Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64
. Giá trị sin A là:
Ta có:
Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64
. Giá trị sin A là:
Ta có:
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu ![]()
Ta có
Đẳng thức điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Cho
với
. Tính
.
Ta có:
.
Do nên
. Suy ra,
Cho tam giác ABC và các mệnh đề
(I) ![]()
(II) ![]()
(III) ![]()
Mệnh đề nào đúng?
Ta có:
=> Mệnh đề đúng
=> Mệnh đề đúng
=> Mệnh đề sai
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Cho
Khẳng định nào sau đây đúng?
Ta có :
Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Một tam giác có ba cạnh là
. Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Biểu thức lượng giác
có giá trị bằng bao nhiêu?
Ta có:
Khi đó
Cho
vuông tại
và có
. Số đo của góc
là:
Ta có: Trong
.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có:
Chọn công thức đúng trong các đáp án sau:
Ta có:
.
Cho góc
thỏa mãn
và
. Tính
.
Ta có
Thay vào
, ta được
.
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
. Mà
.
Từ một đỉnh tháp chiều cao
, người ta nhìn hai điểm
và
trên mặt đất dưới các góc nhìn là
và
so với phương nằm ngang. Ba điểm
thẳng hàng. Tính khoảng cách
(chính xác đến hàng đơn vị)?
Ta có: Trong tam giác vuông :
Trong tam giác vuông :
Suy ra: khoảng cách
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Khoảng cách từ
đến
không thể đo trực tiếp được vì phải qua một đầm lầy. Người ta xác định được một điểm
mà từ đó có thể nhìn được
và
dưới một góc
. Biết
,
. Khoảng cách
gần nhất với kết quả nào sau đây?
Ta có:
Cho tam giác
có
và góc
. Tính diện tích tam giác
.
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
trái dấu?
Điểm cuối của thuộc góc phần tư thứ hai thì
,
.
Điểm cuối của thuộc góc phần tư thứ tư thì
,
.
Vậy nếu trái dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Cho
Khẳng định nào sau đây đúng?
Ta có:
và
.
Giá trị
là:
Ta có: .
Cho
có
, nửa chu vi
. Độ dài bán kính đường tròn nội tiếp
của tam giác trên là:
Ta có:
Cho biết
. Tính
.
Ta có:
.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Cho hình thoi
cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Cho tam giác
, chọn công thức đúng trong các đáp án sau:
Ta có:
Cho tam giác
cạnh
, lấy
sao cho
. Đường tròn tâm
bán kính
tiếp xúc với các cạnh
lần lượt tại các điểm
. Tính độ dài cạnh
?
Hình vẽ minh họa
Ta có: từ đó suy ra
(do
là các góc nhọn)
Đặt . Do
là phân góc của góc
nên
Mặt khác, theo định lí cosin trong tam giác ta có:
Thay số ta được hệ phương trình:
Vậy
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Tam giác
có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Tam giác ABC có
. Số đo góc A là:
Áp dụng định lí cosin trong tam giác ta có:
Giá trị
thoả mãn
gần nhất với giá trị:
Để tìm α khi biết tanα = 1,607 thì ta sử dụng máy tính cầm tay và tính được: α ≈ 58°.
Vậy α ≈ 58°
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho tam giác
có
. Biết rằng các góc của tam giác thỏa mãn biểu thức:
![]()
Chọn khẳng định đúng?
Dấu bằng xảy ra khi và chỉ khi
Vậy tam giác ABC là tam giác vuông tại C.