Đề kiểm tra 45 phút Chương 10 Xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một đội văn nghệ có 5 nam và 8 nữ, đội trưởng cần lập một nhóm 4 người để tham gia biểu diễn một tiết mục chính. Xác suất để trong bốn người được chọn có ít nhất 3 nam bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
C_{13}^{4}

    Gọi A là biến cố: “chọn được ít nhất 3 nam”

    n(A) = C_{5}^{3}.C_{8}^{1} +
C_{5}^{4}

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{17}{143}

  • Câu 2: Thông hiểu

    Một hộp có 5 viên bi xanh, 6 viên bi đỏ và 7 viên bi vàng. Chọn ngẫu nhiên 5 viên bi trong hộp. Tính xác suất để 5 viên bi được chọn có đủ màu và số bi đỏ bằng số bi vàng.

    Không gian mẫu là số cách chọn ngẫu nhiên 5 viên bi từ hộp chứa 18 viên bi. Suy ra số phần tử của không gian mẫu là |\Omega| = C_{18}^{5} = 8568.

    Gọi A là biến cố ''5 viên bi được ó đủ màu và số bi đỏ bằng số bi vàng''. Ta có các trường hợp thuận lợi cho biến cố A là:

    TH1: Chọn 1 bi đỏ, 1 bi vàng và 3 bi xanh nên có C_{6}^{1}.C_{7}^{1}.C_{5}^{3} cách.

    TH2: Chọn 2 bi đỏ, 2 bi vàng và 1 bi xanh nên có C_{6}^{2}.C_{7}^{2}.C_{5}^{1} cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| =
C_{6}^{1}.C_{7}^{1}.C_{5}^{3} + C_{6}^{2}.C_{7}^{2}.C_{5}^{1} =
1995.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{1995}{8568} =
\frac{95}{408}.

  • Câu 3: Vận dụng

    Cho một đa giác (H) có 60 đỉnh nội tiếp một đường tròn (O). Người ta lập một tứ giác tùy ý có bốn đỉnh là các đỉnh của (H). Tính xác suất để lập được một tứ giác có bốn cạnh đều là đường chéo của (H), số đó gần với số nào nhất trong các số sau?

    Số phần tử của không gian mẫu là: n(\Omega) = C_{60}^{4}.

    Gọi E là biến cố “lập được một tứ giác có bốn cạnh đều là đường chéo của (H)”.

    Để chọn ra một tứ giác thỏa mãn đề bài ta làm như sau:

    Bước 1: Chọn đỉnh đầu tiên của tứ giác, có 60 cách.

    Bước 2: Chọn 3 đỉnh còn lại sao cho hai đỉnh bất kỳ của tứ giác cách nhau ít nhất 1 đỉnh. Điều này tương đương với việc ta phải chia m = 60 chiếc kẹo cho n = 4 đứa trẻ sao cho mỗi đứa trẻ có ít nhất k = 2 cái, có C_{m - n(k - 1) - 1}^{n - 1} =
C_{55}^{3} cách, nhưng làm như thế mỗi tứ giác lặp lại 4 lần.

    \Rightarrow Số phần tử của biến cố E là: n(E) = \frac{60.C_{55}^{3}}{4}.

    Xác suất của biến cố E là: P(E) = \frac{n(E)}{n(\Omega)} =
\frac{60.C_{55}^{3}}{4.C_{60}^{4}} \approx 80,7\%.

  • Câu 4: Nhận biết

    Gieo một con xúc xắc cân đối, đồng chất 6 mặt và quan sát số chấm xuấ hiện trên con xúc xắc. Xác suất để mặt 4 chấm xuất hiện là:

    Số phần tử không gian mẫu là: n(\Omega) =
6

    Gọi A là biến cố: “Số chấm xuất hiện trên mặt xúc xắc là 5”

    \Rightarrow n(A) = 1

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{1}{6}

  • Câu 6: Vận dụng

    Cho đa giác đều có 24 đỉnh. Chọn ngẫu nhiên bốn đỉnh. Tính xác suất chọn ra được hình chữ nhật có các đỉnh là 4 trong 24 đỉnh của đa giác đó?

    Số phần tử của không gian mẫu là: n(\Omega) = C_{24}^{4}

    Ta vẽ đường tròn ngoại tiếp đa giác đều 24 đỉnh. Vẽ một đường kính của đường tròn này. Khi đó 2 nửa đường tròn đều chứa 12 đình.

    Với mỗi đỉnh thuộc nửa đường tròn thứ nhất ta đều có 1 đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại.

    Như vậy cứ 2 đỉnh thuộc đường tròn thứ nhất ta xác định được hai đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại, bốn đỉnh này tạo thành hình chữ nhật.

    Vậy số hình chữ nhật tạo thành từ 4 đa giác đã cho là C_{12}^{2}

    Xác suất cần tìm là: P =
\frac{C_{12}^{2}}{C_{24}^{4}} = \frac{1}{161}.

  • Câu 7: Nhận biết

    Xét một phép thử T và không gian mẫu là \Omega. Giả sử C là một biến cố liên quan đến phép thử. Xác suất của biến cố C là:

    Công thức đúng là: P(C) =
\frac{n(C)}{n(\Omega)}.

  • Câu 8: Nhận biết

    Một nhóm học sinh lớp 10A gồm 10 học sinh trong đó có 4 học sinh nữ và 6 học sinh nam. Chọn ngẫu nhiên bốn học sinh trong nhóm để tham gia cuộc thi hùng biện. Xác suất để bốn bạn được chọn có ba nam và một nữ bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
C_{10}^{4} = 210

    Số kết quả thuận lợi cho biến cố: “Bốn bạn được chọn có ba nam và một nữ” bằng: C_{6}^{3}.C_{4}^{1} =
80

    Vậy xác suất của biến cố “Bốn bạn được chọn có ba nam và một nữ” bằng: \frac{80}{210} =
\frac{8}{21}

  • Câu 9: Nhận biết

    Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố A: "lần đầu tiên xuất hiện mặt sấp" là bao nhiêu?

    Xác suất để lần đầu xuất hiện mặt sấp là \frac{1}{2}. Lần 2 và 3 thì tùy ý nên xác suất là 1.

    Theo quy tắc nhân xác suất: P(A) =\frac{1}{2}.1.1 = \frac{1}{2}.

  • Câu 10: Thông hiểu

    Gieo hai con xúc xắc cân đối. Xác suất để tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 3 là:

    Số phàn tử không gian mẫu là: n(\Omega) =
36

    Số kết quả thuận lợi cho biến cố A: “Tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 3” là: A = \left\{
(1;2),(2;1),(1;1) ight\}

    \Rightarrow n(A) = 3

    Vậy xác suất của biến cố A cần tìm là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{3}{36} =
\frac{1}{12}

  • Câu 11: Vận dụng

    Ba xạ thủ cùng bắn vào một tấm bia, xác suất trúng đích lần lượt là 0,5; 0,6 và 0,7. Xác suất để có đúng 2 người bắn trúng bia là:

    Gọi A là biến có người thứ nhất bắn trúng thì \overline{A} là biến cố người thứ nhất bắn trượt.

    Vậy P(A) = 0,5; P\left( \overline{A} ight) = 0,5.

    Gọi B là biến cố người thứ hai bắn trúng và C là biến cố người thứ ba bắn trúng.

    Tương tự ta có P(B) = 0,6; P\left( \overline{B} ight) = 0,4; P(C) = 0,7; P\left( \overline{C} ight) = 0,3.

    Để hai người bắn trúng bia có các khả năng sau xảy ra:

    Trường hợp 1: Người thứ nhất và thứ hai bắn trúng, người thứ ba bắn trượt.

    Xác suất xảy ra là: P(A).P(B).P\left(
\overline{C} ight) = 0,5.0,6.0,3 = 0,09.

    Trường hợp 2: Người thứ nhất và thứ ba bắn trúng, người thứ hai bắn trượt.

    Xác suất xảy ra là: P(A).P\left(
\overline{B} ight).P(C) = 0,5.0,4.0,7 = 0,14.

    Trường hợp 3: Người thứ hai và thứ ba bắn trúng, người thứ nhất bắn trượt.

    Xác suất xảy ra là: P\left( \overline{A}
ight).P(B).P(C) = 0,5.0,6.0,7 = 0,21.

    Vậy xác suất để hai người bắn trúng bia là: 0,09 + 0,14 + 0,21 = 0,44.

  • Câu 12: Thông hiểu

    Gieo ngẫu nhiên một đồng tiên cân đối, đồng chất 3 lần liên tiếp. Xác suất để ít nhất một lần xuất hiện mặt sấp là:

    Ta có: n(\Omega) = 2^{3} = 8

    Gọi A là biến cố “ít nhất một lần xuất hiện mặt sấp”

    \Rightarrow A = \left\{
SSS;SSN;SNS;NSS;NSN;NNS ight\}

    \Rightarrow n(A) = 7

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{7}{8}

  • Câu 14: Vận dụng

    Cho đa giác đều có 14 đỉnh. Chọn ngẫu nhiên 3 đỉnh trong số 14 đỉnh của đa giác. Xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác vuông là bao nhiêu?

    Số phần tử không gian mẫu là |\Omega| =
C_{14}^{3}.

    Giả sử tam giác cần lập là ABC vuông tại A.

    Chọn đỉnh A của tam giác có 14 cách.

    Để tam giác vuông tại A thì cung BC có số đo là \pi, hay BC là đường kính của đường tròn ngoại tiếp đa giác, do đó có 6 cách chọn BC.

    Gọi E là biến cố "3 đỉnh được chọn là 3 đỉnh của một tam giác vuông"

    Số phần tử của E14.6 = 84.

    Xác suất cần tìm là P(E) =
\frac{84}{C_{14}^{3}} = \frac{3}{13}.

  • Câu 15: Thông hiểu

    Một đội gồm 5 nam và 8 nữ. Lập một nhóm gồm 4 người hát tốp ca. Tính xác suất để trong 4 người được chọn có ít nhất 3 nữ.

    Không gian mẫu là chọn tùy ý 4 người từ 13 người.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{13}^{4} = 715.

    Gọi A là biến cố ''4 người được ó ít nhất 3 nữ''. Ta có hai trường hợp thuận lợi cho biến cố A như sau:

    TH1:: Chọn 3 nữ và 1 nam, có C_{8}^{3}C_{5}^{1} cách.

    TH2:: Cả 4 nữ, có C_{8}^{4} cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| =
C_{8}^{3}C_{5}^{1} + C_{8}^{4} = 350.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{350}{715} =
\frac{70}{143}.

  • Câu 16: Nhận biết

    Một túi đựng 6 bi xanh và 4 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất lấy được toàn màu đỏ là:

    Ta có số phần từ của không gian mẫu là n(\Omega) = C_{10}^{2} = 45.

    Gọi A: "Hai bi lấy ra đều là bi đỏ".

    Khi đó n(A) = C_{4}^{2} = 6.

    Vậy xác suất cần tính là P(A) =
\frac{n(A)}{n(\Omega)} = \frac{2}{15}.

  • Câu 17: Nhận biết

    Một homestay có 6 phòng đơn. Trên trang web của homestay có 6 nam và 4 nữ đặt phòng. Người chủ homestay chọn ngẫu nhiên 6 người cho nhận phòng. Tính xác suất để cả 6 người được chọn là nam?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{10}^{6} = 210

    Chọn ngẫu nhiên 6 người đều là nam ta có: C_{6}^{6} = 1 cách chọn

    Vậy xác suất để chọn 6 người đều là nam là: P = \frac{1}{210}.

  • Câu 18: Nhận biết

    Cho A là biến cố liên quan phép thử T. Mệnh đề nào sau đây là mệnh đề đúng?

    Mệnh đề đúng là: P(A) = 1 - P\left(
\overline{A} ight)

  • Câu 19: Thông hiểu

    Trên bàn có 4 quyển sách toán, 3 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để trong ba quyển sách lấy ra có ít nhất một quyển là toán?

    Xác suất để trong ba quyển lấy ra có ít nhất một quyển sách Toán là: 1 - \frac{C_{3}^{3}}{C_{7}^{3}} =
\frac{34}{35}

  • Câu 21: Nhận biết

    Gieo một xúc xắc 2 lần . Biến cố A là biến cố để sau hai lần gieo có ít nhất 1 mặt 6 chấm.

     Các kết quả phù hợp là: A = {(1; 6), (2; 6), (3; 6), (4; 6), (5; 6), (6; 6), (6; 1), (6; 2), (6; 3), (6; 4), (6; 5)}

  • Câu 22: Thông hiểu

    Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:

    Theo định nghĩa ta có phép thử ngẫu nhiên là những phép thử mà ta không thể đoán trước kết quả của nó, mặc dù đã biết được tập hợp tất cả các kết quả của phép thử đó

    Đáp án "Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm xem có tất cả bao nhiêu viên bi." không phải phép thử vì ta có thể biết chắc chắn kết quả chỉ có thể là 1 số cụ thể là tổng số bi đỏ và xanh.

  • Câu 23: Nhận biết

    Một người chọn ngẫu nhiên đồng thời 4 quân bài từ bộ tú lơ khơ 52 quân bài. Tính xác suất của biến cố: “Cả 4 quân bài đều là Át”?

    Số phần tử không gian mẫu: n(\Omega) =
C_{52}^{4}

    Chỉ có đúng 1 cách để lấy được cả 4 quân bài đều là Át nên xác suất cần tìm là:

    P = \frac{1}{C_{52}^{4}}

  • Câu 24: Vận dụng

    Gọi S là tập hợp các số tự nhiên gồm 9 chữ số khác nhau. Chọn ngẫu nhiên một số từ S. Hãy tính xác suất để chọn được một số gồm 4 chữ số lẻ và chữ số 0 luôn đứng giữa hai chữ số lẻ (hai số hai bên chữ số 0 là số lẻ).

    Số phần tử của tập S9.A_{9}^{8}.

    Không gian mẫu là chọn ngẫu nhiên 1 số từ tập S.

    Suy ra số phần tử của không gian mẫu là |\Omega| = 9.A_{9}^{8}.

    Gọi X là biến cố ''Số được chọn gồm 4 chữ số lẻ và chữ số 0 luôn đứng giữa hai chữ số lẻ''. Do số 0 luôn đứng giữa 2 số lẻ nên số 0 không đứng ở vị trí đầu tiên và vị trí cuối cùng. Ta có các khả năng

    + Chọn 1 trong 7 vị trí để xếp số 0, có C_{7}^{1} cách.

    + Chọn 2 trong 5 số lẻ và xếp vào 2 vị trí cạnh số 0 vừa xếp, có A_{5}^{2} cách.

    + Chọn 2 số lẻ trong 3 số lẻ còn lại và chọn 4 số chẵn từ \left\{ 2;\ 4;\ 6;\ 8 ight\} sau đó xếp 6 số này vào 6 vị trí trống còn lại có C_{3}^{2}.C_{4}^{4}.6! cách.

    Suy ra số phần tử của biến cố X\left| \Omega_{X} ight| =
C_{7}^{1}.A_{5}^{2}.C_{3}^{2}.C_{4}^{4}.6!.

    Vậy xác suất cần tính P(X) = \frac{\left|
\Omega_{X} ight|}{|\Omega|} =
\frac{C_{7}^{1}.A_{5}^{2}.C_{3}^{2}.C_{4}^{4}.6!}{9.A_{9}^{8}} =
\frac{5}{54}.

  • Câu 25: Nhận biết

    Chọn ngẫu nhiên một số trong 20 số nguyên dương đầu tiên. Tính xác suất để chọn được số chia hết cho 3 là:

    Chọn ngẫu nhiên một số trong 20 số nguyên dương đầu tiên có 20 cách chọn

    \Rightarrow n(\Omega) = 20

    Gọi A là biến cố “chọn được số chia hết cho 3”

    \Rightarrow A = \left\{ 3;6;9;12;15;18
ight\}

    \Rightarrow n(A) = 6

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{6}{20} = \frac{3}{10}.

  • Câu 26: Nhận biết

    Lớp 11B có 25 đoàn viên, trong đó có 10 nam và 15 nữ. Chọn ngẫu nhiên 3 đoàn viên trong lớp để tham dự hội trại ngày 26 tháng 3. Xác suất để chọn được 2 nam 1 nữ là:

    Số phần tử của không gian mẫu n(\Omega) =
C_{25}^{3}.

    Gọi A là biến cố “3 đoàn viên được chọn có 2 nam và 1 nữ”.

    Số phần tử của An(A) = C_{10}^{2}.C_{15}^{1}.

    Vậy xác xuất của biến cố A là: P(A) = \frac{n(A)}{n(\Omega)} =
\frac{C_{10}^{2}.C_{15}^{1}}{C_{25}^{3}} = \frac{27}{92}.

  • Câu 27: Nhận biết

    Cho A là một biến cố trong phép thử T. Xác suất của biến cố đối \overline{A} liên hệ với xác suất của biến cố A được xác định theo công thức nào sau đây?

    Xác suất của biến cố đối \overline{A} liên hệ với xác suất của biến cố A theo công thức:

    P\left( \overline{A} ight) = 1 -
P(A)

  • Câu 28: Thông hiểu

    Một tổ học sinh gồm 7 học sinh nam và 3 học sinh nữ. Chọn ngẫu nhiên 2 học sinh. Tính xác suất sao cho 2 người có cả nam và nữ?

    Số phần tử không gian mẫu là:

    n(\Omega) = C_{10}^{2} = 45

    Gọi A là biến cố 2 người được chọn có đủ nam và nữ

    Số phần tử của biến cố A là: n(A) = 7.3 =
21

    Vậy xác suất của biến cố A cần tìm là: P(B) = \frac{n(A)}{n(\Omega)} = \frac{21}{45} =
\frac{7}{15}

  • Câu 29: Nhận biết

    Gieo một con súc sắc cân đối và đồng chất. Xác suất mà mặt có số chấm chẵn xuất hiện là bao nhiêu?

    Ta có: Không gian mẫu \Omega = \left\{
1,2,3,4,5,6 ight\} suy ra n(\Omega) = 6.

    Gọi biến cố A: “Con súc sắc có số chấm chẵn xuất hiện” hay A = \left\{
2;4;6 ight\} suy ra n(A) =
3.

    Từ đó suy ra p(A) =
\frac{n(A)}{n(\Omega)} = \frac{3}{6} = \frac{1}{2}.

    Vậy xác suất để mặt có số chấm chẵn xuất hiện là \frac{1}{2}.

  • Câu 30: Thông hiểu

    Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Xác suất để 3 quyển được lấy ra có ít nhất 1 quyển là toán là bao nhiêu?

    Số cách lấy 3 quyển sách bất kì là C_{9}^{3} = 84.

    Số cách lấy được 3 quyển lý là C_{4}^{0}.C_{3}^{3}.C_{2}^{0} = 1.

    Số cách lấy được 2 quyển lý, 1 quyển hóa là C_{4}^{0}.C_{3}^{2}.C_{2}^{1} = 6.

    Số cách lấy được 1 quyển lý, 2 quyển hóa là C_{4}^{0}.C_{3}^{1}.C_{2}^{2} = 3.

    Số cách lấy 3 quyển sách mà không có sách toán là 1 + 6 + 3 = 10.

    Suy ra số cách lấy 3 quyển sách mà có ít nhất 1 quyển sách toán là 74 cách.

    Suy ra xác suất cần tìm là \frac{37}{42}.

  • Câu 31: Vận dụng

    Một bộ đề thi Olympic Toán lớp 11 của Trường THPT Z mà mỗi đề gồm 5 câu được chọn từ 15 câu mức dễ, 10 câu mức trung bình và 5 câu mức khó. Một đề thi được gọi là “Tốt” nếu trong đề thi phải có cả mức dễ, mức trung bình và khó, đồng thời số câu mức khó không ít hơn 2. Lấy ngẫu nhiên một đề thi trong bộ đề trên. Tìm xác suất để đề thi lấy ra là một đề thi “Tốt”.

    Chọn 5 câu trong tổng số 30 câu nên ta có không gian mẫu n(\Omega) = C_{30}^{5}.

    Gọi A là biến cố “Lấy ra được một đề thi “Tốt””.

    TH1: 5 câu lấy ra có 2 câu khó, 1 câu dễ, 2 câu trung bình C_{5}^{2}.C_{15}^{1}.C_{10}^{2} (cách).

    TH2: 5 câu lấy ra có 2 câu khó, 2 câu dễ, 1 câu trung bình C_{5}^{2}.C_{15}^{2}.C_{10}^{1} (cách).

    TH3: 5 câu lấy ra có 3 câu khó, 1 câu dễ, 1 câu trung bình C_{5}^{3}.C_{15}^{1}.C_{10}^{1} (cách).

    Số kết quả thuận lợi của biến cố A là: n(A) = C_{5}^{2}.C_{15}^{1}.C_{10}^{2} +
C_{5}^{2}.C_{15}^{2}.C_{10}^{1} +
C_{5}^{3}.C_{15}^{1}.C_{10}^{1}.

    Xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{3125}{23751}.

  • Câu 32: Nhận biết

    Cho một phép thử T có không gian mẫu \Omega. Giả thiết rằng các kết quả có thể của T là đồng khả năng. Khi đó nếu E là một biến cố liên quan đến phép thử T thì xác suất của E (kí hiệu là P(E)) được cho bởi công thức nào sau đây? Biết rằng kí hiệu số phần tử của không gian mẫu và tập E lần lượt làn(\Omega),n(E).

    Nếu E là một biến cố có liên quan đến phép thử T thì xác suất của biến cố E được xác định bởi công thức P(E) =
\frac{n(E)}{n(\Omega)}.

  • Câu 33: Nhận biết

    Một chiếc hộp đựng 5 chiếc thẻ được đánh số từ 1 đến 5. Rút ngẫu nhiên đồng thời 2 thẻ trong hộp. Xét biến cố A: “Số ghi trên hai thẻ đều là số lẻ”. Tính số phần tử của biến cố A?

    Số phần tử của biến cố A là: C_{3}^{2} =
3

  • Câu 34: Nhận biết

    Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một lần xuất hiện mặt sấp là bao nhiêu?

    Phép thử: Gieo đồng tiền 5 lần cân đối và đồng chất.

    Ta có n(\Omega) = 2^{5} =
32.

    Biến cố A: Được ít nhất một lần xuất hiện mặt sấp.

    \overline{A}: Tất cả đều là mặt ngửa.

    n\left( \overline{A} ight) =
1.

    \Rightarrow n(A) = n(\Omega) - n\left(
\overline{A} ight) = 31.

    \Rightarrow p(A) = \frac{n(A)}{n(\Omega)}
= \frac{31}{32}.

  • Câu 35: Thông hiểu

    Gieo một con xúc xắc cân đối và đồng chất ba lần. Xác suất để ít nhất một lần xuất hiện mặt sáu chấm bằng bao nhiêu?

    Ta có: n(\Omega) = 6^{3} =216

    Gọi A là biến cố ít nhất một lần xuất hiện mặt sáu chấm

    Suy ra \overline{A} là biến cố không có lần nào xuất hiện mặt sáu chấm.

    \Rightarrow n\left( \overline{A} ight)= 5^{3} = 125

    Khi đó xác suất của biến cố A cần tìm là: P(A) = 1 - P\left( \overline{A} ight) = 1 -\frac{125}{216} = \frac{91}{216}

  • Câu 36: Thông hiểu

    Đội tuyển của một lớp có 8 học sinh nam và 4 học sinh nữ. Trong buổi dự lễ trao thưởng, các học sinh được xếp thành 1 hàng ngang. Xác suất để xếp cho 2 học sinh nữ không đứng cạnh nhau là:

    12 vị trí là hoán vị của 12 học sinh đó.

    Do đó số phần tử của không gian mẫu là: n(Ω) = 12!.

    Gọi A là biến cố “Xếp 2 bạn nữ không đứng cạnh nhau”.

    Chia việc xếp thành 2 công đoạn:

    Công đoạn 1: Xếp 8 bạn nam vào 8 chỗ có 8! cách.

    Công đoạn 2: Khi đó 8 bạn nam tạo ra 9 khe trống, xếp 4 bạn nữ vào 9 khe trống đó có A_9^4 cách.

    Theo quy tắc nhân, xếp 12 bạn mà 2 bạn nữ không đứng cạnh nhau có: 8!. cách.

    => n\left( A ight) = 8!.A_9^4

     Xác suất biến cố A là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{8!.A_9^4}}{{12!}} = \frac{{14}}{{55}}

  • Câu 37: Nhận biết

    Gieo một con xúc xắc cân đối, đồng chất 6 mặt và quan sát số chấm xuấ hiện trên con xúc xắc. Xác suất của biến cố: “Số chấm xuất hiện trên mặt xúc xắc là 5” bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
6

    Gọi A là biến cố: “Số chấm xuất hiện trên mặt xúc xắc là 5”

    \Rightarrow n(A) = 1

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{1}{6}

  • Câu 38: Nhận biết

    Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố A: "kết quả của 3 lần gieo là như nhau" là bao nhiêu?

    Lần đầu có thể ra tùy ý nên xác suất là 1. Lần 2 và 3 phải giống lần 1 xác suất là \frac{1}{2}.

    Theo quy tắc nhân xác suất: P(A) =1.\frac{1}{2}.\frac{1}{2} = \frac{1}{4}.

  • Câu 39: Thông hiểu

    Một chiếc hộp chứa 20 quả cầu gồm 8 quả màu xanh, 7 quả màu đỏ và 5 quả màu vàng. Lấy ngẫu nhiên 6 quả cầu từ chiếc hộp. Tính xác suất để 6 quả cầu lấy được ít nhất một quả màu đỏ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{20}^{6}

    Gọi A là biến cố trong 6 quả cầu lấy được ít nhất một quả đỏ.

    Gọi B là biến cố trong 6 quả cầu lấy được không có quả đỏ.

    Số phần tử của biến cố B là: n(B) =
C_{13}^{6}

    Xác suất của biến cố B là: P(B) =
\frac{n(B)}{n(\Omega)} = \frac{143}{3230}

    Vậy xác suất của biến cố A cần tìm là: P(A) = 1 - P(B) = 1 - \frac{143}{3230} =
\frac{3087}{3230}

  • Câu 40: Vận dụng

    Cho X = {0; 1; 2; 3; …; 15}. Chọn ngẫu nhiên 3 số trong tập hợp X. Xác suất để trong ba số được chọn không có hai số liên tiếp bằng:

    Không gian mẫu có số phần tử là: |\Omega|
= C_{16}^{3} = 560 (phần tử).

    Ta tìm số cách lấy ra ba số trong đó có đúng hai số liên tiếp nhau hoặc lấy ra được cả ba số liên tiếp nhau.

    Khi đó ta có các trường hợp sau:

    Trường hợp 1: Lấy ra ba số trong đó có đúng hai số liên tiếp nhau.

    Trong ba số lấy ra có hai số 0,1 hoặc 14, 15 khi đó số thứ ba có 13 cách lấy.

    Do đó trường hợp này có: 2.13 = 26 cách lấy.

    Trong ba số lấy ra không có hai số 0,1 hoặc 14, 15 khi đó ta có 13 cặp số liên tiếp nhau khác 0,1 và 14, 15, số thứ ba có 12 cách lấy. Do đó trường hợp này có: 13.12 = 156 cách lấy.

    Trường hợp 2: Lấy ra được cả ba số liên tiếp nhau có 14 cách lấy.

    Vậy ta có 26 + 156 + 14 = 196 cách lấy ra ba số liên tiếp nhau hoặc lấy ra ba số trong đó có hai số liên tiếp nhau.

    Xác suất để trong ba số được chọn không có hai số liên tiếp là: P = \frac{560 - 196}{560} =
\frac{13}{20}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 10 Xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo