Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 4. Nguyên hàm Tích phân được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi hai đồ thị y = x^{2} - 2x - 2y = \frac{x - 4}{2 - x}?

    Phương trình hoành độ giao điểm x^{2} -
2x - 2 = \frac{x - 4}{2 - x}

    \Leftrightarrow \left\{ \begin{matrix}
x eq 2 \\
\left( x^{2} - 2x - 2 ight)(2 - x) = x - 4 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x eq 2 \\
x\left( x^{2} - 4x + 3 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 3 \\
\end{matrix} ight.

    Diện tích hình giới hạn là

    S = \int_{0}^{1}{\left| x^{2} - 2x - 2 -
\frac{x - 4}{2 - x} ight|dx} + \int_{1}^{3}{\left| x^{2} - 2x - 2 -
\frac{x - 4}{2 - x} ight|dx}

    = \int_{0}^{1}{\left| x^{2} - 2x - 1 -
\frac{2}{2 - x} ight|dx} + \int_{1}^{3}{\left| x^{2} - 2x - 1 -
\frac{2}{x - 2} ight|dx}

    = \left| \left. \ \left( \frac{x^{3}}{3}- x^{2} - x - 2\ln|x - 2| ight) ight|_{0}^{1} ight| + \left| \left.\ \left( \frac{x^{3}}{3} - x^{2} - x - 2\ln|x - 2| ight)ight|_{1}^{3} ight|

    = \frac{5}{3} - 2\ln2 + \frac{4}{3} = 3 -\ln4

  • Câu 2: Nhận biết

    Hàm số nào sau đây là một nguyên hàm của hàm số y = \frac{1}{x \ln3}?

    Ta có: y = \log_{3}x \Rightarrow y' = \frac{1}{x \ln3}.

  • Câu 3: Thông hiểu

    Họ các nguyên hàm của hàm số f(x) =
\frac{2x - 1}{(x + 1)^{2}} trên khoảng ( - 1; + \infty) là:

    Ta có: f(x) = \frac{2x - 1}{(x + 1)^{2}}
= \frac{2}{x + 1} - \frac{3}{(x + 1)^{2}}

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(\frac{2}{x + 1} - \frac{3}{(x + 1)^{2}} ight)dx}= 2\ln|x + 1| +\frac{3}{x + 1} + C

  • Câu 4: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi các đường y = x\sqrt{x^{2} + 1};x = 1 và trục hoành?

    Phương trình hoành độ giao điểm

    x\sqrt{x^{2} + 1} = 0 \Leftrightarrow x
= 0

    Khi đó diện tích hình phẳng theo yêu cầu bài toán là:

    S = \int_{0}^{1}{x\sqrt{x^{2} + 1}dx} =
\frac{1}{2}\int_{0}^{1}{\sqrt{x^{2} + 1}d\left( x^{2} + 1
ight)}

    = \frac{1}{2}\left. \ \left( x^{2} + 1
ight)^{\frac{3}{2}} ight|_{0}^{1} = \frac{2\sqrt{2} -
1}{3}.

  • Câu 5: Vận dụng

    Cho F(x) là nguyên hàm của hàm số y = f\left( x ight) = \frac{1}{{{e^x} + 3}} thỏa mãn F\left( 0 ight) =  - \frac{{ - 1}}{3}\ln 4. Tìm tập nghiệm S của phương trình 3F\left( x ight) + \ln \left( {{e^x} + 3} ight) = 2

    F\left( x ight) = \int {\frac{1}{{{e^x} + 3}}dx}  = \int {\frac{{{e^x}}}{{{e^x}\left( {{e^x} + 3} ight)}}dx}

     Đặt t = {e^x} \Rightarrow dt = {e^x}dx

    \int {\frac{{{e^x}}}{{{e^x}\left( {{e^x} + 3} ight)}}dx}  = \int {\frac{1}{{t\left( {t + 3} ight)}}dt}

    = \int {\left( {\frac{1}{{3t}} - \frac{1}{{3\left( {t + 3} ight)}}} ight)dt = \frac{{\ln |t|}}{3} - \frac{{\ln |t + 3|}}{3} + C}

    = \frac{{\ln \left( {{e^x}} ight)}}{3} - \frac{{\ln \left( {{e^x} + 3} ight)}}{3} + C = \frac{x}{3} - \frac{{\ln \left( {{e^x} + 3} ight)}}{3} + C

    F\left( 0 ight) =  - \frac{1}{3}\ln 4 \Rightarrow  - \frac{{\ln 4}}{3} + C =  - \frac{1}{3}\ln 4 \Rightarrow C = 0

    Ta có:

    \begin{matrix}  3F\left( x ight) + \ln \left( {{e^x} + 3} ight) = 2 \hfill \\   \Leftrightarrow 3\left[ {\dfrac{x}{3} - \dfrac{{\ln \left( {{e^x} + 3} ight)}}{3}} ight] + \ln \left( {{e^x} + 3} ight) = 2 \hfill \\   \Leftrightarrow x = 2 \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu

    Cho hàm số y = x^{2} - 2x có đồ thị (P). Các tiếp tuyến với đồ thị tại O(0;0) và tại A(3;3) cắt nhau tại B. Tính diện tích hình phẳng giới hạn bởi cung OA của (P) và hai tiếp tuyến BO;BA?

    Tập xác định D\mathbb{= R}

    y' = 2x - 2

    Tiếp tuyến tại O(0; 0) là OB: y =
y'(0)(x - 0) + 0 \Leftrightarrow y = - 2x

    Tiếp tuyến tại A(3; 3) là AB: y =
y'(3)(x - 3) + 3 \Leftrightarrow y = 4x - 9

    Suy ra OA \cap OB = B\left( \frac{3}{2};
- 3 ight)

    Diện tích hình giới hạn là

    S = \int_{0}^{\frac{3}{2}}{x^{2}dx} +
\int_{\frac{3}{2}}^{3}{\left( x^{2} - 6x + 9 ight)dx} = \frac{9}{8} +
\frac{9}{8} = \frac{9}{4}

  • Câu 7: Nhận biết

    Vật thể B giới hạn bởi mặt phẳng có phương trình x = 0x = 2. Cắt vật thể B với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ bằng x;(0 \leq x \leq 2) ta được thiết diện có diện tích bằng x^{2}(2 - x). Thể tích của vật thể B:

    Thể tích của vật thể B là:

    V = \int_{0}^{2}{x^{2}(2 - x)dx} =
\int_{0}^{2}{\left( 2x^{2} - x^{3} ight)dx} = \frac{4}{3}

  • Câu 8: Thông hiểu

    Biết rằng A = \int_{}^{}\frac{\cos
x}{\sin x + \cos x}dx;B = \int_{}^{}\frac{\sin x}{\sin x + \cos
x}dx. Xác định T = 4B -
2A?

    Ta có: \left\{ \begin{gathered}
  A + B = \int 1 dx = x + {C_1} \hfill \\
  A - B = \int {\frac{{\cos x - \sin x}}{{\sin x + \cos x}}} dx = \ln \left| {\sin x + \cos x} ight| + {C_2} \hfill \\ 
\end{gathered}  ight.

    Do đó:\left\{ \begin{gathered}
  A = \frac{{x + \ln \left| {\sin x + \cos x} ight|}}{2} + \frac{{{C_1} + {C_2}}}{2} \hfill \\
  B = \frac{{x - \ln \left| {\sin x + \cos x} ight|}}{2} + \frac{{{C_1} - {C_2}}}{2} \hfill \\ 
\end{gathered}  ight.

    \Rightarrow T = 4B - 2A = x - 3\ln\left|\sin x + \cos x ight| + C

  • Câu 9: Nhận biết

    Tìm họ các nguyên hàm của hàm số f(x) =
3x + 1?

    Ta có:

    \int_{}^{}{(3x + 1)dx} =
\frac{1}{3}\int_{}^{}{(3x + 1)d(3x + 1)}

    = \frac{1}{3}.\frac{(3x + 1)^{2}}{2} + C
= \frac{1}{6}(3x + 1)^{2} + C

  • Câu 10: Thông hiểu

    Biết \int_{0}^{1}{\frac{x^{2} + 2x}{(x +
3)^{2}}dx} = \frac{a}{4} - 4ln\frac{4}{b} với a;b là các số nguyên dương. Giá trị của biểu thức a^{2} + b^{2} bằng:

    Giả sử I = \int_{0}^{1}{\frac{x^{2} +
2x}{(x + 3)^{2}}dx}. Đặt t = x + 3
\Rightarrow dt = dx, đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 3 \\
x = 1 \Rightarrow t = 4 \\
\end{matrix} ight.

    I = \int_{3}^{4}{\frac{t^{2} - 4t +
3}{t^{2}}dx} = \int_{3}^{4}{\left( 1 - \frac{4}{t} + \frac{3}{t^{2}}
ight)dx}

    = \left. \ \left( t - 4ln|t| -
\frac{3}{t} ight) ight|_{3}^{4} = \frac{5}{4} -
4ln\frac{4}{3}

    \Rightarrow \left\{ \begin{matrix}
a = 5 \\
b = 3 \\
\end{matrix} ight.\  \Rightarrow a^{2} + b^{2} = 34

  • Câu 11: Nhận biết

    Cho hàm số y = f(x);y = g(x) liên tục trên \lbrack a;bbrack. Gọi (H) là hình phẳng giới hạn bởi hai đồ thị y = f(x);y = g(x) và các đường thẳng x = a;x = b. Diện tích hình (H) được tính theo công thức?

    Ta có diện tích hình (H) được tính bằng công thức S = \int_{a}^{b}{\left| f(x) - g(x)
ight|dx}.

  • Câu 12: Nhận biết

    Diện tích hình phẳng giới hạn bởi các đường y = x^{3}, trục hoành, x = 1x =
3 bằng

    Diện tích hình giới hạn là S =
\int_{1}^{3}{\left| x^{3} ight|dx} = \left| \int_{3}^{3}{x^{3}dx}
ight| = \left| \left. \ \left( \frac{x^{4}}{4} ight) ight|_{1}^{3}
ight| = 20

  • Câu 13: Thông hiểu

    Cho đồ thị hàm số y = f(x) như hình vẽ:

    Diện tích S của hình phẳng được giới hạn bởi đồ thị hàm số y = f(x) và trục Ox (phần gạch sọc) được tính bởi công thức

    Từ đồ thị hàm số ta thấy \left\{
\begin{matrix}
f(x) \geq 0;\forall x \in \lbrack - 3;1brack \\
f(x) \leq 0;\forall x \in \lbrack 1;3brack \\
\end{matrix} ight.

    Do đó:

    S = \int_{- 3}^{3}{\left| f(x)
ight|d(x)}

    = \int_{- 3}^{1}{\left| f(x)
ight|d(x)} + \int_{1}^{3}{\left| f(x) ight|d(x)}

    = \int_{- 3}^{1}{f(x)d(x)} -
\int_{1}^{3}{f(x)d(x)}

  • Câu 14: Thông hiểu

    Dòng diện xoay chiều hình sin chạy qua mạch điện dao động LC lí tưởng có phương trình i = I_{0}\sin\left( \omega t + \frac{\pi}{2}
ight). Ngoài ra i =
q'(t) với q là điện tích tức thời trong tụ. Tính từ lúc t =
0, điện lượng chạy qua tiết diện thẳng của dây dẫn của mạch trong thời gian \frac{\pi}{2\omega}

    Điện lượng cần tìm là:

    \int_{0}^{\frac{\pi}{2\omega}}{\left\lbrack
I_{0}\sin\left( \omega t + \frac{\pi}{2} ight) ightbrack dt} =
\int_{0}^{\frac{\pi}{2\omega}}{\left\lbrack I_{0}\cos(\omega t)
ightbrack dt}

    = \left. \ \left\lbrack I_{0}\sin(\omega
t) ightbrack ight|_{0}^{\frac{\pi}{2\omega}} =
\frac{I_{0}}{\omega}

  • Câu 15: Vận dụng

    Cho hàm số y = f(x) thỏa mãn f'(x) - f(x) = e^{x}f(0) = 2. Phương trình tiếp tuyến của đồ thị hàm số y(x) = f(x) tại giao điểm với trục hoành là:

    Ta có: f'(x) - f(x) = e^{x}. Nhân cả hai vế với e^{- x} ta được:

    e^{- x}f'(x) - e^{- x}.f(x) =
1

    \Leftrightarrow \left( e^{- x}.f(x)
ight)' = 1

    Lấy nguyên hàm hai vế ta được:

    \Leftrightarrow \int_{}^{}{\left( e^{-
x}.f(x) ight)'dx} = \int_{}^{}{1dx} \Leftrightarrow e^{- x}.f(x) =
x + C

    f(0) = 2 \Rightarrow f(0) = 0 + C
\Leftrightarrow C = 2

    Suy ra e^{- x}.f(x) = x + 2
\Leftrightarrow f(x) = \frac{x + 2}{e^{- x}} = (x + 2)e^{x}

    \Rightarrow f'(x) = (x +
3)e^{x}

    Xét phương trình hoành độ giao điểm (x +
2)e^{x} = 0 \Leftrightarrow x = - 2

    Ta có: f'( - 2) = ( - 2 + 3)e^{- 2} =
e^{- 2};f( - 2) = 0

    Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng -2 là: y = e^{- 2}(x + 2)

  • Câu 16: Vận dụng

    Một mảnh vườn hình elip có trục lớn bằng 100m, trục nhỏ bằng 80m được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là 200 mỗi m^{2} trồng cây con và 4000 mỗi m^{2} trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một mảnh vườn hình elip có trục lớn bằng 100m, trục nhỏ bằng 80m được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là 200 mỗi m^{2} trồng cây con và 4000 mỗi m^{2} trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Thông hiểu

    Cho a là số thực dương. Biết rằng F(x) là một nguyên hàm của hàm số f(x) = e^{x}\left\lbrack \ln(ax) +
\frac{1}{x} ightbrack thỏa mãn F\left( \frac{1}{a} ight) = 0F(2018) = e^{2018}. Mệnh đề nào sau đây đúng?

    Ta có:

    f(x) = e^{x}\left\lbrack \ln(ax) +
\frac{1}{2} ightbrack= \left( e^{x} ight)'\ln(ax) +e^{x}\left\lbrack \ln(ax) ightbrack'= \left\{ e^{x}\left\lbrack \ln(ax)
ightbrack ight\}'

    \Rightarrow
\int_{\frac{1}{a}}^{2018}{f(x)}dx = F(2018) - F\left( \frac{1}{a}
ight)\Leftrightarrow \left. \ \left(
e^{x}\left\lbrack \ln(ax) ightbrack ight)
ight|_{\frac{1}{a}}^{2018} = e^{2018}

    \Leftrightarrow \ln(2018a) = 1
\Leftrightarrow a = \frac{e}{2018}

    Vậy a \in \left( \frac{1}{2018};1
ight).

  • Câu 18: Thông hiểu

    Biết rằng F(x) liên tục trên \mathbb{R} là một nguyên hàm của hàm số f(x) = \left\{ \begin{matrix}
\sin x + \cos x\ \ \ khi\ x \geq 0 \\
2(x + 1)\ \ \ khi\ x < 0 \\
\end{matrix} ight.F(\pi) +
F( - 1) = 1. Giá trị biểu thức T =
F(2\pi) + F( - 5) bằng:

    Ta có: F(x) = \int_{}^{}{f(x)dx} =
\left\{ \begin{matrix}
x\sin x + C_{1}\ \ \ khi\ x \geq 0 \\
x^{2} + 2x + C_{2}\ \ khi\ x < 0 \\
\end{matrix} ight.

    F(\pi) + F( - 1) = 1 \Rightarrow \left(
\pi\sin\pi + C_{1} ight) + \left( 1 - 2 + C_{2} ight) = 1
\Rightarrow C_{1} + C_{2} = 2(*)

    Vì hàm số F(x) liên tục trên \mathbb{R} nên liên tục tại x = 0 tức là

    \lim_{x ightarrow 0^{+}}F(x) = \lim_{x
ightarrow 0^{-}}F(x) = F(0)

    \Leftrightarrow C_{1} =
C_{2}(**). Từ (*) và (**) suy ra C_{1} = C_{2} = 1

    Do đó F(x) = \left\{ \begin{matrix}
x\sin x + 1\ \ \ khi\ x \geq 0 \\
x^{2} + 2x + 1\ \ khi\ x < 0 \\
\end{matrix} ight.

    T = F(2\pi) + F( - 5) = 17

  • Câu 19: Vận dụng cao

    Cho hàm số y = \frac{1}{2}x^{2} có đồ thị (P). Xét các điểm A;B \in (P) sao cho tiếp tuyến tại AB của (P) vuông góc với nhau, diện tích hình phẳng giới hạn bởi (P) và đường thẳng AB bằng \frac{9}{4}. Gọi x_{1};x_{2} lần lượt là hoành độ của AB. Giá trị của \left( x_{1} + x_{2} ight)^{2} bằng:

    Hình vẽ minh họa

    Ta có:y = \frac{1}{2}x^{2} có TXĐ: D\mathbb{= R}

    y' = x

    Giả sử A\left(
x_{1};\frac{1}{2}{x_{1}}^{2} ight),B\left(
x_{2};\frac{1}{2}{x_{2}}^{2} ight) \in (P)x_{1} eq x_{2}

    Phương trình tiếp tuyến tại điểm A của (P) là y = x_{1}\left( x - x_{1} ight) +
\frac{1}{2}{x_{1}}^{2}

    \Rightarrow y = x_{1}x -
\frac{1}{2}{x_{1}}^{2}\ \ \ \left( d_{1} ight)

    Phương trình tiếp tuyến tại điểm B của (P) là y = x_{2}\left( x - x_{2} ight) +
\frac{1}{2}{x_{2}}^{2}

    \Rightarrow y = x_{2}x -
\frac{1}{2}{x_{2}}^{2}\ \ \ \left( d_{2} ight)

    \left( d_{1} ight)\bot\left( d_{2}
ight) nên ta có: x_{1}x_{2} = - 1
\Leftrightarrow x_{2} = - \frac{1}{x_{1}}

    Phương trình đường thẳng AB

    \dfrac{x - x_{1}}{x_{2} - x_{1}} =\dfrac{y - \dfrac{1}{2}{x_{1}}^{2}}{\dfrac{1}{2}{x_{2}}^{2} -\dfrac{1}{2}{x_{1}}^{2}}

    \Leftrightarrow \frac{1}{2}\left( x -
x_{1} ight)\left( {x_{2}}^{2} - {x_{1}}^{2} ight) = \left( y -
\frac{1}{2}{x_{1}}^{2} ight)\left( x_{2} - x_{1} ight)

    \Leftrightarrow \left( x - x_{1}
ight)\left( x_{2} + x_{1} ight) = 2y - {x_{1}}^{2}

    \Leftrightarrow \left( x_{2} + x_{1}
ight)x - 2y - x_{1}x_{2} = 0

    \Leftrightarrow y =
\frac{1}{2}\left\lbrack \left( x_{2} + x_{1} ight)x - x_{1}x_{2}
ightbrack = \frac{1}{2}\left\lbrack \left( x_{1} + x_{2} ight)x +
1 ightbrack

    Do đó diện tích hình phẳng giới hạn bởi AB, (P) là:

    S =
\frac{1}{2}\int_{x_{1}}^{x_{2}}{\left\lbrack \left( x_{1} + x_{2}
ight)x + 1 - x^{2} ightbrack dx}

    \Leftrightarrow \frac{9}{4} =
\frac{1}{2}\left. \ \left\lbrack \left( x_{1} + x_{2}
ight)\frac{x^{2}}{2} + x - \frac{x^{3}}{3} ightbrack
ight|_{x_{1}}^{x_{2}}

    \Leftrightarrow \frac{9}{4} =
\frac{1}{2}\left\lbrack \left( x_{1} + x_{2} ight)\left(
\frac{{x_{2}}^{2}}{2} - \frac{{x_{1}}^{2}}{2} ight) + \left( x_{2} -
x_{1} ight) - \frac{{x_{2}}^{3} - {x_{1}}^{3}}{3}
ightbrack

    \Leftrightarrow 27 = - 3\left(
x_{1}{x_{2}}^{2} - {x_{1}}^{3} + {x_{2}}^{3} - {x_{1}}^{2}x_{2} ight)
+ 6\left( x_{2} - x_{1} ight) - 2{x_{2}}^{3} +
2{x_{1}}^{3}

    \Leftrightarrow 27 = - 3\left( x_{2} -
x_{1} ight) + \left( x_{2} - x_{1} ight)\left( {x_{1}}^{2} +
{x_{2}}^{2} - 1 ight) + 6\left( x_{2} - x_{1} ight)

    \Leftrightarrow 27 = 3\left( x_{2} -
x_{1} ight) + \left( x_{2} - x_{1} ight)\left( {x_{1}}^{2} +
{x_{2}}^{2} - 1 ight)

    \Leftrightarrow 27 = \left( x_{2} -
x_{1} ight)\left( {x_{1}}^{2} + {x_{2}}^{2} + 2 ight)

    \Leftrightarrow 27 = \left( x_{2} -
x_{1} ight)\left( x_{2} - x_{1} ight)^{2}

    \Leftrightarrow 27 = \left( x_{2} -
x_{1} ight)^{3} \Leftrightarrow x_{2} - x_{1} = 3

    Thay x_{2} = - \frac{1}{x_{1}} ta có:

    - \frac{1}{x_{1}} - x_{1} = 3
\Leftrightarrow - 1 - {x_{1}}^{2} - 3x_{1} = 0

    \Leftrightarrow \left\lbrack\begin{matrix}x_{1} = \dfrac{- 3 - \sqrt{5}}{2} \Rightarrow x_{2} = \dfrac{2}{3 +\sqrt{5}} \\x_{1} = \dfrac{- 3 + \sqrt{5}}{2} \Rightarrow x_{2} = \dfrac{- 2}{- 3 +\sqrt{5}} \\\end{matrix} ight.

    \Rightarrow \left( x_{1} + x_{2}
ight)^{2} = 5

  • Câu 20: Nhận biết

    Diện tích hình phẳng giới hạn bởi các đường y = (x + 2)^{2};y = 0;x = 1;x = 3 bằng:

    Gọi S là diện tích hình phẳng cần tìm. Khi đó

    S = \int_{1}^{3}{(x + 2)^{2}dx} = \left.
\ \frac{1}{3}(x + 2)^{3} ight|_{1}^{3} = \frac{98}{3}

  • Câu 21: Nhận biết

    Xác định nguyên hàm F(x) của hàm số f(x) = 2x + 5?

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{(2x +
5)dx} = x^{2} + 5x + C

  • Câu 22: Vận dụng

    Cho hàm số f(x) xác định trên \mathbb{R}\backslash \left\{ 1 ight\} thỏa mãn f'\left( x ight) = \frac{1}{{x - 1}};f\left( 0 ight) = 2017;f\left( 2 ight) = 2018. Giá trị của biểu thức T = \left[ {f\left( 3 ight) - 2018} ight].\left[ {f\left( { - 1} ight) - 2017} ight] là bao nhiêu?

     \begin{matrix}  f\left( x ight) = \int {f'\left( x ight)dx}  = \int {\dfrac{1}{{x - 1}}dx}  \hfill \\   = \ln \left| {x - 1} ight| + C = \left\{ {\begin{array}{*{20}{c}}  {\ln \left( {x - 1} ight) + {C_1}{\text{ khi x  >  1}}} \\   {\ln \left( {1 - x} ight) + {C_2}{\text{ khi x  <  1}}} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) = 2017 \Rightarrow \ln \left( {1 - 0} ight) + {C_2} = 2017} \\   {f\left( 2 ight) = 2018 \Rightarrow \ln \left( {2 - 1} ight) + {C_1} = 2018} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{C_2} = 2017} \\   {{C_1} = 2018} \end{array}} ight.

    Khi đó

    \begin{matrix}  T = \left[ {f\left( 3 ight) - 2018} ight].\left[ {f\left( { - 1} ight) - 2017} ight] \hfill \\   = \left[ {\ln \left( {3 - 1} ight) + 2018 - 2018} ight].\left[ {\ln \left( {1 - \left( { - 1} ight)} ight) + 2017 - 2017} ight] \hfill \\   = \ln 2.\ln 2 = {\ln ^2}2 \hfill \\ \end{matrix}

  • Câu 23: Thông hiểu

    Biết rằng \int_{3}^{4}{\frac{5x -8}{x^{2} - 3x + 2}dx} = a\ln3 + b\ln2 + c\ln5 với a;b;c là các số hữu tủ. Giá trị của 2^{a - 3b + c} bằng:

    Ta có:

    \int_{3}^{4}{\frac{5x - 8}{x^{2} - 3x +2}dx} = \int_{3}^{4}{\left( \frac{3}{x - 1} + \frac{2}{x - 2}ight)dx}

    = \left. \ 3\ln|x - 1| ight|_{3}^{4} +2\left. \ \ln|x - 2| ight|_{3}^{4}

    = 3\ln2 - 3\ln2 + 2\ln2 = - \ln2 +3\ln3

    \Rightarrow \left\{ \begin{matrix}a = 3 \\b = - 1 \\c = 0 \\\end{matrix} ight.\  \Rightarrow 2^{a - 3b + c} = 2^{6} =64

  • Câu 24: Vận dụng cao

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash \left\{ 0 ight\} thỏa mãn 2xf\left( x ight) + {x^2}f'\left( x ight) = 1;f\left( 1 ight) = 0. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

    Ta có:

    \begin{matrix}  2xf\left( x ight) + {x^2}f'\left( x ight) = 1 \hfill \\   \Leftrightarrow \left( {{x^2}} ight)'.f\left( x ight) + {x^2}.f'\left( x ight) = 1 \hfill \\   \Leftrightarrow \left[ {{x^2}f\left( x ight)} ight]' = 1 \hfill \\ \end{matrix}

    Lấy nguyên hàm hai vế ta được:

    \begin{matrix}  \int {\left[ {{x^2}f\left( x ight)} ight]'dx}  = \int {1.dx}  \hfill \\   \Leftrightarrow {x^2}f\left( x ight) = x + C \hfill \\ \end{matrix}

    Ta có:

    \begin{matrix}  f\left( 1 ight) = 0 \Rightarrow 1.f\left( 1 ight) = 1 + C \Rightarrow C =  - 1 \hfill \\   \Rightarrow {x^2}f\left( x ight) = x - 1 \Rightarrow f\left( x ight) = \dfrac{{x - 1}}{{{x^2}}} \hfill \\ \end{matrix}

    Xét phương trình hoành độ giao điểm với trục hoành ta có:

    \frac{{x - 1}}{{{x^2}}} = 0 \Rightarrow x = 1\left( {tm} ight)

    Ta lại có: f'\left( x ight) = \frac{{2 - x}}{{{x^2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {f'\left( 1 ight) = 1} \\   {f\left( 1 ight) = 0} \end{array}} ight.

    Phương trình tiếp tuyến tại giao điểm với trục hoành là:

    y = f'\left( 1 ight)\left( {x - 1} ight) + f\left( 1 ight) \Rightarrow y = x - 1

  • Câu 25: Nhận biết

    Cho \int_{- 1}^{2}{f(x)dx} = 2\int_{- 1}^{2}{g(x)dx} = - 1, khi đó \int_{- 1}^{2}{\left\lbrack x + 2f(x)
+ 3g(x) ightbrack dx} bằng:

    Ta có:

    \int_{- 1}^{2}{\left\lbrack x + 2f(x) +
3g(x) ightbrack dx} = \int_{- 1}^{2}{xdx} + 2\int_{- 1}^{2}{f(x)dx}
+ 3\int_{- 1}^{2}{g(x)dx}

    = \left. \ \frac{1}{2}x^{2} ight|_{-
1}^{2} + 2.2 + 3.( - 1) = \frac{5}{2}

  • Câu 26: Vận dụng cao

    Tính tổng T = \frac{C_{2018}^{0}}{3} -
\frac{C_{2018}^{1}}{4} + \frac{C_{2018}^{2}}{5} - \frac{C_{2018}^{3}}{6}
+ ... - \frac{C_{2018}^{2017}}{2020} +
\frac{C_{2018}^{2018}}{2021}?

    Ta có:

    x^{2}(1 - x)^{2018} = x^{2} \cdot \sum_{k
= 0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k}( - 1)^{k} = \sum_{k =
0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k + 2}( - 1)^{k}.

    Do đó

    \int_{0}^{1}\mspace{2mu} x^{2}(1 -x)^{2018}dx = \int_{0}^{1}\mspace{2mu}\sum_{k =0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k + 2}( - 1)^{k}dx.

    Mặt khác:

    \int_{0}^{1}\mspace{2mu}\sum_{k =0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k + 2}( - 1)^{k}dx. =\left. \ \sum_{k = 0}^{2018}\mspace{2mu} C_{2018}^{k}\frac{x^{k + 3}}{k+ 3}( - 1)^{k} ight|_{0}^{1}= \sum_{k = 0}^{2018}\mspace{2mu}C_{2018}^{k} \cdot \frac{( - 1)^{k}}{k + 3} = T.

    Đặt t = 1 - x \Rightarrow dt = -
dx.

    Đổi cận x = 0 \Rightarrow t = 1x = 1 \Rightarrow t = 0. Khi đó

    \int_{0}^{1}\mspace{2mu}\mspace{2mu}x^{2}(1 - x)^{2018}dx = \int_{1}^{0}\mspace{2mu}\mspace{2mu}t^{2018}(1 - t)^{2}( - dt)

    = \int_{0}^{1}\mspace{2mu}\mspace{2mu}
t^{2018}\left( t^{2} - 2t + 1 ight)dt = \left. \ \left(
\frac{t^{2021}}{2021} - 2 \cdot \frac{t^{2020}}{2020} +
\frac{t^{2019}}{2019} ight) ight|_{0}^{1}

    = \frac{1}{2021} - \frac{2}{2020} +
\frac{1}{2019} = \frac{1}{1010 \cdot 2019 \cdot 2021} =
\frac{1}{4121202990}

  • Câu 27: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =
sin3x.

    Ta có \left( - \frac{1}{3}cos3x + C
ight)' = sin3x.

  • Câu 28: Thông hiểu

    Có bao nhiêu số thực b \in
(\pi;3\pi) sao cho \int_{\pi}^{b}{4\cos2xdx} = 1?

    Ta có:

    \int_{\pi}^{b}{4\cos2xdx} = 1\Leftrightarrow \left. \ 2\sin2x ight|_{\pi}^{b} = 1

    \Leftrightarrow \sin2b = 1\Leftrightarrow \left\lbrack \begin{matrix}b = \dfrac{\pi}{12} + k\pi \\b = \dfrac{5\pi}{12} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Do b \in (\pi;3\pi) nên có đúng 4 giá trị của b thỏa mãn.

  • Câu 29: Vận dụng

    Cho hàm số f(x) đồng biến và có đạo hàm cấp hai trên đoạn \lbrack
0;2brack và thỏa mãn 2\left\lbrack f(x) ightbrack^{2} -
f(x).f''(x) + \left\lbrack f'(x) ightbrack^{2} =
0 với \forall x \in \lbrack
0;2brack. Biết rằng f(0) = 1;f(2)
= e^{6} khi đó tích phân M =
\int_{- 2}^{0}{(2x + 1)f(x)dx} bằng:

    Ta có:

    2\left\lbrack f(x) ightbrack^{2} -
f(x).f''(x) + \left\lbrack f'(x) ightbrack^{2} =
0

    \Leftrightarrow f(x).f''(x) -
\left\lbrack f'(x) ightbrack^{2} = 2\left\lbrack f(x)
ightbrack^{2}

    \Leftrightarrow
\frac{f(x).f''(x) - \left\lbrack f'(x)
ightbrack^{2}}{\left\lbrack f(x) ightbrack^{2}} = 2

    \Leftrightarrow \left\lbrack
\frac{f'(x)}{f(x)} ightbrack' = 2 \Leftrightarrow
\int_{}^{}{\left\lbrack \frac{f'(x)}{f(x)} ightbrack'dx} =
\int_{}^{}{2dx}

    \Leftrightarrow \frac{f'(x)}{f(x)} =
2x + C_{1} \Leftrightarrow \ln\left| f(x) ight| = x^{2} + C_{1}x +
C_{2}

    Theo bài ra ta có:

    \left\{ \begin{matrix}
f(0) = 1 \\
f(2) = e^{6} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
ln1 = C_{2} \\
4 + 2C_{1} = 6 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
C_{2} = 0 \\
C_{1} = 1 \\
\end{matrix} ight.

    \Rightarrow \ln\left| f(x) ight| =
x^{2} + x \Rightarrow f(x) = e^{x^{2} + x}

    \Rightarrow M = \int_{- 2}^{0}{(2x +
1)e^{x^{2} + x}dx} = \left. \ e^{x^{2} + x} ight|_{- 2}^{0} = 1 -
e^{2}

  • Câu 30: Nhận biết

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có một nguyên hàm là hàm số F(x). Mệnh đề nào sau đây đúng?

    Theo định nghĩa tích phân ta có: \int_{a}^{b}{f(x)dx} = F(b) - F(a).

  • Câu 31: Vận dụng

    Cho hình (H) giới hạn bởi đồ thị hàm số y= \frac{\sqrt{3}}{9}x^{3}, cung tròn có phương trình y = \sqrt{4 - x^{2}} (với 0 \leq x \leq 2) và trục hoành (phần tô đậm trong hình vẽ).

    Biết thể tích của khối tròn xoay tạo thành khi quay (H) quanh trục hoành là V = \left( \frac{- a}{b}\sqrt{3} + \frac{c}{d}ight)\pi, trong đó a;b;c;d \in\mathbb{N}^{*}\frac{a}{b};\frac{c}{d} là các phân số tối giản. Tính P = a + b + c +d?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình (H) giới hạn bởi đồ thị hàm số y= \frac{\sqrt{3}}{9}x^{3}, cung tròn có phương trình y = \sqrt{4 - x^{2}} (với 0 \leq x \leq 2) và trục hoành (phần tô đậm trong hình vẽ).

    Biết thể tích của khối tròn xoay tạo thành khi quay (H) quanh trục hoành là V = \left( \frac{- a}{b}\sqrt{3} + \frac{c}{d}ight)\pi, trong đó a;b;c;d \in\mathbb{N}^{*}\frac{a}{b};\frac{c}{d} là các phân số tối giản. Tính P = a + b + c +d?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 32: Thông hiểu

    Biết \int_{}^{}{f(x)dx} = 3x^{2} - 4x +
C. Khi đó \int_{}^{}{f\left( e^{x}
ight)}dx tương ứng bằng

    Ta có: \int_{}^{}{f(x)dx} = 3x^{2} - 4x +
C \Rightarrow f(x) = 6x - 4

    \Rightarrow f\left( e^{x} ight) =
6e^{x} - 4

    \Rightarrow \int_{}^{}{f\left( e^{x}
ight)}dx = \int_{}^{}{\left( 6e^{x} - 4 ight)dx} = 6e^{x} - 4e^{x} +
C

  • Câu 33: Thông hiểu

    Biết rằng \int_{}^{}{\frac{2x - 13}{(x +
1)(x - 2)}dx} = a\ln|x + 1| + b\ln|x - 2| + C. Mệnh đề nào sau đây đúng?

    Ta có: \frac{2x - 13}{(x + 1)(x - 2)} =
\frac{A}{x + 1} + \frac{B}{x - 2}

    = \frac{A(x - 2) + B(x + 1)}{(x + 1)(x -
2)} = \frac{(A + B)x + ( - 2A + B)}{(x + 1)(x - 2)}

    \Rightarrow \left\{ \begin{matrix}
A + B = 2 \\
- 2A + B = - 13 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 5 \\
B = - 3 \\
\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{2x - 13}{(x +
1)(x - 2)}dx} = \int_{}^{}{\left( \frac{5}{x + 1} - \frac{3}{x - 2}
ight)dx}

    = 5\ln|x + 1|  - 3\ln|x - 2| +C

    Suy ra a = 5;b = - 3 suy ra a - b = 8.

  • Câu 34: Vận dụng

    Cho các hàm số f(x) có đạo hàm cấp một, đạo hàm cấp hai liên tục trên \lbrack 0;1brack và thỏa mãn \int_{0}^{1}{e^{x}f(x)dx} =
\int_{0}^{1}{e^{x}f'(x)dx} = \int_{0}^{1}{e^{x}f''(x)dx}
eq 0. Giá trị của biểu thức \frac{ef'(x) - f'(0)}{ef(1) -
f(0)} bằng:

    Đặt \int_{0}^{1}{e^{x}f(x)dx} =
\int_{0}^{1}{e^{x}f'(x)dx} = \int_{0}^{1}{e^{x}f''(x)dx} =
k

    Ta có:

    k = \int_{0}^{1}{e^{x}f''(x)dx}
= \int_{0}^{1}{e^{x}d\left\lbrack f'(x) ightbrack}

    = \left. \ e^{x}f'(x)
ight|_{0}^{1} - \int_{0}^{1}{e^{x}f'(x)dx} = \left. \
e^{x}f'(x) ight|_{0}^{1} - k

    \Rightarrow 2k = \left. \ e^{x}f'(x)
ight|_{0}^{1}

    Ta có:

    k = \int_{0}^{1}{e^{x}f'(x)dx} =
\int_{0}^{1}{e^{x}d\left\lbrack f(x) ightbrack}

    = \left. \ e^{x}f(x) ight|_{0}^{1} -
\int_{0}^{1}{e^{x}f(x)dx} = \left. \ e^{x}f(x) ight|_{0}^{1} -
k

    \Rightarrow 2k = \left. \ e^{x}f(x)
ight|_{0}^{1}

    Vậy \frac{ef'(x) - f'(0)}{ef(1) -
f(0)} = \frac{\left. \ e^{x}f'(x) ight|_{0}^{1}}{\left. \
e^{x}f(x) ight|_{0}^{1}} = 1

  • Câu 35: Nhận biết

    Trong các khẳng định sau, khẳng định nào sai?

    Ta có: \int_{a}^{b}{f(x)dx} = -
\int_{b}^{a}{f(x)dx} nên khẳng định \int_{a}^{b}{f(x)dx} =
\int_{b}^{a}{f(x)dx} sai.

  • Câu 36: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =\frac{e^{\tan x}}{\cos^{2}x}?

    Đặt t = \tan x \Rightarrow dt =\frac{1}{\cos^{2}x}dx

    \int_{}^{}{\frac{e^{\tan x}}{\cos^{2}x}dx} = \int_{}^{}{e^{t}dt} = e^{t} + C = e^{\tan x} +C

  • Câu 37: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\sqrt[3]{x} là:

    Ta có:

    \int_{}^{}{f(x)}dx = \int_{}^{}{\left(
\sqrt[3]{x} ight)dx} = \int_{}^{}{x^{\frac{2}{3}}dx} =
\frac{3}{4}x^{\frac{4}{3}} + C = \frac{3x\sqrt[3]{x}}{4} +
C.

  • Câu 38: Nhận biết

    Giả sử f(x);g(x) là các hàm số bất kì liên tục trên \mathbb{R}a;b;c là các số thực. Mệnh đề nào sau đây sai?

    Theo tính chất tích phân ta có:

    \int_{a}^{b}{f(x)dx} +
\int_{b}^{c}{f(x)dx} + \int_{c}^{a}{f(x)dx}

    = \int_{a}^{b}{f(x)dx} +
\int_{b}^{c}{f(x)dx} - \int_{a}^{c}{f(x)dx}

    = \int_{a}^{c}{f(x)dx} -
\int_{a}^{c}{f(x)dx} = 0

    \int_{a}^{b}{c.f(x)dx} =
c.\int_{a}^{b}{f(x)dx};\forall x\mathbb{\in R}

    \int_{a}^{b}{\left\lbrack f(x) - g(x)
ightbrack dx} + \int_{a}^{b}{g(x)dx}

    = \int_{a}^{b}{f(x)dx} -
\int_{a}^{b}{g(x)dx} + \int_{a}^{b}{g(x)dx}

    = \int_{a}^{b}{f(x)dx}

    Vậy mệnh đề sai: \int_{a}^{b}{\left\lbrack f(x)g(x) ightbrack
dx} = \int_{a}^{b}{f(x)dx}.\int_{a}^{b}{g(x)dx}

  • Câu 39: Nhận biết

    Giả sử \int_{0}^{9}{f(x)dx} = 37\int_{9}^{0}{g(x)dx} = 16. Khi đó I = \int_{0}^{9}{\left\lbrack 2f(x) +
3g(x) ightbrack dx} bằng

    Ta có: \int_{9}^{0}{g(x)dx} = 16
\Rightarrow \int_{0}^{9}{g(x)dx} = - 16

    \Rightarrow I =
\int_{0}^{9}{\left\lbrack 2f(x) + 3g(x) ightbrack dx} =
\int_{0}^{9}{2f(x)dx} + \int_{0}^{9}{3g(x)dx}

    = 2.37 + 3.( - 16) = 26

  • Câu 40: Nhận biết

    Cho đồ thị của hàm số y = f(x) như sau:

    Diện tích hình phẳng (phần tô đậm trong hình vẽ) được xác định bởi công thức:

    Dựa vào hình vẽ ta được: S = \int_{-
3}^{0}{f(x)dx} - \int_{0}^{4}{f(x)dx}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo