Đề kiểm tra 45 phút Chương 10 Xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Gieo hai con xúc xắc. Xác suất để tổng số chấm trên hai mặt xúc xắc chia hết cho 3 là.

     Gieo 2 con xúc sắc, số kết quả của không gian mẫu là: n(\Omega)=36.

    Các kết quả thỏa mãn yêu cầu đề bài là: (1; 2); (1; 5); (2; 1); (2; 4); (3; 3); (3; 6); (4; 2); (4; 5); (5; 1); (5; 4); (6; 3); (6; 6). Có 12 phần tử.

    Xác suất là: P=\frac{12}{36}=\frac13.

  • Câu 2: Vận dụng

    Cho tập hợp A =
\left\{ 1,2,\ 3,\ ...,\ 10 ight\}. Chọn ngẫu nhiên ba số từ tập đó. Tính xác suất để trong ba số chọn ra không có hai số nào là hai số nguyên liên tiếp.

    Số phần tử không gian mẫu là n(\Omega) =
C_{10}^{3} = 120.

    Gọi B là biến cố “Ba số chọn ra không có hai số nào là hai số nguyên liên tiếp”.

    \Rightarrow \overline{B} là biến cố “Ba số được chọn có ít nhất hai số là các số tự nhiên liên tiếp”.

    + Bộ ba số dạng \left( 1\ ,\ 2\ ,\ a_{1}
ight), với a_{1} \in
A\backslash\left\{ 1\ ,\ 2 ight\}: có 8 bộ ba số.

    + Bộ ba số có dạng \left( 2\ ,\ 3\ ,\
a_{2} ight), với a_{2} \in
A\backslash\left\{ 1\ ,\ 2\ ,\ 3 ight\}: có 7 bộ ba số.

    + Tương tự mỗi bộ ba số dạng \left( 3\ ,\
4\ ,\ a_{3} ight), \left( 4\ ,\
5\ ,\ a_{4} ight), \left( 5\ ,\
6\ ,\ a_{5} ight), \left( 6\ ,\
7\ ,\ a_{6} ight), \left( 7\ ,\
8\ ,\ a_{7} ight), \left( 8\ ,\
9\ ,\ a_{8} ight), \left( 9\ ,\
10\ ,\ a_{9} ight) đều có 7 bộ.

    \Rightarrow n\left( \overline{B} ight)
= 8 + 8.7 = 64.

    \Rightarrow P(B) = 1 - P\left(
\overline{B} ight) = 1 - \frac{64}{120} = \frac{7}{15}.

  • Câu 3: Vận dụng

    Một bộ đề thi Olympic Toán lớp 11 của Trường THPT Z mà mỗi đề gồm 5 câu được chọn từ 15 câu mức dễ, 10 câu mức trung bình và 5 câu mức khó. Một đề thi được gọi là “Tốt” nếu trong đề thi phải có cả mức dễ, mức trung bình và khó, đồng thời số câu mức khó không ít hơn 2. Lấy ngẫu nhiên một đề thi trong bộ đề trên. Tìm xác suất để đề thi lấy ra là một đề thi “Tốt”.

    Chọn 5 câu trong tổng số 30 câu nên ta có không gian mẫu n(\Omega) = C_{30}^{5}.

    Gọi A là biến cố “Lấy ra được một đề thi “Tốt””.

    TH1: 5 câu lấy ra có 2 câu khó, 1 câu dễ, 2 câu trung bình C_{5}^{2}.C_{15}^{1}.C_{10}^{2} (cách).

    TH2: 5 câu lấy ra có 2 câu khó, 2 câu dễ, 1 câu trung bình C_{5}^{2}.C_{15}^{2}.C_{10}^{1} (cách).

    TH3: 5 câu lấy ra có 3 câu khó, 1 câu dễ, 1 câu trung bình C_{5}^{3}.C_{15}^{1}.C_{10}^{1} (cách).

    Số kết quả thuận lợi của biến cố A là: n(A) = C_{5}^{2}.C_{15}^{1}.C_{10}^{2} +
C_{5}^{2}.C_{15}^{2}.C_{10}^{1} +
C_{5}^{3}.C_{15}^{1}.C_{10}^{1}.

    Xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{3125}{23751}.

  • Câu 4: Nhận biết

    Một nhóm học sinh lớp 10A gồm 10 học sinh trong đó có 4 học sinh nữ và 6 học sinh nam. Chọn ngẫu nhiên bốn học sinh trong nhóm để tham gia cuộc thi hùng biện. Xác suất để cả bốn bạn được chọn đều là nữ bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
C_{10}^{4} = 210

    Số kết quả thuận lợi cho biến cố: “Cả bốn bạn được chọn đều là nữ” bằng: C_{4}^{4} = 1

    Vậy xác suất của biến cố ”Cả bốn bạn được chọn đều là nữ” bằng: \frac{1}{210}

  • Câu 5: Nhận biết

    Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố A: "có đúng 2 lần xuất hiện mặt sấp" là bao nhiêu?

    Chọn 2 trong 3 lần để xuất hiện mặt sấp có C_{3}^{2} = 3 cách.

    2 lần xuất hiện mặt sấp có xác suất mỗi lần là \frac{1}{2}. Lần xuất hiện mặt ngửa có xác suất là \frac{1}{2}.

    Vậy: P(A) =3.\frac{1}{2}.\frac{1}{2}.\frac{1}{2} = \frac{3}{8}.

  • Câu 6: Vận dụng

    Trong một buổi liên hoan có 10 cặp nam nữ, trong đó có 4 cặp vợ chồng. Chọn ngẫu nhiên 3 người để biểu diễn một tiết mục văn nghệ. Xác suất để 3 người được chọn không có cặp vợ chồng nào là bao nhiêu?

    Không gian mẫu là số cách chọn ngẫu nhiên 3 người trong 20 người.

    Suy ra số phần tử không gian mẫu là |\Omega| = C_{20}^{3} = 1140.

    Gọi A là biến cố ''3 người được chọn không có cặp vợ chồng nào''. Để tìm số phần tử của A, ta đi tìm số phần tử của biến cố \overline{A}, với biến cố \overline{A}3 người được chọn luôn có 1 cặp vợ chồng.

    + Chọn 1 cặp vợ chồng trong 4 cặp vợ chồng, có C_{4}^{1} cách.

    + Chọn thêm 1 người trong 18 người, có C_{18}^{1} cách.

    Suy ra số phần tử của biến cố \overline{A}\left| \Omega_{\overline{A}} ight| =
C_{4}^{1}.C_{18}^{1} = 72.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = 1140 - 72 =
1068.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{1068}{1140} =
\frac{89}{95}.

  • Câu 7: Vận dụng

    Cho biết:

    Hộp 1: chứa 4 viên bi đỏ và 3 viên bi xanh.

    Hộp 2: chứa 5 viên bi đỏ và 2 viên bi xanh.

    Lấy ngẫu nhiên từ mỗi hộp 2 viên bi. Xác suất để lấy các viên bi có cùng màu bằng:

    Lấy ngẫu nhiên 2 viên bi từ hộp 1 ta có: C_{7}^{2} = 21

    Lấy ngẫu nhiên 2 viên bi từ hộp 2 ta có: C_{7}^{2} = 21

    Ta có số phần tử không gian mẫu là: n(\Omega) = 21.21 = 441

    Gọi A là biến cố các viên bi lấy ra cùng màu.

    Số phần tử của biến cố A là: n(A) =
C_{4}^{2}.C_{5}^{2} + C_{3}^{2}.C_{2}^{2}

    Vậy xác suất cần tìm là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{1}{7}

  • Câu 8: Thông hiểu

    Một bình chứa 16 viên vi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi từ bình đó. Tính xác suất lấy được cả 3 viên bi đều không có màu đỏ.

    Số cách lấy 3 viên bi bất kì là C_{16}^{3} = 560.

    Số cách lấy được 3 viên bi trắng là C_{7}^{3}.C_{6}^{0}.C_{3}^{0} = 35.

    Số cách lấy được 2 viên bi trắng, 1 viên bi đen là C_{7}^{2}.C_{6}^{1}.C_{3}^{0} = 126.

    Số cách lấy được 1 viên bi trắng, 2 viên bi đen là C_{7}^{1}.C_{6}^{2}.C_{3}^{0} = 105.

    Số cách lấy được 3 viên bi đen là C_{7}^{0}.C_{6}^{3}.C_{3}^{0} = 20.

    Số cách lấy được cả 2 viên bi không đỏ là 35 + 126 + 105 + 20 = 286.

    Suy ra xác suất cần tìm là \frac{143}{280}.

  • Câu 9: Nhận biết

    Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố chắc chắn?

    Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố chắc chắn là “Mặt xuất hiện của xúc xắc có số chấm không vượt quá 6”.

  • Câu 10: Nhận biết

    Gieo một đồng tiền và một con súc sắc. Số phần tử của không gian mẫu là bao nhiêu?

    Mô tả không gian mẫu ta có: \Omega =
\left\{ S1;\ S2;\ S3;\ S4;\ S5;S6;N1;N2;N3;N4;N5;N6
ight\}.

  • Câu 11: Thông hiểu

    Một nhóm 18 học sinh gồm 10 học sinh nam. Chọn ngẫu nhiên đồng thời 5 học sinh. Tính xác suất để trong 5 học sinh được chọn có cả nam và nữ đồng thời số học sinh nam nhiều hơn số học sinh nữ?

    Số phần tử không gian mẫu n(\Omega) =
C_{18}^{5} = 8568

    Các trường hợp thỏa mãn điều kiện bài toán:

    TH1: Chọn được 3 nam và 2 nữ: C_{10}^{3}.C_{8}^{2} = 3360 cách chọn

    TH2: Chọn được 4 nam và 1 nữ: C_{10}^{4}.C_{8}^{1} = 1680 cách chọn

    Suy ra số kết quả thuận lợi cho biến cố A: “5 học sinh được chọn có cả nam và nữ đồng thời số học sinh nam nhiều hơn số học sinh nữ” là: 3360 + 1680 = 5040 cách

    Vậy xác suất của biến cố A là: P(A) =
\frac{5040}{8568} = \frac{10}{17}

  • Câu 12: Nhận biết

    Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một lần xuất hiện mặt sấp là bao nhiêu?

    Phép thử: Gieo đồng tiền 5 lần cân đối và đồng chất.

    Ta có n(\Omega) = 2^{5} =
32.

    Biến cố A: Được ít nhất một lần xuất hiện mặt sấp.

    \overline{A}: Tất cả đều là mặt ngửa.

    n\left( \overline{A} ight) =
1.

    \Rightarrow n(A) = n(\Omega) - n\left(
\overline{A} ight) = 31.

    \Rightarrow p(A) = \frac{n(A)}{n(\Omega)}
= \frac{31}{32}.

  • Câu 13: Vận dụng

    Một túi đựng 10 tấm thẻ được đánh số từ 1 đến 10. Rút ngẫu nhiên ba tấm thẻ từ túi đó. Xác suất để tổng số ghi trên ba thẻ rút được là một số chia hết cho 3 bằng:

    Số cách rút ngẫu nhiên ba tấm thẻ từ túi có 10 thẻ là: C_{10}^{3} cách.

    Trong các số từ 1 đến 10 có ba số chia hết cho 3, bốn số chia cho 3 dư 1, ba số chia cho 3 dư 2.

    Để tổng các số ghi trên ba thẻ rút được là một số chia hết cho 3 thì ba thẻ đó phải có số được ghi thỏa mãn một trong các trường hợp sau:

    - Ba số đều chia hết cho 3.

    - Ba số đều chia cho 3 dư 1.

    - Ba số đều chia cho 3 dư 2.

    - Một số chia hết cho 3, một số chia cho 3 dư 1, một số chia cho 3 dư 2.

    Do đó số cách rút để tổng số ghi trên 3 thẻ rút được là một số chia hết cho 3 là C_{3}^{3} + C_{4}^{3} +
C_{3}^{3} + C_{3}^{1}C_{4}^{1}C_{3}^{1} (cách).

    Vậy xác suất cần tìm là: \frac{2C_{3}^{3}
+ C_{4}^{3} + C_{3}^{1}C_{3}^{1}C_{4}^{1}}{C_{10}^{3}}.

  • Câu 14: Nhận biết

    Cho A là một biến cố liên quan đến phép thử T. Mệnh đề nào sau đây là mệnh đề đúng?

     Mệnh đề đúng là: P(A) = 1 – P(\bar{A}).

  • Câu 15: Nhận biết

    Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố A: "kết quả của 3 lần gieo là như nhau" là bao nhiêu?

    Lần đầu có thể ra tùy ý nên xác suất là 1. Lần 2 và 3 phải giống lần 1 xác suất là \frac{1}{2}.

    Theo quy tắc nhân xác suất: P(A) =1.\frac{1}{2}.\frac{1}{2} = \frac{1}{4}.

  • Câu 16: Thông hiểu

    Đội tuyển của một lớp có 8 học sinh nam và 4 học sinh nữ. Trong buổi dự lễ trao thưởng, các học sinh được xếp thành 1 hàng ngang. Xác suất để xếp cho 2 học sinh nữ không đứng cạnh nhau là:

    12 vị trí là hoán vị của 12 học sinh đó.

    Do đó số phần tử của không gian mẫu là: n(Ω) = 12!.

    Gọi A là biến cố “Xếp 2 bạn nữ không đứng cạnh nhau”.

    Chia việc xếp thành 2 công đoạn:

    Công đoạn 1: Xếp 8 bạn nam vào 8 chỗ có 8! cách.

    Công đoạn 2: Khi đó 8 bạn nam tạo ra 9 khe trống, xếp 4 bạn nữ vào 9 khe trống đó có A_9^4 cách.

    Theo quy tắc nhân, xếp 12 bạn mà 2 bạn nữ không đứng cạnh nhau có: 8!. cách.

    => n\left( A ight) = 8!.A_9^4

     Xác suất biến cố A là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{8!.A_9^4}}{{12!}} = \frac{{14}}{{55}}

  • Câu 17: Thông hiểu

    Trong một hộp chứa một số bi, mỗi bi mang một số từ 1 đến 21 và không có hai bi nào mang số giống nhau. Chọn ngẫu nhiên từ hộp đó ra 2 bi. Xác suất hai bi được chọn đều mang số lẻ là:

    Số cách chọn 2 bi từ 21 bi là: C_{21}^{2}

    Từ số 1 đến 21 có 11 số lẻ nên số cách chọn được 2 viên bi đều mang số lẻ là: C_{11}^{2}

    Vậy xác suất để hai viên bi đều ghi số lẻ là: \frac{C_{11}^{2}}{C_{21}^{2}} =
\frac{11}{42}

  • Câu 18: Vận dụng

    Một bảng vuông gồm 100 \times 100 ô vuông đơn vị. Chọn ngẫu nhiên một ô hình chữ nhật. Xác suất để ô được chọn là hình vuông là bao nhiêu? (trong kết quả lấy 4 chữ số ở phần thập phân).

    Để có một ô hình chữ nhật ta cần chọn 2 đường dọc trong tổng số 101 đường dọc, và hai đường ngang trong tổng số 101 đường ngang. Vậy có tất cả: C_{101}^{2} \times C_{101}^{2} =
25502500 ô hình chữ nhật.

    Ta gọi phần mặt phẳng nằm giữa hai đường dọc hoặc hai đường ngang là một dải.

    Một hình vuông bất kì chính là giao của hai dải có cùng độ rộng (một dải dọc, một dải ngang)

    Số dải có độ rộng k(k \in Z,1 \leq k \leq
100) là: 101 - k

    Vậy có tất cả: \sum_{k = 1}^{100}{(101 -
k)^{2}} = 100^{2} + 99^{2} + ... + 1^{2} = \frac{100(100 + 1)(2.100 +
1)}{6} = 338350 hình vuông.

    Xác suất cần tìm là: \frac{338350}{25502500} = 0,013267... \approx
0,0133

  • Câu 19: Thông hiểu

    Từ một hộp có 6 viên bi xanh, 5 viên bi đỏ và 4 viên bi vàng. Lấy ngẫu nhiên 7 viên bi. Tính xác suất để lấy được ít nhất một viên bi vàng?

    Số phần tử không gian mẫu: n(\Omega) =
C_{15}^{7} = 6435

    Số phần tử biến cố lấy ngẫu nhiên 7 viên bi không có viên bi màu vàng là: C_{11}^{7} = 330

    Vậy xác suất để lấy được ít nhất một viên bi vàng là: P = \frac{6435 - 330}{6435} =
\frac{37}{39}

  • Câu 20: Nhận biết

    Một cái hộp chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy lần lượt 2 viên bi từ hộp này. Xác suất để viên bi được lấy lần thứ 2 là bi xanh là:

    Ta có: Số phần tử của không gian mẫu n(\Omega) = C_{10}^{1}.C_{9}^{1}.

    Gọi A là biến cố: “ Viên bi được lấy lần thứ 2là bi xanh”.

    - Trường hợp 1: Lần 1 lấy viên đỏ, lần 2 lấy viên xanh: Có C_{6}^{1}.C_{4}^{1} cách chọn.

    - Trường hợp 2: Lần 1 lấy viên xanh, lần 2 lấy viên xanh: Có C_{4}^{1}.C_{3}^{1} cách chọn.

    n(A) = C_{6}^{1}.C_{4}^{1} +
C_{4}^{1}.C_{3}^{1}.

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{24 + 12}{10.9} = \frac{2}{5}.

  • Câu 21: Nhận biết

    Gieo một con xúc xắc. Gọi K là biến cố số chấm xuất hiện trên con xúc xắc là một số nguyên tố. Hãy xác định biến cố K.

     Ta có: K = {2; 3; 5}. 

  • Câu 22: Vận dụng

    Cho tập hợp M =
\left\{ 1;2;3;4;5 ight\}. Gọi S là tập hợp các số tự nhiên có 3 chữ đôi một khác nhau được lập thành từ các chữ số thuộc tập M. Chọn ngẫu nhiên hai số từ tập S, tính xác suất để hai số được chọn đều chia hết cho 3?

    Gọi B là biến cố chọn được hai số đều chia hết cho 3

    Số các số tự nhiên có 3 chữ số được lập thành từ tập M là: A_{5}^{3} = 60

    Khi đó số phần tử của không gian mẫu là: n(\Omega) = C_{60}^{2}

    Tập các số gồm 3 chữ số tạo thành các số chia hết cho 3 là:

    \left\{ (1;2;3),(1;3;5),(2;3;4)
ight\}

    Mỗi tập trên tạo thành 3! số chia hết cho 3 nên ta có: 3.3! = 18 số chia hết cho 3

    Khi đó n(B) = C_{18}^{2}

    Vậy xác suất để chọn được hai số đều chia hết cho 3 từ tập S là: p(B) = \frac{n(B)}{n(\Omega)} =
\frac{C_{18}^{2}}{C_{60}^{2}} = \frac{51}{590}

  • Câu 23: Nhận biết

    Tung một đồng xu hai lần liên tiếp. Không gian mẫu trong trò chơi trên là:

     Ta có: Ω = {SS; SN; NS; NN}

  • Câu 24: Thông hiểu

    Một hộp chứa 2 bi xanh, 3 bi đỏ. Lấy ngẫu nhiên 3 bi. Tính xác suất để có ít nhất một bi xanh trong 3 viên.

    Số phần tử của không gian mẫu là |\Omega|
= C_{5}^{3} = 10.

    Gọi A là biến cố lấy ít nhất 1 bi xanh.

    Chọn 1 bi xanh, 2 bi đỏ, có C_{2}^{1}.C_{3}^{2} = 6(cách).

    Chọn 2 bi xanh, 1 bi đỏ, có C_{2}^{2}.C_{3}^{1} = 3(cách).

    Suy ra \left| \Omega_{A} ight| = 3 + 6
= 9.

    Xác suất cần tìm là P(A) =
\frac{9}{10}.

  • Câu 25: Nhận biết

    Xét phép thử gieo một con súc sắc cân đối và đồng chất 6 mặt hai lần. Xét biến cố A: “Số chấm xuất hiện ở cả hai lần gieo giống nhau”. Biến cố A gồm bao nhiêu kết quả?

    Gọi cặp số (x;y) là số chấm xuất hiện ở hai lần gieo.

    Xét biến cố A: “Số chấm xuất hiện ở cả hai lần gieo giống nhau”.

    Các kết quả của biến cố A là: \left\{
(1;1);(2;2);(3;3);(4;4);(5;5);(6;6) ight\}.

    Suy ra n(A) = 6.

  • Câu 26: Thông hiểu

    Chọn ngẫu nhiên hai số khác nhau từ tập hợp số A = \left\{ 1;2;3;4;5;6;7;8;9
ight\}. Tính xác suất để trong hai số lấy ra có ít nhất một số lẻ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{9}^{2} = 36

    Gọi B là biến cố: “Cả hai số lấy ra đều là số chẵn” \Rightarrow n(B) = C_{6}^{4} = 6

    Suy ra xác suất của biến cố B là: P(B) =
\frac{n(B)}{n(\Omega)} = \frac{6}{36} = \frac{1}{6}

    Ta có biến cố \overline{B} là biến cố: “Trong hai số lấy ra có ít nhất một số lẻ”

    Khi đó P\left( \overline{B} ight) = 1 -
P(B) = 1 - \frac{1}{6} = \frac{5}{6}

  • Câu 27: Thông hiểu

    Chọn ngẫu nhiên một gia đình có 4 người con và quan sát giới tính của bốn người con này. Xác suất của biến cố hai con đầu là con trai bằng:

    Ta có: n(\Omega) = 2^{4} =16

    Gọi A là biến cố “Hai con đầu là con trai”

    \Rightarrow A = \left\{TTGG;TTGT;TTTG;TTTT ight\}

    \Rightarrow n(A) = 4

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =\frac{4}{16} = \frac{1}{4}.

  • Câu 28: Nhận biết

    Một tổ trong lớp 10A có 5 học sinh nam và 7 học sinh nữ. Chọn ngẫu nhiên một học sinh trong tổ đó để tham gia câu lạc bộ phát thanh. Tính xác suất để học sinh được chọn là học sinh nam?

    Số phần tử không gian mẫu là:

    n(\Omega) = C_{12}^{1} = 12

    Gọi A là biến cố: “học sinh được chọn là học sinh nam?”

    \Rightarrow n(A) = C_{5}^{1} =
5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{12}

  • Câu 29: Thông hiểu

    Một lô sản phẩm gồm 35 sản phẩm đạt chuẩn và 15 sản phẩm lỗi. Lấy ngẫu nhiên 3 sản phẩm từ trong hộp. Tính xác suất để 3 sản phẩm lấy ra đều là sản phẩm đạt chuẩn?

    Ta có: n(\Omega) =
C_{50}^{3}

    Gọi B là biến cố cả ba sản phẩm lấy ra đều là sản phẩm đạt chuẩn.

    Chọn 3 trong 35 sản phẩm đạt chuẩn ta có: \Rightarrow n(B) = C_{35}^{3}

    Vậy xác suất của biến cố B là: P(B) =
\frac{C_{35}^{3}}{C_{50}^{3}} = \frac{187}{560}.

  • Câu 30: Nhận biết

    Cho biến cố A có không gian mẫu là Ω và \overline A là biến cố đối của biến cố A. Khẳng định nào sau đây sai?

     Khẳng định sai là: "P(Ω) > 1." vì P(Ω) = 1

  • Câu 31: Nhận biết

    Từ một hộp chứa 11 quả cầu màu đỏ và 4 quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Tính xác suất để 3 quả cầu lấy được đều màu xanh.

    Số phần tử của không gian mẫu n(\Omega) =
C_{15}^{3} = 455.

    Gọi A là biến cố "3 quả cầu lấy được đều là màu xanh". Suy ra n(A) = C_{4}^{3} = 4.

    Vậy xác suất cần tìm là P(A) =
\frac{4}{455}.

  • Câu 32: Thông hiểu

    Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:

    Theo định nghĩa ta có phép thử ngẫu nhiên là những phép thử mà ta không thể đoán trước kết quả của nó, mặc dù đã biết được tập hợp tất cả các kết quả của phép thử đó

    Đáp án "Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm xem có tất cả bao nhiêu viên bi." không phải phép thử vì ta có thể biết chắc chắn kết quả chỉ có thể là 1 số cụ thể là tổng số bi đỏ và xanh.

  • Câu 33: Nhận biết

    Trong một tổ có 6 học sinh nam và 4 học sinh nữ. Chọn ngẫu nhiên 3 bạn trong tổ tham gia đội tình nguyện của trường. Xác suất để 3 bạn được chọn đều là nam là:

    Xét phép thử: Chọn ngẫu nhiên 3 trong 10 bạn trong tổ, ta có n(\Omega) = C_{10}^{3}.

    Gọi A là biến cố: “ 3 bạn được chọn toàn nam”, ta có n(A) = C_{6}^{3}.

    Xác suất của biến cố A\ :\ P(A) =
\frac{n(A)}{n(\Omega)} = \frac{C_{6}^{3}}{C_{10}^{3}} =
\frac{1}{6}.

  • Câu 34: Nhận biết

    Thí nghiệm nào không phải là phép thử ngẫu nhiên?

    Phép thử ngẫu nhiên là phép thử mà ta chưa biết được kết quả là gì.

    Đáp án “Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm xem có tất cả bao nhiêu viên bi.” không phải là phép thử vì ta biết chắc chắn kết quả chỉ có thể là một số cụ thể số bi xanh và số bi đỏ.

  • Câu 35: Thông hiểu

    Chọn ngẫu nhiên hai số khác nhau từ 30 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là một số chẵn bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
C_{30}^{2} = 435

    Gọi A là biến cố: “Hai số được chọn có tổng là một số chẵn”

    Tổng của hai số là một số chẵn khi và chỉ khi hai số đó đều chẵn hoặc đều lẻ.

    Trong 30 số nguyên dương đầu tiên có 15 số lẻ và 15 số chẵn.

    Xét trường hợp chọn được hai số lẻ ta có: C_{15}^{2} cách chọn.

    Xét trường hợp chọn được hai số chẵn ta có: C_{15}^{2} cách chọn.

    Suy ra số kết quả thuận lợi cho biến cố A là: C_{15}^{2} + C_{15}^{2} = 210

    Khi đó xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{210}{435} = \frac{14}{29}.

  • Câu 36: Thông hiểu

    Một hộp có 3 viên bi đỏ, 4 viên bi vàng và 5 viên bi xanh. Lấy ngẫu nhiên 2 viên bi. Tính xác suất để lấy được 2 viên màu vàng.

    Lấy ngẫu nhiên 2 viên bi từ 12 viên bi, suy ra n(\Omega)=C_{12}^2=66.

    Gọi A là biến cố "lấy được 2 viên bi vàng", suy ra n(A)=C_4^2=6.

    Vậy xác suất: P(A)=\frac6{66}=\frac1{11}.

     

  • Câu 39: Nhận biết

    Bốn quyển sách được đánh dấu bằng những chữ cái U, V, X, Y được xếp tuỳ ý trên 1 kệ sách dài. Xác suất để chúng được sắp xếp theo thứ tự bảng chữ cái là:

     Số cách sắp xếp 4 phần tử vào dãy nằm ngang gồm 4 vị trí có 4!=24 (cách). Suy ra n(\Omega)=24.

    Chỉ có duy nhất 1 cách sắp xếp 4 chữ U, V, X, Y theo thứ tự bảng chữ cái.

    Vậy xác suất P=\frac1{24}.

  • Câu 40: Nhận biết

    Gieo ngẫu nhiên 2 đồng tiền thì không gian mẫu của phép thử có bao nhiêu biến cố:

    Mô tả không gian mẫu ta có: \Omega =
\left\{ SS;SN;NS;NN ight\}. (4 phần tử)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 10 Xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo