Đề kiểm tra 45 phút Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Thống kê quãng đường một xe taxi công nghệ đi mỗi ngày (đơn vị: km) như sau:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Số ngày

    5

    10

    9

    4

    2

    Tìm số trung bình của mẫu số liệu ghép nhóm?

    Ta có:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Giá trị đại diện

    75

    125

    175

    225

    275

    Số ngày

    5

    10

    9

    4

    2

    Số trung bình của mẫu số liệu ghép nhóm:

    \overline{x} = \frac{5.75 + 10.125 +
9.175 + 4.225 + 2.275}{30} = 155

  • Câu 2: Thông hiểu

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Tính \Delta_{Q}?

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    Tần số tích lũy

    [0; 50)

    5

    5

    [50; 100)

    12

    17

    [100; 150)

    23

    40

    [150; 200)

    17

    57

    [200; 250)

    3

    60

     

    N = 60

     

    Cỡ mẫu là: N = 60 \Rightarrow \frac{N}{4}
= 15

    => Nhóm chứa tứ phân vị thứ nhất là [50; 100) (vì 15 nằm giữa hai tần số tích lũy 5 va 17)

    Khi đó \left\{ \begin{matrix}l = 50;\dfrac{N}{4} = 15;m = 5;f = 12 \\c = 100 - 50 = 50 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c

    \Rightarrow Q_{1} = 50 + \frac{15 -
5}{12}.50 = \frac{275}{3}

    Cỡ mẫu là: N = 60 \Rightarrow
\frac{3N}{4} = 45

    => Nhóm chứa tứ phân vị thứ ba là [150; 200) (vì 45 nằm giữa hai tần số tích lũy 40 va 57)

    Khi đó \left\{ \begin{matrix}l = 150;\dfrac{3N}{4} = 45;m = 40;f = 17 \\c = 200 - 150 = 50 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c

    \Rightarrow Q_{3} = 150 + \frac{45 -
40}{17}.50 = \frac{2800}{17}

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q} = Q_{3} - Q_{1} \approx
73.

  • Câu 3: Nhận biết

    Bảng sau thống kê khối lượng một số quả quýt trong thùng hàng:

    Khối lượng (gam)

    [80; 82)

    [82; 84)

    [84; 86)

    [86; 88)

    [88; 90)

    Số quả

    17

    20

    25

    16

    12

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 90 – 80 = 10 gam.

  • Câu 4: Vận dụng

    Mẫu số liệu dưới đây ghi lại tốc độ của 40 ô tô khi đi qua một trạm đo tốc độ (đơn vị: km/h ).

    49

    42

    51

    55

    45

    60

    53

    55

    44

    65

    52

    62

    41

    44

    57

    56

    68

    48

    46

    53

    63

    49

    54

    61

    59

    57

    47

    50

    60

    62

    48

    52

    58

    47

    60

    55

    45

    47

    48

    61

    Sau khi ghép nhóm mẫu số liệu trên thành sáu nhóm ứng với sáu nửa khoảng:

    \lbrack 40;45),\lbrack 45;50),\lbrack
50;55),\lbrack 55;60),\lbrack 60;65),\lbrack 65;70)thì trung vị của mẫu số liệu ghép nhóm nhận được bằng \frac{a}{b}(\ km/h) (\frac{a}{b} là phân số tối giản). Khi đó giá trị của a bằng bao nhiêu?

    Đáp án: 375

    Đáp án là:

    Mẫu số liệu dưới đây ghi lại tốc độ của 40 ô tô khi đi qua một trạm đo tốc độ (đơn vị: km/h ).

    49

    42

    51

    55

    45

    60

    53

    55

    44

    65

    52

    62

    41

    44

    57

    56

    68

    48

    46

    53

    63

    49

    54

    61

    59

    57

    47

    50

    60

    62

    48

    52

    58

    47

    60

    55

    45

    47

    48

    61

    Sau khi ghép nhóm mẫu số liệu trên thành sáu nhóm ứng với sáu nửa khoảng:

    \lbrack 40;45),\lbrack 45;50),\lbrack
50;55),\lbrack 55;60),\lbrack 60;65),\lbrack 65;70)thì trung vị của mẫu số liệu ghép nhóm nhận được bằng \frac{a}{b}(\ km/h) (\frac{a}{b} là phân số tối giản). Khi đó giá trị của a bằng bao nhiêu?

    Đáp án: 375

    Lập mẫu số liệu ghép nhóm bao gồm cả tần số tích luỹ nhu ở Báng 8 .

    Số phần tử của mẫu là n = 40. Ta có: \frac{n}{2} = \frac{40}{2} = 2015 < 20 < 22. Suy ra nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 20 . Xét nhóm 3 có r = 50;d = 5;n_{3} = 7 và nhóm 2 có

    Nhóm

    Tần sồ

    Tần số tích luỹ

    \lbrack 40;45)

    4

    4

    \lbrack 45;50)

    11

    15

    \lbrack 50;55)

    7

    22

    \lbrack 55;60)

    8

    30

    \lbrack 60;65)

    8

    38

    \lbrack 65;70)

    2

    2

     

    n = 40

     

    cf_{2} = 15.

    Trung vị của mẫu số liệu ghép nhóm đó là:

    M_{e} = 50 + \left( \frac{20 - 15}{7}
ight) \cdot 5 = \frac{375}{7}(\ km/h).

    Suy ra a = 375.

  • Câu 5: Nhận biết

    Cho bảng thống kê kết quả cự li ném bóng của một người như sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số lần

    13

    45

    24

    12

    6

    Cự li ném bóng trung bình của người đó là:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số lần

    13

    45

    24

    12

    6

    Cự li trung bình là:

    \overline{x} = \frac{13.9,25 + 45.19,75
+ 24.20,25 + 12.20,75 + 6.21,25}{100} \approx 20,02

  • Câu 6: Nhận biết

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Ta có: \frac{n}{4} = \frac{20}{4} =
51 + 3 < 5 < 1 + 3 +
8 nên tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm \lbrack 16;17)

  • Câu 7: Nhận biết

    Mỗi ngày bác T đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác T trong 20 ngày được thống kê lại ở bảng sau:

    Quãng đường

    [2,7; 3,0)

    [3,0; 3,3)

    [3,3; 3,6)

    [3,6; 3,9)

    [3,9; 4,2)

    Số ngày

    3

    6

    5

    4

    2

    Khoảng biến thiên của mẫu số liệu ghép nhóm là:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là: 4,2 - 2,7 = 1,5(km)

  • Câu 8: Thông hiểu

    Người ta theo dõi sự thay đổi cân nặng, được tính bằng hiệu cân nặng trước và sau ba tháng áp dụng chế độ ăn kiêng của một số người cho kết quả sau:

    Thay đổi cân nặng

    [-1; 0)

    [0; 1)

    [1; 2)

    [2; 3)

    [3; 4)

    Số người nam

    6

    4

    2

    3

    1

    Số người nữ

    5

    6

    3

    1

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Số người thay đổi cân nặng theo chiều hướng giảm cân là 11. Đúng||Sai

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nam là R_{1} = 5. Đúng||Sai

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nữ là R_{2} = 3. Sai|| Đúng

    (d) Nếu biết nữ tăng cân nhiều nhất là 2kg và giảm cân được nhiều nhất 1kg thì khoảng biến thiên của mẫu số liệu gốc là 1. Sai|| Đúng

    Đáp án là:

    Người ta theo dõi sự thay đổi cân nặng, được tính bằng hiệu cân nặng trước và sau ba tháng áp dụng chế độ ăn kiêng của một số người cho kết quả sau:

    Thay đổi cân nặng

    [-1; 0)

    [0; 1)

    [1; 2)

    [2; 3)

    [3; 4)

    Số người nam

    6

    4

    2

    3

    1

    Số người nữ

    5

    6

    3

    1

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Số người thay đổi cân nặng theo chiều hướng giảm cân là 11. Đúng||Sai

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nam là R_{1} = 5. Đúng||Sai

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nữ là R_{2} = 3. Sai|| Đúng

    (d) Nếu biết nữ tăng cân nhiều nhất là 2kg và giảm cân được nhiều nhất 1kg thì khoảng biến thiên của mẫu số liệu gốc là 1. Sai|| Đúng

    (a) Số người thay đổi cân nặng theo chiều hướng giảm cân là 11. Số người thay đổi theo chiều hướng giảm cân là 5 + 6 = 11

    Chọn ĐÚNG.

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nam là R_{1} = 5.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nam là R_{1} = 4 - ( - 1) =
5

    Chọn ĐÚNG.

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nữ là R_{2} = 3.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nữ là R_{2} = 3 - ( - 1) =
4

    Chọn SAI.

    (d) Nếu biết nữ tăng cân nhiều nhất là 2 kg và giảm cân được nhiều nhất 1 kg thì khoảng biến thiên của mẫu số liệu gốc là 1.

    Nếu biết nữ tăng cân nhiều nhất là 2 kg và giảm cân được nhiều nhất 1 kg thì khoảng biến thiên của mẫu số liệu gốc là R_{2} = 2 - ( - 1) = 3

    Chọn SAI.

  • Câu 9: Nhận biết

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Tần số

    8

    9

    12

    10

    11

    Tính số trung bình của mẫu số liệu?

    Cỡ mẫu N = 50

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Tần số

    8

    9

    12

    10

    11

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{8.121 + 9.123 +
12.125 + 10.127 + 11.129}{50} = 125,28

  • Câu 10: Nhận biết

    Cho bảng thống kê chiều cao của học sinh nữ lớp 12A như sau:

    Chiều cao(cm)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    [180; 185)

    Số học sinh

    2

    7

    12

    3

    0

    1

    Một học sinh có nhận xét như sau: Chênh lệch chiều cao của các bạn trong lớp không vượt quá m (cm). Hãy xác định giá trị của m để nhận xét của học sinh đó là đúng?

    Ta có: R = 185 – 55 = 30

    Vậy giá trị của m = 30.

  • Câu 11: Nhận biết

    Kết quả đo chiều cao của 50 cây keo trong vườn được thống kê lại trong bảng sau:

    Chiều cao (cm)

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Số cây

    16

    4

    3

    6

    21

    Tính chiều cao trung bình của 50 cây keo trên?

    Cỡ mẫu N = 50

    Chiều cao (cm)

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Số cây

    16

    4

    3

    6

    21

    Chiều cao trung bình là:

    \overline{x} = \frac{16.121 + 4.123 +
3.125 + 6.127 + 21.129}{50} = 125,28.

  • Câu 12: Vận dụng

    Cho mẫu số liệu thống kê chiều cao (đơn vị: cm) của các học sinh lớp 12A, 12B và 12C của một trường THPT như bảng sau

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12A

    1

    13

    18

    5

    3

    0

    Số học sinh 12B

    0

    12

    20

    7

    1

    0

    Số học sinh 12C

    1

    8

    12

    15

    3

    1

    Xét tính đúng, sai các mệnh đề sau:

    (a) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B. Đúng||Sai

    (b) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12B phân tán hơn so với lớp 12C. Sai|| Đúng

    (c) Ở lớp 12B có một học sinh có chiều cao là 173 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12B. Đúng||Sai

    (d) Ở lớp 12C có một học sinh có chiều cao là 177 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12C. Sai|| Đúng

    Đáp án là:

    Cho mẫu số liệu thống kê chiều cao (đơn vị: cm) của các học sinh lớp 12A, 12B và 12C của một trường THPT như bảng sau

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12A

    1

    13

    18

    5

    3

    0

    Số học sinh 12B

    0

    12

    20

    7

    1

    0

    Số học sinh 12C

    1

    8

    12

    15

    3

    1

    Xét tính đúng, sai các mệnh đề sau:

    (a) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B. Đúng||Sai

    (b) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12B phân tán hơn so với lớp 12C. Sai|| Đúng

    (c) Ở lớp 12B có một học sinh có chiều cao là 173 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12B. Đúng||Sai

    (d) Ở lớp 12C có một học sinh có chiều cao là 177 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12C. Sai|| Đúng

    Xét mẫu số liệu thống kê chiều cao của học sinh lớp 12A

    Ta có:

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12A

    1

    13

    18

    5

    3

    0

    Tần số tích lũy

    1

    14

    32

    37

    40

    40

    Cỡ mẫu N = 40

    Ta có: \frac{N}{4} = 10

    => Nhóm chứa Q_{1} là [155; 160)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 155;m = 1,f = 13;c = 160
- 155 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 155 + \frac{10 - 1}{13}.5 =\frac{2060}{13}

    Ta có: \frac{3N}{4} = 30

    => Nhóm chứa Q_{3} là [160; 165)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 160;m = 14,f = 18;c =
165 - 160 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 160 + \frac{30 - 14}{18}.5 =\frac{1480}{9}.

    Vậy khoảng tứ phân vị của mẫu số liệu nhóm A là: \Delta Q_{A} = \frac{700}{117}

    Xét mẫu số liệu thống kê chiều cao của học sinh lớp 12B

    Ta có:

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12B

    0

    12

    20

    7

    1

    0

    Tần số tích lũy

    0

    12

    32

    39

    40

    40

    Cỡ mẫu N = 40

    Ta có: \frac{N}{4} = 10

    => Nhóm chứa Q_{1} là [155; 160)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 155;m = 0,f = 12;c = 160
- 155 = 5

    \Rightarrow Q_{1} = l +
\frac{\frac{N}{4} - m}{f}.c = 155 + \frac{10 - 0}{12}.5 =
\frac{955}{6}

    Ta có: \frac{3N}{4} = 30

    => Nhóm chứa Q_{3} là [160; 165)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 160;m = 12,f = 20;c =
165 - 160 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 160 + \dfrac{30 - 12}{20}.5 =\dfrac{329}{2}.

    Vậy khoảng tứ phân vị của mẫu số liệu nhóm B là: \Delta Q_{B} = \frac{16}{3}

    Xét mẫu số liệu thống kê chiều cao của học sinh lớp 12C

    Ta có:

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12C

    1

    8

    12

    15

    3

    1

    Tần số tích lũy

    1

    9

    21

    36

    39

    40

    Cỡ mẫu N = 40

    Ta có: \frac{N}{4} = 10

    => Nhóm chứa Q_{1} là [160; 165)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 160;m = 9,f = 12;c = 165
- 160 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 160 + \dfrac{10 - 9}{12}.5 =\dfrac{1925}{12}

    Ta có: \frac{3N}{4} = 30

    => Nhóm chứa Q_{3} là [165; 170)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 165;m = 21,f = 15;c =
170 - 165 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 165 + \dfrac{30 - 21}{15}.5 =168.

    Vậy khoảng tứ phân vị của mẫu số liệu nhóm C là: \Delta Q_{C} = \frac{91}{12}

     

    (a) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B.

    Ta có: \Delta Q_{A} > \Delta
Q_{B}. Do đó, mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B.

    Chọn ĐÚNG.

    (b) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12B phân tán hơn so với lớp 12C.

    Ta có: \Delta Q_{B} < \Delta
Q_{C}. Do đó, mẫu số liệu thống kê chiều cao của học sinh lớp 12C phân tán hơn so với lớp 12B.

    Chọn SAI.

    (c) Ở lớp 12B có một học sinh có chiều cao là 173 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12B.

    Xét mẫu số liệu lớp 12B, ta có \Delta
Q_{B} = \frac{16}{3}

    Khi đó, giá trị ngoại lệ là các giá trị x
> Q_{3} + 1,5.\Delta Q_{B} \Rightarrow x > \frac{329}{2} +
1,5.\frac{16}{3} \Rightarrow x > 172,5

    Do đó, giá trị 173 cm là giá trị ngoại lệ của mẫu số liệu lớp 12B.

    Chọn ĐÚNG.

    (d) Ở lớp 12C có một học sinh có chiều cao là 177 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12C.

    Xét mẫu số liệu lớp 12C, ta có \Delta
Q_{C} = \frac{91}{12}

    Khi đó, giá trị ngoại lệ là các giá trị x
> Q_{3} + 1,5.\Delta Q_{C} \Rightarrow x > 168 + 1,5.\frac{91}{12}
\Rightarrow x > 179,375

    Do đó, giá trị 177cm không là giá trị ngoại lệ của mẫu số liệu lớp 12C.

    Chọn SAI.

  • Câu 13: Thông hiểu

    Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong Bảng 1.

    Nhóm

    Giá trị đại diện

    Tần số

    [40;45)

    [40;45)

    [40;45)

    [40;45)

    [40;45)

    [40;45)

    42,5

    47,5

    52,5

    57,5

    62,5

    67,5

    4

    14

    8

    10

    6

    2

    N = 44

    Bảng 1

    Phương sai của mẫu số liệu ghép nhóm trên là:

    Số trung bình cộng của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{4.42,5 + 14.47,5 +
8.52,5 + 10.57,5 + 6.62,5 + 2.67,5}{44} = \frac{585}{11}

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{4\left( 42,5 -\frac{585}{11} ight)^{2} + 14\left( 47,5 - \frac{585}{11}ight)^{2}}{44}+ \frac{8\left( 52,5 - \frac{585}{11} ight)^{2} +10\left( 57,5 - \frac{585}{11} ight)^{2}}{44}

    + \frac{+ 6\left( 62,5 - \frac{585}{11}
ight)^{2} + 2.\left( 67,5 - \frac{585}{11} ight)^{2}}{44} \approx
46,12

  • Câu 14: Nhận biết

    Cho biểu đồ

    Tính chiều cao trung bình của mẫu số liệu đã cho?

    Ta có:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Chiều cao trung bình là:

    \overline{x} = \frac{3.162 + 5.166 +8.170 + 4.174 + 1.178}{21} \approx 169

  • Câu 15: Thông hiểu

    Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Dữ liệu thu được ghi trong bảng dưới đây.

    Chiều cao (cm)

    Số học sinh

    (120; 125]

    3

    (125; 130]

    5

    (130; 135]

    11

    (135; 140]

    6

    (140; 145]

    5

     

    N = 30

    Giá trị \Delta_{Q} là:

    Ta có:

    Chiều cao (cm)

    Số học sinh

    Tần số tích lũy

    (120; 125]

    3

    3

    (125; 130]

    5

    8

    (130; 135]

    11

    19

    (135; 140]

    6

    25

    (140; 145]

    5

    30

     

    N = 30

     

    Ta có: \frac{N}{4} = \frac{30}{4} =
7,5

    => Nhóm chứa tứ phân vị thứ nhất là: (125; 130]

    Khi đó: \left\{ \begin{matrix}l = 125;\dfrac{N}{4} = 7,5;m = 3 \\f = 5;d = 130 - 125 = 5 \\\end{matrix} ight.

    Vậy tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 125 + \frac{7,5 -
3}{5}.5 = 129,5

    Ta có: \frac{3N}{4} = \frac{3.30}{4} =
22,5

    => Nhóm chứa tứ phân vị thứ ba là (135; 140]

    Khi đó: \left\{ \begin{matrix}
l = 135;\frac{3N}{4} = 22,5;m = 19 \\
f = 6;d = 140 - 135 = 5 \\
\end{matrix} ight.

    Vậy tứ phân vị thứ ba là:

    \left\{ \begin{matrix}l = 135;\dfrac{3N}{4} = 22,5;m = 19 \\f = 6;d = 140 - 135 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{3} = 135 + \frac{22,5 -
19}{6}.5 \approx 137,9

    \Rightarrow \Delta_{Q} = Q_{3} - Q_{1} =
\frac{1655}{12} - 29,5 \approx 8,4

  • Câu 16: Nhận biết

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C và điểm trung bình của lớp 12D lần lượt là:

    Ta có:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C:

    \overline{x_{C}} = \frac{4.5,5 + 5.6,5 +
3.7,5 + 4.8,5 + 2.9,5}{18} = \frac{65}{9}.

    Điểm trung bình của lớp 12D:

    \overline{x_{D}} = \frac{2.5,5 + 5.6,5 +
4.7,5 + 3.8,5 + 1.9,5}{15} = \frac{217}{30}.

  • Câu 17: Nhận biết

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Tính thời gian sử dụng pin trung bình?

    Ta có:

    Thời gian (giờ)

    [7,2; 7,4)

    [7,4; 7,6)

    [7,6; 7,8)

    [7,8; 8,0)

    Giá trị đại diện

    7,3

    7,5

    7,7

    7,9

    Số máy vi tính

    2

    4

    7

    5

    Thòi gian trung bình là:

    \overline{x} = \frac{2.7,3 + 4.7,5 +
7.7,7 + 5.7,9}{18} = \frac{23}{3} \approx 7,7 giờ

  • Câu 18: Nhận biết

    Một mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng:

    Mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng \sqrt{16} = 4.

  • Câu 19: Thông hiểu

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    Tốc độ

    Tần số

    40 ≤ x < 50

    4

    50 ≤ x < 60

    5

    60 ≤ x < 70

    7

    70 ≤ x < 80

    4

    Xác định giá trị của \Delta_{Q} = Q_{3} -
Q_{1}?

    Ta có:

    Tốc độ

    Tần số

    Tần số tích lũy

    40 ≤ x < 50

    4

    4

    50 ≤ x < 60

    5

    9

    60 ≤ x < 70

    7

    16

    70 ≤ x < 80

    4

    20

    Tổng

    N = 20

     

    Ta có: \frac{N}{4} = \frac{20}{4} =
5

    => Nhóm chứa tứ phân vị thứ nhất là: [50; 60)

    Khi đó: \left\{ \begin{matrix}l = 50;\dfrac{N}{4} = 5 \\m = 4,f = 5,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 50 + \frac{5 -
4}{5}.10 = 52

    Ta có: \frac{3N}{4} = \frac{3.20}{4} =
15

    => Nhóm chứa tứ phân vị thứ ba là: [60; 70]

    Khi đó: \left\{ \begin{matrix}l = 60;\dfrac{3N}{4} = 15 \\m = 9,f = 7,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 60 + \frac{15 -
9}{7}.10 = \frac{480}{7}

    \Rightarrow \Delta_{Q} = Q_{3} - Q_{1} =
\frac{480}{7} - 52 \approx 16,6

  • Câu 20: Thông hiểu

    Kết quả đo chiều cao của 100 cây thực nghiệm 2 năm tuổi được cho trong bảng sau:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Xác định khoảng tứ phân vị của mẫu số liệu?

    Ta có:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Tần số tích lũy

    5

    17

    42

    86

    100

    N = 100 \Rightarrow \frac{N}{4} =
25 => Nhóm chứa tứ phân vị thứ nhất là: [8,8; 9,0)

    \Rightarrow \left\{ \begin{matrix}l = 8,8,\dfrac{N}{4} = 25,m = 17,f = 25 \\c = 9,0 - 8,8 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c \Rightarrow Q_{1} = 8,8 + \frac{25 -17}{25}.0,2 = \frac{1108}{125}

    \frac{3N}{4} = 75 => Nhóm chứa tứ phân vị thứ ba là: [9,0; 9,2)

    \Rightarrow \left\{ \begin{matrix}l = 9,0,\dfrac{3N}{4} = 75,m = 42,f = 44 \\c = 9,2 - 9,0 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\frac{\dfrac{3N}{4} - m}{f}.c \Rightarrow Q_{3} = 9,0 + \frac{75 -42}{44}.0,2 = \frac{183}{20}

    Vậy khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} = 0,286.

  • Câu 21: Thông hiểu

    Cho bảng thống kê kết quả cự li ném bóng của một người như sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số lần

    13

    45

    24

    12

    6

    Độ lệch chuẩn của mẫu số liệu đã cho là:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số lần

    13

    45

    24

    12

    6

    Cự li trung bình là:

    \overline{x} = \frac{13.19,25 + 45.19,75
+ 24.20,25 + 12.20,75 + 6.21,25}{100} = 20,015

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{100}\left( 13.19,25^{2}
+ 45.19,75^{2} + 24.20,25^{2} + 12.20,75^{2} + 6.21,25^{2} ight) -
20,015^{2} \approx 0,277

    Độ lệch chuẩn của mẫu số liệu là:

    S = \sqrt{S^{2}} \approx \sqrt{0,277}
\approx 0,526

  • Câu 22: Nhận biết

    Dũng là một học sinh rất giỏi chơi rubik, bạn có thể giải nhiều loại khối rubik khác nhau. Trong một lần tập luyện giải khối rubik, bạn Dũng đã tự thống kê lại thời gian giải rubik trong 25 lần liên tiếp ở bảng sau:

    Thời gian giải rubik (giây)

    \lbrack 8;10) \lbrack 10 ; 12) \lbrack 12;14) \lbrack 14;16) \lbrack 16;18)

    Số lần

    4 6 8 4 3

    Khoảng biến thiên của mẫu số liệu ghép nhóm nhận giá trị nào trong các giá trị sau đây?

    Khoảng biến thiên của mẫu số liệu ghép nhóm là R=18-8=10.

  • Câu 23: Thông hiểu

    Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong bảng sau:

    Nhóm

    Tần số

    [40; 45)

    4

    [45; 50)

    14

    [50; 55)

    8

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    2

    Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là:

    Ta có:

    Nhóm

    Giá trị đại diện

    Tần số

    [40; 45)

    42,5

    4

    [45; 50)

    47,5

    14

    [50; 55)

    52,5

    8

    [55; 60)

    57,5

    10

    [60; 65)

    62,5

    6

    [65; 70)

    67,5

    2

    Số trung bình cộng của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{4.42,5 + 14.47,5 +
8.52,5 + 10.57,6 + 6.62,5 + 2.67,5}{44} = \frac{585}{11}

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \lbrack 4.\left( 42,5 -
\frac{585}{11} ight)^{2} + 14.\left( 47,5 - \frac{585}{11} ight)^{2}
+ 8.\left( 52,5 - \frac{585}{11} ight)^{2}

    + 10.\left( 57,6 - \frac{585}{11}
ight)^{2} + 6.\left( 62,5 - \frac{585}{11} ight)^{2} + 2.\left( 67,5
- \frac{585}{11} ight)^{2}brack:44 \approx 46,12

    Vậy độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    s = \sqrt{s^{2}} = \sqrt{46,12} \approx
6,8

  • Câu 24: Nhận biết

    Cho bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch như sau:

    Cân nặng

    [250; 290)

    [290; 330)

    [330; 370)

    [370; 410)

    [410; 450)

    Số quả

    3

    13

    18

    11

    5

    Xác định tính đúng sai của nhận xét sau: “Trong 50 quả xoài trên, hiệu số cân nặng của hai quả bất kì không vượt quá 200g” Đúng||Sai

    Đáp án là:

    Cho bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch như sau:

    Cân nặng

    [250; 290)

    [290; 330)

    [330; 370)

    [370; 410)

    [410; 450)

    Số quả

    3

    13

    18

    11

    5

    Xác định tính đúng sai của nhận xét sau: “Trong 50 quả xoài trên, hiệu số cân nặng của hai quả bất kì không vượt quá 200g” Đúng||Sai

    Đúng vì giá trị 200 là khoảng biến thiên của mẫu số liệu ghép nhóm.

  • Câu 25: Nhận biết

    Xét mẫu số liệu ghép nhóm có tứ phân vị thứ nhất, tứ phân vị thứ hai, tứ phân vị thứ ba lần lượt là Q_{1}; Q_{2}; Q_{3}. Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó bằng

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là Q_{3} - Q_{1}.

  • Câu 26: Nhận biết

    Cho biểu đồ

    Hoàn thảnh bảng số liệu theo mẫu sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Đáp án là:

    Cho biểu đồ

    Hoàn thảnh bảng số liệu theo mẫu sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

     Hoàn thảnh bảng số liệu như sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

  • Câu 27: Nhận biết

    Bảng sau thống kê thành tích nhảy xa của một số học sinh lớp 12A:

    Thành tích cm)

    [150; 180)

    [180; 210)

    [210; 240)

    [240; 270)

    [270; 300)

    Số học sinh

    3

    5

    28

    14

    8

    Xác định khoảng biến thiên của mẫu số liệu đã cho?

    Khoảng biến thiên của mẫu số liệu là R =
300 - 150 = 150.

  • Câu 28: Thông hiểu

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Tần số

    13

    45

    24

    12

    6

    Phương sai của mẫu số liệu ghép nhóm trên gần với giá trị nào sau đây nhất?

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Tần số

    13

    45

    24

    12

    6

    Cỡ mẫu là n = 13 + 45 + 24 + 12 + 6 = 100.

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{1}{100}\lbrack
13.19,25 + 45.19,75

    + 24.20,25 + 12.20,75 + 6.21,25) =
20,015

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{100}\lbrack
13.(19,25)^{2} + 45.(19,25)^{2}

    + 24.(19,25)^{2} + 12.(19,25)^{2} +
6.(19,25)^{2}brack - (20,015)^{2} \approx 0,277

  • Câu 29: Thông hiểu

    Thống kê quãng đường một xe taxi công nghệ đi mỗi ngày (đơn vị: km) như sau:

    Quãng đường (km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Số ngày

    5

    10

    9

    4

    2

    Độ lệch chuẩn của mẫu số liệu ghép nhóm gần bằng:

    Ta có:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Số ngày

    5

    10

    9

    4

    2

    Tần số tích lũy

    5

    15

    24

    28

    30

    Số trung bình của mẫu số liệu ghép nhóm:

    \overline{x} = \frac{5.75 + 10.125 +
9.175 + 4.225 + 2.275}{30} = 155

    Vậy khẳng định (iii) sai.

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{30}\left( 5.75^{2} +
10.125^{2} + 9.175^{2} + 4.225^{2} + 2.275^{2} ight) - 155^{2} =
3100

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    S = \sqrt{S^{2}} \approx
55,68

  • Câu 30: Thông hiểu

    Thời gian chờ khám bệnh của hai phòng khám 1 và phòng khám 2 được cho trong bảng sau:

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    Số bệnh nhân phòng 1

    3

    12

    15

    18

    Số bệnh nhân phòng 1

    5

    10

    12

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Tổng số bệnh nhân chờ khám bệnh ở phòng khám số 1 dưới 5 phút là 3. Đúng||Sai

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là R_{1} =
15. Sai|| Đúng

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là R_{2} =
20. Sai|| Đúng

    (d) Thời gian chờ khám bệnh ở phòng khám số 2 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 1. Sai|| Đúng

    Đáp án là:

    Thời gian chờ khám bệnh của hai phòng khám 1 và phòng khám 2 được cho trong bảng sau:

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    Số bệnh nhân phòng 1

    3

    12

    15

    18

    Số bệnh nhân phòng 1

    5

    10

    12

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Tổng số bệnh nhân chờ khám bệnh ở phòng khám số 1 dưới 5 phút là 3. Đúng||Sai

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là R_{1} =
15. Sai|| Đúng

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là R_{2} =
20. Sai|| Đúng

    (d) Thời gian chờ khám bệnh ở phòng khám số 2 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 1. Sai|| Đúng

    (a) Tổng số bệnh nhân chờ khám bệnh ở phòng khám số 1 dưới 5 phút là 3.

    Chọn ĐÚNG.

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là R_{1} =
15.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là R_{1} = 20 - 0 =
20

    Chọn SAI.

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là R_{2} =
20.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là R_{2} = 15 - 0 =
15

    Chọn SAI.

    (d) Thời gian chờ khám bệnh ở phòng khám số 2 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 1.

    R_{1} > R_{2} nên thời gian khám bệnh ở phòng khám số 1 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 2.

    Chọn SAI

  • Câu 31: Thông hiểu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Giá trị \Delta_{Q} bằng:

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{4} =
5

    => Nhóm chứa tứ phân vị thứ nhất là [7; 9)

    (Vì 5 nằm giữa hai tần số tích lũy 2 và 9)

    Do đó: l = 7;m = 2,f = 7;c = 9 - 7 =
2

    Khi đó tứ phân vị thứ nhất là:

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 7 + \dfrac{5 - 2}{7}.2 =\dfrac{55}{7}

    Cỡ mẫu N = 20 \Rightarrow \frac{3N}{4} =
15

    => Nhóm chứa tứ phân vị thứ ba là [9; 11)

    (Vì 15 nằm giữa hai tần số tích lũy 9 và 16)

    Do đó: l = 9;m = 9,f = 7;c = 11 - 9 =
2

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 9 + \dfrac{15 - 9}{7}.2 = \dfrac{75}{7}\approx 10,7

    Vậy khoảng tứ phân vị của mẫu số liệu đã cho là:

    \Delta_{Q} = Q_{3} - Q_{1} = \frac{75}{7}
- \frac{55}{7} = \frac{20}{7}.

  • Câu 32: Vận dụng

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tính sai số tương đối của độ lệch chuẩn của mẫu số liệu ghép nhóm so với độ lệch chuẩn của mẫu số liệu gốc?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tính sai số tương đối của độ lệch chuẩn của mẫu số liệu ghép nhóm so với độ lệch chuẩn của mẫu số liệu gốc?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 33: Thông hiểu

    Cho mẫu số liệu ghép nhóm như sau:

    Nhóm

    Tần số

    [0; 20)

    16

    [20; 40)

    12

    [40; 60)

    25

    [60; 80)

    15

    [80; 100)

    12

    [100; 120)

    10

    Tổng

    N = 90

    Xác định khoảng tứ phân vị của mẫu số liệu? Kết quả làm tròn đến chữ số thập phân thứ nhất.

    Ta có:

    Nhóm

    Tần số

    Tần số tích lũy

    [0; 20)

    16

    16

    [20; 40)

    12

    28

    [40; 60)

    25

    53

    [60; 80)

    15

    68

    [80; 100)

    12

    80

    [100; 120)

    10

    90

    Tổng

    N = 90

     

    Ta có: \frac{N}{4} = 22,5

    => Nhóm chứa tứ phân vị thứ nhất là: [20; 40)

    Khi đó ta có: \left\{ \begin{matrix}l = 20;\dfrac{N}{4} = 22,5 \\m = 16,f = 12,d = 20 \\\end{matrix} ight.

    Tứ phân vị thứ nhất được tính như sau:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 20 + \frac{22,5 -
16}{12}.20 = \frac{185}{6}

    Ta có: \frac{3N}{4} = 67,5

    => Nhóm chứa tứ phân vị thứ ba là: [60; 80)

    Khi đó ta có: \left\{ \begin{matrix}
l = 60;\frac{3N}{4} = 67,5 \\
m = 53,f = 15,80 - 60 = 20 \\
\end{matrix} ight.

    Tứ phân vị thứ ba được tính như sau:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 60 + \frac{67,5 -
53}{15}.20 = \frac{238}{3}

    \Rightarrow \Delta_{Q} = Q_{3} - Q_{1} =
\frac{238}{3} - \frac{185}{6} = 48,5

  • Câu 34: Nhận biết

    Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Số trung bình của mẫu số liệu ghép nhóm của đối tương A và đối tượng B lần lượt là:

    Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

     

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

     

    Phân xưởng A

    4

    5

    5

    4

    2

    N = 20

    Phân xưởng B

    3

    6

    5

    5

    1

    N’ = 20

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:

    \overline{x_{A}} = \frac{4.5,5 + 5.6,5 +
5.7,5 + 4.8,5 + 2.9,5}{20} = 7,25

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:

    \overline{x_{B}} = \frac{3.5,5 + 6.6,5 +
5.7,5 + 5.8,5 + 1.9,5}{20} = 7,25

  • Câu 35: Thông hiểu

    Cho bảng thống kê kết quả đo cân nặng của một số trẻ em như sau:

    Cân nặng (kg)

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    [12; 14)

    Số trẻ em

    6

    12

    19

    9

    4

    Xác định độ lệch chuẩn của mẫu số liệu đã cho?

    Ta có: N = 50

    Suy ra số trung bình của mẫu số liệu là:

    \overline{x} = \frac{6.5 + 12.7 + 19.9 +
9.11 + 4.13}{50} = 8,72

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{50}\left( 6.5^{2} +
12.7^{2} + 19.9^{2} + 9.11^{2} + 4.13^{3} ight) - 8,72^{2} \approx
4,8

    Vậy độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho là: S \approx 2,2

  • Câu 36: Thông hiểu

    Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong bảng sau:

    Nhóm

    Tần số

    [40; 45)

    4

    [45; 50)

    14

    [50; 55)

    8

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    2

    Phương sai của mẫu số liệu ghép nhóm trên là:

    Ta có:

    Nhóm

    Giá trị đại diện

    Tần số

    [40; 45)

    42,5

    4

    [45; 50)

    47,5

    14

    [50; 55)

    52,5

    8

    [55; 60)

    57,5

    10

    [60; 65)

    62,5

    6

    [65; 70)

    67,5

    2

    Số trung bình cộng của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{4.42,5 + 14.47,5 +
8.52,5 + 10.57,6 + 6.62,5 + 2.67,5}{44} = \frac{585}{11}

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \lbrack 4.\left( 42,5 -
\frac{585}{11} ight)^{2} + 14.\left( 47,5 - \frac{585}{11} ight)^{2}
+ 8.\left( 52,5 - \frac{585}{11} ight)^{2}

    + 10.\left( 57,6 - \frac{585}{11}
ight)^{2} + 6.\left( 62,5 - \frac{585}{11} ight)^{2} + 2.\left( 67,5
- \frac{585}{11} ight)^{2}brack:44 \approx 46,12

  • Câu 37: Vận dụng

    Bảng tần số ghép nhóm dưới đây thể hiện kết quả điều tra về tuổi thọ trung bình:

    Độ tuổi

    [50; 55)

    [55; 60)

    [60; 65)

    [65; 70)

    [70; 75)

    [75; 80)

    [80; 85)

    [85; 90)

    Nam

    4

    7

    4

    6

    15

    12

    2

    0

    Nữ

    3

    4

    5

    3

    7

    14

    13

    1

    Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm có tuổi thọ trung bình đồng đều nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Bảng tần số ghép nhóm dưới đây thể hiện kết quả điều tra về tuổi thọ trung bình:

    Độ tuổi

    [50; 55)

    [55; 60)

    [60; 65)

    [65; 70)

    [70; 75)

    [75; 80)

    [80; 85)

    [85; 90)

    Nam

    4

    7

    4

    6

    15

    12

    2

    0

    Nữ

    3

    4

    5

    3

    7

    14

    13

    1

    Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm có tuổi thọ trung bình đồng đều nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 38: Vận dụng

    Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:

    341,4

    187,1

    242,2

    522,9

    251,4

    432,2

    200,7

    388,6

    258,4

    288,5

    298,1

    413,5

    413,5

    332

    421

    475

    400

    305

    520

    147

    Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:

    341,4

    187,1

    242,2

    522,9

    251,4

    432,2

    200,7

    388,6

    258,4

    288,5

    298,1

    413,5

    413,5

    332

    421

    475

    400

    305

    520

    147

    Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 39: Nhận biết

    Cho bảng thống kê chiều cao (đơn vị: cm) của học sinh lớp 12A và lớp 12B như sau:

    Chiều cao

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    [180; 185)

    12A

    2

    7

    12

    3

    0

    1

    12B

    5

    9

    8

    2

    1

    0

    Giả sử khoảng biến thiên của mẫu số liệu chiều cao học sinh lớp 12A và 12B lần lượt là R_{1};R_{2}. Chọn kết luận đúng?

    Khoảng biến thiên của mẫu số liệu chiều cao lớp 12A là R_{1} = 185 - 155 = 30.

    Khoảng biến thiên của mẫu số liệu chiều cao lớp 12B là R_{2} = 180 - 155 = 25.

    Vậy R_{1} > R_{2} là kết luận đúng.

  • Câu 40: Thông hiểu

    Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:

    Tốc độ

    [42; 46)

    [46; 50)

    [50; 54)

    [54; 58)

    [58; 62)

    Số xe

    3

    7

    4

    3

    3

    Tìm độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho?

    Ta có

    Tốc độ

    [42; 46)

    [46; 50)

    [50; 54)

    [54; 58)

    [58; 62)

    Giá trị đại diện

    44

    48

    52

    56

    60

    Số xe

    3

    7

    4

    3

    3

    Tốc độ trung bình là:

    \overline{x} = \frac{3.44 + 7.48 + 4.52
+ 3.56 + 3.60}{20} = 51,2

    Phương sai của mẫu số liệu là:

    S^{2} = \frac{1}{20}.\left( 3.44^{2} +
7.48^{2} + 4.52^{2} + 3.56^{2} + 3.60^{2} ight) - 51,2^{2} =
26,56

    Vậy độ lệch chuẩn của mẫu số liệu là: S =
\sqrt{S^{2}} \approx 5,154

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo