Cho tam giác
, biết
. Số đo góc
là:
Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:
Cho tam giác
, biết
. Số đo góc
là:
Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lý côsin: .
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
Tam giác
có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Cho tam giác
. Tìm công thức sai:
Ta có:
Cho
Khẳng định nào sau đây đúng?
Ta có: điểm cuối cung
thuộc góc phần tư thứ
Biểu thức lượng giác
có giá trị bằng bao nhiêu?
Ta có:
Khi đó
Cho tam giác
có
và góc
. Tính diện tích tam giác
.
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Cho tam giác ABC có
, góc
bằng
. Độ dài cạnh
là ?
Ta có:
.
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?
Hình ảnh minh họa

Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác
=>
Do đó:
Ta có:
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
: loại (vì
).
, ta có hệ phương trình
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ)

Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?
Diện tích mảnh đất của gia đình bà Sáu (tam giác ) là:
.
Diện tích tam giác có ba cạnh lần lượt là
và 1 là:
Nửa chu vi của tam giác là:
Áp dụng công thức Herong ta có:
Vào lúc 9 giờ sáng, hai vận động viên A và B xuất phát từ cùng một vị trí O. Vận động viên A chạy với vận tốc 13 km/h theo một góc so với hướng Bắc là 15°, vận động viên B chạy với vận tốc 12 km/h theo một góc so với hướng Bắc là 135° (hình vẽ).

Tại thời điểm nào thì vận động viên A cách vận động viên B một khoảng 10 km (làm tròn kết quả đến phút)?
Gọi khoảng thời gian kể từ khi bắt đầu chạy từ điểm O đến khi hai vận động viên cách nhau 10 km là x giờ
Điều kiện: x > 0
Khi đó đoạn đường mà vận động viên A chạy được là 13x (km)
Đoạn đường mà vận động viên B chạy được là 12x (km)
Ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
0,46 giờ ≈ 28 phút
Do đó thời điểm mà hai vận động viên cách nhau 10 km là khoảng: 9 giờ 28 phút.
Vậy vào khoảng 9 giờ 28 phút thì hai vận động viên sẽ cách nhau 10 km.
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Cho
. Xác định dấu của biểu thức ![]()
Ta có:
và
Cho góc
thỏa mãn
Tính ![]()
Chia cả tử và mẫu của cho
ta được
.
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho tam giác
có
và các góc của tam giác thỏa mãn biểu thức:
. Khi đó tam giác
là tam giác gì?
Ta có:
Ta lại có:
Vậy tam giác ABC là tam giác đều.
Cho tam giác ABC có b = 7; c = 5,
. Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Cho góc
thỏa
và
Khẳng định nào sau đây đúng?
Ta có
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Chọn công thức đúng trong các đáp án sau:
Ta có:
.
Cho góc
. Gọi
và
là hai điểm di động lần lượt trên
và
sao cho
. Khi
có độ dài lớn nhất thì độ dài của đoạn
bằng:
Theo định lí hàm sin, ta có
Do đó, độ dài lớn nhất khi và chỉ khi
.
Khi đó .
Tam giác vuông tại
.
Cho góc
thỏa mãn
và
Tính ![]()
Ta có
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Một tam giác có ba cạnh là
. Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Cho tam giác
có
. Biết rằng các góc của tam giác thỏa mãn biểu thức:
![]()
Chọn khẳng định đúng?
Dấu bằng xảy ra khi và chỉ khi
Vậy tam giác ABC là tam giác vuông tại C.
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Cho
Khẳng định nào sau đây đúng?
Ta có:
và
.
Cho
vuông tại
và có
. Số đo của góc
là:
Ta có: Trong
.
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.