Cho biết
. Tính
.
Ta có:
.
Cho biết
. Tính
.
Ta có:
.
Cho
có
Độ dài cạnh
bằng:
Ta có:
.
Cho tam giác
thỏa mãn biểu thức
![]()
Khi đó tam giác
là tam giác gì?
Ta có:
Đặt khi đó ta có:
Do đó
Vậy tam giác ABC là tam giác cân tại A.
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ).

Chiều dài hàng rào
là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Áp dụng định li côsin ta
.
Suy ra .
Vậy chiều dài hàng rào là khoảng
.
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Tam giác
có
. Số đo góc
bằng:
Theo định lí hàm cosin, ta có
.
Do đó, .
Giá trị biểu thức
bằng:
Ta có:
Tam giác
vuông tại
, có
. Gọi
là độ dài đoạn phân giác trong góc
. Tính
theo
và
.
Ta có
Do là phân giác trong của
.
Theo định lí hàm cosin, ta có
.
hay
.
Cho tam giác
thỏa mãn biểu thức
![]()
Chọn khẳng định đúng.
Ta có:
Vậy tam giác ABC là tam giác cân.
Tam giác
có
và
. Tính độ dài cạnh
.
Áp dụng định lí sin:
.
Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?
Hình ảnh minh họa

Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác
=>
Do đó:
Ta có:
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Tam giác ABC có đoạn thẳng nối trung điểm của AB và BC bằng 3, cạnh
AB = 9 và
. Tính độ dài cạnh cạnh BC.
Theo đề bài, đoạn nối 2 trung điểm bằng 3 nên suy ra .
Áp dụng định lí côsin:
.
Một học sinh dùng giác kế, đứng cách chân cột cờ 10m rồi chỉnh mặt trước cao bằng mắt của mình để xác định góc nâng (góc tạo bởi tia sáng đi thẳng từ đỉnh cột cờ) với mắt tạo với phương nằm ngang. Khi đó góc nâng đo được 31∘. Biết khoảng cách từ mặt sân đến mắt học sinh đó bằng 1,5m. Chiều cao cột cờ gần nhất với giá trị nào?
Hình vẽ minh họa
Gọi AB là khoảng cách từ chân đến tầm mắt của học sinh ⇒ AB = 1,5m.
AC là khoảng cách từ chân đến cột cờ ⇒ AC = 10m.
CD là chiều cao cột cờ.
BE là phương ngang của tầm mắt.
Khi đó góc nâng là .
Do ABEC là hình chữ nhật nên .
Ta có: .
Vậy chiều cao của cột cờ là: .
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Cho tam giác
có
và góc
. Tính diện tích tam giác
.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ)

Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?
Diện tích mảnh đất của gia đình bà Sáu (tam giác ) là:
.
Tam giác ABC có
. Số đo góc A là:
Áp dụng định lí cosin trong tam giác ta có:
Vào lúc 9 giờ sáng, hai vận động viên A và B xuất phát từ cùng một vị trí O. Vận động viên A chạy với vận tốc 13 km/h theo một góc so với hướng Bắc là 15°, vận động viên B chạy với vận tốc 12 km/h theo một góc so với hướng Bắc là 135° (hình vẽ).

Tại thời điểm nào thì vận động viên A cách vận động viên B một khoảng 10 km (làm tròn kết quả đến phút)?
Gọi khoảng thời gian kể từ khi bắt đầu chạy từ điểm O đến khi hai vận động viên cách nhau 10 km là x giờ
Điều kiện: x > 0
Khi đó đoạn đường mà vận động viên A chạy được là 13x (km)
Đoạn đường mà vận động viên B chạy được là 12x (km)
Ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
0,46 giờ ≈ 28 phút
Do đó thời điểm mà hai vận động viên cách nhau 10 km là khoảng: 9 giờ 28 phút.
Vậy vào khoảng 9 giờ 28 phút thì hai vận động viên sẽ cách nhau 10 km.
Cho
với
. Tính
.
Ta có:
.
Do nên
. Suy ra,
Tam giác ABC có BC = a, CA = b, AB = c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng:
Ta có:
Diện tích ban đầu của tam giác là:
Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác là:
Cho
vuông tại
và có
. Số đo của góc
là:
Ta có: Trong
.
Cho hình thoi
cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Cho
Khẳng định nào sau đây đúng?
Ta có :
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Trong tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lí cosin cho tam giác ABC ta có:
Cho góc α với
. Giá trị của biểu thức:
là:
Ta có:
=>
Cho
, với
. Giá trị
bằng
Ta có:
(do
).
Vậy .
Chọn công thức đúng trong các đáp án sau:
Ta có:
.
Cho
có
. Số đo của góc
là:
Ta có:
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64
. Giá trị sin A là:
Ta có:
Cho
Khẳng định nào sau đây đúng?
Ta có:
và
.
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.