Cho hàm số:
. Tìm x để ![]()
Ta có:
Vậy x = 3 hoặc x = 0
Cho hàm số:
. Tìm x để ![]()
Ta có:
Vậy x = 3 hoặc x = 0
Tam thức bậc hai
.
Ta có .
Bảng xét dấu

Dựa vào bảng xét dấu .
Phương trình
có mấy nghiệm ?
Đặt . Phương trình đã cho trở thành:
Vậy phương trình có 2 nghiệm.
Tìm khẳng định đúng trong các khẳng định sau?
Tam thức bậc 2 là biểu thức f(x) có dạng ax2+ bx + c (a≠0).
f(x) = 3x2 − 5 là tam thức bậc 2 với a = 3, b = 0, c = − 5.
Cho hàm số y = f(x) = ax2 + bx + c. Biểu thức f(x+3) − 3f(x+2) + 3f(x+1) có giá trị bằng
f(x+3) = a(x+3)2 + b(x+3) + c = ax2 + (6a+b)x + 9a + 3b + c.
f(x+2) = a(x+2)2 + b(x+2) + c = ax2 + (4a+b)x + 4a + 2b + c.
f(x+1) = a(x+1)2 + b(x+1) + c = ax2 + (2a+b)x + a + b + c.
⇒ f(x+3) − 3f(x+2) + 3f(x+1) = ax2 + bx + c.
Tập xác định của hàm số
là:
Hàm số xác định . Vậy D = ℝ ∖ {0;4}.
Số nghiệm của phương trình
là
ĐK x ≥ 3.
.
Vậy phương trình có một nghiệm.
Hàm số nào sau đây có đồ thị như hình bên

Quan sát đồ thị ta loại y = x2 − 3x − 3 và y = − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y = − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P) là , trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y = − x2 + 5|x| − 3.
Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

Nhận xét: Từ bảng biến thiên ta suy ra đỉnh .
Chỉ có hàm số thỏa mãn tọa độ đỉnh này khi thay vào.
Cho
có
. Khi đó mệnh đề nào đúng?
Khi thì
luôn cùng dấu với hệ số
. Do đó nó không đổi dấu.
Tập nghiệm của phương trình
là:
.
Vậy S = {2;4}.
Điểm nào sau đây thuộc đồ thị hàm số
?
Thay tọa độ vào
ta được
thỏa mãn. Suy ra điểm này thuộc đồ thị hàm số
.
Giải bất phương trình ![]()
Ta có: .
Đồ thị của hàm số
đi qua điểm nào sau đây:
Thử lần lượt từng phương án với chú ý về điều kiện ta được:
f(0) = 2.0 + 1 = 1 ≠ − 3, đồ thị không đi qua điểm (0; −3).
f(3) = − 3 ≠ 7, đồ thị không đi qua điểm (3; 7).
f(2) = 2.2 + 1 = 5 ≠ − 3, đồ thị không đi qua điểm (2; −3).
f(0) = 2.0 + 1 = 1, đồ thị đi qua điểm (0; 1).
Phương trình
có bao nhiêu nghiệm
Đkxđ: .
.
Vậy phương trình có hai nghiệm.
Tìm hàm số bậc hai trong các hàm số dưới đây?
Theo định nghĩa ta có:
Hàm số bậc hai là .
Xét tính đồng biến, nghịch biến của hàm số f(x) = x2 − 4x + 5 trên khoảng (−∞;2) và trên khoảng (2;+∞). Khẳng định nào sau đây đúng?
Ta có : f(x1) − f(x2) = (x12−4x1+5) − (x22−4x2+5) = (x12−x22) − 4(x1−x2) = (x1−x2)(x1+x2−4).
● Với mọi x1, x2 ∈ (−∞;2) và x1 < x2. Ta có .
Suy ra .
Vậy hàm số nghịch biến trên (−∞;2).
● Với mọi x1, x2 ∈ (2;+∞) và x1 < x2. Ta có .
Suy ra .
Vậy hàm số đồng biến trên (2;+∞).
Xác định parabol
biết rằng Parabol đi qua hai điểm M(1;5) và N(-2;8)
Thay tọa độ và
vào
. Ta có:
.
Do đó .
Tìm tất cả các giá trị thực của tham số m để phương trình x2 − 5x + 7 + 2m = 0 có nghiệm thuộc đoạn [1; 5].
Ta có x2 − 5x + 7 + 2m = 0 ⇔ x2 − 5x + 7 = − 2m. (*)
Phương trình (*) là phương trình hoành độ giao điểm của parabol (P) : x2 − 5x + 7 và đường thẳng y = − 2m (song song hoặc trùng với trục hoành).
Ta có bảng biến thiên của hàm số y = x2 − 5x + 7 trên [1; 5] như sau:

Dựa vào bảng biến ta thấy x ∈ [1; 5] thì .
Do đo để phương trình (*) có nghiệm
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [ − 7; 7] để phương trình mx2 − 2(m+2)x + m − 1 = 0 có hai nghiệm phân biệt?
TH1:; phương trình chỉ có một nghiệm duy nhất nên loại m = 0
TH2: m ≠ 0
Để mx2 − 2(m+2)x + m − 1 = 0với m ∈ [ − 7; 7]có hai nghiệm phân biệt thì
đồng thời m ∈ [ − 7; 7].
Vậy m = {1; 2;3;4;5;6;7}→ có 7 giá trị nguyên của m thỏa mãn.
Cho tam thức bậc hai
. Kết luận nào sau đây đúng?
Ta có:
Vậy khẳng định đúng là .
Cho parabol (P) có phương trình y = 3x2 − 2x + 4. Tìm trục đối xứng của parabol này.
+ Có a = 3; b = − 2; c = 4.
+ Trục đối xứng của parabol là .
Tìm tập xác định của hàm số
.
Hàm số xác định .
Vậy tập xác định: .
Số nghiệm của phương trình
là:
ĐK: x ∈ [5; 7]
Đặt t = x − 6 , t ∈ [ − 1; 1].
Phương trình trở thành .
Ta có VT(*) ≤ 4, VP(*) ≥ 4 nên (*) ⇔ VT(*) = VP(*) = 4 ⇔ t = 0 ⇒ x = 6(TM).
Vậy phương trình có một nghiệm.
Xét sự biến thiên của hàm số
trên khoảng (0;+∞). Khẳng định nào sau đây đúng?
Ta có
Với mọi x1, x2 ∈ (0;+∞) và x1 < x2. Ta có .
Suy ra nghịch biến trên (0;+∞).
Số nghiệm của phương trình
là
Điều kiện:
Phương trình tương đương:
Kết hợp điều kiện ta được: thỏa mãn điều kiện
Vậy phương trình đã cho có một nghiệm.
Tập nghiệm của phương trình
là?
Điều kiện: .
Ta có: . Loại
.
Vậy .
Phương trình (m−1)x2 − 2x + m + 1 = 0 có hai nghiệm phân biệt khi
Yêu cầu bài toán
Vậy phương trình có hai nghiệm phân biệt
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x = − 3.
Trục đối xứng của (P) có dạng:
.
Vậy (P) có phương trình: .
Cho hàm số y = f(x) = ax2 + bx + c có đồ thị như hình vẽ. Đặt Δ = b2 − 4ac, tìm dấu của a và Δ.

Nhìn đồ thị, ta thấy đồ thị y = f(x) cắt trục hoành tại 2 điểm x = 1, x = 4 nên Δ > 0, dựa vào hình dạng parabol nên suy a > 0
Tổng các nghiệm của phương trình
là
ĐKXĐ: x ≥ 0
Dễ thấy x = 0 không phải là nghiệm của phương trình
Xét x > 0, phương trình
Đặt
Phương trình trở thành
• Với t = 1 ta có (thỏa mãn)
• Với t = 2 ta có (thỏa mãn)
Vậy phương trình có nghiệm là và x = 1.
Tổng các nghiệm của phương trình là .
Tổng các nghiệm của phương trình
là :
Ta có
Phương trình có nghiệm là và
.
Vậy tổng các nghiệm của phương trình là .
Tập xác định của hàm số
là
Hàm số có nghĩa khi
⇔ x ∈ [ − 1; 3) ∖ {2}.
Cho hai đường thẳng
và
. Mệnh đề nào sau đây đúng?
Cách 1: Gọi k1, k2 lần lượt là hệ số gốc của (d1)và (d2). Khi đó nên (d1)và (d2) không vuông góc nhau.
Xét hệ:
Vậy (d1)và (d2) cắt nhau.
Cách 2: Ta thấy nên (d1)và (d2) cắt nhau.
Tập nghiệm
của phương trình
là:
Ta có: .
Thử lại thấy không thỏa mãn.
Vậy .
Tập nghiệm của bất phương trình
là?
Ta có
Bảng xét dấu:
Dựa vào bảng xét dấu .
Tìm tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số đã cho là
Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?
Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).
Cho hàm số
. Khẳng định nào sau đây đúng?
Hàm số bậc hai y = x2 – 3x + 2 có tập xác định là ℝ. Khẳng định "Tập xác định của hàm số là D = (0; +∞)." sai.
Xét điểm M(1; 0): thay x = 1; y = 0 vào hàm số ta có: 0 = 12 – 3. 1 + 2 = 0 là mệnh đề đúng. Vậy M(1; 0) thuộc đồ thị hàm số. Khẳng định "Điểm M(1; 0) thuộc đồ thị hàm số." đúng.
Hàm số y = x2 – 3x + 2 có a = 1 > 0, b = ‒3 nên hàm số nghịch biến trên khoảng và đồng biến trên khoảng
. Khẳng định "Hàm số đồng biến trên ℝ." sai.
Hàm số y = x2 – 3x + 2 có a = 1 > 0 nên đồ thị hàm số có bề lõm quay lên trên. Khẳng định "Đồ thị hàm số có bề lõm quay xuống dưới." sai.
Tìm tập xác định của hàm số
?
Điều kiện xác định:
.
Vậy tập xác định của hàm số là .