Cho tam giác
. Tìm công thức sai:
Ta có:
Cho tam giác
. Tìm công thức sai:
Ta có:
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Một học sinh dùng giác kế, đứng cách chân cột cờ 10m rồi chỉnh mặt trước cao bằng mắt của mình để xác định góc nâng (góc tạo bởi tia sáng đi thẳng từ đỉnh cột cờ) với mắt tạo với phương nằm ngang. Khi đó góc nâng đo được 31∘. Biết khoảng cách từ mặt sân đến mắt học sinh đó bằng 1,5m. Chiều cao cột cờ gần nhất với giá trị nào?
Hình vẽ minh họa
Gọi AB là khoảng cách từ chân đến tầm mắt của học sinh ⇒ AB = 1,5m.
AC là khoảng cách từ chân đến cột cờ ⇒ AC = 10m.
CD là chiều cao cột cờ.
BE là phương ngang của tầm mắt.
Khi đó góc nâng là .
Do ABEC là hình chữ nhật nên .
Ta có: .
Vậy chiều cao của cột cờ là: .
Nếu tam giác
có
thì:
Nếu tam giác ABC có thì
là góc nhọn
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho biết
. Tính
.
Ta có:
.
Cho góc
thỏa mãn
và
. Tính
.
Ta có .
Vì
Theo giả thiết:
Cho tam giác
có
, độ dài các cạnh tam giác thỏa mãn biểu thức
. Tính độ lớn góc
?
Ta có:
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
trái dấu?
Điểm cuối của thuộc góc phần tư thứ hai thì
,
.
Điểm cuối của thuộc góc phần tư thứ tư thì
,
.
Vậy nếu trái dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Biểu thức lượng giác
có giá trị bằng bao nhiêu?
Ta có:
Khi đó
Từ hai vị trí
và
của một tòa nhà, người ta quan sát đỉnh
của ngọn núi. Biết rằng độ cao
, phương nhìn
tạo với phương nằm ngang góc
, phương nhìn
tạo với phương nằm ngang góc
. Ngọn núi đó có độ cao so với mặt đất gần nhất với giá trị nào sau đây?

Từ giả thiết, ta suy ra tam giác có
và
Khi đó
Theo định lí sin, ta có hay
Do đó
Gọi là khoảng cách từ
đến mặt đất. Tam giác vuông
có cạnh
đối diện với góc
nên
Vậy ngọn núi cao khoảng
Cho
Giá trị lượng giác nào sau đây luôn dương?
Ta có
Do
.
Cho góc
thỏa mãn
và
Tính ![]()
Ta có
Cho tam giác ABC có b = 7; c = 5,
. Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Tam giác
có
và
. Tính độ dài cạnh
.
Áp dụng định lí sin:
.
Tam giác ABC có
. Độ dài cạnh AB là:
Áp dụng định lí sin trong tam giác ABC ta có:
Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Cho tam giác
thỏa mãn biểu thức
![]()
Khi đó tam giác
là tam giác gì?
Ta có:
Đặt khi đó ta có:
Do đó
Vậy tam giác ABC là tam giác cân tại A.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ).

Chiều dài hàng rào
là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Áp dụng định li côsin ta
.
Suy ra .
Vậy chiều dài hàng rào là khoảng
.
Cho hình thoi
cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Cho góc α với
. Giá trị của biểu thức:
là:
Ta có:
=>
Cho
có
. Độ dài cạnh
là:
Ta có:
.
Cho
có
Diện tích của tam giác là:
Ta có:
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
. Mà
.
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Cho tam giác
, biết
. Số đo góc
là:
Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có:
Cho góc
thỏa
và
Khẳng định nào sau đây đúng?
Ta có
Giá trị
là:
Ta có: .
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Cho
có
Độ dài cạnh
bằng:
Ta có:
.
Hai chiếc tàu thủy cùng xuất phát từ một vị trí
, đi thẳng theo hai hướng tạo với nhau góc
. Tàu
chạy với tốc độ
hải lí một giờ. Tàu
chạy với tốc độ
hải lí một giờ. Sau hai giờ, hai tàu cách nhau bao nhiêu hải lí? Kết quả gần nhất với số nào sau đây?

Sau giờ tàu
đi được
hải lí, tàu
đi được
hải lí. Vậy tam giác
có
và
Áp dụng định lí côsin vào tam giác ta có
Vậy (hải lí).
Sau giờ, hai tàu cách nhau khoảng
hải lí.
Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lý côsin: .
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.