Cho hàm số
. Rút gọn biểu thức
ta được:
Ta có:
Suy ra:
Cho hàm số
. Rút gọn biểu thức
ta được:
Ta có:
Suy ra:
Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất.
Gọi x đồng là số tiền mà doanh nghiệp A dự định giảm giá; (0≤x≤4).
Khi đó:
Lợi nhuận thu được khi bán một chiếc xe là 31 − x − 27 = 4 − x .
Số xe mà doanh nghiệp sẽ bán được trong một năm là 600 + 200x .
Lợi nhuận mà doanh nghiệp thu được trong một năm là
f(x) = (4−x)(600+200x) = − 200x2 + 200x + 2400.
Xét hàm số f(x) = − 200x2 + 200x + 2400 trên đoạn [0; 4] có bảng biến thiên
Vậy .
Vậy giá mới của chiếc xe là 30, 5 triệu đồng thì lợi nhuận thu được là cao nhất.
Cho hàm số
có đồ thị như hình sau. Khẳng định nào sau đây đúng?

Từ đồ thị hàm số, nhận xét:
Bề lõm hướng lên trên suy ra .
Hàm số cắt trục tung tại tung độ âm .
Chọn đáp án .
Điền vào chỗ trống: Hàm số y = f(x) xác định trên khoảng (a; b) có thể là hàm số ….
Hàm số y = f(x) xác định trên khoảng (a; b) có thể là hàm số đồng biến hoặc nghịch biến
Tập nghiệm của bất phương trình:
là:
Ta có: .
Vậy .
Tìm tọa độ đỉnh S của parabol:
?
Gọi tọa độ đỉnh của parabol là điểm
Hàm số bậc hai có:
=>
Cho hàm số có đồ thị như hình vẽ
Khẳng định nào sau đây đúng:
Hàm số đồng biến trên khoảng (1;3).
Phương trình mx2 − (3m+2)x + 1 = 0 có tính chất nào sau đây:
Với m = 0 phương trình trở thành suy ra phương trình có nghiệm.
Với m ≠ 0, ta có Δ = (3m+2)2 − 4m = 9m2 + 8m + 4.
Vì tam thức 9m2 + 8m + 4 có am = 9 > 0, Δ′m = − 20 < 0 nên 9m2 + 8m + 4 > 0 với mọi m.
Do đó phương trình đã cho luôn có nghiệm với mọi m.
Số nghiệm của phương trình
là:
.
Vậy phương trình có hai nghiệm.
Xác định parabol
biết rằng Parabol đi qua hai điểm M(1;5) và N(-2;8)
Thay tọa độ và
vào
. Ta có:
.
Do đó .
Tổng các nghiệm của phương trình
?
Đặt . Khi đó phương trình đã cho trở thành:
Vì t ≥ 0 ⇒ t = 6, thay vào ta có .
x2 + 11 = 36 ⇔ x = ± 5.
Vậy phương trình có nghiệm là x = ± 5.
Tổng các nghiệm của phương trình là 0.
Phương trình
có bao nhiêu nghiệm?
ĐKXĐ: .
Thay x = 1 vào , ta được:
.
Vậy phương trình vô nghiệm.
Giải bất phương trình ![]()
Ta có: .
Phương trình
có mấy nghiệm nguyên ?
Đặt . Phương trình đã cho trở thành:
Vậy phương trình có 0 nghiệm nguyên.
Tìm tập xác định của ![]()
Điều kiện xác định: .
Vậy .
Cho hàm số
. Tính f(4), ta được kết quả:
Với , ta có:
.
Tập nghiệm của bất phương trình
là?
Ta có
Bảng xét dấu:
Dựa vào bảng xét dấu .
Xác định m để biểu thức
là tam thức bậc hai.
Để biểu thức là tam thức bậc hai ta có:
Đồ thị hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

Nhận xét:
Parabol có bề lõm hướng lên.
Parabol cắt trục hoành tại 2 điểm phân biệt có hoành độ âm. Xét các đáp án, đáp án y = 3x2 + 6x + 1 thỏa mãn.
Tìm m để
với mọi x ∈ ℝ?
Để bất phương trình với mọi x ∈ ℝ thì:
Tam thức bậc hai ![]()

Dựa vào bảng xét dấu, ta chọn đáp án Dương với mọi .
Tổng các nghiệm của phương trình
bằng:
.
Vậy, tổng các nghiệm của phương trình là .
Tam thức bậc hai
nhận giá trị dương khi và chỉ khi
Ta có: và
.
Phươn trình có hai nghiệm phân biệt
.
Do đó
.
Cho hàm số f(x) = ax2 + bx + c đồ thị như hình bên dưới. Hỏi với những giá trị nào của tham số m thì phương trình |f(x)| − 1 = m có đúng 2 nghiệm phân biệt.

+ Phương trình ⇔ |f(x)| = m + 1.
+ Đồ thị hàm số y = |f(x)| có dạng:

+ Dựa vào đồ thị, để phương trình |f(x)| = m + 1 có hai nghiệm phân biệt thì:
.
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x = − 3.
Vì (P) có trục đối xứng x = − 3 nên .
Vậy .
Số nghiệm của phương trình
là:
.
Vậy phương trình có 1 nghiệm.
Xét sự biến thiên của hàm số
trên khoảng (0;+∞). Khẳng định nào sau đây đúng?
Ta có
Với mọi x1, x2 ∈ (0;+∞) và x1 < x2. Ta có .
Suy ra nghịch biến trên (0;+∞).
Số nghiệm của phương trình
là
Điều kiện: .
⇔
⇔
⇔ ⇔ x = 0(TM).
Vậy, phương trình có một nghiệm.
Số thực dương lớn nhất thỏa mãn
là ?
Ta có .
Bảng xét dấu

Dựa vào bảng xét dấu . Suy ra số thực dương lớn nhất thỏa
là
.
Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là − 1 và 2, cắt trục Oy tại điểm có tung độ bằng − 2.
Gọi A và B là hai giao điểm cuả (P) với trục Ox có hoành độ lần lượt là − 1 và 2. Suy ra A(−1;0), B(2;0).
Gọi C là giao điểm của (P) với trục Oy có tung độ bằng − 2. Suy ra C(0;−2).
Theo giả thiết, (P) đi qua ba điểm A, B, C nên ta có:
.
Vậy (P) : y = x2 − x − 2.
Tìm phương trình đường thẳng d : y = ax + b. Biết đường thẳng d đi qua điểm I(1 ; 3) và tạo với hai tia Ox, Oy một tam giác có diện tích bằng 6?
Do đường thẳng d đi qua điểm I(1 ; 3) nên a + b = 3 ⇒ a = 3 − b.
Giao điểm của d và các tia Ox, Oy lần lượt là và N(0 ; b).
Do đó: .
Mà SΔOMN = 6 ⇔ b2 = 12|a|
.
Với b = 6 ⇒ a = − 3 ⇒ d : y = − 3x + 6.
Tập xác định của hàm số
là:
Hàm số xác định . Vậy D = ℝ ∖ {0;4}.
Tổng các nghiệm của phương trình
là:
Đặt . Phương trình trở thành:
t3 − 2t + 4 = 0 ⇔ (t+2)(t2−2t+2) = 0 ⇔ t = − 2
Ta được
.
Tổng các nghiệm của phương trình là − 5.
Parabol y = − x2 + 2x + 3 có phương trình trục đối xứng là
Parabol y = − x2 + 2x + 3 có trục đối xứng là đường thẳng ⇔ x = 1.
Giải phương trình: ![]()
Điều kiện:
Phương trình tương đương:
Kết hợp với điều kiện ta được thỏa mãn
Vậy phương trình có nghiệm .
Tập hợp nào sau đây là tập xác định của hàm số
?
Hàm số xác đinh khi và chỉ khi .
Tập xác định của hàm số
là
Hàm số có nghĩa khi
⇔ x ∈ [ − 1; 3) ∖ {2}.
Xét tính đồng biến, nghịch biến của hàm số
trên khoảng (−∞;−5) và trên khoảng (−5;+∞). Khẳng định nào sau đây đúng?
Ta có : .
● Với mọi x1, x2 ∈ (−∞;−5) và x1 < x2. Ta có .
Suy ra đồng biến trên (−∞;−5).
● Với mọi x1, x2 ∈ (−5;+∞) và x1 < x2. Ta có .
Suy ra đồng biến trên (−5;+∞).
Chọn Hàm số đồng biến trên các khoảng (−∞;−5) và (−5;+∞).
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.
Vì (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay vào (P), ta được 0 = 4a + 6 − 2 ⇔ a = − 1.
Vậy (P) : y = − x2 + 3x − 2.
Cho hàm số y = f(x) có đồ thị như hình vẽ. Hãy so sánh f(2017) với số 0.

Nhìn đồ thị, ta thấy đồ thị y = f(x) cắt trục hoành tại 2 điểm x = 1, x = 3 nên Δ > 0, dựa vào hình dạng parabol nên suy ra a < 0 và ta có bảng xét dấu như sau:

Dựa vào bảng xét dấu thì f(x) < 0 khi x < 1 ∨ x > 3. Mà 2017 > 3 nên f(2017) < 0.