Tìm số các giá trị nguyên của tham số
để hàm số
có ba điểm cực trị?
Ta có:
Hàm số có ba cực trị khi và chỉ khi
Mà . Vậy có 4 giá trị của tham số
thỏa mãn.
Tìm số các giá trị nguyên của tham số
để hàm số
có ba điểm cực trị?
Ta có:
Hàm số có ba cực trị khi và chỉ khi
Mà . Vậy có 4 giá trị của tham số
thỏa mãn.
Đường thẳng nào dưới đây là tiệm cận đứng của đồ thị hàm số
?
Xét phương trình x + 1 = 0 => x = -1
Và => x = -1 là tiệm cận đứng của đồ thị hàm số.
Cho hàm số
có đồ thị của hàm số
như hình vẽ:

Xác định khoảng đồng biến của hàm số
?
Ta có:
Với
Kết hợp với điều kiện ta có:
Với
Kết hợp với điều kiện ta có:
Vậy hàm số đồng biến trên mỗi khoảng
Cho hàm số
. Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để giá trị lớn nhất của hàm số trên đoạn
không vượt quá 7. Hỏi tập
có bao nhiêu phần tử là số nguyên?
Cho hàm số . Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để giá trị lớn nhất của hàm số trên đoạn
không vượt quá 7. Hỏi tập
có bao nhiêu phần tử là số nguyên?
Cho hàm số
. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là:
Tập xác định
Ta có:
Khi đó:
Đồ thị hàm số
được biểu diễn bởi hình vẽ:

Điểm cực tiểu của hàm số đã cho là:
Quan sát đồ thị của hàm số ta thấy hàm số có điểm cực tiểu là .
Cho hàm số
có đồ thị như hình vẽ:

Đồ thị hàm số
có mấy điểm cực trị?
Từ đồ thị suy ra đồ thị có điểm một điểm cực tiểu và một điểm cực đại.
Cho hàm số
. Có bao nhiêu giá trị nguyên dương của tham số
luôn đồng biến trên
?
Ta có:
Khi đó:
Do nguyên dương nên
.
Vậy có 1 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào dưới đây?
![]() |
Dựa vào đồ thị hàm số ta thấy
=> Hệ số a > 0
=> Loại đáp án B và đáp án D
Mặt khác hàm số có ba điểm cực trị
=> Loại đáp án C
Cho hàm số
. Số đường tiệm cận của đồ thị hàm số y = f(x) là:
Ta có:
=> Đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.
=> y = 2 là tiệm cận ngang của đồ thị hàm số
=> đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.
Trong các hàm số sau, hàm số nào nghịch biến trên từng khoảng xác định?
Xét hàm số ta có:
Điều kiện xác định
Lại có: nên hàm số
nghịch biến trên từng khoảng xác định của nó.
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Đạo hàm của hàm số đã cho là
. Đúng||Sai
b) Các điểm cực trị của đồ thị hàm số có toạ độ là (−2; −3) và (1; 3. Đúng||Sai
c) Đường tiệm cận đứng của đồ thị hàm số có phương trình là:
. Đúng||Sai
d) Đường tiệm cận xiên của đồ thị hàm số có phương trình là
. Đúng||Sai
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Đạo hàm của hàm số đã cho là . Đúng||Sai
b) Các điểm cực trị của đồ thị hàm số có toạ độ là (−2; −3) và (1; 3. Đúng||Sai
c) Đường tiệm cận đứng của đồ thị hàm số có phương trình là: . Đúng||Sai
d) Đường tiệm cận xiên của đồ thị hàm số có phương trình là . Đúng||Sai
a) Ta có:
b)
Thay vào hàm số, ta tính được toạ độ các điểm cực trị là (−2; −3) và (1; 3)
c) Điều kiện xác định:
nên
là tiệm cận đứng.
d)
Suy ra đồ thị có đường tiệm cận xiên là .
Cho hàm số
. Mệnh đề nào dưới đây là mệnh đề sai?
Vì nên đồ thị hàm số luôn nghịch biến trên các khoảng
.
Vậy mệnh đề sai là: "Hàm số đồng biến trên ".
Cho hàm số
có bảng biến thiên:

Số đường tiệm cận ngang của đồ thị hàm số
là:
Ta có: nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang
.
Tiếp tuyến tại điểm cực tiểu của đồ thị hàm số ![]()
Ta có:
nên hàm số đạt cực đại tại điểm
và đạt cực tiểu tại
Mà suy ra tiếp tuyến tại điểm cực tiểu của đồ thị hàm số
Vậy tiếp tuyến song song với trục hoành.
Cho hàm số
. Gọi M là giá trị lớn nhất của hàm số trên khoảng
. Tìm M.
Ta có:
Ta có bảng biến thiên

Từ bảng biến thiên ta có M = 1
Gọi
lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số
trên đoạn
. Tổng
bằng bao nhiêu?
Gọi lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số
trên đoạn
. Tổng
bằng bao nhiêu?
Đồ thị hàm số
có bao nhiêu tiệm cận đứng?
Ta có:
Lại có: suy ra
là tiệm cận đứng của đồ thị hàm số
Vậy hàm số đã cho có 1 tiệm cận đứng.
Giá trị của tham số m sao cho hàm số
nghịch biến trên khoảng (0; 2)?
Ta có:
Hàm số nghịch biến trên khoảng (0; 2)
=>
=>
Xét hàm số
Ta có:
=> g(x) đồng biến trên đoạn [0; 2]
Ta có:
Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là
. Nếu vận tốc bơi của cá khi nước đứng yên là
thì năng lượng tiêu hao của cá trong
giờ được cho bởi công thức
, trong đó
là hằng số dương,
được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng
thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của
(kết quả làm tròn tới hàng phần mười).
Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là . Nếu vận tốc bơi của cá khi nước đứng yên là
thì năng lượng tiêu hao của cá trong
giờ được cho bởi công thức
, trong đó
là hằng số dương,
được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng
thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của
(kết quả làm tròn tới hàng phần mười).
Tìm các giá trị của tham số m để bất phương trình
nghiệm đúng với mọi ![]()
Xét hàm số ta có:
=>
Ta có:
Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?

Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Cho hàm số xác định trên và có bảng biến thiên như hình vẽ:

Số đường tiệm cận đứng của đồ thị hàm số
là:
Ta có:
Phương trình có 3 nghiệm phân biệt khác 2.
Phương trình có một nghiệm kép là x = 2 (do vậy mẫu số có dạng
nên x = 2 vẫn là TCĐ của đồ thị hàm số
=> Đồ thị hàm số có 4 đường tiệm cận đứng.
Đồ thị hàm số nào sau đây nhận điểm
làm tâm đối xứng?
Đồ thị hàm số có tiệm cận đứng là đường thẳng
và tiệm cận ngang là
suy ra giao điểm của hai đường tiệm cận là
Vậy điểm là tâm đối xứng của đồ thị hàm số
.
Trong các hàm số sau, hàm số nào đồng biến trên tập số thực?
Xét hàm số có:
Suy ra hàm số đồng biến trên tập số thực.
Có bao nhiêu số nguyên
thỏa mãn điều kiện hàm số
đồng biến trên khoảng
?
Ta có:
. Hàm số đồng biến trên khoảng
Vậy có duy nhất một số nguyên m thỏa mãn điều kiện hàm số đồng biến trên khoảng
.
Cho hàm số y = f(x) có đạo hàm liên tục trên
. Đồ thị hàm số y f’(x) như hình vẽ bên:

Số điểm cực trị của hàm số y = f(x) + 2x là:
Xét hàm số g(x) = f(x) + 2x. Từ đồ thị hàm số f’(x) ta thấy:
Từ đó suy ra hàm số y = f(x) + 2x liên tục và có đạo hàm chỉ đổi dấu khi qua giá trị
Từ đó ta có bảng xét dấu như sau:

Vậy hàm số đã cho có đúng một cực trị
Hàm số
liên tục trên tập số thực và có bảng biến thiên như sau:

Phương trình
có bao nhiêu nghiệm?
Gọi ta có:
Suy ra
Ta có bảng biến thiên
Mà từ bảng biến thiên ta thấy phương trình có ba nghiệm.
Cho hàm số
. Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là
. Khi đó
bằng:
Ta có:
Cho hàm số y = f(x) có bảng biến thiên như sau:

Hỏi đồ thị hàm số
có bao nhiêu tiệm cận đứng và tiệm cận ngang?
Dựa vào bảng biến thiên ta có:
Ta có:
Dựa vào bảng biến thiên suy ra phương trình f(x) = 2 có 2 nghiệm x = a hoặc x = b trong đó a < 0, b > 2
Với điều kiện thì phương trình
Do đó đồ thị hàm số có 4 đường tiệm cận đứng
Mặt khác bậc của tử số nhỏ hơn bậc của mẫu số nên đồ thị hàm số có một tiệm cận ngang là y = 0 => Đồ thị hàm số có 5 đường tiệm cận.
Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm
với mọi
. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số
nghịch biến trên khoảng
?
Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm với mọi
. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số
nghịch biến trên khoảng
?
Đồ thị hàm số
được biểu diễn trong hình vẽ như sau:

Tìm tất cả các giá trị thực của tham số
để phương trình
có đúng hai nghiệm phân biệt?
Số nghiệm của phương trình chính là giao điểm của hai đồ thị
Minh họa trực quan:
Vậy để hàm số có đúng hai nghiệm thì
.
Hỏi đồ thị của hàm số
có tất cả bao nhiêu đường tiệm cận (không xét tiệm cận xiên)?
Tập xác định
Ta có: nên đồ thị hàm số có tiệm cận ngang là
nên đồ thị hàm số có tiệm cận đứng là
Vậy đồ thị hàm số có 2 đường tiệm cận.
Cho hàm số
.
a) Tập xác định của hàm số là
. Đúng||Sai
b)
. Sai||Đúng
c)
khi
,
khi
. Sai||Đúng
d) Hàm số đã cho có đồ thị như hình vẽ.
Đúng||Sai
Cho hàm số .
a) Tập xác định của hàm số là . Đúng||Sai
b) . Sai||Đúng
c) khi
,
khi
. Sai||Đúng
d) Hàm số đã cho có đồ thị như hình vẽ.
Đúng||Sai
Tập xác định: .
Sự biến thiên
Giới hạn tại vô cực: .
và
hoặc
Hàm số đồng biến trên mỗi khoảng và
, nghịch biến trên khoảng
.
Hàm số đạt cực đại tại ; hàm số đạt cực tiểu tại
.
Đồ thị:
Giao điểm của đồ thị với trục tung: .
Giao điểm của đồ thị với trục hoành tại hoặc
. Vậy đồ thị hàm số giao với trục hoành tại ba điểm
và
.
Vậy đồ thị hàm số được cho ở hình vẽ.
Trên đoạn
hàm số
có giá trị nhỏ nhất bằng bao nhiêu?
Tập xác định
Ta có:
Trên đoạn hàm số đã cho nghịch biến
Cho hàm số y = f(x) như hình vẽ. Hỏi có tất cả bao nhiêu giá trị thực của tham số m để hàm số
có đúng 6 điểm cực trị?

Xét hàm số
Yêu cầu bài toán xảy ra khi phương trình đạo hàm phải có 6 nghiệm bội lẻ:
Ta có:
Phương trình (*) luôn có hai nghiệm phân biệt => Hai phương trình còn lại phải cho đúng 4 nghiệm nghiệm bội lẻ.
Nhận thấy hai phương trình (1), (2) luôn cho hai nghiệm phân biệt vafcacs nghiệm của hai phương trình này không trùng nhau.
Để hai phương trình có đúng 4 nghiệm bội lẻ thì:
TH1: x = 1 là nghiệm của (x – 1)[x2 – (m – 1)x – m – 1] = 0 và x = -1 không phải là nghiệm của (x – 1)[x2 – (m + 1)x + m – 1] = 0
TH2: x = -1 là nghiệm của (x – 1)[x2 – (m + 1)x + m – 1] = 0 và x = 1 không phải là nghiệm của (x – 1)[x2 – (m – 1)x - m – 1] = 0
=>
Vậy có hai giá thực của m thỏa mãn
Tìm tất cả các giá trị của tham số
để hàm số
nghịch biến trên khoảng
?
Tập xác định
Ta có:
Theo yêu cầu bài toán:
Vậy đáp án cần tìm là .
Cho hàm số
có đồ thị cắt trục
tại ba điểm phân biệt. Hỏi số cực trị của hàm số
bằng bao nhiêu?
Vì đồ thị hàm số cắt trục hoành tại ba điểm phân biệt nên hàm số có 2 điểm cực trị giả sử đồ thị của hàm số đó như sau:
Số điểm cực trị của hàm số là
Số nghiệm bội lẻ của phương trình là
Khi đó số điểm cực trị của hàm số là 2 + 3 = 5
Cho đồ thị hàm số
như hình vẽ:

Hỏi hàm số
nghịch biến trên khoảng nào dưới đây?
Theo đồ thị hàm số ta có hàm số đồng biến trên khoảng
và
khi đó:
Mặt khác
Do hàm số nghịch biến nên
Vậy hàm số nghịch biến trên khoảng
.
Một công ty bất động sản có
căn hộ cho thuê. Nếu giá cho thuê mỗi căn là
đồng/tháng thì không có phòng trống, còn nếu cho thuê mỗi căn hộ thêm
đồng/tháng thì sẽ có 2 căn bị bỏ trống. Hỏi công ty phải niêm yếu bao nhiêu để doanh thu là lớn nhất?
Đặt số tiền tăng thêm là (đồng)
Giá tiền mỗi căn hộ một tháng là (đồng)
Số căn hộ bị trống là (phòng)
Số tiền thu được mỗi tháng là: (đồng)
Đặt
Để doanh thu là lớn nhất thì ta tìm giá trị lớn nhất của hàm số , giá trị lớn nhất của hàm số
tại đỉnh của parabol.
Hay:
Vậy công ty niêm yết giá tiền là: đồng để được doanh thu là lớn nhất.