Tổng các nghiệm của phương trình
là:
Đặt , điều kiện t ≥ 0. Khi đó
.
Phương trình trở thành
(Thỏa mãn)
Với t = 3 ta có
Vậy phương trình có hai nghiệm .
Tổng các nghiệm của phương trình là .
Tổng các nghiệm của phương trình
là:
Đặt , điều kiện t ≥ 0. Khi đó
.
Phương trình trở thành
(Thỏa mãn)
Với t = 3 ta có
Vậy phương trình có hai nghiệm .
Tổng các nghiệm của phương trình là .
Giải phương trình: ![]()
Điều kiện:
Phương trình tương đương:
Kết hợp với điều kiện ta được thỏa mãn
Vậy phương trình có nghiệm .
Các giá trị m để tam thức
đổi dấu 2 lần là:
Để đổi dấu 2 lần thì
.
Ta có:
hoặc
.
Đường gấp khúc trong hình vẽ là dạng đồ thị của một trong bốn hàm số được liệt kê trong các phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

Đồ thị hàm số đi qua các điểm (0;1) và (1;0) nên chỉ có hàm số y = 1 − |x| thỏa mãn.
Chọn y = 1 − |x|.
Tam thức bậc hai
nhận giá trị dương khi và chỉ khi
Ta có: và
.
Phươn trình có hai nghiệm phân biệt
.
Do đó
.
Hàm số f(x) có tập xác định ℝ và có đồ thị như hình vẽ

Mệnh đề nào sau đây đúng ?
Nhìn vào đồ thị hàm số ta có:
Đồ thị hàm số cắt trục hoành tại hai điểm M(1; 0), N(3; 0) ⇒ MN = 2 . Suy ra Đồ thị hàm số cắt trục hoành theo một dây cung có độ dài bằng 2là đúng.
Cho hàm số y = x2 − 2x + 3. Chọn câu đúng.
Ta có a = 1 > 0, b = − 2, c = 3 nên hàm số có đỉnh là I(1;2). Từ đó suy ra hàm số nghịch biến trên khoảng (−∞;1) và đồng biến trên khoảng (1;+∞).
Phương trình
có mấy nghiệm nguyên dương ?
Đặt
Phương trình đã cho trở thành:
Vậy phương trình có 0 nghiệm nguyên dương.
Đồ thị của hàm số nào sau đây là parabol có đỉnh I(−1; 3).
Đỉnh Parabol là .
Do đó chỉ có đáp án y = 2x2 + 4x + 5 thỏa mãn.
Cho hàm số
xác định trên [ − 1; 1]. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên [ − 1; 1] lần lượt là y1, y2 thỏa mãn y1 − y2 = 8. Khi đó giá trị của m bằng
Đặt .
Hoành độ đỉnh của đồ thị hàm số là (bất đẳng thức Côsi).
Vì hệ số a = 1 > 0 nên hàm số nghịch biến trên .
Suy ra, hàm số nghịch biến [ − 1; 1].
.
.
Theo đề bài ta có: y1 − y2 = 8 .
Cho hàm số y = (m−1)x2 − 2(m−2)x + m − 3 (m≠1)(P). Đỉnh của (P) là S(−1;−2) thì m bằng bao nhiêu:
Do đỉnh của (P) là S(−1;−2) suy ra
.
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Bất phương trình
có tập nghiệm là:
Ta có: (vô lí).
Vậy .
Tìm m để
với mọi x ∈ ℝ?
Để bất phương trình với mọi x ∈ ℝ thì:
Tam thức nào sau đây nhận giá trị âm với x < 2
Bảng xét dấu của − x2 + 5x − 6

Số nghiệm của phương trình:
là:
.
Vậy phương trình có một nghiệm.
Hệ số góc của đồ thị hàm số y = 2018x − 2019 bằng
Hệ số góc a = 2018.
Hỏi có bao nhiêu giá trị m nguyên trong nửa khoảng [ − 10; − 4) để đường thẳng d : y = − (m+1)x + m + 2 cắt Parabol (P) : y = x2 + x − 2 tại hai điểm phân biệt cùng phía với trục tung?
Xét phương trình: − (m+1)x + m + 2 = x2 + x − 2
⇔ x2 + x(m+2) − m − 4 = 0
Để đường thẳng d cắt Parabol(P) tại hai điểm phân biệt cùng phía với trục tung vậy điều kiện là
Vậy trong nửa khoảng[ − 10; − 4) có 6 giá trị nguyên m.
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x = − 3.
Trục đối xứng của (P) có dạng:
.
Vậy (P) có phương trình: .
Tổng các nghiệm của phương trình
là:
Đặt . Phương trình trở thành:
t3 − 2t + 4 = 0 ⇔ (t+2)(t2−2t+2) = 0 ⇔ t = − 2
Ta được
.
Tổng các nghiệm của phương trình là − 5.
Đồ thị hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

Hỏi hàm số đó là hàm số nào?
Nhận xét:
Parabol có bề lõm hường lên.
Parabol cắt trục hoành tại điểm (1;0). Xét các đáp án, đáp án y = 2x2 − 3x + 1. thỏa mãn.
Đâu là tập nghiệm của phương trình
?
.
Vậy tập nghiệm của phương trình là .
Tổng tất cả các giá trị nguyên dương của tham số m để hàm số
y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1 ; 5) là:
Hàm số y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng .
Để hàm số y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1 ; 5) thì ta phải có
.
Các giá trị nguyên dương của tham số m để hàm số y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1; 5) là m = 1, m = 2, m = 3.
Tổng tất cả các giá trị nguyên dương của tham số m để hàm số y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1; 5) là S = 1 + 2 + 3 = 6.
Đồ thị của hàm số
đi qua điểm nào sau đây:
Thử lần lượt từng phương án với chú ý về điều kiện ta được:
f(0) = 2.0 + 1 = 1 ≠ − 3, đồ thị không đi qua điểm (0; −3).
f(3) = − 3 ≠ 7, đồ thị không đi qua điểm (3; 7).
f(2) = 2.2 + 1 = 5 ≠ − 3, đồ thị không đi qua điểm (2; −3).
f(0) = 2.0 + 1 = 1, đồ thị đi qua điểm (0; 1).
Cho hàm số f(x) = ax2 + bx + c có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) + m − 2018 = 0 có duy nhất một nghiệm.

Phương trình Đây là phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = 2018 − m (có phương song song hoặc trùng với trục hoành).
Dựa vào đồ thị, ta có ycbt 2018 − m = 2 ⇔ m = 2016.
Điểm nào không thuộc đồ thị hàm số đồ thị
?
Thay tọa độ vào hàm số ta được:
. Do đó điểm này không thuộc đồ thị hàm số.
Tổng các nghiệm của phương trình
là bao nhiêu?
.
Vậy tổng các nghiệm của phương trình là .
Tam thức bậc hai ![]()

Dựa vào bảng xét dấu, ta chọn đáp án Dương với mọi .
Cho hàm số
có đồ thị như hình sau. Khẳng định nào sau đây đúng?

Từ đồ thị hàm số, nhận xét:
Bề lõm hướng lên trên suy ra .
Hàm số cắt trục tung tại tung độ âm .
Chọn đáp án .
Một giá đỡ được gắn vào bức tường như hình vẽ. Tam giác ABC vuông cân ở đỉnh C. Người ta treo vào điểm A một vật có trọng lượng 10 N. Khi đó lực tác động vào bức tường tại hai điểm B và C có cường độ lần lượt là:

Cường độ lực tại C bằng cường độ lực tại A và bằng 10 N.
Cường độ lực tại B bằng (định lý Pyago cho tam giác vuông cân).
Cho hàm số
. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên ℝ?
Hàm số có dạng y = ax + b, nên để hàm số đồng biến trên ℝ khi và chỉ khi
. Mặt khác do m ∈ ℤ nên m ∈ {−1; 0; 1; 2}. Vậy có 4 giá trị nguyên của m.
Tam thức bậc hai f(x) = − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [1; 2].
Cho hàm số có đồ thị như hình vẽ
Khẳng định nào sau đây đúng:
Hàm số đồng biến trên khoảng (1;3).
Tập xác định của hàm số
là:
ĐKXĐ: (2m2+1)x2 − 4mx + 2 ≠ 0.
Xét tam thức bậc hai f(x) = (2m2+1)x2 − 4mx + 2.
Ta có a = 2m2 + 1 > 0, Δ′ = 4m2 − 2(2m2+1) = − 2 < 0.
Suy ra với mọi m ta có f(x) = (2m2+1)x2 − 4mx + 2 > 0 ∀x ∈ ℝ.
Do đó với mọi m ta có (2m2+1)x2 − 4mx + 2 ≠ 0, ∀x ∈ ℝ.
Vậy tập xác định của hàm số là D = ℝ.
Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

Nhận xét: Từ bảng biến thiên ta suy ra đỉnh .
Chỉ có hàm số thỏa mãn tọa độ đỉnh này khi thay vào.
Giải bất phương trình ![]()
Ta có: .
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có đỉnh ![]()
Vì (P) có đỉnh nên ta có
. Vậy (P) : y = 3x2 + 3x − 2.
Cho phương trình
với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để phương trình đã cho có hai nghiệm trái dấu?
Từ yêu cầu bài toán
Suy ra
Vậy có 20 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Số nghiệm của phương trình
là:
ĐK: x ∈ [5; 7]
Đặt t = x − 6 , t ∈ [ − 1; 1].
Phương trình trở thành .
Ta có VT(*) ≤ 4, VP(*) ≥ 4 nên (*) ⇔ VT(*) = VP(*) = 4 ⇔ t = 0 ⇒ x = 6(TM).
Vậy phương trình có một nghiệm.
Phương trình:
có mấy nghiệm ?
Điều kiện xác định x2 + 5x + 10 ≥ 0 ⇔ x ∈ ℝ.
Khi đó phương trình
.
Vậy phương trình có hai nghiệm.