Cho
với
. Tính
.
Ta có:
.
Do nên
. Suy ra,
Cho
với
. Tính
.
Ta có:
.
Do nên
. Suy ra,
Cho
. Xác định dấu của biểu thức ![]()
Ta có:
và
.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Tính giá trị của ![]()
Ta có
Một tam giác có ba cạnh là
. Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Tam giác
thỏa mãn đẳng thức

Biết
. Chọn khẳng định nào dưới đây đúng?
Ta có:
Chứng minh tương tự và suy ra ta có:
Dấu bằng xảy ra khi và chỉ khi
Vậy tam giác ABC là tam giác đều.
Cho tam giác
. Tìm công thức sai:
Ta có:
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Cho
có
. Độ dài cạnh
là:
Ta có:
.
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có:
Cho góc
thỏa mãn
và
Tính ![]()
Ta có
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Tam giác ABC có
. Độ dài cạnh AB là:
Áp dụng định lí sin trong tam giác ABC ta có:
Biểu thức lượng giác
có giá trị bằng bao nhiêu?
Ta có:
Khi đó
Cho
có
Độ dài cạnh
bằng:
Ta có:
.
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Cho
có
. Số đo của góc
là:
Ta có:
Tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lý côsin: .
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Một học sinh dùng giác kế, đứng cách chân cột cờ 10m rồi chỉnh mặt trước cao bằng mắt của mình để xác định góc nâng (góc tạo bởi tia sáng đi thẳng từ đỉnh cột cờ) với mắt tạo với phương nằm ngang. Khi đó góc nâng đo được 31∘. Biết khoảng cách từ mặt sân đến mắt học sinh đó bằng 1,5m. Chiều cao cột cờ gần nhất với giá trị nào?
Hình vẽ minh họa
Gọi AB là khoảng cách từ chân đến tầm mắt của học sinh ⇒ AB = 1,5m.
AC là khoảng cách từ chân đến cột cờ ⇒ AC = 10m.
CD là chiều cao cột cờ.
BE là phương ngang của tầm mắt.
Khi đó góc nâng là .
Do ABEC là hình chữ nhật nên .
Ta có: .
Vậy chiều cao của cột cờ là: .
Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?
Hình ảnh minh họa

Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác
=>
Do đó:
Ta có:
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Nếu tam giác
có
thì:
Nếu tam giác ABC có thì
là góc nhọn
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Hai chiếc tàu thuỷ cùng xuất phát từ vị trí
, đi thẳng theo hai hướng tạo với nhau một góc
. Tàu thứ nhất chạy với tốc độ
, tàu thứ hai chạy với tốc độ
. Hỏi sau
giờ hai tàu cách nhau bao nhiêu
?

Ta có: Sau quãng đường tàu thứ nhất chạy được là:
Sau quãng đường tàu thứ hai chạy được là:
Vậy: sau hai tàu cách nhau là:
Cho
Khẳng định nào sau đây đúng?
Ta có:
và
.
Cho tam giác
có
và góc
. Tính diện tích tam giác
.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Cho hình thoi
cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Giá trị
là:
Ta có: .
Cho
vuông tại
và có
. Số đo của góc
là:
Ta có: Trong
.
Cho góc
thỏa mãn
và
Tính ![]()
Ta có
. Do đó,
Tam giác
là tam giác gì khi có các góc thỏa mãn biểu thức
?
Ta có:
Vậy tam giác ABC là tam giác vuông.
Để đo khoảng cách từ một điểm
trên bờ sông đến gốc cây
trên cù lao giữa sông, người ta chọn một điểm
cùng ở trên bờ với
sao cho từ
và
có thể nhìn thấy điểm
. Ta đo được khoảng cách
,
và
.Vậy sau khi đo đạc và tính toán được khoảng cách
gần nhất với giá trị nào sau đây?

Áp dụng định lí sin vào tam giác ta có
Vì nên
Cho tam giác
, chọn công thức đúng trong các đáp án sau:
Ta có:
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
cùng dấu?
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Vậy nếu cùng dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Tam giác
có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có: