Đề kiểm tra 45 phút Chương 10 Xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là:

    Các cặp số thỏa mãn tổng số ba thẻ được chọn không vượt quá 8 là: {1; 2; 3}, {1; 2; 4}, {1; 2; 5}, {1; 3; 4}.

    Vậy số phần tử của A là 4 phần tử.

  • Câu 2: Thông hiểu

    Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:

    Theo định nghĩa ta có phép thử ngẫu nhiên là những phép thử mà ta không thể đoán trước kết quả của nó, mặc dù đã biết được tập hợp tất cả các kết quả của phép thử đó

    Đáp án "Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm xem có tất cả bao nhiêu viên bi." không phải phép thử vì ta có thể biết chắc chắn kết quả chỉ có thể là 1 số cụ thể là tổng số bi đỏ và xanh.

  • Câu 3: Nhận biết

    Cho không gian mẫu Ω có n(Ω) = 10. Biến cố A có số các kết quả thuận lợi là n(A) = 5. Xác suất của biến cố A là:

     Ta có: P(A)=\frac{n(A)}{n(\Omega}=\frac12.

  • Câu 4: Nhận biết

    Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố chắc chắn?

    Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố chắc chắn là “Mặt xuất hiện của xúc xắc có số chấm không vượt quá 6”.

  • Câu 5: Vận dụng

    Cho một đa giác (H) có 60 đỉnh nội tiếp một đường tròn (O). Người ta lập một tứ giác tùy ý có bốn đỉnh là các đỉnh của (H). Tính xác suất để lập được một tứ giác có bốn cạnh đều là đường chéo của (H), số đó gần với số nào nhất trong các số sau?

    Số phần tử của không gian mẫu là: n(\Omega) = C_{60}^{4}.

    Gọi E là biến cố “lập được một tứ giác có bốn cạnh đều là đường chéo của (H)”.

    Để chọn ra một tứ giác thỏa mãn đề bài ta làm như sau:

    Bước 1: Chọn đỉnh đầu tiên của tứ giác, có 60 cách.

    Bước 2: Chọn 3 đỉnh còn lại sao cho hai đỉnh bất kỳ của tứ giác cách nhau ít nhất 1 đỉnh. Điều này tương đương với việc ta phải chia m = 60 chiếc kẹo cho n = 4 đứa trẻ sao cho mỗi đứa trẻ có ít nhất k = 2 cái, có C_{m - n(k - 1) - 1}^{n - 1} =
C_{55}^{3} cách, nhưng làm như thế mỗi tứ giác lặp lại 4 lần.

    \Rightarrow Số phần tử của biến cố E là: n(E) = \frac{60.C_{55}^{3}}{4}.

    Xác suất của biến cố E là: P(E) = \frac{n(E)}{n(\Omega)} =
\frac{60.C_{55}^{3}}{4.C_{60}^{4}} \approx 80,7\%.

  • Câu 6: Nhận biết

    Cho phép thử với không gian mẫu Ω = {1; 2; 3; 4; 5; 6}. Đâu không phải là cặp biến cố đối nhau.

     Cặp E = {1; 4; 6} và F = {2; 3} không phải là biến cố đối.

  • Câu 7: Thông hiểu

    Một hộp chứa các viên bi kích thước khác nhau, trong đó có 5 viên bi màu đỏ và 6 viên bi màu vàng. Lấy ngẫu nhiên đồng thời 4 viên bi từ hộp. Tính xác suất để trong 4 viên bi lấy ra có đúng 1 viên bi màu vàng.

    Số phần tử của không gian mẫu là: n(\Omega) = C_{15}^{4}

    Số cách để lấy 4 viên bi trong đó có đúng một viên bi màu vàng là: n(A) = C_{6}^{1}.C_{9}^{3}

    Xác suất của biến cố A là: P(A) =
\frac{C_{6}^{1}.C_{9}^{3}}{C_{15}^{4}} = \frac{24}{65}

  • Câu 8: Vận dụng

    Hai hộp chứa các thẻ được đánh số. Hộp thứ nhất chứa 10 thẻ được đánh số từ 1 đến 10; hộp thứ hai chứa 9 thẻ được đánh số từ 1 đến 9. Chọn ngẫu nhiên mỗi hộp một thẻ và nhân các số trên hai thẻ lại với nhau. Tính xác suất để tích thu được là một số chẵn?

    Hộp thứ nhất chứa 10 thẻ được đánh số thứ tự từ 1 đến 10 gồm 5 thẻ mang số lẻ và 5 thẻ mang số chẵn.

    Hộp thứ hai chứa 9 thẻ đánh số thứ tự từ 1 đến 9 gồm 5 thẻ số lẻ và 4 thẻ số chẵn.

    Chọn ngẫu nhiên mỗi hộp 1 thẻ thì số cách chọn là:

    n(\Omega) = 10.9 = 90

    Gọi biến cố A: “Tích thu được là số chẵn” khi đó ta xét 3 trường hợp sau:

    TH1: Hộp thứ nhất chọn được thẻ chẵn và hộp thứ hai chọn được thẻ chẵn có: 5.4 = 20 cách.

    TH2: Hộp thứ nhất chọn được thẻ chẵn và hộp thứ hai chọn được thẻ lẻ có: 5.5 = 25 cách.

    TH3: Hộp thứ nhất chọn được thẻ lẻ và hộp thứ hai chọn được thẻ chẵn có: 5.4 = 20 cách.

    Theo quy tắc cộng ta có:

    n(A) = 20 + 25 + 20 = 65

    Vậy xác suất cần tìm là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{65}{90} = \frac{13}{18}

  • Câu 9: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau:

    Cả 3 phương án trên đều đúng.

  • Câu 10: Thông hiểu

    Lấy ngẫu nhiên 3 quả cầu từ hộp gồm 6 quả cầu trắng và 3 quả cầu đen. Tính xác suất để lấy được ba quả cùng màu?

    Số phần tử của không gian mẫu n(\Omega) =
C_{9}^{3} = 84

    Gọi A là biến cố lấy được 3 quả cùng màu

    TH1: Lấy được 3 quả màu trắng có: C_{6}^{3} = 20 cách

    TH2: Lấy được 3 quả màu đen có: C_{3}^{3}
= 1 cách

    \Rightarrow n(A) = 20 + 1 =
21

    Vậy xác suất của biến cố A cần tìm là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{21}{84} =
\frac{1}{4}

  • Câu 11: Thông hiểu

    Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của biến cố “Tổng số chấm trong hai lần gieo bằng 6”.

    Số phần tử không gian mẫu là: n(\Omega) =
6^{2} = 36

    Gọi A là biến cố: “Tổng số chấm trong hai lần gieo bằng 6”.

    Tập hợp các kết quả của biến cố A là: A =
\left\{ (2;4),(5;1),(1;5),(4;2),(3;3) ight\}

    Suy ra n(A) = 5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{36}

  • Câu 12: Vận dụng

    Năm đoạn thẳng có độ dài 1cm; 3cm; 5cm; 7cm; 9cm. Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng trên. Xác suất để ba đoạn thẳng lấy ra có thể tạo thành 1 tam giác là:

    Phân tích: Cần nhớ lại kiến thức cơ bản về bất đẳng thức tam giác.

    Ba đoạn thẳng với chiều dài a,b,c có thể là 3 cạch của một tam giác khi và chỉ khi \left\{ \begin{matrix}
a + b > c \\
a + c > b \\
b + c > a \\
\end{matrix} ight.

    Số phần tử của không gian mẫu là: C_{5}^{3} = 10

    Gọi A là biến cố “lấy ba đoạn thẳng lấy ra lập thành một tam giác”

    Các khả năng chọn được ba đoạn thẳng lập thành một tam giác là (3;5;7);(3;5;9);(5;7;9)

    Số trường hợp thuận lợi của biến cố A là 3. Suy ra xác suất của biến cố AP(A) =
\frac{3}{10}.

  • Câu 13: Nhận biết

    Một hộp chứa: bi xanh, bi đỏ và bi vàng. Lấy ngẫu nhiên một viên bi trong hộp. Gọi A là biến cố: “Lấy được viên bi đỏ”. Biến cố đối của biến cố A là:

    Biến cố đối của biến cố A là “Lấy được viên bi xanh hoặc bi vàng”.

  • Câu 14: Thông hiểu

    Một hộp có 3 viên bi đỏ, 4 viên bi vàng và 5 viên bi xanh. Lấy ngẫu nhiên 2 viên bi. Tính xác suất để lấy được 2 viên màu vàng.

    Lấy ngẫu nhiên 2 viên bi từ 12 viên bi, suy ra n(\Omega)=C_{12}^2=66.

    Gọi A là biến cố "lấy được 2 viên bi vàng", suy ra n(A)=C_4^2=6.

    Vậy xác suất: P(A)=\frac6{66}=\frac1{11}.

     

  • Câu 15: Thông hiểu

    Có bốn hành khách bước lên một đoàn tàu gồm 4 toa. Mỗi hành khách độc lập với nhau và chọn ngẫu nhiên một toa. Tính xác suất để 1 toa có 3 người, 1 toa có 1 người và 2 toa còn lại không có người?

    Vì mỗi hành khách có 4 cách chọn toa tàu nên: n(\Omega) = 4^{4} = 256

    Để xếp theo yêu cầu của bài toán ta thực hiện các bước liên tiếp như sau:

    Chọn 1 toa để xếp 3 người ta có: C_{4}^{1} = 4

    Chọn 3 người để xếp vào toa đó là: C_{4}^{3} = 4

    Chọn 1 toa từ 3 toa còn lại để xếp người còn lại vào: C_{3}^{1} = 3

    Theo quy tắc nhân ta có: 4.4.3 =
48

    Vậy xác suất cần tìm là: \frac{48}{256} =
\frac{3}{16}

  • Câu 16: Thông hiểu

    Một hộp chứa 7 bi xanh, 6 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất để được hai bi cùng màu là bao nhiêu?

    Số phần tử của không gian mẫu là |\Omega|
= C_{13}^{2} = 78.

    Gọi A là biến cố lấy được hai bi cùng màu.

    Chọn 2 bi xanh, có C_{7}^{2} =
21(cách).

    Chọn 2 bi đỏ, có C_{6}^{2} =
15(cách).

    Suy ra \left| \Omega_{A} ight| = 21 +
15 = 36.

    Xác suất cần tìm là P(A) = \frac{36}{78}
\simeq 0,46.

  • Câu 17: Nhận biết

    Gieo một xúc xắc 2 lần . Biến cố A là biến cố để sau hai lần gieo có ít nhất 1 mặt 6 chấm.

     Các kết quả phù hợp là: A = {(1; 6), (2; 6), (3; 6), (4; 6), (5; 6), (6; 6), (6; 1), (6; 2), (6; 3), (6; 4), (6; 5)}

  • Câu 18: Nhận biết

    Từ một hộp gồm 12 quả bóng gồm 5 quả đỏ và 7 quả xanh, lấy ngẫu nhiên đồng thời 3 quả. Xác suất để lấy được 3 quả màu xanh bằng bao nhiêu?

    Lấy 3 quả bóng từ 12 quả ta có: n(\Omega)
= C_{12}^{3} = 220

    Lấy ngẫu nhiên 3 quả bóng đều màu xanh có: C_{7}^{3} = 35 cách

    Vậy xác suất để lấy được 3 quả bóng màu xanh là: P = \frac{35}{220} = \frac{7}{44}.

  • Câu 19: Vận dụng

    20 tấm thẻ được đánh số từ 1 đến 20. Chọn ngẫu nhiên ra 8 tấm thẻ. Hãy tính xác suất để có 3 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng 1 tấm thẻ mang số chia hết cho 10.

    Không gian mẫu là cách chọn 8 tấm thể trong 20 tấm thẻ.

    Suy ra số phần tử của không mẫu là |\Omega| = C_{20}^{8}.

    Gọi A là biến cố ''3 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng 1 tấm thẻ mang số chia hết cho 10''. Để tìm số phần tử của A ta làm như sau

    ● Đầu tiên chọn 3 tấm thẻ trong 10 tấm thẻ mang số lẻ, có C_{10}^{3} cách.

    ● Tiếp theo chọn 4 tấm thẻ trong 8 tấm thẻ mang số chẵn (không chia hết cho 10), có C_{8}^{4} cách.

    ● Sau cùng ta chọn 1 trong 2 tấm thẻ mang số chia hết cho 10, có C_{2}^{1} cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| =
C_{10}^{3}.C_{8}^{4}.C_{2}^{1}.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} =
\frac{C_{10}^{3}.C_{8}^{4}.C_{2}^{1}}{C_{20}^{8}} =
\frac{560}{4199}.

  • Câu 20: Thông hiểu

    Đội sao đỏ của trường gồm 15 học sinh trong đó có 9 bạn nam và 6 bạn nữ. Chọn ngẫu nhiên 3 bạn đi làm nhiệm vụ. Tính xác suất để chọn được 3 bạn nam?

    Số cách chọn 3 học sinh từ 15 học sinh là: C_{15}^{3}

    Số cách chọn 3 học sinh nam từ 9 học sinh nam là: C_{9}^{3}

    Vậy xác suất để chọn được 3 học sinh nam là: \frac{C_{9}^{3}}{C_{15}^{3}} =
\frac{12}{65}

  • Câu 21: Thông hiểu

    Gieo hai con xúc xắc cân đối. Xác suất để tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 3 là:

    Số phàn tử không gian mẫu là: n(\Omega) =
36

    Số kết quả thuận lợi cho biến cố A: “Tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 3” là: A = \left\{
(1;2),(2;1),(1;1) ight\}

    \Rightarrow n(A) = 3

    Vậy xác suất của biến cố A cần tìm là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{3}{36} =
\frac{1}{12}

  • Câu 22: Thông hiểu

    Cho 40 tấm thẻ được đánh số theo thứ tự từ 1 đến 40. Chọn ngẫu nhiên 3 tấm thẻ. Tính xác suất để ba tấm thẻ được chọn có tổng các số ghi trên ba tấm thẻ đó là một số chẵn?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{40}^{3} = 9880

    Gọi A là biến cố chọn được 3 tấm thẻ có các số ghi trên ba tấm thẻ đó là một số chẵn.

    TH1: 2 số ghi số lẻ, 1 số ghi số chẵn ta có: C_{20}^{2}.C_{20}^{1} = 3800

    TH2: 3 số ghi số chẵn ta có: C_{20}^{3} =
1140

    Vậy xác suất để chọn được 3 tấm thẻ có tổng các số ghi trên các thẻ là một số chẵn là: \frac{3800 + 1140}{9880}
= \frac{1}{2}

  • Câu 23: Nhận biết

    Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố A: "có đúng 2 lần xuất hiện mặt sấp" là bao nhiêu?

    Chọn 2 trong 3 lần để xuất hiện mặt sấp có C_{3}^{2} = 3 cách.

    2 lần xuất hiện mặt sấp có xác suất mỗi lần là \frac{1}{2}. Lần xuất hiện mặt ngửa có xác suất là \frac{1}{2}.

    Vậy: P(A) =3.\frac{1}{2}.\frac{1}{2}.\frac{1}{2} = \frac{3}{8}.

  • Câu 24: Nhận biết

    Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố A: "ít nhất một lần xuất hiện mặt sấp" là bao nhiêu?

    Ta có: \overline{A}: "không có lần nào xuất hiện mặt sấp" hay cả 3 lần đều mặt ngửa.

    Theo quy tắc nhân xác suất: P(\overline{A}) =\frac{1}{2}.\frac{1}{2}.\frac{1}{2} = \frac{1}{8}.

    Vậy: P(A) = 1 - P(\overline{A}) = 1 -\frac{1}{8} = \frac{7}{8}.

  • Câu 25: Nhận biết

    Gieo 3 đồng tiền. Phép thử ngẫu nhiên này có không gian mẫu là:

    Liệt kê các phần tử: \left\{ NNN,\ SSS,\
NNS,\ SSN,\ NSN,\ SNS,\ NSS,SNN ight\}.

  • Câu 26: Nhận biết

    Gieo 1 con xúc xắc 1 lần. Biến cố A: “Số chấm xuất hiện nhỏ hơn 4”. Mô tả biến cố A.

     Mô tả biến cố A: A = {1;2;3}.

  • Câu 27: Nhận biết

    Một hộp chứa 10 tấm thẻ được đánh số lần lượt từ 1 đến 10. Rút ngẫu nhiên một tấm thẻ trong hộp. Tính xác suất của biến cố: “Tấm thẻ được rút ra ghi số chẵn”?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{10}^{1} = 10

    Gọi A là biến cố: “Tấm thẻ được rút ra ghi số chẵn” \Rightarrow n(A) = 5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{10} = \frac{1}{2}

  • Câu 29: Vận dụng

    Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số được lập từ tập hợp X = {1;2;3;4;5;6;7;8;9}. Chọn ngẫu nhiên một số từ S. Xác suất để số chọn được chia hết cho 6 bằng:

    Số phần tử trong không gian mẫu là n(\Omega) = 9^{4}.

    Gọi A là biến cố: “số chọn được chia hết cho 6”.

    Giả sử số cần tìm là \overline{abcd}.

    Do số cần tìm chia hết cho 6 nên chia hết cho 2.

    Do đó chọn d \in \left\{ 2;4;6;8
ight\} có 4 cách.

    Chọn a, b9^{2} cách. Để chọn c ta xét tổng M = a + b + d:

    Nếu M chia cho 3 dư 0 thì c \in
\left\{ 3;6;9 ight\} suy ra có 3 cách chọn.

    Nếu M chia cho 3 dư 1 thì c \in
\left\{ 2;5;8 ight\} suy ra có 3 cách chọn.

    Nếu M chia cho 3 dư 2 thì c \in
\left\{ 1;4;7 ight\} suy ra có 3 cách chọn.

    Do đó n(A) = 4.9^{2}.3 =
972.

    Vậy P(A) = \frac{972}{9^{4}} =
\frac{4}{27}.

  • Câu 30: Nhận biết

    Xét một phép thử có không gian mẫu \Omega gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là một biến cố bất kì của phép thử đó. Biến cố đối của biến cố A là

    Biến cố đối của biến cố A là biến cố “A không xảy ra”.

  • Câu 31: Vận dụng

    Cho X = {0; 1; 2; 3; …; 15}. Chọn ngẫu nhiên 3 số trong tập hợp X. Xác suất để trong ba số được chọn không có hai số liên tiếp bằng:

    Không gian mẫu có số phần tử là: |\Omega|
= C_{16}^{3} = 560 (phần tử).

    Ta tìm số cách lấy ra ba số trong đó có đúng hai số liên tiếp nhau hoặc lấy ra được cả ba số liên tiếp nhau.

    Khi đó ta có các trường hợp sau:

    Trường hợp 1: Lấy ra ba số trong đó có đúng hai số liên tiếp nhau.

    Trong ba số lấy ra có hai số 0,1 hoặc 14, 15 khi đó số thứ ba có 13 cách lấy.

    Do đó trường hợp này có: 2.13 = 26 cách lấy.

    Trong ba số lấy ra không có hai số 0,1 hoặc 14, 15 khi đó ta có 13 cặp số liên tiếp nhau khác 0,1 và 14, 15, số thứ ba có 12 cách lấy. Do đó trường hợp này có: 13.12 = 156 cách lấy.

    Trường hợp 2: Lấy ra được cả ba số liên tiếp nhau có 14 cách lấy.

    Vậy ta có 26 + 156 + 14 = 196 cách lấy ra ba số liên tiếp nhau hoặc lấy ra ba số trong đó có hai số liên tiếp nhau.

    Xác suất để trong ba số được chọn không có hai số liên tiếp là: P = \frac{560 - 196}{560} =
\frac{13}{20}.

  • Câu 32: Thông hiểu

    Gieo cùng một lúc hai con xúc xắc khác màu nhưng cân đối và đồng chất một lần. Tính xác suất để tổng số chấm xuất hiện trên hai mặt xúc xắc lớn hơn 7?

    Ta có:

    n(\Omega) = 6^{2} = 36

    Các kết quả thuận lợi cho biến cố C: “tổng số chấm xuất hiện trên hai mặt xúc xắc lớn hơn 7” là:

    C = \begin{Bmatrix}
(2;6),(3;5),(3;6),(4;4),(4;5) \\
(4;6),(5;3),(5;4),(5;5),(5;6) \\
(6;2),(6;3),(6;4),(6;5),(6;6) \\
\end{Bmatrix}

    \Rightarrow n(C) = 15

    Vậy xác suất của biến cố C là: P(C) =
\frac{n(C)}{n(\Omega)} = \frac{15}{36} = \frac{5}{12}.

  • Câu 33: Nhận biết

    Gọi P(A) là xác suất của biến cố A trong phép thử T. Hãy chọn khẳng định đúng trong các khẳng định sau?

    P(A) là xác suất của biến cố A trong phép thử T ta luôn có 0 \leq P(A)
\leq 1.

  • Câu 34: Nhận biết

    Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố A: "lần đầu tiên xuất hiện mặt sấp" là bao nhiêu?

    Xác suất để lần đầu xuất hiện mặt sấp là \frac{1}{2}. Lần 2 và 3 thì tùy ý nên xác suất là 1.

    Theo quy tắc nhân xác suất: P(A) =\frac{1}{2}.1.1 = \frac{1}{2}.

  • Câu 35: Nhận biết

    Một hộp có 1 viên bi xanh, 1 viên bi đỏ, 1 viên bi vàng. Chọn ngẫu nhiên 2 viên bi trong hộp (sau khi chọn mỗi viên lại thả lại vào hộp). Không gian mẫu là:

     Mô tả không gian mẫu: \Omega = \{XD; XV; DV; DX; VX; VD; XX; VV; DD\}

    (Xanh là X, đỏ là D, vàng là V).

  • Câu 36: Nhận biết

    Một hộp chứa 10 tấm thẻ được đánh số thứ tự từ 1 đến 10. Chọn ngẫu nhiên hai tấm thẻ. Tính xác suất để chọn được hai tấm thẻ đều ghi số chẵn?

    Từ 1 đến 10 có 5 số chẵn.

    Số cách chọn ngẫu nhiên hai tấm thẻ trong hộp là:

    n(\Omega) = C_{10}^{2} = 45

    Số cách chọn được hai tấm thẻ đều ghi số chẵn là: n(A) = C_{5}^{2} = 10

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{45} = \frac{2}{9}

  • Câu 37: Thông hiểu

    Có 5 tấm bìa được đánh số từ 1 đến 5. Rút ngẫu nhiên ba tấm. Xác suất để tổng các số ghi trên ba tấm bìa chia hết cho 3 bằng bao nhiều?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{5}^{3} = 10

    Gọi A là biến cố tổng các số ghi trên ba tấm bìa chia hết cho 3.

    Các số ghi trên tấm bia chia thành 3 nhóm:

    Nhóm 1: Các số chia hết cho 3 ta có 3 số

    Nhóm 2: Các số chia hết cho 3 dư 1 ta có: 4 số

    Nhóm 3: Các số chia hết cho 3 dư 2 ta có: 5 số

    Vì chỉ có 5 số như trên nên muốn tổng ba số là số chia hết cho 3 thì 3 số lấy ra sẽ có 1 số ở nhóm 1, 1 số ở nhóm 2, một số ở nhóm 3.

    Khi đó: n(A) = 1.2.2 = 4

    Suy ra xác suất của biến cố cần tìm là \frac{4}{10} = \frac{2}{5}

  • Câu 38: Nhận biết

    Một cái hộp chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy lần lượt 2 viên bi từ hộp này. Xác suất để viên bi được lấy lần thứ 2 là bi xanh là:

    Ta có: Số phần tử của không gian mẫu n(\Omega) = C_{10}^{1}.C_{9}^{1}.

    Gọi A là biến cố: “ Viên bi được lấy lần thứ 2là bi xanh”.

    - Trường hợp 1: Lần 1 lấy viên đỏ, lần 2 lấy viên xanh: Có C_{6}^{1}.C_{4}^{1} cách chọn.

    - Trường hợp 2: Lần 1 lấy viên xanh, lần 2 lấy viên xanh: Có C_{4}^{1}.C_{3}^{1} cách chọn.

    n(A) = C_{6}^{1}.C_{4}^{1} +
C_{4}^{1}.C_{3}^{1}.

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{24 + 12}{10.9} = \frac{2}{5}.

  • Câu 39: Thông hiểu

    Gieo ba con xúc xắc một cách độc lập. Tính xác suất để tổng số chấm trên mặt xuất hiện trên ba con xúc xắc bằng 9?

    Gọi A là biến cố: “Tổng số chấm trên ba mặt của ba con xúc xắc là 9”

    \left\{ \begin{matrix}
9 = 1 + 2 + 6 \\
9 = 2 + 3 + 4 \\
9 = 1 + 3 + 5 \\
9 = 1 + 4 + 4 \\
9 = 2 + 2 + 5 \\
9 = 3 + 3 + 3 \\
\end{matrix} ight. nên n(A) =
3.3! + 3.2 + 1 = 25

    Lại có |\Omega| = 6^{3} =
216

    Khi đó xác suất của biến cố A là: P(A) =
\frac{25}{216}

  • Câu 40: Vận dụng

    Một hộp đựng 10 thẻ được đánh số từ 1 đến 10. Phải rút ra ít nhất k thẻ để xác suất có ít nhất một thẻ ghi số chia hết cho 4 lớn hơn \frac{13}{15}. Tính giá trị của k.

    Gọi biến cố A: Lấy k tấm thẻ có ít nhất một tấm thẻ chia hết cho 4. Với 1 \leq k \leq 10.

    Suy ra \overline{A}: Lấy k tấm thẻ không có tấm thẻ nào chia hết cho 4.

    Ta có: P\left( \overline{A} ight) =
\frac{C_{8}^{k}}{C_{10}^{k}} \Rightarrow P(A) = 1 -
\frac{C_{8}^{k}}{C_{10}^{k}} = 1 - \frac{(10 - k)(9 -
k)}{90}.

    Theo đề: 1 - \frac{(10 - k)(9 - k)}{90}
> \frac{13}{15} \Leftrightarrow k^{2} - 19k + 78 < 0
\Leftrightarrow 6 < k < 13.

    Vậy k = 7 là giá trị cần tìm.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 10 Xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo