Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là − 1 và 2, cắt trục Oy tại điểm có tung độ bằng − 2.
Gọi A và B là hai giao điểm cuả (P) với trục Ox có hoành độ lần lượt là − 1 và 2. Suy ra A(−1;0), B(2;0).
Gọi C là giao điểm của (P) với trục Oy có tung độ bằng − 2. Suy ra C(0;−2).
Theo giả thiết, (P) đi qua ba điểm A, B, C nên ta có:
.
Vậy (P) : y = x2 − x − 2.







![f(x) =
\left\{ \begin{matrix}
\frac{2x + 3}{x + 1} & khi & x \geq 0 \\
\frac{\sqrt[3]{2 + 3x}}{x - 2} & khi & - 2 \leq x < 0 \\
\end{matrix} ight.](https://i.khoahoc.vn/data/image/holder.png)