Cho hàm số
với
là tham số. Tìm tất cả các giá trị nguyên của tham số
để hàm số đã cho có đúng
điểm cực trị?
Cho hàm số với
là tham số. Tìm tất cả các giá trị nguyên của tham số
để hàm số đã cho có đúng
điểm cực trị?
Cho hàm số
với
là tham số. Tìm tất cả các giá trị nguyên của tham số
để hàm số đã cho có đúng
điểm cực trị?
Cho hàm số với
là tham số. Tìm tất cả các giá trị nguyên của tham số
để hàm số đã cho có đúng
điểm cực trị?
Có bao nhiêu giá trị thực của tham số
để hàm số
có điểm cực đại
và điểm cực tiểu
thỏa mãn biểu thức
?
Ta có: có
nên
.
Hàm số có cực đại và cực tiểu khi và chỉ khi .
Trường hợp 1:
Do
Lại có
Với điều kiện thỏa mãn.
Trường hợp 2:
Do
Lại có
Với điều kiện thỏa mãn.
Vậy có 2 giá trị thực của tham số m thỏa mãn.
Cho hàm số y = f(x) có đạo hàm
. Hàm số y = -2f(x) đồng biến trên khoảng
Ta có:
=> Hàm số y = -2f(x) đồng biến trên khoảng (0; 2)
Chọn hàm số đồng biến trên
?
Xét hàm số ta có:
Vậy hàm số đồng biến trên
.
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là
. Đúng||Sai
b) Đồ thị hàm số có các đường tiệm cận ngang là
. Đúng||Sai
c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng
d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là . Đúng||Sai
b) Đồ thị hàm số có các đường tiệm cận ngang là . Đúng||Sai
c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng
d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng
a) Điều kiện xác định của hàm số .
Vậy tập xác định của hàm số là .
b) Ta có: nên y = −1 là đường tiệm cận ngang.
nên y = 1 là đường tiệm cận ngang.
c) Do nên x = 1 là đường tiệm cận đứng.
Vậy đồ thị hàm số có tất cả 3 đường tiệm cận (2 TCN và 1 TCĐ).
d) Minh họa miền giới hạn của các đường tiệm cận và trục Oy như sau:
Miền giới hạn là hình chữ nhật có diện tích là
Gọi
là tập tất cả các số nguyên dương của tham số
để hàm số
đồng biến trên khoảng
. Tính tổng tất cả các phần tử của tập
?
Theo yêu cầu bài toán
Do đó
Vậy tổng tất cả các phần tử của tập bằng
.
Biết đường tiệm cận xiên của đồ thị hàm số
cắt trục hoành và trục tung theo thứ tự tại hai điểm
. Khi đó diện tích tam giác
bằng bao nhiêu đơn vị diện tích? (kết quả ghi dưới dạng số thập phân)
Đáp án: 0,25
Biết đường tiệm cận xiên của đồ thị hàm số cắt trục hoành và trục tung theo thứ tự tại hai điểm
. Khi đó diện tích tam giác
bằng bao nhiêu đơn vị diện tích? (kết quả ghi dưới dạng số thập phân)
Đáp án: 0,25
Ta có
.
Do đó tiện cận xiên của đồ thị hàm số đã cho là .
Tiệm cận xiên của đồ thị hàm số cắt trục hoành, trục tung lần lượt là .
Xét tam giác vuông tại
, có:
=> Diện tích của tam giác là
Cho hàm số
có đạo hàm
. Hàm số
đồng biến trên khoảng:
Ta có:
Ta có bảng xét dấu:
Hàm số đồng biến khi và chỉ khi
Vậy đáp án cần tìm là .
Hàm số
đạt cực tiểu tại điểm
Ta có: có tập xác định
=> Hàm số đạt cực tiểu tại điểm x = 1
Cho hàm số
có đồ thị như hình vẽ như sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Dựa vào đồ thị dễ dàng thấy hàm số đồng biến trên .
Giá trị của tham số m để bất phương trình
có nghiệm là:
Đặt
Khi đó bất phương trình ban đầu trở thành:
Xét hàm số trên
Ta có:
Bảng biến thiên của
Từ bảng biến thiên suy ra để bất phương trình có nghiệm thì .
Đồ thị hàm số
có bao nhiêu đường tiệm cận?
Tập xác định
Đồ thị hàm số có tiệm cận đứng là đường thẳng
Đồ thị hàm số có tiệm cận đứng là đường thẳng
Đồ thị hàm số có tiệm cận ngang là đường thẳng
.
Cho hình vẽ:

Đồ thị trong hình đã cho là đồ thị của hàm số nào?
Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng với
và đồ thị hàm số đi qua điểm
nên hàm số tương ứng với đồ thị trong hình vẽ đã cho là
.
Tìm giá trị lớn nhất của hàm số
trên đoạn [-6; 6]
Xét hàm số g(x) = -x2 – 4x + 5 liên tục trên đoạn [-6; 6]
Ta có: g’(x) = -2x – 4
=> g’(x) = 0 => x = -2 thuộc [-6; 6]
Ta lại có g(x) = 0 => x2 – 4x + 5 = 0 => x = 1 (tm) hoặc x = -5 (tm)
Ta tính được:
Đường cong trong hình vẽ dưới đây là của hàm số nào?

Đường tiệm cận ngang:
Đường tiệm cận đứng:
Đồ thị hàm số
có bao nhiêu điểm có tọa độ nguyên?
Ta có:
Với đồ thị hàm số đã cho có đúng 1 điểm có tọa độ nguyên.
Đường thẳng nào sau đây là tiệm cận ngang của đồ thị hàm số
?
Ta có:
Vậy tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình
.
Biết đồ thị hàm số
(với
là tham số) nhận trục hoành và trục tung làm hai đường tiệm cận. Tính tổng
?
Ta có: suy ra
là tiệm cận ngang của đồ thị hàm số.
Suy ra .
Đồ thị hàm số nhận trục tung là tiệm cận đứng nên phương trình
có một nghiệm bằng
hay
Theo giả thiết ta có:
Cho hàm số
liên tục trên đoạn
có đồ thị như hình vẽ:

Tìm giá trị nhỏ nhất của hàm số trên đoạn
?
Trên đoạn ta có:
và
Vậy .
Cho hàm số
có đồ thị như hình vẽ:

Hàm số
đồng biến trên khoảng nào sau đây?
Từ đồ thị của hàm số ta xác định được hàm số đồng biến trên các khoảng
.
Cho hàm số bậc ba
có đồ thị như hình vẽ:

Có bao nhiêu giá trị của m để hàm số
có 3 tiệm cận đứng?
Cho hàm số bậc ba có đồ thị như hình vẽ:

Có bao nhiêu giá trị của m để hàm số có 3 tiệm cận đứng?
Gọi
là ba điểm cực trị của đồ thị hàm số
. Tính diện tích tam giác
?
Ta có:
Ba điểm cực trị của hàm số là
Tam giác có điểm
, hai điểm
đối xứng nhau qua trục tung nên tam giác
cân tại
. Trung điểm
của
thuộc trục
và là chân đường cao hạ từ
của tam giác, suy ra:
Vậy diện tích tam giác ABC bằng .
Xác định giá trị lớn nhất của hàm số
trên đoạn
?
Ta có:
Ta có:
Vậy đáp án cần tìm là .
Cho hàm số
. Khẳng định nào sau đây đúng?
Ta có:
Ta có bảng xét dấu như sau:
Vậy hàm số có đúng một cực trị.
Hàm số nào sau đây là hàm số đồng biến trên
?
Xét hàm số ta có:
suy ra hàm số liên tục trên
.
Giá trị lớn nhất của hàm số
trên đoạn
bằng:
Ta có:
Khi đó:
Cho hàm số
có đồ thị như hình vẽ sau:

Khi đó, giá trị lớn nhất của hàm số
trên
là:
Đặt
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức
, trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất.
Xét ta có:
Mặt khác
Cho hàm số có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?
![]() |
Ta có:
Đồ thị hàm số cắt trục tung tại điểm có tung độ dương => d > 0
Ta có: , nhận thấy hoành độ hai điểm cực trị của đồ thị hàm số có
Có bao nhiêu số nguyên
thỏa mãn điều kiện hàm số
đồng biến trên khoảng
?
Ta có:
. Hàm số đồng biến trên khoảng
Vậy có duy nhất một số nguyên m thỏa mãn điều kiện hàm số đồng biến trên khoảng
.
Cho hàm số
xác định và liên tục trên
có đồ thị như hình vẽ

Các mệnh đề sau đây đúng hay sai?
a) Hàm số nghịch biến trên khoảng
. Đúng||Sai
b) Hàm số có
. Đúng||Sai
c) Hàm số
nghịch biến trên khoảng
. Sai||Đúng
d) Hàm số
đồng biến trên
và
. Đúng||Sai
Cho hàm số xác định và liên tục trên
có đồ thị như hình vẽ
Các mệnh đề sau đây đúng hay sai?
a) Hàm số nghịch biến trên khoảng . Đúng||Sai
b) Hàm số có
. Đúng||Sai
c) Hàm số nghịch biến trên khoảng
. Sai||Đúng
d) Hàm số đồng biến trên
và
. Đúng||Sai
a) Từ đồ thị ta có hàm số nghịch biến trên khoảng suy ra mệnh đề đúng.
b) Từ đồ thị ta thấy hàm số đồng biến trên và
suy ra hàm số có
. Vậy mệnh đề đúng.
c) Ta có
Hàm số nghịch biến khi
suy ra mệnh đề sai.
d) Từ đồ thị hàm số ta có đồ thị của hàm số
như hình vẽ.
Từ đồ thị ta có hàm số đồng biến trên
và
suy ra mệnh đề đúng.
Số điểm cực trị của hàm số
là:
Ta có:
Khi đó
Phương trình (*) có ba nghiệm bội lẻ
Vậy hàm số ban đầu có ba điểm cực trị.
Độ giảm huyết áp của một bệnh nhân
trong đó
là số miligam thuộc được tiêm cho bệnh nhân
. Để bệnh nhân đó có huyết áp giảm nhiều nhất thì liều lượng thuốc cần tiêm vào là:
Ta có:
Ta có bảng biến thiên như sau:
Vậy để bệnh nhân đó có huyết áp giảm nhiều nhất thì lượng thuốc cần tiêm vào là .
Cho hàm số
có đồ thị
. Tìm giá trị
để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của
một khoảng bằng
?
Cho hàm số có đồ thị
. Tìm giá trị
để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của
một khoảng bằng
?
Cho hàm số
có bảng biến thiên:

Số đường tiệm cận ngang của đồ thị hàm số
là:
Ta có: nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang
.
Số giá trị nguyên của tham số
để hàm số
đồng biến trên
là:
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
=> Có 20 giá trị của tham số m thỏa mãn điều kiện đề bài.
Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:

Đồ thị hàm số bậc 4 có hệ số và có ba điểm cực trị nên
.
Suy ra hàm số tương ứng với đồ thị đã cho là .
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ:

Tìm tập hợp tất cả các giá trị của tham số
để phương trình
có nghiệm thuộc khoảng
?
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Tìm tập hợp tất cả các giá trị của tham số để phương trình
có nghiệm thuộc khoảng
?
Tìm tập hợp T tất cả các giá trị của tham số thực m để hàm số
nghịch biến trên khoảng (-1; 1)
Ta có:
Để hàm số nghịch biến trên khoảng (-1; 1) thì
Ta có y’ = 0 => x = m hoặc x = m + 2
Bảng xét dấu

Từ bảng xét dấu ta thấy để hàm số nghịch biến trên khoảng (-1; 1) thì
Cho hàm số
với
là tham số. Tìm tập hợp tất cả các giá trị của tham số
để hàm số đã cho đạt cực tiểu tại
?
Tập xác định .
Ta có: . Để hàm số đạt cực tiểu tại
thì
vậy tập hợp tất cả các giá trị của tham số m thỏa mãn yêu cầu bài toán là .