Đề kiểm tra 45 phút Chương 10 Xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Gieo hai con xúc xắc cân đối. Xác suất để tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 3 là:

    Số phàn tử không gian mẫu là: n(\Omega) =
36

    Số kết quả thuận lợi cho biến cố A: “Tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 3” là: A = \left\{
(1;2),(2;1),(1;1) ight\}

    \Rightarrow n(A) = 3

    Vậy xác suất của biến cố A cần tìm là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{3}{36} =
\frac{1}{12}

  • Câu 2: Thông hiểu

    Một hộp chứa 7 bi xanh, 6 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất để được hai bi cùng màu là bao nhiêu?

    Số phần tử của không gian mẫu là |\Omega|
= C_{13}^{2} = 78.

    Gọi A là biến cố lấy được hai bi cùng màu.

    Chọn 2 bi xanh, có C_{7}^{2} =
21(cách).

    Chọn 2 bi đỏ, có C_{6}^{2} =
15(cách).

    Suy ra \left| \Omega_{A} ight| = 21 +
15 = 36.

    Xác suất cần tìm là P(A) = \frac{36}{78}
\simeq 0,46.

  • Câu 3: Vận dụng

    20 tấm thẻ được đánh số từ 1 đến 20. Chọn ngẫu nhiên ra 8 tấm thẻ. Hãy tính xác suất để có 3 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng 1 tấm thẻ mang số chia hết cho 10.

    Không gian mẫu là cách chọn 8 tấm thể trong 20 tấm thẻ.

    Suy ra số phần tử của không mẫu là |\Omega| = C_{20}^{8}.

    Gọi A là biến cố ''3 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng 1 tấm thẻ mang số chia hết cho 10''. Để tìm số phần tử của A ta làm như sau

    ● Đầu tiên chọn 3 tấm thẻ trong 10 tấm thẻ mang số lẻ, có C_{10}^{3} cách.

    ● Tiếp theo chọn 4 tấm thẻ trong 8 tấm thẻ mang số chẵn (không chia hết cho 10), có C_{8}^{4} cách.

    ● Sau cùng ta chọn 1 trong 2 tấm thẻ mang số chia hết cho 10, có C_{2}^{1} cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| =
C_{10}^{3}.C_{8}^{4}.C_{2}^{1}.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} =
\frac{C_{10}^{3}.C_{8}^{4}.C_{2}^{1}}{C_{20}^{8}} =
\frac{560}{4199}.

  • Câu 4: Nhận biết

    Giả sử E là một biến cố liên quan phép thử T với không gian mẫu \Omega. Phát biểu nào dưới đây sai?

    P(E) = 0 khi và chỉ khi E là biến cố không thể.

  • Câu 6: Thông hiểu

    Gieo hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai mặt của hai con xúc xắc bằng 7?

    Ta có:

    Số phần tử không gian mẫu là: n(\Omega) =
6.6 = 36

    Gọi A là biến cố “tổng số chấm xuất hiện trên hai mặt của hai con xúc xắc bằng “.

    \Rightarrow A = \left\{
(1;6),(6;1),(2;5),(5;2),(4;3),(3;4) ight\}

    \Rightarrow n(A) = 6

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{6}{20} = \frac{3}{10}.

  • Câu 7: Thông hiểu

    Gieo một con xúc xắc cân đối và đồng chất ba lần. Xác suất để ít nhất một lần xuất hiện mặt sáu chấm bằng bao nhiêu?

    Ta có: n(\Omega) = 6^{3} =216

    Gọi A là biến cố ít nhất một lần xuất hiện mặt sáu chấm

    Suy ra \overline{A} là biến cố không có lần nào xuất hiện mặt sáu chấm.

    \Rightarrow n\left( \overline{A} ight)= 5^{3} = 125

    Khi đó xác suất của biến cố A cần tìm là: P(A) = 1 - P\left( \overline{A} ight) = 1 -\frac{125}{216} = \frac{91}{216}

  • Câu 8: Nhận biết

    Từ một hộp gồm 12 quả bóng gồm 5 quả đỏ và 7 quả xanh, lấy ngẫu nhiên đồng thời 3 quả. Xác suất để lấy được 3 quả màu xanh bằng bao nhiêu?

    Lấy 3 quả bóng từ 12 quả ta có: n(\Omega)
= C_{12}^{3} = 220

    Lấy ngẫu nhiên 3 quả bóng đều màu xanh có: C_{7}^{3} = 35 cách

    Vậy xác suất để lấy được 3 quả bóng màu xanh là: P = \frac{35}{220} = \frac{7}{44}.

  • Câu 9: Vận dụng

    Gọi S là tập hợp tất cả các số tự nhiên gồm 2 chữ số khác nhau lập từ \{ 0;1;2;3;4;5;6\}. Chọn ngẫu nhiên 2 số từ tập S. Xác suất để tích hai số chọn được là một số chẵn là:

    Ta có điều kiện chủ chốt “tích hai số được chọn là một số chẵn” Tồn tại ít nhất một trong hai số được chọn là chẵn.

    Gọi \overline{ab} là số tự nhiên có hai chữ số khác nhau được lập từ các số đã cho

    Số cách chọn a là 6 cách; Số cách chọn b cách Số các số có hai chữ số khác nhau tạo được là 6.6 = 36 số. Suy ra S36 phần tử.

    Số cách lấy ngẫu nhiên 2 số từ tập S: C_{36}^{2}
= 630 cách

    Gọi biến cố A: “Tích hai số được chọn là một số chẵn”

    Gọi biến cố \overline{A}: “Tích hai số được chọn là một số lẻ”

    Số các số lẻ trong S: 3.5 = 15 (3 cách chọn chữ số hàng đơn vị là lẻ, 5 cách chọn chữ số hàng chục khác 0).

    Số cách lấy ngẫu nhiên 2 số lẻ trong 15 số lẻ: C_{15}^{2} = 105 cách

    Suy ra P(\overline{A}) = \frac{105}{630}
= \frac{1}{6}. Vậy P(A) = 1 -
P(\overline{A}) = \frac{5}{6}.

  • Câu 10: Thông hiểu

    Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra có cả 3 môn.

    Số cách lấy 3 quyển sách bất kì là C_{9}^{3} = 84.

    Số cách lấy được 3 quyển thuộc 3 môn khác nhau là C_{4}^{1}.C_{3}^{1}.C_{2}^{1} = 24.

    Suy ra xác suất cần tìm là \frac{2}{7}.

  • Câu 12: Vận dụng

    Một xạ thủ bán từ khoảng cách 100m có xác suất bắn trúng đích là:

    - Tâm 10 điểm: 0,5.

    - Vòng 9 điểm: 0,25.

    - Vòng 8 điểm: 0,1.

    - Vòng 7 điểm: 0,1.

    - Ngoài vòng 7 điểm: 0,05.

    Tính xác suất để sau 3 lần bắn xạ thủ đó được 27 điểm.

    Ta có 27 = 10 + 10 + 7 = 10 + 9 + 8 = 9 +
9 + 9

    Với bộ (10;10;7) có 3 cách xáo trộn điểm các lần bắn

    Với bộ (10;9;8) có 6 cách xáo trộn điểm các lần bắn

    Với bộ (9;9;9) có 1 cách xáo trộn điểm các lần bắn.

    Do đó xác suất để sau 3 lần bắn xạ thủ được đúng 27 điểm là:

    P = 3.0,5^{2}.0,1 + 6.0,5.0,25.0,1 +
0,25^{3} = 0,165625.

  • Câu 13: Nhận biết

    Phép thử ngẫu nhiên (gọi tắt là phép thử) là gì?

    Phép thử ngẫu nhiên (gọi tắt là phép thử) là hoạt động mà ta không thể biết trước được kết quả của nó.

  • Câu 14: Nhận biết

    Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố không?

    Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố không là “Mặt xuất hiện của con xúc xắc có số chấm là 8 chấm.”

  • Câu 15: Nhận biết

    Từ một hộp chứa 11 quả cầu màu đỏ và 4 quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Tính xác suất để 3 quả cầu lấy được đều màu xanh.

    Số phần tử của không gian mẫu n(\Omega) =
C_{15}^{3} = 455.

    Gọi A là biến cố "3 quả cầu lấy được đều là màu xanh". Suy ra n(A) = C_{4}^{3} = 4.

    Vậy xác suất cần tìm là P(A) =
\frac{4}{455}.

  • Câu 16: Thông hiểu

    Cho 40 tấm thẻ được đánh số theo thứ tự từ 1 đến 40. Chọn ngẫu nhiên 3 tấm thẻ. Tính xác suất để ba tấm thẻ được chọn có tổng các số ghi trên ba tấm thẻ đó là một số chẵn?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{40}^{3} = 9880

    Gọi A là biến cố chọn được 3 tấm thẻ có các số ghi trên ba tấm thẻ đó là một số chẵn.

    TH1: 2 số ghi số lẻ, 1 số ghi số chẵn ta có: C_{20}^{2}.C_{20}^{1} = 3800

    TH2: 3 số ghi số chẵn ta có: C_{20}^{3} =
1140

    Vậy xác suất để chọn được 3 tấm thẻ có tổng các số ghi trên các thẻ là một số chẵn là: \frac{3800 + 1140}{9880}
= \frac{1}{2}

  • Câu 17: Thông hiểu

    Gieo ngẫu nhiên một con xúc xắc cân đối và đồng chất liên tiếp hai lần. Tính xác suất để lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm.

    Không gian mẫu \Omega = \left\{ (i;j)|i;j
= 1,2,3,4,5,6 ight\}

    Số phần tử của không gian mẫu n(\Omega) =
36

    Gọi A là biến cố: “Lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm”.

    \Rightarrow n(A) = 3.6 = 18

    Xác suất để lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm là: P(A) = \frac{n(A)}{n(\Omega)} =
\frac{1}{2}.

  • Câu 18: Nhận biết

    Gieo một đồng xu cân đối và đồng chất hai lần liên tiếp. Tính xác suất của biến cố: “Cả hai lần gieo đều xuất hiện mặt sấp”?

    Số phần tử không gian mẫu là:

    \Omega = \left\{ SS;SN;NS;NN ight\}
\Rightarrow n(\Omega) = 2.2 = 4

    Gọi A là biến cố: “Cả hai lần gieo đều xuất hiện mặt sấp”

    A = \left\{ SS ight\} \Rightarrow n(A)
= 1

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{1}{4}

  • Câu 19: Nhận biết

    Gieo ngẫu nhiên một xon xúc xắc cân đối, đồng chất 1 lần. Gọi A là biến cố “số chấm xuất hiện trên con xúc xắc bé hơn 3”. Biến cố đối của biến cố A là:

    Biến cố đối của biến cố A là “Số chấm xuất hiện trên con xúc xắc không bé hơn 3.”

  • Câu 20: Nhận biết

    Một túi đựng 6 bi xanh và 4 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất lấy được toàn màu đỏ là:

    Ta có số phần từ của không gian mẫu là n(\Omega) = C_{10}^{2} = 45.

    Gọi A: "Hai bi lấy ra đều là bi đỏ".

    Khi đó n(A) = C_{4}^{2} = 6.

    Vậy xác suất cần tính là P(A) =
\frac{n(A)}{n(\Omega)} = \frac{2}{15}.

  • Câu 21: Nhận biết

    Lấy ngẫu nhiên đồng thời 3 quả cầu từ trong hộp chứa 10 quả cầu đỏ và 5 quả cầu xanh. Xác suất để ba quả cầu được chọn đều là màu xanh bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
C_{15}^{3} = 455

    Gọi A là biến cố lấy được 3 quả màu xanh

    Số phần tử của biến cố A là: n(A) =
C_{5}^{3} = 10

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{455} = \frac{2}{91}

  • Câu 22: Vận dụng

    Hai hộp chứa các thẻ được đánh số. Hộp thứ nhất chứa 10 thẻ được đánh số từ 1 đến 10; hộp thứ hai chứa 9 thẻ được đánh số từ 1 đến 9. Chọn ngẫu nhiên mỗi hộp một thẻ và nhân các số trên hai thẻ lại với nhau. Tính xác suất để tích thu được là một số chẵn?

    Hộp thứ nhất chứa 10 thẻ được đánh số thứ tự từ 1 đến 10 gồm 5 thẻ mang số lẻ và 5 thẻ mang số chẵn.

    Hộp thứ hai chứa 9 thẻ đánh số thứ tự từ 1 đến 9 gồm 5 thẻ số lẻ và 4 thẻ số chẵn.

    Chọn ngẫu nhiên mỗi hộp 1 thẻ thì số cách chọn là:

    n(\Omega) = 10.9 = 90

    Gọi biến cố A: “Tích thu được là số chẵn” khi đó ta xét 3 trường hợp sau:

    TH1: Hộp thứ nhất chọn được thẻ chẵn và hộp thứ hai chọn được thẻ chẵn có: 5.4 = 20 cách.

    TH2: Hộp thứ nhất chọn được thẻ chẵn và hộp thứ hai chọn được thẻ lẻ có: 5.5 = 25 cách.

    TH3: Hộp thứ nhất chọn được thẻ lẻ và hộp thứ hai chọn được thẻ chẵn có: 5.4 = 20 cách.

    Theo quy tắc cộng ta có:

    n(A) = 20 + 25 + 20 = 65

    Vậy xác suất cần tìm là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{65}{90} = \frac{13}{18}

  • Câu 23: Vận dụng

    Gieo một con xúc xắc 2 lần liên tiếp. Gọi số chấm xuất hiện của hai lần gieo lần lượt là bc. Tính xác suất để phương trình bậc hai x^{2} - bx + c = 0 có nghiệm?

    Gieo con xúc xắc hai lần nên ta có: n(\Omega) = 36

    Để phương trình bậc hai có nghiệm thì \Delta \geq 0 \Leftrightarrow b^{2} - 4ac \geq 0
\Leftrightarrow b^{2} \geq 4ac

    c \geq 1 \Rightarrow b^{2} \geq 4\Rightarrow \left\{ \begin{matrix}b \geq 2 \\c \leq \dfrac{b^{2}}{4} \\\end{matrix} ight.

    Lập bảng chọn giá trị của b và c như sau:

    b

    2

    3

    4

    5

    6

    c

    1

    1; 2

    1; 2; 3; 4

    1; 2; 3; 4; 5; 6

    1; 2; 3; 4; 5; 6

    Gọi A là biến cố “phương trình x^{2} - bx
+ c = 0 có nghiệm” ta có:

    n(A) = 1 + 2 + 4 + 6 + 6 =
19

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{19}{36}

  • Câu 24: Thông hiểu

    Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Xác suất để 3 quyển được lấy ra đều là môn toán là bao nhiêu?

    Số cách lấy 3 quyển sách bất kì là C_{9}^{3} = 84.

    Số cách lấy được 3 quyển thuộc môn toán là C_{4}^{3}.C_{3}^{0}.C_{2}^{0} = 4.

    Suy ra xác suất cần tìm là \frac{1}{21}.

  • Câu 25: Nhận biết

    Gieo 1 con xúc xắc 1 lần. Biến cố A: “Số chấm xuất hiện nhỏ hơn 4”. Mô tả biến cố A.

     Mô tả biến cố A: A = {1;2;3}.

  • Câu 26: Nhận biết

    Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố A: "ít nhất một lần xuất hiện mặt sấp" là bao nhiêu?

    Ta có: \overline{A}: "không có lần nào xuất hiện mặt sấp" hay cả 3 lần đều mặt ngửa.

    Theo quy tắc nhân xác suất: P(\overline{A}) =\frac{1}{2}.\frac{1}{2}.\frac{1}{2} = \frac{1}{8}.

    Vậy: P(A) = 1 - P(\overline{A}) = 1 -\frac{1}{8} = \frac{7}{8}.

  • Câu 28: Vận dụng

    Cho đa giác đều có 14 đỉnh. Chọn ngẫu nhiên 3 đỉnh trong số 14 đỉnh của đa giác. Xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác vuông là bao nhiêu?

    Số phần tử không gian mẫu là |\Omega| =
C_{14}^{3}.

    Giả sử tam giác cần lập là ABC vuông tại A.

    Chọn đỉnh A của tam giác có 14 cách.

    Để tam giác vuông tại A thì cung BC có số đo là \pi, hay BC là đường kính của đường tròn ngoại tiếp đa giác, do đó có 6 cách chọn BC.

    Gọi E là biến cố "3 đỉnh được chọn là 3 đỉnh của một tam giác vuông"

    Số phần tử của E14.6 = 84.

    Xác suất cần tìm là P(E) =
\frac{84}{C_{14}^{3}} = \frac{3}{13}.

  • Câu 30: Nhận biết

    Một hộp có 3 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3. Rút ngẫu nhiên một chiếc thẻ từ trong hộp. Không gian mẫu của phép thử đó là:

     Mô tả không gian mẫu: \Omega=\{1;2;3\}.

  • Câu 31: Vận dụng

    Một túi đựng 10 tấm thẻ được đánh số từ 1 đến 10. Rút ngẫu nhiên ba tấm thẻ từ túi đó. Xác suất để tổng số ghi trên ba thẻ rút được là một số chia hết cho 3 bằng:

    Số cách rút ngẫu nhiên ba tấm thẻ từ túi có 10 thẻ là: C_{10}^{3} cách.

    Trong các số từ 1 đến 10 có ba số chia hết cho 3, bốn số chia cho 3 dư 1, ba số chia cho 3 dư 2.

    Để tổng các số ghi trên ba thẻ rút được là một số chia hết cho 3 thì ba thẻ đó phải có số được ghi thỏa mãn một trong các trường hợp sau:

    - Ba số đều chia hết cho 3.

    - Ba số đều chia cho 3 dư 1.

    - Ba số đều chia cho 3 dư 2.

    - Một số chia hết cho 3, một số chia cho 3 dư 1, một số chia cho 3 dư 2.

    Do đó số cách rút để tổng số ghi trên 3 thẻ rút được là một số chia hết cho 3 là C_{3}^{3} + C_{4}^{3} +
C_{3}^{3} + C_{3}^{1}C_{4}^{1}C_{3}^{1} (cách).

    Vậy xác suất cần tìm là: \frac{2C_{3}^{3}
+ C_{4}^{3} + C_{3}^{1}C_{3}^{1}C_{4}^{1}}{C_{10}^{3}}.

  • Câu 32: Nhận biết

    Một tổ trong lớp 10A có 5 học sinh nam và 7 học sinh nữ. Chọn ngẫu nhiên một học sinh trong tổ đó để tham gia câu lạc bộ phát thanh. Tính xác suất để học sinh được chọn là học sinh nam?

    Số phần tử không gian mẫu là:

    n(\Omega) = C_{12}^{1} = 12

    Gọi A là biến cố: “học sinh được chọn là học sinh nam?”

    \Rightarrow n(A) = C_{5}^{1} =
5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{12}

  • Câu 33: Nhận biết

    Gieo con súc sắc hai lần. Biến cố A là biến cố để sau hai lần gieo có ít nhất một mặt 6 chấm. Mô tả biến cố A.

    Liệt kê ta có: A = \left\{ (1,6),\
(2,6),\ (3,6),\ (4,6),\ (5,6),\ (6,6),\ (6,1),\ (6,2),\ (6,3),\ (6,4),\
(6,5) ight\}.

  • Câu 34: Thông hiểu

    Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Xác suất để 3 quyển được lấy ra có ít nhất 1 quyển là toán là bao nhiêu?

    Số cách lấy 3 quyển sách bất kì là C_{9}^{3} = 84.

    Số cách lấy được 3 quyển lý là C_{4}^{0}.C_{3}^{3}.C_{2}^{0} = 1.

    Số cách lấy được 2 quyển lý, 1 quyển hóa là C_{4}^{0}.C_{3}^{2}.C_{2}^{1} = 6.

    Số cách lấy được 1 quyển lý, 2 quyển hóa là C_{4}^{0}.C_{3}^{1}.C_{2}^{2} = 3.

    Số cách lấy 3 quyển sách mà không có sách toán là 1 + 6 + 3 = 10.

    Suy ra số cách lấy 3 quyển sách mà có ít nhất 1 quyển sách toán là 74 cách.

    Suy ra xác suất cần tìm là \frac{37}{42}.

  • Câu 35: Nhận biết

    Một người chọn ngẫu nhiên đồng thời 4 quân bài từ bộ tú lơ khơ 52 quân bài. Tính xác suất của biến cố: “Cả 4 quân bài đều là Át”?

    Số phần tử không gian mẫu: n(\Omega) =
C_{52}^{4}

    Chỉ có đúng 1 cách để lấy được cả 4 quân bài đều là Át nên xác suất cần tìm là:

    P = \frac{1}{C_{52}^{4}}

  • Câu 36: Nhận biết

    Cho A là biến cố liên quan phép thử T. Mệnh đề nào sau đây là mệnh đề đúng?

    Mệnh đề đúng là: P(A) = 1 - P\left(
\overline{A} ight)

  • Câu 37: Nhận biết

    Xác suất của biến cố A, kí hiệu là:

     Xác suất của biến cố A, kí hiệu là: P(A).

  • Câu 38: Thông hiểu

    Một chiếc hộp chứa 20 quả cầu gồm 8 quả màu xanh, 7 quả màu đỏ và 5 quả màu vàng. Lấy ngẫu nhiên 6 quả cầu từ chiếc hộp. Tính xác suất để 6 quả cầu lấy được ít nhất một quả màu đỏ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{20}^{6}

    Gọi A là biến cố trong 6 quả cầu lấy được ít nhất một quả đỏ.

    Gọi B là biến cố trong 6 quả cầu lấy được không có quả đỏ.

    Số phần tử của biến cố B là: n(B) =
C_{13}^{6}

    Xác suất của biến cố B là: P(B) =
\frac{n(B)}{n(\Omega)} = \frac{143}{3230}

    Vậy xác suất của biến cố A cần tìm là: P(A) = 1 - P(B) = 1 - \frac{143}{3230} =
\frac{3087}{3230}

  • Câu 39: Thông hiểu

    Tại khoa truyền nhiễm của bệnh viện A có 12 bác sĩ và tỉ lệ bác sĩ nam và bác sĩ nữ bằng nhau. Chọn ngẫu nhiên 6 bác sĩ trong khoa để lập đoàn kiểm tra truyền nhiễm trong khu vực B. Tính xác suất để 6 bác sĩ được chọn có số bác sĩ nam bằng số bác sĩ nữ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{12}^{6} = 924

    Số kết quả thuận lợi cho biến cố A: “6 bác sĩ được chọn có số bác sĩ nam bằng số bác sĩ nữ” là: n(A) =
C_{6}^{3}.C_{6}^{3} = 400

    Vậy xác suất của biến cố A cần tìm là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{400}{924} =
\frac{100}{231}

  • Câu 40: Nhận biết

    Hoạt động nào sau đây không phải là phép thử?

    Các hoạt động ở các phương án:

    " Chọn một trong ba bạn An, Bình, Cường tham gia cuộc thi chạy điền kinh."

    "Chơi trò chơi gắp thú nhồi bông."

    "Chọn một quyển sách bất kì trên giá sách và đọc tên của quyển sách đó."

    Đều là phép thử vì ta không thể đoán trước được kết quả của hoạt động đó mặc dù biết được tất cả các kết quả có thể xảy ra.

    Hoạt động ở phương án A không phải là phép thử vì ta có thể đoán trước được kết quả của hoạt động đó là: 2 + 5 + 3 = 10 (chiếc bút bi).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 10 Xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo