Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác Sách CTST

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Hệ thức lượng trong tam giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho góc \alpha thỏa mãn \frac{\pi}{2} < \alpha < 2\pi\cot\left( \alpha + \frac{\pi}{3} ight) =
- \sqrt{3}. Tính giá trị của biểu thức P = \sin\left( \alpha + \frac{\pi}{6} ight) +
\cos\alpha.

    Ta có \left\{ \begin{matrix}
\frac{\pi}{2} < \alpha <
2\pi\overset{}{\leftrightarrow}\frac{5\pi}{6} < \alpha +
\frac{\pi}{3} < \frac{7\pi}{3} \\
\cot\left( \alpha + \frac{\pi}{3} ight) = - \sqrt{3} \\
\end{matrix} ight. ightarrow
\alpha + \frac{\pi}{3} = \frac{11\pi}{6} ightarrow \alpha =
\frac{3\pi}{2}.

    Thay \alpha = \frac{3\pi}{2} vào P, ta được P = - \frac{\sqrt{3}}{2}.

  • Câu 2: Nhận biết

    Cho \Delta
ABCa = 6,b = 8,c = 10. Diện tích S của tam giác trên là:

    Ta có: Nửa chu vi \Delta ABC: p = \frac{a + b + c}{2}.

    Áp dụng công thức Hê-rông: S = \sqrt{p(p
- a)(p - b)(p - c)} = \sqrt{12(12 -
6)(12 - 8)(12 - 10)} =
24.

  • Câu 3: Nhận biết

    Cho \Delta
ABC thỏa mãn : 2cosB =
\sqrt{2}. Khi đó:

    Ta có: 2cosB = \sqrt{2} \Leftrightarrow
\cos B = \frac{\sqrt{2}}{2} \Rightarrow \widehat{B} = 45^{0}.

  • Câu 4: Vận dụng cao

    Cho biểu thức B xác định, rút gọn biểu thức

    B = \sqrt{2} - \frac{1}{\sin(x +
2013\pi)}.\sqrt{\frac{1}{1 + \cos x} + \frac{1}{1 - \cos x}} với \pi < x < 2\pi?

    Ta có:

    \sin(x + 2013\pi) = \sin(x + \pi +
2012\pi) = \sin(x + \pi) = - \sin x

    Do đó:

    B = \sqrt{2} - \frac{1}{\sin(x +
2013\pi)}.\sqrt{\frac{1}{1 + \cos x} + \frac{1}{1 - \cos
x}}

    B = \sqrt{2} + \frac{1}{\sin
x}.\sqrt{\frac{1 - \cos x + 1 + \cos x}{\left( 1 + \cos x ight)\left(
1 - \cos x ight)}}

    B = \sqrt{2} + \dfrac{1}{\sin x}.\sqrt{\dfrac{2}{1 - \cos^{2}x}}

    B = \sqrt{2} + \frac{1}{\sin x}.\sqrt{\dfrac{2}{\sin^{2}x}}

    B = \sqrt{2}\left( 1 + \frac{1}{\sin
x.\left| \sin x ight|} ight)

    \pi < x < 2\pi nên \sin x < 0

    \Rightarrow B = \sqrt{2}\left( 1 -\dfrac{1}{\sin^{2}x} ight) = - \sqrt{2}\cot^{2}x

  • Câu 5: Thông hiểu

    Tam giác ABC có đoạn thẳng nối trung điểm của ABBC bằng 3, cạnh AB =
9\widehat{ACB} =
60{^\circ}. Tính độ dài cạnh cạnh BC.

    Gọi M,\ \ N lần lượt là trung điểm của AB,\ \ BC.

    \overset{}{ightarrow}MN là đường trung bình của \Delta
ABC.

    \overset{}{ightarrow}MN =
\frac{1}{2}AC. Mà MN = 3, suy ra AC = 6.

    Theo định lí hàm cosin, ta có:

    AB^{2} = AC^{2} + BC^{2} -
2.AC.BC.cos\widehat{ACB}

    \Leftrightarrow 9^{2} = 6^{2} + BC^{2} -
2.6.BC.cos60{^\circ}

    \Rightarrow BC = 3 +
3\sqrt{6}

  • Câu 6: Nhận biết

    Cho tam giác ABCAB =
12,AC = 13,BC = 5. Diện tích S của tam giác ABC là:

    Ta có: BA^{2} + BC^{2} = AC^{2} nên tam giác ABC vuông tại B.

    Diện tích tam giác là: S = \frac{1}{2}BA
\cdot BC = 30.

  • Câu 7: Thông hiểu

    Cho tam giác ABC có b = 7; c = 5, \cos A = \frac{3}{5}. Đường cao h_{a} của tam giác ABC là:

    Ta có: a^{2} = b^{2} + c^{2} - 2bc\cos A
= 7^{2} + 5^{2} - 2.7.5.\frac{3}{5}
= 32 \Rightarrow a = 4\sqrt{2}.

    Mặt khác: sin^{2}A + cos^{2}A = 1
\Rightarrow sin^{2}A = 1 - cos^{2}A = 1 - \frac{9}{25} = \frac{16}{25} \Rightarrow
\sin A = \frac{4}{5} (Vì \sin A
> 0).

    Mà: S_{\Delta ABC} = \frac{1}{2}b.c.sinA
= \frac{1}{2}a.h_{a} \Rightarrow
h_{a} = \frac{bc\sin A}{a} = \frac{7.5.\frac{4}{5}}{4\sqrt{2}} =
\frac{7\sqrt{2}}{2}.

  • Câu 8: Thông hiểu

    Cho \cos\alpha =
\frac{4}{5} với 0 < \alpha <
\frac{\pi}{2}. Tính \sin\alpha.

    Ta có: sin^{2}\alpha = 1 - cos^{2}\alpha
= 1 - \left( \frac{4}{5} ight)^{2} = \frac{9}{25} \Rightarrow \sin\alpha = \pm
\frac{3}{5}.

    Do 0 < \alpha <
\frac{\pi}{2} nên \sin\alpha >
0. Suy ra, \sin\alpha =
\frac{3}{5}

  • Câu 9: Nhận biết

    Cho \Delta
ABCS = 84,a = 13,b = 14,c =
15. Độ dài bán kính đường tròn ngoại tiếp R của tam giác trên là:

    Ta có: S_{\Delta ABC} = \frac{a.b.c}{4R}
\Leftrightarrow R =
\frac{a.b.c}{4S} = \frac{13.14.15}{4.84} = \frac{65}{8}.

  • Câu 10: Thông hiểu

    Giá trị biểu thức A = \sin {30^0}.\cos {60^0} + \sin {60^0}.\cos {30^0} là:

    Ta có:

    \begin{matrix}  A = \sin {30^0}.\cos {60^0} + \sin {60^0}.\cos {30^0} \hfill \\  A = \dfrac{1}{2}.\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2}.\dfrac{{\sqrt 3 }}{2} \hfill \\  A = \dfrac{1}{4} + \dfrac{3}{4} = 1 \hfill \\ \end{matrix}

  • Câu 11: Nhận biết

    Tam giác ABCAB =
2,\ \ AC = 1\widehat{A} =
60{^\circ}. Tính độ dài cạnh BC.

    Theo định lí hàm cosin, ta có BC^{2} =
AB^{2} + AC^{2} - 2AB.AC.cos\widehat{A} = 2^{2} + 1^{2} - 2.2.1.cos60{^\circ} = 3
\Rightarrow BC = \sqrt{3}.

  • Câu 12: Thông hiểu

    Trong tam giác ABC có AB = 2, AC = 1\widehat{A}=60^0. Tính độ dài cạnh BC.

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A \hfill \\   \Leftrightarrow B{C^2} = {2^2} + {1^2} - 2.2.1.\cos {60^0} \hfill \\   \Leftrightarrow B{C^2} = 3 \hfill \\   \Leftrightarrow BC = \sqrt 3  \hfill \\ \end{matrix}

  • Câu 13: Thông hiểu

    Cho góc α, (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?

    Khẳng định sai là: " 1+\cot^{2}α=\frac{1}{\cos^{2}α}, (0° < α < 180° và α ≠ 90°)"

    Sửa lại là " 1+\cot^{2}α=-\frac{1}{\sin^{2}α}, (0° < α < 180° và α ≠ 90°)".

     

  • Câu 14: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \sin157^{\circ} =\sin (180^{\circ} -157^{\circ} )=\sin 23^{\circ}. Vì \sin \alpha =\sin (180^{\circ} -\alpha ).

  • Câu 15: Nhận biết

    Tam giác ABCAB=5,BC=7,CA=8. Số đo góc \hat A bằng:

     Áp dụng định lí côsin:

    \cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}= \frac{{{5^2} + {8^2} - {7^2}}}{{2.5.8}} = \frac{1}{2}.

    Suy ra \hat A = 60^{\circ}.

  • Câu 16: Thông hiểu

    Cho \frac{\pi}{2} < \alpha < \pi. Giá trị lượng giác nào sau đây luôn dương?

    Ta có \sin(\pi + \alpha) = -
\sin\alpha; \cot\left(
\frac{\pi}{2} - \alpha ight) = \sin\alpha; \cos( - \alpha) = \cos\alpha; \tan(\pi + \alpha) = \tan\alpha.

    Do \frac{\pi}{2} < \alpha <
\pi ightarrow \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha < 0 \\
\tan\alpha < 0 \\
\end{matrix} ight..

  • Câu 17: Nhận biết

    Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64 cm^{2}. Giá trị sin A là:

    Ta có: 

    \begin{matrix}  {S_{ABC}} = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{{2.64}}{{8.18}} = \dfrac{8}{9} \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \sqrt{sin^{2}}\alpha = \sin\alpha.

    Ta có \sqrt{sin^{2}\alpha}
\Leftrightarrow \sin\alpha \Leftrightarrow \left| \sin\alpha ight| =
\sin\alpha.

    Đẳng thức \left| \sin\alpha ight| =
\sin\alpha\overset{}{ightarrow}\sin\alpha \geq
0\overset{}{ightarrow}điểm cuối của góc lượng giác \alpha ở góc phần tư thứ I hoặc II.

  • Câu 19: Nhận biết

    Cho 2\pi <
\alpha < \frac{5\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có 2\pi < \alpha <
\frac{5\pi}{2}\overset{}{ightarrow}điểm cuối cung \alpha - \pi thuộc góc phần tư thứ I\overset{}{ightarrow}\left\{ \begin{matrix}
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight.\ .

  • Câu 20: Vận dụng

    Cho góc \alpha thỏa mãn 3cos\alpha + 2sin\alpha = 2\sin\alpha < 0. Tính \sin\alpha.

    Ta có 3cos\alpha + 2sin\alpha =
2 \Leftrightarrow (3cos\alpha +
2sin\alpha)^{2} = 4

    \begin{matrix}
\Leftrightarrow 9cos^{2}\alpha + 12cos\alpha.sin\alpha + 4sin^{2}\alpha
= 4 \\
\\
\end{matrix}

    \Leftrightarrow 5cos^{2}\alpha +
12cos\alpha.sin\alpha = 0

    \Leftrightarrow \cos\alpha(5cos\alpha +
12sin\alpha) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\cos\alpha = 0 \\
5cos\alpha + 12sin\alpha = 0 \\
\end{matrix} ight.\ .

    \bullet \cos\alpha = 0 \Rightarrow \sin\alpha =
1: loại (vì \sin\alpha <
0).

    \bullet 5cos\alpha + 12sin\alpha = 0, ta có hệ phương trình \left\{ \begin{matrix}
5cos\alpha + 12sin\alpha = 0 \\
3cos\alpha + 2sin\alpha = 2 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
\sin\alpha = - \frac{5}{13} \\
\cos\alpha = \frac{12}{13} \\
\end{matrix} ight.\ .

  • Câu 21: Nhận biết

    Giá trị cot\frac{\pi }{6} là:

     Ta có: cot\frac{\pi }{6} =\sqrt3.

  • Câu 22: Nhận biết

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 23: Vận dụng

    Để đo chiều cao từ mặt đất đến đỉnh cột cờ của một kỳ đài trước Ngọ Môn (Đại Nội – Huế), người ta cắm hai cọc AM và BN cao 1,5 mét so với mặt đất. Hai cọc này song song và cách nhau 10 mét và thẳng hàng so với tim cột cờ (Hình vẽ minh họa). Đặt giác kế tại đỉnh A và B để nhắm đến đỉnh cột cờ, người ta được các góc lần lượt là 51°40' và 45°39' so với đường song song mặt đất.

    Tính chiều cao của cột cờ

    Chiều cao của cột cờ (làm tròn kết quả đến chữ số thập phân thứ hai) là:

    Ta có: \widehat {CAB} = {180^0} - {51^0}40' = {128^0}20'

    Xét tam giác ABC ta có:

    \begin{matrix}  \widehat {ABC} + \widehat {CAB} + \widehat {ACB} = {180^0} \hfill \\   \Leftrightarrow \widehat {ACB} = {180^0} - \left( {\widehat {ABC} + \widehat {CAB}} ight) \hfill \\   \Leftrightarrow \widehat {ACB} = {180^0} - \left( {{{45}^0}39' + {{128}^0}20'} ight) \hfill \\   \Leftrightarrow \widehat {ACB} = {6^0}1\prime  \hfill \\ \end{matrix}

    Áp dụng định lí sin trong tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AB}}{{\sin \widehat {ACB}}} = \dfrac{{AC}}{{\sin \widehat {ABC}}} = \dfrac{{BC}}{{\sin \widehat {CAB}}} \hfill \\   \Rightarrow \dfrac{{10}}{{\sin {6^0}1'}} = \dfrac{{AC}}{{\sin {{45}^0}39'}} \hfill \\   \Rightarrow AC = \dfrac{{10.\sin {{45}^0}39'}}{{\sin {6^0}1'}} \hfill \\ \end{matrix}

    Ta có tam giác ACH vuông tại C

    \begin{matrix}   \Rightarrow CH = AC.\sin \widehat {HAC} \hfill \\   \Rightarrow CH = \dfrac{{10.\sin {{45}^0}39'}}{{\sin {6^0}1'}}.\sin {51^0}40' \approx 53,51\left( m ight) \hfill \\ \end{matrix}

    Chiều cao của cột cờ khoảng: 1,5+53,51=55,01(m)

  • Câu 24: Nhận biết

    Tam giác ABC có \hat B = {60^0},\hat C = {45^0};AC = 5. Độ dài cạnh AB là:

    Áp dụng định lí sin trong tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin B}} = \dfrac{{AB}}{{\sin C}} \hfill \\   \Rightarrow AB = \dfrac{{AC.\sin C}}{{\sin B}} = \dfrac{{5.\sin {{45}^0}}}{{\sin {{60}^0}}} = \dfrac{{5\sqrt 6 }}{3} \hfill \\ \end{matrix}

  • Câu 25: Nhận biết

    Chọn công thức đúng trong các đáp án sau:

    Ta có: S = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B = \frac{1}{2}ab\sin
C.

  • Câu 26: Nhận biết

    Cho tam giác ABCAB=1;AC=\sqrt2;\hat A=45^{\circ}. Tính độ dài cạnh BC.

     Áp dụng định lí côsin:

    BC^2=AB^2+AC^2-2.AB.AC.\cos A=1+2-2.1.\sqrt2.\cos45^{\circ} =1.

    Suy ra BC=1.

  • Câu 27: Thông hiểu

    Tam giác ABC có AB=\sqrt{2},AC=\sqrt{3}\widehat{C}=45°. Tính độ dài cạnh BC.

     Áp dụng định lý côsin: A{B^2} = C{A^2} + C{B^2} - 2CA.CB.\cos 45^\circ\Leftrightarrow 2 = 3 + C{B^2} - 2\sqrt 3 .CB.\frac{{\sqrt 2 }}{2}\Leftrightarrow C{B^2} - \sqrt 6 CB + 1 = 0\Rightarrow BC=\frac{{\sqrt 6  + \sqrt 2 }}{2}.

     

  • Câu 28: Vận dụng

    Một tam giác có ba cạnh là 52,56,60. Bán kính đường tròn ngoại tiếp là:

    Ta có: p = \frac{a + b + c}{2} = \frac{52 + 56 + 60}{2} = 84.

    Suy ra: S = \sqrt{p(p - a)(p - b)(p -
c)} = \sqrt{84(84 - 52)(84 - 56)(84
- 60)} = 1344.

    S = \frac{abc}{4R} \Rightarrow R =
\frac{abc}{4S} =
\frac{52.56.60}{4.1344} = \frac{65}{2}.

  • Câu 29: Nhận biết

    Cho biết \tan\alpha = \frac{1}{2}. Tính \cot\alpha.

    Ta có: \tan\alpha.cot\alpha = 1
\Rightarrow \cot\alpha =
\frac{1}{\tan\alpha} = \frac{1}{\frac{1}{2}} = 2.

  • Câu 30: Thông hiểu

    Cho góc \alpha thoả mãn 0^{\circ} < \alpha < 180^{\circ}\cot\alpha = - 2. Giá trị của \sin\alpha là:

    Ta có: \cot\alpha =
\frac{\cos\alpha}{\sin\alpha}

    \Rightarrow \cot^{2}\alpha =
\frac{\cos^{2}\alpha}{\sin^{2}\alpha} = \frac{1 -
\sin^{2}\alpha}{\sin^{2}\alpha}

    \Rightarrow 1 + \cot^{2}\alpha =
\frac{1}{\sin^{2}\alpha}.

    Do đó \sin^{2}\alpha = \frac{1}{1 +
\cot^{2}\alpha} = \frac{1}{1 + ( - 2)^{2}} = \frac{1}{5}.

    0^{0} < \alpha <
180^{\circ} nên \sin\alpha =\frac{\sqrt{5}}{5}.

  • Câu 31: Vận dụng cao

    Cho tam giác ABC cạnh BC =
10, lấy I \in BC sao cho \frac{IB}{IC} = \frac{3}{2}. Đường tròn tâm I bán kính 3 tiếp xúc với các cạnh AB,AC lần lượt tại các điểm M,N. Tính độ dài cạnh AB?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}\sin\widehat{B} = \dfrac{IM}{BI} = \dfrac{1}{2} \\\sin\widehat{C} = \dfrac{IN}{CI} = \dfrac{3}{4} \\\end{matrix} ight. từ đó suy ra \left\{ \begin{matrix}\cos\widehat{B} = \dfrac{\sqrt{3}}{2} \\\cos\widehat{C} = \dfrac{\sqrt{7}}{4} \\\end{matrix} ight. (do \widehat{B};\widehat{C} là các góc nhọn)

    Đặt AB = c;AC = b. Do AI là phân góc của góc \widehat{A} nên \frac{c}{b} = \frac{6}{4} \Rightarrow 2c =
3b

    Mặt khác, theo định lí cosin trong tam giác ABC ta có:

    \left\{ \begin{matrix}
c^{2} = b^{2} + BC^{2} - 2b.BC.cos\widehat{C} \\
b^{2} = c^{2} + BC^{2} - 2c.BC.cos\widehat{B} \\
\end{matrix} ight.

    Thay số ta được hệ phương trình:

    \left\{ \begin{matrix}
2c = 3b \\
c^{2} = b^{2} + 100 - 5\sqrt{70}b \\
b^{2} = c^{2} + 100 - 10\sqrt{3}c \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = 2\left( 3\sqrt{3} - \sqrt{7} ight) \\
c = 3\left( 3\sqrt{3} - \sqrt{7} ight) \\
\end{matrix} ight.

    Vậy AB = 3\left( 3\sqrt{3} - \sqrt{7}
ight)

  • Câu 32: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha < 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 33: Nhận biết

    Cho tam giác ABC có a = 8,b = 10, góc C bằng 60^{0} . Độ dài cạnh c là ?

    Ta có: c^{2} = a^{2} + b^{2} -
2a.b.cosC = 8^{2} + 10^{2} -
2.8.10.cos60^{0} = 84 \Rightarrow c
= 2\sqrt{21}.

  • Câu 34: Thông hiểu

    Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:

    Ta có:

    \begin{matrix}  {S_{ABC}} = \dfrac{1}{2}AB.AC.\sin \widehat A \hfill \\   \Rightarrow \sin \widehat A = \dfrac{{2S}}{{AB.AC}} = \dfrac{3}{5} \hfill \\   \Rightarrow \widehat A \approx {36^0}52\prime  \hfill \\ \end{matrix}

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A \hfill \\   \Rightarrow B{C^2} = {5^2} + {8^2} - 2.5.8.\cos {36^0}52\prime  \hfill \\   \Rightarrow B{C^2} \approx 25 \hfill \\   \Rightarrow BC \approx 5\left( {cm} ight) \hfill \\ \end{matrix}

  • Câu 35: Vận dụng

    Cho góc \alpha thỏa mãn \tan\alpha = 2180^{o} < \alpha < 270^{o}. Tính P = \cos\alpha + \sin\alpha.

    Ta có \left\{ \begin{matrix}
cos^{2}\alpha = \frac{1}{1 + tan^{2}\alpha} = \frac{1}{5} ightarrow
\cos\alpha = \pm \frac{1}{\sqrt{5}} \\
180^{o} < \alpha < 270^{o} \\
\end{matrix} ight. \overset{}{ightarrow}\cos\alpha = -
\frac{1}{\sqrt{5}}

    \overset{}{ightarrow}\sin\alpha =
\tan\alpha.cos\alpha = - \frac{2}{\sqrt{5}}. Do đó, \sin\alpha + \cos\alpha = - \frac{3}{\sqrt{5}} = -
\frac{3\sqrt{5}}{5}.

  • Câu 36: Thông hiểu

    Cho tam giác ABCAB=\sqrt{3}+1, AC=\sqrt{6}, BC = 2. Số đo của \widehat{B}-\widehat{A} là:

    Áp dụng hệ quả của định lí cosin ta có:

    \begin{matrix}  \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \hfill \\   \Rightarrow \cos \widehat A = \dfrac{{{{\left( {\sqrt 3  + 1} ight)}^2} + {{\left( {\sqrt 6 } ight)}^2} - {2^2}}}{{2.\left( {\sqrt 3  + 1} ight).\sqrt 6 }} = \dfrac{{\sqrt 2 }}{2} \hfill \\   \Rightarrow \widehat A = {45^0} \hfill \\ \end{matrix}

    \begin{matrix}  \cos \widehat B = \dfrac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB.BC}} \hfill \\   \Rightarrow \cos \widehat B = \dfrac{{{{\left( {\sqrt 3  + 1} ight)}^2} + {2^2} - {{\left( {\sqrt 6 } ight)}^2}}}{{2.\left( {\sqrt 3  + 1} ight).2}} = \dfrac{1}{2} \hfill \\   \Rightarrow \widehat B = {60^0} \hfill \\   \Rightarrow \widehat B - \widehat A = {60^0} - {45^0} = {25^0} \hfill \\ \end{matrix}

  • Câu 37: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \cos 121^{\circ} =\cos -121^{\circ}\cos \alpha =\cos -\alpha.

  • Câu 38: Vận dụng cao

    Cho tam giác ABC thỏa mãn biểu thức

    \sin\dfrac{\widehat{B}}{2}.\cos^{3}\dfrac{\widehat{C}}{2}= \sin\frac{\widehat{C}}{2}.\cos^{3}\dfrac{\widehat{B}}{2}

    Khi đó tam giác ABC là tam giác gì?

    Ta có:

    \sin\dfrac{\widehat{B}}{2}.\cos^{3}\dfrac{\widehat{C}}{2}= \sin\dfrac{\widehat{C}}{2}.\cos^{3}\dfrac{\widehat{B}}{2}

    \Leftrightarrow\tan\dfrac{\widehat{B}}{2}.\dfrac{1}{\cos^{2}\dfrac{\widehat{B}}{2}} =\tan\dfrac{\widehat{C}}{2}.\dfrac{1}{\cos^{2}\dfrac{\widehat{C}}{2}}

    \Leftrightarrow\tan\dfrac{\widehat{B}}{2}.\left( 1 + \tan^{2}\dfrac{\widehat{B}}{2}ight) = \tan\dfrac{\widehat{C}}{2}.\left( 1 +\tan^{2}\dfrac{\widehat{C}}{2} ight)

    Đặt \tan\dfrac{\widehat{B}}{2} =x;\tan\dfrac{\widehat{C}}{2} = y khi đó ta có:

    x\left( 1 + x^{2} ight) = y\left( 1 +
y^{2} ight)

    \Leftrightarrow x^{3} - y^{3} + x - y =
0

    \Leftrightarrow (x - y)\left( x^{2} + xy
+ y^{2} + 1 ight) = 0

    \Leftrightarrow x - y = 0

    Do đó \tan\frac{\widehat{B}}{2} =
\tan\frac{\widehat{C}}{2} \Leftrightarrow \frac{\widehat{B}}{2} =
\frac{\widehat{C}}{2} \Leftrightarrow \widehat{B} =
\widehat{C}

    Vậy tam giác ABC là tam giác cân tại A.

  • Câu 39: Thông hiểu

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ)

    Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?

    Diện tích mảnh đất của gia đình bà Sáu (tam giác MNP) là:

    S = \frac{1}{2}MN \cdot MP \cdot \sin
M

    = \frac{1}{2} \cdot 150 \cdot 230 \cdot \sin110^{\circ} \approx 16209,7\left( {m}^{2}ight).

  • Câu 40: Thông hiểu

    Nếu tam giác ABCBC^{2} < AB^{2} + AC^{2} thì:

    Nếu tam giác ABC có BC^{2} < AB^{2} + AC^{2} thì \widehat{A} là góc nhọn

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác Sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 7 lượt xem
Sắp xếp theo