Đề kiểm tra 45 phút Chương 3 Các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 3. Các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    C li

    \lbrack 19;19,5)[19,5;20)\lbrack 20;20,5)\lbrack 20,5;21)\lbrack 21;21,5)

    Tn s

    13

    45

    24

    12

    6

    Phương sai của mẫu số liệu ghép nhóm trên là một số thập phân xấp xỉ có dạng \overline{a,b77}. Tính a + b.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    C li

    \lbrack 19;19,5)[19,5;20)\lbrack 20;20,5)\lbrack 20,5;21)\lbrack 21;21,5)

    Tn s

    13

    45

    24

    12

    6

    Phương sai của mẫu số liệu ghép nhóm trên là một số thập phân xấp xỉ có dạng \overline{a,b77}. Tính a + b.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Nhận biết

    Cho biểu đồ

    Hoàn thảnh bảng số liệu theo mẫu sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Đáp án là:

    Cho biểu đồ

    Hoàn thảnh bảng số liệu theo mẫu sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

     Hoàn thảnh bảng số liệu như sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

  • Câu 3: Nhận biết

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Tính thời gian sử dụng pin trung bình?

    Ta có:

    Thời gian (giờ)

    [7,2; 7,4)

    [7,4; 7,6)

    [7,6; 7,8)

    [7,8; 8,0)

    Giá trị đại diện

    7,3

    7,5

    7,7

    7,9

    Số máy vi tính

    2

    4

    7

    5

    Thòi gian trung bình là:

    \overline{x} = \frac{2.7,3 + 4.7,5 +
7.7,7 + 5.7,9}{18} = \frac{23}{3} \approx 7,7 giờ

  • Câu 4: Thông hiểu

    Cho biểu đồ thống kê thời gian tập thể dục buổi sáng của hai người A và B

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục hằng ngày của A và B lần lượt là:

    Ta có bảng sau:

    Đối tượng

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    A

    5

    12

    8

    3

    2

    B

    0

    25

    5

    0

    0

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục của A là: 40 – 15 = 25 (phút)

    Tuy nhiên trong mẫu số liệu ghép nhóm về thời gian tập thể dục của B nhóm đầu tiên chứa dữ liệu là [20; 25) và nhóm cuối cùng chứa dữ liệu [25; 30). Do đó khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của B là 30 – 20 = 10.

  • Câu 5: Thông hiểu

    Thống kê kết quả giải rubik của một bạn học sinh được ghi lại như sau:

    Thời gian (giây)

    [8; 10)

    [10; 12)

    [12; 14)

    [14; 16)

    [16; 18)

    Số lần

    4

    6

    8

    4

    3

    Phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào sau đây?

    Ta có:

    Thời gian (giây)

    [8; 10)

    [10; 12)

    [12; 14)

    [14; 16)

    [16; 18)

    Giá trị đại diện

    9

    11

    13

    15

    17

    Số lần

    4

    6

    8

    4

    3

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{4.9 + 6.11 + 8..13
+ 4.15 + 3.17}{25} = 12,68

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{25}\left( 4.9^{2} +
6.11^{2} + 8.13^{2} + 4.15^{2} + 3.17^{2} ight) - (12,68)^{2} =
5,9776

    Phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị 6,2.

  • Câu 6: Thông hiểu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính giá trị Q_{1} của mẫu dữ liệu ghép nhóm trên?

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{4} =
5

    => Nhóm chứa tứ phân vị thứ nhất là [7; 9)

    (Vì 5 nằm giữa hai tần số tích lũy 2 và 9)

    Do đó: l = 7;m = 2,f = 7;c = 9 - 7 =
2

    Khi đó tứ phân vị thứ nhất là:

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 7 + \dfrac{5 - 2}{7}.2 =\dfrac{55}{7}

  • Câu 7: Thông hiểu

    Cho bảng thống kê kết quả đo cân nặng của một số trẻ em như sau:

    Cân nặng (kg)

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    [12; 14)

    Số trẻ em

    6

    12

    19

    9

    4

    Xác định độ lệch chuẩn của mẫu số liệu đã cho?

    Ta có: N = 50

    Suy ra số trung bình của mẫu số liệu là:

    \overline{x} = \frac{6.5 + 12.7 + 19.9 +
9.11 + 4.13}{50} = 8,72

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{50}\left( 6.5^{2} +
12.7^{2} + 19.9^{2} + 9.11^{2} + 4.13^{3} ight) - 8,72^{2} \approx
4,8

    Vậy độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho là: S \approx 2,2

  • Câu 8: Nhận biết

    Cho bảng thống kê kết quả cự li ném bóng của một người như sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số lần

    13

    45

    24

    12

    6

    Cự li ném bóng trung bình của người đó là:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số lần

    13

    45

    24

    12

    6

    Cự li trung bình là:

    \overline{x} = \frac{13.9,25 + 45.19,75
+ 24.20,25 + 12.20,75 + 6.21,25}{100} \approx 20,02

  • Câu 9: Thông hiểu

    Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Dữ liệu thu được ghi trong bảng dưới đây.

    Chiều cao (cm)

    Số học sinh

    (120; 125]

    3

    (125; 130]

    5

    (130; 135]

    11

    (135; 140]

    6

    (140; 145]

    5

     

    N = 30

    Giá trị \Delta_{Q} là:

    Ta có:

    Chiều cao (cm)

    Số học sinh

    Tần số tích lũy

    (120; 125]

    3

    3

    (125; 130]

    5

    8

    (130; 135]

    11

    19

    (135; 140]

    6

    25

    (140; 145]

    5

    30

     

    N = 30

     

    Ta có: \frac{N}{4} = \frac{30}{4} =
7,5

    => Nhóm chứa tứ phân vị thứ nhất là: (125; 130]

    Khi đó: \left\{ \begin{matrix}l = 125;\dfrac{N}{4} = 7,5;m = 3 \\f = 5;d = 130 - 125 = 5 \\\end{matrix} ight.

    Vậy tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 125 + \frac{7,5 -
3}{5}.5 = 129,5

    Ta có: \frac{3N}{4} = \frac{3.30}{4} =
22,5

    => Nhóm chứa tứ phân vị thứ ba là (135; 140]

    Khi đó: \left\{ \begin{matrix}
l = 135;\frac{3N}{4} = 22,5;m = 19 \\
f = 6;d = 140 - 135 = 5 \\
\end{matrix} ight.

    Vậy tứ phân vị thứ ba là:

    \left\{ \begin{matrix}l = 135;\dfrac{3N}{4} = 22,5;m = 19 \\f = 6;d = 140 - 135 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{3} = 135 + \frac{22,5 -
19}{6}.5 \approx 137,9

    \Rightarrow \Delta_{Q} = Q_{3} - Q_{1} =
\frac{1655}{12} - 29,5 \approx 8,4

  • Câu 10: Thông hiểu

    Thống kê độ tuổi khách hàng đến xem phim trong một phòng của rạp chiếu phim sau 1 giờ được ghi lại trong bảng sau:

    Độ tuổi

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Số khách hàng

    6

    12

    16

    7

    2

    Xét tính đúng sai của các khẳng định sau:

    a) Giá trị đại diện nhóm [50; 60) là 55. Đúng||Sai

    b) Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50; 60). Đúng||Sai

    c) Nhóm chứa mốt là nửa khoảng [30; 40). Đúng||Sai

    d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 31 tuổi. Sai||Đúng

    Đáp án là:

    Thống kê độ tuổi khách hàng đến xem phim trong một phòng của rạp chiếu phim sau 1 giờ được ghi lại trong bảng sau:

    Độ tuổi

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Số khách hàng

    6

    12

    16

    7

    2

    Xét tính đúng sai của các khẳng định sau:

    a) Giá trị đại diện nhóm [50; 60) là 55. Đúng||Sai

    b) Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50; 60). Đúng||Sai

    c) Nhóm chứa mốt là nửa khoảng [30; 40). Đúng||Sai

    d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 31 tuổi. Sai||Đúng

    a) Đúng: Giá trị đại diện nhóm [50;60) là 55

    b) Đúng: Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50;60) .

    c) Đúng: Nhóm chứa mốt là nửa khoảng [30;40).

    d) Sai: Khi đó

    u_{m} = 30;n_{m} = 16;n_{m- 1} = 12;n_{m + 1} = 7;u_{m + 1} - u_{m} = 40 - 30 = 10

    Ta có mốt là:

    M_{0} = 30 + \frac{16 - 12}{(16 - 2) +
(16 - 7)}.10 = \frac{430}{13} \approx 33,08

    Vậy độ tuổi được dự báo là thích xem phim đó nhiều nhất là 33 tuổi.

  • Câu 11: Nhận biết

    Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:

    42

    43,4

    43,4

    46,5

    46,7

    46,8

    47,5

    47,7

    48,1

    48,4

    50,8

    51,1

    52,7

    53,9

    54,8

    57,6

    57,5

    59,6

    60,3

    61,1

    Lập bảng tần số ghép nhóm với nhóm đầu [42; 46) và độ dài mỗi nhóm bằng 4. Tìm khoảng biến thiên của mẫu dữ liệu ghép nhóm?

    Ta lập được bảng tần số ghép nhóm như sau:

    Tốc độ

    [42; 46)

    [46; 50)

    [50; 54)

    [54; 58)

    [58; 62)

    Số xe

    3

    7

    4

    3

    3

    Vậy khoảng biến thiên của mẫu dữ liệu ghép nhóm là R = 62 - 42 = 20.

  • Câu 12: Thông hiểu

    Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn A được thống kê lại ở bảng sau:

    Thời gian (phút)

    [20;25)

    [25;30)

    [30;35)

    [35;40)

    [40;45)

    Số ngày

    6

    6

    4

    1

    1

    Phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào dưới đây?

    Ta có:

    Thời gian (phút)

    [20;25)

    [25;30)

    [30;35)

    [35;40)

    [40;45)

    Giá trị đại diện

    22,5

    27,5

    32,5

    37,5

    42,5

    Số ngày

    6

    6

    4

    1

    1

    Số trung bình:

    \overline{x} = \frac{6.22,5 + 6.27,5 +
4.32,5 + 37,5 + 42,5}{18} \approx 28,33

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{6.22,5^{2} + 6.27,5^{2} +
4.32,5^{2} + 37,5^{2} + 42,5^{2}}{18} - 28,33^{2} \approx
31,25

  • Câu 13: Nhận biết

    Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Số trung bình của mẫu số liệu ghép nhóm của đối tương A và đối tượng B lần lượt là:

    Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

     

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

     

    Phân xưởng A

    4

    5

    5

    4

    2

    N = 20

    Phân xưởng B

    3

    6

    5

    5

    1

    N’ = 20

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:

    \overline{x_{A}} = \frac{4.5,5 + 5.6,5 +
5.7,5 + 4.8,5 + 2.9,5}{20} = 7,25

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:

    \overline{x_{B}} = \frac{3.5,5 + 6.6,5 +
5.7,5 + 5.8,5 + 1.9,5}{20} = 7,25

  • Câu 14: Nhận biết

    Xét mẫu số liệu ghép nhóm có tứ phân vị thứ nhất, tứ phân vị thứ hai, tứ phân vị thứ ba lần lượt là Q_{1}; Q_{2}; Q_{3}. Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó bằng

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là Q_{3} - Q_{1}.

  • Câu 15: Thông hiểu

    Cho bảng thống kê cân nặng của học sinh (đơn vị: kg) lớp 12D như sau:

    Nhóm cân nặng

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    Số học sinh

    2

    10

    16

    8

    2

    2

    Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.

    a) Số học sinh nặng dưới 50 kilogam là 1. Đúng||Sai

    b) Mốt của mẫu số liệu ghép nhóm trên xấp xỉ bằng 54,29(kg). Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là 19,5. Sai||Đúng

    d) Phương sai của mẫu số liệu ghép nhóm là 128. Sai||Đúng

    Đáp án là:

    Cho bảng thống kê cân nặng của học sinh (đơn vị: kg) lớp 12D như sau:

    Nhóm cân nặng

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    Số học sinh

    2

    10

    16

    8

    2

    2

    Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.

    a) Số học sinh nặng dưới 50 kilogam là 1. Đúng||Sai

    b) Mốt của mẫu số liệu ghép nhóm trên xấp xỉ bằng 54,29(kg). Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là 19,5. Sai||Đúng

    d) Phương sai của mẫu số liệu ghép nhóm là 128. Sai||Đúng

    a) Đúng: Số học sinh nặng dưới 50 kg là 2
+ 10 = 12.

    b) Đúng: Nhóm chứa mốt của mẫu số liệu là \lbrack 50;60).

    Do đó u_{m} = 50;n_{m} = 16;n_{m - 1} =
10,n_{m + 1} = 8,u_{m + 1} - u_{m} = 60 - 50 = 10.

    Mốt của mẫu số liệu ghép nhóm xấp xỉ bằng:

    M_{0} = 50 + \frac{16 - 10}{(16 - 10) +
(16 - 8)} \cdot 10 = \frac{380}{7} \approx 54,29(\text{\
}kg)

    Mốt của mẫu số liệu ghép nhóm trên xấp xỉ bằng 54,29(\text{\ }kg).

    c) Sai: Cỡ mẫu n = 40.

    Gọi x_{1},x_{2} \in \lbrack
30;40);x_{3},\ldots,x_{12} \in \lbrack 40;50);

    x_{13},\ldots,x_{28} \in \lbrack
50;60);x_{29},\ldots,x_{36} \in \lbrack 60;70);

    x_{37},x_{38} \in \lbrack
70;80);x_{39},x_{40} \in \lbrack 80;90).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{10} + x_{11} ight) \in
\lbrack 40;50).

    Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

    Q_{1} = 40 + \frac{\frac{40}{4} - 2}{10}
\cdot (50 - 40) = 48.

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{30} + x_{31} ight) \in
\lbrack 60;70).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 60 + \dfrac{\dfrac{3 \cdot 40}{4} -(2 + 10 + 16)}{8}.(70 - 60) = \frac{125}{2}.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    \Delta_{Q} = \frac{125}{2} - 48 =
\frac{29}{2}

    d) Sai: Ta có bảng cân nặng của các em học sinh theo giá trị đại diện:

    Nhóm

    Giá trị đại diện

    Tần số

    [30; 40)

    35

    2

    [40; 50)

    45

    10

    [50; 60)

    55

    16

    [60; 70)

    65

    8

    [70; 80)

    75

    2

    [80; 90)

    85

    2

    Cỡ mẫu n = 2 + 10 + 16 + 8 + 2 + 2 =
40.

    Số trung bình của mẫu số liệu ghép nhóm là

     \frac{35.2 + 45.10 + 55.16 + 65.8 + 75.2
+ 85.2}{40} = \frac{2240}{40} = 56(kg)

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{40}\left( {2.35}^{2} +
{10.45}^{2} + {16.55}^{2} + {8.65}^{2} + {2.75}^{2} + {2.85}^{2} ight)
- 56^{2}

    = 3265 - 3136 = 129.

  • Câu 16: Nhận biết

    Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:

    42

    43,4

    43,4

    46,5

    46,7

    46,8

    47,5

    47,7

    48,1

    48,4

    50,8

    51,1

    52,7

    53,9

    54,8

    57,6

    57,5

    59,6

    60,3

    61,1

    Lập bảng tần số ghép nhóm với nhóm đầu [42; 46) và độ dài mỗi nhóm bằng 4. Tìm tốc độ trung bình của mẫu dữ liệu ghép nhóm?

    Ta lập được bảng tần số ghép nhóm như sau:

    Tốc độ

    [42; 46)

    [46; 50)

    [50; 54)

    [54; 58)

    [58; 62)

    Giá trị đại diện

    44

    48

    52

    56

    60

    Số xe

    3

    7

    4

    3

    3

    Tốc độ trung bình là:

    \overline{x} = \frac{3.44 + 7.48 + 4.52
+ 3.56 + 3.60}{20} = 51,2

  • Câu 17: Nhận biết

    Kết quả đo chiều cao của 50 cây keo trong vườn được thống kê lại trong bảng sau:

    Chiều cao (cm)

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Số cây

    16

    4

    3

    6

    21

    Tính chiều cao trung bình của 50 cây keo trên?

    Cỡ mẫu N = 50

    Chiều cao (cm)

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Số cây

    16

    4

    3

    6

    21

    Chiều cao trung bình là:

    \overline{x} = \frac{16.121 + 4.123 +
3.125 + 6.127 + 21.129}{50} = 125,28.

  • Câu 18: Vận dụng

    Cho bảng thống kê số lượt vi phạm giao thông trong 20 ngày của người dân một địa phương được thống kê như sau:

    101

    79

    79

    78

    75

    73

    68

    67

    67

    63

    63

    61

    60

    59

    57

    55

    55

    50

    47

    42

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm có độ dài bằng nhau với nhóm đầu tiên là [40; 50)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho bảng thống kê số lượt vi phạm giao thông trong 20 ngày của người dân một địa phương được thống kê như sau:

    101

    79

    79

    78

    75

    73

    68

    67

    67

    63

    63

    61

    60

    59

    57

    55

    55

    50

    47

    42

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm có độ dài bằng nhau với nhóm đầu tiên là [40; 50)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Vận dụng

    Cho biểu đồ thống kê thời gian tập thể dục buổi sáng của hai người A và B

    Gọi khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của A và B lần lượt là \Delta_{Q_{A}};\Delta_{Q_{B}}. Chọn kết luận đúng?

    Ta có:

    Đối tượng

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    A

    5

    12

    8

    3

    2

    Tần số tích lũy

    5

    17

    25

    28

    30

    Cỡ mẫu N = 30 \Rightarrow \frac{N}{4} =
7,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 5,f = 12;c = 25 -
20 = 5

    \Rightarrow Q_{1} = l +
\frac{\frac{N}{4} - m}{f}.c = 20 + \frac{7,5 - 5}{12}.5 =
\frac{505}{24}

    Cỡ mẫu \frac{3N}{4} = 22,5

    => Nhóm chứa Q_{3} là [25; 30)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 25;m = 17,f = 8;c =
5

    \Rightarrow Q_{3} = l +
\frac{\frac{3N}{4} - m}{f}.c = 25 + \frac{22,5 - 17}{8}.5 =
\frac{455}{16}.

    Vậy khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của A là:

    \Delta_{Q_{A}} = Q_{3} - Q_{1} =
\frac{355}{48} \approx 7,4.

    Đối tượng

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    B

    0

    25

    5

    0

    0

    Tần số tích lũy

    0

    25

    30

    0

    0

    Cỡ mẫu N = 30 \Rightarrow \frac{N}{4} =
7,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 0,f = 25;c = 25 -
20 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 20 + \frac{7,5 - 0}{25}.5 =\frac{43}{2}

    Cỡ mẫu \frac{3N}{4} = 22,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 0,f = 25;c = 25 -
20 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 20 + \dfrac{22,5 - 0}{25}.5 =\dfrac{49}{2}.

    Vậy khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của B là:

    \Delta_{Q_{B}} = Q_{3} - Q_{1} =
3.

    Vậy kết luận đúng là: \Delta_{Q_{A}} >
\Delta_{Q_{B}}.

  • Câu 20: Thông hiểu

    Thống kê quãng đường một xe taxi công nghệ đi mỗi ngày (đơn vị: km) như sau:

    Quãng đường (km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Số ngày

    5

    10

    9

    4

    2

    Độ lệch chuẩn của mẫu số liệu ghép nhóm gần bằng:

    Ta có:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Số ngày

    5

    10

    9

    4

    2

    Tần số tích lũy

    5

    15

    24

    28

    30

    Số trung bình của mẫu số liệu ghép nhóm:

    \overline{x} = \frac{5.75 + 10.125 +
9.175 + 4.225 + 2.275}{30} = 155

    Vậy khẳng định (iii) sai.

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{30}\left( 5.75^{2} +
10.125^{2} + 9.175^{2} + 4.225^{2} + 2.275^{2} ight) - 155^{2} =
3100

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    S = \sqrt{S^{2}} \approx
55,68

  • Câu 21: Nhận biết

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Có bao nhiêu máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ?

    Có 6 máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ.

  • Câu 22: Thông hiểu

    Tìm tứ phân vị thứ nhất trong bảng dữ liệu dưới đây:

    Nhóm

    Tần số

    [0; 20)

    16

    [20; 40)

    12

    [40; 60)

    25

    [60; 80)

    15

    [80; 100)

    12

    [100; 120)

    10

    Tổng

    N = 90

    Kết quả làm tròn đến chữ số thập phân thứ nhất.

    Ta có:

    Nhóm

    Tần số

    Tần số tích lũy

    [0; 20)

    16

    16

    [20; 40)

    12

    28

    [40; 60)

    25

    53

    [60; 80)

    15

    68

    [80; 100)

    12

    80

    [100; 120)

    10

    90

    Tổng

    N = 90

     

    Ta có: \frac{N}{4} = 22,5

    => Nhóm chứa tứ phân vị thứ nhất là: [20; 40)

    Khi đó ta có: \left\{ \begin{matrix}l = 20;\dfrac{N}{4} = 22,5 \\m = 16,f = 12,d = 20 \\\end{matrix} ight.

    Tứ phân vị thứ nhất được tính như sau:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 20 + \frac{22,5 -
16}{12}.20 \approx 30,8

  • Câu 23: Nhận biết

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Tần số

    8

    9

    12

    10

    11

    Tính số trung bình của mẫu số liệu?

    Cỡ mẫu N = 50

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Tần số

    8

    9

    12

    10

    11

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{8.121 + 9.123 +
12.125 + 10.127 + 11.129}{50} = 125,28

  • Câu 24: Vận dụng

    Kết quả thống kê số giờ nắng trong tháng 5 từ năm 2022 đến năm 2021 tại hai địa điểm A và B:

    Số giờ

    [130; 160)

    [160; 190)

    [190; 220)

    [220; 250)

    [250; 280)

    [280; 310)

    Số năm tại A

    1

    1

    1

    8

    7

    2

    Số năm tại B

    0

    1

    2

    4

    10

    3

    Nếu so sánh theo độ lệch chuẩn thì số giờ nắng trong tháng 5 tại địa điểm nào đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả thống kê số giờ nắng trong tháng 5 từ năm 2022 đến năm 2021 tại hai địa điểm A và B:

    Số giờ

    [130; 160)

    [160; 190)

    [190; 220)

    [220; 250)

    [250; 280)

    [280; 310)

    Số năm tại A

    1

    1

    1

    8

    7

    2

    Số năm tại B

    0

    1

    2

    4

    10

    3

    Nếu so sánh theo độ lệch chuẩn thì số giờ nắng trong tháng 5 tại địa điểm nào đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 25: Thông hiểu

    Cho bảng thống kê kết quả đo cân nặng của một số trẻ em như sau:

    Cân nặng (kg)

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    [12; 14)

    Số trẻ em

    6

    12

    19

    9

    4

    Xác định phương sai của mẫu số liệu đã cho?

    Ta có: N = 50

    Suy ra số trung bình của mẫu số liệu là:

    \overline{x} = \frac{6.5 + 12.7 + 19.9 +
9.11 + 4.13}{50} = 8,72

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{50}\left( 6.5^{2} +
12.7^{2} + 19.9^{2} + 9.11^{2} + 4.13^{3} ight) - 8,72^{2} \approx
4,8

  • Câu 26: Thông hiểu

    Kết quả đo chiều cao của 50 cây keo trong vườn được thống kê lại trong bảng sau:

    Chiều cao (cm)

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Số cây

    16

    4

    3

    6

    21

    Phương sai của mẫu số liệu đã cho là:

    Cỡ mẫu N = 50

    Chiều cao (cm)

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Số cây

    16

    4

    3

    6

    21

    Chiều cao trung bình là:

    \overline{x} = \frac{16.121 + 4.123 +
3.125 + 6.127 + 21.129}{50} = 125,28.

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{50}\left( 16.121^{2} +
4.123^{2} + 3.125^{2} + 6.127^{2} + 21.129^{2} ight) - 125,28^{2} =
12,4.

  • Câu 27: Nhận biết

    Bạn Lan thống kê lại chiều cao (đơn vị: cm) của các học sinh nữ lớp 12B và lớp 12C ở bảng sau.

    Chiều cao(cm)

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [175; 180)

    Số học sinh nữ lớp 12B

    0

    5

    13

    7

    0

    Số học sinh nữ lớp 12C

    2

    10

    9

    3

    1

    Chọn đáp án có khẳng định đúng.

    Ta có

    Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12B là 170 - 155 = 15

    Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12C là 175 – 150 = 25

    Vì 15 < 25 nên mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12B có độ phân tán ít hơn so với mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12C, hay nói cách khác chiều cao của các bạn nữ lớp 12B đồng đều hơn chiều cao của các bạn nữ lớp 12C.

  • Câu 28: Nhận biết

    Dũng là học sinh rất giỏi chơi rubik, bạn có thể giải nhiều loại khối rubik khác nhau. Trong một lần tập luyện giải khối rubik 3 x 3, bạn Dũng đã tự thống kê lại thời gian giải rubik trong 25 lần giải liên tiếp ở bảng sau:

    Thời gian giải rubik (giây)

    [8; 10)

    [10; 12)

    [12; 14)

    [14; 16)

    [16; 18)

    Số lần

    4

    6

    8

    4

    3

    Khoảng biến thiên của mẫu số liệu ghép nhóm nhận giá trị nào trong các giá trị dưới đây?

    Khoảng biến thiên của mẫu số liệu là: 18 - 8 = 10 (giây).

  • Câu 29: Thông hiểu

    Tìm tứ phân vị thứ ba của mẫu số liệu:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [30; 35)

    2

    Ta có:

    Thời gian

    Số học sinh

    Tần số tích lũy

    [0; 5)

    6

    6

    [5; 10)

    10

    16

    [10; 15)

    11

    27

    [15; 20)

    9

    36

    [20; 25)

    1

    37

    [25; 30)

    1

    38

    [30; 35)

    2

    40

    Cỡ mẫu là: N = 40 \Rightarrow
\frac{3N}{4} = 30

    => Nhóm chứa tứ phân vị thứ ba là [15; 20) (vì 30 nằm giữa hai tần số tích lũy 36 và 27)

    Khi đó \left\{ \begin{matrix}l = 15;\dfrac{3N}{4} = 30;m = 27;f = 9 \\c = 20 - 15 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c

    \Rightarrow Q_{3} = 15 + \frac{30 -
27}{9}.5 = \frac{50}{3} \approx 17.

  • Câu 30: Thông hiểu

    Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Chọn kết luận đúng? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Ta có:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Tần số tích lũy

    24

    86

    120

    141

    150

    Cỡ mẫu N = 150 \Rightarrow \frac{N}{4} =
37,5

    => Nhóm chứa tứ phân vị thứ nhất là [250; 300)

    Do đó: l = 250;m = 24,f = 62;c =
50

    Khi đó tứ phân vị thứ nhất là:

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 250 + \frac{37,5 - 24}{62}.50 \approx260,89

    N = 150 \Rightarrow \frac{3N}{4} =
112,5

    => Nhóm chứa tứ phân vị thứ ba là [300; 350)

    Do đó: l = 300;m = 86,f = 34;c =
50

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 300 + \dfrac{112,5 - 84}{34}.50 \approx338,97

    Vậy \Delta_{Q} = Q_{3} - Q_{1} \approx
78,08

  • Câu 31: Nhận biết

    Nếu thay tất cả các tần số trong mẫu số liệu ghép nhóm trên bằng 4 thì số đặc trưng nào sau đây không thay đổi?

    Nếu thay tất cả các tần số trong mẫu số liệu ghép nhóm trên bằng 4 thì số đặc trưng không đổi là khoảng biến thiên.

  • Câu 32: Nhận biết

    Cho mẫu số liệu ghép nhóm cho bởi bảng sau:

    Nhóm

    [0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    Tần số

    3

    7

    2

    9

    Khoảng biến thiên của mẫu số liệu ghép nhóm này là

    Khoảng biến thiên của mẫu số liệu ghép nhóm là:

    R = 40 – 0 = 40.

  • Câu 33: Nhận biết

    Cho bảng thống kê thời gian (đơn vị: phút) và số ngày tập thể dục của hai người A và B trong 30 ngày như sau:

    Thời gian

    [15; 20)

    [25; 30)

    [30; 35)

    Số ngày tập của A

    10

    15

    5

    Số ngày tập của B

    9

    21

    0

    Chọn kết luận đúng dưới đây?

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập của A là: 35 – 15 = 20 (phút).

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập của B là: 30 – 15 = 15 (phút).

    Do đó căn cứ theo khoảng biến thiên thì thời gian tập của A có độ phân tán lớn hơn.

  • Câu 34: Thông hiểu

    Trường THPT A khảo sát chiều cao của học sinh khối 10, kết quả ghi lại chiều cao (tính theo đơn vị cm) của học sinh lớp 10A được cho trong bảng sau:

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm là R = 45. Sai||Đúng

    b) Số phần tử của mẫu là n = 30. Sai||Đúng

    c) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là Q_{1} = \frac{3685}{24}. Đúng||Sai

    d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} \approx 8,62. Đúng||Sai

    Đáp án là:

    Trường THPT A khảo sát chiều cao của học sinh khối 10, kết quả ghi lại chiều cao (tính theo đơn vị cm) của học sinh lớp 10A được cho trong bảng sau:

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm là R = 45. Sai||Đúng

    b) Số phần tử của mẫu là n = 30. Sai||Đúng

    c) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là Q_{1} = \frac{3685}{24}. Đúng||Sai

    d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} \approx 8,62. Đúng||Sai

    a) Sai

    Ta có R = 170 - 140 = 30.

    b) Sai

    Ta có n = 45.

    c) Đúng

    Ta có n = 45 \Rightarrow \frac{n}{4} =
11,25 \Rightarrow 7 < 11,25 < 13

    => Nhóm ba là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 11,25

    Nhóm chứa tứ phân vị thứ nhất là nhóm \lbrack 150;155)

    \Rightarrow Q_{1} = 150 +
\frac{\frac{45}{4} - 7}{6}.5 = \frac{3685}{24}

    d) Đúng

    Ta có n = 45 \Rightarrow \frac{3n}{4} =
33,75 \Rightarrow 29 < 33,75 < 40

    => Nhóm năm là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 33,75

    Nhóm chứa tứ phân vị thứ ba là nhóm \lbrack 160;165)

    \Rightarrow Q_{3} = 160 +
\frac{\frac{3.45}{4} - 29}{11}.5 = \frac{7135}{44}

    Khoảng tứ phân vị của mẫu số liệu là \Delta Q = Q_{3} - Q_{1} = \frac{7135}{44} -
\frac{3685}{24} = \frac{2275}{264} \approx 8,62

  • Câu 35: Thông hiểu

    Tìm tứ phân vị thứ nhất của mẫu số liệu sau:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [30; 35)

    2

    Ta có:

    Thời gian

    Số học sinh

    Tần số tích lũy

    [0; 5)

    6

    6

    [5; 10)

    10

    16

    [10; 15)

    11

    27

    [15; 20)

    9

    36

    [20; 25)

    1

    37

    [25; 30)

    1

    38

    [30; 35)

    2

    40

    Cỡ mẫu là: N = 40 \Rightarrow \frac{N}{4}
= 10

    => Nhóm chứa tứ phân vị thứ nhất là [5; 10) (vì 10 nằm giữa hai tần số tích lũy 6 và 16)

    Khi đó \left\{ \begin{matrix}l = 5;\dfrac{N}{4} = 10;m = 6;f = 10 \\c = 10 - 5 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c

    \Rightarrow Q_{1} = 5 + \frac{10 -
6}{10}.5 = 7

  • Câu 36: Nhận biết

    Kết quả khảo sát cân nặng của 40 quả cam Hòa Bình ở mỗi lô hàng 1 và lô hàng 2 được cho ở bảng sau:

    Cân nặng (gam)

    [100; 110)

    [110; 120)

    [120; 130)

    [130; 140)

    [140; 150)

    Số quả cam ở lô hàng 1

    0

    10

    11

    19

    0

    Số quả cam ở lô hàng 1

    3

    15

    12

    7

    3

    Sử dụng khoảng biến thiên, hãy cho biết cân nặng của 40 quả cam Hòa Bình của lô hàng nào có độ phân tán lớn hơn.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về cân nặng của 40 quả cam Hòa Bình của lô hàng 1 là 140 - 110 = 30 gam.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về cân nặng của 40 quả cam Hòa Bình của lô hàng 2 là 150 – 100 = 50 gam.

    Do vậy, lô hàng 2 có cân nặng của 40 quả cam Hòa Bình phân tán lớn hơn lô hàng 1.

  • Câu 37: Thông hiểu

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Xác định độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Xác định độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 38: Nhận biết

    Cho bảng thống kê chiều cao (đơn vị: cm) của học sinh lớp 12A và lớp 12B như sau:

    Chiều cao

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    [180; 185)

    12A

    2

    7

    12

    3

    0

    1

    12B

    5

    9

    8

    2

    1

    0

    Giả sử khoảng biến thiên của mẫu số liệu chiều cao học sinh lớp 12A và 12B lần lượt là R_{1};R_{2}. Chọn kết luận đúng?

    Khoảng biến thiên của mẫu số liệu chiều cao lớp 12A là R_{1} = 185 - 155 = 30.

    Khoảng biến thiên của mẫu số liệu chiều cao lớp 12B là R_{2} = 180 - 155 = 25.

    Vậy R_{1} > R_{2} là kết luận đúng.

  • Câu 39: Vận dụng

    Cho mẫu số liệu thống kê chiều cao (đơn vị: cm) của các học sinh lớp 12A, 12B và 12C của một trường THPT như bảng sau

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12A

    1

    13

    18

    5

    3

    0

    Số học sinh 12B

    0

    12

    20

    7

    1

    0

    Số học sinh 12C

    1

    8

    12

    15

    3

    1

    Xét tính đúng, sai các mệnh đề sau:

    (a) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B. Đúng||Sai

    (b) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12B phân tán hơn so với lớp 12C. Sai|| Đúng

    (c) Ở lớp 12B có một học sinh có chiều cao là 173 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12B. Đúng||Sai

    (d) Ở lớp 12C có một học sinh có chiều cao là 177 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12C. Sai|| Đúng

    Đáp án là:

    Cho mẫu số liệu thống kê chiều cao (đơn vị: cm) của các học sinh lớp 12A, 12B và 12C của một trường THPT như bảng sau

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12A

    1

    13

    18

    5

    3

    0

    Số học sinh 12B

    0

    12

    20

    7

    1

    0

    Số học sinh 12C

    1

    8

    12

    15

    3

    1

    Xét tính đúng, sai các mệnh đề sau:

    (a) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B. Đúng||Sai

    (b) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12B phân tán hơn so với lớp 12C. Sai|| Đúng

    (c) Ở lớp 12B có một học sinh có chiều cao là 173 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12B. Đúng||Sai

    (d) Ở lớp 12C có một học sinh có chiều cao là 177 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12C. Sai|| Đúng

    Xét mẫu số liệu thống kê chiều cao của học sinh lớp 12A

    Ta có:

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12A

    1

    13

    18

    5

    3

    0

    Tần số tích lũy

    1

    14

    32

    37

    40

    40

    Cỡ mẫu N = 40

    Ta có: \frac{N}{4} = 10

    => Nhóm chứa Q_{1} là [155; 160)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 155;m = 1,f = 13;c = 160
- 155 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 155 + \frac{10 - 1}{13}.5 =\frac{2060}{13}

    Ta có: \frac{3N}{4} = 30

    => Nhóm chứa Q_{3} là [160; 165)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 160;m = 14,f = 18;c =
165 - 160 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 160 + \frac{30 - 14}{18}.5 =\frac{1480}{9}.

    Vậy khoảng tứ phân vị của mẫu số liệu nhóm A là: \Delta Q_{A} = \frac{700}{117}

    Xét mẫu số liệu thống kê chiều cao của học sinh lớp 12B

    Ta có:

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12B

    0

    12

    20

    7

    1

    0

    Tần số tích lũy

    0

    12

    32

    39

    40

    40

    Cỡ mẫu N = 40

    Ta có: \frac{N}{4} = 10

    => Nhóm chứa Q_{1} là [155; 160)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 155;m = 0,f = 12;c = 160
- 155 = 5

    \Rightarrow Q_{1} = l +
\frac{\frac{N}{4} - m}{f}.c = 155 + \frac{10 - 0}{12}.5 =
\frac{955}{6}

    Ta có: \frac{3N}{4} = 30

    => Nhóm chứa Q_{3} là [160; 165)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 160;m = 12,f = 20;c =
165 - 160 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 160 + \dfrac{30 - 12}{20}.5 =\dfrac{329}{2}.

    Vậy khoảng tứ phân vị của mẫu số liệu nhóm B là: \Delta Q_{B} = \frac{16}{3}

    Xét mẫu số liệu thống kê chiều cao của học sinh lớp 12C

    Ta có:

    Chiều cao

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [170; 175)

    [175; 180)

    Số học sinh 12C

    1

    8

    12

    15

    3

    1

    Tần số tích lũy

    1

    9

    21

    36

    39

    40

    Cỡ mẫu N = 40

    Ta có: \frac{N}{4} = 10

    => Nhóm chứa Q_{1} là [160; 165)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 160;m = 9,f = 12;c = 165
- 160 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 160 + \dfrac{10 - 9}{12}.5 =\dfrac{1925}{12}

    Ta có: \frac{3N}{4} = 30

    => Nhóm chứa Q_{3} là [165; 170)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 165;m = 21,f = 15;c =
170 - 165 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 165 + \dfrac{30 - 21}{15}.5 =168.

    Vậy khoảng tứ phân vị của mẫu số liệu nhóm C là: \Delta Q_{C} = \frac{91}{12}

     

    (a) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B.

    Ta có: \Delta Q_{A} > \Delta
Q_{B}. Do đó, mẫu số liệu thống kê chiều cao của học sinh lớp 12A phân tán hơn so với lớp 12B.

    Chọn ĐÚNG.

    (b) Nếu dựa vào khoảng tứ phân vị thì mẫu số liệu thống kê chiều cao của học sinh lớp 12B phân tán hơn so với lớp 12C.

    Ta có: \Delta Q_{B} < \Delta
Q_{C}. Do đó, mẫu số liệu thống kê chiều cao của học sinh lớp 12C phân tán hơn so với lớp 12B.

    Chọn SAI.

    (c) Ở lớp 12B có một học sinh có chiều cao là 173 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12B.

    Xét mẫu số liệu lớp 12B, ta có \Delta
Q_{B} = \frac{16}{3}

    Khi đó, giá trị ngoại lệ là các giá trị x
> Q_{3} + 1,5.\Delta Q_{B} \Rightarrow x > \frac{329}{2} +
1,5.\frac{16}{3} \Rightarrow x > 172,5

    Do đó, giá trị 173 cm là giá trị ngoại lệ của mẫu số liệu lớp 12B.

    Chọn ĐÚNG.

    (d) Ở lớp 12C có một học sinh có chiều cao là 177 cm, chiều cao của học sinh đó là giá trị ngoại lệ của mẫu số liệu của lớp 12C.

    Xét mẫu số liệu lớp 12C, ta có \Delta
Q_{C} = \frac{91}{12}

    Khi đó, giá trị ngoại lệ là các giá trị x
> Q_{3} + 1,5.\Delta Q_{C} \Rightarrow x > 168 + 1,5.\frac{91}{12}
\Rightarrow x > 179,375

    Do đó, giá trị 177cm không là giá trị ngoại lệ của mẫu số liệu lớp 12C.

    Chọn SAI.

  • Câu 40: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Phương sai của mẫu số liệu là:

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Giá trị đại diện

    10

    30

    50

    70

    90

    Số học sinh

    5

    9

    12

    10

    6

    Số trung bình: \overline{x} = \frac{5.10
+ 9.30 + 12.50 + 10.70 + 6.90}{42} = \frac{360}{7}

    Phương sai: S^{2} = \frac{1}{42}\left(
5.10^{2} + 9.30^{2} + 12.50^{2} + 10.70^{2} + 6.90^{2} ight) - \left(
\frac{360}{7} ight)^{2} \approx 598

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo