Giá trị
là:
Ta có: .
Giá trị
là:
Ta có: .
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
: loại (vì
).
, ta có hệ phương trình
Cho tam giác
có các góc thỏa mãn biểu thức
![]()
Khi đó tam giác
là tam giác gì?
Ta có:
Vậy tam giác ABC là tam giác vuông.
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho tam giác
. Tìm công thức sai:
Ta có:
Cho góc
thỏa mãn
Tính ![]()
Chia cả tử và mẫu của cho
ta được
.
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
.
Thay và
vào
, ta được
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Giá trị biểu thức
bằng:
Ta có:
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Cho tam giác ABC có
, góc
bằng
. Độ dài cạnh
là ?
Ta có:
.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Hai chiếc tàu thuỷ cùng xuất phát từ vị trí
, đi thẳng theo hai hướng tạo với nhau một góc
. Tàu thứ nhất chạy với tốc độ
, tàu thứ hai chạy với tốc độ
. Hỏi sau
giờ hai tàu cách nhau bao nhiêu
?

Ta có: Sau quãng đường tàu thứ nhất chạy được là:
Sau quãng đường tàu thứ hai chạy được là:
Vậy: sau hai tàu cách nhau là:
Tam giác
có
và
. Tính độ dài cạnh
.
Áp dụng định lí sin:
.
Cho
Khẳng định nào sau đây đúng?
Ta có: điểm cuối cung
thuộc góc phần tư thứ
Cho
có
Diện tích của tam giác là:
Ta có:
Cho
, với
. Giá trị
bằng
Ta có:
(do
).
Vậy .
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Tam giác
có
. Số đo góc
bằng:
Theo định lí hàm cosin, ta có
.
Do đó, .
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
trái dấu?
Điểm cuối của thuộc góc phần tư thứ hai thì
,
.
Điểm cuối của thuộc góc phần tư thứ tư thì
,
.
Vậy nếu trái dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm sin, ta có
.
Tam giác
vuông tại
. Trên cạnh
lấy hai điểm
sao cho các góc
bằng nhau. Đặt
. Trong các hệ thức sau, hệ thức nào đúng?
Ta có
.
Theo định lí hàm cosin, ta có
.
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
Cho biểu thức B xác định, rút gọn biểu thức
với
?
Ta có:
Do đó:
Vì nên
Cho tam giác
có diện tích
, lấy
là trọng tâm và
. Giả sử
, tính giá trị biểu thức
theo
?
Hình vẽ minh họa
Gọi là trung điểm cạnh
. Kẻ
Tam giác vuông =>
Tam giác vuông =>
Ta có:
Mặt khác áp dụng định lí sin cho tam giác AMB ta được:
Từ (*) và (**) ta được:
Chứng minh tương tự ta có:
Do đó:
Một tam giác có ba cạnh là
. Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Một học sinh dùng giác kế, đứng cách chân cột cờ 10m rồi chỉnh mặt trước cao bằng mắt của mình để xác định góc nâng (góc tạo bởi tia sáng đi thẳng từ đỉnh cột cờ) với mắt tạo với phương nằm ngang. Khi đó góc nâng đo được 31∘. Biết khoảng cách từ mặt sân đến mắt học sinh đó bằng 1,5m. Chiều cao cột cờ gần nhất với giá trị nào?
Hình vẽ minh họa
Gọi AB là khoảng cách từ chân đến tầm mắt của học sinh ⇒ AB = 1,5m.
AC là khoảng cách từ chân đến cột cờ ⇒ AC = 10m.
CD là chiều cao cột cờ.
BE là phương ngang của tầm mắt.
Khi đó góc nâng là .
Do ABEC là hình chữ nhật nên .
Ta có: .
Vậy chiều cao của cột cờ là: .
Nếu tam giác
có
thì:
Nếu tam giác ABC có thì
là góc nhọn
Giá trị biểu thức
là:
Ta có:
Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Cho tam giác
, biết
. Số đo góc
là:
Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:
Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:
Ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Cho
thỏa mãn :
. Khi đó:
Ta có:
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .