Đồ thị hàm số nào dưới đây có đúng một đường tiệm cận ngang?
Xét hàm số có tập xác định
Ta có: suy ra
là một tiệm cận ngang của đồ thị hàm số.
Vậy hàm số có duy nhất một tiệm cận ngang là .
Đồ thị hàm số nào dưới đây có đúng một đường tiệm cận ngang?
Xét hàm số có tập xác định
Ta có: suy ra
là một tiệm cận ngang của đồ thị hàm số.
Vậy hàm số có duy nhất một tiệm cận ngang là .
Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên
?
Tập xác định
Ta có:
Hàm số nghịch biến trên khi và chỉ khi
Mà
Vậy có tất cả 5 giá trị của tham số m thỏa mãn yêu cầu đề bài đưa ra.
Cho
hàm số có
. Hàm số
đồng biến trên khoảng nào dưới đây?
Xét dấu f’(x) như sau:

Ta có:
Chọn ta có:
=> là khoảng âm
Khi đó bảng xét dấu của y’ = (f(x2))’ như sau:

Từ trục xét dấu ta thấy. Hàm số y = f(x2) đồng biến trên (-1; 0)
Hàm số
nghịch biến trên khoảng nào?
Ta có:
=> Hàm số nghịch biến trên khoảng (2; 3)
Tìm tất cả các giá trị thực của tham số
để hàm số
đồng biến trên từng khoảng xác định?
Tập xác định
Ta có:
Hàm số đã cho đồng biến trên từng khoảng xác định khi và chỉ khi
Vậy đáp án cần tìm là .
Tìm điều kiện cần và đủ của tham số thực ủa tham số
để đường thẳng
cắt đồ thị
tại ba điểm phân biệt là:
Phương trình hoành độ giao điểm của hai đồ thị:
(*) là phương trình hoành độ giao điểm của hai đồ thị
Xét hàm số có
Bảng biến thiên
Vậy theo yêu cầu bài toán
Cho hàm số
liên tục và có bảng biến thiên trên đoạn
như hình vẽ bên. Khẳng định nào sau đây đúng?

Dựa vào bảng biến thiên ta thấy: tại
.
Suy ra .
Gọi
là tập hợp các giá trị
để tiệm cận xiên của đồ thị hàm số
tạo với hai trục hệ tọa độ
một tam giác có diện tích bằng 2. Khi đó tổng các giá trị của
bằng bao nhiêu?
Gọi là tập hợp các giá trị
để tiệm cận xiên của đồ thị hàm số
tạo với hai trục hệ tọa độ
một tam giác có diện tích bằng 2. Khi đó tổng các giá trị của
bằng bao nhiêu?
Hàm số
trên đoạn
có giá trị nhỏ nhất bằng:
Ta có:
. Khi đó
suy ra
.
Cho hàm số
, hàm số
liên tục trên
và có đồ thị như sau:

Bất phương trình
(với
là một số thực) nghiệm đúng với mọi
khi và chỉ khi:
Ta có:
Xét hàm số ta có:
. Với
thì
Từ đó nên hàm số nghịch biến trên
Suy ra . Yêu cầu bài toán tương đương với
.
Cho hàm số
có đồ thị như hình vẽ:

Tổng các giá trị nguyên của tham số
để hàm số
có
điểm cực trị bằng:
Cho hàm số có đồ thị như hình vẽ:
Tổng các giá trị nguyên của tham số để hàm số
có
điểm cực trị bằng:
Có bao nhiêu giá trị thực của tham số
để hàm số
có điểm cực đại
và điểm cực tiểu
thỏa mãn biểu thức
?
Ta có: có
nên
.
Hàm số có cực đại và cực tiểu khi và chỉ khi .
Trường hợp 1:
Do
Lại có
Với điều kiện thỏa mãn.
Trường hợp 2:
Do
Lại có
Với điều kiện thỏa mãn.
Vậy có 2 giá trị thực của tham số m thỏa mãn.
Số đường tiệm cận của đồ thị hàm số
là:
Tập xác định
nên
không phải tiệm cận đứng.
suy ra
là một tiệm cận ngang
suy ra
là một tiệm cận ngang
Vậy số đường tiệm cận của đồ thị hàm số là 2.
Cho hàm số
có bảng biến thiên như hình vẽ:

Hàm số
nghịch biến trong khoảng nào dưới đây?
Ta có:
Xét
Ta có bảng xét dấu:
Vậy đáp án cần tìm là .
Tìm tất cả các giá trị thực của tham số m để hàm số
đồng biến trên khoảng
?
Ta có:
Hàm số đồng biến trên khoảng
Vậy đáp án cần tìm là: .
Xác định hàm số đồng biến trên
?
Xét hàm số ta có:
Suy ra hàm số đồng biến trên
.
Cho hàm số
có đồ thị như hình vẽ sau. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Dựa vào đồ thị ta có hàm số đồng biến trên khoảng
Cho hàm số
. Gọi M là giá trị lớn nhất và m là giá trị nhỏ nhất của hàm số đã cho. Chọn mệnh đề đúng.
Đặt
Khi đó
Vậy M = 1; m = 0 => M = m + 1
Cho hàm số
có đồ thị như hình vẽ:

Tập hợp các giá trị của tham số
để phương trình
có đúng ba nghiệm phân biệt là:
Đồ thị hàm số có được bằng cách tịnh tiến đồ thị hàm số
sang trái hoặc sang phải theo phương song song với trục hoành
đơn vị.
Suy ra phương trình có đúng ba nghiệm phân biệt khi và chỉ khi
.
Cho hàm số y = f(x) liên tục trên và y = f’(x) có bảng biến thiên như sau:

Đồ thị hàm số
có nhiều nhất bao nhiêu tiệm cận đứng:
Điều kiện
Để đồ thị hàm số có đường tiệm cận đứng
thì phải có nghiệm.
Từ bảng biến thiên của hàm số y = f’(x) suy ra phương trình f’(x) = 0 có đúng hai nghiệm là với
Từ đó ta có bảng biến thiên của hàm số y = f(x) như sau:

=> Phương trình y = f(x) có nhiều nhất ba nghiệm phân biệt
Vậy đồ thị hàm số có nhiều nhất ba đường tiệm cận đứng.
Cho hàm số
với
là tham số. Gọi
tập hợp tất cả các giá trị nguyên của tham số
thỏa mãn
. Số phần tử của tập hợp
bằng:
Ta có:
Đạo hàm
và
Suy ra
Mà
Vậy có tất cả 11 giá trị nguyên của tham số m.
Giá trị lớn nhất của hàm số
trên đoạn
là:
Ta có:
Cho hàm số
có bảng xét dấu như sau:

Hỏi hàm số
nghịch biến trên các khoảng nào dưới đây?
Ta có:
Xét
Bảng xét dấu là:
Căn cứ vào bảng xét dấu ta thấy
Hàm số nghịch biến trên khoảng
.
Đồ thị của hàm số nào dưới đây có dạng như trong hình vẽ?

Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng với
Vậy hàm số cần tìm là .
Đồ thị hàm số
được biểu diễn bởi hình vẽ:

Điểm cực tiểu của hàm số đã cho là:
Quan sát đồ thị của hàm số ta thấy hàm số có điểm cực tiểu là .
Cho hàm số
có đạo hàm
. Số điểm cực trị của hàm số đã cho là:
Ta có:
Vì là nghiệm bội lẻ và
là nghiệm bội chẵn nên hàm số có hai điểm cực trị.
Cho hàm số
có bảng biến thiên trên đoạn
như hình vẽ:

Có bao nhiêu giá trị của tham số
trên đoạn
sao cho giá trị lớn nhất của hàm số
trên đoạn
bằng
?
Ta có:
Suy ra
Khi đó hay
Theo yêu cầu bài toán
Nhìn vào bảng biến thiên ta thấy có ba nghiệm
Vậy có 3 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số
có bảng biến thiên như sau:

Tổng các giá trị nguyên của tham số
để đường thẳng
cắt đồ thị hàm số tại ba điểm phân biệt bằng bao nhiêu?
Hình vẽ minh họa
Đường thẳng cắt đồ thị hàm số tại ba điểm phân biệt
Mà
Vậy tổng tất cả các giá trị nguyên của tham số m thỏa mãn yêu cầu bằng -5.
Cho hàm số
có đạo hàm
. Hỏi hàm số
có bao nhiêu cực trị?
Cho hàm số có đạo hàm
. Hỏi hàm số
có bao nhiêu cực trị?
Cho hàm số f(x) có đạo hàm trên
. Đồ thị của hàm số
trên đoạn
là đường cong hình bên. Mệnh đề nào dưới đây đúng?

Dựa vào thị của hàm số trên đoạn
ta thấy
.
Ta có bảng BBT:
Do đó .
Gọi
lần lượt là số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Đồ thị hàm số không có tiệm cận ngang.
ta có
là tiệm cận đứng.
ta có:
là tiệm cận đứng.
Vậy .
Tìm điểm M thuộc đồ thị hàm số
sao cho khoảng cách từ M đến tiệm cận đứng bằng khoảng cách từ điểm M đến trục hoành:
Do M thuộc đồ thị hàm số nên tọa độ điểm
Phương trình tiệm cận đứng là x – 1 = 0 (d’)
Giải phương trình d(M,d’) = d(M, Ox)
=>
Số điểm cực trị của hàm số
là:
Tập xác định
Ta có:
Ta có bảng xét dấu:
Vậy hàm số có hai điểm cực trị.
Đồ thị hàm số
có bao nhiêu tiệm cận đứng và tiệm cận ngang?
Ta có: nên đường thẳng
là tiệm cận ngang của đồ thị hàm số.
nên đường thẳng
là tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số có số tiệm cận đứng và tiệm cận ngang là 2.
Đồ thị hàm số
có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:
Ta có: => Đồ thị hàm số có tiệm cận đứng là x = -2
Ta có: => y = -3 là tiệm cận ngang của đồ thị hàm số.
Đồ thị được cho dưới đây là đồ thị của hàm số nào?

Đồ thị hàm số hình chữ N ngược => Đây là hàm số bậc 3 dạng
Cho đồ thị hàm số sau:

Xác định hàm số tương ứng với đồ thị đã cho?
Dựa vào đồ thị hàm số đã cho, ta thấy đồ thị này là đồ thị hàm số bậc có hệ số
nên hàm số tương ứng là
.
Cho hàm số
có bảng biến thiên của hàm số
như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?

Đáp án: 6
Cho hàm số có bảng biến thiên của hàm số
như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Đáp án: 6
Để hàm số đồng biến trên khoảng
Đặt và
.
Ta có: .
Do đó, ta có: khi
.
Do đó, .
Từ ta có
.
Mà .
Vậy có tất cả 6 số nguyên thỏa mãn.
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho đạt cực đại tại
. Đúng||Sai
b) Hàm số đã cho đạt cực tiểu tại
. Sai|| Đúng
c) Hàm số đã cho có giá trị cực đại và cực tiểu lần lượt là
. Sai|| Đúng
d) Đồ thị hàm số
có điểm cực đại là
. Sai|| Đúng
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho đạt cực đại tại . Đúng||Sai
b) Hàm số đã cho đạt cực tiểu tại . Sai|| Đúng
c) Hàm số đã cho có giá trị cực đại và cực tiểu lần lượt là . Sai|| Đúng
d) Đồ thị hàm số có điểm cực đại là
. Sai|| Đúng
Ta có:
Bảng biến thiên
a) Dựa vào bảng biến thiên ta thấy hàm số đạt cực đại tại
b) Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại
c) Dựa vào bảng biến thiên ta thấy hàm số giá trị cực đại và cực tiểu lần lượt là
d) Dựa vào bảng biến thiên ta thấy hàm số có được bằng cách tịnh tiến đồ thị
lên trên 3 đơn vị. Suy ra đồ thị hàm số
có điểm cực đại là
.
Có bao nhiêu giá trị thực của tham số
để hàm số
đạt cực tiểu tại điểm
?
Ta có:
Hàm số đạt cực tiểu tại
Với ta được
. Hàm số đạt cực tiểu tại
(thỏa mãn yêu cầu)
Với ta được
. Hàm số đạt cực đại tại
và đạt cực tiểu tại
(không thỏa mãn)
Vậy có duy nhất một giá trị của tham số m thỏa mãn yêu cầu đề bài.