Số nghiệm của phương trình
là
Điều kiện: .
⇔
⇔
⇔ ⇔ x = 0(TM).
Vậy, phương trình có một nghiệm.
Số nghiệm của phương trình
là
Điều kiện: .
⇔
⇔
⇔ ⇔ x = 0(TM).
Vậy, phương trình có một nghiệm.
Tập nghiệm của bất phương trình
là:
Tam thức có hai nghiệm phân biệt
a = 2 > 0 nên f(x) dương với mọi x thuộc hai nửa khoảng
Vậy tập nghiệm của bất phương trình là:
Tam thức f(x) = − 2x2 + (m−2)x − m + 4 không dương với mọi x khi:
.
Giá trị lớn nhất của hàm số
bằng:
Ta có
Vậy giá trị lớn nhất của hàm số bằng
.
Phương trình sau có bao nhiêu nghiệm
?
Điều kiện xác định: .
Với thay vào phương trình thỏa mãn. Vậy phương trình có một nghiệm.
Tìm tất cả các giá trị của tham số m để phương trình
có hai nghiệm phân biệt lớn hơn
?
Phương trình
Phương trình (*) có hai nghiệm phân biệt lớn hơn 1 có hai nghiệm phân biệt lớn hơn 1.
Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất.
Gọi x đồng là số tiền mà doanh nghiệp A dự định giảm giá; (0≤x≤4).
Khi đó:
Lợi nhuận thu được khi bán một chiếc xe là 31 − x − 27 = 4 − x .
Số xe mà doanh nghiệp sẽ bán được trong một năm là 600 + 200x .
Lợi nhuận mà doanh nghiệp thu được trong một năm là
f(x) = (4−x)(600+200x) = − 200x2 + 200x + 2400.
Xét hàm số f(x) = − 200x2 + 200x + 2400 trên đoạn [0; 4] có bảng biến thiên
Vậy .
Vậy giá mới của chiếc xe là 30, 5 triệu đồng thì lợi nhuận thu được là cao nhất.
Xác định m để
với mọi x ∈ ℝ
Để với mọi x ∈ ℝ thì
Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) đi qua ba điểm A(1;1), B(−1;−3) và O(0;0).
Vì (P) đi qua ba điểm A(1;1), B(−1;−3), O(0;0) nên có hệ
.
Vậy (P) : y = − x2 + 2x.
Phương trình
có mấy nghiệm nguyên ?
Đặt . Phương trình đã cho trở thành:
Vậy phương trình có 0 nghiệm nguyên.
Xét sự biến thiên của hàm số
trên khoảng (0;+∞). Khẳng định nào sau đây đúng?
Ta có
Với mọi x1, x2 ∈ (0;+∞) và x1 < x2. Ta có .
Suy ra nghịch biến trên (0;+∞).
Tập nghiệm của phương trình
là:
Xét phương trình: (1)
Điều kiện :
Thay x = 8 ta thấy (1) thoả mãn. Vậy, phương trình (1) có tập nghiệm là S = {8}.
Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?
Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).
Số các nghiệm của phương trình
là:
⇔
⇔ .
Vậy phương trình có ba nghiệm.
Tập nghiệm của phương trình
là:
Phương trình .
Vậy S = {2}.
Điểm nào sau đây thuộc đồ thị hàm số
?
Thay tọa độ vào
ta được
thỏa mãn. Suy ra điểm này thuộc đồ thị hàm số
.
Tập xác định của hàm số 
Xét , ta có:
.
Xét , điều kiện là
. Kết hợp với điều kiện
, ta được:
.
Vậy .
Hàm số nào sau đây có đồ thị như hình bên

Quan sát đồ thị ta loại y = x2 − 3x − 3 và y = − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y = − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P) là , trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y = − x2 + 5|x| − 3.
Cho parabol (P) có phương trình y = 3x2 − 2x + 4. Tìm trục đối xứng của parabol này.
+ Có a = 3; b = − 2; c = 4.
+ Trục đối xứng của parabol là .
Hàm số nào sau đây đồng biến trên tập xác định của nó?
y = 3x + 1 có a = 3 > 0 nên hàm số đồng biến trên TXĐ.
Cho hàm số
. Tìm tọa độ điểm thuộc đồ thị của hàm số và có tung độ bằng − 2.
Gọi M0(x0;−2) là điểm thuộc đồ thị hàm số có tung độ bằng − 2.
Khi đó: .
Số nghiệm của phương trình
là
Điều kiện:
Phương trình tương đương:
Kết hợp điều kiện ta được: thỏa mãn điều kiện
Vậy phương trình đã cho có một nghiệm.
Tìm tất cả các giá trị thực của tham số m để bất phương trình (2m2−3m−2)x2 + 2(m−2)x − 1 ≤ 0 có tập nghiệm là ℝ.
Xét hoặc m = 2
• Khi thì bất phương trình trở thành
nên không có nghiệm đúng với mọi x.
• Khi m = 2 thì bất phương trình trở thành − 1 ≤ 0 nên có nghiệm đúng với mọi x.
• Khi thì yêu cầu bài toán
⇔ (2m2−3m−2)x2 + 2(m−2)x − 1 ≤ 0 ∀x ∈ ℝ
Kết hợp hai trường hợp ta được là giá trị cần tìm.
Tìm khẳng định đúng trong các khẳng định sau?
Tam thức bậc 2 là biểu thức f(x) có dạng ax2+ bx + c (a≠0).
f(x) = 3x2 − 5 là tam thức bậc 2 với a = 3, b = 0, c = − 5.
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x = − 3.
Vì (P) có trục đối xứng x = − 3 nên .
Vậy .
Đường thẳng d : y = (m−3)x − 2m + 1 cắt hai trục tọa độ tại hai điểm A và B sao cho tam giác OAB cân. Khi đó, số giá trị của m thỏa mãn là
A = d ∩ Ox nên tọa độ A là nghiệm của hệ:
nên
.
B = d ∩ Oy nên tọa độ B là nghiệm của hệ:
nên B(0;−2m+1).
Ta có
.
Nhận xét: Với thì A ≡ B ≡ O(0; 0) nên không thỏa mãn.
Vậy m = 4, m = 2.
Cho hàm số bậc hai
có đỉnh
và đi qua điểm
. Xác định giá trị biểu thức
?
Parabol có đỉnh
(*)
Parabol đi qua điểm suy ra
(**)
Từ (*) và (**) ta có hệ phương trình
Cho hàm số y = f(x) = ax2 + bx + c. Biểu thức f(x+3) − 3f(x+2) + 3f(x+1) có giá trị bằng
f(x+3) = a(x+3)2 + b(x+3) + c = ax2 + (6a+b)x + 9a + 3b + c.
f(x+2) = a(x+2)2 + b(x+2) + c = ax2 + (4a+b)x + 4a + 2b + c.
f(x+1) = a(x+1)2 + b(x+1) + c = ax2 + (2a+b)x + a + b + c.
⇒ f(x+3) − 3f(x+2) + 3f(x+1) = ax2 + bx + c.
Cho hàm số
. Tìm tất cả các giá trị thực của tham số m để hàm số đã cho có tập xác định
?
Hàm số có tập xác định khi và chỉ khi
Xét thì
, loại giá trị
Xét ta có:
Vậy
Đường gấp khúc trong hình vẽ là dạng đồ thị của một trong bốn hàm số được liệt kê trong các phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

Đồ thị hàm số đi qua các điểm (0;1) và (1;0) nên chỉ có hàm số y = 1 − |x| thỏa mãn.
Chọn y = 1 − |x|.
Số nghiệm của phương trình
là:
ĐKXĐ: 2x(x2+1) ≥ 0 ⇔ x ≥ 0
Đặt , a ≥ 0, b ≥ 0
Suy ra a2 + b2 = 2x + x2 + 1 = (x+1)2
Phương trình trở thành a2 + b2 − 2ab = 0 ⇔ (a−b)2 = 0 ⇔ a = b
Suy ra (thỏa mãn)
Vậy phương trình có một nghiệm là x = 1 .
Tam thức bậc hai f(x) = 4x2 − 12x + 9 nhận giá trị âm khi và chỉ khi
Chọn Ta có:

Dựa vào bảng xét dấu thì ta thấy không có giá trị x nào để f(x) < 0.
Cho hàm số có đồ thị như hình vẽ
Khẳng định nào sau đây đúng:
Hàm số đồng biến trên khoảng (1;3).
Số nghiệm của phương trình
là bao nhiêu?
.
Vậy phương trình có hai nghiệm.
Đồ thị hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

Hỏi hàm số đó là hàm số nào?
Nhận xét:
Parabol có bề lõm hường lên.
Parabol cắt trục hoành tại điểm (1;0). Xét các đáp án, đáp án y = 2x2 − 3x + 1. thỏa mãn.
Nghiệm của phương trình:
là bao nhiêu?
Điều kiện: .
Thay vào phương trình ta được
hay
là nghiệm của phương trình.
Điền vào chỗ trống: Hàm số y = f(x) xác định trên khoảng (a; b) có thể là hàm số ….
Hàm số y = f(x) xác định trên khoảng (a; b) có thể là hàm số đồng biến hoặc nghịch biến
Cho hàm số
. Tính f(4), ta được kết quả:
Với , ta có:
.
Tìm tập xác định D của hàm số ![]()
Điều kiện .
Vậy tập xác định của hàm số là .
Cho hàm số y = − x2 + 4x + 1. Khẳng định nào sau đây sai?
Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng , đồng biến trên khoảng
.
Áp dụng: Ta có Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.
Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).
Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).