Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác Sách CTST

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Hệ thức lượng trong tam giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho 2\pi <
\alpha < \frac{5\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có 2\pi < \alpha <
\frac{5\pi}{2}\overset{}{ightarrow}điểm cuối cung \alpha - \pi thuộc góc phần tư thứ I\overset{}{ightarrow}\left\{ \begin{matrix}
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight.\ .

  • Câu 2: Nhận biết

    Tam giác ABC\widehat{B} = 60^{\circ},\widehat{C} =
45^{\circ}AB = 5. Tính độ dài cạnh AC.

    Theo định lí sin ta có:

    \frac{AB}{\sin C} = \frac{AC}{\sin B}
\Leftrightarrow \frac{5}{\sin 45^{\circ}} = \frac{AC}{\sin
60^{\circ}}

    \Leftrightarrow AC =
\frac{5\sqrt{6}}{2}.

  • Câu 3: Thông hiểu

    Cho \cos\alpha =
\frac{4}{5} với 0 < \alpha <
\frac{\pi}{2}. Tính \sin\alpha.

    Ta có: sin^{2}\alpha = 1 - cos^{2}\alpha
= 1 - \left( \frac{4}{5} ight)^{2} = \frac{9}{25} \Rightarrow \sin\alpha = \pm
\frac{3}{5}.

    Do 0 < \alpha <
\frac{\pi}{2} nên \sin\alpha >
0. Suy ra, \sin\alpha =
\frac{3}{5}

  • Câu 4: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \sin157^{\circ} =\sin (180^{\circ} -157^{\circ} )=\sin 23^{\circ}. Vì \sin \alpha =\sin (180^{\circ} -\alpha ).

  • Câu 5: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha < 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 6: Thông hiểu

    Cho tam giác ABC, chọn công thức đúng trong các đáp án sau:

    Ta có: m_{a}^{2} = \frac{b^{2} +
c^{2}}{2} - \frac{a^{2}}{4} =
\frac{2b^{2} + 2c^{2} - a^{2}}{4}.

  • Câu 7: Nhận biết

    Cho \Delta
ABCS = 10\sqrt{3}, nửa chu vi p = 10. Độ dài bán kính đường tròn nội tiếp r của tam giác trên là:

    Ta có: S = pr \Rightarrow r = \frac{S}{p} =
\frac{10\sqrt{3}}{10} = \sqrt{3}.

  • Câu 8: Thông hiểu

    Trong các đẳng thức sau, đẳng thức nào sai?

    Khẳng định sai là: "\sin {0^0} + \cos {0^0} = 0"

    Sửa lại là: "\sin {0^0} + \cos {0^0} = 1"

  • Câu 9: Vận dụng cao

    Với mọi góc \alpha, giá trị của biểu thức

    \cos\alpha + \cos\left( \alpha +
\frac{\pi}{5} ight) + \cos\left( \alpha + \frac{2\pi}{5} ight) + ...
+ \cos\left( \alpha + \frac{9\pi}{5} ight)

    Ta có:

    \cos\alpha = - \cos\left( \alpha +
\frac{5\pi}{5} ight)

    \cos\left( \alpha + \frac{\pi}{5}
ight) = - \cos\left( \alpha + \frac{6\pi}{5} ight)

    \cos\left( \alpha + \frac{2\pi}{5}
ight) = - \cos\left( \alpha + \frac{7\pi}{5} ight)

    \cos\left( \alpha + \frac{3\pi}{5}
ight) = - \cos\left( \alpha + \frac{8\pi}{5} ight)

    \cos\left( \alpha + \frac{4\pi}{5}
ight) = - \cos\left( \alpha + \frac{9\pi}{5} ight)

    Do đó:

    \cos\alpha + \cos\left( \alpha +
\frac{\pi}{5} ight) + \cos\left( \alpha + \frac{2\pi}{5} ight) + ...
+ \cos\left( \alpha + \frac{9\pi}{5} ight) = 0

  • Câu 10: Nhận biết

    Cho \Delta
ABC\widehat{C} =
45^{0},\widehat{B} = 75^{0}. Số đo của góc A là:

    Ta có: \widehat{A} + \widehat{B} +
\widehat{C} = 180^{0} \Rightarrow
\widehat{A} = 180^{0} - \widehat{B} - \widehat{C} = 180^{0} - 75^{0} - 45^{0} = 60^{0}.

  • Câu 11: Nhận biết

    Cho tam giác ABCa=2,\hat A=60^{\circ} ,\hat B=45^{\circ}. Hỏi độ dài cạnh b bằng bao nhiêu?

     Áp dụng định lí sin:

    \frac{a}{{\sin A}} = \frac{b}{{\sin B}} \Leftrightarrow b = \sin B.\frac{a}{{\sin A}}= \sin 45^\circ .\frac{2}{{\sin 60^\circ }} = \frac{{2\sqrt 6 }}{3}.

  • Câu 12: Thông hiểu

    Tam giác ABC có \widehat A = {105^0},\widehat B = {45^0};AC = 10. Độ dài cạnh AB là:

    Xét tam giác ABC ta có:

    \begin{matrix}  \widehat A + \widehat B + \widehat C = {180^0} \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} ight) = {30^0} \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} \hfill \\   \Rightarrow AB = \dfrac{{AC.\sin \widehat C}}{{\sin \widehat B}} = \dfrac{{10.\sin {{30}^0}}}{{\sin {{45}^0}}} = 5\sqrt 2  \hfill \\ \end{matrix}

  • Câu 13: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất ightarrow \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha > 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 14: Nhận biết

    Cho biết \tan\alpha = \frac{1}{2}. Tính \cot\alpha.

    Ta có: \tan\alpha.cot\alpha = 1
\Rightarrow \cot\alpha =
\frac{1}{\tan\alpha} = \frac{1}{\frac{1}{2}} = 2.

  • Câu 15: Vận dụng

    Cho góc \alpha thỏa mãn 3cos\alpha + 2sin\alpha = 2\sin\alpha < 0. Tính \sin\alpha.

    Ta có 3cos\alpha + 2sin\alpha =
2 \Leftrightarrow (3cos\alpha +
2sin\alpha)^{2} = 4

    \begin{matrix}
\Leftrightarrow 9cos^{2}\alpha + 12cos\alpha.sin\alpha + 4sin^{2}\alpha
= 4 \\
\\
\end{matrix}

    \Leftrightarrow 5cos^{2}\alpha +
12cos\alpha.sin\alpha = 0

    \Leftrightarrow \cos\alpha(5cos\alpha +
12sin\alpha) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\cos\alpha = 0 \\
5cos\alpha + 12sin\alpha = 0 \\
\end{matrix} ight.\ .

    \bullet \cos\alpha = 0 \Rightarrow \sin\alpha =
1: loại (vì \sin\alpha <
0).

    \bullet 5cos\alpha + 12sin\alpha = 0, ta có hệ phương trình \left\{ \begin{matrix}
5cos\alpha + 12sin\alpha = 0 \\
3cos\alpha + 2sin\alpha = 2 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
\sin\alpha = - \frac{5}{13} \\
\cos\alpha = \frac{12}{13} \\
\end{matrix} ight.\ .

  • Câu 16: Vận dụng cao

    Cho tam giác ABC có các góc thỏa mãn biểu thức

    \sin2\widehat{A} + \sin2\widehat{B} =\dfrac{\sin2\widehat{A}.\sin2\widehat{B}}{\cos\widehat{A}.\cos\widehat{B}}

    Khi đó tam giác ABC là tam giác gì?

    Ta có:

    \sin2\widehat{A} + \sin2\widehat{B} =\frac{\sin2\widehat{A}.\sin2\widehat{B}}{\cos\widehat{A}.\cos\widehat{B}}

    \Leftrightarrow2\sin\widehat{A}.\cos\widehat{A} + 2\sin\widehat{B}.\cos\widehat{B} =\frac{2\sin\widehat{A}.\cos\widehat{A}.2\sin\widehat{B}.\cos\widehat{B}}{\cos\widehat{A}.\cos\widehat{B}}

    \Leftrightarrow\sin\widehat{A}.\cos\widehat{A} + \sin\widehat{B}.\cos\widehat{B} =2\sin\widehat{A}.\sin\widehat{B}

    \Leftrightarrow \sin2\widehat{A} +\sin2\widehat{B} = 4\sin\widehat{A}.\sin\widehat{B}

    \Leftrightarrow 2\sin\left( \widehat{A} +\widehat{B} ight).\cos\left( \widehat{A} - \widehat{B} ight) =2\left\lbrack \cos\left( \widehat{A} - \widehat{B} ight) - \cos\left(\widehat{A} + \widehat{B} ight) ightbrack

    \Leftrightarrow\sin\widehat{C}.\cos\left( \widehat{A} - \widehat{B} ight) = \cos\left(\widehat{A} - \widehat{B} ight) + \cos\left( \widehat{C}ight)

    \Leftrightarrow \cos\widehat{C}.\left( 1- \sin\widehat{C} ight).\cos\left( \widehat{A} - \widehat{B} ight) +\cos^{2}\left( \widehat{C} ight) = 0

    \Leftrightarrow \cos\widehat{C}.\left( 1- \sin\widehat{C} ight).\cos\left( \widehat{A} - \widehat{B} ight) +1 - \sin^{2}\left( \widehat{C} ight) = 0

    \Leftrightarrow \left( 1 -
\sin\widehat{C} ight).\left\lbrack \cos\left( \widehat{A} -
\widehat{B} ight)\cos\widehat{C} + 1 + \sin\widehat{C}. ightbrack
= 0

    \Leftrightarrow 1 - \sin\widehat{C} =
0

    \Leftrightarrow \widehat{C} =
\frac{\pi}{2}

    Vậy tam giác ABC là tam giác vuông.

  • Câu 17: Thông hiểu

    Giá trị biểu thức T = \tan 1^{\circ}.\tan2^{\circ}\ldots.\tan89^{\circ} bằng:

    Ta có:

    \ T = \left( \tan 1^{\circ}.\tan89^{\circ}ight)\left( \tan 2^{\circ}.\tan88^{\circ} ight)\ldots\left( \tan44^{\circ}.\tan 46^{\circ} ight).\tan45^{\circ}

    = \left( \tan 1^{\circ}.\cot 1^{0}
ight)\left( \tan 2^{\circ}.\cot 2^{\circ} ight)\ldots\left( \tan
44^{\circ}.\cot 44^{\circ} ight)\tan 45^{\circ}

    = 1.1.1\ldots 1 = 1.

  • Câu 18: Thông hiểu

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ)

    Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?

    Diện tích mảnh đất của gia đình bà Sáu (tam giác MNP) là:

    S = \frac{1}{2}MN \cdot MP \cdot \sin
M

    = \frac{1}{2} \cdot 150 \cdot 230 \cdot \sin110^{\circ} \approx 16209,7\left( {m}^{2}ight).

  • Câu 19: Vận dụng cao

    Cho tam giác ABC thỏa mãn biểu thức

    \sin\dfrac{\widehat{B}}{2}.\cos^{3}\dfrac{\widehat{C}}{2}= \sin\frac{\widehat{C}}{2}.\cos^{3}\dfrac{\widehat{B}}{2}

    Khi đó tam giác ABC là tam giác gì?

    Ta có:

    \sin\dfrac{\widehat{B}}{2}.\cos^{3}\dfrac{\widehat{C}}{2}= \sin\dfrac{\widehat{C}}{2}.\cos^{3}\dfrac{\widehat{B}}{2}

    \Leftrightarrow\tan\dfrac{\widehat{B}}{2}.\dfrac{1}{\cos^{2}\dfrac{\widehat{B}}{2}} =\tan\dfrac{\widehat{C}}{2}.\dfrac{1}{\cos^{2}\dfrac{\widehat{C}}{2}}

    \Leftrightarrow\tan\dfrac{\widehat{B}}{2}.\left( 1 + \tan^{2}\dfrac{\widehat{B}}{2}ight) = \tan\dfrac{\widehat{C}}{2}.\left( 1 +\tan^{2}\dfrac{\widehat{C}}{2} ight)

    Đặt \tan\dfrac{\widehat{B}}{2} =x;\tan\dfrac{\widehat{C}}{2} = y khi đó ta có:

    x\left( 1 + x^{2} ight) = y\left( 1 +
y^{2} ight)

    \Leftrightarrow x^{3} - y^{3} + x - y =
0

    \Leftrightarrow (x - y)\left( x^{2} + xy
+ y^{2} + 1 ight) = 0

    \Leftrightarrow x - y = 0

    Do đó \tan\frac{\widehat{B}}{2} =
\tan\frac{\widehat{C}}{2} \Leftrightarrow \frac{\widehat{B}}{2} =
\frac{\widehat{C}}{2} \Leftrightarrow \widehat{B} =
\widehat{C}

    Vậy tam giác ABC là tam giác cân tại A.

  • Câu 20: Thông hiểu

    Cho góc \alpha thoả mãn 0^{\circ} < \alpha < 180^{\circ}\cot\alpha = - 2. Giá trị của \sin\alpha là:

    Ta có: \cot\alpha =
\frac{\cos\alpha}{\sin\alpha}

    \Rightarrow \cot^{2}\alpha =
\frac{\cos^{2}\alpha}{\sin^{2}\alpha} = \frac{1 -
\sin^{2}\alpha}{\sin^{2}\alpha}

    \Rightarrow 1 + \cot^{2}\alpha =
\frac{1}{\sin^{2}\alpha}.

    Do đó \sin^{2}\alpha = \frac{1}{1 +
\cot^{2}\alpha} = \frac{1}{1 + ( - 2)^{2}} = \frac{1}{5}.

    0^{0} < \alpha <
180^{\circ} nên \sin\alpha =\frac{\sqrt{5}}{5}.

  • Câu 21: Nhận biết

    Cho tam giác ABCAB =4cm;AC = 12cm và góc \widehat{BAC} = 120^{\circ}. Tính diện tích tam giác ABC.

    S = \frac{1}{2}AB \cdot AC \cdot
\sin\widehat{BAC}

    = \frac{1}{2} \cdot 4 \cdot 12 \cdot
\sin 120^{\circ}

    = 12\sqrt{3}\left( {cm}^{2}ight)

  • Câu 22: Vận dụng

    Tam giác ABCAB =
4,\ \ BC = 6,\ \ AC = 2\sqrt{7}. Điểm M thuộc đoạn BC sao cho MC
= 2MB. Tính độ dài cạnh AM.

    Theo định lí hàm cosin, ta có : \cos B =
\frac{AB^{2} + BC^{2} - AC^{2}}{2.AB.BC} = \frac{4^{2} + 6^{2} - \left( 2\sqrt{7}
ight)^{2}}{2.4.6} = \frac{1}{2}.

    Do MC = 2MB\overset{}{ightarrow}BM =
\frac{1}{3}BC = 2.

    Theo định lí hàm cosin, ta có:

    \begin{matrix}
AM^{2} = AB^{2} + BM^{2} - 2.AB.BM.cos\widehat{B} \\
\\
\end{matrix}

    = 4^{2} + 2^{2} - 2.4.2.\frac{1}{2} = 12
\Rightarrow AM = 2\sqrt{3}.

  • Câu 23: Thông hiểu

    Một học sinh dùng giác kế, đứng cách chân cột cờ 10m rồi chỉnh mặt trước cao bằng mắt của mình để xác định góc nâng (góc tạo bởi tia sáng đi thẳng từ đỉnh cột cờ) với mắt tạo với phương nằm ngang. Khi đó góc nâng đo được 31. Biết khoảng cách từ mặt sân đến mắt học sinh đó bằng 1,5m. Chiều cao cột cờ gần nhất với giá trị nào?

    Hình vẽ minh họa

    Gọi AB là khoảng cách từ chân đến tầm mắt của học sinh ⇒ AB = 1,5m.

    AC là khoảng cách từ chân đến cột cờ ⇒ AC = 10m.

    CD là chiều cao cột cờ.

    BE là phương ngang của tầm mắt.

    Khi đó góc nâng là \widehat{DBE} =
31^{0}.

    Do ABEC là hình chữ nhật nên \left\{
\begin{matrix}
BE = AC = 10m \\
CE = AB = 1,5m \\
\end{matrix} ight..

    Ta có: \tan\widehat{DBE} = \frac{DE}{BE}
\Rightarrow DE = 10.tan31^{0} \approx 6m.

    Vậy chiều cao của cột cờ là: CD = CE + DE
= 6 + 1,5 = 7,5m.

  • Câu 24: Thông hiểu

    Trong tam giác ABC có AB = 2, AC = 1\widehat{A}=60^0. Tính độ dài cạnh BC.

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A \hfill \\   \Leftrightarrow B{C^2} = {2^2} + {1^2} - 2.2.1.\cos {60^0} \hfill \\   \Leftrightarrow B{C^2} = 3 \hfill \\   \Leftrightarrow BC = \sqrt 3  \hfill \\ \end{matrix}

  • Câu 25: Vận dụng

    Trên nóc một tòa nhà có một cột ăng-ten cao 5m. Từ vị trí quan sát A cao 7m so với mặt đất, có thể nhìn thấy đỉnh B và chân C của cột ăng-ten dưới góc 50^{0}40^{0} so với phương nằm ngang.

    Chiều cao của tòa nhà gần nhất với giá trị nào sau đây?

    Từ hình vẽ, suy ra \widehat{BAC} =
10^{0}\widehat{ABD} = 180^{0} -
\left( \widehat{BAD} + \widehat{ADB} ight) = 180^{0} - \left( 50^{0} + 90^{0} ight) =
40^{0}.

    Áp dụng định lí sin trong tam giác ABC, ta có \frac{BC}{\sin\widehat{BAC}} =
\frac{AC}{\sin\widehat{ABC}} \overset{}{ightarrow}AC =
\frac{BC.sin\widehat{ABC}}{\sin\widehat{BAC}} =
\frac{5.sin40^{0}}{sin10^{0}} \approx 18,5m.Trong tam giác vuông ADC, ta có \sin\widehat{CAD} =
\frac{CD}{AC}\overset{}{ightarrow}CD = AC.sin\widehat{CAD} =
11,9m. Vậy CH = CD + DH = 11,9 + 7 = 18,9m.

  • Câu 26: Nhận biết

    Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64 cm^{2}. Giá trị sin A là:

    Ta có: 

    \begin{matrix}  {S_{ABC}} = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{{2.64}}{{8.18}} = \dfrac{8}{9} \hfill \\ \end{matrix}

  • Câu 27: Thông hiểu

    Cho 0 <
\alpha < \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
0 < \alpha < \frac{\pi}{2} ightarrow \frac{\pi}{2} < \alpha +
\frac{\pi}{2} < \pi \\
0 < \alpha < \frac{\pi}{2} ightarrow \pi < \alpha + \pi <
\frac{3\pi}{2} \\
\end{matrix} ight. \overset{}{ightarrow}\cot\left( \alpha +
\frac{\pi}{2} ight) < 0\overset{}{ightarrow}\tan(\alpha + \pi) >
0.

  • Câu 28: Nhận biết

    Cho tam giác ABC. Tìm công thức sai:

    Ta có: \frac{a}{\sin A} = \frac{b}{\sin
B} = \frac{c}{\sin C} = 2R.

  • Câu 29: Nhận biết

    Cho \Delta
ABCa = 4,c = 5,B =
150^{0}. Diện tích của tam giác là:

    Ta có: S_{\Delta ABC} =
\frac{1}{2}a.c.sinB =
\frac{1}{2}.4.5.sin150^{0} = 5.

  • Câu 30: Thông hiểu

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ).

    Chiều dài hàng rào NP là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

    Áp dụng định li côsin ta

    NP^{2} = MN^{2} + MP^{2} - 2MN \cdot MP
\cdot \cos M

    = 150^{2} + 230^{2} - 2 \cdot 150 \cdot
230 \cdot cos110^{\circ} \approx
98999,39.

    Suy ra NP \approx \sqrt{98999,39} \approx
314,6(m).

    Vậy chiều dài hàng rào NP là khoảng 314,6m.

  • Câu 31: Vận dụng

    Cho góc \alpha thỏa mãn \tan\alpha = 2180^{o} < \alpha < 270^{o}. Tính P = \cos\alpha + \sin\alpha.

    Ta có \left\{ \begin{matrix}
cos^{2}\alpha = \frac{1}{1 + tan^{2}\alpha} = \frac{1}{5} ightarrow
\cos\alpha = \pm \frac{1}{\sqrt{5}} \\
180^{o} < \alpha < 270^{o} \\
\end{matrix} ight. \overset{}{ightarrow}\cos\alpha = -
\frac{1}{\sqrt{5}}

    \overset{}{ightarrow}\sin\alpha =
\tan\alpha.cos\alpha = - \frac{2}{\sqrt{5}}. Do đó, \sin\alpha + \cos\alpha = - \frac{3}{\sqrt{5}} = -
\frac{3\sqrt{5}}{5}.

  • Câu 32: Thông hiểu

    Cho góc \alpha thỏa mãn \cos\alpha = - \frac{\sqrt{5}}{3}\pi < \alpha <
\frac{3\pi}{2}. Tính \tan\alpha.

    Ta có \left\{ \begin{matrix}
\sin\alpha = \pm \sqrt{1 - cos^{2}\alpha} = \pm \frac{2}{3} \\
\pi < \alpha < \frac{3\pi}{2} \\
\end{matrix} ight. \overset{}{ightarrow}\sin\alpha = -
\frac{2}{3}\overset{}{ightarrow}\tan\alpha =
\frac{\sin\alpha}{\cos\alpha} = \frac{2}{\sqrt{5}}.

  • Câu 33: Nhận biết

    Cho tam giác ABCAB=1;AC=\sqrt2;\hat A=45^{\circ}. Tính độ dài cạnh BC.

     Áp dụng định lí côsin:

    BC^2=AB^2+AC^2-2.AB.AC.\cos A=1+2-2.1.\sqrt2.\cos45^{\circ} =1.

    Suy ra BC=1.

  • Câu 34: Nhận biết

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 35: Nhận biết

    Cho \Delta
ABCS = 84,a = 13,b = 14,c =
15. Độ dài bán kính đường tròn ngoại tiếp R của tam giác trên là:

    Ta có: S_{\Delta ABC} = \frac{a.b.c}{4R}
\Leftrightarrow R =
\frac{a.b.c}{4S} = \frac{13.14.15}{4.84} = \frac{65}{8}.

  • Câu 36: Thông hiểu

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \sqrt{sin^{2}}\alpha = \sin\alpha.

    Ta có \sqrt{sin^{2}\alpha}
\Leftrightarrow \sin\alpha \Leftrightarrow \left| \sin\alpha ight| =
\sin\alpha.

    Đẳng thức \left| \sin\alpha ight| =
\sin\alpha\overset{}{ightarrow}\sin\alpha \geq
0\overset{}{ightarrow}điểm cuối của góc lượng giác \alpha ở góc phần tư thứ I hoặc II.

  • Câu 37: Nhận biết

    Tam giác ABCAB =
2,\ \ AC = 1\widehat{A} =
60{^\circ}. Tính độ dài cạnh BC.

    Theo định lí hàm cosin, ta có BC^{2} =
AB^{2} + AC^{2} - 2AB.AC.cos\widehat{A} = 2^{2} + 1^{2} - 2.2.1.cos60{^\circ} = 3
\Rightarrow BC = \sqrt{3}.

  • Câu 38: Thông hiểu

    Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:

    Ta có:

    \begin{matrix}  {S_{ABC}} = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{3}{5} \hfill \\   \Rightarrow \widehat A \approx {36^0}52\prime  \hfill \\ \end{matrix}

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A \hfill \\   \Rightarrow B{C^2} = {5^2} + {8^2} - 2.5.8.\cos {36^0}52\prime  \hfill \\   \Rightarrow B{C^2} \approx 25 \hfill \\   \Rightarrow BC \approx 5\left( {cm} ight) \hfill \\ \end{matrix}

  • Câu 39: Nhận biết

    Tam giác ABCAB=5,BC=7,CA=8. Số đo góc \hat A bằng:

     Áp dụng định lí côsin:

    \cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}= \frac{{{5^2} + {8^2} - {7^2}}}{{2.5.8}} = \frac{1}{2}.

    Suy ra \hat A = 60^{\circ}.

  • Câu 40: Vận dụng

    Cho \cot\alpha =
- 3\sqrt{2} với \ \frac{\pi}{2}
< \alpha < \pi. Khi đó giá trị \tan\frac{\alpha}{2} +
\cot\frac{\alpha}{2} bằng:

    \frac{1}{sin^{2}\alpha} = 1 +
cot^{2}\alpha = 1 + 18 = 19

    ightarrow sin^{2}\alpha = \frac{1}{19}
ightarrow \sin\alpha = \pm \frac{1}{\sqrt{19}}

    \frac{\pi}{2} < \alpha < \pi
\Rightarrow \sin\alpha > 0 \Rightarrow \sin\alpha =
\frac{1}{\sqrt{19}}

    Suy ra \tan\frac{\alpha}{2} +
\cot\frac{\alpha}{2} = \frac{sin^{2}\frac{\alpha}{2} +
cos^{2}\frac{\alpha}{2}}{\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}} = \frac{2}{\sin\alpha} =
2\sqrt{19}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác Sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo