Cho bất phương trình
(1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.
Để thì
nghiệm đúng với
.
Nghĩa là:
Cho bất phương trình
(1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.
Để thì
nghiệm đúng với
.
Nghĩa là:
Số nghiệm của phương trình
là bao nhiêu?
Điều kiện: .
.
Đặt ,
.
.
Vậy phương trình đã cho có hai nghiệm.
Tập hợp nào sau đây là tập xác định của hàm số
?
Hàm số xác đinh khi và chỉ khi .
Hàm số nào sau đây có đồ thị như hình bên

Quan sát đồ thị ta loại y = x2 − 3x − 3 và y = − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y = − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P) là , trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y = − x2 + 5|x| − 3.
Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

Nhận xét:
Bảng biến thiên có bề lõm hướng lên. Loại đáp án y = − x2 + 4x − 9 và y = − x2 + 4x.
Đỉnh của parabol có tọa độ là (2;−5). Xét các đáp án, đáp án y = x2 − 4x − 1 thỏa mãn.
Tìm khẳng định đúng trong các khẳng định sau?
* Theo định nghĩa tam thức bậc hai thì f(x) = 3x2 + 2x − 5 là tam thức bậc hai.
Tìm hàm số bậc hai trong các hàm số dưới đây?
Theo định nghĩa ta có:
Hàm số bậc hai là .
Điểm nào không thuộc đồ thị hàm số đồ thị
?
Thay tọa độ vào hàm số ta được:
. Do đó điểm này không thuộc đồ thị hàm số.
Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như các đáp án dưới đây. Chọn đáp án đúng.

Dựa vào bảng xét dấu, chọn đáp án f(x) > 0với 2< x < 3 và f(x) < 0với x < 2 ∨ x > 3.
Điểm nào sau đây thuộc đồ thị hàm số
?
Thay tọa độ vào
ta được
thỏa mãn. Suy ra điểm này thuộc đồ thị hàm số
.
Xét tính đồng biến, nghịch biến của hàm số
trên khoảng (−∞;−5) và trên khoảng (−5;+∞). Khẳng định nào sau đây đúng?
Ta có : .
● Với mọi x1, x2 ∈ (−∞;−5) và x1 < x2. Ta có .
Suy ra đồng biến trên (−∞;−5).
● Với mọi x1, x2 ∈ (−5;+∞) và x1 < x2. Ta có .
Suy ra đồng biến trên (−5;+∞).
Chọn Hàm số đồng biến trên các khoảng (−∞;−5) và (−5;+∞).
Tập nghiệm của phương trình
là:
Xét phương trình: (1)
Điều kiện :
Thay x = 8 ta thấy (1) thoả mãn. Vậy, phương trình (1) có tập nghiệm là S = {8}.
Bảng xét dấu nào sau đây là bảng xét dấu của tam thức
là:
Xét biếu thức có
và nghiệm là
Ta có bảng xét dấu như sau:

Đồ thị hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

Hỏi hàm số đó là hàm số nào?
Nhận xét:
Parabol có bề lõm hường lên.
Parabol cắt trục hoành tại điểm (1;0). Xét các đáp án, đáp án y = 2x2 − 3x + 1. thỏa mãn.
Giải bất phương trình ![]()
Ta có: .
Hàm số nào dưới đây đồng biến trên (3;4)?
+ Hàm số đồng biến trên (2;+∞) nên đồng biến trên (3;4). Chọn đáp án này.
+ Hàm số y = x2 − 7x + 2 đồng biến trên . Loại.
+ Hàm số y = − 3x + 1 nghịc biến trên ℝ. Loại.
+ Hàm số đồng biến trên (−∞;1). Loại.
Xác định parabol
biết rằng Parabol đi qua hai điểm M(1;5) và N(2;-2)
Thay tọa độ và
vào hàm số, ta được:
.
Vậy đó là hàm số .
Cho hàm số
. Tính P = f(2) + f(−2).
Ta có: .
Các giá trị m để tam thức f(x) = x2– (m + 2)x + 8m + 1 đổi dấu 2 lần là
Tam thức đổi dấu 2 lần khi tam thức có 2 nghiệm pb
⇔ Δ > 0 ⇔ m2 − 28m > 0 ⇔ m < 0 ∨ m > 28.
Tổng các nghiệm của phương trình
là:
ĐK: x ≥ 0.
Dễ thấy x = 0 không là nghiệm của phương trình.
Xét x ≠ 0. Khi đó phương trình tương đương với
Đặt
Suy ra . Phương trình trở thành:
5t = 2(t2−1) + 4 ⇔ 2t2 − 5t + 2 = 0 ⇔ t = 2 (thỏa mãn) hoặc (loại)
Với t = 2 ta có (thỏa mãn)
Vậy phương trình có nghiệm là .
Tổng các nghiệm của phương trình bằng 3.
Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol . Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 43 m so với mặt đất , người ta thả một sợi dây chạm đất . Vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn 10 m. Giả sử các số liệu trên là chính xáHãy tính độ cao của cổng Arch. (làm tròn kết quả đến hàng phần mười)

hệ trục tọa độ Oxy như hình vẽ. Phương trình Parabol (P) có dạng y = ax2 + bx + c.
Parabol (P)đi qua điểm A(0;0), B(162;0), M(10;43) nên ta có
.
Do đó chiều cao của cổng là m.
Biết phương trình
có nghiệm duy nhất là
. Hãy chọn khẳng định đúng.
ĐK
.
Giả sử
là nghiệm của phương trình
. Khi đó giá trị lớn nhất của biểu thức
bằng:
Để phương trình có hai nghiệm thì
Áp dụng hệ thức Viet ta có:
Khi đó: .
Xét hàm số có hệ số
, hoành độ đỉnh
nên
đồng biến trên
.
Tập nghiệm
của phương trình
là:
Ta có: .
Thử lại thấy không thỏa mãn.
Vậy .
Tích các nghiệm của phương trình
là:
ĐKXĐ: x ≥ − 3
Phương trình
Đặt , (t≥0) phương trình trở thành − 27t2 − 3t + 3x2 + 31x + 80 = 0(1)
Có Δt = (18x+93)2 suy ra
Vô nghiệm vì với x ≥ − 3 thì
hoặc x = − 2
Vậy phương trình ban đầu có hai nghiệm x = 1 và x = − 2, tích các nghiệm của phương trình là 1.(−2) = − 2.
Nghiệm của phương trình
là:
Điều kiện: .
Ta có: .
Loại . Do đó
.
Hàm số f(x) có tập xác định ℝ và có đồ thị như hình vẽ

Mệnh đề nào sau đây đúng ?
Nhìn vào đồ thị hàm số ta có:
Đồ thị hàm số cắt trục hoành tại hai điểm M(1; 0), N(3; 0) ⇒ MN = 2 . Suy ra Đồ thị hàm số cắt trục hoành theo một dây cung có độ dài bằng 2là đúng.
Hình nào sau đây là đồ thị của hàm số ![]()
Hàm số có các hệ số
Vì nên đồ thị hàm số có bề lõm quay xuống dưới, ta loại hai hình vẽ:

Đồ thị có toạ độ đỉnh tung độ
hay
. Do đó ta loại hình vẽ

Gọi S là tập nghiệm của bất phương trình
. Trong các tập hợp sau, tập nào không là tập con của S?
Tam thức bậc hai có hai nghiệm phân biệt là:
Vì a = 1 > 0 nên khi
.
Tập không phải tập con của S là:
Tất cả các giá trị của tham số m để phương trình
có nghiệm là:
ĐKXĐ x > − 1
pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.
Phương trình đã cho có nghiệm .
Phương trình (m−1)x2 − 2x + m + 1 = 0 có hai nghiệm phân biệt khi
Yêu cầu bài toán
Vậy phương trình có hai nghiệm phân biệt
Cho hàm số có đồ thị như hình bên dưới.
Khẳng định nào sau đây là đúng?
Trên khoảng (0;2) đồ thị hàm số đi xuống từ trái sang phải nên hàm số nghịch biến.
Cho hàm số có đồ thị như hình vẽ
Khẳng định nào sau đây đúng:
Hàm số đồng biến trên khoảng (1;3).
Cho hàm số
. Ta có kết quả nào sau đây đúng?
;
.
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.
Vì (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay vào (P), ta được 0 = 4a + 6 − 2 ⇔ a = − 1.
Vậy (P) : y = − x2 + 3x − 2.
Tổng các nghiệm của phương trình
?
Đặt . Khi đó phương trình đã cho trở thành:
Vì t ≥ 0 ⇒ t = 6, thay vào ta có .
x2 + 11 = 36 ⇔ x = ± 5.
Vậy phương trình có nghiệm là x = ± 5.
Tổng các nghiệm của phương trình là 0.
Bề lõm của parabol quay lên trên đối với đồ thị hàm số bậc hai nào sau đây?
Đồ thị hàm số bậc hai là một đường parabol có đỉnh là điểm
, có trục đối xứng là đường thẳng
. Parabol này quay bề lõm lên trên nếu
.
Hàm số có
=> Đồ thị hàm số có bề lõm quay lên.
Cặp bất phương trình nào sau đây là tương đương?
Ta có: .
Ta có: (Vì
với mọi giá trị
). Do đó
.
Đường thẳng d : y = (m−3)x − 2m + 1 cắt hai trục tọa độ tại hai điểm A và B sao cho tam giác OAB cân. Khi đó, số giá trị của m thỏa mãn là
A = d ∩ Ox nên tọa độ A là nghiệm của hệ:
nên
.
B = d ∩ Oy nên tọa độ B là nghiệm của hệ:
nên B(0;−2m+1).
Ta có
.
Nhận xét: Với thì A ≡ B ≡ O(0; 0) nên không thỏa mãn.
Vậy m = 4, m = 2.
Tập nghiệm của bất phương trình
là:
Tam thức có hai nghiệm phân biệt
a = 2 > 0 nên f(x) dương với mọi x thuộc hai nửa khoảng
Vậy tập nghiệm của bất phương trình là: