Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Số giao điểm của hai đồ thị hàm số y =
f(x)y = g(x) bằng số nghiệm phân biệt của phương trình nào sau đây?

    Hoành độ giao điểm là nghiệm của phương trình f(x) = g(x) hay f(x) - g(x) = 0.

  • Câu 2: Nhận biết

    Biết rằng hàm số f(x) = x^{3} - 3x^{2} -
9x + 28 đạt giá trị nhỏ nhất trên \lbrack 0;4brack tại điểm x_{0}. Khi đó giá trị biểu thức P = x_{0} + 2021 bằng:

    Ta có: y' = 3x^{2} - 6x -
9

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
f(0) = 28 \\
f(3) = 1 \\
f(4) = 8 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;4brack}f(x) =
1 khi x = 3

    Suy ra x_{0} = 3 \Rightarrow P = x_{0} +
2021 = 2024.

  • Câu 3: Thông hiểu

    Cho hàm số f(x) = \frac{1}{3}x^{3} -
mx^{2} + \left( m^{2} - 4 ight)x + 3 với m là tham số. Xác định điều kiện của tham số m để hàm số đã cho đạt cực đại tại x = 3?

    Ta có: \left\{ \begin{matrix}
y' = x^{2} - 2mx + \left( x^{2} - 4 ight) \\
y'' = 2x - 2m \\
\end{matrix} ight.

    Hàm số đạt cực đại tại x = 3 suy ra y'(3) = 0 \Leftrightarrow m^{2} - 6m
+ 5 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 5 \\
\end{matrix} ight.

    Với m = 5 ta có: y''(3) = 6 - 10 = - 4 < 0 suy ra hàm số đạt cực đại tại x =
3.

    Với m = 1 ta có: y''(3) = 6 - 2 = 4 > 0 suy ra hàm số đạt cực tiểu tại x = 3.

    Vậy giá trị của tham số m thỏa mãn yêu cầu là m = 5

  • Câu 4: Vận dụng cao

    Gọi M, N lần lượt là số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{{x\left( {\sqrt {{x^2} - 3}  - \sqrt {x - 1} } ight)}}{{{x^2} - 4}}. Khi đó m + n bằng:

    Điều kiện  x e 2;x \geqslant \sqrt 3

    Tiệm cận ngang:

    \begin{matrix}  \dfrac{{x\left( {\sqrt {{x^2} - 3}  - \sqrt {x - 1} } ight)}}{{{x^2} - 4}} = \dfrac{{x.\left| x ight|\left( {\sqrt {1 - \dfrac{3}{{{x^2}}}}  - \sqrt {\dfrac{1}{x} - \dfrac{1}{{{x^2}}}} } ight)}}{{{x^2}\left( {1 - \dfrac{4}{x}} ight)}} \hfill \\   = \dfrac{{{x^2}\left( {\sqrt {1 - \dfrac{3}{{{x^2}}}}  - \sqrt {\frac{1}{x} - \dfrac{1}{{{x^2}}}} } ight)}}{{{x^2}\left( {1 - \dfrac{4}{x}} ight)}},\left( {do{\text{ }}x \geqslant \sqrt 3 } ight) = \dfrac{{\sqrt {1 - \dfrac{3}{{{x^2}}}}  - \sqrt {\dfrac{1}{x} - \dfrac{1}{{{x^2}}}} }}{{1 - \frac{4}{x}}} \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\sqrt {1 - \dfrac{3}{{{x^2}}}}  - \sqrt {\dfrac{1}{x} - \dfrac{1}{{{x^2}}}} }}{{1 - \dfrac{4}{x}}} = 1 \hfill \\ \end{matrix}

    => Đồ thị hàm số có 1 tiệm cận ngang là y = 1

    Tiệm cận đứng:

    Điều kiện cần: Xét phương trình x2 – 4 = 0 => x = 2 hoặc x = -2

    Điều kiện đủ

    Đặt f\left( x ight) = x\left( {\sqrt {{x^2} - 3}  - \sqrt {x - 1} } ight)

    Xét x = 2 ta có f(2) = 0 nên ta sẽ đi tìm bậc của x – 2 của f(x)

    \begin{matrix}  \sqrt {{x^2} - 3}  - \sqrt {x - 1}  = \dfrac{{\left( {\sqrt {{x^2} - 3}  - \sqrt {x - 1} } ight).\left( {\sqrt {{x^2} - 3}  + \sqrt {x - 1} } ight)}}{{\sqrt {{x^2} - 3}  + \sqrt {x - 1} }} = \dfrac{{{x^2} - x - 2}}{{g\left( x ight)}} = \left( {x - 2} ight).h\left( x ight) \hfill \\   \Rightarrow y = \dfrac{{\left( {x - 2} ight).h\left( x ight)}}{{\left( {x - 2} ight)\left( {x + 2} ight)}} = \dfrac{{h\left( x ight)}}{{x + 2}} \hfill \\ \end{matrix}

    => x = 2 không phải là tiệm cận đứng

    Xét x = -2 ta có f(-2) không tồn tại hay x = -2 không phải là tiệm cận đứng.

    Vậy M = 1, N = 0 => M + N = 1

  • Câu 5: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên trên đoạn \lbrack -
5;7brack như sau:

    Mệnh đề nào sau đây đúng?

    Từ bảng biến thiên ta suy ra \min_{\lbrack - 5;7brack}y = 2

  • Câu 6: Thông hiểu

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} và có bảng biến thiên như hình vẽ:

    Tìm giá trị của tham số thực m để phương trình f(x) = m có ít nhất hai nghiệm thực phân biệt?

    Phương trình f(x) = m có ít nhất hai nghiệm thực phân biệt khi và chỉ khi đường thẳng y = m cắt đồ thị hàm số y = f(x) tại ít nhất hai điểm phân biệt

    \Leftrightarrow - 1 \leq m \leq
3

  • Câu 7: Nhận biết

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:

    Đồ thị hàm số bậc 4 có hệ số a >
0 cắt trục tung tại điểm có tung độ lớn hơn 0 nên hàm số cần tìm là y = x^{4} - 2x^{2} - 1.

  • Câu 8: Thông hiểu

    Biết đường tiệm cận xiên của đồ thị hàm số y = \frac{2x^{2} + x}{x + 1} cắt trục hoành và trục tung theo thứ tự tại hai điểm A,\ B. Khi đó diện tích tam giác OAB bằng bao nhiêu đơn vị diện tích? (kết quả ghi dưới dạng số thập phân)

    Đáp án: 0,25

    Đáp án là:

    Biết đường tiệm cận xiên của đồ thị hàm số y = \frac{2x^{2} + x}{x + 1} cắt trục hoành và trục tung theo thứ tự tại hai điểm A,\ B. Khi đó diện tích tam giác OAB bằng bao nhiêu đơn vị diện tích? (kết quả ghi dưới dạng số thập phân)

    Đáp án: 0,25

    Ta có

    y = \frac{2x^{2} + x}{x + 1} =
\frac{2x^{2} + 2x - x - 1 + 1}{x + 1}

    = \frac{2x(x + 1) - (x + 1) + 1}{x + 1} =
2x - 1 + \frac{1}{x + 1}.

    Do đó tiện cận xiên của đồ thị hàm số đã cho là y = 2x - 1.

    Tiệm cận xiên của đồ thị hàm số cắt trục hoành, trục tung lần lượt là A\left( \frac{1}{2};0 ight)\ ,B(0; -
1).

    Xét tam giác OAB vuông tại O, có:

    OA = \frac{1}{2};\ OB = 1

    => Diện tích của tam giác OAB

    S_{OAB} = \frac{1}{2}OA.OB =
\frac{1}{2}.\frac{1}{2}.1 = \frac{1}{4} = 0,25

  • Câu 9: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Giá trị cực đại của hàm số đã cho bằng:

    Quan sát bảng biến thiên dễ thấy giá trị cực đại của hàm số đã cho bằng 3.

  • Câu 10: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm f'(x) trên khoảng ( - \infty; + \infty). Đồ thị hàm số y = f'(x) như hình vẽ:

    Hàm số y = f(x) nghịch biến trên khoảng nào trong các khoảng sau?

    Quan sát hình vẽ ta thấy:

    y = f'(x) \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 3 \\
\end{matrix} ight.f'(x)
\leq 0 \Leftrightarrow 0 \leq x \leq 3

    Vậy hàm số y = f(x) nghịch biến trên khoảng (0;3).

  • Câu 11: Thông hiểu

    Cho hàm số f(x) có bảng xét dấu f'(x) như sau:

    Hàm số y = f(2x + 1) nghịch biến trên khoảng nào dưới đây?

    Ta có:

    y' = \left\lbrack f(2x + 1)
ightbrack' = 2f'(2x + 1) < 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x + 1 < - 3 \\
- 1 < 2x + 1 < 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 2 \\
- 1 < x < 0 \\
\end{matrix} ight.

    Vậy khoảng nghịch biến của hàm số y =
f(2x + 1) là: ( - 1;0)

  • Câu 12: Nhận biết

    Cho hàm số y = f(x) có đồ thị như hình 2. Đường thẳng nào sau đây là đường tiệm cận ngang của đồ thị hàm số đã cho?

    Từ đồ thị suy ra đồ thị hàm số đã cho có đường tiệm cận ngang là y = 1.

  • Câu 13: Nhận biết

    Các dân tộc ít người phân bố chủ yếu ở khu vực nào của Trung Quốc?

  • Câu 14: Thông hiểu

    Cho hàm số y = x^{4} - 2(m + 2)x^{2} + 3m
- 1. Tìm m để hàm số đã cho có cực tiểu nhưng không có cực đại?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 4x^{3} - 4(m +
2)x

    y' = 0 \Leftrightarrow 4x^{3} - 4(m
+ 2)x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = m + 2 \\
\end{matrix} ight.

    Để hàm số đã cho chỉ có điểm cực tiểu và không có điểm cực đại thì m + 2 \leq 0 \Leftrightarrow m \leq -
2.

    Vậy đáp án cần tìm là ( - \infty; -
2brack.

  • Câu 15: Nhận biết

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ cho sau đây?

    Đồ thị hàm số bậc 4 có hệ số a <
0 và có ba điểm cực trị nên ab <
0 nên chọn y = - x^{4} + 2x^{2} +
1.

  • Câu 16: Vận dụng

    Cho hàm số f\left( x ight) = \frac{{x - {m^2}}}{{x + 8}} (với m là tham số thực). Tìm giá trị lớn nhất của tham số m để hàm số có giá trị nhỏ nhất bằng -2 trên đoạn [0; 3].

    Xét hàm số f\left( x ight) = \frac{{x - {m^2}}}{{x + 8}} trên đoạn [0; 3] ta có:

    f'\left( x ight) = \frac{{8 + {m^2}}}{{{{\left( {x + 8} ight)}^2}}} > 0;\forall x \in \left[ {0;3} ight]

    => Hàm số f(x) đồng biến trên (0; 3)

    => \mathop {\min }\limits_{\left[ {0;3} ight]} f\left( x ight) = f\left( 0 ight) = \frac{{ - {m^2}}}{8}

    Theo bài ra ta có:

    \begin{matrix}  \mathop {\min }\limits_{\left[ {0;3} ight]} f\left( x ight) =  - 2 \hfill \\   \Leftrightarrow  - \dfrac{{{m^2}}}{8} =  - 2 \hfill \\   \Leftrightarrow {m^2} = 16 \Leftrightarrow m =  \pm 4 \hfill \\   \Rightarrow {m_{\max }} = 4 \hfill \\ \end{matrix}

  • Câu 17: Vận dụng cao

    Cho hai số thực a, b dương thỏa mãn 2\left( {{a^2} + {b^2}} ight) + ab = \left( {a + b} ight)\left( {ab + 2} ight). Giá trị nhỏ nhất của biểu thức T = 4\left( {\frac{{{a^3}}}{{{b^3}}} + \frac{{{b^3}}}{{{a^3}}}} ight) - 9\left( {\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{a^2}}}} ight) bằng:

    Ta có:

    2\left( {\frac{a}{b} + \frac{b}{a}} ight) + 1 = \left( {a + b} ight)\left( {1 + \frac{2}{{ab}}} ight) = a + b + \frac{2}{a} + \frac{2}{b}

    \geqslant 2\sqrt {2\left( {a + b} ight)\left( {\frac{1}{a} + \frac{1}{b}} ight)}  = 2\sqrt {2\left( {2 + \frac{a}{b} + \frac{b}{a}} ight)}

    Đặt t = \frac{a}{b} + \frac{b}{a} \Rightarrow t \geqslant \frac{5}{2}

    \Rightarrow P = 4\left( {{t^3} - 3t} ight) - 9\left( {{t^2} - 2} ight) = 4{t^3} - 9{t^2} - 12t + 18 = f\left( t ight)

    \begin{matrix}  f'\left( t ight) = 12{t^2} - 18t - 12 > 0,\forall t > \dfrac{5}{2} \hfill \\   \Rightarrow f\left( t ight) \geqslant f\left( {\dfrac{5}{2}} ight) =  - \dfrac{{23}}{4} \hfill \\ \end{matrix}

  • Câu 18: Nhận biết

    Xác định hàm số đồng biến trên ( - \infty; + \infty)?

    Xét hàm số y = x^{3} + 3x ta có:

    y' = 3x^{2} + 3 > 0;\forall x \in
( - \infty; + \infty)

    Suy ra hàm số y = x^{3} + 3x đồng biến trên ( - \infty; +
\infty).

  • Câu 19: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = x\left( {x - 1} ight)\left( {x - 2} ight),\forall x \in \mathbb{R}. Hàm số g\left( x ight) = f\left( {\frac{{5x}}{{{x^2} + 4}}} ight) đồng biến trên khoảng nào trong các khoảng sau?

    Ta có: f'\left( x ight) = 0 \Leftrightarrow x{\left( {x - 1} ight)^2}\left( {x - 2} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \\   {x = 2} \end{array}} ight.

    Ta có: g'\left( x ight) = \frac{{ - 5{x^2} + 20}}{{{{\left( {{x^2} + 4} ight)}^2}}}.f'\left( {\frac{{5x}}{{{x^2} + 4}}} ight)

    Cho g’(x) = 0 => \frac{{ - 5{x^2} + 20}}{{{{\left( {{x^2} + 4} ight)}^2}}}.f'\left( {\frac{{5x}}{{{x^2} + 4}}} ight) = 0

    Dựa vào f’(x) ta có:

    \left[ {\begin{array}{*{20}{c}}  { - 5{x^2} + 20 = 0} \\   {\dfrac{{5x}}{{{x^2} + 4}} = 0} \\   {\dfrac{{5x}}{{{x^2} + 4}} = 1} \\   {\dfrac{{5x}}{{{x^2} + 4}} = 2} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm 2} \\   {x = 0} \\   {x = 1} \\   {x = 4} \end{array}} ight.

    Lập bảng xét dấu như sau:

    Xét khoảng đồng biến của hàm số

    Quan sát bảng xét dấy ta suy ra hàm số đồng biến trên khoảng (2; 4)

  • Câu 20: Thông hiểu

    Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức P(x) = - x^{3} + 24x^{2} +
780x - 1000 trong đó x là khối lượng sản phẩm sản xuất được. Xưởng chỉ sản xuất tối đa 40 tạ sản phẩm trong một tuần. Hỏi để có lợi nhuận lớn nhất thì xưởng cần sản xuất bao nhiêu tạ sản phẩm trong một tuần?

    Đáp án: 26

    Đáp án là:

    Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức P(x) = - x^{3} + 24x^{2} +
780x - 1000 trong đó x là khối lượng sản phẩm sản xuất được. Xưởng chỉ sản xuất tối đa 40 tạ sản phẩm trong một tuần. Hỏi để có lợi nhuận lớn nhất thì xưởng cần sản xuất bao nhiêu tạ sản phẩm trong một tuần?

    Đáp án: 26

    Ta có P'(x) = - 3x^{2} + 48x + 780;\
\ P'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 10 \\
x = 26\ \ \  \\
\end{matrix} ight..

    Bảng biến thiên

    Vậy để lợi nhuận lớn nhất thì xưởng cần sản xuất 26 tạ sản phẩm trong một tuần.

  • Câu 21: Nhận biết

    Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như hình vẽ dưới đây:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên khoảng (−2; 5). Sai|| Đúng

    b) Hàm số đạt cực đại tại điểm x = −2. Đúng||Sai

    c) Hàm số có giá trị nhỏ nhất bằng −2. Sai|| Đúng

    d) Hàm số có giá trị lớn nhất bằng 5. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như hình vẽ dưới đây:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đồng biến trên khoảng (−2; 5). Sai|| Đúng

    b) Hàm số đạt cực đại tại điểm x = −2. Đúng||Sai

    c) Hàm số có giá trị nhỏ nhất bằng −2. Sai|| Đúng

    d) Hàm số có giá trị lớn nhất bằng 5. Đúng||Sai

    Hàm số y = f(x) không có giá trị nhỏ nhất nên phát biểu “Hàm số y =
f(x) có giá trị nhỏ nhất bằng −2” là phát biểu sai.

  • Câu 22: Thông hiểu

    Cho hàm số y = f(x) có: \lim_{x ightarrow 3^{-}}f(x) = 1;\lim_{xightarrow 3^{+}}f(x) = + \infty;\lim_{x ightarrow - \infty}f(x) =1;\lim_{x ightarrow + \infty}f(x) = + \infty

    Xét tính đúng sai của các khẳng định sau:

    a) Đồ thị của hàm số y = f(x) có tiệm cận ngang là đường thẳng y =
1. Đúng||Sai

    b) Đồ thị của hàm số y = f(x) có tiệm cận đứng là đường thẳng x =
3. Đúng||Sai

    c) Đồ thị của hàm số y = f(x) không có tiệm cận ngang. Sai|| Đúng

    d) Đồ thị của hàm số y = f(x) không có tiệm cận đứng. Sai|| Đúng

    Đáp án là:

    Cho hàm số y = f(x) có: \lim_{x ightarrow 3^{-}}f(x) = 1;\lim_{xightarrow 3^{+}}f(x) = + \infty;\lim_{x ightarrow - \infty}f(x) =1;\lim_{x ightarrow + \infty}f(x) = + \infty

    Xét tính đúng sai của các khẳng định sau:

    a) Đồ thị của hàm số y = f(x) có tiệm cận ngang là đường thẳng y =
1. Đúng||Sai

    b) Đồ thị của hàm số y = f(x) có tiệm cận đứng là đường thẳng x =
3. Đúng||Sai

    c) Đồ thị của hàm số y = f(x) không có tiệm cận ngang. Sai|| Đúng

    d) Đồ thị của hàm số y = f(x) không có tiệm cận đứng. Sai|| Đúng

    a) Do \lim_{x ightarrow - \infty}f(x) =
1 nên y = 1 là đường tiệm cận ngang của đồ thị hàm số. (*)

    b) Do \lim_{x ightarrow 3^{+}}f(x) = +
\infty nên x = 3 là đường tiệm cận đứng của đồ thị hàm số. (**)

    c) Từ (*) suy ra khẳng định này sai.

    d) Từ (**) suy ra khẳng định này sai.

  • Câu 23: Vận dụng

    Cho hàm số và có bảng biến thiên như hình vẽ.

    Tính giá trị biểu thức

    Tính T = ab + bc + 2ca

    Ta có: 

    \begin{matrix}  y' = 4a{x^3} + 2bx \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {y\left( 0 ight) = 3} \\   {y\left( 1 ight) = 2} \\   {y'\left( 1 ight) = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {c = 3} \\   {a + b + c = 2} \\   {4a + 2b = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {c = 3} \\   {a = 1} \\   {b =  - 2} \end{array}} ight. \Rightarrow T =  - 2 \hfill \\ \end{matrix}

  • Câu 24: Nhận biết

    Cho hàm số y = f(x) có đồ thị như hình 1. Điểm cực tiểu của hàm số đã cho là:

    Điểm cực tiểu của hàm số là 2.

  • Câu 25: Vận dụng

    Cho hàm số y = f(x) và đồ thị của hàm số y = f'(x) như hình vẽ sau:

    Hàm số g(x) = f\left( |x| ight) +2021 có bao nhiêu điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) và đồ thị của hàm số y = f'(x) như hình vẽ sau:

    Hàm số g(x) = f\left( |x| ight) +2021 có bao nhiêu điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 26: Thông hiểu

    Tìm tất cả các giá trị của tham số m để đường thẳng y = my =
- x^{3} + 6x^{2} tại ba điểm phân biệt?

    Ta có: y = - x^{3} + 6x^{2} \Rightarrow
y' = - 3x^{2} + 12x

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 4 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Để đường thẳng y = - x^{3} +
6x^{2}y = m tại ba điểm phân biệt thì 0 < m <
32.

  • Câu 27: Thông hiểu

    Người ta muốn xây một bể chứa có dạng hình hộp chữ nhật, thể tích 1800m^{3} và chiều sâu 2m (như hình vẽ).

    Biết rằng chi phí xây mỗi đơn vị diện tích của đáy bể gấp hai lần so với thành bể. Gọi x (m) và y (m) là hai kích thước của mặt đáy.

    Xét tính đúng sai của các khẳng định sau:

    a) Thể tích bể chứa được tính theo công thức V = 2x^{2}y . Sai|| Đúng

    b) Mối liên hệ giữa x và y là y =
\frac{900}{x} . Đúng||Sai

    c) Tổng diện tích mặt bên của bể tính theo x, y là S = 4(x + y) . Đúng||Sai

    d) Để tổng chi phí xây dựng (bao gồm mặt đáy và mặt bên) nhỏ nhất thì cần chọn chiều dài là 40m . Sai|| Đúng

    Đáp án là:

    Người ta muốn xây một bể chứa có dạng hình hộp chữ nhật, thể tích 1800m^{3} và chiều sâu 2m (như hình vẽ).

    Biết rằng chi phí xây mỗi đơn vị diện tích của đáy bể gấp hai lần so với thành bể. Gọi x (m) và y (m) là hai kích thước của mặt đáy.

    Xét tính đúng sai của các khẳng định sau:

    a) Thể tích bể chứa được tính theo công thức V = 2x^{2}y . Sai|| Đúng

    b) Mối liên hệ giữa x và y là y =
\frac{900}{x} . Đúng||Sai

    c) Tổng diện tích mặt bên của bể tính theo x, y là S = 4(x + y) . Đúng||Sai

    d) Để tổng chi phí xây dựng (bao gồm mặt đáy và mặt bên) nhỏ nhất thì cần chọn chiều dài là 40m . Sai|| Đúng

    a) Thể tích của bể là V = B.h = xy.\
h.

    b) Với V = xy.h \Rightarrow 1800 = xy.2
\Rightarrow xy = \frac{1800}{2} = 900.

    c) Tổng diện tích mặt bên gồm 4 hình chữ nhật (trước, sau, trái, phải) là:

    \ S = 2x + 2x + 2y + 2y = 4x + 4y = 4(x
+ y)

    d) Tổng diện tích của bể là: 4x + 4y + xy
= 4x + 4.\frac{900}{x} + 900

    Vì chi phí xây mỗi đơn vị diện tích của đáy bể gấp hai lần so với thành bể nên chi phí cần có là 4x +
4.\frac{900}{x} + 2.900

    Đặt f(x) = 4x + 4.\frac{900}{x} +
1800 ta có: f'(x) = 4 -
\frac{3600}{x^{2}} \Rightarrow f'(x) = 0 \Leftrightarrow x =
30 ta có bảng biến thiên như sau:

    Với x = 30m;y = 30 m và thì chi phí xây dựng bể là thấp nhất.

  • Câu 28: Thông hiểu

    Trong các hàm số sau hàm số nào đồng biến trên (1; +∞)?

    Ta có hàm số y = ax, y = log­ax đồng biến trên tập xác định nếu a > 0

    Do đó hàm số y = log­3x đồng biến trên (1; +∞)

  • Câu 29: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như hình vẽ.

    Đặt g(x) = f\left( \frac{x^{2} + 1}{x}
ight). Tìm số điểm cực trị của hàm số y = g(x).

    Đáp án: 6

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như hình vẽ.

    Đặt g(x) = f\left( \frac{x^{2} + 1}{x}
ight). Tìm số điểm cực trị của hàm số y = g(x).

    Đáp án: 6

    Đặt g'(x) = \left( \frac{x^{2} -
1}{x^{2}} ight)f'\left( \frac{x^{2} + 1}{x} ight)

    g'\left( x ight) = 0 \Leftrightarrow \left[ \begin{gathered}
  \left( {\frac{{{x^2} - 1}}{{{x^2}}}} ight) = 0 \hfill \\
  f'\left( {\frac{{{x^2} + 1}}{x}} ight) = 0 \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left[ \begin{gathered}
  x =  \pm 1 \hfill \\
  \frac{{{x^2} + 1}}{x} = a\,\,\left( {a <  - 2} ight) \hfill \\
  \frac{{{x^2} + 1}}{x} = b\,\,\left( { - 2 < b < 2} ight) \hfill \\
  \frac{{{x^2} + 1}}{x} = c\,\,\left( {c > 2} ight) \hfill \\ 
\end{gathered}  ight.

    Xét hàm số h(x) = \frac{x^{2} +
1}{x},h'(x) = \frac{x^{2} - 1}{x^{2}},h'(x) = 0 \Leftrightarrow
x = \pm 1

    Bảng biến thiên của hàm số h(x) =
\frac{x^{2} + 1}{x}

    Dựa vào bảng biến thiến trên ta thấy phương trình h(x) = a,h(x) = c.

    Mỗi phương trình có hai nghiệm phân biệt khác \pm 1, mà a eq c \Rightarrow f'\left(
\frac{x^{2} + 1}{x} ight) = 0 có 4 nghiệm đơn phân biệt x_{1},x_{2},x_{3},x_{4} khác \pm 1 và phương trình h(x) = b vô nghiệm.

    Do đó phương trình g'(x) = 0 có 6 nghiệm đơn phân biệt lần lượt theo thứ tự từ nhỏ đến lớn là x_{1},- 1,x_{2},x_{3},1,x_{4}.

    Vậy hàm số g(x) = f\left( \frac{x^{2} +
1}{x} ight)có 6 cực trị.

  • Câu 30: Thông hiểu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

    Số đường tiệm cận ngang: 1

    Số đường tiệm cận đứng: 1

    Tổng số đường tiệm cận ngang và tiệm cận đứng: 2.

  • Câu 31: Thông hiểu

    Hàm số y = - x^{4} + 2mx^{2} + 1 đạt cực tiểu tại x = 0 khi:

    Hàm số xác định với mọi x\mathbb{\in
R}

    Ta có: \left\{ \begin{matrix}
y' = - 4x^{3} + 4mx \\
y'' = - 12x^{2} + 4m \\
\end{matrix} ight.

    Hàm số đạt cực tiểu tại x = 0 khi

    \left\{ \begin{matrix}
y'(0) = 0 \\
y''(0) > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 4.0^{3} + 4m.0 = 0(TM) \\
- 12.^{2} + 4m > 0 \\
\end{matrix} ight.\  \Leftrightarrow m > 0

    Vậy m > 0 thỏa mãn yêu cầu bài toán.

  • Câu 32: Vận dụng

    Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là f\left( x ight) = \left| {\frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30} ight| trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là f\left( x ight) = \left| {\frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30} ight| trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 33: Thông hiểu

    Một chất điểm chuyển động thẳng với quãng đường biến thiên theo thời gian bởi quy luật s(t) = t^{3} - 4t^{2} +
12(m), trong đó t(s) là khoảng thời gian tính từ lúc bắt đầu chuyển động. Vận tốc của chất điểm đó đạt giá trị bé nhất khi t bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một chất điểm chuyển động thẳng với quãng đường biến thiên theo thời gian bởi quy luật s(t) = t^{3} - 4t^{2} +
12(m), trong đó t(s) là khoảng thời gian tính từ lúc bắt đầu chuyển động. Vận tốc của chất điểm đó đạt giá trị bé nhất khi t bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 34: Nhận biết

    Đồ thị hàm số y = \frac{{x + 4}}{{\sqrt {{x^2} - 4} }} có bao nhiêu đường tiệm cận?

    Tập xác định: D = \mathbb{R}\backslash \left\{ { \pm 2} ight\}

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x + 4}}{{\sqrt {{x^2} - 4} }} = 1} \\   {\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{x + 4}}{{\sqrt {{x^2} - 4} }} =  - 1} \end{array}} ight. => y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.

    => Đồ thị hàm số có hai tiệm cận đứng là x = 2 và x = =-2

    Vậy đồ thị hàm số đã cho có 2 tiệm cận đứng là x = 2 và x = -2

  • Câu 35: Vận dụng

    Tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = \frac{1 + \sqrt{x + 1}}{x^{2} - 2x -
m} có đúng hai tiệm cận đứng?

    Điều kiện xác định x \geq -
1

    1 + \sqrt{x + 1} > 0;\forall x \geq
- 1 nên để đồ thị hàm số có đúng hai tiệm cận đứng thì phương trình x^{2} - 2x = m\ \ (*) phải có hai nghiệm phân biệt lớn hơn -
1.

    Xét hàm số f(x) = x^{2} - 2x trên \lbrack - 1; + \infty) có:

    f'(x) = 2x - 2 = 0 \Rightarrow x =
1

    Bảng biến thiên

    Phương trình (*) có hai nghiệm phân biệt lớn hơn - 1 khi - 1
< m \leq 3.

    Vậy đáp án cần tìm là m \in ( -
1;3brack.

  • Câu 36: Thông hiểu

    Điều kiện của tham số m để hàm số y = \frac{x + m}{x + 2} nghịch biến trên từng khoảng xác định là:

    Xét hàm số y = \frac{x + m}{x +
2} ta có:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 2 ight\}

    Ta có: y' = \frac{2 - m}{(x +
2)^{2}}

    Hàm số nghịch biến trên từng khoảng xác định \Leftrightarrow y' < 0;\forall x \in
D

    \Leftrightarrow 2 - m < 0
\Leftrightarrow m > 2

    Vậy đáp án cần tìm là m >
2.

  • Câu 37: Thông hiểu

    Cho hàm số y = \frac{2x - 1}{x -
1}.

    a) Đạo hàm của hàm số đã cho là y' =
- \frac{1}{(x - 1)^{2}}. Đúng||Sai

    b) Đạo hàm của hàm số đã cho nhận giá trị âm với mọi x eq 1. Đúng||Sai

    c) Bảng biến thiên của hàm số đã cho như sau:

    Sai||Đúng

    d) Đồ thị của hàm số đã cho là đường cong trong hình sau:

    Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{2x - 1}{x -
1}.

    a) Đạo hàm của hàm số đã cho là y' =
- \frac{1}{(x - 1)^{2}}. Đúng||Sai

    b) Đạo hàm của hàm số đã cho nhận giá trị âm với mọi x eq 1. Đúng||Sai

    c) Bảng biến thiên của hàm số đã cho như sau:

    Sai||Đúng

    d) Đồ thị của hàm số đã cho là đường cong trong hình sau:

    Đúng||Sai

    Ta có: y' = - \frac{1}{(x -
1)^{2}}, \forall x eq 1 nên đạo hàm của hàm số đã cho nhận giá trị âm với mọi x eq 1.

    Bảng biến thiên:

    Hàm số đã cho nghịch biến trên các khoảng ( - \infty;1)(1; + \infty).

    Đồ thị của hàm số có tiệm cận đứng x =
1, tiệm cận ngang y = 2, nhận điểm I(1;2) là giao điểm của hai đường tiệm cận làm tâm đối xứng.

    Đồ thị hàm số cắt trục Oy tại điểm (0;1) và đi qua điểm có tọa độ (2;3).

  • Câu 38: Thông hiểu

    Xác định số đường tiệm cận của đồ thị hàm số y = \frac{\sqrt{x^{2} + 1}}{x + 1}?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    \lim_{x ightarrow - 1^{+}}f(x) = +
\infty nên đồ thị hàm số nhận đường thẳng x = - 1 làm đường tiệm cận đứng.

    \lim_{x ightarrow - \infty}f(x) =\lim_{x ightarrow - \infty}\dfrac{\sqrt{x^{2} + 1}}{x + 1} = \lim_{xightarrow - \infty}\dfrac{- \sqrt{1 + \dfrac{1}{x^{2}}}}{1 +\dfrac{1}{x}} = - 1 nên đồ thị hàm số nhận đường thẳng y = - 1 làm đường tiệm cận ngang.

    \lim_{x ightarrow + \infty}f(x) =\lim_{x ightarrow + \infty}\dfrac{\sqrt{x^{2} + 1}}{x + 1} = \lim_{xightarrow + \infty}\dfrac{\sqrt{1 + \dfrac{1}{x^{2}}}}{1 + \dfrac{1}{x}}= 1 nên đồ thị hàm số nhận đường thẳng y = 1 làm đường tiệm cận ngang.

    vậy đồ thị hàm số có tổng số đường tiệm cận bằng 3.

  • Câu 39: Vận dụng

    Tìm giá trị của tham số m để hàm số y = \sin 2x + mx + c đồng biến trên \mathbb{R}

    Ta có: y' = 2\cos 2x + m

    Hàm số đồng biến trên \mathbb{R}

    \begin{matrix}   \Leftrightarrow y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \mathop {\min }\limits_\mathbb{R} y' =  - 2 + m \geqslant 0 \Leftrightarrow m \geqslant 2 \hfill \\ \end{matrix}

  • Câu 40: Thông hiểu

    Tìm điều kiện của tham số m để hàm số y
= \frac{x + m}{x + 2} đồng biến trên từng khoảng xác định?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 2 ight\}

    Ta có: y' = \frac{2 - m}{(x +
2)^{2}}.

    Để hàm số y = \frac{x +
m}{x + 2} đồng biến trên từng khoảng xác định

    \Leftrightarrow y' > 0;\forall x \in D
\Leftrightarrow \frac{2 - m}{(x + 2)^{2}} > 0

    \Leftrightarrow 2 - m > 0
\Leftrightarrow m < 2

    Vậy giá trị cần tìm là m <
2.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo