Có bao nhiêu giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
?
Ta có:
Xét trên khoảng
ta có bảng biến thiên:
Suy ra mà
nên
Vậy có tất cả giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Có bao nhiêu giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
?
Ta có:
Xét trên khoảng
ta có bảng biến thiên:
Suy ra mà
nên
Vậy có tất cả giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Cho
hàm số có
. Hàm số
đồng biến trên khoảng nào dưới đây?
Xét dấu f’(x) như sau:

Ta có:
Chọn ta có:
=> là khoảng âm
Khi đó bảng xét dấu của y’ = (f(x2))’ như sau:

Từ trục xét dấu ta thấy. Hàm số y = f(x2) đồng biến trên (-1; 0)
Cho hàm số
là hàm đa thức có đạo hàm
. Số điểm cực trị của hàm số là:
Ta có:
Ta có bảng biến thiên như sau:
Vậy hàm số có hai điểm cực trị.
Giả sử m là giá trị nhỏ nhất của hàm số
trên khoảng
. Tính giá trị của m.
Ta có:
Ta có bảng biến thiên như sau:

=> Giá trị nhỏ nhất của hàm số bằng 4
=> y(2) = 4
=> m = 4
Tọa độ tâm đối xứng của đồ thị hàm số
là:
Ta có:
Tọa độ tâm đối xứng của đồ thị hàm số là
Cho hàm số
với m là tham số, khi đó có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng
?
Tập xác định
Ta có:
Hàm số nghịch biến trên khi và chỉ khi
Mà
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Hàm số nào dưới dây nghịch biến trên khoảng
?
Xét hàm số có
nên hàm số
nghịch biến trên khoảng
.
Xác định giá trị của a để hàm số
nghịch biến trên trục số.
Ta có:
Hàm số nghịch biến trên
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ:

Tìm tập hợp tất cả các giá trị của tham số
để phương trình
có nghiệm thuộc khoảng
?
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Tìm tập hợp tất cả các giá trị của tham số để phương trình
có nghiệm thuộc khoảng
?
Cho hàm số f(x) có bảng xét dấu đạo hàm f’(x) như sau:

Hàm số f(x) có bao nhiêu điểm cực đại?
Dựa vào bảng xét dấu đạo hàm f’(x) ta thấy đạo hàm f’(x) đổi dấu từ dương sang âm 2 lần nên f(x) có 2 điểm cực đại.
Hàm số nào dưới dây nghịch biến trên tập số thực?
Ta thấy hàm số có tập xác định
và đạo hàm
nên nghịch biến trên
.
Cho hàm số
có đồ thị
. Xác định tất cả các giá trị thực của tham số
để
cắt đường thẳng
tại bốn điểm phân biệt?
Phương trình hoành độ giao điểm là nghiệm của phương trình:
Đồ thị cắt
tại bốn điểm phân biệt khi và chỉ khi
có hai nghiệm phân biệt khác
Khi đó ta có: .
Cho hàm số
liên tục trên
và có bảng biến thiên như sau:

Mệnh đề nào sau dây đúng?
Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.
Số dân số của một thị trấn sau
năm kể từ năm 1970 được ước tính bởi công thức
(
được tính bằng nghìn người). Biết rằng đạo hàm của hàm số
biểu thị tốc độ gia tăng dân số của thị trấn ( đơn vị là nghìn người/ năm). Vào năm nào thì tốc độ gia tăng dân số là
nghìn người/ năm?
Ta có
Lại có
Vậy dự báo vào năm 1995 thì tốc độ gia tăng dân số là nghìn người/ năm.
Cho hàm số
có đồ thị (C). Gọi I là giao điểm của hai đường tiệm cận của (C). Tiếp tuyến của (C) cắt hai đường tiệm cận của (C) tại hai điểm A, B. Giá trị nhỏ nhất của chu vi đường tròn ngoại tiếp tam giác IAB bằng:
Đồ thị hàm số có tiệm cận đứng là x = 2 và tiệm cận ngang là y = 1 => I(2; 1)
Gọi khi đó ta có phương trình tiếp tuyến tại M là
Ta có:
Khi đó
Ta lại có tam giác IAB vuông tại I nên bán kính đường tròn ngoại tiếp tam giác IAB là
Mặt khác
Giá trị nhỏ nhất của chu vi đường tròn ngoại tiếp tam giác IAB bằng:
Cho hàm số
(với
là tham số) đạt cực tiểu tại
. Tìm giá trị tham số
?
Tập xác định
Ta có:
Hàm số đạt cực tiểu tại suy ra
Với
. Khi đó
suy ra
là điểm cực tiểu của hàm số.
Vậy là giá trị cần tìm.
Đồ thị sau đây là của hàm số nào?

Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là và tiệm cận đứng của đồ thị hàm số
.
Đồ thị hàm số cắt trục tung tại điểm
Vậy hàm số cần tìm là .
Cho hàm số
xác định, liên tục trên R và có bảng biến thiên như hình vẽ dưới đây:

Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên khoảng
. Sai|| Đúng
b) Hàm số đạt cực đại tại điểm
. Đúng||Sai
c) Hàm số có giá trị nhỏ nhất bằng −2. Sai|| Đúng
d) Hàm số có giá trị lớn nhất bằng 5. Đúng||Sai
Cho hàm số xác định, liên tục trên R và có bảng biến thiên như hình vẽ dưới đây:
Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên khoảng . Sai|| Đúng
b) Hàm số đạt cực đại tại điểm . Đúng||Sai
c) Hàm số có giá trị nhỏ nhất bằng −2. Sai|| Đúng
d) Hàm số có giá trị lớn nhất bằng 5. Đúng||Sai
Hàm số không có giá trị nhỏ nhất nên phát biểu “Hàm số
có giá trị nhỏ nhất bằng −2” là phát biểu sai.
Cho hàm số
. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là:
Tập xác định
Ta có:
Khi đó:
Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức
. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.
Đáp án: 15
Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức . Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.
Đáp án: 15
Ta có:
Bảng biến thiên:
Mực nước lên cao nhất thì phải mất giờ.
Hay mực nước lên cao nhất là lúc 20 giờ.
Vậy phải thông báo cho dân di dời vào giờ chiều cùng ngày.
Cho hàm số
Khoảng cách từ điểm
đến đường tiệm cận xiên của đồ thị hàm số này bằng bao nhiêu![]()
Đáp án: 3,2
Cho hàm số Khoảng cách từ điểm
đến đường tiệm cận xiên của đồ thị hàm số này bằng bao nhiêu
Đáp án: 3,2
Ta có:
Xét
Vậy đường tiệm cận xiên có phương trình
Khoảng cách từ điểm đến đường tiệm cận xiên là:
Gọi
là giá trị của tham số
để đồ thị hàm số
có hai điểm cực trị là
sao cho diện tích tam giác
bằng
(
là gốc tọa độ). Khi đó giá trị biểu thức
bằng:
Tập xác định .
Ta có:
Ta có bảng biến thiên như sau:
Suy ra
Đường thẳng (PQ) đi qua điểm và nhận
làm một vecto pháp tuyến nên có phương trình
Theo bài ra ta có diện tích tam giác OPQ bằng 2 nên ta có phương trình:
Vậy .
Có bao nhiêu giá trị nguyên dương của tham số
để đồ thị hàm số
có ba đường tiệm cận?
Ta có: nên suy ra hàm số có 1 đường tiệm cận ngang là
Để đồ thị hàm số có 3 đường tiệm cận thì phải có 2 tiệm cận đứng hay phương trình có hai nghiệm phân biệt khác
Do m nguyên dương nên có 14 giá trị m thỏa mãn.
Đồ thị hàm số nào sau đây không có tiệm cận đứng?
Phương trình x2 + 1 = 0 vô nghiệm nên không tìm được x0 để
=> Hàm số không có tiệm cận đứng.
Các đồ thị hàm số ở B, C, D lần lượt có các tiệm cận đứng là x = 0, x = -2 và x = 1
Tập hợp tất cả các giá trị thực của tham số
để đồ thị hàm số
có đúng hai tiệm cận đứng?
Điều kiện xác định
Vì nên để đồ thị hàm số có đúng hai tiệm cận đứng thì phương trình
phải có hai nghiệm phân biệt lớn hơn
.
Xét hàm số trên
có:
Bảng biến thiên
Phương trình (*) có hai nghiệm phân biệt lớn hơn khi
.
Vậy đáp án cần tìm là .
Cho hàm số
có bảng biến thiên như sau:

Có bao nhiêu giá trị nguyên của tham số
để phương trình
có ba nghiệm phân biệt?
Ta có:
Để phương trình có ba nghiệm phân biệt thì
Vậy có 1 giá trị nguyên của m thỏa mãn yêu cầu.
Cho hàm số
có bảng biến thiên như hình vẽ:

Hàm số
nghịch biến trong khoảng nào dưới đây?
Ta có:
Xét
Ta có bảng xét dấu:
Vậy đáp án cần tìm là .
Cho hàm trùng phương
có đồ thị như hình vẽ dưới đây:

Tìm các giá trị của tham số m để phương trình
có 4 nghiệm phân biệt?
Hình vẽ minh họa
Để phương trình có 4 nghiệm phân biệt thì
.
Hỏi đồ thị của hàm số
có tất cả bao nhiêu đường tiệm cận (không xét tiệm cận xiên)?
Tập xác định
Ta có: nên đồ thị hàm số có tiệm cận ngang là
nên đồ thị hàm số có tiệm cận đứng là
Vậy đồ thị hàm số có 2 đường tiệm cận.
Cho hàm số
. Mệnh đề nào dưới dây là đúng?
Tập xác định của hàm số
Ta có:
Hàm số đồng biến trên các khoảng (-∞; 1) và (1; +∞)
Hàm số
đạt cực đại tại điểm
Ta có:
Bảng biến thiên
Từ bảng biến thiên ta thấy hàm số đạt cực đại tại .
Cho hàm số có đồ thị như hình vẽ sau:

Chọn mệnh đề đúng?
Ta có:
Đồ thị hàm số cắt trục tung tại điểm có tung độ dương => d > 0
Ta có: , nhận thấy hoành độ hai điểm cực trị của đồ thị hàm số có
Cho hàm số
với
là tham số. Tìm tất cả các giá trị nguyên của tham số
để hàm số đã cho có đúng
điểm cực trị?
Cho hàm số với
là tham số. Tìm tất cả các giá trị nguyên của tham số
để hàm số đã cho có đúng
điểm cực trị?
Có bao nhiêu số nguyên của tham số
để hàm số
đạt cực tiểu tại
?
Ta có: . Để hàm số
đạt cực tiểu tại
:
Vậy có suy nhất một giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Cho hàm số
với
là tham số. Biết rằng giá trị nhỏ nhất của hàm số đã cho trên
bằng
. Khi đó giá trị lớn nhất của hàm số đó là:
Ta có: do xét trên
nên nhận
Vì
Từ đó .
Cho hai số thực x, y thỏa mãn
và x + y = 1. Giá trị nhỏ nhất và giá trị lớn nhất của biểu thức
lần lượt là:
Ta có:
Đặt t = xy ta được
Vì
Mặt khác
Khi đó bài toán trở thành tìm giá trị lớn nhất của hàm số trên
Xét hàm số xác định và liên tục trên
Ta có:
=> Hàm số g(t) nghịch biến trên đoạn
=>
Trong các hàm số sau, hàm số nào đồng biến trên khoảng
?
Ta có:
sai vì
nhưng
sai vì
nhưng
sai vì
nhưng
đúng vì
nên hàm số
đồng biến trên khoảng
.
Trong các hàm số sau, đồ thị hàm số nào có đường tiệm cận ngang?
Ta có: nên tiệm cận ngang của đồ thị hàm số
là đường thẳng có phương trình
.
Tìm giá trị lớn nhất của hàm số
trên đoạn [-6; 6]
Xét hàm số g(x) = -x2 – 4x + 5 liên tục trên đoạn [-6; 6]
Ta có: g’(x) = -2x – 4
=> g’(x) = 0 => x = -2 thuộc [-6; 6]
Ta lại có g(x) = 0 => x2 – 4x + 5 = 0 => x = 1 (tm) hoặc x = -5 (tm)
Ta tính được:
Các đường tiệm cận của đồ thị hàm số
tạo với hai trục tọa độ diện tích bằng bao nhiêu?
Ta có: Đồ thị hàm số có đường tiệm cận đứng là
và đường tiệm cận ngang là
Hai đường tiệm cận tạo với hai trục tọa độ một hình chữ nhật có chiều dài và chiều rộng lần lượt là nên diện tích của hình chữ nhật là
.