Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác Sách CTST

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Hệ thức lượng trong tam giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho biết \tan\alpha = \frac{1}{2}. Tính \cot\alpha.

    Ta có: \tan\alpha.cot\alpha = 1
\Rightarrow \cot\alpha =
\frac{1}{\tan\alpha} = \frac{1}{\frac{1}{2}} = 2.

  • Câu 2: Thông hiểu

    Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?

    Hình ảnh minh họa

    Chọn khẳng định đúng

    Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác

    => \widehat {BAH} = \frac{1}{2}\widehat {BAC}=30^0;\widehat {ABC} = {60^0};\widehat {AHC} = {90^0}

    Do đó: \sin \widehat {BAH} = \frac{1}{2};\sin \widehat {BAH} = \frac{{\sqrt 3 }}{2}

    Ta có: \widehat {ABC} = {60^0} \Rightarrow \sin \widehat {ABC} = \frac{{\sqrt 3 }}{2}

  • Câu 3: Vận dụng

    Hai chiếc tàu thuỷ cùng xuất phát từ vị trí A, đi thẳng theo hai hướng tạo với nhau một góc 60^{0}. Tàu thứ nhất chạy với tốc độ 30\ km/h, tàu thứ hai chạy với tốc độ 40\ km/h. Hỏi sau 2 giờ hai tàu cách nhau bao nhiêu km?

    Ta có: Sau 2h quãng đường tàu thứ nhất chạy được là: S_{1} = 30.2 = 60\
km.

    Sau 2h quãng đường tàu thứ hai chạy được là: S_{2} = 40.2 = 80\
km.

    Vậy: sau 2h hai tàu cách nhau là: S = \sqrt{{S_{1}}^{2} + {S_{2}}^{2} -
2S_{1}.S_{2}.cos60^{0}} =
20\sqrt{13}.

  • Câu 4: Thông hiểu

    Trong tam giác ABC có AB = 2, AC = 1\widehat{A}=60^0. Tính độ dài cạnh BC.

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A \hfill \\   \Leftrightarrow B{C^2} = {2^2} + {1^2} - 2.2.1.\cos {60^0} \hfill \\   \Leftrightarrow B{C^2} = 3 \hfill \\   \Leftrightarrow BC = \sqrt 3  \hfill \\ \end{matrix}

  • Câu 5: Nhận biết

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 6: Vận dụng cao

    Cho tam giác ABC cạnh BC =
10, lấy I \in BC sao cho \frac{IB}{IC} = \frac{3}{2}. Đường tròn tâm I bán kính 3 tiếp xúc với các cạnh AB,AC lần lượt tại các điểm M,N. Tính độ dài cạnh AB?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}\sin\widehat{B} = \dfrac{IM}{BI} = \dfrac{1}{2} \\\sin\widehat{C} = \dfrac{IN}{CI} = \dfrac{3}{4} \\\end{matrix} ight. từ đó suy ra \left\{ \begin{matrix}\cos\widehat{B} = \dfrac{\sqrt{3}}{2} \\\cos\widehat{C} = \dfrac{\sqrt{7}}{4} \\\end{matrix} ight. (do \widehat{B};\widehat{C} là các góc nhọn)

    Đặt AB = c;AC = b. Do AI là phân góc của góc \widehat{A} nên \frac{c}{b} = \frac{6}{4} \Rightarrow 2c =
3b

    Mặt khác, theo định lí cosin trong tam giác ABC ta có:

    \left\{ \begin{matrix}
c^{2} = b^{2} + BC^{2} - 2b.BC.cos\widehat{C} \\
b^{2} = c^{2} + BC^{2} - 2c.BC.cos\widehat{B} \\
\end{matrix} ight.

    Thay số ta được hệ phương trình:

    \left\{ \begin{matrix}
2c = 3b \\
c^{2} = b^{2} + 100 - 5\sqrt{70}b \\
b^{2} = c^{2} + 100 - 10\sqrt{3}c \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = 2\left( 3\sqrt{3} - \sqrt{7} ight) \\
c = 3\left( 3\sqrt{3} - \sqrt{7} ight) \\
\end{matrix} ight.

    Vậy AB = 3\left( 3\sqrt{3} - \sqrt{7}
ight)

  • Câu 7: Thông hiểu

    Cho 0 <
\alpha < \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
0 < \alpha < \frac{\pi}{2} ightarrow \frac{\pi}{2} < \alpha +
\frac{\pi}{2} < \pi \\
0 < \alpha < \frac{\pi}{2} ightarrow \pi < \alpha + \pi <
\frac{3\pi}{2} \\
\end{matrix} ight. \overset{}{ightarrow}\cot\left( \alpha +
\frac{\pi}{2} ight) < 0\overset{}{ightarrow}\tan(\alpha + \pi) >
0.

  • Câu 8: Vận dụng

    Cho góc \alpha thỏa mãn \frac{\pi}{2} < \alpha < 2\pi\tan\left( \alpha + \frac{\pi}{4} ight) =
1. Tính P = \cos\left( \alpha -
\frac{\pi}{6} ight) + \sin\alpha.

    Ta có \left\{ \begin{matrix}
\frac{\pi}{2} < \alpha <
2\pi\overset{}{\leftrightarrow}\frac{3\pi}{4} < \alpha +
\frac{\pi}{4} < \frac{9\pi}{4} \\
\tan\left( \alpha + \frac{\pi}{4} ight) = 1 \\
\end{matrix} ight.

    ightarrow \alpha + \frac{\pi}{4} =
\frac{5\pi}{4} ightarrow\alpha = \pi.

    Thay \alpha = \pi vào P, ta được P
= - \frac{\sqrt{3}}{2}.

  • Câu 9: Thông hiểu

    Giá trị biểu thức S = {\cos ^2}{12^0} + {\cos ^2}{48^0} + {\cos ^2}{1^0} + {\cos ^2}{89^0} bằng:

    Ta có:

    \begin{matrix}  S = {\cos ^2}{12^0} + {\cos ^2}{48^0} + {\cos ^2}{1^0} + {\cos ^2}{89^0} \hfill \\   = {\cos ^2}{12^0} + {\sin ^2}{12^0} + {\cos ^2}{1^0} + {\sin ^2}{1^0} \hfill \\   = 1 + 1 = 2 \hfill \\ \end{matrix}

  • Câu 10: Nhận biết

    Tam giác ABC có BC = 10 và \widehat{A}=30°. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.

     Ta có: \frac {BC}{\sin A}=2R \Leftrightarrow R= \frac{BC}{2\sin A} =\frac {10}{2.sin30^{\circ}  }=10.

  • Câu 11: Thông hiểu

    Cho \frac{\pi}{2} < \alpha < \pi. Giá trị lượng giác nào sau đây luôn dương?

    Ta có \sin(\pi + \alpha) = -
\sin\alpha; \cot\left(
\frac{\pi}{2} - \alpha ight) = \sin\alpha; \cos( - \alpha) = \cos\alpha; \tan(\pi + \alpha) = \tan\alpha.

    Do \frac{\pi}{2} < \alpha <
\pi ightarrow \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha < 0 \\
\tan\alpha < 0 \\
\end{matrix} ight..

  • Câu 12: Nhận biết

    Trong tam giác ABC ta có:

    Áp dụng định lí sin trong tam giác ABC ta có:

    \begin{matrix}  \dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} \hfill \\   \Leftrightarrow a\sin B = b\sin A \hfill \\ \end{matrix}

  • Câu 13: Nhận biết

    Chọn công thức đúng trong các đáp án sau:

    Ta có: S = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B = \frac{1}{2}ab\sin
C.

  • Câu 14: Thông hiểu

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \cos\alpha = \sqrt{1 -
sin^{2}\alpha}.

    Ta có \cos\alpha = \sqrt{1 -
sin^{2}\alpha} \Leftrightarrow \cos\alpha =
\sqrt{cos^{2}\alpha} \Leftrightarrow \cos\alpha = \left| \cos\alpha
ight| \Leftrightarrow \cos\alpha.

    Đẳng thức \left| \cos\alpha ight|
\Leftrightarrow \cos\alpha\overset{}{ightarrow}\cos\alpha \geq
0\overset{}{ightarrow}điểm cuối của góc lượng giác \alpha ở góc phần tư thứ I hoặc IV.

  • Câu 15: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha < 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 16: Thông hiểu

    Cho tam giác ABC, biết BC = 24, AC = 13, AB = 15. Số đo góc A là:

    Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \hfill \\   \Rightarrow \cos \widehat A = \dfrac{{{{15}^2} + {{13}^2} - {{24}^2}}}{{2.15.13}} =  - \dfrac{7}{{15}} \hfill \\   \Rightarrow \widehat A \approx {117^0}49\prime  \hfill \\ \end{matrix}

  • Câu 17: Vận dụng cao

    Với mọi góc \alpha, giá trị của biểu thức

    \cos\alpha + \cos\left( \alpha +
\frac{\pi}{5} ight) + \cos\left( \alpha + \frac{2\pi}{5} ight) + ...
+ \cos\left( \alpha + \frac{9\pi}{5} ight)

    Ta có:

    \cos\alpha = - \cos\left( \alpha +
\frac{5\pi}{5} ight)

    \cos\left( \alpha + \frac{\pi}{5}
ight) = - \cos\left( \alpha + \frac{6\pi}{5} ight)

    \cos\left( \alpha + \frac{2\pi}{5}
ight) = - \cos\left( \alpha + \frac{7\pi}{5} ight)

    \cos\left( \alpha + \frac{3\pi}{5}
ight) = - \cos\left( \alpha + \frac{8\pi}{5} ight)

    \cos\left( \alpha + \frac{4\pi}{5}
ight) = - \cos\left( \alpha + \frac{9\pi}{5} ight)

    Do đó:

    \cos\alpha + \cos\left( \alpha +
\frac{\pi}{5} ight) + \cos\left( \alpha + \frac{2\pi}{5} ight) + ...
+ \cos\left( \alpha + \frac{9\pi}{5} ight) = 0

  • Câu 18: Vận dụng

    Khoảng cách từ A đến B không thể đo trực tiếp được vì phải qua một đầm lầy. Người ta xác định được một điểm Cmà từ đó có thể nhìn được ABdưới một góc 56^{0}16'. Biết CA = 200\ m, CB = 180\ m. Khoảng cách AB gần nhất với kết quả nào sau đây?

    Ta có: AB^{2} = CA^{2} + CB^{2} -
2CB.CA.cosC = 200^{2} + 180^{2} -
2.200.180.cos56^{0}16' \simeq
32416 \Rightarrow AB \simeq 180.

  • Câu 19: Nhận biết

    Cho \Delta
ABCB = 60^{0},a = 8,c =
5. Độ dài cạnh b bằng:

    Ta có: b^{2} = a^{2} + c^{2} - 2ac\cos
B = 8^{2} + 5^{2} - 2.8.5.cos60^{0}
= 49 \Rightarrow b =
7.

  • Câu 20: Thông hiểu

    Tam giác ABC\widehat{B}=60°,\widehat{C}=45°AB=5. Tính độ dài cạnh AC.

     Áp dụng định lí sin: 

    \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow AC = \sin B.\frac{{AB}}{{\sin C}}= \sin 60^\circ .\frac{5}{{\sin 45^\circ }} = \frac{{5\sqrt 6 }}{2}.

  • Câu 21: Vận dụng cao

    Cho tam giác ABC có độ dài AB = c;BC = a;AC = b và các cạnh của tam giác thỏa mãn biểu thức: a^{2} + b^{2} =
5c^{2}. Giả sử M và N lần lượt là trung điểm của BC, AC. Tính góc giữa hai đường thẳng AM và BN.

    Gọi G là trọng tâm tam giác ABC. Ta có:

    AM^{2} = \frac{AC^{2} + AB^{2}}{2} -
\frac{BC^{2}}{4} = \frac{b^{2} + c^{2}}{2} -
\frac{a^{2}}{4}

    \Rightarrow AG^{2} = \frac{4}{9}AM^{2} =
\frac{2\left( b^{2} + c^{2} ight)}{9} - \frac{a^{2}}{9}

    BN^{2} = \frac{BA^{2} + BC^{2}}{2} -
\frac{AC^{2}}{4} = \frac{c^{2} + a^{2}}{2} -
\frac{b^{2}}{4}

    \Rightarrow GN^{2} = \frac{1}{9}BN^{2} =
\frac{c^{2} + a^{2}}{18} - \frac{b^{2}}{36}

    Trong tam giác AGN ta có

    \cos\widehat{AGN} = \frac{AG^{2} +
GN^{2} - AN^{2}}{2.AG.GN}

    = \dfrac{\dfrac{2\left( b^{2} + c^{2}ight)}{9} - \dfrac{a^{2}}{9} + \dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36} - \dfrac{b^{2}}{4}}{2.\sqrt{\dfrac{2\left( b^{2} + c^{2}ight)}{9}} - \dfrac{a^{2}}{9}.\sqrt{\dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36}}}

    = \dfrac{\dfrac{2\left( b^{2} + c^{2}ight)}{9} - \dfrac{a^{2}}{9} + \dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36} - \dfrac{b^{2}}{4}}{2.\sqrt{\dfrac{2\left( b^{2} + c^{2}ight)}{9} - \dfrac{a^{2}}{9}}.\sqrt{\dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36}}}

    = \dfrac{10c^{2} - 2\left( a^{2} + b^{2}ight)}{36.2.\sqrt{\dfrac{2\left( b^{2} + c^{2} ight)}{9} -\dfrac{a^{2}}{9}}.\sqrt{\dfrac{c^{2} + a^{2}}{18} - \dfrac{b^{2}}{36}}} =0

    \Rightarrow \widehat{AGN} =
90^{0}

  • Câu 22: Thông hiểu

    Tam giác ABC có \widehat A = {105^0},\widehat B = {45^0};AC = 10. Độ dài cạnh AB là:

    Xét tam giác ABC ta có:

    \begin{matrix}  \widehat A + \widehat B + \widehat C = {180^0} \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} ight) = {30^0} \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} \hfill \\   \Rightarrow AB = \dfrac{{AC.\sin \widehat C}}{{\sin \widehat B}} = \dfrac{{10.\sin {{30}^0}}}{{\sin {{45}^0}}} = 5\sqrt 2  \hfill \\ \end{matrix}

  • Câu 23: Nhận biết

    Cho \Delta
ABCb = 6,c = 8,\widehat{A} =
60^{0}. Độ dài cạnh a là:

    Ta có: a^{2} = b^{2} + c^{2} - 2bc\cos
A = 36 + 64 - 2.6.8.cos60^{0} =
52

    \Rightarrow a = 2\sqrt{13}.

  • Câu 24: Nhận biết

    Cho 2\pi <
\alpha < \frac{5\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có 2\pi < \alpha <
\frac{5\pi}{2}\overset{}{ightarrow}điểm cuối cung \alpha - \pi thuộc góc phần tư thứ I\overset{}{ightarrow}\left\{ \begin{matrix}
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight.\ .

  • Câu 25: Nhận biết

    Tam giác ABCAB=5,BC=7,CA=8. Số đo góc \hat A bằng:

     Áp dụng định lí côsin:

    \cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}= \frac{{{5^2} + {8^2} - {7^2}}}{{2.5.8}} = \frac{1}{2}.

    Suy ra \hat A = 60^{\circ}.

  • Câu 26: Nhận biết

    Cho \Delta
ABC\widehat{C} =
45^{0},\widehat{B} = 75^{0}. Số đo của góc A là:

    Ta có: \widehat{A} + \widehat{B} +
\widehat{C} = 180^{0} \Rightarrow
\widehat{A} = 180^{0} - \widehat{B} - \widehat{C} = 180^{0} - 75^{0} - 45^{0} = 60^{0}.

  • Câu 27: Vận dụng

    Cho tam giác ABC và các mệnh đề

    (I) \cos\frac{B+C}{2}=\sin\frac{A}{2}

    (II) \tan\frac{A+B}{2}\tan\frac{C}{2}=1

    (III) \cos (A +B - C)=\cos 2C

    Mệnh đề nào đúng?

    Ta có: 

    \begin{matrix}  \cos \dfrac{{B + C}}{2} = \cos \dfrac{{{{180}^0} - A}}{2} \hfill \\   = \cos \left( {{{90}^0} - \dfrac{A}{2}} ight) = \sin \dfrac{A}{2} \hfill \\ \end{matrix}

    => Mệnh đề đúng

    \begin{matrix}  \tan \dfrac{{A + B}}{2}.\tan \dfrac{C}{2} = \tan \dfrac{{{{180}^0} - C}}{2}.\tan \dfrac{C}{2} \hfill \\   = \tan \left( {{{90}^0} - \dfrac{C}{2}} ight).\tan \dfrac{C}{2} \hfill \\   = \cot \dfrac{C}{2}.\tan \dfrac{C}{2} = 1 \hfill \\ \end{matrix}

    => Mệnh đề đúng

    \begin{matrix}  \cos (A + B - C) = \cos ({180^0} - C - C) \hfill \\   = \cos ({180^0} - 2C) = \sin 2C \hfill \\ \end{matrix}

    => Mệnh đề sai

  • Câu 28: Thông hiểu

    Cho tam giác ABCAB=\sqrt{3}+1, AC=\sqrt{6}, BC = 2. Số đo của \widehat{B}-\widehat{A} là:

    Áp dụng hệ quả của định lí cosin ta có:

    \begin{matrix}  \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \hfill \\   \Rightarrow \cos \widehat A = \dfrac{{{{\left( {\sqrt 3  + 1} ight)}^2} + {{\left( {\sqrt 6 } ight)}^2} - {2^2}}}{{2.\left( {\sqrt 3  + 1} ight).\sqrt 6 }} = \dfrac{{\sqrt 2 }}{2} \hfill \\   \Rightarrow \widehat A = {45^0} \hfill \\ \end{matrix}

    \begin{matrix}  \cos \widehat B = \dfrac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB.BC}} \hfill \\   \Rightarrow \cos \widehat B = \dfrac{{{{\left( {\sqrt 3  + 1} ight)}^2} + {2^2} - {{\left( {\sqrt 6 } ight)}^2}}}{{2.\left( {\sqrt 3  + 1} ight).2}} = \dfrac{1}{2} \hfill \\   \Rightarrow \widehat B = {60^0} \hfill \\   \Rightarrow \widehat B - \widehat A = {60^0} - {45^0} = {25^0} \hfill \\ \end{matrix}

  • Câu 29: Thông hiểu

    Giá trị biểu thức T = \tan 1^{\circ}.\tan2^{\circ}\ldots.\tan89^{\circ} bằng:

    Ta có:

    \ T = \left( \tan 1^{\circ}.\tan89^{\circ}ight)\left( \tan 2^{\circ}.\tan88^{\circ} ight)\ldots\left( \tan44^{\circ}.\tan 46^{\circ} ight).\tan45^{\circ}

    = \left( \tan 1^{\circ}.\cot 1^{0}
ight)\left( \tan 2^{\circ}.\cot 2^{\circ} ight)\ldots\left( \tan
44^{\circ}.\cot 44^{\circ} ight)\tan 45^{\circ}

    = 1.1.1\ldots 1 = 1.

  • Câu 30: Thông hiểu

    Cho tam giác ABC có b = 7; c = 5, \cos A = \frac{3}{5}. Đường cao h_{a} của tam giác ABC là:

    Ta có: a^{2} = b^{2} + c^{2} - 2bc\cos A
= 7^{2} + 5^{2} - 2.7.5.\frac{3}{5}
= 32 \Rightarrow a = 4\sqrt{2}.

    Mặt khác: sin^{2}A + cos^{2}A = 1
\Rightarrow sin^{2}A = 1 - cos^{2}A = 1 - \frac{9}{25} = \frac{16}{25} \Rightarrow
\sin A = \frac{4}{5} (Vì \sin A
> 0).

    Mà: S_{\Delta ABC} = \frac{1}{2}b.c.sinA
= \frac{1}{2}a.h_{a} \Rightarrow
h_{a} = \frac{bc\sin A}{a} = \frac{7.5.\frac{4}{5}}{4\sqrt{2}} =
\frac{7\sqrt{2}}{2}.

  • Câu 31: Nhận biết

    Cho tam giác ABC thỏa mãn: 2cosA = 1. Khi đó:

    Ta có: 2cosA = 1 \Leftrightarrow \cos A = \frac{1}{2} \Rightarrow \widehat{A}
= 60^{0}.

  • Câu 32: Nhận biết

    Cho \Delta
ABCa = 4,c = 5,B =
150^{0}. Diện tích của tam giác là:

    Ta có: S_{\Delta ABC} =
\frac{1}{2}a.c.sinB =
\frac{1}{2}.4.5.sin150^{0} = 5.

  • Câu 33: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha > 0 \\
\tan\alpha < 0 \\
\cot\alpha < 0 \\
\end{matrix} ight..

  • Câu 34: Thông hiểu

    Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:

    Ta có:

    \begin{matrix}  {S_{ABC}} = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{3}{5} \hfill \\   \Rightarrow \widehat A \approx {36^0}52\prime  \hfill \\ \end{matrix}

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A \hfill \\   \Rightarrow B{C^2} = {5^2} + {8^2} - 2.5.8.\cos {36^0}52\prime  \hfill \\   \Rightarrow B{C^2} \approx 25 \hfill \\   \Rightarrow BC \approx 5\left( {cm} ight) \hfill \\ \end{matrix}

  • Câu 35: Nhận biết

    Cho \Delta
ABC vuông tại B và có \widehat{C} = 25^{0}. Số đo của góc A là:

    Ta có: Trong \Delta ABC \widehat{A} + \widehat{B} + \widehat{C} =
180^{0} \Rightarrow \widehat{A} =
180^{0} - \widehat{B} - \widehat{C} = 180^{0} - 90^{0} - 25^{0} = 65^{0}.

  • Câu 36: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất ightarrow \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha > 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 37: Nhận biết

    Cho tam giác ABCa=2,\hat A=60^{\circ} ,\hat B=45^{\circ}. Hỏi độ dài cạnh b bằng bao nhiêu?

     Áp dụng định lí sin:

    \frac{a}{{\sin A}} = \frac{b}{{\sin B}} \Leftrightarrow b = \sin B.\frac{a}{{\sin A}}= \sin 45^\circ .\frac{2}{{\sin 60^\circ }} = \frac{{2\sqrt 6 }}{3}.

  • Câu 38: Thông hiểu

    Nếu tam giác ABCBC^{2} < AB^{2} + AC^{2} thì:

    Nếu tam giác ABC có BC^{2} < AB^{2} + AC^{2} thì \widehat{A} là góc nhọn

  • Câu 39: Nhận biết

    Cho \Delta
ABCS = 84,a = 13,b = 14,c =
15. Độ dài bán kính đường tròn ngoại tiếp R của tam giác trên là:

    Ta có: S_{\Delta ABC} = \frac{a.b.c}{4R}
\Leftrightarrow R =
\frac{a.b.c}{4S} = \frac{13.14.15}{4.84} = \frac{65}{8}.

  • Câu 40: Vận dụng

    Cho góc \alpha thỏa mãn \sin\alpha + \cos\alpha = \frac{5}{4}. Tính P = \sin\alpha.cos\alpha.

    Từ giả thiết, ta có \left( \sin\alpha +
\cos\alpha ight)^{2} = \frac{25}{16} \Leftrightarrow 1 + 2sin\alpha.cos\alpha =
\frac{25}{16}

    ightarrow P = \sin\alpha.cos\alpha =
\frac{9}{32}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác Sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo