Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Tính giá trị của ![]()
Ta có
Cho
vuông tại
và có
. Số đo của góc
là:
Ta có: Trong
.
Cho
Khẳng định nào sau đây đúng?
Ta có:
và
.
Cho tam giác
cạnh
, lấy
sao cho
. Đường tròn tâm
bán kính
tiếp xúc với các cạnh
lần lượt tại các điểm
. Tính độ dài cạnh
?
Hình vẽ minh họa
Ta có: từ đó suy ra
(do
là các góc nhọn)
Đặt . Do
là phân góc của góc
nên
Mặt khác, theo định lí cosin trong tam giác ta có:
Thay số ta được hệ phương trình:
Vậy
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Tam giác ABC có
. Độ dài cạnh AB là:
Áp dụng định lí sin trong tam giác ABC ta có:
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Cho hình thoi
cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64
. Giá trị sin A là:
Ta có:
Giá trị biểu thức
bằng:
Ta có:
Cho góc
thỏa mãn
và
. Tính
.
Ta có
.
Theo giả thiết:
.
Ta có
Cho tam giác
, biết
. Số đo góc
là:
Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:
Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?
Hình ảnh minh họa

Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác
=>
Do đó:
Ta có:
Cho biết
. Tính
.
Ta có:
.
Cho góc
thỏa
và
Khẳng định nào sau đây đúng?
Ta có
Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Với mọi góc
, giá trị của biểu thức
![]()
Ta có:
Do đó:
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Cho
Khẳng định nào sau đây đúng?
Ta có :
Cho tam giác
có góc
tù. Cho các biểu thức sau:
(1) ![]()
(2) ![]()
(3) ![]()
(4) ![]()
Số các biểu thức mang giá trị dương là:
Ta có: tù nên
Do đó: .
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Cho tam giác
thỏa mãn biểu thức
![]()
Chọn khẳng định đúng.
Ta có:
Vậy tam giác ABC là tam giác cân.
Từ vị trí
người ta quan sát một cây cao (hình vẽ).
Biết
.
Chiều cao của cây gần nhất với giá trị nào sau đây?

Trong tam giác , ta có
.
Suy ra .
Suy ra
.
Áp dụng định lý sin trong tam giác , ta được
Tam giác ABC có
. Độ dài cạnh AB là:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Cho
có
. Độ dài cạnh
là:
Ta có:
.
Tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lý côsin: .
Cho tam giác ABC có
, góc
bằng
. Độ dài cạnh
là ?
Ta có:
.
Cho
có
Diện tích của tam giác là:
Ta có:
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
trái dấu?
Điểm cuối của thuộc góc phần tư thứ hai thì
,
.
Điểm cuối của thuộc góc phần tư thứ tư thì
,
.
Vậy nếu trái dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Tam giác
vuông tại
. Trên cạnh
lấy hai điểm
sao cho các góc
bằng nhau. Đặt
. Trong các hệ thức sau, hệ thức nào đúng?
Ta có
.
Theo định lí hàm cosin, ta có
.
Giá trị
là:
Ta có: .
Diện tích tam giác có ba cạnh lần lượt là
và 1 là:
Nửa chu vi của tam giác là:
Áp dụng công thức Herong ta có: