Cho hàm số
. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có hai tiệm cận đứng.
Ta có:
Đồ thị hàm số có hai tiệm cận đứng khi và chỉ khi phương trình có hai nghiệm phân biệt thỏa mãn
Cho hàm số
. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có hai tiệm cận đứng.
Ta có:
Đồ thị hàm số có hai tiệm cận đứng khi và chỉ khi phương trình có hai nghiệm phân biệt thỏa mãn
Đường thẳng
là đường tiệm cận của đồ thị hàm số nào sau đây?
có
suy ra
là tiệm cận ngang của đồ thị hàm số. (Loại)
có
nên đồ thị hàm số không có tiệm cận ngang (loại)
có
suy ra
là tiệm cận ngang (Thỏa mãn).
Vậy đường thẳng là đường tiệm cận của đồ thị hàm số
.
Tập hợp tất cả các giá trị của tham số
để hàm số
đồng biến trên khoảng
là:
Hàm số đồng biến trên khi và chỉ khi
Vậy là giá trị cần tìm.
Cho hàm số
. Giá trị lớn nhất của hàm số trên đoạn
bằng bao nhiêu?
Ta có: Hàm số đã cho xác định và liên túc trên đoạn
Suy ra hàm số đồng biến trên
Vậy .
Cho hàm số có đồ thị như hình vẽ sau đây:

Khẳng định nào sau đây đúng?
Dựa vào đồ thị hàm số ta thấy:
Đồ thị hàm số cắt trục Ox tại điểm có hoành độ dương =>
Đồ thị hàm số cắt trục Oy tại điểm có tung độ âm =>
Đồ thị hàm số nhận làm tiệm cận đứng và
làm tiệm cận ngang
Chọn a > 0 => b < 0; c > 0; d > 0 =>
Tìm các giá trị của tham số m để bất phương trình
nghiệm đúng với mọi ![]()
Xét hàm số ta có:
=>
Ta có:
Cho hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Ta có:
Suy ra hàm số đồng biến trên mỗi khoảng và
.
Giá trị nhỏ nhất của hàm số
là:
Đặt
Khi đó hàm số trở thành:
Xét hàm số trên đoạn
ta có:
=> Hàm số đồng biến trên
=>
Cho hàm số
có đạo hàm
. Mệnh đề nào sau đây đúng?
Xét ta có bảng xét dấu
như sau:
Dựa vào bảng xét dấu ta thấy hàm số nghịch biến trên các khoảng , hàm số đồng biến trên khoảng
.
Tìm tất cả các khoảng đồng biến của hàm số ![]()
Tập xác định
Ta có:
=> Hàm số đồng biến trên (-3; 0)
Cho hàm số
xác định và liên tục trên
, đạo hàm
có đồ thị như hình vẽ sau:

Tìm số điểm cực tiểu của hàm số
?
Hàm số đạt cực tiểu tại điểm có đổi dấu từ âm sang dương. Dựa vào đồ thị hàm số có 1 điểm cực tiểu.
Cho hàm số
xác định trên
và có đồ thị của hàm số
như hình vẽ:

Hàm số
đạt cực tiểu tại:
Đặt
Ta có bảng biến thiên
Ta xét bằng cách thay số
Với
Với
Với
Với
Vậy hàm số đạt cực tiểu tại
Đồ thị hàm số
có đường tiệm cận ngang qua điểm
khi:
Để đồ thị hàm số có đường tiệm cận ngang là
Đường tiệm cận ngang đi qua nên ta có:
Vậy đáp án đúng là .
Cho hàm số
có đạo hàm trên
và có bảng xét dấu
như sau:

Hỏi hàm số
có bao nhiêu điểm cực tiểu?
Đặt
Từ bảng xét dấu của hàm số có
Ta có bảng biến thiên
Từ bảng xét dấu ta suy ra hàm số có 1 điểm cực tiểu.
Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.
Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.
Tổng tất cả các giá trị thực của m để hàm số
đồng biến trên R bằng:
Ta có:
Hàm số đã cho đồng biến trên R khi và chỉ khi
Và dấu bằng xảy ra chỉ tại một số hữu hạn điểm.
Điều kiện cần
Ta thấy phương trình y ‘ = 0 có một nghiệm x = -1 nên để thì y’ không đổi dấu qua khi x = -1 khi đó phương trình y’ = 0 có nghiệm kép là x = -1 (x = -1 không thể laf nghiệm bội 4 của phương trình y’ = 0 vì y’ không chứa số hạng x3)
Ta suy ra được y’’(-1) = 0
=>
Điều kiện đủ:
Với m = - 2 ta có:
=> Hàm số đồng biến trên R
=> m = -2 thỏa mãn điều kiện đề bài.
Với ta có:
=> Hàm số đồng biến trên R
=> thỏa mãn điều kiện đề bài
Vậy là các giá trị cần tìm.
=> Tổng các giá trị thực của m cần tìm thỏa mãn yêu cầu bài toán là
Đường thẳng nào sau đây là tiệm cận ngang của đồ thị hàm số
?
Ta có:
Vậy tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình
.
Giá trị trị lớn nhất của hàm số
trên đoạn
bằng
Ta có .
Do đó ,
,
.
Vậy
Cho đồ thị hàm số như hình vẽ dưới đây:

Đồ thị hàm số tương ứng với hàm số nào sau đây?
Từ đồ thị hàm số ta có tiệm cận đứng là x = 1, tiệm cận ngang là y = 1
=> Loại A và B
Xét thấy giao điểm của đồ thị hàm số với trục tung là (0; -2) => Chọn đáp án C
Đồ thị hàm số nào dưới đây có dạng như hình vẽ?

Đồ thị hàm số bậc 4 có hệ số và có ba điểm cực trị nên
nên chọn
.
Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số
đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
=>
=> Tổng P bằng 10
Tính tổng
tất cả các giá trị nguyên của tham số
để hàm số
đồng biến trên tập xác định?
Tập xác định
Ta có:
Để hàm số đồng biến trên tập xác định thì
Vì nên
Vậy .
Cho hàm số
có hai điểm cực trị
. Tính độ dài đoạn thẳng
?
Ta có:
Nhận thấy phương trình có hai nghiệm phân biệt nên đồ thị hàm số có hai điểm cực trị là
Cho hàm số
thỏa mãn
. Chọn mệnh đề đúng?
Tập xác định
Ta có: . Vì hàm số đơn điệu trên
nên
Nếu Hàm số không có giá trị lớn nhất
Vậy
Hai điểm cực trị của đồ thị hàm số
là
Ta có:
Vậy hai điểm cực trị cần tìm là:
Cho hàm số y = f(x) có bảng biến thiên như sau:

Hỏi đồ thị hàm số
có bao nhiêu tiệm cận đứng và tiệm cận ngang?
Dựa vào bảng biến thiên ta có:
Ta có:
Dựa vào bảng biến thiên suy ra phương trình f(x) = 2 có 2 nghiệm x = a hoặc x = b trong đó a < 0, b > 2
Với điều kiện thì phương trình
Do đó đồ thị hàm số có 4 đường tiệm cận đứng
Mặt khác bậc của tử số nhỏ hơn bậc của mẫu số nên đồ thị hàm số có một tiệm cận ngang là y = 0 => Đồ thị hàm số có 5 đường tiệm cận.
Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số
lần lượt là
. Tính giá trị biểu thức
?
Tập xác định
Ta có:
Khi đó:
Cho hàm số
với
là tham số. Khi giá trị của
biến thiên thì số điểm cực trị của hàm số có thể là
hoặc
hoặc
. Tính giá trị biểu thức
?
Đặt
Ta có bảng biến thiên của như sau:
TH1:
Hàm số có 3 điểm cực trị suy ra
TH2:
Hàm số có 3 điểm cực trị suy ra
TH3:
Hàm số có 3 điểm cực trị suy ra
Vậy
Cho hàm số
có bảng biến thiên:

Số giá trị nguyên của
để đồ thị hàm số có
tiệm cận là:
Từ bảng biến thiên ta thấy đồ thị có hai tiệm cận đứng và các tiệm cận ngang
. Suy ra đồ thị có bốn tiệm cận khi
Do nên
Vậy có 7 giá trị của tham số thỏa mãn.
Đồ thị hàm số
có bao nhiêu đường tiệm cận đứng?
Ta có:
suy ra
là đường tiệm cận đứng của đồ thị hàm số.
suy ra
là đường tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số đã cho có 2 đường tiệm cận đứng.
Sự ảnh hưởng khi sử dụng một loại thuốc với cá thể
được một nhà sinh học mô tả bởi hàm số
, trong đó
là số lượng cá thể sau
giờ sử dụng thuốc. Vào thời điểm nào thì số lượng cá thể
bắt đầu giảm?
Xét ta có:
Ta thấy hàm số đạt cực đại tại và
nên sau
giờ thì cá thể bắt đầu giảm.
Cho hàm số y = f(x) xác định, liên tục trên
và có bảng biến thiên như sau:

Khẳng định nào sau đây là đúng?
Từ bảng biến thiên, ta dễ dàng thấy được A, B, D sai, C đúng
Cho hình vẽ:

Đường trong trong hình vẽ là đồ thị của hàm số nào?
Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng với
Vậy hàm số cần tìm là .
Cho hàm số y = f(x) có đạo hàm
. Số điểm cực trị của hàm số đã cho bằng
Ta có:
=> Hàm số có 3 điểm cực trị
Trong các hàm số sau, hàm số nào nghịch biến trên từng khoảng xác định?
Xét hàm số ta có:
Điều kiện xác định
Lại có: nên hàm số
nghịch biến trên từng khoảng xác định của nó.
Cho hàm số y = f(x) liên tục trên
và có bảng biến thiên như hình vẽ. Tìm tất cả các giá trị của tham số m để phương trình
có đúng hai nghiệm phân biệt.

Để phương trình có hai nghiệm phân biệt thì
Cho hàm số
có bảng xét dấu đạo hàm như hình vẽ:

Hàm số
nghịch biến trên khoảng:
Ta có:
. Khi đó ta có bảng biến thiên:
Hàm số nghịch biến trên khoảng
.
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào dưới đây?
![]() |
Dựa vào đồ thị hàm số ta thấy
=> Hệ số a > 0
=> Loại đáp án B và đáp án D
Mặt khác hàm số có ba điểm cực trị
=> Loại đáp án C
Cho hàm số
có đồ thị
, đường thẳng
và điểm
. Biết rằng
cắt nhau tại ba điểm phân biệt
trong đó
còn trọng tâm tam giác
nằm trên đường thẳng
. Tìm giá trị của tham số
thỏa mãn yêu cầu đề bài?
Cho hàm số có đồ thị
, đường thẳng
và điểm
. Biết rằng
cắt nhau tại ba điểm phân biệt
trong đó
còn trọng tâm tam giác
nằm trên đường thẳng
. Tìm giá trị của tham số
thỏa mãn yêu cầu đề bài?
Cho hàm số bậc ba
có đồ thị như sau:

Số giá trị nguyên của tham số
để phương trình
có ba nghiệm phân biệt là:
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số
và đường thẳng
Suy ra để phương trình có ba nghiệm phân biệt thì
Vì
Vậy có duy nhất một số nguyên của thỏa mãn yêu cầu bài toán.