Xác định hàm số f(x) biết rằng ![]()
Mà
Vậy hàm số cần tìm là
Xác định hàm số f(x) biết rằng ![]()
Mà
Vậy hàm số cần tìm là
Cho vật thể có mặt đáy là hình tròn có bán kính bằng
như hình vẽ:

Khi cắt vật thể bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ
thì được thiết diện là một tam giác đều. Tính thể tích
của vật thể đó.?
Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ thì được thiết diện là một tam giác đều có cạnh bằng
Do đó, diện tích của thiết diện:
Tìm họ nguyên hàm của hàm số ![]()
Ta có:
Cho hàm
có đạo hàm liên tục trên
. Gọi
là hình phẳng giới hạn bởi đồ thị hàm số
và đường thẳng
(phần gạch chéo trong hình vẽ):

Diện tích hình
bằng:
Diện tích phần gạch chéo là:
.
Với giá trị nào của
thì diện tích của hình phẳng giới hạn bởi hai đồ thị
và
bằng
?
Xét phương trình hoành độ giao điểm .
Khi đó diện tích hình phẳng giới hạn bởi hai đồ thị trên được tính bởi
.
Cho tích phân
. Tính tích phân
?
Đặt
Đổi cận
Khi đó
Giá trị tích phân
bằng:
Ta có:
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Biết rằng
nguyên hàm của hàm số
thỏa mãn
. Chọn mệnh đề đúng?
Sử dụng phương pháp đồng nhất thức, ta có:
Suy ra
Khi đó
Mà
Vậy
Cho
với
là các số hữu tỉ. Tính giá trị biểu thức
?
Ta có:
Suy ra .
Họ nguyên hàm của hàm số
là:
Ta có: .
Nếu
thì
bằng:
Ta có:
Cho hàm số y = f(x) xác định trên
thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Mặt khác
=>
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc
. Đi được
người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc
. Tính quãng đường đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn.
Vận tốc vật đạt được sau 5s là:
Ta có:
Do khi bắt đầu tăng tốc
Vật dừng hẳn khi
Khi đó quãng đường đi được bằng
Cho hàm số
liên tục và có đạo hàm trên
thỏa mãn
. Biết rằng
trong đó
. Kết luận nào sau đây đúng?
Ta có:
.
Tính . Đặt
khi đó:
Theo bài ra ta có:
Cho hàm số
là một nguyên hàm của hàm số
. Phát biểu nào sau đây đúng?
Ta có .
Biết rằng
liên tục trên
là một nguyên hàm của hàm số
và
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
. Từ (*) và (**) suy ra
Do đó
Cho hàm số
đồng biến và có đạo hàm cấp hai trên đoạn
và thỏa mãn
với
. Biết rằng
khi đó tích phân
bằng:
Ta có:
Theo bài ra ta có:
Cho hàm số
có đạo hàm liên tục trên
và thỏa mãn
. Biết rằng
và
. Tích phân
bằng bao nhiêu?
Cho hàm số có đạo hàm liên tục trên
và thỏa mãn
. Biết rằng
và
. Tích phân
bằng bao nhiêu?
Nguyên hàm của hàm số
là:
Ta có:
Cho hàm số
biết
,
liên tục trên
và
. Tính
?
Ta có:
Tính tích phân
?
Ta có:
Trong mặt phẳng tọa độ
, cho đường tròn
.

Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn
quanh trục hoành.
Trong mặt phẳng tọa độ , cho đường tròn
.
Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn quanh trục hoành.
Diện tích hình phẳng giới hạn bởi các đường
bằng:
Gọi S là diện tích hình phẳng cần tìm. Khi đó
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số
và đường thẳng
?
Xét các phương trình hoành độ giao điểm:
Diện tích S của hình phẳng (H) là:
Cho hàm số
là một nguyên hàm của
, biết rằng
. Khi đó giá trị
là:
Ta có:
Mà . Vậy với
thì
Vậy .
Tính diện tích
của hình phẳng giới hạn bởi đồ thị hàm số
trục hoành và hai đường thẳng
.
Diện tích hình phẳng được tính như sau:
.
Cho đường cong
. Xét điểm
có hoành độ dương thuộc
, tiếp tuyến của
tại
tạo với
một hình phẳng có diện tích bằng
. Hoành độ điểm
thuộc khoảng nào dưới đây??
Ta có: có
Phương trình tiếp tuyến d của (C) tại A là
Gọi S là diện tích của hình phẳng giới hạn bởi tiếp tuyến d và (C)
Vậy
Cho hàm số
có đạo hàm liên tục trên
,
và thỏa mãn hệ thức
với
. Giá trị của
là:
Ta có:
Mặt khác
Vậy
Vì .
Một ô tô đang chạy đều với vận tốc
m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
m/s, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng
m/s. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là
s. Sai||Đúng
c)
. Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là
m. Sai||Đúng
Một ô tô đang chạy đều với vận tốc m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
m/s, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng m/s. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là s. Sai||Đúng
c) . Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là m. Sai||Đúng
Khi xe dừng hẳn thì vận tốc bằng m/s.
Khi xe dừng hẳn thì m/s nên
s.
Nguyên hàm của hàm số vận tốc ,
.
Quãng đường từ lúc đạ phanh cho đến khi xe dừng hẳn là
m.
Biết rằng
. Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra
Hàm số nào dưới đây là họ nguyên hàm của hàm số
?
Ta có:
Vậy đáp án cần tìm là: .
Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số
liên tục trên đoạn
và hai đường thẳng
là
Ta có hình phẳng giới hạn bởi là
.
Tìm công thức tính thể tích V của khối tròn xoay được tao ra khi quay hình thang cong giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng
xung quanh trục Ox.
Ta có :
Cho
. Với
, khẳng định nào sau đây đúng?
Xét , đặt t = ax + b
=>
=>
Anh A xuất phát từ D, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật
trong đó
(giây) là khoảng thời gian tính từ lúc anh A bắt đầu chuyển động. Từ trạng thái nghỉ, anh B cũng xuất phát từ D, chuyển động thẳng cùng hướng với anh A nhưng chậm hơn
giây so với anh A và có gia tốc bằng
(
là hằng số). Sau khi anh B xuất phát được
giây thì đuổi kịp anh A. Vận tốc của anh B tại thời điểm đuổi kịp anh A bằng bao nhiêu?
Quãng đường anh A đi được cho đến khi hai người gặp nhau là:
Vận tốc của anh B tại thời điểm tính từ lúc anh B xuất phát là:
Quãng đường anh B đi được cho đến khi hai người gặp nhau là:
Vậy vận tốc của anh B tại thời điểm đuổi kịp anh A là:
Tính
?
Áp dụng công thức
Suy ra
Biết
. Khi đó
bằng:
Ta có:
Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường
quay xung quanh
.
Thể tích vật thể bằng:
.
Diện tích hình phẳng giới hạn bởi hai đường
và
bằng:
Xét phương trình hoành độ giao điểm
Diện tích hình phẳng là: