Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Hàm số và đồ thị gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Số nghiệm của phương trình 3x^{2} + 15x + 2\sqrt{x^{2} + 5x + 1} = 2 là:

    Đặt t = \sqrt{x^{2} + 5x + 1} (t≥0).Phương trình trở thành: 3t^{2} + 2t - 5 = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 1\ \ (t/m) \\t = - \frac{5}{3}\ \ (l) \\\end{matrix} ight.

    Với t = 1 ta được \sqrt{x^{2} + 5x + 1} =1 \Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = - 5 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 2: Nhận biết

    Tam thức bậc hai f(x) =  − x2 + 5x − 6 nhận giá trị dương khi và chỉ khi

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ (2;3).

  • Câu 3: Thông hiểu

    Bảng xét dấu sau đây là của tam thức bậc hai nào?

    Từ bảng xét dấu ta có:

    f(x) = 0 có hai nghiệm phân biệt x = 2;x = 3f(x) > 0 khi x \in (2;3)

    Do đó f(x) = - x^{2} + 5x -
6

  • Câu 4: Thông hiểu

    Bảng biến thiên của hàm số y =  − 2x2 + 4x + 1 là bảng nào trong các bảng được cho sau đây ?

    Hệ số a = - 2 <
0\overset{}{ightarrow} bề lõm hướng xuống.

    Ta có - \frac{b}{2a} = 1y(1) = 3. Do đó chọn .

  • Câu 5: Vận dụng cao

    Xét tính đồng biến, nghịch biến của hàm số f(x) = x2 − 4x + 5 trên khoảng (−∞;2) và trên khoảng (2;+∞). Khẳng định nào sau đây đúng?

    Ta có : f(x1) − f(x2) = (x12−4x1+5) − (x22−4x2+5)

     = (x12x22) − 4(x1x2) = (x1x2)(x1+x2−4).

    ● Với mọi x1x2 ∈ (−∞;2)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} < 2 \\
x_{2} < 2 \\
\end{matrix} ight.\  \Rightarrow x_{1} + x_{2} < 4.

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = \frac{\left( x_{1} - x_{2}
ight)\left( x_{1} + x_{2} - 4 ight)}{x_{1} - x_{2}} = x_{1} + x_{2}
- 4 < 0.

    Vậy hàm số nghịch biến trên (−∞;2).

    ● Với mọi x1x2 ∈ (2;+∞)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} > 2 \\
x_{2} > 2 \\
\end{matrix} ight.\  \Rightarrow x_{1} + x_{2} > 4.

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = \frac{\left( x_{1} - x_{2}
ight)\left( x_{1} + x_{2} - 4 ight)}{x_{1} - x_{2}} = x_{1} + x_{2}
- 4 > 0.

    Vậy hàm số đồng biến trên (2;+∞).

  • Câu 6: Nhận biết

    Nghiệm của phương trình \sqrt{-10x+10}=x-1 là:

     Ta có: \sqrt{-10x+10}=x-1 \Rightarrow -10x+10=x^2-2x+1\Leftrightarrow x^2+8x-9=0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x =  - 9}\end{array}} ight..

    Thử lại thấy x=9 không thỏa mãn. Do đó x=1.

  • Câu 7: Vận dụng

    Tìm m để g(x) = (2m2+m−6)x2 + (2m−3)x − 1 không dương.

    Xét 2m^{2} + m - 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
m = - 2 \\
m = \frac{3}{2} \\
\end{matrix} ight.

    +)m = - 2 \Rightarrow g(x) = - 7x - 1 >
0 \Leftrightarrow x < - \frac{1}{7} (không thỏa mãn yêu cầu bài toán)

    +) m = \frac{3}{2} \Rightarrow g(x) =
0 (không thỏa mãn)

    Xét 2m^{2} + m - 6 eq 0 \Leftrightarrow
\left\{ \begin{matrix}
m eq - 2 \\
m eq \frac{3}{2} \\
\end{matrix} ight.

    g(x) \leq 0,\ \ \forall x \Leftrightarrow
\left\{ \begin{matrix}
a = 2m^{2} + m - 6 < 0 \\
\Delta' = 12m^{2} - 8m - 15 \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 2 < m < \frac{3}{2} \\
- \frac{5}{6} \leq m \leq \frac{3}{2} \\
\end{matrix} ight.\  \Leftrightarrow - \frac{5}{6} \leq m <
\frac{3}{2}

  • Câu 8: Nhận biết

    Hàm số nào sau đây nghịch biến trên khoảng (−1;+∞)?

    Xét đáp án y = - \sqrt{2}(x +
1)^{2}, ta có y = - \sqrt{2}(x +
1)^{2} = - \sqrt{2}x^{2} - 2\sqrt{2}x - \sqrt{2} nên - \frac{b}{2a} = - 1 và có a < 0 nên hàm số đồng biến trên khoảng (−∞;−1) và nghịch biến trên khoảng (−1;+∞).

  • Câu 9: Thông hiểu

    Cho hàm số: f(x) =
\left\{ \begin{matrix}
- 2(x - 3) & khi & - 1 \leq x \leq 1 \\
\sqrt{x^{2} - 1} & khi & x > 1 \\
\end{matrix} ight.. Giá trị của f(−1); f(1) là:

    Ta có: f(−1) =  − 2(−1−3) = 8; f(1) = \sqrt{1^{2} - 1} = 0.

    Chọn đáp án 80.

  • Câu 10: Vận dụng cao

    Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4]

    Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2

     = (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.

    Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].

    y = (t - 1)^{2} - 5t + 2 = t^{2} - 7t + 3= \left( t - \frac{7}{2} ight)^{2} - \frac{37}{4}.

    Cách 1: Ta có 0 \leq \left( t -\frac{7}{2} ight)^{2} \leq \frac{121}{4} \Leftrightarrow -\frac{37}{4} \leq y \leq 21.

    Cách 2: Vẽ BBT

    Description: Capture

    Vậy y_{\min} = - \frac{37}{4}, ymax = 21.

  • Câu 11: Nhận biết

    Số giá trị nguyên của x để tam thức f(x) = 2x2 − 7x − 9 nhận giá trị âm là

    f(x) = 2x^{2} - 7x - 9 \Leftrightarrow\left\lbrack \begin{matrix}x = - 1 \\x = \dfrac{9}{2} \\\end{matrix} ight.

    Dựa vào bảng xét dấu, f(x) < 0\Leftrightarrow - 1 < x < \frac{9}{2}.

    x ∈ ℤ⇒ x ∈ {0;1;2;3;4} (5 giá trị).

  • Câu 12: Nhận biết

    Cho parabol (P) có phương trình y = 3x2 − 2x + 4. Tìm trục đối xứng của parabol này.

    + Có a = 3; b =  − 2; c = 4.

    + Trục đối xứng của parabol là x = \frac{-
b}{2a} = \frac{1}{3}.

  • Câu 13: Nhận biết

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x =  − 3.

    (P) có trục đối xứng x =  − 3 nên - \frac{b}{2a} = - 3 \Leftrightarrow - \frac{3}{2a}
= - 3 \Leftrightarrow a = \frac{1}{2}.

    Vậy (P):y = \frac{1}{2}x^{2} + 3x -
2.

  • Câu 14: Vận dụng cao

    Cho hàm số f(x) = ax2 + bx + c đồ thị như hình bên. Hỏi với những giá trị nào của tham số thực m thì phương trình |f(x)| = m có đúng 4 nghiệm phân biệt.

    Ta có y = \left| f(x) ight| = \left\{
\begin{matrix}
f(x) & ;f(x) \geq 0 \\
- f(x) & ;f(x) < 0 \\
\end{matrix} ight.. Từ đó suy ra cách vẽ đồ thị hàm số (C) từ đồ thị hàm số y = f(x) như sau:

    Giữ nguyên đồ thị y = f(x) phía trên trục hoành.

    Lấy đối xứng phần đồ thị y = f(x) phía dưới trục hoành qua trục hoành ( bỏ phần dưới ).

    Kết hợp hai phần ta được đồ thị hàm số y = |f(x)| như hình vẽ.

    Phương trình |f(x)| = m là phương trình hoành độ giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m (song song hoặc trùng với trục hoành).

    Dựa vào đồ thị, ta có ycbt  ⇔ 0 < m < 1.

  • Câu 15: Nhận biết

    Chọn khẳng định đúng?

    Lí thuyết định nghĩa hàm số đồng biến, nghịch biến: Hàm số y = f(x) được gọi là đồng biến trên K nếu x1; x2 ∈ Kx1 < x2 ⇒ f(x1) < f(x2).

  • Câu 16: Nhận biết

    Giải bất phương trình −2x^{2}+3x−7≥0.

     Ta có: −2x^{2}+3x−7≥0 \Leftrightarrow x \in \varnothing.

  • Câu 17: Vận dụng

    Đồ thị của hàm số y = - \frac{x}{2} + 2 là hình nào?

    Đồ thị hàm số y = - \frac{x}{2} +
2 cắt trục hoành tại điểm (4;0) và cắt trục tung tại điểm (0;2) nên chọn đáp án đồ thị hàm số đi qua 2 điểm này.

  • Câu 18: Thông hiểu

    Tập nghiệm của bất phương trình x^{2} + 4x + 4 > 0 là:

    Ta có:

    \begin{matrix}  {x^2} + 4x + 4 > 0 \hfill \\   \Leftrightarrow {\left( {x + 2} ight)^2} > 0,\forall x e  - 2 \hfill \\ \end{matrix}

    Vậy tập nghiệm của bất phương trình là: (–∞; –2) ∪ (–2; +∞)

  • Câu 19: Nhận biết

    Tập nghiệm của bất phương trình x^{2} - x
- 12 \leq 0 là?

    Ta có f(x) = x^{2} - x - 12 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 4 \\
x = - 3 \\
\end{matrix} ight.

    Bảng xét dấu:

    Dựa vào bảng xét dấu f(x) \leq 0
\Leftrightarrow - 3 \leq x \leq 4.

  • Câu 20: Thông hiểu

    Một chiếc cổng hình parabol có phương trình y = - \frac{1}{2}x^{2}. Biết cổng có chiều rộng d = 5 mét (như hình vẽ). Hãy tính chiều cao h của cổng.

    Gọi ABlà hai điểm ứng với hai chân cổng như hình vẽ.

    Vì cổng hình parabol có phương trình y = -
\frac{1}{2}x^{2}và cổng có chiều rộng d = 5 mét nên:

    AB = 5 A\left( - \frac{5}{2}; - \frac{25}{8} ight);\
B\left( \frac{5}{2}; - \frac{25}{8} ight).

    Vậy chiều cao của cổng là\left| -
\frac{25}{8} ight| = \frac{25}{8} = 3,125mét.

  • Câu 21: Vận dụng

    Cho hàm số y = ax2 + bx + c có đồ thị như hình dưới đây. Khẳng định nào sau đây là đúng?

    Nhìn vào đồ thị ta có:

    Bề lõm hướng xuống  ⇒ a < 0.

    Hoành độ đỉnh x = - \frac{b}{2a} > 0\Rightarrow \frac{b}{2a} < 0 \Rightarrow b > 0 .

    Đồ thị hàm số cắt trục tung tại điểm có tung độ âm  ⇒ c < 0.

    Do đó: a < 0, b > 0, c < 0.

  • Câu 22: Thông hiểu

    Số nghiệm của phương trình \sqrt{x + 12} - \sqrt{x - 3} = \sqrt{2x +1}

    ĐK x ≥ 3.

    \sqrt{x + 12} - \sqrt{x - 3} = \sqrt{2x+ 1}

    \Leftrightarrow \sqrt{x + 12} = \sqrt{x- 3} + \sqrt{2x + 1}

    \Leftrightarrow \sqrt{(x - 3)(2x + 1)} =- x + 7

    \Leftrightarrow \left\{ \begin{matrix}x \leq 7 \\2x^{2} - 5x - 3 = x^{2} - 14x + 49 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq 7 \\x^{2} + 9x - 52 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 4(TM) \\x = - 13(KTM) \\\end{matrix} ight..

    Vậy phương trình có một nghiệm.

  • Câu 23: Thông hiểu

    Số giá trị nguyên của x để tam thức f(x)=2x^{2}−7x−9 nhận giá trị âm là:

     Ta có: \Delta >0a=2>0.

    Phương trình f(x)=0 có hai nghiệm x=-1;x=\frac92.

    Do đó f(x)<0 \Leftrightarrow  -1 < x < \frac92 \Leftrightarrow x=\{0;1;2;3;4\} (5 giá trị).

  • Câu 24: Vận dụng cao

    Tất cả các giá trị của tham số m để phương trình \frac{3mx + 1}{\sqrt{x + 1}} + \sqrt{x + 1} =
\frac{2x + 5m + 3}{\sqrt{x + 1}} có nghiệm là:

    ĐKXĐ x >  − 1

    pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.

    Phương trình đã cho có nghiệm \Leftrightarrow \left\{ \begin{matrix}
3m - 1 eq 0 \\
x = \frac{5m + 1}{3m - 1} > - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m eq \frac{1}{3} \\
\frac{8m}{3m - 1} > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m > \frac{1}{3} \\
m < 0 \\
\end{matrix} ight..

  • Câu 25: Vận dụng

    Số nghiệm của phương trình (3x + 1)\sqrt{x^{2} + 3} = 3x^{2} + 2x + 3 là:

    Ta thấy x = - \frac{1}{3} không là nghiệm của phương trình

    Xét x eq - \frac{1}{3}, phương trình đã cho \Leftrightarrow \sqrt{x^{2} + 3}= \frac{3x^{2} + 2x + 3}{3x + 1}

    Đến đây, chú ý 3x^{2} + 2x + 3 = 3(x +\frac{1}{3})^{2} + \frac{8}{3} > 0

    Nên phương trình có nghiệm phải thỏa mãn x> - \frac{1}{3} \Rightarrow \sqrt{x^{2} + 3} + 2x > 0

    Do đó phương trình đã cho\Leftrightarrow\sqrt{x^{2} + 3} - 2x = \frac{3x^{2} + 2x + 3}{3x + 1} - 2x

    \Leftrightarrow \frac{x^{2} + 3 -4x^{2}}{\sqrt{x^{2} + 3} + 2x} = \frac{3x^{2} + 2x + 3 - 6x^{2} - 2x}{3x+ 1}

    \Leftrightarrow \frac{3\left( 1 - x^{2}ight)}{\sqrt{x^{2} + 3} + 2x} = \frac{3\left( 1 - x^{2} ight)}{3x +1}

    \Leftrightarrow \left\lbrack\begin{matrix}x^{2} = 1 \\\sqrt{x^{2} + 3} + 2x = 3x + 1 \\\end{matrix} ight.

    Nhưng x =  − 1 không thoả mãn x > - \frac{1}{3} nên phương trình có nghiệm x = 1

    * TH2: \sqrt{x^{2} + 3} + 2x = 3x + 1\Leftrightarrow \sqrt{x^{2} + 3} = x + 1

    \Leftrightarrow \left\{ \begin{matrix}x \geq - 1 \\x^{2} + 3 = x^{2} + 1 + 2x \\\end{matrix} ight.\ \ \  \Leftrightarrow x = 1 (thỏa mãn)

    Vậy phương trình có nghiệm duy nhất x = 1.

  • Câu 26: Thông hiểu

    Cho hàm số y =
\left\{ \begin{matrix}
- 2x + 1 & khi & x \leq - 3 \\
\frac{x + 7}{2} & khi & x > - 3 \\
\end{matrix} ight.. Biết f(x0) = 5 thì x0

    TH1. x0 ≤  − 3: Với f(x0) = 5 ⇔  − 2x0 + 1 = 5 ⇔ x0 =  − 2 (Loại).

    TH2. x0 >  − 3: Với f\left( x_{0} ight) = 5 \Leftrightarrow
\frac{x_{0} + 7}{2} = 5 \Leftrightarrow x_{0} = 3 (thỏa mãn).

  • Câu 27: Thông hiểu

    Tìm tập xác định D của hàm số y = \frac{3 - x}{\sqrt{4 - 3x -
x^{2}}}.

    Hàm số xác định khi và chỉ khi 4 − 3x − x2 > 0.

    Phương trình 4 - 3x - x^{2} = 0
\Leftrightarrow (x - 1)(x + 4) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - \ 4 \\
\end{matrix} ight.\ .

    Bảng xét dấu:

    Dựa vào bảng xét dấu, ta thấy 4 − 3x − x2 > 0 ⇔ x ∈ (− 4; 1).

    Vậy tập xác định của hàm số là D = (− 4;1).

  • Câu 28: Nhận biết

    Cho hàm số có đồ thị như hình vẽ

    Khẳng định nào sau đây đúng:

    Hàm số đồng biến trên khoảng (1;3).

  • Câu 29: Thông hiểu

    Quan sát đồ thị hàm số, chọn nhận xét đúng?

    Quan sát đồ thị ta thấy có bề lõm quay lên trên suy ra a > 0

    Parabol cắt trục tung tại điểm có tọa độ (0;c) nằm phía trên trục hoành nên c > 0.

    Đỉnh parabol nằm bên trái trục tung nên có hoành độ - \frac{b}{2a} < 0a > 0 suy ra b > 0.

    Kết luận: a > 0,b > 0,c >
0.

  • Câu 30: Vận dụng

    Xét sự biến thiên của hàm số f(x) = \frac{3}{x} trên khoảng (0;+∞). Khẳng định nào sau đây đúng?

    Ta có f\left( x_{1} ight) - f\left(
x_{2} ight) = \frac{3}{x_{1}} - \frac{3}{x_{2}} = \frac{3\left( x_{2}
- x_{1} ight)}{x_{1}x_{2}} = - \frac{3\left( x_{1} - x_{2}
ight)}{x_{1}x_{2}}.

    Với mọi x1x2 ∈ (0;+∞)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} > 0 \\
x_{2} > 0 \\
\end{matrix} ight.\  \Rightarrow x_{1}.x > 0.

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = - \frac{3}{x_{1}x_{2}} <
0\overset{}{ightarrow}f(x) nghịch biến trên (0;+∞).

  • Câu 31: Nhận biết

    Tập nghiệm của bất phương trình: 2x^{2}–7x–15≥0 là:

     Ta có: 2x^{2}–7x–15≥0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x \le  - \frac{3}{2}}\\{x \ge 5}\end{array}} ight..

    Vậy D=(-\infty ;-\frac{3}{2}]\cup [5;+\infty ).

  • Câu 32: Nhận biết

    Trong các hàm số sau, hàm số nào là nghịch biến:

    Ta có: 

    Hàm số y = f(x) = -2x + 2 có a = -2 < 0

    => Hàm số nghịch biến.

  • Câu 33: Thông hiểu

    Cho tam thức f(x) = x^{2} + 2mx + 3m – 2. Tìm m để f(x) ≥ 0 với mọi x ∈ ℝ.

     Để f(x) ≥ 0 với mọi x ∈ ℝ

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta ' \leqslant 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 0} \\   {{m^2} - \left( {3m - 2} ight) \leqslant 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 0} \\   {{m^2} - 3m + 2 \leqslant 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 0} \\   {m \in \left[ {1;2} ight]} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 34: Thông hiểu

    Tập nghiệm của phương trình \frac{3x^{2}-7x+2}{\sqrt{3x-1}}=\sqrt{3x-1} là?

     Điều kiện: x > \frac13.

    Ta có: \frac{3x^{2}-7x+2}{\sqrt{3x-1}}=\sqrt{3x-1}  \Leftrightarrow 3x^{2}-7x+2=3x-1\Leftrightarrow 3x^2-10x+3=0\Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{1}{3}}\\{x = 3}\end{array}} ight.. Loại x= \frac13.

    Vậy S=\{3\}.

     

  • Câu 35: Thông hiểu

    Nghiệm của phương trình \sqrt{5x^{2}-6x-4}=2(x-1)

    Điều kiện: 5{x^2} - 6x - 4 \geqslant 0

    Phương trình tương đương

    \begin{matrix}  \sqrt {5{x^2} - 6x - 4}  = 2\left( {x - 1} ight) \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {2\left( {x - 1} ight) \geqslant 0} \\   {5{x^2} - 6x - 4 = 4{{\left( {x - 1} ight)}^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 1} \\   {{x^2} - 2x = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 1} \\   {\left[ {\begin{array}{*{20}{c}}  {x = 0\left( {ktm} ight)} \\   {x = 2\left( {tm} ight)} \end{array}} ight.} \end{array}} ight. \hfill \\ \end{matrix}

    Kết hợp với điều kiện ra được x=2 thỏa mãn

    Vậy nghiệm của phương trình là: x=2

  • Câu 36: Thông hiểu

    Số nghiệm của phương trình 3x + \sqrt{x - 8} = \sqrt{4 - x} là:

    Xét phương trình: 3x + \sqrt{x - 8} =\sqrt{4 - x}.

    Điều kiện: \left\{ \begin{matrix}x - 8 \geq 0 \\4 - x \geq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 8 \\x \leq 4 \\\end{matrix} ight.\  \Leftrightarrow x \in \varnothing.

    Vậy phương trình vô nghiệm.

  • Câu 37: Nhận biết

    Cho hàm số có đồ thị như hình bên dưới.

    Khẳng định nào sau đây là đúng?

    Trên khoảng (0;2) đồ thị hàm số đi xuống từ trái sang phải nên hàm số nghịch biến.

  • Câu 38: Thông hiểu

    Tổng tất cả các giá trị nguyên dương của tham số m để hàm số

    y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1  ;  5) là:

    Hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng \left( \frac{m +
1}{4}\ \ ;\ \  + \infty ight).

    Để hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1  ;  5) thì ta phải có (1\ \ ;\ \ 5) \subset \left(
\frac{m + 1}{4}\ \ ;\ \  + \infty ight) \Leftrightarrow \frac{m + 1}{4} \leq 1
\Leftrightarrow m \leq 3.

    Các giá trị nguyên dương của tham số m để hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1; 5)m = 1,  m = 2,  m = 3.

    Tổng tất cả các giá trị nguyên dương của tham số m để hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1; 5)S = 1 + 2 + 3 = 6.

  • Câu 39: Nhận biết

    Tập nghiệm của bất phương trình 6x^{2}+x−1≤0

     Ta có: 6x^{2}+x−1≤0  \Leftrightarrowx \in [-\frac{1}{2};\frac{1}{3}].

  • Câu 40: Nhận biết

    Hàm số y = 2x2 + 4x − 1

    Hàm số y = ax2 + bx + c với a > 0 đồng biến trên khoảng \left( - \frac{b}{2a}; + \infty
ight), nghịch biến trên khoảng \left( - \infty; - \frac{b}{2a}
ight).

    Áp dụng: Ta có - \frac{b}{2a} = -
1. Do đó hàm số nghịch biến trên khoảng (−∞;−1) và đồng biến trên khoảng (−1;+∞).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo