Đề kiểm tra 45 phút Chương 10 Xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Xác suất của biến cố A kí hiệu là P(A). Biến cố \overline{A} là biến cố đối của A, có xác suất là P(\overline{A})

    Chọn phát biểu sai trong các phát biểu sau:

    Phát biểu sai là: "Xác suất của mỗi biến cố đo lường xảy ra của biến cố đó. Biến cố có khả năng xảy ra càng cao thì xác suất của nó càng xa 1."

  • Câu 2: Nhận biết

    Phép thử ngẫu nhiên (gọi tắt là phép thử) là gì?

    Phép thử ngẫu nhiên (gọi tắt là phép thử) là hoạt động mà ta không thể biết trước được kết quả của nó.

  • Câu 3: Nhận biết

    Gieo một con súc sắc. Xác suất để mặt 6 chấm xuất hiện là:

    Gieo một con súc sắc có không gian mẫu \Omega = \left\{ 1;2;3;4;5;6 ight\} \Rightarrow
n(\Omega) = 6.

    Xét biến cố A: “mặt 6 chấm xuất hiện”. A = \left\{ 6 ight\} \Rightarrow n(A) =
1.

    Do đó P(A) = \frac{1}{6}.

  • Câu 4: Nhận biết

    Một hộp chứa: bi xanh, bi đỏ và bi vàng. Lấy ngẫu nhiên một viên bi trong hộp. Gọi A là biến cố: “Lấy được viên bi đỏ”. Biến cố đối của biến cố A là:

    Biến cố đối của biến cố A là “Lấy được viên bi xanh hoặc bi vàng”.

  • Câu 5: Thông hiểu

    Trong một chiếc hộp đựng 5 quả cầu xanh, 4 quả cầu đỏ và 3 quả cầu vàng. Chọn ngẫu nhiên 3 quả cầu. Tính xác suất của biến cố “3 quả cầu có đủ ba màu”?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{12}^{3} = 220

    Gọi A là biến cố chọn được 3 quả có đủ ba màu.

    Số phần tử của biến cố A là: n(A) = 5.4.3
= 60

    Khi đó xác suất của biến cố A là: P(A) =
\frac{60}{220} = \frac{3}{11}

  • Câu 6: Thông hiểu

    Gieo ngẫu nhiên một đồng tiên cân đối, đồng chất 3 lần liên tiếp. Xác suất để ít nhất một lần xuất hiện mặt sấp là:

    Ta có: n(\Omega) = 2^{3} = 8

    Gọi A là biến cố “ít nhất một lần xuất hiện mặt sấp”

    \Rightarrow A = \left\{
SSS;SSN;SNS;NSS;NSN;NNS ight\}

    \Rightarrow n(A) = 7

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{7}{8}

  • Câu 7: Vận dụng

    Gọi S là tập hợp tất cả các số tự nhiên gồm 2 chữ số khác nhau lập từ \{ 0;1;2;3;4;5;6\}. Chọn ngẫu nhiên 2 số từ tập S. Xác suất để tích hai số chọn được là một số chẵn là:

    Ta có điều kiện chủ chốt “tích hai số được chọn là một số chẵn” Tồn tại ít nhất một trong hai số được chọn là chẵn.

    Gọi \overline{ab} là số tự nhiên có hai chữ số khác nhau được lập từ các số đã cho

    Số cách chọn a là 6 cách; Số cách chọn b cách Số các số có hai chữ số khác nhau tạo được là 6.6 = 36 số. Suy ra S36 phần tử.

    Số cách lấy ngẫu nhiên 2 số từ tập S: C_{36}^{2}
= 630 cách

    Gọi biến cố A: “Tích hai số được chọn là một số chẵn”

    Gọi biến cố \overline{A}: “Tích hai số được chọn là một số lẻ”

    Số các số lẻ trong S: 3.5 = 15 (3 cách chọn chữ số hàng đơn vị là lẻ, 5 cách chọn chữ số hàng chục khác 0).

    Số cách lấy ngẫu nhiên 2 số lẻ trong 15 số lẻ: C_{15}^{2} = 105 cách

    Suy ra P(\overline{A}) = \frac{105}{630}
= \frac{1}{6}. Vậy P(A) = 1 -
P(\overline{A}) = \frac{5}{6}.

  • Câu 8: Nhận biết

    Một nhóm học sinh lớp 10A gồm 10 học sinh trong đó có 4 học sinh nữ và 6 học sinh nam. Chọn ngẫu nhiên bốn học sinh trong nhóm để tham gia cuộc thi hùng biện. Xác suất để bốn bạn được chọn có ba nam và một nữ bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
C_{10}^{4} = 210

    Số kết quả thuận lợi cho biến cố: “Bốn bạn được chọn có ba nam và một nữ” bằng: C_{6}^{3}.C_{4}^{1} =
80

    Vậy xác suất của biến cố “Bốn bạn được chọn có ba nam và một nữ” bằng: \frac{80}{210} =
\frac{8}{21}

  • Câu 9: Thông hiểu

    Có 5 tấm bìa được đánh số từ 1 đến 5. Rút ngẫu nhiên ba tấm. Xác suất để tổng các số ghi trên ba tấm bìa chia hết cho 3 bằng bao nhiều?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{5}^{3} = 10

    Gọi A là biến cố tổng các số ghi trên ba tấm bìa chia hết cho 3.

    Các số ghi trên tấm bia chia thành 3 nhóm:

    Nhóm 1: Các số chia hết cho 3 ta có 3 số

    Nhóm 2: Các số chia hết cho 3 dư 1 ta có: 4 số

    Nhóm 3: Các số chia hết cho 3 dư 2 ta có: 5 số

    Vì chỉ có 5 số như trên nên muốn tổng ba số là số chia hết cho 3 thì 3 số lấy ra sẽ có 1 số ở nhóm 1, 1 số ở nhóm 2, một số ở nhóm 3.

    Khi đó: n(A) = 1.2.2 = 4

    Suy ra xác suất của biến cố cần tìm là \frac{4}{10} = \frac{2}{5}

  • Câu 10: Nhận biết

    Gieo một con súc sắc cân đối và đồng chất. Xác suất mà mặt có số chấm chẵn xuất hiện là bao nhiêu?

    Ta có: Không gian mẫu \Omega = \left\{
1,2,3,4,5,6 ight\} suy ra n(\Omega) = 6.

    Gọi biến cố A: “Con súc sắc có số chấm chẵn xuất hiện” hay A = \left\{
2;4;6 ight\} suy ra n(A) =
3.

    Từ đó suy ra p(A) =
\frac{n(A)}{n(\Omega)} = \frac{3}{6} = \frac{1}{2}.

    Vậy xác suất để mặt có số chấm chẵn xuất hiện là \frac{1}{2}.

  • Câu 11: Nhận biết

    Bốn quyển sách được đánh dấu bằng những chữ cái U, V, X, Y được xếp tuỳ ý trên 1 kệ sách dài. Xác suất để chúng được sắp xếp theo thứ tự bảng chữ cái là:

     Số cách sắp xếp 4 phần tử vào dãy nằm ngang gồm 4 vị trí có 4!=24 (cách). Suy ra n(\Omega)=24.

    Chỉ có duy nhất 1 cách sắp xếp 4 chữ U, V, X, Y theo thứ tự bảng chữ cái.

    Vậy xác suất P=\frac1{24}.

  • Câu 12: Nhận biết

    Gieo một đồng tiền liên tiếp 2 lần. Số phần tử của không gian mẫu là bao nhiêu?

    n(\Omega) = 2.2 = 4.

    (lần 1 có 2 khả năng xảy ra - lần 2 có 2 khả năng xảy ra).

  • Câu 13: Vận dụng

    Một xạ thủ bán từ khoảng cách 100m có xác suất bắn trúng đích là:

    - Tâm 10 điểm: 0,5.

    - Vòng 9 điểm: 0,25.

    - Vòng 8 điểm: 0,1.

    - Vòng 7 điểm: 0,1.

    - Ngoài vòng 7 điểm: 0,05.

    Tính xác suất để sau 3 lần bắn xạ thủ đó được 27 điểm.

    Ta có 27 = 10 + 10 + 7 = 10 + 9 + 8 = 9 +
9 + 9

    Với bộ (10;10;7) có 3 cách xáo trộn điểm các lần bắn

    Với bộ (10;9;8) có 6 cách xáo trộn điểm các lần bắn

    Với bộ (9;9;9) có 1 cách xáo trộn điểm các lần bắn.

    Do đó xác suất để sau 3 lần bắn xạ thủ được đúng 27 điểm là:

    P = 3.0,5^{2}.0,1 + 6.0,5.0,25.0,1 +
0,25^{3} = 0,165625.

  • Câu 14: Nhận biết

    Gieo ngẫu nhiên một con xúc sắc cân đối đồng chất 2 lần. Xác suất mà số chấm của hai lần gieo là như nhau là bao nhiêu?

    Gọi A là biến cố “Số chấm trong hai lần gieo là bằng nhau”.

    n(\Omega) = 36.

    A = \left\{ (1,1);\ (2,2);...;(6,6)
ight\}, n(A) = 6.

    Vậy P(A) = \frac{6}{36} =
\frac{1}{6}.

  • Câu 15: Nhận biết

    Cho phép thử có không gian mẫu \Omega = \left\{ 1,2,3,4,5,6 ight\}. Cặp biến cố không đối nhau là cặp nào trong các cặp dưới đây?

    Cặp biến cố không đối nhau là E = \left\{
1,\ 4,\ 6 ight\}F = \left\{
2,\ 3 ight\} do E \cap F =
\varnothingE \cup F eq
\Omega.

  • Câu 16: Thông hiểu

    Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của biến cố “Tổng số chấm trong hai lần gieo bằng 6”.

    Số phần tử không gian mẫu là: n(\Omega) =
6^{2} = 36

    Gọi A là biến cố: “Tổng số chấm trong hai lần gieo bằng 6”.

    Tập hợp các kết quả của biến cố A là: A =
\left\{ (2;4),(5;1),(1;5),(4;2),(3;3) ight\}

    Suy ra n(A) = 5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{36}

  • Câu 18: Thông hiểu

    Một hộp chứa 5 viên bi trắng, 10 viên bi xanh và 15 viên bi đỏ. Lấy ngẫu nhiên từ trong hộp 7 viên bi. Xác suất để trong số 7 viên bi lấy ra có ít nhất 2 viên bi màu đỏ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{30}^{7}

    Gọi A là biến cố để trong 7 viên bi lấy ra có ít nhất 2 viên bi màu đỏ

    \overline{A} là biến cố để trong 7 viên bi được lấy ra có số viên bi nhỏ hơn 2.

    TH1: 7 viên bi trong đó có 1 viên bi đỏ ta có: 15.C_{15}^{6}

    TH2: 7 viên bi trong đó có không có viên bi đỏ ta có: C_{15}^{7}

    \Rightarrow n\left( \overline{A} ight)
= 15.C_{15}^{6} + C_{15}^{7}

    Vậy xác suất của biến cố A cần tìm là:

    P(A) = 1 - P\left( \overline{A} ight)
= 1 - \frac{15.C_{15}^{6} + C_{15}^{7}}{C_{30}^{7}} =
\frac{5011}{5220}

  • Câu 19: Vận dụng

    Một người có 10 đôi giày khác nhau và trong lúc đi du lịch vội vã lấy ngẫu nhiên 4 chiếc.

    Xác suất để trong 4 chiếc giày lấy ra có ít nhất một đôi là bao nhiêu?

    Không gian mẫu là số cách chọn ngẫu nhiên 4 chiếc giày từ 20 chiếc giày.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{20}^{4} = 4845.

    Gọi A là biến cố ''4 chiếc giày lấy ra có ít nhất một đôi''. Để tìm số phần tử của biến cố A, ta đi tìm số phần tử của biến cố \overline{A}, với biến cố \overline{A}4 chiếc giày được chọn không có đôi nào.

    ● Số cách chọn 4 đôi giày từ 10 đôi giày là C_{10}^{4}.

    ● Mỗi đôi chọn ra 1 chiếc, thế thì mỗi chiếc có C_{2}^{1} cách chọn. Suy ra 4 chiếc có \left( C_{2}^{1} ight)^{4} cách chọn.

    Suy ra số phần tử của biến cố \overline{A}\left| \Omega_{\overline{A}} ight| =
C_{10}^{4}.\left( C_{2}^{1} ight)^{4} = 3360.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = 4845 - 3360 =
1485.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{1485}{4845} =
\frac{99}{323}.

  • Câu 20: Thông hiểu

    Một nhóm 18 học sinh gồm 10 học sinh nam. Chọn ngẫu nhiên đồng thời 5 học sinh. Tính xác suất để trong 5 học sinh được chọn có cả nam và nữ đồng thời số học sinh nam nhiều hơn số học sinh nữ?

    Số phần tử không gian mẫu n(\Omega) =
C_{18}^{5} = 8568

    Các trường hợp thỏa mãn điều kiện bài toán:

    TH1: Chọn được 3 nam và 2 nữ: C_{10}^{3}.C_{8}^{2} = 3360 cách chọn

    TH2: Chọn được 4 nam và 1 nữ: C_{10}^{4}.C_{8}^{1} = 1680 cách chọn

    Suy ra số kết quả thuận lợi cho biến cố A: “5 học sinh được chọn có cả nam và nữ đồng thời số học sinh nam nhiều hơn số học sinh nữ” là: 3360 + 1680 = 5040 cách

    Vậy xác suất của biến cố A là: P(A) =
\frac{5040}{8568} = \frac{10}{17}

  • Câu 21: Vận dụng

    Chọn ngẫu nhiên 3 số tự nhiên từ tập hợp M = \left\{ 1;2;3;...;2019
ight\}. Xác suất của P để trong 3 số tự nhiên được chọn không có 2 số tự nhiên liên tiếp bằng bao nhiêu?

    Có tất cả C_{2019}^{3} cách chọn 3 số tự nhiên từ tập hợp M = \left\{
1;2;3;...;2019 ight\}.

    Suy ra n(\Omega) =
C_{2019}^{3}.

    Xét biến cố A: “Chọn 3 số tự nhiên sao cho không có 2 số tự nhiên liên tiếp”.

    Ta có \overline{A}: “Chọn 3 số tự nhiên sao luôn có 2 số tự nhiên liên tiếp”.

    Xét các trường hợp sau:

    + Trường hợp 1: Trong ba số chọn được chỉ có 2 số liên tiếp:

    - Nếu 2 số liên tiếp là \left\{ 1;2
ight\} hoặc \left\{ 2018;2019
ight\} thì số thứ ba có 2019 - 3
= 2016 cách chọn (do không tính số liên tiếp sau và trước mỗi cặp số đó).

    - Nếu 2 số liên tiếp là \left\{ 2;3
ight\}, \left\{ 3;4
ight\},.,\left\{ 2017;2018
ight\} thì số thứ ba có 2019 - 4
= 2015 cách chọn (do không tính 2 số liền trước và sau mỗi cặp số đó).

    Trường hợp này có 2.2016 + 2016.2015 =
4066272 cách chọn.

    + Trường hợp 2: Chọn được 3 số liên tiếp.

    Tức là chọn các bộ \left\{ 1;2;3
ight\}, \left\{ 2;3;4
ight\},.,\left\{ 2017,2018,2019
ight\}: có tất cả 2017 cách.

    Suy ra n\left( \overline{A} ight) =
4066272 + 2017 = 4068289.

    Vậy P = P(A) = 1 - P\left( \overline{A}
ight) = 1 - \frac{4068289}{C_{2019}^{3}} =
\frac{1365589680}{1369657969} = \frac{677040}{679057}.

  • Câu 22: Thông hiểu

    Một thùng có 7 sản phẩm, trong đó có 4 sản phẩm loại I3 sản phẩm loại II. Lấy ngẫu nhiên 2 sản phẩm từ thùng đó. Xác suất để lấy được 2 sản phẩm cùng loại là bao nhiêu?

    Lấy ngẫu nhiên 2 sản phẩm trong 7 sản phẩm thì có C_{7}^{2} = 21 (cách).

    2sản phẩm được lấy ra đều là sản phẩm loại IC_{4}^{2} = 6(cách).

    2sản phẩm được lấy ra đều là sản phẩm loại IIC_{3}^{2} = 3(cách).

    Xác suất để lấy được 2sản phẩm cùng loại là P = \frac{6 + 3}{21} =
\frac{3}{7}.

  • Câu 23: Nhận biết

    Một hộp chứa 8 tấm thẻ được đánh số theo thứ tự từ 1 đến 8 (hai tấm thẻ khác nhau ghi hai số khác nhau). Rút ngẫu nhiên đồng thời hai tấm thẻ trong hộp. Tính xác suất để rút được hai tấm thẻ đều ghi số chẵn?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{8}^{2} = 28

    Gọi A là biến cố: “Rút được hai tấm thẻ đều ghi số chẵn”

    \Rightarrow n(A) = 4

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{4}{28} = \frac{1}{7}

  • Câu 24: Thông hiểu

    Từ một hộp có 6 viên bi xanh, 5 viên bi đỏ và 4 viên bi vàng. Lấy ngẫu nhiên 7 viên bi. Tính xác suất để lấy được ít nhất một viên bi vàng?

    Số phần tử không gian mẫu: n(\Omega) =
C_{15}^{7} = 6435

    Số phần tử biến cố lấy ngẫu nhiên 7 viên bi không có viên bi màu vàng là: C_{11}^{7} = 330

    Vậy xác suất để lấy được ít nhất một viên bi vàng là: P = \frac{6435 - 330}{6435} =
\frac{37}{39}

  • Câu 25: Thông hiểu

    Gieo ba con súc sắc cân đối đồng chất. Tính xác suất để số chấm xuất hiện trên ba con súc sắc như nhau.

    Số phần tử của không gian mẫu là |\Omega|
= 6.6.6 = 36.

    Gọi A là biến cố ''Số chấm xuất hiện trên ba con súc sắc như nhau''. Ta có các trường hợp thuận lợi cho biến cố A(1;1;1),\ (2;2;2),\ (3;3;3),\ \cdots\
,(6;6;6).

    Suy ra \left| \Omega_{A} ight| =
6.

    Vậy xác suất cần tính P(A) =
\frac{1}{36}.

  • Câu 26: Nhận biết

    Gieo đồng tiền 5lần cân đối và đồng chất. Xác suất để được ít nhất một đồng tiền xuất hiện mặt sấp là bao nhiêu?

    n(\Omega) = 2^{5} = 32.

    A: “được ít nhất một đồng tiền xuất hiện mặt sấp”.

    Xét biến cố đối \overline{A}: “không có đồng tiền nào xuất hiện mặt sấp”.

    \overline{A} = \left\{ (N,N,N,N,N)
ight\}, có n\left( \overline{A}
ight) = 1.

    Suy ra n(A) = 32 - 1 = 31.

    KL: P(A) = \frac{n(A)}{n(\Omega)} =
\frac{31}{32}.

  • Câu 27: Thông hiểu

    Một lô sản phẩm gồm 35 sản phẩm đạt chuẩn và 15 sản phẩm lỗi. Lấy ngẫu nhiên 3 sản phẩm từ trong hộp. Tính xác suất để 3 sản phẩm lấy ra đều là sản phẩm đạt chuẩn?

    Ta có: n(\Omega) =
C_{50}^{3}

    Gọi B là biến cố cả ba sản phẩm lấy ra đều là sản phẩm đạt chuẩn.

    Chọn 3 trong 35 sản phẩm đạt chuẩn ta có: \Rightarrow n(B) = C_{35}^{3}

    Vậy xác suất của biến cố B là: P(B) =
\frac{C_{35}^{3}}{C_{50}^{3}} = \frac{187}{560}.

  • Câu 28: Nhận biết

    Gieo một đồng tiền cân đối và đồng chất bốn lần. Xác suất để cả bốn lần xuất hiện mặt sấp là bao nhiêu?

    Mỗi lần suất hiện mặt sấp có xác suất là \frac{1}{2}.

    Theo quy tắc nhân xác suất: P(A) =
\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2} =
\frac{1}{16}.

  • Câu 29: Vận dụng

    20 tấm thẻ được đánh số từ 1 đến 20. Chọn ngẫu nhiên ra 8 tấm thẻ. Hãy tính xác suất để có 3 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng 1 tấm thẻ mang số chia hết cho 10.

    Không gian mẫu là cách chọn 8 tấm thể trong 20 tấm thẻ.

    Suy ra số phần tử của không mẫu là |\Omega| = C_{20}^{8}.

    Gọi A là biến cố ''3 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng 1 tấm thẻ mang số chia hết cho 10''. Để tìm số phần tử của A ta làm như sau

    ● Đầu tiên chọn 3 tấm thẻ trong 10 tấm thẻ mang số lẻ, có C_{10}^{3} cách.

    ● Tiếp theo chọn 4 tấm thẻ trong 8 tấm thẻ mang số chẵn (không chia hết cho 10), có C_{8}^{4} cách.

    ● Sau cùng ta chọn 1 trong 2 tấm thẻ mang số chia hết cho 10, có C_{2}^{1} cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| =
C_{10}^{3}.C_{8}^{4}.C_{2}^{1}.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} =
\frac{C_{10}^{3}.C_{8}^{4}.C_{2}^{1}}{C_{20}^{8}} =
\frac{560}{4199}.

  • Câu 31: Thông hiểu

    13 học sinh của một trường THPT đạt danh hiệu học sinh xuất sắc trong đó khối 128 học sinh nam và 3 học sinh nữ, khối 112 học sinh nam. Chọn ngẫu nhiên 3 học sinh bất kỳ để trao thưởng, xác suất để 3 học sinh được có cả nam và nữ đồng thời có cả khối 11 và khối 12 là bao nhiêu?

    Không gian mẫu là số cách chọn ngẫu nhiên 3 học sinh từ 13 học sinh.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{13}^{3} = 286.

    Gọi A là biến cố ''3 học sinh được ó cả nam và nữ đồng thời có cả khối 11 và khối 12''. Ta có các trường hợp thuận lợi cho biến cố A là:

    TH1: Chọn 1 học sinh khối 11; 1 học sinh nam khối 12 và 1 học sinh nữ khối 12 nên có C_{2}^{1}C_{8}^{1}C_{3}^{1} = 48 cách.

    TH2: Chọn 1 học sinh khối 11; 2 học sinh nữ khối 12 có C_{2}^{1}C_{3}^{2} = 6 cách.

    TH3: Chọn 2 học sinh khối 11; 1 học sinh nữ khối 12 có C_{2}^{2}C_{3}^{1} = 3 cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = 48 + 6 + 3 =
57.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{57}{286}.

  • Câu 32: Nhận biết

    Cho A là một biến cố trong phép thử T. Xác suất của biến cố đối \overline{A} liên hệ với xác suất của biến cố A được xác định theo công thức nào sau đây?

    Xác suất của biến cố đối \overline{A} liên hệ với xác suất của biến cố A theo công thức:

    P\left( \overline{A} ight) = 1 -
P(A)

  • Câu 33: Nhận biết

    Gieo một con xúc xắc cân đối, đồng chất 6 mặt và quan sát số chấm xuấ hiện trên con xúc xắc. Xác suất để mặt 4 chấm xuất hiện là:

    Số phần tử không gian mẫu là: n(\Omega) =
6

    Gọi A là biến cố: “Số chấm xuất hiện trên mặt xúc xắc là 5”

    \Rightarrow n(A) = 1

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{1}{6}

  • Câu 34: Nhận biết

    Một lớp có 40 học sinh, trong đó có 4 học sinh tên Anh. Trong một lần kiểm tra bài cũ, thầy giáo gọi ngẫu nhiên hai học sinh trong lớp lên bảng. Tính xác suất để 2 bạn học sinh tên Anh cùng lên bảng.

    Số phần tử của không gian mẫu n(\Omega) =
C_{40}^{2} = 780.

    Gọi A là biến cố gọi hai học sinh tên Anh lên bảng, ta có n(A) =
C_{4}^{2} = 6.

    Vậy xác suất cần tìm là P(A) =
\frac{6}{780} = \frac{1}{130}.

  • Câu 35: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau:

    Cả 3 phương án trên đều đúng.

  • Câu 36: Nhận biết

    Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Tìm số phần tử của biến cố A.

    Liệt kê ta có: A = \left\{
(1;2;3);(1;2;4);(1;2;5);(1;3;4) ight\}. (4 phần tử)

  • Câu 37: Vận dụng

    Đề thi kiểm tra 15 phút có 10 câu trắc nghiệm mỗi câu có bốn phương án trả lời, trong đó có một phương án đúng, trả lời đúng mỗi câu được 1,0 điểm. Một thí sinh làm cả 10 câu, mỗi câu chọn một phương án. Tính xác suất để thí sinh đó đạt từ 8,0 điểm trở lên.

    Với mỗi câu hỏi, thí sinh có 4 phương án lựa chọn nên số phần tử của không gian mẫu là n(\Omega) =
4^{10}.

    Gọi X là biến cố “thí sinh đó đạt từ 8,0 điểm trở lên”.

    Trường hợp 1: Thí sinh đó là được 8 câu (tức là 8,0 điểm): Chọn 8 câu trong số 10 câu hỏi và 2 câu còn lại mỗi câu có 3 cách chọn đáp án sai nên có C_{10}^{8}.3^{2} cách để thí sinh đúng 8 câu.

    Trường hợp 2: Thí sinh đó là được 9 câu (tức là 9,0 điểm): Chọn 9 câu trong số 10 câu hỏi và câu còn lại có 3 cách chọn đáp án sai nên có C_{10}^{9}.3^{1} cách để thí sinh đúng 9 câu.

    Trường hợp 3: Thí sinh đó là được 10 câu (tức là 10,0 điểm): Chỉ có 1 cách duy nhất.

    Suy ra số kết quả thuận lợi cho biến cố Xn(X) = C_{10}^{8}.3^{2} + C_{10}^{9}.3^{1} + 1 =
436.

    Vậy xác suất cần tìm là P(X) =
\frac{n(X)}{n(\Omega)} = \frac{436}{4^{10}}.

  • Câu 38: Vận dụng

    Cho đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm O. Chọn ngẫu nhiên 4 đỉnh của đa giác. Xác suất để 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật bằng bao nhiêu?

    Xét phép thử: “Chọn ngẫu nhiên 4 đỉnh của đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm O\Rightarrow n(\Omega) = C_{20}^{4} =
4845.

    Gọi A là biến cố:” 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật”

    Đa giác có 20 đỉnh sẽ có 10 đường chéo đi qua tâm mà cứ 2 đường chéo qua tâm sẽ có 1 hình chữ nhật nên số HCN là: n(A) = C_{10}^{2} = 45.

    P(A) = \frac{45}{4845} =
\frac{3}{323}.

  • Câu 39: Nhận biết

    Cho không gian mẫu Ω có n(Ω) = 10. Biến cố A có số các kết quả thuận lợi là n(A) = 5. Xác suất của biến cố A là:

     Ta có: P(A)=\frac{n(A)}{n(\Omega}=\frac12.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 10 Xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo