Đề kiểm tra 45 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm: Nội dung các câu hỏi trong Đề kiểm tra được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng một cách tốt hơn
  • Thời gian làm: 45 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz cho điểm M(x;y;z). Trong các mệnh đề sau, mệnh đề nào đúng?

    Nếu M' đối xứng với M qua mặt phẳng (Oxz) thì M'(x; - y;z).

    Nếu M' đối xứng với M qua trục Oy thì M'( - x;y; - z).

    Nếu M' đối xứng với M qua gốc tọa độ thì M'( - x; - y; - z).

    Vậy mệnh đề đúng là: “Nếu M' đối xứng với M qua mặt phẳng (Oxy) thì M'(x;y; - z)”.

  • Câu 2: Vận dụng cao

    Trong không gian Oxyz, cho bốn điểm A( - 1;2;0),B(0;0; - 2),C(1;0;1),D(2;1;- 1). Hai điểm M;N lần lượt nằm trên đoạn BC và BD sao cho 2\frac{BC}{BM} + 3\frac{BD}{BN} = 10\frac{V_{ABMN}}{V_{ABCD}} =\frac{6}{25}. Phương trình mặt phẳng (AMN) có dạng ax + by + cz + 32 = 0. Tính S = a - b + c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho bốn điểm A( - 1;2;0),B(0;0; - 2),C(1;0;1),D(2;1;- 1). Hai điểm M;N lần lượt nằm trên đoạn BC và BD sao cho 2\frac{BC}{BM} + 3\frac{BD}{BN} = 10\frac{V_{ABMN}}{V_{ABCD}} =\frac{6}{25}. Phương trình mặt phẳng (AMN) có dạng ax + by + cz + 32 = 0. Tính S = a - b + c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Vận dụng

    Cho hai vectơ \overrightarrow a  = \,\,\left( {2, - 1,1} ight);\,\,\overrightarrow b  = \,\,\left( { - 2,3,1} ight). Xác định vectơ \vec c, biết \vec c cùng phương với \vec a và \vec a .\vec c=-4

    Gọi tọa độ của \vec c  là \overrightarrow c  = \left( {{c_1};{c_2};{c_3}} ight)

    Theo đề bài, ta có \vec c cùng phương \overrightarrow a  \Leftrightarrow \frac{{{c_1}}}{2} = \frac{{{c_2}}}{{ - 1}} = \frac{{{c_3}}}{1}

    \Rightarrow {c_1} = 2{c_3};\,{c_2} =  - {c_3}

    Mặt khác, \vec a .\vec c=-4, thay vào ta được:

    \begin{array}{l}\overrightarrow a .\overrightarrow c  =  - 4\\ \Leftrightarrow 2{c_1} - {c_2} + {c_3} =  - 4\\ \Leftrightarrow 4{c_3} + {c_3} + {c_3} =  - 4\\ \Leftrightarrow {c_3} =  - \dfrac{2}{3}\end{array}

    \begin{array}{l} \Rightarrow {c_1} = 2{c_3} =  - \dfrac{4}{3};\,{c_2} = \dfrac{2}{3}\\ \Rightarrow \overrightarrow c  = \left( { - \dfrac{4}{3};\dfrac{2}{3}; - \dfrac{2}{3}} ight)\end{array}

  • Câu 4: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;5; - 1),B(1;1;3). Tìm tọa độ điểm M thuộc (Oxy) sao cho \left| \overrightarrow{MA} + \overrightarrow{MB}
ight| ngắn nhất.

    Gọi J(x; y; z) là điểm sao cho \overrightarrow{JA} + \overrightarrow{JB} =
\overrightarrow{0} Suy ra J(2; 3; 1).

    Khi đó \left| \overrightarrow{MA} +
\overrightarrow{MB} ight| = \left| \overrightarrow{MJ} +
\overrightarrow{JA} + \overrightarrow{MJ} + \overrightarrow{JB} ight|
= 2\left| \overrightarrow{MJ} ight|

    Vậy \left| \overrightarrow{MA} +
\overrightarrow{MB} ight| đạt GTNN khi và chỉ khi \left| \overrightarrow{MJ} ight| đạt GTNN hay M là hình chiếu của J lên mặt phẳng (Oxy).

    Vậy M(2; 3; 0).

  • Câu 5: Vận dụng

    Trong không gian Oxyz, cho tam giác ABCA(1; 1; 1), đường trung tuyến kẻ từ B và đường cao kẻ từ C lần lượt có phương trình \frac{x - 8}{10} =
\frac{y + 7}{- 9} = \frac{z - 5}{5};\frac{x - 7}{2} = \frac{y + 1}{5} =
\frac{z - 3}{- 1}. Biết B (a; b; c), khi đó a + b + c bằng

    Hình vẽ minh họa

    Giả sử đường cao là CH:\frac{x - 7}{2} =
\frac{y + 1}{5} = \frac{z - 3}{- 1} ta có vectơ chỉ phương của CH là \overrightarrow {u} = (2; 5; −1).

    B thuộc đường trung tuyến BM:\frac{x -
8}{10} = \frac{y + 7}{- 9} = \frac{z - 5}{5} nên B(8 + 10t; −7 − 9t; 5 + 5 t).

    Suy ra \overrightarrow{AB} = (7 + 10t; -
8 - 9t;4 + 5t)

    CH ⊥ AB nên \overrightarrow{AB}.\overrightarrow{u} =
0⇔ −30t−30 = 0 ⇔ t = −1 ⇒ B(−2; 2; 0).

    Vậy a + b + c = 0.

  • Câu 6: Thông hiểu

    Cho hai đường thẳng \left( {d'} ight)\left\{ \begin{array}{l}x = 3 - 2t\\y = 1 + t\\z =  - 2 - t\end{array} ight.\,\,;\,\,\,\,\,\left( {d''} ight)\left\{ \begin{array}{l}x = m - 3\\y = 2 + 2m\\z = 1 - 4m\end{array} ight.\,\,;t,\,\,m \in \mathbb{R}

    Viết phương trình tổng quát của mặt phẳng (P) qua (d’)và song song với (d’’).

     Vì (P) đi qua (d’) nên (P) nhận VTCP của (d’) làm 1 VTCP

    VTCP\left( P ight):\overrightarrow a  = \left( { - 2,1, - 1} ight)

    Vì (P) song song với (d’’) nên (P) có VTCP thứ hai là :

    VTCP\left( P ight):\overrightarrow b  = \left( {1,2, - 4} ight)

    Từ đây, ta suy ra VTPT của (P) chính là tích có hướng của 2 VTCP và :

    VTPT\left( P ight):\left[ {\overrightarrow a ,\overrightarrow b } ight] = \left( {2,9,5} ight)

    Lấy điểm A(3,1,-2) trên đường thẳng (d’) mà (d’) nằm trong (P) nên ta có được A cũng phải thuộc (P):

    \begin{array}{l}A\left( {3,1, - 2} ight) \in \left( P ight) \Rightarrow \left( {x - 3} ight)2 + \left( {y - 1} ight)9 + \left( {z + 2} ight)5 = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow \left( P ight):2x + 9y + 5z - 5 = 0\end{array}

  • Câu 7: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x + 2y - 5z - 3 = 0 và hai điểm A(3;1;1),B(4;2;3). Gọi (Q) là mặt phẳng qua AB và vuông góc với (P). Phương trình nào là phương trình của mặt phẳng (Q)?

    (Q) là mặt phẳng đi qua A, B và vuông góc với (P) nên mặt phẳng (Q) nhận \overrightarrow{AB} =
(1;1;2);\overrightarrow{n_{(P)}} = (1;2; - 5) làm hai vectơ chỉ phương.

    Vectơ pháp tuyến của mặt phẳng (Q)\overrightarrow{n_{(Q)}} = \left\lbrack
\overrightarrow{AB};\overrightarrow{n_{(P)}} ightbrack = ( -
9;7;1)

    Phương trình mặt phẳng

    (Q): - 9(x - 3) + 7(y - 1) + 1(z - 1) =
0

    \Leftrightarrow 9x - 7y - z - 19 =
0

  • Câu 8: Nhận biết

    Cho tứ diện đều ABCD. Mệnh đề nào sau đây sai?

    Vì tứ diện ABCD là tứ diện đều nên có các cặp cạnh đối vuông góc

    Suy ra \overrightarrow{AC}.\overrightarrow{BD} =
\overrightarrow{AD}.\overrightarrow{BC} =
\overrightarrow{AB}.\overrightarrow{CD} =
\overrightarrow{0}

    Vậy mệnh đề chưa chính xác là: \overrightarrow{AD}.\overrightarrow{CD} =
\overrightarrow{AC}.\overrightarrow{DC} =
\overrightarrow{0}.

  • Câu 9: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A( - 1; - 2;1),B( - 4;2; - 2), C( - 1; - 1; - 2),D( - 5; - 5;2). Tính khoảng cách từ điểm D đến mặt phẳng (ABC).

    Ta có \overrightarrow{\ AB} = ( - 3;4; -
3),\overrightarrow{AC} = (0;1; - 3)

    \Rightarrow \left\lbrack
\overrightarrow{\ AB};\overrightarrow{AC} ightbrack = ( - 9; - 9; -
3)

    Mặt phẳng (ABC) đi qua A( - 1; - 2;1) và nhận \overrightarrow{n} = (3;3;1) là vectơ pháp tuyến có phương trình tổng quát là 3x +
3y + z + 8 = 0.

    Khoảng cách từ điểm D đến mặt phẳng (ABC) là:

    d = d\left( D;(ABC) ight) = \frac{| -
15 - 15 + 2 + 8|}{\sqrt{3^{2} + 3^{2} + 1^{2}}} =
\frac{20}{\sqrt{19}}.

  • Câu 10: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 - t \\
y = 1 + t \\
z = t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Phương trình nào sau đây là phương trình chính tắc của d?

    Đường thẳng d có vectơ chỉ phương \overrightarrow{u} = ( - 1;1;1) và đi qua điểm M(2;1;0). Do đó phương trình chính tắc của d là: \frac{x - 2}{- 1} = \frac{y - 1}{1} =
\frac{z}{1}

  • Câu 11: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng đi qua ba điểm A(1;1;4),B(2;7;9)C(0;9;13).

    Ta có: \overrightarrow{AB} =
(1;6;5),\overrightarrow{AC} = ( - 1;8;9)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = (14; - 14;14) =
14(1; - 1;1)

    Mặt phẳng (ABC) đi qua điểm A(1;1;4) và nhận \overrightarrow{n} = (1; - 1;1) làm vectơ pháp tuyến có phương trình là:

    x - 1 - (y - 1) + z - 4 = 0

    \Leftrightarrow x - y + z - 4 =
0

  • Câu 12: Nhận biết

    Tích vô hướng của 2 vectơ \overrightarrow{a},\overrightarrow{b}trong không gian được tính bằng:

    Theo định nghĩa tích vô hướng của hai vecto, ta có: \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|.cos\left(
\overrightarrow{a},\overrightarrow{b} ight).

  • Câu 13: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (\alpha):2x + y - z - 3 = 0,(\beta):2x - y + 5 =0. Viết phương trình của mặt phẳng (P) song song với trục Oz và chứa giao tuyến của (\alpha)(\beta)?

    Mặt phẳng (P) chứa giao tuyến của hai mặt phẳng (\alpha)(\beta) nên có dạng:

    m(2x + y - z - 3) + n(2x - y + 5) =
0

    \Leftrightarrow (2m + 2n)x + (m - n)y -
mz - 3m + 5n = 0

    Mặt phẳng (P) song song với trục Oz nên m = 0.

    Chọn n = 1 ta có (P):2x - y + 5 =
0

  • Câu 14: Thông hiểu

    Cho tứ diện ABCDAB = AC = AD\widehat{BAC} = \widehat{BAD} = 60^{0}. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{CD}?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AB}.\overrightarrow{CD} =
\overrightarrow{AB}.\left( \overrightarrow{AD} - \overrightarrow{AC}
ight) = \overrightarrow{AB}.\overrightarrow{AD} -
\overrightarrow{AB}.\overrightarrow{AC}

    = \left| \overrightarrow{AB}ight|.\left| \overrightarrow{AD} ight|.\cos\left(\overrightarrow{AB};\overrightarrow{AD} ight) - \left|\overrightarrow{AB} ight|.\left| \overrightarrow{AC} ight|.\cos\left(\overrightarrow{AB};\overrightarrow{AC} ight)

    = \left| \overrightarrow{AB}ight|.\left| \overrightarrow{AD} ight|.\cos60^{0} - \left|\overrightarrow{AB} ight|.\left| \overrightarrow{AC}ight|.\cos60^{0}

    AC = AD \Rightarrow
\overrightarrow{AB}.\overrightarrow{CD} = 0 \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{CD} ight) = 90^{0}

  • Câu 15: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0;1;1),B(1;0;1),C(1;1;0). Có bao nhiêu điểm M cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)?

    Ta có \left\{ \begin{matrix}
\overrightarrow{OA} = (0;1;1);\overrightarrow{OB} = (1;0;1) \\
\overrightarrow{OC} = (1;1;0);\overrightarrow{AB} = (1; - 1;0) \\
\overrightarrow{AC} = (1;\ 0; - 1) \\
\end{matrix} ight.

    Ta có: \left\lbrack
\overrightarrow{OA};\overrightarrow{OB} ightbrack = (1;\ 1; - 1)
\Rightarrow (OAB):x + y - z = 0

    Ta có: \left\lbrack
\overrightarrow{AB};\overrightarrow{OC} ightbrack = ( - 1;1;1)
\Rightarrow (OBC): - x + y + z = 0

    Gọi điểm M(a;b;c) cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)

    Từ d\left( M,(OAB) ight) = d\left(
M,(OBC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = c(1) \\
b = c(2) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(OAC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b - c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = 0(3) \\
b = c(4) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(ABC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{|a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
c = 0(5) \\
a = - b(6) \\
\end{matrix} ight.

    Từ (1), (3), (5) suy ra a = c = 0, b khác 0 tùy ý.

    Như vậy có vô số điểm cách đều bốn mặt phẳng

  • Câu 16: Nhận biết

    Trong không gian Oxyz, mặt phẳng (P):2x + z - 1 = 0 có một vectơ pháp tuyến là:

    Mặt phẳng (P):2x + z - 1 = 0 có một vectơ pháp tuyến là: \overrightarrow{n}
= (2;0;1).

  • Câu 17: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;1;0)B(0;1;2). Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng AB?

    Ta có:

    \overrightarrow{AB} = ( - 1;0;2) là một vectơ chỉ phương của đường thẳng AB.

    Vậy đáp án cần tìm là: \overrightarrow{b}
= ( - 1;0;2).

  • Câu 18: Vận dụng cao

    Cho 2 đường thẳng (d)\left\{ \begin{array}{l}x = 2 + 2t\\y =  - 1 + t\\z = 1\end{array} ight. và  (\triangle )\left\{ \begin{array}{l}x = 1\\y = 1 + t\\z = 3 - t\end{array} ight.

    Mặt phẳng (P) chứa (d) và song song với (\triangle ) có phương trình tổng quát :

    Phương trình (d) cho A(2, - 1,1) \in (d) và vectơ chỉ phương của (d) là: \overrightarrow a  = (2,1,0)

    Phương trình (\triangle ) cho vectơ chỉ phương của (\triangle ) là : \overrightarrow b  = (0,1, - 1)

    Gọi M(x,y,z) là điểm bất kỳ thuộc mặt phẳng (P) thì :

    \begin{array}{l}\overrightarrow {AM}  = (x - 2,y + 1,z - 1);\,\,\,\,\left[ {\overrightarrow a ,\overrightarrow b } ight] = ( - 1,2,2)\\\left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AM}  = 0 \Leftrightarrow  - (x - 2) + 2(y + 1) + 2(z - 1) = 0\\ \Leftrightarrow x - 2y - 2z - 2 = 0\end{array}

    Câu hỏi này cho ta thấy mối quan hệ giữa đường thẳng và mặt phẳng, từ 2 đường thảng ta có thể viết PT được của 1 mp.

  • Câu 19: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm B(1;2; - 3),C(7;4 - 2). Tìm tọa độ điểm E thỏa mãn đẳng thức \overrightarrow{CE} =
2\overrightarrow{EB}?

    Gọi E(x;y;z)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{CE} = (x - 7;y - 4;z + 2) \\
2\overrightarrow{EB} = (2 - 2x;4 - 2y; - 6 - 2z) \\
\end{matrix} ight.

    Theo bài ra ta có:

    \overrightarrow{CE} =2\overrightarrow{EB} \Leftrightarrow \left\{ \begin{matrix}x - 7 = 2 - 2x \\y - 4 = 4 - 2y \\z + 2 = - 6 - 2z \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}x = 3 \\y = \dfrac{8}{3} \\z = - \dfrac{8}{3} \\\end{matrix} ight.\  \Rightarrow E\left( 3;\frac{8}{3}; - \dfrac{8}{3}ight)

    Vậy điểm E có tọa độ là E\left(
3;\frac{8}{3}; - \frac{8}{3} ight).

  • Câu 20: Thông hiểu

    Trong không gian Oxyz, cho các điểm A( - 1;2;1),B(2; -
1;4),C(1;1;4). Đường thẳng nào dưới đây vuông góc với mặt phẳng (ABC)?

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (3; - 3;3)//\overrightarrow{a} = (1; - 1;1) \\
\overrightarrow{AC} = (2; - 1;3) \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{n_{(ABC)}} =
\left\lbrack \overrightarrow{a};\overrightarrow{AC} ightbrack = ( -
2; - 1;1) là 1 VTPT của mặt phẳng (ABC).

    Do đó đường thẳng vuông góc với mặt phẳng (ABC) có VTPT cùng phương với vectơ (−2; −1; 1).

    Dựa vào các đáp án ta thấy ở đáp án D đường thẳng \frac{x}{2} = \frac{y}{1} = \frac{z}{- 1} có 1 VTPT là (−2; 1; 1) cùng phương với (−2; −1; 1).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 22 lượt xem
Sắp xếp theo