Xác định tọa độ trọng tâm
của tam giác
, biết rằng
?
Tọa độ trọng tâm G của tam giác được xác định như sau:
Xác định tọa độ trọng tâm
của tam giác
, biết rằng
?
Tọa độ trọng tâm G của tam giác được xác định như sau:
Cho lập phương
có cạnh bằng
. Gọi
là trọng tâm tam giác
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Do G là trọng tâm tam giác suy ra
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có do đó
hay
Suy ra
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
Cho hình lập phương
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Vì (
là hình vuông) nên
Trong không gian với hệ trục tọa độ
, cho tọa độ hai điểm
. Tính chu vi tam giác
?
Ta có:
Chu vi tam giác là:
Vậy đáp án đúng là: .
Trong không gian
cho hai điểm
. Xác định tính đúng sai của từng phương án dưới đây:
a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng
b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là
. Đúng||Sai
c) Cho
, tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai
d) Điểm
nằm trên mặt phẳng (Oxy) thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
Trong không gian cho hai điểm
. Xác định tính đúng sai của từng phương án dưới đây:
a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng
b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là . Đúng||Sai
c) Cho , tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai
d) Điểm nằm trên mặt phẳng (Oxy) thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
a) Sai: Hình chiếu của điểm trên trục
có tọa độ là
b) Đúng: Vì là trung điểm của
.
c) Đúng: Ta có .
vuông tại
.
d) Sai.
Gọi thỏa
Suy ra .
Khi đó .
đạt giá trị nhỏ nhất khi và chỉ khi
là hình chiếu của
trên
.
Vậy .
Suy ra
Trong không gian
, góc giữa hai mặt phẳng
và
bằng:
Ta có: góc giữa hai mặt phẳng và
bằng:
.
Cho tứ diện
và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Cho tứ diện và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Cho hình hộp
. Tính tổng
?
Hình vẽ minh họa
Cho tứ diện
có
đôi một vuông góc với nhau. Cho điểm
thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức
?
Cho tứ diện có
đôi một vuông góc với nhau. Cho điểm
thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức
?
Trong không gian
, cho tọa độ ba điểm
. Tọa độ trọng tâm
của tam giác
là:
Tọa độ trọng tâm G của tam giác ABC bằng:
Vậy trọng tâm G tìm được là .
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có
mà
Suy ra
Trong không gian cho hình hộp
có
. Gọi
là trung điểm của
,
là giao điểm của
và
. Mệnh đề nào sau đây đúng?
Hình vẽ minh họa
Vì I là trung điểm của B’C’ suy ra
Và K là giao điểm của nên theo định lí Talet
Ta có:
Khi đó
Vậy .
Biết
khác
và vuông góc với cả hai vectơ
. Khẳng định nào sau đây đúng?
Theo đề bài ta có: khác
và vuông góc với cả hai vectơ
nên
Vậy khẳng định đúng là
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Cho tứ diện
. Gọi
theo thứ tự là trung điểm
và
. Khẳng định nào sau đây đúng?

Xác định tính đúng sai của các khẳng định sau:
a)
Sai||Đúng
b)
Đúng||Sai
c)
Sai||Đúng
d)
Đúng||Sai
Cho tứ diện . Gọi
theo thứ tự là trung điểm
và
. Khẳng định nào sau đây đúng?
Xác định tính đúng sai của các khẳng định sau:
a) Sai||Đúng
b) Đúng||Sai
c) Sai||Đúng
d) Đúng||Sai
a) Vì là trung điểm của
và
nên
và
Nên .
b) Ta có:
c) Ta có:
d) Do N là trung điểm của CD nên
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Giả sử điểm
. Tính giá trị biểu thức
?
Gọi điểm
Ta có:
Mà
Suy ra suy ra
Vậy
Trong không gian cho tứ diện đều
. Khẳng định nào sau đây sai?
Tứ diện đều nên
không thể vuông góc với
.
Vậy khẳng định sai là: “”.
Trong không gian với hệ trục tọa độ
, cho ba vectơ
. Tìm tọa độ vectơ
?
Ta có: . Khi đó
Vậy
Cho lăng trụ tam giác
. Đặt
. Biểu diễn vectơ
qua các vectơ
. Chọn đáp án đúng?
Ta có:
Vậy đáp án đúng là: .
Trong không gian
, cho điểm
. Tìm tọa độ hình chiếu M lên trục
.
Tọa độ hình chiếu của điểm M trên trục Ox là
Trong không gian
, cho
có
. Gọi
là chân đường cao hạ từ đỉnh
. Tính
.
Đáp án: -17||- 17
Trong không gian , cho
có
. Gọi
là chân đường cao hạ từ đỉnh
. Tính
.
Đáp án: -17||- 17
Ta có .
Vì là chân đường cao nên ta có
và
.
Do đó
Vậy .
Cho hình hộp
. Điểm
được xác định bởi đẳng thức vectơ
. Mệnh đề nào sau đây đúng?
Gọi
Khi đó
Ta có:
Tương tự ta cũng có:
Từ đó suy ra
Vậy điểm M cần tìm là trung điểm của .
Cho hình hộp
. Gọi
là tâm hình bình hành
và
là tâm của hình bình hành
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Vì I; K lần lượt là trung điểm của AF và CF suy ra IK là đường trung bình tam giác AFC suy ra IK // AC => IK // (ABCD)
Mà GF // (ABCD); suy ra
đồng phẳng.
Để theo dõi hành trình của một chiếc một chiếc máy bay, ta có thể lập hệ toạ độ Oxyz có gốc O trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là 890 km/h trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian Oxyz được lấy theo km.

Quãng đường máy bay bay được với vận tốc 890km/h trong nửa giờ là:
Vì máy bay duy trì hướng bay về phía nam nên toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ toạ độ đã chọn là (0;445;0).
Trong không gian
, cho hai điểm
và
. Tìm tọa độ vectơ
?
Ta có:
Vậy đáp án đúng là: .
Trong không gian với hệ trục tọa độ
cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?
Trong không gian với hệ trục tọa độ cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?
Trong không gian tọa độ
, hình chiếu vuông góc của điểm
trên mặt phẳng
là:
Hình chiếu vuông góc của điểm trên mặt phẳng
là điểm có tọa độ
.
Cho hình lập phương
có cạnh bằng
(tham khảo hình vẽ).

Các khẳng định sau đúng hay sai?
a)
. Đúng||Sai
b)
. Đúng||Sai
c)
. Đúng||Sai
d)
. Sai||Đúng
Cho hình lập phương có cạnh bằng
(tham khảo hình vẽ).
Các khẳng định sau đúng hay sai?
a) . Đúng||Sai
b) . Đúng||Sai
c) . Đúng||Sai
d) . Sai||Đúng
a) Vì là hình bình hành nên
.
b) Vì là hình hộp nên
.
c) Vì nên
.
d) Tam giác vuông tại
nên
.
Ta có
.
Cho hình lăng trụ tam giác
. Đặt
. Trong các mệnh đề sau, mệnh đề nào đúng?
Ta có:
Do đó
Trong không gian
, cho hình bình hành hình bình hành. Biết các điểm
. Xác định tọa độ điểm
?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Cho lăng trụ đứng
, điểm
trên
sao cho
Đặt
Khẳng định nào dưới đây là đúng ?
Hình vẽ minh họa
Ta có
Trong không gian hệ trục tọa độ
cho điểm
. Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu đối xứng với
qua mặt phẳng
thì
.
Nếu đối xứng với
qua trục
thì
.
Nếu đối xứng với
qua gốc tọa độ thì
.
Vậy mệnh đề đúng là: “Nếu đối xứng với
qua mặt phẳng
thì
”.
Trong không gian hệ trục tọa độ
, cho tam giác
có
. Tính diện tích tam giác
?
Ta có:
Suy ra . Lại có:
Suy ra diện tích tam giác là:
Trong không gian
, cho vectơ
. Khi đó tọa độ vectơ
là:
Ta có:
Trong không gian với hệ trục tọa độ
, cho ba điểm
,
và
. Điểm
sao cho tứ giác
là hình bình hành. Tính
?
Đáp án: 3
Trong không gian với hệ trục tọa độ , cho ba điểm
,
và
. Điểm
sao cho tứ giác
là hình bình hành. Tính
?
Đáp án: 3
Gọi
Ta có:
là hình bình hành nên
.
Vậy .
Cho tứ diện đều
. Mệnh đề nào sau đây sai?
Vì tứ diện là tứ diện đều nên có các cặp cạnh đối vuông góc
Suy ra
Vậy mệnh đề chưa chính xác là: .
Trong không gian hệ trục tọa độ
, cho
. Gọi
là trọng tâm tam giác
. Tính độ dài đoạn thẳng
?
Vì là trọng tâm tam giác
nên tọa độ điểm
hay
Vậy .
Cho tứ diện
. Gọi
lần lượt là trung điểm các đoạn thẳng
.

Xét tính đúng sai của các khẳng định sau.
a)
. Sai||Đúng
b)
. Đúng||Sai
c)
. Sai||Đúng
d)
nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai
Cho tứ diện . Gọi
lần lượt là trung điểm các đoạn thẳng
.
Xét tính đúng sai của các khẳng định sau.
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai
Hình vẽ minh họa
a) Đúng: .
b) Đúng: Vi là trung điểm của
nên
Vì là trung điểm của
nên
Vì là trung điểm của
nên
Do đó:
c) Sai:
d) Đúng
Ta có: .
.
Do đó: nhỏ nhất khi