Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác Sách CTST

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Hệ thức lượng trong tam giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Giá trị cot\frac{\pi }{6} là:

     Ta có: cot\frac{\pi }{6} =\sqrt3.

  • Câu 2: Nhận biết

    Cho tam giác ABCa=2,\hat A=60^{\circ} ,\hat B=45^{\circ}. Hỏi độ dài cạnh b bằng bao nhiêu?

     Áp dụng định lí sin:

    \frac{a}{{\sin A}} = \frac{b}{{\sin B}} \Leftrightarrow b = \sin B.\frac{a}{{\sin A}}= \sin 45^\circ .\frac{2}{{\sin 60^\circ }} = \frac{{2\sqrt 6 }}{3}.

  • Câu 3: Nhận biết

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 4: Nhận biết

    Trong tam giác ABC ta có:

    Áp dụng định lí sin trong tam giác ABC ta có:

    \begin{matrix}  \dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} \hfill \\   \Leftrightarrow a\sin B = b\sin A \hfill \\ \end{matrix}

  • Câu 5: Vận dụng

    Cho góc \alpha thỏa mãn 3cos\alpha + 2sin\alpha = 2\sin\alpha < 0. Tính \sin\alpha.

    Ta có 3cos\alpha + 2sin\alpha =
2 \Leftrightarrow (3cos\alpha +
2sin\alpha)^{2} = 4

    \begin{matrix}
\Leftrightarrow 9cos^{2}\alpha + 12cos\alpha.sin\alpha + 4sin^{2}\alpha
= 4 \\
\\
\end{matrix}

    \Leftrightarrow 5cos^{2}\alpha +
12cos\alpha.sin\alpha = 0

    \Leftrightarrow \cos\alpha(5cos\alpha +
12sin\alpha) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\cos\alpha = 0 \\
5cos\alpha + 12sin\alpha = 0 \\
\end{matrix} ight.\ .

    \bullet \cos\alpha = 0 \Rightarrow \sin\alpha =
1: loại (vì \sin\alpha <
0).

    \bullet 5cos\alpha + 12sin\alpha = 0, ta có hệ phương trình \left\{ \begin{matrix}
5cos\alpha + 12sin\alpha = 0 \\
3cos\alpha + 2sin\alpha = 2 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
\sin\alpha = - \frac{5}{13} \\
\cos\alpha = \frac{12}{13} \\
\end{matrix} ight.\ .

  • Câu 6: Vận dụng cao

    Cho tam giác ABC có các góc thỏa mãn biểu thức

    \sin2\widehat{A} + \sin2\widehat{B} =\dfrac{\sin2\widehat{A}.\sin2\widehat{B}}{\cos\widehat{A}.\cos\widehat{B}}

    Khi đó tam giác ABC là tam giác gì?

    Ta có:

    \sin2\widehat{A} + \sin2\widehat{B} =\frac{\sin2\widehat{A}.\sin2\widehat{B}}{\cos\widehat{A}.\cos\widehat{B}}

    \Leftrightarrow2\sin\widehat{A}.\cos\widehat{A} + 2\sin\widehat{B}.\cos\widehat{B} =\frac{2\sin\widehat{A}.\cos\widehat{A}.2\sin\widehat{B}.\cos\widehat{B}}{\cos\widehat{A}.\cos\widehat{B}}

    \Leftrightarrow\sin\widehat{A}.\cos\widehat{A} + \sin\widehat{B}.\cos\widehat{B} =2\sin\widehat{A}.\sin\widehat{B}

    \Leftrightarrow \sin2\widehat{A} +\sin2\widehat{B} = 4\sin\widehat{A}.\sin\widehat{B}

    \Leftrightarrow 2\sin\left( \widehat{A} +\widehat{B} ight).\cos\left( \widehat{A} - \widehat{B} ight) =2\left\lbrack \cos\left( \widehat{A} - \widehat{B} ight) - \cos\left(\widehat{A} + \widehat{B} ight) ightbrack

    \Leftrightarrow\sin\widehat{C}.\cos\left( \widehat{A} - \widehat{B} ight) = \cos\left(\widehat{A} - \widehat{B} ight) + \cos\left( \widehat{C}ight)

    \Leftrightarrow \cos\widehat{C}.\left( 1- \sin\widehat{C} ight).\cos\left( \widehat{A} - \widehat{B} ight) +\cos^{2}\left( \widehat{C} ight) = 0

    \Leftrightarrow \cos\widehat{C}.\left( 1- \sin\widehat{C} ight).\cos\left( \widehat{A} - \widehat{B} ight) +1 - \sin^{2}\left( \widehat{C} ight) = 0

    \Leftrightarrow \left( 1 -
\sin\widehat{C} ight).\left\lbrack \cos\left( \widehat{A} -
\widehat{B} ight)\cos\widehat{C} + 1 + \sin\widehat{C}. ightbrack
= 0

    \Leftrightarrow 1 - \sin\widehat{C} =
0

    \Leftrightarrow \widehat{C} =
\frac{\pi}{2}

    Vậy tam giác ABC là tam giác vuông.

  • Câu 7: Nhận biết

    Tam giác ABCAB=5,BC=7,CA=8. Số đo góc \hat A bằng:

     Áp dụng định lí côsin:

    \cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}= \frac{{{5^2} + {8^2} - {7^2}}}{{2.5.8}} = \frac{1}{2}.

    Suy ra \hat A = 60^{\circ}.

  • Câu 8: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha > 0 \\
\tan\alpha < 0 \\
\cot\alpha < 0 \\
\end{matrix} ight..

  • Câu 9: Nhận biết

    Cho tam giác ABC. Tìm công thức sai:

    Ta có: \frac{a}{\sin A} = \frac{b}{\sin
B} = \frac{c}{\sin C} = 2R.

  • Câu 10: Vận dụng

    Cho góc \alpha thỏa mãn \cot\alpha = \frac{1}{3}. Tính P = \frac{3sin\alpha + 4cos\alpha}{2sin\alpha -
5cos\alpha}.

    Chia cả tử và mẫu của P cho \sin\alpha ta được P = \frac{3 + 4cot\alpha}{2 - 5cot\alpha} =
\frac{3 + 4.\frac{1}{3}}{2 - 5.\frac{1}{3}} = 13.

  • Câu 11: Vận dụng

    Cho góc \alpha thỏa mãn \tan\alpha = - \frac{4}{3}\frac{\pi}{2} < \alpha < \pi. Tính P = \frac{sin^{2}\alpha - \cos\alpha}{\sin\
\alpha - cos^{2}\alpha}.

    Ta có \left\{ \begin{matrix}
cos^{2}\alpha = \frac{1}{1 + tan^{2}\alpha} = \frac{9}{25} ightarrow
\cos\alpha = \pm \frac{3}{5} \\
\frac{\pi}{2} < \alpha < \pi \\
\end{matrix} ight. ightarrow
\cos\alpha = - \frac{3}{5}

    ightarrow \sin\alpha =
\tan\alpha.cos\alpha = \frac{4}{5}.

    Thay \sin\alpha = \frac{4}{5}\cos\alpha = - \frac{3}{5} vào P, ta được P = \frac{31}{11}.

  • Câu 12: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha < 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 13: Nhận biết

    Cho \Delta
ABCS = 84,a = 13,b = 14,c =
15. Độ dài bán kính đường tròn ngoại tiếp R của tam giác trên là:

    Ta có: S_{\Delta ABC} = \frac{a.b.c}{4R}
\Leftrightarrow R =
\frac{a.b.c}{4S} = \frac{13.14.15}{4.84} = \frac{65}{8}.

  • Câu 14: Thông hiểu

    Giá trị biểu thức S = {\cos ^2}{12^0} + {\cos ^2}{48^0} + {\cos ^2}{1^0} + {\cos ^2}{89^0} bằng:

    Ta có:

    \begin{matrix}  S = {\cos ^2}{12^0} + {\cos ^2}{48^0} + {\cos ^2}{1^0} + {\cos ^2}{89^0} \hfill \\   = {\cos ^2}{12^0} + {\sin ^2}{12^0} + {\cos ^2}{1^0} + {\sin ^2}{1^0} \hfill \\   = 1 + 1 = 2 \hfill \\ \end{matrix}

  • Câu 15: Nhận biết

    Tam giác ABC có BC = 10 và \widehat{A}=30°. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.

     Ta có: \frac {BC}{\sin A}=2R \Leftrightarrow R= \frac{BC}{2\sin A} =\frac {10}{2.sin30^{\circ}  }=10.

  • Câu 16: Nhận biết

    Cho tam giác ABC có a = 8,b = 10, góc C bằng 60^{0} . Độ dài cạnh c là ?

    Ta có: c^{2} = a^{2} + b^{2} -
2a.b.cosC = 8^{2} + 10^{2} -
2.8.10.cos60^{0} = 84 \Rightarrow c
= 2\sqrt{21}.

  • Câu 17: Thông hiểu

    Tam giác ABCAB =
\sqrt{2},\ \ AC = \sqrt{3}\widehat{C} = 45{^\circ}. Tính độ dài cạnh BC.

    Theo định lí hàm cosin, ta có

    AB^{2} = AC^{2} + BC^{2} -
2.AC.BC.cos\widehat{C}

    \Rightarrow \left( \sqrt{2}
ight)^{2} = \left( \sqrt{3}
ight)^{2} + BC^{2} - 2.\sqrt{3}.BC.cos45{^\circ}

    \Rightarrow BC = \frac{\sqrt{6} +
\sqrt{2}}{2}.

  • Câu 18: Vận dụng

    Hai chiếc tàu thuỷ cùng xuất phát từ vị trí A, đi thẳng theo hai hướng tạo với nhau một góc 60^{0}. Tàu thứ nhất chạy với tốc độ 30\ km/h, tàu thứ hai chạy với tốc độ 40\ km/h. Hỏi sau 2 giờ hai tàu cách nhau bao nhiêu km?

    Ta có: Sau 2h quãng đường tàu thứ nhất chạy được là: S_{1} = 30.2 = 60\
km.

    Sau 2h quãng đường tàu thứ hai chạy được là: S_{2} = 40.2 = 80\
km.

    Vậy: sau 2h hai tàu cách nhau là: S = \sqrt{{S_{1}}^{2} + {S_{2}}^{2} -
2S_{1}.S_{2}.cos60^{0}} =
20\sqrt{13}.

  • Câu 19: Thông hiểu

    Tam giác ABC\widehat{B}=60°,\widehat{C}=45°AB=5. Tính độ dài cạnh AC.

     Áp dụng định lí sin: 

    \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow AC = \sin B.\frac{{AB}}{{\sin C}}= \sin 60^\circ .\frac{5}{{\sin 45^\circ }} = \frac{{5\sqrt 6 }}{2}.

  • Câu 20: Thông hiểu

    Cho 0 < \alpha
< \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có: 0 < \alpha < \frac{\pi}{2}
ightarrow - \pi < \alpha - \pi < -
\frac{\pi}{2}\overset{}{ightarrow} điểm cuối cung \alpha - \pi thuộc góc phần tư thứ III\overset{}{ightarrow} \sin(\alpha - \pi) < 0.

  • Câu 21: Nhận biết

    Cho \Delta
ABCa = 4,c = 5,B =
150^{0}. Diện tích của tam giác là:

    Ta có: S_{\Delta ABC} =
\frac{1}{2}a.c.sinB =
\frac{1}{2}.4.5.sin150^{0} = 5.

  • Câu 22: Thông hiểu

    Cho \sin\alpha =\frac{1}{4}, với 0^{\circ} <
\alpha < 90^{\circ}. Giá trị \cos\alpha bằng

    Ta có:

    \cos^{2}\alpha = 1 -\sin^{2}\alpha

    = 1 - \left( \frac{1}{4} ight)^{2} =
\frac{15}{16}

    \Rightarrow \cos\alpha =\frac{\sqrt{15}}{4} (do 0^{\circ}
< \alpha < 90^{\circ}).

    Vậy \cos\alpha =\frac{\sqrt{15}}{4}.

  • Câu 23: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất ightarrow \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha > 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 24: Nhận biết

    Tam giác ABCAB =
5,\ \ BC = 7,\ \ CA = 8. Số đo góc \widehat{A} bằng:

    Theo định lí hàm cosin, ta có \cos\widehat{A} = \frac{AB^{2} + AC^{2} -
BC^{2}}{2AB.AC} = \frac{5^{2} +
8^{2} - 7^{2}}{2.5.8} = \frac{1}{2}.

    Do đó, \widehat{A} =
60{^\circ}.

  • Câu 25: Thông hiểu

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \sin\alpha,\ tan\alpha trái dấu?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai thì \sin\alpha >
0, \cos\alpha < 0.

    Điểm cuối của \alpha thuộc góc phần tư thứ tư thì \sin\alpha <
0, \cos\alpha > 0.

    Vậy nếu \sin\alpha,\ cos\alpha trái dấu thì điểm cuối của góc lượng giác \alpha ở góc phần tư thứ II hoặc IV.

  • Câu 26: Nhận biết

    Tam giác ABC\widehat{B} = 60{^\circ},\ \ \widehat{C} =
45{^\circ}AB = 5. Tính độ dài cạnh AC.

    Theo định lí hàm sin, ta có \frac{AB}{\sin\widehat{C}} =
\frac{AC}{\sin\widehat{B}} \Leftrightarrow \frac{5}{sin45{^\circ}} =
\frac{AC}{sin60{^\circ}} \Rightarrow AC = \frac{5\sqrt{6}}{2}.

  • Câu 27: Vận dụng

    Tam giác MPQ vuông tại P. Trên cạnh MQ lấy hai điểm E,\ \ F sao cho các góc \widehat{MPE},\ \ \widehat{EPF},\ \
\widehat{FPQ} bằng nhau. Đặt MP =
q,\ \ PQ = m,\ \ PE = x,\ \ PF = y. Trong các hệ thức sau, hệ thức nào đúng?

    Ta có \widehat{MPE} = \widehat{EPF} =
\widehat{FPQ} = \frac{\widehat{MPQ}}{3} = 30{^\circ} \Rightarrow \widehat{MPF} = \widehat{EPQ} =
60{^\circ}.

    Theo định lí hàm cosin, ta có

    ME^{2} = AM^{2} + AE^{2} -
2.AM.AE.cos\widehat{MAE}

    = q^{2} + x^{2} -
2qx.cos30{^\circ} = q^{2} + x^{2} -
qx\sqrt{3}

    MF^{2} = AM^{2} + AF^{2} -
2AM.AF.cos\widehat{MAF}

    = q^{2} + y^{2} -
2qy.cos60{^\circ} = q^{2} + y^{2} -
qy

    MQ^{2} = MP^{2} + PQ^{2} = q^{2} +
m^{2}.

  • Câu 28: Thông hiểu

    Cho góc \alpha thỏa mãn \cos\alpha = - \frac{\sqrt{5}}{3}\pi < \alpha <
\frac{3\pi}{2}. Tính \tan\alpha.

    Ta có \left\{ \begin{matrix}
\sin\alpha = \pm \sqrt{1 - cos^{2}\alpha} = \pm \frac{2}{3} \\
\pi < \alpha < \frac{3\pi}{2} \\
\end{matrix} ight. \overset{}{ightarrow}\sin\alpha = -
\frac{2}{3}\overset{}{ightarrow}\tan\alpha =
\frac{\sin\alpha}{\cos\alpha} = \frac{2}{\sqrt{5}}.

  • Câu 29: Vận dụng cao

    Cho biểu thức B xác định, rút gọn biểu thức

    B = \sqrt{2} - \frac{1}{\sin(x +
2013\pi)}.\sqrt{\frac{1}{1 + \cos x} + \frac{1}{1 - \cos x}} với \pi < x < 2\pi?

    Ta có:

    \sin(x + 2013\pi) = \sin(x + \pi +
2012\pi) = \sin(x + \pi) = - \sin x

    Do đó:

    B = \sqrt{2} - \frac{1}{\sin(x +
2013\pi)}.\sqrt{\frac{1}{1 + \cos x} + \frac{1}{1 - \cos
x}}

    B = \sqrt{2} + \frac{1}{\sin
x}.\sqrt{\frac{1 - \cos x + 1 + \cos x}{\left( 1 + \cos x ight)\left(
1 - \cos x ight)}}

    B = \sqrt{2} + \dfrac{1}{\sin x}.\sqrt{\dfrac{2}{1 - \cos^{2}x}}

    B = \sqrt{2} + \frac{1}{\sin x}.\sqrt{\dfrac{2}{\sin^{2}x}}

    B = \sqrt{2}\left( 1 + \frac{1}{\sin
x.\left| \sin x ight|} ight)

    \pi < x < 2\pi nên \sin x < 0

    \Rightarrow B = \sqrt{2}\left( 1 -\dfrac{1}{\sin^{2}x} ight) = - \sqrt{2}\cot^{2}x

  • Câu 30: Vận dụng cao

    Cho tam giác ABC có diện tích S, lấy G là trọng tâm và \widehat{GAB} = \alpha;\widehat{GBC} =
\beta;\widehat{GCA} = \gamma. Giả sử AB = c;BC = a;AC = b , tính giá trị biểu thức \cot\alpha + \cot\beta +
\cot\gamma theo a;b;c;S?

    Hình vẽ minh họa

    Gọi M là trung điểm cạnh BC. Kẻ MH\bot
AB

    Tam giác AMH vuông => \cos\alpha = \frac{AH}{AM}

    Tam giác BMH vuông => \cos B = \frac{BH}{BM} =
\frac{2BH}{a}

    Ta có: AB = AH + HB

    \Rightarrow c = AM.cos\alpha +
\frac{a}{2}.cos\beta

    \Rightarrow \cos\alpha =\frac{1}{AM}\left( c - \frac{a}{2}.\cos\beta ight)(*)

    Mặt khác áp dụng định lí sin cho tam giác AMB ta được:

    \frac{MB}{\sin\alpha} = \frac{MA}{\sin
B} \Rightarrow \sin\alpha = \frac{MB.sinB}{MA} =
\frac{a.sinB}{2MA}(**)

    Từ (*) và (**) ta được:

    \cot\alpha = \dfrac{c - \dfrac{a}{2}\cos B}{\dfrac{a}{2}\sin B} = \dfrac{2c - a\cos B}{b}

    = \dfrac{R\left( 4c - 2a\cos Bight)}{ab} = \dfrac{4c^{2} - 2ac\cos B}{\dfrac{abc}{R}}

    \Rightarrow \cot\alpha = \frac{3c^{2} +
b^{2} - a^{2}}{4S}

    Chứng minh tương tự ta có: \left\{\begin{matrix}\cot\beta = \dfrac{3a^{2} + c^{2} - b^{2}}{4S} \\\cot\gamma = \dfrac{3b^{2} + b^{2} - c^{2}}{4S} \\\end{matrix} ight.

    Do đó:

    \cot\alpha + \cot\beta +
\cot\gamma

    = \frac{3c^{2} + b^{2} - a^{2}}{4S} +
\frac{3a^{2} + c^{2} - b^{2}}{4S} + \frac{3b^{2} + b^{2} -
c^{2}}{4S}

    = \frac{3\left( a^{2} + b^{2} + c^{2}
ight)}{4S}

  • Câu 31: Thông hiểu

    Một tam giác có ba cạnh là 52,\ 56,\ 60. Bán kính đường tròn ngoại tiếp tam giác đó là:

    Ta có: p = \frac{52 + 56 + 60}{2} =
84.

    Áp dụng hệ thức Hê - rông ta có:

    S = \sqrt{84 \cdot (84 - 52) \cdot (84 -
56) \cdot (84 - 60)} = 1344.

    Mặt khác S = \frac{abc}{4R} \Rightarrow R
= \frac{abc}{4S\ } = \frac{52.56.60}{4.1344} = 32.5

  • Câu 32: Thông hiểu

    Một học sinh dùng giác kế, đứng cách chân cột cờ 10m rồi chỉnh mặt trước cao bằng mắt của mình để xác định góc nâng (góc tạo bởi tia sáng đi thẳng từ đỉnh cột cờ) với mắt tạo với phương nằm ngang. Khi đó góc nâng đo được 31. Biết khoảng cách từ mặt sân đến mắt học sinh đó bằng 1,5m. Chiều cao cột cờ gần nhất với giá trị nào?

    Hình vẽ minh họa

    Gọi AB là khoảng cách từ chân đến tầm mắt của học sinh ⇒ AB = 1,5m.

    AC là khoảng cách từ chân đến cột cờ ⇒ AC = 10m.

    CD là chiều cao cột cờ.

    BE là phương ngang của tầm mắt.

    Khi đó góc nâng là \widehat{DBE} =
31^{0}.

    Do ABEC là hình chữ nhật nên \left\{
\begin{matrix}
BE = AC = 10m \\
CE = AB = 1,5m \\
\end{matrix} ight..

    Ta có: \tan\widehat{DBE} = \frac{DE}{BE}
\Rightarrow DE = 10.tan31^{0} \approx 6m.

    Vậy chiều cao của cột cờ là: CD = CE + DE
= 6 + 1,5 = 7,5m.

  • Câu 33: Thông hiểu

    Nếu tam giác ABCBC^{2} < AB^{2} + AC^{2} thì:

    Nếu tam giác ABC có BC^{2} < AB^{2} + AC^{2} thì \widehat{A} là góc nhọn

  • Câu 34: Thông hiểu

    Giá trị biểu thức A = \sin {30^0}.\cos {60^0} + \sin {60^0}.\cos {30^0} là:

    Ta có:

    \begin{matrix}  A = \sin {30^0}.\cos {60^0} + \sin {60^0}.\cos {30^0} \hfill \\  A = \dfrac{1}{2}.\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}.\dfrac{{\sqrt 3 }}{2} \hfill \\  A = \dfrac{1}{4} + \dfrac{3}{4} = 1 \hfill \\ \end{matrix}

  • Câu 35: Thông hiểu

    Cho tam giác ABCAB=\sqrt{3}+1, AC=\sqrt{6}, BC = 2. Số đo của \widehat{B}-\widehat{A} là:

    Áp dụng hệ quả của định lí cosin ta có:

    \begin{matrix}  \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \hfill \\   \Rightarrow \cos \widehat A = \dfrac{{{{\left( {\sqrt 3  + 1} ight)}^2} + {{\left( {\sqrt 6 } ight)}^2} - {2^2}}}{{2.\left( {\sqrt 3  + 1} ight).\sqrt 6 }} = \dfrac{{\sqrt 2 }}{2} \hfill \\   \Rightarrow \widehat A = {45^0} \hfill \\ \end{matrix}

    \begin{matrix}  \cos \widehat B = \dfrac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB.BC}} \hfill \\   \Rightarrow \cos \widehat B = \dfrac{{{{\left( {\sqrt 3  + 1} ight)}^2} + {2^2} - {{\left( {\sqrt 6 } ight)}^2}}}{{2.\left( {\sqrt 3  + 1} ight).2}} = \dfrac{1}{2} \hfill \\   \Rightarrow \widehat B = {60^0} \hfill \\   \Rightarrow \widehat B - \widehat A = {60^0} - {45^0} = {25^0} \hfill \\ \end{matrix}

  • Câu 36: Thông hiểu

    Cho tam giác ABC, biết BC = 24, AC = 13, AB = 15. Số đo góc A là:

    Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \hfill \\   \Rightarrow \cos \widehat A = \dfrac{{{{15}^2} + {{13}^2} - {{24}^2}}}{{2.15.13}} =  - \dfrac{7}{{15}} \hfill \\   \Rightarrow \widehat A \approx {117^0}49\prime  \hfill \\ \end{matrix}

  • Câu 37: Thông hiểu

    Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:

    Ta có:

    \begin{matrix}  {S_{ABC}} = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{3}{5} \hfill \\   \Rightarrow \widehat A \approx {36^0}52\prime  \hfill \\ \end{matrix}

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A \hfill \\   \Rightarrow B{C^2} = {5^2} + {8^2} - 2.5.8.\cos {36^0}52\prime  \hfill \\   \Rightarrow B{C^2} \approx 25 \hfill \\   \Rightarrow BC \approx 5\left( {cm} ight) \hfill \\ \end{matrix}

  • Câu 38: Nhận biết

    Cho tam giác ABC thỏa mãn: 2cosA = 1. Khi đó:

    Ta có: 2cosA = 1 \Leftrightarrow \cos A = \frac{1}{2} \Rightarrow \widehat{A}
= 60^{0}.

  • Câu 39: Nhận biết

    Cho \Delta
ABC thỏa mãn : 2cosB =
\sqrt{2}. Khi đó:

    Ta có: 2cosB = \sqrt{2} \Leftrightarrow
\cos B = \frac{\sqrt{2}}{2} \Rightarrow \widehat{B} = 45^{0}.

  • Câu 40: Nhận biết

    Cho tam giác ABCAB=1;AC=\sqrt2;\hat A=45^{\circ}. Tính độ dài cạnh BC.

     Áp dụng định lí côsin:

    BC^2=AB^2+AC^2-2.AB.AC.\cos A=1+2-2.1.\sqrt2.\cos45^{\circ} =1.

    Suy ra BC=1.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác Sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 7 lượt xem
Sắp xếp theo