Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Hàm số và đồ thị gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Giải bất phương trình −2x^{2}+3x−7≥0.

     Ta có: −2x^{2}+3x−7≥0 \Leftrightarrow x \in \varnothing.

  • Câu 2: Thông hiểu

    Tìm tất cả các giá trị của tham số m để bất phương trình x^{2} - (m + 2)x + 8m + 1 \leq 0 vô nghiệm.

    Để bất phương trình x^{2} - (m + 2)x + 8m
+ 1 \leq 0 vô nghiệm thì x^{2} - (m
+ 2)x + 8m + 1 > 0,\forall x\mathbb{\in R}.

    {x^2} - (m + 2)x + 8m + 1 > 0,\forall x \in \mathbb{R}

    \Leftrightarrow m^{2} + 4m + 4 - 32m - 4
< 0

    \Leftrightarrow m^{2} - 28m <
0

    \Leftrightarrow 0 < m <
28.

  • Câu 3: Thông hiểu

    Tập nghiệm của phương trình x + \sqrt{x - 1} = 2 + \sqrt{x - 1}là:

    Phương trình x + \sqrt{x - 1} = 2 +\sqrt{x - 1} \Leftrightarrow \left\{ \begin{matrix}x \geq 1 \\x = 2 \\\end{matrix} ight.\  \Leftrightarrow x = 2.

    Vậy S = {2}.

  • Câu 4: Nhận biết

    Giải bất phương trình x(x+5)≤2(x^{2}+2)

     Ta có: x(x+5)≤2(x^{2}+2)  \Leftrightarrow -x^2+5x-4 \le 0\Leftrightarrow x\in (-∞;1]\cup [4;+∞).

  • Câu 5: Nhận biết

    Trục đối xứng của parabol y =  − x2 + 5x + 3 là đường thẳng có phương trình

    Trục đối xứng của parabol y = ax2 + bx + c là đường thẳng x = -
\frac{b}{2a}.

    Trục đối xứng của parabol y =  − x2 + 5x + 3 là đường thẳng x = \frac{5}{2}.

  • Câu 6: Nhận biết

    Tìm giá trị nhỏ nhất của hàm số y = x2 − 4x + 1.

    y = x2 − 4x + 1 = (x−2)2 − 3 ≥  − 3.

    Dấu " = " xảy ra khi và chỉ khi x = 2.

    Vậy hàm số đã cho đạt giá trị nhỏ nhất là  − 3 tại x = 2.

  • Câu 7: Thông hiểu

    Bề lõm của parabol quay lên trên đối với đồ thị hàm số bậc hai nào sau đây?

    Đồ thị hàm số bậc hai y = f(x) = a{x^2} + bx + c ,(a e 0) là một đường parabol có đỉnh là điểm I\left( { - \frac{b}{{2a}};\frac{{ - \Delta }}{{4a}}} ight), có trục đối xứng là đường thẳng x = - \frac{b}{{2a}}. Parabol này quay bề lõm lên trên nếu a > 0.

    Hàm số y = 2x + x^{2}a = 1 > 0

    => Đồ thị hàm số y = 2x + x^{2} có bề lõm quay lên.

  • Câu 8: Vận dụng

    Số nghiệm của phương trình x = \sqrt{\sqrt{3x^{2} + 1} - 1} là:

    x = \sqrt{\sqrt{3x^{2} + 1} -1}

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{2} = \sqrt{3x^{2} + 1} - 1 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\\sqrt{3x^{2} + 1} = x^{2} + 1 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\3x^{2} + 1 = (x^{2} + 1)^{2} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{4} - x^{2} = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{2}\left( x^{2} - 1 ight) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\\left\lbrack \begin{matrix}x = 0 \\x = \pm 1 \\\end{matrix} ight.\  \\\end{matrix} \Leftrightarrow ight.\ \left\lbrack \begin{matrix}x = 0 \\x = 1 \\\end{matrix} ight. .

    Vậy phương trình có hai nghiệm.

  • Câu 9: Vận dụng

    Cho hàm số y =
f(x) = x^{3} + \left( m^{2} - 1 ight)x^{2} + 2x + m - 1 là một hàm số lẻ. Biết rằng m = m_{0}. Khẳng định nào dưới đây là khẳng định đúng?

    Tập xác định D\mathbb{= R}

    Với x \in D \Rightarrow - x \in
D

    f( - x) = ( - x)^{3} + \left( m^{2} - 1
ight).( - x)^{2} + 2( - x) + m - 1

    = - x^{3} + \left( m^{2} - 1
ight).x^{2} - 2x + m - 1

    Hàm số đã cho là hàm số lẻ khi đó:

    f( - x) = - f(x),\forall x \in
D

    \Leftrightarrow - x^{3} + \left( m^{2} -
1 ight).x^{2} - 2x + m - 1 = - \left\lbrack x^{3} + \left( m^{2} - 1
ight)x^{2} + 2x + m - 1 ightbrack

    \Leftrightarrow 2\left( m^{2} - 1
ight)x^{2} + 2(m - 1) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} - 1 = 0 \\
m - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = \pm 1 \\
m = 1 \\
\end{matrix} ight.\  \Leftrightarrow m = 1

    Vậy m_{0} = 1 \in \left( \frac{1}{2};3
ight)

    VD

     

    1

  • Câu 10: Thông hiểu

    Cho bất phương trình m{x^2} - (2m - 1)x + m + 1 < 0 (1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.

    Để m{x^2} - (2m - 1)x + m + 1 < 0 thì m{x^2} - (2m - 1)x + m + 1 \geqslant 0 nghiệm đúng với \forall x \in \mathbb{R}.

    Nghĩa là:\left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta  \leqslant 0} \end{array}} ight.

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {{{\left( {2m - 1} ight)}^2} - 4m\left( {m + 1} ight) \leqslant 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {4{m^2} - 4m + 1 - 4{m^2} - 4m \leqslant 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   { - 8m + 1 \leqslant 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {m \geqslant \dfrac{1}{8}} \end{array}} ight. \Leftrightarrow m \geqslant \frac{1}{8} \hfill \\ \end{matrix}

  • Câu 11: Vận dụng cao

    Phương trình 2x^{2} + x + 3 = 3x\sqrt{x + 3} có mấy nghiệm ?

    Đặt t = \sqrt{x + 3}\ \ \ (t \geq
0). Phương trình đã cho trở thành:

    \begin{matrix}
t^{2} - 3xt + 2x^{2} = 0 \Leftrightarrow (t - x)(t - 2x) = 0 \\
\Leftrightarrow \left\lbrack \begin{matrix}
t = x \\
t = 2x \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\sqrt{x + 3} = x \\
\sqrt{x + 3} = 2x \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \frac{- 1 + \sqrt{13}}{2} \\
x = 1 \\
\end{matrix} ight.\ . \\
\end{matrix}

    Vậy phương trình có 2 nghiệm.

  • Câu 12: Nhận biết

    Hàm số nào dưới đây đồng biến trên (3;4)?

    + Hàm số y = \frac{1}{2}x^{2} - 2x +
1 đồng biến trên (2;+∞) nên đồng biến trên (3;4). Chọn đáp án này.

    + Hàm số y = x2 − 7x + 2 đồng biến trên \left( \frac{7}{2}; + \infty
ight). Loại.

    + Hàm số y =  − 3x + 1 nghịc biến trên . Loại.

    + Hàm số y = - \frac{1}{2}x^{2} + x -
1 đồng biến trên (−∞;1). Loại.

  • Câu 13: Nhận biết

    Tìm tập xác định của y = \sqrt{6-3x}-\sqrt{x-1}

     Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}{6 - 3x \ge 0}\\{x - 1 \ge 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \le 2}\\{x \ge 1}\end{array}} ight.} ight. \Leftrightarrow 1 \le x \le 2.

    Vậy D=[1;2].

  • Câu 14: Thông hiểu

    Một chiếc cổng parabol dạng y = -
\frac{1}{2}x^{2} có chiều rộng d =
8m. Hỏi chiều cao của chiếc cổng là?

    Đáp án: 8

    Đáp án là:

    Một chiếc cổng parabol dạng y = -
\frac{1}{2}x^{2} có chiều rộng d =
8m. Hỏi chiều cao của chiếc cổng là?

    Đáp án: 8

    Khoảng cách từ chân cổng đến trục đối xứng Oy là \frac{8}{2} = 4.

    Hoành độ hai chân cổng là -
4;4

    Tung độ chân cổng là: y = -
\frac{1}{2}.4^{2} = - 8

    Vậy chiều cao của cổng là | - 8| =
8 mét.

  • Câu 15: Nhận biết

    Xác định m để biểu thức f(x) = (m + 2)x^{2} – 3mx + 1 là tam thức bậc hai.

     Để biểu thức f(x) = (m + 2)x^{2} – 3mx + 1 là tam thức bậc hai ta có:

    m + 2 e 0 \Leftrightarrow m e  - 2

  • Câu 16: Nhận biết

    Cho hàm số y = f(x) có tập xác định là [ − 3; 3] và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là đúng?

    Trên khoảng (−3;−1)(1;3) đồ thị hàm số đi lên từ trái sang phải

    \overset{}{ightarrow} Hàm số đồng biến trên khoảng (−3;−1)(1;3).

  • Câu 17: Thông hiểu

    Cho hàm số y=\left\{\begin{matrix}\frac{2}{x-1},x\in (-∞;0) \\ \sqrt{x+1},x\in [0;2]\\ x^{2}-1,x\in (2;5]\end{matrix}ight.. Tính f(4), ta được kết quả:

     Với x=4 \in (2;5], ta có: f(4)=4^2-1=15.

  • Câu 18: Nhận biết

    Cho hàm số y = f(x) = |-5x|. Khẳng định nào sau đây là sai?

    Ta có: f(\frac{1}{5})=|-5.\frac{1}{5}|=1 e-1

    Khẳng định sai là: f(\frac{1}{5})=-1

  • Câu 19: Thông hiểu

    Tìm tập xác định của hàm số y=\sqrt{x+2}-\frac{2}{x-3}

    Điều kiện xác định của hàm số là: \left\{ {\begin{array}{*{20}{c}}  {x + 2 \geqslant 0} \\   {x - 3 e 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant  - 2} \\   {x e 3} \end{array}} ight.

    => Tập xác định của hàm số là: D = \left[ {2; + \infty } ight)\backslash \left\{ 3 ight\}

  • Câu 20: Thông hiểu

    Tìm tập xác định D của hàm số f(x) = \sqrt{x + 1} + \frac{1}{x}.

    Điều kiện: \left\{ \begin{matrix}
x + 1 \geq 0 \\
x eq 0 \\
\end{matrix} ight..

    Vậy tập xác định của hàm số là D = [ − 1;  + ∞) ∖ {0}.

  • Câu 21: Nhận biết

    Tam thức bậc hai f(x) = \left( 1 - \sqrt{2} ight)x^{2} + \left( 5
- 4\sqrt{2} ight)x - 3\sqrt{2} + 6

    f(x) = \left( 1 - \sqrt{2} ight)x^{2}
+ \left( 5 - 4\sqrt{2} ight)x - 3\sqrt{2} + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = \sqrt{2} \\
x = - 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án Dương với mọi x \in \left( - 3;\sqrt{2} ight).

  • Câu 22: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m sao cho hàm số x^{2} + (m - 1)x + m - 2 = 0 có hai nghiệm phân biệt thuộc khoảng ( -
5;5)?

    Ta có:

    PT \Leftrightarrow (x + 1)(x + m - 2) =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = - m + 2 \\
\end{matrix} ight.

    Từ yêu cầu bài toán \Leftrightarrow
\left\{ \begin{matrix}
- m + 2 eq - 1 \\
- 5 < - m + 2 < 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m eq 3 \\
- 3 < m < 7 \\
\end{matrix} ight.

    Suy ra m \in \left\{ - 2; - 1;0;1;2;4;5;6
ight\}

    Vậy có 8 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 23: Thông hiểu

    Tất cả các giá trị của tham số m để phương trình \frac{3mx + 1}{\sqrt{x + 1}} + \sqrt{x + 1} =\frac{2x + 5m + 3}{\sqrt{x + 1}} có nghiệm là:

    ĐKXĐ: x >  − 1

    pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.

    Phương trình đã cho có nghiệm \Leftrightarrow \left\{ \begin{matrix}3m - 1 eq 0 \\x = \frac{5m + 1}{3m - 1} > - 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m eq \frac{1}{3} \\\frac{8m}{3m - 1} > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}m > \frac{1}{3} \\m < 0 \\\end{matrix} ight..

  • Câu 24: Vận dụng

    Cho parabol (P) : y = ax2 + bx + c, (a≠0) có đồ thị như hình bên. Khi đó 2a + b + 2c có giá trị là

    Parabol (P) : y = ax2 + bx + c, (a≠0) đi qua các điểm A(−1; 0), B(1; −4), C(3; 0) nên có hệ phương trình: \left\{ \begin{matrix}
a - b + c = 0 \\
a + b + c = - 4 \\
9a + 3b + c = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = - 2 \\
c = - 3 \\
\end{matrix} ight..

    Khi đó: 2a + b + 2c = 2.1 − 2 + 2(−3) =  − 6.

  • Câu 25: Vận dụng

    Tìm m để hàm số y = \frac{\sqrt{x - 2m + 3}}{x - m} + \frac{3x -
1}{\sqrt{- x + m + 5}} xác định trên khoảng (0;1).

    *Gọi D là tập xác định của hàm số y = \frac{\sqrt{x - 2m + 3}}{x - m} +
\frac{3x - 1}{\sqrt{- x + m + 5}}.

    *x \in D \Leftrightarrow \left\{
\begin{matrix}
x - 2m + 3 \geq 0 \\
x - m\boxed{=}0 \\
- x + m + 5 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 2m - 3 \\
x\boxed{=}m \\
x < m + 5 \\
\end{matrix} ight..

    *Hàm số y = \frac{\sqrt{x - 2m + 3}}{x -
m} + \frac{3x - 1}{\sqrt{- x + m + 5}} xác định trên khoảng (0;1)

    \Leftrightarrow (0;1) \subset D
\Leftrightarrow \left\{ \begin{matrix}
2m - 3 \leq 0 \\
m + 5 \geq 1 \\
m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \leq \frac{3}{2} \\
m \geq - 4 \\
\left\lbrack \begin{matrix}
m \geq 1 \\
m \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow m \in \lbrack - 4;0brack \cup
\left\lbrack 1;\frac{3}{2} ightbrack.

  • Câu 26: Thông hiểu

    Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) đi qua ba điểm A(1;1), B(−1;−3)O(0;0).

    (P) đi qua ba điểm A(1;1), B(−1;−3), O(0;0) nên có hệ

    \left\{ \begin{matrix}
a + b + c = 1 \\
a - b + c = - 3 \\
c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 2 \\
c = 0 \\
\end{matrix} ight..

    Vậy (P) : y =  − x2 + 2x.

  • Câu 27: Thông hiểu

    Tam thức bậc hai f(x)=−x^{2}+3x−2 nhận giá trị không âm khi và chỉ khi

     Ta có: \Delta >0a=-1<0.

    Phương trình f(x)=0 có hai nghiệm phân biệt là x=1;x=2.

    Do đó, f(x) \ge 0 x \in [1;2].

  • Câu 28: Thông hiểu

    Tập nghiệm của phương trình \frac{x^{2}-5x}{\sqrt{x-2}}+\frac{4}{\sqrt{x-2}} =0 là:

     Điều kiện x>2.

    Ta có: \frac{x^{2}-5x}{\sqrt{x-2}}+\frac{4}{\sqrt{x-2}} =0\Leftrightarrow x^2-5x+4=0\Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 4}\end{array}} ight..

    Loại x=1. Do đó S=\{4\}.

  • Câu 29: Nhận biết

    Tìm m để hàm số y = mx +(m+2)x-2 luôn đồng biến biến trên tập số thực.

    Để hàm số y = mx +(m+2)x-2 nghịch biến trên tập số thực thì m>0.

  • Câu 30: Thông hiểu

    Các giá trị m để tam thức f(x)=x^{2}-(m+2)x+8m+1 đổi dấu 2 lần là:

     Để f(x) đổi dấu 2 lần thì \Delta >0.

    Ta có: (m+2)^2-4 (8m+1)>0 \Leftrightarrow m^2-28m>0 \Leftrightarrow m<0 hoặc m>28.

     

  • Câu 31: Vận dụng cao

    Tìm tất cả các giá trị thực của tham số m để đường thẳng d : y = mx cắt đồ thị hàm số (P) : y = x3 − 6x2 + 9x tại ba điểm phân biệt.

    Phương trình hoành độ giao điểm của (P) với dx3 − 6x2 + 9x = mx

    \overset{}{\leftrightarrow}x\left( x^{2}
- 6x + 9 - m ight) = 0\overset{}{\leftrightarrow}\left\lbrack
\begin{matrix}
x = 0 \\
x^{2} - 6x + 9 - m = 0.(1) \\
\end{matrix} ight.

    Để (P) cắt d tại ba điểm phân biệt khi và chỉ (1) có hai nghiệm phân biệt khác 0

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
0^{2} - 6.0 + 9 - m eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
9 - m eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
m eq 9 \\
\end{matrix} ight..

  • Câu 32: Vận dụng

    Số nghiệm của phương trình 10\sqrt{x^{3} + 1} = 3(x^{2} + 2) là:

    ĐKXĐ: x3 + 1 ≥ 0 ⇔ x ≥  − 1.

    Phương trình\Leftrightarrow 10\sqrt{(x +1)(x^{2} - x + 1)} = 3(x^{2} + 2)

    Đặt \sqrt{x + 1} = a,\ \ \sqrt{x^{2} - x +1} = b , a ≥ 0,  b ≥ 0

    Suy ra a2 + b2 = x2 + 2 khi đó

    Phương trình trở thành

    \begin{matrix}10ab = 3\left( a^{2} + b^{2} ight) \Leftrightarrow 3a^{2} - 10ab +3b^{2} = 0 \\\Leftrightarrow (3a - b)(a - 3b) = 0 \Leftrightarrow \left\lbrack\begin{matrix}3a = b \\a = 3b \\\end{matrix} ight.\  \\\end{matrix}

    Với 3a = b ta có 3\sqrt{x + 1} = \sqrt{x^{2} - x + 1}\Leftrightarrow 9(x + 1) = x^{2} - x + 1

    \Leftrightarrow x^{2} - 10x - 8 = 0\Leftrightarrow x = 5 \pm \sqrt{33} (thỏa mãn điều kiện)

    Với a = 3b ta có \sqrt{x + 1} = 3\sqrt{x^{2} - x + 1}\Leftrightarrow x + 1 = 9\left( x^{2} - x + 1 ight)

     ⇔ 9x2 − 10x + 8 = 0 (phương trình vô nghiệm).

    Vậy phương trình có nghiệm là x = 5 \pm\sqrt{33}.

  • Câu 33: Nhận biết

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x =  − 3.

    Trục đối xứng của (P) có dạng:

    x = - \frac{b}{2a} = - 3 \Leftrightarrow -
\frac{3}{2a} = - 3 \Leftrightarrow - 3 = - 6a \Leftrightarrow a =
\frac{1}{2}.

    Vậy (P) có phương trình: y = \frac{1}{2}x^{2} + 3x - 2.

  • Câu 34: Thông hiểu

    Số nghiệm của phương trình:\sqrt{x - 4}\left( x^{2} - 3x + 2 ight) = 0là:

    \sqrt{x - 4}\left( x^{2} - 3x + 2ight) = 0

    \Leftrightarrow \left\lbrack\begin{matrix}x - 4 = 0 \\\left\{ \begin{matrix}x - 4 > 0 \\x^{2} - 3x + 2 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 4 \\\left\{ \begin{matrix}x > 4 \\\left\lbrack \begin{matrix}x = 1 \\x = 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow x = 4.

    Vậy phương trình có một nghiệm.

  • Câu 35: Vận dụng cao

    Hỏi có bao nhiêu giá trị m nguyên trong nửa khoảng (0; 2017] để phương trình |x2−4|x|−5|  − m = 0 có hai nghiệm phân biệt?

    PT: |x2−4|x|−5|  − m = 0 ⇔ |x2−4|x|−5|  = m .

    Số nghiệm phương trình (1)⇔ số giao điểm của đồ thị hàm số y = |x2−4|x|−5| (P) và đường thẳng y = m .

    Xét hàm số y = x2 − 4x − 5  (P1) có đồ thị như hình 1.

    Xét hàm số y = x2 − 4|x| − 5  (P2) là hàm số chẵn nên có đồ thị nhận Oy làm trục đối xứng. Mà y = x2 − 4|x| − 5 = x2 − 4x − 5 nếu x ≥ 0. Suy ra đồ thị hàm số (P2) gồm hai phần:

    Phần 1: Giữ nguyên đồ thị hàm số (P1) phần bên phải Oy.

    Phần 2: Lấy đối xứng phần 1 qua trục Oy.

    Ta được đồ thị (P2) như hình 2.

    Xét hàm số y = |x2−4|x|−5| (P), ta có: y = \left\{ \begin{matrix}
x^{2} - 4|x| - 5\ \ \ \ \ \ \ \ \ \ (y \geq 0) \\
- \left( x^{2} - 4|x| - 5 ight)\ \ (y < 0) \\
\end{matrix} ight..

    Suy ra đồ thị hàm số (P) gồm hai phần:

    Phần 1: Giữ nguyên đồ thị hàm số (P2) phần trên Ox.

    Phần 2: Lấy đối xứng đồ thị hàm số (P2) phần dưới Ox qua trục Ox.

    Ta được đồ thị (P) như hình 3.

    Quan sát đồ thị hàm số (P) ta có: Để |x2−4|x|−5| = m   (1) có hai nghiệm phân biệt\Leftrightarrow
\left\lbrack \begin{matrix}
m > 9 \\
m = 0 \\
\end{matrix} ight..

    \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in (0;\ 2017brack \\
\end{matrix} ight.\  \Rightarrow m \in \left\{ 10;\ 11;\ 12;\ ...;\
2017 ight\}. Vậy có 2008 giá trị.

  • Câu 36: Nhận biết

    Tổng các bình phương của các nghiệm của phương trình(x - 1)(x - 3) + 3\sqrt{x^{2} -
4x + 5} - 2 = 0 bằng bao nhiêu?

    Ta có (x - 1)(x - 3) + 3\sqrt{x^{2} - 4x
+ 5} - 2 = 0

    \Leftrightarrow x^{2} - 4x + 5 +3\sqrt{x^{2} - 4x + 5} - 4 = 0\Leftrightarrow \sqrt{x^{2} - 4x + 5} =1

    \Leftrightarrow x^{2} - 4x + 5 = 1
\Leftrightarrow x^{2} - 4x + 4 = 0 \Leftrightarrow x = 2.

    Tổng các bình phương của các nghiệm của phương trình là 4.

  • Câu 37: Nhận biết

    Bất phương trình nào sau đây là bất phương trình bậc hai một ẩn?

    Bất phương trình bậc hai một ẩn là: 3x^{2} – 12x + 1 ≤ 0

  • Câu 38: Vận dụng

    Tìm các giá trị của m để biểu thức sau luôn âm: f(x) = mx2 − x − 1.

    Với m = 0 thì f(x) =  − x − 1 lấy cả giá trị dương (chẳng hạn f(−2) = 1) nên m = 0 không thỏa mãn yêu cầu bài toán

    Với m ≠ 0 thì f(x) = mx2 − x − 1 là tam thức bậc hai do đó f(x) < 0,\ \
\forall x \Leftrightarrow \left\{ \begin{matrix}
a = m < 0 \\
\Delta = 1 + 4m < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 0 \\
m > - \frac{1}{4} \\
\end{matrix} \Leftrightarrow - \frac{1}{4} < m < 0 ight.

    Vậy với - \frac{1}{4} < m <
0 thì biểu thức f(x) luôn âm.

  • Câu 39: Nhận biết

    Tập nghiệm S của bất phương trình x^{2} + x - 12 < 0 là:

     Ta có: x^{2} + x - 12 < 0  \Leftrightarrow -4< x <3.

    Suy ra S = (-4;3).

  • Câu 40: Vận dụng cao

    Một hộ nông dân định trồng đậu và cà trên diện tích 800m2. Nếu trồng đậu thì cần 20 công và thu 3.000.000 đồng trên 100m2 nếu trồng cà thì cần 30 công và thu 4.000.000 đồng trên 100 m2 Hỏi cần trồng mỗi loại cây trên diện tích là bao nhiêu để thu được nhiều tiền nhất khi tổng số công không quá 180. Hãy chọn phương án đúng nhất trong các phương án sau:

    Gọi x là số x00 m2 đất trồng đậu, y là số y00 m2 đất trồng cà. Điều kiện x ≥ 0, y ≥ 0.

    Số tiền thu được là T = 3x + 4y triệu đồng.

    Theo bài ra ta có \left\{ \begin{matrix}
x + y \leq 8 \\
20x + 30y \leq 180 \\
x \geq 0 \\
y \geq 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x + y \leq 8 \\
2x + 3y \leq 18 \\
x \geq 0 \\
y \geq 0 \\
\end{matrix} ight.

    Đồ thị:

    Dựa đồ thị ta có tọa độ các đỉnh A(0;6), B(6;2), C(8;0), O(0;0).

    Thay vào T = 3x + 4y ta được Tmax = 26 triệu khi trồng 600m2 đậu và 200 m2 cà.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo