ thị hàm số
có tiệm cận ngang nằm bên dưới đường thẳng y = -1.
Điều kiện
Do
Từ đó
Khi đó hàm số g(x) có tiệm cận ngang là đường thẳng
Để tiệm cận ngang tìm được ở trên nằm dưới đường thẳng y = - thì
Vì
Cho hàm số
. Hàm số
có đồ thị như hình vẽ:

Gọi
là tập hợp tất cả các giá trị nguyên dương của tham số
sao cho hàm số
đồng biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Cho hàm số . Hàm số
có đồ thị như hình vẽ:
Gọi là tập hợp tất cả các giá trị nguyên dương của tham số
sao cho hàm số
đồng biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Đồ thị hàm số
có đường tiệm cận ngang qua điểm
khi:
Để đồ thị hàm số có đường tiệm cận ngang là
Đường tiệm cận ngang đi qua nên ta có:
Vậy đáp án đúng là .
Cho hàm số
có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Dựa vào bảng biến thiên, hàm số đã cho nghịch biến trên các khoảng và
.
Cho hàm số
có đạo hàm trên
là
. Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Cho hàm số có đạo hàm trên
là
. Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Cho hàm số
với
là tham số. Tìm các giá trị nguyên dương tham số
không vượt quá
để hàm số đã cho có ba điểm cực trị?
Hàm số có ba điểm cực trị khi và chỉ khi
.
Để hàm số đa cho có ba điểm cực trị khi và chỉ khi
Mà không vượt quá
nên
suy ra có
giá trị thỏa mãn yêu cầu.
Cho hàm số
có bảng xét dấu đạo hàm như sau:

Mệnh đề nào dưới đây đúng?
Hàm số có
đổi dấu từ + sang – khi
đi qua điểm
Vậy hàm số đạt cực đại tại
.
Cho hàm số
xác định trên
liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:

Số đường tiệm cận của đồ thị hàm số
bằng:
Dựa vào bảng biến thiên ta thấy có 4 nghiệm phân biệt nên đồ thị hàm số
có 4 đường tiệm cận đứng.
Ngoài ra nên đồ thị hàm số
có hai đường tiệm cận ngang.
Vậy số đường tiệm cận của đồ thị hàm số bằng 6.
Cho đồ thị hàm số
như hình vẽ:

Hàm số
đồng biến trên khoảng:
Ta có:
Nên suy ra hàm số cũng đồng biến trên .
Cho hình vẽ là đồ thị hàm số
. Hỏi hàm số
đồng biến trên khoảng nào dưới đây?

Từ đồ thị ta có bảng xét dấu
như sau:
Vậy hàm số đồng biến trên khoảng