Trong không gian
, cho hai điểm
,
, tọa độ điểm
thuộc trục
sao cho
thẳng hàng là
Vì điểm thuộc trục
nên
có tọa độ
.
Ta có ;
thẳng hàng
cùng phương
Vậy điểm .
Trong không gian
, cho hai điểm
,
, tọa độ điểm
thuộc trục
sao cho
thẳng hàng là
Vì điểm thuộc trục
nên
có tọa độ
.
Ta có ;
thẳng hàng
cùng phương
Vậy điểm .
Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực
, được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp
sao cho
và
là tam giác đều, đồng thời các cạnh
tạo với mặt phẳng
một góc có
(như hình vẽ).

Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)
Đáp án: 1333(N)
Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực , được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp
sao cho
và
là tam giác đều, đồng thời các cạnh
tạo với mặt phẳng
một góc có
(như hình vẽ).
Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)
Đáp án: 1333(N)
Đặt thì
.
Chú ý thêm là:
Ta có:
với
là trọng tâm
.
Vì hình chóp đều nên
Do đó , suy ra
.
Khi gắn các lực vào ta có:
Từ đó: .
Vậy lực căng mỗi sợi dây là .
Cho các mệnh đề sau:
(I) Vectơ
luôn đồng phẳng với hai vectơ
.
(II) Nếu có
và ít nhất một trong ba số
khác không thì ba vectơ
đồng phẳng.
(III) Nếu ba vectơ
không đồng phẳng và
thì
.
Hỏi có bao nhiêu mệnh đề đúng?
Do được biểu thị qua hai vectơ
nên (I) đúng.
Xét mệnh đề (II): Giả sử , khi đó:
Suy ra ba vectơ đồng phẳng. Vậy mệnh đề (II) đúng.
Do mệnh đề (III) tương đương với mệnh đề (II) nên mệnh đề (III) đúng.
Trong không gian cho hình hộp
có
. Gọi
là trung điểm của
,
là giao điểm của
và
. Mệnh đề nào sau đây đúng?
Hình vẽ minh họa
Vì I là trung điểm của B’C’ suy ra
Và K là giao điểm của nên theo định lí Talet
Ta có:
Khi đó
Vậy .
Trong không gian
, cho hai điểm
và
. Tìm tọa độ vectơ
?
Ta có:
Vậy đáp án đúng là: .
Trong không gian với hệ trục tọa độ
, cho các điểm
. Mệnh đề nào sau đây sai?
Hình vẽ minh họa
Ta có: suy ra
và
không vuông góc với nhau.
Vậy mệnh đề sai là: “”.
Cho tứ diện
. Gọi
là trọng tâm của tam giác
.Phân tích nào sau đây là đúng?
Ta có: là trọng tâm tam giác
khi
Cho hình lập phương
có cạnh bằng
. Tích vô hướng của hai vectơ
và
có giá trị bằng:
Ta có:
Cho tứ diện
có
và
. Gọi
lần lượt là trung điểm của
. Hãy xác định góc giữa các cặp vectơ
và
?
Hình vẽ minh họa
Xét tam giác ICD có I là trung điểm đoạn CD
Tam giác ABC có và
suy ra tam giác
đều suy ra
Tương tự ta cũng có tam giác ABD đều nên
Ta có:
Cho hình lập phương
có đường chéo
. Gọi
là tâm hình vuông
và điểm S thỏa mãn: ![]()
. Khi đó độ dài của đoạn
bằng
với
và
là phân số tối giản. Tính giá trị của biểu thức
.
Cho hình lập phương có đường chéo
. Gọi
là tâm hình vuông
và điểm S thỏa mãn:
. Khi đó độ dài của đoạn
bằng
với
và
là phân số tối giản. Tính giá trị của biểu thức
.
Cho hai điểm phân biệt
và một điểm
bất kì. Hãy xét xem mệnh đề nào sau đây là đúng?
Mệnh đề đúng: “Điểm thuộc đường thẳng
khi và chỉ khi
”.
Trong không gian cho hình hộp
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có: suy ra
đồng phẳng.
Trong không gian
, cho hai vectơ
và
. Tính tích vô hướng
?
Ta có:
Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là
và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 294,92 km.
Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 294,92 km.
Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất.
Khi đó, khoảng OH phải ngắn nhất, điều này xảy ra khi và chỉ khi OH ⊥ d.
Vì H ∈ d nên H( -688 + 91t ; -185 +75t; 8)
Ta có
OH ⊥ d ⟺ (- 688 + 91t).91 + (- 185 +75t).75 +8.0 =0
⟺13906t - 76483 = 0 ⟺
Suy ra
Khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó là:
Trong không gian với hệ trục tọa độ
, cho hai điểm
. Tìm giá trị tham số
để
?
Theo bài ra ta có:
Vậy đáp án cần tìm là .
Trong không gian với hệ trục tọa độ
, cho ba vectơ
,
và
. Chọn mệnh đề đúng?
Ta có: là mệnh đề đúng.
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian
, cho ba điểm
. Tọa độ chân đường phân giác của góc
trong tam giác
là:
Ta có:
Gọi là chân đường phân giác kẻ từ
lên
của tam giác
.
Suy ra
Ta có:
Trong không gian
, cho tọa độ các vectơ
;
và
. Mệnh đề nào sau đây sai?
Ta có: suy ra “
” là mệnh đề sai.
Trong không gian với hệ trục tọa độ
cho vectơ
có độ dài
, gọi
lần lượt là góc tạo bởi ba vectơ đơn vị
trên ba trục
và vectơ
. Khi đó tọa độ điểm
là:
Gọi và
Trong không gian
, cho hình chóp
có đáy
là hình thoi cạnh bằng 5, giao điểm của hai đường chéo
và
trùng với gốc tọa độ
. Các véc tơ
,
,
lần lượt cùng hướng với các véc tơ
,
,
và
,
. Gọi
là trung điểm cạnh
. Tọa độ của véc tơ
là
Hình vẽ minh họa
Ta có .
Khi đó .
Vì là trung điểm của
nên ta có
.
Trong không gian tọa độ
cho ba điểm
. Tìm tọa độ điểm
để tứ giác
là hình bình hành
Minh họa bằng hình vẽ sau:
Ta có .
là hình bình hành
.
Vậy .
Cho lăng trụ tam giác
. Đặt
. Gọi điểm
sao cho
,
là trọng tâm tứ diện
. Biểu diễn vectơ
qua các vectơ
. Đáp án nào dưới đây đúng?
Ta có G là trọng tâm của tứ diện nên
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Giả sử điểm
. Tính giá trị biểu thức
?
Gọi điểm
Ta có:
Mà
Suy ra suy ra
Vậy
Cho hai đường thẳng
và
lần lượt có vectơ chỉ phương là
và
. Nếu
là góc giữa hai đường thẳng
và
thì:
Do góc giữa hai đường thẳng bằng hoặc bù với góc giữa hai vectơ chỉ phương của chúng nên đáp án cần tìm là .
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có do đó
hay
Suy ra
Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Trong không gian cho hình hộp
. Hỏi bốn vectơ nào có giá cùng thuộc một mặt phẳng?
Hình vẽ minh họa
Từ hình vẽ ta thấy các vectơ có giá cùng thuộc một mặt phẳng
.
Trong không gian với hệ trục tọa độ
, cho hai véc tơ
và
. Tọa độ của véc tơ
tương ứng là:
Ta có: .
.
Suy ra .
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian
, cho
. Tọa độ điểm
là:
Ta có:
Trong không gian
, cho hình hộp chữ nhật
có
trùng với gốc tọa độ
Biết rằng
,
,
với
,
là các số dương và
. Tính thể tích lớn nhất của tứ diện
? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 3,16
Trong không gian , cho hình hộp chữ nhật
có
trùng với gốc tọa độ
Biết rằng
,
,
với
,
là các số dương và
. Tính thể tích lớn nhất của tứ diện
? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 3,16
Hình vẽ minh họa
Ta có: ,
,
,
nên
⇒ (do
);
;
.
Mà
⇒.
Xét hàm số trên
⇒
Bảng biến thiên:
Vậy .
Trong không gian
, cho
. Tọa độ điểm
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ
.
Trong không gian cho hình chóp
có đáy
là hình bình hành tâm
. Khi đó
bằng.
Do là tâm của hình bình hành
nên
.
Áp dụng quy tắc ba điểm, ta có
Trong không gian
, cho hai điểm
và
. Các khẳng định sau đúng hay sai?
a)
. Đúng||Sai
b)
. Sai||Đúng
c)
. Sai||Đúng
d) Tứ giác
là hình bình hành khi
. Đúng||Sai
Trong không gian , cho hai điểm
và
. Các khẳng định sau đúng hay sai?
a) . Đúng||Sai
b) . Sai||Đúng
c) . Sai||Đúng
d) Tứ giác là hình bình hành khi
. Đúng||Sai
a) Đúng
.
b) Sai
.
c) Sai
.
d) Đúng
Ta có: ,
là hình bình hành
Cho hình hộp
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
đúng vì
đúng vì
đúng vì
sai vì
Trong không gian
, cho hai điểm
và
. Trung điểm
của
có tọa độ là:
Ta có: M là trung điểm của AB nên tọa độ điểm M là:
Vậy đáp án đúng là: .
Trong không gian
, cho hai vectơ
và
. Tính
?
Ta có:
Trong không gian với hệ trục tọa độ
, cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a)
. Đúng||Sai
b) Ba điểm
thẳng hàng. Sai||Đúng
c) Điểm
là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm
trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
Trong không gian với hệ trục tọa độ , cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a) . Đúng||Sai
b) Ba điểm thẳng hàng. Sai||Đúng
c) Điểm là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
a) Đúng: Vì nên
.
b) Sai: Ta có .
Vì nên
không cùng phương suy ra
không thẳng hàng.
c) Đúng
Vì là điểm đối xứng với
qua
nên
là trung điểm của
.
Ta có suy ra
.
Do đó . Vậy
.
d) Đúng. Gọi là điểm thỏa mãn
.
Ta có:
Do không thay đổi nên
nhỏ nhất khi
nhỏ nhất hay
là hình chiếu của điểm
trên mặt phẳng
.
Do đó suy ra
.
Vậy .
Trong không gian
, cho
. Tọa độ vectơ
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ vectơ
.