Đề kiểm tra 45 phút Chương 10 Xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Một hộp đèn có 12 bóng, trong đó có 4 bóng hỏng. Lấy ngẫu nhiên 3 bóng. Xác suất luôn lấy được 1 bóng hỏng là:

    Trong 3 bóng có 1 bóng hỏng

    Ta có n(\Omega) = C_{12}^{3} =
220.

    Gọi biến cố A : “Trong 3 bóng lấy ra có 1 bóng hỏng”.

    Tính được n\left( \Omega_{A} ight) =
C_{4}^{1}.C_{8}^{2} = 112.

    Vậy P(A) = \frac{112}{220} =
\frac{28}{55}.

  • Câu 2: Nhận biết

    Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất 5 lần. Số phần tử không gian mẫu là bao nhiêu?

    Mỗi lần gieo có hai khả năng nên gieo 5 lần theo quy tắc nhân ta có 2^{5} = 32.

    Số phần tử không gian mẫu là n(\Omega) =
32.

  • Câu 3: Vận dụng

    Gọi S là tập hợp các số tự nhiên gồm 9 chữ số khác nhau. Chọn ngẫu nhiên một số từ S. Hãy tính xác suất để chọn được một số gồm 4 chữ số lẻ và chữ số 0 luôn đứng giữa hai chữ số lẻ (hai số hai bên chữ số 0 là số lẻ).

    Số phần tử của tập S9.A_{9}^{8}.

    Không gian mẫu là chọn ngẫu nhiên 1 số từ tập S.

    Suy ra số phần tử của không gian mẫu là |\Omega| = 9.A_{9}^{8}.

    Gọi X là biến cố ''Số được chọn gồm 4 chữ số lẻ và chữ số 0 luôn đứng giữa hai chữ số lẻ''. Do số 0 luôn đứng giữa 2 số lẻ nên số 0 không đứng ở vị trí đầu tiên và vị trí cuối cùng. Ta có các khả năng

    + Chọn 1 trong 7 vị trí để xếp số 0, có C_{7}^{1} cách.

    + Chọn 2 trong 5 số lẻ và xếp vào 2 vị trí cạnh số 0 vừa xếp, có A_{5}^{2} cách.

    + Chọn 2 số lẻ trong 3 số lẻ còn lại và chọn 4 số chẵn từ \left\{ 2;\ 4;\ 6;\ 8 ight\} sau đó xếp 6 số này vào 6 vị trí trống còn lại có C_{3}^{2}.C_{4}^{4}.6! cách.

    Suy ra số phần tử của biến cố X\left| \Omega_{X} ight| =
C_{7}^{1}.A_{5}^{2}.C_{3}^{2}.C_{4}^{4}.6!.

    Vậy xác suất cần tính P(X) = \frac{\left|
\Omega_{X} ight|}{|\Omega|} =
\frac{C_{7}^{1}.A_{5}^{2}.C_{3}^{2}.C_{4}^{4}.6!}{9.A_{9}^{8}} =
\frac{5}{54}.

  • Câu 4: Nhận biết

    Xét phép thử gieo một con súc sắc cân đối và đồng chất 6 mặt hai lần. Xét biến cố A: “Số chấm xuất hiện ở cả hai lần gieo giống nhau”. Biến cố A gồm bao nhiêu kết quả?

    Gọi cặp số (x;y) là số chấm xuất hiện ở hai lần gieo.

    Xét biến cố A: “Số chấm xuất hiện ở cả hai lần gieo giống nhau”.

    Các kết quả của biến cố A là: \left\{
(1;1);(2;2);(3;3);(4;4);(5;5);(6;6) ight\}.

    Suy ra n(A) = 6.

  • Câu 5: Vận dụng

    Chọn ngẫu nhiên 3 số tự nhiên từ tập hợp M = \left\{ 1;2;3;...;2019
ight\}. Xác suất của P để trong 3 số tự nhiên được chọn không có 2 số tự nhiên liên tiếp bằng bao nhiêu?

    Có tất cả C_{2019}^{3} cách chọn 3 số tự nhiên từ tập hợp M = \left\{
1;2;3;...;2019 ight\}.

    Suy ra n(\Omega) =
C_{2019}^{3}.

    Xét biến cố A: “Chọn 3 số tự nhiên sao cho không có 2 số tự nhiên liên tiếp”.

    Ta có \overline{A}: “Chọn 3 số tự nhiên sao luôn có 2 số tự nhiên liên tiếp”.

    Xét các trường hợp sau:

    + Trường hợp 1: Trong ba số chọn được chỉ có 2 số liên tiếp:

    - Nếu 2 số liên tiếp là \left\{ 1;2
ight\} hoặc \left\{ 2018;2019
ight\} thì số thứ ba có 2019 - 3
= 2016 cách chọn (do không tính số liên tiếp sau và trước mỗi cặp số đó).

    - Nếu 2 số liên tiếp là \left\{ 2;3
ight\}, \left\{ 3;4
ight\},.,\left\{ 2017;2018
ight\} thì số thứ ba có 2019 - 4
= 2015 cách chọn (do không tính 2 số liền trước và sau mỗi cặp số đó).

    Trường hợp này có 2.2016 + 2016.2015 =
4066272 cách chọn.

    + Trường hợp 2: Chọn được 3 số liên tiếp.

    Tức là chọn các bộ \left\{ 1;2;3
ight\}, \left\{ 2;3;4
ight\},.,\left\{ 2017,2018,2019
ight\}: có tất cả 2017 cách.

    Suy ra n\left( \overline{A} ight) =
4066272 + 2017 = 4068289.

    Vậy P = P(A) = 1 - P\left( \overline{A}
ight) = 1 - \frac{4068289}{C_{2019}^{3}} =
\frac{1365589680}{1369657969} = \frac{677040}{679057}.

  • Câu 6: Nhận biết

    Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố không?

    Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố không là “Mặt xuất hiện của con xúc xắc có số chấm là 8 chấm.”

  • Câu 7: Thông hiểu

    Gieo hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai mặt của hai con xúc xắc bằng 7?

    Ta có:

    Số phần tử không gian mẫu là: n(\Omega) =
6.6 = 36

    Gọi A là biến cố “tổng số chấm xuất hiện trên hai mặt của hai con xúc xắc bằng “.

    \Rightarrow A = \left\{
(1;6),(6;1),(2;5),(5;2),(4;3),(3;4) ight\}

    \Rightarrow n(A) = 6

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{6}{20} = \frac{3}{10}.

  • Câu 8: Thông hiểu

    Hai cậu bé cùng bắn bi vào lỗ. Xác suất người thứ nhất bắn trúng vào lỗ là 85%, xác suất người thứ hai bắn trúng vào lỗ là 70%. Hỏi xác suất để cả hai người cùng bắn trúng vào lỗ:

    Xác suất người thứ nhất bắn trúng lỗ: 0,85

    Xác suất người thứ hai bắn trúng bia: 0,7

    Xác suất để cả hai người cùng bắn trúng bia: 0,85.0,7 = 0,595 = 59,5%

  • Câu 9: Thông hiểu

    Một lô sản phẩm gồm 35 sản phẩm đạt chuẩn và 15 sản phẩm lỗi. Lấy ngẫu nhiên 3 sản phẩm từ trong hộp. Tính xác suất để 3 sản phẩm lấy ra đều là sản phẩm đạt chuẩn?

    Ta có: n(\Omega) =
C_{50}^{3}

    Gọi B là biến cố cả ba sản phẩm lấy ra đều là sản phẩm đạt chuẩn.

    Chọn 3 trong 35 sản phẩm đạt chuẩn ta có: \Rightarrow n(B) = C_{35}^{3}

    Vậy xác suất của biến cố B là: P(B) =
\frac{C_{35}^{3}}{C_{50}^{3}} = \frac{187}{560}.

  • Câu 10: Vận dụng

    Gieo một con xúc xắc 2 lần liên tiếp. Gọi số chấm xuất hiện của hai lần gieo lần lượt là bc. Tính xác suất để phương trình bậc hai x^{2} - bx + c = 0 có nghiệm?

    Gieo con xúc xắc hai lần nên ta có: n(\Omega) = 36

    Để phương trình bậc hai có nghiệm thì \Delta \geq 0 \Leftrightarrow b^{2} - 4ac \geq 0
\Leftrightarrow b^{2} \geq 4ac

    c \geq 1 \Rightarrow b^{2} \geq 4\Rightarrow \left\{ \begin{matrix}b \geq 2 \\c \leq \dfrac{b^{2}}{4} \\\end{matrix} ight.

    Lập bảng chọn giá trị của b và c như sau:

    b

    2

    3

    4

    5

    6

    c

    1

    1; 2

    1; 2; 3; 4

    1; 2; 3; 4; 5; 6

    1; 2; 3; 4; 5; 6

    Gọi A là biến cố “phương trình x^{2} - bx
+ c = 0 có nghiệm” ta có:

    n(A) = 1 + 2 + 4 + 6 + 6 =
19

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{19}{36}

  • Câu 11: Nhận biết

    Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố A: "ít nhất một lần xuất hiện mặt sấp" là bao nhiêu?

    Ta có: \overline{A}: "không có lần nào xuất hiện mặt sấp" hay cả 3 lần đều mặt ngửa.

    Theo quy tắc nhân xác suất: P(\overline{A}) =\frac{1}{2}.\frac{1}{2}.\frac{1}{2} = \frac{1}{8}.

    Vậy: P(A) = 1 - P(\overline{A}) = 1 -\frac{1}{8} = \frac{7}{8}.

  • Câu 12: Thông hiểu

    Một bình chứa 16 viên vi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi từ bình đó. Tính xác suất lấy được cả 3 viên bi đều không có màu đỏ.

    Số cách lấy 3 viên bi bất kì là C_{16}^{3} = 560.

    Số cách lấy được 3 viên bi trắng là C_{7}^{3}.C_{6}^{0}.C_{3}^{0} = 35.

    Số cách lấy được 2 viên bi trắng, 1 viên bi đen là C_{7}^{2}.C_{6}^{1}.C_{3}^{0} = 126.

    Số cách lấy được 1 viên bi trắng, 2 viên bi đen là C_{7}^{1}.C_{6}^{2}.C_{3}^{0} = 105.

    Số cách lấy được 3 viên bi đen là C_{7}^{0}.C_{6}^{3}.C_{3}^{0} = 20.

    Số cách lấy được cả 2 viên bi không đỏ là 35 + 126 + 105 + 20 = 286.

    Suy ra xác suất cần tìm là \frac{143}{280}.

  • Câu 13: Nhận biết

    Cho A là biến cố liên quan đến phép thử có không gian mẫu \Omega. Tìm mệnh đề đúng.

    Theo định nghĩa xác suất cổ điển, cho phép thử T có không gian mẫu \Omega. Giả thiết rằng các kết quả có thể của T là đồng khả năng, khi đó cho A là biến cố có liên quan đến phép thử có không gian mẫu \Omega. Thì xác suất của biến cố A được tính bởi công thức P(A) = \frac{n(A)}{n(\Omega)}, trong đó n(A);n(\Omega) tương ứng là số phần tử của biến cố A và của không gian mẫu.

  • Câu 14: Nhận biết

    Cho A là một biến cố trong phép thử T. Xác suất của biến cố đối \overline{A} liên hệ với xác suất của biến cố A được xác định theo công thức nào sau đây?

    Xác suất của biến cố đối \overline{A} liên hệ với xác suất của biến cố A theo công thức:

    P\left( \overline{A} ight) = 1 -
P(A)

  • Câu 15: Thông hiểu

    Gieo ngẫu nhiên một con xúc xắc cân đối và đồng chất liên tiếp hai lần. Tính xác suất để lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm.

    Không gian mẫu \Omega = \left\{ (i;j)|i;j
= 1,2,3,4,5,6 ight\}

    Số phần tử của không gian mẫu n(\Omega) =
36

    Gọi A là biến cố: “Lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm”.

    \Rightarrow n(A) = 3.6 = 18

    Xác suất để lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm là: P(A) = \frac{n(A)}{n(\Omega)} =
\frac{1}{2}.

  • Câu 16: Thông hiểu

    Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của biến cố “Tổng số chấm trong hai lần gieo bằng 6”.

    Số phần tử không gian mẫu là: n(\Omega) =
6^{2} = 36

    Gọi A là biến cố: “Tổng số chấm trong hai lần gieo bằng 6”.

    Tập hợp các kết quả của biến cố A là: A =
\left\{ (2;4),(5;1),(1;5),(4;2),(3;3) ight\}

    Suy ra n(A) = 5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{36}

  • Câu 17: Nhận biết

    Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố A: "có đúng 2 lần xuất hiện mặt sấp" là bao nhiêu?

    Chọn 2 trong 3 lần để xuất hiện mặt sấp có C_{3}^{2} = 3 cách.

    2 lần xuất hiện mặt sấp có xác suất mỗi lần là \frac{1}{2}. Lần xuất hiện mặt ngửa có xác suất là \frac{1}{2}.

    Vậy: P(A) =3.\frac{1}{2}.\frac{1}{2}.\frac{1}{2} = \frac{3}{8}.

  • Câu 18: Nhận biết

    Lấy ngẫu nhiên đồng thời 3 quả cầu từ hộp chứa 9 quả cầu đỏ và 6 quả cầu xanh. Tính xác suất để lấy được 3 quả cầu màu xanh?

    Ta có: n(\Omega) = C_{15}^{3} =
455

    Gọi A là biến cố “lấy được 3 quả cầu màu xanh”

    \Rightarrow n(A) = C_{6}^{3} =
20

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{20}{455} = \frac{4}{91}.

  • Câu 19: Nhận biết

    Gieo một con xúc sắc cân đối và đồng chất hai lần. Tính xác suất để cả hai lần xuất hiện mặt 6 chấm.

    * Số phần tử của không gian mẫu là: n(\Omega) = C_{6}^{1}.C_{6}^{1} = 36.

    * Gọi A =”Cả hai lần xuất hiện mặt sáu chấm”. Số phần tử của biến cố An(A) =
1.

    * Xác suất của biến cố AP(A) = \frac{n(A)}{n(\Omega)} =
\frac{1}{36}.

  • Câu 21: Thông hiểu

    Trên kệ sách có 5 quyển sách Hóa học và 7 quyển sách Vật lí. Lấy ngẫu nhiên 3 quyển sách. Xác suất để ba quyển sách lấy ra có cả sách Hóa học và Vật lí bằng:

    Số phần tử không gian mẫu n(\Omega) =
C_{12}^{3} = 220 (lấy 3 trong 12 quyển sách)

    Gọi B là biến cố lấy được 3 quyển sách có cả sách Hóa học và sách Vật lí.

    Khi đó \overline{B} là biến cố lấy được 3 quyển sách trong đó chỉ có 1 loại sách hoặc là Hóa học hoặc là Vật lí

    TH1: 2 quyển sách được chọn là sách Hóa học ta có: C_{5}^{3} cách chọn.

    TH2: 2 quyển sách được chọn là sách Vật lí ta có: C_{7}^{3} cách chọn.

    Số phần tử của biến cố \overline{B} là: n\left( \overline{B} ight) = C_{5}^{3} +
C_{7}^{3} = 45

    Vậy xác suất của biến cố B cần tìm là:

    P(B) = 1 - P\left( \overline{B} ight)
= 1 - \frac{45}{220} = \frac{35}{44}

  • Câu 23: Nhận biết

    Một hộp có 3 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3. Rút ngẫu nhiên một chiếc thẻ từ trong hộp. Không gian mẫu của phép thử đó là:

     Mô tả không gian mẫu: \Omega=\{1;2;3\}.

  • Câu 24: Vận dụng

    Cho 8 quả cân có trọng lượng lần lượt là 1; 2; 3; 4; 5; 6; 7; 8 (kg). Chọn ngẫu nhiên 3 quả trong số đó. Xác suất để trọng lượng 3 quả không nhỏ hơn 10 (kg) là:

    Chọn ba quả cân có |\Omega| = C_{8}^{3} =
56cách.

    Chọn ba quả cân có tổng trọng lượng nhỏ hơn hoặc bằng 9 có các trường hợp sau:

    TH1: Trong các quả được lấy ra không có quả cân trọng lượng 1 kg.

    Ta có 2 + 3 + 4 = 9 là tổng trọng lượng nhỏ nhất có thể. Do đó trong trường hợp này có đúng 1 cách chọn.

    TH2: Trong các quả được lấy ra có quả cân trọng lượng 1 kg. Khi đó ta có:

    \mathbf{1}\mathbf{+}\mathbf{2}\mathbf{+}\mathbf{3}\mathbf{=}\mathbf{6;1}\mathbf{+}\mathbf{2}\mathbf{+}\mathbf{4}\mathbf{=}\mathbf{7;1}\mathbf{+}\mathbf{2}\mathbf{+}\mathbf{5}\mathbf{=}\mathbf{8;1}\mathbf{+}\mathbf{2}\mathbf{+}\mathbf{6}\mathbf{=}\mathbf{9;1}\mathbf{+}\mathbf{3}\mathbf{+}\mathbf{4}\mathbf{=}\mathbf{8;1}\mathbf{+}\mathbf{3}\mathbf{+}\mathbf{5}\mathbf{=}\mathbf{9}.

    Trường hợp này ta có 6 cách chọn.

    Vậy số cách chọn thỏa mãn yêu cầu bài toán là 56 - 1 - 6 = 49.

    Xác suất cần tính là: \frac{49}{56} =
\frac{7}{8}.

  • Câu 25: Thông hiểu

    Chọn ngẫu nhiên hai số phân biệt từ 15 số nguyên dương đầu tiên. Tính xác suất để tích hai số được chọn là một số chẵn?

    Trong 15 số nguyên dương đầu tiên có 7 số chẵn và 8 só lẻ.

    Ta có: n(\Omega) = C_{15}^{2} =
105

    Gọi A là biến cố “Tích hai số được chọn là một số chẵn”

    TH1: 1 số lẻ và 1 số chẵn ta có: 7.8 cách chọn

    TH2: 2 số chẵn ta có: C_{7}^{2} cách chọn

    \Rightarrow n(A) = 7.8 + C_{7}^{2} =
77

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{77}{105} = \frac{11}{15}

  • Câu 26: Thông hiểu

    Gieo một con xúc xắc cân đối và đồng chất. Giả sử xúc xắc xuất hiện mặt b chấm. Xác suất để phương trình x^{2} + bx + 2 = 0 có hai nghiệm phân biệt là:

    Phương trình x^{2} + bx + 2 = 0 có hai nghiệm phân biệt khi và chỉ khi 

    \begin{matrix}  \Delta  > 0 \hfill \\   \Leftrightarrow {b^2} - 4.2 > 0 \hfill \\   \Leftrightarrow {b^2} - 8 > 0 \hfill \\   \Leftrightarrow b \in \left( { - \infty ; - 2\sqrt 2 } ight) \cup \left( {2\sqrt 2 ; + \infty } ight) \hfill \\ \end{matrix}

    b \in \left\{ {1;2;3;4;5;6} ight\}

    => b \in \left\{ {3;4;5;6} ight\}

    Gieo con xúc xắc cân đối và đồng chất => n\left( \Omega  ight) = 6

    Biến cố A xúc xắc xuất hiện mặt b chấm thỏa mãn phương trình => n\left( A ight) = 4

    => Xác suất để phương trình x^{2} + bx + 2 = 0 có hai nghiệm phân biệt là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{4}{6} = \frac{2}{3}

  • Câu 27: Thông hiểu

    Một hộp chứa 3 bi xanh, 2 bi đỏ, 4 bi vàng. Lấy ngẫu nhiên 3 bi. Xác suất để được đúng một bi đỏ là bao nhiêu?

    Số phần tử của không gian mẫu là |\Omega|
= C_{9}^{3} = 84.

    Gọi A là biến cố lấy được đúng 1 bi đỏ.

    Chọn 1 bi đỏ, 1 bi xanh, 1 bi vàng, có C_{2}^{1}.C_{3}^{1}.C_{4}^{1} =
24(cách).

    Chọn 1 bi đỏ, 2 bi xanh, có C_{2}^{1}.C_{3}^{2} = 6(cách).

    Chọn 1 bi đỏ,2 bi vàng, có C_{2}^{1}.C_{4}^{2} = 12(cách).

    Suy ra \left| \Omega_{A} ight| = 24 + 6
+ 12 = 42.

    Xác suất cần tìm là P(A) = \frac{42}{84}
= \frac{1}{2}.

  • Câu 28: Nhận biết

    Một hộp chứa 8 tấm thẻ được đánh số theo thứ tự từ 1 đến 8 (hai tấm thẻ khác nhau ghi hai số khác nhau). Rút ngẫu nhiên đồng thời hai tấm thẻ trong hộp. Tính xác suất để rút được hai tấm thẻ đều ghi số chẵn?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{8}^{2} = 28

    Gọi A là biến cố: “Rút được hai tấm thẻ đều ghi số chẵn”

    \Rightarrow n(A) = 4

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{4}{28} = \frac{1}{7}

  • Câu 29: Nhận biết

    Một cái hộp chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy lần lượt 2 viên bi từ hộp này. Xác suất để viên bi được lấy lần thứ 2 là bi xanh là:

    Ta có: Số phần tử của không gian mẫu n(\Omega) = C_{10}^{1}.C_{9}^{1}.

    Gọi A là biến cố: “ Viên bi được lấy lần thứ 2là bi xanh”.

    - Trường hợp 1: Lần 1 lấy viên đỏ, lần 2 lấy viên xanh: Có C_{6}^{1}.C_{4}^{1} cách chọn.

    - Trường hợp 2: Lần 1 lấy viên xanh, lần 2 lấy viên xanh: Có C_{4}^{1}.C_{3}^{1} cách chọn.

    n(A) = C_{6}^{1}.C_{4}^{1} +
C_{4}^{1}.C_{3}^{1}.

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{24 + 12}{10.9} = \frac{2}{5}.

  • Câu 30: Nhận biết

    Lấy ngẫu nhiên đồng thời 3 quả cầu từ trong hộp chứa 10 quả cầu đỏ và 5 quả cầu xanh. Xác suất để ba quả cầu được chọn đều là màu xanh bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
C_{15}^{3} = 455

    Gọi A là biến cố lấy được 3 quả màu xanh

    Số phần tử của biến cố A là: n(A) =
C_{5}^{3} = 10

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{455} = \frac{2}{91}

  • Câu 31: Vận dụng

    Năm đoạn thẳng có độ dài 1cm; 3cm; 5cm; 7cm; 9cm. Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng trên. Xác suất để ba đoạn thẳng lấy ra có thể tạo thành 1 tam giác là:

    Phân tích: Cần nhớ lại kiến thức cơ bản về bất đẳng thức tam giác.

    Ba đoạn thẳng với chiều dài a,b,c có thể là 3 cạch của một tam giác khi và chỉ khi \left\{ \begin{matrix}
a + b > c \\
a + c > b \\
b + c > a \\
\end{matrix} ight.

    Số phần tử của không gian mẫu là: C_{5}^{3} = 10

    Gọi A là biến cố “lấy ba đoạn thẳng lấy ra lập thành một tam giác”

    Các khả năng chọn được ba đoạn thẳng lập thành một tam giác là (3;5;7);(3;5;9);(5;7;9)

    Số trường hợp thuận lợi của biến cố A là 3. Suy ra xác suất của biến cố AP(A) =
\frac{3}{10}.

  • Câu 32: Nhận biết

    Gieo hai đồng tiền một lần. Kí hiệu S, N lần lượt để chỉ đồng tiền lật sấp, lật ngửa. Mô tả không gian mẫu nào dưới đây là đúng?

    Gieo hai đồng tiền một lần ta được không gian mẫu là: Ω = \left \{ {SN, NS, SS, NN}  ight \}

  • Câu 33: Nhận biết

    Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:

    "Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm có tất bao nhiêu viên bi". Đây không phải là phép thử ngẫu nhiên.

  • Câu 34: Thông hiểu

    Một hộp chứ 3 quả cầu xanh và 7 quả cầu đỏ. Chọn ngẫu nhiên đồng thời hai quả cầu trong hộp. Tính xác suất để hai quả cầu được chọn ra có cùng màu?

    Ta có: n(\Omega) = C_{10}^{2} =
45

    Gọi A là biến cố: “Chọn được hai quả cầu cùng màu”

    TH1: 2 quả cầu cùng màu xanh ta có: C_{3}^{2} cách chọn

    TH2: 2 quả cầu cùng màu đỏ ta có: C_{7}^{2} cách chọn.

    \Rightarrow n(A) = C_{3}^{2} + C_{7}^{2}
= 24

    Vậy xác suất của biến cố A là: P(A) =
\frac{24}{45} = \frac{8}{15}

  • Câu 35: Vận dụng

    Đề thi kiểm tra 15 phút có 10 câu trắc nghiệm mỗi câu có bốn phương án trả lời, trong đó có một phương án đúng, trả lời đúng mỗi câu được 1,0 điểm. Một thí sinh làm cả 10 câu, mỗi câu chọn một phương án. Tính xác suất để thí sinh đó đạt từ 8,0 điểm trở lên.

    Với mỗi câu hỏi, thí sinh có 4 phương án lựa chọn nên số phần tử của không gian mẫu là n(\Omega) =
4^{10}.

    Gọi X là biến cố “thí sinh đó đạt từ 8,0 điểm trở lên”.

    Trường hợp 1: Thí sinh đó là được 8 câu (tức là 8,0 điểm): Chọn 8 câu trong số 10 câu hỏi và 2 câu còn lại mỗi câu có 3 cách chọn đáp án sai nên có C_{10}^{8}.3^{2} cách để thí sinh đúng 8 câu.

    Trường hợp 2: Thí sinh đó là được 9 câu (tức là 9,0 điểm): Chọn 9 câu trong số 10 câu hỏi và câu còn lại có 3 cách chọn đáp án sai nên có C_{10}^{9}.3^{1} cách để thí sinh đúng 9 câu.

    Trường hợp 3: Thí sinh đó là được 10 câu (tức là 10,0 điểm): Chỉ có 1 cách duy nhất.

    Suy ra số kết quả thuận lợi cho biến cố Xn(X) = C_{10}^{8}.3^{2} + C_{10}^{9}.3^{1} + 1 =
436.

    Vậy xác suất cần tìm là P(X) =
\frac{n(X)}{n(\Omega)} = \frac{436}{4^{10}}.

  • Câu 36: Thông hiểu

    Từ một hộp có 6 viên bi xanh, 5 viên bi đỏ và 4 viên bi vàng. Lấy ngẫu nhiên 7 viên bi. Tính xác suất để lấy được ít nhất một viên bi vàng?

    Số phần tử không gian mẫu: n(\Omega) =
C_{15}^{7} = 6435

    Số phần tử biến cố lấy ngẫu nhiên 7 viên bi không có viên bi màu vàng là: C_{11}^{7} = 330

    Vậy xác suất để lấy được ít nhất một viên bi vàng là: P = \frac{6435 - 330}{6435} =
\frac{37}{39}

  • Câu 37: Nhận biết

    Một hộp chứa 10 tấm thẻ được đánh số lần lượt từ 1 đến 10. Rút ngẫu nhiên một tấm thẻ trong hộp. Tính xác suất của biến cố: “Tấm thẻ được rút ra ghi số chẵn”?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{10}^{1} = 10

    Gọi A là biến cố: “Tấm thẻ được rút ra ghi số chẵn” \Rightarrow n(A) = 5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{10} = \frac{1}{2}

  • Câu 38: Vận dụng

    Cho đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm O. Chọn ngẫu nhiên 4 đỉnh của đa giác. Xác suất để 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật bằng bao nhiêu?

    Xét phép thử: “Chọn ngẫu nhiên 4 đỉnh của đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm O\Rightarrow n(\Omega) = C_{20}^{4} =
4845.

    Gọi A là biến cố:” 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật”

    Đa giác có 20 đỉnh sẽ có 10 đường chéo đi qua tâm mà cứ 2 đường chéo qua tâm sẽ có 1 hình chữ nhật nên số HCN là: n(A) = C_{10}^{2} = 45.

    P(A) = \frac{45}{4845} =
\frac{3}{323}.

  • Câu 39: Nhận biết

    Gieo đồng tiền hai lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là bao nhiêu?

    Số phần tử không gian mẫu:n(\Omega) = 2.2
= 4.

    Biến cố xuất hiện mặt sấp ít nhất một lần: A = \left\{ SN;NS;SS ight\}.

    Suy ra P(A) = \frac{n(A)}{n(\Omega)} =
\frac{3}{4}.

  • Câu 40: Thông hiểu

    Giáo viên chủ nhiệm mang đến lớp 6 cuốn sách khoa học và 4 cuốn sách tham khảo (các sách khác nhau từng đôi một). Giáo viên cho bạn C mượn ngẫu nhiên 3 quyển sách để đọc. Tính xác suất của biến cố: “X mượn ít nhất một cuốn sách tham khảo”.

    Số phần tử không gian mẫu là: n(\Omega) =
C_{10}^{3} = 120

    Gọi A là biến cố: “X mượn ít nhất một cuốn sách tham khảo”.

    Khi đó \overline{A} là biến cố X mượn 3 cuốn sách khoa học. Khi đó: n\left(
\overline{A} ight) = C_{6}^{3} = 20

    Vậy xác suất của biến cố A là: P(A) = 1 -
P\left( \overline{A} ight) = 1 - \frac{20}{120} =
\frac{5}{6}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 10 Xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo