Đường cong trong hình vẽ là đồ thị của hàm số nào sau đây?

Từ hình vẽ suy ra đồ thị hàm số bậc 4 trùng phương có hệ số
Đồ thị hàm số đi qua điểm nên hàm số cần tìm là
.
Đường cong trong hình vẽ là đồ thị của hàm số nào sau đây?

Từ hình vẽ suy ra đồ thị hàm số bậc 4 trùng phương có hệ số
Đồ thị hàm số đi qua điểm nên hàm số cần tìm là
.
Cho hàm số
có điểm cực tiểu và điểm cực đại lần lượt là
. Tính
?
Cho hàm số có điểm cực tiểu và điểm cực đại lần lượt là
. Tính
?
Tìm tất cả các giá trị của tham số
để hàm số
nghịch biến trên khoảng
?
Tập xác định
Ta có:
Theo yêu cầu bài toán:
Vậy đáp án cần tìm là .
Tìm giá trị nhỏ nhất
của hàm số
trên đoạn
?
Hàm số đã cho liên tục trên
Ta có:
Khi đó:
Vậy giá trị nhỏ nhất của hàm số là .
Tìm tất cả các giá trị của tham số
để hàm số
có cực trị?
Ta có:
Để hàm số có cực trị thì
có hai nghiệm phân biệt
.
Cho hàm số
có đồ thị như hình vẽ:

Giá trị cực tiểu của hàm số đã cho bằng:
Dựa vào đồ thị của hàm số ta thấy giá trị cực tiểu của hàm số bằng -2.
Số tiệm cận của đồ thị hàm số
là:
Ta có:
Suy ra là tiệm cận ngang.
suy ra
là tiệm cận đứng.
suy ra
là tiệm cận đứng.
Vậy đồ thị hàm số có tất cả 4 đường tiệm cận.
Tìm tập hợp T tất cả các giá trị của tham số thực m để hàm số
nghịch biến trên khoảng (-1; 1)
Ta có:
Để hàm số nghịch biến trên khoảng (-1; 1) thì
Ta có y’ = 0 => x = m hoặc x = m + 2
Bảng xét dấu

Từ bảng xét dấu ta thấy để hàm số nghịch biến trên khoảng (-1; 1) thì
Tìm giá trị của tham số
để đồ thị hàm số
đi qua điểm
?
Đồ thị hàm số đi qua điểm nên ta có:
Cho đồ thị hàm số
:

Có bao nhiêu giá trị nguyên của tham số
để phương trình
có ba nghiệm phân biệt?
Ta có:
Để phương trình có ba nghiệm ta phải có
Vậy có 2 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Tìm tất cả các giá trị thực của tham số
để hàm số
đồng biến trên đoạn
?
Theo yêu cầu bài toán ta có:
Để hàm số đồng biến trên đoạn
Đặt
Vậy là đáp án cần tìm.
Gọi
là tập hợp các giá trị thực của tham số
để hàm số
nghịch biến trên một đoạn có độ dài bằng
. Khi đó tổng tất cả các giá trị của các phần tử trong tập hợp
bằng:
Ta có:
Gọi là nghiệm của phương trình (*) ta có bảng biến thiên:
Hàm số y nghịch biến trên một khoảng có độ dài bằng 3 khi và chỉ khi phương trình (*) có hai nghiệm phân biệt thỏa mãn
(*) có hai nghiệm phân biệt
Suy ra
Vậy tổng tất cả các phần tử của tập S bằng 8.
Một sợi dây kim loại dài
được cắt thành hai đoạn. Đoạn thứ nhất được uốn thành một hình vuông, đoạn thứ hai được uốn thành một vòng tròn. Hỏi khi tổng diện tích của hình vuông và hình tròn ở trên nhỏ nhất thì chiều dài đoạn dây uốn thành hình vuông bằng bao nhiêu (làm tròn đến hàng phần trăm)?
Một sợi dây kim loại dài được cắt thành hai đoạn. Đoạn thứ nhất được uốn thành một hình vuông, đoạn thứ hai được uốn thành một vòng tròn. Hỏi khi tổng diện tích của hình vuông và hình tròn ở trên nhỏ nhất thì chiều dài đoạn dây uốn thành hình vuông bằng bao nhiêu (làm tròn đến hàng phần trăm)?
Tìm giá trị nhỏ nhất của hàm số
trên đoạn
?
Ta có:
Ta có: .
Tìm tất cả các giá trị của tham số
để hàm số
nghịch biến trên
?
Ta có:
Hàm số nghịch biến trên khi và chỉ khi
Vậy đáp án cần tìm là .
Cho hàm số
với
là tham số. Tìm điều kiện của tham số
để hàm số
có
cực trị?
Nhận thấy rằng nếu là điểm cực trị dương của hàm số
thì
là điểm cực trị của hàm số
Lại thấy vì đồ thị hàm số nhận trục tung làm trục đối xứng mà
là hàm đa thức bậc ba nên
luôn là một điểm cực trị của hàm số
.
Khi đó để hàm số có 5 điểm cực trị thì hàm số
có hai cực trị dương phân biệt.
Suy ra phương trình có hai nghiệm dương phân biệt:
Vậy đáp án cần tìm là .
Cho hàm số y = f(x) có
và
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: => Đồ thị hàm số đã cho có TCĐ là x = 0
=> Đồ thị hàm số đã cho có TCĐ là x = 2
Hàm số nào dưới dây nghịch biến trên khoảng
?
Xét hàm số có
nên hàm số
nghịch biến trên khoảng
.
Cho hàm số
có đồ thị là đường cong trong hình vẽ:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Trên khoảng đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến trên
.
Hàm số nào sau đây có cực trị?
Hàm số có
suy ra hàm số không có cực trị.
Hàm số có
và
đổi dấu đi qua
suy ra hàm số có cực trị tại điểm
.
Hàm số có
suy ra hàm số không có cực trị.
Hàm số có
với
suy ra hàm số không có cực trị.
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là
. Sai||Đúng
b) Đạo hàm của hàm số là
. Đúng||Sai
c) Giá trị lớn nhất của hàm số trên
là 2. Sai||Đúng
d) Giá trị nhỏ nhất của hàm số trên
là
. Đúng||Sai
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là . Sai||Đúng
b) Đạo hàm của hàm số là . Đúng||Sai
c) Giá trị lớn nhất của hàm số trên là 2. Sai||Đúng
d) Giá trị nhỏ nhất của hàm số trên là
. Đúng||Sai
Tập xác định của hàm số là .
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số.
Ta có:
Khi đó
Ta có:
Cho hàm số
thỏa mãn
. Mệnh đề nào sau đây đúng?
Tập xác định
Hàm số đơn điệu trên đoạn nên
Vậy đáp án cần tìm là .
Đồ thị hàm số
có bao nhiêu đường tiệm cận?
Tập xác định
Đồ thị hàm số có tiệm cận đứng là đường thẳng
Đồ thị hàm số có tiệm cận đứng là đường thẳng
Đồ thị hàm số có tiệm cận ngang là đường thẳng
.
Cho hàm số
với
là tham số. Tìm giá trị của
để đường tiệm cận ngang của đồ thị hàm số đi qua điểm
?
Ta có: suy ra
là tiệm cận ngang của đồ thị hàm số đã cho.
Do
Có bao nhiêu giá trị nguyên âm của
để đồ thị hàm số
cắt trục hoành tại đúng một điểm?
Phương trình hoành độ giao điểm của đồ thị và trục hoành là:
Ta thấy không là nghiệm của phương trình nên
Xét hàm số
Ta có:
Bảng biến thiên của hàm số như sau:
Từ bảng biến thiên ta thấy đồ thị hàm số đã cho cắt trục hoành tại đúng một điểm khi (*) có đúng 1 nghiệm
Vì nguyên âm nên
Vậy có 10 giá trị của a thỏa mãn yêu cầu bài toán.
Cho hàm số
. Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là
. Khi đó
bằng:
Ta có:
Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là
trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?
Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?
Hàm số
đồng biến trên khoảng
Ta có y’ = 8x => y’ = 0 => x = 0
=> y’ > 0 => x > 0
=> y’ < 0 => x < 0
Vậy hàm số đồng biến trên khoảng
Cho hàm số
với
là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số với
là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số
có đồ thị
. Tìm giá trị
để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của
một khoảng bằng
?
Cho hàm số có đồ thị
. Tìm giá trị
để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của
một khoảng bằng
?
Cho hàm số
có bảng biến thiên như sau:

Đồ thị hàm số trên có tiệm cận ngang là:
Dựa vào bảng biến thiên ta có:
Suy ra tiệm cận ngang của đồ thị hàm số là .
Cho hàm số
có đạo hàm trên
và có đồ thị như hình vẽ:

Xét hàm số
. Tìm
để
.
Cho hàm số có đạo hàm trên
và có đồ thị như hình vẽ:
Xét hàm số . Tìm
để
.
Cho hàm số
với
là tham số. Tìm tất cả các giá trị nguyên của tham số
để đồ thị hàm số đã cho có ba đường tiệm cận?
Ta có: suy ra
là một tiệm cận ngang của đồ thị hàm số.
Do đó để đồ thị hàm số có ba đường tiệm cận thì đồ thị hàm số phải có hai tiệm cận đứng.
có hai nghiệm phân biệt khác
Mà nên không tồn tại giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Cho hàm số
có bảng biến thiên như sau:

Giá trị cực tiểu của hàm số đã cho bằng:
Dựa vào bảng biến thiên suy ra hàm số đạt cực tiểu tại và
; giá trị cực tiểu bằng
.
Cho hàm số
xác định và liên tục trên mỗi khoảng
và
và có bảng biến thiên như sau:

Tập hợp tất cả các giá trị thực của tham số
để phương trình
có hai nghiệm phân biệt?
Số nghiệm của phương trình là số giao điểm của đường thẳng
và đồ thị hàm số
Để phương trình có hai nghiệm phân biệt, dựa vào bảng biến thiên ta thấy
Vậy tập hợp các giá trị tham số m thỏa mãn yêu cầu bài toán là .
Với giá trị nào của tham số
để đồ thị hàm số
đi qua điểm
?
Thay tọa độ điểm vào
ta được:
Vậy giá trị m cần tìm là .
Cho hàm số
với
là tham số. Điều kiện cần và đủ của tham số
để hàm số nghịch biến trên khoảng
là:
Tập xác định
Ta có:
Hàm số nghịch biến trên khi và chỉ khi
Xét hàm số trên khoảng
ta có bảng biến thiên như sau:
Vậy để hàm số nghịch biến trên thì
.
Cho hàm số
xác định trên tập số thực và có đạo hàm
. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên khoảng
. Đúng||Sai
b) Hàm số nghịch biến trên khoảng
. Đúng||Sai
c) Đồ thị hàm số có hai điểm cực trị. Sai|| Đúng
d) Đồ thị hàm số có một điểm cực tiểu. Đúng||Sai
Cho hàm số xác định trên tập số thực và có đạo hàm
. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên khoảng . Đúng||Sai
b) Hàm số nghịch biến trên khoảng . Đúng||Sai
c) Đồ thị hàm số có hai điểm cực trị. Sai|| Đúng
d) Đồ thị hàm số có một điểm cực tiểu. Đúng||Sai
Ta có:
Bảng biến thiên:
a) Hàm số đồng biến trên khoảng .
b) Hàm số nghịch biến trên khoảng nên nghịch biến trên
.
c) Hàm số có đúng một điểm cực trị.
d) Hàm số có đúng một điểm cực tiểu .
Tìm điều kiện cần và đủ của tham số thực ủa tham số
để đường thẳng
cắt đồ thị
tại ba điểm phân biệt là:
Phương trình hoành độ giao điểm của hai đồ thị:
(*) là phương trình hoành độ giao điểm của hai đồ thị
Xét hàm số có
Bảng biến thiên
Vậy theo yêu cầu bài toán
Cho hàm số
. Xác định tất cả giá trị của tham số m để đồ thị hàm số có đúng 4 đường tiệm cận.
Ta có: => Đồ thị hàm số có 2 đường tiệm cận ngang là y = 1 và
Đồ thị có đúng 4 đường tiệm cận thì phương trình có hai nghiệm phân biệt khác 1
Ta có:
Theo yêu cầu bài toán tương đương phương trình (*) có hai nghiệm phân biệt
Xét hàm số
Bảng biến thiên

Dựa vào bảng biến thiên phương trình có hai nghiệm thì