Cho góc
thỏa mãn
và
Tính ![]()
Ta có
Cho góc
thỏa mãn
và
Tính ![]()
Ta có
Cho
Khẳng định nào sau đây đúng?
Ta có:
và
.
Giá trị biểu thức
bằng:
Ta có:
Tam giác ABC có
. Số đo góc A là:
Áp dụng định lí cosin trong tam giác ta có:
Trong các đẳng thức sau, đẳng thức nào sai?
Khẳng định sai là: ""
Sửa lại là: ""
Cho
có
Diện tích
của tam giác trên là:
Ta có: Nửa chu vi :
.
Áp dụng công thức Hê-rông:
.
Tam giác
là tam giác gì khi có các góc thỏa mãn biểu thức
?
Ta có:
Vậy tam giác ABC là tam giác vuông.
Cho
thỏa mãn :
. Khi đó:
Ta có:
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Cho
có
. Số đo của góc
là:
Ta có:
Hai chiếc tàu thuỷ cùng xuất phát từ vị trí
, đi thẳng theo hai hướng tạo với nhau một góc
. Tàu thứ nhất chạy với tốc độ
, tàu thứ hai chạy với tốc độ
. Hỏi sau
giờ hai tàu cách nhau bao nhiêu
?

Ta có: Sau quãng đường tàu thứ nhất chạy được là:
Sau quãng đường tàu thứ hai chạy được là:
Vậy: sau hai tàu cách nhau là:
Một tam giác có ba cạnh là
. Bán kính đường tròn ngoại tiếp tam giác đó là:
Ta có: .
Áp dụng hệ thức Hê - rông ta có:
.
Mặt khác
Cho tam giác
có
. Diện tích
của tam giác
là:
Ta có: nên tam giác
vuông tại B.
Diện tích tam giác là: .
Trong tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lí cosin cho tam giác ABC ta có:
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Cho
có
Diện tích của tam giác là:
Ta có:
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Cho góc
thỏa mãn
và
. Tính
.
Ta có
Thay vào
, ta được
.
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu ![]()
Ta có
Đẳng thức điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Cho tam giác
có
và góc
. Tính diện tích tam giác
.
Xác định số phương trình luôn có nghiệm với mọi giá trị của tham số m trong các phương trình dưới đây?
![]()
![]()
![]()
![]()
Với thì
vô nghiệm.
Vì với mọi giá trị thực của m ta có: nên
Từ đó suy ra vậy phương trình
luôn có nghiệm.
Phương trình luôn có nghiệm với mọi giá trị thực của m.
Tam giác ABC có đoạn thẳng nối trung điểm của AB và BC bằng 3, cạnh
AB = 9 và
. Tính độ dài cạnh cạnh BC.
Theo đề bài, đoạn nối 2 trung điểm bằng 3 nên suy ra .
Áp dụng định lí côsin:
.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ).

Chiều dài hàng rào
là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Áp dụng định li côsin ta
.
Suy ra .
Vậy chiều dài hàng rào là khoảng
.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Giá trị biểu thức
bằng:
Ta có:
.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Xác định chiều cao của một tháp mà không cần lên đỉnh của tháp. Đặt kế giác thẳng đứng cách chân tháp một khoảng
, giả sử chiều cao của giác kế là
.Quay thanh giác kế sao cho khi ngắm theo thanh ta nhình thấy đỉnh
của tháp. Đọc trên giác kế số đo của góc
. Chiều cao của ngọn tháp gần với giá trị nào sau đây:

Tam giác vuông tại
có
Vậy chiếu cao của ngọn tháp là
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Cho tam giác
có
, độ dài các cạnh tam giác thỏa mãn biểu thức
với
là số thực lớn hơn
. Tính độ lớn góc
?
Áp dụng định lí cosin ta có:
Ta có:
Từ đó suy ra
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Giá trị
là:
Ta có: .
Cho góc
thỏa mãn
và
Tính ![]()
Áp dụng , ta có
Ta có
Vì nên ta chọn
.
Thay vào
, ta được
.
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu ![]()
Ta có
Đẳng thức điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Tam giác
có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Chọn công thức đúng trong các đáp án sau:
Ta có:
.
Cho biết
. Tính
.
Ta có:
.