Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Hàm số và đồ thị gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho bất phương trình m{x^2} - (2m - 1)x + m + 1 < 0 (1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.

    Để m{x^2} - (2m - 1)x + m + 1 < 0 thì m{x^2} - (2m - 1)x + m + 1 \geqslant 0 nghiệm đúng với \forall x \in \mathbb{R}.

    Nghĩa là:\left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta  \leqslant 0} \end{array}} ight.

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {{{\left( {2m - 1} ight)}^2} - 4m\left( {m + 1} ight) \leqslant 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {4{m^2} - 4m + 1 - 4{m^2} - 4m \leqslant 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   { - 8m + 1 \leqslant 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {m \geqslant \dfrac{1}{8}} \end{array}} ight. \Leftrightarrow m \geqslant \frac{1}{8} \hfill \\ \end{matrix}

  • Câu 2: Nhận biết

    Số nghiệm của phương trình x^{2} - 2x - 8 = 4\sqrt{(4 - x)(x + 2)} là bao nhiêu?

    Điều kiện: (4 - x)(x + 2) \geq 0
\Leftrightarrow x \in \lbrack - 2;\ 4brack.

    x^{2} - 2x - 8 = 4\sqrt{(4 - x)(x + 2)}\Leftrightarrow x^{2} - 2x - 8 = 4\sqrt{- \left( x^{2} - 2x - 8ight)}(1).

    Đặt t = \sqrt{- \left( x^{2} - 2x - 8
ight)}, t \geq 0 \Leftrightarrow t^{2} = - \left( x^{2} - 2x - 8
ight) \Leftrightarrow x^{2} - 2x - 8 = - t^{2}.

    (1) \Leftrightarrow - t^{2} = 4t\Leftrightarrow t^{2} + 4t = 0 \Leftrightarrow \left\lbrack\begin{matrix}t = 0(n) \\t = - 4(l) \\\end{matrix} ight.\  \Leftrightarrow \sqrt{- \left( x^{2} - 2x - 8ight)} = 0 \Leftrightarrow - \left( x^{2} - 2x - 8 ight) = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 2(n) \\x = 4(n) \\\end{matrix} ight..

    Vậy phương trình đã cho có hai nghiệm.

  • Câu 3: Thông hiểu

    Tập hợp nào sau đây là tập xác định của hàm số y = \sqrt{1 + 5x} + \frac{|x|}{\sqrt{7 -
2x}}?

    Hàm số xác đinh khi và chỉ khi \left\{
\begin{matrix}
1 + 5x \geq 0 \\
7 - 2x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq - \frac{1}{5} \\
x < \frac{7}{2} \\
\end{matrix} ight.\  \Leftrightarrow - \frac{1}{5} \leq x <
\frac{7}{2}.

  • Câu 4: Vận dụng cao

    Hàm số nào sau đây có đồ thị như hình bên

    Quan sát đồ thị ta loại y = x2 − 3x − 3y =  − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y =  − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P)\left( \frac{5}{2};\frac{13}{4} ight), trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y =  − x2 + 5|x| − 3.

  • Câu 5: Thông hiểu

    Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

    Nhận xét:

    Bảng biến thiên có bề lõm hướng lên. Loại đáp án y =  − x2 + 4x − 9y =  − x2 + 4x.

    Đỉnh của parabol có tọa độ là (2;−5). Xét các đáp án, đáp án y = x2 − 4x − 1 thỏa mãn.

  • Câu 6: Nhận biết

    Tìm khẳng định đúng trong các khẳng định sau?

    * Theo định nghĩa tam thức bậc hai thì f(x) = 3x2 + 2x − 5 là tam thức bậc hai.

  • Câu 7: Nhận biết

    Tìm hàm số bậc hai trong các hàm số dưới đây?

    Theo định nghĩa ta có:

    Hàm số bậc hai là y = - 2x^{2} -
3.

  • Câu 8: Nhận biết

    Điểm nào không thuộc đồ thị hàm số đồ thị y = f(x) = 5x - 1?

     Thay tọa độ (1;2) vào hàm số ta được: 2 eq4. Do đó điểm này không thuộc đồ thị hàm số.

  • Câu 9: Nhận biết

    Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như các đáp án dưới đây. Chọn đáp án đúng.

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, chọn đáp án f(x) > 0với  2< x < 3f(x) < 0với x < 2 ∨ x > 3.

  • Câu 10: Nhận biết

    Điểm nào sau đây thuộc đồ thị hàm số y = 4x + 1?

     Thay tọa độ (0;1) vào y=4x+1 ta được 1=1 thỏa mãn. Suy ra điểm này thuộc đồ thị hàm số y=4x+1.

  • Câu 11: Vận dụng

    Xét tính đồng biến, nghịch biến của hàm số f(x) = \frac{x - 3}{x + 5} trên khoảng (−∞;−5) và trên khoảng (−5;+∞). Khẳng định nào sau đây đúng?

    Ta có : f\left( x_{1} ight) - f\left(
x_{2} ight) = \left( \frac{x_{1} - 3}{x_{1} + 5} ight) - \left(
\frac{x_{2} - 3}{x_{2} + 5} ight) = \frac{\left( x_{1} - 3
ight)\left( x_{2} + 5 ight) - \left( x_{2} - 3 ight)\left( x_{1} +
5 ight)}{\left( x_{1} + 5 ight)\left( x_{2} + 5 ight)} =
\frac{8\left( x_{1} - x_{2} ight)}{\left( x_{1} + 5 ight)\left(
x_{2} + 5 ight)}.

    ● Với mọi x1x2 ∈ (−∞;−5)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} < - 5 \\
x_{2} < - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{1} + 5 < 0 \\
x_{2} + 5 < 0 \\
\end{matrix} ight..

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = \frac{8}{\left( x_{1} + 5
ight)\left( x_{2} + 5 ight)} >
0\overset{}{ightarrow}f(x) đồng biến trên (−∞;−5).

    ● Với mọi x1x2 ∈ (−5;+∞)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} > - 5 \\
x_{2} > - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{1} + 5 > 0 \\
x_{2} + 5 > 0 \\
\end{matrix} ight..

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = \frac{8}{\left( x_{1} + 5
ight)\left( x_{2} + 5 ight)} >
0\overset{}{ightarrow}f(x) đồng biến trên (−5;+∞).

    Chọn Hàm số đồng biến trên các khoảng (−∞;−5)(−5;+∞).

  • Câu 12: Thông hiểu

    Tập nghiệm của phương trình 2x-\sqrt{x-8}=\sqrt{8-x}+16 là:

    Xét phương trình: 2x - \sqrt{x - 8} =\sqrt{8 - x} + 16. (1)

    Điều kiện : \left\{ \begin{matrix}x - 8 \geq 0 \\8 - x \geq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 8 \\x \leq 8 \\\end{matrix} ight.\  \Leftrightarrow x = 8.

    Thay x = 8 ta thấy (1) thoả mãn. Vậy, phương trình (1) có tập nghiệm là S = {8}.

  • Câu 13: Thông hiểu

    Bảng xét dấu nào sau đây là bảng xét dấu của tam thức f(x) = x^{2} + 2x + 1 là:

     Xét biếu thức f(x) = x^{2} + 2x + 1∆ = 0 và nghiệm là x = -{\text{ }}1;{\text{ }}a = 1 > 0

    Ta có bảng xét dấu như sau:

    Tìm bảng xét dấu của tam thức bậc hai

  • Câu 14: Thông hiểu

    Đồ thị hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

    Hỏi hàm số đó là hàm số nào?

    Nhận xét:

    Parabol có bề lõm hường lên.

    Parabol cắt trục hoành tại điểm (1;0). Xét các đáp án, đáp án y = 2x2 − 3x + 1. thỏa mãn.

  • Câu 15: Nhận biết

    Giải bất phương trình −2x^{2}+3x−7≥0.

     Ta có: −2x^{2}+3x−7≥0 \Leftrightarrow x \in \varnothing.

  • Câu 16: Nhận biết

    Hàm số nào dưới đây đồng biến trên (3;4)?

    + Hàm số y = \frac{1}{2}x^{2} - 2x +
1 đồng biến trên (2;+∞) nên đồng biến trên (3;4). Chọn đáp án này.

    + Hàm số y = x2 − 7x + 2 đồng biến trên \left( \frac{7}{2}; + \infty
ight). Loại.

    + Hàm số y =  − 3x + 1 nghịc biến trên . Loại.

    + Hàm số y = - \frac{1}{2}x^{2} + x -
1 đồng biến trên (−∞;1). Loại.

  • Câu 17: Thông hiểu

    Xác định parabol (P):y=ax^{2}+bx+2 biết rằng Parabol đi qua hai điểm M(1;5) và N(2;-2)

     Thay tọa độ M(1;5)N(2;-2) vào hàm số, ta được:

    \left\{ {\begin{array}{*{20}{c}}{5 = a + b + 2}\\{ - 2 = 4a + 2b + 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a =  - 5}\\{b = 8}\end{array}} ight.} ight..

    Vậy đó là hàm số y=-5x^{2}+8x+2.

  • Câu 18: Thông hiểu

    Cho hàm số f(x) =
\left\{ \begin{matrix}
\frac{2\sqrt{x - 2} - 3}{x - 1} & khi & x \geq 2 \\
x^{2} + 2 & khi & x < 2 \\
\end{matrix} ight.. Tính P = f(2) + f(−2).

    Ta có: f(2) + f( - 2) = \frac{2\sqrt{2 -
2} - 3}{2 - 1} + ( - 2)^{2} + 2 \Rightarrow P = 3.

  • Câu 19: Thông hiểu

    Các giá trị m để tam thức f(x) = x2– (m + 2)x + 8m + 1 đổi dấu 2 lần là

    Tam thức đổi dấu 2 lần khi tam thức có 2 nghiệm pb

    Δ > 0 ⇔ m2 − 28m > 0 ⇔ m < 0 ∨ m > 28.

  • Câu 20: Vận dụng

    Tổng các nghiệm của phương trình \frac{2x^{2} + 8x + 1}{2x + 1} = 5\sqrt{x} là:

    ĐK: x ≥ 0.

    Dễ thấy x = 0 không là nghiệm của phương trình.

    Xét x ≠ 0. Khi đó phương trình tương đương với

    10x\sqrt{x} + 5\sqrt{x} = 2x^{2} + 1 +8x \Leftrightarrow 5(\sqrt{x} + \frac{1}{2\sqrt{x}}) = 2(x +\frac{1}{4x}) + 4

    Đặt t = \sqrt{x} + \frac{1}{2\sqrt{x}}\geq 2\sqrt{\sqrt{x}.\frac{1}{2\sqrt{x}}} = \sqrt{2} \Rightarrow t \geq\sqrt{2}

    Suy ra x + \frac{1}{4x} = t^{2} -1. Phương trình trở thành:

    5t = 2(t2−1) + 4 ⇔ 2t2 − 5t + 2 = 0 ⇔ t = 2 (thỏa mãn) hoặc t = \frac{1}{2} (loại)
    Với t = 2 ta có x + \frac{1}{4x} = 3 \Leftrightarrow 4x^{2} - 12x +1 = 0 \Leftrightarrow x = \frac{3 \pm 2\sqrt{2}}{2} (thỏa mãn)

    Vậy phương trình có nghiệm là x = \frac{3\pm 2\sqrt{2}}{2}.

    Tổng các nghiệm của phương trình bằng 3.

  • Câu 21: Vận dụng cao

    Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol . Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 43 m so với mặt đất , người ta thả một sợi dây chạm đất . Vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn 10 m. Giả sử các số liệu trên là chính xáHãy tính độ cao của cổng Arch. (làm tròn kết quả đến hàng phần mười)

    hệ trục tọa độ Oxy như hình vẽ. Phương trình Parabol (P) có dạng y = ax2 + bx + c.

    Parabol (P)đi qua điểm A(0;0), B(162;0), M(10;43) nên ta có

    \left\{ \begin{matrix}
c = 0 \\
162^{2}a + 162b + c = 0 \\
10^{2}a + 10b + c = 43 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 0 \\
a = - \frac{43}{1520} \\
b = \frac{3483}{760} \\
\end{matrix} ight.\  \Rightarrow (P):y = - \frac{43}{1520}x^{2} +
\frac{3483}{760}x.

    Do đó chiều cao của cổng là h = -
\frac{\Delta}{4a} = - \frac{b^{2} - 4ac}{4a} \approx 185,6m.

  • Câu 22: Nhận biết

    Biết phương trình \sqrt{7x + 1} = 2\sqrt{x + 4} có nghiệm duy nhất là x = x_{0} . Hãy chọn khẳng định đúng.

    ĐK x \in \left\lbrack - \frac{1}{7}; +
\infty ight)

    \sqrt{7x + 1} = 2\sqrt{x + 4}\Leftrightarrow 7x + 1 = 4(x + 4)\Leftrightarrow x = 5(TM)  \Rightarrow x_{0} = 5 \in (4;6).

  • Câu 23: Thông hiểu

    Giả sử x_{1},x_{2} là nghiệm của phương trình x^{2} - (m + 2)x + m^{2} + 1 =
0. Khi đó giá trị lớn nhất của biểu thức P = 4\left( x_{1} + x_{2} ight) -
x_{1}x_{2} bằng:

    Để phương trình có hai nghiệm x_{1};x_{2} thì

    \Delta = (m + 2)^{2} - 4\left( m^{2} + 1
ight) \geq 0 \Leftrightarrow - 3m^{2} + 4m \geq 0 \Leftrightarrow 0
\leq m \leq \frac{4}{3}.

    Áp dụng hệ thức Viet ta có: \left\{
\begin{matrix}
x_{1} + x_{2} = m + 2 \\
x_{1}.x_{2} = m^{2} + 1 \\
\end{matrix} ight.

    Khi đó: P = 4(m + 2) - \left( m^{2} + 1
ight) = - m^{2} + 4m + 7.

    Xét hàm số P(m) = - m^{2} + 4m +
7,\forall m \in \left\lbrack 0;\frac{4}{3} ightbrack có hệ số a < 0, hoành độ đỉnh x = 2 nên P(m) đồng biến trên \left\lbrack 0;\frac{4}{3} ightbrack
\Rightarrow \max_{\ _{\left\lbrack 0;\frac{4}{3} ightbrack}}P =
P\left( \frac{4}{3} ight) = \frac{95}{9}.

  • Câu 24: Nhận biết

    Tập nghiệm S của phương trình \sqrt{2x-3}=x-3 là:

    Ta có: \sqrt{2x-3}=x-3  \Rightarrow{2x-3}= (x-3)^2 \Leftrightarrow x^2-8x+12=0 \Leftrightarrow\left[ {\begin{array}{*{20}{c}}{x = 2}\\{x = 6}\end{array}} ight.

    Thử lại thấy x=2 không thỏa mãn.

    Vậy S= \{6\}.

     

  • Câu 25: Vận dụng

    Tích các nghiệm của phương trình 3\sqrt{x + 3} = 3x^{2} + 4x - 1 là:

    ĐKXĐ: x ≥  − 3

    Phương trình \Leftrightarrow - 27(x + 3) -3\sqrt{x + 3} + 3x^{2} + 31x + 80 = 0

    Đặt t = \sqrt{x + 3}, (t≥0) phương trình trở thành  − 27t2 − 3t + 3x2 + 31x + 80 = 0(1)

    Δt = (18x+93)2 suy ra (1) \Leftrightarrow \left\lbrack\begin{matrix}t = \frac{- 3x - 16}{9} \\t = \frac{x + 5}{3} \\\end{matrix} ight.

    \bullet \sqrt{x + 3} = \frac{- 3x -16}{9} Vô nghiệm vì với x ≥  − 3 thì \frac{- 3x - 16}{9} < 0

    \bullet \sqrt{x + 3} = \frac{x + 5}{3}\Leftrightarrow x^{2} + x - 2 = 0 \Leftrightarrow x = 1 hoặc x =  − 2

    Vậy phương trình ban đầu có hai nghiệm x = 1x =  − 2, tích các nghiệm của phương trình là 1.(−2) =  − 2.

  • Câu 26: Thông hiểu

    Nghiệm của phương trình \frac{x^{2}-4x+3}{\sqrt{x-1}}=\sqrt{x-1} là:

     Điều kiện: x>1.

    Ta có: \frac{x^{2}-4x+3}{\sqrt{x-1}}=\sqrt{x-1}  \Rightarrow x^2-4x+3=x-1\Leftrightarrow x^2-5x+4=0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 4}\end{array}} ight..

    Loại x=1. Do đó S=\{4\}.

  • Câu 27: Vận dụng

    Hàm số f(x) có tập xác định và có đồ thị như hình vẽ

     

    Mệnh đề nào sau đây đúng ?

    Nhìn vào đồ thị hàm số ta có:

    Đồ thị hàm số cắt trục hoành tại hai điểm M(1; 0), N(3; 0) ⇒ MN = 2 . Suy ra Đồ thị hàm số cắt trục hoành theo một dây cung có độ dài bằng 2là đúng.

  • Câu 28: Vận dụng

    Hình nào sau đây là đồ thị của hàm số y=-\frac{1}{2}x^{2}+x?

    Hàm số y=-\frac{1}{2}x^{2}+x? có các hệ số a = − 1 2 −12 < 0, b = 1, c = 0

    a =  - \frac{1}{2} < 0 nên đồ thị hàm số có bề lõm quay xuống dưới, ta loại hai hình vẽ:

    Đồ thị của hàm số bậc hai Đồ thị của hàm số bậc hai

    Đồ thị có toạ độ đỉnh {x_S} =  - \frac{b}{{2a}} = 1 tung độ {y_S} =  - \frac{\Delta }{{4a}} = \frac{1}{2} hay S\left( {1;\frac{1}{2}} ight). Do đó ta loại hình vẽ

    Đồ thị của hàm số bậc hai

  • Câu 29: Nhận biết

    Gọi S là tập nghiệm của bất phương trình {x^2} - 8x + 7 \geqslant 0. Trong các tập hợp sau, tập nào không là tập con của S?

    Tam thức bậc hai f\left( x ight) = {x^2} - 8x + 7 có hai nghiệm phân biệt là: {x_1} = 1;{x_2} = 7

    Vì a = 1 > 0 nên f\left( x ight) \geqslant 0 khi x \in \left( { - \infty ;1} ight] \cup \left[ {7; + \infty } ight).

    Tập không phải tập con của S là: [6; + ∞)

  • Câu 30: Vận dụng cao

    Tất cả các giá trị của tham số m để phương trình \frac{3mx + 1}{\sqrt{x + 1}} + \sqrt{x + 1} =
\frac{2x + 5m + 3}{\sqrt{x + 1}} có nghiệm là:

    ĐKXĐ x >  − 1

    pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.

    Phương trình đã cho có nghiệm \Leftrightarrow \left\{ \begin{matrix}
3m - 1 eq 0 \\
x = \frac{5m + 1}{3m - 1} > - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m eq \frac{1}{3} \\
\frac{8m}{3m - 1} > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m > \frac{1}{3} \\
m < 0 \\
\end{matrix} ight..

  • Câu 31: Vận dụng

    Phương trình (m−1)x2 − 2x + m + 1 = 0 có hai nghiệm phân biệt khi

    Yêu cầu bài toán \Leftrightarrow \left\{
\begin{matrix}
a = m - 1 eq 0 \\
{\Delta'}_{x} = ( - \ 1)^{2} - (m - 1)(m + 1) > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m eq 1 \\
1 - m^{2} + 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m eq 1 \\
m^{2} < 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m eq 1 \\
- \ \sqrt{2} < m < \sqrt{2} \\
\end{matrix} ight.\  \Leftrightarrow m \in \left( - \
\sqrt{2};\sqrt{2} ight)\backslash\left\{ 1 ight\}.

    Vậy phương trình có hai nghiệm phân biệt \Leftrightarrow m \in \left( - \ \sqrt{2};\sqrt{2}
ight)\backslash\left\{ 1 ight\}.

  • Câu 32: Nhận biết

    Cho hàm số có đồ thị như hình bên dưới.

    Khẳng định nào sau đây là đúng?

    Trên khoảng (0;2) đồ thị hàm số đi xuống từ trái sang phải nên hàm số nghịch biến.

  • Câu 33: Nhận biết

    Cho hàm số có đồ thị như hình vẽ

    Khẳng định nào sau đây đúng:

    Hàm số đồng biến trên khoảng (1;3).

  • Câu 34: Thông hiểu

    Cho hàm số f(x) =
\left\{ \begin{matrix}
\frac{2x + 3}{x + 1} & khi & x \geq 0 \\
\frac{\sqrt[3]{2 + 3x}}{x - 2} & khi & - 2 \leq x < 0 \\
\end{matrix} ight.. Ta có kết quả nào sau đây đúng?

    f( - 1) = \frac{\sqrt[3]{2 - 3}}{- 1 - 2}
= \frac{1}{3}; f(2) = \frac{2.2 +
3}{2 + 1} = \frac{7}{3}.

  • Câu 35: Nhận biết

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.

    (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
\end{matrix} ight. vào (P), ta được 0 = 4a + 6 − 2 ⇔ a =  − 1.

    Vậy (P) : y =  − x2 + 3x − 2.

  • Câu 36: Thông hiểu

    Tổng các nghiệm của phương trình x^{2} + \sqrt{x^{2} + 11} = 31?

    Đặt t = \sqrt{x^{2} + 11},t \geq0. Khi đó phương trình đã cho trở thành:

    t^{2} + t - 42 = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 6 \\t = - 7 \\\end{matrix} ight.

    t ≥ 0 ⇒ t = 6, thay vào ta có \sqrt{x^{2} + 11} =6.

    x2 + 11 = 36 ⇔ x =  ± 5.

    Vậy phương trình có nghiệm là x =  ± 5.

    Tổng các nghiệm của phương trình là 0.

  • Câu 37: Thông hiểu

    Bề lõm của parabol quay lên trên đối với đồ thị hàm số bậc hai nào sau đây?

    Đồ thị hàm số bậc hai y = f(x) = a{x^2} + bx + c ,(a e 0) là một đường parabol có đỉnh là điểm I\left( { - \frac{b}{{2a}};\frac{{ - \Delta }}{{4a}}} ight), có trục đối xứng là đường thẳng x = - \frac{b}{{2a}}. Parabol này quay bề lõm lên trên nếu a > 0.

    Hàm số y = 2x + x^{2}a = 1 > 0

    => Đồ thị hàm số y = 2x + x^{2} có bề lõm quay lên.

  • Câu 38: Thông hiểu

    Cặp bất phương trình nào sau đây là tương đương?

    Ta có: x-2 \le 0 \Leftrightarrow x \le2.

    Ta có: x^{2}(x-2)\leq 0 \Leftrightarrow x-2 \le0 (Vì x^2\ge0 với mọi giá trị x). Do đó x \le 2.

  • Câu 39: Vận dụng cao

    Đường thẳng d : y = (m−3)x − 2m + 1 cắt hai trục tọa độ tại hai điểm AB sao cho tam giác OAB cân. Khi đó, số giá trị của m thỏa mãn là

    A = d ∩ Ox nên tọa độ A là nghiệm của hệ:

    \left\{ \begin{matrix}
y = (m - 3)x - 2m + 1 \\
y = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = \frac{2m - 1}{m - 3} \\
y = 0 \\
\end{matrix} ight. nên A\left(
\frac{2m - 1}{m - 3};\ 0 ight).

    B = d ∩ Oy nên tọa độ B là nghiệm của hệ:

    \left\{ \begin{matrix}
y = (m - 3)x - 2m + 1 \\
x = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = - 2m + 1 \\
\end{matrix} ight. nên B(0;−2m+1).

    Ta có OA = OB \Leftrightarrow \left|
\frac{2m - 1}{m - 3} ight| = | - 2m + 1| \Leftrightarrow |2m -
1|\left( \frac{1}{|m - 3|} - 1 = 0 ight)

    \Leftrightarrow \left\lbrack
\begin{matrix}
2m - 1 = 0 \\
|m - 3| = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = \frac{1}{2} \\
m = 4,\ m = 2 \\
\end{matrix} ight..

    Nhận xét: Với m = \frac{1}{2}thì A ≡ B ≡ O(0;  0) nên không thỏa mãn.

    Vậy m = 4, m = 2.

  • Câu 40: Nhận biết

    Tập nghiệm của bất phương trình 2{x^2} - 7x - 15 \geqslant 0 là:

    Tam thức f(x)=2{x^2} - 7x - 15 có hai nghiệm phân biệt {x_1} = 5;{x_2} =  - \frac{3}{2}

    a = 2 > 0 nên f(x) dương với mọi x thuộc hai nửa khoảng \left( { - \infty  - \frac{3}{2}} ight],\left[ {5, + \infty } ight)

    Vậy tập nghiệm của bất phương trình là: S=(-∞;-\frac{3}{2})∪[5;+∞)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo