Đề kiểm tra 45 phút Chương 10 Xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Từ một hộp gồm 12 quả bóng gồm 5 quả đỏ và 7 quả xanh, lấy ngẫu nhiên đồng thời 3 quả. Xác suất để lấy được 3 quả màu xanh bằng bao nhiêu?

    Lấy 3 quả bóng từ 12 quả ta có: n(\Omega)
= C_{12}^{3} = 220

    Lấy ngẫu nhiên 3 quả bóng đều màu xanh có: C_{7}^{3} = 35 cách

    Vậy xác suất để lấy được 3 quả bóng màu xanh là: P = \frac{35}{220} = \frac{7}{44}.

  • Câu 2: Nhận biết

    Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một lần xuất hiện mặt sấp là bao nhiêu?

    Phép thử: Gieo đồng tiền 5 lần cân đối và đồng chất.

    Ta có n(\Omega) = 2^{5} =
32.

    Biến cố A: Được ít nhất một lần xuất hiện mặt sấp.

    \overline{A}: Tất cả đều là mặt ngửa.

    n\left( \overline{A} ight) =
1.

    \Rightarrow n(A) = n(\Omega) - n\left(
\overline{A} ight) = 31.

    \Rightarrow p(A) = \frac{n(A)}{n(\Omega)}
= \frac{31}{32}.

  • Câu 3: Nhận biết

    Một tổ học sinh có 6 nam và 4 nữ. Chọn ngẫu nhiên 2 người. Xác suất chọn được 2 nữ là:

    Chọn ngẫu nhiên 2 người trong 10 người có C_{10}^{2} cách chọn.

    Hai người được chọn đều là nữ có C_{4}^{2} cách.

    Xác suất để hai người được chọn đều là nữ là: \frac{C_{4}^{2}}{C_{10}^{2}} =
\frac{2}{15}.

  • Câu 4: Nhận biết

    Phát biểu nào sau đây đúng?

    Nếu một biến cố có xác suất rất bé thì trong một phép thử, biến cố đó sẽ không xảy ra.

  • Câu 6: Nhận biết

    Hoạt động nào sau đây không phải là phép thử?

    Các hoạt động ở các phương án:

    " Chọn một trong ba bạn An, Bình, Cường tham gia cuộc thi chạy điền kinh."

    "Chơi trò chơi gắp thú nhồi bông."

    "Chọn một quyển sách bất kì trên giá sách và đọc tên của quyển sách đó."

    Đều là phép thử vì ta không thể đoán trước được kết quả của hoạt động đó mặc dù biết được tất cả các kết quả có thể xảy ra.

    Hoạt động ở phương án A không phải là phép thử vì ta có thể đoán trước được kết quả của hoạt động đó là: 2 + 5 + 3 = 10 (chiếc bút bi).

  • Câu 7: Thông hiểu

    Gieo một con xúc xắc cân đối và đồng chất ba lần. Xác suất để ít nhất một lần xuất hiện mặt sáu chấm bằng bao nhiêu?

    Ta có: n(\Omega) = 6^{3} =216

    Gọi A là biến cố ít nhất một lần xuất hiện mặt sáu chấm

    Suy ra \overline{A} là biến cố không có lần nào xuất hiện mặt sáu chấm.

    \Rightarrow n\left( \overline{A} ight)= 5^{3} = 125

    Khi đó xác suất của biến cố A cần tìm là: P(A) = 1 - P\left( \overline{A} ight) = 1 -\frac{125}{216} = \frac{91}{216}

  • Câu 8: Vận dụng

    Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập các tam giác có các đỉnh là đỉnh của đa giác trên. Xác suất để chọn được một tam giác từ tập X là tam giác cân nhưng không phải là tam giác đều bằng:

    Số các tam giác bất kỳ là n(\Omega) =
C_{18}^{3}.

    Số các tam giác đều là \frac{18}{3} =
6.

    Có 18 cách chọn một đỉnh của đa giác, mỗi đỉnh có 8 cách chọn 2 đỉnh còn lại để được một tam giác cân.

    Số các tam giác cân là: 18.8 = 144.

    Số các tam giác cân không đều là: 144 -
6.3 = 126 \Rightarrow n(A) = 126.

    Xác suất cần tìm là P(A) =
\frac{126}{C_{18}^{3}} = \frac{21}{136}.

  • Câu 9: Nhận biết

    Gieo một đồng tiền hai lần. Xác xuất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất 1 lần là:

    Gieo một đồng xu 2 lần, số kết quả của không gian mẫu là n(\Omega)=2.2=4 

    Các kết quả thỏa mãn là: SN, NS, SS. (3 kết quả).

    Vậy P=\frac34.

  • Câu 10: Nhận biết

    Gieo đồng tiền hai lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là bao nhiêu?

    Số phần tử không gian mẫu:n(\Omega) = 2.2
= 4.

    Biến cố xuất hiện mặt sấp ít nhất một lần: A = \left\{ SN;NS;SS ight\}.

    Suy ra P(A) = \frac{n(A)}{n(\Omega)} =
\frac{3}{4}.

  • Câu 11: Vận dụng

    Một túi đựng 10 tấm thẻ được đánh số từ 1 đến 10. Rút ngẫu nhiên ba tấm thẻ từ túi đó. Xác suất để tổng số ghi trên ba thẻ rút được là một số chia hết cho 3 bằng:

    Số cách rút ngẫu nhiên ba tấm thẻ từ túi có 10 thẻ là: C_{10}^{3} cách.

    Trong các số từ 1 đến 10 có ba số chia hết cho 3, bốn số chia cho 3 dư 1, ba số chia cho 3 dư 2.

    Để tổng các số ghi trên ba thẻ rút được là một số chia hết cho 3 thì ba thẻ đó phải có số được ghi thỏa mãn một trong các trường hợp sau:

    - Ba số đều chia hết cho 3.

    - Ba số đều chia cho 3 dư 1.

    - Ba số đều chia cho 3 dư 2.

    - Một số chia hết cho 3, một số chia cho 3 dư 1, một số chia cho 3 dư 2.

    Do đó số cách rút để tổng số ghi trên 3 thẻ rút được là một số chia hết cho 3 là C_{3}^{3} + C_{4}^{3} +
C_{3}^{3} + C_{3}^{1}C_{4}^{1}C_{3}^{1} (cách).

    Vậy xác suất cần tìm là: \frac{2C_{3}^{3}
+ C_{4}^{3} + C_{3}^{1}C_{3}^{1}C_{4}^{1}}{C_{10}^{3}}.

  • Câu 12: Thông hiểu

    Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của biến cố B: “Tổng số chấm xuất hiện trong hai lần gieo nhỏ hơn 4”.

    Ta có:

    n(\Omega) = 6^{2} = 36

    Các kết quả thuận lợi cho biến cố: “Tổng số chấm xuất hiện trong hai lần gieo nhỏ hơn 4” là: B = \left\{
(1;1),(1;2),(2;1) ight\}

    \Rightarrow n(B) = 3

    Vậy xác suất của biến cố B là: P(B) =
\frac{n(B)}{n(\Omega)} = \frac{3}{36} = \frac{1}{12}

  • Câu 13: Vận dụng

    20 tấm thẻ được đánh số từ 1 đến 20. Chọn ngẫu nhiên ra 8 tấm thẻ. Hãy tính xác suất để có 3 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng 1 tấm thẻ mang số chia hết cho 10.

    Không gian mẫu là cách chọn 8 tấm thể trong 20 tấm thẻ.

    Suy ra số phần tử của không mẫu là |\Omega| = C_{20}^{8}.

    Gọi A là biến cố ''3 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng 1 tấm thẻ mang số chia hết cho 10''. Để tìm số phần tử của A ta làm như sau

    ● Đầu tiên chọn 3 tấm thẻ trong 10 tấm thẻ mang số lẻ, có C_{10}^{3} cách.

    ● Tiếp theo chọn 4 tấm thẻ trong 8 tấm thẻ mang số chẵn (không chia hết cho 10), có C_{8}^{4} cách.

    ● Sau cùng ta chọn 1 trong 2 tấm thẻ mang số chia hết cho 10, có C_{2}^{1} cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| =
C_{10}^{3}.C_{8}^{4}.C_{2}^{1}.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} =
\frac{C_{10}^{3}.C_{8}^{4}.C_{2}^{1}}{C_{20}^{8}} =
\frac{560}{4199}.

  • Câu 14: Thông hiểu

    Xác suất của biến cố A kí hiệu là P(A). Biến cố \overline{A} là biến cố đối của A, có xác suất là P(\overline{A})

    Chọn phát biểu sai trong các phát biểu sau:

    Phát biểu sai là: "Xác suất của mỗi biến cố đo lường xảy ra của biến cố đó. Biến cố có khả năng xảy ra càng cao thì xác suất của nó càng xa 1."

  • Câu 15: Thông hiểu

    Một hộp có 5 bi đen, 4 bi trắng. Chọn ngẫu nhiên 2 bi. Tính xác suất 2 bi được chọn có đủ hai màu.

    Số phần tử không gian mẫu: n(\Omega) =C_{9}^{2} = 36.

    (bốc 2 bi bất kì từ 9 bi trong hộp ).

    Gọi A: “hai bi được chọn có đủ hai màu”. Ta có: n(A) = C_{5}^{1}.C_{4}^{1}= 20.

    ( chọn 1 bi đen từ 5 bi đen – chọn 1 bi trắng từ 4 bi trắng ).

    Khi đó: P(A) = \frac{n(A)}{n(\Omega)} =\frac{20}{36} = \frac{5}{9}.

  • Câu 16: Thông hiểu

    Một hộp có:

    • 2 viên bi trắng được đánh số từ 1 đến 2;

    • 3 viên bi xanh được đánh số từ 3 đến 5;

    • 2 viên bi đỏ được đánh số từ 6 đến 7.

    Lấy ngẫu nhiên hai viên bi, mô tả không gian mẫu nào dưới đây là đúng?

    Mỗi viên bi đánh một số, nên 2 viên bi lấy ra mang số khác nhau.

    Vậy Ω ={(m, n)| 1 ≤ m ≤ 7, 1 ≤ n ≤ 7 và m ≠ n}.

  • Câu 17: Nhận biết

    Gieo một đồng tiền và một con súc sắc. Số phần tử của không gian mẫu là bao nhiêu?

    Mô tả không gian mẫu ta có: \Omega =
\left\{ S1;\ S2;\ S3;\ S4;\ S5;S6;N1;N2;N3;N4;N5;N6
ight\}.

  • Câu 18: Thông hiểu

    Một tổ học sinh gồm 7 học sinh nam và 3 học sinh nữ. Chọn ngẫu nhiên 2 học sinh. Tính xác suất sao cho 2 người có cả nam và nữ?

    Số phần tử không gian mẫu là:

    n(\Omega) = C_{10}^{2} = 45

    Gọi A là biến cố 2 người được chọn có đủ nam và nữ

    Số phần tử của biến cố A là: n(A) = 7.3 =
21

    Vậy xác suất của biến cố A cần tìm là: P(B) = \frac{n(A)}{n(\Omega)} = \frac{21}{45} =
\frac{7}{15}

  • Câu 19: Nhận biết

    Gieo đồng tiền hai lần. Biến cố để mặt ngửa xuất hiện đúng 1 lần có bao nhiêu phần tử?

    Liệt kê ta có: A = \left\{ NS.SN
ight\}. (2 phần tử)

  • Câu 20: Nhận biết

    Một hộp chứa 8 tấm thẻ được đánh số theo thứ tự từ 1 đến 8 (hai tấm thẻ khác nhau ghi hai số khác nhau). Rút ngẫu nhiên đồng thời hai tấm thẻ trong hộp. Tính xác suất để rút được hai tấm thẻ đều ghi số chẵn?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{8}^{2} = 28

    Gọi A là biến cố: “Rút được hai tấm thẻ đều ghi số chẵn”

    \Rightarrow n(A) = 4

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{4}{28} = \frac{1}{7}

  • Câu 21: Vận dụng

    Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho bằng:

    Số phần tử của không gian mẫu là: n(\Omega) = C_{12}^{3}.

    Gọi A: “Chọn được ba đỉnh tạo thành tam giác không có cạnh nào là cạnh của đa giác đã cho”

    Suy ra \overline{A}: “Chọn được ba đỉnh tạo thành tam giác có ít nhất một cạnh là cạnh của đa giác đã cho”.

    Do đó \overline{A}: “Chọn được ba đỉnh tạo thành tam giác có một cạnh hoặc hai cạnh là cạnh của đa giác đã cho”.

    Trường hợp 1: Chọn ra tam giác có 2 cạnh là 2 cạnh của đa giác đã cho, ta chọn ra 3 đỉnh liên tiếp của đa giác 12 cạnh. Có 12 cách.

    Trường hợp 2: Chọn ra tam giác có đúng 1 cạnh là cạnh của đa giác đã cho, ta chọn ra 1 cạnh và 1 đỉnh không liền với 2 đỉnh của cạnh đó. Suy ra có 12 cách chọn một cạnh và C_{8}^{1} = 8 cách chọn đỉnh.

    Vậy có 12.8 cách.

    Số phần tử của biến cố \overline{A} là: n\left( \overline{A} ight) = 12 +
12.8.

    Số phần tử của biến cố A là: n(A) = C_{12}^{3} - 12 - 12.8.

    Xác suất của biến cố AP(A) =
\frac{n(A)}{n(\Omega)} = \frac{C_{12}^{3} - 12 -
12.8}{C_{12}^{3}}.

  • Câu 22: Nhận biết

    Gieo đồng tiền 5lần cân đối và đồng chất. Xác suất để được ít nhất một đồng tiền xuất hiện mặt sấp là bao nhiêu?

    n(\Omega) = 2^{5} = 32.

    A: “được ít nhất một đồng tiền xuất hiện mặt sấp”.

    Xét biến cố đối \overline{A}: “không có đồng tiền nào xuất hiện mặt sấp”.

    \overline{A} = \left\{ (N,N,N,N,N)
ight\}, có n\left( \overline{A}
ight) = 1.

    Suy ra n(A) = 32 - 1 = 31.

    KL: P(A) = \frac{n(A)}{n(\Omega)} =
\frac{31}{32}.

  • Câu 23: Thông hiểu

    Một đội gồm 5 nam và 8 nữ. Lập một nhóm gồm 4 người hát tốp ca. Tính xác suất để trong 4 người được chọn có ít nhất 3 nữ.

    Không gian mẫu là chọn tùy ý 4 người từ 13 người.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{13}^{4} = 715.

    Gọi A là biến cố ''4 người được ó ít nhất 3 nữ''. Ta có hai trường hợp thuận lợi cho biến cố A như sau:

    TH1:: Chọn 3 nữ và 1 nam, có C_{8}^{3}C_{5}^{1} cách.

    TH2:: Cả 4 nữ, có C_{8}^{4} cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| =
C_{8}^{3}C_{5}^{1} + C_{8}^{4} = 350.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{350}{715} =
\frac{70}{143}.

  • Câu 24: Vận dụng

    Gieo một con xúc xắc 2 lần liên tiếp. Gọi số chấm xuất hiện của hai lần gieo lần lượt là bc. Tính xác suất để phương trình bậc hai x^{2} - bx + c = 0 có nghiệm?

    Gieo con xúc xắc hai lần nên ta có: n(\Omega) = 36

    Để phương trình bậc hai có nghiệm thì \Delta \geq 0 \Leftrightarrow b^{2} - 4ac \geq 0
\Leftrightarrow b^{2} \geq 4ac

    c \geq 1 \Rightarrow b^{2} \geq 4\Rightarrow \left\{ \begin{matrix}b \geq 2 \\c \leq \dfrac{b^{2}}{4} \\\end{matrix} ight.

    Lập bảng chọn giá trị của b và c như sau:

    b

    2

    3

    4

    5

    6

    c

    1

    1; 2

    1; 2; 3; 4

    1; 2; 3; 4; 5; 6

    1; 2; 3; 4; 5; 6

    Gọi A là biến cố “phương trình x^{2} - bx
+ c = 0 có nghiệm” ta có:

    n(A) = 1 + 2 + 4 + 6 + 6 =
19

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{19}{36}

  • Câu 25: Nhận biết

    Gieo 2 con súc sắc và gọi kết quả xảy ra là tích số hai nút ở mặt trên. Không gian mẫu có bao nhiêu phần tử?

    Mô tả không gian mẫu ta có: \Omega =
\left\{ 1;2;3;4;5;6;8;9;10;12;15;16;18;20;24;25;30;36 ight\}. (18 phần tử)

  • Câu 26: Thông hiểu

    Một hộp chứ 3 quả cầu xanh và 7 quả cầu đỏ. Chọn ngẫu nhiên đồng thời hai quả cầu trong hộp. Tính xác suất để hai quả cầu được chọn ra có cùng màu?

    Ta có: n(\Omega) = C_{10}^{2} =
45

    Gọi A là biến cố: “Chọn được hai quả cầu cùng màu”

    TH1: 2 quả cầu cùng màu xanh ta có: C_{3}^{2} cách chọn

    TH2: 2 quả cầu cùng màu đỏ ta có: C_{7}^{2} cách chọn.

    \Rightarrow n(A) = C_{3}^{2} + C_{7}^{2}
= 24

    Vậy xác suất của biến cố A là: P(A) =
\frac{24}{45} = \frac{8}{15}

  • Câu 27: Thông hiểu

    Một hộp chứa 5 viên bi trắng, 10 viên bi xanh và 15 viên bi đỏ. Lấy ngẫu nhiên từ trong hộp 7 viên bi. Xác suất để trong số 7 viên bi lấy ra có ít nhất 2 viên bi màu đỏ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{30}^{7}

    Gọi A là biến cố để trong 7 viên bi lấy ra có ít nhất 2 viên bi màu đỏ

    \overline{A} là biến cố để trong 7 viên bi được lấy ra có số viên bi nhỏ hơn 2.

    TH1: 7 viên bi trong đó có 1 viên bi đỏ ta có: 15.C_{15}^{6}

    TH2: 7 viên bi trong đó có không có viên bi đỏ ta có: C_{15}^{7}

    \Rightarrow n\left( \overline{A} ight)
= 15.C_{15}^{6} + C_{15}^{7}

    Vậy xác suất của biến cố A cần tìm là:

    P(A) = 1 - P\left( \overline{A} ight)
= 1 - \frac{15.C_{15}^{6} + C_{15}^{7}}{C_{30}^{7}} =
\frac{5011}{5220}

  • Câu 28: Nhận biết

    Một túi đựng 6 bi xanh và 4 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất lấy được toàn màu đỏ là:

    Ta có số phần từ của không gian mẫu là n(\Omega) = C_{10}^{2} = 45.

    Gọi A: "Hai bi lấy ra đều là bi đỏ".

    Khi đó n(A) = C_{4}^{2} = 6.

    Vậy xác suất cần tính là P(A) =
\frac{n(A)}{n(\Omega)} = \frac{2}{15}.

  • Câu 29: Vận dụng

    Gọi S là tập hợp các số tự nhiên gồm 9 chữ số khác nhau. Chọn ngẫu nhiên một số từ S. Hãy tính xác suất để chọn được một số gồm 4 chữ số lẻ và chữ số 0 luôn đứng giữa hai chữ số lẻ (hai số hai bên chữ số 0 là số lẻ).

    Số phần tử của tập S9.A_{9}^{8}.

    Không gian mẫu là chọn ngẫu nhiên 1 số từ tập S.

    Suy ra số phần tử của không gian mẫu là |\Omega| = 9.A_{9}^{8}.

    Gọi X là biến cố ''Số được chọn gồm 4 chữ số lẻ và chữ số 0 luôn đứng giữa hai chữ số lẻ''. Do số 0 luôn đứng giữa 2 số lẻ nên số 0 không đứng ở vị trí đầu tiên và vị trí cuối cùng. Ta có các khả năng

    + Chọn 1 trong 7 vị trí để xếp số 0, có C_{7}^{1} cách.

    + Chọn 2 trong 5 số lẻ và xếp vào 2 vị trí cạnh số 0 vừa xếp, có A_{5}^{2} cách.

    + Chọn 2 số lẻ trong 3 số lẻ còn lại và chọn 4 số chẵn từ \left\{ 2;\ 4;\ 6;\ 8 ight\} sau đó xếp 6 số này vào 6 vị trí trống còn lại có C_{3}^{2}.C_{4}^{4}.6! cách.

    Suy ra số phần tử của biến cố X\left| \Omega_{X} ight| =
C_{7}^{1}.A_{5}^{2}.C_{3}^{2}.C_{4}^{4}.6!.

    Vậy xác suất cần tính P(X) = \frac{\left|
\Omega_{X} ight|}{|\Omega|} =
\frac{C_{7}^{1}.A_{5}^{2}.C_{3}^{2}.C_{4}^{4}.6!}{9.A_{9}^{8}} =
\frac{5}{54}.

  • Câu 30: Vận dụng

    Một hộp đựng 10 thẻ được đánh số từ 1 đến 10. Phải rút ra ít nhất k thẻ để xác suất có ít nhất một thẻ ghi số chia hết cho 4 lớn hơn \frac{13}{15}. Tính giá trị của k.

    Gọi biến cố A: Lấy k tấm thẻ có ít nhất một tấm thẻ chia hết cho 4. Với 1 \leq k \leq 10.

    Suy ra \overline{A}: Lấy k tấm thẻ không có tấm thẻ nào chia hết cho 4.

    Ta có: P\left( \overline{A} ight) =
\frac{C_{8}^{k}}{C_{10}^{k}} \Rightarrow P(A) = 1 -
\frac{C_{8}^{k}}{C_{10}^{k}} = 1 - \frac{(10 - k)(9 -
k)}{90}.

    Theo đề: 1 - \frac{(10 - k)(9 - k)}{90}
> \frac{13}{15} \Leftrightarrow k^{2} - 19k + 78 < 0
\Leftrightarrow 6 < k < 13.

    Vậy k = 7 là giá trị cần tìm.

  • Câu 31: Nhận biết

    Gieo một đồng xu cân đối liên tiếp bốn lần. Gọi X là biến cố “Kết quả bốn lần gieo là như nhau”. Xác định biến cố X?

    Vì X là biến cố “Kết quả bốn lần gieo là như nhau” nên ta xác định được biến cố như sau: X = \left\{ SSSS;NNNN
ight\}

  • Câu 32: Nhận biết

    Cho ba chiếc hộp như sau:

    Hộp 1 chứa 1 viên bi đỏ, 1 viên bi vàng.

    Hộp 2 chứa 1 viên bi đỏ, 1 viên bi xanh.

    Hộp 3 chứa 1 viên bi vàng, 1 viên bi xanh.

    Từ mỗi hộp lấy ngẫu nhiên một viên bi và các phần tử của không gian mẫu được mô tả bằng sơ đồ sau:

    Gọi A là biến cố: “Trong ba viên bi lấy ra có đúng một viên bi màu đỏ”. Xác định số kết quả thuận lợi cho biến cố A?

    Số kết quả thuận lợi cho biến cố A là 4.

  • Câu 33: Thông hiểu

    Trong một chiếc hộp đựng 6 viên bi đỏ, 8 viên bi xanh, 10 viên bi trắng. Lấy ngẫu nhiên 4 viên bi. Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:

    Lấy ngẫu nhiên cùng lúc 4 viên bi trong 6 + 8 + 10 = 24 viên bi có số cách là:

    C_{24}^4 = 10{\text{ }}626

    Số phần tử của không gian mẫu là 10 626.

    Lấy 4 viên bi trong 16 viên bi đỏ, trắng có C_{16}^4 cách. Như vậy số kết quả thuận lợi cho biến cố “Lấy 4 viên bi không có màu xanh” là

    C_{16}^4 = 1820

    => Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:

    10{\text{ }}626-1{\text{ }}820 = 8{\text{ }}806

    Vậy có 8 806 kết quả thuận lợi cho biến cố B.

  • Câu 34: Nhận biết

    Gieo ngẫu nhiên một con xúc sắc cân đối đồng chất 2 lần. Xác suất mà số chấm của hai lần gieo là như nhau là bao nhiêu?

    Gọi A là biến cố “Số chấm trong hai lần gieo là bằng nhau”.

    n(\Omega) = 36.

    A = \left\{ (1,1);\ (2,2);...;(6,6)
ight\}, n(A) = 6.

    Vậy P(A) = \frac{6}{36} =
\frac{1}{6}.

  • Câu 35: Nhận biết

    Lớp 11B có 25 đoàn viên, trong đó có 10 nam và 15 nữ. Chọn ngẫu nhiên 3 đoàn viên trong lớp để tham dự hội trại ngày 26 tháng 3. Xác suất để chọn được 2 nam 1 nữ là:

    Số phần tử của không gian mẫu n(\Omega) =
C_{25}^{3}.

    Gọi A là biến cố “3 đoàn viên được chọn có 2 nam và 1 nữ”.

    Số phần tử của An(A) = C_{10}^{2}.C_{15}^{1}.

    Vậy xác xuất của biến cố A là: P(A) = \frac{n(A)}{n(\Omega)} =
\frac{C_{10}^{2}.C_{15}^{1}}{C_{25}^{3}} = \frac{27}{92}.

  • Câu 36: Nhận biết

    Hộp A4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh. Hộp B7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh. Lấy ngẫu nhiên mỗi hộp một viên bi. Xác suất để hai viên bi được lấy ra có cùng màu là bao nhiêu?

    Số phần tử của không gian mẫu: 15.18 =
270.

    Số cách chọn từ mỗi hộp 1 viên bi sau cho 2 viên bi cùng màu là: 4.7 + 5.6 + 6.5 = 88.

    Vậy xác suất cần tìm là \frac{88}{270} =
\frac{44}{135}.

  • Câu 37: Thông hiểu

    Gieo ba con súc sắc cân đối đồng chất. Tính xác suất để số chấm xuất hiện trên ba con súc sắc như nhau.

    Số phần tử của không gian mẫu là |\Omega|
= 6.6.6 = 36.

    Gọi A là biến cố ''Số chấm xuất hiện trên ba con súc sắc như nhau''. Ta có các trường hợp thuận lợi cho biến cố A(1;1;1),\ (2;2;2),\ (3;3;3),\ \cdots\
,(6;6;6).

    Suy ra \left| \Omega_{A} ight| =
6.

    Vậy xác suất cần tính P(A) =
\frac{1}{36}.

  • Câu 39: Thông hiểu

    Gieo ngẫu nhiên hai con xúc xắc cân đối và đồng chất. Tính xác suất của biến cố: “Hiệu số chấm xuất hiện trên 2 con xúc xắc bằng 1”.

    Ta có: n(\Omega) = 6.6 = 36

    Gọi A là biến cố “Hiệu số chấm xuất hiện trên 2 con xúc xắc bằng 1”

    \Rightarrow A =
\{(6;5),(5;6),(5;4),(4;5),(4;3),(3;4),(3;2),(2;3),(2;1),(1;2)\}

    \Rightarrow n(A) = 10

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{5}{18}

  • Câu 40: Thông hiểu

    Một lớp có 43 học sinh trong đó có 23 học sinh nữ và 20 học sinh nam. Chọn ngẫu nhiên 5 học sinh. Xác suất để 5 học sinh được chọn có cả nam và nữ gần nhất với kết quả nào dưới đây?

    Số phần tử của không gian mẫu là: n(\Omega) = C_{43}^{5} = 962598

    Số cách chọn 5 học sinh chỉ có nam hoặc chỉ có nữ là:

    C_{20}^{5} + C_{23}^{5} =
49153

    Số cách chọn 5 học sinh có cả nam và nữ là: C_{20}^{5}

    962598 - 49153 = 913445

    Xác suất của biến cố 5 học sinh được chọn có cả nam và nữ là: P = \frac{913445}{962598} \approx
0,95

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 10 Xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo