Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình vẽ:

    Đường trong trong hình vẽ là đồ thị của hàm số nào?

    Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng y = ax^{3} + bx^{2} + cx + d với a > 0

    Vậy hàm số cần tìm là y = x^{3} - 3x +
1.

  • Câu 2: Nhận biết

    Số giao điểm của hai đồ thị hàm số y =
f(x)y = g(x) bằng số nghiệm phân biệt của phương trình nào sau đây?

    Hoành độ giao điểm là nghiệm của phương trình f(x) = g(x) hay f(x) - g(x) = 0.

  • Câu 3: Thông hiểu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Mệnh đề nào sau đây đúng?

    Từ bảng biến thiên của hàm số y =
f(x) ta có: \lim_{x ightarrow -
\infty}f(x) = - \infty;\lim_{x ightarrow + \infty}f(x) = +
\infty nên đồ thị hàm số đã cho không có tiệm cận ngang.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = 4;\mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = 4 \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} f\left( x ight) =  - 1;\mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) =  - 1 \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho không có tiệm cận đứng.

    Vậy đồ thị hàm số đã cho không có tiệm cận.

  • Câu 4: Vận dụng cao

    Cho hàm số bậc bốn có đồ thị như hình vẽ dưới đây:

    Tính số điểm cực trị của hàm số

    Số điểm cực trị của hàm số g\left( x ight) = {x^2}{\left[ {f\left( {{x^2} - 1} ight)} ight]^3} là:

    Ta có:

    \begin{matrix}  g\left( x ight) = 0 \Leftrightarrow {x^2}{\left[ {f\left( {{x^2} - 1} ight)} ight]^3} = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x^2} = 0} \\   {f\left( {{x^2} - 1} ight) = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x^2} = 0} \\   {{x^2} - 1 =  - 1} \\   {{x^2} - 1 \approx  - 0,5} \\   \begin{gathered}  {x^2} - 1 \approx 0,5 \hfill \\  {x^2} - 1 = 1 \hfill \\ \end{gathered}  \end{array}} ight. \hfill \\   \Rightarrow x \in \left\{ {0; \pm \sqrt {0,5} ; \pm \sqrt {1,5} ; \pm \sqrt 2 } ight\} \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu

    Đồ thị hàm số y = x - \sqrt {{x^2} - 4x + 2} có tiệm cận ngang là:

    Tập xác định D = \mathbb{R}

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \left( {x - \sqrt {{x^2} - 4x + 2} } ight) = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{4x - 2}}{{x + \sqrt {{x^2} - 4x + 2} }} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{4 - \dfrac{2}{x}}}{{1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{2}{{{x^2}}}} }} = 2 \hfill \\  \mathop {\lim }\limits_{x \to  - \infty } \left( {x - \sqrt {{x^2} - 4x + 2} } ight) = \mathop {\lim }\limits_{x \to \infty } \left( {1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{4}{{{x^2}}}} } ight) =  - \infty  \hfill \\ \end{matrix}

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  - \infty } x =  - \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } \left( {1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{2}{{{x^2}}}} } ight) = 2 > 0} \end{array}} ight. nên đồ thị hàm số có đường tiệm cận ngang là y = 2.

  • Câu 6: Thông hiểu

    Hàm số y = f(x) liên tục trên tập số thực và có bảng biến thiên như sau:

    Phương trình \left| f\left( 2x^{2} + 3
ight) - 2 ight| = 5 có bao nhiêu nghiệm?

    Gọi g(x) = f\left( 2x^{2} + 3 ight) -
2 ta có: g'(x) =
4x.f'\left( 2x^{2} + 3 ight)

    Suy ra g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
2x^{2} + 3 = - 1 \\
2x^{2} + 3 = 3 \\
\end{matrix} ight.\  \Leftrightarrow x = 0

    Ta có bảng biến thiên

    \left| g(x) ight| = 5
\Leftrightarrow \left\lbrack \begin{matrix}
g(x) = 5 \\
g(x) = - 5 \\
\end{matrix} ight. từ bảng biến thiên ta thấy phương trình có ba nghiệm.

  • Câu 7: Thông hiểu

    Hàm số y = x4 - 2x2 + 1 đồng biến trên khoảng nào?

     Ta có bảng biến thiên như sau:

    Tìm khoảng đồng biến của hàm số

    Hàm số y = x4 – 2x2 + 1 đồng biến trên mỗi khoảng (-1; 0) và (1; +∞)

  • Câu 8: Nhận biết

    Tìm tiệm cận ngang của đồ thị hàm số y =
\frac{x}{x^{2} - 1}?

    Ta có: \lim_{x ightarrow \pm
\infty}\frac{x}{x^{2} - 1} = 0

    Do đó tiệm cận ngang của đồ thị hàm số y
= \frac{x}{x^{2} - 1}y =
0.

  • Câu 9: Thông hiểu

    Biết giá trị lớn nhất của hàm số y =
\frac{x + m^{2}}{x - 2} trên đoạn \lbrack - 1;1brack bằng - 1. Khẳng định nào dưới đây đúng?

    Ta có: y' = \frac{- 2 - m^{2}}{(x -
2)^{2}} < 0 nên giá trị lớn nhất của hàm số y = \frac{x + m^{2}}{x - 2} trên đoạn \lbrack - 1;1brack là: f( - 1) = - 1 \Leftrightarrow \frac{m^{2} - 1}{-
3} = - 1 \Leftrightarrow m = \pm 2 \in ( - 4;3)

    Vậy đáp án cần tìm là m \in ( -
4;3).

  • Câu 10: Vận dụng cao

    Một hòn đảo nằm trong một hồ nước. Biết rằng đường cong tạo nên hòn đảo được mô hình hóa vào hệ trục tọa độ Oxy là một phần của đồ thị hàm số bậc ba f(x).

    Vị trí điểm cực đại là (2;5) với đơn vị của hệ trục là 100m và vị trí điểm cực tiểu là (0;1). Mặt đường chạy trên một đường thẳng có phương trình y = 36 - 9x. Người ta muốn làm một cây cầu có dạng một đoạn thẳng nối từ hòn đảo ra mặt đường. Độ dài ngắn nhất của cây cầu bằng bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 88,3 m

    Đáp án là:

    Một hòn đảo nằm trong một hồ nước. Biết rằng đường cong tạo nên hòn đảo được mô hình hóa vào hệ trục tọa độ Oxy là một phần của đồ thị hàm số bậc ba f(x).

    Vị trí điểm cực đại là (2;5) với đơn vị của hệ trục là 100m và vị trí điểm cực tiểu là (0;1). Mặt đường chạy trên một đường thẳng có phương trình y = 36 - 9x. Người ta muốn làm một cây cầu có dạng một đoạn thẳng nối từ hòn đảo ra mặt đường. Độ dài ngắn nhất của cây cầu bằng bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 88,3 m

    Gọi hàm số bậc ba y = f(x) = ax^{3} +
bx^{2} + cx + d

    \Rightarrow f'(x) = 3ax^{2} + 2bx +
c.

    Vì đồ thị hàm số đi qua hai điểm (0;1)
\Rightarrow d = 1.

    Vì đồ thị hàm số đi qua hai điểm A(2;5)
\Rightarrow 8a + 4b + 2c + 1 = 5.

    Vì hàm số có hai điểm cực trị x = 0;x =
2

    \Rightarrow \left\{ \begin{matrix}
f'(0) = 0 \\
f'(2) = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
c = 0 \\
12a + 4b = 0 \\
\end{matrix} ight. .

    \Rightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 3 \\
\end{matrix} ight.\  \Rightarrow f(x) = - x^{3} + 3x^{2} + 1f'(x) = - 3x^{2} + 6x.

    Gọi M\left( x_{0};y_{0} ight),\ x_{0}
> 0, là điểm nằm trên hòn đảo và nối với mặt đường và d là tiếp tuyến của đồ thị hàm số song song với mặt đường.

    Suy ra M là tiếp điểm của d với y = f(x).

    Đường thẳng y = 36 - 9x có hệ số góc k = - 9

    \Rightarrow f'\left( x_{0} ight) =
- 9 \Leftrightarrow - 3x_{0}^{2} + 6x_{0} = - 9

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = 3 \\
x_{0} = - 1 \\
\end{matrix} ight.\  \Rightarrow M(3;1).

    Độ dài cây cầu ngắn nhất bằng khoảng cách từ điểm M đến đường thẳng 9x + y - 36 = 0.

    h = \frac{|9.3 + 1 - 36|}{\sqrt{9^{2} +
1^{2}}} \approx 0,883.

    Vì đơn vị của hệ trục là 100m nên độ dài ngắn nhất của cây cầu là 88,3m.

  • Câu 11: Thông hiểu

    Cho đồ thị hàm số y = f(x) như hình vẽ:

    Hỏi hàm số y = - 3f(x - 2) nghịch biến trên khoảng nào dưới đây?

    Theo đồ thị hàm số ta có hàm số y =
f(x) đồng biến trên khoảng ( -
\infty;0)(2; + \infty) khi đó:

    \Leftrightarrow f'(x) \geq 0;\forall
x \in ( - \infty;0) \cup (2; + \infty)

    Mặt khác y = - 3f(x - 2) \Leftrightarrow
y' = - 3f'(x - 2)

    Do hàm số y = - 3f(x - 2) nghịch biến nên

    \Leftrightarrow y' \leq 0
\Leftrightarrow - 3f'(x - 2) \leq 0

    \Leftrightarrow f'(x - 2) \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
x - 2 \leq 0 \\
x - 2 \geq 2 \\
\end{matrix} ight.

    \Leftrightarrow x \in ( -
\infty;2brack \cup \lbrack 4; + \infty)

    Vậy hàm số y = - 3f(x - 2) nghịch biến trên khoảng ( -
\infty;1).

  • Câu 12: Vận dụng

    Tìm tập hợp các giá trị thực của m để đồ thị hàm số y = \frac{{x - 1}}{{mx - 1}} có tiệm cận đứng là:

     Điều kiện để đồ thị hàm số có tiệm cận là \left\{ {\begin{array}{*{20}{c}}  {m e 0} \\   { - 1 + m e 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m e 0} \\   {m e 1} \end{array}} ight.

  • Câu 13: Nhận biết

    Hàm số nào dưới đây nghịch biến trên \mathbb{R}?

    Xét hàm số y = - x^{3} - 3x + 1 ta có: y' = - 3x^{2} - 3 < 0;\forall
x\mathbb{\in R}

    Do đó hàm số y = - x^{3} - 3x +
1 nghịch biến trên \mathbb{R}.

  • Câu 14: Vận dụng

    Cho biết \left( P ight):y = {x^2} và điểm A\left( { - 2;\frac{1}{2}} ight). Gọi M là điểm bất kì thuộc (P). Khoảng cách MA nhỏ nhất là:

    M thuộc (P)

    => \begin{matrix}  M\left( {a;{a^2}} ight) \Rightarrow \overrightarrow {AM}  = \left( {a + 2;{a^2} - \dfrac{1}{2}} ight) \hfill \\   \hfill \\ \end{matrix}

    \Rightarrow M{A^2} = {\left( {a + 2} ight)^2} + {\left( {{a^2} - \frac{1}{2}} ight)^2} = {a^4} - 4a + \frac{{17}}{4}

    Xét hàm số f\left( a ight) = {a^4} + 4a + \frac{{17}}{4} ta có:

    \begin{matrix}  f'\left( a ight) = 4{a^3} + a \hfill \\  f'\left( a ight) = 0 \Rightarrow a =  - 1 \hfill \\   \Rightarrow \min f\left( a ight) = f\left( { - 1} ight) = 1 - 4 + \dfrac{{17}}{4} = \dfrac{5}{4} \hfill \\   \Rightarrow M{A_{\min }} = \sqrt {\dfrac{5}{4}}  = \dfrac{{\sqrt 5 }}{2} \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu

    Người ta muốn xây một bể chứa có dạng hình hộp chữ nhật, thể tích 1800m^{3} và chiều sâu 2m (như hình vẽ).

    Biết rằng chi phí xây mỗi đơn vị diện tích của đáy bể gấp hai lần so với thành bể. Gọi x (m) và y (m) là hai kích thước của mặt đáy.

    Xét tính đúng sai của các khẳng định sau:

    a) Thể tích bể chứa được tính theo công thức V = 2x^{2}y . Sai|| Đúng

    b) Mối liên hệ giữa x và y là y =
\frac{900}{x} . Đúng||Sai

    c) Tổng diện tích mặt bên của bể tính theo x, y là S = 4(x + y) . Đúng||Sai

    d) Để tổng chi phí xây dựng (bao gồm mặt đáy và mặt bên) nhỏ nhất thì cần chọn chiều dài là 40m . Sai|| Đúng

    Đáp án là:

    Người ta muốn xây một bể chứa có dạng hình hộp chữ nhật, thể tích 1800m^{3} và chiều sâu 2m (như hình vẽ).

    Biết rằng chi phí xây mỗi đơn vị diện tích của đáy bể gấp hai lần so với thành bể. Gọi x (m) và y (m) là hai kích thước của mặt đáy.

    Xét tính đúng sai của các khẳng định sau:

    a) Thể tích bể chứa được tính theo công thức V = 2x^{2}y . Sai|| Đúng

    b) Mối liên hệ giữa x và y là y =
\frac{900}{x} . Đúng||Sai

    c) Tổng diện tích mặt bên của bể tính theo x, y là S = 4(x + y) . Đúng||Sai

    d) Để tổng chi phí xây dựng (bao gồm mặt đáy và mặt bên) nhỏ nhất thì cần chọn chiều dài là 40m . Sai|| Đúng

    a) Thể tích của bể là V = B.h = xy.\
h.

    b) Với V = xy.h \Rightarrow 1800 = xy.2
\Rightarrow xy = \frac{1800}{2} = 900.

    c) Tổng diện tích mặt bên gồm 4 hình chữ nhật (trước, sau, trái, phải) là:

    \ S = 2x + 2x + 2y + 2y = 4x + 4y = 4(x
+ y)

    d) Tổng diện tích của bể là: 4x + 4y + xy
= 4x + 4.\frac{900}{x} + 900

    Vì chi phí xây mỗi đơn vị diện tích của đáy bể gấp hai lần so với thành bể nên chi phí cần có là 4x +
4.\frac{900}{x} + 2.900

    Đặt f(x) = 4x + 4.\frac{900}{x} +
1800 ta có: f'(x) = 4 -
\frac{3600}{x^{2}} \Rightarrow f'(x) = 0 \Leftrightarrow x =
30 ta có bảng biến thiên như sau:

    Với x = 30m;y = 30 m và thì chi phí xây dựng bể là thấp nhất.

  • Câu 16: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tìm giá trị cực đại và giá trị cực tiểu của hàm số đã cho.

    Từ bảng biến thiên ta có: y_{CÐ} =
0;y_{CT} = - 3.

  • Câu 17: Nhận biết

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 2;2brack có đồ thị như hình vẽ:

    Tìm giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 2;2brack?

    Trên đoạn \lbrack - 2;2brack ta có: f(x) \geq - 1f(x) = - 1 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = 1 \\
\end{matrix} ight.

    Vậy \min_{\lbrack - 2;2brack}y = -
1.

  • Câu 18: Nhận biết

    Giá trị nhỏ nhất của hàm số y =
\frac{x^{2} + x + 4}{x} trên đoạn \lbrack - 3; - 1brack bằng:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 0 ight\} nên hàm số xác định và liên tục trên \lbrack - 3; - 1brack

    Ta có: y' = \frac{x^{2} -
4}{x^{2}};\forall x eq 0

    y' = 0 \Leftrightarrow \frac{x^{2} -
4}{x^{2}} = 0 \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
x = - 2 \\
\end{matrix} ight.

    y( - 3) = - \frac{10}{3};y( - 1) = -
4;y( - 2) = - 3

    \Rightarrow \min_{\lbrack - 3; -
1brack}y = y( - 1) = - 4

  • Câu 19: Vận dụng

    Cho đồ thị hàm số (C):y = \frac{2x + 1}{x
+ 2}. Giả sử M(a;b) \in
(C) có khoảng cách đến đường thẳng d:y = 3x + 6 nhỏ nhất. Chọn khẳng định đúng?

    Ta có: M\left( a;\frac{2a + 1}{a + 2}
ight);(a eq - 2)

    Khoảng cách từ M đến đường thẳng (d) bằng:

    d(M;d) = \dfrac{\left| 3a - \dfrac{2a +1}{a + 2} + 6 ight|}{\sqrt{3^{2} + 1}}= \frac{1}{\sqrt{10}}.\left| 3a+ 6 - \frac{2a + 1}{a + 2} ight|= \frac{1}{\sqrt{10}}.\left|\frac{3a^{2} + 10a + 11}{a + 2} ight|

    Xét hàm số f(a) = \frac{3a^{2} + 10a +
11}{a + 2};(a eq - 2)

    f'(a) = \frac{3\left( a^{2} + 4a + 3
ight)}{(a + 2)^{2}} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
a = - 1 \\
a = - 3 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Vậy giá trị nhỏ nhất của hàm số \left|
f(a) ight| = 4 tại a = -
1

    Vậy \left\{ \begin{matrix}
a = - 1 \\
b = - 1 \\
\end{matrix} ight.\  \Rightarrow a + b = - 2

  • Câu 20: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= \frac{mx - 3}{2x - m} đồng biến trên từng khoảng xác định?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= \frac{mx - 3}{2x - m} đồng biến trên từng khoảng xác định?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 21: Thông hiểu

    Tìm số các giá trị nguyên của tham số m để hàm số y
= x^{4} + 2\left( m^{2} - m - 6 ight)x^{2} + m - 1 có ba điểm cực trị?

    Ta có: y' = 4x^{3} + 4\left( m^{2} -
m - 6 ight)x

    y' = 0 \Leftrightarrow 4x^{3} +
4\left( m^{2} - m - 6 ight)x = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
4x = 0 \\
x^{2} = - m^{2} + m + 6 \\
\end{matrix} ight.

    Hàm số có ba cực trị khi và chỉ khi -
m^{2} + m + 6 > 0 \Leftrightarrow - 2 < m < 3

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1;2 ight\}. Vậy có 4 giá trị của tham số m thỏa mãn.

  • Câu 22: Vận dụng

    Cho hàm số y = \frac{{x + m}}{{x + 1}} với m là tham số thực thỏa mãn 3.\left( {\mathop {\min y}\limits_{\left[ {1;2} ight]}  + \mathop {\max y}\limits_{\left[ {1;2} ight]} } ight) = 16. Mệnh đề nào dưới đây là đúng?

    Xét hàm số y = \frac{{x + m}}{{x + 1}} trên [1; 2] ta có:

    f'\left( x ight) = \frac{{1 - m}}{{{{\left( {x + 1} ight)}^2}}};\forall x \in \left[ {1;2} ight]

    Khi đó:

    \begin{matrix}  \mathop {\min y}\limits_{\left[ {1;2} ight]}  + \mathop {\max y}\limits_{\left[ {1;2} ight]}  = \dfrac{{16}}{3} \hfill \\   \Rightarrow f\left( 1 ight) + f\left( 3 ight) = \dfrac{{16}}{3} \hfill \\   \Rightarrow \dfrac{{1 + m}}{2} + \dfrac{{2 + m}}{3} = \dfrac{{16}}{3} \hfill \\   \Rightarrow m = 5 \hfill \\ \end{matrix}

  • Câu 23: Nhận biết

    Trong các hàm số sau, hàm số nào đồng biến trên tập số thực?

    Xét hàm số y = x^{3} + x có: y' = 3x^{2} + 1 > 0;\forall
x\mathbb{\in R}

    Suy ra hàm số y = x^{3} + x đồng biến trên tập số thực.

  • Câu 24: Vận dụng

    Cho hàm số y = f\left( x ight) có đạo hàm f'\left( x ight) = \left( {{x^2} - 1} ight)\left( {x - 4} ight),\forall x \in \mathbb{R}. Hàm số g\left( x ight) = f\left( {3 - x} ight) có bao nhiêu điểm cực đại?

    Từ giả thiết ta có bảng biến thiên của hàm số f(x)

    Tinh số điểm cực đại của hàm số

    Ta có:

    g(x) = f(3 – x)

    => g’(x) = -f’(3 – x)

    Từ bảng biến thiên của hàm số f(x) ta có:

    g'\left( x ight) \geqslant 0 \Leftrightarrow f'\left( {3 - x} ight) \leqslant 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {3 - x \leqslant 1} \\   {1 \leqslant 3 - x \leqslant 4} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x \geqslant 4} \\   { - 1 \leqslant x \leqslant 2} \end{array}} ight.

    => Ta có bảng biến thiên của hàm số g(x) là:

    Tinh số điểm cực đại của hàm số

    Từ bảng biến thiên ta nhận thấy hàm số g(x) có một điểm cực đại.

  • Câu 25: Thông hiểu

    Một chất điểm chuyển động theo phương trình S = - t^{3} + 9t^{2} + 21t + 9 trong đó t tính bằng giây (s)S tính bằng mét (m). Xét tính đúng sai của các khẳng định sau.

    a) v(t) = - 3t^{2} + 18t + 2. Sai||Đúng

    b) Vận tốc của chất điểm tại giây thứ 2 là 45\ m/s. Đúng||Sai

    c) Vận tốc của chất điểm tại thời điểm gia tốc triệt tiêu là 45\ m/s. Sai||Đúng

    d) Vận tốc chuyển động đạt giá trị lớn nhất tại thời điểm t = 3\ \ (s). Đúng||Sai

    Đáp án là:

    Một chất điểm chuyển động theo phương trình S = - t^{3} + 9t^{2} + 21t + 9 trong đó t tính bằng giây (s)S tính bằng mét (m). Xét tính đúng sai của các khẳng định sau.

    a) v(t) = - 3t^{2} + 18t + 2. Sai||Đúng

    b) Vận tốc của chất điểm tại giây thứ 2 là 45\ m/s. Đúng||Sai

    c) Vận tốc của chất điểm tại thời điểm gia tốc triệt tiêu là 45\ m/s. Sai||Đúng

    d) Vận tốc chuyển động đạt giá trị lớn nhất tại thời điểm t = 3\ \ (s). Đúng||Sai

    a) v(t) = S'(t) = - 3t^{2} + 18t +
21 nên a sai.

    b) Ta có: v(t) = S'(t) = - 3t^{2} +
18t + 2\overset{}{ightarrow}v(2) = 45\ m/s. nên b) đúng

    c) Ta có: a(t) = v'(t) = - 6t + 18 =
0 \Leftrightarrow t = 3\overset{}{ightarrow}v(3) = 48\ m/s. nên c) sai

    Vận tốc v(t) = S'(t) = - 3t^{2} + 18t
+ 21 = - 3(t - 3)^{2} + 48 \leq 48.

    Vậy \max v(t) = 48 khi t = 3.

    Vận tốc chuyển động đạt giá trị lớn nhất khi t = 3\ \ (s). nên d) đúng.

  • Câu 26: Vận dụng cao

    Tìm giá trị của tham số m để đồ thị hàm số y = f\left( x ight) = \frac{{2x + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} có hai đường tiệm cận đứng và hai đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2.

    Tập xác định D = \left( { - \infty ; - 1} ight) \cup \left( {0; + \infty } ight)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{m - \sqrt {{1^2} + \dfrac{3}{{{x^2}}}}  - \dfrac{1}{x}}}{{ - \sqrt {{1^2} + \dfrac{1}{x}} }} = 1 - m \hfill \\  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{m + \sqrt {{1^2} + \dfrac{3}{{{x^2}}}}  - \frac{1}{x}}}{{\sqrt {{1^2} + \dfrac{1}{x}} }} = m + 1 \hfill \\ \end{matrix}

    => Để đồ thị hàm số có 2 đường tiệm cận ngang thì m + 1 e 1 - m \Leftrightarrow m e 0

    \begin{matrix}  \mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{mx + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} =  + \infty  \hfill \\  \mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{mx + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} = \left\{ {\begin{array}{*{20}{c}}  { + \infty {\text{  khi m  <  1}}} \\   { - \infty {\text{  khi m  >  1}}} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy khi m e 0;m e 1 thì đồ thị hàm số có 2 đường tiệm cận ngang là y = m + 1; y = - m và 2 đường tiệm cận đứng là x = 0 và x = -1

    Để hai đường tiệm cận đứng và 2 đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2 thì 1.2\left| m ight| = 2 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {m = 1\left( L ight)} \\   {m =  - 1\left( {tm} ight)} \end{array}} ight.

  • Câu 27: Nhận biết

    Cho hàm số y = f(x) có bảng xét dấu đạo hàm như sau:

    Mệnh đề nào dưới đây đúng?

    Hàm số y = f(x)f'(x) đổi dấu từ + sang – khi f'(x) đi qua điểm x = 1

    Vậy hàm số y = f(x) đạt cực đại tại x = 1.

  • Câu 28: Thông hiểu

    Cho hàm số y = x^{4} - 4x^{2} -
2 có đồ thị (C) và đường thẳng d:y = m. Tất cả các giá trị của tham số m để d cắt (C) tại bốn điểm phân biệt?

    Ta có: y' = 4x^{3} - 8x^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \sqrt{2} \\
x = - \sqrt{2} \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Từ bảng biến thiên ta thấy đồ thị hàm số y = x^{4} - 4x^{2} - 2 cắt đường thẳng d:y = m tại 4 điểm phân biệt \Leftrightarrow - 6 < m < - 2.

  • Câu 29: Thông hiểu

    Đồ thị hàm số y = \frac{\left( m^{2} - 3m
ight)x - 1}{x - 2} có đường tiệm cận ngang qua điểm A(1; - 2) khi:

    Để đồ thị hàm số y = \frac{\left( m^{2} -
3m ight)x - 1}{x - 2} có đường tiệm cận ngang là y = m^{2} - 3m

    Đường tiệm cận ngang đi qua A(1; -
2) nên ta có:

    m^{2} - 3m = - 2 \Leftrightarrow m^{2} -
3m + 2 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 2 \\
\end{matrix} ight.

    Vậy đáp án đúng là \left\lbrack
\begin{matrix}
m = 1 \\
m = 2 \\
\end{matrix} ight..

  • Câu 30: Nhận biết

    Cho hình vẽ:

    Đồ thị trong hình đã cho là đồ thị của hàm số nào?

    Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng y = ax^{3} + bx^{2} + cx + d với a > 0 và đồ thị hàm số đi qua điểm (2; - 3) nên hàm số tương ứng với đồ thị trong hình vẽ đã cho là y = x^{3} -3x^{2} + 1.

  • Câu 31: Nhận biết

    Hàm số y = 2{x^4} - 4 đồng biến trên khoảng

    Ta có y’ = 8x => y’ = 0 => x = 0

    => y’ > 0 => x > 0

    => y’ < 0 => x < 0

    Vậy hàm số đồng biến trên khoảng \left( {0; + \infty } ight)

  • Câu 32: Thông hiểu

    Tìm giá trị thực của tham số m để hàm số y = \frac{1}{3}x^{3} - mx^{2} +
\left( m^{2} - 4 ight)x + 3 đạt cực tiểu tại x = 3?

    Ta có: \left\{ \begin{matrix}
y' = x^{2} - 2mx + m^{2} - 4 \\
y'' = 2x - 2m \\
\end{matrix} ight.

    Để hàm số đạt cực tiểu tại x = 3 thì

    \left\{ \begin{matrix}
y'(3) = 0 \\
y''(3) > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 6m + 5 = 0 \\
6 - 2m > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m = 1 \\
m = 5 \\
\end{matrix} ight.\  \\
m < 3 \\
\end{matrix} ight.\  \Leftrightarrow m = 1

    Vậy giá trị tham số m cần tìm là m =
1.

  • Câu 33: Thông hiểu

    Cho hàm số y = \frac{{x + 2}}{{x - 3}}. Khẳng định nào sau đây sai?

    Ta có tiệm cận đứng của hàm số là y = 3 và tiệm cận ngang là y = 1

    Giao điểm của hai đường tiệm cận I(3; 1) là tâm đối xứng của đồ thị

    => A, C, D đúng và B sai

  • Câu 34: Vận dụng

    Tìm giá trị của tham số m để hàm số y
= \frac{\cot x - 2}{\cot x - m} nghịch biến trên \left( \frac{\pi}{4};\frac{\pi}{2}
ight)?

    Đặt t = \cot x \Rightarrow t' =
\frac{- 1}{sin^{2}x} < 0;\forall x \in \left(
\frac{\pi}{4};\frac{\pi}{2} ight)

    \Rightarrow \cot\frac{\pi}{2} < t <
\cot\frac{\pi}{4} hay 0 < t <
1

    Bài toán trở thành tìm m để hàm số y =
\frac{t - 2}{t - m} đồng biến trên (0;1)

    Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}

    Ta có: y' = \frac{2 - m}{(t -
m)^{2}}. Hàm số y = \frac{t - 2}{t
- m} đồng biến trên (0;1)

    \Leftrightarrow y' > 0;\forall t
\in (0;1) \Leftrightarrow \left\{ \begin{matrix}
2 - m > 0 \\
m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 2 \\
\left\lbrack \begin{matrix}
m \geq 1 \\
m \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Vậy đáp án cần tìm là \left\lbrack
\begin{matrix}
m \leq 0 \\
1 \leq m < 2 \\
\end{matrix} ight..

  • Câu 35: Thông hiểu

    Hàm số y = f(x) có đồ thị như sau:

    Tìm điều kiện của tham số m để phương trình f(x) = m1 nghiệm dương?

    Để số nghiệm dương của phương trình đã cho bằng 1 thì đường thẳng y = m cắt đồ thị hàm số y = f(x) tại một điểm có hoành độ dương \Leftrightarrow \left\lbrack \begin{matrix}
m \leq 0 \\
m = 1 \\
\end{matrix} ight..

  • Câu 36: Vận dụng cao

    Cho f(x) mà đồ thị hàm số y = f’(x) như hình vẽ.

    Hàm số y = f\left( {x - 1} ight) + {x^2} - 2x đồng biến trên khoảng nào trong các đáp án dưới đây?

    Ta có: y = f\left( {x - 1} ight) + {x^2} - 2x

    => y' = f'\left( {x - 1} ight) + 2x - 2

    Hàm số đồng biến khi y' \geqslant 0 \Leftrightarrow f'\left( {x - 1} ight) + 2\left( {x - 1} ight) \geqslant 0\left( * ight)

    Đặt t = x – 1 thì (*) trở thành

    f'\left( t ight) + 2t \geqslant 0 \Leftrightarrow f'\left( t ight) \geqslant  - 2t

    Quan sát đồ thị hàm số y = f’(t) và y = -2t trên cùng một hệ tọa độ như hình vẽ

    Xác định khoảng đồng biến của hàm số

    Khi đó ta thấy với t \in \left( {0;1} ight) thì độ thì hàm số y = f’(t) luôn nằm trên đường thẳng y = -2t

    => f'\left( t ight) + 2t > 0,\forall t \in \left( {1;2} ight)

    Do đó với \forall x \in \left( {1;2} ight) thì hàm số y = f\left( {x - 1} ight) + {x^2} - 2x đồng biến.

  • Câu 37: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số trên có tiệm cận ngang là:

    Dựa vào bảng biến thiên ta có: \lim_{x
ightarrow + \infty}f(x) = 1;\lim_{x ightarrow - \infty}f(x) =
1

    Suy ra tiệm cận ngang của đồ thị hàm số là y = 1.

  • Câu 38: Nhận biết

    Giá trị nhỏ nhất của hàm số y = x3 – 3x + 5 trên đoạn [0; 2] là:

    Xét hàm số f(x) = x3 – 3x + 5 trên [0; 2] có:

    f’(x) = 3x3 – 3

    f’(x) = 0 =>\left\{ {\begin{array}{*{20}{c}}  {0 \leqslant x \leqslant 2} \\   {3{x^2} - 3 = 0} \end{array}} ight. \Rightarrow x = 1

    Tính được f(0) = 5; f(1) = 3; f(2) = 7

    Vậy \mathop {\min }\limits_{\left[ {0;2} ight]} f\left( x ight) = f\left( 1 ight) = 3

  • Câu 39: Thông hiểu

    Hàm số y = - x^{4} + 2mx^{2} + 1 đạt cực tiểu tại x = 0 khi:

    Hàm số xác định với mọi x\mathbb{\in
R}

    Ta có: \left\{ \begin{matrix}
y' = - 4x^{3} + 4mx \\
y'' = - 12x^{2} + 4m \\
\end{matrix} ight.

    Hàm số đạt cực tiểu tại x = 0 khi

    \left\{ \begin{matrix}
y'(0) = 0 \\
y''(0) > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 4.0^{3} + 4m.0 = 0(TM) \\
- 12.^{2} + 4m > 0 \\
\end{matrix} ight.\  \Leftrightarrow m > 0

    Vậy m > 0 thỏa mãn yêu cầu bài toán.

  • Câu 40: Thông hiểu

    Cho hàm số y =f(x) = - \frac{1}{3}x^{3} + ax^{2} + (3a + 2)x - 5. Tập hợp các giá trị của tham số a để hàm số y = f(x) nghịch biến trên \mathbb{R}\lbrack m;nbrack. Tính giá trị biểu thức T=2m-n?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x) = - \frac{1}{3}x^{3} + ax^{2} + (3a + 2)x - 5. Tập hợp các giá trị của tham số a để hàm số y = f(x) nghịch biến trên \mathbb{R}\lbrack m;nbrack. Tính giá trị biểu thức T=2m-n?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo