Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Vận dụng cao

    Cho hàm số y = \left| x^{3} - (2m +1)x^{2} + mx + m ight| với m là tham số. Giả sử S là tập hợp tất cả các giá trị nguyên của m \in \lbrack -2021;2021brack sao cho đồ thị của hàm số có 5 điểm cực trị. Tính tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \left| x^{3} - (2m +1)x^{2} + mx + m ight| với m là tham số. Giả sử S là tập hợp tất cả các giá trị nguyên của m \in \lbrack -2021;2021brack sao cho đồ thị của hàm số có 5 điểm cực trị. Tính tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Thông hiểu

    Cho hàm số y = x^{4} - (3m + 2)x^{2} +
3m có đồ thị \left( C_{m}
ight). Xác định tất cả các giá trị thực của tham số m để \left(
C_{m} ight) cắt đường thẳng y = -
1 tại bốn điểm phân biệt?

    Phương trình hoành độ giao điểm là nghiệm của phương trình:

    x^{4} - (3m + 2)x^{2} + 3m = -
1

    \Leftrightarrow x^{4} - (3m + 2)x^{2} +
3m + 1 = 0

    \Leftrightarrow \left( x^{2} - 1
ight)^{2} - 3m\left( x^{2} - 1 ight) = 0

    \Leftrightarrow \left( x^{2} - 1
ight)\left( x^{2} - 3m - 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 1 = 0 \\
x^{2} - 3m - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \pm 1 \\
x^{2} = 3m + 1 \\
\end{matrix} ight.

    Đồ thị \left( C_{m} ight) cắt y = - 1 tại bốn điểm phân biệt khi và chỉ khi x^{2} = 3m + 1 có hai nghiệm phân biệt khác \pm 1

    Khi đó ta có: \left\{ \begin{matrix}3m + 1 > 0 \\3m + 1 eq 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m > - \dfrac{1}{3} \\m eq 0 \\\end{matrix} ight..

  • Câu 4: Nhận biết

    Cho hình vẽ:

    Đồ thị trong hình đã cho là đồ thị của hàm số nào?

    Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng y = ax^{3} + bx^{2} + cx + d với a > 0 và đồ thị hàm số đi qua điểm (2; - 3) nên hàm số tương ứng với đồ thị trong hình vẽ đã cho là y = x^{3} -3x^{2} + 1.

  • Câu 5: Thông hiểu

    Hình dưới đây là đồ thị của hàm số nào?

    Từ đồ thị, ta thấy hàm số có tiệm cận đứng x = 1.

    Khi đó loại các hàm số y = \frac{- 2 +
x}{x + 1}y = \frac{1 - 2x}{x +
1}

    Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 1 và cắt trục hoành tại điểm có hoành độ bằng 2 nên đáp án cần tìm là: y = \frac{x - 2}{x - 1}.

  • Câu 6: Thông hiểu

    Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y
= x^{3} - 3mx^{2} + 3\left( m^{2} - 2 ight)x đồng biến trên khoảng (12; + \infty)?

    Ta có: y' = 3x^{2} - 6mx + 3\left(
m^{2} - 2 ight)

    Hàm số y = x^{3} - 3mx^{2} + 3\left(
m^{2} - 2 ight)x đồng biến trên khoảng (12; + \infty)

    \Leftrightarrow y' \geq 0
\Leftrightarrow 3x^{2} - 6mx + 3\left( m^{2} - 2 ight) \geq
0

    \Leftrightarrow x^{2} - 2mx + m^{2} - 2
\geq 0

    \Leftrightarrow (x - m)^{2} \geq 2
\Leftrightarrow \left\lbrack \begin{matrix}
x - m \geq \sqrt{2} \\
x - m \leq - \sqrt{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x \geq m + \sqrt{2} \\
x \leq m - \sqrt{2} \\
\end{matrix} ight.

    Theo yêu cầu bài toán ta có: \sqrt{2} + m
\leq 12 \Leftrightarrow m \leq 12 - \sqrt{2}

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 1;2;3;...;9;10 ight\}

    Suy ra có tất cả 10 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 7: Vận dụng cao

    Độ giảm huyết áp của một bệnh nhân được cho bởi công thức G\left( x ight) = 0,035{x^2}.\left( {15 - x} ight), trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất.

    Xét G\left( x ight) = 0,035{x^2}.\left( {15 - x} ight) ta có:

    \begin{matrix}  G'\left( x ight) = 0,035\left( {30x - 3{x^2}} ight) \hfill \\  G'\left( x ight) = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 10} \end{array}} ight. \hfill \\ \end{matrix}

    Mặt khác \left\{ {\begin{array}{*{20}{c}}  {G\left( 0 ight) = G\left( {15} ight) = 0} \\   {G\left( {10} ight) = 17,5} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ {0;15} ight]}  = 17,5 \Rightarrow x = 10

  • Câu 8: Vận dụng

    Số điểm cực trị của hàm số y = \left| {\sin x - \frac{\pi }{4}} ight|,x \in \left( { - \pi ;\pi } ight) là?

    Xét hàm số y = f\left( x ight) = \sin x - \frac{x}{4};x \in \left( { - \pi ;\pi } ight)

    Ta có:

    \begin{matrix}  f'\left( x ight) = \cos x - \dfrac{1}{4} \hfill \\  f'\left( x ight) = 0 \Leftrightarrow \cos x = \dfrac{1}{4} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = {x_1} \in \left( { - \dfrac{\pi }{2};0} ight)} \\   {x = {x_1} \in \left( {0;\dfrac{\pi }{2}} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    \begin{matrix}  f\left( {{x_1}} ight) = \sin {x_1} - \dfrac{{{x_1}}}{4} =  - \dfrac{{\sqrt {15} }}{4} - \dfrac{{{x_1}}}{4} <  - \dfrac{{\sqrt {15} }}{4} + \dfrac{\pi }{8} < 0 \hfill \\  f\left( {{x_2}} ight) = \sin {x_2} - \dfrac{{{x_2}}}{4} = \dfrac{{\sqrt {15} }}{4} - \dfrac{{{x_1}}}{4} < \dfrac{{\sqrt {15} }}{4} - \dfrac{\pi }{8} < 0 \hfill \\ \end{matrix}

    Ta có bảng biến thiên:

    Tìm số điểm cực trị của hàm số

    Dựa vào bảng biến thiên, ta thấy hàm số có hai điểm cực trị và đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khác x1; x2

    => Hàm số y = \left| {\sin x - \frac{x}{4}} ight|,x \in \left( { - \pi ,\pi } ight) có 5 điểm cực trị

  • Câu 9: Nhận biết

    Gọi M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x)
= \frac{2x - 1}{x + 2} trên đoạn \lbrack 0;2brack. Giá trị biểu thức T = 2m + 4M là:

    Ta có: y' = \frac{5}{(x + 2)^{2}}
> 0;\forall x eq - 2 nên hàm số đồng biến trên \lbrack 0;2brack

    \Rightarrow \left\{ \begin{matrix}\max_{\lbrack 0;2brack}y = f(2) = \dfrac{3}{4} \\\min_{\lbrack 0;2brack}y = f(0) = - \dfrac{1}{2} \\\end{matrix} ight.\  \Rightarrow T = 2m + 4M = 2.

  • Câu 10: Thông hiểu

    Cho hàm số y =
\frac{1}{3}x^{3} - mx^{2} - (2m - 3)x - m + 2. Có bao nhiêu giá trị nguyên dương của tham số m luôn đồng biến trên \mathbb{R}?

    Ta có: y' = x^{2} - 2mx - 2m +
3

    Khi đó: y' \geq 0;\forall
x\mathbb{\in R}

    \Leftrightarrow x^{2} - 2mx - 2m + 3
\geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \Delta' = m^{2} + 2m
- 3 \leq 0 \Leftrightarrow - 3 \leq m \leq 1

    Do m nguyên dương nên m = 1.

    Vậy có 1 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 11: Thông hiểu

    Có bao nhiêu giá trị nguyên dương của tham số m để đồ thị hàm số y = \frac{x - 1}{x^{2} - 8x + m} có ba đường tiệm cận?

    Ta có: \lim_{x ightarrow \pm
\infty}\frac{x - 1}{x^{2} - 8x + m} = 0 nên suy ra hàm số có 1 đường tiệm cận ngang là y = 0

    Để đồ thị hàm số có 3 đường tiệm cận thì phải có 2 tiệm cận đứng hay phương trình x^{2} - 8x + m = 0 có hai nghiệm phân biệt khác 1

    \left\{ \begin{matrix}
16 - m > 0 \\
1^{2} - 8.1 + m eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 16 \\
m eq 7 \\
\end{matrix} ight.

    Do m nguyên dương nên có 14 giá trị m thỏa mãn.

  • Câu 12: Thông hiểu

    Một chất điểm chuyển động với quy luật S(t) = 6t^{2} - t^{3}. Thời điểm t (giây) tại vận tốc v(m/s) của chuyển động đạt giá trị lớn nhất là:

    Vận tốc của chuyển động là:

    v(t) = S'(t) = 12t - 3t^{2} = 12 -
3(2 - t)^{2} \leq 12;\forall t

    Vậy vận tốc đạt giá trị lớn nhất bằng 12m/s khi t =
2.

  • Câu 13: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận ngang là:

    Dựa vào bảng biến thiên ta có: \lim_{x
ightarrow \pm \infty}f(x) = 2 nên đồ thị hàm số có đường tiệm cận ngang là y = - 2.

  • Câu 14: Vận dụng cao

    Cho hàm số f(x) có đạo hàm trên \mathbb{R}f'(x) = (x - 1)(x + 3). Có bao nhiêu giá trị nguyên của tham số m \in \lbrack -10;2021brack để hàm số y =f\left( x^{2} + 3x - m ight) đồng biến trên khoảng (0;2)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) có đạo hàm trên \mathbb{R}f'(x) = (x - 1)(x + 3). Có bao nhiêu giá trị nguyên của tham số m \in \lbrack -10;2021brack để hàm số y =f\left( x^{2} + 3x - m ight) đồng biến trên khoảng (0;2)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Vận dụng

    Cho hàm số y = f\left( x ight) có bảng biến thiên như hình vẽ dưới đây.

    Tìm số đường tiệm cận của hàm số

    Số đường tiệm cận của đồ thị hàm số y = \frac{2}{{f\left( x ight) - 2018}} là:

    Phương trình f\left( x ight) = 2018 có 2 nghiệm phân biệt

    => Đồ thị hàm số y = \frac{2}{{f\left( x ight) - 2018}} có 2 đường tiệm cận đứng.

    Khi x \to  - \infty thì y \to 5 \Rightarrow y = \frac{2}{{f\left( x ight) - 2018}} \to \frac{2}{{ - 2013}}

    Khi x \to  + \infty thì y \to 5 \Rightarrow y = \frac{2}{{f\left( x ight) - 2018}} \to \frac{2}{{ - 2013}}

    Vậy đồ thị hàm số y = \frac{2}{{f\left( x ight) - 2018}} có 1 tiệm cận ngang.

     

  • Câu 16: Thông hiểu

    Đường tiệm cận xiên của đồ thị hàm số y =
\frac{x^{2} - 2x + 3}{x + 1} là đường thẳng có phương trình

    Tập xác định: D = R\backslash\left\{ - 1
ight\}.

    Phương trình đường tiệm cận xiên có dạng: y = ax + b.

    Trong đó,

    a = \lim_{x ightarrow +
\infty}\frac{f(x)}{x} = \lim_{x ightarrow + \infty}\frac{x^{2} - 2x +
3}{x^{2} + x} = 1

    b = \lim_{x ightarrow +
\infty}\left\lbrack f(x) - ax ightbrack = \lim_{x ightarrow +
\infty}\left( \frac{x^{2} - 2x + 3}{x + 1} - x ight) = \lim_{x
ightarrow + \infty}\frac{- 3x + 3}{x + 1} = - 3.

    Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng y = x - 3.

  • Câu 17: Thông hiểu

    Cho hàm số f(x) có bảng xét dấu đạo hàm như hình vẽ:

    Hàm số y = f\left( 1 - x^{2}
ight) nghịch biến trên khoảng:

    Ta có: y' = - 2xf'\left( 1 -
x^{2} ight)

    y' = 0 \Leftrightarrow -
2xf'\left( 1 - x^{2} ight) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
- 2x = 0 \\
f'\left( 1 - x^{2} ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
1 - x^{2} = - 3 \\
1 - x^{2} = - 2 \\
1 - x^{2} = 0 \\
1 - x^{2} = 1 \\
1 - x^{2} = 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 2 \\
x = \pm \sqrt{3} \\
x = \pm 1 \\
\end{matrix} ight.. Khi đó ta có bảng biến thiên:

    Hàm số y = f\left( 1 - x^{2}
ight) nghịch biến trên khoảng \left( \sqrt{3};2 ight).

  • Câu 18: Nhận biết

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} có bảng biến thiên như sau:

    Giá trị lớn nhất của hàm số y =
f(x) trên \lbrack
1;5brack là:

    Dựa vào bảng biến thiên ta suy ra giá trị lớn nhất của hàm số trên đoạn \lbrack 1;5brack3.

  • Câu 19: Thông hiểu

    Tập hợp tất cả các giá trị thực của tham số m để hàm số y
= x^{3} - 3x^{2} + (4 - m)x đồng biến trên khoảng (2; + \infty) là:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} - 6x + 4 -
m

    Hàm số đồng biến trên khoảng (2; +
\infty) \Leftrightarrow y' \geq 0;\forall x \in (2; +
\infty)

    \Leftrightarrow m \leq 3x^{2} - 6x +
4;\forall x \in (2; + \infty)

    Xét hàm số g(x) = 3x^{2} - 6x +
4 trên khoảng (2; +
\infty).

    Ta có: g'(x) = 6x - 6;g'(x) = 0
\Leftrightarrow x = 1

    Ta có bảng biến thiên

    Dựa vào bảng biến thiên ta có: m \leq
g(x);;\forall x \in (2; + \infty) \Leftrightarrow m \leq 4

    Vậy m \leq 4 thỏa mãn yêu cầu bài toán.

  • Câu 20: Thông hiểu

    Cho hàm số y = \frac{1}{3}x^{3} - mx^{2}
- x + m + 1 với m là tham số. Tìm các giá trị của tham số m để đồ thị hàm số có hai điểm cực trị A;B thỏa mãn {x_{A}}^{2} + {x_{B}}^{2} = 2?

    Ta có: y' = x^{2} - 2mx -
1(*)

    Hàm số đã cho có hai điểm cực trị A;B \Leftrightarrow \Delta' > 0 \Leftrightarrow
m^{2} + 1 > 0;\forall m\mathbb{\in R}

    Khi đó \left\{ \begin{matrix}x_{A} + x_{B} = - \dfrac{b}{a} = 2m \\x_{A}.x_{B} = \dfrac{c}{a} = - 1 \\\end{matrix} ight.. Theo bài ra ta có:

    {x_{A}}^{2} + {x_{B}}^{2} = 2
\Leftrightarrow \left( x_{A} + x_{B} ight)^{2} - 2x_{A}.x_{B} =
2

    \Leftrightarrow 4m^{2} - 2.( - 1) = 2
\Leftrightarrow m = 0

    Vậy m = 0 là giá trị cần tìm.

  • Câu 21: Thông hiểu

    Cho hàm số y = f(x) = x^{3} - 3mx^{2} +
3\left( m^{2} - 1 ight)x với m là tham số. Tìm tất cả các giá trị của m để hàm số f(x) đạt cực đại tại x_{0} = 1?

    Hàm số đạt cực đại tại x_{0} =
1

    \Leftrightarrow \left\{ \begin{matrix}
f'(1) = 0 \\
f''(1) < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
3 - 6m + 3m^{2} - 3 = 0 \\
6 - 6m < 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m = 0 \\
m = 2 \\
\end{matrix} ight.\  \\
m > 1 \\
\end{matrix} ight.\  \Leftrightarrow m = 2

    Vậy đáp án cần tìm là m = 2.

  • Câu 22: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Giá trị cực tiểu của hàm số đã cho là:

    Quan sát bảng biến thiên nhận thấy giá trị cực tiểu của hàm số đã cho là - 4.

  • Câu 23: Vận dụng

    Cho hàm số y =f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m sao cho hàm số y = f(x - m) đồng biến trên khoảng (2020; + \infty). Hỏi tập hợp S có tất cả bao nhiêu phần tử?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m sao cho hàm số y = f(x - m) đồng biến trên khoảng (2020; + \infty). Hỏi tập hợp S có tất cả bao nhiêu phần tử?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 24: Thông hiểu

    Cho hàm số có đồ thị hàm số như hình vẽ.

    Chọn khẳng định đúng trong các khẳng định dưới đây

    Chọn khẳng định đúng trong các khẳng định dưới đây?

    Dựa vào đồ thị hàm số ta thấy:

    \mathop {\lim }\limits_{x \to \infty } y =  - \infty => Hệ số a < 0 => Loại đáp án C và D

    Đồ thị hàm số đi qua điểm \left( {0;d} ight) => d > 0

    Hàm số có ba cực trị => ab < 0

    Do a < 0 => b > 0

    Đồ thị hàm số đi qua điểm có tọa độ \left( {0;c} ight) => c > 0

  • Câu 25: Nhận biết

    Cho hình vẽ là đồ thị hàm số y = f'(x). Hỏi hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

    Từ đồ thị y = f'(x) ta có bảng xét dấu y = f'(x) như sau:

    Vậy hàm số đồng biến trên khoảng (0;1)

  • Câu 26: Nhận biết

    Tìm hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây?

    Dựa vào đồ thị hàm số suy ra đồ thị của hàm số bậc 4 trùng phương và nhánh cuối của đồ thị hàm số đi lên nên hệ số a > 0.

    Đồ thị hàm số cắt trục Oy tại gốc tọa độ nên c = 0

    Vậy hàm số tương ứng đồ thị đã cho là y =x^{4} - 2x^{2}.

  • Câu 27: Vận dụng

    Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 28: Nhận biết

    Chọn hàm số đồng biến trên \mathbb{R}?

    Xét hàm số y = 2x^{3} + 3x + 1 ta có:

    y' = 6x^{2} + 3 > 0;\forall
x\mathbb{\in R}

    Vậy hàm số y = 2x^{3} + 3x + 1 đồng biến trên \mathbb{R}.

  • Câu 29: Nhận biết

    Cho hàm số y = f(x) và có bảng biến thiên trên [-2; 3) như sau:

    GTLN của hàm số trên khoảng là bao nhiêu?

    Giá trị lớn nhất của hàm số trên đoạn [-2; 3] bằng:

    Từ đồ thị của hàm số y = f(x) ta thấy hàm số y = f(x) xác định và liên tục trên đoạn [-2; 3]

    Ta có: f(x) ∈ [-2; 3] với \forall x \in \mathbb{R} => \mathop {\max }\limits_{\left[ { - 2;3} ight]} f\left( x ight) = f\left( 3 ight) = 4

  • Câu 30: Nhận biết

    Cho hàm số y = {x^3} - 3{x^2} + 2. Mệnh đề nào sau đây đúng?

     Ta có:

    \begin{matrix}  y' = 3{x^2} - 6x \hfill \\   \Rightarrow y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 2} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng xét dấu:

    Chọn mệnh đề đúng trong các mệnh đề dưới đây

    Quan sát bảng xét dấu ta thấy:

    + Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞)

    + Hàm số nghịch biến trên các khoảng (0; 2)

  • Câu 31: Thông hiểu

    Tính diện tích lớn nhất của hình chữ nhật ABCD nội tiếp trong nửa đường tròn có bán kính 10cm (hình vẽ).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tính diện tích lớn nhất của hình chữ nhật ABCD nội tiếp trong nửa đường tròn có bán kính 10cm (hình vẽ).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 32: Thông hiểu

    Cho đồ thị hàm số y = \frac{x^{2} - 2x}{1 - x}. Khẳng định nào sau đây đúng?

    Tập xác định D = ( - \infty;1) \cup (1; +
\infty)

    Ta có: y' = - 1 - \frac{1}{(1 -
x)^{2}} < 0;\forall x \in D

    Do đó hàm số nghịch biến trên từng khoảng xác định.

    Vậy khẳng định đúng là: “Hàm số nghịch biến trên các khoảng ( - \infty;1)(1; + \infty)”.

  • Câu 33: Vận dụng cao

    Gọi M, N lần lượt là số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{{x\left( {\sqrt {{x^2} - 3}  - \sqrt {x - 1} } ight)}}{{{x^2} - 4}}. Khi đó m + n bằng:

    Điều kiện  x e 2;x \geqslant \sqrt 3

    Tiệm cận ngang:

    \begin{matrix}  \dfrac{{x\left( {\sqrt {{x^2} - 3}  - \sqrt {x - 1} } ight)}}{{{x^2} - 4}} = \dfrac{{x.\left| x ight|\left( {\sqrt {1 - \dfrac{3}{{{x^2}}}}  - \sqrt {\dfrac{1}{x} - \dfrac{1}{{{x^2}}}} } ight)}}{{{x^2}\left( {1 - \dfrac{4}{x}} ight)}} \hfill \\   = \dfrac{{{x^2}\left( {\sqrt {1 - \dfrac{3}{{{x^2}}}}  - \sqrt {\frac{1}{x} - \dfrac{1}{{{x^2}}}} } ight)}}{{{x^2}\left( {1 - \dfrac{4}{x}} ight)}},\left( {do{\text{ }}x \geqslant \sqrt 3 } ight) = \dfrac{{\sqrt {1 - \dfrac{3}{{{x^2}}}}  - \sqrt {\dfrac{1}{x} - \dfrac{1}{{{x^2}}}} }}{{1 - \frac{4}{x}}} \hfill \\   \Rightarrow \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\sqrt {1 - \dfrac{3}{{{x^2}}}}  - \sqrt {\dfrac{1}{x} - \dfrac{1}{{{x^2}}}} }}{{1 - \dfrac{4}{x}}} = 1 \hfill \\ \end{matrix}

    => Đồ thị hàm số có 1 tiệm cận ngang là y = 1

    Tiệm cận đứng:

    Điều kiện cần: Xét phương trình x2 – 4 = 0 => x = 2 hoặc x = -2

    Điều kiện đủ

    Đặt f\left( x ight) = x\left( {\sqrt {{x^2} - 3}  - \sqrt {x - 1} } ight)

    Xét x = 2 ta có f(2) = 0 nên ta sẽ đi tìm bậc của x – 2 của f(x)

    \begin{matrix}  \sqrt {{x^2} - 3}  - \sqrt {x - 1}  = \dfrac{{\left( {\sqrt {{x^2} - 3}  - \sqrt {x - 1} } ight).\left( {\sqrt {{x^2} - 3}  + \sqrt {x - 1} } ight)}}{{\sqrt {{x^2} - 3}  + \sqrt {x - 1} }} = \dfrac{{{x^2} - x - 2}}{{g\left( x ight)}} = \left( {x - 2} ight).h\left( x ight) \hfill \\   \Rightarrow y = \dfrac{{\left( {x - 2} ight).h\left( x ight)}}{{\left( {x - 2} ight)\left( {x + 2} ight)}} = \dfrac{{h\left( x ight)}}{{x + 2}} \hfill \\ \end{matrix}

    => x = 2 không phải là tiệm cận đứng

    Xét x = -2 ta có f(-2) không tồn tại hay x = -2 không phải là tiệm cận đứng.

    Vậy M = 1, N = 0 => M + N = 1

  • Câu 34: Vận dụng

    Tìm giá trị thực của tham số m để hàm số f(x) = -x3 – 3x2 + m có giá trị nhỏ nhất trên đoạn [-1; 1] bằng 0.

    Xét hàm số f(x) = -x3 – 3x2 + m trên đoạn [-1; 1] ta có:

    f’(x) = -3x2 – 6x

    f’(x) = 0 => \left\{ {\begin{array}{*{20}{c}}  { - 1 \leqslant x \leqslant 1} \\   { - 3{x^2} - 6x = 0} \end{array}} ight. \Leftrightarrow x = 0

    Ta tính được

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 1} ight) = 2 + m} \\   \begin{gathered}  f\left( 0 ight) = m \hfill \\  f\left( 1 ight) =  - 4 + m \hfill \\ \end{gathered}  \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left[ { - 1;1} ight]} f\left( x ight) = f\left( 1 ight) =  - 4 + m \hfill \\   \Leftrightarrow \mathop {\min }\limits_{\left[ { - 1;1} ight]} f\left( x ight) = 0 \Rightarrow m = 4 \hfill \\ \end{matrix}

  • Câu 35: Thông hiểu

    Đồ thị hàm số nào dưới đây có đúng một đường tiệm cận ngang?

    Xét hàm số y = \frac{4x - 2}{x^{2} - 3x +
2} có tập xác định D\mathbb{=
R}\backslash\left\{ 1;2 ight\}

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \left( {\frac{{4x - 2}}{{{x^2} - 3x + 2}}} ight) = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \left( {\frac{{4x - 2}}{{{x^2} - 3x + 2}}} ight) = 0 \hfill \\ 
\end{gathered}  ight.suy ra y =
0 là một tiệm cận ngang của đồ thị hàm số.

    Vậy hàm số có duy nhất một tiệm cận ngang là y = \frac{4x - 2}{x^{2} - 3x + 2}.

  • Câu 36: Nhận biết

    Cho đồ thị hàm số y = f(x) có đồ thị như hình sau:

    Đồ thị hàm số trên có đường tiệm cận đứng là:

    Dựa vào đồ thị hàm số, đường tiệm cận đứng của đồ thị hàm số đã cho là x = - 1.

  • Câu 37: Thông hiểu

    Số đường tiệm cận của đồ thị hàm số y =
\frac{\sqrt{x^{2} + 5} - 3}{x - 2} là:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 2 ight\}

    \lim_{x ightarrow 2}\frac{\sqrt{x^{2}
+ 5} - 3}{x - 2} = \lim_{x ightarrow 2}\frac{x^{2} - 4}{(x - 2)\left(
\sqrt{x^{2} + 5} + 3 ight)}

    = \lim_{x ightarrow 2}\frac{x +
2}{\sqrt{x^{2} + 5} + 3} = \frac{2}{3} nên x = 2 không phải tiệm cận đứng.

    \lim_{x ightarrow -\infty}\dfrac{\sqrt{x^{2} + 5} - 3}{x - 2} = \lim_{x ightarrow -\infty}\dfrac{- \sqrt{1 + \dfrac{5}{x^{2}}} - \dfrac{3}{x}}{1 -\dfrac{2}{x}} = - 1 suy ra y = -
1 là một tiệm cận ngang

    \lim_{x ightarrow +\infty}\dfrac{\sqrt{x^{2} + 5} - 3}{x - 2} = \lim_{x ightarrow +\infty}\dfrac{\sqrt{1 + \dfrac{5}{x^{2}}} - \dfrac{3}{x}}{1 - \dfrac{2}{x}}= 1 suy ra y = 1 là một tiệm cận ngang

    Vậy số đường tiệm cận của đồ thị hàm số y
= \frac{\sqrt{x^{2} + 5} - 3}{x - 2} là 2.

  • Câu 38: Nhận biết

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ cho sau đây?

    Đồ thị hàm số bậc 4 có hệ số a <
0 và có ba điểm cực trị nên ab <
0 nên chọn y = - x^{4} + 2x^{2} +
1.

  • Câu 39: Thông hiểu

    Cho hàm số y = {x^4} - 2{x^2} + 1 có đồ thị (C). Biết rằng đồ thị (C) có ba điểm cực trị tạo thành ba đỉnh của tam giác ABC. Diện tích tam giác ABC bằng:

    Ta có: y' = 4{x^3} - 4x

    Tọa độ các điểm cực trị của đồ thị hàm số là A\left( {0;1} ight),B\left( { - 1;0} ight),C\left( {1;0} ight)

    \begin{matrix}  \overrightarrow {AB}  = \left( { - 1; - 1} ight),\overrightarrow {AC}  = \left( {1; - 1} ight) \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\overrightarrow {AB} .\overrightarrow {AC}  = 0} \\   {AB = AC = \sqrt 2 } \end{array}} ight. \hfill \\ \end{matrix}

    => Tam giác ABC vuông cân tại A => S = \frac{1}{2}AB.AC = 1

  • Câu 40: Nhận biết

    Cho hàm số y = x^{4} - 2x^{2} +
3. Khẳng định nào sau đây đúng?

    Ta thấy hàm số đã cho là hàm trùng phương y = ax^{4} + bx^{2} + c;(a eq 0) với ab < 0 nên đây là trường hợp hàm số có ba điểm cực trị.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 7 lượt xem
Sắp xếp theo