Đề kiểm tra 45 phút Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Thống kê kết quả giải rubik của một bạn học sinh được ghi lại như sau:

    Thời gian (giây)

    [8; 10)

    [10; 12)

    [12; 14)

    [14; 16)

    [16; 18)

    Số lần

    4

    6

    8

    4

    3

    Phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào sau đây?

    Ta có:

    Thời gian (giây)

    [8; 10)

    [10; 12)

    [12; 14)

    [14; 16)

    [16; 18)

    Giá trị đại diện

    9

    11

    13

    15

    17

    Số lần

    4

    6

    8

    4

    3

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{4.9 + 6.11 + 8..13
+ 4.15 + 3.17}{25} = 12,68

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{25}\left( 4.9^{2} +
6.11^{2} + 8.13^{2} + 4.15^{2} + 3.17^{2} ight) - (12,68)^{2} =
5,9776

    Phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị 6,2.

  • Câu 2: Nhận biết

    Thống kê quãng đường một xe taxi công nghệ đi mỗi ngày (đơn vị: km) như sau:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Số ngày

    5

    10

    9

    4

    2

    Tìm số trung bình của mẫu số liệu ghép nhóm?

    Ta có:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Giá trị đại diện

    75

    125

    175

    225

    275

    Số ngày

    5

    10

    9

    4

    2

    Số trung bình của mẫu số liệu ghép nhóm:

    \overline{x} = \frac{5.75 + 10.125 +
9.175 + 4.225 + 2.275}{30} = 155

  • Câu 3: Vận dụng

    Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Một doanh nghiệp địa phương muốn hướng dịch vụ của mình đến các gia đình có mức thu nhập ở tầm trung, tức là 50% các hộ gia đình có mức thu nhập ở chính giữa so với tất cả các hộ gia đình của địa phương. Hỏi doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Một doanh nghiệp địa phương muốn hướng dịch vụ của mình đến các gia đình có mức thu nhập ở tầm trung, tức là 50% các hộ gia đình có mức thu nhập ở chính giữa so với tất cả các hộ gia đình của địa phương. Hỏi doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Nhận biết

    Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:

    42

    43,4

    43,4

    46,5

    46,7

    46,8

    47,5

    47,7

    48,1

    48,4

    50,8

    51,1

    52,7

    53,9

    54,8

    57,6

    57,5

    59,6

    60,3

    61,1

    Lập bảng tần số ghép nhóm với nhóm đầu [42; 46) và độ dài mỗi nhóm bằng 4. Tìm tốc độ trung bình của mẫu dữ liệu ghép nhóm?

    Ta lập được bảng tần số ghép nhóm như sau:

    Tốc độ

    [42; 46)

    [46; 50)

    [50; 54)

    [54; 58)

    [58; 62)

    Giá trị đại diện

    44

    48

    52

    56

    60

    Số xe

    3

    7

    4

    3

    3

    Tốc độ trung bình là:

    \overline{x} = \frac{3.44 + 7.48 + 4.52
+ 3.56 + 3.60}{20} = 51,2

  • Câu 5: Nhận biết

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Tần số

    8

    9

    12

    10

    11

    Tính số trung bình của mẫu số liệu?

    Cỡ mẫu N = 50

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Tần số

    8

    9

    12

    10

    11

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{8.121 + 9.123 +
12.125 + 10.127 + 11.129}{50} = 125,28

  • Câu 6: Nhận biết

    Bảng sau thống kê chiều cao của 38 học sinh lớp 12A1 của trường THPT X:

    Chiều cao

    [145;155)

    [155;165)

    [165;175)

    [175;180)

    Số học sinh

    8

    15

    6

    9

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: R = 185 - 145 = 40

  • Câu 7: Nhận biết

    Cho bảng thống kê kết quả cự li ném bóng của một người như sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số lần

    13

    45

    24

    12

    6

    Cự li ném bóng trung bình của người đó là:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số lần

    13

    45

    24

    12

    6

    Cự li trung bình là:

    \overline{x} = \frac{13.9,25 + 45.19,75
+ 24.20,25 + 12.20,75 + 6.21,25}{100} \approx 20,02

  • Câu 8: Nhận biết

    Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Số trung bình của mẫu số liệu ghép nhóm của đối tương A và đối tượng B lần lượt là:

    Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

     

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

     

    Phân xưởng A

    4

    5

    5

    4

    2

    N = 20

    Phân xưởng B

    3

    6

    5

    5

    1

    N’ = 20

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:

    \overline{x_{A}} = \frac{4.5,5 + 5.6,5 +
5.7,5 + 4.8,5 + 2.9,5}{20} = 7,25

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:

    \overline{x_{B}} = \frac{3.5,5 + 6.6,5 +
5.7,5 + 5.8,5 + 1.9,5}{20} = 7,25

  • Câu 9: Thông hiểu

    Thống kê mức lương (đơn vị: triệu đồng) tháng 11 của nhân viên thuộc các phòng ban trong cơ quan thu được kết quả sau:

    Mức lương

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    Số nhân viên

    6

    20

    30

    5

    Xác định tính đúng sai của các khẳng định dưới đây:

    a) Trong thống kê số lượng nhân viên có mức lương cao nhất có số lượng thấp nhất. Đúng||Sai

    b) Lương trung bình của các nhân viên trong thống kê là 10. Sai||Đúng

    c) Nhóm tứ phân vị thứ hai của thống kê là nhóm [6; 8). Sai||Đúng

    d) Khoảng tứ phân vị thống kê là nhỏ hơn 1. Đúng||Sai

    Đáp án là:

    Thống kê mức lương (đơn vị: triệu đồng) tháng 11 của nhân viên thuộc các phòng ban trong cơ quan thu được kết quả sau:

    Mức lương

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    Số nhân viên

    6

    20

    30

    5

    Xác định tính đúng sai của các khẳng định dưới đây:

    a) Trong thống kê số lượng nhân viên có mức lương cao nhất có số lượng thấp nhất. Đúng||Sai

    b) Lương trung bình của các nhân viên trong thống kê là 10. Sai||Đúng

    c) Nhóm tứ phân vị thứ hai của thống kê là nhóm [6; 8). Sai||Đúng

    d) Khoảng tứ phân vị thống kê là nhỏ hơn 1. Đúng||Sai

    Ta có:

    Mức lương

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    Giá trị đại diện

    5

    7

    9

    11

    Số nhân viên

    6

    20

    30

    5

    a) Đúng: Trong thống kê số lượng nhân viên có mức lương cao nhất có số lượng thấp nhất.

    b) Sai: Lương trung bình của các nhân viên trong thống kê là 8,11

    \overline{x} = \frac{5.6 + 7.20 + 9.30 +
11.5}{61} = \frac{495}{61} \approx 8,11

    c) Sai: Ta có:

    \frac{n}{2} = 30,5nên nhóm chứa tứ phân vị thứ 2 của thống kê là [8;10).

    d) Đúng: Ta có: \frac{n}{4} =
15,25;\frac{3n}{4} \approx 45,75

    \left\{ \begin{matrix}
  {Q_1} = 6 + \dfrac{{\dfrac{{61}}{4} - 6}}{{26}}.2 = \dfrac{{439}}{{52}} \hfill \\
  {Q_3} = 8 + \dfrac{{\dfrac{{3.61}}{4} - 26}}{{56}}.2 = \dfrac{{975}}{{112}} \hfill \\ 
\end{matrix}  ight. \Rightarrow \Delta Q = {Q_3} - {Q_1} \approx 0,26.

  • Câu 10: Vận dụng

    Kết quả thống kê số giờ nắng trong tháng 5 từ năm 2022 đến năm 2021 tại hai địa điểm A và B:

    Số giờ

    [130; 160)

    [160; 190)

    [190; 220)

    [220; 250)

    [250; 280)

    [280; 310)

    Số năm tại A

    1

    1

    1

    8

    7

    2

    Số năm tại B

    0

    1

    2

    4

    10

    3

    Nếu so sánh theo độ lệch chuẩn thì số giờ nắng trong tháng 5 tại địa điểm nào đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả thống kê số giờ nắng trong tháng 5 từ năm 2022 đến năm 2021 tại hai địa điểm A và B:

    Số giờ

    [130; 160)

    [160; 190)

    [190; 220)

    [220; 250)

    [250; 280)

    [280; 310)

    Số năm tại A

    1

    1

    1

    8

    7

    2

    Số năm tại B

    0

    1

    2

    4

    10

    3

    Nếu so sánh theo độ lệch chuẩn thì số giờ nắng trong tháng 5 tại địa điểm nào đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Thông hiểu

    Cho bảng thống kê kết quả đo cân nặng của một số trẻ em như sau:

    Cân nặng (kg)

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    [12; 14)

    Số trẻ em

    6

    12

    19

    9

    4

    Xác định độ lệch chuẩn của mẫu số liệu đã cho?

    Ta có: N = 50

    Suy ra số trung bình của mẫu số liệu là:

    \overline{x} = \frac{6.5 + 12.7 + 19.9 +
9.11 + 4.13}{50} = 8,72

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{50}\left( 6.5^{2} +
12.7^{2} + 19.9^{2} + 9.11^{2} + 4.13^{3} ight) - 8,72^{2} \approx
4,8

    Vậy độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho là: S \approx 2,2

  • Câu 12: Nhận biết

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Có bao nhiêu máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ?

    Có 6 máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ.

  • Câu 13: Thông hiểu

    Cho bảng số liệu thống kê cân nặng của 50 học sinh tiểu học như sau:

    Cân nặng (kg)

    Số học sinh

    [0; 10)

    5

    [10; 20)

    8

    [20; 60)

    15

    [30; 80)

    16

    [40; 100)

    6

    Tìm độ lệch chuẩn của mẫu số liệu đã cho?

    Ta có:

    Cân nặng (kg)

    Số học sinh

    Giá trị đại diện (xi)

    \left( x_{i} - \overline{x}
ight)^{2} f_{i}.\left( x_{i} - \overline{x}
ight)^{2}

    [0; 10)

    5

    5

    484

    2420

    [10; 20)

    8

    15

    144

    1152

    [20; 60)

    15

    25

    4

    60

    [30; 80)

    16

    35

    64

    1024

    [40; 100)

    6

    45

    324

    1944

     

    \sum_{}^{}f_{i} = 50

     

     

    Tổng: 6600

    Phương sai của mẫu số liệu là:

    S^{2} =
\frac{1}{N}.\sum_{}^{}{f_{i}.\left( x_{i} - \overline{x} ight)^{2}} =
\frac{1}{50}.6600 = 132

    Suy ra độ lệch chuẩn của mẫu số liệu là: S = \sqrt{S^{2}} = \sqrt{132} \approx
11,5

  • Câu 14: Nhận biết

    Cho bảng thống kê thời gian (đơn vị: phút) và số ngày tập thể dục của hai người A và B trong 30 ngày như sau:

    Thời gian

    [15; 20)

    [25; 30)

    [30; 35)

    Số ngày tập của A

    10

    15

    5

    Số ngày tập của B

    9

    21

    0

    Chọn kết luận đúng dưới đây?

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập của A là: 35 – 15 = 20 (phút).

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập của B là: 30 – 15 = 15 (phút).

    Do đó căn cứ theo khoảng biến thiên thì thời gian tập của A có độ phân tán lớn hơn.

  • Câu 15: Thông hiểu

    Cho mẫu số liệu ghép nhóm:

    Nhóm

    Tần số

    (0;10]

    8

    (10;20]

    14

    (20;30]

    12

    (30;40]

    9

    (40;50]

    7

    Khoảng tứ phân vị của mẫu số liệu là:

    Ta có:

    Nhóm

    Tần số

    Tần số tích lũy

    (0;10]

    8

    8

    (10;20]

    14

    22

    (20;30]

    12

    34

    (30;40]

    9

    43

    (40;50]

    7

    50

    Tổng

    N = 50

     

    Ta có: \frac{N}{4} = \frac{50}{4} =
12,5

    => Nhóm chứa tứ phân vị thứ nhất là: (10;20]

    Khi đó: \left\{ \begin{matrix}l = 10;\dfrac{N}{4} = 12,5 \\m = 8,f = 14,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 10 + \frac{12,5 -
8}{14}.10 \approx 13,2

    Ta có: \frac{3N}{4} = \frac{3.50}{4} =
37,5

    => Nhóm chứa tứ phân vị thứ ba là: (30;40]

    Khi đó: \left\{ \begin{matrix}l = 30;\dfrac{3N}{4} = 37,5 \\m = 34,f = 9,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 30 + \frac{37,5 -
34}{9}.10 \approx 33,9

    Vậy khoảng tứ phân vị của mẫu số liệu là \Rightarrow \Delta_{Q} = Q_{3} - Q_{1} \approx
33,9 - 13,2 = 20,7

  • Câu 16: Vận dụng

    Cho mẫu số liệu thống kê chiều cao (đơn vị: cm) của các học sinh lớp 12A, 12B và 12C của một trường THPT như bảng sau

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12A

    1

    13

    18

    5

    3

    0

    Số học sinh 12B

    0

    12

    20

    7

    1

    0

    Số học sinh 12C

    1

    8

    12

    15

    3

    1

    Xét tính đúng, sai các mệnh đề sau:

    (a) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B. Đúng||Sai

    (b) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12B phân tán hơn so với lớp 12C. Sai|| Đúng

    (c) Ở lớp 12B có một học sinh có chiều cao là 173 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12B. Đúng||Sai

    (d) Ở lớp 12C có một học sinh có chiều cao là 177 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12C. Sai|| Đúng

    Đáp án là:

    Cho mẫu số liệu thống kê chiều cao (đơn vị: cm) của các học sinh lớp 12A, 12B và 12C của một trường THPT như bảng sau

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12A

    1

    13

    18

    5

    3

    0

    Số học sinh 12B

    0

    12

    20

    7

    1

    0

    Số học sinh 12C

    1

    8

    12

    15

    3

    1

    Xét tính đúng, sai các mệnh đề sau:

    (a) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B. Đúng||Sai

    (b) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12B phân tán hơn so với lớp 12C. Sai|| Đúng

    (c) Ở lớp 12B có một học sinh có chiều cao là 173 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12B. Đúng||Sai

    (d) Ở lớp 12C có một học sinh có chiều cao là 177 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12C. Sai|| Đúng

    Xét mẫu số liệu thống kê chiều cao của học sinh lớp 12A

    Ta có:

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12A

    1

    13

    18

    5

    3

    0

    Tần số tích lũy

    1

    14

    32

    37

    40

    40

    Cỡ mẫu N = 40

    Ta có: \frac{N}{4} = 10

    => Nhóm chứa Q_{1} là [155; 160)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 155;m = 1,f = 13;c = 160
- 155 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 155 + \frac{10 - 1}{13}.5 =\frac{2060}{13}

    Ta có: \frac{3N}{4} = 30

    => Nhóm chứa Q_{3} là [160; 165)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 160;m = 14,f = 18;c =
165 - 160 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 160 + \frac{30 - 14}{18}.5 =\frac{1480}{9}.

    Vậy khoảng tứ phân vị của mẫu số liệu nhóm A là: \Delta Q_{A} = \frac{700}{117}

    Xét mẫu số liệu thống kê chiều cao của học sinh lớp 12B

    Ta có:

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12B

    0

    12

    20

    7

    1

    0

    Tần số tích lũy

    0

    12

    32

    39

    40

    40

    Cỡ mẫu N = 40

    Ta có: \frac{N}{4} = 10

    => Nhóm chứa Q_{1} là [155; 160)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 155;m = 0,f = 12;c = 160
- 155 = 5

    \Rightarrow Q_{1} = l +
\frac{\frac{N}{4} - m}{f}.c = 155 + \frac{10 - 0}{12}.5 =
\frac{955}{6}

    Ta có: \frac{3N}{4} = 30

    => Nhóm chứa Q_{3} là [160; 165)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 160;m = 12,f = 20;c =
165 - 160 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 160 + \dfrac{30 - 12}{20}.5 =\dfrac{329}{2}.

    Vậy khoảng tứ phân vị của mẫu số liệu nhóm B là: \Delta Q_{B} = \frac{16}{3}

    Xét mẫu số liệu thống kê chiều cao của học sinh lớp 12C

    Ta có:

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12C

    1

    8

    12

    15

    3

    1

    Tần số tích lũy

    1

    9

    21

    36

    39

    40

    Cỡ mẫu N = 40

    Ta có: \frac{N}{4} = 10

    => Nhóm chứa Q_{1} là [160; 165)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 160;m = 9,f = 12;c = 165
- 160 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 160 + \dfrac{10 - 9}{12}.5 =\dfrac{1925}{12}

    Ta có: \frac{3N}{4} = 30

    => Nhóm chứa Q_{3} là [165; 170)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 165;m = 21,f = 15;c =
170 - 165 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 165 + \dfrac{30 - 21}{15}.5 =168.

    Vậy khoảng tứ phân vị của mẫu số liệu nhóm C là: \Delta Q_{C} = \frac{91}{12}

     

    (a) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B.

    Ta có: \Delta Q_{A} > \Delta
Q_{B}. Do đó, mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B.

    Chọn ĐÚNG.

    (b) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12B phân tán hơn so với lớp 12C.

    Ta có: \Delta Q_{B} < \Delta
Q_{C}. Do đó, mẫu số liệu thống kê chiều cao của học sinh lớp 12C phân tán hơn so với lớp 12B.

    Chọn SAI.

    (c) Ở lớp 12B có một học sinh có chiều cao là 173 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12B.

    Xét mẫu số liệu lớp 12B, ta có \Delta
Q_{B} = \frac{16}{3}

    Khi đó, giá trị ngoại lệ là các giá trị x
> Q_{3} + 1,5.\Delta Q_{B} \Rightarrow x > \frac{329}{2} +
1,5.\frac{16}{3} \Rightarrow x > 172,5

    Do đó, giá trị 173 cm là giá trị ngoại lệ của mẫu số liệu lớp 12B.

    Chọn ĐÚNG.

    (d) Ở lớp 12C có một học sinh có chiều cao là 177 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12C.

    Xét mẫu số liệu lớp 12C, ta có \Delta
Q_{C} = \frac{91}{12}

    Khi đó, giá trị ngoại lệ là các giá trị x
> Q_{3} + 1,5.\Delta Q_{C} \Rightarrow x > 168 + 1,5.\frac{91}{12}
\Rightarrow x > 179,375

    Do đó, giá trị 177cm không là giá trị ngoại lệ của mẫu số liệu lớp 12C.

    Chọn SAI.

  • Câu 17: Nhận biết

    Số điểm thi đấu của các đội được biểu diễn trong bảng dưới đây:

    Nhóm dữ liệu

    Tần số

    (0; 2]

    5

    (2; 4]

    16

    (4; 6]

    13

    (6; 8]

    7

    (8; 10]

    5

    (10; 12]

    4

    Khoảng biến thiên của mẫu số liệu đó là:

    Khoảng biến thiên của mẫu số liệu đã cho là: R = 12 - 0 = 12.

  • Câu 18: Thông hiểu

    Tìm tứ phân vị thứ ba trong bảng dữ liệu dưới đây:

    Nhóm

    Tần số

    [0; 20)

    16

    [20; 40)

    12

    [40; 60)

    25

    [60; 80)

    15

    [80; 100)

    12

    [100; 120)

    10

    Tổng

    N = 90

    Kết quả làm tròn đến chữ số thập phân thứ nhất.

    Ta có:

    Nhóm

    Tần số

    Tần số tích lũy

    [0; 20)

    16

    16

    [20; 40)

    12

    28

    [40; 60)

    25

    53

    [60; 80)

    15

    68

    [80; 100)

    12

    80

    [100; 120)

    10

    90

    Tổng

    N = 90

     

    Ta có: \frac{3N}{4} = 67,5

    => Nhóm chứa tứ phân vị thứ ba là: [60; 80)

    Khi đó ta có: \left\{ \begin{matrix}l = 60;\dfrac{3N}{4} = 67,5 \\m = 53,f = 15,80 - 60 = 20 \\\end{matrix} ight.

    Tứ phân vị thứ ba được tính như sau:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 60 + \frac{67,5 -
53}{15}.20 = \frac{238}{3}

  • Câu 19: Nhận biết

    Bảng sau thống kê thành tích nhảy xa của một số học sinh lớp 12A:

    Thành tích cm)

    [150; 180)

    [180; 210)

    [210; 240)

    [240; 270)

    [270; 300)

    Số học sinh

    3

    5

    28

    14

    8

    Xác định khoảng biến thiên của mẫu số liệu đã cho?

    Khoảng biến thiên của mẫu số liệu là R =
300 - 150 = 150.

  • Câu 20: Thông hiểu

    Kết quả đo chiều cao của 100 cây thực nghiệm 2 năm tuổi được cho trong bảng sau:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Xác định khoảng tứ phân vị của mẫu số liệu?

    Ta có:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Tần số tích lũy

    5

    17

    42

    86

    100

    N = 100 \Rightarrow \frac{N}{4} =
25 => Nhóm chứa tứ phân vị thứ nhất là: [8,8; 9,0)

    \Rightarrow \left\{ \begin{matrix}l = 8,8,\dfrac{N}{4} = 25,m = 17,f = 25 \\c = 9,0 - 8,8 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c \Rightarrow Q_{1} = 8,8 + \frac{25 -17}{25}.0,2 = \frac{1108}{125}

    \frac{3N}{4} = 75 => Nhóm chứa tứ phân vị thứ ba là: [9,0; 9,2)

    \Rightarrow \left\{ \begin{matrix}l = 9,0,\dfrac{3N}{4} = 75,m = 42,f = 44 \\c = 9,2 - 9,0 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\frac{\dfrac{3N}{4} - m}{f}.c \Rightarrow Q_{3} = 9,0 + \frac{75 -42}{44}.0,2 = \frac{183}{20}

    Vậy khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} = 0,286.

  • Câu 21: Nhận biết

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Tuổi thọ

    [14;15)

    [15;16)

    [16;17)

    [17;18)

    [18;19)

    Số con

    1

    3

    8

    6

    2

    Nhóm chứa tứ phân vị thứ ba của mẫu số liệu ghép nhóm đã cho là:

    Ta có: \frac{3n}{4} = \frac{3.20}{4} =
151 + 3 + 8 < 15 < 1 + 3
+ 8 + 6 nên tứ phân vị thứ ba của mẫu số liệu thuộc nhóm [17;18).

  • Câu 22: Thông hiểu

    Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:

    5

    3

    10

    20

    25

    11

    13

    7

    12

    31

    19

    10

    12

    17

    18

    11

    32

    17

    16

    2

    7

    9

    7

    8

    3

    5

    12

    15

    18

    3

    12

    14

    2

    9

    6

    15

    15

    7

    6

    12

    Chuyển số liệu sau dưới dạng mẫu số liệu ghép nhóm có độ dài như nhau và chọn khoảng đầu tiên là \lbrack
0;5). Xác định khoảng biến thiên của mẫu số liệu sau khi ghép nhóm?

    Ta chia thành các nhóm có độ dài là 5

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.

    Ta có bảng ghép nhóm như sau:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [30; 35)

    2

    Vậy khoảng biến thiên của mẫu số liệu ghép nhóm là R = 35 - 0 = 35.

  • Câu 23: Nhận biết

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Khoảng biến thiên của mẫu số liệu đã cho là: R = 250 - 0 = 250.

  • Câu 24: Nhận biết

    Kết quả đo chiều cao của 100 cây thực nghiệm 2 năm tuổi được cho trong bảng sau:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Xác định khoảng biến thiên của mẫu số liệu?

    Khoảng biến thiên của mẫu số liệu là R =
9,4 - 8,4 = 1.

  • Câu 25: Nhận biết

    Cho mẫu số kiệu ghép nhóm như sau:

    Chiều cao(cm)

    [155; 160)

    [160; 165)

    [165; 170)

    [175; 180)

    [180; 185)

    A

    2

    7

    12

    1

    0

    B

    6

    10

    7

    0

    2

    Khoảng biến thiên của mẫu số liệu B có độ phân tán lớn hơn khoảng biến thiên của mẫu số liệu A bằng bao nhiêu?

    Khoảng biến thiên của A: 180 – 155 = 25

    Khoảng biến thiên của B: 185 – 155 = 30

    Khoảng biến thiên của mẫu số liệu B có độ phân tán lớn hơn khoảng biến thiên của mẫu số liệu A bằng 5.

  • Câu 26: Thông hiểu

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tìm phương sai của mẫu số liệu ghép nhóm đó? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tìm phương sai của mẫu số liệu ghép nhóm đó? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 27: Vận dụng

    Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.

    Điểm thi

    [0; 2)

    [2; 4)

    [4; 6)

    [6; 8)

    [8; 10)

    Số học sinh lớp 12A

    1

    5

    20

    8

    6

    Số học sinh lớp 12B

    2

    3

    10

    18

    7

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng 2,6. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng 2,57. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng

    Đáp án là:

    Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.

    Điểm thi

    [0; 2)

    [2; 4)

    [4; 6)

    [6; 8)

    [8; 10)

    Số học sinh lớp 12A

    1

    5

    20

    8

    6

    Số học sinh lớp 12B

    2

    3

    10

    18

    7

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng 2,6. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng 2,57. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng

    a) Đúng. Khoảng biến thiên:

    R_{12A} = R_{12B} = 10 - 0 =
10.

    b) Lớp 12A:

    Ta có

    Q_{1} = 4 + \frac{\frac{1}{4}.40 - (1 +
5)}{20}.(6 - 4) = 4,4.

    Q_{3} = 6 + \frac{\frac{3}{4}.40 - (1 +
5 + 20)}{8}.(8 - 6) = 7.

    \Rightarrow \Delta Q_{12A} = Q_{3} -
Q_{1} = 2,6.

    c) Lớp 12B:

    Ta có

    Q_{1} = 4 + \frac{\frac{1}{4}.40 - (2 +
3)}{10}.(6 - 4) = 5.

    Q_{3} = 6 + \frac{\frac{3}{4}.40 - (2 +
3 + 10)}{18}.(8 - 6) = \frac{23}{3}.

    \Rightarrow \Delta Q_{12B} = Q_{3} -
Q_{1} = 2,67.

    d) Ta có \Delta Q_{12A} < \Delta
Q_{12B} \Rightarrow Lớp 12A sẽ đồng đều hơn so với lớp 12B.

  • Câu 28: Thông hiểu

    Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong Bảng 18.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là:

    Số trung bình cộng của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{4.42,5 + 14.47,5 + 8.52,5 +
10.57,5 + 6.62,5 + 2.67,5}{44} = \frac{585}{11}

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{4\left( 42,5 -
\frac{585}{11} ight)^{2} + 14\left( 47,5 - \frac{585}{11}
ight)^{2}}{44}

    + \frac{8\left( 52,5 - \frac{585}{11}
ight)^{2} + 10\left( 57,5 - \frac{585}{11}
ight)^{2}}{44}

    + \frac{+ 6\left( 62,5 - \frac{585}{11}
ight)^{2} + 2.\left( 67,5 - \frac{585}{11} ight)^{2}}{44} \approx
46,12

    Vậy độ lệch chuẩn của mẫu số liệu ghép nhóm là: \sqrt{s} \approx 6,2

  • Câu 29: Nhận biết

    Cho biểu đồ

    Hoàn thảnh bảng số liệu theo mẫu sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Đáp án là:

    Cho biểu đồ

    Hoàn thảnh bảng số liệu theo mẫu sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

     Hoàn thảnh bảng số liệu như sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

  • Câu 30: Thông hiểu

    Một hãng xe ôtô thống kê lại số lần gặp sự cố về động cơ của 100 chiếc xe cùng loại sau 2 năm sử dụng đầu tiên ở bảng sau.

    Số lần gặp sự cố

    \lbrack 0,5\ ;\ 2,5)\lbrack 2,5\ ;\ 4,5)\lbrack 4,5\ ;\ 6,5)\lbrack 6,5\ ;\ 8,5)\lbrack 8,5\ ;\ 10,5)

    Số xe

    17

    33

    25

    20

    5

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm này? (Làm tròn các kết quả đến hàng phần trăm).

    Do cỡ mẫu n = 100

    Gọi x_{1}; x_{2}; …; x_{100} là mẫu số liệu gốc gồm số lần gặp sự cố của 100 chiếc xe cùng loại sau 2 năm sử dụng, sắp xếp theo thứ tự không giảm.

    Ta có x_{1}, …, x_{17} \in \lbrack0,5\ ;\ 2,5); x_{18}, …, x_{50} \in \lbrack2,5\ ;\ 4,5); x_{51}, …, x_{75} \in \lbrack4,5\ ;\ 6,5); x_{76}, …, x_{95} \in \lbrack6,5\ ;\ 8,5); x_{96}, …, x_{100} \in \lbrack8,5\ ;\ 10,5).

    Nên tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{25} + x_{26} ight)\in \lbrack 2,5\ ;\4,5).

    Do đó tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là

    Q_{1} = 2,5 + \frac{\frac{100}{4} -17}{33} \cdot (4,5 - 2,5) \approx 2,98

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{75} + x_{76} ight)\in \lbrack 2,5\ ;\4,5).

    x_{75} \in \lbrack4,5\ ;\ 6,5); x_{76} \in \lbrack6,5\ ;\ 8,5).

    Nên Q_{3} = 6,5

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    \Delta_{Q} = Q_{3} - Q_{1} \approx 6,5 - 2,98 =3,52

  • Câu 31: Thông hiểu

    Thống kê quãng đường một xe taxi công nghệ đi mỗi ngày (đơn vị: km) như sau:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Số ngày

    5

    10

    9

    4

    2

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    Ta có:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Số ngày

    5

    10

    9

    4

    2

    Tần số tích lũy

    5

    15

    24

    28

    30

    Ta có: N = 30 \Rightarrow \frac{N}{4} =
\frac{15}{2} suy ra nhóm chứa tứ phân vị thứ nhất là [100; 150)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 100;m = 5,f = 10;c = 150
- 100 = 50

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 100 + \frac{\frac{15}{2} - 5}{10}.50 =112,5

    Cỡ mẫu N = 30 \Rightarrow \frac{3N}{4} =
\frac{45}{2}

    => Nhóm chứa Q_{3} là [150; 200)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 150;m = 15,f = 9;c = 200
- 150 = 50

    \Rightarrow Q_{3} = l +
\frac{\frac{3N}{4} - m}{f}.c = 150 + \frac{\frac{45}{2} - 15}{9}.50 =
\frac{575}{3}.

    Suy ra khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} \approx
79,17

  • Câu 32: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Phương sai của mẫu số liệu là:

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Giá trị đại diện

    10

    30

    50

    70

    90

    Số học sinh

    5

    9

    12

    10

    6

    Số trung bình: \overline{x} = \frac{5.10
+ 9.30 + 12.50 + 10.70 + 6.90}{42} = \frac{360}{7}

    Phương sai: S^{2} = \frac{1}{42}\left(
5.10^{2} + 9.30^{2} + 12.50^{2} + 10.70^{2} + 6.90^{2} ight) - \left(
\frac{360}{7} ight)^{2} \approx 598

  • Câu 33: Thông hiểu

    Cho bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch như sau:

    Cân nặng

    [250; 290)

    [290; 330)

    [330; 370)

    [370; 410)

    [410; 450)

    Số quả

    3

    13

    18

    11

    5

    Tìm khoảng tứ phân vị của mẫu số liệu đã cho?

    Ta có:

    Cân nặng

    [250; 290)

    [290; 330)

    [330; 370)

    [370; 410)

    [410; 450)

    Số quả

    3

    13

    18

    11

    5

    Tần số tích lũy

    3

    16

    34

    45

    50

    Cỡ mẫu N = 50

    Cỡ mẫu \Rightarrow \frac{N}{4} =
12,5

    => Nhóm chứa Q_{1} là [290; 330)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 290;m = 3,f = 13;c = 330
- 290 = 40

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 290 + \dfrac{12,5 - 3}{13}.40 =\dfrac{4150}{13}

    Cỡ mẫu N = 50 \Rightarrow \frac{3N}{4} =
37,5

    => Nhóm chứa Q_{3} là [370; 410)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 370;m = 34,f = 11;c =
410 - 370 = 40

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 370 + \dfrac{37,5 - 34}{11}.40 =\dfrac{4210}{11}.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = \frac{4210}{11} - \frac{4150}{13} =
\frac{9080}{143} \approx 63,5

  • Câu 34: Nhận biết

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C và điểm trung bình của lớp 12D lần lượt là:

    Ta có:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C:

    \overline{x_{C}} = \frac{4.5,5 + 5.6,5 +
3.7,5 + 4.8,5 + 2.9,5}{18} = \frac{65}{9}.

    Điểm trung bình của lớp 12D:

    \overline{x_{D}} = \frac{2.5,5 + 5.6,5 +
4.7,5 + 3.8,5 + 1.9,5}{15} = \frac{217}{30}.

  • Câu 35: Nhận biết

    Cho biểu đồ

    Tính chiều cao trung bình của mẫu số liệu đã cho?

    Ta có:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Chiều cao trung bình là:

    \overline{x} = \frac{3.162 + 5.166 +8.170 + 4.174 + 1.178}{21} \approx 169

  • Câu 36: Nhận biết

    Cho mẫu số liệu ghép nhóm cho bởi bảng sau:

    Nhóm

    [0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    Tần số

    3

    7

    2

    9

    Khoảng biến thiên của mẫu số liệu ghép nhóm này là

    Khoảng biến thiên của mẫu số liệu ghép nhóm là:

    R = 40 – 0 = 40.

  • Câu 37: Thông hiểu

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    Cự li

    [19; 21)

    [21; 23)

    [23; 25)

    [25; 27)

    [27; 29)

    Tần số

    13

    45

    24

    12

    6

    Hãy tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên (kết quả được làm tròn đến hàng phần trăm)

    Đáp án: 2,07

    Đáp án là:

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    Cự li

    [19; 21)

    [21; 23)

    [23; 25)

    [25; 27)

    [27; 29)

    Tần số

    13

    45

    24

    12

    6

    Hãy tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên (kết quả được làm tròn đến hàng phần trăm)

    Đáp án: 2,07

    Ta có:

    Cự li

    [19; 21)

    [21; 23)

    [23; 25)

    [25; 27)

    [27; 29)

    Giá trị đại diện

    20

    22

    24

    26

    28

    Tần số

    13

    45

    24

    12

    6

    Cỡ mẫu: n = 100

    Số trung bình:

    \overline{x} = \frac{13.20 + 45.22 +24.24 + 12.26 + 6.28}{100} = 23,06

    Phương sai:

    s^{2} = \frac{1}{100}\lbrack 13.(20 -23,06)^{2} + 45.(22 - 23,06)^{2}

    + 24.(24 - 23,06)^{2} + 12.(26 -23,06)^{2} + 6.(28 - 23,06)^{2}brack \approx 4,28

    Độ lệch chuẩn: \sigma = \sqrt{4,28}\approx 2,07.

  • Câu 38: Nhận biết

    Điểm trung bình cuối năm của học sinh lớp 12A và 12B được thống kê trong bảng sau:

    Nếu so sánh bảng biến thiên thì học sinh lớp nào có điểm trung bình ít phân tán hơn?

    Ta có:

    Khoảng biến thiên của điểm số học sinh lớp 12A là: 10 – 5 = 5

    Khoảng biến thiên của điểm số học sinh lớp 12B là: 10 – 6 = 4

    Nếu so sánh theo khoảng biến thiên thì điểm trung bình của các học sinh lớp 12B ít phân tán hơn điểm trung bình của các học sinh lớp 12A.

  • Câu 39: Vận dụng

    Cân nặng (đơn vị: kg) của một số lợn con mới sinh thuộc hai giống A và B được cho ở bảng sau.

    Cân nặng

    [1,0; 1,1)

    [1,1; 1,2)

    [1,2; 1,3)

    [1,3; 1,4)

    Giống A

    8

    28

    32

    17

    Giống B

    13

    14

    24

    14

    Chọn đáp án có khẳng định đúng?

    Đối với lợn con giống A

    Cân nặng

    [1,0; 1,1)

    [1,1; 1,2)

    [1,2; 1,3)

    [1,3; 1,4)

    Giống A

    8

    28

    32

    17

    Tần số tích lũy

    8

    36

    68

    85

    Cỡ mẫu N = 85

    Ta có: \frac{N}{4} = \frac{{85}}{4}

    => Nhóm chứa Q_{1} là [1,1; 1,2)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,1;m = 8,f = 28;c = 1,2
- 1,1 = 0,1

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 1,1 + \dfrac{\dfrac{85}{4} - 8}{28}.0,1\approx 1,15

    Ta có: \frac{3N}{4} = \frac{3.85}{4} =
\frac{255}{4}

    => Nhóm chứa Q_{3} là [1,2; 1,3)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,2;m = 36,f = 32;c =
1,3 - 1,2 = 0,1

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 1,2 + \dfrac{\dfrac{255}{4} - 36}{32}.0,1\approx 1,29.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm A là \Delta Q_{A} = Q_{3} - Q_{1} \approx
0,14

    Đối với lợn con giống B

    Cân nặng

    [1,0; 1,1)

    [1,1; 1,2)

    [1,2; 1,3)

    [1,3; 1,4)

    Giống B

    13

    14

    24

    14

    Tần số tích lũy

    13

    27

    51

    65

    Cỡ mẫu N = 65

    Ta có: \frac{N}{4} =
\frac{65}{4}

    => Nhóm chứa Q_{1} là [1,1; 1,2)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,1;m = 13;f = 14;c =
1,2 - 1,1 = 0,1

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 1,1 + \dfrac{\dfrac{65}{4} - 13}{14}.0,1\approx 1,123

    Ta có: \frac{3N}{4} = \frac{3.65}{4} =
\frac{195}{4}

    => Nhóm chứa Q_{3} là [1,2; 1,3)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,2;m = 27;f = 24;c =
1,3 - 1,2 = 0,1

    \Rightarrow {Q_3} = l + \frac{{\frac{{3N}}{4} - m}}{f}.c= 1,2 + \frac{{\dfrac{{195}}{4} - 27}}{{24}}.0,1 \approx 1,29

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm B là \Delta Q_{B} = Q_{3} - Q_{1} \approx
0,167

    Ta thấy \Delta Q_{A} < \Delta
Q_{B} nên cân nặng của lợn con mới sinh thuộc giống A đồng đều hơn cân nặng của lợn con mới sinh thuộc giống B.

  • Câu 40: Thông hiểu

    Biểu đồ sau biểu diễn lượng khách hàng đặt bàn online mỗi ngày trong quý I của năm 2024 tại một cửa hàng:

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Biểu đồ sau biểu diễn lượng khách hàng đặt bàn online mỗi ngày trong quý I của năm 2024 tại một cửa hàng:

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo