Xác định khoảng biến thiên của mẫu số liệu ghép nhóm sau đây:
|
Thời gian (s) |
Số vận động viên (người) |
|
(50,5; 55,5] |
2 |
|
(55,5; 60,5] |
7 |
|
(60,5; 65,5] |
8 |
|
(65,5; 70,5] |
4 |
Khoảng biến thiên của mẫu số liệu ghép nhóm là
Xác định khoảng biến thiên của mẫu số liệu ghép nhóm sau đây:
|
Thời gian (s) |
Số vận động viên (người) |
|
(50,5; 55,5] |
2 |
|
(55,5; 60,5] |
7 |
|
(60,5; 65,5] |
8 |
|
(65,5; 70,5] |
4 |
Khoảng biến thiên của mẫu số liệu ghép nhóm là
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
|
Doanh thu |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
Độ lệch chuẩn của mẫu số liệu là:
Ta có:
|
Doanh thu |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
Giá trị đại diện |
6 |
8 |
10 |
12 |
14 |
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
Số trung bình:
Phương sai:
Độ lệch chuẩn:
Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:
|
Mức lương |
[5; 6) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
|
Phân xưởng A |
4 |
5 |
5 |
4 |
2 |
|
Phân xưởng B |
3 |
6 |
5 |
5 |
1 |
Số trung bình của mẫu số liệu ghép nhóm của đối tương A và đối tượng B lần lượt là:
Ta có:
|
Mức lương |
[5; 6) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
|
|
Giá trị đại diện |
5,5 |
6,5 |
7,5 |
8,5 |
9,5 |
|
|
Phân xưởng A |
4 |
5 |
5 |
4 |
2 |
N = 20 |
|
Phân xưởng B |
3 |
6 |
5 |
5 |
1 |
N’ = 20 |
Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:
Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:
Tìm hiểu thời gian (đơn vị: giờ) sử dụng điện thoại di động của một nhóm bạn trẻ thu được kết quả sau như sau:
|
Thời gian |
[0; 5) |
[5; 10) |
[10; 15) |
[15; 20) |
[20; 25) |
[25; 30) |
|
Số bạn |
2 |
6 |
8 |
9 |
3 |
2 |
Xác định tính đúng sai của các đáp án dưới đây?
a) Khoảng biến thiên của mẫu số liệu ghép nhóm này là 25. Sai||Đúng
b) Nhóm chứa tứ phân vị thứ 3 là [15; 20). Đúng||Sai
c) Số trung bình của thống kê là 10. Sai||Đúng
d) Khoảng tứ phân của mẫu số liệu ghép nhóm này lớn hơn 10. Sai||Đúng
Tìm hiểu thời gian (đơn vị: giờ) sử dụng điện thoại di động của một nhóm bạn trẻ thu được kết quả sau như sau:
|
Thời gian |
[0; 5) |
[5; 10) |
[10; 15) |
[15; 20) |
[20; 25) |
[25; 30) |
|
Số bạn |
2 |
6 |
8 |
9 |
3 |
2 |
Xác định tính đúng sai của các đáp án dưới đây?
a) Khoảng biến thiên của mẫu số liệu ghép nhóm này là 25. Sai||Đúng
b) Nhóm chứa tứ phân vị thứ 3 là [15; 20). Đúng||Sai
c) Số trung bình của thống kê là 10. Sai||Đúng
d) Khoảng tứ phân của mẫu số liệu ghép nhóm này lớn hơn 10. Sai||Đúng
Ta có
|
Thời gian |
[0; 5) |
[5; 10) |
[10; 15) |
[15; 20) |
[20; 25) |
[25; 30) |
|
Giá trị đại diện |
2,5 |
7,5 |
12,5 |
17,5 |
22,5 |
17,5 |
|
Số bạn |
2 |
6 |
8 |
9 |
3 |
2 |
a) Sai: Khoảng biến thiên của mẫu số liệu ghép nhóm là R = 30 - 0 = 30.
b) Đúng:
Vì nên nhóm chứa tứ phân vị thứ 3 là [15;20).
c) Sai: Thời gian sử dụng điện thoại trung bình là:
d) Sai: Ta có:
Kết quả đo chiều cao của 100 cây thực nghiệm 2 năm tuổi được cho trong bảng sau:
|
Chiều cao (m) |
[8,4; 8,6) |
[8,6; 8,8) |
[8,8; 9,0) |
[9,0; 9,2) |
[9,2; 9,4) |
|
Số cây |
5 |
12 |
25 |
44 |
14 |
Tìm giá trị ngoại lệ của mẫu số liệu?
Ta có:
|
Chiều cao (m) |
[8,4; 8,6) |
[8,6; 8,8) |
[8,8; 9,0) |
[9,0; 9,2) |
[9,2; 9,4) |
|
Số cây |
5 |
12 |
25 |
44 |
14 |
|
Tần số tích lũy |
5 |
17 |
42 |
86 |
100 |
=> Nhóm chứa tứ phân vị thứ nhất là: [8,8; 9,0)
=> Nhóm chứa tứ phân vị thứ ba là: [9,0; 9,2)
Suy ra khoảng tứ phân vị là .
Giá trị x trong mẫu số liệu là giá trị ngoại lệ nếu
Ta có:
Vậy giá trị ngoại lệ cần tìm là .
Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong Bảng 18.

Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là:
Số trung bình cộng của mẫu số liệu ghép nhóm là:
Phương sai của mẫu số liệu ghép nhóm là:
Vậy độ lệch chuẩn của mẫu số liệu ghép nhóm là:
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
|
Doanh thu |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
Tính giá trị
của mẫu dữ liệu ghép nhóm trên?
Ta có:
|
Doanh thu |
[5; 7) |
[7; 9) |
[9; 11) |
[11; 13) |
[13; 15) |
|
|
Số ngày |
2 |
7 |
7 |
3 |
1 |
N = 20 |
|
Tần số tích lũy |
2 |
9 |
16 |
19 |
20 |
|
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ ba là [9; 11)
(Vì 15 nằm giữa hai tần số tích lũy 9 và 16)
Do đó:
Khi đó tứ phân vị thứ ba là:
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
|
Cân nặng (kg) |
Số học sinh |
|
[45; 50) |
5 |
|
[50; 55) |
12 |
|
[55; 60) |
10 |
|
[60; 65) |
6 |
|
[65; 70) |
5 |
|
[70; 75) |
8 |
Chọn đáp án đúng?
Ta có:
|
Cân nặng (kg) |
Số học sinh |
Tần số tích lũy |
|
[45; 50) |
5 |
5 |
|
[50; 55) |
12 |
17 |
|
[55; 60) |
10 |
27 |
|
[60; 65) |
6 |
33 |
|
[65; 70) |
5 |
38 |
|
[70; 75) |
8 |
46 |
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: [50; 55)
=> Nhóm chứa tứ phân vị thứ ba là: [65; 70)
Khảo sát thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 của trường trung học phổ thông X, thu được mẫu số liệu ghép nhóm sau:
s
Xét tính đúng sai của các kết luận sau?
a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là
phút. Đúng||Sai
b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 bằng nhau. Đúng||Sai
c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là
phút. Đúng||Sai
d) Dựa vào khoảng tứ phân vị thì thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 phân tán hơn so với lớp 12A2. Sai||Đúng
Khảo sát thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 của trường trung học phổ thông X, thu được mẫu số liệu ghép nhóm sau:
s
Xét tính đúng sai của các kết luận sau?
a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là phút. Đúng||Sai
b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 bằng nhau. Đúng||Sai
c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là phút. Đúng||Sai
d) Dựa vào khoảng tứ phân vị thì thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 phân tán hơn so với lớp 12A2. Sai||Đúng
a) Đúng
Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là (phút).
b) Đúng
Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là (phút).
Nên khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 bằng nhau.
c) Đúng
Xét mẫu số liệu ghép nhóm của lớp 12A1:
Cỡ mẫu là:
Gọi là thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.
Tứ phân vị thứ nhất của mẫu số liệu gốc là .
Do và
đều thuộc nhóm
nên nhóm này chứa
.
Tứ phân vị thứ ba của mẫu số liệu gốc là .
Do và
đều thuộc nhóm
nên nhóm này chứa
.
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là:
phút.
d) Sai
Xét mẫu số liệu ghép nhóm của lớp 12A2:
Cỡ mẫu là:
Gọi là thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.
Tứ phân vị thứ nhất của mẫu số liệu gốc là .
Do thuộc nhóm
nên nhóm này chứa
.
Tứ phân vị thứ ba của mẫu số liệu gốc là .
Do thuộc nhóm
nên nhóm này chứa
.
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là:
Dựa vào khoảng tứ phân vị thì thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 phân tán hơn so với lớp 12A1.
Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:
|
341,4 |
187,1 |
242,2 |
522,9 |
251,4 |
|
432,2 |
200,7 |
388,6 |
258,4 |
288,5 |
|
298,1 |
413,5 |
413,5 |
332 |
421 |
|
475 |
400 |
305 |
520 |
147 |
Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng biến thiên của mẫu số liệu ghép nhóm?
Ta có:
|
Tổng lượng mưa (mm) |
[140; 240) |
[240; 340) |
[340; 440) |
[440; 540) |
|
Số năm |
3 |
7 |
7 |
3 |
Vậy khoảng biến thiên của mẫu số liệu ghép nhóm là .
Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.
|
Điểm thi |
[0; 2) |
[2; 4) |
[4; 6) |
[6; 8) |
[8; 10) |
|
Số học sinh lớp 12A |
1 |
5 |
20 |
8 |
6 |
|
Số học sinh lớp 12B |
2 |
3 |
10 |
18 |
7 |
Xét tính đúng sai của các kết luận sau?
a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai
b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng
Đúng||Sai
c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng
Sai||Đúng
d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng
Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.
|
Điểm thi |
[0; 2) |
[2; 4) |
[4; 6) |
[6; 8) |
[8; 10) |
|
Số học sinh lớp 12A |
1 |
5 |
20 |
8 |
6 |
|
Số học sinh lớp 12B |
2 |
3 |
10 |
18 |
7 |
Xét tính đúng sai của các kết luận sau?
a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai
b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng Đúng||Sai
c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng Sai||Đúng
d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng
a) Đúng. Khoảng biến thiên:
b) Lớp 12A:
Ta có
c) Lớp 12B:
Ta có
d) Ta có Lớp 12A sẽ đồng đều hơn so với lớp 12B.
Bạn Lan thống kê lại chiều cao (đơn vị: cm) của các học sinh nữ lớp 12B và lớp 12C ở bảng sau.
|
Chiều cao(cm) |
[150; 155) |
[155; 160) |
[160; 165) |
[165; 170) |
[175; 180) |
|
Số học sinh nữ lớp 12B |
0 |
5 |
13 |
7 |
0 |
|
Số học sinh nữ lớp 12C |
2 |
10 |
9 |
3 |
1 |
Chọn đáp án có khẳng định đúng.
Ta có
Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12B là 170 - 155 = 15
Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12C là 175 – 150 = 25
Vì 15 < 25 nên mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12B có độ phân tán ít hơn so với mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12C, hay nói cách khác chiều cao của các bạn nữ lớp 12B đồng đều hơn chiều cao của các bạn nữ lớp 12C.
Thống kê độ tuổi khách hàng đến xem phim trong một phòng của rạp chiếu phim sau 1 giờ được ghi lại trong bảng sau:
|
Độ tuổi |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
|
Số khách hàng |
6 |
12 |
16 |
7 |
2 |
Xét tính đúng sai của các khẳng định sau:
a) Giá trị đại diện nhóm [50; 60) là 55. Đúng||Sai
b) Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50; 60). Đúng||Sai
c) Nhóm chứa mốt là nửa khoảng [30; 40). Đúng||Sai
d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 31 tuổi. Sai||Đúng
Thống kê độ tuổi khách hàng đến xem phim trong một phòng của rạp chiếu phim sau 1 giờ được ghi lại trong bảng sau:
|
Độ tuổi |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
|
Số khách hàng |
6 |
12 |
16 |
7 |
2 |
Xét tính đúng sai của các khẳng định sau:
a) Giá trị đại diện nhóm [50; 60) là 55. Đúng||Sai
b) Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50; 60). Đúng||Sai
c) Nhóm chứa mốt là nửa khoảng [30; 40). Đúng||Sai
d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 31 tuổi. Sai||Đúng
a) Đúng: Giá trị đại diện nhóm [50;60) là 55
b) Đúng: Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50;60) .
c) Đúng: Nhóm chứa mốt là nửa khoảng [30;40).
d) Sai: Khi đó
Ta có mốt là:
Vậy độ tuổi được dự báo là thích xem phim đó nhiều nhất là 33 tuổi.
Dưới đây là thống kê thời gian 100 lần đi làm bằng xe bus từ nhà đến trường của bạn Lan:
|
Thời gian (phút) |
[15; 81) |
[18; 21) |
[21; 24) |
[24; 27) |
[27; 30) |
[30; 33) |
|
Số lượt |
22 |
38 |
27 |
8 |
4 |
1 |
Giá trị nào sau đây là giá trị ngoại lệ của mẫu số liệu?
Ta có:
|
Thời gian (phút) |
[15; 81) |
[18; 21) |
[21; 24) |
[24; 27) |
[27; 30) |
[30; 33) |
|
Số lượt |
22 |
38 |
27 |
8 |
4 |
1 |
|
Tần số tích lũy |
22 |
60 |
87 |
95 |
99 |
100 |
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ nhất là [18; 21)
Do đó:
Khi đó tứ phân vị thứ nhất là:
=> Nhóm chứa tứ phân vị thứ ba là [21; 24)
Do đó:
Khi đó tứ phân vị thứ ba là:
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
Trong một lần duy nhất Lan đi hết 29 phút, thời gian đi của Lan thuộc nhóm [30; 33)
Vì nên thời gian của lần Lan đi hết 29 phút là giá trị ngoại lệ của mẫu số liệu ghép nhóm.
Số điểm thi đấu của các đội được biểu diễn trong bảng dưới đây:
|
Nhóm dữ liệu |
Tần số |
|
(0; 2] |
5 |
|
(2; 4] |
16 |
|
(4; 6] |
13 |
|
(6; 8] |
7 |
|
(8; 10] |
5 |
|
(10; 12] |
4 |
Khoảng biến thiên của mẫu số liệu đó là:
Khoảng biến thiên của mẫu số liệu đã cho là: .
Cho biểu đồ

Hoàn thảnh bảng số liệu theo mẫu sau:
|
Chiều cao |
[160; 164) |
[164; 168) |
[168; 172) |
[172; 176) |
[176; 180) |
|
Số học sinh |
3 |
5 |
8 |
4 |
1 |
|
Giá trị đại diện |
162 |
166 |
170 |
174 |
178 |
Cho biểu đồ
Hoàn thảnh bảng số liệu theo mẫu sau:
|
Chiều cao |
[160; 164) |
[164; 168) |
[168; 172) |
[172; 176) |
[176; 180) |
|
Số học sinh |
3 |
5 |
8 |
4 |
1 |
|
Giá trị đại diện |
162 |
166 |
170 |
174 |
178 |
Hoàn thảnh bảng số liệu như sau:
|
Chiều cao |
[160; 164) |
[164; 168) |
[168; 172) |
[172; 176) |
[176; 180) |
|
Số học sinh |
3 |
5 |
8 |
4 |
1 |
|
Giá trị đại diện |
162 |
166 |
170 |
174 |
178 |
Biểu đồ sau biểu diễn lượng khách hàng đặt bàn online mỗi ngày trong quý I của năm 2024 tại một cửa hàng:

Biểu đồ sau biểu diễn lượng khách hàng đặt bàn online mỗi ngày trong quý I của năm 2024 tại một cửa hàng:
Thống kê đường kính thân gỗ của một số cây xoan đào 7 năm tuổi được trồng ở một lâm trường ở bảng 1.
|
Đường kính |
|||||
|
Tần số |
5 |
20 |
18 |
7 |
3 |
Hãy tìm khoảng biến thiên của mẫu số liệu ghép nhóm trên.
Khoảng biến thiên của mẫu số liệu ghép nhóm là
Thâm niên công tác của các công nhân hai nhà máy A và B được cho trong bảng sau:
|
Thăm niên công tác (năm) |
[75; 80) |
[80; 85) |
[85; 90) |
[90; 95) |
[95; 100) |
|
Số công nhân nhà máy A |
35 |
13 |
12 |
12 |
8 |
|
Số công nhân nhà máy B |
19 |
20 |
24 |
11 |
0 |
Sử dụng khoảng biến thiên, hãy cho biết thâm niên công tác các công nhân của nhà máy nào có độ phân tán lớn hơn?
Khoảng biến thiên của mẫu số liệu ghép nhóm về thâm niên công tác của các công nhân của nhà máy A là 25 - 0 = 25 năm.
Khoảng biến thiên của mẫu số liệu ghép nhóm về thâm niên công tác của các công nhân của nhà máy B là 20 - 0 = 20 năm.
Do vậy, nhà máy A có thâm niên công tác của các công nhân phân tán lớn hơn nhà máy B.
Kết quả đo chiều cao của 50 cây keo trong vườn được thống kê lại trong bảng sau:
|
Chiều cao (cm) |
[120; 122) |
[122; 124) |
[124; 126) |
[126; 128) |
[128; 130) |
|
Số cây |
16 |
4 |
3 |
6 |
21 |
Tính chiều cao trung bình của 50 cây keo trên?
Cỡ mẫu
|
Chiều cao (cm) |
[120; 122) |
[122; 124) |
[124; 126) |
[126; 128) |
[128; 130) |
|
Giá trị đại diện |
121 |
123 |
125 |
127 |
129 |
|
Số cây |
16 |
4 |
3 |
6 |
21 |
Chiều cao trung bình là:
.
Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.
|
Tốc độ |
Tần số |
|
40 ≤ x < 50 |
4 |
|
50 ≤ x < 60 |
5 |
|
60 ≤ x < 70 |
7 |
|
70 ≤ x < 80 |
4 |
Xác định giá trị của
?
Ta có:
|
Tốc độ |
Tần số |
Tần số tích lũy |
|
40 ≤ x < 50 |
4 |
4 |
|
50 ≤ x < 60 |
5 |
9 |
|
60 ≤ x < 70 |
7 |
16 |
|
70 ≤ x < 80 |
4 |
20 |
|
Tổng |
N = 20 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: [50; 60)
Khi đó:
Tứ phân vị thứ nhất là:
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là: [60; 70]
Khi đó:
Tứ phân vị thứ nhất là:
Cho mẫu dữ liệu ghép nhóm như sau:
|
Đối tượng |
[120; 122) |
[122; 124) |
[124; 126) |
[126; 128) |
[128; 130) |
|
Tần số |
8 |
9 |
12 |
10 |
11 |
Tính số trung bình của mẫu số liệu?
Cỡ mẫu
|
Đối tượng |
[120; 122) |
[122; 124) |
[124; 126) |
[126; 128) |
[128; 130) |
|
Giá trị đại diện |
121 |
123 |
125 |
127 |
129 |
|
Tần số |
8 |
9 |
12 |
10 |
11 |
Số trung bình của mẫu số liệu là:
Mỗi ngày bác T đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác T trong 20 ngày được thống kê lại ở bảng sau:
|
Quãng đường |
[2,7; 3,0) |
[3,0; 3,3) |
[3,3; 3,6) |
[3,6; 3,9) |
[3,9; 4,2) |
|
Số ngày |
3 |
6 |
5 |
4 |
2 |
Độ lệch chuẩn của mẫu số liệu ghép nhóm là:
Ta có:
|
Quãng đường |
[2,7; 3,0) |
[3,0; 3,3) |
[3,3; 3,6) |
[3,6; 3,9) |
[3,9; 4,2) |
|
Giá trị đại diện |
2,85 |
3,15 |
3,45 |
3,75 |
4,05 |
|
Số ngày |
3 |
6 |
5 |
4 |
2 |
Số trung bình:
Phương sai của mẫu số liệu ghép nhóm là:
Độ lệch chuẩn của mẫu số liệu ghép nhóm là:
Một công ty sản xuất bóng đèn LED đã kiểm tra chất lượng sản phẩm của một lô hàng và ghi nhận thời gian sử dụng của 250 bóng đèn như sau:
|
Khoảng thời gian (giờ) |
Giá trị đại diện |
Số lượng bóng đèn |
|
[0, 1000) |
500 |
5 |
|
[1000, 2000) |
1500 |
46 |
|
[2000, 3000) |
2500 |
162 |
|
[3000, 4000) |
3500 |
25 |
|
[4000, 5000) |
4500 |
12 |
Nếu độ lệch chuẩn của của bảng số liệu trên vượt quá 500 thì lô hàng không đạt tiêu chuẩn. Qua tính toán người ta thấy lô hàng đã không đạt tiêu chuẩn để đưa ra thị trường. Hỏi độ lệch chuẩn của của lô hàng trên đã vượt qua tiêu chuẩn là bao nhiêu? (kết quả lấy phần nguyên).
Đáp án: 245
Một công ty sản xuất bóng đèn LED đã kiểm tra chất lượng sản phẩm của một lô hàng và ghi nhận thời gian sử dụng của 250 bóng đèn như sau:
|
Khoảng thời gian (giờ) |
Giá trị đại diện |
Số lượng bóng đèn |
|
[0, 1000) |
500 |
5 |
|
[1000, 2000) |
1500 |
46 |
|
[2000, 3000) |
2500 |
162 |
|
[3000, 4000) |
3500 |
25 |
|
[4000, 5000) |
4500 |
12 |
Nếu độ lệch chuẩn của của bảng số liệu trên vượt quá 500 thì lô hàng không đạt tiêu chuẩn. Qua tính toán người ta thấy lô hàng đã không đạt tiêu chuẩn để đưa ra thị trường. Hỏi độ lệch chuẩn của của lô hàng trên đã vượt qua tiêu chuẩn là bao nhiêu? (kết quả lấy phần nguyên).
Đáp án: 245
Tính giá trị trung bình
Tính phương sai:
Tính độ lệch chuẩn:
Độ lệch chuẩn của của lô hàng trên đã vượt qua tiêu chuẩn là:
Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:
|
42 |
43,4 |
43,4 |
46,5 |
46,7 |
|
46,8 |
47,5 |
47,7 |
48,1 |
48,4 |
|
50,8 |
51,1 |
52,7 |
53,9 |
54,8 |
|
57,6 |
57,5 |
59,6 |
60,3 |
61,1 |
Lập bảng tần số ghép nhóm với nhóm đầu [42; 46) và độ dài mỗi nhóm bằng 4. Tìm khoảng biến thiên của mẫu dữ liệu ghép nhóm?
Ta lập được bảng tần số ghép nhóm như sau:
|
Tốc độ |
[42; 46) |
[46; 50) |
[50; 54) |
[54; 58) |
[58; 62) |
|
Số xe |
3 |
7 |
4 |
3 |
3 |
Vậy khoảng biến thiên của mẫu dữ liệu ghép nhóm là .
Kết quả đo chiều cao của học sinh lớp 12A được ghi lại trong bảng như sau:
|
Chiều cao |
[160; 164) |
[164; 168) |
[168; 172) |
[172; 176) |
[176; 180) |
|
Số học sinh |
3 |
5 |
8 |
4 |
1 |
Độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho là:
Ta có:
|
Chiều cao |
[160; 164) |
[164; 168) |
[168; 172) |
[172; 176) |
[176; 180) |
|
Số học sinh |
3 |
5 |
8 |
4 |
1 |
|
Giá trị đại diện |
162 |
166 |
170 |
174 |
178 |
Chiều cao trung bình là:
Phương sai của mẫu số liệu ghép nhóm là:
Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là: .
Điểm trung bình cuối năm của học sinh lớp 12A và 12B được thống kê trong bảng sau:

Nếu so sánh theo độ lệch chuẩn thì học sinh lớp nào có điểm trung bình ít phân tán hơn?
Ta có:
Xét lớp 12A
Cỡ mẫu
Số trung bình của mẫu số liệu ghép nhóm là:
Phương sai của mẫu số liệu ghép nhóm là:
Độ lệch chuẩn của mẫu số liệu ghép nhóm là:
Xét lớp 12B
Cỡ mẫu
Số trung bình của mẫu số liệu ghép nhóm là:
Phương sai của mẫu số liệu ghép nhóm là:
Độ lệch chuẩn của mẫu số liệu ghép nhóm là:
Vì nên nếu so sánh độ lệch chuẩn thì học sinh lớp 12A có điểm trung bình ít phân tán hơn học sinh lớp 12B.
Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:
|
111,6 |
134,9 |
130,3 |
134,2 |
140,9 |
|
109,3 |
154,4 |
156,3 |
116,1 |
96,7 |
|
105,2 |
80,8 |
80,8 |
110 |
109 |
|
139 |
145 |
161 |
126 |
114 |
Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tìm số trung bình của mẫu số liệu ghép nhóm?
Ta có bảng như sau:
|
Số giờ |
[80; 98) |
[98; 116) |
[116; 134) |
[134; 152) |
[152; 170) |
|
Giá trị đại diện |
89 |
107 |
125 |
143 |
161 |
|
Số năm |
3 |
6 |
3 |
5 |
3 |
Số trung bình của mẫu số liệu ghép nhóm là:
Tìm tứ phân vị thứ nhất trong bảng dữ liệu dưới đây:
|
Nhóm |
Tần số |
|
[0; 20) |
16 |
|
[20; 40) |
12 |
|
[40; 60) |
25 |
|
[60; 80) |
15 |
|
[80; 100) |
12 |
|
[100; 120) |
10 |
|
Tổng |
N = 90 |
Kết quả làm tròn đến chữ số thập phân thứ nhất.
Ta có:
|
Nhóm |
Tần số |
Tần số tích lũy |
|
[0; 20) |
16 |
16 |
|
[20; 40) |
12 |
28 |
|
[40; 60) |
25 |
53 |
|
[60; 80) |
15 |
68 |
|
[80; 100) |
12 |
80 |
|
[100; 120) |
10 |
90 |
|
Tổng |
N = 90 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: [20; 40)
Khi đó ta có:
Tứ phân vị thứ nhất được tính như sau:
Bảng dưới đây thống kê cự li ném tạ của một vận động viên.
Cự li | [19; 21) | [21; 23) | [23; 25) | [25; 27) | [27; 29) |
Tần số | 13 | 45 | 24 | 12 | 6 |
Hãy tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên (kết quả được làm tròn đến hàng phần trăm)
Đáp án: 2,07
Bảng dưới đây thống kê cự li ném tạ của một vận động viên.
Cự li | [19; 21) | [21; 23) | [23; 25) | [25; 27) | [27; 29) |
Tần số | 13 | 45 | 24 | 12 | 6 |
Hãy tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên (kết quả được làm tròn đến hàng phần trăm)
Đáp án: 2,07
Ta có:
Cự li | [19; 21) | [21; 23) | [23; 25) | [25; 27) | [27; 29) |
Giá trị đại diện | 20 | 22 | 24 | 26 | 28 |
Tần số | 13 | 45 | 24 | 12 | 6 |
Cỡ mẫu:
Số trung bình:
Phương sai:
Độ lệch chuẩn: .
Cho bảng thống kê kết quả cự li ném bóng của một người như sau:
|
Cự li (m) |
[19; 19,5) |
[19,5; 20) |
[20; 20,5) |
[20,5; 21) |
[21; 21,5) |
|
Số lần |
13 |
45 |
24 |
12 |
6 |
Cự li ném bóng trung bình của người đó là:
Ta có:
|
Cự li (m) |
[19; 19,5) |
[19,5; 20) |
[20; 20,5) |
[20,5; 21) |
[21; 21,5) |
|
Giá trị đại diện |
19,25 |
19,75 |
20,25 |
20,75 |
21,25 |
|
Số lần |
13 |
45 |
24 |
12 |
6 |
Cự li trung bình là:
Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn A được thống kê lại ở bảng sau:
|
Thời gian (phút) |
[20;25) |
[25;30) |
[30;35) |
[35;40) |
[40;45) |
|
Số ngày |
6 |
6 |
4 |
1 |
1 |
Khoảng biến thiên của mẫu số liệu ghép nhóm là
Khoảng biến thiên của mẫu số liệu ghép nhóm là: 45 – 20 = 25 (phút).
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
|
Số tiền (nghìn đồng) |
Số người |
|
[0; 50) |
5 |
|
[50; 100) |
12 |
|
[100; 150) |
23 |
|
[150; 200) |
17 |
|
[200; 250) |
3 |
Khoảng biến thiên của mẫu số liệu đã cho là: .
Một mẫu số liệu ghép nhóm có phương sai bằng
có độ lệch chuẩn bằng:
Mẫu số liệu ghép nhóm có phương sai bằng có độ lệch chuẩn bằng
.
Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:
|
Thời gian (phút) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
[10; 11) |
|
Học sinh lớp 12A |
8 |
10 |
13 |
10 |
9 |
|
Học sinh lớp 12B |
4 |
12 |
17 |
14 |
3 |
Nếu so sánh theo số trung bình thì học sinh lớp nào làm bài cần ít thời gian hơn?
Ta có:
|
Thời gian (phút) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
[10; 11) |
|
Giá trị đại diện |
6,5 |
7,5 |
8,5 |
9,5 |
10,5 |
|
Học sinh lớp 12A |
8 |
10 |
13 |
10 |
9 |
|
Học sinh lớp 12B |
4 |
12 |
17 |
14 |
3 |
Số trung bình của mẫu số liệu ghép nhóm lớp 12A:
Số trung bình của mẫu số liệu ghép nhóm lớp 12B:
Vì nên nếu so sánh theo số trung bình thì học sinh lớp 12B làm nhanh hơn.
Cho mẫu số liệu ghép nhóm:
|
Nhóm |
Tần số |
|
(0;10] |
8 |
|
(10;20] |
14 |
|
(20;30] |
12 |
|
(30;40] |
9 |
|
(40;50] |
7 |
Khoảng tứ phân vị của mẫu số liệu là:
Ta có:
|
Nhóm |
Tần số |
Tần số tích lũy |
|
(0;10] |
8 |
8 |
|
(10;20] |
14 |
22 |
|
(20;30] |
12 |
34 |
|
(30;40] |
9 |
43 |
|
(40;50] |
7 |
50 |
|
Tổng |
N = 50 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: (10;20]
Khi đó:
Tứ phân vị thứ nhất là:
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là: (30;40]
Khi đó:
Tứ phân vị thứ nhất là:
Vậy khoảng tứ phân vị của mẫu số liệu là
Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:
|
Tuổi thọ |
[14;15) |
[15;16) |
[16;17) |
[17;18) |
[18;19) |
|
Số con |
1 |
3 |
8 |
6 |
2 |
Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu ghép nhóm đã cho là:
Ta có: và
nên tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm [16;17).
Cho biểu đồ mức lương của công nhân hai phân xưởng A và B (đơn vị: triệu đồng) như sau:

Hoàn thành bảng số liệu sau:
|
Mức lương |
[5; 6) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
|
Giá trị đại diện |
5,5 |
6,5 |
7,5 |
8,5 |
9,5 |
|
Phân xưởng A |
4 |
5 |
5 |
4 |
2 |
|
Phân xưởng B |
3 |
6 |
5 |
5 |
1 |
Cho biểu đồ mức lương của công nhân hai phân xưởng A và B (đơn vị: triệu đồng) như sau:
Hoàn thành bảng số liệu sau:
|
Mức lương |
[5; 6) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
|
Giá trị đại diện |
5,5 |
6,5 |
7,5 |
8,5 |
9,5 |
|
Phân xưởng A |
4 |
5 |
5 |
4 |
2 |
|
Phân xưởng B |
3 |
6 |
5 |
5 |
1 |
Ta có:
|
Mức lương |
[5; 6) |
[6; 7) |
[7; 8) |
[8; 9) |
[9; 10) |
|
Giá trị đại diện |
5,5 |
6,5 |
7,5 |
8,5 |
9,5 |
|
Phân xưởng A |
4 |
5 |
5 |
4 |
2 |
|
Phân xưởng B |
3 |
6 |
5 |
5 |
1 |
Thống kê quãng đường một xe taxi công nghệ đi mỗi ngày (đơn vị: km) như sau:
|
Quãng đường ((km) |
[50; 100) |
[100; 150) |
[150; 200) |
[200; 250) |
[250; 300) |
|
Số ngày |
5 |
10 |
9 |
4 |
2 |
Tìm số trung bình của mẫu số liệu ghép nhóm?
Ta có:
|
Quãng đường ((km) |
[50; 100) |
[100; 150) |
[150; 200) |
[200; 250) |
[250; 300) |
|
Giá trị đại diện |
75 |
125 |
175 |
225 |
275 |
|
Số ngày |
5 |
10 |
9 |
4 |
2 |
Số trung bình của mẫu số liệu ghép nhóm:
Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

Tính thời gian sử dụng pin trung bình?
Ta có:
|
Thời gian (giờ) |
[7,2; 7,4) |
[7,4; 7,6) |
[7,6; 7,8) |
[7,8; 8,0) |
|
Giá trị đại diện |
7,3 |
7,5 |
7,7 |
7,9 |
|
Số máy vi tính |
2 |
4 |
7 |
5 |
Thòi gian trung bình là:
giờ