Cho hàm số
liên tục trên
và có bảng biến thiên như sau:

Mệnh đề nào sau dây đúng?
Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.
Cho hàm số
liên tục trên
và có bảng biến thiên như sau:

Mệnh đề nào sau dây đúng?
Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.
Hàm số
có đạo hàm
, với
. Hỏi hàm số
có bao nhiêu điểm cực trị?
Ta có:
Bảng biến thiên
Từ bảng biến thiên của hàm số ta thấy hàm số
có đúng một cực trị.
Cho hàm số y = f(x) có đồ thị như hình vẽ sau đây:

Số nghiệm của phương trình
là:
Ta có: có hai nghiệm
Trong các hàm số sau, hàm số nào vừa có khoảng đồng biến vừa có khoảng nghịch biến trên tập xác định của nó. (I)
; (II)
; (III)
(I) Tập xác định
=> (I) không thỏa mãn
(II) Tập xác định
Bảng xét dấu

=> (II) thỏa mãn
(III) Tập xác định
=> Hàm số nghịch biến trên tập số thực
=> (III) không thỏa mãn
Gọi
là tập hợp các giá trị của tham số
để giá trị lớn nhất của hàm số
trên đoạn
bằng
. Tính tổng các phần tử của tập
?
Ta có: . Suy ra hàm số
đồng biến trên đoạn
do đó
Theo giả thiết
Vậy nên tổng các phần tử của tập hợp
bằng
.
Cho hàm số đa thức bậc bốn
. Đồ thị hàm số
được biểu thị trong hình vẽ sau:

Hàm số
nghịch biến trong khoảng nào?
Đặt . Ta có bảng xét dấu của
được mô tả lại như sau:
Từ đó suy ra bảng xét dấu của
Vậy hàm số nghịch biến trên các khoảng
.
Cho hàm số y = f(x) có đạo hàm trên
là
. Hàm số đã cho có bao nhiêu điểm cực trị?
Tập xác định:
Ta có:
Ta có bảng xét dầu’(x) như sau:

Dựa vào bảng xét dấy của f’(x) ta thấy f’(x) đổi dấu qua hai điểm x = 2018, x = 2019 nên hàm số đã cho có hai điểm cực trị.
Cho hàm số y = f(x). Đồ thị của hàm số
như hình bên. Đặt
. Mệnh đề nào sau đây đúng?
Xét hàm số
Ta có bảng biến thiên như sau:

Vậy
Hành lang trong một tòa nhà có dạng chữ L (hình vẽ) có chiều cao
m, một phía rộng
m, một phía rộng
m. Một người thợ cần mang một số ống thép cứng các loại có độ dài
m,
m,
m,
m,
m, từ bên này qua bên kia. Hỏi có thể mang được mấy loại qua lối đi đó?

Đáp án: 4
Hành lang trong một tòa nhà có dạng chữ L (hình vẽ) có chiều cao m, một phía rộng
m, một phía rộng
m. Một người thợ cần mang một số ống thép cứng các loại có độ dài
m,
m,
m,
m,
m, từ bên này qua bên kia. Hỏi có thể mang được mấy loại qua lối đi đó?
Đáp án: 4
Ống thép muốn qua được hành lang (bên này qua bên kia) phải qua được góc vuông giữa hành lang.
Vì vậy chiều dài của ống thép phải thỏa mãn
,
Ta có
Trong đó
Xét hàm số
Vì vậy
Hình vẽ nào sau đây là đồ thị của hàm số
với
?
Với thì đồ thị hàm số
theo thứ tự tiếp xúc với trục hoành tại điểm có hoành độ
và
Mặt khác với thì
nên khi
thì đồ thị hàm số nằm phía dưới trục hoành
Vậy đồ thị hàm số cần tìm là .
Cho hàm số
có đạo hàm trên
và đồ thị như hình vẽ bên dưới:

a) Hàm số đồng biến trên khoảng
. Đúng||Sai
b) Hàm số đạt cực tiểu tại điểm
. Đúng||Sai
c) Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt. Đúng||Sai
d) Giá trị lớn nhất của hàm số trên đoạn
bằng
. Sai||Đúng
Cho hàm số có đạo hàm trên
và đồ thị như hình vẽ bên dưới:
a) Hàm số đồng biến trên khoảng . Đúng||Sai
b) Hàm số đạt cực tiểu tại điểm . Đúng||Sai
c) Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt. Đúng||Sai
d) Giá trị lớn nhất của hàm số trên đoạn bằng
. Sai||Đúng
Theo hình vẽ, hàm số đồng biến trên khoảng và đạt cực tiểu tại điểm
. giá trị không âm trên khoảng đó.
Giá trị lớn nhất của hàm số trên đoạn bằng
.
Cho hàm số
xác định trên
, liên tục trên các khoảng xác định và có bảng biến thiên như sau:

Tìm tập hợp các giá trị của tham số
để phương trình
có ba nghiệm phân biệt?
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số
và đường thẳng
Dựa vào bảng biến thiên ta suy ra để phương trình đã cho có ba nghiệm phân biệt thì .
Chọn hàm số tương ứng với bảng biến thiên sau?

Từ bảng biến thiên ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Cho hàm số
liên tục trên tập số thực và có bảng biến thiên như sau:

Đặt
với
là tham số. Tìm điều kiện của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số liên tục trên tập số thực và có bảng biến thiên như sau:
Đặt với
là tham số. Tìm điều kiện của tham số
để hàm số
có đúng ba điểm cực trị?
Số đường tiệm cận của đồ thị hàm số
là:
Tập xác định
Ta có: suy ra tiệm cận ngang của đồ thị hàm số
là
.
Lại có suy ra
là tiệm cận đứng của đồ thị hàm số.
suy ra
là tiệm cận đứng của đồ thị hàm số.
Vậy có tất cả 3 đường tiệm cận.
Cho hàm số
. Tìm khẳng định đúng?
Ta có:
. Ta có bảng xét dấu như sau:
Dựa vào bảng xét dấu ta suy ra hàm số nghịch biến trên khoảng .
Một công ty du lịch tổ chức tour du lịch với giá mỗi tour là
đồng một khách cho
khách. Từ khách thứ
, cứ thêm một khách, giá của tour lại được giảm
nghìn (
là số nguyên dương). Số khách thêm của tour không quá
người. Biết rằng nếu nhận thêm từ
đến
khách thì doanh thu tăng dần theo số khách nhận thêm. Tìm giá trị lớn nhất của
.
Một công ty du lịch tổ chức tour du lịch với giá mỗi tour là đồng một khách cho
khách. Từ khách thứ
, cứ thêm một khách, giá của tour lại được giảm
nghìn (
là số nguyên dương). Số khách thêm của tour không quá
người. Biết rằng nếu nhận thêm từ
đến
khách thì doanh thu tăng dần theo số khách nhận thêm. Tìm giá trị lớn nhất của
.
Cho hàm số có bảng biến thiên như hình dưới đây.

Khẳng định nào sau đây là đúng?
Từ bảng biến thiên ta nhận thấy đạo hàm của hàm số đổi dấu từ dương sang âm qua nghiệm 0 nên hàm số đạt cực đại tại 0 và giá trị cực đại của hàm số bằng 0.
Hàm số nào dưới đây nghịch biến trên
?
Xét hàm số ta có:
Do đó hàm số nghịch biến trên
.
Cho hàm số
liên tục và có đạo hàm trên
, biết
có đồ thị như hình vẽ:

Điểm cực đại của hàm số
đã cho là:
Dựa vào đồ thị hàm số ta có:
Khi đó ta có bảng xét dấu như sau:
Dựa vào bảng xét dấu suy ra điểm cực đại của hàm số là
.
Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên từng khoảng xác định?
Có bao nhiêu giá trị nguyên của tham số để hàm số
đồng biến trên từng khoảng xác định?
Cho hàm số
có đạo hàm trên
và có đồ thị như hình vẽ:

Xét hàm số
. Tìm
để
.
Cho hàm số có đạo hàm trên
và có đồ thị như hình vẽ:
Xét hàm số . Tìm
để
.
Cho hàm số
xác định trên
liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
Từ bảng biến thiên ta thấy:
suy ra
là tiệm cận đứng.
suy ra
là tiệm cận ngang
suy ra
là tiệm cận ngang
Vậy đồ thị hàm số đã cho có tất cả ba đường tiệm cận.
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào?

Đồ thị trong hình vẽ là hàm số có dạng
Đồ thị hàm số có tiệm cận ngang là và tiệm cận đứng
nên hàm số cần tìm là
.
Gọi M và m lần lượt là giá trị lớn nhất và giá tị nhỏ nhất của hàm số
trên tập
. Tính giá trị H của m.M
Tập xác định của hàm số y là:
Ta có:
Ta có bảng biến thiên như sau:

Từ bảng biến thiên ta được:
Cho hàm số
. Khẳng định nào sau đây sai?
Ta có tiệm cận đứng của hàm số là y = 3 và tiệm cận ngang là y = 1
Giao điểm của hai đường tiệm cận I(3; 1) là tâm đối xứng của đồ thị
=> A, C, D đúng và B sai
Cho hai hàm số bậc bốn y = f(x) và y = g(x) có các đồ thị như hình dưới đây.

Số điểm cực trị của hàm số
là:
Ta có:
Từ đồ thị ta thấy phương trình (*) có đùng 2 nghiệm phân biệt là x = -1; x = 3, x = x1, và f(x) – g(x) đổi dấu khi đi qua các nghiệm này
=> Các nghiệm trên là nghiệm bội lẻ của (*)
Mà f(x) và g(x) đều là đa thức bậc 4 nên bậc của phương trình (*) nhỏ hơn hoặc bằng 4
=> Phương trình (*) là phương trình bậc 3 có 3 nghiệm phân biệt nên phương trình (**) phải có 2 nghiệm phân biệt không trùng với các nghiệm của phương trình (*)
=> h’(x) = 0 có 5 nghiệm phân biệt và h’(x) đổi dấu khi đi qua các nghiệm đấy nên hàm số h(x) có 5 điểm cực trị.
Cho hàm số
có đồ thị (C). Gọi I là giao điểm của hai đường tiệm cận của (C). Tiếp tuyến của (C) cắt hai đường tiệm cận của (C) tại hai điểm A, B. Giá trị nhỏ nhất của chu vi đường tròn ngoại tiếp tam giác IAB bằng:
Đồ thị hàm số có tiệm cận đứng là x = 2 và tiệm cận ngang là y = 1 => I(2; 1)
Gọi khi đó ta có phương trình tiếp tuyến tại M là
Ta có:
Khi đó
Ta lại có tam giác IAB vuông tại I nên bán kính đường tròn ngoại tiếp tam giác IAB là
Mặt khác
Giá trị nhỏ nhất của chu vi đường tròn ngoại tiếp tam giác IAB bằng:
Để hàm số
(với
là tham số) đạt cực tiểu tại
thì tham số
thuộc khoảng nào sau đây?
Tập xác định
Ta có:
Hàm số đạt cực tiểu tại
Khi
Ta có: suy ra hàm số đạt cực tiểu tại
Vậy thì hàm số đạt cực tiểu tại
.
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị của tham số m để phương trình
có bốn nghiệm thuộc đoạn
là:

Đặt
Ta có:
Ta có đồ thị hình vẽ như sau:

Dựa vào đồ thị hàm số, phương trình đã cho có 4 nghiệm thuộc đoạn khi phương trình (*) có hai nghiệm
Tính diện tích lớn nhất của hình chữ nhật ABCD nội tiếp trong nửa đường tròn có bán kính 10cm (hình vẽ).

Tính diện tích lớn nhất của hình chữ nhật ABCD nội tiếp trong nửa đường tròn có bán kính 10cm (hình vẽ).
Đồ thị hàm số
có bao nhiêu đường tiệm cận?
Ta có:
suy ra
là tiệm cận đứng của đồ thị hàm số.
suy ra đồ thị hàm số có tiệm cận ngang là
.
Vậy đồ thị hàm số có hai đường tiệm cận.
Cho hàm số
. Biết đồ thị hàm số đã cho đi qua điểm
và có đường tiệm cận ngang là
. Giá trị
bằng:
Điều kiện để đồ thị hàm số có tiệm cận là
=> Đồ thị hàm số đi qua điểm nên
Đồ thị hàm số có đường tiệm cận ngang là (thỏa mãn)
Vậy
Hàm số
đồng biến trên khoảng
Ta có y’ = 8x => y’ = 0 => x = 0
=> y’ > 0 => x > 0
=> y’ < 0 => x < 0
Vậy hàm số đồng biến trên khoảng
Cho hàm số
có đồ thị như hình vẽ:

Xác định khoảng đồng biến của hàm số
?
Từ đồ thị hàm số ta có:
và
Ta có:
Khi đó:
Vậy hàm số đồng biến trên khoảng
.
Cho hàm số
có bảng biến thiên như sau.

Xét tính đúng sai của các khẳng định sau.
a) Hàm số đồng biến trên
. Sai|| Đúng
b) Hàm số nghịch biến trên
. Đúng||Sai
c) Hàm số có hai điểm cực trị. Sai|| Đúng
d) Hàm số đạt cực đại tại
. Đúng||Sai
Cho hàm số có bảng biến thiên như sau.
Xét tính đúng sai của các khẳng định sau.
a) Hàm số đồng biến trên . Sai|| Đúng
b) Hàm số nghịch biến trên . Đúng||Sai
c) Hàm số có hai điểm cực trị. Sai|| Đúng
d) Hàm số đạt cực đại tại . Đúng||Sai
Quan sát bảng biến thiên, ta có các kết quả sau:
a) Hàm số đồng biến trên nên khẳng định hàm số đồng biến trên
là sai.
b) Hàm số nghịch biến trên .
c) Hàm số có đúng 1 điểm cực trị là .
d) Hàm số có đạt cực đại tại .
Số đường tiệm cận của đồ thị hàm số
là:
Tập xác định
nên
không phải tiệm cận đứng.
suy ra
là một tiệm cận ngang
suy ra
là một tiệm cận ngang
Vậy số đường tiệm cận của đồ thị hàm số là 2.
Hàm số
có bao nhiêu điểm cực trị?
Tập xác định
Ta có: suy ra hàm số nghịch biến trên mỗi khoảng
và
Do đó hàm số không có điểm cực trị.
Cho hàm số
. Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?
Tập xác định
Ta có:
Vậy đồ thị có một tiệm cận ngang .
Cho hàm số y = f(x) xác định, liên tục trên
và có bảng biến thiên như sau:

Khẳng định nào sau đây là đúng?
Từ bảng biến thiên, ta dễ dàng thấy được A, B, D sai, C đúng