Đề kiểm tra 45 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 2. Vectơ và hệ trục tọa độ trong không gian được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D'A(0;0;0),B(3;0;0),C(0;3;0),D'(0;3; -3). Tọa độ trọng tâm tam giác A'B'C

    Hình vẽ minh họa

    Gọi I là trung điểm của đoạn BD’ suy ra I\left( \frac{3}{2};\frac{3}{2}; - \frac{3}{2}ight)

    Gọi G(a;b;c) là trọng tâm tam giác A'B'C

    Ta có: \overrightarrow{DI} =3\overrightarrow{IG} với \left\{\begin{matrix}\overrightarrow{DI} = \left( \frac{3}{2}; - \frac{3}{2}; - \frac{3}{2}ight) \\\overrightarrow{IG} = \left( a - \frac{3}{2};b - \frac{3}{2};c +\frac{3}{2} ight) \\\end{matrix} ight.

    Do đó:

    \left\{ \begin{matrix}\frac{3}{2} = 3\left( a - \frac{3}{2} ight) \\- \frac{3}{2} = 3\left( b - \frac{3}{2} ight) \\- \frac{3}{2} = 3\left( c + \frac{3}{2} ight) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = 1 \\c = - 2 \\\end{matrix} ight.\  \Rightarrow G(2;1; - 2)

    Vậy tọa độ trọng tâm tam giác cần tìm là (2;1; - 2)

  • Câu 2: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A(1;0;1),B(2;1;2),D(1; -
1;1),C'(4;5; - 5). Tìm tọa độ điểm A'?

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}

    \Rightarrow \overrightarrow{AA'} =
\overrightarrow{AB} - \overrightarrow{AD} -
\overrightarrow{AC'}

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (1;1;1) = \overrightarrow{i} + \overrightarrow{j}
+ \overrightarrow{k} \\
\overrightarrow{AD} = (0; - 1;0) = 0.\overrightarrow{i} -
\overrightarrow{j} + 0.\overrightarrow{k} \\
\overrightarrow{AC'} = (3;5; - 6) = 3.\overrightarrow{i} +
5\overrightarrow{j} - 6\overrightarrow{k} \\
\end{matrix} ight. do đó \Rightarrow \overrightarrow{AA'} =
2\overrightarrow{i} + 5\overrightarrow{j} - 6\overrightarrow{k} hay \overrightarrow{AA'} = (3;5; -
6)

    Suy ra A'(3;5; - 6)

  • Câu 3: Nhận biết

    Gọi O là tâm của hình lập phương ABCD.A'B'C'D'. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Theo quy tắc hình hộp ta có: \overrightarrow{AC'} = \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'}

    O là trung điểm của AC' suy ra \overrightarrow{AO} =
\frac{1}{2}\overrightarrow{AC'} = \frac{1}{2}\left(
\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA'}
ight)

  • Câu 4: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Bằng quy tắc 3 điểm ta nhận thấy rằng: \overrightarrow{AB} + \overrightarrow{BC} +
\overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{0} đúng với mọi điểm A;B;C;D nằm trong không gian chứ không phải chỉ riêng 4 điểm đồng phẳng.

  • Câu 5: Vận dụng cao

    Một chiếc máy bay đang bay từ điểm A đến điểm B. Giả sử với đơn vị km, điểmA có tọa độ A(100,200,300)và điểm B có tọa độ B(400,500,600). Máy bay được trạm không lưu thông báo có một cơn bão với tâm bão ở vị trí C với tọa độ C(250,350,450), máy bay được an toàn khi cách tâm bão tối thiểu là 50\sqrt{3}\ \
km. Tính gọi D là điểm trên đường bay (giữa AB) mà máy bay cần chuyển hướng để tránh cơn bão. Tính độ dài quãng đường AD (kết quả lấy phần nguyên).

    Đáp án: 173,21 km

    Đáp án là:

    Một chiếc máy bay đang bay từ điểm A đến điểm B. Giả sử với đơn vị km, điểmA có tọa độ A(100,200,300)và điểm B có tọa độ B(400,500,600). Máy bay được trạm không lưu thông báo có một cơn bão với tâm bão ở vị trí C với tọa độ C(250,350,450), máy bay được an toàn khi cách tâm bão tối thiểu là 50\sqrt{3}\ \
km. Tính gọi D là điểm trên đường bay (giữa AB) mà máy bay cần chuyển hướng để tránh cơn bão. Tính độ dài quãng đường AD (kết quả lấy phần nguyên).

    Đáp án: 173,21 km

    Hình vẽ minh họa

    Giả sử D\left( x_{0},y_{0},z_{0}
ight)

    D là điểm trên đường bay (giữa AB). Khi đó ta có ba điểm A,D,B thẳng hàng.

    Ta lại có D là điểm mà máy bay cần chuyển hướng để tránh cơn bão.

    Khi đó DC = 50\sqrt{3}\ km

    Ta có hệ phương trình:

    \left\{ \begin{matrix}\overrightarrow{AD}= k\overrightarrow{AB} \\DC =50\sqrt{3} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{0} - 100 = k.300 \\
y_{0} - 200 = k.300 \\
z_{0} - 300 = k.300 \\
\sqrt{\left( x_{0} - 250 ight)^{2} + \left( y_{0} - 350 ight)^{2} +
\left( z_{0} - 450 ight)^{2}} = 50\sqrt{3} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{0} = 100 + 300k \\
y_{0} = 200 + 300k \\
z_{0} = 300 + 300k \\
\sqrt{(100 + 300k - 250)^{2} + (200 + 300k - 350)^{2} + (300 + 300k -
450)^{2}} = 50\sqrt{3}(*) \\
\end{matrix} ight.

    Giải (*) ta có 3{(k.300 - 150)^2} = 7500 \Leftrightarrow \left[ \begin{gathered}
  k = \frac{2}{3} \hfill \\
  k = \frac{1}{3} \hfill \\ 
\end{gathered}  ight.

    D là điểm gần A hơn do đó chọn k = \frac{1}{3} hay D(200,300,400)

    Vậy độ dài quãng đường:

    AD = \sqrt {{{\left( {200 - 100} ight)}^2} + {{\left( {300 - 200} ight)}^2} + {{\left( {400 - 300} ight)}^2}}

    = 100\sqrt{3} \approx
173,21

  • Câu 6: Nhận biết

    Tích vô hướng của 2 vectơ \overrightarrow{a},\overrightarrow{b}trong không gian được tính bằng:

    Theo định nghĩa tích vô hướng của hai vecto, ta có: \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|.cos\left(
\overrightarrow{a},\overrightarrow{b} ight).

  • Câu 7: Nhận biết

    Trong không gian Oxyz, điểm nào sau đây thuộc trục tung Oy?

    Điểm thuộc trục tung Oy là M(0; -
10;0).

  • Câu 8: Vận dụng cao

    Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc 80^{0} và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc 60^{0} và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 124 N

    Đáp án là:

    Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc 80^{0} và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc 60^{0} và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 124 N

    Gọi hai lực tạo với nhau một góc 80^{\circ}\overrightarrow{F_{1}}\overrightarrow{F_{2}}, ta có \left| \overrightarrow{F_{1}} ight| = \left|
\overrightarrow{F_{2}} ight| = 50N.

    Lực còn lại là \overrightarrow{F_{3}}, ta có \left| \overrightarrow{F_{3}} ight| =
60N.

    Gọi \overrightarrow{F} là hợp lực của ba lực trên ta có

    \left| \overrightarrow{F} ight|^{2} =
\left( \overrightarrow{F_{1}} + \overrightarrow{F_{2}} +
\overrightarrow{F_{3}} ight)^{2}

    = \left| \overrightarrow{F_{1}}
ight|^{2} + \left| \overrightarrow{F_{2}} ight|^{2} + \left|
\overrightarrow{F_{3}} ight|^{2} + 2\lbrack\left|
\overrightarrow{F_{1}} ight|.\left| \overrightarrow{F_{2}}
ight|.cos\left( \overrightarrow{F_{1}},\overrightarrow{F_{2}}
ight)

    + \left| \overrightarrow{F_{1}}
ight|.\left| \overrightarrow{F_{3}} ight|.cos\left(
\overrightarrow{F_{1}},\overrightarrow{F_{3}} ight) + \left|
\overrightarrow{F_{3}} ight|.\left| \overrightarrow{F_{2}}
ight|.cos\left( \overrightarrow{F_{3}},\overrightarrow{F_{2}}
ight)brack

    = 50^{2} + 50^{2} + 60^{2} + 2\lbrack
50.50.cos80^{0}+ 50.60.cos60^{0} +
60.50.cos60^{0}brack \approx 15468.

    \Rightarrow |F| \approx 124 N

  • Câu 9: Thông hiểu

    Cho hình chóp OABCOA = OB = OC = 1, các cạnh OA;OB;OC đôi một vuông góc. Gọi M là trung điểm của AB. Tính tích vô hướng của hai vectơ \overrightarrow{OC};\overrightarrow{MA}.

    Hình vẽ minh họa

    Ta có: \overrightarrow{OA}.\overrightarrow{MA} =
\frac{1}{2}\overrightarrow{OC}.\overrightarrow{BA} =
\frac{1}{2}\overrightarrow{OC}.\left( \overrightarrow{OA} -
\overrightarrow{OB} ight)

    =
\frac{1}{2}\overrightarrow{OC}.\overrightarrow{OA} -
\frac{1}{2}\overrightarrow{OC}.\overrightarrow{OB} = 0 - 0 =
0

    Vậy \overrightarrow{OA}.\overrightarrow{MA} =
0

  • Câu 10: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz cho vectơ \overrightarrow{OM} có độ dài \left| \overrightarrow{OM} ight| = 1, gọi \alpha;\beta;\gamma lần lượt là góc tạo bởi ba vectơ đơn vị \overrightarrow{i};\overrightarrow{j};\overrightarrow{k} trên ba trục Ox;Oy;Oz và vectơ \overrightarrow{OM}. Khi đó tọa độ điểm M là:

    Gọi M(x;y;z) \Rightarrow
\overrightarrow{OM} = (x;y;z)\overrightarrow{i} = (1;0;0),\overrightarrow{j} =
(0;1;0),\overrightarrow{k} = (0;0;1)

    \left\{ \begin{matrix}\cos\alpha = \dfrac{\overrightarrow{OM}.\overrightarrow{i}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{i} ight|} = x \\\cos\beta = \dfrac{\overrightarrow{OM}.\overrightarrow{j}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{j} ight|} = y \\\cos\gamma = \dfrac{\overrightarrow{OM}.\overrightarrow{k}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{k} ight|} = z \\\end{matrix} ight.\  \Rightarrow M\left( \cos\alpha;\cos\beta;\cos\gammaight)

  • Câu 11: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Tính tích vô hướng \overrightarrow{AC}.\overrightarrow{B'C'}?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AC} =
\overrightarrow{B'C'} nên \left(
\overrightarrow{AC};\overrightarrow{B'C'} ight) = \left(
\overrightarrow{AC};\overrightarrow{AD} ight) = \widehat{CAD} =
45^{0}

    Suy ra \overrightarrow{AC}.\overrightarrow{B'C'}= \left| \overrightarrow{AC} ight|.\left|\overrightarrow{B'C'} ight|.\cos\left(\overrightarrow{AC};\overrightarrow{B'C'} ight)

    =a\sqrt{2}.a.\cos45^{0} =a^{2}

  • Câu 12: Thông hiểu

    Trong không gian tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = (2; - 1;3),\overrightarrow{b}
= (1; - 3;2),\overrightarrow{c} = (3;2; - 4). Gọi \overrightarrow{x} là vectơ thoả mãn: \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = - 5 \\
\overrightarrow{x}.\overrightarrow{b} = - 11 \\
\overrightarrow{x}.\overrightarrow{c} = 20 \\
\end{matrix} ight.. Tọa độ của vectơ \overrightarrow{x} là:

    Đặt \overrightarrow{x} =
(a;b;c).

    Ta có: \left\{ \begin{matrix}\overrightarrow{x}.\overrightarrow{a} = - 5 \\\overrightarrow{x}.\overrightarrow{b} = - 11 \\\overrightarrow{x}.\overrightarrow{c} = 20 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}2a - b + 3c = - 5 \\a - 3b + 2c = - 11 \\3a + 2b - 4c = 20 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = 3 \\c = - 2 \\\end{matrix} ight.\  ight.\  ight.

    Vậy \overrightarrow{x} = (2;3; -
2).

  • Câu 13: Thông hiểu

    Cho điểm M chia đoạn thẳng AB theo tỉ số k;(k eq 1) thì ta có: \overrightarrow{MA} =
k.\overrightarrow{MB}. Khi đó với một điểm O tùy ý ta có:

    Ta có:

    \overrightarrow{MA} =
k.\overrightarrow{MB} \Rightarrow \overrightarrow{MO} +
\overrightarrow{OA} = k.\left( \overrightarrow{MO} + \overrightarrow{OB}
ight)

    \Rightarrow (1 - k)\overrightarrow{MO} =
k.\overrightarrow{OB} - \overrightarrow{OA}

    \Rightarrow \overrightarrow{MO} =
\frac{k.\overrightarrow{OB} - \overrightarrow{OA}}{1 - k} \Rightarrow
\overrightarrow{OM} = \frac{\overrightarrow{OA} -
k.\overrightarrow{OB}}{1 - k}

  • Câu 14: Thông hiểu

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (2;1; -
1)\overrightarrow{b} =
(1;3;m). Xác định giá trị tham số m để \left(
\overrightarrow{a};\overrightarrow{b} ight) = 90^{0}?

    Ta có: \left(
\overrightarrow{a};\overrightarrow{b} ight) = 90^{0} \Leftrightarrow
\overrightarrow{a}.\overrightarrow{b} = 0 \Leftrightarrow 5 - m = 0
\Leftrightarrow m = 5

    Vậy m = 5 là giá trị cần tìm.

  • Câu 15: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại AB. Biết rằng tọa độ các điểm A(1;2;1),B(2;0; - 1),C(6;1;0),D(a;b;c) và hình thang ABCD có diện tích bằng 6\sqrt{2}. Tính giá trị biểu thức a+b+c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại AB. Biết rằng tọa độ các điểm A(1;2;1),B(2;0; - 1),C(6;1;0),D(a;b;c) và hình thang ABCD có diện tích bằng 6\sqrt{2}. Tính giá trị biểu thức a+b+c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Nhận biết

    Trong không gian tọa độ Oxyz, cho hai điểm A( - 1;5;3),M(2;1; -
2). Tìm tọa độ điểm B sao cho M là trung điểm của AB?

    Gọi tọa độ điểm B\left( x_{B};y_{B};z_{C}
ight). Vì M là trung điểm của AB nên ta có:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} \\y_{M} = \dfrac{y_{A} + y_{B}}{2} \\z_{M} = \dfrac{z_{A} + z_{B}}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2 = \dfrac{- 1 + x_{B}}{2} \\1 = \dfrac{5 + y_{B}}{2} \\- 2 = \dfrac{3 + z_{B}}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{B} = 5 \\y_{B} = - 3 \\z_{C} = - 7 \\\end{matrix} ight.

    Vậy tọa độ điểm B cần tìm là B(5; - 3; -
7).

  • Câu 17: Vận dụng

    Cho hình lập phương B^{'}C có đường chéo A^{'}C =
\frac{3}{16}. Gọi O là tâm hình vuông ABCD và điểm S thỏa mãn: \overrightarrow{OS} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}+ \overrightarrow{OA^{'}} +
\overrightarrow{OB^{'}} + \overrightarrow{OC^{'}} +
\overrightarrow{OD^{'}}. Khi đó độ dài của đoạn OS bằng \frac{a\sqrt{3}}{b} với a,b \in \mathbb{N}\frac{a}{b} là phân số tối giản. Tính giá trị của biểu thức P = a^{2} +
b^{2}.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình lập phương B^{'}C có đường chéo A^{'}C =
\frac{3}{16}. Gọi O là tâm hình vuông ABCD và điểm S thỏa mãn: \overrightarrow{OS} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}+ \overrightarrow{OA^{'}} +
\overrightarrow{OB^{'}} + \overrightarrow{OC^{'}} +
\overrightarrow{OD^{'}}. Khi đó độ dài của đoạn OS bằng \frac{a\sqrt{3}}{b} với a,b \in \mathbb{N}\frac{a}{b} là phân số tối giản. Tính giá trị của biểu thức P = a^{2} +
b^{2}.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A( -
3;0;0),B(0;2;0),D(0;0;1),A'(1;2;3). Tìm tọa độ điểm C'?

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (3;2;0) = 3\overrightarrow{i} +
2\overrightarrow{j} + 0.\overrightarrow{k} \\
\overrightarrow{AD} = (3;0;1) = 3.\overrightarrow{i} +
0.\overrightarrow{j} + 1.\overrightarrow{k} \\
\overrightarrow{AA'} = (4;2;3) = 4.\overrightarrow{i} +
2\overrightarrow{j} + 3\overrightarrow{k} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{AC'} =
10.\overrightarrow{i} + 4.\overrightarrow{j} +
4.\overrightarrow{k}A( -
3;0;0)

    \Rightarrow C'(7;4;4)

    Suy ra C'(7;4;4)

  • Câu 19: Thông hiểu

    Cho lăng trụ tam giác ABC.A'B'C'. Đặt \overrightarrow{AA'} =
\overrightarrow{u};\overrightarrow{AB} =
\overrightarrow{v};\overrightarrow{AC} = \overrightarrow{w}. Biểu diễn vectơ \overrightarrow{BC'} qua các vectơ \overrightarrow{u};\overrightarrow{v};\overrightarrow{w}. Chọn đáp án đúng?

    Ta có:

    \overrightarrow{BC'} =
\overrightarrow{BC} + \overrightarrow{CC'} = \overrightarrow{BA} +
\overrightarrow{AC} + \overrightarrow{CC'}

    = - \overrightarrow{v} +
\overrightarrow{w} + \overrightarrow{u} = \overrightarrow{u} -
\overrightarrow{v} + \overrightarrow{w}

    Vậy đáp án đúng là: \overrightarrow{BC'} = \overrightarrow{u} -
\overrightarrow{v} + \overrightarrow{w}.

  • Câu 20: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;3),B(2;1;5),C(2;4;2). Xét tính đúng sai của các khẳng định sau:

    a) Tọa độ trung điểm của AB\left( \frac{3}{2};\frac{3}{2};4
ight). Đúng||Sai

    b) \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10). Đúng||Sai

    c) Góc giữa hai đường thẳng ABAC bằng 30^{\circ}. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxz) thỏa mãn T = |3\overrightarrow{IB} -
\overrightarrow{IC}| đạt giá trị nhỏ nhất. Khi đó a - 2b + 2c = 15. Sai||Đúng

    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;3),B(2;1;5),C(2;4;2). Xét tính đúng sai của các khẳng định sau:

    a) Tọa độ trung điểm của AB\left( \frac{3}{2};\frac{3}{2};4
ight). Đúng||Sai

    b) \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10). Đúng||Sai

    c) Góc giữa hai đường thẳng ABAC bằng 30^{\circ}. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxz) thỏa mãn T = |3\overrightarrow{IB} -
\overrightarrow{IC}| đạt giá trị nhỏ nhất. Khi đó a - 2b + 2c = 15. Sai||Đúng

    a) Đúng: Gọi I là trung điểm AB.

    Ta có \left\{ \begin{matrix}
  {x_I} = \dfrac{{{x_A} + {x_B}}}{2} = \dfrac{{1 + 2}}{2} = \dfrac{3}{2} \hfill \\
  {y_I} = \dfrac{{{y_A} + {y_B}}}{2} = \dfrac{{2 + 1}}{2} = \dfrac{3}{2} \hfill \\
  {z_I} = \dfrac{{{z_A} + {z_B}}}{2} = \dfrac{{3 + 5}}{2} = 4 \hfill \\ 
\end{matrix}  ight. \Rightarrow I\left( {\dfrac{3}{2};\dfrac{3}{2};4} ight)

    b) Đúng: Ta có \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10).

    c) Đúng: Ta có \overrightarrow{AB} = (1;
- 1;2),\overrightarrow{AC} = (1;2; - 1).

    \cos(AB,AC) =\cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{|\overrightarrow{AB} \cdot\overrightarrow{AC}|}{|\overrightarrow{AB}| \cdot|\overrightarrow{AC}|}

    = \frac{|1 \cdot 1 + ( - 1) \cdot 2 + 2
\cdot ( - 1)|}{\sqrt{1^{2} + ( - 1)^{2} + 2^{2}} \cdot \sqrt{1^{2} +
2^{2} + ( - 1)^{2}}} = \frac{1}{2}

    Suy ra (AB,AC) = 60^{\circ}.

    d) Sai: Gọi K(x;y;z) thỏa mãn 3\overrightarrow{KB} - \overrightarrow{KC} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}3(2 - x) - (2 - x) = 0 \\3(1 - y) - (4 - y) = 0 \\3(5 - z) - (2 - z) = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = 2 \\y = - \dfrac{1}{2} \\z = \dfrac{13}{2} \\\end{matrix} ight.\  ight.

    Suy ra K\left( 2; -
\frac{1}{2};\frac{13}{2} ight).

    Khi đó T = |3\overrightarrow{IB} -
\overrightarrow{IC}| = |3\overrightarrow{IK} + 3\overrightarrow{KB} -
\overrightarrow{IK} - \overrightarrow{KC}| = |2\overrightarrow{IK}| =
2IK.

    T đạt giá trị nhỏ nhất khi và chỉ khi I là hình chiếu của K trên (Oxz) suy ra I(2;0;\frac{13}{2} )..

    Suy ra a = 2,b = 0,c =
\frac{13}{2}.

    Vậy a - 2b + 2c = 15.

  • Câu 21: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D'; đáy là hình vuông cạnh a. Trên cạnh DC;BB' lần lượt lấy các điểm M;N sao cho DM = BN = x;(0 \leq x \leq a). Tính số đo góc giữa hai đường thẳng A'CMN.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình lập phương ABCD.A'B'C'D'; đáy là hình vuông cạnh a. Trên cạnh DC;BB' lần lượt lấy các điểm M;N sao cho DM = BN = x;(0 \leq x \leq a). Tính số đo góc giữa hai đường thẳng A'CMN.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 22: Thông hiểu

    Trong không gian Oxyz, cho hình bình hành hình bình hành. Biết các điểm A(1;0;1),B(2;1;2),D(1; - 1;1). Xác định tọa độ điểm C?

    Giả sử điểm C(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{DC} =
\overrightarrow{AB}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = 1 \\
y + 1 = 1 \\
z - 1 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
z = 2 \\
\end{matrix} ight.. Vậy tọa độ điểm C(2;0;2).

  • Câu 23: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (3;0;1)\overrightarrow{v} = (2;1;0). Tính tích vô hướng \overrightarrow{u}.\overrightarrow{v}?

    Ta có: \overrightarrow{u}.\overrightarrow{v} = 3.2 + 0.1
+ 1.0 = 6

  • Câu 24: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(0; - 1;1),B( - 2;1; - 1),C( - 1;3;2). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{BA} =
\overrightarrow{CD}

    \Leftrightarrow \left\{ \begin{matrix}
x + 1 = 2 \\
y - 3 = - 2 \\
z - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
z = 4 \\
\end{matrix} ight.. Vậy tọa độ điểm D(1;1;4)

  • Câu 25: Thông hiểu

    Cho hình hộp ABCD.A_{1}B_{1}C_{1}D_{1}. Gọi M là trung điểm của AD. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{C_{1}M} =
\overrightarrow{C_{1}C} + \overrightarrow{CM} = \overrightarrow{C_{1}C}
+ \frac{1}{2}\left( \overrightarrow{CA} + \overrightarrow{CD}
ight)

    = \overrightarrow{C_{1}C} +
\frac{1}{2}\left( \overrightarrow{C_{1}A_{1}} +
\overrightarrow{C_{1}D_{1}} ight)

    = \overrightarrow{C_{1}C} +
\frac{1}{2}\left( \overrightarrow{C_{1}B_{1}} +
\overrightarrow{C_{1}D_{1}} + \overrightarrow{C_{1}D_{1}}
ight)

    = \overrightarrow{C_{1}C} +
\overrightarrow{C_{1}D_{1}} +
\frac{1}{2}\overrightarrow{C_{1}B_{1}}

  • Câu 26: Thông hiểu

    Trong không gian tọa độ Oxyzcho ba điểm M(1;1;1),\ N(2;3;4),\
P(7;7;5). Tìm tọa độ điểm Q để tứ giác MNPQ là hình bình hành

    Minh họa bằng hình vẽ sau:

    Ta có \overrightarrow{MN} = (1;2;3),\
\overrightarrow{QP} = \left( 7 - x_{Q};7 - y_{Q};5 - z_{Q}
ight).

    MNPQ là hình bình hành \Leftrightarrow \overrightarrow{MN} =
\overrightarrow{QP}

    \Leftrightarrow \left\{ \begin{matrix}
1 = 7 - x_{Q} \\
2 = 7 - y_{Q} \\
3 = 5 - z_{Q} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{Q} = 6 \\
y_{Q} = 5 \\
z_{Q} = 2 \\
\end{matrix} ight..

    Vậy Q(6;5;2).

  • Câu 27: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho  A(1;2; - 1);\overrightarrow{AB} =(1;3;1), khi đó tọa độ điểm B là:

    Gọi B(x;y;z) ta có:

    A(1;2; - 1);\overrightarrow{AB} =(1;3;1) khi đó \left\{\begin{matrix}x - 1 = 1 \\y - 2 = 3 \\z + 1 = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 2 \\y = 5 \\z = 0 \\\end{matrix} ight. nên tọa độ điểm cần tìm là B(2;5;0).

  • Câu 28: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho tọa độ hai điểm A(3;0;0),B(0;0;4). Tính chu vi tam giác OAB?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{OA} = (3;0;0) \Rightarrow OA = 3 \\
\overrightarrow{OB} = (0;0;4) \Rightarrow OB = 4 \\
\overrightarrow{AB} = ( - 3;0;4) \Rightarrow AB = 5 \\
\end{matrix} ight.

    Chu vi tam giác OAB là:

    C = OA + OB + AB = 3 + 4 + 5 =
12

    Vậy đáp án đúng là: 12.

  • Câu 29: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;0;1),B(2;1; - 2),C( - 1;3;2). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{BA} =
\overrightarrow{CD}

    \Leftrightarrow \left\{ \begin{matrix}
x + 1 = - 1 \\
y - 3 = - 1 \\
z - 2 = 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 2 \\
y = 2 \\
z = 5 \\
\end{matrix} ight.. Vậy tọa độ điểm D( - 2;2;5)

  • Câu 30: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A( - 2;3;1),B(2;1;0),C( - 3; - 1;1). Tìm tất cả các điểm D sao cho ABCD là hình thang có đáy AD và tam giác ABC bằng \frac{1}{3} diện tích tứ giác ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A( - 2;3;1),B(2;1;0),C( - 3; - 1;1). Tìm tất cả các điểm D sao cho ABCD là hình thang có đáy AD và tam giác ABC bằng \frac{1}{3} diện tích tứ giác ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 31: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz cho \overrightarrow{a} = (2; - 1;3),\overrightarrow{b}
= (1; - 3;2),\overrightarrow{c} = (3;2; - 4). Gọi \overrightarrow{x} là vectơ thỏa mãn \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = 4 \\
\overrightarrow{x}.\overrightarrow{b} = - 5 \\
\overrightarrow{x}.\overrightarrow{c} = 8 \\
\end{matrix} ight.. Tìm tọa độ \overrightarrow{x}?

    Giả sử \overrightarrow{x} =
(x;y;z), khi đó:

    \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = 4 \\
\overrightarrow{x}.\overrightarrow{b} = - 5 \\
\overrightarrow{x}.\overrightarrow{c} = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2x - y + 3z = 4 \\
x - 3y + 2z = - 5 \\
3x + 2y - 4z = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 3 \\
z = 1 \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{x} =
(2;3;1)

  • Câu 32: Nhận biết

    Trong không gian cho hình hộp ABCD.A'B'C'D'. Khi đó \overrightarrow{CD} + \overrightarrow{CB} +
\overrightarrow{CC'} bằng:

    Theo quy tắc hình hộp ta có \overrightarrow{CD} + \overrightarrow{CB} +\overrightarrow{CC'} = \overrightarrow{CA'}.

  • Câu 33: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(2; - 4;3)B(2;2;7). Xác định tọa độ trung điểm I của AB?

    Ta có: I là trung điểm của AB nên tọa độ điểm I là:

    \left\{ \begin{matrix}x_{I} = \dfrac{x_{A} + x_{B}}{2} = 1 \\y_{I} = \dfrac{y_{A} + y_{B}}{2} = 0 \\z_{I} = \dfrac{z_{A} + z_{B}}{2} = 4 \\\end{matrix} ight.\  \Rightarrow I(1;0;4)

    Vậy đáp án đúng là: I(1;0;4).

  • Câu 34: Nhận biết

    Trong không gian Oxyz, điểm đối xứng của điểm M(1;2;3) qua trục Ox có tọa độ là

    Gọi M' là điểm đối xứng của M(1;2;3) qua trục Ox.

    Hình chiếu vuông góc của M(1;2;3) lên trục OxH(1;0;0)

    Khi đó H(1;0;0) là trung điểm của M'M. Do đó tọa độ của M'(1;
- 2; - 3)

  • Câu 35: Nhận biết

    Cho tứ diện ABCD. Điểm N xác định bởi công thức \overrightarrow{AN} = \overrightarrow{AB} +
\overrightarrow{AC} - \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Ta có:

    \overrightarrow{AN} =
\overrightarrow{AB} + \overrightarrow{AC} -
\overrightarrow{AD}

    \Leftrightarrow \overrightarrow{AN} -
\overrightarrow{AB} = \overrightarrow{AC} - \overrightarrow{AD}
\Leftrightarrow \overrightarrow{BN} = \overrightarrow{AD}

    Vậy N là đỉnh thứ tư của hình bình hành CDBN.

  • Câu 36: Thông hiểu

    Trong không gian Oxyz, cho các điểm A(1;2; - 3),B(2;5;7),C( - 3;1;4). Xác định tọa độ điểm D sao cho tứ giác ABCD là hình bình hành?

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
1 = - 3 - x \\
3 = 1 - y \\
20 = 4 - z \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = - 2 \\
z = - 6 \\
\end{matrix} ight.. Vậy tọa độ điểm D( - 4; - 2; - 6).

  • Câu 37: Nhận biết

    Trong không gian tọa độ Oxyz, hình chiếu vuông góc của điểm M(1; - 3; -
5) trên mặt phẳng (Oyz) là:

    Hình chiếu vuông góc của điểm M(1; - 3; -
5) trên mặt phẳng (Oyz) là điểm có tọa độ (0; - 3; - 5).

  • Câu 38: Nhận biết

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{a} = (1; - 2;3)\overrightarrow{b} = ( - 2;1;2). Xác định tích vô hướng \left( \overrightarrow{a} +
\overrightarrow{b} ight).\overrightarrow{b}?

    Ta có: \overrightarrow{a} +
\overrightarrow{b} = ( - 1; - 1;5) nên \left( \overrightarrow{a} + \overrightarrow{b}
ight).\overrightarrow{b} = - 1.( - 2) + ( - 1).1 + 5.2 =
11

  • Câu 39: Nhận biết

    Trong không gian Oxyz, điểm nào sau đây thuộc mặt phẳng (Oyz)?

    Ta có: A(x;y;z) \in (Oyz) \Rightarrow x =
0 nên điểm cần tìm là Q(0;4; -
1).

  • Câu 40: Thông hiểu

    Cho tứ diện ABCD. Đặt \overrightarrow{AB} =
\overrightarrow{a};\overrightarrow{AD} =
\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Gọi G là trọng tâm tam giác BCD. Trong các đẳng thức sau, đẳng thức nào đúng?

    Hình vẽ minh họa

    Gọi M là trung điểm của CD suy ra \overrightarrow{BG} =
\frac{2}{3}\overrightarrow{BM}

    Ta có: \overrightarrow{AG} =
\overrightarrow{AB} + \overrightarrow{BG} = \overrightarrow{AB} +
\frac{2}{3}\overrightarrow{BM}

    = \overrightarrow{AB} +
\frac{2}{3}.\frac{1}{2}\left( \overrightarrow{BC} + \overrightarrow{BD}
ight) = \overrightarrow{AB} + \frac{1}{3}\left( \overrightarrow{BC} +
\overrightarrow{BD} ight)

    = \overrightarrow{AB} +
\frac{1}{3}\left( \overrightarrow{AC} - \overrightarrow{AB} +
\overrightarrow{AD} - \overrightarrow{AB} ight)

    = \frac{1}{3}\left( \overrightarrow{AB}
+ \overrightarrow{AB} + \overrightarrow{AD} ight) = \frac{1}{3}\left(
\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}
ight)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 41 lượt xem
Sắp xếp theo