Tìm m để f(x) = x2 − 2(2m−3)x + 4m − 3 > 0, ∀x ∈ ℝ?
f(x) = x2 − 2(2m−3)x + 4m − 3 > 0, ∀x ∈ ℝ⇔Δ < 0 ⇔ 4m2 − 16m + 12 < 0 ⇔ 1 < m < 3.
Tìm m để f(x) = x2 − 2(2m−3)x + 4m − 3 > 0, ∀x ∈ ℝ?
f(x) = x2 − 2(2m−3)x + 4m − 3 > 0, ∀x ∈ ℝ⇔Δ < 0 ⇔ 4m2 − 16m + 12 < 0 ⇔ 1 < m < 3.
Phương trình
có bao nhiêu nghiệm
Đkxđ: .
.
Vậy phương trình có hai nghiệm.
Hàm số nào sau đây nghịch biến trên khoảng (−∞;0)?
Xét đáp án , ta có
và có a > 0 nên hàm số đồng biến trên khoảng (0;+∞) và nghịch biến trên khoảng (−∞;0).
Cho hàm số y = f(x) xác định trên ℝ và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là sai?
Trên khoảng (2;+∞) đồ thị hàm số đi lên từ trái sang phải
Hàm số đồng biến trên khoảng (2;+∞).
Chọn đáp án Hàm số nghịch biến trên khoảng (2;+∞).
Tìm
để hàm số
luôn đồng biến biến trên tập số thực.
Để hàm số nghịch biến trên tập số thực thì
.
Tìm giá trị thực của tham số m để phương trình (m+1)x2 − 2mx + m − 2 = 0 có hai nghiệm phân biệt x1, x2 khác 0 thỏa mãn ![]()
Ta có Δ′ = m + 2.
Phương trình có hai nghiệm phân biệt khác 0 khi và chỉ khi
Theo định lý Vi-et, ta có:
Theo bài ra, ta có
Kết hợp với điều kiện ta được là giá trị cần tìm.
Đồ thị của hàm số nào sau đây là parabol có đỉnh I(−1; 3).
Đỉnh Parabol là .
Do đó chỉ có đáp án y = 2x2 + 4x + 5 thỏa mãn.
Hàm số y = x2 − 4x + 11 đồng biến trên khoảng nào trong các khoảng sau đây?
Ta có bảng biến thiên:

Từ bảng biến thiên ta thấy, hàm số đồng biến trên khoảng
(2;+∞).
Cho parabol (P) : y = ax2 + bx + c, (a≠0) có đồ thị như hình bên. Khi đó 2a + b + 2c có giá trị là

Parabol (P) : y = ax2 + bx + c, (a≠0) đi qua các điểm A(−1; 0), B(1; −4), C(3; 0) nên có hệ phương trình:
.
Khi đó: 2a + b + 2c = 2.1 − 2 + 2(−3) = − 6.
Số nghiệm của phương trình:
là:
.
Vậy phương trình có một nghiệm.
Cho hàm số
. Biết f(x0) = 5 thì x0 là
TH1. x0 ≤ − 3: Với f(x0) = 5 ⇔ − 2x0 + 1 = 5 ⇔ x0 = − 2 (Loại).
TH2. x0 > − 3: Với (thỏa mãn).
Xác định parabol
, biết rằng
đi qua điểm
và có trục đối xứng
.
Vì hàm số có trục đối xứng và đi qua điểm
nên:
và
.
Nhận xét: Trong 4 đáp án, chỉ có thỏa mãn 2 điều kiện trên.
Cho tam thức bậc hai f(x) = 5x − x2 − 6. Tìm x để f(x) ≥ 0.

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [2; 3].
Phương trình
có mấy nghiệm ?
Điều kiện: 0 ≤ x ≤ 9
Bình phương hai vế phương trình đã cho ta được:
Đặt . PT trên trở thành:
Với (TM)
Với (TM)
Vậy phương trình có tập nghiệm là (3 nghiệm).
Tìm tập xác định D của hàm số
.
Điều kiện: .
Vậy tập xác định của hàm số là D = [ − 1; + ∞) ∖ {0}.
Xác định parabol (P) : y = 2x2 + bx + c, biết rằng (P) đi qua điểm M(0;4) và có trục đối xứng x = 1.
Ta có
Trục đối xứng
Vậy (P) : y = 2x2 − 4x + 4.
Tập nghiệm của bất phương trình
là:
Ta có:
Hàm số nào sau đây có đỉnh
?
Hàm số có các hệ số a = 1, b = ‒2, c = 1 nên có tọa độ đỉnh
Phương trình
có nghiệm là bao nhiêu?
.
Vậy phương trình vô nghiệm.
Biết ba đường thẳng d1 : y = 2x − 1, d2 : y = 8 − x, d3 : y = (3−2m)x + 2 đồng quy. Giá trị của m bằng
+ Gọi M là giao điểm của d1 và d2.
Xét hệ: .
+ M ∈ d3 nên ta có: 5 = (3−2m).3 + 2 ⇔ 5 = 9 − 6m + 2 ⇔ 6m = 6 ⇔ m = 1.
Hàm số nào sau đây có đồ thị như hình bên

Quan sát đồ thị ta loại y = x2 − 3x − 3 và y = − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y = − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P) là , trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y = − x2 + 5|x| − 3.
Cho hàm số y = f(x) có đồ thị như hình vẽ. Hãy so sánh f(2017) với số 0.

Nhìn đồ thị, ta thấy đồ thị y = f(x) cắt trục hoành tại 2 điểm x = 1, x = 3 nên Δ > 0, dựa vào hình dạng parabol nên suy ra a < 0 và ta có bảng xét dấu như sau:

Dựa vào bảng xét dấu thì f(x) < 0 khi x < 1 ∨ x > 3. Mà 2017 > 3 nên f(2017) < 0.
Cho đồ thị hàm số
như hình vẽ:

Có bao nhiêu giá trị nguyên của
để phương trình
có 8 nghiệm phân biệt?
Từ đồ thị hàm số ta suy ra đồ thị hàm số
có dạng như hình vẽ:
Ta có:
Dựa vào đồ thị hàm số ta có phương trình
có 4 nghiệm, phương trình đã cho có 8 nghiệm khi phương trình
có 4 nghiệm và
Suy ra
Vậy có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Trong các hàm số sau, hàm số nào là nghịch biến:
Ta có:
Hàm số có a = -2 < 0
=> Hàm số nghịch biến.
Số nghiệm của phương trình
là:
Ta thấy không là nghiệm của phương trình
Xét , phương trình đã cho
Đến đây, chú ý
Nên phương trình có nghiệm phải thỏa mãn
Do đó phương trình đã cho
Nhưng x = − 1 không thoả mãn nên phương trình có nghiệm x = 1
* TH2:
(thỏa mãn)
Vậy phương trình có nghiệm duy nhất x = 1.
Cho f(x) = − 2x2 + (m+2)x + m − 4. Tìm m để f(x) âm với mọi a, b, c > 0.
Ta có
.
Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như sau:

Dựa vào bảng xét dấu, ta chọn đáp án f(x) > 0với 2< x < 3 và f(x) < 0với x < 2 ∨ x > 3 .
Tập hợp nào sau đây là tập xác định của hàm số
?
Hàm số xác đinh khi và chỉ khi .
Cho hàm số có đồ thị như hình vẽ.
Chọn đáp án sai.
Từ đồ thị hàm số ta thấy:
Hàm số nghịch biến trong các khoảng: (−∞;−1) và (0;1).
Hàm số đồng biến trong các khoảng: (−1;0) và (1;+∞).
Đáp án sai là Hàm số nghịch biến trên khoảng (−1;1).
Tập nghiệm của bất phương trình:
là:
Ta có: .
Vậy .
Cho bất phương trình
. Trong các tập hợp sau đây, tập nào có chứa phần tử không phải là nghiệm của bất phương trình.
Ta có: . Suy ra
.
Nhận xét: không thuộc
.
Cho tam thức bậc hai f(x) = x2 − 4x + 4. Hỏi khẳng định nào sau đây là đúng?
Ta có: f(x) = x2 − 4x + 4 = 0 ⇔ x = 2

Dựa vào bảng xét dấu, chọn đáp án f(x) > 0, ∀x ∈ ℝ.
Đồ thị bên là đồ thị của hàm số nào?

Đồ thị nhận trục Oy là trục đối xứng nên hàm số tương ứng là hàm chẵn nên loại phương án y = |2x+1| và y = |x+1|
Đồ thị hàm số đi qua điểm (1;3). Thay vào y = 2|x| + 1 thấy thỏa mãn nên chọn đáp án này.
Hàm số nào sau đây có đồ thị như hình bên

Quan sát đồ thị ta loại y = x2 − 3x − 3 và y = − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y = − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P) là , trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y = − x2 + 5|x| − 3.
Tính tổng tất cả các nghiệm của phương trình
?
Ta có:
Vậy tổng các nghiệm của phương trình bằng .
Có bao nhiêu giá trị nguyên của tham số
sao cho hàm số
có hai nghiệm phân biệt thuộc khoảng
?
Ta có:
Từ yêu cầu bài toán
Suy ra
Vậy có 8 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Số nghiệm của phương trình
là bao nhiêu?
.
Vậy phương trình có hai nghiệm.
Tổng các nghiệm của phương trình
là :
Ta có
Phương trình có nghiệm là và
.
Vậy tổng các nghiệm của phương trình là .
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.
Vì (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay vào (P), ta được 0 = 4a + 6 − 2 ⇔ a = − 1.
Vậy (P) : y = − x2 + 3x − 2.
Phương trình
có mấy nghiệm nguyên dương ?
Đặt
Phương trình đã cho trở thành:
Vậy phương trình có 0 nghiệm nguyên dương.