Tiệm cận ngang của đồ thị hàm số
là đường thẳng có phương trình là:
Ta có:
Vậy tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình
.
Tiệm cận ngang của đồ thị hàm số
là đường thẳng có phương trình là:
Ta có:
Vậy tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình
.
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
là:
Khi
Suy ra đồ thị hàm số có 1 tiệm cận ngang và 1 tiệm cận đứng
Khi
Suy ra đồ thị hàm số có 1 tiệm cận ngang và 1 tiệm cận đứng
Vậy đồ thị hàm số có tất cả 4 đường tiệm cận.
Cho hàm số
với
là tham số. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số đã cho đồng biến trên
?
Cho hàm số với
là tham số. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số đã cho đồng biến trên
?
Có bao nhiêu giá trị thực của tham số
để hàm số
có điểm cực đại
và điểm cực tiểu
thỏa mãn biểu thức
?
Ta có: có
nên
.
Hàm số có cực đại và cực tiểu khi và chỉ khi .
Trường hợp 1:
Do
Lại có
Với điều kiện thỏa mãn.
Trường hợp 2:
Do
Lại có
Với điều kiện thỏa mãn.
Vậy có 2 giá trị thực của tham số m thỏa mãn.
Cho đồ thị hàm số
như hình vẽ:

Hàm số
đồng biến trên khoảng:
Ta có:
Nên suy ra hàm số cũng đồng biến trên .
Tất cả các giá trị của tham số
để hàm số
đạt cực đại tại
là:
Ta có:
Ta thấy hệ số nên nếu hàm số có ba cực trị thì hàm số có hai cực đại và một cực tiểu nên không thể đạt cực đại tại
.
Để hàm số đạt cực đại tại thì hàm số có một cực trị hay phương trình
vô nghiệm hoặc có nghiệm kép
.
Cho hàm số
có đồ thị như hình vẽ:

Hàm số
nghịch biến trên khoảng nào dưới đây?
Từ đồ thị hàm số ta thấy hàm số đồng biến trên khoảng
Xét hàm số ta có:
Suy ra hàm số nghịch biến trên khoảng
.
Điểm nào sau đây thuộc đồ thị hàm số
?
Thay vào
ta được:
Vậy thuộc đồ thị hàm số
.
Cho hàm số bậc ba
có đồ thị như hình vẽ bên.

Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số
là bao nhiêu?
Đáp án: 6
Cho hàm số bậc ba có đồ thị như hình vẽ bên.
Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số là bao nhiêu?
Đáp án: 6
Ta có:
Dựa vào đồ thị hàm số, ta thấy:
(1) có nghiệm (nghiệm đơn) và
(nghiệm kép)
(2) có nghiệm ba nghiệm đơn với
Hàm số
có tập xác định
+) Tìm tiệm cận ngang:
Vì
Nên Đồ thị hàm số
nhận đường thẳng
làm TCN.
+) Tìm tiệm cận đứng:
Tại các điểm mẫu của
nhận giá trị bằng 0 còn tử nhận các giá trị khác 0.
Và do hàm số xác định trên nên giới hạn một bên của hàm số
tại các điểm
là các giới hạn vô cực.
Do đó, đồ thị hàm số có 5 TCĐ:
và
.
Vậy ĐTHS có 6 đường tiệm cận: 1
và
TCĐ
.
Trong các hàm số sau, hàm số nào nghịch biến trên từng khoảng xác định?
Xét hàm số ta có:
Điều kiện xác định
Lại có: nên hàm số
nghịch biến trên từng khoảng xác định của nó.
Cho đồ thị hàm số
. Tìm tất cả các giá trị của tham số
để
cắt trục hoành tại ba điểm phân biệt cách hoành độ
thỏa mãn
?
Để hàm số đã cho cắt trục hoành tại 3 điểm phân biệt thì phương trình hoành độ giao điểm phải có ba nghiệm phân biệt:
Ta đặt . Khi đó để phương trình có 3 nghiệm phân biệt thì phương trình sau phải có 2 nghiệm phân biệt khác 1.
Do có nghiệm khác 1 nên hay
Ta có:
Để có hai nghiệm phân biệt thì hay
Theo bài ra ta có:
với
là nghiệm của phương trình bậc hai trên.
Áp dụng hệ thức Vi – et ra có:
Kết hợp các điều kiện ta có: .
Vậy đáp án đúng là .
Cho hàm số
có đồ thị
. Tìm giá trị
để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của
một khoảng bằng
?
Cho hàm số có đồ thị
. Tìm giá trị
để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của
một khoảng bằng
?
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ:

Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là
. Kết luận nào sau đây đúng?
Quan sát đồ thị ta thấy
Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên
. Tính giá trị biểu thức
?
Vì trên đoạn thì
Cho hàm số
xác định trên
liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
Từ bảng biến thiên ta thấy:
suy ra
là tiệm cận đứng.
suy ra
là tiệm cận ngang
suy ra
là tiệm cận ngang
Vậy đồ thị hàm số đã cho có tất cả ba đường tiệm cận.
Hàm số
có cực đại là:
Ta có:
=> x = 0 là điểm cực đại của hàm số
Cho hàm số
liên tục trên
và có bảng biến thiên như sau:

Điểm cực đại của đồ thị hàm số là:
Điểm cực đại của đồ thị hàm số đã cho là .
Cho một tấm nhôm hình vuông cạnh
, người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng
, rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của
bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).

Đáp án: 2 dm
Cho một tấm nhôm hình vuông cạnh , người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng
, rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của
bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).
Đáp án: 2 dm
Ta có:
tại
Người ta khảo sát gia tốc a(t) của một vật thể chuyển động (t là khoảng thời gian tính bằng giâu từ lúc vật thể chuyển động) từ giây thứ nhất đến giây thứ ba ghi nhận được a(t) là một hàm số liên tục có đồ thị như hình bên:

Hỏi trong thời gian từ giây thứ nhất đến giây thứ ba được khảo sát đó, thời điểm nào vận tốc lớn nhất?
Từ đồ thị ta có: a(t) = 0 => v’(t) = 0 = > t = 2
Ta có bảng biến thiên:

=> Vận tốc lớn nhất đạt được khi t = 2
Tìm điều kiện của tham số
để đồ thị hàm số
chỉ có một điểm cực đại mà không có điểm cực tiểu?
Xét khi đó
là hàm số bậc hai có a = -1 < 0 nên đồ thị của hàm số là parabol có bề lõm hướng xuống nên có 1 cực đại mà không có cực tiểu. Suy ra
thỏa mãn.
Xét khi đó
là hàm số bậc 4 dạng trùng phươn
Để đồ thị hàm số có một cực đại mà không có cực tiểu thì
Vậy đáp án cần tìm là .
Trên khoảng (0; +∞) thì hàm số y = -x3 + 3x + 1
Ta có:
Từ bảng biến thiên => Hàm số có giá trị lớn nhất bằng 3
Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm
với mọi
. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số
nghịch biến trên khoảng
?
Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm với mọi
. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số
nghịch biến trên khoảng
?
Cho hàm số
. Hãy chọn khẳng định đúng?
Tập xác định
Ta có: nên hàm số đồng biến trên các khoảng
và
.
Cho hàm số
xác định trên
, liên tục trên các khoảng xác định và có bảng biến thiên như sau:

Tìm tập hợp các giá trị của tham số
để phương trình
có ba nghiệm phân biệt?
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số
và đường thẳng
Dựa vào bảng biến thiên ta suy ra để phương trình đã cho có ba nghiệm phân biệt thì .
Đồ thị hàm số
có đường tiệm cận ngang qua điểm
khi:
Để đồ thị hàm số có đường tiệm cận ngang là
Đường tiệm cận ngang đi qua nên ta có:
Vậy đáp án đúng là .
Cho hình vẽ:

Đồ thị trong hình đã cho là đồ thị của hàm số nào?
Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng với
và đồ thị hàm số đi qua điểm
nên hàm số tương ứng với đồ thị trong hình vẽ đã cho là
.
Tìm giá trị nhỏ nhất của hàm số
trên
?
Ta có:
. Khi đó:
Vậy .
Hàm số
đạt cực đại tại
Tập xác định:
Ta có:
Ta có bảng biến thiên
Vậy hàm số đạt cực tiểu tại và
.
Hỏi đồ thị hàm số
có tất cả bao nhiêu đường tiệm cận?
Tập xác định
Ta có:
Suy ra là tiệm cận ngang của đồ thị hàm số.
Suy ra hàm số không có tiệm cận đứng
Vậy hàm số có 1 đường tiệm cận.
Cho hàm số
xác định trên
, liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

Tìm tất cả các giá trị thực của tham số
để phương trình
có ba nghiệm thực phân biệt?
Dựa vào bảng biến thiên ta thấy phương trình có ba nghiệm thực phân biệt khi và chỉ khi
Cho hàm số
có đạo hàm
. Khi đó hàm số
nghịch biến trên khoảng nào?
Ta có:
Ta có bảng biến thiên:
Dựa vào bảng biến thiên ta có hàm số nghịch biến trên và
.
Tìm hàm số tương ứng với đồ thị được cho trong hình vẽ sau?

Dựa vào đồ thị đã cho trong hình vẽ ta thấy đường tiệm cận ngang của đồ thị là và đường tiệm cận đứng của đồ thị là
.
Đồ thị hàm số đi qua điểm nên hàm số cần tìm là
.
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ
là
(người). Nếu xem
là tốc độ truyền bệnh (người/ngày) tại thời điểm
. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?
Đáp án: Ngày thứ 4||tư
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ là
(người). Nếu xem
là tốc độ truyền bệnh (người/ngày) tại thời điểm
. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?
Đáp án: Ngày thứ 4||tư
Điều kiện .
Ta có ,
,
.
Bảng biến thiên:
Vậy tốc độ truyền bệnh lớn nhất vào ngày thứ .
Đáp số: .
Cho hai số thực x, y thỏa mãn
và x + y = 1. Giá trị nhỏ nhất và giá trị lớn nhất của biểu thức
lần lượt là:
Ta có:
Đặt t = xy ta được
Vì
Mặt khác
Khi đó bài toán trở thành tìm giá trị lớn nhất của hàm số trên
Xét hàm số xác định và liên tục trên
Ta có:
=> Hàm số g(t) nghịch biến trên đoạn
=>
Hàm số nào dưới đây có dạng đồ thị như đường cong trong hình vẽ?

Dựa vào hình dáng đồ thị ta suy ra đồ thị của hàm số bậc 4 có hệ số .
Vậy hàm số cần tìm là .
Cho hàm số
. Mệnh đề nào sau đây đúng?
Ta có:
Ta có bảng xét dấu:

Quan sát bảng xét dấu ta thấy:
+ Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞)
+ Hàm số nghịch biến trên các khoảng (0; 2)
Cho hàm số f(x) liên tục trên
và có bảng biến thiên của đạo hàm như sau:

Hàm số
có bao nhiêu điểm cực trị?
Xét hàm số , ta có bảng giá trị |t(x)|

Ta có:
Hàm số không có đạo hàm tại điểm
Tại mọi điểm ta có:
=>
Dựa vào bảng giá trị hàm |t| suy ra:
+ Phương trình (1), (2) vô nghiệm
+ Phương trình (3) có 4 nghiệm phân biệt khác 0
+ Phương trình (4) có hai nghiệm phân biệt khác 0 và khác các nghiệm của phương trình (3)
=> g’(x) = 0 có 7 nghiệm và qua các nghiệm này g’(x) đều đổi dấu
Từ (*) ta thấy g’(x) cũng đổi dấu khi x đi qua 2 điểm
Vậy hàm số g(x) có 9 điểm cực trị.
Một hãng điện thoại đưa ra quy luật bán buôn cho từng đại lí, đó là đại lí càng nhập nhiều chiếc điện thoại của hãng thì giá bán buôn một chiếc điện thoại càng giảm. Cụ thể, nếu đại lí mua
điện thoại thì giá tiền của mỗi điện thoại là
(nghìn đồng),
. Đại lí nhập cùng một lúc bao nhiêu chiếc điện thoại thì hãng có thể thu về nhiều tiền nhất từ đại lí đó?
Đáp án: 1000||1 000
Một hãng điện thoại đưa ra quy luật bán buôn cho từng đại lí, đó là đại lí càng nhập nhiều chiếc điện thoại của hãng thì giá bán buôn một chiếc điện thoại càng giảm. Cụ thể, nếu đại lí mua điện thoại thì giá tiền của mỗi điện thoại là
(nghìn đồng),
. Đại lí nhập cùng một lúc bao nhiêu chiếc điện thoại thì hãng có thể thu về nhiều tiền nhất từ đại lí đó?
Đáp án: 1000||1 000
Số tiền hãng thu được khi đại lí nhập chiếc điện thoại là
.
Ta có: .
Khi đó,
Học sinh tự vẽ bảng biến thiên
Ta suy ra:
Đại lí nhập cùng lúc chiếc điện thoại thì hãng có thể thu nhiều tiền nhất từ đại lí đó với
(đồng).
Đáp số: .
Cho hàm số
. Khi đó tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là:
Ta có:
suy ra đồ thị hàm số có tiệm cận đứng là
suy ra đồ thị hàm số có tiệm cận ngang là
Vậy đồ thị hàm số có tổng số đường tiệm cận đứng và đườn tiệm cận ngang bằng 2.
Có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên tập số thực?
Ta có:
Hàm số đồng biến trên
Vì
Vậy số giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán là .