Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Hàm số và đồ thị gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho phương trình x^{2} - mx - m^{2} = 0 với m là tham số. Có bao nhiêu giá trị nguyên của tham số m \in \lbrack -
10;10brack để phương trình đã cho có hai nghiệm trái dấu?

    Từ yêu cầu bài toán

    \Leftrightarrow a.c < 0
\Leftrightarrow - m^{2} < 0 \Leftrightarrow m^{2} > 0
\Leftrightarrow m eq 0

    Suy ra m \in \left\{ - 10;....; - 1
ight\} \cup \left\{ 1;...;10 ight\}

    Vậy có 20 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 2: Thông hiểu

    Giả sử đồ thị parabol (P):y = 2x^{2} + bx + c đi qua điểm A(0;4) và có trục đối xứng là đường thẳng x - 1 = 0. Tính tổng các giá trị bc?

    Ta có: A \in (P) \Rightarrow c =
4

    Trục đối xứng của (P) là: - \frac{b}{2a} = 1 \Leftrightarrow b = -
4

    \Rightarrow b + c = - 4 + 4 =
0

  • Câu 3: Vận dụng

    Tổng các nghiệm của phương trình \sqrt{x^{4} - 2x^{2} + 1} + x = 1 là:

    \sqrt{x^{4} - 2x^{2} + 1} + x =1

    \Leftrightarrow \sqrt{x^{4} - 2x^{2} +1} = 1 - x

    \Leftrightarrow \left\{ \begin{matrix}1 - x \geq 0 \\\left( x^{2} - 1 ight)^{2} = (1 - x)^{2} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq 1 \\(x - 1)^{2}x(x - 2) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq 1 \\\left\lbrack \begin{matrix}x = 1 \\x = 0 \\x = - 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = 0 \\x = - 2 \\\end{matrix} ight..

    Vậy tổng các nghiệm của phương trình là  − 1.

  • Câu 4: Nhận biết

    Tìm tập xác định của hàm số y = \sqrt{4x^{2} - 4x + 1}.

    Điều kiện xác định: 4x2 − 4x + 1 ≥ 0 ⇔ (2x−1)2 ≥ 0 (luôn đúng với mọi x ∈ ℝ).

    Do đó tập xác định D = ℝ.

  • Câu 5: Nhận biết

    Tìm tập xác định của y = \sqrt{6-3x}-\sqrt{x-1}

     Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}{6 - 3x \ge 0}\\{x - 1 \ge 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x \le 2}\\{x \ge 1}\end{array}} ight.} ight. \Leftrightarrow 1 \le x \le 2.

    Vậy D=[1;2].

  • Câu 6: Thông hiểu

    Phương trình: x^{2} + 5x + 2 + 2\sqrt{x^{2} + 5x + 10} =0 có mấy nghiệm ?

    Điều kiện xác định x2 + 5x + 10 ≥ 0 ⇔ x ∈ ℝ.

    Khi đó phương trình \Leftrightarrow x^{2}+ 5x + 10 + 2\sqrt{x^{2} + 5x + 10} - 8 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}\sqrt{x^{2} + 5x + 10} = 2 \\\sqrt{x^{2} + 5x + 10} = - 4 \\\end{matrix} ight. \Leftrightarrow \sqrt{x^{2} + 5x + 10} =2

    \Leftrightarrow x^{2} + 5x + 6 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 3 \\x = - 2 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 7: Thông hiểu

    Biết phương trình \sqrt{x^{2} - 3x + 3} + \sqrt{x^{2} - 3x + 6} =3 có hai nghiệm x1, x2 (x1<x2) . Khẳng định nào sau đây là đúng?

    Đặt t = x2 − 3x + 3, ta có: t = \left( x - \frac{3}{2} ight)^{2}+ \frac{3}{4} \geq \frac{3}{4}.

    Do đó điều kiện cho ẩn phụ t là t \geq \frac{3}{4}.

    Khi đó phương trình trở thành:

    \sqrt{t} + \sqrt{t + 3} = 3\Leftrightarrow t + t + 3 +2\sqrt{t(t + 3)} = 9 \sqrt{t(t + 3)} = 3 - t

    \Leftrightarrow \left\{ \begin{matrix}3 - t \geq 0 \\t(t + 3) = (3 - t)^{2} \\\end{matrix} ight. \left\{ \begin{matrix}t \leq 3 \\t = 1 \\\end{matrix} ight.  ⇔ t = 1(thỏa mãn)

     ⇒ x2 − 3x + 3 = 1⇔ \left\lbrack \begin{matrix}x = 1 = x_{1} \\x = 2 = x_{2} \\\end{matrix} ight.\  \Rightarrow 2x_{1} = x_{2}.

  • Câu 8: Nhận biết

    Tìm tất cả các giá trị của m để hàm số y = f(x) = (2-m)x+x + 2 nghịch biến trên \mathbb{R}.

     Điều kiện để hàm số y=ax+b nghịch biến trên \mathbb {R}a<0.

    Suy ra 2-m<0 \Leftrightarrow m>2.

  • Câu 9: Nhận biết

    Trục đối xứng của parabol y =  − x2 + 5x + 3 là đường thẳng có phương trình

    Trục đối xứng của parabol y = ax2 + bx + c là đường thẳng x = -
\frac{b}{2a}.

    Trục đối xứng của parabol y =  − x2 + 5x + 3 là đường thẳng x = \frac{5}{2}.

  • Câu 10: Thông hiểu

    Cho phương trình x^{2} - 2m|x| + 9 - m =
0. Tìm m để phương trình có 3 nghiệm phân biệt?

    Đáp án: 9

    Đáp án là:

    Cho phương trình x^{2} - 2m|x| + 9 - m =
0. Tìm m để phương trình có 3 nghiệm phân biệt?

    Đáp án: 9

    Đặt |x| = t(t \geq 0) thì phương trình (*) trở thành: t^{2} - 2mt + 9 - m = 0 (1)

    Để phương trình (*) có 3 nghiệm phân biệt thì phương trình (1) phải có nghiệm t = 0 và một nghiệm t > 0.

    Khi t = 0 \Rightarrow m = 9 thì (1) \Leftrightarrow t^{2} - 18t = 0
\Rightarrow \left\lbrack \begin{matrix}
t = 18 > 0\ \ (TM) \\
t = 0 \\
\end{matrix} ight..

    Vậy m = 9

  • Câu 11: Nhận biết

    Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như các đáp án dưới đây. Chọn đáp án đúng.

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, chọn đáp án f(x) > 0với  2< x < 3f(x) < 0với x < 2 ∨ x > 3.

  • Câu 12: Vận dụng cao

    Hàm số nào sau đây có đồ thị như hình bên

    Quan sát đồ thị ta loại y = x2 − 3x − 3y =  − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y =  − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P)\left( \frac{5}{2};\frac{13}{4} ight), trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y =  − x2 + 5|x| − 3.

  • Câu 13: Vận dụng

    Xét tính đồng biến, nghịch biến của hàm số f(x) = x2 − 4x + 5 trên khoảng (−∞;2) và trên khoảng (2;+∞). Khẳng định nào sau đây đúng?

    Ta có : f(x1) − f(x2) = (x12−4x1+5) − (x22−4x2+5) = (x12x22) − 4(x1x2) = (x1x2)(x1+x2−4).

    ● Với mọi x1x2 ∈ (−∞;2)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} < 2 \\
x_{2} < 2 \\
\end{matrix} ight.\  \Rightarrow x_{1} + x_{2} < 4.

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = \frac{\left( x_{1} - x_{2}
ight)\left( x_{1} + x_{2} - 4 ight)}{x_{1} - x_{2}} = x_{1} + x_{2}
- 4 < 0.

    Vậy hàm số nghịch biến trên (−∞;2).

    ● Với mọi x1x2 ∈ (2;+∞)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} > 2 \\
x_{2} > 2 \\
\end{matrix} ight.\  \Rightarrow x_{1} + x_{2} > 4.

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = \frac{\left( x_{1} - x_{2}
ight)\left( x_{1} + x_{2} - 4 ight)}{x_{1} - x_{2}} = x_{1} + x_{2}
- 4 > 0.

    Vậy hàm số đồng biến trên (2;+∞).

  • Câu 14: Thông hiểu

    Theo tài liệu dân số và phát triển của Tổng cục dân số và kế hoạch hóa gia đình thì:

    Dựa trên số liệu về dân số, kinh tế, xã hội của 85 nước trên thế giới, người ta xây dựng được hàm nêu lên mối quan hệ giữa tuổi thọ trung bình của phụ nữ (y) và tỷ lệ biết chữ của họ (x) như sau: y = 47,17 + 0,307x. Trong đó y là số năm (tuổi thọ), x là tỷ lệ phần trăm biết chữ của phụ nữ. Theo báo cáo của Bộ Giáo dục và Đào tạo năm học 2015 ‒ 2016, tỷ lệ biết chữ đã đạt 96,83% trong nhóm phụ nữ Việt Nam tuổi từ 15 đến 60. Hỏi với tỉ lệ biết chữ của phụ nữ Việt Nam như trên thì nhóm này có tuổi thọ bao nhiêu?

    Thay x = 96,83 vào công thức y = 47,17 + 0,307x ta được:

    y = 47,17 + 0,307. 96,83 = 47,17 + 29,72 = 76,89 (năm)

    Vậy nhóm này có tuổi thọ 76,89 tuổi.

  • Câu 15: Vận dụng cao

    Cho parabol (P) : y = ax2 + bx + c(a≠0) có đồ thị như hình bên. Tìm các giá trị m để phương trình |ax2+bx+c| = m có bốn nghiệm phân biệt.

    Quan sát đồ thị ta có đỉnh của parabol là I(2;3) nên \left\{ \begin{matrix}
- \frac{b}{2a} = 2 \\
3 = 4a + 2b + c \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
b = - 4a \\
4a + 2b + c = 3 \\
\end{matrix} ight..

    Mặt khác (P) cắt trục tung tại (0;−1) nên c =  − 1. Suy ra \left\{ \begin{matrix}
b = - 4a \\
4a + 2b = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 4 \\
\end{matrix} ight..

    (P) : y =  − x2 + 4x − 1 suy ra hàm số y = |−x2+4x−1| có đồ thị là là phần đồ thị phía trên trục hoành của (P) và phần có được do lấy đối xứng phần phía dưới trục hoành của (P), như hình vẽ sau:

    Phương trình |ax2+bx+c| = m hay |−x2+4x−1| = m có bốn nghiệm phân biệt khi đường thẳng y = m cắt đồ thị hàm số hàm số y = |−x2+4x−1| tại bốn điểm phân biệt.

    Suy ra 0 < m < 3.

  • Câu 16: Nhận biết

    Tổng các bình phương của các nghiệm của phương trình(x - 1)(x - 3) + 3\sqrt{x^{2} -
4x + 5} - 2 = 0 bằng bao nhiêu?

    Ta có (x - 1)(x - 3) + 3\sqrt{x^{2} - 4x
+ 5} - 2 = 0

    \Leftrightarrow x^{2} - 4x + 5 +3\sqrt{x^{2} - 4x + 5} - 4 = 0\Leftrightarrow \sqrt{x^{2} - 4x + 5} =1

    \Leftrightarrow x^{2} - 4x + 5 = 1
\Leftrightarrow x^{2} - 4x + 4 = 0 \Leftrightarrow x = 2.

    Tổng các bình phương của các nghiệm của phương trình là 4.

  • Câu 17: Nhận biết

    Cho f(x)=ax^{2}+bx+c(a≠0). Điều kiện để f(x)>0 \forall x \in \mathbb{R} là:

     Ta có: f(x)=ax^{2}+bx+c>0 \forall x \in \mathbb{R} \Leftrightarrow\left\{\begin{matrix}a>0\\ \Delta < 0\end{matrix}ight..

  • Câu 18: Nhận biết

    Cho tam thức bậc hai f(x) = ax^{2} + bx + c;(a eq 0). Khẳng định nào sau đây đúng?

    Ta có: f(x) > 0,\forall x
\Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta < 0 \\
\end{matrix} ight.

  • Câu 19: Thông hiểu

    Phương trình \left( x^{2} - 6x ight)\sqrt{17 - x^{2}} = x^{2}- 6x có bao nhiêu nghiệm thực phân biệt?

    Điều kiện: 17 - x^{2} \geq 0\Leftrightarrow - \sqrt{17} \leq x \leq \sqrt{17}.

    Ta có: \left( x^{2} - 6x ight)\sqrt{17 -x^{2}} = x^{2} - 6x \Leftrightarrow \left( x^{2} - 6x ight)\left(\sqrt{17 - x^{2}} - 1 ight) = 0.

    \Leftrightarrow \left\lbrack\begin{matrix}x^{2} - 6x = 0 \\\sqrt{17 - x^{2}} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x(x - 6) = 0 \\16 - x^{2} = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 0(T) \\x = 6(L) \\x = \pm 4(T) \\\end{matrix} ight..

    Vậy phương trình có 3 nghiệm thực phân biệt.

  • Câu 20: Thông hiểu

    Tìm tập xác định của hàm số y = f(x) = \left\{\begin{matrix}\frac{1}{x}\text{  khi  } x\geq 1\\ \sqrt{x+1} \text{  khi  } x <1\end{matrix}ight.

    Xét  f(x)=\frac1x, ta có: D_1=[1;+\infty).

    Điều kiện xác định của \sqrt{x+1}x\ge-1. Kết hợp với x<1 ta được D_2=[-1;1).

    Vậy D=D_1\cup D_2=[-1;+\infty).

  • Câu 21: Thông hiểu

    Đồ thị sau đây là đồ thị của hàm số nào trong các phương án dưới đây?

     Nhận xét: Từ hình vẽ suy ra đỉnh (-1;-2).

    Thay tọa độ đỉnh (-1;-2) vào các hàm số ở các đáp án, chỉ có hàm số y=3x^{2}+6x+1 thỏa mãn.

  • Câu 22: Vận dụng cao

    Biết phương trình \sqrt{x^{2} - 3x + 3} + \sqrt{x^{2} - 3x + 6} =
3 có hai nghiệm x1, x2(x1<x2) . Khẳng định nào sau đây là đúng?

    Đặt t = x2 − 3x + 3, ta có: t = \left( x - \frac{3}{2} ight)^{2}
+ \frac{3}{4} \geq \frac{3}{4}.

    Do đó điều kiện cho ẩn phụ t là t \geq
\frac{3}{4}.

    Khi đó phương trình trở thành:

    \sqrt{t} + \sqrt{t + 3} = 3
\Leftrightarrow t + t + 3 +
2\sqrt{t(t + 3)} = 9 \sqrt{t(t + 3)} = 3 - t

    \Leftrightarrow \left\{ \begin{matrix}
3 - t \geq 0 \\
t(t + 3) = (3 - t)^{2} \\
\end{matrix} ight. \left\{ \begin{matrix}
t \leq 3 \\
t = 1 \\
\end{matrix} ight.  ⇔ t = 1(thỏa mãn) ⇒ x2 − 3x + 3 = 1⇔ \left\lbrack \begin{matrix}
x = 1 = x_{1} \\
x = 2 = x_{2} \\
\end{matrix} ight.\  \Rightarrow 2x_{1} = x_{2}.

  • Câu 23: Nhận biết

    Số nghiệm của phương trình x^{2} - 2x - 8 = 4\sqrt{(4 - x)(x + 2)} là bao nhiêu?

    Điều kiện: (4 - x)(x + 2) \geq 0
\Leftrightarrow x \in \lbrack - 2;\ 4brack.

    x^{2} - 2x - 8 = 4\sqrt{(4 - x)(x + 2)}\Leftrightarrow x^{2} - 2x - 8 = 4\sqrt{- \left( x^{2} - 2x - 8ight)}(1).

    Đặt t = \sqrt{- \left( x^{2} - 2x - 8
ight)}, t \geq 0 \Leftrightarrow t^{2} = - \left( x^{2} - 2x - 8
ight) \Leftrightarrow x^{2} - 2x - 8 = - t^{2}.

    (1) \Leftrightarrow - t^{2} = 4t\Leftrightarrow t^{2} + 4t = 0 \Leftrightarrow \left\lbrack\begin{matrix}t = 0(n) \\t = - 4(l) \\\end{matrix} ight.\  \Leftrightarrow \sqrt{- \left( x^{2} - 2x - 8ight)} = 0 \Leftrightarrow - \left( x^{2} - 2x - 8 ight) = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 2(n) \\x = 4(n) \\\end{matrix} ight..

    Vậy phương trình đã cho có hai nghiệm.

  • Câu 24: Vận dụng

    Cho hàm số y =
f(x) = x^{3} + \left( m^{2} - 1 ight)x^{2} + 2x + m - 1 là một hàm số lẻ. Biết rằng m = m_{0}. Khẳng định nào dưới đây là khẳng định đúng?

    Tập xác định D\mathbb{= R}

    Với x \in D \Rightarrow - x \in
D

    f( - x) = ( - x)^{3} + \left( m^{2} - 1
ight).( - x)^{2} + 2( - x) + m - 1

    = - x^{3} + \left( m^{2} - 1
ight).x^{2} - 2x + m - 1

    Hàm số đã cho là hàm số lẻ khi đó:

    f( - x) = - f(x),\forall x \in
D

    \Leftrightarrow - x^{3} + \left( m^{2} -
1 ight).x^{2} - 2x + m - 1 = - \left\lbrack x^{3} + \left( m^{2} - 1
ight)x^{2} + 2x + m - 1 ightbrack

    \Leftrightarrow 2\left( m^{2} - 1
ight)x^{2} + 2(m - 1) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} - 1 = 0 \\
m - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = \pm 1 \\
m = 1 \\
\end{matrix} ight.\  \Leftrightarrow m = 1

    Vậy m_{0} = 1 \in \left( \frac{1}{2};3
ight)

    VD

     

    1

  • Câu 25: Thông hiểu

    Cho hàm số f(x) =
\left\{ \begin{matrix}
\frac{2x + 3}{x + 1} & khi & x \geq 0 \\
\frac{\sqrt[3]{2 + 3x}}{x - 2} & khi & - 2 \leq x < 0 \\
\end{matrix} ight.. Ta có kết quả nào sau đây đúng?

    f( - 1) = \frac{\sqrt[3]{2 - 3}}{- 1 - 2}
= \frac{1}{3}; f(2) = \frac{2.2 +
3}{2 + 1} = \frac{7}{3}.

  • Câu 26: Nhận biết

    Hàm số nào sau đây nghịch biến trên khoảng (−∞;0)?

    Xét đáp án y = \sqrt{2}x^{2} + 1, ta có - \frac{b}{2a} = 0 và có a > 0 nên hàm số đồng biến trên khoảng (0;+∞) và nghịch biến trên khoảng (−∞;0).

  • Câu 27: Vận dụng cao

    Tìm tập xác định D của hàm số f(x) = \left\{ \begin{matrix}
\frac{1}{2 - x} & ;x \geq 1 \\
\sqrt{2 - x} & ;x < 1 \\
\end{matrix} ight.\ .

    Hàm số xác định khi \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x \geq 1 \\
2 - x eq 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x < 1 \\
2 - x \geq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x \geq 1 \\
x eq 2 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x < 1 \\
x \leq 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x \geq 1 \\
x eq 2 \\
\end{matrix} ight.\  \\
x < 1 \\
\end{matrix} ight..

    Vậy xác định của hàm số là D = ℝ ∖ {2}.

  • Câu 28: Thông hiểu

    Tam thức f(x) = 3x2 + 2(2m−1)x + m + 4 dương với mọi x khi:

    f(x) > 0,\ \forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
a > 0 \\
\Delta' < 0 \\
\end{matrix} ight.\  \Leftrightarrow 4m^{2} - 7m - 11 <
0\  \Leftrightarrow - 1 < x < \frac{11}{4}.

  • Câu 29: Vận dụng

    Tổng các nghiệm của phương trình x(x + 5) = 2\sqrt[3]{x^{2} + 5x - 2} - 2 là:

    Đặt t = \sqrt[3]{x^{2} + 5x - 2}. Phương trình trở thành:

    t3 − 2t + 4 = 0 ⇔ (t+2)(t2−2t+2) = 0 ⇔ t =  − 2

    Ta được

    \sqrt[3]{x^{2} + 5x - 2} = - 2\Leftrightarrow x^{2} + 5x + 6 = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = - 2 \\x = - 3 \\\end{matrix} ight..

    Tổng các nghiệm của phương trình là  − 5.

  • Câu 30: Nhận biết

    Tập nghiệm S của phương trình \sqrt{2x-3}=x-3 là:

    Ta có: \sqrt{2x-3}=x-3  \Rightarrow{2x-3}= (x-3)^2 \Leftrightarrow x^2-8x+12=0 \Leftrightarrow\left[ {\begin{array}{*{20}{c}}{x = 2}\\{x = 6}\end{array}} ight.

    Thử lại thấy x=2 không thỏa mãn.

    Vậy S= \{6\}.

     

  • Câu 31: Nhận biết

    Trong các hàm số sau, hàm số nào nghịch biến trên ?

    Hàm số y = ax + b với a ≠ 0 nghịch biến trên khi và chỉ khi a < 0.

  • Câu 32: Thông hiểu

    Cho các tam thức f(x) = 2x2 − 3x + 4; g(x) =  − x2 + 3x − 4; h(x) = 4 − 3x2. Số tam thức đổi dấu trên là:

    Tam thức đổi dấu khi tam thức có 2 nghiệm phân biệt hay Δ > 0.Vậy chỉ có h(x) = 4 − 3x2 có 2 nghiệm.

  • Câu 33: Nhận biết

    Tam thức bậc hai f(x) = \left( 1 - \sqrt{2} ight)x^{2} + \left( 5
- 4\sqrt{2} ight)x - 3\sqrt{2} + 6

    f(x) = \left( 1 - \sqrt{2} ight)x^{2}
+ \left( 5 - 4\sqrt{2} ight)x - 3\sqrt{2} + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = \sqrt{2} \\
x = - 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án Dương với mọi x \in \left( - 3;\sqrt{2} ight).

  • Câu 34: Nhận biết

    Phương trình \sqrt{x^{2} + 4x - 1} = x - 3 có nghiệm là bao nhiêu?

    \sqrt{x^{2} + 4x - 1} = x - 3\Leftrightarrow \left\{ \begin{matrix}x - 3 \geq 0 \\x^{2} + 4x - 1 = x^{2} - 6x + 9 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 3 \\x = 1\ \ (L) \\\end{matrix} ight..

    Vậy phương trình vô nghiệm.

  • Câu 35: Thông hiểu

    Tất cả các giá trị của tham số m để phương trình \frac{3mx + 1}{\sqrt{x + 1}} + \sqrt{x + 1} =\frac{2x + 5m + 3}{\sqrt{x + 1}} có nghiệm là:

    ĐKXĐ: x >  − 1

    pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.

    Phương trình đã cho có nghiệm \Leftrightarrow \left\{ \begin{matrix}3m - 1 eq 0 \\x = \frac{5m + 1}{3m - 1} > - 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m eq \frac{1}{3} \\\frac{8m}{3m - 1} > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}m > \frac{1}{3} \\m < 0 \\\end{matrix} ight..

  • Câu 36: Vận dụng

    Cho parabol (P) : y = ax2 + bx + c, (a≠0) có đồ thị như hình bên. Khi đó 2a + b + 2c có giá trị là

    Parabol (P) : y = ax2 + bx + c, (a≠0) đi qua các điểm A(−1; 0), B(1; −4), C(3; 0) nên có hệ phương trình: \left\{ \begin{matrix}
a - b + c = 0 \\
a + b + c = - 4 \\
9a + 3b + c = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = - 2 \\
c = - 3 \\
\end{matrix} ight..

    Khi đó: 2a + b + 2c = 2.1 − 2 + 2(−3) =  − 6.

  • Câu 37: Nhận biết

    Tìm hàm số bậc hai trong các hàm số dưới đây?

    Theo định nghĩa ta có:

    Hàm số bậc hai là y = - 2x^{2} -
3.

  • Câu 38: Thông hiểu

    Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là  − 12, cắt trục Oy tại điểm có tung độ bằng  − 2.

    Gọi AB là hai giao điểm cuả (P) với trục Ox có hoành độ lần lượt là  − 12. Suy ra A(−1;0), B(2;0).

    Gọi C là giao điểm của (P) với trục Oy có tung độ bằng  − 2. Suy ra C(0;−2).

    Theo giả thiết, (P) đi qua ba điểm A, B, C nên ta có:

    \left\{ \begin{matrix}
a - b + c = 0 \\
4a + 2b + c = 0 \\
c = - 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = - 1 \\
c = - 2 \\
\end{matrix} ight..

    Vậy (P) : y = x2 − x − 2.

  • Câu 39: Thông hiểu

    Tìm parabol (P):y=ax^{2}+3x-2, biết rằng parabol có đỉnh I(-\frac{1}{2};-\frac{11}{4}).

     Vì hàm số bậc hai có đỉnh I(-\frac{1}{2};-\frac{11}{4}) nên:

    \frac{-b}{2a}= \frac {-1}2 \Leftrightarrow b=a-\frac {11}4=a{(\frac{-1}2})^{2}+3.(-\frac1{2})-2.

    Suy ra a=3.

  • Câu 40: Vận dụng

    Hỏi có bao nhiêu giá trị nguyên của x thỏa mãn bất phương trình \frac{x^{4} - x^{2}}{x^{2} + 5x + 6} \leq 0 ?

    Bất phương trình \frac{x^{4} -
x^{2}}{x^{2} + 5x + 6} \leq 0 \Leftrightarrow \frac{x^{2}\left( x^{2} -
1 ight)}{x^{2} + 5x + 6} \leq 0\ \ \ \ \ \ \ \ \ \ \ \ \
(*).

    x2 ≥ 0,  ∀x ∈ ℝ nên bất phương trình

    (*) \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} = 0 \\
\frac{x^{2} - 1}{x^{2} + 5x + 6} \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
f(x) = \frac{x^{2} - 1}{x^{2} + 5x + 6} \leq 0 \\
\end{matrix} ight.\ .

    Phương trình x^{2} - 1 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = - \ 1 \\
\end{matrix} ight.x^{2} + 5x
+ 6 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - \ 2 \\
x = - \ 3 \\
\end{matrix} ight.\ .

    Bảng xét dấu

    Dựa vào bảng xét dấu, ta thấy f(x) ≤ 0 ⇔ x ∈ (−3 ; −2) ∪ [ − 1 ; 1].

    Kết hợp với x ∈ ℤ ta được x = {−1 ; 0 ; 1}.

    Vậy có tất cả 3 giá trị nguyên cần tìm.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo