Giá trị thực của tham số
để hàm số
đạt cực tiểu tại điểm
thuộc khoảng nào sau đây?
Tập xác định
Ta có:
Để hàm số đạt cực tiểu tại thì
Vậy .
Giá trị thực của tham số
để hàm số
đạt cực tiểu tại điểm
thuộc khoảng nào sau đây?
Tập xác định
Ta có:
Để hàm số đạt cực tiểu tại thì
Vậy .
Cho hàm số
có đồ thị
và đường thẳng
. Có bao nhiêu giá trị nguyên dương của tham số
để đồ thị
cắt đường thẳng
tại ba điểm phân biệt?
Phương trình hoành độ giao điểm
Đặt
Để đồ thị (C) cắt đường thẳng d tại ba điểm phân biệt thì phương trình phải có 3 nghiệm phân biệt, khi đó
phải có hai nghiệm phân biệt khác
.
Do đó
Do nguyên dương nên
.
Vậy số giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán bằng 3.
Cho hàm số y = f(x) có đạo hàm
. Hàm số
đồng biến trên khoảng nào trong các khoảng sau?
Ta có:
Ta có:
Cho g’(x) = 0 =>
Dựa vào f’(x) ta có:
Lập bảng xét dấu như sau:

Quan sát bảng xét dấy ta suy ra hàm số đồng biến trên khoảng (2; 4)
Tìm tất cả các giá trị thực của tham số m để hàm số
đồng biến trên khoảng
?
Ta có:
Hàm số đồng biến trên khoảng
Vậy đáp án cần tìm là: .
Trong các hàm số sau, đồ thị của hàm số nào có tiệm cận đứng?
Xét hàm số có
Tập xác định
suy ra
là tiệm cận đứng của hàm số.
Tính tổng số đường tiệm cận của đồ thị hàm số
?
Tập xác định
Ta có:
Suy ra đồ thị hàm số có tiệm cận ngang
Mặt khác suy ra
là tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số đã cho có hai đường tiệm cận.
Cho hàm số
xác định trên
và có bảng biến thiên như hình bên dưới

Hàm số
đồng biến trên khoảng nào dưới đây?
Dựa vào bảng biến thiên, ta thấy hàm số đồng biến trên .
Hàm số
có bao nhiêu điểm cực trị?
Tập xác định
Ta có:
Do y’ không đổi dấu nên hàm số không có cực trị.
Trong các hàm số sau đây, hàm số nào không nghịch biến trên
?
Với
y’ > 0 khi x > 0 và y’ < 0 khi x < 0 nên hàm số không nghịch biến trên
Xác định giá trị thực của tham số
để hàm số
đồng biến trên khoảng
?
Tập xác định
Hàm số đồng biến trên khoảng
Vậy đáp án cần tìm là .
Số giao điểm của hai đồ thị hàm số
và
bằng số nghiệm phân biệt của phương trình nào sau đây?
Hoành độ giao điểm là nghiệm của phương trình hay
.
Mỗi đợt xuất khẩu gạo của tỉnh
kéo dài trong 60 ngày. Người ta thấy lượng gạo xuất khẩu theo ngày thứ
được xác định bởi công thức:
(tấn) với
. Xét tính đúng sai của các khẳng định dưới đây?
a) Số lượng gạo xuất khẩu của tỉnh
ngày thứ 12 là 264304 (tấn).Đúng||Sai
b) Ngày thứ 30 của tỉnh
có lượng gạo xuất khẩu cao nhất. Sai||Đúng
c) Ngày thứ 1 của tỉnh
có lượng gạo xuất khẩu thấp nhất. Sai||Đúng
d) Ngày thứ 60 của tỉnh
có sản lượng xuất khẩu gạo thấp nhất là 143344 . Đúng|||Sai.
Mỗi đợt xuất khẩu gạo của tỉnh kéo dài trong 60 ngày. Người ta thấy lượng gạo xuất khẩu theo ngày thứ
được xác định bởi công thức:
(tấn) với
. Xét tính đúng sai của các khẳng định dưới đây?
a) Số lượng gạo xuất khẩu của tỉnh ngày thứ 12 là 264304 (tấn).Đúng||Sai
b) Ngày thứ 30 của tỉnh có lượng gạo xuất khẩu cao nhất. Sai||Đúng
c) Ngày thứ 1 của tỉnh có lượng gạo xuất khẩu thấp nhất. Sai||Đúng
d) Ngày thứ 60 của tỉnh có sản lượng xuất khẩu gạo thấp nhất là 143344 . Đúng|||Sai.
a) Đúng.
b) Sai.
Ta có
Bảng biến thiên:

Vậy ngày thứ 18 của tỉnh có lượng gạo xuất khẩu cao nhất là 265060.
c) Sai. Ta có ngày thứ 60 tinh có lượng gạo xuất khẩu thấp nhất là 143344.
d) Đúng. Ta có ngày thứ 60 tỉnh có lượng gạo xuất khẩu thấp nhất là 143344.
Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
có đúng ba đường tiệm cận?
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng ba đường tiệm cận?
Cho hàm số
với
là tham số. Xác định điều kiện của tham số
để hàm số đã cho đạt cực đại tại
?
Ta có:
Hàm số đạt cực đại tại suy ra
Với ta có:
suy ra hàm số đạt cực đại tại
.
Với ta có:
suy ra hàm số đạt cực tiểu tại
.
Vậy giá trị của tham số m thỏa mãn yêu cầu là
Gọi giá trị nhỏ nhất của hàm số
trên đoạn
là
. Chọn khẳng định đúng?
Tập xác định
Ta có:
Suy ra hàm số đồng biến trên suy ra
Cho hàm số
. Mệnh đề nào sau đây đúng?
Tập xác định
Ta có:
Suy ra hàm số đồng biến trên từng khoảng và
.
Cho hàm số
có bảng biến thiên như sau:

Giá trị nhỏ nhất của hàm số đã cho trên đoạn
bằng bao nhiêu?
Giá trị nhỏ nhất của hàm số đã cho trên đoạn bằng
.
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho đạt cực đại tại
. Đúng||Sai
b) Hàm số đã cho đạt cực tiểu tại
. Sai|| Đúng
c) Hàm số đã cho có giá trị cực đại và cực tiểu lần lượt là
. Sai|| Đúng
d) Đồ thị hàm số
có điểm cực đại là
. Sai|| Đúng
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho đạt cực đại tại . Đúng||Sai
b) Hàm số đã cho đạt cực tiểu tại . Sai|| Đúng
c) Hàm số đã cho có giá trị cực đại và cực tiểu lần lượt là . Sai|| Đúng
d) Đồ thị hàm số có điểm cực đại là
. Sai|| Đúng
Ta có:
Bảng biến thiên
a) Dựa vào bảng biến thiên ta thấy hàm số đạt cực đại tại
b) Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại
c) Dựa vào bảng biến thiên ta thấy hàm số giá trị cực đại và cực tiểu lần lượt là
d) Dựa vào bảng biến thiên ta thấy hàm số có được bằng cách tịnh tiến đồ thị
lên trên 3 đơn vị. Suy ra đồ thị hàm số
có điểm cực đại là
.
Cho hàm số
có bảng biến thiên:

Số giá trị nguyên của
để đồ thị hàm số có
tiệm cận là:
Từ bảng biến thiên ta thấy đồ thị có hai tiệm cận đứng và các tiệm cận ngang
. Suy ra đồ thị có bốn tiệm cận khi
Do nên
Vậy có 7 giá trị của tham số thỏa mãn.
Cho hàm số
có bảng xét dấu
như sau:

Hàm số
nghịch biến trên khoảng nào dưới đây?
Ta có:
Vậy khoảng nghịch biến của hàm số là:
Cho hàm số
có đồ thị (C). Gọi I là giao điểm của hai đường tiệm cận của (C). Tiếp tuyến của (C) cắt hai đường tiệm cận của (C) tại hai điểm A, B. Giá trị nhỏ nhất của chu vi đường tròn ngoại tiếp tam giác IAB bằng:
Đồ thị hàm số có tiệm cận đứng là x = 2 và tiệm cận ngang là y = 1 => I(2; 1)
Gọi khi đó ta có phương trình tiếp tuyến tại M là
Ta có:
Khi đó
Ta lại có tam giác IAB vuông tại I nên bán kính đường tròn ngoại tiếp tam giác IAB là
Mặt khác
Giá trị nhỏ nhất của chu vi đường tròn ngoại tiếp tam giác IAB bằng:
Cho hàm số
có đồ thị
và đường thẳng
. Tất cả các giá trị của tham số
để
cắt
tại bốn điểm phân biệt?
Ta có:
Ta có bảng biến thiên
Từ bảng biến thiên ta thấy đồ thị hàm số cắt đường thẳng
tại
điểm phân biệt
.
Số đường tiệm cận của đồ thị hàm số
là:
Tập xác định
Ta có: suy ra tiệm cận ngang của đồ thị hàm số
là
.
Lại có suy ra
là tiệm cận đứng của đồ thị hàm số.
suy ra
là tiệm cận đứng của đồ thị hàm số.
Vậy có tất cả 3 đường tiệm cận.
Cho hàm số
có đạo hàm liên tục trên
và có đồ thị của hàm số
như hình vẽ sau:

Xét hàm
. Mệnh đề nào dưới đây sai?
Ta có:
Dựa vào đồ thị ta thấy
Vậy hàm số nghịch biến trên
là sai.
Chi phí nhiên liệu của một chiếc thuyền chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng
nghìn đồng trên một giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi
thì phần thứ hai bằng
nghìn đồng/giờ.
Xét tính đúng sai của các mệnh đề sau:
a) Khi vận tốc
thì chi phí nguyên liệu cho phần thứ nhất trên
đường sông là
đồng. Đúng||Sai
b) Hàm số xác định tổng chi phí nguyên liệu trên
đường sông với vận tốc
là
. Sai||Đúng
c) Khi vận tốc
thì tổng chi phí nguyên liệu trên
đường sông là
đồng. Đúng||Sai
d) Vận tốc của tàu để tổng chi phí nguyên liệu trên
đường sông nhỏ nhất là
. Đúng||Sai
Chi phí nhiên liệu của một chiếc thuyền chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng nghìn đồng trên một giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi
thì phần thứ hai bằng
nghìn đồng/giờ.
Xét tính đúng sai của các mệnh đề sau:
a) Khi vận tốc thì chi phí nguyên liệu cho phần thứ nhất trên
đường sông là
đồng. Đúng||Sai
b) Hàm số xác định tổng chi phí nguyên liệu trên đường sông với vận tốc
là
. Sai||Đúng
c) Khi vận tốc thì tổng chi phí nguyên liệu trên
đường sông là
đồng. Đúng||Sai
d) Vận tốc của tàu để tổng chi phí nguyên liệu trên đường sông nhỏ nhất là
. Đúng||Sai
a) Đúng: Thời gian tàu chạy quãng đường 1 km là: (giờ)
Chi phí tiền nhiên liệu cho phần thứ nhất là: (đồng).
b) Sai: Gọi x (km/h) là vận tốc của tàu, x > 0
Thời gian tàu chạy quãng đường 1 km là: (giờ)
Chi phí tiền nhiên liệu cho phần thứ nhất là: (nghìn đồng)
Hàm chi phí cho phần thứ hai là (nghìn đồng/ giờ)
Khi (nghìn đồng/ giờ)
Do đó chi phí phần 2 để chạy 1 km là: (nghìn đồng)
Vậy tổng chi phí ,
c) Đúng. Tổng chi phí
Thay ta được
(nghìn đồng).
d) Đúng
Dấu ’’=’’ xảy ra khi x = 20.
Hình vẽ nào sau đây là đồ thị của hàm số
với
?
Với thì đồ thị hàm số
theo thứ tự tiếp xúc với trục hoành tại điểm có hoành độ
và
Mặt khác với thì
nên khi
thì đồ thị hàm số nằm phía dưới trục hoành
Vậy đồ thị hàm số cần tìm là .
Chọn hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây:

Quan sát đồ thị hàm số ta thấy:
Hàm số có dạng hàm số bậc bốn trùng phương:
=> Loại đáp án B
Đồ thị có nhánh cuối của đồ thị đi lên
=> Hệ số a > 0
=> Loại đáp án A
Đồ thị hàm số cắt trục tung tại điểm O
=> c = 0
=> Loại đáp án C
Đường cong ở hình dưới đây là đồ thị của hàm số nào?

Dựa vào hình vẽ ta thấy đây là hàm số bậc ba có dạng
Cho hàm số
có bảng biến thiên như sau:

Mệnh đề nào sau đây đúng?
Dựa vào bảng biến thiên ta suy ra mệnh đề đúng là: “Điểm cực tiểu của đồ thị hàm số là ”.
Cho x, y, z là ba số thực thuộc đoạn [1; 9] và
. Giá trị nhỏ nhất của biểu thức
bằng:
Ta có:
(đúng do
)
Dấu bằng xảy ra khi và chỉ khi a = b hoặc ab = 1
Áp dụng bất đẳng thức trên ta có:
Đặt . Xét hàm số
trên đoạn [1; 3]
Do
Ta có bảng biến thiên

Suy ra khi và chỉ khi
Gọi S là tập hợp chứa tất cả các giá trị thực của tham số m để hàm số
có điểm cực đại với giá trị cực đại tương ứng nằm trong khoảng (3; 4) và đồng thời thỏa mãn 10m là số nguyên. Số phần tử của tập hợp S là:
Xét phương trình
Nếu thì hàm số
không có điểm cực đại.
Nếu thì phương trình (*) có hai nghiệm phân biệt là
Với thì
không có điểm cực đại.
Với thì
Hàm số này đạt cực đại tại x = m + 2 và giá trị cực đại là
Vậy điều kiện để hàm số có cực đại là:
Do 10m là số nguyên nên có hai giá trị thỏa mãn là
Biết giá trị lớn nhất của hàm số
trên đoạn
bằng
. Khẳng định nào dưới đây đúng?
Ta có: nên giá trị lớn nhất của hàm số
trên đoạn
là:
Vậy đáp án cần tìm là .
Cho hàm số
biết
. Có thể có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng ba điểm cực trị?
Cho hàm số biết
. Có thể có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng ba điểm cực trị?
Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?
Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?
Cho hàm số
. Tập hợp các giá trị của tham số
để hàm số
nghịch biến trên
là
. Tính giá trị biểu thức
?
Cho hàm số . Tập hợp các giá trị của tham số
để hàm số
nghịch biến trên
là
. Tính giá trị biểu thức
?
Cho hàm số
có bảng biến thiên như sau:

Số nghiệm thuộc đoạn
của phương trình
bằng:
Dựa vào bảng biến thiến ta suy ra
Các phương trình (1) và (4) vô nghiệm
Ta có bảng sau:
Phương trình có 4 nghiệm thuộc
Phương trình có 3 nghiệm thuộc
Vậy phương trình đã cho có tất cả 7 nghiệm thuộc đoạn .
Cho hàm số y = x4 – 2x2 + 5. Khẳng định nào sau đây đúng:
Tập xác định
Ta có bảng biến thiên

Dựa vào bảng biến thiên ta thấy hàm số có giá trị nhỏ nhất, không có giá trị lớn nhất.
Đồ thị hàm số
có bao nhiêu tiệm cận đứng?
Ta có:
Lại có: suy ra
là tiệm cận đứng của đồ thị hàm số
Vậy hàm số đã cho có 1 tiệm cận đứng.
Cho hàm số y = f(x) có đạo hàm
. Khi đó số cực trị của hàm số là:
Ta có:
=> Hàm số có 1 cực trị.
Cho hàm số
. Khẳng định nào sau đây sai?
Ta có tiệm cận đứng của hàm số là y = 3 và tiệm cận ngang là y = 1
Giao điểm của hai đường tiệm cận I(3; 1) là tâm đối xứng của đồ thị
=> A, C, D đúng và B sai