Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 4. Nguyên hàm Tích phân được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Biết rằng F(x) liên tục trên \mathbb{R} là một nguyên hàm của hàm số f(x) = \left\{ \begin{matrix}
\sin x + \cos x\ \ \ khi\ x \geq 0 \\
2(x + 1)\ \ \ khi\ x < 0 \\
\end{matrix} ight.F(\pi) +
F( - 1) = 1. Giá trị biểu thức T =
F(2\pi) + F( - 5) bằng:

    Ta có: F(x) = \int_{}^{}{f(x)dx} =
\left\{ \begin{matrix}
x\sin x + C_{1}\ \ \ khi\ x \geq 0 \\
x^{2} + 2x + C_{2}\ \ khi\ x < 0 \\
\end{matrix} ight.

    F(\pi) + F( - 1) = 1 \Rightarrow \left(
\pi\sin\pi + C_{1} ight) + \left( 1 - 2 + C_{2} ight) = 1
\Rightarrow C_{1} + C_{2} = 2(*)

    Vì hàm số F(x) liên tục trên \mathbb{R} nên liên tục tại x = 0 tức là

    \lim_{x ightarrow 0^{+}}F(x) = \lim_{x
ightarrow 0^{-}}F(x) = F(0)

    \Leftrightarrow C_{1} =
C_{2}(**). Từ (*) và (**) suy ra C_{1} = C_{2} = 1

    Do đó F(x) = \left\{ \begin{matrix}
x\sin x + 1\ \ \ khi\ x \geq 0 \\
x^{2} + 2x + 1\ \ khi\ x < 0 \\
\end{matrix} ight.

    T = F(2\pi) + F( - 5) = 17

  • Câu 2: Vận dụng cao

    Biết luôn có hai số a;b để F(x) = \frac{ax + b}{x + 4};(4a - b eq
0) là một nguyên hàm của hàm số f(x) và thỏa mãn 2f^{2}(x) = \left\lbrack F(x) - 1
ightbrack.f'(x). Khẳng định nào sau đây là đúng và đầy đủ nhất?

    Do 4a - b eq 0 \Rightarrow F(x) eq
C;\forall x\mathbb{\in R}. Vì luôn có hai số a;b để F(x) =
\frac{ax + b}{x + 4};(4a - b eq 0) là một nguyên hàm của hàm số f(x) nên f(x) không phải là hàm hằng.

    Từ giả thiết 2f^{2}(x) = \left\lbrack
F(x) - 1 ightbrack.f'(x) \Leftrightarrow \frac{2f(x)}{F(x) - 1}
= \frac{f'(x)}{f(x)}

    Lấy nguyên hàm hai vế với vi phân dx ta được:

    \int_{}^{}{\frac{2f(x)}{F(x) - 1}dx} =\int_{}^{}{\frac{f'(x)}{f(x)}dx}\Leftrightarrow 2\ln\left| F(x) - 1ight| = \ln\left| f(x) ight| + C với C là hằng số.

    \Leftrightarrow 2ln\left| F(x) - 1
ight| + \ln e^{C} = \ln\left| f(x) ight|

    \Leftrightarrow \left| f(x) ight| =
e^{C}.\left\lbrack F(x) - 1 ightbrack^{2} = e^{C}.\left( \frac{(a -
1)x + b - 4}{x + 4} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}f(x) = e^{C}.\left\lbrack \dfrac{(a - 1)x + b - 4}{x + 4}ightbrack^{2} \\f(x) = - e^{C}.\left\lbrack \dfrac{(a - 1)x + b - 4}{x + 4}ightbrack^{2} \\\end{matrix} ight.

    TH1: f(x) = e^{C}.\left\lbrack \frac{(a -
1)x + b - 4}{x + 4} ightbrack^{2} ta có: F'(x) = f(x) \Rightarrow f(x) = \frac{4a -
b}{(x + 4)^{2}}

    Đồng nhất hệ số ta có:

    e^{C}.\left\lbrack (a - 1)x + b - 4
ightbrack^{2} = 4a - b;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}a = 1 \\e^{C}.(b - 4)^{2} = 4 - b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 1 \\\left\lbrack \begin{matrix}b = 4 \\b = \dfrac{4e^{C} - 1}{e^{C}} \\\end{matrix} ight.\  \\\end{matrix} ight.

    Loại b = 4 do điều kiện 4a - b eq 0. Do đó (a;b) = \left( 1;\frac{4e^{C} - 1}{e^{C}}
ight)

    TH2: f(x) = - e^{C}.\left\lbrack \frac{(a
- 1)x + b - 4}{x + 4} ightbrack^{2} ta có: F'(x) = f(x) \Rightarrow f(x) = \frac{4a -
b}{(x + 4)^{2}}

    Đồng nhất hệ số ta có:

    - e^{C}.\left\lbrack (a - 1)x + b - 4
ightbrack^{2} = 4a - b;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}a = 1 \\- e^{C}.(b - 4)^{2} = 4 - b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 1 \\\left\lbrack \begin{matrix}b = 4 \\b = \dfrac{4e^{C} + 1}{e^{C}} \\\end{matrix} ight.\  \\\end{matrix} ight.

    Loại b = 4 do điều kiện 4a - b eq 0. Do đó (a;b) = \left( 1;\frac{4e^{C} + 1}{e^{C}}
ight)

    Vậy khẳng định đúng và đầy đủ nhất là a =
1;b\mathbb{= R}\backslash\left\{ 4 ight\}.

  • Câu 3: Nhận biết

    Đặt I = \int_{1}^{2}{(2mx +
1)dx} với m là tham số thực. Tìm giá trị của tham số m để I = 4?

    Ta có: I = \int_{1}^{2}{(2mx + 1)dx} =
\left. \ \left( mx^{2} + x ight) ight|_{1}^{2} = 3m + 1

    Do I = 4 \Leftrightarrow 3m + 1 = 4
\Leftrightarrow m = 1.

  • Câu 4: Thông hiểu

    Thể tích khối tròn xoay khi quay hình phẳng (S) giới hạn bởi các đường y = 4 - x^{2};y = 0 quanh trục Ox có kết quả có dạng \frac{\pi a}{b} với a;b là các số nguyên dương và \frac{a}{b} là phân số tối giản. Khi đó giá trị của a - 30b bằng:

    Phương trình hoành độ giao 4 - x^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 2 \\
x = 2 \\
\end{matrix} ight.

    Thể tích cần tính V = \pi\int_{-
2}^{2}{\left( 4 - x^{2} ight)^{2}dx} = \left. \ \left( \frac{x^{5}}{5}
- \frac{8x^{3}}{3} - 16x ight) ight|_{- 2}^{2} =
\frac{512\pi}{15}

    Suy ra a = 512;b = 15 \Rightarrow a - 30b
= 62.

  • Câu 5: Nhận biết

    Giả sử \int_{0}^{9}{f(x)dx} = 37\int_{9}^{0}{g(x)dx} = 16. Khi đó I = \int_{0}^{9}{\left\lbrack 2f(x) +
3g(x) ightbrack dx} bằng

    Ta có: \int_{9}^{0}{g(x)dx} = 16
\Rightarrow \int_{0}^{9}{g(x)dx} = - 16

    \Rightarrow I =
\int_{0}^{9}{\left\lbrack 2f(x) + 3g(x) ightbrack dx} =
\int_{0}^{9}{2f(x)dx} + \int_{0}^{9}{3g(x)dx}

    = 2.37 + 3.( - 16) = 26

  • Câu 6: Nhận biết

    Nguyên hàm của hàm số f(x) =
2^{2x}.3^{x}.7^{x} là:

    Ta có: \int_{}^{}{\left(2^{2x}.3^{x}.7^{x} ight)dx =}\int_{}^{}{\left( 84^{x} ight)dx}=\frac{84^{x}}{\ln84} + C

  • Câu 7: Thông hiểu

    Một ô tô đang chạy đều với vận tốc x(m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v = - 5t + 20(m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s). Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5\ s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400\ m. Sai||Đúng

    Đáp án là:

    Một ô tô đang chạy đều với vận tốc x(m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v = - 5t + 20(m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s). Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5\ s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400\ m. Sai||Đúng

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s). Mệnh đề đúng

    b) Cho v = 0 \Leftrightarrow - 5t + 20 =
0 \Leftrightarrow t\  = \ 4\ (s). Mệnh đề sai

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Mệnh đề đúng

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là S = \int_{0}^{4}{( - 5t + 20)dt} = 40\
(m). Mệnh đề sai

  • Câu 8: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =\sin^{4}x\cos x??

    Đặt t = \sin x \Rightarrow dt = \cos
xdx

    \int_{}^{}{\left( \sin^{4}x\cos xight)dx} = \int_{}^{}{t^{4}dt} = \frac{t^{5}}{5} + C =\frac{1}{5}\sin^{5}x + C

  • Câu 9: Nhận biết

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{2x - 1} , biết rằng F(1) = 2. Khi đó giá trị F(2) là:

    Ta có: F(x) = \int_{}^{}\frac{dx}{2x - 1}
= \frac{1}{2}\ln|2x - 1| + C;\left( C\mathbb{\in R} ight)

    F(1) = 2 \Rightarrow C = 2. Vậy với x > \frac{1}{2} thì F(x) = \frac{1}{2}\ln(2x - 1) +
2

    Vậy F(2) = \frac{1}{2}\ln3 +2.

  • Câu 10: Vận dụng

    Cho hàm số F(x) là một nguyên hàm của hàm số f(x) = \frac{2\cos x -1}{\sin^{2}x}. Biết rằng giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3}. Chọn mệnh đề đúng trong các mệnh đề sau?

    Ta có:

    F(x) = \int_{}^{}{f(x)dx} =\int_{}^{}{\frac{2\cos x}{\sin^{2}x}dx} -\int_{}^{}{\frac{1}{\sin^{2}x}dx}

    = \int_{}^{}{\frac{2}{\sin^{2}x}d\left(\sin x ight)} - \int_{}^{}{\frac{1}{\sin^{2}x}dx}

    = - \frac{2}{\sin x} + \cot x +
C

    Suy ra F'(x) = f(x) = \frac{2\cos x -1}{\sin^{2}x}

    Trên khoảng (0;\pi) ta có:

    F'(x) = 0 \Leftrightarrow 2\cos x - 1= 0 \Leftrightarrow x = \frac{\pi}{3}

    Ta có bảng biến thiên

    Giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3} nên t s có:

    F\left( \frac{\pi}{3} ight) = \sqrt{3}
\Leftrightarrow - \frac{3\sqrt{3}}{3} + C = \sqrt{3} \Leftrightarrow C =
2\sqrt{3}

    Vậy F(x) = - \frac{2}{\sin x} + \cot x +
2\sqrt{3} \Rightarrow F\left( \frac{\pi}{6} ight) = 3\sqrt{3} -
4.

  • Câu 11: Nhận biết

    Nguyên hàm của hàm số f(x) =
\frac{1}{x\sqrt{x}} là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\frac{1}{x\sqrt{x}}dx}

    = \int_{}^{}{x^{- \frac{3}{2}}dx=}\dfrac{x^{- \frac{1}{2}}}{- \dfrac{1}{2}} + C = - \frac{2}{\sqrt{x}} +C.

  • Câu 12: Thông hiểu

    Một vật chuyển động với vận tốc v(t)(m/s)có gia tốc v'(t) = \frac{3}{t + 1}\left( m/s^{2}
ight). Vận tốc ban đầu của vật là 6m/s. Tính vận tốc của vật sau 10 giây, (làm tròn kết quả đến hàng đơn vị).

    Vận tốc của vật là:v(t) =
\int_{}^{}{v'(t)dt} = \int_{}^{}{\frac{3}{t + 1}dt} = 3ln(t + 1) +
C

    Do vận tốc ban đầu của vật là 6m/s

    \Rightarrow v_{(t = 0)} = 6 \Rightarrow
3ln1 + C = 6 \Rightarrow C = 6

    Vận tốc của vật sau 10s là v(10) = 3ln11
+ 6 \approx 13m/s

  • Câu 13: Nhận biết

    Một vật chuyển động với vận tốc v(t) =
\frac{6}{5} + \frac{t^{2} + 4}{t + 3}(m/s). Tính quãng đường vật đó đi được trong 4 giây đầu (làm tròn kết quả đến chữ số thập phân thứ hai).?

    Quãng đường vật đó đi được trong 4 giây đầu là:

    S = \int_{0}^{4}{v(t)dt} = \int_{0}^{4}{\left(
\frac{6}{5} + \frac{t^{2} + 4}{t + 3} ight)dt} \approx
11,81(m).

  • Câu 14: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\sqrt[3]{x} là:

    Ta có:

    \int_{}^{}{f(x)}dx = \int_{}^{}{\left(
\sqrt[3]{x} ight)dx} = \int_{}^{}{x^{\frac{2}{3}}dx} =
\frac{3}{4}x^{\frac{4}{3}} + C = \frac{3x\sqrt[3]{x}}{4} +
C.

  • Câu 15: Thông hiểu

    Diện tích hình phẳng giới hạn bởi các đường y = \frac{\sqrt{1 + \ln x}}{x};y = 0;x = 1;x =
eS = a\sqrt{2} + b. Tính giá trị a^{2} + b^{2}?

    Diện tích hình phẳng cần tìm là:

    S = \int_{1}^{e}{\left| \frac{\sqrt{1 +
\ln x}}{x} ight|dx} = \int_{1}^{e}{\frac{\sqrt{1 + \ln
x}}{x}dx}

    Đặt \sqrt{1 + \ln x} = t \Rightarrow 1 +
\ln x = t^{2} \Rightarrow \frac{dx}{x} = 2tdt

    Đổi cận \left\{ \begin{matrix}
x = 1 \Rightarrow t = 1 \\
x = e \Rightarrow t = \sqrt{2} \\
\end{matrix} ight.. Khi đó:

    S = \int_{1}^{\sqrt{2}}{2t^{2}dt} =
\frac{4}{3}.\sqrt{2} - \frac{2}{3} hay a = \frac{4}{3};b = \frac{2}{3}

    \Rightarrow a^{2} + b^{2} =
\frac{20}{9}

  • Câu 16: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\frac{1}{x} + \sin x là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\left( \frac{1}{x} + \sin x ight)dx} = \ln|x| - \cos x +
C.

  • Câu 17: Thông hiểu

    Một ô tô đang chuyển động đều với vận tốc 12m/s thì người lái đạp phanh; từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc v(t) = 12 - 2t(m/s) (trong đó t là thời gian tính bằng giây, kể từ lúc đạp phanh). Hỏi trong thời gian 8 giây cuối (tính đến khi xe dừng hẳn) thì ô tô đi được quãng đường bằng bao nhiêu?

    Khi dừng hẳn v(t) = 12 - 2t = 0
\Rightarrow t = 6(s)

    Khi đó trong 8s trước khi dừng hẳn vật di chuyển được (bao gồm 2s trước khi đạp phanh):

    S = 2.12 + \int_{0}^{6}{v(t)dt} = 24 +
\int_{0}^{6}{(12 - 2t)dt}

    = 24 + \left. \ \left( 12t - t^{2}
ight) ight|_{0}^{6} = 24 + 36 = 60(m)

  • Câu 18: Nhận biết

    Viết công thức tính thể tích V của phần vật thể bị giới hạn bởi hai mặt phẳng vuông góc với trục Ox tại các điểm x = a;x = b;a < b, có diện tích thiết diện cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x;(a \leq x \leq b)S(x).

    Thể tích của vật thể đã cho là: V =
\int_{a}^{b}{S(x)dx}.

  • Câu 19: Thông hiểu

    Cho hình vẽ:

    Diện tích hình phẳng (phần gạch chéo) giới hạn bởi đồ thị 3 hàm số f(x);g(x);h(x) như hình bên, bằng kết quả nào sau đây?

    Diện tích miền tích phân được chia thành hai phần. Phần 1 với x nằm trong khoảng a đến b và phần 2 với x nằm trong khoảng b đến c:

    S = \int_{a}^{b}{\left| f(x) - g(x)
ight|dx} + \int_{b}^{c}{\left| g(x) - h(x) ight|dx}

    = \int_{a}^{b}{\left\lbrack f(x) - g(x)
ightbrack dx} + \int_{b}^{c}{\left\lbrack h(x) - g(x) ightbrack
dx}

    = \int_{a}^{b}{\left\lbrack f(x) - g(x)
ightbrack dx} - \int_{b}^{c}{\left\lbrack g(x) - h(x) ightbrack
dx}.

  • Câu 20: Vận dụng

    Cho hình (H) giới hạn bởi đồ thị hàm số y= \frac{\sqrt{3}}{9}x^{3}, cung tròn có phương trình y = \sqrt{4 - x^{2}} (với 0 \leq x \leq 2) và trục hoành (phần tô đậm trong hình vẽ).

    Biết thể tích của khối tròn xoay tạo thành khi quay (H) quanh trục hoành là V = \left( \frac{- a}{b}\sqrt{3} + \frac{c}{d}ight)\pi, trong đó a;b;c;d \in\mathbb{N}^{*}\frac{a}{b};\frac{c}{d} là các phân số tối giản. Tính P = a + b + c +d?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình (H) giới hạn bởi đồ thị hàm số y= \frac{\sqrt{3}}{9}x^{3}, cung tròn có phương trình y = \sqrt{4 - x^{2}} (với 0 \leq x \leq 2) và trục hoành (phần tô đậm trong hình vẽ).

    Biết thể tích của khối tròn xoay tạo thành khi quay (H) quanh trục hoành là V = \left( \frac{- a}{b}\sqrt{3} + \frac{c}{d}ight)\pi, trong đó a;b;c;d \in\mathbb{N}^{*}\frac{a}{b};\frac{c}{d} là các phân số tối giản. Tính P = a + b + c +d?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 21: Vận dụng

    Cho là một nguyên hàm của hàm số f\left( x ight) = \frac{{\ln x}}{x}\sqrt {{{\ln }^2}x + 1}F\left( 1 ight) = \frac{1}{3}. Tính {\left[ {F\left( e ight)} ight]^2}

     Cách 1: \int {f\left( x ight)}  = \int {\frac{{\ln x}}{x}\sqrt {{{\ln }^2}x + 1} dx = \int {\sqrt {{{\ln }^2}x + 1} .} } \frac{{\ln x}}{x}dx

    Đặt \sqrt {{{\ln }^2}x + 1}  = t

    \begin{matrix}   \Rightarrow {\ln ^2}x + 1 = {t^2} \hfill \\   \Rightarrow 2\ln x.\dfrac{1}{x}dx = 2tdt \hfill \\   \Rightarrow \dfrac{{\ln x}}{x}dx = tdt \hfill \\ \end{matrix}

    Khi đó \int {f\left( x ight)}  = \int {t.t.dt}  = \int {{t^2}dt}  = \frac{{{t^3}}}{3} + C

    => F\left( x ight) = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}x + 1} } ight)^3} + C

    Mặt khác F\left( 1 ight) = \frac{1}{3} \Leftrightarrow \frac{1}{3} = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}x + 1} } ight)^3} + C

    => C = 0

    => F\left( e ight) = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}e + 1} } ight)^3} = \frac{{2\sqrt 2 }}{3}

    => {\left[ {F\left( e ight)} ight]^2} = {\left( {\frac{{2\sqrt 2 }}{3}} ight)^2} = \frac{8}{9}

    Cách 2: F\left( e ight) - F\left( 1 ight) = \int\limits_1^e {\frac{{\ln x}}{x}.\sqrt {{{\ln }^2}x + 1} dx}. Sử dụng máy tính cầm tay để tính.

  • Câu 22: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} thỏa mãn f\left( \frac{\pi}{2} ight) = - 1 với \forall x\mathbb{\in R} ta có: f'(x).f(x) - \sin2x = f'(x)\cos x -f(x)\sin x. Tính tích phân I =
\int_{0}^{\frac{\pi}{4}}{f(x)dx}?

    Ta có:

    f'(x).f(x) - \sin2x = f'(x)\cos x- f(x)\sin x

    \Leftrightarrow f'(x).f(x) - \sin2x =\left\lbrack f(x)\cos x ightbrack'

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}\left\lbrack f'(x).f(x) -\sin2x ightbrack dx = \int_{}^{}{\left\lbrack f(x)\cos xightbrack'}dx

    \Leftrightarrow \frac{f^{2}(x)}{2} +\frac{1}{2}\cos2x = f(x)\cos x + C

    Theo bài ra ta có: f\left( \frac{\pi}{2}
ight) = - 1 \Rightarrow C = 0

    \Rightarrow \frac{f^{2}(x)}{2} +\frac{1}{2}\cos2x = f(x)\cos x

    \Leftrightarrow f^{2}(x) + \cos2x =2f(x)\cos x

    \Leftrightarrow f^{2}(x) - 2f(x)\cos x +\cos^{2}x = \sin^{2}x

    \Leftrightarrow \left\lbrack f(x) - \cos x ightbrack^{2} = \sin^{2}x \Leftrightarrow \left\lbrack\begin{matrix}f(x) - \cos x = \sin x \\f(x) - \cos x = - \sin x \\\end{matrix} ight.

    f\left( \frac{\pi}{2} ight) = -
1 nên nhận f(x) = \cos x - \sin
x

    Vậy I = \int_{0}^{\frac{\pi}{4}}{f(x)dx}
= \int_{0}^{\frac{\pi}{4}}{\left\lbrack \cos x - \sin x ightbrack
dx} = \left. \ \left( \cos x - \sin x ight)
ight|_{0}^{\frac{\pi}{4}} = \sqrt{2} - 1

  • Câu 23: Thông hiểu

    Tìm nguyên hàm của hàm số f\left( x ight) = {e^{ - 2x}} + \frac{1}{{\sqrt x }}

     \begin{matrix}  \int {\left( {{e^{ - 2x}} + \dfrac{1}{{\sqrt x }}} ight)dx}  = \int {{e^{ - 2x}}dx}  + \int {\dfrac{1}{{\sqrt x }}} dx =  - \dfrac{1}{2}\int {{e^{ - 2x}}d\left( { - 2x} ight)}  + 2\int {\dfrac{1}{{2\sqrt x }}} dx \hfill \\   =  - \dfrac{{{e^{ - 2x}}}}{2} + 2\sqrt x  + C =  - \dfrac{1}{{2{e^{2x}}}} + 2\sqrt x  + C \hfill \\ \end{matrix}

  • Câu 24: Vận dụng

    Tổng tất cả các giá trị của tham số m thỏa mãn \int_{0}^{1}{\frac{9^{x} + 3m}{9^{x} + 3}dx} =
m^{2} - 1 bằng:

    Ta có:

    \int_{0}^{1}{\frac{9^{x} + 3m}{9^{x} +
3}dx} = m^{2} - 1

    \Leftrightarrow
\int_{0}^{1}{\frac{9^{x}}{9^{x} + 3}dx} + m\int_{0}^{1}{\frac{3}{9^{x} +
3}dx} = m^{2} - 1

    \Leftrightarrow m^{2} -
m\int_{0}^{1}{\frac{3}{9^{x} + 3}dx} - \int_{0}^{1}{\frac{9^{x}}{9^{x} +
3}dx} - 1 = 0

    Phương trình trên là phương trình bậc hai đối với biến m, với các hệ số
    \left\{ \begin{matrix}a = 1 \\b = - \int_{0}^{1}{\dfrac{3}{9^{x} + 3}dx} \\c = - \int_{0}^{1}{\dfrac{9^{x}}{9^{x} + 3}dx} \\\end{matrix} ight..

    Áp dụng hệ thứ Vi- et \Rightarrow m_{1} +
m_{2} = \frac{- b}{a} = \int_{0}^{1}{\frac{3}{9^{x} + 3}dx} =
\frac{1}{2}

  • Câu 25: Nhận biết

    Một ô tô đang chạy thì người lái đạp phanh, từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) =
- 12t + 24(m/s) trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?

    Khi dừng hẳn v(t) = - 12t + 24 = 0
\Rightarrow t = 2(s)

    Do đó từ lúc đạp phanh đến khi dừng hẳn, ô tô đi được:

    S = \int_{0}^{2}{v(t)dt} =
\int_{0}^{2}{( - 12t + 24)dt} = 24m

  • Câu 26: Nhận biết

    Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = \sqrt{- e^{x} +
4x}, trục hoành và hai đường thẳng x = 1;x = 2. Gọi V là thể tích của khối tròn xoay thu được khi quay hình (H) xung quanh trục hoành. Chọn khẳng định đúng trong các khẳng định sau đây?

    Áp dụng công thức thể tích khối tròn xoay ta có:

    V = \pi\int_{a}^{b}{\left\lbrack f(x)
ightbrack^{2}dx}

    Khi đó áp dụng vào bài toán ta được:

    V = \pi\int_{1}^{2}{\left\lbrack \sqrt{-
e^{x} + 4x} ightbrack^{2}dx} = \pi\int_{1}^{2}{\left( 4x - e^{x}
ight)dx} .

  • Câu 27: Vận dụng

    Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và f\left( x ight) = xf'\left( x ight) - 2{x^3} - 3{x^2}. Giá trị của f(2) là:

     Chọn f(x) = ax3 + bx2 + cx + d

    Ta có:

    \begin{matrix}  f\left( x ight) = xf'\left( x ight) - 2{x^3} - 3{x^2} \hfill \\   \Leftrightarrow a{x^3} + 2{x^2} + cx + d = x\left( {3a{x^2} + 2bx + c} ight) - 2{x^3} - 3{x^2} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 3a - 2} \\   {b = 2b - 3} \\   {d = 0} \\   {c = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 1} \\   {b = 3} \\   {c = 0} \\   {d = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy f\left( x ight) = {x^3} + 3{x^2} => f(x) = 20

  • Câu 28: Vận dụng

    Một quả bóng bầu dục có khoảng cách giữa 2 điểm xa nhất bằng 10 cm và cắt quả bóng bằng mặt phẳng trung trực của đoạn thẳng đó thì được đường tròn có diện tích bằng 16\pi\left( \ cm^{2}
ight). Thể tích của quả bóng bằng (Tính gần đúng đến hai chữ số thập phân, đơn vị lít)

    Quả bóng bầu dục sẽ có dạng elip.

    Độ dài trục lớn bằng 20\ cm \Rightarrow2a = 20 \Rightarrow a = 5\ \ (cm)

    Ta có diện tích đường tròn thiết diện là

    S = \pi b^{2} = 16\pi \Rightarrow b =4(\ cm)

    Ta sẽ có phương trình elip \frac{x^{2}}{25} + \frac{y^{2}}{16} =
1

    \Rightarrow V = \pi\int_{-
5}^{5}{16\left( 1 - \frac{x^{2}}{25} ight)}dx \approx 335\ \ \left( \
cm^{3} ight) = 0,34\ (l).

  • Câu 29: Thông hiểu

    Tại một nơi không có gió, một chiếc khí cầu đang đứng yên ở độ cao 162m so với mặt đất đã được phi công cài đặt cho nó chế độ chuyển động đi xuống. Biết rằng, khí cầu đã chuyển động theo phương thẳng đứng với vận tốc tuân theo quy luật v(t) = 10t - t^{2}, trong đó t (phút) là thời gian tính từ lúc bắt đầu chuyển động, v(t) được tính theo đơn vị mét/phút (m/p). Nếu như vậy thì khi bắt đầu tiếp đất vận tốc v của khí cầu là:

    Khi bắt đầu tiếp đất vật chuyển động được quãng đường làs = 162m

    Ta có: S = \int_{0}^{t_{0}}{\left( 10t -
t^{2} ight)dt} = \left. \ \left( 5t - \frac{t^{3}}{3} ight)
ight|_{0}^{t_{0}} = 5{t_{0}}^{2} - \frac{{t_{0}}^{3}}{3} (với t_{0} là thời điểm vật tiếp đất)

    Cho 5{t_{0}}^{2} - \frac{{t_{0}}^{3}}{3}
= 162 \Leftrightarrow t_{0} = 9 (Do v(t) = 10t - t^{2} \Rightarrow 0 \leq t \leq
10)

    Khi đó vận tốc của vật là: v(9) = 10.9 -
9^{2} = 9(m/p).

  • Câu 30: Nhận biết

    Cho hình (H) giới hạn bởi các đường y = - x^{2} + 2x, trục hoành. Quay hình phẳng (H) quanh trục Ox ta được khối tròn xoay có thể tích là:

    Phương trình hoành độ giao điểm của (H);Ox là: -
x^{2} + 2x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Khi đó V = \pi\int_{0}^{2}{\left( - x^{2}
+ 2x ight)^{2}dx} = \pi\int_{0}^{2}{\left( x^{4} - 4x^{3} + 4x^{2}
ight)dx} = \frac{16\pi}{15}.

  • Câu 31: Thông hiểu

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0ight\} thỏa mãn 2xf(x) +x^{2}f'(x) = 1f(1) =0. Hệ số góc của phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

    Ta có: 2xf(x) + x^{2}f'(x) =1

    \Leftrightarrow \left( x^{2}ight)'f(x) + x^{2}f'(x) = 1

    \Leftrightarrow \left( x^{2}f'(x)ight)' = 1

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}{\left( x^{2}f'(x)ight)'dx} = \int_{}^{}{1dx} \Leftrightarrow x^{2}f(x) = x +C

    Lại có f(1) = 0 \Rightarrow 1.f(1) = 1 +C \Rightarrow C = - 1

    Từ đó suy ra x^{2}f(x) = x - 1\Leftrightarrow f(x) = \frac{x - 1}{x^{2}}

    Xét phương trình hoành độ giao điểm \frac{x - 1}{x^{2}} = 0 \Leftrightarrow x =1(tm)

    Ta có: f'(x) = \frac{2 - x}{x^{3}}\Rightarrow f'(1) = 1

    Vậy hệ số góc phương trình tiếp tuyến cần tìm là 1.

  • Câu 32: Nhận biết

    Cho hình vẽ:

    Diện tích hình phẳng bôi đậm trong hình vẽ được xác định theo công thức:

    Dựa vào đồ thị hàm số ta thấy công thức tính diện tích hình phẳng cần tìm là:

    S = \int_{- 1}^{2}{\left( - x^{2} + 3 -
x^{2} + 2x + 1 ight)dx} = \int_{- 1}^{2}{\left( - 2x^{2} + 2x + 4
ight)dx}.

  • Câu 33: Nhận biết

    Hàm số nào sau đây là một nguyên hàm của hàm số y = \frac{1}{x \ln3}?

    Ta có: y = \log_{3}x \Rightarrow y' = \frac{1}{x \ln3}.

  • Câu 34: Nhận biết

    Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi đồ thị các hàm số y = x^{2} - 2;y = 0;x = - 1;x
= 2 quanh trục Ox bằng

    Ta có:

    V = \pi\int_{- 1}^{2}{\left( x^{2} - 2x
ight)^{2}dx} = \pi\int_{- 1}^{2}{\left( x^{4} - 4x^{3} + 4x^{2}
ight)dx}

    = \pi\left. \ \left( \frac{x^{5}}{5} -
x^{4} + \frac{4x^{3}}{3} ight) ight|_{- 1}^{2} =
\frac{18\pi}{5}

  • Câu 35: Thông hiểu

    Cho biết \int_{1}^{2}{\ln\left( 9 - x^{2}
ight)dx} = aln5 + bln2 + c với a;b;c\mathbb{\in Z}. Tính S = |a| + |b| + |c|?

    Xét trên đoạn \lbrack 1;2brack ta có:

    \ln\left( 9 - x^{2} ight) = \ln(3 - x)
+ \ln(3 + x)

    Xét I_{1} = \int_{1}^{2}{\ln(3 -
x)dx}. Đặt \left\{ \begin{matrix}u = \ln(3 - x) \\dv = dx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{1}{x - 3}dx \\v = x \\\end{matrix} ight.

    \Rightarrow I_{1} = \left. \ x\ln(3 - x)
ight|_{1}^{2} - \int_{1}^{2}{\frac{x}{x - 3}dx}

    \Rightarrow I_{1} = \left. \ x\ln(3 - x)ight|_{1}^{2} - \left. \ \left\lbrack x + 3\ln(3 - x) ightbrackight|_{1}^{2} = 2\ln2 - 1

    Xét I_{2} = \int_{1}^{2}{\ln(3 +
x)dx}. Đặt \left\{ \begin{matrix}u = \ln(3 + x) \\dv = dx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{1}{x + 3}dx \\v = x \\\end{matrix} ight.

    \Rightarrow I_{2} = \left. \ x\ln(3 + x)
ight|_{1}^{2} - \int_{1}^{2}{\frac{x}{x + 3}dx}

    \Rightarrow I_{2} = \left. \ x\ln(3 + x)ight|_{1}^{2} - \left. \ \left\lbrack x + 3\ln(3 + x) ightbrackight|_{1}^{2} = 5\ln5 - 8\ln2 - 1

    Vậy \int_{1}^{2}{\ln\left( 9 - x^{2}ight)dx} = I_{1} + I_{2} = 5\ln5 - 6\ln2 - 2 \Rightarrow S =13.

  • Câu 36: Thông hiểu

    Diện tích hình phẳng giới hạn bởi hai đường y = x^{2} + 2xy = x + 2 bằng:

    Xét phương trình hoành độ giao điểm

    x^{2} + 2x = x + 2 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 2 \\
x = 1 \\
\end{matrix} ight.

    Hình vẽ minh họa

    Diện tích hình phẳng là:

    S = \int_{- 2}^{1}{\left| \left( x^{2} +
2x ight) - (x + 2) ight|dx} = \int_{- 2}^{1}{\left| x^{2} + x - 2
ight|dx}

    = \int_{- 2}^{1}{\left\lbrack - \left(
x^{2} + x - 2 ight) ightbrack dx} = \left| \left. \ \left( -
\frac{x^{3}}{3} - \frac{1}{2}x^{2} + 2x ight) ight|_{- 2}^{1}
ight| = \frac{9}{2}

    = \left| \left. \ \left(
\frac{2}{3}x^{3} - \frac{3}{2}x^{2} ight) ight|_{0}^{\frac{3}{2}}
ight| = \frac{9}{8}

  • Câu 37: Thông hiểu

    Cho \int_{}^{}{\frac{1}{x^{2} - 1}dx} =
a\ln|x - 1| + b\ln|x + 1| + C với a;b là các số hữu tỉ. Khi đó a - b bằng:

    Ta có: \frac{1}{x^{2} - 1} = \frac{1}{(x
- 1)(x + 1)} = \frac{1}{x - 1} - \frac{1}{x + 1}

    \Rightarrow \int_{}^{}{\frac{1}{x^{2} -
1}dx} = \int_{}^{}{\left( \frac{1}{x - 1} - \frac{1}{x + 1} ight)dx} =
\frac{1}{2}\ln|x - 1| - \frac{1}{2}\ln|x + 1| + C

    Suy ra a = \frac{1}{2};b = - \frac{1}{2}
\Rightarrow a - b = 1.

  • Câu 38: Vận dụng

    Biết rằng  F(x) nguyên hàm của hàm số f(x) = \frac{1}{x^{2}(x +1)} thỏa mãn F(1) + F( - 2) = \frac{1}{2}. Chọn mệnh đề đúng?

    Sử dụng phương pháp đồng nhất thức, ta có:

    f(x) = \frac{1}{x^{2}(x + 1)} =\frac{A}{x} + \frac{B}{x^{2}} + \frac{C}{x + 1}= \frac{(A + C)x^{2} +(A + B)x + B}{x^{2}(x + 1)}

    Suy ra \left\{ \begin{matrix}A + C = 0 \\A + B = 0 \\B = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}A = - 1 \\B = 1 \\C = 1 \\\end{matrix} ight.

    F(x) = \int_{}^{}{f(x)dx} =\int_{}^{}{\left( - \frac{1}{x} + \frac{1}{x^{2}} + \frac{1}{x + 1}ight)dx}

    \Rightarrow F(x) = - \ln|x| -\frac{1}{x} + \ln|x + 1| + C = \ln\left| \frac{x + 1}{x} ight| -\frac{1}{x} + C

    Khi đó F(x) = \left\{ \begin{matrix}\ln\dfrac{x + 1}{x} - \dfrac{1}{x} + C_{1};x \in (0; + \infty) \\\ln\dfrac{- x - 1}{x} - \dfrac{1}{x} + C_{2};x \in ( - 1;0) \\\ln\frac{x + 1}{x} - \dfrac{1}{x} + C_{3};x \in ( - \infty; - 1) \\\end{matrix} ight.

    F(1) + F( - 2) =\frac{1}{2}

    \Leftrightarrow \ln2 - 1 + C_{1} +\ln\frac{1}{2} + \frac{1}{2} + C_{3} = \frac{1}{2}

    \Leftrightarrow C_{1} + C_{3} =1

    Vậy T = F(2) + F( - 3) = \ln\frac{3}{2} -\frac{1}{2} + C_{1} + \ln\frac{2}{3} + \frac{1}{3} + C_{3} =\frac{5}{6}

  • Câu 39: Thông hiểu

    Một chất điểm đang chuyển động với vận tốc v_{0} = 16(m/s) thì tăng tốc với gia tốc a(t) = t^{2} + 3t\left( m/s^{2}
ight). Tính quãng đường chất điểm đó đi được trong khoảng thời gian 4s kể từ lúc bắt đầu tăng tốc.

    Ta có: v(t) = a(t) = \int_{}^{}{\left(
t^{2} + 3t ight)dt} = \frac{t^{3}}{3} + \frac{3t^{2}}{2} +
C.

    Khi đó v_{0} = v(0) = C = 16 \Rightarrow
v(t) = \frac{t^{3}}{3} + \frac{3t^{2}}{2} + 16

    Khi đó quãng đường đi được bằng:

    S(t) = \int_{0}^{4}{v(t)dt} =
\int_{0}^{4}{\left( \frac{t^{3}}{3} + \frac{3t^{2}}{2} + 16
ight)dt}

    = \left. \ \left( \frac{t^{4}}{12} +
\frac{t^{3}}{2} + 16t ight) ight|_{0}^{4} =
\frac{352}{2}(m)

  • Câu 40: Vận dụng cao

    Cho đường thẳng y = \frac{1}{2}x +a và parabol y = x^{2} (a là tham số thực). Gọi S_{1};S_{2} lần lượt là diện tích của hai hình phẳng được tô đậm và gạch chéo trong hình vẽ bên. Khi S_{1} = S_{2} thì A thuộc khoảng nào dưới đây?

    Phương trình hoành độ giao điểm của của hai đồ thị:

    \frac{1}{2}x + a = x^{2} \Leftrightarrow2x^{2} - x - 2a = 0

    Theo giả thiết, phương trình có hai nghiệm phân biệt

    \Delta = 1 + 16a > 0 \Rightarrow a> - \frac{1}{16}

    Khi đó, phương trình có hai nghiệm x_{1};x_{2};\left( x_{1} < x_{2}ight) thỏa mãn:

    \left\{ \begin{matrix}S = x_{1} + x_{2} = \frac{1}{2} \\P = x_{1}.x_{2} = - a \\\end{matrix} ight.

    Diện tích hình phẳng:

    S_{1} = \int_{- 2a}^{x_{1}}{\left(\frac{x}{2} + a ight)dx} + \int_{x_{1}}^{0}{x^{2}dx}

    = \left. \ \left( \frac{x^{2}}{4} + axight) ight|_{- 2a}^{x_{1}} + \left. \ \frac{x^{3}}{3}ight|_{x_{1}}^{0}

    = \frac{1}{4}{x_{1}}^{2} + ax_{1} -\frac{1}{4}.4a^{2} + 2a^{2} - \frac{1}{3}{x_{1}}^{3}

    = - \frac{1}{3}{x_{1}}^{3} +\frac{1}{4}{x_{1}}^{2} + ax_{1} + a^{2}

    Diện tích hình phẳng:

    S_{2} = \int_{x_{1}}^{x_{2}}{\left(\frac{1}{2}x + a - x^{2} ight)dx} = \frac{\left( x_{2} - x_{1}ight)^{3}}{6}

    Theo giả thiết ta có:

    S_{1} = S_{2}

    \Leftrightarrow = -\frac{1}{3}{x_{1}}^{3} + \frac{1}{4}{x_{1}}^{2} + ax_{1} + a^{2} =\frac{\left( x_{2} - x_{1} ight)^{3}}{6}

    \Leftrightarrow \frac{1}{4}\left({x_{1}}^{2} - 4a^{2} ight) + a\left( x_{1} + 2a ight) -\frac{{x_{1}}^{3}}{3} = \frac{\left( x_{2} - x_{1}ight)^{3}}{6}

    \Leftrightarrow - \frac{1}{6}\left({x_{1}}^{3} + {x_{2}}^{3} ight) + \frac{1}{2}x_{1}x_{2}\left( x_{2} -x_{1} ight) + \frac{{x_{1}}^{2}}{4} + ax_{1} + a^{2} = 0

    \Leftrightarrow - \frac{1}{6}\left(\frac{1}{8} + \frac{3a}{2} ight) - \frac{a}{2}\sqrt{\frac{1}{4} + 4a}+ \frac{\left( 1 + \sqrt{1 + 16a} ight)^{2}}{64} + a.\frac{1 - \sqrt{1+ 16a}}{4} + a^{2} = 0

    \Rightarrow a \approx 3,684 \in \left(\frac{7}{2};4 ight)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo