Cho bất phương trình
(1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.
Để thì
nghiệm đúng với
.
Nghĩa là:
Cho bất phương trình
(1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.
Để thì
nghiệm đúng với
.
Nghĩa là:
Số nghiệm của phương trình
là:
ĐKXĐ: x3 + 1 ≥ 0 ⇔ x ≥ − 1.
Phương trình
Đặt , a ≥ 0, b ≥ 0
Suy ra a2 + b2 = x2 + 2 khi đó
Phương trình trở thành
Với 3a = b ta có
(thỏa mãn điều kiện)
Với a = 3b ta có
⇔ 9x2 − 10x + 8 = 0 (phương trình vô nghiệm).
Vậy phương trình có nghiệm là .
Xác định parabol
biết rằng Parabol đi qua hai điểm M(1;5) và N(2;-2)
Thay tọa độ và
vào hàm số, ta được:
.
Vậy đó là hàm số .
Tổng các nghiệm của phương trình
là
ĐKXĐ: x ≥ 0
Dễ thấy x = 0 không phải là nghiệm của phương trình
Xét x > 0, phương trình
Đặt
Phương trình trở thành
• Với t = 1 ta có (thỏa mãn)
• Với t = 2 ta có (thỏa mãn)
Vậy phương trình có nghiệm là và x = 1.
Tổng các nghiệm của phương trình là .
Số nghiệm của phương trình
là bao nhiêu?
.
Vậy phương trình có hai nghiệm.
Tam thức bậc hai f(x) = 2x2 + 2x + 5 nhận giá trị dương khi và chỉ khi
f(x) = 2x2 + 2x + 5 = 0 có: nên f(x) > 0∀x ∈ ℝ.
Tìm
để hàm số
luôn đồng biến biến trên tập số thực.
Để hàm số nghịch biến trên tập số thực thì
.
Phương trình
có bao nhiêu nghiệm?
.
Vậy phương trình có 2 nghiệm.
Phương trình:
có mấy nghiệm ?
Điều kiện xác định x2 + 5x + 10 ≥ 0 ⇔ x ∈ ℝ.
Khi đó phương trình
.
Vậy phương trình có hai nghiệm.
Số nghiệm của phương trình:
là
Điều kiện xác định của phương trình x ≥ 4.
Phương trình tương đương với
.
Kết hợp điều kiện suy ra .
Vậy phương trình có hai nghiệm.
Hệ số góc của đồ thị hàm số y = 2018x − 2019 bằng
Hệ số góc a = 2018.
Đường gấp khúc trong hình vẽ là dạng đồ thị của một trong bốn hàm số được liệt kê trong các phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

Đồ thị hàm số đi qua các điểm (0;1) và (1;0) nên chỉ có hàm số y = 1 − |x| thỏa mãn.
Chọn y = 1 − |x|.
Tam thức bậc hai ![]()

Dựa vào bảng xét dấu, ta chọn đáp án Dương với mọi .
Cho hàm số y = x2 − 2x + 3. Chọn câu đúng.
Ta có a = 1 > 0, b = − 2, c = 3 nên hàm số có đỉnh là I(1;2). Từ đó suy ra hàm số nghịch biến trên khoảng (−∞;1) và đồng biến trên khoảng (1;+∞).
Cho hàm số
là một hàm số lẻ. Biết rằng
. Khẳng định nào dưới đây là khẳng định đúng?
Tập xác định
Với
Hàm số đã cho là hàm số lẻ khi đó:
Vậy
VD
1
Tìm tọa độ đỉnh S của parabol:
?
Gọi tọa độ đỉnh của parabol là điểm
Hàm số bậc hai có:
=>
Tổng các nghiệm của phương trình
là:
Đặt , điều kiện t ≥ 0. Khi đó
.
Phương trình trở thành
(Thỏa mãn)
Với t = 3 ta có
Vậy phương trình có hai nghiệm .
Tổng các nghiệm của phương trình là .
Tổng các bình phương của các nghiệm của phương trình
bằng bao nhiêu?
Ta có
.
Tổng các bình phương của các nghiệm của phương trình là .
Tìm m để g(x) = (2m2+m−6)x2 + (2m−3)x − 1 không dương.
Xét
+) (không thỏa mãn yêu cầu bài toán)
+) (không thỏa mãn)
Xét
Tam thức bậc hai
nhận giá trị không âm khi và chỉ khi
Ta có: và
.
Phương trình có hai nghiệm phân biệt là
.
Do đó,
.
Tổng các nghiệm của phương trình
?
Đặt . Khi đó phương trình đã cho trở thành:
Vì t ≥ 0 ⇒ t = 6, thay vào ta có .
x2 + 11 = 36 ⇔ x = ± 5.
Vậy phương trình có nghiệm là x = ± 5.
Tổng các nghiệm của phương trình là 0.
Cho đồ thị hàm số
như hình vẽ:

Có bao nhiêu giá trị nguyên của
để phương trình
có 8 nghiệm phân biệt?
Từ đồ thị hàm số ta suy ra đồ thị hàm số
có dạng như hình vẽ:
Ta có:
Dựa vào đồ thị hàm số ta có phương trình
có 4 nghiệm, phương trình đã cho có 8 nghiệm khi phương trình
có 4 nghiệm và
Suy ra
Vậy có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Tìm tất cả các giá trị của m để bất phương trình
với mọi x ∈ ℝ
Để bất phương trình với mọi x ∈ ℝ thì:
Cho hàm số f(x) = ax2 + bx + c đồ thị như hình bên dưới. Hỏi với những giá trị nào của tham số m thì phương trình f(|x|) − 1 = m có đúng 3 nghiệm phân biệt.

Hàm số f(x) = ax2 + bx + c có đồ thị là (C), lấy đối xứng phần đồ thị nằm bên phải Oy của (C) qua Oy ta được đồ thị (C′) của hàm số y = f(|x|).
Dựa vào đồ thị, phương trình f(|x|) − 1 = m ⇔ (|x|) = m + 1 có đúng 3 nghiệm phân biệt khi m + 1 = 3 ⇔ m = 2.
Đồ thị hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

Hỏi hàm số đó là hàm số nào?
Nhận xét:
Parabol có bề lõm hường lên.
Parabol cắt trục hoành tại điểm (1;0). Xét các đáp án, đáp án y = 2x2 − 3x + 1. thỏa mãn.
Các giá trị m làm cho biểu thức
luôn dương là
Biểu thức luôn dương
Quan sát đồ thị hàm số sau:

Cho biết hàm số nào tương ứng với đồ thị hàm số đã cho?
Ta có:
Đồ thị cắt trục Oy tại nên ta loại đáp án
và
.
Dễ thấy đồ thị có đỉnh là
Xét hàm số có đỉnh là
.
Vậy hàm số tương ứng với đồ thị là: .
Cho hàm số
. Biết f(x0) = 5 thì x0 là
TH1. x0 ≤ − 3: Với f(x0) = 5 ⇔ − 2x0 + 1 = 5 ⇔ x0 = − 2 (Loại).
TH2. x0 > − 3: Với (thỏa mãn).
Tập nghiệm của bất
là:
Ta có: .
Vậy
Trong các hàm số sau, hàm số nào nghịch biến trên ℝ?
Hàm số y = ax + b với a ≠ 0 nghịch biến trên ℝ khi và chỉ khi a < 0.
Xác định parabol
biết rằng Parabol đi qua hai điểm M(1;5) và N(-2;8)
Thay tọa độ và
vào
. Ta có:
.
Do đó .
Xác định m để biểu thức
là tam thức bậc hai.
Để biểu thức là tam thức bậc hai ta có:
Khi quả bóng được đá lên, nó sẽ đạt độ cao nào đó rồi rơi xuống đất. Biết rằng quỹ đạo của quả là một cung parabol trong mặt phẳng với hệ tọa độ Oth,trong đó t là thời gian , kể từ khi quả bóng được đá lên; h là độ cao của quả bóng. Giả thiết rằng quả bóng được đá lên từ độ cao 1, 2m. Sau đó 1 giây, nó đạt độ cao 8, 5mvà
giây sau khi đá lên, nó ở độ cao 6m. Hãy tìm hàm số bậc hai biểu thị độ cao h theo thời gian t và có phần đồ thị trùng với quỹ đạo của quả bóng trong tình huống trên.
Tại t = 0 ta có y = h = 1, 2; tại t = 1 ta có y = h = 8, 5; tại t = 2, ta có y = h = 6.

hệ trục Oth như hình vẽ.
Parabol (P) có phương trình: y = at2 + bt + c, với a ≠ 0.
Giả sử tại thời điểm t′ thì quả bóng đạt độ cao lớn nhất h′.
Theo bài ra ta có: tại t = 0 thì h = 1, 2 nên A(0; 1,2) ∈ (P).
Tại t = 1 thì h = 8, 5 nên B(1; 8,5) ∈ (P).
Tại t = 2 thì h = 6 nên C(2; 6) ∈ (P).
Vậy ta có hệ: .
Vậy hàm số Parabol cần tìm có dạng: y = − 4, 9t2 + 12, 2t + 1, 2.
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có đỉnh ![]()
Vì (P) có đỉnh nên ta có
. Vậy (P) : y = 3x2 + 3x − 2.
Xác định điểm không thuộc đồ thị của hàm số
?
Ta thấy các điểm nằm trên đồ thị của hàm số là: ;
;
.
Vậy điểm không thuộc đồ thị hàm số đã cho là: .
Trong các hàm số sau, hàm số nào là hàm số đồng biến trên khoảng
?
Hàm số là hàm số bậc nhất có hệ số a = 1 > 0 nên hàm số
đồng biến trên tập số thực.
Vậy hàm số đồng biến trên khoảng
.
Tập xác định của hàm số
là
Hàm số xác định khi .
Vậy tập xác định của hàm số là D = (1; 3].
Với giá trị nào của tham số a thì phương trình:
có đúng hai nghiệm phân biệt.
.
Phương trình có hai nghiệm phân biệt ⇔ 1 ≤ a < 4.
Đồ thị của hàm số nào sau đây là parabol có đỉnh I(−1; 3).
Đỉnh Parabol là .
Do đó chỉ có đáp án y = 2x2 + 4x + 5 thỏa mãn.
Tìm giá trị thực của tham số m để parabol (P) : y = mx2 − 2mx − 3m − 2 (m≠0) có đỉnh thuộc đường thẳng y = 3x − 1.
Hoành độ đỉnh của (P) là .
Suy ra tung độ đỉnh y = − 4m − 2. Do đó tọa độ đỉnh của (P) là I(1;−4m−2).
Theo giả thiết, đỉnh I thuộc đường thẳng y = 3x − 1 nên − 4m − 2 = 3.1 − 1 ⇔ m = − 1.