Cho hàm số y = f(x) liên tục trên và có bảng biến thiên như hình vẽ.

Biết f(-4) > f(8), khi đó giá trị nhỏ nhất của hàm số đã cho trên bằng:
Từ bảng biến thiên ta có:
Mặt khác f(-4) > f(8) => thì
Vậy
Cho hàm số y = f(x) liên tục trên và có bảng biến thiên như hình vẽ.

Biết f(-4) > f(8), khi đó giá trị nhỏ nhất của hàm số đã cho trên bằng:
Từ bảng biến thiên ta có:
Mặt khác f(-4) > f(8) => thì
Vậy
Gọi
lần lượt là số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Đồ thị hàm số không có tiệm cận ngang.
ta có
là tiệm cận đứng.
ta có:
là tiệm cận đứng.
Vậy .
Cho hàm số
có đạo hàm liên tục trên
và có đồ thị hàm số
như sau:

Xét hàm số
và các mệnh đề sau:
(i) Hàm số
có ba điểm cực trị.
(ii) Hàm số
đạt cực tiểu tại
.
(iii) Hàm số
đạt cực đại tại
.
(iv) Hàm số
đồng biến trên khoảng
.
(v) Hàm số
nghịch biến trên khoảng
.
Có bao nhiêu mệnh đề đúng trong các mệnh đề đã cho?
Ta có:
Từ đồ thị ta nhận thấy là nghiệm kép nên ta có bảng biến thiên
Dựa vào bảng biến thiên ta có hàm số ta thấy hàm số có 3 cực trị và đồng biến trên khoảng
.
Vậy có tất cả 2 mệnh đề đúng.
Cho hàm số bậc ba
có đồ thị như hình vẽ sau:

Khi đó số điểm cực trị của hàm số
là:
Từ giả thiết ta có đồ thị của hàm số như sau:
Vậy hàm số có ba điểm cực trị.
Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên từng khoảng xác định?
Có bao nhiêu giá trị nguyên của tham số để hàm số
đồng biến trên từng khoảng xác định?
Giá trị nhỏ nhất của hàm số y = x3 – 3x + 5 trên đoạn [0; 2] là:
Xét hàm số f(x) = x3 – 3x + 5 trên [0; 2] có:
f’(x) = 3x3 – 3
f’(x) = 0 =>
Tính được f(0) = 5; f(1) = 3; f(2) = 7
Vậy
Đường tiệm cận xiên của đồ thị hàm số
là đường thẳng có phương trình
Tập xác định: .
Phương trình đường tiệm cận xiên có dạng: .
Trong đó,
.
Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng
Tìm tập hợp T tất cả các giá trị của tham số thực m để hàm số
nghịch biến trên khoảng (-1; 1)
Ta có:
Để hàm số nghịch biến trên khoảng (-1; 1) thì
Ta có y’ = 0 => x = m hoặc x = m + 2
Bảng xét dấu

Từ bảng xét dấu ta thấy để hàm số nghịch biến trên khoảng (-1; 1) thì
Tâm đối xứng của đồ thị hàm số
là điểm nào trong các điểm cho sau đây?
Đồ thị hàm số nhận giao của hai tiệm cận làm tâm đối xứng
Đồ thị hàm số có tiệm cận ngang là và tiệm cận đứng là
Do đó tâm đối xứng của đồ thị hàm số là điểm .
Điểm cực tiểu của đồ thị hàm số
thuộc đường thẳng nào sau đây?
Ta có: . Do đó
Vì là điểm cực tiểu của hàm số nên điểm
là điểm cực tiểu của đồ thị hàm số.
Nhận thấy thuộc đường thẳng
.
Vậy điểm cực tiểu của đồ thị hàm số thuộc đường thẳng
.
Tìm số các giá trị nguyên của tham số
để hàm số
có ba điểm cực trị?
Ta có:
Hàm số có ba cực trị khi và chỉ khi
Mà . Vậy có 4 giá trị của tham số
thỏa mãn.
Số các giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
là:
Ta có: . Hàm số nghịch biến trên khoảng
khi
Vì
Vậy có tất cả 13 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Có bao nhiêu số nguyên
để hàm số
nghịch biến trên khoảng
?
Tập xác định
Hàm số đã cho nghịch biến trên khoảng
Vậy có tất cả 4 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Cho hàm số
. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là:
Tập xác định
Ta có:
Khi đó:
Tồn tại bao nhiêu giá trị nguyên của tham số
sao cho đồ thị hàm số
có ít nhất một tiệm cận đứng nằm bên phải trục tung?
Để đồ thị hàm số có ít nhất một tiệm cận đứng nằm bên phải trục tung thì phương trình có ít nhất 1 nghiệm dương.
Ta có:
Để (∗) có ít nhất 1 nghiệm dương thì:
TH1: (*) có 2 nghiệm trái dấu
Mà nên
.
TH2: (*) có 2 nghiệm phân biệt
Mà nên
.
TH3: (*) có nghiệm kép lớn hơn 0.
.
Mà nên
.
Vậy có 32 giá trị nguyên của
thỏa mãn yêu cầu bài toán.
Cho hàm số f(x) liên tục trên
và có bảng biến thiên của đạo hàm như sau:

Hàm số
có bao nhiêu điểm cực trị?
Xét hàm số , ta có bảng giá trị |t(x)|

Ta có:
Hàm số không có đạo hàm tại điểm
Tại mọi điểm ta có:
=>
Dựa vào bảng giá trị hàm |t| suy ra:
+ Phương trình (1), (2) vô nghiệm
+ Phương trình (3) có 4 nghiệm phân biệt khác 0
+ Phương trình (4) có hai nghiệm phân biệt khác 0 và khác các nghiệm của phương trình (3)
=> g’(x) = 0 có 7 nghiệm và qua các nghiệm này g’(x) đều đổi dấu
Từ (*) ta thấy g’(x) cũng đổi dấu khi x đi qua 2 điểm
Vậy hàm số g(x) có 9 điểm cực trị.
Xác định giá trị lớn nhất của hàm số ![]()
Điều kiện xác định:
Đặt ta có:
Ta có:
Khi đó:
Do đó:
Xét hàm số
Ta xác được
Cho hai số thực
thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Cho hai số thực thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Giả thiết cho
Xét hàm số trên
Suy ra
Vậy hàm số luôn đồng biến trên
nên ta có:
Suy ra:
Xét hàm số
luôn nghịch biến trên
luôn nghịch biến trên
Vậy khi
.
Người ta cần xây một bể chứa nước sản xuất dạng khối hộp chữ nhật không nắp có thể tích bằng
. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng. Chi phí để xây bể là 300 nghìn đồng/m2. Hãy xác định chi phí thấp nhất để xây bể.
Người ta cần xây một bể chứa nước sản xuất dạng khối hộp chữ nhật không nắp có thể tích bằng . Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng. Chi phí để xây bể là 300 nghìn đồng/m2. Hãy xác định chi phí thấp nhất để xây bể.
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số
là:
Khi
Suy ra đồ thị hàm số có 1 tiệm cận ngang và 1 tiệm cận đứng
Khi
Suy ra đồ thị hàm số có 1 tiệm cận ngang và 1 tiệm cận đứng
Vậy đồ thị hàm số có tất cả 4 đường tiệm cận.
Cho hàm số có đạo hàm
. Hàm số
đồng biến trên khoảng nào dưới đây?
Ta có: ta có bảng xét dấu như sau:
Vậy hàm số đồng biến trên khoảng .
Đường cong trong hình vẽ dưới đây là của hàm số nào?

Đường tiệm cận ngang:
Đường tiệm cận đứng:
Số đường tiệm cận của đồ thị hàm số
là:
Điều kiện xác định
Ta có: suy ra
là tiệm cận ngang của đồ thị hàm số.
nên đồ thị hàm số có 1 tiệm cận đứng
.
Vậy đồ thị hàm số có 2 đường tiệm cận.
Cho hàm số
. Xác định tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trong khoảng (0; +∞)
Ta có:
Hàm số đã cho nghịch biến trên khoảng (0; +∞)
=>
=>
=>
Xét ta có:
Ta lại có:
Một máy bay bắt đầu hạ cánh, biết quỹ đạo đường bay của nó được mô hình hóa toán học trong mặt phẳng với hệ tọa độ
(với mỗi đơn vị trên mỗi trục có độ dài bằng 1 dặm) có dạng đồ thị của hàm bậc ba. Vị trí bắt đầu hạ cánh có tọa độ là
là điểm cực đại của đồ thị hàm số và máy bay này tiếp đất tại vị trí gốc tọa độ là điểm cực tiểu của đồ thị hàm số. Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất bao nhiêu dặm (kết quả làm tròn đến hàng phần trăm)?
Đáp án: 0,84 dặm
Một máy bay bắt đầu hạ cánh, biết quỹ đạo đường bay của nó được mô hình hóa toán học trong mặt phẳng với hệ tọa độ (với mỗi đơn vị trên mỗi trục có độ dài bằng 1 dặm) có dạng đồ thị của hàm bậc ba. Vị trí bắt đầu hạ cánh có tọa độ là
là điểm cực đại của đồ thị hàm số và máy bay này tiếp đất tại vị trí gốc tọa độ là điểm cực tiểu của đồ thị hàm số. Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất bao nhiêu dặm (kết quả làm tròn đến hàng phần trăm)?
Đáp án: 0,84 dặm
Gọi hàm số mô phỏng đường bay của máy bay là .
Đồ thị hàm số đi qua điểm nên ta có
.
Đồ thị hàm số đi qua điểm nên ta có phương trình
.
Mặt khác, ta có và
là hai điểm cực trị của đồ thị hàm số nên ta có
tức là
.
Từ và
ta có
.
Suy ra .
Thay ta được
.
Vậy khi máy bay ha cánh theo phương ngang 3 dặm thì máy bay cách mặt đất khoảng dặm.
Cho hàm số f(x) có đạo hàm f’(x). Đồ thị của hàm số y = f’(x) được biểu diễn trong hình vẽ dưới đây.

Biết rằng
. Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số f(x) trên đoạn [0; 4]?
Ta có bảng xét dấu như sau:

Dựa vào bảng xét dấy ta có M = f(2), GTNN chỉ có thể là f(0) hoặc f(4)
Ta lại có
f(1) và f(3) nhỏ hơn f(2) => f(1) + f(3) < 2f(2)
=> 2f(2) – f(1) – f(3) > 0
Theo bài ra ta có:
f(0) + f(1) + f(3) = f(4) + 2f(2)
=> f(0) – f(4) = 2f(2) – f(1) – f(3) > 0
=> f(0) – f(4) > 0 => f(0) > f(4)
=> GTNN đạt được tại x = 4
Cho hàm số
xác định trên R và có đồ thị hàm số
là đường cong như hình vẽ:

Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.
a) Hàm số
nghịch biến trên khoảng
. Sai||Đúng
b) Hàm số
nghịch biến trên khoảng
. Đúng||Sai
c) Hàm số
đạt cực đại tại
. Đúng||Sai
d) Hàm số
đạt cực tiểu tại
. Sai||Đúng
Cho hàm số xác định trên R và có đồ thị hàm số
là đường cong như hình vẽ:
Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.
a) Hàm số nghịch biến trên khoảng
. Sai||Đúng
b) Hàm số nghịch biến trên khoảng
. Đúng||Sai
c) Hàm số đạt cực đại tại
. Đúng||Sai
d) Hàm số đạt cực tiểu tại
. Sai||Đúng
Từ đồ thị hàm số , ta có bảng biến thiên
a) Từ bảng biến thiên hàm số đồng biến trên khoảng (−1; 0) và nghịch biến trên khoảng (0; 1).
b) Từ bảng biến thiên ta thấy hàm số y = f(x) nghịch biến trên (0; 2).
c) Từ bảng biến thiên ta thấy hàm số f(x) đạt cực đại tại x = 0.
d) Từ bảng biến thiên ta thấy hàm số f(x) đạt cực tiểu tại x = −2 và x = 2.
Cho hàm số
có bảng biến thiên như sau:

Giá trị cực tiểu của hàm số đã cho bằng:
Dựa vào bảng biến thiên suy ra hàm số đạt cực tiểu tại và
; giá trị cực tiểu bằng
.
Cho hàm số
. Mệnh đề nào dưới đây là mệnh đề sai?
Vì nên đồ thị hàm số luôn nghịch biến trên các khoảng
.
Vậy mệnh đề sai là: "Hàm số đồng biến trên ".
Tìm tất cả các giá trị thực của tham số
để hàm số
đồng biến trên đoạn
?
Theo yêu cầu bài toán ta có:
Để hàm số đồng biến trên đoạn
Đặt
Vậy là đáp án cần tìm.
Đường thẳng
là đường tiệm cận của đồ thị hàm số nào sau đây?
có
suy ra
là tiệm cận ngang của đồ thị hàm số. (Loại)
có
nên đồ thị hàm số không có tiệm cận ngang (loại)
có
suy ra
là tiệm cận ngang (Thỏa mãn).
Vậy đường thẳng là đường tiệm cận của đồ thị hàm số
.
Số đường tiệm cận của đồ thị hàm số
là:
Tập xác định
suy ra
là tiệm cận ngang.
suy ra
là tiệm cận ngang.
Vậy không là tiệm cận đứng của đồ thị hàm số đã cho.
suy ra
là tiệm cận đứng của đồ thị hàm số đã cho
Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.
Cho hàm số
có bảng biến thiên như sau:

Đồ thị hàm số có đường tiệm cận ngang là:
Dựa vào bảng biến thiên ta có: nên đồ thị hàm số có đường tiệm cận ngang là
.
Cho hàm số
có đạo hàm
với mọi
.
a) Phương trình
có duy nhất một nghiệm
. Sai||Đúng
b) Hàm số
đồng biến trên khoảng
. Đúng||Sai
c) Hàm số
có hai điểm cực trị. Đúng||Sai
d) Hàm số
có ba điểm cực đại. Sai||Đúng
Cho hàm số có đạo hàm
với mọi
.
a) Phương trình có duy nhất một nghiệm
. Sai||Đúng
b) Hàm số đồng biến trên khoảng
. Đúng||Sai
c) Hàm số có hai điểm cực trị. Đúng||Sai
d) Hàm số có ba điểm cực đại. Sai||Đúng
a) Sai
Ta có .
.
Vậy phương trình có hai nghiệm.
b) Đúng
Bảng biến thiên
Dựa vào bảng biến thiên của hàm số ta thấy hàm số đồng biến trên các khoảng
.
Ta có nên hàm số
đồng biến trên khoảng
.
c) Đúng
Dựa vào bảng biến thiên của hàm số ta thấy hàm số có hai điểm cực trị.
d) Sai
Ta có:
.
.
Bảng biến thiên
Dựa vào bảng biến thiên của hàm số ta thấy hàm số có hai điểm cực đại.
Cho hàm số
có đồ thị như hình vẽ:

Hãy phương trình
có bao nhiêu nghiệm thuộc khoảng
?
Ta có:
Từ đồ thị hàm số ta thấy đường thẳng cắt đồ thị tại hai điểm phân biệt, đường thẳng
cắt đồ thị tại 4 điểm phân biệt do đó phương trình
có hai nghiệm phân biệt và phương trình
có 4 nghiệm phân biệt
Vậy phương trình có tất cả 6 nghiệm thực phân biệt.
Chọn hàm số đồng biến trên
?
Xét hàm số ta có:
Vậy hàm số đồng biến trên
.
Cho hàm số
có bảng biến thiên như sau:

Có bao nhiêu giá trị nguyên của tham số
để phương trình
có ba nghiệm phân biệt?
Ta có:
Để phương trình có ba nghiệm phân biệt thì
Vậy có 1 giá trị nguyên của m thỏa mãn yêu cầu.
Cho hàm số có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?
![]() |
Ta có:
Đồ thị hàm số cắt trục tung tại điểm có tung độ dương => d > 0
Ta có: , nhận thấy hoành độ hai điểm cực trị của đồ thị hàm số có
Giả sử
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Khi đó tổng của
và
bằng bao nhiêu?
Ta có:
Trong các hàm số sau, hàm số nào vừa có khoảng đồng biến vừa có khoảng nghịch biến trên tập xác định của nó. (I)
; (II)
; (III)
(I) Tập xác định
=> (I) không thỏa mãn
(II) Tập xác định
Bảng xét dấu

=> (II) thỏa mãn
(III) Tập xác định
=> Hàm số nghịch biến trên tập số thực
=> (III) không thỏa mãn