Cho tam giác ABC có b = 7; c = 5,
. Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Cho tam giác ABC có b = 7; c = 5,
. Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Cho tam giác
có góc
tù. Cho các biểu thức sau:
(1) ![]()
(2) ![]()
(3) ![]()
(4) ![]()
Số các biểu thức mang giá trị dương là:
Ta có: tù nên
Do đó: .
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Biểu thức lượng giác
có giá trị bằng bao nhiêu?
Ta có:
Khi đó
Tam giác
có
. Số đo góc
bằng:
Theo định lí hàm cosin, ta có
.
Do đó, .
Chọn công thức đúng trong các đáp án sau:
Ta có:
.
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Từ vị trí
người ta quan sát một cây cao (hình vẽ).
Biết
.
Chiều cao của cây gần nhất với giá trị nào sau đây?

Trong tam giác , ta có
.
Suy ra .
Suy ra
.
Áp dụng định lý sin trong tam giác , ta được
Tam giác ABC có
. Số đo góc A là:
Áp dụng định lí cosin trong tam giác ta có:
Cho
vuông tại
và có
. Số đo của góc
là:
Ta có: Trong
.
Nếu tam giác
có
thì:
Nếu tam giác ABC có thì
là góc nhọn
Giá trị biểu thức
bằng:
Ta có:
.
Cho góc
thỏa mãn
Tính ![]()
Ta có
Chia hai vế của cho
ta được
.
Tam giác
thỏa mãn đẳng thức

Biết
. Chọn khẳng định nào dưới đây đúng?
Ta có:
Chứng minh tương tự và suy ra ta có:
Dấu bằng xảy ra khi và chỉ khi
Vậy tam giác ABC là tam giác đều.
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Cho góc
thỏa
và
Khẳng định nào sau đây đúng?
Ta có
Cho
có
Diện tích
của tam giác trên là:
Ta có: Nửa chu vi :
.
Áp dụng công thức Hê-rông:
.
Cho tam giác
, chọn công thức đúng trong các đáp án sau:
Ta có:
Cho góc
. Gọi
và
là hai điểm di động lần lượt trên
và
sao cho
. Khi
có độ dài lớn nhất thì độ dài của đoạn
bằng:
Theo định lí hàm sin, ta có
Do đó, độ dài lớn nhất khi và chỉ khi
.
Khi đó .
Tam giác vuông tại
.
Cho
có
. Độ dài cạnh
là:
Ta có:
.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ)

Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?
Diện tích mảnh đất của gia đình bà Sáu (tam giác ) là:
.
Cho góc
thỏa mãn
và
. Tính
.
Ta có
.
Theo giả thiết:
.
Ta có
Cho
, với
. Giá trị
bằng
Ta có:
(do
).
Vậy .
Cho
thỏa mãn :
. Khi đó:
Ta có:
Cho hình thoi
cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho góc
thoả mãn
và
. Giá trị của
là:
Ta có:
.
Do đó .
Vì nên
.
Tam giác ABC có
. Độ dài cạnh AB là:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lý côsin: .
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
Cho biết
. Tính
.
Ta có:
.
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Trong các đẳng thức sau, đẳng thức nào sai?
Khẳng định sai là: ""
Sửa lại là: ""
Cho tam giác
có
. Biết rằng các góc của tam giác thỏa mãn biểu thức:
![]()
Chọn khẳng định đúng?
Dấu bằng xảy ra khi và chỉ khi
Vậy tam giác ABC là tam giác vuông tại C.