Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Hàm số và đồ thị gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Nghiệm của phương trình \frac{x^{2}-4x+3}{\sqrt{x-1}}=\sqrt{x-1} là:

     Điều kiện: x>1.

    Ta có: \frac{x^{2}-4x+3}{\sqrt{x-1}}=\sqrt{x-1}  \Rightarrow x^2-4x+3=x-1\Leftrightarrow x^2-5x+4=0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 4}\end{array}} ight..

    Loại x=1. Do đó S=\{4\}.

  • Câu 2: Thông hiểu

    Đồ thị hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

    Nhận xét:

    Parabol có bề lõm hướng xuống.

    Parabol cắt trục hoành tại 2 điểm (3;0)(−1;0). Xét các đáp án, đáp án y = - \frac{1}{2}x^{2} + x + \frac{3}{2} thỏa mãn.

  • Câu 3: Vận dụng cao

    Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [−1; 4]

    Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2

     = (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.

    Đặt t = (x−1)2, x ∈ [−1; 4] ⇒ t ∈ [0; 9].

    y = (t - 1)^{2} - 5t + 2 = t^{2} - 7t + 3= \left( t - \frac{7}{2} ight)^{2} - \frac{37}{4}.

    Cách 1: Ta có 0 \leq \left( t -\frac{7}{2} ight)^{2} \leq \frac{121}{4} \Leftrightarrow -\frac{37}{4} \leq y \leq 21.

    Cách 2: Vẽ BBT

    Description: Capture

    Vậy y_{\min} = - \frac{37}{4}, ymax = 21.

  • Câu 4: Vận dụng cao

    Hàm số f(x) có tập xác định và có đồ thị như hình vẽ

    Mệnh đề nào sau đây sai ?

    Nhìn đồ thị ta có :

    f(−1) = f(1) = 1 ⇒  đúng.

    Đồ thị không có tâm đối xứng nên Đồ thị hàm số có tâm đối xứng là sai.

    Trên khoảng (1; 5) đồ thị hàm số đi lên nên hàm số đồng biến trên khoảng (1; 5) ⇒ đúng.

    Trên khoảng (−6; −1) đồ thị hàm số đi xuống nên hàm số nghịch biến trên khoảng (−6; −1) ⇒ đúng.

  • Câu 5: Thông hiểu

    Với giá trị nào của a thì ax2 − x + a ≥ 0, ∀x ∈ ℝ?

    *a = 0thì bpt trở thành  − x ≥ 0 ⇔ x ≤ 0. Suy ra a = 0không thỏa ycbt.

    * a ≠ 0 thì ax^{2} - x + a \geq 0,\forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
\Delta \leq 0 \\
a > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 - 4a^{2} \leq 0 \\
a > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
a \geq \frac{1}{2} \\
a \leq - \frac{1}{2} \\
\end{matrix} ight.\  \\
a > 0 \\
\end{matrix} ight.\  \Leftrightarrow a \geq \frac{1}{2}.

  • Câu 6: Vận dụng

    Cho hàm số y =
x^{2} - 2\left( m + \frac{1}{m} ight)x + m(m > 0) xác định trên [ − 1; 1]. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên [ − 1; 1] lần lượt là y1, y2 thỏa mãn y1 − y2 = 8. Khi đó giá trị của m bằng

    Đặt y = f(x) = x^{2} - 2\left( m +
\frac{1}{m} ight)x + m.

    Hoành độ đỉnh của đồ thị hàm số là x = m +
\frac{1}{m} \geq 2 .

    Vì hệ số a = 1 > 0 nên hàm số nghịch biến trên \left( - \infty;m +
\frac{1}{m} ight).

    Suy ra, hàm số nghịch biến [ − 1; 1].

    \Rightarrow y_{1} = f( - 1) = 3m +
\frac{2}{m} + 1.

    y_{2} = f(1) = 1 - m -
\frac{2}{m}.

    Theo đề bài ta có: y1 − y2 = 8 \Leftrightarrow 3m + \frac{2}{m} + 1 - 1 + m
+ \frac{2}{m} = 8(m > 0)

     ⇔ m2 − 2m + 1 = 0 ⇔ m = 1.

  • Câu 7: Nhận biết

    Tam thức bậc hai f(x) =  − x2 + 5x − 6 nhận giá trị dương khi và chỉ khi

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ (2;3).

  • Câu 8: Vận dụng cao

    Hàm số nào sau đây có đồ thị như hình bên

    Quan sát đồ thị ta loại y = x2 − 3x − 3y =  − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y =  − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P)\left( \frac{5}{2};\frac{13}{4} ight), trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y =  − x2 + 5|x| − 3.

  • Câu 9: Nhận biết

    Tập nghiệm của bất phương trình 6x^{2}+x−1≤0

     Ta có: 6x^{2}+x−1≤0  \Leftrightarrowx \in [-\frac{1}{2};\frac{1}{3}].

  • Câu 10: Nhận biết

    Tam thức nào sau đây nhận giá trị không âm với mọi x ∈ ℝ?

    *x2 − x − 5 = 0 có 2 nghiệm phân biệt

    * − x2 − x − 1 = 0vô nghiệm, a =  − 1 < 0 nên  − x2 − x − 1 < 0, ∀x ∈ ℝ

    *2x2 + x = 0 có 2 nghiệm phân biệt

    *x2 + x + 1 = 0 vô nghiệm, a = 1 > 0 nên x2 + x + 1 > 0, ∀x ∈ ℝ thỏa ycbt.

  • Câu 11: Thông hiểu

    Tập nghiệm của phương trình (x^{2} - 5x + 4)\sqrt{x - 2} = 0 là:

    \left( x^{2} - 5x + 4 ight)\sqrt{x -2} = 0 \Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\\left\{ \begin{matrix}x > 2 \\x^{2} - 5x + 4 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 2 \\\left\{ \begin{matrix}x > 2 \\\left\lbrack \begin{matrix}x = 1 \\x = 4 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\x = 4 \\\end{matrix} ight..

    Vậy S = {2;4}.

  • Câu 12: Nhận biết

    Hàm số nào dưới đây đồng biến trên (3;4)?

    + Hàm số y = \frac{1}{2}x^{2} - 2x +
1 đồng biến trên (2;+∞) nên đồng biến trên (3;4). Chọn đáp án này.

    + Hàm số y = x2 − 7x + 2 đồng biến trên \left( \frac{7}{2}; + \infty
ight). Loại.

    + Hàm số y =  − 3x + 1 nghịc biến trên . Loại.

    + Hàm số y = - \frac{1}{2}x^{2} + x -
1 đồng biến trên (−∞;1). Loại.

  • Câu 13: Nhận biết

    Tổng các nghiệm của phương trình \sqrt{x^{4} - 2x^{2} + 1} + x = 1 là bao nhiêu?

    \sqrt{x^{4} - 2x^{2} + 1} + x = 1\Leftrightarrow \sqrt{x^{4} - 2x^{2} + 1} = 1 - x\Leftrightarrow\left\{ \begin{matrix}1 - x \geq 0 \\\left( x^{2} - 1 ight)^{2} = (1 - x)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 1 \\(x - 1)^{2}x(x - 2) = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 1 \\\left\lbrack \begin{matrix}x = 1 \\x = 0 \\x = - 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = 0 \\x = - 2 \\\end{matrix} ight..

    Vậy tổng các nghiệm của phương trình là -
1.

  • Câu 14: Nhận biết

    Chọn khẳng định đúng?

    Lí thuyết định nghĩa hàm số đồng biến, nghịch biến: Hàm số y = f(x) được gọi là đồng biến trên K nếu x1; x2 ∈ Kx1 < x2 ⇒ f(x1) < f(x2).

  • Câu 15: Vận dụng

    Cho hàm số f(x) =
\left\{ \begin{matrix}
\frac{2x + 3}{x + 1} & khi & x \geq 0 \\
\frac{\sqrt[3]{2 + 3x}}{x - 2} & khi & - 2 \leq x < 0 \\
\end{matrix} ight.. Ta có kết quả nào sau đây đúng?

    f( - 1) = \frac{\sqrt[3]{2 - 3}}{- 1 - 2}
= \frac{1}{3}; f(2) = \frac{2.2 +
3}{2 + 1} = \frac{7}{3}.

  • Câu 16: Nhận biết

    Gọi S là tập nghiệm của bất phương trình {x^2} - 8x + 7 \geqslant 0. Trong các tập hợp sau, tập nào không là tập con của S?

    Tam thức bậc hai f\left( x ight) = {x^2} - 8x + 7 có hai nghiệm phân biệt là: {x_1} = 1;{x_2} = 7

    Vì a = 1 > 0 nên f\left( x ight) \geqslant 0 khi x \in \left( { - \infty ;1} ight] \cup \left[ {7; + \infty } ight).

    Tập không phải tập con của S là: [6; + ∞)

  • Câu 17: Vận dụng

    Đồ thị hàm số y = |2x + 3| là hình nào trong các hình sau:

    Tập xác định của hàm số D = \mathbb{R}

    Ta có: y = \left| {2x + 3} ight| = \geqslant \left\{ {\begin{array}{*{20}{c}}{2x + 3{\text{ khi }}x \geqslant - \frac{3}{2}} \\{ - 2x - 3{\text{ khi }}x < - \frac{3}{2}}\end{array}} ight.

    Ta vẽ đồ thị y = 2x + 3 với {x \geqslant - \frac{3}{2}} (d_1)

    Ta có bảng sau:

    x

    0

    - \frac{3}{2}

    y = f(x)

    3

    0

    Suy ra đồ thị hàm số y = f(x) = 2x + 3 với {x \geqslant - \frac{3}{2}} là phần đồ thị nằm bên trên trục Ox và đi qua các điểm A(- \frac{3}{2}; 0) và B(0; 3).

    Ta có đồ thị như sau:

    Xác định đồ thị của hàm số

    Tương tự ta có đồ thị hàm số y = f(x) = - 2x - 3 với x <- \frac{3}{2} là phần đồ thị nằm bên trên trục Ox và đi qua các điểm C(-2; 1) và D(-3; 3).

    Kết hợp 2 đồ thị ta có đồ thị hàm số y = |2x + 3| là phần đồ thị nét liền nằm trên trục Ox.

    Xác định đồ thị của hàm số

  • Câu 18: Thông hiểu

    Cho hàm số y=\left\{\begin{matrix}\frac{2}{x-1},x\in (-∞;0) \\ \sqrt{x+1},x\in [0;2]\\ x^{2}-1,x\in (2;5]\end{matrix}ight.. Tính f(4), ta được kết quả:

     Với x=4 \in (2;5], ta có: f(4)=4^2-1=15.

  • Câu 19: Nhận biết

    Số nghiệm của phương trình \sqrt{x^{2} + 4x + 3} = x - 2 là:

    \sqrt{x^{2} + 4x + 3} = x - 2\Leftrightarrow \left\{ \begin{matrix}x \geq 2 \\x^{2} + 4x + 3 = x^{2} - 4x + 4 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 2 \\x = \frac{1}{8}\ \ (L) \\\end{matrix} ight..

    Vậy phương trình vô nghiệm.

  • Câu 20: Vận dụng

    Tích các nghiệm của phương trình 3\sqrt{x + 3} = 3x^{2} + 4x - 1 là:

    ĐKXĐ: x ≥  − 3

    Phương trình \Leftrightarrow - 27(x + 3) -3\sqrt{x + 3} + 3x^{2} + 31x + 80 = 0

    Đặt t = \sqrt{x + 3}, (t≥0) phương trình trở thành  − 27t2 − 3t + 3x2 + 31x + 80 = 0(1)

    Δt = (18x+93)2 suy ra (1) \Leftrightarrow \left\lbrack\begin{matrix}t = \frac{- 3x - 16}{9} \\t = \frac{x + 5}{3} \\\end{matrix} ight.

    \bullet \sqrt{x + 3} = \frac{- 3x -16}{9} Vô nghiệm vì với x ≥  − 3 thì \frac{- 3x - 16}{9} < 0

    \bullet \sqrt{x + 3} = \frac{x + 5}{3}\Leftrightarrow x^{2} + x - 2 = 0 \Leftrightarrow x = 1 hoặc x =  − 2

    Vậy phương trình ban đầu có hai nghiệm x = 1x =  − 2, tích các nghiệm của phương trình là 1.(−2) =  − 2.

  • Câu 21: Thông hiểu

    Cho hàm số y=ax^{2}+bx+c(a≠0)có đồ thị như hình sau. Khẳng định nào sau đây đúng?

     Từ đồ thị hàm số, nhận xét:

    Bề lõm hướng lên trên suy ra a>0.

    Hàm số cắt trục tung tại tung độ âm c<0.

    Chọn đáp án a>0;b<0;c<0.

  • Câu 22: Nhận biết

    Đồ thị của hàm số nào sau đây là parabol có đỉnh I(−1; 3).

    Đỉnh Parabol là I\left( -
\frac{b}{2a};\  - \frac{\Delta}{4a} ight) = \left( - \frac{b}{2a};\  -
\frac{b^{2} - 4ac}{4a} ight).

    Do đó chỉ có đáp án y = 2x2 + 4x + 5 thỏa mãn.

  • Câu 23: Vận dụng

    Tìm các giá trị của m để biểu thức sau luôn âm: f(x) = mx2 − x − 1.

    Với m = 0 thì f(x) =  − x − 1 lấy cả giá trị dương (chẳng hạn f(−2) = 1) nên m = 0 không thỏa mãn yêu cầu bài toán

    Với m ≠ 0 thì f(x) = mx2 − x − 1 là tam thức bậc hai do đó f(x) < 0,\ \
\forall x \Leftrightarrow \left\{ \begin{matrix}
a = m < 0 \\
\Delta = 1 + 4m < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 0 \\
m > - \frac{1}{4} \\
\end{matrix} \Leftrightarrow - \frac{1}{4} < m < 0 ight.

    Vậy với - \frac{1}{4} < m <
0 thì biểu thức f(x) luôn âm.

  • Câu 24: Vận dụng cao

    Biết phương trình \sqrt{x^{2} - 3x + 3} + \sqrt{x^{2} - 3x + 6} =
3 có hai nghiệm x1, x2(x1<x2) . Khẳng định nào sau đây là đúng?

    Đặt t = x2 − 3x + 3, ta có: t = \left( x - \frac{3}{2} ight)^{2}
+ \frac{3}{4} \geq \frac{3}{4}.

    Do đó điều kiện cho ẩn phụ t là t \geq
\frac{3}{4}.

    Khi đó phương trình trở thành:

    \sqrt{t} + \sqrt{t + 3} = 3
\Leftrightarrow t + t + 3 +
2\sqrt{t(t + 3)} = 9 \sqrt{t(t + 3)} = 3 - t

    \Leftrightarrow \left\{ \begin{matrix}
3 - t \geq 0 \\
t(t + 3) = (3 - t)^{2} \\
\end{matrix} ight. \left\{ \begin{matrix}
t \leq 3 \\
t = 1 \\
\end{matrix} ight.  ⇔ t = 1(thỏa mãn) ⇒ x2 − 3x + 3 = 1⇔ \left\lbrack \begin{matrix}
x = 1 = x_{1} \\
x = 2 = x_{2} \\
\end{matrix} ight.\  \Rightarrow 2x_{1} = x_{2}.

  • Câu 25: Thông hiểu

    Tìm tập xác định D của hàm số f(x) = \sqrt{x + 1} + \frac{1}{x}.

    Điều kiện: \left\{ \begin{matrix}
x + 1 \geq 0 \\
x eq 0 \\
\end{matrix} ight..

    Vậy tập xác định của hàm số là D = [ − 1;  + ∞) ∖ {0}.

  • Câu 26: Nhận biết

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x =  − 3.

    Trục đối xứng của (P) có dạng:

    x = - \frac{b}{2a} = - 3 \Leftrightarrow -
\frac{3}{2a} = - 3 \Leftrightarrow - 3 = - 6a \Leftrightarrow a =
\frac{1}{2}.

    Vậy (P) có phương trình: y = \frac{1}{2}x^{2} + 3x - 2.

  • Câu 27: Nhận biết

    Tìm tọa độ đỉnh S của parabol: y = {x^2} - 2x + 1?

    Gọi tọa độ đỉnh của parabol là điểm I(x; y)

    Hàm số bậc hai có: a = 1;b' =  - 1;c = 1

    => \Rightarrow \Delta  = b{'^2} - ac = 0

    \left\{ {\begin{array}{*{20}{c}}  {x =  - \dfrac{b'}{{a}} =  - \dfrac{{ - 2}}{{2.1}} = 1} \\   {y =  - \dfrac{\Delta' }{{a}} = 0} \end{array}} ight. \Rightarrow I\left( {1;0} ight)

  • Câu 28: Nhận biết

    Xác định điểm không thuộc đồ thị của hàm số y = \frac{1}{2}x^{2}?

    Ta thấy các điểm nằm trên đồ thị của hàm số là: (0;0); (2;2); ( -
2;2).

    Vậy điểm không thuộc đồ thị hàm số đã cho là: (1;2).

  • Câu 29: Thông hiểu

    Cho f(x) =  − 2x2 + (m+2)x + m − 4. Tìm m để f(x) âm với mọi a, b, c > 0.

    Ta có f(x) < 0,\forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
\Delta < 0 \\
a < 0 \\
\end{matrix} ight.\  \Leftrightarrow (m + 2)^{2} + 8(m - 4) < 0
\Leftrightarrow m^{2} + 12m - 28 < 0 \Leftrightarrow - 14 < m <
2.

  • Câu 30: Nhận biết

    Cho hàm số y = f(x) = |-5x|. Khẳng định nào sau đây là sai?

    Ta có: f(\frac{1}{5})=|-5.\frac{1}{5}|=1 e-1

    Khẳng định sai là: f(\frac{1}{5})=-1

  • Câu 31: Vận dụng

    Tính tổng bình phương các nghiệm của phương trính x^{2} - 1 = 2x\sqrt{x^{2} - 2x} bằng:

    ĐK: \left\lbrack \begin{matrix}x \geq 2 \\x \leq 0 \\\end{matrix} ight.

    x^{2} - 1 = 2x\sqrt{x^{2} - 2x}\Leftrightarrow x^{2} - 2x - 2x\sqrt{x^{2} - 2x} + 2x - 1 =0.

    Đặt t = \sqrt{x^{2} - 2x} , (t≥0)Phương trình thành t^{2} - 2xt + 2x - 1 = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 1 \\t = 2x - 1 \\\end{matrix} ight. .

    t = 1 ⇒ x2 − 2x − 1 = 0 \Leftrightarrow x = 1 \pm\sqrt{2}(TM)

    t = 2x - 1 \Rightarrow \left\{\begin{matrix}2x - 1 \geq 0 \\x^{2} - 2x = (2x - 1)^{2} \\\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}2x - 1 \geq 0 \\3x^{2} - 2x + 1 = 0\left( VN_{0} ight) \\\end{matrix} ight..

    Vậy phương trình đã cho có hai nghiệm là x_{1,2} = 1 \pm \sqrt{2} \Rightarrow {x_{1}}^{2} +{x_{2}}^{2} = 6 .

  • Câu 32: Thông hiểu

    Bảng xét dấu nào sau đây là bảng xét dấu của tam thức f(x) = x^{2} + 2x + 1 là:

     Xét biếu thức f(x) = x^{2} + 2x + 1∆ = 0 và nghiệm là x = -{\text{ }}1;{\text{ }}a = 1 > 0

    Ta có bảng xét dấu như sau:

    Tìm bảng xét dấu của tam thức bậc hai

  • Câu 33: Thông hiểu

    Tam thức bậc hai f(x)=(1-\sqrt{2})x^{2}+(5-4\sqrt{2})x-3\sqrt{2}+6

     Ta có: \Delta >0a=1-\sqrt2 <0.

    Phương trình f(x)=0 có hai nghiệm là x=-3x=\sqrt2.

    Do đó f(x)>0 \forall x ∈(-3;\sqrt{2}).

  • Câu 34: Thông hiểu

    Cho hàm số: f(x) =
\left\{ \begin{matrix}
- 2(x - 3) & khi & - 1 \leq x \leq 1 \\
\sqrt{x^{2} - 1} & khi & x > 1 \\
\end{matrix} ight.. Giá trị của f(−1); f(1) là:

    Ta có: f(−1) =  − 2(−1−3) = 8; f(1) = \sqrt{1^{2} - 1} = 0.

    Chọn đáp án 80.

  • Câu 35: Thông hiểu

    Đồ thị hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

    Hỏi hàm số đó là hàm số nào?

    Nhận xét:

    Parabol có bề lõm hường lên.

    Parabol cắt trục hoành tại điểm (1;0). Xét các đáp án, đáp án y = 2x2 − 3x + 1. thỏa mãn.

  • Câu 36: Thông hiểu

    Nghiệm của phương trình \sqrt{5x^{2}-6x-4}=2(x-1)

    Điều kiện: 5{x^2} - 6x - 4 \geqslant 0

    Phương trình tương đương

    \begin{matrix}  \sqrt {5{x^2} - 6x - 4}  = 2\left( {x - 1} ight) \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {2\left( {x - 1} ight) \geqslant 0} \\   {5{x^2} - 6x - 4 = 4{{\left( {x - 1} ight)}^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 1} \\   {{x^2} - 2x = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 1} \\   {\left[ {\begin{array}{*{20}{c}}  {x = 0\left( {ktm} ight)} \\   {x = 2\left( {tm} ight)} \end{array}} ight.} \end{array}} ight. \hfill \\ \end{matrix}

    Kết hợp với điều kiện ra được x=2 thỏa mãn

    Vậy nghiệm của phương trình là: x=2

  • Câu 37: Nhận biết

    Phương trình \sqrt{4x^{2}-3}=x có nghiệm là:

    Điều kiện: 4{x^2} - 3 \geqslant 0

    Phương trình tương đương:

    \begin{matrix}  \sqrt {4{x^2} - 3}  = x \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 0} \\   {4{x^2} - 3 = {x^2}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 0} \\   {3{x^2} = 3} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 0} \\   {\left[ {\begin{array}{*{20}{c}}  {x =  - 1\left( {ktm} ight)} \\   {x = 1\left( {tm} ight)} \end{array}} ight.} \end{array}} ight. \hfill \\ \end{matrix}

    Kết hợp với điều kiện ra được: x=1 thỏa mãn điều kiện

    Vậy phương trình có nghiệm x=1

  • Câu 38: Nhận biết

    Tìm m để hàm số y = mx +(m+2)x-2 luôn đồng biến biến trên tập số thực.

    Để hàm số y = mx +(m+2)x-2 nghịch biến trên tập số thực thì m>0.

  • Câu 39: Thông hiểu

    Số nghiệm của phương trình:\left( \sqrt{x - 4} - 1 ight)\left( x^{2} - 7x +6 ight) = 0

    Điều kiện xác định của phương trình x ≥ 4.

    Phương trình tương đương với \left\lbrack\begin{matrix}\sqrt{x - 4} = 1 \\x^{2} - 7x + 6 = 0 \\\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}x = 5 \\x = 1 \\x = 6 \\\end{matrix} ight..

    Kết hợp điều kiện suy ra \left\lbrack\begin{matrix}x = 5 \\x = 6 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 40: Thông hiểu

    Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

     Nhận xét: Từ bảng biến thiên ta suy ra đỉnh (2;-5).

    Chỉ có hàm số y=x^{2}−4x−1 thỏa mãn tọa độ đỉnh này khi thay vào.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo