Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Hàm số và đồ thị gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số y = f(x) có tập xác định là [ − 1; 3] và đồ thị của nó được biểu diễn bởi hình bên.

    Khẳng định nào sau đây là sai?

    Trên khoảng (0;2) đồ thị hàm số đi ngang từ trái sang phải

    \overset{}{ightarrow} Hàm số không đổi trên khoảng (0;2).

    Trên khoảng (2;3) đồ thị hàm số đi lên từ trái sang phải

    \overset{}{ightarrow} Hàm số đồng biến trên khoảng (2;3).

    Chọn đáp án Hàm số đồng biến trên khoảng (2;3).

  • Câu 2: Vận dụng

    Cho hàm số y=f(x)=ax^{2}+bx+c. Rút gọn biểu thức f(x + 3) - 3f(x + 2) + 3f(x + 1) ta được:

    Ta có:

    \begin{matrix}  f\left( {x + 3} ight) = a{\left( {x + 3} ight)^2} + b\left( {x + 3} ight) + c \hfill \\   = a\left( {{x^2} + 6x + 9} ight) + bx + 3b + c \hfill \\   = a{x^2} + 6ax + 9a + bx + 3b + c \hfill \\   = a{x^2} + \left( {6a + b} ight)x + 9a + 3b + c \hfill \\ \end{matrix}

    \begin{matrix}  f\left( {x + 2} ight) = a{\left( {x + 2} ight)^2} + b\left( {x + 2} ight) + c \hfill \\   = a\left( {{x^2} + 4x + 4} ight) + bx + 2b + c \hfill \\   = a{x^2} + 4ax + 4a + bx + 2b + c \hfill \\   = a{x^2} + \left( {4a + b} ight)x + 4a + 2b + c \hfill \\ \end{matrix}

    \begin{matrix}  f\left( {x + 1} ight) = a{\left( {x + 1} ight)^2} + b\left( {x + 1} ight) + c \hfill \\   = a\left( {{x^2} + 2x + 1} ight) + bx + b + c \hfill \\   = a{x^2} + 2ax + a + bx + b + c \hfill \\   = a{x^2} + \left( {2a + b} ight)x + a + b + c \hfill \\ \end{matrix}

    Suy ra:

    \begin{matrix}  f(x + 3) - 3f(x + 2) + 3f(x + 1) \hfill \\   = a{x^2} + \left( {6a + b} ight)x + 9a + 3b + c \hfill \\   - 3\left[ {a{x^2} + \left( {4a + b} ight)x + 4a + 2b + c} ight] \hfill \\   + 3\left[ {a{x^2} + \left( {2a + b} ight)x + a + b + c} ight] \hfill \\   = a{x^2} + bx + c \hfill \\ \end{matrix}

  • Câu 3: Nhận biết

    Điểm nào sau đây thuộc đồ thị của hàm số y = \frac{x - 2}{x(x - 1)}?

    Thử trực tiếp thấy tọa độ của M(2;0) thỏa mãn phương trình hàm số.

  • Câu 4: Thông hiểu

    Cho hàm số f(x) = mx^{2} – 2mx + m – 1. Giá trị của m để f(x) < 0, ∀x ∈ ℝ.

    Để f\left( x ight) < 0 với \forall x \in \mathbb{R}  \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a < 0} \\   {\Delta  < 0} \end{array}} ight.

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m < 0} \\   {\Delta ' = {m^2} - m\left( {m - 1} ight) < 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m < 0} \\   {m < 0} \end{array}} ight. \Leftrightarrow m < 0 \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu

    Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

    Nhận xét:

    Bảng biến thiên có bề lõm hướng xuống. Loại đáp án y = 2x2 + 2x − 1y = 2x2 + 2x + 2.

    Đỉnh của parabol có tọa độ là \left( -
\frac{1}{2};\frac{3}{2} ight). Xét các đáp án, y =  − 2x2 − 2x + 1 thỏa mãn.

  • Câu 6: Thông hiểu

    Số thực dương lớn nhất thỏa mãn là ?

    Ta có .

    Bảng xét dấu

    Dựa vào bảng xét dấu . Suy ra số thực dương lớn nhất thỏa .

  • Câu 7: Vận dụng

    Xét tính đồng biến, nghịch biến của hàm số f(x) = x2 − 4x + 5 trên khoảng (−∞;2) và trên khoảng (2;+∞). Khẳng định nào sau đây đúng?

    Ta có : f(x1) − f(x2) = (x12−4x1+5) − (x22−4x2+5) = (x12x22) − 4(x1x2) = (x1x2)(x1+x2−4).

    ● Với mọi x1x2 ∈ (−∞;2)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} < 2 \\
x_{2} < 2 \\
\end{matrix} ight.\  \Rightarrow x_{1} + x_{2} < 4.

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = \frac{\left( x_{1} - x_{2}
ight)\left( x_{1} + x_{2} - 4 ight)}{x_{1} - x_{2}} = x_{1} + x_{2}
- 4 < 0.

    Vậy hàm số nghịch biến trên (−∞;2).

    ● Với mọi x1x2 ∈ (2;+∞)x1 < x2. Ta có \left\{ \begin{matrix}
x_{1} > 2 \\
x_{2} > 2 \\
\end{matrix} ight.\  \Rightarrow x_{1} + x_{2} > 4.

    Suy ra \frac{f\left( x_{1} ight) -
f\left( x_{2} ight)}{x_{1} - x_{2}} = \frac{\left( x_{1} - x_{2}
ight)\left( x_{1} + x_{2} - 4 ight)}{x_{1} - x_{2}} = x_{1} + x_{2}
- 4 > 0.

    Vậy hàm số đồng biến trên (2;+∞).

  • Câu 8: Nhận biết

    Tổng tất cả các nghiệm của phương trình \sqrt{x^{2} + 3x - 2} = \sqrt{1 +
x} bằng:

    \sqrt{x^{2} + 3x - 2} = \sqrt{1 + x}
\Leftrightarrow \left\{ \begin{matrix}
1 + x \geq 0 \\
x^{2} + 3x - 2 = 1 + x \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq - 1 \\
x^{2} + 2x - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow x = 1.

    Phương trình chỉ có nghiệm x = 1 nên tổng các nghiệm bằng 1.

  • Câu 9: Thông hiểu

    Các giá trị m làm cho biểu thức f(x) = x^{2} + 4x + m + 3 luôn dương là

    Biểu thức f(x) = x^{2} + 4x + m + 3 luôn dương

    \begin{matrix}   \Leftrightarrow f(x) = {x^2} + 4x + m + 3 > 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta ' < 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 0} \\   {{2^2} - \left( {m + 3} ight) < 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 0} \\   {m > 1} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 10: Nhận biết

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x =  − 3.

    Trục đối xứng của (P) có dạng:

    x = - \frac{b}{2a} = - 3 \Leftrightarrow -
\frac{3}{2a} = - 3 \Leftrightarrow - 3 = - 6a \Leftrightarrow a =
\frac{1}{2}.

    Vậy (P) có phương trình: y = \frac{1}{2}x^{2} + 3x - 2.

  • Câu 11: Thông hiểu

    Biết rằng (P) : y = ax2 − 4x + c có hoành độ đỉnh bằng  − 3 và đi qua điểm M(−2;1). Tính tổng S = a + c.

    (P) có hoành độ đỉnh bằng  − 3 và đi qua M(−2;1) nên ta có hệ

    \left\{ \begin{matrix}
- \frac{b}{2a} = - 3 \\
4a + 8 + c = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = 6a \\
4a + c = - 7 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = - \frac{2}{3} \\
c = - \frac{13}{3} \\
\end{matrix} ight.

    \overset{}{ightarrow}S = a + c = -
5.

  • Câu 12: Thông hiểu

    Tập nghiệm của phương trình: \sqrt{3-x+x^{2}}-\sqrt{2+x-x^{2}}=1 là:

    Điều kiện: \left\{ {\begin{array}{*{20}{c}}  {3 - x + {x^2} \geqslant 0} \\   {2 + x - {x^2} \geqslant 0} \end{array}} ight. => x \in \left[ { - 1,2} ight]

    Phương trình tương đương

    \begin{matrix}  \sqrt {3 - x + {x^2}}  - \sqrt {2 + x - {x^2}}  = 1 \hfill \\   \Leftrightarrow \sqrt {3 - x + {x^2}}  - 2 + 1 - \sqrt {2 + x - {x^2}}  = 0 \hfill \\   \Leftrightarrow \dfrac{{{x^2} - x - 1}}{{\sqrt {3 - x + {x^2}}  + 2}} + \dfrac{{{x^2} - x - 1}}{{1 + \sqrt {2 + x - {x^2}} }} = 0 \hfill \\   \Leftrightarrow \left( {{x^2} - x - 1} ight)\left( {\dfrac{1}{{\sqrt {3 - x + {x^2}}  + 2}} + \dfrac{1}{{1 + \sqrt {2 + x - {x^2}} }}} ight) = 0 \hfill \\ \end{matrix}

    Ta có: \frac{1}{{\sqrt {3 - x + {x^2}}  + 2}} + \frac{1}{{1 + \sqrt {2 + x - {x^2}} }} > 0,\forall x \in \left[ { - 1,2} ight]

    \begin{matrix}   \Leftrightarrow {x^2} - x - 1 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{{1 - \sqrt 5 }}{2}} \\   {x = \dfrac{{1 + \sqrt 5 }}{2}} \end{array}} ight.\left( {tm} ight) \hfill \\ \end{matrix}

    Vậy tập nghiệm của phương trình là: \left\{ {\frac{{1 + \sqrt 5 }}{2};\frac{{1 - \sqrt 5 }}{2}} ight\}

  • Câu 13: Nhận biết

    Xét tính đồng biến, nghịch biến của hàm số f(x) = x2 − 4x + 5 trên các khoảng (−∞; 2)(2; +∞). Khẳng định nào sau đây đúng?

    Xét f(x) = x2 − 4x + 5.

    TXĐ: D = ℝ.

    Tọa độ đỉnh I(2; 1).

    Hàm số nghịch biến trên (−∞; 2), đồng biến trên (2; +∞).

  • Câu 14: Nhận biết

    Cho tam thức bậc hai f(x) = {x^2} - 10x + 2. Kết luận nào sau đây đúng?

    Ta có:

    \begin{matrix}f\left( { - 2} ight) = {\left( { - 2} ight)^2} - 10.\left( { - 2} ight) + 2 = 26 > 0 \hfill \\  f\left( 1 ight) = {\left( 1 ight)^2} - 10.\left( 1 ight) + 2 =  - 7 < 0 \hfill \\ \end{matrix}

    Vậy khẳng định đúng là f(–2) > 0.

  • Câu 15: Vận dụng

    Tìm giá trị thực của tham số m để phương trình (m+1)x2 − 2mx + m − 2 = 0 có hai nghiệm phân biệt x1,  x2 khác 0 thỏa mãn \frac{1}{x_{1}} + \frac{1}{x_{2}} < 3\ \ \
?

    Ta có Δ′ = m + 2.

    Phương trình có hai nghiệm phân biệt khác 0 khi và chỉ khi \left\{ \begin{matrix}
a eq 0 \\
\Delta' > 0 \\
P eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m + 1 eq 0 \\
m + 2 > 0 \\
m - 2 eq 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
m eq \left\{ - 1\ ;\ 2 ight\} \\
m > - 2 \\
\end{matrix} ight.\  ight.

    Theo định lý Vi-et, ta có: \left\{
\begin{matrix}
x_{1} + x_{2} = \frac{2m}{m + 1} \\
x_{1}.x_{2} = \frac{m - 2}{m + 1} \\
\end{matrix} ight.

    Theo bài ra, ta có \frac{1}{x_{1}} +
\frac{1}{x_{2}} = \frac{x_{1} + x_{2}}{x_{1}.x_{2}} = \frac{2m}{m - 2}
< 3 \Leftrightarrow \left\lbrack \begin{matrix}
m > 6 \\
m < 2 \\
\end{matrix} ight.

    Kết hợp với điều kiện ta được \left\lbrack
\begin{matrix}
m > 6 \\
m \in ( - 2\ ;\  - 1) \cup ( - 1\ ;\ 2) \\
\end{matrix} ight. là giá trị cần tìm.

  • Câu 16: Thông hiểu

    Xác định parabol (P): y = ax2 + bx + c, a ≠ 0 biết (P) cắt trục tung tại điểm có tung độ bằng 1 và có giá trị nhỏ nhất bằng \frac{3}{4} khi x = \frac{1}{2}.

    Ta có (P) cắt trục tung tại điểm có tung độ bằng 1: Khi x = 0 thì y = 1 c = 1.

    (P)có giá trị nhỏ nhất bằng \frac{3}{4} khi x = \frac{1}{2} nên:

    \left\{ \begin{matrix}
y\left( \frac{1}{2} ight) = \frac{3}{4} \\
\frac{- b}{2a} = \frac{1}{2} \\
\end{matrix} ight. \left\{ \begin{matrix}
\frac{1}{4}a + \frac{1}{2}b + 1 = \frac{3}{4} \\
\frac{- b}{2a} = \frac{1}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\frac{1}{4}a + \frac{1}{2}b = - \frac{1}{4} \\
a + b = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = - 1 \\
\end{matrix} ight..

    Vậy (P): y = x2 − x + 1.

  • Câu 17: Nhận biết

    Cho parabol (P) có phương trình y = 3x2 − 2x + 4. Tìm trục đối xứng của parabol này.

    + Có a = 3; b =  − 2; c = 4.

    + Trục đối xứng của parabol là x = \frac{-
b}{2a} = \frac{1}{3}.

  • Câu 18: Nhận biết

    Tam thức bậc hai f(x) =  − x2 − 1 nhận giá trị âm khi và chỉ khi

    f(x) =  − x2 − 1 = 0  vô nghiệm

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ ℝ.

  • Câu 19: Thông hiểu

    Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là  − 12, cắt trục Oy tại điểm có tung độ bằng  − 2.

    Gọi AB là hai giao điểm cuả (P) với trục Ox có hoành độ lần lượt là  − 12. Suy ra A(−1;0), B(2;0).

    Gọi C là giao điểm của (P) với trục Oy có tung độ bằng  − 2. Suy ra C(0;−2).

    Theo giả thiết, (P) đi qua ba điểm A, B, C nên ta có:

    \left\{ \begin{matrix}
a - b + c = 0 \\
4a + 2b + c = 0 \\
c = - 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = - 1 \\
c = - 2 \\
\end{matrix} ight..

    Vậy (P) : y = x2 − x − 2.

  • Câu 20: Thông hiểu

    Số nghiệm của phương trình \sqrt{x + 4} = \sqrt{1 - x} + \sqrt{1 - 2x}  là

    Điều kiện: \left\{ \begin{matrix}x + 4 \geq 0 \\1 - x \geq 0 \\1 - 2x \geq 0 \\\end{matrix} ight.\  \Leftrightarrow - 4 \leq x \leq\frac{1}{2}.

    \sqrt{x + 4} = \sqrt{1 - x} + \sqrt{1 -2x} \Leftrightarrow \sqrt{(1 - x)(1 - 2x)} = 2x + 1

    \left\{\begin{matrix}2x + 1 \geq 0 \\(1 - x)(1 - 2x) = (2x + 1)^{2} \\\end{matrix} ight.

    \left\{\begin{matrix}x \geq - \frac{1}{2} \\2x^{2} + 7x = 0 \\\end{matrix} ight.

    \left\{\begin{matrix}x \geq - 1/2 \\\left\lbrack \begin{matrix}x = 0 \\x = - 7/2 \\\end{matrix} ight.\  \\\end{matrix} ight.  ⇔ x = 0(TM).

    Vậy, phương trình có một nghiệm.

  • Câu 21: Thông hiểu

    Cho hàm số y = f(x) có đồ thị như hình vẽ. Hãy so sánh f(2017) với số 0.

    Nhìn đồ thị, ta thấy đồ thị y = f(x) cắt trục hoành tại 2 điểm x = 1, x = 3 nên Δ > 0, dựa vào hình dạng parabol nên suy ra a < 0 và ta có bảng xét dấu như sau:

    Dựa vào bảng xét dấu thì f(x) < 0 khi x < 1 ∨ x > 3. Mà 2017 > 3 nên f(2017) < 0.

  • Câu 22: Nhận biết

    Cho hàm số y = f(x) = |-5x|. Khẳng định nào sau đây là sai?

    Ta có: f(\frac{1}{5})=|-5.\frac{1}{5}|=1 e-1

    Khẳng định sai là: f(\frac{1}{5})=-1

  • Câu 23: Nhận biết

    Tam thức bậc hai f(x) = x^{2} + \left( \sqrt{5} - 1 ight)x -
\sqrt{5} nhận giá trị dương khi và chỉ khi

    f(x) = x^{2} + \left( \sqrt{5} - 1
ight)x - \sqrt{5} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - \sqrt{5} \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án x \in
\left( - \infty; - \sqrt{5} ight) \cup (1; + \infty).

  • Câu 24: Nhận biết

    Bất phương trình (2x−1)(x+3)−3x+1≤(x−1)(x+3)+x^{2}−5 có tập nghiệm là:

     Ta có: (2x−1)(x+3)−3x+1≤(x−1)(x+3)+x^{2}−52x^2+2x-2 \le2x^2+2x-8 \Leftrightarrow -2 \le -8 (vô lí).

    Vậy S = \varnothing.

  • Câu 25: Thông hiểu

    Xét sự biến thiên của hàm số f(x) = \frac{3}{x} trên khoảng (0;+∞). Khẳng định nào sau đây đúng?

    \begin{matrix}
\forall x_{1},\ x_{2} \in (0; + \infty):\ x_{1} eq x_{2} \\
f\left( x_{2} ight) - f\left( x_{1} ight) = \frac{3}{x_{2}} -
\frac{3}{x_{1}} = \frac{- 3\left( x_{2} - x_{1} ight)}{x_{2}x_{1}}
\Rightarrow \frac{f\left( x_{2} ight) - f\left( x_{1} ight)}{x_{2} -
x_{1}} = - \frac{3}{x_{2}x_{1}} < 0 \\
\end{matrix}

    Vậy hàm số nghịch biến trên khoảng (0;+∞).

  • Câu 26: Vận dụng

    Cho hai đường thẳng \left( d_{1} ight):y = \frac{1}{2}x + 100\left( d_{2} ight):y = - \frac{1}{2}x +
100. Mệnh đề nào sau đây đúng?

    Cách 1: Gọi k1, k2 lần lượt là hệ số gốc của (d1)(d2). Khi đó k_{1} = \frac{1}{2},\ k_{2} = - \frac{1}{2}
\Rightarrow k_{1}.k_{2} = - \frac{1}{4} nên (d1)(d2) không vuông góc nhau.

    Xét hệ: \left\{ \begin{matrix}
y = \frac{1}{2}x + 100 \\
y = - \frac{1}{2}x + 100 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- \frac{1}{2}x + y = 100 \\
\frac{1}{2}x + y = 100 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 100 \\
\end{matrix} ight.

    Vậy (d1)(d2) cắt nhau.

    Cách 2: Ta thấy \frac{1}{2} eq -
\frac{1}{2} nên (d1)(d2) cắt nhau.

  • Câu 27: Vận dụng cao

    Tìm tập xác định D của hàm số y = \frac{2019}{\sqrt[3]{x^{2} - 3x + 2} -
\sqrt[3]{x^{2} - 7}}.

    Hàm số xác định khi \sqrt[3]{x^{2} - 3x +
2} - \sqrt[3]{x^{2} - 7} eq 0 \Leftrightarrow \sqrt[3]{x^{2} - 3x + 2}
eq \sqrt[3]{x^{2} - 7}

     ⇔ x2 − 3x + 2 ≠ x2 − 7 ⇔ 9 ≠ 3x ⇔ x ≠ 3.

    Vậy tập xác định của hàm số là D = ℝ ∖ {3}.

  • Câu 28: Vận dụng cao

    Miền giá trị của hàm số y = \frac{3x^{2} + 2x + 3}{x^{2} + 1}

    Cách 1: Do  x2 + 1 > 0; ∀x ∈ ℝ nên hàm số y = \frac{3x^{2} + 2x + 3}{x^{2} +
1} xác định với mọi x ∈ ℝ

    Gọi y0 là giá trị tùy ý, ta có phương trình:

    \frac{3x^{2} + 2x + 3}{x^{2} + 1} =
y_{0} \Leftrightarrow 3x^{2} + 2x + 3 = y_{0}\left( x^{2} + 1 ight)
\Leftrightarrow 3x^{2} + 2x + 3 = y_{0}x^{2} + y_{0}

     ⇔ (3−y0)x2 + 2x + 3 − y0 = 0(1)

    + Nếu y0 = 3 thì phương trình (1)trở thành: 2x = 0 ⇔ x = 0.

    Vậy phương trình (1)có nghiệm y0 = 3(*).

    + Nếu y0 ≠ 3 thì phương trình (1)là phương trình bậc hai, nên nó có nghiệm khi và chỉ khi

    Δ′ = 12 − (3−y0)2 ≥ 0

     ⇔  − y02 + 6y0 − 8 ≥ 0

     ⇔ 2 ≤ y0 ≤ 4.

    Vậy phương trình (1)có nghiệm \Leftrightarrow \left\{ \begin{matrix}
2 \leq y_{0} \leq 4 \\
y_{0} eq 3 \\
\end{matrix} ight.\ (**).

    + Kết hợp (*), (**) thì phương trình (1)có nghiệm  ⇔ 2 ≤ y0 ≤ 4.

    Vậy: Miền giá trị của hàm số y =
\frac{3x^{2} + 2x + 3}{x^{2} + 1}[2; 4].

    Cách 2: Ta có \begin{matrix}
\frac{3x^{2} + 2x + 3}{x^{2} + 1} = \frac{x^{2} + 2x + 1 + x^{2} +
2}{x^{2} + 1} = \frac{(x + 1)^{2} + 2\left( x^{2} + 1 ight)}{x^{2} +
1} = 2 + \frac{(x + 1)^{2}}{x^{2} + 1} \geq 2 \\
\\
\end{matrix}

    Suy ra GTNN của A = 2 khi và chỉ khi x =  − 1.

    Mặt khác \frac{3x^{2} + 2x + 3}{x^{2} + 1}
= \frac{- x^{2} + 2x - 1 + 4x^{2} + 4}{x^{2} + 1} = \frac{- (x - 1)^{2}
+ 4\left( x^{2} + 1 ight)}{x^{2} + 1} = 4 - \frac{(x - 1)^{2}}{x^{2} +
1} \leq 4

    Suy ra GTLN của A = 4 khi và chỉ khi x = 1.

    Vậy miền giá trị của hàm số là [2; 4].

  • Câu 29: Nhận biết

    Chọn khẳng định đúng?

    Lí thuyết định nghĩa hàm số đồng biến, nghịch biến: Hàm số y = f(x) được gọi là đồng biến trên K nếu x1; x2 ∈ Kx1 < x2 ⇒ f(x1) < f(x2).

  • Câu 30: Vận dụng

    Số nghiệm của phương trình (3x + 1)\sqrt{x^{2} + 3} = 3x^{2} + 2x + 3 là:

    Ta thấy x = - \frac{1}{3} không là nghiệm của phương trình

    Xét x eq - \frac{1}{3}, phương trình đã cho \Leftrightarrow \sqrt{x^{2} + 3}= \frac{3x^{2} + 2x + 3}{3x + 1}

    Đến đây, chú ý 3x^{2} + 2x + 3 = 3(x +\frac{1}{3})^{2} + \frac{8}{3} > 0

    Nên phương trình có nghiệm phải thỏa mãn x> - \frac{1}{3} \Rightarrow \sqrt{x^{2} + 3} + 2x > 0

    Do đó phương trình đã cho\Leftrightarrow\sqrt{x^{2} + 3} - 2x = \frac{3x^{2} + 2x + 3}{3x + 1} - 2x

    \Leftrightarrow \frac{x^{2} + 3 -4x^{2}}{\sqrt{x^{2} + 3} + 2x} = \frac{3x^{2} + 2x + 3 - 6x^{2} - 2x}{3x+ 1}

    \Leftrightarrow \frac{3\left( 1 - x^{2}ight)}{\sqrt{x^{2} + 3} + 2x} = \frac{3\left( 1 - x^{2} ight)}{3x +1}

    \Leftrightarrow \left\lbrack\begin{matrix}x^{2} = 1 \\\sqrt{x^{2} + 3} + 2x = 3x + 1 \\\end{matrix} ight.

    Nhưng x =  − 1 không thoả mãn x > - \frac{1}{3} nên phương trình có nghiệm x = 1

    * TH2: \sqrt{x^{2} + 3} + 2x = 3x + 1\Leftrightarrow \sqrt{x^{2} + 3} = x + 1

    \Leftrightarrow \left\{ \begin{matrix}x \geq - 1 \\x^{2} + 3 = x^{2} + 1 + 2x \\\end{matrix} ight.\ \ \  \Leftrightarrow x = 1 (thỏa mãn)

    Vậy phương trình có nghiệm duy nhất x = 1.

  • Câu 31: Thông hiểu

    Tích các nghiệm của phương trình \left( {x + 4} ight)\left( {x + 1} ight) - 3\sqrt {{x^2} + 5x + 2}  = 6 là:

    Điều kiên: {x^2} + 5x + 2 \geqslant 0

    \Leftrightarrow x \in \left( { - \infty ;\frac{{ - 5 - \sqrt {17} }}{2}} ight] \cup \left[ {\frac{{ - 5 + \sqrt {17} }}{2}; + \infty } ight)

    Phương trình tương đương:

    \begin{matrix}  \left( {x + 4} ight)\left( {x + 1} ight) - 3\sqrt {{x^2} + 5x + 2}  = 6 \hfill \\   \Leftrightarrow {x^2} + 5x + 4 - 3\sqrt {{x^2} + 5x + 2}  = 6 \hfill \\   \Leftrightarrow {x^2} + 5x - 2 = 3\sqrt {{x^2} + 5x + 2}  \hfill \\ \end{matrix}

    Đặt t = {x^2} + 5x + 2;\left( {t \geqslant 0} ight)

    \begin{matrix}   \Leftrightarrow {t^2} - 4 = 3t \hfill \\   \Leftrightarrow {t^2} - 3t - 4 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {t =  - 1\left( {ktm} ight)} \\   {t = 4\left( {tm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Với t = 4 ta có:

    \begin{matrix}  \sqrt {{x^2} + 5x + 2}  = 4 \hfill \\   \Leftrightarrow {x^2} + 5x + 2 = 16 \hfill \\   \Leftrightarrow {x^2} + 5x - 14 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x_1} = 2} \\   {{x_2} =  - 7} \end{array}} ight. \hfill \\   \Rightarrow {x_1}.{x_2} =  - 14 \hfill \\ \end{matrix}

  • Câu 32: Nhận biết

    Hàm số y = 2x2 + 4x − 1

    Hàm số y = ax2 + bx + c với a > 0 đồng biến trên khoảng \left( - \frac{b}{2a}; + \infty
ight), nghịch biến trên khoảng \left( - \infty; - \frac{b}{2a}
ight).

    Áp dụng: Ta có - \frac{b}{2a} = -
1. Do đó hàm số nghịch biến trên khoảng (−∞;−1) và đồng biến trên khoảng (−1;+∞).

  • Câu 33: Thông hiểu

    Tính tổng tất cả các nghiệm của phương trình \sqrt{6 - 5x} = 2 - x?

    Ta có:

    \sqrt{6 - 5x} = 2 - x

    \Rightarrow \left\{ \begin{matrix}
2 - x \geq 0 \\
6 - 5x = (2 - x)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \leq 2 \\
x^{2} + x - 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq 2 \\
\left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    Vậy tổng các nghiệm của phương trình bằng 1 + ( - 2) = - 1.

  • Câu 34: Vận dụng

    Tổng các nghiệm của phương trình \sqrt{x^{4} - 2x^{2} + 1} + x = 1 là:

    \sqrt{x^{4} - 2x^{2} + 1} + x =1

    \Leftrightarrow \sqrt{x^{4} - 2x^{2} +1} = 1 - x

    \Leftrightarrow \left\{ \begin{matrix}1 - x \geq 0 \\\left( x^{2} - 1 ight)^{2} = (1 - x)^{2} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq 1 \\(x - 1)^{2}x(x - 2) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq 1 \\\left\lbrack \begin{matrix}x = 1 \\x = 0 \\x = - 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = 0 \\x = - 2 \\\end{matrix} ight..

    Vậy tổng các nghiệm của phương trình là  − 1.

  • Câu 35: Vận dụng cao

    Cho hàm số y =
x^{2} - 2\left( m + \frac{1}{m} ight)x + m(m > 0) xác định trên [ − 1; 1]. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên [ − 1; 1] lần lượt là y1, y2 thỏa mãn y1 − y2 = 8. Khi đó giá trị của m bằng

    Đặt y = f(x) = x^{2} - 2\left( m +
\frac{1}{m} ight)x + m.

    Hoành độ đỉnh của đồ thị hàm số là x = m +
\frac{1}{m} \geq 2 (bất đẳng thức Côsi).

    Vì hệ số a = 1 > 0 nên hàm số nghịch biến trên \left( - \infty;m +
\frac{1}{m} ight).

    Suy ra, hàm số nghịch biến [ − 1; 1].

    \Rightarrow y_{1} = f( - 1) = 3m +
\frac{2}{m} + 1.

    y_{2} = f(1) = 1 - m -
\frac{2}{m}.

    Theo đề bài ta có: y1 − y2 = 8 \Leftrightarrow 3m + \frac{2}{m} + 1 - 1 + m
+ \frac{2}{m} = 8(m > 0) \Leftrightarrow m^{2} - 2m + 1 = 0
\Leftrightarrow m = 1.

  • Câu 36: Vận dụng cao

    Tìm m để phương trình \sqrt{x^{2} + mx + 2} = 2x + 1 có hai nghiệm phân biệt là:

    Phương trình \Leftrightarrow \left\{
\begin{matrix}
x \geq - \frac{1}{2} \\
3x^{2} + (4 - m)x - 1 = 0(*) \\
\end{matrix} ight..

    Phương trình đã cho có hai nghiệm  ⇔ (*)có hai nghiệm phân biệt lớn hơn hoặc bằng - \frac{1}{2} \Leftrightarrow đồ thị hàm số y = 3x2 + (4−m)x − 1 trên \lbrack - \frac{1}{2}; + \infty) cắt trục hoành tại hai điểm phân biệt.

    Xét hàm số y = 3x2 + (4−m)x − 1 trên \lbrack - \frac{1}{2}; +
\infty). Ta có - \frac{b}{2a} =
\frac{m - 4}{6}

    + TH1: Nếu \frac{m - 4}{6} \leq -
\frac{1}{2} \Leftrightarrow m \leq 1 thì hàm số đồng biến trên \lbrack - \frac{1}{2}; + \infty) nên m ≤ 1 không thỏa mãn yêu cầu bài toán.

    + TH2: Nếu \frac{m - 4}{6} > -
\frac{1}{2} \Leftrightarrow m > 1 :

    Ta có bảng biến thiên

    Đồ thị hàm số y = 3x2 + (4−m)x − 1 trên \lbrack - \frac{1}{2}; + \infty) cắt trục hoành tại hai điểm phân biệt \Leftrightarrow y{(-\frac12)}\geq0>y{(\frac{m-4}6)}

    \Leftrightarrow\frac{2m-9}4\geq0>\frac1{12}{(-m^2+8m-28)\;}(1)

     − m2 + 8m − 28 =  − (m−4)2 − 12 < 0,  ∀m nên

    (1) \Leftrightarrow 2m - 9 \geq 0
\Leftrightarrow m \geq \frac{9}{2} (thỏa mãn m > 1).

    Vậy m \geq \frac{9}{2} là giá trị cần tìm.

  • Câu 37: Nhận biết

    Số nghiệm của phương trình \sqrt{2x-4}=\sqrt{x^{2}-3x} là:

    Điều kiện: \left\{ {\begin{array}{*{20}{c}}  {2x - 4 \geqslant 0} \\   {{x^2} - 3x \geqslant 0} \end{array}} ight.

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 2} \\   {x \in \left( { - \infty ;0} ight] \cup \left[ {3; + \infty } ight)} \end{array}} ight. \hfill \\   \Leftrightarrow x \geqslant 3 \hfill \\ \end{matrix}

    \begin{matrix}  \sqrt {2x - 4}  = \sqrt {{x^2} - 3x}  \hfill \\   \Leftrightarrow 2x - 4 = {x^2} - 3x \hfill \\   \Leftrightarrow {x^2} - 5x + 4 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1\left( {ktm} ight)} \\   {x = 4\left( {tm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy phương trình đã cho có tất cả 1 nghiệm.

  • Câu 38: Thông hiểu

    Cho hàm số f(x) =
\left\{ \begin{matrix}
\frac{2\sqrt{x - 2} - 3}{x - 1} & khi & x \geq 2 \\
x^{2} + 2 & khi & x < 2 \\
\end{matrix} ight.. Tính P = f(2) + f(−2).

    Ta có: f(2) + f( - 2) = \frac{2\sqrt{2 -
2} - 3}{2 - 1} + ( - 2)^{2} + 2 \Rightarrow P = 3.

  • Câu 39: Thông hiểu

    Trong các hàm số sau, hàm số nào là hàm số đồng biến trên khoảng ( - 1;1)?

    Hàm số y = x là hàm số bậc nhất có hệ số a = 1 > 0 nên hàm số y =
x đồng biến trên tập số thực.

    Vậy hàm số y = x đồng biến trên khoảng ( - 1;1).

  • Câu 40: Nhận biết

    Tổng các nghiệm của phương trình \sqrt{x^{4} - 2x^{2} + 1} + x = 1 là bao nhiêu?

    \sqrt{x^{4} - 2x^{2} + 1} + x = 1\Leftrightarrow \sqrt{x^{4} - 2x^{2} + 1} = 1 - x\Leftrightarrow\left\{ \begin{matrix}1 - x \geq 0 \\\left( x^{2} - 1 ight)^{2} = (1 - x)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 1 \\(x - 1)^{2}x(x - 2) = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 1 \\\left\lbrack \begin{matrix}x = 1 \\x = 0 \\x = - 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = 0 \\x = - 2 \\\end{matrix} ight..

    Vậy tổng các nghiệm của phương trình là -
1.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo