Cho tam giác
, chọn công thức đúng trong các đáp án sau:
Ta có:
Cho tam giác
, chọn công thức đúng trong các đáp án sau:
Ta có:
Cho tam giác
có
, độ dài các cạnh tam giác thỏa mãn biểu thức
với
là số thực lớn hơn
. Tính độ lớn góc
?
Áp dụng định lí cosin ta có:
Ta có:
Từ đó suy ra
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
Cho
có
. Độ dài cạnh
là:
Ta có:
.
Cho tam giác
. Tìm công thức sai:
Ta có:
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Trong sơ đồ, chùm sáng S hướng vào gương màu xanh, phản xạ vào gương màu đỏ và sau đó phản xạ vào gương màu xanh như hình vẽ. Biết OP = 2 m, ![]()

Khi đó đoạn PT bằng:
Ta có:
Áp dụng định lí cosin cho tam giác POQ ta có:
Áp dụng hệ quả của định lí cosin cho tam giác POQ ta có:
Ta lại có:
=>
Xét tam giác OTP ta có:
Áp dụng định lí sin cho tam giác OTP ta có:
Cho tam giác ABC có
. Cần điều kiện gì để các góc của tam giác thỏa mãn biểu thức
?
Theo định lí hàm số cos ta có:
Chứng minh tương tự ta có:
Do đó
Dấu bằng xảy ra khi và chỉ khi tam giác ABC đều.
Cho hình thoi
cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Cho tam giác ABC có
, góc
bằng
. Độ dài cạnh
là ?
Ta có:
.
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Cho góc
với
. Giá trị của bằng
bao nhiêu?
Ta có:
Giá trị
là:
Ta có: .
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Cho tam giác
, biết
. Số đo góc
là:
Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:
Cho
có
Độ dài cạnh
bằng:
Ta có:
.
Tam giác
có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Cho biết
. Tính
.
Ta có:
.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ)

Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?
Diện tích mảnh đất của gia đình bà Sáu (tam giác ) là:
.
Cho góc α, (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là: " , (0° < α < 180° và α ≠ 90°)"
Sửa lại là " , (0° < α < 180° và α ≠ 90°)".
Xác định chiều cao của một tháp mà không cần lên đỉnh của tháp. Đặt kế giác thẳng đứng cách chân tháp một khoảng
, giả sử chiều cao của giác kế là
.Quay thanh giác kế sao cho khi ngắm theo thanh ta nhình thấy đỉnh
của tháp. Đọc trên giác kế số đo của góc
. Chiều cao của ngọn tháp gần với giá trị nào sau đây:

Tam giác vuông tại
có
Vậy chiếu cao của ngọn tháp là
Cho góc
thỏa mãn
và
Tính ![]()
Áp dụng , ta có
Ta có
Vì nên ta chọn
.
Thay vào
, ta được
.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ).

Chiều dài hàng rào
là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Áp dụng định li côsin ta
.
Suy ra .
Vậy chiều dài hàng rào là khoảng
.
Giá trị biểu thức
bằng:
Ta có:
.
Xác định số phương trình luôn có nghiệm với mọi giá trị của tham số m trong các phương trình dưới đây?
![]()
![]()
![]()
![]()
Với thì
vô nghiệm.
Vì với mọi giá trị thực của m ta có: nên
Từ đó suy ra vậy phương trình
luôn có nghiệm.
Phương trình luôn có nghiệm với mọi giá trị thực của m.
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Chọn công thức đúng trong các đáp án sau:
Ta có:
.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Cho góc
thỏa mãn
và
. Tính
.
Ta có .
Vì
Theo giả thiết:
Cho tam giác
có
và góc
. Tính diện tích tam giác
.
Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64
. Giá trị sin A là:
Ta có:
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có:
Giá trị biểu thức
là:
Ta có:
Tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lý côsin: .
Tam giác ABC có
. Độ dài cạnh AB là:
Áp dụng định lí sin trong tam giác ABC ta có:
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu ![]()
Ta có
Đẳng thức điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc