Đề kiểm tra 45 phút Chương 10 Xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Gieo một con xúc xắc cân đối và đồng chất. Tính xác suất của biến cố “Số chấm xuất hiện trong lần gieo không bé hơn 3”.

    Số phần tử của không gian mẫu là: n(\Omega) = 6

    Số kết quả thuận lợi cho biến cố A: “Số chấm xuất hiện trong lần gieo không bé hơn 3” là: A = \left\{ 3;4;5;6ight\}

    \Rightarrow n(A) = 4

    Xác suất của biến cố A là: P(A) =\frac{n(A)}{n(\Omega)} = \frac{4}{6} = \frac{2}{3}.

  • Câu 2: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau:

    Cả 3 phương án trên đều đúng.

  • Câu 3: Thông hiểu

    Một lô sản phẩm gồm 35 sản phẩm đạt chuẩn và 15 sản phẩm lỗi. Lấy ngẫu nhiên 3 sản phẩm từ trong hộp. Tính xác suất để 3 sản phẩm lấy ra đều là sản phẩm đạt chuẩn?

    Ta có: n(\Omega) =
C_{50}^{3}

    Gọi B là biến cố cả ba sản phẩm lấy ra đều là sản phẩm đạt chuẩn.

    Chọn 3 trong 35 sản phẩm đạt chuẩn ta có: \Rightarrow n(B) = C_{35}^{3}

    Vậy xác suất của biến cố B là: P(B) =
\frac{C_{35}^{3}}{C_{50}^{3}} = \frac{187}{560}.

  • Câu 4: Nhận biết

    Gieo 1 con xúc xắc 1 lần. Biến cố A: “Số chấm xuất hiện nhỏ hơn 4”. Mô tả biến cố A.

     Mô tả biến cố A: A = {1;2;3}.

  • Câu 5: Nhận biết

    Gieo một đồng xu cân đối và đồng chất liên tiếp ba lần. Gọi A là biến cố “Có ít nhất hai mặt sấp xuất hiện liên tiếp” và B là biến cố “Kết quả ba lần gieo là như nhau”. Hãy liệt kê các kết quả của biến cố A
\cup B.

    A = \left\{ SSS,\ SSN,\ NSS
ight\}, B = \left\{ SSS,\ NNN
ight\}. Suy ra A \cup B = \left\{
SSS,\ SSN,\ NSS,\ NNN ight\}.

  • Câu 6: Vận dụng

    Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập các tam giác có các đỉnh là đỉnh của đa giác trên. Xác suất để chọn được một tam giác từ tập X là tam giác cân nhưng không phải là tam giác đều bằng:

    Số các tam giác bất kỳ là n(\Omega) =
C_{18}^{3}.

    Số các tam giác đều là \frac{18}{3} =
6.

    Có 18 cách chọn một đỉnh của đa giác, mỗi đỉnh có 8 cách chọn 2 đỉnh còn lại để được một tam giác cân.

    Số các tam giác cân là: 18.8 = 144.

    Số các tam giác cân không đều là: 144 -
6.3 = 126 \Rightarrow n(A) = 126.

    Xác suất cần tìm là P(A) =
\frac{126}{C_{18}^{3}} = \frac{21}{136}.

  • Câu 7: Nhận biết

    Gieo ngẫu nhiên một con xúc sắc cân đối đồng chất 2 lần. Xác suất mà số chấm của hai lần gieo là như nhau là bao nhiêu?

    Gọi A là biến cố “Số chấm trong hai lần gieo là bằng nhau”.

    n(\Omega) = 36.

    A = \left\{ (1,1);\ (2,2);...;(6,6)
ight\}, n(A) = 6.

    Vậy P(A) = \frac{6}{36} =
\frac{1}{6}.

  • Câu 8: Vận dụng

    Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số được lập từ tập hợp X = {1;2;3;4;5;6;7;8;9}. Chọn ngẫu nhiên một số từ S. Xác suất để số chọn được chia hết cho 6 bằng:

    Số phần tử trong không gian mẫu là n(\Omega) = 9^{4}.

    Gọi A là biến cố: “số chọn được chia hết cho 6”.

    Giả sử số cần tìm là \overline{abcd}.

    Do số cần tìm chia hết cho 6 nên chia hết cho 2.

    Do đó chọn d \in \left\{ 2;4;6;8
ight\} có 4 cách.

    Chọn a, b9^{2} cách. Để chọn c ta xét tổng M = a + b + d:

    Nếu M chia cho 3 dư 0 thì c \in
\left\{ 3;6;9 ight\} suy ra có 3 cách chọn.

    Nếu M chia cho 3 dư 1 thì c \in
\left\{ 2;5;8 ight\} suy ra có 3 cách chọn.

    Nếu M chia cho 3 dư 2 thì c \in
\left\{ 1;4;7 ight\} suy ra có 3 cách chọn.

    Do đó n(A) = 4.9^{2}.3 =
972.

    Vậy P(A) = \frac{972}{9^{4}} =
\frac{4}{27}.

  • Câu 9: Nhận biết

    Một hộp có 3 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3. Rút ngẫu nhiên một chiếc thẻ từ trong hộp. Không gian mẫu của phép thử đó là:

     Mô tả không gian mẫu: \Omega=\{1;2;3\}.

  • Câu 10: Nhận biết

    Một hộp chứa 10 tấm thẻ được đánh số lần lượt từ 1 đến 10. Rút ngẫu nhiên một tấm thẻ trong hộp. Tính xác suất của biến cố: “Tấm thẻ được rút ra ghi số chẵn”?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{10}^{1} = 10

    Gọi A là biến cố: “Tấm thẻ được rút ra ghi số chẵn” \Rightarrow n(A) = 5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{10} = \frac{1}{2}

  • Câu 11: Vận dụng

    Trong một buổi liên hoan có 10 cặp nam nữ, trong đó có 4 cặp vợ chồng. Chọn ngẫu nhiên 3 người để biểu diễn một tiết mục văn nghệ. Xác suất để 3 người được chọn không có cặp vợ chồng nào là bao nhiêu?

    Không gian mẫu là số cách chọn ngẫu nhiên 3 người trong 20 người.

    Suy ra số phần tử không gian mẫu là |\Omega| = C_{20}^{3} = 1140.

    Gọi A là biến cố ''3 người được chọn không có cặp vợ chồng nào''. Để tìm số phần tử của A, ta đi tìm số phần tử của biến cố \overline{A}, với biến cố \overline{A}3 người được chọn luôn có 1 cặp vợ chồng.

    + Chọn 1 cặp vợ chồng trong 4 cặp vợ chồng, có C_{4}^{1} cách.

    + Chọn thêm 1 người trong 18 người, có C_{18}^{1} cách.

    Suy ra số phần tử của biến cố \overline{A}\left| \Omega_{\overline{A}} ight| =
C_{4}^{1}.C_{18}^{1} = 72.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = 1140 - 72 =
1068.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{1068}{1140} =
\frac{89}{95}.

  • Câu 12: Thông hiểu

    Một đội gồm 5 nam và 8 nữ. Lập một nhóm gồm 4 người hát tốp ca. Tính xác suất để trong 4 người được chọn có ít nhất 3 nữ.

    Không gian mẫu là chọn tùy ý 4 người từ 13 người.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{13}^{4} = 715.

    Gọi A là biến cố ''4 người được ó ít nhất 3 nữ''. Ta có hai trường hợp thuận lợi cho biến cố A như sau:

    TH1:: Chọn 3 nữ và 1 nam, có C_{8}^{3}C_{5}^{1} cách.

    TH2:: Cả 4 nữ, có C_{8}^{4} cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| =
C_{8}^{3}C_{5}^{1} + C_{8}^{4} = 350.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{350}{715} =
\frac{70}{143}.

  • Câu 13: Thông hiểu

    Trong một chiếc hộp đựng 6 viên bi đỏ, 8 viên bi xanh, 10 viên bi trắng. Lấy ngẫu nhiên 4 viên bi. Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:

    Lấy ngẫu nhiên cùng lúc 4 viên bi trong 6 + 8 + 10 = 24 viên bi có số cách là:

    C_{24}^4 = 10{\text{ }}626

    Số phần tử của không gian mẫu là 10 626.

    Lấy 4 viên bi trong 16 viên bi đỏ, trắng có C_{16}^4 cách. Như vậy số kết quả thuận lợi cho biến cố “Lấy 4 viên bi không có màu xanh” là

    C_{16}^4 = 1820

    => Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:

    10{\text{ }}626-1{\text{ }}820 = 8{\text{ }}806

    Vậy có 8 806 kết quả thuận lợi cho biến cố B.

  • Câu 14: Thông hiểu

    Một hộp chứa 9 chiếc thẻ được đánh số từ 1 đến 9. Lấy ngẫu nhiên 3 chiếc thẻ từ hộp. Tính xác suất để tổng các số ghi trên 3 chiếc thẻ được lấy ra là một số lẻ.

    Số phần tử của không gian mẫu: n(\Omega)
= C_{9}^{3} = 84.

    Gọi A là biến cố "tổng các số ghi trên 3 chiếc thẻ được lấy ra là một số lẻ".

    Ta có:

    n(A) = C_{5}^{3} + C_{4}^{2}.C_{5}^{1} =
40.

    Xác suất để tổng các số ghi trên 3 chiếc thẻ được lấy ra là một số lẻ là:

    p(A) = \frac{n(A)}{n(\Omega)} =
\frac{40}{84} = \frac{10}{21}.

  • Câu 15: Thông hiểu

    Từ một hộp có 6 viên bi xanh, 5 viên bi đỏ và 4 viên bi vàng. Lấy ngẫu nhiên 7 viên bi. Tính xác suất để lấy được ít nhất một viên bi vàng?

    Số phần tử không gian mẫu: n(\Omega) =
C_{15}^{7} = 6435

    Số phần tử biến cố lấy ngẫu nhiên 7 viên bi không có viên bi màu vàng là: C_{11}^{7} = 330

    Vậy xác suất để lấy được ít nhất một viên bi vàng là: P = \frac{6435 - 330}{6435} =
\frac{37}{39}

  • Câu 16: Thông hiểu

    Gieo ba con súc sắc cân đối đồng chất. Tính xác suất để số chấm xuất hiện trên ba con súc sắc như nhau.

    Số phần tử của không gian mẫu là |\Omega|
= 6.6.6 = 36.

    Gọi A là biến cố ''Số chấm xuất hiện trên ba con súc sắc như nhau''. Ta có các trường hợp thuận lợi cho biến cố A(1;1;1),\ (2;2;2),\ (3;3;3),\ \cdots\
,(6;6;6).

    Suy ra \left| \Omega_{A} ight| =
6.

    Vậy xác suất cần tính P(A) =
\frac{1}{36}.

  • Câu 17: Thông hiểu

    Có bốn hành khách bước lên một đoàn tàu gồm 4 toa. Mỗi hành khách độc lập với nhau và chọn ngẫu nhiên một toa. Tính xác suất để 1 toa có 3 người, 1 toa có 1 người và 2 toa còn lại không có người?

    Vì mỗi hành khách có 4 cách chọn toa tàu nên: n(\Omega) = 4^{4} = 256

    Để xếp theo yêu cầu của bài toán ta thực hiện các bước liên tiếp như sau:

    Chọn 1 toa để xếp 3 người ta có: C_{4}^{1} = 4

    Chọn 3 người để xếp vào toa đó là: C_{4}^{3} = 4

    Chọn 1 toa từ 3 toa còn lại để xếp người còn lại vào: C_{3}^{1} = 3

    Theo quy tắc nhân ta có: 4.4.3 =
48

    Vậy xác suất cần tìm là: \frac{48}{256} =
\frac{3}{16}

  • Câu 18: Nhận biết

    Lấy ngẫu nhiên đồng thời 3 quả cầu từ hộp chứa 9 quả cầu đỏ và 6 quả cầu xanh. Tính xác suất để lấy được 3 quả cầu màu xanh?

    Ta có: n(\Omega) = C_{15}^{3} =
455

    Gọi A là biến cố “lấy được 3 quả cầu màu xanh”

    \Rightarrow n(A) = C_{6}^{3} =
20

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{20}{455} = \frac{4}{91}.

  • Câu 19: Vận dụng

    Một bộ đề thi Olympic Toán lớp 11 của Trường THPT Z mà mỗi đề gồm 5 câu được chọn từ 15 câu mức dễ, 10 câu mức trung bình và 5 câu mức khó. Một đề thi được gọi là “Tốt” nếu trong đề thi phải có cả mức dễ, mức trung bình và khó, đồng thời số câu mức khó không ít hơn 2. Lấy ngẫu nhiên một đề thi trong bộ đề trên. Tìm xác suất để đề thi lấy ra là một đề thi “Tốt”.

    Chọn 5 câu trong tổng số 30 câu nên ta có không gian mẫu n(\Omega) = C_{30}^{5}.

    Gọi A là biến cố “Lấy ra được một đề thi “Tốt””.

    TH1: 5 câu lấy ra có 2 câu khó, 1 câu dễ, 2 câu trung bình C_{5}^{2}.C_{15}^{1}.C_{10}^{2} (cách).

    TH2: 5 câu lấy ra có 2 câu khó, 2 câu dễ, 1 câu trung bình C_{5}^{2}.C_{15}^{2}.C_{10}^{1} (cách).

    TH3: 5 câu lấy ra có 3 câu khó, 1 câu dễ, 1 câu trung bình C_{5}^{3}.C_{15}^{1}.C_{10}^{1} (cách).

    Số kết quả thuận lợi của biến cố A là: n(A) = C_{5}^{2}.C_{15}^{1}.C_{10}^{2} +
C_{5}^{2}.C_{15}^{2}.C_{10}^{1} +
C_{5}^{3}.C_{15}^{1}.C_{10}^{1}.

    Xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{3125}{23751}.

  • Câu 20: Thông hiểu

    Một hộp chứa 2 bi xanh, 3 bi đỏ. Lấy ngẫu nhiên 3 bi. Tính xác suất để có ít nhất một bi xanh trong 3 viên.

    Số phần tử của không gian mẫu là |\Omega|
= C_{5}^{3} = 10.

    Gọi A là biến cố lấy ít nhất 1 bi xanh.

    Chọn 1 bi xanh, 2 bi đỏ, có C_{2}^{1}.C_{3}^{2} = 6(cách).

    Chọn 2 bi xanh, 1 bi đỏ, có C_{2}^{2}.C_{3}^{1} = 3(cách).

    Suy ra \left| \Omega_{A} ight| = 3 + 6
= 9.

    Xác suất cần tìm là P(A) =
\frac{9}{10}.

  • Câu 21: Vận dụng

    Hai hộp chứa các thẻ được đánh số. Hộp thứ nhất chứa 10 thẻ được đánh số từ 1 đến 10; hộp thứ hai chứa 9 thẻ được đánh số từ 1 đến 9. Chọn ngẫu nhiên mỗi hộp một thẻ và nhân các số trên hai thẻ lại với nhau. Tính xác suất để tích thu được là một số chẵn?

    Hộp thứ nhất chứa 10 thẻ được đánh số thứ tự từ 1 đến 10 gồm 5 thẻ mang số lẻ và 5 thẻ mang số chẵn.

    Hộp thứ hai chứa 9 thẻ đánh số thứ tự từ 1 đến 9 gồm 5 thẻ số lẻ và 4 thẻ số chẵn.

    Chọn ngẫu nhiên mỗi hộp 1 thẻ thì số cách chọn là:

    n(\Omega) = 10.9 = 90

    Gọi biến cố A: “Tích thu được là số chẵn” khi đó ta xét 3 trường hợp sau:

    TH1: Hộp thứ nhất chọn được thẻ chẵn và hộp thứ hai chọn được thẻ chẵn có: 5.4 = 20 cách.

    TH2: Hộp thứ nhất chọn được thẻ chẵn và hộp thứ hai chọn được thẻ lẻ có: 5.5 = 25 cách.

    TH3: Hộp thứ nhất chọn được thẻ lẻ và hộp thứ hai chọn được thẻ chẵn có: 5.4 = 20 cách.

    Theo quy tắc cộng ta có:

    n(A) = 20 + 25 + 20 = 65

    Vậy xác suất cần tìm là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{65}{90} = \frac{13}{18}

  • Câu 22: Nhận biết

    Viết tập hợp Ω là không gian mẫu trong trò chơi tung đồng xu hai lần liên tiếp.

     Ta có: Ω = {SS; SN; NS; NN}.

  • Câu 23: Nhận biết

    Một hộp có 1 viên bi xanh, 1 viên bi đỏ, 1 viên bi vàng. Chọn ngẫu nhiên 2 viên bi trong hộp (sau khi chọn mỗi viên lại thả lại vào hộp). Không gian mẫu là:

     Mô tả không gian mẫu: \Omega = \{XD; XV; DV; DX; VX; VD; XX; VV; DD\}

    (Xanh là X, đỏ là D, vàng là V).

  • Câu 24: Nhận biết

    Gieo một đồng tiền liên tiếp 2 lần. Số phần tử của không gian mẫu là bao nhiêu?

    n(\Omega) = 2.2 = 4.

    (lần 1 có 2 khả năng xảy ra - lần 2 có 2 khả năng xảy ra).

  • Câu 25: Nhận biết

    Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố A: "ít nhất một lần xuất hiện mặt sấp" là bao nhiêu?

    Ta có: \overline{A}: "không có lần nào xuất hiện mặt sấp" hay cả 3 lần đều mặt ngửa.

    Theo quy tắc nhân xác suất: P(\overline{A}) =\frac{1}{2}.\frac{1}{2}.\frac{1}{2} = \frac{1}{8}.

    Vậy: P(A) = 1 - P(\overline{A}) = 1 -\frac{1}{8} = \frac{7}{8}.

  • Câu 27: Nhận biết

    Gieo đồng tiền hai lần. Biến cố để mặt ngửa xuất hiện đúng 1 lần có bao nhiêu phần tử?

    Liệt kê ta có: A = \left\{ NS.SN
ight\}. (2 phần tử)

  • Câu 28: Thông hiểu

    Một nhóm có 6 nam và 4 nữ. Cần chọn 3 bạn để đi trực nhật. Tính xác suất sao cho trong các bạn được chọn luôn có bạn nữ.

    Chọn 3 bạn bất kì từ 10 bạn, suy ra n(\Omega)=C_{10}^3=120.

    Gọi A là biến cố "3 bạn đi trực nhật luôn có mặt bạn nữ".

    Trường hợp 1: 3 bạn nữ

    Có: C_4^3 = 4 (cách)

    Trường hợp 2: 2 bạn nữ + 1 bạn nam

    Có: C_4^2.C_6^1 = 36 (cách)

    Trường hợp 3: 1 bạn nữ + 2 bạn nam

    Có: C_4^1.C_6^2 = 60 (cách)

    Vậy n(A)=4+36+60=100.

    Xác suất P(A)=\frac{100}{120}=\frac56.

  • Câu 29: Nhận biết

    Kí hiệu nào sau đây là kí hiệu của biến cố chắc chắn?

    Kí hiệu biến cố chắc chắn là Ω.

  • Câu 31: Thông hiểu

    Trong lớp 10 A có 18 học sinh nam và 17 học sinh nữ. Chọn ngẫu nhiên 4 học sinh kiểm tra bài cũ. Xác suất để 4 học sinh được chọn có cả nam và nữ bằng bao nhiêu?

    Ta có: n(\Omega) = C_{35}^{4} =
52360

    Gọi A là biến cố 4 học sinh được chọn có cả nam và nữ

    Suy ra \overline{A} là biến cố 4 học sinh được chọn chỉ có nam hoặc chỉ có nữ

    4 học sinh được chọn đều là nam có C_{18}^{4} cách

    4 học sinh được chọn đều là nữ có C_{17}^{4} cách

    Suy ra số kết quả thuận lợi cho biến cố \overline{A} là: n\left( \overline{A} ight) = C_{18}^{4} +
C_{17}^{4} = 2380 + 3060 = 5440

    n(A) = n(\Omega) - n\left( \overline{A}
ight) = 52360 - 5440 = 46920

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{46920}{52360} = \frac{69}{77}

  • Câu 32: Thông hiểu

    Gieo hai con xúc xắc cân đối. Xác suất để tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 3 là:

    Số phàn tử không gian mẫu là: n(\Omega) =
36

    Số kết quả thuận lợi cho biến cố A: “Tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 3” là: A = \left\{
(1;2),(2;1),(1;1) ight\}

    \Rightarrow n(A) = 3

    Vậy xác suất của biến cố A cần tìm là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{3}{36} =
\frac{1}{12}

  • Câu 34: Nhận biết

    Một tổ học sinh lớp 10A có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 4 học sinh trong tổ đó để tham gia đội tình nguyện. Tính xác suất để bốn học sinh được chọn đều là nữ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{12}^{4} = 495

    Gọi A là biến cố: “Bốn học sinh được chọn đều là nữ”

    \Rightarrow n(A) = C_{5}^{4} =
5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{495} = \frac{1}{99}

  • Câu 35: Thông hiểu

    Trong hộp có 3 viên bi xanh và 5 viên bi đỏ. Lấy ngẫu nhiên trong hộp 3 viên bi. Xác suất của biến cố A: “Lấy ra được 3 viên bi màu đỏ” là:

    Chọn ba viên bi ngẫu nhiên trong hộp => n\left( \Omega  ight) = C_8^3

    Biến cố A: “Lấy ra được 3 viên bi màu đỏ” => n\left( A ight) = C_5^3

    => Xác suất của biến cố A là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{C_5^3}}{{C_8^3}} = \frac{5}{{28}}

  • Câu 36: Vận dụng

    Một bảng vuông gồm 100 \times 100 ô vuông đơn vị. Chọn ngẫu nhiên một ô hình chữ nhật. Xác suất để ô được chọn là hình vuông là bao nhiêu? (trong kết quả lấy 4 chữ số ở phần thập phân).

    Để có một ô hình chữ nhật ta cần chọn 2 đường dọc trong tổng số 101 đường dọc, và hai đường ngang trong tổng số 101 đường ngang. Vậy có tất cả: C_{101}^{2} \times C_{101}^{2} =
25502500 ô hình chữ nhật.

    Ta gọi phần mặt phẳng nằm giữa hai đường dọc hoặc hai đường ngang là một dải.

    Một hình vuông bất kì chính là giao của hai dải có cùng độ rộng (một dải dọc, một dải ngang)

    Số dải có độ rộng k(k \in Z,1 \leq k \leq
100) là: 101 - k

    Vậy có tất cả: \sum_{k = 1}^{100}{(101 -
k)^{2}} = 100^{2} + 99^{2} + ... + 1^{2} = \frac{100(100 + 1)(2.100 +
1)}{6} = 338350 hình vuông.

    Xác suất cần tìm là: \frac{338350}{25502500} = 0,013267... \approx
0,0133

  • Câu 37: Nhận biết

    Một homestay có 6 phòng đơn. Trên trang web của homestay có 6 nam và 4 nữ đặt phòng. Người chủ homestay chọn ngẫu nhiên 6 người cho nhận phòng. Tính xác suất để cả 6 người được chọn là nam?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{10}^{6} = 210

    Chọn ngẫu nhiên 6 người đều là nam ta có: C_{6}^{6} = 1 cách chọn

    Vậy xác suất để chọn 6 người đều là nam là: P = \frac{1}{210}.

  • Câu 38: Nhận biết

    Trong một tổ có 6 học sinh nam và 4 học sinh nữ. Chọn ngẫu nhiên 3 bạn trong tổ tham gia đội tình nguyện của trường. Xác suất để 3 bạn được chọn đều là nam là:

    Xét phép thử: Chọn ngẫu nhiên 3 trong 10 bạn trong tổ, ta có n(\Omega) = C_{10}^{3}.

    Gọi A là biến cố: “ 3 bạn được chọn toàn nam”, ta có n(A) = C_{6}^{3}.

    Xác suất của biến cố A\ :\ P(A) =
\frac{n(A)}{n(\Omega)} = \frac{C_{6}^{3}}{C_{10}^{3}} =
\frac{1}{6}.

  • Câu 39: Vận dụng

    Cho X = {0; 1; 2; 3; …; 15}. Chọn ngẫu nhiên 3 số trong tập hợp X. Xác suất để trong ba số được chọn không có hai số liên tiếp bằng:

    Không gian mẫu có số phần tử là: |\Omega|
= C_{16}^{3} = 560 (phần tử).

    Ta tìm số cách lấy ra ba số trong đó có đúng hai số liên tiếp nhau hoặc lấy ra được cả ba số liên tiếp nhau.

    Khi đó ta có các trường hợp sau:

    Trường hợp 1: Lấy ra ba số trong đó có đúng hai số liên tiếp nhau.

    Trong ba số lấy ra có hai số 0,1 hoặc 14, 15 khi đó số thứ ba có 13 cách lấy.

    Do đó trường hợp này có: 2.13 = 26 cách lấy.

    Trong ba số lấy ra không có hai số 0,1 hoặc 14, 15 khi đó ta có 13 cặp số liên tiếp nhau khác 0,1 và 14, 15, số thứ ba có 12 cách lấy. Do đó trường hợp này có: 13.12 = 156 cách lấy.

    Trường hợp 2: Lấy ra được cả ba số liên tiếp nhau có 14 cách lấy.

    Vậy ta có 26 + 156 + 14 = 196 cách lấy ra ba số liên tiếp nhau hoặc lấy ra ba số trong đó có hai số liên tiếp nhau.

    Xác suất để trong ba số được chọn không có hai số liên tiếp là: P = \frac{560 - 196}{560} =
\frac{13}{20}.

  • Câu 40: Nhận biết

    Một hộp chứa 11 quả cầu gồm 5 quả màu xanh và 6quả cầu màu đỏ. Chọn ngẫu nhiên đồng thời 2 quả cầu từ hộp đó. Tính xác suất để 2 quả cầu chọn ra cùng màu.

    Số cách lấy ra 2 quả cầu trong 11 quả là C_{11}^{2}, Suy ra n(\Omega) = C_{11}^{2}.

    Gọi A là biến cố lấy được 2 quả cùng màu. Suy ra n(A) = C_{5}^{2} + C_{6}^{2}.

    Xác suất của biến cố A là P(A) =
\frac{C_{5}^{2} + C_{6}^{2}}{C_{11}^{2}} = \frac{5}{11}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 10 Xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 2 lượt xem
Sắp xếp theo