Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Hàm số và đồ thị gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Số thực dương lớn nhất thỏa mãn là ?

    Ta có .

    Bảng xét dấu

    Dựa vào bảng xét dấu . Suy ra số thực dương lớn nhất thỏa .

  • Câu 2: Nhận biết

    Tam thức bậc hai f(x) =  − x2 − 1 nhận giá trị âm khi và chỉ khi

    f(x) =  − x2 − 1 = 0  vô nghiệm

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ ℝ.

  • Câu 3: Thông hiểu

    Tìm tất cả các giá trị của m để bất phương trình mx^{2} – x + m ≥ 0 với mọi x ∈ ℝ

    Để bất phương trình mx^{2} – x + m ≥ 0 với mọi x ∈ ℝ thì:

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta  \leqslant 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {{1^2} - 4{m^2} \leqslant 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {m \in \left( { - \infty ; - \dfrac{1}{2}} ight] \cup \left[ {\dfrac{1}{2}; + \infty } ight)} \end{array}} ight. \hfill \\   \Leftrightarrow m \in \left[ {\dfrac{1}{2}; + \infty } ight) \hfill \\ \end{matrix}

  • Câu 4: Vận dụng

    Tìm tất cả các giá trị thực của tham số m để bất phương trình (2m2−3m−2)x2 + 2(m−2)x − 1 ≤ 0 có tập nghiệm là .

    Xét 2m^{2} - 3m - 2 = 0 \Leftrightarrow m
= - \frac{1}{2}hoặc m = 2

    • Khi m = - \frac{1}{2} thì bất phương trình trở thành x \geq -
\frac{1}{5} nên không có nghiệm đúng với mọi x.

    • Khi m = 2 thì bất phương trình trở thành  − 1 ≤ 0 nên có nghiệm đúng với mọi x.

    • Khi \left\{ \begin{matrix}
m eq - \frac{1}{2} \\
m eq 2 \\
\end{matrix} ight. thì yêu cầu bài toán

     ⇔ (2m2−3m−2)x2 + 2(m−2)x − 1 ≤ 0  ∀x ∈ ℝ

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' \leq 0 \\
a < 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
3m^{2} - 7m + 2 \leq 0 \\
2m^{2} - 3m - 2 < 0 \\
\end{matrix} ight.\  ight.

    \Leftrightarrow \left\{ \begin{matrix}
\frac{1}{3} \leq m \leq 2 \\
- \frac{1}{2} < m < 2 \\
\end{matrix} \Leftrightarrow \frac{1}{3} \leq m < 2 ight.

    Kết hợp hai trường hợp ta được \frac{1}{3}
\leq m \leq 2 là giá trị cần tìm.

  • Câu 5: Thông hiểu

    Tổng các nghiệm của phương trình x^{2} + \sqrt{x^{2} + 11} = 31?

    Đặt t = \sqrt{x^{2} + 11},t \geq0. Khi đó phương trình đã cho trở thành:

    t^{2} + t - 42 = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 6 \\t = - 7 \\\end{matrix} ight.

    t ≥ 0 ⇒ t = 6, thay vào ta có \sqrt{x^{2} + 11} =6.

    x2 + 11 = 36 ⇔ x =  ± 5.

    Vậy phương trình có nghiệm là x =  ± 5.

    Tổng các nghiệm của phương trình là 0.

  • Câu 6: Thông hiểu

    Tập xác định của hàm số y = \frac{\sqrt{9 - x^{2}}}{x^{2} - 6x + 8}

    Ta có 9 − x2 ≥ 0 ⇔ (3−x)(3+x) ≥ 0 ⇔  − 3 ≤ x ≤ 3.

    Hàm số xác định khi và chỉ khi

    \left\{ \begin{matrix}
9 - x^{2} \geq 0 \\
x^{2} - 6x + 8 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3 \leq x \leq 3 \\
x eq 4 \\
x eq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3 \leq x \leq 3 \\
x eq 2 \\
\end{matrix} ight.. Vậy x ∈ [ − 3; 3] ∖ {2}.

  • Câu 7: Nhận biết

    Điểm nào sau đây thuộc đồ thị hàm số y = 4x + 1?

     Thay tọa độ (0;1) vào y=4x+1 ta được 1=1 thỏa mãn. Suy ra điểm này thuộc đồ thị hàm số y=4x+1.

  • Câu 8: Nhận biết

    Tập xác định của hàm số y = \frac{3x-1}{2x-2} là:

     Điều kiện xác định: 2x-2 eq 0 \Leftrightarrow x eq 1. Suy ra D= \mathbb {R} \setminus \{1\}.

  • Câu 9: Thông hiểu

    Số nghiệm của phương trình \sqrt{x + 12} - \sqrt{x - 3} = \sqrt{2x +1}

    ĐK x ≥ 3.

    \sqrt{x + 12} - \sqrt{x - 3} = \sqrt{2x+ 1}

    \Leftrightarrow \sqrt{x + 12} = \sqrt{x- 3} + \sqrt{2x + 1}

    \Leftrightarrow \sqrt{(x - 3)(2x + 1)} =- x + 7

    \Leftrightarrow \left\{ \begin{matrix}x \leq 7 \\2x^{2} - 5x - 3 = x^{2} - 14x + 49 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq 7 \\x^{2} + 9x - 52 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 4(TM) \\x = - 13(KTM) \\\end{matrix} ight..

    Vậy phương trình có một nghiệm.

  • Câu 10: Vận dụng cao

    Hàm số nào sau đây có đồ thị như hình bên

    Quan sát đồ thị ta loại y = x2 − 3x − 3y =  − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y =  − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P)\left( \frac{5}{2};\frac{13}{4} ight), trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y =  − x2 + 5|x| − 3.

  • Câu 11: Thông hiểu

    Số nghiệm của phương trình:\left( \sqrt{x - 4} - 1 ight)\left( x^{2} - 7x +6 ight) = 0

    Điều kiện xác định của phương trình x ≥ 4.

    Phương trình tương đương với \left\lbrack\begin{matrix}\sqrt{x - 4} = 1 \\x^{2} - 7x + 6 = 0 \\\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}x = 5 \\x = 1 \\x = 6 \\\end{matrix} ight..

    Kết hợp điều kiện suy ra \left\lbrack\begin{matrix}x = 5 \\x = 6 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 12: Thông hiểu

    Đồ thị hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

    Hỏi hàm số đó là hàm số nào?

    Nhận xét:

    Parabol có bề lõm hường lên.

    Parabol cắt trục hoành tại điểm (1;0). Xét các đáp án, đáp án y = 2x2 − 3x + 1. thỏa mãn.

  • Câu 13: Nhận biết

    Nghiệm của phương trình: \sqrt{x - 2} = \sqrt{2 - x} là bao nhiêu?

    Điều kiện: \left\{ \begin{matrix}
x - 2 \geq 0 \\
2 - x \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 2 \\
x \leq 2 \\
\end{matrix} ight.\  \Leftrightarrow x = 2.

    Thay x = 2 vào phương trình ta được 0 = 0 hay x = 2 là nghiệm của phương trình.

  • Câu 14: Thông hiểu

    Cho hàm số y =
f(x) = \sqrt{(m - 2)x^{2} - 2(m - 3)x + m - 1}. Tìm tất cả các giá trị thực của tham số m để hàm số đã cho có tập xác định D\mathbb{= R}?

    Hàm số có tập xác định D\mathbb{=
R} khi và chỉ khi

    g(x) = (m - 2)x^{2} - 2(m - 3)x + m - 1
\geq 0,\forall x\mathbb{\in R}

    Xét m - 2 = 0 \Rightarrow m = 2 thì g(x) = 2x + 1 \geq 0, loại giá trị m = 2

    Xét m eq 2 ta có:

    (m - 2)x^{2} - 2(m - 3)x + m - 1 \geq
0,\forall x \in \mathbb{R}

    \Leftrightarrow \left\{ \begin{matrix}
m - 2 > 0 \\
(m - 3)^{2} - (m - 2)(m - 1) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > 2 \\
m \geq \frac{7}{3} \\
\end{matrix} ight.\  \Leftrightarrow m \geq \frac{7}{3}

    Vậy m \geq \frac{7}{3}

  • Câu 15: Thông hiểu

    Tập xác định của hàm số y = \frac{\sqrt{x + 1}}{x - 3} là:

    Hàm số y = \frac{\sqrt{x + 1}}{x -
3}.

    Điều kiện xác định: \left\{ \begin{matrix}
x + 1 \geq 0 \\
x - 3 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq - 1 \\
x eq 3 \\
\end{matrix} ight..

    Vậy tập xác định của hàm số D = [ − 1; 3) ∪ (3;+∞).

  • Câu 16: Vận dụng cao

    Phương trình x^{2} = \sqrt{2 - x} + 2 có mấy nghiệm nguyên ?

    Đặt t = \sqrt{2 - x}\ \ \ (t \geq
0). Ta có hệ phương trình:

    \left\{ \begin{matrix}
x^{2} = t + 2 \\
t^{2} = - x + 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
t = - x \\
t = x - 1 \\
\end{matrix} ight.

    Với t =  − x ta được \left\lbrack \begin{matrix}
x = 1 \Rightarrow t = - 1(L) \\
x = - 2 \Rightarrow t = 2(TM) \\
\end{matrix} ight.

    Với t = x − 1 ta được \left\lbrack \begin{matrix}
x = \frac{1 + \sqrt{5}}{2} \Rightarrow t = \frac{\sqrt{5} - 1}{2}(TM) \\
x = \frac{1 - \sqrt{5}}{2} \Rightarrow t = \frac{- \sqrt{5} - 1}{2}(L)
\\
\end{matrix} ight.

    Vậy phương trình có 2 nghiệm x =  − 2x = \frac{1 + \sqrt{5}}{2}.

  • Câu 17: Nhận biết

    Tìm tập xác định của y = \sqrt{6-3x}-\sqrt{x-1}

     Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}{6 - 3x \ge 0}\\{x - 1 \ge 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \le 2}\\{x \ge 1}\end{array}} ight.} ight. \Leftrightarrow 1 \le x \le 2.

    Vậy D=[1;2].

  • Câu 18: Vận dụng cao

    Đường thẳng d : y = (m−3)x − 2m + 1 cắt hai trục tọa độ tại hai điểm AB sao cho tam giác OAB cân. Khi đó, số giá trị của m thỏa mãn là

    A = d ∩ Ox nên tọa độ A là nghiệm của hệ:

    \left\{ \begin{matrix}
y = (m - 3)x - 2m + 1 \\
y = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = \frac{2m - 1}{m - 3} \\
y = 0 \\
\end{matrix} ight. nên A\left(
\frac{2m - 1}{m - 3};\ 0 ight).

    B = d ∩ Oy nên tọa độ B là nghiệm của hệ:

    \left\{ \begin{matrix}
y = (m - 3)x - 2m + 1 \\
x = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = - 2m + 1 \\
\end{matrix} ight. nên B(0;−2m+1).

    Ta có OA = OB \Leftrightarrow \left|
\frac{2m - 1}{m - 3} ight| = | - 2m + 1| \Leftrightarrow |2m -
1|\left( \frac{1}{|m - 3|} - 1 = 0 ight)

    \Leftrightarrow \left\lbrack
\begin{matrix}
2m - 1 = 0 \\
|m - 3| = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = \frac{1}{2} \\
m = 4,\ m = 2 \\
\end{matrix} ight..

    Nhận xét: Với m = \frac{1}{2}thì A ≡ B ≡ O(0;  0) nên không thỏa mãn.

    Vậy m = 4, m = 2.

  • Câu 19: Nhận biết

    Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?

    Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).

  • Câu 20: Vận dụng

    Tìm giá trị thực của tham số m để parabol (P) : y = mx2 − 2mx − 3m − 2 (m≠0) có đỉnh thuộc đường thẳng y = 3x − 1.

    Hoành độ đỉnh của (P)x = - \frac{b}{2a} = \frac{2m}{2m} =
1.

    Suy ra tung độ đỉnh y =  − 4m − 2. Do đó tọa độ đỉnh của (P)I(1;−4m−2).

    Theo giả thiết, đỉnh I thuộc đường thẳng y = 3x − 1 nên  − 4m − 2 = 3.1 − 1 ⇔ m =  − 1.

  • Câu 21: Thông hiểu

    Giải phương trình: \sqrt{2x^{2}-6x+4}=x-2

     Điều kiện: 2{x^2} - 6x + 4 \geqslant 0

    \Leftrightarrow x \in \left( { - \infty ;1} ight] \cup \left[ {2; + \infty } ight)

    Phương trình tương đương:

    \begin{matrix}  \sqrt {2{x^2} - 6x + 4}  = x - 2 \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x - 2 \geqslant 0} \\   {2{x^2} - 6x + 4 = {{\left( {x - 2} ight)}^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 2} \\   {{x^2} - 2x = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 2} \\   {\left[ {\begin{array}{*{20}{c}}  {x = 0\left( {ktm} ight)} \\   {x = 2\left( {tm} ight)} \end{array}} ight.} \end{array}} ight. \hfill \\ \end{matrix}

    Kết hợp với điều kiện ta được x=2 thỏa mãn

    Vậy phương trình có nghiệm x=2.

  • Câu 22: Thông hiểu

    Một chiếc cổng hình parabol có phương trình y = - \frac{1}{2}x^{2}. Biết cổng có chiều rộng d = 5 mét (như hình vẽ). Hãy tính chiều cao h của cổng.

    Gọi ABlà hai điểm ứng với hai chân cổng như hình vẽ.

    Vì cổng hình parabol có phương trình y = -
\frac{1}{2}x^{2}và cổng có chiều rộng d = 5 mét nên:

    AB = 5 A\left( - \frac{5}{2}; - \frac{25}{8} ight);\
B\left( \frac{5}{2}; - \frac{25}{8} ight).

    Vậy chiều cao của cổng là\left| -
\frac{25}{8} ight| = \frac{25}{8} = 3,125mét.

  • Câu 23: Thông hiểu

    Tam thức bậc hai :

    Ta có .

    Bảng xét dấu

    Dựa vào bảng xét dấu .

  • Câu 24: Nhận biết

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x =  − 3.

    (P) có trục đối xứng x =  − 3 nên - \frac{b}{2a} = - 3 \Leftrightarrow - \frac{3}{2a}
= - 3 \Leftrightarrow a = \frac{1}{2}.

    Vậy (P):y = \frac{1}{2}x^{2} + 3x -
2.

  • Câu 25: Nhận biết

    Số nghiệm thực của phương trình \sqrt{x - 1}.\sqrt{2x + 6} = x + 3

    ĐK: x \geq 1 , \sqrt{x - 1}.\sqrt{2x + 6} = x + 3 \Leftrightarrow(x - 1)(2x + 6) = (x + 3)^{2}\Leftrightarrow (x + 3)(x - 5) = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 3(KTM) \\x = 5(TM) \\\end{matrix} ight..

  • Câu 26: Thông hiểu

    Tập xác định của hàm số y=\left\{\begin{matrix}\sqrt{\frac{1}{x}},x\in (0;+∞)\\ \sqrt{3-x},x\in (-∞;0)\end{matrix}ight.

     Xét y=\sqrt \frac1x, ta có: D_1=(0;+\infty).

    Xét y=\sqrt{3-x}, điều kiện là x \le 3. Kết hợp với điều kiện (-\infty;0), ta được: D_2=(-\infty;0).

    Vậy D=D_1 \cup   D_2 = \mathbb R\setminus \{1\}.

  • Câu 27: Thông hiểu

    Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

    Nhận xét:

    Bảng biến thiên có bề lõm hướng xuống. Loại đáp án y = 2x2 + 2x − 1y = 2x2 + 2x + 2.

    Đỉnh của parabol có tọa độ là \left( -
\frac{1}{2};\frac{3}{2} ight). Xét các đáp án, y =  − 2x2 − 2x + 1 thỏa mãn.

  • Câu 28: Nhận biết

    Cho parabol (P) có phương trình y = 3x2 − 2x + 4. Tìm trục đối xứng của parabol này.

    + Có a = 3; b =  − 2; c = 4.

    + Trục đối xứng của parabol là x = \frac{-
b}{2a} = \frac{1}{3}.

  • Câu 29: Vận dụng

    Xét tính đồng biến, nghịch biến của hàm số f(x) = \frac{x - 3}{x + 5} trên khoảng (−∞;−5) và trên khoảng (−5;+∞). Khẳng định nào sau đây đúng?

    Ta có : f\left( x_{1} ight) - f\left(
x_{2} ight) = \left( \frac{x_{1} - 3}{x_{1} + 5} ight) - \left(
\frac{x_{2} - 3}{x_{2} + 5} ight) = \frac{\left( x_{1} - 3
ight)\left( x_{2} + 5 ight) - \left( x_{2} - 3 ight)\left( x_{1} +
5 ight)}{\left( x_{1} + 5 ight)\left( x_{2} + 5 ight)} =
\frac{8\left( x_{1} - x_{2} ight)}{\left( x_{1} + 5 ight)\left(
x_{2} + 5 ight)}.

    ● Với mọi x1x2 ∈ (−∞;−5)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} < - 5 \\
x_{2} < - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{1} + 5 < 0 \\
x_{2} + 5 < 0 \\
\end{matrix} ight..

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = \frac{8}{\left( x_{1} + 5
ight)\left( x_{2} + 5 ight)} >
0\overset{}{ightarrow}f(x) đồng biến trên (−∞;−5).

    ● Với mọi x1x2 ∈ (−5;+∞)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} > - 5 \\
x_{2} > - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{1} + 5 > 0 \\
x_{2} + 5 > 0 \\
\end{matrix} ight..

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = \frac{8}{\left( x_{1} + 5
ight)\left( x_{2} + 5 ight)} >
0\overset{}{ightarrow}f(x) đồng biến trên (−5;+∞).

    Chọn Hàm số đồng biến trên các khoảng (−∞;−5)(−5;+∞).

  • Câu 30: Nhận biết

    Tập xác định của hàm số y = \frac{2 - x}{x^{2} - 4x} là:

    Hàm số xác định \Leftrightarrow x^{2} - 4x
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
x eq 4 \\
\end{matrix} ight.. Vậy D = ℝ ∖ {0;4}.

  • Câu 31: Nhận biết

    Tổng các bình phương của các nghiệm của phương trình(x - 1)(x - 3) + 3\sqrt{x^{2} -
4x + 5} - 2 = 0 bằng bao nhiêu?

    Ta có (x - 1)(x - 3) + 3\sqrt{x^{2} - 4x
+ 5} - 2 = 0

    \Leftrightarrow x^{2} - 4x + 5 +3\sqrt{x^{2} - 4x + 5} - 4 = 0\Leftrightarrow \sqrt{x^{2} - 4x + 5} =1

    \Leftrightarrow x^{2} - 4x + 5 = 1
\Leftrightarrow x^{2} - 4x + 4 = 0 \Leftrightarrow x = 2.

    Tổng các bình phương của các nghiệm của phương trình là 4.

  • Câu 32: Vận dụng

    Phương trình (x -1)(x + 3) + 2(x - 1)\sqrt{\frac{x + 3}{x - 1}} = 8 có mấy nghiệm ?

    Điều kiện: \left\lbrack \begin{matrix}x \leq - 3 \\x > 1 \\\end{matrix} ight.

    Đặt t = (x - 1)\sqrt{\frac{x + 3}{x - 1}}\Rightarrow t^{2} = (x - 1)(x + 3).

    PT đã cho trở thành:

    t^{2} + 2t - 8 = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 2\ \  \\t = - 4\ \ \  \\\end{matrix} ight.

    Với t = 2 ta được

    \begin{matrix}(x - 1)\sqrt{\frac{x + 3}{x - 1}} = 2 \\\Rightarrow (x - 1)(x + 3) = 4 \Leftrightarrow \left\lbrack\begin{matrix}x = - 1 + 2\sqrt{2}(TM) \\x = - 1 - 2\sqrt{2}(L) \\\end{matrix} ight.\  \\\end{matrix}

    Với t =  − 4 ta được ta được

    \begin{matrix}(x - 1)\sqrt{\frac{x + 3}{x - 1}} = - 4 \\\Rightarrow (x - 1)(x + 3) = 16 \Leftrightarrow \left\lbrack\begin{matrix}x = - 1 + 2\sqrt{5}(L) \\x = - 1 - 2\sqrt{5}(TM) \\\end{matrix} ight.\  \\\end{matrix}

    Vậy phương trình có hai nghiệm là x = - 1+ 2\sqrt{2} ; x = - 1 -2\sqrt{5}.

  • Câu 33: Nhận biết

    Số giá trị nguyên của x để tam thức f(x) = 2x2 − 7x − 9 nhận giá trị âm là

    f(x) = 2x^{2} - 7x - 9 \Leftrightarrow\left\lbrack \begin{matrix}x = - 1 \\x = \dfrac{9}{2} \\\end{matrix} ight.

    Dựa vào bảng xét dấu, f(x) < 0\Leftrightarrow - 1 < x < \frac{9}{2}.

    x ∈ ℤ⇒ x ∈ {0;1;2;3;4} (5 giá trị).

  • Câu 34: Nhận biết

    Cho hàm số y =  − x2 + 4x + 1. Khẳng định nào sau đây sai?

    Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng \left( - \frac{b}{2a}; + \infty
ight), đồng biến trên khoảng \left(
- \infty; - \frac{b}{2a} ight).

    Áp dụng: Ta có - \frac{b}{2a} = 2. Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.

    Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).

    Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).

  • Câu 35: Thông hiểu

    Hàm số y = 2x^{2} – 4x + 1 đồng biến và nghịch biến trên khoảng nào?

    Ta có hàm số y = 2x^{2} – 4x + 1a=2>0

    => Hàm số nghịch biến trên khoảng \left( { - \infty ;1} ight), đồng biến trên khoảng \left( {1; + \infty } ight)

  • Câu 36: Vận dụng

    Đồ thị bên là đồ thị của hàm số nào?

    Đồ thị nhận trục Oy là trục đối xứng nên hàm số tương ứng là hàm chẵn nên loại phương án y = |2x+1|y = |x+1|

    Đồ thị hàm số đi qua điểm (1;3). Thay vào y = 2|x| + 1 thấy thỏa mãn nên chọn đáp án này.

  • Câu 37: Vận dụng cao

    Cho parabol (P) : y = ax2 + bx + c(a≠0) có đồ thị như hình bên. Tìm các giá trị m để phương trình |ax2+bx+c| = m có bốn nghiệm phân biệt.

    Quan sát đồ thị ta có đỉnh của parabol là I(2;3) nên \left\{ \begin{matrix}
- \frac{b}{2a} = 2 \\
3 = 4a + 2b + c \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
b = - 4a \\
4a + 2b + c = 3 \\
\end{matrix} ight..

    Mặt khác (P) cắt trục tung tại (0;−1) nên c =  − 1. Suy ra \left\{ \begin{matrix}
b = - 4a \\
4a + 2b = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 4 \\
\end{matrix} ight..

    (P) : y =  − x2 + 4x − 1 suy ra hàm số y = |−x2+4x−1| có đồ thị là là phần đồ thị phía trên trục hoành của (P) và phần có được do lấy đối xứng phần phía dưới trục hoành của (P), như hình vẽ sau:

    Phương trình |ax2+bx+c| = m hay |−x2+4x−1| = m có bốn nghiệm phân biệt khi đường thẳng y = m cắt đồ thị hàm số hàm số y = |−x2+4x−1| tại bốn điểm phân biệt.

    Suy ra 0 < m < 3.

  • Câu 38: Nhận biết

    Tập nghiệm của bất phương trình 2{x^2} - 7x - 15 \geqslant 0 là:

    Tam thức f(x)=2{x^2} - 7x - 15 có hai nghiệm phân biệt {x_1} = 5;{x_2} =  - \frac{3}{2}

    a = 2 > 0 nên f(x) dương với mọi x thuộc hai nửa khoảng \left( { - \infty  - \frac{3}{2}} ight],\left[ {5, + \infty } ight)

    Vậy tập nghiệm của bất phương trình là: S=(-∞;-\frac{3}{2})∪[5;+∞)

  • Câu 39: Nhận biết

    Tập nghiệm của bất phương trình 6x^{2}+x−1≤0

     Ta có: 6x^{2}+x−1≤0  \Leftrightarrowx \in [-\frac{1}{2};\frac{1}{3}].

  • Câu 40: Vận dụng

    Số nghiệm của phương trình (x + 3)\sqrt{2x^{2} + 1} = x^{2} + x + 3 là:

    vô số.

    Ta thấy x =  − 3 không là nghiệm của phương trình.

    Xét x ≠  − 3, phương trình\  \Leftrightarrow \sqrt{2x^{2} + 1} =\frac{x^{2} + x + 3}{x + 3}

    \Leftrightarrow \sqrt{2x^{2} + 1} - 1 =\frac{x^{2}}{x + 3} \Leftrightarrow \frac{2x^{2}}{\sqrt{2x^{2} + 1} + 1}= \frac{x^{2}}{x + 3}

    \Leftrightarrow \left\lbrack\begin{matrix}x = 0 \\2(x + 3) = \sqrt{2x^{2} + 1} + 1(*) \\\end{matrix} ight.\ \

    Phương trình (*)\Leftrightarrow\sqrt{2x^{2} + 1} = 2x + 5

    \Leftrightarrow \left\{ \begin{matrix}x \geq - \frac{5}{2} \\2x^{2} + 1 = 4x^{2} + 25 + 20x \\\end{matrix} ight.\ \ \  \Leftrightarrow \left\{ \begin{matrix}x \geq - \frac{5}{2} \\x^{2} + 10x + 12 = 0 \\\end{matrix} ight.\ \

    \Leftrightarrow \left\{ \begin{matrix}x \geq - \frac{5}{2} \\x = - 5 \pm \sqrt{13} \\\end{matrix} ight.\  \Leftrightarrow x = 5 + \sqrt{13} (thỏa mãn)

    Vậy phương trình đã cho có hai nghiệm x = 0x = - 5 + \sqrt{13}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo