Tam giác
có
. Gọi
là chân đường phân giác trong góc
. Khi đó góc
bằng bao nhiêu độ?
Theo định lí hàm cosin, ta có:
Trong có
.
Tam giác
có
. Gọi
là chân đường phân giác trong góc
. Khi đó góc
bằng bao nhiêu độ?
Theo định lí hàm cosin, ta có:
Trong có
.
Cho tam giác
có
, độ dài các cạnh tam giác thỏa mãn biểu thức
với
là số thực lớn hơn
. Tính độ lớn góc
?
Áp dụng định lí cosin ta có:
Ta có:
Từ đó suy ra
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
trái dấu?
Điểm cuối của thuộc góc phần tư thứ hai thì
,
.
Điểm cuối của thuộc góc phần tư thứ tư thì
,
.
Vậy nếu trái dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Cho
có
, nửa chu vi
. Độ dài bán kính đường tròn nội tiếp
của tam giác trên là:
Ta có:
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Cho tam giác
. Tìm công thức sai:
Ta có:
Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:
Ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
Tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lý côsin: .
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Cho tam giác
có các góc thỏa mãn biểu thức
![]()
Giả sử
. Tính số đo góc
?
Ta có:
Theo định lí cosin ta có:
Ta thấy
Mặt khác
Do đó: khi
Vậy tam giác ABC là tam giác vuông tại .
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm sin, ta có
.
Cho
có
. Số đo của góc
là:
Ta có:
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Cho tam giác
có
và góc
. Tính diện tích tam giác
.
Cho
vuông tại
và có
. Số đo của góc
là:
Ta có: Trong
.
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho hình thoi
cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Cho góc
thỏa mãn
và
. Tính
.
Ta có .
Vì
Theo giả thiết:
Cho
, với
. Giá trị
bằng
Ta có:
(do
).
Vậy .
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có:
Tam giác ABC có
. Số đo góc A là:
Áp dụng định lí cosin trong tam giác ta có:
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Tam giác
có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Giá trị
là:
Ta có: .
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ).

Chiều dài hàng rào
là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Áp dụng định li côsin ta
.
Suy ra .
Vậy chiều dài hàng rào là khoảng
.
Từ hai vị trí
và
của một tòa nhà, người ta quan sát đỉnh
của ngọn núi. Biết rằng độ cao
, phương nhìn
tạo với phương nằm ngang góc
, phương nhìn
tạo với phương nằm ngang góc
. Ngọn núi đó có độ cao so với mặt đất gần nhất với giá trị nào sau đây?

Từ giả thiết, ta suy ra tam giác có
và
Khi đó
Theo định lí sin, ta có hay
Do đó
Gọi là khoảng cách từ
đến mặt đất. Tam giác vuông
có cạnh
đối diện với góc
nên
Vậy ngọn núi cao khoảng
Cho góc
thỏa mãn
và
. Tính
.
Ta có
Thay vào
, ta được
.
Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64
. Giá trị sin A là:
Ta có:
Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Cho
có
Diện tích của tam giác là:
Ta có:
Biểu thức lượng giác
có giá trị bằng bao nhiêu?
Ta có:
Khi đó
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Cho góc
thỏa mãn
và
Tính ![]()
Ta có
Cho
. Xác định dấu của biểu thức ![]()
Ta có:
và
.
Cho
Khẳng định nào sau đây đúng?
Ta có :