Cho hình hộp
. Phân tích nào sau đây đúng?
Hình vẽ minh họa
Biến đổi biểu thức
(đúng)
Vậy phân tích đúng là .
Cho hình hộp
. Phân tích nào sau đây đúng?
Hình vẽ minh họa
Biến đổi biểu thức
(đúng)
Vậy phân tích đúng là .
Cho hình lập phương
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Vì (
là hình vuông) nên
Trong không gian
, cho
. Tọa độ vectơ
là:
Ta có:
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có do đó
hay
Suy ra
Cho tứ diện
. Gọi
lần lượt là trung điểm các đoạn thẳng
.

Xét tính đúng sai của các khẳng định sau.
a)
. Sai||Đúng
b)
. Đúng||Sai
c)
. Sai||Đúng
d)
nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai
Cho tứ diện . Gọi
lần lượt là trung điểm các đoạn thẳng
.
Xét tính đúng sai của các khẳng định sau.
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai
Hình vẽ minh họa
a) Đúng: .
b) Đúng: Vi là trung điểm của
nên
Vì là trung điểm của
nên
Vì là trung điểm của
nên
Do đó:
c) Sai:
d) Đúng
Ta có: .
.
Do đó: nhỏ nhất khi
Trong không gian
, cho hai điểm
và
. Trung điểm
của
có tọa độ là:
Ta có: M là trung điểm của AB nên tọa độ điểm M là:
Vậy đáp án đúng là: .
Trong không gian
, cho các điểm
đối xứng nhau qua mặt phẳng
. Tính giá trị biểu thức
?
Gọi H là hình chiếu của M trên mặt phẳng suy ra H(0; 6; 1)
Do M’ đối xứng với M qua nên MM’ nhận H làm trung điểm suy ra M’(2; 6; 1) suy ra a = 2; b = 6; c = 1
Vậy .
Trong không gian với hệ tọa độ
, cho điểm
và
Biết tọa độ điểm
để tứ giác
là hình bình hành. Tính ![]()
Hình vẽ minh họa
Ta có
Để tứ giác là hình bình hành
Vậy
Cho tứ diện
có
đôi một vuông góc với nhau. Tính giá trị của biểu thức
?
Vì các vectơ có độ dài bằng 1 và đôi một vuông góc với nhau nên
Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu giá của ba vectơ cùng song song với một mặt phẳng thì ba vectơ đó đồng phẳng.
Cho hình chóp
. Lấy các điểm
lần lượt thuộc các tia
sao cho
trong đó
là các hệ số biến thiên. Để mặt phẳng
đi qua trọng tâm của tam giác
thì tổng các hệ số bằng bao nhiêu?
Hình vẽ minh họa
Gọi G là trọng tâm tam giác ABC suy ra
Khi đó mà
Suy ra
Vì mặt phẳng đi qua trọng tâm của tam giác
suy ra
đồng phẳng.
Do đó tồn tại ba số sao cho
) và
s
Suy ra
Trong không gian
, cho
. Tọa độ vectơ
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ vectơ
.
Cho hình lập phương
có cạnh
. Gọi
là trung điểm của
. Tính tích vô hướng
?
Hình vẽ minh họa
Ta có:
Ta có: hay
Do đó
Trong không gian tọa độ
, cho hai điểm
. Tìm tọa độ điểm
có hoành độ dương thuộc trục
sao cho tam giác
vuông tại
?
Ta có: có hoành độ dương thuộc trục
Theo bài ra ta có: và tam giác
vuông tại
nên
Vậy
Cho hai đường thẳng
và
lần lượt có vectơ chỉ phương là
và
. Nếu
là góc giữa hai đường thẳng
và
thì:
Do góc giữa hai đường thẳng bằng hoặc bù với góc giữa hai vectơ chỉ phương của chúng nên đáp án cần tìm là .
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian
, cho
có
. Gọi
là chân đường cao hạ từ đỉnh
. Tính
.
Đáp án: -17||- 17
Trong không gian , cho
có
. Gọi
là chân đường cao hạ từ đỉnh
. Tính
.
Đáp án: -17||- 17
Ta có .
Vì là chân đường cao nên ta có
và
.
Do đó
Vậy .
Trong không gian với hệ trục tọa độ
, cho hai điểm
. Đường thẳng
cắt mặt phẳng
tại điểm
. Tính tỉ số
?
Ta có:
Lại có và ba điểm
thẳng hàng
Vậy đáp án đúng là .
Trong không gian
, cho ba điểm
. Tọa độ chân đường phân giác của góc
trong tam giác
là:
Ta có:
Gọi là chân đường phân giác kẻ từ
lên
của tam giác
.
Suy ra
Ta có:
Trong không gian cho hình hộp
. Khi đó
bằng:
Theo quy tắc hình hộp ta có .
Trong không gian
, cho hai điểm
. Tìm tọa độ điểm
thỏa mãn hệ thức
?
Ta có:
Cho hình lập phương
. Phân tích vectơ
theo các vectơ
?
Ta có phép cộng vectơ đối với hình vuông :
Khi đó ta có:
Cho hình lập phương
. Hãy phân tích vectơ
theo các vectơ
?
Hình vẽ minh họa
Ta có: (Theo quy tắc hình bình hành).
Trong không gian
, cho hai điểm
và
. Trung điểm của đoạn thẳng
có tọa độ là:
Gọi là trung điểm của đoạn thẳng
, ta có:
Vậy tọa độ trung điểm của AB là: .
Trong không gian với hệ trục tọa độ
, cho ba điểm
. Điểm
là đỉnh thứ tư của hình bình hành
. Khi đó giá trị biểu thức
có giá trị bằng bao nhiêu?
Gọi tọa độ điểm
Ta có:
Ta có: là hình bình hành
suy ra điểm
Khi đó .
Trong không gian
, cho điểm
. Hình chiếu vuông góc của
trên mặt phẳng
là điểm
. Khi đó giá trị
bằng:
Hình chiếu vuông góc của trên mặt phẳng
là
Suy ra .
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có
mà
Suy ra
Trong không gian với hệ trục tọa độ
, cho các điểm
. Có tất cả bao nhiêu điểm
trong không gian thỏa mãn
và
?
Trong không gian với hệ trục tọa độ , cho các điểm
. Có tất cả bao nhiêu điểm
trong không gian thỏa mãn
và
?
Trong không gian
, góc giữa hai mặt phẳng
và
bằng:
Ta có: góc giữa hai mặt phẳng và
bằng:
.
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
Trong không gian với hệ trục tọa độ
, cho ba điểm
. Xét tính đúng sai của các khẳng định sau:
a) Tọa độ trung điểm của
là
. Đúng||Sai
b)
. Đúng||Sai
c) Góc giữa hai đường thẳng
và
bằng
. Đúng||Sai
d) Điểm
nằm trên mặt phẳng
thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
Trong không gian với hệ trục tọa độ , cho ba điểm
. Xét tính đúng sai của các khẳng định sau:
a) Tọa độ trung điểm của là
. Đúng||Sai
b) . Đúng||Sai
c) Góc giữa hai đường thẳng và
bằng
. Đúng||Sai
d) Điểm nằm trên mặt phẳng
thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
a) Đúng: Gọi là trung điểm
.
Ta có
b) Đúng: Ta có .
c) Đúng: Ta có .
Suy ra .
d) Sai: Gọi thỏa mãn
Suy ra .
Khi đó .
đạt giá trị nhỏ nhất khi và chỉ khi
là hình chiếu của
trên
suy ra
.
Suy ra .
Vậy .
Tích tất cả giá trị của
để góc tạo bởi đường thẳng
và đường thẳng
bằng
là:
Đáp án: -4||- 4
Tích tất cả giá trị của để góc tạo bởi đường thẳng
và đường thẳng
bằng
là:
Đáp án: -4||- 4
Gọi là góc giữa hai đường thẳng đã cho.
Đường thẳng có vectơ chỉ phương là
.
Đường thẳng có vectơ chỉ phương là
.
Ta có:
Vậy tích tất cả các giá trị của tham số a bằng -4.
Cho hình hộp
có tâm
. Đặt
. Điểm
xác định bởi đẳng thức
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Gọi lần lượt là tâm các mặt đáy
suy ra
là trung điểm của
Do là hình hộp nên
Theo giả thiết ta có:
Vì là hình hộp nên từ đẳng thức
suy ra M là trung điểm của
.
Hình chiếu vuông góc của điểm
trên mặt phẳng
là:
Hình chiếu vuông góc của điểm trên mặt phẳng
là điểm có tọa độ
.
Cho tứ diện đều
với
là trung điểm của
. góc giữa hai đường thẳng
có cosin bằng:
Hình vẽ minh họa
Giả sử cạnh tứ diện đều bằng a. Khi đó:
Tương tự
Ta có:
Do đó
Mà nên
Trong không gian
, cho hai vectơ
và
. Tính
?
Ta có:
Trong không gian
, cho
. Tọa độ điểm
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ
.
Trong không gian hệ trục tọa độ
, cho tọa độ ba điểm
thẳng hàng. Khi đó giá trị của biểu thức
là:
Ta có: . Vì A; B; C thẳng hàng nên
cùng phương
Cho hình lập phương
có cạnh bằng
. Tích vô hướng của hai vectơ
và
có giá trị bằng:
Ta có:
Trong không gian
, cho
. Tọa độ vectơ
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ vectơ
.