Chọn khẳng định đúng trong các khẳng định sau:
Cả 3 phương án trên đều đúng.
Chọn khẳng định đúng trong các khẳng định sau:
Cả 3 phương án trên đều đúng.
Gieo đồng tiền
lần cân đối và đồng chất. Xác suất để được ít nhất một lần xuất hiện mặt sấp là bao nhiêu?
Phép thử: Gieo đồng tiền lần cân đối và đồng chất.
Ta có .
Biến cố : Được ít nhất một lần xuất hiện mặt sấp.
: Tất cả đều là mặt ngửa.
.
.
.
Gieo hai con xúc xắc cân đối. Xác suất để tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 3 là:
Số phàn tử không gian mẫu là:
Số kết quả thuận lợi cho biến cố A: “Tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 3” là:
Vậy xác suất của biến cố A cần tìm là:
Cho X = {0; 1; 2; 3; …; 15}. Chọn ngẫu nhiên 3 số trong tập hợp X. Xác suất để trong ba số được chọn không có hai số liên tiếp bằng:
Không gian mẫu có số phần tử là: (phần tử).
Ta tìm số cách lấy ra ba số trong đó có đúng hai số liên tiếp nhau hoặc lấy ra được cả ba số liên tiếp nhau.
Khi đó ta có các trường hợp sau:
Trường hợp 1: Lấy ra ba số trong đó có đúng hai số liên tiếp nhau.
Trong ba số lấy ra có hai số 0,1 hoặc 14, 15 khi đó số thứ ba có 13 cách lấy.
Do đó trường hợp này có: 2.13 = 26 cách lấy.
Trong ba số lấy ra không có hai số 0,1 hoặc 14, 15 khi đó ta có 13 cặp số liên tiếp nhau khác 0,1 và 14, 15, số thứ ba có 12 cách lấy. Do đó trường hợp này có: 13.12 = 156 cách lấy.
Trường hợp 2: Lấy ra được cả ba số liên tiếp nhau có 14 cách lấy.
Vậy ta có 26 + 156 + 14 = 196 cách lấy ra ba số liên tiếp nhau hoặc lấy ra ba số trong đó có hai số liên tiếp nhau.
Xác suất để trong ba số được chọn không có hai số liên tiếp là: .
Một hộp có 3 viên bi đỏ, 4 viên bi vàng và 5 viên bi xanh. Lấy ngẫu nhiên 2 viên bi. Tính xác suất để lấy được 2 viên màu vàng.
Lấy ngẫu nhiên 2 viên bi từ 12 viên bi, suy ra .
Gọi A là biến cố "lấy được 2 viên bi vàng", suy ra .
Vậy xác suất: .
Tung một đồng xu hai lần liên tiếp. Không gian mẫu trong trò chơi trên là:
Ta có: Ω = {SS; SN; NS; NN}
Viết tập hợp Ω là không gian mẫu trong trò chơi tung đồng xu hai lần liên tiếp.
Ta có: Ω = {SS; SN; NS; NN}.
Hoạt động nào sau đây không phải là phép thử?
Các hoạt động ở các phương án:
" Chọn một trong ba bạn An, Bình, Cường tham gia cuộc thi chạy điền kinh."
"Chơi trò chơi gắp thú nhồi bông."
"Chọn một quyển sách bất kì trên giá sách và đọc tên của quyển sách đó."
Đều là phép thử vì ta không thể đoán trước được kết quả của hoạt động đó mặc dù biết được tất cả các kết quả có thể xảy ra.
Hoạt động ở phương án A không phải là phép thử vì ta có thể đoán trước được kết quả của hoạt động đó là: 2 + 5 + 3 = 10 (chiếc bút bi).
Một bảng vuông gồm
ô vuông đơn vị. Chọn ngẫu nhiên một ô hình chữ nhật. Xác suất để ô được chọn là hình vuông là bao nhiêu? (trong kết quả lấy 4 chữ số ở phần thập phân).
Để có một ô hình chữ nhật ta cần chọn 2 đường dọc trong tổng số 101 đường dọc, và hai đường ngang trong tổng số 101 đường ngang. Vậy có tất cả: ô hình chữ nhật.
Ta gọi phần mặt phẳng nằm giữa hai đường dọc hoặc hai đường ngang là một dải.
Một hình vuông bất kì chính là giao của hai dải có cùng độ rộng (một dải dọc, một dải ngang)
Số dải có độ rộng là:
Vậy có tất cả: hình vuông.
Xác suất cần tìm là:
Một hộp chứa 3 bi xanh, 2 bi đỏ, 4 bi vàng. Lấy ngẫu nhiên 3 bi. Xác suất để được đúng một bi đỏ là bao nhiêu?
Số phần tử của không gian mẫu là .
Gọi là biến cố lấy được đúng 1 bi đỏ.
Chọn 1 bi đỏ, 1 bi xanh, 1 bi vàng, có (cách).
Chọn 1 bi đỏ, 2 bi xanh, có (cách).
Chọn 1 bi đỏ,2 bi vàng, có (cách).
Suy ra .
Xác suất cần tìm là .
Trong chiếc hộp chứa 37 tấm thẻ được đánh số theo thứ tự từ 1 đến 37 (hai tấm thẻ khác nhau được đánh số khác nhau). Lấy ngẫu nhiên đồng thời 3 thẻ trong hộp. Xác suất để các số ghi trên ba tấm thẻ có tổng là một số chia hết cho 3 bằng bao nhiêu?
Từ 1 đến 37 có 12 số chia hết cho 3; 13 số chia cho 3 dư 1 và 12 số chia cho 3 dư 2
Số phần tử không gian mẫu là:
Để lấy được 3 tấm thẻ mà tổng các số ghi trên ba tấm thẻ chia hết cho 3 ta có các trường hợp sau:
TH1: 3 số đều chia hết cho 3 ta có: cách chọn.
TH2: 3 số chia 3 dư 1 ta có: cách chọn.
TH3: 3 số chia 3 dư 2 ta có: cách chọn.
TH4: 1 số chia hết cho 3, 1 số chia 3 dư 1 và 1 số chia cho 3 dư 2 ta có: cách chọn.
Suy ra có tất cả cách chọn thỏa mãn yêu cầu đề bài.
Vậy xác suất của biến cố: “Các số ghi trên ba tấm thẻ có tổng là một số chia hết cho 3” là:
Trong một buổi liên hoan có 10 cặp nam nữ, trong đó có 4 cặp vợ chồng. Chọn ngẫu nhiên 3 người để biểu diễn một tiết mục văn nghệ. Xác suất để 3 người được chọn không có cặp vợ chồng nào là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên người trong
người.
Suy ra số phần tử không gian mẫu là .
Gọi là biến cố
người được chọn không có cặp vợ chồng nào
. Để tìm số phần tử của
, ta đi tìm số phần tử của biến cố
, với biến cố
là
người được chọn luôn có
cặp vợ chồng.
+ Chọn cặp vợ chồng trong
cặp vợ chồng, có
cách.
+ Chọn thêm người trong 18 người, có
cách.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là:
Các cặp số thỏa mãn tổng số ba thẻ được chọn không vượt quá 8 là: {1; 2; 3}, {1; 2; 4}, {1; 2; 5}, {1; 3; 4}.
Vậy số phần tử của A là 4 phần tử.
Kí hiệu nào sau đây là kí hiệu của biến cố chắc chắn?
Kí hiệu biến cố chắc chắn là Ω.
Một hộp chứa 10 tấm thẻ được đánh số lần lượt từ 1 đến 10. Rút ngẫu nhiên một tấm thẻ trong hộp. Tính xác suất của biến cố: “Tấm thẻ được rút ra ghi số chẵn”?
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Tấm thẻ được rút ra ghi số chẵn”
Vậy xác suất của biến cố A là:
Chọn ngẫu nhiên 2 học sinh từ một tổ có 9 học sinh. Biết rằng xác suất chọn được 2 học sinh nữ bằng
, hỏi tổ có bao nhiêu học sinh nữ?
Gọi số học sinh nữ là
Chọn bất kỳ 2 học sinh ta có cách.
Do đó số phần tử của không gian mẫu là
Gọi biến cố A: “2 học sinh được chọn là 2 học sinh nữ”.
Để chọn 2 học sinh được 2 học sinh nữ có:
(cách)
Do đó số kết quả thuận lợi cho biến cố A là:
Xác suất để chọn được 2 học sinh nữ là:
Mà
Vậy có 5 học sinh nữ trong tổ.
Gieo một đồng tiền liên tiếp
lần. Số phần tử của không gian mẫu là bao nhiêu?
.
(lần 1 có 2 khả năng xảy ra - lần 2 có 2 khả năng xảy ra).
Cho 40 tấm thẻ được đánh số theo thứ tự từ 1 đến 40. Chọn ngẫu nhiên 3 tấm thẻ. Tính xác suất để ba tấm thẻ được chọn có tổng các số ghi trên ba tấm thẻ đó là một số chẵn?
Số phần tử không gian mẫu là:
Gọi A là biến cố chọn được 3 tấm thẻ có các số ghi trên ba tấm thẻ đó là một số chẵn.
TH1: 2 số ghi số lẻ, 1 số ghi số chẵn ta có:
TH2: 3 số ghi số chẵn ta có:
Vậy xác suất để chọn được 3 tấm thẻ có tổng các số ghi trên các thẻ là một số chẵn là:
Một lô sản phẩm gồm 35 sản phẩm đạt chuẩn và 15 sản phẩm lỗi. Lấy ngẫu nhiên 3 sản phẩm từ trong hộp. Tính xác suất để 3 sản phẩm lấy ra đều là sản phẩm đạt chuẩn?
Ta có:
Gọi B là biến cố cả ba sản phẩm lấy ra đều là sản phẩm đạt chuẩn.
Chọn 3 trong 35 sản phẩm đạt chuẩn ta có:
Vậy xác suất của biến cố B là: .
Trên bàn có 4 quyển sách toán, 3 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để trong ba quyển sách lấy ra có ít nhất một quyển là toán?
Xác suất để trong ba quyển lấy ra có ít nhất một quyển sách Toán là:
Từ một hộp chứa
quả cầu màu đỏ và
quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Tính xác suất để 3 quả cầu lấy được đều màu xanh.
Số phần tử của không gian mẫu .
Gọi là biến cố "
quả cầu lấy được đều là màu xanh". Suy ra
.
Vậy xác suất cần tìm là .
Một hộp đựng
thẻ được đánh số từ
đến
. Phải rút ra ít nhất k thẻ để xác suất có ít nhất một thẻ ghi số chia hết cho
lớn hơn
. Tính giá trị của k.
Gọi biến cố : Lấy
tấm thẻ có ít nhất một tấm thẻ chia hết cho
. Với
.
Suy ra : Lấy
tấm thẻ không có tấm thẻ nào chia hết cho
.
Ta có:
.
Theo đề: .
Vậy là giá trị cần tìm.
Gieo đồng tiền
lần cân đối và đồng chất. Xác suất để được ít nhất một đồng tiền xuất hiện mặt sấp là bao nhiêu?
.
: “được ít nhất một đồng tiền xuất hiện mặt sấp”.
Xét biến cố đối : “không có đồng tiền nào xuất hiện mặt sấp”.
, có
.
Suy ra .
KL: .
Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố
: "có đúng 2 lần xuất hiện mặt sấp" là bao nhiêu?
Chọn 2 trong 3 lần để xuất hiện mặt sấp có cách.
2 lần xuất hiện mặt sấp có xác suất mỗi lần là . Lần xuất hiện mặt ngửa có xác suất là
.
Vậy: .
Gieo ngẫu nhiên
đồng tiền thì không gian mẫu của phép thử có bao nhiêu biến cố:
Mô tả không gian mẫu ta có: . (4 phần tử)
Cho ba chiếc hộp như sau:
Hộp 1 chứa 1 viên bi đỏ, 1 viên bi vàng.
Hộp 2 chứa 1 viên bi đỏ, 1 viên bi xanh.
Hộp 3 chứa 1 viên bi vàng, 1 viên bi xanh.
Từ mỗi hộp lấy ngẫu nhiên một viên bi và các phần tử của không gian mẫu được mô tả bằng sơ đồ sau:

Gọi A là biến cố: “Trong ba viên bi lấy ra có đúng một viên bi màu đỏ”. Xác định số kết quả thuận lợi cho biến cố A?
Số kết quả thuận lợi cho biến cố A là 4.
Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số được lập từ tập hợp X = {1;2;3;4;5;6;7;8;9}. Chọn ngẫu nhiên một số từ S. Xác suất để số chọn được chia hết cho 6 bằng:
Số phần tử trong không gian mẫu là .
Gọi A là biến cố: “số chọn được chia hết cho 6”.
Giả sử số cần tìm là .
Do số cần tìm chia hết cho 6 nên chia hết cho 2.
Do đó chọn có 4 cách.
Chọn a, b có cách. Để chọn c ta xét tổng
:
Nếu M chia cho 3 dư 0 thì suy ra có 3 cách chọn.
Nếu M chia cho 3 dư 1 thì suy ra có 3 cách chọn.
Nếu M chia cho 3 dư 2 thì suy ra có 3 cách chọn.
Do đó .
Vậy .
Cho
là một biến cố trong phép thử
. Xác suất của biến cố đối
liên hệ với xác suất của biến cố
được xác định theo công thức nào sau đây?
Xác suất của biến cố đối liên hệ với xác suất của biến cố
theo công thức:
Một người chọn ngẫu nhiên đồng thời 4 quân bài từ bộ tú lơ khơ 52 quân bài. Tính xác suất của biến cố: “Cả 4 quân bài đều là Át”?
Số phần tử không gian mẫu:
Chỉ có đúng 1 cách để lấy được cả 4 quân bài đều là Át nên xác suất cần tìm là:
Gieo một con xúc xắc cân đối, đồng chất 6 mặt và quan sát số chấm xuấ hiện trên con xúc xắc. Xác suất để mặt 4 chấm xuất hiện là:
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Số chấm xuất hiện trên mặt xúc xắc là 5”
Vậy xác suất của biến cố A là:
Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố
: "ít nhất một lần xuất hiện mặt sấp" là bao nhiêu?
Ta có: : "không có lần nào xuất hiện mặt sấp" hay cả 3 lần đều mặt ngửa.
Theo quy tắc nhân xác suất: .
Vậy: .
Cho biến cố A có không gian mẫu là Ω và
là biến cố đối của biến cố A. Khẳng định nào sau đây sai?
Khẳng định sai là: "P(Ω) > 1." vì P(Ω) = 1
Gieo ngẫu nhiên hai con xúc xắc cân đối và đồng chất. Tính xác suất của biến cố: “Hiệu số chấm xuất hiện trên 2 con xúc xắc bằng 1”.
Ta có:
Gọi A là biến cố “Hiệu số chấm xuất hiện trên 2 con xúc xắc bằng 1”
Vậy
Gọi
là tập hợp các số tự nhiên gồm
chữ số khác nhau. Chọn ngẫu nhiên một số từ
. Hãy tính xác suất để chọn được một số gồm
chữ số lẻ và chữ số
luôn đứng giữa hai chữ số lẻ (hai số hai bên chữ số
là số lẻ).
Số phần tử của tập là
.
Không gian mẫu là chọn ngẫu nhiên số từ tập
.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
Số được chọn gồm
chữ số lẻ và chữ số
luôn đứng giữa hai chữ số lẻ
. Do số
luôn đứng giữa
số lẻ nên số
không đứng ở vị trí đầu tiên và vị trí cuối cùng. Ta có các khả năng
+ Chọn trong
vị trí để xếp số
, có
cách.
+ Chọn trong
số lẻ và xếp vào
vị trí cạnh số
vừa xếp, có
cách.
+ Chọn số lẻ trong
số lẻ còn lại và chọn
số chẵn từ
sau đó xếp
số này vào
vị trí trống còn lại có
cách.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính
Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của biến cố B: “Tổng số chấm xuất hiện trong hai lần gieo nhỏ hơn 4”.
Ta có:
Các kết quả thuận lợi cho biến cố: “Tổng số chấm xuất hiện trong hai lần gieo nhỏ hơn 4” là:
Vậy xác suất của biến cố B là: