Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Từ vị trí
người ta quan sát một cây cao (hình vẽ).
Biết
.
Chiều cao của cây gần nhất với giá trị nào sau đây?

Trong tam giác , ta có
.
Suy ra .
Suy ra
.
Áp dụng định lý sin trong tam giác , ta được
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Cho tam giác
có
và góc
. Tính diện tích tam giác
.
Từ hai vị trí A và B của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB = 70 m, phương nhìn AC tạo với phương nằm ngang góc 30°, phương nhìn BC tạo với phương nằm ngang góc 15°30' (hình vẽ).

Ngọn núi đó có độ cao CH so với mặt đất gần nhất với giá trị nào sau đây?
Ta có:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Xét tam giác ACH vuông tại H ta có:
Cho tam giác ABC có b = 7; c = 5,
. Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Cho
có
Độ dài cạnh
bằng:
Ta có:
.
Giá trị
thoả mãn
gần nhất với giá trị:
Để tìm α khi biết tanα = 1,607 thì ta sử dụng máy tính cầm tay và tính được: α ≈ 58°.
Vậy α ≈ 58°
Cho
có
. Độ dài cạnh
là:
Ta có:
.
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Trong các đẳng thức sau, đẳng thức nào sai?
Khẳng định sai là: ""
Sửa lại là: ""
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Cho biết
. Tính
.
Ta có:
.
Cho góc
thỏa
và
Khẳng định nào sau đây đúng?
Ta có
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Cho tam giác ABC có
. Cần điều kiện gì để các góc của tam giác thỏa mãn biểu thức
?
Theo định lí hàm số cos ta có:
Chứng minh tương tự ta có:
Do đó
Dấu bằng xảy ra khi và chỉ khi tam giác ABC đều.
Cho
có
Diện tích của tam giác là:
Ta có:
Cho
có
. Số đo của góc
là:
Ta có:
Tam giác ABC có
. Số đo góc A là:
Áp dụng định lí cosin trong tam giác ta có:
Trong tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lí cosin cho tam giác ABC ta có:
Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Tam giác
là tam giác gì khi có các góc thỏa mãn biểu thức
?
Ta có:
Vậy tam giác ABC là tam giác vuông.
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
.
Thay và
vào
, ta được
Giá trị biểu thức
bằng:
Ta có:
.
Cho góc
thỏa mãn
và
Tính ![]()
Ta có
. Do đó,
Tam giác
có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Cho góc
thỏa mãn
Tính ![]()
Từ giả thiết, ta có
.
Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
cùng dấu?
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Vậy nếu cùng dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Nếu tam giác
có
thì:
Nếu tam giác ABC có thì
là góc nhọn
Cho
Khẳng định nào sau đây đúng?
Ta có: điểm cuối cung
thuộc góc phần tư thứ
Cho
vuông tại
và có
. Số đo của góc
là:
Ta có: Trong
.
Với mọi góc
, giá trị của biểu thức
![]()
Ta có:
Do đó:
Cho góc α, (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là: " , (0° < α < 180° và α ≠ 90°)"
Sửa lại là " , (0° < α < 180° và α ≠ 90°)".
Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:
Ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.