Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác Sách CTST

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Hệ thức lượng trong tam giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \cos 121^{\circ} =\cos -121^{\circ}\cos \alpha =\cos -\alpha.

  • Câu 2: Nhận biết

    Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64 cm^{2}. Giá trị sin A là:

    Ta có: 

    \begin{matrix}  {S_{ABC}} = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{{2.64}}{{8.18}} = \dfrac{8}{9} \hfill \\ \end{matrix}

  • Câu 3: Nhận biết

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 4: Vận dụng

    Cho góc \alpha thỏa mãn \sin\alpha\cos\alpha = \frac{12}{25}\sin\alpha + \cos\alpha > 0. Tính P = sin^{3}\alpha +
cos^{3}\alpha.

    Áp dụng a^{3} + b^{3} = (a + b)^{3} -
3ab(a + b), ta có

    P = sin^{3}\alpha +
cos^{3}\alpha = \left( \sin\alpha +
\cos\alpha ight)^{3} - 3sin\alpha\cos\alpha\left( \sin\alpha +
\cos\alpha ight).

    Ta có \left( \sin\alpha + \cos\alpha
ight)^{2} = sin^{2}\alpha + 2sin\alpha\cos\alpha +
cos^{2}\alpha = 1 + \frac{24}{25} =
\frac{49}{25}

    \sin\alpha + \cos\alpha >
0 nên ta chọn \sin\alpha +
\cos\alpha = \frac{7}{5}.

    Thay \left\{ \begin{matrix}
\sin\alpha + \cos\alpha = \frac{7}{5} \\
\sin\alpha\cos\alpha = \frac{12}{25} \\
\end{matrix} ight. vào P, ta được P
= \left( \frac{7}{5} ight)^{3} - 3.\frac{12}{25}.\frac{7}{5} =
\frac{91}{125}.

  • Câu 5: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha > 0 \\
\tan\alpha < 0 \\
\cot\alpha < 0 \\
\end{matrix} ight..

  • Câu 6: Nhận biết

    Cho \Delta
ABC vuông tại B và có \widehat{C} = 25^{0}. Số đo của góc A là:

    Ta có: Trong \Delta ABC \widehat{A} + \widehat{B} + \widehat{C} =
180^{0} \Rightarrow \widehat{A} =
180^{0} - \widehat{B} - \widehat{C} = 180^{0} - 90^{0} - 25^{0} = 65^{0}.

  • Câu 7: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \sin157^{\circ} =\sin (180^{\circ} -157^{\circ} )=\sin 23^{\circ}. Vì \sin \alpha =\sin (180^{\circ} -\alpha ).

  • Câu 8: Thông hiểu

    Tam giác ABC\widehat{A}=68°12',\widehat{B}=34°44' , AB = 117. Độ dài cạnh AC là khoảng:

    Ta có:

    \begin{matrix}  \widehat A + \widehat B + \widehat C = {180^0} \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} ight) \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {{{68}^0}12\prime  - {{34}^0}44\prime } ight) \hfill \\   \Rightarrow \widehat C = {77^0}4\prime \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} \Rightarrow AC = \dfrac{{AB.\sin \widehat B}}{{\sin \widehat C}} \hfill \\   \Rightarrow AC = \dfrac{{AB.\sin {{34}^0}44'}}{{\sin {{77}^0}4'}} \approx 68 \hfill \\ \end{matrix}

  • Câu 9: Vận dụng

    Cho góc \alpha thỏa mãn \cot\alpha = \frac{1}{3}. Tính P = \frac{3sin\alpha + 4cos\alpha}{2sin\alpha -
5cos\alpha}.

    Chia cả tử và mẫu của P cho \sin\alpha ta được P = \frac{3 + 4cot\alpha}{2 - 5cot\alpha} =
\frac{3 + 4.\frac{1}{3}}{2 - 5.\frac{1}{3}} = 13.

  • Câu 10: Nhận biết

    Cho \Delta
ABCS = 10\sqrt{3}, nửa chu vi p = 10. Độ dài bán kính đường tròn nội tiếp r của tam giác trên là:

    Ta có: S = pr \Rightarrow r = \frac{S}{p} =
\frac{10\sqrt{3}}{10} = \sqrt{3}.

  • Câu 11: Nhận biết

    Cho tam giác ABCa=2,\hat A=60^{\circ} ,\hat B=45^{\circ}. Hỏi độ dài cạnh b bằng bao nhiêu?

     Áp dụng định lí sin:

    \frac{a}{{\sin A}} = \frac{b}{{\sin B}} \Leftrightarrow b = \sin B.\frac{a}{{\sin A}}= \sin 45^\circ .\frac{2}{{\sin 60^\circ }} = \frac{{2\sqrt 6 }}{3}.

  • Câu 12: Thông hiểu

    Trong các đẳng thức sau, đẳng thức nào sai?

    Khẳng định sai là: "\sin {0^0} + \cos {0^0} = 0"

    Sửa lại là: "\sin {0^0} + \cos {0^0} = 1"

  • Câu 13: Nhận biết

    Cho 2\pi <
\alpha < \frac{5\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có 2\pi < \alpha <
\frac{5\pi}{2}\overset{}{ightarrow}điểm cuối cung \alpha - \pi thuộc góc phần tư thứ I\overset{}{ightarrow}\left\{ \begin{matrix}
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight.\ .

  • Câu 14: Nhận biết

    Cho \Delta
ABC thỏa mãn : 2cosB =
\sqrt{2}. Khi đó:

    Ta có: 2cosB = \sqrt{2} \Leftrightarrow
\cos B = \frac{\sqrt{2}}{2} \Rightarrow \widehat{B} = 45^{0}.

  • Câu 15: Thông hiểu

    Cho tam giác ABC có b = 7; c = 5, \cos A = \frac{3}{5}. Đường cao h_{a} của tam giác ABC là:

    Ta có: a^{2} = b^{2} + c^{2} - 2bc\cos A
= 7^{2} + 5^{2} - 2.7.5.\frac{3}{5}
= 32 \Rightarrow a = 4\sqrt{2}.

    Mặt khác: sin^{2}A + cos^{2}A = 1
\Rightarrow sin^{2}A = 1 - cos^{2}A = 1 - \frac{9}{25} = \frac{16}{25} \Rightarrow
\sin A = \frac{4}{5} (Vì \sin A
> 0).

    Mà: S_{\Delta ABC} = \frac{1}{2}b.c.sinA
= \frac{1}{2}a.h_{a} \Rightarrow
h_{a} = \frac{bc\sin A}{a} = \frac{7.5.\frac{4}{5}}{4\sqrt{2}} =
\frac{7\sqrt{2}}{2}.

  • Câu 16: Nhận biết

    Cho biết \tan\alpha = \frac{1}{2}. Tính \cot\alpha.

    Ta có: \tan\alpha.cot\alpha = 1
\Rightarrow \cot\alpha =
\frac{1}{\tan\alpha} = \frac{1}{\frac{1}{2}} = 2.

  • Câu 17: Nhận biết

    Cho tam giác ABC thỏa mãn: 2cosA = 1. Khi đó:

    Ta có: 2cosA = 1 \Leftrightarrow \cos A = \frac{1}{2} \Rightarrow \widehat{A}
= 60^{0}.

  • Câu 18: Nhận biết

    Tam giác ABCAB =
2,\ \ AC = 1\widehat{A} =
60{^\circ}. Tính độ dài cạnh BC.

    Theo định lí hàm cosin, ta có BC^{2} =
AB^{2} + AC^{2} - 2AB.AC.cos\widehat{A} = 2^{2} + 1^{2} - 2.2.1.cos60{^\circ} = 3
\Rightarrow BC = \sqrt{3}.

  • Câu 19: Vận dụng

    Từ vị trí A người ta quan sát một cây cao (hình vẽ).

    Biết AH = 4m,HB = 20m,\widehat{BAC} =
45^{0}.

    Chiều cao của cây gần nhất với giá trị nào sau đây?

    Trong tam giác AHB, ta có \tan\widehat{ABH} = \frac{AH}{BH} = \frac{4}{20} =
\frac{1}{5} \overset{}{ightarrow}\widehat{ABH} \approx
11^{0}19'.

    Suy ra \widehat{ABC} = 90^{0} -
\widehat{ABH} = 78^{0}41'.

    Suy ra \widehat{ACB} = 180^{0} - \left(
\widehat{BAC} + \widehat{ABC} ight) = 56^{0}19'.

    Áp dụng định lý sin trong tam giác ABC, ta được \frac{AB}{\sin\widehat{ACB}} =
\frac{CB}{\sin\widehat{BAC}} \overset{}{ightarrow}CB =
\frac{AB.sin\widehat{BAC}}{\sin\widehat{ACB}} \approx 17m.

  • Câu 20: Thông hiểu

    Cho tam giác ABC, chọn công thức đúng trong các đáp án sau:

    Ta có: m_{a}^{2} = \frac{b^{2} +
c^{2}}{2} - \frac{a^{2}}{4} =
\frac{2b^{2} + 2c^{2} - a^{2}}{4}.

  • Câu 21: Thông hiểu

    Cho \frac{\pi}{2} < \alpha < \pi. Giá trị lượng giác nào sau đây luôn dương?

    Ta có \sin(\pi + \alpha) = -
\sin\alpha; \cot\left(
\frac{\pi}{2} - \alpha ight) = \sin\alpha; \cos( - \alpha) = \cos\alpha; \tan(\pi + \alpha) = \tan\alpha.

    Do \frac{\pi}{2} < \alpha <
\pi ightarrow \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha < 0 \\
\tan\alpha < 0 \\
\end{matrix} ight..

  • Câu 22: Nhận biết

    Cho tam giác ABCAB =4cm;AC = 12cm và góc \widehat{BAC} = 120^{\circ}. Tính diện tích tam giác ABC.

    S = \frac{1}{2}AB \cdot AC \cdot
\sin\widehat{BAC}

    = \frac{1}{2} \cdot 4 \cdot 12 \cdot
\sin 120^{\circ}

    = 12\sqrt{3}\left( {cm}^{2}ight)

  • Câu 23: Nhận biết

    Tam giác ABC\widehat{B} = 60{^\circ},\ \ \widehat{C} =
45{^\circ}AB = 5. Tính độ dài cạnh AC.

    Theo định lí hàm sin, ta có \frac{AB}{\sin\widehat{C}} =
\frac{AC}{\sin\widehat{B}} \Leftrightarrow \frac{5}{sin45{^\circ}} =
\frac{AC}{sin60{^\circ}} \Rightarrow AC = \frac{5\sqrt{6}}{2}.

  • Câu 24: Thông hiểu

    Giá trị biểu thức S = {\cos ^2}{12^0} + {\cos ^2}{48^0} + {\cos ^2}{1^0} + {\cos ^2}{89^0} bằng:

    Ta có:

    \begin{matrix}  S = {\cos ^2}{12^0} + {\cos ^2}{48^0} + {\cos ^2}{1^0} + {\cos ^2}{89^0} \hfill \\   = {\cos ^2}{12^0} + {\sin ^2}{12^0} + {\cos ^2}{1^0} + {\sin ^2}{1^0} \hfill \\   = 1 + 1 = 2 \hfill \\ \end{matrix}

  • Câu 25: Vận dụng cao

    Cho tam giác ABCAB =
c;BC = a;AC = b\widehat{C} <
\widehat{B}. Biết rằng:

    \dfrac{\sin\left( \widehat{B} -\widehat{C} ight)}{\sin\left( \widehat{B} + \widehat{C} ight)} =\dfrac{b^{2} - c^{2}}{b^{2} + c^{2}}

    Chọn khẳng định đúng?

    Ta có:

    \frac{\sin\left( \widehat{B} -\widehat{C} ight)}{\sin\left( \widehat{B} + \widehat{C} ight)} =\frac{\sin\widehat{B}.\cos\widehat{C} -\sin\widehat{C}.\cos\widehat{B}}{\sin\widehat{B}.\cos\widehat{C} +\sin\widehat{C}.\cos\widehat{B}}

    = \dfrac{\dfrac{b}{2R}.\cos\widehat{C} -\dfrac{c}{2R}.\cos\widehat{B}}{\dfrac{b}{2R}.\cos\widehat{C} +\dfrac{c}{2R}.\cos\widehat{B}}

    = \dfrac{2ab\cos\widehat{C} -2ac.\cos\widehat{B}}{2ab\cos\widehat{C} +2ac.\cos\widehat{B}}

    = \frac{\left( a^{2} + b^{2} - c^{2}
ight) - \left( a^{2} + c^{2} - b^{2} ight)}{\left( a^{2} + b^{2} -
c^{2} ight) + \left( a^{2} + c^{2} - b^{2} ight)}

    = \frac{b^{2} -
c^{2}}{a^{2}}

    \frac{\sin\left( \widehat{B} -
\widehat{C} ight)}{\sin\left( \widehat{B} + \widehat{C} ight)} =
\frac{b^{2} - c^{2}}{b^{2} + c^{2}}

    \Rightarrow \frac{b^{2} - c^{2}}{a^{2}}
= \frac{b^{2} - c^{2}}{b^{2} + c^{2}}

    \Rightarrow a^{2} = b^{2} +
c^{2}

    Vậy tam giác ABC là tam giác vuông tại A.

  • Câu 26: Vận dụng cao

    Xác định số phương trình luôn có nghiệm với mọi giá trị của tham số m trong các phương trình dưới đây?

    \left| \sin x ight| = \frac{m}{m^{2} +
1}\ \ (i)

    \sin x = \frac{2m}{m^{2} + 1}\ \
(ii)

    \tan x = \frac{2m}{m^{2} + 1}\ \
(iii)

    \sin x = \frac{|m|}{m^{2} + 1}\ \
(iv)

    Với m < 0 thì (i) vô nghiệm.

    Vì với mọi giá trị thực của m ta có: m^{2} - 2|m| + 1 \geq 0 nên m^{2} + 1 \geq 2|m| \geq |m|

    Từ đó suy ra \left\{ \begin{matrix}- 1 \leq \dfrac{2m}{m^{2} + 1} \leq 1 \\0 \leq \dfrac{|m|}{m^{2} + 1} \leq 1 \\\end{matrix} ight. vậy phương trình (ii),(iv) luôn có nghiệm.

    Phương trình (iii) luôn có nghiệm với mọi giá trị thực của m.

  • Câu 27: Vận dụng

    Từ một đỉnh tháp chiều cao CD = 80\ m, người ta nhìn hai điểm AB trên mặt đất dưới các góc nhìn là 72^{0}12'34^{0}26' so với phương nằm ngang. Ba điểm A,B,D thẳng hàng. Tính khoảng cách AB (chính xác đến hàng đơn vị)?

    Ta có: Trong tam giác vuông CDA: tan72^{0}12' = \frac{CD}{AD} \Rightarrow AD = \frac{CD}{tan72^{0}12'}
= \frac{80}{tan72^{0}12'} \simeq 25,7.

    Trong tam giác vuông CDB: tan34^{0}26' = \frac{CD}{BD} \Rightarrow BD =
\frac{CD}{tan34^{0}26'} =
\frac{80}{tan34^{0}26'} \simeq 116,7.

    Suy ra: khoảng cách AB = 116,7 - 25,7 =
91\ m.

  • Câu 28: Thông hiểu

    Một tam giác có ba cạnh là 52,\ 56,\ 60. Bán kính đường tròn ngoại tiếp tam giác đó là:

    Ta có: p = \frac{52 + 56 + 60}{2} =
84.

    Áp dụng hệ thức Hê - rông ta có:

    S = \sqrt{84 \cdot (84 - 52) \cdot (84 -
56) \cdot (84 - 60)} = 1344.

    Mặt khác S = \frac{abc}{4R} \Rightarrow R
= \frac{abc}{4S\ } = \frac{52.56.60}{4.1344} = 32.5

  • Câu 29: Nhận biết

    Giá trị cot\frac{\pi }{6} là:

     Ta có: cot\frac{\pi }{6} =\sqrt3.

  • Câu 30: Vận dụng cao

    Cho tam giác ABC có các góc thỏa mãn biểu thức

    \sin^{2}\widehat{A} + \sin^{2}\widehat{B}= \sqrt[2017]{\sin\widehat{C}}

    Giả sử AB = c;BC = a;AC = b. Tính số đo góc \widehat{C}?

    Ta có:

    \sin\widehat{C} \in \lbrack - 1;1brack
\Rightarrow sin^{2017}\widehat{C} \geq sin^{2}\widehat{C}

    \Rightarrow sin^{2}\widehat{A} +
sin^{2}\widehat{B} \geq sin^{2}\widehat{C}

    \Rightarrow 4R^{2}.\left\lbrack
sin^{2}\widehat{A} + sin^{2}\widehat{B} ightbrack \geq
4R^{2}.sin^{2}\widehat{C}

    \Rightarrow a^{2} + b^{2} \geq
c^{2}

    \Rightarrow a^{2} + b^{2} - c^{2} \geq
0

    Theo định lí cosin ta có:

    \Rightarrow \cos\widehat{C} =
\frac{a^{2} + b^{2} - c^{2}}{2ab} \geq 0

    Ta thấy

    \sin^{2}\widehat{A} + \sin^{2}\widehat{B}= \frac{1 - \cos2\widehat{A}}{2} + \frac{1 -\cos2\widehat{B}}{2}

    = 1 - \frac{\cos2\widehat{A} +\cos2\widehat{B}}{2}

    = 1 - \cos\left( \widehat{A} +\widehat{B} ight).\cos\left( \widehat{A} - \widehat{B}ight)

    = 1 - \cos\widehat{C}.\cos\left(\widehat{A} - \widehat{B} ight) \geq 1

    Mặt khác \sqrt[2017]{\sin\widehat{C}}\leq \sqrt[2017]{1} = 1

    Do đó: sin^{2}\widehat{A} +
sin^{2}\widehat{B} = \sqrt[2017]{\sin\widehat{C}} khi \left\{ \begin{matrix}\cos\widehat{C}.\cos\left( \widehat{A} - \widehat{B} ight) = 0 \\\sin\widehat{C} = 1 \\\end{matrix} ight.

    \Rightarrow \widehat{C} =\dfrac{\pi}{2}

    Vậy tam giác ABC là tam giác vuông tại \widehat{C}.

  • Câu 31: Thông hiểu

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \sqrt{sin^{2}}\alpha = \sin\alpha.

    Ta có \sqrt{sin^{2}\alpha}
\Leftrightarrow \sin\alpha \Leftrightarrow \left| \sin\alpha ight| =
\sin\alpha.

    Đẳng thức \left| \sin\alpha ight| =
\sin\alpha\overset{}{ightarrow}\sin\alpha \geq
0\overset{}{ightarrow}điểm cuối của góc lượng giác \alpha ở góc phần tư thứ I hoặc II.

  • Câu 32: Thông hiểu

    Cho hình thoi ABCD cạnh bằng 1\ \ cm và có \widehat{BAD} = 60{^\circ}. Tính độ dài cạnh AC.

    Do ABCD là hình thoi, có \widehat{BAD} = 60{^\circ} \Rightarrow
\widehat{ABC} = 120{^\circ}.

    Theo định lí hàm cosin, ta có

    AC^{2} = AB^{2} + BC^{2} -
2.AB.BC.cos\widehat{ABC}

    = 1^{2} + 1^{2} - 2.1.1.cos120{^\circ} =
3 \Rightarrow AC =
\sqrt{3}

  • Câu 33: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha < 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 34: Thông hiểu

    Cho góc \alpha thỏa mãn \sin\alpha = \frac{12}{13}\frac{\pi}{2} < \alpha < \pi. Tính \cos\alpha.

    Ta có: \left\{ \begin{matrix}
\cos\alpha = \pm \sqrt{1 - sin^{2}\alpha} = \pm \frac{5}{13} \\
\frac{\pi}{2} < \alpha < \pi \\
\end{matrix} ight. \overset{}{ightarrow}\cos\alpha = -
\frac{5}{13}.

  • Câu 35: Thông hiểu

    Cho tam giác ABCAB=\sqrt{3}+1, AC=\sqrt{6}, BC = 2. Số đo của \widehat{B}-\widehat{A} là:

    Áp dụng hệ quả của định lí cosin ta có:

    \begin{matrix}  \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \hfill \\   \Rightarrow \cos \widehat A = \dfrac{{{{\left( {\sqrt 3  + 1} ight)}^2} + {{\left( {\sqrt 6 } ight)}^2} - {2^2}}}{{2.\left( {\sqrt 3  + 1} ight).\sqrt 6 }} = \dfrac{{\sqrt 2 }}{2} \hfill \\   \Rightarrow \widehat A = {45^0} \hfill \\ \end{matrix}

    \begin{matrix}  \cos \widehat B = \dfrac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB.BC}} \hfill \\   \Rightarrow \cos \widehat B = \dfrac{{{{\left( {\sqrt 3  + 1} ight)}^2} + {2^2} - {{\left( {\sqrt 6 } ight)}^2}}}{{2.\left( {\sqrt 3  + 1} ight).2}} = \dfrac{1}{2} \hfill \\   \Rightarrow \widehat B = {60^0} \hfill \\   \Rightarrow \widehat B - \widehat A = {60^0} - {45^0} = {25^0} \hfill \\ \end{matrix}

  • Câu 36: Vận dụng

    Cho góc \alpha thỏa mãn \tan\alpha = 5. Tính P = sin^{4}\alpha - cos^{4}\alpha.

    Ta có P = \left( sin^{2}\alpha -
cos^{2}\alpha ight).\left( sin^{2}\alpha + cos^{2}\alpha
ight) = sin^{2}\alpha -
cos^{2}\alpha.(*)

    Chia hai vế của (*)cho cos^{2}\alpha ta được \frac{P}{cos^{2}\alpha} =
\frac{sin^{2}\alpha}{cos^{2}\alpha} - 1

    \Leftrightarrow P\left( 1 + tan^{2}\alpha
ight) = tan^{2}\alpha - 1 \Leftrightarrow P = \frac{tan^{2}\alpha - 1}{1 +
tan^{2}\alpha}. = \frac{5^{2} - 1}{1 + 5^{2}} =
\frac{12}{13}.

  • Câu 37: Thông hiểu

    Giá trị biểu thức T = \tan 1^{\circ}.\tan2^{\circ}\ldots.\tan89^{\circ} bằng:

    Ta có:

    \ T = \left( \tan 1^{\circ}.\tan89^{\circ}ight)\left( \tan 2^{\circ}.\tan88^{\circ} ight)\ldots\left( \tan44^{\circ}.\tan 46^{\circ} ight).\tan45^{\circ}

    = \left( \tan 1^{\circ}.\cot 1^{0}
ight)\left( \tan 2^{\circ}.\cot 2^{\circ} ight)\ldots\left( \tan
44^{\circ}.\cot 44^{\circ} ight)\tan 45^{\circ}

    = 1.1.1\ldots 1 = 1.

  • Câu 38: Thông hiểu

    Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:

    Ta có:

    \begin{matrix}  {S_{ABC}} = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{3}{5} \hfill \\   \Rightarrow \widehat A \approx {36^0}52\prime  \hfill \\ \end{matrix}

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A \hfill \\   \Rightarrow B{C^2} = {5^2} + {8^2} - 2.5.8.\cos {36^0}52\prime  \hfill \\   \Rightarrow B{C^2} \approx 25 \hfill \\   \Rightarrow BC \approx 5\left( {cm} ight) \hfill \\ \end{matrix}

  • Câu 39: Nhận biết

    Tam giác ABC\widehat{B} = 60^{\circ},\widehat{C} =
45^{\circ}AB = 5. Tính độ dài cạnh AC.

    Theo định lí sin ta có:

    \frac{AB}{\sin C} = \frac{AC}{\sin B}
\Leftrightarrow \frac{5}{\sin 45^{\circ}} = \frac{AC}{\sin
60^{\circ}}

    \Leftrightarrow AC =
\frac{5\sqrt{6}}{2}.

  • Câu 40: Thông hiểu

    Cho 0 <
\alpha < \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
0 < \alpha < \frac{\pi}{2} ightarrow \frac{\pi}{2} < \alpha +
\frac{\pi}{2} < \pi \\
0 < \alpha < \frac{\pi}{2} ightarrow \pi < \alpha + \pi <
\frac{3\pi}{2} \\
\end{matrix} ight. \overset{}{ightarrow}\cot\left( \alpha +
\frac{\pi}{2} ight) < 0\overset{}{ightarrow}\tan(\alpha + \pi) >
0.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác Sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo