Gieo một xúc xắc 2 lần . Biến cố A là biến cố để sau hai lần gieo có ít nhất 1 mặt 6 chấm.
Các kết quả phù hợp là: A = {(1; 6), (2; 6), (3; 6), (4; 6), (5; 6), (6; 6), (6; 1), (6; 2), (6; 3), (6; 4), (6; 5)}
Gieo một xúc xắc 2 lần . Biến cố A là biến cố để sau hai lần gieo có ít nhất 1 mặt 6 chấm.
Các kết quả phù hợp là: A = {(1; 6), (2; 6), (3; 6), (4; 6), (5; 6), (6; 6), (6; 1), (6; 2), (6; 3), (6; 4), (6; 5)}
Cho phép thử với không gian mẫu Ω = {1; 2; 3; 4; 5; 6}. Đâu không phải là cặp biến cố đối nhau.
Cặp E = {1; 4; 6} và F = {2; 3} không phải là biến cố đối.
Gieo một con xúc xắc cân đối, đồng chất 6 mặt và quan sát số chấm xuấ hiện trên con xúc xắc. Xác suất của biến cố: “Số chấm xuất hiện trên mặt xúc xắc là 5” bằng:
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Số chấm xuất hiện trên mặt xúc xắc là 5”
Vậy xác suất của biến cố A là:
Một xạ thủ bắn bia. Biết rằng xác suất bắn trúng trong vòng 10 là 0,2; vòng 9 là 0,25 và vòng 8 là 0,15. Nếu trúng vòng k thì được k điểm. Giả sử xạ thủ đó bắn ba phát súng một cách độc lập. Xạ thủ đạt loại giỏi nếu anh ta đạt ít nhất 28 điểm. Xác suất để xạ thủ này đạt loại giỏi bằng là:
Gọi H là biến cố: “Xạ thủ bắn đạt loại giỏi”. A; B; C; D là các biến cố sau:
A: “Ba viên trúng vòng 10”;
B: “Hai viên trúng vòng 10 và một viên trúng vòng 9”;
C: “Một viên trúng vòng 10 và hai viên trúng vòng 9”;
D: “Hai viên trúng vòng 10 và hai viên trúng vòng 8”.
Các biến cố A; B; C; D là các biến cố xung khắc từng đôi một nên
.
Áp dụng quy tắc cộng mở rộng ta có:
.
Mà ;
;
.
Do đó .
Gọi
là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp
. Xác suất để hai số được ó chữ số hàng đơn vị giống nhau là bao nhiêu?
Số phần tử của tập là
.
Không gian mẫu là chọn ngẫu nhiên số từ tập
.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
Số được ó chữ số hàng đơn vị giống nhau
. Ta mô tả không gian của biến cố
nhưu sau
● Có cách hữ số hàng đơn vị (chọn từ các chữ số
).
● Có cách chọn hai chữ số hàng chục (chọn từ các chữ số
).
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Trong một chiếc hộp đựng 6 viên bi đỏ, 8 viên bi xanh, 10 viên bi trắng. Lấy ngẫu nhiên 4 viên bi. Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:
Lấy ngẫu nhiên cùng lúc 4 viên bi trong 6 + 8 + 10 = 24 viên bi có số cách là:
Số phần tử của không gian mẫu là 10 626.
Lấy 4 viên bi trong 16 viên bi đỏ, trắng có cách. Như vậy số kết quả thuận lợi cho biến cố “Lấy 4 viên bi không có màu xanh” là
=> Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:
Vậy có 8 806 kết quả thuận lợi cho biến cố B.
Một bình chứa 16 viên vi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi từ bình đó. Tính xác suất lấy được cả 3 viên bi đều không có màu đỏ.
Số cách lấy 3 viên bi bất kì là .
Số cách lấy được 3 viên bi trắng là .
Số cách lấy được 2 viên bi trắng, 1 viên bi đen là .
Số cách lấy được 1 viên bi trắng, 2 viên bi đen là .
Số cách lấy được 3 viên bi đen là .
Số cách lấy được cả 2 viên bi không đỏ là .
Suy ra xác suất cần tìm là .
Gieo một con xúc sắc cân đối và đồng chất hai lần. Tính xác suất để cả hai lần xuất hiện mặt 6 chấm.
* Số phần tử của không gian mẫu là: .
* Gọi ”Cả hai lần xuất hiện mặt sáu chấm”. Số phần tử của biến cố
là
.
* Xác suất của biến cố là
.
Trong một chiếc hộp đựng 5 quả cầu xanh, 4 quả cầu đỏ và 3 quả cầu vàng. Chọn ngẫu nhiên 3 quả cầu. Tính xác suất của biến cố “3 quả cầu có đủ ba màu”?
Số phần tử không gian mẫu là:
Gọi A là biến cố chọn được 3 quả có đủ ba màu.
Số phần tử của biến cố A là:
Khi đó xác suất của biến cố A là:
Gieo ba con xúc xắc một cách độc lập. Tính xác suất để tổng số chấm trên mặt xuất hiện trên ba con xúc xắc bằng 9?
Gọi A là biến cố: “Tổng số chấm trên ba mặt của ba con xúc xắc là 9”
Vì nên
Lại có
Khi đó xác suất của biến cố A là:
Một nhóm có 6 nam và 4 nữ. Cần chọn 3 bạn để đi trực nhật. Tính xác suất sao cho trong các bạn được chọn luôn có bạn nữ.
Chọn 3 bạn bất kì từ 10 bạn, suy ra .
Gọi A là biến cố "3 bạn đi trực nhật luôn có mặt bạn nữ".
Trường hợp 1: 3 bạn nữ
Có: (cách)
Trường hợp 2: 2 bạn nữ + 1 bạn nam
Có: (cách)
Trường hợp 3: 1 bạn nữ + 2 bạn nam
Có: (cách)
Vậy .
Xác suất .
Một hộp chứa 3 viên bi xanh, 5 viên bi đỏ và 6 viên bi vàng. Lấy ngẫu nhiên 6 viên bi từ hộp. Xác suất để 6 viên bi được lấy ra có đủ cả ba màu là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên 6 viên bi từ hộp chứa 14 viên bi. Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
6 viên bi được lấy ra có đủ cả ba màu
. Để tìm số phần tử của biến cố
ta đi tìm số phần tử của biến cố
tức là 6 viên bi lấy ra không có đủ ba màu như sau
TH1: Chọn 6 viên bi chỉ có một màu (chỉ chọn được màu vàng).
Do đó trường hợp này có cách.
TH2: Chọn 6 viên bi có đúng hai màu xanh và đỏ, có cách.
Chọn 6 viên bi có đúng hai màu đỏ và vàng, có cách.
Chọn 6 viên bi có đúng hai màu xanh và vàng, có cách.
Do đó trường hợp này có cách.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố chắc chắn?
Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố chắc chắn là “Mặt xuất hiện của xúc xắc có số chấm không vượt quá 6”.
Xét phép thử gieo một con súc sắc cân đối và đồng chất 6 mặt hai lần. Xét biến cố A: “Số chấm xuất hiện ở cả hai lần gieo giống nhau”. Biến cố A gồm bao nhiêu kết quả?
Gọi cặp số là số chấm xuất hiện ở hai lần gieo.
Xét biến cố A: “Số chấm xuất hiện ở cả hai lần gieo giống nhau”.
Các kết quả của biến cố A là: .
Suy ra .
Chọn ngẫu nhiên một số trong 20 số nguyên dương đầu tiên. Tính xác suất để chọn được số chia hết cho 3 là:
Chọn ngẫu nhiên một số trong 20 số nguyên dương đầu tiên có 20 cách chọn
Gọi A là biến cố “chọn được số chia hết cho 3”
Vậy .
Cho một đa giác
có
đỉnh nội tiếp một đường tròn
. Người ta lập một tứ giác tùy ý có bốn đỉnh là các đỉnh của
. Tính xác suất để lập được một tứ giác có bốn cạnh đều là đường chéo của
, số đó gần với số nào nhất trong các số sau?
Số phần tử của không gian mẫu là: .
Gọi là biến cố “lập được một tứ giác có bốn cạnh đều là đường chéo của
”.
Để chọn ra một tứ giác thỏa mãn đề bài ta làm như sau:
Bước 1: Chọn đỉnh đầu tiên của tứ giác, có cách.
Bước 2: Chọn đỉnh còn lại sao cho hai đỉnh bất kỳ của tứ giác cách nhau ít nhất 1 đỉnh. Điều này tương đương với việc ta phải chia
chiếc kẹo cho
đứa trẻ sao cho mỗi đứa trẻ có ít nhất
cái, có
cách, nhưng làm như thế mỗi tứ giác lặp lại 4 lần.
Số phần tử của biến cố
là:
.
Xác suất của biến cố là:
.
Cho
và
là hai biến cố đối nhau. Chọn mệnh đề đúng trong các mệnh đề sau đây?
Mệnh đề đúng là:
Một hộp có 3 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3. Rút ngẫu nhiên một chiếc thẻ từ trong hộp. Không gian mẫu của phép thử đó là:
Mô tả không gian mẫu: .
Xét một phép thử T và không gian mẫu là
. Giả sử C là một biến cố liên quan đến phép thử. Xác suất của biến cố C là:
Công thức đúng là: .
Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng (xem hình minh họa). Bạn An di chuyển quân vua ngẫu nhiên
bước. Xác suất sau
bước quân vua trở về ô xuất phát là bao nhiêu?

Tại mọi ô đang đứng, ông vua có khả năng lựa chọn để bước sang ô bên cạnh.
Do đó không gian mẫu .
Gọi là biến cố “sau 3 bước quân vua trở về ô xuất phát”. Sau ba bước quân vua muốn quay lại ô ban đầu khi ông vua đi theo đường khép kín tam giá
Chia hai trường hợp:
+ Từ ô ban đầu đi đến ô đen, đến đây có cách để đi bước hai rồi về lại vị trí ban đầu.
+ Từ ô ban đầu đi đến ô trắng, đến đây có cách để đi bước hai rồi về lại vị trí ban đầu.
Do số phần tử của biến cố A là .
Vậy xác suất .
Gieo một con súc sắc cân đối và đồng chất. Xác suất mà mặt có số chấm chẵn xuất hiện là bao nhiêu?
Ta có: Không gian mẫu suy ra
.
Gọi biến cố : “Con súc sắc có số chấm chẵn xuất hiện” hay
suy ra
.
Từ đó suy ra .
Vậy xác suất để mặt có số chấm chẵn xuất hiện là .
Một chiếc hộp đựng 7 viên bi màu xanh, 6 viên bi màu đen, 5 viên bi màu đỏ, 4 viên bi màu trắng. Chọn ngẫu nhiên ra 4 viên bi, tính xác suất để lấy được ít nhất 2 viên bi cùng màu.
Không gian mẫu là số cách chọn ngẫu nhiên 4 viên bi từ 22 viên bi đã cho.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
Lấy được 4 viên bi trong đó có ít nhất hai viên bi cùng màu
. Để tìm số phần tử của
, ta đi tìm số phần tử của biến cố
, với biến cố
là lấy được 4 viên bi trong đó không có hai viên bi nào cùng màu.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:
"Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm có tất bao nhiêu viên bi". Đây không phải là phép thử ngẫu nhiên.
Xác suất của biến cố
kí hiệu là
. Biến cố
là biến cố đối của A, có xác suất là ![]()
Chọn phát biểu sai trong các phát biểu sau:
Phát biểu sai là: "Xác suất của mỗi biến cố đo lường xảy ra của biến cố đó. Biến cố có khả năng xảy ra càng cao thì xác suất của nó càng xa 1."
Một hộp có 1 viên bi xanh, 1 viên bi đỏ, 1 viên bi vàng. Chọn ngẫu nhiên 2 viên bi trong hộp (sau khi chọn mỗi viên lại thả lại vào hộp). Không gian mẫu là:
Mô tả không gian mẫu: .
(Xanh là X, đỏ là D, vàng là V).
Trong một hộp chứa một số bi, mỗi bi mang một số từ 1 đến 21 và không có hai bi nào mang số giống nhau. Chọn ngẫu nhiên từ hộp đó ra 2 bi. Xác suất hai bi được chọn đều mang số lẻ là:
Số cách chọn 2 bi từ 21 bi là:
Từ số 1 đến 21 có 11 số lẻ nên số cách chọn được 2 viên bi đều mang số lẻ là:
Vậy xác suất để hai viên bi đều ghi số lẻ là:
Gọi
là xác suất của biến cố A trong phép thử
. Hãy chọn khẳng định đúng trong các khẳng định sau?
Vì là xác suất của biến cố A trong phép thử T ta luôn có
.
Gieo một đồng tiền cân đối và đồng chất bốn lần. Xác suất để cả bốn lần xuất hiện mặt sấp là bao nhiêu?
Mỗi lần suất hiện mặt sấp có xác suất là .
Theo quy tắc nhân xác suất: .
Cho biết:
Hộp 1: chứa 4 viên bi đỏ và 3 viên bi xanh.
Hộp 2: chứa 5 viên bi đỏ và 2 viên bi xanh.
Lấy ngẫu nhiên từ mỗi hộp 2 viên bi. Xác suất để lấy các viên bi có cùng màu bằng:
Lấy ngẫu nhiên 2 viên bi từ hộp 1 ta có:
Lấy ngẫu nhiên 2 viên bi từ hộp 2 ta có:
Ta có số phần tử không gian mẫu là:
Gọi A là biến cố các viên bi lấy ra cùng màu.
Số phần tử của biến cố A là:
Vậy xác suất cần tìm là:
Gieo con súc sắc hai lần. Biến cố A là biến cố để sau hai lần gieo có ít nhất một mặt 6 chấm. Mô tả biến cố A.
Liệt kê ta có: .
Một hộp có 3 viên bi đỏ, 4 viên bi vàng và 5 viên bi xanh. Lấy ngẫu nhiên 2 viên bi. Tính xác suất để lấy được 2 viên màu vàng.
Lấy ngẫu nhiên 2 viên bi từ 12 viên bi, suy ra .
Gọi A là biến cố "lấy được 2 viên bi vàng", suy ra .
Vậy xác suất: .
Một hộp chứ 3 quả cầu xanh và 7 quả cầu đỏ. Chọn ngẫu nhiên đồng thời hai quả cầu trong hộp. Tính xác suất để hai quả cầu được chọn ra có cùng màu?
Ta có:
Gọi A là biến cố: “Chọn được hai quả cầu cùng màu”
TH1: 2 quả cầu cùng màu xanh ta có: cách chọn
TH2: 2 quả cầu cùng màu đỏ ta có: cách chọn.
Vậy xác suất của biến cố A là:
Xét phép thử tung con súc sắc 6 mặt hai lần. Xác định số phần tử của không gian mẫu.
Không gian mẫu gồm các bộ , trong đó
.
nhận 6 giá trị,
cũng nhận 6 giá trị nên có
bộ
.
Vậy và
.
Một chiếc hộp đựng 5 chiếc thẻ được đánh số từ 1 đến 5. Rút ngẫu nhiên đồng thời 2 thẻ trong hộp. Xét biến cố A: “Số ghi trên hai thẻ đều là số lẻ”. Tính số phần tử của biến cố A?
Số phần tử của biến cố A là:
Ba xạ thủ cùng bắn vào một tấm bia, xác suất trúng đích lần lượt là 0,5; 0,6 và 0,7. Xác suất để có đúng 2 người bắn trúng bia là:
Gọi A là biến có người thứ nhất bắn trúng thì là biến cố người thứ nhất bắn trượt.
Vậy ;
.
Gọi B là biến cố người thứ hai bắn trúng và C là biến cố người thứ ba bắn trúng.
Tương tự ta có ;
;
;
.
Để hai người bắn trúng bia có các khả năng sau xảy ra:
Trường hợp 1: Người thứ nhất và thứ hai bắn trúng, người thứ ba bắn trượt.
Xác suất xảy ra là: .
Trường hợp 2: Người thứ nhất và thứ ba bắn trúng, người thứ hai bắn trượt.
Xác suất xảy ra là: .
Trường hợp 3: Người thứ hai và thứ ba bắn trúng, người thứ nhất bắn trượt.
Xác suất xảy ra là: .
Vậy xác suất để hai người bắn trúng bia là: .
Một hộp có:
• 2 viên bi trắng được đánh số từ 1 đến 2;
• 3 viên bi xanh được đánh số từ 3 đến 5;
• 2 viên bi đỏ được đánh số từ 6 đến 7.
Lấy ngẫu nhiên hai viên bi, mô tả không gian mẫu nào dưới đây là đúng?
Mỗi viên bi đánh một số, nên 2 viên bi lấy ra mang số khác nhau.
Vậy Ω ={(m, n)| 1 ≤ m ≤ 7, 1 ≤ n ≤ 7 và m ≠ n}.
Một bình chứa 16 viên vi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi trong bình đó. Tính xác suất lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ.
Số cách lấy 3 viên bi bất kì là .
Số cách lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ là .
Suy ra xác suất cần tìm là.