Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64
. Giá trị sin A là:
Ta có:
Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64
. Giá trị sin A là:
Ta có:
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Giá trị biểu thức
là:
Ta có:
Cho góc
thỏa mãn
và
Tính ![]()
Ta có
. Do đó,
Tam giác
thỏa mãn đẳng thức

Biết
. Chọn khẳng định nào dưới đây đúng?
Ta có:
Chứng minh tương tự và suy ra ta có:
Dấu bằng xảy ra khi và chỉ khi
Vậy tam giác ABC là tam giác đều.
Cho
. Xác định dấu của biểu thức ![]()
Ta có:
và
Cho
Khẳng định nào sau đây đúng?
Ta có:
và
.
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Cho tam giác
, chọn công thức đúng trong các đáp án sau:
Ta có:
Cho
có
. Độ dài cạnh
là:
Ta có:
.
Tam giác ABC có
. Số đo góc A là:
Áp dụng định lí cosin trong tam giác ta có:
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Một học sinh dùng giác kế, đứng cách chân cột cờ 10m rồi chỉnh mặt trước cao bằng mắt của mình để xác định góc nâng (góc tạo bởi tia sáng đi thẳng từ đỉnh cột cờ) với mắt tạo với phương nằm ngang. Khi đó góc nâng đo được 31∘. Biết khoảng cách từ mặt sân đến mắt học sinh đó bằng 1,5m. Chiều cao cột cờ gần nhất với giá trị nào?
Hình vẽ minh họa
Gọi AB là khoảng cách từ chân đến tầm mắt của học sinh ⇒ AB = 1,5m.
AC là khoảng cách từ chân đến cột cờ ⇒ AC = 10m.
CD là chiều cao cột cờ.
BE là phương ngang của tầm mắt.
Khi đó góc nâng là .
Do ABEC là hình chữ nhật nên .
Ta có: .
Vậy chiều cao của cột cờ là: .
Cho
Giá trị lượng giác nào sau đây luôn dương?
Ta có
Do
.
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm sin, ta có
.
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Nếu tam giác
có
thì:
Nếu tam giác ABC có thì
là góc nhọn
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu ![]()
Ta có
Đẳng thức điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
Cho góc α, (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là: " , (0° < α < 180° và α ≠ 90°)"
Sửa lại là " , (0° < α < 180° và α ≠ 90°)".
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho
Khẳng định nào sau đây đúng?
Ta có: điểm cuối cung
thuộc góc phần tư thứ
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Cho
có
Độ dài cạnh
bằng:
Ta có:
.
Cho tam giác
có
, độ dài các cạnh tam giác thỏa mãn biểu thức
với
là số thực lớn hơn
. Tính độ lớn góc
?
Áp dụng định lí cosin ta có:
Ta có:
Từ đó suy ra
Cho góc
thỏa mãn
Tính ![]()
Ta có
Chia hai vế của cho
ta được
.
Cho
có
Diện tích của tam giác là:
Ta có:
Cho
có
Diện tích
của tam giác trên là:
Ta có: Nửa chu vi :
.
Áp dụng công thức Hê-rông:
.
Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:
Ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
Cho tam giác
có
và góc
. Tính diện tích tam giác
.
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Trong sơ đồ, chùm sáng S hướng vào gương màu xanh, phản xạ vào gương màu đỏ và sau đó phản xạ vào gương màu xanh như hình vẽ. Biết OP = 2 m, ![]()

Khi đó đoạn PT bằng:
Ta có:
Áp dụng định lí cosin cho tam giác POQ ta có:
Áp dụng hệ quả của định lí cosin cho tam giác POQ ta có:
Ta lại có:
=>
Xét tam giác OTP ta có:
Áp dụng định lí sin cho tam giác OTP ta có:
Hai chiếc tàu thủy cùng xuất phát từ một vị trí
, đi thẳng theo hai hướng tạo với nhau góc
. Tàu
chạy với tốc độ
hải lí một giờ. Tàu
chạy với tốc độ
hải lí một giờ. Sau hai giờ, hai tàu cách nhau bao nhiêu hải lí? Kết quả gần nhất với số nào sau đây?

Sau giờ tàu
đi được
hải lí, tàu
đi được
hải lí. Vậy tam giác
có
và
Áp dụng định lí côsin vào tam giác ta có
Vậy (hải lí).
Sau giờ, hai tàu cách nhau khoảng
hải lí.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Cho tam giác
, biết
. Số đo góc
là:
Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:
Tính giá trị biểu thức
.
Ta có:
Khi đó: