Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Cho tam giác
thỏa mãn
. Khi đó, góc
có số đo là:
Theo đề bài ra ta có:
.
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu ![]()
Ta có
Đẳng thức điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Giá trị biểu thức
là:
Ta có:
Trong các đẳng thức sau, đẳng thức nào sai?
Khẳng định sai là: ""
Sửa lại là: ""
Điểm cuối của góc lượng giác
ở góc phần tư thứ mấy nếu ![]()
Ta có
Đẳng thức điểm cuối của góc lượng giác
ở góc phần tư thứ
hoặc
Điểm cuối của
thuộc góc phần tư thứ ba của đường tròn lượng giác. Khẳng định nào sau đây là sai?
Điểm cuối của thuộc góc phần tư thứ hai
.
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Cho góc
thỏa mãn
và
. Tính
.
Ta có
Thay vào
, ta được
.
Cho
. Xác định dấu của biểu thức ![]()
Ta có:
và
.
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Tam giác
có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Cho tam giác ABC có b = 7; c = 5,
. Đường cao
của tam giác ABC là:
Ta có:
Mặt khác:
(Vì
).
Mà:
.
Tam giác ABC có
. Độ dài cạnh AB là:
Xét tam giác ABC ta có:
Áp dụng định lí sin cho tam giác ABC ta có:
Tam giác
có
. Số đo góc
bằng:
Áp dụng định lí côsin:
.
Suy ra .
Cho tam giác
, biết
. Số đo góc
là:
Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:
Cho tam giác
. Tìm công thức sai:
Ta có:
Tam giác ABC có
. Độ dài cạnh AB là:
Áp dụng định lí sin trong tam giác ABC ta có:
Cho tam giác
có
. Số đo của
là:
Áp dụng hệ quả của định lí cosin ta có:
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Tính giá trị biểu thức
.
Ta có:
Khi đó:
Trên nóc một tòa nhà có một cột ăng-ten cao
. Từ vị trí quan sát
cao
so với mặt đất, có thể nhìn thấy đỉnh
và chân
của cột ăng-ten dưới góc
và
so với phương nằm ngang.
Chiều cao của tòa nhà gần nhất với giá trị nào sau đây?

Từ hình vẽ, suy ra và
.
Áp dụng định lí sin trong tam giác , ta có
.Trong tam giác vuông
, ta có
Vậy
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: vì
.
Cho
, với
. Giá trị
bằng
Ta có:
(do
).
Vậy .
Cho
Giá trị lượng giác nào sau đây luôn dương?
Ta có
Do
.
Cho
có
. Độ dài cạnh
là:
Ta có:
.
Cho tam giác
thỏa mãn:
. Khi đó:
Ta có:
Tam giác ABC có góc A nhọn, AB = 5, AC = 8, diện tích bằng 12. Độ dài cạnh BC là khoảng:
Ta có:
Áp dụng định lí cosin cho tam giác ABC ta có:
Để đo chiều cao từ mặt đất đến đỉnh cột cờ của một kỳ đài trước Ngọ Môn (Đại Nội – Huế), người ta cắm hai cọc AM và BN cao 1,5 mét so với mặt đất. Hai cọc này song song và cách nhau 10 mét và thẳng hàng so với tim cột cờ (Hình vẽ minh họa). Đặt giác kế tại đỉnh A và B để nhắm đến đỉnh cột cờ, người ta được các góc lần lượt là 51°40' và 45°39' so với đường song song mặt đất.

Chiều cao của cột cờ (làm tròn kết quả đến chữ số thập phân thứ hai) là:
Ta có:
Xét tam giác ABC ta có:
Áp dụng định lí sin trong tam giác ABC ta có:
Ta có tam giác ACH vuông tại C
Chiều cao của cột cờ khoảng:
Trong các khẳng định sau, khẳng định nào là đúng?
Ta có: . Vì
.
Chọn công thức đúng trong các đáp án sau:
Ta có:
.
Cho tam giác
có
, độ dài các cạnh tam giác thỏa mãn biểu thức
với
là số thực lớn hơn
. Tính độ lớn góc
?
Áp dụng định lí cosin ta có:
Ta có:
Từ đó suy ra
Tam giác ABC có
. Số đo góc A là:
Áp dụng định lí cosin trong tam giác ta có:
Cho
Khẳng định nào sau đây đúng?
Ta có điểm cuối cung
thuộc góc phần tư thứ
Tam giác ABC có BC = 10 và
. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Ta có: .
Cho
có
, nửa chu vi
. Độ dài bán kính đường tròn nội tiếp
của tam giác trên là:
Ta có:
Cho biết
. Tính
.
Ta có:
.
Cho góc
thỏa mãn
Tính ![]()
Chia cả tử và mẫu của cho
ta được
.
Cho
thỏa mãn :
. Khi đó:
Ta có:
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
Cho tam giác
thỏa mãn biểu thức
![]()
Chọn khẳng định đúng.
Ta có:
Vậy tam giác ABC là tam giác cân.