Quan sát bảng sau và tìm khoảng biến thiên của mẫu số liệu
|
Khoảng dữ liệu |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
|
Tần số |
8 |
12 |
22 |
17 |
Khoảng biến thiên của mẫu số liệu là: .
Quan sát bảng sau và tìm khoảng biến thiên của mẫu số liệu
|
Khoảng dữ liệu |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
|
Tần số |
8 |
12 |
22 |
17 |
Khoảng biến thiên của mẫu số liệu là: .
Một mẫu số liệu ghép nhóm có phương sai bằng
có độ lệch chuẩn bằng:
Mẫu số liệu ghép nhóm có phương sai bằng có độ lệch chuẩn bằng
.
Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:
|
Thời gian (phút) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
[10; 11) |
|
Học sinh lớp 12A |
8 |
10 |
13 |
10 |
9 |
|
Học sinh lớp 12B |
4 |
12 |
17 |
14 |
3 |
Nếu so sánh theo số trung bình thì học sinh lớp nào làm bài cần ít thời gian hơn?
Ta có:
|
Thời gian (phút) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
[10; 11) |
|
Giá trị đại diện |
6,5 |
7,5 |
8,5 |
9,5 |
10,5 |
|
Học sinh lớp 12A |
8 |
10 |
13 |
10 |
9 |
|
Học sinh lớp 12B |
4 |
12 |
17 |
14 |
3 |
Số trung bình của mẫu số liệu ghép nhóm lớp 12A:
Số trung bình của mẫu số liệu ghép nhóm lớp 12B:
Vì nên nếu so sánh theo số trung bình thì học sinh lớp 12B làm nhanh hơn.
Cân nặng (đơn vị: kg) của một số lợn con mới sinh thuộc hai giống A và B được cho ở bảng sau.
|
Cân nặng |
[1,0; 1,1) |
[1,1; 1,2) |
[1,2; 1,3) |
[1,3; 1,4) |
|
Giống A |
8 |
28 |
32 |
17 |
|
Giống B |
13 |
14 |
24 |
14 |
Chọn đáp án có khẳng định đúng?
Đối với lợn con giống A
|
Cân nặng |
[1,0; 1,1) |
[1,1; 1,2) |
[1,2; 1,3) |
[1,3; 1,4) |
|
Giống A |
8 |
28 |
32 |
17 |
|
Tần số tích lũy |
8 |
36 |
68 |
85 |
Cỡ mẫu
Ta có:
=> Nhóm chứa là [1,1; 1,2)
Khi đó ta tìm được các giá trị:
Ta có:
=> Nhóm chứa là [1,2; 1,3)
Khi đó ta tìm được các giá trị:
.
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm A là
Đối với lợn con giống B
|
Cân nặng |
[1,0; 1,1) |
[1,1; 1,2) |
[1,2; 1,3) |
[1,3; 1,4) |
|
Giống B |
13 |
14 |
24 |
14 |
|
Tần số tích lũy |
13 |
27 |
51 |
65 |
Cỡ mẫu
Ta có:
=> Nhóm chứa là [1,1; 1,2)
Khi đó ta tìm được các giá trị:
Ta có:
=> Nhóm chứa là [1,2; 1,3)
Khi đó ta tìm được các giá trị:
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm B là
Ta thấy nên cân nặng của lợn con mới sinh thuộc giống A đồng đều hơn cân nặng của lợn con mới sinh thuộc giống B.
Thống kê quãng đường một xe taxi công nghệ đi mỗi ngày (đơn vị: km) như sau:
|
Quãng đường (km) |
[50; 100) |
[100; 150) |
[150; 200) |
[200; 250) |
[250; 300) |
|
Số ngày |
5 |
10 |
9 |
4 |
2 |
Độ lệch chuẩn của mẫu số liệu ghép nhóm gần bằng:
Ta có:
|
Quãng đường ((km) |
[50; 100) |
[100; 150) |
[150; 200) |
[200; 250) |
[250; 300) |
|
Số ngày |
5 |
10 |
9 |
4 |
2 |
|
Tần số tích lũy |
5 |
15 |
24 |
28 |
30 |
Số trung bình của mẫu số liệu ghép nhóm:
Vậy khẳng định (iii) sai.
Phương sai của mẫu số liệu ghép nhóm là:
Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là:
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
|
Doanh thu |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
Tìm khoảng biến thiên của mẫu số liệu đã cho?
Khoảng biến thiên của mẫu số liệu là .
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
|
Số tiền (nghìn đồng) |
Số người |
|
[0; 50) |
5 |
|
[50; 100) |
12 |
|
[100; 150) |
23 |
|
[150; 200) |
17 |
|
[200; 250) |
3 |
Tính
?
Ta có:
|
Số tiền (nghìn đồng) |
Số người |
Tần số tích lũy |
|
[0; 50) |
5 |
5 |
|
[50; 100) |
12 |
17 |
|
[100; 150) |
23 |
40 |
|
[150; 200) |
17 |
57 |
|
[200; 250) |
3 |
60 |
|
|
N = 60 |
|
Cỡ mẫu là:
=> Nhóm chứa tứ phân vị thứ nhất là [50; 100) (vì 15 nằm giữa hai tần số tích lũy 5 va 17)
Khi đó
Cỡ mẫu là:
=> Nhóm chứa tứ phân vị thứ ba là [150; 200) (vì 45 nằm giữa hai tần số tích lũy 40 va 57)
Khi đó
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: .
Biểu đồ sau biểu diễn lượng khách hàng đặt bàn online mỗi ngày trong quý I của năm 2024 tại một cửa hàng:

Biểu đồ sau biểu diễn lượng khách hàng đặt bàn online mỗi ngày trong quý I của năm 2024 tại một cửa hàng:
Dưới đây là thống kê thời gian 100 lần đi làm bằng xe bus từ nhà đến trường của bạn Lan:
|
Thời gian (phút) |
[15; 81) |
[18; 21) |
[21; 24) |
[24; 27) |
[27; 30) |
[30; 33) |
|
Số lượt |
22 |
38 |
27 |
8 |
4 |
1 |
Giá trị nào sau đây là giá trị ngoại lệ của mẫu số liệu?
Ta có:
|
Thời gian (phút) |
[15; 81) |
[18; 21) |
[21; 24) |
[24; 27) |
[27; 30) |
[30; 33) |
|
Số lượt |
22 |
38 |
27 |
8 |
4 |
1 |
|
Tần số tích lũy |
22 |
60 |
87 |
95 |
99 |
100 |
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ nhất là [18; 21)
Do đó:
Khi đó tứ phân vị thứ nhất là:
=> Nhóm chứa tứ phân vị thứ ba là [21; 24)
Do đó:
Khi đó tứ phân vị thứ ba là:
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
Trong một lần duy nhất Lan đi hết 29 phút, thời gian đi của Lan thuộc nhóm [30; 33)
Vì nên thời gian của lần Lan đi hết 29 phút là giá trị ngoại lệ của mẫu số liệu ghép nhóm.
Kết quả thống kê số giờ nắng trong tháng 5 từ năm 2022 đến năm 2021 tại hai địa điểm A và B:
Số giờ | [130; 160) | [160; 190) | [190; 220) | [220; 250) | [250; 280) | [280; 310) |
Số năm tại A | 1 | 1 | 1 | 8 | 7 | 2 |
Số năm tại B | 0 | 1 | 2 | 4 | 10 | 3 |
Nếu so sánh theo độ lệch chuẩn thì số giờ nắng trong tháng 5 tại địa điểm nào đồng đều hơn?
Kết quả thống kê số giờ nắng trong tháng 5 từ năm 2022 đến năm 2021 tại hai địa điểm A và B:
Số giờ | [130; 160) | [160; 190) | [190; 220) | [220; 250) | [250; 280) | [280; 310) |
Số năm tại A | 1 | 1 | 1 | 8 | 7 | 2 |
Số năm tại B | 0 | 1 | 2 | 4 | 10 | 3 |
Nếu so sánh theo độ lệch chuẩn thì số giờ nắng trong tháng 5 tại địa điểm nào đồng đều hơn?
Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:
|
42 |
43,4 |
43,4 |
46,5 |
46,7 |
|
46,8 |
47,5 |
47,7 |
48,1 |
48,4 |
|
50,8 |
51,1 |
52,7 |
53,9 |
54,8 |
|
57,6 |
57,5 |
59,6 |
60,3 |
61,1 |
Lập bảng tần số ghép nhóm với nhóm đầu [42; 46) và độ dài mỗi nhóm bằng 4. Tìm khoảng biến thiên của mẫu dữ liệu ghép nhóm?
Ta lập được bảng tần số ghép nhóm như sau:
|
Tốc độ |
[42; 46) |
[46; 50) |
[50; 54) |
[54; 58) |
[58; 62) |
|
Số xe |
3 |
7 |
4 |
3 |
3 |
Vậy khoảng biến thiên của mẫu dữ liệu ghép nhóm là .
Kiểm lâm thực hiện đo đường kính của một số cây thân gỗ tại hai khu vực A và B thu được kết quả như sau:
|
Đường kính (cm) |
[30; 32) |
[32; 34) |
[34; 36) |
[36; 38) |
[38; 40) |
|
A |
25 |
28 |
20 |
10 |
7 |
|
B |
22 |
27 |
19 |
18 |
14 |
Đường kính trung bình của cây tại hai khu vực A và B lần lượt là:
Ta có:
|
Đường kính (cm) |
[30; 32) |
[32; 34) |
[34; 36) |
[36; 38) |
[38; 40) |
|
Giá trị đại diện |
31 |
33 |
35 |
37 |
39 |
|
A |
25 |
28 |
20 |
10 |
7 |
|
B |
22 |
27 |
19 |
18 |
14 |
Suy ra
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
|
Điểm |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
|
Số học sinh |
5 |
9 |
12 |
10 |
6 |
Phương sai của mẫu số liệu là:
Ta có:
|
Điểm |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
|
Giá trị đại diện |
10 |
30 |
50 |
70 |
90 |
|
Số học sinh |
5 |
9 |
12 |
10 |
6 |
Số trung bình:
Phương sai:
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
|
Số tiền (nghìn đồng) |
Số người |
|
[0; 50) |
5 |
|
[50; 100) |
12 |
|
[100; 150) |
23 |
|
[150; 200) |
17 |
|
[200; 250) |
3 |
Khoảng biến thiên của mẫu số liệu đã cho là: .
Thống kê quãng đường một xe taxi công nghệ đi mỗi ngày (đơn vị: km) như sau:
|
Quãng đường ((km) |
[50; 100) |
[100; 150) |
[150; 200) |
[200; 250) |
[250; 300) |
|
Số ngày |
5 |
10 |
9 |
4 |
2 |
Tìm số trung bình của mẫu số liệu ghép nhóm?
Ta có:
|
Quãng đường ((km) |
[50; 100) |
[100; 150) |
[150; 200) |
[200; 250) |
[250; 300) |
|
Giá trị đại diện |
75 |
125 |
175 |
225 |
275 |
|
Số ngày |
5 |
10 |
9 |
4 |
2 |
Số trung bình của mẫu số liệu ghép nhóm:
Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn A được thống kê lại ở bảng sau:
|
Thời gian (phút) |
[20;25) |
[25;30) |
[30;35) |
[35;40) |
[40;45) |
|
Số ngày |
6 |
6 |
4 |
1 |
1 |
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là
Ta có:
|
Thời gian (phút) |
[20;25) |
[25;30) |
[30;35) |
[35;40) |
[40;45) |
|
Số ngày |
6 |
6 |
4 |
1 |
1 |
|
Tần số tích lũy |
6 |
12 |
16 |
17 |
28 |
Cỡ mẫu N = 18
Cỡ mẫu
=> Nhóm chứa là [20;25)
Khi đó ta tìm được các giá trị:
Cỡ mẫu
=> Nhóm chứa là [30;35)
Khi đó ta tìm được các giá trị:
.
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là
Bảng sau thống kê thành tích nhảy xa của một số học sinh lớp 12A:
|
Thành tích cm) |
[150; 180) |
[180; 210) |
[210; 240) |
[240; 270) |
[270; 300) |
|
Số học sinh |
3 |
5 |
28 |
14 |
8 |
Xác định khoảng biến thiên của mẫu số liệu đã cho?
Khoảng biến thiên của mẫu số liệu là .
Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.
|
Điểm thi |
[0; 2) |
[2; 4) |
[4; 6) |
[6; 8) |
[8; 10) |
|
Số học sinh lớp 12A |
1 |
5 |
20 |
8 |
6 |
|
Số học sinh lớp 12B |
2 |
3 |
10 |
18 |
7 |
Xét tính đúng sai của các kết luận sau?
a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai
b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng
Đúng||Sai
c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng
Sai||Đúng
d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng
Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.
|
Điểm thi |
[0; 2) |
[2; 4) |
[4; 6) |
[6; 8) |
[8; 10) |
|
Số học sinh lớp 12A |
1 |
5 |
20 |
8 |
6 |
|
Số học sinh lớp 12B |
2 |
3 |
10 |
18 |
7 |
Xét tính đúng sai của các kết luận sau?
a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai
b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng Đúng||Sai
c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng Sai||Đúng
d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng
a) Đúng. Khoảng biến thiên:
b) Lớp 12A:
Ta có
c) Lớp 12B:
Ta có
d) Ta có Lớp 12A sẽ đồng đều hơn so với lớp 12B.
Bảng dưới đây thống kê cự li ném tạ của một vận động viên.
Cự li | |||||
Tần số | 13 | 45 | 24 | 12 | 6 |
Phương sai của mẫu số liệu ghép nhóm trên là một số thập phân xấp xỉ có dạng
. Tính
.
Bảng dưới đây thống kê cự li ném tạ của một vận động viên.
Cự li | |||||
Tần số | 13 | 45 | 24 | 12 | 6 |
Phương sai của mẫu số liệu ghép nhóm trên là một số thập phân xấp xỉ có dạng . Tính
.
Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

Có bao nhiêu máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ?
Có 6 máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ.
Bảng sau thống kê khối lượng một số quả quýt trong thùng hàng:
|
Khối lượng (gam) |
[80; 82) |
[82; 84) |
[84; 86) |
[86; 88) |
[88; 90) |
|
Số quả |
17 |
20 |
25 |
16 |
12 |
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 90 – 80 = 10 gam.
Dũng là một học sinh rất giỏi chơi rubik, bạn có thể giải nhiều loại khối rubik khác nhau. Trong một lần tập luyện giải khối rubik, bạn Dũng đã tự thống kê lại thời gian giải rubik trong 25 lần liên tiếp ở bảng sau:
|
Thời gian giải rubik (giây) |
|||||
|
Số lần |
Khoảng biến thiên của mẫu số liệu ghép nhóm nhận giá trị nào trong các giá trị sau đây?
Khoảng biến thiên của mẫu số liệu ghép nhóm là .
Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:
|
Điểm trung bình |
[5; 6) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
|
Số học sinh lớp 12C |
4 |
5 |
3 |
4 |
2 |
|
Số học sinh lớp 12CD |
2 |
5 |
4 |
3 |
1 |
Điểm trung bình của lớp 12C và điểm trung bình của lớp 12D lần lượt là:
Ta có:
|
Điểm trung bình |
[5; 6) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
|
Giá trị đại diện |
5,5 |
6,5 |
7,5 |
8,5 |
9,5 |
|
Số học sinh lớp 12C |
4 |
5 |
3 |
4 |
2 |
|
Số học sinh lớp 12CD |
2 |
5 |
4 |
3 |
1 |
Điểm trung bình của lớp 12C:
.
Điểm trung bình của lớp 12D:
.
Kết quả đo chiều cao của 100 cây thực nghiệm 2 năm tuổi được cho trong bảng sau:
|
Chiều cao (m) |
[8,4; 8,6) |
[8,6; 8,8) |
[8,8; 9,0) |
[9,0; 9,2) |
[9,2; 9,4) |
|
Số cây |
5 |
12 |
25 |
44 |
14 |
Tìm giá trị ngoại lệ của mẫu số liệu?
Ta có:
|
Chiều cao (m) |
[8,4; 8,6) |
[8,6; 8,8) |
[8,8; 9,0) |
[9,0; 9,2) |
[9,2; 9,4) |
|
Số cây |
5 |
12 |
25 |
44 |
14 |
|
Tần số tích lũy |
5 |
17 |
42 |
86 |
100 |
=> Nhóm chứa tứ phân vị thứ nhất là: [8,8; 9,0)
=> Nhóm chứa tứ phân vị thứ ba là: [9,0; 9,2)
Suy ra khoảng tứ phân vị là .
Giá trị x trong mẫu số liệu là giá trị ngoại lệ nếu
Ta có:
Vậy giá trị ngoại lệ cần tìm là .
Điểm trung bình cuối năm của học sinh lớp 12A và 12B được thống kê trong bảng sau:

Nếu so sánh bảng biến thiên thì học sinh lớp nào có điểm trung bình ít phân tán hơn?
Ta có:
Khoảng biến thiên của điểm số học sinh lớp 12A là: 10 – 5 = 5
Khoảng biến thiên của điểm số học sinh lớp 12B là: 10 – 6 = 4
Nếu so sánh theo khoảng biến thiên thì điểm trung bình của các học sinh lớp 12B ít phân tán hơn điểm trung bình của các học sinh lớp 12A.
Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:
111,6 | 134,9 | 130,3 | 134,2 | 140,9 |
109,3 | 154,4 | 156,3 | 116,1 | 96,7 |
105,2 | 80,8 | 80,8 | 110 | 109 |
139 | 145 | 161 | 126 | 114 |
Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tìm phương sai của mẫu số liệu ghép nhóm đó? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:
111,6 | 134,9 | 130,3 | 134,2 | 140,9 |
109,3 | 154,4 | 156,3 | 116,1 | 96,7 |
105,2 | 80,8 | 80,8 | 110 | 109 |
139 | 145 | 161 | 126 | 114 |
Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tìm phương sai của mẫu số liệu ghép nhóm đó? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong bảng sau:
|
Nhóm |
Tần số |
|
[40; 45) |
4 |
|
[45; 50) |
14 |
|
[50; 55) |
8 |
|
[55; 60) |
10 |
|
[60; 65) |
6 |
|
[65; 70) |
2 |
Phương sai của mẫu số liệu ghép nhóm trên là:
Ta có:
|
Nhóm |
Giá trị đại diện |
Tần số |
|
[40; 45) |
42,5 |
4 |
|
[45; 50) |
47,5 |
14 |
|
[50; 55) |
52,5 |
8 |
|
[55; 60) |
57,5 |
10 |
|
[60; 65) |
62,5 |
6 |
|
[65; 70) |
67,5 |
2 |
Số trung bình cộng của mẫu số liệu ghép nhóm là:
Phương sai của mẫu số liệu ghép nhóm là:
Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.
|
Tốc độ |
Tần số |
|
40 ≤ x < 50 |
4 |
|
50 ≤ x < 60 |
5 |
|
60 ≤ x < 70 |
7 |
|
70 ≤ x < 80 |
4 |
Xác định giá trị của
?
Ta có:
|
Tốc độ |
Tần số |
Tần số tích lũy |
|
40 ≤ x < 50 |
4 |
4 |
|
50 ≤ x < 60 |
5 |
9 |
|
60 ≤ x < 70 |
7 |
16 |
|
70 ≤ x < 80 |
4 |
20 |
|
Tổng |
N = 20 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: [50; 60)
Khi đó:
Tứ phân vị thứ nhất là:
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là: [60; 70]
Khi đó:
Tứ phân vị thứ nhất là:
Bảng sau thống kê chiều cao của 38 học sinh lớp 12A1 của trường THPT X:
|
Chiều cao |
[145;155) |
[155;165) |
[165;175) |
[175;180) |
|
Số học sinh |
8 |
15 |
6 |
9 |
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là:
Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:
|
Mức lương |
[5; 6) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
|
Phân xưởng A |
4 |
5 |
5 |
4 |
2 |
|
Phân xưởng B |
3 |
6 |
5 |
5 |
1 |
Số trung bình của mẫu số liệu ghép nhóm của đối tương A và đối tượng B lần lượt là:
Ta có:
|
Mức lương |
[5; 6) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
|
|
Giá trị đại diện |
5,5 |
6,5 |
7,5 |
8,5 |
9,5 |
|
|
Phân xưởng A |
4 |
5 |
5 |
4 |
2 |
N = 20 |
|
Phân xưởng B |
3 |
6 |
5 |
5 |
1 |
N’ = 20 |
Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:
Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:
Cho biểu đồ thống kê thời gian tập thể dục buổi sáng của hai người A và B

Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục hằng ngày của A và B lần lượt là:
Ta có bảng sau:
|
Đối tượng |
[15; 20) |
[20; 25) |
[25; 30) |
[30; 35) |
[35; 40) |
|
A |
5 |
12 |
8 |
3 |
2 |
|
B |
0 |
25 |
5 |
0 |
0 |
Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục của A là: 40 – 15 = 25 (phút)
Tuy nhiên trong mẫu số liệu ghép nhóm về thời gian tập thể dục của B nhóm đầu tiên chứa dữ liệu là [20; 25) và nhóm cuối cùng chứa dữ liệu [25; 30). Do đó khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của B là 30 – 20 = 10.
Cho mẫu dữ liệu ghép nhóm như sau:
|
Đối tượng |
[120; 122) |
[122; 124) |
[124; 126) |
[126; 128) |
[128; 130) |
|
Tần số |
8 |
9 |
12 |
10 |
11 |
Tính số trung bình của mẫu số liệu?
Cỡ mẫu
|
Đối tượng |
[120; 122) |
[122; 124) |
[124; 126) |
[126; 128) |
[128; 130) |
|
Giá trị đại diện |
121 |
123 |
125 |
127 |
129 |
|
Tần số |
8 |
9 |
12 |
10 |
11 |
Số trung bình của mẫu số liệu là:
Cho biểu đồ

Tính chiều cao trung bình của mẫu số liệu đã cho?
Ta có:
Chiều cao | [160; 164) | [164; 168) | [168; 172) | [172; 176) | [176; 180) |
Số học sinh | 3 | 5 | 8 | 4 | 1 |
Giá trị đại diện | 162 | 166 | 170 | 174 | 178 |
Chiều cao trung bình là:
Tìm hiểu thời gian (đơn vị: giờ) sử dụng điện thoại di động của một nhóm bạn trẻ thu được kết quả sau như sau:
|
Thời gian |
[0; 5) |
[5; 10) |
[10; 15) |
[15; 20) |
[20; 25) |
[25; 30) |
|
Số bạn |
2 |
6 |
8 |
9 |
3 |
2 |
Xác định tính đúng sai của các đáp án dưới đây?
a) Khoảng biến thiên của mẫu số liệu ghép nhóm này là 25. Sai||Đúng
b) Nhóm chứa tứ phân vị thứ 3 là [15; 20). Đúng||Sai
c) Số trung bình của thống kê là 10. Sai||Đúng
d) Khoảng tứ phân của mẫu số liệu ghép nhóm này lớn hơn 10. Sai||Đúng
Tìm hiểu thời gian (đơn vị: giờ) sử dụng điện thoại di động của một nhóm bạn trẻ thu được kết quả sau như sau:
|
Thời gian |
[0; 5) |
[5; 10) |
[10; 15) |
[15; 20) |
[20; 25) |
[25; 30) |
|
Số bạn |
2 |
6 |
8 |
9 |
3 |
2 |
Xác định tính đúng sai của các đáp án dưới đây?
a) Khoảng biến thiên của mẫu số liệu ghép nhóm này là 25. Sai||Đúng
b) Nhóm chứa tứ phân vị thứ 3 là [15; 20). Đúng||Sai
c) Số trung bình của thống kê là 10. Sai||Đúng
d) Khoảng tứ phân của mẫu số liệu ghép nhóm này lớn hơn 10. Sai||Đúng
Ta có
|
Thời gian |
[0; 5) |
[5; 10) |
[10; 15) |
[15; 20) |
[20; 25) |
[25; 30) |
|
Giá trị đại diện |
2,5 |
7,5 |
12,5 |
17,5 |
22,5 |
17,5 |
|
Số bạn |
2 |
6 |
8 |
9 |
3 |
2 |
a) Sai: Khoảng biến thiên của mẫu số liệu ghép nhóm là R = 30 - 0 = 30.
b) Đúng:
Vì nên nhóm chứa tứ phân vị thứ 3 là [15;20).
c) Sai: Thời gian sử dụng điện thoại trung bình là:
d) Sai: Ta có:
Số tiền (đơn vị: nghìn đồng) của một số khách hàng mua sách ở một cửa hàng trong một ngày được ghi lại trong bảng sau:
|
Giá tiền |
[40; 50) |
[50; 60) |
[60; 70) |
|
Số khách hàng mua |
2 |
6 |
4 |
Xác định khoảng tứ phân vị của mẫu số liệu ghép nhóm?
Ta có:
|
Giá tiền |
[40; 50) |
[50; 60) |
[60; 70) |
|
Số khách hàng mua |
2 |
6 |
4 |
|
Tần số tích lũy |
2 |
8 |
12 |
Cỡ mẫu
Ta có:
=> Nhóm chứa là [50; 60)
Khi đó ta tìm được các giá trị:
Ta có:
=> Nhóm chứa là [60; 70)
Khi đó ta tìm được các giá trị:
.
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là
Kết quả khảo sát cân nặng của 40 quả cam Hòa Bình ở mỗi lô hàng 1 và lô hàng 2 được cho ở bảng sau:
|
Cân nặng (gam) |
[100; 110) |
[110; 120) |
[120; 130) |
[130; 140) |
[140; 150) |
|
Số quả cam ở lô hàng 1 |
0 |
10 |
11 |
19 |
0 |
|
Số quả cam ở lô hàng 1 |
3 |
15 |
12 |
7 |
3 |
Sử dụng khoảng biến thiên, hãy cho biết cân nặng của 40 quả cam Hòa Bình của lô hàng nào có độ phân tán lớn hơn.
Khoảng biến thiên của mẫu số liệu ghép nhóm về cân nặng của 40 quả cam Hòa Bình của lô hàng 1 là 140 - 110 = 30 gam.
Khoảng biến thiên của mẫu số liệu ghép nhóm về cân nặng của 40 quả cam Hòa Bình của lô hàng 2 là 150 – 100 = 50 gam.
Do vậy, lô hàng 2 có cân nặng của 40 quả cam Hòa Bình phân tán lớn hơn lô hàng 1.
Số điểm thi đấu của các đội được biểu diễn trong bảng dưới đây:
|
Nhóm dữ liệu |
Tần số |
|
(0; 2] |
5 |
|
(2; 4] |
16 |
|
(4; 6] |
13 |
|
(6; 8] |
7 |
|
(8; 10] |
5 |
|
(10; 12] |
4 |
Tìm khoảng tứ phân vị của mẫu số liệu đã cho?
Ta có:
|
Nhóm dữ liệu |
Tần số |
Tần số tích lũy |
|
(0; 2] |
5 |
5 |
|
(2; 4] |
16 |
21 |
|
(4; 6] |
13 |
34 |
|
(6; 8] |
7 |
41 |
|
(8; 10] |
5 |
46 |
|
(10; 12] |
4 |
50 |
|
Tổng |
N = 50 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: (2; 4]
Khi đó:
Vậy tứ phân vị thứ nhất là:
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là: (6; 8]
Khi đó:
Vậy tứ phân vị thứ nhất là:
Dũng là học sinh rất giỏi chơi rubik, bạn có thể giải nhiều loại khối rubik khác nhau. Trong một lần tập luyện giải khối rubik 3 x 3, bạn Dũng đã tự thống kê lại thời gian giải rubik trong 25 lần giải liên tiếp ở bảng sau:
|
Thời gian giải rubik (giây) |
[8; 10) |
[10; 12) |
[12; 14) |
[14; 16) |
[16; 18) |
|
Số lần |
4 |
6 |
8 |
4 |
3 |
Khoảng biến thiên của mẫu số liệu ghép nhóm nhận giá trị nào trong các giá trị dưới đây?
Khoảng biến thiên của mẫu số liệu là: 18 - 8 = 10 (giây).
Năng suất lúa (đơn vị: tấn/ha) của một số thửa ruộng được ghi lại trong bảng sau:
|
Năng suất |
[5,5; 5,7) |
[5,7; 5,9) |
[5,9; 6,1) |
[6,1; 6,3) |
[6,3; 6,5) |
[6,5; 6,7) |
|
Số thửa ruộng |
3 |
4 |
6 |
5 |
5 |
2 |
Xác định độ lệch chuẩn của mẫu số liệu ghép nhóm?
Ta có:
|
Năng suất |
[5,5; 5,7) |
[5,7; 5,9) |
[5,9; 6,1) |
[6,1; 6,3) |
[6,3; 6,5) |
[6,5; 6,7) |
|
Số thửa ruộng |
3 |
4 |
6 |
5 |
5 |
2 |
|
Tần số tích lũy |
3 |
7 |
13 |
18 |
23 |
25 |
Số trung bình của mẫu số liệu ghép nhóm:
Phương sai của mẫu số liệu ghép nhóm là:
Vậy độ lệch chuẩn của mẫu số liệu ghép nhóm là
Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:
|
Thời gian (phút) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
[10; 11) |
|
Học sinh lớp 12A |
8 |
10 |
13 |
10 |
9 |
|
Học sinh lớp 12B |
4 |
12 |
17 |
14 |
3 |
Phương sai của mẫu số liệu ghép nhóm lớp 12A và lớp 12B lần lượt là
Ta có:
|
Thời gian (phút) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
[10; 11) |
|
Giá trị đại diện |
6,5 |
7,5 |
8,5 |
9,5 |
10,5 |
|
Học sinh lớp 12A |
8 |
10 |
13 |
10 |
9 |
|
Học sinh lớp 12B |
4 |
12 |
17 |
14 |
3 |
Số trung bình của mẫu số liệu ghép nhóm lớp 12A:
Phương sai của mẫu số liệu ghép nhóm lớp 12A là:
Số trung bình của mẫu số liệu ghép nhóm lớp 12B:
Phương sai của mẫu số liệu ghép nhóm lớp 12B là: