Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Hàm số và đồ thị gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [ − 2017; 2017] để hàm số y = (m−2)x + 2m đồng biến trên ℝ.

    Hàm số đồng biến khi m − 2 > 0 ⇔ m > 2. Suy ra m ∈ {3; 4; 5...; 2017}.

    Vậy có 2015 giá trị nguyên của m cần tìm.

    Chọn 2015.

  • Câu 2: Nhận biết

    Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như các đáp án dưới đây. Chọn đáp án đúng.

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, chọn đáp án f(x) > 0với  2< x < 3f(x) < 0với x < 2 ∨ x > 3.

  • Câu 3: Thông hiểu

    Tìm parabol (P):y=ax^{2}+3x-2, biết rằng parabol có đỉnh I(-\frac{1}{2};-\frac{11}{4}).

     Vì hàm số bậc hai có đỉnh I(-\frac{1}{2};-\frac{11}{4}) nên:

    \frac{-b}{2a}= \frac {-1}2 \Leftrightarrow b=a-\frac {11}4=a{(\frac{-1}2})^{2}+3.(-\frac1{2})-2.

    Suy ra a=3.

  • Câu 4: Thông hiểu

    Tập xác định của hàm số f(x) = \sqrt{3 - x} + \frac{1}{\sqrt{x -
1}}

    Hàm số xác định khi \left\{ \begin{matrix}
3 - x \geq 0 \\
x - 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq 3 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow 1 < x \leq 3.

    Vậy tập xác định của hàm số là D = (1; 3].

  • Câu 5: Nhận biết

    Số nghiệm của phương trình \sqrt{2x-4}=\sqrt{x^{2}-3x} là:

    Điều kiện: \left\{ {\begin{array}{*{20}{c}}  {2x - 4 \geqslant 0} \\   {{x^2} - 3x \geqslant 0} \end{array}} ight.

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 2} \\   {x \in \left( { - \infty ;0} ight] \cup \left[ {3; + \infty } ight)} \end{array}} ight. \hfill \\   \Leftrightarrow x \geqslant 3 \hfill \\ \end{matrix}

    \begin{matrix}  \sqrt {2x - 4}  = \sqrt {{x^2} - 3x}  \hfill \\   \Leftrightarrow 2x - 4 = {x^2} - 3x \hfill \\   \Leftrightarrow {x^2} - 5x + 4 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1\left( {ktm} ight)} \\   {x = 4\left( {tm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy phương trình đã cho có tất cả 1 nghiệm.

  • Câu 6: Thông hiểu

    Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

    Nhận xét:

    Bảng biến thiên có bề lõm hướng lên. Loại đáp án y =  − x2 + 4x − 9y =  − x2 + 4x.

    Đỉnh của parabol có tọa độ là (2;−5). Xét các đáp án, đáp án y = x2 − 4x − 1 thỏa mãn.

  • Câu 7: Vận dụng cao

    Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4]

    Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2

     = (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.

    Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].

    y = (t - 1)^{2} - 5t + 2 = t^{2} - 7t + 3= \left( t - \frac{7}{2} ight)^{2} - \frac{37}{4}.

    Cách 1: Ta có 0 \leq \left( t -\frac{7}{2} ight)^{2} \leq \frac{121}{4} \Leftrightarrow -\frac{37}{4} \leq y \leq 21.

    Cách 2: Vẽ BBT

    Description: Capture

    Vậy y_{\min} = - \frac{37}{4}, ymax = 21.

  • Câu 8: Vận dụng

    Hàm số y =  − x2 + 2(m−1)x + 3 nghịch biến trên (1;+∞) khi giá trị m thỏa mãn:

    Đồ thị hàm số có trục đối xứng là đường x = m − 1. Đồ thị hàm số đã cho có hệ số x2 âm nên sẽ đồng biến trên (−∞;m−1) và nghịch biến trên (m−1;+∞). Theo đề, cần: m − 1 ≤ 1 ⇔ m ≤ 2.

  • Câu 9: Nhận biết

    Hàm số y = 2x2 + 4x − 1

    Hàm số y = ax2 + bx + c với a > 0 đồng biến trên khoảng \left( - \frac{b}{2a}; + \infty
ight), nghịch biến trên khoảng \left( - \infty; - \frac{b}{2a}
ight).

    Áp dụng: Ta có - \frac{b}{2a} = -
1. Do đó hàm số nghịch biến trên khoảng (−∞;−1) và đồng biến trên khoảng (−1;+∞).

  • Câu 10: Nhận biết

    Tìm tập xác định của hàm số y = \sqrt{4x^{2} - 4x + 1}.

    Điều kiện xác định: 4x2 − 4x + 1 ≥ 0 ⇔ (2x−1)2 ≥ 0 (luôn đúng với mọi x ∈ ℝ).

    Do đó tập xác định D = ℝ.

  • Câu 11: Nhận biết

    Hàm số nào sau đây đồng biến trên tập xác định của nó?

    y = 3x + 1a = 3 > 0 nên hàm số đồng biến trên TXĐ.

  • Câu 12: Thông hiểu

    Cho hàm số y = (m
+ 2)x + \sqrt{2 - m}. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên ?

    Hàm số có dạng y = ax + b, nên để hàm số đồng biến trên khi và chỉ khi \left\{ \begin{matrix}
m + 2 > 0 \\
2 - m \geq 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
m > - 2 \\
m \leq 2 \\
\end{matrix} ight.. Mặt khác do m ∈ ℤ nên m ∈ {−1;  0;  1;  2}. Vậy có 4 giá trị nguyên của m.

  • Câu 13: Thông hiểu

    Tìm m để f(x) = x2 − 2(2m−3)x + 4m − 3 > 0,    ∀x ∈ ℝ?

    f(x) = x2 − 2(2m−3)x + 4m − 3 > 0, ∀x ∈ ℝ⇔Δ < 0 ⇔ 4m2 − 16m + 12 < 0 ⇔ 1 < m < 3.

  • Câu 14: Thông hiểu

    Xác định parabol (P):y=ax^{2}+bx+2 biết rằng Parabol đi qua hai điểm M(1;5) và N(2;-2)

     Thay tọa độ M(1;5)N(2;-2) vào hàm số, ta được:

    \left\{ {\begin{array}{*{20}{c}}{5 = a + b + 2}\\{ - 2 = 4a + 2b + 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a =  - 5}\\{b = 8}\end{array}} ight.} ight..

    Vậy đó là hàm số y=-5x^{2}+8x+2.

  • Câu 15: Nhận biết

    Trong các hàm số sau, hàm số nào có đồ thị nhận đường x = 1 làm trục đối xứng?

    Ta có đáp án y=-2x^{2}+4x+1 có: x =  - \frac{b}{{2a}} =  - \frac{4}{{2.\left( { - 2} ight)}} = 1

    Vậy x = 1 là trục đối xứng của đồ thị hàm số y=-2x^{2}+4x+1.

  • Câu 16: Nhận biết

    Tam thức bậc hai f(x) =  − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

    f(x) = - x^{2} + 3x - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [1; 2].

  • Câu 17: Thông hiểu

    Số nghiệm của phương trình \sqrt{2x^{2}-2x+4}=\sqrt{x^{2}-x+2}

    Điều kiện \left\{ {\begin{array}{*{20}{c}}  {2{x^2} - 2x + 4 \geqslant 0} \\   {{x^2} - x + 2 \geqslant 0} \end{array}} ight.

    Phương trình tương đương:

    \begin{matrix}  \sqrt {2{x^2} - 2x + 4}  = \sqrt {{x^2} - x + 2}  \hfill \\   \Leftrightarrow 2{x^2} - 2x + 4 = {x^2} - x + 2 \hfill \\   \Leftrightarrow {x^2} - x + 2 = 0\left( {VN} ight) \hfill \\ \end{matrix}

    Do {\left( {x - \frac{1}{2}} ight)^2} + \frac{7}{4} > 0,\forall x

    Vậy phương trình vô nghiệm.

  • Câu 18: Thông hiểu

    Tam thức bậc hai f(x)=−x^{2}+3x−2 nhận giá trị không âm khi và chỉ khi

     Ta có: \Delta >0a=-1<0.

    Phương trình f(x)=0 có hai nghiệm phân biệt là x=1;x=2.

    Do đó, f(x) \ge 0 x \in [1;2].

  • Câu 19: Thông hiểu

    Tam thức f(x) =  − 2x2 + (m−2)x − m + 4 không dương với mọi x khi:

    f(x) \leq 0,\ \forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
a < 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow m^{2} - 12m + 36 \leq 0\
\  \Leftrightarrow \ \ m = 6.

  • Câu 20: Thông hiểu

    Đồ thị hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?

    Nhận xét:

    Parabol có bề lõm hướng lên.

    Parabol cắt trục hoành tại 2 điểm phân biệt có hoành độ âm. Xét các đáp án, đáp án y = 3x2 + 6x + 1 thỏa mãn.

  • Câu 21: Nhận biết

    Tập nghiệm của bất phương trình 2{x^2} - 7x - 15 \geqslant 0 là:

    Tam thức f(x)=2{x^2} - 7x - 15 có hai nghiệm phân biệt {x_1} = 5;{x_2} =  - \frac{3}{2}

    a = 2 > 0 nên f(x) dương với mọi x thuộc hai nửa khoảng \left( { - \infty  - \frac{3}{2}} ight],\left[ {5, + \infty } ight)

    Vậy tập nghiệm của bất phương trình là: S=(-∞;-\frac{3}{2})∪[5;+∞)

  • Câu 22: Nhận biết

    Bất phương trình (2x−1)(x+3)−3x+1≤(x−1)(x+3)+x^{2}−5 có tập nghiệm là:

     Ta có: (2x−1)(x+3)−3x+1≤(x−1)(x+3)+x^{2}−52x^2+2x-2 \le2x^2+2x-8 \Leftrightarrow -2 \le -8 (vô lí).

    Vậy S = \varnothing.

  • Câu 23: Nhận biết

    Tập nghiệm của bất phương trình 6x^{2}+x−1≤0

     Ta có: 6x^{2}+x−1≤0  \Leftrightarrowx \in [-\frac{1}{2};\frac{1}{3}].

  • Câu 24: Vận dụng cao

    Gọi S là tập hợp tất cả các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y = f(x) = 4x2 − 4mx + m2 − 2m trên đoạn [ − 2; 0] bằng 3. Tính tổng T các phần tử của S.

    Parabol có hệ số theo x24 > 0 nên bề lõm hướng lên. Hoành độ đỉnh x_{I} = \frac{m}{2}.

    • Nếu \frac{m}{2} < - 2 \Leftrightarrow
m < - 4 thì xI <  − 2 < 0 . Suy ra f(x) đồng biến trên đoạn [ − 2; 0].

    Do đó min[ − 2; 0]f(x) = f(−2) = m2 + 6m + 16.

    Theo yêu cầu bài toán: m2 + 6m + 16 = 3 (vô nghiệm).

    • Nếu - 2 \leq \frac{m}{2} \leq 0
\Leftrightarrow - 4 \leq m \leq 0 thì xI ∈ [0; 2]. Suy ra f(x) đạt giá trị nhỏ nhất tại đỉnh.

    Do đó \min_{\lbrack - 2;0brack}f(x) =
f\left( \frac{m}{2} ight) = - 2m.

    Theo yêu cầu bài toán - 2m = 3
\Leftrightarrow m = - \frac{3}{2} (thỏa mãn  − 4 ≤ m ≤ 0).

    • Nếu \frac{m}{2} > 0 \Leftrightarrow m
> 0 thì xI > 0 >  − 2. Suy ra f(x) nghịch biến trên đoạn [ − 2; 0].

    Do đó min[ − 2; 0]f(x) = f(0) = m2 − 2m.

    Theo yêu cầu bài toán: m^{2} - 2m = 3
\Leftrightarrow \left\lbrack \begin{matrix}
m = - 1(L) \\
m = 3(TM) \\
\end{matrix} ight.\ .

    Vậy S = \left\{ - \frac{3}{2};3
ight\}\overset{}{ightarrow}T = - \frac{3}{2} + 3 =
\frac{3}{2}.

  • Câu 25: Thông hiểu

    Cho hàm số y = f(x) có đồ thị như hình vẽ. Hãy so sánh f(2017) với số 0.

    Nhìn đồ thị, ta thấy đồ thị y = f(x) cắt trục hoành tại 2 điểm x = 1, x = 3 nên Δ > 0, dựa vào hình dạng parabol nên suy ra a < 0 và ta có bảng xét dấu như sau:

    Dựa vào bảng xét dấu thì f(x) < 0 khi x < 1 ∨ x > 3. Mà 2017 > 3 nên f(2017) < 0.

  • Câu 26: Thông hiểu

    Cho phương trình \frac{x^{2} - 4x + 2}{\sqrt{x - 2}} = \sqrt{x -2}. Số nghiệm của phương trình này là:

    ĐKXĐ: x > 2 khi đó phương trình trở thành x^{2} - 4x + 2 = x - 2\Leftrightarrow x^{2} - 5x + 4 = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = 1 \\x = 4 \\\end{matrix} ight..

    Đối chiếu điều kiện suy ra phương trình có một nghiệm x = 4.

  • Câu 27: Thông hiểu

    Tìm m để hàm số y = (2m−1)x + 7 đồng biến trên .

    Hàm số y = (2m−1)x + 7 đồng biến trên khi 2m − 1 > 0 hay m > \frac{1}{2}.

  • Câu 28: Nhận biết

    Cho hàm số có đồ thị như hình bên dưới.

    Khẳng định nào sau đây là đúng?

    Trên khoảng (0;2) đồ thị hàm số đi xuống từ trái sang phải nên hàm số nghịch biến.

  • Câu 29: Vận dụng

    Tổng các nghiệm của phương trình \sqrt{x^{4} - 2x^{2} + 1} + x = 1 là:

    \sqrt{x^{4} - 2x^{2} + 1} + x =1

    \Leftrightarrow \sqrt{x^{4} - 2x^{2} +1} = 1 - x

    \Leftrightarrow \left\{ \begin{matrix}1 - x \geq 0 \\\left( x^{2} - 1 ight)^{2} = (1 - x)^{2} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq 1 \\(x - 1)^{2}x(x - 2) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq 1 \\\left\lbrack \begin{matrix}x = 1 \\x = 0 \\x = - 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = 0 \\x = - 2 \\\end{matrix} ight..

    Vậy tổng các nghiệm của phương trình là  − 1.

  • Câu 30: Vận dụng cao

    Tất cả các giá trị của tham số m để các nghiệm của phương trình \sqrt{x+1}-2=0\;(1) cũng là nghiệm của phương trình x2 − 2mx − m2 − 2 = 0 (2) là:

    \sqrt{x + 1} = 2 \Leftrightarrow x + 1 = 4
\Leftrightarrow x = 3

    Do đó, để mọi nghiệm của (1) cũng là nghiệm của (2) điều kiện là x = 3 cũng là nghiệm của (2), tức là: 9 -
6m - m^{2} - 2 = 0 \Leftrightarrow m^{2} + 6m - 7 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
m = 1 \\
m = - 7 \\
\end{matrix} ight..

  • Câu 31: Nhận biết

    Tìm m để hàm số y = mx +(m+2)x-2 luôn đồng biến biến trên tập số thực.

    Để hàm số y = mx +(m+2)x-2 nghịch biến trên tập số thực thì m>0.

  • Câu 32: Thông hiểu

    Số nghiệm của phương trình \sqrt{x + 4} = \sqrt{1 - x} + \sqrt{1 - 2x}  là

    Điều kiện: \left\{ \begin{matrix}x + 4 \geq 0 \\1 - x \geq 0 \\1 - 2x \geq 0 \\\end{matrix} ight.\  \Leftrightarrow - 4 \leq x \leq\frac{1}{2}.

    \sqrt{x + 4} = \sqrt{1 - x} + \sqrt{1 -2x} \Leftrightarrow \sqrt{(1 - x)(1 - 2x)} = 2x + 1

    \left\{\begin{matrix}2x + 1 \geq 0 \\(1 - x)(1 - 2x) = (2x + 1)^{2} \\\end{matrix} ight.

    \left\{\begin{matrix}x \geq - \frac{1}{2} \\2x^{2} + 7x = 0 \\\end{matrix} ight.

    \left\{\begin{matrix}x \geq - 1/2 \\\left\lbrack \begin{matrix}x = 0 \\x = - 7/2 \\\end{matrix} ight.\  \\\end{matrix} ight.  ⇔ x = 0(TM).

    Vậy, phương trình có một nghiệm.

  • Câu 33: Vận dụng cao

    Bằng phép tịnh tiến, từ đồ thị hàm số y =  − 2x2suy ra đồ thị hàm số y =  − 2x2 − 6x + 3 như thế nào?

    Xét f(x) = - 2x^{2} - 6x + 3 = - 2\left(
x^{2} + 3x - \frac{3}{2} ight)

    = - 2\left\lbrack \left( x + \frac{3}{2}
ight)^{2} - \frac{15}{4} ightbrack = - 2\left( x + \frac{3}{2}
ight)^{2} + \frac{15}{2}

    Do đó tịnh tiến đồ thị hàm số y =  − 2x2 để được đồ thị hàm số y =  − 2x2 − 6x + 3 ta làm như sau:

    Tịnh tiến liên tiếp đồ thị hàm số y =  − 2x2 đi sang bên trái \frac{3}{2} đơn vị và lên trên đi \frac{15}{2} đơn vị.

  • Câu 34: Vận dụng

    Tìm m để g(x) = (m−4)x2 + (2m−8)x + m − 5 luôn âm.

    Với m = 4 thì g(x) =  − 1 < 0 thỏa mãn yêu cầu bài toán

    Với m ≠ 4 thì g(x) = (m−4)x2 + (2m−8)x + m − 5 là tam thức bậc hai.

    Do đó g(x) < 0,\ \ \forall x
\Leftrightarrow \left\{ \begin{matrix}
a = m - 4 < 0 \\
\Delta' = m - 4 < 0 \\
\end{matrix} ight.

     ⇔ m < 4

    Vậy với m ≤ 4 thì biểu thức g(x) luôn âm.

  • Câu 35: Nhận biết

    Parabol y =  − x2 + 2x + 3 có phương trình trục đối xứng là

    Parabol y =  − x2 + 2x + 3 có trục đối xứng là đường thẳng x = -
\frac{b}{2a}  ⇔ x = 1.

  • Câu 36: Nhận biết

    Cho parabol (P) có phương trình y = 3x2 − 2x + 4. Tìm trục đối xứng của parabol này.

    + Có a = 3; b =  − 2; c = 4.

    + Trục đối xứng của parabol là x = \frac{-
b}{2a} = \frac{1}{3}.

  • Câu 37: Vận dụng

    Số nghiệm của phương trình \sqrt{7 - x} + \sqrt{x - 5} = x^{2} - 12x +38 là:

    ĐK: x ∈ [5; 7]

    Đặt t = x − 6 , t ∈ [ − 1; 1].

    Phương trình trở thành \sqrt{1 - t} +\sqrt{t - 1} = t^{2} + 2 \Leftrightarrow 2 + 2\sqrt{1 - t^{2}} = \left(t^{2} + 2 ight)^{2}(*) .

    Ta có VT(*) ≤ 4, VP(*) ≥ 4 nên (*) ⇔ VT(*) = VP(*) = 4 ⇔ t = 0 ⇒ x = 6(TM).

    Vậy phương trình có một nghiệm.

  • Câu 38: Thông hiểu

    Tập nghiệm của phương trình: \sqrt{3-x+x^{2}}-\sqrt{2+x-x^{2}}=1 là:

    Điều kiện: \left\{ {\begin{array}{*{20}{c}}  {3 - x + {x^2} \geqslant 0} \\   {2 + x - {x^2} \geqslant 0} \end{array}} ight. => x \in \left[ { - 1,2} ight]

    Phương trình tương đương

    \begin{matrix}  \sqrt {3 - x + {x^2}}  - \sqrt {2 + x - {x^2}}  = 1 \hfill \\   \Leftrightarrow \sqrt {3 - x + {x^2}}  - 2 + 1 - \sqrt {2 + x - {x^2}}  = 0 \hfill \\   \Leftrightarrow \dfrac{{{x^2} - x - 1}}{{\sqrt {3 - x + {x^2}}  + 2}} + \dfrac{{{x^2} - x - 1}}{{1 + \sqrt {2 + x - {x^2}} }} = 0 \hfill \\   \Leftrightarrow \left( {{x^2} - x - 1} ight)\left( {\dfrac{1}{{\sqrt {3 - x + {x^2}}  + 2}} + \dfrac{1}{{1 + \sqrt {2 + x - {x^2}} }}} ight) = 0 \hfill \\ \end{matrix}

    Ta có: \frac{1}{{\sqrt {3 - x + {x^2}}  + 2}} + \frac{1}{{1 + \sqrt {2 + x - {x^2}} }} > 0,\forall x \in \left[ { - 1,2} ight]

    \begin{matrix}   \Leftrightarrow {x^2} - x - 1 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{{1 - \sqrt 5 }}{2}} \\   {x = \dfrac{{1 + \sqrt 5 }}{2}} \end{array}} ight.\left( {tm} ight) \hfill \\ \end{matrix}

    Vậy tập nghiệm của phương trình là: \left\{ {\frac{{1 + \sqrt 5 }}{2};\frac{{1 - \sqrt 5 }}{2}} ight\}

  • Câu 39: Nhận biết

    Đâu là tập nghiệm của phương trình \sqrt{x^{2} - 2x} = \sqrt{2x -
x^{2}}?

    \sqrt{x^{2} - 2x} = \sqrt{2x - x^{2}}\Leftrightarrow \left\{ \begin{matrix}x^{2} - 2x \geq 0 \\x^{2} - 2x = 2x - x^{2} \\\end{matrix} ight.\  \Leftrightarrow x^{2} - 2x = 0 \Leftrightarrow\left\lbrack \begin{matrix}x = 0 \\x = 2 \\\end{matrix} ight..

    Vậy tập nghiệm của phương trình là S =
\left\{ 0;2 ight\}.

  • Câu 40: Vận dụng

    Cho hàm số y =
f(x) = x^{3} + \left( m^{2} - 1 ight)x^{2} + 2x + m - 1 là một hàm số lẻ. Biết rằng m = m_{0}. Khẳng định nào dưới đây là khẳng định đúng?

    Tập xác định D\mathbb{= R}

    Với x \in D \Rightarrow - x \in
D

    f( - x) = ( - x)^{3} + \left( m^{2} - 1
ight).( - x)^{2} + 2( - x) + m - 1

    = - x^{3} + \left( m^{2} - 1
ight).x^{2} - 2x + m - 1

    Hàm số đã cho là hàm số lẻ khi đó:

    f( - x) = - f(x),\forall x \in
D

    \Leftrightarrow - x^{3} + \left( m^{2} -
1 ight).x^{2} - 2x + m - 1 = - \left\lbrack x^{3} + \left( m^{2} - 1
ight)x^{2} + 2x + m - 1 ightbrack

    \Leftrightarrow 2\left( m^{2} - 1
ight)x^{2} + 2(m - 1) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} - 1 = 0 \\
m - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = \pm 1 \\
m = 1 \\
\end{matrix} ight.\  \Leftrightarrow m = 1

    Vậy m_{0} = 1 \in \left( \frac{1}{2};3
ight)

    VD

     

    1

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 7 lượt xem
Sắp xếp theo