Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
có đúng ba đường tiệm cận?
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng ba đường tiệm cận?
Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
có đúng ba đường tiệm cận?
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng ba đường tiệm cận?
Cho hàm số
có đồ thị như hình vẽ. Phương trình đường tiệm cận xiên của đồ thị hàm số đã cho là:

Dựa vào đồ thị hàm số, ta thấy đường tiệm cận xiên của đồ thị hàm số đi qua 2 điểm và
nên đường tiệm cận xiên của đồ thị hàm số có phương trình
.
Cho hàm số
có đồ thị như hình vẽ:

Tính giá trị biểu thức
?
Từ đồ thị hàm số đã cho ta thấy đường tiệm cận đứng , đường tiệm cận ngang
Xét hàm số đồ thị có tiệm cận đứng
và tiệm cận ngang
suy ra
Đồ thị hàm số đi qua điểm
Vậy .
Số dân số của một thị trấn sau
năm kể từ năm 1970 được ước tính bởi công thức
(
được tính bằng nghìn người). Biết rằng đạo hàm của hàm số
biểu thị tốc độ gia tăng dân số của thị trấn ( đơn vị là nghìn người/ năm). Vào năm nào thì tốc độ gia tăng dân số là
nghìn người/ năm?
Ta có
Lại có
Vậy dự báo vào năm 1995 thì tốc độ gia tăng dân số là nghìn người/ năm.
Cho hàm số
, đồ thị của hàm số
là đường cong như hình vẽ:

Giá trị nhỏ nhất của hàm số
trên đoạn
bằng:
Ta có:
trong đó các nghiệm
là nghiệm đơn và
là nghiệm kép.
nên ta có bảng biến thiên của hàm
như sau:
Vậy .
Tìm số các giá trị nguyên của tham số
để hàm số
có ba điểm cực trị?
Ta có:
Hàm số có ba cực trị khi và chỉ khi
Mà . Vậy có 4 giá trị của tham số
thỏa mãn.
Cho hàm số
có đạo hàm
. Hàm số
đồng biến trên khoảng nào sau đây?
Ta có bảng xét dấu:
Từ bảng xét dấu trên ta có hàm số đồng biến trên
.
Cho hàm số
liên tục trên
và có bảng biến thiên như sau:

Điểm cực đại của đồ thị hàm số là:
Điểm cực đại của đồ thị hàm số đã cho là .
Đồ thị hàm số nào dưới đây có đúng một đường tiệm cận ngang?
Xét hàm số có tập xác định
Ta có: suy ra
là một tiệm cận ngang của đồ thị hàm số.
Vậy hàm số có duy nhất một tiệm cận ngang là .
Cho hàm số
(với
). Hỏi đồ thị hàm số có tối đa bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
Ta có:
Phương trình có tối đa 2 nghiệm
Nên đồ thị hàm số có nhiều nhất hai đường tiệm cận đứng.
nên
là đường tiệm cận ngang.
Vậy đồ thị hàm số có nhiều nhất 3 đường tiệm cận ngang và tiệm cận đứng.
Cho hàm số y = f(x) có đạo hàm
. Hàm số
đồng biến trên các khoảng nào?
Cho hàm số y = f(x) có đạo hàm . Hàm số
đồng biến trên các khoảng nào?
Cho hàm số
có bảng biến thiên như hình vẽ.

Tính giá trị của biểu thức ![]()
Ta có:
Mặt khác
Gọi
là giá trị của tham số
để đồ thị hàm số
có hai điểm cực trị là
sao cho diện tích tam giác
bằng
(
là gốc tọa độ). Khi đó giá trị biểu thức
bằng:
Tập xác định .
Ta có:
Ta có bảng biến thiên như sau:
Suy ra
Đường thẳng (PQ) đi qua điểm và nhận
làm một vecto pháp tuyến nên có phương trình
Theo bài ra ta có diện tích tam giác OPQ bằng 2 nên ta có phương trình:
Vậy .
Đồ thị hàm số
cắt trục tung tại điểm:
Ta có:
Vậy đồ thị hàm số cắt trục tung tại điểm
.
Hàm số
đạt cực tiểu tại
khi:
Hàm số xác định với mọi
Ta có:
Hàm số đạt cực tiểu tại khi
Vậy thỏa mãn yêu cầu bài toán.
Cho x, y, z là ba số thực thuộc đoạn [1; 9] và
. Giá trị nhỏ nhất của biểu thức
bằng:
Ta có:
(đúng do
)
Dấu bằng xảy ra khi và chỉ khi a = b hoặc ab = 1
Áp dụng bất đẳng thức trên ta có:
Đặt . Xét hàm số
trên đoạn [1; 3]
Do
Ta có bảng biến thiên

Suy ra khi và chỉ khi
Tìm tất cả các giá trị thực của tham số m để hàm số
đồng biến trên khoảng
?
Ta có:
Hàm số đồng biến trên khoảng
Vậy đáp án cần tìm là: .
Cho hàm số
. Trong các khẳng định sau, khẳng định nào là khẳng định đúng?
Điều kiện
Từ điều kiện ta có:
Đồ thị hàm số không có tiệm cận đứng
Mặt khác
=> y = 0 là tiệm cận ngang của đồ thị hàm số
Không tồn tại
Vậy đồ thị hàm số không có tiệm cận đứng và có đúng một tiệm cận ngang
Cho hàm số
. Số đường tiệm cận của đồ thị hàm số y = f(x) là:
Ta có:
=> Đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.
=> y = 2 là tiệm cận ngang của đồ thị hàm số
=> đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.
Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?

Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Tìm giá trị của
để bất phương trình
có nghiệm trên khoảng
?
Bất phương trình có nghiệm trên khoảng
Với
Ta có bảng biến thiên
Dựa vào bảng biến thiên ta suy ra .
Giá trị nhỏ nhất của hàm số y = x3 – 3x + 5 trên đoạn [0; 2] là:
Xét hàm số f(x) = x3 – 3x + 5 trên [0; 2] có:
f’(x) = 3x3 – 3
f’(x) = 0 =>
Tính được f(0) = 5; f(1) = 3; f(2) = 7
Vậy
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ cho sau đây?

Đồ thị hàm số bậc 4 có hệ số và có ba điểm cực trị nên
nên chọn
.
Tìm tập hợp T tất cả các giá trị của tham số thực m để hàm số
nghịch biến trên khoảng (-1; 1)
Ta có:
Để hàm số nghịch biến trên khoảng (-1; 1) thì
Ta có y’ = 0 => x = m hoặc x = m + 2
Bảng xét dấu

Từ bảng xét dấu ta thấy để hàm số nghịch biến trên khoảng (-1; 1) thì
Cho hàm số
có bảng biến thiên như sau:

Đồ thị hàm số có đường tiệm cận ngang là:
Dựa vào bảng biến thiên ta có: nên đồ thị hàm số có đường tiệm cận ngang là
.
Gọi A, B, C là các điểm cực trị của đồ thị hàm số
. Bán kính của đường tròn nội tiếp tam giác ABC bằng:
Ta có:
=> Đồ thị hàm số có ba điểm cực trị là A(0; 4), B(1; 3), C(-1;; 3)
Tính được
Áp dụng công thức tính bán kính đường tròn nội tiếp tam giác ABC ta có:
Cho hàm số
. Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để giá trị lớn nhất của hàm số trên đoạn
không vượt quá 7. Hỏi tập
có bao nhiêu phần tử là số nguyên?
Cho hàm số . Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để giá trị lớn nhất của hàm số trên đoạn
không vượt quá 7. Hỏi tập
có bao nhiêu phần tử là số nguyên?
Tìm giá trị nhỏ nhất của hàm số
trên
?
Ta có:
. Khi đó:
Vậy .
Cho hàm số
có bảng biến thiên như sau.

Xét tính đúng sai của các khẳng định sau.
a) Hàm số đồng biến trên
. Sai|| Đúng
b) Hàm số nghịch biến trên
. Đúng||Sai
c) Hàm số có hai điểm cực trị. Sai|| Đúng
d) Hàm số đạt cực đại tại
. Đúng||Sai
Cho hàm số có bảng biến thiên như sau.
Xét tính đúng sai của các khẳng định sau.
a) Hàm số đồng biến trên . Sai|| Đúng
b) Hàm số nghịch biến trên . Đúng||Sai
c) Hàm số có hai điểm cực trị. Sai|| Đúng
d) Hàm số đạt cực đại tại . Đúng||Sai
Quan sát bảng biến thiên, ta có các kết quả sau:
a) Hàm số đồng biến trên nên khẳng định hàm số đồng biến trên
là sai.
b) Hàm số nghịch biến trên .
c) Hàm số có đúng 1 điểm cực trị là .
d) Hàm số có đạt cực đại tại .
Cho hàm số
liên tục trên
và có bảng xét dấu của
như sau:

Số điểm cực đại của hàm số
là:
Dựa vào bảng biến thiên ta thấy, hàm số đạt cực đại tại
nên hàm số đã cho có 1 điểm cực đại.
Gia đình bác T muốn xây một bình chứa hình trụ có thể tích
. Đáy làm bằng bê tông giá 100 nghìn đồng/m2, thành làm bằng tôn giá 90 nghìn đồng/m2, nắp bằng nhôm giá 140 nghìn đồng/m2. Vậy đáy của hình trụ có bán kính bằng bao nhiêu để chi phí xây dựng là thấp nhất?
Gọi là bán kính đáy của bình chứa hình trụ
Khi đó tổng số tiền phải trả là
Đặt
Vậy để chi phí xây dựng là thấp nhất thì bán kính đáy bằng .
Cho hàm số
có bảng biến thiên như sau:

Hàm số
đồng biến trên khoảng:
Ta có:
Lại có: nên ta có bảng xét dấu như sau:
Từ bảng biến thiên ta thấy hàm số đồng biến trên khoảng và
.
Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên
?
Tập xác định
Ta có:
Hàm số nghịch biến trên khi và chỉ khi
Mà
Vậy có tất cả 5 giá trị của tham số m thỏa mãn yêu cầu đề bài đưa ra.
Cho hàm số y = f(x) liên tục trên
và có bảng biến thiên như hình vẽ. Tìm tất cả các giá trị của tham số m để phương trình
có đúng hai nghiệm phân biệt.

Để phương trình có hai nghiệm phân biệt thì
Cho hàm số
. Xác định giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [2; 4].
Xét hàm số trên [2; 4] ta có:
Tính f(2) = 7; f(3) = 6; f(4) = 19/3
Vậy
Hình vẽ nào dưới đây là đồ thị của hàm số
biết ![]()
Xét hàm số ta có:
=> Đồ thị hàm số có dạng chữ N xuôi
Đồ thị hàm số cắt trục Oy tại điểm có tung độ mà a > 0 =>
Mặt khác
=>
=> Đồ thị hàm số y = f(x) tiếp xúc với Ox tại điểm
Cho hàm số
có đồ thị như hình vẽ:

Tổng các giá trị nguyên của tham số
để hàm số
có
điểm cực trị bằng:
Cho hàm số có đồ thị như hình vẽ:
Tổng các giá trị nguyên của tham số để hàm số
có
điểm cực trị bằng:
Cho hàm số
có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Từ đồ thị, ta thấy hàm số đồng biến trên các khoảng và
.
Điều kiện của tham số
để hàm số
đồng biến trên
là:
Tập xác định:
Ta có:
Hàm số đồng biến trên
Vậy giá trị của tham số m thỏa mãn yêu cầu bài toán là .
Cho hàm bậc ba
có đồ thị như hình vẽ:

Hỏi đồ thị hàm số
có bao nhiêu đường tiệm cận?
Cho hàm bậc ba có đồ thị như hình vẽ:
Hỏi đồ thị hàm số có bao nhiêu đường tiệm cận?