Đề kiểm tra 45 phút Chương 10 Xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Gieo ba con xúc xắc một cách độc lập. Tính xác suất để tổng số chấm trên mặt xuất hiện trên ba con xúc xắc bằng 9?

    Gọi A là biến cố: “Tổng số chấm trên ba mặt của ba con xúc xắc là 9”

    \left\{ \begin{matrix}
9 = 1 + 2 + 6 \\
9 = 2 + 3 + 4 \\
9 = 1 + 3 + 5 \\
9 = 1 + 4 + 4 \\
9 = 2 + 2 + 5 \\
9 = 3 + 3 + 3 \\
\end{matrix} ight. nên n(A) =
3.3! + 3.2 + 1 = 25

    Lại có |\Omega| = 6^{3} =
216

    Khi đó xác suất của biến cố A là: P(A) =
\frac{25}{216}

  • Câu 2: Thông hiểu

    Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Xác suất để 3 quyển được lấy ra đều là môn toán là bao nhiêu?

    Số cách lấy 3 quyển sách bất kì là C_{9}^{3} = 84.

    Số cách lấy được 3 quyển thuộc môn toán là C_{4}^{3}.C_{3}^{0}.C_{2}^{0} = 4.

    Suy ra xác suất cần tìm là \frac{1}{21}.

  • Câu 3: Thông hiểu

    Một đội văn nghệ có 5 nam và 8 nữ, đội trưởng cần lập một nhóm 4 người để tham gia biểu diễn một tiết mục chính. Xác suất để trong bốn người được chọn có ít nhất 3 nam bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
C_{13}^{4}

    Gọi A là biến cố: “chọn được ít nhất 3 nam”

    n(A) = C_{5}^{3}.C_{8}^{1} +
C_{5}^{4}

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{17}{143}

  • Câu 4: Vận dụng

    Một bộ đề thi Olympic Toán lớp 11 của Trường THPT Z mà mỗi đề gồm 5 câu được chọn từ 15 câu mức dễ, 10 câu mức trung bình và 5 câu mức khó. Một đề thi được gọi là “Tốt” nếu trong đề thi phải có cả mức dễ, mức trung bình và khó, đồng thời số câu mức khó không ít hơn 2. Lấy ngẫu nhiên một đề thi trong bộ đề trên. Tìm xác suất để đề thi lấy ra là một đề thi “Tốt”.

    Chọn 5 câu trong tổng số 30 câu nên ta có không gian mẫu n(\Omega) = C_{30}^{5}.

    Gọi A là biến cố “Lấy ra được một đề thi “Tốt””.

    TH1: 5 câu lấy ra có 2 câu khó, 1 câu dễ, 2 câu trung bình C_{5}^{2}.C_{15}^{1}.C_{10}^{2} (cách).

    TH2: 5 câu lấy ra có 2 câu khó, 2 câu dễ, 1 câu trung bình C_{5}^{2}.C_{15}^{2}.C_{10}^{1} (cách).

    TH3: 5 câu lấy ra có 3 câu khó, 1 câu dễ, 1 câu trung bình C_{5}^{3}.C_{15}^{1}.C_{10}^{1} (cách).

    Số kết quả thuận lợi của biến cố A là: n(A) = C_{5}^{2}.C_{15}^{1}.C_{10}^{2} +
C_{5}^{2}.C_{15}^{2}.C_{10}^{1} +
C_{5}^{3}.C_{15}^{1}.C_{10}^{1}.

    Xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{3125}{23751}.

  • Câu 5: Vận dụng

    Gọi S là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp S. Xác suất để hai số được ó chữ số hàng đơn vị giống nhau là bao nhiêu?

    Số phần tử của tập S9.10 = 90.

    Không gian mẫu là chọn ngẫu nhiên 2 số từ tập S.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{90}^{2} = 4005.

    Gọi X là biến cố ''Số được ó chữ số hàng đơn vị giống nhau''. Ta mô tả không gian của biến cố X nhưu sau

    ● Có 10 cách hữ số hàng đơn vị (chọn từ các chữ số \left\{ 0;\ 1;\ 2;\
3;...;\ 9 ight\}).

    ● Có C_{9}^{2} cách chọn hai chữ số hàng chục (chọn từ các chữ số \left\{ 1;\
2;\ 3;...;\ 9 ight\}).

    Suy ra số phần tử của biến cố X\left| \Omega_{X} ight| = 10.C_{9}^{2}
= 360.

    Vậy xác suất cần tính P(X) = \frac{\left|
\Omega_{X} ight|}{|\Omega|} = \frac{360}{4005} =
\frac{8}{89}..

  • Câu 7: Vận dụng

    Một xạ thủ bắn bia. Biết rằng xác suất bắn trúng trong vòng 10 là 0,2; vòng 9 là 0,25 và vòng 8 là 0,15. Nếu trúng vòng k thì được k điểm. Giả sử xạ thủ đó bắn ba phát súng một cách độc lập. Xạ thủ đạt loại giỏi nếu anh ta đạt ít nhất 28 điểm. Xác suất để xạ thủ này đạt loại giỏi bằng là:

    Gọi H là biến cố: “Xạ thủ bắn đạt loại giỏi”. A; B; C; D là các biến cố sau:

    A: “Ba viên trúng vòng 10”;

    B: “Hai viên trúng vòng 10 và một viên trúng vòng 9”;

    C: “Một viên trúng vòng 10 và hai viên trúng vòng 9”;

    D: “Hai viên trúng vòng 10 và hai viên trúng vòng 8”.

    Các biến cố A; B; C; D là các biến cố xung khắc từng đôi một nên

    H = A \cup B \cup C \cup D.

    Áp dụng quy tắc cộng mở rộng ta có:

    P(H) = P(A) + P(B) + P(C) +
P(D).

    P(A) = (0,2).(0,2).(0,2) =
0,008;

    P(B) = (0,2).(0,2).(0,25) +
(0,2).(0,25).(0,2) + (0,25).(0,2).(0,2) = 0,03;

    P(C) = (0,2).(0,25).(0,25) +
(0,25).(0,2).(0,25) + (0,25).(0,25).(0,2) = 0,0375

    P(D) = (0,2).(0,2).(0,15) +
(0,2).(0,15).(0,2) + (0,15).(0,2).(0,2) = 0,018.

    Do đó P(H) = 0,008 + 0,03 + 0,0375 +
0,018 = 0,0935.

  • Câu 8: Vận dụng

    Một lớp học có 40 học sinh trong đó có 4 cặp anh em sinh đôi. Trong buổi họp đầu năm thầy giáo chủ nhiệm lớp muốn chọn ra 3 học sinh để làm cán sự lớp gồm lớp trưởng, lớp phó và bí thư. Xác suất để chọn ra 3 học sinh làm cán sự lớp mà không có cặp anh em sinh đôi nào là bao nhiêu?

    Không gian mẫu là số cách chọn ngẫu nhiên 3 học sinh trong 40 học sinh.

    Suy ra số phần tử không gian mẫu là |\Omega| = C_{40}^{3} = 9880.

    Gọi A là biến cố ''3 học sinh được chọn không có cặp anh em sinh đôi nào''. Để tìm số phần tử của A, ta đi tìm số phần tử của biến cố \overline{A}, với biến cố \overline{A}3 học sinh được chọn luôn có 1 cặp anh em sinh đôi.

    + Chọn 1 cặp em sinh đôi trong 4 cặp em sinh đôi, có C_{4}^{1} cách.

    + Chọn thêm 1 học sinh trong 38 học sinh, có C_{38}^{1} cách.

    Suy ra số phần tử của biến cố \overline{A}\left| \Omega_{\overline{A}} ight| =
C_{4}^{1}.C_{38}^{1} = 152.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = 9880 - 152 =
9728.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{9728}{9880} =
\frac{64}{65}.

  • Câu 9: Thông hiểu

    Trên bàn có 4 quyển sách toán, 3 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để trong ba quyển sách lấy ra có ít nhất một quyển là toán?

    Xác suất để trong ba quyển lấy ra có ít nhất một quyển sách Toán là: 1 - \frac{C_{3}^{3}}{C_{7}^{3}} =
\frac{34}{35}

  • Câu 10: Nhận biết

    Thí nghiệm nào không phải là phép thử ngẫu nhiên?

    Phép thử ngẫu nhiên là phép thử mà ta chưa biết được kết quả là gì.

    Đáp án “Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm xem có tất cả bao nhiêu viên bi.” không phải là phép thử vì ta biết chắc chắn kết quả chỉ có thể là một số cụ thể số bi xanh và số bi đỏ.

  • Câu 11: Nhận biết

    Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:

    "Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm có tất bao nhiêu viên bi". Đây không phải là phép thử ngẫu nhiên.

  • Câu 12: Thông hiểu

    Một bình chứa 6 viên bi màu, trong đó có 2 bi xanh, 2 bi đỏ, 2 bi trắng. Lấy ngẫu nhiên 2 viên bi từ bình đó. Tính xác suất để lấy được 2 viên bi khác màu.

    Lấy 2 viên bi bất kì trong 6 viên bi trong bình thì có C_{6}^{2} = 15(cách).

    Lấy 2 viên bi cùng màu thì có C_{2}^{2} + C_{2}^{2} + C_{2}^{2} =
3 (cách) nên có 15 - 3 =
12(cách) lấy được 2 viên bi khác màu.

    Xác suất để lấy được 2viên bi khác màu trong tổng số 6 viên bi là P = \frac{12}{15} =
\frac{4}{5}.

  • Câu 13: Thông hiểu

    Một chiếc hộp chứa 20 quả cầu gồm 8 quả màu xanh, 7 quả màu đỏ và 5 quả màu vàng. Lấy ngẫu nhiên 6 quả cầu từ chiếc hộp. Tính xác suất để 6 quả cầu lấy được ít nhất một quả màu đỏ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{20}^{6}

    Gọi A là biến cố trong 6 quả cầu lấy được ít nhất một quả đỏ.

    Gọi B là biến cố trong 6 quả cầu lấy được không có quả đỏ.

    Số phần tử của biến cố B là: n(B) =
C_{13}^{6}

    Xác suất của biến cố B là: P(B) =
\frac{n(B)}{n(\Omega)} = \frac{143}{3230}

    Vậy xác suất của biến cố A cần tìm là: P(A) = 1 - P(B) = 1 - \frac{143}{3230} =
\frac{3087}{3230}

  • Câu 14: Nhận biết

    Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên?

    Thí nghiệm không phải là phép thử ngẫu nhiên là: “Quan sát vận động viên chạy bộ xem được bao nhiêu km/h”.

  • Câu 15: Nhận biết

    Gieo một con súc sắc. Xác suất để mặt 6 chấm xuất hiện là:

    Gieo một con súc sắc có không gian mẫu \Omega = \left\{ 1;2;3;4;5;6 ight\} \Rightarrow
n(\Omega) = 6.

    Xét biến cố A: “mặt 6 chấm xuất hiện”. A = \left\{ 6 ight\} \Rightarrow n(A) =
1.

    Do đó P(A) = \frac{1}{6}.

  • Câu 16: Nhận biết

    Một tổ học sinh lớp 10A có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 4 học sinh trong tổ đó để tham gia đội tình nguyện. Tính xác suất để bốn học sinh được chọn đều là nữ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{12}^{4} = 495

    Gọi A là biến cố: “Bốn học sinh được chọn đều là nữ”

    \Rightarrow n(A) = C_{5}^{4} =
5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{495} = \frac{1}{99}

  • Câu 17: Thông hiểu

    Lấy ngẫu nhiên hai tấm thẻ trong một hộp chứa 9 tấm thẻ được đánh số t 1 đến 9. Tính xác suất để tổng của các số trên hai tấm thẻ lấy ra là số chẵn?

    Từ 1 đến 9 có 4 số chẵn và 5 số lẻ.

    Số phần tử không gian mẫu là: n(\Omega) =
C_{9}^{2} = 36

    Gọi A là biến cố tổng của các số trên hai thẻ lấy ra là số chẵn.

    Để tổng nhận được là số chẵn thì 2 số được chọn hoặc là hai số chẵn hoặc là hai số lẻ.

    2 số được chọn là 2 số chẵn ta có: C_{4}^{2} cách chọn.

    2 số được chọn là 2 số lẻ ta có: C_{5}^{2} cách chọn.

    Suy ra số kết quả thuận lợi cho biến cố A là: n(A) = C_{4}^{2} + C_{5}^{2} = 16

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{16}{36} = \frac{4}{9}

  • Câu 18: Vận dụng

    Gọi S là tập hợp tất cả các số tự nhiên gồm 2 chữ số khác nhau lập từ \{ 0;1;2;3;4;5;6\}. Chọn ngẫu nhiên 2 số từ tập S. Xác suất để tích hai số chọn được là một số chẵn là:

    Ta có điều kiện chủ chốt “tích hai số được chọn là một số chẵn” Tồn tại ít nhất một trong hai số được chọn là chẵn.

    Gọi \overline{ab} là số tự nhiên có hai chữ số khác nhau được lập từ các số đã cho

    Số cách chọn a là 6 cách; Số cách chọn b cách Số các số có hai chữ số khác nhau tạo được là 6.6 = 36 số. Suy ra S36 phần tử.

    Số cách lấy ngẫu nhiên 2 số từ tập S: C_{36}^{2}
= 630 cách

    Gọi biến cố A: “Tích hai số được chọn là một số chẵn”

    Gọi biến cố \overline{A}: “Tích hai số được chọn là một số lẻ”

    Số các số lẻ trong S: 3.5 = 15 (3 cách chọn chữ số hàng đơn vị là lẻ, 5 cách chọn chữ số hàng chục khác 0).

    Số cách lấy ngẫu nhiên 2 số lẻ trong 15 số lẻ: C_{15}^{2} = 105 cách

    Suy ra P(\overline{A}) = \frac{105}{630}
= \frac{1}{6}. Vậy P(A) = 1 -
P(\overline{A}) = \frac{5}{6}.

  • Câu 19: Nhận biết

    Gieo ngẫu nhiên 2 đồng tiền thì không gian mẫu của phép thử có bao nhiêu biến cố:

    Mô tả không gian mẫu ta có: \Omega =
\left\{ SS;SN;NS;NN ight\}. (4 phần tử)

  • Câu 20: Nhận biết

    Xét một phép thử có không gian mẫu \Omega gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là một biến cố bất kì trong phép thử đó. Chọn phát biểu đúng dưới đây?

    Xét một phép thử có không gian mẫu \Omega gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là một biến cố bất kì của phép thử đó. Khi đó A \subset \Omega là phát biểu đúng.

  • Câu 21: Thông hiểu

    Chọn ngẫu nhiên 2 học sinh từ một tổ có 9 học sinh. Biết rằng xác suất chọn được 2 học sinh nữ bằng \frac{5}{18}, hỏi tổ có bao nhiêu học sinh nữ?

    Gọi số học sinh nữ là n (2 ≤ n ≤ 9, n ∈ \mathbb{N})

    Chọn bất kỳ 2 học sinh ta có C_9^2 = 36 cách.

    Do đó số phần tử của không gian mẫu là n(Ω) = 36

    Gọi biến cố A: “2 học sinh được chọn là 2 học sinh nữ”.

    Để chọn 2 học sinh được 2 học sinh nữ có:

    C_n^2 = \frac{{n!}}{{2!\left( {n - 2} ight)!}} = \frac{{n\left( {n - 1} ight)}}{2} (cách)

    Do đó số kết quả thuận lợi cho biến cố A là: 

    n\left( A ight) = \frac{1}{2}n\left( {n-1} ight)

    Xác suất để chọn được 2 học sinh nữ là:

    P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \dfrac{{\dfrac{1}{2}.n.\left( {n - 1} ight)}}{{36}} = \frac{{n\left( {n - 1} ight)}}{{72}}

    P\left( A ight) = \frac{5}{{18}}

    \begin{matrix}   \Leftrightarrow \dfrac{{n\left( {n - 1} ight)}}{{72}} = \dfrac{5}{{18}} \hfill \\   \Leftrightarrow n\left( {n - 1} ight) = 20 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 5\left( {tm} ight)} \\   {n =  - 4\left( {ktm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy có 5 học sinh nữ trong tổ.

  • Câu 22: Nhận biết

    Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố chắc chắn?

    Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố chắc chắn là “Mặt xuất hiện của xúc xắc có số chấm không vượt quá 6”.

  • Câu 23: Nhận biết

    Cho phép thử có không gian mẫu \Omega = \left\{ 1,2,3,4,5,6 ight\}. Cặp biến cố không đối nhau là cặp nào trong các cặp dưới đây?

    Cặp biến cố không đối nhau là E = \left\{
1,\ 4,\ 6 ight\}F = \left\{
2,\ 3 ight\} do E \cap F =
\varnothingE \cup F eq
\Omega.

  • Câu 24: Nhận biết

    Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Tìm số phần tử của biến cố A.

    Liệt kê ta có: A = \left\{
(1;2;3);(1;2;4);(1;2;5);(1;3;4) ight\}. (4 phần tử)

  • Câu 25: Nhận biết

    Cho B\overline{B} là hai biến cố đối nhau. Chọn mệnh đề đúng trong các mệnh đề sau đây?

    Mệnh đề đúng là: P(A) = 1 - P\left(
\overline{A} ight)

  • Câu 26: Nhận biết

    Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất 5 lần. Số phần tử không gian mẫu là bao nhiêu?

    Mỗi lần gieo có hai khả năng nên gieo 5 lần theo quy tắc nhân ta có 2^{5} = 32.

    Số phần tử không gian mẫu là n(\Omega) =
32.

  • Câu 27: Vận dụng

    Năm đoạn thẳng có độ dài 1cm; 3cm; 5cm; 7cm; 9cm. Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng trên. Xác suất để ba đoạn thẳng lấy ra có thể tạo thành 1 tam giác là:

    Phân tích: Cần nhớ lại kiến thức cơ bản về bất đẳng thức tam giác.

    Ba đoạn thẳng với chiều dài a,b,c có thể là 3 cạch của một tam giác khi và chỉ khi \left\{ \begin{matrix}
a + b > c \\
a + c > b \\
b + c > a \\
\end{matrix} ight.

    Số phần tử của không gian mẫu là: C_{5}^{3} = 10

    Gọi A là biến cố “lấy ba đoạn thẳng lấy ra lập thành một tam giác”

    Các khả năng chọn được ba đoạn thẳng lập thành một tam giác là (3;5;7);(3;5;9);(5;7;9)

    Số trường hợp thuận lợi của biến cố A là 3. Suy ra xác suất của biến cố AP(A) =
\frac{3}{10}.

  • Câu 28: Nhận biết

    Lớp 11B có 25 đoàn viên, trong đó có 10 nam và 15 nữ. Chọn ngẫu nhiên 3 đoàn viên trong lớp để tham dự hội trại ngày 26 tháng 3. Xác suất để chọn được 2 nam 1 nữ là:

    Số phần tử của không gian mẫu n(\Omega) =
C_{25}^{3}.

    Gọi A là biến cố “3 đoàn viên được chọn có 2 nam và 1 nữ”.

    Số phần tử của An(A) = C_{10}^{2}.C_{15}^{1}.

    Vậy xác xuất của biến cố A là: P(A) = \frac{n(A)}{n(\Omega)} =
\frac{C_{10}^{2}.C_{15}^{1}}{C_{25}^{3}} = \frac{27}{92}.

  • Câu 29: Nhận biết

    Lấy ngẫu nhiên đồng thời 3 quả cầu từ trong hộp chứa 10 quả cầu đỏ và 5 quả cầu xanh. Xác suất để ba quả cầu được chọn đều là màu xanh bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
C_{15}^{3} = 455

    Gọi A là biến cố lấy được 3 quả màu xanh

    Số phần tử của biến cố A là: n(A) =
C_{5}^{3} = 10

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{455} = \frac{2}{91}

  • Câu 30: Thông hiểu

    Trên kệ sách có 5 quyển sách Hóa học và 7 quyển sách Vật lí. Lấy ngẫu nhiên 3 quyển sách. Xác suất để ba quyển sách lấy ra có cả sách Hóa học và Vật lí bằng:

    Số phần tử không gian mẫu n(\Omega) =
C_{12}^{3} = 220 (lấy 3 trong 12 quyển sách)

    Gọi B là biến cố lấy được 3 quyển sách có cả sách Hóa học và sách Vật lí.

    Khi đó \overline{B} là biến cố lấy được 3 quyển sách trong đó chỉ có 1 loại sách hoặc là Hóa học hoặc là Vật lí

    TH1: 2 quyển sách được chọn là sách Hóa học ta có: C_{5}^{3} cách chọn.

    TH2: 2 quyển sách được chọn là sách Vật lí ta có: C_{7}^{3} cách chọn.

    Số phần tử của biến cố \overline{B} là: n\left( \overline{B} ight) = C_{5}^{3} +
C_{7}^{3} = 45

    Vậy xác suất của biến cố B cần tìm là:

    P(B) = 1 - P\left( \overline{B} ight)
= 1 - \frac{45}{220} = \frac{35}{44}

  • Câu 31: Nhận biết

    Một hộp chứa 11 quả cầu gồm 5 quả màu xanh và 6quả cầu màu đỏ. Chọn ngẫu nhiên đồng thời 2 quả cầu từ hộp đó. Tính xác suất để 2 quả cầu chọn ra cùng màu.

    Số cách lấy ra 2 quả cầu trong 11 quả là C_{11}^{2}, Suy ra n(\Omega) = C_{11}^{2}.

    Gọi A là biến cố lấy được 2 quả cùng màu. Suy ra n(A) = C_{5}^{2} + C_{6}^{2}.

    Xác suất của biến cố A là P(A) =
\frac{C_{5}^{2} + C_{6}^{2}}{C_{11}^{2}} = \frac{5}{11}.

  • Câu 32: Nhận biết

    Một nhóm học sinh lớp 10A gồm 10 học sinh trong đó có 4 học sinh nữ và 6 học sinh nam. Chọn ngẫu nhiên bốn học sinh trong nhóm để tham gia cuộc thi hùng biện. Xác suất để cả bốn bạn được chọn đều là nữ bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
C_{10}^{4} = 210

    Số kết quả thuận lợi cho biến cố: “Cả bốn bạn được chọn đều là nữ” bằng: C_{4}^{4} = 1

    Vậy xác suất của biến cố ”Cả bốn bạn được chọn đều là nữ” bằng: \frac{1}{210}

  • Câu 33: Thông hiểu

    Chọn ngẫu nhiên một gia đình có 4 người con và quan sát giới tính của bốn người con này. Xác suất của biến cố hai con đầu là con trai bằng:

    Ta có: n(\Omega) = 2^{4} =16

    Gọi A là biến cố “Hai con đầu là con trai”

    \Rightarrow A = \left\{TTGG;TTGT;TTTG;TTTT ight\}

    \Rightarrow n(A) = 4

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =\frac{4}{16} = \frac{1}{4}.

  • Câu 34: Thông hiểu

    Xác suất của biến cố A kí hiệu là P(A). Biến cố \overline{A} là biến cố đối của A, có xác suất là P(\overline{A})

    Chọn phát biểu sai trong các phát biểu sau:

    Phát biểu sai là: "Xác suất của mỗi biến cố đo lường xảy ra của biến cố đó. Biến cố có khả năng xảy ra càng cao thì xác suất của nó càng xa 1."

  • Câu 35: Nhận biết

    Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố không?

    Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố không là “Mặt xuất hiện của con xúc xắc có số chấm là 8 chấm.”

  • Câu 36: Thông hiểu

    Trên bàn có 3 quả táo và 4 quả cam. Xác định số phần tử không gian mẫu của phép thử lấy 2 quả ở trên bàn sau đó bỏ ra ngoài rồi lấy tiếp 1 quả nữa.

    Lấy 2 quả trong 7 quả ở trên bàn và không tính thứ tự nên số cách là: C_7^2 = 21 (cách).

    Sau khi bỏ 2 quả ra ngoài còn lại 5 quả. Lấy 1 quả trong 5 quả trên bàn có 5 cách.

    Vậy số phần tử không gian mẫu là: 21. 5 = 105

  • Câu 37: Thông hiểu

    Một lớp có 43 học sinh trong đó có 23 học sinh nữ và 20 học sinh nam. Chọn ngẫu nhiên 5 học sinh. Xác suất để 5 học sinh được chọn có cả nam và nữ gần nhất với kết quả nào dưới đây?

    Số phần tử của không gian mẫu là: n(\Omega) = C_{43}^{5} = 962598

    Số cách chọn 5 học sinh chỉ có nam hoặc chỉ có nữ là:

    C_{20}^{5} + C_{23}^{5} =
49153

    Số cách chọn 5 học sinh có cả nam và nữ là: C_{20}^{5}

    962598 - 49153 = 913445

    Xác suất của biến cố 5 học sinh được chọn có cả nam và nữ là: P = \frac{913445}{962598} \approx
0,95

  • Câu 38: Nhận biết

    Rút ngẫu nhiên một thẻ từ hộp chứa 10 thẻ được đánh số từ 1 đến 10. Tính xác suất của biến cố “Rút được tấm thẻ ghi số chia hết cho 3”.

    Số phần tử của không gian mẫu là: n(\Omega) = 10

    Số kết quả thuận lợi cho biến cố A: “Số trên tấm thẻ được rút ra chia hết cho 3” là:

    A = \left\{ 3;6;9 ight\}

    \Rightarrow n(A) = 3

    Xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{3}{10} = 0,3

  • Câu 40: Vận dụng

    Cho một đa giác (H) có 60 đỉnh nội tiếp một đường tròn (O). Người ta lập một tứ giác tùy ý có bốn đỉnh là các đỉnh của (H). Tính xác suất để lập được một tứ giác có bốn cạnh đều là đường chéo của (H), số đó gần với số nào nhất trong các số sau?

    Số phần tử của không gian mẫu là: n(\Omega) = C_{60}^{4}.

    Gọi E là biến cố “lập được một tứ giác có bốn cạnh đều là đường chéo của (H)”.

    Để chọn ra một tứ giác thỏa mãn đề bài ta làm như sau:

    Bước 1: Chọn đỉnh đầu tiên của tứ giác, có 60 cách.

    Bước 2: Chọn 3 đỉnh còn lại sao cho hai đỉnh bất kỳ của tứ giác cách nhau ít nhất 1 đỉnh. Điều này tương đương với việc ta phải chia m = 60 chiếc kẹo cho n = 4 đứa trẻ sao cho mỗi đứa trẻ có ít nhất k = 2 cái, có C_{m - n(k - 1) - 1}^{n - 1} =
C_{55}^{3} cách, nhưng làm như thế mỗi tứ giác lặp lại 4 lần.

    \Rightarrow Số phần tử của biến cố E là: n(E) = \frac{60.C_{55}^{3}}{4}.

    Xác suất của biến cố E là: P(E) = \frac{n(E)}{n(\Omega)} =
\frac{60.C_{55}^{3}}{4.C_{60}^{4}} \approx 80,7\%.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 10 Xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo