Trong không gian
. cho điểm
. Tìm tọa độ điểm
đối xứng với điểm
qua mặt phẳng
?
Lấy đối xứng qua mặt phẳng thì
đổi dấu còn
giữ nguyên nên điểm
có tọa độ là
.
Trong không gian
. cho điểm
. Tìm tọa độ điểm
đối xứng với điểm
qua mặt phẳng
?
Lấy đối xứng qua mặt phẳng thì
đổi dấu còn
giữ nguyên nên điểm
có tọa độ là
.
Trong không gian với hệ trục tọa độ
, cho hai điểm
. Đường thẳng
cắt mặt phẳng
tại điểm
. Tính tỉ số
?
Ta có:
Lại có và ba điểm
thẳng hàng
Vậy đáp án đúng là .
Mệnh đề nào sau đây sai?
Hai vectơ có độ dài bằng nhau và cùng hướng thì hai vectơ đó bằng nhau.
Cho hình chóp
có
, các cạnh
đôi một vuông góc. Gọi
là trung điểm của
. Tính tích vô hướng của hai vectơ
.
Hình vẽ minh họa
Ta có:
Như vậy:
Cho hình chóp
có
, các cạnh
đôi một vuông góc. Gọi
là trung điểm của
. Tính tích vô hướng của hai vectơ
.
Hình vẽ minh họa
Ta có:
Vậy
Trong không gian
, cho hai vectơ
và
. Tính tích vô hướng
?
Ta có:
Trong không gian
có điểm
. Tính độ dài
?
Ta có:
Suy ra
Vậy đáp án cần tìm là .
Cho hình chóp
. Lấy các điểm
lần lượt thuộc các tia
sao cho
trong đó
là các hệ số biến thiên. Để mặt phẳng
đi qua trọng tâm của tam giác
thì tổng các hệ số bằng bao nhiêu?
Hình vẽ minh họa
Gọi G là trọng tâm tam giác ABC suy ra
Khi đó mà
Suy ra
Vì mặt phẳng đi qua trọng tâm của tam giác
suy ra
đồng phẳng.
Do đó tồn tại ba số sao cho
) và
s
Suy ra
Trong không gian với hệ trục tọa độ
, cho các điểm
. Có tất cả bao nhiêu điểm
trong không gian thỏa mãn
và
?
Trong không gian với hệ trục tọa độ , cho các điểm
. Có tất cả bao nhiêu điểm
trong không gian thỏa mãn
và
?
Cho hình hộp chữ nhật
có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cho hình hộp chữ nhật có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cách 1. Gọi là trung điểm
,
,
,
.
Ta có .
Lại có .
Mặt khác .
Dễ thấy
.
Suy ra với
;
.
Vậy .
Cách 2. Đặt các trục ,
và
vào hình như sau
Ta có ,
,
và
.
Ta có ,
và
.
Khi đó :
.
Điều kiện cần và đủ để ba vectơ
không đồng phẳng là:
Ba vectơ đồng phẳng khi và chỉ khi giá của chúng cùng song song với một mặt phẳng.
Cho hình lập phương
; đáy là hình vuông cạnh
. Trên cạnh
lần lượt lấy các điểm
sao cho
. Tính số đo góc giữa hai đường thẳng
và
.
Cho hình lập phương ; đáy là hình vuông cạnh
. Trên cạnh
lần lượt lấy các điểm
sao cho
. Tính số đo góc giữa hai đường thẳng
và
.
Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt
, giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là
,
. Biết rằng trọng lượng của chiếc máy là
, tác dụng lên các giá đỡ theo các lực
như hình.

Tính tích vô hướng của
(làm tròn đến chữ số hàng đơn vị).
Đáp án: 6311
Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt , giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là
,
. Biết rằng trọng lượng của chiếc máy là
, tác dụng lên các giá đỡ theo các lực
như hình.
Tính tích vô hướng của (làm tròn đến chữ số hàng đơn vị).
Đáp án: 6311
Ta có:
.
Suy ra, (vì chân bằng nhau, giá đỡ cân bằng, trọng lực tác dụng đều lên 3 chân của giá đỡ).
Do đó:
.
Mà .
Suy ra .
Từ đó .
Vậy .
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Cho tứ diện
. Gọi
là trọng tâm của tam giác
.Phân tích nào sau đây là đúng?
Ta có: là trọng tâm tam giác
khi
Cho lập phương
có cạnh bằng
. Gọi
là trọng tâm tam giác
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Do G là trọng tâm tam giác suy ra
Trong không gian với hệ trục tọa độ
, cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a)
. Đúng||Sai
b) Ba điểm
thẳng hàng. Sai||Đúng
c) Điểm
là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm
trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
Trong không gian với hệ trục tọa độ , cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a) . Đúng||Sai
b) Ba điểm thẳng hàng. Sai||Đúng
c) Điểm là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
a) Đúng: Vì nên
.
b) Sai: Ta có .
Vì nên
không cùng phương suy ra
không thẳng hàng.
c) Đúng
Vì là điểm đối xứng với
qua
nên
là trung điểm của
.
Ta có suy ra
.
Do đó . Vậy
.
d) Đúng. Gọi là điểm thỏa mãn
.
Ta có:
Do không thay đổi nên
nhỏ nhất khi
nhỏ nhất hay
là hình chiếu của điểm
trên mặt phẳng
.
Do đó suy ra
.
Vậy .
Trong không gian
, cho
. Tọa độ vectơ
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ vectơ
.
Trong không gian
, cho hai vectơ
. Vectơ
có tọa độ là:
Ta có: . Khi đó
Vậy
Trong không gian với hệ tọa độ
, cho điểm
và
Biết tọa độ điểm
để tứ giác
là hình bình hành. Tính ![]()
Hình vẽ minh họa
Ta có
Để tứ giác là hình bình hành
Vậy
Cho tứ diện
. Gọi
lần lượt là trung điểm của
. Đặt
. Khẳng định nào sau đây đúng?
Ta có:
Vậy khẳng định đúng .
Trong không gian hệ trục tọa độ
, cho tam giác
có tọa các điểm
. Tính số đo góc
?
Ta có:
Cho hình lập phương
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Vì (
là hình chữ nhật) nên
(
là hình vuông)
Trong không gian với hệ trục tọa độ
, cho ba vectơ
,
và
. Chọn mệnh đề đúng?
Ta có: là mệnh đề đúng.
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
Trong không gian
, cho điểm
. Mệnh đề nào sau đây đúng?
Vì tọa độ điểm có
nên
.
Cho tứ diện
có
. Gọi
là góc giữa
và
. Chọn khẳng định đúng?
Hình vẽ minh họa
Ta có:
Mặt khác
Do đó:
Vậy
Trong không gian
, cho vectơ
. Hãy chọn vectơ cùng phương với
?
Ta có: cùng phương với
khi
. Khi đó đáp án cần tìm là
(vì
).
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
Cho hình lập phương
. Hãy phân tích vectơ
theo các vectơ
?
Hình vẽ minh họa
Ta có: (Theo quy tắc hình bình hành).
Trong không gian với hệ trục tọa độ
, cho ba điểm
. Điểm
là đỉnh thứ tư của hình bình hành
. Khi đó giá trị biểu thức
có giá trị bằng bao nhiêu?
Gọi tọa độ điểm
Ta có:
Ta có: là hình bình hành
suy ra điểm
Khi đó .
Cho tứ diện
. Gọi
lần lượt là tung điểm của
. Chọn mệnh đề đúng?
Hình vẽ minh họa
Ta có:
Cộng hai vế của hai đẳng thức trên ta có:
Trong không gian
, cho tọa độ ba điểm
. Góc giữa hai đường thẳng
và
là
Ta có: .
Trong không gian
, cho điểm
. Tìm tọa độ hình chiếu M lên trục
.
Tọa độ hình chiếu của điểm M trên trục Ox là
Cho hình chóp
có đáy
là hình chữ nhật. Biết rằng cạnh
, cạnh bên
và vuông góc với mặt đáy. Gọi
lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:
a) Hai vectơ
là hai vectơ cùng phương, cùng hướng. Sai||Đúng
b) Góc giữa hai vectơ
bằng
. Sai||Đúng
c) Tích vô hướng của
bằng
. Đúng||Sai
d) Độ dài vectơ
là
. Sai||Đúng
Cho hình chóp có đáy
là hình chữ nhật. Biết rằng cạnh
, cạnh bên
và vuông góc với mặt đáy. Gọi
lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:
a) Hai vectơ là hai vectơ cùng phương, cùng hướng. Sai||Đúng
b) Góc giữa hai vectơ bằng
. Sai||Đúng
c) Tích vô hướng của bằng
. Đúng||Sai
d) Độ dài vectơ là
. Sai||Đúng
a) Sai
Ta thấy ABCD là hình chữ nhật nên
Suy ra hai vectơ là hai vectơ cùng phương, ngược hướng.
b) Sai
Ta có ABCD là hình chữ nhật nên
Hình chóp S.ABCD có SA vuông góc với mặt đáy nên tam giác SAC là tam giác vuông tại A.
Suy ra
Ta có:
c) Đúng
Hình chóp S. ABCD có SA vuông góc với mặt đáy nên tam giác SAB là tam giác vuông tại A.
Suy ra
Trong tam giác SAB vuông tại A có AM là đường trung tuyến nên:
Lại có M là trung điểm của SB nên
Ta tính được
Mà
d) Sai
Ta có: M, N lần lượt là trung điểm của các cạnh SB, SD nên MN là đường trung bình của tam giác SBD
Do đó
Suy ra
Trong không gian với hệ trục tọa độ
, cho ba điểm
. Xét tính đúng sai của các khẳng định sau:
a) Tọa độ trung điểm của
là
. Đúng||Sai
b)
. Đúng||Sai
c) Góc giữa hai đường thẳng
và
bằng
. Đúng||Sai
d) Điểm
nằm trên mặt phẳng
thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
Trong không gian với hệ trục tọa độ , cho ba điểm
. Xét tính đúng sai của các khẳng định sau:
a) Tọa độ trung điểm của là
. Đúng||Sai
b) . Đúng||Sai
c) Góc giữa hai đường thẳng và
bằng
. Đúng||Sai
d) Điểm nằm trên mặt phẳng
thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
a) Đúng: Gọi là trung điểm
.
Ta có
b) Đúng: Ta có .
c) Đúng: Ta có .
Suy ra .
d) Sai: Gọi thỏa mãn
Suy ra .
Khi đó .
đạt giá trị nhỏ nhất khi và chỉ khi
là hình chiếu của
trên
suy ra
.
Suy ra .
Vậy .
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có do đó
hay
Suy ra
Trong không gian với hệ trục tọa độ
, cho tọa độ ba điểm
. Thể tích tứ diện
bằng:
Ta có: . Dễ thấy tứ diện
vuông tại
nên
Vậy đáp án đúng là: .
Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .