Cho hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Cho hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Cho hàm số
có bảng biến thiên như hình vẽ:

a) Phương trình
có 3 nghiệm. Đúng||Sai
b) Phương trình
có 1 nghiệm. Đúng||Sai
c) Phương trình
vô nghiệm. Sai||Đúng
d) Phương trình
có 2 nghiệm. Đúng||Sai
Cho hàm số có bảng biến thiên như hình vẽ:
a) Phương trình có 3 nghiệm. Đúng||Sai
b) Phương trình có 1 nghiệm. Đúng||Sai
c) Phương trình vô nghiệm. Sai||Đúng
d) Phương trình có 2 nghiệm. Đúng||Sai
a) Ta có .
Dựa vào bảng biến thiên, ta có phương trình f(x) = 0 có 3 nghiệm.
b) Ta có
Dựa vào bảng biến thiên, ta có phương trình f(x) = 2 có 1 nghiệm.
c) Ta có .
Dựa vào bảng biến thiên, ta có phương trình f(x) = −4 có 1 nghiệm.
d) Ta có.
Dựa vào bảng biến thiên, ta có phương trình f(x) = −3 có 2 nghiệm.
Tìm điều kiện của tham số
để hàm số
đồng biến trên từng khoảng xác định?
Tập xác định
Ta có: .
Để hàm số đồng biến trên từng khoảng xác định
Vậy giá trị cần tìm là .
Giá trị nhỏ nhất của hàm số y = x3 – 3x + 5 trên đoạn [0; 2] là:
Xét hàm số f(x) = x3 – 3x + 5 trên [0; 2] có:
f’(x) = 3x3 – 3
f’(x) = 0 =>
Tính được f(0) = 5; f(1) = 3; f(2) = 7
Vậy
Đồ thị hàm số nào dưới đây có đúng một đường tiệm cận ngang?
Xét hàm số có tập xác định
Ta có: suy ra
là một tiệm cận ngang của đồ thị hàm số.
Vậy hàm số có duy nhất một tiệm cận ngang là .
Cho hàm số
với m là tham số thực thỏa mãn
. Mệnh đề nào dưới đây là đúng?
Xét hàm số trên [1; 2] ta có:
Khi đó:
Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?

Đồ thị hàm số là hàm số bậc với
.
Cho hàm số
. Mệnh đề nào dưới dây là đúng?
Tập xác định của hàm số
Ta có:
Hàm số đồng biến trên các khoảng (-∞; 1) và (1; +∞)
Cho hàm số
có bảng biến thiên như hình vẽ sau 

Hàm số
đồng biến trên khoảng nào dưới đây
Từ bảng biến thiên suy ra hàm số đồng biến trên khoảng .
Gọi M, N lần lượt là số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
. Khi đó m + n bằng:
Điều kiện
Tiệm cận ngang:
=> Đồ thị hàm số có 1 tiệm cận ngang là y = 1
Tiệm cận đứng:
Điều kiện cần: Xét phương trình x2 – 4 = 0 => x = 2 hoặc x = -2
Điều kiện đủ
Đặt
Xét x = 2 ta có f(2) = 0 nên ta sẽ đi tìm bậc của x – 2 của f(x)
=> x = 2 không phải là tiệm cận đứng
Xét x = -2 ta có f(-2) không tồn tại hay x = -2 không phải là tiệm cận đứng.
Vậy M = 1, N = 0 => M + N = 1
Cho hàm số
với
là tham số. Gọi
tập hợp tất cả các giá trị nguyên của tham số
thỏa mãn
. Số phần tử của tập hợp
bằng:
Ta có:
Đạo hàm
và
Suy ra
Mà
Vậy có tất cả 11 giá trị nguyên của tham số m.
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là
. Đúng||Sai
b) Đồ thị hàm số có các đường tiệm cận ngang là
. Đúng||Sai
c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng
d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là . Đúng||Sai
b) Đồ thị hàm số có các đường tiệm cận ngang là . Đúng||Sai
c) Đồ thị hàm số đã cho có tất cả 2 đường tiệm cận. Sai||Đúng
d) Các đường tiệm cận của đồ thị cùng với trục Oy tạo thành 1 đa giác có diện tích bằng 1. Sai||Đúng
a) Điều kiện xác định của hàm số .
Vậy tập xác định của hàm số là .
b) Ta có: nên y = −1 là đường tiệm cận ngang.
nên y = 1 là đường tiệm cận ngang.
c) Do nên x = 1 là đường tiệm cận đứng.
Vậy đồ thị hàm số có tất cả 3 đường tiệm cận (2 TCN và 1 TCĐ).
d) Minh họa miền giới hạn của các đường tiệm cận và trục Oy như sau:
Miền giới hạn là hình chữ nhật có diện tích là
Cho hàm số xác định trên và có bảng biến thiên như hình vẽ:

Số đường tiệm cận đứng của đồ thị hàm số
là:
Ta có:
Phương trình có 3 nghiệm phân biệt khác 2.
Phương trình có một nghiệm kép là x = 2 (do vậy mẫu số có dạng
nên x = 2 vẫn là TCĐ của đồ thị hàm số
=> Đồ thị hàm số có 4 đường tiệm cận đứng.
Cho hàm số
và đồ thị của hàm số
như hình vẽ sau:

Hàm số
có bao nhiêu điểm cực trị?
Cho hàm số và đồ thị của hàm số
như hình vẽ sau:
Hàm số có bao nhiêu điểm cực trị?
Cho hàm số
. Khẳng định nào sau đây đúng?
Ta có:
Ta có bảng xét dấu như sau:
Vậy hàm số có đúng một cực trị.
Số giá trị nguyên của tham số
để hàm số
có giá trị cực đại và giá trị cực tiểu trái dấu nhau là:
Ta có:
Giá trị cực đại và giá trị cực tiểu trái dấu
Vì nên có 12 giá trị thỏa mãn.
Vậy có tất cả 12 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là
trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?
Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?
Cho hàm số
có bảng biến thiên như sau:

Hỏi hàm số
đồng biến trên khoảng nào?
Hàm số có
Từ bảng biến thiên của hàm số ta có bảng biến thiên của hàm số
Dựa vào bảng biến thiên ta có hàm số đồng biến trong khoảng
.
Trong các hàm số sau đây, hàm số nào không nghịch biến trên
?
Với
y’ > 0 khi x > 0 và y’ < 0 khi x < 0 nên hàm số không nghịch biến trên
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào?

Đồ thị trong hình vẽ là hàm số có dạng
Đồ thị hàm số có tiệm cận ngang là và tiệm cận đứng
nên hàm số cần tìm là
.
Cho hình vẽ:

Hàm số nào sau đây có đồ thị như hình vẽ bên?
Nhận thấy dạng đồ thị của hàm số bậc ba
Mặt khác đồ thị cắt trục tung tại điểm có tung độ âm nên hàm số tương ứng với đồ thị là .
Cho hàm số
có bảng xét dấu như sau:

Hỏi hàm số
nghịch biến trên các khoảng nào dưới đây?
Ta có:
Xét
Bảng xét dấu là:
Căn cứ vào bảng xét dấu ta thấy
Hàm số nghịch biến trên khoảng
.
Có bao nhiêu số nguyên
thỏa mãn điều kiện hàm số
đồng biến trên khoảng
?
Ta có:
. Hàm số đồng biến trên khoảng
Vậy có duy nhất một số nguyên m thỏa mãn điều kiện hàm số đồng biến trên khoảng
.
Hàm số
nghịch biến trên khoảng
khi và chỉ khi:
Tập xác định
Ta có:
Hàm số đã cho nghịch biến trên khoảng
khi và chỉ khi
Xét hàm số trên
ta có bảng biến thiên như sau:
Dựa vào bảng biến thiên ta có:
Do đó
Vậy thỏa mãn yêu cầu bài toán.
Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số
lần lượt là
. Tính giá trị biểu thức
?
Tập xác định
Ta có:
Khi đó:
Cho hàm số
có đồ thị như hình vẽ:

Tập hợp các giá trị của tham số
để phương trình
có đúng ba nghiệm phân biệt là:
Đồ thị hàm số có được bằng cách tịnh tiến đồ thị hàm số
sang trái hoặc sang phải theo phương song song với trục hoành
đơn vị.
Suy ra phương trình có đúng ba nghiệm phân biệt khi và chỉ khi
.
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức
trong đó
là liều lượng thuốc được tiêm cho bệnh nhân (
được tính bằng miligam,
).
a) Độ giảm huyết áp của một bệnh nhân là
. Đúng||Sai
b) Đạo hàm của
là
. Sai||Đúng
c) Phương trình
có nghiệm duy nhất. Sai||Đúng
d) Liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là
. Đúng||Sai
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức trong đó
là liều lượng thuốc được tiêm cho bệnh nhân (
được tính bằng miligam,
).
a) Độ giảm huyết áp của một bệnh nhân là . Đúng||Sai
b) Đạo hàm của là
. Sai||Đúng
c) Phương trình có nghiệm duy nhất. Sai||Đúng
d) Liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là . Đúng||Sai
a) Đúng. Độ giảm huyết áp của một bệnh nhân được viết lại là.
b) Sai. Đạo hàm của là
.
c) Sai. Xét phương trình
d) Đúng. Ta có bảng biến thiên:
Vậy liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là 20 mg.
Cho hàm số
có bảng biến thiên như hình vẽ:

Hàm số
nghịch biến trong khoảng nào dưới đây?
Ta có:
Xét
Ta có bảng xét dấu:
Vậy đáp án cần tìm là .
Đồ thị hàm số
có đường tiệm cận ngang qua điểm
khi:
Để đồ thị hàm số có đường tiệm cận ngang là
Đường tiệm cận ngang đi qua nên ta có:
Vậy đáp án đúng là .
Biết đường tiệm cận xiên của đồ thị hàm số
cắt trục hoành và trục tung theo thứ tự tại hai điểm
. Khi đó diện tích tam giác
bằng bao nhiêu đơn vị diện tích? (kết quả ghi dưới dạng số thập phân)
Đáp án: 0,25
Biết đường tiệm cận xiên của đồ thị hàm số cắt trục hoành và trục tung theo thứ tự tại hai điểm
. Khi đó diện tích tam giác
bằng bao nhiêu đơn vị diện tích? (kết quả ghi dưới dạng số thập phân)
Đáp án: 0,25
Ta có
.
Do đó tiện cận xiên của đồ thị hàm số đã cho là .
Tiệm cận xiên của đồ thị hàm số cắt trục hoành, trục tung lần lượt là .
Xét tam giác vuông tại
, có:
=> Diện tích của tam giác là
Một chất điểm chuyển động theo phương trình
trong đó
được tính bằng giây và
được tính bằng mét. Thời gian để vận tốc của chất điểm đạt giá trị lớn nhất là:
Ta có:
Khi đó
Giá trị nhỏ nhất của hàm số
trên đoạn
bằng
Ta có:
;
.
.
Cho hàm số y = f’(x) như hình vẽ. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng 11 điểm cực trị?

Hàm số đạt cực trị tại
Xét hàm số
Bảng biến thiên của hàm số suy ra chỉ có phương trình
cho ta nghiệm bội lẻ.
Nếu
=> Số điểm cực trị u là 1
=> Số nghiệm bội lẻ của phương trình u = 4 tối đa 2 nghiệm bội lẻ (Không thỏa yêu cầu)
Khi m > 0 => Số điểm cực trị u là 5 ta có bảng biến thiên của hàm số

Áp dụng công thức:
Số điểm cực trị của hàm số f(u) = số nghiệm bội lẻ của phương trình (u = 4) + số điểm cực trị của u
=> . Kết hợp với điều kiện
=> Có 29 giá trị nguyên thỏa mãn yêu cầu.
Tiệm cận ngang của đồ thị hàm số
là đường thẳng có phương trình?
Ta có: nên tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình
.
Cho hàm số
có bảng biến thiên như sau:

Giá trị nhỏ nhất của hàm số đã cho trên đoạn
bằng bao nhiêu?
Giá trị nhỏ nhất của hàm số đã cho trên đoạn bằng
.
Cho hàm số
có đồ thị như hình 2. Đường thẳng nào sau đây là đường tiệm cận đứng của đồ thị hàm số đã cho?

Đường tiệm cận đứng của hàm số là:
Cho hàm số
có bảng biến thiên như sau:

Mệnh đề nào sau đây đúng?
Dựa vào bảng biến thiên ta suy ra mệnh đề đúng là: “Điểm cực tiểu của đồ thị hàm số là ”.
Tập hợp tất cả các giá trị của tham số
để hàm số
nghịch biến trên
là:
Đặt
Điều kiện xác định
Xét hàm ta có:
Ta có bảng biến thiên
Từ bảng biến thiên ta thấy hàm số nghịch biến trên khoảng
và
Khi đó yêu cầu bài toán đồng biến trên
Điều kiện xác định
Ta có:
Để hàm số đồng biến trên thì
Vậy đáp án cần tìm là
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Hàm số có 2 cực trị. Đúng||Sai
b) Điểm cực đại của hàm số là x = 2. Đúng||Sai
c) Hàm số đồng biến trên khoảng (−1; 3).Sai||Đúng
d) Giá trị lớn nhất của hàm số là 3. Sai||Đúng
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Hàm số có 2 cực trị. Đúng||Sai
b) Điểm cực đại của hàm số là x = 2. Đúng||Sai
c) Hàm số đồng biến trên khoảng (−1; 3).Sai||Đúng
d) Giá trị lớn nhất của hàm số là 3. Sai||Đúng
Hàm số có đồ thị như sau:
a) Đúng. Từ đồ thị, ta khẳng định hàm số có 2 cực trị.
b) Đúng. Từ đồ thị, ta khẳng định hàm số có điểm cực đại là x = 2.
c) Sai. Trên khoảng (−1; 3) hàm số có đồng biến và nghịch biến.
d) Sai. Trên R không tồn tại giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên
Khoảng cách giữa hai điểm cực trị của đồ thị hàm số
là
Ta có:
⇒ Khoảng cách giữa hai điểm cực trị là .