Trong không gian hệ trục tọa độ , cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có
mà
Suy ra
Trong không gian hệ trục tọa độ , cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có
mà
Suy ra
Trong không gian , cho ba điểm
. Tọa độ chân đường phân giác của góc
trong tam giác
là:
Ta có:
Gọi là chân đường phân giác kẻ từ
lên
của tam giác
.
Suy ra
Ta có:
Cho hình chóp . Lấy các điểm
lần lượt thuộc các tia
sao cho
trong đó
là các hệ số biến thiên. Để mặt phẳng
đi qua trọng tâm của tam giác
thì tổng các hệ số bằng bao nhiêu?
Hình vẽ minh họa
Gọi G là trọng tâm tam giác ABC suy ra
Khi đó mà
Suy ra
Vì mặt phẳng đi qua trọng tâm của tam giác
suy ra
đồng phẳng.
Do đó tồn tại ba số sao cho
) và
s
Suy ra
Cho tứ diện . Trên các cạnh
lần lượt lấy các điểm
sao cho
. Gọi
lần lượt là trung điểm của
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
Vì lần lượt là trung điểm của
đồng phẳng sai vì
suy ra
không đồng phẳng.
Điều kiện cần và đủ để ba vectơ không đồng phẳng là:
Ba vectơ đồng phẳng khi và chỉ khi giá của chúng cùng song song với một mặt phẳng.
Trong không gian với hệ trục tọa độ , cho
, khi đó tọa độ điểm
là:
Gọi ta có:
khi đó
nên tọa độ điểm cần tìm là
.
Trong không gian có điểm
. Tính độ dài
?
Ta có:
Suy ra
Vậy đáp án cần tìm là .
Trong không gian , cho
. Biết
trong đó
là số nguyên dương. Tìm
?
Đáp án: 135
Trong không gian , cho
. Biết
trong đó
là số nguyên dương. Tìm
?
Đáp án: 135
Ta có .
Suy ra .
.
Vậy
Cho hình hộp chữ nhật có
và đặt
. Lấy điểm
thỏa
và điểm
thỏa
. (Quan sát hình vẽ).
Xác định tính đúng sai của các khẳng định sau:
a) Đúng||Sai
b) Sai||Đúng
c) , với
là các số thực. Đúng||Sai
d) . Đúng||Sai
Cho hình hộp chữ nhật có
và đặt
. Lấy điểm
thỏa
và điểm
thỏa
. (Quan sát hình vẽ).
Xác định tính đúng sai của các khẳng định sau:
a) Đúng||Sai
b) Sai||Đúng
c) , với
là các số thực. Đúng||Sai
d) . Đúng||Sai
a) Đúng: Ta có
b) Sai:
c) Đúng:
(vì đôi một vuông góc nên
.
Ta có
.
d) Đúng:
Suy ra .
Biết khác
và vuông góc với cả hai vectơ
. Khẳng định nào sau đây đúng?
Theo đề bài ta có: khác
và vuông góc với cả hai vectơ
nên
Vậy khẳng định đúng là
Trong không gian hệ trục tọa độ , cho hình hộp
có tọa độ các điểm
. Giả sử điểm
. Tính giá trị biểu thức
?
Gọi điểm
Ta có:
Mà
Suy ra suy ra
Vậy
Trong không gian , cho điểm
. Tìm tọa độ hình chiếu M lên trục
.
Tọa độ hình chiếu của điểm M trên trục Ox là
Trong không gian với hệ trục tọa độ , cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a) . Đúng||Sai
b) Ba điểm thẳng hàng. Sai||Đúng
c) Điểm là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
Trong không gian với hệ trục tọa độ , cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a) . Đúng||Sai
b) Ba điểm thẳng hàng. Sai||Đúng
c) Điểm là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
a) Đúng: Vì nên
.
b) Sai: Ta có .
Vì nên
không cùng phương suy ra
không thẳng hàng.
c) Đúng
Vì là điểm đối xứng với
qua
nên
là trung điểm của
.
Ta có suy ra
.
Do đó . Vậy
.
d) Đúng. Gọi là điểm thỏa mãn
.
Ta có:
Do không thay đổi nên
nhỏ nhất khi
nhỏ nhất hay
là hình chiếu của điểm
trên mặt phẳng
.
Do đó suy ra
.
Vậy .
Trong không gian , cho hai vectơ
và
. Khẳng định nào sau đây đúng?
Ta có:
Vậy khẳng định đúng là
Trong không gian hệ trục tọa độ , cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
Trong không gian , cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Biết rằng vectơ và
. Tìm tọa độ vectơ
?
Ta có:
Trong không gian với hệ trục tọa độ , cho ba điểm
. Tìm giá trị của tham số
để tam giác
vuông tại
?
Ta có: .
Tam giác MNP vuông tại N
Vậy đáp án cần tìm là .
Trong không gian với hệ trục tọa độ cho ba điểm
. Tìm tất cả các điểm
sao cho
là hình thang có đáy
và tam giác
bằng
diện tích tứ giác
?
Trong không gian với hệ trục tọa độ cho ba điểm
. Tìm tất cả các điểm
sao cho
là hình thang có đáy
và tam giác
bằng
diện tích tứ giác
?
Cho hình hộp . Điểm
được xác định bởi đẳng thức vectơ
. Mệnh đề nào sau đây đúng?
Gọi
Khi đó
Ta có:
Tương tự ta cũng có:
Từ đó suy ra
Vậy điểm M cần tìm là trung điểm của .
Trong không gian , cho hình hộp chữ nhật
có
trùng với gốc tọa độ
Biết rằng
,
,
với
,
là các số dương và
. Tính thể tích lớn nhất của tứ diện
? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 3,16
Trong không gian , cho hình hộp chữ nhật
có
trùng với gốc tọa độ
Biết rằng
,
,
với
,
là các số dương và
. Tính thể tích lớn nhất của tứ diện
? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 3,16
Hình vẽ minh họa
Ta có: ,
,
,
nên
⇒ (do
);
;
.
Mà
⇒.
Xét hàm số trên
⇒
Bảng biến thiên:
Vậy .
Trong không gian với hệ trục tọa độ , cho điểm
. Khẳng định nào sau đây đúng?
Vì tọa độ điểm có
nên
.
Cho hình hộp . Khẳng định nào sau đây sai?
Hình vẽ minh họa
đúng vì
đúng vì
đúng vì
sai vì
Cho lăng trụ tam giác . Đặt
. Biểu diễn vectơ
qua các vectơ
. Chọn đáp án đúng?
Ta có:
Vậy đáp án đúng là: .
Trong không gian hệ trục tọa độ , cho lăng trụ tam giác
có tọa độ các điểm
. Xác định tọa độ điểm
?
Hình vẽ minh họa
Gọi tọa độ điểm
Vì là hình lăng trụ nên
Vậy tọa độ .
Trong không gian hệ trục tọa độ cho điểm
. Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu đối xứng với
qua mặt phẳng
thì
.
Nếu đối xứng với
qua trục
thì
.
Nếu đối xứng với
qua gốc tọa độ thì
.
Vậy mệnh đề đúng là: “Nếu đối xứng với
qua mặt phẳng
thì
”.
Trong không gian với hệ trục tọa độ , cho ba điểm
,
và
. Điểm
sao cho tứ giác
là hình bình hành. Tính
?
Đáp án: 3
Trong không gian với hệ trục tọa độ , cho ba điểm
,
và
. Điểm
sao cho tứ giác
là hình bình hành. Tính
?
Đáp án: 3
Gọi
Ta có:
là hình bình hành nên
.
Vậy .
Trong không gian với hệ trục tọa độ , cho ba vectơ
,
và
. Chọn mệnh đề đúng?
Ta có: là mệnh đề đúng.
Trong không gian cho ba vectơ có giá không cùng nằm trên một mặt phẳng. Mệnh đề nào sau đây đúng?
Vì ba vectơ có giá không cùng nằm trên một mặt phẳng nên
Giá các vectơ không cùng nằm trên một mặt phẳng.
Giá các vectơ không cùng nằm trên một mặt phẳng.
Giá các vectơ không cùng nằm trên một mặt phẳng.
Giá của các vectơ cùng nằm trên một mặt phẳng
Vậy mệnh đề đúng là: “Giá các vectơ không cùng nằm trên một mặt phẳng.”
Trong không gian với hệ trục tọa độ , cho hai điểm
. Đường thẳng
cắt mặt phẳng
tại điểm
. Tính tỉ số
?
Ta có:
Lại có và ba điểm
thẳng hàng
Vậy đáp án đúng là .
Cho hình lập phương . Phân tích vectơ
theo các vectơ
?
Ta có phép cộng vectơ đối với hình vuông :
Khi đó ta có:
Trong không gian hệ trục tọa độ , cho hai vectơ
và
. Xác định tích vô hướng
?
Ta có: nên
Cho hai đường thẳng và
lần lượt có vectơ chỉ phương là
và
. Nếu
là góc giữa hai đường thẳng
và
thì:
Do góc giữa hai đường thẳng bằng hoặc bù với góc giữa hai vectơ chỉ phương của chúng nên đáp án cần tìm là .
Cho hai điểm phân biệt và một điểm
bất kì. Hãy xét xem mệnh đề nào sau đây là đúng?
Mệnh đề đúng: “Điểm thuộc đường thẳng
khi và chỉ khi
”.
Cho tứ diện . Gọi
lần lượt là trung điểm các đoạn thẳng
.
Xét tính đúng sai của các khẳng định sau.
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai
Cho tứ diện . Gọi
lần lượt là trung điểm các đoạn thẳng
.
Xét tính đúng sai của các khẳng định sau.
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai
Hình vẽ minh họa
a) Đúng: .
b) Đúng: Vi là trung điểm của
nên
Vì là trung điểm của
nên
Vì là trung điểm của
nên
Do đó:
c) Sai:
d) Đúng
Ta có: .
.
Do đó: nhỏ nhất khi
Trong không gian hệ trục tọa độ , cho các điểm
. Tìm tọa độ điểm
sao cho tứ giác
là hình bình hành?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian , điểm nào sau đây thuộc trục tung
?
Điểm thuộc trục tung Oy là .
Trong không gian , cho hai vectơ
. Tìm tất cả các giá trị của tham số
để
?
Ta có:
Vậy đáp án cần tìm là .
Cho hình lập phương . Hãy phân tích vectơ
theo các vectơ
?
Hình vẽ minh họa
Ta có: (Theo quy tắc hình bình hành).
Cho hình hộp có tâm
. Đặt
. Điểm
xác định bởi đẳng thức
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Gọi lần lượt là tâm các mặt đáy
suy ra
là trung điểm của
Do là hình hộp nên
Theo giả thiết ta có:
Vì là hình hộp nên từ đẳng thức
suy ra M là trung điểm của
.