Đề kiểm tra 45 phút Chương 3 Các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 3. Các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho mẫu số liệu ghép nhóm về thời gian (đơn vị: phút) đi từ nhà đến trường của các học sinh trong một lớp 12 của một trường như sau:

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    Số học sinh

    7

    12

    7

    5

    3

    2

    Xét tính đúng sai của các khẳng định sau:

    a) Tần số tích lũy của nhóm [10;15) là 26. Đúng||Sai

    b) Tần số nhóm [10;15) lớn nhất. Đúng||Sai

    c) Khoảng biến thiên là 15. Sai||Đúng

    d) Giá trị trung bình của mẫu số liệu bằng 11,25. Đúng||Sai

    Đáp án là:

    Cho mẫu số liệu ghép nhóm về thời gian (đơn vị: phút) đi từ nhà đến trường của các học sinh trong một lớp 12 của một trường như sau:

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    Số học sinh

    7

    12

    7

    5

    3

    2

    Xét tính đúng sai của các khẳng định sau:

    a) Tần số tích lũy của nhóm [10;15) là 26. Đúng||Sai

    b) Tần số nhóm [10;15) lớn nhất. Đúng||Sai

    c) Khoảng biến thiên là 15. Sai||Đúng

    d) Giá trị trung bình của mẫu số liệu bằng 11,25. Đúng||Sai

    a) Đúng: Tần số tích lũy của nhóm [10;15) là 7 + 12 + 7 = 26

    b) Đúng: Tần số nhóm [10;15) lớn nhất.

    c) Sai: Khoảng biến thiên là R = 30 – 0 = 30

    d) Đúng: Giá trị trung bình của mẫu số liệu bằng:

    \overline{x} = \frac{2,5.7 + 7,5.12 +
12,5.7 + 17,5.5 + 22,5.3 + 27,5.2}{36} = 11,26

  • Câu 2: Thông hiểu

    Dưới đây là bảng thống kê số giờ tự học ở nhà trong 3 ngày nghỉ của học sinh lớp 12 như sau:

    Giờ

    [1; 2)

    [2; 3)

    [3; 4)

    [4; 5)

    [5; 6)

    Số học sinh

    8

    10

    12

    9

    3

    Xét tính đúng sai của các khẳng định sau:

    a) Tứ phân vị thứ nhất của mẫu số liệu bằng 2,25 (giờ). Đúng||Sai

    b) Tứ phân vị thứ hai của mẫu số liệu lớn hơn 4 (giờ). Sai||Đúng

    c) Tứ phân vị thứ ba của mẫu số liệu bằng \frac{25}{6}. Đúng||Sai

    d) Khoảng tứ phân vị của mẫu số liệu là số nguyên. Sai||Đúng

    Đáp án là:

    Dưới đây là bảng thống kê số giờ tự học ở nhà trong 3 ngày nghỉ của học sinh lớp 12 như sau:

    Giờ

    [1; 2)

    [2; 3)

    [3; 4)

    [4; 5)

    [5; 6)

    Số học sinh

    8

    10

    12

    9

    3

    Xét tính đúng sai của các khẳng định sau:

    a) Tứ phân vị thứ nhất của mẫu số liệu bằng 2,25 (giờ). Đúng||Sai

    b) Tứ phân vị thứ hai của mẫu số liệu lớn hơn 4 (giờ). Sai||Đúng

    c) Tứ phân vị thứ ba của mẫu số liệu bằng \frac{25}{6}. Đúng||Sai

    d) Khoảng tứ phân vị của mẫu số liệu là số nguyên. Sai||Đúng

    Ta có

    Giờ

    [1; 2)

    [2; 3)

    [3; 4)

    [4; 5)

    [5; 6)

    Số học sinh

    8

    10

    12

    9

    3

    Tần số tích lũy

    8

    18

    30

    39

    42

    a) Đúng: Ta có số phần tử của mẫu là: n =
42 \Rightarrow \frac{n}{4} = 10,5

    Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 10,5.

    Xét nhóm 2 là nhóm [2;3) có s = 2;h =
1;n_{2} = 10 và nhóm 1 là nhóm [1; 2) có cf_{1} = 8

    Áp dụng công thức tứ phân vị thứ nhất của mẫu số liệu có:

    Q_{1} = 2 + \frac{10,5 - 8}{10}.1 =
2,25(giờ)

    b) Sai: Ta có số phần tử của mẫu là n =
42 \Rightarrow \frac{n}{2} = 21

    cf_{2} = 18 < 21 < cf_{3} =
30 suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 21.

    Xét nhóm 3 là nhóm [3; 4) có r = 3;d =
1;n_{3} = 12 và nhóm 2 là nhóm [2;3) có cf_{2} = 18.

    Áp dụng công thức ta có trung vị của mẫu số liệu là:

    M_{e} = 3 + \frac{21 - 18}{12}.1 =
3,25(giờ)

    Vậy tứ phân vị thứ 2 là Q_{2} = M_{e} =
3,25

    c) Đúng: Ta có số phần tử của mẫu là: \frac{3n}{4} = 31,5

    Suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 31,5.

    Xét nhóm 4 là nhóm [4;5) có t = 4;l =
1;n_{4} = 9 và nhóm 3 là nhóm [3; 4) có cf_{3} = 30.

    Áp dụng công thức tứ phân vị thứ ba của mẫu số liệu có:

    Q_{3} = 4 + \frac{31,5 - 30}{9}.1 =
\frac{25}{6}(giờ)

    d) Sai: Khoảng tứ phân vị của mẫu số liệu bằng \Delta Q = Q_{3} - Q_{1} =
\frac{23}{12}.

  • Câu 3: Thông hiểu

    Người ta theo dõi sự thay đổi cân nặng, được tính bằng hiệu cân nặng trước và sau ba tháng áp dụng chế độ ăn kiêng của một số người cho kết quả sau:

    Thay đổi cân nặng

    [-1; 0)

    [0; 1)

    [1; 2)

    [2; 3)

    [3; 4)

    Số người nam

    6

    4

    2

    3

    1

    Số người nữ

    5

    6

    3

    1

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Số người thay đổi cân nặng theo chiều hướng giảm cân là 11. Đúng||Sai

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nam là R_{1} = 5. Đúng||Sai

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nữ là R_{2} = 3. Sai|| Đúng

    (d) Nếu biết nữ tăng cân nhiều nhất là 2kg và giảm cân được nhiều nhất 1kg thì khoảng biến thiên của mẫu số liệu gốc là 1. Sai|| Đúng

    Đáp án là:

    Người ta theo dõi sự thay đổi cân nặng, được tính bằng hiệu cân nặng trước và sau ba tháng áp dụng chế độ ăn kiêng của một số người cho kết quả sau:

    Thay đổi cân nặng

    [-1; 0)

    [0; 1)

    [1; 2)

    [2; 3)

    [3; 4)

    Số người nam

    6

    4

    2

    3

    1

    Số người nữ

    5

    6

    3

    1

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Số người thay đổi cân nặng theo chiều hướng giảm cân là 11. Đúng||Sai

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nam là R_{1} = 5. Đúng||Sai

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nữ là R_{2} = 3. Sai|| Đúng

    (d) Nếu biết nữ tăng cân nhiều nhất là 2kg và giảm cân được nhiều nhất 1kg thì khoảng biến thiên của mẫu số liệu gốc là 1. Sai|| Đúng

    (a) Số người thay đổi cân nặng theo chiều hướng giảm cân là 11. Số người thay đổi theo chiều hướng giảm cân là 5 + 6 = 11

    Chọn ĐÚNG.

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nam là R_{1} = 5.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nam là R_{1} = 4 - ( - 1) =
5

    Chọn ĐÚNG.

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nữ là R_{2} = 3.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nữ là R_{2} = 3 - ( - 1) =
4

    Chọn SAI.

    (d) Nếu biết nữ tăng cân nhiều nhất là 2 kg và giảm cân được nhiều nhất 1 kg thì khoảng biến thiên của mẫu số liệu gốc là 1.

    Nếu biết nữ tăng cân nhiều nhất là 2 kg và giảm cân được nhiều nhất 1 kg thì khoảng biến thiên của mẫu số liệu gốc là R_{2} = 2 - ( - 1) = 3

    Chọn SAI.

  • Câu 4: Nhận biết

    Kết quả đo chiều cao của 100 cây thực nghiệm 2 năm tuổi được cho trong bảng sau:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Xác định khoảng biến thiên của mẫu số liệu?

    Khoảng biến thiên của mẫu số liệu là R =
9,4 - 8,4 = 1.

  • Câu 5: Thông hiểu

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    C li

    \lbrack 19;19,5)[19,5;20)\lbrack 20;20,5)\lbrack 20,5;21)\lbrack 21;21,5)

    Tn s

    13

    45

    24

    12

    6

    Phương sai của mẫu số liệu ghép nhóm trên là một số thập phân xấp xỉ có dạng \overline{a,b77}. Tính a + b.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    C li

    \lbrack 19;19,5)[19,5;20)\lbrack 20;20,5)\lbrack 20,5;21)\lbrack 21;21,5)

    Tn s

    13

    45

    24

    12

    6

    Phương sai của mẫu số liệu ghép nhóm trên là một số thập phân xấp xỉ có dạng \overline{a,b77}. Tính a + b.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Thông hiểu

    Mỗi ngày bác T đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác T trong 20 ngày được thống kê lại ở bảng sau:

    Quãng đường

    [2,7; 3,0)

    [3,0; 3,3)

    [3,3; 3,6)

    [3,6; 3,9)

    [3,9; 4,2)

    Số ngày

    3

    6

    5

    4

    2

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    Ta có:

    Quãng đường

    [2,7; 3,0)

    [3,0; 3,3)

    [3,3; 3,6)

    [3,6; 3,9)

    [3,9; 4,2)

    Số ngày

    3

    6

    5

    4

    2

    Tần số tích lũy

    3

    9

    14

    18

    20

    Cỡ mẫu N = 20

    Cỡ mẫu \Rightarrow \frac{N}{4} =
5

    => Nhóm chứa Q_{1} là [3,0; 3,3)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 3;m = 6,f = 3;c =
0,3

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 3 + \dfrac{5 - 3}{6}.0,3 = 3,1

    Cỡ mẫu N = 20 \Rightarrow \frac{3N}{4} =
15

    => Nhóm chứa Q_{3} là [3,6; 3,9)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 3,6;m = 14,f = 4;c =
0,3

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 3,6 + \dfrac{15 - 14}{4}.0,3 =3,675.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} = 0,575

  • Câu 7: Thông hiểu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Độ lệch chuẩn của mẫu số liệu là:

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Giá trị đại diện

    6

    8

    10

    12

    14

    Số ngày

    2

    7

    7

    3

    1

    Số trung bình: \overline{x} = \frac{2.6 +
7.8 + 7.10 + 3.12 + 1.14}{20} = \frac{47}{5}

    Phương sai:

    S^{2} = \frac{2.6^{2} + 7.8^{2} +
7.10^{2} + 3.12^{2} + 1.14^{2}}{20} - \left( \frac{47}{5} ight)^{2} =
4,04

    Độ lệch chuẩn:

    S = 2

  • Câu 8: Nhận biết

    Mỗi ngày bác T đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác T trong 20 ngày được thống kê lại ở bảng sau:

    Quãng đường

    [2,7; 3,0)

    [3,0; 3,3)

    [3,3; 3,6)

    [3,6; 3,9)

    [3,9; 4,2)

    Số ngày

    3

    6

    5

    4

    2

    Khoảng biến thiên của mẫu số liệu ghép nhóm là:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là: 4,2 - 2,7 = 1,5(km)

  • Câu 9: Nhận biết

    Xét mẫu số liệu ghép nhóm có tứ phân vị thứ nhất, tứ phân vị thứ hai, tứ phân vị thứ ba lần lượt là Q_{1}; Q_{2}; Q_{3}. Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó bằng

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là Q_{3} - Q_{1}.

  • Câu 10: Nhận biết

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C và điểm trung bình của lớp 12D lần lượt là:

    Ta có:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C:

    \overline{x_{C}} = \frac{4.5,5 + 5.6,5 +
3.7,5 + 4.8,5 + 2.9,5}{18} = \frac{65}{9}.

    Điểm trung bình của lớp 12D:

    \overline{x_{D}} = \frac{2.5,5 + 5.6,5 +
4.7,5 + 3.8,5 + 1.9,5}{15} = \frac{217}{30}.

  • Câu 11: Nhận biết

    Thống kê quãng đường một xe taxi công nghệ đi mỗi ngày (đơn vị: km) như sau:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Số ngày

    5

    10

    9

    4

    2

    Tìm số trung bình của mẫu số liệu ghép nhóm?

    Ta có:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Giá trị đại diện

    75

    125

    175

    225

    275

    Số ngày

    5

    10

    9

    4

    2

    Số trung bình của mẫu số liệu ghép nhóm:

    \overline{x} = \frac{5.75 + 10.125 +
9.175 + 4.225 + 2.275}{30} = 155

  • Câu 12: Thông hiểu

    Trong một đợt khám sức khỏe của 50 học sinh nam lớp 12, người ta được kết quả như trong bảng sau:

    Nhóm

    Tần số

    [160; 164)

    3

    [164; 168)

    8

    [168; 172)

    18

    [172; 176)

    12

    [176; 180)

    9

    n = 50

    Độ lệch chuẩn của mẫu số liệu ghép nhóm cho ở bảng trên bằng bao nhiêu centimets (làm tròn kết quả đến hàng phần mười)

    Đáp án: 4,5 (cm)

    Đáp án là:

    Trong một đợt khám sức khỏe của 50 học sinh nam lớp 12, người ta được kết quả như trong bảng sau:

    Nhóm

    Tần số

    [160; 164)

    3

    [164; 168)

    8

    [168; 172)

    18

    [172; 176)

    12

    [176; 180)

    9

    n = 50

    Độ lệch chuẩn của mẫu số liệu ghép nhóm cho ở bảng trên bằng bao nhiêu centimets (làm tròn kết quả đến hàng phần mười)

    Đáp án: 4,5 (cm)

    Số trung bình cộng của mẫu số liệu đó là:

    \overline{x} = \frac{3.162 + 8.166 +
18.170 + 12.174 + 9.178}{50} = 171,28\ (cm).

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{50}\lbrack 3.(171,28 -162)^{2} + 8.(171,28 - 166)^{2} + 18.(171,28 - 170)^{2}

    + 12.(171,28 - 174)^{2} + 9.(171,28 -178)^{2}brack = 20,1216.

    Độ lệch chuẩn của mẫu số liệu là: s =
\sqrt{s^{2}} = \sqrt{20,1216} \approx 4,5\ (cm).

    Đáp số: 4,5 (cm).

  • Câu 13: Vận dụng

    Cho biểu đồ thống kê thời gian tập thể dục buổi sáng của hai người A và B

    Gọi khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của A và B lần lượt là \Delta_{Q_{A}};\Delta_{Q_{B}}. Chọn kết luận đúng?

    Ta có:

    Đối tượng

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    A

    5

    12

    8

    3

    2

    Tần số tích lũy

    5

    17

    25

    28

    30

    Cỡ mẫu N = 30 \Rightarrow \frac{N}{4} =
7,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 5,f = 12;c = 25 -
20 = 5

    \Rightarrow Q_{1} = l +
\frac{\frac{N}{4} - m}{f}.c = 20 + \frac{7,5 - 5}{12}.5 =
\frac{505}{24}

    Cỡ mẫu \frac{3N}{4} = 22,5

    => Nhóm chứa Q_{3} là [25; 30)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 25;m = 17,f = 8;c =
5

    \Rightarrow Q_{3} = l +
\frac{\frac{3N}{4} - m}{f}.c = 25 + \frac{22,5 - 17}{8}.5 =
\frac{455}{16}.

    Vậy khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của A là:

    \Delta_{Q_{A}} = Q_{3} - Q_{1} =
\frac{355}{48} \approx 7,4.

    Đối tượng

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    B

    0

    25

    5

    0

    0

    Tần số tích lũy

    0

    25

    30

    0

    0

    Cỡ mẫu N = 30 \Rightarrow \frac{N}{4} =
7,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 0,f = 25;c = 25 -
20 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 20 + \frac{7,5 - 0}{25}.5 =\frac{43}{2}

    Cỡ mẫu \frac{3N}{4} = 22,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 0,f = 25;c = 25 -
20 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 20 + \dfrac{22,5 - 0}{25}.5 =\dfrac{49}{2}.

    Vậy khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của B là:

    \Delta_{Q_{B}} = Q_{3} - Q_{1} =
3.

    Vậy kết luận đúng là: \Delta_{Q_{A}} >
\Delta_{Q_{B}}.

  • Câu 14: Nhận biết

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Có bao nhiêu máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ?

    Có 6 máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ.

  • Câu 15: Vận dụng

    Dưới đây là thống kê thời gian 100 lần đi làm bằng xe bus từ nhà đến trường của bạn Lan:

    Thời gian (phút)

    [15; 81)

    [18; 21)

    [21; 24)

    [24; 27)

    [27; 30)

    [30; 33)

    Số lượt

    22

    38

    27

    8

    4

    1

    Giá trị nào sau đây là giá trị ngoại lệ của mẫu số liệu?

    Ta có:

    Thời gian (phút)

    [15; 81)

    [18; 21)

    [21; 24)

    [24; 27)

    [27; 30)

    [30; 33)

    Số lượt

    22

    38

    27

    8

    4

    1

    Tần số tích lũy

    22

    60

    87

    95

    99

    100

    Cỡ mẫu N = 100 \Rightarrow \frac{N}{4} =
25

    => Nhóm chứa tứ phân vị thứ nhất là [18; 21)

    Do đó: l = 18;m = 22,f = 38;c = 21 - 18 =
3

    Khi đó tứ phân vị thứ nhất là:

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 18 + \frac{25 - 22}{38}.3 =\frac{693}{38}

    N = 100 \Rightarrow \frac{3N}{4} =
75

    => Nhóm chứa tứ phân vị thứ ba là [21; 24)

    Do đó: l = 21;m = 60,f = 27;c =
3

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +
\frac{\frac{3N}{4} - m}{f}.c = 21 + \frac{75 - 60}{27}.3 =
\frac{68}{3}

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q} = Q_{3} - Q_{1} \approx
4,43

    Trong một lần duy nhất Lan đi hết 29 phút, thời gian đi của Lan thuộc nhóm [30; 33)

    Q_{3} + 1,5\Delta Q = \frac{6683}{228}
< 30 nên thời gian của lần Lan đi hết 29 phút là giá trị ngoại lệ của mẫu số liệu ghép nhóm.

  • Câu 16: Nhận biết

    Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:

    42

    43,4

    43,4

    46,5

    46,7

    46,8

    47,5

    47,7

    48,1

    48,4

    50,8

    51,1

    52,7

    53,9

    54,8

    57,6

    57,5

    59,6

    60,3

    61,1

    Lập bảng tần số ghép nhóm với nhóm đầu [42; 46) và độ dài mỗi nhóm bằng 4. Tìm tốc độ trung bình của mẫu dữ liệu ghép nhóm?

    Ta lập được bảng tần số ghép nhóm như sau:

    Tốc độ

    [42; 46)

    [46; 50)

    [50; 54)

    [54; 58)

    [58; 62)

    Giá trị đại diện

    44

    48

    52

    56

    60

    Số xe

    3

    7

    4

    3

    3

    Tốc độ trung bình là:

    \overline{x} = \frac{3.44 + 7.48 + 4.52
+ 3.56 + 3.60}{20} = 51,2

  • Câu 17: Thông hiểu

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Thông hiểu

    Một người thống kê lại thời gian (đơn vị: giây) thực hiện các cuộc gọi điện thoại của người đó trong một tuần ở bảng sau.

    Thời gian

    [0; 60)

    [60; 120)

    [120; 180)

    [180; 240)

    [240; 300)

    [300; 360)

    Số cuộc gọi

    8

    10

    7

    5

    2

    1

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm này?

    Cỡ mẫu N = 33

    Suy ra tứ phân vị thứ nhất của mẫu số liệu gốc là: \frac{1}{2}\left( x_{8} + x_{9}
ight)

    {x_8} \in \left[ {0;60} ight);{x_9} \in \left[ {60;120} ight) \Rightarrow {Q_1} = 60

    Suy ra tứ phân vị thứ ba của mẫu số liệu gốc là: \frac{1}{2}\left( x_{25} + x_{26}
ight)

    x_{25} \in \lbrack 120;180);x_{26} \in
\lbrack 180;240) \Rightarrow Q_{3} = 180

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q} = Q_{3} - Q_{1} = 120

  • Câu 19: Thông hiểu

    Tìm tứ phân vị thứ ba của mẫu số liệu:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [30; 35)

    2

    Ta có:

    Thời gian

    Số học sinh

    Tần số tích lũy

    [0; 5)

    6

    6

    [5; 10)

    10

    16

    [10; 15)

    11

    27

    [15; 20)

    9

    36

    [20; 25)

    1

    37

    [25; 30)

    1

    38

    [30; 35)

    2

    40

    Cỡ mẫu là: N = 40 \Rightarrow
\frac{3N}{4} = 30

    => Nhóm chứa tứ phân vị thứ ba là [15; 20) (vì 30 nằm giữa hai tần số tích lũy 36 và 27)

    Khi đó \left\{ \begin{matrix}l = 15;\dfrac{3N}{4} = 30;m = 27;f = 9 \\c = 20 - 15 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c

    \Rightarrow Q_{3} = 15 + \frac{30 -
27}{9}.5 = \frac{50}{3} \approx 17.

  • Câu 20: Vận dụng

    Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:

    341,4

    187,1

    242,2

    522,9

    251,4

    432,2

    200,7

    388,6

    258,4

    288,5

    298,1

    413,5

    413,5

    332

    421

    475

    400

    305

    520

    147

    Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:

    341,4

    187,1

    242,2

    522,9

    251,4

    432,2

    200,7

    388,6

    258,4

    288,5

    298,1

    413,5

    413,5

    332

    421

    475

    400

    305

    520

    147

    Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 21: Vận dụng

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Nếu so sánh theo độ lệch chuẩn thì học sinh lớp nào có tốc độ làm bài ít đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Nếu so sánh theo độ lệch chuẩn thì học sinh lớp nào có tốc độ làm bài ít đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 22: Thông hiểu

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Xác định độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Xác định độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 23: Thông hiểu

    Kết quả đo chiều cao của học sinh lớp 12A được ghi lại trong bảng như sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho là:

    Ta có:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Chiều cao trung bình là:

    \overline{x} = \frac{3.162 + 5.166 +
8.170 + 4.174 + 1.178}{21} \approx 169

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{21}\left( 3.162^{2} +
5.166^{2} + 8.170^{2} + 4.174^{2} + 1.178^{2} ight) - 169^{2} \approx
18,14

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là: S \approx 4,26.

  • Câu 24: Thông hiểu

    Điểm trung bình cuối năm của học sinh lớp 12A và 12B được thống kê trong bảng sau:

    Nếu so sánh theo độ lệch chuẩn thì học sinh lớp nào có điểm trung bình ít phân tán hơn?

    Ta có:

    Xét lớp 12A

    Cỡ mẫu n_{1} = 40

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x_{1}} = \frac{1.5,5 + 11.7,5+ 22.8,5 + 6.9,5}{40} = 8,3

    Phương sai của mẫu số liệu ghép nhóm là:

    {S_{1}}^{2} = \frac{1}{40}\left(1.5,5^{2} + 11.7,5^{2} + 22.8,5^{2} + 6.9,5^{2} ight) - 8,3^{2} =0,61

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là: S_{1} = \sqrt{0,61}

    Xét lớp 12B

    Cỡ mẫu n_{2} = 40

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x_{2}} = \frac{6.6,5 + 8.7,5 +14.8,5 + 12.9,5}{40} = 8,3

    Phương sai của mẫu số liệu ghép nhóm là:

    {S_{2}}^{2} = \frac{1}{40}\left(6.6,5^{2} + 8.7,5^{2} + 14.8,5^{2} + 12.9,5^{2} ight) - 8,3^{2} =1,06

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là: S_{2} = \sqrt{1,06}

    S_{1} < S_{2} nên nếu so sánh độ lệch chuẩn thì học sinh lớp 12A có điểm trung bình ít phân tán hơn học sinh lớp 12B.

  • Câu 25: Nhận biết

    Cho mẫu số kiệu ghép nhóm như sau:

    Chiều cao(cm)

    [155; 160)

    [160; 165)

    [165; 170)

    [175; 180)

    [180; 185)

    A

    2

    7

    12

    1

    0

    B

    6

    10

    7

    0

    2

    Khoảng biến thiên của mẫu số liệu B có độ phân tán lớn hơn khoảng biến thiên của mẫu số liệu A bằng bao nhiêu?

    Khoảng biến thiên của A: 180 – 155 = 25

    Khoảng biến thiên của B: 185 – 155 = 30

    Khoảng biến thiên của mẫu số liệu B có độ phân tán lớn hơn khoảng biến thiên của mẫu số liệu A bằng 5.

  • Câu 26: Thông hiểu

    Một hãng xe ôtô thống kê lại số lần gặp sự cố về động cơ của 100 chiếc xe cùng loại sau 2 năm sử dụng đầu tiên ở bảng sau.

    Số lần xe gặp sự cố

    [0,5; 2,5)

    [2,5; 4,5)

    [4,5; 6,5)

    [6,5; 8,5)

    [8,5; 10,5)

    Số xe

    17

    33

    25

    20

    5

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm này? (Làm tròn các kết quả đến hàng phần trăm).

    Ta có:

    Số lần xe gặp sự cố

    [0,5; 2,5)

    [2,5; 4,5)

    [4,5; 6,5)

    [6,5; 8,5)

    [8,5; 10,5)

    Số xe

    17

    33

    25

    20

    5

    Tần số tích lũy

    17

    50

    75

    95

    100

    Cỡ mẫu N = 100

    \frac{N}{4} = 25

    => Nhóm chứa Q_{1} là [2,5; 4,5)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 2,5;m = 17,f = 33;c =
4,5 - 2,5 = 2

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 2,5 + \dfrac{25 - 17}{33}.2 \approx2,98

    \frac{3N}{4} = \frac{3.100}{4} =
75

    => Nhóm chứa Q_{3} là [4,5; 6,5)

    Tứ phân vị thứ ba có mẫu số liệu gốc là \frac{1}{2}\left( x_{75} + x_{76} ight) \in
\lbrack 2,5;4,5)

    x_{75} \in \lbrack 4,5;6,5);x_{76} \in
\lbrack 6,5;8,5)

    \Rightarrow Q_{3} = 6,5

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm: \Delta Q = Q_{3} - Q_{1} \approx 3,52

  • Câu 27: Nhận biết

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Tần số

    8

    9

    12

    10

    11

    Tính số trung bình của mẫu số liệu?

    Cỡ mẫu N = 50

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Tần số

    8

    9

    12

    10

    11

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{8.121 + 9.123 +
12.125 + 10.127 + 11.129}{50} = 125,28

  • Câu 28: Nhận biết

    Cho bảng thống kê kết quả cự li ném bóng của một người như sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số lần

    13

    45

    24

    12

    6

    Cự li ném bóng trung bình của người đó là:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số lần

    13

    45

    24

    12

    6

    Cự li trung bình là:

    \overline{x} = \frac{13.9,25 + 45.19,75
+ 24.20,25 + 12.20,75 + 6.21,25}{100} \approx 20,02

  • Câu 29: Nhận biết

    Cho mẫu số liệu điểm môn Toán của một nhóm học sinh như sau:

    Điểm

    \lbrack 6;7)

    \lbrack 7;8)

    \lbrack 8;9)

    \lbrack 9;10brack

    Số học sinh

    8

    7

    10

    5

    Mốt của mẫu số liệu (kết quả làm tròn đến hàng phần trăm) là:

    Nhóm chứa Mốt là \lbrack
8;9).

    Mốt của mẫu số liệu là M_{e} = 8 +
\frac{10 - 7}{10 - 7 + 10 - 5}(9 - 8) \approx 8,38

  • Câu 30: Thông hiểu

    Cho bảng thống kê số bước chân đi trong 1 tháng của A và B như sau:

    Số bước (nghìn bước)

    [3; 5)

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    A

    6

    7

    6

    6

    5

    B

    2

    5

    13

    8

    2

    Giả sử so sánh theo độ lệch chuẩn, em có nhận xét gì về số lượng bước chân đi mỗi ngày của hai người?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho bảng thống kê số bước chân đi trong 1 tháng của A và B như sau:

    Số bước (nghìn bước)

    [3; 5)

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    A

    6

    7

    6

    6

    5

    B

    2

    5

    13

    8

    2

    Giả sử so sánh theo độ lệch chuẩn, em có nhận xét gì về số lượng bước chân đi mỗi ngày của hai người?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 31: Thông hiểu

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Phương sai của mẫu số liệu ghép nhóm lớp 12A và lớp 12B lần lượt là

    Ta có:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Giá trị đại diện

    6,5

    7,5

    8,5

    9,5

    10,5

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Số trung bình của mẫu số liệu ghép nhóm lớp 12A:

    \overline{x_{A}} = \frac{6.6,5 + 10.7,5
+ 13.8,5 + 10.9,5 + 9.10,5}{50} = 8,54

    Phương sai của mẫu số liệu ghép nhóm lớp 12A là:

    {S_{A}}^{2} = \frac{1}{50}\left(
6.6,5^{2} + 10.7,5^{2} + 13.8,5^{2} + 10.9,5^{2} + 9.10,5^{2} ight) -
8,54^{2} = 1,7584

    Số trung bình của mẫu số liệu ghép nhóm lớp 12B:

    \overline{x_{B}} = \frac{4.6,5 + 12.7,5
+ 17.8,5 + 14.9,5 + 3.10,5}{50} = 8,5

    Phương sai của mẫu số liệu ghép nhóm lớp 12B là:

    {S_{B}}^{2} = \frac{1}{50}\left( 4.6,5^{2} +
12.7,5^{2} + 17.8,5^{2} + 14.9,5^{2} + 3.10,5^{2} ight) - 8,5^{2} =
1,08

  • Câu 32: Nhận biết

    Cho bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch như sau:

    Cân nặng

    [250; 290)

    [290; 330)

    [330; 370)

    [370; 410)

    [410; 450)

    Số quả

    3

    13

    18

    11

    5

    Xác định tính đúng sai của nhận xét sau: “Trong 50 quả xoài trên, hiệu số cân nặng của hai quả bất kì không vượt quá 200g” Đúng||Sai

    Đáp án là:

    Cho bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch như sau:

    Cân nặng

    [250; 290)

    [290; 330)

    [330; 370)

    [370; 410)

    [410; 450)

    Số quả

    3

    13

    18

    11

    5

    Xác định tính đúng sai của nhận xét sau: “Trong 50 quả xoài trên, hiệu số cân nặng của hai quả bất kì không vượt quá 200g” Đúng||Sai

    Đúng vì giá trị 200 là khoảng biến thiên của mẫu số liệu ghép nhóm.

  • Câu 33: Thông hiểu

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Tần số

    13

    45

    24

    12

    6

    Phương sai của mẫu số liệu ghép nhóm trên gần với giá trị nào sau đây nhất?

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Tần số

    13

    45

    24

    12

    6

    Cỡ mẫu là n = 13 + 45 + 24 + 12 + 6 = 100.

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{1}{100}\lbrack
13.19,25 + 45.19,75

    + 24.20,25 + 12.20,75 + 6.21,25) =
20,015

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{100}\lbrack
13.(19,25)^{2} + 45.(19,25)^{2}

    + 24.(19,25)^{2} + 12.(19,25)^{2} +
6.(19,25)^{2}brack - (20,015)^{2} \approx 0,277

  • Câu 34: Nhận biết

    Cho biểu đồ

    Hoàn thảnh bảng số liệu theo mẫu sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Đáp án là:

    Cho biểu đồ

    Hoàn thảnh bảng số liệu theo mẫu sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

     Hoàn thảnh bảng số liệu như sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

  • Câu 35: Nhận biết

    Số điểm thi đấu của các đội được biểu diễn trong bảng dưới đây:

    Nhóm dữ liệu

    Tần số

    (0; 2]

    5

    (2; 4]

    16

    (4; 6]

    13

    (6; 8]

    7

    (8; 10]

    5

    (10; 12]

    4

    Khoảng biến thiên của mẫu số liệu đó là:

    Khoảng biến thiên của mẫu số liệu đã cho là: R = 12 - 0 = 12.

  • Câu 36: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Tính giá trị Q_{1}?

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{N}{4} =
10,5

    => Nhóm chứa Q_{1} là [20; 40)

    (Vì 10,5 nằm giữa hai tần số tích lũy 5 và 14)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 5,f = 9;c = 40 -
20 = 20

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 20 + \dfrac{10,5 - 5}{9}.20 =\dfrac{290}{9}

  • Câu 37: Thông hiểu

    Số tiền (đơn vị: nghìn đồng) của một số khách hàng mua sách ở một cửa hàng trong một ngày được ghi lại trong bảng sau:

    Giá tiền

    [40; 50)

    [50; 60)

    [60; 70)

    Số khách hàng mua

    2

    6

    4

    Xác định khoảng tứ phân vị của mẫu số liệu ghép nhóm?

    Ta có:

    Giá tiền

    [40; 50)

    [50; 60)

    [60; 70)

    Số khách hàng mua

    2

    6

    4

    Tần số tích lũy

    2

    8

    12

    Cỡ mẫu N = 12

    Ta có: \frac{N}{4} = 3

    => Nhóm chứa Q_{1} là [50; 60)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 50;m = 2;f = 6;c = 60 -
50 = 10

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 50 + \frac{3 - 2}{6}.10 =\frac{155}{3}

    Ta có: \frac{3N}{4} = 9

    => Nhóm chứa Q_{3} là [60; 70)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 60;m = 8;f = 4;c = 70 -
60 = 10

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 60 + \frac{9 - 8}{4}.10 =\frac{125}{2}.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta Q = Q_{3} - Q_{1} =
\frac{65}{6}

  • Câu 38: Nhận biết

    Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Số trung bình của mẫu số liệu ghép nhóm của đối tương A và đối tượng B lần lượt là:

    Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

     

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

     

    Phân xưởng A

    4

    5

    5

    4

    2

    N = 20

    Phân xưởng B

    3

    6

    5

    5

    1

    N’ = 20

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:

    \overline{x_{A}} = \frac{4.5,5 + 5.6,5 +
5.7,5 + 4.8,5 + 2.9,5}{20} = 7,25

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:

    \overline{x_{B}} = \frac{3.5,5 + 6.6,5 +
5.7,5 + 5.8,5 + 1.9,5}{20} = 7,25

  • Câu 39: Nhận biết

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Tính thời gian sử dụng pin trung bình?

    Ta có:

    Thời gian (giờ)

    [7,2; 7,4)

    [7,4; 7,6)

    [7,6; 7,8)

    [7,8; 8,0)

    Giá trị đại diện

    7,3

    7,5

    7,7

    7,9

    Số máy vi tính

    2

    4

    7

    5

    Thòi gian trung bình là:

    \overline{x} = \frac{2.7,3 + 4.7,5 +
7.7,7 + 5.7,9}{18} = \frac{23}{3} \approx 7,7 giờ

  • Câu 40: Thông hiểu

    Cho mẫu số liệu ghép nhóm về chiều cao (đơn vị: cm) của cây trong vườn nghiên cứu như sau:

    Chiều cao

    [40; 45)

    [45; 50)

    [50; 55)

    [55; 60)

    [60; 65)

    [65; 70)

    Số cây

    5

    10

    7

    9

    7

    4

    Xét tính đúng sai của các khẳng định sau:

    a) Nhóm [45; 50) có tần số tích luỹ là 15. Đúng||Sai

    b) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 30. Đúng||Sai

    c) Nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \frac{3n}{4} là nhóm [55; 60). Sai||Đúng

    d) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm trên là Q_{3} > 61. Sai||Đúng

    Đáp án là:

    Cho mẫu số liệu ghép nhóm về chiều cao (đơn vị: cm) của cây trong vườn nghiên cứu như sau:

    Chiều cao

    [40; 45)

    [45; 50)

    [50; 55)

    [55; 60)

    [60; 65)

    [65; 70)

    Số cây

    5

    10

    7

    9

    7

    4

    Xét tính đúng sai của các khẳng định sau:

    a) Nhóm [45; 50) có tần số tích luỹ là 15. Đúng||Sai

    b) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 30. Đúng||Sai

    c) Nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \frac{3n}{4} là nhóm [55; 60). Sai||Đúng

    d) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm trên là Q_{3} > 61. Sai||Đúng

    a) Đúng: Nhóm [45;50) có tần số tích luỹ là 5 + 10 = 15.

    b) Đúng: Khoảng biến thiên là 70 – 40 = 30

    c) Sai: Nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \frac{n}{2} = 31,5 là nhóm [60; 65).

    d) Sai: Nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \frac{n}{2} = 31,5 là nhóm [60; 65).

    Đầu mút trái, độ dài và tần số của nhóm [60; 65) lần lượt là s = 60;h = 5;n_{2} = 7.

    Tần số tích luỹ của nhóm liền trước là cf_{4} = 31 nên tứ phân vị thứ ba là:

    Q_{1} = 60 + \left( \frac{31,5 - 31}{7}
ight).5 \approx 60,36

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo