Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Hàm số và đồ thị gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tập xác định của hàm số y=\left\{\begin{matrix}\sqrt{\frac{1}{x}},x\in (0;+∞)\\ \sqrt{3-x},x\in (-∞;0)\end{matrix}ight.

     Xét y=\sqrt \frac1x, ta có: D_1=(0;+\infty).

    Xét y=\sqrt{3-x}, điều kiện là x \le 3. Kết hợp với điều kiện (-\infty;0), ta được: D_2=(-\infty;0).

    Vậy D=D_1 \cup   D_2 = \mathbb R\setminus \{1\}.

  • Câu 2: Nhận biết

    Tìm m để hàm số y = mx +(m+2)x-2 luôn đồng biến biến trên tập số thực.

    Để hàm số y = mx +(m+2)x-2 nghịch biến trên tập số thực thì m>0.

  • Câu 3: Thông hiểu

    Xác định m để ({m^2} + 2){x^2} - 2(m - 2)x + 2 > 0 với mọi x ∈ ℝ

     Để ({m^2} + 2){x^2} - 2(m - 2)x + 2 > 0 với mọi x ∈ ℝ thì

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta ' < 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{m^2} + 2 > 0,\forall x \in \mathbb{R}} \\   {{{\left( {m - 2} ight)}^2} - \left( {{m^2} + 2} ight).2 < 0} \end{array}} ight. \hfill \\   \Leftrightarrow {m^2} - 4m + 4 - 2{m^2} - 4 < 0 \hfill \\   \Leftrightarrow  - {m^2} - 4m < 0 \hfill \\   \Leftrightarrow m \in \left( { - \infty , - 4} ight) \cup \left( { - 4; + \infty } ight) \hfill \\ \end{matrix}

  • Câu 4: Nhận biết

    Tam thức bậc hai f(x) = 4x2 − 12x + 9 nhận giá trị âm khi và chỉ khi

    Chọn Ta có: f(x) = 4x^{2} - 12x + 9 = 0
\Leftrightarrow x = \frac{3}{2}

    Dựa vào bảng xét dấu thì ta thấy không có giá trị x nào để f(x) < 0.

  • Câu 5: Vận dụng

    Biết rằng hàm số y = ax2 + bx + c(a≠0) đạt giá trị lớn nhất bằng \frac{1}{4} tại x = \frac{3}{2} và tổng lập phương các nghiệm của phương trình y = 0 bằng 9. Tính P = abc.

    Hàm số y = ax2 + bx + c(a≠0) đạt giá trị lớn nhất bằng \frac{1}{4} tại x = \frac{3}{2} nên ta có - \frac{b}{2a} = \frac{3}{2} và điểm \left( \frac{3}{2};\frac{1}{4} ight) thuộc đồ thị \Rightarrow \frac{9}{4}a +
\frac{3}{2}b + c = \frac{1}{4}.

    Gọi x1, x2 là hai nghiệm của phương trình y = 0. Theo giả thiết: x13 + x23 = 9

    \Leftrightarrow \left( x_{1} + x_{2}
ight)^{3} - 3x_{1}x_{2}\left( x_{1} + x_{2} ight) =
9\overset{Viet}{ightarrow}\left( - \frac{b}{a} ight)^{3} - 3\left( -
\frac{b}{a} ight)\left( \frac{c}{a} ight) = 9.

    Từ đó ta có hệ \left\{ \begin{matrix}
- \frac{b}{2a} = \frac{3}{2} \\
\frac{9}{4}a + \frac{3}{2}b + c = \frac{1}{4} \\
\left( - \frac{b}{a} ight)^{3} - 3\left( - \frac{b}{a} ight)\left(
\frac{c}{a} ight) = 9 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = - 3a \\
\frac{9}{4}a + \frac{3}{2}b + c = \frac{1}{4} \\
\frac{c}{a} = 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 3 \\
c = - 2 \\
\end{matrix} ight.\ \overset{}{ightarrow}P = abc = 6.

  • Câu 6: Thông hiểu

    Cho f(x)=-2x^{2}+(m+2)x+m-4. Tìm m để f(x) âm với mọi giá trị x.

     Để f(x) <0 \forall x \in \mathbb {R} thì \left\{ {\begin{array}{*{20}{c}}{a < 0}\\{\Delta  < 0}\end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 2 < 0}\\{{{(m + 2)}^2} + 8(m - 4) < 0}\end{array}} ight. \Leftrightarrow m^2+12m-28<0 \Leftrightarrow -14< m <2.

  • Câu 7: Thông hiểu

    Giả sử đồ thị parabol (P):y = 2x^{2} + bx + c đi qua điểm A(0;4) và có trục đối xứng là đường thẳng x - 1 = 0. Tính tổng các giá trị bc?

    Ta có: A \in (P) \Rightarrow c =
4

    Trục đối xứng của (P) là: - \frac{b}{2a} = 1 \Leftrightarrow b = -
4

    \Rightarrow b + c = - 4 + 4 =
0

  • Câu 8: Nhận biết

    Điểm nào không thuộc đồ thị hàm số đồ thị y = f(x) = 5x - 1?

     Thay tọa độ (1;2) vào hàm số ta được: 2 eq4. Do đó điểm này không thuộc đồ thị hàm số.

  • Câu 9: Vận dụng

    Các đường thẳng y =  − 5(x+1); y = 3x + a; y = ax + 3 đồng quy với giá trị của a

    Gọi d1 : y =  − 5x − 5, d2 : y = 3x + a, d3 : y = ax + 3 (a≠3).

    Phương trình hoành độ giao điểm của d1d2: - 5x - 5 = 3x + a \Leftrightarrow x = \frac{- a -
5}{8}.

    Giao điểm của d1d2A\left( \frac{- a - 5}{8};\frac{5a - 15}{8}
ight).

    Đường thẳng d1, d2d3 đồng qui khi A ∈ d3 \Leftrightarrow \frac{5a - 15}{8} = a.\frac{- a -
5}{8} + 3 \Leftrightarrow a^{2} + 10a - 39 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
a = 3 \\
a = - 13 \\
\end{matrix} ight.  ⇔ a =  − 13. (vì a ≠ 3)

  • Câu 10: Vận dụng cao

    Nghiệm của phương trình \sqrt{4x + 1} - \sqrt{3x - 2} = \frac{x +
3}{5} là:

    Điều kiện: x \geq \frac{2}{3} .Ta có

    \sqrt{4x + 1} - \sqrt{3x - 2} = \frac{x
+ 3}{5}

    \Leftrightarrow \left( \sqrt{4x + 1} -
\sqrt{3x - 2} ight)\left( \sqrt{4x + 1} + \sqrt{3x - 2} ight) =
\left( \frac{x + 3}{5} ight)\left( \sqrt{4x + 1} + \sqrt{3x - 2}
ight)

    \Leftrightarrow x + 3 = \left( \frac{x +
3}{5} ight)\left( \sqrt{4x + 1} + \sqrt{3x - 2} ight)

    \Leftrightarrow (x + 3)\left\lbrack 1 -
\frac{1}{5}\left( \sqrt{4x + 1} + \sqrt{3x - 2} ight) ightbrack =
0

    \Leftrightarrow \sqrt{4x + 1} + \sqrt{3x -
2} = 5 ( vì x + 3 > 0 )

     ⇔ x = 2.

  • Câu 11: Nhận biết

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.

    (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
\end{matrix} ight. vào (P), ta được 0 = 4a + 6 − 2 ⇔ a =  − 1.

    Vậy (P) : y =  − x2 + 3x − 2.

  • Câu 12: Vận dụng cao

    Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất.

    Gọi x đồng là số tiền mà doanh nghiệp A dự định giảm giá; (0≤x≤4).

    Khi đó:

    Lợi nhuận thu được khi bán một chiếc xe là 31 − x − 27 = 4 − x .

    Số xe mà doanh nghiệp sẽ bán được trong một năm là 600 + 200x .

    Lợi nhuận mà doanh nghiệp thu được trong một năm là

    f(x) = (4−x)(600+200x) =  − 200x2 + 200x + 2400.

    Xét hàm số f(x) =  − 200x2 + 200x + 2400 trên đoạn [0; 4] có bảng biến thiên

    Vậy \max_{\lbrack 0;4brack}f(x) = 2\ 450
\Leftrightarrow x = \frac{1}{2}.

    Vậy giá mới của chiếc xe là 30, 5 triệu đồng thì lợi nhuận thu được là cao nhất.

  • Câu 13: Thông hiểu

    Tập nghiệm của phương trình \frac{x^{2}-5x}{\sqrt{x-2}}+\frac{4}{\sqrt{x-2}} =0 là:

     Điều kiện x>2.

    Ta có: \frac{x^{2}-5x}{\sqrt{x-2}}+\frac{4}{\sqrt{x-2}} =0\Leftrightarrow x^2-5x+4=0\Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 4}\end{array}} ight..

    Loại x=1. Do đó S=\{4\}.

  • Câu 14: Nhận biết

    Tổng các nghiệm của phương trình \sqrt{x^{4} - 2x^{2} + 1} + x = 1 là bao nhiêu?

    \sqrt{x^{4} - 2x^{2} + 1} + x = 1\Leftrightarrow \sqrt{x^{4} - 2x^{2} + 1} = 1 - x\Leftrightarrow\left\{ \begin{matrix}1 - x \geq 0 \\\left( x^{2} - 1 ight)^{2} = (1 - x)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 1 \\(x - 1)^{2}x(x - 2) = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 1 \\\left\lbrack \begin{matrix}x = 1 \\x = 0 \\x = - 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = 0 \\x = - 2 \\\end{matrix} ight..

    Vậy tổng các nghiệm của phương trình là -
1.

  • Câu 15: Nhận biết

    Phương trình \sqrt{4x^{2}-3}=x có nghiệm là:

    Điều kiện: 4{x^2} - 3 \geqslant 0

    Phương trình tương đương:

    \begin{matrix}  \sqrt {4{x^2} - 3}  = x \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 0} \\   {4{x^2} - 3 = {x^2}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 0} \\   {3{x^2} = 3} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 0} \\   {\left[ {\begin{array}{*{20}{c}}  {x =  - 1\left( {ktm} ight)} \\   {x = 1\left( {tm} ight)} \end{array}} ight.} \end{array}} ight. \hfill \\ \end{matrix}

    Kết hợp với điều kiện ra được: x=1 thỏa mãn điều kiện

    Vậy phương trình có nghiệm x=1

  • Câu 16: Nhận biết

    Số nghiệm thực của phương trình \sqrt{x - 1}.\sqrt{2x + 6} = x + 3

    ĐK: x \geq 1 , \sqrt{x - 1}.\sqrt{2x + 6} = x + 3 \Leftrightarrow(x - 1)(2x + 6) = (x + 3)^{2}\Leftrightarrow (x + 3)(x - 5) = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 3(KTM) \\x = 5(TM) \\\end{matrix} ight..

  • Câu 17: Vận dụng cao

    Biết rằng với mọi giá trị thực của tham số m, các đường thẳng dm:  y = (m−2)x + 2m − 3 cùng đi qua một điểm cố định là I(a;  b). Tính giá trị của biểu thức: S = a + b

    Ta có phương trình của đường thẳng đã cho: dm:  y = (m−2)x + 2m − 3 = (x+2)m − 2x − 3.

    Vì các đường thẳng dm luôn đi qua điểm I nên ta tìm x để m bị triệt tiêu ⇒I(−2;  1) ⇒ S =  − 1

  • Câu 18: Nhận biết

    Xác định parabol (P) : y = ax2 + bx + 2, biết rằng (P) đi qua hai điểm M(1;5)N(−2;8).

    (P) đi qua hai điểm M(1;5)N(−2;8) nên ta có hệ

    \left\{ \begin{matrix}
a + b + 2 = 5 \\
4a - 2b + 2 = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = 1 \\
\end{matrix} ight.. Vậy (P) : y = 2x2 + x + 2.

  • Câu 19: Vận dụng

    Số nghiệm của phương trình (3x + 1)\sqrt{x^{2} + 3} = 3x^{2} + 2x + 3 là:

    Ta thấy x = - \frac{1}{3} không là nghiệm của phương trình

    Xét x eq - \frac{1}{3}, phương trình đã cho \Leftrightarrow \sqrt{x^{2} + 3}= \frac{3x^{2} + 2x + 3}{3x + 1}

    Đến đây, chú ý 3x^{2} + 2x + 3 = 3(x +\frac{1}{3})^{2} + \frac{8}{3} > 0

    Nên phương trình có nghiệm phải thỏa mãn x> - \frac{1}{3} \Rightarrow \sqrt{x^{2} + 3} + 2x > 0

    Do đó phương trình đã cho\Leftrightarrow\sqrt{x^{2} + 3} - 2x = \frac{3x^{2} + 2x + 3}{3x + 1} - 2x

    \Leftrightarrow \frac{x^{2} + 3 -4x^{2}}{\sqrt{x^{2} + 3} + 2x} = \frac{3x^{2} + 2x + 3 - 6x^{2} - 2x}{3x+ 1}

    \Leftrightarrow \frac{3\left( 1 - x^{2}ight)}{\sqrt{x^{2} + 3} + 2x} = \frac{3\left( 1 - x^{2} ight)}{3x +1}

    \Leftrightarrow \left\lbrack\begin{matrix}x^{2} = 1 \\\sqrt{x^{2} + 3} + 2x = 3x + 1 \\\end{matrix} ight.

    Nhưng x =  − 1 không thoả mãn x > - \frac{1}{3} nên phương trình có nghiệm x = 1

    * TH2: \sqrt{x^{2} + 3} + 2x = 3x + 1\Leftrightarrow \sqrt{x^{2} + 3} = x + 1

    \Leftrightarrow \left\{ \begin{matrix}x \geq - 1 \\x^{2} + 3 = x^{2} + 1 + 2x \\\end{matrix} ight.\ \ \  \Leftrightarrow x = 1 (thỏa mãn)

    Vậy phương trình có nghiệm duy nhất x = 1.

  • Câu 20: Nhận biết

    Hàm số nào sau đây nghịch biến trên khoảng (−∞;0)?

    Xét đáp án y = \sqrt{2}x^{2} + 1, ta có - \frac{b}{2a} = 0 và có a > 0 nên hàm số đồng biến trên khoảng (0;+∞) và nghịch biến trên khoảng (−∞;0).

  • Câu 21: Nhận biết

    Tập xác định của hàm số y = \sqrt{8 - 2x} - x là:

    Điều kiện: 8 − 2x ≥ 0 ⇔ x ≤ 4. Vậy D = ( − ∞; 4].

  • Câu 22: Thông hiểu

    Tập xác định của hàm số y = \frac{\sqrt{x + 1}}{x - 3} là:

    Hàm số y = \frac{\sqrt{x + 1}}{x -
3}.

    Điều kiện xác định: \left\{ \begin{matrix}
x + 1 \geq 0 \\
x - 3 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq - 1 \\
x eq 3 \\
\end{matrix} ight..

    Vậy tập xác định của hàm số D = [ − 1; 3) ∪ (3;+∞).

  • Câu 23: Nhận biết

    Số nghiệm của phương trình x = \sqrt{\sqrt{3x^{2} + 1} - 1} là bao nhiêu?

    x = \sqrt{\sqrt{3x^{2} + 1} - 1}\Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{2} = \sqrt{3x^{2} + 1} - 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\\sqrt{3x^{2} + 1} = x^{2} + 1 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\3x^{2} + 1 = (x^{2} + 1)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{4} - x^{2} = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{2}\left( x^{2} - 1 ight) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
\left\lbrack \begin{matrix}
x = 0 \\
x = \pm 1 \\
\end{matrix} ight.\  \\
\end{matrix} \Leftrightarrow ight.\ \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight. .

    Vậy phương trình có hai nghiệm.

  • Câu 24: Thông hiểu

    Cho bất phương trình x^{2}−8x+7≥0 . Trong các tập hợp sau đây, tập nào có chứa phần tử không phải là nghiệm của bất phương trình.

     Ta có: x^{2}−8x+7≥0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x \le 1}\\{x \ge 7}\end{array}} ight.. Suy ra S=[-\infty;1) \cup [7;+\infty).

    Nhận xét: [6;+\infty) không thuộc S.

  • Câu 25: Thông hiểu

    Nghiệm của phương trình \sqrt{5x^{2}-6x-4}=2(x-1)

    Điều kiện: 5{x^2} - 6x - 4 \geqslant 0

    Phương trình tương đương

    \begin{matrix}  \sqrt {5{x^2} - 6x - 4}  = 2\left( {x - 1} ight) \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {2\left( {x - 1} ight) \geqslant 0} \\   {5{x^2} - 6x - 4 = 4{{\left( {x - 1} ight)}^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 1} \\   {{x^2} - 2x = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 1} \\   {\left[ {\begin{array}{*{20}{c}}  {x = 0\left( {ktm} ight)} \\   {x = 2\left( {tm} ight)} \end{array}} ight.} \end{array}} ight. \hfill \\ \end{matrix}

    Kết hợp với điều kiện ra được x=2 thỏa mãn

    Vậy nghiệm của phương trình là: x=2

  • Câu 26: Nhận biết

    Tam thức nào sau đây nhận giá trị âm với x < 2

    Bảng xét dấu của  − x2 + 5x − 6

  • Câu 27: Nhận biết

    Hàm số y = 2x2 + 4x − 1

    Hàm số y = ax2 + bx + c với a > 0 đồng biến trên khoảng \left( - \frac{b}{2a}; + \infty
ight), nghịch biến trên khoảng \left( - \infty; - \frac{b}{2a}
ight).

    Áp dụng: Ta có - \frac{b}{2a} = -
1. Do đó hàm số nghịch biến trên khoảng (−∞;−1) và đồng biến trên khoảng (−1;+∞).

  • Câu 28: Vận dụng

    Tìm tập xác định của hàm số y = \frac{2x + 3m}{\sqrt{x^{2} + 2(1 - m)x + 2m^{2}
+ 3}}.

    ĐKXĐ: x2 + 2(1−m)x + 2m2 + 3 > 0

    Xét tam thức bậc hai f(x) = x2 + 2(1−m)x + 2m2 + 3

    Ta có \begin{matrix}
a = 1 > 0,\ \ \Delta' = (1 - m)^{2} - \left( 2m^{2} + 3 ight) \\
= - m^{2} - 2m - 2 < 0 \\
\end{matrix}

    (Vì tam thức bậc hai f(m) =  − m2 − 2m − 2am =  − 1 < 0,  Δm =  − 1 < 0 )

    Suy ra với mọi m ta có x2 + 2(1−m)x + 2m2 + 3 > 0,  ∀x ∈ ℝ.

    Vậy tập xác định của hàm số là D = ℝ.

  • Câu 29: Nhận biết

    Cho hàm số có đồ thị như hình vẽ.

    Chọn đáp án sai.

    Từ đồ thị hàm số ta thấy:

    Hàm số nghịch biến trong các khoảng: (−∞;−1)(0;1).

    Hàm số đồng biến trong các khoảng: (−1;0)(1;+∞).

    Đáp án sai là Hàm số nghịch biến trên khoảng (−1;1).

  • Câu 30: Thông hiểu

    Cho hàm số y = f(x) = ax2 + bx + c có đồ thị như hình vẽ. Đặt Δ = b2 − 4ac, tìm dấu của aΔ.

    Nhìn đồ thị, ta thấy đồ thị y = f(x) cắt trục hoành tại 2 điểm x = 1, x = 4 nên Δ > 0, dựa vào hình dạng parabol nên suy a > 0

  • Câu 31: Thông hiểu

    Bảng xét dấu sau đây là của tam thức bậc hai nào?

    Từ bảng xét dấu ta có:

    f(x) = 0 có hai nghiệm phân biệt x = 2;x = 3f(x) > 0 khi x \in (2;3)

    Do đó f(x) = - x^{2} + 5x -
6

  • Câu 32: Thông hiểu

    Cho f(x) =  − 2x2 + (m+2)x + m − 4. Tìm m để f(x) âm với mọi a, b, c > 0.

    Ta có f(x)<0,\forall x\in R\Leftrightarrow(m+2)^2+8(m-4)<0

    \Leftrightarrow m^2+12m-28<0\Leftrightarrow-14<m<2.

  • Câu 33: Thông hiểu

    Tìm m để hàm số y = (2m−1)x + 7 đồng biến trên .

    Hàm số y = (2m−1)x + 7 đồng biến trên khi 2m − 1 > 0 hay m > \frac{1}{2}.

  • Câu 34: Vận dụng cao

    Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4]

    Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2

     = (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.

    Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].

    y = (t - 1)^{2} - 5t + 2 = t^{2} - 7t + 3= \left( t - \frac{7}{2} ight)^{2} - \frac{37}{4}.

    Cách 1: Ta có 0 \leq \left( t -\frac{7}{2} ight)^{2} \leq \frac{121}{4} \Leftrightarrow -\frac{37}{4} \leq y \leq 21.

    Cách 2: Vẽ BBT

    Description: Capture

    Vậy y_{\min} = - \frac{37}{4}, ymax = 21.

  • Câu 35: Thông hiểu

    Xác định parabol (P):y=ax^{2}+bx+2 biết rằng Parabol đi qua hai điểm M(1;5) và N(2;-2)

     Thay tọa độ M(1;5)N(2;-2) vào hàm số, ta được:

    \left\{ {\begin{array}{*{20}{c}}{5 = a + b + 2}\\{ - 2 = 4a + 2b + 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a =  - 5}\\{b = 8}\end{array}} ight.} ight..

    Vậy đó là hàm số y=-5x^{2}+8x+2.

  • Câu 36: Thông hiểu

    Cặp bất phương trình nào sau đây là tương đương?

    Ta có: x-2 \le 0 \Leftrightarrow x \le2.

    Ta có: x^{2}(x-2)\leq 0 \Leftrightarrow x-2 \le0 (Vì x^2\ge0 với mọi giá trị x). Do đó x \le 2.

  • Câu 37: Nhận biết

    Tam thức nào sau đây nhận giá trị không âm với mọi x ∈ ℝ?

    *x2 − x − 5 = 0 có 2 nghiệm phân biệt

    * − x2 − x − 1 = 0vô nghiệm, a =  − 1 < 0 nên  − x2 − x − 1 < 0, ∀x ∈ ℝ

    *2x2 + x = 0 có 2 nghiệm phân biệt

    *x2 + x + 1 = 0 vô nghiệm, a = 1 > 0 nên x2 + x + 1 > 0, ∀x ∈ ℝ thỏa ycbt.

  • Câu 38: Vận dụng

    Số nghiệm của phương trình (x + 1)^{2} - 2\sqrt{2x(x^{2} + 1)} = 0 là:

    ĐKXĐ: 2x(x2+1) ≥ 0 ⇔ x ≥ 0

    Đặt \sqrt{2x} = a,\ \sqrt{x^{2} + 1} =b, a  ≥ 0, b ≥ 0

    Suy ra a2 + b2 = 2x + x2 + 1 = (x+1)2

    Phương trình trở thành a2 + b2 − 2ab = 0 ⇔ (ab)2 = 0 ⇔ a = b

    Suy ra \sqrt{2x} = \sqrt{x^{2} + 1}\Leftrightarrow 2x = x^{2} + 1 \Leftrightarrow (x - 1)^{2} = 0\Leftrightarrow x = 1 (thỏa mãn)

    Vậy phương trình có một nghiệm là x = 1 .

  • Câu 39: Vận dụng

    Hình vẽ sau đây là đồ thị hàm số nào?

    Nhìn vào đồ thị hàm số đã cho ta thấy:

    Đồ thị đi qua điểm A(0;1)nên loại trừ đáp án y = |x| − 1y = |x|.

    Đồ thị đi qua điểm B(−1;0),C(1;0)nên loại trừ đáp án y = |x| + 1.

    Chọn y = 1 − |x|.

  • Câu 40: Thông hiểu

    Giá trị lớn nhất của hàm số f(x) = \frac{2}{x^{2} - 5x + 9} bằng:

    Ta có x^{2} - 5x + 9 = \left( x -
\frac{5}{2} ight)^{2} + \frac{11}{4} \geq \frac{11}{4} \Rightarrow
\frac{2}{x^{2} - 5x + 9} \leq \frac{2}{\frac{11}{4}} =
\frac{8}{11}

    \frac{2}{x^{2} - 5x + 9} = \frac{8}{11}
\Leftrightarrow x = \frac{5}{2}

    Vậy giá trị lớn nhất của hàm số f(x) =
\frac{2}{x^{2} - 5x + 9} bằng \frac{8}{11}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 7 lượt xem
Sắp xếp theo