Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Hàm số và đồ thị gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tập xác định của hàm số y = \frac{2 - x}{x^{2} - 4x} là:

    Hàm số xác định \Leftrightarrow x^{2} - 4x
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
x eq 4 \\
\end{matrix} ight.. Vậy D = ℝ ∖ {0;4}.

  • Câu 2: Vận dụng cao

    Phương trình \sqrt{2x + 3} + \sqrt{x + 1} = 3x + 2\sqrt{2x^{2} +
5x + 3} - 16 có mấy nghiệm ?

    Điều kiện: x ≥  − 1

    Đặt t = \sqrt{2x + 3} + \sqrt{x + 1}\ \ \
(t \geq 0)\ \

    \Rightarrow t^{2} = 3x + 4 +
2\sqrt{2x^{2} + 5x + 3}

    Phương trình đã cho trở thành: t^{2} - t -
20 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 5\ \ \ (t/m) \\
t = - 4\ \ \ \ (l) \\
\end{matrix} ight.

    Với t = 5 ta có: \sqrt{2x + 3} + \sqrt{x + 1} = 5 \Leftrightarrow x
= 3

    Vậy phương trình đã cho có 1 nghiệm.

  • Câu 3: Thông hiểu

    Tính tổng tất cả các nghiệm của phương trình \sqrt{6 - 5x} = 2 - x?

    Ta có:

    \sqrt{6 - 5x} = 2 - x

    \Rightarrow \left\{ \begin{matrix}
2 - x \geq 0 \\
6 - 5x = (2 - x)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \leq 2 \\
x^{2} + x - 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq 2 \\
\left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    Vậy tổng các nghiệm của phương trình bằng 1 + ( - 2) = - 1.

  • Câu 4: Thông hiểu

    Cho hàm số y = (m
+ 2)x + \sqrt{2 - m}. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên ?

    Hàm số có dạng y = ax + b, nên để hàm số đồng biến trên khi và chỉ khi \left\{ \begin{matrix}
m + 2 > 0 \\
2 - m \geq 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
m > - 2 \\
m \leq 2 \\
\end{matrix} ight.. Mặt khác do m ∈ ℤ nên m ∈ {−1;  0;  1;  2}. Vậy có 4 giá trị nguyên của m.

  • Câu 5: Nhận biết

    Cho f(x) = x2 − 4x + 3. Trong các mệnh đề sau, mệnh đề đúng là:

    f(x) = x^{2} - 4x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu thì f(x) ≤ 0, ∀x ∈ [ 1; 3 ].

  • Câu 6: Vận dụng cao

    Cho parabol (P) : y = x2 − 4x + 3 và đường thẳng d : y = mx + 3. Tìm tất cả các giá trị thực của m để d cắt (P) tại hai điểm phân biệt A,  B sao cho diện tích tam giác OAB bằng \frac{9}{2}.

    Phương trình hoành độ giao điểm của (P)dx2 − 4x + 3 = mx + 3

    \overset{}{\leftrightarrow}x\left( x - (m
+ 4) ight) = 0\overset{}{\leftrightarrow}\left\{ \begin{matrix}
x = 0 \\
x = m + 4 \\
\end{matrix} ight..

    Để d cắt (P) tại hai điểm phân biệt A,  B khi và chỉ khi 4 + m ≠ 0 ⇔ m ≠  − 4.

    Với x = 0 \Rightarrow y = 3\ \ \ \
\overset{}{ightarrow}\ \ \ \ A(0;3) \in Oy.

    Với x = 4 + m \Rightarrow y = m^{2} + 4m +
3\ \ \ \ \overset{}{ightarrow}\ \ \ \ B\left( 4 + m;m^{2} + 4m + 3
ight).

    Gọi H là hình chiếu của B lên OA. Suy ra BH = |xB| = |4+m|.

    Theo giả thiết bài toán, ta có S_{\Delta
OAB} = \frac{9}{2} \Leftrightarrow \frac{1}{2}OA.BH = \frac{9}{2}
\Leftrightarrow \frac{1}{2}.3.|m + 4| = \frac{9}{2}

    \Leftrightarrow |m + 4| = 3
\Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = - 7 \\
\end{matrix} ight..

  • Câu 7: Thông hiểu

    Tập xác định của hàm số f(x) = \sqrt{3 - x} + \frac{1}{\sqrt{x -
1}}

    Hàm số xác định khi \left\{ \begin{matrix}
3 - x \geq 0 \\
x - 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq 3 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow 1 < x \leq 3.

    Vậy tập xác định của hàm số là D = (1; 3].

  • Câu 8: Thông hiểu

    Cho phương trình x^{2} - mx - m^{2} = 0 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m \in \lbrack -
10;10brack để phương trình đã cho có hai nghiệm trái dấu?

    Từ yêu cầu bài toán

    \Leftrightarrow a.c < 0
\Leftrightarrow - m^{2} < 0 \Leftrightarrow m^{2} > 0
\Leftrightarrow m eq 0

    Suy ra m \in \left\{ - 10;....; - 1
ight\} \cup \left\{ 1;...;10 ight\}

    Vậy có 20 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 9: Nhận biết

    Tìm khẳng định đúng trong các khẳng định sau?

    Tam thức bậc 2 là biểu thức f(x) có dạng  ax2bx + c (a≠0).

    f(x) = 3x2 − 5 là tam thức bậc 2 với a = 3, b = 0, c =  − 5.

  • Câu 10: Thông hiểu

    Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) có đỉnh I(2;−1) và cắt trục tung tại điểm có tung độ bằng  − 3.

    (P) có đỉnh I(2;−1) nên ta có \left\{ \begin{matrix}
- \frac{b}{2a} = 2 \\
f(2) = - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
b = 4a \\
4a + 2b + c = - 1 \\
\end{matrix} ight.. (1)

    Gọi A là giao điểm của (P) với Oy tại điểm có tung độ bằng  − 3. Suy ra A(0;−3).

    Theo giả thiết, A(0;−3) thuộc (P) nên a.0 + b.0 + c =  − 3 ⇔ c =  − 3. (2)

    Từ (1)(2), ta có \left\{
\begin{matrix}
a = \frac{1}{6} \\
b = \frac{2}{3} \\
c = - 3 \\
\end{matrix} ight..

    Vậy (P):y = \frac{1}{6}x^{2} +
\frac{2}{3}x - 3.

  • Câu 11: Thông hiểu

    Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

    Nhận xét:

    Bảng biến thiên có bề lõm hướng lên. Loại đáp án y =  − x2 + 4x − 9y =  − x2 + 4x.

    Đỉnh của parabol có tọa độ là (2;−5). Xét các đáp án, đáp án y = x2 − 4x − 1 thỏa mãn.

  • Câu 12: Vận dụng

    Tìm tất cả các giá trị của tham số m để phương trình \sqrt{2x + m} = x - 1\ \
(*) có hai nghiệm phân biệt lớn hơn 1?

    Phương trình

    \sqrt{2x + m} = x - 1

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 \geq 0 \\
2x + m = (x - 1)^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 1 \\
x^{2} - 4x + 1 - m = 0\ (**) \\
\end{matrix} ight.

    Phương trình (*) có hai nghiệm phân biệt lớn hơn 1 \Leftrightarrow (**) có hai nghiệm phân biệt lớn hơn 1.

    \Leftrightarrow \left\{ \begin{matrix}
\Delta > 0 \\
1 < x_{1} < x_{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\Delta > 0 \\
0 < x_{1} - 1 < x_{2} - 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
3 + m > 0 \\
\left( x_{1} - 1 ight).\left( x_{2} - 1 ight) > 0 \\
x_{1} + x_{2} > 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > - 3 \\
x_{1}x_{2} - \left( x_{1} + x_{2} ight) + 1 > 0 \\
x_{1} + x_{2} > 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > - 3 \\
1 - m - 4 + 1 > 0 \\
4 > 2 \\
\end{matrix} ight.\  \Leftrightarrow - 3 < m < 2

  • Câu 13: Thông hiểu

    Cho phương trình x^{2} - 2m|x| + 9 - m =
0. Tìm m để phương trình có 3 nghiệm phân biệt?

    Đáp án: 9

    Đáp án là:

    Cho phương trình x^{2} - 2m|x| + 9 - m =
0. Tìm m để phương trình có 3 nghiệm phân biệt?

    Đáp án: 9

    Đặt |x| = t(t \geq 0) thì phương trình (*) trở thành: t^{2} - 2mt + 9 - m = 0 (1)

    Để phương trình (*) có 3 nghiệm phân biệt thì phương trình (1) phải có nghiệm t = 0 và một nghiệm t > 0.

    Khi t = 0 \Rightarrow m = 9 thì (1) \Leftrightarrow t^{2} - 18t = 0
\Rightarrow \left\lbrack \begin{matrix}
t = 18 > 0\ \ (TM) \\
t = 0 \\
\end{matrix} ight..

    Vậy m = 9

  • Câu 14: Vận dụng cao

    Một nông dân định trồng đậu và cà trên diện tích 8ha trong vụ Đông Xuân. Nếu trồng đậu thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi h Nếu trồng đậu thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi h Hỏi cần trồng mỗi loại cây trên với diện tích bao nhiêu để thu được nhiều tiền nhất. Biết rằng tổng số công không quá 180.

    Gọi diện tích trồng đậu là x , vậy diện tích trồng cà là 8 − x.

    Số công phải bỏ ra là: 20x + 30(8−x)  = 240 − 10x.

    Do tổng số công không quá 180 nên ta có: 240 − 10x ≤ 180 ⇔ x ≥ 6.

    Số tiền thu được là g(x) = 3x + 4(8−x) = 32 − x; g(x) nghịch biến trên đoạn [6; 8] nên max[6; 8]g(x) = 26 tại x = 6. Vậy cần trồng 6 ha đậu và 2 ha cà.

  • Câu 15: Vận dụng cao

    Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4]

    Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2

     = (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.

    Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].

    y = (t - 1)^{2} - 5t + 2 = t^{2} - 7t + 3
= \left( t - \frac{7}{2} ight)^{2} - \frac{37}{4}.

    Cách 1: Ta có 0 \leq \left( t -
\frac{7}{2} ight)^{2} \leq \frac{121}{4} \Leftrightarrow -
\frac{37}{4} \leq y \leq 21.

    Cách 2: Vẽ BBT

    Vậy y_{\min} = - \frac{37}{4}, ymax = 21.

  • Câu 16: Vận dụng

    Cho hàm số y=f(x)=ax^{2}+bx+c. Rút gọn biểu thức f(x + 3) - 3f(x + 2) + 3f(x + 1) ta được:

    Ta có:

    \begin{matrix}  f\left( {x + 3} ight) = a{\left( {x + 3} ight)^2} + b\left( {x + 3} ight) + c \hfill \\   = a\left( {{x^2} + 6x + 9} ight) + bx + 3b + c \hfill \\   = a{x^2} + 6ax + 9a + bx + 3b + c \hfill \\   = a{x^2} + \left( {6a + b} ight)x + 9a + 3b + c \hfill \\ \end{matrix}

    \begin{matrix}  f\left( {x + 2} ight) = a{\left( {x + 2} ight)^2} + b\left( {x + 2} ight) + c \hfill \\   = a\left( {{x^2} + 4x + 4} ight) + bx + 2b + c \hfill \\   = a{x^2} + 4ax + 4a + bx + 2b + c \hfill \\   = a{x^2} + \left( {4a + b} ight)x + 4a + 2b + c \hfill \\ \end{matrix}

    \begin{matrix}  f\left( {x + 1} ight) = a{\left( {x + 1} ight)^2} + b\left( {x + 1} ight) + c \hfill \\   = a\left( {{x^2} + 2x + 1} ight) + bx + b + c \hfill \\   = a{x^2} + 2ax + a + bx + b + c \hfill \\   = a{x^2} + \left( {2a + b} ight)x + a + b + c \hfill \\ \end{matrix}

    Suy ra:

    \begin{matrix}  f(x + 3) - 3f(x + 2) + 3f(x + 1) \hfill \\   = a{x^2} + \left( {6a + b} ight)x + 9a + 3b + c \hfill \\   - 3\left[ {a{x^2} + \left( {4a + b} ight)x + 4a + 2b + c} ight] \hfill \\   + 3\left[ {a{x^2} + \left( {2a + b} ight)x + a + b + c} ight] \hfill \\   = a{x^2} + bx + c \hfill \\ \end{matrix}

  • Câu 17: Thông hiểu

    Theo tài liệu dân số và phát triển của Tổng cục dân số và kế hoạch hóa gia đình thì:

    Dựa trên số liệu về dân số, kinh tế, xã hội của 85 nước trên thế giới, người ta xây dựng được hàm nêu lên mối quan hệ giữa tuổi thọ trung bình của phụ nữ (y) và tỷ lệ biết chữ của họ (x) như sau: y = 47,17 + 0,307x. Trong đó y là số năm (tuổi thọ), x là tỷ lệ phần trăm biết chữ của phụ nữ. Theo báo cáo của Bộ Giáo dục và Đào tạo năm học 2015 ‒ 2016, tỷ lệ biết chữ đã đạt 96,83% trong nhóm phụ nữ Việt Nam tuổi từ 15 đến 60. Hỏi với tỉ lệ biết chữ của phụ nữ Việt Nam như trên thì nhóm này có tuổi thọ bao nhiêu?

    Thay x = 96,83 vào công thức y = 47,17 + 0,307x ta được:

    y = 47,17 + 0,307. 96,83 = 47,17 + 29,72 = 76,89 (năm)

    Vậy nhóm này có tuổi thọ 76,89 tuổi.

  • Câu 18: Thông hiểu

    Tam thức bậc hai f(x)=−x^{2}+3x−2 nhận giá trị không âm khi và chỉ khi

     Ta có: \Delta >0a=-1<0.

    Phương trình f(x)=0 có hai nghiệm phân biệt là x=1;x=2.

    Do đó, f(x) \ge 0 x \in [1;2].

  • Câu 19: Thông hiểu

    Giải bất phương trình \frac{{5{x^2} + 3x - 8}}{{{x^2} - 7x + 6}} \leqslant 0

    Ta có bảng xét dấu như sau:

    Tìm tập nghiệm của bất phương trình

    Vậy tập nghiệm của bất phương trình là: S = \left[ {\frac{{ - 8}}{5};1} ight) \cup \left( {1;6} ight)

  • Câu 20: Nhận biết

    Cho hàm số y =  − x2 + 4x + 1. Khẳng định nào sau đây sai?

    Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng \left( - \frac{b}{2a}; + \infty
ight), đồng biến trên khoảng \left(
- \infty; - \frac{b}{2a} ight).

    Áp dụng: Ta có - \frac{b}{2a} = 2. Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.

    Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).

    Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).

  • Câu 21: Thông hiểu

    Tập nghiệm của phương trình 2x-\sqrt{x-8}=\sqrt{8-x}+16 là:

    Xét phương trình: 2x - \sqrt{x - 8} =\sqrt{8 - x} + 16. (1)

    Điều kiện : \left\{ \begin{matrix}x - 8 \geq 0 \\8 - x \geq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 8 \\x \leq 8 \\\end{matrix} ight.\  \Leftrightarrow x = 8.

    Thay x = 8 ta thấy (1) thoả mãn. Vậy, phương trình (1) có tập nghiệm là S = {8}.

  • Câu 22: Thông hiểu

    Đồ thị hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

    Nhận xét:

    Parabol có bề lõm hướng lên.

    Parabol cắt trục hoành tại 2 điểm phân biệt có hoành độ âm. Xét các đáp án, đáp án y = 3x2 + 6x + 1 thỏa mãn.

  • Câu 23: Vận dụng

    Tổng các nghiệm của phương trình \frac{x^{2} + x + 1}{\sqrt{x^{2} - x + 1}} =3\sqrt{x}

    ĐKXĐ: x ≥ 0

    Dễ thấy x = 0 không phải là nghiệm của phương trình

    Xét x > 0, phương trình \Leftrightarrow x^{2} + x + 1 =3\sqrt{x}.\sqrt{x^{2} - x + 1} \Leftrightarrow x + 1 + \frac{1}{x} =3\sqrt{x - 1 + \frac{1}{x}}

    Đặt t = \sqrt{x - 1 + \frac{1}{x}},\ \ t\geq 1 \Rightarrow x + \frac{1}{x} = t^{2} + 1

    Phương trình trở thành t^{2} + 2 = 3t\Leftrightarrow t^{2} - 3t + 2 = 0 \Leftrightarrow \left\lbrack\begin{matrix}t = 1 \\t = 2 \\\end{matrix} ight.

    Với t = 1 ta có \sqrt{x - 1 + \frac{1}{x}} = 1 \Leftrightarrowx^{2} - x + 1 = x \Leftrightarrow x = 1(thỏa mãn)

    Với t = 2 ta có \sqrt{x - 1 + \frac{1}{x}} = 2 \Leftrightarrowx^{2} - 5x + 1 = 0 \Leftrightarrow x = \frac{5 \pm\sqrt{21}}{2}(thỏa mãn)

    Vậy phương trình có nghiệm là x = \frac{5\pm \sqrt{21}}{2}x = 1.

    Tổng các nghiệm của phương trình là \frac{5 + \sqrt{21}}{2} + \frac{5 - \sqrt{21}}{2} +1 = 6.

  • Câu 24: Nhận biết

    Phương trình \sqrt{x^{2} + 4x - 1} = x - 3 có nghiệm là bao nhiêu?

    \sqrt{x^{2} + 4x - 1} = x - 3\Leftrightarrow \left\{ \begin{matrix}x - 3 \geq 0 \\x^{2} + 4x - 1 = x^{2} - 6x + 9 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 3 \\x = 1\ \ (L) \\\end{matrix} ight..

    Vậy phương trình vô nghiệm.

  • Câu 25: Nhận biết

    Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?

    Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).

  • Câu 26: Nhận biết

    Hàm số nào sau đây đồng biến trên tập xác định của nó?

    y = 3x + 1a = 3 > 0 nên hàm số đồng biến trên TXĐ.

  • Câu 27: Vận dụng

    Tìm các giá trị của m để biểu thức sau luôn âm: f(x) = mx2 − x − 1.

    Với m = 0 thì f(x) =  − x − 1 lấy cả giá trị dương (chẳng hạn f(−2) = 1) nên m = 0 không thỏa mãn yêu cầu bài toán

    Với m ≠ 0 thì f(x) = mx2 − x − 1 là tam thức bậc hai do đó f(x) < 0,\ \
\forall x \Leftrightarrow \left\{ \begin{matrix}
a = m < 0 \\
\Delta = 1 + 4m < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 0 \\
m > - \frac{1}{4} \\
\end{matrix} \Leftrightarrow - \frac{1}{4} < m < 0 ight.

    Vậy với - \frac{1}{4} < m <
0 thì biểu thức f(x) luôn âm.

  • Câu 28: Nhận biết

    Tìm hàm số bậc hai trong các hàm số dưới đây?

    Theo định nghĩa ta có:

    Hàm số bậc hai là y = - 2x^{2} -
3.

  • Câu 29: Nhận biết

    Đâu là tập nghiệm của phương trình \sqrt{x^{2} - 2x} = \sqrt{2x -
x^{2}}?

    \sqrt{x^{2} - 2x} = \sqrt{2x - x^{2}}\Leftrightarrow \left\{ \begin{matrix}x^{2} - 2x \geq 0 \\x^{2} - 2x = 2x - x^{2} \\\end{matrix} ight.\  \Leftrightarrow x^{2} - 2x = 0 \Leftrightarrow\left\lbrack \begin{matrix}x = 0 \\x = 2 \\\end{matrix} ight..

    Vậy tập nghiệm của phương trình là S =
\left\{ 0;2 ight\}.

  • Câu 30: Thông hiểu

    Phương trình \sqrt{3x + 1} + \sqrt{5 - x} = 4 có bao nhiêu nghiệm

    Đkxđ: - \frac{1}{3} \leq x \leq5.

    \sqrt{3x + 1} + \sqrt{5 - x} =4

    \Leftrightarrow 2x + 6 + 2\sqrt{(3x +1)(5 - x)} = 16

    \Leftrightarrow \sqrt{(3x + 1)(5 - x)} =5 - x

    \Leftrightarrow \left\lbrack\begin{matrix}\sqrt{5 - x} = 0 \\\sqrt{3x + 1} = \sqrt{5 - x} \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 5 \\3x + 1 = 5 - x \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 5(TM) \\x = 1(TM) \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 31: Nhận biết

    Cho hàm số có đồ thị như hình vẽ

    Khẳng định nào sau đây đúng:

    Hàm số đồng biến trên khoảng (1;3).

  • Câu 32: Nhận biết

    Đồ thị của hàm số nào sau đây là parabol có đỉnh I(−1; 3).

    Đỉnh Parabol là I\left( -
\frac{b}{2a};\  - \frac{\Delta}{4a} ight) = \left( - \frac{b}{2a};\  -
\frac{b^{2} - 4ac}{4a} ight).

    Do đó chỉ có đáp án y = 2x2 + 4x + 5 thỏa mãn.

  • Câu 33: Nhận biết

    Cho hàm số có đồ thị như hình bên dưới.

    Khẳng định nào sau đây là đúng?

    Trên khoảng (0;2) đồ thị hàm số đi xuống từ trái sang phải nên hàm số nghịch biến.

  • Câu 34: Vận dụng

    Cho parabol như hình vẽ:

    Có bao nhiêu giá trị nguyên của tham số m với m \in
\lbrack 0;3000brack để phương trình f(x) + m = 2022 có hai nghiệm x_{1};x_{2} phân biệt?

    Ta có:

    f(x) + m = 2022 \Leftrightarrow f(x) = -
m + 2022(*)

    Số nghiệm của phương trình (*) bằng số giao điểm của đồ thị hàm số y = f(x)y = - m + 2022

    Do đó phương trình (*) có có hai nghiệm phân biệt khi và chỉ khi - m + 2022 < 2 \Leftrightarrow m >
2020.

    Mặt khác m \in \lbrack
0;3000brack suy ra có 980 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 35: Thông hiểu

    Số nghiệm của phương trình:\sqrt{x - 4}\left( x^{2} - 3x + 2 ight) = 0là:

    \sqrt{x - 4}\left( x^{2} - 3x + 2ight) = 0

    \Leftrightarrow \left\lbrack\begin{matrix}x - 4 = 0 \\\left\{ \begin{matrix}x - 4 > 0 \\x^{2} - 3x + 2 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 4 \\\left\{ \begin{matrix}x > 4 \\\left\lbrack \begin{matrix}x = 1 \\x = 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow x = 4.

    Vậy phương trình có một nghiệm.

  • Câu 36: Thông hiểu

    Hàm số y = 2x^{2} – 4x + 1 đồng biến và nghịch biến trên khoảng nào?

    Ta có hàm số y = 2x^{2} – 4x + 1a=2>0

    => Hàm số nghịch biến trên khoảng \left( { - \infty ;1} ight), đồng biến trên khoảng \left( {1; + \infty } ight)

  • Câu 37: Nhận biết

    Số nghiệm của phương trình 3x + \sqrt{x - 8} = \sqrt{4 - x}. là bao nhiêu?

    Xét phương trình: 3x + \sqrt{x - 8} =
\sqrt{4 - x}.

    Điều kiện: \left\{ \begin{matrix}
x - 8 \geq 0 \\
4 - x \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 8 \\
x \leq 4 \\
\end{matrix} ight.\  \Leftrightarrow x \in \varnothing..

    Vậy phương trình vô nghiệm.

  • Câu 38: Nhận biết

    Tập nghiệm của bất phương trình 2{x^2} - 7x - 15 \geqslant 0 là:

    Tam thức f(x)=2{x^2} - 7x - 15 có hai nghiệm phân biệt {x_1} = 5;{x_2} =  - \frac{3}{2}

    a = 2 > 0 nên f(x) dương với mọi x thuộc hai nửa khoảng \left( { - \infty  - \frac{3}{2}} ight],\left[ {5, + \infty } ight)

    Vậy tập nghiệm của bất phương trình là: S=(-∞;-\frac{3}{2})∪[5;+∞)

  • Câu 39: Vận dụng

    Tìm m để hàm số y = \frac{\sqrt{x - 2m + 3}}{x - m} + \frac{3x -
1}{\sqrt{- x + m + 5}} xác định trên khoảng (0;1).

    *Gọi D là tập xác định của hàm số y = \frac{\sqrt{x - 2m + 3}}{x - m} +
\frac{3x - 1}{\sqrt{- x + m + 5}}.

    *x \in D \Leftrightarrow \left\{
\begin{matrix}
x - 2m + 3 \geq 0 \\
x - m\boxed{=}0 \\
- x + m + 5 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 2m - 3 \\
x\boxed{=}m \\
x < m + 5 \\
\end{matrix} ight..

    *Hàm số y = \frac{\sqrt{x - 2m + 3}}{x -
m} + \frac{3x - 1}{\sqrt{- x + m + 5}} xác định trên khoảng (0;1)

    \Leftrightarrow (0;1) \subset D
\Leftrightarrow \left\{ \begin{matrix}
2m - 3 \leq 0 \\
m + 5 \geq 1 \\
m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \leq \frac{3}{2} \\
m \geq - 4 \\
\left\lbrack \begin{matrix}
m \geq 1 \\
m \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow m \in \lbrack - 4;0brack \cup
\left\lbrack 1;\frac{3}{2} ightbrack.

  • Câu 40: Nhận biết

    Tổng các nghiệm của phương trình \sqrt{2x - 1} + x^{2} - 3x + 1 = 0 là :

    Ta có \sqrt{2x - 1} + x^{2} - 3x + 1 = 0\Leftrightarrow \sqrt{2x - 1} = - x^{2} + 3x - 1

    \Leftrightarrow \left\{ \begin{matrix}- x^{2} + 3x - 1 \geq 0 \\2x - 1 = \left( - x^{2} + 3x - 1 ight)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}- x^{2} + 3x - 1 \geq 0 \\(x - 1)^{2}(x^{2} - 4x + 2) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}- x^{2} + 3x - 1 \geq 0 \\\left\lbrack \begin{matrix}x = 1 \\x^{2} - 4x + 2 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}- x^{2} + 3x - 1 \geq 0 \\\left\lbrack \begin{matrix}x = 1 \\x = 2 \pm \sqrt{2} \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = 2 - \sqrt{2} \\\end{matrix} ight.

    Phương trình có nghiệm là x = 1x = 2 - \sqrt{2}.

    Vậy tổng các nghiệm của phương trình là 1+ 2 - \sqrt{2} = 3 - \sqrt{2}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo