Tìm giá trị của tham số
để giá trị nhỏ nhất của hàm số
trên đoạn
bằng
?
Ta có:
Vậy giá trị cần tìm là .
Tìm giá trị của tham số
để giá trị nhỏ nhất của hàm số
trên đoạn
bằng
?
Ta có:
Vậy giá trị cần tìm là .
Cho hàm số
xác định và liên tục trên mỗi khoảng
và
và có bảng biến thiên như sau:

Tập hợp tất cả các giá trị thực của tham số
để phương trình
có hai nghiệm phân biệt?
Số nghiệm của phương trình là số giao điểm của đường thẳng
và đồ thị hàm số
Để phương trình có hai nghiệm phân biệt, dựa vào bảng biến thiên ta thấy
Vậy tập hợp các giá trị tham số m thỏa mãn yêu cầu bài toán là .
Gọi S là tập hợp chứa tất cả các giá trị thực của tham số m để hàm số
có điểm cực đại với giá trị cực đại tương ứng nằm trong khoảng (3; 4) và đồng thời thỏa mãn 10m là số nguyên. Số phần tử của tập hợp S là:
Xét phương trình
Nếu thì hàm số
không có điểm cực đại.
Nếu thì phương trình (*) có hai nghiệm phân biệt là
Với thì
không có điểm cực đại.
Với thì
Hàm số này đạt cực đại tại x = m + 2 và giá trị cực đại là
Vậy điều kiện để hàm số có cực đại là:
Do 10m là số nguyên nên có hai giá trị thỏa mãn là
Cho hàm số
liên tục, có đạo hàm trên
. Đồ thị hàm số
như sau:

Hàm số
nghịch biến trên khoảng
. Giá trị lớn nhất của
bằng bao nhiêu?
Cho hàm số liên tục, có đạo hàm trên
. Đồ thị hàm số
như sau:
Hàm số nghịch biến trên khoảng
. Giá trị lớn nhất của
bằng bao nhiêu?
Cho hàm số
có đồ thị như hình vẽ sau:

Khi đó, giá trị lớn nhất của hàm số
trên
là:
Đặt
Cho hàm số
có bảng biến thiên như sau:

Xác định giá trị cực tiểu của hàm số đã cho.
Dựa vào bảng biến thiên ta thấy:
Hàm số đạt cực tiểu tại , giá trị cực tiểu là
.
Số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số
là:
Điều kiện xác định
Ta có: nên
là tiệm cận ngang của đồ thị hàm số.
suy ra
là tiệm cận đứng của đồ thị hàm số.
suy ra
là tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số đã cho có hai đường tiệm cận.
Tìm tất cả các giá trị của tham số
để hàm số
nghịch biến trên
?
Ta có:
Hàm số nghịch biến trên khi và chỉ khi
Vậy đáp án cần tìm là .
Cho hàm số y = f(x) có đúng ba điểm cực trị -2; -1; 0 và có đạo hàm liên tục trên
. Khi đó hàm số
có bao nhiêu điểm cực trị?
Ta có hàm số y = f(x) có đúng ba điểm cực trị -2; -1; 0 và có đạo hàm liên tục trên nên f’(x) = 0 có ba nghiệm x = -2; x = -1, x = 0
Đặt
Vì f’(x) liên tục trên nên g’(x) cũng liên tục trên
. Do đó những điểm g’(x) có thể đổi dấu thuộc tập các điểm thỏa mãn.
Ba nghiệm trên đều là nghiệm đơn hoặc bội lẻ nên hàm số g(x) có ba điểm cực trị.
Cho hàm số
xác định trên tập
và một số thực
. Xét tính đúng sai của các khẳng định sau:
a) Nếu
thì
. Sai|| Đúng
b) Nếu
thì
. Sai|| Đúng
c) Nếu
thì
. Đúng||Sai
d) Nếu
thì
. Đúng||Sai
Cho hàm số xác định trên tập
và một số thực
. Xét tính đúng sai của các khẳng định sau:
a) Nếu thì
. Sai|| Đúng
b) Nếu thì
. Sai|| Đúng
c) Nếu thì
. Đúng||Sai
d) Nếu thì
. Đúng||Sai
a) Khẳng định này sai, cần bổ sung thêm điều kiện để
.
b) Khẳng định này sai, cần bổ sung thêm điều kiện để
.
c) Nếu thì
là hàm hằng trên
(đồ thị là đường thẳng nằm ngang).
Suy ra .
d) Nếu thì
là hàm hằng trên
(đồ thị là đường thẳng nằm ngang).
Suy ra.
Hàm số
có đạo hàm
. Kết luận nào sau đây đúng?
Vì hàm số có đạo hàm
nên hàm số đồng biến trên
.
Cho hàm số
có
. Có bao nhiêu giá trị nguyên của
để
?
Ta có: suy ra hàm số
đồng biến trên
Suy ra
Vậy có tất cả 21 giá trị nguyên của .
Cho hàm số
xác định trên
và có bảng biến thiên như sau:

Xét tính đúng sai của các khẳng định sau.
a) Hàm số không có điểm cực trị. Đúng||Sai
b)
. Sai||Đúng
c) Đồ thị hàm số có đúng 1 tiệm cận ngang. Đúng||Sai
d) Đồ thị hàm số có đúng 1 tiệm cận đứng. Sai||Đúng
Cho hàm số xác định trên
và có bảng biến thiên như sau:
Xét tính đúng sai của các khẳng định sau.
a) Hàm số không có điểm cực trị. Đúng||Sai
b) . Sai||Đúng
c) Đồ thị hàm số có đúng 1 tiệm cận ngang. Đúng||Sai
d) Đồ thị hàm số có đúng 1 tiệm cận đứng. Sai||Đúng
Dựa vào bảng biến thiên ta thấy
a) Hàm số không có điểm cực trị.
b) lim .
c) . Suy ra đồ thị có đúng 1 đường tiệm cận ngang là
.
d) và
nên đồ thị hàm số có đúng 2 đường tiệm cận đứng
.
Cho hàm số
có bảng biến thiên như sau:

Số điểm cực trị của đồ thị hàm số là:
Dựa vào bảng biến thiên ta thấy hàm số có 3 điểm cực trị.
Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?

Đồ thị hàm số là hàm số bậc với
.
Cho hàm số y = f(x) có đạo hàm f’(x) = x2 + 1,
. Mệnh đề nào dưới đây đúng?
Ta có:
f’(x) = x2 + 1 > 0,
=> Hàm số đống biến trên khoảng (-∞; +∞)
Hai thành phố A và B cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

Đáp án: 16 km
Hai thành phố A và B cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 16 km
Đặt , với
Ta có:
Nhận định ngắn nhất khi
nhỏ nhất ( vì
không đổi).
Xét hàm số
.
Cho
Bảng biến thiên
Vậy
Khi đó
Cho hàm số
thỏa mãn
. Chọn mệnh đề đúng?
Tập xác định
Ta có: . Vì hàm số đơn điệu trên
nên
Nếu Hàm số không có giá trị lớn nhất
Vậy
Cho hàm số y = f(x) có bảng biến thiên như sau:

Số nghiệm thực của phương trình
là
Kí hiệu bảng biến thiên như sau:
Ta có:
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số và đường thẳng
.
Dựa vào bảng biến thiên, ta thấy đồ thị hàm số cắt đường thẳng
tại 2 điểm phân biệt.
Vậy phương trình có 2 nghiệm phân biệt.
Giá trị của tham số m để đồ thị hàm số
có đường tiệm cận ngang
là:
Điều kiện để đồ thị hàm số có tiệm cận là:
luôn đúng với
Phương trình đường tiệm cận ngang là nên ta có
Đồ thị hàm số
có đường tiệm cận ngang là
Ta có:
Suy ra tiệm cận ngang là .
Đồ thị hàm số
có hai điểm cực trị là A và B. Điểm nào dưới đây thuộc đường thẳng AB?
Cách 1: Xét hàm số
Ta có:
Đồ thị hàm số f(x) có hai điểm cực trị A và B nên f’(A) = f’(B) = 0
Suy ra
Do đó phương trình đường thẳng AB là y = -8x – 2
Khi đó ta có điểm có tọa độ (1; -10) thuộc đường thẳng AB.
Cách 2: Xét hàm số
=> Tọa độ hai điểm cực trị của hàm số là A(3; -26) và B(-1; 6)
Ta có:
Phương trình đường thẳng AB đ qua B(-1; 6) nhận vecto làm vecto chỉ phương là
Khi đó ta có điểm có tọa độ (1; -10) thuộc đường thẳng AB.
Cho f(x) mà đồ thị hàm số y = f’(x) như hình vẽ.
Hàm số
đồng biến trên khoảng nào trong các đáp án dưới đây?
Ta có:
=>
Hàm số đồng biến khi
Đặt t = x – 1 thì (*) trở thành
Quan sát đồ thị hàm số y = f’(t) và y = -2t trên cùng một hệ tọa độ như hình vẽ

Khi đó ta thấy với thì độ thì hàm số y = f’(t) luôn nằm trên đường thẳng y = -2t
=>
Do đó với thì hàm số
đồng biến.
Cho hàm số
có đạo hàm
. Hỏi hàm số
có bao nhiêu cực trị?
Cho hàm số có đạo hàm
. Hỏi hàm số
có bao nhiêu cực trị?
Tìm giá trị nhỏ nhất của hàm số
trên đoạn
?
Ta có:
Ta có: .
Tìm giá trị nhỏ nhất của hàm số
trên đoạn ![]()
Tập xác định
Với ta có:
Ta có: khi
.
Cho hàm số y = f(x) liên tục trên và y = f’(x) có bảng biến thiên như sau:

Đồ thị hàm số
có nhiều nhất bao nhiêu tiệm cận đứng:
Điều kiện
Để đồ thị hàm số có đường tiệm cận đứng
thì phải có nghiệm.
Từ bảng biến thiên của hàm số y = f’(x) suy ra phương trình f’(x) = 0 có đúng hai nghiệm là với
Từ đó ta có bảng biến thiên của hàm số y = f(x) như sau:

=> Phương trình y = f(x) có nhiều nhất ba nghiệm phân biệt
Vậy đồ thị hàm số có nhiều nhất ba đường tiệm cận đứng.
Cho hàm số
có: ![]()
![]()
Xét tính đúng sai của các khẳng định sau:
a) Đồ thị của hàm số
có tiệm cận ngang là đường thẳng
. Đúng||Sai
b) Đồ thị của hàm số
có tiệm cận đứng là đường thẳng
. Đúng||Sai
c) Đồ thị của hàm số
không có tiệm cận ngang. Sai|| Đúng
d) Đồ thị của hàm số
không có tiệm cận đứng. Sai|| Đúng
Cho hàm số có:
Xét tính đúng sai của các khẳng định sau:
a) Đồ thị của hàm số có tiệm cận ngang là đường thẳng
. Đúng||Sai
b) Đồ thị của hàm số có tiệm cận đứng là đường thẳng
. Đúng||Sai
c) Đồ thị của hàm số không có tiệm cận ngang. Sai|| Đúng
d) Đồ thị của hàm số không có tiệm cận đứng. Sai|| Đúng
a) Do nên
là đường tiệm cận ngang của đồ thị hàm số. (*)
b) Do nên
là đường tiệm cận đứng của đồ thị hàm số. (**)
c) Từ (*) suy ra khẳng định này sai.
d) Từ (**) suy ra khẳng định này sai.
Hàm số
đồng biến trên các khoảng
và
khi nào?
Tập xác định
Ta có: . Để hàm số đồng biến trên từng khoảng xác định thì
Vậy hàm số đồng biến trên các khoảng
và
khi
.
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là
. Đúng||Sai
b) Đồ thị hàm số có các đường tiệm cận ngang là
. Đúng||Sai
c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng
d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là . Đúng||Sai
b) Đồ thị hàm số có các đường tiệm cận ngang là . Đúng||Sai
c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng
d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng
a) Điều kiện xác định của hàm số .
Vậy tập xác định của hàm số là .
b) Ta có: nên y = −1 là đường tiệm cận ngang.
nên y = 1 là đường tiệm cận ngang.
c) Do nên x = 1 là đường tiệm cận đứng.
Vậy đồ thị hàm số có tất cả 3 đường tiệm cận (2 TCN và 1 TCĐ).
d) Minh họa miền giới hạn của các đường tiệm cận và trục Oy như sau:
Miền giới hạn là hình chữ nhật có diện tích là
Cho hàm số
có bảng biến thiên:

Số giá trị nguyên của
để đồ thị hàm số có
tiệm cận là:
Từ bảng biến thiên ta thấy đồ thị có hai tiệm cận đứng và các tiệm cận ngang
. Suy ra đồ thị có bốn tiệm cận khi
Do nên
Vậy có 7 giá trị của tham số thỏa mãn.
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:

Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:
Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).
Kết luận nào sau đây về tính đơn điệu của hàm số
là đúng?
Ta có:
Do đó hàm số nghịch biến trên các khoảng (-∞; 2) và (2; +∞)
Cho hàm số
có đồ thị
là parabol như hình vẽ:

Khẳng định nào sau đây là đúng?
Từ đồ thị hàm số ta có bảng biến thiên như sau:
Vậy hàm số đồng biến trên các khoảng và
.
Đồ thị hàm số
có hai điểm cực trị
. Khi đó
có giá trị là:
Gọi đồ thị hàm số là
Ta có: .
Vì là hai điểm cực trị của đồ thị hàm số
nên ta có:
Vậy do đó
.
Đồ thị của hàm số nào tương ứng với đồ thị trong hình vẽ sau:

Dựa vào đồ thị hàm số ta thấy
Đồ thị hàm số cắt trục tung tại điểm
=> => Loại đáp án
Mặt khác => Hệ số a > 0 => Loại đáp án
Hàm số đạt cực trị tại hai điểm , dựa vào hình vẽ ta thấy
trái dấu
=> Loại đáp án
Vậy đáp án là
Cho hàm số
với
là tham số thực. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 2. Sai|| Đúng
b) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 1. Sai|| Đúng
c) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 5. Đúng||Sai
d)
. Đúng||Sai
Cho hàm số với
là tham số thực. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 2. Sai|| Đúng
b) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 1. Sai|| Đúng
c) Hàm số đạt cực đại tại x = 3 khi và chỉ khi m = 5. Đúng||Sai
d) . Đúng||Sai
Ta có:
Do hàm số đạt cực đại tại x = 3 nên
Với .
Bảng xét dấu y’ như sau:
Với
Bảng xét dấu y’ như sau:
Từ bảng xét dấu, ta có hàm số đạt cực đại tại x = 3
Vậy hàm số đã cho đạt cực đại tại x = 3 khi và chỉ khi m = 5.
Đường cong trong hình vẽ dưới đây là của hàm số nào?

Đường tiệm cận ngang:
Đường tiệm cận đứng:
Cho đồ thị hàm số
. Tìm tất cả các giá trị của tham số
để
cắt trục hoành tại ba điểm phân biệt cách hoành độ
thỏa mãn
?
Để hàm số đã cho cắt trục hoành tại 3 điểm phân biệt thì phương trình hoành độ giao điểm phải có ba nghiệm phân biệt:
Ta đặt . Khi đó để phương trình có 3 nghiệm phân biệt thì phương trình sau phải có 2 nghiệm phân biệt khác 1.
Do có nghiệm khác 1 nên hay
Ta có:
Để có hai nghiệm phân biệt thì hay
Theo bài ra ta có:
với
là nghiệm của phương trình bậc hai trên.
Áp dụng hệ thức Vi – et ra có:
Kết hợp các điều kiện ta có: .
Vậy đáp án đúng là .
Một công ty bất động sản có
căn hộ cho thuê. Nếu giá cho thuê mỗi căn là
đồng/tháng thì không có phòng trống, còn nếu cho thuê mỗi căn hộ thêm
đồng/tháng thì sẽ có 2 căn bị bỏ trống. Hỏi công ty phải niêm yếu bao nhiêu để doanh thu là lớn nhất?
Đặt số tiền tăng thêm là (đồng)
Giá tiền mỗi căn hộ một tháng là (đồng)
Số căn hộ bị trống là (phòng)
Số tiền thu được mỗi tháng là: (đồng)
Đặt
Để doanh thu là lớn nhất thì ta tìm giá trị lớn nhất của hàm số , giá trị lớn nhất của hàm số
tại đỉnh của parabol.
Hay:
Vậy công ty niêm yết giá tiền là: đồng để được doanh thu là lớn nhất.