Gieo ngẫu nhiên đồng tiền thì không gian mẫu của phép thử có bao nhiêu biến cố:
Mô tả không gian mẫu ta có: . (4 phần tử)
Gieo ngẫu nhiên đồng tiền thì không gian mẫu của phép thử có bao nhiêu biến cố:
Mô tả không gian mẫu ta có: . (4 phần tử)
Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số được lập từ tập hợp X = {1;2;3;4;5;6;7;8;9}. Chọn ngẫu nhiên một số từ S. Xác suất để số chọn được chia hết cho 6 bằng:
Số phần tử trong không gian mẫu là .
Gọi A là biến cố: “số chọn được chia hết cho 6”.
Giả sử số cần tìm là .
Do số cần tìm chia hết cho 6 nên chia hết cho 2.
Do đó chọn có 4 cách.
Chọn a, b có cách. Để chọn c ta xét tổng
:
Nếu M chia cho 3 dư 0 thì suy ra có 3 cách chọn.
Nếu M chia cho 3 dư 1 thì suy ra có 3 cách chọn.
Nếu M chia cho 3 dư 2 thì suy ra có 3 cách chọn.
Do đó .
Vậy .
Gieo 1 con xúc xắc 1 lần. Biến cố A: “Số chấm xuất hiện nhỏ hơn 4”. Mô tả biến cố A.
Mô tả biến cố A: A = {1;2;3}.
Xét phép thử gieo một con súc sắc cân đối và đồng chất 6 mặt hai lần. Xét biến cố A: “Số chấm xuất hiện ở cả hai lần gieo giống nhau”. Biến cố A gồm bao nhiêu kết quả?
Gọi cặp số là số chấm xuất hiện ở hai lần gieo.
Xét biến cố A: “Số chấm xuất hiện ở cả hai lần gieo giống nhau”.
Các kết quả của biến cố A là: .
Suy ra .
Xét một phép thử T và không gian mẫu là . Giả sử C là một biến cố liên quan đến phép thử. Xác suất của biến cố C là:
Công thức đúng là: .
Phép thử ngẫu nhiên (gọi tắt là phép thử) là gì?
Phép thử ngẫu nhiên (gọi tắt là phép thử) là hoạt động mà ta không thể biết trước được kết quả của nó.
Một bình chứa 16 viên vi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi từ bình đó. Tính xác suất lấy được cả 3 viên bi đều không có màu đỏ.
Số cách lấy 3 viên bi bất kì là .
Số cách lấy được 3 viên bi trắng là .
Số cách lấy được 2 viên bi trắng, 1 viên bi đen là .
Số cách lấy được 1 viên bi trắng, 2 viên bi đen là .
Số cách lấy được 3 viên bi đen là .
Số cách lấy được cả 2 viên bi không đỏ là .
Suy ra xác suất cần tìm là .
Một hộp đựng thẻ được đánh số từ
đến
. Phải rút ra ít nhất k thẻ để xác suất có ít nhất một thẻ ghi số chia hết cho
lớn hơn
. Tính giá trị của k.
Gọi biến cố : Lấy
tấm thẻ có ít nhất một tấm thẻ chia hết cho
. Với
.
Suy ra : Lấy
tấm thẻ không có tấm thẻ nào chia hết cho
.
Ta có:
.
Theo đề: .
Vậy là giá trị cần tìm.
Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố không?
Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố không là “Mặt xuất hiện của con xúc xắc có số chấm là 8 chấm.”
Giả sử E là một biến cố liên quan phép thử với không gian mẫu
. Phát biểu nào dưới đây sai?
khi và chỉ khi
là biến cố không thể.
Một hộp có 1 viên bi xanh, 1 viên bi đỏ, 1 viên bi vàng. Chọn ngẫu nhiên 2 viên bi trong hộp (sau khi chọn mỗi viên lại thả lại vào hộp). Không gian mẫu là:
Mô tả không gian mẫu: .
(Xanh là X, đỏ là D, vàng là V).
Lấy ngẫu nhiên đồng thời 3 quả cầu từ trong hộp chứa 10 quả cầu đỏ và 5 quả cầu xanh. Xác suất để ba quả cầu được chọn đều là màu xanh bằng:
Số phần tử không gian mẫu là:
Gọi A là biến cố lấy được 3 quả màu xanh
Số phần tử của biến cố A là:
Vậy xác suất của biến cố A là:
Gieo một con xúc xắc cân đối, đồng chất 6 mặt và quan sát số chấm xuấ hiện trên con xúc xắc. Xác suất của biến cố: “Số chấm xuất hiện trên mặt xúc xắc là 5” bằng:
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Số chấm xuất hiện trên mặt xúc xắc là 5”
Vậy xác suất của biến cố A là:
Một bình chứa viên bi màu, trong đó có
bi xanh,
bi đỏ,
bi trắng. Lấy ngẫu nhiên
viên bi từ bình đó. Tính xác suất để lấy được
viên bi khác màu.
Lấy viên bi bất kì trong
viên bi trong bình thì có
(cách).
Lấy viên bi cùng màu thì có
(cách) nên có
(cách) lấy được
viên bi khác màu.
Xác suất để lấy được viên bi khác màu trong tổng số
viên bi là
.
Gieo một con súc sắc. Xác suất để mặt chấm xuất hiện là:
Gieo một con súc sắc có không gian mẫu .
Xét biến cố : “mặt
chấm xuất hiện”.
.
Do đó .
Có học sinh của một trường THPT đạt danh hiệu học sinh xuất sắc trong đó khối
có
học sinh nam và
học sinh nữ, khối
có
học sinh nam. Chọn ngẫu nhiên
học sinh bất kỳ để trao thưởng, xác suất để
học sinh được có cả nam và nữ đồng thời có cả khối
và khối
là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên 3 học sinh từ 13 học sinh.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
học sinh được ó cả nam và nữ đồng thời có cả khối
và khối
. Ta có các trường hợp thuận lợi cho biến cố
là:
TH1: Chọn 1 học sinh khối 11; 1 học sinh nam khối 12 và 1 học sinh nữ khối 12 nên có cách.
TH2: Chọn 1 học sinh khối 11; 2 học sinh nữ khối 12 có cách.
TH3: Chọn 2 học sinh khối 11; 1 học sinh nữ khối 12 có cách.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính
Cho năm đoạn thẳng có độ dài: ,
,
,
,
. Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng đó. Tính xác suất để ba đoạn thẳng lấy ra là ba cạnh của một tam giác.
* Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng đã cho có cách.
Suy ra .
* Gọi là biến cố "lấy được ba đoạn thẳng là ba cạnh của một tam giác".
Các trường hợp ba đoạn thẳng là ba cạnh của một tam giác là:
(thỏa mãn: hiệu hai cạnh bé hơn cạnh còn lại, tổng hai cạnh lớn hơn cạnh còn lại).
Do đó Vậy sác xuất cần tìm là
.
Một hộp chứa 5 viên bi trắng, 10 viên bi xanh và 15 viên bi đỏ. Lấy ngẫu nhiên từ trong hộp 7 viên bi. Xác suất để trong số 7 viên bi lấy ra có ít nhất 2 viên bi màu đỏ?
Số phần tử không gian mẫu là:
Gọi A là biến cố để trong 7 viên bi lấy ra có ít nhất 2 viên bi màu đỏ
là biến cố để trong 7 viên bi được lấy ra có số viên bi nhỏ hơn 2.
TH1: 7 viên bi trong đó có 1 viên bi đỏ ta có:
TH2: 7 viên bi trong đó có không có viên bi đỏ ta có:
Vậy xác suất của biến cố A cần tìm là:
Cho đa giác đều có đỉnh. Chọn ngẫu nhiên
đỉnh trong số
đỉnh của đa giác. Xác suất để
đỉnh được chọn là
đỉnh của một tam giác vuông là bao nhiêu?
Số phần tử không gian mẫu là .
Giả sử tam giác cần lập là vuông tại
.
Chọn đỉnh của tam giác có
cách.
Để tam giác vuông tại thì cung
có số đo là
, hay
là đường kính của đường tròn ngoại tiếp đa giác, do đó có
cách chọn
.
Gọi là biến cố "
đỉnh được chọn là
đỉnh của một tam giác vuông"
Số phần tử của là
.
Xác suất cần tìm là .
Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:
"Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm có tất bao nhiêu viên bi". Đây không phải là phép thử ngẫu nhiên.
Một hộp chứa 3 viên bi xanh, 5 viên bi đỏ và 6 viên bi vàng. Lấy ngẫu nhiên 6 viên bi từ hộp. Xác suất để 6 viên bi được lấy ra có đủ cả ba màu là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên 6 viên bi từ hộp chứa 14 viên bi. Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
6 viên bi được lấy ra có đủ cả ba màu
. Để tìm số phần tử của biến cố
ta đi tìm số phần tử của biến cố
tức là 6 viên bi lấy ra không có đủ ba màu như sau
TH1: Chọn 6 viên bi chỉ có một màu (chỉ chọn được màu vàng).
Do đó trường hợp này có cách.
TH2: Chọn 6 viên bi có đúng hai màu xanh và đỏ, có cách.
Chọn 6 viên bi có đúng hai màu đỏ và vàng, có cách.
Chọn 6 viên bi có đúng hai màu xanh và vàng, có cách.
Do đó trường hợp này có cách.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Gieo ba con súc sắc cân đối đồng chất. Tính xác suất để số chấm xuất hiện trên ba con súc sắc như nhau.
Số phần tử của không gian mẫu là
Gọi là biến cố
Số chấm xuất hiện trên ba con súc sắc như nhau
. Ta có các trường hợp thuận lợi cho biến cố
là
Suy ra
Vậy xác suất cần tính .
Một tổ học sinh lớp 10A có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 4 học sinh trong tổ đó để tham gia đội tình nguyện. Tính xác suất để bốn học sinh được chọn đều là nữ?
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Bốn học sinh được chọn đều là nữ”
Vậy xác suất của biến cố A là:
Đội tuyển của một lớp có 8 học sinh nam và 4 học sinh nữ. Trong buổi dự lễ trao thưởng, các học sinh được xếp thành 1 hàng ngang. Xác suất để xếp cho 2 học sinh nữ không đứng cạnh nhau là:
12 vị trí là hoán vị của 12 học sinh đó.
Do đó số phần tử của không gian mẫu là: n(Ω) = 12!.
Gọi A là biến cố “Xếp 2 bạn nữ không đứng cạnh nhau”.
Chia việc xếp thành 2 công đoạn:
Công đoạn 1: Xếp 8 bạn nam vào 8 chỗ có 8! cách.
Công đoạn 2: Khi đó 8 bạn nam tạo ra 9 khe trống, xếp 4 bạn nữ vào 9 khe trống đó có cách.
Theo quy tắc nhân, xếp 12 bạn mà 2 bạn nữ không đứng cạnh nhau có: 8!. cách.
=>
Xác suất biến cố A là:
Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho bằng:
Số phần tử của không gian mẫu là: .
Gọi A: “Chọn được ba đỉnh tạo thành tam giác không có cạnh nào là cạnh của đa giác đã cho”
Suy ra : “Chọn được ba đỉnh tạo thành tam giác có ít nhất một cạnh là cạnh của đa giác đã cho”.
Do đó : “Chọn được ba đỉnh tạo thành tam giác có một cạnh hoặc hai cạnh là cạnh của đa giác đã cho”.
Trường hợp 1: Chọn ra tam giác có 2 cạnh là 2 cạnh của đa giác đã cho, ta chọn ra 3 đỉnh liên tiếp của đa giác 12 cạnh. Có 12 cách.
Trường hợp 2: Chọn ra tam giác có đúng 1 cạnh là cạnh của đa giác đã cho, ta chọn ra 1 cạnh và 1 đỉnh không liền với 2 đỉnh của cạnh đó. Suy ra có 12 cách chọn một cạnh và cách chọn đỉnh.
Vậy có 12.8 cách.
Số phần tử của biến cố là:
.
Số phần tử của biến cố A là: .
Xác suất của biến cố A là .
Chọn ngẫu nhiên một số nguyên dương không lớn hơn 30. Xác suất để số được chọn là một số nguyên tố bằng:
Số phần tử không gian mẫu là:
Gọi A là biến cố: “học sinh được chọn là học sinh nam?”
Vậy xác suất của biến cố A là:
Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của biến cố “Tổng số chấm trong hai lần gieo bằng 6”.
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Tổng số chấm trong hai lần gieo bằng 6”.
Tập hợp các kết quả của biến cố A là:
Suy ra
Vậy xác suất của biến cố A là:
Một người chọn ngẫu nhiên đồng thời 4 quân bài từ bộ tú lơ khơ 52 quân bài. Tính xác suất của biến cố: “Cả 4 quân bài đều là Át”?
Số phần tử không gian mẫu:
Chỉ có đúng 1 cách để lấy được cả 4 quân bài đều là Át nên xác suất cần tìm là:
Chọn ngẫu nhiên hai số phân biệt từ 15 số nguyên dương đầu tiên. Tính xác suất để tích hai số được chọn là một số chẵn?
Trong 15 số nguyên dương đầu tiên có 7 số chẵn và 8 só lẻ.
Ta có:
Gọi A là biến cố “Tích hai số được chọn là một số chẵn”
TH1: 1 số lẻ và 1 số chẵn ta có: cách chọn
TH2: 2 số chẵn ta có: cách chọn
Vậy
Gieo đồng tiền lần cân đối và đồng chất. Xác suất để được ít nhất một đồng tiền xuất hiện mặt sấp là bao nhiêu?
.
: “được ít nhất một đồng tiền xuất hiện mặt sấp”.
Xét biến cố đối : “không có đồng tiền nào xuất hiện mặt sấp”.
, có
.
Suy ra .
KL: .
Một tổ học sinh gồm 7 học sinh nam và 3 học sinh nữ. Chọn ngẫu nhiên 2 học sinh. Tính xác suất sao cho 2 người có cả nam và nữ?
Số phần tử không gian mẫu là:
Gọi A là biến cố 2 người được chọn có đủ nam và nữ
Số phần tử của biến cố A là:
Vậy xác suất của biến cố A cần tìm là:
Nguyên lí xác suất bé được phát biểu như sau: “Nếu có một biến cố có xác suất rất bé thì trong một phép thử biến cố đó sẽ …”. Cụm từ cần điền vào chỗ trống là:
Nguyên lí xác suất bé được phát biểu như sau: “Nếu có một biến cố có xác suất rất bé thì trong một phép thử biến cố đó sẽ không xảy ra”.
Chọn ngẫu nhiên hai số khác nhau từ 30 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là một số chẵn bằng:
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Hai số được chọn có tổng là một số chẵn”
Tổng của hai số là một số chẵn khi và chỉ khi hai số đó đều chẵn hoặc đều lẻ.
Trong 30 số nguyên dương đầu tiên có 15 số lẻ và 15 số chẵn.
Xét trường hợp chọn được hai số lẻ ta có: cách chọn.
Xét trường hợp chọn được hai số chẵn ta có: cách chọn.
Suy ra số kết quả thuận lợi cho biến cố A là:
Khi đó xác suất của biến cố A là: .
Cho A là biến cố liên quan đến phép thử có không gian mẫu . Tìm mệnh đề đúng.
Theo định nghĩa xác suất cổ điển, cho phép thử T có không gian mẫu . Giả thiết rằng các kết quả có thể của T là đồng khả năng, khi đó cho A là biến cố có liên quan đến phép thử có không gian mẫu
. Thì xác suất của biến cố A được tính bởi công thức
, trong đó
tương ứng là số phần tử của biến cố A và của không gian mẫu.
Cho tập hợp . Gọi
là tập hợp các số tự nhiên có 3 chữ đôi một khác nhau được lập thành từ các chữ số thuộc tập
. Chọn ngẫu nhiên hai số từ tập
, tính xác suất để hai số được chọn đều chia hết cho 3?
Gọi B là biến cố chọn được hai số đều chia hết cho 3
Số các số tự nhiên có 3 chữ số được lập thành từ tập M là:
Khi đó số phần tử của không gian mẫu là:
Tập các số gồm 3 chữ số tạo thành các số chia hết cho 3 là:
Mỗi tập trên tạo thành số chia hết cho 3 nên ta có:
số chia hết cho 3
Khi đó
Vậy xác suất để chọn được hai số đều chia hết cho 3 từ tập S là:
Chọn ngẫu nhiên 2 học sinh từ một tổ có 9 học sinh. Biết rằng xác suất chọn được 2 học sinh nữ bằng , hỏi tổ có bao nhiêu học sinh nữ?
Gọi số học sinh nữ là
Chọn bất kỳ 2 học sinh ta có cách.
Do đó số phần tử của không gian mẫu là
Gọi biến cố A: “2 học sinh được chọn là 2 học sinh nữ”.
Để chọn 2 học sinh được 2 học sinh nữ có:
(cách)
Do đó số kết quả thuận lợi cho biến cố A là:
Xác suất để chọn được 2 học sinh nữ là:
Mà
Vậy có 5 học sinh nữ trong tổ.