Tổng các nghiệm của phương trình là:
.
Vậy tổng các nghiệm của phương trình là − 1.
Tổng các nghiệm của phương trình là:
.
Vậy tổng các nghiệm của phương trình là − 1.
Tam thức bậc hai f(x) = − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi
Dựa vào bảng xét dấu, ta chọn đáp ánx ∈ [1; 2] .
Xét tính đồng biến, nghịch biến của hàm số f(x) = x2 − 4x + 5 trên các khoảng (−∞; 2) và (2; +∞). Khẳng định nào sau đây đúng?
Xét f(x) = x2 − 4x + 5.
TXĐ: D = ℝ.
Tọa độ đỉnh I(2; 1).
Hàm số nghịch biến trên (−∞; 2), đồng biến trên (2; +∞).
Tìm tất cả các giá trị của m để tam thức luôn dương với
.
Để tam thức luôn dương với
:
Xét ta có bảng xét dấu như sau:
Kết hợp các điều kiện ta được
Đồ thị của hàm số là
Từ giả thiết hàm số đồng biến nên loại đáp án có đồ thị đi xuống từ trái sang phải.
Mặt khác cho x = 0 vào nên chọn đáp án đồ thị hàm số đi qua điểm
.
Tam thức bậc hai f(x) = − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi
Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [1; 2].
Tập xác định của hàm số là:
ĐKXĐ: (2m2+1)x2 − 4mx + 2 ≠ 0.
Xét tam thức bậc hai f(x) = (2m2+1)x2 − 4mx + 2.
Ta có a = 2m2 + 1 > 0, Δ′ = 4m2 − 2(2m2+1) = − 2 < 0.
Suy ra với mọi m ta có f(x) = (2m2+1)x2 − 4mx + 2 > 0 ∀x ∈ ℝ.
Do đó với mọi m ta có (2m2+1)x2 − 4mx + 2 ≠ 0, ∀x ∈ ℝ.
Vậy tập xác định của hàm số là D = ℝ.
Tìm tọa độ đỉnh S của parabol: ?
Gọi tọa độ đỉnh của parabol là điểm
Hàm số bậc hai có:
=>
Tìm tất cả các giá trị thực của tham số m để phương trình x2 − 5x + 7 + 2m = 0 có nghiệm thuộc đoạn [1; 5].
Ta có x2 − 5x + 7 + 2m = 0 ⇔ x2 − 5x + 7 = − 2m. (*)
Phương trình (*) là phương trình hoành độ giao điểm của parabol (P) : x2 − 5x + 7 và đường thẳng y = − 2m (song song hoặc trùng với trục hoành).
Ta có bảng biến thiên của hàm số y = x2 − 5x + 7 trên [1; 5] như sau:
Dựa vào bảng biến ta thấy x ∈ [1; 5] thì .
Do đo để phương trình (*) có nghiệm
Tập nghiệm của phương trình là:
Xét phương trình: (1)
Điều kiện :
Thay x = 8 ta thấy (1) thoả mãn. Vậy, phương trình (1) có tập nghiệm là S = {8}.
Phương trình có bao nhiêu nghiệm thực phân biệt?
Điều kiện: .
Ta có: .
.
Vậy phương trình có 3 nghiệm thực phân biệt.
Các đường thẳng y = − 5(x+1); y = 3x + a; y = ax + 3 đồng quy với giá trị của a là
Gọi d1 : y = − 5x − 5, d2 : y = 3x + a, d3 : y = ax + 3 (a≠3).
Phương trình hoành độ giao điểm của d1 và d2: .
Giao điểm của d1 và d2 là .
Đường thẳng d1, d2 và d3 đồng qui khi A ∈ d3
⇔ a = − 13. (vì a ≠ 3)
Hệ số góc của đồ thị hàm số y = 2018x − 2019 bằng
Hệ số góc a = 2018.
Tập nghiệm của bất phương trình là
Ta có: .
Nghiệm của phương trình: là bao nhiêu?
Điều kiện: .
Thay vào phương trình ta được
hay
là nghiệm của phương trình.
Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?
Nhận xét:
Bảng biến thiên có bề lõm hướng xuống. Loại đáp án y = 2x2 + 2x − 1 và y = 2x2 + 2x + 2.
Đỉnh của parabol có tọa độ là . Xét các đáp án, y = − 2x2 − 2x + 1 thỏa mãn.
Cho hàm số: . Tìm x để
Ta có:
Vậy x = 3 hoặc x = 0
Tất cả các giá trị của tham số m để phương trình có nghiệm là:
ĐKXĐ x > − 1
pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.
Phương trình đã cho có nghiệm .
Cho f(x) = − 2x2 + (m+2)x + m − 4. Tìm m để f(x) âm với mọi a, b, c > 0.
Ta có
.
Tập xác định của hàm số là:
Hàm số .
Điều kiện xác định: .
Vậy tập xác định của hàm số D = [ − 1; 3) ∪ (3;+∞).
Số nghiệm của phương trình là:
ĐKXĐ: 60 − 24x − 5x2 ≥ 0
Đặt , (t≥0)pt trở thành
Vậy pt ban đầu có hai nghiệm .
Tìm m để hàm số y = (2m−1)x + 7 đồng biến trên ℝ.
Hàm số y = (2m−1)x + 7 đồng biến trên ℝ khi 2m − 1 > 0 hay .
Tập nghiệm của bất phương trình: là:
Ta có: .
Vậy .
Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là − 1 và 2, cắt trục Oy tại điểm có tung độ bằng − 2.
Gọi A và B là hai giao điểm cuả (P) với trục Ox có hoành độ lần lượt là − 1 và 2. Suy ra A(−1;0), B(2;0).
Gọi C là giao điểm của (P) với trục Oy có tung độ bằng − 2. Suy ra C(0;−2).
Theo giả thiết, (P) đi qua ba điểm A, B, C nên ta có:
.
Vậy (P) : y = x2 − x − 2.
Số giá trị nguyên của x để tam thức f(x) = 2x2 − 7x − 9 nhận giá trị âm là
Dựa vào bảng xét dấu, .
Mà x ∈ ℤ⇒ x ∈ {0;1;2;3;4} (5 giá trị).
Cho tam thức bậc hai . Khẳng định nào sau đây đúng?
Ta có:
Tìm tập xác định của hàm số là:
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số đã cho là
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x = − 3.
Trục đối xứng của (P) có dạng:
.
Vậy (P) có phương trình: .
Cho parabol (P) : y = x2 − 4x + 3 và đường thẳng d : y = mx + 3. Tìm tất cả các giá trị thực của m để d cắt (P) tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng .
Phương trình hoành độ giao điểm của (P) và d là x2 − 4x + 3 = mx + 3
.
Để d cắt (P) tại hai điểm phân biệt A, B khi và chỉ khi 4 + m ≠ 0 ⇔ m ≠ − 4.
Với .
Với .
Gọi H là hình chiếu của B lên OA. Suy ra BH = |xB| = |4+m|.
Theo giả thiết bài toán, ta có
.
Cho hàm số . Khẳng định nào sau đây là sai?
Ta có:
Khẳng định sai là:
Giải bất phương trình
Ta có: .
Cho hàm số có đồ thị như hình vẽ
Khẳng định nào sau đây đúng:
Hàm số đồng biến trên khoảng (1;3).
Số các nghiệm của phương trình là:
⇔
⇔ .
Vậy phương trình có ba nghiệm.
Tam thức bậc hai nhận giá trị dương khi và chỉ khi:
Ta có: và
.
Phương trình có hai nghiệm phân biệt
.
Do đó khi
.
Cho hàm số y = (m−1)x2 − 2(m−2)x + m − 3 (m≠1)(P). Đỉnh của (P) là S(−1;−2) thì m bằng bao nhiêu:
Do đỉnh của (P) là S(−1;−2) suy ra
.
Tìm tập xác định của hàm số ?
Điều kiện xác định:
.
Vậy tập xác định của hàm số là .
Tập nghiệm của phương trình: là:
Điều kiện: =>
Phương trình tương đương
Ta có:
Vậy tập nghiệm của phương trình là:
Một giá đỡ được gắn vào bức tường như hình vẽ. Tam giác ABC vuông cân ở đỉnh C. Người ta treo vào điểm A một vật có trọng lượng 10 N. Khi đó lực tác động vào bức tường tại hai điểm B và C có cường độ lần lượt là:
Cường độ lực tại C bằng cường độ lực tại A và bằng 10 N.
Cường độ lực tại B bằng (định lý Pyago cho tam giác vuông cân).
Một chiếc cổng hình parabol có phương trình . Biết cổng có chiều rộng d = 5 mét (như hình vẽ). Hãy tính chiều cao h của cổng.
Gọi Avà Blà hai điểm ứng với hai chân cổng như hình vẽ.
Vì cổng hình parabol có phương trình và cổng có chiều rộng d = 5 mét nên:
AB = 5 và .
Vậy chiều cao của cổng làmét.
Cho hàm số y = ax2 + bx + c có đồ thị như hình dưới đây. Khẳng định nào sau đây là đúng?
Nhìn vào đồ thị ta có:
Bề lõm hướng xuống ⇒ a < 0.
Hoành độ đỉnh .
Đồ thị hàm số cắt trục tung tại điểm có tung độ âm ⇒ c < 0.
Do đó: a < 0, b > 0, c < 0.