Cho hàm số bậc ba
có đồ thị là đường cong hình bên.

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Từ đồ thị đã cho ta thấy hàm số nghịch biến trên khoảng .
Cho hàm số bậc ba
có đồ thị là đường cong hình bên.

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Từ đồ thị đã cho ta thấy hàm số nghịch biến trên khoảng .
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ:

Tìm tập hợp tất cả các giá trị của tham số
để phương trình
có nghiệm thuộc khoảng
?
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Tìm tập hợp tất cả các giá trị của tham số để phương trình
có nghiệm thuộc khoảng
?
Chọn hàm số tương ứng với bảng biến thiên sau?

Từ bảng biến thiên ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Biết rằng
. Định giá trị tham số
?
Xét hàm số trên
Hàm số liên tục trên
Ta có:
Do đó hàm số nghịch biến trên khoảng
Vậy là giá trị cần tìm.
Cho hàm số
xác định, liên tục trên
và có bảng biến thiên như sau:

Khẳng định nào sau đây đúng?
Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại .
Tập hợp tất cả các giá trị của tham số
để hàm số
đạt cực tiểu tại
là:
Ta có:
Trường hợp 1: . Khi đó ta có bảng xét dấu như sau:
Dựa vào bảng biến thiên ta thấy là điểm cực đại nên trường hợp này không thỏa mãn.
Trường hợp 2: ta có bảng xét dấu như sau:
Dựa vào bảng biến thiên ta thấy là điểm cực tiểu. Vậy
thỏa mãn yêu cầu bài toán.
Biết
là giá trị của tham số
để hàm số
có hai điểm cực trị
thỏa mãn
. Tính giá trị biểu thức
?
Xét hàm số
Ta có:
Hàm số có hai điểm cực trị khi và chỉ khi phương trình (*) có hai nghiệm phân biệt:
Khi đó theo định lí Vi – et ta có:
Theo giả thiết:
Cho hàm số y = f(x) liên tục trên và có bảng biến thiên như hình vẽ.

Biết f(-4) > f(8), khi đó giá trị nhỏ nhất của hàm số đã cho trên bằng:
Từ bảng biến thiên ta có:
Mặt khác f(-4) > f(8) => thì
Vậy
Tìm tất cả các giá trị thực của tham số
để giá trị nhỏ nhất của hàm số
trên
bằng
?
Ta có:
Xét
Mà và
Khi đó
Theo đề bài ra ta có:
Vậy đáp án cần tìm là .
Cho hàm số bậc bốn y = f(x) có đồ thị (C1) và hàm số y = f’(x) có đồ thị (C2) như hình vẽ bên. Số điểm cực trị của đồ thị hàm số
trên khoảng
là:

Ta có:

Xét
Từ đồ thị ta được:
Phương trình có nghiệm đơn
Phương trình có 2 nghiệm đơn và 1 nghiệm bội chẵn (x = 0)
Phương trình có 1 nghiệm đơn.
Vậy g’(x) = 0 có 8 nghiệm đơn nên hàm số g(x) có 8 điểm cực trị.
Cho đồ thị hàm số như sau:

Đồ thị hàm số đã cho có phương trình tiệm cận đứng và tiệm cận ngang lần lượt là:
Dựa vào đồ thị hàm số ta thấy phương trình tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là .
Cho hàm số
có đồ thị như hình vẽ sau:

Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Tính giá trị của biểu thức
?
Cho hàm số có đồ thị như hình vẽ sau:
Gọi lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Tính giá trị của biểu thức
?
Tìm các giá trị của tham số m để bất phương trình
nghiệm đúng với mọi ![]()
Xét hàm số ta có:
=>
Ta có:
Cho hàm số
có đồ thị như hình vẽ:

Xác định khoảng đồng biến của hàm số
?
Từ đồ thị hàm số ta có:
và
Ta có:
Khi đó:
Vậy hàm số đồng biến trên khoảng
.
Tổng tất cả các giá trị thực của m để hàm số
đồng biến trên R bằng:
Ta có:
Hàm số đã cho đồng biến trên R khi và chỉ khi
Và dấu bằng xảy ra chỉ tại một số hữu hạn điểm.
Điều kiện cần
Ta thấy phương trình y ‘ = 0 có một nghiệm x = -1 nên để thì y’ không đổi dấu qua khi x = -1 khi đó phương trình y’ = 0 có nghiệm kép là x = -1 (x = -1 không thể laf nghiệm bội 4 của phương trình y’ = 0 vì y’ không chứa số hạng x3)
Ta suy ra được y’’(-1) = 0
=>
Điều kiện đủ:
Với m = - 2 ta có:
=> Hàm số đồng biến trên R
=> m = -2 thỏa mãn điều kiện đề bài.
Với ta có:
=> Hàm số đồng biến trên R
=> thỏa mãn điều kiện đề bài
Vậy là các giá trị cần tìm.
=> Tổng các giá trị thực của m cần tìm thỏa mãn yêu cầu bài toán là
Đường tiệm cận xiên của đồ thị hàm số
là đường thẳng có phương trình
Tập xác định: .
Phương trình đường tiệm cận xiên có dạng: .
Trong đó,
.
Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng
Cho hàm số y = f(x) liên tục trên
và có bảng biến thiên như hình vẽ dưới đây

Hàm số y = f(x) là hàm số nào trong các hàm số sau:
Dựa vào bảng biến thiên ta thấy:
=> Hệ số a > 0
=> Loại đáp án B và C
Mặt khác hàm số đạt cực trị tại x = 0 và x = 2
=> Loại đáp án D
Tìm giá trị lớn nhất của hàm số
trên đoạn
?
Ta có:
.
Cho x, y là các số thực dương thỏa mãn điều kiện
. Tổng giá trị lớn nhất và nhỏ nhất của biểu thức
bằng:
Ta có:
Lại có:
Từ đó
Xét hàm số
=> Hàm số đồng biến trên
=>
=>
Cho hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Ta có:
Ta có bảng xét dấu
Suy ra hàm số đồng biến trên khoảng .
Có bao nhiêu số nguyên của tham số
để hàm số
đạt cực tiểu tại
?
Ta có: . Để hàm số
đạt cực tiểu tại
:
Vậy có suy nhất một giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Cho hàm số bậc ba có bảng biến thiên như sau:

Chọn khẳng định đúng?
Quan sát bảng biến thiên ta suy ra a < 0
Ta có: có hai nghiệm dương nên
Cho hàm số
có bảng biến thiên như sau:

Xác định hàm số
?
Từ bảng biến thiên ta suy ra hàm số cần tìm là hàm số bậc ba
Vì nên đáp án là
.
Cho hàm số
. Trong các khẳng định sau, khẳng định nào là khẳng định đúng?
Điều kiện
Từ điều kiện ta có:
Đồ thị hàm số không có tiệm cận đứng
Mặt khác
=> y = 0 là tiệm cận ngang của đồ thị hàm số
Không tồn tại
Vậy đồ thị hàm số không có tiệm cận đứng và có đúng một tiệm cận ngang
Cho hàm số
có bảng biến thiên như sau:

Giá trị nhỏ nhất của hàm số đã cho trên đoạn
bằng bao nhiêu?
Giá trị nhỏ nhất của hàm số đã cho trên đoạn bằng
.
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số
không có cực trị. Số phần tử của S là:
Xét hàm số ta có:
Hàm số đã cho không có cực trị
=> Phương trình y’ = 0 vô nghiệm hoặc có nghiệm kép
=>
Do m là số nguyên nên
Vậy tập S có 4 phần tử.
Cho hàm số có bảng biến thiên như hình dưới đây.

Khẳng định nào sau đây là đúng?
Từ bảng biến thiên ta nhận thấy đạo hàm của hàm số đổi dấu từ dương sang âm qua nghiệm 0 nên hàm số đạt cực đại tại 0 và giá trị cực đại của hàm số bằng 0.
Cho hàm số
với
là tham số. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số đã cho đồng biến trên
?
Cho hàm số với
là tham số. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số đã cho đồng biến trên
?
Cho hàm số bậc ba
có đồ thị như hình vẽ:

Có bao nhiêu giá trị của m để hàm số
có 3 tiệm cận đứng?
Cho hàm số bậc ba có đồ thị như hình vẽ:

Có bao nhiêu giá trị của m để hàm số có 3 tiệm cận đứng?
Xác định tâm đối xứng của đồ thị hàm số
?
Ta có:
suy ra tiệm cận ngang là
suy ra tiệm cận đứng là
Tâm đối xứng của đồ thị hàm số là .
Hàm số nào dưới dây nghịch biến trên tập số thực?
Ta thấy hàm số có tập xác định
và đạo hàm
nên nghịch biến trên
.
Đồ thị hàm số
được biểu diễn bởi hình vẽ:

Điểm cực tiểu của hàm số đã cho là:
Quan sát đồ thị của hàm số ta thấy hàm số có điểm cực tiểu là .
Đồ thị hàm số
có bao nhiêu đường tiệm cận?
Tập xác định
Vì tập xác định của hàm số không chứa và
nên đồ thị hàm số không có đường tiệm cận ngang.
Lại có: . Vậy đồ thị hàm số có 1 đường tiệm cận đứng
.
Điều kiện của tham số
để hàm số
nghịch biến trên từng khoảng xác định là:
Xét hàm số ta có:
Tập xác định
Ta có:
Hàm số nghịch biến trên từng khoảng xác định
Vậy đáp án cần tìm là .
Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
có đúng ba đường tiệm cận?
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng ba đường tiệm cận?
Cho hàm số
. Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?
Tập xác định suy ra đồ thị hàm số không có đường tiệm cận ngang và đường tiệm cận xiên
suy ra đồ thị nhận đường thẳng
làm tiệm cận đứng.
Vậy đồ thị hàm số có một đường tiệm cận.
Cho hàm số có đồ thị như hình vẽ sau:

Chọn mệnh đề đúng?
Ta có:
Đồ thị hàm số cắt trục tung tại điểm có tung độ dương => d > 0
Ta có: , nhận thấy hoành độ hai điểm cực trị của đồ thị hàm số có
Tìm điều kiện của tham số
để hàm số
đồng biến trên từng khoảng xác định?
Tập xác định
Ta có: .
Để hàm số đồng biến trên từng khoảng xác định
Vậy giá trị cần tìm là .
Cho đồ thị hàm số
:

Có bao nhiêu giá trị nguyên của tham số
để phương trình
có ba nghiệm phân biệt?
Ta có:
Để phương trình có ba nghiệm ta phải có
Vậy có 2 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Cho hàm số
liên tục, có đạo hàm trên
. Đồ thị hàm số
như sau:

Hàm số
nghịch biến trên khoảng
. Giá trị lớn nhất của
bằng bao nhiêu?
Cho hàm số liên tục, có đạo hàm trên
. Đồ thị hàm số
như sau:
Hàm số nghịch biến trên khoảng
. Giá trị lớn nhất của
bằng bao nhiêu?