Trong các hàm số sau, hàm số nào có hai điểm cực đại và một điểm cực tiểu?
Dựa vào dấu của hệ số nên hàm số
có ba điểm cực trị trong đó có hai điểm cực đại và một điểm cực tiểu.
Trong các hàm số sau, hàm số nào có hai điểm cực đại và một điểm cực tiểu?
Dựa vào dấu của hệ số nên hàm số
có ba điểm cực trị trong đó có hai điểm cực đại và một điểm cực tiểu.
Tìm giá trị nhỏ nhất của hàm số
trên khoảng (0; 1)
Hàm số xác định và liên tục trên (0; 1) ta có:
Lập bảng biến thiên:

Từ bảng biến thiên ta có:
Cho hình vẽ:

Đồ thị hàm số tương ứng với hàm số nào sau đây?
Đồ thị hàm số đi qua điểm (1; 3) chỉ có hàm số thỏa mãn.
Tìm hàm số tương ứng với đồ thị được cho trong hình vẽ sau?

Dựa vào đồ thị đã cho trong hình vẽ ta thấy đường tiệm cận ngang của đồ thị là và đường tiệm cận đứng của đồ thị là
.
Đồ thị hàm số đi qua điểm nên hàm số cần tìm là
.
Có bao nhiêu giá trị nguyên dương của tham số
để đồ thị hàm số
có ba đường tiệm cận?
Ta có: nên suy ra hàm số có 1 đường tiệm cận ngang là
Để đồ thị hàm số có 3 đường tiệm cận thì phải có 2 tiệm cận đứng hay phương trình có hai nghiệm phân biệt khác
Do m nguyên dương nên có 14 giá trị m thỏa mãn.
Cho đồ thị:

Xác định hàm số tương ứng với đồ thị hàm số đã cho?
Nhận diện đồ thị hàm số bậc 4 trùng phương có
Đồ thị hàm số đi qua điểm nên loại hàm số
.
Đồ thị hàm số có các cực trị là nên hàm số cần tìm là
.
Ông A dự định sử dụng hết
kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu
? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 2,1
Ông A dự định sử dụng hết kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu
? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 2,1
Gọi
lần lượt là chiều rộng và chiều cao của bể cá.
Ta có thể tích bể cá .
Theo đề bài ta có:
Ta có bảng biển thiên
Cho hàm số
có đồ thị như hình vẽ:

Giá trị cực tiểu của hàm số đã cho bằng:
Dựa vào đồ thị của hàm số ta thấy giá trị cực tiểu của hàm số bằng -2.
Trong các hàm số sau hàm số nào đồng biến trên (1; +∞)?
Ta có hàm số y = ax, y = logax đồng biến trên tập xác định nếu a > 0
Do đó hàm số y = log3x đồng biến trên (1; +∞)
Cho hàm số
. Định
để hàm số đạt cực đại tại
?
Ta có:
Hàm số đạt cực đại tại điểm khi
Vậy đáp án cần tìm là .
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Hàm số có 2 cực trị. Đúng||Sai
b) Điểm cực đại của hàm số là x = 2. Đúng||Sai
c) Hàm số đồng biến trên khoảng (−1; 3).Sai||Đúng
d) Giá trị lớn nhất của hàm số là 3. Sai||Đúng
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Hàm số có 2 cực trị. Đúng||Sai
b) Điểm cực đại của hàm số là x = 2. Đúng||Sai
c) Hàm số đồng biến trên khoảng (−1; 3).Sai||Đúng
d) Giá trị lớn nhất của hàm số là 3. Sai||Đúng
Hàm số có đồ thị như sau:
a) Đúng. Từ đồ thị, ta khẳng định hàm số có 2 cực trị.
b) Đúng. Từ đồ thị, ta khẳng định hàm số có điểm cực đại là x = 2.
c) Sai. Trên khoảng (−1; 3) hàm số có đồng biến và nghịch biến.
d) Sai. Trên R không tồn tại giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên
Số giá trị nguyên của tham số m để hàm số
đồng biến trên
?
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
Vậy có tất cả 5 giá trị của m thỏa mãn điều kiện đề bài.
Cho hàm số
có bảng biến thiên như sau:

Xác định hàm số
?
Từ bảng biến thiên ta suy ra hàm số cần tìm là hàm số bậc ba
Vì nên đáp án là
.
Cho hàm số
với
là tham số. Tìm tất cả các giá trị nguyên của tham số
để đồ thị hàm số đã cho có ba đường tiệm cận?
Ta có: suy ra
là một tiệm cận ngang của đồ thị hàm số.
Do đó để đồ thị hàm số có ba đường tiệm cận thì đồ thị hàm số phải có hai tiệm cận đứng.
có hai nghiệm phân biệt khác
Mà nên không tồn tại giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Điểm cực tiểu của đồ thị hàm số
thuộc đường thẳng nào sau đây?
Ta có: . Do đó
Vì là điểm cực tiểu của hàm số nên điểm
là điểm cực tiểu của đồ thị hàm số.
Nhận thấy thuộc đường thẳng
.
Vậy điểm cực tiểu của đồ thị hàm số thuộc đường thẳng
.
Một chất điểm chuyển động với vận tốc được cho bởi công thức
với
(giây) là khoảng thời gian tính từ khi chất điểm bắt đầu chuyển động. Hỏi tại thời điểm nào thì vận tốc của chất điểm là lớn nhất?
Ta có: với
.
(thỏa mãn).
Bảng biến thiên
Dựa vào bảng biến thiên, tại thời điểm giây thì vận tốc của chất điểm là lớn nhất.
Hỏi đồ thị của hàm số
có tất cả bao nhiêu đường tiệm cận (không xét tiệm cận xiên)?
Tập xác định
Ta có: nên đồ thị hàm số có tiệm cận ngang là
nên đồ thị hàm số có tiệm cận đứng là
Vậy đồ thị hàm số có 2 đường tiệm cận.
Trên đoạn
hàm số
có giá trị nhỏ nhất bằng bao nhiêu?
Tập xác định
Ta có:
Trên đoạn hàm số đã cho nghịch biến
Số đường tiệm cận của đồ thị hàm số
là:
Tập xác định
nên
không phải tiệm cận đứng.
suy ra
là một tiệm cận ngang
suy ra
là một tiệm cận ngang
Vậy số đường tiệm cận của đồ thị hàm số là 2.
Số các giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
là:
Ta có: . Hàm số nghịch biến trên khoảng
khi
Vì
Vậy có tất cả 13 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số y = f(x) có đồ thị như hình vẽ sau đây:

Số nghiệm của phương trình
là:
Ta có: có hai nghiệm
Cho hàm số bậc ba
có đồ thị là đường cong như hình vẽ:

Có bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số bậc ba có đồ thị là đường cong như hình vẽ:
Có bao nhiêu giá trị nguyên của tham số để hàm số
có đúng ba điểm cực trị?
Tìm tất cả các giá trị thực của tham số
để hàm số
đồng biến trên đoạn
?
Theo yêu cầu bài toán ta có:
Để hàm số đồng biến trên đoạn
Đặt
Vậy là đáp án cần tìm.
Cho hàm số xác định trên và có bảng biến thiên như hình vẽ:

Số đường tiệm cận đứng của đồ thị hàm số
là:
Ta có:
Phương trình có 3 nghiệm phân biệt khác 2.
Phương trình có một nghiệm kép là x = 2 (do vậy mẫu số có dạng
nên x = 2 vẫn là TCĐ của đồ thị hàm số
=> Đồ thị hàm số có 4 đường tiệm cận đứng.
Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Chọn kết luận đúng?
Ta có:
Mà
.
Cho hai số thực a, b dương thỏa mãn
. Giá trị nhỏ nhất của biểu thức
bằng:
Ta có:
Đặt
Cho hàm số ![]()
Ta có: có hai nghiệm phân biệt là -2 và 3
=> f’(x) < 0 =>
Vậy hàm số nghịch biến trên khoảng (-2; 3)
Tiệm cận đứng của đồ thị hàm số
là đường thẳng có phương trình
Ta có:
là tiệm cận đứng của đồ thị hàm số.
là tiệm cận đứng của đồ thị hàm số.
Số dân số của một thị trấn sau
năm kể từ năm 1970 được ước tính bởi công thức
(
được tính bằng nghìn người). Biết rằng đạo hàm của hàm số
biểu thị tốc độ gia tăng dân số của thị trấn ( đơn vị là nghìn người/ năm). Vào năm nào thì tốc độ gia tăng dân số là
nghìn người/ năm?
Ta có
Lại có
Vậy dự báo vào năm 1995 thì tốc độ gia tăng dân số là nghìn người/ năm.
Có bao nhiêu giá trị nguyên của tham số
để hàm số
có hai cực tiểu và một cực đại?
Hàm số có ba điểm cực trị khi và chỉ khi
.
Để hàm số có hai cực tiểu và một cực đại thì đồ thị hàm số
có dạng
Ta có: . Đồ thị nhánh ngoài của hàm số hướng lên nên hàm số có hệ số
Khi đó để thỏa mãn yêu cầu bài toán ta có:
Vì m là số nguyên nên có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Có bao nhiêu giá trị nguyên dương của tham số
để hàm số
đồng biến trên khoảng
?
Ta có:
Hàm số đồng biến trên khoảng
Theo yêu cầu bài toán ta có:
Mà
Suy ra có tất cả 10 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Đường tiệm cận ngang của đồ thị hàm số
có phương trình là:
Ta có:
Vậy đường thẳng là tiệm cận ngang của đồ thị hàm số.
Cho hàm số
. Số nghiệm thực phân biệt của phương trình
là:
Ta có:
Đồ thị của hàm số được minh họa bằng hình vẽ sau:

Từ đồ thị ta suy ra
Phương trình (*) có 3 nghiệm thực
Phương trình (**) có 2 nghiệm thực
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
Xét hàm số
. Khẳng định nào sau đây sai?
Ta có:
Ta có bảng xét dấu cho các biểu thức

Từ bảng xét dấu ta thấy
Khi đó hàm số nghịch biến
=> Đáp án B sai
Tìm hàm số luôn đồng biến trên từng khoảng xác định?
Xét hàm số
Tập xác định . Ta có:
Vậy hàm số đồng biến trên các khoảng .
Cho hàm số
xác định trên
và có bảng biến thiên như hình bên dưới

Hàm số
đồng biến trên khoảng nào dưới đây?
Dựa vào bảng biến thiên, ta thấy hàm số đồng biến trên .
Gọi
lần lượt là giá trị cực đại và giá trị cực tiểu của hàm số
. Chọn biểu thức đúng?
Ta có:
Vậy
Cho hàm số
xác định và liên tục trên
có bảng biến thiên như sau:

Giá trị lớn nhất của hàm số
trên
là:
Dựa vào bảng biến thiên ta suy ra giá trị lớn nhất của hàm số trên đoạn là
.
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
. Giá trị của M – 2m2 bằng:
Điều kiện xác định
Xét hàm số trên [-1; 1] có:
Ta có:
Vậy
Cho hàm số bậc ba
có đồ thị như hình vẽ:

Có bao nhiêu giá trị của m để hàm số
có 3 tiệm cận đứng?
Cho hàm số bậc ba có đồ thị như hình vẽ:

Có bao nhiêu giá trị của m để hàm số có 3 tiệm cận đứng?