Đề kiểm tra 45 phút Chương 10 Xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Chọn ngẫu nhiên 2 học sinh từ một tổ có 9 học sinh. Biết rằng xác suất chọn được 2 học sinh nữ bằng \frac{5}{18}, hỏi tổ có bao nhiêu học sinh nữ?

    Gọi số học sinh nữ là n (2 ≤ n ≤ 9, n ∈ \mathbb{N})

    Chọn bất kỳ 2 học sinh ta có C_9^2 = 36 cách.

    Do đó số phần tử của không gian mẫu là n(Ω) = 36

    Gọi biến cố A: “2 học sinh được chọn là 2 học sinh nữ”.

    Để chọn 2 học sinh được 2 học sinh nữ có:

    C_n^2 = \frac{{n!}}{{2!\left( {n - 2} ight)!}} = \frac{{n\left( {n - 1} ight)}}{2} (cách)

    Do đó số kết quả thuận lợi cho biến cố A là: 

    n\left( A ight) = \frac{1}{2}n\left( {n-1} ight)

    Xác suất để chọn được 2 học sinh nữ là:

    P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \dfrac{{\dfrac{1}{2}.n.\left( {n - 1} ight)}}{{36}} = \frac{{n\left( {n - 1} ight)}}{{72}}

    P\left( A ight) = \frac{5}{{18}}

    \begin{matrix}   \Leftrightarrow \dfrac{{n\left( {n - 1} ight)}}{{72}} = \dfrac{5}{{18}} \hfill \\   \Leftrightarrow n\left( {n - 1} ight) = 20 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 5\left( {tm} ight)} \\   {n =  - 4\left( {ktm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy có 5 học sinh nữ trong tổ.

  • Câu 2: Vận dụng

    Cho 8 quả cân có trọng lượng lần lượt là 1; 2; 3; 4; 5; 6; 7; 8 (kg). Chọn ngẫu nhiên 3 quả trong số đó. Xác suất để trọng lượng 3 quả không nhỏ hơn 10 (kg) là:

    Chọn ba quả cân có |\Omega| = C_{8}^{3} =
56cách.

    Chọn ba quả cân có tổng trọng lượng nhỏ hơn hoặc bằng 9 có các trường hợp sau:

    TH1: Trong các quả được lấy ra không có quả cân trọng lượng 1 kg.

    Ta có 2 + 3 + 4 = 9 là tổng trọng lượng nhỏ nhất có thể. Do đó trong trường hợp này có đúng 1 cách chọn.

    TH2: Trong các quả được lấy ra có quả cân trọng lượng 1 kg. Khi đó ta có:

    \mathbf{1}\mathbf{+}\mathbf{2}\mathbf{+}\mathbf{3}\mathbf{=}\mathbf{6;1}\mathbf{+}\mathbf{2}\mathbf{+}\mathbf{4}\mathbf{=}\mathbf{7;1}\mathbf{+}\mathbf{2}\mathbf{+}\mathbf{5}\mathbf{=}\mathbf{8;1}\mathbf{+}\mathbf{2}\mathbf{+}\mathbf{6}\mathbf{=}\mathbf{9;1}\mathbf{+}\mathbf{3}\mathbf{+}\mathbf{4}\mathbf{=}\mathbf{8;1}\mathbf{+}\mathbf{3}\mathbf{+}\mathbf{5}\mathbf{=}\mathbf{9}.

    Trường hợp này ta có 6 cách chọn.

    Vậy số cách chọn thỏa mãn yêu cầu bài toán là 56 - 1 - 6 = 49.

    Xác suất cần tính là: \frac{49}{56} =
\frac{7}{8}.

  • Câu 3: Nhận biết

    Xác suất của biến cố A, kí hiệu là:

     Xác suất của biến cố A, kí hiệu là: P(A).

  • Câu 4: Thông hiểu

    Chọn ngẫu nhiên hai số khác nhau từ tập hợp số A = \left\{ 1;2;3;4;5;6;7;8;9
ight\}. Tính xác suất để trong hai số lấy ra có ít nhất một số lẻ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{9}^{2} = 36

    Gọi B là biến cố: “Cả hai số lấy ra đều là số chẵn” \Rightarrow n(B) = C_{6}^{4} = 6

    Suy ra xác suất của biến cố B là: P(B) =
\frac{n(B)}{n(\Omega)} = \frac{6}{36} = \frac{1}{6}

    Ta có biến cố \overline{B} là biến cố: “Trong hai số lấy ra có ít nhất một số lẻ”

    Khi đó P\left( \overline{B} ight) = 1 -
P(B) = 1 - \frac{1}{6} = \frac{5}{6}

  • Câu 7: Nhận biết

    Một người chọn ngẫu nhiên đồng thời 4 quân bài từ bộ tú lơ khơ 52 quân bài. Tính xác suất của biến cố: “Cả 4 quân bài đều là Át”?

    Số phần tử không gian mẫu: n(\Omega) =
C_{52}^{4}

    Chỉ có đúng 1 cách để lấy được cả 4 quân bài đều là Át nên xác suất cần tìm là:

    P = \frac{1}{C_{52}^{4}}

  • Câu 8: Nhận biết

    Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất 5 lần. Số phần tử không gian mẫu là bao nhiêu?

    Mỗi lần gieo có hai khả năng nên gieo 5 lần theo quy tắc nhân ta có 2^{5} = 32.

    Số phần tử không gian mẫu là n(\Omega) =
32.

  • Câu 10: Nhận biết

    Một nhóm học sinh lớp 10A gồm 10 học sinh trong đó có 4 học sinh nữ và 6 học sinh nam. Chọn ngẫu nhiên bốn học sinh trong nhóm để tham gia cuộc thi hùng biện. Xác suất để cả bốn bạn được chọn đều là nữ bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
C_{10}^{4} = 210

    Số kết quả thuận lợi cho biến cố: “Cả bốn bạn được chọn đều là nữ” bằng: C_{4}^{4} = 1

    Vậy xác suất của biến cố ”Cả bốn bạn được chọn đều là nữ” bằng: \frac{1}{210}

  • Câu 11: Nhận biết

    Gieo một đồng tiền liên tiếp 2 lần. Số phần tử của không gian mẫu là bao nhiêu?

    n(\Omega) = 2.2 = 4.

    (lần 1 có 2 khả năng xảy ra - lần 2 có 2 khả năng xảy ra).

  • Câu 12: Thông hiểu

    Gieo một con xúc xắc cân đối đồng chất 2 lần. Tính xác suất để biến cố có tích 2 lần số chấm khi gieo xúc xắc là một số chẵn.

    Số phần tử của không gian mẫu là |\Omega|
= 6.6 = 36.

    Gọi A là biến cố ''Tích hai lần số chấm khi gieo xúc xắc là một số chẵn''. Ta xét các trường hợp:

    TH1:. Gieo lần một, số chấm xuất hiện trên mặt là số lẻ thì khi gieo lần hai, số chấm xuất hiện phải là số chẵn. Khi đó có 3.3 = 9 cách gieo.

    TH2:. Gieo lần một, số chấm xuất hiện trên mặt là số chẵn thì có hai trường hợp xảy ra là số chấm xuất hiện trên mặt khi gieo lần hai là số lẻ hoặc số chẵn. Khi đó có 3.3
+ 3.3 = 18 cách gieo.

    Suy ra số kết quả thuận lợi cho biến cố là \left| \Omega_{A} ight| = 9 + 18 =
27.

    Vậy xác suất cần tìm tính P(A) =
\frac{27}{36} = 0,75.

  • Câu 13: Vận dụng

    Hai hộp chứa các thẻ được đánh số. Hộp thứ nhất chứa 10 thẻ được đánh số từ 1 đến 10; hộp thứ hai chứa 9 thẻ được đánh số từ 1 đến 9. Chọn ngẫu nhiên mỗi hộp một thẻ và nhân các số trên hai thẻ lại với nhau. Tính xác suất để tích thu được là một số chẵn?

    Hộp thứ nhất chứa 10 thẻ được đánh số thứ tự từ 1 đến 10 gồm 5 thẻ mang số lẻ và 5 thẻ mang số chẵn.

    Hộp thứ hai chứa 9 thẻ đánh số thứ tự từ 1 đến 9 gồm 5 thẻ số lẻ và 4 thẻ số chẵn.

    Chọn ngẫu nhiên mỗi hộp 1 thẻ thì số cách chọn là:

    n(\Omega) = 10.9 = 90

    Gọi biến cố A: “Tích thu được là số chẵn” khi đó ta xét 3 trường hợp sau:

    TH1: Hộp thứ nhất chọn được thẻ chẵn và hộp thứ hai chọn được thẻ chẵn có: 5.4 = 20 cách.

    TH2: Hộp thứ nhất chọn được thẻ chẵn và hộp thứ hai chọn được thẻ lẻ có: 5.5 = 25 cách.

    TH3: Hộp thứ nhất chọn được thẻ lẻ và hộp thứ hai chọn được thẻ chẵn có: 5.4 = 20 cách.

    Theo quy tắc cộng ta có:

    n(A) = 20 + 25 + 20 = 65

    Vậy xác suất cần tìm là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{65}{90} = \frac{13}{18}

  • Câu 14: Vận dụng

    Cho tập hợp A =
\left\{ 1,2,\ 3,\ ...,\ 10 ight\}. Chọn ngẫu nhiên ba số từ tập đó. Tính xác suất để trong ba số chọn ra không có hai số nào là hai số nguyên liên tiếp.

    Số phần tử không gian mẫu là n(\Omega) =
C_{10}^{3} = 120.

    Gọi B là biến cố “Ba số chọn ra không có hai số nào là hai số nguyên liên tiếp”.

    \Rightarrow \overline{B} là biến cố “Ba số được chọn có ít nhất hai số là các số tự nhiên liên tiếp”.

    + Bộ ba số dạng \left( 1\ ,\ 2\ ,\ a_{1}
ight), với a_{1} \in
A\backslash\left\{ 1\ ,\ 2 ight\}: có 8 bộ ba số.

    + Bộ ba số có dạng \left( 2\ ,\ 3\ ,\
a_{2} ight), với a_{2} \in
A\backslash\left\{ 1\ ,\ 2\ ,\ 3 ight\}: có 7 bộ ba số.

    + Tương tự mỗi bộ ba số dạng \left( 3\ ,\
4\ ,\ a_{3} ight), \left( 4\ ,\
5\ ,\ a_{4} ight), \left( 5\ ,\
6\ ,\ a_{5} ight), \left( 6\ ,\
7\ ,\ a_{6} ight), \left( 7\ ,\
8\ ,\ a_{7} ight), \left( 8\ ,\
9\ ,\ a_{8} ight), \left( 9\ ,\
10\ ,\ a_{9} ight) đều có 7 bộ.

    \Rightarrow n\left( \overline{B} ight)
= 8 + 8.7 = 64.

    \Rightarrow P(B) = 1 - P\left(
\overline{B} ight) = 1 - \frac{64}{120} = \frac{7}{15}.

  • Câu 15: Nhận biết

    Gieo một đồng tiền cân đối và đồng chất bốn lần. Xác suất để cả bốn lần xuất hiện mặt sấp là bao nhiêu?

    Mỗi lần suất hiện mặt sấp có xác suất là \frac{1}{2}.

    Theo quy tắc nhân xác suất: P(A) =
\frac{1}{2}.\frac{1}{2}.\frac{1}{2}.\frac{1}{2} =
\frac{1}{16}.

  • Câu 16: Nhận biết

    Lấy ngẫu nhiên đồng thời 3 quả cầu từ hộp chứa 9 quả cầu đỏ và 6 quả cầu xanh. Tính xác suất để lấy được 3 quả cầu màu xanh?

    Ta có: n(\Omega) = C_{15}^{3} =
455

    Gọi A là biến cố “lấy được 3 quả cầu màu xanh”

    \Rightarrow n(A) = C_{6}^{3} =
20

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{20}{455} = \frac{4}{91}.

  • Câu 17: Nhận biết

    Cho phép thử có không gian mẫu \Omega = \left\{ 1,2,3,4,5,6 ight\}. Cặp biến cố không đối nhau là cặp nào trong các cặp dưới đây?

    Cặp biến cố không đối nhau là E = \left\{
1,\ 4,\ 6 ight\}F = \left\{
2,\ 3 ight\} do E \cap F =
\varnothingE \cup F eq
\Omega.

  • Câu 18: Thông hiểu

    Hai cậu bé cùng bắn bi vào lỗ. Xác suất người thứ nhất bắn trúng vào lỗ là 85%, xác suất người thứ hai bắn trúng vào lỗ là 70%. Hỏi xác suất để cả hai người cùng bắn trúng vào lỗ:

    Xác suất người thứ nhất bắn trúng lỗ: 0,85

    Xác suất người thứ hai bắn trúng bia: 0,7

    Xác suất để cả hai người cùng bắn trúng bia: 0,85.0,7 = 0,595 = 59,5%

  • Câu 19: Nhận biết

    Gọi P(A) là xác suất của biến cố A trong phép thử T. Hãy chọn khẳng định đúng trong các khẳng định sau?

    P(A) là xác suất của biến cố A trong phép thử T ta luôn có 0 \leq P(A)
\leq 1.

  • Câu 20: Nhận biết

    Gieo đồng tiền hai lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là bao nhiêu?

    Số phần tử không gian mẫu:n(\Omega) = 2.2
= 4.

    Biến cố xuất hiện mặt sấp ít nhất một lần: A = \left\{ SN;NS;SS ight\}.

    Suy ra P(A) = \frac{n(A)}{n(\Omega)} =
\frac{3}{4}.

  • Câu 21: Thông hiểu

    Một nhóm 18 học sinh gồm 10 học sinh nam. Chọn ngẫu nhiên đồng thời 5 học sinh. Tính xác suất để trong 5 học sinh được chọn có cả nam và nữ đồng thời số học sinh nam nhiều hơn số học sinh nữ?

    Số phần tử không gian mẫu n(\Omega) =
C_{18}^{5} = 8568

    Các trường hợp thỏa mãn điều kiện bài toán:

    TH1: Chọn được 3 nam và 2 nữ: C_{10}^{3}.C_{8}^{2} = 3360 cách chọn

    TH2: Chọn được 4 nam và 1 nữ: C_{10}^{4}.C_{8}^{1} = 1680 cách chọn

    Suy ra số kết quả thuận lợi cho biến cố A: “5 học sinh được chọn có cả nam và nữ đồng thời số học sinh nam nhiều hơn số học sinh nữ” là: 3360 + 1680 = 5040 cách

    Vậy xác suất của biến cố A là: P(A) =
\frac{5040}{8568} = \frac{10}{17}

  • Câu 22: Thông hiểu

    Một hộp chứa các viên bi kích thước khác nhau, trong đó có 5 viên bi màu đỏ và 6 viên bi màu vàng. Lấy ngẫu nhiên đồng thời 4 viên bi từ hộp. Tính xác suất để trong 4 viên bi lấy ra có đúng 1 viên bi màu vàng.

    Số phần tử của không gian mẫu là: n(\Omega) = C_{15}^{4}

    Số cách để lấy 4 viên bi trong đó có đúng một viên bi màu vàng là: n(A) = C_{6}^{1}.C_{9}^{3}

    Xác suất của biến cố A là: P(A) =
\frac{C_{6}^{1}.C_{9}^{3}}{C_{15}^{4}} = \frac{24}{65}

  • Câu 24: Nhận biết

    Gieo ngẫu nhiên một con xúc sắc cân đối đồng chất 2 lần. Xác suất mà số chấm của hai lần gieo là như nhau là bao nhiêu?

    Gọi A là biến cố “Số chấm trong hai lần gieo là bằng nhau”.

    n(\Omega) = 36.

    A = \left\{ (1,1);\ (2,2);...;(6,6)
ight\}, n(A) = 6.

    Vậy P(A) = \frac{6}{36} =
\frac{1}{6}.

  • Câu 25: Thông hiểu

    Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Xác suất để 3 quyển được lấy ra có ít nhất 1 quyển là toán là bao nhiêu?

    Số cách lấy 3 quyển sách bất kì là C_{9}^{3} = 84.

    Số cách lấy được 3 quyển lý là C_{4}^{0}.C_{3}^{3}.C_{2}^{0} = 1.

    Số cách lấy được 2 quyển lý, 1 quyển hóa là C_{4}^{0}.C_{3}^{2}.C_{2}^{1} = 6.

    Số cách lấy được 1 quyển lý, 2 quyển hóa là C_{4}^{0}.C_{3}^{1}.C_{2}^{2} = 3.

    Số cách lấy 3 quyển sách mà không có sách toán là 1 + 6 + 3 = 10.

    Suy ra số cách lấy 3 quyển sách mà có ít nhất 1 quyển sách toán là 74 cách.

    Suy ra xác suất cần tìm là \frac{37}{42}.

  • Câu 26: Thông hiểu

    Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của biến cố B: “Tổng số chấm xuất hiện trong hai lần gieo nhỏ hơn 4”.

    Ta có:

    n(\Omega) = 6^{2} = 36

    Các kết quả thuận lợi cho biến cố: “Tổng số chấm xuất hiện trong hai lần gieo nhỏ hơn 4” là: B = \left\{
(1;1),(1;2),(2;1) ight\}

    \Rightarrow n(B) = 3

    Vậy xác suất của biến cố B là: P(B) =
\frac{n(B)}{n(\Omega)} = \frac{3}{36} = \frac{1}{12}

  • Câu 27: Nhận biết

    Viết tập hợp Ω là không gian mẫu trong trò chơi tung đồng xu hai lần liên tiếp.

     Ta có: Ω = {SS; SN; NS; NN}.

  • Câu 28: Nhận biết

    Một hộp chứa: bi xanh, bi đỏ và bi vàng. Lấy ngẫu nhiên một viên bi trong hộp. Gọi A là biến cố: “Lấy được viên bi đỏ”. Biến cố đối của biến cố A là:

    Biến cố đối của biến cố A là “Lấy được viên bi xanh hoặc bi vàng”.

  • Câu 29: Nhận biết

    Gieo một con súc sắc cân đối và đồng chất. Xác suất mà mặt có số chấm chẵn xuất hiện là bao nhiêu?

    Ta có: Không gian mẫu \Omega = \left\{
1,2,3,4,5,6 ight\} suy ra n(\Omega) = 6.

    Gọi biến cố A: “Con súc sắc có số chấm chẵn xuất hiện” hay A = \left\{
2;4;6 ight\} suy ra n(A) =
3.

    Từ đó suy ra p(A) =
\frac{n(A)}{n(\Omega)} = \frac{3}{6} = \frac{1}{2}.

    Vậy xác suất để mặt có số chấm chẵn xuất hiện là \frac{1}{2}.

  • Câu 30: Nhận biết

    Một túi đựng 6 bi xanh và 4 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất lấy được toàn màu đỏ là:

    Ta có số phần từ của không gian mẫu là n(\Omega) = C_{10}^{2} = 45.

    Gọi A: "Hai bi lấy ra đều là bi đỏ".

    Khi đó n(A) = C_{4}^{2} = 6.

    Vậy xác suất cần tính là P(A) =
\frac{n(A)}{n(\Omega)} = \frac{2}{15}.

  • Câu 31: Nhận biết

    Bốn quyển sách được đánh dấu bằng những chữ cái U, V, X, Y được xếp tuỳ ý trên 1 kệ sách dài. Xác suất để chúng được sắp xếp theo thứ tự bảng chữ cái là:

     Số cách sắp xếp 4 phần tử vào dãy nằm ngang gồm 4 vị trí có 4!=24 (cách). Suy ra n(\Omega)=24.

    Chỉ có duy nhất 1 cách sắp xếp 4 chữ U, V, X, Y theo thứ tự bảng chữ cái.

    Vậy xác suất P=\frac1{24}.

  • Câu 32: Vận dụng

    Một hộp chứa 3 viên bi xanh, 5 viên bi đỏ và 6 viên bi vàng. Lấy ngẫu nhiên 6 viên bi từ hộp. Xác suất để 6 viên bi được lấy ra có đủ cả ba màu là bao nhiêu?

    Không gian mẫu là số cách chọn ngẫu nhiên 6 viên bi từ hộp chứa 14 viên bi. Suy ra số phần tử của không gian mẫu là |\Omega| = C_{14}^{6} = 3003.

    Gọi A là biến cố ''6 viên bi được lấy ra có đủ cả ba màu''. Để tìm số phần tử của biến cố A ta đi tìm số phần tử của biến cố \overline{A} tức là 6 viên bi lấy ra không có đủ ba màu như sau

    TH1: Chọn 6 viên bi chỉ có một màu (chỉ chọn được màu vàng).

    Do đó trường hợp này có C_{6}^{6} =
1 cách.

    TH2: Chọn 6 viên bi có đúng hai màu xanh và đỏ, có C_{8}^{6} cách.

    Chọn 6 viên bi có đúng hai màu đỏ và vàng, có C_{11}^{6} - C_{6}^{6} cách.

    Chọn 6 viên bi có đúng hai màu xanh và vàng, có C_{9}^{6} - C_{6}^{6} cách.

    Do đó trường hợp này có C_{8}^{6} +
\left( C_{11}^{6} - C_{6}^{6} ight) + \left( C_{9}^{6} - C_{6}^{6}
ight) = 572 cách.

    Suy ra số phần tử của biến cố \overline{A}\left| \Omega_{\overline{A}} ight| = 1 + 572 =
573.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = |\Omega| -
\left| \Omega_{\overline{A}} ight| = 3003 - 573 = 2430.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{2430}{3003} =
\frac{810}{1001}..

  • Câu 33: Thông hiểu

    Gieo ngẫu nhiên một đồng tiên cân đối, đồng chất 3 lần liên tiếp. Xác suất để ít nhất một lần xuất hiện mặt sấp là:

    Ta có: n(\Omega) = 2^{3} = 8

    Gọi A là biến cố “ít nhất một lần xuất hiện mặt sấp”

    \Rightarrow A = \left\{
SSS;SSN;SNS;NSS;NSN;NNS ight\}

    \Rightarrow n(A) = 7

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{7}{8}

  • Câu 34: Thông hiểu

    Trong một chiếc hộp đựng 6 viên bi đỏ, 8 viên bi xanh, 10 viên bi trắng. Lấy ngẫu nhiên 4 viên bi. Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:

    Lấy ngẫu nhiên cùng lúc 4 viên bi trong 6 + 8 + 10 = 24 viên bi có số cách là:

    C_{24}^4 = 10{\text{ }}626

    Số phần tử của không gian mẫu là 10 626.

    Lấy 4 viên bi trong 16 viên bi đỏ, trắng có C_{16}^4 cách. Như vậy số kết quả thuận lợi cho biến cố “Lấy 4 viên bi không có màu xanh” là

    C_{16}^4 = 1820

    => Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:

    10{\text{ }}626-1{\text{ }}820 = 8{\text{ }}806

    Vậy có 8 806 kết quả thuận lợi cho biến cố B.

  • Câu 35: Nhận biết

    Gieo ngẫu nhiên hai con xúc xắc cân đối và đồng chất. Xác suất để sau hai lần gieo được số chấm giống nhau.

     Gieo 2 con xúc xắc, số phần tử của không gian mẫu: n(\Omega)=6.6=36.

    Các kết quả thỏa mãn là: (1,1); (2,2); (3,3); (4,4); (5,5); (6,6). Có 6 kết quả.

    Vậy xác suất là: P=\frac6{36}=\frac16.

  • Câu 36: Nhận biết

    Gieo ngẫu nhiên 2 đồng tiền thì không gian mẫu của phép thử có bao nhiêu biến cố:

    Mô tả không gian mẫu ta có: \Omega =
\left\{ SS;SN;NS;NN ight\}. (4 phần tử)

  • Câu 37: Vận dụng

    Một xạ thủ bắn bia. Biết rằng xác suất bắn trúng trong vòng 10 là 0,2; vòng 9 là 0,25 và vòng 8 là 0,15. Nếu trúng vòng k thì được k điểm. Giả sử xạ thủ đó bắn ba phát súng một cách độc lập. Xạ thủ đạt loại giỏi nếu anh ta đạt ít nhất 28 điểm. Xác suất để xạ thủ này đạt loại giỏi bằng là:

    Gọi H là biến cố: “Xạ thủ bắn đạt loại giỏi”. A; B; C; D là các biến cố sau:

    A: “Ba viên trúng vòng 10”;

    B: “Hai viên trúng vòng 10 và một viên trúng vòng 9”;

    C: “Một viên trúng vòng 10 và hai viên trúng vòng 9”;

    D: “Hai viên trúng vòng 10 và hai viên trúng vòng 8”.

    Các biến cố A; B; C; D là các biến cố xung khắc từng đôi một nên

    H = A \cup B \cup C \cup D.

    Áp dụng quy tắc cộng mở rộng ta có:

    P(H) = P(A) + P(B) + P(C) +
P(D).

    P(A) = (0,2).(0,2).(0,2) =
0,008;

    P(B) = (0,2).(0,2).(0,25) +
(0,2).(0,25).(0,2) + (0,25).(0,2).(0,2) = 0,03;

    P(C) = (0,2).(0,25).(0,25) +
(0,25).(0,2).(0,25) + (0,25).(0,25).(0,2) = 0,0375

    P(D) = (0,2).(0,2).(0,15) +
(0,2).(0,15).(0,2) + (0,15).(0,2).(0,2) = 0,018.

    Do đó P(H) = 0,008 + 0,03 + 0,0375 +
0,018 = 0,0935.

  • Câu 38: Thông hiểu

    Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là:

    Các cặp số thỏa mãn tổng số ba thẻ được chọn không vượt quá 8 là: {1; 2; 3}, {1; 2; 4}, {1; 2; 5}, {1; 3; 4}.

    Vậy số phần tử của A là 4 phần tử.

  • Câu 39: Vận dụng

    Đề thi kiểm tra 15 phút có 10 câu trắc nghiệm mỗi câu có bốn phương án trả lời, trong đó có một phương án đúng, trả lời đúng mỗi câu được 1,0 điểm. Một thí sinh làm cả 10 câu, mỗi câu chọn một phương án. Tính xác suất để thí sinh đó đạt từ 8,0 điểm trở lên.

    Với mỗi câu hỏi, thí sinh có 4 phương án lựa chọn nên số phần tử của không gian mẫu là n(\Omega) =
4^{10}.

    Gọi X là biến cố “thí sinh đó đạt từ 8,0 điểm trở lên”.

    Trường hợp 1: Thí sinh đó là được 8 câu (tức là 8,0 điểm): Chọn 8 câu trong số 10 câu hỏi và 2 câu còn lại mỗi câu có 3 cách chọn đáp án sai nên có C_{10}^{8}.3^{2} cách để thí sinh đúng 8 câu.

    Trường hợp 2: Thí sinh đó là được 9 câu (tức là 9,0 điểm): Chọn 9 câu trong số 10 câu hỏi và câu còn lại có 3 cách chọn đáp án sai nên có C_{10}^{9}.3^{1} cách để thí sinh đúng 9 câu.

    Trường hợp 3: Thí sinh đó là được 10 câu (tức là 10,0 điểm): Chỉ có 1 cách duy nhất.

    Suy ra số kết quả thuận lợi cho biến cố Xn(X) = C_{10}^{8}.3^{2} + C_{10}^{9}.3^{1} + 1 =
436.

    Vậy xác suất cần tìm là P(X) =
\frac{n(X)}{n(\Omega)} = \frac{436}{4^{10}}.

  • Câu 40: Vận dụng

    Một bảng vuông gồm 100 \times 100 ô vuông đơn vị. Chọn ngẫu nhiên một ô hình chữ nhật. Xác suất để ô được chọn là hình vuông là bao nhiêu? (trong kết quả lấy 4 chữ số ở phần thập phân).

    Để có một ô hình chữ nhật ta cần chọn 2 đường dọc trong tổng số 101 đường dọc, và hai đường ngang trong tổng số 101 đường ngang. Vậy có tất cả: C_{101}^{2} \times C_{101}^{2} =
25502500 ô hình chữ nhật.

    Ta gọi phần mặt phẳng nằm giữa hai đường dọc hoặc hai đường ngang là một dải.

    Một hình vuông bất kì chính là giao của hai dải có cùng độ rộng (một dải dọc, một dải ngang)

    Số dải có độ rộng k(k \in Z,1 \leq k \leq
100) là: 101 - k

    Vậy có tất cả: \sum_{k = 1}^{100}{(101 -
k)^{2}} = 100^{2} + 99^{2} + ... + 1^{2} = \frac{100(100 + 1)(2.100 +
1)}{6} = 338350 hình vuông.

    Xác suất cần tìm là: \frac{338350}{25502500} = 0,013267... \approx
0,0133

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 10 Xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo