Gieo ngẫu nhiên một đồng tiên cân đối, đồng chất 3 lần liên tiếp. Xác suất để ít nhất một lần xuất hiện mặt sấp là:
Ta có:
Gọi A là biến cố “ít nhất một lần xuất hiện mặt sấp”
Vậy
Gieo ngẫu nhiên một đồng tiên cân đối, đồng chất 3 lần liên tiếp. Xác suất để ít nhất một lần xuất hiện mặt sấp là:
Ta có:
Gọi A là biến cố “ít nhất một lần xuất hiện mặt sấp”
Vậy
Một hộp có
bi đen,
bi trắng. Chọn ngẫu nhiên
bi. Tính xác suất
bi được chọn có đủ hai màu.
Số phần tử không gian mẫu: .
(bốc 2 bi bất kì từ 9 bi trong hộp ).
Gọi : “hai bi được chọn có đủ hai màu”. Ta có:
.
( chọn 1 bi đen từ 5 bi đen – chọn 1 bi trắng từ 4 bi trắng ).
Khi đó: .
Hai hộp chứa các thẻ được đánh số. Hộp thứ nhất chứa 10 thẻ được đánh số từ 1 đến 10; hộp thứ hai chứa 9 thẻ được đánh số từ 1 đến 9. Chọn ngẫu nhiên mỗi hộp một thẻ và nhân các số trên hai thẻ lại với nhau. Tính xác suất để tích thu được là một số chẵn?
Hộp thứ nhất chứa 10 thẻ được đánh số thứ tự từ 1 đến 10 gồm 5 thẻ mang số lẻ và 5 thẻ mang số chẵn.
Hộp thứ hai chứa 9 thẻ đánh số thứ tự từ 1 đến 9 gồm 5 thẻ số lẻ và 4 thẻ số chẵn.
Chọn ngẫu nhiên mỗi hộp 1 thẻ thì số cách chọn là:
Gọi biến cố A: “Tích thu được là số chẵn” khi đó ta xét 3 trường hợp sau:
TH1: Hộp thứ nhất chọn được thẻ chẵn và hộp thứ hai chọn được thẻ chẵn có: 5.4 = 20 cách.
TH2: Hộp thứ nhất chọn được thẻ chẵn và hộp thứ hai chọn được thẻ lẻ có: 5.5 = 25 cách.
TH3: Hộp thứ nhất chọn được thẻ lẻ và hộp thứ hai chọn được thẻ chẵn có: 5.4 = 20 cách.
Theo quy tắc cộng ta có:
Vậy xác suất cần tìm là:
Từ một hộp gồm 12 quả bóng gồm 5 quả đỏ và 7 quả xanh, lấy ngẫu nhiên đồng thời 3 quả. Xác suất để lấy được 3 quả màu xanh bằng bao nhiêu?
Lấy 3 quả bóng từ 12 quả ta có:
Lấy ngẫu nhiên 3 quả bóng đều màu xanh có: cách
Vậy xác suất để lấy được 3 quả bóng màu xanh là: .
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Xác suất để 3 quyển được lấy ra có ít nhất 1 quyển là toán là bao nhiêu?
Số cách lấy 3 quyển sách bất kì là .
Số cách lấy được 3 quyển lý là .
Số cách lấy được 2 quyển lý, 1 quyển hóa là .
Số cách lấy được 1 quyển lý, 2 quyển hóa là .
Số cách lấy 3 quyển sách mà không có sách toán là .
Suy ra số cách lấy 3 quyển sách mà có ít nhất 1 quyển sách toán là 74 cách.
Suy ra xác suất cần tìm là .
Một túi đựng
bi xanh và
bi đỏ. Lấy ngẫu nhiên
bi. Xác suất lấy được toàn màu đỏ là:
Ta có số phần từ của không gian mẫu là .
Gọi : "Hai bi lấy ra đều là bi đỏ".
Khi đó .
Vậy xác suất cần tính là .
Xét một phép thử T và không gian mẫu là
. Giả sử C là một biến cố liên quan đến phép thử. Xác suất của biến cố C là:
Công thức đúng là: .
Một hộp có 1 viên bi xanh, 1 viên bi đỏ, 1 viên bi vàng. Chọn ngẫu nhiên 2 viên bi trong hộp (sau khi chọn mỗi viên lại thả lại vào hộp). Không gian mẫu là:
Mô tả không gian mẫu: .
(Xanh là X, đỏ là D, vàng là V).
Trên kệ sách có 5 quyển sách Hóa học và 7 quyển sách Vật lí. Lấy ngẫu nhiên 3 quyển sách. Xác suất để ba quyển sách lấy ra có cả sách Hóa học và Vật lí bằng:
Số phần tử không gian mẫu (lấy 3 trong 12 quyển sách)
Gọi B là biến cố lấy được 3 quyển sách có cả sách Hóa học và sách Vật lí.
Khi đó là biến cố lấy được 3 quyển sách trong đó chỉ có 1 loại sách hoặc là Hóa học hoặc là Vật lí
TH1: 2 quyển sách được chọn là sách Hóa học ta có: cách chọn.
TH2: 2 quyển sách được chọn là sách Vật lí ta có: cách chọn.
Số phần tử của biến cố là:
Vậy xác suất của biến cố B cần tìm là:
Trong một chiếc hộp đựng 6 viên bi đỏ, 8 viên bi xanh, 10 viên bi trắng. Lấy ngẫu nhiên 4 viên bi. Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:
Lấy ngẫu nhiên cùng lúc 4 viên bi trong 6 + 8 + 10 = 24 viên bi có số cách là:
Số phần tử của không gian mẫu là 10 626.
Lấy 4 viên bi trong 16 viên bi đỏ, trắng có cách. Như vậy số kết quả thuận lợi cho biến cố “Lấy 4 viên bi không có màu xanh” là
=> Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:
Vậy có 8 806 kết quả thuận lợi cho biến cố B.
Gieo ngẫu nhiên một con xúc sắc cân đối đồng chất
lần. Xác suất mà số chấm của hai lần gieo là như nhau là bao nhiêu?
Gọi là biến cố “Số chấm trong hai lần gieo là bằng nhau”.
.
,
.
Vậy .
Lấy ngẫu nhiên 3 quả cầu từ hộp gồm 6 quả cầu trắng và 3 quả cầu đen. Tính xác suất để lấy được ba quả cùng màu?
Số phần tử của không gian mẫu
Gọi A là biến cố lấy được 3 quả cùng màu
TH1: Lấy được 3 quả màu trắng có: cách
TH2: Lấy được 3 quả màu đen có: cách
Vậy xác suất của biến cố A cần tìm là:
Viết tập hợp Ω là không gian mẫu trong trò chơi tung đồng xu hai lần liên tiếp.
Ta có: Ω = {SS; SN; NS; NN}.
Xét phép thử gieo một con súc sắc cân đối và đồng chất 6 mặt hai lần. Xét biến cố A: “Số chấm xuất hiện ở cả hai lần gieo giống nhau”. Biến cố A gồm bao nhiêu kết quả?
Gọi cặp số là số chấm xuất hiện ở hai lần gieo.
Xét biến cố A: “Số chấm xuất hiện ở cả hai lần gieo giống nhau”.
Các kết quả của biến cố A là: .
Suy ra .
Gieo một con súc sắc cân đối và đồng chất. Xác suất mà mặt có số chấm chẵn xuất hiện là bao nhiêu?
Ta có: Không gian mẫu suy ra
.
Gọi biến cố : “Con súc sắc có số chấm chẵn xuất hiện” hay
suy ra
.
Từ đó suy ra .
Vậy xác suất để mặt có số chấm chẵn xuất hiện là .
Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất
lần. Số phần tử không gian mẫu là bao nhiêu?
Mỗi lần gieo có hai khả năng nên gieo 5 lần theo quy tắc nhân ta có .
Số phần tử không gian mẫu là .
Lấy ngẫu nhiên đồng thời 3 quả cầu từ hộp chứa 9 quả cầu đỏ và 6 quả cầu xanh. Tính xác suất để lấy được 3 quả cầu màu xanh?
Ta có:
Gọi A là biến cố “lấy được 3 quả cầu màu xanh”
Vậy .
Cho đa giác đều có
đỉnh. Chọn ngẫu nhiên bốn đỉnh. Tính xác suất chọn ra được hình chữ nhật có các đỉnh là
trong
đỉnh của đa giác đó?
Số phần tử của không gian mẫu là:
Ta vẽ đường tròn ngoại tiếp đa giác đều 24 đỉnh. Vẽ một đường kính của đường tròn này. Khi đó 2 nửa đường tròn đều chứa 12 đình.
Với mỗi đỉnh thuộc nửa đường tròn thứ nhất ta đều có 1 đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại.
Như vậy cứ 2 đỉnh thuộc đường tròn thứ nhất ta xác định được hai đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại, bốn đỉnh này tạo thành hình chữ nhật.
Vậy số hình chữ nhật tạo thành từ 4 đa giác đã cho là
Xác suất cần tìm là: .
Gọi
là tập hợp các số tự nhiên gồm
chữ số khác nhau. Chọn ngẫu nhiên một số từ
. Hãy tính xác suất để chọn được một số gồm
chữ số lẻ và chữ số
luôn đứng giữa hai chữ số lẻ (hai số hai bên chữ số
là số lẻ).
Số phần tử của tập là
.
Không gian mẫu là chọn ngẫu nhiên số từ tập
.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
Số được chọn gồm
chữ số lẻ và chữ số
luôn đứng giữa hai chữ số lẻ
. Do số
luôn đứng giữa
số lẻ nên số
không đứng ở vị trí đầu tiên và vị trí cuối cùng. Ta có các khả năng
+ Chọn trong
vị trí để xếp số
, có
cách.
+ Chọn trong
số lẻ và xếp vào
vị trí cạnh số
vừa xếp, có
cách.
+ Chọn số lẻ trong
số lẻ còn lại và chọn
số chẵn từ
sau đó xếp
số này vào
vị trí trống còn lại có
cách.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính
Một tổ học sinh gồm 7 học sinh nam và 3 học sinh nữ. Chọn ngẫu nhiên 2 học sinh. Tính xác suất sao cho 2 người có cả nam và nữ?
Số phần tử không gian mẫu là:
Gọi A là biến cố 2 người được chọn có đủ nam và nữ
Số phần tử của biến cố A là:
Vậy xác suất của biến cố A cần tìm là:
Cho phép thử với không gian mẫu Ω = {1; 2; 3; 4; 5; 6}. Đâu không phải là cặp biến cố đối nhau.
Cặp E = {1; 4; 6} và F = {2; 3} không phải là biến cố đối.
Một hộp chứa 5 viên bi trắng, 10 viên bi xanh và 15 viên bi đỏ. Lấy ngẫu nhiên từ trong hộp 7 viên bi. Xác suất để trong số 7 viên bi lấy ra có ít nhất 2 viên bi màu đỏ?
Số phần tử không gian mẫu là:
Gọi A là biến cố để trong 7 viên bi lấy ra có ít nhất 2 viên bi màu đỏ
là biến cố để trong 7 viên bi được lấy ra có số viên bi nhỏ hơn 2.
TH1: 7 viên bi trong đó có 1 viên bi đỏ ta có:
TH2: 7 viên bi trong đó có không có viên bi đỏ ta có:
Vậy xác suất của biến cố A cần tìm là:
Gieo 1 con xúc xắc 1 lần. Biến cố A: “Số chấm xuất hiện nhỏ hơn 4”. Mô tả biến cố A.
Mô tả biến cố A: A = {1;2;3}.
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra có cả 3 môn.
Số cách lấy 3 quyển sách bất kì là .
Số cách lấy được 3 quyển thuộc 3 môn khác nhau là .
Suy ra xác suất cần tìm là .
Một lớp học có 30 học sinh gồm có nam và nữ. Chọn ngẫu nhiên 3 học sinh để tham gia hoạt động của Đoàn trường. Xác suất chọn được 2 nam và 1 nữ là
. Tính số học sinh nữ của lớp.
Gọi số học sinh nữ là . Suy ra số học sinh nam là
.
Chọn 3 học sinh từ 30 học sinh, không gian mẫu là: .
Gọi A là biến cố "Chọn được 2 nam và 1 nữ". Suy ra .
Theo đề bài: .
Vậy có 14 học sinh nữ.
Bạn Xuân là một trong nhóm 15 người. chọn 3 người để lập một ban đại diện. Xác suất đúng đến phần mười nghìn để Xuân là một trong 3 người được chọn là bao nhiêu?
Số phần tử của không gian mẫu là .
Gọi là biến cố Xuân là một trong ba người được chọn.
Có cách chọn Xuân trong nhóm 15 người.
Có cách chọn 2 người trong 14 người còn lại.
Suy ra .
Xác suất cần tìm là .
Một tổ có
học sinh nam và
học sinh nữ. Chọn ngẫu nhiên
học sinh. Xác suất để trong
học sinh được chọn luôn có học sinh nữ là:
.
Gọi là biến cố:” trong
học sinh được chọn luôn có học sinh nữ”
Vậy xác suất của biến cố là
.
Chọn ngẫu nhiên một gia đình có 4 người con và quan sát giới tính của bốn người con này. Xác suất của biến cố hai con đầu là con trai bằng:
Ta có:
Gọi A là biến cố “Hai con đầu là con trai”
Vậy .
Gieo đồng tiền
lần cân đối và đồng chất. Xác suất để được ít nhất một lần xuất hiện mặt sấp là bao nhiêu?
Phép thử: Gieo đồng tiền lần cân đối và đồng chất.
Ta có .
Biến cố : Được ít nhất một lần xuất hiện mặt sấp.
: Tất cả đều là mặt ngửa.
.
.
.
Tại khoa truyền nhiễm của bệnh viện A có 12 bác sĩ và tỉ lệ bác sĩ nam và bác sĩ nữ bằng nhau. Chọn ngẫu nhiên 6 bác sĩ trong khoa để lập đoàn kiểm tra truyền nhiễm trong khu vực B. Tính xác suất để 6 bác sĩ được chọn có số bác sĩ nam bằng số bác sĩ nữ?
Số phần tử không gian mẫu là:
Số kết quả thuận lợi cho biến cố A: “6 bác sĩ được chọn có số bác sĩ nam bằng số bác sĩ nữ” là:
Vậy xác suất của biến cố A cần tìm là:
Có
tấm thẻ được đánh số từ
đến
. Chọn ngẫu nhiên ra
tấm thẻ. Hãy tính xác suất để có
tấm thẻ mang số lẻ,
tấm thẻ mang số chẵn trong đó chỉ có đúng
tấm thẻ mang số chia hết cho
.
Không gian mẫu là cách chọn tấm thể trong
tấm thẻ.
Suy ra số phần tử của không mẫu là .
Gọi là biến cố
tấm thẻ mang số lẻ,
tấm thẻ mang số chẵn trong đó chỉ có đúng
tấm thẻ mang số chia hết cho
. Để tìm số phần tử của
ta làm như sau
● Đầu tiên chọn tấm thẻ trong
tấm thẻ mang số lẻ, có
cách.
● Tiếp theo chọn tấm thẻ trong
tấm thẻ mang số chẵn (không chia hết cho
), có
cách.
● Sau cùng ta chọn trong
tấm thẻ mang số chia hết cho
, có
cách.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Một người có
đôi giày khác nhau và trong lúc đi du lịch vội vã lấy ngẫu nhiên
chiếc.
Xác suất để trong
chiếc giày lấy ra có ít nhất một đôi là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên chiếc giày từ
chiếc giày.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
chiếc giày lấy ra có ít nhất một đôi
. Để tìm số phần tử của biến cố
, ta đi tìm số phần tử của biến cố
, với biến cố
là
chiếc giày được chọn không có đôi nào.
● Số cách chọn đôi giày từ
đôi giày là
.
● Mỗi đôi chọn ra chiếc, thế thì mỗi chiếc có
cách chọn. Suy ra
chiếc có
cách chọn.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Một tổ trong lớp 10A có 5 học sinh nam và 7 học sinh nữ. Chọn ngẫu nhiên một học sinh trong tổ đó để tham gia câu lạc bộ phát thanh. Tính xác suất để học sinh được chọn là học sinh nam?
Số phần tử không gian mẫu là:
Gọi A là biến cố: “học sinh được chọn là học sinh nam?”
Vậy xác suất của biến cố A là:
Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố
: "kết quả của 3 lần gieo là như nhau" là bao nhiêu?
Lần đầu có thể ra tùy ý nên xác suất là 1. Lần 2 và 3 phải giống lần 1 xác suất là .
Theo quy tắc nhân xác suất: .
Một hộp đựng
thẻ, đánh số từ
đến
. Chọn ngẫu nhiên
thẻ. Gọi
là biến cố để tổng số của
thẻ được chọn không vượt quá
. Tìm số phần tử của biến cố
.
Liệt kê ta có: . (4 phần tử)
Cho
và
là hai biến cố đối nhau. Chọn mệnh đề đúng trong các mệnh đề sau đây?
Mệnh đề đúng là:
Cho tập hợp
. Gọi
là tập hợp các số tự nhiên có 3 chữ đôi một khác nhau được lập thành từ các chữ số thuộc tập
. Chọn ngẫu nhiên hai số từ tập
, tính xác suất để hai số được chọn đều chia hết cho 3?
Gọi B là biến cố chọn được hai số đều chia hết cho 3
Số các số tự nhiên có 3 chữ số được lập thành từ tập M là:
Khi đó số phần tử của không gian mẫu là:
Tập các số gồm 3 chữ số tạo thành các số chia hết cho 3 là:
Mỗi tập trên tạo thành số chia hết cho 3 nên ta có:
số chia hết cho 3
Khi đó
Vậy xác suất để chọn được hai số đều chia hết cho 3 từ tập S là:
Trên bàn có 3 quả táo và 4 quả cam. Xác định số phần tử không gian mẫu của phép thử lấy 2 quả ở trên bàn sau đó bỏ ra ngoài rồi lấy tiếp 1 quả nữa.
Lấy 2 quả trong 7 quả ở trên bàn và không tính thứ tự nên số cách là: (cách).
Sau khi bỏ 2 quả ra ngoài còn lại 5 quả. Lấy 1 quả trong 5 quả trên bàn có 5 cách.
Vậy số phần tử không gian mẫu là: