Gieo ngẫu nhiên hai con xúc xắc cân đối và đồng chất. Tính xác suất của biến cố: “Hiệu số chấm xuất hiện trên 2 con xúc xắc bằng 1”.
Ta có:
Gọi A là biến cố “Hiệu số chấm xuất hiện trên 2 con xúc xắc bằng 1”
Vậy
Gieo ngẫu nhiên hai con xúc xắc cân đối và đồng chất. Tính xác suất của biến cố: “Hiệu số chấm xuất hiện trên 2 con xúc xắc bằng 1”.
Ta có:
Gọi A là biến cố “Hiệu số chấm xuất hiện trên 2 con xúc xắc bằng 1”
Vậy
Có 5 tấm bìa được đánh số từ 1 đến 5. Rút ngẫu nhiên ba tấm. Xác suất để tổng các số ghi trên ba tấm bìa chia hết cho 3 bằng bao nhiều?
Số phần tử không gian mẫu là:
Gọi A là biến cố tổng các số ghi trên ba tấm bìa chia hết cho 3.
Các số ghi trên tấm bia chia thành 3 nhóm:
Nhóm 1: Các số chia hết cho 3 ta có 3 số
Nhóm 2: Các số chia hết cho 3 dư 1 ta có: 4 số
Nhóm 3: Các số chia hết cho 3 dư 2 ta có: 5 số
Vì chỉ có 5 số như trên nên muốn tổng ba số là số chia hết cho 3 thì 3 số lấy ra sẽ có 1 số ở nhóm 1, 1 số ở nhóm 2, một số ở nhóm 3.
Khi đó:
Suy ra xác suất của biến cố cần tìm là
Một lớp có
học sinh, trong đó có
học sinh tên Anh. Trong một lần kiểm tra bài cũ, thầy giáo gọi ngẫu nhiên hai học sinh trong lớp lên bảng. Tính xác suất để 2 bạn học sinh tên Anh cùng lên bảng.
Số phần tử của không gian mẫu .
Gọi là biến cố gọi hai học sinh tên Anh lên bảng, ta có
.
Vậy xác suất cần tìm là .
Trên kệ sách có 5 quyển sách Hóa học và 7 quyển sách Vật lí. Lấy ngẫu nhiên 3 quyển sách. Xác suất để ba quyển sách lấy ra có cả sách Hóa học và Vật lí bằng:
Số phần tử không gian mẫu (lấy 3 trong 12 quyển sách)
Gọi B là biến cố lấy được 3 quyển sách có cả sách Hóa học và sách Vật lí.
Khi đó là biến cố lấy được 3 quyển sách trong đó chỉ có 1 loại sách hoặc là Hóa học hoặc là Vật lí
TH1: 2 quyển sách được chọn là sách Hóa học ta có: cách chọn.
TH2: 2 quyển sách được chọn là sách Vật lí ta có: cách chọn.
Số phần tử của biến cố là:
Vậy xác suất của biến cố B cần tìm là:
Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên?
Thí nghiệm không phải là phép thử ngẫu nhiên là: “Quan sát vận động viên chạy bộ xem được bao nhiêu ”.
Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố
: "ít nhất một lần xuất hiện mặt sấp" là bao nhiêu?
Ta có: : "không có lần nào xuất hiện mặt sấp" hay cả 3 lần đều mặt ngửa.
Theo quy tắc nhân xác suất: .
Vậy: .
Gieo một đồng tiền và một con súc sắc. Số phần tử của không gian mẫu là bao nhiêu?
Mô tả không gian mẫu ta có: .
Một hộp chứa 3 viên bi xanh, 5 viên bi đỏ và 6 viên bi vàng. Lấy ngẫu nhiên 6 viên bi từ hộp. Xác suất để 6 viên bi được lấy ra có đủ cả ba màu là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên 6 viên bi từ hộp chứa 14 viên bi. Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
6 viên bi được lấy ra có đủ cả ba màu
. Để tìm số phần tử của biến cố
ta đi tìm số phần tử của biến cố
tức là 6 viên bi lấy ra không có đủ ba màu như sau
TH1: Chọn 6 viên bi chỉ có một màu (chỉ chọn được màu vàng).
Do đó trường hợp này có cách.
TH2: Chọn 6 viên bi có đúng hai màu xanh và đỏ, có cách.
Chọn 6 viên bi có đúng hai màu đỏ và vàng, có cách.
Chọn 6 viên bi có đúng hai màu xanh và vàng, có cách.
Do đó trường hợp này có cách.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Rút ngẫu nhiên một thẻ từ hộp chứa 10 thẻ được đánh số từ 1 đến 10. Tính xác suất của biến cố “Rút được tấm thẻ ghi số chia hết cho 3”.
Số phần tử của không gian mẫu là:
Số kết quả thuận lợi cho biến cố A: “Số trên tấm thẻ được rút ra chia hết cho 3” là:
Xác suất của biến cố A là:
Gieo ba con xúc xắc một cách độc lập. Tính xác suất để tổng số chấm trên mặt xuất hiện trên ba con xúc xắc bằng 9?
Gọi A là biến cố: “Tổng số chấm trên ba mặt của ba con xúc xắc là 9”
Vì nên
Lại có
Khi đó xác suất của biến cố A là:
Trong một chiếc hộp đựng 6 viên bi đỏ, 8 viên bi xanh, 10 viên bi trắng. Lấy ngẫu nhiên 4 viên bi. Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:
Lấy ngẫu nhiên cùng lúc 4 viên bi trong 6 + 8 + 10 = 24 viên bi có số cách là:
Số phần tử của không gian mẫu là 10 626.
Lấy 4 viên bi trong 16 viên bi đỏ, trắng có cách. Như vậy số kết quả thuận lợi cho biến cố “Lấy 4 viên bi không có màu xanh” là
=> Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:
Vậy có 8 806 kết quả thuận lợi cho biến cố B.
Chọn ngẫu nhiên hai số khác nhau từ 30 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là một số chẵn bằng:
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Hai số được chọn có tổng là một số chẵn”
Tổng của hai số là một số chẵn khi và chỉ khi hai số đó đều chẵn hoặc đều lẻ.
Trong 30 số nguyên dương đầu tiên có 15 số lẻ và 15 số chẵn.
Xét trường hợp chọn được hai số lẻ ta có: cách chọn.
Xét trường hợp chọn được hai số chẵn ta có: cách chọn.
Suy ra số kết quả thuận lợi cho biến cố A là:
Khi đó xác suất của biến cố A là: .
Gieo một đồng tiền liên tiếp
lần. Số phần tử của không gian mẫu là bao nhiêu?
.
(lần 1 có 2 khả năng xảy ra - lần 2 có 2 khả năng xảy ra).
Một túi đựng
bi xanh và
bi đỏ. Lấy ngẫu nhiên
bi. Xác suất lấy được toàn màu đỏ là:
Ta có số phần từ của không gian mẫu là .
Gọi : "Hai bi lấy ra đều là bi đỏ".
Khi đó .
Vậy xác suất cần tính là .
Một lô sản phẩm gồm 35 sản phẩm đạt chuẩn và 15 sản phẩm lỗi. Lấy ngẫu nhiên 3 sản phẩm từ trong hộp. Tính xác suất để 3 sản phẩm lấy ra đều là sản phẩm đạt chuẩn?
Ta có:
Gọi B là biến cố cả ba sản phẩm lấy ra đều là sản phẩm đạt chuẩn.
Chọn 3 trong 35 sản phẩm đạt chuẩn ta có:
Vậy xác suất của biến cố B là: .
Một hộp chứa 2 bi xanh, 3 bi đỏ. Lấy ngẫu nhiên 3 bi. Tính xác suất để có ít nhất một bi xanh trong 3 viên.
Số phần tử của không gian mẫu là .
Gọi là biến cố lấy ít nhất 1 bi xanh.
Chọn 1 bi xanh, 2 bi đỏ, có (cách).
Chọn 2 bi xanh, 1 bi đỏ, có (cách).
Suy ra .
Xác suất cần tìm là .
Hai cậu bé cùng bắn bi vào lỗ. Xác suất người thứ nhất bắn trúng vào lỗ là 85%, xác suất người thứ hai bắn trúng vào lỗ là 70%. Hỏi xác suất để cả hai người cùng bắn trúng vào lỗ:
Xác suất người thứ nhất bắn trúng lỗ: 0,85
Xác suất người thứ hai bắn trúng bia: 0,7
Xác suất để cả hai người cùng bắn trúng bia: 0,85.0,7 = 0,595 = 59,5%
Cho một đa giác
có
đỉnh nội tiếp một đường tròn
. Người ta lập một tứ giác tùy ý có bốn đỉnh là các đỉnh của
. Tính xác suất để lập được một tứ giác có bốn cạnh đều là đường chéo của
, số đó gần với số nào nhất trong các số sau?
Số phần tử của không gian mẫu là: .
Gọi là biến cố “lập được một tứ giác có bốn cạnh đều là đường chéo của
”.
Để chọn ra một tứ giác thỏa mãn đề bài ta làm như sau:
Bước 1: Chọn đỉnh đầu tiên của tứ giác, có cách.
Bước 2: Chọn đỉnh còn lại sao cho hai đỉnh bất kỳ của tứ giác cách nhau ít nhất 1 đỉnh. Điều này tương đương với việc ta phải chia
chiếc kẹo cho
đứa trẻ sao cho mỗi đứa trẻ có ít nhất
cái, có
cách, nhưng làm như thế mỗi tứ giác lặp lại 4 lần.
Số phần tử của biến cố
là:
.
Xác suất của biến cố là:
.
Xếp ngẫu nhiên 5 bạn nam và 3 bạn nữ vào một bàn tròn. Xác suất để không có ba bạn nữ nào ngồi cạnh nhau.
Theo công thức hoán vị vòng quanh ta có:
Để xếp các bạn nữ không ngồi cạnh nhau, trước hết ta xếp các bạn nam vào bàn tròn: có cách, giữa 5 bạn nam đó ta sẽ có được 5 ngăn (do ở đây là bàn tròn). Xếp chỉnh hợp 3 bạn nữ vào 5 ngăn đó có
cách.
Vậy xác suất xảy ra là:.
Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập các tam giác có các đỉnh là đỉnh của đa giác trên. Xác suất để chọn được một tam giác từ tập X là tam giác cân nhưng không phải là tam giác đều bằng:
Số các tam giác bất kỳ là .
Số các tam giác đều là .
Có 18 cách chọn một đỉnh của đa giác, mỗi đỉnh có 8 cách chọn 2 đỉnh còn lại để được một tam giác cân.
Số các tam giác cân là: 18.8 = 144.
Số các tam giác cân không đều là: .
Xác suất cần tìm là .
Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố
: "kết quả của 3 lần gieo là như nhau" là bao nhiêu?
Lần đầu có thể ra tùy ý nên xác suất là 1. Lần 2 và 3 phải giống lần 1 xác suất là .
Theo quy tắc nhân xác suất: .
Cho đa giác đều có
đỉnh. Chọn ngẫu nhiên bốn đỉnh. Tính xác suất chọn ra được hình chữ nhật có các đỉnh là
trong
đỉnh của đa giác đó?
Số phần tử của không gian mẫu là:
Ta vẽ đường tròn ngoại tiếp đa giác đều 24 đỉnh. Vẽ một đường kính của đường tròn này. Khi đó 2 nửa đường tròn đều chứa 12 đình.
Với mỗi đỉnh thuộc nửa đường tròn thứ nhất ta đều có 1 đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại.
Như vậy cứ 2 đỉnh thuộc đường tròn thứ nhất ta xác định được hai đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại, bốn đỉnh này tạo thành hình chữ nhật.
Vậy số hình chữ nhật tạo thành từ 4 đa giác đã cho là
Xác suất cần tìm là: .
Một tổ học sinh lớp 10A có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 4 học sinh trong tổ đó để tham gia đội tình nguyện. Tính xác suất để bốn học sinh được chọn đều là nữ?
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Bốn học sinh được chọn đều là nữ”
Vậy xác suất của biến cố A là:
Chọn ngẫu nhiên hai số khác nhau từ tập hợp số
. Tính xác suất để trong hai số lấy ra có ít nhất một số lẻ?
Số phần tử không gian mẫu là:
Gọi B là biến cố: “Cả hai số lấy ra đều là số chẵn”
Suy ra xác suất của biến cố B là:
Ta có biến cố là biến cố: “Trong hai số lấy ra có ít nhất một số lẻ”
Khi đó
Một lớp có 43 học sinh trong đó có 23 học sinh nữ và 20 học sinh nam. Chọn ngẫu nhiên 5 học sinh. Xác suất để 5 học sinh được chọn có cả nam và nữ gần nhất với kết quả nào dưới đây?
Số phần tử của không gian mẫu là:
Số cách chọn 5 học sinh chỉ có nam hoặc chỉ có nữ là:
Số cách chọn 5 học sinh có cả nam và nữ là:
Xác suất của biến cố 5 học sinh được chọn có cả nam và nữ là:
Viết tập hợp Ω là không gian mẫu trong trò chơi tung đồng xu hai lần liên tiếp.
Ta có: Ω = {SS; SN; NS; NN}.
Gieo hai đồng tiền một lần. Kí hiệu S, N lần lượt để chỉ đồng tiền lật sấp, lật ngửa. Mô tả không gian mẫu nào dưới đây là đúng?
Gieo hai đồng tiền một lần ta được không gian mẫu là:
Gieo cùng một lúc hai con xúc xắc khác màu nhưng cân đối và đồng chất một lần. Tính xác suất để tổng số chấm xuất hiện trên hai mặt xúc xắc lớn hơn 7?
Ta có:
Các kết quả thuận lợi cho biến cố C: “tổng số chấm xuất hiện trên hai mặt xúc xắc lớn hơn 7” là:
Vậy xác suất của biến cố C là: .
Lấy ngẫu nhiên hai tấm thẻ trong một hộp chứa 9 tấm thẻ được đánh số t 1 đến 9. Tính xác suất để tổng của các số trên hai tấm thẻ lấy ra là số chẵn?
Từ 1 đến 9 có 4 số chẵn và 5 số lẻ.
Số phần tử không gian mẫu là:
Gọi A là biến cố tổng của các số trên hai thẻ lấy ra là số chẵn.
Để tổng nhận được là số chẵn thì 2 số được chọn hoặc là hai số chẵn hoặc là hai số lẻ.
2 số được chọn là 2 số chẵn ta có: cách chọn.
2 số được chọn là 2 số lẻ ta có: cách chọn.
Suy ra số kết quả thuận lợi cho biến cố A là:
Vậy xác suất của biến cố A là:
Cho A là biến cố liên quan đến phép thử có không gian mẫu
. Tìm mệnh đề đúng.
Theo định nghĩa xác suất cổ điển, cho phép thử T có không gian mẫu . Giả thiết rằng các kết quả có thể của T là đồng khả năng, khi đó cho A là biến cố có liên quan đến phép thử có không gian mẫu
. Thì xác suất của biến cố A được tính bởi công thức
, trong đó
tương ứng là số phần tử của biến cố A và của không gian mẫu.
Một chiếc hộp đựng 5 chiếc thẻ được đánh số từ 1 đến 5. Rút ngẫu nhiên đồng thời 2 thẻ trong hộp. Xét biến cố A: “Số ghi trên hai thẻ đều là số lẻ”. Tính số phần tử của biến cố A?
Số phần tử của biến cố A là:
Một hộp có 3 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3. Rút ngẫu nhiên một chiếc thẻ từ trong hộp. Không gian mẫu của phép thử đó là:
Mô tả không gian mẫu: .
Gieo một con xúc xắc cân đối và đồng chất. Tính xác suất của biến cố “Số chấm xuất hiện trong lần gieo không bé hơn 3”.
Số phần tử của không gian mẫu là:
Số kết quả thuận lợi cho biến cố A: “Số chấm xuất hiện trong lần gieo không bé hơn 3” là:
Xác suất của biến cố A là: .
Một bảng vuông gồm
ô vuông đơn vị. Chọn ngẫu nhiên một ô hình chữ nhật. Xác suất để ô được chọn là hình vuông là bao nhiêu? (trong kết quả lấy 4 chữ số ở phần thập phân).
Để có một ô hình chữ nhật ta cần chọn 2 đường dọc trong tổng số 101 đường dọc, và hai đường ngang trong tổng số 101 đường ngang. Vậy có tất cả: ô hình chữ nhật.
Ta gọi phần mặt phẳng nằm giữa hai đường dọc hoặc hai đường ngang là một dải.
Một hình vuông bất kì chính là giao của hai dải có cùng độ rộng (một dải dọc, một dải ngang)
Số dải có độ rộng là:
Vậy có tất cả: hình vuông.
Xác suất cần tìm là:
Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là:
Các cặp số thỏa mãn tổng số ba thẻ được chọn không vượt quá 8 là: {1; 2; 3}, {1; 2; 4}, {1; 2; 5}, {1; 3; 4}.
Vậy số phần tử của A là 4 phần tử.
Một hộp có 1 viên bi xanh, 1 viên bi đỏ, 1 viên bi vàng. Chọn ngẫu nhiên 2 viên bi trong hộp (sau khi chọn mỗi viên lại thả lại vào hộp). Không gian mẫu là:
Mô tả không gian mẫu: .
(Xanh là X, đỏ là D, vàng là V).
Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất bốn lần. Xác suất để cả bốn lần gieo đều xuất hiện mặt sấp là bao nhiêu?
Gọi A là biến cố: “cả bốn lần gieo đều xuất hiện mặt sấp.”
Không gian mẫu:
=>.
Trong một tổ có
học sinh nam và
học sinh nữ. Chọn ngẫu nhiên
bạn trong tổ tham gia đội tình nguyện của trường. Xác suất để 3 bạn được chọn đều là nam là:
Xét phép thử: Chọn ngẫu nhiên trong
bạn trong tổ, ta có
.
Gọi là biến cố: “
bạn được chọn toàn nam”, ta có
.
Xác suất của biến cố .
Một lớp học có
học sinh trong đó có
cặp anh em sinh đôi. Trong buổi họp đầu năm thầy giáo chủ nhiệm lớp muốn chọn ra
học sinh để làm cán sự lớp gồm lớp trưởng, lớp phó và bí thư. Xác suất để chọn ra
học sinh làm cán sự lớp mà không có cặp anh em sinh đôi nào là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên học sinh trong
học sinh.
Suy ra số phần tử không gian mẫu là .
Gọi là biến cố
học sinh được chọn không có cặp anh em sinh đôi nào
. Để tìm số phần tử của
, ta đi tìm số phần tử của biến cố
, với biến cố
là
học sinh được chọn luôn có
cặp anh em sinh đôi.
+ Chọn cặp em sinh đôi trong
cặp em sinh đôi, có
cách.
+ Chọn thêm học sinh trong 38 học sinh, có
cách.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .