Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Cho
có
. Độ dài cạnh
là:
Ta có:
.
Cho
, với
. Giá trị
bằng
Ta có:
(do
).
Vậy .
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có:
Cho tam giác
có
, độ dài các cạnh tam giác thỏa mãn biểu thức
. Tính độ lớn góc
?
Ta có:
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
trái dấu?
Điểm cuối của thuộc góc phần tư thứ hai thì
,
.
Điểm cuối của thuộc góc phần tư thứ tư thì
,
.
Vậy nếu trái dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Cho góc α, (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là: " , (0° < α < 180° và α ≠ 90°)"
Sửa lại là " , (0° < α < 180° và α ≠ 90°)".
Tam giác
có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Cho tam giác ABC có
, góc
bằng
. Độ dài cạnh
là ?
Ta có:
.
Xác định số phương trình luôn có nghiệm với mọi giá trị của tham số m trong các phương trình dưới đây?
![]()
![]()
![]()
![]()
Với thì
vô nghiệm.
Vì với mọi giá trị thực của m ta có: nên
Từ đó suy ra vậy phương trình
luôn có nghiệm.
Phương trình luôn có nghiệm với mọi giá trị thực của m.
Cho hình thoi
cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Tam giác
có
và
. Tính độ dài cạnh
.
Áp dụng định lí sin:
.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Cho
có
Độ dài cạnh
bằng:
Ta có:
.
Cho biết
. Tính
.
Ta có:
.
Tam giác ABC có
. Độ dài cạnh AB là:
Áp dụng định lí sin trong tam giác ABC ta có:
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ)

Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?
Diện tích mảnh đất của gia đình bà Sáu (tam giác ) là:
.
Cho
Khẳng định nào sau đây đúng?
Ta có :
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho
thỏa mãn :
. Khi đó:
Ta có:
Cho góc
thỏa
và
Khẳng định nào sau đây đúng?
Ta có
Cho tam giác
có
và các góc của tam giác thỏa mãn biểu thức:
. Khi đó tam giác
là tam giác gì?
Ta có:
Ta lại có:
Vậy tam giác ABC là tam giác đều.
Khoảng cách từ
đến
không thể đo trực tiếp được vì phải qua một đầm lầy. Người ta xác định được một điểm
mà từ đó có thể nhìn được
và
dưới một góc
. Biết
,
. Khoảng cách
gần nhất với kết quả nào sau đây?
Ta có:
Tam giác ABC có
. Số đo góc A là:
Áp dụng định lí cosin trong tam giác ta có:
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Cho tam giác ABC có b = 7; c = 5,
. Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64
. Giá trị sin A là:
Ta có:
Tam giác
vuông tại
, có
. Gọi
là độ dài đoạn phân giác trong góc
. Tính
theo
và
.
Ta có
Do là phân giác trong của
.
Theo định lí hàm cosin, ta có
.
hay
.
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
.
Suy ra
.
Do suy ra
nên
. Vậy
Nếu tam giác
có
thì:
Nếu tam giác ABC có thì
là góc nhọn
Cho góc
thỏa mãn
Tính ![]()
Ta có
Chia hai vế của cho
ta được
.
Cho góc
thỏa mãn
và
Tính ![]()
Ta có
. Do đó,
Tam giác
có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có: