Cho hàm số
liên tục trên tập số thực và thỏa mãn ![]()
![]()
. Khi đó giá trị
bằng:
Ta có:
Cho hàm số
liên tục trên tập số thực và thỏa mãn ![]()
![]()
. Khi đó giá trị
bằng:
Ta có:
Cho hình phẳng
giới hạn bởi đồ thị hàm số
và các đường thẳng
. Thể tích
của khối tròn xoay sinh ra khi cho hình phẳng
quay quanh trục?
Thể tích V của khối tròn xoay sinh ra khi cho hình phẳng quay quanh trục
là:
.
Hình phẳng giới hạn bởi đồ thị hàm số
liên tục trên đoạn
, trục Ox và hai đường thẳng
có diện tích là:
Công thức tính diện tích cần tìm là: .
Họ nguyên hàm của hàm số
là:
Ta có:
Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và
. Giá trị của f(2) là:
Chọn f(x) = ax3 + bx2 + cx + d
Ta có:
Vậy => f(x) = 20
Cho hàm số
có đạo hàm liên tục trên
,
và thỏa mãn hệ thức
với
. Giá trị của
là:
Ta có:
Mặt khác
Vậy
Vì .
Biết rằng
. Xác định
?
Ta có:
Do đó:
Cho
là hình phẳng giới hạn bởi parabol
và nửa elip có phương trình
(với
) và trục hoành (phần tô đậm trong hình vẽ).

Gọi
là diện tích của, biết
(với
). Tính
?
Hoành độ giao điểm của hai đồ thị:
Do tính chất đối xứng của đồ thị nên
. Đặt
Đổi cận
Với
Suy ra
Vậy
Cho hàm số f(x) xác định trên
thỏa mãn
. Giá trị của biểu thức
là bao nhiêu?
Ta có:
Khi đó
Cho hàm số
liên tục và có đạo hàm trên
thỏa mãn
. Biết rằng
trong đó
. Kết luận nào sau đây đúng?
Ta có:
.
Tính . Đặt
khi đó:
Theo bài ra ta có:
Tìm nguyên hàm
của hàm số
?
Ta có:
Vậy một nguyên hàm của hàm số là .
Cho hàm số
có đồ thị như hình vẽ:

Các biểu thức
xác định bởi
. Mệnh đề nào sau đây đúng?
Dựa vào hình vẽ và diện tích hình phẳng ta có:
(hệ số góc của tiếp tuyến tại x = 1)
Như vậy
Cho hình phẳng
giới hạn bởi đường cong
, trục hoành và các đường thẳng
. Khối tròn xoay tạo thành khi quay
quanh trục hoành có thể tích V bằng bao nhiêu?
Ta có:
.
Một vật chuyển động với vận tốc thay đổi theo thời gian được tính bởi công thức
, thời gian tính theo đơn vị giây, quãng đường vật đi được tính theo đơn vị mét. Biết tại thời điểm
thì vật đi được quãng đường là
. Hỏi tại thời điểm
thì vật đi được quãng đường là bao nhiêu?
Quãng đường vật đi được từ thời điểm đến
Xét hình phẳng
giới hạn bởi các đường như hình vẽ (phần gạch sọc).

Diện tích hình phẳng
được tính theo công thức
Ta có:
Thể tích khối tròn xoay khi quay quanh trục Ox hình phẳng giới hạn bởi
là
. Tính
?
Phương trình hoành độ giao điểm
Ta có:
Vậy
Một vật chuyển động chậm dần với vận tốc
. Hỏi rằng trong
trước khi dừng hẳn vật di chuyển được bao nhiêu mét?
Khi dừng hẳn
Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:
.
Một chất điểm chuyển động với gia tốc
. Vận tốc ban đầu của chất điểm là
. Hỏi vận tốc của chất điểm sau khi chuyển động với gia tốc đó được
giây bằng bao nhiêu?
Ta có:
Tìm tất cả các giá trị thực của tham số
thỏa mãn
?
Ta có:
Cho
là một nguyên hàm của hàm số
thỏa mãn
. Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
là một nguyên hàm của hàm số
suy ra
có dạng
Theo bài ra ta có:
Vậy .
Cho hàm số
có đạo hàm trên
thỏa mãn
với
ta có:
. Tính tích phân
?
Ta có:
Lấy nguyên hàm hai vế ta được:
Theo bài ra ta có:
Vì nên nhận
Vậy
Tìm nguyên hàm của hàm số
là
Ta có:
Cho
với
là các số hữu tỉ. Giá trị của biểu thức
bằng:
Ta có:
Suy ra
Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất
, sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).

Đáp án: 667m
Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất , sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).
Đáp án: 667m
Giả sử hàm số biểu thị cho vận tốc có dạng
Do đi qua gốc
nên
có đỉnh là
Do đó
Xe dừng lại khi
Quảng đường xe ô tô di chuyển trong 20 giây là
Cho các hàm số
và
liên tục trên
và số
tùy ý. Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là:
Cho hàm số
liên tục trên
và có đồ thị
cắt trục
tại ba điểm có hoành độ
với
như hình bên. Đặt
. Diện tích của hình phẳng giới hạn bởi đồ thị
và trục hoành (phần tô đậm) bằng bao nhiêu?

Diện tích hình phẳng phần tô đậm được tính như sau:
Cho hàm số
là một nguyên hàm của hàm số
.Phát biểu nào sau đây đúng?
Ta có
Vậy đáp án cần tìm là: .
Cho hàm số y = f(x) liên tục, f(x) nhận giá trị dương trên
và thỏa mãn f(1) = 1,
. Mệnh đề nào sau đây đúng?
Ta có: và
=>
=>
Mà f(1) = 1 => và
Cho hàm số
là các hàm số liên tục trên
và thỏa mãn
và
. Tính tích phân
?
Theo bài ra ta có:
Cho đồ thị hàm số
như hình vẽ và
.

Tính diện tích của phần được gạch chéo theo
.
Từ đồ thị ta suy ra
Do đó, diện tích phần gạch chéo là
.
Cho hàm số
liên tục trên đoạn
. Diện tích
của hình phẳng giới hạn bởi đồ thị của hàm số
, trục hoành và hai đường thẳng
được tính theo công thức
Theo lí thuyết về tính diện tích hình phẳng ta có diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số , trục hoành và hai đường thẳng
được tính theo công thức:
.
Cho hàm số
là một nguyên hàm của
, biết rằng
. Khi đó giá trị
là:
Ta có:
Mà . Vậy với
thì
Vậy .
Một chiếc máy bay di chuyển với vận tốc là
. Hỏi quãng đường máy bay đi được từ giây thứ
đến giây thứ
bằng bao nhiêu?
Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là:
Nguyên hàm của hàm số
là
Ta có: .
Tìm họ nguyên hàm của hàm số ![]()
Cho
là các số hữu tỉ thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
Cho vật thể có mặt đáy là hình tròn có bán kính bằng
như hình vẽ:

Khi cắt vật thể bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ
thì được thiết diện là một tam giác đều. Tính thể tích
của vật thể đó.?
Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ thì được thiết diện là một tam giác đều có cạnh bằng
Do đó, diện tích của thiết diện:
Nếu
. Khi đó
bằng:
Ta có: .
Cho
với
là các số hữu tỉ. Khi đó
bằng:
Ta có:
Suy ra .
Thể tích khối tròn xoay khi quay hình phẳng
giới hạn bởi các đường
quanh trục
có kết quả có dạng
với
là các số nguyên dương và
là phân số tối giản. Khi đó giá trị của
bằng:
Phương trình hoành độ giao
Thể tích cần tính
Suy ra .