Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Đồ thị hàm số nào sau đây không có tiệm cận ngang?

    Ta có:

    \mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^2} + 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{x + \dfrac{1}{x}}}{{1 - \dfrac{1}{x}}} = \mathop {\lim }\limits_{x \to \infty } x = \infty

    Vậy đồ thị hàm số y = \frac{{{x^2} + 1}}{{x - 1}} không có tiệm cận ngang.

  • Câu 2: Nhận biết

    Cho hàm số f(x) = x^{3} + 3x^{2} + x -
1. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;2brack lần lượt là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} + 6x + 1\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{- 3 - \sqrt{6}}{3} \\x = \dfrac{- 3 + \sqrt{6}}{3} \\\end{matrix} ight.

    Khi đó: y( - 1) = 0;y\left( \frac{- 3 +
\sqrt{6}}{3} ight) = - \frac{4\sqrt{6}}{9};y(2) = 21

    \Rightarrow \left\{ \begin{gathered}
  \mathop {\max }\limits_{\left[ { - 1;2} ight]} y = y\left( 2 ight) = 21 \hfill \\
  \mathop {\min }\limits_{\left[ { - 1;2} ight]} y = y\left( {\frac{{ - 3 + \sqrt 6 }}{3}} ight) =  - \frac{{4\sqrt 6 }}{9} \hfill \\ 
\end{gathered}  ight.

  • Câu 3: Thông hiểu

    Cho hàm số y = f(x) = \frac{1}{3}x^{3} -
mx^{2} + \left( m^{2} - 4 ight)x + 3 với m là tham số thực. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 2. Sai|| Đúng

    b) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 1. Sai|| Đúng

    c) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 5. Đúng||Sai

    d) y' = x^{2} - 2mx + m^{2} -
4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = \frac{1}{3}x^{3} -
mx^{2} + \left( m^{2} - 4 ight)x + 3 với m là tham số thực. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 2. Sai|| Đúng

    b) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 1. Sai|| Đúng

    c) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 5. Đúng||Sai

    d) y' = x^{2} - 2mx + m^{2} -
4. Đúng||Sai

    Ta có:

    y' = x^{2} - 2mx + m^{2} - 4;\forall
x\mathbb{\in R}

    Do hàm số đạt cực đại tại x = 3 nên y'(3) = 0 \Leftrightarrow m^{2} - 6m + 5 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 5 \\
\end{matrix} ight.

    Với m = 1;y' = x^{2} - 2x - 3;y'
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight..

    Bảng xét dấu y’ như sau:

    Với m = 5;y' = x^{2} - 10x +
21;y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 3 \\
x = 7 \\
\end{matrix} ight.

    Bảng xét dấu y’ như sau:

    Từ bảng xét dấu, ta có hàm số đạt cực đại tại x = 3

    Vậy hàm số đã cho đạt cực đại tại x = 3 khi và chỉ khi m = 5.

  • Câu 4: Nhận biết

    Đồ thị hàm số y = x^{4} - x^{2} -
2 cắt trục tung tại điểm:

    Ta có: x = 0 \Rightarrow y = 0^{4} -
0^{2} - 2 = - 2

    Vậy đồ thị hàm số y = x^{4} - x^{2} -
2 cắt trục tung tại điểm (0; -
2).

  • Câu 5: Vận dụng cao

    Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm f'\left( x ight) = {x^2}\left( {x - 2} ight)\left( {{x^2} - 6x + m} ight) với mọi x \in \mathbb{R}. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số g\left( x ight) = f\left( {1 - x} ight) nghịch biến trên khoảng \left( { - \infty ; - 1} ight)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm f'\left( x ight) = {x^2}\left( {x - 2} ight)\left( {{x^2} - 6x + m} ight) với mọi x \in \mathbb{R}. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số g\left( x ight) = f\left( {1 - x} ight) nghịch biến trên khoảng \left( { - \infty ; - 1} ight)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Vận dụng cao

    Cho hàm số y = f(x) là hàm số bậc 2. Đồ thị hàm số y = f’(x) như hình vẽ dưới đây và f(-1) < 20

    Tìm m để hàm số có 4 tiệm cận

    Đồ thị hàm số g\left( x ight) = \frac{{f\left( x ight) - 20}}{{f\left( x ight) - m}} (m là tham số thực) có bốn tiệm cận khi và chỉ khi:

     Điều kiện f\left( x ight) e m

    Từ đồ thị hàm số f’(x) ta có bảng biến thiên hàm số f(x) là:

    Tìm m để hàm số có 4 tiệm cận

    Nếu m = 20 thì đồ thị hàm số không có đủ bốn tiệm cận

    Nếu m e 20 thì \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{f\left( x ight) - 20}}{{f\left( x ight) - m}} = 1 => y = 1 là tiệm cận ngang của đồ thị hàm số

    Ta có phương trình f(x) = 20 có một nghiệm x = a > 3 vì f(-1) < 20

    => Đồ thị hàm số g(x) có bốn tiệm cận khi phương trình f(x) = m có ba nghiệm phân biệt khác a

    => f(3) < m < f(-1)

  • Câu 7: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Xác định giá trị cực tiểu của hàm số đã cho.

    Dựa vào bảng biến thiên ta thấy:

    Hàm số đạt cực tiểu tại x = 0, giá trị cực tiểu là y = 1.

  • Câu 8: Thông hiểu

    Xác định số đường tiệm cận của đồ thị hàm số y = \frac{\sqrt{x^{2} + 1}}{x + 1}?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    \lim_{x ightarrow - 1^{+}}f(x) = +
\infty nên đồ thị hàm số nhận đường thẳng x = - 1 làm đường tiệm cận đứng.

    \lim_{x ightarrow - \infty}f(x) =\lim_{x ightarrow - \infty}\dfrac{\sqrt{x^{2} + 1}}{x + 1} = \lim_{xightarrow - \infty}\dfrac{- \sqrt{1 + \dfrac{1}{x^{2}}}}{1 +\dfrac{1}{x}} = - 1 nên đồ thị hàm số nhận đường thẳng y = - 1 làm đường tiệm cận ngang.

    \lim_{x ightarrow + \infty}f(x) =\lim_{x ightarrow + \infty}\dfrac{\sqrt{x^{2} + 1}}{x + 1} = \lim_{xightarrow + \infty}\dfrac{\sqrt{1 + \dfrac{1}{x^{2}}}}{1 + \dfrac{1}{x}}= 1 nên đồ thị hàm số nhận đường thẳng y = 1 làm đường tiệm cận ngang.

    vậy đồ thị hàm số có tổng số đường tiệm cận bằng 3.

  • Câu 9: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Hàm số đã cho đạt cực đại tại điểm nào dưới đây?

    Từ bảng biến thiên ta thấy hàm số đạt cực đại tại x = 0.

  • Câu 10: Vận dụng

    Hàm số y = \frac{1}{3}x^{3} +
\frac{m}{2}x^{2} + x + 6 đồng biến trên nửa khoảng \lbrack 1; + \infty) khi:

    Ta có: y' = x^{2} + mx +
1

    Để hàm số đã cho đồng biến trên nửa khoảng \lbrack 1; + \infty) khi đó:

    \Leftrightarrow y' \geq 0;\forall x
\in \lbrack 1; + \infty)

    \Leftrightarrow x^{2} + mx + 1 \geq
0;\forall x \in \lbrack 1; + \infty)

    \Leftrightarrow m \geq - x -
\frac{1}{x};\forall x \in \lbrack 1; + \infty)

    Xét hàm số g(x) = - x -
\frac{1}{x} trên nửa khoảng \lbrack
1; + \infty) ta có:

    g'(x) = - 1 + \frac{1}{x^{2}} =
\frac{1 - x^{2}}{x^{2}}

    g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Bảng biến thiên của hàm số g(x) = - x -
\frac{1}{x} trên nửa khoảng \lbrack
1; + \infty) là:

    Từ bảng biến thiên suy ra \max_{\lbrack
1; + \infty)}g(x) = g(1) = - 2

    Vậy m \geq g(x);\forall x \in \lbrack 1;
+ \infty) khi và chỉ khi m \geq -
2.

  • Câu 11: Thông hiểu

    Cho hàm số y = f\left( x ight) = \frac{{3x - 1}}{{x - 3}} trên đoạn \left[ {0,2} ight]. Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Tính giá trị biểu thức 3M + m.

    Xét hàm số y = f\left( x ight) = \frac{{3x - 1}}{{x - 3}} trên đoạn \left[ {0,2} ight] ta có:

    f'\left( x ight) = \frac{8}{{{{\left( {x - 3} ight)}^2}}} < 0

    => f\left( x ight) là hàm số nghịch biến trên \left( {0;2} ight)

    => \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\mathop {\min f\left( x ight)}\limits_{\left[ {0;2} ight]}  = f\left( 2 ight) =  - 5} \\   {\mathop {\max f\left( x ight)}\limits_{\left[ {0;2} ight]}  = f\left( 0 ight) = \dfrac{1}{3}} \end{array}} ight. \Rightarrow 3M + m =  - 2

  • Câu 12: Nhận biết

    Hàm số y = 2{x^4} - 4 đồng biến trên khoảng

    Ta có y’ = 8x => y’ = 0 => x = 0

    => y’ > 0 => x > 0

    => y’ < 0 => x < 0

    Vậy hàm số đồng biến trên khoảng \left( {0; + \infty } ight)

  • Câu 13: Vận dụng

    Cho hình vẽ là đồ thị hàm số có dạng y = a{x^4} + b{x^2} + c

    Giá trị của biểu thức

    Giá trị của biểu thức B = {a^2} + {b^2} + {c^2} có thể nhận giá trị nào trong các giá trị sau?

    Đồ thị hàm số đi qua điểm \left( {0; - 1} ight) => c =  - 1

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{y_{CD}} = y\left( {\sqrt {\dfrac{{ - b}}{{2a}}} } ight) = \dfrac{{ - {b^2}}}{{4a}} + c = 3} \\   {y\left( 1 ight) = a + b + c = 2} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  { - {b^2} = 16a} \\   {a + b = 3} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - {b^2} = 16\left( {3 - b} ight)} \\   {a = 3 - b} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {b = 12;a = 9} \\   {b = 4;a =  - 1} \end{array}} ight. \hfill \\   \Rightarrow B = {a^2} + {b^2} + {c^2} = 18 \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu

    Cho hàm số y = 2x^{3} - 3x^{2} -
m. Trên đoạn \lbrack -
1;1brack hàm số có giá trị nhỏ nhất là - 1. Tìm giá trị của m?

    Ta có: y' = 6x^{2} - 6x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Từ bảng biến thiên suy ra \min_{\lbrack -
1;1brack}y = - 5 - m \Leftrightarrow - 1 = - 5 - m \Leftrightarrow m =
- 4.

    Vậy m = - 4 là giá trị cần tìm.

  • Câu 15: Thông hiểu

    Đồ thị hàm số y = ax^{3} + bx^{2} + cx +
d có hai điểm cực trị A(1; -
7),B(2; - 8). Khi đó y( -
1) có giá trị là:

    Gọi đồ thị hàm số y = ax^{3} + bx^{2} +
cx + d(C)

    Ta có: y' = 3ax^{2} + 2bx +
c.

    A(1; - 7),B(2; - 8) là hai điểm cực trị của đồ thị hàm số y =
ax^{3} + bx^{2} + cx + d nên ta có:

    \left\{ \begin{matrix}
A \in (C) \\
y'\left( x_{A} ight) = 0 \\
B \in (C) \\
y'\left( x_{B} ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 7 = a.1^{3} + b.1^{2} + c.1 + d \\
0 = 3a.1^{3} + 2b.1^{2} + c \\
- 8 = a.2^{3} + b.2^{2} + c.2 + d \\
0 = 3a.2^{3} + 2.b.2^{2} + c \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = - 9 \\
c = 12 \\
d = - 12 \\
\end{matrix} ight.

    Vậy y = 2x^{3} - 9x^{2} + 12x -
12 do đó y( - 1) = -
35.

  • Câu 16: Thông hiểu

    Hàm số nào sau đây nghịch biến trên khoảng (1; 3)?

    Xét hàm số y = \frac{1}{3}{x^3} - 2{x^2} + 3x + 1y' = {x^2} - 4x + 3

    => y’ = 0 => \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 3} \end{array}} ight.

    Ta có bảng biến thiên như sau:

    Chọn đáp án đúng

    Do đó hàm số nghịch biến trên khoảng (1; 3)

  • Câu 17: Vận dụng

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số y = {x^3} - 3\left( {m + 1} ight){x^2} + 3\left( {7m - 3} ight)x không có cực trị. Số phần tử của S là:

    Xét hàm số y = {x^3} - 3\left( {m + 1} ight){x^2} + 3\left( {7m - 3} ight)x ta có:

    \begin{matrix}  y' = 3{x^2} - 6\left( {m + 1} ight)x + 3\left( {7m - 3} ight) \hfill \\  y' = 0 \Leftrightarrow {x^2} - 2\left( {m + 1} ight)x + 7m - 3 = 0 \hfill \\ \end{matrix}

    Hàm số đã cho không có cực trị

    => Phương trình y’ = 0 vô nghiệm hoặc có nghiệm kép

    => \Delta ' \leqslant 0 \Rightarrow {\left( {m + 1} ight)^2} - 1\left( {7m - 3} ight) \leqslant 0 \Rightarrow 1 \leqslant m \leqslant 4

    Do m là số nguyên nên m \in \left\{ {1;2;3;4} ight\}

    Vậy tập S có 4 phần tử.

  • Câu 18: Thông hiểu

    Trong các hàm số sau hàm số nào đồng biến trên (1; +∞)?

    Ta có hàm số y = ax, y = log­ax đồng biến trên tập xác định nếu a > 0

    Do đó hàm số y = log­3x đồng biến trên (1; +∞)

  • Câu 19: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = \left( {{x^2} - 9} ight){\left( {{x^2} - 3x} ight)^2},\forall x \in \mathbb{R}. Gọi M là giá trị cực đại của hàm số đã cho. Chọn khẳng định đúng?

    Ta có: 

    \begin{matrix}  f'\left( x ight) = 0 \hfill \\   \Leftrightarrow \left( {{x^2} - 9} ight){\left( {{x^2} - 3x} ight)^2} = 0 \hfill \\   \Leftrightarrow {x^2}{\left( {x - 3} ight)^3}\left( {x + 3} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm 3} \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Chọn khẳng định đúng

    Dựa vào bảng biến thiên ta có giá trị cực đại của hàm số là M = f(-3)

  • Câu 20: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như hình vẽ sau

    Hàm số y = f(x) đồng biến trên khoảng nào dưới đây

    Từ bảng biến thiên suy ra hàm số đồng biến trên khoảng (0;2).

  • Câu 21: Vận dụng cao

    Cho hàm số y = \left| x^{4} - 4x^{3} +
4x^{2} + m ight| với m là tham số. Khi giá trị của m biến thiên thì số điểm cực trị của hàm số có thể là a hoặc b hoặc c. Tính giá trị biểu thức P = a.b.c?

    Đặt g(x) = x^{4} - 4x^{3} + 4x^{2} +
m

    \Rightarrow g'(x) = 4x^{3} - 12x^{2}
+ 8x \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên của g(x) như sau:

    TH1: m \geq 0

    Hàm số y = \left| x^{4} - 4x^{3} + 4x^{2}
+ m ight| có 3 điểm cực trị suy ra a = 3

    TH2: - 1 < m < 0

    Hàm số y = \left| x^{4} - 4x^{3} + 4x^{2}
+ m ight| có 3 điểm cực trị suy ra b = 7

    TH3: m \leq - 1

    Hàm số y = \left| x^{4} - 4x^{3} + 4x^{2}
+ m ight| có 3 điểm cực trị suy ra c = 5

    Vậy P = a.b.c = 105

  • Câu 22: Thông hiểu

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hỏi hàm số y = 2021 - f(x) đồng biến trên khoảng nào?

    Hàm số y = 2021 - f(x)y' = - f'(x)

    y' = 0 \Leftrightarrow - f'(x) =
0 \Leftrightarrow f'(x) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = 0 \\
\end{matrix} ight.

    Từ bảng biến thiên của hàm số y =
f(x) ta có bảng biến thiên của hàm số y = 2021 - f(x)

    Dựa vào bảng biến thiên ta có hàm số y =
2021 - f(x) đồng biến trong khoảng ( - 1;0).

  • Câu 23: Nhận biết

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ cho sau đây?

    Đồ thị hàm số bậc 4 có hệ số a <
0 và có ba điểm cực trị nên ab <
0 nên chọn y = - x^{4} + 2x^{2} +
1.

  • Câu 24: Vận dụng

    Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:

    Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:

    Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 25: Thông hiểu

    Số đường tiệm cận của đồ thị hàm số y =
\frac{\sqrt{x^{2} + 5} - 3}{x - 2} là:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 2 ight\}

    \lim_{x ightarrow 2}\frac{\sqrt{x^{2}
+ 5} - 3}{x - 2} = \lim_{x ightarrow 2}\frac{x^{2} - 4}{(x - 2)\left(
\sqrt{x^{2} + 5} + 3 ight)}

    = \lim_{x ightarrow 2}\frac{x +
2}{\sqrt{x^{2} + 5} + 3} = \frac{2}{3} nên x = 2 không phải tiệm cận đứng.

    \lim_{x ightarrow -\infty}\dfrac{\sqrt{x^{2} + 5} - 3}{x - 2} = \lim_{x ightarrow -\infty}\dfrac{- \sqrt{1 + \dfrac{5}{x^{2}}} - \dfrac{3}{x}}{1 -\dfrac{2}{x}} = - 1 suy ra y = -
1 là một tiệm cận ngang

    \lim_{x ightarrow +\infty}\dfrac{\sqrt{x^{2} + 5} - 3}{x - 2} = \lim_{x ightarrow +\infty}\dfrac{\sqrt{1 + \dfrac{5}{x^{2}}} - \dfrac{3}{x}}{1 - \dfrac{2}{x}}= 1 suy ra y = 1 là một tiệm cận ngang

    Vậy số đường tiệm cận của đồ thị hàm số y
= \frac{\sqrt{x^{2} + 5} - 3}{x - 2} là 2.

  • Câu 26: Thông hiểu

    Một chất điểm chuyển động với quy luật s(t) = - t^{3} + 6t^{2}. Thời điểm t (giây) tại vận tốc v(m/s) của chuyển động đạt giá trị lớn nhất là:

    Ta có: s(t) = - t^{3} + 6t^{2}
\Rightarrow v(t) = s'(t) = - 3t^{2} + 12t

    \Rightarrow v'(t) = 12 - 6t = 0
\Leftrightarrow t = 2

    Ta có bảng biến thiên như sau:

    Vậy vận tốc của chuyển động đạt giá trị lớn nhất bằng 12 khi t =
2.

  • Câu 27: Nhận biết

    Cho hàm số y = x^{3} - 3x^{2} +
2. Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;3brack lần lượt là P;Q. Khi đó P - Q bằng:

    Ta có: y' = 3x^{2} - 6x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
f( - 1) = - 2;f(0) = 2 \\
f(2) = - 2;f(3) = 2 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
P = 2 \\
Q = - 2 \\
\end{matrix} ight.\  \Rightarrow P - Q = 4

  • Câu 28: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack - 2;3brack bằng bao nhiêu?

    Giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack - 2;3brack bằng - 3.

  • Câu 29: Thông hiểu

    Cho hàm số f(x) = ax^{3} + bx^{2} + cx +
d;(a eq 0) có đồ thị như hình vẽ:

    Tập hợp các giá trị của tham số m để phương trình f(x + m) = m có đúng ba nghiệm phân biệt là:

    Đồ thị hàm số f(x + m) = m có được bằng cách tịnh tiến đồ thị hàm số y =
f(x) sang trái hoặc sang phải theo phương song song với trục hoành |m| đơn vị.

    Suy ra phương trình f(x + m) = m có đúng ba nghiệm phân biệt khi và chỉ khi m
\in ( - 2;2).

  • Câu 30: Vận dụng

    Cho hàm số y =
f(x) có đạo hàm f'(x) = x^{2}(x
- 9)(x - 4)^{2}. Khi đó hàm số y =
f\left( x^{2} ight) nghịch biến trên khoảng nào?

    Ta có:

    y' = \left( f\left( x^{2} ight)
ight)' = 2x.f'\left( x^{2} ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x^{4}\left( x^{2} - 9 ight)\left( x^{2} - 4 ight)^{2} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 3 \\
x = \pm 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên:

    Dựa vào bảng biến thiên ta có hàm số nghịch biến trên ( - \infty; - 3)(0;3).

  • Câu 31: Vận dụng

    Cho hàm số y = \frac{x + 1}{\sqrt{ax^{2}+ 1}} có đồ thị (C). Tìm giá trị a để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của (C) một khoảng bằng \sqrt{2} - 1?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \frac{x + 1}{\sqrt{ax^{2}+ 1}} có đồ thị (C). Tìm giá trị a để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của (C) một khoảng bằng \sqrt{2} - 1?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 32: Thông hiểu

    Đồ thị hàm số nào dưới đây có đúng một đường tiệm cận ngang?

    Xét hàm số y = \frac{4x - 2}{x^{2} - 3x +
2} có tập xác định D\mathbb{=
R}\backslash\left\{ 1;2 ight\}

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \left( {\frac{{4x - 2}}{{{x^2} - 3x + 2}}} ight) = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \left( {\frac{{4x - 2}}{{{x^2} - 3x + 2}}} ight) = 0 \hfill \\ 
\end{gathered}  ight.suy ra y =
0 là một tiệm cận ngang của đồ thị hàm số.

    Vậy hàm số có duy nhất một tiệm cận ngang là y = \frac{4x - 2}{x^{2} - 3x + 2}.

  • Câu 33: Thông hiểu

    Số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = \frac{x^{2} - 3x + 2}{4 - x^{2}} là:

    Tập xác định D\mathbb{=
R}\backslash\left\{ \pm 2 ight\}

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \left( {\dfrac{{{x^2} - 3x + 2}}{{4 - {x^2}}}} ight) =  - 1 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \left( {\dfrac{{{x^2} - 3x + 2}}{{4 - {x^2}}}} ight) =  - 1 \hfill \\ 
\end{gathered}  ight. nên y = -
1 là tiện cận ngang của đồ thị hàm số.

    \lim_{x ightarrow 2}y = \lim_{x
ightarrow 2}\frac{(x - 1)(x - 2)}{(2 - x)(2 + x)} = \lim_{x
ightarrow 2}\frac{1 - x}{x + 2} = - \frac{1}{4}

    \lim_{x ightarrow ( - 2)^{+}}y =
\lim_{x ightarrow ( - 2)^{+}}\frac{(x - 1)(x - 2)}{(2 - x)(2 + x)} = -
\infty suy ra x = - 2 là tiệm cận đứng của đồ thị hàm số.

    Vậy tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là 2.

  • Câu 34: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{mx + 4}{x + m} nghịch biến trên khoảng ( - \infty;1)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - m ight\}

    Ta có: y' = \frac{m^{2} - 4}{(x +
m)^{2}}

    Theo yêu cầu bài toán: \Leftrightarrow
y' < 0;\forall x \in ( - \infty;1)

    \Leftrightarrow \left\{ \begin{matrix}
- m otin ( - \infty;1) \\
m^{2} - 4 < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \leq - 1 \\
- 2 < m < 2 \\
\end{matrix} ight.\  \Leftrightarrow - 2 < m \leq - 1

    Vậy đáp án cần tìm là m \in ( - 2; -
1brack.

  • Câu 35: Vận dụng cao

    Cho hai số thực x, y thỏa mãn x \geqslant 0;y \geqslant 0 và x + y = 1. Giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P = \frac{x}{{y + 1}} + \frac{y}{{x + 1}} lần lượt là:

    Ta có: 

    P = \frac{x}{{y + 1}} + \frac{y}{{x + 1}} = \frac{{x\left( {x + 1} ight) + y\left( {y + 1} ight)}}{{\left( {x + 1} ight)\left( {y + 1} ight)}} = \frac{{{{\left( {x + y} ight)}^2} - 2xy + 1}}{{xy + x + y + 1}} = \frac{{2 - 2xy}}{{2 + xy}}

    Đặt t = xy ta được P = \frac{{2 - 2t}}{{2 + t}}

    x \geqslant 0;y \geqslant 0 \Rightarrow t \geqslant 0

    Mặt khác 1 = x + y \geqslant 2\sqrt {xy}  \Leftrightarrow xy \leqslant \frac{1}{4} \Rightarrow t \leqslant \frac{1}{4}

    Khi đó bài toán trở thành tìm giá trị lớn nhất của hàm số g\left( t ight) = \frac{{2 - 2t}}{{2 + t}} trên \left[ {0;\frac{1}{4}} ight]

    Xét hàm số g\left( t ight) = \frac{{2 - 2t}}{{2 + t}} xác định và liên tục trên \left[ {0;\frac{1}{4}} ight]

    Ta có: g'\left( t ight) = \frac{{ - 6}}{{{{\left( {2 + t} ight)}^2}}} < 0,\forall t \in \left( {0;\frac{1}{4}} ight)

    => Hàm số g(t) nghịch biến trên đoạn \left[ {0;\frac{1}{4}} ight]

    => \left\{ {\begin{array}{*{20}{c}}  {\mathop {\min }\limits_{\left[ {0;\frac{1}{4}} ight]} g\left( t ight) = g\left( {\dfrac{1}{4}} ight) = \dfrac{2}{3}} \\   {\mathop {\max }\limits_{\left[ {0;\frac{1}{4}} ight]} g\left( t ight) = g\left( 0 ight) = 1} \end{array}} ight.

  • Câu 36: Nhận biết

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng cho dưới đây?

    Dựa vào bảng biến thiên ta thấy hàm số đã cho nghịch biến trên khoảng ( - 1;1).

  • Câu 37: Nhận biết

    Cho đồ thị hàm số y = f(x) có đồ thị như hình sau:

    Đồ thị hàm số trên có đường tiệm cận đứng là:

    Dựa vào đồ thị hàm số, đường tiệm cận đứng của đồ thị hàm số đã cho là x = - 1.

  • Câu 38: Thông hiểu

    Cho hàm số y = f\left( x ight) = a{x^4} + b{x^2} + c có đồ thị như hình dưới đây:

    Số nghiệm của phương trình

    Số nghiệm của phương trình 2f\left( x ight) =  - 1 là:

    Ta có: 2f\left( x ight) =  - 1 \Rightarrow f\left( x ight) = \frac{{ - 1}}{2}

    Số nghiệm của phương trình 2f\left( x ight) =  - 1 chính là số giao điểm của đồ thị hàm số y = f\left( x ight) với đường thẳng y =  - \frac{1}{2}

    Quan sát đồ thị ta thấy đường thẳng y =  - \frac{1}{2} cắt đồ thị tại hai điểm

    => Phương trình 2f\left( x ight) =  - 1 có 2 nghiệm.

  • Câu 39: Nhận biết

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào dưới đây?

    Xác định hàm số y = f(x)

    Dựa vào đồ thị hàm số ta thấy

    \mathop {\lim }\limits_{x \to \infty } y =  + \infty => Hệ số a > 0

    => Loại đáp án B và đáp án D

    Mặt khác hàm số có ba điểm cực trị

    => Loại đáp án C

  • Câu 40: Thông hiểu

    Khoảng cách giữa hai điểm cực trị của đồ thị hàm số y = (x - 2)^{2}(x + 1)

    Ta có:

    f'(x) = 2(x - 2)(x + 1) + (x -
2)^{2}

    = 2x^{2} - 2x - 4 + x^{2} - 4x + 4 =
3x^{2} - 6x

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \Rightarrow y = 4 \\
x = 2 \Rightarrow y = 0 \\
\end{matrix} ight.

    ⇒ Khoảng cách giữa hai điểm cực trị là \sqrt{(0 - 2)^{2} + (4 - 0)^{2}} =
2\sqrt{5}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo