Đề kiểm tra 45 phút Chương 3 Nguyên hàm - Tích phân và ứng dụng

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 3. Nguyên hàm - Tích phân được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Họ các nguyên hàm của hàm số f\left( x ight) = \frac{{2x - 1}}{{{{\left( {x + 1} ight)}^2}}} trên khoảng \left( { - 1; + \infty } ight)

     f\left( x ight) = \frac{{2x - 1}}{{{{\left( {x + 1} ight)}^2}}} = \frac{2}{{x + 1}} - \frac{3}{{{{\left( {x + 1} ight)}^2}}}

    \int {f\left( x ight)dx}  = \int {\left[ {\frac{2}{{x + 1}} - \frac{3}{{{{\left( {x + 1} ight)}^2}}}} ight]dx}  = 2\ln \left| {x + 1} ight| + \frac{3}{{x + 1}} + C

  • Câu 2: Nhận biết

    Họ nguyên hàm của hàm số f(x) = 2x +\sin2x là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{(2x +\sin2x)dx}

    = 2.\frac{x^{2}}{2} - \frac{1}{2}\cos2x +c = x^{2} - \frac{1}{2}\cos2x + c

  • Câu 3: Nhận biết

    Tìm nguyên hàm F(x) của hàm số f(x) = 2x + 3\sqrt{x} thỏa mãn F(1) = 0?

    Ta có:

    F(x) = \int_{}^{}{f(x)dx =
\int_{}^{}{\left( 2x + 3\sqrt{x} ight)dx}}

    \Rightarrow F(x) = \int_{}^{}{(2x)dx} +
6\int_{}^{}{\left( \sqrt{x} ight)^{2}d\left( \sqrt{x}
ight)}

    \Rightarrow F(x) = x^{2} + 2\sqrt{x^{3}}
+ C

    Theo bài ra ta có: F(1) = 0
\Leftrightarrow 3 + C = 0 \Leftrightarrow C = - 3

    Vậy x^{2} + 2\sqrt{x^{3}} -
3.

  • Câu 4: Nhận biết

    Tìm họ các nguyên hàm của hàm số f(x) =
3x + 1?

    Ta có:

    \int_{}^{}{(3x + 1)dx} =
\frac{1}{3}\int_{}^{}{(3x + 1)d(3x + 1)}

    = \frac{1}{3}.\frac{(3x + 1)^{2}}{2} + C
= \frac{1}{6}(3x + 1)^{2} + C

  • Câu 5: Thông hiểu

    Cho đồ thị hàm số y = f(x) như hình vẽ và \int_{- 2}^{0}{f(x)dx} =
a;\int_{0}^{3}{f(x)dx} = b.

    Tính diện tích của phần được gạch chéo theo a;b.

    Từ đồ thị ta suy ra \left\{
\begin{matrix}
f(x) \geq 0;\forall x \in \lbrack - 2;0brack \\
f(x) \leq 0;\forall x \in \lbrack 0;3brack \\
\end{matrix} ight.

    Do đó, diện tích phần gạch chéo là

    S = \int_{- 2}^{0}{\left| f(x)
ight|dx} + \int_{0}^{3}{\left| f(x) ight|dx}

    = \int_{- 2}^{0}{f(x)dx} -
\int_{0}^{3}{f(x)dx} = a - b.

  • Câu 6: Nhận biết

    Cho hình phẳng D giới hạn bới đường cong y = \sqrt {{x^2} + 1}, trục hoành và các đường thẳng x = 0;x = 1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?

    Thể tích cần tìm là: v = \pi \int\limits_0^1 {{{\left( {\sqrt {{x^2} + 1} } ight)}^2}dx}  = \frac{{4\pi }}{3}

  • Câu 7: Vận dụng

    Tích phân I = \int\limits_{ - \frac{\pi }{3}}^{\frac{\pi }{3}} {\frac{{\sin x}}{{{{\left( {\cos x + \sqrt 3 \sin x} ight)}^2}}}dx} có giá trị là:

    Ta có:

    I = \int\limits_{ - \frac{\pi }{3}}^{\frac{\pi }{3}} {\frac{{\sin x}}{{{{\left( {\cos x + \sqrt 3 \sin x} ight)}^2}}}dx}  = \int\limits_{ - \frac{\pi }{3}}^{\frac{\pi }{3}} {\frac{{\sin x}}{{4{{\left( {\frac{1}{2}\cos x + \frac{{\sqrt 3 }}{2}\sin x} ight)}^2}}}dx} I = \int\limits_{ - \frac{\pi }{3}}^{\frac{\pi }{3}} {\frac{{\sin x}}{{4{{\left[ {\sin \left( {x + \frac{\pi }{6}} ight)} ight]}^2}}}dx}

    Đặt u = x + \frac{\pi }{6} \Rightarrow x = u - \frac{\pi }{6} \Rightarrow dx = du

    Đổi cận \left\{ \begin{gathered}  x =  - \frac{\pi }{3} \Rightarrow u =  - \frac{\pi }{6} \hfill \\  x = \frac{\pi }{3} \Rightarrow u = \frac{\pi }{2} \hfill \\ \end{gathered}  ight.

    I = \int\limits_{ - \frac{\pi }{6}}^{\frac{\pi }{2}} {\frac{{\sin \left( {u - \frac{\pi }{6}} ight)}}{{4{{\sin }^2}u}}du}  = \int\limits_{ - \frac{\pi }{6}}^{\frac{\pi }{2}} {\frac{{\sin u.\cos \frac{\pi }{6} - \sin \frac{\pi }{6}\cos u}}{{4{{\sin }^2}u}}du}

    = \frac{1}{8}\int\limits_{ - \frac{\pi }{6}}^{\frac{\pi }{2}} {\frac{{\sqrt 3 .\sin u - \cos u}}{{{{\sin }^2}u}}du}  = \frac{1}{8}\left( {\int\limits_{ - \frac{\pi }{6}}^{\frac{\pi }{2}} {\frac{{\sqrt 3 \sin u}}{{1 - {{\cos }^2}u}}du - \int\limits_{ - \frac{\pi }{6}}^{\frac{\pi }{2}} {\frac{{\cos u}}{{{{\sin }^2}u}}du} } } ight)

    Xét {I_1} = \int\limits_{ - \frac{\pi }{6}}^{\frac{\pi }{2}} {\frac{{\sqrt 3 \sin u}}{{1 - {{\cos }^2}u}}du}

    Đặt t = \cos u,u \in \left[ {0;\pi } ight] \Rightarrow dt =  - \sin udu

    Đổi cận  \left\{ \begin{gathered}  u =  - \frac{\pi }{6} \Rightarrow t = \frac{{\sqrt 3 }}{2} \hfill \\  u = \frac{\pi }{2} \Rightarrow t = 0 \hfill \\ \end{gathered}  ight.

    \Rightarrow {I_1} = \int\limits_{\frac{{\sqrt 3 }}{2}}^0 {\frac{{\sqrt 3 dt}}{{1 - {t^2}}}}  = \frac{{\sqrt 3 }}{2}\int\limits_{\frac{{\sqrt 3 }}{2}}^0 {\left( {\frac{1}{{1 - t}} + \frac{1}{{1 + t}}} ight)} dt

    = \frac{{\sqrt 3 }}{2}\left. {\left( {ln\left| {\frac{{t + 1}}{{t - 1}}} ight|} ight)} ight|_{\frac{{\sqrt 3 }}{2}}^0 =  - \frac{{\sqrt 3 }}{2}\ln \left( {\frac{{\sqrt 3  + 2}}{{ - \sqrt 3  + 2}}} ight)

    Xét  {I_2} = \int\limits_{ - \frac{\pi }{6}}^{\frac{\pi }{2}} {\frac{{\cos u}}{{{{\sin }^2}u}}du}

    Đặt t = \sin u,u \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} ight] \Rightarrow dt = \cos udu

    Đổi cận \left\{ \begin{gathered}  u =  - \frac{\pi }{6} \Rightarrow t =  - \frac{1}{2} \hfill \\  u = \frac{\pi }{2} \Rightarrow t = 1 \hfill \\ \end{gathered}  ight.

    {I_2} = \int\limits_{ - \frac{1}{2}}^1 {\frac{1}{{{t^2}}}du}  = \left. {\left( { - \frac{1}{t}} ight)} ight|_{ - \frac{1}{2}}^1 =  - 3

    \Rightarrow I = \frac{1}{8}\left( {{I_1} - {I_2}} ight) =  - \frac{{\sqrt 3 }}{{16}}\ln \left( {\frac{{\sqrt 3  + 2}}{{ - \sqrt 3  + 2}}} ight) + \frac{3}{8}

  • Câu 8: Nhận biết

    Giá trị của tích phân \int_{- 1}^{0}{e^{x
+ 1}dx} bằng:

    Ta có: \int_{- 1}^{0}{e^{x + 1}dx} =
\left. \ e^{x + 1} ight|_{- 1}^{0} = e^{1} - e^{0} = e -
1.

  • Câu 9: Nhận biết

    Cho các hàm số y = f(x)y = g(x) liên tục trên \lbrack a;bbrack và số k tùy ý. Trong các khẳng định sau, khẳng định nào sai?

    Khẳng định sai là: \int_{a}^{b}{x.f(x)dx}
= x\int_{a}^{b}{f(x)dx}

  • Câu 10: Thông hiểu

    Trong các khẳng định sau đây, khẳng định nào đúng?

    Ta có: x^{4} - x^{2} + 1 = \left( x^{2} -
\frac{1}{2} ight)^{2} + \frac{3}{4} > 0;\forall x\mathbb{\in
R}

    Do \int_{- 1}^{2018}{\left| x^{4} - x^{2}
+ 1 ight|^{3}dx} = \int_{- 1}^{2018}{\left( x^{4} - x^{2} + 1
ight)^{3}dx}

  • Câu 11: Vận dụng cao

    Cho hàm số y = f(x) dương và liên tục trên \lbrack 1;3brack thỏa mãn \max_{\lbrack 1;3brack}f(x) =
2;\min_{\lbrack 1;3brack}f(x) = \frac{1}{2} và biểu thức S =
\int_{1}^{3}{f(x)dx}.\int_{1}^{3}{\frac{1}{f(x)}dx} đạt giá trị lớn nhất, khi đó \int_{1}^{3}{f(x)dx} bằng:

    Do \frac{1}{2} \leq f(x) \leq 2
\Rightarrow f(x) + \frac{1}{f(x)} \leq \frac{5}{2}

    \Rightarrow \int_{1}^{3}{\left\lbrack
f(x) + \frac{1}{f(x)} ightbrack dx} \leq 5

    \Rightarrow \int_{1}^{3}{f(x)dx} +
\int_{1}^{3}{\frac{1}{f(x)}dx} \leq 5

    \Rightarrow
\int_{1}^{3}{\frac{1}{f(x)}dx} \leq 5 -
\int_{1}^{3}{f(x)dx}

    \Rightarrow S =
\int_{1}^{3}{f(x)dx}.\int_{1}^{3}{\frac{1}{f(x)}dx} \leq
5\int_{1}^{3}{f(x)dx} - \left\lbrack \int_{1}^{3}{f(x)dx}
ightbrack^{2}

    \leq \frac{25}{4} - \left\lbrack
\int_{1}^{3}{f(x)dx - \frac{5}{2}} ightbrack^{2} \leq
\frac{25}{4}

    Dấu bằng xảy ra khi và chỉ khi \int_{1}^{3}{f(x)dx} = \frac{5}{2}.

  • Câu 12: Thông hiểu

    Tích phân I = \int\limits_1^a {\left( {\frac{a}{x} + \frac{x}{a}} ight)dx}, với a e 0 có giá trị là:

    Ta có:

    \begin{matrix}  I = \int\limits_1^a {\left( {\dfrac{a}{x} + \dfrac{x}{a}} ight)dx}  = \left. {\left( {a\ln \left| x ight| + \dfrac{{{x^2}}}{{2a}}} ight)} ight|_1^a \hfill \\  = a\ln \left| a ight| + \dfrac{a}{2} - \dfrac{1}{{2a}} = a\ln \left| a ight| + \dfrac{{{a^2} - 1}}{{2a}} \hfill \\ \end{matrix}

  • Câu 13: Nhận biết

    Họ các nguyên hàm của hàm số f(x) = \sin
x + 1 là:

    Ta có: \int_{}^{}{\left( \sin x + 1
ight)dx} = - \cos x + x + C

  • Câu 14: Vận dụng

    Tích phân I = \int\limits_0^1 {\frac{a}{{\sqrt {3{x^2} + 12} }}} dx có giá trị là:

    Ta có:

    I = \int\limits_0^1 {\frac{a}{{\sqrt {3{x^2} + 12} }}} dx = \frac{a}{{\sqrt 3 }}\int\limits_0^1 {\frac{1}{{\sqrt {{x^2} + 4} }}} dx

    Đặt u = x + \sqrt {{x^2} + 4}  \Rightarrow du = \frac{{x + \sqrt {{x^2} + 4} }}{{\sqrt {{x^2} + 4} }}dx \Rightarrow \frac{{du}}{u} = \frac{{dx}}{{\sqrt {{x^2} + 4} }}

    I = \frac{a}{{\sqrt 3 }}\int\limits_2^{1 + \sqrt 5 } {\frac{1}{u}du}  = \left. {\frac{a}{{\sqrt 3 }}\left( {\ln u} ight)} ight|_2^{1 + \sqrt 5 } = \frac{a}{{\sqrt 3 }}\ln \left| {\frac{{1 + \sqrt 5 }}{2}} ight|

  • Câu 15: Vận dụng

    Cho hàm số f(x) thỏa mãn f(1) = 3x\left\lbrack 4 - f'(x) ightbrack = f(x) -
1 với mọi x > 0. Tính f(2)?

    Ta có:

    x\left\lbrack 4 - f'(x)
ightbrack = f(x) - 1

    \Leftrightarrow f(x) + xf'(x) = 4x +
1

    \Leftrightarrow \left( xf(x)
ight)' = 4x + 1

    \Leftrightarrow xf(x) =
\int_{}^{}{\left( xf(x) ight)'dx} = \int_{}^{}{(4x +
1)dx}

    \Leftrightarrow \int_{}^{}{(4x + 1)dx} =
2x^{2} + x + C

    Với x = 1 \Rightarrow 1.f(1) = 3 + C
\Leftrightarrow 3 = 3 + C \Rightarrow C = 0

    Do đó xf(x) = 2x^{2} + x

    Vậy 2f(2) = 2.2^{2} + 2 \Rightarrow f(2)
= 5

  • Câu 16: Vận dụng cao

    Cho a, b là các số hữu tỉ thỏa mãn

    \int {\frac{{dx}}{{\sqrt {x + 2}  + \sqrt {x + 1} }} = a\left( {x + 2} ight)\sqrt {x + 2}  + b\left( {x + 1} ight)\sqrt {x + 1}  + C}

    Tính giá trị biểu thức M = a + b.

     I = \int {\frac{{dx}}{{\sqrt {x + 2}  + \sqrt {x + 1} }} = \int {\frac{{\sqrt {x + 2}  - \sqrt {x + 1} }}{{\left( {x + 2} ight) - \left( {x + 1} ight)}}dx}  = \int {\left( {\sqrt {x + 2}  - \sqrt {x + 1} } ight)dx} }

    => I = \frac{2}{3}.\left( {x + 2} ight)\sqrt {x + 2}  - \frac{2}{3}\left( {x + 1} ight)\sqrt {x + 1}  + C

    => \left\{ {\begin{array}{*{20}{c}}  {a = \dfrac{2}{3}} \\   {b = \dfrac{{ - 2}}{3}} \end{array}} ight. \Rightarrow M = a + b = 0

  • Câu 17: Vận dụng

    Một chất điểm chuyển động trên đường thẳng nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc thời gian t\left( s ight) là a\left( t ight) = 2t - 7\left( {m/{s^2}} ight). Biết vận tốc ban đầu bằng 10m/s, hỏi trong 6 giây đầu tiên, thời điểm nào chất điểm ở xa nhất về phía bên phải?

    Vận tốc của vật được tính theo công thức v\left( t ight) = 10 + {t^2} - 7t\left( {m/s} ight)

    => Quãng đường vật di chuyển được tính theo công thức:

    S\left( t ight) = \int {v\left( t ight)dt}  = \frac{{{t^3}}}{3} - \frac{{7t}}{2} + 10t\left( m ight)

    Ta có:

    \begin{matrix}  S'\left( t ight) = {t^2} - 7t + 10 \hfill \\   \Rightarrow S'\left( t ight) = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {t = 0} \\   {t = 5} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {S\left( 0 ight) = 0} \\   {S\left( 2 ight) = \dfrac{{26}}{6}} \\   {S\left( 5 ight) = \dfrac{{25}}{6}} \\   {S\left( 6 ight) = 6} \end{array}} ight. \Rightarrow \mathop {MaxS\left( t ight)}\limits_{\left[ {0;6} ight]}  = S\left( 2 ight) = \dfrac{{26}}{3} \hfill \\ \end{matrix}

  • Câu 18: Vận dụng cao

    Cho F(x) là một nguyên hàm của hàm số f\left( x ight) = {e^{{x^2}}}\left( {{x^3} - 4x} ight). Hàm số F\left( {{x^2} + x} ight) có bao nhiêu điểm cực trị?

     \begin{matrix}  \left[ {F\left( {{x^2} + x} ight)} ight]\prime    \hfill \\   = \left( {2x + 1} ight)f\left( {{x^2} + x} ight) \hfill \\   = \left( {2x + 1} ight){e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}.\left[ {{{\left( {{x^2} + x} ight)}^3} - 4\left( {{x^2} + x} ight)} ight] \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).\left( {{x^2} + x} ight)\left( {{x^2} + x + 2} ight)\left( {{x^2} + x - 2} ight) \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).x\left( {x + 1} ight)\left( {{x^2} + x + 2} ight)\left( {x + 2} ight)\left( {x - 1} ight) \hfill \\ \end{matrix}

    => \left[ {F\left( {{x^2} + x} ight)} ight]' = 0 có 5 nghiệm đơn

    => Hàm số F\left( {{x^2} + x} ight) có 5 điểm cực trị

  • Câu 19: Thông hiểu

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị (C) là đường cong như hình vẽ:

    Diện tích hình phẳng giới hạn bởi đồ thị (C), trục hoành và hai đường thẳng x = 0;x = 2 (phần tô đen) là:

    Dựa vào hình vẽ ta thấy x \in
(0;1) thì \left\{ \begin{matrix}
f(x) > 0;\forall x \in (0;1) \\
f(x) < 0;\forall x \in (1;2) \\
\end{matrix} ight.

    Vậy S = \int_{0}^{1}{f(x)dx} -
\int_{1}^{2}{f(x)dx}

  • Câu 20: Vận dụng cao

    Cho hàm số f(x) liên tục trên đoạn \lbrack - 6;5brack có đồ thị gồm hai đoạn thẳng và nửa đường tròn như hình vẽ:

    Tính giá trị I = \int_{-
6}^{5}{\left\lbrack f(x) + 2 ightbrack dx}?

    Hình vẽ minh họa

    Dựa vào đồ thị ta có: A( - 6; - 1),B( -
2;1) suy ra phương trình đường thẳng AB:y = \frac{1}{2}x + 2

    \Rightarrow I_{1} = \int_{0}^{-
2}{\left\lbrack \frac{1}{2}x + 2 + 2 ightbrack dx} = 8

    Phương trình đường tròn (C): x^{2} + (y - 1)^{2} = 4 \Rightarrow y = 1 +
\sqrt{4 - x^{2}}

    \Rightarrow I_{2} = \int_{-
2}^{2}{\left\lbrack 1 + \sqrt{4 - x^{2}} + 2 ightbrack dx} = 12 +
2\pi

    Điểm C(2;1),D(5;3) nên phương trình đường thẳng CD là: y = \frac{2}{3}x - \frac{1}{3}

    \Rightarrow I_{3} =
\int_{2}^{5}{\left\lbrack \frac{2}{3}x - \frac{1}{3} + 2 ightbrack
dx} = 12

    Vậy I = I_{1} + I_{2} + I_{3} = 32 +
2\pi

  • Câu 21: Nhận biết

    Giá trị của tích phân I = \int\limits_0^1 {\frac{x}{{x + 1}}} dx = a. Biểu thức có giá trị P = 2a - 1 là:

    Giá trị của tích phân I = \int\limits_0^1 {\frac{x}{{x + 1}}} dx = a. Biểu thức P = 2a - 1 có giá trị là:

    Ta có:

    \begin{matrix}  I = \int\limits_0^1 {\dfrac{x}{{x + 1}}} dx \hfill \\   = \int\limits_0^1 {\left( {1 - \dfrac{1}{{x + 1}}} ight)dx}  \hfill \\   = \left. {\left( {x - \ln \left| {x + 1} ight|} ight)} ight|_0^1 \hfill \\ = 1 - \ln 2 \hfill \\   \Rightarrow a = 1 - \ln 2 \hfill \\   \Rightarrow P = 2a - 1 = 1 - 2\ln 2 \hfill \\ \end{matrix}

     

  • Câu 22: Thông hiểu

    Gọi F(x) là một nguyên hàm của hàm số f(x) = e^{x}, thỏa mãn F(0) = 2020. Tính giá trị biểu thức T = F(0) + F(1) + ... + F(2018) +
F(2019)?

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{e^{x}dx} = e^{x} + C

    F(x) là một nguyên hàm của hàm số f(x) = e^{x}, ta có: F(x) = e^{x} + CF(0) = 2020

    \Rightarrow C = 2019 \Rightarrow F(x) =
e^{x} + 2019

    T = F(0) + F(1) + ... + F(2018) +
F(2019)

    T = 1 + e + e^{2} + .... + e^{2018} +
e^{2019} + 2019.2020

    T = \frac{e^{2020} - 1}{e - 1} +
2019.2020.

  • Câu 23: Nhận biết

    Cho hình phẳng D giới hạn bởi đường cong y = \sqrt {2 + \cos x}, trục hoành và các đường thẳng x = 0;x = \frac{\pi }{2}. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V là:

    Thể tích cần tính là:

    \begin{matrix}  V = \pi \int\limits_0^{\frac{\pi }{2}} {{{\left( {\sqrt {2 + \cos x} } ight)}^2}dx}  \hfill \\   \Rightarrow V = \pi \int\limits_0^{\frac{\pi }{2}} {\left( {2 + \cos x} ight)dx}  \hfill \\   \Rightarrow V = \left. {\pi \left( {2 + \sin x} ight)} ight|_0^{\frac{\pi }{2}} = \pi \left( {\pi  + 1} ight) \hfill \\ \end{matrix}

     

  • Câu 24: Thông hiểu

    Hàm số F(x) là một nguyên hàm của hàm số y = \frac{1}{x} trên ( - \infty;0) thỏa mãn F( - 2) = 0. Khẳng định nào sau đây đúng?

    Ta có: F(x) = \int_{}^{}{\frac{1}{x}dx} =
\ln|x| + C = \ln( - x) + C;\forall x \in ( - \infty;0)

    Lại có F( - 2) = 0 \Leftrightarrow \ln(2)
+ C = 0 \Rightarrow C = - ln2

    Do đó F(x) = \ln( - x) - ln2 = \ln\left(
- \frac{x}{2} ight)

    Vậy F(x) = \ln\left( - \frac{x}{2}
ight);\forall x \in ( - \infty;0).

  • Câu 25: Vận dụng cao

    Một biển quảng cáo có dạng hình elip với bốn đỉnh A_{1};A_{2};B_{1};B_{2} như hình vẽ:

    Người ta chia elip bởi Parabol có đỉnh B_{1}, trục đối xứng B_{1}B_{2} và đi qua các điểm M;N. Sau đó sơn phần tô đậm với giá 200 nghìn đồng/m2 và trang trí đèn led phần còn lại với giá 500 nghìn đồng/m2. Hỏi kinh phí sử dụng gần nhất với giá trị nào dưới đây? Biết rằng A_{1}A_{2} =4m;B_{1}B_{2} = MN = 2m

    Chọn hệ trục tọa độ Oxy sao cho O là trung điểm của A1A2. Tọa độ các đỉnh A1(−2; 0), A2(2; 0), B1(0; −1), B2(0; 1)

    Phương trình đường Elip (E):\frac{x^{2}}{4} + \frac{y^{2}}{9} = 1\Leftrightarrow y = \pm \sqrt{1 - \frac{x^{2}}{4}}

    Ta có: M\left( - 1;\frac{\sqrt{3}}{2}ight),N\left( 1;\frac{\sqrt{3}}{2} ight) \in (E)

    Parabol (P) có đỉnh B1(0; −1) và trục đối xứng là Ox nên (P) có phương trình y = ax^{2} - 1, (a > 0), đi qua M; N

    \Rightarrow a = \frac{\sqrt{3}}{2} + 1\Rightarrow (P):y = \left( \frac{\sqrt{3}}{2} + 1 ight)x^{2} -1

    Diện tích phần tô đậm

    S_{1} = 2\int_{0}^{1}{\left\lbrack\sqrt{1 - \frac{x^{2}}{4}} - \left( \frac{\sqrt{3}}{2} + 1 ight)x^{2}+ 1 ightbrack dx}

    = \int_{0}^{1}{\sqrt{4 - x^{2}}dx} -\frac{2}{3}\left( \frac{\sqrt{3}}{2} + 1 ight) + 2

    Đặt x = 2\sin t;t \in \left\lbrack -\frac{\pi}{2};\frac{\pi}{2} ightbrack \Rightarrow dx =2\cos tdt

    Đổi cận \left\{ \begin{matrix}x = 0 \Rightarrow t = 0 \\x = 1 \Rightarrow t = \dfrac{\pi}{6} \\\end{matrix} ight.

    \Rightarrow S_{1} =\int_{0}^{\frac{\pi}{6}}{\sqrt{4 - 4\sin^{2}t}.2\cos tdt} -\frac{2}{3}\left( \frac{\sqrt{3}}{2} + 1 ight) + 2

    = 4\int_{0}^{\frac{\pi}{6}}{\cos^{2}tdt}- \frac{\sqrt{3}}{4} + \frac{4}{3} = 2\int_{0}^{\frac{\pi}{6}}{(1 +\cos2t)dt} - \frac{\sqrt{3}}{4} + \frac{4}{3}

    = \left. \ (2t + \sin2t)ight|_{0}^{\frac{\pi}{6}} - \frac{\sqrt{3}}{4} + \frac{4}{3} =\frac{\pi}{3} + \frac{\sqrt{3}}{6} + \frac{4}{3}

    Diện tích hình Elip là S = πab = 2π

    Suy ra diện tích phần còn lại là: S_{2} =S - S_{1} = \frac{5\pi}{3} - \frac{\sqrt{3}}{6} -\frac{4}{3}

    Kinh phí sử dụng là 2.10^{5}S_{1} +5.10^{5}S_{2} \approx 2.341.000 đồng.

  • Câu 26: Thông hiểu

    Biết rằng F(x) liên tục trên \mathbb{R} là một nguyên hàm của hàm số f\left( x ight) = \left\{ \begin{gathered}
  \frac{1}{{\sqrt {2x + 1} }}{\text{   khi }}x \geqslant 0 \hfill \\
  {\left( {2x + 1} ight)^3}{\text{   khi }}x < 0 \hfill \\ 
\end{gathered}  ight.F(4) + F(
- 1) = 8. Giá trị biểu thức Q = F(
- 2) + F(12) bằng:

    Ta có: F\left( x ight) = \int {f\left( x ight)dx}  = \left\{ \begin{gathered}
  \sqrt {2x + 1}  + {C_1}{\text{   khi }}x \geqslant 0 \hfill \\
  \frac{{{{\left( {2x + 1} ight)}^4}}}{8}{\text{ + }}{{\text{C}}_2}{\text{   khi }}x < 0 \hfill \\ 
\end{gathered}  ight.

    F(4) + F( - 1) = 8\Rightarrow \sqrt{8 +1} + C_{1} + \frac{( - 2 + 1)^{4}}{8} + C_{2} = 8\Rightarrow C_{1} +C_{2} = \frac{39}{8}(*)

    Do đó: Q = F( - 2) + F(12) = \sqrt{2.12 +
1} + \frac{( - 4 + 1)^{4}}{8} + C_{1} + C_{2} = 20

  • Câu 27: Thông hiểu

    Giá trị của H = \int_{0}^{1}{\left(
\frac{1}{2x + 1} + 3\sqrt{x} ight)dx}?

    Ta có:

    H = \int_{0}^{1}{\left( \frac{1}{2x + 1}
+ 3\sqrt{x} ight)dx} = \left. \ \left( \frac{1}{2}\ln|2x + 1| +
2x^{\frac{3}{2}} ight) ight|_{0}^{1} = 2 + \ln\sqrt{3}

  • Câu 28: Thông hiểu

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{x - 1} trên khoảng (1; + \infty) thỏa mãn F(e + 1) = 4. Xác định công thức F(x)?

    Ta có: F(x) = \int_{}^{}\frac{dx}{x - 1}
= \int_{}^{}\frac{d(x - 1)}{x - 1} = \ln|x - 1| + C = \ln(x - 1) +
C (vì (1; + \infty))

    F(e + 1) = 4 \Leftrightarrow \ln(e + 1
- 1) + C = 4 \Rightarrow C = 3

    Vậy F(x) = \ln(x - 1) + 3.

  • Câu 29: Thông hiểu

    Cho hàm số f(x) xác định trên \mathbb{R}\left\{ 1 ight\}thỏa mãn f'(x) = \frac{1}{x - 1}; f(0) = 2017;f(2) = 2018. Tính T = f(3) - f( - 1)?

    Trên khoảng (1; + \infty) ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\frac{1}{x - 1}dx} = \ln(x - 1) + C_{1}

    \Rightarrow f(x) = \ln(x - 1) +
C_{1}

    f(2) = 2018 \Rightarrow C_{1} =
2018

    Trên khoảng ( - \infty;1) ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\frac{1}{x - 1}dx} = \ln(1 - x) + C_{2}

    \Rightarrow f(x) = \ln(1 - x) +
C_{2}

    f(0) = 2017 \Rightarrow C_{2} =
2017

    Vậy f(x) = \left\{ \begin{matrix}
\ln(x - 1) + 2018\ \ \ khi\ x\  > \ 1 \\
\ln(1 - x) + 2017\ \ \ khi\ x\  < \ 1 \\
\end{matrix} ight.

    \Rightarrow T = f(3) - f( - 1) =
1.

  • Câu 30: Thông hiểu

    Biết F(x) = x2+ 4x + 1 là một nguyên hàm của hàm số y = f(x) . Tính giá trị của hàm số y = f(x) tại x = 3

     f\left( x ight) = \left[ {F\left( x ight)} ight]' = 2x + 4 \Rightarrow F\left( 3 ight) = 10

  • Câu 31: Thông hiểu

    Diện tích hình phẳng giới hạn bởi các đường y = \frac{\sqrt{1 + \ln x}}{x};y = 0;x = 1;x =
eS = a\sqrt{2} + b. Tính giá trị a^{2} + b^{2}?

    Diện tích hình phẳng cần tìm là:

    S = \int_{1}^{e}{\left| \frac{\sqrt{1 +
\ln x}}{x} ight|dx} = \int_{1}^{e}{\frac{\sqrt{1 + \ln
x}}{x}dx}

    Đặt \sqrt{1 + \ln x} = t \Rightarrow 1 +
\ln x = t^{2} \Rightarrow \frac{dx}{x} = 2tdt

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 1 \\
x = e \Rightarrow t = \sqrt{2} \\
\end{matrix} ight.. Khi đó:

    S = \int_{1}^{\sqrt{2}}{2t^{2}dt} =
\frac{4}{3}.\sqrt{2} - \frac{2}{3} hay a = \frac{4}{3};b = \frac{2}{3}

    \Rightarrow a^{2} + b^{2} =
\frac{20}{9}

  • Câu 32: Vận dụng

    Biết F(x) là nguyên hàm của hàm số f(x) = \frac{x - \cos x}{x^{2}}. Hỏi đồ thị của hàm số y = F(x) có bao nhiêu điểm cực trị?

    F(x) là nguyên hàm của hàm số f(x) = \frac{x - \cos x}{x^{2}} nên suy ra F'(x) = f(x) = \frac{x - \cos
x}{x^{2}}

    Ta có: F'(x) = 0 \Leftrightarrow
\frac{x - \cos x}{x^{2}} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x - \cos x = 0 \\
x \in \lbrack - 1;1brack\backslash\left\{ 0 ight\} \\
\end{matrix} ight.\ (1)

    Xét hàm số g(x) = x - \cos x trên \lbrack - 1;1brack, ta có: g'(x) = 1 + \sin x \geq 0;\forall x \in
\lbrack - 1;1brack suy ra hàm số g(x) đồng biến trên \lbrack - 1;1brack.

    Vậy phương trình g(x) = x - \cos x = 0 có nhiều nhất một nghiệm trên \lbrack -
1;1brack (2)

    Mặt khác ta có hàm số g(x) = x - \cos
x liên tục trên (0;1)\left\{ \begin{matrix}
g(0) = 0 - cos0 = - 1 < 0 \\
g(1) = 1 - cos1 > 0 \\
\end{matrix} ight. nên g(0)g(1)
< 0.

    Suy ra tồn tại x_{0} \in
(0;1) sao cho g\left( x_{0} ight)
= 0 (3)

    Từ (1); (2); (3) suy ra phương trình F'(x) = 0 có nghiệm duy nhất x_{0} eq 0.

    Đồng thời vì x_{0} là nghiệm bội lẻ nên F'(x) đổi dấu qua x = x_{0}

    Vậy đồ thị hàm số y = F(x) có một điểm cực trị.

  • Câu 33: Nhận biết

    Tìm nguyên hàm của hàm số f(x) = (x +
1)(x + 2)(x + 3)?

    Ta có:

    f(x) = (x + 1)(x + 2)(x + 3) = x^{3} +
6x^{2} + 11x + 6

    \Rightarrow F(x) = \frac{x^{4}}{4} +
2x^{3} + \frac{11}{2}x^{2} + 6x + C

  • Câu 34: Vận dụng

    Một chất điểm A từ trạng thái nghỉ chuyển động với vận tốc nhanh dần đều, 8 giây sau nó đạt đến vận tốc 6m/s. Từ thời điểm đó nó chuyển động đều. Một chất điểm B khác xuất phát từ cùng vị trí A nhưng chậm hơn nó 12 giây với vận tốc nhanh dần đều và đuổi kịp A sau 8 giây (kể từ lúc B xuất phát). Tìm vận tốc B tại thời điểm đó.

    Phương trình vận tốc của vật A là {v_1} = a.t

    Ta có: v\left( 8 ight) = 6 \Rightarrow a = \frac{3}{4} \Rightarrow {v_1} = \frac{3}{4}t

    Quãng đường vật A đi được sau 20s đầu là: \int\limits_0^8 {\frac{3}{4}tdt + 6.12 = 96\left( m ight)}

    Phương trình vận tốc của vật B là

    \begin{matrix}  {v_2} = bt \Rightarrow {S_B} = \int\limits_0^8 {btdt}  = 96 \Rightarrow b = 3 \hfill \\   \Rightarrow {v_2} = bt \hfill \\ \end{matrix}

    => Vận tốc của vật B khi hai vật gặp nhau là: {v_B} = 3.8 = 24\left( {m/s} ight)

  • Câu 35: Thông hiểu

    Tính tích phân B = \int_{0}^{2}{2x\left(
x^{2} + 1 ight)^{2018}dx}?

    Ta có: B = \int_{0}^{2}{2x\left( x^{2} +
1 ight)^{2018}dx}

    = \int_{0}^{2}{\left( x^{2} + 1
ight)^{2018}d\left( x^{2} + 1 ight)}

    = \left. \ \frac{\left( x^{2} + 1
ight)^{2019}}{2019} ight|_{0}^{2} = \frac{5^{2019} -
1}{2019}

  • Câu 36: Thông hiểu

    Cho hàm số f(x) = \frac{1}{\sin
x} có một nguyên hàm là F(x) thỏa mãn F\left( \frac{\pi}{3} ight) = 0. Giá trị của e^{F\left( \frac{2\pi}{3}
ight)} bằng:

    Ta có: F(x) = \int_{}^{}{\frac{1}{\sin x}dx} =\int_{}^{}{\frac{1}{2\sin\frac{x}{2}.\cos\frac{x}{2}}dx}

    = \int {\frac{1}{{2\tan \frac{x}{2}.{{\cos }^2}\frac{x}{2}}}dx}  = \int {\frac{1}{{\tan \frac{x}{2}}}d\left( {\tan \frac{x}{2}} ight)}= \ln \left| {\tan \frac{x}{2}} ight| + C

    Lại có F\left( \frac{\pi}{3} ight) = 0
\Leftrightarrow \ln\left| \tan\frac{\pi}{6} ight| + C = 0

    \Rightarrow C = - \ln\frac{\sqrt{3}}{3}= \ln\sqrt{3} = \frac{1}{2}\ln3

    Do đó: {e^{F\left( {\frac{{2\pi }}{3}} ight)}} = {e^{\ln \left| {\tan \frac{\pi }{3}} ight| + \frac{1}{2}\ln 3}} = {e^{\ln 3}} = 3

  • Câu 37: Vận dụng

    Cho hàm số y = f(x) thỏa mãn f'(x) - f(x) = e^{x}f(0) = 2. Phương trình tiếp tuyến của đồ thị hàm số y(x) = f(x) tại giao điểm với trục hoành là:

    Ta có: f'(x) - f(x) = e^{x}. Nhân cả hai vế với e^{- x} ta được:

    e^{- x}f'(x) - e^{- x}.f(x) =
1

    \Leftrightarrow \left( e^{- x}.f(x)
ight)' = 1

    Lấy nguyên hàm hai vế ta được:

    \Leftrightarrow \int_{}^{}{\left( e^{-
x}.f(x) ight)'dx} = \int_{}^{}{1dx} \Leftrightarrow e^{- x}.f(x) =
x + C

    f(0) = 2 \Rightarrow f(0) = 0 + C
\Leftrightarrow C = 2

    Suy ra e^{- x}.f(x) = x + 2
\Leftrightarrow f(x) = \frac{x + 2}{e^{- x}} = (x + 2)e^{x}

    \Rightarrow f'(x) = (x +
3)e^{x}

    Xét phương trình hoành độ giao điểm (x +
2)e^{x} = 0 \Leftrightarrow x = - 2

    Ta có: f'( - 2) = ( - 2 + 3)e^{- 2} =
e^{- 2};f( - 2) = 0

    Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng -2 là: y = e^{- 2}(x + 2)

  • Câu 38: Thông hiểu

    Giả sử \int_{}^{}\frac{(2x + 3)dx}{x(x +
1)(x + 2)(x + 3) + 1} = - \frac{1}{g(x)} + C với C là hằng số. Tổng các nghiệm của phương trình g(x) = 0 bằng:

    Ta có: \int_{}^{}\frac{(2x + 3)dx}{x(x +
1)(x + 2)(x + 3) + 1} = \int_{}^{}\frac{(2x + 3)dx}{\left( x^{2} + 3x +
2 ight)\left( x^{2} + 3x ight) + 1}

    Đặt t = x^{2} + 3x \Rightarrow dt = (2x +
3)dx

    \int_{}^{}\frac{dt}{(t + 2)t + 1} =
\int_{}^{}\frac{dt}{(t + 1)^{2}} = - \frac{1}{t + 1} + C = -
\frac{1}{x^{2} + 3x + 1} + C

    \Rightarrow g(x) = x^{2} + 3x +
1

    Theo định lí Vi – et ta thấy phương trình g(x) = 0 có hai nghiệm x_{1};x_{2}x_{1} + x_{2} = - 3.

  • Câu 39: Thông hiểu

    Cho \int_{2}^{3}{\frac{1}{(x + 1)(x +
2)}dx} = aln2 + bln3 + cln5 với a;b;c là các số thực. Giá trị của biểu thức T = a + b^{2} - c^{3} bằng:

    Ta có:

    \int_{2}^{3}{\frac{1}{(x + 1)(x + 2)}dx}
= \int_{2}^{3}{\left( \frac{1}{x + 1} - \frac{1}{x + 2}
ight)dx}

    = \left. \ \ln\left| \frac{x + 1}{x + 2}
ight| ight|_{2}^{3} = \ln\frac{4}{5} - \ln\frac{3}{4} = 4ln2 - ln3 -
ln5

    \Rightarrow \left\{ \begin{matrix}
a = 4 \\
b = - 1 \\
c = - 1 \\
\end{matrix} ight.\  \Rightarrow T = a + b^{2} - c^{3} =
6

  • Câu 40: Thông hiểu

    Biết rằng F(x) liên tục trên \mathbb{R} là một nguyên hàm của hàm số f(x) = \left\{ \begin{matrix}
3x^{2} + 2\ \ \ khi\ x \geq 2 \\
4x^{3} - 18\ \ \ khi\ x < 2 \\
\end{matrix} ight.. Giá trị biểu thức F( - 1) - F(3) bằng:

    Ta có: F(x) = \int_{}^{}{f(x)dx} =
\left\{ \begin{matrix}
x^{3} + 2x + C_{1}\ \ \ khi\ x \geq 2 \\
x^{4} - 18x + C_{2}\ \ \ khi\ x < 2 \\
\end{matrix} ight.

    Vì hàm số F(x) liên tục trên \mathbb{R} nên liên tục tại x = 2 tức là

    \lim_{x ightarrow 2^{+}}F(x) = \lim_{x
ightarrow 2^{-}}F(x) = F(2)

    \Leftrightarrow 12 + C_{1} = - 20 +
C_{2} \Leftrightarrow C_{1} - C_{2} = - 32

    Do đó

    F( - 1) - F(3) = \left( 1 + 18 + C_{2}
ight) - \left( 27 + 6 + C_{1} ight)

    = - 14 - \left( C_{1} - C_{2} ight) =
- 14 + 32 = 18

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Nguyên hàm - Tích phân và ứng dụng Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo