Trong không gian
, điểm nào sau đây thuộc mặt phẳng
?
Do điểm thuộc mặt phẳng nên điểm đó có tọa độ dạng
Suy ra điểm là đáp án cần tìm.
Trong không gian
, điểm nào sau đây thuộc mặt phẳng
?
Do điểm thuộc mặt phẳng nên điểm đó có tọa độ dạng
Suy ra điểm là đáp án cần tìm.
Trong không gian
, cho các điểm
. Xác định tọa độ điểm
sao cho tứ giác
là hình bình hành?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian với hệ trục tọa độ
, cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a)
. Đúng||Sai
b) Ba điểm
thẳng hàng. Sai||Đúng
c) Điểm
là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm
trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
Trong không gian với hệ trục tọa độ , cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a) . Đúng||Sai
b) Ba điểm thẳng hàng. Sai||Đúng
c) Điểm là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
a) Đúng: Vì nên
.
b) Sai: Ta có .
Vì nên
không cùng phương suy ra
không thẳng hàng.
c) Đúng
Vì là điểm đối xứng với
qua
nên
là trung điểm của
.
Ta có suy ra
.
Do đó . Vậy
.
d) Đúng. Gọi là điểm thỏa mãn
.
Ta có:
Do không thay đổi nên
nhỏ nhất khi
nhỏ nhất hay
là hình chiếu của điểm
trên mặt phẳng
.
Do đó suy ra
.
Vậy .
Trong không gian hệ trục tọa độ
, cho tam giác
có
. Tính diện tích tam giác
?
Ta có:
Suy ra . Lại có:
Suy ra diện tích tam giác là:
Cho hình lập phương
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Vì (
là hình chữ nhật) nên
(
là hình vuông)
Trong không gian cho tứ diện đều
. Khẳng định nào sau đây sai?
Tứ diện đều nên
không thể vuông góc với
.
Vậy khẳng định sai là: “”.
Trong không gian
, cho ba điểm
và điểm
là tâm đường tròn ngoại tiếp tam giác
. Tính giá trị biểu thức
?
Ta có: nên tam giác ABC vuông tại B
Suy ra tâm I của đường tròn ngoại tiếp của tam giác ABC là trung điểm của cạnh huyền AC.
Vậy đáp án cần tìm là
Trong không gian cho tam giác
. Tìm
sao cho giá trị của biểu thức
đạt giá trị nhỏ nhất?
Gọi G là trọng tâm tam giác ABC
Suy ra G cố định và
Dấu “=” xảy ra khi
Vậy với
là trọng tâm tam giác
.
Trong không gian cho hình hộp
. Hỏi bốn vectơ nào có giá cùng thuộc một mặt phẳng?
Hình vẽ minh họa
Từ hình vẽ ta thấy các vectơ có giá cùng thuộc một mặt phẳng
.
Tích tất cả giá trị của
để góc tạo bởi đường thẳng
và đường thẳng
bằng
là:
Đáp án: -4||- 4
Tích tất cả giá trị của để góc tạo bởi đường thẳng
và đường thẳng
bằng
là:
Đáp án: -4||- 4
Gọi là góc giữa hai đường thẳng đã cho.
Đường thẳng có vectơ chỉ phương là
.
Đường thẳng có vectơ chỉ phương là
.
Ta có:
Vậy tích tất cả các giá trị của tham số a bằng -4.
Cho tứ diện đều
. Số đo giữa hai đường thẳng
và
bằng:
Hình vẽ minh họa
Gọi M là trung điểm của CD
Ta có:
Suu ra nên số đo góc giữa hai đường thẳng
bằng
.
Cho hình lập phương
. Hãy phân tích vectơ
theo các vectơ
?
Hình vẽ minh họa
Theo quy tắc hình bình hành ta có:
Trong không gian
, cho hai vectơ
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án cần tìm là .
Trong không gian tọa độ
, cho hai mặt phẳng
và ![]()
a) Vectơ có tọa độ
là một vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
b) Vectơ có toạ độ
là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
c) Côsin của góc giữa hai vectơ
và
bằng
. Đúng||Sai
d) Góc giữa hai mặt phẳng
và
bằng
. Sai||Đúng
Trong không gian tọa độ , cho hai mặt phẳng
và
a) Vectơ có tọa độ là một vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
b) Vectơ có toạ độ là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
c) Côsin của góc giữa hai vectơ và
bằng
. Đúng||Sai
d) Góc giữa hai mặt phẳng và
bằng
. Sai||Đúng
a) nên mệnh đề sai
b) nên mệnh đề đúng
c) mệnh đề đúng
d) Góc hai mặt phẳng không thể tù nên mệnh đề sai
Trong không gian
, cho hai vectơ
và
. Khẳng định nào sau đây đúng?
Ta có:
Vậy khẳng định đúng là
Cho hình hộp
. Gọi
là tâm hình bình hành
và
là tâm của hình bình hành
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Vì I; K lần lượt là trung điểm của AF và CF suy ra IK là đường trung bình tam giác AFC suy ra IK // AC => IK // (ABCD)
Mà GF // (ABCD); suy ra
đồng phẳng.
Cho tứ diện
và điểm
thỏa mãn
(
là trọng tâm của tứ diện). Gọi
là giao điểm của
và mặt phẳng
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Vì là giao điểm của
và mặt phẳng
suy ra
là trọng tâm tam giác
suy ra
Theo bài ra ta có:
Trong không gian
, cho
có
. Gọi
là chân đường cao hạ từ đỉnh
. Tính
.
Đáp án: -17||- 17
Trong không gian , cho
có
. Gọi
là chân đường cao hạ từ đỉnh
. Tính
.
Đáp án: -17||- 17
Ta có .
Vì là chân đường cao nên ta có
và
.
Do đó
Vậy .
Cho tứ diện
. Gọi
là trọng tâm tam giác
. Điểm
xác định bởi công thức
. Mệnh đề nào sau đây đúng?
Do G là trọng tâm tam giác BCD nên
Vậy mệnh đề đúng là “ thuộc tia
và
”.
Trong không gian
, cho vectơ
. Xét sự đúng sai của các khẳng định sau:
a) Tọa độ của điểm
là
. Đúng||Sai
b) Gọi
thỏa mãn
nhận
làm trọng tâm. Khi đó
. Đúng||Sai
c) Nếu
thẳng hàng thì tổng
. Đúng||Sai
d) Cho
để
vuông cân tại
. Tổng hoành độ và tung độ của điểm N bằng 3. Sai||Đúng
Trong không gian , cho vectơ
. Xét sự đúng sai của các khẳng định sau:
a) Tọa độ của điểm là
. Đúng||Sai
b) Gọi thỏa mãn
nhận
làm trọng tâm. Khi đó
. Đúng||Sai
c) Nếu thẳng hàng thì tổng
. Đúng||Sai
d) Cho để
vuông cân tại
. Tổng hoành độ và tung độ của điểm N bằng 3. Sai||Đúng
a) Ta có:
Tọa độ của điểm là
.
b) G là trọng tâm tam giác ABC
c) Ta có:
Ba điểm A, B, M thằng hàng khi và chỉ khi
Suy ra
d) Ta có:
Ta có ∆ABN vuông cân tại A
Từ (*)
Từ (**)
Vậy
Trong không gian với hệ tọa độ Oxyz, cho
lần lượt là các vecto đơn vị nằm trên các trục tọa độ
và
là một vecto tùy ý khác
.
Tính ![]()
Đáp án: 1
Trong không gian với hệ tọa độ Oxyz, cho lần lượt là các vecto đơn vị nằm trên các trục tọa độ
và
là một vecto tùy ý khác
.
Tính
Đáp án: 1
Giả sử .
Ta có
Vậy
Trong không gian với hệ trục tọa độ
, cho ba điểm
. Điểm
là đỉnh thứ tư của hình bình hành
. Khi đó giá trị biểu thức
có giá trị bằng bao nhiêu?
Gọi tọa độ điểm
Ta có:
Ta có: là hình bình hành
suy ra điểm
Khi đó .
Cho điểm
chia đoạn thẳng
theo tỉ số
thì ta có:
. Khi đó với một điểm
tùy ý ta có:
Ta có:
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Giả sử điểm
. Tính giá trị biểu thức
?
Gọi điểm
Ta có:
Mà
Suy ra suy ra
Vậy
Trong không gian
, cho hai vectơ
. Vectơ
có tọa độ là:
Ta có: . Khi đó
Vậy
Trong không gian
, điểm đối xứng của điểm
qua trục
có tọa độ là
Gọi là điểm đối xứng của
qua trục
.
Hình chiếu vuông góc của lên trục
là
Khi đó là trung điểm của
. Do đó tọa độ của
là
Trong không gian với hệ trục tọa độ
, cho tam giác
có tọa độ các đỉnh
. Gọi
là chân đường phân giác trong của góc
trong tam giác
. Tính giá trị biểu thức
?
Trong không gian với hệ trục tọa độ , cho tam giác
có tọa độ các đỉnh
. Gọi
là chân đường phân giác trong của góc
trong tam giác
. Tính giá trị biểu thức
?
Trong không gian
, cho điểm
. Tìm tọa độ của
là.
Ta có:
Trong không gian hệ trục tọa độ
, cho các điểm
. Tìm tọa độ điểm
để tứ giác
là hình bình hành?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian, cho hình lập phương
. Góc giữa hai vectơ
và
bằng
Hình vẽ minh họa
Ta có: . Do đó,
Vì nên tam giác
là tam giác đều.
Suy ra
Vậy
Trong không gian
, cho vectơ
. Khi đó tọa độ vectơ
là:
Ta có:
Trong không gian với hệ trục tọa độ
, cho ba điểm
. Tìm giá trị của tham số
để tam giác
vuông tại
?
Ta có: .
Tam giác MNP vuông tại N
Vậy đáp án cần tìm là .
Cho tứ diện
có
đôi một vuông góc với nhau. Cho điểm
thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức
?
Cho tứ diện có
đôi một vuông góc với nhau. Cho điểm
thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức
?
Trong không gian cho điểm
và bốn điểm
không thẳng hàng. Điều kiện cần và đủ để
tạo thành hình bình hành là:
Để tạo thành hình bình thành thì
.
Khi đó:
, O là trọng tâm tứ giác (hoặc tứ diện) ABCD. (Loại).
(Loại)
(loại)
Vậy đáp án cần tìm là .
Cho hình chóp
có đáy
là hình chữ nhật. Biết rằng cạnh
, cạnh bên
và vuông góc với mặt đáy. Gọi
lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:
a) Hai vectơ
là hai vectơ cùng phương, cùng hướng. Sai||Đúng
b) Góc giữa hai vectơ
bằng
. Sai||Đúng
c) Tích vô hướng của
bằng
. Đúng||Sai
d) Độ dài vectơ
là
. Sai||Đúng
Cho hình chóp có đáy
là hình chữ nhật. Biết rằng cạnh
, cạnh bên
và vuông góc với mặt đáy. Gọi
lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:
a) Hai vectơ là hai vectơ cùng phương, cùng hướng. Sai||Đúng
b) Góc giữa hai vectơ bằng
. Sai||Đúng
c) Tích vô hướng của bằng
. Đúng||Sai
d) Độ dài vectơ là
. Sai||Đúng
a) Sai
Ta thấy ABCD là hình chữ nhật nên
Suy ra hai vectơ là hai vectơ cùng phương, ngược hướng.
b) Sai
Ta có ABCD là hình chữ nhật nên
Hình chóp S.ABCD có SA vuông góc với mặt đáy nên tam giác SAC là tam giác vuông tại A.
Suy ra
Ta có:
c) Đúng
Hình chóp S. ABCD có SA vuông góc với mặt đáy nên tam giác SAB là tam giác vuông tại A.
Suy ra
Trong tam giác SAB vuông tại A có AM là đường trung tuyến nên:
Lại có M là trung điểm của SB nên
Ta tính được
Mà
d) Sai
Ta có: M, N lần lượt là trung điểm của các cạnh SB, SD nên MN là đường trung bình của tam giác SBD
Do đó
Suy ra
Trong không gian với hệ trục tọa độ
cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?
Trong không gian với hệ trục tọa độ cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?
Trong không gian
, cho điểm
. Tìm tọa độ hình chiếu M lên trục
.
Tọa độ hình chiếu của điểm M trên trục Ox là
Xét tính đúng sai của mỗi khẳng định.
Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí
cách điểm xuất phát
km về phía bắc và
km về phía tây, đồng thời cách mặt đất
km. Chiếc thứ hai nằm tại vị trí
cách điểm xuất phát
km về phía nam và
km về phía đông, đồng thời cách mặt đất
km.
Chọn hệ trục toạ độ
với gốc
đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng
trùng với mặt đất, trục
hướng về phía bắc, trục
hướng về phía tây và trục
hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

a) Vị trí của khinh khí cầu thứ hai có tọa độ là
. Sai||Đúng
b) Hai khinh khí cầu cách nhau không quá
km. Đúng||Sai
c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng
d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ
. Đúng||Sai
Xét tính đúng sai của mỗi khẳng định.
Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí cách điểm xuất phát
km về phía bắc và
km về phía tây, đồng thời cách mặt đất
km. Chiếc thứ hai nằm tại vị trí
cách điểm xuất phát
km về phía nam và
km về phía đông, đồng thời cách mặt đất
km.
Chọn hệ trục toạ độ với gốc
đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng
trùng với mặt đất, trục
hướng về phía bắc, trục
hướng về phía tây và trục
hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).
a) Vị trí của khinh khí cầu thứ hai có tọa độ là . Sai||Đúng
b) Hai khinh khí cầu cách nhau không quá km. Đúng||Sai
c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng
d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ . Đúng||Sai
a) Sai
Vì hướng nam ngược với hướng bắc, hướng đông ngược với hướng tây nên chiếc khinh khí cầu thứ hai có tọa độ là .
b) Đúng
Chiếc khinh khí cầu thứ nhất có tọa độ là .
Khoảng cách giữa hai chiếc khinh khí cầu là
c) Sai
Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất là:
Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ hai là:
Vậy khinh khí cầu thứ hai ở gần điểm xuất phát hơn.
d) Đúng
Vị trí của chiếc flycam là
.
Khoảng cách bay của flycam là:
Khoảng cách từ vị trí flycam xuất phát đến điểm có tọa độ là
Vậy flycam không đến được vị trí có tọa độ .
Trong không gian
, cho
. Tọa độ điểm
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ
.