Quan sát đồ thị hàm số sau:

Cho biết hàm số nào tương ứng với đồ thị hàm số đã cho?
Ta có:
Đồ thị cắt trục Oy tại nên ta loại đáp án
và
.
Dễ thấy đồ thị có đỉnh là
Xét hàm số có đỉnh là
.
Vậy hàm số tương ứng với đồ thị là: .
Quan sát đồ thị hàm số sau:

Cho biết hàm số nào tương ứng với đồ thị hàm số đã cho?
Ta có:
Đồ thị cắt trục Oy tại nên ta loại đáp án
và
.
Dễ thấy đồ thị có đỉnh là
Xét hàm số có đỉnh là
.
Vậy hàm số tương ứng với đồ thị là: .
Cho hàm số có đồ thị như hình vẽ.
Chọn đáp án sai.
Từ đồ thị hàm số ta thấy:
Hàm số nghịch biến trong các khoảng: (−∞;−1) và (0;1).
Hàm số đồng biến trong các khoảng: (−1;0) và (1;+∞).
Đáp án sai là Hàm số nghịch biến trên khoảng (−1;1).
Tìm hàm số bậc hai trong các hàm số dưới đây?
Theo định nghĩa ta có:
Hàm số bậc hai là .
Cho hai đường thẳng
và
. Mệnh đề nào sau đây đúng?
Cách 1: Gọi k1, k2 lần lượt là hệ số gốc của (d1)và (d2). Khi đó nên (d1)và (d2) không vuông góc nhau.
Xét hệ:
Vậy (d1)và (d2) cắt nhau.
Cách 2: Ta thấy nên (d1)và (d2) cắt nhau.
Tập nghiệm của bất phương trình
là:
Tam thức có hai nghiệm phân biệt
a = 2 > 0 nên f(x) dương với mọi x thuộc hai nửa khoảng
Vậy tập nghiệm của bất phương trình là:
Số nghiệm của phương trình
là:
.
Vậy phương trình có 1 nghiệm.
Tổng các nghiệm của phương trình
bằng:
.
Vậy, tổng các nghiệm của phương trình là .
Đâu là tập nghiệm của phương trình
?
.
Vậy tập nghiệm của phương trình là .
Cho hàm số
. Tìm tất cả các giá trị thực của tham số m để hàm số đã cho có tập xác định
?
Hàm số có tập xác định khi và chỉ khi
Xét thì
, loại giá trị
Xét ta có:
Vậy
Tổng các nghiệm của phương trình
là:
Đặt , điều kiện t ≥ 0. Khi đó
.
Phương trình trở thành
(Thỏa mãn)
Với t = 3 ta có
Vậy phương trình có hai nghiệm .
Tổng các nghiệm của phương trình là .
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4] là
Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2
= (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.
Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].
.
Cách 1: Ta có .
Cách 2: Vẽ BBT

Vậy , ymax = 21.
Nghiệm của phương trình
là:
Ta có: .
Thử lại thấy không thỏa mãn. Do đó
.
Tập xác định của hàm số
là
Hàm số xác định khi .
Vậy tập xác định của hàm số là D = (1; 3].
Số nghiệm của phương trình:
là:
.
Vậy phương trình có một nghiệm.
Tập xác định của hàm số
là:
Điều kiện xác định: . Suy ra
.
Tìm tập xác định của hàm số
.
Điều kiện xác định: .
Vậy .
Tam thức f(x) = 3x2 + 2(2m−1)x + m + 4 dương với mọi x khi:
.
Số nghiệm của phương trình
là:
.
Vậy phương trình có hai nghiệm.
Phương trình x2 + 2(m+2)x − 2m − 1 = 0 (m là tham số) có nghiệm khi
Xét phương trình x2 + 2(m+2)x − 2m − 1 = 0, có Δ′x = (m+2)2 + 2m + 1.
Yêu cầu bài toán ⇔ Δ′x ≥ 0 ⇔ m2 + 4m + 4 + 2m + 1 ≥ 0 ⇔ m2 + 6m + 5 ≥ 0
là giá trị cần tìm.
Bảng xét dấu nào sau đây là bảng xét dấu của tam thức
là:
Xét biếu thức có
và nghiệm là
Ta có bảng xét dấu như sau:

Số nghiệm của phương trình
là:
vô số.
Ta thấy x = − 3 không là nghiệm của phương trình.
Xét x ≠ − 3, phương trình
Phương trình (*)
(thỏa mãn)
Vậy phương trình đã cho có hai nghiệm x = 0 và .
Xác định parabol (P) : y = 2x2 + bx + c, biết rằng (P) có đỉnh I(−1;−2).
Trục đối xứng
Do
Vậy (P) : y = 2x2 + 4x.
Xét tính đồng biến, nghịch biến của hàm số
trên khoảng (−∞;−5) và trên khoảng (−5;+∞). Khẳng định nào sau đây đúng?
Ta có :
.
● Với mọi x1, x2 ∈ (−∞;−5) và x1 < x2. Ta có .
Suy ra đồng biến trên (−∞;−5).
● Với mọi x1, x2 ∈ (−5;+∞) và x1 < x2. Ta có .
Suy ra đồng biến trên (−5;+∞).
Cho hàm số có đồ thị như hình bên dưới.
Khẳng định nào sau đây là đúng?
Trên khoảng (0;2) đồ thị hàm số đi xuống từ trái sang phải nên hàm số nghịch biến.
Biết rằng hàm số y = ax2 + bx + c (a≠0) đạt cực tiểu bằng 4 tại x = 2 và có đồ thị hàm số đi qua điểm A(0;6). Tính tích P = abc.
Nhận xét: Hàm số đi qua điểm A(0;6); đạt cực tiểu bằng 4 tại x = 2 nên đồ thị hàm số đi qua I(2;4) và nhận x = 2 làm trục đối xứng, hàm số cũng đi qua điểm A(0;6) suy ra:
.
Đồ thị hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

Hỏi hàm số đó là hàm số nào?
Nhận xét:
Parabol có bề lõm hướng lên.
Đỉnh của parabol là điểm (1;−3). Xét các đáp án, đáp án y = 2x2 − 4x − 1 thỏa mãn.
Tam thức bậc hai f(x) = − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [1; 2].
Tìm m để g(x) = (2m2+m−6)x2 + (2m−3)x − 1 không dương.
Xét
+) (không thỏa mãn yêu cầu bài toán)
+) (không thỏa mãn)
Xét
Đồ thị của hàm số nào sau đây là parabol có đỉnh I(−1; 3).
Đỉnh Parabol là .
Do đó chỉ có đáp án y = 2x2 + 4x + 5 thỏa mãn.
Xét tính đồng biến, nghịch biến của hàm số f(x) = x2 − 4x + 5 trên các khoảng (−∞; 2) và (2; +∞). Khẳng định nào sau đây đúng?
Xét f(x) = x2 − 4x + 5.
TXĐ: D = ℝ.
Tọa độ đỉnh I(2; 1).
Hàm số nghịch biến trên (−∞; 2), đồng biến trên (2; +∞).
Tính tổng tất cả các nghiệm của phương trình
?
Ta có:
Vậy tổng các nghiệm của phương trình bằng .
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4] là
Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2
= (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.
Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].
.
Cách 1: Ta có .
Cách 2: Vẽ BBT

Vậy , ymax = 21.
Đồ thị hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

Hỏi hàm số đó là hàm số nào?
Nhận xét:
Parabol có bề lõm hường lên.
Parabol cắt trục hoành tại điểm (1;0). Xét các đáp án, đáp án y = 2x2 − 3x + 1. thỏa mãn.
Biết phương trình
có 2 nghiệm x1, x2 (x1<x2) . Khẳng định nào sau đây đúng?
Điều kiện:
x2 + 3x ≥ 0⇔
phương trình .
Đặt , điều kiện t ≥ 0.
Phương trình trở thành t2 + 3t − 10 = 0
⇔ ⇒
, thoả mãn (1) ⇒ x1 + 4x2 = 0.
Cho tam thức bậc hai
. Khẳng định nào sau đây đúng?
Ta có:
Tổng tất cả các giá trị nguyên dương của tham số m để hàm số
y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1 ; 5) là:
Hàm số y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng .
Để hàm số y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1 ; 5) thì ta phải có
.
Các giá trị nguyên dương của tham số m để hàm số y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1; 5) là m = 1, m = 2, m = 3.
Tổng tất cả các giá trị nguyên dương của tham số m để hàm số y = − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1; 5) là S = 1 + 2 + 3 = 6.
Cho hàm số y = f(x) có tập xác định là [ − 1; 3] và đồ thị của nó được biểu diễn bởi hình bên.
Khẳng định nào sau đây là sai?
Trên khoảng (0;2) đồ thị hàm số đi ngang từ trái sang phải
Hàm số không đổi trên khoảng (0;2).
Trên khoảng (2;3) đồ thị hàm số đi lên từ trái sang phải
Hàm số đồng biến trên khoảng (2;3).
Chọn đáp án Hàm số đồng biến trên khoảng (2;3).
Cho hàm số
. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên ℝ?
Hàm số có dạng y = ax + b, nên để hàm số đồng biến trên ℝ khi và chỉ khi
. Mặt khác do m ∈ ℤ nên m ∈ {−1; 0; 1; 2}.
Vậy có 4 giá trị nguyên của m.
Tập nghiệm của bất phương trình
là?
Ta có
Bảng xét dấu:
Dựa vào bảng xét dấu .
Phương trình
có bao nhiêu nghiệm?
ĐKXĐ: .
Thay x = 1 vào , ta được:
.
Vậy phương trình vô nghiệm.