Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Hàm số và đồ thị gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tập nghiệm của bất phương trình: 2x^{2}–7x–15≥0 là:

     Ta có: 2x^{2}–7x–15≥0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x \le  - \frac{3}{2}}\\{x \ge 5}\end{array}} ight..

    Vậy D=(-\infty ;-\frac{3}{2}]\cup [5;+\infty ).

  • Câu 2: Nhận biết

    Tam thức bậc hai f(x) = x^{2} + \left( 1 - \sqrt{3} ight)x - 8 -
5\sqrt{3}:

    f(x) = x^{2} + \left( 1 - \sqrt{3}
ight)x - 8 - 5\sqrt{3} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 2 - \sqrt{3} \\
x = 1 + 2\sqrt{3} \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, chọn đáp án Âm với mọi x \in \left( - 2 - \sqrt{3};1 + 2\sqrt{3}
ight).

  • Câu 3: Vận dụng

    Hàm số f(x) có tập xác định và có đồ thị như hình vẽ

     

    Mệnh đề nào sau đây đúng ?

    Nhìn vào đồ thị hàm số ta có:

    Đồ thị hàm số cắt trục hoành tại hai điểm M(1; 0), N(3; 0) ⇒ MN = 2 . Suy ra Đồ thị hàm số cắt trục hoành theo một dây cung có độ dài bằng 2là đúng.

  • Câu 4: Nhận biết

    Cho hàm số y =  − x2 + 4x + 1. Khẳng định nào sau đây sai?

    Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng \left( - \frac{b}{2a}; + \infty
ight), đồng biến trên khoảng \left(
- \infty; - \frac{b}{2a} ight).

    Áp dụng: Ta có - \frac{b}{2a} = 2. Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.

    Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).

    Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).

  • Câu 5: Nhận biết

    Số nghiệm nguyên dương của phương trình \sqrt{x - 1} = x - 3

    \sqrt{x - 1} = x - 3 \Leftrightarrow\left\{ \begin{matrix}x \geq 3 \\x - 1 = (x - 3)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 3 \\x^{2} - 7x + 10 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 3 \\\left\lbrack \begin{matrix}x = 2 \\x = 5 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Rightarrow x = 5.

    Vậy phương trình có một nghiệm nguyên dương.

  • Câu 6: Thông hiểu

    Tập nghiệm S của bất phương trình 5(x+1)−x(7−x)>−2x là:

     Ta có: 5(x+1)−x(7−x)>−2x \Leftrightarrow x^2+5>0 (hiển nhiên).

    Vậy S = \mathbb{R}.

  • Câu 7: Nhận biết

    Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như các đáp án dưới đây. Chọn đáp án đúng.

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, chọn đáp án f(x) > 0với  2< x < 3f(x) < 0với x < 2 ∨ x > 3.

  • Câu 8: Nhận biết

    Tìm giá trị nhỏ nhất của hàm số y = x2 − 4x + 1.

    y = x2 − 4x + 1 = (x−2)2 − 3 ≥  − 3.

    Dấu " = " xảy ra khi và chỉ khi x = 2.

    Vậy hàm số đã cho đạt giá trị nhỏ nhất là  − 3 tại x = 2.

  • Câu 9: Nhận biết

    Tìm tập xác định của hàm số y = \sqrt{4x^{2} - 4x + 1}.

    Điều kiện xác định: 4x2 − 4x + 1 ≥ 0 ⇔ (2x−1)2 ≥ 0 (luôn đúng với mọi x ∈ ℝ).

    Do đó tập xác định D = ℝ.

  • Câu 10: Thông hiểu

    Cho phương trình \frac{x^{2} - 4x + 2}{\sqrt{x - 2}} = \sqrt{x -2}. Số nghiệm của phương trình này là:

    ĐKXĐ: x > 2 khi đó phương trình trở thành x^{2} - 4x + 2 = x - 2\Leftrightarrow x^{2} - 5x + 4 = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = 1 \\x = 4 \\\end{matrix} ight..

    Đối chiếu điều kiện suy ra phương trình có một nghiệm x = 4.

  • Câu 11: Nhận biết

    Chọn khẳng định đúng?

    Lí thuyết định nghĩa hàm số đồng biến, nghịch biến: Hàm số y = f(x) được gọi là đồng biến trên K nếu x1; x2 ∈ Kx1 < x2 ⇒ f(x1) < f(x2).

  • Câu 12: Vận dụng cao

    Tìm tập xác định D của hàm số y = \frac{2019}{\sqrt[3]{x^{2} - 3x + 2} -
\sqrt[3]{x^{2} - 7}}.

    Hàm số xác định khi \sqrt[3]{x^{2} - 3x +
2} - \sqrt[3]{x^{2} - 7} eq 0 \Leftrightarrow \sqrt[3]{x^{2} - 3x + 2}
eq \sqrt[3]{x^{2} - 7}

     ⇔ x2 − 3x + 2 ≠ x2 − 7 ⇔ 9 ≠ 3x ⇔ x ≠ 3.

    Vậy tập xác định của hàm số là D = ℝ ∖ {3}.

  • Câu 13: Vận dụng

    Đồ thị hàm số y = x2 − 6|x| + 5:

    Ta có: y = x^{2} - 6|x| + 5 = \left\{
\begin{matrix}
y_{1} = x^{2} - 6x + 5\ \ \ khi\ x \geq 0\ \ \left( C_{1} ight) \\
y_{2} = x^{2} + 6x + 5\ \ \ khi\ x < 0\ \ \left( C_{2} ight) \\
\end{matrix} ight.

    Đồ thị  (C)của hàm số y = x2 − 6|x| + 5 gồm hai phần

    Phần đồ thị (C1): là phần đồ thị của hàm số y1 = x2 − 6x + 5 nằm bên phải trục tung

    Phần đồ thị  (C2): là phần đồ thị của hàm số y2 = x2 + 6x + 5 có được bằng cách lấy đối xứng phần đồ thị (C1) qua trục tung

    Ta có đồ thị  (C) như hình vẽ

    Vậy đồ thị  (C) có trục đối xứng có phương trình x = 0.

  • Câu 14: Vận dụng

    Đồ thị của hàm số y = \frac{2}{3}x + \frac{1}{3}

    Từ giả thiết hàm số đồng biến nên loại đáp án có đồ thị đi xuống từ trái sang phải.

    Mặt khác cho x = 0 vào y = \frac{2}{3}x + \frac{1}{3} =
\frac{1}{3} nên chọn đáp án đồ thị hàm số đi qua điểm \left( 0\ ;\ \frac{1}{3} ight).

  • Câu 15: Nhận biết

    Cho hàm số y = f(x) xác định trên và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là sai?

    Trên khoảng (2;+∞) đồ thị hàm số đi lên từ trái sang phải

    \overset{}{ightarrow} Hàm số đồng biến trên khoảng (2;+∞).

    Chọn đáp án Hàm số nghịch biến trên khoảng (2;+∞).

  • Câu 16: Thông hiểu

    Cho hàm số y = x^{2} – 3x + 2. Khẳng định nào sau đây đúng?

    Hàm số bậc hai y = x2 – 3x + 2 có tập xác định là ℝ. Khẳng định "Tập xác định của hàm số là D = (0; +∞)." sai.

    Xét điểm M(1; 0): thay x = 1; y = 0 vào hàm số ta có: 0 = 12 – 3. 1 + 2 = 0 là mệnh đề đúng. Vậy M(1; 0) thuộc đồ thị hàm số. Khẳng định "Điểm M(1; 0) thuộc đồ thị hàm số." đúng.

    Hàm số y = x2 – 3x + 2 có a = 1 > 0, b = ‒3 nên hàm số nghịch biến trên khoảng \left( { - \infty ;\frac{3}{2}} ight) và đồng biến trên khoảng \left( {\frac{3}{2}; + \infty } ight). Khẳng định "Hàm số đồng biến trên ℝ." sai.

    Hàm số y = x2 – 3x + 2 có a = 1 > 0 nên đồ thị hàm số có bề lõm quay lên trên. Khẳng định "Đồ thị hàm số có bề lõm quay xuống dưới." sai.

  • Câu 17: Vận dụng cao

    Phương trình \sqrt{2x + 3} + \sqrt{x + 1} = 3x + 2\sqrt{2x^{2} +
5x + 3} - 16 có mấy nghiệm ?

    Điều kiện: x ≥  − 1

    Đặt t = \sqrt{2x + 3} + \sqrt{x + 1}\ \ \
(t \geq 0)\ \

    \Rightarrow t^{2} = 3x + 4 +
2\sqrt{2x^{2} + 5x + 3}

    Phương trình đã cho trở thành: t^{2} - t -
20 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 5\ \ \ (t/m) \\
t = - 4\ \ \ \ (l) \\
\end{matrix} ight.

    Với t = 5 ta có: \sqrt{2x + 3} + \sqrt{x + 1} = 5 \Leftrightarrow x
= 3

    Vậy phương trình đã cho có 1 nghiệm.

  • Câu 18: Vận dụng

    Cho phương trình (m - 1)x^{4} + 2(m -
3)x^{2} + m + 3 = 0 (m là tham số). Tìm m để phương trình vô nghiệm.

    Đặt t = x^{2},(t \geq 0). Khi đó ta có phương trình: (m - 1)t^{2} + 2(m - 3)t
+ m + 3 = 0. (1)

    Với m = 1 thì (1) \Leftrightarrow - 4t + 4 = 0 \Leftrightarrow t
= 1 \Leftrightarrow x = \pm 1 (Loại)

    Với m eq 1 để phương trình ban đầu vô nghiệm thì:

    TH1: (1) vô nghiệm \Leftrightarrow
\Delta^{'} < 0 \Leftrightarrow - 8m + 12 < 0 \Leftrightarrow m
> \frac{3}{2}.

    TH2: (1) có 2 nghiệm âm

    \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
  {\Delta ' \geqslant 0} \\ 
  {{t_1}.{t_2} > 0} \\ 
  {{t_1} + {t_2} < 0} 
\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
  { - 8m + 12 \geqslant 0} \\ 
  {\dfrac{{m + 3}}{{m - 1}} > 0} \\ 
  { - \dfrac{{2(m - 3)}}{{m + 1}} < 0} 
\end{array}} ight.} ight.

    \Leftrightarrow \left\{ \begin{matrix}m \leq \dfrac{3}{2} \\m \in ( - \infty; - 3) \cup (1; + \infty) \\m \in ( - \infty;1) \cup (3; + \infty) \\\end{matrix} \Leftrightarrow m ight.\  \in ( - \infty; -3)

    Kết hợp 2 trường hợp, ta được m \in ( -
\infty; - 3) \cup \left( \frac{3}{2}; + \infty ight).

  • Câu 19: Thông hiểu

    Quan sát đồ thị hàm số sau:

    Cho biết hàm số nào tương ứng với đồ thị hàm số đã cho?

    Ta có:

    Đồ thị cắt trục Oy tại - 1 nên ta loại đáp án y = x^{2} + 2x - 2y = x^{2} - 2x - 1.

    Dễ thấy đồ thị có đỉnh là ( - 1; -
2)

    Xét hàm số y = x^{2} + 2x - 1 có đỉnh là ( - 1; - 2).

    Vậy hàm số tương ứng với đồ thị là: y =
x^{2} + 2x - 1.

  • Câu 20: Vận dụng cao

    Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4]

    Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2

     = (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.

    Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].

    y = (t - 1)^{2} - 5t + 2 = t^{2} - 7t + 3
= \left( t - \frac{7}{2} ight)^{2} - \frac{37}{4}.

    Cách 1: Ta có 0 \leq \left( t -
\frac{7}{2} ight)^{2} \leq \frac{121}{4} \Leftrightarrow -
\frac{37}{4} \leq y \leq 21.

    Cách 2: Vẽ BBT

    Vậy y_{\min} = - \frac{37}{4}, ymax = 21.

  • Câu 21: Nhận biết

    Hàm số nào sau đây nghịch biến trên khoảng (−∞;0)?

    Xét đáp án y = \sqrt{2}x^{2} + 1, ta có - \frac{b}{2a} = 0 và có a > 0 nên hàm số đồng biến trên khoảng (0;+∞) và nghịch biến trên khoảng (−∞;0).

  • Câu 22: Thông hiểu

    Tam thức bậc hai f(x)=−x^{2}+5x−6 nhận giá trị dương khi và chỉ khi

     Ta có: \Delta >0a=-1<0.

    Phươn trình f(x)=0 có hai nghiệm phân biệt x=2;x=3.

    Do đó f(x)>0 \Leftrightarrow x \in (2;3).

  • Câu 23: Thông hiểu

    Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

     Nhận xét: Từ bảng biến thiên ta suy ra đỉnh (2;-5).

    Chỉ có hàm số y=x^{2}−4x−1 thỏa mãn tọa độ đỉnh này khi thay vào.

  • Câu 24: Thông hiểu

    Cho hàm số bậc hai y = ax^{2} + bx + c;(a eq 0) có đỉnh I( - 1;4) và đi qua điểm M( - 2;5). Xác định giá trị biểu thức S = a + b + c?

    Parabol có đỉnh I( - 1;4)

    \Leftrightarrow \left\{ \begin{matrix}- \dfrac{b}{2a} = - 1 \\4 = a.( - 1)^{2} + b.( - 1) + c \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a - b = 0 \\a - b + c = 4 \\\end{matrix} ight.(*)

    Parabol đi qua điểm M( - 2;5) suy ra

    5 = a( - 2)^{2} + b.( - 2) +
c

    \Leftrightarrow 4a - 2b + c =
5(**)

    Từ (*) và (**) ta có hệ phương trình

    \left\{ \begin{matrix}
2a - b = 0 \\
a - b + c = 4 \\
4a - 2b + c = 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
c = 5 \\
\end{matrix} ight.

    \Rightarrow S = a + b + c = 1 + 2 + 5 =
8

  • Câu 25: Nhận biết

    Trong các hàm số sau, hàm số nào là nghịch biến:

    Ta có: 

    Hàm số y = f(x) = -2x + 2 có a = -2 < 0

    => Hàm số nghịch biến.

  • Câu 26: Thông hiểu

    Cho hàm số y =
f(x) = \sqrt{(m - 2)x^{2} - 2(m - 3)x + m - 1}. Tìm tất cả các giá trị thực của tham số m để hàm số đã cho có tập xác định D\mathbb{= R}?

    Hàm số có tập xác định D\mathbb{=
R} khi và chỉ khi

    g(x) = (m - 2)x^{2} - 2(m - 3)x + m - 1
\geq 0,\forall x\mathbb{\in R}

    Xét m - 2 = 0 \Rightarrow m = 2 thì g(x) = 2x + 1 \geq 0, loại giá trị m = 2

    Xét m eq 2 ta có:

    (m - 2)x^{2} - 2(m - 3)x + m - 1 \geq
0,\forall x \in \mathbb{R}

    \Leftrightarrow \left\{ \begin{matrix}
m - 2 > 0 \\
(m - 3)^{2} - (m - 2)(m - 1) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > 2 \\
m \geq \frac{7}{3} \\
\end{matrix} ight.\  \Leftrightarrow m \geq \frac{7}{3}

    Vậy m \geq \frac{7}{3}

  • Câu 27: Thông hiểu

    Trong các hàm số sau, hàm số nào là hàm số đồng biến trên khoảng ( - 1;1)?

    Hàm số y = x là hàm số bậc nhất có hệ số a = 1 > 0 nên hàm số y =
x đồng biến trên tập số thực.

    Vậy hàm số y = x đồng biến trên khoảng ( - 1;1).

  • Câu 28: Nhận biết

    Gọi S là tập nghiệm của bất phương trình {x^2} - 8x + 7 \geqslant 0. Trong các tập hợp sau, tập nào không là tập con của S?

    Tam thức bậc hai f\left( x ight) = {x^2} - 8x + 7 có hai nghiệm phân biệt là: {x_1} = 1;{x_2} = 7

    Vì a = 1 > 0 nên f\left( x ight) \geqslant 0 khi x \in \left( { - \infty ;1} ight] \cup \left[ {7; + \infty } ight).

    Tập không phải tập con của S là: [6; + ∞)

  • Câu 29: Nhận biết

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.

    (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
\end{matrix} ight. vào (P), ta được 0 = 4a + 6 − 2 ⇔ a =  − 1.

    Vậy (P) : y =  − x2 + 3x − 2.

  • Câu 30: Vận dụng cao

    Gọi S là tập hợp các giá trị thực của tham số m sao cho parabol (P) : y = x2 − 4x + m cắt Ox tại hai điểm phân biệt A, B thỏa mãn OA = 3OB. Tính tổng T các phần tử của S.

    Phương trình hoành độ giao điểm: x2 − 4x + m = 0. (*)

    Để (P) cắt Ox tại hai điểm phân biệt A, B thì (*) có hai nghiệm phân biệt  ⇔ Δ = 4 − m > 0 ⇔ m < 4.

    Theo giả thiết OA =
3OB\overset{}{ightarrow}\left| x_{A} ight| = 3\left| x_{B} ight|
\Leftrightarrow \left\lbrack \begin{matrix}
x_{A} = 3x_{B} \\
x_{A} = - 3x_{B} \\
\end{matrix} ight.\ .

    TH1: x_{A} =
3x_{B}\overset{Viet}{ightarrow}\left\{ \begin{matrix}
x_{A} = 3x_{B} \\
x_{A} + x_{B} = 4 \\
x_{A}.x_{B} = m \\
\end{matrix} ight.\ \overset{}{ightarrow}m = x_{A}.x_{B} =
3.

    TH2: x_{A} = -
3x_{B}\overset{Viet}{ightarrow}\left\{ \begin{matrix}
x_{A} = - 3x_{B} \\
x_{A} + x_{B} = 4 \\
x_{A}.x_{B} = m \\
\end{matrix} ight.\ \overset{}{ightarrow}m = x_{A}.x_{B} =
12: không thỏa mãn (*).

    Do đó T = 3.

  • Câu 31: Nhận biết

    Phương trình \sqrt{2x^{2} - 5x + 2} = \sqrt{6 - 3x} có bao nhiêu nghiệm?

    \sqrt{2x^{2} - 5x + 2} = \sqrt{6 - 3x}\Leftrightarrow \left\{ \begin{matrix}6 - 3x \geq 0 \\2x^{2} - 5x + 2 = 6 - 3x \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 2 \\2x^{2} - 2x - 4 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 2 \\\left\lbrack \begin{matrix}x = - 1 \\x = 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = 2 \\\end{matrix} ight..

    Vậy phương trình có 2 nghiệm.

  • Câu 32: Vận dụng

    Phương trình \sqrt{x} + \sqrt{9 - x} = \sqrt{- x^{2} + 9x +9} có mấy nghiệm ?

    Điều kiện: 0 ≤ x ≤ 9

    Bình phương hai vế phương trình đã cho ta được:

    \begin{matrix}x + 2\sqrt{9x - x^{2}} + 9 - x = - x^{2} + 9x + 9 \\\Leftrightarrow 2\sqrt{9x - x^{2}} = - x^{2} + 9x \\\end{matrix}

    Đặt t = \sqrt{9x - x^{2}}\ \ \ \ (t \geq0). PT trên trở thành: 2t = t^{2}\Leftrightarrow \left\lbrack \begin{matrix}t = 0 \\t = 2 \\\end{matrix} ight.

    Với t = 0 \Rightarrow \sqrt{9x - x^{2}} =0 \Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = 9 \\\end{matrix} ight. (TM)

    Với t = 2 \Rightarrow \sqrt{9x - x^{2}} =2 \Leftrightarrow \left\lbrack \begin{matrix}x = \frac{9 + \sqrt{65}}{2} \\x = \frac{9 - \sqrt{65}}{2} \\\end{matrix} ight. (TM)

    Vậy phương trình có tập nghiệm là S =\left\{ 0;9;\frac{9 \pm \sqrt{65}}{2} ight\} (3 nghiệm).

  • Câu 33: Thông hiểu

    Cho phương trình x^{2} - 2m|x| + 9 - m =
0. Tìm m để phương trình có 3 nghiệm phân biệt?

    Đáp án: 9

    Đáp án là:

    Cho phương trình x^{2} - 2m|x| + 9 - m =
0. Tìm m để phương trình có 3 nghiệm phân biệt?

    Đáp án: 9

    Đặt |x| = t(t \geq 0) thì phương trình (*) trở thành: t^{2} - 2mt + 9 - m = 0 (1)

    Để phương trình (*) có 3 nghiệm phân biệt thì phương trình (1) phải có nghiệm t = 0 và một nghiệm t > 0.

    Khi t = 0 \Rightarrow m = 9 thì (1) \Leftrightarrow t^{2} - 18t = 0
\Rightarrow \left\lbrack \begin{matrix}
t = 18 > 0\ \ (TM) \\
t = 0 \\
\end{matrix} ight..

    Vậy m = 9

  • Câu 34: Thông hiểu

    Theo tài liệu dân số và phát triển của Tổng cục dân số và kế hoạch hóa gia đình thì:

    Dựa trên số liệu về dân số, kinh tế, xã hội của 85 nước trên thế giới, người ta xây dựng được hàm nêu lên mối quan hệ giữa tuổi thọ trung bình của phụ nữ (y) và tỷ lệ biết chữ của họ (x) như sau: y = 47,17 + 0,307x. Trong đó y là số năm (tuổi thọ), x là tỷ lệ phần trăm biết chữ của phụ nữ. Theo báo cáo của Bộ Giáo dục và Đào tạo năm học 2015 ‒ 2016, tỷ lệ biết chữ đã đạt 96,83% trong nhóm phụ nữ Việt Nam tuổi từ 15 đến 60. Hỏi với tỉ lệ biết chữ của phụ nữ Việt Nam như trên thì nhóm này có tuổi thọ bao nhiêu?

    Thay x = 96,83 vào công thức y = 47,17 + 0,307x ta được:

    y = 47,17 + 0,307. 96,83 = 47,17 + 29,72 = 76,89 (năm)

    Vậy nhóm này có tuổi thọ 76,89 tuổi.

  • Câu 35: Vận dụng

    Nghiệm của bất phương trình x - \frac{x^{2} - x + 6}{- x^{2} + 3x + 4} >
0

    x - \frac{x^{2} - x + 6}{- x^{2} + 3x +
4} = \frac{- x^{3} + 2x^{2} + 5x - 6}{- x^{2} + 3x + 4}

    = \frac{(x - 1)\left( - x^{2} + x + 6
ight)}{- x^{2} + 3x + 4}

    - x^{2} + x + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 2 \\
x = 3 \\
\end{matrix} ight.\ ,\

    - x^{2} + 3x + 4 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 1 \\
x = 4 \\
\end{matrix} ight.

    Bảng xét dấu

    Suy ra

    x - \frac{x^{2} - x + 6}{- x^{2} + 3x + 4}
> 0 \Leftrightarrow x \in ( - 2; - 1) \cup (1;3) \cup (4; +
\infty).

    Vậy nghiệm của bất phương trình có 3 khoảng.

  • Câu 36: Nhận biết

    Nghiệm của phương trình \sqrt{-10x+10}=x-1 là:

     Ta có: \sqrt{-10x+10}=x-1 \Rightarrow -10x+10=x^2-2x+1\Leftrightarrow x^2+8x-9=0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x =  - 9}\end{array}} ight..

    Thử lại thấy x=9 không thỏa mãn. Do đó x=1.

  • Câu 37: Thông hiểu

    Phương trình \left( x^{2} - 6x ight)\sqrt{17 - x^{2}} = x^{2}- 6x có bao nhiêu nghiệm thực phân biệt?

    Điều kiện: 17 - x^{2} \geq 0\Leftrightarrow - \sqrt{17} \leq x \leq \sqrt{17}.

    Ta có: \left( x^{2} - 6x ight)\sqrt{17 -x^{2}} = x^{2} - 6x \Leftrightarrow \left( x^{2} - 6x ight)\left(\sqrt{17 - x^{2}} - 1 ight) = 0.

    \Leftrightarrow \left\lbrack\begin{matrix}x^{2} - 6x = 0 \\\sqrt{17 - x^{2}} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x(x - 6) = 0 \\16 - x^{2} = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 0(T) \\x = 6(L) \\x = \pm 4(T) \\\end{matrix} ight..

    Vậy phương trình có 3 nghiệm thực phân biệt.

  • Câu 38: Thông hiểu

    Tìm m để hàm số y = (2m−1)x + 7 đồng biến trên .

    Hàm số y = (2m−1)x + 7 đồng biến trên khi 2m − 1 > 0 hay m > \frac{1}{2}.

  • Câu 39: Thông hiểu

    Tìm tất cả các giá trị của m để bất phương trình mx^{2} – x + m ≥ 0 với mọi x ∈ ℝ

    Để bất phương trình mx^{2} – x + m ≥ 0 với mọi x ∈ ℝ thì:

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta  \leqslant 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {{1^2} - 4{m^2} \leqslant 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {m \in \left( { - \infty ; - \dfrac{1}{2}} ight] \cup \left[ {\dfrac{1}{2}; + \infty } ight)} \end{array}} ight. \hfill \\   \Leftrightarrow m \in \left[ {\dfrac{1}{2}; + \infty } ight) \hfill \\ \end{matrix}

  • Câu 40: Thông hiểu

    Tổng các nghiệm của phương trình x^{2} + \sqrt{x^{2} + 11} = 31?

    Đặt t = \sqrt{x^{2} + 11},t \geq0. Khi đó phương trình đã cho trở thành:

    t^{2} + t - 42 = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 6 \\t = - 7 \\\end{matrix} ight.

    t ≥ 0 ⇒ t = 6, thay vào ta có \sqrt{x^{2} + 11} =6.

    x2 + 11 = 36 ⇔ x =  ± 5.

    Vậy phương trình có nghiệm là x =  ± 5.

    Tổng các nghiệm của phương trình là 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo