Đề kiểm tra 45 phút Chương 3 Hệ thức lượng trong tam giác KNTT

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Hệ thức lượng trong tam giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tam giác ABC có đoạn thẳng nối trung điểm của AB và BC bằng 3, cạnh

    AB = 9 và \widehat{ACB}=60°. Tính độ dài cạnh cạnh BC.

     Theo đề bài, đoạn nối 2 trung điểm bằng 3 nên suy ra AC=6.

    Áp dụng định lí côsin:

    A{B^2} = C{A^2} + C{B^2} - 2CA.CB.\cos 60^\circ

    \Leftrightarrow 9^2 = 6^2 + C{B^2} - 2.6 .CB.\frac1{2}

    \Leftrightarrow C{B^2} -  6 CB -45 = 0 \Rightarrow BC = 3 + 3\sqrt 6.

  • Câu 2: Nhận biết

    Cho tam giác ABC thỏa mãn: 2cosA = 1. Khi đó:

    Ta có: 2cosA = 1 \Leftrightarrow \cos A = \frac{1}{2} \Rightarrow \widehat{A}
= 60^{0}.

  • Câu 3: Nhận biết

    Cho 2\pi <
\alpha < \frac{5\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có 2\pi < \alpha <
\frac{5\pi}{2}\overset{}{ightarrow}điểm cuối cung \alpha - \pi thuộc góc phần tư thứ I\overset{}{ightarrow}\left\{ \begin{matrix}
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight.\ .

  • Câu 4: Vận dụng

    Giả sử CD =
h là chiều cao của tháp trong đó C là chân tháp. Chọn hai điểm A,B trên mặt đất sao cho ba điểm A,BC thẳng hàng. Ta đo được AB = 24m, \widehat{CAD} = 63^{0},\widehat{CBD} =
48^{0}.

    Chiều cao h của tháp gần với giá trị nào sau đây?

    Áp dụng định lí sin vào tam giác ABD, ta có \frac{AD}{\sin\beta} = \frac{AB}{\sin
D}.

    Ta có \alpha = \widehat{D} +
\beta nên \widehat{D} = \alpha -
\beta = 63^{0} - 48^{0} = 15^{0}.

    Do đó AD = \frac{AB.sin\beta}{\sin(\alpha
- \beta)} = \frac{24.sin48^{0}}{sin15^{0}} \approx 68,91m.

    Trong tam giác vuông ACD,h = CD = AD.sin\alpha \approx
61,4m.

  • Câu 5: Thông hiểu

    Cho tam giác ABC có b = 7; c = 5, \cos A = \frac{3}{5}. Đường cao h_{a} của tam giác ABC là:

    Ta có: a^{2} = b^{2} + c^{2} - 2bc\cos A
= 7^{2} + 5^{2} - 2.7.5.\frac{3}{5}
= 32 \Rightarrow a = 4\sqrt{2}.

    Mặt khác: sin^{2}A + cos^{2}A = 1
\Rightarrow sin^{2}A = 1 - cos^{2}A = 1 - \frac{9}{25} = \frac{16}{25} \Rightarrow
\sin A = \frac{4}{5} (Vì \sin A
> 0).

    Mà: S_{\Delta ABC} = \frac{1}{2}b.c.sinA
= \frac{1}{2}a.h_{a} \Rightarrow
h_{a} = \frac{bc\sin A}{a} = \frac{7.5.\frac{4}{5}}{4\sqrt{2}} =
\frac{7\sqrt{2}}{2}.

  • Câu 6: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha > 0 \\
\tan\alpha < 0 \\
\cot\alpha < 0 \\
\end{matrix} ight..

  • Câu 7: Thông hiểu

    Nếu tam giác ABCBC^{2} < AB^{2} + AC^{2} thì:

    Nếu tam giác ABC có BC^{2} < AB^{2} + AC^{2} thì \widehat{A} là góc nhọn

  • Câu 8: Thông hiểu

    Cho góc \alpha thỏa \cot\alpha = \frac{3}{4}0^{O} < \alpha < 90^{O}. Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\frac{1}{sin^{2}\alpha} = 1 + cot^{2}\alpha = 1 + \left( \frac{3}{4}
ight)^{2} = \frac{25}{16} \\
0{^\circ} < \alpha < 90{^\circ} \\
\end{matrix} ight. \overset{}{ightarrow}\sin\alpha =
\frac{4}{5}.

  • Câu 9: Nhận biết

    Tam giác ABCAB =
2,\ \ AC = 1\widehat{A} =
60{^\circ}. Tính độ dài cạnh BC.

    Theo định lí hàm cosin, ta có BC^{2} =
AB^{2} + AC^{2} - 2AB.AC.cos\widehat{A} = 2^{2} + 1^{2} - 2.2.1.cos60{^\circ} = 3
\Rightarrow BC = \sqrt{3}.

  • Câu 10: Thông hiểu

    Cho 0 <
\alpha < \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
0 < \alpha < \frac{\pi}{2} ightarrow \frac{\pi}{2} < \alpha +
\frac{\pi}{2} < \pi \\
0 < \alpha < \frac{\pi}{2} ightarrow \pi < \alpha + \pi <
\frac{3\pi}{2} \\
\end{matrix} ight. \overset{}{ightarrow}\cot\left( \alpha +
\frac{\pi}{2} ight) < 0\overset{}{ightarrow}\tan(\alpha + \pi) >
0.

  • Câu 11: Thông hiểu

    Cho góc \alpha thỏa \sin\alpha = \frac{3}{5}90^{O} < \alpha < 180^{O}. Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\cos\alpha = \pm \sqrt{1 - sin^{2}\alpha} = \pm \frac{4}{5} \\
90{^\circ} < \alpha < 180{^\circ} \\
\end{matrix} ight. \overset{}{ightarrow}\cos\alpha = -
\frac{4}{5}.

  • Câu 12: Nhận biết

    Tam giác ABC có BC = 10 và \widehat{A}=30°. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.

     Ta có: \frac {BC}{\sin A}=2R \Leftrightarrow R= \frac{BC}{2\sin A} =\frac {10}{2.sin30^{\circ}  }=10.

  • Câu 13: Nhận biết

    Tam giác ABC\widehat{B} = 60{^\circ},\ \ \widehat{C} =
45{^\circ}AB = 5. Tính độ dài cạnh AC.

    Theo định lí hàm sin, ta có \frac{AB}{\sin\widehat{C}} =
\frac{AC}{\sin\widehat{B}} \Leftrightarrow \frac{5}{sin45{^\circ}} =
\frac{AC}{sin60{^\circ}} \Rightarrow AC = \frac{5\sqrt{6}}{2}.

  • Câu 14: Vận dụng

    Vào lúc 9 giờ sáng, hai vận động viên A và B xuất phát từ cùng một vị trí O. Vận động viên A chạy với vận tốc 13 km/h theo một góc so với hướng Bắc là 15°, vận động viên B chạy với vận tốc 12 km/h theo một góc so với hướng Bắc là 135° (hình vẽ).

    Tính thời điểm hai vận động viên cách nhau 10km

    Tại thời điểm nào thì vận động viên A cách vận động viên B một khoảng 10 km (làm tròn kết quả đến phút)?

    Gọi khoảng thời gian kể từ khi bắt đầu chạy từ điểm O đến khi hai vận động viên cách nhau 10 km là x giờ

    Điều kiện: x > 0

    Khi đó đoạn đường mà vận động viên A chạy được là 13x (km)

    Đoạn đường mà vận động viên B chạy được là 12x (km)

    Ta có: \widehat {AOB} = {135^0} - {15^0} = {120^0}

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  A{B^2} = B{C^2} + A{C^2} - 2BC.AC.\cos \widehat {AOB} \hfill \\   \Leftrightarrow {10^2} = {\left( {13x} ight)^2} + {\left( {12x} ight)^2} - 2.13x.12x.\cos {120^0} \hfill \\   \Leftrightarrow {10^2} = 169{x^2} + 144{x^2} + 156{x^2} \hfill \\   \Leftrightarrow {x^2} = \dfrac{{100}}{{469}} \hfill \\   \Rightarrow x \approx 0,46 \hfill \\ \end{matrix}

    0,46 giờ ≈ 28 phút

    Do đó thời điểm mà hai vận động viên cách nhau 10 km là khoảng: 9 giờ 28 phút.

    Vậy vào khoảng 9 giờ 28 phút thì hai vận động viên sẽ cách nhau 10 km.

  • Câu 15: Nhận biết

    Cho \Delta
ABC\widehat{C} =
45^{0},\widehat{B} = 75^{0}. Số đo của góc A là:

    Ta có: \widehat{A} + \widehat{B} +
\widehat{C} = 180^{0} \Rightarrow
\widehat{A} = 180^{0} - \widehat{B} - \widehat{C} = 180^{0} - 75^{0} - 45^{0} = 60^{0}.

  • Câu 16: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \sin157^{\circ} =\sin (180^{\circ} -157^{\circ} )=\sin 23^{\circ}. Vì \sin \alpha =\sin (180^{\circ} -\alpha ).

  • Câu 17: Thông hiểu

    Cho tam giác ABC, biết BC = 24, AC = 13, AB = 15. Số đo góc A là:

    Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \hfill \\   \Rightarrow \cos \widehat A = \dfrac{{{{15}^2} + {{13}^2} - {{24}^2}}}{{2.15.13}} =  - \dfrac{7}{{15}} \hfill \\   \Rightarrow \widehat A \approx {117^0}49\prime  \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Một tam giác có ba cạnh là 52,\ 56,\ 60. Bán kính đường tròn ngoại tiếp tam giác đó là:

    Ta có: p = \frac{52 + 56 + 60}{2} =
84.

    Áp dụng hệ thức Hê - rông ta có:

    S = \sqrt{84 \cdot (84 - 52) \cdot (84 -
56) \cdot (84 - 60)} = 1344.

    Mặt khác S = \frac{abc}{4R} \Rightarrow R
= \frac{abc}{4S\ } = \frac{52.56.60}{4.1344} = 32.5

  • Câu 19: Thông hiểu

    Tam giác ABC có \widehat A = {105^0},\widehat B = {45^0};AC = 10. Độ dài cạnh AB là:

    Xét tam giác ABC ta có:

    \begin{matrix}  \widehat A + \widehat B + \widehat C = {180^0} \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} ight) = {30^0} \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} \hfill \\   \Rightarrow AB = \dfrac{{AC.\sin \widehat C}}{{\sin \widehat B}} = \dfrac{{10.\sin {{30}^0}}}{{\sin {{45}^0}}} = 5\sqrt 2  \hfill \\ \end{matrix}

  • Câu 20: Vận dụng cao

    Cho tam giác ABCAB =
c;BC = a;AC = b\widehat{C} <
\widehat{B}. Biết rằng:

    \dfrac{\sin\left( \widehat{B} -\widehat{C} ight)}{\sin\left( \widehat{B} + \widehat{C} ight)} =\dfrac{b^{2} - c^{2}}{b^{2} + c^{2}}

    Chọn khẳng định đúng?

    Ta có:

    \frac{\sin\left( \widehat{B} -\widehat{C} ight)}{\sin\left( \widehat{B} + \widehat{C} ight)} =\frac{\sin\widehat{B}.\cos\widehat{C} -\sin\widehat{C}.\cos\widehat{B}}{\sin\widehat{B}.\cos\widehat{C} +\sin\widehat{C}.\cos\widehat{B}}

    = \dfrac{\dfrac{b}{2R}.\cos\widehat{C} -\dfrac{c}{2R}.\cos\widehat{B}}{\dfrac{b}{2R}.\cos\widehat{C} +\dfrac{c}{2R}.\cos\widehat{B}}

    = \dfrac{2ab\cos\widehat{C} -2ac.\cos\widehat{B}}{2ab\cos\widehat{C} +2ac.\cos\widehat{B}}

    = \frac{\left( a^{2} + b^{2} - c^{2}
ight) - \left( a^{2} + c^{2} - b^{2} ight)}{\left( a^{2} + b^{2} -
c^{2} ight) + \left( a^{2} + c^{2} - b^{2} ight)}

    = \frac{b^{2} -
c^{2}}{a^{2}}

    \frac{\sin\left( \widehat{B} -
\widehat{C} ight)}{\sin\left( \widehat{B} + \widehat{C} ight)} =
\frac{b^{2} - c^{2}}{b^{2} + c^{2}}

    \Rightarrow \frac{b^{2} - c^{2}}{a^{2}}
= \frac{b^{2} - c^{2}}{b^{2} + c^{2}}

    \Rightarrow a^{2} = b^{2} +
c^{2}

    Vậy tam giác ABC là tam giác vuông tại A.

  • Câu 21: Nhận biết

    Cho \Delta
ABCS = 10\sqrt{3}, nửa chu vi p = 10. Độ dài bán kính đường tròn nội tiếp r của tam giác trên là:

    Ta có: S = pr \Rightarrow r = \frac{S}{p} =
\frac{10\sqrt{3}}{10} = \sqrt{3}.

  • Câu 22: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \cos 121^{\circ} =\cos -121^{\circ}\cos \alpha =\cos -\alpha.

  • Câu 23: Nhận biết

    Trong tam giác ABC ta có:

    Áp dụng định lí sin trong tam giác ABC ta có:

    \begin{matrix}  \dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} \hfill \\   \Leftrightarrow a\sin B = b\sin A \hfill \\ \end{matrix}

  • Câu 24: Thông hiểu

    Tam giác ABC có đoạn thẳng nối trung điểm của ABBC bằng 3, cạnh AB =
9\widehat{ACB} =
60{^\circ}. Tính độ dài cạnh cạnh BC.

    Gọi M,\ \ N lần lượt là trung điểm của AB,\ \ BC.

    \overset{}{ightarrow}MN là đường trung bình của \Delta
ABC.

    \overset{}{ightarrow}MN =
\frac{1}{2}AC. Mà MN = 3, suy ra AC = 6.

    Theo định lí hàm cosin, ta có:

    AB^{2} = AC^{2} + BC^{2} -
2.AC.BC.cos\widehat{ACB}

    \Leftrightarrow 9^{2} = 6^{2} + BC^{2} -
2.6.BC.cos60{^\circ}

    \Rightarrow BC = 3 +
3\sqrt{6}

  • Câu 25: Nhận biết

    Cho tam giác ABCAB =
12,AC = 13,BC = 5. Diện tích S của tam giác ABC là:

    Ta có: BA^{2} + BC^{2} = AC^{2} nên tam giác ABC vuông tại B.

    Diện tích tam giác là: S = \frac{1}{2}BA
\cdot BC = 30.

  • Câu 26: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất ightarrow \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha > 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 27: Vận dụng cao

    Cho tam giác ABC có AB = c;BC = a;AC = b. Cần điều kiện gì để các góc của tam giác thỏa mãn biểu thức \cot^{2}\dfrac{A}{2} + \cot^{2}\dfrac{B}{2} +\cot^{2}\dfrac{C}{2} = 9?

    Theo định lí hàm số cos ta có:

    a^{2} = b^{2} + c^{2} - 2bc.\cos A \geq2bc - 2bc\cos A = 4bc\sin^{2}\frac{A}{2}

    \Rightarrow \dfrac{1}{\sin^{2}\dfrac{A}{2}}\geq \dfrac{4bc}{a^{2}}

    \Rightarrow \cot^{2}\dfrac{A}{2} \geq\dfrac{4bc}{a^{2}} - 1

    Chứng minh tương tự ta có: \left\{\begin{matrix} \cot^{2}\dfrac{B}{2} \geq \dfrac{4ac}{b^{2}} - 1 \\ \cot^{2}\dfrac{C}{2} \geq \dfrac{4ac}{c^{2}} - 1 \\\end{matrix} ight.

    Do đó

    \cot^{2}\dfrac{A}{2} + \cot^{2}\dfrac{B}{2}+ \cot^{2}\dfrac{C}{2}

    \geq \dfrac{4bc}{a^{2}} - 1 +\dfrac{4ac}{b^{2}} - 1 + \dfrac{4ac}{c^{2}} - 1

    \geq\sqrt[3]{\dfrac{4bc}{a^{2}}\dfrac{4ac}{b^{2}}\dfrac{4ac}{c^{2}}} - 3 =9

    Dấu bằng xảy ra khi và chỉ khi tam giác ABC đều.

  • Câu 28: Vận dụng

    Cho \cot\alpha =
- 3\sqrt{2} với \ \frac{\pi}{2}
< \alpha < \pi. Khi đó giá trị \tan\frac{\alpha}{2} +
\cot\frac{\alpha}{2} bằng:

    \frac{1}{sin^{2}\alpha} = 1 +
cot^{2}\alpha = 1 + 18 = 19

    ightarrow sin^{2}\alpha = \frac{1}{19}
ightarrow \sin\alpha = \pm \frac{1}{\sqrt{19}}

    \frac{\pi}{2} < \alpha < \pi
\Rightarrow \sin\alpha > 0 \Rightarrow \sin\alpha =
\frac{1}{\sqrt{19}}

    Suy ra \tan\frac{\alpha}{2} +
\cot\frac{\alpha}{2} = \frac{sin^{2}\frac{\alpha}{2} +
cos^{2}\frac{\alpha}{2}}{\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}} = \frac{2}{\sin\alpha} =
2\sqrt{19}.

  • Câu 29: Nhận biết

    Chọn công thức đúng trong các đáp án sau:

    Ta có: S = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B = \frac{1}{2}ab\sin
C.

  • Câu 30: Thông hiểu

    Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?

    Hình ảnh minh họa

    Chọn khẳng định đúng

    Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác

    => \widehat {BAH} = \frac{1}{2}\widehat {BAC}=30^0;\widehat {ABC} = {60^0};\widehat {AHC} = {90^0}

    Do đó: \sin \widehat {BAH} = \frac{1}{2};\sin \widehat {BAH} = \frac{{\sqrt 3 }}{2}

    Ta có: \widehat {ABC} = {60^0} \Rightarrow \sin \widehat {ABC} = \frac{{\sqrt 3 }}{2}

  • Câu 31: Nhận biết

    Cho tam giác ABCAB=1;AC=\sqrt2;\hat A=45^{\circ}. Tính độ dài cạnh BC.

     Áp dụng định lí côsin:

    BC^2=AB^2+AC^2-2.AB.AC.\cos A=1+2-2.1.\sqrt2.\cos45^{\circ} =1.

    Suy ra BC=1.

  • Câu 32: Thông hiểu

    Cho 0 < \alpha
< \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có: 0 < \alpha < \frac{\pi}{2}
ightarrow - \pi < \alpha - \pi < -
\frac{\pi}{2}\overset{}{ightarrow} điểm cuối cung \alpha - \pi thuộc góc phần tư thứ III\overset{}{ightarrow} \sin(\alpha - \pi) < 0.

  • Câu 33: Nhận biết

    Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64 cm^{2}. Giá trị sin A là:

    Ta có: 

    \begin{matrix}  {S_{ABC}} = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{{2.64}}{{8.18}} = \dfrac{8}{9} \hfill \\ \end{matrix}

  • Câu 34: Nhận biết

    Cho tam giác ABCa=2,\hat A=60^{\circ} ,\hat B=45^{\circ}. Hỏi độ dài cạnh b bằng bao nhiêu?

     Áp dụng định lí sin:

    \frac{a}{{\sin A}} = \frac{b}{{\sin B}} \Leftrightarrow b = \sin B.\frac{a}{{\sin A}}= \sin 45^\circ .\frac{2}{{\sin 60^\circ }} = \frac{{2\sqrt 6 }}{3}.

  • Câu 35: Vận dụng

    Trong sơ đồ, chùm sáng S hướng vào gương màu xanh, phản xạ vào gương màu đỏ và sau đó phản xạ vào gương màu xanh như hình vẽ. Biết OP = 2 m, OQ=\sqrt{2}+\sqrt{6}m

    Tính độ dài PT

    Khi đó đoạn PT bằng:

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\widehat {SQB} = \widehat {PQT} = \alpha } \\   {\widehat {TOP} = \beta } \end{array}} ight.

    Áp dụng định lí cosin cho tam giác POQ ta có:

    \begin{matrix}  P{Q^2} = O{P^2} + O{Q^2} - 2OP.OQ.\cos \widehat {POQ} \hfill \\   \Rightarrow P{Q^2} = {\left( {\sqrt 2 } ight)^2} + {\left( {\sqrt 2  + \sqrt 6 } ight)^2} - 2.\sqrt 2 .\left( {\sqrt 2  + \sqrt 6 } ight).\cos {45^0} \hfill \\   \Rightarrow PQ = 2\sqrt 2 \left( {cm} ight) \hfill \\ \end{matrix}

    Áp dụng hệ quả của định lí cosin cho tam giác POQ ta có:

    \begin{matrix}  \cos \alpha  = \cos \widehat {OQP} \hfill \\   \Rightarrow \cos \alpha  = \dfrac{{O{Q^2} + P{Q^2} - O{P^2}}}{{2.OQ.PQ}} \hfill \\   \Rightarrow \cos \alpha  = \dfrac{{{{\left( {\sqrt 2  + \sqrt 6 } ight)}^2} + {{\left( {2\sqrt 2 } ight)}^2} - {{\left( {\sqrt 2 } ight)}^2}}}{{2.\left( {\sqrt 2  + \sqrt 6 } ight).\sqrt 2 }} \hfill \\   \Rightarrow \cos \alpha  = \dfrac{{\sqrt 3 }}{2} \Rightarrow \alpha  = {30^0} \hfill \\ \end{matrix}

    Ta lại có: \beta  = {45^0} + \alpha  = {45^0} + {30^0} = {75^0}

    => {\widehat {TPO}}=75^0

    Xét tam giác OTP ta có: 

    \begin{matrix}  \widehat {OTP} + \widehat {TOP} + \widehat {TPO} = {180^0} \hfill \\   \Rightarrow \widehat {OTP} = {180^0} - \left( {\widehat {TOP} + \widehat {TPO}} ight) \hfill \\   \Rightarrow \widehat {OTP} = {180^0} - \left( {{{45}^0} + {{75}^0}} ight) \hfill \\   \Rightarrow \widehat {OTP} = {60^0} \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác OTP ta có:

    \begin{matrix}  \dfrac{{OP}}{{\sin \widehat {OTP}}} = \dfrac{{PT}}{{\sin \widehat {TOP}}} \hfill \\   \Rightarrow PT = \dfrac{{OP.\sin \widehat {TOP}}}{{\sin \widehat {OTP}}} \hfill \\   \Rightarrow PT = \dfrac{{2.\sin {{45}^0}}}{{\sin {{60}^0}}} = \dfrac{{2\sqrt 6 }}{3} \hfill \\ \end{matrix}

  • Câu 36: Thông hiểu

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \sin\alpha,\ cos\alpha cùng dấu?

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất thì \sin\alpha >
0, \cos\alpha > 0.

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất thì \sin\alpha <
0, \cos\alpha < 0.

    Vậy nếu \sin\alpha,\ cos\alpha cùng dấu thì điểm cuối của góc lượng giác \alpha ở góc phần tư thứ I hoặc III.

  • Câu 37: Thông hiểu

    Cho \frac{\pi}{2} < \alpha < \pi. Giá trị lượng giác nào sau đây luôn dương?

    Ta có \sin(\pi + \alpha) = -
\sin\alpha; \cot\left(
\frac{\pi}{2} - \alpha ight) = \sin\alpha; \cos( - \alpha) = \cos\alpha; \tan(\pi + \alpha) = \tan\alpha.

    Do \frac{\pi}{2} < \alpha <
\pi ightarrow \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha < 0 \\
\tan\alpha < 0 \\
\end{matrix} ight..

  • Câu 38: Thông hiểu

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \cos\alpha = \sqrt{1 -
sin^{2}\alpha}.

    Ta có \cos\alpha = \sqrt{1 -
sin^{2}\alpha} \Leftrightarrow \cos\alpha =
\sqrt{cos^{2}\alpha} \Leftrightarrow \cos\alpha = \left| \cos\alpha
ight| \Leftrightarrow \cos\alpha.

    Đẳng thức \left| \cos\alpha ight|
\Leftrightarrow \cos\alpha\overset{}{ightarrow}\cos\alpha \geq
0\overset{}{ightarrow}điểm cuối của góc lượng giác \alpha ở góc phần tư thứ I hoặc IV.

  • Câu 39: Thông hiểu

    Diện tích tam giác có ba cạnh lần lượt là \sqrt{3},\sqrt{2} và 1 là:

    Nửa chu vi của tam giác là: p = \frac{{a + b + c}}{2} = \frac{{\sqrt 3  + \sqrt 2  + 1}}{2}

    Áp dụng công thức Herong ta có:

    \begin{matrix}  S = \sqrt {p\left( {p - a} ight)\left( {p - b} ight)\left( {p - a} ight)}  \hfill \\  S = \sqrt {p\left( {p - \sqrt 3 } ight)\left( {p - \sqrt 2 } ight)\left( {p - 1} ight)}  \hfill \\  S = \dfrac{{\sqrt 2 }}{2} \hfill \\ \end{matrix}

  • Câu 40: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha < 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Hệ thức lượng trong tam giác KNTT Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 21 lượt xem
Sắp xếp theo