Cho tam giác
có
và góc
. Tính diện tích tam giác
.
Cho tam giác
có
và góc
. Tính diện tích tam giác
.
Cho
, với
. Giá trị
bằng
Ta có:
(do
).
Vậy .
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Cho tam giác
có
, độ dài các cạnh tam giác thỏa mãn biểu thức
với
là số thực lớn hơn
. Tính độ lớn góc
?
Áp dụng định lí cosin ta có:
Ta có:
Từ đó suy ra
Giá trị biểu thức
bằng:
Ta có:
Giá trị biểu thức
bằng:
Ta có:
.
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm sin, ta có
.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ)

Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?
Diện tích mảnh đất của gia đình bà Sáu (tam giác ) là:
.
Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64
. Giá trị sin A là:
Ta có:
Giá trị
là:
Ta có: .
Biểu thức lượng giác
có giá trị bằng bao nhiêu?
Ta có:
Khi đó
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho tam giác
, biết
. Số đo góc
là:
Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:
Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?
Hình ảnh minh họa

Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác
=>
Do đó:
Ta có:
Cho
. Xác định dấu của biểu thức ![]()
Ta có:
và
.
Cho
có
. Độ dài cạnh
là:
Ta có:
.
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Tam giác
vuông tại
. Trên cạnh
lấy hai điểm
sao cho các góc
bằng nhau. Đặt
. Trong các hệ thức sau, hệ thức nào đúng?
Ta có
.
Theo định lí hàm cosin, ta có
.
Diện tích tam giác có ba cạnh lần lượt là
và 1 là:
Nửa chu vi của tam giác là:
Áp dụng công thức Herong ta có:
Cho
có
Diện tích của tam giác là:
Ta có:
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Giá trị
thoả mãn
gần nhất với giá trị:
Để tìm α khi biết tanα = 1,607 thì ta sử dụng máy tính cầm tay và tính được: α ≈ 58°.
Vậy α ≈ 58°
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
trái dấu?
Điểm cuối của thuộc góc phần tư thứ hai thì
,
.
Điểm cuối của thuộc góc phần tư thứ tư thì
,
.
Vậy nếu trái dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Trên nóc một tòa nhà có một cột ăng-ten cao
. Từ vị trí quan sát
cao
so với mặt đất, có thể nhìn thấy đỉnh
và chân
của cột ăng-ten dưới góc
và
so với phương nằm ngang.
Chiều cao của tòa nhà gần nhất với giá trị nào sau đây?

Từ hình vẽ, suy ra và
.
Áp dụng định lí sin trong tam giác , ta có
.Trong tam giác vuông
, ta có
Vậy
Cho hình thoi
cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Cho tam giác
có các góc thỏa mãn biểu thức
![]()
Khi đó tam giác
là tam giác gì?
Ta có:
Vậy tam giác ABC là tam giác vuông.
Cho tam giác ABC có
, góc
bằng
. Độ dài cạnh
là ?
Ta có:
.
Cho góc
thỏa mãn
và
. Tính
.
Ta có
.
Theo giả thiết:
.
Ta có
Trong tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lí cosin cho tam giác ABC ta có:
Cho góc
thỏa mãn
và
. Tính
.
Ta có .
Vì
Theo giả thiết:
Cho biết
. Tính
.
Ta có:
.
Tam giác
có
. Số đo góc
bằng:
Theo định lí hàm cosin, ta có
.
Do đó, .
Cho
Khẳng định nào sau đây đúng?
Ta có :