Đề kiểm tra 45 phút Chương 10 Xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Phát biểu nào sau đây đúng?

    Nếu một biến cố có xác suất rất bé thì trong một phép thử, biến cố đó sẽ không xảy ra.

  • Câu 2: Vận dụng

    Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng (xem hình minh họa). Bạn An di chuyển quân vua ngẫu nhiên 3 bước. Xác suất sau 3 bước quân vua trở về ô xuất phát là bao nhiêu?

    Tại mọi ô đang đứng, ông vua có 8 khả năng lựa chọn để bước sang ô bên cạnh.

    Do đó không gian mẫu n(\Omega) =
8^{3}.

    Gọi A là biến cố “sau 3 bước quân vua trở về ô xuất phát”. Sau ba bước quân vua muốn quay lại ô ban đầu khi ông vua đi theo đường khép kín tam giá

    Chia hai trường hợp:

    + Từ ô ban đầu đi đến ô đen, đến đây có 4 cách để đi bước hai rồi về lại vị trí ban đầu.

    + Từ ô ban đầu đi đến ô trắng, đến đây có 2 cách để đi bước hai rồi về lại vị trí ban đầu.

    Do số phần tử của biến cố A là n(A) = 4.4
+ 2.4 = 24.

    Vậy xác suất P(A) = \frac{24}{8^{3}} =
\frac{3}{64}.

  • Câu 3: Thông hiểu

    Giáo viên chủ nhiệm mang đến lớp 6 cuốn sách khoa học và 4 cuốn sách tham khảo (các sách khác nhau từng đôi một). Giáo viên cho bạn C mượn ngẫu nhiên 3 quyển sách để đọc. Tính xác suất của biến cố: “X mượn ít nhất một cuốn sách tham khảo”.

    Số phần tử không gian mẫu là: n(\Omega) =
C_{10}^{3} = 120

    Gọi A là biến cố: “X mượn ít nhất một cuốn sách tham khảo”.

    Khi đó \overline{A} là biến cố X mượn 3 cuốn sách khoa học. Khi đó: n\left(
\overline{A} ight) = C_{6}^{3} = 20

    Vậy xác suất của biến cố A là: P(A) = 1 -
P\left( \overline{A} ight) = 1 - \frac{20}{120} =
\frac{5}{6}

  • Câu 4: Vận dụng

    Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho bằng:

    Số phần tử của không gian mẫu là: n(\Omega) = C_{12}^{3}.

    Gọi A: “Chọn được ba đỉnh tạo thành tam giác không có cạnh nào là cạnh của đa giác đã cho”

    Suy ra \overline{A}: “Chọn được ba đỉnh tạo thành tam giác có ít nhất một cạnh là cạnh của đa giác đã cho”.

    Do đó \overline{A}: “Chọn được ba đỉnh tạo thành tam giác có một cạnh hoặc hai cạnh là cạnh của đa giác đã cho”.

    Trường hợp 1: Chọn ra tam giác có 2 cạnh là 2 cạnh của đa giác đã cho, ta chọn ra 3 đỉnh liên tiếp của đa giác 12 cạnh. Có 12 cách.

    Trường hợp 2: Chọn ra tam giác có đúng 1 cạnh là cạnh của đa giác đã cho, ta chọn ra 1 cạnh và 1 đỉnh không liền với 2 đỉnh của cạnh đó. Suy ra có 12 cách chọn một cạnh và C_{8}^{1} = 8 cách chọn đỉnh.

    Vậy có 12.8 cách.

    Số phần tử của biến cố \overline{A} là: n\left( \overline{A} ight) = 12 +
12.8.

    Số phần tử của biến cố A là: n(A) = C_{12}^{3} - 12 - 12.8.

    Xác suất của biến cố AP(A) =
\frac{n(A)}{n(\Omega)} = \frac{C_{12}^{3} - 12 -
12.8}{C_{12}^{3}}.

  • Câu 5: Thông hiểu

    Lấy ngẫu nhiên 3 quả cầu từ hộp gồm 6 quả cầu trắng và 3 quả cầu đen. Tính xác suất để lấy được ba quả cùng màu?

    Số phần tử của không gian mẫu n(\Omega) =
C_{9}^{3} = 84

    Gọi A là biến cố lấy được 3 quả cùng màu

    TH1: Lấy được 3 quả màu trắng có: C_{6}^{3} = 20 cách

    TH2: Lấy được 3 quả màu đen có: C_{3}^{3}
= 1 cách

    \Rightarrow n(A) = 20 + 1 =
21

    Vậy xác suất của biến cố A cần tìm là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{21}{84} =
\frac{1}{4}

  • Câu 7: Thông hiểu

    Trong một chiếc hộp đựng 6 viên bi đỏ, 8 viên bi xanh, 10 viên bi trắng. Lấy ngẫu nhiên 4 viên bi. Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:

    Lấy ngẫu nhiên cùng lúc 4 viên bi trong 6 + 8 + 10 = 24 viên bi có số cách là:

    C_{24}^4 = 10{\text{ }}626

    Số phần tử của không gian mẫu là 10 626.

    Lấy 4 viên bi trong 16 viên bi đỏ, trắng có C_{16}^4 cách. Như vậy số kết quả thuận lợi cho biến cố “Lấy 4 viên bi không có màu xanh” là

    C_{16}^4 = 1820

    => Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:

    10{\text{ }}626-1{\text{ }}820 = 8{\text{ }}806

    Vậy có 8 806 kết quả thuận lợi cho biến cố B.

  • Câu 8: Thông hiểu

    Một hộp chứa 7 bi xanh, 6 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất để được hai bi cùng màu là bao nhiêu?

    Số phần tử của không gian mẫu là |\Omega|
= C_{13}^{2} = 78.

    Gọi A là biến cố lấy được hai bi cùng màu.

    Chọn 2 bi xanh, có C_{7}^{2} =
21(cách).

    Chọn 2 bi đỏ, có C_{6}^{2} =
15(cách).

    Suy ra \left| \Omega_{A} ight| = 21 +
15 = 36.

    Xác suất cần tìm là P(A) = \frac{36}{78}
\simeq 0,46.

  • Câu 9: Thông hiểu

    Một nhóm 18 học sinh gồm 10 học sinh nam. Chọn ngẫu nhiên đồng thời 5 học sinh. Tính xác suất để trong 5 học sinh được chọn có cả nam và nữ đồng thời số học sinh nam nhiều hơn số học sinh nữ?

    Số phần tử không gian mẫu n(\Omega) =
C_{18}^{5} = 8568

    Các trường hợp thỏa mãn điều kiện bài toán:

    TH1: Chọn được 3 nam và 2 nữ: C_{10}^{3}.C_{8}^{2} = 3360 cách chọn

    TH2: Chọn được 4 nam và 1 nữ: C_{10}^{4}.C_{8}^{1} = 1680 cách chọn

    Suy ra số kết quả thuận lợi cho biến cố A: “5 học sinh được chọn có cả nam và nữ đồng thời số học sinh nam nhiều hơn số học sinh nữ” là: 3360 + 1680 = 5040 cách

    Vậy xác suất của biến cố A là: P(A) =
\frac{5040}{8568} = \frac{10}{17}

  • Câu 10: Vận dụng

    Cho năm đoạn thẳng có độ dài: 1\ cm, 3\
cm, 5\ cm,7\ cm, 9\
cm. Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng đó. Tính xác suất để ba đoạn thẳng lấy ra là ba cạnh của một tam giác.

    * Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng đã cho có C_{5}^{3} = 10 cách.

    Suy ra n(\Omega) = 10.

    * Gọi A là biến cố "lấy được ba đoạn thẳng là ba cạnh của một tam giác".

    Các trường hợp ba đoạn thẳng là ba cạnh của một tam giác là:

    \left\{ 3;5;7 ight\},\ \left\{ 3;7;9
ight\},\ \left\{ 5;7;9 ight\} (thỏa mãn: hiệu hai cạnh bé hơn cạnh còn lại, tổng hai cạnh lớn hơn cạnh còn lại).

    Do đó n(A) = 3. Vậy sác xuất cần tìm là P(A) = \frac{n(A)}{n(\Omega)} =
\frac{3}{10}.

  • Câu 11: Nhận biết

    Một tổ học sinh lớp 10A có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 4 học sinh trong tổ đó để tham gia đội tình nguyện. Tính xác suất để bốn học sinh được chọn đều là nữ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{12}^{4} = 495

    Gọi A là biến cố: “Bốn học sinh được chọn đều là nữ”

    \Rightarrow n(A) = C_{5}^{4} =
5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{495} = \frac{1}{99}

  • Câu 12: Thông hiểu

    Một bình chứa 16 viên vi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi từ bình đó. Tính xác suất lấy được cả 3 viên bi đều không có màu đỏ.

    Số cách lấy 3 viên bi bất kì là C_{16}^{3} = 560.

    Số cách lấy được 3 viên bi trắng là C_{7}^{3}.C_{6}^{0}.C_{3}^{0} = 35.

    Số cách lấy được 2 viên bi trắng, 1 viên bi đen là C_{7}^{2}.C_{6}^{1}.C_{3}^{0} = 126.

    Số cách lấy được 1 viên bi trắng, 2 viên bi đen là C_{7}^{1}.C_{6}^{2}.C_{3}^{0} = 105.

    Số cách lấy được 3 viên bi đen là C_{7}^{0}.C_{6}^{3}.C_{3}^{0} = 20.

    Số cách lấy được cả 2 viên bi không đỏ là 35 + 126 + 105 + 20 = 286.

    Suy ra xác suất cần tìm là \frac{143}{280}.

  • Câu 14: Nhận biết

    Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất bốn lần. Xác suất để cả bốn lần gieo đều xuất hiện mặt sấp là bao nhiêu?

    Gọi A là biến cố: “cả bốn lần gieo đều xuất hiện mặt sấp.”

    Không gian mẫu: 2^{4} = 16.

    n(A) = 1.1.1.1 = 1.

    =>P(A) = \frac{n(A)}{|\Omega|} =
\frac{1}{16}..

  • Câu 15: Vận dụng

    Một đề thi trắc nghiệm gồm 50 câu, mỗi câu có bốn phương án trả lời trong đó chỉ có một phương án đúng, mỗi câu trả lời đúng được 0,2 điểm. Một thí sinh làm bài bằng cách chọn ngẫu nhiên 1 trong 4 phương án ở mỗi câu. Xác suất để thí sinh đó được 6 điểm là bao nhiêu?

    Không gian mẫu của phép thử trên có số phần tử là |\Omega| = 4^{50}.

    Gọi A là biến cố: “ Thí sinh đó được 6 điểm”

    Tìm \left| \Omega_{A}
ight|: Để được 6 điểm, thí sinh đó phải làm đúng 30 câu và làm sai 20 câu.

    Công đoạn 1: Chọn 30 câu từ 50 câu để làm câu đúng. Có C_{50}^{30} cách.

    Công đoạn 2: Chọn phương án đúng của mỗi câu từ 30 câu đã chọn. Có 1^{30} cách.

    Công đoạn 3: Chọn một phương án sai trong ba phương án sai của mỗi câu từ 20 còn lại. Có 3^{20}cách.

    Theo quy tắc nhân, số kết quả thuận lợi cho biến cố A\left|
\Omega_{A} ight| = C_{50}^{30}.1^{30}.3^{20}.

    Vậy xác suất để học sinh đó được 6 điểm là:P(A) = \frac{\left| \Omega_{A} ight|}{|\Omega|}
= \frac{C_{50}^{30}.1^{30}.3^{20}}{4^{50}} =
C_{50}^{30}.0,25^{30}.0,75^{20} =
C_{50}^{20}.0,25^{30}.0,75^{20}.

  • Câu 16: Vận dụng

    Một bảng vuông gồm 100 \times 100 ô vuông đơn vị. Chọn ngẫu nhiên một ô hình chữ nhật. Xác suất để ô được chọn là hình vuông là bao nhiêu? (trong kết quả lấy 4 chữ số ở phần thập phân).

    Để có một ô hình chữ nhật ta cần chọn 2 đường dọc trong tổng số 101 đường dọc, và hai đường ngang trong tổng số 101 đường ngang. Vậy có tất cả: C_{101}^{2} \times C_{101}^{2} =
25502500 ô hình chữ nhật.

    Ta gọi phần mặt phẳng nằm giữa hai đường dọc hoặc hai đường ngang là một dải.

    Một hình vuông bất kì chính là giao của hai dải có cùng độ rộng (một dải dọc, một dải ngang)

    Số dải có độ rộng k(k \in Z,1 \leq k \leq
100) là: 101 - k

    Vậy có tất cả: \sum_{k = 1}^{100}{(101 -
k)^{2}} = 100^{2} + 99^{2} + ... + 1^{2} = \frac{100(100 + 1)(2.100 +
1)}{6} = 338350 hình vuông.

    Xác suất cần tìm là: \frac{338350}{25502500} = 0,013267... \approx
0,0133

  • Câu 17: Thông hiểu

    Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của biến cố B: “Tổng số chấm xuất hiện trong hai lần gieo nhỏ hơn 4”.

    Ta có:

    n(\Omega) = 6^{2} = 36

    Các kết quả thuận lợi cho biến cố: “Tổng số chấm xuất hiện trong hai lần gieo nhỏ hơn 4” là: B = \left\{
(1;1),(1;2),(2;1) ight\}

    \Rightarrow n(B) = 3

    Vậy xác suất của biến cố B là: P(B) =
\frac{n(B)}{n(\Omega)} = \frac{3}{36} = \frac{1}{12}

  • Câu 18: Nhận biết

    Kí hiệu nào sau đây là kí hiệu của biến cố chắc chắn?

    Kí hiệu biến cố chắc chắn là Ω.

  • Câu 19: Nhận biết

    Một lớp có 40 học sinh, trong đó có 4 học sinh tên Anh. Trong một lần kiểm tra bài cũ, thầy giáo gọi ngẫu nhiên hai học sinh trong lớp lên bảng. Tính xác suất để 2 bạn học sinh tên Anh cùng lên bảng.

    Số phần tử của không gian mẫu n(\Omega) =
C_{40}^{2} = 780.

    Gọi A là biến cố gọi hai học sinh tên Anh lên bảng, ta có n(A) =
C_{4}^{2} = 6.

    Vậy xác suất cần tìm là P(A) =
\frac{6}{780} = \frac{1}{130}.

  • Câu 20: Nhận biết

    Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố không?

    Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố không là “Mặt xuất hiện của con xúc xắc có số chấm là 8 chấm.”

  • Câu 21: Thông hiểu

    Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:

    Theo định nghĩa ta có phép thử ngẫu nhiên là những phép thử mà ta không thể đoán trước kết quả của nó, mặc dù đã biết được tập hợp tất cả các kết quả của phép thử đó

    Đáp án "Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm xem có tất cả bao nhiêu viên bi." không phải phép thử vì ta có thể biết chắc chắn kết quả chỉ có thể là 1 số cụ thể là tổng số bi đỏ và xanh.

  • Câu 22: Nhận biết

    Gieo đồng tiền 5lần cân đối và đồng chất. Xác suất để được ít nhất một đồng tiền xuất hiện mặt sấp là bao nhiêu?

    n(\Omega) = 2^{5} = 32.

    A: “được ít nhất một đồng tiền xuất hiện mặt sấp”.

    Xét biến cố đối \overline{A}: “không có đồng tiền nào xuất hiện mặt sấp”.

    \overline{A} = \left\{ (N,N,N,N,N)
ight\}, có n\left( \overline{A}
ight) = 1.

    Suy ra n(A) = 32 - 1 = 31.

    KL: P(A) = \frac{n(A)}{n(\Omega)} =
\frac{31}{32}.

  • Câu 23: Nhận biết

    Một tổ có 6 học sinh nam và 4 học sinh nữ. Chọn ngẫu nhiên 4 học sinh. Xác suất để trong 4 học sinh được chọn luôn có học sinh nữ là:

    n(\Omega) = C_{10}^{4} =
210.

    Gọi A là biến cố:” trong 4 học sinh được chọn luôn có học sinh nữ” \Rightarrow n(A) = C_{10}^{4} - C_{6}^{4} =
195

    Vậy xác suất của biến cố AP(A) = \frac{n(A)}{n(\Omega)} =
\frac{195}{210} = \frac{13}{14}.

  • Câu 24: Nhận biết

    Cho một phép thử T có không gian mẫu \Omega. Giả thiết rằng các kết quả có thể của T là đồng khả năng. Khi đó nếu E là một biến cố liên quan đến phép thử T thì xác suất của E (kí hiệu là P(E)) được cho bởi công thức nào sau đây? Biết rằng kí hiệu số phần tử của không gian mẫu và tập E lần lượt làn(\Omega),n(E).

    Nếu E là một biến cố có liên quan đến phép thử T thì xác suất của biến cố E được xác định bởi công thức P(E) =
\frac{n(E)}{n(\Omega)}.

  • Câu 25: Nhận biết

    Gieo một xúc xắc 2 lần . Biến cố A là biến cố để sau hai lần gieo có ít nhất 1 mặt 6 chấm.

     Các kết quả phù hợp là: A = {(1; 6), (2; 6), (3; 6), (4; 6), (5; 6), (6; 6), (6; 1), (6; 2), (6; 3), (6; 4), (6; 5)}

  • Câu 27: Nhận biết

    Cho A là biến cố liên quan phép thử T. Mệnh đề nào sau đây là mệnh đề đúng?

    Mệnh đề đúng là: P(A) = 1 - P\left(
\overline{A} ight)

  • Câu 28: Vận dụng

    Trong chiếc hộp chứa 37 tấm thẻ được đánh số theo thứ tự từ 1 đến 37 (hai tấm thẻ khác nhau được đánh số khác nhau). Lấy ngẫu nhiên đồng thời 3 thẻ trong hộp. Xác suất để các số ghi trên ba tấm thẻ có tổng là một số chia hết cho 3 bằng bao nhiêu?

    Từ 1 đến 37 có 12 số chia hết cho 3; 13 số chia cho 3 dư 1 và 12 số chia cho 3 dư 2

    Số phần tử không gian mẫu là: n(\Omega) =
C_{37}^{3} = 7770

    Để lấy được 3 tấm thẻ mà tổng các số ghi trên ba tấm thẻ chia hết cho 3 ta có các trường hợp sau:

    TH1: 3 số đều chia hết cho 3 ta có: C_{12}^{3} = 220 cách chọn.

    TH2: 3 số chia 3 dư 1 ta có: C_{13}^{3} =
286 cách chọn.

    TH3: 3 số chia 3 dư 2 ta có: C_{12}^{3} =
220 cách chọn.

    TH4: 1 số chia hết cho 3, 1 số chia 3 dư 1 và 1 số chia cho 3 dư 2 ta có: 12.13.12 = 1872 cách chọn.

    Suy ra có tất cả 220 + 286 + 220 + 1872 =
2598 cách chọn thỏa mãn yêu cầu đề bài.

    Vậy xác suất của biến cố: “Các số ghi trên ba tấm thẻ có tổng là một số chia hết cho 3” là: P = \frac{2598}{7770}
= \frac{433}{1295}

  • Câu 29: Thông hiểu

    Trong một chiếc hộp đựng 5 quả cầu xanh, 4 quả cầu đỏ và 3 quả cầu vàng. Chọn ngẫu nhiên 3 quả cầu. Tính xác suất của biến cố “3 quả cầu có đủ ba màu”?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{12}^{3} = 220

    Gọi A là biến cố chọn được 3 quả có đủ ba màu.

    Số phần tử của biến cố A là: n(A) = 5.4.3
= 60

    Khi đó xác suất của biến cố A là: P(A) =
\frac{60}{220} = \frac{3}{11}

  • Câu 30: Nhận biết

    Cho A là một biến cố liên quan đến phép thử T. Mệnh đề nào sau đây là mệnh đề đúng?

     Mệnh đề đúng là: P(A) = 1 – P(\bar{A}).

  • Câu 31: Nhận biết

    Phép thử ngẫu nhiên (gọi tắt là phép thử) là gì?

    Phép thử ngẫu nhiên (gọi tắt là phép thử) là hoạt động mà ta không thể biết trước được kết quả của nó.

  • Câu 32: Thông hiểu

    Gieo một con xúc xắc cân đối và đồng chất ba lần. Xác suất để ít nhất một lần xuất hiện mặt sáu chấm bằng bao nhiêu?

    Ta có: n(\Omega) = 6^{3} =216

    Gọi A là biến cố ít nhất một lần xuất hiện mặt sáu chấm

    Suy ra \overline{A} là biến cố không có lần nào xuất hiện mặt sáu chấm.

    \Rightarrow n\left( \overline{A} ight)= 5^{3} = 125

    Khi đó xác suất của biến cố A cần tìm là: P(A) = 1 - P\left( \overline{A} ight) = 1 -\frac{125}{216} = \frac{91}{216}

  • Câu 33: Nhận biết

    Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một lần xuất hiện mặt sấp là bao nhiêu?

    Phép thử: Gieo đồng tiền 5 lần cân đối và đồng chất.

    Ta có n(\Omega) = 2^{5} =
32.

    Biến cố A: Được ít nhất một lần xuất hiện mặt sấp.

    \overline{A}: Tất cả đều là mặt ngửa.

    n\left( \overline{A} ight) =
1.

    \Rightarrow n(A) = n(\Omega) - n\left(
\overline{A} ight) = 31.

    \Rightarrow p(A) = \frac{n(A)}{n(\Omega)}
= \frac{31}{32}.

  • Câu 34: Thông hiểu

    Lớp 12 có 9 học sinh giỏi, lớp 11 có 10 học sinh giỏi, lớp 10 có 3 học sinh giỏi. Chọn ngẫu nhiên hai trong số học sinh đó. Tính xác suất để cả hai học sinh đó cùng một lớp.

    Số phần tử của không gian mẫu là |\Omega|
= C_{22}^{2} = 231.

    Gọi A là biến cố cả hai học sinh được chọn từ cùng một lớp.

    Chọn 2 học sinh của lớp 12, có C_{9}^{2}
= 36(cách).

    Chọn 2 học sinh của lớp 11, có C_{10}^{2}
= 45(cách).

    Chọn 2 học sinh của lớp 10, có C_{3}^{2}
= 3(cách).

    Suy ra \left| \Omega_{A} ight| = 36 +
45 + 3 = 84.

    Xác suất cần tìm là P(A) = \frac{84}{231}
= \frac{4}{11}.

  • Câu 35: Nhận biết

    Gieo đồng tiền hai lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là bao nhiêu?

    Số phần tử không gian mẫu:n(\Omega) = 2.2
= 4.

    Biến cố xuất hiện mặt sấp ít nhất một lần: A = \left\{ SN;NS;SS ight\}.

    Suy ra P(A) = \frac{n(A)}{n(\Omega)} =
\frac{3}{4}.

  • Câu 36: Nhận biết

    Gieo một con súc sắc. Xác suất để mặt 6 chấm xuất hiện là:

    Gieo một con súc sắc có không gian mẫu \Omega = \left\{ 1;2;3;4;5;6 ight\} \Rightarrow
n(\Omega) = 6.

    Xét biến cố A: “mặt 6 chấm xuất hiện”. A = \left\{ 6 ight\} \Rightarrow n(A) =
1.

    Do đó P(A) = \frac{1}{6}.

  • Câu 37: Thông hiểu

    Đội tuyển của một lớp có 8 học sinh nam và 4 học sinh nữ. Trong buổi dự lễ trao thưởng, các học sinh được xếp thành 1 hàng ngang. Xác suất để xếp cho 2 học sinh nữ không đứng cạnh nhau là:

    12 vị trí là hoán vị của 12 học sinh đó.

    Do đó số phần tử của không gian mẫu là: n(Ω) = 12!.

    Gọi A là biến cố “Xếp 2 bạn nữ không đứng cạnh nhau”.

    Chia việc xếp thành 2 công đoạn:

    Công đoạn 1: Xếp 8 bạn nam vào 8 chỗ có 8! cách.

    Công đoạn 2: Khi đó 8 bạn nam tạo ra 9 khe trống, xếp 4 bạn nữ vào 9 khe trống đó có A_9^4 cách.

    Theo quy tắc nhân, xếp 12 bạn mà 2 bạn nữ không đứng cạnh nhau có: 8!. cách.

    => n\left( A ight) = 8!.A_9^4

     Xác suất biến cố A là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{8!.A_9^4}}{{12!}} = \frac{{14}}{{55}}

  • Câu 38: Nhận biết

    Lấy ngẫu nhiên đồng thời 3 quả cầu từ hộp chứa 9 quả cầu đỏ và 6 quả cầu xanh. Tính xác suất để lấy được 3 quả cầu màu xanh?

    Ta có: n(\Omega) = C_{15}^{3} =
455

    Gọi A là biến cố “lấy được 3 quả cầu màu xanh”

    \Rightarrow n(A) = C_{6}^{3} =
20

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{20}{455} = \frac{4}{91}.

  • Câu 39: Nhận biết

    Gieo 2 con súc sắc và gọi kết quả xảy ra là tích số hai nút ở mặt trên. Không gian mẫu có bao nhiêu phần tử?

    Mô tả không gian mẫu ta có: \Omega =
\left\{ 1;2;3;4;5;6;8;9;10;12;15;16;18;20;24;25;30;36 ight\}. (18 phần tử)

  • Câu 40: Vận dụng

    Xếp ngẫu nhiên 5 bạn nam và 3 bạn nữ vào một bàn tròn. Xác suất để không có ba bạn nữ nào ngồi cạnh nhau.

    Theo công thức hoán vị vòng quanh ta có: |\Omega| = 7!

    Để xếp các bạn nữ không ngồi cạnh nhau, trước hết ta xếp các bạn nam vào bàn tròn: có 4! cách, giữa 5 bạn nam đó ta sẽ có được 5 ngăn (do ở đây là bàn tròn). Xếp chỉnh hợp 3 bạn nữ vào 5 ngăn đó có A_{5}^{3} cách.

    Vậy xác suất xảy ra là:P =
\frac{4!.A_{5}^{3}}{7!} = \frac{2}{7}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 10 Xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo