Đề kiểm tra 45 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 2. Vectơ và hệ trục tọa độ trong không gian được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình hộp ABCD.A'B'C'D'. Điểm M được xác định bởi đẳng thức vectơ \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} + \overrightarrow{MD} + \overrightarrow{MA'} +
\overrightarrow{MB'} + \overrightarrow{MC'} +
\overrightarrow{MD'} = \overrightarrow{0}. Mệnh đề nào sau đây đúng?

    Gọi \left\{ \begin{matrix}
O = AC \cap BD \\
O' = A'C' \cap B'D' \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD} = \overrightarrow{0} \\
\overrightarrow{OA'} + \overrightarrow{OB'} +
\overrightarrow{OC'} + \overrightarrow{OD'} = \overrightarrow{0}
\\
\end{matrix} ight.

    Ta có:

    \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} +
\overrightarrow{MD}

    = \left( \overrightarrow{MO} +
\overrightarrow{OA} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OB} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OC} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OD} ight)

    = \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} +
4\overrightarrow{MO} = \overrightarrow{0} + 4\overrightarrow{MO} =
4\overrightarrow{MO}

    Tương tự ta cũng có: \overrightarrow{MA'} +
\overrightarrow{MB'} + \overrightarrow{MC'} +
\overrightarrow{MD'} = 4\overrightarrow{MO'}

    Từ đó suy ra

    \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} +
\overrightarrow{MA'} + \overrightarrow{MB'} +
\overrightarrow{MC'} + \overrightarrow{MD'} =
\overrightarrow{0}

    \Leftrightarrow 4\overrightarrow{MO} +
4\overrightarrow{MO'} = \overrightarrow{0} \Leftrightarrow 4\left(
\overrightarrow{MO} + \overrightarrow{MO'} ight) =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{MO} +
\overrightarrow{MO'} = \overrightarrow{0}

    Vậy điểm M cần tìm là trung điểm của OO'.

  • Câu 2: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' biết A(2;4;0),B(4;0;0),C( -
1;4;7),D'(6;8;10). Xác định tọa độ B’?

    Hình vẽ minh họa

    Giả sử điểm D(a;b;c),B'(a';b';c')

    Gọi O = AC \cap BD \Rightarrow O\left(
\frac{1}{2};4; - \frac{7}{2} ight) \Rightarrow \left\{ \begin{matrix}
a = - 3 \\
b = 8 \\
c = - 7 \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{DD'} = (9;0;17) \\
\overrightarrow{BB'} = (a' - 4;b';c') \\
\end{matrix} ight.. Vì ABCD.A'B'C'D' là hình hộp nên \overrightarrow{DD'} =
\overrightarrow{BB'}

    \Leftrightarrow \left\{ \begin{matrix}
a' = 13 \\
b' = 0 \\
c' = 17 \\
\end{matrix} ight.\  \Rightarrow B'(13;0;17)

  • Câu 3: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;0;0),B(1;1;0),C(0;1;1). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành?

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AD} =
\overrightarrow{BC}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = - 1 \\
y = 0 \\
z = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 0 \\
z = 1 \\
\end{matrix} ight.. Vậy tọa độ điểm D(0;0;1).

  • Câu 4: Thông hiểu

    Cho tứ diện ABCD. Gọi M;P lần lượt là trung điểm của AB;CD. Đặt \overrightarrow{AB} =
\overrightarrow{b};\overrightarrow{AC} =
\overrightarrow{c};\overrightarrow{AD} = \overrightarrow{d}. Khẳng định nào sau đây đúng?

    Ta có:

    \overrightarrow{MP} =
\frac{1}{2}\overrightarrow{MC} + \frac{1}{2}\overrightarrow{MD} =
\overrightarrow{MA} + \frac{1}{2}\overrightarrow{AC} +
\frac{1}{2}\overrightarrow{AD}

    = - \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AD} =
\frac{1}{2}\left( \overrightarrow{c} + \overrightarrow{d} -
\overrightarrow{b} ight)

    Vậy khẳng định đúng \overrightarrow{MP} =
\frac{1}{2}\left( \overrightarrow{c} + \overrightarrow{d} -
\overrightarrow{b} ight).

  • Câu 5: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A( -
3;0;0),B(0;2;0),D(0;0;1),A'(1;2;3). Tìm tọa độ điểm C'?

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (3;2;0) = 3\overrightarrow{i} +
2\overrightarrow{j} + 0.\overrightarrow{k} \\
\overrightarrow{AD} = (3;0;1) = 3.\overrightarrow{i} +
0.\overrightarrow{j} + 1.\overrightarrow{k} \\
\overrightarrow{AA'} = (4;2;3) = 4.\overrightarrow{i} +
2\overrightarrow{j} + 3\overrightarrow{k} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{AC'} =
10.\overrightarrow{i} + 4.\overrightarrow{j} +
4.\overrightarrow{k}A( -
3;0;0)

    \Rightarrow C'(7;4;4)

    Suy ra C'(7;4;4)

  • Câu 6: Thông hiểu

    Trong không gian Oxyz, cho tam giác ABCA(2, - 2,1),B( - 4,2,4),C( - 4,0,1). Các khẳng định dưới đây, khẳng định nào đúng, khẳng định nào sai?

    a) M\left( - 1,0,\frac{5}{2}
ight) là trung điểm của BC. Sai||Đúng

    b) G(-2,0,2) là trọng tâm tam giác ABC. Đúng||Sai

    c) N(8; - 6; - 2) là điểm đối xứng của B qua A. Đúng||Sai

    d) Tọa độ điểm E( - 14;8;11) thỏa B là trọng tâm tam giác AOE. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho tam giác ABCA(2, - 2,1),B( - 4,2,4),C( - 4,0,1). Các khẳng định dưới đây, khẳng định nào đúng, khẳng định nào sai?

    a) M\left( - 1,0,\frac{5}{2}
ight) là trung điểm của BC. Sai||Đúng

    b) G(-2,0,2) là trọng tâm tam giác ABC. Đúng||Sai

    c) N(8; - 6; - 2) là điểm đối xứng của B qua A. Đúng||Sai

    d) Tọa độ điểm E( - 14;8;11) thỏa B là trọng tâm tam giác AOE. Đúng||Sai

    a) Sai: Do tọa độ trung điểm M của đoạn thẳng AB

    M\left( \frac{- 4 + ( - 4)}{2};\frac{2 +0}{2};\frac{4 + 1}{2} ight) hay M\left( - 4;1;\frac{5}{2}ight)

    b) Đúng: Do tọa độ trọng tâm G của tam giác ABC

    G\left( \frac{2 + ( - 4) + ( -4)}{3};\frac{- 2 + 2 + 0}{3};\frac{1 + 4 + 1}{3} ight) hay G(- 2;0;2)

    c) Đúng: N là điểm đối xứng của B qua A thì B là trung điểm AN.

    \left\{ \begin{matrix}x_{B} = \dfrac{x_{A} + x_{N}}{2} \\y_{B} = \dfrac{y_{A} + y_{N}}{2} \\z_{B} = \dfrac{z_{A} + z_{N}}{2} \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x_{N} = 2x_{B} - x_{A} \\y_{N} = 2y_{B} - y_{A} \\z_{N} = 2z_{B} - z_{A} \\\end{matrix} ight.\  ight.

     \Leftrightarrow \left\{ \begin{matrix}
x_{N} = 8 \\
y_{N} = - 6 \\
z_{N} = - 2 \\
\end{matrix} ight. \Rightarrow N(8; - 6; - 2) 

    d) Đúng: B là trọng tâm tam giác AOE.

     \left\{ \begin{matrix}x_{B} = \dfrac{x_{A} + x_{O} + x_{E}}{3} \\y_{B} = \dfrac{y_{A} + y_{O} + y_{E}}{3} \\z_{B} = \dfrac{z_{A} + z_{O} + z_{E}}{3} \\\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x_{E} = 3x_{B} - x_{A} - x_{O} \\
y_{E} = 2y_{B} - y_{A} - y_{O} \\
z_{E} = 3z_{B} - z_{A} - z_{O} \\
\end{matrix} ight. 

    \Leftrightarrow \left\{ \begin{matrix}
x_{E} = - 14 \\
y_{E} = 8 \\
z_{E} = 11 \\
\end{matrix} \Rightarrow E( - 14;8;11) ight.

  • Câu 7: Nhận biết

    Trong không gian Oxyz, điểm đối xứng của điểm M(1;2;3) qua trục Ox có tọa độ là

    Gọi M' là điểm đối xứng của M(1;2;3) qua trục Ox.

    Hình chiếu vuông góc của M(1;2;3) lên trục OxH(1;0;0)

    Khi đó H(1;0;0) là trung điểm của M'M. Do đó tọa độ của M'(1;
- 2; - 3)

  • Câu 8: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A(1;0;1),B(2;1;2),D(1; -
1;1),C'(4;5; - 5). Tìm tọa độ điểm A'?

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}

    \Rightarrow \overrightarrow{AA'} =
\overrightarrow{AB} - \overrightarrow{AD} -
\overrightarrow{AC'}

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (1;1;1) = \overrightarrow{i} + \overrightarrow{j}
+ \overrightarrow{k} \\
\overrightarrow{AD} = (0; - 1;0) = 0.\overrightarrow{i} -
\overrightarrow{j} + 0.\overrightarrow{k} \\
\overrightarrow{AC'} = (3;5; - 6) = 3.\overrightarrow{i} +
5\overrightarrow{j} - 6\overrightarrow{k} \\
\end{matrix} ight. do đó \Rightarrow \overrightarrow{AA'} =
2\overrightarrow{i} + 5\overrightarrow{j} - 6\overrightarrow{k} hay \overrightarrow{AA'} = (3;5; -
6)

    Suy ra A'(3;5; - 6)

  • Câu 9: Thông hiểu

    Cho tứ diện đều ABCD, M là trung điểm cạnh BC. Khi đó \cos(AB;DM) bằng:

    Hình vẽ minh họa

    Giả sử cạnh tứ diện bằng a

    Tam giác BCD đều suy ra DM =
\frac{a\sqrt{3}}{2}

    Tam giác ABC đều suy ra AM =
\frac{a\sqrt{3}}{2}

    Ta có: \cos\left(\overrightarrow{AB};\overrightarrow{DM} ight) =\frac{\overrightarrow{AB}.\overrightarrow{DM}}{\left|\overrightarrow{AB} ight|.\left| \overrightarrow{DM} ight|} =\frac{\overrightarrow{AB}.\overrightarrow{DM}}{a.\dfrac{a\sqrt{3}}{2}}

    Mặt khác \overrightarrow{AB}.\overrightarrow{DM} =
\overrightarrow{AB}.\left( \overrightarrow{AM} - \overrightarrow{AD}
ight) = \overrightarrow{AB}.\overrightarrow{AM} -
\overrightarrow{AB}.\overrightarrow{AD}

    = \left| \overrightarrow{AB}
ight|.\left| \overrightarrow{AM} ight|.cos\left(
\overrightarrow{AB};\overrightarrow{AM} ight) - \left|
\overrightarrow{AB} ight|.\left| \overrightarrow{AD} ight|.cos\left(
\overrightarrow{AB};\overrightarrow{AD} ight)

    =
a.\frac{a\sqrt{3}}{2}.\frac{\sqrt{3}}{2} - a.a.\frac{1}{2} =
\frac{a^{2}}{4}

    \Rightarrow \cos\left(
\overrightarrow{AB};\overrightarrow{DM} ight) = \frac{\sqrt{3}}{6}
> 0

    \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{DM} ight) = (AB;DM)

    \Rightarrow \cos(AB;DM) =
\frac{\sqrt{3}}{6}

  • Câu 10: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz cho điểm M(x;y;z). Trong các mệnh đề sau, mệnh đề nào đúng?

    Nếu M' đối xứng với M qua mặt phẳng (Oxz) thì M'(x; - y;z).

    Nếu M' đối xứng với M qua trục Oy thì M'( - x;y; - z).

    Nếu M' đối xứng với M qua gốc tọa độ thì M'( - x; - y; - z).

    Vậy mệnh đề đúng là: “Nếu M' đối xứng với M qua mặt phẳng (Oxy) thì M'(x;y; - z)”.

  • Câu 11: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1;2;3)\overrightarrow{v} = ( - 5;1;1). Khẳng định nào sau đây đúng?

    Ta có: \overrightarrow{u}.\overrightarrow{v} = 1.( - 5) +2.1 + 3.1 = 0 \Rightarrow\overrightarrow{u}\bot\overrightarrow{v}

    Vậy khẳng định đúng là \overrightarrow{u}\bot\overrightarrow{v}

  • Câu 12: Thông hiểu

    Tích tất cả giá trị của a để góc tạo bởi đường thẳng \left\{ \begin{matrix}
x = 4 + at \\
y = 7 - 2t \\
\end{matrix}(t\mathbb{\in R}) ight. và đường thẳng 3x + 4y - 2 = 0 bằng 45^{0} là:

    Đáp án: -4||- 4

    Đáp án là:

    Tích tất cả giá trị của a để góc tạo bởi đường thẳng \left\{ \begin{matrix}
x = 4 + at \\
y = 7 - 2t \\
\end{matrix}(t\mathbb{\in R}) ight. và đường thẳng 3x + 4y - 2 = 0 bằng 45^{0} là:

    Đáp án: -4||- 4

    Gọi \varphi là góc giữa hai đường thẳng đã cho.

    Đường thẳng \left\{ \begin{matrix}
x = 4 + at \\
y = 7 - 2t \\
\end{matrix}\ \ \ \ (t\mathbb{\in R}) ight. có vectơ chỉ phương là \overrightarrow{u} = (a; -
2).

    Đường thẳng 3x + 4y - 2 = 0 có vectơ chỉ phương là \overrightarrow{v} = (4;
- 3).

    Ta có:

    \cos\varphi =
|cos(\overrightarrow{u},\overrightarrow{v})|

    \Leftrightarrow cos45^{0} =
\frac{|\overrightarrow{u}.\overrightarrow{v}|}{|\overrightarrow{u}|.|\overrightarrow{v}|}

    \Leftrightarrow \frac{1}{\sqrt{2}} =
\frac{|4a + 6|}{5\sqrt{a^{2} + 4}}

    \Leftrightarrow 5\sqrt{a^{2} + 4} =
\sqrt{2}|4a + 6|

    \Leftrightarrow 25a^{2} + 100 = 32a^{2}
+ 96a + 72

    \Leftrightarrow 7a^{2} + 96a - 28 = 0\Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{2}{7} \\a = - 14 \\\end{matrix}. ight.

    Vậy tích tất cả các giá trị của tham số a bằng -4.

  • Câu 13: Thông hiểu

    Cho hai điểm A(5;1;3)H(3; - 3; - 1). Tọa độ điểm A' đối xứng với A qua H là:

    Vì điểm A' đối xứng với A qua H nên H là trung điểm của AA'

    \Rightarrow \left\{ \begin{matrix}
x_{A'} = 2x_{H} - x_{A} = 1 \\
y_{A'} = 2y_{H} - y_{A} = - 7 \\
z_{A'} = 2z_{H} - z_{A} = 5 \\
\end{matrix} ight.\  \Rightarrow A'(1; - 7; - 5)

  • Câu 14: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A(0;0;0),B(a;0;0),D(0;2a;0),A'(0;0;2a) với a eq 0. Độ dài đoạn thẳng AC' là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (a;0;0) \\
\overrightarrow{AD} = (0;2a;0) \\
\overrightarrow{AA'} = (0;0;2a) \\
\end{matrix} ight.

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'} \Rightarrow \overrightarrow{AC'} =
(a;2a;2a)

    Suy ra AC' = \left|
\overrightarrow{AC'} ight| = \sqrt{a^{2} + (2a)^{2} + (2a)^{2}} =
3|a|

    Vậy độ dài AC’ bằng 3|a|.

  • Câu 15: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C'M là trung điểm của BB'. Đặt \overrightarrow{CA} =
\overrightarrow{a};\overrightarrow{CB} =
\overrightarrow{b};\overrightarrow{AA'} =
\overrightarrow{c}. Đẳng thức nào sau đây đúng?

    Ta có: M là trung điểm của BB’ khi đó \overrightarrow{AM} =
\frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AB'}

    Khi đó:

    \overrightarrow{AM} =
\frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AB'}

    = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{BB'}

    = \overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AA'} = \overrightarrow{AC} +
\overrightarrow{CB} + \frac{1}{2}\overrightarrow{AA'}

    = - \overrightarrow{a} +
\overrightarrow{b} + \frac{1}{2}\overrightarrow{c}

    Vậy đẳng thức đúng là \overrightarrow{AM}
= \overrightarrow{b} - \overrightarrow{a} +
\frac{1}{2}\overrightarrow{c}.

  • Câu 16: Nhận biết

    Trong không gian Oxyz, điểm nào sau đây thuộc mặt phẳng (Oyz)?

    Ta có: A(x;y;z) \in (Oyz) \Rightarrow x =
0 nên điểm cần tìm là Q(0;4; -
1).

  • Câu 17: Thông hiểu

    Cho hình chóp S.ABCSA = SB = SC\widehat{ASB} = \widehat{BSC} =
\widehat{CSA}. Góc giữa cặp vectơ \overrightarrow{SA}\overrightarrow{BC} là:

    Ta có: \overrightarrow{SA}.\overrightarrow{BC} =
\overrightarrow{SA}.\left( \overrightarrow{SC} - \overrightarrow{SB}
ight)

    =
\overrightarrow{SA}.\overrightarrow{SC} -
\overrightarrow{SA}.\overrightarrow{SB}

    = \left| \overrightarrow{SA}ight|.\left| \overrightarrow{SC} ight|.\cos\widehat{ASC} - \left|\overrightarrow{SA} ight|.\left| \overrightarrow{SB}ight|.\cos\widehat{ASB} = 0

    Vậy góc giữa cặp vectơ \overrightarrow{SA}\overrightarrow{BC}90^{0}.

  • Câu 18: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{OA} = 3\overrightarrow{i} -
\overrightarrow{k}, với \overrightarrow{i},\overrightarrow{k} là hai vectơ đơn vị trên hai trục tọa độ Ox,Oz, hai điểm B( - 1;2;3),C(1;4;1).

    a) A(3;0; - 1). Đúng||Sai

    b) Ba điểm A,B,C thẳng hàng. Sai||Đúng

    c) Điểm D(a;b;c) là điểm đối xứng của với A qua B. Khi đó a +
b + c = 6. Đúng||Sai

    d) Điểm M(m;n;p) trên mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất. Khi đó 2m - n + 2024p = 0. Đúng||Sai

    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{OA} = 3\overrightarrow{i} -
\overrightarrow{k}, với \overrightarrow{i},\overrightarrow{k} là hai vectơ đơn vị trên hai trục tọa độ Ox,Oz, hai điểm B( - 1;2;3),C(1;4;1).

    a) A(3;0; - 1). Đúng||Sai

    b) Ba điểm A,B,C thẳng hàng. Sai||Đúng

    c) Điểm D(a;b;c) là điểm đối xứng của với A qua B. Khi đó a +
b + c = 6. Đúng||Sai

    d) Điểm M(m;n;p) trên mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất. Khi đó 2m - n + 2024p = 0. Đúng||Sai

    a) Đúng: Vì \overrightarrow{OA} =
3\overrightarrow{i} - \overrightarrow{k} nên A(3;0; - 1).

    b) Sai: Ta có \overrightarrow{AB} =
(4;2;4),\overrightarrow{AC} = ( - 2;4;2).

    4:2:4 eq - 2:4:2 nên \overrightarrow{AB},\overrightarrow{AC} không cùng phương suy ra A,B,C không thẳng hàng.

    c) Đúng

    D là điểm đối xứng với A qua B nên B là trung điểm của AD.

    Ta có \left\{ \begin{matrix}
x_{D} = 2x_{B} - x_{A} = - 5 \\
y_{D} = 2y_{B} - y_{A} = 4 \\
z_{D} = 2z_{B} - z_{A} = 7. \\
\end{matrix} ight. suy ra D( -
5;4;7).

    Do đó a = - 5,b = 4,c = 7. Vậy a + b + c = 6.

    d) Đúng. Gọi I(x;y;z) là điểm thỏa mãn \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} =
\overrightarrow{0}.

    Ta có:

    \left\{ \begin{matrix}
3 - x - 1 - x + 1 - x = 0 \\
0 - y + 2 - y + 4 - y = 0 \\
- 1 - z + 3 - z + 1 - z = 0 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 2 \\
z = 1 \\
\end{matrix} \Rightarrow I(1;2;1) ight.

    MA^{2} + MB^{2} + MC^{2}

    =(\overrightarrow{MI} + \overrightarrow{IA})^{2} + (\overrightarrow{MI} +\overrightarrow{IB})^{2} + (\overrightarrow{MI} +\overrightarrow{IC})^{2}

    = 3MI^{2} + IA^{2} + IB^{2} + IC^{2} +2\overrightarrow{MI}(\overrightarrow{IA} + \overrightarrow{IB} +\overrightarrow{IC})

    = 3MI^{2} + IA^{2} + IB^{2} + IC^{2}

    Do IA^{2} + IB^{2} + IC^{2} không thay đổi nên MA^{2} + MB^{2} +
MC^{2} nhỏ nhất khi MI nhỏ nhất hay M là hình chiếu của điểm I trên mặt phẳng (Oxy).

    Do đó M(1;2;0) suy ra m=1,n=2,p=0.

    Vậy 2m - n + 2024p = 2 - 2 + 0 =
0.

  • Câu 19: Thông hiểu

    Cho hình hộp ABCD.EFGH. Gọi I là tâm hình bình hành ABEFK là tâm của hình bình hành BCGF. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Vì I; K lần lượt là trung điểm của AF và CF suy ra IK là đường trung bình tam giác AFC suy ra IK // AC => IK // (ABCD)

    Mà GF // (ABCD); BD \subset
(ABCD) suy ra \overrightarrow{BD};\overrightarrow{IK};\overrightarrow{GF} đồng phẳng.

  • Câu 20: Vận dụng

    Trong không gian Oxyz, cho ba điểm A(1;2; - 1),B(2; - 1;3),C( -
4;7;5). Tọa độ chân đường phân giác của góc B trong tam giác ABC là:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{BA} = ( - 1; - 3;4) \Rightarrow BA = \sqrt{26} \\
\overrightarrow{BC} = ( - 6;8;2) \Rightarrow BC = 2\sqrt{26} \\
\end{matrix} ight.

    Gọi D(a;b;c) là chân đường phân giác kẻ từ B lên AC của tam giác ABC.

    Suy ra \frac{DA}{DC} = \frac{BA}{BC}
\Rightarrow \overrightarrow{DA} = -
\frac{1}{2}\overrightarrow{DC}(*)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{DA} = (1 - x;2 - y; - 1 - z) \\
\overrightarrow{DC} = ( - 4 - x;7 - y;5 - z) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}1 - x = - \dfrac{1}{2}( - 4 - x) \\2 - y = - \dfrac{1}{2}(7 - y) \\- 1 - z = - \dfrac{1}{2}(5 - z) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - \dfrac{2}{3} \\y = \dfrac{11}{3} \\z = 1 \\\end{matrix} ight.\  \Rightarrow D\left( - \dfrac{2}{3};\dfrac{11}{3};1ight)

  • Câu 21: Vận dụng cao

    Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc 80^{0} và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc 60^{0} và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 124 N

    Đáp án là:

    Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc 80^{0} và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc 60^{0} và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 124 N

    Gọi hai lực tạo với nhau một góc 80^{\circ}\overrightarrow{F_{1}}\overrightarrow{F_{2}}, ta có \left| \overrightarrow{F_{1}} ight| = \left|
\overrightarrow{F_{2}} ight| = 50N.

    Lực còn lại là \overrightarrow{F_{3}}, ta có \left| \overrightarrow{F_{3}} ight| =
60N.

    Gọi \overrightarrow{F} là hợp lực của ba lực trên ta có

    \left| \overrightarrow{F} ight|^{2} =
\left( \overrightarrow{F_{1}} + \overrightarrow{F_{2}} +
\overrightarrow{F_{3}} ight)^{2}

    = \left| \overrightarrow{F_{1}}
ight|^{2} + \left| \overrightarrow{F_{2}} ight|^{2} + \left|
\overrightarrow{F_{3}} ight|^{2} + 2\lbrack\left|
\overrightarrow{F_{1}} ight|.\left| \overrightarrow{F_{2}}
ight|.cos\left( \overrightarrow{F_{1}},\overrightarrow{F_{2}}
ight)

    + \left| \overrightarrow{F_{1}}
ight|.\left| \overrightarrow{F_{3}} ight|.cos\left(
\overrightarrow{F_{1}},\overrightarrow{F_{3}} ight) + \left|
\overrightarrow{F_{3}} ight|.\left| \overrightarrow{F_{2}}
ight|.cos\left( \overrightarrow{F_{3}},\overrightarrow{F_{2}}
ight)brack

    = 50^{2} + 50^{2} + 60^{2} + 2\lbrack
50.50.cos80^{0}+ 50.60.cos60^{0} +
60.50.cos60^{0}brack \approx 15468.

    \Rightarrow |F| \approx 124 N

  • Câu 22: Thông hiểu

    Để theo dõi hành trình của một chiếc một chiếc máy bay, ta có thể lập hệ toạ độ Oxyz có gốc O trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là 890 km/h trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian Oxyz được lấy theo km.

    Quãng đường máy bay bay được với vận tốc 890km/h trong nửa giờ là:

    S = v.t = 890.\frac{1}{2} = 445\ \
(km).

    Vì máy bay duy trì hướng bay về phía nam nên toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ toạ độ đã chọn là (0;445;0).

  • Câu 23: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(1;1;0)B(0;1;2). Vectơ \overrightarrow{AB} có tọa độ là:

    Ta có:

    \overrightarrow{AB} = (0 - 1;1 - 1;2 -
0) = ( - 1;0; - 2)

    Vậy đáp án đúng là: \overrightarrow{AB} =
(1;2;3).

  • Câu 24: Nhận biết

    Biết rằng vectơ \overrightarrow{a} = (1;
- 2;0)\overrightarrow{b} =
2\overrightarrow{a}. Tìm tọa độ vectơ \overrightarrow{b}?

    Ta có: \overrightarrow{b} =
2\overrightarrow{a} = (2; - 4;0)

  • Câu 25: Nhận biết

    Cho tứ diện ABCD. Điểm N xác định bởi công thức \overrightarrow{AN} = \overrightarrow{AB} +
\overrightarrow{AC} - \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Ta có:

    \overrightarrow{AN} =
\overrightarrow{AB} + \overrightarrow{AC} -
\overrightarrow{AD}

    \Leftrightarrow \overrightarrow{AN} -
\overrightarrow{AB} = \overrightarrow{AC} - \overrightarrow{AD}
\Leftrightarrow \overrightarrow{BN} = \overrightarrow{AD}

    Vậy N là đỉnh thứ tư của hình bình hành CDBN.

  • Câu 26: Nhận biết

    Trong không gian Oxyz, cho các điểm A(2;1;4),B( - 2;2;6),C(6;0; -
1). Tích \overrightarrow{AB}.\overrightarrow{AC} bằng:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 4;1; - 10) \\
\overrightarrow{AC} = (4; - 1; - 5) \\
\end{matrix} ight.. Khi đó \overrightarrow{AB}.\overrightarrow{AC} =
33.

  • Câu 27: Nhận biết

    Tính chất nào sau đây sai?

    Tính chất sai là: \overrightarrow{a} -
\overrightarrow{b} = \overrightarrow{b} -
\overrightarrow{a}

  • Câu 28: Vận dụng

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm M(1000;600;14) đến điểm N trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng Q(1400;800;16). Xác định tọa độ vị trí điểm N. (Kết quả ghi dưới dạng số thập phân nếu có)

    Đáp án: N(1300; 750; 15,5)

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm M(1000;600;14) đến điểm N trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng Q(1400;800;16). Xác định tọa độ vị trí điểm N. (Kết quả ghi dưới dạng số thập phân nếu có)

    Đáp án: N(1300; 750; 15,5)

    Gọi N(x;y;z) là tọa độ của máy bay sau 10 phút tiếp theo.

    \overrightarrow{MQ} =
(400;200;2).

    \overrightarrow{NQ} = (1400 - x;800 -
y;16 - z).

    Vì máy bay giữ nguyên hướng bay nên \overrightarrow{MQ}\overrightarrow{NQ} cùng hướng.

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M đến Q gấp 4 lần thời gian bay từ N đến Q nên MQ =
4NQ.

    Suy ra: \overrightarrow{MQ} =
4\overrightarrow{NQ}

    \Leftrightarrow \left\{ \begin{matrix}
400 = 4(1400 - x) \\
200 = 4(800 - y) \\
2 = 4(16 - z) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1300 \\
y = 750 \\
z = 15,5 \\
\end{matrix} ight.

    \Rightarrow N(1300;750;15,5)

  • Câu 29: Vận dụng cao

    Trong không gian Oxyz, cho \Delta ABCA(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Gọi H(a;b;c) là chân đường cao hạ từ đỉnh A. Tính (a + b + c).19.

    Đáp án: -17||- 17

    Đáp án là:

    Trong không gian Oxyz, cho \Delta ABCA(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Gọi H(a;b;c) là chân đường cao hạ từ đỉnh A. Tính (a + b + c).19.

    Đáp án: -17||- 17

    Ta có \overrightarrow{AH} = (a;b;c -
1),\overrightarrow{BC} = (3;3; - 1),\overrightarrow{BH} = (a + 1;b +
2;c).

    H là chân đường cao nên ta có

    \left\{ \begin{matrix}\overrightarrow{AH}\bot\overrightarrow{BC} \\\overrightarrow{BH} = k\overrightarrow{BC} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}3a + 3b - (c - 1) = 0 \\\dfrac{a + 1}{3} = \dfrac{b + 2}{3} = \dfrac{c}{- 1} = k \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
a = 3k - 1 \\
b = 3k - 2 \\
c = - k \\
\end{matrix} ight.3(3k - 1)
+ 3(3k - 2) - ( - k - 1) = 0 \Leftrightarrow k =
\frac{8}{19}.

    Do đó H\left( \frac{5}{19}; -
\frac{14}{19}; - \frac{8}{19} ight)

    Vậy \left( \frac{5}{19} - \frac{14}{19} -
\frac{8}{19} ight).19 = - 17.

  • Câu 30: Thông hiểu

    Cho lăng trụ tam giác ABC.A'B'C'. Đặt \overrightarrow{AA'} =
\overrightarrow{a};\overrightarrow{AB} =
\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Biểu diễn vectơ \overrightarrow{B'C} qua các vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}. Chọn đáp án đúng?

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{B'C} =
\overrightarrow{B'C'} + \overrightarrow{BB'} =
\overrightarrow{BC} - \overrightarrow{AA'}

    = - \overrightarrow{AA'} +
\overrightarrow{BA} + \overrightarrow{AC} = - \overrightarrow{AA'} -
\overrightarrow{AB} + \overrightarrow{AC} = - \overrightarrow{a} -
\overrightarrow{b} + \overrightarrow{c}

    Vậy đáp án đúng là: \overrightarrow{B'C} = - \overrightarrow{a} -
\overrightarrow{b} + \overrightarrow{c}.

  • Câu 31: Nhận biết

    Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{EG}?

    Hình vẽ minh họa

    \overrightarrow{EG} =
\overrightarrow{AC} (AEGC là hình chữ nhật) nên \left(
\overrightarrow{AB};\overrightarrow{EG} ight) = \left(
\overrightarrow{AB};\overrightarrow{AC} ight) = \widehat{BAC} =
45^{0}(AEGC là hình vuông)

  • Câu 32: Nhận biết

    Mệnh đề nào sau đây sai?

    Hai vectơ có độ dài bằng nhau và cùng hướng thì hai vectơ đó bằng nhau.

  • Câu 33: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho lăng trụ tam giác ABC.A'B'C' có tọa độ các điểm B( - 1;2;1),B'( -
2;1;0),C'(5;3;2). Xác định tọa độ điểm C?

    Hình vẽ minh họa

    Gọi tọa độ điểm C(x;y;z)

    ABC.A'B'C' là hình lăng trụ nên

    \overrightarrow{CC'} =
\overrightarrow{BB'} \Leftrightarrow \left\{ \begin{matrix}
5 - x = - 2 - ( - 1) \\
3 - y = 1 - 2 \\
2 - z = 0 - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 6 \\
y = 4 \\
z = 3 \\
\end{matrix} ight.

    Vậy tọa độ C(6;4;3).

  • Câu 34: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (1; -
2;0)\overrightarrow{b} = ( -
2;3;1). Khẳng định nào sau đây sai?

    Ta có: \overrightarrow{a} +
\overrightarrow{b} = ( - 1;1;1) suy ra “\overrightarrow{a} + \overrightarrow{b} = ( - 1;1;
- 1)” là khẳng định sai.

  • Câu 35: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz cho \overrightarrow{a} = (2; - 1;3),\overrightarrow{b}
= (1; - 3;2),\overrightarrow{c} = (3;2; - 4). Gọi \overrightarrow{x} là vectơ thỏa mãn \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = 4 \\
\overrightarrow{x}.\overrightarrow{b} = - 5 \\
\overrightarrow{x}.\overrightarrow{c} = 8 \\
\end{matrix} ight.. Tìm tọa độ \overrightarrow{x}?

    Giả sử \overrightarrow{x} =
(x;y;z), khi đó:

    \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = 4 \\
\overrightarrow{x}.\overrightarrow{b} = - 5 \\
\overrightarrow{x}.\overrightarrow{c} = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2x - y + 3z = 4 \\
x - 3y + 2z = - 5 \\
3x + 2y - 4z = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 3 \\
z = 1 \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{x} =
(2;3;1)

  • Câu 36: Nhận biết

    Trong không gian cho ba vectơ \overrightarrow{u};\overrightarrow{v};\overrightarrow{w} có giá không cùng nằm trên một mặt phẳng. Mệnh đề nào sau đây đúng?

    Vì ba vectơ \overrightarrow{u};\overrightarrow{v};\overrightarrow{w} có giá không cùng nằm trên một mặt phẳng nên

    Giá các vectơ \overrightarrow{u} +
\overrightarrow{v};\overrightarrow{v};\overrightarrow{w} không cùng nằm trên một mặt phẳng.

    Giá các vectơ \overrightarrow{u} +
\overrightarrow{v};\overrightarrow{v};2\overrightarrow{w} không cùng nằm trên một mặt phẳng.

    Giá các vectơ \overrightarrow{u} +
\overrightarrow{v}; - 2\overrightarrow{u};2\overrightarrow{w} không cùng nằm trên một mặt phẳng.

    Giá của các vectơ 2\left(
\overrightarrow{u} + \overrightarrow{v} ight); - \overrightarrow{u}; -
\overrightarrow{v} cùng nằm trên một mặt phẳng

    Vậy mệnh đề đúng là: “Giá các vectơ \overrightarrow{u} + \overrightarrow{v}; -
2\overrightarrow{u};2\overrightarrow{w} không cùng nằm trên một mặt phẳng.”

  • Câu 37: Thông hiểu

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng (P):y = 0, (Q):\sqrt{3}x - y - 2024 = 0. Xét các vectơ \overrightarrow{n_{1}} =
(0;1;0), \overrightarrow{n_{2}} =
\left( \sqrt{3}; - 1;0 ight).

    a) \overrightarrow{n_{1}} là một vectơ pháp tuyến của mặt phẳng (P). Đúng||Sai

    b) \overrightarrow{n_{2}} không là vectơ pháp tuyến của mặt phẳng (Q). Sai||Đúng

    c) \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = -
1. Đúng||Sai

    d) Góc giữa hai mặt phẳng (P)(Q) bằng 30{^\circ}. Sai||Đúng

    Đáp án là:

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng (P):y = 0, (Q):\sqrt{3}x - y - 2024 = 0. Xét các vectơ \overrightarrow{n_{1}} =
(0;1;0), \overrightarrow{n_{2}} =
\left( \sqrt{3}; - 1;0 ight).

    a) \overrightarrow{n_{1}} là một vectơ pháp tuyến của mặt phẳng (P). Đúng||Sai

    b) \overrightarrow{n_{2}} không là vectơ pháp tuyến của mặt phẳng (Q). Sai||Đúng

    c) \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = -
1. Đúng||Sai

    d) Góc giữa hai mặt phẳng (P)(Q) bằng 30{^\circ}. Sai||Đúng

    a) \overrightarrow{n_{1}} là một vectơ pháp tuyến của mặt phẳng (P).

    Ta có: (P):y = 0 \Leftrightarrow 0x + 1y
+ 0z = 0 có vectơ pháp tuyến \overrightarrow{n_{1}} = (0;1;0).

    b) \overrightarrow{n_{2}} là một vectơ pháp tuyến của mặt phẳng (P).

    Ta có: (Q):\sqrt{3}x - y - 2024 = 0
\Leftrightarrow \sqrt{3}x - y + 0z - 2024 = 0 = 0 có vectơ pháp tuyến \overrightarrow{n_{2}} = \left(
\sqrt{3}; - 1;0 ight).

    c) \overrightarrow{n_{1}}.\overrightarrow{n_{2}} =
0.\sqrt{3} + 1.( - 1) + 0.0 = - 1.

    d) Gọi \varphi là góc giữa hai mặt phẳng (P)(Q)

    \cos\varphi = \left| \cos\left(
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ight) ight| =
\frac{\left| \overrightarrow{n_{1}}.\overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight|.\left|
\overrightarrow{n_{2}} ight|}

    = \frac{| - 1|}{\sqrt{0^{2} + 1^{2} +
0^{2}}.\sqrt{\left( \sqrt{3} ight)^{2} + ( - 1)^{2} + 0^{2}}} =
\frac{1}{2} \Rightarrow \varphi = 60{^\circ}.

  • Câu 38: Nhận biết

    Trong không gian tọa độ Oxyz, hình chiếu vuông góc của điểm M(1; - 3; -
5) trên mặt phẳng (Oyz) là:

    Hình chiếu vuông góc của điểm M(1; - 3; -
5) trên mặt phẳng (Oyz) là điểm có tọa độ (0; - 3; - 5).

  • Câu 39: Vận dụng

    Gọi M;N lần lượt là trung điểm của các cạnh AC;BD của tứ diện ABCD. Gọi I là trung điểm của đoạn MN. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{IA} + (2k - 1)\overrightarrow{IB}+ k\overrightarrow{IC} + \overrightarrow{ID} =\overrightarrow{0}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi M;N lần lượt là trung điểm của các cạnh AC;BD của tứ diện ABCD. Gọi I là trung điểm của đoạn MN. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{IA} + (2k - 1)\overrightarrow{IB}+ k\overrightarrow{IC} + \overrightarrow{ID} =\overrightarrow{0}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 40: Thông hiểu

    Tìm m để góc giữa hai vectơ \overrightarrow{u} = \left(1;\log_{3}5;\log_{m}2 ight),\overrightarrow{v} = \left( 3;\log_{5}3;4ight) là góc nhọn.

    Để \left( {\widehat {\vec u,\vec v}} ight) < {90^0} \Rightarrow \cos \left( {\widehat {\vec u,\vec v}} ight) > 0

    \Rightarrow\overrightarrow{u}.\overrightarrow{v} > 0 \Leftrightarrow 3 +\log_{3}5.\log_{5}3 + 4\log_{m}2 > 0

    \Leftrightarrow 4 + 4log_{m}2 > 0
\Leftrightarrow log_{m}2 > - 1 \Leftrightarrow \left\lbrack
\begin{matrix}
m > 1 \\
m < \frac{1}{2} \\
\end{matrix} ight..

    Kết hợp điều kiện m > 0 \Rightarrow \left[ {\begin{array}{*{20}{l}}
  {m > 1} \\ 
  {0 < m < \frac{1}{2}} 
\end{array}} ight.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 2 Vectơ và hệ trục tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 42 lượt xem
Sắp xếp theo