Cho góc
thỏa mãn
và
. Tính giá trị của biểu thức
.
Ta có
Thay vào
, ta được
.
Cho góc
thỏa mãn
và
. Tính giá trị của biểu thức
.
Ta có
Thay vào
, ta được
.
Cho
có
Diện tích
của tam giác trên là:
Ta có: Nửa chu vi :
.
Áp dụng công thức Hê-rông:
.
Cho
thỏa mãn :
. Khi đó:
Ta có:
Cho biểu thức B xác định, rút gọn biểu thức
với
?
Ta có:
Do đó:
Vì nên
Tam giác
có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Cho tam giác
có
. Diện tích
của tam giác
là:
Ta có: nên tam giác
vuông tại B.
Diện tích tam giác là: .
Cho tam giác ABC có b = 7; c = 5,
. Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Cho
với
. Tính
.
Ta có:
.
Do nên
. Suy ra,
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Giá trị biểu thức
là:
Ta có:
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Trong tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lí cosin cho tam giác ABC ta có:
Cho góc α, (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là: " , (0° < α < 180° và α ≠ 90°)"
Sửa lại là " , (0° < α < 180° và α ≠ 90°)".
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Cho
Giá trị lượng giác nào sau đây luôn dương?
Ta có
Do
.
Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64
. Giá trị sin A là:
Ta có:
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu ![]()
Ta có
Đẳng thức điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
: loại (vì
).
, ta có hệ phương trình
Giá trị
là:
Ta có: .
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Để đo chiều cao từ mặt đất đến đỉnh cột cờ của một kỳ đài trước Ngọ Môn (Đại Nội – Huế), người ta cắm hai cọc AM và BN cao 1,5 mét so với mặt đất. Hai cọc này song song và cách nhau 10 mét và thẳng hàng so với tim cột cờ (Hình vẽ minh họa). Đặt giác kế tại đỉnh A và B để nhắm đến đỉnh cột cờ, người ta được các góc lần lượt là 51°40' và 45°39' so với đường song song mặt đất.

Chiều cao của cột cờ (làm tròn kết quả đến chữ số thập phân thứ hai) là:
Ta có:
Xét tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Ta có tam giác ACH vuông tại C
Chiều cao của cột cờ khoảng:
Tam giác ABC có
. Độ dài cạnh AB là:
Áp dụng định lí sin trong tam giác ABC ta có:
Chọn công thức đúng trong các đáp án sau:
Ta có:
.
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lý côsin: .
Một tam giác có ba cạnh là
Bán kính đường tròn ngoại tiếp là:
Ta có:
Suy ra:
.
Mà
.
Cho biết
. Tính
.
Ta có:
.
Cho góc
thoả mãn
và
. Giá trị của
là:
Ta có:
.
Do đó .
Vì nên
.
Cho tam giác
cạnh
, lấy
sao cho
. Đường tròn tâm
bán kính
tiếp xúc với các cạnh
lần lượt tại các điểm
. Tính độ dài cạnh
?
Hình vẽ minh họa
Ta có: từ đó suy ra
(do
là các góc nhọn)
Đặt . Do
là phân góc của góc
nên
Mặt khác, theo định lí cosin trong tam giác ta có:
Thay số ta được hệ phương trình:
Vậy
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho tam giác ABC có
, góc
bằng
. Độ dài cạnh
là ?
Ta có:
.
Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:
Ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
Cho góc
thỏa mãn
và
Tính ![]()
Ta có
. Do đó,
Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Cho tam giác
thỏa mãn biểu thức
![]()
Khi đó tam giác
là tam giác gì?
Ta có:
Đặt khi đó ta có:
Do đó
Vậy tam giác ABC là tam giác cân tại A.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ)

Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?
Diện tích mảnh đất của gia đình bà Sáu (tam giác ) là:
.
Nếu tam giác
có
thì:
Nếu tam giác ABC có thì
là góc nhọn