Đề kiểm tra 45 phút Chương 10 Xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một hộp có:

    • 2 viên bi trắng được đánh số từ 1 đến 2;

    • 3 viên bi xanh được đánh số từ 3 đến 5;

    • 2 viên bi đỏ được đánh số từ 6 đến 7.

    Lấy ngẫu nhiên hai viên bi, mô tả không gian mẫu nào dưới đây là đúng?

    Mỗi viên bi đánh một số, nên 2 viên bi lấy ra mang số khác nhau.

    Vậy Ω ={(m, n)| 1 ≤ m ≤ 7, 1 ≤ n ≤ 7 và m ≠ n}.

  • Câu 2: Nhận biết

    Gọi P(A) là xác suất của biến cố A trong phép thử T. Hãy chọn khẳng định đúng trong các khẳng định sau?

    P(A) là xác suất của biến cố A trong phép thử T ta luôn có 0 \leq P(A)
\leq 1.

  • Câu 3: Vận dụng

    Gieo một con xúc xắc 2 lần liên tiếp. Gọi số chấm xuất hiện của hai lần gieo lần lượt là bc. Tính xác suất để phương trình bậc hai x^{2} - bx + c = 0 có nghiệm?

    Gieo con xúc xắc hai lần nên ta có: n(\Omega) = 36

    Để phương trình bậc hai có nghiệm thì \Delta \geq 0 \Leftrightarrow b^{2} - 4ac \geq 0
\Leftrightarrow b^{2} \geq 4ac

    c \geq 1 \Rightarrow b^{2} \geq 4\Rightarrow \left\{ \begin{matrix}b \geq 2 \\c \leq \dfrac{b^{2}}{4} \\\end{matrix} ight.

    Lập bảng chọn giá trị của b và c như sau:

    b

    2

    3

    4

    5

    6

    c

    1

    1; 2

    1; 2; 3; 4

    1; 2; 3; 4; 5; 6

    1; 2; 3; 4; 5; 6

    Gọi A là biến cố “phương trình x^{2} - bx
+ c = 0 có nghiệm” ta có:

    n(A) = 1 + 2 + 4 + 6 + 6 =
19

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{19}{36}

  • Câu 4: Nhận biết

    Trong một tổ có 6 học sinh nam và 4 học sinh nữ. Chọn ngẫu nhiên 3 bạn trong tổ tham gia đội tình nguyện của trường. Xác suất để 3 bạn được chọn đều là nam là:

    Xét phép thử: Chọn ngẫu nhiên 3 trong 10 bạn trong tổ, ta có n(\Omega) = C_{10}^{3}.

    Gọi A là biến cố: “ 3 bạn được chọn toàn nam”, ta có n(A) = C_{6}^{3}.

    Xác suất của biến cố A\ :\ P(A) =
\frac{n(A)}{n(\Omega)} = \frac{C_{6}^{3}}{C_{10}^{3}} =
\frac{1}{6}.

  • Câu 5: Nhận biết

    Gieo 2 con súc sắc và gọi kết quả xảy ra là tích số hai nút ở mặt trên. Không gian mẫu có bao nhiêu phần tử?

    Mô tả không gian mẫu ta có: \Omega =
\left\{ 1;2;3;4;5;6;8;9;10;12;15;16;18;20;24;25;30;36 ight\}. (18 phần tử)

  • Câu 6: Vận dụng

    Cho đa giác đều có 14 đỉnh. Chọn ngẫu nhiên 3 đỉnh trong số 14 đỉnh của đa giác. Xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác vuông là bao nhiêu?

    Số phần tử không gian mẫu là |\Omega| =
C_{14}^{3}.

    Giả sử tam giác cần lập là ABC vuông tại A.

    Chọn đỉnh A của tam giác có 14 cách.

    Để tam giác vuông tại A thì cung BC có số đo là \pi, hay BC là đường kính của đường tròn ngoại tiếp đa giác, do đó có 6 cách chọn BC.

    Gọi E là biến cố "3 đỉnh được chọn là 3 đỉnh của một tam giác vuông"

    Số phần tử của E14.6 = 84.

    Xác suất cần tìm là P(E) =
\frac{84}{C_{14}^{3}} = \frac{3}{13}.

  • Câu 7: Nhận biết

    Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên?

    Thí nghiệm không phải là phép thử ngẫu nhiên là: “Quan sát vận động viên chạy bộ xem được bao nhiêu km/h”.

  • Câu 8: Nhận biết

    Một cái hộp chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy lần lượt 2 viên bi từ hộp này. Xác suất để viên bi được lấy lần thứ 2 là bi xanh là:

    Ta có: Số phần tử của không gian mẫu n(\Omega) = C_{10}^{1}.C_{9}^{1}.

    Gọi A là biến cố: “ Viên bi được lấy lần thứ 2là bi xanh”.

    - Trường hợp 1: Lần 1 lấy viên đỏ, lần 2 lấy viên xanh: Có C_{6}^{1}.C_{4}^{1} cách chọn.

    - Trường hợp 2: Lần 1 lấy viên xanh, lần 2 lấy viên xanh: Có C_{4}^{1}.C_{3}^{1} cách chọn.

    n(A) = C_{6}^{1}.C_{4}^{1} +
C_{4}^{1}.C_{3}^{1}.

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{24 + 12}{10.9} = \frac{2}{5}.

  • Câu 9: Thông hiểu

    Lấy ngẫu nhiên 3 quả cầu từ hộp gồm 6 quả cầu trắng và 3 quả cầu đen. Tính xác suất để lấy được ba quả cùng màu?

    Số phần tử của không gian mẫu n(\Omega) =
C_{9}^{3} = 84

    Gọi A là biến cố lấy được 3 quả cùng màu

    TH1: Lấy được 3 quả màu trắng có: C_{6}^{3} = 20 cách

    TH2: Lấy được 3 quả màu đen có: C_{3}^{3}
= 1 cách

    \Rightarrow n(A) = 20 + 1 =
21

    Vậy xác suất của biến cố A cần tìm là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{21}{84} =
\frac{1}{4}

  • Câu 10: Nhận biết

    Cho A là một biến cố liên quan đến phép thử T. Mệnh đề nào sau đây là mệnh đề đúng?

     Mệnh đề đúng là: P(A) = 1 – P(\bar{A}).

  • Câu 11: Thông hiểu

    Một bình chứa 16 viên vi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi trong bình đó. Tính xác suất lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ.

    Số cách lấy 3 viên bi bất kì là C_{16}^{3} = 560.

    Số cách lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ là C_{7}^{1}.C_{6}^{1}.C_{3}^{1} =
126.

    Suy ra xác suất cần tìm là\frac{9}{40}.

  • Câu 12: Nhận biết

    Hộp A4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh. Hộp B7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh. Lấy ngẫu nhiên mỗi hộp một viên bi. Xác suất để hai viên bi được lấy ra có cùng màu là bao nhiêu?

    Số phần tử của không gian mẫu: 15.18 =
270.

    Số cách chọn từ mỗi hộp 1 viên bi sau cho 2 viên bi cùng màu là: 4.7 + 5.6 + 6.5 = 88.

    Vậy xác suất cần tìm là \frac{88}{270} =
\frac{44}{135}.

  • Câu 13: Nhận biết

    Từ một hộp gồm 12 quả bóng gồm 5 quả đỏ và 7 quả xanh, lấy ngẫu nhiên đồng thời 3 quả. Xác suất để lấy được 3 quả màu xanh bằng bao nhiêu?

    Lấy 3 quả bóng từ 12 quả ta có: n(\Omega)
= C_{12}^{3} = 220

    Lấy ngẫu nhiên 3 quả bóng đều màu xanh có: C_{7}^{3} = 35 cách

    Vậy xác suất để lấy được 3 quả bóng màu xanh là: P = \frac{35}{220} = \frac{7}{44}.

  • Câu 14: Nhận biết

    Cho phép thử có không gian mẫu \Omega = \left\{ 1,2,3,4,5,6 ight\}. Cặp biến cố không đối nhau là cặp nào trong các cặp dưới đây?

    Cặp biến cố không đối nhau là E = \left\{
1,\ 4,\ 6 ight\}F = \left\{
2,\ 3 ight\} do E \cap F =
\varnothingE \cup F eq
\Omega.

  • Câu 15: Thông hiểu

    Bác Hoa cài đặt mật khẩu 4 chữ số cho điện thoại. Bác đã quên mật khẩu chính xác và chỉ nhớ các chữ số đó là đôi một khác nhau. Xác suất để bác Hoa bấm đúng mật khẩu cho điện thoại trong một lần là:

    Số phần tử không gian mẫu là: n(\Omega) =
A_{10}^{4}

    Gọi A là biến cố “Bác A bấm đúng mật khẩu điện thoại trong một lần”

    \Rightarrow n(A) = 1

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{1}{A_{10}^{4}}

  • Câu 16: Thông hiểu

    Một nhóm 18 học sinh gồm 10 học sinh nam. Chọn ngẫu nhiên đồng thời 5 học sinh. Tính xác suất để trong 5 học sinh được chọn có cả nam và nữ đồng thời số học sinh nam nhiều hơn số học sinh nữ?

    Số phần tử không gian mẫu n(\Omega) =
C_{18}^{5} = 8568

    Các trường hợp thỏa mãn điều kiện bài toán:

    TH1: Chọn được 3 nam và 2 nữ: C_{10}^{3}.C_{8}^{2} = 3360 cách chọn

    TH2: Chọn được 4 nam và 1 nữ: C_{10}^{4}.C_{8}^{1} = 1680 cách chọn

    Suy ra số kết quả thuận lợi cho biến cố A: “5 học sinh được chọn có cả nam và nữ đồng thời số học sinh nam nhiều hơn số học sinh nữ” là: 3360 + 1680 = 5040 cách

    Vậy xác suất của biến cố A là: P(A) =
\frac{5040}{8568} = \frac{10}{17}

  • Câu 18: Nhận biết

    Một tổ học sinh lớp 10A có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 4 học sinh trong tổ đó để tham gia đội tình nguyện. Tính xác suất để bốn học sinh được chọn đều là nữ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{12}^{4} = 495

    Gọi A là biến cố: “Bốn học sinh được chọn đều là nữ”

    \Rightarrow n(A) = C_{5}^{4} =
5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{495} = \frac{1}{99}

  • Câu 19: Vận dụng

    Một xạ thủ bán từ khoảng cách 100m có xác suất bắn trúng đích là:

    - Tâm 10 điểm: 0,5.

    - Vòng 9 điểm: 0,25.

    - Vòng 8 điểm: 0,1.

    - Vòng 7 điểm: 0,1.

    - Ngoài vòng 7 điểm: 0,05.

    Tính xác suất để sau 3 lần bắn xạ thủ đó được 27 điểm.

    Ta có 27 = 10 + 10 + 7 = 10 + 9 + 8 = 9 +
9 + 9

    Với bộ (10;10;7) có 3 cách xáo trộn điểm các lần bắn

    Với bộ (10;9;8) có 6 cách xáo trộn điểm các lần bắn

    Với bộ (9;9;9) có 1 cách xáo trộn điểm các lần bắn.

    Do đó xác suất để sau 3 lần bắn xạ thủ được đúng 27 điểm là:

    P = 3.0,5^{2}.0,1 + 6.0,5.0,25.0,1 +
0,25^{3} = 0,165625.

  • Câu 20: Vận dụng

    Cho tập hợp A =
\left\{ 1,2,\ 3,\ ...,\ 10 ight\}. Chọn ngẫu nhiên ba số từ tập đó. Tính xác suất để trong ba số chọn ra không có hai số nào là hai số nguyên liên tiếp.

    Số phần tử không gian mẫu là n(\Omega) =
C_{10}^{3} = 120.

    Gọi B là biến cố “Ba số chọn ra không có hai số nào là hai số nguyên liên tiếp”.

    \Rightarrow \overline{B} là biến cố “Ba số được chọn có ít nhất hai số là các số tự nhiên liên tiếp”.

    + Bộ ba số dạng \left( 1\ ,\ 2\ ,\ a_{1}
ight), với a_{1} \in
A\backslash\left\{ 1\ ,\ 2 ight\}: có 8 bộ ba số.

    + Bộ ba số có dạng \left( 2\ ,\ 3\ ,\
a_{2} ight), với a_{2} \in
A\backslash\left\{ 1\ ,\ 2\ ,\ 3 ight\}: có 7 bộ ba số.

    + Tương tự mỗi bộ ba số dạng \left( 3\ ,\
4\ ,\ a_{3} ight), \left( 4\ ,\
5\ ,\ a_{4} ight), \left( 5\ ,\
6\ ,\ a_{5} ight), \left( 6\ ,\
7\ ,\ a_{6} ight), \left( 7\ ,\
8\ ,\ a_{7} ight), \left( 8\ ,\
9\ ,\ a_{8} ight), \left( 9\ ,\
10\ ,\ a_{9} ight) đều có 7 bộ.

    \Rightarrow n\left( \overline{B} ight)
= 8 + 8.7 = 64.

    \Rightarrow P(B) = 1 - P\left(
\overline{B} ight) = 1 - \frac{64}{120} = \frac{7}{15}.

  • Câu 21: Nhận biết

    Thí nghiệm nào không phải là phép thử ngẫu nhiên?

    Phép thử ngẫu nhiên là phép thử mà ta chưa biết được kết quả là gì.

    Đáp án “Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm xem có tất cả bao nhiêu viên bi.” không phải là phép thử vì ta biết chắc chắn kết quả chỉ có thể là một số cụ thể số bi xanh và số bi đỏ.

  • Câu 22: Vận dụng

    Xếp ngẫu nhiên 5 bạn nam và 3 bạn nữ vào một bàn tròn. Xác suất để không có ba bạn nữ nào ngồi cạnh nhau.

    Theo công thức hoán vị vòng quanh ta có: |\Omega| = 7!

    Để xếp các bạn nữ không ngồi cạnh nhau, trước hết ta xếp các bạn nam vào bàn tròn: có 4! cách, giữa 5 bạn nam đó ta sẽ có được 5 ngăn (do ở đây là bàn tròn). Xếp chỉnh hợp 3 bạn nữ vào 5 ngăn đó có A_{5}^{3} cách.

    Vậy xác suất xảy ra là:P =
\frac{4!.A_{5}^{3}}{7!} = \frac{2}{7}.

  • Câu 23: Nhận biết

    Một tổ học sinh có 6 nam và 4 nữ. Chọn ngẫu nhiên 2 người. Xác suất chọn được 2 nữ là:

    Chọn ngẫu nhiên 2 người trong 10 người có C_{10}^{2} cách chọn.

    Hai người được chọn đều là nữ có C_{4}^{2} cách.

    Xác suất để hai người được chọn đều là nữ là: \frac{C_{4}^{2}}{C_{10}^{2}} =
\frac{2}{15}.

  • Câu 24: Nhận biết

    Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất 5 lần. Số phần tử không gian mẫu là bao nhiêu?

    Mỗi lần gieo có hai khả năng nên gieo 5 lần theo quy tắc nhân ta có 2^{5} = 32.

    Số phần tử không gian mẫu là n(\Omega) =
32.

  • Câu 25: Thông hiểu

    Gieo một con xúc xắc cân đối và đồng chất ba lần. Xác suất để ít nhất một lần xuất hiện mặt sáu chấm bằng bao nhiêu?

    Ta có: n(\Omega) = 6^{3} =216

    Gọi A là biến cố ít nhất một lần xuất hiện mặt sáu chấm

    Suy ra \overline{A} là biến cố không có lần nào xuất hiện mặt sáu chấm.

    \Rightarrow n\left( \overline{A} ight)= 5^{3} = 125

    Khi đó xác suất của biến cố A cần tìm là: P(A) = 1 - P\left( \overline{A} ight) = 1 -\frac{125}{216} = \frac{91}{216}

  • Câu 26: Thông hiểu

    Một hộp có 3 viên bi đỏ, 4 viên bi vàng và 5 viên bi xanh. Lấy ngẫu nhiên 2 viên bi. Tính xác suất để lấy được 2 viên màu vàng.

    Lấy ngẫu nhiên 2 viên bi từ 12 viên bi, suy ra n(\Omega)=C_{12}^2=66.

    Gọi A là biến cố "lấy được 2 viên bi vàng", suy ra n(A)=C_4^2=6.

    Vậy xác suất: P(A)=\frac6{66}=\frac1{11}.

     

  • Câu 27: Nhận biết

    Xét phép thử tung con súc sắc 6 mặt hai lần. Xác định số phần tử của không gian mẫu.

    Không gian mẫu gồm các bộ (i;j), trong đó i,j \in \left\{ 1,2,3,4,5,6
ight\}.

    i nhận 6 giá trị, j cũng nhận 6 giá trị nên có 6.6 = 36 bộ (i;j).

    Vậy \Omega = \left\{ (i,j)|i,j =
1,2,3,4,5,6 ight\}n(\Omega) =
36.

  • Câu 28: Vận dụng

    Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho bằng:

    Số phần tử của không gian mẫu là: n(\Omega) = C_{12}^{3}.

    Gọi A: “Chọn được ba đỉnh tạo thành tam giác không có cạnh nào là cạnh của đa giác đã cho”

    Suy ra \overline{A}: “Chọn được ba đỉnh tạo thành tam giác có ít nhất một cạnh là cạnh của đa giác đã cho”.

    Do đó \overline{A}: “Chọn được ba đỉnh tạo thành tam giác có một cạnh hoặc hai cạnh là cạnh của đa giác đã cho”.

    Trường hợp 1: Chọn ra tam giác có 2 cạnh là 2 cạnh của đa giác đã cho, ta chọn ra 3 đỉnh liên tiếp của đa giác 12 cạnh. Có 12 cách.

    Trường hợp 2: Chọn ra tam giác có đúng 1 cạnh là cạnh của đa giác đã cho, ta chọn ra 1 cạnh và 1 đỉnh không liền với 2 đỉnh của cạnh đó. Suy ra có 12 cách chọn một cạnh và C_{8}^{1} = 8 cách chọn đỉnh.

    Vậy có 12.8 cách.

    Số phần tử của biến cố \overline{A} là: n\left( \overline{A} ight) = 12 +
12.8.

    Số phần tử của biến cố A là: n(A) = C_{12}^{3} - 12 - 12.8.

    Xác suất của biến cố AP(A) =
\frac{n(A)}{n(\Omega)} = \frac{C_{12}^{3} - 12 -
12.8}{C_{12}^{3}}.

  • Câu 29: Thông hiểu

    Một thùng có 7 sản phẩm, trong đó có 4 sản phẩm loại I3 sản phẩm loại II. Lấy ngẫu nhiên 2 sản phẩm từ thùng đó. Xác suất để lấy được 2 sản phẩm cùng loại là bao nhiêu?

    Lấy ngẫu nhiên 2 sản phẩm trong 7 sản phẩm thì có C_{7}^{2} = 21 (cách).

    2sản phẩm được lấy ra đều là sản phẩm loại IC_{4}^{2} = 6(cách).

    2sản phẩm được lấy ra đều là sản phẩm loại IIC_{3}^{2} = 3(cách).

    Xác suất để lấy được 2sản phẩm cùng loại là P = \frac{6 + 3}{21} =
\frac{3}{7}.

  • Câu 30: Thông hiểu

    Có bốn hành khách bước lên một đoàn tàu gồm 4 toa. Mỗi hành khách độc lập với nhau và chọn ngẫu nhiên một toa. Tính xác suất để 1 toa có 3 người, 1 toa có 1 người và 2 toa còn lại không có người?

    Vì mỗi hành khách có 4 cách chọn toa tàu nên: n(\Omega) = 4^{4} = 256

    Để xếp theo yêu cầu của bài toán ta thực hiện các bước liên tiếp như sau:

    Chọn 1 toa để xếp 3 người ta có: C_{4}^{1} = 4

    Chọn 3 người để xếp vào toa đó là: C_{4}^{3} = 4

    Chọn 1 toa từ 3 toa còn lại để xếp người còn lại vào: C_{3}^{1} = 3

    Theo quy tắc nhân ta có: 4.4.3 =
48

    Vậy xác suất cần tìm là: \frac{48}{256} =
\frac{3}{16}

  • Câu 31: Nhận biết

    Một chiếc hộp đựng 5 chiếc thẻ được đánh số từ 1 đến 5. Rút ngẫu nhiên đồng thời 2 thẻ trong hộp. Xét biến cố A: “Số ghi trên hai thẻ đều là số lẻ”. Tính số phần tử của biến cố A?

    Số phần tử của biến cố A là: C_{3}^{2} =
3

  • Câu 32: Vận dụng

    20 tấm thẻ được đánh số từ 1 đến 20. Chọn ngẫu nhiên ra 8 tấm thẻ. Hãy tính xác suất để có 3 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng 1 tấm thẻ mang số chia hết cho 10.

    Không gian mẫu là cách chọn 8 tấm thể trong 20 tấm thẻ.

    Suy ra số phần tử của không mẫu là |\Omega| = C_{20}^{8}.

    Gọi A là biến cố ''3 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng 1 tấm thẻ mang số chia hết cho 10''. Để tìm số phần tử của A ta làm như sau

    ● Đầu tiên chọn 3 tấm thẻ trong 10 tấm thẻ mang số lẻ, có C_{10}^{3} cách.

    ● Tiếp theo chọn 4 tấm thẻ trong 8 tấm thẻ mang số chẵn (không chia hết cho 10), có C_{8}^{4} cách.

    ● Sau cùng ta chọn 1 trong 2 tấm thẻ mang số chia hết cho 10, có C_{2}^{1} cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| =
C_{10}^{3}.C_{8}^{4}.C_{2}^{1}.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} =
\frac{C_{10}^{3}.C_{8}^{4}.C_{2}^{1}}{C_{20}^{8}} =
\frac{560}{4199}.

  • Câu 33: Nhận biết

    Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố A: "lần đầu tiên xuất hiện mặt sấp" là bao nhiêu?

    Xác suất để lần đầu xuất hiện mặt sấp là \frac{1}{2}. Lần 2 và 3 thì tùy ý nên xác suất là 1.

    Theo quy tắc nhân xác suất: P(A) =\frac{1}{2}.1.1 = \frac{1}{2}.

  • Câu 34: Thông hiểu

    Một bình chứa 6 viên bi màu, trong đó có 2 bi xanh, 2 bi đỏ, 2 bi trắng. Lấy ngẫu nhiên 2 viên bi từ bình đó. Tính xác suất để lấy được 2 viên bi khác màu.

    Lấy 2 viên bi bất kì trong 6 viên bi trong bình thì có C_{6}^{2} = 15(cách).

    Lấy 2 viên bi cùng màu thì có C_{2}^{2} + C_{2}^{2} + C_{2}^{2} =
3 (cách) nên có 15 - 3 =
12(cách) lấy được 2 viên bi khác màu.

    Xác suất để lấy được 2viên bi khác màu trong tổng số 6 viên bi là P = \frac{12}{15} =
\frac{4}{5}.

  • Câu 35: Thông hiểu

    Trong một hộp chứa một số bi, mỗi bi mang một số từ 1 đến 21 và không có hai bi nào mang số giống nhau. Chọn ngẫu nhiên từ hộp đó ra 2 bi. Xác suất hai bi được chọn đều mang số lẻ là:

    Số cách chọn 2 bi từ 21 bi là: C_{21}^{2}

    Từ số 1 đến 21 có 11 số lẻ nên số cách chọn được 2 viên bi đều mang số lẻ là: C_{11}^{2}

    Vậy xác suất để hai viên bi đều ghi số lẻ là: \frac{C_{11}^{2}}{C_{21}^{2}} =
\frac{11}{42}

  • Câu 36: Thông hiểu

    Gieo ngẫu nhiên hai con xúc xắc cân đối và đồng chất. Tính xác suất của biến cố: “Hiệu số chấm xuất hiện trên 2 con xúc xắc bằng 1”.

    Ta có: n(\Omega) = 6.6 = 36

    Gọi A là biến cố “Hiệu số chấm xuất hiện trên 2 con xúc xắc bằng 1”

    \Rightarrow A =
\{(6;5),(5;6),(5;4),(4;5),(4;3),(3;4),(3;2),(2;3),(2;1),(1;2)\}

    \Rightarrow n(A) = 10

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{5}{18}

  • Câu 37: Nhận biết

    Gieo một đồng xu cân đối và đồng chất hai lần liên tiếp. Tính xác suất của biến cố: “Cả hai lần gieo đều xuất hiện mặt sấp”?

    Số phần tử không gian mẫu là:

    \Omega = \left\{ SS;SN;NS;NN ight\}
\Rightarrow n(\Omega) = 2.2 = 4

    Gọi A là biến cố: “Cả hai lần gieo đều xuất hiện mặt sấp”

    A = \left\{ SS ight\} \Rightarrow n(A)
= 1

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{1}{4}

  • Câu 38: Thông hiểu

    Một hộp có 5 quả cầu được đánh số từ 1 đến 5 (hai quả cầu khác nhau thì đánh số khác nhau). Lấy ngẫu nhiên liên tiếp 2 quả cầu. Tính xác suất của biến cố B: “Tích các số trên hai quả cầu là số chẵn”?

    Ta có không gian mẫu:

    \Omega =
\{(1;2),(1;3),(1;4),(1;5),(2;3),

    (2;4),(2;5),(3;4),(3;5),(4;5)\}

    \Rightarrow n(\Omega) = 10

    Biểu diễn biến cố B là:

    B = \left\{
(1;2),(1;4),(2;3),(2;4),(2;5),(3;4),(4;5) ight\}

    \Rightarrow n(B) = 7

    Vậy xác suất của biến cố B cần tìm là: P(B) = \frac{n(B)}{n(\Omega)} =
\frac{7}{10}

  • Câu 39: Thông hiểu

    Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của biến cố “Tổng số chấm trong hai lần gieo bằng 6”.

    Số phần tử không gian mẫu là: n(\Omega) =
6^{2} = 36

    Gọi A là biến cố: “Tổng số chấm trong hai lần gieo bằng 6”.

    Tập hợp các kết quả của biến cố A là: A =
\left\{ (2;4),(5;1),(1;5),(4;2),(3;3) ight\}

    Suy ra n(A) = 5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{36}

  • Câu 40: Nhận biết

    Một hộp chứa 10 tấm thẻ được đánh số lần lượt từ 1 đến 10. Rút ngẫu nhiên một tấm thẻ trong hộp. Tính xác suất của biến cố: “Tấm thẻ được rút ra ghi số chẵn”?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{10}^{1} = 10

    Gọi A là biến cố: “Tấm thẻ được rút ra ghi số chẵn” \Rightarrow n(A) = 5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{10} = \frac{1}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 10 Xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo