Đề kiểm tra 45 phút Chương 10 Xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Chọn ngẫu nhiên 2 học sinh từ một tổ có 9 học sinh. Biết rằng xác suất chọn được 2 học sinh nữ bằng \frac{5}{18}, hỏi tổ có bao nhiêu học sinh nữ?

    Gọi số học sinh nữ là n (2 ≤ n ≤ 9, n ∈ \mathbb{N})

    Chọn bất kỳ 2 học sinh ta có C_9^2 = 36 cách.

    Do đó số phần tử của không gian mẫu là n(Ω) = 36

    Gọi biến cố A: “2 học sinh được chọn là 2 học sinh nữ”.

    Để chọn 2 học sinh được 2 học sinh nữ có:

    C_n^2 = \frac{{n!}}{{2!\left( {n - 2} ight)!}} = \frac{{n\left( {n - 1} ight)}}{2} (cách)

    Do đó số kết quả thuận lợi cho biến cố A là: 

    n\left( A ight) = \frac{1}{2}n\left( {n-1} ight)

    Xác suất để chọn được 2 học sinh nữ là:

    P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \dfrac{{\dfrac{1}{2}.n.\left( {n - 1} ight)}}{{36}} = \frac{{n\left( {n - 1} ight)}}{{72}}

    P\left( A ight) = \frac{5}{{18}}

    \begin{matrix}   \Leftrightarrow \dfrac{{n\left( {n - 1} ight)}}{{72}} = \dfrac{5}{{18}} \hfill \\   \Leftrightarrow n\left( {n - 1} ight) = 20 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 5\left( {tm} ight)} \\   {n =  - 4\left( {ktm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy có 5 học sinh nữ trong tổ.

  • Câu 2: Vận dụng

    Xếp ngẫu nhiên 5 bạn nam và 3 bạn nữ vào một bàn tròn. Xác suất để không có ba bạn nữ nào ngồi cạnh nhau.

    Theo công thức hoán vị vòng quanh ta có: |\Omega| = 7!

    Để xếp các bạn nữ không ngồi cạnh nhau, trước hết ta xếp các bạn nam vào bàn tròn: có 4! cách, giữa 5 bạn nam đó ta sẽ có được 5 ngăn (do ở đây là bàn tròn). Xếp chỉnh hợp 3 bạn nữ vào 5 ngăn đó có A_{5}^{3} cách.

    Vậy xác suất xảy ra là:P =
\frac{4!.A_{5}^{3}}{7!} = \frac{2}{7}.

  • Câu 3: Vận dụng

    Một lớp học có 40 học sinh trong đó có 4 cặp anh em sinh đôi. Trong buổi họp đầu năm thầy giáo chủ nhiệm lớp muốn chọn ra 3 học sinh để làm cán sự lớp gồm lớp trưởng, lớp phó và bí thư. Xác suất để chọn ra 3 học sinh làm cán sự lớp mà không có cặp anh em sinh đôi nào là bao nhiêu?

    Không gian mẫu là số cách chọn ngẫu nhiên 3 học sinh trong 40 học sinh.

    Suy ra số phần tử không gian mẫu là |\Omega| = C_{40}^{3} = 9880.

    Gọi A là biến cố ''3 học sinh được chọn không có cặp anh em sinh đôi nào''. Để tìm số phần tử của A, ta đi tìm số phần tử của biến cố \overline{A}, với biến cố \overline{A}3 học sinh được chọn luôn có 1 cặp anh em sinh đôi.

    + Chọn 1 cặp em sinh đôi trong 4 cặp em sinh đôi, có C_{4}^{1} cách.

    + Chọn thêm 1 học sinh trong 38 học sinh, có C_{38}^{1} cách.

    Suy ra số phần tử của biến cố \overline{A}\left| \Omega_{\overline{A}} ight| =
C_{4}^{1}.C_{38}^{1} = 152.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = 9880 - 152 =
9728.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{9728}{9880} =
\frac{64}{65}.

  • Câu 4: Nhận biết

    Từ một hộp chứa 7 quả cầu màu đỏ và 5 quả cầu màu xanh, lấy ngẫu nhiên đồng thời 3 quả cầu. Tính xác suất để 3 quả cầu lấy được đều màu xanh.

    Gọi A là biến cố: “lấy được 3 quả cầu màu xanh”.

    Ta có P(A) = \frac{C_{5}^{3}}{C_{12}^{3}}
= \frac{1}{22}.

  • Câu 5: Nhận biết

    Một hộp chứa 8 tấm thẻ được đánh số theo thứ tự từ 1 đến 8 (hai tấm thẻ khác nhau ghi hai số khác nhau). Rút ngẫu nhiên đồng thời hai tấm thẻ trong hộp. Tính xác suất để rút được hai tấm thẻ đều ghi số chẵn?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{8}^{2} = 28

    Gọi A là biến cố: “Rút được hai tấm thẻ đều ghi số chẵn”

    \Rightarrow n(A) = 4

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{4}{28} = \frac{1}{7}

  • Câu 7: Nhận biết

    Gieo một con súc sắc cân đối và đồng chất. Xác suất mà mặt có số chấm chẵn xuất hiện là bao nhiêu?

    Ta có: Không gian mẫu \Omega = \left\{
1,2,3,4,5,6 ight\} suy ra n(\Omega) = 6.

    Gọi biến cố A: “Con súc sắc có số chấm chẵn xuất hiện” hay A = \left\{
2;4;6 ight\} suy ra n(A) =
3.

    Từ đó suy ra p(A) =
\frac{n(A)}{n(\Omega)} = \frac{3}{6} = \frac{1}{2}.

    Vậy xác suất để mặt có số chấm chẵn xuất hiện là \frac{1}{2}.

  • Câu 8: Nhận biết

    Một hộp chứa 10 tấm thẻ được đánh số thứ tự từ 1 đến 10. Chọn ngẫu nhiên hai tấm thẻ. Tính xác suất để chọn được hai tấm thẻ đều ghi số chẵn?

    Từ 1 đến 10 có 5 số chẵn.

    Số cách chọn ngẫu nhiên hai tấm thẻ trong hộp là:

    n(\Omega) = C_{10}^{2} = 45

    Số cách chọn được hai tấm thẻ đều ghi số chẵn là: n(A) = C_{5}^{2} = 10

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{45} = \frac{2}{9}

  • Câu 9: Nhận biết

    Hộp A4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh. Hộp B7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh. Lấy ngẫu nhiên mỗi hộp một viên bi. Xác suất để hai viên bi được lấy ra có cùng màu là bao nhiêu?

    Số phần tử của không gian mẫu: 15.18 =
270.

    Số cách chọn từ mỗi hộp 1 viên bi sau cho 2 viên bi cùng màu là: 4.7 + 5.6 + 6.5 = 88.

    Vậy xác suất cần tìm là \frac{88}{270} =
\frac{44}{135}.

  • Câu 10: Vận dụng

    Trong một buổi liên hoan có 10 cặp nam nữ, trong đó có 4 cặp vợ chồng. Chọn ngẫu nhiên 3 người để biểu diễn một tiết mục văn nghệ. Xác suất để 3 người được chọn không có cặp vợ chồng nào là bao nhiêu?

    Không gian mẫu là số cách chọn ngẫu nhiên 3 người trong 20 người.

    Suy ra số phần tử không gian mẫu là |\Omega| = C_{20}^{3} = 1140.

    Gọi A là biến cố ''3 người được chọn không có cặp vợ chồng nào''. Để tìm số phần tử của A, ta đi tìm số phần tử của biến cố \overline{A}, với biến cố \overline{A}3 người được chọn luôn có 1 cặp vợ chồng.

    + Chọn 1 cặp vợ chồng trong 4 cặp vợ chồng, có C_{4}^{1} cách.

    + Chọn thêm 1 người trong 18 người, có C_{18}^{1} cách.

    Suy ra số phần tử của biến cố \overline{A}\left| \Omega_{\overline{A}} ight| =
C_{4}^{1}.C_{18}^{1} = 72.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = 1140 - 72 =
1068.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{1068}{1140} =
\frac{89}{95}.

  • Câu 11: Nhận biết

    Bốn quyển sách được đánh dấu bằng những chữ cái U, V, X, Y được xếp tuỳ ý trên 1 kệ sách dài. Xác suất để chúng được sắp xếp theo thứ tự bảng chữ cái là:

     Số cách sắp xếp 4 phần tử vào dãy nằm ngang gồm 4 vị trí có 4!=24 (cách). Suy ra n(\Omega)=24.

    Chỉ có duy nhất 1 cách sắp xếp 4 chữ U, V, X, Y theo thứ tự bảng chữ cái.

    Vậy xác suất P=\frac1{24}.

  • Câu 13: Nhận biết

    Một tổ học sinh lớp 10A có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 4 học sinh trong tổ đó để tham gia đội tình nguyện. Tính xác suất để bốn học sinh được chọn đều là nữ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{12}^{4} = 495

    Gọi A là biến cố: “Bốn học sinh được chọn đều là nữ”

    \Rightarrow n(A) = C_{5}^{4} =
5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{495} = \frac{1}{99}

  • Câu 16: Nhận biết

    Một hộp đèn có 12 bóng, trong đó có 4 bóng hỏng. Lấy ngẫu nhiên 3 bóng. Xác suất luôn lấy được 1 bóng hỏng là:

    Trong 3 bóng có 1 bóng hỏng

    Ta có n(\Omega) = C_{12}^{3} =
220.

    Gọi biến cố A : “Trong 3 bóng lấy ra có 1 bóng hỏng”.

    Tính được n\left( \Omega_{A} ight) =
C_{4}^{1}.C_{8}^{2} = 112.

    Vậy P(A) = \frac{112}{220} =
\frac{28}{55}.

  • Câu 17: Vận dụng

    Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số được lập từ tập hợp X = {1;2;3;4;5;6;7;8;9}. Chọn ngẫu nhiên một số từ S. Xác suất để số chọn được chia hết cho 6 bằng:

    Số phần tử trong không gian mẫu là n(\Omega) = 9^{4}.

    Gọi A là biến cố: “số chọn được chia hết cho 6”.

    Giả sử số cần tìm là \overline{abcd}.

    Do số cần tìm chia hết cho 6 nên chia hết cho 2.

    Do đó chọn d \in \left\{ 2;4;6;8
ight\} có 4 cách.

    Chọn a, b9^{2} cách. Để chọn c ta xét tổng M = a + b + d:

    Nếu M chia cho 3 dư 0 thì c \in
\left\{ 3;6;9 ight\} suy ra có 3 cách chọn.

    Nếu M chia cho 3 dư 1 thì c \in
\left\{ 2;5;8 ight\} suy ra có 3 cách chọn.

    Nếu M chia cho 3 dư 2 thì c \in
\left\{ 1;4;7 ight\} suy ra có 3 cách chọn.

    Do đó n(A) = 4.9^{2}.3 =
972.

    Vậy P(A) = \frac{972}{9^{4}} =
\frac{4}{27}.

  • Câu 18: Thông hiểu

    Trong một hộp chứa một số bi, mỗi bi mang một số từ 1 đến 21 và không có hai bi nào mang số giống nhau. Chọn ngẫu nhiên từ hộp đó ra 2 bi. Xác suất hai bi được chọn đều mang số lẻ là:

    Số cách chọn 2 bi từ 21 bi là: C_{21}^{2}

    Từ số 1 đến 21 có 11 số lẻ nên số cách chọn được 2 viên bi đều mang số lẻ là: C_{11}^{2}

    Vậy xác suất để hai viên bi đều ghi số lẻ là: \frac{C_{11}^{2}}{C_{21}^{2}} =
\frac{11}{42}

  • Câu 19: Vận dụng

    Cho X = {0; 1; 2; 3; …; 15}. Chọn ngẫu nhiên 3 số trong tập hợp X. Xác suất để trong ba số được chọn không có hai số liên tiếp bằng:

    Không gian mẫu có số phần tử là: |\Omega|
= C_{16}^{3} = 560 (phần tử).

    Ta tìm số cách lấy ra ba số trong đó có đúng hai số liên tiếp nhau hoặc lấy ra được cả ba số liên tiếp nhau.

    Khi đó ta có các trường hợp sau:

    Trường hợp 1: Lấy ra ba số trong đó có đúng hai số liên tiếp nhau.

    Trong ba số lấy ra có hai số 0,1 hoặc 14, 15 khi đó số thứ ba có 13 cách lấy.

    Do đó trường hợp này có: 2.13 = 26 cách lấy.

    Trong ba số lấy ra không có hai số 0,1 hoặc 14, 15 khi đó ta có 13 cặp số liên tiếp nhau khác 0,1 và 14, 15, số thứ ba có 12 cách lấy. Do đó trường hợp này có: 13.12 = 156 cách lấy.

    Trường hợp 2: Lấy ra được cả ba số liên tiếp nhau có 14 cách lấy.

    Vậy ta có 26 + 156 + 14 = 196 cách lấy ra ba số liên tiếp nhau hoặc lấy ra ba số trong đó có hai số liên tiếp nhau.

    Xác suất để trong ba số được chọn không có hai số liên tiếp là: P = \frac{560 - 196}{560} =
\frac{13}{20}.

  • Câu 20: Vận dụng

    Một hộp chứa 3 viên bi xanh, 5 viên bi đỏ và 6 viên bi vàng. Lấy ngẫu nhiên 6 viên bi từ hộp. Xác suất để 6 viên bi được lấy ra có đủ cả ba màu là bao nhiêu?

    Không gian mẫu là số cách chọn ngẫu nhiên 6 viên bi từ hộp chứa 14 viên bi. Suy ra số phần tử của không gian mẫu là |\Omega| = C_{14}^{6} = 3003.

    Gọi A là biến cố ''6 viên bi được lấy ra có đủ cả ba màu''. Để tìm số phần tử của biến cố A ta đi tìm số phần tử của biến cố \overline{A} tức là 6 viên bi lấy ra không có đủ ba màu như sau

    TH1: Chọn 6 viên bi chỉ có một màu (chỉ chọn được màu vàng).

    Do đó trường hợp này có C_{6}^{6} =
1 cách.

    TH2: Chọn 6 viên bi có đúng hai màu xanh và đỏ, có C_{8}^{6} cách.

    Chọn 6 viên bi có đúng hai màu đỏ và vàng, có C_{11}^{6} - C_{6}^{6} cách.

    Chọn 6 viên bi có đúng hai màu xanh và vàng, có C_{9}^{6} - C_{6}^{6} cách.

    Do đó trường hợp này có C_{8}^{6} +
\left( C_{11}^{6} - C_{6}^{6} ight) + \left( C_{9}^{6} - C_{6}^{6}
ight) = 572 cách.

    Suy ra số phần tử của biến cố \overline{A}\left| \Omega_{\overline{A}} ight| = 1 + 572 =
573.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = |\Omega| -
\left| \Omega_{\overline{A}} ight| = 3003 - 573 = 2430.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{2430}{3003} =
\frac{810}{1001}..

  • Câu 21: Nhận biết

    Cho B\overline{B} là hai biến cố đối nhau. Chọn mệnh đề đúng trong các mệnh đề sau đây?

    Mệnh đề đúng là: P(A) = 1 - P\left(
\overline{A} ight)

  • Câu 22: Nhận biết

    Một người chọn ngẫu nhiên đồng thời 4 quân bài từ bộ tú lơ khơ 52 quân bài. Tính xác suất của biến cố: “Cả 4 quân bài đều là Át”?

    Số phần tử không gian mẫu: n(\Omega) =
C_{52}^{4}

    Chỉ có đúng 1 cách để lấy được cả 4 quân bài đều là Át nên xác suất cần tìm là:

    P = \frac{1}{C_{52}^{4}}

  • Câu 23: Thông hiểu

    Một hộp có 5 bi đen, 4 bi trắng. Chọn ngẫu nhiên 2 bi. Tính xác suất 2 bi được chọn có đủ hai màu.

    Số phần tử không gian mẫu: n(\Omega) =C_{9}^{2} = 36.

    (bốc 2 bi bất kì từ 9 bi trong hộp ).

    Gọi A: “hai bi được chọn có đủ hai màu”. Ta có: n(A) = C_{5}^{1}.C_{4}^{1}= 20.

    ( chọn 1 bi đen từ 5 bi đen – chọn 1 bi trắng từ 4 bi trắng ).

    Khi đó: P(A) = \frac{n(A)}{n(\Omega)} =\frac{20}{36} = \frac{5}{9}.

  • Câu 24: Nhận biết

    Hoạt động nào sau đây không phải là phép thử?

    Các hoạt động ở các phương án:

    " Chọn một trong ba bạn An, Bình, Cường tham gia cuộc thi chạy điền kinh."

    "Chơi trò chơi gắp thú nhồi bông."

    "Chọn một quyển sách bất kì trên giá sách và đọc tên của quyển sách đó."

    Đều là phép thử vì ta không thể đoán trước được kết quả của hoạt động đó mặc dù biết được tất cả các kết quả có thể xảy ra.

    Hoạt động ở phương án A không phải là phép thử vì ta có thể đoán trước được kết quả của hoạt động đó là: 2 + 5 + 3 = 10 (chiếc bút bi).

  • Câu 25: Vận dụng

    Chọn ngẫu nhiên 3 số tự nhiên từ tập hợp M = \left\{ 1;2;3;...;2019
ight\}. Xác suất của P để trong 3 số tự nhiên được chọn không có 2 số tự nhiên liên tiếp bằng bao nhiêu?

    Có tất cả C_{2019}^{3} cách chọn 3 số tự nhiên từ tập hợp M = \left\{
1;2;3;...;2019 ight\}.

    Suy ra n(\Omega) =
C_{2019}^{3}.

    Xét biến cố A: “Chọn 3 số tự nhiên sao cho không có 2 số tự nhiên liên tiếp”.

    Ta có \overline{A}: “Chọn 3 số tự nhiên sao luôn có 2 số tự nhiên liên tiếp”.

    Xét các trường hợp sau:

    + Trường hợp 1: Trong ba số chọn được chỉ có 2 số liên tiếp:

    - Nếu 2 số liên tiếp là \left\{ 1;2
ight\} hoặc \left\{ 2018;2019
ight\} thì số thứ ba có 2019 - 3
= 2016 cách chọn (do không tính số liên tiếp sau và trước mỗi cặp số đó).

    - Nếu 2 số liên tiếp là \left\{ 2;3
ight\}, \left\{ 3;4
ight\},.,\left\{ 2017;2018
ight\} thì số thứ ba có 2019 - 4
= 2015 cách chọn (do không tính 2 số liền trước và sau mỗi cặp số đó).

    Trường hợp này có 2.2016 + 2016.2015 =
4066272 cách chọn.

    + Trường hợp 2: Chọn được 3 số liên tiếp.

    Tức là chọn các bộ \left\{ 1;2;3
ight\}, \left\{ 2;3;4
ight\},.,\left\{ 2017,2018,2019
ight\}: có tất cả 2017 cách.

    Suy ra n\left( \overline{A} ight) =
4066272 + 2017 = 4068289.

    Vậy P = P(A) = 1 - P\left( \overline{A}
ight) = 1 - \frac{4068289}{C_{2019}^{3}} =
\frac{1365589680}{1369657969} = \frac{677040}{679057}.

  • Câu 26: Nhận biết

    Gọi P(A) là xác suất của biến cố A trong phép thử T. Hãy chọn khẳng định đúng trong các khẳng định sau?

    P(A) là xác suất của biến cố A trong phép thử T ta luôn có 0 \leq P(A)
\leq 1.

  • Câu 27: Nhận biết

    Cho phép thử với không gian mẫu Ω = {1; 2; 3; 4; 5; 6}. Đâu không phải là cặp biến cố đối nhau.

     Cặp E = {1; 4; 6} và F = {2; 3} không phải là biến cố đối.

  • Câu 28: Thông hiểu

    Trong hộp có 3 viên bi xanh và 5 viên bi đỏ. Lấy ngẫu nhiên trong hộp 3 viên bi. Xác suất của biến cố A: “Lấy ra được 3 viên bi màu đỏ” là:

    Chọn ba viên bi ngẫu nhiên trong hộp => n\left( \Omega  ight) = C_8^3

    Biến cố A: “Lấy ra được 3 viên bi màu đỏ” => n\left( A ight) = C_5^3

    => Xác suất của biến cố A là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{C_5^3}}{{C_8^3}} = \frac{5}{{28}}

  • Câu 29: Thông hiểu

    Có bốn hành khách bước lên một đoàn tàu gồm 4 toa. Mỗi hành khách độc lập với nhau và chọn ngẫu nhiên một toa. Tính xác suất để 1 toa có 3 người, 1 toa có 1 người và 2 toa còn lại không có người?

    Vì mỗi hành khách có 4 cách chọn toa tàu nên: n(\Omega) = 4^{4} = 256

    Để xếp theo yêu cầu của bài toán ta thực hiện các bước liên tiếp như sau:

    Chọn 1 toa để xếp 3 người ta có: C_{4}^{1} = 4

    Chọn 3 người để xếp vào toa đó là: C_{4}^{3} = 4

    Chọn 1 toa từ 3 toa còn lại để xếp người còn lại vào: C_{3}^{1} = 3

    Theo quy tắc nhân ta có: 4.4.3 =
48

    Vậy xác suất cần tìm là: \frac{48}{256} =
\frac{3}{16}

  • Câu 30: Thông hiểu

    Gieo ba con xúc xắc một cách độc lập. Tính xác suất để tổng số chấm trên mặt xuất hiện trên ba con xúc xắc bằng 9?

    Gọi A là biến cố: “Tổng số chấm trên ba mặt của ba con xúc xắc là 9”

    \left\{ \begin{matrix}
9 = 1 + 2 + 6 \\
9 = 2 + 3 + 4 \\
9 = 1 + 3 + 5 \\
9 = 1 + 4 + 4 \\
9 = 2 + 2 + 5 \\
9 = 3 + 3 + 3 \\
\end{matrix} ight. nên n(A) =
3.3! + 3.2 + 1 = 25

    Lại có |\Omega| = 6^{3} =
216

    Khi đó xác suất của biến cố A là: P(A) =
\frac{25}{216}

  • Câu 31: Thông hiểu

    Chọn ngẫu nhiên một số từ tập hợp các số tự nhiên thuộc đoạn \lbrack
40;60brack. Tính xác suất của biến cố: “Chọn được số có chữ số hàng đơn vị lớn hơn chữ số hàng chục”.

    Từ 40 đến 60 có 21 số nên n(\Omega) =
21

    Các số thỏa mãn yêu cầu đề bài là: 45;45;47;48;49;56;57;58;59

    Suy ra số kết quả thuận lợi cho biến cố: “Chọn được số có chữ số hàng đơn vị lớn hơn chữ số hàng chục” là 9.

    Suy ra xác suất của biến cố cần tìm là \frac{9}{21} = \frac{3}{7}

  • Câu 32: Thông hiểu

    Gieo cùng một lúc hai con xúc xắc khác màu nhưng cân đối và đồng chất một lần. Tính xác suất để tổng số chấm xuất hiện trên hai mặt xúc xắc lớn hơn 7?

    Ta có:

    n(\Omega) = 6^{2} = 36

    Các kết quả thuận lợi cho biến cố C: “tổng số chấm xuất hiện trên hai mặt xúc xắc lớn hơn 7” là:

    C = \begin{Bmatrix}
(2;6),(3;5),(3;6),(4;4),(4;5) \\
(4;6),(5;3),(5;4),(5;5),(5;6) \\
(6;2),(6;3),(6;4),(6;5),(6;6) \\
\end{Bmatrix}

    \Rightarrow n(C) = 15

    Vậy xác suất của biến cố C là: P(C) =
\frac{n(C)}{n(\Omega)} = \frac{15}{36} = \frac{5}{12}.

  • Câu 33: Nhận biết

    Một lớp có 40 học sinh, trong đó có 4 học sinh tên Anh. Trong một lần kiểm tra bài cũ, thầy giáo gọi ngẫu nhiên hai học sinh trong lớp lên bảng. Tính xác suất để 2 bạn học sinh tên Anh cùng lên bảng.

    Số phần tử của không gian mẫu n(\Omega) =
C_{40}^{2} = 780.

    Gọi A là biến cố gọi hai học sinh tên Anh lên bảng, ta có n(A) =
C_{4}^{2} = 6.

    Vậy xác suất cần tìm là P(A) =
\frac{6}{780} = \frac{1}{130}.

  • Câu 34: Thông hiểu

    Một lô sản phẩm gồm 35 sản phẩm đạt chuẩn và 15 sản phẩm lỗi. Lấy ngẫu nhiên 3 sản phẩm từ trong hộp. Tính xác suất để 3 sản phẩm lấy ra đều là sản phẩm đạt chuẩn?

    Ta có: n(\Omega) =
C_{50}^{3}

    Gọi B là biến cố cả ba sản phẩm lấy ra đều là sản phẩm đạt chuẩn.

    Chọn 3 trong 35 sản phẩm đạt chuẩn ta có: \Rightarrow n(B) = C_{35}^{3}

    Vậy xác suất của biến cố B là: P(B) =
\frac{C_{35}^{3}}{C_{50}^{3}} = \frac{187}{560}.

  • Câu 35: Thông hiểu

    Trên bàn có 4 quyển sách toán, 3 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để trong ba quyển sách lấy ra có ít nhất một quyển là toán?

    Xác suất để trong ba quyển lấy ra có ít nhất một quyển sách Toán là: 1 - \frac{C_{3}^{3}}{C_{7}^{3}} =
\frac{34}{35}

  • Câu 36: Nhận biết

    Một hộp có 1 viên bi xanh, 1 viên bi đỏ, 1 viên bi vàng. Chọn ngẫu nhiên 2 viên bi trong hộp (sau khi chọn mỗi viên lại thả lại vào hộp). Không gian mẫu là:

     Mô tả không gian mẫu: \Omega = \{XD; XV; DV; DX; VX; VD; XX; VV; DD\}

    (Xanh là X, đỏ là D, vàng là V).

  • Câu 37: Nhận biết

    Một tổ học sinh có 6 nam và 4 nữ. Chọn ngẫu nhiên 2 người. Xác suất chọn được 2 nữ là:

    Chọn ngẫu nhiên 2 người trong 10 người có C_{10}^{2} cách chọn.

    Hai người được chọn đều là nữ có C_{4}^{2} cách.

    Xác suất để hai người được chọn đều là nữ là: \frac{C_{4}^{2}}{C_{10}^{2}} =
\frac{2}{15}.

  • Câu 38: Nhận biết

    Gieo một đồng xu cân đối và đồng chất hai lần liên tiếp. Tính xác suất của biến cố: “Cả hai lần gieo đều xuất hiện mặt sấp”?

    Số phần tử không gian mẫu là:

    \Omega = \left\{ SS;SN;NS;NN ight\}
\Rightarrow n(\Omega) = 2.2 = 4

    Gọi A là biến cố: “Cả hai lần gieo đều xuất hiện mặt sấp”

    A = \left\{ SS ight\} \Rightarrow n(A)
= 1

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{1}{4}

  • Câu 39: Nhận biết

    Gieo 1 con xúc xắc 1 lần. Biến cố A: “Số chấm xuất hiện nhỏ hơn 4”. Mô tả biến cố A.

     Mô tả biến cố A: A = {1;2;3}.

  • Câu 40: Thông hiểu

    Gieo một con xúc xắc cân đối đồng chất 2 lần. Tính xác suất để biến cố có tích 2 lần số chấm khi gieo xúc xắc là một số chẵn.

    Số phần tử của không gian mẫu là |\Omega|
= 6.6 = 36.

    Gọi A là biến cố ''Tích hai lần số chấm khi gieo xúc xắc là một số chẵn''. Ta xét các trường hợp:

    TH1:. Gieo lần một, số chấm xuất hiện trên mặt là số lẻ thì khi gieo lần hai, số chấm xuất hiện phải là số chẵn. Khi đó có 3.3 = 9 cách gieo.

    TH2:. Gieo lần một, số chấm xuất hiện trên mặt là số chẵn thì có hai trường hợp xảy ra là số chấm xuất hiện trên mặt khi gieo lần hai là số lẻ hoặc số chẵn. Khi đó có 3.3
+ 3.3 = 18 cách gieo.

    Suy ra số kết quả thuận lợi cho biến cố là \left| \Omega_{A} ight| = 9 + 18 =
27.

    Vậy xác suất cần tìm tính P(A) =
\frac{27}{36} = 0,75.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 10 Xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo