Đề kiểm tra 45 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 2. Vectơ và hệ trục tọa độ trong không gian được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho lăng trụ tam giác ABC.A'B'C' có tọa độ các điểm B( - 1;2;1),B'( -
2;1;0),C'(5;3;2). Xác định tọa độ điểm C?

    Hình vẽ minh họa

    Gọi tọa độ điểm C(x;y;z)

    ABC.A'B'C' là hình lăng trụ nên

    \overrightarrow{CC'} =
\overrightarrow{BB'} \Leftrightarrow \left\{ \begin{matrix}
5 - x = - 2 - ( - 1) \\
3 - y = 1 - 2 \\
2 - z = 0 - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 6 \\
y = 4 \\
z = 3 \\
\end{matrix} ight.

    Vậy tọa độ C(6;4;3).

  • Câu 2: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại AB. Biết rằng tọa độ các điểm A(1;2;1),B(2;0; - 1),C(6;1;0),D(a;b;c) và hình thang ABCD có diện tích bằng 6\sqrt{2}. Tính giá trị biểu thức a+b+c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại AB. Biết rằng tọa độ các điểm A(1;2;1),B(2;0; - 1),C(6;1;0),D(a;b;c) và hình thang ABCD có diện tích bằng 6\sqrt{2}. Tính giá trị biểu thức a+b+c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(1;1; - 1)B(2;3;2). Vectơ \overrightarrow{AB} có tọa độ là:

    Ta có:

    \overrightarrow{AB} = (2 - 1;3 - 1;2 +
1) = (1;2;3)

    Vậy đáp án đúng là: \overrightarrow{AB} =
(1;2;3).

  • Câu 4: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;2; - 1),B(2; - 1;3),C( - 3;5;1). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành?

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
2 - 1 = - 3 - x \\
- 1 - 2 = 5 - y \\
3 - ( - 1) = 1 - z \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = 8 \\
z = - 3 \\
\end{matrix} ight.. Vậy tọa độ điểm D( - 4;8; - 3).

  • Câu 5: Vận dụng

    Cho lăng trụ tam giác ABC.A'B'C'. Đặt \overrightarrow{AA'} =
\overrightarrow{a};\overrightarrow{AB} =
\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Gọi điểm I \in CC' sao cho \overrightarrow{C'I} =
\frac{1}{3}\overrightarrow{C'C}, G là trọng tâm tứ diện BAB'C'. Biểu diễn vectơ \overrightarrow{IG} qua các vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}. Đáp án nào dưới đây đúng?

    Ta có G là trọng tâm của tứ diện BA'B'C' nên

    4\overrightarrow{IG} =
\overrightarrow{IB} + \overrightarrow{IA'} +
\overrightarrow{IB'} + \overrightarrow{IC'}

    \Leftrightarrow 4\overrightarrow{IG} =
\left( \overrightarrow{IC} + \overrightarrow{CB} ight) + \left(
\overrightarrow{IC'} + \overrightarrow{C'A'} ight) +
\left( \overrightarrow{IC'} + \overrightarrow{C'B'} ight)
+ \overrightarrow{IC'}

    \Leftrightarrow 4\overrightarrow{IG} =
\overrightarrow{IC'} + \left( 2\overrightarrow{IC'} +
\overrightarrow{IC} ight) + \left( \overrightarrow{CB} +
\overrightarrow{C'B'} ight) +
\overrightarrow{C'A'}

    \Leftrightarrow 4\overrightarrow{IG} =
\frac{1}{3}\overrightarrow{CC'} + \overrightarrow{0} +
2\overrightarrow{CB} - \overrightarrow{AC}

    \Leftrightarrow 4\overrightarrow{IG} =
\frac{1}{3}\overrightarrow{AA'} + 2\overrightarrow{CB} -
\overrightarrow{AC}

    \Leftrightarrow 4\overrightarrow{IG} =
\frac{1}{3}\overrightarrow{a} + 2\left( \overrightarrow{b} -
\overrightarrow{c} ight) - \overrightarrow{c}

    \Leftrightarrow \overrightarrow{IG} =
\frac{1}{4}\left( \frac{1}{3}\overrightarrow{a} + \overrightarrow{b} -
2\overrightarrow{c} ight)

  • Câu 6: Nhận biết

    Cho hình lăng trụ tam giác ABC.A'B'C'. Đặt \overrightarrow{AA'} =
\overrightarrow{a};\overrightarrow{AB} =
\overrightarrow{b};\overrightarrow{AC} =
\overrightarrow{c};\overrightarrow{BC} = \overrightarrow{d}. Trong các mệnh đề sau, mệnh đề nào đúng?

    Ta có: \overrightarrow{d} =
\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB} =
\overrightarrow{c} - \overrightarrow{b}

    Do đó \overrightarrow{b} -
\overrightarrow{c} + \overrightarrow{d} =
\overrightarrow{0}

  • Câu 7: Vận dụng cao

    Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt E(0;0;6), giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là A_{1}(0;1;0),A_{2}\left( \frac{\sqrt{3}}{2}; -\frac{1}{2};0 ight),A_{3}\left( -\frac{\sqrt{3}}{2}; - \frac{1}{2};0 ight). Biết rằng trọng lượng của chiếc máy là 240\ N, tác dụng lên các giá đỡ theo các lực \overrightarrow{F_{1}},\overrightarrow{F_{2}},\overrightarrow{F_{3}} như hình.

    Tính tích vô hướng của \overrightarrow{F_{1}} \cdot\overrightarrow{F_{3}} (làm tròn đến chữ số hàng đơn vị).

    Đáp án: 6311

    Đáp án là:

    Một chiếc máy được đặt trên một giá đỡ ba chân tại điểm đặt E(0;0;6), giá đỡ có các điểm tiếp xúc mặt đất của ba chân lần lượt là A_{1}(0;1;0),A_{2}\left( \frac{\sqrt{3}}{2}; -\frac{1}{2};0 ight),A_{3}\left( -\frac{\sqrt{3}}{2}; - \frac{1}{2};0 ight). Biết rằng trọng lượng của chiếc máy là 240\ N, tác dụng lên các giá đỡ theo các lực \overrightarrow{F_{1}},\overrightarrow{F_{2}},\overrightarrow{F_{3}} như hình.

    Tính tích vô hướng của \overrightarrow{F_{1}} \cdot\overrightarrow{F_{3}} (làm tròn đến chữ số hàng đơn vị).

    Đáp án: 6311

    Ta có: \left\{ \begin{matrix}\overrightarrow{EA_{1}} = (0;1; - 6) \\\overrightarrow{EA_{2}} = \left( \frac{\sqrt{3}}{2}; - \frac{1}{2}; - 6ight) \\\overrightarrow{EA_{3}} = \left( - \frac{\sqrt{3}}{2}; - \frac{1}{2}; -6 ight) \\\end{matrix} ight.

    \Rightarrow EA_{1} = EA_{2} = EA_{3} =\sqrt{37}.

    Suy ra, \left| \overrightarrow{F_{1}}ight| = \left| \overrightarrow{F_{2}} ight| = \left|\overrightarrow{F_{3}} ight| (vì chân bằng nhau, giá đỡ cân bằng, trọng lực tác dụng đều lên 3 chân của giá đỡ).

    Do đó: \left\{ \begin{matrix}\overrightarrow{F_{1}} = k\overrightarrow{EA_{1}} = (0;k; - 6k) \\\overrightarrow{F_{2}} = k\overrightarrow{EA_{2}} = \left(\frac{\sqrt{3}}{2}k; - \frac{1}{2}k; - 6k ight) \\\overrightarrow{F_{3}} = k\overrightarrow{EA_{3}} = \left( -\frac{\sqrt{3}}{2}k; - \frac{1}{2}k; - 6k ight) \\\end{matrix} ight.

    \Rightarrow \overrightarrow{F_{1}} +\overrightarrow{F_{2}} + \overrightarrow{F_{3}} = (0;0; -18k).

    \overrightarrow{F_{1}} +\overrightarrow{F_{2}} + \overrightarrow{F_{3}} = \overrightarrow{P} =(0;0; - 240).

    Suy ra - 18k = - 240 \Leftrightarrow k =\frac{40}{3}.

    Từ đó \left\{ \begin{matrix}\overrightarrow{F_{1}} = \left( 0;\frac{40}{3}; - 80 ight) \\\overrightarrow{F_{2}} = \left( \frac{20\sqrt{3}}{3}; - \frac{20}{3}; -80 ight) \\\overrightarrow{F_{3}} = \left( - \frac{20\sqrt{3}}{3}; - \frac{20}{3};- 80 ight) \\\end{matrix} ight..

    Vậy \overrightarrow{F_{1}}.\overrightarrow{F_{3}} =0.\left( \frac{- 20\sqrt{3}}{3} ight) + \frac{40}{3}\left( -\frac{20}{3} ight) + ( - 80).( - 80) \approx 6311.

  • Câu 8: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho ba điểm A(3;1; - 4),B(2;1; - 2),C(1;1; - 3). Tìm điểm M \in Ox sao cho \left| \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} ight| đạt giá trị nhỏ nhất?

    M \in Ox suy ra M(m;0;0). Ta có: \left\{ \begin{matrix}
\overrightarrow{MA} = (3 - m;1; - 4) \\
\overrightarrow{MB} = (2 - m;1; - 2) \\
\overrightarrow{MC} = (1 - m;1; - 3) \\
\end{matrix} ight.

    Theo bài ra:

    \left| \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} ight| = \sqrt{(6 - 3m)^{2} +
3^{2} + ( - 9)^{2}}

    = \sqrt{9m^{2} - 36m + 126} = \sqrt{9(m
- 2)^{2} + 90} \geq 3\sqrt{10};\forall m\mathbb{\in R}

    Vậy \left| \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} ight| nhỏ nhất bằng 3\sqrt{10} khi m - 2 = 0 \Leftrightarrow m = 2. Hay M(2;0;0)

  • Câu 9: Thông hiểu

    Cho tứ diện ABCD. Gọi M, N theo thứ tự là trung điểm ABCD. Khẳng định nào sau đây đúng?

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
4\overrightarrow{MN} Sai||Đúng

    b) \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} Đúng||Sai

    c) \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{MN} Sai||Đúng

    d) \overrightarrow{AC} +
\overrightarrow{AD} = 2\overrightarrow{AN} Đúng||Sai

    Đáp án là:

    Cho tứ diện ABCD. Gọi M, N theo thứ tự là trung điểm ABCD. Khẳng định nào sau đây đúng?

    Xác định tính đúng sai của các khẳng định sau:

    a) \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
4\overrightarrow{MN} Sai||Đúng

    b) \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} Đúng||Sai

    c) \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{MN} Sai||Đúng

    d) \overrightarrow{AC} +
\overrightarrow{AD} = 2\overrightarrow{AN} Đúng||Sai

    a) Vì M, N là trung điểm của ABCD nên \overrightarrow{MC} + \overrightarrow{MD} =
2\overrightarrow{MN}\overrightarrow{NA} + \overrightarrow{NB} =
2\overrightarrow{NM}

    Nên \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{NA} + \overrightarrow{NB} =
\overrightarrow{0}.

    b) Ta có:

    \overrightarrow{AC} +
\overrightarrow{BD} = \overrightarrow{AM} + \overrightarrow{MC} +
\overrightarrow{BM} + \overrightarrow{MD}

    = \left( \overrightarrow{AM} +
\overrightarrow{BM} ight) + \left( \overrightarrow{MC} +
\overrightarrow{MD} ight)

    = \overrightarrow{0} +
2\overrightarrow{MN} = 2\overrightarrow{MN}

    c) Ta có:

    \overrightarrow{AD} +
\overrightarrow{BC} = \overrightarrow{AC} + \overrightarrow{CD} +
\overrightarrow{BD} + \overrightarrow{DC}

    = \left( \overrightarrow{AC} +
\overrightarrow{BD} ight) + \left( \overrightarrow{CD} +
\overrightarrow{DC} ight) = \overrightarrow{AC} + \overrightarrow{BD}
= 2\overrightarrow{MN}

    d) Do N là trung điểm của CD nên \overrightarrow{AC} + \overrightarrow{AD} =
2\overrightarrow{AN}

  • Câu 10: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có tọa độ các đỉnh A(1;2; - 1),B(2; - 1;3),C( - 4;7;5). Gọi D(a;b;c) là chân đường phân giác trong của góc B trong tam giác ABC. Tính giá trị biểu thức W = a + b + 2c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có tọa độ các đỉnh A(1;2; - 1),B(2; - 1;3),C( - 4;7;5). Gọi D(a;b;c) là chân đường phân giác trong của góc B trong tam giác ABC. Tính giá trị biểu thức W = a + b + 2c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Thông hiểu

    Cho tứ diện đều ABCD. Số đo giữa hai đường thẳng ABCD bằng:

    Hình vẽ minh họa

    Gọi M là trung điểm của CD

    Ta có: \left\{ \begin{matrix}
\overrightarrow{CD}.\overrightarrow{AM} = \overrightarrow{0} \\
\overrightarrow{CD}.\overrightarrow{MB} = \overrightarrow{0} \\
\end{matrix} ight.

    \Rightarrow
\overrightarrow{CD}.\overrightarrow{AB} = \overrightarrow{CD}.\left(
\overrightarrow{AM} + \overrightarrow{MB} ight) =
\overrightarrow{CD}.\overrightarrow{AM} +
\overrightarrow{CD}.\overrightarrow{MB} =
\overrightarrow{0}

    Suu ra \overrightarrow{AB}\bot\overrightarrow{CD} nên số đo góc giữa hai đường thẳng AB;CD bằng 90^{0}.

  • Câu 12: Vận dụng cao

    Cho hình chóp S.ABC. Lấy các điểm A';B';C' lần lượt thuộc các tia SA;SB;SC sao cho \frac{SA}{SA'} = a;\frac{SB}{SB'} =
b;\frac{SC}{SC'} = c trong đó a;b;c là các hệ số biến thiên. Để mặt phẳng (A'B'C') đi qua trọng tâm của tam giác ABC thì tổng các hệ số bằng bao nhiêu?

    Hình vẽ minh họa

    Gọi G là trọng tâm tam giác ABC suy ra \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} = \overrightarrow{0}

    Khi đó 3\overrightarrow{GS} +
\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} =
\overrightarrow{0}\overrightarrow{SA} =
a\overrightarrow{SA'};\overrightarrow{SB} =
b\overrightarrow{SB'};\overrightarrow{SC} =
c\overrightarrow{SC'}

    Suy ra 3\overrightarrow{SG} =
a\overrightarrow{SA'} + b\overrightarrow{SB'} +
c\overrightarrow{SC'}

    \Leftrightarrow \overrightarrow{SG} =
\frac{a}{3}\overrightarrow{SA'} +
\frac{b}{3}\overrightarrow{SB'} +
\frac{c}{3}\overrightarrow{SC'}

    Vì mặt phẳng (A'B'C') đi qua trọng tâm của tam giác ABC suy ra \overrightarrow{GA'};\overrightarrow{GB'};\overrightarrow{GC'} đồng phẳng.

    Do đó tồn tại ba số l;m;n sao cho l^{2} + m^{2} + n^{2} eq 0) và l\overrightarrow{GA'} +
m\overrightarrow{GB'} + n\overrightarrow{GC'} =
\overrightarrow{0}

    \Leftrightarrow l\left(
\overrightarrow{GS} + \overrightarrow{SA'} ight) + m\left(
\overrightarrow{GS} + \overrightarrow{SB'} ight) + n\left(
\overrightarrow{GS} + \overrightarrow{SC'} ight) =
\overrightarrow{0}s

    \Leftrightarrow (l + m +
n)\overrightarrow{SG} = l\overrightarrow{SA'} +
m\overrightarrow{SB'} + n\overrightarrow{SC'}

    \Leftrightarrow \overrightarrow{SG} =
\frac{l}{l + m + n}\overrightarrow{SA'} + \frac{m}{l + m +
n}\overrightarrow{SB'} + \frac{n}{l + m +
n}\overrightarrow{SC'}

    \Leftrightarrow
\frac{a}{3}\overrightarrow{SA'} +
\frac{b}{3}\overrightarrow{SB'} +
\frac{c}{3}\overrightarrow{SC'} = \frac{l}{l + m +
n}\overrightarrow{SA'} + \frac{m}{l + m + n}\overrightarrow{SB'}
+ \frac{n}{l + m + n}\overrightarrow{SC'}

    Suy ra \frac{a}{3} + \frac{b}{3} +
\frac{c}{3} = \frac{l}{l + m + n} + \frac{m}{l + m + n} + \frac{n}{l + m
+ n} = 1

    \Rightarrow a + b + c = 3

  • Câu 13: Nhận biết

    Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD. Điểm M xác định bởi công thức \overrightarrow{AM} = \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Do G là trọng tâm tam giác BCD nên \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} = 3\overrightarrow{AG}

    \Rightarrow \overrightarrow{AM} =
3\overrightarrow{AG}

    Vậy mệnh đề đúng là “M thuộc tia AGAM = 3AG”.

  • Câu 14: Vận dụng

    Trong không gian Oxyz cho hai điểm M(2;3; - 1),N( - 1;1;1). Xác định tính đúng sai của từng phương án dưới đây:

    a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng

    b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là ( - 4; - 1;3). Đúng||Sai

    c) Cho P(1;m - 1;3), tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxy) thỏa mãn T = \left|
3\overrightarrow{IM} - \overrightarrow{IN} ight| đạt giá trị nhỏ nhất. Khi đó 2a + b + c = 9. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz cho hai điểm M(2;3; - 1),N( - 1;1;1). Xác định tính đúng sai của từng phương án dưới đây:

    a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng

    b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là ( - 4; - 1;3). Đúng||Sai

    c) Cho P(1;m - 1;3), tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxy) thỏa mãn T = \left|
3\overrightarrow{IM} - \overrightarrow{IN} ight| đạt giá trị nhỏ nhất. Khi đó 2a + b + c = 9. Sai||Đúng

    a) Sai: Hình chiếu của điểm M trên trục Oy có tọa độ là (0;3;0)

    b) Đúng: Vì N là trung điểm của ME

    \Leftrightarrow \left\{ \begin{matrix}- 1 = \dfrac{2 + x_{E}}{2} \\1 = \dfrac{3 + y_{E}}{2} \\1 = \dfrac{- 1 + z_{E}}{2} \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x_{E} = - 4 \\y_{E} = - 1 \\z_{E} = 3 \\\end{matrix} \Rightarrow E( - 4; - 1;3) ight.\  ight..

    c) Đúng: Ta có \overrightarrow{NM} =
(3;2; - 2);\overrightarrow{NP} = (2;m - 2;2).

    \bigtriangleup MNP vuông tại N \Leftrightarrow\overrightarrow{NM}.\overrightarrow{NP} = 0

    \Leftrightarrow 3.2 + 2.(m - 2) + ( -
2).2 = 0 \Leftrightarrow m = 1.

    d) Sai.

    Gọi J(x;y;z) thỏa 3\overrightarrow{JM} - \overrightarrow{JN} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}3(2 - x) - ( - 1 - x) = 0 \\3(3 - y) - (1 - y) = 0 \\3( - 1 - z) - (1 - z) = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = \dfrac{7}{2} \\y = 4 \\z = - 2 \\\end{matrix} ight.\  ight.

    Suy ra J\left( \frac{7}{2};4; - 2
ight).

    Khi đó T = |3\overrightarrow{IM} -
\overrightarrow{IN}| = |3\overrightarrow{IJ} + 3\overrightarrow{JM} -
\overrightarrow{IJ} - \overrightarrow{JN}| = |2\overrightarrow{IJ}| =
2IJ.

    T đạt giá trị nhỏ nhất khi và chỉ khi I là hình chiếu của J trên (Oxy)

    \Leftrightarrow I\left( \frac{7}{2};4;0 ight).

    Vậy a = \frac{7}{2};b = 4;c =
0.

    Suy ra 2a+b+c=11

  • Câu 15: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm B(1;2; - 3),C(7;4 - 2). Tìm tọa độ điểm E thỏa mãn đẳng thức \overrightarrow{CE} =
2\overrightarrow{EB}?

    Gọi E(x;y;z)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{CE} = (x - 7;y - 4;z + 2) \\
2\overrightarrow{EB} = (2 - 2x;4 - 2y; - 6 - 2z) \\
\end{matrix} ight.

    Theo bài ra ta có:

    \overrightarrow{CE} =2\overrightarrow{EB} \Leftrightarrow \left\{ \begin{matrix}x - 7 = 2 - 2x \\y - 4 = 4 - 2y \\z + 2 = - 6 - 2z \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}x = 3 \\y = \dfrac{8}{3} \\z = - \dfrac{8}{3} \\\end{matrix} ight.\  \Rightarrow E\left( 3;\frac{8}{3}; - \dfrac{8}{3}ight)

    Vậy điểm E có tọa độ là E\left(
3;\frac{8}{3}; - \frac{8}{3} ight).

  • Câu 16: Thông hiểu

    Trong không gian Oxyz, cho vectơ \overrightarrow{OA} = \overrightarrow{i} -
2\overrightarrow{k}. Tọa độ điểm A là:

    Ta có: \overrightarrow{OA} =
\overrightarrow{i} - 2\overrightarrow{k} \Leftrightarrow A(0;1; -
2)

  • Câu 17: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1; -
4;0);\overrightarrow{v} = ( - 1; - 2;1). Tìm tọa độ vectơ \overrightarrow{u} +
3\overrightarrow{v}?

    Ta có: 3\overrightarrow{v} = ( - 3; -
6;3) do đó \overrightarrow{u} +
3\overrightarrow{v} = ( - 2; - 10;3)

    Vậy đáp án cần tìm là ( - 2; -
10;3).

  • Câu 18: Vận dụng

    Cho tứ diện ABCDAB;AC;AD đôi một vuông góc với nhau. Tính giá trị của biểu thức T = \left|
\frac{\overrightarrow{AB}}{AB} + \frac{\overrightarrow{AC}}{AC} +
\frac{\overrightarrow{AD}}{AD} ight|?

    Vì các vectơ \frac{\overrightarrow{AB}}{AB};\frac{\overrightarrow{AC}}{AC};\frac{\overrightarrow{AD}}{AD} có độ dài bằng 1 và đôi một vuông góc với nhau nên

    \left( \frac{\overrightarrow{AB}}{AB} +
\frac{\overrightarrow{AC}}{AC} + \frac{\overrightarrow{AD}}{AD}
ight)^{2} = 3 \Leftrightarrow T = \left|
\frac{\overrightarrow{AB}}{AB} + \frac{\overrightarrow{AC}}{AC} +
\frac{\overrightarrow{AD}}{AD} ight| = \sqrt{3}

  • Câu 19: Thông hiểu

    Tứ giác ABCD là hình bình hành biết tọa độ các điểm A(1;0;1),B(2;1;2),D(1;
- 1;1). Tìm tọa độ điểm C?

    Giả sử điểm C(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = 2 - 1 \\
y + 1 = 1 - 0 \\
z - 1 = 2 - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
z = 2 \\
\end{matrix} ight.. Vậy tọa độ điểm C(2;0;2).

  • Câu 20: Thông hiểu

    Trong không gian Oxyz, tìm tọa độ điểm M trên trục Ox cách đều hai điểm A(1;2; - 1)B(2;1;2)?

    Ta có: M \in Ox \Rightarrow
M(m;0;0)

    Theo bài ra ta có:

    MA = MB \Leftrightarrow MA^{2} =
MB^{2}

    \Leftrightarrow (m - 1)^{2} + 2^{2} +
1^{2} = (m - 2)^{2} + 1^{2} + 2^{2}

    \Leftrightarrow (m - 1)^{2} = (m -
2)^{2} \Leftrightarrow \left\lbrack \begin{matrix}
m - 1 = m - 2 \\
m - 1 = 2 - m \\
\end{matrix} ight.

    \Leftrightarrow m = \frac{3}{2}
\Rightarrow M\left( \frac{3}{2};0;0 ight).

  • Câu 21: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A(0;0;0),B(a;0;0),D(0;2a;0),A'(0;0;2a) với a eq 0. Độ dài đoạn thẳng AC' là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (a;0;0) \\
\overrightarrow{AD} = (0;2a;0) \\
\overrightarrow{AA'} = (0;0;2a) \\
\end{matrix} ight.

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'} \Rightarrow \overrightarrow{AC'} =
(a;2a;2a)

    Suy ra AC' = \left|
\overrightarrow{AC'} ight| = \sqrt{a^{2} + (2a)^{2} + (2a)^{2}} =
3|a|

    Vậy độ dài AC’ bằng 3|a|.

  • Câu 22: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Nếu giá của ba vectơ cùng song song với một mặt phẳng thì ba vectơ đó đồng phẳng.

  • Câu 23: Nhận biết

    Trong không gian Oxyz, cho \overrightarrow{a} = 2\overrightarrow{i} +
\overrightarrow{k} - 3\overrightarrow{j}. Tọa độ vectơ \overrightarrow{a} là:

    Ta có: \overrightarrow{i} =
(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =
(0;0;1)

    Theo bài ra ta có: \overrightarrow{a} =
2\overrightarrow{i} + \overrightarrow{k} - 3\overrightarrow{j} suy ra tọa độ vectơ \overrightarrow{a} = (2;
- 3;1).

  • Câu 24: Thông hiểu

    Cho tứ diện ABCDAC = \frac{3}{2}AD;\widehat{CAB} = \widehat{DAB} =
60^{0};CD = AD. Gọi \varphi là góc giữa ABCD. Chọn khẳng định đúng?

    Hình vẽ minh họa

    Ta có: \cos(AB;CD) = \frac{\left|
\overrightarrow{AB}.\overrightarrow{CD} ight|}{\left|
\overrightarrow{AB} ight|.\left| \overrightarrow{CD} ight|} =
\frac{\left| \overrightarrow{AB}.\overrightarrow{CD}
ight|}{AB.CD}

    Mặt khác \overrightarrow{AB}.\overrightarrow{CD} =
\overrightarrow{AB}.\left( \overrightarrow{AD} - \overrightarrow{AC}
ight) = \overrightarrow{AB}.\overrightarrow{AD} -
\overrightarrow{AB}.\overrightarrow{AC}

    = \left| \overrightarrow{AB}ight|.\left| \overrightarrow{AD} ight|.\cos\left(\overrightarrow{AB};\overrightarrow{AD} ight) - \left|\overrightarrow{AB} ight|.\left| \overrightarrow{AC} ight|\cos\left(\overrightarrow{AB};\overrightarrow{AC} ight)

    = AB.AD.\frac{1}{2} -
AB.\frac{3}{2}.AD.\frac{1}{2} = - \frac{1}{4}AB.AD = -
\frac{1}{4}AB.CD

    Do đó: \cos(AB;CD) = \frac{\left| -\dfrac{1}{4}AB.CD ight|}{AB.CD} = \dfrac{1}{4}

    Vậy \cos\varphi =
\frac{1}{4}

  • Câu 25: Nhận biết

    Trong không gian Oxyz, cho tọa độ ba điểm A(1; - 2;3),B( -
1;2;5),C(0;0;1). Tọa độ trọng tâm G của tam giác ABC là:

    Tọa độ trọng tâm G của tam giác ABC bằng:

    \left\{ \begin{matrix}x_{G} = \dfrac{x_{A} + x_{B} + x_{C}}{3} = \dfrac{1 - 1 + 0}{3} = 0 \\y_{G} = \dfrac{y_{A} + y_{B} + y_{C}}{3} = \dfrac{- 2 + 2 + 0}{3} = 0 \\z_{G} = \dfrac{z_{A} + z_{B} + z_{C}}{3} = \dfrac{3 + 5 + 1}{3} = 3 \\\end{matrix} ight.\  \Rightarrow G(0;0;3)

    Vậy trọng tâm G tìm được là G(0;0;3).

  • Câu 26: Nhận biết

    Trong không gian Oxyz, cho điểm \overrightarrow{u} = \overrightarrow{i} -
2\overrightarrow{k} + \overrightarrow{j}. Tìm tọa độ của \overrightarrow{u} là.

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{i} = (1;0;0) \\
\overrightarrow{k} = (0;0;1) \\
\overrightarrow{j} = (0;1;0) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{u} =
\overrightarrow{i} - 2\overrightarrow{k} + \overrightarrow{j} = (1;1; -
2)

  • Câu 27: Nhận biết

    Cho tứ diện ABCD. Điểm N xác định bởi công thức \overrightarrow{AN} = \overrightarrow{AB} +
\overrightarrow{AC} - \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Ta có:

    \overrightarrow{AN} =
\overrightarrow{AB} + \overrightarrow{AC} -
\overrightarrow{AD}

    \Leftrightarrow \overrightarrow{AN} -
\overrightarrow{AB} = \overrightarrow{AC} - \overrightarrow{AD}
\Leftrightarrow \overrightarrow{BN} = \overrightarrow{AD}

    Vậy N là đỉnh thứ tư của hình bình hành CDBN.

  • Câu 28: Thông hiểu

    Cho tứ diện ABCD. Trên các cạnh AD;BC lần lượt lấy các điểm M;N sao cho AM = 3MD;BN = 3NC. Gọi P;Q lần lượt là trung điểm của AD;BC. Khẳng định nào sau đây sai?

    Hình vẽ minh họa

    M;N lần lượt là trung điểm của PD;QC

    \overrightarrow{BD};\overrightarrow{AC};\overrightarrow{MN} đồng phẳng sai vì \left\{ \begin{matrix}
\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AC} +
\overrightarrow{CN} \\
\overrightarrow{MN} = \overrightarrow{MD} + \overrightarrow{DB} +
\overrightarrow{BN} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AC} +
\overrightarrow{CN} \\
3\overrightarrow{MN} = 3\overrightarrow{MD} + 3\overrightarrow{DB} +
3\overrightarrow{BN} \\
\end{matrix} ight.

    \Rightarrow 4\overrightarrow{MN} =
\overrightarrow{AC} - 3\overrightarrow{DB} +
\frac{1}{2}\overrightarrow{BC} suy ra \overrightarrow{BD};\overrightarrow{AC};\overrightarrow{MN} không đồng phẳng.

  • Câu 29: Nhận biết

    Tìm tọa độ trung điểm M của đoạn thẳng AB. Biết tọa độ hai điểm A(1;2;3)B(3; - 1;4).

    Ta có: M là trung điểm của AB nên tọa độ điểm M là:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = 2 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = 1 \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = 3 \\\end{matrix} ight.\  \Rightarrow M(2;1;3)

    Vậy đáp án đúng là: M(2;1;3).

  • Câu 30: Nhận biết

    Trong không gian Oxyz, cho điểm M(1;2;3). Tìm tọa độ hình chiếu M lên trục Ox.

    Tọa độ hình chiếu của điểm M trên trục Ox là (1;0;0)

  • Câu 31: Thông hiểu

    Trong không gian, cho hai vectơ \overrightarrow{a}\overrightarrow{b} có cùng độ dài bằng 6. Biết độ dài của vectơ \overrightarrow{a} + 2\overrightarrow{b} bằng 6\sqrt{3}. Biết số đo góc giữa hai vectơ \overrightarrow{a}\overrightarrow{b}x độ. Giá trị của x là bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian, cho hai vectơ \overrightarrow{a}\overrightarrow{b} có cùng độ dài bằng 6. Biết độ dài của vectơ \overrightarrow{a} + 2\overrightarrow{b} bằng 6\sqrt{3}. Biết số đo góc giữa hai vectơ \overrightarrow{a}\overrightarrow{b}x độ. Giá trị của x là bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 32: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = ( - 2;2;0);\overrightarrow{b}
= (2;2;0);\overrightarrow{c} = (2;2;2). Khi đó giá trị của \left| \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} ight| bằng bao nhiêu?

    Ta có: \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} = ( - 2 + 2 + 2;2 + 2 + 2;0 + 0
+ 2) = (2;6;2).

    Khi đó \left| \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} ight| = \sqrt{2^{2} + 6^{2} +
2^{2}} = 2\sqrt{11}

    Vậy đáp án cần tìm là: 2\sqrt{11}

  • Câu 33: Vận dụng

    Xét tính đúng sai của mỗi khẳng định.

    Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí A cách điểm xuất phát 2,5km về phía bắc và 1km về phía tây, đồng thời cách mặt đất 0,7km. Chiếc thứ hai nằm tại vị trí B cách điểm xuất phát 1,5km về phía nam và 1km về phía đông, đồng thời cách mặt đất 0,5km.

    Chọn hệ trục toạ độ Oxyz với gốc O đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng Oxy trùng với mặt đất, trục Ox hướng về phía bắc, trục Oy hướng về phía tây và trục Oz hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

    a) Vị trí của khinh khí cầu thứ hai có tọa độ là (1,5\ ;\ 1\ ;\ 0,5). Sai||Đúng

    b) Hai khinh khí cầu cách nhau không quá 5km. Đúng||Sai

    c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng

    d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ (3\ ;\ 1\ ;\  - 1). Đúng||Sai

    Đáp án là:

    Xét tính đúng sai của mỗi khẳng định.

    Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí A cách điểm xuất phát 2,5km về phía bắc và 1km về phía tây, đồng thời cách mặt đất 0,7km. Chiếc thứ hai nằm tại vị trí B cách điểm xuất phát 1,5km về phía nam và 1km về phía đông, đồng thời cách mặt đất 0,5km.

    Chọn hệ trục toạ độ Oxyz với gốc O đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng Oxy trùng với mặt đất, trục Ox hướng về phía bắc, trục Oy hướng về phía tây và trục Oz hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

    a) Vị trí của khinh khí cầu thứ hai có tọa độ là (1,5\ ;\ 1\ ;\ 0,5). Sai||Đúng

    b) Hai khinh khí cầu cách nhau không quá 5km. Đúng||Sai

    c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng

    d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ (3\ ;\ 1\ ;\  - 1). Đúng||Sai

    a) Sai

    Vì hướng nam ngược với hướng bắc, hướng đông ngược với hướng tây nên chiếc khinh khí cầu thứ hai có tọa độ là ( -
1,5\ ;\  - 1\ ;\ 0,5).

    b) Đúng

    Chiếc khinh khí cầu thứ nhất có tọa độ là (2,5\ ;\ 1\ ;\ 0,7).

    Khoảng cách giữa hai chiếc khinh khí cầu là

    \sqrt{(2,5 + 1,5)^{2} + (1 + 1)^{2} +
(0,7 + 0,5)^{2}}

    = \frac{2\sqrt{134}}{5} \approx
4,6(km)

    c) Sai

    Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất là:

    \sqrt{2,5^{2} + 1^{2} + 0,7^{2}} =
\frac{3\sqrt{86}}{10} \approx 2,8(km)

    Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ hai là:

    \sqrt{( - 1,5)^{2} + ( - 1)^{2} +
0,5^{2}} = \frac{\sqrt{14}}{2} \approx 1,9(km)

    Vậy khinh khí cầu thứ hai ở gần điểm xuất phát hơn.

    d) Đúng

    Vị trí của chiếc flycam là

    \left( \frac{2,5 - 1,5}{2}\ ;\ \frac{1 -
1}{2}\ ;\ \frac{0,7 + 0,5}{2} ight) = (0,5\ ;\ 0\ ;\
0,6).

    Khoảng cách bay của flycam là:

    \sqrt{0,5^{2} + 0^{2} + 0,6^{2}} =
\frac{\sqrt{61}}{10} \approx 0,8(km)

    Khoảng cách từ vị trí flycam xuất phát đến điểm có tọa độ (3\ ;\ 1\ ;\  - 1)

    \sqrt{3^{2} + 1^{2} + ( - 1)^{2}} =
\sqrt{11} \approx 3,3(km) > 0,8(km)

    Vậy flycam không đến được vị trí có tọa độ (3\ ;\ 1\ ;\  - 1).

  • Câu 34: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{OA} = 3\overrightarrow{i} -
\overrightarrow{k}, với \overrightarrow{i},\overrightarrow{k} là hai vectơ đơn vị trên hai trục tọa độ Ox,Oz, hai điểm B( - 1;2;3),C(1;4;1).

    a) A(3;0; - 1). Đúng||Sai

    b) Ba điểm A,B,C thẳng hàng. Sai||Đúng

    c) Điểm D(a;b;c) là điểm đối xứng của với A qua B. Khi đó a +
b + c = 6. Đúng||Sai

    d) Điểm M(m;n;p) trên mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất. Khi đó 2m - n + 2024p = 0. Đúng||Sai

    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{OA} = 3\overrightarrow{i} -
\overrightarrow{k}, với \overrightarrow{i},\overrightarrow{k} là hai vectơ đơn vị trên hai trục tọa độ Ox,Oz, hai điểm B( - 1;2;3),C(1;4;1).

    a) A(3;0; - 1). Đúng||Sai

    b) Ba điểm A,B,C thẳng hàng. Sai||Đúng

    c) Điểm D(a;b;c) là điểm đối xứng của với A qua B. Khi đó a +
b + c = 6. Đúng||Sai

    d) Điểm M(m;n;p) trên mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất. Khi đó 2m - n + 2024p = 0. Đúng||Sai

    a) Đúng: Vì \overrightarrow{OA} =
3\overrightarrow{i} - \overrightarrow{k} nên A(3;0; - 1).

    b) Sai: Ta có \overrightarrow{AB} =
(4;2;4),\overrightarrow{AC} = ( - 2;4;2).

    4:2:4 eq - 2:4:2 nên \overrightarrow{AB},\overrightarrow{AC} không cùng phương suy ra A,B,C không thẳng hàng.

    c) Đúng

    D là điểm đối xứng với A qua B nên B là trung điểm của AD.

    Ta có \left\{ \begin{matrix}
x_{D} = 2x_{B} - x_{A} = - 5 \\
y_{D} = 2y_{B} - y_{A} = 4 \\
z_{D} = 2z_{B} - z_{A} = 7. \\
\end{matrix} ight. suy ra D( -
5;4;7).

    Do đó a = - 5,b = 4,c = 7. Vậy a + b + c = 6.

    d) Đúng. Gọi I(x;y;z) là điểm thỏa mãn \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} =
\overrightarrow{0}.

    Ta có:

    \left\{ \begin{matrix}
3 - x - 1 - x + 1 - x = 0 \\
0 - y + 2 - y + 4 - y = 0 \\
- 1 - z + 3 - z + 1 - z = 0 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 2 \\
z = 1 \\
\end{matrix} \Rightarrow I(1;2;1) ight.

    MA^{2} + MB^{2} + MC^{2}

    =(\overrightarrow{MI} + \overrightarrow{IA})^{2} + (\overrightarrow{MI} +\overrightarrow{IB})^{2} + (\overrightarrow{MI} +\overrightarrow{IC})^{2}

    = 3MI^{2} + IA^{2} + IB^{2} + IC^{2} +2\overrightarrow{MI}(\overrightarrow{IA} + \overrightarrow{IB} +\overrightarrow{IC})

    = 3MI^{2} + IA^{2} + IB^{2} + IC^{2}

    Do IA^{2} + IB^{2} + IC^{2} không thay đổi nên MA^{2} + MB^{2} +
MC^{2} nhỏ nhất khi MI nhỏ nhất hay M là hình chiếu của điểm I trên mặt phẳng (Oxy).

    Do đó M(1;2;0) suy ra m=1,n=2,p=0.

    Vậy 2m - n + 2024p = 2 - 2 + 0 =
0.

  • Câu 35: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz cho điểm M(x;y;z). Trong các mệnh đề sau, mệnh đề nào đúng?

    Nếu M' đối xứng với M qua mặt phẳng (Oxz) thì M'(x; - y;z).

    Nếu M' đối xứng với M qua trục Oy thì M'( - x;y; - z).

    Nếu M' đối xứng với M qua gốc tọa độ thì M'( - x; - y; - z).

    Vậy mệnh đề đúng là: “Nếu M' đối xứng với M qua mặt phẳng (Oxy) thì M'(x;y; - z)”.

  • Câu 36: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A(1;0;1),B(2;1;2),D(1; -
1;1),C'(4;5; - 5). Tìm tọa độ điểm A'?

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}

    \Rightarrow \overrightarrow{AA'} =
\overrightarrow{AB} - \overrightarrow{AD} -
\overrightarrow{AC'}

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (1;1;1) = \overrightarrow{i} + \overrightarrow{j}
+ \overrightarrow{k} \\
\overrightarrow{AD} = (0; - 1;0) = 0.\overrightarrow{i} -
\overrightarrow{j} + 0.\overrightarrow{k} \\
\overrightarrow{AC'} = (3;5; - 6) = 3.\overrightarrow{i} +
5\overrightarrow{j} - 6\overrightarrow{k} \\
\end{matrix} ight. do đó \Rightarrow \overrightarrow{AA'} =
2\overrightarrow{i} + 5\overrightarrow{j} - 6\overrightarrow{k} hay \overrightarrow{AA'} = (3;5; -
6)

    Suy ra A'(3;5; - 6)

  • Câu 37: Thông hiểu

    Trong không gian cho điểm O và bốn điểm A;B;C;D không thẳng hàng. Điều kiện cần và đủ để A;B;C;D tạo thành hình bình hành là:

    Để A;B;C;D tạo thành hình bình thành thì \left\lbrack \begin{matrix}
\overrightarrow{AB} = \overrightarrow{CD} \\
\overrightarrow{AC} = \overrightarrow{BD} \\
\end{matrix} ight..

    Khi đó:

    \overrightarrow{OA} +
\overrightarrow{OC} = \overrightarrow{OB} +
\overrightarrow{OD}

    \Leftrightarrow \overrightarrow{OA} -
\overrightarrow{OB} = \overrightarrow{OD} -
\overrightarrow{OC}

    \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{CD}

    \overrightarrow{OA} + \overrightarrow{OB}
+ \overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}, O là trọng tâm tứ giác (hoặc tứ diện) ABCD. (Loại).

    \overrightarrow{OA} +
\frac{1}{2}\overrightarrow{OB} = \overrightarrow{OC} +
\frac{1}{2}\overrightarrow{OD}

    \Leftrightarrow \overrightarrow{OA} -
\overrightarrow{OC} = \frac{1}{2}\overrightarrow{OD} -
\frac{1}{2}\overrightarrow{OB}

    \Leftrightarrow \overrightarrow{CA} =
\frac{1}{2}\overrightarrow{BD} (Loại)

    \overrightarrow{OA} +
\frac{1}{2}\overrightarrow{OC} = \overrightarrow{OB} +
\frac{1}{2}\overrightarrow{OD}

    \Leftrightarrow \overrightarrow{OA} -
\overrightarrow{OB} = \frac{1}{2}\overrightarrow{OD} -
\frac{1}{2}\overrightarrow{OC}

    \Leftrightarrow \overrightarrow{BA} =
\frac{1}{2}\overrightarrow{CD} (loại)

    Vậy đáp án cần tìm là \overrightarrow{OA}
+ \overrightarrow{OC} = \overrightarrow{OB} +
\overrightarrow{OD}.

  • Câu 38: Thông hiểu

    Trong không gian Oxyz, cho các điểm M( - 2;6;1),M'(a;b;c) đối xứng nhau qua mặt phẳng (Oyz). Tính giá trị biểu thức S = 7a - 2b + 2017c -
1?

    Gọi H là hình chiếu của M trên mặt phẳng (Oyz) suy ra H(0; 6; 1)

    Do M’ đối xứng với M qua (Oyz) nên MM’ nhận H làm trung điểm suy ra M’(2; 6; 1) suy ra a = 2; b = 6; c = 1

    Vậy S = 7a - 2b + 2017c - 1 =
2018.

  • Câu 39: Nhận biết

    Tích vô hướng của 2 vectơ \overrightarrow{a},\overrightarrow{b}trong không gian được tính bằng:

    Theo định nghĩa tích vô hướng của hai vecto, ta có: \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|.cos\left(
\overrightarrow{a},\overrightarrow{b} ight).

  • Câu 40: Thông hiểu

    Tìm m để góc giữa hai vectơ \overrightarrow{u} = \left(1;\log_{3}5;\log_{m}2 ight),\overrightarrow{v} = \left( 3;\log_{5}3;4ight) là góc nhọn.

    Để \left( {\widehat {\vec u,\vec v}} ight) < {90^0} \Rightarrow \cos \left( {\widehat {\vec u,\vec v}} ight) > 0

    \Rightarrow\overrightarrow{u}.\overrightarrow{v} > 0 \Leftrightarrow 3 +\log_{3}5.\log_{5}3 + 4\log_{m}2 > 0

    \Leftrightarrow 4 + 4log_{m}2 > 0
\Leftrightarrow log_{m}2 > - 1 \Leftrightarrow \left\lbrack
\begin{matrix}
m > 1 \\
m < \frac{1}{2} \\
\end{matrix} ight..

    Kết hợp điều kiện m > 0 \Rightarrow \left[ {\begin{array}{*{20}{l}}
  {m > 1} \\ 
  {0 < m < \frac{1}{2}} 
\end{array}} ight.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 42 lượt xem
Sắp xếp theo