Giá trị biểu thức
bằng:
Ta có:
.
Giá trị biểu thức
bằng:
Ta có:
.
Cho
Khẳng định nào sau đây đúng?
Ta có :
Cho
Khẳng định nào sau đây đúng?
Ta có:
và
.
Cho
có
, nửa chu vi
. Độ dài bán kính đường tròn nội tiếp
của tam giác trên là:
Ta có:
Cho
Khẳng định nào sau đây đúng?
Ta có: điểm cuối cung
thuộc góc phần tư thứ
Cho góc
thoả mãn
và
. Giá trị của
là:
Ta có:
.
Do đó .
Vì nên
.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm sin, ta có
.
Tam giác
có
và
. Tính độ dài cạnh
.
Áp dụng định lí sin:
.
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Cho hình thoi
cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Cho
vuông tại
và có
. Số đo của góc
là:
Ta có: Trong
.
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
trái dấu?
Điểm cuối của thuộc góc phần tư thứ hai thì
,
.
Điểm cuối của thuộc góc phần tư thứ tư thì
,
.
Vậy nếu trái dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Cho tam giác
có
. Diện tích
của tam giác
là:
Ta có: nên tam giác
vuông tại B.
Diện tích tam giác là: .
Cho tam giác
, chọn công thức đúng trong các đáp án sau:
Ta có:
Cho góc
thỏa mãn
và
. Tính
.
Ta có
.
Theo giả thiết:
.
Ta có
Tam giác
có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ)

Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?
Diện tích mảnh đất của gia đình bà Sáu (tam giác ) là:
.
Giá trị
là:
Ta có: .
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Cho
thỏa mãn :
. Khi đó:
Ta có:
Cho tam giác
cạnh
, lấy
sao cho
. Đường tròn tâm
bán kính
tiếp xúc với các cạnh
lần lượt tại các điểm
. Tính độ dài cạnh
?
Hình vẽ minh họa
Ta có: từ đó suy ra
(do
là các góc nhọn)
Đặt . Do
là phân góc của góc
nên
Mặt khác, theo định lí cosin trong tam giác ta có:
Thay số ta được hệ phương trình:
Vậy
Cho
có
Diện tích
của tam giác trên là:
Ta có: Nửa chu vi :
.
Áp dụng công thức Hê-rông:
.
Cho góc
thỏa mãn
và
. Tính giá trị của biểu thức
.
Ta có
Thay vào
, ta được
.
Cho tam giác
. Tìm công thức sai:
Ta có:
Trong sơ đồ, chùm sáng S hướng vào gương màu xanh, phản xạ vào gương màu đỏ và sau đó phản xạ vào gương màu xanh như hình vẽ. Biết OP = 2 m, ![]()

Khi đó đoạn PT bằng:
Ta có:
Áp dụng định lí cosin cho tam giác POQ ta có:
Áp dụng hệ quả của định lí cosin cho tam giác POQ ta có:
Ta lại có:
=>
Xét tam giác OTP ta có:
Áp dụng định lí sin cho tam giác OTP ta có:
Nếu tam giác
có
thì:
Nếu tam giác ABC có thì
là góc nhọn
Cho biểu thức B xác định, rút gọn biểu thức
với
?
Ta có:
Do đó:
Vì nên
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Cho góc
thỏa mãn
và
. Tính
.
Ta có .
Vì
Theo giả thiết:
Tam giác ABC có
. Số đo góc A là:
Áp dụng định lí cosin trong tam giác ta có:
Cho biết
. Tính
.
Ta có:
.
Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Tam giác
vuông tại
, đường cao
. Hai cạnh
và
tỉ lệ với
và
. Cạnh nhỏ nhất của tam giác này có độ dài bằng bao nhiêu?
Do tam giác vuông tại
, có tỉ lệ 2 cạnh góc vuông
là
nên
là cạnh nhỏ nhất trong tam giác.
Ta có .
Trong có
là đường cao
.
Tam giác
thỏa mãn đẳng thức

Biết
. Chọn khẳng định nào dưới đây đúng?
Ta có:
Chứng minh tương tự và suy ra ta có:
Dấu bằng xảy ra khi và chỉ khi
Vậy tam giác ABC là tam giác đều.