Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{1}{3}x^{3} - mx^{2} + (2m - 1)x - m + 2 nghịch biến trên khoảng ( - 3;0)?

    Ta có: y' = x^{2} - 2mx + 2m -
1

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = 2m - 1 \\
\end{matrix} ight.

    Hàm số đã cho nghịch biến trên khoảng ( -
3;0) khi ( - 3;0) nằm trong khoảng hai nghiệm

    \Leftrightarrow \left\lbrack
\begin{matrix}
1 \leq - 3 < 0 \leq 2m - 1 \\
2m - 1 \leq - 3 < 0 \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow 2m - 1 \leq - 3 \Leftrightarrow m
\leq - 1

    Vậy đáp án cần tìm là m \leq -
1.

  • Câu 2: Thông hiểu

    Cho hàm số y = 2x^{3} - 3x^{2} -
m. Trên đoạn \lbrack -
1;1brack hàm số có giá trị nhỏ nhất là - 1. Tìm giá trị của m?

    Ta có: y' = 6x^{2} - 6x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Từ bảng biến thiên suy ra \min_{\lbrack -
1;1brack}y = - 5 - m \Leftrightarrow - 1 = - 5 - m \Leftrightarrow m =
- 4.

    Vậy m = - 4 là giá trị cần tìm.

  • Câu 3: Vận dụng cao

    Tìm tập hợp T tất cả các giá trị của tham số thực m để hàm số y = \frac{1}{3}{x^3} - \left( {m + 1} ight){x^2} + \left( {{m^2} + 2m} ight)x - 3 nghịch biến trên khoảng (-1; 1)

     Ta có: y' = {x^2} - 2\left( {m + 1} ight)x + \left( {{m^2} + 2m} ight)

    Để hàm số nghịch biến trên khoảng (-1; 1) thì

    \begin{matrix}  y' \leqslant 0,\forall x \in \left( { - 1;1} ight) \hfill \\   \Leftrightarrow {x^2} - 2\left( {m + 1} ight)x + \left( {{m^2} + 2m} ight) \leqslant 0,\forall x \in \left( { - 1;1} ight) \hfill \\ \end{matrix}

    Ta có y’ = 0 => x = m hoặc x = m + 2

    Bảng xét dấu

    Tìm điều kiện để hàm số nghịch biến trên khoảng

    Từ bảng xét dấu ta thấy để hàm số nghịch biến trên khoảng (-1; 1) thì

    \left\{ {\begin{array}{*{20}{c}}  {m \leqslant  - 1} \\   {m + 2 \geqslant 1} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m \leqslant  - 1} \\   {m \geqslant  - 1} \end{array}} ight. \Leftrightarrow m =  - 1

  • Câu 4: Thông hiểu

    Gọi A;B;C là ba điểm cực trị của đồ thị hàm số y = \frac{1}{2}x^{4} - x^{2} -
1. Tính diện tích tam giác ABC?

    Ta có: y' = 2x^{3} - 2x;y' = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Ba điểm cực trị của hàm số là A(0; -
1),B\left( 1; - \frac{3}{2} ight),C\left( - 1; - \frac{3}{2}
ight)

    Tam giác ABC có điểm A \in Oy, hai điểm B;C đối xứng nhau qua trục tung nên tam giác ABC cân tại A. Trung điểm H\left( 0; - \frac{3}{2} ight) của BC thuộc trục Oy và là chân đường cao hạ từ A của tam giác, suy ra:

    S_{ABC} = \frac{1}{2}AH.BC =
\frac{1}{2}\left| y_{A} - y_{B} ight|.\left| x_{B} - x_{C}
ight|

    = \frac{1}{2}.\left| - 1 + \frac{3}{2}
ight|.2 = \frac{1}{2}

    Vậy diện tích tam giác ABC bằng \frac{1}{2}.

  • Câu 5: Thông hiểu

    Số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = \frac{x^{2} - 3x + 2}{4 - x^{2}} là:

    Tập xác định D\mathbb{=
R}\backslash\left\{ \pm 2 ight\}

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \left( {\dfrac{{{x^2} - 3x + 2}}{{4 - {x^2}}}} ight) =  - 1 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \left( {\dfrac{{{x^2} - 3x + 2}}{{4 - {x^2}}}} ight) =  - 1 \hfill \\ 
\end{gathered}  ight. nên y = -
1 là tiện cận ngang của đồ thị hàm số.

    \lim_{x ightarrow 2}y = \lim_{x
ightarrow 2}\frac{(x - 1)(x - 2)}{(2 - x)(2 + x)} = \lim_{x
ightarrow 2}\frac{1 - x}{x + 2} = - \frac{1}{4}

    \lim_{x ightarrow ( - 2)^{+}}y =
\lim_{x ightarrow ( - 2)^{+}}\frac{(x - 1)(x - 2)}{(2 - x)(2 + x)} = -
\infty suy ra x = - 2 là tiệm cận đứng của đồ thị hàm số.

    Vậy tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là 2.

  • Câu 6: Vận dụng

    Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (-1; +∞)

    Ta có: y' = 2mx - \left( {m + 6} ight). Theo yêu cầu bài toán ta có:

    y' \leqslant 0;\forall x \in \left( { - 1; + \infty } ight)

    => 2mx - \left( {m + 6} ight) \leqslant 0 \Leftrightarrow m \leqslant \frac{6}{{2x - 1}}

    Xét hàm số g\left( x ight) = \frac{6}{{2x - 1}},x \in \left( { - 1; + \infty } ight)

    Ta có bảng biến thiên như sau:

    Tìm m để hàm số nghịch biến trên khoảng

    Vậy - 2 \leqslant m \leqslant 0

  • Câu 7: Nhận biết

    Điểm cực đại của đồ thị hàm số y = x^{3}
- 3x + 5 là điểm

    Tập xác định: D\mathbb{= R}

    Ta có: y' = 3x^{2} - 3;y' = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Dựa vào bảng biến thiên ta có điểm cực đại của đồ thị hàm số là N( - 1;7).

  • Câu 8: Thông hiểu

    Có bao nhiêu giá trị tham số m để hàm số y = x^{3} + \frac{1}{2}\left(
m^{2} - 1 ight)x^{2} + 1 - m có điểm cực đại là x = - 1?

    Tập xác định D\mathbb{= R}

    Ta có: \left\{ \begin{matrix}
y' = 3x^{2} + \left( m^{2} - 1 ight)x \\
y'' = 6x + m^{2} - 1 \\
\end{matrix} ight.. Để hàm số đạt cực đại tại x = - 1 thì

    y'( - 1) = 0 \Leftrightarrow 3 +
\left( m^{2} - 1 ight).( - 1) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
m = 2 \\
m = - 2 \\
\end{matrix} ight.

    Lúc này y''( - 1) = - 6 + 4 - 1
< 0 nên hàm số đạt cực đại tại x
= - 1

    Vậy có hai giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 9: Nhận biết

    Xác định giá trị lớn nhất của hàm số f(x)
= x^{3} - 3x + 2 trên đoạn \lbrack
- 1;3brack?

    Ta có: f'(x) = 3x^{2} -
3

    \Rightarrow f'(x) = 0
\Leftrightarrow 3x^{2} - 3 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \in \lbrack - 1;3brack \\
x = - 1 \in \lbrack - 1;3brack \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
f( - 1) = 4 \\
f(1) = 0 \\
f(3) = 20 \\
\end{matrix} ight.\  \Rightarrow \underset{\lbrack - 1;3brack}{\max
f(x)} = 20 \Leftrightarrow x = 3

    Vậy đáp án cần tìm là 20.

  • Câu 10: Nhận biết

    Hàm số y =
\frac{x - 2}{x - 1} đồng biến trên khoảng nào dưới đây?

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}. Ta có: y' = \frac{1}{(x - 1)^{2}} > 0;\forall
x\mathbb{\in R}\backslash\left\{ 1 ight\}

    Suy ra hàm số đồng biến trên khoảng ( -
\infty;1)(1; +
\infty).

  • Câu 11: Nhận biết

    Đường thẳng y = - 2 là đường tiệm cận của đồ thị hàm số nào sau đây?

    y = \frac{2}{3x + 2}\lim_{x ightarrow \infty}y = 0 suy ra y = 0 là tiệm cận ngang của đồ thị hàm số. (Loại)

    y = \frac{2x^{3} - 3}{x + 2}\lim_{x ightarrow \infty}y =
\infty nên đồ thị hàm số không có tiệm cận ngang (loại)

    y = \frac{2x^{2} + x - 1}{(x + 1)(3 - x)}
= \frac{2x^{2} + x - 1}{- x^{2} + 2x + 3}\lim_{x ightarrow \infty}y = - 2 suy ra y = - 2 là tiệm cận ngang (Thỏa mãn).

    Vậy đường thẳng y = - 2 là đường tiệm cận của đồ thị hàm số y = \frac{2x^{2}
+ x - 1}{(x + 1)(3 - x)}.

  • Câu 12: Thông hiểu

    Số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = \frac{\sqrt{2 - x} - x}{\sqrt{x^{2} + 3} -
2} là:

    Điều kiện xác định \left\{ \begin{matrix}
2 - x \geq 0 \\
\sqrt{x^{2} + 3} - 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq 2 \\
\sqrt{x^{2} + 3} eq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq 2 \\
x eq \pm 1 \\
\end{matrix} ight.

    Ta có: \lim_{x ightarrow -\infty}\left( \dfrac{\sqrt{2 - x} - x}{\sqrt{x^{2} + 3} - 2} ight) =\lim_{x ightarrow - \infty}\left( \dfrac{- \sqrt{\dfrac{2}{x^{2} -\dfrac{1}{x}}} - 1}{- \sqrt{1 + \dfrac{3}{x}} - \dfrac{2}{x}} ight) =1 nên y = 1 là tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow 1}\frac{\sqrt{2 - x}
- x}{\sqrt{x^{2} + 3} - 2} = \lim_{x ightarrow 1}\frac{\left( 2 - x -
x^{2} ight)\left( \sqrt{x^{2} + 3} + 2 ight)}{\left( x^{2} - 2
ight)\left( \sqrt{2 - x} + x ight)}

    = \lim_{x ightarrow 1}\frac{(2 -
x)\left( \sqrt{x^{2} + 3} + 2 ight)}{(x + 2)\left( \sqrt{2 - x} + x
ight)} = - 3 suy ra x =
1 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow 1^{-}}\frac{\sqrt{2 -x} - x}{\sqrt{x^{2} + 3} - 2} = + \infty;\lim_{x ightarrow1^{+}}\frac{\sqrt{2 - x} - x}{\sqrt{x^{2} + 3} - 2} = - \infty suy ra x = - 1 là tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số đã cho có hai đường tiệm cận.

  • Câu 13: Thông hiểu

    Cho hàm số y = x^{3} + mx^{2} +
m với m là tham số. Điều kiện cần và đủ của tham số m để hàm số nghịch biến trên khoảng (0;2) là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} + 2mx

    Hàm số nghịch biến trên (0;2) khi và chỉ khi y' \leq 0;\forall x \in
(0;2)

    Xét hàm số y = - \frac{3}{2}x trên khoảng (0;2) ta có bảng biến thiên như sau:

    Vậy để hàm số nghịch biến trên (0;2) thì m
\leq - 3.

  • Câu 14: Vận dụng cao

    Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là 5(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là v(km/h),(v > 5) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức E(v) =
c.v^{3}.t, trong đó c là hằng số dương, E được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng (a;b) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của b -
a (kết quả làm tròn tới hàng phần mười).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là 5(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là v(km/h),(v > 5) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức E(v) =
c.v^{3}.t, trong đó c là hằng số dương, E được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng (a;b) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của b -
a (kết quả làm tròn tới hàng phần mười).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Thông hiểu

    Trong các hàm số sau, hàm số nào có hai điểm cực đại và một điểm cực tiểu?

    Dựa vào dấu của hệ số a < 0;b >
0 nên hàm số y = - x^{4} + x^{2} +
3 có ba điểm cực trị trong đó có hai điểm cực đại và một điểm cực tiểu.

  • Câu 16: Nhận biết

    Điểm nào sau đây thuộc đồ thị hàm số y =
x^{3} - 3x?

    Thay (1; - 2) vào y = x^{3} - 3x ta được:

    - 2 = 1^{3} - 3.1

    Vậy (1; - 2) thuộc đồ thị hàm số y = x^{3} - 3x.

  • Câu 17: Nhận biết

    Cho hàm số f(x) có f'\left( x ight) = {\left( {x - 1} ight)^2}{\left( {x - 3} ight)^3}\left( {2x + 3} ight),\forall x \in \mathbb{R}. Số cực trị của hàm số đã cho là:

     Ta có: f’(x) đổi dấu khi qua các giá trị x = 3 và x = -3/2 nên hàm số có hai cực trị.

  • Câu 18: Nhận biết

    Cho hàm số có bảng biến thiên như hình dưới đây.

    Chọn khẳng định đúng

    Khẳng định nào sau đây là đúng?

    Từ bảng biến thiên ta nhận thấy đạo hàm của hàm số đổi dấu từ dương sang âm qua nghiệm 0 nên hàm số đạt cực đại tại 0 và giá trị cực đại của hàm số bằng 0.

  • Câu 19: Thông hiểu

    Cho đồ thị hàm số y = f(x):

    Có bao nhiêu giá trị nguyên của tham số m để phương trình f(x) + 2m - 1 = 0 có ba nghiệm phân biệt?

    Ta có: f(x) + 2m - 1 = 0 \Leftrightarrow
f(x) = 1 - 2m

    Để phương trình có ba nghiệm ta phải có -
2 < 1 - 2m < 2 \Leftrightarrow - \frac{1}{2} < m <
\frac{3}{2}

    Vậy có 2 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 20: Nhận biết

    Số giao điểm của hai đồ thị hàm số y =
f(x)y = g(x) bằng số nghiệm phân biệt của phương trình nào sau đây?

    Hoành độ giao điểm là nghiệm của phương trình f(x) = g(x) hay f(x) - g(x) = 0.

  • Câu 21: Nhận biết

    Cho hàm số y = f(x) xác định trên \mathbb{R} và có bảng biến thiên như hình bên dưới

    Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

    Dựa vào bảng biến thiên, ta thấy hàm số đồng biến trên (3; + \infty).

  • Câu 22: Nhận biết

    Cho hàm số y = f(x) và có bảng biến thiên trên [-2; 3) như sau:

    GTLN của hàm số trên khoảng là bao nhiêu?

    Giá trị lớn nhất của hàm số trên đoạn [-2; 3] bằng:

    Từ đồ thị của hàm số y = f(x) ta thấy hàm số y = f(x) xác định và liên tục trên đoạn [-2; 3]

    Ta có: f(x) ∈ [-2; 3] với \forall x \in \mathbb{R} => \mathop {\max }\limits_{\left[ { - 2;3} ight]} f\left( x ight) = f\left( 3 ight) = 4

  • Câu 23: Vận dụng cao

    Cho hàm số f(x) = x^{3} - (2m - 1)x^{2} +
(2 - m)x + 2 với m là tham số. Tìm điều kiện của tham số m để hàm số y = f\left( |x| ight)5 cực trị?

    Nhận thấy rằng nếu x_{0} là điểm cực trị dương của hàm số y = f(x) thì x_{0}; - x_{0} là điểm cực trị của hàm số y = f\left( |x|
ight)

    Lại thấy vì đồ thị hàm số y = f\left( |x|
ight) nhận trục tung làm trục đối xứng mà f(x) là hàm đa thức bậc ba nên x = 0 luôn là một điểm cực trị của hàm số y = f\left( |x| ight).

    Khi đó để hàm số y = f\left( |x|
ight) có 5 điểm cực trị thì hàm số f(x) = x^{3} - (2m - 1)x^{2} + (2 - m)x +
2 có hai cực trị dương phân biệt.

    Suy ra phương trình f'(x) = 3x^{2} -
2(2m - 1)x + 2 - m = 0 có hai nghiệm dương phân biệt:

    \Leftrightarrow \left\{ \begin{gathered}
  \Delta ' > 0 \hfill \\
  S > 0 \hfill \\
  P > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  {\left( {2m - 1} ight)^2} - 3\left( {2 - m} ight) > 0 \hfill \\
  \frac{{2m - 1}}{3} > 0 \hfill \\
  2 - m > 0 \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left\{ \begin{gathered}
  4{m^2} - m - 5 > 0 \hfill \\
  m > \frac{1}{2} \hfill \\
  m < 2 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \frac{5}{4} < m < 2

    Vậy đáp án cần tìm là \frac{5}{4} < m
< 2.

  • Câu 24: Thông hiểu

    Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y
= x^{3} - 3mx^{2} + 3\left( m^{2} - 2 ight)x đồng biến trên khoảng (12; + \infty)?

    Ta có: y' = 3x^{2} - 6mx + 3\left(
m^{2} - 2 ight)

    Hàm số y = x^{3} - 3mx^{2} + 3\left(
m^{2} - 2 ight)x đồng biến trên khoảng (12; + \infty)

    \Leftrightarrow y' \geq 0
\Leftrightarrow 3x^{2} - 6mx + 3\left( m^{2} - 2 ight) \geq
0

    \Leftrightarrow x^{2} - 2mx + m^{2} - 2
\geq 0

    \Leftrightarrow (x - m)^{2} \geq 2
\Leftrightarrow \left\lbrack \begin{matrix}
x - m \geq \sqrt{2} \\
x - m \leq - \sqrt{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x \geq m + \sqrt{2} \\
x \leq m - \sqrt{2} \\
\end{matrix} ight.

    Theo yêu cầu bài toán ta có: \sqrt{2} + m
\leq 12 \Leftrightarrow m \leq 12 - \sqrt{2}

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 1;2;3;...;9;10 ight\}

    Suy ra có tất cả 10 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 25: Vận dụng

    Cho hàm số xác định trên và có bảng biến thiên như hình vẽ:

    Số tiệm cận đứng của đồ thị hàm số

    Số đường tiệm cận đứng của đồ thị hàm số y = \frac{{x - 2}}{{{f^2}\left( x ight) - 5f\left( x ight) + 4}} là:

    Ta có: {f^2}\left( x ight) - 5f\left( x ight) + 4 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = 4} \\   {f\left( x ight) = 1} \end{array}} ight.

    Phương trình f\left( x ight) = 4 có 3 nghiệm phân biệt khác 2.

    Phương trình f\left( x ight) = 1 có một nghiệm kép là x = 2 (do vậy mẫu số có dạng {\left( {x - 2} ight)^2} nên x = 2 vẫn là TCĐ của đồ thị hàm số

    => Đồ thị hàm số y = \frac{{x - 2}}{{{f^2}\left( x ight) - 5f\left( x ight) + 4}} có 4 đường tiệm cận đứng.

  • Câu 26: Thông hiểu

    Cho hàm số y =
f(3 - 2x) có bảng xét dấu như sau:

    Hỏi hàm số y = f(x) nghịch biến trên các khoảng nào dưới đây?

    Ta có:

    y' = f'(3 - 2x) = - 2f'(3 -
2x)

    f'( - 1) = f'(3) = f'(5) =
0

    f'(x) = k(x - 5)(x - 3)(x -
1)

    Xét x = 3 \Rightarrow y' = - 2f'(
- 3) > 0

    \Rightarrow f'( - 3) <
0

    Bảng xét dấu y = f'(x) là:

    Căn cứ vào bảng xét dấu ta thấy

    Hàm số y = f(x) nghịch biến trên khoảng (3;5).

  • Câu 27: Nhận biết

    Cho hàm số sau, hàm số nào đồng biến trên \mathbb{R}?

    Xét hàm số f(x) = x^{3} - 3x^{2} + 3x -
4 ta có:

    f'(x) = 3x^{2} - 6x + 3 = 3(x -
1)^{2} \geq 0;\forall x\mathbb{\in R}

    \Rightarrow f(x) = x^{3} - 3x^{2} + 3x -
4 đồng biến trên \mathbb{R}.

  • Câu 28: Vận dụng

    Cho hàm số y = f(x) = x^{3} - (2m +
1)x^{2} + (3 - m)x + 2 với m là tham số. Định điều kiện của tham số m để hàm số y = f\left( |x| ight) có ba điểm cực trị?

    Ta có:

    y' = f'(x) = 3x^{2} - 2(2m + 1)x
+ 3 - m

    y' = 0 \Leftrightarrow 3x^{2} - 2(2m
+ 1)x + 3 - m = 0(*)

    Để hàm số y = f\left( |x|
ight) có ba điểm cực trị thì đồ thị hàm số y = f(x) có đúng một cực trị nằm bên phải trục tung => phương trình (*) có 1 nghiệm dương => phương trình (*) có hai nghiệm dươngx_{1};x_{2} thỏa mãn \left\lbrack \begin{matrix}
0 = x_{1} < x_{2} \\
x_{1} < 0 < x_{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
3 - m = 0 \\
2m + 1 > 0 \\
\end{matrix} ight.\  \\
3 - m < 0 \\
\end{matrix} ight.\  \Leftrightarrow m \geq 3

  • Câu 29: Thông hiểu

    Đồ thị của hàm số y = \frac{x - 1}{x^{2}
+ 2x - 3} có bao nhiêu đường tiệm cận?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3;1 ight\}

    \left\{ \begin{matrix}
\lim_{x ightarrow + \infty}y = 0 \\
\lim_{x ightarrow - \infty}y = 0 \\
\end{matrix} ight. suy ra y =
0 là tiệm cận ngang của đồ thị hàm số đã cho.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{1}{{x + 3}} = \frac{1}{4} \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{1}{{x + 3}} = \frac{1}{4} \hfill \\ 
\end{gathered}  ight. suy ra đường thẳng x = 1 không là đường tiệm cận đứng của đồ thị hàm số đã cho.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{\left( { - 3} ight)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 3} ight)}^ + }} \frac{{x - 1}}{{\left( {x - 1} ight)\left( {x + 3} ight)}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {{\left( { - 3} ight)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( { - 3} ight)}^ - }} \frac{{x - 1}}{{\left( {x - 1} ight)\left( {x + 3} ight)}} =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra đường thẳng x = - 3 là đường tiệm cận đứng của đồ thị hàm số đã cho.

    Vậy đồ thị hàm số đã cho có 2 đường tiệm cận.

  • Câu 30: Vận dụng

    Cho hàm số y = x^{3} + x^{2} - 4 có đồ thị (C). Hỏi có bao nhiêu cặp điểm A;B \in (C) sao cho ba điểm O;A;B thẳng hàng và OA - 2OB = 0 với O là gốc tọa độ?

    Gọi d là đường thẳng đi qua ba điểm O, A, B khi đó d có phương trình y =
k.x

    Khi đó hoành độ của O, A, B là nghiệm của phương trình x^{3} + x^{2} - 4 = kx

    Giả sử A\left( x_{1};kx_{1}
ight),B\left( x_{2};kx_{2} ight) khi đó ta có: \left\{ \begin{matrix}
{x_{1}}^{3} + {x_{1}}^{2} - 4 = kx_{1} \\
{x_{2}}^{3} + {x_{2}}^{2} - 4 = kx_{2} \\
\end{matrix} ight.

    Do OA - 2OB = 0 nên \overrightarrow{OA} = \pm 2\overrightarrow{OB}
\Rightarrow x_{1} = \pm 2kx_{2}

    TH1: x_{1} = 2kx_{2} \Rightarrow \left\{
\begin{matrix}
8{x_{2}}^{3} + 4{x_{2}}^{2} - 4 = 2kx_{2} \\
{x_{2}}^{3} + {x_{2}}^{2} - 4 = kx_{2} \\
\end{matrix} ight.

    \Rightarrow 6{x_{2}}^{3} + 2{x_{2}}^{2}
+ 4 = 0 \Rightarrow x_{2} = - 1

    Khi đó A( - 2; - 8),B( - 1; -
4).

    TH2: x_{1} = - 2kx_{2} \Rightarrow
\left\{ \begin{matrix}
- 8{x_{2}}^{3} + 4{x_{2}}^{2} - 4 = - 2kx_{2} \\
{x_{2}}^{3} + {x_{2}}^{2} - 4 = kx_{2} \\
\end{matrix} ight.

    \Rightarrow - 6{x_{2}}^{3} +
6{x_{2}}^{2} - 12 = 0 \Rightarrow x_{2} = - 1

    Khi đó A(2;8),B( - 1; - 4).

    Vậy có 2 cặp A; B thỏa mãn.

  • Câu 31: Thông hiểu

    Gọi S là tập hợp các giá trị của tham số m để giá trị lớn nhất của hàm số y = \frac{x - m^{2}}{x + 2} trên đoạn \lbrack 1;5brack bằng - 4. Tính tổng các phần tử của tập S?

    Ta có: y' = \frac{2 + m^{2}}{(x +
2)^{2}} > 0;\forall x eq - 2. Suy ra hàm số y = \frac{x - m^{2}}{x + 2} đồng biến trên đoạn \lbrack 1;5brack do đó \max_{\lbrack 1;5brack}y = y(5) = \frac{5
- m^{2}}{7}

    Theo giả thiết \frac{5 - m^{2}}{7} = - 4
\Leftrightarrow m^{2} = 33 \Leftrightarrow m = \pm
\sqrt{33}

    Vậy S = \left\{ \sqrt{33}; - \sqrt{33}
ight\} nên tổng các phần tử của tập hợp S bằng 0.

  • Câu 32: Vận dụng cao

    Cho hàm bậc ba y = f(x) có đồ thị như hình vẽ:

    Hỏi đồ thị hàm số y = \frac{\left( x^{2}+ 4x + 3 ight).\sqrt{x^{2} + x}}{x\left\lbrack f^{2}(x) - 2f(x)ightbrack} có bao nhiêu đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm bậc ba y = f(x) có đồ thị như hình vẽ:

    Hỏi đồ thị hàm số y = \frac{\left( x^{2}+ 4x + 3 ight).\sqrt{x^{2} + x}}{x\left\lbrack f^{2}(x) - 2f(x)ightbrack} có bao nhiêu đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 33: Vận dụng

    Để uốn 4m thanh kim loại thành hình như sau:

    Gọi r bán kính của nửa đường tròn. Tìm r(m) để diện tích tạo thành đạt giá trị lớn nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Để uốn 4m thanh kim loại thành hình như sau:

    Gọi r bán kính của nửa đường tròn. Tìm r(m) để diện tích tạo thành đạt giá trị lớn nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 34: Thông hiểu

    Cho hình vẽ:

    Đồ thị được cho trong hình vẽ là đồ thị của hàm số nào trong các hàm số sau?

    Từ đồ thị ta thấy đây là hàm số bậc 4 trùng phương có hệ số a > 0

    Mặt khác hàm số đạt cực tiểu tại x = 1;x= - 1 và giá trị cực tiểu y(1) = y(- 1) = - 2 nên hàm số cần tìm là y= x^{4} - 2x^{2} - 1.

  • Câu 35: Nhận biết

    Chọn hàm số tương ứng với bảng biến thiên sau?

    Từ bảng biến thiên ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số a < 0 nên hàm số cần tìm là y = - x^{4} + 2x^{2} + 1.

  • Câu 36: Vận dụng

    Cho hàm số f(x) có đạo hàm trên \mathbb{R} và thỏa mãn f(x) > f'(x) + 1;\forall x\mathbb{\in
R}. Bất phương trình f(x) <
me^{x} + 1 nghiệm đúng với mọi x
\in (0; + \infty) khi và chỉ khi

    Ta có:

    f(x) < me^{x} + 1 \Leftrightarrow
f(x) - 1 < me^{x}

    \Leftrightarrow \frac{f(x) - 1}{e^{x}}
< m.

    Xét hàm số g(x) = \frac{f(x) -
1}{e^{x}}

    g'(x) = \frac{f'(x) -
\left\lbrack f(x) - 1 ightbrack}{e^{x}} < 0;\forall x \in (0; +
\infty)

    Bảng biến thiên

    Vậy bất phương trình f(x) < me^{x} +
1 nghiệm đúng với mọi x \in (0; +
\infty) khi và chỉ khi m \geq f(0)
- 1.

  • Câu 37: Thông hiểu

    Cho hàm số y = f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{\sqrt {{x^2} + 1} }}{x}{\text{   khi x }} \geqslant {\text{ 1}}} \\   {\dfrac{{2x}}{{x - 1}}{\text{   khi x  <  1}}} \end{array}} ight.. Số đường tiệm cận của đồ thị hàm số y = f(x) là:

    Ta có: \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{2x}}{{x - 1}} =  - \infty

     => Đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.

    \mathop {\lim }\limits_{x \to  - \infty } \frac{{2x}}{{x - 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{1 - \frac{1}{x}}} = 2 => y = 2 là tiệm cận ngang của đồ thị hàm số

    \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {2 + \frac{1}{{{x^2}}}}  = 1 => đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.

  • Câu 38: Thông hiểu

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Hãy phương trình 2\left| f(x) ight| - 1
= 0 có bao nhiêu nghiệm thuộc khoảng (0; + \infty)?

    Ta có: 2\left| f(x) ight| - 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}f(x) = \dfrac{1}{2} \\f(x) = - \dfrac{1}{2} \\\end{matrix} ight.

    Từ đồ thị hàm số ta thấy đường thẳng y =
\frac{1}{2} cắt đồ thị tại hai điểm phân biệt, đường thẳng y = - \frac{1}{2} cắt đồ thị tại 4 điểm phân biệt do đó phương trình f(x) =
\frac{1}{2} có hai nghiệm phân biệt và phương trình f(x) = - \frac{1}{2} có 4 nghiệm phân biệt

    Vậy phương trình 2\left| f(x) ight| - 1
= 0 có tất cả 6 nghiệm thực phân biệt.

  • Câu 39: Thông hiểu

    Cho hàm số y = \frac{x^{2} - 4x}{2x +
1}. Tính giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack 0;3brack?

    Hàm số y = \frac{x^{2} - 4x}{2x +
1} liên tục trên đoạn \lbrack
0;3brack

    Ta có: y' = \frac{2x^{2} + 2x -
4}{(2x + 1)^{2}} \Rightarrow y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}
f(0) = 0 \\
f(1) = - 1 \\
f(3) = - \frac{3}{7} \\
\end{matrix} ight.\  \Rightarrow f(1) < f(3) < f(0) nên \min_{\lbrack 0;3brack}y = y(1) = -
1.

  • Câu 40: Nhận biết

    Các đường tiệm cận của đồ thị hàm số y =
\frac{2x + 1}{x - 3} tạo với hai trục tọa độ diện tích bằng bao nhiêu?

    Ta có: Đồ thị hàm số y = \frac{2x + 1}{x
- 3} có đường tiệm cận đứng là x =
3 và đường tiệm cận ngang là y =
2

    Hai đường tiệm cận tạo với hai trục tọa độ một hình chữ nhật có chiều dài và chiều rộng lần lượt là 3;2 nên diện tích của hình chữ nhật là S = 2.3 =
6.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo