Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho hàm số f(x) liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như sau:

    Số cực trị của hàm số

    Hàm số g\left( x ight) = f\left( {\left| {\frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}} ight|} ight) có bao nhiêu điểm cực trị?

    Xét hàm số t\left( x ight) = \frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}, ta có bảng giá trị |t(x)|

    Số cực trị của hàm số

    Ta có: g\left( x ight) = f\left( {\left| {\frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}} ight|} ight) = f\left( {\left| {t\left( x ight)} ight|} ight)

    Hàm số không có đạo hàm tại điểm x =  \pm \sqrt {{e^2} - 1}

    Tại mọi điểm x =  \pm \sqrt {{e^2} - 1} ta có:

    g'\left( x ight) = f'\left( {\left| {t\left( x ight)} ight|} ight).\left( {\left| {t\left( x ight)} ight|} ight)'

    = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{f'\left( {\left| {t\left( x ight)} ight|} ight).x}}{{{x^2} + 1}}{\text{    khi x}} \in \left( { - \infty ; - \sqrt {{e^2} - 1} } ight) \cup \left( {\sqrt {{e^2} - 1} ; + \infty } ight)} \\   { - \dfrac{{f'\left( {\left| {t\left( x ight)} ight|} ight).x}}{{{x^2} + 1}}{\text{    khi x}} \in \left( { - \sqrt {{e^2} - 1} ;\sqrt {{e^2} - 1} } ight)} \end{array}} ight.\left( * ight)

    => g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {\left| {t\left( x ight)} ight| = {t_1};\left( {{t_1} < 1} ight){\text{   }}\left( 1 ight)} \\   {\left| {t\left( x ight)} ight| = {t_2};\left( { - 1 < {t_2} < 0} ight){\text{   }}\left( 2 ight)} \\   {\left| {t\left( x ight)} ight| = {t_3};\left( {0 < {t_3} < 1} ight){\text{   }}\left( 3 ight)} \\   {\left| {t\left( x ight)} ight| = {t_4};\left( {{t_4} > 1} ight){\text{   }}\left( 4 ight)} \end{array}} ight.

    Dựa vào bảng giá trị hàm |t| suy ra:

    + Phương trình (1), (2) vô nghiệm

    + Phương trình (3) có 4 nghiệm phân biệt khác 0

    + Phương trình (4) có hai nghiệm phân biệt khác 0 và khác các nghiệm của phương trình (3)

    => g’(x) = 0 có 7 nghiệm và qua các nghiệm này g’(x) đều đổi dấu

    Từ (*) ta thấy g’(x) cũng đổi dấu khi x đi qua 2 điểm x =  \pm \sqrt {{e^2} - 1}

    Vậy hàm số g(x) có 9 điểm cực trị.

  • Câu 2: Thông hiểu

    Đồ thị hàm số y = \frac{x + 1}{x^{2} -
2020x - 2021} có bao nhiêu tiệm cận đứng?

    Ta có: x^{2} - 2020x - 2021 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 2021 \\
\end{matrix} ight.

    \lim_{x ightarrow - 1}y = \lim_{x
ightarrow - 1}\frac{x + 1}{x^{2} - 2020x - 2021}

    = \lim_{x ightarrow - 1}\frac{x +
1}{(x + 1)(x - 2021)} = \lim_{x ightarrow - 1}\frac{1}{x - 2021} = -
\frac{1}{2022}

    Lại có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{2021}^ + }} \frac{{x + 1}}{{\left( {x + 1} ight)\left( {x - 2021} ight)}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {{2021}^ - }} \frac{{x + 1}}{{\left( {x + 1} ight)\left( {x - 2021} ight)}} =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x =
2021 là tiệm cận đứng của đồ thị hàm số

    Vậy hàm số đã cho có 1 tiệm cận đứng.

  • Câu 3: Thông hiểu

    Tìm giá trị của tham số m để giá trị nhỏ nhất của hàm số y = \frac{2x + m}{x
+ 1} trên đoạn \lbrack
0;4brack bằng 5?

    Ta có: y' = \frac{2 - m}{(x +
1)^{2}};y(0) = m;y(4) = \frac{8 + m}{5}

    \mathop {\min }\limits_{\left[ {0;4} ight]} f\left( x ight) = 5 \Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  y' < 0 \hfill \\
  y\left( 4 ight) = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  y' > 0 \hfill \\
  y\left( 0 ight) = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  2 - m < 0 \hfill \\
  \frac{{8 + m}}{5} = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  2 - m > 0 \hfill \\
  m = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  m > 2 \hfill \\
  m = 17 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  m < 2 \hfill \\
  m = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow m = 17

    Vậy giá trị cần tìm là m =
17.

  • Câu 4: Nhận biết

    Cho hàm số y =
f(x) có đồ thị là đường cong trong hình vẽ:

    Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Trên khoảng (0;1) đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến trên (0;1).

  • Câu 5: Thông hiểu

    Cho hàm số y = f(x) = ax^{3} + bx^{2} +
cx + d có đồ thị cắt trục Ox tại ba điểm phân biệt. Hỏi số cực trị của hàm số y = \left| f(x) ight| bằng bao nhiêu?

    Vì đồ thị hàm số y = f(x) = ax^{3} +
bx^{2} + cx + d cắt trục hoành tại ba điểm phân biệt nên hàm số có 2 điểm cực trị giả sử đồ thị của hàm số đó như sau:

    Số điểm cực trị của hàm số là 2

    Số nghiệm bội lẻ của phương trình là 3

    Khi đó số điểm cực trị của hàm số y =
\left| f(x) ight| là 2 + 3 = 5

  • Câu 6: Vận dụng

    Giá trị của tham số m để bất phương trình (x - 2 - m)\sqrt{x - 1} \leq m - 4 có nghiệm là:

    Đặt t = \sqrt{x - 1};(t \geq
0)

    Khi đó bất phương trình ban đầu trở thành:

    \left( t^{2} - m - 1 ight).t \leq m - 4
\Leftrightarrow m \geq \frac{t^{3} - t + 4}{t + 1}

    Xét hàm số f(t) = \frac{t^{3} - t + 4}{t
+ 1} trên \lbrack 0; +
\infty)

    Ta có: f'(t) = \frac{2t^{3} + 3t^{2}
- 5}{(t + 1)^{2}} = \frac{(t - 1)\left( 2t^{2} + 5t + 5 ight)}{(t +
1)^{2}}

    f'(t) = 0 \Leftrightarrow t =
1

    Bảng biến thiên của f(t) = \frac{t^{3} -
t + 4}{t + 1};t \in \lbrack 0; + \infty)

    Từ bảng biến thiên suy ra để bất phương trình có nghiệm thì m \geq 2.

  • Câu 7: Vận dụng

    Giá trị của tham số m sao cho hàm số y = {x^3} - 2m{x^2} - \left( {m + 1} ight)x + 1 nghịch biến trên khoảng (0; 2)?

    Ta có: y' = 3{x^2} - 4mx - m - 1

    Hàm số nghịch biến trên khoảng (0; 2)

    => 3{x^2} - 4mx - m - 1 \leqslant 0,x \in \left[ {0;2} ight]

    => 3{x^2} - 1 \leqslant 3\left( {4x + 1} ight) \Leftrightarrow \frac{{3{x^2} - 1}}{{4x + 1}} \leqslant m,\left( {\forall x \in \left[ {0;2} ight]} ight)

    Xét hàm số g\left( x ight) = \frac{{3{x^2} - 1}}{{4x + 1}};\forall x \in \left[ {0;2} ight]

    Ta có: g'\left( x ight) = \frac{{6x\left( {4x + 1} ight) - 4\left( {3{x^2} - 1} ight)}}{{{{\left( {4x + 1} ight)}^2}}} = \frac{{12{x^2} + 6x + 4}}{{{{\left( {4x + 1} ight)}^2}}};\forall x \in \left[ {0;2} ight]

    => g(x) đồng biến trên đoạn [0; 2]

    Ta có:

    \begin{matrix}  g\left( x ight) = \dfrac{{3{x^2} - 1}}{{4x + 1}} \leqslant m;\forall x \in \left[ {0;2} ight] \hfill \\   \Rightarrow m \geqslant g\left( 2 ight) = \dfrac{{11}}{9} \hfill \\ \end{matrix}

  • Câu 8: Vận dụng cao

    Tồn tại bao nhiêu giá trị nguyên của tham số m \in \lbrack - 30;30brack sao cho đồ thị hàm số y = \frac{2x^{2} + 5}{x^{3} + (m
- 4)x + 2m} có ít nhất một tiệm cận đứng nằm bên phải trục tung?

    Để đồ thị hàm số có ít nhất một tiệm cận đứng nằm bên phải trục tung thì phương trình x^{3} + (m - 4)x + 2m =
0 có ít nhất 1 nghiệm dương.

    Ta có:

    x^{3} + (m - 4)x + 2m = 0

    \Leftrightarrow x^{3} - 4x + mx + 2m =
0

    \Leftrightarrow x(x - 2)(x + 2) + m(x +
2) = 0

    \Leftrightarrow (x + 2)\left( x^{2} - 2x
+ m ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x^{2} - 2x + m = 0(*) \\
\end{matrix} ight.

    Để (∗) có ít nhất 1 nghiệm dương thì:

    TH1: (*) có 2 nghiệm trái dấu \Leftrightarrow m < 0

    m \in \lbrack -
30;30brack;m\mathbb{\in Z} nên m
\in \{ - 30; - 29;\ldots; - 1\}.

    TH2: (*) có 2 nghiệm phân biệt 0 \leq
x_{1} < x_{2}

    \Leftrightarrow \left\{ \begin{matrix}
\Delta^{'} = 1 - m > 0 \\
x_{1}x_{2} = m \geq 0 \\
x_{1} + x_{2} = 2 > 0 \\
\end{matrix} \Leftrightarrow 0 \leq m < 1. ight.

    m \in \lbrack -
30;30brack;m\mathbb{\in Z} nên m
= 0.

    TH3: (*) có nghiệm kép lớn hơn 0.

    \Leftrightarrow \left\{ \begin{matrix}
\Delta^{'} = 1 - m = 0 \\
x_{1}x_{2} = m > 0 \\
x_{1}x_{2} > 0 \\
\end{matrix} \Leftrightarrow 0 < m \leq 1 ight..

    m \in \lbrack -
30;30brack;m\mathbb{\in Z} nên m
= 1.

    Vậy m \in \{ - 30; - 29;\ldots;1\}
\Rightarrow có 32 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

  • Câu 9: Thông hiểu

    Đồ thị của hàm số nào trong bốn hàm số sau có đường tiệm ngang?

    Ta có:

    y = \frac{x}{1 + \sqrt{x}} không có tiệm cận ngang vì \lim_{x ightarrow +
\infty}\frac{x}{1 + \sqrt{x}} = + \infty

    y = x^{3} - 3x không có tiệm cận ngang vì \lim_{x ightarrow \pm
\infty}\left( x^{3} - 3x ight) = \pm \infty

    y = \log_{2}x không có tiệm cận ngang vì \lim_{x ightarrow + \infty}\left(\log_{2}x ight) = + \infty

    y = x + \sqrt{x^{2} + 4} có tiệm cận ngang vì \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } \left( {x + \sqrt {{x^2} + 4} } ight) =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } \left( {x + \sqrt {{x^2} + 4} } ight) = 0 \hfill \\ 
\end{gathered}  ight.

  • Câu 10: Nhận biết

    Giá trị nhỏ nhất của hàm số y = x^{3} -
3x + 4 trên đoạn \lbrack
0;2brack là:

    Ta có: y' = 3x^{2} - 3 = 0
\Leftrightarrow x = \pm 1

    Lại có: \left\{ \begin{matrix}
f(0) = 4 \\
f(1) = 2 \\
f(2) = 6 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;2brack}y =
2

  • Câu 11: Vận dụng cao

    Cho hai số thực a, b dương thỏa mãn 2\left( {{a^2} + {b^2}} ight) + ab = \left( {a + b} ight)\left( {ab + 2} ight). Giá trị nhỏ nhất của biểu thức T = 4\left( {\frac{{{a^3}}}{{{b^3}}} + \frac{{{b^3}}}{{{a^3}}}} ight) - 9\left( {\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{a^2}}}} ight) bằng:

    Ta có:

    2\left( {\frac{a}{b} + \frac{b}{a}} ight) + 1 = \left( {a + b} ight)\left( {1 + \frac{2}{{ab}}} ight) = a + b + \frac{2}{a} + \frac{2}{b}

    \geqslant 2\sqrt {2\left( {a + b} ight)\left( {\frac{1}{a} + \frac{1}{b}} ight)}  = 2\sqrt {2\left( {2 + \frac{a}{b} + \frac{b}{a}} ight)}

    Đặt t = \frac{a}{b} + \frac{b}{a} \Rightarrow t \geqslant \frac{5}{2}

    \Rightarrow P = 4\left( {{t^3} - 3t} ight) - 9\left( {{t^2} - 2} ight) = 4{t^3} - 9{t^2} - 12t + 18 = f\left( t ight)

    \begin{matrix}  f'\left( t ight) = 12{t^2} - 18t - 12 > 0,\forall t > \dfrac{5}{2} \hfill \\   \Rightarrow f\left( t ight) \geqslant f\left( {\dfrac{5}{2}} ight) =  - \dfrac{{23}}{4} \hfill \\ \end{matrix}

  • Câu 12: Nhận biết

    Gọi giá trị nhỏ nhất của hàm số y =
\frac{x - 1}{x + 1} trên đoạn \lbrack 0;3brackm. Chọn khẳng định đúng?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    Ta có: y' = \frac{2}{(x + 1)^{2}}
> 0;\forall x \in D

    Suy ra hàm số đồng biến trên \lbrack
0;3brack suy ra \min_{\lbrack
0;3brack}y = f(0) = - 1 = m

  • Câu 13: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để hàm số y = \frac{x - m}{x + 1} đồng biến trên từng khoảng xác định?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    Ta có: y' = \frac{m + 1}{(x +
1)^{2}};\forall x eq - 1

    Hàm số đã cho đồng biến trên từng khoảng xác định khi và chỉ khi y' > 0

    \Leftrightarrow \frac{m + 1}{(x +
1)^{2}} > 0 \Leftrightarrow m + 1 > 0 \Leftrightarrow m > -
1

    Vậy đáp án cần tìm là m > -
1.

  • Câu 14: Nhận biết

    Cho hình vẽ:

    Đường trong trong hình vẽ là đồ thị của hàm số nào?

    Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng y = ax^{3} + bx^{2} + cx + d với a > 0

    Vậy hàm số cần tìm là y = x^{3} - 3x +
1.

  • Câu 15: Nhận biết

    Hàm số nào sau đây không có điểm cực trị?

    Các hàm số y = x^{2} + x - 1; y = x^{2} + 3x - 1; y = x^{4} + 2x^{2} - 1 đều có một điểm cực trị.

    Xét hàm số y = x^{3} + 6x + 3 ta có: y' = 3x^{2} + 6 > 0;\forall
x\mathbb{\in R} nên hàm số không có cực trị.

  • Câu 16: Nhận biết

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào dưới đây?

    Xác định hàm số y = f(x)

    Dựa vào đồ thị hàm số ta thấy

    \mathop {\lim }\limits_{x \to \infty } y =  + \infty => Hệ số a > 0

    => Loại đáp án B và đáp án D

    Mặt khác hàm số có ba điểm cực trị

    => Loại đáp án C

  • Câu 17: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tìm giá trị cực đại và giá trị cực tiểu của hàm số đã cho.

    Từ bảng biến thiên ta có: y_{CÐ} =
0;y_{CT} = - 3.

  • Câu 18: Thông hiểu

    Hình vẽ nào sau đây là đồ thị của hàm số y = (x - c)(d - x)^{2} với c > d > 0?

    Với c > d > 0 thì đồ thị hàm số y = (x - c)(d - x)^{2} theo thứ tự tiếp xúc với trục hoành tại điểm có hoành độ x = dx =
c

    Mặt khác với x \leq c thì y \leq 0 nên khi x \leq c thì đồ thị hàm số nằm phía dưới trục hoành

    Vậy đồ thị hàm số cần tìm là .

  • Câu 19: Thông hiểu

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hỏi hàm số y = 2021 - f(x) đồng biến trên khoảng nào?

    Hàm số y = 2021 - f(x)y' = - f'(x)

    y' = 0 \Leftrightarrow - f'(x) =
0 \Leftrightarrow f'(x) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = 0 \\
\end{matrix} ight.

    Từ bảng biến thiên của hàm số y =
f(x) ta có bảng biến thiên của hàm số y = 2021 - f(x)

    Dựa vào bảng biến thiên ta có hàm số y =
2021 - f(x) đồng biến trong khoảng ( - 1;0).

  • Câu 20: Thông hiểu

    Cho hàm số y = {x^4} - 2{x^2} + 1 có đồ thị (C). Biết rằng đồ thị (C) có ba điểm cực trị tạo thành ba đỉnh của tam giác ABC. Diện tích tam giác ABC bằng:

    Ta có: y' = 4{x^3} - 4x

    Tọa độ các điểm cực trị của đồ thị hàm số là A\left( {0;1} ight),B\left( { - 1;0} ight),C\left( {1;0} ight)

    \begin{matrix}  \overrightarrow {AB}  = \left( { - 1; - 1} ight),\overrightarrow {AC}  = \left( {1; - 1} ight) \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\overrightarrow {AB} .\overrightarrow {AC}  = 0} \\   {AB = AC = \sqrt 2 } \end{array}} ight. \hfill \\ \end{matrix}

    => Tam giác ABC vuông cân tại A => S = \frac{1}{2}AB.AC = 1

  • Câu 21: Thông hiểu

    Quan sát đồ thị hàm số y =
f(x):

    Số giá trị nguyên của tham số m để phương trình f(x) + m - 2020 = 0 có hai nghiệm phân là:

    Ta có:

    f(x) + m - 2020 = 0 \Leftrightarrow f(x)
= 2020 - m

    Để phương trình có hai nghiệm \Leftrightarrow \left\lbrack \begin{matrix}
2020 - m = - 4 \\
2020 - m > - 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 2020 \\
m < 2023 \\
\end{matrix} ight.

    m\mathbb{\in Z} nên có tất cả 2023 giá trị của tham số m thỏa mãn yêu cầu để bài.

  • Câu 22: Thông hiểu

    Cho hàm số y = f(x) có f'\left( x ight) = x\left( {x - 1} ight){\left( {x + 2} ight)^2}. Số điểm cực trị của hàm số đã cho là

    Ta có: f'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \\   {x =  - 2} \end{array}} ight.

    Nhận thấy {\left( {x + 2} ight)^2} > 0,\forall x e  - 2

    => f’(x) không đổi dấu khi qua nghiệm x = -2 nên x = -2 không là điểm cực trị của hàm số

    Ngoài ra f’(x) cùng dấu với tam thức bậc hai x2(x - 1) = x2 – x nên suy ra x = 0, x = 1 là hai điểm cực trị của hàm số.

     

  • Câu 23: Thông hiểu

    Hàm số y =
\sqrt{2x - x^{2}} nghịch biến trên khoảng:

    Tập xác định \lbrack
0;2brack

    Ta có: y' = \frac{1 - x}{\sqrt{2x -
x^{2}}} \Rightarrow y' = 0 \Leftrightarrow \frac{1 - x}{\sqrt{2x -
x^{2}}} = 0\Leftrightarrow x = 1

    \Rightarrow \left\{ \begin{matrix}
y' < 0 \Leftrightarrow x \in (1;2) \\
y' > 0 \Leftrightarrow x \in (0;1) \\
\end{matrix} ight.

    Vậy hàm số nghịch biến trên khoảng (1;2)

  • Câu 24: Nhận biết

    Đồ thị hàm số nào sau đây nhận điểm A(1;3) làm tâm đối xứng?

    Đồ thị hàm số y = \frac{3x + 4}{x -
1} có tiệm cận đứng là đường thẳng x = 1 và tiệm cận ngang là y = 3 suy ra giao điểm của hai đường tiệm cận là (1;3)

    Vậy điểm A(1;3) là tâm đối xứng của đồ thị hàm số y = \frac{3x + 4}{x -
1}.

  • Câu 25: Nhận biết

    Giá trị nhỏ nhất của hàm số y =
\frac{x^{2} + x + 4}{x} trên đoạn \lbrack - 3; - 1brack bằng:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 0 ight\} nên hàm số xác định và liên tục trên \lbrack - 3; - 1brack

    Ta có: y' = \frac{x^{2} -
4}{x^{2}};\forall x eq 0

    y' = 0 \Leftrightarrow \frac{x^{2} -
4}{x^{2}} = 0 \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
x = - 2 \\
\end{matrix} ight.

    y( - 3) = - \frac{10}{3};y( - 1) = -
4;y( - 2) = - 3

    \Rightarrow \min_{\lbrack - 3; -
1brack}y = y( - 1) = - 4

  • Câu 26: Nhận biết

    Đồ thị hàm số y = \frac{x - 1}{x^{2} +
1} có bao nhiêu đường tiệm cận ngang và tiệm cận đứng?

    Tập xác định D\mathbb{= R}

    Đồ thị hàm số không có đường tiệm cận đứng.

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x - 1}}{{{x^2} + 1}} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\dfrac{1}{x} - \dfrac{1}{{{x^2}}}}}{{1 + \dfrac{1}{{{x^2}}}}} = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{x - 1}}{{{x^2} + 1}} = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\dfrac{1}{x} - \dfrac{1}{{{x^2}}}}}{{1 + \dfrac{1}{{{x^2}}}}} = 0 \hfill \\ 
\end{gathered}  ight. suy ra y =
0 là tiệm cận ngang của đồ thị hàm số.

  • Câu 27: Nhận biết

    Đường tiệm cận ngang của đồ thị hàm số y
= \frac{x + 1}{x^{2} - 4} có phương trình là:

    Ta có: \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{x + 1}{x^{2} - 4} = 0

    Vậy đường thẳng y = 0 là tiệm cận ngang của đồ thị hàm số.

  • Câu 28: Vận dụng

    Tìm các giá trị của tham số m để bất phương trình \frac{{{x^2} + 3x + 3}}{{x + 1}} \geqslant m nghiệm đúng với mọi x \in \left[ {0;1} ight]

    Xét hàm số g\left( x ight) = \frac{{{x^2} + 3x + 3}}{{x + 1}},x \in \left[ {0;1} ight] ta có:

    \begin{matrix}  g\left( x ight) = x + 2 + \dfrac{1}{{x + 1}} \hfill \\   \Rightarrow g'\left( x ight) = 1 - \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} \hfill \\  g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0\left( {tm} ight)} \\   {x =  - 2\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => \left\{ {\begin{array}{*{20}{c}}  {g\left( 0 ight) = 3} \\   {g\left( 1 ight) = \dfrac{7}{2}} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ {0;1} ight]} g\left( x ight) = \frac{7}{2};\mathop {\min }\limits_{\left[ {0;1} ight]} g\left( x ight) = 3

    Ta có:

    \frac{{{x^2} + 3x + 3}}{{x + 1}} \geqslant m,\left( {\forall x \in \left[ {0;1} ight]} ight) \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {g\left( 0 ight) = 3} \\   {g\left( 1 ight) = \dfrac{7}{2}} \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left[ {0;1} ight]} g\left( x ight) \geqslant m \Leftrightarrow m \leqslant 3

  • Câu 29: Thông hiểu

    Cho hàm số y = \frac{x + m}{x^{2} +
1}. Biết \min_{\mathbb{R}}y = -
2. Mệnh đề nào dưới đây đúng?

    Tập xác định D\mathbb{= R}

    Ta có: \min_{\mathbb{R}}y = - 2\Leftrightarrow \left\{ \begin{matrix}\forall x\mathbb{\in R}:\dfrac{x + m}{x^{2} + 1} \geq - 2(*) \\\exists x_{0}:\dfrac{x_{0} + m}{{x_{0}}^{2} + 1} = - 2(**) \\\end{matrix} ight.

    Từ (*) \Leftrightarrow \frac{x + m}{x^{2}
+ 1} \geq - 2 \Leftrightarrow 2x^{2} + x + m + 2 \geq 0;\forall
x\mathbb{\in R}

    \Leftrightarrow 1 - 4.2.(m + 2) \leq 0
\Leftrightarrow m \geq \frac{- 15}{8}

    Từ (**) suy ra m = \frac{- 15}{8} \in ( -
2;0).

    Vậy - 2 < m < 0 là đáp án cần tìm.

  • Câu 30: Vận dụng

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 31: Thông hiểu

    Cho hàm số y = \frac{(2m + 1)x^{2} +
3}{\sqrt{x^{4} + 1}} với m là tham số. Tìm giá trị của m để đường tiệm cận ngang của đồ thị hàm số đi qua điểm A(1; - 3)?

    Ta có: \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow - \infty}y = 2m + 1 suy ra d:y = 2m + 1 là tiệm cận ngang của đồ thị hàm số đã cho.

    Do A(1; - 3) \in d \Leftrightarrow 2m + 1
= - 3 \Leftrightarrow m = - 2

  • Câu 32: Vận dụng

    Gọi S là tập hợp các giá trị m để tiệm cận xiên của đồ thị hàm số y = \frac{mx^{2} + x - 3}{x - 1} tạo với hai trục hệ tọa độ Oxy một tam giác có diện tích bằng 2. Khi đó tổng các giá trị của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi S là tập hợp các giá trị m để tiệm cận xiên của đồ thị hàm số y = \frac{mx^{2} + x - 3}{x - 1} tạo với hai trục hệ tọa độ Oxy một tam giác có diện tích bằng 2. Khi đó tổng các giá trị của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 33: Thông hiểu

    Cho hàm số y = f(x) có đồ thị như hình vẽ như sau:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đã cho nghịch biến trên khoảng (−2, 0). Đúng||Sai

    b) Hàm số đã cho đồng biến trên khoảng (−1; +∞). Sai|| Đúng

    c) Hàm số đã cho đồng biến trên khoảng (2; +∞). Đúng||Sai

    d) Hàm số đạt cực tiểu tại x = −1.Sai|| Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đồ thị như hình vẽ như sau:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đã cho nghịch biến trên khoảng (−2, 0). Đúng||Sai

    b) Hàm số đã cho đồng biến trên khoảng (−1; +∞). Sai|| Đúng

    c) Hàm số đã cho đồng biến trên khoảng (2; +∞). Đúng||Sai

    d) Hàm số đạt cực tiểu tại x = −1.Sai|| Đúng

    Ta có thể từ đồ thị thiết lập lại bảng biến thiên như sau:

    a) Hàm số nghịch biến trên khoảng (−2, 0).

    b) Hàm số đồng biến trên khoảng (0; +∞) nên khẳng định đồng biến trên khoảng (−1; +∞) là sai.

    c) Hàm số đồng biến trên khoảng (0; +∞) nên nên hàm số đồng biến trên khoảng (2; +∞).

    d) Hàm số đạt cực tiểu tại x = 0 (chú ý: y = −1 gọi là giá trị cực tiểu).

  • Câu 34: Nhận biết

    Trong các hàm số dưới đây, hàm số nào đồng biến trên \mathbb{R}?

     Hàm số y = x – sinx có tập các định D = \mathbb{R}y' = 1 - \cos x \geqslant 0, \vee x \in \mathbb{R}

    Nên hàm số luôn đồng biến trên \mathbb{R}

  • Câu 35: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như hình vẽ sau

    Hàm số y = f(x) đồng biến trên khoảng nào dưới đây

    Từ bảng biến thiên suy ra hàm số đồng biến trên khoảng (0;2).

  • Câu 36: Vận dụng

    Cho hàm số f(x), hàm số f'(x) liên tục trên \mathbb{R} và có đồ thị như sau:

    Bất phương trình f(x) < x + m (với m là một số thực) nghiệm đúng với mọi x \in ( - 1;0) khi và chỉ khi:

    Ta có:

    f(x) < x + m \Leftrightarrow f(x) - x< m

    Xét hàm số g(x) = f(x) - x ta có:

    g'(x) = f'(x) - 1. Với \forall x \in ( - 1;0) thì - 1 < f'(x) < 1

    Từ đó g'(x) = f'(x) - 1 <0 nên hàm số nghịch biến trên ( -1;0)

    Suy ra g(x) = f(x) - x < f( - 1) +1. Yêu cầu bài toán tương đương với m \geq f( - 1) + 1.

  • Câu 37: Thông hiểu

    Cho đồ thị hàm số có đồ thị hàm số là đường cong trong hình vẽ:

    Khẳng định nào dưới đây sai

    Khẳng định nào dưới đây sai?

    Quan sát đồ thị hàm số ta có:

    Đáp án A sai vì hàm số không nghịch biến trên \left( {4; + \infty } ight)

    Đáp án B sai vì hàm số chỉ đạt cực tiểu tại x = 2

    Đáp án C sai vì trên đoạn [0; 2] hàm số vừa có khoảng đồng biến, vừa có khoảng nghịch biến.

    Đáp án D đúng vì \mathop {\min y}\limits_{\left[ {0;2} ight]}  + \mathop {\max y}\limits_{\left[ {0;2} ight]}  =  - 2 + 2 = 0

  • Câu 38: Thông hiểu

    Giá trị lớn nhất của hàm số y =  - {x^3} + 3x + 1 trên khoảng \left( {0; + \infty } ight)

    Ta có:

    \begin{matrix}  y' =  - 3{x^2} + 3 \hfill \\  y' = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1\left( {tm} ight)} \\   {x =  - 1\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => Giá trị lớn nhất của hàm số trên khoảng đã cho bằng 3 khi x = 1

  • Câu 39: Thông hiểu

    ho hàm số y = \frac{{x - 9{x^4}}}{{{{\left( {3{x^2} - 3} ight)}^2}}}. Khẳng định nào sau đây là khẳng định đúng?

    Đồ thị hàm số y = \frac{{x - 9{x^4}}}{{{{\left( {3{x^2} - 3} ight)}^2}}} có hai đường tiệm cận đứng là x = 1 và x = -1 và một tiệm cận ngang là y = -1

  • Câu 40: Vận dụng cao

    Cho f(x) mà đồ thị hàm số y = f’(x) như hình vẽ.

    Hàm số y = f\left( {x - 1} ight) + {x^2} - 2x đồng biến trên khoảng nào trong các đáp án dưới đây?

    Ta có: y = f\left( {x - 1} ight) + {x^2} - 2x

    => y' = f'\left( {x - 1} ight) + 2x - 2

    Hàm số đồng biến khi y' \geqslant 0 \Leftrightarrow f'\left( {x - 1} ight) + 2\left( {x - 1} ight) \geqslant 0\left( * ight)

    Đặt t = x – 1 thì (*) trở thành

    f'\left( t ight) + 2t \geqslant 0 \Leftrightarrow f'\left( t ight) \geqslant  - 2t

    Quan sát đồ thị hàm số y = f’(t) và y = -2t trên cùng một hệ tọa độ như hình vẽ

    Xác định khoảng đồng biến của hàm số

    Khi đó ta thấy với t \in \left( {0;1} ight) thì độ thì hàm số y = f’(t) luôn nằm trên đường thẳng y = -2t

    => f'\left( t ight) + 2t > 0,\forall t \in \left( {1;2} ight)

    Do đó với \forall x \in \left( {1;2} ight) thì hàm số y = f\left( {x - 1} ight) + {x^2} - 2x đồng biến.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo