Trong tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lí cosin cho tam giác ABC ta có:
Trong tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lí cosin cho tam giác ABC ta có:
Cho
vuông tại
và có
. Số đo của góc
là:
Ta có: Trong
.
Cho tam giác
thỏa mãn biểu thức
![]()
Chọn khẳng định đúng.
Ta có:
Vậy tam giác ABC là tam giác cân.
Giá trị
là:
Ta có: .
Một học sinh dùng giác kế, đứng cách chân cột cờ 10m rồi chỉnh mặt trước cao bằng mắt của mình để xác định góc nâng (góc tạo bởi tia sáng đi thẳng từ đỉnh cột cờ) với mắt tạo với phương nằm ngang. Khi đó góc nâng đo được 31∘. Biết khoảng cách từ mặt sân đến mắt học sinh đó bằng 1,5m. Chiều cao cột cờ gần nhất với giá trị nào?
Hình vẽ minh họa
Gọi AB là khoảng cách từ chân đến tầm mắt của học sinh ⇒ AB = 1,5m.
AC là khoảng cách từ chân đến cột cờ ⇒ AC = 10m.
CD là chiều cao cột cờ.
BE là phương ngang của tầm mắt.
Khi đó góc nâng là .
Do ABEC là hình chữ nhật nên .
Ta có: .
Vậy chiều cao của cột cờ là: .
Tam giác
có
. Số đo góc
bằng:
Theo định lí hàm cosin, ta có
.
Do đó, .
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Cho tam giác
có diện tích
, lấy
là trọng tâm và
. Giả sử
, tính giá trị biểu thức
theo
?
Hình vẽ minh họa
Gọi là trung điểm cạnh
. Kẻ
Tam giác vuông =>
Tam giác vuông =>
Ta có:
Mặt khác áp dụng định lí sin cho tam giác AMB ta được:
Từ (*) và (**) ta được:
Chứng minh tương tự ta có:
Do đó:
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Giá trị
thoả mãn
gần nhất với giá trị:
Để tìm α khi biết tanα = 1,607 thì ta sử dụng máy tính cầm tay và tính được: α ≈ 58°.
Vậy α ≈ 58°
Cho
có
Độ dài cạnh
bằng:
Ta có:
.
Biểu thức lượng giác
có giá trị bằng bao nhiêu?
Ta có:
Khi đó
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Tam giác ABC có
. Độ dài cạnh AB là:
Áp dụng định lí sin trong tam giác ABC ta có:
Tam giác
có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:
Ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
Cho góc
thỏa mãn
và
. Tính
.
Ta có .
Vì
Theo giả thiết:
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Cho tam giác
, biết
. Số đo góc
là:
Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Trong sơ đồ, chùm sáng S hướng vào gương màu xanh, phản xạ vào gương màu đỏ và sau đó phản xạ vào gương màu xanh như hình vẽ. Biết OP = 2 m, ![]()

Khi đó đoạn PT bằng:
Ta có:
Áp dụng định lí cosin cho tam giác POQ ta có:
Áp dụng hệ quả của định lí cosin cho tam giác POQ ta có:
Ta lại có:
=>
Xét tam giác OTP ta có:
Áp dụng định lí sin cho tam giác OTP ta có:
Cho góc
thỏa mãn
và
Tính ![]()
Ta có
Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64
. Giá trị sin A là:
Ta có:
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Cho
Khẳng định nào sau đây đúng?
Ta có :
Cho
Khẳng định nào sau đây đúng?
Ta có: điểm cuối cung
thuộc góc phần tư thứ
Tam giác
vuông tại
, có
. Gọi
là độ dài đoạn phân giác trong góc
. Tính
theo
và
.
Ta có
Do là phân giác trong của
.
Theo định lí hàm cosin, ta có
.
hay
.
Cho
có
. Số đo của góc
là:
Ta có:
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu ![]()
Ta có
Đẳng thức điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
trái dấu?
Điểm cuối của thuộc góc phần tư thứ hai thì
,
.
Điểm cuối của thuộc góc phần tư thứ tư thì
,
.
Vậy nếu trái dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Cho
. Xác định dấu của biểu thức ![]()
Ta có:
và
.
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Cho
với
. Tính
.
Ta có:
.
Do nên
. Suy ra,
Cho tam giác
có
và góc
. Tính diện tích tam giác
.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Cho hình thoi
cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Tam giác ABC có đoạn thẳng nối trung điểm của AB và BC bằng 3, cạnh
AB = 9 và
. Tính độ dài cạnh cạnh BC.
Theo đề bài, đoạn nối 2 trung điểm bằng 3 nên suy ra .
Áp dụng định lí côsin:
.