Tổng các bình phương của các nghiệm của phương trình
bằng bao nhiêu?
Ta có
.
Tổng các bình phương của các nghiệm của phương trình là .
Tổng các bình phương của các nghiệm của phương trình
bằng bao nhiêu?
Ta có
.
Tổng các bình phương của các nghiệm của phương trình là .
Giả sử đồ thị parabol
đi qua điểm
và có trục đối xứng là đường thẳng
. Tính tổng các giá trị
và
?
Ta có:
Trục đối xứng của là:
Trong các hàm số sau, hàm số nào có đồ thị nhận đường x = 1 làm trục đối xứng?
Ta có đáp án có:
Vậy x = 1 là trục đối xứng của đồ thị hàm số .
Biết rằng (P) : y = ax2 + bx + 2 (a>1) đi qua điểm M(−1;6) và có tung độ đỉnh bằng
. Tính tích P = ab.
Vì (P) đi qua điểm M(−1;6) và có tung độ đỉnh bằng nên ta có hệ
(thỏa mãn a > 1) hoặc
(loại).
Suy ra P = ab = 16.12 = 192.
Cho hàm số có đồ thị như hình bên dưới.
Khẳng định nào sau đây là đúng?
Trên khoảng (0;2) đồ thị hàm số đi xuống từ trái sang phải nên hàm số nghịch biến.
Cho tam thức bậc hai
. Khẳng định nào sau đây đúng?
Ta có:
Tam thức bậc hai f(x) = − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp ánx ∈ [1; 2] .
Số nghiệm của phương trình ![]()
Điều kiện
Phương trình tương đương:
Do
Vậy phương trình vô nghiệm.
Tìm tập xác định D của hàm số
.
Điều kiện xác định: . Vậy tập xác định: D = [ − 1; + ∞) ∖ {0}.
Tổng các nghiệm của phương trình
là:
.
Vậy tổng các nghiệm của phương trình là − 1.
Số giá trị nguyên của
để tam thức
nhận giá trị âm là:
Ta có: và
.
Phương trình có hai nghiệm
.
Do đó (5 giá trị).
Đồ thị bên là đồ thị của hàm số nào?

Đồ thị nhận trục Oy là trục đối xứng nên hàm số tương ứng là hàm chẵn nên loại phương án y = |2x+1| và y = |x+1|
Đồ thị hàm số đi qua điểm (1;3). Thay vào y = 2|x| + 1 thấy thỏa mãn nên chọn đáp án này.
Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như các đáp án dưới đây. Chọn đáp án đúng.

Dựa vào bảng xét dấu, chọn đáp án f(x) > 0với 2< x < 3 và f(x) < 0với x < 2 ∨ x > 3.
Tìm hàm số bậc hai trong các hàm số dưới đây?
Theo định nghĩa ta có:
Hàm số bậc hai là .
Bất phương trình
có tập nghiệm là:
Ta có: (vô lí).
Vậy .
Cho hàm số có đồ thị như hình vẽ.
Chọn đáp án sai.
Từ đồ thị hàm số ta thấy:
Hàm số nghịch biến trong các khoảng: (−∞;−1) và (0;1).
Hàm số đồng biến trong các khoảng: (−1;0) và (1;+∞).
Đáp án sai là Hàm số nghịch biến trên khoảng (−1;1).
Dưới đây là bảng giá cước của hãng taxi A
|
Giá khởi điểm |
Giá km tiếp theo |
|
11 000 đồng/ 0,7km |
16 000 /1km |
Giá khởi điểm: Khi lên taxi quãng đường di chuyển không quá 0,7km thì mức giá vẫn giữ ở mức 11 000 đồng.
Gọi y (đồng) là số tiền phải trả khi đi được x (km). Xác định hệ thức liên hệ giữa x và y?
Nếu quãng đường đi được nhỏ hơn 0,7km thì số tiền phải trả là .
Nếu quãng đường đi trên 0,7km thì số tiền phải trả là:
(đồng)
Vậy mối liên hệ giữa y và x là: .
Tất cả các giá trị của tham số m để phương trình
có nghiệm là:
ĐKXĐ x > − 1
pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.
Phương trình đã cho có nghiệm .
Phương trình
có bao nhiêu nghiệm?
Điều kiện xác định của phương trình là x ≥ − 3.
Phương trình tương đương với .
Vậy phương trình có hai nghiệm.
Xác định parabol (P): y = ax2 + bx + c, a ≠ 0 biết (P) cắt trục tung tại điểm có tung độ bằng 1 và có giá trị nhỏ nhất bằng
khi
.
Ta có (P) cắt trục tung tại điểm có tung độ bằng 1: Khi x = 0 thì y = 1 ⇒ c = 1.
(P)có giá trị nhỏ nhất bằng khi
nên:
⇔
.
Vậy (P): y = x2 − x + 1.
Cho hàm số
xác định trên [ − 1; 1]. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên [ − 1; 1] lần lượt là y1, y2 thỏa mãn y1 − y2 = 8. Khi đó giá trị của m bằng
Đặt .
Hoành độ đỉnh của đồ thị hàm số là (bất đẳng thức Côsi).
Vì hệ số a = 1 > 0 nên hàm số nghịch biến trên .
Suy ra, hàm số nghịch biến [ − 1; 1].
.
.
Theo đề bài ta có: y1 − y2 = 8 .
Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?
Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).
Cho phương trình
(
là tham số). Tìm
để phương trình vô nghiệm.
Đặt . Khi đó ta có phương trình:
. (1)
Với thì
(Loại)
Với để phương trình ban đầu vô nghiệm thì:
TH1: (1) vô nghiệm .
TH2: (1) có 2 nghiệm âm
Kết hợp 2 trường hợp, ta được .
Giá trị nguyên dương lớn nhất của x để hàm số
xác định là
Hàm số đã cho xác định khi và chỉ khi 5 − 4x − x2 ≥ 0 ⇔ x ∈ [− 5; 1].
Vậy giá trị nguyên dương lớn nhất của xđể hàm số xác định là x = 1.
Cho parabol
(
). Xét dấu hệ số
và biệt thức
khi
hoàn toàn nằm phía trên trục hoành.
Khi đồ thị hàm số hoàn toàn nằm phía trên trục hoành thì phương trình vô nghiệm Suy ra
và
(bề lõm hướng lên trên).
Phương trình
có tập nghiệm là:
Ta có: .
Thử lại thấy không thỏa mãn. Vậy
.
Tam thức bậc hai
nhận giá trị dương khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp án
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4] là
Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2
= (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.
Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].
.
Cách 1: Ta có .
Cách 2: Vẽ BBT

Vậy , ymax = 21.
Cho bất phương trình
(1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.
Để thì
nghiệm đúng với
.
Nghĩa là:
Tìm parabol
, biết rằng parabol có đỉnh
.
Vì hàm số bậc hai có đỉnh nên:
và
.
Suy ra .
Nghiệm của phương trình
là
Điều kiện:
Phương trình tương đương
Kết hợp với điều kiện ra được thỏa mãn
Vậy nghiệm của phương trình là:
Cho hàm số y = f(x) xác định trên ℝ và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là sai?
Trên khoảng (2;+∞) đồ thị hàm số đi lên từ trái sang phải
Hàm số đồng biến trên khoảng (2;+∞).
Chọn đáp án Hàm số nghịch biến trên khoảng (2;+∞).
Tổng tất cả các nghiệm của phương trình
bằng:
.
Phương trình chỉ có nghiệm nên tổng các nghiệm bằng
.
Tìm m để g(x) = (m−4)x2 + (2m−8)x + m − 5 luôn âm.
Với m = 4 thì g(x) = − 1 < 0 thỏa mãn yêu cầu bài toán
Với m ≠ 4 thì g(x) = (m−4)x2 + (2m−8)x + m − 5 là tam thức bậc hai.
Do đó
⇔ m < 4
Vậy với m ≤ 4 thì biểu thức g(x) luôn âm.
Đồ thị hàm số
là hình nào trong các hình sau:
Tập xác định của hàm số
Ta có:
Ta vẽ đồ thị y = 2x + 3 với
Ta có bảng sau:
x | 0 | |
y = f(x) | 3 | 0 |
Suy ra đồ thị hàm số y = f(x) = 2x + 3 với là phần đồ thị nằm bên trên trục Ox và đi qua các điểm
và B(0; 3).
Ta có đồ thị như sau:

Tương tự ta có đồ thị hàm số y = f(x) = - 2x - 3 với là phần đồ thị nằm bên trên trục Ox và đi qua các điểm C(-2; 1) và D(-3; 3).
Kết hợp 2 đồ thị ta có đồ thị hàm số y = |2x + 3| là phần đồ thị nét liền nằm trên trục Ox.

Một giá đỡ được gắn vào bức tường như hình vẽ. Tam giác ABC vuông cân ở đỉnh C. Người ta treo vào điểm A một vật có trọng lượng 10 N. Khi đó lực tác động vào bức tường tại hai điểm B và C có cường độ lần lượt là:

Cường độ lực tại C bằng cường độ lực tại A và bằng 10 N.
Cường độ lực tại B bằng (định lý Pyago cho tam giác vuông cân).
Tìm tập xác định của ![]()
Điều kiện xác định: .
Vậy .
Biết phương trình
có hai nghiệm x1, x2 (x1<x2) . Khẳng định nào sau đây là đúng?
Đặt t = x2 − 3x + 3, ta có: .
Do đó điều kiện cho ẩn phụ t là .
Khi đó phương trình trở thành:
⇔
⇔
⇔ t = 1(thỏa mãn)
⇒ x2 − 3x + 3 = 1⇔ .
Tập xác định của hàm số
là:
Hàm số .
Điều kiện xác định: .
Vậy tập xác định của hàm số D = [ − 1; 3) ∪ (3;+∞).
Cho
. Tìm
để
âm với mọi giá trị
.
Để
thì
.