Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số có bảng biến thiên như hình dưới đây.

    Chọn khẳng định đúng

    Khẳng định nào sau đây là đúng?

    Từ bảng biến thiên ta nhận thấy đạo hàm của hàm số đổi dấu từ dương sang âm qua nghiệm 0 nên hàm số đạt cực đại tại 0 và giá trị cực đại của hàm số bằng 0.

  • Câu 2: Vận dụng cao

    Cho x, y là các số thực thỏa mãn {\left( {x - 3} ight)^2} + {\left( {y - 1} ight)^2} = 5. Giá trị nhỏ nhất của biểu thức P = \frac{{3{y^2} + 4xy + 7x + 4y - 1}}{{x + 2y + 1}} bằng:

    \begin{matrix}  {\left( {x - 3} ight)^2} + {\left( {y - 1} ight)^2} = 5 \hfill \\   \Rightarrow {x^2} + {y^2} - 6x - 2y + 5 = 0 \hfill \\  P = \dfrac{{\left( {3{y^2} + 4xy + 7x - 4y - 1} ight) + \left( {{x^2} + {y^2} - 6x - 2y + 5} ight)}}{{x + 2y + 1}} \hfill \\  P = \dfrac{{4{y^2} + 4xy + {x^2} + x + 2y + 4}}{{x + 2y + 1}} \hfill \\  P = \dfrac{{{{\left( {2y + x} ight)}^2} + \left( {x + 2y} ight) + 4}}{{x + 2y + 1}} \hfill \\ \end{matrix}

    Đặt t = x + 2y

    \begin{matrix}  \left( {{1^2} + {2^2}} ight)\left[ {{{\left( {x - 3} ight)}^2} + {{\left( {y - 1} ight)}^2}} ight] \geqslant {\left[ {\left( {x - 3} ight) + \left( {2y - 2} ight)} ight]^2} \hfill \\   \Rightarrow {\left( {x + 2y - 5} ight)^2} \leqslant 25 \hfill \\   \Leftrightarrow 0 \leqslant x + 2y \leqslant 10 \hfill \\ \end{matrix}

    Ta được P = f\left( t ight) = \frac{{{t^2} + t + 4}}{{1 + 4}} = t + \frac{4}{{t + 1}};0 \leqslant t \leqslant 10

    Xét f'\left( t ight) = 1 - \frac{4}{{{{\left( {t + 1} ight)}^2}}} = 0 \Rightarrow {\left( {t + 1} ight)^2} = 4 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {t = 1\left( {tm} ight)} \\   {t =  - 3\left( L ight)} \end{array}} ight.

    f\left( 0 ight) = 4;f\left( {10} ight) = \frac{{114}}{{11}};f\left( 1 ight) = 3 \Rightarrow \min P = 3{\text{  khi t  =  1}}

  • Câu 3: Nhận biết

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng xét dấu của f'(x) như sau:

    Số điểm cực đại của hàm số y =
f(x) là:

    Dựa vào bảng biến thiên ta thấy, hàm số y
= f(x) đạt cực đại tại x = -
2 nên hàm số đã cho có 1 điểm cực đại.

  • Câu 4: Vận dụng

    Cho hàm số f(x) liên tục trên \lbrack - 1;3brack và có đồ thị như hình vẽ:

    Giá trị lớn nhất của hàm số y = g(x) =f\left( 3\left| \cos x ight| - 1 ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) liên tục trên \lbrack - 1;3brack và có đồ thị như hình vẽ:

    Giá trị lớn nhất của hàm số y = g(x) =f\left( 3\left| \cos x ight| - 1 ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Nhận biết

    Cho hàm số y = f(x) có bảng xét dấu đạo hàm như sau:

    Mệnh đề nào dưới đây đúng?

    Hàm số y = f(x)f'(x) đổi dấu từ + sang – khi f'(x) đi qua điểm x = 1

    Vậy hàm số y = f(x) đạt cực đại tại x = 1.

  • Câu 6: Nhận biết

    Hàm số nào dưới dây nghịch biến trên tập số thực?

    Ta thấy hàm số y = - x^{2} - 3x có tập xác định \mathbb{R} và đạo hàm y = - 3x^{2} - 3 < 0;\forall
x\mathbb{\in R} nên nghịch biến trên \mathbb{R}.

  • Câu 7: Thông hiểu

    Cho hàm số y = - x^{3} + 3x^{2} -
1. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số có 2 cực trị. Đúng||Sai

    b) Điểm cực đại của hàm số là x = 2. Đúng||Sai

    c) Hàm số đồng biến trên khoảng (−1; 3).Sai||Đúng

    d) Giá trị lớn nhất của hàm số là 3. Sai||Đúng

    Đáp án là:

    Cho hàm số y = - x^{3} + 3x^{2} -
1. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số có 2 cực trị. Đúng||Sai

    b) Điểm cực đại của hàm số là x = 2. Đúng||Sai

    c) Hàm số đồng biến trên khoảng (−1; 3).Sai||Đúng

    d) Giá trị lớn nhất của hàm số là 3. Sai||Đúng

    Hàm số y = - x^{3} + 3x^{2} - 1 có đồ thị như sau:

    a) Đúng. Từ đồ thị, ta khẳng định hàm số có 2 cực trị.

    b) Đúng. Từ đồ thị, ta khẳng định hàm số có điểm cực đại là x = 2.

    c) Sai. Trên khoảng (−1; 3) hàm số có đồng biến và nghịch biến.

    d) Sai. Trên R không tồn tại giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên

  • Câu 8: Thông hiểu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

    Số đường tiệm cận ngang: 1

    Số đường tiệm cận đứng: 1

    Tổng số đường tiệm cận ngang và tiệm cận đứng: 2.

  • Câu 9: Thông hiểu

    Đồ thị của hàm số y = \frac{x - 1}{x^{2}
+ 2x - 3} có bao nhiêu đường tiệm cận?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3;1 ight\}

    \left\{ \begin{matrix}
\lim_{x ightarrow + \infty}y = 0 \\
\lim_{x ightarrow - \infty}y = 0 \\
\end{matrix} ight. suy ra y =
0 là tiệm cận ngang của đồ thị hàm số đã cho.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{1}{{x + 3}} = \frac{1}{4} \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{1}{{x + 3}} = \frac{1}{4} \hfill \\ 
\end{gathered}  ight. suy ra đường thẳng x = 1 không là đường tiệm cận đứng của đồ thị hàm số đã cho.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{\left( { - 3} ight)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 3} ight)}^ + }} \frac{{x - 1}}{{\left( {x - 1} ight)\left( {x + 3} ight)}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {{\left( { - 3} ight)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( { - 3} ight)}^ - }} \frac{{x - 1}}{{\left( {x - 1} ight)\left( {x + 3} ight)}} =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra đường thẳng x = - 3 là đường tiệm cận đứng của đồ thị hàm số đã cho.

    Vậy đồ thị hàm số đã cho có 2 đường tiệm cận.

  • Câu 10: Thông hiểu

    Tiếp tuyến tại điểm cực tiểu của đồ thị hàm số y = \frac{1}{3}x^{3} - 3x^{2} + 5x -
1

    Ta có: y' = x^{2} - 6x + 5 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 5 \\
\end{matrix} ight.

    y'' = 2x - 6 \Rightarrow \left\{
\begin{matrix}
y''(1) = - 4 < 0 \\
y''(5) = 4 > 0 \\
\end{matrix} ight. nên hàm số đạt cực đại tại điểm x = 1 và đạt cực tiểu tại x = 5;y_{CT} = - \frac{28}{3}
    y'(5) = 0 suy ra tiếp tuyến tại điểm cực tiểu của đồ thị hàm số y = -
\frac{28}{3}

    Vậy tiếp tuyến song song với trục hoành.

  • Câu 11: Thông hiểu

    Cho hàm số y = f\left( x ight) = \frac{{3x - 1}}{{x - 3}} trên đoạn \left[ {0,2} ight]. Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Tính giá trị biểu thức 3M + m.

    Xét hàm số y = f\left( x ight) = \frac{{3x - 1}}{{x - 3}} trên đoạn \left[ {0,2} ight] ta có:

    f'\left( x ight) = \frac{8}{{{{\left( {x - 3} ight)}^2}}} < 0

    => f\left( x ight) là hàm số nghịch biến trên \left( {0;2} ight)

    => \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\mathop {\min f\left( x ight)}\limits_{\left[ {0;2} ight]}  = f\left( 2 ight) =  - 5} \\   {\mathop {\max f\left( x ight)}\limits_{\left[ {0;2} ight]}  = f\left( 0 ight) = \dfrac{1}{3}} \end{array}} ight. \Rightarrow 3M + m =  - 2

  • Câu 12: Thông hiểu

    Cho hàm số y = f(x)f'(x) > 0;\forall x\mathbb{\in R}. Có bao nhiêu giá trị nguyên của x để f(22x) > f\left( x^{2}
ight)?

    Ta có: f'(x) > 0;\forall
x\mathbb{\in R} suy ra hàm số f(x) đồng biến trên \mathbb{R}

    Suy ra f(22x) > f\left( x^{2} ight)
\Leftrightarrow 22x > x^{2} \Leftrightarrow 0 < x <
22

    Vậy có tất cả 21 giá trị nguyên của x.

  • Câu 13: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên trên đoạn \lbrack -
5;7brack như sau:

    Mệnh đề nào sau đây đúng?

    Từ bảng biến thiên ta suy ra \min_{\lbrack - 5;7brack}y = 2

  • Câu 14: Vận dụng cao

    Tìm giá trị của tham số m để đồ thị hàm số y = f\left( x ight) = \frac{{2x + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} có hai đường tiệm cận đứng và hai đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2.

    Tập xác định D = \left( { - \infty ; - 1} ight) \cup \left( {0; + \infty } ight)

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{m - \sqrt {{1^2} + \dfrac{3}{{{x^2}}}}  - \dfrac{1}{x}}}{{ - \sqrt {{1^2} + \dfrac{1}{x}} }} = 1 - m \hfill \\  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{m + \sqrt {{1^2} + \dfrac{3}{{{x^2}}}}  - \frac{1}{x}}}{{\sqrt {{1^2} + \dfrac{1}{x}} }} = m + 1 \hfill \\ \end{matrix}

    => Để đồ thị hàm số có 2 đường tiệm cận ngang thì m + 1 e 1 - m \Leftrightarrow m e 0

    \begin{matrix}  \mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{mx + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} =  + \infty  \hfill \\  \mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{mx + \sqrt {{x^2} + 3}  - 1}}{{\sqrt {{x^2} + x} }} = \left\{ {\begin{array}{*{20}{c}}  { + \infty {\text{  khi m  <  1}}} \\   { - \infty {\text{  khi m  >  1}}} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy khi m e 0;m e 1 thì đồ thị hàm số có 2 đường tiệm cận ngang là y = m + 1; y = - m và 2 đường tiệm cận đứng là x = 0 và x = -1

    Để hai đường tiệm cận đứng và 2 đường tiệm cận ngang tạo thành hình chữ nhật có diện tích bằng 2 thì 1.2\left| m ight| = 2 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {m = 1\left( L ight)} \\   {m =  - 1\left( {tm} ight)} \end{array}} ight.

  • Câu 15: Nhận biết

    Đồ thị hàm số nào dưới đây có dạng như hình vẽ?

    Đồ thị hàm số bậc 4 có hệ số a <
0 và có ba điểm cực trị nên ab <
0nên chọn y = - x^{4} +
4x^{2}.

  • Câu 16: Thông hiểu

    Cho hàm số y = x^{4} + 2(m - 2)x +
1 với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m \in \lbrack -
20;20brack để hàm số đã cho có duy nhất một cực tiểu. Hỏi tập S có bao nhiêu phần tử?

    Điều kiện để hàm số y = x^{4} + 2(m - 2)x
+ 1 có duy nhất một cực tiểu là a =
1 > 0 và phương trình y' =
0 có duy nhất một nghiệm.

    y' = 4x^{3} + 4(m - 2)x

    y' = 0 \Leftrightarrow 4x^{3} + 4(m
- 2)x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = 2 - m(*) \\
\end{matrix} ight.

    Để phương trình y' = 0 có duy nhất một nghiệm thì phương trình (*) vô nghiệm hoặc có nghiệm duy nhất x = 0.

    \Leftrightarrow 2 - m \leq 0
\Leftrightarrow m \geq 2

    Mặt khác \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 20;20brack \\
\end{matrix} ight.\  \Rightarrow m \in \left\{ 2;3;....20
ight\}

    Vậy có tất cả 19 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 17: Vận dụng cao

    Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm f'\left( x ight) = {x^2}\left( {x - 2} ight)\left( {{x^2} - 6x + m} ight) với mọi x \in \mathbb{R}. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số g\left( x ight) = f\left( {1 - x} ight) nghịch biến trên khoảng \left( { - \infty ; - 1} ight)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm f'\left( x ight) = {x^2}\left( {x - 2} ight)\left( {{x^2} - 6x + m} ight) với mọi x \in \mathbb{R}. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số g\left( x ight) = f\left( {1 - x} ight) nghịch biến trên khoảng \left( { - \infty ; - 1} ight)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Vận dụng

    Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức h(t) = 24t +5t^{2} - \frac{t^{3}}{3}. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.

    Đáp án: 15

    Đáp án là:

    Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức h(t) = 24t +5t^{2} - \frac{t^{3}}{3}. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.

    Đáp án: 15

    Ta có:

    h'(t) = 24 + 10t -t^{2}

    h'(t) = 0

    \Leftrightarrow 24 + 10t - t^{2} = 0\Leftrightarrow \left\lbrack \begin{matrix}t = - 2(ktm) \\t = 12(tm) \\\end{matrix} ight.

    Bảng biến thiên:

    Mực nước lên cao nhất thì phải mất 12 giờ.

    Hay mực nước lên cao nhất là lúc 20 giờ.

    Vậy phải thông báo cho dân di dời vào 15giờ chiều cùng ngày.

  • Câu 19: Thông hiểu

    Đồ thị hàm số y = \frac{\left( m^{2} - 3m
ight)x - 1}{x - 2} có đường tiệm cận ngang qua điểm A(1; - 2) khi:

    Để đồ thị hàm số y = \frac{\left( m^{2} -
3m ight)x - 1}{x - 2} có đường tiệm cận ngang là y = m^{2} - 3m

    Đường tiệm cận ngang đi qua A(1; -
2) nên ta có:

    m^{2} - 3m = - 2 \Leftrightarrow m^{2} -
3m + 2 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 2 \\
\end{matrix} ight.

    Vậy đáp án đúng là \left\lbrack
\begin{matrix}
m = 1 \\
m = 2 \\
\end{matrix} ight..

  • Câu 20: Nhận biết

    Cho hàm số y =
f(x) có đồ thị như hình vẽ như sau:

    Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Dựa vào đồ thị dễ dàng thấy hàm số đồng biến trên (0;1).

  • Câu 21: Thông hiểu

    Xác định giá trị của a để hàm số f\left( x ight) = \sin x - ax + b nghịch biến trên trục số.

     Ta có: y' = \cos x - a

    Hàm số nghịch biến trên \mathbb{R}

    \begin{matrix}   \Rightarrow \cos x - a \leqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow a \geqslant \cos x,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow a \geqslant 1 \hfill \\ \end{matrix}

  • Câu 22: Vận dụng

    Biết đồ thị hàm số y = \frac{{\left( {2m - n} ight){x^2} + mx + 1}}{{{x^2} + mx + n - 6}} nhận trục hoành và trục tung làm hai tiệm cận. Giá trị m + n là:

    Điều kiện {x^2} + mx + n - 6 e 0

    Phương trình đường tiệm cận ngang của đồ thị hàm số là y = 2m - n

    => 2m - n = 0\left( * ight)

    Đặt \left\{ {\begin{array}{*{20}{c}}  {f\left( x ight) = \left( {2m - n} ight){x^2} + mx + 1} \\   {g\left( x ight) = {x^2} + mx + n - 6} \end{array}} ight.

    Nhận thấy f\left( x ight) e 0 với mọi m, n nên đồ thị nhận trục tung x = 0 làm tiệm cận đứng thì g(0) = 0

    => n – 6 = 0 => n = 6

    Kết hợp với (*) => m = 3

    Vậy m + n = 9

  • Câu 23: Thông hiểu

    Hàm số nào sau đây có đồ thị như hình vẽ:

    Dựa vào hình dáng đồ thị ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số a < 0 nên loại đáp án y = x^{4} - 2x^{2} - 1

    Đồ thị hàm số đi qua điểm có tọa độ (0; -1) nên loại đáp án y = - x^{4} +2x^{2}

    Lại có đồ thị hàm số có các điểm cực trị (1;1),( - 1,1) nên loại đáp án y = - x^{4} + 2x^{2} - 1

    Vậy hàm số cần tìm là y = - 2x^{4} +4x^{2} - 1.

  • Câu 24: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{1}{3}x^{3} - 2mx^{2} + 4x - 5 nghịch biến trên \mathbb{R}?

    Ta có: y' = - x^{2} - 4x +
m

    Hàm số nghịch biến trên \mathbb{R} khi và chỉ khi y' \leq 0;\forall x\mathbb{\in R}

    \Leftrightarrow - x^{2} - 4x + m \leq
0;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
- 1 < 0 \\
\Delta \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow 16 + 4m \leq 0 \Leftrightarrow m
\in ( - \infty; - 4brack

    Vậy đáp án cần tìm là m \in ( - \infty; -
4brack.

  • Câu 25: Thông hiểu

    Tập hợp tất cả các giá trị thực của tham số m để hàm số y
= - x^{3} - 6x^{2} + (4m - 9)x + 4 nghịch biến trên khoảng ( - \infty; - 3) là:

    Ta có: y' = - 3x^{2} - 12x + 4m -
9

    Hàm số nghịch biến trên khoảng ( -
\infty; - 3) khi y' \leq
0;\forall x \in ( - \infty; - 3)

    \Leftrightarrow - 3x^{2} - 12x + 4m - 9
\leq 0;\forall x \in ( - \infty; - 3)

    \Leftrightarrow 4m \leq 3x^{2} + 12x +
9;\forall x \in ( - \infty; - 3)

    Đặt f(x) = 3x^{2} + 12x + 9 ta có: f'(x) = 6x + 12. Ta có bảng biến thiên của f(x) như sau:

    Dựa vào bảng biến thiên ta thấy

    4m \leq 3x^{2} + 12x + 9;\forall x \in (
- \infty; - 3)

    \Leftrightarrow 4m \leq 0
\Leftrightarrow m \leq 0

    Vậy ( - \infty;0brack là giá trị của tham số m cần tìm.

  • Câu 26: Nhận biết

    Cho hình vẽ:

    Đường trong trong hình vẽ là đồ thị của hàm số nào?

    Dựa vào hình dạng đồ thị ta thấy đây là hàm số bậc ba dạng y = ax^{3} + bx^{2} + cx + d với a > 0

    Vậy hàm số cần tìm là y = x^{3} - 3x +
1.

  • Câu 27: Nhận biết

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{x + 1}{x^{2} - 3x + 4} bằng:

    Tập xác định D\mathbb{= R}

    Đồ thị hàm số y = \frac{x + 1}{x^{2} - 3x
+ 4} không có tiệm cận đứng.

    Ta có: \lim_{x ightarrow \pm \infty}y =\lim_{x ightarrow \pm \infty}\left( \dfrac{x + 1}{x^{2} - 3x + 4}ight) = \lim_{x ightarrow \pm \infty}\left( \dfrac{\dfrac{1}{x} +\dfrac{1}{x^{2}}}{1 - \dfrac{3}{x} + \dfrac{4}{x^{2}}} ight) = 0 suy ra y = 0 là tiệm cận ngang của đồ thị hàm số.

    Vậy tổng số đường tiệm cận của đồ thị hàm số đã cho bằng 1.

  • Câu 28: Vận dụng cao

    Tìm giá trị tham số m để đồ thị hàm số y = x^{4} - 2(m + 1)x^{2} + 2m +
3 có ba điểm cực trị A;B;C sao cho trục Ox chia tam giác ABC thành một tam giác và một hình thang biết rằng tỉ lệ diện tích tam giác nhỏ được chia ra và diện tích hình thang bằng \frac{4}{5}?

    Ta có: y' = 4x^{2} - 4(m +
1)x

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x^{2} = m + 1 \\
\end{matrix} ight.

    Hàm số có ba điểm cực trị khi và chỉ khi y' = 0 có ba nghiệm phân biệt \Leftrightarrow m > - 1

    Khi m > - 1 đồ thị hàm số có ba điểm cực trị là A(0;2m + 3), B\left( - \sqrt{m + 1}; - m^{2} + 2
ight), C\left( \sqrt{m + 1}; -
m^{2} + 2 ight)

    Ta có: A \in Oy, B và C đối xứng với nhau qua Oy suy ra tam giác ABC cân tại A

    Hình vẽ minh họa

    Trục hoành chia tam giác ABC thành một tam giác và một hình thang \Rightarrow \left\{ \begin{matrix}
2m + 3 > 0 \\
- m^{2} + 2 < 0 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{gathered}
  m >  - \dfrac{3}{2} \hfill \\
  \left[ \begin{gathered}
  m > \sqrt 2  \hfill \\
  m <  - \sqrt 2  \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  m > \sqrt 2  \hfill \\
   - \dfrac{3}{2} < m <  - \sqrt 2  \hfill \\ 
\end{gathered}  ight.

    Kết hợp với điều kiện m > - 1 ta được m > \sqrt{2}

    Khi đó gọi D; E lần lượt là giao điểm của Ox và các cạnh AB; AC. Gọi K là giao điểm của BC và Oy

    Ta có:

    \frac{S_{ADE}}{S_{ABC}} = \left(
\frac{OA}{AK} ight)^{2} = \left( \frac{y_{A}}{y_{A} - y_{B}}
ight)^{2} = \left( \frac{2m + 3}{m^{2} + 2m + 1}
ight)^{2}

    \frac{S_{ADE}}{S_{ABC}} = \frac{4}{9}
\Leftrightarrow \left( \frac{2m + 3}{m^{2} + 2m + 1} ight)^{2} =
\frac{4}{9}

    m > \sqrt{2} \Leftrightarrow
\frac{2m + 3}{m^{2} + 2m + 1} = \frac{2}{3}

    \Leftrightarrow 2m^{2} - 2m - 7 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = \dfrac{1 + \sqrt{15}}{2} \\m = \dfrac{1 - \sqrt{15}}{2} \\\end{matrix} ight.\  \Rightarrow m = \dfrac{1 +\sqrt{15}}{2}.

  • Câu 29: Nhận biết

    Tìm hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây?

    Dựa vào đồ thị hàm số suy ra đồ thị của hàm số bậc 4 trùng phương và nhánh cuối của đồ thị hàm số đi lên nên hệ số a > 0.

    Đồ thị hàm số cắt trục Oy tại gốc tọa độ nên c = 0

    Vậy hàm số tương ứng đồ thị đã cho là y =x^{4} - 2x^{2}.

  • Câu 30: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{mx + 4}{x + m} nghịch biến trên khoảng ( - \infty;1)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - m ight\}

    Ta có: y' = \frac{m^{2} - 4}{(x +
m)^{2}}

    Theo yêu cầu bài toán: \Leftrightarrow
y' < 0;\forall x \in ( - \infty;1)

    \Leftrightarrow \left\{ \begin{matrix}
- m otin ( - \infty;1) \\
m^{2} - 4 < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \leq - 1 \\
- 2 < m < 2 \\
\end{matrix} ight.\  \Leftrightarrow - 2 < m \leq - 1

    Vậy đáp án cần tìm là m \in ( - 2; -
1brack.

  • Câu 31: Thông hiểu

    Cho một tấm nhôm hình vuông cạnh 12\
dm, người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng x(\ dm), rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của x bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).

    Đáp án: 2 dm

    Đáp án là:

    Cho một tấm nhôm hình vuông cạnh 12\
dm, người ta cắt ở bốn góc bốn hình vuông bằng nhau, Mỗi hình vuông có cạnh bằng x(\ dm), rồi gập tấm nhôm lại như hình vẽ để được một cái hộp có dạng hình hộp chứ nhật không có nắp. Giá trị của x bằng bao nhiêu đêximet để thể tích của khối hộp đó là lớn nhất (làm tròn kết quả đến hàng phần chục).

    Đáp án: 2 dm

    Ta có:

    V(x) = (12 - 2x)^{2}.x \Leftrightarrow
V(x) = 4x^{3} - 48x^{2} + 144x

    \max V(x) = 128 tại x = 2\ dm

  • Câu 32: Thông hiểu

    Hàm số y = f(x) liên tục trên tập số thực và có bảng biến thiên như sau:

    Phương trình \left| f\left( 2x^{2} + 3
ight) - 2 ight| = 5 có bao nhiêu nghiệm?

    Gọi g(x) = f\left( 2x^{2} + 3 ight) -
2 ta có: g'(x) =
4x.f'\left( 2x^{2} + 3 ight)

    Suy ra g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
2x^{2} + 3 = - 1 \\
2x^{2} + 3 = 3 \\
\end{matrix} ight.\  \Leftrightarrow x = 0

    Ta có bảng biến thiên

    \left| g(x) ight| = 5
\Leftrightarrow \left\lbrack \begin{matrix}
g(x) = 5 \\
g(x) = - 5 \\
\end{matrix} ight. từ bảng biến thiên ta thấy phương trình có ba nghiệm.

  • Câu 33: Nhận biết

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ - 1
ight\} liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

    Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?

    Từ bảng biến thiên ta thấy:

    \lim_{x ightarrow - 1^{+}}y = -
\infty suy ra x = - 1 là tiệm cận đứng.

    \lim_{x ightarrow - \infty}y =
2 suy ra y = 2 là tiệm cận ngang

    \lim_{x ightarrow - \infty}y = -
1 suy ra y = - 1 là tiệm cận ngang

    Vậy đồ thị hàm số đã cho có tất cả ba đường tiệm cận.

  • Câu 34: Thông hiểu

    Tất cả các giá trị của tham số m để đồ thị hàm số y = \frac{x + 1}{x^{2} + 4x
+ m} có duy nhất một đường tiệm cận là:

    Ta có: \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow - \infty}y = 0 nên đồ thị hàm số luôn có một đường tiệm cận ngang là y =
0.

    Vậy để đồ thị hàm số y = \frac{x +
1}{x^{2} + 4x + m} có duy nhất một đường tiệm cận thì đồ thị hàm số không có đường tiệm cận đứng, hay phương trình x^{2} + 4x + m vô nghiệm

    \Leftrightarrow \Delta' < 0 \Leftrightarrow
4 - m < 0 \Leftrightarrow m > 4

  • Câu 35: Thông hiểu

    Cho hàm số y = \frac{1}{3}x^{2} + x^{2} +
(m - 2)x + 2 với m là tham số. Tìm tất cả các giá trị của tham số m để hàm số đã cho có hai điểm cực trị nằm bên trái trục Oy?

    Ta có: y' = x^{2} + 2x + m -
1

    Đồ thị của hàm số đã cho có hai điểm cực trị nằm bên trái trục tung khi và chỉ khi phương trình y' =
0 có hai nghiệm âm phân biệt

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
S < 0 \\
P > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 - m + 1 > 0 \\
- 2 < 0 \\
m - 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 1 < m < 2

    Vậy đáp án cần tìm là m \in
(1;2).

  • Câu 36: Vận dụng

    Cho hàm số y =f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m sao cho hàm số y = f(x - m) đồng biến trên khoảng (2020; + \infty). Hỏi tập hợp S có tất cả bao nhiêu phần tử?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m sao cho hàm số y = f(x - m) đồng biến trên khoảng (2020; + \infty). Hỏi tập hợp S có tất cả bao nhiêu phần tử?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 37: Nhận biết

    Cho hàm số y = \frac{2x + 3}{x -
2}. Giả sử M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 0;1brack. Khi đó giá trị của biểu thức S = M + m là:

    Ta có: y' = \frac{- 7}{(x - 2)^{2}}
< 0;\forall x \in \lbrack 0;1brack

    Vậy \left\{ \begin{matrix}M = y(0) = - \dfrac{3}{2} \\m = y(1) = - 5 \\\end{matrix} ight.\  \Rightarrow S = M + m = -\dfrac{13}{2}

  • Câu 38: Vận dụng

    Cho đồ thị hàm số \left( C_{m} ight):y
= x^{3} - 2x^{2} + (1 - m)x + m. Tìm tất cả các giá trị của tham số m để \left( C_{m} ight) cắt trục hoành tại ba điểm phân biệt cách hoành độ x_{1};x_{2};x_{3} thỏa mãn {x_{1}}^{2} + {x_{2}}^{2} + {x_{3}}^{2} =
4?

    Để hàm số đã cho cắt trục hoành tại 3 điểm phân biệt thì phương trình hoành độ giao điểm phải có ba nghiệm phân biệt:

    x^{3} - 2x^{2} + (1 - m)x + m =
0

    \Leftrightarrow (x - 1)\left( x^{2} - x
- m ight) = 0

    Ta đặt x_{1} = 1. Khi đó để phương trình có 3 nghiệm phân biệt thì phương trình sau phải có 2 nghiệm phân biệt khác 1.

    x^{2} - x + m = 0

    Do có nghiệm khác 1 nên 1 - 1 - m eq
0 hay m eq 0

    Ta có: \Delta = 1 + 4m

    Để có hai nghiệm phân biệt thì \Delta
> 0 hay m > -
\frac{1}{4}

    Theo bài ra ta có:

    {x_{1}}^{2} + {x_{2}}^{2} + {x_{3}}^{2}
= 4

    \Leftrightarrow 1 + \left( x_{2} + x_{3}
ight)^{2} - 2x_{2}x_{3} = 4 \Leftrightarrow \left( x_{2} + x_{3}
ight)^{2} - 2x_{2}x_{3} = 3 với x_{2};x_{3} là nghiệm của phương trình bậc hai trên.

    Áp dụng hệ thức Vi – et ra có:

    1^{2} - 2.( - m) = 3 \Leftrightarrow m =
1

    Kết hợp các điều kiện ta có: m =
1.

    Vậy đáp án đúng là m = 1.

  • Câu 39: Nhận biết

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Dựa vào đồ thị ta có hàm số đồng biến trên khoảng ( - 1;\ 0).

  • Câu 40: Vận dụng

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R}. Đồ thị hàm số y f’(x) như hình vẽ bên:

    Số điểm cực trị của hàm số

    Số điểm cực trị của hàm số y = f(x) + 2x là:

    Xét hàm số g(x) = f(x) + 2x. Từ đồ thị hàm số f’(x) ta thấy:

    g'\left( x ight) = 0 \Leftrightarrow f'\left( x ight) =  - 2 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = \alpha } \end{array}} ight.;\left( {\alpha  > 0} ight)

    g'\left( x ight) = 0 \Leftrightarrow f'\left( x ight) =  - 2 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = \alpha } \end{array}} ight.;\left( {\alpha  > 0} ight)

    g'\left( x ight) < 0 \Leftrightarrow f'\left( x ight) <  - 2 \Leftrightarrow x > \alpha

    Từ đó suy ra hàm số y = f(x) + 2x liên tục và có đạo hàm chỉ đổi dấu khi qua giá trị x = \alpha

    Từ đó ta có bảng xét dấu như sau:

    Số điểm cực trị của hàm số

    Vậy hàm số đã cho có đúng một cực trị

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo