Đề kiểm tra 45 phút Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho mẫu số liệu ghép nhóm như sau:

    Nhóm

    [14; 15)

    [15; 16)

    [16; 17)

    [17; 18)

    [18; 19)

    Tần số

    1

    3

    8

    6

    2

    Xét tính đúng sai của các khẳng định sau:

    a) Giá trị đại diện của nhóm [15;16) là 15,5. Đúng||Sai

    b) Số trung bình của mẫu số liệu trên là 16,25. Sai||Đúng

    c) Phương sai của mẫu số liệu trên là 0,9875. Đúng||Sai

    d) Độ lệch chuẩn của mẫu số liệu trên là \frac{\sqrt{395}}{20}. Đúng||Sai

    Đáp án là:

    Cho mẫu số liệu ghép nhóm như sau:

    Nhóm

    [14; 15)

    [15; 16)

    [16; 17)

    [17; 18)

    [18; 19)

    Tần số

    1

    3

    8

    6

    2

    Xét tính đúng sai của các khẳng định sau:

    a) Giá trị đại diện của nhóm [15;16) là 15,5. Đúng||Sai

    b) Số trung bình của mẫu số liệu trên là 16,25. Sai||Đúng

    c) Phương sai của mẫu số liệu trên là 0,9875. Đúng||Sai

    d) Độ lệch chuẩn của mẫu số liệu trên là \frac{\sqrt{395}}{20}. Đúng||Sai

    a) Đúng: Giá trị đại diện của nhóm [15;16) là \frac{15 + 16}{2} = 15,5

     

    b) Sai: Số trung bình của mẫu số liệu trên là:

    \overline{x} = \frac{14,5.1 + 15,5.3 +
16,5.8 + 17,5.6 + 18,5.2}{20} = 16,75

    c) Đúng: Phương sai của mẫu số liệu trên là

    s^{2} = \frac{1}{20}\lbrack(14,5 -
16,75)^{2}.1 + (15,5 - 16,75)^{2}.3

    + (16,5 - 16,75)^{2}.8 + (17,5 -
16,75)^{2}.6 + (18,5 - 16,75)^{2}.2brack = 0,9875

    d) Đúng: Độ lệch chuẩn của mẫu số liệu trên là s = \sqrt{s^{2}} =
\frac{\sqrt{395}}{20}.

  • Câu 2: Vận dụng

    Cho mẫu số liệu thống kê chiều cao (đơn vị: cm) của các học sinh lớp 12A, 12B và 12C của một trường THPT như bảng sau

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12A

    1

    13

    18

    5

    3

    0

    Số học sinh 12B

    0

    12

    20

    7

    1

    0

    Số học sinh 12C

    1

    8

    12

    15

    3

    1

    Xét tính đúng, sai các mệnh đề sau:

    (a) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B. Đúng||Sai

    (b) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12B phân tán hơn so với lớp 12C. Sai|| Đúng

    (c) Ở lớp 12B có một học sinh có chiều cao là 173 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12B. Đúng||Sai

    (d) Ở lớp 12C có một học sinh có chiều cao là 177 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12C. Sai|| Đúng

    Đáp án là:

    Cho mẫu số liệu thống kê chiều cao (đơn vị: cm) của các học sinh lớp 12A, 12B và 12C của một trường THPT như bảng sau

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12A

    1

    13

    18

    5

    3

    0

    Số học sinh 12B

    0

    12

    20

    7

    1

    0

    Số học sinh 12C

    1

    8

    12

    15

    3

    1

    Xét tính đúng, sai các mệnh đề sau:

    (a) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B. Đúng||Sai

    (b) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12B phân tán hơn so với lớp 12C. Sai|| Đúng

    (c) Ở lớp 12B có một học sinh có chiều cao là 173 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12B. Đúng||Sai

    (d) Ở lớp 12C có một học sinh có chiều cao là 177 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12C. Sai|| Đúng

    Xét mẫu số liệu thống kê chiều cao của học sinh lớp 12A

    Ta có:

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12A

    1

    13

    18

    5

    3

    0

    Tần số tích lũy

    1

    14

    32

    37

    40

    40

    Cỡ mẫu N = 40

    Ta có: \frac{N}{4} = 10

    => Nhóm chứa Q_{1} là [155; 160)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 155;m = 1,f = 13;c = 160
- 155 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 155 + \frac{10 - 1}{13}.5 =\frac{2060}{13}

    Ta có: \frac{3N}{4} = 30

    => Nhóm chứa Q_{3} là [160; 165)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 160;m = 14,f = 18;c =
165 - 160 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 160 + \frac{30 - 14}{18}.5 =\frac{1480}{9}.

    Vậy khoảng tứ phân vị của mẫu số liệu nhóm A là: \Delta Q_{A} = \frac{700}{117}

    Xét mẫu số liệu thống kê chiều cao của học sinh lớp 12B

    Ta có:

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12B

    0

    12

    20

    7

    1

    0

    Tần số tích lũy

    0

    12

    32

    39

    40

    40

    Cỡ mẫu N = 40

    Ta có: \frac{N}{4} = 10

    => Nhóm chứa Q_{1} là [155; 160)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 155;m = 0,f = 12;c = 160
- 155 = 5

    \Rightarrow Q_{1} = l +
\frac{\frac{N}{4} - m}{f}.c = 155 + \frac{10 - 0}{12}.5 =
\frac{955}{6}

    Ta có: \frac{3N}{4} = 30

    => Nhóm chứa Q_{3} là [160; 165)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 160;m = 12,f = 20;c =
165 - 160 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 160 + \dfrac{30 - 12}{20}.5 =\dfrac{329}{2}.

    Vậy khoảng tứ phân vị của mẫu số liệu nhóm B là: \Delta Q_{B} = \frac{16}{3}

    Xét mẫu số liệu thống kê chiều cao của học sinh lớp 12C

    Ta có:

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12C

    1

    8

    12

    15

    3

    1

    Tần số tích lũy

    1

    9

    21

    36

    39

    40

    Cỡ mẫu N = 40

    Ta có: \frac{N}{4} = 10

    => Nhóm chứa Q_{1} là [160; 165)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 160;m = 9,f = 12;c = 165
- 160 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 160 + \dfrac{10 - 9}{12}.5 =\dfrac{1925}{12}

    Ta có: \frac{3N}{4} = 30

    => Nhóm chứa Q_{3} là [165; 170)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 165;m = 21,f = 15;c =
170 - 165 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 165 + \dfrac{30 - 21}{15}.5 =168.

    Vậy khoảng tứ phân vị của mẫu số liệu nhóm C là: \Delta Q_{C} = \frac{91}{12}

     

    (a) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B.

    Ta có: \Delta Q_{A} > \Delta
Q_{B}. Do đó, mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B.

    Chọn ĐÚNG.

    (b) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12B phân tán hơn so với lớp 12C.

    Ta có: \Delta Q_{B} < \Delta
Q_{C}. Do đó, mẫu số liệu thống kê chiều cao của học sinh lớp 12C phân tán hơn so với lớp 12B.

    Chọn SAI.

    (c) Ở lớp 12B có một học sinh có chiều cao là 173 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12B.

    Xét mẫu số liệu lớp 12B, ta có \Delta
Q_{B} = \frac{16}{3}

    Khi đó, giá trị ngoại lệ là các giá trị x
> Q_{3} + 1,5.\Delta Q_{B} \Rightarrow x > \frac{329}{2} +
1,5.\frac{16}{3} \Rightarrow x > 172,5

    Do đó, giá trị 173 cm là giá trị ngoại lệ của mẫu số liệu lớp 12B.

    Chọn ĐÚNG.

    (d) Ở lớp 12C có một học sinh có chiều cao là 177 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12C.

    Xét mẫu số liệu lớp 12C, ta có \Delta
Q_{C} = \frac{91}{12}

    Khi đó, giá trị ngoại lệ là các giá trị x
> Q_{3} + 1,5.\Delta Q_{C} \Rightarrow x > 168 + 1,5.\frac{91}{12}
\Rightarrow x > 179,375

    Do đó, giá trị 177cm không là giá trị ngoại lệ của mẫu số liệu lớp 12C.

    Chọn SAI.

  • Câu 3: Vận dụng

    Khảo sát thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 của trường trung học phổ thông X, thu được mẫu số liệu ghép nhóm sau:

    s

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là 180 phút. Đúng||Sai

    b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 bằng nhau. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là 65 phút. Đúng||Sai

    d) Dựa vào khoảng tứ phân vị thì thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 phân tán hơn so với lớp 12A2. Sai||Đúng

    Đáp án là:

    Khảo sát thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 của trường trung học phổ thông X, thu được mẫu số liệu ghép nhóm sau:

    s

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là 180 phút. Đúng||Sai

    b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 bằng nhau. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là 65 phút. Đúng||Sai

    d) Dựa vào khoảng tứ phân vị thì thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 phân tán hơn so với lớp 12A2. Sai||Đúng

    a) Đúng

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là 180 - 0 = 180 (phút).

    b) Đúng

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là 240 - 60 = 180(phút).

    Nên khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 bằng nhau.

    c) Đúng

    Xét mẫu số liệu ghép nhóm của lớp 12A1:

    Cỡ mẫu là: n = 5 + 20 + 15 =
40

    Gọi x_{1},\ ...,x_{40} là thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{x_{10} + x_{11}}{2}.

    Do x_{10}x_{11} đều thuộc nhóm \lbrack 120;180) nên nhóm này chứa Q_{1}.

    Q_{1} = 120 + \frac{\frac{40}{4} -
5}{20}.60 = 135

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{x_{30} + x_{31}}{2}.

    Do x_{30}x_{31} đều thuộc nhóm \lbrack 180;240) nên nhóm này chứa Q_{3}.

    Q_{3} = 180 + \frac{\frac{3.40}{4} -
25}{15}.60 = 200

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là:

    \Delta Q = Q_{3} - Q_{1} = 200 - 135 =
65 phút.

    d) Sai

    Xét mẫu số liệu ghép nhóm của lớp 12A2:

    Cỡ mẫu là: n = 9 + 12 + 18 =
39

    Gọi y_{1},...,y_{39} là thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu gốc là y_{ 10}.

    Do y_{10} thuộc nhóm \lbrack 60;120) nên nhóm này chứa Q_{1}.

    Q_{1} = 60 + \frac{\frac{39}{4} -
9}{12}.60 = 63,75

    Tứ phân vị thứ ba của mẫu số liệu gốc là y_{30}.

    Do y_{30} thuộc nhóm \lbrack 120;180) nên nhóm này chứa Q_{3}.

    Q_{3} = 120 + \frac{\frac{3.39}{4} -
21}{18}.60 = 147,5

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là:

    \Delta Q = Q_{3} - Q_{1} = 147,5 - 63,75
= 83,75

    Dựa vào khoảng tứ phân vị thì thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 phân tán hơn so với lớp 12A1.

  • Câu 4: Thông hiểu

    Cho bảng thống kê cân nặng của học sinh (đơn vị: kg) lớp 12D như sau:

    Nhóm cân nặng

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    Số học sinh

    2

    10

    16

    8

    2

    2

    Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.

    a) Số học sinh nặng dưới 50 kilogam là 1. Đúng||Sai

    b) Mốt của mẫu số liệu ghép nhóm trên xấp xỉ bằng 54,29(kg). Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là 19,5. Sai||Đúng

    d) Phương sai của mẫu số liệu ghép nhóm là 128. Sai||Đúng

    Đáp án là:

    Cho bảng thống kê cân nặng của học sinh (đơn vị: kg) lớp 12D như sau:

    Nhóm cân nặng

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    Số học sinh

    2

    10

    16

    8

    2

    2

    Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.

    a) Số học sinh nặng dưới 50 kilogam là 1. Đúng||Sai

    b) Mốt của mẫu số liệu ghép nhóm trên xấp xỉ bằng 54,29(kg). Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là 19,5. Sai||Đúng

    d) Phương sai của mẫu số liệu ghép nhóm là 128. Sai||Đúng

    a) Đúng: Số học sinh nặng dưới 50 kg là 2
+ 10 = 12.

    b) Đúng: Nhóm chứa mốt của mẫu số liệu là \lbrack 50;60).

    Do đó u_{m} = 50;n_{m} = 16;n_{m - 1} =
10,n_{m + 1} = 8,u_{m + 1} - u_{m} = 60 - 50 = 10.

    Mốt của mẫu số liệu ghép nhóm xấp xỉ bằng:

    M_{0} = 50 + \frac{16 - 10}{(16 - 10) +
(16 - 8)} \cdot 10 = \frac{380}{7} \approx 54,29(\text{\
}kg)

    Mốt của mẫu số liệu ghép nhóm trên xấp xỉ bằng 54,29(\text{\ }kg).

    c) Sai: Cỡ mẫu n = 40.

    Gọi x_{1},x_{2} \in \lbrack
30;40);x_{3},\ldots,x_{12} \in \lbrack 40;50);

    x_{13},\ldots,x_{28} \in \lbrack
50;60);x_{29},\ldots,x_{36} \in \lbrack 60;70);

    x_{37},x_{38} \in \lbrack
70;80);x_{39},x_{40} \in \lbrack 80;90).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{10} + x_{11} ight) \in
\lbrack 40;50).

    Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

    Q_{1} = 40 + \frac{\frac{40}{4} - 2}{10}
\cdot (50 - 40) = 48.

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{30} + x_{31} ight) \in
\lbrack 60;70).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 60 + \dfrac{\dfrac{3 \cdot 40}{4} -(2 + 10 + 16)}{8}.(70 - 60) = \frac{125}{2}.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    \Delta_{Q} = \frac{125}{2} - 48 =
\frac{29}{2}

    d) Sai: Ta có bảng cân nặng của các em học sinh theo giá trị đại diện:

    Nhóm

    Giá trị đại diện

    Tần số

    [30; 40)

    35

    2

    [40; 50)

    45

    10

    [50; 60)

    55

    16

    [60; 70)

    65

    8

    [70; 80)

    75

    2

    [80; 90)

    85

    2

    Cỡ mẫu n = 2 + 10 + 16 + 8 + 2 + 2 =
40.

    Số trung bình của mẫu số liệu ghép nhóm là

     \frac{35.2 + 45.10 + 55.16 + 65.8 + 75.2
+ 85.2}{40} = \frac{2240}{40} = 56(kg)

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{40}\left( {2.35}^{2} +
{10.45}^{2} + {16.55}^{2} + {8.65}^{2} + {2.75}^{2} + {2.85}^{2} ight)
- 56^{2}

    = 3265 - 3136 = 129.

  • Câu 5: Nhận biết

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Có bao nhiêu máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ?

    Có 6 máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ.

  • Câu 6: Thông hiểu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính giá trị Q_{1} của mẫu dữ liệu ghép nhóm trên?

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{4} =
5

    => Nhóm chứa tứ phân vị thứ nhất là [7; 9)

    (Vì 5 nằm giữa hai tần số tích lũy 2 và 9)

    Do đó: l = 7;m = 2,f = 7;c = 9 - 7 =
2

    Khi đó tứ phân vị thứ nhất là:

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 7 + \dfrac{5 - 2}{7}.2 =\dfrac{55}{7}

  • Câu 7: Nhận biết

    Thống kê quãng đường một xe taxi công nghệ đi mỗi ngày (đơn vị: km) như sau:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Số ngày

    5

    10

    9

    4

    2

    Tìm số trung bình của mẫu số liệu ghép nhóm?

    Ta có:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Giá trị đại diện

    75

    125

    175

    225

    275

    Số ngày

    5

    10

    9

    4

    2

    Số trung bình của mẫu số liệu ghép nhóm:

    \overline{x} = \frac{5.75 + 10.125 +
9.175 + 4.225 + 2.275}{30} = 155

  • Câu 8: Nhận biết

    Bảng sau thống kê khối lượng một số quả quýt trong thùng hàng:

    Khối lượng (gam)

    [80; 82)

    [82; 84)

    [84; 86)

    [86; 88)

    [88; 90)

    Số quả

    17

    20

    25

    16

    12

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 90 – 80 = 10 gam.

  • Câu 9: Thông hiểu

    Cho bảng thống kê kết quả đo cân nặng của một số trẻ em như sau:

    Cân nặng (kg)

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    [12; 14)

    Số trẻ em

    6

    12

    19

    9

    4

    Xác định phương sai của mẫu số liệu đã cho?

    Ta có: N = 50

    Suy ra số trung bình của mẫu số liệu là:

    \overline{x} = \frac{6.5 + 12.7 + 19.9 +
9.11 + 4.13}{50} = 8,72

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{50}\left( 6.5^{2} +
12.7^{2} + 19.9^{2} + 9.11^{2} + 4.13^{3} ight) - 8,72^{2} \approx
4,8

  • Câu 10: Thông hiểu

    Thống kê độ tuổi khách hàng đến xem phim trong một phòng của rạp chiếu phim sau 1 giờ được ghi lại trong bảng sau:

    Độ tuổi

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Số khách hàng

    6

    12

    16

    7

    2

    Xét tính đúng sai của các khẳng định sau:

    a) Giá trị đại diện nhóm [50; 60) là 55. Đúng||Sai

    b) Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50; 60). Đúng||Sai

    c) Nhóm chứa mốt là nửa khoảng [30; 40). Đúng||Sai

    d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 31 tuổi. Sai||Đúng

    Đáp án là:

    Thống kê độ tuổi khách hàng đến xem phim trong một phòng của rạp chiếu phim sau 1 giờ được ghi lại trong bảng sau:

    Độ tuổi

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Số khách hàng

    6

    12

    16

    7

    2

    Xét tính đúng sai của các khẳng định sau:

    a) Giá trị đại diện nhóm [50; 60) là 55. Đúng||Sai

    b) Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50; 60). Đúng||Sai

    c) Nhóm chứa mốt là nửa khoảng [30; 40). Đúng||Sai

    d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 31 tuổi. Sai||Đúng

    a) Đúng: Giá trị đại diện nhóm [50;60) là 55

    b) Đúng: Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50;60) .

    c) Đúng: Nhóm chứa mốt là nửa khoảng [30;40).

    d) Sai: Khi đó

    u_{m} = 30;n_{m} = 16;n_{m- 1} = 12;n_{m + 1} = 7;u_{m + 1} - u_{m} = 40 - 30 = 10

    Ta có mốt là:

    M_{0} = 30 + \frac{16 - 12}{(16 - 2) +
(16 - 7)}.10 = \frac{430}{13} \approx 33,08

    Vậy độ tuổi được dự báo là thích xem phim đó nhiều nhất là 33 tuổi.

  • Câu 11: Thông hiểu

    Thống kê mức lương (đơn vị: triệu đồng) tháng 11 của nhân viên thuộc các phòng ban trong cơ quan thu được kết quả sau:

    Mức lương

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    Số nhân viên

    6

    20

    30

    5

    Xác định tính đúng sai của các khẳng định dưới đây:

    a) Trong thống kê số lượng nhân viên có mức lương cao nhất có số lượng thấp nhất. Đúng||Sai

    b) Lương trung bình của các nhân viên trong thống kê là 10. Sai||Đúng

    c) Nhóm tứ phân vị thứ hai của thống kê là nhóm [6; 8). Sai||Đúng

    d) Khoảng tứ phân vị thống kê là nhỏ hơn 1. Đúng||Sai

    Đáp án là:

    Thống kê mức lương (đơn vị: triệu đồng) tháng 11 của nhân viên thuộc các phòng ban trong cơ quan thu được kết quả sau:

    Mức lương

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    Số nhân viên

    6

    20

    30

    5

    Xác định tính đúng sai của các khẳng định dưới đây:

    a) Trong thống kê số lượng nhân viên có mức lương cao nhất có số lượng thấp nhất. Đúng||Sai

    b) Lương trung bình của các nhân viên trong thống kê là 10. Sai||Đúng

    c) Nhóm tứ phân vị thứ hai của thống kê là nhóm [6; 8). Sai||Đúng

    d) Khoảng tứ phân vị thống kê là nhỏ hơn 1. Đúng||Sai

    Ta có:

    Mức lương

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    Giá trị đại diện

    5

    7

    9

    11

    Số nhân viên

    6

    20

    30

    5

    a) Đúng: Trong thống kê số lượng nhân viên có mức lương cao nhất có số lượng thấp nhất.

    b) Sai: Lương trung bình của các nhân viên trong thống kê là 8,11

    \overline{x} = \frac{5.6 + 7.20 + 9.30 +
11.5}{61} = \frac{495}{61} \approx 8,11

    c) Sai: Ta có:

    \frac{n}{2} = 30,5nên nhóm chứa tứ phân vị thứ 2 của thống kê là [8;10).

    d) Đúng: Ta có: \frac{n}{4} =
15,25;\frac{3n}{4} \approx 45,75

    \left\{ \begin{matrix}
  {Q_1} = 6 + \dfrac{{\dfrac{{61}}{4} - 6}}{{26}}.2 = \dfrac{{439}}{{52}} \hfill \\
  {Q_3} = 8 + \dfrac{{\dfrac{{3.61}}{4} - 26}}{{56}}.2 = \dfrac{{975}}{{112}} \hfill \\ 
\end{matrix}  ight. \Rightarrow \Delta Q = {Q_3} - {Q_1} \approx 0,26.

  • Câu 12: Thông hiểu

    Cho bảng thống kê số bước chân đi trong 1 tháng của A và B như sau:

    Số bước (nghìn bước)

    [3; 5)

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    A

    6

    7

    6

    6

    5

    B

    2

    5

    13

    8

    2

    Giả sử so sánh theo độ lệch chuẩn, em có nhận xét gì về số lượng bước chân đi mỗi ngày của hai người?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho bảng thống kê số bước chân đi trong 1 tháng của A và B như sau:

    Số bước (nghìn bước)

    [3; 5)

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    A

    6

    7

    6

    6

    5

    B

    2

    5

    13

    8

    2

    Giả sử so sánh theo độ lệch chuẩn, em có nhận xét gì về số lượng bước chân đi mỗi ngày của hai người?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Nhận biết

    Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:

    42

    43,4

    43,4

    46,5

    46,7

    46,8

    47,5

    47,7

    48,1

    48,4

    50,8

    51,1

    52,7

    53,9

    54,8

    57,6

    57,5

    59,6

    60,3

    61,1

    Lập bảng tần số ghép nhóm với nhóm đầu [42; 46) và độ dài mỗi nhóm bằng 4. Tìm tốc độ trung bình của mẫu dữ liệu ghép nhóm?

    Ta lập được bảng tần số ghép nhóm như sau:

    Tốc độ

    [42; 46)

    [46; 50)

    [50; 54)

    [54; 58)

    [58; 62)

    Giá trị đại diện

    44

    48

    52

    56

    60

    Số xe

    3

    7

    4

    3

    3

    Tốc độ trung bình là:

    \overline{x} = \frac{3.44 + 7.48 + 4.52
+ 3.56 + 3.60}{20} = 51,2

  • Câu 14: Vận dụng

    Kết quả đo chiều cao của 100 cây thực nghiệm 2 năm tuổi được cho trong bảng sau:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Tìm giá trị ngoại lệ của mẫu số liệu?

    Ta có:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Tần số tích lũy

    5

    17

    42

    86

    100

    N = 100 \Rightarrow \frac{N}{4} =
25 => Nhóm chứa tứ phân vị thứ nhất là: [8,8; 9,0)

    \Rightarrow \left\{ \begin{matrix}l = 8,8,\dfrac{N}{4} = 25,m = 17,f = 25 \\c = 9,0 - 8,8 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\frac{\dfrac{N}{4} - m}{f}.c \Rightarrow Q_{1} = 8,8 + \frac{25 -17}{25}.0,2 = \frac{1108}{125}

    \frac{3N}{4} = 75 => Nhóm chứa tứ phân vị thứ ba là: [9,0; 9,2)

    \Rightarrow \left\{ \begin{matrix}l = 9,0,\dfrac{3N}{4} = 75,m = 42,f = 44 \\c = 9,2 - 9,0 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\frac{\dfrac{3N}{4} - m}{f}.c \Rightarrow Q_{3} = 9,0 + \frac{75 -42}{44}.0,2 = \frac{183}{20}

    Suy ra khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} = 0,286.

    Giá trị x trong mẫu số liệu là giá trị ngoại lệ nếu \left\lbrack \begin{matrix}
x < Q_{1} - 1,5\Delta_{Q} \\
x > Q_{3} + 1,5\Delta_{Q} \\
\end{matrix} ight.

    Ta có: x < Q_{1} - 1,5\Delta_{Q} =
8,435

    Vậy giá trị ngoại lệ cần tìm là 8,4.

  • Câu 15: Nhận biết

    Cho bảng thống kê kết quả cự li ném bóng của một người như sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số lần

    13

    45

    24

    12

    6

    Cự li ném bóng trung bình của người đó là:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số lần

    13

    45

    24

    12

    6

    Cự li trung bình là:

    \overline{x} = \frac{13.9,25 + 45.19,75
+ 24.20,25 + 12.20,75 + 6.21,25}{100} \approx 20,02

  • Câu 16: Nhận biết

    Một mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng:

    Mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng \sqrt{16} = 4.

  • Câu 17: Nhận biết

    Điểm trung bình cuối năm của học sinh lớp 12A và 12B được thống kê trong bảng sau:

    Nếu so sánh bảng biến thiên thì học sinh lớp nào có điểm trung bình ít phân tán hơn?

    Ta có:

    Khoảng biến thiên của điểm số học sinh lớp 12A là: 10 – 5 = 5

    Khoảng biến thiên của điểm số học sinh lớp 12B là: 10 – 6 = 4

    Nếu so sánh theo khoảng biến thiên thì điểm trung bình của các học sinh lớp 12B ít phân tán hơn điểm trung bình của các học sinh lớp 12A.

  • Câu 18: Nhận biết

    Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn A được thống kê lại ở bảng sau:

    Thời gian (phút)

    [20;25)

    [25;30)

    [30;35)

    [35;40)

    [40;45)

    Số ngày

    6

    6

    4

    1

    1

    Khoảng biến thiên của mẫu số liệu ghép nhóm là

    Khoảng biến thiên của mẫu số liệu ghép nhóm là: 45 – 20 = 25 (phút).

  • Câu 19: Nhận biết

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Tuổi thọ

    [14;15)

    [15;16)

    [16;17)

    [17;18)

    [18;19)

    Số con

    1

    3

    8

    6

    2

    Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu ghép nhóm đã cho là:

    Ta có: \frac{n}{4} = \frac{20}{4} =
51 + 3 < 5 < 1 + 3 +
8 nên tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm [16;17).

  • Câu 20: Thông hiểu

    Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khỏe. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:

    Phương sai của mẫu số liệu ghép nhóm là (làm tròn đến hàng phần trăm)

    Cỡ mẫu: n = 20.

    Số trung bình của mẫu số liệu ghép nhóm là

    \overline{x} = \frac{2,85.3 + 3,15.6 +
3,45.5 + 3,75.4 + 4,05.2}{20} = 3,39.

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{20}\left( 2,85^{2}.3 +
3,15^{2}.6 + 3,45^{2}.5 + 3,75^{2}.4 + 4,05^{2}.2 ight) - 3,39^{2}
\approx 0,13

  • Câu 21: Thông hiểu

    Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong Bảng 18.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là:

    Số trung bình cộng của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{4.42,5 + 14.47,5 + 8.52,5 +
10.57,5 + 6.62,5 + 2.67,5}{44} = \frac{585}{11}

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{4\left( 42,5 -
\frac{585}{11} ight)^{2} + 14\left( 47,5 - \frac{585}{11}
ight)^{2}}{44}

    + \frac{8\left( 52,5 - \frac{585}{11}
ight)^{2} + 10\left( 57,5 - \frac{585}{11}
ight)^{2}}{44}

    + \frac{+ 6\left( 62,5 - \frac{585}{11}
ight)^{2} + 2.\left( 67,5 - \frac{585}{11} ight)^{2}}{44} \approx
46,12

    Vậy độ lệch chuẩn của mẫu số liệu ghép nhóm là: \sqrt{s} \approx 6,2

  • Câu 22: Nhận biết

    Kiểm lâm thực hiện đo đường kính của một số cây thân gỗ tại hai khu vực A và B thu được kết quả như sau:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Đường kính trung bình của cây tại hai khu vực A và B lần lượt là:

    Ta có:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    Giá trị đại diện

    31

    33

    35

    37

    39

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Suy ra

    \overline{x_{A}} = \frac{25.31 + 38.33 +
20.35 + 10.37 + 7.39}{100} = 33,72

    \overline{x_{B}} = \frac{25.31 + 27.33 +
19.35 + 18.37 + 14.39}{100} = 34,2

  • Câu 23: Nhận biết

    Số điểm thi đấu của các đội được biểu diễn trong bảng dưới đây:

    Nhóm dữ liệu

    Tần số

    (0; 2]

    5

    (2; 4]

    16

    (4; 6]

    13

    (6; 8]

    7

    (8; 10]

    5

    (10; 12]

    4

    Khoảng biến thiên của mẫu số liệu đó là:

    Khoảng biến thiên của mẫu số liệu đã cho là: R = 12 - 0 = 12.

  • Câu 24: Vận dụng

    Cho bảng thống kê chiều cao (đơn vị: cm) của học sinh lớp 12A và lớp 12B như sau:

    Chiều cao

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    [180; 185)

    12A

    2

    7

    12

    3

    0

    1

    12B

    5

    9

    8

    2

    1

    0

    Em có nhận xét gì về độ phân tán của nửa giữa số liệu chiều cao của học sinh lớp 12A so với lớp 12B?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho bảng thống kê chiều cao (đơn vị: cm) của học sinh lớp 12A và lớp 12B như sau:

    Chiều cao

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    [180; 185)

    12A

    2

    7

    12

    3

    0

    1

    12B

    5

    9

    8

    2

    1

    0

    Em có nhận xét gì về độ phân tán của nửa giữa số liệu chiều cao của học sinh lớp 12A so với lớp 12B?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 25: Thông hiểu

    Năng suất lúa (đơn vị: tấn/ha) của một số thửa ruộng được ghi lại trong bảng sau:

    Năng suất

    [5,5; 5,7)

    [5,7; 5,9)

    [5,9; 6,1)

    [6,1; 6,3)

    [6,3; 6,5)

    [6,5; 6,7)

    Số thửa ruộng

    3

    4

    6

    5

    5

    2

    Xác định độ lệch chuẩn của mẫu số liệu ghép nhóm?

    Ta có:

    Năng suất

    [5,5; 5,7)

    [5,7; 5,9)

    [5,9; 6,1)

    [6,1; 6,3)

    [6,3; 6,5)

    [6,5; 6,7)

    Số thửa ruộng

    3

    4

    6

    5

    5

    2

    Tần số tích lũy

    3

    7

    13

    18

    23

    25

    Số trung bình của mẫu số liệu ghép nhóm:

    \overline{x} = \frac{3.5,6 + 4.5,8 +
6.6,0 + 5.6,2 + 5.6,4 + 2,6,6}{25} = 6,088

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{25}\left( 3.5,6^{2} +
4.5,8^{2} + 6.6,0^{2} + 5.6,2^{2} + 5.6,4^{2} + 2,6,6^{2} ight) -
6,088^{2} \approx 0,086656

    Vậy độ lệch chuẩn của mẫu số liệu ghép nhóm là S = \sqrt{S^{2}} \approx 0,3

  • Câu 26: Nhận biết

    Thống kê đường kính thân gỗ của một số cây xoan đào 7 năm tuổi được trồng ở một lâm trường ở bảng 1.

    Đường kính

    \lbrack 40;45) \lbrack 45;50) \lbrack 50;55) \lbrack 55;60) \lbrack 60;65)

    Tần số

    5

    20

    18

    7

    3

    Hãy tìm khoảng biến thiên của mẫu số liệu ghép nhóm trên.

    Khoảng biến thiên của mẫu số liệu ghép nhóm là

    a_{m + 1} - a_{1} = 65 - 40 =
25.

  • Câu 27: Nhận biết

    Cho biểu đồ mức lương của công nhân hai phân xưởng A và B (đơn vị: triệu đồng) như sau:

    Hoàn thành bảng số liệu sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Đáp án là:

    Cho biểu đồ mức lương của công nhân hai phân xưởng A và B (đơn vị: triệu đồng) như sau:

    Hoàn thành bảng số liệu sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

     Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

  • Câu 28: Thông hiểu

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    Tốc độ

    Tần số

    40 ≤ x < 50

    4

    50 ≤ x < 60

    5

    60 ≤ x < 70

    7

    70 ≤ x < 80

    4

    Xác định giá trị của \Delta_{Q} = Q_{3} -
Q_{1}?

    Ta có:

    Tốc độ

    Tần số

    Tần số tích lũy

    40 ≤ x < 50

    4

    4

    50 ≤ x < 60

    5

    9

    60 ≤ x < 70

    7

    16

    70 ≤ x < 80

    4

    20

    Tổng

    N = 20

     

    Ta có: \frac{N}{4} = \frac{20}{4} =
5

    => Nhóm chứa tứ phân vị thứ nhất là: [50; 60)

    Khi đó: \left\{ \begin{matrix}l = 50;\dfrac{N}{4} = 5 \\m = 4,f = 5,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 50 + \frac{5 -
4}{5}.10 = 52

    Ta có: \frac{3N}{4} = \frac{3.20}{4} =
15

    => Nhóm chứa tứ phân vị thứ ba là: [60; 70]

    Khi đó: \left\{ \begin{matrix}l = 60;\dfrac{3N}{4} = 15 \\m = 9,f = 7,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 60 + \frac{15 -
9}{7}.10 = \frac{480}{7}

    \Rightarrow \Delta_{Q} = Q_{3} - Q_{1} =
\frac{480}{7} - 52 \approx 16,6

  • Câu 29: Nhận biết

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Tuổi thọ

    [14;15)

    [15;16)

    [16;17)

    [17;18)

    [18;19)

    Số con

    1

    3

    8

    6

    2

    Khoảng biến thiên của mẫu số liệu ghép nhóm đã cho là:

    Khoảng biến thiên: 19 - 14 = 5.

  • Câu 30: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm được ghi trong bảng dưới đây:

    Khoảng

    Tần số

    Nhỏ hơn 10

    10

    Nhỏ hơn 20

    20

    Nhỏ hơn 30

    30

    Nhỏ hơn 40

    40

    Nhỏ hơn 50

    50

    Nhỏ hơn 60

    30

    Tìm khoảng tứ phân vị của mẫu số liệu đã cho?

    Ta có:

    Nhóm dữ liệu

    Tần số

    Tần số tích lũy

    (0; 10]

    10

    10

    (10; 20]

    20

    30

    (20; 30]

    30

    60

    (30; 40]

    50

    110

    (40; 50]

    40

    150

    (50; 60]

    30

    180

    Tổng

    N = 180

     

    Ta có: \frac{N}{4} = \frac{180}{4} =
45

    => Nhóm chứa tứ phân vị thứ nhất là: (20; 30]

    Khi đó: \left\{ \begin{matrix}
l = 20;\frac{N}{4} = 45 \\
m = 30,f = 30,d = 10 \\
\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \frac{\frac{N}{4} -
m}{f}.d

    \Rightarrow Q_{1} = 20 + \frac{45 -
30}{30}.10 = 25

    Ta có: \frac{3N}{4} = \frac{3.180}{4} =
135

    => Nhóm chứa tứ phân vị thứ ba là: (40; 50]

    Khi đó: \left\{ \begin{matrix}
l = 40;\frac{3N}{4} = 30 \\
m = 110,f = 40,d = 10 \\
\end{matrix} ight.

    Tứ phân vị thứ ba là:

    Q_{3} = l + \frac{\frac{3N}{4} -
m}{f}.d

    \Rightarrow Q_{3} = 40 + \frac{135 -
110}{40}.10 = \frac{185}{4}

    \Rightarrow \Delta_{Q} = Q_{3} - Q_{1} =
\frac{185}{4} - 25 = 21,25

  • Câu 31: Nhận biết

    Cho mẫu số kiệu ghép nhóm như sau:

    Chiều cao(cm)

    [155; 160)

    [160; 165)

    [165; 170)

    [175; 180)

    [180; 185)

    A

    2

    7

    12

    1

    0

    B

    6

    10

    7

    0

    2

    Khoảng biến thiên của mẫu số liệu B có độ phân tán lớn hơn khoảng biến thiên của mẫu số liệu A bằng bao nhiêu?

    Khoảng biến thiên của A: 180 – 155 = 25

    Khoảng biến thiên của B: 185 – 155 = 30

    Khoảng biến thiên của mẫu số liệu B có độ phân tán lớn hơn khoảng biến thiên của mẫu số liệu A bằng 5.

  • Câu 32: Vận dụng

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 33: Thông hiểu

    Thời gian hoàn thành bài kiểm tra môn Toán của các bạn trong lớp 12A được cho trong bảng sau:

    Thời gian (phút)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số học sinh

    9

    17

    8

    6

    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 7,2

    Đáp án là:

    Thời gian hoàn thành bài kiểm tra môn Toán của các bạn trong lớp 12A được cho trong bảng sau:

    Thời gian (phút)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số học sinh

    9

    17

    8

    6

    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 7,2

    Cỡ mẫu là n = 9 + 17 + 8 + 6 =
40. Gọi x_{1},\ \ x_{2},\ \ ...,\ \
x_{40} là thời gian hoàn thành bài kiểm tra môn Toán của 40 học sinh và giả sử rằng dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{10} + x_{11} ight) nên nhóm chứa tứ phân vị thứ nhất là nhóm \lbrack 30;35) và ta có: Q_{1} = 30 + \frac{10 - 9}{17}.5 \approx
30,3

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{30} + x_{31} ight) nên nhóm chứa tứ phân vị thứ ba là nhóm \lbrack 35;40) và ta có: Q_{3} = 35 + \frac{30 - 26}{8}.5 =
37,5

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} = 7,2.

  • Câu 34: Thông hiểu

    Tìm hiểu thời gian (đơn vị: giờ) sử dụng điện thoại di động của một nhóm bạn trẻ thu được kết quả sau như sau:

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    Số bạn

    2

    6

    8

    9

    3

    2

    Xác định tính đúng sai của các đáp án dưới đây?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm này là 25. Sai||Đúng

    b) Nhóm chứa tứ phân vị thứ 3 là [15; 20). Đúng||Sai

    c) Số trung bình của thống kê là 10. Sai||Đúng

    d) Khoảng tứ phân của mẫu số liệu ghép nhóm này lớn hơn 10. Sai||Đúng

    Đáp án là:

    Tìm hiểu thời gian (đơn vị: giờ) sử dụng điện thoại di động của một nhóm bạn trẻ thu được kết quả sau như sau:

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    Số bạn

    2

    6

    8

    9

    3

    2

    Xác định tính đúng sai của các đáp án dưới đây?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm này là 25. Sai||Đúng

    b) Nhóm chứa tứ phân vị thứ 3 là [15; 20). Đúng||Sai

    c) Số trung bình của thống kê là 10. Sai||Đúng

    d) Khoảng tứ phân của mẫu số liệu ghép nhóm này lớn hơn 10. Sai||Đúng

    Ta có

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    Giá trị đại diện

    2,5

    7,5

    12,5

    17,5

    22,5

    17,5

    Số bạn

    2

    6

    8

    9

    3

    2

    a) Sai: Khoảng biến thiên của mẫu số liệu ghép nhóm là R = 30 - 0 = 30.

    b) Đúng:

    16 < \frac{3n}{4} = \frac{3.30}{4}
= \frac{90}{4} = 22,5 < 25 nên nhóm chứa tứ phân vị thứ 3 là [15;20).

    c) Sai: Thời gian sử dụng điện thoại trung bình là:

    \overline{x} = \frac{2.2,5 + 6.7,5 +
8.12,5 + 9.17,5 + 3.22,5 + 2.27,5}{30} = \frac{43}{3} \approx
14,3

    d) Sai: Ta có: \frac{n}{4} =
7,5;\frac{n}{2} = 15;\frac{3n}{4} = 22,5

    \left\{ \begin{matrix}
  {Q_1} = 5 + \dfrac{{\dfrac{{30}}{4} - 2}}{6}.5 = 9,58 \hfill \\
  {Q_3} = 15 + \dfrac{{\dfrac{{90}}{4} - 16}}{9}.5 \approx 18,61 \hfill \\ 
\end{matrix}  ight. \Rightarrow \Delta Q = {Q_3} - {Q_1} \approx 9,03 < 10

  • Câu 35: Nhận biết

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Tính thời gian sử dụng pin trung bình?

    Ta có:

    Thời gian (giờ)

    [7,2; 7,4)

    [7,4; 7,6)

    [7,6; 7,8)

    [7,8; 8,0)

    Giá trị đại diện

    7,3

    7,5

    7,7

    7,9

    Số máy vi tính

    2

    4

    7

    5

    Thòi gian trung bình là:

    \overline{x} = \frac{2.7,3 + 4.7,5 +
7.7,7 + 5.7,9}{18} = \frac{23}{3} \approx 7,7 giờ

  • Câu 36: Nhận biết

    Xác định khoảng biến thiên của mẫu số liệu ghép nhóm sau đây:

    Thời gian (s)

    Số vận động viên (người)

    (50,5; 55,5]

    2

    (55,5; 60,5]

    7

    (60,5; 65,5]

    8

    (65,5; 70,5]

    4

    Khoảng biến thiên của mẫu số liệu ghép nhóm là R = 70,5 - 50,5 = 20

  • Câu 37: Nhận biết

    Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Số trung bình của mẫu số liệu ghép nhóm của đối tương A và đối tượng B lần lượt là:

    Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

     

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

     

    Phân xưởng A

    4

    5

    5

    4

    2

    N = 20

    Phân xưởng B

    3

    6

    5

    5

    1

    N’ = 20

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:

    \overline{x_{A}} = \frac{4.5,5 + 5.6,5 +
5.7,5 + 4.8,5 + 2.9,5}{20} = 7,25

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:

    \overline{x_{B}} = \frac{3.5,5 + 6.6,5 +
5.7,5 + 5.8,5 + 1.9,5}{20} = 7,25

  • Câu 38: Thông hiểu

    Cho bảng số liệu thống kê cân nặng của 50 học sinh tiểu học như sau:

    Cân nặng (kg)

    Số học sinh

    [0; 10)

    5

    [10; 20)

    8

    [20; 60)

    15

    [30; 80)

    16

    [40; 100)

    6

    Tìm độ lệch chuẩn của mẫu số liệu đã cho?

    Ta có:

    Cân nặng (kg)

    Số học sinh

    Giá trị đại diện (xi)

    \left( x_{i} - \overline{x}
ight)^{2} f_{i}.\left( x_{i} - \overline{x}
ight)^{2}

    [0; 10)

    5

    5

    484

    2420

    [10; 20)

    8

    15

    144

    1152

    [20; 60)

    15

    25

    4

    60

    [30; 80)

    16

    35

    64

    1024

    [40; 100)

    6

    45

    324

    1944

     

    \sum_{}^{}f_{i} = 50

     

     

    Tổng: 6600

    Phương sai của mẫu số liệu là:

    S^{2} =
\frac{1}{N}.\sum_{}^{}{f_{i}.\left( x_{i} - \overline{x} ight)^{2}} =
\frac{1}{50}.6600 = 132

    Suy ra độ lệch chuẩn của mẫu số liệu là: S = \sqrt{S^{2}} = \sqrt{132} \approx
11,5

  • Câu 39: Nhận biết

    Kết quả khảo sát cân nặng của 40 quả cam Hòa Bình ở mỗi lô hàng 1 và lô hàng 2 được cho ở bảng sau:

    Cân nặng (gam)

    [100; 110)

    [110; 120)

    [120; 130)

    [130; 140)

    [140; 150)

    Số quả cam ở lô hàng 1

    0

    10

    11

    19

    0

    Số quả cam ở lô hàng 1

    3

    15

    12

    7

    3

    Sử dụng khoảng biến thiên, hãy cho biết cân nặng của 40 quả cam Hòa Bình của lô hàng nào có độ phân tán lớn hơn.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về cân nặng của 40 quả cam Hòa Bình của lô hàng 1 là 140 - 110 = 30 gam.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về cân nặng của 40 quả cam Hòa Bình của lô hàng 2 là 150 – 100 = 50 gam.

    Do vậy, lô hàng 2 có cân nặng của 40 quả cam Hòa Bình phân tán lớn hơn lô hàng 1.

  • Câu 40: Thông hiểu

    Cho mẫu số liệu ghép nhóm về chiều cao (đơn vị: cm) của cây trong vườn nghiên cứu như sau:

    Chiều cao

    [40; 45)

    [45; 50)

    [50; 55)

    [55; 60)

    [60; 65)

    [65; 70)

    Số cây

    5

    10

    7

    9

    7

    4

    Xét tính đúng sai của các khẳng định sau:

    a) Nhóm [45; 50) có tần số tích luỹ là 15. Đúng||Sai

    b) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 30. Đúng||Sai

    c) Nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \frac{3n}{4} là nhóm [55; 60). Sai||Đúng

    d) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm trên là Q_{3} > 61. Sai||Đúng

    Đáp án là:

    Cho mẫu số liệu ghép nhóm về chiều cao (đơn vị: cm) của cây trong vườn nghiên cứu như sau:

    Chiều cao

    [40; 45)

    [45; 50)

    [50; 55)

    [55; 60)

    [60; 65)

    [65; 70)

    Số cây

    5

    10

    7

    9

    7

    4

    Xét tính đúng sai của các khẳng định sau:

    a) Nhóm [45; 50) có tần số tích luỹ là 15. Đúng||Sai

    b) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 30. Đúng||Sai

    c) Nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \frac{3n}{4} là nhóm [55; 60). Sai||Đúng

    d) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm trên là Q_{3} > 61. Sai||Đúng

    a) Đúng: Nhóm [45;50) có tần số tích luỹ là 5 + 10 = 15.

    b) Đúng: Khoảng biến thiên là 70 – 40 = 30

    c) Sai: Nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \frac{n}{2} = 31,5 là nhóm [60; 65).

    d) Sai: Nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \frac{n}{2} = 31,5 là nhóm [60; 65).

    Đầu mút trái, độ dài và tần số của nhóm [60; 65) lần lượt là s = 60;h = 5;n_{2} = 7.

    Tần số tích luỹ của nhóm liền trước là cf_{4} = 31 nên tứ phân vị thứ ba là:

    Q_{1} = 60 + \left( \frac{31,5 - 31}{7}
ight).5 \approx 60,36

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo