Cho hàm số
có đạo hàm trên khoảng
thỏa mãn
và
. Giá trị tích phân
bằng:
Từ giả thiết ta có:
Lấy nguyên hàm hai vế của (*) suy ra
Vì nên
Đặt
Theo công thức tích phân từng phần ta được:
Cho hàm số
có đạo hàm trên khoảng
thỏa mãn
và
. Giá trị tích phân
bằng:
Từ giả thiết ta có:
Lấy nguyên hàm hai vế của (*) suy ra
Vì nên
Đặt
Theo công thức tích phân từng phần ta được:
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Vì:
Tìm một nguyên hàm
của hàm số
, biết rằng
?
Ta có:
Theo bài ra ta có:
. Vậy
.
Diện tích hình phẳng giới hạn bởi hai đường
và
bằng:
Xét phương trình hoành độ giao điểm
Diện tích hình phẳng là:
Tìm nguyên hàm của hàm số ![]()
Cho hàm số
đồng biến và có đạo hàm cấp hai trên đoạn
và thỏa mãn
với
. Biết rằng
khi đó tích phân
bằng:
Ta có:
Theo bài ra ta có:
Cho hàm số
có đạo hàm liên tục trên
,
và thỏa mãn hệ thức
với
. Giá trị của
là:
Ta có:
Mặt khác
Vậy
Vì .
Cho hàm số
biết
,
liên tục trên
và
. Tính
?
Ta có:
Cho hàm số
xác định trên
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Lại có
Từ đó suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là
Tìm nguyên hàm
của hàm số
, biết rằng
?
Ta có:
Vậy .
Cho hình vẽ:

Diện tích của hình phẳng
được giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
(phần tô đậm trong hình vẽ) tính theo công thức:
Áp dụng công thức tính diện tích hình phẳng ta có:
Vậy đáp án cần tìm là: .
Một chất điểm đang chuyển động với vận tốc
thì tăng tốc với gia tốc
. Tính quãng đường chất điểm đó đi được trong khoảng thời gian
kể từ lúc bắt đầu tăng tốc.
Ta có: .
Khi đó
Khi đó quãng đường đi được bằng:
Một vật chuyển động với vận tốc thay đổi theo thời gian được tính bởi công thức
, thời gian tính theo đơn vị giây, quãng đường vật đi được tính theo đơn vị mét. Biết tại thời điểm
thì vật đi được quãng đường là
. Hỏi tại thời điểm
thì vật đi được quãng đường là bao nhiêu?
Quãng đường vật đi được từ thời điểm đến
Tìm nguyên hàm của hàm số
?
Ta có:
Biết rằng
và
. Tìm hàm số
?
Ta có:
Mà
Vậy
Tìm nguyên hàm của hàm số
?
Ta có:
Cho parabol
và hai điểm
thuộc
sao cho
. Tìm giá trị lớn nhất của diện tích hình phẳng giới hạn bởi parabol
và đường thẳng
.
Hình vẽ minh họa
Gọi và
là hai điểm thuộc (P) sao cho AB = 2.
Không mất tính tổng quát giả sử a < b.
Theo giả thiết ta có AB = 2 nên
Phương trình đường thẳng đi qua hai điểm A và B là
Gọi S là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng AB ta có:
Mặt khác nên
do
Suy ra
Vậy dấu bằng xảy ra khi và chỉ khi a = − b = ±1.
Cho hàm số
là hàm số chẵn, liên tục trên đoạn
và
. Tính tích phân
?
Cho hàm số là hàm số chẵn, liên tục trên đoạn
và
. Tính tích phân
?
Cho hàm số
. Tính tích phân
?
Ta có:
Kí hiệu
là hình phẳng giới hạn bởi đồ thị
với trục hoành (
). Quay hình
xung quanh trục hoành ta thu được khối tròn xoay có thể tích
. Tìm
?
Phương trình hoành độ giao điểm
Trường hợp 1: Với thì thể tích khối tròn xoay là:
Trường hợp 2: Với thì thể tích khối tròn xoay là:
Vậy .
Cho hình phẳng
được giới hạn bởi đồ thị các hàm số ![]()
. Tính diện tích hình phẳng
?
Cho hình phẳng được giới hạn bởi đồ thị các hàm số
. Tính diện tích hình phẳng
?
Tìm tất cả các giá trị thực của tham số
để tồn tại tích phân
?
Tích phân tồn tại khi và chỉ khi hàm số
liên tục trên
hoặc
Mà hàm số liên tục trên các khoảng
Nên hàm số liên tục trên
hoặc
khi và chỉ khi
.
Cho hình phẳng
giới hạn bởi đồ thị hàm số
và các đường thẳng
. Thể tích
của khối tròn xoay sinh ra khi cho hình phẳng
quay quanh trục?
Thể tích V của khối tròn xoay sinh ra khi cho hình phẳng quay quanh trục
là:
.
Cho
. Hãy tính
?
Đặt
Đổi cận ta có:
Vậy
Giá trị của tích phân
bằng:
Ta có: .
Một mảnh vườn hình elip có trục lớn bằng
, trục nhỏ bằng
được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là
mỗi
trồng cây con và
mỗi
trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).
Một mảnh vườn hình elip có trục lớn bằng , trục nhỏ bằng
được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là
mỗi
trồng cây con và
mỗi
trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).
Họ nguyên hàm của hàm số
là:
Ta có:
Xét hình phẳng
giới hạn bởi các đường như hình vẽ (phần gạch sọc).

Diện tích hình phẳng
được tính theo công thức
Ta có:
Tính tích phân
?
Ta có:
Tính diện tích hình phẳng giới hạn bởi các đường
và trục hoành?
Phương trình hoành độ giao điểm
Khi đó diện tích hình phẳng theo yêu cầu bài toán là:
.
Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi đồ thị các hàm số
quanh trục
bằng
Ta có:
Cho
là một nguyên hàm của hàm số
thỏa mãn
. Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
là một nguyên hàm của hàm số
suy ra
có dạng
Theo bài ra ta có:
Vậy .
Tính diện tích
của hình phẳng giới hạn bởi đồ thị hàm số
trục hoành và hai đường thẳng
.
Diện tích hình phẳng được tính như sau:
.
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó
Nguyên hàm của hàm số
là:
Ta có:
.
Cho
là nguyên hàm của hàm số
thỏa mãn
. Tổng các nghiệm của phương trình
là:
Ta có:
Đặt
Theo bài ra ta có:
Ta có:
Vậy tổng các nghiệm của phương trình bằng 2.
Tìm công thức tính thể tích V của khối tròn xoay được tao ra khi quay hình thang cong giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng
xung quanh trục Ox.
Ta có :
Cho hàm số
biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành. Chọn công thức đúng của
?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(0; 1)
=>
=> Hay
Giả sử
và
. Khi đó
bằng
Ta có:
Cho các hàm số
và
liên tục trên
và số
tùy ý. Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là: