Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 4. Nguyên hàm Tích phân được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tìm tổng các nghiệm của phương trình F(x) = x, biết F(x) là một nguyên hàm của hàm số f\left( x ight) = \frac{x}{{\sqrt {8 - {x^2}} }} thỏa mãn F(2) = 0 

    \begin{matrix}  F\left( x ight) = \int {f\left( x ight)dx}  \hfill \\   = \int {\dfrac{x}{{\sqrt {8 - {x^2}} }}dx}  = \dfrac{1}{2}\int {d\frac{x}{{\sqrt {8 - {x^2}} }}d\left( {8 - {x^2}} ight)}  \hfill \\   \Rightarrow F\left( x ight) =  - \sqrt {8 - {x^2}}  + C \hfill \\ \end{matrix}

    Ta có: F(2) = 0 => C = 2

    => F\left( x ight) =  - \sqrt {8 - {x^2}}  + 2

    Xét phương trình F(x) = x ta có:

    \begin{matrix}  F\left( x ight) = x \hfill \\   \Leftrightarrow  - \sqrt {8 - {x^2}}  + 2 = x \hfill \\   \Leftrightarrow \sqrt {8 - {x^2}}  = 2 - x \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {2 - x \geqslant 0} \\   {8 - {x^2} = {{\left( {2 - x} ight)}^2}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 2} \\   {{x^2} - 2x + 2 = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 2} \\   {x = 1 \pm \sqrt 3 } \end{array}} ight. \Leftrightarrow x = 1 - \sqrt 3  \hfill \\ \end{matrix}

    Vậy tổng các nghiệm của phương trình đã cho bằng x = 1 - \sqrt 3

  • Câu 2: Vận dụng

    Cho hàm số F(x) là một nguyên hàm của hàm số f(x) = \frac{2\cos x -1}{\sin^{2}x}. Biết rằng giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3}. Chọn mệnh đề đúng trong các mệnh đề sau?

    Ta có:

    F(x) = \int_{}^{}{f(x)dx} =\int_{}^{}{\frac{2\cos x}{\sin^{2}x}dx} -\int_{}^{}{\frac{1}{\sin^{2}x}dx}

    = \int_{}^{}{\frac{2}{\sin^{2}x}d\left(\sin x ight)} - \int_{}^{}{\frac{1}{\sin^{2}x}dx}

    = - \frac{2}{\sin x} + \cot x +
C

    Suy ra F'(x) = f(x) = \frac{2\cos x -1}{\sin^{2}x}

    Trên khoảng (0;\pi) ta có:

    F'(x) = 0 \Leftrightarrow 2\cos x - 1= 0 \Leftrightarrow x = \frac{\pi}{3}

    Ta có bảng biến thiên

    Giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3} nên t s có:

    F\left( \frac{\pi}{3} ight) = \sqrt{3}
\Leftrightarrow - \frac{3\sqrt{3}}{3} + C = \sqrt{3} \Leftrightarrow C =
2\sqrt{3}

    Vậy F(x) = - \frac{2}{\sin x} + \cot x +
2\sqrt{3} \Rightarrow F\left( \frac{\pi}{6} ight) = 3\sqrt{3} -
4.

  • Câu 3: Nhận biết

    Cho F(x) là một nguyên hàm của hàm số f(x). Khi đó hiệu số F(0) - F(1) bằng:

    Theo định nghĩa tích phân ta có:

    \int_{0}^{1}{f(x)dx} = F(1) -
F(0) suy ra F(0) - F(1) = -
\int_{0}^{1}{f(x)dx}.

  • Câu 4: Nhận biết

    Giả sử f(x);g(x) là các hàm số bất kì liên tục trên \mathbb{R}a;b;c là các số thực. Mệnh đề nào sau đây sai?

    Theo tính chất tích phân ta có:

    \int_{a}^{b}{f(x)dx} +
\int_{b}^{c}{f(x)dx} + \int_{c}^{a}{f(x)dx}

    = \int_{a}^{b}{f(x)dx} +
\int_{b}^{c}{f(x)dx} - \int_{a}^{c}{f(x)dx}

    = \int_{a}^{c}{f(x)dx} -
\int_{a}^{c}{f(x)dx} = 0

    \int_{a}^{b}{c.f(x)dx} =
c.\int_{a}^{b}{f(x)dx};\forall x\mathbb{\in R}

    \int_{a}^{b}{\left\lbrack f(x) - g(x)
ightbrack dx} + \int_{a}^{b}{g(x)dx}

    = \int_{a}^{b}{f(x)dx} -
\int_{a}^{b}{g(x)dx} + \int_{a}^{b}{g(x)dx}

    = \int_{a}^{b}{f(x)dx}

    Vậy mệnh đề sai: \int_{a}^{b}{\left\lbrack f(x)g(x) ightbrack
dx} = \int_{a}^{b}{f(x)dx}.\int_{a}^{b}{g(x)dx}

  • Câu 5: Thông hiểu

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)\left( x^{2} - 3 ight)\left(
x^{4} - 1 ight) với \forall
x\mathbb{\in R}. Chọn kết luận đúng?

    Ta có: f'(x) = (x - 1)\left( x^{2} -
3 ight)\left( x^{4} - 1 ight)

    = x^{7} - x^{6} - 3x^{5} + 3x^{4} -
x^{3} + x^{2} + 3x - 3

    Ta có:

    I_{1} = \int_{-
2}^{0}{f'(x)dx}

    = \int_{- 2}^{0}{\left( x^{7} - x^{6} -
3x^{5} + 3x^{4} - x^{3} + x^{2} + 3x - 3 ight)dx}

    = \frac{- 464}{105} < 0 \Rightarrow
f(0) - f( - 2) < 0 \Rightarrow f(0) < f( - 2)

    I_{2} =
\int_{0}^{2}{f'(x)dx}

    = \int_{0}^{2}{\left( x^{7} - x^{6} -
3x^{5} + 3x^{4} - x^{3} + x^{2} + 3x - 3 ight)dx}

    = \frac{44}{105} < 0 \Rightarrow f(2)
- f(0) < 0 \Rightarrow f(2) < f(0)

    Vậy f(2) < f(0) < f( -
2).

  • Câu 6: Vận dụng

    Cho F(x) là một nguyên hàm của hàm số f(x) = \frac{2x + 1}{x^{3} + 2x^{3} +
x^{2}} trên khoảng (0; +
\infty) thỏa mãn F(1) =
\frac{1}{2}. Giá trị của biểu thức T = F(1) + F(2) + F(3) + ... + F(2019) bằng:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\frac{2x + 1}{x^{2}(x + 1)^{2}}dx} = \int_{}^{}{\left(
\frac{1}{x^{2}} - \frac{1}{(x + 1)^{2}} ight)dx}

    Suy ra F(x) = - \frac{1}{x} + \frac{1}{x
+ 1} + CF(1) = \frac{1}{2}
\Rightarrow C = 1 .Hay F(x) = -
\frac{1}{x} + \frac{1}{x + 1} + 1

    Ta có:

    T = F(1) + F(2) + F(3) + ... +
F(2019)

    T = \left( - \frac{1}{1} + \frac{1}{2} +
1 ight) + \left( - \frac{1}{2} + \frac{1}{3} + 1 ight) + \left( -
\frac{1}{3} + \frac{1}{4} + 4 ight) + ... + \left( - \frac{1}{2019} +
\frac{1}{2020} + 1 ight)

    T = - 1 + \frac{1}{2020} + 2019.1 = 2018
+ \frac{1}{2020} = 2018\frac{1}{2020}

  • Câu 7: Thông hiểu

    Cho hàm số y = x^{2} - 2x có đồ thị (P). Các tiếp tuyến với đồ thị tại O(0;0) và tại A(3;3) cắt nhau tại B. Tính diện tích hình phẳng giới hạn bởi cung OA của (P) và hai tiếp tuyến BO;BA?

    Tập xác định D\mathbb{= R}

    y' = 2x - 2

    Tiếp tuyến tại O(0; 0) là OB: y =
y'(0)(x - 0) + 0 \Leftrightarrow y = - 2x

    Tiếp tuyến tại A(3; 3) là AB: y =
y'(3)(x - 3) + 3 \Leftrightarrow y = 4x - 9

    Suy ra OA \cap OB = B\left( \frac{3}{2};
- 3 ight)

    Diện tích hình giới hạn là

    S = \int_{0}^{\frac{3}{2}}{x^{2}dx} +
\int_{\frac{3}{2}}^{3}{\left( x^{2} - 6x + 9 ight)dx} = \frac{9}{8} +
\frac{9}{8} = \frac{9}{4}

  • Câu 8: Vận dụng cao

    Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.

    Đáp án: 6750000 đồng.

    Đáp án là:

    Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.

    Đáp án: 6750000 đồng.

    Gọi phương trình parabol (P):y = ax^{2} +
bx + c.

    Do tính đối xứng của parabol nên ta có thể chọn hệ trục tọa độ Oxy sao cho ( P) có đỉnh I ∈ Oy (như hình vẽ)

    Ta có hệ phương trình: \left\{
\begin{matrix}
\frac{9}{4} = c\ (I \in (P))\ \ \ \ \ \ \  \\
\frac{9}{4}a - \frac{3}{2}b + c = 0 \\
\frac{9}{4}a - \frac{3}{2}b + c = 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
c = \frac{9}{4} \\
a = - 1 \\
b = 0 \\
\end{matrix} ight.\  ight.

    Vậy (P):y = - x^{2} +
\frac{9}{4}

    Dựa vào đồ thị, diện tích cửa parabol là: S = \int_{\frac{- 3}{2}}^{\frac{3}{2}}\left( -
x^{2} + \frac{9}{4} ight)dx = 2\left. \ \left( - \frac{x}{3}^{3} +
\frac{9}{4}x ight) ight|_{0}^{\frac{9}{4}} =
\frac{9}{2}(m^{2}).

    Số tiền phải trả là \frac{9}{2}.1500000 =
6750000 đồng.

  • Câu 9: Vận dụng cao

    Một biển quảng cáo có dạng hình elip với bốn đỉnh A_{1};A_{2};B_{1};B_{2} như hình vẽ:

    Người ta chia elip bởi Parabol có đỉnh B_{1}, trục đối xứng B_{1}B_{2} và đi qua các điểm M;N. Sau đó sơn phần tô đậm với giá 200 nghìn đồng/m2 và trang trí đèn led phần còn lại với giá 500 nghìn đồng/m2. Hỏi kinh phí sử dụng gần nhất với giá trị nào dưới đây? Biết rằng A_{1}A_{2} =4m;B_{1}B_{2} = MN = 2m

    Chọn hệ trục tọa độ Oxy sao cho O là trung điểm của A1A2. Tọa độ các đỉnh A1(−2; 0), A2(2; 0), B1(0; −1), B2(0; 1)

    Phương trình đường Elip (E):\frac{x^{2}}{4} + \frac{y^{2}}{9} = 1\Leftrightarrow y = \pm \sqrt{1 - \frac{x^{2}}{4}}

    Ta có: M\left( - 1;\frac{\sqrt{3}}{2}ight),N\left( 1;\frac{\sqrt{3}}{2} ight) \in (E)

    Parabol (P) có đỉnh B1(0; −1) và trục đối xứng là Ox nên (P) có phương trình y = ax^{2} - 1, (a > 0), đi qua M; N

    \Rightarrow a = \frac{\sqrt{3}}{2} + 1\Rightarrow (P):y = \left( \frac{\sqrt{3}}{2} + 1 ight)x^{2} -1

    Diện tích phần tô đậm

    S_{1} = 2\int_{0}^{1}{\left\lbrack\sqrt{1 - \frac{x^{2}}{4}} - \left( \frac{\sqrt{3}}{2} + 1 ight)x^{2}+ 1 ightbrack dx}

    = \int_{0}^{1}{\sqrt{4 - x^{2}}dx} -\frac{2}{3}\left( \frac{\sqrt{3}}{2} + 1 ight) + 2

    Đặt x = 2\sin t;t \in \left\lbrack -\frac{\pi}{2};\frac{\pi}{2} ightbrack \Rightarrow dx =2\cos tdt

    Đổi cận \left\{ \begin{matrix}x = 0 \Rightarrow t = 0 \\x = 1 \Rightarrow t = \dfrac{\pi}{6} \\\end{matrix} ight.

    \Rightarrow S_{1} =\int_{0}^{\frac{\pi}{6}}{\sqrt{4 - 4\sin^{2}t}.2\cos tdt} -\frac{2}{3}\left( \frac{\sqrt{3}}{2} + 1 ight) + 2

    = 4\int_{0}^{\frac{\pi}{6}}{\cos^{2}tdt}- \frac{\sqrt{3}}{4} + \frac{4}{3} = 2\int_{0}^{\frac{\pi}{6}}{(1 +\cos2t)dt} - \frac{\sqrt{3}}{4} + \frac{4}{3}

    = \left. \ (2t + \sin2t)ight|_{0}^{\frac{\pi}{6}} - \frac{\sqrt{3}}{4} + \frac{4}{3} =\frac{\pi}{3} + \frac{\sqrt{3}}{6} + \frac{4}{3}

    Diện tích hình Elip là S = πab = 2π

    Suy ra diện tích phần còn lại là: S_{2} =S - S_{1} = \frac{5\pi}{3} - \frac{\sqrt{3}}{6} -\frac{4}{3}

    Kinh phí sử dụng là 2.10^{5}S_{1} +5.10^{5}S_{2} \approx 2.341.000 đồng.

  • Câu 10: Vận dụng

    Một quả bóng bầu dục có khoảng cách giữa 2 điểm xa nhất bằng 10 cm và cắt quả bóng bằng mặt phẳng trung trực của đoạn thẳng đó thì được đường tròn có diện tích bằng 16\pi\left( \ cm^{2}
ight). Thể tích của quả bóng bằng (Tính gần đúng đến hai chữ số thập phân, đơn vị lít)

    Quả bóng bầu dục sẽ có dạng elip.

    Độ dài trục lớn bằng 20\ cm \Rightarrow2a = 20 \Rightarrow a = 5\ \ (cm)

    Ta có diện tích đường tròn thiết diện là

    S = \pi b^{2} = 16\pi \Rightarrow b =4(\ cm)

    Ta sẽ có phương trình elip \frac{x^{2}}{25} + \frac{y^{2}}{16} =
1

    \Rightarrow V = \pi\int_{-
5}^{5}{16\left( 1 - \frac{x^{2}}{25} ight)}dx \approx 335\ \ \left( \
cm^{3} ight) = 0,34\ (l).

  • Câu 11: Nhận biết

    Hình phẳng giới hạn bởi đồ thị hàm số y =
f(x) liên tục trên đoạn \lbrack
1;3brack, trục Ox và hai đường thẳng x = 1;x = 3 có diện tích là:

    Công thức tính diện tích cần tìm là: S =
\int_{1}^{3}{\left| f(x) ight|dx}.

  • Câu 12: Nhận biết

    Tích phân \int_{0}^{1}\frac{dx}{2x +
5} bằng:

    Ta có: \int_{0}^{1}\frac{dx}{2x + 5} =
\frac{1}{2}\int_{0}^{1}\frac{d(2x + 5)}{2x + 5}

    = \left. \ \frac{1}{2}\ln(2x + 5)
ight|_{0}^{1} = \frac{1}{2}\ln\frac{7}{5}

  • Câu 13: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =
e^{x}\left( 2017 - \frac{2018e^{- x}}{x^{5}} ight)?

    Ta có: \int_{}^{}\left\lbrack e^{x}\left(
2017 - \frac{2018e^{- x}}{x^{5}} ight) ightbrack dx =
\int_{}^{}\left( 2017e^{x} - \frac{2018}{x^{5}} ight)dx

    = 2017e^{x} + \frac{504,5}{x^{4}} +
C

  • Câu 14: Nhận biết

    Cho hình phẳng (H) giới hạn bởi các đường y = \cos x;y = 0;x = 0;x =
\frac{\pi}{2}. Thể tích vật thể tròn xoay có được khi (H) quay quanh trục Ox bằng:

    Gọi V là thể tích khối tròn xoay cần tính. Ta có:

    V = \pi\int_{0}^{\frac{\pi}{2}}{\left(\cos x ight)^{2}dx} = \pi\int_{0}^{\frac{\pi}{2}}{\frac{1 +\cos2x}{2}dx}

    = \pi\left. \ \left( \frac{x}{2} +\frac{\sin2x}{4} ight) ight|_{0}^{\frac{\pi}{2}} =\frac{\pi^{2}}{4}

  • Câu 15: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =
sin3x.

    Ta có \left( - \frac{1}{3}cos3x + C
ight)' = sin3x.

  • Câu 16: Vận dụng

    Một mảnh vườn hình elip có trục lớn bằng 100m, trục nhỏ bằng 80m được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là 200 mỗi m^{2} trồng cây con và 4000 mỗi m^{2} trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một mảnh vườn hình elip có trục lớn bằng 100m, trục nhỏ bằng 80m được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là 200 mỗi m^{2} trồng cây con và 4000 mỗi m^{2} trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Nhận biết

    Họ nguyên hàm của hàm số f(x) = 2x +\sin2x là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{(2x +\sin2x)dx}

    = 2.\frac{x^{2}}{2} - \frac{1}{2}\cos2x +c = x^{2} - \frac{1}{2}\cos2x + c

  • Câu 18: Nhận biết

    Hàm số y = {x^3} + x có nguyên hàm là:

     Ta có: \int {\left( {{x^3} + x} ight)dx}  = \int {{x^3}dx}  + \int {xdx}  = \frac{1}{4}{x^4} + \frac{1}{2}{x^2} + C

  • Câu 19: Thông hiểu

    Giá trị của H = \int_{0}^{1}{\left(
\frac{1}{2x + 1} + 3\sqrt{x} ight)dx}?

    Ta có:

    H = \int_{0}^{1}{\left( \frac{1}{2x + 1}
+ 3\sqrt{x} ight)dx} = \left. \ \left( \frac{1}{2}\ln|2x + 1| +
2x^{\frac{3}{2}} ight) ight|_{0}^{1} = 2 + \ln\sqrt{3}

  • Câu 20: Vận dụng

    Cho hàm số f(x) xác định trên \mathbb{R}\backslash \left\{ 1 ight\} thỏa mãn f'\left( x ight) = \frac{1}{{x - 1}};f\left( 0 ight) = 2017;f\left( 2 ight) = 2018. Giá trị của biểu thức T = \left[ {f\left( 3 ight) - 2018} ight].\left[ {f\left( { - 1} ight) - 2017} ight] là bao nhiêu?

     \begin{matrix}  f\left( x ight) = \int {f'\left( x ight)dx}  = \int {\dfrac{1}{{x - 1}}dx}  \hfill \\   = \ln \left| {x - 1} ight| + C = \left\{ {\begin{array}{*{20}{c}}  {\ln \left( {x - 1} ight) + {C_1}{\text{ khi x  >  1}}} \\   {\ln \left( {1 - x} ight) + {C_2}{\text{ khi x  <  1}}} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) = 2017 \Rightarrow \ln \left( {1 - 0} ight) + {C_2} = 2017} \\   {f\left( 2 ight) = 2018 \Rightarrow \ln \left( {2 - 1} ight) + {C_1} = 2018} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{C_2} = 2017} \\   {{C_1} = 2018} \end{array}} ight.

    Khi đó

    \begin{matrix}  T = \left[ {f\left( 3 ight) - 2018} ight].\left[ {f\left( { - 1} ight) - 2017} ight] \hfill \\   = \left[ {\ln \left( {3 - 1} ight) + 2018 - 2018} ight].\left[ {\ln \left( {1 - \left( { - 1} ight)} ight) + 2017 - 2017} ight] \hfill \\   = \ln 2.\ln 2 = {\ln ^2}2 \hfill \\ \end{matrix}

  • Câu 21: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = \cos 3x

     Ta có: \int {\cos 3xdx}  = \frac{{\sin 3x}}{3} + C

  • Câu 22: Nhận biết

    Cho hàm số y = f(x) liên tục trên \lbrack a;bbrack, có đồ thị hàm số y = f'(x) như sau:

    Mệnh đề nào dưới đây là đúng?

    Theo ý nghĩa hình học của tích phân thì \int_{a}^{b}{f'(x)dx} là diện tích hình thang cong ABMN.

  • Câu 23: Thông hiểu

    Cho \int_{0}^{3}{\frac{e^{\sqrt{x +
1}}}{\sqrt{x + 1}}dx} = ae^{2} + be + c với a;b;c\mathbb{\in Z}. Tính S = a + b + c?

    Ta có:

    \int_{0}^{3}{\frac{e^{\sqrt{x +
1}}}{\sqrt{x + 1}}dx} = 2\int_{0}^{3}{e^{\sqrt{x + 1}}d\left( \sqrt{x +
1} ight)} = \left. \ \left( 2e^{\sqrt{x + 1}} ight) ight|_{0}^{3}
= 2e^{2} - 2e

    Vậy a = 2;b = - 2;c = 0 \Rightarrow S =
0

  • Câu 24: Nhận biết

    Một vật chuyển động chậm dần với vận tốc v(t) = 150 - 15t(m/s). Hỏi rằng trong 5s trước khi dừng hẳn vật di chuyển được bao nhiêu mét?

    Khi dừng hẳn v(t) = 150 - 15t = 0
\Rightarrow t = 10(s)

    Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:

    S = \int_{0}^{10}{v(t)dt} =
\int_{0}^{10}{(150 - 15t)dt} = \frac{375}{2}m.

  • Câu 25: Thông hiểu

    Tìm nguyên hàm F(x) của hàm số f(x) = x\sin x, biết rằng F\left( \frac{\pi}{2} ight) = 2019?

    Ta có: \left\{ \begin{matrix}
u = x \\
dv = \sin xdx \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
du = dx \\
v = - \cos x \\
\end{matrix} ight.

    \Rightarrow \int_{}^{}{x\sin xdx} = -
x\cos x - \int_{}^{}{\left( - \cos x ight)dx} + C = - x\cos x + \sin x
+ C

    F\left( \frac{\pi}{2} ight) = -
\frac{\pi}{2}\cos\frac{\pi}{2} + \sin\frac{\pi}{2} + C = 2019
\Rightarrow C = 2018

    Vậy F(x) = - x\cos x + \sin x +
2018.

  • Câu 26: Nhận biết

    Cho hình phẳng D giới hạn bởi đường cong y = e^{x}, trục hoành và các đường thẳng x = 0;x = 1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?

    Ta có:

    V = \pi\int_{0}^{1}{e^{2x}dx} = \left. \
\frac{\pi}{2}e^{2x} ight|_{0}^{1} = \frac{\pi\left( e^{2} - 1
ight)}{2}.

  • Câu 27: Nhận biết

    Cho các hàm số y = f(x)y = g(x) liên tục trên \lbrack a;bbrack và số k tùy ý. Trong các khẳng định sau, khẳng định nào sai?

    Khẳng định sai là: \int_{a}^{b}{x.f(x)dx}
= x\int_{a}^{b}{f(x)dx}

  • Câu 28: Thông hiểu

    Cho \int {f\left( x ight)dx}  = F\left( x ight) + C. Với a e 0, khẳng định nào sau đây đúng?

     Xét \int {f\left( {ax + b} ight)dx}, đặt t = ax + b

    => I = \int {f\left( t ight)d\left( {\frac{{t - b}}{a}} ight) = \frac{1}{a}} \int {f\left( t ight)dt = \frac{1}{a}} \int {f\left( x ight)d} x

    => \int {f\left( {ax + b} ight)d\left( {ax + b} ight) = \frac{1}{a}\left[ {F\left( {ax + b} ight) + C'} ight] = \frac{1}{a}F\left( {ax + b} ight) + C}

  • Câu 29: Vận dụng

    Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất v =
50m/s, sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).

    Đáp án: 667m

    Đáp án là:

    Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất v =
50m/s, sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).

    Đáp án: 667m

    Giả sử hàm số biểu thị cho vận tốc có dạng (P):v(t) = at^{2} + bt + c\left( a,b,c\mathbb{\in
R} ight)

    Do (P) đi qua gốc O nên c =
0

    (P) có đỉnh là I(10;50) \Rightarrow \left\{ \begin{matrix}
\frac{- b}{2a} = 10 \\
50 = a.100 + b.10 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - \frac{1}{2} \\
b = 10 \\
\end{matrix} ight.

    Do đó (P):v(t) = - \frac{1}{2}t^{2} +
10t

    Xe dừng lại khi v(t) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = 0 \\
t = 20 \\
\end{matrix} ight.

    Quảng đường xe ô tô di chuyển trong 20 giây là S = \int_{0}^{20}{\left( - \frac{1}{2}t^{2} + 10t
ight)dt} \approx 667m

  • Câu 30: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\frac{1}{x} + \sin x là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\left( \frac{1}{x} + \sin x ight)dx} = \ln|x| - \cos x +
C.

  • Câu 31: Thông hiểu

    Giả sử \int_{}^{}\frac{(2x + 3)dx}{x(x +
1)(x + 2)(x + 3) + 1} = - \frac{1}{g(x)} + C với C là hằng số. Tổng các nghiệm của phương trình g(x) = 0 bằng:

    Ta có: \int_{}^{}\frac{(2x + 3)dx}{x(x +
1)(x + 2)(x + 3) + 1} = \int_{}^{}\frac{(2x + 3)dx}{\left( x^{2} + 3x +
2 ight)\left( x^{2} + 3x ight) + 1}

    Đặt t = x^{2} + 3x \Rightarrow dt = (2x +
3)dx

    \int_{}^{}\frac{dt}{(t + 2)t + 1} =
\int_{}^{}\frac{dt}{(t + 1)^{2}} = - \frac{1}{t + 1} + C = -
\frac{1}{x^{2} + 3x + 1} + C

    \Rightarrow g(x) = x^{2} + 3x +
1

    Theo định lí Vi – et ta thấy phương trình g(x) = 0 có hai nghiệm x_{1};x_{2}x_{1} + x_{2} = - 3.

  • Câu 32: Thông hiểu

    Cho hình thang cong (H) giới hạn bởi các đường y = \frac{1}{x};y = 0;x = 1;x
= 5. Đường thẳng x = k;1 < k
< 5 chia (H) thành hai phần có diện tích S_{1}S_{2} (hình vẽ bên).

    Tính giá trị k để S_{1} = 2S_{2}?

    Ta có: \frac{1}{x} > 0;x >
1 do đó ta được:

    S_{1} = \int_{1}^{k}{\frac{1}{x}dx} =
\left. \ \ln x ight|_{1}^{k} = \ln k

    S_{2} = \int_{k}^{5}{\frac{1}{x}dx} =
\left. \ \ln x ight|_{k}^{5} = ln5 - \ln k

    Theo bài ra ta có:

    S_{1} = 2S_{2}

    \Leftrightarrow \ln k = 2\left( ln5 - \ln
k ight) \Leftrightarrow k = \sqrt[3]{25}.

  • Câu 33: Vận dụng cao

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash \left\{ 0 ight\} thỏa mãn f\left( x ight) + x'f\left( x ight) = 3{x^2};f\left( 2 ight) = 8. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

     Ta có:

    \begin{matrix}  f\left( x ight) + x'f\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left( x ight)'f\left( x ight) + xf'\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left[ {xf\left( x ight)} ight]' = 3{x^2} \hfill \\ \end{matrix}

    Lấy nguyên hàm hai vế ta được:

    \begin{matrix}  \int {\left[ {xf\left( x ight)} ight]'dx = \int {3{x^2}dx} }  \hfill \\   \Leftrightarrow xf\left( x ight) = {x^3} + C \hfill \\ \end{matrix}

    Mặt khác f\left( 2 ight) = 8 \Rightarrow 3.f\left( 2 ight) = 8 + C \Rightarrow C = 8

    => xf\left( x ight) = {x^3} + 8 \Rightarrow f\left( x ight) = \frac{{{x^3} + 8}}{x}

    Xét phương trình hoành độ giao điểm \frac{{{x^3} + 8}}{x} = 0 \Rightarrow x =  - 2

    Ta có: f'\left( x ight) = \frac{{2{x^3} - 8}}{{{x^2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {f'\left( { - 2} ight) =  - 6} \\   {f\left( { - 2} ight) = 0} \end{array}} ight.

    Phương trình tiếp tuyến tại giao điểm với trục hoành là:

    y = f'\left( { - 2} ight)\left( {x + 2} ight) + f\left( { - 2} ight) \Rightarrow y =  - 6x - 12

  • Câu 34: Thông hiểu

    Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

    a) \int_{0}^{\frac{\pi}{2}}{\sin2x.f\left( \sin xight)dx} = 2\int_{0}^{1}{x.f(x)dx} Đúng||Sai

    b) \int_{0}^{1}{\frac{f\left( e^{x}
ight)}{e^{x}}dx} = \int_{1}^{e}{\frac{f(x)}{x^{2}}dx} Đúng||Sai

    c) \int_{0}^{a}{x^{3}f\left( x^{2}
ight)dx} = \frac{1}{2}\int_{0}^{a^{2}}{x.f(x)dx} Đúng||Sai

    Đáp án là:

    Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

    a) \int_{0}^{\frac{\pi}{2}}{\sin2x.f\left( \sin xight)dx} = 2\int_{0}^{1}{x.f(x)dx} Đúng||Sai

    b) \int_{0}^{1}{\frac{f\left( e^{x}
ight)}{e^{x}}dx} = \int_{1}^{e}{\frac{f(x)}{x^{2}}dx} Đúng||Sai

    c) \int_{0}^{a}{x^{3}f\left( x^{2}
ight)dx} = \frac{1}{2}\int_{0}^{a^{2}}{x.f(x)dx} Đúng||Sai

    Ta có:

    \int_{0}^{\frac{\pi}{2}}{\sin2x.f\left(\sin x ight)dx} = \int_{0}^{\frac{\pi}{2}}{2\sin x.\cos x.f\left( \sin xight)dx}

    Đặt t = \sin x \Rightarrow dt = \cos
xdx

    Đổi cận \left\{ \begin{matrix}x = 0 \Rightarrow t = 0 \\x = \dfrac{\pi}{2} \Rightarrow t = 1 \\\end{matrix} ight. từ đó ta có:

    \int_{0}^{\frac{\pi}{2}}{\sin2x.f\left(\sin x ight)dx} = \int_{0}^{1}{2tf(t)dt} =2\int_{0}^{1}{2xf(x)dx}

    Ta có: \int_{0}^{1}{\frac{f\left( e^{x}
ight)}{e^{x}}dx}

    Đặt t = e^{x} \Rightarrow dt =
e^{x}dx

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 1 \\
x = 1 \Rightarrow t = e \\
\end{matrix} ight. từ đó ta có:

    \int_{0}^{1}{\frac{f\left( e^{x}
ight)}{e^{x}}dx} = \int_{0}^{e}{\frac{f(t)}{t^{2}}dt} =
\int_{0}^{e}{\frac{f(x)}{x^{2}}dx}

    Ta có: \int_{0}^{a}{x^{3}f\left( x^{2}
ight)dx}

    Đặt t = x^{2} \Rightarrow dt =
2xdx

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 0 \\
x = a \Rightarrow t = a^{2} \\
\end{matrix} ight. từ đó ta có:

    \int_{0}^{a}{x^{3}f\left( x^{2}
ight)dx} = \frac{1}{2}\int_{0}^{a^{2}}{tf(t)}dt =
\frac{1}{2}\int_{0}^{a^{2}}{xf(x)}dx

  • Câu 35: Thông hiểu

    Một ô tô đang chạy với vận tốc 20m/s thì người lái hãm phanh. Sau khi hãm phanh, ô tô chuyển động chậm dần đều với vận tốc v(t) = - 4t + 20(m/s) trong đó t là khoảng thời gian tính bằng giây kể từ lúc bắt đầu hãm phanh. Hỏi từ lúc hãm phanh đến khi dừng hẳn, ô tô còn di chuyển được bao nhiêu mét?

    Khi vật dừng hẳn thì v = 0 \Rightarrow -
4t + 20 = 0 \Rightarrow t = 5(s)

    Quãng đường vật đi được trong khoảng thời gian trên là:

    S(t) = \int_{0}^{5}{v(t)dt} =
\int_{0}^{5}{( - 4t + 20)dt} = 50m

  • Câu 36: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi các đường y = \frac{x - 1}{x + 2} và các đường thẳng y = 2;y = - 2x - 4 như hình vẽ:

    Phương trình hoành độ giao điểm

    \frac{x - 1}{x + 2} = - 2x - 4\Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = - \dfrac{7}{2} \\\end{matrix} ight.

    Xét - 2x - 4 = 0 \Leftrightarrow x = -
3

    Xét \frac{x - 1}{x + 2} = 2
\Leftrightarrow x = - 5

    Diện tích hình phẳng là:

    S = \int_{- 5}^{\frac{- 7}{2}}{\left(
\frac{x - 1}{x + 2} - 2 ight)dx} + \int_{- \frac{7}{2}}^{- 3}{( - 2x -
4 - 2)dx}

    = - \frac{5}{4} + 3\ln2

  • Câu 37: Thông hiểu

    Thể tích V của khối tròn xoay do hình phẳng giới hạn bởi các đường y =
x\sqrt{x^{2} + 1}, trục hoành và đường thẳng x = 1 khi quay quanh trục Ox?

    Phương trình hoành độ giao điểm của đường y = x\sqrt{x^{2} + 1} và trục hoành là:

    x\sqrt{x^{2} + 1} = 0 \Leftrightarrow x
= 0

    Khi đó, thể tích V của khối tròn xoay do hình phẳng giới hạn bởi các đường y = x\sqrt{x^{2} + 1}, trục hoành và đường thẳng x = 1 khi quay quanh trục Ox là:

    V = \pi\int_{0}^{1}{\left( x\sqrt{x^{2}
+ 1} ight)^{2}dx} = \pi\int_{0}^{1}{\left( x^{4} + x^{2}
ight)dx}

    = \pi\left. \ \left( \frac{x^{5}}{5} +
\frac{x^{3}}{3} ight) ight|_{0}^{1} = \frac{8\pi}{15}

  • Câu 38: Thông hiểu

    Cho \int_{}^{}{\frac{1}{x^{2} - 1}dx} =
a\ln|x - 1| + b\ln|x + 1| + C với a;b là các số hữu tỉ. Khi đó a - b bằng:

    Ta có: \frac{1}{x^{2} - 1} = \frac{1}{(x
- 1)(x + 1)} = \frac{1}{x - 1} - \frac{1}{x + 1}

    \Rightarrow \int_{}^{}{\frac{1}{x^{2} -
1}dx} = \int_{}^{}{\left( \frac{1}{x - 1} - \frac{1}{x + 1} ight)dx} =
\frac{1}{2}\ln|x - 1| - \frac{1}{2}\ln|x + 1| + C

    Suy ra a = \frac{1}{2};b = - \frac{1}{2}
\Rightarrow a - b = 1.

  • Câu 39: Thông hiểu

    Biết rằng hàm số y = f(x)f'(x) = 3x^{2} + 2x + m;f(2) =
1 và đồ thị hàm số y =
f(x) cắt trục tung tại điểm có tung độ bằng - 5. Hàm số f(x) là:

    Theo lí thuyết \int_{}^{}{f'(x)dx =
f(x) + C}

    Ta có: \int_{}^{}{f'(x)dx
=}\int_{}^{}{\left( 3x^{2} + 2x + m ight)dx} = x^{3} + x^{2} + mx +
C

    Khi đó f(x) có dạng f(x) = x^{3} + x^{2} + mx + C_{1}

    Theo đề ta có: \left\{ \begin{matrix}
f(2) = 1 \\
f(0) = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2^{3} + 2^{2} + 2m + C_{1} = 1 \\
C_{1} = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = - 3 \\
C_{1} = - 5 \\
\end{matrix} ight.

    Vậy hàm số là f(x) = x^{3} + x^{2} - 3x -
5.

  • Câu 40: Nhận biết

    Cho hàm số y = f(x);y = g(x) liên tục trên \lbrack a;bbrack. Gọi (H) là hình phẳng giới hạn bởi hai đồ thị y = f(x);y = g(x) và các đường thẳng x = a;x = b. Diện tích hình (H) được tính theo công thức?

    Ta có diện tích hình (H) được tính bằng công thức S = \int_{a}^{b}{\left| f(x) - g(x)
ight|dx}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo