Cho hình phẳng
giới hạn bởi các đường
. Quay (H) quanh trục hoành tạo thành khối tròn xoay có thể tích là:
Ta có:
Theo công thức thể tích giới hạn bởi các đường ta có:
Cho hình phẳng
giới hạn bởi các đường
. Quay (H) quanh trục hoành tạo thành khối tròn xoay có thể tích là:
Ta có:
Theo công thức thể tích giới hạn bởi các đường ta có:
Tìm nguyên hàm của hàm số
??
Đặt
Cho hàm số
là một nguyên hàm của
, biết rằng
. Khi đó giá trị
là:
Ta có:
Mà . Vậy với
thì
Vậy .
Tính diện tích
của hình phẳng giới hạn bởi đồ thị hàm số
trục hoành và hai đường thẳng
.
Diện tích hình phẳng được tính như sau:
.
Cho đường cong
. Xét điểm
có hoành độ dương thuộc
, tiếp tuyến của
tại
tạo với
một hình phẳng có diện tích bằng
. Hoành độ điểm
thuộc khoảng nào dưới đây??
Ta có: có
Phương trình tiếp tuyến d của (C) tại A là
Gọi S là diện tích của hình phẳng giới hạn bởi tiếp tuyến d và (C)
Vậy
Cho hàm số
có đồ thị
. Các tiếp tuyến với đồ thị tại
và tại
cắt nhau tại
. Tính diện tích hình phẳng giới hạn bởi cung
của
và hai tiếp tuyến
?
Tập xác định
Tiếp tuyến tại O(0; 0) là OB:
Tiếp tuyến tại A(3; 3) là AB:
Suy ra
Diện tích hình giới hạn là
Cho hàm số
là một nguyên hàm của hàm số
trên khoảng
. Biết rằng giá trị lớn nhất của
trên khoảng
là
. Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Vì là một nguyên hàm của hàm số
trên khoảng
nên hàm số
có công thức dạng
với mọi
Xét hàm số xác định và liên tục trên
Ta có:
Trên khoảng phương trình
có một nghiệm
Ta có bảng biến thiên như sau:
. Theo bài ra ta có:
Do đó suy ra
.
Tìm nguyên hàm của hàm số
?
Đặt
Cho hàm số
liên tục trên
thỏa mãn
. Giá trị của biểu thức
bằng
Ta có:
Cho hình phẳng
giới hạn bởi các đường
và
, với
. Tìm
để diện tích hình phẳng
gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)

Đáp án: 0,59
Cho hình phẳng giới hạn bởi các đường
và
, với
. Tìm
để diện tích hình phẳng
gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)
Đáp án: 0,59
Gọi là diện tích hình phẳng
. Lúc dó
, trong đó
là diện tích phần gạch sọc ở bên phải
và
là diện tích phần gạch ca rô trong hình vẽ bên.
Gọi là các giao diếm có hoành độ dương của đường thẳng
và đồ thị hàm số
, trong đó
và
.
Thco yêu cầu bài toán .
.
.
Cho các hàm số
có đạo hàm cấp một, đạo hàm cấp hai liên tục trên
và thỏa mãn
. Giá trị của biểu thức
bằng:
Đặt
Ta có:
Ta có:
Vậy
Một vật chuyển động với vận tốc
. Tính quãng đường vật đó đi được trong
giây đầu (làm tròn kết quả đến chữ số thập phân thứ hai).?
Quãng đường vật đó đi được trong 4 giây đầu là:
.
Tích phân
với
. Giá trị của
bằng:
Ta có:
Tìm nguyên hàm
của hàm số
?
Ta có:
Vậy một nguyên hàm của hàm số là .
Một ô tô đang chạy đều với vận tốc
thì người lái xe đạp phanh. Từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc
. Biết từ khi đạp phanh đến lúc dừng hẳn thì ô tô di chuyển được
. Tìm
?
Khi dừng hẳn
Quãng đường xe đi được từ khi đạp phanh đến lúc dừng hẳn là:
Biết rằng
là một nguyên hàm của hàm số
trên
. Giá trị của biểu thức
bằng:
Ta có:
suy ra
Cho F(x) là nguyên hàm của hàm số
thỏa mãn
. Tìm tập nghiệm S của phương trình ![]()
Đặt
Ta có:
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số
và đồ thị hàm số
?
Phương trình hoành độ giao điểm
Khi đó ta có:
Giá trị của
bằng
Ta có:
Cho
với
là các số hữu tỉ. Giá trị của biểu thức
bằng:
Ta có:
Suy ra
Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số
liên tục trên đoạn
và hai đường thẳng
là
Ta có hình phẳng giới hạn bởi là
.
Nguyên hàm của hàm số
là:
Ta có:
Chọn khẳng định đúng trong các khẳng định sau?
Đặt . Đổi cận
Ta có: .
Vậy khẳng định đúng .
Cho hàm số
đồng biến và có đạo hàm cấp hai trên đoạn
và thỏa mãn
với
. Biết rằng
khi đó tích phân
bằng:
Ta có:
Theo bài ra ta có:
Một vận động viên đua xe đang chạy với vận tốc
thì anh ta tăng tốc với vận tốc
, trong đó
là khoảng thời gian tính bằng giây kể từ lúc tăng tốc, hỏi quãng đường xe của anh ta đi được trong thời gian
kể từ lúc bắt đầu tăng tốc là bao nhiêu?
Ta có:
Do khi bắt đầu tăng tốc
Khi đó quãng đường xe đi được sau 10 giây kể từ khi ô tô bắt đầu tăng tốc bằng
Họ nguyên hàm của hàm số
là:
Đặt
Cho hàm số
có đồ thị như hình vẽ:

Các biểu thức
xác định bởi
. Mệnh đề nào sau đây đúng?
Dựa vào hình vẽ và diện tích hình phẳng ta có:
(hệ số góc của tiếp tuyến tại x = 1)
Như vậy
Cho hàm số
xác định trên
thỏa mãn
và
. Hệ số góc của phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Lại có
Từ đó suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Vậy hệ số góc phương trình tiếp tuyến cần tìm là 1.
Cho hàm
có đạo hàm liên tục trên
. Gọi
là hình phẳng giới hạn bởi đồ thị hàm số
và đường thẳng
(phần gạch chéo trong hình vẽ):

Diện tích hình
bằng:
Diện tích phần gạch chéo là:
.
Cho hàm số
liên tục trên đoạn
có đồ thị gồm hai đoạn thẳng và nửa đường tròn như hình vẽ:

Tính giá trị
?
Hình vẽ minh họa
Dựa vào đồ thị ta có: suy ra phương trình đường thẳng
Phương trình đường tròn :
Điểm nên phương trình đường thẳng
là:
Vậy
Cho hàm số
liên tục trên
. Gọi
là hình phẳng giới hạn bởi hai đồ thị
và các đường thẳng
. Diện tích hình
được tính theo công thức?
Ta có diện tích hình (H) được tính bằng công thức .
Cho hình phẳng
giới hạn bởi đồ thị hàm số
và các đường thẳng
. Thể tích
của khối tròn xoay sinh ra khi cho hình phẳng
quay quanh trục?
Thể tích V của khối tròn xoay sinh ra khi cho hình phẳng quay quanh trục
là:
.
Diện tích hình phẳng H được giới hạn bởi hai đồ thị
và
được tính theo công thức
Phương trình hoành độ giao điểm của và
là:
Vậy diện tích hình phẳng được giới hạn bởi hai đồ thị
và
được tính theo công thức
.
Tính tích phân
?
Ta có:
Họ nguyên hàm của hàm số
là:
Ta có:
Tìm nguyên hàm của hàm của hàm số ![]()
Cho hàm số
biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành. Chọn công thức đúng của
?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(0; 1)
=>
=> Hay
Cho hàm số f(x) xác định trên
thỏa mãn
. Tính giá trị của biểu thức ![]()
=>
Theo bài ra ta có:
=>
=>
Một ô tô đang chạy đều với vận tốc
thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng
. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là
. Sai||Đúng
c)
. Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là
. Sai||Đúng
Một ô tô đang chạy đều với vận tốc thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng . Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là . Sai||Đúng
c) . Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là . Sai||Đúng
a) Khi xe dừng hẳn thì vận tốc bằng . Mệnh đề đúng
b) Cho . Mệnh đề sai
c) . Mệnh đề đúng
d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là . Mệnh đề sai
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Ta có: nên
là một nguyên hàm của hàm số
.