Phương trình
có mấy nghiệm ?
Điều kiện:
Đặt .
PT đã cho trở thành:
Với t = 2 ta được
Với t = − 4 ta được ta được
Vậy phương trình có hai nghiệm là ;
.
Phương trình
có mấy nghiệm ?
Điều kiện:
Đặt .
PT đã cho trở thành:
Với t = 2 ta được
Với t = − 4 ta được ta được
Vậy phương trình có hai nghiệm là ;
.
Tính tổng tất cả các nghiệm của phương trình
?
Ta có:
Vậy tổng các nghiệm của phương trình bằng .
Hàm số nào sau đây đồng biến trên tập xác định của nó?
y = 3x + 1 có a = 3 > 0 nên hàm số đồng biến trên TXĐ.
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có đỉnh ![]()
Vì (P) có đỉnh nên ta có
. Vậy (P) : y = 3x2 + 3x − 2.
Cho f(x) = x2 − 4x + 3. Trong các mệnh đề sau, mệnh đề đúng là:

Dựa vào bảng xét dấu thì f(x) ≤ 0, ∀x ∈ [ 1; 3 ].
Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol . Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 43 m so với mặt đất , người ta thả một sợi dây chạm đất . Vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn 10 m. Giả sử các số liệu trên là chính xáHãy tính độ cao của cổng Arch. (làm tròn kết quả đến hàng phần mười)

hệ trục tọa độ Oxy như hình vẽ. Phương trình Parabol (P) có dạng y = ax2 + bx + c.
Parabol (P)đi qua điểm A(0;0), B(162;0), M(10;43) nên ta có
.
Do đó chiều cao của cổng là m.
Tìm m để
với mọi x ∈ ℝ?
Để bất phương trình với mọi x ∈ ℝ thì:
Xét tính đồng biến, nghịch biến của hàm số f(x) = x2 − 4x + 5 trên khoảng (−∞;2) và trên khoảng (2;+∞). Khẳng định nào sau đây đúng?
Ta có : f(x1) − f(x2) = (x12−4x1+5) − (x22−4x2+5)
= (x12−x22) − 4(x1−x2) = (x1−x2)(x1+x2−4).
● Với mọi x1, x2 ∈ (−∞;2) và x1 < x2. Ta có .
Suy ra .
Vậy hàm số nghịch biến trên (−∞;2).
● Với mọi x1, x2 ∈ (2;+∞) và x1 < x2. Ta có .
Suy ra .
Vậy hàm số đồng biến trên (2;+∞).
Cho parabol (P) có phương trình y = 3x2 − 2x + 4. Tìm trục đối xứng của parabol này.
+ Có a = 3; b = − 2; c = 4.
+ Trục đối xứng của parabol là .
Tổng các nghiệm của phương trình
là :
Ta có
Phương trình có nghiệm là và
.
Vậy tổng các nghiệm của phương trình là .
Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

Nhận xét:
Bảng biến thiên có bề lõm hướng lên. Loại đáp án y = − x2 + 4x − 9 và y = − x2 + 4x.
Đỉnh của parabol có tọa độ là (2;−5). Xét các đáp án, đáp án y = x2 − 4x − 1 thỏa mãn.
Đồ thị sau đây là đồ thị của hàm số nào trong các phương án dưới đây?

Nhận xét: Từ hình vẽ suy ra đỉnh .
Thay tọa độ đỉnh vào các hàm số ở các đáp án, chỉ có hàm số
thỏa mãn.
Tập nghiệm của bất phương trình
là
Ta có: .
Phương trình sau có bao nhiêu nghiệm
?
Điều kiện xác định: .
Với thay vào phương trình thỏa mãn. Vậy phương trình có một nghiệm.
Xác định điểm không thuộc đồ thị của hàm số
?
Ta thấy các điểm nằm trên đồ thị của hàm số là: ;
;
.
Vậy điểm không thuộc đồ thị hàm số đã cho là: .
Tìm tập xác định D của hàm số ![]()
Điều kiện .
Vậy tập xác định của hàm số là .
Phương trình
có mấy nghiệm ?
Đặt . Ta có hệ phương trình:
Với .
Với .
Vậy phương trình có 4 nghiệm.
Cho parabol như hình vẽ:

Có bao nhiêu giá trị nguyên của tham số
với
để phương trình
có hai nghiệm
phân biệt?
Ta có:
Số nghiệm của phương trình (*) bằng số giao điểm của đồ thị hàm số và
Do đó phương trình (*) có có hai nghiệm phân biệt khi và chỉ khi .
Mặt khác suy ra có 980 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Xác định parabol
, biết rằng
đi qua điểm
và có trục đối xứng
.
Vì hàm số có trục đối xứng và đi qua điểm
nên:
và
.
Nhận xét: Trong 4 đáp án, chỉ có thỏa mãn 2 điều kiện trên.
Giải phương trình: ![]()
Điều kiện:
Phương trình tương đương:
Kết hợp với điều kiện ta được thỏa mãn
Vậy phương trình có nghiệm .
Một của hàng buôn giày nhập một đôi với giá là 40 USD. Cửa hàng ước tính rằng nếu đôi giày được bán với giá x USD thì mỗi tháng khách hàng sẽ mua (120−x) đôi. Hỏi cửa hàng bán một đôi giày giá bao nhiêu thì thu được nhiều lãi nhất?
Gọi y là số tiền lãi của cửa hàng bán giày.
Ta có y = (120−x)(x−40) = − x2 + 160x − 4800 = − (x−80)2 + 1600 ≤ 1600.
Dấu xảy ra ⇔ x = 80.
Vậy cửa hàng lãi nhiều nhất khi bán đôi giày với giá 80 USD.
Trong các hàm số sau, hàm số nào là hàm số bậc hai?
Đáp án là đáp án đúng vì hàm số bậc hai có dạng
Nghiệm của bất phương trình
có
Ta có:
Bảng xét dấu

f(x) > 0 ⇔ x ∈ (−∞;−1) ∪ (0;1) ∪ (2;3) ∪ (4;+∞)
Số nghiệm của phương trình
là:
ĐKXĐ: 2x(x2+1) ≥ 0 ⇔ x ≥ 0
Đặt , a ≥ 0, b ≥ 0
Suy ra a2 + b2 = 2x + x2 + 1 = (x+1)2
Phương trình trở thành a2 + b2 − 2ab = 0 ⇔ (a−b)2 = 0 ⇔ a = b
Suy ra (thỏa mãn)
Vậy phương trình có một nghiệm là x = 1 .
Cho hàm số y = f(x) có đồ thị như hình vẽ. Hãy so sánh f(2017) với số 0.

Nhìn đồ thị, ta thấy đồ thị y = f(x) cắt trục hoành tại 2 điểm x = 1, x = 3 nên Δ > 0, dựa vào hình dạng parabol nên suy ra a < 0 và ta có bảng xét dấu như sau:

Dựa vào bảng xét dấu thì f(x) < 0 khi x < 1 ∨ x > 3. Mà 2017 > 3 nên f(2017) < 0.
Phương trình
có bao nhiêu nghiệm
Đkxđ: .
.
Vậy phương trình có hai nghiệm.
Điền vào chỗ trống: Hàm số y = f(x) xác định trên khoảng (a; b) có thể là hàm số ….
Hàm số y = f(x) xác định trên khoảng (a; b) có thể là hàm số đồng biến hoặc nghịch biến
Cho hàm số
. Tính f(4), ta được kết quả:
Với , ta có:
.
Đồ thị của hàm số
là
Từ giả thiết hàm số đồng biến nên loại đáp án có đồ thị đi xuống từ trái sang phải.
Mặt khác cho x = 0 vào nên chọn đáp án đồ thị hàm số đi qua điểm
.
Hàm số nào sau đây có đồ thị như hình bên

Quan sát đồ thị ta loại y = x2 − 3x − 3 và y = − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y = − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P) là , trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y = − x2 + 5|x| − 3.
Xác định m để biểu thức
là tam thức bậc hai.
Để biểu thức là tam thức bậc hai ta có:
Chọn khẳng định đúng?
Lí thuyết định nghĩa hàm số đồng biến, nghịch biến: Hàm số y = f(x) được gọi là đồng biến trên K nếu ∀x1; x2 ∈ K, x1 < x2 ⇒ f(x1) < f(x2).
Cho hàm số:
. Giá trị của f(−1); f(1) là:
Ta có: f(−1) = − 2(−1−3) = 8; .
Chọn đáp án 8 và 0.
Đồ thị hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

Nhận xét:
Parabol có bề lõm hướng xuống.
Parabol cắt trục hoành tại 2 điểm (3;0) và (−1;0). Xét các đáp án, đáp án thỏa mãn.
Số nghiệm của phương trình ![]()
Điều kiện
Phương trình tương đương:
Do
Vậy phương trình vô nghiệm.
Tìm tập xác định D của hàm số
.
Điều kiện: .
Vậy tập xác định của hàm số là D = [ − 1; + ∞) ∖ {0}.
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi 4 − 3x − x2 > 0.
Phương trình
Bảng xét dấu:

Dựa vào bảng xét dấu, ta thấy 4 − 3x − x2 > 0 ⇔ x ∈ (− 4; 1).
Vậy tập xác định của hàm số là D = (− 4;1).
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x = − 3.
Trục đối xứng của (P) có dạng:
.
Vậy (P) có phương trình: .
Cho
. Điều kiện để
là:
Ta có:
.
Nghiệm của phương trình:
là bao nhiêu?
Điều kiện: .
Thay vào phương trình ta được
hay
là nghiệm của phương trình.