Đề kiểm tra 45 phút Chương 10 Xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho đa giác đều có 14 đỉnh. Chọn ngẫu nhiên 3 đỉnh trong số 14 đỉnh của đa giác. Xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác vuông là bao nhiêu?

    Số phần tử không gian mẫu là |\Omega| =
C_{14}^{3}.

    Giả sử tam giác cần lập là ABC vuông tại A.

    Chọn đỉnh A của tam giác có 14 cách.

    Để tam giác vuông tại A thì cung BC có số đo là \pi, hay BC là đường kính của đường tròn ngoại tiếp đa giác, do đó có 6 cách chọn BC.

    Gọi E là biến cố "3 đỉnh được chọn là 3 đỉnh của một tam giác vuông"

    Số phần tử của E14.6 = 84.

    Xác suất cần tìm là P(E) =
\frac{84}{C_{14}^{3}} = \frac{3}{13}.

  • Câu 2: Thông hiểu

    Trong hộp có 3 viên bi xanh và 5 viên bi đỏ. Lấy ngẫu nhiên trong hộp 3 viên bi. Xác suất của biến cố A: “Lấy ra được 3 viên bi màu đỏ” là:

    Chọn ba viên bi ngẫu nhiên trong hộp => n\left( \Omega  ight) = C_8^3

    Biến cố A: “Lấy ra được 3 viên bi màu đỏ” => n\left( A ight) = C_5^3

    => Xác suất của biến cố A là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{C_5^3}}{{C_8^3}} = \frac{5}{{28}}

  • Câu 3: Vận dụng

    Một hộp chứa 3 viên bi xanh, 5 viên bi đỏ và 6 viên bi vàng. Lấy ngẫu nhiên 6 viên bi từ hộp. Xác suất để 6 viên bi được lấy ra có đủ cả ba màu là bao nhiêu?

    Không gian mẫu là số cách chọn ngẫu nhiên 6 viên bi từ hộp chứa 14 viên bi. Suy ra số phần tử của không gian mẫu là |\Omega| = C_{14}^{6} = 3003.

    Gọi A là biến cố ''6 viên bi được lấy ra có đủ cả ba màu''. Để tìm số phần tử của biến cố A ta đi tìm số phần tử của biến cố \overline{A} tức là 6 viên bi lấy ra không có đủ ba màu như sau

    TH1: Chọn 6 viên bi chỉ có một màu (chỉ chọn được màu vàng).

    Do đó trường hợp này có C_{6}^{6} =
1 cách.

    TH2: Chọn 6 viên bi có đúng hai màu xanh và đỏ, có C_{8}^{6} cách.

    Chọn 6 viên bi có đúng hai màu đỏ và vàng, có C_{11}^{6} - C_{6}^{6} cách.

    Chọn 6 viên bi có đúng hai màu xanh và vàng, có C_{9}^{6} - C_{6}^{6} cách.

    Do đó trường hợp này có C_{8}^{6} +
\left( C_{11}^{6} - C_{6}^{6} ight) + \left( C_{9}^{6} - C_{6}^{6}
ight) = 572 cách.

    Suy ra số phần tử của biến cố \overline{A}\left| \Omega_{\overline{A}} ight| = 1 + 572 =
573.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = |\Omega| -
\left| \Omega_{\overline{A}} ight| = 3003 - 573 = 2430.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{2430}{3003} =
\frac{810}{1001}..

  • Câu 5: Nhận biết

    Gieo ngẫu nhiên 2 đồng tiền thì không gian mẫu của phép thử có bao nhiêu biến cố:

    Mô tả không gian mẫu ta có: \Omega =
\left\{ SS;SN;NS;NN ight\}. (4 phần tử)

  • Câu 6: Thông hiểu

    Một cái túi chứa 3 viên bi đỏ và 5 bi xanh, 6 viên bi vàng. Chọn ngẫu nhiên 3 viên bi. Xác suất để 3 viên bi có cả ba màu đỏ, xanh, vàng là:

    Chọn ngẫu nhiên ba viên bi => n\left( \Omega  ight) = C_{14}^3

    Gọi A là biến cố lấy được ba viên bi có cả ba màu. Khi đó: n\left( A ight) = C_3^1.C_5^1.C_6^1 = 90

    => Xác suất để 3 viên bi có cả ba màu là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{90}}{{C_{14}^3}} = \frac{{45}}{{182}}

  • Câu 7: Nhận biết

    Gieo 2 con súc sắc và gọi kết quả xảy ra là tích số hai nút ở mặt trên. Không gian mẫu có bao nhiêu phần tử?

    Mô tả không gian mẫu ta có: \Omega =
\left\{ 1;2;3;4;5;6;8;9;10;12;15;16;18;20;24;25;30;36 ight\}. (18 phần tử)

  • Câu 8: Nhận biết

    Cho B\overline{B} là hai biến cố đối nhau. Chọn mệnh đề đúng trong các mệnh đề sau đây?

    Mệnh đề đúng là: P(A) = 1 - P\left(
\overline{A} ight)

  • Câu 9: Nhận biết

    Cho A là một biến cố trong phép thử T. Xác suất của biến cố đối \overline{A} liên hệ với xác suất của biến cố A được xác định theo công thức nào sau đây?

    Xác suất của biến cố đối \overline{A} liên hệ với xác suất của biến cố A theo công thức:

    P\left( \overline{A} ight) = 1 -
P(A)

  • Câu 10: Thông hiểu

    Một hộp có 5 viên bi xanh, 6 viên bi đỏ và 7 viên bi vàng. Chọn ngẫu nhiên 5 viên bi trong hộp. Tính xác suất để 5 viên bi được chọn có đủ màu và số bi đỏ bằng số bi vàng.

    Không gian mẫu là số cách chọn ngẫu nhiên 5 viên bi từ hộp chứa 18 viên bi. Suy ra số phần tử của không gian mẫu là |\Omega| = C_{18}^{5} = 8568.

    Gọi A là biến cố ''5 viên bi được ó đủ màu và số bi đỏ bằng số bi vàng''. Ta có các trường hợp thuận lợi cho biến cố A là:

    TH1: Chọn 1 bi đỏ, 1 bi vàng và 3 bi xanh nên có C_{6}^{1}.C_{7}^{1}.C_{5}^{3} cách.

    TH2: Chọn 2 bi đỏ, 2 bi vàng và 1 bi xanh nên có C_{6}^{2}.C_{7}^{2}.C_{5}^{1} cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| =
C_{6}^{1}.C_{7}^{1}.C_{5}^{3} + C_{6}^{2}.C_{7}^{2}.C_{5}^{1} =
1995.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{1995}{8568} =
\frac{95}{408}.

  • Câu 11: Nhận biết

    Gieo đồng tiền 5lần cân đối và đồng chất. Xác suất để được ít nhất một đồng tiền xuất hiện mặt sấp là bao nhiêu?

    n(\Omega) = 2^{5} = 32.

    A: “được ít nhất một đồng tiền xuất hiện mặt sấp”.

    Xét biến cố đối \overline{A}: “không có đồng tiền nào xuất hiện mặt sấp”.

    \overline{A} = \left\{ (N,N,N,N,N)
ight\}, có n\left( \overline{A}
ight) = 1.

    Suy ra n(A) = 32 - 1 = 31.

    KL: P(A) = \frac{n(A)}{n(\Omega)} =
\frac{31}{32}.

  • Câu 12: Nhận biết

    Gọi P(A) là xác suất của biến cố A trong phép thử T. Hãy chọn khẳng định đúng trong các khẳng định sau?

    P(A) là xác suất của biến cố A trong phép thử T ta luôn có 0 \leq P(A)
\leq 1.

  • Câu 13: Thông hiểu

    Một hộp chứ 3 quả cầu xanh và 7 quả cầu đỏ. Chọn ngẫu nhiên đồng thời hai quả cầu trong hộp. Tính xác suất để hai quả cầu được chọn ra có cùng màu?

    Ta có: n(\Omega) = C_{10}^{2} =
45

    Gọi A là biến cố: “Chọn được hai quả cầu cùng màu”

    TH1: 2 quả cầu cùng màu xanh ta có: C_{3}^{2} cách chọn

    TH2: 2 quả cầu cùng màu đỏ ta có: C_{7}^{2} cách chọn.

    \Rightarrow n(A) = C_{3}^{2} + C_{7}^{2}
= 24

    Vậy xác suất của biến cố A là: P(A) =
\frac{24}{45} = \frac{8}{15}

  • Câu 14: Vận dụng

    Một hộp đựng 10 thẻ được đánh số từ 1 đến 10. Phải rút ra ít nhất k thẻ để xác suất có ít nhất một thẻ ghi số chia hết cho 4 lớn hơn \frac{13}{15}. Tính giá trị của k.

    Gọi biến cố A: Lấy k tấm thẻ có ít nhất một tấm thẻ chia hết cho 4. Với 1 \leq k \leq 10.

    Suy ra \overline{A}: Lấy k tấm thẻ không có tấm thẻ nào chia hết cho 4.

    Ta có: P\left( \overline{A} ight) =
\frac{C_{8}^{k}}{C_{10}^{k}} \Rightarrow P(A) = 1 -
\frac{C_{8}^{k}}{C_{10}^{k}} = 1 - \frac{(10 - k)(9 -
k)}{90}.

    Theo đề: 1 - \frac{(10 - k)(9 - k)}{90}
> \frac{13}{15} \Leftrightarrow k^{2} - 19k + 78 < 0
\Leftrightarrow 6 < k < 13.

    Vậy k = 7 là giá trị cần tìm.

  • Câu 15: Nhận biết

    Một hộp đèn có 12 bóng, trong đó có 4 bóng hỏng. Lấy ngẫu nhiên 3 bóng. Xác suất luôn lấy được 1 bóng hỏng là:

    Trong 3 bóng có 1 bóng hỏng

    Ta có n(\Omega) = C_{12}^{3} =
220.

    Gọi biến cố A : “Trong 3 bóng lấy ra có 1 bóng hỏng”.

    Tính được n\left( \Omega_{A} ight) =
C_{4}^{1}.C_{8}^{2} = 112.

    Vậy P(A) = \frac{112}{220} =
\frac{28}{55}.

  • Câu 16: Thông hiểu

    Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra có cả 3 môn.

    Số cách lấy 3 quyển sách bất kì là C_{9}^{3} = 84.

    Số cách lấy được 3 quyển thuộc 3 môn khác nhau là C_{4}^{1}.C_{3}^{1}.C_{2}^{1} = 24.

    Suy ra xác suất cần tìm là \frac{2}{7}.

  • Câu 17: Nhận biết

    Một hộp chứa 8 tấm thẻ được đánh số theo thứ tự từ 1 đến 8 (hai tấm thẻ khác nhau ghi hai số khác nhau). Rút ngẫu nhiên đồng thời hai tấm thẻ trong hộp. Tính xác suất để rút được hai tấm thẻ đều ghi số chẵn?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{8}^{2} = 28

    Gọi A là biến cố: “Rút được hai tấm thẻ đều ghi số chẵn”

    \Rightarrow n(A) = 4

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{4}{28} = \frac{1}{7}

  • Câu 18: Nhận biết

    Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất 5 lần. Số phần tử không gian mẫu là bao nhiêu?

    Mỗi lần gieo có hai khả năng nên gieo 5 lần theo quy tắc nhân ta có 2^{5} = 32.

    Số phần tử không gian mẫu là n(\Omega) =
32.

  • Câu 19: Nhận biết

    Gieo 3 đồng tiền. Phép thử ngẫu nhiên này có không gian mẫu là:

    Liệt kê các phần tử: \left\{ NNN,\ SSS,\
NNS,\ SSN,\ NSN,\ SNS,\ NSS,SNN ight\}.

  • Câu 20: Thông hiểu

    Một hộp có 3 viên bi đỏ, 4 viên bi vàng và 5 viên bi xanh. Lấy ngẫu nhiên 2 viên bi. Tính xác suất để lấy được 2 viên màu vàng.

    Lấy ngẫu nhiên 2 viên bi từ 12 viên bi, suy ra n(\Omega)=C_{12}^2=66.

    Gọi A là biến cố "lấy được 2 viên bi vàng", suy ra n(A)=C_4^2=6.

    Vậy xác suất: P(A)=\frac6{66}=\frac1{11}.

     

  • Câu 23: Nhận biết

    Gieo một con xúc xắc cân đối, đồng chất 6 mặt và quan sát số chấm xuấ hiện trên con xúc xắc. Xác suất của biến cố: “Số chấm xuất hiện trên mặt xúc xắc là 5” bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
6

    Gọi A là biến cố: “Số chấm xuất hiện trên mặt xúc xắc là 5”

    \Rightarrow n(A) = 1

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{1}{6}

  • Câu 24: Nhận biết

    Xét một phép thử có không gian mẫu \Omega gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là một biến cố bất kì trong phép thử đó. Chọn phát biểu đúng dưới đây?

    Xét một phép thử có không gian mẫu \Omega gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là một biến cố bất kì của phép thử đó. Khi đó A \subset \Omega là phát biểu đúng.

  • Câu 25: Nhận biết

    Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một lần xuất hiện mặt sấp là bao nhiêu?

    Phép thử: Gieo đồng tiền 5 lần cân đối và đồng chất.

    Ta có n(\Omega) = 2^{5} =
32.

    Biến cố A: Được ít nhất một lần xuất hiện mặt sấp.

    \overline{A}: Tất cả đều là mặt ngửa.

    n\left( \overline{A} ight) =
1.

    \Rightarrow n(A) = n(\Omega) - n\left(
\overline{A} ight) = 31.

    \Rightarrow p(A) = \frac{n(A)}{n(\Omega)}
= \frac{31}{32}.

  • Câu 26: Thông hiểu

    Gieo một con xúc xắc cân đối và đồng chất. Giả sử xúc xắc xuất hiện mặt b chấm. Xác suất để phương trình x^{2} + bx + 2 = 0 có hai nghiệm phân biệt là:

    Phương trình x^{2} + bx + 2 = 0 có hai nghiệm phân biệt khi và chỉ khi 

    \begin{matrix}  \Delta  > 0 \hfill \\   \Leftrightarrow {b^2} - 4.2 > 0 \hfill \\   \Leftrightarrow {b^2} - 8 > 0 \hfill \\   \Leftrightarrow b \in \left( { - \infty ; - 2\sqrt 2 } ight) \cup \left( {2\sqrt 2 ; + \infty } ight) \hfill \\ \end{matrix}

    b \in \left\{ {1;2;3;4;5;6} ight\}

    => b \in \left\{ {3;4;5;6} ight\}

    Gieo con xúc xắc cân đối và đồng chất => n\left( \Omega  ight) = 6

    Biến cố A xúc xắc xuất hiện mặt b chấm thỏa mãn phương trình => n\left( A ight) = 4

    => Xác suất để phương trình x^{2} + bx + 2 = 0 có hai nghiệm phân biệt là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{4}{6} = \frac{2}{3}

  • Câu 27: Thông hiểu

    Chọn ngẫu nhiên một gia đình có 4 người con và quan sát giới tính của bốn người con này. Xác suất của biến cố hai con đầu là con trai bằng:

    Ta có: n(\Omega) = 2^{4} =16

    Gọi A là biến cố “Hai con đầu là con trai”

    \Rightarrow A = \left\{TTGG;TTGT;TTTG;TTTT ight\}

    \Rightarrow n(A) = 4

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =\frac{4}{16} = \frac{1}{4}.

  • Câu 28: Thông hiểu

    Giả sử tập hợp B là tập hợp các số có 4 chữ số được tạo thành từ tập hợp C = \left\{
1;2;3;4;5;6;7;8;9 ight\}. Lấy ngẫu nhiên một số bất kì từ tập B. Xác suất để số được chọn có đúng hai chữ số chẵn và hai chữ số lẻ:

    Mỗi số tự nhiên có 4 chữ số khác nhau lập từ các số của tập C là một chỉnh hợp chập 4 của 9

    \Rightarrow n(\Omega) = A_{9}^{4} =
3024

    Số cách lấy một bộ có 4 chữ số gồm 2 chữ số chẵn và 2 chữ số lẻ được tập từ C là:

    C_{4}^{2}.C_{5}^{2} = 60

    Mỗi bộ như vậy sẽ lập được 4! số

    Suy ra n(B) = 60.4! = 1440

    Vậy xác suất của biến cố B là: P(B) =
\frac{1440}{3024} = \frac{10}{21}

  • Câu 29: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau:

    Cả 3 phương án trên đều đúng.

  • Câu 31: Vận dụng

    Gọi S là tập hợp tất cả các số tự nhiên gồm 2 chữ số khác nhau lập từ \{ 0;1;2;3;4;5;6\}. Chọn ngẫu nhiên 2 số từ tập S. Xác suất để tích hai số chọn được là một số chẵn là:

    Ta có điều kiện chủ chốt “tích hai số được chọn là một số chẵn” Tồn tại ít nhất một trong hai số được chọn là chẵn.

    Gọi \overline{ab} là số tự nhiên có hai chữ số khác nhau được lập từ các số đã cho

    Số cách chọn a là 6 cách; Số cách chọn b cách Số các số có hai chữ số khác nhau tạo được là 6.6 = 36 số. Suy ra S36 phần tử.

    Số cách lấy ngẫu nhiên 2 số từ tập S: C_{36}^{2}
= 630 cách

    Gọi biến cố A: “Tích hai số được chọn là một số chẵn”

    Gọi biến cố \overline{A}: “Tích hai số được chọn là một số lẻ”

    Số các số lẻ trong S: 3.5 = 15 (3 cách chọn chữ số hàng đơn vị là lẻ, 5 cách chọn chữ số hàng chục khác 0).

    Số cách lấy ngẫu nhiên 2 số lẻ trong 15 số lẻ: C_{15}^{2} = 105 cách

    Suy ra P(\overline{A}) = \frac{105}{630}
= \frac{1}{6}. Vậy P(A) = 1 -
P(\overline{A}) = \frac{5}{6}.

  • Câu 32: Thông hiểu

    Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:

    Theo định nghĩa ta có phép thử ngẫu nhiên là những phép thử mà ta không thể đoán trước kết quả của nó, mặc dù đã biết được tập hợp tất cả các kết quả của phép thử đó

    Đáp án "Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm xem có tất cả bao nhiêu viên bi." không phải phép thử vì ta có thể biết chắc chắn kết quả chỉ có thể là 1 số cụ thể là tổng số bi đỏ và xanh.

  • Câu 33: Thông hiểu

    Một lớp có 43 học sinh trong đó có 23 học sinh nữ và 20 học sinh nam. Chọn ngẫu nhiên 5 học sinh. Xác suất để 5 học sinh được chọn có cả nam và nữ gần nhất với kết quả nào dưới đây?

    Số phần tử của không gian mẫu là: n(\Omega) = C_{43}^{5} = 962598

    Số cách chọn 5 học sinh chỉ có nam hoặc chỉ có nữ là:

    C_{20}^{5} + C_{23}^{5} =
49153

    Số cách chọn 5 học sinh có cả nam và nữ là: C_{20}^{5}

    962598 - 49153 = 913445

    Xác suất của biến cố 5 học sinh được chọn có cả nam và nữ là: P = \frac{913445}{962598} \approx
0,95

  • Câu 34: Vận dụng

    Trong chiếc hộp chứa 37 tấm thẻ được đánh số theo thứ tự từ 1 đến 37 (hai tấm thẻ khác nhau được đánh số khác nhau). Lấy ngẫu nhiên đồng thời 3 thẻ trong hộp. Xác suất để các số ghi trên ba tấm thẻ có tổng là một số chia hết cho 3 bằng bao nhiêu?

    Từ 1 đến 37 có 12 số chia hết cho 3; 13 số chia cho 3 dư 1 và 12 số chia cho 3 dư 2

    Số phần tử không gian mẫu là: n(\Omega) =
C_{37}^{3} = 7770

    Để lấy được 3 tấm thẻ mà tổng các số ghi trên ba tấm thẻ chia hết cho 3 ta có các trường hợp sau:

    TH1: 3 số đều chia hết cho 3 ta có: C_{12}^{3} = 220 cách chọn.

    TH2: 3 số chia 3 dư 1 ta có: C_{13}^{3} =
286 cách chọn.

    TH3: 3 số chia 3 dư 2 ta có: C_{12}^{3} =
220 cách chọn.

    TH4: 1 số chia hết cho 3, 1 số chia 3 dư 1 và 1 số chia cho 3 dư 2 ta có: 12.13.12 = 1872 cách chọn.

    Suy ra có tất cả 220 + 286 + 220 + 1872 =
2598 cách chọn thỏa mãn yêu cầu đề bài.

    Vậy xác suất của biến cố: “Các số ghi trên ba tấm thẻ có tổng là một số chia hết cho 3” là: P = \frac{2598}{7770}
= \frac{433}{1295}

  • Câu 35: Nhận biết

    Một nhóm học sinh lớp 10A gồm 10 học sinh trong đó có 4 học sinh nữ và 6 học sinh nam. Chọn ngẫu nhiên bốn học sinh trong nhóm để tham gia cuộc thi hùng biện. Xác suất để bốn bạn được chọn có ba nam và một nữ bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
C_{10}^{4} = 210

    Số kết quả thuận lợi cho biến cố: “Bốn bạn được chọn có ba nam và một nữ” bằng: C_{6}^{3}.C_{4}^{1} =
80

    Vậy xác suất của biến cố “Bốn bạn được chọn có ba nam và một nữ” bằng: \frac{80}{210} =
\frac{8}{21}

  • Câu 36: Nhận biết

    Chọn ngẫu nhiên một số nguyên dương không lớn hơn 30. Xác suất để số được chọn là một số nguyên tố bằng:

    Số phần tử không gian mẫu là:

    n(\Omega) = C_{30}^{1} = 30

    Gọi A là biến cố: “học sinh được chọn là học sinh nam?”

    \Rightarrow A = \left\{
2;3;5;7;11;13;17;19;23;29 ight\}

    \Rightarrow n(A) = 10

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{30} = \frac{1}{3}

  • Câu 37: Nhận biết

    Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên?

    Thí nghiệm không phải là phép thử ngẫu nhiên là: “Quan sát vận động viên chạy bộ xem được bao nhiêu km/h”.

  • Câu 38: Vận dụng

    Cho tập hợp A =
\left\{ 1,2,\ 3,\ ...,\ 10 ight\}. Chọn ngẫu nhiên ba số từ tập đó. Tính xác suất để trong ba số chọn ra không có hai số nào là hai số nguyên liên tiếp.

    Số phần tử không gian mẫu là n(\Omega) =
C_{10}^{3} = 120.

    Gọi B là biến cố “Ba số chọn ra không có hai số nào là hai số nguyên liên tiếp”.

    \Rightarrow \overline{B} là biến cố “Ba số được chọn có ít nhất hai số là các số tự nhiên liên tiếp”.

    + Bộ ba số dạng \left( 1\ ,\ 2\ ,\ a_{1}
ight), với a_{1} \in
A\backslash\left\{ 1\ ,\ 2 ight\}: có 8 bộ ba số.

    + Bộ ba số có dạng \left( 2\ ,\ 3\ ,\
a_{2} ight), với a_{2} \in
A\backslash\left\{ 1\ ,\ 2\ ,\ 3 ight\}: có 7 bộ ba số.

    + Tương tự mỗi bộ ba số dạng \left( 3\ ,\
4\ ,\ a_{3} ight), \left( 4\ ,\
5\ ,\ a_{4} ight), \left( 5\ ,\
6\ ,\ a_{5} ight), \left( 6\ ,\
7\ ,\ a_{6} ight), \left( 7\ ,\
8\ ,\ a_{7} ight), \left( 8\ ,\
9\ ,\ a_{8} ight), \left( 9\ ,\
10\ ,\ a_{9} ight) đều có 7 bộ.

    \Rightarrow n\left( \overline{B} ight)
= 8 + 8.7 = 64.

    \Rightarrow P(B) = 1 - P\left(
\overline{B} ight) = 1 - \frac{64}{120} = \frac{7}{15}.

  • Câu 39: Nhận biết

    Một túi đựng 6 bi xanh và 4 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất lấy được toàn màu đỏ là:

    Ta có số phần từ của không gian mẫu là n(\Omega) = C_{10}^{2} = 45.

    Gọi A: "Hai bi lấy ra đều là bi đỏ".

    Khi đó n(A) = C_{4}^{2} = 6.

    Vậy xác suất cần tính là P(A) =
\frac{n(A)}{n(\Omega)} = \frac{2}{15}.

  • Câu 40: Vận dụng

    Đề thi kiểm tra 15 phút có 10 câu trắc nghiệm mỗi câu có bốn phương án trả lời, trong đó có một phương án đúng, trả lời đúng mỗi câu được 1,0 điểm. Một thí sinh làm cả 10 câu, mỗi câu chọn một phương án. Tính xác suất để thí sinh đó đạt từ 8,0 điểm trở lên.

    Với mỗi câu hỏi, thí sinh có 4 phương án lựa chọn nên số phần tử của không gian mẫu là n(\Omega) =
4^{10}.

    Gọi X là biến cố “thí sinh đó đạt từ 8,0 điểm trở lên”.

    Trường hợp 1: Thí sinh đó là được 8 câu (tức là 8,0 điểm): Chọn 8 câu trong số 10 câu hỏi và 2 câu còn lại mỗi câu có 3 cách chọn đáp án sai nên có C_{10}^{8}.3^{2} cách để thí sinh đúng 8 câu.

    Trường hợp 2: Thí sinh đó là được 9 câu (tức là 9,0 điểm): Chọn 9 câu trong số 10 câu hỏi và câu còn lại có 3 cách chọn đáp án sai nên có C_{10}^{9}.3^{1} cách để thí sinh đúng 9 câu.

    Trường hợp 3: Thí sinh đó là được 10 câu (tức là 10,0 điểm): Chỉ có 1 cách duy nhất.

    Suy ra số kết quả thuận lợi cho biến cố Xn(X) = C_{10}^{8}.3^{2} + C_{10}^{9}.3^{1} + 1 =
436.

    Vậy xác suất cần tìm là P(X) =
\frac{n(X)}{n(\Omega)} = \frac{436}{4^{10}}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 10 Xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo