Số nghiệm của phương trình
là:
.
Vậy phương trình vô nghiệm.
Số nghiệm của phương trình
là:
.
Vậy phương trình vô nghiệm.
Tìm tất cả các giá trị thực của tham số m để bất phương trình (2m2−3m−2)x2 + 2(m−2)x − 1 ≤ 0 có tập nghiệm là ℝ.
Xét hoặc m = 2
• Khi thì bất phương trình trở thành
nên không có nghiệm đúng với mọi x.
• Khi m = 2 thì bất phương trình trở thành − 1 ≤ 0 nên có nghiệm đúng với mọi x.
• Khi thì yêu cầu bài toán
⇔ (2m2−3m−2)x2 + 2(m−2)x − 1 ≤ 0 ∀x ∈ ℝ
Kết hợp hai trường hợp ta được là giá trị cần tìm.
Phương trình:
có bao nhiêu nghiệm?
Điều kiện:
Kết hợp với điều kiện ta được thỏa mãn
Vậy nghiệm của phương trình là
Tập nghiệm của bất phương trình
là:
Tam thức có hai nghiệm phân biệt
a = 2 > 0 nên f(x) dương với mọi x thuộc hai nửa khoảng
Vậy tập nghiệm của bất phương trình là:
Quan sát đồ thị hàm số, chọn nhận xét đúng?

Quan sát đồ thị ta thấy có bề lõm quay lên trên suy ra a > 0
Parabol cắt trục tung tại điểm có tọa độ nằm phía trên trục hoành nên
.
Đỉnh parabol nằm bên trái trục tung nên có hoành độ mà
suy ra
.
Kết luận: .
Cặp bất phương trình nào sau đây là tương đương?
Ta có: .
Ta có: (Vì
với mọi giá trị
). Do đó
.
Số nghiệm của phương trình
là bao nhiêu?
Điều kiện: .
.
Đặt ,
.
.
Vậy phương trình đã cho có hai nghiệm.
Điểm nào sau đây thuộc đồ thị của hàm số
?
Thử trực tiếp thấy tọa độ của M(2;0) thỏa mãn phương trình hàm số.
Có bao nhiêu giá trị nguyên của tham số
sao cho hàm số
có hai nghiệm phân biệt thuộc khoảng
?
Ta có:
Từ yêu cầu bài toán
Suy ra
Vậy có 8 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Số nghiệm của phương trình
là:
vô số.
Ta thấy x = − 3 không là nghiệm của phương trình.
Xét x ≠ − 3, phương trình
Phương trình (*)
(thỏa mãn)
Vậy phương trình đã cho có hai nghiệm x = 0 và .
Tìm tập xác định của hàm số
.
Điều kiện xác định: 4x2 − 4x + 1 ≥ 0 ⇔ (2x−1)2 ≥ 0 (luôn đúng với mọi x ∈ ℝ).
Do đó tập xác định D = ℝ.
Bảng xét dấu nào sau đây là bảng xét dấu của tam thức
là:
Xét biếu thức có
và nghiệm là
Ta có bảng xét dấu như sau:

Số nghiệm của phương trình
là bao nhiêu?
.
Vậy phương trình có hai nghiệm.
Tam thức bậc hai f(x) = 4x2 − 12x + 9 nhận giá trị âm khi và chỉ khi
Chọn Ta có:

Dựa vào bảng xét dấu thì ta thấy không có giá trị x nào để f(x) < 0.
Tìm tập xác định của hàm số 
Xét , ta có:
.
Điều kiện xác định của là
. Kết hợp với
ta được
.
Vậy .
Cho
. Với m là bao nhiêu thì (1) có nghiệm duy nhất
ĐK x > 2
.
Phương trình (1) có nghiệm duy nhất .
Cho hàm số y = f(x) có tập xác định là [ − 1; 5] và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là sai?
Trên khoảng (−1;1) và (2;3) đồ thị hàm số đi lên từ trái sang phải
Hàm số đồng biến trên khoảng (−1;1) và (2;3).
Trên khoảng (1;2) và (3;5) đồ thị hàm số đi xuống từ trái sang phải
Hàm số nghịch biến trên khoảng (1;2) và (3;5).
Số nghiệm của phương trình
là:
Ta thấy không là nghiệm của phương trình
Xét , phương trình đã cho
Đến đây, chú ý
Nên phương trình có nghiệm phải thỏa mãn
Do đó phương trình đã cho
Nhưng x = − 1 không thoả mãn nên phương trình có nghiệm x = 1
* TH2:
(thỏa mãn)
Vậy phương trình có nghiệm duy nhất x = 1.
Tìm điểm M(a;b) với a < 0 nằm trên Δ : x + y − 1 = 0 và cách N(−1;3) một khoảng bằng 5. Giá trị của a − b là
.
Ta có: MN = 5 ⇒ MN2 = (−1−t)2 + (2+t)2 = 25
⇔ 2t2 + 6t − 20 = 0
⇒ M(−5;6) ⇒ a − b = − 11
Tập nghiệm của bất phương trình
là
Ta có: .
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4] là
Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2
= (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.
Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].
.
Cách 1: Ta có .
Cách 2: Vẽ BBT

Vậy , ymax = 21.
Tập nghiệm của phương trình
là?
Điều kiện: .
Ta có: . Loại
.
Vậy .
Cho hàm số y = − x2 + 4x + 1. Khẳng định nào sau đây sai?
Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng , đồng biến trên khoảng
.
Áp dụng: Ta có Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.
Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).
Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).
Tìm tập xác định của hàm số
.
Điều kiện xác định: .
Vậy .
Cho hàm số y = (m−1)x2 − 2(m−2)x + m − 3 (m≠1)(P). Đỉnh của (P) là S(−1;−2) thì m bằng bao nhiêu:
Do đỉnh của (P) là S(−1;−2) suy ra
.
Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

Nhận xét:
Bảng biến thiên có bề lõm hướng xuống. Loại đáp án y = 2x2 + 2x − 1 và y = 2x2 + 2x + 2.
Đỉnh của parabol có tọa độ là . Xét các đáp án, y = − 2x2 − 2x + 1 thỏa mãn.
Tập nghiệm của bất phương trình
là?
Ta có
Bảng xét dấu:
Dựa vào bảng xét dấu .
Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?
Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).
Cho f(x) = − 2x2 + (m+2)x + m − 4. Tìm m để f(x) âm với mọi a, b, c > 0.
Ta có .
Hàm số nào sau đây có đồ thị như hình bên

Quan sát đồ thị ta loại y = x2 − 3x − 3 và y = − x2 + 5x − 3. Phần đồ thị bên phải trục tung là phần đồ thị (P) của hàm số y = − x2 + 5x − 3 với x > 0, tọa độ đỉnh của (P) là , trục đối xứng là x = 2, 5. Phần đồ thị bên trái trục tung là do lấy đối xứng phần đồ thị bên phải của (P)qua trục tung Oy. Ta được cả hai phần là đồ thị của hàm số y = − x2 + 5|x| − 3.
Điểm A có hoành độ xA = 1 và thuộc đồ thị hàm số y = mx + 2m − 3. Tìm m để điểm A nằm trong nửa mặt phẳng tọa độ phía trên trục hoành (không chứa trục hoành).
Từ giả thiết điểm A nằm trong nửa mặt phẳng tọa độ phía trên trục hoành (không chứa trục hoành) nên yA > 0 ta có yA = mx + 2m − 3 = m.1 + 2m − 3 = 3m − 3 > 0 ⇔ m > 1.
Cho hàm số y = f(x) = ax2 + bx + c có đồ thị như hình vẽ. Đặt Δ = b2 − 4ac, tìm dấu của a và Δ.

Nhìn đồ thị, ta thấy đồ thị y = f(x) cắt trục hoành tại 2 điểm x = 1, x = 4 nên Δ > 0, dựa vào hình dạng parabol nên suy a > 0
Điểm nào sau đây thuộc đồ thị hàm số
?
Thay tọa độ vào
ta được
thỏa mãn. Suy ra điểm này thuộc đồ thị hàm số
.
Đồ thị của hàm số nào sau đây là parabol có đỉnh I(−1; 3).
Đỉnh Parabol là .
Do đó chỉ có đáp án y = 2x2 + 4x + 5 thỏa mãn.
Cho parabol
(
). Xét dấu hệ số
và biệt thức
khi
cắt trục hoành tại hai điểm phân biệt và có đỉnh nằm phía trên trục hoành.
Nhận xét: Đồ thị hàm số bậc hai cắt trục hoành tại 2 điểm phân biệt nên suy ra phương trình có 2 nghiệm phân biệt. Suy ra
.
Đỉnh nằm phía trên trục hoành nên suy ra (bề lõm hướng xuống).
Xác định parabol (P) : y = ax2 + bx + 2, biết rằng (P) đi qua hai điểm M(1;5) và N(−2;8).
Vì (P) đi qua hai điểm M(1;5) và N(−2;8) nên ta có hệ
. Vậy (P) : y = 2x2 + x + 2.
Các giá trị m làm cho biểu thức
luôn dương là
Biểu thức luôn dương
Biết ba đường thẳng d1 : y = 2x − 1, d2 : y = 8 − x, d3 : y = (3−2m)x + 2 đồng quy. Giá trị của m bằng
+ Gọi M là giao điểm của d1 và d2.
Xét hệ: .
+ M ∈ d3 nên ta có: 5 = (3−2m).3 + 2 ⇔ 5 = 9 − 6m + 2 ⇔ 6m = 6 ⇔ m = 1.
Cho hàm số
. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên ℝ?
Hàm số có dạng y = ax + b, nên để hàm số đồng biến trên ℝ khi và chỉ khi
. Mặt khác do m ∈ ℤ nên m ∈ {−1; 0; 1; 2}. Vậy có 4 giá trị nguyên của m.
Tập nghiệm của phương trình
là:
Phương trình .
Vậy S = {2}.