Đề kiểm tra 45 phút Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho bảng thống kê kết quả cự li ném bóng của một người như sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số lần

    13

    45

    24

    12

    6

    Độ lệch chuẩn của mẫu số liệu đã cho là:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số lần

    13

    45

    24

    12

    6

    Cự li trung bình là:

    \overline{x} = \frac{13.19,25 + 45.19,75
+ 24.20,25 + 12.20,75 + 6.21,25}{100} = 20,015

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{100}\left( 13.19,25^{2}
+ 45.19,75^{2} + 24.20,25^{2} + 12.20,75^{2} + 6.21,25^{2} ight) -
20,015^{2} \approx 0,277

    Độ lệch chuẩn của mẫu số liệu là:

    S = \sqrt{S^{2}} \approx \sqrt{0,277}
\approx 0,526

  • Câu 2: Vận dụng

    Cân nặng (đơn vị: kg) của một số lợn con mới sinh thuộc hai giống A và B được cho ở bảng sau.

    Cân nặng

    [1,0; 1,1)

    [1,1; 1,2)

    [1,2; 1,3)

    [1,3; 1,4)

    Giống A

    8

    28

    32

    17

    Giống B

    13

    14

    24

    14

    Chọn đáp án có khẳng định đúng?

    Đối với lợn con giống A

    Cân nặng

    [1,0; 1,1)

    [1,1; 1,2)

    [1,2; 1,3)

    [1,3; 1,4)

    Giống A

    8

    28

    32

    17

    Tần số tích lũy

    8

    36

    68

    85

    Cỡ mẫu N = 85

    Ta có: \frac{N}{4} = \frac{{85}}{4}

    => Nhóm chứa Q_{1} là [1,1; 1,2)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,1;m = 8,f = 28;c = 1,2
- 1,1 = 0,1

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 1,1 + \dfrac{\dfrac{85}{4} - 8}{28}.0,1\approx 1,15

    Ta có: \frac{3N}{4} = \frac{3.85}{4} =
\frac{255}{4}

    => Nhóm chứa Q_{3} là [1,2; 1,3)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,2;m = 36,f = 32;c =
1,3 - 1,2 = 0,1

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 1,2 + \dfrac{\dfrac{255}{4} - 36}{32}.0,1\approx 1,29.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm A là \Delta Q_{A} = Q_{3} - Q_{1} \approx
0,14

    Đối với lợn con giống B

    Cân nặng

    [1,0; 1,1)

    [1,1; 1,2)

    [1,2; 1,3)

    [1,3; 1,4)

    Giống B

    13

    14

    24

    14

    Tần số tích lũy

    13

    27

    51

    65

    Cỡ mẫu N = 65

    Ta có: \frac{N}{4} =
\frac{65}{4}

    => Nhóm chứa Q_{1} là [1,1; 1,2)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,1;m = 13;f = 14;c =
1,2 - 1,1 = 0,1

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 1,1 + \dfrac{\dfrac{65}{4} - 13}{14}.0,1\approx 1,123

    Ta có: \frac{3N}{4} = \frac{3.65}{4} =
\frac{195}{4}

    => Nhóm chứa Q_{3} là [1,2; 1,3)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,2;m = 27;f = 24;c =
1,3 - 1,2 = 0,1

    \Rightarrow {Q_3} = l + \frac{{\frac{{3N}}{4} - m}}{f}.c= 1,2 + \frac{{\dfrac{{195}}{4} - 27}}{{24}}.0,1 \approx 1,29

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm B là \Delta Q_{B} = Q_{3} - Q_{1} \approx
0,167

    Ta thấy \Delta Q_{A} < \Delta
Q_{B} nên cân nặng của lợn con mới sinh thuộc giống A đồng đều hơn cân nặng của lợn con mới sinh thuộc giống B.

  • Câu 3: Nhận biết

    Kết quả khảo sát cân nặng của 40 quả cam Hòa Bình ở mỗi lô hàng 1 và lô hàng 2 được cho ở bảng sau:

    Cân nặng (gam)

    [100; 110)

    [110; 120)

    [120; 130)

    [130; 140)

    [140; 150)

    Số quả cam ở lô hàng 1

    0

    10

    11

    19

    0

    Số quả cam ở lô hàng 1

    3

    15

    12

    7

    3

    Sử dụng khoảng biến thiên, hãy cho biết cân nặng của 40 quả cam Hòa Bình của lô hàng nào có độ phân tán lớn hơn.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về cân nặng của 40 quả cam Hòa Bình của lô hàng 1 là 140 - 110 = 30 gam.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về cân nặng của 40 quả cam Hòa Bình của lô hàng 2 là 150 – 100 = 50 gam.

    Do vậy, lô hàng 2 có cân nặng của 40 quả cam Hòa Bình phân tán lớn hơn lô hàng 1.

  • Câu 4: Nhận biết

    Cho biểu đồ mức lương của công nhân hai phân xưởng A và B (đơn vị: triệu đồng) như sau:

    Hoàn thành bảng số liệu sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Đáp án là:

    Cho biểu đồ mức lương của công nhân hai phân xưởng A và B (đơn vị: triệu đồng) như sau:

    Hoàn thành bảng số liệu sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

     Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

  • Câu 5: Nhận biết

    Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Số trung bình của mẫu số liệu ghép nhóm của đối tương A và đối tượng B lần lượt là:

    Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

     

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

     

    Phân xưởng A

    4

    5

    5

    4

    2

    N = 20

    Phân xưởng B

    3

    6

    5

    5

    1

    N’ = 20

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:

    \overline{x_{A}} = \frac{4.5,5 + 5.6,5 +
5.7,5 + 4.8,5 + 2.9,5}{20} = 7,25

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:

    \overline{x_{B}} = \frac{3.5,5 + 6.6,5 +
5.7,5 + 5.8,5 + 1.9,5}{20} = 7,25

  • Câu 6: Vận dụng

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Thông hiểu

    Kết quả đo chiều cao của 100 cây thực nghiệm 2 năm tuổi được cho trong bảng sau:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Xác định khoảng tứ phân vị của mẫu số liệu?

    Ta có:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Tần số tích lũy

    5

    17

    42

    86

    100

    N = 100 \Rightarrow \frac{N}{4} =
25 => Nhóm chứa tứ phân vị thứ nhất là: [8,8; 9,0)

    \Rightarrow \left\{ \begin{matrix}l = 8,8,\dfrac{N}{4} = 25,m = 17,f = 25 \\c = 9,0 - 8,8 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c \Rightarrow Q_{1} = 8,8 + \frac{25 -17}{25}.0,2 = \frac{1108}{125}

    \frac{3N}{4} = 75 => Nhóm chứa tứ phân vị thứ ba là: [9,0; 9,2)

    \Rightarrow \left\{ \begin{matrix}l = 9,0,\dfrac{3N}{4} = 75,m = 42,f = 44 \\c = 9,2 - 9,0 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\frac{\dfrac{3N}{4} - m}{f}.c \Rightarrow Q_{3} = 9,0 + \frac{75 -42}{44}.0,2 = \frac{183}{20}

    Vậy khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} = 0,286.

  • Câu 8: Vận dụng

    Dưới đây là thống kê thời gian 100 lần đi làm bằng xe bus từ nhà đến trường của bạn Lan:

    Thời gian (phút)

    [15; 81)

    [18; 21)

    [21; 24)

    [24; 27)

    [27; 30)

    [30; 33)

    Số lượt

    22

    38

    27

    8

    4

    1

    Giá trị nào sau đây là giá trị ngoại lệ của mẫu số liệu?

    Ta có:

    Thời gian (phút)

    [15; 81)

    [18; 21)

    [21; 24)

    [24; 27)

    [27; 30)

    [30; 33)

    Số lượt

    22

    38

    27

    8

    4

    1

    Tần số tích lũy

    22

    60

    87

    95

    99

    100

    Cỡ mẫu N = 100 \Rightarrow \frac{N}{4} =
25

    => Nhóm chứa tứ phân vị thứ nhất là [18; 21)

    Do đó: l = 18;m = 22,f = 38;c = 21 - 18 =
3

    Khi đó tứ phân vị thứ nhất là:

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 18 + \frac{25 - 22}{38}.3 =\frac{693}{38}

    N = 100 \Rightarrow \frac{3N}{4} =
75

    => Nhóm chứa tứ phân vị thứ ba là [21; 24)

    Do đó: l = 21;m = 60,f = 27;c =
3

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +
\frac{\frac{3N}{4} - m}{f}.c = 21 + \frac{75 - 60}{27}.3 =
\frac{68}{3}

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q} = Q_{3} - Q_{1} \approx
4,43

    Trong một lần duy nhất Lan đi hết 29 phút, thời gian đi của Lan thuộc nhóm [30; 33)

    Q_{3} + 1,5\Delta Q = \frac{6683}{228}
< 30 nên thời gian của lần Lan đi hết 29 phút là giá trị ngoại lệ của mẫu số liệu ghép nhóm.

  • Câu 9: Nhận biết

    Số đặc trưng nào không sử dụng thông tin của nhóm số liệu đầu tiên và nhóm số liệu cuối cùng?

    Số đặc trưng không sử dụng thông tin của nhóm số liệu đầu tiên và nhóm số liệu cuối cùng là khoảng tứ phân vị.

  • Câu 10: Thông hiểu

    Biểu đồ sau biểu diễn lượng khách hàng đặt bàn online mỗi ngày trong quý I của năm 2024 tại một cửa hàng:

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Biểu đồ sau biểu diễn lượng khách hàng đặt bàn online mỗi ngày trong quý I của năm 2024 tại một cửa hàng:

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Nhận biết

    Cho mẫu số liệu ghép nhóm:

    Nhóm

    Tần số

    (0;10]

    8

    (10;20]

    14

    (20;30]

    12

    (30;40]

    9

    (40;50]

    7

    Tìm khoảng biến thiên?

    Khoảng biến thiên của mẫu số liệu đã cho là: R = 50 - 0 = 50.

  • Câu 12: Nhận biết

    Xác định khoảng biến thiên của mẫu số liệu ghép nhóm sau đây:

    Thời gian (s)

    Số vận động viên (người)

    (50,5; 55,5]

    2

    (55,5; 60,5]

    7

    (60,5; 65,5]

    8

    (65,5; 70,5]

    4

    Khoảng biến thiên của mẫu số liệu ghép nhóm là R = 70,5 - 50,5 = 20

  • Câu 13: Nhận biết

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C và điểm trung bình của lớp 12D lần lượt là:

    Ta có:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C:

    \overline{x_{C}} = \frac{4.5,5 + 5.6,5 +
3.7,5 + 4.8,5 + 2.9,5}{18} = \frac{65}{9}.

    Điểm trung bình của lớp 12D:

    \overline{x_{D}} = \frac{2.5,5 + 5.6,5 +
4.7,5 + 3.8,5 + 1.9,5}{15} = \frac{217}{30}.

  • Câu 14: Nhận biết

    Kiểm lâm thực hiện đo đường kính của một số cây thân gỗ tại hai khu vực A và B thu được kết quả như sau:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Đường kính trung bình của cây tại hai khu vực A và B lần lượt là:

    Ta có:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    Giá trị đại diện

    31

    33

    35

    37

    39

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Suy ra

    \overline{x_{A}} = \frac{25.31 + 38.33 +
20.35 + 10.37 + 7.39}{100} = 33,72

    \overline{x_{B}} = \frac{25.31 + 27.33 +
19.35 + 18.37 + 14.39}{100} = 34,2

  • Câu 15: Nhận biết

    Kết quả đo chiều cao của 50 cây keo trong vườn được thống kê lại trong bảng sau:

    Chiều cao (cm)

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Số cây

    16

    4

    3

    6

    21

    Tính chiều cao trung bình của 50 cây keo trên?

    Cỡ mẫu N = 50

    Chiều cao (cm)

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Số cây

    16

    4

    3

    6

    21

    Chiều cao trung bình là:

    \overline{x} = \frac{16.121 + 4.123 +
3.125 + 6.127 + 21.129}{50} = 125,28.

  • Câu 16: Vận dụng

    Cho biểu đồ thống kê thời gian tập thể dục buổi sáng của hai người A và B

    Gọi khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của A và B lần lượt là \Delta_{Q_{A}};\Delta_{Q_{B}}. Chọn kết luận đúng?

    Ta có:

    Đối tượng

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    A

    5

    12

    8

    3

    2

    Tần số tích lũy

    5

    17

    25

    28

    30

    Cỡ mẫu N = 30 \Rightarrow \frac{N}{4} =
7,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 5,f = 12;c = 25 -
20 = 5

    \Rightarrow Q_{1} = l +
\frac{\frac{N}{4} - m}{f}.c = 20 + \frac{7,5 - 5}{12}.5 =
\frac{505}{24}

    Cỡ mẫu \frac{3N}{4} = 22,5

    => Nhóm chứa Q_{3} là [25; 30)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 25;m = 17,f = 8;c =
5

    \Rightarrow Q_{3} = l +
\frac{\frac{3N}{4} - m}{f}.c = 25 + \frac{22,5 - 17}{8}.5 =
\frac{455}{16}.

    Vậy khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của A là:

    \Delta_{Q_{A}} = Q_{3} - Q_{1} =
\frac{355}{48} \approx 7,4.

    Đối tượng

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    B

    0

    25

    5

    0

    0

    Tần số tích lũy

    0

    25

    30

    0

    0

    Cỡ mẫu N = 30 \Rightarrow \frac{N}{4} =
7,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 0,f = 25;c = 25 -
20 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 20 + \frac{7,5 - 0}{25}.5 =\frac{43}{2}

    Cỡ mẫu \frac{3N}{4} = 22,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 0,f = 25;c = 25 -
20 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 20 + \dfrac{22,5 - 0}{25}.5 =\dfrac{49}{2}.

    Vậy khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của B là:

    \Delta_{Q_{B}} = Q_{3} - Q_{1} =
3.

    Vậy kết luận đúng là: \Delta_{Q_{A}} >
\Delta_{Q_{B}}.

  • Câu 17: Nhận biết

    Cho biểu đồ

    Tính chiều cao trung bình của mẫu số liệu đã cho?

    Ta có:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Chiều cao trung bình là:

    \overline{x} = \frac{3.162 + 5.166 +8.170 + 4.174 + 1.178}{21} \approx 169

  • Câu 18: Thông hiểu

    Cho biểu đồ thống kê thời gian tập thể dục buổi sáng của hai người A và B

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục hằng ngày của A và B lần lượt là:

    Ta có bảng sau:

    Đối tượng

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    A

    5

    12

    8

    3

    2

    B

    0

    25

    5

    0

    0

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục của A là: 40 – 15 = 25 (phút)

    Tuy nhiên trong mẫu số liệu ghép nhóm về thời gian tập thể dục của B nhóm đầu tiên chứa dữ liệu là [20; 25) và nhóm cuối cùng chứa dữ liệu [25; 30). Do đó khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của B là 30 – 20 = 10.

  • Câu 19: Thông hiểu

    Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong bảng sau:

    Nhóm

    Tần số

    [40; 45)

    4

    [45; 50)

    14

    [50; 55)

    8

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    2

    Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là:

    Ta có:

    Nhóm

    Giá trị đại diện

    Tần số

    [40; 45)

    42,5

    4

    [45; 50)

    47,5

    14

    [50; 55)

    52,5

    8

    [55; 60)

    57,5

    10

    [60; 65)

    62,5

    6

    [65; 70)

    67,5

    2

    Số trung bình cộng của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{4.42,5 + 14.47,5 +
8.52,5 + 10.57,6 + 6.62,5 + 2.67,5}{44} = \frac{585}{11}

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \lbrack 4.\left( 42,5 -
\frac{585}{11} ight)^{2} + 14.\left( 47,5 - \frac{585}{11} ight)^{2}
+ 8.\left( 52,5 - \frac{585}{11} ight)^{2}

    + 10.\left( 57,6 - \frac{585}{11}
ight)^{2} + 6.\left( 62,5 - \frac{585}{11} ight)^{2} + 2.\left( 67,5
- \frac{585}{11} ight)^{2}brack:44 \approx 46,12

    Vậy độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    s = \sqrt{s^{2}} = \sqrt{46,12} \approx
6,8

  • Câu 20: Thông hiểu

    Thời gian tự học tại nhà mỗi ngày (đơn vị: phút) của một học sinh lớp 12A được ghi lại như bảng sau:

    Thời gian (phút)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số ngày

    6

    6

    4

    1

    1

    Độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho gần nhất với giá trị nào sau đây?

    Ta có:

    Thời gian (phút)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Giá trị đại diện

    22,5

    27,5

    32,5

    37,5

    42,5

    Số ngày

    6

    6

    4

    1

    1

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{6.22,5 + 6.27,5 +
4.32,5 + 1.37,5 + 1.42,5}{18} = \frac{85}{3}

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{18}\left( 6.22,5^{2} +
6.27,5^{2} + 4.32,5^{2} + 1.37,5^{2} + 1.42,5^{2} ight) - \left(
\frac{85}{3} ight)^{2} = 31,25

    Vậy độ lệch chuẩn của mẫu số liệu cần tìm là: S = \sqrt{S^{2}} \approx \sqrt{31,25} =
5,6

  • Câu 21: Nhận biết

    Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:

    341,4

    187,1

    242,2

    522,9

    251,4

    432,2

    200,7

    388,6

    258,4

    288,5

    298,1

    413,5

    413,5

    332

    421

    475

    400

    305

    520

    147

    Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng biến thiên của mẫu số liệu ghép nhóm?

    Ta có:

    Tổng lượng mưa (mm)

    [140; 240)

    [240; 340)

    [340; 440)

    [440; 540)

    Số năm

    3

    7

    7

    3

    Vậy khoảng biến thiên của mẫu số liệu ghép nhóm là R = 400.

  • Câu 22: Thông hiểu

    Một công ty bất động sản Đất Vàng thực hiện cuộc khảo sát khách hàng xẹm họ có nhu cầu mua nhà ở mức giá nào để tiến hành dự án xây nhà ở Thăng Long group sắp tới. Kết quả khảo sát 500 khách hàng được ghi lại ở bảng sau:

    Độ lệch chuẩn của mức giá đất là bao nhiêu? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 4,6

    Đáp án là:

    Một công ty bất động sản Đất Vàng thực hiện cuộc khảo sát khách hàng xẹm họ có nhu cầu mua nhà ở mức giá nào để tiến hành dự án xây nhà ở Thăng Long group sắp tới. Kết quả khảo sát 500 khách hàng được ghi lại ở bảng sau:

    Độ lệch chuẩn của mức giá đất là bao nhiêu? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 4,6

    Bảng phân bố tần số tần suất của bảng số liệu của công ty bất động sản Đất Vàng

    Mức giá trung bình của công ty là \overline{x} = 19,448

    Phương sai của mức giá là: s^{2} =
21,5

    Độ lệch chuẩn của mức giá \sqrt{s^{2}} =
4,6

  • Câu 23: Thông hiểu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Số trung bình của mẫu số liệu trên thuộc khoảng nào trong các khoảng dưới đây?

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Giá trị đại diện

    6

    8

    10

    12

    14

    Số ngày

    2

    7

    7

    3

    1

    Số trung bình là:

    \overline{x} = \frac{2.6 + 7.8 + 7.10 +
3.12 + 1.14}{20} = 9,4 \in \lbrack 9;11)

  • Câu 24: Thông hiểu

    Cho bảng số liệu thống kê như sau:

    Đối tượng

    Tần số

    [0; 30)

    2

    [30; 60)

    3

    [60; 90)

    5

    [90; 120)

    10

    [120; 150)

    3

    [150; 180)

    5

    [180; 210)

    2

    Xác định phương sai của mẫu số liệu ghép nhóm đã cho?

    Ta có:

    Đối tượng

    Tần số

    Giá trị đại diện (xi)

    \left( x_{i} - \overline{x}
ight)^{2} f_{i}.\left( x_{i} - \overline{x}
ight)^{2}

    [0; 30)

    2

    5

    8462

    2187

    [30; 60)

    3

    45

    2844

    2023

    [60; 90)

    5

    75

    1024

    588

    [90; 120)

    10

    105

    4

    135

    [120; 150)

    3

    135

    784

    1352

    [150; 180)

    5

    165

    3364

    1589

    [180; 210)

    2

    195

    7744

    2187

     

    \sum_{}^{}f_{i} = 30

     

     

    Tổng: 68280

    Phương sai của mẫu số liệu là:

    S^{2} =
\frac{1}{N}.\sum_{}^{}{f_{i}.\left( x_{i} - \overline{x} ight)^{2}} =
\frac{1}{30}.68280 = 2276

  • Câu 25: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Tính tứ phân vị thứ nhất của mẫu số liệu ghép nhóm?

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{N}{4} = 25=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)

    Do đó: \left\{ \begin{matrix}l = 155;\dfrac{N}{4} = 25;m = 15;f = 11 \\c = 160 - 155 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\left( \dfrac{N}{4} - might)}{f}.c = 155 + \dfrac{25 - 15}{11}.5 \approx 159,55

  • Câu 26: Thông hiểu

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Nếu so sánh theo khoảng tứ phân vị thì học sinh lớp nào có thời gian làm bài đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Nếu so sánh theo khoảng tứ phân vị thì học sinh lớp nào có thời gian làm bài đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 27: Thông hiểu

    Người ta theo dõi sự thay đổi cân nặng, được tính bằng hiệu cân nặng trước và sau ba tháng áp dụng chế độ ăn kiêng của một số người cho kết quả sau:

    Thay đổi cân nặng

    [-1; 0)

    [0; 1)

    [1; 2)

    [2; 3)

    [3; 4)

    Số người nam

    6

    4

    2

    3

    1

    Số người nữ

    5

    6

    3

    1

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Số người thay đổi cân nặng theo chiều hướng giảm cân là 11. Đúng||Sai

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nam là R_{1} = 5. Đúng||Sai

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nữ là R_{2} = 3. Sai|| Đúng

    (d) Nếu biết nữ tăng cân nhiều nhất là 2kg và giảm cân được nhiều nhất 1kg thì khoảng biến thiên của mẫu số liệu gốc là 1. Sai|| Đúng

    Đáp án là:

    Người ta theo dõi sự thay đổi cân nặng, được tính bằng hiệu cân nặng trước và sau ba tháng áp dụng chế độ ăn kiêng của một số người cho kết quả sau:

    Thay đổi cân nặng

    [-1; 0)

    [0; 1)

    [1; 2)

    [2; 3)

    [3; 4)

    Số người nam

    6

    4

    2

    3

    1

    Số người nữ

    5

    6

    3

    1

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Số người thay đổi cân nặng theo chiều hướng giảm cân là 11. Đúng||Sai

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nam là R_{1} = 5. Đúng||Sai

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nữ là R_{2} = 3. Sai|| Đúng

    (d) Nếu biết nữ tăng cân nhiều nhất là 2kg và giảm cân được nhiều nhất 1kg thì khoảng biến thiên của mẫu số liệu gốc là 1. Sai|| Đúng

    (a) Số người thay đổi cân nặng theo chiều hướng giảm cân là 11. Số người thay đổi theo chiều hướng giảm cân là 5 + 6 = 11

    Chọn ĐÚNG.

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nam là R_{1} = 5.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nam là R_{1} = 4 - ( - 1) =
5

    Chọn ĐÚNG.

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nữ là R_{2} = 3.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nữ là R_{2} = 3 - ( - 1) =
4

    Chọn SAI.

    (d) Nếu biết nữ tăng cân nhiều nhất là 2 kg và giảm cân được nhiều nhất 1 kg thì khoảng biến thiên của mẫu số liệu gốc là 1.

    Nếu biết nữ tăng cân nhiều nhất là 2 kg và giảm cân được nhiều nhất 1 kg thì khoảng biến thiên của mẫu số liệu gốc là R_{2} = 2 - ( - 1) = 3

    Chọn SAI.

  • Câu 28: Nhận biết

    Quan sát bảng sau và tìm khoảng biến thiên của mẫu số liệu

    Khoảng dữ liệu

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    Tần số

    8

    12

    22

    17

    Khoảng biến thiên của mẫu số liệu là: R =
50 - 10 = 40.

  • Câu 29: Nhận biết

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Tuổi thọ

    [14;15)

    [15;16)

    [16;17)

    [17;18)

    [18;19)

    Số con

    1

    3

    8

    6

    2

    Khoảng biến thiên của mẫu số liệu ghép nhóm đã cho là:

    Khoảng biến thiên: 19 - 14 = 5.

  • Câu 30: Thông hiểu

    Cho bảng số liệu thống kê cân nặng của 50 học sinh tiểu học như sau:

    Cân nặng (kg)

    Số học sinh

    [0; 10)

    5

    [10; 20)

    8

    [20; 60)

    15

    [30; 80)

    16

    [40; 100)

    6

    Tìm độ lệch chuẩn của mẫu số liệu đã cho?

    Ta có:

    Cân nặng (kg)

    Số học sinh

    Giá trị đại diện (xi)

    \left( x_{i} - \overline{x}
ight)^{2} f_{i}.\left( x_{i} - \overline{x}
ight)^{2}

    [0; 10)

    5

    5

    484

    2420

    [10; 20)

    8

    15

    144

    1152

    [20; 60)

    15

    25

    4

    60

    [30; 80)

    16

    35

    64

    1024

    [40; 100)

    6

    45

    324

    1944

     

    \sum_{}^{}f_{i} = 50

     

     

    Tổng: 6600

    Phương sai của mẫu số liệu là:

    S^{2} =
\frac{1}{N}.\sum_{}^{}{f_{i}.\left( x_{i} - \overline{x} ight)^{2}} =
\frac{1}{50}.6600 = 132

    Suy ra độ lệch chuẩn của mẫu số liệu là: S = \sqrt{S^{2}} = \sqrt{132} \approx
11,5

  • Câu 31: Thông hiểu

    Thống kê thu nhập theo tháng của một số nhân viên trong phòng A (đơn vị: triệu đồng) được cho trong bảng sau:

    Thu nhập

    [3; 5)

    [5; 7)

    [7; 9)

    [9; 11)

    Số nhân viên

    5

    10

    5

    2

    Xét tính đúng, sai các mệnh đề sau:

    (a) Cỡ mẫu là n = 22. Đúng||Sai

    (b) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là Q_{1} = 10. Sai|| Đúng

    (c) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm là Q_{3} = 5. Sai|| Đúng

    (d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta Q = 5. Sai|| Đúng

    Đáp án là:

    Thống kê thu nhập theo tháng của một số nhân viên trong phòng A (đơn vị: triệu đồng) được cho trong bảng sau:

    Thu nhập

    [3; 5)

    [5; 7)

    [7; 9)

    [9; 11)

    Số nhân viên

    5

    10

    5

    2

    Xét tính đúng, sai các mệnh đề sau:

    (a) Cỡ mẫu là n = 22. Đúng||Sai

    (b) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là Q_{1} = 10. Sai|| Đúng

    (c) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm là Q_{3} = 5. Sai|| Đúng

    (d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta Q = 5. Sai|| Đúng

    Ta có:

    Thu nhập

    [3; 5)

    [5; 7)

    [7; 9)

    [9; 11)

    Số nhân viên

    5

    10

    5

    2

    Tần số tích lũy

    5

    15

    20

    22

    (a) Cỡ mẫu là n = 22

    Chọn ĐÚNG.

    (b) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là Q_{1} = 10.

    Ta có:

    Ta có: \frac{N}{4} =
\frac{22}{4}

    => Nhóm chứa Q_{1} là [5; 7)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 5;m = 5;f = 10;c = 7 - 5
= 2

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 5 + \frac{\dfrac{22}{4} - 5}{10}.2 =5,1

    Chọn SAI

    (c) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm là Q_{3} = 5 .

    Ta có: \frac{3N}{4} = \frac{3.22}{4} =
\frac{33}{2}

    => Nhóm chứa Q_{3} là [7; 9)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 7;m = 15;f = 5;c = 9 - 7
= 2

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 7 + \dfrac{\dfrac{33}{2} - 15}{5}.2 =7,6.

    Chọn SAI

    (d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta Q = 5.

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta Q = Q_{3} - Q_{1} = 7,6 - 5,1 =
2,5

    Chọn SAI

  • Câu 32: Thông hiểu

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Nếu so sánh theo số trung bình thì học sinh lớp nào làm bài cần ít thời gian hơn?

    Ta có:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Giá trị đại diện

    6,5

    7,5

    8,5

    9,5

    10,5

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Số trung bình của mẫu số liệu ghép nhóm lớp 12A:

    \overline{x_{A}} = \frac{6.6,5 + 10.7,5
+ 13.8,5 + 10.9,5 + 9.10,5}{50} = 8,54

    Số trung bình của mẫu số liệu ghép nhóm lớp 12B:

    \overline{x_{B}} = \frac{4.6,5 + 12.7,5
+ 17.8,5 + 14.9,5 + 3.10,5}{50} = 8,5

    \overline{x_{A}} >
\overline{x_{B}} nên nếu so sánh theo số trung bình thì học sinh lớp 12B làm nhanh hơn.

  • Câu 33: Nhận biết

    Một mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng:

    Mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng \sqrt{16} = 4.

  • Câu 34: Nhận biết

    Thống kê quãng đường một xe taxi công nghệ đi mỗi ngày (đơn vị: km) như sau:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Số ngày

    5

    10

    9

    4

    2

    Tìm số trung bình của mẫu số liệu ghép nhóm?

    Ta có:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Giá trị đại diện

    75

    125

    175

    225

    275

    Số ngày

    5

    10

    9

    4

    2

    Số trung bình của mẫu số liệu ghép nhóm:

    \overline{x} = \frac{5.75 + 10.125 +
9.175 + 4.225 + 2.275}{30} = 155

  • Câu 35: Vận dụng

    Kết quả đo chiều cao của 100 cây thực nghiệm 2 năm tuổi được cho trong bảng sau:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Tìm giá trị ngoại lệ của mẫu số liệu?

    Ta có:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Tần số tích lũy

    5

    17

    42

    86

    100

    N = 100 \Rightarrow \frac{N}{4} =
25 => Nhóm chứa tứ phân vị thứ nhất là: [8,8; 9,0)

    \Rightarrow \left\{ \begin{matrix}l = 8,8,\dfrac{N}{4} = 25,m = 17,f = 25 \\c = 9,0 - 8,8 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\frac{\dfrac{N}{4} - m}{f}.c \Rightarrow Q_{1} = 8,8 + \frac{25 -17}{25}.0,2 = \frac{1108}{125}

    \frac{3N}{4} = 75 => Nhóm chứa tứ phân vị thứ ba là: [9,0; 9,2)

    \Rightarrow \left\{ \begin{matrix}l = 9,0,\dfrac{3N}{4} = 75,m = 42,f = 44 \\c = 9,2 - 9,0 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\frac{\dfrac{3N}{4} - m}{f}.c \Rightarrow Q_{3} = 9,0 + \frac{75 -42}{44}.0,2 = \frac{183}{20}

    Suy ra khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} = 0,286.

    Giá trị x trong mẫu số liệu là giá trị ngoại lệ nếu \left\lbrack \begin{matrix}
x < Q_{1} - 1,5\Delta_{Q} \\
x > Q_{3} + 1,5\Delta_{Q} \\
\end{matrix} ight.

    Ta có: x < Q_{1} - 1,5\Delta_{Q} =
8,435

    Vậy giá trị ngoại lệ cần tìm là 8,4.

  • Câu 36: Thông hiểu

    Bạn An rất thích chạy bộ. Thời gian chạy bộ mỗi ngày trong thời gian gần đây của bạn An được thống kê lại ở bảng sau:

    Thời gian (phút)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số ngày

    6

    6

    4

    1

    1

    Hãy tính khoảng tứ phân vị của mẫu số liệu ghép nhóm trong bảng trên.

    Cỡ mẫu n = 18.

    Gọi x_{1};x_{2};...;x_{18} là mẫu số liệu gốc gồm thời gian của 18 ngày chạy bộ của bạn An được sắp xếp theo thứ tự không giảm.

    Ta có: x_{1},...,x_{6} \in \lbrack20;25);\ \ x_{7},...,x_{12} \in \lbrack 25;30);\ \ x_{13},...,x_{16} \in\lbrack 30;35);\ \ x_{17} \in \lbrack 35;40);\ \ x_{18} \in \lbrack40;45)

    Tứ phân vị thứ nhất của mẫu số liệu gốc là x_{5} \in \lbrack 20;25).

    Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

    Q_{1} = 20 + \frac{\frac{18}{4} - 0}{6}\cdot (25 - 20) = 23,75.

    Tứ phân vị thứ ba của mẫu số liệu gốc là x_{14} \in \lbrack 30;35).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 30 + \frac{\frac{3 \cdot 18}{4} -(6 + 6)}{4} \cdot (35 - 30) = 31,875.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q}=31,875-23,75=8,125.

  • Câu 37: Nhận biết

    Cho bảng thống kê thời gian (đơn vị: phút) và số ngày tập thể dục của hai người A và B trong 30 ngày như sau:

    Thời gian

    [15; 20)

    [25; 30)

    [30; 35)

    Số ngày tập của A

    10

    15

    5

    Số ngày tập của B

    9

    21

    0

    Chọn kết luận đúng dưới đây?

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập của A là: 35 – 15 = 20 (phút).

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập của B là: 30 – 15 = 15 (phút).

    Do đó căn cứ theo khoảng biến thiên thì thời gian tập của A có độ phân tán lớn hơn.

  • Câu 38: Nhận biết

    Cho bảng thống kê chiều cao (đơn vị: cm) của học sinh lớp 12A và lớp 12B như sau:

    Chiều cao

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    [180; 185)

    12A

    2

    7

    12

    3

    0

    1

    12B

    5

    9

    8

    2

    1

    0

    Giả sử khoảng biến thiên của mẫu số liệu chiều cao học sinh lớp 12A và 12B lần lượt là R_{1};R_{2}. Chọn kết luận đúng?

    Khoảng biến thiên của mẫu số liệu chiều cao lớp 12A là R_{1} = 185 - 155 = 30.

    Khoảng biến thiên của mẫu số liệu chiều cao lớp 12B là R_{2} = 180 - 155 = 25.

    Vậy R_{1} > R_{2} là kết luận đúng.

  • Câu 39: Nhận biết

    Cho bảng thống kê kết quả cự li ném bóng của một người như sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số lần

    13

    45

    24

    12

    6

    Cự li ném bóng trung bình của người đó là:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số lần

    13

    45

    24

    12

    6

    Cự li trung bình là:

    \overline{x} = \frac{13.9,25 + 45.19,75
+ 24.20,25 + 12.20,75 + 6.21,25}{100} \approx 20,02

  • Câu 40: Nhận biết

    Cho biểu đồ

    Hoàn thảnh bảng số liệu theo mẫu sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Đáp án là:

    Cho biểu đồ

    Hoàn thảnh bảng số liệu theo mẫu sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

     Hoàn thảnh bảng số liệu như sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo