Đề kiểm tra 45 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 2. Vectơ và hệ trục tọa độ trong không gian được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian Oxyz, cho \overrightarrow{u} = (1;2;0). Tọa độ vectơ \overrightarrow{u} là:

    Ta có: \overrightarrow{i} =(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =(0;0;1)

    \overrightarrow{u} = x\overrightarrow{i}+ y\overrightarrow{j} + z\overrightarrow{k} \Leftrightarrow\overrightarrow{u} = (x;y;z)

    Suy ra \overrightarrow{u} = (1;2;0)\Leftrightarrow \overrightarrow{u} = \overrightarrow{i} +2\overrightarrow{j}

  • Câu 2: Vận dụng cao

    Trong không gian Oxyz, cho \Delta ABCA(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Gọi H(a;b;c) là chân đường cao hạ từ đỉnh A. Tính (a + b + c).19.

    Đáp án: -17||- 17

    Đáp án là:

    Trong không gian Oxyz, cho \Delta ABCA(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Gọi H(a;b;c) là chân đường cao hạ từ đỉnh A. Tính (a + b + c).19.

    Đáp án: -17||- 17

    Ta có \overrightarrow{AH} = (a;b;c -
1),\overrightarrow{BC} = (3;3; - 1),\overrightarrow{BH} = (a + 1;b +
2;c).

    H là chân đường cao nên ta có

    \left\{ \begin{matrix}\overrightarrow{AH}\bot\overrightarrow{BC} \\\overrightarrow{BH} = k\overrightarrow{BC} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}3a + 3b - (c - 1) = 0 \\\dfrac{a + 1}{3} = \dfrac{b + 2}{3} = \dfrac{c}{- 1} = k \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
a = 3k - 1 \\
b = 3k - 2 \\
c = - k \\
\end{matrix} ight.3(3k - 1)
+ 3(3k - 2) - ( - k - 1) = 0 \Leftrightarrow k =
\frac{8}{19}.

    Do đó H\left( \frac{5}{19}; -
\frac{14}{19}; - \frac{8}{19} ight)

    Vậy \left( \frac{5}{19} - \frac{14}{19} -
\frac{8}{19} ight).19 = - 17.

  • Câu 3: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A( -
3;0;0),B(0;2;0),D(0;0;1),A'(1;2;3). Tìm tọa độ điểm C'?

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (3;2;0) = 3\overrightarrow{i} +
2\overrightarrow{j} + 0.\overrightarrow{k} \\
\overrightarrow{AD} = (3;0;1) = 3.\overrightarrow{i} +
0.\overrightarrow{j} + 1.\overrightarrow{k} \\
\overrightarrow{AA'} = (4;2;3) = 4.\overrightarrow{i} +
2\overrightarrow{j} + 3\overrightarrow{k} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{AC'} =
10.\overrightarrow{i} + 4.\overrightarrow{j} +
4.\overrightarrow{k}A( -
3;0;0)

    \Rightarrow C'(7;4;4)

    Suy ra C'(7;4;4)

  • Câu 4: Nhận biết

    Trong không gian cho tứ diện đều ABCD. Khẳng định nào sau đây sai?

    Tứ diện ABCD đều nên \overrightarrow{AD} không thể vuông góc với \overrightarrow{DC}.

    Vậy khẳng định sai là: “\overrightarrow{AD}\bot\overrightarrow{DC}”.

  • Câu 5: Nhận biết

    Cho hình lăng trụ tam giác ABC.A'B'C'. Đặt \overrightarrow{AA'} =
\overrightarrow{a};\overrightarrow{AB} =
\overrightarrow{b};\overrightarrow{AC} =
\overrightarrow{c};\overrightarrow{BC} = \overrightarrow{d}. Trong các mệnh đề sau, mệnh đề nào đúng?

    Ta có: \overrightarrow{d} =
\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB} =
\overrightarrow{c} - \overrightarrow{b}

    Do đó \overrightarrow{b} -
\overrightarrow{c} + \overrightarrow{d} =
\overrightarrow{0}

  • Câu 6: Nhận biết

    Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD. Điểm M xác định bởi công thức \overrightarrow{AM} = \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Do G là trọng tâm tam giác BCD nên \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} = 3\overrightarrow{AG}

    \Rightarrow \overrightarrow{AM} =
3\overrightarrow{AG}

    Vậy mệnh đề đúng là “M thuộc tia AGAM = 3AG”.

  • Câu 7: Thông hiểu

    Trong không gian Oxyz, cho các vectơ \overrightarrow{a}(2;m - 1;3)\overrightarrow{b}(1;3; - 2n). Xác định giá trị của m;n để hai vectơ đã cho có cùng hướng?

    Ta có: Hai vectơ \overrightarrow{a}(2;m -
1;3)\overrightarrow{b}(1;3; -
2n) cùng hướng nên

    \overrightarrow{a} =k.\overrightarrow{b};(k > 0) \Leftrightarrow \left\{ \begin{matrix}2 = k \\m - 1 = 3k \\3 = k( - 2n) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2 = k \\m = 7 \ = - \dfrac{3}{4} \\\end{matrix} ight.

    Vậy m = 7;n = - \frac{3}{4} là đáp án cần tìm.

  • Câu 8: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(2; - 4;3)B(2;2;7). Trung điểm của đoạn thẳng AB có tọa độ là:

    Gọi M\left( x_{M};y_{M};z_{M}
ight) là trung điểm của đoạn thẳng AB, ta có:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = \dfrac{2 + 2}{2} = 2 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = \dfrac{- 4 + 2}{2} = - 1 \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = \dfrac{3 + 7}{2} = 5 \\\end{matrix} ight.\  \Rightarrow M(2; - 1;5)

    Vậy tọa độ trung điểm của AB là: (2; -
1;5).

  • Câu 9: Thông hiểu

    Cho \left| \overrightarrow{a} ight| =
3;\left| \overrightarrow{b} ight| = 5, góc giữa \overrightarrow{a};\overrightarrow{b} bằng 120^{0}. Chọn khẳng định sai trong các khẳng định sau?

    Ta có: \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|\cos\left(
\overrightarrow{a};\overrightarrow{b} ight) = 3.5.cos120^{0} = -
\frac{15}{2}

    Khi đó:

    \left( \overrightarrow{a} +
\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} +
2\overrightarrow{a}.\overrightarrow{b} + {\overrightarrow{b}}^{2} = 9 -
15 + 25 = 19

    \left( \overrightarrow{a} -
\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} -
2\overrightarrow{a}.\overrightarrow{b} + {\overrightarrow{b}}^{2} = 9 +
15 + 25 = 49

    \left( \overrightarrow{a} -
2\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} -
4\overrightarrow{a}.\overrightarrow{b} + 4{\overrightarrow{b}}^{2} = 9 +
30 + 100 = 139

    \left( \overrightarrow{a} +
2\overrightarrow{b} ight)^{2} = {\overrightarrow{a}}^{2} +
4\overrightarrow{a}.\overrightarrow{b} + 4{\overrightarrow{b}}^{2} = 9 -
30 + 100 = 79

    Vậy khẳng định sai là \left| \overrightarrow{a} +
2\overrightarrow{b} ight| = 9.

  • Câu 10: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = (1;1;0), \overrightarrow{b} = (2; - 1; - 2)\overrightarrow{c} = ( - 3;0;2). Chọn mệnh đề đúng?

    Ta có: \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0} là mệnh đề đúng.

  • Câu 11: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{OA} = 3\overrightarrow{i} -
\overrightarrow{k}, với \overrightarrow{i},\overrightarrow{k} là hai vectơ đơn vị trên hai trục tọa độ Ox,Oz, hai điểm B( - 1;2;3),C(1;4;1).

    a) A(3;0; - 1). Đúng||Sai

    b) Ba điểm A,B,C thẳng hàng. Sai||Đúng

    c) Điểm D(a;b;c) là điểm đối xứng của với A qua B. Khi đó a +
b + c = 6. Đúng||Sai

    d) Điểm M(m;n;p) trên mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất. Khi đó 2m - n + 2024p = 0. Đúng||Sai

    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{OA} = 3\overrightarrow{i} -
\overrightarrow{k}, với \overrightarrow{i},\overrightarrow{k} là hai vectơ đơn vị trên hai trục tọa độ Ox,Oz, hai điểm B( - 1;2;3),C(1;4;1).

    a) A(3;0; - 1). Đúng||Sai

    b) Ba điểm A,B,C thẳng hàng. Sai||Đúng

    c) Điểm D(a;b;c) là điểm đối xứng của với A qua B. Khi đó a +
b + c = 6. Đúng||Sai

    d) Điểm M(m;n;p) trên mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất. Khi đó 2m - n + 2024p = 0. Đúng||Sai

    a) Đúng: Vì \overrightarrow{OA} =
3\overrightarrow{i} - \overrightarrow{k} nên A(3;0; - 1).

    b) Sai: Ta có \overrightarrow{AB} =
(4;2;4),\overrightarrow{AC} = ( - 2;4;2).

    4:2:4 eq - 2:4:2 nên \overrightarrow{AB},\overrightarrow{AC} không cùng phương suy ra A,B,C không thẳng hàng.

    c) Đúng

    D là điểm đối xứng với A qua B nên B là trung điểm của AD.

    Ta có \left\{ \begin{matrix}
x_{D} = 2x_{B} - x_{A} = - 5 \\
y_{D} = 2y_{B} - y_{A} = 4 \\
z_{D} = 2z_{B} - z_{A} = 7. \\
\end{matrix} ight. suy ra D( -
5;4;7).

    Do đó a = - 5,b = 4,c = 7. Vậy a + b + c = 6.

    d) Đúng. Gọi I(x;y;z) là điểm thỏa mãn \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} =
\overrightarrow{0}.

    Ta có:

    \left\{ \begin{matrix}
3 - x - 1 - x + 1 - x = 0 \\
0 - y + 2 - y + 4 - y = 0 \\
- 1 - z + 3 - z + 1 - z = 0 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 2 \\
z = 1 \\
\end{matrix} \Rightarrow I(1;2;1) ight.

    MA^{2} + MB^{2} + MC^{2}

    =(\overrightarrow{MI} + \overrightarrow{IA})^{2} + (\overrightarrow{MI} +\overrightarrow{IB})^{2} + (\overrightarrow{MI} +\overrightarrow{IC})^{2}

    = 3MI^{2} + IA^{2} + IB^{2} + IC^{2} +2\overrightarrow{MI}(\overrightarrow{IA} + \overrightarrow{IB} +\overrightarrow{IC})

    = 3MI^{2} + IA^{2} + IB^{2} + IC^{2}

    Do IA^{2} + IB^{2} + IC^{2} không thay đổi nên MA^{2} + MB^{2} +
MC^{2} nhỏ nhất khi MI nhỏ nhất hay M là hình chiếu của điểm I trên mặt phẳng (Oxy).

    Do đó M(1;2;0) suy ra m=1,n=2,p=0.

    Vậy 2m - n + 2024p = 2 - 2 + 0 =
0.

  • Câu 12: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;2;3),B(2; - 1;5),C(3;2; - 1). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AD} =
\overrightarrow{BC}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = 3 - 2 \\
y - 3 = 2 + 1 \\
z - 2 = - 1 - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 6 \\
z = - 4 \\
\end{matrix} ight.. Vậy tọa độ điểm D(2;6; - 4).

  • Câu 13: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(2;3; - 1)B( - 4;1;9). Tìm tọa độ vectơ \overrightarrow{AB} ?

    Ta có:

    \overrightarrow{AB} = ( - 4 - 2;1 - 3;9
+ 1) = ( - 6; - 2;10)

    Vậy đáp án đúng là: \overrightarrow{AB} =
( - 6; - 2;10).

  • Câu 14: Vận dụng

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC}(1),\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}(2). Tìm x để các đường thẳng AD;BC;MN cùng song song với một mặt phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC}(1),\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}(2). Tìm x để các đường thẳng AD;BC;MN cùng song song với một mặt phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A( - 2;3;1),B(4;2; - 1),C(5; - 2;0). Điểm D(a;b;c) là đỉnh thứ tư của hình bình hành ABCD. Khi đó giá trị biểu thức H = 2a + b + c có giá trị bằng bao nhiêu?

    Gọi tọa độ điểm D(a;b;c)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (6; - 1; - 2) \\
\overrightarrow{DC} = (5 - a; - 2 - b; - c) \\
\end{matrix} ight.

    Ta có: ABCM là hình bình hành \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
5 - a = 6 \\
- 2 - b = - 1 \\
- c = - 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = - 1 \\
c = 2 \\
\end{matrix} ight. suy ra điểm D( - 1; - 1;2)

    Khi đó H = 2a + b + c = 2.( - 1) - 1 + 2
= - 1.

  • Câu 16: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D'; đáy là hình vuông cạnh a. Trên cạnh DC;BB' lần lượt lấy các điểm M;N sao cho DM = BN = x;(0 \leq x \leq a). Tính số đo góc giữa hai đường thẳng A'CMN.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình lập phương ABCD.A'B'C'D'; đáy là hình vuông cạnh a. Trên cạnh DC;BB' lần lượt lấy các điểm M;N sao cho DM = BN = x;(0 \leq x \leq a). Tính số đo góc giữa hai đường thẳng A'CMN.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Thông hiểu

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (5;3; -
2);\overrightarrow{b} = (m; - 1;m + 3). Có tất cả bao nhiêu giá trị nguyên dương của tham số m để góc giữa hai vectơ \overrightarrow{a};\overrightarrow{b} là góc tù?

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{3m -
9}{\sqrt{38}.\sqrt{2m^{2} + 6m + 10}}

    Góc giữa hai vectơ \overrightarrow{a};\overrightarrow{b} là góc tù khi và chỉ khi

    \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) < 0 \Leftrightarrow
\frac{3m - 9}{\sqrt{38}.\sqrt{2m^{2} + 6m + 10}} < 0

    \Leftrightarrow 3m - 9 < 0
\Leftrightarrow m < 3

    m \in \mathbb{Z}^{+} \Rightarrow m =
\left\{ 1;2 ight\}

    Suy ra có 2 giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán.

    Vậy đáp án cần tìm là 2.

  • Câu 18: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{a} = (m;2;4),\overrightarrow{b} =
(1;n;2) cùng phương. Tìm cặp số thực (m;n)?

    Ta có hai vectơ \overrightarrow{a} =
(m;2;4),\overrightarrow{b} = (1;n;2) cùng phương

    \Leftrightarrow \frac{m}{1} =
\frac{2}{n} = \frac{4}{2} \Leftrightarrow \left\{ \begin{matrix}
m = 2 \\
n = 1 \\
\end{matrix} ight.

    Vậy (m;n) = (2;1).

  • Câu 19: Thông hiểu

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1} có cạnh a. Gọi M là trung điểm của AD. Tính tích vô hướng \overrightarrow{B_{1}M}.\overrightarrow{BD_{1}}?

    Hình vẽ minh họa

    Ta có: \overrightarrow{BD_{1}} =
\overrightarrow{BA} + \overrightarrow{AD_{1}} = - \overrightarrow{AB} +
\overrightarrow{AA_{1}} + \overrightarrow{AD}

    Ta có: \overrightarrow{B_{1}M} =
\overrightarrow{B_{1}A} + \overrightarrow{AM} hay \overrightarrow{B_{1}M} = - \overrightarrow{AB} -
\overrightarrow{AA_{1}} + \frac{1}{2}\overrightarrow{AD}

    Do đó \overrightarrow{B_{1}M}.\overrightarrow{BD_{1}} =
AB^{2} - A_{1}A^{2} + \frac{1}{2}AD^{2} = \frac{a^{2}}{2}

  • Câu 20: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho \overrightarrow{i},\overrightarrow{j},\overrightarrow{k} lần lượt là các vecto đơn vị nằm trên các trục tọa độ Ox,Oy,Oz\overrightarrow{u} là một vecto tùy ý khác \overrightarrow{0}.

    Tính T = \cos^{2}(\overrightarrow{u},\overrightarrow{i})+ \cos^{2}(\overrightarrow{u},\overrightarrow{j}) +\cos^{2}(\overrightarrow{u},\overrightarrow{k})

    Đáp án: 1

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho \overrightarrow{i},\overrightarrow{j},\overrightarrow{k} lần lượt là các vecto đơn vị nằm trên các trục tọa độ Ox,Oy,Oz\overrightarrow{u} là một vecto tùy ý khác \overrightarrow{0}.

    Tính T = \cos^{2}(\overrightarrow{u},\overrightarrow{i})+ \cos^{2}(\overrightarrow{u},\overrightarrow{j}) +\cos^{2}(\overrightarrow{u},\overrightarrow{k})

    Đáp án: 1

    Giả sử \overrightarrow{u} =
(x,y,z).

    Ta có \overrightarrow{i}(1,0,0);\overrightarrow{j}(0,1,0);\overrightarrow{k}(0,0,1)

    cos^{2}(\overrightarrow{u},\overrightarrow{i}) +
cos^{2}(\overrightarrow{u},\overrightarrow{j}) +
cos^{2}(\overrightarrow{u},\overrightarrow{k})

    = \left( \frac{x}{\sqrt{x^{2} + y^{2} +
z^{2}}} ight)^{2} + \left( \frac{y}{\sqrt{x^{2} + y^{2} + z^{2}}}
ight)^{2} + \left( \frac{z}{\sqrt{x^{2} + y^{2} + z^{2}}}
ight)^{2}

    = \frac{x^{2} + y^{2} + z^{2}}{x^{2} +
y^{2} + z^{2}} = 1

    Vậy T = 1

  • Câu 21: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' biết A(2;4;0),B(4;0;0),C( -
1;4;7),D'(6;8;10). Xác định tọa độ B’?

    Hình vẽ minh họa

    Giả sử điểm D(a;b;c),B'(a';b';c')

    Gọi O = AC \cap BD \Rightarrow O\left(
\frac{1}{2};4; - \frac{7}{2} ight) \Rightarrow \left\{ \begin{matrix}
a = - 3 \\
b = 8 \\
c = - 7 \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{DD'} = (9;0;17) \\
\overrightarrow{BB'} = (a' - 4;b';c') \\
\end{matrix} ight.. Vì ABCD.A'B'C'D' là hình hộp nên \overrightarrow{DD'} =
\overrightarrow{BB'}

    \Leftrightarrow \left\{ \begin{matrix}
a' = 13 \\
b' = 0 \\
c' = 17 \\
\end{matrix} ight.\  \Rightarrow B'(13;0;17)

  • Câu 22: Nhận biết

    Hình chiếu vuông góc của điểm A(2; -
1;0) trên mặt phẳng (Oxz) là:

    Hình chiếu vuông góc của điểm A(2; -
1;0) trên mặt phẳng (Oxz) là điểm có tọa độ (2;0;0).

  • Câu 23: Nhận biết

    Trong không gian Oxyz, cho tọa độ các vectơ \overrightarrow{a} = ( -
1;1;0); \overrightarrow{b} =
(1;1;0)\overrightarrow{c} =
(1;1;1). Mệnh đề nào sau đây sai?

    Ta có: \overrightarrow{c}.\overrightarrow{b} = 1.1 + 1.1
+ 1.0 = 2 eq 0 suy ra “\overrightarrow{c}\bot\overrightarrow{b}” là mệnh đề sai.

  • Câu 24: Nhận biết

    Trong không gian Oxyz, điểm đối xứng của điểm M(1;2;3) qua trục Ox có tọa độ là

    Gọi M' là điểm đối xứng của M(1;2;3) qua trục Ox.

    Hình chiếu vuông góc của M(1;2;3) lên trục OxH(1;0;0)

    Khi đó H(1;0;0) là trung điểm của M'M. Do đó tọa độ của M'(1;
- 2; - 3)

  • Câu 25: Vận dụng

    Trong không gian Oxyz cho hai điểm M(2;3; - 1),N( - 1;1;1). Xác định tính đúng sai của từng phương án dưới đây:

    a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng

    b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là ( - 4; - 1;3). Đúng||Sai

    c) Cho P(1;m - 1;3), tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxy) thỏa mãn T = \left|
3\overrightarrow{IM} - \overrightarrow{IN} ight| đạt giá trị nhỏ nhất. Khi đó 2a + b + c = 9. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz cho hai điểm M(2;3; - 1),N( - 1;1;1). Xác định tính đúng sai của từng phương án dưới đây:

    a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng

    b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là ( - 4; - 1;3). Đúng||Sai

    c) Cho P(1;m - 1;3), tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxy) thỏa mãn T = \left|
3\overrightarrow{IM} - \overrightarrow{IN} ight| đạt giá trị nhỏ nhất. Khi đó 2a + b + c = 9. Sai||Đúng

    a) Sai: Hình chiếu của điểm M trên trục Oy có tọa độ là (0;3;0)

    b) Đúng: Vì N là trung điểm của ME

    \Leftrightarrow \left\{ \begin{matrix}- 1 = \dfrac{2 + x_{E}}{2} \\1 = \dfrac{3 + y_{E}}{2} \\1 = \dfrac{- 1 + z_{E}}{2} \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x_{E} = - 4 \\y_{E} = - 1 \\z_{E} = 3 \\\end{matrix} \Rightarrow E( - 4; - 1;3) ight.\  ight..

    c) Đúng: Ta có \overrightarrow{NM} =
(3;2; - 2);\overrightarrow{NP} = (2;m - 2;2).

    \bigtriangleup MNP vuông tại N \Leftrightarrow\overrightarrow{NM}.\overrightarrow{NP} = 0

    \Leftrightarrow 3.2 + 2.(m - 2) + ( -
2).2 = 0 \Leftrightarrow m = 1.

    d) Sai.

    Gọi J(x;y;z) thỏa 3\overrightarrow{JM} - \overrightarrow{JN} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}3(2 - x) - ( - 1 - x) = 0 \\3(3 - y) - (1 - y) = 0 \\3( - 1 - z) - (1 - z) = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = \dfrac{7}{2} \\y = 4 \\z = - 2 \\\end{matrix} ight.\  ight.

    Suy ra J\left( \frac{7}{2};4; - 2
ight).

    Khi đó T = |3\overrightarrow{IM} -
\overrightarrow{IN}| = |3\overrightarrow{IJ} + 3\overrightarrow{JM} -
\overrightarrow{IJ} - \overrightarrow{JN}| = |2\overrightarrow{IJ}| =
2IJ.

    T đạt giá trị nhỏ nhất khi và chỉ khi I là hình chiếu của J trên (Oxy)

    \Leftrightarrow I\left( \frac{7}{2};4;0 ight).

    Vậy a = \frac{7}{2};b = 4;c =
0.

    Suy ra 2a+b+c=11

  • Câu 26: Thông hiểu

    Tìm m để góc giữa hai vectơ \overrightarrow{u} = \left(1;\log_{3}5;\log_{m}2 ight),\overrightarrow{v} = \left( 3;\log_{5}3;4ight) là góc nhọn.

    Để \left( {\widehat {\vec u,\vec v}} ight) < {90^0} \Rightarrow \cos \left( {\widehat {\vec u,\vec v}} ight) > 0

    \Rightarrow\overrightarrow{u}.\overrightarrow{v} > 0 \Leftrightarrow 3 +\log_{3}5.\log_{5}3 + 4\log_{m}2 > 0

    \Leftrightarrow 4 + 4log_{m}2 > 0
\Leftrightarrow log_{m}2 > - 1 \Leftrightarrow \left\lbrack
\begin{matrix}
m > 1 \\
m < \frac{1}{2} \\
\end{matrix} ight..

    Kết hợp điều kiện m > 0 \Rightarrow \left[ {\begin{array}{*{20}{l}}
  {m > 1} \\ 
  {0 < m < \frac{1}{2}} 
\end{array}} ight.

  • Câu 27: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a (tham khảo hình vẽ).

    Các khẳng định sau đúng hay sai?

    a) \overrightarrow{AC} =
\overrightarrow{AB} + \overrightarrow{AD}. Đúng||Sai

    b) \overrightarrow{AC'} =
\overrightarrow{AD} + \overrightarrow{AB} +
\overrightarrow{AA'}. Đúng||Sai

    c) \left(
\overrightarrow{AC},\overrightarrow{B'C'} ight) =
45^{\circ}. Đúng||Sai

    d) \overrightarrow{AC}.\overrightarrow{B'C'}
= \frac{\sqrt{2}a^{2}}{2}. Sai||Đúng

    Đáp án là:

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a (tham khảo hình vẽ).

    Các khẳng định sau đúng hay sai?

    a) \overrightarrow{AC} =
\overrightarrow{AB} + \overrightarrow{AD}. Đúng||Sai

    b) \overrightarrow{AC'} =
\overrightarrow{AD} + \overrightarrow{AB} +
\overrightarrow{AA'}. Đúng||Sai

    c) \left(
\overrightarrow{AC},\overrightarrow{B'C'} ight) =
45^{\circ}. Đúng||Sai

    d) \overrightarrow{AC}.\overrightarrow{B'C'}
= \frac{\sqrt{2}a^{2}}{2}. Sai||Đúng

    a) Vì ABCD là hình bình hành nên \overrightarrow{AB} + \overrightarrow{AD} =
\overrightarrow{AC}.

    b) Vì ABCD.A'B'C'D' là hình hộp nên \overrightarrow{AD} +
\overrightarrow{AB} + \overrightarrow{AA'} =
\overrightarrow{AC'}.

    c) Vì \overrightarrow{B'C'} =
\overrightarrow{AD} nên \left(
\overrightarrow{AC},\overrightarrow{B'C'} ight) = \left(
\overrightarrow{AC},\overrightarrow{AD} ight) = \widehat{CAD} =
45^{0}.

    d) Tam giác ADC vuông tại D nên AC =
\sqrt{AD^{2} + DC^{2}} = \sqrt{2}a.

    Ta có

    \overrightarrow{AC}.\overrightarrow{B'C'}
= \left| \overrightarrow{AC} ight|.\left|
\overrightarrow{B'C'} ight|.cos\left(
\overrightarrow{AC},\overrightarrow{B'C'} ight)

    = \sqrt{2}a.a.cos45^{0} =
a^{2}.

  • Câu 28: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz cho điểm M(x;y;z). Trong các mệnh đề sau, mệnh đề nào đúng?

    Nếu M' đối xứng với M qua mặt phẳng (Oxz) thì M'(x; - y;z).

    Nếu M' đối xứng với M qua trục Oy thì M'( - x;y; - z).

    Nếu M' đối xứng với M qua gốc tọa độ thì M'( - x; - y; - z).

    Vậy mệnh đề đúng là: “Nếu M' đối xứng với M qua mặt phẳng (Oxy) thì M'(x;y; - z)”.

  • Câu 29: Thông hiểu

    Trong không gian Oxyz, cho \overrightarrow{OA} = 3\overrightarrow{i} +
4\overrightarrow{j} - 5\overrightarrow{k}. Tọa độ điểm A là:

    Ta có: \left\{ \begin{matrix}
3\overrightarrow{i} = (3;0;0) \\
4\overrightarrow{j} = (0;4;0) \\
5\overrightarrow{k} = (0;0;5) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{OA} =
3\overrightarrow{i} + 4\overrightarrow{j} - 5\overrightarrow{k}
\Rightarrow A(3;4; - 5)

  • Câu 30: Vận dụng cao

    Cho hình chóp S.ABC. Lấy các điểm A';B';C' lần lượt thuộc các tia SA;SB;SC sao cho \frac{SA}{SA'} = a;\frac{SB}{SB'} =
b;\frac{SC}{SC'} = c trong đó a;b;c là các hệ số biến thiên. Để mặt phẳng (A'B'C') đi qua trọng tâm của tam giác ABC thì tổng các hệ số bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi G là trọng tâm tam giác ABC suy ra \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} = \overrightarrow{0}

    Khi đó 3\overrightarrow{GS} +
\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} =
\overrightarrow{0}\overrightarrow{SA} =
a\overrightarrow{SA'};\overrightarrow{SB} =
b\overrightarrow{SB'};\overrightarrow{SC} =
c\overrightarrow{SC'}

    Suy ra 3\overrightarrow{SG} =
a\overrightarrow{SA'} + b\overrightarrow{SB'} +
c\overrightarrow{SC'}

    \Leftrightarrow \overrightarrow{SG} =
\frac{a}{3}\overrightarrow{SA'} +
\frac{b}{3}\overrightarrow{SB'} +
\frac{c}{3}\overrightarrow{SC'}

    Vì mặt phẳng (A'B'C') đi qua trọng tâm của tam giác ABC suy ra \overrightarrow{GA'};\overrightarrow{GB'};\overrightarrow{GC'} đồng phẳng.

    Do đó tồn tại ba số l;m;n sao cho l^{2} + m^{2} + n^{2} eq 0) và l\overrightarrow{GA'} +
m\overrightarrow{GB'} + n\overrightarrow{GC'} =
\overrightarrow{0}

    \Leftrightarrow l\left(
\overrightarrow{GS} + \overrightarrow{SA'} ight) + m\left(
\overrightarrow{GS} + \overrightarrow{SB'} ight) + n\left(
\overrightarrow{GS} + \overrightarrow{SC'} ight) =
\overrightarrow{0}s

    \Leftrightarrow (l + m +
n)\overrightarrow{SG} = l\overrightarrow{SA'} +
m\overrightarrow{SB'} + n\overrightarrow{SC'}

    \Leftrightarrow \overrightarrow{SG} =
\frac{l}{l + m + n}\overrightarrow{SA'} + \frac{m}{l + m +
n}\overrightarrow{SB'} + \frac{n}{l + m +
n}\overrightarrow{SC'}

    \Leftrightarrow
\frac{a}{3}\overrightarrow{SA'} +
\frac{b}{3}\overrightarrow{SB'} +
\frac{c}{3}\overrightarrow{SC'} = \frac{l}{l + m +
n}\overrightarrow{SA'} + \frac{m}{l + m + n}\overrightarrow{SB'}
+ \frac{n}{l + m + n}\overrightarrow{SC'}

    Suy ra \frac{a}{3} + \frac{b}{3} +
\frac{c}{3} = \frac{l}{l + m + n} + \frac{m}{l + m + n} + \frac{n}{l + m
+ n} = 1

    \Rightarrow a + b + c = 3

  • Câu 31: Thông hiểu

    Trong không gian tọa độ Oxyz, cho hai điểm A(1;2;0),B(2; - 1;1). Tìm tọa độ điểm C có hoành độ dương thuộc trục Ox sao cho tam giác ABC vuông tại C?

    Ta có: C có hoành độ dương thuộc trục Ox \Rightarrow C(x;0;0);x >
0

    Theo bài ra ta có: \left\{ \begin{matrix}
\overrightarrow{AC} = (x - 1; - 2;0) \\
\overrightarrow{BC} = (x - 2;1; - 1) \\
\end{matrix} ight. và tam giác ABC vuông tại C nên

    \Leftrightarrow
\overrightarrow{AC}.\overrightarrow{BC} = 0 \Leftrightarrow (x - 1)(x -
2) - 2 = 0

    \Leftrightarrow x^{2} - 3x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0(L) \\
x = 3(tm) \\
\end{matrix} ight.

    Vậy C(3;0;0)

  • Câu 32: Nhận biết

    Điều kiện cần và đủ để ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} không đồng phẳng là:

    Ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} đồng phẳng khi và chỉ khi giá của chúng cùng song song với một mặt phẳng.

  • Câu 33: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Điểm G là điểm thỏa mãn \overrightarrow{GS} + \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Gọi O là tâm hình bình hành ABCD suy ra \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}

    Ta có:

    \overrightarrow{GS} +
\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} +
\overrightarrow{GD} = \overrightarrow{GS} + 4\overrightarrow{GO} +
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD} = \overrightarrow{0}

    \Leftrightarrow \overrightarrow{GS} +
4\overrightarrow{GO} = \overrightarrow{0} \Leftrightarrow
\overrightarrow{GS} = 4\overrightarrow{OG} suy ra ba điểm G;S;O thẳng hàng.

  • Câu 34: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A(1;0;1),B(2;1;2),D(1; -
1;1),C'(4;5; - 5). Tìm tọa độ điểm A'?

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}

    \Rightarrow \overrightarrow{AA'} =
\overrightarrow{AB} - \overrightarrow{AD} -
\overrightarrow{AC'}

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (1;1;1) = \overrightarrow{i} + \overrightarrow{j}
+ \overrightarrow{k} \\
\overrightarrow{AD} = (0; - 1;0) = 0.\overrightarrow{i} -
\overrightarrow{j} + 0.\overrightarrow{k} \\
\overrightarrow{AC'} = (3;5; - 6) = 3.\overrightarrow{i} +
5\overrightarrow{j} - 6\overrightarrow{k} \\
\end{matrix} ight. do đó \Rightarrow \overrightarrow{AA'} =
2\overrightarrow{i} + 5\overrightarrow{j} - 6\overrightarrow{k} hay \overrightarrow{AA'} = (3;5; -
6)

    Suy ra A'(3;5; - 6)

  • Câu 35: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(2; - 4;3)B(2;2;7). Xác định tọa độ trung điểm I của AB?

    Ta có: I là trung điểm của AB nên tọa độ điểm I là:

    \left\{ \begin{matrix}x_{I} = \dfrac{x_{A} + x_{B}}{2} = 1 \\y_{I} = \dfrac{y_{A} + y_{B}}{2} = 0 \\z_{I} = \dfrac{z_{A} + z_{B}}{2} = 4 \\\end{matrix} ight.\  \Rightarrow I(1;0;4)

    Vậy đáp án đúng là: I(1;0;4).

  • Câu 36: Nhận biết

    Gọi O là tâm của hình lập phương ABCD.A'B'C'D'. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Theo quy tắc hình hộp ta có: \overrightarrow{AC'} = \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'}

    O là trung điểm của AC' suy ra \overrightarrow{AO} =
\frac{1}{2}\overrightarrow{AC'} = \frac{1}{2}\left(
\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA'}
ight)

  • Câu 37: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M;N lần lượt là trung điểm của ADSD. Số đo của góc (MN;SC) bằng bao nhiêu?

    Hình vẽ minh họa

    Do ABCD là hình vuông cạnh a suy ra AC =
a\sqrt{2}

    \Rightarrow AC^{2} = 2a^{2} = SA^{2} +
SC^{2} suy ra tam giác SAC vuông tại S.

    Từ giả thiết ta có MN là đường trung bình của tam giác DSA \Rightarrow \overrightarrow{NM} =
\frac{1}{2}\overrightarrow{SA}

    Khi đó \overrightarrow{MN}.\overrightarrow{SC} =
\frac{1}{2}\overrightarrow{SA}.\overrightarrow{SC} = 0 suy ra MN\bot SC \Rightarrow (MN;SC) =
90^{0}

  • Câu 38: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A( - 2;3;1),B(3;0; - 1),C(6;5;0). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
6 - x = 3 + 2 \\
5 - y = 0 - 3 \\
- z = - 1 - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 8 \\
z = 2 \\
\end{matrix} ight.. Vậy tọa độ điểm D(1;8;2).

  • Câu 39: Nhận biết

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{a} = (1; - 2;3)\overrightarrow{b} = ( - 2;1;2). Xác định tích vô hướng \left( \overrightarrow{a} +
\overrightarrow{b} ight).\overrightarrow{b}?

    Ta có: \overrightarrow{a} +
\overrightarrow{b} = ( - 1; - 1;5) nên \left( \overrightarrow{a} + \overrightarrow{b}
ight).\overrightarrow{b} = - 1.( - 2) + ( - 1).1 + 5.2 =
11

  • Câu 40: Thông hiểu

    Cho hình hộp ABCD.EFGH. Gọi I là tâm hình bình hành ABEFK là tâm của hình bình hành BCGF. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Vì I; K lần lượt là trung điểm của AF và CF suy ra IK là đường trung bình tam giác AFC suy ra IK // AC => IK // (ABCD)

    Mà GF // (ABCD); BD \subset
(ABCD) suy ra \overrightarrow{BD};\overrightarrow{IK};\overrightarrow{GF} đồng phẳng.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 41 lượt xem
Sắp xếp theo