Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 4. Nguyên hàm Tích phân được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho \int_{- 1}^{2}{f(x)dx} = 2\int_{- 1}^{2}{g(x)dx} = - 1, khi đó \int_{- 1}^{2}{\left\lbrack x + 2f(x)
+ 3g(x) ightbrack dx} bằng:

    Ta có:

    \int_{- 1}^{2}{\left\lbrack x + 2f(x) +
3g(x) ightbrack dx} = \int_{- 1}^{2}{xdx} + 2\int_{- 1}^{2}{f(x)dx}
+ 3\int_{- 1}^{2}{g(x)dx}

    = \left. \ \frac{1}{2}x^{2} ight|_{-
1}^{2} + 2.2 + 3.( - 1) = \frac{5}{2}

  • Câu 2: Thông hiểu

    Một khối cầu có bán kính 5dm, người ta cắt bỏ 2 phần bằng 2 mặt phẳng song song và vuông góc với bán kính, hai mặt phẳng đó đều cách tâm của khối cầu 3dm để làm một chiếc lu đựng nước. Tính thể tích nước mà chiếc lu chứa được (coi độ dày của bề mặt không đáng kể).

    Hình vẽ minh họa

    Đặt trục tọa độ như hình vẽ. Thể tích cái được tính bằng cách cho đường tròn có phương trình x^{2} + y^{2} =
25 \Leftrightarrow y^{2} = 25 - x^{2} quay quanh trục Ox.

    Thể tích cái lu bằng;

    V = \pi\int_{- 3}^{3}{\left( 25 - x^{2}
ight)dx} = \pi\left. \ \left( 25x - \frac{x^{3}}{3} ight) ight|_{-
3}^{3} = 132\pi\left( dm^{3} ight)

  • Câu 3: Nhận biết

    Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = \sqrt{- e^{x} +
4x}, trục hoành và hai đường thẳng x = 1;x = 2. Gọi V là thể tích của khối tròn xoay thu được khi quay hình (H) xung quanh trục hoành. Chọn khẳng định đúng trong các khẳng định sau đây?

    Áp dụng công thức thể tích khối tròn xoay ta có:

    V = \pi\int_{a}^{b}{\left\lbrack f(x)
ightbrack^{2}dx}

    Khi đó áp dụng vào bài toán ta được:

    V = \pi\int_{1}^{2}{\left\lbrack \sqrt{-
e^{x} + 4x} ightbrack^{2}dx} = \pi\int_{1}^{2}{\left( 4x - e^{x}
ight)dx} .

  • Câu 4: Thông hiểu

    Tính tích phân I =\int_{0}^{\pi}{\cos^{3}x.\sin xdx}?

    Đặt x = \pi - t. Ta có:

    I = - \int_{\pi}^{0}{\cos^{3}(\pi -t).\sin(\pi - t)dt} = - \int_{0}^{\pi}{\cos^{3}t.\sin tdt} suy ra 2I = 0 \Rightarrow I = 0.

  • Câu 5: Thông hiểu

    Hàm số y = f(x) có một nguyên hàm là F(x) = e^{2x}. Tìm nguyên hàm của hàm số \frac{f(x) +
1}{e^{x}}?

    Ta có: f(x) = F'(x) = \left( e^{2x}
ight)' = 2.e^{2x}

    \Rightarrow \int_{}^{}{\frac{f(x) +
1}{e^{x}}dx} = \int_{}^{}{\frac{2e^{2x} + 1}{e^{x}}dx}

    = 2e^{x} - e^{- x} + C

  • Câu 6: Vận dụng

    Cho hàm số y = f(x) thỏa mãn f'(x).f^{2}(x) = x^{2}f(2) = 2. Phương trình tiếp tuyến của đồ thị hàm số g(x) = f(x) + x^{2} tại điểm có hoành độ bằng 3 là:

    Ta có: f'(x).f^{2}(x) =
x^{2}

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}{f'(x).f^{2}(x)dx} =
\int_{}^{}{x^{2}dx}

    \Leftrightarrow
\int_{}^{}{f^{2}(x)df(x)} = \frac{x^{3}}{3} + C

    \Leftrightarrow \frac{f^{3}(x)}{3} =
\frac{x^{3}}{3} + C. Theo bài ra ta có: f(2) = 2 \Rightarrow \frac{f^{3}(2)}{3} =
\frac{2^{3}}{3} + C \Rightarrow C = 0

    Suy ra \frac{f^{3}(x)}{3} =
\frac{x^{3}}{3} \Leftrightarrow f(x) = x

    Vậy g(x) = x^{2} + x \Rightarrow
g'(x) = 2x + 1

    Ta có: g'(3) = 7;g(3) =
12

    Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng 3 là:

    y = g'(3)(x - 3) + g(3)

    \Leftrightarrow y = 7(x - 3) + 12
\Leftrightarrow y = 7x - 9

  • Câu 7: Nhận biết

    Họ nguyên hàm của hàm số f(x) = 2x +\sin2x là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{(2x +\sin2x)dx}

    = 2.\frac{x^{2}}{2} - \frac{1}{2}\cos2x +c = x^{2} - \frac{1}{2}\cos2x + c

  • Câu 8: Nhận biết

    Một chiếc máy bay di chuyển với vận tốc là v(t) = 3t^{2} + 5(m/s). Hỏi quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 bằng bao nhiêu?

    Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là:

    S = \int_{4}^{10}{v(t)dt} =
\int_{4}^{10}{\left( 3t^{2} + 5 ight)dt}

    = \left. \ \left( t^{3} + 5t ight)
ight|_{4}^{10} = 996(m)

  • Câu 9: Vận dụng

    Biết rằng  F(x) nguyên hàm của hàm số f(x) = \frac{1}{x^{2}(x +1)} thỏa mãn F(1) + F( - 2) = \frac{1}{2}. Chọn mệnh đề đúng?

    Sử dụng phương pháp đồng nhất thức, ta có:

    f(x) = \frac{1}{x^{2}(x + 1)} =\frac{A}{x} + \frac{B}{x^{2}} + \frac{C}{x + 1}= \frac{(A + C)x^{2} +(A + B)x + B}{x^{2}(x + 1)}

    Suy ra \left\{ \begin{matrix}A + C = 0 \\A + B = 0 \\B = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}A = - 1 \\B = 1 \\C = 1 \\\end{matrix} ight.

    F(x) = \int_{}^{}{f(x)dx} =\int_{}^{}{\left( - \frac{1}{x} + \frac{1}{x^{2}} + \frac{1}{x + 1}ight)dx}

    \Rightarrow F(x) = - \ln|x| -\frac{1}{x} + \ln|x + 1| + C = \ln\left| \frac{x + 1}{x} ight| -\frac{1}{x} + C

    Khi đó F(x) = \left\{ \begin{matrix}\ln\dfrac{x + 1}{x} - \dfrac{1}{x} + C_{1};x \in (0; + \infty) \\\ln\dfrac{- x - 1}{x} - \dfrac{1}{x} + C_{2};x \in ( - 1;0) \\\ln\frac{x + 1}{x} - \dfrac{1}{x} + C_{3};x \in ( - \infty; - 1) \\\end{matrix} ight.

    F(1) + F( - 2) =\frac{1}{2}

    \Leftrightarrow \ln2 - 1 + C_{1} +\ln\frac{1}{2} + \frac{1}{2} + C_{3} = \frac{1}{2}

    \Leftrightarrow C_{1} + C_{3} =1

    Vậy T = F(2) + F( - 3) = \ln\frac{3}{2} -\frac{1}{2} + C_{1} + \ln\frac{2}{3} + \frac{1}{3} + C_{3} =\frac{5}{6}

  • Câu 10: Vận dụng

    Cho các hàm số f(x) có đạo hàm cấp một, đạo hàm cấp hai liên tục trên \lbrack 0;1brack và thỏa mãn \int_{0}^{1}{e^{x}f(x)dx} =
\int_{0}^{1}{e^{x}f'(x)dx} = \int_{0}^{1}{e^{x}f''(x)dx}
eq 0. Giá trị của biểu thức \frac{ef'(x) - f'(0)}{ef(1) -
f(0)} bằng:

    Đặt \int_{0}^{1}{e^{x}f(x)dx} =
\int_{0}^{1}{e^{x}f'(x)dx} = \int_{0}^{1}{e^{x}f''(x)dx} =
k

    Ta có:

    k = \int_{0}^{1}{e^{x}f''(x)dx}
= \int_{0}^{1}{e^{x}d\left\lbrack f'(x) ightbrack}

    = \left. \ e^{x}f'(x)
ight|_{0}^{1} - \int_{0}^{1}{e^{x}f'(x)dx} = \left. \
e^{x}f'(x) ight|_{0}^{1} - k

    \Rightarrow 2k = \left. \ e^{x}f'(x)
ight|_{0}^{1}

    Ta có:

    k = \int_{0}^{1}{e^{x}f'(x)dx} =
\int_{0}^{1}{e^{x}d\left\lbrack f(x) ightbrack}

    = \left. \ e^{x}f(x) ight|_{0}^{1} -
\int_{0}^{1}{e^{x}f(x)dx} = \left. \ e^{x}f(x) ight|_{0}^{1} -
k

    \Rightarrow 2k = \left. \ e^{x}f(x)
ight|_{0}^{1}

    Vậy \frac{ef'(x) - f'(0)}{ef(1) -
f(0)} = \frac{\left. \ e^{x}f'(x) ight|_{0}^{1}}{\left. \
e^{x}f(x) ight|_{0}^{1}} = 1

  • Câu 11: Nhận biết

    \int_{}^{}{x^{2}dx} bằng

    Ta có \int_{}^{}{x^{2}dx} =\frac{1}{3}x^{3} + C.

  • Câu 12: Vận dụng

    Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước.

    Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước.

    Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm và liên tục trên đoạn \lbrack
a;bbrack với f(a) = 0. Đặt M = \max_{\lbrack a;bbrack}\left| f(x)
ight|. Tìm giá trị nhỏ nhất của \int_{a}^{b}{\left\lbrack f'(x)
ightbrack^{2}dx}?

    Gọi x_{0} \in \lbrack a;bbrack sao cho \left| f\left( x_{0} ight) ight|
= M. Ta có:

    \left( \int_{a}^{x_{0}}{f'(x)dx}
ight)^{2} \leq \int_{a}^{x_{0}}{\left\lbrack f'(x)
ightbrack^{2}dx}.\int_{a}^{x_{0}}{dx}

    \Leftrightarrow \left\lbrack f\left(
x_{0} ight) - f(a) ightbrack^{2} \leq \left( x_{0} - a
ight)\int_{a}^{x_{0}}{\left\lbrack f'(x)
ightbrack^{2}dx}

    \Leftrightarrow f^{2}\left( x_{0}
ight) \leq \left( x_{0} - a ight)\int_{a}^{x_{0}}{\left\lbrack
f'(x) ightbrack^{2}dx}

    \Leftrightarrow M^{2} \leq \left( x_{0}
- a ight)\int_{a}^{x_{0}}{\left\lbrack f'(x)
ightbrack^{2}dx}

    \left( x_{0} - a
ight)\int_{a}^{x_{0}}{\left\lbrack f'(x) ightbrack^{2}dx} \leq
(b - a)\int_{a}^{x_{0}}{\left\lbrack f'(x)
ightbrack^{2}dx}

    Suy ra M^{2} \leq (b -
a)\int_{a}^{x_{0}}{\left\lbrack f'(x)
ightbrack^{2}dx}

    \Rightarrow
\int_{a}^{x_{0}}{\left\lbrack f'(x) ightbrack^{2}dx} \geq
\frac{M^{2}}{b - a}

    Dấu bằng xảy ra khi và chỉ khi f'(x)
= 1 .

    Vậy giá trị nhỏ nhất của \int_{a}^{b}{\left\lbrack f'(x)
ightbrack^{2}dx} đạt được bằng \frac{M^{2}}{b - a} khi f'(x) = 1.

  • Câu 14: Nhận biết

    Tích phân \int_{0}^{1}\frac{dx}{2x +
5} bằng:

    Ta có: \int_{0}^{1}\frac{dx}{2x + 5} =
\frac{1}{2}\int_{0}^{1}\frac{d(2x + 5)}{2x + 5}

    = \left. \ \frac{1}{2}\ln(2x + 5)
ight|_{0}^{1} = \frac{1}{2}\ln\frac{7}{5}

  • Câu 15: Vận dụng

    Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí vởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ tọa độ Oxy với O là tâm hình vuông sao cho A(1;1) như hình vẽ bên thì các đường cong OA có phương trình y = x^{2}y = ax^{3} + bx. Tính giá trị a.b biết rằng diện tích trang trí màu sẫm chiếm \frac{1}{3} diện tích mặt sàn.

    Đáp án: -2||- 2

    Đáp án là:

    Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí vởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ tọa độ Oxy với O là tâm hình vuông sao cho A(1;1) như hình vẽ bên thì các đường cong OA có phương trình y = x^{2}y = ax^{3} + bx. Tính giá trị a.b biết rằng diện tích trang trí màu sẫm chiếm \frac{1}{3} diện tích mặt sàn.

    Đáp án: -2||- 2

    Diện tích 1 cánh của hình trang trí là:

    S_{1} = \int_{0}^{1}\left( x^{2} -
ax^{3} - bx ight)dx = \left. \ \left( \frac{x^{3}}{3} -
\frac{ax^{4}}{4} - \frac{bx^{2}}{2} ight) ight|_{0}^{1} =
\frac{1}{2} - \frac{a}{4} - \frac{b}{2}

    \Rightarrow Diện tích hình trang trí là: S = 4S_{1} = \frac{4}{3} - a -
2b

    Vì diện tích trang trí màu sẫm chiếm \frac{1}{3} diện tích mặt sàn nên

    \frac{4}{3} - a - 2b = \frac{4}{3}
\Leftrightarrow a + 2b = 0

    Khi đó ta có: \left\{ \begin{matrix}
a + b = 1 \\
a + 2b = 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = - 1 \\
\end{matrix} ight.\  ight.

    Vậy ab = - 2.

  • Câu 16: Nhận biết

    Xác định tích phân I =
\int_{1}^{5}{\frac{1}{1 - 2x}dx}?

    Ta có:

    I = \int_{1}^{5}{\frac{1}{1 - 2x}dx} = -
\frac{1}{2}\int_{1}^{5}\frac{d(1 - 2x)}{1 - 2x}

    = - \frac{1}{2}.\left. \ \ln|1 - 2x|ight|_{1}^{5} = - \ln3

  • Câu 17: Nhận biết

    Tìm nguyên hàm của hàm số f(x) = (x +
1)(x + 2)(x + 3)?

    Ta có:

    f(x) = (x + 1)(x + 2)(x + 3) = x^{3} +
6x^{2} + 11x + 6

    \Rightarrow F(x) = \frac{x^{4}}{4} +
2x^{3} + \frac{11}{2}x^{2} + 6x + C

  • Câu 18: Nhận biết

    Tìm họ nguyên hàm của hàm số  f\left( x ight) = 3{x^2} + 1

     Ta có:

    \int {\left( {3{x^2} + 1} ight)dx}  = \int {3{x^2}dx}  + \int {1.dx}  = {x^3} + x + C

  • Câu 19: Thông hiểu

    Tích phân \int_{0}^{1}{\frac{(x -
1)^{2}}{x^{2} + 1}dx} = a - \ln b với a;b\mathbb{\in Z}. Giá trị của a + b bằng:

    Ta có: \int_{0}^{1}{\frac{(x -
1)^{2}}{x^{2} + 1}dx} = \int_{0}^{1}{\left( 1 - \frac{2x}{x^{2} + 1}
ight)dx}

    = \left. \ x ight|_{0}^{1} - \left. \
\ln\left( x^{2} + 1 ight) ight| = 1 - ln2

    \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
\end{matrix} ight.\  \Rightarrow a + b = 3

  • Câu 20: Thông hiểu

    Biết rằng \int_{0}^{\frac{\pi}{4}}{(x +1)\cos2xdx} = \frac{1}{a} + \frac{\pi}{b} với a;b là các số hữu tỉ. Giá trị của a.b là:

    Ta có: I = \int_{0}^{\frac{\pi}{4}}{(x +1)\cos2xdx}

    Đặt \left\{ \begin{matrix}u = x + 1 \\dv = \cos2xdx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = dx \\v = \dfrac{1}{2}\sin2x \\\end{matrix} ight.

    \Rightarrow I = \left. \ \frac{1}{2}(x +1)\sin2x ight|_{0}^{\frac{\pi}{4}} -\frac{1}{2}\int_{0}^{\frac{\pi}{4}}{\sin2xdx}

    \Rightarrow I = \frac{1}{2}\left(\frac{\pi}{4} + 1 ight) + \left. \ \frac{1}{4}\cos2xight|_{0}^{\frac{\pi}{4}} = \frac{\pi}{8} + \frac{1}{4}

    \Rightarrow a.b = 8.4 = 32

  • Câu 21: Nhận biết

    Cho hàm số y = f(x) liên tục trên \lbrack a;bbrack, có đồ thị hàm số y = f'(x) như sau:

    Mệnh đề nào dưới đây là đúng?

    Theo ý nghĩa hình học của tích phân thì \int_{a}^{b}{f'(x)dx} là diện tích hình thang cong ABMN.

  • Câu 22: Thông hiểu

    Anh A xuất phát từ D, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật v(t) =
\frac{t^{2}}{180} + \frac{11t}{18}(m/s) trong đó t (giây) là khoảng thời gian tính từ lúc anh A bắt đầu chuyển động. Từ trạng thái nghỉ, anh B cũng xuất phát từ D, chuyển động thẳng cùng hướng với anh A nhưng chậm hơn 5 giây so với anh A và có gia tốc bằng a\left( m/s^{2} ight) (a là hằng số). Sau khi anh B xuất phát được 10 giây thì đuổi kịp anh A. Vận tốc của anh B tại thời điểm đuổi kịp anh A bằng bao nhiêu?

    Quãng đường anh A đi được cho đến khi hai người gặp nhau là:

    S = \int_{0}^{15}{\left(
\frac{t^{2}}{180} + \frac{11t}{18} ight)dt} = 75(m)

    Vận tốc của anh B tại thời điểm t(s) tính từ lúc anh B xuất phát là: v_{B}(t) = at

    Quãng đường anh B đi được cho đến khi hai người gặp nhau là:

    S = \int_{0}^{10}{(at)dt} = \left. \
\left( \frac{at^{2}}{2} ight) ight|_{0}^{10} = 50a(m)

    \Rightarrow 50a = 75 \Rightarrow a =
\frac{3}{2}

    Vậy vận tốc của anh B tại thời điểm đuổi kịp anh A là: v_{B}(20) = 10a = 15(m/s)

  • Câu 23: Nhận biết

    Tìm họ nguyên hàm của hàm số f(x) = x -\sin2x?

    Ta có: \int_{}^{}{f(x)}dx = \int_{}^{}{(x- \sin2x)dx} = \frac{x^{2}}{2} + \frac{1}{2}\cos2x + C

  • Câu 24: Thông hiểu

    Cho hàm số f(x) = x^{4} - 5x^{2} +4. Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y =f(x) và trục hoành. Mệnh đề nào sau đây sai?

    Phương trình hoành độ giao điểm:

    x^{4} - 5x^{2} + 4 = 0 \Leftrightarrow\left\lbrack \begin{matrix}x^{2} = 1 \\x^{2} = 4 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = - 1 \\x = 2 \\x = - 2 \\\end{matrix} ight.

    Diện tích hình phẳng cần tìm là:

    S = \int_{- 2}^{2}{\left| f(x)ight|dx} = 2\int_{0}^{2}{\left| f(x) ight|dx}

    = 2\int_{0}^{1}{\left| f(x) ight|dx} +2\int_{1}^{2}{\left| f(x) ight|dx}

    = 2\left| \int_{0}^{1}{f(x)dx} ight| +2\left| \int_{1}^{2}{f(x)dx} ight| ((do trong khoảng (0; 1) và (1; 2) phương trình f(x) = 0 vô nghiệm)

    Vậy mệnh đề sai là: S = 2\left|\int_{0}^{2}{f(x)dx} ight|.

  • Câu 25: Nhận biết

    Gọi (D) là hình phẳng giới hạn bởi các đường y = \frac{x}{4};y = 0;x = 1;x
= 4. Tính thể tích vật thể tròn xoay tạo thành khi quay hình (D) quanh trục Ox?

    Thể tích vật thể tròn xoay tạo thành khi quay hình (D) quanh trục Ox

    V = \pi\int_{1}^{4}{\left( \frac{x}{4}
ight)^{2}dx} = \left. \ \frac{\pi x^{3}}{48} ight|_{1}^{4} =
\frac{21\pi}{16}.

  • Câu 26: Thông hiểu

    Trong hệ trục tọa độ Oxy cho elip (E) có phương trình \frac{x^{2}}{25} + \frac{y^{2}}{9} = 1. Hình phẳng (H) giới hạn bởi nửa elip nằm trên trục hoành và trục hoành. Quay hình (H) xung quanh trục Ox ta được khối tròn xoay, tính thể tích khối tròn xoay đó?

    Ta có: \frac{y^{2}}{9} = 1 -
\frac{x^{2}}{25} \Rightarrow y = \sqrt{9\left( 1 - \frac{x^{2}}{25}
ight)} với x \in \lbrack -
5;5brack

    Khi đó thể tích cần tìm là: V =
\pi\int_{- 5}^{5}{\left( 9 - \frac{9x^{2}}{25} ight)dx} =
60\pi

  • Câu 27: Thông hiểu

    Cho biết \int_{1}^{2}{\ln\left( 9 - x^{2}
ight)dx} = aln5 + bln2 + c với a;b;c\mathbb{\in Z}. Tính S = |a| + |b| + |c|?

    Xét trên đoạn \lbrack 1;2brack ta có:

    \ln\left( 9 - x^{2} ight) = \ln(3 - x)
+ \ln(3 + x)

    Xét I_{1} = \int_{1}^{2}{\ln(3 -
x)dx}. Đặt \left\{ \begin{matrix}u = \ln(3 - x) \\dv = dx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{1}{x - 3}dx \\v = x \\\end{matrix} ight.

    \Rightarrow I_{1} = \left. \ x\ln(3 - x)
ight|_{1}^{2} - \int_{1}^{2}{\frac{x}{x - 3}dx}

    \Rightarrow I_{1} = \left. \ x\ln(3 - x)ight|_{1}^{2} - \left. \ \left\lbrack x + 3\ln(3 - x) ightbrackight|_{1}^{2} = 2\ln2 - 1

    Xét I_{2} = \int_{1}^{2}{\ln(3 +
x)dx}. Đặt \left\{ \begin{matrix}u = \ln(3 + x) \\dv = dx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{1}{x + 3}dx \\v = x \\\end{matrix} ight.

    \Rightarrow I_{2} = \left. \ x\ln(3 + x)
ight|_{1}^{2} - \int_{1}^{2}{\frac{x}{x + 3}dx}

    \Rightarrow I_{2} = \left. \ x\ln(3 + x)ight|_{1}^{2} - \left. \ \left\lbrack x + 3\ln(3 + x) ightbrackight|_{1}^{2} = 5\ln5 - 8\ln2 - 1

    Vậy \int_{1}^{2}{\ln\left( 9 - x^{2}ight)dx} = I_{1} + I_{2} = 5\ln5 - 6\ln2 - 2 \Rightarrow S =13.

  • Câu 28: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = 3x + \cos 3x

     Ta có: \int {\left( {3x + \cos 3x} ight)dx = \frac{{3{x^2}}}{2} + \frac{{\sin 3x}}{3} + C}

  • Câu 29: Vận dụng

    Cho hàm số f(x) liên tục và có đạo hàm trên \left( 0;\frac{\pi}{2}
ight) thỏa mãn f(x) + \tan xf'(x) = \frac{x}{\cos^{3}x}. Biết rằng \sqrt{3}f\left( \frac{\pi}{3} ight) - f\left(
\frac{\pi}{6} ight) = a\pi\sqrt{3} + bln3 trong đó a;b\mathbb{\in R}. Kết luận nào sau đây đúng?

    Ta có: f(x) + \tan xf'(x) =\frac{x}{\cos^{3}x}

    \Leftrightarrow \cos xf(x) + \sin xf'(x) = \frac{x}{\cos^{2}x}

    \Leftrightarrow \left\lbrack \sin xf(x)ightbrack' = \frac{x}{\cos^{2}x}

    \Rightarrow \int_{}^{}{\left\lbrack \sin xf(x) ightbrack'dx} =\int_{}^{}{\frac{x}{\cos^{2}x}dx}

    \Rightarrow \sin xf(x) =\int_{}^{}{\frac{x}{\cos^{2}x}dx}.

    Tính I =
\int_{}^{}{\frac{x}{cos^{2}x}dx}. Đặt \left\{ \begin{matrix}u = x \\dv = \dfrac{dx}{\cos^{2}x} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = dx \\v = \tan x \\\end{matrix} ight. khi đó:

    I = x\tan x - \int_{}^{}{\tan xdx} =
x\tan x - \int_{}^{}\frac{d\left( \cos x ight)}{\cos x}

    = x\tan x + \ln\left| \cos x
ight|

    \Rightarrow f(x) = \frac{x\tan x +
\ln\left| \cos x ight|}{\sin x} = \frac{x}{\cos x} + \frac{\ln\left|
\cos x ight|}{\sin x}

    Theo bài ra ta có:

    \Rightarrow \sqrt{3}f\left(\frac{\pi}{3} ight) - f\left( \frac{\pi}{6} ight) = \sqrt{3}\left(\frac{2\pi}{3} - \dfrac{2\ln2}{\sqrt{3}} ight)- \left(\frac{\pi\sqrt{3}}{9} + 2\ln\dfrac{\sqrt{3}}{2} ight) =\dfrac{5\pi\sqrt{3}}{9}\ln3

    \Rightarrow \left\{ \begin{matrix}a = \dfrac{5}{9} \\b = - 1 \\\end{matrix} ight.\  \Rightarrow a + b = - \frac{4}{9}

  • Câu 30: Nhận biết

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{2x - 1} , biết rằng F(1) = 2. Khi đó giá trị F(2) là:

    Ta có: F(x) = \int_{}^{}\frac{dx}{2x - 1}
= \frac{1}{2}\ln|2x - 1| + C;\left( C\mathbb{\in R} ight)

    F(1) = 2 \Rightarrow C = 2. Vậy với x > \frac{1}{2} thì F(x) = \frac{1}{2}\ln(2x - 1) +
2

    Vậy F(2) = \frac{1}{2}\ln3 +2.

  • Câu 31: Thông hiểu

    Biết rằng \int_{}^{}{\frac{1}{x^{3} -
x}dx = a\ln\left| (x - 1)(x + 1) ight| + b\ln|x| + C}. Tính giá trị biểu thức H = 2a + b?

    Ta có:

    \frac{1}{x^{3} - x} = \frac{A}{x} +
\frac{B}{x - 1} + \frac{D}{c + 1}

    = \frac{A\left( x^{2} - 1 ight) + Bx(x
+ 1) + Dx(x - 1)}{x^{3} - x}

    = \frac{(A + B + D)x^{2} + (B - D)x -
A}{x^{3} - x}

    \Rightarrow \left\{ \begin{matrix}A + B + D = 0 \\B - D = 0 \\- A = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}A = - 1 \\B = \dfrac{1}{2} \\D = \dfrac{1}{2} \\\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{1}{x^{3} - x}dx}
= \int_{}^{}{\left\lbrack \frac{- 1}{x} + \frac{1}{2(x - 1)} +
\frac{1}{2(x + 1)} ightbrack dx}

    = \frac{1}{2}\ln\left| (x - 1)(x + 1)
ight| - \ln|x| + C

    Suy ra a = \frac{1}{2};b = - 1
\Rightarrow H = 0.

  • Câu 32: Thông hiểu

    Họ các nguyên hàm của hàm số f(x) =
\frac{2x - 1}{(x + 1)^{2}} trên khoảng ( - 1; + \infty) là:

    Ta có: f(x) = \frac{2x - 1}{(x + 1)^{2}}
= \frac{2}{x + 1} - \frac{3}{(x + 1)^{2}}

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(\frac{2}{x + 1} - \frac{3}{(x + 1)^{2}} ight)dx}= 2\ln|x + 1| +\frac{3}{x + 1} + C

  • Câu 33: Vận dụng

    Cho hàm số y = f(x) thỏa mãn f'(x) - f(x) = e^{x}f(0) = 2. Phương trình tiếp tuyến của đồ thị hàm số y(x) = f(x) tại giao điểm với trục hoành là:

    Ta có: f'(x) - f(x) = e^{x}. Nhân cả hai vế với e^{- x} ta được:

    e^{- x}f'(x) - e^{- x}.f(x) =
1

    \Leftrightarrow \left( e^{- x}.f(x)
ight)' = 1

    Lấy nguyên hàm hai vế ta được:

    \Leftrightarrow \int_{}^{}{\left( e^{-
x}.f(x) ight)'dx} = \int_{}^{}{1dx} \Leftrightarrow e^{- x}.f(x) =
x + C

    f(0) = 2 \Rightarrow f(0) = 0 + C
\Leftrightarrow C = 2

    Suy ra e^{- x}.f(x) = x + 2
\Leftrightarrow f(x) = \frac{x + 2}{e^{- x}} = (x + 2)e^{x}

    \Rightarrow f'(x) = (x +
3)e^{x}

    Xét phương trình hoành độ giao điểm (x +
2)e^{x} = 0 \Leftrightarrow x = - 2

    Ta có: f'( - 2) = ( - 2 + 3)e^{- 2} =
e^{- 2};f( - 2) = 0

    Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng -2 là: y = e^{- 2}(x + 2)

  • Câu 34: Vận dụng cao

    Cho parabol (P):y = x^{2} và hai điểm A;B thuộc (P) sao cho AB = 2. Tìm giá trị lớn nhất của diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng AB.

    Hình vẽ minh họa

    Gọi A\left( a;a^{2} ight)(P):y = x^{2} là hai điểm thuộc (P) sao cho AB = 2.

    Không mất tính tổng quát giả sử a < b.

    Theo giả thiết ta có AB = 2 nên

    (b - a)^{2} + \left( b^{2} - a^{2}ight)^{2} = 4

    \Leftrightarrow (b - a)^{2}\left\lbrack1 + (b + a)^{2} ightbrack = 4

    Phương trình đường thẳng đi qua hai điểm A và B là y = (b + a)x - ab

    Gọi S là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng AB ta có:

    S = \int_{a}^{b}{\left\lbrack (a + b)x -ab - x^{2} ightbrack dx}

    = \left. \ \left\lbrack (a +b)\frac{x^{2}}{2} - abx - \frac{x^{3}}{3} ightbrack ight|_{a}^{b}= \frac{(b - a)^{3}}{6}

    Mặt khác (b - a)^{2}\left\lbrack 1 + (b +a)^{2} ightbrack = 4 nên |b -a| \leq 2 do 1 + (b + a)^{2} \geq1

    Suy ra S = \frac{(b - a)^{3}}{6} \leq\frac{2^{3}}{6}

    Vậy S_{\max} = \frac{4}{3} dấu bằng xảy ra khi và chỉ khi a = − b = ±1.

  • Câu 35: Nhận biết

    Công thức diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), y =
g(x) liên tục trên đoạn \lbrack
a;bbrack và hai đường thẳng x =
a, x = b (a < b)

    Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), y =
g(x) liên tục trên đoạn \lbrack
a;bbrack và hai đường thẳng x =
a, x = b (a < b)S = \int_{a}^{b}{\left| f(x) - g(x)
ight|dx}.

  • Câu 36: Thông hiểu

    Tìm nguyên hàm của hàm số f\left( x ight) = {\cos ^2}x

     f\left( x ight) = {\cos ^2}x = \frac{{\cos 2x + 1}}{2} = \frac{{\cos 2x}}{2} + \frac{1}{2}

    \int {f\left( x ight)dx}  = \int {\left( {\frac{{\cos 2x}}{2} + \frac{1}{2}} ight)dx = } \frac{x}{2} + \frac{1}{4}\sin 2x + C

  • Câu 37: Thông hiểu

    Một vật thể nằm giữa hai mặt phẳng x = -
1;x = 1 và thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ x;(
- 1 \leq x \leq 1) là một hình tròn có diện tích bằng 3\pi. Thể tích của vật thể là?

    Ta có: V = \int_{- 1}^{1}{S(x)dx} =
\int_{- 1}^{1}{3\pi dx} = 6\pi

  • Câu 38: Vận dụng cao

    Cho F(x) là một nguyên hàm của hàm số f\left( x ight) = {e^{{x^2}}}\left( {{x^3} - 4x} ight). Hàm số F\left( {{x^2} + x} ight) có bao nhiêu điểm cực trị?

     \begin{matrix}  \left[ {F\left( {{x^2} + x} ight)} ight]\prime    \hfill \\   = \left( {2x + 1} ight)f\left( {{x^2} + x} ight) \hfill \\   = \left( {2x + 1} ight){e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}.\left[ {{{\left( {{x^2} + x} ight)}^3} - 4\left( {{x^2} + x} ight)} ight] \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).\left( {{x^2} + x} ight)\left( {{x^2} + x + 2} ight)\left( {{x^2} + x - 2} ight) \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).x\left( {x + 1} ight)\left( {{x^2} + x + 2} ight)\left( {x + 2} ight)\left( {x - 1} ight) \hfill \\ \end{matrix}

    => \left[ {F\left( {{x^2} + x} ight)} ight]' = 0 có 5 nghiệm đơn

    => Hàm số F\left( {{x^2} + x} ight) có 5 điểm cực trị

  • Câu 39: Thông hiểu

    Cho hàm số F(x) là một nguyên hàm của f(x) = 2019^{x}\left( 4 - x^{2}
ight)\left( x^{2} - 3x + 2 ight). Khi đó số điểm cực trị của hàm số F(x) là:

    Ta có: F(x) là một nguyên hàm của hàm số f(x) = 2019^{x}\left( 4 - x^{2}
ight)\left( x^{2} - 3x + 2 ight)

    \Rightarrow F'(x) = 2019^{x}\left( 4
- x^{2} ight)\left( x^{2} - 3x + 2 ight) = 2019^{x}(x - 2)^{2}(x +
2)(1 - x)

    \Rightarrow F'(x) = 0
\Leftrightarrow 2019^{x}(x - 2)^{2}(x + 2)(1 - x) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.. Do x = -
2;x = 1 là nghiệm bội 1 còn x =
2 là nghiệm bội 2 nên hàm số F(x) có hai điểm cực trị.

  • Câu 40: Nhận biết

    Cho hình phẳng (H) giới hạn bởi các đường y = \cos x;y = 0;x = 0;x =
\frac{\pi}{2}. Thể tích vật thể tròn xoay có được khi (H) quay quanh trục Ox bằng:

    Gọi V là thể tích khối tròn xoay cần tính. Ta có:

    V = \pi\int_{0}^{\frac{\pi}{2}}{\left(\cos x ight)^{2}dx} = \pi\int_{0}^{\frac{\pi}{2}}{\frac{1 +\cos2x}{2}dx}

    = \pi\left. \ \left( \frac{x}{2} +\frac{\sin2x}{4} ight) ight|_{0}^{\frac{\pi}{2}} =\frac{\pi^{2}}{4}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo