Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tập hợp tất cả các giá trị của tham số m để đồ thị hàm số y = \frac{x - 1}{x^{2} - 3x + m} có đúng hai đường tiệm cận?

    Ta có: \lim_{x ightarrow +
\infty}\frac{x - 1}{x^{2} - 3x + m} = \lim_{x ightarrow -
\infty}\frac{x - 1}{x^{2} - 3x + m} = 0

    Suy ra đồ thị hàm số đã cho luôn có đúng một tiệm cận ngang y = 0. Nên để đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa.

    Tam thức h(x) = x^{2} - 3x + m\Delta = 9 - 4m

    Đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa:

    \left[ \begin{gathered}
  \Delta  = 9 - 4m = 0 \hfill \\
  \left\{ \begin{gathered}
  \Delta  = 9 - 4m > 0 \hfill \\
  h\left( 1 ight) = 0 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  m = \frac{9}{4} \hfill \\
  \left\{ \begin{gathered}
  m < \frac{9}{4} \hfill \\
  m = 2 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  m = \frac{9}{4} \hfill \\
  m = 2 \hfill \\ 
\end{gathered}  ight.

    Vậy m \in \left\{ 2;\frac{9}{4}
ight\}.

  • Câu 2: Nhận biết

    Cho hàm số y = f(x) và có bảng biến thiên trên [-5; 7) như sau:

    Chọn khẳng định đúng

    Mệnh đề nào sau đây đúng?

    Dựa vào bảng biến thiên dễ dàng ta thấy \mathop {\min }\limits_{\left[ { - 5;7} ight)} f\left( x ight) = 2

    \mathop {\max }\limits_{\left[ { - 5;7} ight)} f\left( x ight) = 6 là sai vì f(x) sẽ nhận các giá trị 7; 8 lớn hơn 6 khi x tiến tới 7

    \mathop {\max }\limits_{\left[ { - 5;7} ight)} f\left( x ight) = 9 là sai vì f(x) không bằng 9 mà chỉ tiến đến 9 khi x dần đến 7 (x khác 7)

    Vậy chọn đáp án A.

  • Câu 3: Nhận biết

    Hàm số nào dưới dây nghịch biến trên tập số thực?

    Ta thấy hàm số y = - x^{2} - 3x có tập xác định \mathbb{R} và đạo hàm y = - 3x^{2} - 3 < 0;\forall
x\mathbb{\in R} nên nghịch biến trên \mathbb{R}.

  • Câu 4: Vận dụng

    Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (-1; +∞)

    Ta có: y' = 2mx - \left( {m + 6} ight). Theo yêu cầu bài toán ta có:

    y' \leqslant 0;\forall x \in \left( { - 1; + \infty } ight)

    => 2mx - \left( {m + 6} ight) \leqslant 0 \Leftrightarrow m \leqslant \frac{6}{{2x - 1}}

    Xét hàm số g\left( x ight) = \frac{6}{{2x - 1}},x \in \left( { - 1; + \infty } ight)

    Ta có bảng biến thiên như sau:

    Tìm m để hàm số nghịch biến trên khoảng

    Vậy - 2 \leqslant m \leqslant 0

  • Câu 5: Nhận biết

    Giá trị lớn nhất của hàm số y = x^{3} +
2x^{2} - 7x - 3 trên đoạn \lbrack -
1;2brack bằng:

    Ta có: y' = 3x^{2} + 4x -
7

    y' = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = 1 \\x = - \dfrac{7}{3} \\\end{matrix} ight.

    Khi đó: \left\{ \begin{matrix}
y(1) = - 7 \\
y(2) = - 1 \\
y( - 1) = 5 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 1;2brack}y = y( -
1) = 5

  • Câu 6: Thông hiểu

    Có bao nhiêu giá trị tham số m để hàm số y = x^{3} + \frac{1}{2}\left(
m^{2} - 1 ight)x^{2} + 1 - m có điểm cực đại là x = - 1?

    Tập xác định D\mathbb{= R}

    Ta có: \left\{ \begin{matrix}
y' = 3x^{2} + \left( m^{2} - 1 ight)x \\
y'' = 6x + m^{2} - 1 \\
\end{matrix} ight.. Để hàm số đạt cực đại tại x = - 1 thì

    y'( - 1) = 0 \Leftrightarrow 3 +
\left( m^{2} - 1 ight).( - 1) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
m = 2 \\
m = - 2 \\
\end{matrix} ight.

    Lúc này y''( - 1) = - 6 + 4 - 1
< 0 nên hàm số đạt cực đại tại x
= - 1

    Vậy có hai giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 7: Thông hiểu

    Hệ thức liên hệ giữa giá trị cực đại y_{CÐ} và giá trị cực tiểu y_{CT} của hàm số y = x^{3} - 3x là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} - 3 \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Lại có y'' = 6x \Rightarrow
y''(1) = 6 > 0 nên x =
1 là điểm cực tiểu của hàm số.

    y''( - 1) = - 6 < 0 nên x = - 1 là điểm cực đại của hàm số.

    Do đó \left\{ \begin{matrix}
y_{CÐ} = y( - 1) = 2 \\
y_{CT} = y(1) = - 2 \\
\end{matrix} ight.\  \Rightarrow y_{CT} + y_{CÐ} = 0.

  • Câu 8: Vận dụng cao

    Cho hàm số bậc ba f\left( x ight) = a{x^3} + b{x^2} + cx + d có bảng biến thiên như hình dưới đây.

    Số tiệm cận đứng của đồ thị hàm số

    Hỏi đồ thị hàm số g\left( x ight) = \frac{{\left( {{x^2} - 3x + 2} ight)\sqrt {2x + 1} }}{{\left( {{x^4} - 5{x^2} + 4} ight).f\left( x ight)}} có bao nhiêu tiệm cận đứng?

    Ta có: f'\left( x ight) = 3a{x^2} + 2bx + c = 3a\left( {x - 1} ight)\left( {x - 2} ight) = 3x\left( {{x^2} - 3x + 2} ight)

    Đồng nhất hai vế ta có: \left\{ {\begin{array}{*{20}{c}}  {2b =  - 9a} \\   {c = 6a} \end{array}} ight. \Rightarrow f\left( x ight) = a{x^3} - \frac{{9a}}{2}{x^2} + 6ax + d

    Mặt khác \left\{ {\begin{array}{*{20}{c}}  {f\left( 1 ight) = 5} \\   {f\left( 2 ight) = 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a + \dfrac{9}{2}a + 6a + d = 5} \\   {8a - 18a + 12a + d = 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = \dfrac{{10}}{{49}}} \\   {d = \dfrac{{ - 20}}{{19}}} \end{array}} ight.

    Giải phương trình f\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{1}{2}} \\   {x = 2} \end{array}} ight.

    Hàm số có tập xác định là D = \left[ { - \frac{1}{2}; + \infty } ight)\backslash \left\{ {\frac{1}{2};1;2} ight\}

    Khi đó

    g\left( x ight) = \frac{{\left( {{x^2} - 3x + 2} ight)\sqrt {2x + 1} }}{{\left( {{x^4} - 5{x^2} + 4} ight).f\left( x ight)}}

    = \frac{{\left( {x - 1} ight)\left( {x - 2} ight)\sqrt {2x + 1} }}{{\left( {{x^2} - 1} ight)\left( {{x^2} - 4} ight).f\left( x ight)}}

    = \frac{{\sqrt {2x + 1} }}{{\left( {x + 1} ight)\left( {x + 2} ight)f\left( x ight)}}

    => Đồ thị hàm số có 2 đường tiệm cận đứng là x = \frac{1}{2};x = 2

  • Câu 9: Thông hiểu

    Cho đồ thị hàm số như hình vẽ dưới đây:

    Xác định hàm số tương ứng

    Đồ thị hàm số tương ứng với hàm số nào sau đây?

    Từ đồ thị hàm số ta có tiệm cận đứng là x = 1, tiệm cận ngang là y = 1

    => Loại A và B

    Xét thấy giao điểm của đồ thị hàm số với trục tung là (0; -2) => Chọn đáp án C

  • Câu 10: Thông hiểu

    Kết luận nào sau đây về tính đơn điệu của hàm số y = \frac{{3x - 1}}{{x - 2}} là đúng?

    Ta có: y' = \frac{{ - 5}}{{{{\left( {x - 2} ight)}^2}}} < 0,\forall x e 2

    Do đó hàm số nghịch biến trên các khoảng (-∞; 2) và (2; +∞)

  • Câu 11: Nhận biết

    Cho hàm số f(x) xác định trên tập số thực và có bảng xét dấu của đạo hàm như sau:

    Hàm số có bao nhiêu điểm cực trị?

    Ta có:

    Hàm số xác định trên \mathbb{R} và bảng xét dấu đã cho ta suy ra bảng biến thiên:

    Từ đó suy ra hàm số có bốn điểm cực trị.

  • Câu 12: Thông hiểu

    Cho hàm số y =
f(x) có đạo hàm y = f'(x) =
x^{2}\left( x^{2} - 1 ight);\forall x\mathbb{\in R}. Hàm số y = f( - x) đồng biến trên khoảng:

    Ta có:

    f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = \pm 1 \\
\end{matrix} ight.

    Ta có bảng xét dấu:

    y = f( - x) \Rightarrow y' = -
f'( - x)

    Hàm số y = f( - x) đồng biến khi và chỉ khi

    - f'( - x) < 0 \Leftrightarrow
f'( - x) > 0

    \Leftrightarrow - 1 < - x < 1
\Leftrightarrow 1 > x > - 1

    Vậy đáp án cần tìm là ( -
1;1).

  • Câu 13: Nhận biết

    Cho hàm số y =
\frac{x + 1}{- x + 1}. Hãy chọn khẳng định đúng?

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    Ta có: y' = \frac{2}{( - x + 1)^{2}}
> 0;\forall x\mathbb{\in R} nên hàm số đồng biến trên các khoảng ( - \infty;1)(1; + \infty).

  • Câu 14: Nhận biết

    Cho hàm số có đạo hàm f'(x) = (x + 2)^{3}(x - 2)^{3}(3 -
x). Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

    Ta có: f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 2 \\
x = 2 \\
x = 3 \\
\end{matrix} ight. ta có bảng xét dấu như sau:

    Vậy hàm số đồng biến trên khoảng (2;3).

  • Câu 15: Nhận biết

    Tìm giá trị lớn nhất của hàm số y = f(x)
= x^{3} - x^{2} - 8x trên đoạn \lbrack 1;3brack?

    Ta có: y' = 3x^{2} - 2x -
8

    \Leftrightarrow y' = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\x = - \dfrac{4}{3} \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
f(1) = - 8 \\
f(2) = - 12 \\
f(33) = - 6 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack 1;3brack}f(x) = -
6.

  • Câu 16: Vận dụng cao

    Tập hợp tất cả các giá trị của tham số m để hàm số y
= \frac{\sqrt{x^{2} - 8x} - 4}{\sqrt{x^{2} - 8x} + m} nghịch biến trên ( - 1;0) là:

    Đặt t = \sqrt{x^{2} - 8x}

    Điều kiện xác định x^{2} - 8x \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
x \leq 0 \\
x \geq 8 \\
\end{matrix} ight.

    Xét hàm t = \sqrt{x^{2} - 8x};x \in ( -
1;0) ta có:

    t' = \frac{2x - 8}{2\sqrt{x^{2} -
8x}} = \frac{x - 4}{\sqrt{x^{2} - 8x}} < 0;\forall x \in ( -
1;0)

    Ta có bảng biến thiên

    Từ bảng biến thiên ta thấy hàm số t =
\sqrt{x^{2} - 8x} nghịch biến trên khoảng ( - 1;0)t
\in (0;3)

    Khi đó yêu cầu bài toán \Leftrightarrow y
= \frac{t - 4}{t + m} đồng biến trên (0;3)

    Điều kiện xác định D\mathbb{=
R}\backslash\left\{ - m ight\}

    Ta có: y' = \frac{m + 4}{(t +
m)^{2}};\forall x \in D

    Để hàm số đồng biến trên (0;3) thì

    \left\{ \begin{matrix}
y' > 0 \\
- m otin (0;3) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m + 4 > 0 \\
\left\lbrack \begin{matrix}
- m \leq 0 \\
- m \geq 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > - 4 \\
\left\lbrack \begin{matrix}
m \geq 0 \\
m \leq - 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
- 4 < m \leq - 3 \\
m \geq 0 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là m \in ( - 4; -
3brack \cup \lbrack 0; + \infty)

  • Câu 17: Vận dụng

    Một chủ trang trại nuôi gia cầm muốn rào thành 2 chuồng hình chữ nhật sát nhau và sát một con sông, một chuồng nuôi gà và một chuồng nuôi vịt. Biết rằng đã có sẵn 240 m hàng rào. Hỏi diện tích lớn nhất có thể bao quanh chuồng là bao nhiêu?

    Đáp án: 2400 m2

    Đáp án là:

    Một chủ trang trại nuôi gia cầm muốn rào thành 2 chuồng hình chữ nhật sát nhau và sát một con sông, một chuồng nuôi gà và một chuồng nuôi vịt. Biết rằng đã có sẵn 240 m hàng rào. Hỏi diện tích lớn nhất có thể bao quanh chuồng là bao nhiêu?

    Đáp án: 2400 m2

    Xét hình chữ nhật ABCD như hình vẽ, và đặtv AB = x (x > 0)

    Khi đó BC = 240 – 3x > 0 ⇒ x < 80.

    Diện tích của hình chữ nhật ABCD là S = x.(240 – 3x ) = 240x – 3x2

    Bài toán trở thành tìm giá trị lớn nhất của hàm số f(x) với 0 < x < 80.

    Xét f(x) = 240x – 3x2 ⇒ f’(x) = 240 – 6x , f’(x) = 0 ⟺ x = 40.

    Do f’’(x) = - 6 < 0, ∀ x∈ (0; 80)

    Do đó maxS = \max_{x \in (0;80)}f(x) =
f(40) = 4800 \Leftrightarrow x = 40

    Vậy diện tích lớn nhất có thể bao quanh là 4800m2 .

  • Câu 18: Thông hiểu

    Biết đồ thị hàm số y = \frac{(2m -
n)x^{2} + mx + 1}{x^{2} + mx + n - 6} (với m,n là tham số) nhận trục hoành và trục tung làm hai đường tiệm cận. Tính tổng m +
n?

    Ta có: \lim_{x ightarrow \pm
\infty}\frac{(2m - n)x^{2} + mx + 1}{x^{2} + mx + n - 6} = 2m -
n suy ra y = 2m - n là tiệm cận ngang của đồ thị hàm số.

    Suy ra 2m
- n = 0.

    Đồ thị hàm số nhận trục tung x =
0 là tiệm cận đứng nên phương trình x^{2} + mx + n - 6 = 0 có một nghiệm bằng 0 hay n
- 6 = 0

    Theo giả thiết ta có: \left\{
\begin{matrix}
2m - n = 0 \\
n - 6 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = 3 \\
n = 6 \\
\end{matrix} ight.\  \Rightarrow m + n = 9

  • Câu 19: Vận dụng

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = \left( {3 - x} ight)\left( {{x^2} - 1} ight) + 2x,\forall x \in \mathbb{R}. Hỏi hàm số có bao nhiêu điểm cực trị?

    Ta có:

    \begin{matrix}  f'\left( x ight) = \left( {3 - x} ight)\left( {{x^2} - 1} ight) + 2x \hfill \\   \Rightarrow y' = f''\left( x ight) - 2x =  - 3{x^2} + 4x + 3 \hfill \\  y' = 0 \Leftrightarrow x = \dfrac{{2 \pm \sqrt {13} }}{3} \hfill \\  y'' =  - 6x + 4 \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y''\left( {\dfrac{{2 + \sqrt {13} }}{3}} ight) =  - 2\sqrt {13}  < 0} \\   {y''\left( {\dfrac{{2 - \sqrt {13} }}{3}} ight) = 2\sqrt {13}  > 0} \end{array}} ight. \hfill \\ \end{matrix}

    => Hàm số có 1 cực trị

  • Câu 20: Nhận biết

    Cho hàm số y = \frac{ax^{2} + bx + c}{mx
+ n},(am eq 0) có đồ thị như hình vẽ. Phương trình đường tiệm cận xiên của đồ thị hàm số đã cho là:

    Dựa vào đồ thị hàm số, ta thấy đường tiệm cận xiên của đồ thị hàm số đi qua 2 điểm (1;1)( - 1; - 1) nên đường tiệm cận xiên của đồ thị hàm số có phương trình y =
x.

  • Câu 21: Vận dụng

    Cho hàm số f(x) liên tục trên \mathbb{R} và có đồ thị của đạo hàm y = f'(x) như hình vẽ sau:

    Trên đoạn \lbrack - 3;4brack, hàm số g(x) = 2f(x) + (1 - x)^{2} đạt giá trị nhỏ nhất tại điểm nào?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) liên tục trên \mathbb{R} và có đồ thị của đạo hàm y = f'(x) như hình vẽ sau:

    Trên đoạn \lbrack - 3;4brack, hàm số g(x) = 2f(x) + (1 - x)^{2} đạt giá trị nhỏ nhất tại điểm nào?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 22: Vận dụng

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 23: Nhận biết

    Đồ thị của hàm số nào có dạng như hình vẽ sau đây?

    Ta thấy hình vẽ là đồ thị của hàm bậc ba có hệ số a > 0 nên hàm số cần tìm là y = x^{3} - 3x - 1.

  • Câu 24: Thông hiểu

    Cho hàm số y = \frac{m^{2}x + 5}{2mx +
1} với m là tham số. Gọi S là tập hợp các số nguyên m \in \lbrack - 2020;2020brack để hàm số đã cho nghịch biến trên khoảng (3; +
\infty). Xác định số phần tử của tập hợp S?

    Xét m = 0 \Rightarrow y = 5 là hàm hằng nên hàm số không nghịch biến. Vậy m
= 0 không thỏa mãn.

    Xét m eq 0

    Tập xác định D = \left( - \infty; -
\frac{1}{2m} ight) \cup \left( - \frac{1}{2m}; + \infty
ight)

    Để hàm số nghịch biến trên khoảng (3; +
\infty) khi và chỉ khi

    \left\{ \begin{matrix}
y' = \frac{m^{2} - 10m}{(2mx + 1)^{2}} < 0 \\
- \frac{1}{2m} \leq 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 10m < 0 \\
\frac{6m + 1}{2m} \geq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
0 < m < 10 \\
\left\lbrack \begin{matrix}
m \leq - \frac{1}{6} \\
m > 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow 0 < m < 10

    \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 2020;2020brack \\
\end{matrix} ight. nên m \in
\left\{ 1;2;3;...;9 ight\}

    Vậy tập hợp S có tất cả 9 giá trị.

  • Câu 25: Vận dụng cao

    Cho hai số thực x \geq 0;1 \leq y \leq
3 thỏa mãn 2^{x - 2y}.(2x + 1) = 4y
+ 2x + 4. Tìm giá trị nhỏ nhất của biểu thức P = 2^{x - y - 2} - x - y^{2} + 2037?

    Đáp án: 2025

    Đáp án là:

    Cho hai số thực x \geq 0;1 \leq y \leq
3 thỏa mãn 2^{x - 2y}.(2x + 1) = 4y
+ 2x + 4. Tìm giá trị nhỏ nhất của biểu thức P = 2^{x - y - 2} - x - y^{2} + 2037?

    Đáp án: 2025

    Giả thiết cho 2^{x - 2y}.(2x + 1) = 4y +
2x + 4

    \Leftrightarrow 2^{x}.(2x + 1) = 2(2y +
x + 2)2^{2y}

    \Leftrightarrow 2^{x}.(2x + 1) = 2^{2y +
1}(2y + x + 2)

    \Leftrightarrow 2^{2x}.(2x + 1) = 2^{2y
+ x + 1}(2y + x + 1 + 1)

    Xét hàm số f(t) = 2^{t}.(t + 1) trên (0\ ; + \infty)

    Suy ra f'(t) = 2^{t}.(t + 1)ln2 + 2^{t} > 0,\
\forall t \in (0\ ; + \infty)

    Vậy hàm số f(t) luôn đồng biến trên (0\ ; + \infty) nên ta có:

    \Leftrightarrow 2^{2x}.(2x + 1) = 2^{2y
+ x + 1}(2y + x + 1 + 1)

    \Leftrightarrow 2x = 2y + x + 1
\Leftrightarrow x = 2y + 1

    Suy ra: P = 2^{x - y - 2} - x - y^{2} +
2037

    = 2^{y - 1} - \left( y^{2} + 2y + 1
ight) + 2037

    = \frac{1}{4}.2^{y + 1} - (y + 1)^{2} +
2037

    Xét hàm số g(a) = \frac{1}{4}.2^{a} -
a^{2};\ a \in \lbrack 2\ ;4brack

    g^{'(a)} = \frac{2^{a}.ln2}{4} -
2a

    \Rightarrow g''(a) =
\frac{2^{a}.ln^{2}2}{4} - 2 < 0,\forall\ a \in \lbrack 2\
;4brack

    \Rightarrow g'(a) luôn nghịch biến trên \lbrack 2\
;4brack

    \Rightarrow \max_{\lbrack 2\
;4brack}g'(a) = g'(2) = ln2 - 4 < 0

    \Rightarrow g(a) luôn nghịch biến trên \lbrack 2\ ;4brack

    \Rightarrow \min g(a) = g(4) = -
12

    Vậy \min P = - 12 + 2037 = 2025 khi y + 1 = 4 \Rightarrow y = 3\ ;x =
7.

  • Câu 26: Nhận biết

    Đường thẳng nào dưới đây là tiệm cận đứng của đồ thị hàm số y = \frac{{2x + 1}}{{x + 1}}?

    Xét phương trình x + 1 = 0 => x = -1

    \mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x ight) =  + \infty => x = -1 là tiệm cận đứng của đồ thị hàm số.

  • Câu 27: Thông hiểu

    Cho hàm số y = f(x) liên tục trên tập số thực và có bảng biến thiên như sau:

    Hỏi có bao nhiêu giá trị nguyên của tham số m để phương trình 2f(x) - m + 2 = 0 có đúng ba nghiệm phân biệt?

    Ta có:

    2f(x) - m + 2 = 0 \Leftrightarrow 2f(x)
= m - 2 \Leftrightarrow f(x) = \frac{m - 2}{2}

    Để phương trình có ba nghiệm phân biệt

    \Leftrightarrow \left\lbrack\begin{matrix}f(x) = - 1 \\f(x) = \dfrac{3}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}\dfrac{m - 2}{2} = - 1 \\\dfrac{m - 2}{2} = \dfrac{3}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}m = 0 \\m = 5 \\\end{matrix} ight.

    Vậy có đúng một giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 28: Nhận biết

    Cho hàm số y = f(x) có đồ thị như sau:

    Hỏi số nghiệm của phương trình 2f(x) - 1
= 0 bằng bao nhiêu?

    Ta có: 2f(x) - 1 = 0 \Leftrightarrow f(x)
= \frac{1}{2}

    Lại có đường thẳng y =
\frac{1}{2} nằm phía trên gốc tọa độ; song song với trục Ox và cắt đồ thị hàm số y = f(x) tại 4 điểm nên phương trình 2f(x) - 1 = 0 có hai nghiệm.

  • Câu 29: Thông hiểu

    Cho hàm số y = - x^{3} + 6(m + 2)x^{2} -
m + 1 với m là tham số. Tìm tất cả các giá trị của tham số m để hàm số đã cho đồng biến trên ( - 2; - 1)?

    Ta có: y' = - 3x^{2} + 12(m +
2)x

    Hàm số y = - x^{3} + 6(m + 2)x^{2} - m +
1 đồng biến trên khoảng ( - 2; -
1) khi và chỉ khi:

    y' = - 3x^{2} + 12(m + 2)x \geq
0;\forall x \in ( - 2; - 1)

    \Leftrightarrow - x^{2} + 4mx + 8x \geq
0;\forall x \in ( - 2; - 1)

    \Leftrightarrow 4mx \geq x^{2} -
8x;\forall x \in ( - 2; - 1)

    \Leftrightarrow m \leq \frac{x}{4} - 2
\Leftrightarrow m \leq \frac{- 2}{4} - 2 = - \frac{5}{2}

    Vậy đáp án cần tìm là m \in \left( -
\infty; - \frac{5}{2} ightbrack.

  • Câu 30: Thông hiểu

    Cho hàm số y = {x^3} - \frac{3}{2}{x^2} + 1. Gọi M là giá trị lớn nhất của hàm số trên khoảng \left( { - 25;\frac{{11}}{{10}}} ight). Tìm M.

    Ta có:

    \begin{matrix}  y' = 3{x^2} - 3x \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên

    Tìm GTLN của hàm số

    Từ bảng biến thiên ta có M = 1

  • Câu 31: Thông hiểu

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số y = \frac{ax + b}{cx + d};\left(
a;b;c;d\mathbb{\in R} ight). Chọn mệnh đề đúng?

    Dựa vào đồ thị ta thấy hàm số có tập xác định là D\mathbb{= R}\backslash\left\{ 1 ight\} hàm số luôn nghịch biến trên khoảng ( -
\infty;1),(1; + \infty) nên y'
< 0;\forall x eq 1.

  • Câu 32: Thông hiểu

    Số các giá trị nguyên của tham số m để hàm số y
= \frac{1}{3}x^{3} - x^{2} - 3x + 2m + 7 có giá trị nhỏ nhất trên đoạn \lbrack 2;4brack thuộc khoảng ( - 5;8) là:

    Xét hàm số y = \frac{1}{3}x^{3} - x^{2} -
3x + 2m + 7 trên \lbrack
2;4brack ta có:

    y' = x^{2} - 2x - 3 \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}y(2) = - \dfrac{1}{3} + 2m \\y(4) = \dfrac{1}{3} + 2m \\y(3) = - 2 + 2m \\\end{matrix} ight.\  \Rightarrow \min_{\lbrack 2;4brack}y = - 2 + 2m\in ( - 5;8)

    \Leftrightarrow - 5 < - 2 + 2m < 8
\Leftrightarrow - 3 < 2m < 10 \Leftrightarrow - \frac{3}{2} < m
< 5

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1;2;3;4 ight\}

    Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu.

  • Câu 33: Thông hiểu

    Đồ thị hàm số y = \frac{\sqrt{1 -
x^{2}}}{x^{2} + 2x} có bao nhiêu đường tiệm cận?

    Tập xác định D = \lbrack -
1;1brack\backslash\left\{ 0 ight\}

    Vì tập xác định của hàm số không chứa -
\infty+ \infty nên đồ thị hàm số không có đường tiệm cận ngang.

    Lại có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}} =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}} =  + \infty  \hfill \\ 
\end{gathered}  ight.. Vậy đồ thị hàm số có 1 đường tiệm cận đứng x = 0.

  • Câu 34: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Giá trị cực tiểu của hàm số đã cho bằng:

    Dựa vào bảng biến thiên suy ra hàm số đạt cực tiểu tại x = - 1x
= 1; giá trị cực tiểu bằng -
4.

  • Câu 35: Nhận biết

    Cho hình vẽ:

    Đường trong trong hình vẽ là đồ thị của hàm số nào?

    Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng y = ax^{3} + bx^{2} + cx + d với a > 0

    Vậy hàm số cần tìm là y = x^{3} - 3x +
1.

  • Câu 36: Vận dụng cao

    Tìm giá trị tham số m để đồ thị hàm số y = x^{4} - 2(m + 1)x^{2} + 2m +
3 có ba điểm cực trị A;B;C sao cho trục Ox chia tam giác ABC thành một tam giác và một hình thang biết rằng tỉ lệ diện tích tam giác nhỏ được chia ra và diện tích hình thang bằng \frac{4}{5}?

    Ta có: y' = 4x^{2} - 4(m +
1)x

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x^{2} = m + 1 \\
\end{matrix} ight.

    Hàm số có ba điểm cực trị khi và chỉ khi y' = 0 có ba nghiệm phân biệt \Leftrightarrow m > - 1

    Khi m > - 1 đồ thị hàm số có ba điểm cực trị là A(0;2m + 3), B\left( - \sqrt{m + 1}; - m^{2} + 2
ight), C\left( \sqrt{m + 1}; -
m^{2} + 2 ight)

    Ta có: A \in Oy, B và C đối xứng với nhau qua Oy suy ra tam giác ABC cân tại A

    Hình vẽ minh họa

    Trục hoành chia tam giác ABC thành một tam giác và một hình thang \Rightarrow \left\{ \begin{matrix}
2m + 3 > 0 \\
- m^{2} + 2 < 0 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{gathered}
  m >  - \dfrac{3}{2} \hfill \\
  \left[ \begin{gathered}
  m > \sqrt 2  \hfill \\
  m <  - \sqrt 2  \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  m > \sqrt 2  \hfill \\
   - \dfrac{3}{2} < m <  - \sqrt 2  \hfill \\ 
\end{gathered}  ight.

    Kết hợp với điều kiện m > - 1 ta được m > \sqrt{2}

    Khi đó gọi D; E lần lượt là giao điểm của Ox và các cạnh AB; AC. Gọi K là giao điểm của BC và Oy

    Ta có:

    \frac{S_{ADE}}{S_{ABC}} = \left(
\frac{OA}{AK} ight)^{2} = \left( \frac{y_{A}}{y_{A} - y_{B}}
ight)^{2} = \left( \frac{2m + 3}{m^{2} + 2m + 1}
ight)^{2}

    \frac{S_{ADE}}{S_{ABC}} = \frac{4}{9}
\Leftrightarrow \left( \frac{2m + 3}{m^{2} + 2m + 1} ight)^{2} =
\frac{4}{9}

    m > \sqrt{2} \Leftrightarrow
\frac{2m + 3}{m^{2} + 2m + 1} = \frac{2}{3}

    \Leftrightarrow 2m^{2} - 2m - 7 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = \dfrac{1 + \sqrt{15}}{2} \\m = \dfrac{1 - \sqrt{15}}{2} \\\end{matrix} ight.\  \Rightarrow m = \dfrac{1 +\sqrt{15}}{2}.

  • Câu 37: Thông hiểu

    Cho hàm số có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?

    Mệnh đề nào dưới đây đúng

     Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } y =  - \infty } \end{array}} ight. \Rightarrow a > 0

    Đồ thị hàm số cắt trục tung tại điểm có tung độ dương => d > 0

    Ta có: y' = 3a{x^2} + 2bx + c, nhận thấy hoành độ hai điểm cực trị của đồ thị hàm số có

    \left\{ {\begin{array}{*{20}{c}}  {{x_1} + {x_2} = \dfrac{{ - b}}{a} > 0 \Rightarrow b < 0} \\   {{x_1}.{x_2} = \dfrac{c}{a} = 0 \Rightarrow c = 0} \end{array}} ight.

  • Câu 38: Thông hiểu

    Đồ thị hàm số y = \frac{x - 3}{x^{2} + x
- 2} có bao nhiêu đường tiệm cận đứng?

    Ta có: y = \frac{x - 3}{x^{2} + x - 2} =
\frac{x - 3}{(x - 1)(x + 2)}

    \lim_{x ightarrow 1^{+}}y = \lim_{x
ightarrow 1^{+}}\frac{x - 3}{(x - 1)(x + 2)} = - \infty suy ra x = 1 là đường tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow 2^{+}}y = \lim_{x
ightarrow 2^{+}}\frac{x - 3}{(x - 1)(x + 2)} = + \infty suy ra x = - 2 là đường tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số đã cho có 2 đường tiệm cận đứng.

  • Câu 39: Thông hiểu

    Cho hàm số y = f(x) = x^{3} - 2mx^{2} +
m^{2}x + 1 với m là tham số. Tìm tập hợp tất cả các giá trị của tham số m để hàm số đã cho đạt cực tiểu tại x = 1?

    Tập xác định D\mathbb{= R}.

    Ta có: \left\{ \begin{matrix}
y' = 3x^{2} - 4mx + m^{2} \\
y'' = 6x - 4m \\
\end{matrix} ight.. Để hàm số đạt cực tiểu tại x = 1 thì

    \left\{ \begin{gathered}
  y'\left( 1 ight) = 0 \hfill \\
  y''\left( 1 ight) > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  {m^2} - 4m + 3 = 0 \hfill \\
  6 - 4m > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  \left[ \begin{gathered}
  m = 1 \hfill \\
  m = 3 \hfill \\ 
\end{gathered}  ight. \hfill \\
  m < \frac{3}{2} \hfill \\ 
\end{gathered}  ight. \Leftrightarrow m = 1

    vậy tập hợp tất cả các giá trị của tham số m thỏa mãn yêu cầu bài toán là \left\{ 1 ight\}.

  • Câu 40: Thông hiểu

    Hàm số y = f(x) liên tục trên tập số thực và có bảng biến thiên như sau:

    Phương trình \left| f\left( 2x^{2} + 3
ight) - 2 ight| = 5 có bao nhiêu nghiệm?

    Gọi g(x) = f\left( 2x^{2} + 3 ight) -
2 ta có: g'(x) =
4x.f'\left( 2x^{2} + 3 ight)

    Suy ra g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
2x^{2} + 3 = - 1 \\
2x^{2} + 3 = 3 \\
\end{matrix} ight.\  \Leftrightarrow x = 0

    Ta có bảng biến thiên

    \left| g(x) ight| = 5
\Leftrightarrow \left\lbrack \begin{matrix}
g(x) = 5 \\
g(x) = - 5 \\
\end{matrix} ight. từ bảng biến thiên ta thấy phương trình có ba nghiệm.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo