Đề kiểm tra 45 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 2. Vectơ và hệ trục tọa độ trong không gian được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A( -
3;0;0),B(0;2;0),D(0;0;1),A'(1;2;3). Tìm tọa độ điểm C'?

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (3;2;0) = 3\overrightarrow{i} +
2\overrightarrow{j} + 0.\overrightarrow{k} \\
\overrightarrow{AD} = (3;0;1) = 3.\overrightarrow{i} +
0.\overrightarrow{j} + 1.\overrightarrow{k} \\
\overrightarrow{AA'} = (4;2;3) = 4.\overrightarrow{i} +
2\overrightarrow{j} + 3\overrightarrow{k} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{AC'} =
10.\overrightarrow{i} + 4.\overrightarrow{j} +
4.\overrightarrow{k}A( -
3;0;0)

    \Rightarrow C'(7;4;4)

    Suy ra C'(7;4;4)

  • Câu 2: Nhận biết

    Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD. Điểm M xác định bởi công thức \overrightarrow{AM} = \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Do G là trọng tâm tam giác BCD nên \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} = 3\overrightarrow{AG}

    \Rightarrow \overrightarrow{AM} =
3\overrightarrow{AG}

    Vậy mệnh đề đúng là “M thuộc tia AGAM = 3AG”.

  • Câu 3: Nhận biết

    Cho tứ diện đều ABCD. Mệnh đề nào sau đây sai?

    Vì tứ diện ABCD là tứ diện đều nên có các cặp cạnh đối vuông góc

    Suy ra \overrightarrow{AC}.\overrightarrow{BD} =
\overrightarrow{AD}.\overrightarrow{BC} =
\overrightarrow{AB}.\overrightarrow{CD} =
\overrightarrow{0}

    Vậy mệnh đề chưa chính xác là: \overrightarrow{AD}.\overrightarrow{CD} =
\overrightarrow{AC}.\overrightarrow{DC} =
\overrightarrow{0}.

  • Câu 4: Thông hiểu

    Trong không gian Oxyz, cho các điểm A(1;2; - 3),B(2;5;7),C( - 3;1;4). Xác định tọa độ điểm D sao cho tứ giác ABCD là hình bình hành?

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
1 = - 3 - x \\
3 = 1 - y \\
20 = 4 - z \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = - 2 \\
z = - 6 \\
\end{matrix} ight.. Vậy tọa độ điểm D( - 4; - 2; - 6).

  • Câu 5: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho lăng trụ tam giác ABC.A'B'C' có tọa độ các điểm B( - 1;2;1),B'( -
2;1;0),C'(5;3;2). Xác định tọa độ điểm C?

    Hình vẽ minh họa

    Gọi tọa độ điểm C(x;y;z)

    ABC.A'B'C' là hình lăng trụ nên

    \overrightarrow{CC'} =
\overrightarrow{BB'} \Leftrightarrow \left\{ \begin{matrix}
5 - x = - 2 - ( - 1) \\
3 - y = 1 - 2 \\
2 - z = 0 - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 6 \\
y = 4 \\
z = 3 \\
\end{matrix} ight.

    Vậy tọa độ C(6;4;3).

  • Câu 6: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(3; - 4;0),B( - 1;1;3),C(3;1;0). Xác định tọa độ điểm D \in Ox sao cho AD = BC?

    Ta có: D(x;0;0) \in Ox

    AD = BC \Leftrightarrow \sqrt{(x -
3)^{2} + 16} = 5

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow D(0;0;0) \\
x = 6 \Rightarrow D(6;0;0) \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: D(0;0;0) hoặc D(6;0;0)

  • Câu 7: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(1;2; - 2),B\left(
\frac{8}{3};\frac{4}{3};\frac{8}{3} ight). Biết I(a;b;c) là tâm đường tròn nội tiếp tam giác OAB. Tính giá trị biểu thức U = a - b + c?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}\overrightarrow{OA} = (1;2; - 2) \Rightarrow OA = 3 \\\overrightarrow{OB} = \left( \dfrac{8}{3};\dfrac{4}{3};\dfrac{8}{3} ight)\Rightarrow OB = 4 \\\end{matrix} ight.

    Gọi D là chân đường phân giác kẻ từ O ta có:

    \overrightarrow{DA} = -
\frac{DA}{DB}.\overrightarrow{DB} = -
\frac{OA}{OB}.\overrightarrow{DB}

    \Rightarrow \overrightarrow{DA} = -
\frac{3}{4}.\overrightarrow{DB} \Rightarrow \overrightarrow{OD} =
\frac{4\overrightarrow{OA} + 3\overrightarrow{OB}}{7}. Do đó D\left( \frac{12}{7};\frac{12}{7};0
ight)

    Ta có: \overrightarrow{AD} = \left(
\frac{5}{7}; - \frac{2}{7};2 ight) \Rightarrow AD =
\frac{15}{7}

    \overrightarrow{ID} = -
\frac{AD}{AO}.\overrightarrow{IO} = - \frac{5}{7}\overrightarrow{IO}
\Rightarrow \overrightarrow{OI} = \frac{7}{12}\overrightarrow{OD}
\Rightarrow D(1;1;0)

    \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
c = 0 \\
\end{matrix} ight.\  \Rightarrow U = 0

  • Câu 8: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D' có tâm O. Gọi I là tâm hình bình hành ABCD. Đặt \overrightarrow{AC'} =
\overrightarrow{u};\overrightarrow{CA'} =
\overrightarrow{v};\overrightarrow{BD'} =
\overrightarrow{x};\overrightarrow{DB'} =
\overrightarrow{y}. Chọn khẳng định đúng?

    I là tâm hình bình hành ABCD nên

    4\overrightarrow{OI} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}

    \Leftrightarrow 4\overrightarrow{OI} =
\frac{1}{2}\left( \overrightarrow{C'A} + \overrightarrow{D'B} +
\overrightarrow{A'C} + \overrightarrow{B'D} ight)

    \Leftrightarrow 4\overrightarrow{OI} = -
\frac{1}{2}\left( \overrightarrow{AC'} + \overrightarrow{BD'} +
\overrightarrow{CA'} + \overrightarrow{DB'} ight)

    \Leftrightarrow 2\overrightarrow{OI} = -
\frac{1}{4}\left( \overrightarrow{u} + \overrightarrow{v} +
\overrightarrow{x} + \overrightarrow{y} ight)

  • Câu 9: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (2;1; - 3)\overrightarrow{b} = ( - 4; - 2;6). Phát biểu nào sau đây sai?

    Dễ thấy \overrightarrow{b} =
2\overrightarrow{a} từ đo suy ra hai vectơ \overrightarrow{a}\overrightarrow{b} ngược hướng và \left| \overrightarrow{b} ight| = 2\left|
\overrightarrow{a} ight|.

    Lại có \overrightarrow{a}.\overrightarrow{b} = 2.( - 4) +
1.( - 2) + ( - 3).6 = - 28 eq 0

    Vậy phát biểu sai là: \overrightarrow{a}.\overrightarrow{b} =
0.

  • Câu 10: Thông hiểu

    Cho hình chóp S.ABCSA = SB = SC\widehat{ASB} = \widehat{BSC} =
\widehat{CSA}. Góc giữa cặp vectơ \overrightarrow{SA}\overrightarrow{BC} là:

    Ta có: \overrightarrow{SA}.\overrightarrow{BC} =
\overrightarrow{SA}.\left( \overrightarrow{SC} - \overrightarrow{SB}
ight)

    =
\overrightarrow{SA}.\overrightarrow{SC} -
\overrightarrow{SA}.\overrightarrow{SB}

    = \left| \overrightarrow{SA}ight|.\left| \overrightarrow{SC} ight|.\cos\widehat{ASC} - \left|\overrightarrow{SA} ight|.\left| \overrightarrow{SB}ight|.\cos\widehat{ASB} = 0

    Vậy góc giữa cặp vectơ \overrightarrow{SA}\overrightarrow{BC}90^{0}.

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M;N lần lượt là trung điểm của ADSD. Số đo của góc (MN;SC) bằng bao nhiêu?

    Hình vẽ minh họa

    Do ABCD là hình vuông cạnh a suy ra AC =
a\sqrt{2}

    \Rightarrow AC^{2} = 2a^{2} = SA^{2} +
SC^{2} suy ra tam giác SAC vuông tại S.

    Từ giả thiết ta có MN là đường trung bình của tam giác DSA \Rightarrow \overrightarrow{NM} =
\frac{1}{2}\overrightarrow{SA}

    Khi đó \overrightarrow{MN}.\overrightarrow{SC} =
\frac{1}{2}\overrightarrow{SA}.\overrightarrow{SC} = 0 suy ra MN\bot SC \Rightarrow (MN;SC) =
90^{0}

  • Câu 12: Thông hiểu

    Cho hình chóp OABCOA = OB = OC = 1, các cạnh OA;OB;OC đôi một vuông góc. Gọi M là trung điểm của AB. Tính tích vô hướng của hai vectơ \overrightarrow{OC};\overrightarrow{MA}.

    Hình vẽ minh họa

    Ta có: \overrightarrow{OA}.\overrightarrow{MA} =
\frac{1}{2}\overrightarrow{OC}.\overrightarrow{BA} =
\frac{1}{2}\overrightarrow{OC}.\left( \overrightarrow{OA} -
\overrightarrow{OB} ight)

    =
\frac{1}{2}\overrightarrow{OC}.\overrightarrow{OA} -
\frac{1}{2}\overrightarrow{OC}.\overrightarrow{OB} = 0 - 0 =
0

    Vậy \overrightarrow{OA}.\overrightarrow{MA} =
0

  • Câu 13: Vận dụng cao

    Cho tứ diện OABCOA;OB;OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. Tìm giá trị nhỏ nhất của biểu thức T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}}?

    Đặt \overrightarrow{OA} =
\overrightarrow{a};\overrightarrow{OB} =
\overrightarrow{b};\overrightarrow{OC} = \overrightarrow{c}. Khi đó \overrightarrow{OM} =
x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c} với x;y;z là ba số có tổng bằng 1.

    Ta có:

    \overrightarrow{AM} =
\overrightarrow{OM} - \overrightarrow{OA} = (x - 1)\overrightarrow{a} +
y\overrightarrow{b} + z\overrightarrow{c}

    \Rightarrow {\overrightarrow{AM}}^{2} =
(x - 1)^{2}{\overrightarrow{a}}^{2} + y^{2}{\overrightarrow{b}}^{2} +
z^{2}{\overrightarrow{c}}^{2}

    \Rightarrow \frac{MA^{2}}{OA^{2}} = (x -
1)^{2} + y^{2}.\frac{b^{2}}{a^{2}} +
z^{2}.\frac{c^{2}}{a^{2}}

    Tương tự ta được

    \Rightarrow \left\{ \begin{matrix}\dfrac{MB^{2}}{OB^{2}} = (y - 1)^{2} + z^{2}.\dfrac{c^{2}}{b^{2}} +x^{2}.\dfrac{a^{2}}{b^{2}} \\\dfrac{MC^{2}}{OC^{2}} = (z - 1)^{2} + x^{2}.\dfrac{a^{2}}{c^{2}} +y^{2}.\dfrac{b^{2}}{c^{2}} \\\end{matrix} ight.

    Do đó T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}}

    \Rightarrow T = x^{2}a^{2}\left(
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight) + y^{2}b^{2}\left(
\frac{1}{c^{2}} + \frac{1}{a^{2}} ight) + z^{2}c^{2}\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} ight)

    \Rightarrow T = x^{2}a^{2}\left(
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight) + y^{2}b^{2}\left(
\frac{1}{c^{2}} + \frac{1}{a^{2}} ight) + z^{2}c^{2}\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} ight)

    + (x - 1)^{2} + (y - 1)^{2} + (z -
1)^{2}

    \Rightarrow T = \left( \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight)\left( x^{2}a^{2} + y^{2}b^{2}
+ z^{2}c^{2} ight)

    - \left( x^{2} + y^{2} + z^{2} ight) +
(x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2}

    \Rightarrow T = \left( \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight)\left( x^{2}a^{2} + y^{2}b^{2}
+ z^{2}c^{2} ight) - 2(x + y + z) + 3

    Ta biết rằng H là chân đường cao kẻ từ đỉnh O của tứ diện vuông OABC khi và chỉ khi H là trực tâm của tam giác ABC. Hơn nữa \left\{ \begin{matrix}\dfrac{1}{a^{2}} + \dfrac{1}{b^{2}} + \dfrac{1}{c^{2}} = \dfrac{1}{OH^{2}}\\x^{2}a^{2} + y^{2}b^{2} + z^{2}c^{2} = OM^{2} \\\end{matrix} ight.

    Do đó T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}} = \frac{OM^{2}}{OH^{2}} +
1 \geq 1 + 1 = 2

    Dấu "=" xảy ra khi và chỉ khi OM = OH hay M trùng H.

    Vậy min T = 2, đạt được khi M trùng H hay M là trực tâm của tam giác ABC.

  • Câu 14: Thông hiểu

    Trong không gian Oxyz, cho vectơ \overrightarrow{OA} = \overrightarrow{i} -
2\overrightarrow{k}. Tọa độ điểm A là:

    Ta có: \overrightarrow{OA} =
\overrightarrow{i} - 2\overrightarrow{k} \Leftrightarrow A(0;1; -
2)

  • Câu 15: Nhận biết

    Tính chất nào sau đây sai?

    Tính chất sai là: \overrightarrow{a} -
\overrightarrow{b} = \overrightarrow{b} -
\overrightarrow{a}

  • Câu 16: Thông hiểu

    Trong không gian Oxyz, cho các vectơ \overrightarrow{a}(2;m - 1;3)\overrightarrow{b}(1;3; - 2n). Xác định giá trị của m;n để hai vectơ đã cho có cùng hướng?

    Ta có: Hai vectơ \overrightarrow{a}(2;m -
1;3)\overrightarrow{b}(1;3; -
2n) cùng hướng nên

    \overrightarrow{a} =k.\overrightarrow{b};(k > 0) \Leftrightarrow \left\{ \begin{matrix}2 = k \\m - 1 = 3k \\3 = k( - 2n) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2 = k \\m = 7 \ = - \dfrac{3}{4} \\\end{matrix} ight.

    Vậy m = 7;n = - \frac{3}{4} là đáp án cần tìm.

  • Câu 17: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Ta có: \overrightarrow{AB} =
3\overrightarrow{AC} - 4\overrightarrow{AD} thỏa mãn biểu thức \overrightarrow{c} = m\overrightarrow{a} +
n\overrightarrow{b} (với m;n duy nhất) của định lí về các vectơ đồng phẳng.

    Vậy đáp án đúng là: “Nếu \overrightarrow{AB} = 3\overrightarrow{AC} -
4\overrightarrow{AD} thì bốn điểm A,B,C,D đồng phẳng.”

  • Câu 18: Nhận biết

    Trong không gian Oxyz, cho \overrightarrow{a} = - \overrightarrow{i} +
2\overrightarrow{j} - 3\overrightarrow{k}. Tọa độ vectơ \overrightarrow{a} là:

    Ta có: \overrightarrow{i} =
(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =
(0;0;1)

    Theo bài ra ta có: \overrightarrow{a} = -
\overrightarrow{i} + 2\overrightarrow{j} - 3\overrightarrow{k} suy ra tọa độ vectơ \overrightarrow{a} = ( -
1;2; - 3).

  • Câu 19: Vận dụng

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm M(1000;600;14) đến điểm N trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng Q(1400;800;16). Xác định tọa độ vị trí điểm N. (Kết quả ghi dưới dạng số thập phân nếu có)

    Đáp án: N(1300; 750; 15,5)

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm M(1000;600;14) đến điểm N trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng Q(1400;800;16). Xác định tọa độ vị trí điểm N. (Kết quả ghi dưới dạng số thập phân nếu có)

    Đáp án: N(1300; 750; 15,5)

    Gọi N(x;y;z) là tọa độ của máy bay sau 10 phút tiếp theo.

    \overrightarrow{MQ} =
(400;200;2).

    \overrightarrow{NQ} = (1400 - x;800 -
y;16 - z).

    Vì máy bay giữ nguyên hướng bay nên \overrightarrow{MQ}\overrightarrow{NQ} cùng hướng.

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M đến Q gấp 4 lần thời gian bay từ N đến Q nên MQ =
4NQ.

    Suy ra: \overrightarrow{MQ} =
4\overrightarrow{NQ}

    \Leftrightarrow \left\{ \begin{matrix}
400 = 4(1400 - x) \\
200 = 4(800 - y) \\
2 = 4(16 - z) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1300 \\
y = 750 \\
z = 15,5 \\
\end{matrix} ight.

    \Rightarrow N(1300;750;15,5)

  • Câu 20: Thông hiểu

    Tìm m để góc giữa hai vectơ \overrightarrow{u} = \left(1;\log_{3}5;\log_{m}2 ight),\overrightarrow{v} = \left( 3;\log_{5}3;4ight) là góc nhọn.

    Để \left( {\widehat {\vec u,\vec v}} ight) < {90^0} \Rightarrow \cos \left( {\widehat {\vec u,\vec v}} ight) > 0

    \Rightarrow\overrightarrow{u}.\overrightarrow{v} > 0 \Leftrightarrow 3 +\log_{3}5.\log_{5}3 + 4\log_{m}2 > 0

    \Leftrightarrow 4 + 4log_{m}2 > 0
\Leftrightarrow log_{m}2 > - 1 \Leftrightarrow \left\lbrack
\begin{matrix}
m > 1 \\
m < \frac{1}{2} \\
\end{matrix} ight..

    Kết hợp điều kiện m > 0 \Rightarrow \left[ {\begin{array}{*{20}{l}}
  {m > 1} \\ 
  {0 < m < \frac{1}{2}} 
\end{array}} ight.

  • Câu 21: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2; - 1;5),B(5; - 5;7) và điểm M \in (Oxy). Tìm tọa độ điểm M để ba điểm A;B;M thẳng hàng?

    Ta có: M \in (Oxy) \Rightarrow
M(x;y;0)

    Lại có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 2;3;1) \\
\overrightarrow{AM} = (x - 2;y + 2; - 1) \\
\end{matrix} ight.

    Vì ba điểm A; B; M thẳng hàng nên \overrightarrow{AB};\overrightarrow{AM} cùng phương

    \Leftrightarrow \frac{x - 2}{- 2} =
\frac{y + 2}{3} = \frac{- 1}{1} \Leftrightarrow \left\{ \begin{matrix}
x = 4 \\
y = - 5 \\
\end{matrix} ight.\  \Rightarrow M(4; - 5;0)

    Vậy đáp án cần tìm là M(4; -
5;0).

  • Câu 22: Nhận biết

    Trong không gian hệ trục tọa độ Oxyzcho \overrightarrow{u} = 2\overrightarrow{i} +
\overrightarrow{k}. Khi đó tọa độ \overrightarrow{u} với hệ Oxyz là:

    Ta có: \overrightarrow{i} =
(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =
(0;0;1)

    \overrightarrow{u} = x\overrightarrow{i}
+ y\overrightarrow{j} + z\overrightarrow{k} \Leftrightarrow
\overrightarrow{u} = (x;y;z)

    Lại có \overrightarrow{u} =
2\overrightarrow{i} + \overrightarrow{k} \Leftrightarrow
\overrightarrow{u} = (2;0;1)

  • Câu 23: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho  A(1;2; - 1);\overrightarrow{AB} =(1;3;1), khi đó tọa độ điểm B là:

    Gọi B(x;y;z) ta có:

    A(1;2; - 1);\overrightarrow{AB} =(1;3;1) khi đó \left\{\begin{matrix}x - 1 = 1 \\y - 2 = 3 \\z + 1 = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 2 \\y = 5 \\z = 0 \\\end{matrix} ight. nên tọa độ điểm cần tìm là B(2;5;0).

  • Câu 24: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A( - 2;3;1),B(2;1;0),C( - 3; - 1;1). Tìm tất cả các điểm D sao cho ABCD là hình thang có đáy AD và tam giác ABC bằng \frac{1}{3} diện tích tứ giác ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A( - 2;3;1),B(2;1;0),C( - 3; - 1;1). Tìm tất cả các điểm D sao cho ABCD là hình thang có đáy AD và tam giác ABC bằng \frac{1}{3} diện tích tứ giác ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 25: Thông hiểu

    Cho tứ diện ABCDAC = \frac{3}{2}AD;\widehat{CAB} = \widehat{DAB} =
60^{0};CD = AD. Gọi \varphi là góc giữa ABCD. Chọn khẳng định đúng?

    Hình vẽ minh họa

    Ta có: \cos(AB;CD) = \frac{\left|
\overrightarrow{AB}.\overrightarrow{CD} ight|}{\left|
\overrightarrow{AB} ight|.\left| \overrightarrow{CD} ight|} =
\frac{\left| \overrightarrow{AB}.\overrightarrow{CD}
ight|}{AB.CD}

    Mặt khác \overrightarrow{AB}.\overrightarrow{CD} =
\overrightarrow{AB}.\left( \overrightarrow{AD} - \overrightarrow{AC}
ight) = \overrightarrow{AB}.\overrightarrow{AD} -
\overrightarrow{AB}.\overrightarrow{AC}

    = \left| \overrightarrow{AB}ight|.\left| \overrightarrow{AD} ight|.\cos\left(\overrightarrow{AB};\overrightarrow{AD} ight) - \left|\overrightarrow{AB} ight|.\left| \overrightarrow{AC} ight|\cos\left(\overrightarrow{AB};\overrightarrow{AC} ight)

    = AB.AD.\frac{1}{2} -
AB.\frac{3}{2}.AD.\frac{1}{2} = - \frac{1}{4}AB.AD = -
\frac{1}{4}AB.CD

    Do đó: \cos(AB;CD) = \frac{\left| -\dfrac{1}{4}AB.CD ight|}{AB.CD} = \dfrac{1}{4}

    Vậy \cos\varphi =
\frac{1}{4}

  • Câu 26: Thông hiểu

    Cho hình hộp ABCD.EFFH. Phân tích nào sau đây đúng?

    Hình vẽ minh họa

    Biến đổi biểu thức

    \overrightarrow{AE} = \frac{1}{2}\left(
\overrightarrow{AF} + \overrightarrow{AH} - \overrightarrow{AC}
ight)

    \Leftrightarrow 2\overrightarrow{AE} =
\overrightarrow{AF} + \overrightarrow{CH}

    \Leftrightarrow \overrightarrow{AE} +
\left( \overrightarrow{AE} - \overrightarrow{AF} ight) =
\overrightarrow{CH}

    \Leftrightarrow \overrightarrow{BA} +
\overrightarrow{AE} = \overrightarrow{CH}

    \Leftrightarrow \overrightarrow{BE} =
\overrightarrow{CH} (đúng)

    Vậy phân tích đúng là \overrightarrow{AE}
= \frac{1}{2}\left( \overrightarrow{AF} + \overrightarrow{AH} -
\overrightarrow{AC} ight).

  • Câu 27: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz cho điểm M(x;y;z). Trong các mệnh đề sau, mệnh đề nào đúng?

    Nếu M' đối xứng với M qua mặt phẳng (Oxz) thì M'(x; - y;z).

    Nếu M' đối xứng với M qua trục Oy thì M'( - x;y; - z).

    Nếu M' đối xứng với M qua gốc tọa độ thì M'( - x; - y; - z).

    Vậy mệnh đề đúng là: “Nếu M' đối xứng với M qua mặt phẳng (Oxy) thì M'(x;y; - z)”.

  • Câu 28: Nhận biết

    Trong không gian Oxyz, điểm nào sau đây thuộc mặt phẳng (Oyz)?

    Ta có: A(x;y;z) \in (Oyz) \Rightarrow x =
0 nên điểm cần tìm là Q(0;4; -
1).

  • Câu 29: Nhận biết

    Trong không gian hệ trục tọa độ Oxyz, cho tọa độ ba điểm A(1;2;3),B( - 1;2;1),C(3; - 1; - 2). Tính tích vô hướng của \overrightarrow{AB}.\overrightarrow{AC}?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 2;0; - 2) \\
\overrightarrow{AC} = (2; - 3; - 5) \\
\end{matrix} ight.\  \Rightarrow
\overrightarrow{AB}.\overrightarrow{AC} = 6

  • Câu 30: Thông hiểu

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1;1; -
2);\overrightarrow{v} = (1;0;m). Tìm tất cả các giá trị của tham số m để \left( \overrightarrow{u};\overrightarrow{v}
ight) = 45^{0}?

    Ta có: \left(
\overrightarrow{u};\overrightarrow{v} ight) = 45^{0} \Leftrightarrow
\cos\left( \overrightarrow{u};\overrightarrow{v} ight) =
\frac{\sqrt{2}}{2} \Leftrightarrow
\frac{\overrightarrow{u}.\overrightarrow{v}}{\left| \overrightarrow{u}
ight|.\left| \overrightarrow{v} ight|} =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{1 -
2m}{\sqrt{6}.\sqrt{1 + m^{2}}} = \frac{\sqrt{2}}{2} \Leftrightarrow
\sqrt{3\left( m^{2} + 1 ight)} = 1 - 2m

    \Leftrightarrow \left\{ \begin{matrix}1 - 2m \geq 0 \\3m^{2} + 3 = 1 - 4m + 4m^{2} \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}m \leq \dfrac{1}{2} \\m^{2} - 4m - 2 = 0 \\\end{matrix} ight.\  \Leftrightarrow m = 2 - \sqrt{6}

    Vậy đáp án cần tìm là m = 2 -
\sqrt{6}.

  • Câu 31: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = (2; - 3;3);\overrightarrow{b}
= (0;2; - 1);\overrightarrow{c} = (3; - 1;5). Tìm tọa độ vectơ \overrightarrow{u} = 2\overrightarrow{a} +
3\overrightarrow{b} - 2\overrightarrow{c}?

    Ta có: \left\{ \begin{matrix}
2\overrightarrow{a} = (4; - 6;6) \\
3\overrightarrow{b} = (0;6; - 3) \\
- 2\overrightarrow{c} = ( - 6;2; - 10) \\
\end{matrix} ight.. Khi đó \overrightarrow{u} = 2\overrightarrow{a} +
3\overrightarrow{b} - 2\overrightarrow{c} = ( - 2;2; - 7)

    Vậy \overrightarrow{u} = ( - 2;2; -
7)

  • Câu 32: Nhận biết

    Trong không gian tọa độ Oxyz, cho hai điểm A( - 1;5;3),M(2;1; -
2). Tìm tọa độ điểm B sao cho M là trung điểm của AB?

    Gọi tọa độ điểm B\left( x_{B};y_{B};z_{C}
ight). Vì M là trung điểm của AB nên ta có:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} \\y_{M} = \dfrac{y_{A} + y_{B}}{2} \\z_{M} = \dfrac{z_{A} + z_{B}}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2 = \dfrac{- 1 + x_{B}}{2} \\1 = \dfrac{5 + y_{B}}{2} \\- 2 = \dfrac{3 + z_{B}}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{B} = 5 \\y_{B} = - 3 \\z_{C} = - 7 \\\end{matrix} ight.

    Vậy tọa độ điểm B cần tìm là B(5; - 3; -
7).

  • Câu 33: Vận dụng

    Xét tính đúng sai của mỗi khẳng định.

    Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí A cách điểm xuất phát 2,5km về phía bắc và 1km về phía tây, đồng thời cách mặt đất 0,7km. Chiếc thứ hai nằm tại vị trí B cách điểm xuất phát 1,5km về phía nam và 1km về phía đông, đồng thời cách mặt đất 0,5km.

    Chọn hệ trục toạ độ Oxyz với gốc O đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng Oxy trùng với mặt đất, trục Ox hướng về phía bắc, trục Oy hướng về phía tây và trục Oz hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

    a) Vị trí của khinh khí cầu thứ hai có tọa độ là (1,5\ ;\ 1\ ;\ 0,5). Sai||Đúng

    b) Hai khinh khí cầu cách nhau không quá 5km. Đúng||Sai

    c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng

    d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ (3\ ;\ 1\ ;\  - 1). Đúng||Sai

    Đáp án là:

    Xét tính đúng sai của mỗi khẳng định.

    Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí A cách điểm xuất phát 2,5km về phía bắc và 1km về phía tây, đồng thời cách mặt đất 0,7km. Chiếc thứ hai nằm tại vị trí B cách điểm xuất phát 1,5km về phía nam và 1km về phía đông, đồng thời cách mặt đất 0,5km.

    Chọn hệ trục toạ độ Oxyz với gốc O đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng Oxy trùng với mặt đất, trục Ox hướng về phía bắc, trục Oy hướng về phía tây và trục Oz hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

    a) Vị trí của khinh khí cầu thứ hai có tọa độ là (1,5\ ;\ 1\ ;\ 0,5). Sai||Đúng

    b) Hai khinh khí cầu cách nhau không quá 5km. Đúng||Sai

    c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng

    d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ (3\ ;\ 1\ ;\  - 1). Đúng||Sai

    a) Sai

    Vì hướng nam ngược với hướng bắc, hướng đông ngược với hướng tây nên chiếc khinh khí cầu thứ hai có tọa độ là ( -
1,5\ ;\  - 1\ ;\ 0,5).

    b) Đúng

    Chiếc khinh khí cầu thứ nhất có tọa độ là (2,5\ ;\ 1\ ;\ 0,7).

    Khoảng cách giữa hai chiếc khinh khí cầu là

    \sqrt{(2,5 + 1,5)^{2} + (1 + 1)^{2} +
(0,7 + 0,5)^{2}}

    = \frac{2\sqrt{134}}{5} \approx
4,6(km)

    c) Sai

    Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất là:

    \sqrt{2,5^{2} + 1^{2} + 0,7^{2}} =
\frac{3\sqrt{86}}{10} \approx 2,8(km)

    Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ hai là:

    \sqrt{( - 1,5)^{2} + ( - 1)^{2} +
0,5^{2}} = \frac{\sqrt{14}}{2} \approx 1,9(km)

    Vậy khinh khí cầu thứ hai ở gần điểm xuất phát hơn.

    d) Đúng

    Vị trí của chiếc flycam là

    \left( \frac{2,5 - 1,5}{2}\ ;\ \frac{1 -
1}{2}\ ;\ \frac{0,7 + 0,5}{2} ight) = (0,5\ ;\ 0\ ;\
0,6).

    Khoảng cách bay của flycam là:

    \sqrt{0,5^{2} + 0^{2} + 0,6^{2}} =
\frac{\sqrt{61}}{10} \approx 0,8(km)

    Khoảng cách từ vị trí flycam xuất phát đến điểm có tọa độ (3\ ;\ 1\ ;\  - 1)

    \sqrt{3^{2} + 1^{2} + ( - 1)^{2}} =
\sqrt{11} \approx 3,3(km) > 0,8(km)

    Vậy flycam không đến được vị trí có tọa độ (3\ ;\ 1\ ;\  - 1).

  • Câu 34: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{OA} = 3\overrightarrow{i} -
\overrightarrow{k}, với \overrightarrow{i},\overrightarrow{k} là hai vectơ đơn vị trên hai trục tọa độ Ox,Oz, hai điểm B( - 1;2;3),C(1;4;1).

    a) A(3;0; - 1). Đúng||Sai

    b) Ba điểm A,B,C thẳng hàng. Sai||Đúng

    c) Điểm D(a;b;c) là điểm đối xứng của với A qua B. Khi đó a +
b + c = 6. Đúng||Sai

    d) Điểm M(m;n;p) trên mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất. Khi đó 2m - n + 2024p = 0. Đúng||Sai

    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{OA} = 3\overrightarrow{i} -
\overrightarrow{k}, với \overrightarrow{i},\overrightarrow{k} là hai vectơ đơn vị trên hai trục tọa độ Ox,Oz, hai điểm B( - 1;2;3),C(1;4;1).

    a) A(3;0; - 1). Đúng||Sai

    b) Ba điểm A,B,C thẳng hàng. Sai||Đúng

    c) Điểm D(a;b;c) là điểm đối xứng của với A qua B. Khi đó a +
b + c = 6. Đúng||Sai

    d) Điểm M(m;n;p) trên mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất. Khi đó 2m - n + 2024p = 0. Đúng||Sai

    a) Đúng: Vì \overrightarrow{OA} =
3\overrightarrow{i} - \overrightarrow{k} nên A(3;0; - 1).

    b) Sai: Ta có \overrightarrow{AB} =
(4;2;4),\overrightarrow{AC} = ( - 2;4;2).

    4:2:4 eq - 2:4:2 nên \overrightarrow{AB},\overrightarrow{AC} không cùng phương suy ra A,B,C không thẳng hàng.

    c) Đúng

    D là điểm đối xứng với A qua B nên B là trung điểm của AD.

    Ta có \left\{ \begin{matrix}
x_{D} = 2x_{B} - x_{A} = - 5 \\
y_{D} = 2y_{B} - y_{A} = 4 \\
z_{D} = 2z_{B} - z_{A} = 7. \\
\end{matrix} ight. suy ra D( -
5;4;7).

    Do đó a = - 5,b = 4,c = 7. Vậy a + b + c = 6.

    d) Đúng. Gọi I(x;y;z) là điểm thỏa mãn \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} =
\overrightarrow{0}.

    Ta có:

    \left\{ \begin{matrix}
3 - x - 1 - x + 1 - x = 0 \\
0 - y + 2 - y + 4 - y = 0 \\
- 1 - z + 3 - z + 1 - z = 0 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 2 \\
z = 1 \\
\end{matrix} \Rightarrow I(1;2;1) ight.

    MA^{2} + MB^{2} + MC^{2}

    =(\overrightarrow{MI} + \overrightarrow{IA})^{2} + (\overrightarrow{MI} +\overrightarrow{IB})^{2} + (\overrightarrow{MI} +\overrightarrow{IC})^{2}

    = 3MI^{2} + IA^{2} + IB^{2} + IC^{2} +2\overrightarrow{MI}(\overrightarrow{IA} + \overrightarrow{IB} +\overrightarrow{IC})

    = 3MI^{2} + IA^{2} + IB^{2} + IC^{2}

    Do IA^{2} + IB^{2} + IC^{2} không thay đổi nên MA^{2} + MB^{2} +
MC^{2} nhỏ nhất khi MI nhỏ nhất hay M là hình chiếu của điểm I trên mặt phẳng (Oxy).

    Do đó M(1;2;0) suy ra m=1,n=2,p=0.

    Vậy 2m - n + 2024p = 2 - 2 + 0 =
0.

  • Câu 35: Nhận biết

    Cho hai điểm phân biệt A;B và một điểm O bất kì. Hãy xét xem mệnh đề nào sau đây là đúng?

    Mệnh đề đúng: “Điểm M thuộc đường thẳng AB khi và chỉ khi \overrightarrow{OM} = k\overrightarrow{OA} + (1 -
k).\overrightarrow{OB}”.

  • Câu 36: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có tọa độ các đỉnh A(1;2; - 1),B(2; - 1;3),C( - 4;7;5). Gọi D(a;b;c) là chân đường phân giác trong của góc B trong tam giác ABC. Tính giá trị biểu thức W = a + b + 2c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có tọa độ các đỉnh A(1;2; - 1),B(2; - 1;3),C( - 4;7;5). Gọi D(a;b;c) là chân đường phân giác trong của góc B trong tam giác ABC. Tính giá trị biểu thức W = a + b + 2c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 37: Nhận biết

    Trong không gian Oxyz, điểm đối xứng của điểm M(1;2;3) qua trục Ox có tọa độ là

    Gọi M' là điểm đối xứng của M(1;2;3) qua trục Ox.

    Hình chiếu vuông góc của M(1;2;3) lên trục OxH(1;0;0)

    Khi đó H(1;0;0) là trung điểm của M'M. Do đó tọa độ của M'(1;
- 2; - 3)

  • Câu 38: Vận dụng

    Cho tam giác ABC vuông tại A và có hai đỉnh B;C nằm trên mặt phẳng (P). Gọi A' là hình chiếu vuông góc của đỉnh A lên (P). Trong các mệnh đề sau, mệnh đề nào đúng?

    Nếu A nằm trên (P) tức A’ trùng với A thì tam giác A’BC có góc A vuông, nếu A không nằm trên (P) thì

    \overrightarrow{A'B}.\overrightarrow{A'C}
= \overrightarrow{A'A}.\overrightarrow{A'C} +
\overrightarrow{AB}.\overrightarrow{A'C}

    =
\overrightarrow{AB}.\overrightarrow{A'C} =
\overrightarrow{AB}.\left( \overrightarrow{A'A} +
\overrightarrow{AC} ight)

    =
\overrightarrow{AB}.\overrightarrow{A'A} = -
\overrightarrow{AB}.\overrightarrow{AA'} < 0 suy ra góc \widehat{BA'C} là góc tù.

  • Câu 39: Vận dụng

    Cho hình hộp ABCD.A'B'C'D'. Điểm M được xác định bởi đẳng thức vectơ \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} + \overrightarrow{MD} + \overrightarrow{MA'} +
\overrightarrow{MB'} + \overrightarrow{MC'} +
\overrightarrow{MD'} = \overrightarrow{0}. Mệnh đề nào sau đây đúng?

    Gọi \left\{ \begin{matrix}
O = AC \cap BD \\
O' = A'C' \cap B'D' \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD} = \overrightarrow{0} \\
\overrightarrow{OA'} + \overrightarrow{OB'} +
\overrightarrow{OC'} + \overrightarrow{OD'} = \overrightarrow{0}
\\
\end{matrix} ight.

    Ta có:

    \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} +
\overrightarrow{MD}

    = \left( \overrightarrow{MO} +
\overrightarrow{OA} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OB} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OC} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OD} ight)

    = \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} +
4\overrightarrow{MO} = \overrightarrow{0} + 4\overrightarrow{MO} =
4\overrightarrow{MO}

    Tương tự ta cũng có: \overrightarrow{MA'} +
\overrightarrow{MB'} + \overrightarrow{MC'} +
\overrightarrow{MD'} = 4\overrightarrow{MO'}

    Từ đó suy ra

    \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} +
\overrightarrow{MA'} + \overrightarrow{MB'} +
\overrightarrow{MC'} + \overrightarrow{MD'} =
\overrightarrow{0}

    \Leftrightarrow 4\overrightarrow{MO} +
4\overrightarrow{MO'} = \overrightarrow{0} \Leftrightarrow 4\left(
\overrightarrow{MO} + \overrightarrow{MO'} ight) =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{MO} +
\overrightarrow{MO'} = \overrightarrow{0}

    Vậy điểm M cần tìm là trung điểm của OO'.

  • Câu 40: Thông hiểu

    Trong không gian tọa độ Oxyz, cho hình hộp ABCD.A^{'}B^{'}C^{'}D^{'} với các điểm A( - 1;1;2), B( - 3;2;1), D(0; - 1;2)A^{'}(2;1;2). Tìm tọa độ đỉnh C^{'}.

    Hình vẽ minh họa

    .

    Theo quy tắc hình hộp ta có: \overrightarrow{AB} + \overrightarrow{AD} +
\overrightarrow{AA'} = \overrightarrow{AC'}.

    \Rightarrow \left\{ \begin{matrix}
x_{C^{'}} + 1 = 2 \\
y_{C^{'}} - 1 = - 1 \\
z_{C^{'}} - 2 = - 1 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
x_{C^{'}} = 1 \\
y_{C^{'}} = 0 \\
z_{C^{'}} = 1 \\
\end{matrix} \Rightarrow C'(1;0;1) ight.\  ight.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 41 lượt xem
Sắp xếp theo