Đề kiểm tra 45 phút Chương 2 Bất phương trình và hệ bất phương trình bậc nhất hai ẩn CTST

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Bất phương trình và hệ bất phương trình bậc nhất hai ẩn gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Nửa mặt phẳng là miền nghiệm của bất phương trình – x + 2 + 2(y – 2) < 2(1 – x) không chứa điểm nào trong các điểm sau:

     Thay điểm (4; 2) vào bất phương trình, ta được: -2< -6 (sai). Do đó điểm này không thuộc miền nghiệm của bất phương trình.

  • Câu 2: Thông hiểu

    Tìm m để hệ bất phương trình sau trở thành hệ bất phương trình bậc nhất hai ẩn: \left\{\begin{matrix}mx^{2}+2(m+1)x+y<1\\ my^{2}+3x-4y-1>0\end{matrix}ight..

    Để hệ bất phương trình \left\{\begin{matrix}mx^{2}+2(m+1)x+y<1\\ my^{2}+3x-4y-1>0\end{matrix}ight. trở thành hệ bất phương trình bậc nhất hai ẩn thì hệ số đứng trước x^2,y^2 phải bằng 0 nghĩa là:

    m=0

    Vậy với m=0 thì hệ bất phương trình đã cho trở thành hệ bất phương trình bậc nhất hai ẩn.

  • Câu 3: Nhận biết

    Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x - y > 0 \\
x - 3y \leq - 3 \\
x + y > 5 \\
\end{matrix} ight.

    Thay tọa độ các điểm vào bất phương trình ta thấy điểm A(3, 2) thỏa mãn hệ bất phương trình.

  • Câu 4: Thông hiểu

    Khoảng giá trị của x khi y = 1 trong hệ bất phương trình \left\{\begin{matrix}x+y\geq 1\\ 2x-3y<5\end{matrix}ight. là:

    Với y=1 hệ bất phương trình trở thành:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {x + 1 \geqslant 1} \\   {2x - 3.1 < 5} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 0} \\   {2x < 8} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 0} \\   {x < 4} \end{array} \Leftrightarrow x \in \left[ {0;4} ight)} ight. \hfill \\ \end{matrix}

    Vậy khi y = 1 thì khoảng giá trị của x là {\left[ {0;4} ight)}.

  • Câu 5: Thông hiểu

    Cho hệ bất phương trình \left\{\begin{matrix}x\geq 0 \\ y\geq 0 \\ x+y\leq 80 \\ 2x+y\leq 120\end{matrix}ight.. Trong các cặp số (-1; -1), (-1; 0), (1; 1), (2; 2), (0; -1) thì những cặp số là nghiệm của hệ bất phương trình trên là:

    Xét cặp số (-1; -1) thay vào bất phương trình ta thấy { - 1 \geqslant 0} (Loại)

    Xét cặp số (-1; 0) thay vào bất phương trình ta thấy { - 1 \geqslant 0} (Loại)

    Xét cặp số (1; 1) thay vào bất phương trình ta thấy:

    \left\{ {\begin{array}{*{20}{c}}  {1 \geqslant 0} \\   {1 \geqslant 0} \\   {1 + 1 \leqslant 80} \\   {2.1 + 1 \leqslant 120} \end{array}} ight.\left( {TM} ight)

    Xét cặp số (2; 2) thay vào bất phương trình ta thấy

    \left\{ {\begin{array}{*{20}{c}}  {2 \geqslant 0} \\   {2 \geqslant 0} \\   {2 + 2 \leqslant 80} \\   {2.2 + 2 \leqslant 120} \end{array}} ight.\left( {TM} ight)

    Xét cặp số (0; -1) thay vào bất phương trình ta thấy { - 1 \geqslant 0} (Loại)

    Vậy cặp số thỏa mãn hệ bất phương trình là: (1; 1), (2; 2)

  • Câu 6: Nhận biết

    Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?

     Bất phương trình bậc nhất hai ẩn là: x+y>0

  • Câu 7: Thông hiểu

    Cho bất phương trình 2x + 4y < 5 có tập nghiệm là S. Khẳng định nào sau đây là khẳng định đúng?

    Ta có: 2.1 + 4.( - 1) = - 2 <
5. Ta thấy (1; - 1) thỏa mãn phương trình do đó (1; - 1) là một cặp nghiệm của phương trình.

  • Câu 8: Nhận biết

    Cho bất phương trình x - 2y - 1 < 0 có tập nghiệm S. Khẳng định nào sau đây là đúng?

    Xét điểm ( - 2; - 1). Ta có: - 2 - 2( - 1) - 1 = - 1 < 0 thỏa mãn. Do đó ( - 2; - 1) \in S.

  • Câu 9: Thông hiểu

    Miền nghiệm của bất phương trình - x + y < 2 được xác định bởi miền nào (nửa mặt phẳng không bị gạch và không kể d) sau đây?

    Vẽ đường thẳng -x + y = 2

    Vì -x + y < 2 nên tọa độ điểm (0; 0) thỏa mãn là nghiệm của bất phương trình.

    Vậy đáp án là:

  • Câu 10: Nhận biết

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x - 2y < 0 \\
x + 3y > - 2 \\
y - x < 3 \\
\end{matrix} ight. chứa điểm nào sau đây?

    Ta thấy (0;1) là nghiệm của cả ba bất phương trình. Điều đó có nghĩa điểm (0;1) thuộc cả ba miền nghiệm của ba bất phương trình.

  • Câu 11: Vận dụng cao

    Gia đình bác Tuân dự định trồng cà phê và sầu riêng trên diện tích 8 ha. Nếu trồng cà phê thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha, nếu trồng sầu riêng thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất biết rằng tổng số công không quá 180?

    Diện tích trồng cà phê là: 6 (ha)

    Diện tích trồng sầu riêng là: 2 (ha)

    Đáp án là:

    Gia đình bác Tuân dự định trồng cà phê và sầu riêng trên diện tích 8 ha. Nếu trồng cà phê thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha, nếu trồng sầu riêng thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất biết rằng tổng số công không quá 180?

    Diện tích trồng cà phê là: 6 (ha)

    Diện tích trồng sầu riêng là: 2 (ha)

    Gọi diện tích trồng cà phê và sầu riêng mà hộ gia đình này trồng lần lượt là xy (ha)

    Điều kiện: x,y \geq 0

    Lợi nhuận thu được là f(x;y) = 3000000x +
4000000y (đồng).

    Tổng số công dùng để trồng x ha cà phê và y ha sầu riêng là 20x + 30y.

    Ta có hệ bất phương trình sau: \left\{
\begin{matrix}
x + y \leq 8 \\
20x + 30y \leq 180 \\
x,y \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x + y \leq 8 \\
2x + 3y \leq 18 \\
x,y \geq 0 \\
\end{matrix} ight.\ (*)

    Bài toán trở thành tìm giá trị lớn nhất của hàm số f(x;y) trên miền nghiệm của hệ bất phương trình (*)

    Miền nghiệm của hệ bất phương trình (*) là tứ giác OABC (kể cả biên)

    Hình vẽ minh họa

    Hàm số f(x;y) sẽ đạt giá trị lớn nhất khi (x;y) là tọa độ của một trong các đỉnh O(0;0),A(8;0),B(6;2),C(0;6).

    Ta có: \left\{ \begin{matrix}
f(0;0) = 0 \\
f(8;0) = 24000000 \\
f(6;2) = 26000000 \\
f(0;6) = 2400000 \\
\end{matrix} ight..

    Suy ra f(x;y) lớn nhất khi (x;y) = (6;2)

    Vậy hộ gia đình này cần phải trồng 6 ha cà phê và 2 ha sầu riêng thì sẽ thu về lợi nhuận lớn nhất.

  • Câu 12: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{5x}{2} + \frac{4y}{3} - 1 \geq 0 \\
y > 0 \\
2x - \frac{3y}{2} > 5 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Với P(5;2). Ta có: \left\{ \begin{matrix}
\frac{5.5}{2} + \frac{4.2}{3} - 1 \geq 0 \\
2 > 0 \\
2.5 - \frac{3.2}{2} > 5 \\
\end{matrix} ight.. Cả ba bất phương trình đều đúng. Chọn đáp án này.

  • Câu 13: Vận dụng

    Miền nghiệm của bất phương trình - \sqrt{3}x + 2y - \sqrt{5}(y - 2) \leq
\sqrt{35}(2y + x) chứa điểm nào?

    Ta có: - \sqrt{3}x + 2y - \sqrt{5}(y - 2)
\leq \sqrt{35}(2y + x) \Leftrightarrow - \sqrt{3}x + 2y - \sqrt{5}y +
2\sqrt{5} \leq 2\sqrt{35}y + \sqrt{35}x \Leftrightarrow (\sqrt{35} +
\sqrt{3})x + (2\sqrt{35} - 2 + \sqrt{5})y - 2\sqrt{5} \geq
0

    Điểm (1;0) thỏa mãn bất phương trình nên nó thuộc miền nghiệm của bất phương trình.

  • Câu 14: Thông hiểu

    Cho bất phương trình 2x+3y-6\leq 0 (1). Chọn khẳng định đúng trong các khẳng định sau:

     Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.

  • Câu 15: Thông hiểu

    Miền nghiệm của bất phương trình 3x +2(y - 1) > 4(x + 1) - 3y chứa điểm có tọa độ:

    Ta có:

    3x + 2(y + 3) > 4(x + 1) – y + 3

    => −x + 3y – 1 > 0

    −3 + 3.2 – 1 > 0 là mệnh đề đúng nên miền nghiệm của bất phương trình trên chứa điểm có tọa độ (3; 2).

  • Câu 16: Vận dụng

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x + y - 1 > 0 \\
y \geq 2 \\
- x + 2y > 3 \\
\end{matrix} ight. là phần không tô đậm của hình vẽ nào trong các hình vẽ sau?

    Xét điểm M(0;4) thử vào các bất phương trình của hệ thấy thỏa mãn.

    Chỉ có hình vẽ chứa điểm M(0;4). Chọn đáp án hình vẽ này.

  • Câu 17: Thông hiểu

    Cho bất phương trình 2x + 3y - 6 \leq 0 (1). Chọn khẳng định đúng trong các khẳng định sau:

    Trên mặt phẳng tọa độ, đường thẳng (d):2x+ 3y - 6 = 0chia mặt phẳng thành hai nửa mặt phẳng.

    Chọn điểm O(0;0) không thuộc đường thẳng đó. Ta thấy (x;y) =
(0;0) là nghiệm của bất phương trình đã cho. Vậy miền nghiệm của bất phương trình là nửa mặt phẳng bờ (d) chứa điểm O(0;0) kể cả (d).

    Vậy bất phương trình (1) luôn có vô số nghiệm.

  • Câu 18: Nhận biết

    Điểm M(0; -3) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

    Thay tọa độ M(0; - 3) lần lượt vào từng phương trình của hệ \left\{\begin{matrix}2x - y \leq 3 \\2x + 5y \leq 12x + 8 \\\end{matrix} ight. ta thấy thỏa mãn.

  • Câu 19: Nhận biết

    Điểm M(1; -
4) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

    Xét hệ \left\{ \begin{matrix}
2x - y > 3 \\
2x + 5y \leq 12x + 8 \\
\end{matrix} ight.. Thay tọa độ M(1; - 4) vào hệ: \left\{ \begin{matrix}
2.1 - ( - 4) > 3 \\
2.1 + 5.( - 4) \leq 12.1 + 8 \\
\end{matrix} ight. . Cả 2 bất phương trình đều đúng. Chọn đáp án này.

  • Câu 20: Thông hiểu

    Cặp nghiệm nào sau đây là nghiệm của bất phương trình bậc nhất hai ẩn: x + 2y - 1 < 0?

    (x; y) = (2; 3) => x = 2;{\text{ }}y = 3 thay vào bất phương trình ta có:

    2 + 2.3 - 1 = 7 > 0 => Đáp án sai

    (x; y) = (1; 2) => x = 1;{\text{ }}y = 2 thay vào bất phương trình ta có:

    1 + 2.2 - 1 = 4 > 0 => Đáp án sai

    (x; y) = (0; 1) => x = 0;{\text{ }}y = 1 thay vào bất phương trình ta có:

    0 + 2.1 - 1 = 1> 0 => Đáp án sai

    (x; y) = (-1; 0) => x = -1;{\text{ }}y = 0 thay vào bất phương trình ta có:

    -1 + 2.0 - 1 = -2 < 0 => Đáp án đúng

    Vậy (x; y) = (-1; 0) là nghiệm của bất phương trình bậc nhất hai ẩn: x + 2y - 1 < 0

  • Câu 21: Thông hiểu

    Miền nghiệm của bất phương trình - 3x - 5y < - 1 không chứa điểm nào sau đây?

    Xét điểm ( - 1; - 1). Ta có: - 3( - 1) - 5( - 1) = 8 < - 1 không thỏa mãn. Do đó ( - 1; - 1) không thuộc miền nghiệm của bất phương trình.

  • Câu 22: Vận dụng

    Phần tô đậm trong hình vẽ sau, biểu diễn tập nghiệm của bất phương trình nào trong các bất phương trình sau?

    Đường thẳng đi qua hai điểm A\left(
\frac{3}{2};0 ight)B(0; -
3) nên có phương trình 2x - y =
3.

    Mặt khác, cặp số (0;0) không thỏa mãn bất phương trình 2x - y >
3 nên phần tô đậm ở hình trên biểu diễn miền nghiệm của bất phương trình 2x - y > 3.

  • Câu 23: Nhận biết

    Trong các cặp số sau, cặp số nào không là nghiệm của hệ bất phương trình \left\{\begin{matrix}x+y-2\leq 0\\ 2x-3y+2>0\end{matrix}ight.

     Thay cặp số (–1;1) vào hệ ta được \left\{\begin{matrix}-1+1-2\leq 0\\ 2(-1)-3.1+2>0\end{matrix}ight. không thỏa mãn bất phương trình ở dưới. Do đó cặp số này không là nghiêm của hệ.

  • Câu 24: Thông hiểu

    Giải hệ phương trình: \left\{ {\begin{array}{*{20}{c}}  {x + y + xy = 11} \\   {{x^2} + {y^2} + 3\left( {x + y} ight) = 28} \end{array}} ight.. Nghiệm (x; y) là:

     Đặt \left\{ {\begin{array}{*{20}{c}}  {x + y = S} \\   {xy = P} \end{array}} ight.

    Hệ phương trình ban đầu trở thành: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {S + P = 11} \\   {{S^2} - 2P + 3S = 28} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {P = 11 - S} \\   {{S^2} - 2P + 3S = 28} \end{array}} ight. \hfill \\   \Rightarrow {S^2} - 2\left( {11 - S} ight) + 3S = 28 \hfill \\   \Rightarrow {S^2} + 5S - 50 = 0 \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {S = 5 \Rightarrow P = 6} \\   {S =  - 10 \Rightarrow P = 21} \end{array}} ight. \hfill \\ \end{matrix}

    Với S = 5; P = 6 ta có:

    {X^2} - 5X + 6 = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {X = 2} \\   {X = 3} \end{array}} ight.

    Với S = -10; P = 21 ta có:

    {X^2} + 10X + 2 = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {X =  - 3} \\   {X =  - 7} \end{array}} ight.

    Vậy hệ phương trình có nghiệm (x; y) = (3; 2), (2; 3), (-3; -7), (-7, -3)

  • Câu 25: Nhận biết

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x + 2y < 0 \\
x - 3y > - 2 \\
y - x < 4 \\
\end{matrix} ight. chứa điểm nào sau đây?

    Với C(0; - 1). Ta có: \left\{ \begin{matrix}
0 + 2. - 1 < 0 \\
0 - 3.( - 1) > - 2 \\
- 1 - 0 < 4 \\
\end{matrix} ight.. Cả ba bất phương trình đều thỏa mãn. Chọn đáp án này.

  • Câu 26: Nhận biết

    Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?

    Các hệ bất phương trình \left\{\begin{matrix}x^{2}+y<0\\ y-x>0\end{matrix}ight.\left\{\begin{matrix}2x-y^{2}<5\\ 4x+3y>10^{10}\end{matrix}ight. có chứa các bất phương trình bậc hai {x^2} + y < 0;2x - {y^2} < 5 => Các hệ bất phương trình trên không là hệ bất phương trình bậc nhất hai ẩn.

    Đáp án y - 2x <0 là bất phương trình bậc nhất hai ẩn không phải hệ bất phương trình bậc nhất hai ẩn.

    Đáp án \left\{\begin{matrix}x<1\\ y-1>2\end{matrix}ight. có hai bất phương trình đều là các bất phương trình bậc nhất hai ẩn.

  • Câu 27: Vận dụng cao

    Một nhà máy gồm hai đội công nhân (đội 1 và đội 2) sản xuất nhôm và sắt. Muốn sản xuất một tấn nhôm thì đội 1 phải làm việc trong 3 giờ và đội 2 làm việc trong 1 giờ. Một đội không thể sản xuất đồng thời nhôm và sắt. Đội 1 làm việc không quá 6 giờ một ngày, đội 2 làm việc không quá 4 giờ một ngày. Hỏi số tiền lãi lớn nhất mà nhà mhà máy thu về trong một ngày là bao nhiêu? Biết một tấn nhôm lãi 2 000 000 đồng, một tấn sắt lãi 1 600 000 triệu đồng.

    Gọi x, y lần lượt là số tấn nhôm và sắt mà nhà máy này sản xuất trong một ngày

    Điều kiện: x, y > 0

    Khi đó số tiền lãi một ngày của nhà máy này là f(x;y) = 2x + 1,6y (triệu đồng)

    Số giờ làm việc trong ngày của đội 1 là 3x + y (giờ)

    Số giờ làm việc trong ngày của đội 2 là x
+ y (giờ)

    Vì mỗi ngày đội 1 làm việc không quá 6 giờ và đội 2 làm việc không quá 4 giờ nên ta có hệ bất phương trình: \left\{ \begin{matrix}
3x + y \leq 6 \\
x + y \leq 4 \\
x,\ y \geq 0 \\
\end{matrix} ight.\ (*)

    Bài toán trở thành tìm giá trị lớn nhất của hàm số f(x;y) trên miền nghiệm của hệ bất phương trình (∗).

    Miền nghiệm của hệ bất phương trình (∗) là tứ giác OABC (kể cả biên).

    Hình vẽ minh họa

    Hàm số f(x;y) sẽ đạt giá trị lớn nhất trên miền nghiệm của hệ bất phương trình (∗) khi (x;y) là toạ độ một trong các đỉnh O(0;0),A(2;0),B(1;3),C(0;4).

    Ta có: \left\{ \begin{matrix}
f(0;0) = 0 \\
f(2;0) = 4 \\
f(1;3) = 6,8 \\
f(0;4) = 6,4 \\
\end{matrix} ight.

    Suy ra max\ f(x;y) = 6,8 khi (x;y) = (1;3)

    Vậy số tiền lãi lớn nhất mà nhà máy thu được trong một ngày là: 6,8 triệu đồng.

  • Câu 28: Nhận biết

    Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?

    Theo định nghĩa thì x + y \geq 0 là bất phương trình bậc nhất hai ẩn. Các bất phương trình còn lại là bất phương trình bậc hai.

  • Câu 29: Nhận biết

    Cặp số (2; 3) không là nghiệm của bất phương trình nào sau đây?

    Xét đáp án x + y < 0 

    Thay x=2;y=3 ta được: 2 + 3 = 5 > 0 

    Vậy cặp số (2; 3) không là nghiệm của bất phương trình.

    Xét đáp án x + y > 0

    Thay x=2;y=3 ta được: 2 + 3 = 5 > 0

    Vậy cặp số (2; 3) là nghiệm của bất phương trình.

    Xét đáp án x - y < 0

    Thay x=2;y=3 ta được: 2 - 3 = -1 < 0

    Vậy cặp số (2; 3) là nghiệm của bất phương trình.

    Xét đáp án 2x - y > 0

    Thay x=2;y=3 ta được: 2.2 - 3 = 1 > 0

    Vậy cặp số (2; 3) là nghiệm của bất phương trình.

  • Câu 30: Thông hiểu

    Miền nghiệm của bất phương trình \left( 1 + \sqrt{3} ight)x - \left( 1 - \sqrt{3}
ight)y \geq 2 chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \  - 1). Vì \left( 1 + \sqrt{3} ight).1 - \left( 1 -
\sqrt{3} ight).( - 1) = 2 \geq 2 nên miền nghiệm của bất phương trình chứa điểm A(1\ \ ;\ \  -
1).

  • Câu 31: Nhận biết

    Cho hệ bất phương trình \left\{ \begin{matrix}
3x + y - 2 \geq 0 \\
x + 3y + 1 \leq 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với M(0;1) \Rightarrow \left\{ \begin{matrix}
3.0 + 1 - 2 \geq 0 \\
0 + 3.1 + 1 \leq 0 \\
\end{matrix} ight.. Bất phương trình thứ hai sai nên không thỏa mãn.

    Với N(–1;1) \Rightarrow \left\{ \begin{matrix}
3.1 - 1 - 2 \geq 0 \\
1 + 3. - 1 + 1 \leq 0 \\
\end{matrix} ight.. Đúng. Chọn đáp án này.

  • Câu 32: Thông hiểu

    Cho hệ bất phương trình \left\{ \begin{matrix}2x - 5y - 1 > 0 \\2x + y + 5 > 0 \\x + y + 1 < 0 \\\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{\begin{matrix}2.0 - 5.0 - 1 > 0 \\2.0 + 0 + 5 > 0 \\0 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ nhất và thứ ba sai nên không thỏa mãn.

    Với M(1;0) \Rightarrow \left\{\begin{matrix}2.1 - 5.0 - 1 > 0 \\2.1 + 0 + 5 > 0 \\1 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ ba sai nên không thỏa mãn.

    Với N(0; - 3) \Rightarrow \left\{\begin{matrix}2.0 - 5.( - 3) - 1 > 0 \\2.0 + ( - 2) + 5 > 0 \\0 + ( - 2) + 1 < 0 \\\end{matrix} ight.. Đúng.

  • Câu 33: Nhận biết

    Cặp số (1; – 1) là nghiệm của bất phương trình nào sau đây?

     Thay cặp số (1; – 1) vào bất phương trình x + 3y + 1< 0 ta được: -1 < 0 thỏa mãn. Suy ra cặp số này là nghiệm của bất phương trình.

  • Câu 34: Vận dụng

    Phần không bị gạch chéo là nghiệm của bất phương trình nào? (kể cả bờ \Delta)

    Đường thẳng \Delta có dạng y = ax + b đi qua hai điểm (1;0)(0,
- \frac{1}{2}).

    Thay tọa độ hai điểm này vào \Delta: \left\{ \begin{matrix}
0 = a.1 + b \\
- \frac{1}{2} = a.0 + b \\
\end{matrix} \Rightarrow \left\{ \begin{matrix}
a = \frac{1}{2} \\
b = - \frac{1}{2} \\
\end{matrix} ight.\  ight..

    Vậy \Delta có dạng y = \frac{1}{2}x - \frac{1}{2} \Leftrightarrow x -
2y - 1 = 0.

    Thay điểm O(0;0) vào \Delta : 0 -
0 - 1 < 0. Suy ra phần không bị gạch (không chứa O) là nghiệm của bất phương trình x - 2y - 1 \geq 0. (kể cả bờ \Delta)

  • Câu 35: Nhận biết

    Điểm O(0; 0) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

     Thay tọa độ O(0;0) vào hệ \left\{\begin{matrix}x+3y-6< 0\\ 2x+y+4 >0\end{matrix}ight. ta được \left\{\begin{matrix}-6< 0\\ 4 >0\end{matrix}ight. thỏa mãn.

  • Câu 36: Vận dụng

    Phần không tô đậm trong hình vẽ dưới đây, biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?

    Do miền nghiệm không chứa biên nên ta loại đáp án \left\{ \begin{matrix}
x - 2y \leq 0 \\
x + 3y \geq - 2 \\
\end{matrix} ight.\left\{
\begin{matrix}
x - 2y \leq 0 \\
x + 3y \leq - 2 \\
\end{matrix} ight.. Chọn điểm M(0;1)thử vào các hệ bất phương trình.

    Xét đáp án \left\{ \begin{matrix}
x - 2y > 0 \\
x + 3y < - 2 \\
\end{matrix} ight., ta có \left\{ \begin{matrix}
0 - 2.1 > 0 \\
0 + 3.1 < - 2 \\
\end{matrix} ight.. Sai.

    Vậy chọn đáp án \left\{ \begin{matrix}
x - 2y < 0 \\
x + 3y > - 2 \\
\end{matrix} ight..

  • Câu 37: Nhận biết

    Trong các bất phương trình sau đây, đâu là bất phương trình bậc nhất hai ẩn?

    Xét đáp án 4x+5y-t+1>0

    4x+5y-t+1>0 là bất phương trình bậc nhất 3 ẩn x, y, t, không là bất phương trình bậc nhất hai ẩn.

    Xét đáp án 2x - y - 1 > 0

    2x - y - 1 > 0 là bất phương trình bậc nhất hai ẩn có dạng ax + by + c > 0, a = 2, b = -1, c = -1.

    Xét đáp án {x^2} + y < 1

    {x^2} + y < 1 là bất phương trình có chứa x^2 nên không là bất phương trình bậc nhất hai ẩn.

    Xét đáp án \frac{{5x}}{{6{y^2}}} - x > 0

    \frac{{5x}}{{6{y^2}}} - x > 0 không là bất phương trình bậc nhất hai ẩn vì không có dạng ax + by + c > 0.

  • Câu 38: Nhận biết

    Cho bất phương trình 2x + 3y - 1 \leqslant 0 (1). Chọn khẳng định đúng trong các khẳng định sau:

    Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.

  • Câu 39: Nhận biết

    Miền nghiệm của bất phương trình - 2x + 4y \geq 1 chứa điểm nào dưới đây?

    Xét điểm (0;1). Ta có: - 2.0 + 4.1 = 4 \geq 1 thỏa mãn. Do đó miền nghiệm của bất phương trình - 2x + 4y
\geq 1 chứa điểm (0;1).

  • Câu 40: Thông hiểu

    Một cửa hàng bán hai loại mặt hàng AB. Biết rằng cứ bán một mặt hàng loại A cửa hàng lãi 5 nghìn đồng, bán một mặt hàng loại B cửa hàng lãi 7 nghìn đồng. Gọi x,y lần lượt là số mặt hàng loại A và mặt hàng loại B mà cửa hàng đó bán ra trong một tháng. Cặp số (x;y) nào sau đây biểu thị số mặt hàng bán ra mỗi loại của cửa hàng trong một tháng mà tổng số tiền lãi không ít hơn 30 triệu đồng?

    Đặt x là số tiền lãi của mặt hàng A

    y là số tiền lãi của mặt hàng B

    Đổi 30 triệu = 30 000 nghìn đồng

    Theo đề bài ta có: 5x + 7y \geqslant
30000

    TH1: Thay A (1000; 2000) vào phương trình

    \Rightarrow 5.1000 + 7.2000 = 19000 <
30000(P)

    {TH}_{2}. Thay B(3000; 1000) vào phương trình

    \Rightarrow 5.3000 + 7 \cdot 1000 =
22000 < 3000(l)

    {TH}_{3} : Thay C(2000;3000) vào phương trình

    \Rightarrow 5.2000 + 7.3000 = 31000 \geq
3000(tm)

    TH4: Thay D(3000;2000) vào phương trình

    \Rightarrow 5.3000 + 7.2000 = 29000 <
3000(l)

    Vậy đáp án là: C(2000;3000)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 2 Bất phương trình và hệ bất phương trình bậc nhất hai ẩn CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 26 lượt xem
Sắp xếp theo