Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Hàm số và đồ thị gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Số nghiệm của phương trình \sqrt{4x - 1} + 4x^{2} - 6x + 1 = 0 là:

    ĐKXĐ: x \geq \frac{1}{4}

    Đặt t = \sqrt{4x - 1},\ \ t \geq 0\Rightarrow x = \frac{t^{2} + 1}{4}

    Phương trình trở thành t + 4\left(\frac{t^{2} + 1}{4} ight)^{2} - 6\frac{t^{2} + 1}{4} + 1 =0

    \begin{matrix}\Leftrightarrow 4t + t^{4} + 2t^{2} + 1 - 6\left( t^{2} + 1 ight) + 4= 0 \\\Leftrightarrow t^{4} - 4t^{2} + 4t - 1 = 0 \Leftrightarrow (t -1)\left( t^{3} + t^{2} - 3t + 1 ight) = 0 \\\end{matrix}

    \Leftrightarrow (t - 1)^{2}\left( t^{2} +2t - 1 ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}t = 1 \\\begin{matrix}t = - 1 - \sqrt{2} \\t = - 1 + \sqrt{2} \\\end{matrix} \\\end{matrix} ight. (đối chiếu ĐKXĐ loại t = - 1 - \sqrt{2} )

    Với t = 1 ta có 1 = \sqrt{4x - 1} \Leftrightarrow x =\frac{1}{2}

    Với t = - 1 + \sqrt{2} ta có - 1 + \sqrt{2} = \sqrt{4x - 1} \Leftrightarrow 4x -1 = 3 - 2\sqrt{2} \Leftrightarrow x = \frac{2 - \sqrt{2}}{2}

    Vậy phương trình có hai nghiệm x =\frac{1}{2}x = \frac{2 -\sqrt{2}}{2}.

  • Câu 2: Nhận biết

    Phương trình \sqrt{2x^{2} - 5x + 2} = \sqrt{6 - 3x} có bao nhiêu nghiệm?

    \sqrt{2x^{2} - 5x + 2} = \sqrt{6 - 3x}\Leftrightarrow \left\{ \begin{matrix}6 - 3x \geq 0 \\2x^{2} - 5x + 2 = 6 - 3x \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 2 \\2x^{2} - 2x - 4 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 2 \\\left\lbrack \begin{matrix}x = - 1 \\x = 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = 2 \\\end{matrix} ight..

    Vậy phương trình có 2 nghiệm.

  • Câu 3: Thông hiểu

    Số thực dương lớn nhất thỏa mãn là ?

    Ta có .

    Bảng xét dấu

    Dựa vào bảng xét dấu . Suy ra số thực dương lớn nhất thỏa .

  • Câu 4: Thông hiểu

    Tập nghiệm của phương trình (x^{2} - 5x + 4)\sqrt{x - 2} = 0 là:

    \left( x^{2} - 5x + 4 ight)\sqrt{x -2} = 0 \Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\\left\{ \begin{matrix}x > 2 \\x^{2} - 5x + 4 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 2 \\\left\{ \begin{matrix}x > 2 \\\left\lbrack \begin{matrix}x = 1 \\x = 4 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\x = 4 \\\end{matrix} ight..

    Vậy S = {2;4}.

  • Câu 5: Vận dụng cao

    Tìm giá trị thực của m để phương trình |2x2−3x+2| = 5m − 8x − 2x2 có nghiệm duy nhất.

    Ta thấy 2x2 − 3x + 2 > 0,  ∀x ∈ ℝ nên |2x2−3x+2| = 2x2 − 3x + 2.

    Do đó phương trình đã cho tương đương với 4x2 + 5x + 2 − 5m = 0. (*)

    Khi đó để phương trình đã cho có nghiệm duy nhất khi và chỉ khi (*) có nghiệm duy nhất \Leftrightarrow \Delta = 0 \Leftrightarrow 25 -
16(2 - 5m) = 0 \Leftrightarrow m = \frac{7}{80}.

  • Câu 6: Thông hiểu

    Tập nghiệm của phương trình x + \sqrt{x - 1} = 2 + \sqrt{x - 1}là:

    Phương trình x + \sqrt{x - 1} = 2 +\sqrt{x - 1} \Leftrightarrow \left\{ \begin{matrix}x \geq 1 \\x = 2 \\\end{matrix} ight.\  \Leftrightarrow x = 2.

    Vậy S = {2}.

  • Câu 7: Thông hiểu

    Tập nghiệm của phương trình \sqrt{2x - 3} = x - 3?

    Ta có:

    \sqrt{2x - 3} = x - 3

    \Leftrightarrow \left\{ \begin{matrix}
x - 3 \geq 0 \\
2x - 3 = (x - 3)^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 3 \\
\left\lbrack \begin{matrix}
x = 2 \\
x = 6 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow x = 6

    Vậy tập nghiệm phương trình là: S =
\left\{ 6 ight\}

  • Câu 8: Nhận biết

    Tìm tập xác định của hàm số y = \sqrt{4x^{2} - 4x + 1}.

    Điều kiện xác định: 4x2 − 4x + 1 ≥ 0 ⇔ (2x−1)2 ≥ 0 (luôn đúng với mọi x ∈ ℝ).

    Do đó tập xác định D = ℝ.

  • Câu 9: Nhận biết

    Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như sau:

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án f(x) > 0với  2< x < 3 f(x) < 0với x < 2 ∨ x > 3 .

  • Câu 10: Nhận biết

    Cho hàm số y =  − x2 + 4x + 1. Khẳng định nào sau đây sai?

    Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng \left( - \frac{b}{2a}; + \infty
ight), đồng biến trên khoảng \left(
- \infty; - \frac{b}{2a} ight).

    Áp dụng: Ta có - \frac{b}{2a} = 2. Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.

    Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).

    Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).

  • Câu 11: Thông hiểu

    Xác định parabol (P):y=ax^{2}+bx+2 biết rằng Parabol đi qua hai điểm M(1;5) và N(2;-2)

     Thay tọa độ M(1;5)N(2;-2) vào hàm số, ta được:

    \left\{ {\begin{array}{*{20}{c}}{5 = a + b + 2}\\{ - 2 = 4a + 2b + 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a =  - 5}\\{b = 8}\end{array}} ight.} ight..

    Vậy đó là hàm số y=-5x^{2}+8x+2.

  • Câu 12: Nhận biết

    Tìm tất cả các giá trị của m để hàm số y = f(x) = (2-m)x+x + 2 nghịch biến trên \mathbb{R}.

     Điều kiện để hàm số y=ax+b nghịch biến trên \mathbb {R}a<0.

    Suy ra 2-m<0 \Leftrightarrow m>2.

  • Câu 13: Nhận biết

    Tập nghiệm của bất phương trình x^{2} - x
- 12 \leq 0 là?

    Ta có f(x) = x^{2} - x - 12 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 4 \\
x = - 3 \\
\end{matrix} ight.

    Bảng xét dấu:

    Dựa vào bảng xét dấu f(x) \leq 0
\Leftrightarrow - 3 \leq x \leq 4.

  • Câu 14: Thông hiểu

    Đồ thị của hàm số y = f(x) = \left\{ \begin{matrix}
2x + 1 & khi & x \leq 2 \\
- 3 & khi & x > 2 \\
\end{matrix} ight. đi qua điểm nào sau đây:

    Thử lần lượt từng phương án với chú ý về điều kiện ta được:

    f(0) = 2.0 + 1 = 1 ≠  − 3, đồ thị không đi qua điểm (0; −3).

    f(3) =  − 3 ≠ 7, đồ thị không đi qua điểm (3; 7).

    f(2) = 2.2 + 1 = 5 ≠  − 3, đồ thị không đi qua điểm (2; −3).

    f(0) = 2.0 + 1 = 1, đồ thị đi qua điểm (0; 1).

  • Câu 15: Vận dụng cao

    Xét sự biến thiên của hàm số f(x) = \frac{3}{x} trên khoảng (0;+∞). Khẳng định nào sau đây đúng?

    Ta có f\left( x_{1} ight) - f\left(
x_{2} ight) = \frac{3}{x_{1}} - \frac{3}{x_{2}} = \frac{3\left( x_{2}
- x_{1} ight)}{x_{1}x_{2}} = - \frac{3\left( x_{1} - x_{2}
ight)}{x_{1}x_{2}}.

    Với mọi x1x2 ∈ (0;+∞)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} > 0 \\
x_{2} > 0 \\
\end{matrix} ight.\  \Rightarrow x_{1}.x > 0.

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = - \frac{3}{x_{1}x_{2}} <
0\overset{}{ightarrow}f(x) nghịch biến trên (0;+∞).

  • Câu 16: Thông hiểu

    Giá trị nguyên dương lớn nhất của x để hàm số y = \sqrt{5 - 4x - x^{2}} xác định là

    Hàm số đã cho xác định khi và chỉ khi 5 − 4x − x2 ≥ 0 ⇔ x ∈ [− 5; 1].

    Vậy giá trị nguyên dương lớn nhất của xđể hàm số xác định là x = 1.

  • Câu 17: Vận dụng

    Tìm m để hàm số y = \frac{\sqrt{x - 2m + 3}}{x - m} + \frac{3x -
1}{\sqrt{- x + m + 5}} xác định trên khoảng (0;1).

    *Gọi D là tập xác định của hàm số y = \frac{\sqrt{x - 2m + 3}}{x - m} +
\frac{3x - 1}{\sqrt{- x + m + 5}}.

    *x \in D \Leftrightarrow \left\{
\begin{matrix}
x - 2m + 3 \geq 0 \\
x - m\boxed{=}0 \\
- x + m + 5 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 2m - 3 \\
x\boxed{=}m \\
x < m + 5 \\
\end{matrix} ight..

    *Hàm số y = \frac{\sqrt{x - 2m + 3}}{x -
m} + \frac{3x - 1}{\sqrt{- x + m + 5}} xác định trên khoảng (0;1)

    \Leftrightarrow (0;1) \subset D
\Leftrightarrow \left\{ \begin{matrix}
2m - 3 \leq 0 \\
m + 5 \geq 1 \\
m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \leq \frac{3}{2} \\
m \geq - 4 \\
\left\lbrack \begin{matrix}
m \geq 1 \\
m \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow m \in \lbrack - 4;0brack \cup
\left\lbrack 1;\frac{3}{2} ightbrack.

  • Câu 18: Thông hiểu

    Phương trình \sqrt{3x} + \sqrt{2x - 2} = \sqrt{1 - x} +2 có bao nhiêu nghiệm?

    ĐKXĐ: \left\{ \begin{matrix}3x \geq 0 \\2x - 2 \geq 0 \\1 - x \geq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x \geq 1 \\x \leq 1 \\\end{matrix} ight.\  \Leftrightarrow x = 1.

    Thay x = 1 vào \sqrt{3x} + \sqrt{2x - 2} = \sqrt{1 - x} +2, ta được: \sqrt{3} = 2 .

    Vậy phương trình vô nghiệm.

  • Câu 19: Nhận biết

    Nghiệm của phương trình \sqrt{-10x+10}=x-1 là:

     Ta có: \sqrt{-10x+10}=x-1 \Rightarrow -10x+10=x^2-2x+1\Leftrightarrow x^2+8x-9=0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x =  - 9}\end{array}} ight..

    Thử lại thấy x=9 không thỏa mãn. Do đó x=1.

  • Câu 20: Nhận biết

    Cho hàm số y = f(x) có tập xác định là [ − 1; 3] và đồ thị của nó được biểu diễn bởi hình bên.

    Khẳng định nào sau đây là sai?

    Trên khoảng (0;2) đồ thị hàm số đi ngang từ trái sang phải

    \overset{}{ightarrow} Hàm số không đổi trên khoảng (0;2).

    Trên khoảng (2;3) đồ thị hàm số đi lên từ trái sang phải

    \overset{}{ightarrow} Hàm số đồng biến trên khoảng (2;3).

    Chọn đáp án Hàm số đồng biến trên khoảng (2;3).

  • Câu 21: Thông hiểu

    Cho hàm số y =
\frac{x + 1}{x - 1}. Tìm tọa độ điểm thuộc đồ thị của hàm số và có tung độ bằng − 2.

    Gọi M0(x0;−2) là điểm thuộc đồ thị hàm số có tung độ bằng  − 2.

    Khi đó: \frac{x_{0} + 1}{x_{0} - 1} = - 2
\Leftrightarrow x_{0} + 1 = 2\left( 1 - x_{0} ight) \Leftrightarrow
3x_{0} = 1 \Leftrightarrow x_{0} = \frac{1}{3} \Rightarrow M\left(
\frac{1}{3}; - 2 ight).

  • Câu 22: Nhận biết

    Tìm m để hàm số y = mx +(m+2)x-2 luôn đồng biến biến trên tập số thực.

    Để hàm số y = mx +(m+2)x-2 nghịch biến trên tập số thực thì m>0.

  • Câu 23: Thông hiểu

    Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

    Nhận xét:

    Bảng biến thiên có bề lõm hướng xuống. Loại đáp án y = 2x2 + 2x − 1y = 2x2 + 2x + 2.

    Đỉnh của parabol có tọa độ là \left( -
\frac{1}{2};\frac{3}{2} ight). Xét các đáp án, y =  − 2x2 − 2x + 1 thỏa mãn.

  • Câu 24: Vận dụng

    Tổng các nghiệm của phương trình x(x + 5) = 2\sqrt[3]{x^{2} + 5x - 2} - 2 là:

    Đặt t = \sqrt[3]{x^{2} + 5x - 2}. Phương trình trở thành:

    t3 − 2t + 4 = 0 ⇔ (t+2)(t2−2t+2) = 0 ⇔ t =  − 2

    Ta được

    \sqrt[3]{x^{2} + 5x - 2} = - 2\Leftrightarrow x^{2} + 5x + 6 = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = - 2 \\x = - 3 \\\end{matrix} ight..

    Tổng các nghiệm của phương trình là  − 5.

  • Câu 25: Thông hiểu

    Xác định parabol (P) : y = 2x2 + bx + c, biết rằng (P) có đỉnh I(−1;−2).

    Trục đối xứng - \frac{b}{2a} = -
1\overset{}{ightarrow}b = 4.

    Do I \in (P)\overset{}{ightarrow} - 2 =
2.( - 1)^{2} - 4 + c\overset{}{ightarrow}c = 0.

    Vậy (P) : y = 2x2 + 4x.

  • Câu 26: Thông hiểu

    Tìm tất cả các giá trị của m để tam thức f(x) = m{x^2} - x + m luôn dương với ∀x ∈ \mathbb{ℝ}.

    Để tam thức f(x) = m{x^2} - x + m luôn dương với ∀x ∈ \mathbb{ℝ}:

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta  < 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {{{\left( { - 1} ight)}^2} - 4{m^2} < 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {{{\left( { - 1} ight)}^2} - 4{m^2} < 0} \end{array}} ight. \hfill \\ \end{matrix}

    Xét g\left( x ight) = 1 - 4{x^2} ta có bảng xét dấu như sau:

    Tìm m để tam thức bậc hai luôn dương với mọi x

    g\left( x ight) < 0 \Rightarrow x \in \left( { - \infty ; - \frac{1}{2}} ight) \cup \left( {\frac{1}{2}; + \infty } ight)

    Kết hợp các điều kiện ta được m \in \left( {\frac{1}{2}; + \infty } ight)

  • Câu 27: Nhận biết

    Parabol y =  − x2 + 2x + 3 có phương trình trục đối xứng là

    Parabol y =  − x2 + 2x + 3 có trục đối xứng là đường thẳng x = -
\frac{b}{2a}  ⇔ x = 1.

  • Câu 28: Nhận biết

    Tổng tất cả các nghiệm của phương trình \sqrt{x^{2} + 3x - 2} = \sqrt{1 +
x} bằng:

    \sqrt{x^{2} + 3x - 2} = \sqrt{1 + x}
\Leftrightarrow \left\{ \begin{matrix}
1 + x \geq 0 \\
x^{2} + 3x - 2 = 1 + x \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq - 1 \\
x^{2} + 2x - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow x = 1.

    Phương trình chỉ có nghiệm x = 1 nên tổng các nghiệm bằng 1.

  • Câu 29: Thông hiểu

    Tìm parabol (P):y=ax^{2}+3x-2, biết rằng parabol có đỉnh I(-\frac{1}{2};-\frac{11}{4}).

     Vì hàm số bậc hai có đỉnh I(-\frac{1}{2};-\frac{11}{4}) nên:

    \frac{-b}{2a}= \frac {-1}2 \Leftrightarrow b=a-\frac {11}4=a{(\frac{-1}2})^{2}+3.(-\frac1{2})-2.

    Suy ra a=3.

  • Câu 30: Nhận biết

    Số nghiệm nguyên dương của phương trình \sqrt{x - 1} = x - 3

    \sqrt{x - 1} = x - 3 \Leftrightarrow\left\{ \begin{matrix}x \geq 3 \\x - 1 = (x - 3)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 3 \\x^{2} - 7x + 10 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 3 \\\left\lbrack \begin{matrix}x = 2 \\x = 5 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Rightarrow x = 5.

    Vậy phương trình có một nghiệm nguyên dương.

  • Câu 31: Vận dụng cao

    Phương trình x.\sqrt[3]{35 - x^{3}}\left( x + \sqrt[3]{35 -
x^{3}} ight) = 30 có mấy nghiệm nguyên dương ?

    Đặt t = \sqrt[3]{35 - x^{3}}. Ta có hệ phương trình:

    \begin{matrix}
\left\{ \begin{matrix}
xt(x + t) = 30 \\
x^{3} + t^{3} = 35 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x + t = 5 \\
x.t = 6 \\
\end{matrix} ight.\  \\
\Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x = 2 \\
t = 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x = 3 \\
t = 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\end{matrix}

    Vậy phương trình có 2 nghiệm x = 2x = 3.

  • Câu 32: Vận dụng cao

    Hàm số nào sau đây có đồ thị như hình bên

    Quan sát đồ thị ta loại y = x2 − 3x − 3y =  − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y =  − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P)\left( \frac{5}{2};\frac{13}{4} ight), trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y =  − x2 + 5|x| − 3.

  • Câu 33: Nhận biết

    Tìm khẳng định đúng trong các khẳng định sau?

    * Theo định nghĩa tam thức bậc hai thì f(x) = 3x2 + 2x − 5 là tam thức bậc hai.

  • Câu 34: Nhận biết

    Tam thức bậc hai f(x) =  − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

    f(x) = - x^{2} + 3x - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [1; 2].

  • Câu 35: Thông hiểu

    Phương trình x2 + 2(m+2)x − 2m − 1 = 0 (m là tham số) có nghiệm khi

    Xét phương trình x2 + 2(m+2)x − 2m − 1 = 0,Δx = (m+2)2 + 2m + 1.

    Yêu cầu bài toán ⇔  Δx ≥ 0 ⇔ m2 + 4m + 4 + 2m + 1 ≥ 0 ⇔ m2 + 6m + 5 ≥ 0

    \Leftrightarrow (m + 1)(m + 5) \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
m \geq - \ 1 \\
m \leq - \ 5 \\
\end{matrix} ight. là giá trị cần tìm.

  • Câu 36: Nhận biết

    Đồ thị của hàm số nào sau đây là parabol có đỉnh I(−1; 3).

    Đỉnh Parabol là I\left( -
\frac{b}{2a};\  - \frac{\Delta}{4a} ight) = \left( - \frac{b}{2a};\  -
\frac{b^{2} - 4ac}{4a} ight).

    Do đó chỉ có đáp án y = 2x2 + 4x + 5 thỏa mãn.

  • Câu 37: Thông hiểu

    Tổng tất cả các giá trị nguyên dương của tham số m để hàm số

    y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1  ;  5) là:

    Hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng \left( \frac{m +
1}{4}\ \ ;\ \  + \infty ight).

    Để hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1  ;  5) thì ta phải có (1\ \ ;\ \ 5) \subset \left(
\frac{m + 1}{4}\ \ ;\ \  + \infty ight) \Leftrightarrow \frac{m + 1}{4} \leq 1
\Leftrightarrow m \leq 3.

    Các giá trị nguyên dương của tham số m để hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1; 5)m = 1,  m = 2,  m = 3.

    Tổng tất cả các giá trị nguyên dương của tham số m để hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1; 5)S = 1 + 2 + 3 = 6.

  • Câu 38: Vận dụng

    Hình nào sau đây là đồ thị của hàm số y=-\frac{1}{2}x^{2}+x?

    Hàm số y=-\frac{1}{2}x^{2}+x? có các hệ số a = − 1 2 −12 < 0, b = 1, c = 0

    a =  - \frac{1}{2} < 0 nên đồ thị hàm số có bề lõm quay xuống dưới, ta loại hai hình vẽ:

    Đồ thị của hàm số bậc hai Đồ thị của hàm số bậc hai

    Đồ thị có toạ độ đỉnh {x_S} =  - \frac{b}{{2a}} = 1 tung độ {y_S} =  - \frac{\Delta }{{4a}} = \frac{1}{2} hay S\left( {1;\frac{1}{2}} ight). Do đó ta loại hình vẽ

    Đồ thị của hàm số bậc hai

  • Câu 39: Vận dụng

    Các đường thẳng y =  − 5(x+1); y = 3x + a; y = ax + 3 đồng quy với giá trị của a

    Gọi d1 : y =  − 5x − 5, d2 : y = 3x + a, d3 : y = ax + 3 (a≠3).

    Phương trình hoành độ giao điểm của d1d2: - 5x - 5 = 3x + a \Leftrightarrow x = \frac{- a -
5}{8}.

    Giao điểm của d1d2A\left( \frac{- a - 5}{8};\frac{5a - 15}{8}
ight).

    Đường thẳng d1, d2d3 đồng qui khi A ∈ d3 \Leftrightarrow \frac{5a - 15}{8} = a.\frac{- a -
5}{8} + 3 \Leftrightarrow a^{2} + 10a - 39 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
a = 3 \\
a = - 13 \\
\end{matrix} ight.  ⇔ a =  − 13. (vì a ≠ 3)

  • Câu 40: Vận dụng

    Tìm tất cả các giá trị thực của tham số m để bất phương trình (2m2−3m−2)x2 + 2(m−2)x − 1 ≤ 0 có tập nghiệm là .

    Xét 2m^{2} - 3m - 2 = 0 \Leftrightarrow m
= - \frac{1}{2}hoặc m = 2

    • Khi m = - \frac{1}{2} thì bất phương trình trở thành x \geq -
\frac{1}{5} nên không có nghiệm đúng với mọi x.

    • Khi m = 2 thì bất phương trình trở thành  − 1 ≤ 0 nên có nghiệm đúng với mọi x.

    • Khi \left\{ \begin{matrix}
m eq - \frac{1}{2} \\
m eq 2 \\
\end{matrix} ight. thì yêu cầu bài toán

     ⇔ (2m2−3m−2)x2 + 2(m−2)x − 1 ≤ 0  ∀x ∈ ℝ

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' \leq 0 \\
a < 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
3m^{2} - 7m + 2 \leq 0 \\
2m^{2} - 3m - 2 < 0 \\
\end{matrix} ight.\  ight.

    \Leftrightarrow \left\{ \begin{matrix}
\frac{1}{3} \leq m \leq 2 \\
- \frac{1}{2} < m < 2 \\
\end{matrix} \Leftrightarrow \frac{1}{3} \leq m < 2 ight.

    Kết hợp hai trường hợp ta được \frac{1}{3}
\leq m \leq 2 là giá trị cần tìm.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 7 lượt xem
Sắp xếp theo