Đề kiểm tra 45 phút Chương 2 Bất phương trình và hệ bất phương trình bậc nhất hai ẩn CTST

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Bất phương trình và hệ bất phương trình bậc nhất hai ẩn gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x - 2y < 0 \\
x + 3y > - 2 \\
y - x < 3 \\
\end{matrix} ight. chứa điểm nào sau đây?

    Ta thấy (0;1) là nghiệm của cả ba bất phương trình. Điều đó có nghĩa điểm (0;1) thuộc cả ba miền nghiệm của ba bất phương trình.

  • Câu 2: Nhận biết

    Nửa mặt phẳng là miền nghiệm của bất phương trình – x + 2 + 2(y – 2) < 2(1 – x) không chứa điểm nào trong các điểm sau:

     Thay điểm (4; 2) vào bất phương trình, ta được: -2< -6 (sai). Do đó điểm này không thuộc miền nghiệm của bất phương trình.

  • Câu 3: Thông hiểu

    Miền nghiệm của bất phương trình - 3x + y + 2 \leq 0 không chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \ 2). Ta có: - 3.1 + 2 + 2 = 1 > 0 nên miền nghiệm của bất phương trình trên không chứa điểm A(1\ \ ;\ \ 2).

  • Câu 4: Vận dụng cao

    Một nhà máy gồm hai đội công nhân (đội 1 và đội 2) sản xuất nhôm và sắt. Muốn sản xuất một tấn nhôm thì đội 1 phải làm việc trong 3 giờ và đội 2 làm việc trong 1 giờ. Một đội không thể sản xuất đồng thời nhôm và sắt. Đội 1 làm việc không quá 6 giờ một ngày, đội 2 làm việc không quá 4 giờ một ngày. Hỏi số tiền lãi lớn nhất mà nhà mhà máy thu về trong một ngày là bao nhiêu? Biết một tấn nhôm lãi 2 000 000 đồng, một tấn sắt lãi 1 600 000 triệu đồng.

    Gọi x, y lần lượt là số tấn nhôm và sắt mà nhà máy này sản xuất trong một ngày

    Điều kiện: x, y > 0

    Khi đó số tiền lãi một ngày của nhà máy này là f(x;y) = 2x + 1,6y (triệu đồng)

    Số giờ làm việc trong ngày của đội 1 là 3x + y (giờ)

    Số giờ làm việc trong ngày của đội 2 là x
+ y (giờ)

    Vì mỗi ngày đội 1 làm việc không quá 6 giờ và đội 2 làm việc không quá 4 giờ nên ta có hệ bất phương trình: \left\{ \begin{matrix}
3x + y \leq 6 \\
x + y \leq 4 \\
x,\ y \geq 0 \\
\end{matrix} ight.\ (*)

    Bài toán trở thành tìm giá trị lớn nhất của hàm số f(x;y) trên miền nghiệm của hệ bất phương trình (∗).

    Miền nghiệm của hệ bất phương trình (∗) là tứ giác OABC (kể cả biên).

    Hình vẽ minh họa

    Hàm số f(x;y) sẽ đạt giá trị lớn nhất trên miền nghiệm của hệ bất phương trình (∗) khi (x;y) là toạ độ một trong các đỉnh O(0;0),A(2;0),B(1;3),C(0;4).

    Ta có: \left\{ \begin{matrix}
f(0;0) = 0 \\
f(2;0) = 4 \\
f(1;3) = 6,8 \\
f(0;4) = 6,4 \\
\end{matrix} ight.

    Suy ra max\ f(x;y) = 6,8 khi (x;y) = (1;3)

    Vậy số tiền lãi lớn nhất mà nhà máy thu được trong một ngày là: 6,8 triệu đồng.

  • Câu 5: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
3x + y \geq 9 \\
x \geq y - 3 \\
2y \geq 8 - x \\
y \leq 6 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Thay lần lượt tọa độ các điểm vào hệ bất phương trình. Ta thấy điểm P(8;4) thỏa mãn cả 4 phươn trình trong hệ.

  • Câu 6: Nhận biết

    Miền nghiệm của bất phương trình - 2x + 4y \geq 1 chứa điểm nào dưới đây?

    Xét điểm (0;1). Ta có: - 2.0 + 4.1 = 4 \geq 1 thỏa mãn. Do đó miền nghiệm của bất phương trình - 2x + 4y
\geq 1 chứa điểm (0;1).

  • Câu 7: Vận dụng

    Cho x, y thỏa mãn hệ \left\{\begin{matrix}x+2y-100\leq 0\\ 2x+y-80\leq 0\\ x\geq0\\ y\geq0\end{matrix}ight.. Tìm giá trị lớn nhất của biểu thức P(x;y) = 40000x+30000y

     Biểu diễn miền nghiệm của hệ \left\{\begin{matrix}x+2y-100\leq 0\\ 2x+y-80\leq 0\\ x\geq0\\ y\geq0\end{matrix}ight.:

    Nghiệm của hệ là miền tứ giác OABC với O(0;0); A(40;0);C(0;50) và tọa độ B là nghiệm của hệ \left\{\begin{matrix}x+2y-100\leq 0\\ 2x+y-80\leq 0\end{matrix}ight., suy ra B(20;40).

    Giá trị lớn nhất của P =40000x+30000y đạt được tại 1 trong 4 đỉnh của tứ giác.

    Với O(0;0) \Rightarrow P=0.

    Với A(40;0) \Rightarrow P=1600000.

    Với B(20;40)\Rightarrow P=2000000.

    Với C(0;50) \Rightarrow P=1500000.

    Vậy GTLN P=2000000.

  • Câu 8: Nhận biết

    Điểm nào sau đây không thuộc miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x - y > 0 \\
x - 3y \leq - 3 \\
x + y > 5 \\
\end{matrix} ight.

    Thay tọa độ các điểm vào bất phương trình ta thấy điểm A(3, 2) thỏa mãn hệ bất phương trình.

  • Câu 9: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{3x}{2} + \frac{2y}{3} - 1 \geq 0 \\
x > 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{
\begin{matrix}
\frac{3.0}{2} + \frac{2.0}{3} - 1 \geq 0 \\
x > 0 \\
x + \frac{1}{2} - \frac{3y}{2} \leq 2 \\
\end{matrix} ight.. Bất phương trình thứ nhất sai nên không thỏa mãn.

    Với M(3;1) \Rightarrow \left\{
\begin{matrix}
\frac{3.3}{2} + \frac{2.1}{3} - 1 \geq 0 \\
3 > 0 \\
3 + \frac{1}{2} - \frac{3.1}{2} \leq 2 \\
\end{matrix} ight.. Đúng. Chọn đáp án này.

  • Câu 10: Nhận biết

    Cho hệ bất phương trình \left\{ \begin{matrix}
2x + y - 2 \leq 0 \\
x - 3y + 2 > 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Với O(0;0). Ta có: \left\{ \begin{matrix}
2.0 + 0 - 2 \leq 0 \\
0 - 3.0 + 2 > 0 \\
\end{matrix} ight. . Cả hai bất phương trình đều thỏa mãn. Chọn đáp án này.

  • Câu 11: Nhận biết

    Cho hệ bất phương trình \left\{ \begin{matrix}
x + 3y - 2 \geq 0 \\
2x + y + 1 \leq 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với M(0;1) \Rightarrow \left\{ \begin{matrix}
0 + 3.1 - 2 \geq 0 \\
2.0 + 1 + 1 \leq 0 \\
\end{matrix} ight..Bất phương trình thứ hai sai nên không thỏa mãn.

    Với N(–1;1) \Rightarrow \left\{ \begin{matrix}
- 1 + 3.1 - 2 \geq 0 \\
2.( - 1) + 1 + 1 \leq 0 \\
\end{matrix} ight.. Đúng.

  • Câu 12: Thông hiểu

    Cho bất phương trình 2x+3y-6\leq 0 (1). Chọn khẳng định đúng trong các khẳng định sau:

     Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.

  • Câu 13: Nhận biết

    Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?

    Theo định nghĩa thì x + y \geq 0 là bất phương trình bậc nhất hai ẩn. Các bất phương trình còn lại là bất phương trình bậc hai.

  • Câu 14: Vận dụng cao

    Tìm tất cả giá trị của tham số m để hệ bất phương trình \left\{ \begin{matrix}
x \geq 0 \\
x - y \leq 0 \\
y - mx - 2 \leq 0 \\
\end{matrix} ight. có tập nghiệm được biểu diễn trên mặt phẳng tọa độ là một hình tam giác.

    Họ đường thẳng \left( d_{m} ight):y -
mx - 2 = 0 luôn đi qua điểm A(0;2), hay nói cách khác các đường thẳng \left( d_{m} ight) xoay quanh A.

    Mặt khác, ta có 1 - m.0 - 2 \leq
0 đúng với mọi m

    => Miền nghiệm của bất phương trình y
- mx - 2 \leq 0 luôn chứa điểm (0;1).

    Do đó ta có 3 khả năng sau

    Vậy m < 0.

  • Câu 15: Nhận biết

    Điểm M(0; -3) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

    Thay tọa độ M(0; - 3) lần lượt vào từng phương trình của hệ \left\{\begin{matrix}2x - y \leq 3 \\2x + 5y \leq 12x + 8 \\\end{matrix} ight. ta thấy thỏa mãn.

  • Câu 16: Nhận biết

    Trong các cặp số sau đây, cặp nào không là nghiệm của bất phương trình 2x + y < 1?

     Thay (0; 1) vào bất phương trình, ta được: 1 < 1 (sai). Do đó cặp số này không là nghiệm của bất phương trình.

  • Câu 17: Thông hiểu

    Cho hệ bất phương trình \left\{ \begin{matrix}
x - 2y > 3 \\
- 3 + x - y < 0 \\
\end{matrix} ight. có tập nghiệm S. Khẳng định nào sau đây là khẳng định đúng ?

    Ta có: \left\{ \begin{matrix}
x - 2y > 3 \\
- 2 + x - 2y < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 2y + 3 \\
x < 2y + 2 \\
\end{matrix} ight.. Do đó không có điểm nào thỏa mãn hệ phương trình.

    Hệ này vô nghiệm.

  • Câu 18: Thông hiểu

    Miền nghiệm của bất phương trình x+2(y+1)-4y\leq 2(x+1)-5y không chứa điểm có tọa độ:

    Ta có: 

    x+2(y+1)-4y\leq 2(x+1)-5y

    \begin{matrix}   \Rightarrow x + 2y + 2 - 4y \leqslant 2x + 2 - 5y \hfill \\   \Rightarrow  - x + 3y \leqslant 0 \hfill \\ \end{matrix}

    Thay x=3;y=2 vào bất phương trình ta được: - 3 + 3.2=  5 > 0

    Vậy (3;2) không thuộc miền nghiệm của bất phương trình.

  • Câu 19: Nhận biết

    Cho hệ bất phương trình \left\{ \begin{matrix}
x + y - 2 \leq 0 \\
2x - 3y + 2 > 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào không thuộc miền nghiệm của hệ bất phương trình?

    Thay lần lượt tọa độ các điểm vào hệ bất phương trình. Ta thấy chỉ có điểm N( - 1;1) thỏa mãn cả hai phương trình trong hệ \left\{ \begin{matrix}
x + y - 2 \leq 0 \\
2x - 3y + 2 > 0 \\
\end{matrix} ight..

  • Câu 20: Thông hiểu

    Cho bất phương trình \sqrt{5}x - 1 < \sqrt{2023}y có tập nghiệm T. Khẳng định nào sau đây là đúng?

    Xét điểm (2;1). Ta có: \sqrt{5}.2 - 1 < \sqrt{2023}.1 thỏa mãn. Do đó (2;1) \in T.

  • Câu 21: Vận dụng

    Phần không bị gạch chéo là nghiệm của bất phương trình nào? (kể cả bờ \Delta)

    Đường thẳng \Delta có dạng y = ax + b đi qua hai điểm (1;0)(0,
- \frac{1}{2}).

    Thay tọa độ hai điểm này vào \Delta: \left\{ \begin{matrix}
0 = a.1 + b \\
- \frac{1}{2} = a.0 + b \\
\end{matrix} \Rightarrow \left\{ \begin{matrix}
a = \frac{1}{2} \\
b = - \frac{1}{2} \\
\end{matrix} ight.\  ight..

    Vậy \Delta có dạng y = \frac{1}{2}x - \frac{1}{2} \Leftrightarrow x -
2y - 1 = 0.

    Thay điểm O(0;0) vào \Delta : 0 -
0 - 1 < 0. Suy ra phần không bị gạch (không chứa O) là nghiệm của bất phương trình x - 2y - 1 \geq 0. (kể cả bờ \Delta)

  • Câu 22: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
\frac{5x}{2} + \frac{4y}{3} - 1 \geq 0 \\
y > 0 \\
2x - \frac{3y}{2} > 5 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Với P(5;2). Ta có: \left\{ \begin{matrix}
\frac{5.5}{2} + \frac{4.2}{3} - 1 \geq 0 \\
2 > 0 \\
2.5 - \frac{3.2}{2} > 5 \\
\end{matrix} ight.. Cả ba bất phương trình đều đúng. Chọn đáp án này.

  • Câu 23: Nhận biết

    Điểm O(0; 0) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

     Thay tọa độ O(0;0) vào hệ \left\{\begin{matrix}x+3y-6< 0\\ 2x+y+4 >0\end{matrix}ight. ta được \left\{\begin{matrix}-6< 0\\ 4 >0\end{matrix}ight. thỏa mãn.

  • Câu 24: Nhận biết

    Cặp số (2;3) là nghiệm của bất phương trình nào sau đây?

    2 - 3 < 0 là mệnh đề đúng nên cặp số (2;3) là nghiệm của bất phương trình x–y < 0.

  • Câu 25: Nhận biết

    Trong các bất phương trình sau đây, đâu là bất phương trình bậc nhất hai ẩn?

    Xét đáp án 4x+5y-t+1>0

    4x+5y-t+1>0 là bất phương trình bậc nhất 3 ẩn x, y, t, không là bất phương trình bậc nhất hai ẩn.

    Xét đáp án 2x - y - 1 > 0

    2x - y - 1 > 0 là bất phương trình bậc nhất hai ẩn có dạng ax + by + c > 0, a = 2, b = -1, c = -1.

    Xét đáp án {x^2} + y < 1

    {x^2} + y < 1 là bất phương trình có chứa x^2 nên không là bất phương trình bậc nhất hai ẩn.

    Xét đáp án \frac{{5x}}{{6{y^2}}} - x > 0

    \frac{{5x}}{{6{y^2}}} - x > 0 không là bất phương trình bậc nhất hai ẩn vì không có dạng ax + by + c > 0.

  • Câu 26: Thông hiểu

    Điểm nào sau đây thuộc miền nghiệm của bất phương trình 2x + y - 3 > 0?

    Xét điểm M\left( 1;\frac{3}{2}ight) . Ta có: 2.1 + \frac{3}{2}- 3 = \frac{1}{2} > 0 nên M\left( 1;\frac{3}{2} ight) thuộc miền nghiệm của bất phương trình đã cho.

  • Câu 27: Nhận biết

    Cho hệ bất phương trình \left\{ \begin{matrix}
3x + y - 2 \geq 0 \\
x + 3y + 1 \leq 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với M(0;1) \Rightarrow \left\{ \begin{matrix}
3.0 + 1 - 2 \geq 0 \\
0 + 3.1 + 1 \leq 0 \\
\end{matrix} ight.. Bất phương trình thứ hai sai nên không thỏa mãn.

    Với N(–1;1) \Rightarrow \left\{ \begin{matrix}
3.1 - 1 - 2 \geq 0 \\
1 + 3. - 1 + 1 \leq 0 \\
\end{matrix} ight.. Đúng. Chọn đáp án này.

  • Câu 28: Thông hiểu

    Cặp nghiệm nào sau đây là nghiệm của bất phương trình bậc nhất hai ẩn: x + 2y - 1 < 0?

    (x; y) = (2; 3) => x = 2;{\text{ }}y = 3 thay vào bất phương trình ta có:

    2 + 2.3 - 1 = 7 > 0 => Đáp án sai

    (x; y) = (1; 2) => x = 1;{\text{ }}y = 2 thay vào bất phương trình ta có:

    1 + 2.2 - 1 = 4 > 0 => Đáp án sai

    (x; y) = (0; 1) => x = 0;{\text{ }}y = 1 thay vào bất phương trình ta có:

    0 + 2.1 - 1 = 1> 0 => Đáp án sai

    (x; y) = (-1; 0) => x = -1;{\text{ }}y = 0 thay vào bất phương trình ta có:

    -1 + 2.0 - 1 = -2 < 0 => Đáp án đúng

    Vậy (x; y) = (-1; 0) là nghiệm của bất phương trình bậc nhất hai ẩn: x + 2y - 1 < 0

  • Câu 29: Nhận biết

    Cặp số (1; – 1) là nghiệm của bất phương trình nào sau đây?

     Thay cặp số (1; – 1) vào bất phương trình x + 3y + 1< 0 ta được: -1 < 0 thỏa mãn. Suy ra cặp số này là nghiệm của bất phương trình.

  • Câu 30: Nhận biết

    Trong các cặp số sau, cặp số nào không là nghiệm của hệ bất phương trình \left\{\begin{matrix}x+y-2\leq 0\\ 2x-3y+2>0\end{matrix}ight.

     Thay cặp số (–1;1) vào hệ ta được \left\{\begin{matrix}-1+1-2\leq 0\\ 2(-1)-3.1+2>0\end{matrix}ight. không thỏa mãn bất phương trình ở dưới. Do đó cặp số này không là nghiêm của hệ.

  • Câu 31: Thông hiểu

    Tìm m để hệ bất phương trình sau trở thành hệ bất phương trình bậc nhất hai ẩn: \left\{\begin{matrix}mx^{2}+2(m+1)x+y<1\\ my^{2}+3x-4y-1>0\end{matrix}ight..

    Để hệ bất phương trình \left\{\begin{matrix}mx^{2}+2(m+1)x+y<1\\ my^{2}+3x-4y-1>0\end{matrix}ight. trở thành hệ bất phương trình bậc nhất hai ẩn thì hệ số đứng trước x^2,y^2 phải bằng 0 nghĩa là:

    m=0

    Vậy với m=0 thì hệ bất phương trình đã cho trở thành hệ bất phương trình bậc nhất hai ẩn.

  • Câu 32: Nhận biết

    Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?

     Bất phương trình bậc nhất hai ẩn là: x+y>0

  • Câu 33: Thông hiểu

    Cho hệ bất phương trình \left\{ \begin{matrix}2x - 5y - 1 > 0 \\2x + y + 5 > 0 \\x + y + 1 < 0 \\\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{\begin{matrix}2.0 - 5.0 - 1 > 0 \\2.0 + 0 + 5 > 0 \\0 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ nhất và thứ ba sai nên không thỏa mãn.

    Với M(1;0) \Rightarrow \left\{\begin{matrix}2.1 - 5.0 - 1 > 0 \\2.1 + 0 + 5 > 0 \\1 + 0 + 1 < 0 \\\end{matrix} ight.. Bất phương trình thứ ba sai nên không thỏa mãn.

    Với N(0; - 3) \Rightarrow \left\{\begin{matrix}2.0 - 5.( - 3) - 1 > 0 \\2.0 + ( - 2) + 5 > 0 \\0 + ( - 2) + 1 < 0 \\\end{matrix} ight.. Đúng.

  • Câu 34: Vận dụng

    Hình vẽ sau biểu diễn miền nghiệm (phần không bị gạch) của bất phương trình bậc nhất hai ẩn nào?

    Xác định bất phương trình qua hình vẽ

    Ta thấy đường thẳng ∆ cắt 2 trục tọa độ tại điểm A(0; 1) và B(2; 0).

    Xét đáp án x + 2y - 2 > 0

    Thay x = 0, y = 1 vào phương trình x + 2y – 2 = 0 ta được 0 + 2. 1 – 2 = 0 = 0 là mệnh đề đúng.

    Thay x = 2, y = 0 vào phương trình x + 2y – 2 = 0 ta được 2 + 2.0 – 2 = 0 = 0 là mệnh đề đúng.

    Thay x = 0, y = 0 vào bất phương trình x + 2y – 2 > 0 ta được 0 + 2.0 – 2 = -2 > 0 là mệnh đề sai, vậy điểm O(0; 0) không thỏa mãn bất phương trình, nên miền nghiệm của bất phương trình x + 2y – 2 > 0 là bờ đường thẳng x + 2y – 2 = 0, không chứa điểm O.

    Vậy x + 2y - 2 > 0 đúng.

    Xét đáp án 3x + y - 2 < 0

    Thay x = 0, y = 1 vào phương trình 3x + y – 2 = 0 ta có 3. 0 + 1 – 2 = -1 = 0 là mệnh đề sai, vậy câu 3x + y - 2 < 0 sai.

    Xét đáp án x - 2y + 1 < 0

    Thay x = 0, y = 1 vào phương trình x - 2y + 1 = 0 ta có 0 - 2. 1 + 1 = -1 = 0 là mệnh đề sai, vậy câu x - 2y + 1 < 0 sai.

    Xét đáp án x + 3y > 0

    Thay x = 0, y = 1 vào phương trình x + 3y = 0 ta có 0 + 3. 1 = 3 = 0 là mệnh đề sai, vậy câu x + 3y > 0 sai.

  • Câu 35: Nhận biết

    Cặp số (\ 1;\  -
1) là nghiệm của bất phương trình nào?

    Ta có: 1 + 4( - 1) = - 3 <
1.

  • Câu 36: Vận dụng

    Miền nghiệm của bất phương trình: 3x + 2(y + 3) \geq 4(x + 1) - y + 3 là nửa mặt phẳng chứa điểm:

    Ta có 3x + 2(y + 3) \geq 4(x + 1) - y +3\  \Leftrightarrow \  - x + 3y - 1 \geq 0.

    - 2 + 3.1 - 1 > 0 là mệnh đề đúng nên miền nghiệm của bất phương trình trên chứa điểm có tọa độ (2;1).

  • Câu 37: Thông hiểu

    Miền nghiệm của bất phương trình - x + y < 2 được xác định bởi miền nào (nửa mặt phẳng không bị gạch và không kể d) sau đây?

    Vẽ đường thẳng -x + y = 2

    Vì -x + y < 2 nên tọa độ điểm (0; 0) thỏa mãn là nghiệm của bất phương trình.

    Vậy đáp án là:

  • Câu 38: Vận dụng

    Giá trị nhỏ nhất F_{\min} của biểu thức F(x;y) = 4x + 3y trên miền xác định bởi hệ \left\{ \begin{matrix}
0 \leq x \leq 10 \\
0 \leq y \leq 9 \\
2x + y \geq 14 \\
2x + 5y \geq 30 \\
\end{matrix} ight. là :

    Trong mặt phẳng tọa độ Oxy, vẽ các đường thẳng

    d_{1}:2x + y - 14 = 0,\ d_{2}:2x + 5y - 30 = 0, \Delta:y = 9,\Delta':x = 10.

    Khi đó miền nghiệm của hệ bất phương trình là phần mặt phẳng tô màu như hình vẽ.

    Xét các đỉnh của miền khép kín tạo bởi hệ là A(5;4),B\left( \frac{5}{2};9 ight), C(10;9),D(10;2).

    Ta có \left\{ \begin{matrix}
F(5;4) = 32 \\
F\left( \frac{5}{2};9 ight) = 37 \\
F(10;9) = 67 \\
F(10;2) = 46 \\
\end{matrix} ight. \overset{}{ightarrow}F_{\min} = 32.

  • Câu 39: Thông hiểu

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x + y \geq 9 \\
2x \geq y - 3 \\
2y \geq x \\
y \leq 6 \\
\end{matrix} ight. chứa điểm nào trong các điểm sau đây?

    Với P(8;4). Ta có: \left\{ \begin{matrix}
8 + 4 \geq 9 \\
2.8 \geq 4 - 3 \\
2.4 \geq 8 \\
4 \leq 6 \\
\end{matrix} ight.. Cả 4 bất phương trình đều đúng. Chọn đáp án này.

  • Câu 40: Thông hiểu

    Điểm A( -
1;3) là điểm thuộc miền nghiệm của bất phương trình:

    - 3.( - 1) + 2.3 - 4 > 0 là mệnh đề đúng nên A( - 1;3) là điểm thuộc miền nghiệm của bất phương trình - 3x + 2y - 4 > 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 2 Bất phương trình và hệ bất phương trình bậc nhất hai ẩn CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 26 lượt xem
Sắp xếp theo