Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.
Vì (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay vào (P), ta được 0 = 4a + 6 − 2 ⇔ a = − 1.
Vậy (P) : y = − x2 + 3x − 2.
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.
Vì (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay vào (P), ta được 0 = 4a + 6 − 2 ⇔ a = − 1.
Vậy (P) : y = − x2 + 3x − 2.
Phương trình:
có bao nhiêu nghiệm?
Điều kiện:
Kết hợp với điều kiện ta được thỏa mãn
Vậy nghiệm của phương trình là
Trong các hàm số sau, hàm số nào là hàm số bậc hai?
Đáp án là đáp án đúng vì hàm số bậc hai có dạng
Tổng các bình phương của các nghiệm của phương trình
bằng bao nhiêu?
Ta có
.
Tổng các bình phương của các nghiệm của phương trình là .
Cho một vật rơi từ trên cao xuống theo phương thẳng đứng với vận tốc ban đầu là 12 m/s. Hỏi lúc t = 7 s thì vật đã rơi được bao nhiêu mét, biết g = 9,8
, hệ trục tọa độ chọn mốc từ lúc vật bắt đầu rơi, gốc tọa độ ở vật tại thời điểm bắt đầu rơi.
Gọi vận tốc ban đầu của vật là .
Do đây là vật rơi nên vật sẽ chuyển động nhanh dần đều.
Suy ra hàm số biểu thị quãng đường rơi s theo thời gian t là:
Ta thấy hệ trục tọa độ chọn mốc từ lúc vật bắt đầu rơi, gốc tọa độ ở vật tại thời điểm bắt đầu rơi và thời gian là đại lượng không âm nên t ≥ 0.
Ta có hàm số:
Khi t = 7 thì vật đã rơi được quãng đường là:
.
Quan sát đồ thị hàm số sau:

Cho biết hàm số nào tương ứng với đồ thị hàm số đã cho?
Ta có:
Đồ thị cắt trục Oy tại nên ta loại đáp án
và
.
Dễ thấy đồ thị có đỉnh là
Xét hàm số có đỉnh là
.
Vậy hàm số tương ứng với đồ thị là: .
Phương trình (m−1)x2 − 2x + m + 1 = 0 có hai nghiệm phân biệt khi
Yêu cầu bài toán
Vậy phương trình có hai nghiệm phân biệt
Đồ thị hình bên dưới là đồ thị của hàm số nào?

Đồ thị cắt trục tung tại điểm có tung độ bằng 1.
Đồ thị cắt trục hoành tại điểm có hoành độ bằng 1, phương trình hoành độ giao điểm phải có nghiệm x = 1, ta chỉ có phương trình .
Đường gấp khúc trong hình vẽ là dạng đồ thị của một trong bốn hàm số được liệt kê trong các phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

Đồ thị hàm số đi qua các điểm (0;1) và (1;0) nên chỉ có hàm số y = 1 − |x| thỏa mãn.
Chọn y = 1 − |x|.
Số nghiệm của phương trình:
là:
.
Vậy phương trình có một nghiệm.
Cho hàm số y = f(x) có tập xác định là [ − 1; 3] và đồ thị của nó được biểu diễn bởi hình bên.
Khẳng định nào sau đây là sai?
Trên khoảng (0;2) đồ thị hàm số đi ngang từ trái sang phải
Hàm số không đổi trên khoảng (0;2).
Trên khoảng (2;3) đồ thị hàm số đi lên từ trái sang phải
Hàm số đồng biến trên khoảng (2;3).
Chọn đáp án Hàm số đồng biến trên khoảng (2;3).
Tìm tất cả các giá trị của m để bất phương trình
với mọi x ∈ ℝ
Để bất phương trình với mọi x ∈ ℝ thì:
Tam thức bậc hai f(x) = − x2 − 1 nhận giá trị âm khi và chỉ khi
f(x) = − x2 − 1 = 0 vô nghiệm

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ ℝ.
Phương trình
có mấy nghiệm nguyên ?
Điều kiện: x ≥ − 2
PT đã cho tương đương với:
Do x = − 2 không là nghiệm của PT đã cho nên chia hai vế cho x + 2 ta được:
Đặt ta có:
Với t = 2 ta được
Vậy phương trình có 0 nghiệm nguyên.
Tập nghiệm của bất phương trình
là
Ta có: .
Tìm tập xác định D của hàm số 
Hàm số xác định khi .
Vậy xác định của hàm số là D = ℝ ∖ {2}.
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Cho hàm số:
. Tập xác định của hàm số là tập hợp nào sau đây?
Với x ≤ 0 ta có: xác định với mọi x ≠ 1 nên xác định với mọi x ≤ 0.
Với x > 0 ta có: xác định với mọi x ≥ − 2 nên xác định với mọi x > 0.
Vậy tập xác định của hàm số là D = ℝ.
Nghiệm của phương trình
là
Điều kiện:
Phương trình tương đương
Kết hợp với điều kiện ra được thỏa mãn
Vậy nghiệm của phương trình là:
Số nghiệm của phương trình
là:
Ta thấy không là nghiệm của phương trình
Xét , phương trình đã cho
Đến đây, chú ý
Nên phương trình có nghiệm phải thỏa mãn
Do đó phương trình đã cho
Nhưng x = − 1 không thoả mãn nên phương trình có nghiệm x = 1
* TH2:
(thỏa mãn)
Vậy phương trình có nghiệm duy nhất x = 1.
Hàm số nào sau đây có đỉnh
?
Hàm số có các hệ số a = 1, b = ‒2, c = 1 nên có tọa độ đỉnh
Xét sự biến thiên của hàm số
trên khoảng (1;+∞). Khẳng định nào sau đây đúng?
Ta có :
Với mọi x1, x2 ∈ (1;+∞) và x1 < x2. Ta có
Suy ra đồng biến trên (1;+∞).
Dưới đây là bảng giá cước của hãng taxi A
|
Giá khởi điểm |
Giá km tiếp theo |
|
11 000 đồng/ 0,7km |
16 000 /1km |
Giá khởi điểm: Khi lên taxi quãng đường di chuyển không quá 0,7km thì mức giá vẫn giữ ở mức 11 000 đồng.
Gọi y (đồng) là số tiền phải trả khi đi được x (km). Xác định hệ thức liên hệ giữa x và y?
Nếu quãng đường đi được nhỏ hơn 0,7km thì số tiền phải trả là .
Nếu quãng đường đi trên 0,7km thì số tiền phải trả là:
(đồng)
Vậy mối liên hệ giữa y và x là: .
Tập nghiệm của bất phương trình
là?
Ta có
Bảng xét dấu:
Dựa vào bảng xét dấu .
Trong các hàm số sau, hàm số nào có đồ thị nhận đường x = 1 làm trục đối xứng?
Ta có đáp án có:
Vậy x = 1 là trục đối xứng của đồ thị hàm số .
Điểm nào không thuộc đồ thị hàm số đồ thị
?
Thay tọa độ vào hàm số ta được:
. Do đó điểm này không thuộc đồ thị hàm số.
Tập xác định của hàm số
là
Ta có :
• Khi x < 2: xác định khi
.
Suy ra D1 = (−∞;2).
• Khi x ≥ 2: xác định khi x + 7 ≥ 0 ⇔ x ≥ − 7.
Suy ra D1 = [2; + ∞).
Vậy TXĐ của hàm số là D = D1 ∪ D2 = (−∞;+∞) = ℝ.
Tổng tất cả các nghiệm của phương trình
bằng:
.
Phương trình chỉ có nghiệm nên tổng các nghiệm bằng
.
Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) đi qua ba điểm A(1;1), B(−1;−3) và O(0;0).
Vì (P) đi qua ba điểm A(1;1), B(−1;−3), O(0;0) nên có hệ
.
Vậy (P) : y = − x2 + 2x.
Cho hàm số y = f(x) = ax2 + bx + c có đồ thị như hình vẽ. Đặt Δ = b2 − 4ac, tìm dấu của a và Δ.

Nhìn đồ thị, ta thấy đồ thị y = f(x) cắt trục hoành tại 2 điểm x = 1, x = 4 nên Δ > 0, dựa vào hình dạng parabol nên suy a > 0
Hàm số y = x2 − 4x + 11 đồng biến trên khoảng nào trong các khoảng sau đây?
Ta có bảng biến thiên:

Từ bảng biến thiên ta thấy, hàm số đồng biến trên khoảng
(2;+∞).
Số nghiệm của phương trình
là:
ĐKXĐ: 2x(x2+1) ≥ 0 ⇔ x ≥ 0
Đặt , a ≥ 0, b ≥ 0
Suy ra a2 + b2 = 2x + x2 + 1 = (x+1)2
Phương trình trở thành a2 + b2 − 2ab = 0 ⇔ (a−b)2 = 0 ⇔ a = b
Suy ra (thỏa mãn)
Vậy phương trình có một nghiệm là x = 1 .
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4] là
Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2
= (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.
Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].
.
Cách 1: Ta có .
Cách 2: Vẽ BBT

Vậy , ymax = 21.
Bất phương trình
có tập nghiệm là:
Ta có: (vô lí).
Vậy .
Cho hàm số
. Tìm tất cả các giá trị thực của tham số m để hàm số đã cho có tập xác định
?
Hàm số có tập xác định khi và chỉ khi
Xét thì
, loại giá trị
Xét ta có:
Vậy
Phương trình
có nghiệm là:
Điều kiện:
Phương trình tương đương
Kết hợp với điều kiện ta có: thỏa mãn
Vậy phương trình có nghiệm là .
Tập xác định của hàm số
là:
Hàm số xác định . Vậy D = ℝ ∖ {0;4}.
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi 4 − 3x − x2 > 0.
Phương trình
Bảng xét dấu:

Dựa vào bảng xét dấu, ta thấy 4 − 3x − x2 > 0 ⇔ x ∈ (− 4; 1).
Vậy tập xác định của hàm số là D = (− 4;1).
Tập nghiệm của bất phương trình
là:
Tam thức có hai nghiệm phân biệt
a = 2 > 0 nên f(x) dương với mọi x thuộc hai nửa khoảng
Vậy tập nghiệm của bất phương trình là:
Hàm số nào sau đây có đồ thị như hình bên

Quan sát đồ thị ta loại y = x2 − 3x − 3 và y = − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y = − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P) là , trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y = − x2 + 5|x| − 3.