Cho biểu đồ

Tính chiều cao trung bình của mẫu số liệu đã cho?
Ta có:
Chiều cao | [160; 164) | [164; 168) | [168; 172) | [172; 176) | [176; 180) |
Số học sinh | 3 | 5 | 8 | 4 | 1 |
Giá trị đại diện | 162 | 166 | 170 | 174 | 178 |
Chiều cao trung bình là:
Cho biểu đồ

Tính chiều cao trung bình của mẫu số liệu đã cho?
Ta có:
Chiều cao | [160; 164) | [164; 168) | [168; 172) | [172; 176) | [176; 180) |
Số học sinh | 3 | 5 | 8 | 4 | 1 |
Giá trị đại diện | 162 | 166 | 170 | 174 | 178 |
Chiều cao trung bình là:
Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:
Thời gian (phút) | [6; 7) | [7; 8) | [8; 9) | [9; 10) | [10; 11) |
Học sinh lớp 12A | 8 | 10 | 13 | 10 | 9 |
Học sinh lớp 12B | 4 | 12 | 17 | 14 | 3 |
Nếu so sánh theo độ lệch chuẩn thì học sinh lớp nào có tốc độ làm bài ít đồng đều hơn?
Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:
Thời gian (phút) | [6; 7) | [7; 8) | [8; 9) | [9; 10) | [10; 11) |
Học sinh lớp 12A | 8 | 10 | 13 | 10 | 9 |
Học sinh lớp 12B | 4 | 12 | 17 | 14 | 3 |
Nếu so sánh theo độ lệch chuẩn thì học sinh lớp nào có tốc độ làm bài ít đồng đều hơn?
Kiểm lâm thực hiện đo đường kính của một số cây thân gỗ tại hai khu vực A và B thu được kết quả như sau:
|
Đường kính (cm) |
[30; 32) |
[32; 34) |
[34; 36) |
[36; 38) |
[38; 40) |
|
A |
25 |
28 |
20 |
10 |
7 |
|
B |
22 |
27 |
19 |
18 |
14 |
Đường kính trung bình của cây tại hai khu vực A và B lần lượt là:
Ta có:
|
Đường kính (cm) |
[30; 32) |
[32; 34) |
[34; 36) |
[36; 38) |
[38; 40) |
|
Giá trị đại diện |
31 |
33 |
35 |
37 |
39 |
|
A |
25 |
28 |
20 |
10 |
7 |
|
B |
22 |
27 |
19 |
18 |
14 |
Suy ra
Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:
|
Tổng thu nhập |
[200; 250) |
[250; 300) |
[300; 350) |
[350; 400) |
[400; 450) |
|
Số hộ gia đình |
24 |
62 |
34 |
21 |
9 |
Chọn kết luận đúng? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Ta có:
|
Tổng thu nhập |
[200; 250) |
[250; 300) |
[300; 350) |
[350; 400) |
[400; 450) |
|
Số hộ gia đình |
24 |
62 |
34 |
21 |
9 |
|
Tần số tích lũy |
24 |
86 |
120 |
141 |
150 |
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ nhất là [250; 300)
Do đó:
Khi đó tứ phân vị thứ nhất là:
=> Nhóm chứa tứ phân vị thứ ba là [300; 350)
Do đó:
Khi đó tứ phân vị thứ ba là:
Vậy
Cân nặng (đơn vị: kg) của một số lợn con mới sinh thuộc hai giống A và B được cho ở bảng sau.
|
Cân nặng |
[1,0; 1,1) |
[1,1; 1,2) |
[1,2; 1,3) |
[1,3; 1,4) |
|
Giống A |
8 |
28 |
32 |
17 |
|
Giống B |
13 |
14 |
24 |
14 |
Chọn đáp án có khẳng định đúng?
Đối với lợn con giống A
|
Cân nặng |
[1,0; 1,1) |
[1,1; 1,2) |
[1,2; 1,3) |
[1,3; 1,4) |
|
Giống A |
8 |
28 |
32 |
17 |
|
Tần số tích lũy |
8 |
36 |
68 |
85 |
Cỡ mẫu
Ta có:
=> Nhóm chứa là [1,1; 1,2)
Khi đó ta tìm được các giá trị:
Ta có:
=> Nhóm chứa là [1,2; 1,3)
Khi đó ta tìm được các giá trị:
.
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm A là
Đối với lợn con giống B
|
Cân nặng |
[1,0; 1,1) |
[1,1; 1,2) |
[1,2; 1,3) |
[1,3; 1,4) |
|
Giống B |
13 |
14 |
24 |
14 |
|
Tần số tích lũy |
13 |
27 |
51 |
65 |
Cỡ mẫu
Ta có:
=> Nhóm chứa là [1,1; 1,2)
Khi đó ta tìm được các giá trị:
Ta có:
=> Nhóm chứa là [1,2; 1,3)
Khi đó ta tìm được các giá trị:
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm B là
Ta thấy nên cân nặng của lợn con mới sinh thuộc giống A đồng đều hơn cân nặng của lợn con mới sinh thuộc giống B.
Cho biểu đồ thống kê thời gian tập thể dục buổi sáng của hai người A và B

Gọi khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của A và B lần lượt là
. Chọn kết luận đúng?
Ta có:
|
Đối tượng |
[15; 20) |
[20; 25) |
[25; 30) |
[30; 35) |
[35; 40) |
|
A |
5 |
12 |
8 |
3 |
2 |
|
Tần số tích lũy |
5 |
17 |
25 |
28 |
30 |
Cỡ mẫu
=> Nhóm chứa là: [20; 25)
Khi đó ta tìm được các giá trị:
Cỡ mẫu
=> Nhóm chứa là [25; 30)
Khi đó ta tìm được các giá trị:
.
Vậy khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của A là:
.
|
Đối tượng |
[15; 20) |
[20; 25) |
[25; 30) |
[30; 35) |
[35; 40) |
|
B |
0 |
25 |
5 |
0 |
0 |
|
Tần số tích lũy |
0 |
25 |
30 |
0 |
0 |
Cỡ mẫu
=> Nhóm chứa là: [20; 25)
Khi đó ta tìm được các giá trị:
Cỡ mẫu
=> Nhóm chứa là: [20; 25)
Khi đó ta tìm được các giá trị:
.
Vậy khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của B là:
.
Vậy kết luận đúng là: .
Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong Bảng 1.
|
Nhóm |
Giá trị đại diện |
Tần số |
|
[40;45) [40;45) [40;45) [40;45) [40;45) [40;45) |
42,5 47,5 52,5 57,5 62,5 67,5 |
4 14 8 10 6 2 |
|
N = 44 |
||
|
Bảng 1 |
||
Phương sai của mẫu số liệu ghép nhóm trên là:
Số trung bình cộng của mẫu số liệu ghép nhóm là:
Phương sai của mẫu số liệu ghép nhóm là:
Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong bảng sau:
|
Nhóm |
Tần số |
|
[40; 45) |
4 |
|
[45; 50) |
14 |
|
[50; 55) |
8 |
|
[55; 60) |
10 |
|
[60; 65) |
6 |
|
[65; 70) |
2 |
Phương sai của mẫu số liệu ghép nhóm trên là:
Ta có:
|
Nhóm |
Giá trị đại diện |
Tần số |
|
[40; 45) |
42,5 |
4 |
|
[45; 50) |
47,5 |
14 |
|
[50; 55) |
52,5 |
8 |
|
[55; 60) |
57,5 |
10 |
|
[60; 65) |
62,5 |
6 |
|
[65; 70) |
67,5 |
2 |
Số trung bình cộng của mẫu số liệu ghép nhóm là:
Phương sai của mẫu số liệu ghép nhóm là:
Thời gian hoàn thành bài kiểm tra môn Toán của các bạn trong lớp 12A được cho trong bảng sau:
|
Thời gian (phút) |
[25; 30) |
[30; 35) |
[35; 40) |
[40; 45) |
|
Số học sinh |
9 |
17 |
8 |
6 |
Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 7,2
Thời gian hoàn thành bài kiểm tra môn Toán của các bạn trong lớp 12A được cho trong bảng sau:
|
Thời gian (phút) |
[25; 30) |
[30; 35) |
[35; 40) |
[40; 45) |
|
Số học sinh |
9 |
17 |
8 |
6 |
Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 7,2
Cỡ mẫu là . Gọi
là thời gian hoàn thành bài kiểm tra môn Toán của 40 học sinh và giả sử rằng dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.
Tứ phân vị thứ nhất của mẫu số liệu gốc là nên nhóm chứa tứ phân vị thứ nhất là nhóm
và ta có:
Tứ phân vị thứ ba của mẫu số liệu gốc là nên nhóm chứa tứ phân vị thứ ba là nhóm
và ta có:
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là .
Cho mẫu số liệu ghép nhóm như sau:
|
Nhóm |
[14; 15) |
[15; 16) |
[16; 17) |
[17; 18) |
[18; 19) |
|
Tần số |
1 |
3 |
8 |
6 |
2 |
Xét tính đúng sai của các khẳng định sau:
a) Giá trị đại diện của nhóm [15;16) là 15,5. Đúng||Sai
b) Số trung bình của mẫu số liệu trên là 16,25. Sai||Đúng
c) Phương sai của mẫu số liệu trên là 0,9875. Đúng||Sai
d) Độ lệch chuẩn của mẫu số liệu trên là
. Đúng||Sai
Cho mẫu số liệu ghép nhóm như sau:
|
Nhóm |
[14; 15) |
[15; 16) |
[16; 17) |
[17; 18) |
[18; 19) |
|
Tần số |
1 |
3 |
8 |
6 |
2 |
Xét tính đúng sai của các khẳng định sau:
a) Giá trị đại diện của nhóm [15;16) là 15,5. Đúng||Sai
b) Số trung bình của mẫu số liệu trên là 16,25. Sai||Đúng
c) Phương sai của mẫu số liệu trên là 0,9875. Đúng||Sai
d) Độ lệch chuẩn của mẫu số liệu trên là . Đúng||Sai
a) Đúng: Giá trị đại diện của nhóm [15;16) là
b) Sai: Số trung bình của mẫu số liệu trên là:
c) Đúng: Phương sai của mẫu số liệu trên là
d) Đúng: Độ lệch chuẩn của mẫu số liệu trên là .
Xác định khoảng biến thiên của mẫu số liệu ghép nhóm sau đây:
|
Thời gian (s) |
Số vận động viên (người) |
|
(50,5; 55,5] |
2 |
|
(55,5; 60,5] |
7 |
|
(60,5; 65,5] |
8 |
|
(65,5; 70,5] |
4 |
Khoảng biến thiên của mẫu số liệu ghép nhóm là
Cho bảng tần số ghép nhóm dưới đây:
|
Độ tuổi |
[50; 55) |
[55; 60) |
[60; 65) |
[65; 70) |
[70; 75) |
[75; 80) |
[80; 85) |
[85; 90) |
|
Tần số |
4 |
7 |
4 |
6 |
16 |
12 |
2 |
0 |
Hãy xác định khoảng biến thiên của mẫu số liệu ghép nhóm trên?
Do nhóm số liệu [85; 90) có tần số là 0 nên ta sẽ chỉ xét đến nhóm số liệu [80; 85).
Do đó: R = 85 – 50 = 35.
Thống kê độ tuổi khách hàng đến xem phim trong một phòng của rạp chiếu phim sau 1 giờ được ghi lại trong bảng sau:
|
Độ tuổi |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
|
Số khách hàng |
6 |
12 |
16 |
7 |
2 |
Xét tính đúng sai của các khẳng định sau:
a) Giá trị đại diện nhóm [50; 60) là 55. Đúng||Sai
b) Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50; 60). Đúng||Sai
c) Nhóm chứa mốt là nửa khoảng [30; 40). Đúng||Sai
d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 31 tuổi. Sai||Đúng
Thống kê độ tuổi khách hàng đến xem phim trong một phòng của rạp chiếu phim sau 1 giờ được ghi lại trong bảng sau:
|
Độ tuổi |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
|
Số khách hàng |
6 |
12 |
16 |
7 |
2 |
Xét tính đúng sai của các khẳng định sau:
a) Giá trị đại diện nhóm [50; 60) là 55. Đúng||Sai
b) Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50; 60). Đúng||Sai
c) Nhóm chứa mốt là nửa khoảng [30; 40). Đúng||Sai
d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 31 tuổi. Sai||Đúng
a) Đúng: Giá trị đại diện nhóm [50;60) là 55
b) Đúng: Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50;60) .
c) Đúng: Nhóm chứa mốt là nửa khoảng [30;40).
d) Sai: Khi đó
Ta có mốt là:
Vậy độ tuổi được dự báo là thích xem phim đó nhiều nhất là 33 tuổi.
Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:
|
42 |
43,4 |
43,4 |
46,5 |
46,7 |
|
46,8 |
47,5 |
47,7 |
48,1 |
48,4 |
|
50,8 |
51,1 |
52,7 |
53,9 |
54,8 |
|
57,6 |
57,5 |
59,6 |
60,3 |
61,1 |
Lập bảng tần số ghép nhóm với nhóm đầu [42; 46) và độ dài mỗi nhóm bằng 4. Tìm tốc độ trung bình của mẫu dữ liệu ghép nhóm?
Ta lập được bảng tần số ghép nhóm như sau:
|
Tốc độ |
[42; 46) |
[46; 50) |
[50; 54) |
[54; 58) |
[58; 62) |
|
Giá trị đại diện |
44 |
48 |
52 |
56 |
60 |
|
Số xe |
3 |
7 |
4 |
3 |
3 |
Tốc độ trung bình là:
Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong Bảng 18.

Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là:
Số trung bình cộng của mẫu số liệu ghép nhóm là:
Phương sai của mẫu số liệu ghép nhóm là:
Vậy độ lệch chuẩn của mẫu số liệu ghép nhóm là:
Kết quả đo chiều cao của học sinh lớp 12A được ghi lại trong bảng như sau:
|
Chiều cao |
[160; 164) |
[164; 168) |
[168; 172) |
[172; 176) |
[176; 180) |
|
Số học sinh |
3 |
5 |
8 |
4 |
1 |
Độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho là:
Ta có:
|
Chiều cao |
[160; 164) |
[164; 168) |
[168; 172) |
[172; 176) |
[176; 180) |
|
Số học sinh |
3 |
5 |
8 |
4 |
1 |
|
Giá trị đại diện |
162 |
166 |
170 |
174 |
178 |
Chiều cao trung bình là:
Phương sai của mẫu số liệu ghép nhóm là:
Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là: .
Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

Có bao nhiêu máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ?
Có 6 máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ.
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
|
Số tiền (nghìn đồng) |
Số người |
|
[0; 50) |
5 |
|
[50; 100) |
12 |
|
[100; 150) |
23 |
|
[150; 200) |
17 |
|
[200; 250) |
3 |
Tính
?
Ta có:
|
Số tiền (nghìn đồng) |
Số người |
Tần số tích lũy |
|
[0; 50) |
5 |
5 |
|
[50; 100) |
12 |
17 |
|
[100; 150) |
23 |
40 |
|
[150; 200) |
17 |
57 |
|
[200; 250) |
3 |
60 |
|
|
N = 60 |
|
Cỡ mẫu là:
=> Nhóm chứa tứ phân vị thứ ba là [150; 200) (vì 45 nằm giữa hai tần số tích lũy 40 va 57)
Khi đó
Cho bảng thống kê thời gian (đơn vị: phút) và số ngày tập thể dục của hai người A và B trong 30 ngày như sau:
|
Thời gian |
[15; 20) |
[25; 30) |
[30; 35) |
|
Số ngày tập của A |
10 |
15 |
5 |
|
Số ngày tập của B |
9 |
21 |
0 |
Chọn kết luận đúng dưới đây?
Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập của A là: 35 – 15 = 20 (phút).
Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập của B là: 30 – 15 = 15 (phút).
Do đó căn cứ theo khoảng biến thiên thì thời gian tập của A có độ phân tán lớn hơn.
Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:
|
341,4 |
187,1 |
242,2 |
522,9 |
251,4 |
|
432,2 |
200,7 |
388,6 |
258,4 |
288,5 |
|
298,1 |
413,5 |
413,5 |
332 |
421 |
|
475 |
400 |
305 |
520 |
147 |
Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng biến thiên của mẫu số liệu ghép nhóm?
Ta có:
|
Tổng lượng mưa (mm) |
[140; 240) |
[240; 340) |
[340; 440) |
[440; 540) |
|
Số năm |
3 |
7 |
7 |
3 |
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm là .
Cho mẫu số liệu ghép nhóm cho bởi bảng sau:
|
Nhóm |
[0; 10) |
[10; 20) |
[20; 30) |
[30; 40) |
|
Tần số |
3 |
7 |
2 |
9 |
Khoảng biến thiên của mẫu số liệu ghép nhóm này là
Khoảng biến thiên của mẫu số liệu ghép nhóm là:
R = 40 – 0 = 40.
Cho biểu đồ

Hoàn thảnh bảng số liệu theo mẫu sau:
|
Chiều cao |
[160; 164) |
[164; 168) |
[168; 172) |
[172; 176) |
[176; 180) |
|
Số học sinh |
3 |
5 |
8 |
4 |
1 |
|
Giá trị đại diện |
162 |
166 |
170 |
174 |
178 |
Cho biểu đồ
Hoàn thảnh bảng số liệu theo mẫu sau:
|
Chiều cao |
[160; 164) |
[164; 168) |
[168; 172) |
[172; 176) |
[176; 180) |
|
Số học sinh |
3 |
5 |
8 |
4 |
1 |
|
Giá trị đại diện |
162 |
166 |
170 |
174 |
178 |
Hoàn thảnh bảng số liệu như sau:
|
Chiều cao |
[160; 164) |
[164; 168) |
[168; 172) |
[172; 176) |
[176; 180) |
|
Số học sinh |
3 |
5 |
8 |
4 |
1 |
|
Giá trị đại diện |
162 |
166 |
170 |
174 |
178 |
Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn A được thống kê lại ở bảng sau:
|
Thời gian (phút) |
[20;25) |
[25;30) |
[30;35) |
[35;40) |
[40;45) |
|
Số ngày |
6 |
6 |
4 |
1 |
1 |
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là
Ta có:
|
Thời gian (phút) |
[20;25) |
[25;30) |
[30;35) |
[35;40) |
[40;45) |
|
Số ngày |
6 |
6 |
4 |
1 |
1 |
|
Tần số tích lũy |
6 |
12 |
16 |
17 |
28 |
Cỡ mẫu N = 18
Cỡ mẫu
=> Nhóm chứa là [20;25)
Khi đó ta tìm được các giá trị:
Cỡ mẫu
=> Nhóm chứa là [30;35)
Khi đó ta tìm được các giá trị:
.
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là
Khi thống kê chiều cao (đơn vị: centimét) của học sinh lớp
, người ta thu được mẫu số liệu ghép nhóm như Bảng sau.
|
Nhóm |
Tần số |
|
[155; 160) |
2 |
|
[160; 165) |
5 |
|
[165; 170) |
21 |
|
[170; 175) |
11 |
|
[175; 1800 |
11 |
|
N = 40 |
Khoảng biến thiên của mẫu số liệu ghép nhóm đó bằng:
Trong mẫu số liệu ghép nhóm ta có đầu mút trái của nhóm 1 là , đầu mút phải của nhóm 5 là
.
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm là
Một mẫu số liệu ghép nhóm có phương sai bằng
có độ lệch chuẩn bằng:
Mẫu số liệu ghép nhóm có phương sai bằng có độ lệch chuẩn bằng
.
Xác định
của mẫu số liệu ghép nhóm sau đây?
|
Nhóm dữ liệu |
Tần số |
|
(10; 20] |
15 |
|
(20; 30] |
25 |
|
(30; 40] |
20 |
|
(40; 50] |
12 |
|
(50; 60] |
8 |
|
(60; 70] |
5 |
|
(70; 80] |
3 |
Ta có:
|
Nhóm dữ liệu |
Tần số |
Tần số tích lũy |
|
(10; 20] |
15 |
15 |
|
(20; 30] |
25 |
40 |
|
(30; 40] |
20 |
60 |
|
(40; 50] |
12 |
72 |
|
(50; 60] |
8 |
80 |
|
(60; 70] |
5 |
85 |
|
(70; 80] |
3 |
88 |
|
Tổng |
N = 88 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: (20; 30]
Khi đó:
Vậy tứ phân vị thứ nhất là:
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là: (40; 50]
Khi đó:
Vậy tứ phân vị thứ ba là:
Cho mẫu số liệu thống kê chiều cao (đơn vị: cm) của các học sinh lớp 12A, 12B và 12C của một trường THPT như bảng sau
|
Chiều cao |
[150; 155) |
[155; 160) |
[160; 165) |
[165; 170) |
[170; 175) |
[175; 180) |
|
Số học sinh 12A |
1 |
13 |
18 |
5 |
3 |
0 |
|
Số học sinh 12B |
0 |
12 |
20 |
7 |
1 |
0 |
|
Số học sinh 12C |
1 |
8 |
12 |
15 |
3 |
1 |
Xét tính đúng, sai các mệnh đề sau:
(a) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B. Đúng||Sai
(b) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12B phân tán hơn so với lớp 12C. Sai|| Đúng
(c) Ở lớp 12B có một học sinh có chiều cao là 173 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12B. Đúng||Sai
(d) Ở lớp 12C có một học sinh có chiều cao là 177 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12C. Sai|| Đúng
Cho mẫu số liệu thống kê chiều cao (đơn vị: cm) của các học sinh lớp 12A, 12B và 12C của một trường THPT như bảng sau
|
Chiều cao |
[150; 155) |
[155; 160) |
[160; 165) |
[165; 170) |
[170; 175) |
[175; 180) |
|
Số học sinh 12A |
1 |
13 |
18 |
5 |
3 |
0 |
|
Số học sinh 12B |
0 |
12 |
20 |
7 |
1 |
0 |
|
Số học sinh 12C |
1 |
8 |
12 |
15 |
3 |
1 |
Xét tính đúng, sai các mệnh đề sau:
(a) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B. Đúng||Sai
(b) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12B phân tán hơn so với lớp 12C. Sai|| Đúng
(c) Ở lớp 12B có một học sinh có chiều cao là 173 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12B. Đúng||Sai
(d) Ở lớp 12C có một học sinh có chiều cao là 177 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12C. Sai|| Đúng
Xét mẫu số liệu thống kê chiều cao của học sinh lớp 12A
Ta có:
|
Chiều cao |
[150; 155) |
[155; 160) |
[160; 165) |
[165; 170) |
[170; 175) |
[175; 180) |
|
Số học sinh 12A |
1 |
13 |
18 |
5 |
3 |
0 |
|
Tần số tích lũy |
1 |
14 |
32 |
37 |
40 |
40 |
Cỡ mẫu N = 40
Ta có:
=> Nhóm chứa là [155; 160)
Khi đó ta tìm được các giá trị:
Ta có:
=> Nhóm chứa là [160; 165)
Khi đó ta tìm được các giá trị:
.
Vậy khoảng tứ phân vị của mẫu số liệu nhóm A là:
Xét mẫu số liệu thống kê chiều cao của học sinh lớp 12B
Ta có:
|
Chiều cao |
[150; 155) |
[155; 160) |
[160; 165) |
[165; 170) |
[170; 175) |
[175; 180) |
|
Số học sinh 12B |
0 |
12 |
20 |
7 |
1 |
0 |
|
Tần số tích lũy |
0 |
12 |
32 |
39 |
40 |
40 |
Cỡ mẫu N = 40
Ta có:
=> Nhóm chứa là [155; 160)
Khi đó ta tìm được các giá trị:
Ta có:
=> Nhóm chứa là [160; 165)
Khi đó ta tìm được các giá trị:
.
Vậy khoảng tứ phân vị của mẫu số liệu nhóm B là:
Xét mẫu số liệu thống kê chiều cao của học sinh lớp 12C
Ta có:
|
Chiều cao |
[150; 155) |
[155; 160) |
[160; 165) |
[165; 170) |
[170; 175) |
[175; 180) |
|
Số học sinh 12C |
1 |
8 |
12 |
15 |
3 |
1 |
|
Tần số tích lũy |
1 |
9 |
21 |
36 |
39 |
40 |
Cỡ mẫu N = 40
Ta có:
=> Nhóm chứa là [160; 165)
Khi đó ta tìm được các giá trị:
Ta có:
=> Nhóm chứa là [165; 170)
Khi đó ta tìm được các giá trị:
.
Vậy khoảng tứ phân vị của mẫu số liệu nhóm C là:
(a) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B.
Ta có: . Do đó, mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B.
Chọn ĐÚNG.
(b) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12B phân tán hơn so với lớp 12C.
Ta có: . Do đó, mẫu số liệu thống kê chiều cao của học sinh lớp 12C phân tán hơn so với lớp 12B.
Chọn SAI.
(c) Ở lớp 12B có một học sinh có chiều cao là 173 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12B.
Xét mẫu số liệu lớp 12B, ta có
Khi đó, giá trị ngoại lệ là các giá trị
Do đó, giá trị 173 cm là giá trị ngoại lệ của mẫu số liệu lớp 12B.
Chọn ĐÚNG.
(d) Ở lớp 12C có một học sinh có chiều cao là 177 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12C.
Xét mẫu số liệu lớp 12C, ta có
Khi đó, giá trị ngoại lệ là các giá trị
Do đó, giá trị 177cm không là giá trị ngoại lệ của mẫu số liệu lớp 12C.
Chọn SAI.
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
|
Điểm |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
|
Số học sinh |
5 |
9 |
12 |
10 |
6 |
Tìm khoảng biến thiên của mẫu số liệu đã cho?
Khoảng biến thiên của mẫu số liệu bằng .
Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:
|
42 |
43,4 |
43,4 |
46,5 |
46,7 |
|
46,8 |
47,5 |
47,7 |
48,1 |
48,4 |
|
50,8 |
51,1 |
52,7 |
53,9 |
54,8 |
|
57,6 |
57,5 |
59,6 |
60,3 |
61,1 |
Lập bảng tần số ghép nhóm với nhóm đầu [42; 46) và độ dài mỗi nhóm bằng 4. Tìm khoảng biến thiên của mẫu dữ liệu ghép nhóm?
Ta lập được bảng tần số ghép nhóm như sau:
|
Tốc độ |
[42; 46) |
[46; 50) |
[50; 54) |
[54; 58) |
[58; 62) |
|
Số xe |
3 |
7 |
4 |
3 |
3 |
Vậy khoảng biến thiên của mẫu dữ liệu ghép nhóm là .
Điểm trung bình cuối năm của học sinh lớp 12A và 12B được thống kê trong bảng sau:

Nếu so sánh theo độ lệch chuẩn thì học sinh lớp nào có điểm trung bình ít phân tán hơn?
Ta có:
Xét lớp 12A
Cỡ mẫu
Số trung bình của mẫu số liệu ghép nhóm là:
Phương sai của mẫu số liệu ghép nhóm là:
Độ lệch chuẩn của mẫu số liệu ghép nhóm là:
Xét lớp 12B
Cỡ mẫu
Số trung bình của mẫu số liệu ghép nhóm là:
Phương sai của mẫu số liệu ghép nhóm là:
Độ lệch chuẩn của mẫu số liệu ghép nhóm là:
Vì nên nếu so sánh độ lệch chuẩn thì học sinh lớp 12A có điểm trung bình ít phân tán hơn học sinh lớp 12B.
Một mẫu số liệu ghép nhóm có tứ phân vị thứ nhất và tứ phân vị thứ ba lần lượt là 254,9 và 417,25 thì điều kiện giá trị ngoại lệ của mẫu số liệu ghép nhóm đó là:
Gọi giá trị ngoại lệ của mẫu số liệu ghép nhóm là x
Ta có khoảng tứ phân vị
Nên giá trị ngoại lệ
Vậy
Bảng tần số ghép nhóm dưới đây thể hiện kết quả điều tra về tuổi thọ trung bình:
Độ tuổi | [50; 55) | [55; 60) | [60; 65) | [65; 70) | [70; 75) | [75; 80) | [80; 85) | [85; 90) |
Nam | 4 | 7 | 4 | 6 | 15 | 12 | 2 | 0 |
Nữ | 3 | 4 | 5 | 3 | 7 | 14 | 13 | 1 |
Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm có tuổi thọ trung bình đồng đều nhất?
Bảng tần số ghép nhóm dưới đây thể hiện kết quả điều tra về tuổi thọ trung bình:
Độ tuổi | [50; 55) | [55; 60) | [60; 65) | [65; 70) | [70; 75) | [75; 80) | [80; 85) | [85; 90) |
Nam | 4 | 7 | 4 | 6 | 15 | 12 | 2 | 0 |
Nữ | 3 | 4 | 5 | 3 | 7 | 14 | 13 | 1 |
Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm có tuổi thọ trung bình đồng đều nhất?
Cho mẫu dữ liệu ghép nhóm như sau:
|
Đối tượng |
[120; 122) |
[122; 124) |
[124; 126) |
[126; 128) |
[128; 130) |
|
Tần số |
8 |
9 |
12 |
10 |
11 |
Tính số trung bình của mẫu số liệu?
Cỡ mẫu
|
Đối tượng |
[120; 122) |
[122; 124) |
[124; 126) |
[126; 128) |
[128; 130) |
|
Giá trị đại diện |
121 |
123 |
125 |
127 |
129 |
|
Tần số |
8 |
9 |
12 |
10 |
11 |
Số trung bình của mẫu số liệu là:
Dưới đây là bảng thống kê số giờ tự học ở nhà trong 3 ngày nghỉ của học sinh lớp 12 như sau:
|
Giờ |
[1; 2) |
[2; 3) |
[3; 4) |
[4; 5) |
[5; 6) |
|
Số học sinh |
8 |
10 |
12 |
9 |
3 |
Xét tính đúng sai của các khẳng định sau:
a) Tứ phân vị thứ nhất của mẫu số liệu bằng 2,25 (giờ). Đúng||Sai
b) Tứ phân vị thứ hai của mẫu số liệu lớn hơn 4 (giờ). Sai||Đúng
c) Tứ phân vị thứ ba của mẫu số liệu bằng
. Đúng||Sai
d) Khoảng tứ phân vị của mẫu số liệu là số nguyên. Sai||Đúng
Dưới đây là bảng thống kê số giờ tự học ở nhà trong 3 ngày nghỉ của học sinh lớp 12 như sau:
|
Giờ |
[1; 2) |
[2; 3) |
[3; 4) |
[4; 5) |
[5; 6) |
|
Số học sinh |
8 |
10 |
12 |
9 |
3 |
Xét tính đúng sai của các khẳng định sau:
a) Tứ phân vị thứ nhất của mẫu số liệu bằng 2,25 (giờ). Đúng||Sai
b) Tứ phân vị thứ hai của mẫu số liệu lớn hơn 4 (giờ). Sai||Đúng
c) Tứ phân vị thứ ba của mẫu số liệu bằng . Đúng||Sai
d) Khoảng tứ phân vị của mẫu số liệu là số nguyên. Sai||Đúng
Ta có
|
Giờ |
[1; 2) |
[2; 3) |
[3; 4) |
[4; 5) |
[5; 6) |
|
Số học sinh |
8 |
10 |
12 |
9 |
3 |
|
Tần số tích lũy |
8 |
18 |
30 |
39 |
42 |
a) Đúng: Ta có số phần tử của mẫu là:
Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 10,5.
Xét nhóm 2 là nhóm [2;3) có và nhóm 1 là nhóm [1; 2) có
Áp dụng công thức tứ phân vị thứ nhất của mẫu số liệu có:
(giờ)
b) Sai: Ta có số phần tử của mẫu là
Mà suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 21.
Xét nhóm 3 là nhóm [3; 4) có và nhóm 2 là nhóm [2;3) có
.
Áp dụng công thức ta có trung vị của mẫu số liệu là:
(giờ)
Vậy tứ phân vị thứ 2 là
c) Đúng: Ta có số phần tử của mẫu là:
Suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 31,5.
Xét nhóm 4 là nhóm [4;5) có và nhóm 3 là nhóm [3; 4) có
.
Áp dụng công thức tứ phân vị thứ ba của mẫu số liệu có:
(giờ)
d) Sai: Khoảng tứ phân vị của mẫu số liệu bằng .
Điểm trung bình cuối năm của học sinh lớp 12A và 12B được thống kê trong bảng sau:

Nếu so sánh bảng biến thiên thì học sinh lớp nào có điểm trung bình ít phân tán hơn?
Ta có:
Khoảng biến thiên của điểm số học sinh lớp 12A là: 10 – 5 = 5
Khoảng biến thiên của điểm số học sinh lớp 12B là: 10 – 6 = 4
Nếu so sánh theo khoảng biến thiên thì điểm trung bình của các học sinh lớp 12B ít phân tán hơn điểm trung bình của các học sinh lớp 12A.
Kết quả đo chiều cao của 50 cây keo trong vườn được thống kê lại trong bảng sau:
|
Chiều cao (cm) |
[120; 122) |
[122; 124) |
[124; 126) |
[126; 128) |
[128; 130) |
|
Số cây |
16 |
4 |
3 |
6 |
21 |
Phương sai của mẫu số liệu đã cho là:
Cỡ mẫu
|
Chiều cao (cm) |
[120; 122) |
[122; 124) |
[124; 126) |
[126; 128) |
[128; 130) |
|
Giá trị đại diện |
121 |
123 |
125 |
127 |
129 |
|
Số cây |
16 |
4 |
3 |
6 |
21 |
Chiều cao trung bình là:
.
Phương sai của mẫu số liệu ghép nhóm là:
.
Thống kê quãng đường một xe taxi công nghệ đi mỗi ngày (đơn vị: km) như sau:
|
Quãng đường (km) |
[50; 100) |
[100; 150) |
[150; 200) |
[200; 250) |
[250; 300) |
|
Số ngày |
5 |
10 |
9 |
4 |
2 |
Độ lệch chuẩn của mẫu số liệu ghép nhóm gần bằng:
Ta có:
|
Quãng đường ((km) |
[50; 100) |
[100; 150) |
[150; 200) |
[200; 250) |
[250; 300) |
|
Số ngày |
5 |
10 |
9 |
4 |
2 |
|
Tần số tích lũy |
5 |
15 |
24 |
28 |
30 |
Số trung bình của mẫu số liệu ghép nhóm:
Vậy khẳng định (iii) sai.
Phương sai của mẫu số liệu ghép nhóm là:
Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là:
Cho bảng thống kê chiều cao của học sinh nữ lớp 12A như sau:
|
Chiều cao(cm) |
[155; 160) |
[160; 165) |
[165; 170) |
[170; 175) |
[175; 180) |
[180; 185) |
|
Số học sinh |
2 |
7 |
12 |
3 |
0 |
1 |
Một học sinh có nhận xét như sau: Chênh lệch chiều cao của các bạn trong lớp không vượt quá m (cm). Hãy xác định giá trị của m để nhận xét của học sinh đó là đúng?
Ta có: R = 185 – 55 = 30
Vậy giá trị của m = 30.
Mỗi ngày bác T đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác T trong 20 ngày được thống kê lại ở bảng sau:
|
Quãng đường |
[2,7; 3,0) |
[3,0; 3,3) |
[3,3; 3,6) |
[3,6; 3,9) |
[3,9; 4,2) |
|
Số ngày |
3 |
6 |
5 |
4 |
2 |
Khoảng biến thiên của mẫu số liệu ghép nhóm là:
Khoảng biến thiên của mẫu số liệu ghép nhóm là:
Kết quả đo chiều cao của 50 cây keo trong vườn được thống kê lại trong bảng sau:
|
Chiều cao (cm) |
[120; 122) |
[122; 124) |
[124; 126) |
[126; 128) |
[128; 130) |
|
Số cây |
16 |
4 |
3 |
6 |
21 |
Tính chiều cao trung bình của 50 cây keo trên?
Cỡ mẫu
|
Chiều cao (cm) |
[120; 122) |
[122; 124) |
[124; 126) |
[126; 128) |
[128; 130) |
|
Giá trị đại diện |
121 |
123 |
125 |
127 |
129 |
|
Số cây |
16 |
4 |
3 |
6 |
21 |
Chiều cao trung bình là:
.