Đâu là tập nghiệm của phương trình
?
.
Vậy tập nghiệm của phương trình là .
Đâu là tập nghiệm của phương trình
?
.
Vậy tập nghiệm của phương trình là .
Giá trị nguyên dương lớn nhất của x để hàm số
xác định là
Hàm số đã cho xác định khi và chỉ khi 5 − 4x − x2 ≥ 0 ⇔ x ∈ [− 5; 1].
Vậy giá trị nguyên dương lớn nhất của xđể hàm số xác định là x = 1.
Tổng các bình phương của các nghiệm của phương trình
bằng bao nhiêu?
Ta có
.
Tổng các bình phương của các nghiệm của phương trình là .
Cho hàm số
. Khẳng định nào sau đây đúng?
Hàm số bậc hai y = x2 – 3x + 2 có tập xác định là ℝ. Khẳng định "Tập xác định của hàm số là D = (0; +∞)." sai.
Xét điểm M(1; 0): thay x = 1; y = 0 vào hàm số ta có: 0 = 12 – 3. 1 + 2 = 0 là mệnh đề đúng. Vậy M(1; 0) thuộc đồ thị hàm số. Khẳng định "Điểm M(1; 0) thuộc đồ thị hàm số." đúng.
Hàm số y = x2 – 3x + 2 có a = 1 > 0, b = ‒3 nên hàm số nghịch biến trên khoảng và đồng biến trên khoảng
. Khẳng định "Hàm số đồng biến trên ℝ." sai.
Hàm số y = x2 – 3x + 2 có a = 1 > 0 nên đồ thị hàm số có bề lõm quay lên trên. Khẳng định "Đồ thị hàm số có bề lõm quay xuống dưới." sai.
Tập nghiệm của phương trình:
là:
Điều kiện: =>
Phương trình tương đương
Ta có:
Vậy tập nghiệm của phương trình là:
Bất phương trình
có tập nghiệm là:
Ta có: (vô lí).
Vậy .
Số nghiệm của phương trình
là:
.
Vậy phương trình vô nghiệm.
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Tam thức bậc hai
.
Ta có .
Bảng xét dấu

Dựa vào bảng xét dấu .
Cho hàm số f(x) = ax2 + bx + c đồ thị như hình bên dưới. Hỏi với những giá trị nào của tham số m thì phương trình f(|x|) − 1 = m có đúng 3 nghiệm phân biệt.

Hàm số f(x) = ax2 + bx + c có đồ thị là (C), lấy đối xứng phần đồ thị nằm bên phải Oy của (C) qua Oy ta được đồ thị (C′) của hàm số y = f(|x|).
Dựa vào đồ thị, phương trình f(|x|) − 1 = m ⇔ (|x|) = m + 1 có đúng 3 nghiệm phân biệt khi m + 1 = 3 ⇔ m = 2.
Tập nghiệm của phương trình
là:
Điều kiện .
Ta có: .
Loại . Do đó
.
Cho tam thức bậc hai
. Khẳng định nào sau đây đúng?
Ta có:
Quan sát đồ thị hàm số sau:

Cho biết hàm số nào tương ứng với đồ thị hàm số đã cho?
Ta có:
Đồ thị cắt trục Oy tại nên ta loại đáp án
và
.
Dễ thấy đồ thị có đỉnh là
Xét hàm số có đỉnh là
.
Vậy hàm số tương ứng với đồ thị là: .
Tất cả các giá trị của tham số m để phương trình
có nghiệm là:
ĐKXĐ: x ≥ 1 .
Chia cả hai vế cho ta có
Đặt
Phương trình trở thành − 3t2 + 2t = m (*)
Xét hàm số y = − 3t2 + 2t trên [0; 1) , ta có ,
Bảng biến thiên

Phương trình ban đầu có nghiệm ⇔ phương trình (*) có nghiệm t∈ [0; 1)
⇔ đồ thị hàm số y = − 3t2 + 2t trên [0; 1) cắt đường thẳng
Vậy phương trình ban đầu có nghiệm khi và chỉ khi .
Tam thức bậc hai f(x) = − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [1; 2].
Cho bất phương trình
(1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.
Để thì
nghiệm đúng với
.
Nghĩa là:
Số các nghiệm của phương trình
là:
⇔
⇔ .
Vậy phương trình có ba nghiệm.
Số nghiệm của phương trình
là:
ĐKXĐ: 2x(x2+1) ≥ 0 ⇔ x ≥ 0
Đặt , a ≥ 0, b ≥ 0
Suy ra a2 + b2 = 2x + x2 + 1 = (x+1)2
Phương trình trở thành a2 + b2 − 2ab = 0 ⇔ (a−b)2 = 0 ⇔ a = b
Suy ra (thỏa mãn)
Vậy phương trình có một nghiệm là x = 1 .
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.
Vì (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay vào (P), ta được 0 = 4a + 6 − 2 ⇔ a = − 1.
Vậy (P) : y = − x2 + 3x − 2.
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [ − 2017; 2017] để hàm số y = (m−2)x + 2m đồng biến trên ℝ.
Hàm số đồng biến khi m − 2 > 0 ⇔ m > 2. Suy ra m ∈ {3; 4; 5...; 2017}.
Vậy có 2015 giá trị nguyên của m cần tìm.
Chọn 2015.
Tìm tọa độ đỉnh S của parabol:
?
Gọi tọa độ đỉnh của parabol là điểm
Hàm số bậc hai có:
=>
Tam thức bậc hai
:

Dựa vào bảng xét dấu, chọn đáp án Âm với mọi .
Cho f(x) = − 2x2 + (m+2)x + m − 4. Tìm m để f(x) âm với mọi a, b, c > 0.
Ta có
.
Tìm m để hàm số
xác định trên khoảng (0;1).
*Gọi D là tập xác định của hàm số .
*.
*Hàm số xác định trên khoảng (0;1)
.
Tìm tập xác định D của hàm số 
Hàm số xác định khi .
Vậy xác định của hàm số là D = ℝ ∖ {2}.
Xác định parabol
biết rằng Parabol đi qua hai điểm M(1;5) và N(2;-2)
Thay tọa độ và
vào hàm số, ta được:
.
Vậy đó là hàm số .
Trong các hàm số sau, hàm số nào là hàm số bậc hai?
Đáp án là đáp án đúng vì hàm số bậc hai có dạng
Hàm số nào sau đây đồng biến trên tập xác định của nó?
y = 3x + 1 có a = 3 > 0 nên hàm số đồng biến trên TXĐ.
Tính tổng bình phương các nghiệm của phương trính
bằng:
ĐK:
.
Đặt , (t≥0)Phương trình thành
.
t = 1 ⇒ x2 − 2x − 1 = 0
.
Vậy phương trình đã cho có hai nghiệm là .
Gọi S là tập nghiệm của bất phương trình
. Trong các tập hợp sau, tập nào không là tập con của S?
Tam thức bậc hai có hai nghiệm phân biệt là:
Vì a = 1 > 0 nên khi
.
Tập không phải tập con của S là:
Biết rằng hàm số y = ax2 + bx + c(a≠0) đạt giá trị lớn nhất bằng
tại
và tổng lập phương các nghiệm của phương trình y = 0 bằng 9. Tính P = abc.
Hàm số y = ax2 + bx + c(a≠0) đạt giá trị lớn nhất bằng tại
nên ta có
và điểm
thuộc đồ thị
Gọi x1, x2 là hai nghiệm của phương trình y = 0. Theo giả thiết: x13 + x23 = 9
.
Từ đó ta có hệ
Tập xác định của hàm số
là:
ĐKXĐ: (2m2+1)x2 − 4mx + 2 ≠ 0.
Xét tam thức bậc hai f(x) = (2m2+1)x2 − 4mx + 2.
Ta có a = 2m2 + 1 > 0, Δ′ = 4m2 − 2(2m2+1) = − 2 < 0.
Suy ra với mọi m ta có f(x) = (2m2+1)x2 − 4mx + 2 > 0 ∀x ∈ ℝ.
Do đó với mọi m ta có (2m2+1)x2 − 4mx + 2 ≠ 0, ∀x ∈ ℝ.
Vậy tập xác định của hàm số là D = ℝ.
Phương trình
có nghiệm là:
Điều kiện:
Phương trình tương đương
Kết hợp với điều kiện ta có: thỏa mãn
Vậy phương trình có nghiệm là .
Theo tài liệu dân số và phát triển của Tổng cục dân số và kế hoạch hóa gia đình thì:
Dựa trên số liệu về dân số, kinh tế, xã hội của 85 nước trên thế giới, người ta xây dựng được hàm nêu lên mối quan hệ giữa tuổi thọ trung bình của phụ nữ (y) và tỷ lệ biết chữ của họ (x) như sau:
. Trong đó y là số năm (tuổi thọ), x là tỷ lệ phần trăm biết chữ của phụ nữ. Theo báo cáo của Bộ Giáo dục và Đào tạo năm học 2015 ‒ 2016, tỷ lệ biết chữ đã đạt 96,83% trong nhóm phụ nữ Việt Nam tuổi từ 15 đến 60. Hỏi với tỉ lệ biết chữ của phụ nữ Việt Nam như trên thì nhóm này có tuổi thọ bao nhiêu?
Thay x = 96,83 vào công thức y = 47,17 + 0,307x ta được:
y = 47,17 + 0,307. 96,83 = 47,17 + 29,72 = 76,89 (năm)
Vậy nhóm này có tuổi thọ 76,89 tuổi.
Xét sự biến thiên của hàm số
trên khoảng (0;+∞). Khẳng định nào sau đây đúng?
Vậy hàm số nghịch biến trên khoảng (0;+∞).
Trong các hàm số sau, hàm số nào là nghịch biến:
Ta có:
Hàm số có a = -2 < 0
=> Hàm số nghịch biến.
Tìm m để hàm số y = (2m−1)x + 7 đồng biến trên ℝ.
Hàm số y = (2m−1)x + 7 đồng biến trên ℝ khi 2m − 1 > 0 hay .
Cho hàm số y = f(x) có tập xác định là [ − 1; 3] và đồ thị của nó được biểu diễn bởi hình bên.
Khẳng định nào sau đây là sai?
Trên khoảng (0;2) đồ thị hàm số đi ngang từ trái sang phải
Hàm số không đổi trên khoảng (0;2).
Trên khoảng (2;3) đồ thị hàm số đi lên từ trái sang phải
Hàm số đồng biến trên khoảng (2;3).
Chọn đáp án Hàm số đồng biến trên khoảng (2;3).
Gọi S là tập hợp tất cả các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y = f(x) = 4x2 − 4mx + m2 − 2m trên đoạn [ − 2; 0] bằng 3. Tính tổng T các phần tử của S.
Parabol có hệ số theo x2 là 4 > 0 nên bề lõm hướng lên. Hoành độ đỉnh .
• Nếu thì xI < − 2 < 0 . Suy ra f(x) đồng biến trên đoạn [ − 2; 0].
Do đó min[ − 2; 0]f(x) = f(−2) = m2 + 6m + 16.
Theo yêu cầu bài toán: m2 + 6m + 16 = 3 (vô nghiệm).
• Nếu thì xI ∈ [0; 2]. Suy ra f(x) đạt giá trị nhỏ nhất tại đỉnh.
Do đó .
Theo yêu cầu bài toán (thỏa mãn − 4 ≤ m ≤ 0).
• Nếu thì xI > 0 > − 2. Suy ra f(x) nghịch biến trên đoạn [ − 2; 0].
Do đó min[ − 2; 0]f(x) = f(0) = m2 − 2m.
Theo yêu cầu bài toán:
Vậy
Hàm số
đồng biến và nghịch biến trên khoảng nào?
Ta có hàm số có
=> Hàm số nghịch biến trên khoảng , đồng biến trên khoảng