Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
có đúng ba đường tiệm cận?
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng ba đường tiệm cận?
Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
có đúng ba đường tiệm cận?
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng ba đường tiệm cận?
Cho hàm số
. Gọi M là giá trị lớn nhất và m là giá trị nhỏ nhất của hàm số đã cho. Chọn mệnh đề đúng.
Đặt
Khi đó
Vậy M = 1; m = 0 => M = m + 1
Cho hàm số
có đạo hàm
với mọi
.
a) Phương trình
có duy nhất một nghiệm
. Sai||Đúng
b) Hàm số
đồng biến trên khoảng
. Đúng||Sai
c) Hàm số
có hai điểm cực trị. Đúng||Sai
d) Hàm số
có ba điểm cực đại. Sai||Đúng
Cho hàm số có đạo hàm
với mọi
.
a) Phương trình có duy nhất một nghiệm
. Sai||Đúng
b) Hàm số đồng biến trên khoảng
. Đúng||Sai
c) Hàm số có hai điểm cực trị. Đúng||Sai
d) Hàm số có ba điểm cực đại. Sai||Đúng
a) Sai
Ta có .
.
Vậy phương trình có hai nghiệm.
b) Đúng
Bảng biến thiên
Dựa vào bảng biến thiên của hàm số ta thấy hàm số đồng biến trên các khoảng
.
Ta có nên hàm số
đồng biến trên khoảng
.
c) Đúng
Dựa vào bảng biến thiên của hàm số ta thấy hàm số có hai điểm cực trị.
d) Sai
Ta có:
.
.
Bảng biến thiên
Dựa vào bảng biến thiên của hàm số ta thấy hàm số có hai điểm cực đại.
Số tiệm cận của đồ thị hàm số
là:
Ta có:
Suy ra là tiệm cận ngang.
suy ra
là tiệm cận đứng.
suy ra
là tiệm cận đứng.
Vậy đồ thị hàm số có tất cả 4 đường tiệm cận.
Có bao nhiêu giá trị nguyên dương của tham số
để hàm số
đồng biến trên khoảng
?
Ta có:
Hàm số đồng biến trên khoảng
Theo yêu cầu bài toán ta có:
Mà
Suy ra có tất cả 10 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Cho hàm số y = f(x). Biết hàm số y = f’(x) có đồ thị như hình vẽ bên dưới. Số điểm cực trị của hàm số
là:

Ta có:
Do

Vậy hàm số có ba điểm cực trị.
Cho hàm số y = f(x) có bảng biến thiên như sau:

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:
Dựa vào bảng biến thiên ta có:
=> y = 0 là một tiệm cận ngang
=> y = 5 là một tiệm cận ngang
=> x = 1 là một tiệm cận đứng
Vậy đồ thị hàm số có tổng số đường tiệm cận là 3 đường
Cho hàm số
. Hàm số
có đồ thị như hình vẽ:

Gọi
là tập hợp tất cả các giá trị nguyên dương của tham số
sao cho hàm số
đồng biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Cho hàm số . Hàm số
có đồ thị như hình vẽ:
Gọi là tập hợp tất cả các giá trị nguyên dương của tham số
sao cho hàm số
đồng biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Hàm số
có đạo hàm và liên tục trên
. Hàm số
có đồ thị như hình vẽ:

Hàm số
nghịch biến trên khoảng nào dưới đây?
Hàm số nghịch biến
với
Vậy hàm số nghịch biến trên khoảng
.
Cho hai số thực a, b dương thỏa mãn
. Giá trị nhỏ nhất của biểu thức
bằng:
Ta có:
Đặt
Cho hình vẽ là đồ thị hàm số
. Hỏi hàm số
đồng biến trên khoảng nào dưới đây?

Từ đồ thị ta có bảng xét dấu
như sau:
Vậy hàm số đồng biến trên khoảng
Cho hàm số
với
là tham số. Tích tất cả các giá trị của tham số
để giá trị lớn nhất của hàm số đã cho trên đoạn
bằng
bằng:
Ta có:
Vậy tích tất cả các giá trị của tham số bằng
.
Cho hàm số
có bảng xét dấu đạo hàm như sau:

Mệnh đề nào dưới đây đúng?
Hàm số có
đổi dấu từ + sang – khi
đi qua điểm
Vậy hàm số đạt cực đại tại
.
Cho hàm số
có đạo hàm trên
là
. Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Cho hàm số có đạo hàm trên
là
. Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Cho hàm số y = f(x) có bảng biến thiên như sau:

Hỏi đồ thị hàm số
có bao nhiêu tiệm cận đứng và tiệm cận ngang?
Dựa vào bảng biến thiên ta có:
Ta có:
Dựa vào bảng biến thiên suy ra phương trình f(x) = 2 có 2 nghiệm x = a hoặc x = b trong đó a < 0, b > 2
Với điều kiện thì phương trình
Do đó đồ thị hàm số có 4 đường tiệm cận đứng
Mặt khác bậc của tử số nhỏ hơn bậc của mẫu số nên đồ thị hàm số có một tiệm cận ngang là y = 0 => Đồ thị hàm số có 5 đường tiệm cận.
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
. Giá trị của M – 2m2 bằng:
Điều kiện xác định
Xét hàm số trên [-1; 1] có:
Ta có:
Vậy
Cho hàm số
có đạo hàm
. Hỏi hàm số có bao nhiêu điểm cực tiểu?
Ta có:
Bảng biến thiên
Dựa vào bảng biến thiên suy ra hàm số có một điểm cực tiểu.
Cho hàm số
có đồ thị
và đường thẳng
. Tất cả các giá trị của tham số
để
cắt
tại bốn điểm phân biệt?
Ta có:
Ta có bảng biến thiên
Từ bảng biến thiên ta thấy đồ thị hàm số cắt đường thẳng
tại
điểm phân biệt
.
Đồ thị của hàm số nào trong bốn hàm số sau có đường tiệm ngang?
Ta có:
không có tiệm cận ngang vì
không có tiệm cận ngang vì
không có tiệm cận ngang vì
có tiệm cận ngang vì
Cho hàm số có đồ thị như hình vẽ sau:

Chọn mệnh đề đúng?
Ta có:
Đồ thị hàm số cắt trục tung tại điểm có tung độ dương => d > 0
Ta có: , nhận thấy hoành độ hai điểm cực trị của đồ thị hàm số có
Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?

Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Đồ thị sau đây là của hàm số nào?

Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là và tiệm cận đứng của đồ thị hàm số
.
Đồ thị hàm số cắt trục tung tại điểm
Vậy hàm số cần tìm là .
Tìm tất cả các giá trị của tham số
để hàm số
đồng biến trên
?
Ta có:
Hàm số đồng biến trên
Dễ thấy
Vậy hàm số đã cho đồng biến trên khi
.
Anh H dự định sử dụng hết 5,5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép nối không đáng kể).

Gọi a và h lần lượt là kích thước chiều rộng và chiều cao (theo đơn vị mét).
Xét tính đúng sai của các khẳng định sau:
a) Tổng diện tích 5 mặt của bể là
. Đúng||Sai
b) Ta có
. Sai|| Đúng
c) Thể tích của bể là
. Sai|| Đúng
d) Bể cá có dung tích lớn nhất bằng
. Đúng||Sai
Anh H dự định sử dụng hết 5,5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép nối không đáng kể).
Gọi a và h lần lượt là kích thước chiều rộng và chiều cao (theo đơn vị mét).
Xét tính đúng sai của các khẳng định sau:
a) Tổng diện tích 5 mặt của bể là . Đúng||Sai
b) Ta có . Sai|| Đúng
c) Thể tích của bể là . Sai|| Đúng
d) Bể cá có dung tích lớn nhất bằng . Đúng||Sai
a) Đúng. Kích thước đáy của bể lần lượt là 2a, a; chiều cao bể là h (a, h > 0). Tổng diện tích 5 mặt của bể là:
b) Sai. Theo đề bài ta có: .
c) Sai. Gọi V là thể tích của bể cá, ta có:
d) Đúng. Ta có:
Bảng biến thiên:
Vậy dung tích lớn nhất của bể cá bằng .
Tìm tất cả các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
?
Ta có:
suy ra
là tiệm cận ngang của hàm số.
suy ra
là hai tiệm cận ngang của hàm số.
Tìm giá trị thực của tham số
để hàm số
có giá trị lớn nhất trên đoạn
bằng
?
Xét hàm số trên đoạn
ta có:
Phương trình
Có bao nhiêu số nguyên
thỏa mãn điều kiện hàm số
đồng biến trên khoảng
?
Ta có:
. Hàm số đồng biến trên khoảng
Vậy có duy nhất một số nguyên m thỏa mãn điều kiện hàm số đồng biến trên khoảng
.
Cho hàm số
với
là tham số. Tìm giá trị của tham số
để đồ thị hàm số
có cực đại tại
và cực tiểu tại
sao cho
?
Ta có:
Hàm số có cực đại tại và cực tiểu tại
khi và chỉ khi
Theo bài ra ta có:
Vậy đáp án cần tìm là .
Cho hàm số
với
là tham số. Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số đã cho có duy nhất một cực tiểu. Hỏi tập
có bao nhiêu phần tử?
Điều kiện để hàm số có duy nhất một cực tiểu là
và phương trình
có duy nhất một nghiệm.
Để phương trình có duy nhất một nghiệm thì phương trình (*) vô nghiệm hoặc có nghiệm duy nhất x = 0.
Mặt khác
Vậy có tất cả 19 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho hình vẽ:

Đồ thị trong hình đã cho là đồ thị của hàm số nào?
Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng với
và đồ thị hàm số đi qua điểm
nên hàm số tương ứng với đồ thị trong hình vẽ đã cho là
.
Cho hàm số
có bảng biến thiên của hàm số
như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?

Đáp án: 6
Cho hàm số có bảng biến thiên của hàm số
như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Đáp án: 6
Để hàm số đồng biến trên khoảng
Đặt và
.
Ta có: .
Do đó, ta có: khi
.
Do đó, .
Từ ta có
.
Mà .
Vậy có tất cả 6 số nguyên thỏa mãn.
Cho hàm số
có đồ thị hàm số như hình vẽ:

Mệnh đề nào sau đây sai?
Giá trị cực đại của hàm số là suy ra mệnh đề sai là: “Giá trị cực đại của hàm số là
.”
Cho hàm số
liên tục trên
và có bảng biến thiên như sau:

Mệnh đề nào sau dây đúng?
Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.
Cho đồ thị hàm số
như sau:

Hỏi phương trình
có tối đa bao nhiêu nghiệm thực?
Phương trình là phương trình hoành độ giao điểm của đồ thị hàm số
và đường thẳng
Số giao điểm của hai đường bằng số nghiệm của phương trình .
Dựa vào đồ thị hàm số ta thấy đường thẳng cắt đồ thị tại nhiều nhất 5 điểm.
Vậy phương trình có tối đa 5 nghiệm.
Biết đồ thị hàm số
(với
là tham số) nhận trục hoành và trục tung làm hai đường tiệm cận. Tính tổng
?
Ta có: suy ra
là tiệm cận ngang của đồ thị hàm số.
Suy ra .
Đồ thị hàm số nhận trục tung là tiệm cận đứng nên phương trình
có một nghiệm bằng
hay
Theo giả thiết ta có:
Đồ thị của hàm số
có bao nhiêu đường tiệm cận?
Tập xác định
suy ra
là tiệm cận ngang của đồ thị hàm số đã cho.
suy ra đường thẳng
không là đường tiệm cận đứng của đồ thị hàm số đã cho.
suy ra đường thẳng
là đường tiệm cận đứng của đồ thị hàm số đã cho.
Vậy đồ thị hàm số đã cho có 2 đường tiệm cận.
Trên đoạn
hàm số
có giá trị nhỏ nhất bằng bao nhiêu?
Tập xác định
Ta có:
Trên đoạn hàm số đã cho nghịch biến
Cho hàm số
có đạo hàm
trên khoảng
. Đồ thị hàm số
như hình vẽ:

Hàm số
nghịch biến trên khoảng nào trong các khoảng nào sau đây?
Hàm số nghịch biến khi
Vậy hàm số nghịch biến trên khoảng .
Tìm tập hợp tất cả các giá trị thực của tham số
để hàm số
nghịch biến trên khoảng
?
Tìm tập hợp tất cả các giá trị thực của tham số để hàm số
nghịch biến trên khoảng
?
Cho hàm số
có bảng biến thiên như sau:

Giá trị nhỏ nhất của hàm số đã cho trên đoạn
bằng bao nhiêu?
Giá trị nhỏ nhất của hàm số đã cho trên đoạn bằng
.