Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Số các giá trị nguyên của tham số m để đồ thị hàm số y = \frac{1}{x^{2} - 2mx + 2m^{2} - 4m -
12} có ba đường tiệm cận bằng:

    Ta có:

    \lim_{x ightarrow \pm \infty}f(x) =
\lim_{x ightarrow \pm \infty}\frac{1}{x^{2} - 2mx + 2m^{2} - 4m - 12}
= 0 nên y = 0 là tiệm cận ngang của đồ thị hàm số

    Theo yêu cầu bài toán ta suy ra x^{2} -
2mx + 2m^{2} - 4m - 12 = 0 có hai nghiệm phân biệt

    \Leftrightarrow \Delta' > 0
\Leftrightarrow m^{2} - \left( 2m^{2} - m - 12 ight) >
0

    \Leftrightarrow - m^{2} + 4m + 12 > 0
\Leftrightarrow - 2 < m < 6

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1;2;3;4;5 ight\}

    Vậy có 7 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 2: Thông hiểu

    Cho hình vẽ:

    Đồ thị được cho trong hình vẽ là đồ thị của hàm số nào trong các hàm số sau?

    Từ đồ thị ta thấy đây là hàm số bậc 4 trùng phương có hệ số a > 0

    Mặt khác hàm số đạt cực tiểu tại x = 1;x= - 1 và giá trị cực tiểu y(1) = y(- 1) = - 2 nên hàm số cần tìm là y= x^{4} - 2x^{2} - 1.

  • Câu 3: Nhận biết

    Đường thẳng y = - 2 là đường tiệm cận của đồ thị hàm số nào sau đây?

    y = \frac{2}{3x + 2}\lim_{x ightarrow \infty}y = 0 suy ra y = 0 là tiệm cận ngang của đồ thị hàm số. (Loại)

    y = \frac{2x^{3} - 3}{x + 2}\lim_{x ightarrow \infty}y =
\infty nên đồ thị hàm số không có tiệm cận ngang (loại)

    y = \frac{2x^{2} + x - 1}{(x + 1)(3 - x)}
= \frac{2x^{2} + x - 1}{- x^{2} + 2x + 3}\lim_{x ightarrow \infty}y = - 2 suy ra y = - 2 là tiệm cận ngang (Thỏa mãn).

    Vậy đường thẳng y = - 2 là đường tiệm cận của đồ thị hàm số y = \frac{2x^{2}
+ x - 1}{(x + 1)(3 - x)}.

  • Câu 4: Thông hiểu

    Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức P(x) = - x^{3} + 24x^{2} +
780x - 1000 trong đó x là khối lượng sản phẩm sản xuất được. Xưởng chỉ sản xuất tối đa 40 tạ sản phẩm trong một tuần. Hỏi để có lợi nhuận lớn nhất thì xưởng cần sản xuất bao nhiêu tạ sản phẩm trong một tuần?

    Đáp án: 26

    Đáp án là:

    Lợi nhuận một xưởng thu được từ việc sản xuất một mặt hàng được cho bởi công thức P(x) = - x^{3} + 24x^{2} +
780x - 1000 trong đó x là khối lượng sản phẩm sản xuất được. Xưởng chỉ sản xuất tối đa 40 tạ sản phẩm trong một tuần. Hỏi để có lợi nhuận lớn nhất thì xưởng cần sản xuất bao nhiêu tạ sản phẩm trong một tuần?

    Đáp án: 26

    Ta có P'(x) = - 3x^{2} + 48x + 780;\
\ P'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 10 \\
x = 26\ \ \  \\
\end{matrix} ight..

    Bảng biến thiên

    Vậy để lợi nhuận lớn nhất thì xưởng cần sản xuất 26 tạ sản phẩm trong một tuần.

  • Câu 5: Vận dụng

    Biết đồ thị hàm số y = \frac{{\left( {2m - n} ight){x^2} + mx + 1}}{{{x^2} + mx + n - 6}} nhận trục hoành và trục tung làm hai tiệm cận. Giá trị m + n là:

    Điều kiện {x^2} + mx + n - 6 e 0

    Phương trình đường tiệm cận ngang của đồ thị hàm số là y = 2m - n

    => 2m - n = 0\left( * ight)

    Đặt \left\{ {\begin{array}{*{20}{c}}  {f\left( x ight) = \left( {2m - n} ight){x^2} + mx + 1} \\   {g\left( x ight) = {x^2} + mx + n - 6} \end{array}} ight.

    Nhận thấy f\left( x ight) e 0 với mọi m, n nên đồ thị nhận trục tung x = 0 làm tiệm cận đứng thì g(0) = 0

    => n – 6 = 0 => n = 6

    Kết hợp với (*) => m = 3

    Vậy m + n = 9

  • Câu 6: Vận dụng

    Một bể bơi chứa 5000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng đồ 30 gam muối cho mỗi lít nước với tốc độ 25 lít/phút.

    a) Sau t phút khối lượng muối trong bể là 750t (gam). Đúng||Sai

    b) Nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là f(t) = \frac{30t}{200 - t} . Sai||Đúng

    c) Xem y = f(t) là một hàm số xác định trên nửa khoảng \lbrack 0; +
\infty) , tiệm cận ngang của đồ thị hàm số đó có phương trình là y = 30 . Đúng||Sai

    d) Khi t ngày càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít). Đúng||Sai

    Đáp án là:

    Một bể bơi chứa 5000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng đồ 30 gam muối cho mỗi lít nước với tốc độ 25 lít/phút.

    a) Sau t phút khối lượng muối trong bể là 750t (gam). Đúng||Sai

    b) Nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là f(t) = \frac{30t}{200 - t} . Sai||Đúng

    c) Xem y = f(t) là một hàm số xác định trên nửa khoảng \lbrack 0; +
\infty) , tiệm cận ngang của đồ thị hàm số đó có phương trình là y = 30 . Đúng||Sai

    d) Khi t ngày càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít). Đúng||Sai

    Sau t phút, khối lượng muối trong bể là 25.30.t = 750t (gam)

    Thể tích của lượng nước trong bể là 5000
+ 25t (lít).

    Vậy nồng độ muối sau t phút là: f(t) = \frac{750t}{5000 + 25t} =
\frac{30t}{200 + t} (gam/lít).

    Ta có \lim_{t ightarrow + \infty}f(t) =
\lim_{t ightarrow + \infty}\frac{30t}{200 + t} = \lim_{x ightarrow +
\infty}\left( 30 - \frac{6000}{200 + t} ight) = 30

    Vậy đường thẳng y = 30 là tiệm cận ngang của đồ thị hàm số f(t):

    Ta có đồ thị hàm số y = f(t) nhận đường thẳng y = 30 làm đường tiệm cận ngang, tức là khi t càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít).

    Lúc đó, nồng độ muối trong bể sẽ gần như bằng nồng độ nước muối bơm vào bể.

    a) Đúng. b) Sai. c) Đúng. d) Đúng.

  • Câu 7: Nhận biết

    Đồ thị hàm số nào dưới đây có dạng như hình vẽ?

    Đồ thị hàm số bậc 4 có hệ số a <
0 và có ba điểm cực trị nên ab <
0nên chọn y = - x^{4} +
4x^{2}.

  • Câu 8: Nhận biết

    Cho hàm số y = f(x) liên tục trên \lbrack 2;5brack và có đồ thị như hình vẽ:

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 2;5brack lần lượt là M;m. Kết luận nào sau đây đúng?

    Quan sát đồ thị ta thấy \left\{\begin{matrix}\max_{\lbrack 2;5brack}y = M = 4 \\\min_{\lbrack 2;5brack}y = m = - 6 \\\end{matrix} ight.\  \Rightarrow M - m = 10

  • Câu 9: Thông hiểu

    Tất cả các giá trị của tham số m để hàm số y = - x^{4} + (m +
1)x^{2} đạt cực đại tại x =
0 là:

    Ta có: y' = - 4x^{3} + 2(m +
1)x

    \Rightarrow y' = 0 \Leftrightarrow\left\lbrack \begin{matrix}x = 0 \\x^{2} = \dfrac{1}{2}(m + 1)(*) \\\end{matrix} ight.

    Ta thấy hệ số a = - 1 < 0 nên nếu hàm số có ba cực trị thì hàm số có hai cực đại và một cực tiểu nên không thể đạt cực đại tại x =
0.

    Để hàm số đạt cực đại tại x = 0 thì hàm số có một cực trị hay phương trình (*) vô nghiệm hoặc có nghiệm kép

    \Leftrightarrow m + 1 \leq 0 \Leftrightarrow m
\leq - 1.

  • Câu 10: Vận dụng cao

    Cho hàm số y = f(x) liên tục trên tập số thực và \mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = 1;\mathop {\lim }\limits_{x \to  -  + } f\left( x ight) =  + \infty. Có bao nhiêu giá trị nguyên của tham số m thuộc [-2020; 2020] để đồ thị hàm số g\left( x ight) = \frac{{\sqrt {{x^2} + 3x}  + x}}{{\sqrt {2f\left( x ight) - {f^2}\left( x ight)}  + m}} có tiệm cận ngang nằm bên dưới đường thẳng y = -1.

    Điều kiện \left\{ {\begin{array}{*{20}{c}}  {x \leqslant  - 3;x \geqslant 0} \\   {0 \leqslant f\left( x ight) \leqslant 2} \\   {\sqrt {2f\left( x ight) - {f^2}\left( x ight)}  + m e 0} \end{array}} ight.

    Do \mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = 1 \Rightarrow \mathop {\lim }\limits_{x \to  - \infty } \sqrt {2f\left( x ight) - {f^2}\left( x ight)}  = \sqrt {\mathop {\lim }\limits_{x \to  - \infty } \left[ {2f\left( x ight) - {f^2}\left( x ight)} ight]}  = 1

    \mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + 3x}  + x} ight) = \mathop {\lim }\limits_{x \to  + \infty } \frac{3}{{ - \left( {\sqrt {1 - \dfrac{3}{x}}  + 1} ight)}} =  - \frac{3}{2}

    Từ đó \mathop {\lim }\limits_{x \to  - \infty } g\left( x ight) =  - \frac{3}{{2m + 2}},\left( {m e  - 1} ight)

    Khi đó hàm số g(x) có tiệm cận ngang là đường thẳng y = \frac{{ - 3}}{{2m + 2}}

    Để tiệm cận ngang tìm được ở trên nằm dưới đường thẳng y = - thì \frac{{ - 3}}{{2m + 2}} <  - 1 \Rightarrow  - 1 < m < \frac{1}{2}

    m \in \mathbb{Z} \Rightarrow m = 0

  • Câu 11: Thông hiểu

    Cho hàm số y = f(x) = \frac{ax^{2} + bx +
c}{mx + n} với a eq 0;\ m eq
0, có đồ thị là đường cong như hình vẽ bên dưới.

    Với m = 1 thì giá trị S = a + b + c là bao nhiêu?

    Đáp án: 7

    Đáp án là:

    Cho hàm số y = f(x) = \frac{ax^{2} + bx +
c}{mx + n} với a eq 0;\ m eq
0, có đồ thị là đường cong như hình vẽ bên dưới.

    Với m = 1 thì giá trị S = a + b + c là bao nhiêu?

    Đáp án: 7

    Với m = 1, ta có y = f(x) = \frac{ax^{2} + bx + c}{x +
n}.

    Đồ thị hàm số có tiệm cận đứng là x = -
2 nên n = 2.

    Khi đó f(x) = \frac{ax^{2} + bx + c}{x +
2}.

    Thực hiện phép chia đa thức lấy tử chia mẫu ta được thương là ax + b - 2a, nên đồ thị hàm số có đường tiệm cận xiên là y = ax + b - 2a, mặt khác nhìn vào đồ thị ta thấy đồ thị hàm số có đường tiệm cận xiên là y = x + 1.

    Nên ta có phương trình:

    ax + b - 2a = x + 1 \Rightarrow \left\{
\begin{matrix}
a = 1 \\
b - 2a = 1 \\
\end{matrix} ight. hay \left\{
\begin{matrix}
a = 1 \\
b = 3 \\
\end{matrix} ight..

    Khi đó f(x) = \frac{x^{2} + 3x + c}{x +
2}.

    Vì đồ thị hàm số đi qua điểm ( - 3; -
3) nên ta được c = 3.

    Suy ra f(x) = \frac{x^{2} + 3x + 3}{x +
2}.

    Vậy S = 1 + 3 + 3 = 7.

  • Câu 12: Vận dụng cao

    Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong một bài thực hành huấn luyện quân sự có một tình huống chiến sĩ phải bơi qua sông để tấn công mục tiêu ở ngay phía bờ bên kia sông. Biết rằng lòng sông rộng 100m và vận tốc bơi của chiến sĩ bằng một phần ba vận tốc chạy trên bộ. Hãy cho biết chiến sỹ phải bơi bao nhiêu mét để đến được mục tiêu nhanh nhất? Biết dòng sông là thẳng, mục tiêu cách chiến sỹ 1km theo đường chim bay và chiến sỹ cách bờ bên kia 100m.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Thông hiểu

    Cho hàm số y =
\frac{1}{3}x^{3} - mx^{2} - (2m - 3)x - m + 2. Có bao nhiêu giá trị nguyên dương của tham số m luôn đồng biến trên \mathbb{R}?

    Ta có: y' = x^{2} - 2mx - 2m +
3

    Khi đó: y' \geq 0;\forall
x\mathbb{\in R}

    \Leftrightarrow x^{2} - 2mx - 2m + 3
\geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \Delta' = m^{2} + 2m
- 3 \leq 0 \Leftrightarrow - 3 \leq m \leq 1

    Do m nguyên dương nên m = 1.

    Vậy có 1 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 14: Nhận biết

    Hàm số y = \frac{1}{3}{x^3} - \frac{5}{2}{x^2} + 6x nghịch biến trên khoảng nào?

     Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {y' = {x^2} - 2x + 6} \\   {y' < 0} \end{array} \Rightarrow } ight.{x^2} - 2x + 6 < 0 \Rightarrow 2 < x < 3

    => Hàm số nghịch biến trên khoảng (2; 3)

  • Câu 15: Thông hiểu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Mệnh đề nào sau đây đúng?

    Từ bảng biến thiên của hàm số y =
f(x) ta có: \lim_{x ightarrow -
\infty}f(x) = - \infty;\lim_{x ightarrow + \infty}f(x) = +
\infty nên đồ thị hàm số đã cho không có tiệm cận ngang.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = 4;\mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = 4 \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} f\left( x ight) =  - 1;\mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) =  - 1 \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho không có tiệm cận đứng.

    Vậy đồ thị hàm số đã cho không có tiệm cận.

  • Câu 16: Nhận biết

    Tâm đối xứng của đồ thị hàm số y =
\frac{3x - 1}{x + 2} là điểm nào trong các điểm cho sau đây?

    Đồ thị hàm số y = \frac{3x - 1}{x +
2} nhận giao của hai tiệm cận làm tâm đối xứng

    Đồ thị hàm số có tiệm cận ngang là y =
3 và tiệm cận đứng là x = -
2

    Do đó tâm đối xứng của đồ thị hàm số là điểm ( - 2;3).

  • Câu 17: Nhận biết

    Cho hàm số y = f(x) có đồ thị như hình 2. Đường thẳng nào sau đây là đường tiệm cận ngang của đồ thị hàm số đã cho?

    Từ đồ thị suy ra đồ thị hàm số đã cho có đường tiệm cận ngang là y = 1.

  • Câu 18: Vận dụng

    Cho hàm số y =
f(3 - 2x) có bảng xét dấu đạo hàm như sau:

    Hàm số y = f(x) nghịch biến trên khoảng nào dưới đây?

    Xét hàm số y = f(3 - 2x) ta có: y' = - 2f'(3 - 2x)

    y' = 0 \Leftrightarrow - 2f'(3 -
2x) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 0 \\
x = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
3 - 2x = 5 \\
3 - 2x = 3 \\
3 - 2x = 1 \\
\end{matrix} ight.

    \Rightarrow y' > 0
\Leftrightarrow - 2.f'(3 - 2x) > 0

    \Leftrightarrow f'(3 - 2x) < 0
\Leftrightarrow \left\lbrack \begin{matrix}
- 1 < x < 0 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
3 < 3 - 2x < 5 \\
3 - 2x < 1 \\
\end{matrix} ight.

    Đặt 3 - 2x = t \Rightarrow f'(t) <
0 \Leftrightarrow \left\lbrack \begin{matrix}
3 < t < 5 \\
t < 1 \\
\end{matrix} ight.

    Xét hàm số y = f(x)y' = f'(x). Hàm số nghịch biến khi y' < 0 \Leftrightarrow f'(x)
< 0 \Leftrightarrow \left\lbrack \begin{matrix}
3 < x < 5 \\
x < 1 \\
\end{matrix} ight.

    Vậy hàm số y = f(x) nghịch biến trên khoảng (3;5).

  • Câu 19: Nhận biết

    Tìm giá trị nhỏ nhất a của hàm số y = x^{4} - x^{2} + 13 trên đoạn \lbrack - 2;3brack?

    Hàm số đã cho liên tục trên \lbrack -
2;3brack

    Ta có: y' = 4x^{3} - 2x = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = \dfrac{1}{\sqrt{2}} \\x = - \dfrac{1}{\sqrt{2}} \\\end{matrix} ight.

    Khi đó: \left\{ \begin{matrix}y( - 2) = 25;y\left( \pm \dfrac{1}{\sqrt{2}} ight) = \dfrac{51}{4} \\y(0) = 13;y(3) = 85 \\\end{matrix} ight.

    Vậy giá trị nhỏ nhất của hàm số là a =
\frac{51}{4}.

  • Câu 20: Vận dụng

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R}. Đồ thị hàm số y f’(x) như hình vẽ bên:

    Số điểm cực trị của hàm số

    Số điểm cực trị của hàm số y = f(x) + 2x là:

    Xét hàm số g(x) = f(x) + 2x. Từ đồ thị hàm số f’(x) ta thấy:

    g'\left( x ight) = 0 \Leftrightarrow f'\left( x ight) =  - 2 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = \alpha } \end{array}} ight.;\left( {\alpha  > 0} ight)

    g'\left( x ight) = 0 \Leftrightarrow f'\left( x ight) =  - 2 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = \alpha } \end{array}} ight.;\left( {\alpha  > 0} ight)

    g'\left( x ight) < 0 \Leftrightarrow f'\left( x ight) <  - 2 \Leftrightarrow x > \alpha

    Từ đó suy ra hàm số y = f(x) + 2x liên tục và có đạo hàm chỉ đổi dấu khi qua giá trị x = \alpha

    Từ đó ta có bảng xét dấu như sau:

    Số điểm cực trị của hàm số

    Vậy hàm số đã cho có đúng một cực trị

  • Câu 21: Nhận biết

    Cho hàm số y = x^{4} - x^{3} +
3. Khẳng định nào sau đây đúng?

    Ta có: y' = 4x^{3} - 3x^{2} = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = \dfrac{3}{4} \\\end{matrix} ight.

    Ta có bảng xét dấu như sau:

    Vậy hàm số có đúng một cực trị.

  • Câu 22: Vận dụng cao

    Cho tập hợp A = \left\{ n\mathbb{\in Z}|0
\leq n \leq 20 ight\}F là tập hợp các hàm số f(x) = x^{3} + \left( 2m^{2} - 5 ight)x^{2} + 6x
- 8m^{2}m \in A. Chọn ngẫu nhiên một hàm số f(x) \in F. Tính xác suất để đồ thị hàm số y =
f(x) có hai điểm cực trị nằm khác phía đối với trục Ox?

    Không gian mẫu |\Omega| = 21

    Ta có: f(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 2 \\
x^{2} + \left( 2m^{2} - 3 ight)x + 4m^{2} = 0(*) \\
\end{matrix} ight.

    Đồ thị của hàm số y = f(x) có hai điểm cực trị nằm khác phía đối với trục Ox suy ra phương trình (*) có hai nghiệm phân biệt khác 2.

    \Leftrightarrow \left\{ \begin{gathered}
  m \in A \hfill \\
  {\left( {2{m^2} - 3} ight)^2} - 16{m^2} > 0 \hfill \\
  {2^2} + \left( {2{m^2} - 3} ight).2 + 4{m^2} e 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m \in A \hfill \\
  \left[ \begin{gathered}
  m > \sqrt {\dfrac{{7 + 2\sqrt {10} }}{2}}  \approx 2,58 \hfill \\
  0 \leqslant m < \sqrt {\dfrac{{7 - 2\sqrt {10} }}{2}}  \approx 0,58 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight.

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 0;3;4;...;20 ight\}

    Vậy xác suất cần tìm là P =
\frac{19}{21}.

  • Câu 23: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y = \frac{x - m}{x + 1} đồng biến trên từng khoảng xác định?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    Ta có: y' = \frac{m + 1}{(x +
1)^{2}};\forall x eq - 1

    Hàm số đã cho đồng biến trên từng khoảng xác định khi và chỉ khi y' > 0

    \Leftrightarrow \frac{m + 1}{(x +
1)^{2}} > 0 \Leftrightarrow m + 1 > 0 \Leftrightarrow m > -
1

    Vậy đáp án cần tìm là m > -
1.

  • Câu 24: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm f'(x) = (x -
1)^{2}(x - 1)^{3}(2 - x). Hàm số y
= f(x) đồng biến trên khoảng nào sau đây?

    Ta có bảng xét dấu:

    Từ bảng xét dấu trên ta có hàm số y =
f(x) đồng biến trên (1;2).

  • Câu 25: Thông hiểu

    Hệ thức liên hệ giữa giá trị cực đại y_{CÐ} và giá trị cực tiểu y_{CT} của hàm số y = x^{3} - 3x là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} - 3 \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Lại có y'' = 6x \Rightarrow
y''(1) = 6 > 0 nên x =
1 là điểm cực tiểu của hàm số.

    y''( - 1) = - 6 < 0 nên x = - 1 là điểm cực đại của hàm số.

    Do đó \left\{ \begin{matrix}
y_{CÐ} = y( - 1) = 2 \\
y_{CT} = y(1) = - 2 \\
\end{matrix} ight.\  \Rightarrow y_{CT} + y_{CÐ} = 0.

  • Câu 26: Thông hiểu

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{x - 3}{\sqrt{9 - x^{2}}} là:

    Tập xác định D = ( - 3;3) suy ra đồ thị hàm số không có tiệm cận ngang.

    \lim_{x ightarrow 3^{-}}\frac{x -
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow 3^{-}}\frac{x - 3}{\sqrt{(3 -
x)(3 + x)}} = \lim_{x ightarrow 3^{-}}\frac{- \sqrt{3 - x}}{\sqrt{3 +
x}} = 0

    Suy ra x = 3 không là đường tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow - 3^{+}}\frac{x -
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow - 3^{+}}\frac{x - 3}{\sqrt{(3
- x)(3 + x)}} = \lim_{x ightarrow - 3^{+}}\frac{- \sqrt{3 -
x}}{\sqrt{3 + x}} = - \infty

    Suy ra x = - 3 là đường tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số có 1 đường tiệm cận.

  • Câu 27: Nhận biết

    Điểm cực tiểu của đồ thị hàm số y = x^{3}
- 3x + 4 thuộc đường thẳng nào sau đây?

    Ta có: y' = 3x^{2} - 3. Do đó y' = 0 \Leftrightarrow 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    x = 1 là điểm cực tiểu của hàm số nên điểm A(1;2) là điểm cực tiểu của đồ thị hàm số.

    Nhận thấy A(1;2) thuộc đường thẳng y = x + 1.

    Vậy điểm cực tiểu của đồ thị hàm số y =
x^{3} - 3x + 4 thuộc đường thẳng y
= x + 1.

  • Câu 28: Thông hiểu

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Hỏi đồ thị hàm số g(x) =
\frac{2020}{2f(x) + 1} có bao nhiêu đường tiệm cận đứng?

    Số đường tiệm cận đứng là số nghiệm của phương trình f(x) = - \frac{1}{2}

    Nhìn vào đồ thị ta thấy phương trình trên có 4 nghiệm tương ứng với 4 đường tiệm cận đứng.

  • Câu 29: Thông hiểu

    Cho hàm số y = x^{4} - (3m + 2)x^{2} +
3m có đồ thị \left( C_{m}
ight). Xác định tất cả các giá trị thực của tham số m để \left(
C_{m} ight) cắt đường thẳng y = -
1 tại bốn điểm phân biệt?

    Phương trình hoành độ giao điểm là nghiệm của phương trình:

    x^{4} - (3m + 2)x^{2} + 3m = -
1

    \Leftrightarrow x^{4} - (3m + 2)x^{2} +
3m + 1 = 0

    \Leftrightarrow \left( x^{2} - 1
ight)^{2} - 3m\left( x^{2} - 1 ight) = 0

    \Leftrightarrow \left( x^{2} - 1
ight)\left( x^{2} - 3m - 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 1 = 0 \\
x^{2} - 3m - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \pm 1 \\
x^{2} = 3m + 1 \\
\end{matrix} ight.

    Đồ thị \left( C_{m} ight) cắt y = - 1 tại bốn điểm phân biệt khi và chỉ khi x^{2} = 3m + 1 có hai nghiệm phân biệt khác \pm 1

    Khi đó ta có: \left\{ \begin{matrix}3m + 1 > 0 \\3m + 1 eq 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m > - \dfrac{1}{3} \\m eq 0 \\\end{matrix} ight..

  • Câu 30: Thông hiểu

    Cho hàm số y = - x^{3} + 6(m + 2)x^{2} -
m + 1 với m là tham số. Tìm tất cả các giá trị của tham số m để hàm số đã cho đồng biến trên ( - 2; - 1)?

    Ta có: y' = - 3x^{2} + 12(m +
2)x

    Hàm số y = - x^{3} + 6(m + 2)x^{2} - m +
1 đồng biến trên khoảng ( - 2; -
1) khi và chỉ khi:

    y' = - 3x^{2} + 12(m + 2)x \geq
0;\forall x \in ( - 2; - 1)

    \Leftrightarrow - x^{2} + 4mx + 8x \geq
0;\forall x \in ( - 2; - 1)

    \Leftrightarrow 4mx \geq x^{2} -
8x;\forall x \in ( - 2; - 1)

    \Leftrightarrow m \leq \frac{x}{4} - 2
\Leftrightarrow m \leq \frac{- 2}{4} - 2 = - \frac{5}{2}

    Vậy đáp án cần tìm là m \in \left( -
\infty; - \frac{5}{2} ightbrack.

  • Câu 31: Nhận biết

    Cho hàm số f\left( x ight) = \frac{{{x^3}}}{3} - \frac{{{x^2}}}{2} - 6x + \frac{3}{4}

    Ta có: f'\left( x ight) = {x^2} - x - 6 có hai nghiệm phân biệt là -2 và 3

    => f’(x) < 0 => x \in \left( { - 2;3} ight)

    Vậy hàm số nghịch biến trên khoảng (-2; 3)

  • Câu 32: Vận dụng

    Cho hàm số f(x) có đạo hàm trên \mathbb{R} và thỏa mãn f(x) > f'(x) + 1;\forall x\mathbb{\in
R}. Bất phương trình f(x) <
me^{x} + 1 nghiệm đúng với mọi x
\in (0; + \infty) khi và chỉ khi

    Ta có:

    f(x) < me^{x} + 1 \Leftrightarrow
f(x) - 1 < me^{x}

    \Leftrightarrow \frac{f(x) - 1}{e^{x}}
< m.

    Xét hàm số g(x) = \frac{f(x) -
1}{e^{x}}

    g'(x) = \frac{f'(x) -
\left\lbrack f(x) - 1 ightbrack}{e^{x}} < 0;\forall x \in (0; +
\infty)

    Bảng biến thiên

    Vậy bất phương trình f(x) < me^{x} +
1 nghiệm đúng với mọi x \in (0; +
\infty) khi và chỉ khi m \geq f(0)
- 1.

  • Câu 33: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị của hàm số y = x^{3} - (2m - 1)x^{2} + \left( 2m^{2} + 2m - 4
ight)x - 2m^{2} + 4 có hai điểm cực trị nằm về hai phía của trục hoành?

    Xét phương trình hoành độ giao điểm

    x^{3} - (2m - 1)x^{2} + \left( 2m^{2} +
2m - 4 ight)x - 2m^{2} + 4 = 0(*)

    \Leftrightarrow (x - 1)\left( x^{2} -
2mx + 2m^{2} - 4 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x - 1 = 0 \\
x^{2} - 2mx + 2m^{2} - 4 = 0(**) \\
\end{matrix} ight.

    Đồ thị của hàm số y = x^{3} - (2m -
1)x^{2} + \left( 2m^{2} + 2m - 4 ight)x - 2m^{2} + 4 có hai điểm cực trị nằm về hai phía của trục hoành khi và chỉ khi phương trình (*) có ba nghiệm phân biệt hay phương trình (**) có 2 nghiệm phân biệt khác 1

    \Leftrightarrow \left\{ \begin{gathered}
  \Delta  > 0 \hfill \\
  f\left( 1 ight) e 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  {m^2} - \left( {2{m^2} - 4} ight) > 0 \hfill \\
  2{m^2} - 2m - 3 e 0 \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left\{ \begin{gathered}
   - 2 < m < 2 \hfill \\
  m e \frac{{1 \pm \sqrt 7 }}{2} \hfill \\ 
\end{gathered}  ight.

    m\mathbb{\in Z} suy ra m \in \left\{ - 1;0;1 ight\}

    Vậy có 3 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 34: Thông hiểu

    Hàm số nào sau đây đồng biến trên \mathbb{R}?

    Hàm số y = \frac{1}{3}{x^3} - \frac{1}{2}{x^2} + 3x + 1

    y' = {x^2} - x + 3 = {\left( {x - \frac{1}{2}} ight)^2} + \frac{{11}}{4} > 0,\forall x \in \mathbb{R}

  • Câu 35: Vận dụng cao

    Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:

    Xét hàm số g\left( x ight) = f\left( {\frac{{x - 1}}{2}} ight) - \frac{{{x^3}}}{3} + \frac{{3{x^2}}}{2} - 2x + 3. Khẳng định nào sau đây sai?

    Ta có:

    g'\left( x ight) = \frac{1}{2}f'\left( {\frac{{x - 1}}{2}} ight) - \left( {{x^2} - 3x + 2} ight)

    f'\left( {\frac{{x - 1}}{2}} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\dfrac{{x - 1}}{2} = \dfrac{{ - 5}}{2}} \\   {\dfrac{{x - 1}}{2} =  - 1} \\   {\dfrac{{x - 1}}{2} = \frac{1}{2}} \\   {\dfrac{{x - 1}}{2} = 3} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 4} \\   {x =  - 1} \\   {x = 2} \\   {x = 7} \end{array}} ight.

    f'\left( {\frac{{x - 1}}{2}} ight) > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\dfrac{{x - 1}}{2} <  - \dfrac{5}{2}} \\   {\dfrac{1}{2} < \dfrac{{x - 1}}{2} < 3} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x <  - 4} \\   {2 < x < 7} \end{array}} ight.

    Ta có bảng xét dấu cho các biểu thức

    Tìm khẳng định sai

    Từ bảng xét dấu ta thấy

    x \in \left( {0;1} ight) \subset \left( {0;2} ight) \Rightarrow g'\left( x ight) < 0

    Khi đó hàm số nghịch biến

    => Đáp án B sai

  • Câu 36: Vận dụng

    Cho hàm số y = \frac{x + m}{x -
1} thỏa mãn \min_{\lbrack
2;4brack}y = 3. Chọn mệnh đề đúng?

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    Ta có: y' = \frac{- 1 - m}{(x -
1)^{2}}. Vì hàm số đơn điệu trên \lbrack 2;4brack nên

    \left[ \begin{gathered}
  \mathop {\min }\limits_{\left[ {2;4} ight]} y = y\left( 2 ight); - 1 - m > 0 \hfill \\
  \mathop {\min }\limits_{\left[ {2;4} ight]} y = y\left( 4 ight); - 1 - m < 0 \hfill \\ 
\end{gathered}  ight.\mathop  \to \limits^{\mathop {\min }\limits_{\left[ {2;4} ight]} y = 3} \left[ \begin{gathered}
  3 = 2 + m;m <  - 1 \hfill \\
  3 = \dfrac{{4 + m}}{3};m >  - 1 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m = 1;m < - 1 \\
m = 5;m > - 1 \\
\end{matrix} ight.\  \Leftrightarrow m = 5

    Nếu m = - 1 ightarrow y = 1 Hàm số không có giá trị lớn nhất

    Vậy m > 4

  • Câu 37: Nhận biết

    Đồ thị được cho dưới đây là đồ thị của hàm số nào?

    Đồ thị được cho dưới đây là đồ thị của hàm số nào

     Đồ thị hàm số hình chữ N ngược => Đây là hàm số bậc 3 dạng

    y = a{x^3} + b{x^2} + cx + d;\left( {a < 0} ight)

  • Câu 38: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y= \dfrac{2\cot x + 1}{\cot x + m} đồng biến trên khoảng \left( \frac{\pi}{4};\frac{\pi}{2}
ight)?

    Điều kiện xác định \cot x eq -
m

    Ta có: y' = \dfrac{-\dfrac{2}{\sin^{2}x}\left( \cot x + m ight) + \dfrac{1}{\sin^{2}}(2\cot x +1)}{\left( \cot x + m ight)^{2}}

    = \dfrac{1 - 2m}{\sin^{2}x.\left( \cot x +m ight)^{2}}

    Hàm số đồng biến trên khoảng \left(
\frac{\pi}{4};\frac{\pi}{2} ight) khi và chỉ khi

    \left\{ \begin{matrix}
y' > 0 \\
- m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 - 2m > 0 \\
\left\lbrack \begin{matrix}
m \leq - 1 \\
m \geq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m \leq - 1 \\
m \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \in ( - \infty; - 1brack \cup
\left\lbrack 0;\frac{1}{2} ight)

    Vậy đáp án cần tìm là m \in ( - \infty; -
1brack \cup \left\lbrack 0;\frac{1}{2} ight).

  • Câu 39: Nhận biết

    Giả sử M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y =
x^{3} - 3x + 2 trên đoạn \lbrack
0;2brack. Khi đó tổng của Mm bằng bao nhiêu?

    Ta có: y' = 3x^{2} - 3 \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
y(0) = 2 \\
y(1) = 0 \\
y(2) = 4 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
M = 4 \\
m = 0 \\
\end{matrix} ight.\  \Rightarrow M + m = 4

  • Câu 40: Thông hiểu

    Giá trị nhỏ nhất của hàm số f\left( x ight) = \left( {x + 1} ight)\left( {x + 2} ight)\left( {x + 3} ight)\left( {x + 4} ight) + 2019 là:

    Tập xác định D = \mathbb{R}

    Biến đổi f(x) như sau:

    \begin{matrix}  f\left( x ight) = \left( {x + 1} ight)\left( {x + 2} ight)\left( {x + 3} ight)\left( {x + 4} ight) + 2019 \hfill \\  f\left( x ight) = \left( {{x^2} + 5x + 4} ight)\left( {{x^2} + 5x + 6} ight) + 2019 \hfill \\ \end{matrix}

    Đặt t = {x^2} + 5x + 4 \Rightarrow t = {\left( {x + \frac{5}{2}} ight)^2} - \frac{9}{4} \geqslant  - \frac{9}{4};\forall x \in \mathbb{R}

    Hàm số đã cho trở thành

    f\left( y ight) = {t^2} + 2t + 2019 = {\left( {t + 1} ight)^2} + 2018 \geqslant 2018,\forall t \geqslant  - \frac{9}{4}

    Vậy giá trị nhỏ nhất của hàm số đã cho bằng 2018 tại t =  - 1

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo