Cho hàm số f(x) có đạo hàm
. Số cực trị của hàm số đã cho là
Xét phương trình
Ta có bảng xét dấu:

Quan sát bảng xét dấu ta dễ thấy f’(x) đổi dấu khi qua c = -2 và f’(x) đổi dấu khi qua x = 1
=> Hàm số có hai điểm cực trị
Cho hàm số f(x) có đạo hàm
. Số cực trị của hàm số đã cho là
Xét phương trình
Ta có bảng xét dấu:

Quan sát bảng xét dấu ta dễ thấy f’(x) đổi dấu khi qua c = -2 và f’(x) đổi dấu khi qua x = 1
=> Hàm số có hai điểm cực trị
Cho hàm số y = f(x) có đạo hàm f’(x) = x2 + 1,
. Mệnh đề nào dưới đây đúng?
Ta có:
f’(x) = x2 + 1 > 0,
=> Hàm số đống biến trên khoảng (-∞; +∞)
Đồ thị hàm số
cắt trục tung tại điểm:
Ta có:
Vậy đồ thị hàm số cắt trục tung tại điểm
.
Cho hàm số y = f(x). Đồ thị của hàm số
như hình bên. Đặt
. Mệnh đề nào sau đây đúng?
Xét hàm số
Ta có bảng biến thiên như sau:

Vậy
Cho hàm số
liên tục trên
và có bảng xét dấu
như sau:

Kết luận nào sau đây đúng?
Dựa vào bảng xét dấu đạo hàm ta thấy: hàm số đạt cực trị tại .
Tại ta thấy
đổi dấu từ âm sang dương nên hàm số đạt cực tiểu tại
.
Tại ta thấy
đổi dấu từ dương sang âm nên hàm số đạt cực đại tại
.
Cho hàm số
liên tục trên đoạn
có đồ thị như hình vẽ:

Tìm giá trị nhỏ nhất của hàm số trên đoạn
?
Trên đoạn ta có:
và
Vậy .
Có bao nhiêu giá trị nguyên âm của
để đồ thị hàm số
cắt trục hoành tại đúng một điểm?
Phương trình hoành độ giao điểm của đồ thị và trục hoành là:
Ta thấy không là nghiệm của phương trình nên
Xét hàm số
Ta có:
Bảng biến thiên của hàm số như sau:
Từ bảng biến thiên ta thấy đồ thị hàm số đã cho cắt trục hoành tại đúng một điểm khi (*) có đúng 1 nghiệm
Vì nguyên âm nên
Vậy có 10 giá trị của a thỏa mãn yêu cầu bài toán.
Cho hàm số
. Biết hàm số nghịch biến trên đoạn
. Tính
.
Đáp án: 5
Cho hàm số . Biết hàm số nghịch biến trên đoạn
. Tính
.
Đáp án: 5
Tập xác định: .
Ta có: .
Bảng xét dấu:
Từ bảng xét dấu, ta thấy hàm số nghịch biến trên .
Khi đó: .
Gọi
lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số
trên đoạn
. Tổng
bằng bao nhiêu?
Gọi lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số
trên đoạn
. Tổng
bằng bao nhiêu?
Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số
có một cực trị. Xác định số phần tử của tập
?
Để hàm số có một cực trị thì
Vậy có 7 giá trị nguyên thỏa mãn yêu cầu bài toán.
Cho hàm số
xác định, liên tục trên
và có đồ thị như hình vẽ

Giá trị lớn nhất của hàm số
trên
là
Từ đồ thị hàm số, ta thấy hàm số đạt giá trị lớn nhất bằng 3 tại x = 1.
Cho một tấm nhôm hình vuông cạnh
, người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng
, rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của
bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).

Đáp án: 2 dm
Cho một tấm nhôm hình vuông cạnh , người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng
, rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của
bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).
Đáp án: 2 dm
Ta có:
tại
Cho hàm số y = f(x) có bảng biến thiên như sau:

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:
Dựa vào bảng biến thiên ta có:
=> y = 0 là một tiệm cận ngang
=> y = 5 là một tiệm cận ngang
=> x = 1 là một tiệm cận đứng
Vậy đồ thị hàm số có tổng số đường tiệm cận là 3 đường
Cho hàm số
. Số đường tiệm cận của đồ thị hàm số y = f(x) là:
Ta có:
=> Đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.
=> y = 2 là tiệm cận ngang của đồ thị hàm số
=> đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.
Cho hàm số bậc ba
với
là tham số. Gọi
là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức
?
Cho hàm số bậc ba với
là tham số. Gọi
là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức
?
Tiệm cận ngang của đồ thị hàm số
là đường thẳng có phương trình?
Ta có: nên tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình
.
Tất cả các giá trị của tham số
để hàm số
đạt cực đại tại
là:
Ta có:
Ta thấy hệ số nên nếu hàm số có ba cực trị thì hàm số có hai cực đại và một cực tiểu nên không thể đạt cực đại tại
.
Để hàm số đạt cực đại tại thì hàm số có một cực trị hay phương trình
vô nghiệm hoặc có nghiệm kép
.
Đồ thị hàm số
có tất cả bao nhiêu đường tiệm cận?
Hàm số xác định
Tập xác định
Ta có: suy ra
là tiệm cận đứng của đồ thị hàm số.
Suy ra là tiệm cận ngang của đồ thị hàm số
Vậy đồ thị hàm số có 2 đường tiệm cận.
Đường cong ở hình dưới đây là đồ thị của hàm số nào?

Dựa vào hình vẽ ta thấy đây là hàm số bậc ba có dạng
Cho hàm số
có đồ thị (C). Gọi I là giao điểm của hai đường tiệm cận của (C). Tiếp tuyến của (C) cắt hai đường tiệm cận của (C) tại hai điểm A, B. Giá trị nhỏ nhất của chu vi đường tròn ngoại tiếp tam giác IAB bằng:
Đồ thị hàm số có tiệm cận đứng là x = 2 và tiệm cận ngang là y = 1 => I(2; 1)
Gọi khi đó ta có phương trình tiếp tuyến tại M là
Ta có:
Khi đó
Ta lại có tam giác IAB vuông tại I nên bán kính đường tròn ngoại tiếp tam giác IAB là
Mặt khác
Giá trị nhỏ nhất của chu vi đường tròn ngoại tiếp tam giác IAB bằng:
Cho hai số thực
thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Cho hai số thực thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Giả thiết cho
Xét hàm số trên
Suy ra
Vậy hàm số luôn đồng biến trên
nên ta có:
Suy ra:
Xét hàm số
luôn nghịch biến trên
luôn nghịch biến trên
Vậy khi
.
Đồ thị hàm số
có bao nhiêu đường tiệm cận đứng?
Ta có:
suy ra
là đường tiệm cận đứng của đồ thị hàm số.
suy ra
là đường tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số đã cho có 2 đường tiệm cận đứng.
Hàm số nào dưới đây nghịch biến trên
?
Xét hàm số ta có:
Do đó hàm số nghịch biến trên
.
Giả sử
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Khi đó tổng của
và
bằng bao nhiêu?
Ta có:
Cho hàm số
. Tìm
để hàm số đã cho đạt cực đại tại
?
Tập xác định
Ta có:
Để là điểm cực đại của hàm số thì
Với thì
. Vậy
không thỏa mãn.
Với thì
Xét dấu ta được
có điểm cực đại.
Vậy là giá trị cần tìm.
Cho hàm số
. Trong các khẳng định sau, khẳng định nào là khẳng định đúng?
Điều kiện
Từ điều kiện ta có:
Đồ thị hàm số không có tiệm cận đứng
Mặt khác
=> y = 0 là tiệm cận ngang của đồ thị hàm số
Không tồn tại
Vậy đồ thị hàm số không có tiệm cận đứng và có đúng một tiệm cận ngang
Cho hàm số
với
là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số
để hàm số đã cho nghịch biến trên từng khoảng xác định?
Ta có:
Để hàm số nghịch biến trên từng khoảng xác định thì
Mà
Vậy có tất cả 4 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số
. Chọn mệnh đề đúng?

Dựa vào đồ thị ta thấy hàm số có tập xác định là hàm số luôn nghịch biến trên khoảng
nên
.
Cho một tấm nhôm hình vuông có cạnh là
. Người ta cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là
, sau đó gập tấm nhôm lại để tạo thành một chiếc hộp không nắp. Tìm
để thể tích chiếc hộp là lớn nhất.
Đáp án: 5
Cho một tấm nhôm hình vuông có cạnh là . Người ta cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là
, sau đó gập tấm nhôm lại để tạo thành một chiếc hộp không nắp. Tìm
để thể tích chiếc hộp là lớn nhất.
Đáp án: 5
Chiều cao của chiếc hộp khi gập tấm nhôm là .
Kích thước đáy hai đáy của chiếc hộp là .
Ta có .
Thể tích chiếc hộp là .
.
Bài toán trở thành, tìm
sao cho
là lớn nhất.
Vậy cần cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là để chiếc hộp tạo thành có thể tích lớn nhất.
Cho hàm số
có đồ thị như hình vẽ bên dưới. Trong các hệ số
,
,
có bao nhiêu số dương?

Tiệm cận đứng:
Tiệm cận ngang:
Đồ thị cắt trục hoành tại nên
hay
Vậy trong các hệ số ,
,
có có hai số dương là
Tập hợp tất cả các giá trị thực của tham số
để đồ thị hàm số
có đúng hai tiệm cận đứng?
Điều kiện xác định
Vì nên để đồ thị hàm số có đúng hai tiệm cận đứng thì phương trình
phải có hai nghiệm phân biệt lớn hơn
.
Xét hàm số trên
có:
Bảng biến thiên
Phương trình (*) có hai nghiệm phân biệt lớn hơn khi
.
Vậy đáp án cần tìm là .
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
. Giá trị của biểu thức
là:
Điều kiện xác định:
Xét hàm số trên
ta có:
Phương trình
Ta lại có:
=>
Đồ thị hàm số
có bao nhiêu điểm có tọa độ nguyên?
Ta có:
Với đồ thị hàm số đã cho có đúng 1 điểm có tọa độ nguyên.
Cho hàm số
. Hàm số
có đồ thị như hình vẽ:

Gọi
là tập hợp tất cả các giá trị nguyên dương của tham số
sao cho hàm số
đồng biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Cho hàm số . Hàm số
có đồ thị như hình vẽ:
Gọi là tập hợp tất cả các giá trị nguyên dương của tham số
sao cho hàm số
đồng biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Cho hàm số
, đồ thị của hàm số
là đường cong như hình vẽ:

Giá trị nhỏ nhất của hàm số
trên đoạn
bằng:
Ta có:
trong đó các nghiệm
là nghiệm đơn và
là nghiệm kép.
nên ta có bảng biến thiên của hàm
như sau:
Vậy .
Cho hình vẽ:

Đồ thị được cho trong hình vẽ là đồ thị của hàm số nào trong các hàm số sau?
Từ đồ thị ta thấy đây là hàm số bậc 4 trùng phương có hệ số
Mặt khác hàm số đạt cực tiểu tại và giá trị cực tiểu
nên hàm số cần tìm là
.
Cho hàm số
có đồ thị như sau:

Hỏi số nghiệm của phương trình
bằng bao nhiêu?
Ta có:
Lại có đường thẳng nằm phía trên gốc tọa độ; song song với trục Ox và cắt đồ thị hàm số
tại 4 điểm nên phương trình
có hai nghiệm.
Cho tập hợp
và
là tập hợp các hàm số
có
. Chọn ngẫu nhiên một hàm số
. Tính xác suất để đồ thị hàm số
có hai điểm cực trị nằm khác phía đối với trục
?
Không gian mẫu
Ta có:
Đồ thị của hàm số có hai điểm cực trị nằm khác phía đối với trục
suy ra phương trình (*) có hai nghiệm phân biệt khác
.
Mà
Vậy xác suất cần tìm là .
Hàm số nào dưới dây nghịch biến trên khoảng
?
Xét hàm số có
nên hàm số
nghịch biến trên khoảng
.
Hàm số
nghịch biến trên khoảng
khi:
Tập xác định
Ta có:
Hàm số nghịch biến trên khoảng khi
Vậy đáp án cần tìm là .