Trong không gian cho hình hộp
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có: suy ra
đồng phẳng.
Trong không gian cho hình hộp
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có: suy ra
đồng phẳng.
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Giả sử điểm
. Tính giá trị biểu thức
?
Gọi điểm
Ta có:
Mà
Suy ra suy ra
Vậy
Trong không gian cho hai đường thẳng
lần lượt có vectơ chỉ phương
. Gọi
là góc giữa hai đường thẳng
. Khẳng định nào sau đây đúng?
Khẳng định đúng: “Nếu thì
”.
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
Cho hình chóp
có
, các cạnh
đôi một vuông góc. Gọi
là trung điểm của
. Tính tích vô hướng của hai vectơ
.
Hình vẽ minh họa
Ta có:
Vậy
Trong không gian
, cho tọa độ các điểm
. Cho các khẳng định sau:
(I)
.
(II)
.
(III) Ba điểm
tạo thành một tam giác.
(IV) Ba điểm
thẳng hàng.
Trong các khẳng định trên, khẳng định nào sai?
Ta có: nên
là trung điểm của
và ba điểm
thẳng hàng
Vậy các khẳng định sai là: .
Trong không gian
, cho tam giác
có
. Các khẳng định dưới đây, khẳng định nào đúng, khẳng định nào sai?
a)
là trung điểm của
. Sai||Đúng
b)
là trọng tâm tam giác
. Đúng||Sai
c)
là điểm đối xứng của
qua
. Đúng||Sai
d) Tọa độ điểm
thỏa
là trọng tâm tam giác
. Đúng||Sai
Trong không gian , cho tam giác
có
. Các khẳng định dưới đây, khẳng định nào đúng, khẳng định nào sai?
a) là trung điểm của
. Sai||Đúng
b) là trọng tâm tam giác
. Đúng||Sai
c) là điểm đối xứng của
qua
. Đúng||Sai
d) Tọa độ điểm thỏa
là trọng tâm tam giác
. Đúng||Sai
a) Sai: Do tọa độ trung điểm của đoạn thẳng
là
hay
b) Đúng: Do tọa độ trọng tâm của tam giác
là
hay
c) Đúng: là điểm đối xứng của
qua
thì
là trung điểm
.
d) Đúng: là trọng tâm tam giác
.
Trong không gian
, cho tam giác
với tọa độ các điểm ![]()
.
Xác định tính đúng sai của các khẳng định sau:
a) Tọa độ trọng tâm G của tam giác là
. Đúng||Sai
b)
. Sai||Đúng
c) Tam giác
là tam giác cân. Đúng||Sai
d) Nếu
là hình bình hành thì tọa độ điểm D là
. Sai||Đúng
Trong không gian , cho tam giác
với tọa độ các điểm
.
Xác định tính đúng sai của các khẳng định sau:
a) Tọa độ trọng tâm G của tam giác là . Đúng||Sai
b) . Sai||Đúng
c) Tam giác là tam giác cân. Đúng||Sai
d) Nếu là hình bình hành thì tọa độ điểm D là
. Sai||Đúng
a) Đúng.
Trọng tâm tam giác có tọa độ là:
b) Sai. Vì
c) Đúng. Do nên tam giác ABC cân tại A.
d) Sai. Gọi , vì ABCD là hình bình hành nên
Tích tất cả giá trị của
để góc tạo bởi đường thẳng
và đường thẳng
bằng
là:
Đáp án: -4||- 4
Tích tất cả giá trị của để góc tạo bởi đường thẳng
và đường thẳng
bằng
là:
Đáp án: -4||- 4
Gọi là góc giữa hai đường thẳng đã cho.
Đường thẳng có vectơ chỉ phương là
.
Đường thẳng có vectơ chỉ phương là
.
Ta có:
Vậy tích tất cả các giá trị của tham số a bằng -4.
Trong không gian
, cho hai vectơ
và
. Khẳng định nào sau đây sai?
Ta có: suy ra “
” là khẳng định sai.
Trong không gian
, cho hình hộp chữ nhật
có
trùng với gốc tọa độ
Biết rằng
,
,
với
,
là các số dương và
. Tính thể tích lớn nhất của tứ diện
? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 3,16
Trong không gian , cho hình hộp chữ nhật
có
trùng với gốc tọa độ
Biết rằng
,
,
với
,
là các số dương và
. Tính thể tích lớn nhất của tứ diện
? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 3,16
Hình vẽ minh họa
Ta có: ,
,
,
nên
⇒ (do
);
;
.
Mà
⇒.
Xét hàm số trên
⇒
Bảng biến thiên:
Vậy .
Trong không gian
, cho các điểm
. Xác định tọa độ điểm
sao cho tứ giác
là hình bình hành?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian với hệ trục tọa độ
, cho ba điểm
. Xét tính đúng sai của các khẳng định sau:
a) Tọa độ trung điểm của
là
. Đúng||Sai
b)
. Đúng||Sai
c) Góc giữa hai đường thẳng
và
bằng
. Đúng||Sai
d) Điểm
nằm trên mặt phẳng
thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
Trong không gian với hệ trục tọa độ , cho ba điểm
. Xét tính đúng sai của các khẳng định sau:
a) Tọa độ trung điểm của là
. Đúng||Sai
b) . Đúng||Sai
c) Góc giữa hai đường thẳng và
bằng
. Đúng||Sai
d) Điểm nằm trên mặt phẳng
thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
a) Đúng: Gọi là trung điểm
.
Ta có
b) Đúng: Ta có .
c) Đúng: Ta có .
Suy ra .
d) Sai: Gọi thỏa mãn
Suy ra .
Khi đó .
đạt giá trị nhỏ nhất khi và chỉ khi
là hình chiếu của
trên
suy ra
.
Suy ra .
Vậy .
Trong không gian
, mặt phẳng
đi qua điểm nào sau đây?
Xét điểm ta có:
đúng nên
.
Cho bốn điểm
trong không gian. Hỏi có bao nhiêu vectơ khác
có điểm đầu và điểm cuối là
điểm?
Lấy làm gốc ta được 3 vectơ
. Tương tự đối với
ta được
vectơ.
Xác định tọa độ trọng tâm
của tam giác
, biết rằng
?
Tọa độ trọng tâm G của tam giác được xác định như sau:
Cho tứ diện
. Điểm
xác định bởi công thức
. Mệnh đề nào sau đây đúng?
Ta có:
Vậy là đỉnh thứ tư của hình bình hành
.
Trong không gian
, góc giữa hai mặt phẳng
và
bằng:
Ta có: góc giữa hai mặt phẳng và
bằng:
.
Cho hình chóp
có đáy
là hình chữ nhật. Biết rằng cạnh
, cạnh bên
và vuông góc với mặt đáy. Gọi
lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:
a) Hai vectơ
là hai vectơ cùng phương, cùng hướng. Sai||Đúng
b) Góc giữa hai vectơ
bằng
. Sai||Đúng
c) Tích vô hướng của
bằng
. Đúng||Sai
d) Độ dài vectơ
là
. Sai||Đúng
Cho hình chóp có đáy
là hình chữ nhật. Biết rằng cạnh
, cạnh bên
và vuông góc với mặt đáy. Gọi
lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:
a) Hai vectơ là hai vectơ cùng phương, cùng hướng. Sai||Đúng
b) Góc giữa hai vectơ bằng
. Sai||Đúng
c) Tích vô hướng của bằng
. Đúng||Sai
d) Độ dài vectơ là
. Sai||Đúng
a) Sai
Ta thấy ABCD là hình chữ nhật nên
Suy ra hai vectơ là hai vectơ cùng phương, ngược hướng.
b) Sai
Ta có ABCD là hình chữ nhật nên
Hình chóp S.ABCD có SA vuông góc với mặt đáy nên tam giác SAC là tam giác vuông tại A.
Suy ra
Ta có:
c) Đúng
Hình chóp S. ABCD có SA vuông góc với mặt đáy nên tam giác SAB là tam giác vuông tại A.
Suy ra
Trong tam giác SAB vuông tại A có AM là đường trung tuyến nên:
Lại có M là trung điểm của SB nên
Ta tính được
Mà
d) Sai
Ta có: M, N lần lượt là trung điểm của các cạnh SB, SD nên MN là đường trung bình của tam giác SBD
Do đó
Suy ra
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có
mà
Suy ra
Trong không gian với hệ tọa độ Oxyz, cho
lần lượt là các vecto đơn vị nằm trên các trục tọa độ
và
là một vecto tùy ý khác
.
Tính ![]()
Đáp án: 1
Trong không gian với hệ tọa độ Oxyz, cho lần lượt là các vecto đơn vị nằm trên các trục tọa độ
và
là một vecto tùy ý khác
.
Tính
Đáp án: 1
Giả sử .
Ta có
Vậy
Cho tứ diện đều
. Mệnh đề nào sau đây sai?
Vì tứ diện là tứ diện đều nên có các cặp cạnh đối vuông góc
Suy ra
Vậy mệnh đề chưa chính xác là: .
Cho tứ diện
có
đôi một vuông góc với nhau. Cho điểm
thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức
?
Cho tứ diện có
đôi một vuông góc với nhau. Cho điểm
thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức
?
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian
, cho tọa độ các điểm
. Cho các khẳng định sau:
(I)
.
(II)
.
(III) Ba điểm
tạo thành một tam giác.
(IV) Ba điểm
thẳng hàng.
Trong các khẳng định trên, có bao nhiêu khẳng định đúng.
Ta có: nên
là trung điểm của
và ba điểm
thẳng hàng.
Vậy có 2 khẳng định sai và 2 khẳng định đúng.
Trong không gian, cho hai vectơ
và
có cùng độ dài bằng
. Biết độ dài của vectơ
bằng
. Biết số đo góc giữa hai vectơ
và
là
độ. Giá trị của
là bao nhiêu?
Trong không gian, cho hai vectơ và
có cùng độ dài bằng
. Biết độ dài của vectơ
bằng
. Biết số đo góc giữa hai vectơ
và
là
độ. Giá trị của
là bao nhiêu?
Trong không gian
, cho hai vectơ
. Tìm tất cả các giá trị của tham số
để
?
Ta có:
Vậy đáp án cần tìm là .
Trong không gian
, cho ba điểm
. Tọa độ chân đường phân giác của góc
trong tam giác
là:
Ta có:
Gọi là chân đường phân giác kẻ từ
lên
của tam giác
.
Suy ra
Ta có:
Trong không gian tọa độ
, hình chiếu vuông góc của điểm
trên trục
có tọa độ là:
Hình chiếu vuông góc của điểm trên trục
là điểm có tọa độ
.
Trong không gian
. cho điểm
. Tìm tọa độ điểm
đối xứng với điểm
qua mặt phẳng
?
Lấy đối xứng qua mặt phẳng thì
đổi dấu còn
giữ nguyên nên điểm
có tọa độ là
.
Trong không gian hệ trục tọa độ
cho điểm
. Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu đối xứng với
qua mặt phẳng
thì
.
Nếu đối xứng với
qua trục
thì
.
Nếu đối xứng với
qua gốc tọa độ thì
.
Vậy mệnh đề đúng là: “Nếu đối xứng với
qua mặt phẳng
thì
”.
Trong không gian với hệ trục tọa độ
cho ba điểm
. Tìm tất cả các điểm
sao cho
là hình thang có đáy
và tam giác
bằng
diện tích tứ giác
?
Trong không gian với hệ trục tọa độ cho ba điểm
. Tìm tất cả các điểm
sao cho
là hình thang có đáy
và tam giác
bằng
diện tích tứ giác
?
Cho tứ diện
và các điểm
xác định bởi
. Tìm
để các đường thẳng
cùng song song với một mặt phẳng?
Cho tứ diện và các điểm
xác định bởi
. Tìm
để các đường thẳng
cùng song song với một mặt phẳng?
Trong không gian với hệ trục tọa độ
, cho hai vectơ
. Tìm tọa độ vectơ
?
Ta có: . Khi đó
.
Vậy
Trong không gian
, cho các điểm
. Tích
bằng:
Ta có: . Khi đó
.
Cho tứ diện
có
. Gọi
là góc giữa
và
. Chọn khẳng định đúng?
Hình vẽ minh họa
Ta có:
Mặt khác
Do đó:
Vậy
Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Cho hình hộp
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ ![]()
Hình vẽ minh họa
Ta có:
.
Vậy .
Cho lăng trụ tam giác
. Đặt
. Biểu diễn vectơ
qua các vectơ
. Chọn đáp án đúng?
Ta có:
Vậy đáp án đúng là: .
Trong không gian hệ trục tọa độ
, cho hai điểm
. Tìm tọa độ điểm
sao cho
?
Gọi tọa độ độ điểm .
Ta có:
Lại có:
Vậy đáp án cần tìm là: .