Trong mặt phẳng tọa độ
, cho hình thang
với
. Quay hình thang
xung quanh trục
thì thể tích khối tròn xoay tạo thành bằng bao nhiêu??
Phương trình các cạnh của hình thang là:
Ta thấy là hình thang vuông có
nên khối tròn xoay cần tính là
Trong mặt phẳng tọa độ
, cho hình thang
với
. Quay hình thang
xung quanh trục
thì thể tích khối tròn xoay tạo thành bằng bao nhiêu??
Phương trình các cạnh của hình thang là:
Ta thấy là hình thang vuông có
nên khối tròn xoay cần tính là
Cho hàm số
biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành. Chọn công thức đúng của
?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(0; 1)
=>
=> Hay
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Ta có:
Hàm số
có một nguyên hàm là
. Tìm nguyên hàm của hàm số
?
Ta có:
Cho hàm số
là một nguyên hàm của hàm số
. Biết rằng giá trị lớn nhất của
trên khoảng
là
. Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Suy ra
Trên khoảng ta có:
Ta có bảng biến thiên
Giá trị lớn nhất của trên khoảng
là
nên t s có:
Vậy .
Tính diện tích S của hình phẳng giới hạn bởi các đường
?
Phương trình hoành độ giao điểm
Do đó, diện tích hình phẳng giới hạn bởi các đường
Cho đồ thị hàm số
như hình vẽ và
.

Tính diện tích của phần được gạch chéo theo
.
Từ đồ thị ta suy ra
Do đó, diện tích phần gạch chéo là
.
bằng
Ta có .
Tìm nguyên hàm của hàm số
?
Ta có:
Tìm nguyên hàm của hàm số
bằng:
Ta có:
Tìm nguyên hàm của hàm số ![]()
Diện tích hình phẳng giới hạn bởi các đường
là
. Tính giá trị
?
Diện tích hình phẳng cần tìm là:
Đặt
Đổi cận . Khi đó:
hay
Cho hàm số
. Tính tích phân
?
Ta có:
Cho hình (H) giới hạn bởi đồ thị hàm số
, cung tròn có phương trình
(với
) và trục hoành (phần tô đậm trong hình vẽ).

Biết thể tích của khối tròn xoay tạo thành khi quay
quanh trục hoành là
, trong đó
và
là các phân số tối giản. Tính
?
Cho hình (H) giới hạn bởi đồ thị hàm số , cung tròn có phương trình
(với
) và trục hoành (phần tô đậm trong hình vẽ).
Biết thể tích của khối tròn xoay tạo thành khi quay quanh trục hoành là
, trong đó
và
là các phân số tối giản. Tính
?
Xét hình phẳng
giới hạn bởi các đường như hình vẽ (phần gạch sọc).

Diện tích hình phẳng
được tính theo công thức
Ta có:
Gọi
là một nguyên hàm của hàm số
, thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
là một nguyên hàm của hàm số
, ta có:
mà
.
Cho vật thể có mặt đáy là hình tròn có bán kính bằng
như hình vẽ:

Khi cắt vật thể bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ
thì được thiết diện là một tam giác đều. Tính thể tích
của vật thể đó.?
Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ thì được thiết diện là một tam giác đều có cạnh bằng
Do đó, diện tích của thiết diện:
Cho hàm số
liên tục trên
thỏa mãn
. Giá trị của biểu thức
bằng
Ta có:
Cho tích phân
. Tính tích phân
?
Đặt
Đổi cận
Khi đó
Diện tích hình phẳng giới hạn bởi các đường
, trục hoành,
và
bằng
Diện tích hình giới hạn là
Có bao nhiêu số thực
sao cho
?
Ta có:
Do nên có đúng 4 giá trị của
thỏa mãn.
Giá trị của
?
Ta có:
Cho
là một nguyên hàm của hàm số
. Khi đó hiệu số
bằng:
Theo định nghĩa tích phân ta có:
suy ra
.
Cho hàm số
liên tục trên đoạn
và
. Tính tích phân
?
Ta có:
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số
và đường thẳng
?
Xét các phương trình hoành độ giao điểm:
Diện tích S của hình phẳng (H) là:
Tổng tất cả các giá trị của tham số m thỏa mãn
bằng:
Ta có:
Phương trình trên là phương trình bậc hai đối với biến m, với các hệ số.
Áp dụng hệ thứ Vi- et
Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Đúng||Sai
Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?
a) Đúng||Sai
b) Đúng||Sai
c) Đúng||Sai
Ta có:
Đặt
Đổi cận từ đó ta có:
Ta có:
Đặt
Đổi cận từ đó ta có:
Ta có:
Đặt
Đổi cận từ đó ta có:
Cho hình phẳng
giới hạn bởi đường cong
, trục hoành và các đường thẳng
. Khối tròn xoay tạo thành khi quay
quanh trục hoành có thể tích V bằng bao nhiêu?
Ta có:
.
Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số
liên tục trên đoạn
và hai đường thẳng
là
Ta có hình phẳng giới hạn bởi là
.
Cho hàm số
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ bằng
là:
Ta có:
Lấy nguyên hàm hai vế ta được:
. Theo bài ra ta có:
Suy ra
Vậy
Ta có:
Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng 3 là:
Tìm tổng các nghiệm của phương trình F(x) = x, biết F(x) là một nguyên hàm của hàm số
thỏa mãn F(2) = 0
Ta có: F(2) = 0 => C = 2
=>
Xét phương trình F(x) = x ta có:
Vậy tổng các nghiệm của phương trình đã cho bằng
Cho
là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số
?
Ta có: là một nguyên hàm của hàm số
nên
Hay
Xét , đặt
Khi đó
Giá trị của tích phân
bằng:
Ta có: .
Tính tổng
?
Ta có:
.
Do đó
.
Mặt khác:
.
Đặt .
Đổi cận và
. Khi đó
Một xe ô tô đang chạy với vận tốc
thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó
. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi
là quảng đường xe ô tô đi được trong
(giây) kể từ lúc đạp phanh.
a) Quảng đường
mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
. Đúng||Sai
b) Quãng đường
. Đúng||Sai
c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là
giây. Sai||Đúng
d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai
Một xe ô tô đang chạy với vận tốc
thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó
. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi
là quảng đường xe ô tô đi được trong
(giây) kể từ lúc đạp phanh.
a) Quảng đường mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
. Đúng||Sai
b) Quãng đường . Đúng||Sai
c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là giây. Sai||Đúng
d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai
Do nên quãng đường
mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
. Ta có:
với
là hằng số.
Khi đó, ta gọi hàm số .
Do nên
. Suy ra
.
Xe ô tô dừng hẳn khi hay
. Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 2 giây.
Ta có xe ô tô đang chạy với tốc độ .
Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: .
Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: .
Do nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường.
Cho F(x) là nguyên hàm của hàm số
thỏa mãn
. Tìm tập nghiệm S của phương trình ![]()
Đặt
Ta có:
Tích phân
bằng:
Ta có:
.
Diện tích hình phẳng giới hạn bởi các đường
, trục hoành,
và
bằng
Hình vẽ minh họa
Phương trình hoành độ giao điểm
Diện tích hình giới hạn là
Hàm số
là một nguyên hàm của hàm số
trên
thỏa mãn
. Khẳng định nào sau đây đúng?
Ta có:
Lại có
Do đó
Vậy .
Tìm nguyên hàm của hàm của hàm số ![]()