Đề kiểm tra 45 phút Chương 10 Xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một hộp chứa 2 bi xanh, 3 bi đỏ. Lấy ngẫu nhiên 3 bi. Tính xác suất để có ít nhất một bi xanh trong 3 viên.

    Số phần tử của không gian mẫu là |\Omega|
= C_{5}^{3} = 10.

    Gọi A là biến cố lấy ít nhất 1 bi xanh.

    Chọn 1 bi xanh, 2 bi đỏ, có C_{2}^{1}.C_{3}^{2} = 6(cách).

    Chọn 2 bi xanh, 1 bi đỏ, có C_{2}^{2}.C_{3}^{1} = 3(cách).

    Suy ra \left| \Omega_{A} ight| = 3 + 6
= 9.

    Xác suất cần tìm là P(A) =
\frac{9}{10}.

  • Câu 2: Nhận biết

    Một chiếc hộp đựng 5 chiếc thẻ được đánh số từ 1 đến 5. Rút ngẫu nhiên đồng thời 2 thẻ trong hộp. Xét biến cố A: “Số ghi trên hai thẻ đều là số lẻ”. Tính số phần tử của biến cố A?

    Số phần tử của biến cố A là: C_{3}^{2} =
3

  • Câu 3: Nhận biết

    Gieo ngẫu nhiên 2 đồng tiền thì không gian mẫu của phép thử có bao nhiêu biến cố:

    Mô tả không gian mẫu ta có: \Omega =
\left\{ SS;SN;NS;NN ight\}. (4 phần tử)

  • Câu 4: Nhận biết

    Gieo một đồng xu cân đối và đồng chất hai lần liên tiếp. Tính xác suất của biến cố: “Cả hai lần gieo đều xuất hiện mặt sấp”?

    Số phần tử không gian mẫu là:

    \Omega = \left\{ SS;SN;NS;NN ight\}
\Rightarrow n(\Omega) = 2.2 = 4

    Gọi A là biến cố: “Cả hai lần gieo đều xuất hiện mặt sấp”

    A = \left\{ SS ight\} \Rightarrow n(A)
= 1

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{1}{4}

  • Câu 5: Nhận biết

    Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố A: "có đúng 2 lần xuất hiện mặt sấp" là bao nhiêu?

    Chọn 2 trong 3 lần để xuất hiện mặt sấp có C_{3}^{2} = 3 cách.

    2 lần xuất hiện mặt sấp có xác suất mỗi lần là \frac{1}{2}. Lần xuất hiện mặt ngửa có xác suất là \frac{1}{2}.

    Vậy: P(A) =3.\frac{1}{2}.\frac{1}{2}.\frac{1}{2} = \frac{3}{8}.

  • Câu 6: Nhận biết

    Một người chọn ngẫu nhiên đồng thời 4 quân bài từ bộ tú lơ khơ 52 quân bài. Tính xác suất của biến cố: “Cả 4 quân bài đều là Át”?

    Số phần tử không gian mẫu: n(\Omega) =
C_{52}^{4}

    Chỉ có đúng 1 cách để lấy được cả 4 quân bài đều là Át nên xác suất cần tìm là:

    P = \frac{1}{C_{52}^{4}}

  • Câu 7: Nhận biết

    Chọn ngẫu nhiên một số trong 20 số nguyên dương đầu tiên. Tính xác suất để chọn được số chia hết cho 3 là:

    Chọn ngẫu nhiên một số trong 20 số nguyên dương đầu tiên có 20 cách chọn

    \Rightarrow n(\Omega) = 20

    Gọi A là biến cố “chọn được số chia hết cho 3”

    \Rightarrow A = \left\{ 3;6;9;12;15;18
ight\}

    \Rightarrow n(A) = 6

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{6}{20} = \frac{3}{10}.

  • Câu 9: Vận dụng

    Cho đa giác đều có 24 đỉnh. Chọn ngẫu nhiên bốn đỉnh. Tính xác suất chọn ra được hình chữ nhật có các đỉnh là 4 trong 24 đỉnh của đa giác đó?

    Số phần tử của không gian mẫu là: n(\Omega) = C_{24}^{4}

    Ta vẽ đường tròn ngoại tiếp đa giác đều 24 đỉnh. Vẽ một đường kính của đường tròn này. Khi đó 2 nửa đường tròn đều chứa 12 đình.

    Với mỗi đỉnh thuộc nửa đường tròn thứ nhất ta đều có 1 đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại.

    Như vậy cứ 2 đỉnh thuộc đường tròn thứ nhất ta xác định được hai đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại, bốn đỉnh này tạo thành hình chữ nhật.

    Vậy số hình chữ nhật tạo thành từ 4 đa giác đã cho là C_{12}^{2}

    Xác suất cần tìm là: P =
\frac{C_{12}^{2}}{C_{24}^{4}} = \frac{1}{161}.

  • Câu 10: Thông hiểu

    Cho 40 tấm thẻ được đánh số theo thứ tự từ 1 đến 40. Chọn ngẫu nhiên 3 tấm thẻ. Tính xác suất để ba tấm thẻ được chọn có tổng các số ghi trên ba tấm thẻ đó là một số chẵn?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{40}^{3} = 9880

    Gọi A là biến cố chọn được 3 tấm thẻ có các số ghi trên ba tấm thẻ đó là một số chẵn.

    TH1: 2 số ghi số lẻ, 1 số ghi số chẵn ta có: C_{20}^{2}.C_{20}^{1} = 3800

    TH2: 3 số ghi số chẵn ta có: C_{20}^{3} =
1140

    Vậy xác suất để chọn được 3 tấm thẻ có tổng các số ghi trên các thẻ là một số chẵn là: \frac{3800 + 1140}{9880}
= \frac{1}{2}

  • Câu 11: Vận dụng

    Cho tập hợp M =
\left\{ 1;2;3;4;5 ight\}. Gọi S là tập hợp các số tự nhiên có 3 chữ đôi một khác nhau được lập thành từ các chữ số thuộc tập M. Chọn ngẫu nhiên hai số từ tập S, tính xác suất để hai số được chọn đều chia hết cho 3?

    Gọi B là biến cố chọn được hai số đều chia hết cho 3

    Số các số tự nhiên có 3 chữ số được lập thành từ tập M là: A_{5}^{3} = 60

    Khi đó số phần tử của không gian mẫu là: n(\Omega) = C_{60}^{2}

    Tập các số gồm 3 chữ số tạo thành các số chia hết cho 3 là:

    \left\{ (1;2;3),(1;3;5),(2;3;4)
ight\}

    Mỗi tập trên tạo thành 3! số chia hết cho 3 nên ta có: 3.3! = 18 số chia hết cho 3

    Khi đó n(B) = C_{18}^{2}

    Vậy xác suất để chọn được hai số đều chia hết cho 3 từ tập S là: p(B) = \frac{n(B)}{n(\Omega)} =
\frac{C_{18}^{2}}{C_{60}^{2}} = \frac{51}{590}

  • Câu 12: Vận dụng

    Một người có 10 đôi giày khác nhau và trong lúc đi du lịch vội vã lấy ngẫu nhiên 4 chiếc.

    Xác suất để trong 4 chiếc giày lấy ra có ít nhất một đôi là bao nhiêu?

    Không gian mẫu là số cách chọn ngẫu nhiên 4 chiếc giày từ 20 chiếc giày.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{20}^{4} = 4845.

    Gọi A là biến cố ''4 chiếc giày lấy ra có ít nhất một đôi''. Để tìm số phần tử của biến cố A, ta đi tìm số phần tử của biến cố \overline{A}, với biến cố \overline{A}4 chiếc giày được chọn không có đôi nào.

    ● Số cách chọn 4 đôi giày từ 10 đôi giày là C_{10}^{4}.

    ● Mỗi đôi chọn ra 1 chiếc, thế thì mỗi chiếc có C_{2}^{1} cách chọn. Suy ra 4 chiếc có \left( C_{2}^{1} ight)^{4} cách chọn.

    Suy ra số phần tử của biến cố \overline{A}\left| \Omega_{\overline{A}} ight| =
C_{10}^{4}.\left( C_{2}^{1} ight)^{4} = 3360.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = 4845 - 3360 =
1485.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{1485}{4845} =
\frac{99}{323}.

  • Câu 13: Thông hiểu

    Giả sử tập hợp B là tập hợp các số có 4 chữ số được tạo thành từ tập hợp C = \left\{
1;2;3;4;5;6;7;8;9 ight\}. Lấy ngẫu nhiên một số bất kì từ tập B. Xác suất để số được chọn có đúng hai chữ số chẵn và hai chữ số lẻ:

    Mỗi số tự nhiên có 4 chữ số khác nhau lập từ các số của tập C là một chỉnh hợp chập 4 của 9

    \Rightarrow n(\Omega) = A_{9}^{4} =
3024

    Số cách lấy một bộ có 4 chữ số gồm 2 chữ số chẵn và 2 chữ số lẻ được tập từ C là:

    C_{4}^{2}.C_{5}^{2} = 60

    Mỗi bộ như vậy sẽ lập được 4! số

    Suy ra n(B) = 60.4! = 1440

    Vậy xác suất của biến cố B là: P(B) =
\frac{1440}{3024} = \frac{10}{21}

  • Câu 14: Thông hiểu

    Chọn ngẫu nhiên hai số phân biệt từ 15 số nguyên dương đầu tiên. Tính xác suất để tích hai số được chọn là một số chẵn?

    Trong 15 số nguyên dương đầu tiên có 7 số chẵn và 8 só lẻ.

    Ta có: n(\Omega) = C_{15}^{2} =
105

    Gọi A là biến cố “Tích hai số được chọn là một số chẵn”

    TH1: 1 số lẻ và 1 số chẵn ta có: 7.8 cách chọn

    TH2: 2 số chẵn ta có: C_{7}^{2} cách chọn

    \Rightarrow n(A) = 7.8 + C_{7}^{2} =
77

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{77}{105} = \frac{11}{15}

  • Câu 15: Thông hiểu

    Chọn ngẫu nhiên một số từ tập hợp các số tự nhiên thuộc đoạn \lbrack
40;60brack. Tính xác suất của biến cố: “Chọn được số có chữ số hàng đơn vị lớn hơn chữ số hàng chục”.

    Từ 40 đến 60 có 21 số nên n(\Omega) =
21

    Các số thỏa mãn yêu cầu đề bài là: 45;45;47;48;49;56;57;58;59

    Suy ra số kết quả thuận lợi cho biến cố: “Chọn được số có chữ số hàng đơn vị lớn hơn chữ số hàng chục” là 9.

    Suy ra xác suất của biến cố cần tìm là \frac{9}{21} = \frac{3}{7}

  • Câu 16: Nhận biết

    Cho A là một biến cố trong phép thử T. Xác suất của biến cố đối \overline{A} liên hệ với xác suất của biến cố A được xác định theo công thức nào sau đây?

    Xác suất của biến cố đối \overline{A} liên hệ với xác suất của biến cố A theo công thức:

    P\left( \overline{A} ight) = 1 -
P(A)

  • Câu 17: Vận dụng

    Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập các tam giác có các đỉnh là đỉnh của đa giác trên. Xác suất để chọn được một tam giác từ tập X là tam giác cân nhưng không phải là tam giác đều bằng:

    Số các tam giác bất kỳ là n(\Omega) =
C_{18}^{3}.

    Số các tam giác đều là \frac{18}{3} =
6.

    Có 18 cách chọn một đỉnh của đa giác, mỗi đỉnh có 8 cách chọn 2 đỉnh còn lại để được một tam giác cân.

    Số các tam giác cân là: 18.8 = 144.

    Số các tam giác cân không đều là: 144 -
6.3 = 126 \Rightarrow n(A) = 126.

    Xác suất cần tìm là P(A) =
\frac{126}{C_{18}^{3}} = \frac{21}{136}.

  • Câu 19: Nhận biết

    Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một lần xuất hiện mặt sấp là bao nhiêu?

    Phép thử: Gieo đồng tiền 5 lần cân đối và đồng chất.

    Ta có n(\Omega) = 2^{5} =
32.

    Biến cố A: Được ít nhất một lần xuất hiện mặt sấp.

    \overline{A}: Tất cả đều là mặt ngửa.

    n\left( \overline{A} ight) =
1.

    \Rightarrow n(A) = n(\Omega) - n\left(
\overline{A} ight) = 31.

    \Rightarrow p(A) = \frac{n(A)}{n(\Omega)}
= \frac{31}{32}.

  • Câu 20: Nhận biết

    Cho phép thử có không gian mẫu \Omega = \left\{ 1,2,3,4,5,6 ight\}. Cặp biến cố không đối nhau là cặp nào trong các cặp dưới đây?

    Cặp biến cố không đối nhau là E = \left\{
1,\ 4,\ 6 ight\}F = \left\{
2,\ 3 ight\} do E \cap F =
\varnothingE \cup F eq
\Omega.

  • Câu 21: Nhận biết

    Gieo ngẫu nhiên một con xúc sắc cân đối đồng chất 2 lần. Xác suất mà số chấm của hai lần gieo là như nhau là bao nhiêu?

    Gọi A là biến cố “Số chấm trong hai lần gieo là bằng nhau”.

    n(\Omega) = 36.

    A = \left\{ (1,1);\ (2,2);...;(6,6)
ight\}, n(A) = 6.

    Vậy P(A) = \frac{6}{36} =
\frac{1}{6}.

  • Câu 22: Nhận biết

    Một lớp có 40 học sinh, trong đó có 4 học sinh tên Anh. Trong một lần kiểm tra bài cũ, thầy giáo gọi ngẫu nhiên hai học sinh trong lớp lên bảng. Tính xác suất để 2 bạn học sinh tên Anh cùng lên bảng.

    Số phần tử của không gian mẫu n(\Omega) =
C_{40}^{2} = 780.

    Gọi A là biến cố gọi hai học sinh tên Anh lên bảng, ta có n(A) =
C_{4}^{2} = 6.

    Vậy xác suất cần tìm là P(A) =
\frac{6}{780} = \frac{1}{130}.

  • Câu 23: Nhận biết

    Một hộp chứa 8 tấm thẻ được đánh số theo thứ tự từ 1 đến 8 (hai tấm thẻ khác nhau ghi hai số khác nhau). Rút ngẫu nhiên đồng thời hai tấm thẻ trong hộp. Tính xác suất để rút được hai tấm thẻ đều ghi số chẵn?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{8}^{2} = 28

    Gọi A là biến cố: “Rút được hai tấm thẻ đều ghi số chẵn”

    \Rightarrow n(A) = 4

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{4}{28} = \frac{1}{7}

  • Câu 24: Thông hiểu

    Một bình chứa 16 viên vi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi trong bình đó. Tính xác suất lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ.

    Số cách lấy 3 viên bi bất kì là C_{16}^{3} = 560.

    Số cách lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ là C_{7}^{1}.C_{6}^{1}.C_{3}^{1} =
126.

    Suy ra xác suất cần tìm là\frac{9}{40}.

  • Câu 25: Nhận biết

    Từ một hộp chứa 7 quả cầu màu đỏ và 5 quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Tính xác suất để 3 quả cầu lấy được đều màu xanh.

    Gọi A là biến cố: “lấy được 3 quả cầu màu xanh”.

    Ta có P(A) = \frac{C_{5}^{3}}{C_{12}^{3}}
= \frac{1}{22}.

  • Câu 26: Vận dụng

    Một người bỏ ngẫu nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Tính xác suất để có ít nhất một lá thư được bỏ đúng phong bì.

    Số phần tử không gian mẫu là: n(\Omega) =
3! = 6.

    Gọi A là biến cố “Có ít nhất một lá thư được bỏ đúng phong bì”.

    Ta xét các trường hợp sau:

    Nếu lá thứ nhất bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất 1 cách.

    Nếu lá thứ hai bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất 1 cách.

    Nếu lá thứ ba bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất 1 cách.

    Không thể có trường hợp hai lá thư bỏ đúng và một lá thư bỏ sai.

    Cả ba lá thư đều được bỏ đúng có duy nhất 1 cách.

    \Rightarrow n(A) = 4.

    Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{4}{6} =
\frac{2}{3}.

    Cách 2:

    Gọi B là biến cố “Không có lá thư nào được bỏ đúng phong bì”.

    \Rightarrow n(B) = 2 \Rightarrow P(A) = 1
- P(B) = 1 - \frac{n(B)}{n(\Omega)} = 1 - \frac{2}{6} =
\frac{2}{3}.

  • Câu 27: Nhận biết

    Gieo một con xúc sắc cân đối và đồng chất hai lần. Tính xác suất để cả hai lần xuất hiện mặt 6 chấm.

    * Số phần tử của không gian mẫu là: n(\Omega) = C_{6}^{1}.C_{6}^{1} = 36.

    * Gọi A =”Cả hai lần xuất hiện mặt sáu chấm”. Số phần tử của biến cố An(A) =
1.

    * Xác suất của biến cố AP(A) = \frac{n(A)}{n(\Omega)} =
\frac{1}{36}.

  • Câu 28: Thông hiểu

    Chọn ngẫu nhiên hai số khác nhau từ 30 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là một số chẵn bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
C_{30}^{2} = 435

    Gọi A là biến cố: “Hai số được chọn có tổng là một số chẵn”

    Tổng của hai số là một số chẵn khi và chỉ khi hai số đó đều chẵn hoặc đều lẻ.

    Trong 30 số nguyên dương đầu tiên có 15 số lẻ và 15 số chẵn.

    Xét trường hợp chọn được hai số lẻ ta có: C_{15}^{2} cách chọn.

    Xét trường hợp chọn được hai số chẵn ta có: C_{15}^{2} cách chọn.

    Suy ra số kết quả thuận lợi cho biến cố A là: C_{15}^{2} + C_{15}^{2} = 210

    Khi đó xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{210}{435} = \frac{14}{29}.

  • Câu 29: Thông hiểu

    Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Xác suất để 3 quyển được lấy ra đều là môn toán là bao nhiêu?

    Số cách lấy 3 quyển sách bất kì là C_{9}^{3} = 84.

    Số cách lấy được 3 quyển thuộc môn toán là C_{4}^{3}.C_{3}^{0}.C_{2}^{0} = 4.

    Suy ra xác suất cần tìm là \frac{1}{21}.

  • Câu 30: Thông hiểu

    Một chiếc hộp đựng 7 viên bi màu xanh, 6 viên bi màu đen, 5 viên bi màu đỏ, 4 viên bi màu trắng. Chọn ngẫu nhiên ra 4 viên bi, tính xác suất để lấy được ít nhất 2 viên bi cùng màu.

    Không gian mẫu là số cách chọn ngẫu nhiên 4 viên bi từ 22 viên bi đã cho.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{22}^{4} = 7315.

    Gọi A là biến cố ''Lấy được 4 viên bi trong đó có ít nhất hai viên bi cùng màu''. Để tìm số phần tử của A, ta đi tìm số phần tử của biến cố \overline{A}, với biến cố \overline{A} là lấy được 4 viên bi trong đó không có hai viên bi nào cùng màu.

    Suy ra số phần tử của biến cố \overline{A}\left| \Omega_{\overline{A}} ight| =
C_{7}^{1}C_{6}^{1}C_{5}^{1}C_{4}^{1} = 840.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = |\Omega| -
\left| \Omega_{\overline{A}} ight| = 6475.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{6475}{7315} =
\frac{185}{209}.

  • Câu 31: Vận dụng

    Một hộp chứa 12 viên bi kích thước như nhau, trong đó có 5 viên bi màu xanh được đánh số từ 1 đến 5; có 4 viên bi màu đỏ được đánh số từ 1 đến 4 và 3 viên bi màu vàng được đánh số từ 1 đến 3. Lấy ngẫu nhiên 2 viên bi từ hộp. Xác suất để 2 viên bi được lấy vừa khác màu vừa khác số là bao nhiêu?

    Không gian mẫu là số sách lấy tùy ý 2 viên từ hộp chứa 12 viên bi.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{12}^{2} = 66.

    Gọi A là biến cố ''2 viên bi được lấy vừa khác màu vừa khác số''.

    ● Số cách lấy 2 viên bi gồm 1 bi xanh và 1 bi đỏ là 4.4 = 16 cách (do số bi đỏ ít hơn nên ta lấy trước, có 4 cách lấy bi đỏ. Tiếp tục lấy bi xanh nhưng không lấy viên trùng với số của bi đỏ nên có 4 cách lấy bi xanh).

    ● Số cách lấy 2 viên bi gồm 1 bi xanh và 1 bi vàng là 3.4 = 12 cách.

    ● Số cách lấy 2 viên bi gồm 1 bi đỏ và 1 bi vàng là 3.3 = 9 cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = 16 + 12 + 9 =
37.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{37}{66}.

  • Câu 32: Nhận biết

    Cho một phép thử T có không gian mẫu \Omega. Giả thiết rằng các kết quả có thể của T là đồng khả năng. Khi đó nếu E là một biến cố liên quan đến phép thử T thì xác suất của E (kí hiệu là P(E)) được cho bởi công thức nào sau đây? Biết rằng kí hiệu số phần tử của không gian mẫu và tập E lần lượt làn(\Omega),n(E).

    Nếu E là một biến cố có liên quan đến phép thử T thì xác suất của biến cố E được xác định bởi công thức P(E) =
\frac{n(E)}{n(\Omega)}.

  • Câu 33: Thông hiểu

    Một lô sản phẩm gồm 35 sản phẩm đạt chuẩn và 15 sản phẩm lỗi. Lấy ngẫu nhiên 3 sản phẩm từ trong hộp. Tính xác suất để 3 sản phẩm lấy ra đều là sản phẩm đạt chuẩn?

    Ta có: n(\Omega) =
C_{50}^{3}

    Gọi B là biến cố cả ba sản phẩm lấy ra đều là sản phẩm đạt chuẩn.

    Chọn 3 trong 35 sản phẩm đạt chuẩn ta có: \Rightarrow n(B) = C_{35}^{3}

    Vậy xác suất của biến cố B là: P(B) =
\frac{C_{35}^{3}}{C_{50}^{3}} = \frac{187}{560}.

  • Câu 34: Thông hiểu

    Một hộp có 5 bi đen, 4 bi trắng. Chọn ngẫu nhiên 2 bi. Tính xác suất 2 bi được chọn có đủ hai màu.

    Số phần tử không gian mẫu: n(\Omega) =C_{9}^{2} = 36.

    (bốc 2 bi bất kì từ 9 bi trong hộp ).

    Gọi A: “hai bi được chọn có đủ hai màu”. Ta có: n(A) = C_{5}^{1}.C_{4}^{1}= 20.

    ( chọn 1 bi đen từ 5 bi đen – chọn 1 bi trắng từ 4 bi trắng ).

    Khi đó: P(A) = \frac{n(A)}{n(\Omega)} =\frac{20}{36} = \frac{5}{9}.

  • Câu 35: Thông hiểu

    Trong một chiếc hộp đựng 5 quả cầu xanh, 4 quả cầu đỏ và 3 quả cầu vàng. Chọn ngẫu nhiên 3 quả cầu. Tính xác suất của biến cố “3 quả cầu có đủ ba màu”?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{12}^{3} = 220

    Gọi A là biến cố chọn được 3 quả có đủ ba màu.

    Số phần tử của biến cố A là: n(A) = 5.4.3
= 60

    Khi đó xác suất của biến cố A là: P(A) =
\frac{60}{220} = \frac{3}{11}

  • Câu 36: Nhận biết

    Gieo 2 con súc sắc và gọi kết quả xảy ra là tích số hai nút ở mặt trên. Không gian mẫu có bao nhiêu phần tử?

    Mô tả không gian mẫu ta có: \Omega =
\left\{ 1;2;3;4;5;6;8;9;10;12;15;16;18;20;24;25;30;36 ight\}. (18 phần tử)

  • Câu 37: Vận dụng

    Cho tập hợp A =
\left\{ 1,2,\ 3,\ ...,\ 10 ight\}. Chọn ngẫu nhiên ba số từ tập đó. Tính xác suất để trong ba số chọn ra không có hai số nào là hai số nguyên liên tiếp.

    Số phần tử không gian mẫu là n(\Omega) =
C_{10}^{3} = 120.

    Gọi B là biến cố “Ba số chọn ra không có hai số nào là hai số nguyên liên tiếp”.

    \Rightarrow \overline{B} là biến cố “Ba số được chọn có ít nhất hai số là các số tự nhiên liên tiếp”.

    + Bộ ba số dạng \left( 1\ ,\ 2\ ,\ a_{1}
ight), với a_{1} \in
A\backslash\left\{ 1\ ,\ 2 ight\}: có 8 bộ ba số.

    + Bộ ba số có dạng \left( 2\ ,\ 3\ ,\
a_{2} ight), với a_{2} \in
A\backslash\left\{ 1\ ,\ 2\ ,\ 3 ight\}: có 7 bộ ba số.

    + Tương tự mỗi bộ ba số dạng \left( 3\ ,\
4\ ,\ a_{3} ight), \left( 4\ ,\
5\ ,\ a_{4} ight), \left( 5\ ,\
6\ ,\ a_{5} ight), \left( 6\ ,\
7\ ,\ a_{6} ight), \left( 7\ ,\
8\ ,\ a_{7} ight), \left( 8\ ,\
9\ ,\ a_{8} ight), \left( 9\ ,\
10\ ,\ a_{9} ight) đều có 7 bộ.

    \Rightarrow n\left( \overline{B} ight)
= 8 + 8.7 = 64.

    \Rightarrow P(B) = 1 - P\left(
\overline{B} ight) = 1 - \frac{64}{120} = \frac{7}{15}.

  • Câu 38: Thông hiểu

    Bạn Xuân là một trong nhóm 15 người. chọn 3 người để lập một ban đại diện. Xác suất đúng đến phần mười nghìn để Xuân là một trong 3 người được chọn là bao nhiêu?

    Số phần tử của không gian mẫu là |\Omega|
= C_{15}^{3} = 455.

    Gọi A là biến cố Xuân là một trong ba người được chọn.

    1 cách chọn Xuân trong nhóm 15 người.

    C_{14}^{2} cách chọn 2 người trong 14 người còn lại.

    Suy ra \left| \Omega_{A} ight| =
1.C_{14}^{2} = 91.

    Xác suất cần tìm là P(A) = \frac{91}{455}
= 0,2.

  • Câu 39: Nhận biết

    Xét một phép thử có không gian mẫu \Omega gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là một biến cố bất kì của phép thử đó. Biến cố đối của biến cố A là

    Biến cố đối của biến cố A là biến cố “A không xảy ra”.

  • Câu 40: Nhận biết

    Trong một hộp đựng 7 bi màu đỏ, 5 bi màu xanh và 3 bi vàng, lấy ngẫu nhiên 3 viên bi. Xác suất để 3 viên bi lấy được đều có màu đỏ là:

    Tổng số có 7 + 5 + 3 = 15 viên bi.

    Lấy ngẫu nhiên 3 viên bi từ 15 viên có C_{15}^{3} = 455 (cách lấy).

    Số phần tử của không gian mẫu là n(\Omega) = 455.

    Gọi A: 3 viên bi lấy được đều có màu đỏ<img class="data-latex" data-type="2" src="https://tex.vdoc.vn?tex=%22" data-latex="" "="" alt=""">.

    Lấy 3 viên bi màu đỏ từ 7 viên bi màu đỏ có C_{7}^{3} = 35 \Rightarrow n(A) = 35.

    Vậy xác suất để 3 viên bi lấy được đều có màu đỏ là P(A) =
\frac{n(A)}{n(\Omega)} = \frac{45}{455} = \frac{1}{13}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 10 Xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo