Xác định khoảng biến thiên của mẫu số liệu ghép nhóm sau đây:
|
Thời gian (s) |
Số vận động viên (người) |
|
(50,5; 55,5] |
2 |
|
(55,5; 60,5] |
7 |
|
(60,5; 65,5] |
8 |
|
(65,5; 70,5] |
4 |
Khoảng biến thiên của mẫu số liệu ghép nhóm là
Xác định khoảng biến thiên của mẫu số liệu ghép nhóm sau đây:
|
Thời gian (s) |
Số vận động viên (người) |
|
(50,5; 55,5] |
2 |
|
(55,5; 60,5] |
7 |
|
(60,5; 65,5] |
8 |
|
(65,5; 70,5] |
4 |
Khoảng biến thiên của mẫu số liệu ghép nhóm là
Cho biểu đồ

Tính chiều cao trung bình của mẫu số liệu đã cho?
Ta có:
Chiều cao | [160; 164) | [164; 168) | [168; 172) | [172; 176) | [176; 180) |
Số học sinh | 3 | 5 | 8 | 4 | 1 |
Giá trị đại diện | 162 | 166 | 170 | 174 | 178 |
Chiều cao trung bình là:
Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:
Thời gian (phút) | [6; 7) | [7; 8) | [8; 9) | [9; 10) | [10; 11) |
Học sinh lớp 12A | 8 | 10 | 13 | 10 | 9 |
Học sinh lớp 12B | 4 | 12 | 17 | 14 | 3 |
Nếu so sánh theo độ lệch chuẩn thì học sinh lớp nào có tốc độ làm bài ít đồng đều hơn?
Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:
Thời gian (phút) | [6; 7) | [7; 8) | [8; 9) | [9; 10) | [10; 11) |
Học sinh lớp 12A | 8 | 10 | 13 | 10 | 9 |
Học sinh lớp 12B | 4 | 12 | 17 | 14 | 3 |
Nếu so sánh theo độ lệch chuẩn thì học sinh lớp nào có tốc độ làm bài ít đồng đều hơn?
Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:
|
Mức lương |
[5; 6) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
|
Phân xưởng A |
4 |
5 |
5 |
4 |
2 |
|
Phân xưởng B |
3 |
6 |
5 |
5 |
1 |
Chọn kết luận đúng?
Ta có:
|
Mức lương |
[5; 6) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
|
|
Giá trị đại diện |
5,5 |
6,5 |
7,5 |
8,5 |
9,5 |
|
|
Phân xưởng A |
4 |
5 |
5 |
4 |
2 |
N = 20 |
|
Phân xưởng B |
3 |
6 |
5 |
5 |
1 |
N’ = 20 |
Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:
Phương sai của mẫu số liệu ghép nhóm là:
Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là:
Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:
Phương sai của mẫu số liệu ghép nhóm là:
Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là:
Vậy kết luận đúng là: .
Cho bảng tần số ghép nhóm dưới đây:
|
Độ tuổi |
[50; 55) |
[55; 60) |
[60; 65) |
[65; 70) |
[70; 75) |
[75; 80) |
[80; 85) |
[85; 90) |
|
Tần số |
4 |
7 |
4 |
6 |
16 |
12 |
2 |
0 |
Hãy xác định khoảng biến thiên của mẫu số liệu ghép nhóm trên?
Do nhóm số liệu [85; 90) có tần số là 0 nên ta sẽ chỉ xét đến nhóm số liệu [80; 85).
Do đó: R = 85 – 50 = 35.
Thống kê quãng đường một xe taxi công nghệ đi mỗi ngày (đơn vị: km) như sau:
|
Quãng đường (km) |
[50; 100) |
[100; 150) |
[150; 200) |
[200; 250) |
[250; 300) |
|
Số ngày |
5 |
10 |
9 |
4 |
2 |
Độ lệch chuẩn của mẫu số liệu ghép nhóm gần bằng:
Ta có:
|
Quãng đường ((km) |
[50; 100) |
[100; 150) |
[150; 200) |
[200; 250) |
[250; 300) |
|
Số ngày |
5 |
10 |
9 |
4 |
2 |
|
Tần số tích lũy |
5 |
15 |
24 |
28 |
30 |
Số trung bình của mẫu số liệu ghép nhóm:
Vậy khẳng định (iii) sai.
Phương sai của mẫu số liệu ghép nhóm là:
Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là:
Số đặc trưng nào không sử dụng thông tin của nhóm số liệu đầu tiên và nhóm số liệu cuối cùng?
Số đặc trưng không sử dụng thông tin của nhóm số liệu đầu tiên và nhóm số liệu cuối cùng là khoảng tứ phân vị.
Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:
|
42 |
43,4 |
43,4 |
46,5 |
46,7 |
|
46,8 |
47,5 |
47,7 |
48,1 |
48,4 |
|
50,8 |
51,1 |
52,7 |
53,9 |
54,8 |
|
57,6 |
57,5 |
59,6 |
60,3 |
61,1 |
Lập bảng tần số ghép nhóm với nhóm đầu [42; 46) và độ dài mỗi nhóm bằng 4. Tìm tốc độ trung bình của mẫu dữ liệu ghép nhóm?
Ta lập được bảng tần số ghép nhóm như sau:
|
Tốc độ |
[42; 46) |
[46; 50) |
[50; 54) |
[54; 58) |
[58; 62) |
|
Giá trị đại diện |
44 |
48 |
52 |
56 |
60 |
|
Số xe |
3 |
7 |
4 |
3 |
3 |
Tốc độ trung bình là:
Quan sát bảng sau và tìm khoảng biến thiên của mẫu số liệu
|
Khoảng dữ liệu |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
|
Tần số |
8 |
12 |
22 |
17 |
Khoảng biến thiên của mẫu số liệu là: .
Cho bảng thống kê kết quả cự li ném bóng của một người như sau:
|
Cự li (m) |
[19; 19,5) |
[19,5; 20) |
[20; 20,5) |
[20,5; 21) |
[21; 21,5) |
|
Số lần |
13 |
45 |
24 |
12 |
6 |
Cự li ném bóng trung bình của người đó là:
Ta có:
|
Cự li (m) |
[19; 19,5) |
[19,5; 20) |
[20; 20,5) |
[20,5; 21) |
[21; 21,5) |
|
Giá trị đại diện |
19,25 |
19,75 |
20,25 |
20,75 |
21,25 |
|
Số lần |
13 |
45 |
24 |
12 |
6 |
Cự li trung bình là:
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
|
Cân nặng (kg) |
Số học sinh |
|
[45; 50) |
5 |
|
[50; 55) |
12 |
|
[55; 60) |
10 |
|
[60; 65) |
6 |
|
[65; 70) |
5 |
|
[70; 75) |
8 |
Chọn đáp án đúng?
Ta có:
|
Cân nặng (kg) |
Số học sinh |
Tần số tích lũy |
|
[45; 50) |
5 |
5 |
|
[50; 55) |
12 |
17 |
|
[55; 60) |
10 |
27 |
|
[60; 65) |
6 |
33 |
|
[65; 70) |
5 |
38 |
|
[70; 75) |
8 |
46 |
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: [50; 55)
=> Nhóm chứa tứ phân vị thứ ba là: [65; 70)
Vậy khoảng tứ phân vị là .
Bảng dưới đây thống kê cự li ném tạ của một vận động viên.
Cự li | [19; 21) | [21; 23) | [23; 25) | [25; 27) | [27; 29) |
Tần số | 13 | 45 | 24 | 12 | 6 |
Hãy tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên (kết quả được làm tròn đến hàng phần trăm)
Đáp án: 2,07
Bảng dưới đây thống kê cự li ném tạ của một vận động viên.
Cự li | [19; 21) | [21; 23) | [23; 25) | [25; 27) | [27; 29) |
Tần số | 13 | 45 | 24 | 12 | 6 |
Hãy tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên (kết quả được làm tròn đến hàng phần trăm)
Đáp án: 2,07
Ta có:
Cự li | [19; 21) | [21; 23) | [23; 25) | [25; 27) | [27; 29) |
Giá trị đại diện | 20 | 22 | 24 | 26 | 28 |
Tần số | 13 | 45 | 24 | 12 | 6 |
Cỡ mẫu:
Số trung bình:
Phương sai:
Độ lệch chuẩn: .
Cho mẫu số liệu ghép nhóm như sau:
|
Nhóm |
Tần số |
|
[0; 20) |
16 |
|
[20; 40) |
12 |
|
[40; 60) |
25 |
|
[60; 80) |
15 |
|
[80; 100) |
12 |
|
[100; 120) |
10 |
|
Tổng |
N = 90 |
Xác định khoảng tứ phân vị của mẫu số liệu? Kết quả làm tròn đến chữ số thập phân thứ nhất.
Ta có:
|
Nhóm |
Tần số |
Tần số tích lũy |
|
[0; 20) |
16 |
16 |
|
[20; 40) |
12 |
28 |
|
[40; 60) |
25 |
53 |
|
[60; 80) |
15 |
68 |
|
[80; 100) |
12 |
80 |
|
[100; 120) |
10 |
90 |
|
Tổng |
N = 90 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: [20; 40)
Khi đó ta có:
Tứ phân vị thứ nhất được tính như sau:
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là: [60; 80)
Khi đó ta có:
Tứ phân vị thứ ba được tính như sau:
Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong Bảng 1.
|
Nhóm |
Giá trị đại diện |
Tần số |
|
[40;45) [40;45) [40;45) [40;45) [40;45) [40;45) |
42,5 47,5 52,5 57,5 62,5 67,5 |
4 14 8 10 6 2 |
|
N = 44 |
||
|
Bảng 1 |
||
Phương sai của mẫu số liệu ghép nhóm trên là:
Số trung bình cộng của mẫu số liệu ghép nhóm là:
Phương sai của mẫu số liệu ghép nhóm là:
Thống kê quãng đường một xe taxi công nghệ đi mỗi ngày (đơn vị: km) như sau:
|
Quãng đường ((km) |
[50; 100) |
[100; 150) |
[150; 200) |
[200; 250) |
[250; 300) |
|
Số ngày |
5 |
10 |
9 |
4 |
2 |
Tìm số trung bình của mẫu số liệu ghép nhóm?
Ta có:
|
Quãng đường ((km) |
[50; 100) |
[100; 150) |
[150; 200) |
[200; 250) |
[250; 300) |
|
Giá trị đại diện |
75 |
125 |
175 |
225 |
275 |
|
Số ngày |
5 |
10 |
9 |
4 |
2 |
Số trung bình của mẫu số liệu ghép nhóm:
Kết quả đo chiều cao của 50 cây keo trong vườn được thống kê lại trong bảng sau:
|
Chiều cao (cm) |
[120; 122) |
[122; 124) |
[124; 126) |
[126; 128) |
[128; 130) |
|
Số cây |
16 |
4 |
3 |
6 |
21 |
Tính chiều cao trung bình của 50 cây keo trên?
Cỡ mẫu
|
Chiều cao (cm) |
[120; 122) |
[122; 124) |
[124; 126) |
[126; 128) |
[128; 130) |
|
Giá trị đại diện |
121 |
123 |
125 |
127 |
129 |
|
Số cây |
16 |
4 |
3 |
6 |
21 |
Chiều cao trung bình là:
.
Cho mẫu số liệu ghép nhóm về thời gian (đơn vị: phút) đi từ nhà đến trường của các học sinh trong một lớp 12 của một trường như sau:
|
Thời gian |
[0; 5) |
[5; 10) |
[10; 15) |
[15; 20) |
[20; 25) |
[25; 30) |
|
Số học sinh |
7 |
12 |
7 |
5 |
3 |
2 |
Xét tính đúng sai của các khẳng định sau:
a) Tần số tích lũy của nhóm [10;15) là 26. Đúng||Sai
b) Tần số nhóm [10;15) lớn nhất. Đúng||Sai
c) Khoảng biến thiên là 15. Sai||Đúng
d) Giá trị trung bình của mẫu số liệu bằng 11,25. Đúng||Sai
Cho mẫu số liệu ghép nhóm về thời gian (đơn vị: phút) đi từ nhà đến trường của các học sinh trong một lớp 12 của một trường như sau:
|
Thời gian |
[0; 5) |
[5; 10) |
[10; 15) |
[15; 20) |
[20; 25) |
[25; 30) |
|
Số học sinh |
7 |
12 |
7 |
5 |
3 |
2 |
Xét tính đúng sai của các khẳng định sau:
a) Tần số tích lũy của nhóm [10;15) là 26. Đúng||Sai
b) Tần số nhóm [10;15) lớn nhất. Đúng||Sai
c) Khoảng biến thiên là 15. Sai||Đúng
d) Giá trị trung bình của mẫu số liệu bằng 11,25. Đúng||Sai
a) Đúng: Tần số tích lũy của nhóm [10;15) là
b) Đúng: Tần số nhóm [10;15) lớn nhất.
c) Sai: Khoảng biến thiên là
d) Đúng: Giá trị trung bình của mẫu số liệu bằng:
Tìm khoảng tứ phân vị của mẫu số liệu sau
|
Thời gian |
Số học sinh |
|
[0; 5) |
6 |
|
[5; 10) |
10 |
|
[10; 15) |
11 |
|
[15; 20) |
9 |
|
[20; 25) |
1 |
|
[25; 30) |
1 |
|
[30; 35) |
2 |
Ta có:
|
Thời gian |
Số học sinh |
Tần số tích lũy |
|
[0; 5) |
6 |
6 |
|
[5; 10) |
10 |
16 |
|
[10; 15) |
11 |
27 |
|
[15; 20) |
9 |
36 |
|
[20; 25) |
1 |
37 |
|
[25; 30) |
1 |
38 |
|
[30; 35) |
2 |
40 |
Cỡ mẫu là:
=> Nhóm chứa tứ phân vị thứ nhất là [5; 10) (vì 10 nằm giữa hai tần số tích lũy 6 và 16)
Khi đó
Cỡ mẫu là:
=> Nhóm chứa tứ phân vị thứ ba là [15; 20) (vì 30 nằm giữa hai tần số tích lũy 36 và 27)
Khi đó
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: .
Cho biểu đồ

Hoàn thảnh bảng số liệu theo mẫu sau:
|
Chiều cao |
[160; 164) |
[164; 168) |
[168; 172) |
[172; 176) |
[176; 180) |
|
Số học sinh |
3 |
5 |
8 |
4 |
1 |
|
Giá trị đại diện |
162 |
166 |
170 |
174 |
178 |
Cho biểu đồ
Hoàn thảnh bảng số liệu theo mẫu sau:
|
Chiều cao |
[160; 164) |
[164; 168) |
[168; 172) |
[172; 176) |
[176; 180) |
|
Số học sinh |
3 |
5 |
8 |
4 |
1 |
|
Giá trị đại diện |
162 |
166 |
170 |
174 |
178 |
Hoàn thảnh bảng số liệu như sau:
|
Chiều cao |
[160; 164) |
[164; 168) |
[168; 172) |
[172; 176) |
[176; 180) |
|
Số học sinh |
3 |
5 |
8 |
4 |
1 |
|
Giá trị đại diện |
162 |
166 |
170 |
174 |
178 |
Tìm tứ phân vị thứ ba của mẫu số liệu:
|
Thời gian |
Số học sinh |
|
[0; 5) |
6 |
|
[5; 10) |
10 |
|
[10; 15) |
11 |
|
[15; 20) |
9 |
|
[20; 25) |
1 |
|
[25; 30) |
1 |
|
[30; 35) |
2 |
Ta có:
|
Thời gian |
Số học sinh |
Tần số tích lũy |
|
[0; 5) |
6 |
6 |
|
[5; 10) |
10 |
16 |
|
[10; 15) |
11 |
27 |
|
[15; 20) |
9 |
36 |
|
[20; 25) |
1 |
37 |
|
[25; 30) |
1 |
38 |
|
[30; 35) |
2 |
40 |
Cỡ mẫu là:
=> Nhóm chứa tứ phân vị thứ ba là [15; 20) (vì 30 nằm giữa hai tần số tích lũy 36 và 27)
Khi đó
.
Bảng sau thống kê khối lượng một số quả quýt trong thùng hàng:
|
Khối lượng (gam) |
[80; 82) |
[82; 84) |
[84; 86) |
[86; 88) |
[88; 90) |
|
Số quả |
17 |
20 |
25 |
16 |
12 |
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 90 – 80 = 10 gam.
Cho bảng thống kê điểm kiểm tra năng lực của một số học sinh như sau:
|
Điểm |
Số học sinh |
|
[30; 40) |
3 |
|
[40; 50) |
7 |
|
[50; 60) |
12 |
|
[60; 70) |
15 |
|
[70; 80) |
8 |
|
[80; 90) |
3 |
|
[90; 100) |
2 |
Phương sai của mẫu số liệu gần nhất với giá trị nào sau đây?
Ta có:
|
Điểm |
Số học sinh (fi) |
Giá trị đại diện (xi) |
||
|
[30; 40) |
3 |
35 |
729 |
2187 |
|
[40; 50) |
7 |
45 |
289 |
2023 |
|
[50; 60) |
12 |
55 |
49 |
588 |
|
[60; 70) |
15 |
65 |
9 |
135 |
|
[70; 80) |
8 |
75 |
169 |
1352 |
|
[80; 90) |
3 |
85 |
529 |
1589 |
|
[90; 100) |
2 |
95 |
1089 |
2187 |
|
|
|
|
Tổng: 10050 |
Vậy phương sai của mẫu số liệu là:
Cho mẫu số liệu ghép nhóm như sau:
|
Đối tượng |
[3; 5) |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
|
Tần số |
6 |
7 |
6 |
6 |
5 |
Kết luận nào dưới đây đúng?
Ta có:
|
Đối tượng |
[3; 5) |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
|
Giá trị đại diện |
4 |
6 |
8 |
10 |
12 |
|
Tần số |
6 |
7 |
6 |
6 |
5 |
Giá trị trung bình là:
Phương sai của mẫu số liệu ghép nhóm là:
Độ lệch chuẩn của mẫu số liệu ghép nhóm là:
.
Vậy kết luận đúng là: .
Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.
|
Điểm thi |
[0; 2) |
[2; 4) |
[4; 6) |
[6; 8) |
[8; 10) |
|
Số học sinh lớp 12A |
1 |
5 |
20 |
8 |
6 |
|
Số học sinh lớp 12B |
2 |
3 |
10 |
18 |
7 |
Xét tính đúng sai của các kết luận sau?
a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai
b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng
Đúng||Sai
c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng
Sai||Đúng
d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng
Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.
|
Điểm thi |
[0; 2) |
[2; 4) |
[4; 6) |
[6; 8) |
[8; 10) |
|
Số học sinh lớp 12A |
1 |
5 |
20 |
8 |
6 |
|
Số học sinh lớp 12B |
2 |
3 |
10 |
18 |
7 |
Xét tính đúng sai của các kết luận sau?
a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai
b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng Đúng||Sai
c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng Sai||Đúng
d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng
a) Đúng. Khoảng biến thiên:
b) Lớp 12A:
Ta có
c) Lớp 12B:
Ta có
d) Ta có Lớp 12A sẽ đồng đều hơn so với lớp 12B.
Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn A được thống kê lại ở bảng sau:
|
Thời gian (phút) |
[20;25) |
[25;30) |
[30;35) |
[35;40) |
[40;45) |
|
Số ngày |
6 |
6 |
4 |
1 |
1 |
Khoảng biến thiên của mẫu số liệu ghép nhóm là
Khoảng biến thiên của mẫu số liệu ghép nhóm là: 45 – 20 = 25 (phút).
Cho bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch như sau:
|
Cân nặng |
[250; 290) |
[290; 330) |
[330; 370) |
[370; 410) |
[410; 450) |
|
Số quả |
3 |
13 |
18 |
11 |
5 |
Tìm khoảng tứ phân vị của mẫu số liệu đã cho?
Ta có:
|
Cân nặng |
[250; 290) |
[290; 330) |
[330; 370) |
[370; 410) |
[410; 450) |
|
Số quả |
3 |
13 |
18 |
11 |
5 |
|
Tần số tích lũy |
3 |
16 |
34 |
45 |
50 |
Cỡ mẫu N = 50
Cỡ mẫu
=> Nhóm chứa là [290; 330)
Khi đó ta tìm được các giá trị:
Cỡ mẫu
=> Nhóm chứa là [370; 410)
Khi đó ta tìm được các giá trị:
.
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là
Cho bảng thống kê số lượt vi phạm giao thông trong 20 ngày của người dân một địa phương được thống kê như sau:
101 | 79 | 79 | 78 | 75 |
73 | 68 | 67 | 67 | 63 |
63 | 61 | 60 | 59 | 57 |
55 | 55 | 50 | 47 | 42 |
Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm có độ dài bằng nhau với nhóm đầu tiên là [40; 50)?
Cho bảng thống kê số lượt vi phạm giao thông trong 20 ngày của người dân một địa phương được thống kê như sau:
101 | 79 | 79 | 78 | 75 |
73 | 68 | 67 | 67 | 63 |
63 | 61 | 60 | 59 | 57 |
55 | 55 | 50 | 47 | 42 |
Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm có độ dài bằng nhau với nhóm đầu tiên là [40; 50)?
Cho mẫu số liệu ghép nhóm:
|
Nhóm |
Tần số |
|
(0;10] |
8 |
|
(10;20] |
14 |
|
(20;30] |
12 |
|
(30;40] |
9 |
|
(40;50] |
7 |
Tìm khoảng biến thiên?
Khoảng biến thiên của mẫu số liệu đã cho là: .
Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:
|
Điểm trung bình |
[5; 6) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
|
Số học sinh lớp 12C |
4 |
5 |
3 |
4 |
2 |
|
Số học sinh lớp 12CD |
2 |
5 |
4 |
3 |
1 |
Điểm trung bình của lớp 12C và điểm trung bình của lớp 12D lần lượt là:
Ta có:
|
Điểm trung bình |
[5; 6) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
|
Giá trị đại diện |
5,5 |
6,5 |
7,5 |
8,5 |
9,5 |
|
Số học sinh lớp 12C |
4 |
5 |
3 |
4 |
2 |
|
Số học sinh lớp 12CD |
2 |
5 |
4 |
3 |
1 |
Điểm trung bình của lớp 12C:
.
Điểm trung bình của lớp 12D:
.
Một mẫu số liệu ghép nhóm có phương sai bằng
có độ lệch chuẩn bằng:
Mẫu số liệu ghép nhóm có phương sai bằng có độ lệch chuẩn bằng
.
Cho mẫu dữ liệu ghép nhóm được ghi trong bảng dưới đây:
|
Khoảng |
Tần số |
|
Nhỏ hơn 10 |
10 |
|
Nhỏ hơn 20 |
20 |
|
Nhỏ hơn 30 |
30 |
|
Nhỏ hơn 40 |
40 |
|
Nhỏ hơn 50 |
50 |
|
Nhỏ hơn 60 |
30 |
Tìm khoảng tứ phân vị của mẫu số liệu đã cho?
Ta có:
|
Nhóm dữ liệu |
Tần số |
Tần số tích lũy |
|
(0; 10] |
10 |
10 |
|
(10; 20] |
20 |
30 |
|
(20; 30] |
30 |
60 |
|
(30; 40] |
50 |
110 |
|
(40; 50] |
40 |
150 |
|
(50; 60] |
30 |
180 |
|
Tổng |
N = 180 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: (20; 30]
Khi đó:
Tứ phân vị thứ nhất là:
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là: (40; 50]
Khi đó:
Tứ phân vị thứ ba là:
Cho mẫu số liệu thống kê chiều cao (đơn vị: cm) của các học sinh lớp 12A, 12B và 12C của một trường THPT như bảng sau
|
Chiều cao |
[150; 155) |
[155; 160) |
[160; 165) |
[165; 170) |
[170; 175) |
[175; 180) |
|
Số học sinh 12A |
1 |
13 |
18 |
5 |
3 |
0 |
|
Số học sinh 12B |
0 |
12 |
20 |
7 |
1 |
0 |
|
Số học sinh 12C |
1 |
8 |
12 |
15 |
3 |
1 |
Xét tính đúng, sai các mệnh đề sau:
(a) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B. Đúng||Sai
(b) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12B phân tán hơn so với lớp 12C. Sai|| Đúng
(c) Ở lớp 12B có một học sinh có chiều cao là 173 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12B. Đúng||Sai
(d) Ở lớp 12C có một học sinh có chiều cao là 177 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12C. Sai|| Đúng
Cho mẫu số liệu thống kê chiều cao (đơn vị: cm) của các học sinh lớp 12A, 12B và 12C của một trường THPT như bảng sau
|
Chiều cao |
[150; 155) |
[155; 160) |
[160; 165) |
[165; 170) |
[170; 175) |
[175; 180) |
|
Số học sinh 12A |
1 |
13 |
18 |
5 |
3 |
0 |
|
Số học sinh 12B |
0 |
12 |
20 |
7 |
1 |
0 |
|
Số học sinh 12C |
1 |
8 |
12 |
15 |
3 |
1 |
Xét tính đúng, sai các mệnh đề sau:
(a) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B. Đúng||Sai
(b) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12B phân tán hơn so với lớp 12C. Sai|| Đúng
(c) Ở lớp 12B có một học sinh có chiều cao là 173 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12B. Đúng||Sai
(d) Ở lớp 12C có một học sinh có chiều cao là 177 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12C. Sai|| Đúng
Xét mẫu số liệu thống kê chiều cao của học sinh lớp 12A
Ta có:
|
Chiều cao |
[150; 155) |
[155; 160) |
[160; 165) |
[165; 170) |
[170; 175) |
[175; 180) |
|
Số học sinh 12A |
1 |
13 |
18 |
5 |
3 |
0 |
|
Tần số tích lũy |
1 |
14 |
32 |
37 |
40 |
40 |
Cỡ mẫu N = 40
Ta có:
=> Nhóm chứa là [155; 160)
Khi đó ta tìm được các giá trị:
Ta có:
=> Nhóm chứa là [160; 165)
Khi đó ta tìm được các giá trị:
.
Vậy khoảng tứ phân vị của mẫu số liệu nhóm A là:
Xét mẫu số liệu thống kê chiều cao của học sinh lớp 12B
Ta có:
|
Chiều cao |
[150; 155) |
[155; 160) |
[160; 165) |
[165; 170) |
[170; 175) |
[175; 180) |
|
Số học sinh 12B |
0 |
12 |
20 |
7 |
1 |
0 |
|
Tần số tích lũy |
0 |
12 |
32 |
39 |
40 |
40 |
Cỡ mẫu N = 40
Ta có:
=> Nhóm chứa là [155; 160)
Khi đó ta tìm được các giá trị:
Ta có:
=> Nhóm chứa là [160; 165)
Khi đó ta tìm được các giá trị:
.
Vậy khoảng tứ phân vị của mẫu số liệu nhóm B là:
Xét mẫu số liệu thống kê chiều cao của học sinh lớp 12C
Ta có:
|
Chiều cao |
[150; 155) |
[155; 160) |
[160; 165) |
[165; 170) |
[170; 175) |
[175; 180) |
|
Số học sinh 12C |
1 |
8 |
12 |
15 |
3 |
1 |
|
Tần số tích lũy |
1 |
9 |
21 |
36 |
39 |
40 |
Cỡ mẫu N = 40
Ta có:
=> Nhóm chứa là [160; 165)
Khi đó ta tìm được các giá trị:
Ta có:
=> Nhóm chứa là [165; 170)
Khi đó ta tìm được các giá trị:
.
Vậy khoảng tứ phân vị của mẫu số liệu nhóm C là:
(a) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B.
Ta có: . Do đó, mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B.
Chọn ĐÚNG.
(b) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12B phân tán hơn so với lớp 12C.
Ta có: . Do đó, mẫu số liệu thống kê chiều cao của học sinh lớp 12C phân tán hơn so với lớp 12B.
Chọn SAI.
(c) Ở lớp 12B có một học sinh có chiều cao là 173 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12B.
Xét mẫu số liệu lớp 12B, ta có
Khi đó, giá trị ngoại lệ là các giá trị
Do đó, giá trị 173 cm là giá trị ngoại lệ của mẫu số liệu lớp 12B.
Chọn ĐÚNG.
(d) Ở lớp 12C có một học sinh có chiều cao là 177 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12C.
Xét mẫu số liệu lớp 12C, ta có
Khi đó, giá trị ngoại lệ là các giá trị
Do đó, giá trị 177cm không là giá trị ngoại lệ của mẫu số liệu lớp 12C.
Chọn SAI.
Cho mẫu số liệu ghép nhóm:
|
Nhóm |
Tần số |
|
(0;10] |
8 |
|
(10;20] |
14 |
|
(20;30] |
12 |
|
(30;40] |
9 |
|
(40;50] |
7 |
Khoảng tứ phân vị của mẫu số liệu là:
Ta có:
|
Nhóm |
Tần số |
Tần số tích lũy |
|
(0;10] |
8 |
8 |
|
(10;20] |
14 |
22 |
|
(20;30] |
12 |
34 |
|
(30;40] |
9 |
43 |
|
(40;50] |
7 |
50 |
|
Tổng |
N = 50 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: (10;20]
Khi đó:
Tứ phân vị thứ nhất là:
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là: (30;40]
Khi đó:
Tứ phân vị thứ nhất là:
Vậy khoảng tứ phân vị của mẫu số liệu là
Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:
Tổng thu nhập | [200; 250) | [250; 300) | [300; 350) | [350; 400) | [400; 450) |
Số hộ gia đình | 24 | 62 | 34 | 21 | 9 |
Một doanh nghiệp địa phương muốn hướng dịch vụ của mình đến các gia đình có mức thu nhập ở tầm trung, tức là 50% các hộ gia đình có mức thu nhập ở chính giữa so với tất cả các hộ gia đình của địa phương. Hỏi doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng nào?
Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:
Tổng thu nhập | [200; 250) | [250; 300) | [300; 350) | [350; 400) | [400; 450) |
Số hộ gia đình | 24 | 62 | 34 | 21 | 9 |
Một doanh nghiệp địa phương muốn hướng dịch vụ của mình đến các gia đình có mức thu nhập ở tầm trung, tức là 50% các hộ gia đình có mức thu nhập ở chính giữa so với tất cả các hộ gia đình của địa phương. Hỏi doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng nào?
Cho mẫu dữ liệu ghép nhóm như sau:
|
Đối tượng |
[120; 122) |
[122; 124) |
[124; 126) |
[126; 128) |
[128; 130) |
|
Tần số |
8 |
9 |
12 |
10 |
11 |
Tính số trung bình của mẫu số liệu?
Cỡ mẫu
|
Đối tượng |
[120; 122) |
[122; 124) |
[124; 126) |
[126; 128) |
[128; 130) |
|
Giá trị đại diện |
121 |
123 |
125 |
127 |
129 |
|
Tần số |
8 |
9 |
12 |
10 |
11 |
Số trung bình của mẫu số liệu là:
Mỗi ngày bác T đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác T trong 20 ngày được thống kê lại ở bảng sau:
|
Quãng đường |
[2,7; 3,0) |
[3,0; 3,3) |
[3,3; 3,6) |
[3,6; 3,9) |
[3,9; 4,2) |
|
Số ngày |
3 |
6 |
5 |
4 |
2 |
Độ lệch chuẩn của mẫu số liệu ghép nhóm là:
Ta có:
|
Quãng đường |
[2,7; 3,0) |
[3,0; 3,3) |
[3,3; 3,6) |
[3,6; 3,9) |
[3,9; 4,2) |
|
Giá trị đại diện |
2,85 |
3,15 |
3,45 |
3,75 |
4,05 |
|
Số ngày |
3 |
6 |
5 |
4 |
2 |
Số trung bình:
Phương sai của mẫu số liệu ghép nhóm là:
Độ lệch chuẩn của mẫu số liệu ghép nhóm là:
Kết quả đo chiều cao của học sinh lớp 12A được ghi lại trong bảng như sau:
|
Chiều cao |
[160; 164) |
[164; 168) |
[168; 172) |
[172; 176) |
[176; 180) |
|
Số học sinh |
3 |
5 |
8 |
4 |
1 |
Độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho là:
Ta có:
|
Chiều cao |
[160; 164) |
[164; 168) |
[168; 172) |
[172; 176) |
[176; 180) |
|
Số học sinh |
3 |
5 |
8 |
4 |
1 |
|
Giá trị đại diện |
162 |
166 |
170 |
174 |
178 |
Chiều cao trung bình là:
Phương sai của mẫu số liệu ghép nhóm là:
Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là: .
Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:
|
Mức lương |
[5; 6) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
|
Phân xưởng A |
4 |
5 |
5 |
4 |
2 |
|
Phân xưởng B |
3 |
6 |
5 |
5 |
1 |
Số trung bình của mẫu số liệu ghép nhóm của đối tương A và đối tượng B lần lượt là:
Ta có:
|
Mức lương |
[5; 6) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
|
|
Giá trị đại diện |
5,5 |
6,5 |
7,5 |
8,5 |
9,5 |
|
|
Phân xưởng A |
4 |
5 |
5 |
4 |
2 |
N = 20 |
|
Phân xưởng B |
3 |
6 |
5 |
5 |
1 |
N’ = 20 |
Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:
Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:
Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:
|
Tuổi thọ |
[14;15) |
[15;16) |
[16;17) |
[17;18) |
[18;19) |
|
Số con |
1 |
3 |
8 |
6 |
2 |
Nhóm chứa tứ phân vị thứ ba của mẫu số liệu ghép nhóm đã cho là:
Ta có: và
nên tứ phân vị thứ ba của mẫu số liệu thuộc nhóm [17;18).
Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.
|
Tốc độ |
Tần số |
|
40 ≤ x < 50 |
4 |
|
50 ≤ x < 60 |
5 |
|
60 ≤ x < 70 |
7 |
|
70 ≤ x < 80 |
4 |
Xác định giá trị của
?
Ta có:
|
Tốc độ |
Tần số |
Tần số tích lũy |
|
40 ≤ x < 50 |
4 |
4 |
|
50 ≤ x < 60 |
5 |
9 |
|
60 ≤ x < 70 |
7 |
16 |
|
70 ≤ x < 80 |
4 |
20 |
|
Tổng |
N = 20 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: [50; 60)
Khi đó:
Tứ phân vị thứ nhất là:
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là: [60; 70]
Khi đó:
Tứ phân vị thứ nhất là: