Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Chọn công thức đúng trong các đáp án sau:
Ta có:
.
Cho biểu thức B xác định, rút gọn biểu thức
với
?
Ta có:
Do đó:
Vì nên
Một tam giác có ba cạnh là
Bán kính đường tròn ngoại tiếp là:
Ta có:
Suy ra:
.
Mà
.
Tam giác ABC có BC = a, CA = b, AB = c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng:
Ta có:
Diện tích ban đầu của tam giác là:
Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác là:
Giá trị biểu thức
bằng:
Ta có:
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Một tam giác có ba cạnh là
. Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Cho
, với
. Giá trị
bằng
Ta có:
(do
).
Vậy .
Giá trị
là:
Ta có: .
Tam giác
có
và
. Tính độ dài cạnh
.
Áp dụng định lí sin:
.
Cho
có
. Độ dài cạnh
là:
Ta có:
.
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Diện tích tam giác có ba cạnh lần lượt là
và 1 là:
Nửa chu vi của tam giác là:
Áp dụng công thức Herong ta có:
Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64
. Giá trị sin A là:
Ta có:
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho góc
thỏa mãn
và
Tính ![]()
Ta có
Cho
có
Độ dài cạnh
bằng:
Ta có:
.
Một học sinh dùng giác kế, đứng cách chân cột cờ 10m rồi chỉnh mặt trước cao bằng mắt của mình để xác định góc nâng (góc tạo bởi tia sáng đi thẳng từ đỉnh cột cờ) với mắt tạo với phương nằm ngang. Khi đó góc nâng đo được 31∘. Biết khoảng cách từ mặt sân đến mắt học sinh đó bằng 1,5m. Chiều cao cột cờ gần nhất với giá trị nào?
Hình vẽ minh họa
Gọi AB là khoảng cách từ chân đến tầm mắt của học sinh ⇒ AB = 1,5m.
AC là khoảng cách từ chân đến cột cờ ⇒ AC = 10m.
CD là chiều cao cột cờ.
BE là phương ngang của tầm mắt.
Khi đó góc nâng là .
Do ABEC là hình chữ nhật nên .
Ta có: .
Vậy chiều cao của cột cờ là: .
Cho tam giác
thỏa mãn biểu thức
![]()
Chọn khẳng định đúng.
Ta có:
Vậy tam giác ABC là tam giác cân.
Cho góc
thỏa mãn
và
. Tính
.
Ta có .
Vì
Theo giả thiết:
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Cho
thỏa mãn :
. Khi đó:
Ta có:
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Cho tam giác ABC có
. Cần điều kiện gì để các góc của tam giác thỏa mãn biểu thức
?
Theo định lí hàm số cos ta có:
Chứng minh tương tự ta có:
Do đó
Dấu bằng xảy ra khi và chỉ khi tam giác ABC đều.
Tam giác
có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Cho
có
, nửa chu vi
. Độ dài bán kính đường tròn nội tiếp
của tam giác trên là:
Ta có:
Cho
Khẳng định nào sau đây đúng?
Ta có:
và
.
Trong các đẳng thức sau, đẳng thức nào sai?
Khẳng định sai là: ""
Sửa lại là: ""
Tam giác
có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Cho tam giác
, chọn công thức đúng trong các đáp án sau:
Ta có:
Tam giác ABC có
. Độ dài cạnh AB là:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
: loại (vì
).
, ta có hệ phương trình
Tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lý côsin: .
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Cho góc
với
. Giá trị của bằng
bao nhiêu?
Ta có: