Đồ thị được cho dưới đây là đồ thị của hàm số nào?

Đồ thị hàm số hình chữ N ngược => Đây là hàm số bậc 3 dạng
Đồ thị được cho dưới đây là đồ thị của hàm số nào?

Đồ thị hàm số hình chữ N ngược => Đây là hàm số bậc 3 dạng
Trên khoảng (0; +∞) thì hàm số y = -x3 + 3x + 1
Ta có:
Từ bảng biến thiên => Hàm số có giá trị lớn nhất bằng 3
Cho hàm số
và đồ thị của hàm số
như hình vẽ sau:

Hàm số
có bao nhiêu điểm cực trị?
Cho hàm số và đồ thị của hàm số
như hình vẽ sau:
Hàm số có bao nhiêu điểm cực trị?
Cho hàm số
xác định và liên tục trên
và có bảng biến thiên như hình vẽ:

Tìm giá trị của tham số thực
để phương trình
có ít nhất hai nghiệm thực phân biệt?
Phương trình có ít nhất hai nghiệm thực phân biệt khi và chỉ khi đường thẳng
cắt đồ thị hàm số
tại ít nhất hai điểm phân biệt
Cho hàm số
. Khẳng định nào sau đây đúng?
Ta thấy hàm số đã cho là hàm trùng phương với
nên đây là trường hợp hàm số có ba điểm cực trị.
Tất cả các giá trị của tham số
để hàm số
có ba điểm cực trị phân biệt là:
Hàm số có ba điểm cực trị khi và chỉ khi
.
Để hàm số đa cho có ba điểm cực trị khi và chỉ khi .
Đồ thị hàm số
có hai điểm cực trị
. Khi đó
có giá trị là:
Gọi đồ thị hàm số là
Ta có: .
Vì là hai điểm cực trị của đồ thị hàm số
nên ta có:
Vậy do đó
.
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ
là
(người). Nếu xem
là tốc độ truyền bệnh (người/ngày) tại thời điểm
. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?
Đáp án: Ngày thứ 4||tư
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ là
(người). Nếu xem
là tốc độ truyền bệnh (người/ngày) tại thời điểm
. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?
Đáp án: Ngày thứ 4||tư
Điều kiện .
Ta có ,
,
.
Bảng biến thiên:
Vậy tốc độ truyền bệnh lớn nhất vào ngày thứ .
Đáp số: .
Cho hàm số
. Biết
. Mệnh đề nào dưới đây đúng?
Tập xác định
Ta có:
Từ
Từ (**) suy ra .
Vậy là đáp án cần tìm.
Cho hàm số
có bảng biến thiên như sau.

Xét tính đúng sai của các khẳng định sau.
a) Hàm số đồng biến trên
. Sai|| Đúng
b) Hàm số nghịch biến trên
. Đúng||Sai
c) Hàm số có hai điểm cực trị. Sai|| Đúng
d) Hàm số đạt cực đại tại
. Đúng||Sai
Cho hàm số có bảng biến thiên như sau.
Xét tính đúng sai của các khẳng định sau.
a) Hàm số đồng biến trên . Sai|| Đúng
b) Hàm số nghịch biến trên . Đúng||Sai
c) Hàm số có hai điểm cực trị. Sai|| Đúng
d) Hàm số đạt cực đại tại . Đúng||Sai
Quan sát bảng biến thiên, ta có các kết quả sau:
a) Hàm số đồng biến trên nên khẳng định hàm số đồng biến trên
là sai.
b) Hàm số nghịch biến trên .
c) Hàm số có đúng 1 điểm cực trị là .
d) Hàm số có đạt cực đại tại .
Cho hàm số
(với
là tham số) đạt cực tiểu tại
. Tìm giá trị tham số
?
Tập xác định
Ta có:
Hàm số đạt cực tiểu tại suy ra
Với
. Khi đó
suy ra
là điểm cực tiểu của hàm số.
Vậy là giá trị cần tìm.
Cho hàm số
có bảng biến thiên như sau:

Đồ thị hàm số trên có tiệm cận ngang là:
Dựa vào bảng biến thiên ta có:
Suy ra tiệm cận ngang của đồ thị hàm số là .
Giá trị nhỏ nhất của hàm số
là:
Đặt
Khi đó hàm số trở thành:
Xét hàm số trên đoạn
ta có:
=> Hàm số đồng biến trên
=>
Cho một tấm nhôm hình vuông cạnh
, người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng
, rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của
bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).

Đáp án: 2 dm
Cho một tấm nhôm hình vuông cạnh , người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng
, rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của
bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).
Đáp án: 2 dm
Ta có:
tại
Cho hàm số
. Trong các khẳng định sau, khẳng định nào là khẳng định đúng?
Điều kiện
Từ điều kiện ta có:
Đồ thị hàm số không có tiệm cận đứng
Mặt khác
=> y = 0 là tiệm cận ngang của đồ thị hàm số
Không tồn tại
Vậy đồ thị hàm số không có tiệm cận đứng và có đúng một tiệm cận ngang
Số đường tiệm cận của đồ thị hàm số
là:
Tập xác định
suy ra
là tiệm cận ngang.
suy ra
là tiệm cận ngang.
Vậy không là tiệm cận đứng của đồ thị hàm số đã cho.
suy ra
là tiệm cận đứng của đồ thị hàm số đã cho
Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.
Hình vẽ nào dưới đây là đồ thị của hàm số
biết ![]()
Xét hàm số ta có:
=> Đồ thị hàm số có dạng chữ N xuôi
Đồ thị hàm số cắt trục Oy tại điểm có tung độ mà a > 0 =>
Mặt khác
=>
=> Đồ thị hàm số y = f(x) tiếp xúc với Ox tại điểm
Cho hàm số
với
là tham số. Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số nghịch biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Ta có:
Theo yêu cầu bài toán
Mà
Vậy tập hợp T có tất cả 3 phần tử.
Cho hàm số
có đồ thị như hình vẽ như sau:

Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho nghịch biến trên khoảng
. Đúng||Sai
b) Hàm số đã cho đồng biến trên khoảng
. Sai|| Đúng
c) Hàm số đã cho đồng biến trên khoảng
. Đúng||Sai
d) Hàm số đạt cực tiểu tại
.Sai|| Đúng
Cho hàm số có đồ thị như hình vẽ như sau:
Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho nghịch biến trên khoảng . Đúng||Sai
b) Hàm số đã cho đồng biến trên khoảng . Sai|| Đúng
c) Hàm số đã cho đồng biến trên khoảng . Đúng||Sai
d) Hàm số đạt cực tiểu tại .Sai|| Đúng
Ta có thể từ đồ thị thiết lập lại bảng biến thiên như sau:
a) Hàm số nghịch biến trên khoảng .
b) Hàm số đồng biến trên khoảng nên khẳng định đồng biến trên khoảng
là sai.
c) Hàm số đồng biến trên khoảng nên nên hàm số đồng biến trên khoảng
.
d) Hàm số đạt cực tiểu tại (chú ý:
gọi là giá trị cực tiểu).
Số đường tiệm cận của đồ thị hàm số ![]()
Quy đồng biến đổi hàm số đã cho trở thành
Tìm được tiệm cận đứng là x = -1 và x = 4 và không có tiệm cận ngang
=> Số tiệm cận là 2 đường
Tìm điểm M thuộc đồ thị hàm số
sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ điểm M đến trục hoành:
Do M thuộc đồ thị hàm số nên tọa độ điểm
Phương trình tiệm cận đứng là x – 1 = 0 (d’)
Giải phương trình d(M,d’) = d(M, Ox)
=>
Hàm số y = x4 - 2x2 + 1 đồng biến trên khoảng nào?
Ta có bảng biến thiên như sau:

Hàm số y = x4 – 2x2 + 1 đồng biến trên mỗi khoảng (-1; 0) và (1; +∞)
Cho hàm số
. Hãy chọn khẳng định đúng?
Tập xác định
Ta có: nên hàm số đồng biến trên các khoảng
và
.
Đồ thị hàm số
có đường tiệm cận ngang là
Ta có:
Suy ra tiệm cận ngang là .
Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ:

Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số
có 3 điểm cực trị. Tổng các phần tử của S là:
Xét hàm số có đạo hàm
Để hàm số có 3 điểm cực trị thì
Vậy tổng các phần tử của S là 2
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có ba nghiệm phân biệt?
Phương trình đã cho là phương trình hoành độ giao điểm của đồ thị hàm số và đường thẳng
Xét có
Phương trình
Lập bảng biến thiên
Đường thẳng cắt đồ thị
tại ba điểm phân biệt khi và chỉ khi
Do
Vậy có 7 giá trị nguyên của tham số m thỏa mãn.
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ cho sau đây?

Đồ thị hàm số bậc 4 có hệ số và có ba điểm cực trị nên
nên chọn
.
Cho hàm số
.
a) Tập xác định của hàm số là
. Đúng||Sai
b)
. Sai||Đúng
c)
khi
,
khi
. Sai||Đúng
d) Hàm số đã cho có đồ thị như hình vẽ.
Đúng||Sai
Cho hàm số .
a) Tập xác định của hàm số là . Đúng||Sai
b) . Sai||Đúng
c) khi
,
khi
. Sai||Đúng
d) Hàm số đã cho có đồ thị như hình vẽ.
Đúng||Sai
Tập xác định: .
Sự biến thiên
Giới hạn tại vô cực: .
và
hoặc
Hàm số đồng biến trên mỗi khoảng và
, nghịch biến trên khoảng
.
Hàm số đạt cực đại tại ; hàm số đạt cực tiểu tại
.
Đồ thị:
Giao điểm của đồ thị với trục tung: .
Giao điểm của đồ thị với trục hoành tại hoặc
. Vậy đồ thị hàm số giao với trục hoành tại ba điểm
và
.
Vậy đồ thị hàm số được cho ở hình vẽ.
Cho hàm số
có bảng biến thiên như sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Dựa vào bảng biến thiên ta thấy: ,
.
Suy ra, hàm số đồng biến trên khoảng
.
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số
. Chọn mệnh đề đúng?

Dựa vào đồ thị ta thấy hàm số có tập xác định là hàm số luôn nghịch biến trên khoảng
nên
.
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ:

Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn
?
Từ đồ thị hàm số ta có:
Khi đó .
Cho một tấm nhôm hình vuông có cạnh là
. Người ta cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là
, sau đó gập tấm nhôm lại để tạo thành một chiếc hộp không nắp. Tìm
để thể tích chiếc hộp là lớn nhất.
Đáp án: 5
Cho một tấm nhôm hình vuông có cạnh là . Người ta cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là
, sau đó gập tấm nhôm lại để tạo thành một chiếc hộp không nắp. Tìm
để thể tích chiếc hộp là lớn nhất.
Đáp án: 5
Chiều cao của chiếc hộp khi gập tấm nhôm là .
Kích thước đáy hai đáy của chiếc hộp là .
Ta có .
Thể tích chiếc hộp là .
.
Bài toán trở thành, tìm
sao cho
là lớn nhất.
Vậy cần cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là để chiếc hộp tạo thành có thể tích lớn nhất.
Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm
cách điểm
một khoảng 3 km. Điểm
nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí
cách điểm
một khoảng 3 km. Điểm
cũng thuộc đường bờ biển. Biết rằng
và
(minh hoạ như hình vẽ sau).

Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình
. Trong đó,
là nồng độ,
là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là
và
. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm
trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).
Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm cách điểm
một khoảng 3 km. Điểm
nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí
cách điểm
một khoảng 3 km. Điểm
cũng thuộc đường bờ biển. Biết rằng
và
(minh hoạ như hình vẽ sau).
Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình . Trong đó,
là nồng độ,
là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là
và
. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm
trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).
Tìm giá trị của tham số m để đồ thị hàm số
có hai đường tiệm cận đứng và hai đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2.
Tập xác định
Ta có:
=> Để đồ thị hàm số có 2 đường tiệm cận ngang thì
Vậy khi thì đồ thị hàm số có 2 đường tiệm cận ngang là y = m + 1; y = - m và 2 đường tiệm cận đứng là x = 0 và x = -1
Để hai đường tiệm cận đứng và 2 đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2 thì
Tiếp tuyến tại điểm cực tiểu của đồ thị hàm số ![]()
Ta có:
nên hàm số đạt cực đại tại điểm
và đạt cực tiểu tại
Mà suy ra tiếp tuyến tại điểm cực tiểu của đồ thị hàm số
Vậy tiếp tuyến song song với trục hoành.
Cho
hàm số có
. Hàm số
đồng biến trên khoảng nào dưới đây?
Xét dấu f’(x) như sau:

Ta có:
Chọn ta có:
=> là khoảng âm
Khi đó bảng xét dấu của y’ = (f(x2))’ như sau:

Từ trục xét dấu ta thấy. Hàm số y = f(x2) đồng biến trên (-1; 0)
Cho hàm số y = f(x) liên tục trên
và có bảng biến thiên như hình vẽ dưới đây

Hàm số y = f(x) là hàm số nào trong các hàm số sau:
Dựa vào bảng biến thiên ta thấy:
=> Hệ số a > 0
=> Loại đáp án B và C
Mặt khác hàm số đạt cực trị tại x = 0 và x = 2
=> Loại đáp án D
Cho hàm số
liên tục trên đoạn
và có đồ thị như hình vẽ:

Giả sử
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
. Khi đó giá trị của biểu thức
bằng bao nhiêu?
Từ đồ thị hàm số liên tục trên
Cho hàm số
. Khi đó tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:
Tập xác định
Ta có: suy ra đồ thị hàm số có hai tiệm cận ngang là
Lại có suy ra đồ thị hàm số có hai tiệm cận đứng là
Vậy đồ thị hàm số có tổng số đường tiệm cận đứng và đường tiệm cận ngang bằng 4.
Cho hàm số
xác định trên
và có đạo hàm
trong đó
. Hàm số
đồng biến trên khoảng nào?
Ta có:
Vì nên
Suy ra hàm số đồng biến trên .