Đề kiểm tra 45 phút Chương 2 Mặt nón, mặt trụ, mặt cầu

Mô tả thêm: Nội dung các câu hỏi trong Đề kiểm tra được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng một cách tốt hơn
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

     Tính tang của góc

    Nửa góc ở đỉnh của hình nón là góc \widehat {ASO} .

    Hình vuông ABCD cạnh a nên suy ra: OA = \frac{{a\sqrt 2 }}{2}

    Trong tam giác vuông SOA, ta có \tan \widehat {ASO} = \frac{{OA}}{{SO}} = \frac{{a\sqrt 2 }}{{2h}}.

  • Câu 2: Thông hiểu

    Trong không gian, cho hình chữ nhật ABCD có AB = 1AD = 2 . Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

    Diện tích toàn phần

    Theo giả thiết ta được hình trụ có chiều cao h=AB=1 , bán kính đáy R = \frac{{AD}}{2} = 1

    Do đó diện tích toàn phần: {S_{tp}} = 2\pi Rh + 2\pi {R^2} = 4\pi

  • Câu 3: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, giá trị dương của tham số m sao cho mặt phẳng (Oxy) tiếp xúc với mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2} = m^{2} +
1 là:

    Ta có: (Oxy) có phương trình z = 0

    Mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2}
= m^{2} + 1 có tâm I(3;0;2) và bán kính R = \sqrt{m^{2} + 1}

    Để mặt phẳng (Oxy) tiếp xúc với mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2} =
m^{2} + 1 thì

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|2|}{\sqrt{1}} = \sqrt{m^{2} + 1}

    \Leftrightarrow m^{2} + 1 = 4
\Leftrightarrow m = \pm \sqrt{3}. Vì m nhận giá trị dương nên m = \sqrt{3}.

    Vậy m = \sqrt{3} thỏa yêu cầu đề bài.

  • Câu 4: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3; 1; 2)B(5; 7; 0). Có tất cả bao nhiêu giá trị thực của tham số m để phương trình x^{2} + y^{2} + z^{2} - 4x + 2my - 2(m + 1)z +
m^{2} + 2m + 8 = 0 là phương trình của một mặt cầu (S) sao cho qua hai điểm A, B có duy nhất một mặt phẳng cắt mặt cầu (S) đó theo giao tuyến là một đường tròn có bán kính bằng 1.

    Ta có:

    x^{2} + y^{2} + z^{2} - 4x + 2my - 2(m +
1)z + m^{2} + 2m + 8 = 0

    \Leftrightarrow (x - 2)^{2} + (y +
m)^{2} + (z - m - 1)^{2} = m^{2} - 3(*)

    Suy ra (*) là phương trình mặt cầu

    \Leftrightarrow m^{2} - 3 > 0
\Leftrightarrow |m| > \sqrt{3}

    Khi đó, mặt cầu (S) có tâm I(2; −m; m + 1) và bán kính R = \sqrt{m^{2} - 3}

    Gọi (P) là mặt phẳng đi qua A, B.

    Theo giả thiết (P) cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính r = 1.

    Mặt khác, khoảng cách từ tâm I đến mặt phẳng (P) là d = \sqrt{R^{2} - r^{2}} = \sqrt{m^{2} - 4};\left(
m^{2} - 4 \geq 0 ight)

    Ta có: \overrightarrow{AB} = (2;6; -
2) suy ra \overrightarrow{u} =
(1;3; - 1) là một vectơ chỉ phương của đường thẳng AB

    Suy ra đường thẳng AB là: \left\{ \begin{matrix}
x = 3 + t \\
y = 1 + 3t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Để có duy nhất mặt phẳng (P) thỏa mãn bài thì

    TH1. Mặt phẳng (P) đi qua điểm I và I
otin AB

    Ta có I ∈ (P) ⇔ d = 0 ⇔ m^2 − 4 = 0 ⇔ m = ±2.

    + Với m = 2 ⇒ I(2; −2; 3) ∈ AB ⇒ m = 2 (loại).

    + Với m = −2 ⇒ I(2;2; - 1) otin
AB⇒ m = −2 (thỏa mãn).

    TH2. Mặt phẳng (P) cách I một khoảng lớn nhất ⇔ d lớn nhất ⇔ d = d(I, AB). (*)

    \overrightarrow{IA} = (1;1 + m;1 -
m)

    \Rightarrow \left\lbrack
\overrightarrow{IA};\overrightarrow{u} ightbrack = ( - 4 + 2m;2 -
m;2 - m)

    \Rightarrow \left| \left\lbrack
\overrightarrow{IA};\overrightarrow{u} ightbrack ight| = |2 -
m|\sqrt{6};\left| \overrightarrow{u} ight| = \sqrt{11}

    Khi đó d(I;AB) = \frac{\left|
\left\lbrack \overrightarrow{IA};\overrightarrow{u} ightbrack
ight|}{\left| \overrightarrow{u} ight|} = \frac{|2 -
m|\sqrt{6}}{\sqrt{11}}

    (*) \Leftrightarrow \sqrt{m^{2} - 4} =
\frac{|2 - m|\sqrt{6}}{\sqrt{11}}

    \Leftrightarrow 5m^{2} + 24m - 68 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = 2(ktm) \\m = - \dfrac{34}{5}(tm) \\\end{matrix} ight.

    Vậy có 2 giá trị tham số m thỏa mãn yêu cầu.

  • Câu 5: Thông hiểu

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:

     Gọi bán kính đáy là R.

    Từ giả thiết suy ra h= 2a và chu vi đáy bằng a .

    Do đó 2\pi R = a \Leftrightarrow R = \frac{a}{{2\pi }}.

  • Câu 6: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S): (x-1)^2+(y+1)^2+(z-2)^2=16 và điểm A(1;2;3) . Ba mặt phẳng thay đổi đi qua A và đôi một vuông góc với nhau, cắt mặt cầu theo ba đường tròn. Tính tổng diện tích của ba đường tròn tương ứng đó.

    Tính tổng diện tích

    Giả sử ba mặt mặt phẳng cùng đi qua A đôi một vuông góc với nhau là (P), (Q), (R).

    Với điểm I bất kỳ, hạ II_1, II_2, II_3 lần lượt vuông góc với ba mặt phẳng (P), (Q), (R) thì ta luôn có: IA^2 = II_1 ^2+ II_2^2, II_3 ^2(1) .

    Thật vậy , ta chọn hệ trục tọa độ Oxyz với O\equiv A , ba trục Ox, Oy, Oz lần lượt là ba giao tuyến của ba mặt phẳng (P), (Q), (R)..

    Khi đó tọa độ I(a;b;c) thì:

    IA^2=a^2+b^2+c^2=d^2(A;(Iyz))+d^2(A;(Ixz))+d^2(A;(Ixy))

    hay IA^2=II_1^2+II_2^2+II_3^2.

    Vậy (1) được chứng minh.

    Tính tổng diện tích

    Áp dụng giải bài:

    Mặt cầu (S) có tâm I(1;-1;2) và có bán kính r=4.

    \overrightarrow {IA}=(0;3;1) \Rightarrow IA= \sqrt {10}.

    Giả sử ba mặt mặt phẳng cùng đi qua A đôi một vuông góc với nhau là (P), (Q), (R) và cắt mặt cầu (S) theo ba đường tròn lần lượt là(C_1),(C_2),(C_3).

    Gọi I_1, I_2, I_3 và  r_1, r_2, r_3 lần lượt là tâm và bán kính của (C_1),(C_2),(C_3).

    Khi đó : II_1\perp (P) \Rightarrow II_1^2+r_1^2=r^2 \Rightarrow r_1^2=r^2-II_1^2.

    Tương tự có: r_2^2=r^2-II_2^2  và  r_3^2=r^2-II_3^2.

    Theo nhận xét ở trên ta có: IA^2=II_1^2+II_2^2+II_3^2

    Ta có tổng diện tích các đường tròn là :

    S= \pi(r_1^2+r_2^2+r_3^2)=\pi(r^2-II_1^2+r^2-II_2^2+r^2-II_3^2)

    =\pi[3r^2-(II_1^2+II_2^2+II_3^2)]

    =\pi(3r^2-IA^2)=38 \pi.

  • Câu 7: Nhận biết

    Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:

     Do thiết diện đi qua trục hình trụ nên ta có h=a.

    Bán kính đáy R = \frac{a}{2}. Do đó thể tích khối trụ V = {R^2}\pi .h = \frac{{\pi {a^3}}}{4}(đvtt).

  • Câu 8: Thông hiểu

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:

     Gọi bán kính đáy là R.

    Hình trụ có chu vi đáy bằng 2a nên ta có 2\pi R = 2a \Leftrightarrow R = \frac{a}{\pi }.

    Suy ra hình trụ này có đường cao h=a.

    Vậy thể tích khối trụ V = \pi {R^2}h = \pi {\left( {\frac{a}{\pi }} ight)^2}a = \frac{{{a^3}}}{\pi }(đvtt).

  • Câu 9: Thông hiểu

    Trong không gian với hệ trục toạ độ Oxyz, cho điểm I(1; - 2;3). Viết phương trình mặt cầu tâm I cắt trục Ox tại hai điểm A;B sao cho AB = 2\sqrt{3}?

    Hình vẽ minh họa

    Gọi H là trung điểm AB suy ra H là hình chiếu vuông góc của I lên Ox nên H(1;0;0)

    IH = \sqrt{13} \Rightarrow R = IA =
\sqrt{IH^{2} + AH^{2}} = 4

    Phương trình mặt cầu là: (x - 1)^{2} + (y
+ 2)^{2} + (z - 3)^{2} = 16.

  • Câu 10: Thông hiểu

    Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao R\sqrt 3 và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:

     Tỉ số diện tích

    Diện tích xung quanh của hình trụ:

    {S_{{m{xq}}\left( {m{T}} ight)}} = 2\pi R.h = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2} (đvdt).

    Kẻ đường sinh O’M của hình nón, suy ra

    \ell  = O'M = \sqrt {OO{'^2} + O{M^2}}  = \sqrt {3{R^2} + {R^2}}  = 2R.

    Diện tích xung quanh của hình nón: {S_{{m{xq}}\left( {m{N}} ight)}} = \pi R\ell  = \pi R.2R = 2\pi {R^2} (đvdt).

    Vậy \frac{{{S_{{m{xq}}\left( {m{T}} ight)}}}}{{{S_{{m{xq}}\left( {m{N}} ight)}}}} = \sqrt 3.

  • Câu 11: Nhận biết

    Cho mặt cầu S(O;R) , A là một điểm ở trên mặt cầu (S) và (P) là mặt phẳng qua A sao cho góc giữa OA và (P) bằng 60^0. Diện tích của đường tròn giao tuyến bằng:

    Diện tích của đường tròn giao tuyến

    Gọi H là hình chiếu vuông góc của (O) trên (P) thì

    ● H là tâm của đường tròn giao tuyến của (P) và (S).

    \widehat {OA,\left( P ight)} = \widehat {\left( {OA,AH} ight)} = {60^0}

    Bán kính của đường tròn giao tuyến: r = HA = OA.\cos {60^0} = \frac{R}{2}.

    Suy ra diện tích đường tròn giao tuyến: \pi {r^2} = \pi {\left( {\frac{R}{2}} ight)^2} = \frac{{\pi {R^2}}}{4}.

  • Câu 12: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho (S):(x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2} =
1 và điểm A(2;2;2). Xét các điểm M \in (S) sao cho đường thẳng AM luôn tiếp xúc với (S). Điểm M luôn thuộc một mặt phẳng cố định có phương trình là

    Tọa độ tâm mặt cầu là:I(1;1;1)

    Gọi M(x;y;z) khi đó: \left\{ \begin{matrix}
\overrightarrow{AM} = (x - 2;y - 2;z - 2) \\
\overrightarrow{IM} = (x - 1;y - 1;z - 1) \\
\end{matrix} ight..

    Theo đề bài ra ta có:

    \overrightarrow{AM}.\overrightarrow{IM}
= 0

    \Leftrightarrow (x - 2)(x - 1) + (y -
2)(y - 1) + (z - 2)(z - 1) = 0

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
3x - 3y - 3z + 6 = 0(*)

    Mặt khác phương trình mặt cầu

    (S):(x - 1)^{2} + (y - 1)^{2} + (z -
1)^{2} = 1

    \Rightarrow x^{2} + y^{2} + z^{2} - 2x -
2y - 2z + 2 = 0(**)

    Lấy (*) trừ (**) ta được: x + y + z - 4 =
0.

  • Câu 13: Vận dụng

    Cho hình trụ có hai đáy là hai hình tròn (O) và(O’), thiết diện qua trục của hình trụ là hình vuông. Gọi A, B là hai điểm lần lượt nằm trên hai đường tròn (O) và(O’). Biết AB = 2a và khoảng cách giữa hai đường thẳng AB và OO’ bằng \frac{{a\sqrt 3 }}{2}. Bán kính đáy bằng:

     Tính bán kính

    Dựng đường sinh BB', gọi I là trung điểm của AB’, ta có

    \left\{ \begin{array}{l}OI \bot AB'\\OI \bot BB'\end{array} ight. \Rightarrow OI \bot \left( {ABB'} ight)

    Suy ra d\left[ {AB,OO'} ight] = d\left[ {OO',\left( {ABB'} ight)} ight] = d\left[ {O,\left( {ABB'} ight)} ight] = OI = \frac{{a\sqrt 3 }}{2}.

    Gọi bán kính đáy của hình trụ là R.

    Vì thiết diện qua trục của hình trụ là hình vuông nên OO' = BB' = 2R

    Trong tam giác vuông A B’B, ta có AB{'^2} = A{B^2} - B{B^2} = 4{a^2} - 4{R^2}.

    Trong tam giác vuông OIB’, ta có N OB{'^2} = O{I^2} + IB{'^2} \Leftrightarrow {R^2} = {\left( {\frac{{a\sqrt 3 }}{2}} ight)^2} + {\left( {\frac{{AB'}}{2}} ight)^2}.

    Suy ra AB{'^2} = 4{R^2} - 3{a^2}.

    Từ đó ta có 4{a^2} - 4{R^2} = 4{R^2} - 3{a^2} \Rightarrow R = \frac{{a\sqrt {14} }}{4}.

  • Câu 14: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho điểm M(1; - 2;3). Gọi I là hình chiếu vuông góc của M trên trục Ox. Phương trình nào dưới đây là phương trình mặt cầu tâm I bán kính IM?

    Hình chiếu vuông góc của M trên Ox là: I(1;0;0)

    \Rightarrow IM = \sqrt{13}

    Suy ra phương trình mặt cầu tâm I bán kính IM là: (x -
1)^{2} + y^{2} + z^{2} = 13.

  • Câu 15: Thông hiểu

    Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn AC=10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

      Thể tích của khối trụ

    Gọi (O) và (O') lần lượt là hai đường tròn đáy; A\in (O), C \in (O') .

    Dựng AD, CB lần lượt song song với OO' (D \in (O'), B \in (O). Dễ dàng có ABCD là hình chữ nhật.

    Do AC=10a,AD=8a\Rightarrow DC=6a..

    Gọi H là trung điểm của DC.

    \left\{\begin{matrix}O^\prime H\bot D C\\O^\prime H\bot A D\\\end{matrix}\Rightarrow O^\prime H\bot(ABCD)ight..

    Ta có O^\prime//(ABCD)\Rightarrow d\left(OO^\prime,ACight)=d\left(OO^\prime,(ABCD)ight)=O^\prime H=4a..

    Suy ra O^\prime H=4a,CH=3a\Rightarrow R=O^\prime C=5a..

    Vậy thể tích của khối trụ là V=\pi R^2h=\pi(5a)^28a=200\pi a^3.

  • Câu 16: Nhận biết

    Hình nón có đường sinh l=2a và hợp với đáy góc \alpha  = {60^0}. Diện tích toàn phần của hình nón bằng:

    Diện tích toàn phần

    Theo giả thiết, ta có

    SA = \ell  = 2a\widehat {SAO} = {60^0}.

    Suy ra:

    R = OA = SA.\cos {60^0} = a.

    Vậy diện tích toàn phần của hình nón bằng: S = \pi Rl + \pi {R^2} = 3\pi {a^2} (đvdt). 

  • Câu 17: Nhận biết

    Điều kiện để \left( S ight):{x^2} + {y^2} + {z^2} + Ax + By + Cz + D = 0 là một mặt cầu là:

    Theo đề bài, ta có:

    \left( S ight):{x^2} + {y^2} + {z^2} + Ax + By + Cz + D = 0 có dạng:

    \left( S ight):{x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0

    \Rightarrow a =  - \frac{A}{2};\,\,b =  - \frac{B}{2};\,\,c =  - \frac{C}{2};\,\,d = D

    Như vậy, (S) là mặt cầu\Leftrightarrow {a^2} + {b^2} + {c^2} - d > 0 \Leftrightarrow {A^2} + {B^2} + {C^2} - 4D > 0

    \Rightarrow {x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0,\,\,{a^2} + {b^2} + {c^2} - d > 0

  • Câu 18: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, mặt cầu (S) đi qua điểm O và cắt các tia Ox;Oy;Oz lần lượt tại các điểm A;B;C khác O thỏa mãn tam giác ABC có trọng tâm là điểm G( - 6; - 12;18). Tọa độ tâm của mặt cầu (S) là:

    Gọi tọa độ các điểm trên ba tia Ox;Oy;Oz lần lượt là A(a;0;0),B(0;b;0),C(0;0;c) với a;b;c > 0

    Vì G là trọng tâm tam giác ABC nên \left\{ \begin{matrix}
\frac{a}{3} = - 6 \\
\frac{b}{3} = - 12 \\
\frac{c}{3} = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 18 \\
b = - 36 \\
c = 54 \\
\end{matrix} ight.

    Gọi phương trình mặt cầu cần tìm là:

    (S):x^{2} + y^{2} + z^{2} - 2mx - 2ny -
2pz + q = 0

    (S) qua các điểm OABC nên ta có hệ phương trình:

    \left\{ \begin{matrix}
q = 0 \\
36m + q = - 18^{2} \\
72n + q = - 36^{2} \\
- 108p + q = - 54^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
q = 0 \\
m = - 9 \\
n = - 18 \\
p = 27 \\
\end{matrix} ight.

    Vậy tọa độ tâm của mặt cầu (S) là: ( - 9; - 18;27).

  • Câu 19: Vận dụng

    Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính bằng chiều cao và bằng a. Trên đường tròn tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B sao cho AB = 2a. Thể tích của khối tứ diện OO’AB bằng:

     Tính thể tích khối trụ

    Kẻ đường sinh AA’, gọi D là điểm đối xứng với A’ qua tâm O’ và H là hình chiếu của B trên A’D.

    Ta có BH \bot \left( {AOO'A'} ight) nên {V_{OO'AB}} = \frac{1}{3}{S_{\Delta AOO'}}.BH.

    Trong tam giác vuông A'AB có A'B = \sqrt {A{B^2} - AA{'^2}}  = \sqrt 3 a.

    Trong tam giác vuông A'BD có BD = \sqrt {A'{D^2} - A'{B^2}}  = a.

    Do đó suy ra tam giác BO'D nên BH = \frac{{\sqrt 3 a}}{2}.

    Vậy  {V_{OO'AB}} = \frac{1}{3}.\left( {\frac{1}{2}{a^2}} ight).\frac{{a\sqrt 3 }}{2} = \frac{{\sqrt 3 {a^3}}}{{12}} (đvtt).

  • Câu 20: Nhận biết

    Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a.  Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:

     Diện tích toàn phần

    Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,

    Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.

    Theo đề bài, ta có tam giác SAB vuông cân tại S nên AB = SB\sqrt 2  = a\sqrt 2, SO = \frac{{SB\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{2}.

    Suy ra h = SO = \frac{{a\sqrt 2 }}{2},  l = SA = a  và SB\sqrt 2  = 2R \Rightarrow R = \frac{{SB\sqrt 2 }}{2} = \frac{{\sqrt 2 a}}{2}.

     

    Diện tích toàn phần của hình nón: {S_{tp}} = \pi R\ell  + \pi {R^2} = \frac{{\left( {1 + \sqrt 2 } ight)\pi {a^2}}}{2}(đvdt).

    Thể tích khối nón là: V = \frac{1}{3}\pi {R^2}h = \frac{{\sqrt 2 \pi {a^3}}}{{12}} (đvtt). 

  • Câu 21: Thông hiểu

    Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:

     Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.

    Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.

    Do đó độ đài đường chéo: \sqrt {{8^2} + {6^2}}  = 10{m{cm}}{m{.}}

  • Câu 22: Vận dụng

    Cho hình nón đỉnh S có đáy là hình tròn tâm O. Dựng hai đường sinh SA và SB, biết tam giác SAB vuông và có diện tích bằng 4a^2. Góc tạo bởi giữa trục SO và mặt phẳng (SAB) bằng 30^0. Đường cao h của hình nón bằng:

     Tính đường cao nón

    Theo giả thiết ta có tam giác SAB vuông cân tại S.

    Gọi E là trung điểm AB, suy ra\left\{ \begin{array}{l}SE \bot AB\\OE \bot AB\end{array} ight.  và SE = \frac{1}{2}AB.

    Ta có {S_{\Delta SAB}} = \frac{1}{2}AB.SE = 4{a^2} \Leftrightarrow \frac{1}{2}AB.\frac{1}{2}AB = 4{a^2}

    \Rightarrow AB = 4a \Rightarrow SE = 2a.

    Gọi H là hình chiếu của O trên SE, suy ra OH \bot SE.

    Ta có \left\{ \begin{array}{l}AB \bot OE\\AB \bot SO\end{array} ight. \Rightarrow AB \bot \left( {SOE} ight) \Rightarrow AB \bot OH.

    Từ đó suy ra OH \bot \left( {SAB} ight) nên

    {30^0} = \widehat {SO,\left( {SAB} ight)} = \widehat {SO,SH} = \widehat {OSH} = \widehat {OSE}

    Trong tam giác vuông SOE, ta có SO = SE.\cos \widehat {OSE} = a\sqrt 3

  • Câu 23: Thông hiểu

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

  • Câu 24: Vận dụng

    Một hình nón có bán kính đáy R, góc ở đỉnh là 60^0. Một thiết diện qua đỉnh nón chắn trên đáy một cung có số đo 90^0 . Diện tích của thiết diện là:

     Diện tích của thiết diện

    Vì góc ở đỉnh là 60^0nên thiết diện qua trục SAC là tam giác đều cạnh 2R.

    Suy ra đường cao của hình nón là SI = R\sqrt 3.

    Tam giác SAB là thiết diện qua đỉnh, chắn trên đáy cung AB có số đo bằng 90^0 nên IAB là tam giác vuông cân tại I, suy ra AB = R\sqrt 2.

    Gọi M là trung điểm của AB thì \left\{ \begin{array}{l}IM \bot AB\\SM \bot AB\end{array} ight.IM = \frac{{R\sqrt 2 }}{2}.

    Trong tam giác vuông SIM, ta có SM = \sqrt {S{I^2} + I{M^2}}  = \frac{{R\sqrt {14} }}{2}

    Vậy {S_{\Delta SAB}} = \frac{1}{2}AB.SM = \frac{{{R^2}\sqrt 7 }}{2} (đvdt).

  • Câu 25: Thông hiểu

    Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng 60^0, khoảng cách từ tâm O đến mặt phẳng (SAB) bằng \frac{R}{2}. Đường cao h của hình nón bằng:

    Theo giả thiết ta có tam giác OAB đều cạnh R.

    Gọi E là trung điểm AB, suy ra OE \bot ABOE = \frac{{R\sqrt 3 }}{2}.

    Gọi H là hình chiếu của O trên SE, suy ra OH \bot SE.

    Ta có \left\{ \begin{array}{l}AB \bot OE\\AB \bot SO\end{array} ight. \Rightarrow AB \bot \left( {SOE} ight) \Rightarrow AB \bot OH

    Từ đó suy ra OH \bot \left( {SAB} ight) nên d\left[ {O,\left( {SAB} ight)} ight] = OH = \frac{R}{2}.

    Trong tam giác vuông SOE, ta có  \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{8}{{3{R^2}}} \Rightarrow SO = \frac{{R\sqrt 6 }}{4}

  • Câu 26: Nhận biết

    Xét các mệnh đề:

    (I) Tập hợp các đường thẳng d thay đổi nhưng luôn luôn song song và cách đường thẳng \triangle cố định một khoảng không đổi là một mặt trụ.

    (II) Hai điểm A, B cố định. Tập hợp các điểm M trong không gian mà diện tích tam giác MAB không đổi là một mặt trụ.

    Trong các mệnh đề trên, mệnh đề nào đúng?

    Ta xét về khái niệm Mặt trụ suy ra  (I) đúng.

    Diện tích tam giác MAB không đổi khi và chỉ khi khoảng cách từ M đến đường thẳng AB không đổi (giả sử bằng R ).

    Vậy tập hợp các điểm M là mặt trụ bán kính R và trục là AB.

    Vì vậy Mệnh đề (II) cũng đúng.

  • Câu 27: Nhận biết

    Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho SH = \frac{{3a}}{2}. Độ dài đường sinh \ell của hình nón bằng:

    Độ dài đường sinh

    Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.

    Tam giác SAS’ vuông tại A và có đường cao AH nên S{A^2} = SH.SS' \Rightarrow SA = a\sqrt 3 .

  • Câu 28: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A( - 1;0;0),B(0;0;2),C(0; - 3;0). Bán kính mặt cầu ngoại tiếp tứ diện OABC là:

    Gọi (S) là mặt cầu ngoại tiếp tứ diện OABC

    Phương trình mặt cầu (S) có dạng x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d
= 0

    O;A;B;C \in (S) nên ta có: \left\{ \begin{matrix}
d = 0 \\
1 + 2a + d = 0 \\
4 - 4c + d = 0 \\
9 + 6b + d = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
d = 0 \\
a = - \frac{1}{2} \\
b = - \frac{3}{2} \\
c = 1 \\
\end{matrix} ight.

    Vậy bán kính mặt cầu (S) là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{\frac{1}{4} + \frac{9}{4} + 1} = \frac{\sqrt{14}}{2}

  • Câu 29: Vận dụng

    Cho mặt cầu (S): {x^2} + {y^2} + {z^2} - 4x + 6y + 2z - 2 = 0 và điểm A\left( { - 6, - 1,3} ight). Gọi M là tiếp điểm của (S) và tiếp tuyến di động qua (d). Tìm tập hợp các điểm M.

    (Có thể chọn nhiều đáp án)

     Theo đề bài, (S) có tâm I\left( {2, - 3,1} ight).\,\overrightarrow {IM}  = \left( {x - 2,y + 3,z + 1} ight);\,\,\overrightarrow {AM}  = \left( {x + 6,y + 1,z - 3} ight)

    Ta có:

    \begin{array}{l}\overrightarrow {IM} .\overrightarrow {AM}  = \left( {x - 2} ight)\left( {x + 6} ight) + \left( {y + 3} ight)\left( {y + 1} ight) + \left( {z + 1} ight)\left( {z - 3} ight) = 0\\ \Rightarrow M \in \left( {S'} ight):{x^2} + {y^2} + {z^2} + 4x + 4y - 3z - 12 = 0;\,\,M \in \left( S ight)\end{array}

    \Rightarrow M \in  đường tròn  \left\{ \begin{array}{l}{x^2} + {y^2} + {z^2} - 4x + 6y + 2z - 2 = 0\\4x - y - 2z - 5 = 0\end{array} ight.

    Hay \left\{ \begin{array}{l}{x^2} + {y^2} + {z^2} + 4x + 4y - 2z - 12 = 0\\4x - y - 2z - 5 = 0\end{array} ight.

  • Câu 30: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} + 2x - 2z - 7 =
0. Bán kính của mặt cầu (S) là:

    Ta có:

    x^{2} + y^{2} + z^{2} + 2x - 2z - 7 =
0

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
2.( - 1)x - 2.0.y - 2.1z - 7 = 0

    \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 0 \\
c = 1 \\
d = - 7 \\
\end{matrix} ight. suy ra tâm mặt cầu là: I( - 1;0;1)

    Bán kính mặt cầu là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{( - 1)^{2} + 0^{2} + 1^{2} - 7} = 3

  • Câu 31: Nhận biết

    Một hình cầu có bán kính là 2m, một mặt phẳng cắt hình cầu theo một hình tròn có độ dài là 2,4\pi {m{m}} . Khoảng cách từ tâm mặt cầu đến mặt phẳng là:

    Gọi khoảng cách từ tâm cầu đến mặt phẳng là d, ta có {d^2} = {R^2} - {r^2} .

    Theo giả thiết R = 2m và 2\pi r = 2,4\pi m \Rightarrow r = \frac{{2,4\pi }}{{2\pi }} = 1,2{m{m}}.

    Vậy 2\pi r = 2,4\pi m \Rightarrow r = \frac{{2,4\pi }}{{2\pi }} = 1,2{m{m}}.

  • Câu 32: Vận dụng cao

    Cho mặt cầu tâm O, bán kính R. Xét mặt phẳng (P) thay đổi cắt mặt cầu theo giao tuyến là đường tròn (C). Hình nón (N) có đỉnh S nằm trên mặt cầu, có đáy là đường tròn (C) và có chiều cao là h(h > R). Hình trụ (T) có đáy là đường tròn (C) và có cùng chiều cao với hình nón (N). Tính thể tích V khối trụ được tạo nên bởi (T) theo R, biết V có giá trị lớn nhất.

    Hình vẽ minh họa

    Gọi khoảng cách từ O dến mặt phẳng (P)d với (0 \leqd \leq R), đường tròn (C) có bán kính là r.

    V = h \cdot \pi \cdot r^{2} = \pi(R +d)\left( R^{2} - d^{2} ight) = \pi\left( - d^{3} - Rd^{2} + R^{2}d +R^{3} ight)

    V^{'}(d) = \pi\left( - 3d^{2} - 2Rd+ R^{2} ight) = 0 \Rightarrow \left\lbrack \begin{matrix}d = - 1 \\d = \frac{R}{3} \\\end{matrix} \Rightarrow d = \frac{R}{3} ight.

    Ta có V(0) = \pi R^{3},V(R) = 0V\left( \frac{R}{3} ight) =\frac{32}{27}\pi R^{3}.

    Vậy V = \frac{32}{27}\piR^{3}

  • Câu 33: Vận dụng cao

    Cho hình nón có bán kính đáy là 5a , độ dài đường sinh là 13a. Thể tích khối cầu nội tiếp hình nón bằng:

    Thể tích khối cầu nội tiếp hình nón

    Xét mặt phẳng qua trục SO của hình nón ta được thiết diện là tam giác cân SAB.

    Mặt phẳng đó cắt mặt cầu theo đường tròn có bán kính r (bán kính mặt cầu) và nội tiếp trong tam giác cân SAB.

    Trong tam giác vuông SOB, gọi I là giao điểm của đường phân giác trong góc B với đường thẳng SO.

    Chứng minh được I là tâm đường tròn nội tiếp tam giác và bán kínhr =IO=IE  (E là hình chiếu vuông góc của I trên SB).

    Theo tính chất phân giác, ta có \frac{{IS}}{{IO}} = \frac{{BS}}{{BO}} = \frac{{13}}{5}.

    Lại có IS + IO = SO = \sqrt {S{B^2} - O{B^2}}  = 12.

    Từ đó suy ra IS = \frac{{26}}{3},{m{ }}IO = \frac{{10}}{3}.

    Ta có \Delta SEI \backsim\Delta SOB  nên \frac{{IE}}{{IS}} = \frac{{BO}}{{BS}} = \frac{5}{{13}} \Rightarrow IE = \frac{5}{{13}}IS = \frac{{10}}{3}

    Thể tích khối cầu: V = \frac{4}{3}\pi {r^3} = \frac{4}{3}\pi {\left( {\frac{{10a}}{3}} ight)^3} = \frac{{4000\pi {a^3}}}{{81}} (đvtt).

  • Câu 34: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(0;0; - 3) và đi qua điểm M(4;0;0). Phương trình mặt cầu (S) là:

    Phương trình mặt cầu (S) có tâm I(0;0; - 3) và bán kính R là:

    x^{2} + y^{2} + (z + 3)^{2} =
R^{2}

    Ta có: M \in (S) \Rightarrow 4^{2} +
0^{2} + (0 + 3)^{2} = R^{2}

    \Leftrightarrow R^{2} = 25

    Vậy phương trình cần tìm là: x^{2} +
y^{2} + (z + 3)^{2} = 25.

  • Câu 35: Thông hiểu

    Trong không gian Oxyz, cho mặt phẳng (P):2x + 2y + z - 2 = 0 và mặt cầu (S) tâm I(2;1; - 1) bán kính R = 2. Bán kính đường tròn giao của mặt phẳng (P) và mặt cầu (S) là:

    Hình vẽ minh họa

    Gọi bán kính đường tròn giao của mặt phẳng (P) và mặt cầu (S)r

    Ta có:

    h = d\left( I;(P) ight) = \frac{\left|
2.2 + 2.( - 1) - 1 - 2 ight|}{\sqrt{2^{2} + 2^{2} + 1^{2}}} =
1

    Suy ra r = \sqrt{2^{2} - 1^{2}} =
\sqrt{3}

  • Câu 36: Vận dụng cao

    Trong không gian cho ba điểm A(3;0;0), B(1;2;1)C(2;-1;2). Biết mặt

    phẳng qua B, C và tâm mặt cầu nội tiếp tứ diện OABC có một vectơ pháp tuyến là (10;a;b). Tổng a+b là?

     Phương trình (OAB) là: -y+2z=0.

    Phương trình (OAC) là:2y+z=0.

    Phương trình (OBC) là: x-z=0.

    Phương trình (ABC) là: 5x+3y+4z-15=0 .

    Gọi I(a';b';c') là tâm mặt cầu nội tiếp tứ diện OABC.

    Do đó:

    I nằm cùng phía với A đối với (OBC) suy ra: (a'-c')>0.

    I nằm cùng phía với B đối với (OAC) suy ra: (2b'+c')>0.

    I nằm cùng phía với C đối với (OAB) suy ra: (-b'+2c')>0.

    I nằm cùng phía với O đối với (ABC) suy ra: (5a'+3b'+4c'-15)<0.

    Suy ra:

    \left\{\begin{matrix} d(I,(OAB))=d(I,(OAC)) \\ d(I,(OAB))=d(I,(OBC)) \\ d(I,(OAB))=d(I,(ABC)) \end{matrix}ight.\Leftrightarrow \left\{\begin{matrix} \dfrac{|-b'+2c'|}{\sqrt 5}= \dfrac{|2b'+c'|}{\sqrt 5} \\ \dfrac{|-b'+2c'|}{\sqrt 5}= \dfrac{|a'-c'|}{\sqrt 2} \\ \dfrac{|-b'+2c'|}{\sqrt 5}= \dfrac{|5a'+3b'+4c'-15|}{5\sqrt 2} \end{matrix}ight.

     

    \Leftrightarrow \left\{\begin{matrix} |-b'+2c'|= |2b'+c'| \\ \sqrt 2{|-b'+2c'|}= \sqrt 5|a'-c'|\\ \sqrt 10{|-b'+2c'|}= |5a'+3b'+4c'-15| \end{matrix}ight.

    \Leftrightarrow \left\{\begin{matrix} -b'+2c'= 2b'+c' \\ \sqrt 2{(-b'+2c')}= \sqrt 5(a'-c')\\ \sqrt 10{(-b'+2c')}= -(5a'+3b'+4c'-15)\end{matrix}ight.

    \Leftrightarrow \left\{\begin{matrix} a'=\dfrac{3}{ 2} \\ -b'=\dfrac{3 \sqrt 10 -9}{2} \\ c'=\dfrac{9 \sqrt 10 -27}{ 2} \end{matrix}ight.

    Suy ra:  I (\frac {3}{2} ;\frac {3\sqrt{10} -9}{2}; \frac {9\sqrt{10} -27}{2}), \Rightarrow \overrightarrow {BI}= (\frac {1}{2} ;\frac {3\sqrt{10} -13}{2}; \frac {9\sqrt{10} -29}{2}) ; \,\, \overrightarrow {BC}= (1;-3;1)

    \Rightarrow [\overrightarrow {BI}, \overrightarrow {BC}]= (-50+15 \sqrt{10} ; \frac {9\sqrt{10} -30}{2}; \frac {-3\sqrt{10} +10}{2})

    cùng phương với \vec n =(10;3;-1).

    Suy ra (BCI) có một VTPT là \vec n =(10;3;-1) =(10; a; b).

    Vậy: a+b=2.

  • Câu 37: Vận dụng

    Trong không gian Oxyz, cho điểm M(1; −1; 2) và mặt cầu (S):x^{2} + y^{2} +
z^{2} = 9. Mặt phẳng đi qua M cắt S theo một đường tròn có bán kính nhỏ nhất có phương trình là:

    Ta có:

    (S) có bán kính R = 3 và tâm I(0; 0; 0), IM = \sqrt{6} < 3 nên I nằm trong hình cầu (S).

    Gọi r là bán kính của đường tròn, (P) là mặt phẳng qua M, ta có:

    r^{2} = R^{2} - d^{2}\left( I;(P)
ight) = 9 - d^{2}\left( I;(P) ight) \geq 9 - IM^{2} = 3

    Suy ra bán kính r_{\min} =
\sqrt{3} khi \overrightarrow{IM} là vectơ pháp tuyến của (P).

    Vậy phương trình của mặt phẳng (P): (x − 1) − (y + 1) + 2(z − 2) = 0⇔ x − y + 2z − 6 = 0.

  • Câu 38: Thông hiểu

    Một hình trụ có bán kính đáy R = 70{m{cm}} , chiều cao hình trụ h = 20{m{cm}}. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

    Tính độ dài cạnh

    Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.

    Dựng đường sinh AA', ta có \left\{ \begin{array}{l}CD \bot AA'\\CD \bot AD\end{array} ight. \Rightarrow CD \bot \left( {AA'D} ight) \Rightarrow CD \bot A'D.

    Suy ra A’C là đường kính đáy nên A'C = 2R = 140{m{cm}}{m{.}}

    Xét tam giác vuông AA’C, ta có AC = \sqrt {AA{'^2} + A'{C^2}}  = 100\sqrt 2 {m{cm}}{m{.}}

    Suy ra cạnh hình vuông bằng 100 cm.

  • Câu 39: Vận dụng cao

    Từ một tấm tôn hình chữ nhật kích thước 50{m{cm}} \times 240{m{cm}} , người ta làm các thùng đựng nước hình trụ có chiều cao bằng 50  cm , theo hai cách sau (xem hình minh họa sau đây):

    Tính tỉ số thể tích

    ● Cách 1: Gò tấm tôn ban đầu thành mặt xung quanh của thùng.

    ● Cách 2. Cắt tấm tôn ban đầu thành hai tấm tôn bằng nhau, rồi gò mỗi tấm đó thành mặt xung quanh của một thùng.

    Kí hiệu V_1là thể tích của thùng gò được theo cách 1 và V_2 là thể tích của thùng gò được theo cách 2. Khi đó tỉ số \frac{{{V_1}}}{{{V_2}}} bằng:

    Đáp án là:

    Từ một tấm tôn hình chữ nhật kích thước 50{m{cm}} \times 240{m{cm}} , người ta làm các thùng đựng nước hình trụ có chiều cao bằng 50  cm , theo hai cách sau (xem hình minh họa sau đây):

    Tính tỉ số thể tích

    ● Cách 1: Gò tấm tôn ban đầu thành mặt xung quanh của thùng.

    ● Cách 2. Cắt tấm tôn ban đầu thành hai tấm tôn bằng nhau, rồi gò mỗi tấm đó thành mặt xung quanh của một thùng.

    Kí hiệu V_1là thể tích của thùng gò được theo cách 1 và V_2 là thể tích của thùng gò được theo cách 2. Khi đó tỉ số \frac{{{V_1}}}{{{V_2}}} bằng:

    2

     Công thức thể tích khối trụ V = \pi {R^2}h.

    ● Ở cách 1, suy ra h= 50  cm2\pi {R_1} = 240 \Leftrightarrow {R_1} = \frac{{120}}{\pi }. Do đó {V_1} = \pi .{\left( {\frac{{120}}{\pi }} ight)^2}.50 (đvtt).

    ● Ở cách 2, suy ra mỗi thùng có h= 50  cm2\pi {R_2} = 120 \Leftrightarrow {R_2} = \frac{{60}}{\pi }

    Do đó {V_2} = 2 \times \left[ {\pi .{{\left( {\frac{{60}}{\pi }} ight)}^2}.50} ight] (đvtt).

    Suy ra \frac{{{V_1}}}{{{V_2}}} = 2

  • Câu 40: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x + 2y + z - m^{2} - 3m = 0 và mặt cầu (S):(x - 1)^{2} + (y + 1)^{2} + (z -
1)^{2} = 9. Tìm tất cả các giá trị của m để (P) tiếp xúc với mặt cầu (S)?

    Ta có mặt cầu (S) có tâm I(1; −1; 1) và bán kính R = 3.

    Mặt phẳng (P) tiếp xúc với (S) khi và chỉ khi:

    d\left\lbrack I;(P) ightbrack = R
\Leftrightarrow \frac{\left| 1 - m^{2} - 3m ight|}{3} = 3

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} + 3m - 10 = 0 \\
m^{2} + 3m + 8 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 2 \\
m = - 5 \\
\end{matrix} ight..

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 2 Mặt nón, mặt trụ, mặt cầu Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 1 lượt xem
Sắp xếp theo
🖼️