Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:

Đồ thị hàm số bậc 4 có hệ số cắt trục tung tại điểm có tung độ lớn hơn
nên hàm số cần tìm là
.
Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:

Đồ thị hàm số bậc 4 có hệ số cắt trục tung tại điểm có tung độ lớn hơn
nên hàm số cần tìm là
.
Cho hàm số
. Hàm số
có đồ thị như hình vẽ:

Hàm số
nghịch biến trên khoảng nào?
Ta có:
Vậy hàm số nghịch biến trên khoảng
.
Cho hàm số
. Có bao nhiêu giá trị nguyên của tham số m để hàm số nghịch biến trên
?
Ta có:
Để hàm số đã cho nghịch biến trên
Do nên có tất cả 5 giá trị của m thỏa mãn điều kiện.
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
Xét hàm số
. Khẳng định nào sau đây sai?
Ta có:
Ta có bảng xét dấu cho các biểu thức

Từ bảng xét dấu ta thấy
Khi đó hàm số nghịch biến
=> Đáp án B sai
Cho hàm số
có đồ thị
. Xác định tất cả các giá trị thực của tham số
để
cắt đường thẳng
tại bốn điểm phân biệt?
Phương trình hoành độ giao điểm là nghiệm của phương trình:
Đồ thị cắt
tại bốn điểm phân biệt khi và chỉ khi
có hai nghiệm phân biệt khác
Khi đó ta có: .
Cho hàm số
. Xác định giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [2; 4].
Xét hàm số trên [2; 4] ta có:
Tính f(2) = 7; f(3) = 6; f(4) = 19/3
Vậy
Cho hàm số
với
, có đồ thị là đường cong như hình vẽ bên dưới.

Với
thì giá trị
là bao nhiêu?
Đáp án: 7
Cho hàm số với
, có đồ thị là đường cong như hình vẽ bên dưới.
Với thì giá trị
là bao nhiêu?
Đáp án: 7
Với , ta có
.
Đồ thị hàm số có tiệm cận đứng là nên
.
Khi đó .
Thực hiện phép chia đa thức lấy tử chia mẫu ta được thương là , nên đồ thị hàm số có đường tiệm cận xiên là
, mặt khác nhìn vào đồ thị ta thấy đồ thị hàm số có đường tiệm cận xiên là
.
Nên ta có phương trình:
hay
.
Khi đó .
Vì đồ thị hàm số đi qua điểm nên ta được
.
Suy ra .
Vậy .
Tìm tất cả các giá trị của tham số
để hàm số
nghịch biến trên khoảng
?
Ta có:
Hàm số đã cho nghịch biến trên khoảng khi
nằm trong khoảng hai nghiệm
Vậy đáp án cần tìm là .
Cho hàm số
. Tìm tất cả các giá trị của
để hàm số
có hai điểm cực trị?
Ta có:
Để hàm số có hai cực trị thì phương trình có hai nghiệm phân biệt
.
Vậy đáp án cần tìm là .
Có bao nhiêu giá trị nguyên của tham số
để hàm số
không có điểm cực trị?
Ta có:
Hàm số đã cho không có cực trị khi và chỉ khi vô nghiệm hoặc có nghiệm kép.
Vì
Vậy có bốn giá trị của tham số thỏa mãn yêu cầu bài toán.
Có bao nhiêu điểm
thuộc đồ thị hàm số
sao cho khoảng cách từ điểm
đến trục tung bằng hai lần khoảng cách từ điểm
đến trục hoành?
Gọi là điểm thuộc đồ thị hàm số
Ta có: . Theo bài ra ta có phương trình:
Vậy có 2 điểm M thỏa mãn yêu cầu bài toán.
Cho hàm số
có đồ thị như hình vẽ:

Tìm số điểm cực trị của hàm số
trên khoảng
?
Đặt
Từ bảng xét dấu của hàm số có
Ta có bảng biến thiên
Từ bảng biến thiên suy ra hàm số có hai cực trị trên khoảng
.
Cho hàm số
xác định và liên tục trên
, đạo hàm
có đồ thị như hình vẽ sau:

Tìm số điểm cực tiểu của hàm số
?
Hàm số đạt cực tiểu tại điểm có đổi dấu từ âm sang dương. Dựa vào đồ thị hàm số có 1 điểm cực tiểu.
Cho hàm số
có đạo hàm
với
và
là tham số. Có bao nhiêu giá trị nguyên của
để hàm số
có 5 điểm cực trị?
Cho hàm số có đạo hàm
với
và
là tham số. Có bao nhiêu giá trị nguyên của
để hàm số
có 5 điểm cực trị?
Một máy bay bắt đầu hạ cánh, biết quỹ đạo đường bay của nó được mô hình hóa toán học trong mặt phẳng với hệ tọa độ
(với mỗi đơn vị trên mỗi trục có độ dài bằng 1 dặm) có dạng đồ thị của hàm bậc ba. Vị trí bắt đầu hạ cánh có tọa độ là
là điểm cực đại của đồ thị hàm số và máy bay này tiếp đất tại vị trí gốc tọa độ là điểm cực tiểu của đồ thị hàm số. Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất bao nhiêu dặm (kết quả làm tròn đến hàng phần trăm)?
Đáp án: 0,84 dặm
Một máy bay bắt đầu hạ cánh, biết quỹ đạo đường bay của nó được mô hình hóa toán học trong mặt phẳng với hệ tọa độ (với mỗi đơn vị trên mỗi trục có độ dài bằng 1 dặm) có dạng đồ thị của hàm bậc ba. Vị trí bắt đầu hạ cánh có tọa độ là
là điểm cực đại của đồ thị hàm số và máy bay này tiếp đất tại vị trí gốc tọa độ là điểm cực tiểu của đồ thị hàm số. Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất bao nhiêu dặm (kết quả làm tròn đến hàng phần trăm)?
Đáp án: 0,84 dặm
Gọi hàm số mô phỏng đường bay của máy bay là .
Đồ thị hàm số đi qua điểm nên ta có
.
Đồ thị hàm số đi qua điểm nên ta có phương trình
.
Mặt khác, ta có và
là hai điểm cực trị của đồ thị hàm số nên ta có
tức là
.
Từ và
ta có
.
Suy ra .
Thay ta được
.
Vậy khi máy bay ha cánh theo phương ngang 3 dặm thì máy bay cách mặt đất khoảng dặm.
Cho hàm số
với
là tham số. Tích tất cả các giá trị của tham số
để giá trị lớn nhất của hàm số đã cho trên đoạn
bằng
bằng:
Ta có:
Vậy tích tất cả các giá trị của tham số bằng
.
Cho hàm số
xác định, liên tục trên tập số thực và đồ thị của hàm số
là đường cong như hình vẽ bên dưới.

Khẳng định nào sau đây là khẳng định đúng?
Từ đồ thị của hàm số ta có:
Vậy hàm số nghịch biến trên khoảng
.
Cho hàm số
có bảng biến thiên như hình vẽ:

Hàm số
nghịch biến trong khoảng nào dưới đây?
Ta có:
Xét
Ta có bảng xét dấu:
Vậy đáp án cần tìm là .
Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
có đúng ba đường tiệm cận?
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng ba đường tiệm cận?
Giá trị nhỏ nhất của hàm số
trên đoạn
bằng:
Tập xác định nên hàm số xác định và liên tục trên
Ta có:
Mà
Cho hàm số y = x4 – 2x2 + 5. Khẳng định nào sau đây đúng:
Tập xác định
Ta có bảng biến thiên

Dựa vào bảng biến thiên ta thấy hàm số có giá trị nhỏ nhất, không có giá trị lớn nhất.
Đồ thị hàm số
có tiệm cận ngang là:
Tập xác định
Ta có:
Vì nên đồ thị hàm số có đường tiệm cận ngang là y = 2.
Cho hàm số
với
là tham số. Biết rằng giá trị nhỏ nhất của hàm số đã cho trên
bằng
. Khi đó giá trị lớn nhất của hàm số đó là:
Ta có: do xét trên
nên nhận
Vì
Từ đó .
Ông A dự định sử dụng hết
kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu
? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 2,1
Ông A dự định sử dụng hết kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu
? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 2,1
Gọi
lần lượt là chiều rộng và chiều cao của bể cá.
Ta có thể tích bể cá .
Theo đề bài ta có:
Ta có bảng biển thiên
Cho hàm số
liên tục trên
và có bảng xét dấu của
như sau:

Số điểm cực tiểu của hàm số đã cho là
Đạo hàm đổi dấu từ âm sang dương hai lần qua các điểm
và
nên hàm số đã cho có hai điểm cực tiểu.
Cho hàm số y = f(x) có bảng biến thiên như sau:

Hỏi đồ thị hàm số
có bao nhiêu tiệm cận đứng và tiệm cận ngang?
Dựa vào bảng biến thiên ta có:
Ta có:
Dựa vào bảng biến thiên suy ra phương trình f(x) = 2 có 2 nghiệm x = a hoặc x = b trong đó a < 0, b > 2
Với điều kiện thì phương trình
Do đó đồ thị hàm số có 4 đường tiệm cận đứng
Mặt khác bậc của tử số nhỏ hơn bậc của mẫu số nên đồ thị hàm số có một tiệm cận ngang là y = 0 => Đồ thị hàm số có 5 đường tiệm cận.
Cho một tấm nhôm hình vuông có cạnh là
. Người ta cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là
, sau đó gập tấm nhôm lại để tạo thành một chiếc hộp không nắp. Tìm
để thể tích chiếc hộp là lớn nhất.
Đáp án: 5
Cho một tấm nhôm hình vuông có cạnh là . Người ta cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là
, sau đó gập tấm nhôm lại để tạo thành một chiếc hộp không nắp. Tìm
để thể tích chiếc hộp là lớn nhất.
Đáp án: 5
Chiều cao của chiếc hộp khi gập tấm nhôm là .
Kích thước đáy hai đáy của chiếc hộp là .
Ta có .
Thể tích chiếc hộp là .
.
Bài toán trở thành, tìm
sao cho
là lớn nhất.
Vậy cần cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là để chiếc hộp tạo thành có thể tích lớn nhất.
Cho bảng biến thiên như hình vẽ:

Bảng biến thiên trên là của hàm số nào?
Đồ thị hàm số đạt cực trị tại điểm x = 0 và x = 2
=> Loại đáp án C và D
Quan sát bảng biến thiên
=> Loại đáp án B
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là
. Đúng||Sai
b) Đồ thị hàm số có các đường tiệm cận ngang là
. Đúng||Sai
c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng
d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là . Đúng||Sai
b) Đồ thị hàm số có các đường tiệm cận ngang là . Đúng||Sai
c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng
d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng
a) Điều kiện xác định của hàm số .
Vậy tập xác định của hàm số là .
b) Ta có: nên y = −1 là đường tiệm cận ngang.
nên y = 1 là đường tiệm cận ngang.
c) Do nên x = 1 là đường tiệm cận đứng.
Vậy đồ thị hàm số có tất cả 3 đường tiệm cận (2 TCN và 1 TCĐ).
d) Minh họa miền giới hạn của các đường tiệm cận và trục Oy như sau:
Miền giới hạn là hình chữ nhật có diện tích là
Cho hàm số
có đồ thị như hình vẽ sau. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Dựa vào đồ thị ta có hàm số đồng biến trên khoảng
Cho x, y là các số thực thỏa mãn
. Giá trị nhỏ nhất của biểu thức
bằng:
Đặt
Ta được
Xét
Vì
Cho hàm số
đạt cực đại tại
thỏa mãn
. Khi đó:
Tập xác định
Ta có: hàm số có hai cực trị
khi và chỉ khi
Khi đó .
Mặt khác
Vậy đáp án cần tìm là .
Tìm tiệm cận ngang của đồ thị hàm số
?
Ta có:
Do đó tiệm cận ngang của đồ thị hàm số là
.
Cho hàm số
với
là tham số. Tìm tất cả các giá trị nguyên của tham số
để đồ thị hàm số đã cho có ba đường tiệm cận?
Ta có: suy ra
là một tiệm cận ngang của đồ thị hàm số.
Do đó để đồ thị hàm số có ba đường tiệm cận thì đồ thị hàm số phải có hai tiệm cận đứng.
có hai nghiệm phân biệt khác
Mà nên không tồn tại giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Quan sát hình vẽ sau:

Xác định hàm số tương ứng với đồ thị hàm số trong hình vẽ đã cho?
Đồ thị hàm số có tiệm cận ngang và tiệm cận đứng là
nên hàm số tương ứng là
.
Cho hàm số
có đồ thị
như hình vẽ:

Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên
. Sai||Đúng
b) Hàm số đạt cực đại tại x = −2. Sai||Đúng
c) Giá trị nhỏ nhất của hàm số trên
là
. Đúng||Sai
d) Điểm cực tiểu của hàm số là
. Đúng||Sai
Cho hàm số có đồ thị
như hình vẽ:
Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên . Sai||Đúng
b) Hàm số đạt cực đại tại x = −2. Sai||Đúng
c) Giá trị nhỏ nhất của hàm số trên là
. Đúng||Sai
d) Điểm cực tiểu của hàm số là . Đúng||Sai
a) Sai. Hàm số đồng biến trên và nghịch biến trên
.
b) Sai. Hàm số đạt cực tiểu tại .
c) Đúng.
d) Đúng.
Tìm giá trị của tham số
để hàm số
nghịch biến trên khoảng ![]()
Tìm giá trị của tham số để hàm số
nghịch biến trên khoảng
Cho hàm số
xác định trên
và có bảng biến thiên như hình bên dưới

Hàm số
đồng biến trên khoảng nào dưới đây?
Dựa vào bảng biến thiên, ta thấy hàm số đồng biến trên .
Đường thẳng
là đường tiệm cận của đồ thị hàm số nào sau đây?
có
suy ra
là tiệm cận ngang của đồ thị hàm số. (Loại)
có
nên đồ thị hàm số không có tiệm cận ngang (loại)
có
suy ra
là tiệm cận ngang (Thỏa mãn).
Vậy đường thẳng là đường tiệm cận của đồ thị hàm số
.
Tìm giá trị của tham số
để giá trị nhỏ nhất của hàm số
trên đoạn
bằng
?
Ta có:
Vậy giá trị cần tìm là .