Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Hàm số và đồ thị gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số f(x) =
\left\{ \begin{matrix}
\frac{2\sqrt{x - 2} - 3}{x - 1} & khi & x \geq 2 \\
x^{2} + 2 & khi & x < 2 \\
\end{matrix} ight.. Tính P = f(2) + f(−2).

    Ta có: f(2) + f( - 2) = \frac{2\sqrt{2 -
2} - 3}{2 - 1} + ( - 2)^{2} + 2 \Rightarrow P = 3.

  • Câu 2: Nhận biết

    Tổng các nghiệm của phương trình \sqrt{x^{2} + 2x + 4} = \sqrt{2 - x} bằng:

    \sqrt{x^{2} + 2x + 4} = \sqrt{2 - x}\Leftrightarrow \left\{ \begin{matrix}2 - x \geq 0 \\x^{2} + 2x + 4 = 2 - x \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 2 \\\left\lbrack \begin{matrix}x = - 1 \\x = - 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = - 2 \\\end{matrix} ight..

    Vậy, tổng các nghiệm của phương trình là ( - 1) + ( - 2) = - 3.

  • Câu 3: Thông hiểu

    Tập nghiệm của phương trình: \sqrt{3-x+x^{2}}-\sqrt{2+x-x^{2}}=1 là:

    Điều kiện: \left\{ {\begin{array}{*{20}{c}}  {3 - x + {x^2} \geqslant 0} \\   {2 + x - {x^2} \geqslant 0} \end{array}} ight. => x \in \left[ { - 1,2} ight]

    Phương trình tương đương

    \begin{matrix}  \sqrt {3 - x + {x^2}}  - \sqrt {2 + x - {x^2}}  = 1 \hfill \\   \Leftrightarrow \sqrt {3 - x + {x^2}}  - 2 + 1 - \sqrt {2 + x - {x^2}}  = 0 \hfill \\   \Leftrightarrow \dfrac{{{x^2} - x - 1}}{{\sqrt {3 - x + {x^2}}  + 2}} + \dfrac{{{x^2} - x - 1}}{{1 + \sqrt {2 + x - {x^2}} }} = 0 \hfill \\   \Leftrightarrow \left( {{x^2} - x - 1} ight)\left( {\dfrac{1}{{\sqrt {3 - x + {x^2}}  + 2}} + \dfrac{1}{{1 + \sqrt {2 + x - {x^2}} }}} ight) = 0 \hfill \\ \end{matrix}

    Ta có: \frac{1}{{\sqrt {3 - x + {x^2}}  + 2}} + \frac{1}{{1 + \sqrt {2 + x - {x^2}} }} > 0,\forall x \in \left[ { - 1,2} ight]

    \begin{matrix}   \Leftrightarrow {x^2} - x - 1 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{{1 - \sqrt 5 }}{2}} \\   {x = \dfrac{{1 + \sqrt 5 }}{2}} \end{array}} ight.\left( {tm} ight) \hfill \\ \end{matrix}

    Vậy tập nghiệm của phương trình là: \left\{ {\frac{{1 + \sqrt 5 }}{2};\frac{{1 - \sqrt 5 }}{2}} ight\}

  • Câu 4: Nhận biết

    Tìm m để hàm số y = mx +(m+2)x-2 luôn đồng biến biến trên tập số thực.

    Để hàm số y = mx +(m+2)x-2 nghịch biến trên tập số thực thì m>0.

  • Câu 5: Thông hiểu

    Cho hàm số: f(x) =
\left\{ \begin{matrix}
- 2(x - 3) & khi & - 1 \leq x \leq 1 \\
\sqrt{x^{2} - 1} & khi & x > 1 \\
\end{matrix} ight.. Giá trị của f(−1); f(1) là:

    Ta có: f(−1) =  − 2(−1−3) = 8; f(1) = \sqrt{1^{2} - 1} = 0.

    Chọn đáp án 80.

  • Câu 6: Nhận biết

    Tìm giá trị nhỏ nhất của hàm số y = x2 − 4x + 1.

    y = x2 − 4x + 1 = (x−2)2 − 3 ≥  − 3.

    Dấu " = " xảy ra khi và chỉ khi x = 2.

    Vậy hàm số đã cho đạt giá trị nhỏ nhất là  − 3 tại x = 2.

  • Câu 7: Thông hiểu

    Một chiếc cổng hình parabol có phương trình y = - \frac{1}{2}x^{2}. Biết cổng có chiều rộng d = 5 mét (như hình vẽ). Hãy tính chiều cao h của cổng.

    Gọi ABlà hai điểm ứng với hai chân cổng như hình vẽ.

    Vì cổng hình parabol có phương trình y = -
\frac{1}{2}x^{2}và cổng có chiều rộng d = 5 mét nên:

    AB = 5 A\left( - \frac{5}{2}; - \frac{25}{8} ight);\
B\left( \frac{5}{2}; - \frac{25}{8} ight).

    Vậy chiều cao của cổng là\left| -
\frac{25}{8} ight| = \frac{25}{8} = 3,125mét.

  • Câu 8: Thông hiểu

    Phương trình \left( x^{2} - 6x ight)\sqrt{17 - x^{2}} = x^{2}- 6x có bao nhiêu nghiệm thực phân biệt?

    Điều kiện: 17 - x^{2} \geq 0\Leftrightarrow - \sqrt{17} \leq x \leq \sqrt{17}.

    Ta có: \left( x^{2} - 6x ight)\sqrt{17 -x^{2}} = x^{2} - 6x \Leftrightarrow \left( x^{2} - 6x ight)\left(\sqrt{17 - x^{2}} - 1 ight) = 0.

    \Leftrightarrow \left\lbrack\begin{matrix}x^{2} - 6x = 0 \\\sqrt{17 - x^{2}} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x(x - 6) = 0 \\16 - x^{2} = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 0(T) \\x = 6(L) \\x = \pm 4(T) \\\end{matrix} ight..

    Vậy phương trình có 3 nghiệm thực phân biệt.

  • Câu 9: Thông hiểu

    Các giá trị m để tam thức f(x) = x2– (m + 2)x + 8m + 1 đổi dấu 2 lần là

    Tam thức đổi dấu 2 lần khi tam thức có 2 nghiệm pb

    Δ > 0 ⇔ m2 − 28m > 0 ⇔ m < 0 ∨ m > 28.

  • Câu 10: Thông hiểu

    Đồ thị hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

    Hỏi hàm số đó là hàm số nào?

    Nhận xét:

    Parabol có bề lõm hường lên.

    Parabol cắt trục hoành tại điểm (1;0). Xét các đáp án, đáp án y = 2x2 − 3x + 1. thỏa mãn.

  • Câu 11: Nhận biết

    Tập xác định của hàm số y = \sqrt{8 - 2x} - x là:

    Điều kiện: 8 − 2x ≥ 0 ⇔ x ≤ 4. Vậy D = ( − ∞; 4].

  • Câu 12: Thông hiểu

    Tìm m để hàm số y = (2m−1)x + 7 đồng biến trên .

    Hàm số y = (2m−1)x + 7 đồng biến trên khi 2m − 1 > 0 hay m > \frac{1}{2}.

  • Câu 13: Nhận biết

    Nghiệm của phương trình: \sqrt{x - 2} = \sqrt{2 - x} là bao nhiêu?

    Điều kiện: \left\{ \begin{matrix}
x - 2 \geq 0 \\
2 - x \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 2 \\
x \leq 2 \\
\end{matrix} ight.\  \Leftrightarrow x = 2.

    Thay x = 2 vào phương trình ta được 0 = 0 hay x = 2 là nghiệm của phương trình.

  • Câu 14: Nhận biết

    Tập nghiệm của bất phương trình 2{x^2} - 7x - 15 \geqslant 0 là:

    Tam thức f(x)=2{x^2} - 7x - 15 có hai nghiệm phân biệt {x_1} = 5;{x_2} =  - \frac{3}{2}

    a = 2 > 0 nên f(x) dương với mọi x thuộc hai nửa khoảng \left( { - \infty  - \frac{3}{2}} ight],\left[ {5, + \infty } ight)

    Vậy tập nghiệm của bất phương trình là: S=(-∞;-\frac{3}{2})∪[5;+∞)

  • Câu 15: Thông hiểu

    Cho hàm số y = (m−1)x2 − 2(m−2)x + m − 3  (m≠1)(P). Đỉnh của (P)S(−1;−2) thì m bằng bao nhiêu:

    Do đỉnh của (P)S(−1;−2) suy ra - 1 = \frac{m - 2}{m - 1} \Leftrightarrow m = \frac{3}{2}.

  • Câu 16: Nhận biết

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x =  − 3.

    (P) có trục đối xứng x =  − 3 nên - \frac{b}{2a} = - 3 \Leftrightarrow - \frac{3}{2a}
= - 3 \Leftrightarrow a = \frac{1}{2}.

    Vậy (P):y = \frac{1}{2}x^{2} + 3x -
2.

  • Câu 17: Vận dụng

    Biết ba đường thẳng d1 : y = 2x − 1, d2 : y = 8 − x, d3 : y = (3−2m)x + 2 đồng quy. Giá trị của m bằng

    + Gọi M là giao điểm của d1d2.

    Xét hệ: \left\{ \begin{matrix}
y = 2x - 1 \\
y = 8 - x \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 2x + y = - 1 \\
x + y = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = 5 \\
\end{matrix} ight.\  \Rightarrow M(3;5).

    + M ∈ d3 nên ta có: 5 = (3−2m).3 + 2 ⇔ 5 = 9 − 6m + 2 ⇔ 6m = 6 ⇔ m = 1.

  • Câu 18: Vận dụng

    Nghiệm của bất phương trình x - \frac{x^{2} - x + 6}{- x^{2} + 3x + 4} >
0

    x - \frac{x^{2} - x + 6}{- x^{2} + 3x +
4} = \frac{- x^{3} + 2x^{2} + 5x - 6}{- x^{2} + 3x + 4}

    = \frac{(x - 1)\left( - x^{2} + x + 6
ight)}{- x^{2} + 3x + 4}

    - x^{2} + x + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 2 \\
x = 3 \\
\end{matrix} ight.\ ,\

    - x^{2} + 3x + 4 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 1 \\
x = 4 \\
\end{matrix} ight.

    Bảng xét dấu

    Suy ra

    x - \frac{x^{2} - x + 6}{- x^{2} + 3x + 4}
> 0 \Leftrightarrow x \in ( - 2; - 1) \cup (1;3) \cup (4; +
\infty).

    Vậy nghiệm của bất phương trình có 3 khoảng.

  • Câu 19: Thông hiểu

    Số giá trị nguyên của x để tam thức f(x)=2x^{2}−7x−9 nhận giá trị âm là:

     Ta có: \Delta >0a=2>0.

    Phương trình f(x)=0 có hai nghiệm x=-1;x=\frac92.

    Do đó f(x)<0 \Leftrightarrow  -1 < x < \frac92 \Leftrightarrow x=\{0;1;2;3;4\} (5 giá trị).

  • Câu 20: Nhận biết

    Tập nghiệm của bất phương trình x^{2} - x
- 12 \leq 0 là?

    Ta có f(x) = x^{2} - x - 12 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 4 \\
x = - 3 \\
\end{matrix} ight.

    Bảng xét dấu:

    Dựa vào bảng xét dấu f(x) \leq 0
\Leftrightarrow - 3 \leq x \leq 4.

  • Câu 21: Vận dụng

    Số nghiệm của phương trình \sqrt{60 - 24x - 5x^{2}} = x^{2} + 5x - 10 là:

    ĐKXĐ: 60 − 24x − 5x2 ≥ 0

    Đặt t = \sqrt{60 - 24x - 5x^{2}}, (t≥0)pt trở thành \frac{1}{6}t^{2} + t - \frac{1}{6}x^{2} - x =0

    \Leftrightarrow t^{2} + 6t - x^{2} - 6x= 0 \Leftrightarrow \left\lbrack \begin{matrix}t = x \\t = - x - 6 \\\end{matrix} ight.

    \bullet \sqrt{60 - 24x - 5x^{2}} = x\Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{2} + 4x - 10 = 0 \\\end{matrix} ight.

    \Leftrightarrow x = - 2 +\sqrt{14}

    \bullet \sqrt{60 - 24x - 5x^{2}} = - x -6 \Leftrightarrow \left\{ \begin{matrix}- x - 6 \geq 0 \\x^{2} + 6x - 4 = 0 \\\end{matrix} ight.

    \Leftrightarrow x = - 3 -\sqrt{13}

    Vậy pt ban đầu có hai nghiệm x_{1} = - 2 -\sqrt{14},x_{2} = - 3 - \sqrt{13}.

  • Câu 22: Thông hiểu

    Phương trình: x^{2} + 5x + 2 + 2\sqrt{x^{2} + 5x + 10} =0 có mấy nghiệm ?

    Điều kiện xác định x2 + 5x + 10 ≥ 0 ⇔ x ∈ ℝ.

    Khi đó phương trình \Leftrightarrow x^{2}+ 5x + 10 + 2\sqrt{x^{2} + 5x + 10} - 8 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}\sqrt{x^{2} + 5x + 10} = 2 \\\sqrt{x^{2} + 5x + 10} = - 4 \\\end{matrix} ight. \Leftrightarrow \sqrt{x^{2} + 5x + 10} =2

    \Leftrightarrow x^{2} + 5x + 6 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 3 \\x = - 2 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 23: Vận dụng cao

    Hàm số nào sau đây có đồ thị như hình bên

    Quan sát đồ thị ta loại y = x2 − 3x − 3y =  − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y =  − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P)\left( \frac{5}{2};\frac{13}{4} ight), trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y =  − x2 + 5|x| − 3.

  • Câu 24: Nhận biết

    Xác định parabol (P) : y = ax2 + bx + 2, biết rằng (P) đi qua hai điểm M(1;5)N(−2;8).

    (P) đi qua hai điểm M(1;5)N(−2;8) nên ta có hệ

    \left\{ \begin{matrix}
a + b + 2 = 5 \\
4a - 2b + 2 = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = 1 \\
\end{matrix} ight.. Vậy (P) : y = 2x2 + x + 2.

  • Câu 25: Thông hiểu

    Đồ thị sau đây là đồ thị của hàm số nào trong các phương án dưới đây?

     Nhận xét: Đồ thị có đỉnh (1;-3).

    Thay tọa độ (1;-3) vào hàm số y=2x^{2}−4x−1 ta thấy thỏa mãn. 

  • Câu 26: Nhận biết

    Tìm tập xác định của y = \sqrt{6-3x}-\sqrt{x-1}

     Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}{6 - 3x \ge 0}\\{x - 1 \ge 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \le 2}\\{x \ge 1}\end{array}} ight.} ight. \Leftrightarrow 1 \le x \le 2.

    Vậy D=[1;2].

  • Câu 27: Vận dụng

    Phương trình (x -1)(x + 3) + 2(x - 1)\sqrt{\frac{x + 3}{x - 1}} = 8 có mấy nghiệm ?

    Điều kiện: \left\lbrack \begin{matrix}x \leq - 3 \\x > 1 \\\end{matrix} ight.

    Đặt t = (x - 1)\sqrt{\frac{x + 3}{x - 1}}\Rightarrow t^{2} = (x - 1)(x + 3).

    PT đã cho trở thành:

    t^{2} + 2t - 8 = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 2\ \  \\t = - 4\ \ \  \\\end{matrix} ight.

    Với t = 2 ta được

    \begin{matrix}(x - 1)\sqrt{\frac{x + 3}{x - 1}} = 2 \\\Rightarrow (x - 1)(x + 3) = 4 \Leftrightarrow \left\lbrack\begin{matrix}x = - 1 + 2\sqrt{2}(TM) \\x = - 1 - 2\sqrt{2}(L) \\\end{matrix} ight.\  \\\end{matrix}

    Với t =  − 4 ta được ta được

    \begin{matrix}(x - 1)\sqrt{\frac{x + 3}{x - 1}} = - 4 \\\Rightarrow (x - 1)(x + 3) = 16 \Leftrightarrow \left\lbrack\begin{matrix}x = - 1 + 2\sqrt{5}(L) \\x = - 1 - 2\sqrt{5}(TM) \\\end{matrix} ight.\  \\\end{matrix}

    Vậy phương trình có hai nghiệm là x = - 1+ 2\sqrt{2} ; x = - 1 -2\sqrt{5}.

  • Câu 28: Vận dụng cao

    Phương trình \sqrt{2x + 3} + \sqrt{x + 1} = 3x + 2\sqrt{2x^{2} +
5x + 3} - 16 có mấy nghiệm ?

    Điều kiện: x ≥  − 1

    Đặt t = \sqrt{2x + 3} + \sqrt{x + 1}\ \ \
(t \geq 0)\ \

    \Rightarrow t^{2} = 3x + 4 +
2\sqrt{2x^{2} + 5x + 3}

    Phương trình đã cho trở thành: t^{2} - t -
20 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 5\ \ \ (t/m) \\
t = - 4\ \ \ \ (l) \\
\end{matrix} ight.

    Với t = 5 ta có: \sqrt{2x + 3} + \sqrt{x + 1} = 5 \Leftrightarrow x
= 3

    Vậy phương trình đã cho có 1 nghiệm.

  • Câu 29: Vận dụng cao

    Hàm số nào sau đây có đồ thị như hình bên

    Quan sát đồ thị ta loại y = x2 − 3x − 3y =  − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y =  − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P)\left( \frac{5}{2};\frac{13}{4} ight), trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y =  − x2 + 5|x| − 3.

  • Câu 30: Thông hiểu

    Tập nghiệm của phương trình \sqrt{2x - 3} = x - 3?

    Ta có:

    \sqrt{2x - 3} = x - 3

    \Leftrightarrow \left\{ \begin{matrix}
x - 3 \geq 0 \\
2x - 3 = (x - 3)^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 3 \\
\left\lbrack \begin{matrix}
x = 2 \\
x = 6 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow x = 6

    Vậy tập nghiệm phương trình là: S =
\left\{ 6 ight\}

  • Câu 31: Vận dụng

    Cho hàm số bậc nhất y = (m2−4m−4)x + 3m − 2 có đồ thị là (d). Tìm số giá trị nguyên dương của m để đường thẳng (d) cắt trục hoành và trục tung lần lượt tại hai điểm A, B sao cho tam giác OAB là tam giác cân (O là gốc tọa độ).

    Đường thẳng (d) tạo với trục hoành và trục tung một tam giác OAB là tam giác vuông cân đường thẳng (d) tạo với chiều dương trục hoành bằng 45 hoặc 135 hệ số góc tạo của (d) bằng 1 hoặc - 1
\Leftrightarrow \left\lbrack \begin{matrix}
m^{2} - 4m - 4 = 1 \\
m^{2} - 4m - 4 = - 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} - 4m - 3 = 0 \\
m^{2} - 4m - 5 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = 5 \\
m = 2 \pm \sqrt{7} \\
\end{matrix} ight..

    Thử lại: m = 5 thì d không đi qua O.

    Vậy có duy nhất một giá trị m = 5 nguyên dương thỏa ycbt.

  • Câu 32: Nhận biết

    Số nghiệm của phương trình x = \sqrt{\sqrt{3x^{2} + 1} - 1} là bao nhiêu?

    x = \sqrt{\sqrt{3x^{2} + 1} - 1}\Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{2} = \sqrt{3x^{2} + 1} - 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\\sqrt{3x^{2} + 1} = x^{2} + 1 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\3x^{2} + 1 = (x^{2} + 1)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{4} - x^{2} = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{2}\left( x^{2} - 1 ight) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
\left\lbrack \begin{matrix}
x = 0 \\
x = \pm 1 \\
\end{matrix} ight.\  \\
\end{matrix} \Leftrightarrow ight.\ \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight. .

    Vậy phương trình có hai nghiệm.

  • Câu 33: Vận dụng cao

    Tìm tập xác định D của hàm số f(x) = \left\{ \begin{matrix}
\frac{1}{2 - x} & ;x \geq 1 \\
\sqrt{2 - x} & ;x < 1 \\
\end{matrix} ight.\ .

    Hàm số xác định khi \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x \geq 1 \\
2 - x eq 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x < 1 \\
2 - x \geq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x \geq 1 \\
x eq 2 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x < 1 \\
x \leq 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x \geq 1 \\
x eq 2 \\
\end{matrix} ight.\  \\
x < 1 \\
\end{matrix} ight..

    Vậy xác định của hàm số là D = ℝ ∖ {2}.

  • Câu 34: Thông hiểu

    Số thực dương lớn nhất thỏa mãn là ?

    Ta có .

    Bảng xét dấu

    Dựa vào bảng xét dấu . Suy ra số thực dương lớn nhất thỏa .

  • Câu 35: Nhận biết

    Tìm tọa độ đỉnh S của parabol: y = {x^2} - 2x + 1?

    Gọi tọa độ đỉnh của parabol là điểm I(x; y)

    Hàm số bậc hai có: a = 1;b' =  - 1;c = 1

    => \Rightarrow \Delta  = b{'^2} - ac = 0

    \left\{ {\begin{array}{*{20}{c}}  {x =  - \dfrac{b'}{{a}} =  - \dfrac{{ - 2}}{{2.1}} = 1} \\   {y =  - \dfrac{\Delta' }{{a}} = 0} \end{array}} ight. \Rightarrow I\left( {1;0} ight)

  • Câu 36: Thông hiểu

    Tìm tập xác định D của hàm số y = \sqrt{2x^{2} - 5x + 2}.

    Điều kiện 2x^{2} - 5x + 2 \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
x \geq 2 \\
x \leq \frac{1}{2} \\
\end{matrix} ight..

    Vậy tập xác định của hàm số là \left( -
\infty;\frac{1}{2} ightbrack \cup \lbrack 2; + \infty).

  • Câu 37: Nhận biết

    Tổng các bình phương của các nghiệm của phương trình(x - 1)(x - 3) + 3\sqrt{x^{2} -
4x + 5} - 2 = 0 bằng bao nhiêu?

    Ta có (x - 1)(x - 3) + 3\sqrt{x^{2} - 4x
+ 5} - 2 = 0

    \Leftrightarrow x^{2} - 4x + 5 +3\sqrt{x^{2} - 4x + 5} - 4 = 0\Leftrightarrow \sqrt{x^{2} - 4x + 5} =1

    \Leftrightarrow x^{2} - 4x + 5 = 1
\Leftrightarrow x^{2} - 4x + 4 = 0 \Leftrightarrow x = 2.

    Tổng các bình phương của các nghiệm của phương trình là 4.

  • Câu 38: Nhận biết

    Xác định m để biểu thức f(x) = (m + 2)x^{2} – 3mx + 1 là tam thức bậc hai.

     Để biểu thức f(x) = (m + 2)x^{2} – 3mx + 1 là tam thức bậc hai ta có:

    m + 2 e 0 \Leftrightarrow m e  - 2

  • Câu 39: Nhận biết

    Điểm nào sau đây thuộc đồ thị hàm số y = 4x + 1?

     Thay tọa độ (0;1) vào y=4x+1 ta được 1=1 thỏa mãn. Suy ra điểm này thuộc đồ thị hàm số y=4x+1.

  • Câu 40: Vận dụng

    Cho hàm số y =
f(x) = x^{3} + \left( m^{2} - 1 ight)x^{2} + 2x + m - 1 là một hàm số lẻ. Biết rằng m = m_{0}. Khẳng định nào dưới đây là khẳng định đúng?

    Tập xác định D\mathbb{= R}

    Với x \in D \Rightarrow - x \in
D

    f( - x) = ( - x)^{3} + \left( m^{2} - 1
ight).( - x)^{2} + 2( - x) + m - 1

    = - x^{3} + \left( m^{2} - 1
ight).x^{2} - 2x + m - 1

    Hàm số đã cho là hàm số lẻ khi đó:

    f( - x) = - f(x),\forall x \in
D

    \Leftrightarrow - x^{3} + \left( m^{2} -
1 ight).x^{2} - 2x + m - 1 = - \left\lbrack x^{3} + \left( m^{2} - 1
ight)x^{2} + 2x + m - 1 ightbrack

    \Leftrightarrow 2\left( m^{2} - 1
ight)x^{2} + 2(m - 1) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} - 1 = 0 \\
m - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = \pm 1 \\
m = 1 \\
\end{matrix} ight.\  \Leftrightarrow m = 1

    Vậy m_{0} = 1 \in \left( \frac{1}{2};3
ight)

    VD

     

    1

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo