Tìm điểm M thuộc đồ thị hàm số
sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ điểm M đến trục hoành:
Do M thuộc đồ thị hàm số nên tọa độ điểm
Phương trình tiệm cận đứng là x – 1 = 0 (d’)
Giải phương trình d(M,d’) = d(M, Ox)
=>
Tìm điểm M thuộc đồ thị hàm số
sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ điểm M đến trục hoành:
Do M thuộc đồ thị hàm số nên tọa độ điểm
Phương trình tiệm cận đứng là x – 1 = 0 (d’)
Giải phương trình d(M,d’) = d(M, Ox)
=>
Tìm giá trị nhỏ nhất
của hàm số
trên đoạn
?
Hàm số đã cho liên tục trên
Ta có:
Khi đó:
Vậy giá trị nhỏ nhất của hàm số là .
Cho hàm số
có bảng biến thiên như sau:

Số điểm cực trị của hàm số
là:
Số điểm cực trị của hàm số
Với m là số điểm cực trị của hàm số
n là số nghiệm bội lẻ của phương trình
Suy ra số điểm cực trị của hàm số
Cho hàm số
có đồ thị
. Hỏi có bao nhiêu cặp điểm
sao cho ba điểm
thẳng hàng và
với
là gốc tọa độ?
Gọi là đường thẳng đi qua ba điểm O, A, B khi đó d có phương trình
Khi đó hoành độ của O, A, B là nghiệm của phương trình
Giả sử khi đó ta có:
Do nên
TH1:
Khi đó .
TH2:
Khi đó .
Vậy có 2 cặp A; B thỏa mãn.
Có bao nhiêu giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
?
Ta có:
Xét trên khoảng
ta có bảng biến thiên:
Suy ra mà
nên
Vậy có tất cả giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Cho hàm số y = f(x) có đạo hàm
. Hàm số
đồng biến trên các khoảng nào?
Cho hàm số y = f(x) có đạo hàm . Hàm số
đồng biến trên các khoảng nào?
Cho hàm số f(x) có
. Số cực trị của hàm số đã cho là:
Ta có: f’(x) đổi dấu khi qua các giá trị x = 3 và x = -3/2 nên hàm số có hai cực trị.
Cho hàm số
. Giả sử
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số đã cho đồng biến trên khoảng
. Xác định tổng tất cả các phần tử của tập hợp
?
Cho hàm số . Giả sử
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số đã cho đồng biến trên khoảng
. Xác định tổng tất cả các phần tử của tập hợp
?
Cho hàm số
là một hàm đa thức có bảng xét dấu
như sau:

Số điểm cực trị của hàm số
.
Ta có .
Số điểm cực trị của hàm số bằng hai lần số điểm cực trị dương của hàm số
cộng thêm 1.
Xét hàm số
Bảng xét dấu hàm số :
Hàm số có 2 điểm cực trị dương.
Vậy hàm số có 5 điểm cực trị.
Tiệm cận đứng của đồ thị hàm số
là đường thẳng có phương trình
Ta có:
là tiệm cận đứng của đồ thị hàm số.
là tiệm cận đứng của đồ thị hàm số.
Cho hàm số
có đạo hàm
. Hỏi hàm số
có bao nhiêu cực trị?
Cho hàm số có đạo hàm
. Hỏi hàm số
có bao nhiêu cực trị?
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ:

Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn
?
Từ đồ thị hàm số ta có:
Khi đó .
Tìm tất cả các giá trị của tham số
để hàm số
nghịch biến trên khoảng
?
Tập xác định
Ta có:
Theo yêu cầu bài toán:
Vậy đáp án cần tìm là .
Cho hàm số
. Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?
Tập xác định suy ra đồ thị hàm số không có đường tiệm cận ngang và đường tiệm cận xiên
suy ra đồ thị nhận đường thẳng
làm tiệm cận đứng.
Vậy đồ thị hàm số có một đường tiệm cận.
Tìm giá trị của tham số m sao cho đồ thị hàm số
có tiệm cận ngang.
Ta có:
Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số
Đồng thời
Người ta khảo sát gia tốc a(t) của một vật thể chuyển động (t là khoảng thời gian tính bằng giâu từ lúc vật thể chuyển động) từ giây thứ nhất đến giây thứ ba ghi nhận được a(t) là một hàm số liên tục có đồ thị như hình bên:

Hỏi trong thời gian từ giây thứ nhất đến giây thứ ba được khảo sát đó, thời điểm nào vận tốc lớn nhất?
Từ đồ thị ta có: a(t) = 0 => v’(t) = 0 = > t = 2
Ta có bảng biến thiên:

=> Vận tốc lớn nhất đạt được khi t = 2
Cho hàm số
có bảng biến thiên như sau:

Hàm số
nghịch biến trên khoảng nào dưới dây?
Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên .
Cho hàm số
với
là tham số. Tích tất cả các giá trị của tham số
để giá trị lớn nhất của hàm số đã cho trên đoạn
bằng
bằng:
Ta có:
Vậy tích tất cả các giá trị của tham số bằng
.
Một sợi dây kim loại dài
được cắt thành hai đoạn. Đoạn thứ nhất được uốn thành một hình vuông, đoạn thứ hai được uốn thành một vòng tròn. Hỏi khi tổng diện tích của hình vuông và hình tròn ở trên nhỏ nhất thì chiều dài đoạn dây uốn thành hình vuông bằng bao nhiêu (làm tròn đến hàng phần trăm)?
Một sợi dây kim loại dài được cắt thành hai đoạn. Đoạn thứ nhất được uốn thành một hình vuông, đoạn thứ hai được uốn thành một vòng tròn. Hỏi khi tổng diện tích của hình vuông và hình tròn ở trên nhỏ nhất thì chiều dài đoạn dây uốn thành hình vuông bằng bao nhiêu (làm tròn đến hàng phần trăm)?
Cho hàm số bậc ba
có bảng biến thiên như hình dưới đây.

Hỏi đồ thị hàm số
có bao nhiêu tiệm cận đứng?
Ta có:
Đồng nhất hai vế ta có:
Mặt khác
Giải phương trình
Hàm số có tập xác định là
Khi đó
=> Đồ thị hàm số có 2 đường tiệm cận đứng là
Biết rằng
. Định giá trị tham số
?
Xét hàm số trên
Hàm số liên tục trên
Ta có:
Do đó hàm số nghịch biến trên khoảng
Vậy là giá trị cần tìm.
Đồ thị của hàm số
có bao nhiêu đường tiệm cận đứng?
Ta có:
Với thì
nên đồ thị hàm số có một tiệm cận đứng là
.
Cho hàm số
có đạo hàm trên
và đồ thị như hình vẽ bên dưới:

a) Hàm số đồng biến trên khoảng
. Đúng||Sai
b) Hàm số đạt cực tiểu tại điểm
. Đúng||Sai
c) Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt. Đúng||Sai
d) Giá trị lớn nhất của hàm số trên đoạn
bằng
. Sai||Đúng
Cho hàm số có đạo hàm trên
và đồ thị như hình vẽ bên dưới:
a) Hàm số đồng biến trên khoảng . Đúng||Sai
b) Hàm số đạt cực tiểu tại điểm . Đúng||Sai
c) Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt. Đúng||Sai
d) Giá trị lớn nhất của hàm số trên đoạn bằng
. Sai||Đúng
Theo hình vẽ, hàm số đồng biến trên khoảng và đạt cực tiểu tại điểm
. giá trị không âm trên khoảng đó.
Giá trị lớn nhất của hàm số trên đoạn bằng
.
Gọi A, B, C là các điểm cực trị của đồ thị hàm số
. Bán kính của đường tròn nội tiếp tam giác ABC bằng:
Ta có:
=> Đồ thị hàm số có ba điểm cực trị là A(0; 4), B(1; 3), C(-1;; 3)
Tính được
Áp dụng công thức tính bán kính đường tròn nội tiếp tam giác ABC ta có:
Cho hàm số
liên tục trên
và có bảng xét dấu của
như sau:

Số điểm cực tiểu của hàm số đã cho là
Đạo hàm đổi dấu từ âm sang dương hai lần qua các điểm
và
nên hàm số đã cho có hai điểm cực tiểu.
Tìm tất cả các giá trị của tham số
để đường thẳng
và
tại ba điểm phân biệt?
Ta có:
Ta có bảng biến thiên
Để đường thẳng và
tại ba điểm phân biệt thì
.
Trong các hàm số sau, hàm số nào đồng biến trên tập số thực?
Xét hàm số có:
Suy ra hàm số đồng biến trên tập số thực.
Cho hàm số
xác định và liên tục trên
có bảng biến thiên như sau:

Giá trị lớn nhất của hàm số
trên
là:
Dựa vào bảng biến thiên ta suy ra giá trị lớn nhất của hàm số trên đoạn là
.
Đồ thị sau đây là của hàm số nào?

Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là và tiệm cận đứng của đồ thị hàm số
.
Đồ thị hàm số cắt trục tung tại điểm
Vậy hàm số cần tìm là .
Để đồ thị hàm số
có ba điểm cực trị tạo thành một tam giác có diện tích bằng
. Tìm giá trị tham số
thỏa mãn yêu cầu bài toán?
Để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác có diện tích bằng
. Tìm giá trị tham số
thỏa mãn yêu cầu bài toán?
Cho hàm số
có đạo hàm trên
là
. Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Cho hàm số có đạo hàm trên
là
. Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Xác định số đường tiệm cận của đồ thị hàm số
?
Tập xác định
Vì nên đồ thị hàm số nhận đường thẳng
làm đường tiệm cận đứng.
Vì nên đồ thị hàm số nhận đường thẳng
làm đường tiệm cận ngang.
Vì nên đồ thị hàm số nhận đường thẳng
làm đường tiệm cận ngang.
vậy đồ thị hàm số có tổng số đường tiệm cận bằng 3.
Cho hàm số y = f(x) có đạo hàm f’(x) = x2 + 1,
. Mệnh đề nào dưới đây đúng?
Ta có:
f’(x) = x2 + 1 > 0,
=> Hàm số đống biến trên khoảng (-∞; +∞)
Đồ thị được cho dưới đây là đồ thị của hàm số nào?

Đồ thị hàm số hình chữ N ngược => Đây là hàm số bậc 3 dạng
Kết luận nào sau đây về tính đơn điệu của hàm số
là đúng?
Ta có:
Do đó hàm số nghịch biến trên các khoảng (-∞; 2) và (2; +∞)
Với giá trị nào của tham số
để đồ thị hàm số
đi qua điểm
?
Thay tọa độ điểm vào
ta được:
Vậy giá trị m cần tìm là .
Cho hàm số
có đạo hàm
xác định và liên tục trên
. Hình vẽ sau đây là đồ thị của hàm số
:

Hàm số
nghịch biến trên khoảng:
Ta có:
Với ta có:
ta có bảng xét dấu của
như sau:
Suy ra hàm số nghịch biến trên khoảng
.
Cho hàm số
. Khẳng định nào sau đây sai?
Ta có tiệm cận đứng của hàm số là y = 3 và tiệm cận ngang là y = 1
Giao điểm của hai đường tiệm cận I(3; 1) là tâm đối xứng của đồ thị
=> A, C, D đúng và B sai
Hàm số
có bảng biến thiên như sau:

Phương trình
có ba nghiệm thực phân biệt khi và chỉ khi:
Số nghiệm của phương trình bằng số giao điểm của hai đồ thị hàm số
.
Dựa vào bảng biến thiên ta có phương trình có ba nghiệm thực phân biệt khi và chỉ khi
.
Một chủ trang trại nuôi gia cầm muốn rào thành 2 chuồng hình chữ nhật sát nhau và sát một con sông, một chuồng nuôi gà và một chuồng nuôi vịt. Biết rằng đã có sẵn 240 m hàng rào. Hỏi diện tích lớn nhất có thể bao quanh chuồng là bao nhiêu?

Đáp án: 2400 m2
Một chủ trang trại nuôi gia cầm muốn rào thành 2 chuồng hình chữ nhật sát nhau và sát một con sông, một chuồng nuôi gà và một chuồng nuôi vịt. Biết rằng đã có sẵn 240 m hàng rào. Hỏi diện tích lớn nhất có thể bao quanh chuồng là bao nhiêu?
Đáp án: 2400 m2
Xét hình chữ nhật ABCD như hình vẽ, và đặtv AB = x (x > 0)
Khi đó BC = 240 – 3x > 0 ⇒ x < 80.
Diện tích của hình chữ nhật ABCD là S = x.(240 – 3x ) = 240x – 3x2
Bài toán trở thành tìm giá trị lớn nhất của hàm số f(x) với 0 < x < 80.
Xét f(x) = 240x – 3x2 ⇒ f’(x) = 240 – 6x , f’(x) = 0 ⟺ x = 40.
Do f’’(x) = - 6 < 0, ∀ x∈ (0; 80)
Do đó
Vậy diện tích lớn nhất có thể bao quanh là 4800m2 .