Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 4. Nguyên hàm Tích phân được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{x - 1} trên khoảng (1; + \infty) thỏa mãn F(e + 1) = 4. Xác định công thức F(x)?

    Ta có: F(x) = \int_{}^{}\frac{dx}{x - 1}
= \int_{}^{}\frac{d(x - 1)}{x - 1} = \ln|x - 1| + C = \ln(x - 1) +
C (vì (1; + \infty))

    F(e + 1) = 4 \Leftrightarrow \ln(e + 1
- 1) + C = 4 \Rightarrow C = 3

    Vậy F(x) = \ln(x - 1) + 3.

  • Câu 2: Vận dụng

    Cho F(x) là nguyên hàm của hàm số y = f\left( x ight) = \frac{1}{{{e^x} + 3}} thỏa mãn F\left( 0 ight) =  - \frac{{ - 1}}{3}\ln 4. Tìm tập nghiệm S của phương trình 3F\left( x ight) + \ln \left( {{e^x} + 3} ight) = 2

    F\left( x ight) = \int {\frac{1}{{{e^x} + 3}}dx}  = \int {\frac{{{e^x}}}{{{e^x}\left( {{e^x} + 3} ight)}}dx}

     Đặt t = {e^x} \Rightarrow dt = {e^x}dx

    \int {\frac{{{e^x}}}{{{e^x}\left( {{e^x} + 3} ight)}}dx}  = \int {\frac{1}{{t\left( {t + 3} ight)}}dt}

    = \int {\left( {\frac{1}{{3t}} - \frac{1}{{3\left( {t + 3} ight)}}} ight)dt = \frac{{\ln |t|}}{3} - \frac{{\ln |t + 3|}}{3} + C}

    = \frac{{\ln \left( {{e^x}} ight)}}{3} - \frac{{\ln \left( {{e^x} + 3} ight)}}{3} + C = \frac{x}{3} - \frac{{\ln \left( {{e^x} + 3} ight)}}{3} + C

    F\left( 0 ight) =  - \frac{1}{3}\ln 4 \Rightarrow  - \frac{{\ln 4}}{3} + C =  - \frac{1}{3}\ln 4 \Rightarrow C = 0

    Ta có:

    \begin{matrix}  3F\left( x ight) + \ln \left( {{e^x} + 3} ight) = 2 \hfill \\   \Leftrightarrow 3\left[ {\dfrac{x}{3} - \dfrac{{\ln \left( {{e^x} + 3} ight)}}{3}} ight] + \ln \left( {{e^x} + 3} ight) = 2 \hfill \\   \Leftrightarrow x = 2 \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu

    Cho \int_{0}^{3}{\frac{e^{\sqrt{x +
1}}}{\sqrt{x + 1}}dx} = ae^{2} + be + c với a;b;c\mathbb{\in Z}. Tính S = a + b + c?

    Ta có:

    \int_{0}^{3}{\frac{e^{\sqrt{x +
1}}}{\sqrt{x + 1}}dx} = 2\int_{0}^{3}{e^{\sqrt{x + 1}}d\left( \sqrt{x +
1} ight)} = \left. \ \left( 2e^{\sqrt{x + 1}} ight) ight|_{0}^{3}
= 2e^{2} - 2e

    Vậy a = 2;b = - 2;c = 0 \Rightarrow S =
0

  • Câu 4: Nhận biết

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{2x - 1} , biết rằng F(1) = 2. Khi đó giá trị F(2) là:

    Ta có: F(x) = \int_{}^{}\frac{dx}{2x - 1}
= \frac{1}{2}\ln|2x - 1| + C;\left( C\mathbb{\in R} ight)

    F(1) = 2 \Rightarrow C = 2. Vậy với x > \frac{1}{2} thì F(x) = \frac{1}{2}\ln(2x - 1) +
2

    Vậy F(2) = \frac{1}{2}\ln3 +2.

  • Câu 5: Nhận biết

    Tính \int_{}^{}{\sin3xdx}?

    Áp dụng công thức \int_{}^{}{\sin(ax +
b)dx} = - \frac{1}{a}\cos(ax + b) + C

    Suy ra \int_{}^{}{\sin3xdx} = -\frac{1}{3}\cos3x + C

  • Câu 6: Vận dụng

    Cho hàm số f(x) liên tục và có đạo hàm trên \left( 0;\frac{\pi}{2}
ight) thỏa mãn f(x) + \tan xf'(x) = \frac{x}{\cos^{3}x}. Biết rằng \sqrt{3}f\left( \frac{\pi}{3} ight) - f\left(
\frac{\pi}{6} ight) = a\pi\sqrt{3} + bln3 trong đó a;b\mathbb{\in R}. Kết luận nào sau đây đúng?

    Ta có: f(x) + \tan xf'(x) =\frac{x}{\cos^{3}x}

    \Leftrightarrow \cos xf(x) + \sin xf'(x) = \frac{x}{\cos^{2}x}

    \Leftrightarrow \left\lbrack \sin xf(x)ightbrack' = \frac{x}{\cos^{2}x}

    \Rightarrow \int_{}^{}{\left\lbrack \sin xf(x) ightbrack'dx} =\int_{}^{}{\frac{x}{\cos^{2}x}dx}

    \Rightarrow \sin xf(x) =\int_{}^{}{\frac{x}{\cos^{2}x}dx}.

    Tính I =
\int_{}^{}{\frac{x}{cos^{2}x}dx}. Đặt \left\{ \begin{matrix}u = x \\dv = \dfrac{dx}{\cos^{2}x} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = dx \\v = \tan x \\\end{matrix} ight. khi đó:

    I = x\tan x - \int_{}^{}{\tan xdx} =
x\tan x - \int_{}^{}\frac{d\left( \cos x ight)}{\cos x}

    = x\tan x + \ln\left| \cos x
ight|

    \Rightarrow f(x) = \frac{x\tan x +
\ln\left| \cos x ight|}{\sin x} = \frac{x}{\cos x} + \frac{\ln\left|
\cos x ight|}{\sin x}

    Theo bài ra ta có:

    \Rightarrow \sqrt{3}f\left(\frac{\pi}{3} ight) - f\left( \frac{\pi}{6} ight) = \sqrt{3}\left(\frac{2\pi}{3} - \dfrac{2\ln2}{\sqrt{3}} ight)- \left(\frac{\pi\sqrt{3}}{9} + 2\ln\dfrac{\sqrt{3}}{2} ight) =\dfrac{5\pi\sqrt{3}}{9}\ln3

    \Rightarrow \left\{ \begin{matrix}a = \dfrac{5}{9} \\b = - 1 \\\end{matrix} ight.\  \Rightarrow a + b = - \frac{4}{9}

  • Câu 7: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho khối cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2} =25, mặt phẳng (P) có phương trình x + 2y - 2z + 5 = 0 cắt khối cầu (S) thành hai phần. Tính thể tích của phần không chứa tâm của mặt cầu (S).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho khối cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2} =25, mặt phẳng (P) có phương trình x + 2y - 2z + 5 = 0 cắt khối cầu (S) thành hai phần. Tính thể tích của phần không chứa tâm của mặt cầu (S).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Thông hiểu

    Cho hàm số f(x) = \frac{1}{\sin
x} có một nguyên hàm là F(x) thỏa mãn F\left( \frac{\pi}{3} ight) = 0. Giá trị của e^{F\left( \frac{2\pi}{3}
ight)} bằng:

    Ta có: F(x) = \int_{}^{}{\frac{1}{\sin x}dx} =\int_{}^{}{\frac{1}{2\sin\frac{x}{2}.\cos\frac{x}{2}}dx}

    = \int {\frac{1}{{2\tan \frac{x}{2}.{{\cos }^2}\frac{x}{2}}}dx}  = \int {\frac{1}{{\tan \frac{x}{2}}}d\left( {\tan \frac{x}{2}} ight)}= \ln \left| {\tan \frac{x}{2}} ight| + C

    Lại có F\left( \frac{\pi}{3} ight) = 0
\Leftrightarrow \ln\left| \tan\frac{\pi}{6} ight| + C = 0

    \Rightarrow C = - \ln\frac{\sqrt{3}}{3}= \ln\sqrt{3} = \frac{1}{2}\ln3

    Do đó: {e^{F\left( {\frac{{2\pi }}{3}} ight)}} = {e^{\ln \left| {\tan \frac{\pi }{3}} ight| + \frac{1}{2}\ln 3}} = {e^{\ln 3}} = 3

  • Câu 9: Vận dụng cao

    Biết F\left( x ight) = \left( {a{x^2} + bx + c} ight)\sqrt {2x - 3} là một nguyên hàm của hàm số f\left( x ight) = \frac{{20{x^2} - 30x + 11}}{{\sqrt {2x - 3} }} trên khoảng \left( {\frac{3}{2}; + \infty } ight). Giá trị của biểu thức T = a + b + c bằng

     \begin{matrix}  f\left( x ight) = F'\left( x ight)\left[ {\left( {a{x^{u2}} + bx + c} ight)\sqrt {2x - 3} } ight]' = \dfrac{{5a{x^2} + x\left( {3b - 6a} ight) + c - 3b}}{{\sqrt {2x - 3} }} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {5a = 20} \\   {3b - 6a =  - 30} \\   {c - 3b = 11} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 4} \\   {b =  - 2} \\   {c = 5} \end{array}} ight. \Rightarrow T = 7 \hfill \\ \end{matrix}

  • Câu 10: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f\left( x ight) = {e^x} + 2x thỏa mãn F\left( 0 ight) = \frac{3}{2}. Tìm F(x).

     F\left( x ight) = \int {f\left( x ight)dx = \int {\left( {{e^x} + 2x} ight)dx = {e^x} + {x^2} + C} }

    Theo bài ra ta có:

    F\left( 0 ight) = \frac{3}{2} \Rightarrow {e^x} + {x^2} + C = \frac{3}{2} \Rightarrow C = \frac{1}{2}

    => F\left( x ight) = {e^x} + {x^2} + \frac{1}{2}

  • Câu 11: Thông hiểu

    Cho hình vẽ:

    Diện tích của hình phẳng (H) được giới hạn bởi đồ thị hàm số y =
f(x), trục hoành và hai đường thẳng x = a,x = b,(a < b) (phần tô đậm trong hình vẽ) tính theo công thức:

    Áp dụng công thức tính diện tích hình phẳng ta có:

    S = \int_{a}^{b}{\left| f(x) ight|dx}
= \int_{a}^{c}{\left\lbrack 0 - f(x) ightbrack dx} +
\int_{c}^{b}{\left\lbrack f(x) - 0 ightbrack dx}

    = - \int_{a}^{c}{f(x)dx} +
\int_{c}^{b}{f(x)dx}

    Vậy đáp án cần tìm là: S = -
\int_{a}^{c}{f(x)dx} + \int_{c}^{b}{f(x)dx}.

  • Câu 12: Nhận biết

    Hàm số f(x) = x^{3} + \sin x là một nguyên hàm của hàm số nào sau đây?

    Ta có: F'(x) = 3x^{2} + \cos
x

  • Câu 13: Nhận biết

    \int_{}^{}{x^{2}dx} bằng

    Ta có \int_{}^{}{x^{2}dx} =\frac{1}{3}x^{3} + C.

  • Câu 14: Nhận biết

    Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x);y = g(x) liên tục trên đoạn \lbrack a;bbrack và hai đường thẳng x = a;x = b;a < b

    Ta có hình phẳng giới hạn bởi \left\{
\begin{matrix}
\left( C_{1} ight):y = f(x) \\
\left( C_{2} ight):y = g(x) \\
x = a \\
x = b \\
\end{matrix} ight.S =
\int_{a}^{b}{\left| f(x) - g(x) ight|dx}.

  • Câu 15: Thông hiểu

    Cho a là số thực dương. Biết rằng F(x) là một nguyên hàm của hàm số f(x) = e^{x}\left\lbrack \ln(ax) +
\frac{1}{x} ightbrack thỏa mãn F\left( \frac{1}{a} ight) = 0F(2018) = e^{2018}. Mệnh đề nào sau đây đúng?

    Ta có:

    f(x) = e^{x}\left\lbrack \ln(ax) +
\frac{1}{2} ightbrack= \left( e^{x} ight)'\ln(ax) +e^{x}\left\lbrack \ln(ax) ightbrack'= \left\{ e^{x}\left\lbrack \ln(ax)
ightbrack ight\}'

    \Rightarrow
\int_{\frac{1}{a}}^{2018}{f(x)}dx = F(2018) - F\left( \frac{1}{a}
ight)\Leftrightarrow \left. \ \left(
e^{x}\left\lbrack \ln(ax) ightbrack ight)
ight|_{\frac{1}{a}}^{2018} = e^{2018}

    \Leftrightarrow \ln(2018a) = 1
\Leftrightarrow a = \frac{e}{2018}

    Vậy a \in \left( \frac{1}{2018};1
ight).

  • Câu 16: Vận dụng cao

    Tính tổng T = \frac{C_{2018}^{0}}{3} -
\frac{C_{2018}^{1}}{4} + \frac{C_{2018}^{2}}{5} - \frac{C_{2018}^{3}}{6}
+ ... - \frac{C_{2018}^{2017}}{2020} +
\frac{C_{2018}^{2018}}{2021}?

    Ta có:

    x^{2}(1 - x)^{2018} = x^{2} \cdot \sum_{k
= 0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k}( - 1)^{k} = \sum_{k =
0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k + 2}( - 1)^{k}.

    Do đó

    \int_{0}^{1}\mspace{2mu} x^{2}(1 -x)^{2018}dx = \int_{0}^{1}\mspace{2mu}\sum_{k =0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k + 2}( - 1)^{k}dx.

    Mặt khác:

    \int_{0}^{1}\mspace{2mu}\sum_{k =0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k + 2}( - 1)^{k}dx. =\left. \ \sum_{k = 0}^{2018}\mspace{2mu} C_{2018}^{k}\frac{x^{k + 3}}{k+ 3}( - 1)^{k} ight|_{0}^{1}= \sum_{k = 0}^{2018}\mspace{2mu}C_{2018}^{k} \cdot \frac{( - 1)^{k}}{k + 3} = T.

    Đặt t = 1 - x \Rightarrow dt = -
dx.

    Đổi cận x = 0 \Rightarrow t = 1x = 1 \Rightarrow t = 0. Khi đó

    \int_{0}^{1}\mspace{2mu}\mspace{2mu}x^{2}(1 - x)^{2018}dx = \int_{1}^{0}\mspace{2mu}\mspace{2mu}t^{2018}(1 - t)^{2}( - dt)

    = \int_{0}^{1}\mspace{2mu}\mspace{2mu}
t^{2018}\left( t^{2} - 2t + 1 ight)dt = \left. \ \left(
\frac{t^{2021}}{2021} - 2 \cdot \frac{t^{2020}}{2020} +
\frac{t^{2019}}{2019} ight) ight|_{0}^{1}

    = \frac{1}{2021} - \frac{2}{2020} +
\frac{1}{2019} = \frac{1}{1010 \cdot 2019 \cdot 2021} =
\frac{1}{4121202990}

  • Câu 17: Thông hiểu

    Một ô tô đang chuyển động đều với vận tốc 12m/s thì người lái đạp phanh; từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc v(t) = 12 - 2t(m/s) (trong đó t là thời gian tính bằng giây, kể từ lúc đạp phanh). Hỏi trong thời gian 8 giây cuối (tính đến khi xe dừng hẳn) thì ô tô đi được quãng đường bằng bao nhiêu?

    Khi dừng hẳn v(t) = 12 - 2t = 0
\Rightarrow t = 6(s)

    Khi đó trong 8s trước khi dừng hẳn vật di chuyển được (bao gồm 2s trước khi đạp phanh):

    S = 2.12 + \int_{0}^{6}{v(t)dt} = 24 +
\int_{0}^{6}{(12 - 2t)dt}

    = 24 + \left. \ \left( 12t - t^{2}
ight) ight|_{0}^{6} = 24 + 36 = 60(m)

  • Câu 18: Thông hiểu

    Biết tích phân I = \int_{0}^{1}{\frac{(x
- 1)^{2}}{x^{2} + 1}dx} = a\ln b + c trong đó a;b;c là các số nguyên. Tính giá trị biểu thức a + b + c?

    Ta có:

    I = \int_{0}^{1}{\frac{(x -
1)^{2}}{x^{2} + 1}dx} = \int_{0}^{1}{\left( 1 - \frac{2x}{x^{2} + 1}
ight)dx}

    = \left. \ \left( x - \ln\left| x^{2} +
1 ight| ight) ight|_{0}^{1} = 1 - ln2

    Khi đó a = - 1;b = 2;c = 1 \Rightarrow a
+ b + c = 2

  • Câu 19: Vận dụng

    Cho F(x) là nguyên hàm của hàm số f(x) = \frac{1}{e^{x} + 3} thỏa mãn F(0) = - \frac{1}{3}ln4. Tổng các nghiệm của phương trình 3F(x) +
\ln\left( e^{x} + 3 ight) = 2 là:

    Ta có: F(x) = \int_{}^{}{f(x)}dx =
\int_{}^{}{\left( \frac{1}{e^{x} + 3} ight)dx} =
\int_{}^{}{\frac{e^{x}}{e^{x}\left( e^{x} + 3 ight)}dx}

    Đặt t = e^{x} \Rightarrow dt =
e^{x}dx

    \Rightarrow
\int_{}^{}{\frac{e^{x}}{e^{x}\left( e^{x} + 3 ight)}dx} =
\int_{}^{}{\frac{t}{t(t + 3)}dt}

    = \int_{}^{}{\left\lbrack \frac{1}{3t} -
\frac{1}{3(t + 3)} ightbrack dt} = \frac{\ln|t|}{3} - \frac{\ln|t +
3|}{3} + C

    = \frac{\ln e^{x}}{3} - \frac{\ln\left(
e^{x} + 3 ight)}{3} + C = \frac{x}{3} - \frac{\ln\left( e^{x} + 3
ight)}{3} + C

    Theo bài ra ta có:

    F(0) = - \frac{1}{3}\ln4

    \Leftrightarrow \frac{x}{3} -\frac{\ln\left( e^{x} + 3 ight)}{3} + C = -\frac{1}{3}\ln4

    \Leftrightarrow C = 0

    Ta có:

    3F(x) + \ln\left( e^{x} + 3 ight) =
2

    \Leftrightarrow 3\left( \frac{x}{3} -
\frac{\ln\left( e^{x} + 3 ight)}{3} ight) + \ln\left( e^{x} + 3
ight) = 2

    \Leftrightarrow x = 2

    Vậy tổng các nghiệm của phương trình bằng 2.

  • Câu 20: Nhận biết

    Tích phân I =
\int_{0}^{1}{3^{x}dx} bằng:

    Ta có:

    I = \int_{0}^{1}{3^{x}dx} = \left. \frac{3^{x}}{\ln3} ight|_{0}^{1} = \frac{2}{\ln3}

  • Câu 21: Nhận biết

    Tìm họ các nguyên hàm của hàm số f(x) =\sin5x.\cos x?

    Ta có:

    \int_{}^{}{(\sin5x.\cos x)dx} =\frac{1}{2}\int_{}^{}{(\sin6x + \sin4x)dx}

    = - \frac{\cos4x}{8} - \frac{\cos6x}{12} +C

  • Câu 22: Nhận biết

    Công thức diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), y =
g(x) liên tục trên đoạn \lbrack
a;bbrack và hai đường thẳng x =
a, x = b (a < b)

    Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), y =
g(x) liên tục trên đoạn \lbrack
a;bbrack và hai đường thẳng x =
a, x = b (a < b)S = \int_{a}^{b}{\left| f(x) - g(x)
ight|dx}.

  • Câu 23: Nhận biết

    Cho F(x) là một nguyên hàm của hàm số f(x). Khi đó hiệu số F(0) - F(1) bằng:

    Theo định nghĩa tích phân ta có:

    \int_{0}^{1}{f(x)dx} = F(1) -
F(0) suy ra F(0) - F(1) = -
\int_{0}^{1}{f(x)dx}.

  • Câu 24: Thông hiểu

    Thể tích của khối tròn xoay sinh ra khi cho hình phẳng giới hạn bởi parabol (P):y = x^{2} và đường thẳng d:y = x xoay quanh trục Ox tính bởi công thức nào sau đây?

    Hình vẽ minh họa

    Ta có (P)d cắt nhau tại hai điểm (0;0),(1;1)x > x^{2};\forall x \in (0;1)

    Suy ra thể tích khối tròn xoay đã cho T bằng thể tích khối tròn xoay T_{1} trừ đi thể tích khối tròn xoay T_{2}. Trong đó:

    T_{1} được sinh ra khi quay hình phẳng giới hạn bởi các đường d, trục Ox, x = 0, x = 1.

    T_{2} được sinh ra khi quay hình phẳng giới hạn bởi các đường (P), trục Ox, x = 0, x = 1.

    Vậy thể tích khối tròn xoay đã cho bằng \pi\int_{0}^{1}{x^{2}dx} -
\pi\int_{0}^{1}{x^{4}dx}.

  • Câu 25: Nhận biết

    Cho hình phẳng D giới hạn bởi đường cong y = e^{x}, trục hoành và các đường thẳng x = 0;x = 1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?

    Ta có:

    V = \pi\int_{0}^{1}{e^{2x}dx} = \left. \
\frac{\pi}{2}e^{2x} ight|_{0}^{1} = \frac{\pi\left( e^{2} - 1
ight)}{2}.

  • Câu 26: Nhận biết

    Xét hình phẳng (H) giới hạn bởi các đường như hình vẽ (phần gạch sọc).

    Diện tích hình phẳng (H) được tính theo công thức

    Ta có:

    S = \int_{0}^{1}{\left| f(x) ight|dx}
+ \int_{1}^{4}{\left| g(x) ight|dx}

    = \int_{0}^{1}{f(x)dx} +
\int_{1}^{4}{g(x)dx}

  • Câu 27: Vận dụng

    Cho hàm số F(x) là một nguyên hàm của hàm số f(x) = \frac{2\cos x -1}{\sin^{2}x}. Biết rằng giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3}. Chọn mệnh đề đúng trong các mệnh đề sau?

    Ta có:

    F(x) = \int_{}^{}{f(x)dx} =\int_{}^{}{\frac{2\cos x}{\sin^{2}x}dx} -\int_{}^{}{\frac{1}{\sin^{2}x}dx}

    = \int_{}^{}{\frac{2}{\sin^{2}x}d\left(\sin x ight)} - \int_{}^{}{\frac{1}{\sin^{2}x}dx}

    = - \frac{2}{\sin x} + \cot x +
C

    Suy ra F'(x) = f(x) = \frac{2\cos x -1}{\sin^{2}x}

    Trên khoảng (0;\pi) ta có:

    F'(x) = 0 \Leftrightarrow 2\cos x - 1= 0 \Leftrightarrow x = \frac{\pi}{3}

    Ta có bảng biến thiên

    Giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3} nên t s có:

    F\left( \frac{\pi}{3} ight) = \sqrt{3}
\Leftrightarrow - \frac{3\sqrt{3}}{3} + C = \sqrt{3} \Leftrightarrow C =
2\sqrt{3}

    Vậy F(x) = - \frac{2}{\sin x} + \cot x +
2\sqrt{3} \Rightarrow F\left( \frac{\pi}{6} ight) = 3\sqrt{3} -
4.

  • Câu 28: Nhận biết

    Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành, đường thẳng x = a;x = b như hình vẽ sau:

    Hỏi khẳng định nào dưới đây là khẳng định đúng?

    Dựa vào hình biểu diễn hình phẳng giới hạn bởi đồ thị hàm số y = f(x) trục hoành, đường thẳng x = a;x = b ta có: S = - \int_{a}^{c}{f(x)dx} +
\int_{c}^{b}{f(x)dx}.

  • Câu 29: Nhận biết

    Họ nguyên hàm của hàm số f(x) = 4x\left(
1 + \ln x ight) là:

    Ta có: \left\{ \begin{gathered}
  u = 1 + \ln x \hfill \\
  dv = 4xdx \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  du = \frac{1}{x}dx \hfill \\
  v = 2{x^2} \hfill \\ 
\end{gathered}  ight.

    Khi đó \int_{}^{}{f(x)dx} =
\int_{}^{}{4x\left( 1 + \ln x ight)dx} = \left( 1 + \ln x
ight)2x^{2} - \int_{}^{}{2xdx}

    = \left( 1 + \ln x ight)2x^{2} - x^{2}
+ C = x^{2}(1 + 2lnx) + C

  • Câu 30: Thông hiểu

    Diện tích hình phẳng giới hạn bởi các đường y = \frac{\sqrt{1 + \ln x}}{x};y = 0;x = 1;x =
eS = a\sqrt{2} + b. Tính giá trị a^{2} + b^{2}?

    Diện tích hình phẳng cần tìm là:

    S = \int_{1}^{e}{\left| \frac{\sqrt{1 +
\ln x}}{x} ight|dx} = \int_{1}^{e}{\frac{\sqrt{1 + \ln
x}}{x}dx}

    Đặt \sqrt{1 + \ln x} = t \Rightarrow 1 +
\ln x = t^{2} \Rightarrow \frac{dx}{x} = 2tdt

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 1 \\
x = e \Rightarrow t = \sqrt{2} \\
\end{matrix} ight.. Khi đó:

    S = \int_{1}^{\sqrt{2}}{2t^{2}dt} =
\frac{4}{3}.\sqrt{2} - \frac{2}{3} hay a = \frac{4}{3};b = \frac{2}{3}

    \Rightarrow a^{2} + b^{2} =
\frac{20}{9}

  • Câu 31: Nhận biết

    Giá trị của D = \int_{0}^{1}{\left(
2019x^{2018} - 1 ight)dx} bằng

    Ta có:

    D = \int_{0}^{1}{\left( 2019x^{2018} - 1
ight)dx} = \left. \ \left( x^{2019} - x ight) ight|_{0}^{1} =
0

  • Câu 32: Nhận biết

    Tính tích phân I =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{dx}{\sin^{2}x}?

    Ta có: I =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{dx}{\sin^{2}x} = \left. \  -\cot x ight|_{\frac{\pi}{4}}^{\frac{\pi}{3}}

    = - \left( \cot\frac{\pi}{3} -
\cot\frac{\pi}{4} ight) = - \cot\frac{\pi}{3} +
\cot\frac{\pi}{4}.

  • Câu 33: Vận dụng

    Cho hai hàm số y = f(x) có đạo hàm trên \lbrack 1;2brack thỏa mãn f(1) = 4f(x) = x.f'(x) - 2x^{3} - 3x^{2}. Giá trị f(2) bằng:

    Chọn f(x) = ax^{3} + bx^{2} + cx +
d

    f(x) = xf'(x) - 2x^{3} -
3x^{2}

    \Leftrightarrow ax^{3} + bx^{2} + cx + d
= x\left( 3ax^{2} + 2bx + c ight) - 2x^{3} - 3x^{2}

    Từ đó suy ra \left\{ \begin{matrix}
a = 3a - 2 \\
b = 2b - 3 \\
c = 0 \\
d = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 3 \\
c = 0 \\
d = 0 \\
\end{matrix} ight.

    Vậy f(x) = x^{3} + 3x^{2} \Rightarrow
f(2) = 20

  • Câu 34: Thông hiểu

    Cho \int {f\left( x ight)dx}  = F\left( x ight) + C. Với a e 0, khẳng định nào sau đây đúng?

     Xét \int {f\left( {ax + b} ight)dx}, đặt t = ax + b

    => I = \int {f\left( t ight)d\left( {\frac{{t - b}}{a}} ight) = \frac{1}{a}} \int {f\left( t ight)dt = \frac{1}{a}} \int {f\left( x ight)d} x

    => \int {f\left( {ax + b} ight)d\left( {ax + b} ight) = \frac{1}{a}\left[ {F\left( {ax + b} ight) + C'} ight] = \frac{1}{a}F\left( {ax + b} ight) + C}

  • Câu 35: Thông hiểu

    Tính diện tích S_{D} của hình phẳng D được giới hạn bởi các đường y = \left| \frac{\ln x}{x} ight|, trục hoành và các đường thẳng x =
\frac{1}{e};x = 2?

    Diện tích hình phẳng cần tìm là:

    S_{D} = \int_{\frac{1}{e}}^{2}{\left|
\frac{\ln x}{x} ight|dx} = \int_{\frac{1}{e}}^{1}{\left| \frac{\ln
x}{x} ight|dx} + \int_{1}^{2}{\left| \frac{\ln x}{x}
ight|dx}

    = - \int_{\frac{1}{e}}^{1}{\frac{\ln
x}{x}dx} + \int_{1}^{2}{\frac{\ln x}{x}dx}

    = - \left. \ \frac{\left( \ln x
ight)^{2}}{2} ight|_{\frac{1}{e}}^{1} + \left. \ \frac{\left( \ln x
ight)^{2}}{2} ight|_{1}^{2}

    = \frac{1}{2} + \frac{\ln^{2}2}{2} =\frac{1}{2}\left( 1 + \ln^{2}2 ight)

  • Câu 36: Thông hiểu

    Tìm nguyên hàm của hàm số f\left( x ight) = \frac{{x + 2}}{{\sqrt {x + 1} }}

     Đặt t = \sqrt {x + 1}  \Rightarrow {t^2} = x + 1 \Rightarrow 2tdt = dx

    F\left( x ight) = \int {\frac{{x + 2}}{{\sqrt {x + 1} }}dx = \int {\left( {\frac{{{t^2} + 1}}{2}} ight).2tdt = \int {\left( {2{t^2} + 2} ight)dt = \frac{{2{t^3}}}{3} + 2t + C} } }

    = \frac{{2\left( {x + 1} ight)\sqrt {x + 1} }}{3} + 2\sqrt {x + 1}  + C = \frac{2}{3}\left( {x + 4} ight)\sqrt {x + 1}  + C

  • Câu 37: Thông hiểu

    Một ô tô đang dừng và bắt đầu chuyển động theo một đường thẳng với gia tốc a(t) = 6 - 2t\left( m/s^{2}
ight), trong đó t là khoảng thời gian tính bằng giây kể từ lúc ô tô bắt đầu chuyển động. Hỏi quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là bao nhiêu mét?

    Ta có:

    v(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{(6 - 2t)dt} = 6t - t^{2} + C

    Khi đó v_{\max} \Leftrightarrow t =
3 do ban đầu ô tô đang dừng nên v(0) = 0 \Rightarrow C = 0

    Quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là: S =
\int_{0}^{3}{\left( 6t - t^{2} ight)dt} = 18m.

  • Câu 38: Vận dụng

    Cho hàm số f(x) có đồ thị như hình vẽ:

    Các biểu thức E;F;G;H xác định bởi E = \int_{0}^{3}{f(x)dx};F =
\int_{3}^{5}{f(x)dx};G = \int_{2}^{4}{f(x)dx};H = f'(x). Mệnh đề nào sau đây đúng?

    Dựa vào hình vẽ và diện tích hình phẳng ta có:

    E = \int_{0}^{3}{f(x)dx} = -
\int_{0}^{3}{\left| f(x) ight|dx} < - 2

    F = \int_{3}^{5}{f(x)dx} >
3

    0 < G = \int_{2}^{4}{f(x)dx} <
2

    - 1 < H = f'(1) < 0 (hệ số góc của tiếp tuyến tại x = 1)

    Như vậy E < H < G <
F

  • Câu 39: Nhận biết

    Họ nguyên hàm của hàm số f(x) = \sin x\cos x + \frac{1}{x + 1} là:

    Ta có:

    f(x) = \frac{1}{2}\sin2x + \frac{1}{x +1}

    \Rightarrow F(x) = \int_{}^{}{\left(\frac{1}{2}\sin2x + \frac{1}{x + 1} ight)dx} = - \frac{1}{4}\cos2x +\ln|x + 1| + C

  • Câu 40: Vận dụng cao

    Một biển quảng cáo có dạng hình elip với bốn đỉnh A_{1};A_{2};B_{1};B_{2} như hình vẽ:

    Người ta chia elip bởi Parabol có đỉnh B_{1}, trục đối xứng B_{1}B_{2} và đi qua các điểm M;N. Sau đó sơn phần tô đậm với giá 200 nghìn đồng/m2 và trang trí đèn led phần còn lại với giá 500 nghìn đồng/m2. Hỏi kinh phí sử dụng gần nhất với giá trị nào dưới đây? Biết rằng A_{1}A_{2} =4m;B_{1}B_{2} = MN = 2m

    Chọn hệ trục tọa độ Oxy sao cho O là trung điểm của A1A2. Tọa độ các đỉnh A1(−2; 0), A2(2; 0), B1(0; −1), B2(0; 1)

    Phương trình đường Elip (E):\frac{x^{2}}{4} + \frac{y^{2}}{9} = 1\Leftrightarrow y = \pm \sqrt{1 - \frac{x^{2}}{4}}

    Ta có: M\left( - 1;\frac{\sqrt{3}}{2}ight),N\left( 1;\frac{\sqrt{3}}{2} ight) \in (E)

    Parabol (P) có đỉnh B1(0; −1) và trục đối xứng là Ox nên (P) có phương trình y = ax^{2} - 1, (a > 0), đi qua M; N

    \Rightarrow a = \frac{\sqrt{3}}{2} + 1\Rightarrow (P):y = \left( \frac{\sqrt{3}}{2} + 1 ight)x^{2} -1

    Diện tích phần tô đậm

    S_{1} = 2\int_{0}^{1}{\left\lbrack\sqrt{1 - \frac{x^{2}}{4}} - \left( \frac{\sqrt{3}}{2} + 1 ight)x^{2}+ 1 ightbrack dx}

    = \int_{0}^{1}{\sqrt{4 - x^{2}}dx} -\frac{2}{3}\left( \frac{\sqrt{3}}{2} + 1 ight) + 2

    Đặt x = 2\sin t;t \in \left\lbrack -\frac{\pi}{2};\frac{\pi}{2} ightbrack \Rightarrow dx =2\cos tdt

    Đổi cận \left\{ \begin{matrix}x = 0 \Rightarrow t = 0 \\x = 1 \Rightarrow t = \dfrac{\pi}{6} \\\end{matrix} ight.

    \Rightarrow S_{1} =\int_{0}^{\frac{\pi}{6}}{\sqrt{4 - 4\sin^{2}t}.2\cos tdt} -\frac{2}{3}\left( \frac{\sqrt{3}}{2} + 1 ight) + 2

    = 4\int_{0}^{\frac{\pi}{6}}{\cos^{2}tdt}- \frac{\sqrt{3}}{4} + \frac{4}{3} = 2\int_{0}^{\frac{\pi}{6}}{(1 +\cos2t)dt} - \frac{\sqrt{3}}{4} + \frac{4}{3}

    = \left. \ (2t + \sin2t)ight|_{0}^{\frac{\pi}{6}} - \frac{\sqrt{3}}{4} + \frac{4}{3} =\frac{\pi}{3} + \frac{\sqrt{3}}{6} + \frac{4}{3}

    Diện tích hình Elip là S = πab = 2π

    Suy ra diện tích phần còn lại là: S_{2} =S - S_{1} = \frac{5\pi}{3} - \frac{\sqrt{3}}{6} -\frac{4}{3}

    Kinh phí sử dụng là 2.10^{5}S_{1} +5.10^{5}S_{2} \approx 2.341.000 đồng.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 18 lượt xem
Sắp xếp theo