Trong không gian
, cho hai vectơ
và
. Tính
?
Ta có:
Trong không gian
, cho hai vectơ
và
. Tính
?
Ta có:
Trong không gian
, cho hai điểm
và
. Trung điểm của đoạn thẳng
có tọa độ là:
Gọi là trung điểm của đoạn thẳng
, ta có:
Vậy tọa độ trung điểm của AB là: .
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có do đó
hay
Suy ra
Trong không gian tọa độ Oxyz, cho ba vectơ
. Gọi
là vectơ thoả mãn:
. Tọa độ của vectơ
là:
Đặt .
Ta có:
Vậy .
Trong không gian cho hai đường thẳng
lần lượt có vectơ chỉ phương
. Gọi
là góc giữa hai đường thẳng
. Khẳng định nào sau đây đúng?
Khẳng định đúng: “Nếu thì
”.
Cho hình lập phương
có cạnh
. Gọi
là trung điểm của
. Tính tích vô hướng
?
Hình vẽ minh họa
Ta có:
Ta có: hay
Do đó
Trong không gian hệ trục tọa độ
, điểm nào dưới đây thuộc trục
?
Điểm . Suy ra trong bốn điểm đã cho điểm
.
Trong không gian tọa độ
, hình chiếu vuông góc của điểm
trên trục
có tọa độ là:
Hình chiếu vuông góc của điểm trên trục
là điểm có tọa độ
.
Cho tứ diện
. Điểm
xác định bởi công thức
. Mệnh đề nào sau đây đúng?
Ta có:
Vậy là đỉnh thứ tư của hình bình hành
.
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có
mà
Suy ra
Trong không gian
, điểm đối xứng của điểm
qua trục
có tọa độ là
Gọi là điểm đối xứng của
qua trục
.
Hình chiếu vuông góc của lên trục
là
Khi đó là trung điểm của
. Do đó tọa độ của
là
Cho hình lăng trụ
có
là trung điểm của
. Đặt
. Đẳng thức nào sau đây đúng?
Ta có: M là trung điểm của BB’ khi đó
Khi đó:
Vậy đẳng thức đúng là .
Trong không gian cho hình hộp
. Hỏi bốn vectơ nào có giá cùng thuộc một mặt phẳng?
Hình vẽ minh họa
Từ hình vẽ ta thấy các vectơ có giá cùng thuộc một mặt phẳng
.
Trong không gian
, cho hai vectơ
và
. Xác định giá trị tham số
để
?
Ta có:
Vậy m = 2 là giá trị cần tìm.
Cho hình chóp
có
và
. Góc giữa hai đường thẳng
và
là:
Ta có:
(vì
và
).
Suy ra góc giữa hai đường thẳng SA và BC bằng .
Một chiếc máy bay đang bay từ điểm
đến điểm
. Giả sử với đơn vị km, điểm
có tọa độ
và điểm
có tọa độ
. Máy bay được trạm không lưu thông báo có một cơn bão với tâm bão ở vị trí
với tọa độ
, máy bay được an toàn khi cách tâm bão tối thiểu là
. Tính gọi
là điểm trên đường bay (giữa
và
) mà máy bay cần chuyển hướng để tránh cơn bão. Tính độ dài quãng đường
(kết quả lấy phần nguyên).
Đáp án: 173,21 km
Một chiếc máy bay đang bay từ điểm đến điểm
. Giả sử với đơn vị km, điểm
có tọa độ
và điểm
có tọa độ
. Máy bay được trạm không lưu thông báo có một cơn bão với tâm bão ở vị trí
với tọa độ
, máy bay được an toàn khi cách tâm bão tối thiểu là
. Tính gọi
là điểm trên đường bay (giữa
và
) mà máy bay cần chuyển hướng để tránh cơn bão. Tính độ dài quãng đường
(kết quả lấy phần nguyên).
Đáp án: 173,21 km
Hình vẽ minh họa
Giả sử
Vì là điểm trên đường bay (giữa
và
). Khi đó ta có ba điểm
thẳng hàng.
Ta lại có là điểm mà máy bay cần chuyển hướng để tránh cơn bão.
Khi đó
Ta có hệ phương trình:
Giải (*) ta có
Vì là điểm gần
hơn do đó chọn
hay
Vậy độ dài quãng đường:
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc
và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc
và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).
Đáp án: 124 N
Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc
và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).
Đáp án: 124 N
Gọi hai lực tạo với nhau một góc là
và
, ta có
N.
Lực còn lại là , ta có
N.
Gọi là hợp lực của ba lực trên ta có
.
N
Trong không gian
, cho các điểm
. Xác định tọa độ điểm
sao cho tứ giác
là hình bình hành?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Cho tam giác
vuông tại
và có hai đỉnh
nằm trên mặt phẳng
. Gọi
là hình chiếu vuông góc của đỉnh
lên
. Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu A nằm trên (P) tức A’ trùng với A thì tam giác A’BC có góc A vuông, nếu A không nằm trên (P) thì
suy ra góc
là góc tù.
Trong không gian với hệ trục tọa độ
, cho tọa độ ba điểm
. Thể tích tứ diện
bằng:
Ta có: . Dễ thấy tứ diện
vuông tại
nên
Vậy đáp án đúng là: .
Biết rằng vectơ
và
. Tìm tọa độ vectơ
?
Ta có:
Trong không gian
, cho ba điểm
. Tọa độ chân đường phân giác của góc
trong tam giác
là:
Ta có:
Gọi là chân đường phân giác kẻ từ
lên
của tam giác
.
Suy ra
Ta có:
Cho tứ diện
. Trên các cạnh
lần lượt lấy các điểm
sao cho
. Gọi
lần lượt là trung điểm của
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
Vì lần lượt là trung điểm của
đồng phẳng sai vì
suy ra
không đồng phẳng.
Trong không gian với hệ trục tọa độ
, cho hai điểm
. Đường thẳng
cắt mặt phẳng
tại điểm
. Tính tỉ số
?
Ta có:
Lại có và ba điểm
thẳng hàng
Vậy đáp án đúng là .
Trong không gian với hệ trục tọa độ
, cho ba điểm
,
và
. Điểm
sao cho tứ giác
là hình bình hành. Tính
?
Đáp án: 3
Trong không gian với hệ trục tọa độ , cho ba điểm
,
và
. Điểm
sao cho tứ giác
là hình bình hành. Tính
?
Đáp án: 3
Gọi
Ta có:
là hình bình hành nên
.
Vậy .
Trong không gian với hệ trục tọa độ
, cho hình hộp
có
. Tọa độ trọng tâm tam giác
là
Hình vẽ minh họa
Gọi I là trung điểm của đoạn BD’ suy ra
Gọi là trọng tâm tam giác
Ta có: với
Do đó:
Vậy tọa độ trọng tâm tam giác cần tìm là
Trong không gian với hệ trục tọa độ
, cho
, khi đó tọa độ điểm
là:
Gọi ta có:
khi đó
nên tọa độ điểm cần tìm là
.
Trong không gian với hệ trục tọa độ
, cho hai véc tơ
và
. Tọa độ của véc tơ
tương ứng là:
Ta có: .
.
Suy ra .
Cho tứ diện
và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Cho tứ diện và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Cho lăng trụ đứng
, điểm
trên
sao cho
Đặt
Khẳng định nào dưới đây là đúng ?
Hình vẽ minh họa
Ta có
Cho ba vectơ
. Điều kiện nào sau đây không kết luận được ba vectơ đó đồng phẳng?
Hai vectơ còn lại có thể không cùng phương nên ba vectơ có thể không đồng phẳng.
Trong các mệnh đề sau, mệnh đề nào sai?
Bằng quy tắc 3 điểm ta nhận thấy rằng: đúng với mọi điểm
nằm trong không gian chứ không phải chỉ riêng 4 điểm đồng phẳng.
Cho tứ diện
và các điểm
xác định bởi
. Tìm
để các đường thẳng
cùng song song với một mặt phẳng?
Cho tứ diện và các điểm
xác định bởi
. Tìm
để các đường thẳng
cùng song song với một mặt phẳng?
Cho hình hộp
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
đúng vì
đúng vì
đúng vì
sai vì
Cho hình hộp
Khẳng định nào dưới đây là sai?

Theo quy tắc hình hộp ta có:
Vậy đáp án sai là:
Trong không gian tọa độ
, cho hai mặt phẳng
,
. Xét các vectơ
,
.
a)
là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
b)
không là vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
c)
. Đúng||Sai
d) Góc giữa hai mặt phẳng
và
bằng
. Sai||Đúng
Trong không gian tọa độ , cho hai mặt phẳng
,
. Xét các vectơ
,
.
a) là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
b) không là vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
c) . Đúng||Sai
d) Góc giữa hai mặt phẳng và
bằng
. Sai||Đúng
a) là một vectơ pháp tuyến của mặt phẳng
.
Ta có: có vectơ pháp tuyến
.
b) là một vectơ pháp tuyến của mặt phẳng
.
Ta có: có vectơ pháp tuyến
.
c) .
d) Gọi là góc giữa hai mặt phẳng
và
.
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Giả sử điểm
. Tính giá trị biểu thức
?
Gọi điểm
Ta có:
Mà
Suy ra suy ra
Vậy
Trong không gian
, cho vectơ
. Xét sự đúng sai của các khẳng định sau:
a) Tọa độ của điểm
là
. Đúng||Sai
b) Gọi
thỏa mãn
nhận
làm trọng tâm. Khi đó
. Đúng||Sai
c) Nếu
thẳng hàng thì tổng
. Đúng||Sai
d) Cho
để
vuông cân tại
. Tổng hoành độ và tung độ của điểm N bằng 3. Sai||Đúng
Trong không gian , cho vectơ
. Xét sự đúng sai của các khẳng định sau:
a) Tọa độ của điểm là
. Đúng||Sai
b) Gọi thỏa mãn
nhận
làm trọng tâm. Khi đó
. Đúng||Sai
c) Nếu thẳng hàng thì tổng
. Đúng||Sai
d) Cho để
vuông cân tại
. Tổng hoành độ và tung độ của điểm N bằng 3. Sai||Đúng
a) Ta có:
Tọa độ của điểm là
.
b) G là trọng tâm tam giác ABC
c) Ta có:
Ba điểm A, B, M thằng hàng khi và chỉ khi
Suy ra
d) Ta có:
Ta có ∆ABN vuông cân tại A
Từ (*)
Từ (**)
Vậy
Trong không gian với hệ trục tọa độ
, cho ba điểm
. Điểm
là đỉnh thứ tư của hình bình hành
. Khi đó giá trị biểu thức
có giá trị bằng bao nhiêu?
Gọi tọa độ điểm
Ta có:
Ta có: là hình bình hành
suy ra điểm
Khi đó .