Tính giá trị của ![]()
Ta có
Tính giá trị của ![]()
Ta có
Tam giác
có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
.
Thay và
vào
, ta được
Tam giác
có
và
. Tính độ dài cạnh
.
Áp dụng định lí sin:
.
Tam giác ABC có
. Độ dài cạnh AB là:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu ![]()
Ta có
Đẳng thức điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Cho
có
Diện tích
của tam giác trên là:
Ta có: Nửa chu vi :
.
Áp dụng công thức Hê-rông:
.
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Tam giác
có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Giả sử
là chiều cao của tháp trong đó
là chân tháp. Chọn hai điểm
trên mặt đất sao cho ba điểm
và
thẳng hàng. Ta đo được
,
.
Chiều cao
của tháp gần với giá trị nào sau đây?

Áp dụng định lí sin vào tam giác ta có
Ta có nên
Do đó
Trong tam giác vuông có
Nếu tam giác
có
thì:
Nếu tam giác ABC có thì
là góc nhọn
Tam giác
thỏa mãn đẳng thức

Biết
. Chọn khẳng định nào dưới đây đúng?
Ta có:
Chứng minh tương tự và suy ra ta có:
Dấu bằng xảy ra khi và chỉ khi
Vậy tam giác ABC là tam giác đều.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm sin, ta có
.
Cho tam giác
có
. Diện tích
của tam giác
là:
Ta có: nên tam giác
vuông tại B.
Diện tích tam giác là: .
Tam giác ABC có
. Số đo góc A là:
Áp dụng định lí cosin trong tam giác ta có:
Cho
có
Diện tích của tam giác là:
Ta có:
Giá trị biểu thức
là:
Ta có:
Tam giác ABC có
. Độ dài cạnh AB là:
Áp dụng định lí sin trong tam giác ABC ta có:
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Cho
Giá trị lượng giác nào sau đây luôn dương?
Ta có
Do
.
Giá trị
là:
Ta có: .
Cho
có
, nửa chu vi
. Độ dài bán kính đường tròn nội tiếp
của tam giác trên là:
Ta có:
Tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lý côsin: .
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho biết
. Tính
.
Ta có:
.
Một tam giác có ba cạnh là
. Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Cho biểu thức B xác định, rút gọn biểu thức
với
?
Ta có:
Do đó:
Vì nên
Giá trị
thoả mãn
gần nhất với giá trị:
Để tìm α khi biết tanα = 1,607 thì ta sử dụng máy tính cầm tay và tính được: α ≈ 58°.
Vậy α ≈ 58°
Tam giác
vuông tại
, đường cao
. Hai cạnh
và
tỉ lệ với
và
. Cạnh nhỏ nhất của tam giác này có độ dài bằng bao nhiêu?
Do tam giác vuông tại
, có tỉ lệ 2 cạnh góc vuông
là
nên
là cạnh nhỏ nhất trong tam giác.
Ta có .
Trong có
là đường cao
.
Cho góc
thoả mãn
và
. Giá trị của
là:
Ta có:
.
Do đó .
Vì nên
.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Cho góc
thỏa mãn
Tính ![]()
Ta có
Chia hai vế của cho
ta được
.
Cho
có
. Độ dài cạnh
là:
Ta có:
.
Cho tam giác
, chọn công thức đúng trong các đáp án sau:
Ta có:
Cho tam giác
có diện tích
, lấy
là trọng tâm và
. Giả sử
, tính giá trị biểu thức
theo
?
Hình vẽ minh họa
Gọi là trung điểm cạnh
. Kẻ
Tam giác vuông =>
Tam giác vuông =>
Ta có:
Mặt khác áp dụng định lí sin cho tam giác AMB ta được:
Từ (*) và (**) ta được:
Chứng minh tương tự ta có:
Do đó:
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .