Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Hàm số và đồ thị gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tập nghiệm của bất \sqrt{2}x^{2}-(\sqrt{2}+1)x+1<0 là:

     Ta có: \sqrt{2}x^{2}-(\sqrt{2}+1)x+1<0 \Leftrightarrow \frac{\sqrt2}2 < x <1.

    Vậy D=(\frac{\sqrt{2}}{2};1)

  • Câu 2: Vận dụng cao

    Miền giá trị của hàm số y = \frac{3x^{2} + 2x + 3}{x^{2} + 1}

    Cách 1: Do  x2 + 1 > 0; ∀x ∈ ℝ nên hàm số y = \frac{3x^{2} + 2x + 3}{x^{2} +
1} xác định với mọi x ∈ ℝ

    Gọi y0 là giá trị tùy ý, ta có phương trình:

    \frac{3x^{2} + 2x + 3}{x^{2} + 1} =
y_{0} \Leftrightarrow 3x^{2} + 2x + 3 = y_{0}\left( x^{2} + 1 ight)
\Leftrightarrow 3x^{2} + 2x + 3 = y_{0}x^{2} + y_{0}

     ⇔ (3−y0)x2 + 2x + 3 − y0 = 0(1)

    + Nếu y0 = 3 thì phương trình (1)trở thành: 2x = 0 ⇔ x = 0.

    Vậy phương trình (1)có nghiệm y0 = 3(*).

    + Nếu y0 ≠ 3 thì phương trình (1)là phương trình bậc hai, nên nó có nghiệm khi và chỉ khi

    Δ′ = 12 − (3−y0)2 ≥ 0

     ⇔  − y02 + 6y0 − 8 ≥ 0

     ⇔ 2 ≤ y0 ≤ 4.

    Vậy phương trình (1)có nghiệm \Leftrightarrow \left\{ \begin{matrix}
2 \leq y_{0} \leq 4 \\
y_{0} eq 3 \\
\end{matrix} ight.\ (**).

    + Kết hợp (*), (**) thì phương trình (1)có nghiệm  ⇔ 2 ≤ y0 ≤ 4.

    Vậy: Miền giá trị của hàm số y =
\frac{3x^{2} + 2x + 3}{x^{2} + 1}[2; 4].

    Cách 2: Ta có \begin{matrix}
\frac{3x^{2} + 2x + 3}{x^{2} + 1} = \frac{x^{2} + 2x + 1 + x^{2} +
2}{x^{2} + 1} = \frac{(x + 1)^{2} + 2\left( x^{2} + 1 ight)}{x^{2} +
1} = 2 + \frac{(x + 1)^{2}}{x^{2} + 1} \geq 2 \\
\\
\end{matrix}

    Suy ra GTNN của A = 2 khi và chỉ khi x =  − 1.

    Mặt khác \frac{3x^{2} + 2x + 3}{x^{2} + 1}
= \frac{- x^{2} + 2x - 1 + 4x^{2} + 4}{x^{2} + 1} = \frac{- (x - 1)^{2}
+ 4\left( x^{2} + 1 ight)}{x^{2} + 1} = 4 - \frac{(x - 1)^{2}}{x^{2} +
1} \leq 4

    Suy ra GTLN của A = 4 khi và chỉ khi x = 1.

    Vậy miền giá trị của hàm số là [2; 4].

  • Câu 3: Nhận biết

    Cho hàm số có đồ thị như hình bên dưới.

    Khẳng định nào sau đây là đúng?

    Trên khoảng (0;2) đồ thị hàm số đi xuống từ trái sang phải nên hàm số nghịch biến.

  • Câu 4: Vận dụng

    Số nghiệm của phương trình \sqrt{4x - 1} + 4x^{2} - 6x + 1 = 0 là:

    ĐKXĐ: x \geq \frac{1}{4}

    Đặt t = \sqrt{4x - 1},\ \ t \geq 0\Rightarrow x = \frac{t^{2} + 1}{4}

    Phương trình trở thành t + 4\left(\frac{t^{2} + 1}{4} ight)^{2} - 6\frac{t^{2} + 1}{4} + 1 =0

    \begin{matrix}\Leftrightarrow 4t + t^{4} + 2t^{2} + 1 - 6\left( t^{2} + 1 ight) + 4= 0 \\\Leftrightarrow t^{4} - 4t^{2} + 4t - 1 = 0 \Leftrightarrow (t -1)\left( t^{3} + t^{2} - 3t + 1 ight) = 0 \\\end{matrix}

    \Leftrightarrow (t - 1)^{2}\left( t^{2} +2t - 1 ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}t = 1 \\\begin{matrix}t = - 1 - \sqrt{2} \\t = - 1 + \sqrt{2} \\\end{matrix} \\\end{matrix} ight. (đối chiếu ĐKXĐ loại t = - 1 - \sqrt{2} )

    Với t = 1 ta có 1 = \sqrt{4x - 1} \Leftrightarrow x =\frac{1}{2}

    Với t = - 1 + \sqrt{2} ta có - 1 + \sqrt{2} = \sqrt{4x - 1} \Leftrightarrow 4x -1 = 3 - 2\sqrt{2} \Leftrightarrow x = \frac{2 - \sqrt{2}}{2}

    Vậy phương trình có hai nghiệm x =\frac{1}{2}x = \frac{2 -\sqrt{2}}{2}.

  • Câu 5: Vận dụng cao

    Một giá đỡ được gắn vào bức tường như hình vẽ. Tam giác ABC vuông cân ở đỉnh C. Người ta treo vào điểm A một vật có trọng lượng 10  N. Khi đó lực tác động vào bức tường tại hai điểm BC có cường độ lần lượt là:

    Cường độ lực tại C bằng cường độ lực tại A và bằng 10  N.

    Cường độ lực tại B bằng 10\sqrt{2}\ \ N (định lý Pyago cho tam giác vuông cân).

  • Câu 6: Nhận biết

    Tìm hàm số bậc hai trong các hàm số dưới đây?

    Theo định nghĩa ta có:

    Hàm số bậc hai là y = - 2x^{2} -
3.

  • Câu 7: Nhận biết

    Cho hàm số y = f(x) có tập xác định là [ − 3; 3] và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là đúng?

    Trên khoảng (−3;−1)(1;3) đồ thị hàm số đi lên từ trái sang phải

    \overset{}{ightarrow} Hàm số đồng biến trên khoảng (−3;−1)(1;3).

  • Câu 8: Nhận biết

    Cho f(x) = x2 − 4x + 3. Trong các mệnh đề sau, mệnh đề đúng là:

    f(x) = x^{2} - 4x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu thì f(x) ≤ 0, ∀x ∈ [ 1; 3 ].

  • Câu 9: Thông hiểu

    Dưới đây là bảng giá cước của hãng taxi A

    Giá khởi điểm

    Giá km tiếp theo

    11 000 đồng/ 0,7km

    16 000 /1km

    Giá khởi điểm: Khi lên taxi quãng đường di chuyển không quá 0,7km thì mức giá vẫn giữ ở mức 11 000 đồng.

    Gọi y (đồng) là số tiền phải trả khi đi được x (km). Xác định hệ thức liên hệ giữa x và y?

    Nếu quãng đường đi được nhỏ hơn 0,7km thì số tiền phải trả là y = 11000.

    Nếu quãng đường đi trên 0,7km thì số tiền phải trả là:

    y = 11000 + (x - 0,7).16000

    \Rightarrow y = 16000x - 200 (đồng)

    Vậy mối liên hệ giữa y và x là: y =
\left\{ \begin{matrix}
11000\ \ \ \ \ \ \ \ \ \ \ khi\ x \leq 0,7 \\
16000x - 200\ \ khi\ x > 0,7 \\
\end{matrix} ight..

  • Câu 10: Thông hiểu

    Tập nghiệm của phương trình x + \sqrt{x - 1} = 2 + \sqrt{x - 1}là:

    Phương trình x + \sqrt{x - 1} = 2 +\sqrt{x - 1} \Leftrightarrow \left\{ \begin{matrix}x \geq 1 \\x = 2 \\\end{matrix} ight.\  \Leftrightarrow x = 2.

    Vậy S = {2}.

  • Câu 11: Nhận biết

    Số nghiệm của phương trình x^{2} - 2x - 8 = 4\sqrt{(4 - x)(x + 2)} là bao nhiêu?

    Điều kiện: (4 - x)(x + 2) \geq 0
\Leftrightarrow x \in \lbrack - 2;\ 4brack.

    x^{2} - 2x - 8 = 4\sqrt{(4 - x)(x + 2)}\Leftrightarrow x^{2} - 2x - 8 = 4\sqrt{- \left( x^{2} - 2x - 8ight)}(1).

    Đặt t = \sqrt{- \left( x^{2} - 2x - 8
ight)}, t \geq 0 \Leftrightarrow t^{2} = - \left( x^{2} - 2x - 8
ight) \Leftrightarrow x^{2} - 2x - 8 = - t^{2}.

    (1) \Leftrightarrow - t^{2} = 4t\Leftrightarrow t^{2} + 4t = 0 \Leftrightarrow \left\lbrack\begin{matrix}t = 0(n) \\t = - 4(l) \\\end{matrix} ight.\  \Leftrightarrow \sqrt{- \left( x^{2} - 2x - 8ight)} = 0 \Leftrightarrow - \left( x^{2} - 2x - 8 ight) = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 2(n) \\x = 4(n) \\\end{matrix} ight..

    Vậy phương trình đã cho có hai nghiệm.

  • Câu 12: Thông hiểu

    Tam thức f(x) = 3x2 + 2(2m−1)x + m + 4 dương với mọi x khi:

    f(x) > 0,\ \forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
a > 0 \\
\Delta' < 0 \\
\end{matrix} ight.\  \Leftrightarrow 4m^{2} - 7m - 11 <
0\  \Leftrightarrow - 1 < x < \frac{11}{4}.

  • Câu 13: Thông hiểu

    Cho hàm số f(x) =
\left\{ \begin{matrix}
\frac{2\sqrt{x - 2} - 3}{x - 1} & khi & x \geq 2 \\
x^{2} + 2 & khi & x < 2 \\
\end{matrix} ight.. Tính P = f(2) + f(−2).

    Ta có: f(2) + f( - 2) = \frac{2\sqrt{2 -
2} - 3}{2 - 1} + ( - 2)^{2} + 2 \Rightarrow P = 3.

  • Câu 14: Nhận biết

    Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như sau:

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án f(x) > 0với  2< x < 3 f(x) < 0với x < 2 ∨ x > 3 .

  • Câu 15: Vận dụng

    Gọi S là tập hợp các giá trị thực của tham số m sao cho parabol (P) : y = x2 − 4x + m cắt Ox tại hai điểm phân biệt A, B thỏa mãn OA = 3OB. Tính tổng T các phần tử của S.

    Phương trình hoành độ giao điểm: x2 − 4x + m = 0. (*)

    Để (P) cắt Ox tại hai điểm phân biệt A, B thì (*) có hai nghiệm phân biệt  ⇔ Δ = 4 − m > 0 ⇔ m < 4.

    Theo giả thiết OA =
3OB\overset{}{ightarrow}\left| x_{A} ight| = 3\left| x_{B} ight|
\Leftrightarrow \left\lbrack \begin{matrix}
x_{A} = 3x_{B} \\
x_{A} = - 3x_{B} \\
\end{matrix} ight.\ .

    TH1: x_{A} =
3x_{B}\overset{Viet}{ightarrow}\left\{ \begin{matrix}
x_{A} = 3x_{B} \\
x_{A} + x_{B} = 4 \\
x_{A}.x_{B} = m \\
\end{matrix} ight.\ \overset{}{ightarrow}m = x_{A}.x_{B} =
3.

    TH2: x_{A} = -
3x_{B}\overset{Viet}{ightarrow}\left\{ \begin{matrix}
x_{A} = - 3x_{B} \\
x_{A} + x_{B} = 4 \\
x_{A}.x_{B} = m \\
\end{matrix} ight.\ \overset{}{ightarrow}m = x_{A}.x_{B} =
12: không thỏa mãn (*).

    Do đó (P) Chọn A.

  • Câu 16: Nhận biết

    Tam thức bậc hai f(x) =  − x2 − 1 nhận giá trị âm khi và chỉ khi

    f(x) =  − x2 − 1 = 0  vô nghiệm

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ ℝ.

  • Câu 17: Thông hiểu

    Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

    Nhận xét:

    Bảng biến thiên có bề lõm hướng xuống. Loại đáp án y = 2x2 + 2x − 1y = 2x2 + 2x + 2.

    Đỉnh của parabol có tọa độ là \left( -
\frac{1}{2};\frac{3}{2} ight). Xét các đáp án, y =  − 2x2 − 2x + 1 thỏa mãn.

  • Câu 18: Thông hiểu

    Tập xác định của hàm số y = f(x) = \left\{ \begin{matrix}
\sqrt{- 3x + 8} + x & khi & x < 2 \\
\sqrt{x + 7} + 1 & khi & x \geq 2 \\
\end{matrix} ight.

    Ta có :

    • Khi x < 2: y = f(x) = \sqrt{- 3x + 8} + x xác định khi - 3x + 8 \geq 0 \Leftrightarrow x \leq
\frac{8}{3}.

    Suy ra D1 = (−∞;2).

    • Khi x ≥ 2: y = f(x) = \sqrt{x + 7} + 1 xác định khi x + 7 ≥ 0 ⇔ x ≥  − 7.

    Suy ra D1 = [2;  + ∞).

    Vậy TXĐ của hàm số là D = D1 ∪ D2 = (−∞;+∞) = ℝ.

  • Câu 19: Thông hiểu

    Tam thức bậc hai f(x)=−x^{2}+5x−6 nhận giá trị dương khi và chỉ khi

     Ta có: \Delta >0a=-1<0.

    Phươn trình f(x)=0 có hai nghiệm phân biệt x=2;x=3.

    Do đó f(x)>0 \Leftrightarrow x \in (2;3).

  • Câu 20: Vận dụng cao

    Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [−1; 4]

    Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2

     = (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.

    Đặt t = (x−1)2, x ∈ [−1; 4] ⇒ t ∈ [0; 9].

    y = (t - 1)^{2} - 5t + 2 = t^{2} - 7t + 3= \left( t - \frac{7}{2} ight)^{2} - \frac{37}{4}.

    Cách 1: Ta có 0 \leq \left( t -\frac{7}{2} ight)^{2} \leq \frac{121}{4} \Leftrightarrow -\frac{37}{4} \leq y \leq 21.

    Cách 2: Vẽ BBT

    Description: Capture

    Vậy y_{\min} = - \frac{37}{4}, ymax = 21.

  • Câu 21: Vận dụng

    Có bao nhiêu giá trị nguyên dương của x thỏa mãn \frac{x + 3}{x^{2} - 4} - \frac{1}{x + 2} <
\frac{2x}{2x - x^{2}} ?

    Điều kiện: \left\{ \begin{matrix}
x^{2} - 4 eq 0 \\
x + 2 eq 0 \\
2x - x^{2} eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
x eq \pm \ 2 \\
\end{matrix} ight.\ . Bất phương trình:

    \frac{x + 3}{x^{2} - 4} - \frac{1}{x + 2}
< \frac{2x}{2x - x^{2}} \Leftrightarrow \frac{x + 3}{x^{2} - 4} -
\frac{1}{x + 2} + \frac{2x}{x^{2} - 2x} < 0 \Leftrightarrow \frac{2x
+ 9}{x^{2} - 4} < 0.

    Bảng xét dấu:

    Dựa vào bảng xét dấu, ta thấy \frac{2x +
9}{x^{2} - 4} < 0 \Leftrightarrow x \in \left( - \ \infty; -
\frac{9}{2} ight) \cup ( - \ 2;2).

    Vậy có chỉ có duy nhất một giá trị nguyên dương của x (x=1) thỏa mãn yêu cầu.

  • Câu 22: Nhận biết

    Số nghiệm của phương trình 3x + \sqrt{x - 8} = \sqrt{4 - x}. là bao nhiêu?

    Xét phương trình: 3x + \sqrt{x - 8} =
\sqrt{4 - x}.

    Điều kiện: \left\{ \begin{matrix}
x - 8 \geq 0 \\
4 - x \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 8 \\
x \leq 4 \\
\end{matrix} ight.\  \Leftrightarrow x \in \varnothing..

    Vậy phương trình vô nghiệm.

  • Câu 23: Thông hiểu

    Tập nghiệm của phương trình (x^{2} - 5x + 4)\sqrt{x - 2} = 0 là:

    \left( x^{2} - 5x + 4 ight)\sqrt{x -2} = 0 \Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\\left\{ \begin{matrix}x > 2 \\x^{2} - 5x + 4 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 2 \\\left\{ \begin{matrix}x > 2 \\\left\lbrack \begin{matrix}x = 1 \\x = 4 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\x = 4 \\\end{matrix} ight..

    Vậy S = {2;4}.

  • Câu 24: Nhận biết

    Xét tính đồng biến, nghịch biến của hàm số f(x) = x2 − 4x + 5 trên các khoảng (−∞; 2)(2; +∞). Khẳng định nào sau đây đúng?

    Xét f(x) = x2 − 4x + 5.

    TXĐ: D = ℝ.

    Tọa độ đỉnh I(2; 1).

    Hàm số nghịch biến trên (−∞; 2), đồng biến trên (2; +∞).

  • Câu 25: Nhận biết

    Tập xác định của hàm số y = f(x) = 2\sqrt{x} ‒ 1 là:

    Điều kiện xác định của hàm số y = f(x) = 2\sqrt{x} ‒ 1 là:

    x \geqslant 0

    => Tập xác định của hàm số là: D = [0; +∞)

  • Câu 26: Nhận biết

    Tìm tập nghiệm của phương trình \sqrt{4x+1}+5=0

     Nhận xét: \sqrt{4x+1} \ge 0 \Leftrightarrow \sqrt{4x+1}+5 >0

    Do đó \sqrt{4x+1}+5=0 vô lí. 

    Vậy S=\varnothing.

  • Câu 27: Vận dụng

    Tính tổng bình phương các nghiệm của phương trính x^{2} - 1 = 2x\sqrt{x^{2} - 2x} bằng:

    ĐK: \left\lbrack \begin{matrix}x \geq 2 \\x \leq 0 \\\end{matrix} ight.

    x^{2} - 1 = 2x\sqrt{x^{2} - 2x}\Leftrightarrow x^{2} - 2x - 2x\sqrt{x^{2} - 2x} + 2x - 1 =0.

    Đặt t = \sqrt{x^{2} - 2x} , (t≥0)Phương trình thành t^{2} - 2xt + 2x - 1 = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 1 \\t = 2x - 1 \\\end{matrix} ight. .

    t = 1 ⇒ x2 − 2x − 1 = 0 \Leftrightarrow x = 1 \pm\sqrt{2}(TM)

    t = 2x - 1 \Rightarrow \left\{\begin{matrix}2x - 1 \geq 0 \\x^{2} - 2x = (2x - 1)^{2} \\\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}2x - 1 \geq 0 \\3x^{2} - 2x + 1 = 0\left( VN_{0} ight) \\\end{matrix} ight..

    Vậy phương trình đã cho có hai nghiệm là x_{1,2} = 1 \pm \sqrt{2} \Rightarrow {x_{1}}^{2} +{x_{2}}^{2} = 6 .

  • Câu 28: Vận dụng cao

    Tất cả các giá trị của tham số m để các nghiệm của phương trình \sqrt{x+1}-2=0\;(1) cũng là nghiệm của phương trình x2 − 2mx − m2 − 2 = 0 (2) là:

    \sqrt{x + 1} = 2 \Leftrightarrow x + 1 = 4
\Leftrightarrow x = 3

    Do đó, để mọi nghiệm của (1) cũng là nghiệm của (2) điều kiện là x = 3 cũng là nghiệm của (2), tức là: 9 -
6m - m^{2} - 2 = 0 \Leftrightarrow m^{2} + 6m - 7 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
m = 1 \\
m = - 7 \\
\end{matrix} ight..

  • Câu 29: Thông hiểu

    Phương trình: x^{2} + 5x + 2 + 2\sqrt{x^{2} + 5x + 10} =0 có mấy nghiệm ?

    Điều kiện xác định x2 + 5x + 10 ≥ 0 ⇔ x ∈ ℝ.

    Khi đó phương trình \Leftrightarrow x^{2}+ 5x + 10 + 2\sqrt{x^{2} + 5x + 10} - 8 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}\sqrt{x^{2} + 5x + 10} = 2 \\\sqrt{x^{2} + 5x + 10} = - 4 \\\end{matrix} ight. \Leftrightarrow \sqrt{x^{2} + 5x + 10} =2

    \Leftrightarrow x^{2} + 5x + 6 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 3 \\x = - 2 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 30: Thông hiểu

    Quan sát đồ thị hàm số, chọn nhận xét đúng?

    Quan sát đồ thị ta thấy có bề lõm quay lên trên suy ra a > 0

    Parabol cắt trục tung tại điểm có tọa độ (0;c) nằm phía trên trục hoành nên c > 0.

    Đỉnh parabol nằm bên trái trục tung nên có hoành độ - \frac{b}{2a} < 0a > 0 suy ra b > 0.

    Kết luận: a > 0,b > 0,c >
0.

  • Câu 31: Vận dụng

    Cho hai đường thẳng \left( d_{1} ight):y = \frac{1}{2}x + 100\left( d_{2} ight):y = - \frac{1}{2}x +
100. Mệnh đề nào sau đây đúng?

    Cách 1: Gọi k1, k2 lần lượt là hệ số gốc của (d1)(d2). Khi đó k_{1} = \frac{1}{2},\ k_{2} = - \frac{1}{2}
\Rightarrow k_{1}.k_{2} = - \frac{1}{4} nên (d1)(d2) không vuông góc nhau.

    Xét hệ: \left\{ \begin{matrix}
y = \frac{1}{2}x + 100 \\
y = - \frac{1}{2}x + 100 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- \frac{1}{2}x + y = 100 \\
\frac{1}{2}x + y = 100 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 100 \\
\end{matrix} ight.

    Vậy (d1)(d2) cắt nhau.

    Cách 2: Ta thấy \frac{1}{2} eq -
\frac{1}{2} nên (d1)(d2) cắt nhau.

  • Câu 32: Vận dụng

    Cho hàm số y = -
2x^{2} + (m + 1)x + 3 với m là tham số. Tính tổng tất cả các giá trị nguyên dương của tham số m để hàm số đã cho nghịch biến trên khoảng (1;5)?

    Hàm số y = - 2x^{2} + (m + 1)x +
3 nghịch biến trên khoảng \left(
\frac{m + 1}{4}; + \infty ight)

    Để hàm số y = - 2x^{2} + (m + 1)x +
3 nghịch biến trên khoảng (1;5) thì ta phải có (1;5) \subset \left( \frac{m + 1}{4}; + \infty
ight) khi đó:

    \frac{m + 1}{4} \leq 1 \Rightarrow m \leq
3.

    Các giá trị nguyên dương của tham số m để hàm số y = - 2x^{2} + (m + 1)x + 3 nghịch biến trên khoảng (1;5)m = 1;m = 2;m = 3

    Tổng tất cả các giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán là: T = 1 + 2 + 3 = 6.

  • Câu 33: Thông hiểu

    Cho phương trình x^{2} - mx - m^{2} = 0 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m \in \lbrack -
10;10brack để phương trình đã cho có hai nghiệm trái dấu?

    Từ yêu cầu bài toán

    \Leftrightarrow a.c < 0
\Leftrightarrow - m^{2} < 0 \Leftrightarrow m^{2} > 0
\Leftrightarrow m eq 0

    Suy ra m \in \left\{ - 10;....; - 1
ight\} \cup \left\{ 1;...;10 ight\}

    Vậy có 20 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 34: Thông hiểu

    Bảng xét dấu sau đây là của tam thức bậc hai nào?

    Từ bảng xét dấu ta có:

    f(x) = 0 có hai nghiệm phân biệt x = 2;x = 3f(x) > 0 khi x \in (2;3)

    Do đó f(x) = - x^{2} + 5x -
6

  • Câu 35: Nhận biết

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x =  − 3.

    (P) có trục đối xứng x =  − 3 nên - \frac{b}{2a} = - 3 \Leftrightarrow - \frac{3}{2a}
= - 3 \Leftrightarrow a = \frac{1}{2}.

    Vậy (P):y = \frac{1}{2}x^{2} + 3x -
2.

  • Câu 36: Thông hiểu

    Xác định parabol (P): y = ax2 + bx + c, a ≠ 0 biết (P) cắt trục tung tại điểm có tung độ bằng 1 và có giá trị nhỏ nhất bằng \frac{3}{4} khi x = \frac{1}{2}.

    Ta có (P) cắt trục tung tại điểm có tung độ bằng 1: Khi x = 0 thì y = 1 c = 1.

    (P)có giá trị nhỏ nhất bằng \frac{3}{4} khi x = \frac{1}{2} nên:

    \left\{ \begin{matrix}
y\left( \frac{1}{2} ight) = \frac{3}{4} \\
\frac{- b}{2a} = \frac{1}{2} \\
\end{matrix} ight. \left\{ \begin{matrix}
\frac{1}{4}a + \frac{1}{2}b + 1 = \frac{3}{4} \\
\frac{- b}{2a} = \frac{1}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\frac{1}{4}a + \frac{1}{2}b = - \frac{1}{4} \\
a + b = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = - 1 \\
\end{matrix} ight..

    Vậy (P): y = x2 − x + 1.

  • Câu 37: Nhận biết

    Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?

    Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).

  • Câu 38: Thông hiểu

    Phương trình x2 + 2(m+2)x − 2m − 1 = 0 (m là tham số) có nghiệm khi

    Xét phương trình x2 + 2(m+2)x − 2m − 1 = 0,Δx = (m+2)2 + 2m + 1.

    Yêu cầu bài toán ⇔  Δx ≥ 0 ⇔ m2 + 4m + 4 + 2m + 1 ≥ 0 ⇔ m2 + 6m + 5 ≥ 0

    \Leftrightarrow (m + 1)(m + 5) \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
m \geq - \ 1 \\
m \leq - \ 5 \\
\end{matrix} ight. là giá trị cần tìm.

  • Câu 39: Thông hiểu

    Số các nghiệm của phương trình \sqrt{x + 1} = 1 - x^{2} là:

    pt \Leftrightarrow \left\{\begin{matrix}1 - x^{2} \geq 0 \\x + 1 = (1 - x^{2})^{2} \\\end{matrix} ight.

    \left\{ \begin{matrix}|x| \leq 1 \\x(x + 1)(\ x^{2} - x - 1) = 0 \\\end{matrix} ight.

    \left\lbrack \begin{matrix}x = 0\  \\x = - 1 \\x = \frac{1 - \sqrt{5}}{2} \\\end{matrix} ight..

    Vậy phương trình có ba nghiệm.

  • Câu 40: Nhận biết

    Tập xác định của hàm số y = \frac{2 - x}{x^{2} - 4x} là:

    Hàm số xác định \Leftrightarrow x^{2} - 4x
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
x eq 4 \\
\end{matrix} ight.. Vậy D = ℝ ∖ {0;4}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo