Trong không gian
, cho hai điểm
và
. Trung điểm của đoạn thẳng
có tọa độ là:
Gọi là trung điểm của đoạn thẳng
, ta có:
Vậy tọa độ trung điểm của AB là: .
Trong không gian
, cho hai điểm
và
. Trung điểm của đoạn thẳng
có tọa độ là:
Gọi là trung điểm của đoạn thẳng
, ta có:
Vậy tọa độ trung điểm của AB là: .
Trong không gian
khoảng cách giữa hai mặt phẳng
và
bằng:
Dựa vào phương trình có vectơ pháp tuyến là
nên
Ta có: suy ra
Trong không gian với hệ trục tọa độ Oxyz , cho điểm A(3; -1; 0) và đường thẳng d:
. Mặt phẳng
chứa d sao cho khoảng cách từ A đến lớn nhất có phương trình là:

Gọi H là hình chiếu vuông góc của A lên , K là hình chiếu vuông góc của A lên d.
Ta có: cố định và
Suy ra lớn nhất bằng AK khi
.
Ta có (d): qua M(2; -1; 1) , có VTCP
.
Gọi (P) là mặt phẳng qua A và chứa có VTPT .
Mặt phẳng có một VTPT là
và
qua M (2; -1; 1) có phương trình:
Trong không gian với hệ toạ độ
, phương trình đường thẳng đi qua hai điểm
và
là
Vectơ chỉ phương của đường thẳng cần tìm là và đường thẳng đi qua điểm
.
Vậy phương trình đường thẳng cần tìm là: .
Trong không gian với hệ tọa độ
, cho hai vectơ
. Gọi
là vectơ cùng hướng với vectơ
(tích có hướng của hai vectơ
và
. Biết
, tìm tọa độ vectơ
.
Ta thấy
Vì là vectơ cùng hướng với vectơ
nên
.
Mặt khác
Vậy .
Trong không gian
, cho hai đường thẳng
và
, (với
là tham số). Tìm
để hai đường thẳng
và
cắt nhau
Ta có:
đi qua điểm M1(1; 2; 3) và có vectơ chỉ phương
đi qua điểm M2(1; m; −2) và có vectơ chỉ phương
Ta có:
và
cắt nhau
Cho hình lập phương
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Vì (
là hình chữ nhật) nên
(
là hình vuông)
Trong không gian với hệ trục tọa độ
, cho điểm
và mặt phẳng
. Một mặt phẳng
đi qua hai điểm
và vuông góc với
có dạng
. Khẳng định nào sau đây là đúng?
Vì (Q) vuông góc với (P) nên (Q) nhận véc-tơ pháp tuyến làm véc-tơ chỉ phương.
Mặt khác do (Q) đi qua hai điểm A, B nên nhận làm véc-tơ chỉ phương.
Vậy (Q) có véc-tơ pháp tuyến là
Vậy phương trình mặt phẳng (Q) là:
Vậy .
Trong không gian
, đường thẳng đi qua
và nhận
làm vectơ chỉ phương có phương trình là:
Đường thẳng đi qua và nhận
làm vectơ chỉ phương có phương trình là
.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm
và mặt phẳng
. Gọi M là điểm thuộc (P) sao cho
vuông tại M . Khoảng cách từ M đến (Oxy) bằng:
Ta có: suy ra M thuộc mặt cầu (S) đường kính AB.
Gọi I là trung điểm AB , khi đó và
.
Ta tính được suy ra (P) và mặt cầu (S) tiếp xúc nhau hay M là tiếp điểm của (P) và (S). Vậy M là hình chiếu của I trên (P) .
Phương trình đường thẳng qua I và vuông góc với (P) là:
Tọa độ của M là nghiệm của hệ phương trình:
suy ra .
Suy ra .
Cho mặt phẳng
qua điểm
và chắn trên ba trục tọa độ
theo ba đoạn có số đo đại số a, b, c. Viết phương trình tổng quát của
khi a, b, c tạo thành một cấp số nhân có công bội bằng 2.
Theo đề bài, ta có a, b, c là cấp số nhân với công bội q=2
Phương trình của
(P) qua
Trong không gian
, cho điểm
. Phương trình mặt phẳng
đi qua
và chứa trục
là:
Mặt phẳng có VTPT
và đi qua điểm
.
Suy ra phương trình .
Trong không gian
cho hai điểm
. Xác định tính đúng sai của từng phương án dưới đây:
a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng
b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là
. Đúng||Sai
c) Cho
, tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai
d) Điểm
nằm trên mặt phẳng (Oxy) thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
Trong không gian cho hai điểm
. Xác định tính đúng sai của từng phương án dưới đây:
a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng
b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là . Đúng||Sai
c) Cho , tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai
d) Điểm nằm trên mặt phẳng (Oxy) thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
a) Sai: Hình chiếu của điểm trên trục
có tọa độ là
b) Đúng: Vì là trung điểm của
.
c) Đúng: Ta có .
vuông tại
.
d) Sai.
Gọi thỏa
Suy ra .
Khi đó .
đạt giá trị nhỏ nhất khi và chỉ khi
là hình chiếu của
trên
.
Vậy .
Suy ra
Trong các khẳng định sau, khẳng định nào sai?
Ta có:
Vậy khẳng định sai là: .
Trong không gian với hệ tọa độ
,cho mặt phẳng
và điểm
. Gọi
là điểm thuộc tia
, gọi
là hình chiếu của
lên
. Biết rằng tam giác
cân tại
. Diện tích của tam giác
bằng:
Gọi
Đường thẳng AB qua A và vuông góc với (α) nên có phương trình
B là hình chiếu của A lên (α) nên tọa độ B thỏa mãn hệ
Suy ra
Tam giác MAB cân tại M nên
Nếu a = 3 thì tọa độ . Diện tích tam giác MAB là
Nếu a = −3 thì tọa độ A (0; 0; −3) và B (0; 0; −3) trùng nhau nên không thỏa mãn.
Vậy diện tích của tam giác bằng:
.
Trong không gian với hệ tọa độ
cho ba điểm
và
là trực tâm tam giác
. Tính
?
Ta có:
Lại có:
Cho hai đường thẳng 
Viết phương trình tổng quát của mặt phẳng (P) qua (d’)và song song với (d’’).
Vì (P) đi qua (d’) nên (P) nhận VTCP của (d’) làm 1 VTCP
Vì (P) song song với (d’’) nên (P) có VTCP thứ hai là :
Từ đây, ta suy ra VTPT của (P) chính là tích có hướng của 2 VTCP và :
Lấy điểm A(3,1,-2) trên đường thẳng (d’) mà (d’) nằm trong (P) nên ta có được A cũng phải thuộc (P):
Cho hình chóp
có đáy
là hình bình hành tâm
. Điểm
là điểm thỏa mãn
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Gọi O là tâm hình bình hành suy ra
Ta có:
suy ra ba điểm
thẳng hàng.
Trong không gian hệ trục tọa độ
, cho các điểm
. Gọi
là điểm sao cho
là trọng tâm tam giác
. Tính tổng các tọa độ của điểm
?
Đặt . Vì
là trọng tâm tam giác
nên
Trong không gian tọa độ Oxyz, cho hình hộp
với các điểm
,
,
và
. Tìm tọa độ đỉnh
.
Hình vẽ minh họa
.
Theo quy tắc hình hộp ta có: .