Nếu tam giác
có
thì:
Nếu tam giác ABC có thì
là góc nhọn
Nếu tam giác
có
thì:
Nếu tam giác ABC có thì
là góc nhọn
Cho biểu thức B xác định, rút gọn biểu thức
với
?
Ta có:
Do đó:
Vì nên
Cho tam giác
có các góc thỏa mãn biểu thức
![]()
Giả sử
. Tính số đo góc
?
Ta có:
Theo định lí cosin ta có:
Ta thấy
Mặt khác
Do đó: khi
Vậy tam giác ABC là tam giác vuông tại .
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm sin, ta có
.
Để đo khoảng cách từ một điểm
trên bờ sông đến gốc cây
trên cù lao giữa sông, người ta chọn một điểm
cùng ở trên bờ với
sao cho từ
và
có thể nhìn thấy điểm
. Ta đo được khoảng cách
,
và
.Vậy sau khi đo đạc và tính toán được khoảng cách
gần nhất với giá trị nào sau đây?

Áp dụng định lí sin vào tam giác ta có
Vì nên
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Cho tam giác
. Tìm công thức sai:
Ta có:
Cho góc α, (0° ≤ α ≤ 180°). Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là: " , (0° < α < 180° và α ≠ 90°)"
Sửa lại là " , (0° < α < 180° và α ≠ 90°)".
Cho biết
. Tính
.
Ta có:
.
Tam giác
có
. Độ dài cạnh AC là khoảng:
Ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Điểm cuối của
thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?
Điểm cuối của thuộc góc phần tư thứ hai
.
Giá trị
là:
Ta có: .
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Tam giác
vuông tại
, đường cao
. Hai cạnh
và
tỉ lệ với
và
. Cạnh nhỏ nhất của tam giác này có độ dài bằng bao nhiêu?
Do tam giác vuông tại
, có tỉ lệ 2 cạnh góc vuông
là
nên
là cạnh nhỏ nhất trong tam giác.
Ta có .
Trong có
là đường cao
.
Cho
thỏa mãn :
. Khi đó:
Ta có:
Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?
Hình ảnh minh họa

Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác
=>
Do đó:
Ta có:
Cho
Khẳng định nào sau đây đúng?
Ta có: điểm cuối cung
thuộc góc phần tư thứ
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Cho tam giác ABC có b = 7; c = 5,
. Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Tam giác ABC có
và
. Tính độ dài cạnh BC.
Áp dụng định lý côsin: .
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí sin ta có:
Cho tam giác ABC có
. Cần điều kiện gì để các góc của tam giác thỏa mãn biểu thức
?
Theo định lí hàm số cos ta có:
Chứng minh tương tự ta có:
Do đó
Dấu bằng xảy ra khi và chỉ khi tam giác ABC đều.
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu
cùng dấu?
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Điểm cuối của thuộc góc phần tư thứ nhất thì
,
.
Vậy nếu cùng dấu thì điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Cho
Khẳng định nào sau đây đúng?
Ta có :
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Cho
có
Diện tích
của tam giác trên là:
Ta có: Nửa chu vi :
.
Áp dụng công thức Hê-rông:
.
Diện tích tam giác có ba cạnh lần lượt là
và 1 là:
Nửa chu vi của tam giác là:
Áp dụng công thức Herong ta có:
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Tính giá trị của ![]()
Ta có
Cho góc
thỏa mãn
và
. Tính
.
Ta có
.
Theo giả thiết:
.
Ta có
Trong tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Cho góc α với
. Giá trị của biểu thức:
là:
Ta có:
=>
Cho tam giác ABC có
, góc
bằng
. Độ dài cạnh
là ?
Ta có:
.
Cho
vuông tại
và có
. Số đo của góc
là:
Ta có: Trong
.
Một học sinh dùng giác kế, đứng cách chân cột cờ 10m rồi chỉnh mặt trước cao bằng mắt của mình để xác định góc nâng (góc tạo bởi tia sáng đi thẳng từ đỉnh cột cờ) với mắt tạo với phương nằm ngang. Khi đó góc nâng đo được 31∘. Biết khoảng cách từ mặt sân đến mắt học sinh đó bằng 1,5m. Chiều cao cột cờ gần nhất với giá trị nào?
Hình vẽ minh họa
Gọi AB là khoảng cách từ chân đến tầm mắt của học sinh ⇒ AB = 1,5m.
AC là khoảng cách từ chân đến cột cờ ⇒ AC = 10m.
CD là chiều cao cột cờ.
BE là phương ngang của tầm mắt.
Khi đó góc nâng là .
Do ABEC là hình chữ nhật nên .
Ta có: .
Vậy chiều cao của cột cờ là: .
Tam giác ABC có
. Số đo góc A là:
Áp dụng định lí cosin trong tam giác ta có: