Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Hàm số và đồ thị gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Điểm A có hoành độ xA = 1 và thuộc đồ thị hàm số y = mx + 2m − 3. Tìm m để điểm A nằm trong nửa mặt phẳng tọa độ phía trên trục hoành (không chứa trục hoành).

    Từ giả thiết điểm A nằm trong nửa mặt phẳng tọa độ phía trên trục hoành (không chứa trục hoành) nên yA > 0 ta có yA = mx + 2m − 3 = m.1 + 2m − 3 = 3m − 3 > 0 ⇔ m > 1.

  • Câu 2: Thông hiểu

    Tổng các nghiệm của phương trình \sqrt{3x^{2} - 2x + 9} + \sqrt{3x^{2} - 2x + 2} =7 là:

    Đặt t = \sqrt{3x^{2} - 2x + 2}, điều kiện t ≥ 0. Khi đó \sqrt{3x^{2} - 2x + 9} = \sqrt{t^{2} +7}.

    Phương trình trở thành \sqrt{t^{2} + 7} +t = 7

    \Leftrightarrow \sqrt{t^{2} + 7} = 7 - t\Leftrightarrow \left\{ \begin{matrix}t \leq 7 \\t^{2} + 7 = t^{2} - 14t + 49 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}t \leq 7 \\t = 3 \\\end{matrix} ight.\  \Leftrightarrow t = 3(Thỏa mãn)

    Với t = 3 ta có \sqrt{3x^{2} - 2x + 2} = 3

    \Leftrightarrow 3x^{2} - 2x + 2 = 9\Leftrightarrow 3x^{2} - 2x - 7 = 0 \Leftrightarrow \left\lbrack\begin{matrix}x = \frac{1 + \sqrt{22}}{3} \\x = \frac{1 - \sqrt{22}}{3} \\\end{matrix} ight.

    Vậy phương trình có hai nghiệm x = \frac{1\pm \sqrt{22}}{3}.

    Tổng các nghiệm của phương trình là \frac{1 + \sqrt{22}}{3} + \frac{1 - \sqrt{22}}{3} =\frac{2}{3} .

  • Câu 3: Nhận biết

    Hàm số y = x2 − 4x + 11 đồng biến trên khoảng nào trong các khoảng sau đây?

    Ta có bảng biến thiên:

    Từ bảng biến thiên ta thấy, hàm số đồng biến trên khoảng(2;+∞).

  • Câu 4: Thông hiểu

    Cho tam thức f(x) = ax^{2} + bx + c (a ≠ 0), có ∆ = b^{2}  – 4ac. Ta có f(x) ≤ 0, ∀x ∈ ℝ khi và chỉ khi:

    Biểu thức f(x) ≤ 0, ∀x ∈ ℝ khi và chỉ khi:

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a < 0} \\   {\Delta ' \leqslant 0} \end{array}} ight.

  • Câu 5: Thông hiểu

    Xác định parabol (P) : y = 2x2 + bx + c, biết rằng (P) có đỉnh I(−1;−2).

    Trục đối xứng - \frac{b}{2a} = -
1\overset{}{ightarrow}b = 4.

    Do I \in (P)\overset{}{ightarrow} - 2 =
2.( - 1)^{2} - 4 + c\overset{}{ightarrow}c = 0.

    Vậy (P) : y = 2x2 + 4x.

  • Câu 6: Nhận biết

    Trục đối xứng của parabol y =  − x2 + 5x + 3 là đường thẳng có phương trình

    Trục đối xứng của parabol y = ax2 + bx + c là đường thẳng x = -
\frac{b}{2a}.

    Trục đối xứng của parabol y =  − x2 + 5x + 3 là đường thẳng x = \frac{5}{2}.

  • Câu 7: Thông hiểu

    Tập nghiệm của phương trình \frac{x^{2}-5x}{\sqrt{x-2}}+\frac{4}{\sqrt{x-2}} =0 là:

     Điều kiện x>2.

    Ta có: \frac{x^{2}-5x}{\sqrt{x-2}}+\frac{4}{\sqrt{x-2}} =0\Leftrightarrow x^2-5x+4=0\Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 4}\end{array}} ight..

    Loại x=1. Do đó S=\{4\}.

  • Câu 8: Thông hiểu

    Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

    Nhận xét:

    Bảng biến thiên có bề lõm hướng lên. Loại đáp án y =  − x2 + 4x − 9y =  − x2 + 4x.

    Đỉnh của parabol có tọa độ là (2;−5). Xét các đáp án, đáp án y = x2 − 4x − 1 thỏa mãn.

  • Câu 9: Nhận biết

    Tam thức bậc hai f(x) =  − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

    f(x) = - x^{2} + 3x - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp ánx ∈ [1; 2] .

  • Câu 10: Nhận biết

    Số nghiệm của phương trình \sqrt{x^{2} + 4x + 3} = x - 2 là:

    \sqrt{x^{2} + 4x + 3} = x - 2\Leftrightarrow \left\{ \begin{matrix}x \geq 2 \\x^{2} + 4x + 3 = x^{2} - 4x + 4 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 2 \\x = \frac{1}{8}\ \ (L) \\\end{matrix} ight..

    Vậy phương trình vô nghiệm.

  • Câu 11: Vận dụng

    Tìm tất cả các giá trị thực của tham số m để bất phương trình (2m2−3m−2)x2 + 2(m−2)x − 1 ≤ 0 có tập nghiệm là .

    Xét 2m^{2} - 3m - 2 = 0 \Leftrightarrow m
= - \frac{1}{2}hoặc m = 2

    • Khi m = - \frac{1}{2} thì bất phương trình trở thành x \geq -
\frac{1}{5} nên không có nghiệm đúng với mọi x.

    • Khi m = 2 thì bất phương trình trở thành  − 1 ≤ 0 nên có nghiệm đúng với mọi x.

    • Khi \left\{ \begin{matrix}
m eq - \frac{1}{2} \\
m eq 2 \\
\end{matrix} ight. thì yêu cầu bài toán

     ⇔ (2m2−3m−2)x2 + 2(m−2)x − 1 ≤ 0  ∀x ∈ ℝ

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' \leq 0 \\
a < 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
3m^{2} - 7m + 2 \leq 0 \\
2m^{2} - 3m - 2 < 0 \\
\end{matrix} ight.\  ight.

    \Leftrightarrow \left\{ \begin{matrix}
\frac{1}{3} \leq m \leq 2 \\
- \frac{1}{2} < m < 2 \\
\end{matrix} \Leftrightarrow \frac{1}{3} \leq m < 2 ight.

    Kết hợp hai trường hợp ta được \frac{1}{3}
\leq m \leq 2 là giá trị cần tìm.

  • Câu 12: Nhận biết

    Điểm nào sau đây thuộc đồ thị hàm số y = 4x + 1?

     Thay tọa độ (0;1) vào y=4x+1 ta được 1=1 thỏa mãn. Suy ra điểm này thuộc đồ thị hàm số y=4x+1.

  • Câu 13: Vận dụng cao

    Giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x4 − 4x3 − x2 + 10x − 3 trên đoạn [ − 1; 4]

    Ta có y = x4 − 4x3 − x2 + 10x − 3 = x4 − 4x3 + 4x2 − 5x2 + 10x − 5 + 2

     = (x2−2x)2 − 5(x−1)2 + 2 = [(x−1)2−1]2 − 5(x−1)2 + 2.

    Đặt t = (x−1)2, x ∈ [ − 1; 4] ⇒ t ∈ [0; 9].

    y = (t - 1)^{2} - 5t + 2 = t^{2} - 7t + 3= \left( t - \frac{7}{2} ight)^{2} - \frac{37}{4}.

    Cách 1: Ta có 0 \leq \left( t -\frac{7}{2} ight)^{2} \leq \frac{121}{4} \Leftrightarrow -\frac{37}{4} \leq y \leq 21.

    Cách 2: Vẽ BBT

    Description: Capture

    Vậy y_{\min} = - \frac{37}{4}, ymax = 21.

  • Câu 14: Vận dụng

    Tích các nghiệm của phương trình 3\sqrt{x + 3} = 3x^{2} + 4x - 1 là:

    ĐKXĐ: x ≥  − 3

    Phương trình \Leftrightarrow - 27(x + 3) -3\sqrt{x + 3} + 3x^{2} + 31x + 80 = 0

    Đặt t = \sqrt{x + 3}, (t≥0) phương trình trở thành  − 27t2 − 3t + 3x2 + 31x + 80 = 0(1)

    Δt = (18x+93)2 suy ra (1) \Leftrightarrow \left\lbrack\begin{matrix}t = \frac{- 3x - 16}{9} \\t = \frac{x + 5}{3} \\\end{matrix} ight.

    \bullet \sqrt{x + 3} = \frac{- 3x -16}{9} Vô nghiệm vì với x ≥  − 3 thì \frac{- 3x - 16}{9} < 0

    \bullet \sqrt{x + 3} = \frac{x + 5}{3}\Leftrightarrow x^{2} + x - 2 = 0 \Leftrightarrow x = 1 hoặc x =  − 2

    Vậy phương trình ban đầu có hai nghiệm x = 1x =  − 2, tích các nghiệm của phương trình là 1.(−2) =  − 2.

  • Câu 15: Thông hiểu

    Xác định parabol (P):y=ax^{2}+bx+2 biết rằng Parabol đi qua hai điểm M(1;5) và N(2;-2)

     Thay tọa độ M(1;5)N(2;-2) vào hàm số, ta được:

    \left\{ {\begin{array}{*{20}{c}}{5 = a + b + 2}\\{ - 2 = 4a + 2b + 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a =  - 5}\\{b = 8}\end{array}} ight.} ight..

    Vậy đó là hàm số y=-5x^{2}+8x+2.

  • Câu 16: Nhận biết

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có đỉnh I\left( -
\frac{1}{2}; - \frac{11}{4} ight).

    (P) có đỉnh I\left( - \frac{1}{2}; - \frac{11}{4}
ight) nên ta có \left\{
\begin{matrix}
- \frac{b}{2a} = - \frac{1}{2} \\
f\left( - \frac{1}{2} ight) = - \frac{11}{4} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = a \\
\Delta = 11a \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
3 = a \\
9 + 8a = 11a \\
\end{matrix} ight.\  \Leftrightarrow a = 3. Vậy (P) : y = 3x2 + 3x − 2.

  • Câu 17: Vận dụng

    Tìm giá trị thực của tham số m để parabol (P) : y = mx2 − 2mx − 3m − 2 (m≠0) có đỉnh thuộc đường thẳng y = 3x − 1.

    Hoành độ đỉnh của (P)x = - \frac{b}{2a} = \frac{2m}{2m} =
1.

    Suy ra tung độ đỉnh y =  − 4m − 2. Do đó tọa độ đỉnh của (P)I(1;−4m−2).

    Theo giả thiết, đỉnh I thuộc đường thẳng y = 3x − 1 nên  − 4m − 2 = 3.1 − 1 ⇔ m =  − 1.

  • Câu 18: Vận dụng cao

    Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất.

    Gọi x đồng là số tiền mà doanh nghiệp A dự định giảm giá; (0≤x≤4).

    Khi đó:

    Lợi nhuận thu được khi bán một chiếc xe là 31 − x − 27 = 4 − x .

    Số xe mà doanh nghiệp sẽ bán được trong một năm là 600 + 200x .

    Lợi nhuận mà doanh nghiệp thu được trong một năm là

    f(x) = (4−x)(600+200x) =  − 200x2 + 200x + 2400.

    Xét hàm số f(x) =  − 200x2 + 200x + 2400 trên đoạn [0; 4] có bảng biến thiên

    Vậy \max_{\lbrack 0;4brack}f(x) = 2\ 450
\Leftrightarrow x = \frac{1}{2}.

    Vậy giá mới của chiếc xe là 30, 5 triệu đồng thì lợi nhuận thu được là cao nhất.

  • Câu 19: Vận dụng cao

    Cho đồ thị hàm số y = f(x) như hình vẽ:

    Có bao nhiêu giá trị nguyên của m để phương trình f^{2}\left( |x| ight) + mf\left( |x| ight) - 4
+ 2m = 0 có 8 nghiệm phân biệt?

    Từ đồ thị hàm số y = f(x) ta suy ra đồ thị hàm số y = f\left( |x|
ight) có dạng như hình vẽ:

    Ta có:

    f^{2}\left( |x| ight) + mf\left( |x|
ight) - 4 + 2m = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
f\left( |x| ight) = 2 - m \\
f\left( |x| ight) = - 2 \\
\end{matrix} ight.

    Dựa vào đồ thị hàm số y = f\left( |x|
ight) ta có phương trình f\left(
|x| ight) = - 2 có 4 nghiệm, phương trình đã cho có 8 nghiệm khi phương trình f\left( |x| ight) = 2 -
m có 4 nghiệm và 2 - m eq -
2

    Suy ra \left\{ \begin{matrix}
- 3 < 2 - m < 1 \Leftrightarrow 1 < m < 5 \\
2 - m eq - 2 \Leftrightarrow m eq 4 \\
\end{matrix} ight.

    Vậy có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

  • Câu 20: Nhận biết

    Tam thức bậc hai f(x) =  − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

    f(x) = - x^{2} + 3x - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [1; 2].

  • Câu 21: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m sao cho hàm số x^{2} + (m - 1)x + m - 2 = 0 có hai nghiệm phân biệt thuộc khoảng ( -
5;5)?

    Ta có:

    PT \Leftrightarrow (x + 1)(x + m - 2) =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = - m + 2 \\
\end{matrix} ight.

    Từ yêu cầu bài toán \Leftrightarrow
\left\{ \begin{matrix}
- m + 2 eq - 1 \\
- 5 < - m + 2 < 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m eq 3 \\
- 3 < m < 7 \\
\end{matrix} ight.

    Suy ra m \in \left\{ - 2; - 1;0;1;2;4;5;6
ight\}

    Vậy có 8 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 22: Thông hiểu

    Cho hàm số f(x) =
\left\{ \begin{matrix}
\frac{2\sqrt{x - 2} - 3}{x - 1} & khi & x \geq 2 \\
x^{2} + 2 & khi & x < 2 \\
\end{matrix} ight.. Tính P = f(2) + f(−2).

    Ta có: f(2) + f( - 2) = \frac{2\sqrt{2 -
2} - 3}{2 - 1} + ( - 2)^{2} + 2 \Rightarrow P = 3.

  • Câu 23: Nhận biết

    Tìm tập xác định của hàm số y = \sqrt{2x^{2} - 5x + 2}.

    Hàm số xác định \Leftrightarrow 2x^{2} -
5x + 2 \geq 0 \Leftrightarrow \left\lbrack \begin{matrix}
x \leq \frac{1}{2} \\
x \geq 2 \\
\end{matrix} ight..

    Vậy tập xác định: D = \left( - \infty;\
\frac{1}{2} ightbrack \cup \lbrack 2;\  + \infty).

  • Câu 24: Nhận biết

    Tập nghiệm S của phương trình \sqrt{2x-3}=x-3 là:

    Ta có: \sqrt{2x-3}=x-3  \Rightarrow{2x-3}= (x-3)^2 \Leftrightarrow x^2-8x+12=0 \Leftrightarrow\left[ {\begin{array}{*{20}{c}}{x = 2}\\{x = 6}\end{array}} ight.

    Thử lại thấy x=2 không thỏa mãn.

    Vậy S= \{6\}.

     

  • Câu 25: Thông hiểu

    Tìm tất cả các giá trị của m để bất phương trình mx^{2} – x + m ≥ 0 với mọi x ∈ ℝ

    Để bất phương trình mx^{2} – x + m ≥ 0 với mọi x ∈ ℝ thì:

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta  \leqslant 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {{1^2} - 4{m^2} \leqslant 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {m \in \left( { - \infty ; - \dfrac{1}{2}} ight] \cup \left[ {\dfrac{1}{2}; + \infty } ight)} \end{array}} ight. \hfill \\   \Leftrightarrow m \in \left[ {\dfrac{1}{2}; + \infty } ight) \hfill \\ \end{matrix}

  • Câu 26: Thông hiểu

    Tập xác định của hàm số y=\left\{\begin{matrix}\sqrt{\frac{1}{x}},x\in (0;+∞)\\ \sqrt{3-x},x\in (-∞;0)\end{matrix}ight.

     Xét y=\sqrt \frac1x, ta có: D_1=(0;+\infty).

    Xét y=\sqrt{3-x}, điều kiện là x \le 3. Kết hợp với điều kiện (-\infty;0), ta được: D_2=(-\infty;0).

    Vậy D=D_1 \cup   D_2 = \mathbb R\setminus \{1\}.

  • Câu 27: Nhận biết

    Tam thức bậc hai f(x) =  − x2 − 1 nhận giá trị âm khi và chỉ khi

    f(x) =  − x2 − 1 = 0  vô nghiệm

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ ℝ.

  • Câu 28: Nhận biết

    Cho hàm số y = f(x) có tập xác định là [ − 1; 5] và đồ thị của nó được biểu diễn bởi hình bên. Khẳng định nào sau đây là sai?

    Trên khoảng (−1;1)(2;3) đồ thị hàm số đi lên từ trái sang phải

    \overset{}{ightarrow} Hàm số đồng biến trên khoảng (−1;1)(2;3).

    Trên khoảng (1;2)(3;5) đồ thị hàm số đi xuống từ trái sang phải

    \overset{}{ightarrow} Hàm số nghịch biến trên khoảng (1;2)(3;5).

  • Câu 29: Vận dụng

    Số nghiệm của phương trình 3\sqrt{x} + 8 = 9x + \frac{1}{x} +\frac{1}{\sqrt{x}} là:

    ĐKXĐ: x > 0.

    Phương trình tương đương với

    3\left( \sqrt{x} - \frac{1}{3\sqrt{x}}ight) + 8 = 9(x + \frac{1}{9x}).

    Đặt t = \sqrt{x} - \frac{1}{3\sqrt{x}}\Rightarrow t^{2} = x + \frac{1}{9x} - \frac{2}{3} \Rightarrow x +\frac{1}{9x} = t^{2} + \frac{2}{3}

    Phương trình trở thành:

    3t + 8 = 9\left( t^{2} + \frac{2}{3}ight) \Leftrightarrow 9t^{2} - 3t - 2 = 0 \Leftrightarrow \left\lbrack\begin{matrix}t = \frac{2}{3} \\t = - \frac{1}{3} \\\end{matrix} ight.

    Với t = \frac{2}{3} ta có \sqrt{x} - \frac{1}{3\sqrt{x}} = \frac{2}{3}\Leftrightarrow 3x - 2\sqrt{x} - 1 = 0 \Leftrightarrow \left\lbrack\begin{matrix}\sqrt{x} = 1 \\\sqrt{x} = - \frac{1}{3} \\\end{matrix} \Leftrightarrow x = 1 ight.

    Với t = - \frac{1}{3} ta có \sqrt{x} - \frac{1}{3\sqrt{x}} = -\frac{1}{3}

    \Leftrightarrow 3x + \sqrt{x} - 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}\sqrt{x} = \frac{- 1 + \sqrt{13}}{6} \\\sqrt{x} = \frac{- 1 - \sqrt{13}}{6} \\\end{matrix} \Leftrightarrow x = \frac{7 - \sqrt{13}}{18} ight.

    Vậy phương trình có nghiệm là x = 1x = \frac{7 - \sqrt{13}}{18}.

  • Câu 30: Nhận biết

    Nghiệm của phương trình \sqrt{-10x+10}=x-1 là:

     Ta có: \sqrt{-10x+10}=x-1 \Rightarrow -10x+10=x^2-2x+1\Leftrightarrow x^2+8x-9=0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x =  - 9}\end{array}} ight..

    Thử lại thấy x=9 không thỏa mãn. Do đó x=1.

  • Câu 31: Nhận biết

    Hàm số y = x2 − 4x + 3 đồng biến trên khoảng nào?

    Trục đối xứng x = 2. Ta có a = 1 > 0 nên hàm số nghịch biến trên khoảng (−∞; 2) và đồng biến trên khoảng (2; +∞).

  • Câu 32: Nhận biết

    Giải bất phương trình x(x+5)≤2(x^{2}+2)

     Ta có: x(x+5)≤2(x^{2}+2)  \Leftrightarrow -x^2+5x-4 \le 0\Leftrightarrow x\in (-∞;1]\cup [4;+∞).

  • Câu 33: Thông hiểu

    Cho các tam thức f(x) = 2x2 − 3x + 4; g(x) =  − x2 + 3x − 4; h(x) = 4 − 3x2. Số tam thức đổi dấu trên là:

    Tam thức đổi dấu khi tam thức có 2 nghiệm phân biệt hay Δ > 0.Vậy chỉ có h(x) = 4 − 3x2 có 2 nghiệm.

  • Câu 34: Vận dụng cao

    Cho \frac{x^{2} -
2(m + 1)x + 6m - 2}{\sqrt{x - 2}} = \sqrt{x - 2}(1). Với m là bao nhiêu thì (1) có nghiệm duy nhất

    ĐK x > 2

    \frac{x^{2} - 2(m + 1)x + 6m - 2}{\sqrt{x
- 2}} = \sqrt{x - 2} \Rightarrow x^{2} - 2(m + 1)x + 6m - 2 = x - 2
\Leftrightarrow x^{2} - (2m + 3)x + 6m = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 3 \\
x = 2m \\
\end{matrix} ight..

    Phương trình (1) có nghiệm duy nhất \Leftrightarrow \left\lbrack \begin{matrix}
2m = 3 \\
2m \leq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = \frac{3}{2} \\
m \leq 1 \\
\end{matrix} ight..

  • Câu 35: Nhận biết

    Tập xác định của hàm số y = \frac{2 - x}{x^{2} - 4x} là:

    Hàm số xác định \Leftrightarrow x^{2} - 4x
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
x eq 4 \\
\end{matrix} ight.. Vậy D = ℝ ∖ {0;4}.

  • Câu 36: Vận dụng

    Cho hàm số y =
f(x) = x^{3} + \left( m^{2} - 1 ight)x^{2} + 2x + m - 1 là một hàm số lẻ. Biết rằng m = m_{0}. Khẳng định nào dưới đây là khẳng định đúng?

    Tập xác định D\mathbb{= R}

    Với x \in D \Rightarrow - x \in
D

    f( - x) = ( - x)^{3} + \left( m^{2} - 1
ight).( - x)^{2} + 2( - x) + m - 1

    = - x^{3} + \left( m^{2} - 1
ight).x^{2} - 2x + m - 1

    Hàm số đã cho là hàm số lẻ khi đó:

    f( - x) = - f(x),\forall x \in
D

    \Leftrightarrow - x^{3} + \left( m^{2} -
1 ight).x^{2} - 2x + m - 1 = - \left\lbrack x^{3} + \left( m^{2} - 1
ight)x^{2} + 2x + m - 1 ightbrack

    \Leftrightarrow 2\left( m^{2} - 1
ight)x^{2} + 2(m - 1) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} - 1 = 0 \\
m - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = \pm 1 \\
m = 1 \\
\end{matrix} ight.\  \Leftrightarrow m = 1

    Vậy m_{0} = 1 \in \left( \frac{1}{2};3
ight)

    VD

     

    1

  • Câu 37: Thông hiểu

    Cho phương trình x^{2} - 2m|x| + 9 - m =
0. Tìm m để phương trình có 3 nghiệm phân biệt?

    Đáp án: 9

    Đáp án là:

    Cho phương trình x^{2} - 2m|x| + 9 - m =
0. Tìm m để phương trình có 3 nghiệm phân biệt?

    Đáp án: 9

    Đặt |x| = t(t \geq 0) thì phương trình (*) trở thành: t^{2} - 2mt + 9 - m = 0 (1)

    Để phương trình (*) có 3 nghiệm phân biệt thì phương trình (1) phải có nghiệm t = 0 và một nghiệm t > 0.

    Khi t = 0 \Rightarrow m = 9 thì (1) \Leftrightarrow t^{2} - 18t = 0
\Rightarrow \left\lbrack \begin{matrix}
t = 18 > 0\ \ (TM) \\
t = 0 \\
\end{matrix} ight..

    Vậy m = 9

  • Câu 38: Thông hiểu

    Tổng các nghiệm của phương trình x^{2} + \sqrt{x^{2} + 11} = 31?

    Đặt t = \sqrt{x^{2} + 11},t \geq0. Khi đó phương trình đã cho trở thành:

    t^{2} + t - 42 = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 6 \\t = - 7 \\\end{matrix} ight.

    t ≥ 0 ⇒ t = 6, thay vào ta có \sqrt{x^{2} + 11} =6.

    x2 + 11 = 36 ⇔ x =  ± 5.

    Vậy phương trình có nghiệm là x =  ± 5.

    Tổng các nghiệm của phương trình là 0.

  • Câu 39: Thông hiểu

    Phương trình \left( x^{2} - 6x ight)\sqrt{17 - x^{2}} = x^{2}- 6x có bao nhiêu nghiệm thực phân biệt?

    Điều kiện: 17 - x^{2} \geq 0\Leftrightarrow - \sqrt{17} \leq x \leq \sqrt{17}.

    Ta có: \left( x^{2} - 6x ight)\sqrt{17 -x^{2}} = x^{2} - 6x \Leftrightarrow \left( x^{2} - 6x ight)\left(\sqrt{17 - x^{2}} - 1 ight) = 0.

    \Leftrightarrow \left\lbrack\begin{matrix}x^{2} - 6x = 0 \\\sqrt{17 - x^{2}} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x(x - 6) = 0 \\16 - x^{2} = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 0(T) \\x = 6(L) \\x = \pm 4(T) \\\end{matrix} ight..

    Vậy phương trình có 3 nghiệm thực phân biệt.

  • Câu 40: Thông hiểu

    Dưới đây là bảng giá cước của hãng taxi A

    Giá khởi điểm

    Giá km tiếp theo

    11 000 đồng/ 0,7km

    16 000 /1km

    Giá khởi điểm: Khi lên taxi quãng đường di chuyển không quá 0,7km thì mức giá vẫn giữ ở mức 11 000 đồng.

    Gọi y (đồng) là số tiền phải trả khi đi được x (km). Xác định hệ thức liên hệ giữa x và y?

    Nếu quãng đường đi được nhỏ hơn 0,7km thì số tiền phải trả là y = 11000.

    Nếu quãng đường đi trên 0,7km thì số tiền phải trả là:

    y = 11000 + (x - 0,7).16000

    \Rightarrow y = 16000x - 200 (đồng)

    Vậy mối liên hệ giữa y và x là: y =
\left\{ \begin{matrix}
11000\ \ \ \ \ \ \ \ \ \ \ khi\ x \leq 0,7 \\
16000x - 200\ \ khi\ x > 0,7 \\
\end{matrix} ight..

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo