Đề kiểm tra 45 phút Chương 3 Phương pháp tọa độ trong không gian

Mô tả thêm: Nội dung các câu hỏi trong Đề kiểm tra được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng một cách tốt hơn
  • Thời gian làm: 45 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian cho điểm O và bốn điểm A;B;C;D không thẳng hàng. Điều kiện cần và đủ để A;B;C;D tạo thành hình bình hành là:

    Để A;B;C;D tạo thành hình bình thành thì \left\lbrack \begin{matrix}
\overrightarrow{AB} = \overrightarrow{CD} \\
\overrightarrow{AC} = \overrightarrow{BD} \\
\end{matrix} ight..

    Khi đó:

    \overrightarrow{OA} +
\overrightarrow{OC} = \overrightarrow{OB} +
\overrightarrow{OD}

    \Leftrightarrow \overrightarrow{OA} -
\overrightarrow{OB} = \overrightarrow{OD} -
\overrightarrow{OC}

    \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{CD}

    \overrightarrow{OA} + \overrightarrow{OB}
+ \overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}, O là trọng tâm tứ giác (hoặc tứ diện) ABCD. (Loại).

    \overrightarrow{OA} +
\frac{1}{2}\overrightarrow{OB} = \overrightarrow{OC} +
\frac{1}{2}\overrightarrow{OD}

    \Leftrightarrow \overrightarrow{OA} -
\overrightarrow{OC} = \frac{1}{2}\overrightarrow{OD} -
\frac{1}{2}\overrightarrow{OB}

    \Leftrightarrow \overrightarrow{CA} =
\frac{1}{2}\overrightarrow{BD} (Loại)

    \overrightarrow{OA} +
\frac{1}{2}\overrightarrow{OC} = \overrightarrow{OB} +
\frac{1}{2}\overrightarrow{OD}

    \Leftrightarrow \overrightarrow{OA} -
\overrightarrow{OB} = \frac{1}{2}\overrightarrow{OD} -
\frac{1}{2}\overrightarrow{OC}

    \Leftrightarrow \overrightarrow{BA} =
\frac{1}{2}\overrightarrow{CD} (loại)

    Vậy đáp án cần tìm là \overrightarrow{OA}
+ \overrightarrow{OC} = \overrightarrow{OB} +
\overrightarrow{OD}.

  • Câu 2: Thông hiểu

    Trong không gian tọa độ Oxyz, cho hai điểm A(1;2;0),B(2; - 1;1). Tìm tọa độ điểm C có hoành độ dương thuộc trục Ox sao cho tam giác ABC vuông tại C?

    Ta có: C có hoành độ dương thuộc trục Ox \Rightarrow C(x;0;0);x >
0

    Theo bài ra ta có: \left\{ \begin{matrix}
\overrightarrow{AC} = (x - 1; - 2;0) \\
\overrightarrow{BC} = (x - 2;1; - 1) \\
\end{matrix} ight. và tam giác ABC vuông tại C nên

    \Leftrightarrow
\overrightarrow{AC}.\overrightarrow{BC} = 0 \Leftrightarrow (x - 1)(x -
2) - 2 = 0

    \Leftrightarrow x^{2} - 3x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0(L) \\
x = 3(tm) \\
\end{matrix} ight.

    Vậy C(3;0;0)

  • Câu 3: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, điểm nào sau đây không thuộc mặt phẳng (P):x + y + z - 1 = 0?

    Dễ thấy điểm O(0;0;0) không thuộc mặt phẳng (P).

  • Câu 4: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, gọi (\alpha) là mặt phẳng chứa đường thẳng (\beta):\frac{x - 2}{1} = \frac{y - 3}{1} =
\frac{z}{2} và vuông góc với mặt phẳng (\beta):x + y - 2z + 1 = 0. Hỏi giao tuyến của (\alpha)(\beta) đi qua điểm nào dưới đây?

    Ta có: (\alpha):\left\{ \begin{matrix}
d \subset (\alpha)\  \\
(\beta)\bot(\alpha) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
A(2;3;0) \in d \Rightarrow A \in (\alpha)\  \\
\overrightarrow{n_{\alpha}}\bot\overrightarrow{u_{d}} = (1;1;2)\  \\
\overrightarrow{n_{\alpha}}\bot\overrightarrow{n_{\beta}} = (1;1; - 2)
\\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
A(2;3;0) \in (\alpha)\  \\
\overrightarrow{n_{\alpha}} = \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{n_{\beta}} ightbrack = ( -
4;4;0) \\
\end{matrix} ight.

    Suy ra (\alpha):x - y + 1 =
0

    Khi đó giao tuyến thỏa hệ \left\{
\begin{matrix}
x - y + 1 = 0 \\
x + y - 2z + 1 = 0 \\
\end{matrix} ight.

    Thay các phương án vào hệ, ta nhận phương án (2;3;3).

  • Câu 5: Vận dụng

    Trong không gian với hệ tọa độ Oxyz,cho mặt phẳng (\alpha):x - z - 3 = 0 và điểm M(1;1;1). Gọi A là điểm thuộc tia Oz, gọi B là hình chiếu của A lên (\alpha). Biết rằng tam giác MAB cân tại M. Diện tích của tam giác MAB bằng:

    Gọi A (0; 0; a).

    Đường thẳng AB qua A và vuông góc với (α) nên có phương trình \left\{ \begin{matrix}
x = t \\
y = 0 \\
z = a - t \\
\end{matrix} ight.

    B là hình chiếu của A lên (α) nên tọa độ B thỏa mãn hệ \left\{ \begin{matrix}x = t \\y = 0 \\z = a - t \\x - z - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = \dfrac{a + 3}{2} \\y = 0 \\z = \dfrac{a - 3}{2} \\\end{matrix} ight.

    Suy ra B\left( \frac{a + 3}{2};0;\frac{a
- 3}{2} ight)

    Tam giác MAB cân tại M nên MA =
MB

    \Leftrightarrow 1 + 1 + (1 - a)^{2} =
\left( \frac{a + 1}{2} ight)^{2} + 1 + \left( \frac{a - 5}{2}
ight)^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = 3 \\
a = - 3 \\
\end{matrix} ight.

    Nếu a = 3 thì tọa độ A (0; 0; 3), B (3; 0; 0). Diện tích tam giác MAB là S = \frac{1}{2}\left| \left\lbrack
\overrightarrow{MA};\overrightarrow{MB} ightbrack ight| =
\frac{3\sqrt{3}}{2}

    Nếu a = −3 thì tọa độ A (0; 0; −3) và B (0; 0; −3) trùng nhau nên không thỏa mãn.

    Vậy diện tích của tam giác MAB bằng: \frac{3\sqrt{3}}{2}.

  • Câu 6: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - y + 2 = 0 và hai điểm A(1;2;3),B(1;0;1). Điểm C(a;\ b; - 2) \in (P) sao cho tam giác ABC có diện tích nhỏ nhất. Tính a + b.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - y + 2 = 0 và hai điểm A(1;2;3),B(1;0;1). Điểm C(a;\ b; - 2) \in (P) sao cho tam giác ABC có diện tích nhỏ nhất. Tính a + b.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, vectơ \overrightarrow{u} = (1;2; - 5) là vectơ chỉ phương của đường thẳng nào sau đây?

    Đường thẳng d:\left\{ \begin{matrix}
x = 6 - t \\
y = - 1 - 2t \\
z = 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là \overrightarrow{v} = ( -
1; - 2;5) cùng phương với vectơ \overrightarrow{u} = (1;2; - 5). Vậy \overrightarrow{u} = (1;2; - 5) là một vectơ chỉ phương của đường thẳng \left\{ \begin{matrix}
x = 6 - t \\
y = - 1 - 2t \\
z = 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 8: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các tia Ox,Oy,Oz lần lượt tại các điểm A;B;C sao cho T = \frac{1}{OA^{2}} + \frac{1}{OB^{2}} +
\frac{1}{OC^{2}} đạt giá trị nhỏ nhất là:

    Giả sử A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c là các số thực dương do OA, OB, OC khác 0.

    Khi đó phương trình mặt phẳng (P) qua A, B, C có phương trình là \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1

    M ∈ (P) nên \frac{1}{a} + \frac{2}{b}
+ \frac{3}{c} = 1, do đó theo bất đẳng thức Bunhiacopski ta có:

    T = \frac{1}{a^{2}} + \frac{1}{b^{2}} +
\frac{1}{c^{2}} = \frac{1}{14}\left( 1^{2} + 2^{2} + 3^{2} ight)\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}} ight)

    \geq \frac{1}{14}\left( \frac{1}{a} +
\frac{2}{b} + \frac{3}{c} ight)^{2} = \frac{1}{14}

    T đạt giá trị nhỏ nhất nên ta có dấu bằng xảy ra, tức là: \left\{ \begin{matrix}a = 2b = 3c \\\dfrac{1}{a} + \dfrac{2}{b} + \dfrac{3}{c} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 14 \\b = \dfrac{14}{2} \\c = \dfrac{14}{3} \\\end{matrix} ight.

    Vậy phương trình mặt phẳng (P) là x + 2y
+ 3z - 14 = 0.

  • Câu 9: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(0; −1; 2), B(2; −3; 0), C(−2; 1; 1), D(0; −1; 3). Gọi (L) là tập hợp tất cả các điểm M trong không gian thỏa mãn đẳng thức \overrightarrow{MA}.\overrightarrow{MB} =
\overrightarrow{MC}.\overrightarrow{MD} = 1. Biết rằng (L) là một đường tròn, đường tròn đó có bán kính r bằng bao nhiêu?

    Gọi M(x; y; z) là tập hợp các điểm thỏa mãn yêu cầu bài toán.

    Ta có \left\{ \begin{matrix}
\overrightarrow{AM} = (x;y + 1;z - 2) \\
\overrightarrow{BM} = (x - 2;y + 3;z) \\
\overrightarrow{CM} = (x + 2;y - 1;z - 1) \\
\overrightarrow{DM} = (x;y + 1;z - 3) \\
\end{matrix} ight.

    Từ giả thiết \overrightarrow{MA}.\overrightarrow{MB} =
\overrightarrow{MC}.\overrightarrow{MD} = 1 \Leftrightarrow \left\{
\begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = 1 \\
\overrightarrow{MC}.\overrightarrow{MD} = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x(x - 2) + (y + 1)(y + 3) + z(z - 2) = 1 \\
x(x + 2) + (y + 1)(y - 1) + (z - 1)(z - 3) = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 2x + 4y - 2z + 2 = 0 \\
x^{2} + y^{2} + z^{2} + 2x - 4z + 1 = 0 \\
\end{matrix} ight.

    Suy ra quỹ tích điểm M là đường tròn giao tuyến của mặt cầu tâm I_1(1; −2; 1), R_1 = 2 và mặt cầu tâm I_2(−1; 0; 2), R_2 = 2

    I_{1}I_{2} = \sqrt{5}

    Dễ thấy r = \sqrt{{R_{1}}^{2} - \left(
\frac{I_{1}I_{2}}{2} ight)^{2}} = \frac{\sqrt{11}}{2}

  • Câu 10: Vận dụng

    Trong không gian cho tam giác ABC. Tìm M sao cho giá trị của biểu thức P = MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất?

    Gọi G là trọng tâm tam giác ABC

    Suy ra G cố định và \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} =
\overrightarrow{0}

    P = MA^{2} + MB^{2} +
MC^{2}

    P = \left( \overrightarrow{MG} +
\overrightarrow{GA} ight)^{2} + \left( \overrightarrow{MG} +
\overrightarrow{GB} ight)^{2} + \left( \overrightarrow{MG} +
\overrightarrow{GC} ight)^{2}

    P = 3{\overrightarrow{MG}}^{2} +
2\overrightarrow{MG}.\left( \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} ight)^{2} + GA^{2} + GB^{2} + GC^{2}

    P = 3MG^{2} + GA^{2} + GB^{2} + GC^{2}
\geq GA^{2} + GB^{2} + GC^{2}

    Dấu “=” xảy ra khi M \equiv
G

    Vậy P_{\min} = GA^{2} + GB^{2} +
GC^{2} với M \equiv G là trọng tâm tam giác ABC.

  • Câu 11: Nhận biết

    Tính chất nào sau đây sai?

    Tính chất sai là: \overrightarrow{a} -
\overrightarrow{b} = \overrightarrow{b} -
\overrightarrow{a}

  • Câu 12: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho 2 đường thẳng d_{1}:\frac{x + 1}{2} = \frac{y - 1}{- m} =\frac{z - 2}{- 3};d_{2}:\frac{x - 3}{1} = \frac{y}{1} = \frac{z -1}{1}. Tìm tất cả giá trị thực của m để d_{1} vuông góc với d_{2}?

    Vectơ chỉ phương của d_{1};d_{2} lần lượt là: \overrightarrow{u_{1}} = (2; -
m; - 3),\overrightarrow{u_{2}} = (1;1;1).

    Để d_{1}\bot d_{2} thì \overrightarrow{u_{1}}.\overrightarrow{u_{2}} = 0
\Leftrightarrow 2 - m - 3 = 0 \Leftrightarrow m = - 1

  • Câu 13: Vận dụng

    Với giá trị nào của thì hai mặt phẳng sau song song:

    \left( P ight):(m - 2)x - 3my + 6z - 6 = 0;\,\,\,\,\,\left( Q ight):(m - 1)x + 2y + (3 - m)z + 5 = 0

    Áp dụng điều kiện để 2 mp song song, ta xét:

    {A_1}{B_2} - {A_2}{B_1} = \left( {m - 2} ight)2 + \left( {m - 1} ight)3m = 3{m^2} - m - 4 = 0

    \Leftrightarrow m =  - 1,m = \frac{4}{3}

    {B_1}{C_2} - {B_2}{C_1} =  - 3m\left( {3 - m} ight) - 2.6 = 3{m^2} - 9m - 12 = 0

    \Leftrightarrow m =  - 1,m = 4

    {C_1}{A_2} - {C_1}{A_1} = 6\left( {m - 1} ight) - \left( {3 - m} ight)\left( {m - 2} ight) = {m^2} + m = 0

    \Leftrightarrow m =  - 1,m = 0

    Với m=-1 thoả mãn cả 3 điều kiện trên \Rightarrow \left( P ight)//\left( Q ight)

  • Câu 14: Thông hiểu

    Cho hai điểm C\left( { - 1,4, - 2} ight);D\left( {2, - 5,1} ight). Mặt phẳng chứa đường thẳng CD và song song với Oz có phương trình :

    Theo đề bài ta có C\left( { - 1,4, - 2} ight);D\left( {2, - 5,1} ight)

    \Rightarrow \overrightarrow {CD}  = \left( {3, - 9,3} ight) cùng phương với vectơ \overrightarrow a  = \left( {1, - 3,1} ight)

    Mặt khác, trục Oz có vectơ chỉ phương \overrightarrow k  = \left( {0,0,1} ight)

    \Rightarrow \left[ {\overrightarrow a ,\overrightarrow k } ight] = \left( { - 3, - 1,0} ight) cùng phương với vectơ \overrightarrow n  = \left( {3,1,0} ight)

    Chọn \overrightarrow n  = \left( {3,1,0} ight) làm vectơ pháp tuyến cho mặt phẳng chứa CD và song song với trục Oz. Phương trình mặt phẳng này có dạng : 3x + y + D = 0

    Mặt phẳng cần tìm còn qua điểm C nên ta thay tọa độ điểm C vào pt trên, có: 

    - 3 + 4 + D = 0 \Leftrightarrow D =  - 1

    Vậy phương trình mặt phẳng cần tìm : 3x + y - 1 = 0

  • Câu 15: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (\alpha) đi qua điểm A(2; - 1;5) và vuông góc với hai mặt phẳng (P):3x - 2y + z + 7 = 0(Q):5x - 4y + 3z + 1 = 0. Phương trình của mặt phẳng (\alpha)

    Ta có các vectơ pháp tuyến của (P) và (Q) là \left\{ \begin{matrix}
\overrightarrow{n_{(P)}} = (3; - 2;1) \\
\overrightarrow{n_{(Q)}} = (5; - 4;3) \\
\end{matrix} ight.

    Theo giả thiết mặt phẳng (α) vuông góc với (P) và (Q) do đó

    \overrightarrow{n_{(\alpha)}}\bot\left(
\overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}} ight) \Rightarrow
\overrightarrow{n_{(\alpha)}} = \left\lbrack
\overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}} ightbrack =
(1;2;1)

    Suy ra, phương trình mặt phẳng (α) có dạng 1(x - 2) + 2(y + 1) + 1(z - 5) = 0

    Hay x + 2y + z - 5 = 0

  • Câu 16: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho điểm M( - 1;1;2) và hai đường thẳng d:\frac{x - 2}{3} = \frac{y + 3}{2} = \frac{z -
1}{1},d^{'}:\frac{x + 1}{1} = \frac{y}{3} = \frac{z}{- 2}. Phương trình nào dưới đây là phương trình đường thẳng đi qua điểm M, cắt d và vuông góc với d^{'}.

    Gọi \Delta là đường thẳng đi qua điểm M, cắt d và vuông góc với d^{'}.
    Giả sử \Delta \cap d = A \Rightarrow A(2 +
3t; - 3 + 2t;1 + t).

    \overrightarrow{AM} = (3 + 3t; - 4 + 2t;
- 1 + t)

    \Delta\bot d^{'} \Rightarrow
\overrightarrow{AM} \cdot \overrightarrow{u_{d^{'}}} = 0
\Leftrightarrow 3 + 3t + 3( - 4 + 2t) - 2( - 1 + t) = 0

    \Leftrightarrow 7t = 7 \Leftrightarrow t
= 1

    \Rightarrow A(5; -
1;2),\overrightarrow{AM} = (6; - 2;0) = 2(3; - 1;0).

    \Delta:\left\{ \begin{matrix}x = - 1 + 3t \\y = 1 - t \\z = 2 \\\end{matrix} ight.

  • Câu 17: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;0;1),B(2;1; - 2),C( - 1;3;2). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{BA} =
\overrightarrow{CD}

    \Leftrightarrow \left\{ \begin{matrix}
x + 1 = - 1 \\
y - 3 = - 1 \\
z - 2 = 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 2 \\
y = 2 \\
z = 5 \\
\end{matrix} ight.. Vậy tọa độ điểm D( - 2;2;5)

  • Câu 18: Vận dụng cao

    Một khối lập phương lớn tạo bởi 27 khối lập phương đơn vị. Một mặt phẳng vuông góc với đường chéo của khối lập phương lớn tại trung điểm của nó. Mặt phẳng này cắt ngang bao nhiêu khối lập phương đơn vị?

    Giả sử các đỉnh của khối lập phương đơn vị là (i,j,k), với i,j,k \in \left\{ 0;1;2;3 ight\} và đường chéo đang xét của khối lập phương lớn nối hai đỉnh là O(0;0;0),A(3;3;3)

    Phương trình mặt trung trực của OA là (\alpha):x + y + z - \frac{9}{2} = 0

    Mặt phẳng này cắt khối lập phương đơn vị khi và và chỉ khi các đầu mút (i,j,k)(i + 1;j + 1;k + 1) của đường chéo của khối lập phương đơn vị nằm về hai phía đối với (α).

    Do đó bài toán quy về đếm trong số 27 bộ (i,j,k), với i,j,k \in \left\{ 0;1;2 ight\}, có bao nhiêu bộ ba thỏa mãn:

    \left\{ \begin{matrix}
i + j + k - \frac{9}{2} < 0 \\
(i + 1) + (j + 1) + (k + 1) - \frac{9}{2} > 0 \\
\end{matrix} ight.\  \Leftrightarrow \frac{3}{2} < i + j + k <
\frac{9}{2}

    Các bộ ba không thỏa điều kiện (1), tức là \left\lbrack \begin{matrix}
i + j + k < \frac{3}{2} \\
i + j + k > \frac{9}{2} \\
\end{matrix} ight. là:

    (0;0;0),(0;0;1),(0;1;0),(1;0;0),(1;2;2),(2;1;2),(2;2;1),(2;2;2)

    Vậy có 27 - 8 = 19 khối lập phương đơn vị bị cắt bởi (α).

  • Câu 19: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(0;1;1)B(1;2;3). Viết phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB.

    Mặt phẳng (P) có một véctơ pháp tuyến \overrightarrow{n} =
\overrightarrow{AB} = (1;1;2)

    Phương trình mặt phẳng (P) là: x + y - 1 + 2(z - 1) = 0 hay (P):x + y + 2z - 3 = 0.

  • Câu 20: Nhận biết

    Trong không gian cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AD} =
\overrightarrow{A_{1}D_{1}} = \overrightarrow{A_{1}C} +
\overrightarrow{CD_{1}} suy ra \overrightarrow{CD_{1}};\overrightarrow{AD};\overrightarrow{A_{1}C} đồng phẳng.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 3 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo