Đề kiểm tra 45 phút Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Một doanh nghiệp địa phương muốn hướng dịch vụ của mình đến các gia đình có mức thu nhập ở tầm trung, tức là 50% các hộ gia đình có mức thu nhập ở chính giữa so với tất cả các hộ gia đình của địa phương. Hỏi doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Một doanh nghiệp địa phương muốn hướng dịch vụ của mình đến các gia đình có mức thu nhập ở tầm trung, tức là 50% các hộ gia đình có mức thu nhập ở chính giữa so với tất cả các hộ gia đình của địa phương. Hỏi doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Thông hiểu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Độ lệch chuẩn của mẫu số liệu là:

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Giá trị đại diện

    6

    8

    10

    12

    14

    Số ngày

    2

    7

    7

    3

    1

    Số trung bình: \overline{x} = \frac{2.6 +
7.8 + 7.10 + 3.12 + 1.14}{20} = \frac{47}{5}

    Phương sai:

    S^{2} = \frac{2.6^{2} + 7.8^{2} +
7.10^{2} + 3.12^{2} + 1.14^{2}}{20} - \left( \frac{47}{5} ight)^{2} =
4,04

    Độ lệch chuẩn:

    S = 2

  • Câu 3: Nhận biết

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Khoảng biến thiên của mẫu số liệu đã cho là: R = 250 - 0 = 250.

  • Câu 4: Nhận biết

    Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:

    42

    43,4

    43,4

    46,5

    46,7

    46,8

    47,5

    47,7

    48,1

    48,4

    50,8

    51,1

    52,7

    53,9

    54,8

    57,6

    57,5

    59,6

    60,3

    61,1

    Lập bảng tần số ghép nhóm với nhóm đầu [42; 46) và độ dài mỗi nhóm bằng 4. Tìm khoảng biến thiên của mẫu dữ liệu ghép nhóm?

    Ta lập được bảng tần số ghép nhóm như sau:

    Tốc độ

    [42; 46)

    [46; 50)

    [50; 54)

    [54; 58)

    [58; 62)

    Số xe

    3

    7

    4

    3

    3

    Vậy khoảng biến thiên của mẫu dữ liệu ghép nhóm là R = 62 - 42 = 20.

  • Câu 5: Thông hiểu

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tìm phương sai của mẫu số liệu ghép nhóm đó? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tìm phương sai của mẫu số liệu ghép nhóm đó? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Thông hiểu

    Kết quả đo chiều cao của 100 cây thực nghiệm 2 năm tuổi được cho trong bảng sau:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Xác định khoảng tứ phân vị của mẫu số liệu?

    Ta có:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Tần số tích lũy

    5

    17

    42

    86

    100

    N = 100 \Rightarrow \frac{N}{4} =
25 => Nhóm chứa tứ phân vị thứ nhất là: [8,8; 9,0)

    \Rightarrow \left\{ \begin{matrix}l = 8,8,\dfrac{N}{4} = 25,m = 17,f = 25 \\c = 9,0 - 8,8 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c \Rightarrow Q_{1} = 8,8 + \frac{25 -17}{25}.0,2 = \frac{1108}{125}

    \frac{3N}{4} = 75 => Nhóm chứa tứ phân vị thứ ba là: [9,0; 9,2)

    \Rightarrow \left\{ \begin{matrix}l = 9,0,\dfrac{3N}{4} = 75,m = 42,f = 44 \\c = 9,2 - 9,0 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\frac{\dfrac{3N}{4} - m}{f}.c \Rightarrow Q_{3} = 9,0 + \frac{75 -42}{44}.0,2 = \frac{183}{20}

    Vậy khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} = 0,286.

  • Câu 7: Nhận biết

    Cho bảng thống kê chiều cao (đơn vị: cm) của học sinh lớp 12A và lớp 12B như sau:

    Chiều cao

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    [180; 185)

    12A

    2

    7

    12

    3

    0

    1

    12B

    5

    9

    8

    2

    1

    0

    Giả sử khoảng biến thiên của mẫu số liệu chiều cao học sinh lớp 12A và 12B lần lượt là R_{1};R_{2}. Chọn kết luận đúng?

    Khoảng biến thiên của mẫu số liệu chiều cao lớp 12A là R_{1} = 185 - 155 = 30.

    Khoảng biến thiên của mẫu số liệu chiều cao lớp 12B là R_{2} = 180 - 155 = 25.

    Vậy R_{1} > R_{2} là kết luận đúng.

  • Câu 8: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Khi đó giá trị tứ phân vị thứ ba là:

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{3N}{4} =
31,5

    => Nhóm chứa Q_{3} là [60; 80)

    (Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 60;m = 26,f = 10;c = 80
- 60 = 20

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 60 + \frac{31,5 - 26}{10}.20 =71.

  • Câu 9: Nhận biết

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Tuổi thọ

    [14;15)

    [15;16)

    [16;17)

    [17;18)

    [18;19)

    Số con

    1

    3

    8

    6

    2

    Khoảng biến thiên của mẫu số liệu ghép nhóm đã cho là:

    Khoảng biến thiên: 19 - 14 = 5.

  • Câu 10: Nhận biết

    Cho biểu đồ

    Hoàn thảnh bảng số liệu theo mẫu sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Đáp án là:

    Cho biểu đồ

    Hoàn thảnh bảng số liệu theo mẫu sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

     Hoàn thảnh bảng số liệu như sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

  • Câu 11: Thông hiểu

    Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Chọn kết luận đúng?

    Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

     

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

     

    Phân xưởng A

    4

    5

    5

    4

    2

    N = 20

    Phân xưởng B

    3

    6

    5

    5

    1

    N’ = 20

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:

    \overline{x_{A}} = \frac{4.5,5 + 5.6,5 +
5.7,5 + 4.8,5 + 2.9,5}{20} = 7,25

    Phương sai của mẫu số liệu ghép nhóm là:

    {S_{A}}^{2} = \frac{1}{20}.\left(
4.5,5^{2} + 5.6,5^{2} + 5.7,5^{2} + 4.8,5^{2} + 2.9,5^{2} ight) -
7,25^{2} = 1,5875

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    S_{A} = \sqrt{1,5875} \approx
1,26

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:

    \overline{x_{B}} = \frac{3.5,5 + 6.6,5 +
5.7,5 + 5.8,5 + 1.9,5}{20} = 7,25

    Phương sai của mẫu số liệu ghép nhóm là:

    {S_{B}}^{2} = \frac{1}{20}.\left(
3.5,5^{2} + 6.6,5^{2} + 5.7,5^{2} + 5.8,5^{2} + 1.9,5^{2} ight) -
7,25^{2} = 1,2875

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    S_{B} = \sqrt{1,2875} \approx
1,13

    Vậy kết luận đúng là: S_{A} \approx
1,26;S_{B} \approx 1,13.

  • Câu 12: Nhận biết

    Cho bảng thống kê kết quả cự li ném bóng của một người như sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số lần

    13

    45

    24

    12

    6

    Cự li ném bóng trung bình của người đó là:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số lần

    13

    45

    24

    12

    6

    Cự li trung bình là:

    \overline{x} = \frac{13.9,25 + 45.19,75
+ 24.20,25 + 12.20,75 + 6.21,25}{100} \approx 20,02

  • Câu 13: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm được ghi trong bảng dưới đây:

    Khoảng

    Tần số

    Nhỏ hơn 10

    10

    Nhỏ hơn 20

    20

    Nhỏ hơn 30

    30

    Nhỏ hơn 40

    40

    Nhỏ hơn 50

    50

    Nhỏ hơn 60

    30

    Tìm khoảng tứ phân vị của mẫu số liệu đã cho?

    Ta có:

    Nhóm dữ liệu

    Tần số

    Tần số tích lũy

    (0; 10]

    10

    10

    (10; 20]

    20

    30

    (20; 30]

    30

    60

    (30; 40]

    50

    110

    (40; 50]

    40

    150

    (50; 60]

    30

    180

    Tổng

    N = 180

     

    Ta có: \frac{N}{4} = \frac{180}{4} =
45

    => Nhóm chứa tứ phân vị thứ nhất là: (20; 30]

    Khi đó: \left\{ \begin{matrix}
l = 20;\frac{N}{4} = 45 \\
m = 30,f = 30,d = 10 \\
\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \frac{\frac{N}{4} -
m}{f}.d

    \Rightarrow Q_{1} = 20 + \frac{45 -
30}{30}.10 = 25

    Ta có: \frac{3N}{4} = \frac{3.180}{4} =
135

    => Nhóm chứa tứ phân vị thứ ba là: (40; 50]

    Khi đó: \left\{ \begin{matrix}
l = 40;\frac{3N}{4} = 30 \\
m = 110,f = 40,d = 10 \\
\end{matrix} ight.

    Tứ phân vị thứ ba là:

    Q_{3} = l + \frac{\frac{3N}{4} -
m}{f}.d

    \Rightarrow Q_{3} = 40 + \frac{135 -
110}{40}.10 = \frac{185}{4}

    \Rightarrow \Delta_{Q} = Q_{3} - Q_{1} =
\frac{185}{4} - 25 = 21,25

  • Câu 14: Vận dụng

    Cho biểu đồ thống kê thời gian tập thể dục buổi sáng của hai người A và B

    Gọi khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của A và B lần lượt là \Delta_{Q_{A}};\Delta_{Q_{B}}. Chọn kết luận đúng?

    Ta có:

    Đối tượng

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    A

    5

    12

    8

    3

    2

    Tần số tích lũy

    5

    17

    25

    28

    30

    Cỡ mẫu N = 30 \Rightarrow \frac{N}{4} =
7,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 5,f = 12;c = 25 -
20 = 5

    \Rightarrow Q_{1} = l +
\frac{\frac{N}{4} - m}{f}.c = 20 + \frac{7,5 - 5}{12}.5 =
\frac{505}{24}

    Cỡ mẫu \frac{3N}{4} = 22,5

    => Nhóm chứa Q_{3} là [25; 30)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 25;m = 17,f = 8;c =
5

    \Rightarrow Q_{3} = l +
\frac{\frac{3N}{4} - m}{f}.c = 25 + \frac{22,5 - 17}{8}.5 =
\frac{455}{16}.

    Vậy khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của A là:

    \Delta_{Q_{A}} = Q_{3} - Q_{1} =
\frac{355}{48} \approx 7,4.

    Đối tượng

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    B

    0

    25

    5

    0

    0

    Tần số tích lũy

    0

    25

    30

    0

    0

    Cỡ mẫu N = 30 \Rightarrow \frac{N}{4} =
7,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 0,f = 25;c = 25 -
20 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 20 + \frac{7,5 - 0}{25}.5 =\frac{43}{2}

    Cỡ mẫu \frac{3N}{4} = 22,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 0,f = 25;c = 25 -
20 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 20 + \dfrac{22,5 - 0}{25}.5 =\dfrac{49}{2}.

    Vậy khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của B là:

    \Delta_{Q_{B}} = Q_{3} - Q_{1} =
3.

    Vậy kết luận đúng là: \Delta_{Q_{A}} >
\Delta_{Q_{B}}.

  • Câu 15: Vận dụng

    Dưới đây là thống kê thời gian 100 lần đi làm bằng xe bus từ nhà đến trường của bạn Lan:

    Thời gian (phút)

    [15; 81)

    [18; 21)

    [21; 24)

    [24; 27)

    [27; 30)

    [30; 33)

    Số lượt

    22

    38

    27

    8

    4

    1

    Giá trị nào sau đây là giá trị ngoại lệ của mẫu số liệu?

    Ta có:

    Thời gian (phút)

    [15; 81)

    [18; 21)

    [21; 24)

    [24; 27)

    [27; 30)

    [30; 33)

    Số lượt

    22

    38

    27

    8

    4

    1

    Tần số tích lũy

    22

    60

    87

    95

    99

    100

    Cỡ mẫu N = 100 \Rightarrow \frac{N}{4} =
25

    => Nhóm chứa tứ phân vị thứ nhất là [18; 21)

    Do đó: l = 18;m = 22,f = 38;c = 21 - 18 =
3

    Khi đó tứ phân vị thứ nhất là:

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 18 + \frac{25 - 22}{38}.3 =\frac{693}{38}

    N = 100 \Rightarrow \frac{3N}{4} =
75

    => Nhóm chứa tứ phân vị thứ ba là [21; 24)

    Do đó: l = 21;m = 60,f = 27;c =
3

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +
\frac{\frac{3N}{4} - m}{f}.c = 21 + \frac{75 - 60}{27}.3 =
\frac{68}{3}

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q} = Q_{3} - Q_{1} \approx
4,43

    Trong một lần duy nhất Lan đi hết 29 phút, thời gian đi của Lan thuộc nhóm [30; 33)

    Q_{3} + 1,5\Delta Q = \frac{6683}{228}
< 30 nên thời gian của lần Lan đi hết 29 phút là giá trị ngoại lệ của mẫu số liệu ghép nhóm.

  • Câu 16: Nhận biết

    Một mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng:

    Mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng \sqrt{16} = 4.

  • Câu 17: Thông hiểu

    Dũng là học sinh rất giỏi chơi rubik, bạn có thể giải nhiều loại khối rubik khác nhau. Trong một lần tập luyện giải khối rubik 3 x 3, bạn Dũng đã tự thống kê lại thời gian giải rubik trong 25 lần giải liên tiếp ở bảng sau:

    Thời gian giải rubik (giây)

    [8; 10)

    [10; 12)

    [12; 14)

    [14; 16)

    [16; 18)

    Số lần

    4

    6

    8

    4

    3

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    Ta có:

    Thời gian giải rubik (giây)

    [8; 10)

    [10; 12)

    [12; 14)

    [14; 16)

    [16; 18)

    Số lần

    4

    6

    8

    4

    3

    Tần số tích lũy

    4

    10

    18

    22

    25

    Cỡ mẫu N = 25

    Cỡ mẫu \Rightarrow \frac{N}{4} =
\frac{25}{4}

    => Nhóm chứa Q_{1} là [10; 12)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 10;m = 4,f = 6;c =
2

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 10 + \dfrac{\dfrac{25}{4} - 4}{6}.2 =10,75

    Cỡ mẫu N = 18 \Rightarrow \frac{3N}{4} =
\frac{3.25}{4}

    => Nhóm chứa Q_{3} là [14; 16)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 14;m = 18,f = 4;c =
2

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 14 + \dfrac{\dfrac{3.18}{4} - 18}{4}.2 =14,375.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} = 3,63

  • Câu 18: Nhận biết

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    Tốc độ

    Tần số

    40 ≤ x < 50

    4

    50 ≤ x < 60

    5

    60 ≤ x < 70

    7

    70 ≤ x < 80

    4

    Xác định khoảng biến thiên R của mẫu số liệu đã cho?

    Ta có:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là R = 80 - 40 = 40

  • Câu 19: Thông hiểu

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Tần số

    13

    45

    24

    12

    6

    Phương sai của mẫu số liệu ghép nhóm trên gần với giá trị nào sau đây nhất?

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Tần số

    13

    45

    24

    12

    6

    Cỡ mẫu là n = 13 + 45 + 24 + 12 + 6 = 100.

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{1}{100}\lbrack
13.19,25 + 45.19,75

    + 24.20,25 + 12.20,75 + 6.21,25) =
20,015

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{100}\lbrack
13.(19,25)^{2} + 45.(19,25)^{2}

    + 24.(19,25)^{2} + 12.(19,25)^{2} +
6.(19,25)^{2}brack - (20,015)^{2} \approx 0,277

  • Câu 20: Nhận biết

    Số đặc trưng nào không sử dụng thông tin của nhóm số liệu đầu tiên và nhóm số liệu cuối cùng?

    Số đặc trưng không sử dụng thông tin của nhóm số liệu đầu tiên và nhóm số liệu cuối cùng là khoảng tứ phân vị.

  • Câu 21: Thông hiểu

    Trường THPT A khảo sát chiều cao của học sinh khối 10, kết quả ghi lại chiều cao (tính theo đơn vị cm) của học sinh lớp 10A được cho trong bảng sau:

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm là R = 45. Sai||Đúng

    b) Số phần tử của mẫu là n = 30. Sai||Đúng

    c) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là Q_{1} = \frac{3685}{24}. Đúng||Sai

    d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} \approx 8,62. Đúng||Sai

    Đáp án là:

    Trường THPT A khảo sát chiều cao của học sinh khối 10, kết quả ghi lại chiều cao (tính theo đơn vị cm) của học sinh lớp 10A được cho trong bảng sau:

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm là R = 45. Sai||Đúng

    b) Số phần tử của mẫu là n = 30. Sai||Đúng

    c) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là Q_{1} = \frac{3685}{24}. Đúng||Sai

    d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} \approx 8,62. Đúng||Sai

    a) Sai

    Ta có R = 170 - 140 = 30.

    b) Sai

    Ta có n = 45.

    c) Đúng

    Ta có n = 45 \Rightarrow \frac{n}{4} =
11,25 \Rightarrow 7 < 11,25 < 13

    => Nhóm ba là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 11,25

    Nhóm chứa tứ phân vị thứ nhất là nhóm \lbrack 150;155)

    \Rightarrow Q_{1} = 150 +
\frac{\frac{45}{4} - 7}{6}.5 = \frac{3685}{24}

    d) Đúng

    Ta có n = 45 \Rightarrow \frac{3n}{4} =
33,75 \Rightarrow 29 < 33,75 < 40

    => Nhóm năm là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 33,75

    Nhóm chứa tứ phân vị thứ ba là nhóm \lbrack 160;165)

    \Rightarrow Q_{3} = 160 +
\frac{\frac{3.45}{4} - 29}{11}.5 = \frac{7135}{44}

    Khoảng tứ phân vị của mẫu số liệu là \Delta Q = Q_{3} - Q_{1} = \frac{7135}{44} -
\frac{3685}{24} = \frac{2275}{264} \approx 8,62

  • Câu 22: Thông hiểu

    Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khỏe. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:

    Phương sai của mẫu số liệu ghép nhóm là (làm tròn đến hàng phần trăm)

    Cỡ mẫu: n = 20.

    Số trung bình của mẫu số liệu ghép nhóm là

    \overline{x} = \frac{2,85.3 + 3,15.6 +
3,45.5 + 3,75.4 + 4,05.2}{20} = 3,39.

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{20}\left( 2,85^{2}.3 +
3,15^{2}.6 + 3,45^{2}.5 + 3,75^{2}.4 + 4,05^{2}.2 ight) - 3,39^{2}
\approx 0,13

  • Câu 23: Nhận biết

    Cho mẫu số liệu ghép nhóm:

    Nhóm

    Tần số

    (0;10]

    8

    (10;20]

    14

    (20;30]

    12

    (30;40]

    9

    (40;50]

    7

    Tìm khoảng biến thiên?

    Khoảng biến thiên của mẫu số liệu đã cho là: R = 50 - 0 = 50.

  • Câu 24: Nhận biết

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Tính thời gian sử dụng pin trung bình?

    Ta có:

    Thời gian (giờ)

    [7,2; 7,4)

    [7,4; 7,6)

    [7,6; 7,8)

    [7,8; 8,0)

    Giá trị đại diện

    7,3

    7,5

    7,7

    7,9

    Số máy vi tính

    2

    4

    7

    5

    Thòi gian trung bình là:

    \overline{x} = \frac{2.7,3 + 4.7,5 +
7.7,7 + 5.7,9}{18} = \frac{23}{3} \approx 7,7 giờ

  • Câu 25: Thông hiểu

    Điểm trung bình cuối năm của học sinh lớp 12A và 12B được thống kê trong bảng sau:

    Nếu so sánh theo độ lệch chuẩn thì học sinh lớp nào có điểm trung bình ít phân tán hơn?

    Ta có:

    Xét lớp 12A

    Cỡ mẫu n_{1} = 40

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x_{1}} = \frac{1.5,5 + 11.7,5+ 22.8,5 + 6.9,5}{40} = 8,3

    Phương sai của mẫu số liệu ghép nhóm là:

    {S_{1}}^{2} = \frac{1}{40}\left(1.5,5^{2} + 11.7,5^{2} + 22.8,5^{2} + 6.9,5^{2} ight) - 8,3^{2} =0,61

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là: S_{1} = \sqrt{0,61}

    Xét lớp 12B

    Cỡ mẫu n_{2} = 40

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x_{2}} = \frac{6.6,5 + 8.7,5 +14.8,5 + 12.9,5}{40} = 8,3

    Phương sai của mẫu số liệu ghép nhóm là:

    {S_{2}}^{2} = \frac{1}{40}\left(6.6,5^{2} + 8.7,5^{2} + 14.8,5^{2} + 12.9,5^{2} ight) - 8,3^{2} =1,06

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là: S_{2} = \sqrt{1,06}

    S_{1} < S_{2} nên nếu so sánh độ lệch chuẩn thì học sinh lớp 12A có điểm trung bình ít phân tán hơn học sinh lớp 12B.

  • Câu 26: Thông hiểu

    Cho bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch như sau:

    Cân nặng

    [250; 290)

    [290; 330)

    [330; 370)

    [370; 410)

    [410; 450)

    Số quả

    3

    13

    18

    11

    5

    Tìm khoảng tứ phân vị của mẫu số liệu đã cho?

    Ta có:

    Cân nặng

    [250; 290)

    [290; 330)

    [330; 370)

    [370; 410)

    [410; 450)

    Số quả

    3

    13

    18

    11

    5

    Tần số tích lũy

    3

    16

    34

    45

    50

    Cỡ mẫu N = 50

    Cỡ mẫu \Rightarrow \frac{N}{4} =
12,5

    => Nhóm chứa Q_{1} là [290; 330)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 290;m = 3,f = 13;c = 330
- 290 = 40

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 290 + \dfrac{12,5 - 3}{13}.40 =\dfrac{4150}{13}

    Cỡ mẫu N = 50 \Rightarrow \frac{3N}{4} =
37,5

    => Nhóm chứa Q_{3} là [370; 410)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 370;m = 34,f = 11;c =
410 - 370 = 40

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 370 + \dfrac{37,5 - 34}{11}.40 =\dfrac{4210}{11}.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = \frac{4210}{11} - \frac{4150}{13} =
\frac{9080}{143} \approx 63,5

  • Câu 27: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Phương sai của mẫu số liệu là:

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Giá trị đại diện

    10

    30

    50

    70

    90

    Số học sinh

    5

    9

    12

    10

    6

    Số trung bình: \overline{x} = \frac{5.10
+ 9.30 + 12.50 + 10.70 + 6.90}{42} = \frac{360}{7}

    Phương sai: S^{2} = \frac{1}{42}\left(
5.10^{2} + 9.30^{2} + 12.50^{2} + 10.70^{2} + 6.90^{2} ight) - \left(
\frac{360}{7} ight)^{2} \approx 598

  • Câu 28: Nhận biết

    Thống kê quãng đường một xe taxi công nghệ đi mỗi ngày (đơn vị: km) như sau:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Số ngày

    5

    10

    9

    4

    2

    Tìm số trung bình của mẫu số liệu ghép nhóm?

    Ta có:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Giá trị đại diện

    75

    125

    175

    225

    275

    Số ngày

    5

    10

    9

    4

    2

    Số trung bình của mẫu số liệu ghép nhóm:

    \overline{x} = \frac{5.75 + 10.125 +
9.175 + 4.225 + 2.275}{30} = 155

  • Câu 29: Thông hiểu

    Một phòng khám tư thống kê số bệnh nhân đến khám bệnh mỗi ngày trong một tháng được ghi trong bảng sau:

    Số bệnh nhân

    Số ngày

    [0,5; 10,5)

    7

    [10,5; 20,5)

    8

    [20,5; 30,5)

    7

    [30,5; 40,5)

    6

    [40,5; 50,5)

    2

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm này? (Làm tròn các kết quả đến hàng phần chục).

    Ta có:

    Số bệnh nhân

    Số ngày

    Tần số tích lũy

    [0,5; 10,5)

    7

    7

    [10,5; 20,5)

    8

    15

    [20,5; 30,5)

    7

    22

    [30,5; 40,5)

    6

    28

    [40,5; 50,5)

    2

    30

    Cỡ mẫu N = 30

    Ta có: \frac{N}{4} = \frac{{30}}{4}

    => Nhóm chứa Q_{1} là [10,5; 20,5)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 10,5;m = 7,f = 8;c =
20,5 - 10,5 = 10

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 10,5 + \dfrac{\dfrac{30}{4} - 7}{8}.10\approx 11,1

    Ta có: \frac{3N}{4} = \frac{3.30}{4} =
\frac{90}{4}

    => Nhóm chứa Q_{3} là [30,5; 40,5)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 30,5;m = 22,f = 6;c =
40,5 - 30,5 = 10

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 30,5 + \dfrac{\dfrac{90}{4} - 22}{6}.10\approx 31,3.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} \approx
20,2

  • Câu 30: Nhận biết

    Cho biểu đồ

    Tính chiều cao trung bình của mẫu số liệu đã cho?

    Ta có:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Chiều cao trung bình là:

    \overline{x} = \frac{3.162 + 5.166 +8.170 + 4.174 + 1.178}{21} \approx 169

  • Câu 31: Nhận biết

    Dũng là một học sinh rất giỏi chơi rubik, bạn có thể giải nhiều loại khối rubik khác nhau. Trong một lần tập luyện giải khối rubik, bạn Dũng đã tự thống kê lại thời gian giải rubik trong 25 lần liên tiếp ở bảng sau:

    Thời gian giải rubik (giây)

    \lbrack 8;10) \lbrack 10 ; 12) \lbrack 12;14) \lbrack 14;16) \lbrack 16;18)

    Số lần

    4 6 8 4 3

    Khoảng biến thiên của mẫu số liệu ghép nhóm nhận giá trị nào trong các giá trị sau đây?

    Khoảng biến thiên của mẫu số liệu ghép nhóm là R=18-8=10.

  • Câu 32: Nhận biết

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Tìm khoảng biến thiên của mẫu số liệu đã cho?

    Khoảng biến thiên của mẫu số liệu bằng R
= 100 - 0 = 100.

  • Câu 33: Nhận biết

    Thống kê đường kính thân gỗ của một số cây xoan đào 7 năm tuổi được trồng ở một lâm trường ở bảng 1.

    Đường kính

    \lbrack 40;45) \lbrack 45;50) \lbrack 50;55) \lbrack 55;60) \lbrack 60;65)

    Tần số

    5

    20

    18

    7

    3

    Hãy tìm khoảng biến thiên của mẫu số liệu ghép nhóm trên.

    Khoảng biến thiên của mẫu số liệu ghép nhóm là

    a_{m + 1} - a_{1} = 65 - 40 =
25.

  • Câu 34: Thông hiểu

    Thời gian hoàn thành bài kiểm tra môn Toán của các bạn trong lớp 12A được cho trong bảng sau:

    Thời gian (phút)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số học sinh

    9

    17

    8

    6

    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 7,2

    Đáp án là:

    Thời gian hoàn thành bài kiểm tra môn Toán của các bạn trong lớp 12A được cho trong bảng sau:

    Thời gian (phút)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số học sinh

    9

    17

    8

    6

    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 7,2

    Cỡ mẫu là n = 9 + 17 + 8 + 6 =
40. Gọi x_{1},\ \ x_{2},\ \ ...,\ \
x_{40} là thời gian hoàn thành bài kiểm tra môn Toán của 40 học sinh và giả sử rằng dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{10} + x_{11} ight) nên nhóm chứa tứ phân vị thứ nhất là nhóm \lbrack 30;35) và ta có: Q_{1} = 30 + \frac{10 - 9}{17}.5 \approx
30,3

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{30} + x_{31} ight) nên nhóm chứa tứ phân vị thứ ba là nhóm \lbrack 35;40) và ta có: Q_{3} = 35 + \frac{30 - 26}{8}.5 =
37,5

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} = 7,2.

  • Câu 35: Nhận biết

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Tần số

    8

    9

    12

    10

    11

    Tính số trung bình của mẫu số liệu?

    Cỡ mẫu N = 50

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Tần số

    8

    9

    12

    10

    11

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{8.121 + 9.123 +
12.125 + 10.127 + 11.129}{50} = 125,28

  • Câu 36: Thông hiểu

    Kết quả đo chiều cao của học sinh lớp 12A được ghi lại trong bảng như sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho là:

    Ta có:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Chiều cao trung bình là:

    \overline{x} = \frac{3.162 + 5.166 +
8.170 + 4.174 + 1.178}{21} \approx 169

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{21}\left( 3.162^{2} +
5.166^{2} + 8.170^{2} + 4.174^{2} + 1.178^{2} ight) - 169^{2} \approx
18,14

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là: S \approx 4,26.

  • Câu 37: Nhận biết

    Kết quả đo chiều cao của 50 cây keo trong vườn được thống kê lại trong bảng sau:

    Chiều cao (cm)

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Số cây

    16

    4

    3

    6

    21

    Tính chiều cao trung bình của 50 cây keo trên?

    Cỡ mẫu N = 50

    Chiều cao (cm)

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Số cây

    16

    4

    3

    6

    21

    Chiều cao trung bình là:

    \overline{x} = \frac{16.121 + 4.123 +
3.125 + 6.127 + 21.129}{50} = 125,28.

  • Câu 38: Vận dụng

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 39: Nhận biết

    Điểm trung bình cuối năm của học sinh lớp 12A và 12B được thống kê trong bảng sau:

    Nếu so sánh bảng biến thiên thì học sinh lớp nào có điểm trung bình ít phân tán hơn?

    Ta có:

    Khoảng biến thiên của điểm số học sinh lớp 12A là: 10 – 5 = 5

    Khoảng biến thiên của điểm số học sinh lớp 12B là: 10 – 6 = 4

    Nếu so sánh theo khoảng biến thiên thì điểm trung bình của các học sinh lớp 12B ít phân tán hơn điểm trung bình của các học sinh lớp 12A.

  • Câu 40: Vận dụng

    Cho mẫu số liệu thống kê chiều cao (đơn vị: cm) của các học sinh lớp 12A, 12B và 12C của một trường THPT như bảng sau

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12A

    1

    13

    18

    5

    3

    0

    Số học sinh 12B

    0

    12

    20

    7

    1

    0

    Số học sinh 12C

    1

    8

    12

    15

    3

    1

    Xét tính đúng, sai các mệnh đề sau:

    (a) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B. Đúng||Sai

    (b) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12B phân tán hơn so với lớp 12C. Sai|| Đúng

    (c) Ở lớp 12B có một học sinh có chiều cao là 173 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12B. Đúng||Sai

    (d) Ở lớp 12C có một học sinh có chiều cao là 177 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12C. Sai|| Đúng

    Đáp án là:

    Cho mẫu số liệu thống kê chiều cao (đơn vị: cm) của các học sinh lớp 12A, 12B và 12C của một trường THPT như bảng sau

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12A

    1

    13

    18

    5

    3

    0

    Số học sinh 12B

    0

    12

    20

    7

    1

    0

    Số học sinh 12C

    1

    8

    12

    15

    3

    1

    Xét tính đúng, sai các mệnh đề sau:

    (a) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B. Đúng||Sai

    (b) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12B phân tán hơn so với lớp 12C. Sai|| Đúng

    (c) Ở lớp 12B có một học sinh có chiều cao là 173 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12B. Đúng||Sai

    (d) Ở lớp 12C có một học sinh có chiều cao là 177 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12C. Sai|| Đúng

    Xét mẫu số liệu thống kê chiều cao của học sinh lớp 12A

    Ta có:

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12A

    1

    13

    18

    5

    3

    0

    Tần số tích lũy

    1

    14

    32

    37

    40

    40

    Cỡ mẫu N = 40

    Ta có: \frac{N}{4} = 10

    => Nhóm chứa Q_{1} là [155; 160)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 155;m = 1,f = 13;c = 160
- 155 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 155 + \frac{10 - 1}{13}.5 =\frac{2060}{13}

    Ta có: \frac{3N}{4} = 30

    => Nhóm chứa Q_{3} là [160; 165)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 160;m = 14,f = 18;c =
165 - 160 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 160 + \frac{30 - 14}{18}.5 =\frac{1480}{9}.

    Vậy khoảng tứ phân vị của mẫu số liệu nhóm A là: \Delta Q_{A} = \frac{700}{117}

    Xét mẫu số liệu thống kê chiều cao của học sinh lớp 12B

    Ta có:

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12B

    0

    12

    20

    7

    1

    0

    Tần số tích lũy

    0

    12

    32

    39

    40

    40

    Cỡ mẫu N = 40

    Ta có: \frac{N}{4} = 10

    => Nhóm chứa Q_{1} là [155; 160)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 155;m = 0,f = 12;c = 160
- 155 = 5

    \Rightarrow Q_{1} = l +
\frac{\frac{N}{4} - m}{f}.c = 155 + \frac{10 - 0}{12}.5 =
\frac{955}{6}

    Ta có: \frac{3N}{4} = 30

    => Nhóm chứa Q_{3} là [160; 165)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 160;m = 12,f = 20;c =
165 - 160 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 160 + \dfrac{30 - 12}{20}.5 =\dfrac{329}{2}.

    Vậy khoảng tứ phân vị của mẫu số liệu nhóm B là: \Delta Q_{B} = \frac{16}{3}

    Xét mẫu số liệu thống kê chiều cao của học sinh lớp 12C

    Ta có:

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12C

    1

    8

    12

    15

    3

    1

    Tần số tích lũy

    1

    9

    21

    36

    39

    40

    Cỡ mẫu N = 40

    Ta có: \frac{N}{4} = 10

    => Nhóm chứa Q_{1} là [160; 165)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 160;m = 9,f = 12;c = 165
- 160 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 160 + \dfrac{10 - 9}{12}.5 =\dfrac{1925}{12}

    Ta có: \frac{3N}{4} = 30

    => Nhóm chứa Q_{3} là [165; 170)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 165;m = 21,f = 15;c =
170 - 165 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 165 + \dfrac{30 - 21}{15}.5 =168.

    Vậy khoảng tứ phân vị của mẫu số liệu nhóm C là: \Delta Q_{C} = \frac{91}{12}

     

    (a) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B.

    Ta có: \Delta Q_{A} > \Delta
Q_{B}. Do đó, mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B.

    Chọn ĐÚNG.

    (b) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12B phân tán hơn so với lớp 12C.

    Ta có: \Delta Q_{B} < \Delta
Q_{C}. Do đó, mẫu số liệu thống kê chiều cao của học sinh lớp 12C phân tán hơn so với lớp 12B.

    Chọn SAI.

    (c) Ở lớp 12B có một học sinh có chiều cao là 173 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12B.

    Xét mẫu số liệu lớp 12B, ta có \Delta
Q_{B} = \frac{16}{3}

    Khi đó, giá trị ngoại lệ là các giá trị x
> Q_{3} + 1,5.\Delta Q_{B} \Rightarrow x > \frac{329}{2} +
1,5.\frac{16}{3} \Rightarrow x > 172,5

    Do đó, giá trị 173 cm là giá trị ngoại lệ của mẫu số liệu lớp 12B.

    Chọn ĐÚNG.

    (d) Ở lớp 12C có một học sinh có chiều cao là 177 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12C.

    Xét mẫu số liệu lớp 12C, ta có \Delta
Q_{C} = \frac{91}{12}

    Khi đó, giá trị ngoại lệ là các giá trị x
> Q_{3} + 1,5.\Delta Q_{C} \Rightarrow x > 168 + 1,5.\frac{91}{12}
\Rightarrow x > 179,375

    Do đó, giá trị 177cm không là giá trị ngoại lệ của mẫu số liệu lớp 12C.

    Chọn SAI.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo