Cho
Khẳng định nào sau đây đúng?
Ta có :
Cho
Khẳng định nào sau đây đúng?
Ta có :
Biểu thức lượng giác
có giá trị bằng bao nhiêu?
Ta có:
Khi đó
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Cho
Khẳng định nào sau đây đúng?
Ta có: điểm cuối cung
thuộc góc phần tư thứ
Cho góc
thỏa mãn
và
Tính ![]()
Ta có
. Do đó,
Cho tam giác
có
và góc
. Tính diện tích tam giác
.
Cho
vuông tại
và có
. Số đo của góc
là:
Ta có: Trong
.
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Cho
có
Diện tích của tam giác là:
Ta có:
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
: loại (vì
).
, ta có hệ phương trình
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Tam giác ABC có
. Độ dài cạnh AB là:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Cho góc α, (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là: " , (0° < α < 180° và α ≠ 90°)"
Sửa lại là " , (0° < α < 180° và α ≠ 90°)".
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Trong tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lí cosin cho tam giác ABC ta có:
Cho
có
Độ dài cạnh
bằng:
Ta có:
.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Cho tam giác
có
và
. Biết rằng:

Chọn khẳng định đúng?
Ta có:
Mà
Vậy tam giác ABC là tam giác vuông tại A.
Giá trị biểu thức
là:
Ta có:
Cho biết
. Tính
.
Ta có:
.
Cho tam giác ABC có b = 7; c = 5,
. Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
Tam giác
có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Cho
với
. Tính
.
Ta có:
.
Do nên
. Suy ra,
Cho tam giác
, chọn công thức đúng trong các đáp án sau:
Ta có:
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm sin, ta có
.
Cho tam giác
thỏa mãn biểu thức
![]()
Chọn khẳng định đúng.
Ta có:
Vậy tam giác ABC là tam giác cân.
Giá trị
là:
Ta có: .
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Cho
có
Diện tích
của tam giác trên là:
Ta có: Nửa chu vi :
.
Áp dụng công thức Hê-rông:
.
Cho
. Xác định dấu của biểu thức ![]()
Ta có:
và
.
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Cho
, với
. Giá trị
bằng
Ta có:
(do
).
Vậy .
Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB = 70 m, phương nhìn AC tạo với phương nằm ngang góc 30°, phương nhìn BC tạo với phương nằm ngang góc 15°30' (hình vẽ).

Ngọn núi đó có độ cao CH so với mặt đất gần nhất với giá trị nào sau đây?
Ta có:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Xét tam giác ACH vuông tại H ta có:
Tam giác ABC có BC = a, CA = b, AB = c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng:
Ta có:
Diện tích ban đầu của tam giác là:
Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác là:
Cho tam giác
. Tìm công thức sai:
Ta có: