Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác Sách CTST

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Hệ thức lượng trong tam giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho \Delta
ABCa = 4,c = 5,B =
150^{0}. Diện tích của tam giác là:

    Ta có: S_{\Delta ABC} =
\frac{1}{2}a.c.sinB =
\frac{1}{2}.4.5.sin150^{0} = 5.

  • Câu 2: Thông hiểu

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ).

    Chiều dài hàng rào NP là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

    Áp dụng định li côsin ta

    NP^{2} = MN^{2} + MP^{2} - 2MN \cdot MP
\cdot \cos M

    = 150^{2} + 230^{2} - 2 \cdot 150 \cdot
230 \cdot cos110^{\circ} \approx
98999,39.

    Suy ra NP \approx \sqrt{98999,39} \approx
314,6(m).

    Vậy chiều dài hàng rào NP là khoảng 314,6m.

  • Câu 3: Nhận biết

    Trong các đẳng thức sau, đẳng thức nào đúng?

     Đáp án đúng là sin(180° – α) = sin α

  • Câu 4: Thông hiểu

    Giá trị biểu thức S = {\cos ^2}{12^0} + {\cos ^2}{48^0} + {\cos ^2}{1^0} + {\cos ^2}{89^0} bằng:

    Ta có:

    \begin{matrix}  S = {\cos ^2}{12^0} + {\cos ^2}{48^0} + {\cos ^2}{1^0} + {\cos ^2}{89^0} \hfill \\   = {\cos ^2}{12^0} + {\sin ^2}{12^0} + {\cos ^2}{1^0} + {\sin ^2}{1^0} \hfill \\   = 1 + 1 = 2 \hfill \\ \end{matrix}

  • Câu 5: Vận dụng cao

    Xác định số phương trình luôn có nghiệm với mọi giá trị của tham số m trong các phương trình dưới đây?

    \left| \sin x ight| = \frac{m}{m^{2} +
1}\ \ (i)

    \sin x = \frac{2m}{m^{2} + 1}\ \
(ii)

    \tan x = \frac{2m}{m^{2} + 1}\ \
(iii)

    \sin x = \frac{|m|}{m^{2} + 1}\ \
(iv)

    Với m < 0 thì (i) vô nghiệm.

    Vì với mọi giá trị thực của m ta có: m^{2} - 2|m| + 1 \geq 0 nên m^{2} + 1 \geq 2|m| \geq |m|

    Từ đó suy ra \left\{ \begin{matrix}- 1 \leq \dfrac{2m}{m^{2} + 1} \leq 1 \\0 \leq \dfrac{|m|}{m^{2} + 1} \leq 1 \\\end{matrix} ight. vậy phương trình (ii),(iv) luôn có nghiệm.

    Phương trình (iii) luôn có nghiệm với mọi giá trị thực của m.

  • Câu 6: Nhận biết

    Cho 2\pi <
\alpha < \frac{5\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có 2\pi < \alpha <
\frac{5\pi}{2}\overset{}{ightarrow}điểm cuối cung \alpha - \pi thuộc góc phần tư thứ I\overset{}{ightarrow}\left\{ \begin{matrix}
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight.\ .

  • Câu 7: Thông hiểu

    Tam giác ABC\widehat{A}=68°12',\widehat{B}=34°44' , AB = 117. Độ dài cạnh AC là khoảng:

    Ta có:

    \begin{matrix}  \widehat A + \widehat B + \widehat C = {180^0} \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} ight) \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {{{68}^0}12\prime  - {{34}^0}44\prime } ight) \hfill \\   \Rightarrow \widehat C = {77^0}4\prime \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} \Rightarrow AC = \dfrac{{AB.\sin \widehat B}}{{\sin \widehat C}} \hfill \\   \Rightarrow AC = \dfrac{{AB.\sin {{34}^0}44'}}{{\sin {{77}^0}4'}} \approx 68 \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Cho tam giác ABCAB=1;AC=\sqrt2;\hat A=45^{\circ}. Tính độ dài cạnh BC.

     Áp dụng định lí côsin:

    BC^2=AB^2+AC^2-2.AB.AC.\cos A=1+2-2.1.\sqrt2.\cos45^{\circ} =1.

    Suy ra BC=1.

  • Câu 9: Thông hiểu

    Cho góc \alpha thỏa mãn \sin\alpha = \frac{12}{13}\frac{\pi}{2} < \alpha < \pi. Tính \cos\alpha.

    Ta có: \left\{ \begin{matrix}
\cos\alpha = \pm \sqrt{1 - sin^{2}\alpha} = \pm \frac{5}{13} \\
\frac{\pi}{2} < \alpha < \pi \\
\end{matrix} ight. \overset{}{ightarrow}\cos\alpha = -
\frac{5}{13}.

  • Câu 10: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \cos 121^{\circ} =\cos -121^{\circ}\cos \alpha =\cos -\alpha.

  • Câu 11: Thông hiểu

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \sin\alpha,\ cos\alpha cùng dấu?

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất thì \sin\alpha >
0, \cos\alpha > 0.

    Điểm cuối của \alpha thuộc góc phần tư thứ nhất thì \sin\alpha <
0, \cos\alpha < 0.

    Vậy nếu \sin\alpha,\ cos\alpha cùng dấu thì điểm cuối của góc lượng giác \alpha ở góc phần tư thứ I hoặc III.

  • Câu 12: Thông hiểu

    Giá trị α, (0° ≤ α ≤ 180°) thoả mãn \tanα = 1,607 gần nhất với giá trị:

    Để tìm α khi biết tanα = 1,607 thì ta sử dụng máy tính cầm tay và tính được: α ≈ 58°.

    Vậy α ≈ 58°

  • Câu 13: Vận dụng cao

    Cho tam giác ABC thỏa mãn biểu thức

    \dfrac{4 - 2\sin^{2}\widehat{B} -2\sin^{2}\widehat{C}}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} = \left(\cot\widehat{B} + \cot\widehat{C} ight)^{2} -2\cot\widehat{B}.\cot\widehat{C}

    Chọn khẳng định đúng.

    Ta có:

    \dfrac{4 - 2\sin^{2}\widehat{B} -2\sin^{2}\widehat{C}}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} = \left(\cot\widehat{B} + \cot\widehat{C} ight)^{2} -2\cot\widehat{B}.\cot\widehat{C}

    \Leftrightarrow\dfrac{4}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} - 2 =\cot^{2}\widehat{B} + \cot^{2}\widehat{C}

    \Leftrightarrow\dfrac{4}{\sin^{2}\widehat{B} + \sin^{2}\widehat{C}} - 2 =\dfrac{1}{\sin^{2}\widehat{B}} + \dfrac{1}{\sin^{2}\widehat{C}} -2

    \Leftrightarrow \left(\sin^{2}\widehat{B} + \sin^{2}\widehat{C} ight)\left(\dfrac{1}{\sin^{2}\widehat{B}} + \dfrac{1}{\sin^{2}\widehat{C}} ight) =4

    \Leftrightarrow\dfrac{\sin^{2}\widehat{B}}{\sin^{2}\widehat{C}} +\dfrac{\sin^{2}\widehat{C}}{\sin^{2}\widehat{B}} - 2 = 0

    \Leftrightarrow \left(\dfrac{\sin\widehat{B}}{\sin\widehat{C}} -\dfrac{\sin\widehat{C}}{\sin\widehat{B}} ight)^{2} = 0

    \Leftrightarrow \sin\widehat{B} =
\sin\widehat{C}

    \Leftrightarrow \widehat{B} =
\widehat{C}

    Vậy tam giác ABC là tam giác cân.

  • Câu 14: Vận dụng

    Tam giác MPQ vuông tại P. Trên cạnh MQ lấy hai điểm E,\ \ F sao cho các góc \widehat{MPE},\ \ \widehat{EPF},\ \
\widehat{FPQ} bằng nhau. Đặt MP =
q,\ \ PQ = m,\ \ PE = x,\ \ PF = y. Trong các hệ thức sau, hệ thức nào đúng?

    Ta có \widehat{MPE} = \widehat{EPF} =
\widehat{FPQ} = \frac{\widehat{MPQ}}{3} = 30{^\circ} \Rightarrow \widehat{MPF} = \widehat{EPQ} =
60{^\circ}.

    Theo định lí hàm cosin, ta có

    ME^{2} = AM^{2} + AE^{2} -
2.AM.AE.cos\widehat{MAE}

    = q^{2} + x^{2} -
2qx.cos30{^\circ} = q^{2} + x^{2} -
qx\sqrt{3}

    MF^{2} = AM^{2} + AF^{2} -
2AM.AF.cos\widehat{MAF}

    = q^{2} + y^{2} -
2qy.cos60{^\circ} = q^{2} + y^{2} -
qy

    MQ^{2} = MP^{2} + PQ^{2} = q^{2} +
m^{2}.

  • Câu 15: Thông hiểu

    Tam giác ABC có BC=5\sqrt{5},AC=5\sqrt{2},AB=5 . Số đo góc A là:

    Áp dụng định lí cosin trong tam giác ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC\cos \widehat A \hfill \\   \Leftrightarrow \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2.AB.AC}} =  - \dfrac{{\sqrt 2 }}{2} \hfill \\   \Rightarrow \widehat A = {135^0} \hfill \\ \end{matrix}

  • Câu 16: Nhận biết

    Cho \Delta
ABCa = 6,b = 8,c = 10. Diện tích S của tam giác trên là:

    Ta có: Nửa chu vi \Delta ABC: p = \frac{a + b + c}{2}.

    Áp dụng công thức Hê-rông: S = \sqrt{p(p
- a)(p - b)(p - c)} = \sqrt{12(12 -
6)(12 - 8)(12 - 10)} =
24.

  • Câu 17: Nhận biết

    Cho \Delta
ABC\widehat{C} =
45^{0},\widehat{B} = 75^{0}. Số đo của góc A là:

    Ta có: \widehat{A} + \widehat{B} +
\widehat{C} = 180^{0} \Rightarrow
\widehat{A} = 180^{0} - \widehat{B} - \widehat{C} = 180^{0} - 75^{0} - 45^{0} = 60^{0}.

  • Câu 18: Nhận biết

    Tam giác ABCAB =
2,\ \ AC = 1\widehat{A} =
60{^\circ}. Tính độ dài cạnh BC.

    Theo định lí hàm cosin, ta có BC^{2} =
AB^{2} + AC^{2} - 2AB.AC.cos\widehat{A} = 2^{2} + 1^{2} - 2.2.1.cos60{^\circ} = 3
\Rightarrow BC = \sqrt{3}.

  • Câu 19: Vận dụng

    Cho góc \alpha thỏa mãn \tan\alpha = 2180^{o} < \alpha < 270^{o}. Tính P = \cos\alpha + \sin\alpha.

    Ta có \left\{ \begin{matrix}
cos^{2}\alpha = \frac{1}{1 + tan^{2}\alpha} = \frac{1}{5} ightarrow
\cos\alpha = \pm \frac{1}{\sqrt{5}} \\
180^{o} < \alpha < 270^{o} \\
\end{matrix} ight. \overset{}{ightarrow}\cos\alpha = -
\frac{1}{\sqrt{5}}

    \overset{}{ightarrow}\sin\alpha =
\tan\alpha.cos\alpha = - \frac{2}{\sqrt{5}}. Do đó, \sin\alpha + \cos\alpha = - \frac{3}{\sqrt{5}} = -
\frac{3\sqrt{5}}{5}.

  • Câu 20: Vận dụng

    Cho góc \alpha thỏa mãn \sin\alpha\cos\alpha = \frac{12}{25}\sin\alpha + \cos\alpha > 0. Tính P = sin^{3}\alpha +
cos^{3}\alpha.

    Áp dụng a^{3} + b^{3} = (a + b)^{3} -
3ab(a + b), ta có

    P = sin^{3}\alpha +
cos^{3}\alpha = \left( \sin\alpha +
\cos\alpha ight)^{3} - 3sin\alpha\cos\alpha\left( \sin\alpha +
\cos\alpha ight).

    Ta có \left( \sin\alpha + \cos\alpha
ight)^{2} = sin^{2}\alpha + 2sin\alpha\cos\alpha +
cos^{2}\alpha = 1 + \frac{24}{25} =
\frac{49}{25}

    \sin\alpha + \cos\alpha >
0 nên ta chọn \sin\alpha +
\cos\alpha = \frac{7}{5}.

    Thay \left\{ \begin{matrix}
\sin\alpha + \cos\alpha = \frac{7}{5} \\
\sin\alpha\cos\alpha = \frac{12}{25} \\
\end{matrix} ight. vào P, ta được P
= \left( \frac{7}{5} ight)^{3} - 3.\frac{12}{25}.\frac{7}{5} =
\frac{91}{125}.

  • Câu 21: Thông hiểu

    Trong tam giác ABC có AB = 2, AC = 1\widehat{A}=60^0. Tính độ dài cạnh BC.

    Áp dụng định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A \hfill \\   \Leftrightarrow B{C^2} = {2^2} + {1^2} - 2.2.1.\cos {60^0} \hfill \\   \Leftrightarrow B{C^2} = 3 \hfill \\   \Leftrightarrow BC = \sqrt 3  \hfill \\ \end{matrix}

  • Câu 22: Thông hiểu

    Cho tam giác ABC, biết BC = 24, AC = 13, AB = 15. Số đo góc A là:

    Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \hfill \\   \Rightarrow \cos \widehat A = \dfrac{{{{15}^2} + {{13}^2} - {{24}^2}}}{{2.15.13}} =  - \dfrac{7}{{15}} \hfill \\   \Rightarrow \widehat A \approx {117^0}49\prime  \hfill \\ \end{matrix}

  • Câu 23: Nhận biết

    Tam giác ABC có \hat B = {60^0},\hat C = {45^0};AC = 5. Độ dài cạnh AB là:

    Áp dụng định lí sin trong tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin B}} = \dfrac{{AB}}{{\sin C}} \hfill \\   \Rightarrow AB = \dfrac{{AC.\sin C}}{{\sin B}} = \dfrac{{5.\sin {{45}^0}}}{{\sin {{60}^0}}} = \dfrac{{5\sqrt 6 }}{3} \hfill \\ \end{matrix}

  • Câu 24: Nhận biết

    Điểm cuối của \alpha thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha < 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight..

  • Câu 25: Vận dụng

    Cho góc \alpha thỏa mãn \frac{\pi}{2} < \alpha < 2\pi\cot\left( \alpha + \frac{\pi}{3} ight) =
- \sqrt{3}. Tính giá trị của biểu thức P = \sin\left( \alpha + \frac{\pi}{6} ight) +
\cos\alpha.

    Ta có \left\{ \begin{matrix}
\frac{\pi}{2} < \alpha <
2\pi\overset{}{\leftrightarrow}\frac{5\pi}{6} < \alpha +
\frac{\pi}{3} < \frac{7\pi}{3} \\
\cot\left( \alpha + \frac{\pi}{3} ight) = - \sqrt{3} \\
\end{matrix} ight. ightarrow
\alpha + \frac{\pi}{3} = \frac{11\pi}{6} ightarrow \alpha =
\frac{3\pi}{2}.

    Thay \alpha = \frac{3\pi}{2} vào P, ta được P = - \frac{\sqrt{3}}{2}.

  • Câu 26: Nhận biết

    Giá trị cot\frac{\pi }{6} là:

     Ta có: cot\frac{\pi }{6} =\sqrt3.

  • Câu 27: Nhận biết

    Tam giác ABC\widehat{B} = 60{^\circ},\ \ \widehat{C} =
45{^\circ}AB = 5. Tính độ dài cạnh AC.

    Theo định lí hàm sin, ta có \frac{AB}{\sin\widehat{C}} =
\frac{AC}{\sin\widehat{B}} \Leftrightarrow \frac{5}{sin45{^\circ}} =
\frac{AC}{sin60{^\circ}} \Rightarrow AC = \frac{5\sqrt{6}}{2}.

  • Câu 28: Nhận biết

    Cho \Delta
ABCS = 84,a = 13,b = 14,c =
15. Độ dài bán kính đường tròn ngoại tiếp R của tam giác trên là:

    Ta có: S_{\Delta ABC} = \frac{a.b.c}{4R}
\Leftrightarrow R =
\frac{a.b.c}{4S} = \frac{13.14.15}{4.84} = \frac{65}{8}.

  • Câu 29: Nhận biết

    Cho tam giác ABCAB =4cm;AC = 12cm và góc \widehat{BAC} = 120^{\circ}. Tính diện tích tam giác ABC.

    S = \frac{1}{2}AB \cdot AC \cdot
\sin\widehat{BAC}

    = \frac{1}{2} \cdot 4 \cdot 12 \cdot
\sin 120^{\circ}

    = 12\sqrt{3}\left( {cm}^{2}ight)

  • Câu 30: Nhận biết

    Tam giác ABCAB=5,BC=7,CA=8. Số đo góc \hat A bằng:

     Áp dụng định lí côsin:

    \cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}= \frac{{{5^2} + {8^2} - {7^2}}}{{2.5.8}} = \frac{1}{2}.

    Suy ra \hat A = 60^{\circ}.

  • Câu 31: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \sin157^{\circ} =\sin (180^{\circ} -157^{\circ} )=\sin 23^{\circ}. Vì \sin \alpha =\sin (180^{\circ} -\alpha ).

  • Câu 32: Nhận biết

    Cho tam giác ABCa=2,\hat A=60^{\circ} ,\hat B=45^{\circ}. Hỏi độ dài cạnh b bằng bao nhiêu?

     Áp dụng định lí sin:

    \frac{a}{{\sin A}} = \frac{b}{{\sin B}} \Leftrightarrow b = \sin B.\frac{a}{{\sin A}}= \sin 45^\circ .\frac{2}{{\sin 60^\circ }} = \frac{{2\sqrt 6 }}{3}.

  • Câu 33: Vận dụng

    Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một chiếc đĩa cổ hình tròn bị vỡ, các nhà khảo cổ muốn khôi phục hình dạng chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy 3 điểm trên chiếc đĩa và tiến hành đo đạc thu được kết quả như hình vẽ (AB = 4,3 cm; BC = 3,7 cm; CA = 7,5 cm).

    Tính bán kinh của chiếc đĩa

    Bán kính của chiếc đĩa này bằng (kết quả làm tròn đến chữ số thập phân thứ hai):

    Ta có: Bán kính của chiếc đĩa bằng bán kính đường tròn ngoại tiếp tam giác ABC.

    Nửa chu vi tam giác ABC: 

    \begin{matrix}  p = \dfrac{{AB + AC + BC}}{2} \hfill \\   = \dfrac{{4,3 + 7,5 + 3,7}}{2} = \dfrac{{31}}{4}\left( {cm} ight) \hfill \\ \end{matrix}

    Áp dụng công thức Hê - rông tính diện tích tam giác ABC:

    \begin{matrix}  S = \sqrt {p\left( {p - AB} ight)\left( {p - AC} ight)\left( {p - BC} ight)}  \hfill \\   \Rightarrow S \approx 5,2\left( {c{m^2}} ight) \hfill \\ \end{matrix}

    Mặt khác 

    \begin{matrix}  S = \dfrac{{AB.AC.BC}}{{4R}} \Rightarrow R = \dfrac{{AB.AC.BC}}{{4s}} \hfill \\   \Rightarrow R \approx 5,73\left( {cm} ight) \hfill \\ \end{matrix}

  • Câu 34: Thông hiểu

    Tam giác ABC\widehat{B}=60°,\widehat{C}=45°AB=5. Tính độ dài cạnh AC.

     Áp dụng định lí sin: 

    \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow AC = \sin B.\frac{{AB}}{{\sin C}}= \sin 60^\circ .\frac{5}{{\sin 45^\circ }} = \frac{{5\sqrt 6 }}{2}.

  • Câu 35: Thông hiểu

    Cho tam giác ABC có b = 7; c = 5, \cos A = \frac{3}{5}. Đường cao h_{a} của tam giác ABC là:

    Ta có: a^{2} = b^{2} + c^{2} - 2bc\cos A
= 7^{2} + 5^{2} - 2.7.5.\frac{3}{5}
= 32 \Rightarrow a = 4\sqrt{2}.

    Mặt khác: sin^{2}A + cos^{2}A = 1
\Rightarrow sin^{2}A = 1 - cos^{2}A = 1 - \frac{9}{25} = \frac{16}{25} \Rightarrow
\sin A = \frac{4}{5} (Vì \sin A
> 0).

    Mà: S_{\Delta ABC} = \frac{1}{2}b.c.sinA
= \frac{1}{2}a.h_{a} \Rightarrow
h_{a} = \frac{bc\sin A}{a} = \frac{7.5.\frac{4}{5}}{4\sqrt{2}} =
\frac{7\sqrt{2}}{2}.

  • Câu 36: Vận dụng cao

    Cho tam giác ABC có AB = c;BC = a;AC = b. Cần điều kiện gì để các góc của tam giác thỏa mãn biểu thức \cot^{2}\dfrac{A}{2} + \cot^{2}\dfrac{B}{2} +\cot^{2}\dfrac{C}{2} = 9?

    Theo định lí hàm số cos ta có:

    a^{2} = b^{2} + c^{2} - 2bc.\cos A \geq2bc - 2bc\cos A = 4bc\sin^{2}\frac{A}{2}

    \Rightarrow \dfrac{1}{\sin^{2}\dfrac{A}{2}}\geq \dfrac{4bc}{a^{2}}

    \Rightarrow \cot^{2}\dfrac{A}{2} \geq\dfrac{4bc}{a^{2}} - 1

    Chứng minh tương tự ta có: \left\{\begin{matrix} \cot^{2}\dfrac{B}{2} \geq \dfrac{4ac}{b^{2}} - 1 \\ \cot^{2}\dfrac{C}{2} \geq \dfrac{4ac}{c^{2}} - 1 \\\end{matrix} ight.

    Do đó

    \cot^{2}\dfrac{A}{2} + \cot^{2}\dfrac{B}{2}+ \cot^{2}\dfrac{C}{2}

    \geq \dfrac{4bc}{a^{2}} - 1 +\dfrac{4ac}{b^{2}} - 1 + \dfrac{4ac}{c^{2}} - 1

    \geq\sqrt[3]{\dfrac{4bc}{a^{2}}\dfrac{4ac}{b^{2}}\dfrac{4ac}{c^{2}}} - 3 =9

    Dấu bằng xảy ra khi và chỉ khi tam giác ABC đều.

  • Câu 37: Nhận biết

    Cho tam giác ABC thỏa mãn: 2cosA = 1. Khi đó:

    Ta có: 2cosA = 1 \Leftrightarrow \cos A = \frac{1}{2} \Rightarrow \widehat{A}
= 60^{0}.

  • Câu 38: Thông hiểu

    Trong các đẳng thức sau, đẳng thức nào sai?

    Khẳng định sai là: "\sin {0^0} + \cos {0^0} = 0"

    Sửa lại là: "\sin {0^0} + \cos {0^0} = 1"

  • Câu 39: Thông hiểu

    Diện tích tam giác có ba cạnh lần lượt là \sqrt{3},\sqrt{2} và 1 là:

    Nửa chu vi của tam giác là: p = \frac{{a + b + c}}{2} = \frac{{\sqrt 3  + \sqrt 2  + 1}}{2}

    Áp dụng công thức Herong ta có:

    \begin{matrix}  S = \sqrt {p\left( {p - a} ight)\left( {p - b} ight)\left( {p - a} ight)}  \hfill \\  S = \sqrt {p\left( {p - \sqrt 3 } ight)\left( {p - \sqrt 2 } ight)\left( {p - 1} ight)}  \hfill \\  S = \dfrac{{\sqrt 2 }}{2} \hfill \\ \end{matrix}

  • Câu 40: Thông hiểu

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \cos\alpha = \sqrt{1 -
sin^{2}\alpha}.

    Ta có \cos\alpha = \sqrt{1 -
sin^{2}\alpha} \Leftrightarrow \cos\alpha =
\sqrt{cos^{2}\alpha} \Leftrightarrow \cos\alpha = \left| \cos\alpha
ight| \Leftrightarrow \cos\alpha.

    Đẳng thức \left| \cos\alpha ight|
\Leftrightarrow \cos\alpha\overset{}{ightarrow}\cos\alpha \geq
0\overset{}{ightarrow}điểm cuối của góc lượng giác \alpha ở góc phần tư thứ I hoặc IV.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác Sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo