Gieo ba con xúc xắc một cách độc lập. Tính xác suất để tổng số chấm trên mặt xuất hiện trên ba con xúc xắc bằng 9?
Gọi A là biến cố: “Tổng số chấm trên ba mặt của ba con xúc xắc là 9”
Vì nên
Lại có
Khi đó xác suất của biến cố A là:
Gieo ba con xúc xắc một cách độc lập. Tính xác suất để tổng số chấm trên mặt xuất hiện trên ba con xúc xắc bằng 9?
Gọi A là biến cố: “Tổng số chấm trên ba mặt của ba con xúc xắc là 9”
Vì nên
Lại có
Khi đó xác suất của biến cố A là:
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Xác suất để 3 quyển được lấy ra đều là môn toán là bao nhiêu?
Số cách lấy 3 quyển sách bất kì là .
Số cách lấy được 3 quyển thuộc môn toán là .
Suy ra xác suất cần tìm là .
Một đội văn nghệ có 5 nam và 8 nữ, đội trưởng cần lập một nhóm 4 người để tham gia biểu diễn một tiết mục chính. Xác suất để trong bốn người được chọn có ít nhất 3 nam bằng:
Số phần tử không gian mẫu là:
Gọi A là biến cố: “chọn được ít nhất 3 nam”
Vậy xác suất của biến cố A là:
Một bộ đề thi Olympic Toán lớp 11 của Trường THPT Z mà mỗi đề gồm 5 câu được chọn từ 15 câu mức dễ, 10 câu mức trung bình và 5 câu mức khó. Một đề thi được gọi là “Tốt” nếu trong đề thi phải có cả mức dễ, mức trung bình và khó, đồng thời số câu mức khó không ít hơn 2. Lấy ngẫu nhiên một đề thi trong bộ đề trên. Tìm xác suất để đề thi lấy ra là một đề thi “Tốt”.
Chọn 5 câu trong tổng số 30 câu nên ta có không gian mẫu .
Gọi A là biến cố “Lấy ra được một đề thi “Tốt””.
TH1: 5 câu lấy ra có 2 câu khó, 1 câu dễ, 2 câu trung bình (cách).
TH2: 5 câu lấy ra có 2 câu khó, 2 câu dễ, 1 câu trung bình (cách).
TH3: 5 câu lấy ra có 3 câu khó, 1 câu dễ, 1 câu trung bình (cách).
Số kết quả thuận lợi của biến cố A là: .
Xác suất của biến cố A là: .
Gọi là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp
. Xác suất để hai số được ó chữ số hàng đơn vị giống nhau là bao nhiêu?
Số phần tử của tập là
.
Không gian mẫu là chọn ngẫu nhiên số từ tập
.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
Số được ó chữ số hàng đơn vị giống nhau
. Ta mô tả không gian của biến cố
nhưu sau
● Có cách hữ số hàng đơn vị (chọn từ các chữ số
).
● Có cách chọn hai chữ số hàng chục (chọn từ các chữ số
).
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Một xạ thủ bắn bia. Biết rằng xác suất bắn trúng trong vòng 10 là 0,2; vòng 9 là 0,25 và vòng 8 là 0,15. Nếu trúng vòng k thì được k điểm. Giả sử xạ thủ đó bắn ba phát súng một cách độc lập. Xạ thủ đạt loại giỏi nếu anh ta đạt ít nhất 28 điểm. Xác suất để xạ thủ này đạt loại giỏi bằng là:
Gọi H là biến cố: “Xạ thủ bắn đạt loại giỏi”. A; B; C; D là các biến cố sau:
A: “Ba viên trúng vòng 10”;
B: “Hai viên trúng vòng 10 và một viên trúng vòng 9”;
C: “Một viên trúng vòng 10 và hai viên trúng vòng 9”;
D: “Hai viên trúng vòng 10 và hai viên trúng vòng 8”.
Các biến cố A; B; C; D là các biến cố xung khắc từng đôi một nên
.
Áp dụng quy tắc cộng mở rộng ta có:
.
Mà ;
;
.
Do đó .
Một lớp học có học sinh trong đó có
cặp anh em sinh đôi. Trong buổi họp đầu năm thầy giáo chủ nhiệm lớp muốn chọn ra
học sinh để làm cán sự lớp gồm lớp trưởng, lớp phó và bí thư. Xác suất để chọn ra
học sinh làm cán sự lớp mà không có cặp anh em sinh đôi nào là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên học sinh trong
học sinh.
Suy ra số phần tử không gian mẫu là .
Gọi là biến cố
học sinh được chọn không có cặp anh em sinh đôi nào
. Để tìm số phần tử của
, ta đi tìm số phần tử của biến cố
, với biến cố
là
học sinh được chọn luôn có
cặp anh em sinh đôi.
+ Chọn cặp em sinh đôi trong
cặp em sinh đôi, có
cách.
+ Chọn thêm học sinh trong 38 học sinh, có
cách.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Trên bàn có 4 quyển sách toán, 3 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để trong ba quyển sách lấy ra có ít nhất một quyển là toán?
Xác suất để trong ba quyển lấy ra có ít nhất một quyển sách Toán là:
Thí nghiệm nào không phải là phép thử ngẫu nhiên?
Phép thử ngẫu nhiên là phép thử mà ta chưa biết được kết quả là gì.
Đáp án “Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm xem có tất cả bao nhiêu viên bi.” không phải là phép thử vì ta biết chắc chắn kết quả chỉ có thể là một số cụ thể số bi xanh và số bi đỏ.
Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:
"Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm có tất bao nhiêu viên bi". Đây không phải là phép thử ngẫu nhiên.
Một bình chứa viên bi màu, trong đó có
bi xanh,
bi đỏ,
bi trắng. Lấy ngẫu nhiên
viên bi từ bình đó. Tính xác suất để lấy được
viên bi khác màu.
Lấy viên bi bất kì trong
viên bi trong bình thì có
(cách).
Lấy viên bi cùng màu thì có
(cách) nên có
(cách) lấy được
viên bi khác màu.
Xác suất để lấy được viên bi khác màu trong tổng số
viên bi là
.
Một chiếc hộp chứa 20 quả cầu gồm 8 quả màu xanh, 7 quả màu đỏ và 5 quả màu vàng. Lấy ngẫu nhiên 6 quả cầu từ chiếc hộp. Tính xác suất để 6 quả cầu lấy được ít nhất một quả màu đỏ?
Số phần tử không gian mẫu là:
Gọi A là biến cố trong 6 quả cầu lấy được ít nhất một quả đỏ.
Gọi B là biến cố trong 6 quả cầu lấy được không có quả đỏ.
Số phần tử của biến cố B là:
Xác suất của biến cố B là:
Vậy xác suất của biến cố A cần tìm là:
Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên?
Thí nghiệm không phải là phép thử ngẫu nhiên là: “Quan sát vận động viên chạy bộ xem được bao nhiêu ”.
Gieo một con súc sắc. Xác suất để mặt chấm xuất hiện là:
Gieo một con súc sắc có không gian mẫu .
Xét biến cố : “mặt
chấm xuất hiện”.
.
Do đó .
Một tổ học sinh lớp 10A có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 4 học sinh trong tổ đó để tham gia đội tình nguyện. Tính xác suất để bốn học sinh được chọn đều là nữ?
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Bốn học sinh được chọn đều là nữ”
Vậy xác suất của biến cố A là:
Lấy ngẫu nhiên hai tấm thẻ trong một hộp chứa 9 tấm thẻ được đánh số t 1 đến 9. Tính xác suất để tổng của các số trên hai tấm thẻ lấy ra là số chẵn?
Từ 1 đến 9 có 4 số chẵn và 5 số lẻ.
Số phần tử không gian mẫu là:
Gọi A là biến cố tổng của các số trên hai thẻ lấy ra là số chẵn.
Để tổng nhận được là số chẵn thì 2 số được chọn hoặc là hai số chẵn hoặc là hai số lẻ.
2 số được chọn là 2 số chẵn ta có: cách chọn.
2 số được chọn là 2 số lẻ ta có: cách chọn.
Suy ra số kết quả thuận lợi cho biến cố A là:
Vậy xác suất của biến cố A là:
Gọi là tập hợp tất cả các số tự nhiên gồm 2 chữ số khác nhau lập từ
. Chọn ngẫu nhiên 2 số từ tập
. Xác suất để tích hai số chọn được là một số chẵn là:
Ta có điều kiện chủ chốt “tích hai số được chọn là một số chẵn” Tồn tại ít nhất một trong hai số được chọn là chẵn.
Gọi là số tự nhiên có hai chữ số khác nhau được lập từ các số đã cho
Số cách chọn là 6 cách; Số cách chọn
cách
Số các số có hai chữ số khác nhau tạo được là
số. Suy ra
có
phần tử.
Số cách lấy ngẫu nhiên 2 số từ tập :
cách
Gọi biến cố : “Tích hai số được chọn là một số chẵn”
Gọi biến cố : “Tích hai số được chọn là một số lẻ”
Số các số lẻ trong :
(3 cách chọn chữ số hàng đơn vị là lẻ, 5 cách chọn chữ số hàng chục khác 0).
Số cách lấy ngẫu nhiên 2 số lẻ trong 15 số lẻ: cách
Suy ra . Vậy
.
Gieo ngẫu nhiên đồng tiền thì không gian mẫu của phép thử có bao nhiêu biến cố:
Mô tả không gian mẫu ta có: . (4 phần tử)
Xét một phép thử có không gian mẫu gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là một biến cố bất kì trong phép thử đó. Chọn phát biểu đúng dưới đây?
Xét một phép thử có không gian mẫu gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là một biến cố bất kì của phép thử đó. Khi đó
là phát biểu đúng.
Chọn ngẫu nhiên 2 học sinh từ một tổ có 9 học sinh. Biết rằng xác suất chọn được 2 học sinh nữ bằng , hỏi tổ có bao nhiêu học sinh nữ?
Gọi số học sinh nữ là
Chọn bất kỳ 2 học sinh ta có cách.
Do đó số phần tử của không gian mẫu là
Gọi biến cố A: “2 học sinh được chọn là 2 học sinh nữ”.
Để chọn 2 học sinh được 2 học sinh nữ có:
(cách)
Do đó số kết quả thuận lợi cho biến cố A là:
Xác suất để chọn được 2 học sinh nữ là:
Mà
Vậy có 5 học sinh nữ trong tổ.
Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố chắc chắn?
Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố chắc chắn là “Mặt xuất hiện của xúc xắc có số chấm không vượt quá 6”.
Cho phép thử có không gian mẫu . Cặp biến cố không đối nhau là cặp nào trong các cặp dưới đây?
Cặp biến cố không đối nhau là và
do
và
.
Một hộp đựng thẻ, đánh số từ
đến
. Chọn ngẫu nhiên
thẻ. Gọi
là biến cố để tổng số của
thẻ được chọn không vượt quá
. Tìm số phần tử của biến cố
.
Liệt kê ta có: . (4 phần tử)
Cho và
là hai biến cố đối nhau. Chọn mệnh đề đúng trong các mệnh đề sau đây?
Mệnh đề đúng là:
Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất lần. Số phần tử không gian mẫu là bao nhiêu?
Mỗi lần gieo có hai khả năng nên gieo 5 lần theo quy tắc nhân ta có .
Số phần tử không gian mẫu là .
Năm đoạn thẳng có độ dài 1cm; 3cm; 5cm; 7cm; 9cm. Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng trên. Xác suất để ba đoạn thẳng lấy ra có thể tạo thành 1 tam giác là:
Phân tích: Cần nhớ lại kiến thức cơ bản về bất đẳng thức tam giác.
Ba đoạn thẳng với chiều dài có thể là 3 cạch của một tam giác khi và chỉ khi
Số phần tử của không gian mẫu là:
Gọi là biến cố “lấy ba đoạn thẳng lấy ra lập thành một tam giác”
Các khả năng chọn được ba đoạn thẳng lập thành một tam giác là
Số trường hợp thuận lợi của biến cố là 3. Suy ra xác suất của biến cố
là
.
Lớp B có
đoàn viên, trong đó có
nam và
nữ. Chọn ngẫu nhiên
đoàn viên trong lớp để tham dự hội trại ngày
tháng
. Xác suất để chọn được 2 nam 1 nữ là:
Số phần tử của không gian mẫu .
Gọi là biến cố “
đoàn viên được chọn có
nam và
nữ”.
Số phần tử của là
.
Vậy xác xuất của biến cố là:
.
Lấy ngẫu nhiên đồng thời 3 quả cầu từ trong hộp chứa 10 quả cầu đỏ và 5 quả cầu xanh. Xác suất để ba quả cầu được chọn đều là màu xanh bằng:
Số phần tử không gian mẫu là:
Gọi A là biến cố lấy được 3 quả màu xanh
Số phần tử của biến cố A là:
Vậy xác suất của biến cố A là:
Trên kệ sách có 5 quyển sách Hóa học và 7 quyển sách Vật lí. Lấy ngẫu nhiên 3 quyển sách. Xác suất để ba quyển sách lấy ra có cả sách Hóa học và Vật lí bằng:
Số phần tử không gian mẫu (lấy 3 trong 12 quyển sách)
Gọi B là biến cố lấy được 3 quyển sách có cả sách Hóa học và sách Vật lí.
Khi đó là biến cố lấy được 3 quyển sách trong đó chỉ có 1 loại sách hoặc là Hóa học hoặc là Vật lí
TH1: 2 quyển sách được chọn là sách Hóa học ta có: cách chọn.
TH2: 2 quyển sách được chọn là sách Vật lí ta có: cách chọn.
Số phần tử của biến cố là:
Vậy xác suất của biến cố B cần tìm là:
Một hộp chứa quả cầu gồm
quả màu xanh và
quả cầu màu đỏ. Chọn ngẫu nhiên đồng thời
quả cầu từ hộp đó. Tính xác suất để
quả cầu chọn ra cùng màu.
Số cách lấy ra 2 quả cầu trong 11 quả là , Suy ra
.
Gọi A là biến cố lấy được 2 quả cùng màu. Suy ra .
Xác suất của biến cố A là .
Một nhóm học sinh lớp 10A gồm 10 học sinh trong đó có 4 học sinh nữ và 6 học sinh nam. Chọn ngẫu nhiên bốn học sinh trong nhóm để tham gia cuộc thi hùng biện. Xác suất để cả bốn bạn được chọn đều là nữ bằng:
Số phần tử không gian mẫu là:
Số kết quả thuận lợi cho biến cố: “Cả bốn bạn được chọn đều là nữ” bằng:
Vậy xác suất của biến cố ”Cả bốn bạn được chọn đều là nữ” bằng:
Chọn ngẫu nhiên một gia đình có 4 người con và quan sát giới tính của bốn người con này. Xác suất của biến cố hai con đầu là con trai bằng:
Ta có:
Gọi A là biến cố “Hai con đầu là con trai”
Vậy .
Xác suất của biến cố kí hiệu là
. Biến cố
là biến cố đối của A, có xác suất là
Chọn phát biểu sai trong các phát biểu sau:
Phát biểu sai là: "Xác suất của mỗi biến cố đo lường xảy ra của biến cố đó. Biến cố có khả năng xảy ra càng cao thì xác suất của nó càng xa 1."
Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố không?
Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố không là “Mặt xuất hiện của con xúc xắc có số chấm là 8 chấm.”
Trên bàn có 3 quả táo và 4 quả cam. Xác định số phần tử không gian mẫu của phép thử lấy 2 quả ở trên bàn sau đó bỏ ra ngoài rồi lấy tiếp 1 quả nữa.
Lấy 2 quả trong 7 quả ở trên bàn và không tính thứ tự nên số cách là: (cách).
Sau khi bỏ 2 quả ra ngoài còn lại 5 quả. Lấy 1 quả trong 5 quả trên bàn có 5 cách.
Vậy số phần tử không gian mẫu là:
Một lớp có 43 học sinh trong đó có 23 học sinh nữ và 20 học sinh nam. Chọn ngẫu nhiên 5 học sinh. Xác suất để 5 học sinh được chọn có cả nam và nữ gần nhất với kết quả nào dưới đây?
Số phần tử của không gian mẫu là:
Số cách chọn 5 học sinh chỉ có nam hoặc chỉ có nữ là:
Số cách chọn 5 học sinh có cả nam và nữ là:
Xác suất của biến cố 5 học sinh được chọn có cả nam và nữ là:
Rút ngẫu nhiên một thẻ từ hộp chứa 10 thẻ được đánh số từ 1 đến 10. Tính xác suất của biến cố “Rút được tấm thẻ ghi số chia hết cho 3”.
Số phần tử của không gian mẫu là:
Số kết quả thuận lợi cho biến cố A: “Số trên tấm thẻ được rút ra chia hết cho 3” là:
Xác suất của biến cố A là:
Cho một đa giác có
đỉnh nội tiếp một đường tròn
. Người ta lập một tứ giác tùy ý có bốn đỉnh là các đỉnh của
. Tính xác suất để lập được một tứ giác có bốn cạnh đều là đường chéo của
, số đó gần với số nào nhất trong các số sau?
Số phần tử của không gian mẫu là: .
Gọi là biến cố “lập được một tứ giác có bốn cạnh đều là đường chéo của
”.
Để chọn ra một tứ giác thỏa mãn đề bài ta làm như sau:
Bước 1: Chọn đỉnh đầu tiên của tứ giác, có cách.
Bước 2: Chọn đỉnh còn lại sao cho hai đỉnh bất kỳ của tứ giác cách nhau ít nhất 1 đỉnh. Điều này tương đương với việc ta phải chia
chiếc kẹo cho
đứa trẻ sao cho mỗi đứa trẻ có ít nhất
cái, có
cách, nhưng làm như thế mỗi tứ giác lặp lại 4 lần.
Số phần tử của biến cố
là:
.
Xác suất của biến cố là:
.