Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Tam giác
thỏa mãn đẳng thức

Biết
. Chọn khẳng định nào dưới đây đúng?
Ta có:
Chứng minh tương tự và suy ra ta có:
Dấu bằng xảy ra khi và chỉ khi
Vậy tam giác ABC là tam giác đều.
Cho
có
. Độ dài cạnh
là:
Ta có:
.
Cho
có
Diện tích của tam giác là:
Ta có:
Để đo khoảng cách từ một điểm
trên bờ sông đến gốc cây
trên cù lao giữa sông, người ta chọn một điểm
cùng ở trên bờ với
sao cho từ
và
có thể nhìn thấy điểm
. Ta đo được khoảng cách
,
và
.Vậy sau khi đo đạc và tính toán được khoảng cách
gần nhất với giá trị nào sau đây?

Áp dụng định lí sin vào tam giác ta có
Vì nên
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Cho tam giác
có
, độ dài các cạnh tam giác thỏa mãn biểu thức
. Tính độ lớn góc
?
Ta có:
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
.
Suy ra
.
Do suy ra
nên
. Vậy
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm sin, ta có
.
Cho góc
thỏa mãn
và
. Tính
.
Ta có
.
Theo giả thiết:
.
Ta có
Tam giác
có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có:
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ).

Chiều dài hàng rào
là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Áp dụng định li côsin ta
.
Suy ra .
Vậy chiều dài hàng rào là khoảng
.
Cho góc
thỏa
và
Khẳng định nào sau đây đúng?
Ta có
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu ![]()
Ta có
Đẳng thức điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Giá trị biểu thức
bằng:
Ta có:
.
Xác định số phương trình luôn có nghiệm với mọi giá trị của tham số m trong các phương trình dưới đây?
![]()
![]()
![]()
![]()
Với thì
vô nghiệm.
Vì với mọi giá trị thực của m ta có: nên
Từ đó suy ra vậy phương trình
luôn có nghiệm.
Phương trình luôn có nghiệm với mọi giá trị thực của m.
Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Tam giác
có
. Gọi
là chân đường phân giác trong góc
. Khi đó góc
bằng bao nhiêu độ?
Theo định lí hàm cosin, ta có:
Trong có
.
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho
với
. Khi đó giá trị
bằng:
Vì
Suy ra
.
Tam giác
có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
cùng dấu?
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Vậy nếu cùng dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Cho hình thoi
cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Tam giác
có
. Số đo góc
bằng:
Theo định lí hàm cosin, ta có
.
Do đó, .
Cho
Khẳng định nào sau đây đúng?
Ta có: điểm cuối cung
thuộc góc phần tư thứ
Cho
có
. Số đo của góc
là:
Ta có:
Tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lý côsin: .
Chọn công thức đúng trong các đáp án sau:
Ta có:
.
Cho biết
. Tính
.
Ta có:
.
Cho
có
Diện tích
của tam giác trên là:
Ta có: Nửa chu vi :
.
Áp dụng công thức Hê-rông:
.
Diện tích tam giác có ba cạnh lần lượt là
và 1 là:
Nửa chu vi của tam giác là:
Áp dụng công thức Herong ta có: