Cho tam giác đều
cạnh
. Tính độ dài
.
Gọi là trung điểm
. Suy ra
.
Áp dụng định lí Pytago trong tam giác vuông . Suy ra
.
Cho tam giác đều
cạnh
. Tính độ dài
.
Gọi là trung điểm
. Suy ra
.
Áp dụng định lí Pytago trong tam giác vuông . Suy ra
.
Cho ba điểm phân biệt
Mệnh đề nào sau đây đúng?
Đáp án chỉ đúng khi ba điểm
thẳng hàng và
nằm giữa
.
Đáp án đúng theo quy tắc ba điểm. Chọn đáp án này.
Tam giác ABC có
. Số đo góc A là:
Áp dụng định lí cosin trong tam giác ta có:
Trong mặt phẳng tọa độ
, gọi
là trực tâm tam tam giác
có tọa độ các đỉnh
. Tính giá trị biểu thức
?
Ta có: là trực tâm tam giác ABC nên
Ta có hệ phương trình
Vậy biểu thức
Cho 4 điểm
phân biệt. Khi đó
bằng
.
Trong hệ tọa độ
cho tam giác
có
, trọng tâm
và trung điểm cạnh
là
Tổng hoành độ của điểm
và
là
Vì là trung điểm
nên
Vì là trọng tâm tam giác
nên
Suy ra
Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:
Gọi O là giao điểm của AC và BD
=> OA OC, OB = OD
Ta có:
Tính giá trị biểu thức
.
Ta có:
Khi đó:
Cho tam giác ABC, có thể xác định được bao nhiêu vectơ khác
có điểm đầu và điểm cuối là các đỉnh A, B, C?
Ta có các vectơ khác có điểm đầu và điểm cuối là các đỉnh tam giác ABC là:
Cho đoạn thẳng
và
là một điểm trên đoạn
sao cho
. Trong các khẳng định sau, khẳng định nào sai?
Hình vẽ minh họa
Ta thấy và
cùng hướng nên
là sai.
Cho hình thoi
có
. Tính
.

Vì nên
.
Cho góc
. Gọi
và
là hai điểm di động lần lượt trên
và
sao cho
. Độ dài lớn nhất của đoạn
bằng:
Theo định lí hàm sin, ta có:
Do đó, độ dài lớn nhất khi và chỉ khi
.
Khi đó .
Cho ba điểm
phân biệt. Khi đó:
Chọn: Điều kiện cần và đủ để thẳng hàng là
cùng phương với
Cho ba điểm phân biệt A, B, C. Khẳng định nào sau đây đúng?
Ta có:
=> Khẳng định sai
=> Khẳng định sai
=> Khẳng định đúng
=> Khẳng định sa
Cho hình vuông
cạnh bằng
. Tính độ dài véctơ
.
Hình vẽ minh họa:
Tính giá trị
biết rằng
?
Ta có:
Giá trị
là:
Ta có: .
Nếu tam giác
có
thì:
Nếu tam giác ABC có thì
là góc nhọn
Điểm cuối của
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây.
Điểm cuối của thuộc góc phần tư thứ nhất
.
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có
Trong mặt phẳng tọa độ
cho tam giác
có
và
. Tính số đo góc
của tam giác đã cho.
Ta có: và
.
.
Cho hai điểm
phân biệt và cố định, với
là trung điểm của
Tập hợp các điểm
thỏa mãn đẳng thức
là
Chọn điểm thuộc đoạn
sao cho
Chọn điểm thuộc đoạn
sao cho
Ta có
Vì là hai điểm cố định nên từ đẳng thức
suy ra tập hợp các điểm
là trung trực của đoạn thẳng
Gọi
là trung điểm của
suy ra
cũng là trung điểm của
Vậy tập hợp các điểm thỏa mãn
là đường trung trực của đoạn thẳng
Cho lục giác đều
có tâm
Đẳng thức nào sau đây sai?
Đẳng thức sai là
Cho tam giác
có
và
. Biết rằng:

Chọn khẳng định đúng?
Ta có:
Mà
Vậy tam giác ABC là tam giác vuông tại A.
Cho tam giác
có
. Hỏi độ dài cạnh b bằng bao nhiêu?
Áp dụng định lí sin:
.
Cho hình vuông
, tính
.

Vẽ .
Ta có: .
Cho tam giác ABC có I là trung điểm của AB. Điểm M thỏa mãn
. Chọn mệnh đề đúng.
.
Khẳng định nào sau đây đúng?
Theo định nghĩa, hai véctơ bằng nhau phải thỏa mãn hai điều kiện:
+) Cùng hướng
+) Cùng độ dài.
Chọn đáp án: Hai vectơ được gọi là bằng nhau nếu chúng cùng hướng và cùng độ dài.
Cho
có
Diện tích của tam giác là:
Ta có:
Cho tam giác
, kẻ đường cao
và
. Gọi
là trung điểm của
,
là điểm thỏa mãn
và
. Khi đó độ dài vectơ
bằng bao nhiêu?
Hình vẽ minh họa

Gọi E là điểm đối xứng của B qua A, ta có:
Nên K thuộc đường thẳng a là trung trực của đoạn thẳng CE, mặt khác
Suy ra K là giao điểm của a và đường tròn tâm A bán kính .
Điểm K cần tìm là N hoặc P
Ta có: .
Cho hai lực
và
có cùng điểm đặt O và vuông góc với nhau. Cường độ của hai lực
và
lần lượt là 80N và 60N. Cường độ tổng hợp lực của hai lực đó là:

Ta có: .
Cho tam giác đều
với đường cao
. Đẳng thức nào sau đây đúng?
Chọn vì
là trung điểm
và
cùng hướng.
Cho tam giác
. Tìm công thức sai:
Ta có:
Cho
có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Cho
. Xác định dấu của biểu thức ![]()
Ta có:
và
.
Cho tam giác
có
là một đường trung tuyến. Biểu diễn vectơ
theo hai vectơ
và
.
Vì là trung điểm
nên
.
Điều kiện nào dưới đây là điều kiện cần và đủ để điểm
là trung điểm của đoạn
.
Điểm là trung điểm của đoạn
khi và chỉ khi
và ngược hướng.
Vậy .
Biết
và
. Câu nào sau đây đúng?
Ta có: .
Suy ra và
ngược hướng.
Cho hình bình hành
Gọi
là trọng tâm của tam giác
Mệnh đề nào sau đây đúng?
Vì là trọng tâm của tam giác
nên
Do đó
Cho góc
thoả mãn
và
. Giá trị của
là:
Ta có:
.
Do đó .
Vì nên
.