Đề kiểm tra 45 phút Chương 3 Các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 3. Các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Kiểm lâm thực hiện đo đường kính của một số cây thân gỗ tại hai khu vực A và B thu được kết quả như sau:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Đường kính trung bình của cây tại hai khu vực A và B lần lượt là:

    Ta có:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    Giá trị đại diện

    31

    33

    35

    37

    39

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Suy ra

    \overline{x_{A}} = \frac{25.31 + 38.33 +
20.35 + 10.37 + 7.39}{100} = 33,72

    \overline{x_{B}} = \frac{25.31 + 27.33 +
19.35 + 18.37 + 14.39}{100} = 34,2

  • Câu 2: Vận dụng

    Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Một doanh nghiệp địa phương muốn hướng dịch vụ của mình đến các gia đình có mức thu nhập ở tầm trung, tức là 50% các hộ gia đình có mức thu nhập ở chính giữa so với tất cả các hộ gia đình của địa phương. Hỏi doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Một doanh nghiệp địa phương muốn hướng dịch vụ của mình đến các gia đình có mức thu nhập ở tầm trung, tức là 50% các hộ gia đình có mức thu nhập ở chính giữa so với tất cả các hộ gia đình của địa phương. Hỏi doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Nhận biết

    Kết quả đo chiều cao của 100 cây thực nghiệm 2 năm tuổi được cho trong bảng sau:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Xác định khoảng biến thiên của mẫu số liệu?

    Khoảng biến thiên của mẫu số liệu là R =
9,4 - 8,4 = 1.

  • Câu 4: Nhận biết

    Cho mẫu số liệu ghép nhóm:

    Nhóm

    Tần số

    (0;10]

    8

    (10;20]

    14

    (20;30]

    12

    (30;40]

    9

    (40;50]

    7

    Tìm khoảng biến thiên?

    Khoảng biến thiên của mẫu số liệu đã cho là: R = 50 - 0 = 50.

  • Câu 5: Nhận biết

    Cho biểu đồ

    Tính chiều cao trung bình của mẫu số liệu đã cho?

    Ta có:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Chiều cao trung bình là:

    \overline{x} = \frac{3.162 + 5.166 +8.170 + 4.174 + 1.178}{21} \approx 169

  • Câu 6: Thông hiểu

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Nếu so sánh theo khoảng tứ phân vị thì học sinh lớp nào có thời gian làm bài đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Nếu so sánh theo khoảng tứ phân vị thì học sinh lớp nào có thời gian làm bài đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Thông hiểu

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Phương sai của mẫu số liệu ghép nhóm lớp 12A và lớp 12B lần lượt là

    Ta có:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Giá trị đại diện

    6,5

    7,5

    8,5

    9,5

    10,5

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Số trung bình của mẫu số liệu ghép nhóm lớp 12A:

    \overline{x_{A}} = \frac{6.6,5 + 10.7,5
+ 13.8,5 + 10.9,5 + 9.10,5}{50} = 8,54

    Phương sai của mẫu số liệu ghép nhóm lớp 12A là:

    {S_{A}}^{2} = \frac{1}{50}\left(
6.6,5^{2} + 10.7,5^{2} + 13.8,5^{2} + 10.9,5^{2} + 9.10,5^{2} ight) -
8,54^{2} = 1,7584

    Số trung bình của mẫu số liệu ghép nhóm lớp 12B:

    \overline{x_{B}} = \frac{4.6,5 + 12.7,5
+ 17.8,5 + 14.9,5 + 3.10,5}{50} = 8,5

    Phương sai của mẫu số liệu ghép nhóm lớp 12B là:

    {S_{B}}^{2} = \frac{1}{50}\left( 4.6,5^{2} +
12.7,5^{2} + 17.8,5^{2} + 14.9,5^{2} + 3.10,5^{2} ight) - 8,5^{2} =
1,08

  • Câu 8: Thông hiểu

    Một mẫu số liệu ghép nhóm có khoảng tứ phân vị là 4,43 và tứ phân vị thứ 3 là \frac{68}{3} thì giá trị ngoại lệ của mẫu số liệu ghép nhóm đó phải là bao nhiêu?

    Do tứ phân vị thứ 3 là \frac{68}{3}

    Suy ra giá trị ngoại lệ x > Q_{3} +
1,5\Delta Q = \frac{68}{3} + 1,5.4,43 \approx 29,3.

  • Câu 9: Nhận biết

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C và điểm trung bình của lớp 12D lần lượt là:

    Ta có:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C:

    \overline{x_{C}} = \frac{4.5,5 + 5.6,5 +
3.7,5 + 4.8,5 + 2.9,5}{18} = \frac{65}{9}.

    Điểm trung bình của lớp 12D:

    \overline{x_{D}} = \frac{2.5,5 + 5.6,5 +
4.7,5 + 3.8,5 + 1.9,5}{15} = \frac{217}{30}.

  • Câu 10: Thông hiểu

    Mỗi ngày bác T đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác T trong 20 ngày được thống kê lại ở bảng sau:

    Quãng đường

    [2,7; 3,0)

    [3,0; 3,3)

    [3,3; 3,6)

    [3,6; 3,9)

    [3,9; 4,2)

    Số ngày

    3

    6

    5

    4

    2

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    Ta có:

    Quãng đường

    [2,7; 3,0)

    [3,0; 3,3)

    [3,3; 3,6)

    [3,6; 3,9)

    [3,9; 4,2)

    Giá trị đại diện

    2,85

    3,15

    3,45

    3,75

    4,05

    Số ngày

    3

    6

    5

    4

    2

    Số trung bình:

    \overline{x} = \frac{3.2,85 + 6.3,15 +
5.3,45 + 4.3,75 + 2.4,05}{20} = 3,39

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{3.2,85^{2} + 6.3,15^{2} +
5.3,45^{2} + 4.3,75^{2} + 2.4,05^{2}}{20} - 3,39^{2} =
0,1314

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    s = \sqrt{s^{2}} = \sqrt{0,1314} \approx
0,36

  • Câu 11: Vận dụng

    Dưới đây là thống kê thời gian 100 lần đi làm bằng xe bus từ nhà đến trường của bạn Lan:

    Thời gian (phút)

    [15; 81)

    [18; 21)

    [21; 24)

    [24; 27)

    [27; 30)

    [30; 33)

    Số lượt

    22

    38

    27

    8

    4

    1

    Giá trị nào sau đây là giá trị ngoại lệ của mẫu số liệu?

    Ta có:

    Thời gian (phút)

    [15; 81)

    [18; 21)

    [21; 24)

    [24; 27)

    [27; 30)

    [30; 33)

    Số lượt

    22

    38

    27

    8

    4

    1

    Tần số tích lũy

    22

    60

    87

    95

    99

    100

    Cỡ mẫu N = 100 \Rightarrow \frac{N}{4} =
25

    => Nhóm chứa tứ phân vị thứ nhất là [18; 21)

    Do đó: l = 18;m = 22,f = 38;c = 21 - 18 =
3

    Khi đó tứ phân vị thứ nhất là:

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 18 + \frac{25 - 22}{38}.3 =\frac{693}{38}

    N = 100 \Rightarrow \frac{3N}{4} =
75

    => Nhóm chứa tứ phân vị thứ ba là [21; 24)

    Do đó: l = 21;m = 60,f = 27;c =
3

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +
\frac{\frac{3N}{4} - m}{f}.c = 21 + \frac{75 - 60}{27}.3 =
\frac{68}{3}

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q} = Q_{3} - Q_{1} \approx
4,43

    Trong một lần duy nhất Lan đi hết 29 phút, thời gian đi của Lan thuộc nhóm [30; 33)

    Q_{3} + 1,5\Delta Q = \frac{6683}{228}
< 30 nên thời gian của lần Lan đi hết 29 phút là giá trị ngoại lệ của mẫu số liệu ghép nhóm.

  • Câu 12: Nhận biết

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Khoảng biến thiên của mẫu số liệu là:

    Khoảng biến thiên của mẫu số liệu đã cho là R = 75 - 45 = 30.

  • Câu 13: Thông hiểu

    Cho mẫu số liệu ghép nhóm như sau:

    Đối tượng

    [3; 5)

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    Tần số

    6

    7

    6

    6

    5

    Kết luận nào dưới đây đúng?

    Ta có:

    Đối tượng

    [3; 5)

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    Giá trị đại diện

    4

    6

    8

    10

    12

    Tần số

    6

    7

    6

    6

    5

    Giá trị trung bình là:

    \overline{x} = \frac{6.4 + 7.6 + 6.8 +
6.10 + 5.12}{30} = 7,8

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{30}\left( 6.4^{2} +
7.6^{2} + 6.8^{2} + 6.10^{2} + 5.12^{2} ight) - 7,8^{2} =
7,56

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    S = \sqrt{S^{2}} = \sqrt{7,56} \approx
2,75.

    Vậy kết luận đúng là: \overline{x} =
7,8;S \approx 2,75.

  • Câu 14: Thông hiểu

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Chọn đáp án đúng?

    Ta có: N = 46

    Cân nặng (kg)

    Số học sinh

    Tần số tích lũy

    [45; 50)

    5

    5

    [50; 55)

    12

    17

    [55; 60)

    10

    27

    [60; 65)

    6

    33

    [65; 70)

    5

    38

    [70; 75)

    8

    46

    Ta có:

    \frac{N}{4} = 11,5 => Nhóm chứa tứ phân vị thứ nhất là: [50; 55)

    \Rightarrow \left\{ \begin{matrix}l = 50,\dfrac{N}{4} = 11,5,m = 5,f = 12 \\c = 55 - 50 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c

    \Rightarrow Q_{1} = 50 + \frac{11,5 -
5}{12}.5 \approx 52,7

    \frac{3N}{4} = 34,5 => Nhóm chứa tứ phân vị thứ ba là: [65; 70)

    \Rightarrow \left\{ \begin{matrix}l = 65,\dfrac{3N}{4} = 34,5,m = 33,f = 5 \\c = 70 - 65 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c

    \Rightarrow Q_{3} = 65 + \frac{34,5 -
33}{5}.5 \approx 66,5

    Vậy khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} \approx 13,8.

  • Câu 15: Thông hiểu

    Mỗi ngày bác T đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác T trong 20 ngày được thống kê lại ở bảng sau:

    Quãng đường

    [2,7; 3,0)

    [3,0; 3,3)

    [3,3; 3,6)

    [3,6; 3,9)

    [3,9; 4,2)

    Số ngày

    3

    6

    5

    4

    2

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    Ta có:

    Quãng đường

    [2,7; 3,0)

    [3,0; 3,3)

    [3,3; 3,6)

    [3,6; 3,9)

    [3,9; 4,2)

    Số ngày

    3

    6

    5

    4

    2

    Tần số tích lũy

    3

    9

    14

    18

    20

    Cỡ mẫu N = 20

    Cỡ mẫu \Rightarrow \frac{N}{4} =
5

    => Nhóm chứa Q_{1} là [3,0; 3,3)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 3;m = 6,f = 3;c =
0,3

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 3 + \dfrac{5 - 3}{6}.0,3 = 3,1

    Cỡ mẫu N = 20 \Rightarrow \frac{3N}{4} =
15

    => Nhóm chứa Q_{3} là [3,6; 3,9)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 3,6;m = 14,f = 4;c =
0,3

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 3,6 + \dfrac{15 - 14}{4}.0,3 =3,675.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} = 0,575

  • Câu 16: Nhận biết

    Bạn Lan thống kê lại chiều cao (đơn vị: cm) của các học sinh nữ lớp 12B và lớp 12C ở bảng sau.

    Chiều cao(cm)

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [175; 180)

    Số học sinh nữ lớp 12B

    0

    5

    13

    7

    0

    Số học sinh nữ lớp 12C

    2

    10

    9

    3

    1

    Chọn đáp án có khẳng định đúng.

    Ta có

    Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12B là 170 - 155 = 15

    Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12C là 175 – 150 = 25

    Vì 15 < 25 nên mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12B có độ phân tán ít hơn so với mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12C, hay nói cách khác chiều cao của các bạn nữ lớp 12B đồng đều hơn chiều cao của các bạn nữ lớp 12C.

  • Câu 17: Nhận biết

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Có bao nhiêu máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ?

    Có 6 máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ.

  • Câu 18: Nhận biết

    Người ta thống kê tốc độ của một số xe ôtô di chuyển qua một trạm kiểm soát trên đường cao tốc trong một khoảng thời gian ở bảng sau:

    Tốc độ (km/h)

    [75; 80)

    [80; 85)

    [85; 90)

    [90; 95)

    [95; 100)

    Số xe

    15

    22

    28

    34

    19

    Khoảng biến thiên của mẫu số liệu ghép nhóm đã cho là:

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 100 - 75 = 25 km/h.

  • Câu 19: Nhận biết

    Cho bảng thống kê kết quả cự li ném bóng của một người như sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số lần

    13

    45

    24

    12

    6

    Cự li ném bóng trung bình của người đó là:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số lần

    13

    45

    24

    12

    6

    Cự li trung bình là:

    \overline{x} = \frac{13.9,25 + 45.19,75
+ 24.20,25 + 12.20,75 + 6.21,25}{100} \approx 20,02

  • Câu 20: Thông hiểu

    Cho bảng thống kê kết quả đo cân nặng của một số trẻ em như sau:

    Cân nặng (kg)

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    [12; 14)

    Số trẻ em

    6

    12

    19

    9

    4

    Xác định độ lệch chuẩn của mẫu số liệu đã cho?

    Ta có: N = 50

    Suy ra số trung bình của mẫu số liệu là:

    \overline{x} = \frac{6.5 + 12.7 + 19.9 +
9.11 + 4.13}{50} = 8,72

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{50}\left( 6.5^{2} +
12.7^{2} + 19.9^{2} + 9.11^{2} + 4.13^{3} ight) - 8,72^{2} \approx
4,8

    Vậy độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho là: S \approx 2,2

  • Câu 21: Thông hiểu

    Cân nặng (kg) của một số quả mít trong một khu vườn được thống kê ở bảng sau:

    Cân nặng (kg)

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    [12; 14)

    Số cây giống

    6

    12

    19

    9

    4

    Hãy tính phương sai của mẫu số liệu ghép nhóm trên (làm tròn đến hàng phần mười).

    Ta có giá trị đại diện được thể hiện trong bảng sau:

    Cân nặng (kg)

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    [12; 14)

    Giá trị đại diện

    5

    7

    9

    11

    13

    Số cây giống

    6

    12

    19

    9

    4

    Cỡ mẫu: n = 50.

    Số trung bình

    \overline{x} = \frac{m_{1}.x_{1} +
m_{2}.x_{2} + ... + m_{k}.x_{k}}{n}

    = \frac{6.5 + 12.7 + 19.9 + 9.11 +
4.13}{50} = 8,72.

    Phương sai:

    s^{2} = \frac{1}{n}\left(m_{1}.{x_{1}}^{2} + m_{2}.{x_{2}}^{2} + ... + m_{k}.{x_{k}}^{2} ight)- \left( \overline{x} ight)^{2}

    = \frac{1}{50}\left( 6.5^{2} +12.7^{2} + 19.9^{2} + 9.11^{2} + 4.13^{2} ight) - (8,72)^{2} =4,8016.

  • Câu 22: Thông hiểu

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tìm số trung bình của mẫu số liệu ghép nhóm?

    Ta có bảng như sau:

    Số giờ

    [80; 98)

    [98; 116)

    [116; 134)

    [134; 152)

    [152; 170)

    Giá trị đại diện

    89

    107

    125

    143

    161

    Số năm

    3

    6

    3

    5

    3

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{3.89 + 6.107 +
3.125 + 5.143 + 3.161}{20} = 124,1

  • Câu 23: Thông hiểu

    Kiểm lâm thực hiện đo đường kính của một số cây thân gỗ tại hai khu vực A và B thu được kết quả như sau:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Độ lệch chuẩn S_{A} bằng: 2,3

    Độ lệch chuẩn S_{B} bằng: 2,7

    (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án là:

    Kiểm lâm thực hiện đo đường kính của một số cây thân gỗ tại hai khu vực A và B thu được kết quả như sau:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Độ lệch chuẩn S_{A} bằng: 2,3

    Độ lệch chuẩn S_{B} bằng: 2,7

    (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Ta có:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    Giá trị đại diện

    31

    33

    35

    37

    39

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Suy ra

    \overline{x_{A}} = \frac{25.31 + 38.33 +20.35 + 10.37 + 7.39}{100} = 33,72

    {S_{A}}^{2} = \frac{1}{100}\left(25.31^{2} + 38.33^{2} + 20.35^{2} + 10.37^{2} + 7.39^{2} ight) -33,72^{2} \approx 5,402

    \Rightarrow S_{A} \approx2,3

    \overline{x_{B}} = \frac{25.31 + 27.33 +19.35 + 18.37 + 14.39}{100} = 34,2

    {S_{B}}^{2} = \frac{1}{100}\left(25.31^{2} + 27.33^{2} + 19.35^{2} + 18.37^{2} + 14.39^{2} ight) -34,2^{2} \approx 7,31

    \Rightarrow S_{B} \approx2,7

  • Câu 24: Nhận biết

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Tần số

    8

    9

    12

    10

    11

    Tính số trung bình của mẫu số liệu?

    Cỡ mẫu N = 50

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Tần số

    8

    9

    12

    10

    11

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{8.121 + 9.123 +
12.125 + 10.127 + 11.129}{50} = 125,28

  • Câu 25: Nhận biết

    Điểm trung bình cuối năm của học sinh lớp 12A và 12B được thống kê trong bảng sau:

    Nếu so sánh bảng biến thiên thì học sinh lớp nào có điểm trung bình ít phân tán hơn?

    Ta có:

    Khoảng biến thiên của điểm số học sinh lớp 12A là: 10 – 5 = 5

    Khoảng biến thiên của điểm số học sinh lớp 12B là: 10 – 6 = 4

    Nếu so sánh theo khoảng biến thiên thì điểm trung bình của các học sinh lớp 12B ít phân tán hơn điểm trung bình của các học sinh lớp 12A.

  • Câu 26: Thông hiểu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính giá trị Q_{3} của mẫu dữ liệu ghép nhóm trên?

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{3N}{4} =
15

    => Nhóm chứa tứ phân vị thứ ba là [9; 11)

    (Vì 15 nằm giữa hai tần số tích lũy 9 và 16)

    Do đó: l = 9;m = 9,f = 7;c = 11 - 9 =
2

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 9 + \dfrac{15 - 9}{7}.2 = \dfrac{75}{7}\approx 10,7

  • Câu 27: Thông hiểu

    Cho mẫu số liệu ghép nhóm dưới đây:

    Nhóm

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    Tần số

    2

    6

    8

    9

    3

    2

    Xét tính đúng sai của các khẳng định sau?

    a) Khoảng biến thiên của mẫu số liệu R = 5. Đúng||Sai

    b) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm bằng Q_{1} = 57,26. Sai||Đúng

    c) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm bằng Q_{3} = 56,35. Sai||Đúng

    d) Khoảng tứ phân vị của mẫu số liệu \Delta Q = 2,34. Đúng||Sai

    Đáp án là:

    Cho mẫu số liệu ghép nhóm dưới đây:

    Nhóm

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    Tần số

    2

    6

    8

    9

    3

    2

    Xét tính đúng sai của các khẳng định sau?

    a) Khoảng biến thiên của mẫu số liệu R = 5. Đúng||Sai

    b) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm bằng Q_{1} = 57,26. Sai||Đúng

    c) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm bằng Q_{3} = 56,35. Sai||Đúng

    d) Khoảng tứ phân vị của mẫu số liệu \Delta Q = 2,34. Đúng||Sai

    a) Đúng: Từ mẫu số liệu bảng trên ta có khoảng biến thiên của mẫu số liệu R = 5

    Ta có: n = 260 \Rightarrow \frac{n}{4} =
65

    ⇒ Suy ra nhóm chứa tứ phân vị thứ nhất là nhóm [55; 56).

    b) Sai: Áp dụng công thức:

    Q_{1} = u_{m} + \dfrac{\dfrac{in}{4} -C}{n_{m}}.\left( u_{m + 1} - u_{m} ight)

    \Rightarrow Q_{1} = a_{2} +
\frac{\frac{n}{4} - m_{1}}{m_{2}}.\left( a_{3} - a_{2}
ight)

    = 55 + \frac{65 - 52}{58}.1 =
55,22

    c) Sai: Ta có \frac{3n}{4} = 195 suy ra nhóm chứa tứ phân vị thứ ba là nhóm [57;58).

    \Rightarrow Q_{3} = a_{4} +
\frac{\frac{3n}{4} - \left( m_{1} + m_{2} + m_{3} ight)}{m_{4}}.\left(
a_{5} - a_{4} ight)

    = 57 + \frac{195 - 167}{50}.(58 - 57) =
57,56

    d) Đúng: Suy ra khoảng tứ phân vị của mẫu số liệu trên là \Delta Q = Q_{3} - Q_{1} = 2,34.

  • Câu 28: Nhận biết

    Xác định khoảng biến thiên của mẫu số liệu ghép nhóm sau đây:

    Thời gian (s)

    Số vận động viên (người)

    (50,5; 55,5]

    2

    (55,5; 60,5]

    7

    (60,5; 65,5]

    8

    (65,5; 70,5]

    4

    Khoảng biến thiên của mẫu số liệu ghép nhóm là R = 70,5 - 50,5 = 20

  • Câu 29: Thông hiểu

    Thống kê kết quả giải rubik của một bạn học sinh được ghi lại như sau:

    Thời gian (giây)

    [8; 10)

    [10; 12)

    [12; 14)

    [14; 16)

    [16; 18)

    Số lần

    4

    6

    8

    4

    3

    Phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào sau đây?

    Ta có:

    Thời gian (giây)

    [8; 10)

    [10; 12)

    [12; 14)

    [14; 16)

    [16; 18)

    Giá trị đại diện

    9

    11

    13

    15

    17

    Số lần

    4

    6

    8

    4

    3

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{4.9 + 6.11 + 8..13
+ 4.15 + 3.17}{25} = 12,68

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{25}\left( 4.9^{2} +
6.11^{2} + 8.13^{2} + 4.15^{2} + 3.17^{2} ight) - (12,68)^{2} =
5,9776

    Phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị 6,2.

  • Câu 30: Nhận biết

    Một mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng:

    Mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng \sqrt{16} = 4.

  • Câu 31: Nhận biết

    Xác định cỡ mẫu của mẫu số liệu ghép nhóm sau?

    Đối tượng

    Tần số

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    40

    [165; 170)

    26

    [170; 175)

    8

    [175; 180)

    3

    Khoảng biến thiên của mẫu số liệu ghép nhóm đã cho là R = 180 - 150 = 30.

  • Câu 32: Thông hiểu

    Dũng là học sinh rất giỏi chơi rubik, bạn có thể giải nhiều loại khối rubik khác nhau. Trong một lần tập luyện giải khối rubik 3 x 3, bạn Dũng đã tự thống kê lại thời gian giải rubik trong 25 lần giải liên tiếp ở bảng sau:

    Thời gian giải rubik (giây)

    [8; 10)

    [10; 12)

    [12; 14)

    [14; 16)

    [16; 18)

    Số lần

    4

    6

    8

    4

    3

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    Ta có:

    Thời gian giải rubik (giây)

    [8; 10)

    [10; 12)

    [12; 14)

    [14; 16)

    [16; 18)

    Số lần

    4

    6

    8

    4

    3

    Tần số tích lũy

    4

    10

    18

    22

    25

    Cỡ mẫu N = 25

    Cỡ mẫu \Rightarrow \frac{N}{4} =
\frac{25}{4}

    => Nhóm chứa Q_{1} là [10; 12)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 10;m = 4,f = 6;c =
2

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 10 + \dfrac{\dfrac{25}{4} - 4}{6}.2 =10,75

    Cỡ mẫu N = 18 \Rightarrow \frac{3N}{4} =
\frac{3.25}{4}

    => Nhóm chứa Q_{3} là [14; 16)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 14;m = 18,f = 4;c =
2

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 14 + \dfrac{\dfrac{3.18}{4} - 18}{4}.2 =14,375.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} = 3,63

  • Câu 33: Nhận biết

    Cho bảng thống kê thời gian tập thể dục buổi sáng mỗi ngày trong tháng một tháng của hai người A và B.

    Thời gian (phút)

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    Số ngày của A

    5

    12

    8

    3

    2

    Số ngày của B

    0

    20

    5

    5

    0

    Gọi R; R’ lần lượt là khoảng biến thiên của mẫu số liệu về thời gian tập thể dục của A và B, khi đó R + R’ bằng:

    Ta có:

    R = 40 – 15 = 25

    R’ = 35 – 20 = 15

    Suy ra R + R’ = 25 + 15 = 40.

  • Câu 34: Vận dụng

    Mẫu số liệu dưới đây ghi lại tốc độ của 40 ô tô khi đi qua một trạm đo tốc độ (đơn vị: km/h ).

    49

    42

    51

    55

    45

    60

    53

    55

    44

    65

    52

    62

    41

    44

    57

    56

    68

    48

    46

    53

    63

    49

    54

    61

    59

    57

    47

    50

    60

    62

    48

    52

    58

    47

    60

    55

    45

    47

    48

    61

    Sau khi ghép nhóm mẫu số liệu trên thành sáu nhóm ứng với sáu nửa khoảng:

    \lbrack 40;45),\lbrack 45;50),\lbrack
50;55),\lbrack 55;60),\lbrack 60;65),\lbrack 65;70)thì trung vị của mẫu số liệu ghép nhóm nhận được bằng \frac{a}{b}(\ km/h) (\frac{a}{b} là phân số tối giản). Khi đó giá trị của a bằng bao nhiêu?

    Đáp án: 375

    Đáp án là:

    Mẫu số liệu dưới đây ghi lại tốc độ của 40 ô tô khi đi qua một trạm đo tốc độ (đơn vị: km/h ).

    49

    42

    51

    55

    45

    60

    53

    55

    44

    65

    52

    62

    41

    44

    57

    56

    68

    48

    46

    53

    63

    49

    54

    61

    59

    57

    47

    50

    60

    62

    48

    52

    58

    47

    60

    55

    45

    47

    48

    61

    Sau khi ghép nhóm mẫu số liệu trên thành sáu nhóm ứng với sáu nửa khoảng:

    \lbrack 40;45),\lbrack 45;50),\lbrack
50;55),\lbrack 55;60),\lbrack 60;65),\lbrack 65;70)thì trung vị của mẫu số liệu ghép nhóm nhận được bằng \frac{a}{b}(\ km/h) (\frac{a}{b} là phân số tối giản). Khi đó giá trị của a bằng bao nhiêu?

    Đáp án: 375

    Lập mẫu số liệu ghép nhóm bao gồm cả tần số tích luỹ nhu ở Báng 8 .

    Số phần tử của mẫu là n = 40. Ta có: \frac{n}{2} = \frac{40}{2} = 2015 < 20 < 22. Suy ra nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 20 . Xét nhóm 3 có r = 50;d = 5;n_{3} = 7 và nhóm 2 có

    Nhóm

    Tần sồ

    Tần số tích luỹ

    \lbrack 40;45)

    4

    4

    \lbrack 45;50)

    11

    15

    \lbrack 50;55)

    7

    22

    \lbrack 55;60)

    8

    30

    \lbrack 60;65)

    8

    38

    \lbrack 65;70)

    2

    2

     

    n = 40

     

    cf_{2} = 15.

    Trung vị của mẫu số liệu ghép nhóm đó là:

    M_{e} = 50 + \left( \frac{20 - 15}{7}
ight) \cdot 5 = \frac{375}{7}(\ km/h).

    Suy ra a = 375.

  • Câu 35: Thông hiểu

    Kết quả đo chiều cao của học sinh lớp 12A được ghi lại trong bảng như sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho là:

    Ta có:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Chiều cao trung bình là:

    \overline{x} = \frac{3.162 + 5.166 +
8.170 + 4.174 + 1.178}{21} \approx 169

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{21}\left( 3.162^{2} +
5.166^{2} + 8.170^{2} + 4.174^{2} + 1.178^{2} ight) - 169^{2} \approx
18,14

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là: S \approx 4,26.

  • Câu 36: Vận dụng

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 37: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Tính giá trị Q_{1}?

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{N}{4} =
10,5

    => Nhóm chứa Q_{1} là [20; 40)

    (Vì 10,5 nằm giữa hai tần số tích lũy 5 và 14)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 5,f = 9;c = 40 -
20 = 20

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 20 + \dfrac{10,5 - 5}{9}.20 =\dfrac{290}{9}

  • Câu 38: Thông hiểu

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    Tốc độ

    Tần số

    40 ≤ x < 50

    4

    50 ≤ x < 60

    5

    60 ≤ x < 70

    7

    70 ≤ x < 80

    4

    Xác định giá trị của \Delta_{Q} = Q_{3} -
Q_{1}?

    Ta có:

    Tốc độ

    Tần số

    Tần số tích lũy

    40 ≤ x < 50

    4

    4

    50 ≤ x < 60

    5

    9

    60 ≤ x < 70

    7

    16

    70 ≤ x < 80

    4

    20

    Tổng

    N = 20

     

    Ta có: \frac{N}{4} = \frac{20}{4} =
5

    => Nhóm chứa tứ phân vị thứ nhất là: [50; 60)

    Khi đó: \left\{ \begin{matrix}l = 50;\dfrac{N}{4} = 5 \\m = 4,f = 5,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 50 + \frac{5 -
4}{5}.10 = 52

    Ta có: \frac{3N}{4} = \frac{3.20}{4} =
15

    => Nhóm chứa tứ phân vị thứ ba là: [60; 70]

    Khi đó: \left\{ \begin{matrix}l = 60;\dfrac{3N}{4} = 15 \\m = 9,f = 7,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 60 + \frac{15 -
9}{7}.10 = \frac{480}{7}

    \Rightarrow \Delta_{Q} = Q_{3} - Q_{1} =
\frac{480}{7} - 52 \approx 16,6

  • Câu 39: Nhận biết

    Cho biểu đồ mức lương của công nhân hai phân xưởng A và B (đơn vị: triệu đồng) như sau:

    Hoàn thành bảng số liệu sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Đáp án là:

    Cho biểu đồ mức lương của công nhân hai phân xưởng A và B (đơn vị: triệu đồng) như sau:

    Hoàn thành bảng số liệu sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

     Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

  • Câu 40: Thông hiểu

    Thu nhập theo tháng (đơn vị: triệu đồng) của 20 người lao động ở ba nhà máy như sau:

    Thu nhập

    [5; 8)

    [8; 11)

    [11; 14)

    [14; 17)

    [17; 20)

    [20; 23)

    Số người nhà máy A

    2

    5

    4

    4

    5

    0

    Số người nhà máy B

    0

    6

    4

    3

    7

    0

    Số người nhà máy C

    1

    5

    8

    6

    0

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Trong 20 người lao động ở nhà máy A, hiệu số thu nhập của hai người lao động bất kì không vượt quá 15 triệu đồng. Đúng||Sai

    (b) Trong 20 người lao động ở nhà máy B, hiệu số thu nhập của hai người lao động bất kì không vượt quá 18 triệu đồng. Sai|| Đúng

    (c) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy A phân tán hơn so với người lao động ở nhà máy B. Đúng||Sai

    (d) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy C phân tán hơn so với người lao động ở nhà máy A. Sai|| Đúng

    Đáp án là:

    Thu nhập theo tháng (đơn vị: triệu đồng) của 20 người lao động ở ba nhà máy như sau:

    Thu nhập

    [5; 8)

    [8; 11)

    [11; 14)

    [14; 17)

    [17; 20)

    [20; 23)

    Số người nhà máy A

    2

    5

    4

    4

    5

    0

    Số người nhà máy B

    0

    6

    4

    3

    7

    0

    Số người nhà máy C

    1

    5

    8

    6

    0

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Trong 20 người lao động ở nhà máy A, hiệu số thu nhập của hai người lao động bất kì không vượt quá 15 triệu đồng. Đúng||Sai

    (b) Trong 20 người lao động ở nhà máy B, hiệu số thu nhập của hai người lao động bất kì không vượt quá 18 triệu đồng. Sai|| Đúng

    (c) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy A phân tán hơn so với người lao động ở nhà máy B. Đúng||Sai

    (d) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy C phân tán hơn so với người lao động ở nhà máy A. Sai|| Đúng

    Ta có khoảng biến thiên thu nhập của người lao động ở nhà máy A là 20 - 5 = 15 triệu đồng.

    Ta có khoảng biến thiên thu nhập của người lao động ở nhà máy B là 20 - 8 = 12 triệu đồng.

    Ta có khoảng biến thiên thu nhập của người lao động ở nhà máy C là 17 – 5 = 12 triệu đồng.

    (a) Trong 20 người lao động ở nhà máy A, hiệu số thu nhập của hai người lao động bất kì không vượt quá 15 triệu đồng.

    Chọn ĐÚNG.

    (b) Trong 20 người lao động ở nhà máy B, hiệu số thu nhập của hai người lao động bất kì không vượt quá 18 triệu đồng.

    Chọn SAI.

    (c) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy A phân tán hơn so với người lao động ở nhà máy B.

    Chọn ĐÚNG.

    (d) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy C phân tán hơn so với người lao động ở nhà máy A.

    Chọn SAI.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo