Đề kiểm tra 45 phút Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho biểu đồ

    Hoàn thảnh bảng số liệu theo mẫu sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Đáp án là:

    Cho biểu đồ

    Hoàn thảnh bảng số liệu theo mẫu sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

     Hoàn thảnh bảng số liệu như sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

  • Câu 2: Nhận biết

    Cho biểu đồ mức lương của công nhân hai phân xưởng A và B (đơn vị: triệu đồng) như sau:

    Hoàn thành bảng số liệu sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Đáp án là:

    Cho biểu đồ mức lương của công nhân hai phân xưởng A và B (đơn vị: triệu đồng) như sau:

    Hoàn thành bảng số liệu sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

     Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

  • Câu 3: Thông hiểu

    Bạn An rất thích chạy bộ. Thời gian chạy bộ mỗi ngày trong thời gian gần đây của bạn An được thống kê lại ở bảng sau:

    Thời gian (phút)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số ngày

    6

    6

    4

    1

    1

    Hãy tính khoảng tứ phân vị của mẫu số liệu ghép nhóm trong bảng trên.

    Cỡ mẫu n = 18.

    Gọi x_{1};x_{2};...;x_{18} là mẫu số liệu gốc gồm thời gian của 18 ngày chạy bộ của bạn An được sắp xếp theo thứ tự không giảm.

    Ta có: x_{1},...,x_{6} \in \lbrack20;25);\ \ x_{7},...,x_{12} \in \lbrack 25;30);\ \ x_{13},...,x_{16} \in\lbrack 30;35);\ \ x_{17} \in \lbrack 35;40);\ \ x_{18} \in \lbrack40;45)

    Tứ phân vị thứ nhất của mẫu số liệu gốc là x_{5} \in \lbrack 20;25).

    Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

    Q_{1} = 20 + \frac{\frac{18}{4} - 0}{6}\cdot (25 - 20) = 23,75.

    Tứ phân vị thứ ba của mẫu số liệu gốc là x_{14} \in \lbrack 30;35).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 30 + \frac{\frac{3 \cdot 18}{4} -(6 + 6)}{4} \cdot (35 - 30) = 31,875.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q}=31,875-23,75=8,125.

  • Câu 4: Thông hiểu

    Cho mẫu số liệu ghép nhóm:

    Nhóm

    Tần số

    (0;10]

    8

    (10;20]

    14

    (20;30]

    12

    (30;40]

    9

    (40;50]

    7

    Khoảng tứ phân vị của mẫu số liệu là:

    Ta có:

    Nhóm

    Tần số

    Tần số tích lũy

    (0;10]

    8

    8

    (10;20]

    14

    22

    (20;30]

    12

    34

    (30;40]

    9

    43

    (40;50]

    7

    50

    Tổng

    N = 50

     

    Ta có: \frac{N}{4} = \frac{50}{4} =
12,5

    => Nhóm chứa tứ phân vị thứ nhất là: (10;20]

    Khi đó: \left\{ \begin{matrix}l = 10;\dfrac{N}{4} = 12,5 \\m = 8,f = 14,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 10 + \frac{12,5 -
8}{14}.10 \approx 13,2

    Ta có: \frac{3N}{4} = \frac{3.50}{4} =
37,5

    => Nhóm chứa tứ phân vị thứ ba là: (30;40]

    Khi đó: \left\{ \begin{matrix}l = 30;\dfrac{3N}{4} = 37,5 \\m = 34,f = 9,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 30 + \frac{37,5 -
34}{9}.10 \approx 33,9

    Vậy khoảng tứ phân vị của mẫu số liệu là \Rightarrow \Delta_{Q} = Q_{3} - Q_{1} \approx
33,9 - 13,2 = 20,7

  • Câu 5: Nhận biết

    Xác định cỡ mẫu của mẫu số liệu ghép nhóm sau?

    Đối tượng

    Tần số

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    40

    [165; 170)

    26

    [170; 175)

    8

    [175; 180)

    3

    Khoảng biến thiên của mẫu số liệu ghép nhóm đã cho là R = 180 - 150 = 30.

  • Câu 6: Nhận biết

    Cho bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch như sau:

    Cân nặng

    [250; 290)

    [290; 330)

    [330; 370)

    [370; 410)

    [410; 450)

    Số quả

    3

    13

    18

    11

    5

    Xác định tính đúng sai của nhận xét sau: “Trong 50 quả xoài trên, hiệu số cân nặng của hai quả bất kì không vượt quá 200g” Đúng||Sai

    Đáp án là:

    Cho bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch như sau:

    Cân nặng

    [250; 290)

    [290; 330)

    [330; 370)

    [370; 410)

    [410; 450)

    Số quả

    3

    13

    18

    11

    5

    Xác định tính đúng sai của nhận xét sau: “Trong 50 quả xoài trên, hiệu số cân nặng của hai quả bất kì không vượt quá 200g” Đúng||Sai

    Đúng vì giá trị 200 là khoảng biến thiên của mẫu số liệu ghép nhóm.

  • Câu 7: Vận dụng

    Cho bảng thống kê chiều cao (đơn vị: cm) của học sinh lớp 12A và lớp 12B như sau:

    Chiều cao

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    [180; 185)

    12A

    2

    7

    12

    3

    0

    1

    12B

    5

    9

    8

    2

    1

    0

    Em có nhận xét gì về độ phân tán của nửa giữa số liệu chiều cao của học sinh lớp 12A so với lớp 12B?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho bảng thống kê chiều cao (đơn vị: cm) của học sinh lớp 12A và lớp 12B như sau:

    Chiều cao

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    [180; 185)

    12A

    2

    7

    12

    3

    0

    1

    12B

    5

    9

    8

    2

    1

    0

    Em có nhận xét gì về độ phân tán của nửa giữa số liệu chiều cao của học sinh lớp 12A so với lớp 12B?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Thông hiểu

    Cho bảng số liệu thống kê cân nặng của 50 học sinh tiểu học như sau:

    Cân nặng (kg)

    Số học sinh

    [0; 10)

    5

    [10; 20)

    8

    [20; 60)

    15

    [30; 80)

    16

    [40; 100)

    6

    Tìm độ lệch chuẩn của mẫu số liệu đã cho?

    Ta có:

    Cân nặng (kg)

    Số học sinh

    Giá trị đại diện (xi)

    \left( x_{i} - \overline{x}
ight)^{2} f_{i}.\left( x_{i} - \overline{x}
ight)^{2}

    [0; 10)

    5

    5

    484

    2420

    [10; 20)

    8

    15

    144

    1152

    [20; 60)

    15

    25

    4

    60

    [30; 80)

    16

    35

    64

    1024

    [40; 100)

    6

    45

    324

    1944

     

    \sum_{}^{}f_{i} = 50

     

     

    Tổng: 6600

    Phương sai của mẫu số liệu là:

    S^{2} =
\frac{1}{N}.\sum_{}^{}{f_{i}.\left( x_{i} - \overline{x} ight)^{2}} =
\frac{1}{50}.6600 = 132

    Suy ra độ lệch chuẩn của mẫu số liệu là: S = \sqrt{S^{2}} = \sqrt{132} \approx
11,5

  • Câu 9: Nhận biết

    Người ta thống kê tốc độ của một số xe ôtô di chuyển qua một trạm kiểm soát trên đường cao tốc trong một khoảng thời gian ở bảng sau:

    Tốc độ (km/h)

    [75; 80)

    [80; 85)

    [85; 90)

    [90; 95)

    [95; 100)

    Số xe

    15

    22

    28

    34

    19

    Khoảng biến thiên của mẫu số liệu ghép nhóm đã cho là:

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 100 - 75 = 25 km/h.

  • Câu 10: Nhận biết

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Khoảng biến thiên của mẫu số liệu đã cho là: R = 250 - 0 = 250.

  • Câu 11: Nhận biết

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Có bao nhiêu máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ?

    Có 6 máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ.

  • Câu 12: Thông hiểu

    Kết quả đo chiều cao của học sinh lớp 12A được ghi lại trong bảng như sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho là:

    Ta có:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Chiều cao trung bình là:

    \overline{x} = \frac{3.162 + 5.166 +
8.170 + 4.174 + 1.178}{21} \approx 169

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{21}\left( 3.162^{2} +
5.166^{2} + 8.170^{2} + 4.174^{2} + 1.178^{2} ight) - 169^{2} \approx
18,14

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là: S \approx 4,26.

  • Câu 13: Nhận biết

    Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Số trung bình của mẫu số liệu ghép nhóm của đối tương A và đối tượng B lần lượt là:

    Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

     

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

     

    Phân xưởng A

    4

    5

    5

    4

    2

    N = 20

    Phân xưởng B

    3

    6

    5

    5

    1

    N’ = 20

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:

    \overline{x_{A}} = \frac{4.5,5 + 5.6,5 +
5.7,5 + 4.8,5 + 2.9,5}{20} = 7,25

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:

    \overline{x_{B}} = \frac{3.5,5 + 6.6,5 +
5.7,5 + 5.8,5 + 1.9,5}{20} = 7,25

  • Câu 14: Nhận biết

    Quan sát bảng sau và tìm khoảng biến thiên của mẫu số liệu

    Khoảng dữ liệu

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    Tần số

    8

    12

    22

    17

    Khoảng biến thiên của mẫu số liệu là: R =
50 - 10 = 40.

  • Câu 15: Thông hiểu

    Kết quả đo chiều cao một nhóm các học sinh nam (đơn vị: cm) lớp 11 được thống kê như sau:

    160

    161

    161

    162

    162

    162

    163

    163

    163

    164

    164

    164

    164

    165

    165

    165

    165

    165

    166

    166

    166

    166

    167

    167

    168

    168

    168

    168

    169

    169

    170

    171

    171

    172

    172

    174

    Chuyển mẫu dữ liệu trên sang mẫu dữ liệu ghép nhóm gồm 4 nhóm số liệu theo các nửa khoảng có độ dài bằng nhau. Khi đó khoảng biến thiên của mẫu số liệu sau khi ghép nhóm là:

    Khoảng biến thiên là 174 - 160 =
14

    Để chia số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 4.

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 176.

    Khi đó ta có các nhóm là: \lbrack
160;164),\lbrack 164;168),\lbrack 168;172),\lbrack 172;176)

    Vậy bảng dữ liệu ghép nhóm đúng là:

    Vậy khoảng biến thiên của mẫu số liệu sau khi ghép nhóm là R = 176 - 160 = 16.

  • Câu 16: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Tính giá trị Q_{1}?

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{N}{4} =
10,5

    => Nhóm chứa Q_{1} là [20; 40)

    (Vì 10,5 nằm giữa hai tần số tích lũy 5 và 14)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 5,f = 9;c = 40 -
20 = 20

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 20 + \dfrac{10,5 - 5}{9}.20 =\dfrac{290}{9}

  • Câu 17: Nhận biết

    Kết quả đo chiều cao của 50 cây keo trong vườn được thống kê lại trong bảng sau:

    Chiều cao (cm)

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Số cây

    16

    4

    3

    6

    21

    Tính chiều cao trung bình của 50 cây keo trên?

    Cỡ mẫu N = 50

    Chiều cao (cm)

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Số cây

    16

    4

    3

    6

    21

    Chiều cao trung bình là:

    \overline{x} = \frac{16.121 + 4.123 +
3.125 + 6.127 + 21.129}{50} = 125,28.

  • Câu 18: Nhận biết

    Cho bảng thống kê kết quả cự li ném bóng của một người như sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số lần

    13

    45

    24

    12

    6

    Cự li ném bóng trung bình của người đó là:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số lần

    13

    45

    24

    12

    6

    Cự li trung bình là:

    \overline{x} = \frac{13.9,25 + 45.19,75
+ 24.20,25 + 12.20,75 + 6.21,25}{100} \approx 20,02

  • Câu 19: Nhận biết

    Bảng sau thống kê khối lượng một số quả quýt trong thùng hàng:

    Khối lượng (gam)

    [80; 82)

    [82; 84)

    [84; 86)

    [86; 88)

    [88; 90)

    Số quả

    17

    20

    25

    16

    12

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 90 – 80 = 10 gam.

  • Câu 20: Nhận biết

    Kiểm lâm thực hiện đo đường kính của một số cây thân gỗ tại hai khu vực A và B thu được kết quả như sau:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Đường kính trung bình của cây tại hai khu vực A và B lần lượt là:

    Ta có:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    Giá trị đại diện

    31

    33

    35

    37

    39

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Suy ra

    \overline{x_{A}} = \frac{25.31 + 38.33 +
20.35 + 10.37 + 7.39}{100} = 33,72

    \overline{x_{B}} = \frac{25.31 + 27.33 +
19.35 + 18.37 + 14.39}{100} = 34,2

  • Câu 21: Thông hiểu

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Nếu so sánh theo khoảng tứ phân vị thì học sinh lớp nào có thời gian làm bài đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Nếu so sánh theo khoảng tứ phân vị thì học sinh lớp nào có thời gian làm bài đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 22: Vận dụng

    Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.

    Điểm thi

    [0; 2)

    [2; 4)

    [4; 6)

    [6; 8)

    [8; 10)

    Số học sinh lớp 12A

    1

    5

    20

    8

    6

    Số học sinh lớp 12B

    2

    3

    10

    18

    7

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng 2,6. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng 2,57. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng

    Đáp án là:

    Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.

    Điểm thi

    [0; 2)

    [2; 4)

    [4; 6)

    [6; 8)

    [8; 10)

    Số học sinh lớp 12A

    1

    5

    20

    8

    6

    Số học sinh lớp 12B

    2

    3

    10

    18

    7

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng 2,6. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng 2,57. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng

    a) Đúng. Khoảng biến thiên:

    R_{12A} = R_{12B} = 10 - 0 =
10.

    b) Lớp 12A:

    Ta có

    Q_{1} = 4 + \frac{\frac{1}{4}.40 - (1 +
5)}{20}.(6 - 4) = 4,4.

    Q_{3} = 6 + \frac{\frac{3}{4}.40 - (1 +
5 + 20)}{8}.(8 - 6) = 7.

    \Rightarrow \Delta Q_{12A} = Q_{3} -
Q_{1} = 2,6.

    c) Lớp 12B:

    Ta có

    Q_{1} = 4 + \frac{\frac{1}{4}.40 - (2 +
3)}{10}.(6 - 4) = 5.

    Q_{3} = 6 + \frac{\frac{3}{4}.40 - (2 +
3 + 10)}{18}.(8 - 6) = \frac{23}{3}.

    \Rightarrow \Delta Q_{12B} = Q_{3} -
Q_{1} = 2,67.

    d) Ta có \Delta Q_{12A} < \Delta
Q_{12B} \Rightarrow Lớp 12A sẽ đồng đều hơn so với lớp 12B.

  • Câu 23: Thông hiểu

    Năng suất lúa (đơn vị: tấn/ha) của một số thửa ruộng được ghi lại trong bảng sau:

    Năng suất

    [5,5; 5,7)

    [5,7; 5,9)

    [5,9; 6,1)

    [6,1; 6,3)

    [6,3; 6,5)

    [6,5; 6,7)

    Số thửa ruộng

    3

    4

    6

    5

    5

    2

    Xác định độ lệch chuẩn của mẫu số liệu ghép nhóm?

    Ta có:

    Năng suất

    [5,5; 5,7)

    [5,7; 5,9)

    [5,9; 6,1)

    [6,1; 6,3)

    [6,3; 6,5)

    [6,5; 6,7)

    Số thửa ruộng

    3

    4

    6

    5

    5

    2

    Tần số tích lũy

    3

    7

    13

    18

    23

    25

    Số trung bình của mẫu số liệu ghép nhóm:

    \overline{x} = \frac{3.5,6 + 4.5,8 +
6.6,0 + 5.6,2 + 5.6,4 + 2,6,6}{25} = 6,088

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{25}\left( 3.5,6^{2} +
4.5,8^{2} + 6.6,0^{2} + 5.6,2^{2} + 5.6,4^{2} + 2,6,6^{2} ight) -
6,088^{2} \approx 0,086656

    Vậy độ lệch chuẩn của mẫu số liệu ghép nhóm là S = \sqrt{S^{2}} \approx 0,3

  • Câu 24: Nhận biết

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Tần số

    8

    9

    12

    10

    11

    Tính số trung bình của mẫu số liệu?

    Cỡ mẫu N = 50

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Tần số

    8

    9

    12

    10

    11

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{8.121 + 9.123 +
12.125 + 10.127 + 11.129}{50} = 125,28

  • Câu 25: Nhận biết

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Tìm khoảng biến thiên của mẫu số liệu đã cho?

    Khoảng biến thiên của mẫu số liệu bằng R
= 100 - 0 = 100.

  • Câu 26: Vận dụng

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 27: Vận dụng

    Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Một doanh nghiệp địa phương muốn hướng dịch vụ của mình đến các gia đình có mức thu nhập ở tầm trung, tức là 50% các hộ gia đình có mức thu nhập ở chính giữa so với tất cả các hộ gia đình của địa phương. Hỏi doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Một doanh nghiệp địa phương muốn hướng dịch vụ của mình đến các gia đình có mức thu nhập ở tầm trung, tức là 50% các hộ gia đình có mức thu nhập ở chính giữa so với tất cả các hộ gia đình của địa phương. Hỏi doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 28: Nhận biết

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Tuổi thọ

    [14;15)

    [15;16)

    [16;17)

    [17;18)

    [18;19)

    Số con

    1

    3

    8

    6

    2

    Khoảng biến thiên của mẫu số liệu ghép nhóm đã cho là:

    Khoảng biến thiên: 19 - 14 = 5.

  • Câu 29: Nhận biết

    Bạn Lan thống kê lại chiều cao (đơn vị: cm) của các học sinh nữ lớp 12B và lớp 12C ở bảng sau.

    Chiều cao(cm)

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [175; 180)

    Số học sinh nữ lớp 12B

    0

    5

    13

    7

    0

    Số học sinh nữ lớp 12C

    2

    10

    9

    3

    1

    Chọn đáp án có khẳng định đúng.

    Ta có

    Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12B là 170 - 155 = 15

    Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12C là 175 – 150 = 25

    Vì 15 < 25 nên mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12B có độ phân tán ít hơn so với mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12C, hay nói cách khác chiều cao của các bạn nữ lớp 12B đồng đều hơn chiều cao của các bạn nữ lớp 12C.

  • Câu 30: Nhận biết

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C và điểm trung bình của lớp 12D lần lượt là:

    Ta có:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C:

    \overline{x_{C}} = \frac{4.5,5 + 5.6,5 +
3.7,5 + 4.8,5 + 2.9,5}{18} = \frac{65}{9}.

    Điểm trung bình của lớp 12D:

    \overline{x_{D}} = \frac{2.5,5 + 5.6,5 +
4.7,5 + 3.8,5 + 1.9,5}{15} = \frac{217}{30}.

  • Câu 31: Nhận biết

    Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:

    42

    43,4

    43,4

    46,5

    46,7

    46,8

    47,5

    47,7

    48,1

    48,4

    50,8

    51,1

    52,7

    53,9

    54,8

    57,6

    57,5

    59,6

    60,3

    61,1

    Lập bảng tần số ghép nhóm với nhóm đầu [42; 46) và độ dài mỗi nhóm bằng 4. Tìm khoảng biến thiên của mẫu dữ liệu ghép nhóm?

    Ta lập được bảng tần số ghép nhóm như sau:

    Tốc độ

    [42; 46)

    [46; 50)

    [50; 54)

    [54; 58)

    [58; 62)

    Số xe

    3

    7

    4

    3

    3

    Vậy khoảng biến thiên của mẫu dữ liệu ghép nhóm là R = 62 - 42 = 20.

  • Câu 32: Thông hiểu

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Chọn đáp án đúng?

    Ta có: N = 46

    Cân nặng (kg)

    Số học sinh

    Tần số tích lũy

    [45; 50)

    5

    5

    [50; 55)

    12

    17

    [55; 60)

    10

    27

    [60; 65)

    6

    33

    [65; 70)

    5

    38

    [70; 75)

    8

    46

    Ta có:

    \frac{N}{4} = 11,5 => Nhóm chứa tứ phân vị thứ nhất là: [50; 55)

    \Rightarrow \left\{ \begin{matrix}l = 50,\dfrac{N}{4} = 11,5,m = 5,f = 12 \\c = 55 - 50 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c

    \Rightarrow Q_{1} = 50 + \frac{11,5 -
5}{12}.5 \approx 52,7

    \frac{3N}{4} = 34,5 => Nhóm chứa tứ phân vị thứ ba là: [65; 70)

    \Rightarrow \left\{ \begin{matrix}l = 65,\dfrac{3N}{4} = 34,5,m = 33,f = 5 \\c = 70 - 65 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c

    \Rightarrow Q_{3} = 65 + \frac{34,5 -
33}{5}.5 \approx 66,5

  • Câu 33: Thông hiểu

    Cho bảng số liệu thống kê như sau:

    Đối tượng

    Tần số

    [0; 30)

    2

    [30; 60)

    3

    [60; 90)

    5

    [90; 120)

    10

    [120; 150)

    3

    [150; 180)

    5

    [180; 210)

    2

    Xác định phương sai của mẫu số liệu ghép nhóm đã cho?

    Ta có:

    Đối tượng

    Tần số

    Giá trị đại diện (xi)

    \left( x_{i} - \overline{x}
ight)^{2} f_{i}.\left( x_{i} - \overline{x}
ight)^{2}

    [0; 30)

    2

    5

    8462

    2187

    [30; 60)

    3

    45

    2844

    2023

    [60; 90)

    5

    75

    1024

    588

    [90; 120)

    10

    105

    4

    135

    [120; 150)

    3

    135

    784

    1352

    [150; 180)

    5

    165

    3364

    1589

    [180; 210)

    2

    195

    7744

    2187

     

    \sum_{}^{}f_{i} = 30

     

     

    Tổng: 68280

    Phương sai của mẫu số liệu là:

    S^{2} =
\frac{1}{N}.\sum_{}^{}{f_{i}.\left( x_{i} - \overline{x} ight)^{2}} =
\frac{1}{30}.68280 = 2276

  • Câu 34: Thông hiểu

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 35: Thông hiểu

    Một công ty bất động sản Đất Vàng thực hiện cuộc khảo sát khách hàng xẹm họ có nhu cầu mua nhà ở mức giá nào để tiến hành dự án xây nhà ở Thăng Long group sắp tới. Kết quả khảo sát 500 khách hàng được ghi lại ở bảng sau:

    Độ lệch chuẩn của mức giá đất là bao nhiêu? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 4,6

    Đáp án là:

    Một công ty bất động sản Đất Vàng thực hiện cuộc khảo sát khách hàng xẹm họ có nhu cầu mua nhà ở mức giá nào để tiến hành dự án xây nhà ở Thăng Long group sắp tới. Kết quả khảo sát 500 khách hàng được ghi lại ở bảng sau:

    Độ lệch chuẩn của mức giá đất là bao nhiêu? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 4,6

    Bảng phân bố tần số tần suất của bảng số liệu của công ty bất động sản Đất Vàng

    Mức giá trung bình của công ty là \overline{x} = 19,448

    Phương sai của mức giá là: s^{2} =
21,5

    Độ lệch chuẩn của mức giá \sqrt{s^{2}} =
4,6

  • Câu 36: Vận dụng

    Khảo sát thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 của trường trung học phổ thông X, thu được mẫu số liệu ghép nhóm sau:

    s

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là 180 phút. Đúng||Sai

    b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 bằng nhau. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là 65 phút. Đúng||Sai

    d) Dựa vào khoảng tứ phân vị thì thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 phân tán hơn so với lớp 12A2. Sai||Đúng

    Đáp án là:

    Khảo sát thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 của trường trung học phổ thông X, thu được mẫu số liệu ghép nhóm sau:

    s

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là 180 phút. Đúng||Sai

    b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 bằng nhau. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là 65 phút. Đúng||Sai

    d) Dựa vào khoảng tứ phân vị thì thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 phân tán hơn so với lớp 12A2. Sai||Đúng

    a) Đúng

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là 180 - 0 = 180 (phút).

    b) Đúng

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là 240 - 60 = 180(phút).

    Nên khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 bằng nhau.

    c) Đúng

    Xét mẫu số liệu ghép nhóm của lớp 12A1:

    Cỡ mẫu là: n = 5 + 20 + 15 =
40

    Gọi x_{1},\ ...,x_{40} là thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{x_{10} + x_{11}}{2}.

    Do x_{10}x_{11} đều thuộc nhóm \lbrack 120;180) nên nhóm này chứa Q_{1}.

    Q_{1} = 120 + \frac{\frac{40}{4} -
5}{20}.60 = 135

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{x_{30} + x_{31}}{2}.

    Do x_{30}x_{31} đều thuộc nhóm \lbrack 180;240) nên nhóm này chứa Q_{3}.

    Q_{3} = 180 + \frac{\frac{3.40}{4} -
25}{15}.60 = 200

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là:

    \Delta Q = Q_{3} - Q_{1} = 200 - 135 =
65 phút.

    d) Sai

    Xét mẫu số liệu ghép nhóm của lớp 12A2:

    Cỡ mẫu là: n = 9 + 12 + 18 =
39

    Gọi y_{1},...,y_{39} là thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu gốc là y_{ 10}.

    Do y_{10} thuộc nhóm \lbrack 60;120) nên nhóm này chứa Q_{1}.

    Q_{1} = 60 + \frac{\frac{39}{4} -
9}{12}.60 = 63,75

    Tứ phân vị thứ ba của mẫu số liệu gốc là y_{30}.

    Do y_{30} thuộc nhóm \lbrack 120;180) nên nhóm này chứa Q_{3}.

    Q_{3} = 120 + \frac{\frac{3.39}{4} -
21}{18}.60 = 147,5

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là:

    \Delta Q = Q_{3} - Q_{1} = 147,5 - 63,75
= 83,75

    Dựa vào khoảng tứ phân vị thì thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 phân tán hơn so với lớp 12A1.

  • Câu 37: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Tính khoảng tứ phân vị của mẫu số liệu đã cho?

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{N}{4} = 25=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)

    Do đó: \left\{ \begin{matrix}l = 155;\dfrac{N}{4} = 25;m = 15;f = 11 \\c = 160 - 155 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ nhất là:

    Q_{1} = l + \frac{\left( \frac{N}{4} - m
ight)}{f}.c = 155 + \frac{25 - 15}{11}.5 \approx 159,55

    Cỡ mẫu là: N = 100

    \frac{3N}{4} = 75=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)

    Do đó: \left\{ \begin{matrix}l = 165;\dfrac{3N}{4} = 75;m = 65;f = 27 \\c = 170 - 165 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ ba là:

    Q_{3} = l + \dfrac{\left( \dfrac{3N}{4} -m ight)}{f}.c = 165 + \dfrac{75 - 65}{27}.5 \approx 166,85

    Vậy khoảng tứ phân vị của mẫu số liệu là \Delta_{Q} = Q_{3} - Q_{1} \approx 166,85 - 159,55
= 7,3

  • Câu 38: Thông hiểu

    Người ta theo dõi sự thay đổi cân nặng, được tính bằng hiệu cân nặng trước và sau ba tháng áp dụng chế độ ăn kiêng của một số người cho kết quả sau:

    Thay đổi cân nặng

    [-1; 0)

    [0; 1)

    [1; 2)

    [2; 3)

    [3; 4)

    Số người nam

    6

    4

    2

    3

    1

    Số người nữ

    5

    6

    3

    1

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Số người thay đổi cân nặng theo chiều hướng giảm cân là 11. Đúng||Sai

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nam là R_{1} = 5. Đúng||Sai

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nữ là R_{2} = 3. Sai|| Đúng

    (d) Nếu biết nữ tăng cân nhiều nhất là 2kg và giảm cân được nhiều nhất 1kg thì khoảng biến thiên của mẫu số liệu gốc là 1. Sai|| Đúng

    Đáp án là:

    Người ta theo dõi sự thay đổi cân nặng, được tính bằng hiệu cân nặng trước và sau ba tháng áp dụng chế độ ăn kiêng của một số người cho kết quả sau:

    Thay đổi cân nặng

    [-1; 0)

    [0; 1)

    [1; 2)

    [2; 3)

    [3; 4)

    Số người nam

    6

    4

    2

    3

    1

    Số người nữ

    5

    6

    3

    1

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Số người thay đổi cân nặng theo chiều hướng giảm cân là 11. Đúng||Sai

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nam là R_{1} = 5. Đúng||Sai

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nữ là R_{2} = 3. Sai|| Đúng

    (d) Nếu biết nữ tăng cân nhiều nhất là 2kg và giảm cân được nhiều nhất 1kg thì khoảng biến thiên của mẫu số liệu gốc là 1. Sai|| Đúng

    (a) Số người thay đổi cân nặng theo chiều hướng giảm cân là 11. Số người thay đổi theo chiều hướng giảm cân là 5 + 6 = 11

    Chọn ĐÚNG.

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nam là R_{1} = 5.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nam là R_{1} = 4 - ( - 1) =
5

    Chọn ĐÚNG.

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nữ là R_{2} = 3.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nữ là R_{2} = 3 - ( - 1) =
4

    Chọn SAI.

    (d) Nếu biết nữ tăng cân nhiều nhất là 2 kg và giảm cân được nhiều nhất 1 kg thì khoảng biến thiên của mẫu số liệu gốc là 1.

    Nếu biết nữ tăng cân nhiều nhất là 2 kg và giảm cân được nhiều nhất 1 kg thì khoảng biến thiên của mẫu số liệu gốc là R_{2} = 2 - ( - 1) = 3

    Chọn SAI.

  • Câu 39: Thông hiểu

    Thống kê kết quả giải rubik của một bạn học sinh được ghi lại như sau:

    Thời gian (giây)

    [8; 10)

    [10; 12)

    [12; 14)

    [14; 16)

    [16; 18)

    Số lần

    4

    6

    8

    4

    3

    Phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào sau đây?

    Ta có:

    Thời gian (giây)

    [8; 10)

    [10; 12)

    [12; 14)

    [14; 16)

    [16; 18)

    Giá trị đại diện

    9

    11

    13

    15

    17

    Số lần

    4

    6

    8

    4

    3

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{4.9 + 6.11 + 8..13
+ 4.15 + 3.17}{25} = 12,68

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{25}\left( 4.9^{2} +
6.11^{2} + 8.13^{2} + 4.15^{2} + 3.17^{2} ight) - (12,68)^{2} =
5,9776

    Phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị 6,2.

  • Câu 40: Thông hiểu

    Cho mẫu số liệu ghép nhóm như sau:

    Nhóm

    Tần số

    [0; 20)

    16

    [20; 40)

    12

    [40; 60)

    25

    [60; 80)

    15

    [80; 100)

    12

    [100; 120)

    10

    Tổng

    N = 90

    Xác định khoảng tứ phân vị của mẫu số liệu? Kết quả làm tròn đến chữ số thập phân thứ nhất.

    Ta có:

    Nhóm

    Tần số

    Tần số tích lũy

    [0; 20)

    16

    16

    [20; 40)

    12

    28

    [40; 60)

    25

    53

    [60; 80)

    15

    68

    [80; 100)

    12

    80

    [100; 120)

    10

    90

    Tổng

    N = 90

     

    Ta có: \frac{N}{4} = 22,5

    => Nhóm chứa tứ phân vị thứ nhất là: [20; 40)

    Khi đó ta có: \left\{ \begin{matrix}l = 20;\dfrac{N}{4} = 22,5 \\m = 16,f = 12,d = 20 \\\end{matrix} ight.

    Tứ phân vị thứ nhất được tính như sau:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 20 + \frac{22,5 -
16}{12}.20 = \frac{185}{6}

    Ta có: \frac{3N}{4} = 67,5

    => Nhóm chứa tứ phân vị thứ ba là: [60; 80)

    Khi đó ta có: \left\{ \begin{matrix}
l = 60;\frac{3N}{4} = 67,5 \\
m = 53,f = 15,80 - 60 = 20 \\
\end{matrix} ight.

    Tứ phân vị thứ ba được tính như sau:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 60 + \frac{67,5 -
53}{15}.20 = \frac{238}{3}

    \Rightarrow \Delta_{Q} = Q_{3} - Q_{1} =
\frac{238}{3} - \frac{185}{6} = 48,5

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo