Cho hình lập phương
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Vì (
là hình vuông) nên
Cho hình lập phương
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Vì (
là hình vuông) nên
Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc
và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc
và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).
Đáp án: 124 N
Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc
và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).
Đáp án: 124 N
Gọi hai lực tạo với nhau một góc là
và
, ta có
N.
Lực còn lại là , ta có
N.
Gọi là hợp lực của ba lực trên ta có
.
N
Trong không gian với hệ trục tọa độ
cho vectơ
có độ dài
, gọi
lần lượt là góc tạo bởi ba vectơ đơn vị
trên ba trục
và vectơ
. Khi đó tọa độ điểm
là:
Gọi và
Trong không gian
, cho tọa độ ba điểm
. Góc giữa hai đường thẳng
và
là
Ta có: .
Tích vô hướng của 2 vectơ
trong không gian được tính bằng:
Theo định nghĩa tích vô hướng của hai vecto, ta có: .
Cho tứ diện
. Gọi
là trọng tâm của tam giác
.Phân tích nào sau đây là đúng?
Ta có: là trọng tâm tam giác
khi
Tứ giác
là hình bình hành biết tọa độ các điểm
. Tìm tọa độ điểm
?
Giả sử điểm khi đó
ta có là hình bình hành nên
. Vậy tọa độ điểm
.
Cho hình hộp chữ nhật
có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cho hình hộp chữ nhật có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cách 1. Gọi là trung điểm
,
,
,
.
Ta có .
Lại có .
Mặt khác .
Dễ thấy
.
Suy ra với
;
.
Vậy .
Cách 2. Đặt các trục ,
và
vào hình như sau
Ta có ,
,
và
.
Ta có ,
và
.
Khi đó :
.
Hình chiếu vuông góc của điểm
trên mặt phẳng
là:
Hình chiếu vuông góc của điểm trên mặt phẳng
là điểm có tọa độ
.
Trong không gian
, cho các điểm
. Xác định tọa độ điểm
thỏa mãn
?
Ta có:
Cho hình chóp
có đáy
là hình bình hành tâm
. Điểm
là điểm thỏa mãn
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Gọi O là tâm hình bình hành suy ra
Ta có:
suy ra ba điểm
thẳng hàng.
Trong không gian
, cho
có
. Gọi
là chân đường cao hạ từ đỉnh
. Tính
.
Đáp án: -17||- 17
Trong không gian , cho
có
. Gọi
là chân đường cao hạ từ đỉnh
. Tính
.
Đáp án: -17||- 17
Ta có .
Vì là chân đường cao nên ta có
và
.
Do đó
Vậy .
Trong không gian với hệ trục tọa độ
, cho hai vectơ
và
tạo với nhau một góc
. Biết rằng
, tính
?
Ta có:
Vậy đáp án đúng là: .
Xét tính đúng sai của mỗi khẳng định.
Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí
cách điểm xuất phát
km về phía bắc và
km về phía tây, đồng thời cách mặt đất
km. Chiếc thứ hai nằm tại vị trí
cách điểm xuất phát
km về phía nam và
km về phía đông, đồng thời cách mặt đất
km.
Chọn hệ trục toạ độ
với gốc
đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng
trùng với mặt đất, trục
hướng về phía bắc, trục
hướng về phía tây và trục
hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

a) Vị trí của khinh khí cầu thứ hai có tọa độ là
. Sai||Đúng
b) Hai khinh khí cầu cách nhau không quá
km. Đúng||Sai
c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng
d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ
. Đúng||Sai
Xét tính đúng sai của mỗi khẳng định.
Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí cách điểm xuất phát
km về phía bắc và
km về phía tây, đồng thời cách mặt đất
km. Chiếc thứ hai nằm tại vị trí
cách điểm xuất phát
km về phía nam và
km về phía đông, đồng thời cách mặt đất
km.
Chọn hệ trục toạ độ với gốc
đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng
trùng với mặt đất, trục
hướng về phía bắc, trục
hướng về phía tây và trục
hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).
a) Vị trí của khinh khí cầu thứ hai có tọa độ là . Sai||Đúng
b) Hai khinh khí cầu cách nhau không quá km. Đúng||Sai
c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng
d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ . Đúng||Sai
a) Sai
Vì hướng nam ngược với hướng bắc, hướng đông ngược với hướng tây nên chiếc khinh khí cầu thứ hai có tọa độ là .
b) Đúng
Chiếc khinh khí cầu thứ nhất có tọa độ là .
Khoảng cách giữa hai chiếc khinh khí cầu là
c) Sai
Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất là:
Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ hai là:
Vậy khinh khí cầu thứ hai ở gần điểm xuất phát hơn.
d) Đúng
Vị trí của chiếc flycam là
.
Khoảng cách bay của flycam là:
Khoảng cách từ vị trí flycam xuất phát đến điểm có tọa độ là
Vậy flycam không đến được vị trí có tọa độ .
Trong không gian cho ba vectơ
có giá không cùng nằm trên một mặt phẳng. Mệnh đề nào sau đây đúng?
Vì ba vectơ có giá không cùng nằm trên một mặt phẳng nên
Giá các vectơ không cùng nằm trên một mặt phẳng.
Giá các vectơ không cùng nằm trên một mặt phẳng.
Giá các vectơ không cùng nằm trên một mặt phẳng.
Giá của các vectơ cùng nằm trên một mặt phẳng
Vậy mệnh đề đúng là: “Giá các vectơ không cùng nằm trên một mặt phẳng.”
Trong không gian hệ trục tọa độ
, cho hai vectơ
và
. Xác định tích vô hướng
?
Ta có: nên
Trong không gian, cho hai vectơ
và
có cùng độ dài bằng
. Biết độ dài của vectơ
bằng
. Biết số đo góc giữa hai vectơ
và
là
độ. Giá trị của
là bao nhiêu?
Trong không gian, cho hai vectơ và
có cùng độ dài bằng
. Biết độ dài của vectơ
bằng
. Biết số đo góc giữa hai vectơ
và
là
độ. Giá trị của
là bao nhiêu?
Chọn mệnh đề sai. Trong không gian, cho hình hộp
.
Hình vẽ minh họa
Đáp án đúng theo quy tắc hình hộp
Đáp án sai
Đáp án đúng theo quy tắc hình hộp
Đáp án đúng theo quy tắc hình bình hành
Trong không gian
. cho điểm
. Tìm tọa độ điểm
đối xứng với điểm
qua mặt phẳng
?
Lấy đối xứng qua mặt phẳng thì
đổi dấu còn
giữ nguyên nên điểm
có tọa độ là
.
Trong không gian
, cho hai vectơ
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án cần tìm là
Cho hình lập phương
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Vì (
là hình chữ nhật) nên
(
là hình vuông)
Trong không gian
, cho hai vectơ
và
. Tính
?
Ta có:
Trong không gian
, cho hai điểm
và
. Các khẳng định sau đúng hay sai?
a)
. Đúng||Sai
b)
. Sai||Đúng
c)
. Sai||Đúng
d) Tứ giác
là hình bình hành khi
. Đúng||Sai
Trong không gian , cho hai điểm
và
. Các khẳng định sau đúng hay sai?
a) . Đúng||Sai
b) . Sai||Đúng
c) . Sai||Đúng
d) Tứ giác là hình bình hành khi
. Đúng||Sai
a) Đúng
.
b) Sai
.
c) Sai
.
d) Đúng
Ta có: ,
là hình bình hành
Cho hình hộp
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ ![]()
Hình vẽ minh họa
Ta có:
.
Vậy .
Cho tứ diện
và các điểm
xác định bởi
. Tìm
để các đường thẳng
cùng song song với một mặt phẳng?
Cho tứ diện và các điểm
xác định bởi
. Tìm
để các đường thẳng
cùng song song với một mặt phẳng?
Cho ba vectơ
không đồng phẳng. Xét các vectơ ![]()
![]()
. Khẳng định nào dưới đây đúng?
Giả sử ba vectơ đồng phẳng, khi đó
Ta có:
Khi đó:
Vậy ba vectơ đồng phẳng.
Vậy khẳng định đúng là: “Ba vectơ đồng phẳng”.
Trong không gian hệ trục tọa độ
, cho hai vectơ
và
. Tính độ dài vectơ
?
Ta có:
Khi đó
Trong không gian
, cho hai điểm
và
. Trung điểm của đoạn thẳng
có tọa độ là:
Gọi là trung điểm của đoạn thẳng
, ta có:
Vậy tọa độ trung điểm của AB là: .
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có
mà
Suy ra
Cho lăng trụ đứng
, điểm
trên
sao cho
Đặt
Khẳng định nào dưới đây là đúng ?
Hình vẽ minh họa
Ta có
Cho tứ diện
. Gọi
lần lượt là trung điểm của
và
là trung điểm của
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
Vì lần lượt là trung điểm của
suy ra
Mà là trung điểm của
Khi đó
Vậy khẳng định sai là: .
Trong không gian
, cho
. Tọa độ vectơ
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ vectơ
.
Trong không gian
, điểm đối xứng của điểm
qua trục
có tọa độ là
Gọi là điểm đối xứng của
qua trục
.
Hình chiếu vuông góc của lên trục
là
Khi đó là trung điểm của
. Do đó tọa độ của
là
Trong không gian
, cho điểm
. Mệnh đề nào sau đây đúng?
Vì tọa độ điểm có
nên
.
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có do đó
hay
Suy ra
Gọi
lần lượt là trung điểm của các cạnh
của tứ diện
. Gọi
là trung điểm của đoạn
và
là một điểm bất kì trong không gian. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Hình vẽ minh họa
Vì lần lượt là trung điểm của các cạnh
nên ta có:
.
Mặt khác (vì I là trung điểm của MN) suy ra
Theo bài ra ta có:
Tìm
để góc giữa hai vectơ
là góc nhọn.
Để
.
Kết hợp điều kiện
Trong không gian
, cho hình bình hành hình bình hành. Biết các điểm
. Xác định tọa độ điểm
?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian với hệ trục tọa độ
cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?
Trong không gian với hệ trục tọa độ cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?