Tìm giá trị thực của tham số
để hàm số
có giá trị lớn nhất trên đoạn
bằng
?
Xét hàm số trên đoạn
ta có:
Phương trình
Tìm giá trị thực của tham số
để hàm số
có giá trị lớn nhất trên đoạn
bằng
?
Xét hàm số trên đoạn
ta có:
Phương trình
Cho hàm số
với
là tham số. Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số nghịch biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Ta có:
Theo yêu cầu bài toán
Mà
Vậy tập hợp T có tất cả 3 phần tử.
Tìm các khoảng nghịch biến của hàm số
?
Tập xác định
Ta có:
Do đó hàm số luôn nghịch biến trên từng khoảng xác định.
Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là
. Nếu vận tốc bơi của cá khi nước đứng yên là
thì năng lượng tiêu hao của cá trong
giờ được cho bởi công thức
, trong đó
là hằng số dương,
được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng
thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của
(kết quả làm tròn tới hàng phần mười).
Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là . Nếu vận tốc bơi của cá khi nước đứng yên là
thì năng lượng tiêu hao của cá trong
giờ được cho bởi công thức
, trong đó
là hằng số dương,
được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng
thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của
(kết quả làm tròn tới hàng phần mười).
Cho hàm số
xác định và liên tục trên đoạn
và có đạo hàm
trên khoảng
. Đồ thị của hàm số
như hình vẽ sau:

Mệnh đề nào sau đây đúng?
Dựa vào đồ thị ta thấy và dấu “=” chỉ xảy ra tại
nên hàm số đồng biến trên khoảng
.
Hàm số nào dưới đây có dạng đồ thị như đường cong trong hình vẽ?

Dựa vào hình dáng đồ thị ta suy ra đồ thị của hàm số bậc 4 có hệ số .
Vậy hàm số cần tìm là .
Cho hàm số có đồ thị như hình vẽ sau đây:

Khẳng định nào sau đây đúng?
Dựa vào đồ thị hàm số ta thấy:
Đồ thị hàm số cắt trục Ox tại điểm có hoành độ dương =>
Đồ thị hàm số cắt trục Oy tại điểm có tung độ âm =>
Đồ thị hàm số nhận làm tiệm cận đứng và
làm tiệm cận ngang
Chọn a > 0 => b < 0; c > 0; d > 0 =>
Đồ thị hàm số
có bao nhiêu đường tiệm cận đứng?
Ta có:
suy ra
là đường tiệm cận đứng của đồ thị hàm số.
suy ra
là đường tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số đã cho có 2 đường tiệm cận đứng.
Đường tiệm cận ngang của đồ thị hàm số
có phương trình là:
Ta có:
Vậy đường thẳng là tiệm cận ngang của đồ thị hàm số.
Đồ thị hàm số
là hình nào trong 4 hình dưới đây?

Ta có:
Khi đó .
Do đó, chọn đáp án là: Hình 2
Cho hàm số
có đạo hàm liên tục trên
và có đồ thị hàm số
như sau:

Xét hàm số
và các mệnh đề sau:
(i) Hàm số
có ba điểm cực trị.
(ii) Hàm số
đạt cực tiểu tại
.
(iii) Hàm số
đạt cực đại tại
.
(iv) Hàm số
đồng biến trên khoảng
.
(v) Hàm số
nghịch biến trên khoảng
.
Có bao nhiêu mệnh đề đúng trong các mệnh đề đã cho?
Ta có:
Từ đồ thị ta nhận thấy là nghiệm kép nên ta có bảng biến thiên
Dựa vào bảng biến thiên ta có hàm số ta thấy hàm số có 3 cực trị và đồng biến trên khoảng
.
Vậy có tất cả 2 mệnh đề đúng.
Mỗi đợt xuất khẩu gạo của tỉnh
kéo dài trong 60 ngày. Người ta thấy lượng gạo xuất khẩu theo ngày thứ
được xác định bởi công thức:
(tấn) với
. Xét tính đúng sai của các khẳng định dưới đây?
a) Số lượng gạo xuất khẩu của tỉnh
ngày thứ 12 là 264304 (tấn).Đúng||Sai
b) Ngày thứ 30 của tỉnh
có lượng gạo xuất khẩu cao nhất. Sai||Đúng
c) Ngày thứ 1 của tỉnh
có lượng gạo xuất khẩu thấp nhất. Sai||Đúng
d) Ngày thứ 60 của tỉnh
có sản lượng xuất khẩu gạo thấp nhất là 143344 . Đúng|||Sai.
Mỗi đợt xuất khẩu gạo của tỉnh kéo dài trong 60 ngày. Người ta thấy lượng gạo xuất khẩu theo ngày thứ
được xác định bởi công thức:
(tấn) với
. Xét tính đúng sai của các khẳng định dưới đây?
a) Số lượng gạo xuất khẩu của tỉnh ngày thứ 12 là 264304 (tấn).Đúng||Sai
b) Ngày thứ 30 của tỉnh có lượng gạo xuất khẩu cao nhất. Sai||Đúng
c) Ngày thứ 1 của tỉnh có lượng gạo xuất khẩu thấp nhất. Sai||Đúng
d) Ngày thứ 60 của tỉnh có sản lượng xuất khẩu gạo thấp nhất là 143344 . Đúng|||Sai.
a) Đúng.
b) Sai.
Ta có
Bảng biến thiên:

Vậy ngày thứ 18 của tỉnh có lượng gạo xuất khẩu cao nhất là 265060.
c) Sai. Ta có ngày thứ 60 tinh có lượng gạo xuất khẩu thấp nhất là 143344.
d) Đúng. Ta có ngày thứ 60 tỉnh có lượng gạo xuất khẩu thấp nhất là 143344.
Hỏi đồ thị của hàm số
có tất cả bao nhiêu đường tiệm cận (không xét tiệm cận xiên)?
Tập xác định
Ta có: nên đồ thị hàm số có tiệm cận ngang là
nên đồ thị hàm số có tiệm cận đứng là
Vậy đồ thị hàm số có 2 đường tiệm cận.
Số đường tiệm cận của đồ thị hàm số
là:
Điều kiện xác định
Ta có: suy ra
là tiệm cận ngang của đồ thị hàm số.
nên đồ thị hàm số có 1 tiệm cận đứng
.
Vậy đồ thị hàm số có 2 đường tiệm cận.
Có bao nhiêu giá trị nguyên của tham số
để hàm số
không có điểm cực trị?
Ta có:
Hàm số đã cho không có cực trị khi và chỉ khi vô nghiệm hoặc có nghiệm kép.
Vì
Vậy có bốn giá trị của tham số thỏa mãn yêu cầu bài toán.
Cho hàm số
với
là tham số. Tìm tất cả các giá trị thực của tham số
để hàm số đã cho đồng biến trên
?
Tập xác định
Ta có:
Hàm số đã cho đồng biến trên khi và chỉ khi
Hay
Vậy giá trị tham số m thỏa mãn yêu cầu bài toán là .
Cho hàm số
với
là tham số. Tìm tất cả các giá trị của
để hàm số
đạt cực đại tại
?
Hàm số đạt cực đại tại
Vậy đáp án cần tìm là .
Có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có 7 điểm cực trị?
Có tất cả bao nhiêu giá trị nguyên của tham số để hàm số
có 7 điểm cực trị?
Đồ thị hàm số nào sau đây nhận điểm
làm tâm đối xứng?
Đồ thị hàm số có tiệm cận đứng là đường thẳng
và tiệm cận ngang là
suy ra giao điểm của hai đường tiệm cận là
Vậy điểm là tâm đối xứng của đồ thị hàm số
.
Biết rằng đồ thị hàm số
có hai điểm cực trị là
và
. Khi đó giá trị của hàm số
tại
bằng:
Ta có:
Đồ thị hàm số có hai điểm cực trị là
và
nên ta có
Suy ra .
Để đồ thị hàm số
có ba điểm cực trị tạo thành một tam giác có diện tích bằng
. Tìm giá trị tham số
thỏa mãn yêu cầu bài toán?
Để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác có diện tích bằng
. Tìm giá trị tham số
thỏa mãn yêu cầu bài toán?
Cho hàm số
xác định và liên tục trên
có bảng biến thiên như sau:

Giá trị lớn nhất của hàm số
trên
là:
Dựa vào bảng biến thiên ta suy ra giá trị lớn nhất của hàm số trên đoạn là
.
Điểm cực đại của đồ thị hàm số
là điểm
Tập xác định:
Ta có:
Ta có bảng biến thiên
Dựa vào bảng biến thiên ta có điểm cực đại của đồ thị hàm số là .
Cho hàm số
có bảng biến thiên như sau:

Đồ thị của hàm số đã cho có bao nhiêu tiệm cận?
Đồ thị của hàm số đã cho có đường tiệm cận.
Cho
hàm số có
. Hàm số
đồng biến trên khoảng nào dưới đây?
Xét dấu f’(x) như sau:

Ta có:
Chọn ta có:
=> là khoảng âm
Khi đó bảng xét dấu của y’ = (f(x2))’ như sau:

Từ trục xét dấu ta thấy. Hàm số y = f(x2) đồng biến trên (-1; 0)
Đồ thị hàm số
có bao nhiêu đường tiệm cận?
Điều kiện xác định
Vậy
Xét
Vậy là tiệm cận ngang của đồ thị hàm số.
Xét
Vậy là tiệm cận ngang của đồ thị hàm số.
Vì không tồn tại nên đồ thị hàm số đã cho không có tiệm cận đứng.
Vậy đồ thị hàm số có 2 tiệm cận.
Đồ thị sau đây là của hàm số nào?

Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là và tiệm cận đứng của đồ thị hàm số
.
Đồ thị hàm số cắt trục tung tại điểm
Vậy hàm số cần tìm là .
Cho hàm số y = f(x) có đạo hàm
. Hàm số
đồng biến trên các khoảng nào?
Cho hàm số y = f(x) có đạo hàm . Hàm số
đồng biến trên các khoảng nào?
Cho hàm bậc ba
có đồ thị như hình vẽ:

Hỏi đồ thị hàm số
có bao nhiêu đường tiệm cận?
Cho hàm bậc ba có đồ thị như hình vẽ:
Hỏi đồ thị hàm số có bao nhiêu đường tiệm cận?
Cho hàm số
liên tục trên
và có đạo hàm
với mọi
. Có bao nhiêu số nguyên
để hàm số
nghịch biến trên khoảng
?
Cho hàm số liên tục trên
và có đạo hàm
với mọi
. Có bao nhiêu số nguyên
để hàm số
nghịch biến trên khoảng
?
Cho hàm số
liên tục trên
và có bảng biến thiên như sau:

Mệnh đề nào sau dây đúng?
Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.
Cho hàm số
có đạo hàm
. Hàm số
đồng biến trên khoảng:
Ta có:
Ta có bảng xét dấu:
Hàm số đồng biến khi và chỉ khi
Vậy đáp án cần tìm là .
Hàm số
đồng biến trên khoảng nào dưới dây?
Tập xác định
Ta có:
Ta có bảng xét dấu
Vậy hàm số đồng biến trên khoảng
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là:
Tập xác định
Ta có:
Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
có đúng một tiệm cận đứng?
Đồ thị hàm số có đúng một tiệm cận đứng khi và chỉ khi phương trình
có đúng một nghiệm
Ta có:
Xét hàm số ta có:
Ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra
Mà nên
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Ta có:
Suy ra hàm số nghịch biến trên tập xác định
Hay hàm số nghịch biến trên các khoảng .
Cho hàm số
có đồ thị như hình vẽ. Toạ độ điểm cực đại của đồ thị hàm số đã cho là:

Dựa vào đồ thị hàm số đã cho, tọa độ điểm cực đại của đồ thị hàm số có tọa độ .
Giá trị lớn nhất của hàm số
trên đoạn
là:
Ta có:
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức
trong đó
là liều lượng thuốc được tiêm cho bệnh nhân (
được tính bằng miligam,
).
a) Độ giảm huyết áp của một bệnh nhân là
. Đúng||Sai
b) Đạo hàm của
là
. Sai||Đúng
c) Phương trình
có nghiệm duy nhất. Sai||Đúng
d) Liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là
. Đúng||Sai
Độ giảm huyết áp của một bệnh nhân được cho bởi công thức trong đó
là liều lượng thuốc được tiêm cho bệnh nhân (
được tính bằng miligam,
).
a) Độ giảm huyết áp của một bệnh nhân là . Đúng||Sai
b) Đạo hàm của là
. Sai||Đúng
c) Phương trình có nghiệm duy nhất. Sai||Đúng
d) Liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là . Đúng||Sai
a) Đúng. Độ giảm huyết áp của một bệnh nhân được viết lại là.
b) Sai. Đạo hàm của là
.
c) Sai. Xét phương trình
d) Đúng. Ta có bảng biến thiên:
Vậy liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là 20 mg.
Cho hàm số
. Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để giá trị lớn nhất của hàm số trên đoạn
không vượt quá 7. Hỏi tập
có bao nhiêu phần tử là số nguyên?
Cho hàm số . Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để giá trị lớn nhất của hàm số trên đoạn
không vượt quá 7. Hỏi tập
có bao nhiêu phần tử là số nguyên?