Cho tam giác
có
. Diện tích
của tam giác
là:
Ta có: nên tam giác
vuông tại B.
Diện tích tam giác là: .
Cho tam giác
có
. Diện tích
của tam giác
là:
Ta có: nên tam giác
vuông tại B.
Diện tích tam giác là: .
Tính giá trị biểu thức
.
Ta có:
Khi đó:
Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Tam giác
có
. Số đo góc
bằng:
Theo định lí hàm cosin, ta có
.
Do đó, .
Cho
. Xác định dấu của biểu thức ![]()
Ta có:
và
.
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Giá trị
là:
Ta có: .
Diện tích tam giác có ba cạnh lần lượt là
và 1 là:
Nửa chu vi của tam giác là:
Áp dụng công thức Herong ta có:
Cho góc
thỏa
và
Khẳng định nào sau đây đúng?
Ta có
Tam giác
có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Cho
Khẳng định nào sau đây đúng?
Ta có: điểm cuối cung
thuộc góc phần tư thứ
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Cho biết
. Tính
.
Ta có:
.
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Tam giác
có
và
. Tính độ dài cạnh
.
Áp dụng định lí sin:
.
Cho tam giác
. Tìm công thức sai:
Ta có:
Cho tam giác
, chọn công thức đúng trong các đáp án sau:
Ta có:
Chọn công thức đúng trong các đáp án sau:
Ta có:
.
Tam giác
là tam giác gì khi có các góc thỏa mãn biểu thức
?
Ta có:
Vậy tam giác ABC là tam giác vuông.
Tam giác
vuông tại
. Trên cạnh
lấy hai điểm
sao cho các góc
bằng nhau. Đặt
. Trong các hệ thức sau, hệ thức nào đúng?
Ta có
.
Theo định lí hàm cosin, ta có
.
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Cho tam giác
có
, độ dài các cạnh tam giác thỏa mãn biểu thức
với
là số thực lớn hơn
. Tính độ lớn góc
?
Áp dụng định lí cosin ta có:
Ta có:
Từ đó suy ra
Cho
thỏa mãn :
. Khi đó:
Ta có:
Cho tam giác
có
và góc
. Tính diện tích tam giác
.
Tam giác ABC có BC = a, CA = b, AB = c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng:
Ta có:
Diện tích ban đầu của tam giác là:
Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác là:
Cho
Khẳng định nào sau đây đúng?
Ta có :
Giá trị biểu thức
bằng:
Ta có:
Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:
Ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?
Hình ảnh minh họa

Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác
=>
Do đó:
Ta có:
Cho
Khẳng định nào sau đây đúng?
Ta có:
và
.
Cho
. Xác định dấu của biểu thức ![]()
Ta có:
và
Cho
có
. Số đo của góc
là:
Ta có:
Tam giác
có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Cho góc α với
. Giá trị của biểu thức:
là:
Ta có:
=>