Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Trong không gian với hệ trục tọa độ
, cho hai vectơ
và
tạo với nhau một góc
. Biết rằng
, tính
?
Ta có:
Vậy đáp án đúng là: .
Chọn mệnh đề sai. Trong không gian, cho hình hộp
.
Hình vẽ minh họa
Đáp án đúng theo quy tắc hình hộp
Đáp án sai
Đáp án đúng theo quy tắc hình hộp
Đáp án đúng theo quy tắc hình bình hành
Cho tứ diện đều
với
lần lượt là trung điểm của
. Tính cosin của góc giữa hai đường thẳng
?
Hình vẽ minh họa
Giả sử cạnh tứ diện đều bằng a. Khi đó:
Ta có:
Do đó:
Ta lại có suy ra
Vậy đáp án cần tìm là .
Trong không gian hệ trục tọa độ
, cho tam giác
có tọa các điểm
. Tính số đo góc
?
Ta có:
Cho hình hộp
. Tính tổng
?
Hình vẽ minh họa
Trong không gian với hệ trục tọa độ
, cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a)
. Đúng||Sai
b) Ba điểm
thẳng hàng. Sai||Đúng
c) Điểm
là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm
trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
Trong không gian với hệ trục tọa độ , cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a) . Đúng||Sai
b) Ba điểm thẳng hàng. Sai||Đúng
c) Điểm là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
a) Đúng: Vì nên
.
b) Sai: Ta có .
Vì nên
không cùng phương suy ra
không thẳng hàng.
c) Đúng
Vì là điểm đối xứng với
qua
nên
là trung điểm của
.
Ta có suy ra
.
Do đó . Vậy
.
d) Đúng. Gọi là điểm thỏa mãn
.
Ta có:
Do không thay đổi nên
nhỏ nhất khi
nhỏ nhất hay
là hình chiếu của điểm
trên mặt phẳng
.
Do đó suy ra
.
Vậy .
Cho tứ diện
và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Cho tứ diện và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Hình chiếu vuông góc của điểm
trên mặt phẳng
là:
Hình chiếu vuông góc của điểm trên mặt phẳng
là điểm có tọa độ
.
Một chiếc máy bay đang bay từ điểm
đến điểm
. Giả sử với đơn vị km, điểm
có tọa độ
và điểm
có tọa độ
. Máy bay được trạm không lưu thông báo có một cơn bão với tâm bão ở vị trí
với tọa độ
, máy bay được an toàn khi cách tâm bão tối thiểu là
. Tính gọi
là điểm trên đường bay (giữa
và
) mà máy bay cần chuyển hướng để tránh cơn bão. Tính độ dài quãng đường
(kết quả lấy phần nguyên).
Đáp án: 173,21 km
Một chiếc máy bay đang bay từ điểm đến điểm
. Giả sử với đơn vị km, điểm
có tọa độ
và điểm
có tọa độ
. Máy bay được trạm không lưu thông báo có một cơn bão với tâm bão ở vị trí
với tọa độ
, máy bay được an toàn khi cách tâm bão tối thiểu là
. Tính gọi
là điểm trên đường bay (giữa
và
) mà máy bay cần chuyển hướng để tránh cơn bão. Tính độ dài quãng đường
(kết quả lấy phần nguyên).
Đáp án: 173,21 km
Hình vẽ minh họa
Giả sử
Vì là điểm trên đường bay (giữa
và
). Khi đó ta có ba điểm
thẳng hàng.
Ta lại có là điểm mà máy bay cần chuyển hướng để tránh cơn bão.
Khi đó
Ta có hệ phương trình:
Giải (*) ta có
Vì là điểm gần
hơn do đó chọn
hay
Vậy độ dài quãng đường:
Trong không gian với hệ trục tọa độ
, cho tọa độ ba điểm
. Thể tích tứ diện
bằng:
Ta có: . Dễ thấy tứ diện
vuông tại
nên
Vậy đáp án đúng là: .
Trong không gian
, cho hai vectơ
. Vectơ
có tọa độ là:
Ta có: . Khi đó
Vậy
Trong không gian hệ trục tọa độ
, cho hình hộp
. Biết
. Tọa độ điểm
là:
Hình vẽ minh họa
Ta có:
Trong không gian
, cho điểm
. Tìm tọa độ của
là.
Ta có:
Cho tứ diện
có
đôi một vuông góc.
là một điểm bất kì thuộc miền trong tam giác
. Tìm giá trị nhỏ nhất của biểu thức
?
Đặt . Khi đó
với
là ba số có tổng bằng 1.
Ta có:
Tương tự ta được
Do đó
Ta biết rằng H là chân đường cao kẻ từ đỉnh O của tứ diện vuông OABC khi và chỉ khi H là trực tâm của tam giác ABC. Hơn nữa
Do đó
Dấu "=" xảy ra khi và chỉ khi OM = OH hay M trùng H.
Vậy min T = 2, đạt được khi M trùng H hay M là trực tâm của tam giác ABC.
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có
mà
Suy ra
Trong không gian
, cho hai vectơ
. Có tất cả bao nhiêu giá trị nguyên dương của tham số
để góc giữa hai vectơ
là góc tù?
Ta có:
Góc giữa hai vectơ là góc tù khi và chỉ khi
Mà
Suy ra có 2 giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán.
Vậy đáp án cần tìm là .
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian với hệ trục tọa độ
, cho ba điểm
. Điểm
là đỉnh thứ tư của hình bình hành
. Khi đó giá trị biểu thức
có giá trị bằng bao nhiêu?
Gọi tọa độ điểm
Ta có: là hình bình hành
suy ra điểm
Khi đó .
Trong không gian
, cho hai vectơ
. Tìm tất cả các giá trị của tham số
để
?
Ta có:
Vậy đáp án cần tìm là .
Trong không gian
, cho
. Tọa độ điểm
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ
.
Trong không gian
, cho hình bình hành hình bình hành. Biết các điểm
. Xác định tọa độ điểm
?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Cho hình lăng trụ tam giác
. Đặt
. Trong các mệnh đề sau, mệnh đề nào đúng?
Ta có:
Do đó
Trong không gian cho hình hộp
có
. Gọi
là trung điểm của
,
là giao điểm của
và
. Mệnh đề nào sau đây đúng?
Hình vẽ minh họa
Vì I là trung điểm của B’C’ suy ra
Và K là giao điểm của nên theo định lí Talet
Ta có:
Khi đó
Vậy .
Cho hình lập phương
; đáy là hình vuông cạnh
. Trên cạnh
lần lượt lấy các điểm
sao cho
. Tính số đo góc giữa hai đường thẳng
và
.
Cho hình lập phương ; đáy là hình vuông cạnh
. Trên cạnh
lần lượt lấy các điểm
sao cho
. Tính số đo góc giữa hai đường thẳng
và
.
Xét tính đúng sai của mỗi khẳng định.
Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí
cách điểm xuất phát
km về phía bắc và
km về phía tây, đồng thời cách mặt đất
km. Chiếc thứ hai nằm tại vị trí
cách điểm xuất phát
km về phía nam và
km về phía đông, đồng thời cách mặt đất
km.
Chọn hệ trục toạ độ
với gốc
đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng
trùng với mặt đất, trục
hướng về phía bắc, trục
hướng về phía tây và trục
hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

a) Vị trí của khinh khí cầu thứ hai có tọa độ là
. Sai||Đúng
b) Hai khinh khí cầu cách nhau không quá
km. Đúng||Sai
c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng
d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ
. Đúng||Sai
Xét tính đúng sai của mỗi khẳng định.
Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí cách điểm xuất phát
km về phía bắc và
km về phía tây, đồng thời cách mặt đất
km. Chiếc thứ hai nằm tại vị trí
cách điểm xuất phát
km về phía nam và
km về phía đông, đồng thời cách mặt đất
km.
Chọn hệ trục toạ độ với gốc
đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng
trùng với mặt đất, trục
hướng về phía bắc, trục
hướng về phía tây và trục
hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).
a) Vị trí của khinh khí cầu thứ hai có tọa độ là . Sai||Đúng
b) Hai khinh khí cầu cách nhau không quá km. Đúng||Sai
c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng
d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ . Đúng||Sai
a) Sai
Vì hướng nam ngược với hướng bắc, hướng đông ngược với hướng tây nên chiếc khinh khí cầu thứ hai có tọa độ là .
b) Đúng
Chiếc khinh khí cầu thứ nhất có tọa độ là .
Khoảng cách giữa hai chiếc khinh khí cầu là
c) Sai
Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất là:
Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ hai là:
Vậy khinh khí cầu thứ hai ở gần điểm xuất phát hơn.
d) Đúng
Vị trí của chiếc flycam là
.
Khoảng cách bay của flycam là:
Khoảng cách từ vị trí flycam xuất phát đến điểm có tọa độ là
Vậy flycam không đến được vị trí có tọa độ .
Trong không gian
, điểm nào sau đây thuộc mặt phẳng
?
Ta có: nên điểm cần tìm là
.
Cho hình chóp
có đáy
là hình chữ nhật. Biết rằng cạnh
, cạnh bên
và vuông góc với mặt đáy. Gọi
lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:
a) Hai vectơ
là hai vectơ cùng phương, cùng hướng. Sai||Đúng
b) Góc giữa hai vectơ
bằng
. Sai||Đúng
c) Tích vô hướng của
bằng
. Đúng||Sai
d) Độ dài vectơ
là
. Sai||Đúng
Cho hình chóp có đáy
là hình chữ nhật. Biết rằng cạnh
, cạnh bên
và vuông góc với mặt đáy. Gọi
lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:
a) Hai vectơ là hai vectơ cùng phương, cùng hướng. Sai||Đúng
b) Góc giữa hai vectơ bằng
. Sai||Đúng
c) Tích vô hướng của bằng
. Đúng||Sai
d) Độ dài vectơ là
. Sai||Đúng
a) Sai
Ta thấy ABCD là hình chữ nhật nên
Suy ra hai vectơ là hai vectơ cùng phương, ngược hướng.
b) Sai
Ta có ABCD là hình chữ nhật nên
Hình chóp S.ABCD có SA vuông góc với mặt đáy nên tam giác SAC là tam giác vuông tại A.
Suy ra
Ta có:
c) Đúng
Hình chóp S. ABCD có SA vuông góc với mặt đáy nên tam giác SAB là tam giác vuông tại A.
Suy ra
Trong tam giác SAB vuông tại A có AM là đường trung tuyến nên:
Lại có M là trung điểm của SB nên
Ta tính được
Mà
d) Sai
Ta có: M, N lần lượt là trung điểm của các cạnh SB, SD nên MN là đường trung bình của tam giác SBD
Do đó
Suy ra
Trong không gian với hệ trục tọa độ
, cho ba vectơ
. Tìm tọa độ vectơ
?
Ta có: . Khi đó
Vậy
Cho tứ diện
. Trên các cạnh
lần lượt lấy các điểm
sao cho
. Gọi
lần lượt là trung điểm của
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
Vì lần lượt là trung điểm của
đồng phẳng sai vì
suy ra
không đồng phẳng.
Tích vô hướng của 2 vectơ
trong không gian được tính bằng:
Theo định nghĩa tích vô hướng của hai vecto, ta có: .
Cho tứ diện
và điểm
thỏa mãn
(
là trọng tâm của tứ diện). Gọi
là giao điểm của
và mặt phẳng
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Vì là giao điểm của
và mặt phẳng
suy ra
là trọng tâm tam giác
suy ra
Theo bài ra ta có:
Trong không gian với hệ trục tọa độ
, cho tam giác
có tọa độ các đỉnh
. Gọi
là chân đường phân giác trong của góc
trong tam giác
. Tính giá trị biểu thức
?
Trong không gian với hệ trục tọa độ , cho tam giác
có tọa độ các đỉnh
. Gọi
là chân đường phân giác trong của góc
trong tam giác
. Tính giá trị biểu thức
?
ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ
(đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm
là tâm của nguồn phát âm với bán kính
. Để kiểm tra một điểm ở vị trí
có nhận được cường độ âm phát ra tại
hay không người ta sẽ tính khoảng cách giữa hai vị trí
và
. Hỏi khoảng cách giữa hai vị trí
và
là bao nhiêu mét?
Đáp án: 14 (m)
ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm
là tâm của nguồn phát âm với bán kính
. Để kiểm tra một điểm ở vị trí
có nhận được cường độ âm phát ra tại
hay không người ta sẽ tính khoảng cách giữa hai vị trí
và
. Hỏi khoảng cách giữa hai vị trí
và
là bao nhiêu mét?
Đáp án: 14 (m)
Ta có
(m).
Đáp số 14(m).
Trong không gian với hệ trục tọa độ
cho ba điểm
. Tìm tất cả các điểm
sao cho
là hình thang có đáy
và tam giác
bằng
diện tích tứ giác
?
Trong không gian với hệ trục tọa độ cho ba điểm
. Tìm tất cả các điểm
sao cho
là hình thang có đáy
và tam giác
bằng
diện tích tứ giác
?
Trong không gian cho tứ diện đều
. Khẳng định nào sau đây sai?
Tứ diện đều nên
không thể vuông góc với
.
Vậy khẳng định sai là: “”.
Cho tam giác
. Lấy điểm
nằm ngoài mặt phẳng
. Trên đoạn
lấy điểm
sao cho
và trên đoạn
lấy điểm
sao cho
. Biết biểu diễn
là duy nhất. Tính giá trị biểu thức
?
Hình vẽ minh họa
Theo giả thiết ta có: ;
Lấy điểm P trên cạnh AC sao cho . Khi đó:
Biết rằng vectơ
và
. Tìm tọa độ vectơ
?
Ta có:
Trong không gian với hệ trục tọa độ
, cho hai vectơ
. Tìm tọa độ vectơ
?
Ta có: . Khi đó
.
Vậy
Cho hai đường thẳng
và
lần lượt có vectơ chỉ phương là
và
. Nếu
là góc giữa hai đường thẳng
và
thì:
Do góc giữa hai đường thẳng bằng hoặc bù với góc giữa hai vectơ chỉ phương của chúng nên đáp án cần tìm là .