Cho
có
, nửa chu vi
. Độ dài bán kính đường tròn nội tiếp
của tam giác trên là:
Ta có:
Cho
có
, nửa chu vi
. Độ dài bán kính đường tròn nội tiếp
của tam giác trên là:
Ta có:
Tính giá trị của ![]()
Ta có
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
cùng dấu?
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Vậy nếu cùng dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Cho tam giác ABC có
, góc
bằng
. Độ dài cạnh
là ?
Ta có:
.
Cho tam giác ABC nội tiếp đường tròn bán kính R,
,
. Tính số đo của
biết
là góc tù.
Theo bài ra ta có: là góc tù =>
là góc nhọn.
Xét tam giác ABC áp dụng định lí sin ta có:
Mặt khác
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Giá trị biểu thức
bằng:
Ta có:
Tam giác
vuông tại
. Trên cạnh
lấy hai điểm
sao cho các góc
bằng nhau. Đặt
. Trong các hệ thức sau, hệ thức nào đúng?
Ta có
.
Theo định lí hàm cosin, ta có
.
Cho
có
. Độ dài cạnh
là:
Ta có:
.
Tam giác ABC có
. Số đo góc A là:
Áp dụng định lí cosin trong tam giác ta có:
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Tam giác
có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Xác định số phương trình luôn có nghiệm với mọi giá trị của tham số m trong các phương trình dưới đây?
![]()
![]()
![]()
![]()
Với thì
vô nghiệm.
Vì với mọi giá trị thực của m ta có: nên
Từ đó suy ra vậy phương trình
luôn có nghiệm.
Phương trình luôn có nghiệm với mọi giá trị thực của m.
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Giá trị
thoả mãn
gần nhất với giá trị:
Để tìm α khi biết tanα = 1,607 thì ta sử dụng máy tính cầm tay và tính được: α ≈ 58°.
Vậy α ≈ 58°
Tam giác
có
và
. Tính độ dài cạnh
.
Áp dụng định lí sin:
.
Cho biết
. Tính
.
Ta có:
.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Cho tam giác
thỏa mãn biểu thức
![]()
Chọn khẳng định đúng.
Ta có:
Vậy tam giác ABC là tam giác cân.
Tam giác
thỏa mãn đẳng thức

Biết
. Chọn khẳng định nào dưới đây đúng?
Ta có:
Chứng minh tương tự và suy ra ta có:
Dấu bằng xảy ra khi và chỉ khi
Vậy tam giác ABC là tam giác đều.
Tam giác
có
. Số đo góc
bằng:
Theo định lí hàm cosin, ta có
.
Do đó, .
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lý côsin: .
Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:
Ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Cho
Khẳng định nào sau đây đúng?
Ta có:
và
.
Trong các đẳng thức sau, đẳng thức nào sai?
Khẳng định sai là: ""
Sửa lại là: ""
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Cho
với
. Khi đó giá trị
bằng:
Vì
Suy ra
.
Tam giác ABC có
. Độ dài cạnh AB là:
Áp dụng định lí sin trong tam giác ABC ta có:
Cho
có
Độ dài cạnh
bằng:
Ta có:
.
Tam giác
có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Cho góc
thỏa mãn
và
. Tính
.
Ta có .
Vì
Theo giả thiết:
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Cho tam giác ABC có b = 7; c = 5,
. Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Tam giác ABC có
. Độ dài cạnh AB là:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có: