Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Giả sử điểm
. Tính giá trị biểu thức
?
Gọi điểm
Ta có:
Mà
Suy ra suy ra
Vậy
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Giả sử điểm
. Tính giá trị biểu thức
?
Gọi điểm
Ta có:
Mà
Suy ra suy ra
Vậy
Cho hình lập phương
. Hãy phân tích vectơ
theo các vectơ
?
Hình vẽ minh họa
Ta có: (Theo quy tắc hình bình hành).
Trong không gian hệ trục tọa độ
, cho ba điểm
. Tìm điểm
sao cho
đạt giá trị nhỏ nhất?
Vì suy ra
. Ta có:
Theo bài ra:
Vậy nhỏ nhất bằng
khi
. Hay
Trong không gian với hệ trục tọa độ
, cho ba điểm
. Điểm
là đỉnh thứ tư của hình bình hành
. Khi đó giá trị biểu thức
có giá trị bằng bao nhiêu?
Gọi tọa độ điểm
Ta có: là hình bình hành
suy ra điểm
Khi đó .
Trong không gian hệ trục tọa độ
, cho các vectơ
. Đẳng thức nào dưới đây đúng?
Đặt
Vậy là đẳng thức đúng.
Cho tứ diện
và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Cho tứ diện và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Trong không gian
, cho ba điểm
. Các khẳng định sau là đúng hay sai?
a)
. Sai||Đúng
b)
. Sai||Đúng
c)
. Đúng||Sai
d)
. Đúng||Sai
Trong không gian , cho ba điểm
. Các khẳng định sau là đúng hay sai?
a) . Sai||Đúng
b) . Sai||Đúng
c) . Đúng||Sai
d) . Đúng||Sai
Ta có .
Ta có:
.
Ta có:
.
Ta có:
.
Ta có:
.
Cho hai điểm phân biệt
và một điểm
bất kì. Hãy xét xem mệnh đề nào sau đây là đúng?
Mệnh đề đúng: “Điểm thuộc đường thẳng
khi và chỉ khi
”.
Cho hình hộp
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
đúng vì
đúng vì
đúng vì
sai vì
Trong không gian
, cho
. Tọa độ điểm
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ
.
Cho hình hộp
có
. Gọi
là trung điểm của đoạn
. Biểu thị
theo ba vectơ
?
Hình vẽ minh họa
Ta có:
Cho hình chóp
. Lấy các điểm
lần lượt thuộc các tia
sao cho
trong đó
là các hệ số biến thiên. Để mặt phẳng
đi qua trọng tâm của tam giác
thì tổng các hệ số bằng bao nhiêu?
Hình vẽ minh họa
Gọi G là trọng tâm tam giác ABC suy ra
Khi đó mà
Suy ra
Vì mặt phẳng đi qua trọng tâm của tam giác
suy ra
đồng phẳng.
Do đó tồn tại ba số sao cho
) và
s
Suy ra
Trong không gian cho tứ diện đều
. Khẳng định nào sau đây sai?
Tứ diện đều nên
không thể vuông góc với
.
Vậy khẳng định sai là: “”.
Cho hình hộp chữ nhật
có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cho hình hộp chữ nhật có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cách 1. Gọi là trung điểm
,
,
,
.
Ta có .
Lại có .
Mặt khác .
Dễ thấy
.
Suy ra với
;
.
Vậy .
Cách 2. Đặt các trục ,
và
vào hình như sau
Ta có ,
,
và
.
Ta có ,
và
.
Khi đó :
.
Trong không gian
, cho hai vectơ
và
. Xác định giá trị tham số
để
?
Ta có:
Vậy m = 2 là giá trị cần tìm.
Trong không gian hệ trục tọa độ
, cho hình hộp
. Biết
. Tọa độ điểm
là:
Hình vẽ minh họa
Ta có:
Cho
và
. Hãy xác định tọa độ của
?
Ta có:
Trong không gian với hệ tọa độ Oxyz, cho
lần lượt là các vecto đơn vị nằm trên các trục tọa độ
và
là một vecto tùy ý khác
.
Tính ![]()
Đáp án: 1
Trong không gian với hệ tọa độ Oxyz, cho lần lượt là các vecto đơn vị nằm trên các trục tọa độ
và
là một vecto tùy ý khác
.
Tính
Đáp án: 1
Giả sử .
Ta có
Vậy
Cho tứ diện đều
cạnh
.
là điểm trên đoạn
sao cho
. Xét tính đúng sai của các khẳng định sau:
a) Có 6 vectơ (khác vectơ
) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng
b) Góc giữa hai vectơ
và
bằng
. Sai||Đúng
c) Nếu
thì
. Sai||Đúng
d) Tích vô hướng
. Đúng||Sai
Cho tứ diện đều cạnh
.
là điểm trên đoạn
sao cho
. Xét tính đúng sai của các khẳng định sau:
a) Có 6 vectơ (khác vectơ ) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng
b) Góc giữa hai vectơ và
bằng
. Sai||Đúng
c) Nếu thì
. Sai||Đúng
d) Tích vô hướng . Đúng||Sai
Hình vẽ minh họa
a) Sai: Các vectơ (khác vectơ ) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện là:
.
Do đó có 12 vectơ thỏa mãn yêu cầu.
b) Sai:
c) Sai: .
Do đó suy ra
.
d) Đúng: Ta có:
Suy ra
Tìm
để góc giữa hai vectơ
là góc nhọn.
Để
.
Kết hợp điều kiện
Cho tứ diện đều
. Số đo giữa hai đường thẳng
và
bằng:
Hình vẽ minh họa
Gọi M là trung điểm của CD
Ta có:
Suu ra nên số đo góc giữa hai đường thẳng
bằng
.
Trong không gian với hệ trục tọa độ
, cho các vectơ
và
. Mệnh đề nào sau đây đúng?
Ta có:
không cùng phương vì
Vậy mệnh đề đúng là
Cho lăng trụ tam giác
. Đặt
. Gọi điểm
sao cho
,
là trọng tâm tứ diện
. Biểu diễn vectơ
qua các vectơ
. Đáp án nào dưới đây đúng?
Ta có G là trọng tâm của tứ diện nên
Trong không gian với hệ trục tọa độ
, cho ba vectơ
. Tọa độ vectơ
là:
Ta có:
Vậy
Trong không gian
, cho
. Biết
trong đó
là số nguyên dương. Tìm
?
Đáp án: 135
Trong không gian , cho
. Biết
trong đó
là số nguyên dương. Tìm
?
Đáp án: 135
Ta có .
Suy ra .
.
Vậy
Gọi
lần lượt là trung điểm của các cạnh
của tứ diện
. Gọi
là trung điểm của đoạn
và
là một điểm bất kì trong không gian. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Hình vẽ minh họa
Vì lần lượt là trung điểm của các cạnh
nên ta có:
.
Mặt khác (vì I là trung điểm của MN) suy ra
Theo bài ra ta có:
Cho hình chóp
có
, các cạnh
đôi một vuông góc. Gọi
là trung điểm của
. Tính tích vô hướng của hai vectơ
.
Hình vẽ minh họa
Ta có:
Vậy
Trong không gian hệ trục tọa độ
, điểm nào dưới đây thuộc trục
?
Điểm . Suy ra trong bốn điểm đã cho điểm
.
Tính chất nào sau đây sai?
Tính chất sai là:
Trong không gian
, góc giữa hai mặt phẳng
và
bằng:
Ta có: góc giữa hai mặt phẳng và
bằng:
.
Xét tính đúng sai của mỗi khẳng định.
Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí
cách điểm xuất phát
km về phía bắc và
km về phía tây, đồng thời cách mặt đất
km. Chiếc thứ hai nằm tại vị trí
cách điểm xuất phát
km về phía nam và
km về phía đông, đồng thời cách mặt đất
km.
Chọn hệ trục toạ độ
với gốc
đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng
trùng với mặt đất, trục
hướng về phía bắc, trục
hướng về phía tây và trục
hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

a) Vị trí của khinh khí cầu thứ hai có tọa độ là
. Sai||Đúng
b) Hai khinh khí cầu cách nhau không quá
km. Đúng||Sai
c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng
d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ
. Đúng||Sai
Xét tính đúng sai của mỗi khẳng định.
Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí cách điểm xuất phát
km về phía bắc và
km về phía tây, đồng thời cách mặt đất
km. Chiếc thứ hai nằm tại vị trí
cách điểm xuất phát
km về phía nam và
km về phía đông, đồng thời cách mặt đất
km.
Chọn hệ trục toạ độ với gốc
đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng
trùng với mặt đất, trục
hướng về phía bắc, trục
hướng về phía tây và trục
hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).
a) Vị trí của khinh khí cầu thứ hai có tọa độ là . Sai||Đúng
b) Hai khinh khí cầu cách nhau không quá km. Đúng||Sai
c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng
d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ . Đúng||Sai
a) Sai
Vì hướng nam ngược với hướng bắc, hướng đông ngược với hướng tây nên chiếc khinh khí cầu thứ hai có tọa độ là .
b) Đúng
Chiếc khinh khí cầu thứ nhất có tọa độ là .
Khoảng cách giữa hai chiếc khinh khí cầu là
c) Sai
Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất là:
Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ hai là:
Vậy khinh khí cầu thứ hai ở gần điểm xuất phát hơn.
d) Đúng
Vị trí của chiếc flycam là
.
Khoảng cách bay của flycam là:
Khoảng cách từ vị trí flycam xuất phát đến điểm có tọa độ là
Vậy flycam không đến được vị trí có tọa độ .
Trong không gian với hệ trục tọa độ
, cho ba điểm
. Xét tính đúng sai của các khẳng định sau:
a) Tọa độ trung điểm của
là
. Đúng||Sai
b)
. Đúng||Sai
c) Góc giữa hai đường thẳng
và
bằng
. Đúng||Sai
d) Điểm
nằm trên mặt phẳng
thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
Trong không gian với hệ trục tọa độ , cho ba điểm
. Xét tính đúng sai của các khẳng định sau:
a) Tọa độ trung điểm của là
. Đúng||Sai
b) . Đúng||Sai
c) Góc giữa hai đường thẳng và
bằng
. Đúng||Sai
d) Điểm nằm trên mặt phẳng
thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
a) Đúng: Gọi là trung điểm
.
Ta có
b) Đúng: Ta có .
c) Đúng: Ta có .
Suy ra .
d) Sai: Gọi thỏa mãn
Suy ra .
Khi đó .
đạt giá trị nhỏ nhất khi và chỉ khi
là hình chiếu của
trên
suy ra
.
Suy ra .
Vậy .
Cho hình chóp
có đáy
là hình bình hành. Đặt
. Khẳng định nào sau đây đúng?
Gọi là tâm hình bình hành
. Khi đó:
Vậy .
Trong không gian
, cho hai điểm
. Tọa độ tâm đường tròn nội tiếp tam giác
là:
Ta có bài toán sau
Trong tam giác ABC, gọi I là tâm đường nội tiếp tam giác ABC ta có: với
Hình vẽ minh họa
Gọi A’ là chân đường phân giác kẻ từ A
Áp dụng công thức trong tam giác OMN ta có:
Vậy đáp án cần tìm là
Trong không gian
, cho
. Tọa độ vectơ
là:
Ta có:
Suy ra
Xác định tọa độ trọng tâm
của tam giác
, biết rằng
?
Tọa độ trọng tâm G của tam giác được xác định như sau:
Trong không gian hệ trục tọa độ
, cho các điểm
. Tìm tọa độ điểm
để tứ giác
là hình bình hành?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian với hệ trục tọa độ
, cho điểm
. Khẳng định nào sau đây đúng?
Vì tọa độ điểm có
nên
.
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Cho hình hộp
. Gọi
là tâm hình bình hành
và
là tâm của hình bình hành
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Vì I; K lần lượt là trung điểm của AF và CF suy ra IK là đường trung bình tam giác AFC suy ra IK // AC => IK // (ABCD)
Mà GF // (ABCD); suy ra
đồng phẳng.