PT: |x2−4|x|−5| − m = 0 ⇔ |x2−4|x|−5| = m .
Số nghiệm phương trình (1)⇔ số giao điểm của đồ thị hàm số y = |x2−4|x|−5| (P) và đường thẳng y = m .
Xét hàm số y = x2 − 4x − 5 (P1) có đồ thị như hình 1.

Xét hàm số y = x2 − 4|x| − 5 (P2) là hàm số chẵn nên có đồ thị nhận Oy làm trục đối xứng. Mà y = x2 − 4|x| − 5 = x2 − 4x − 5 nếu x ≥ 0. Suy ra đồ thị hàm số (P2) gồm hai phần:
Phần 1: Giữ nguyên đồ thị hàm số (P1) phần bên phải Oy.
Phần 2: Lấy đối xứng phần 1 qua trục Oy.
Ta được đồ thị (P2) như hình 2.
Xét hàm số y = |x2−4|x|−5| (P), ta có:
.
Suy ra đồ thị hàm số (P) gồm hai phần:
Phần 1: Giữ nguyên đồ thị hàm số (P2) phần trên Ox.
Phần 2: Lấy đối xứng đồ thị hàm số (P2) phần dưới Ox qua trục Ox.
Ta được đồ thị (P) như hình 3.
Quan sát đồ thị hàm số (P) ta có: Để |x2−4|x|−5| = m (1) có hai nghiệm phân biệt
.
Mà
. Vậy có 2008 giá trị.