Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 4. Nguyên hàm Tích phân được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một vật chuyển động với vận tốc thay đổi theo thời gian được tính bởi công thức v(t) = 3t + 2, thời gian tính theo đơn vị giây, quãng đường vật đi được tính theo đơn vị mét. Biết tại thời điểm t = 2s thì vật đi được quãng đường là 10m. Hỏi tại thời điểm t = 30s thì vật đi được quãng đường là bao nhiêu?

    Quãng đường vật đi được từ thời điểm t =
2s đến t = 30s

    S = \int_{2}^{30}{v(t)dt} =
\int_{2}^{30}{(3t + 2)dt} = 1400m = S(30) - S(2)

    \Rightarrow S(30) = 1400m + S(2) =
1410m

  • Câu 2: Vận dụng

    Tìm nguyên hàm của hàm số  f\left( x ight) = \frac{{{{\left( {x - 2} ight)}^{10}}}}{{{{\left( {x + 1} ight)}^{12}}}}

     \int {f\left( x ight)} dx = \int {\frac{{{{\left( {x - 2} ight)}^{10}}}}{{{{\left( {x + 1} ight)}^{12}}}}} dx = {\int {\left( {\frac{{x - 2}}{{x + 1}}} ight)} ^{10}}.\frac{1}{{{{\left( {x + 1} ight)}^2}}}dx

    Đặt t = \frac{{x - 2}}{{x + 1}} \Rightarrow dt = \frac{3}{{{{\left( {x + 1} ight)}^2}dx}} \Rightarrow \frac{1}{3}dt = \frac{1}{{{{\left( {x + 1} ight)}^2}}}dx

    => \int {f\left( x ight)} dx = \int {{t^{10}}.\frac{1}{3}dt = \frac{1}{{33}}.{t^{11}} + C}

    => \frac{1}{{33}}{\left( {\frac{{x - 2}}{{x + 1}}} ight)^{11}} + C

  • Câu 3: Vận dụng

    Cho hàm số f(x) đồng biến và có đạo hàm cấp hai trên đoạn \lbrack
0;2brack và thỏa mãn 2\left\lbrack f(x) ightbrack^{2} -
f(x).f''(x) + \left\lbrack f'(x) ightbrack^{2} =
0 với \forall x \in \lbrack
0;2brack. Biết rằng f(0) = 1;f(2)
= e^{6} khi đó tích phân M =
\int_{- 2}^{0}{(2x + 1)f(x)dx} bằng:

    Ta có:

    2\left\lbrack f(x) ightbrack^{2} -
f(x).f''(x) + \left\lbrack f'(x) ightbrack^{2} =
0

    \Leftrightarrow f(x).f''(x) -
\left\lbrack f'(x) ightbrack^{2} = 2\left\lbrack f(x)
ightbrack^{2}

    \Leftrightarrow
\frac{f(x).f''(x) - \left\lbrack f'(x)
ightbrack^{2}}{\left\lbrack f(x) ightbrack^{2}} = 2

    \Leftrightarrow \left\lbrack
\frac{f'(x)}{f(x)} ightbrack' = 2 \Leftrightarrow
\int_{}^{}{\left\lbrack \frac{f'(x)}{f(x)} ightbrack'dx} =
\int_{}^{}{2dx}

    \Leftrightarrow \frac{f'(x)}{f(x)} =
2x + C_{1} \Leftrightarrow \ln\left| f(x) ight| = x^{2} + C_{1}x +
C_{2}

    Theo bài ra ta có:

    \left\{ \begin{matrix}
f(0) = 1 \\
f(2) = e^{6} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
ln1 = C_{2} \\
4 + 2C_{1} = 6 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
C_{2} = 0 \\
C_{1} = 1 \\
\end{matrix} ight.

    \Rightarrow \ln\left| f(x) ight| =
x^{2} + x \Rightarrow f(x) = e^{x^{2} + x}

    \Rightarrow M = \int_{- 2}^{0}{(2x +
1)e^{x^{2} + x}dx} = \left. \ e^{x^{2} + x} ight|_{- 2}^{0} = 1 -
e^{2}

  • Câu 4: Thông hiểu

    Tìm a + b biết rằng \int_{0}^{1}{x\sqrt[3]{1 - x}dx} =
\frac{a}{b} là phân số tối giản?

    Ta có: t = \sqrt[3]{1 - x} \Rightarrow
t^{3} = 1 - x \Rightarrow 3t^{2}dt = - dx

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 1 \\
x = 1 \Rightarrow t = 0 \\
\end{matrix} ight. khi đó suy ra

    \Rightarrow \int_{0}^{1}{x\sqrt[3]{1 -
x}dx} = 3\int_{0}^{1}{\left( 1 - t^{3} ight)t^{3}dt}

    = \left. \ 3\left( \frac{t^{4}}{4} -
\frac{t^{7}}{7} ight) ight|_{0}^{1} = \frac{9}{28}

  • Câu 5: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =
\frac{1}{(2x - 1)^{2}}?

    Ta có: \int_{}^{}{\frac{1}{(2x -1)^{2}}dx} = \int_{}^{}{(2x - 1)^{- 1}dx}

    = - \frac{1}{2}.\frac{1}{2x -2} + C = \frac{1}{2 - 4x} + C

  • Câu 6: Thông hiểu

    Biết rằng F(x) = \left( ax^{2} + bx + c
ight)e^{- x} là một nguyên hàm của hàm số f(x) = \left( 2x^{2} - 5x + 2 ight)e^{-
x} trên \mathbb{R}. Giá trị của biểu thức f\left( F(0)
ight) bằng:

    Ta có: \left( F(x) ight)' =
\left\lbrack \left( ax^{2} + bx + c ight)e^{- x}
ightbrack'

    = \left\lbrack - ax^{2} + (2a - b)x + b
- c ightbrack e^{- x}

    = \left( 2x^{2} - 5x + 2 ight)e^{-
x} suy ra \left\{ \begin{matrix}a = - 2 \\2a - b = - 5 \\b - c = 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = - 2 \\b = 1 \\c = - 1 \\\end{matrix} ight.\Rightarrow F(x) = \left( 2x^{2} + x - 1ight)e^{- x}

    \Rightarrow F(0) = - 1 \Rightarrow
f\left( F(0) ight) = f( - 1) = 9e

  • Câu 7: Vận dụng cao

    Gọi d là đường thẳng tùy ý đi qua điểm M(1;1) và có hệ số góc âm. Giả sử d cắt các trục Ox;Oy lần lượt tại A;B. Quay tam giác OAB quanh trục Oy thu được một khối tròn xoay có thể tích là V. Giá trị nhỏ nhất của V bằng

    Hình vẽ minh họa

    Giả sử A(a; 0), B(0; b). Phương trình đường thẳng d: \frac{x}{a} + \frac{y}{b} = 1 \Rightarrow d:x = -\frac{b}{a}x + b\ \ \ (1)

    Mà M(1; 1) ∈ d nên \frac{1}{a} +\frac{1}{b} = 1 \Rightarrow a + b = 2ab\ \ (2)

    Từ (1) suy ra d có hệ số góc là k = -\frac{b}{a}; theo giả thiết ta có -\frac{b}{a} < 0 \Rightarrow ab > 0

    Nếu a < 0;b < 0 \Rightarrow a + b< 0 mẫu thuẫn với (2) suy ra a> 0;b > 0

    Mặt khác từ (2) suy ra b = \frac{a}{a -1} kết hợp với a > 0, b > 0 suy ra a > 1.

    Khi quay ∆OAB quanh trục Oy, ta được hình nón có chiều cao h = b và bán kính đường tròn đáy r = a

    Thể tích khối nón là V = \frac{1}{3}\pir^{2}h = \frac{1}{3}\pi a^{2}b = \frac{1}{3}\pi\frac{a^{3}}{a -1}

    Suy ra V đạt giá trị nhỏ nhất khi \frac{a^{3}}{a - 1} đạt giá trị nhỏ nhất.

    Xét hàm số f(x) = \frac{x^{3}}{x - 1} =x^{2} + x + 1 + \frac{1}{x - 1} trên khoảng (1; + \infty)

    f'(x) = 2x + 1 - \frac{1}{(x -1)^{2}} = \frac{x^{2}(2x - 3)}{(x - 1)^{2}}

    f'(x) = 0 \Rightarrow \left\lbrack\begin{matrix}x = 0 \\x = \frac{3}{2} \\\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Vậy giá trị nhỏ nhất của V bằng \frac{1}{3}\pi.f\left( \frac{3}{2} ight) =\frac{9\pi}{4}

  • Câu 8: Thông hiểu

    Cho tam giác ABC vuông tại A, cạnh AB =6,\ AC = 8M là trung điểm của cạnh AC. Khi đó thể tích của khối tròn xoay do tam giác BMC quanh cạnh AB là:

    Hình vẽ minh họa

    Khi quay tam giác BMC quanh cạnh AB tạo ra 2 khối tròn xoay có thể tích là

    V = \frac{1}{3}\pi AC^{2}.AB -\frac{1}{3}\pi AM^{2}.AB

    = \frac{1}{3}\pi.8^{2}.6 -\frac{1}{3}\pi.4^{2}.6 = 96\pi

  • Câu 9: Nhận biết

    Nguyên hàm của hàm số f(x) =
2^{2x}.3^{x}.7^{x} là:

    Ta có: \int_{}^{}{\left(2^{2x}.3^{x}.7^{x} ight)dx =}\int_{}^{}{\left( 84^{x} ight)dx}=\frac{84^{x}}{\ln84} + C

  • Câu 10: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f\left( x ight) = {e^x} + 2x thỏa mãn F\left( 0 ight) = \frac{3}{2}. Tìm F(x).

     F\left( x ight) = \int {f\left( x ight)dx = \int {\left( {{e^x} + 2x} ight)dx = {e^x} + {x^2} + C} }

    Theo bài ra ta có:

    F\left( 0 ight) = \frac{3}{2} \Rightarrow {e^x} + {x^2} + C = \frac{3}{2} \Rightarrow C = \frac{1}{2}

    => F\left( x ight) = {e^x} + {x^2} + \frac{1}{2}

  • Câu 11: Nhận biết

    Tìm nguyên hàm của hàm số f(x) = \frac{x
- 1}{x^{2}}?

    Ta có: f(x) = \frac{x - 1}{x^{2}} =
\frac{1}{x} - \frac{1}{x^{2}} \Rightarrow F(x) = \ln|x| + \frac{1}{x} +
C

  • Câu 12: Nhận biết

    Cho hình phẳng D giới hạn bởi đường cong y = e^{x}, trục hoành và các đường thẳng x = 0;x = 1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?

    Ta có:

    V = \pi\int_{0}^{1}{e^{2x}dx} = \left. \
\frac{\pi}{2}e^{2x} ight|_{0}^{1} = \frac{\pi\left( e^{2} - 1
ight)}{2}.

  • Câu 13: Nhận biết

    Tích phân \int_{1}^{8}\sqrt[3]{x}dx bằng:

    Ta có:

    \int_{1}^{8}\sqrt[3]{x}dx = \left. \
\left( \frac{3}{4}x\sqrt[3]{x} ight) ight|_{1}^{8} =
\frac{45}{4}.

  • Câu 14: Nhận biết

    Xác định tích phân I =
\int_{1}^{5}{\frac{1}{1 - 2x}dx}?

    Ta có:

    I = \int_{1}^{5}{\frac{1}{1 - 2x}dx} = -
\frac{1}{2}\int_{1}^{5}\frac{d(1 - 2x)}{1 - 2x}

    = - \frac{1}{2}.\left. \ \ln|1 - 2x|ight|_{1}^{5} = - \ln3

  • Câu 15: Vận dụng cao

    Cho hàm số y = f(x) dương và liên tục trên \lbrack 1;3brack thỏa mãn \max_{\lbrack 1;3brack}f(x) =
2;\min_{\lbrack 1;3brack}f(x) = \frac{1}{2} và biểu thức S =
\int_{1}^{3}{f(x)dx}.\int_{1}^{3}{\frac{1}{f(x)}dx} đạt giá trị lớn nhất, khi đó \int_{1}^{3}{f(x)dx} bằng:

    Do \frac{1}{2} \leq f(x) \leq 2
\Rightarrow f(x) + \frac{1}{f(x)} \leq \frac{5}{2}

    \Rightarrow \int_{1}^{3}{\left\lbrack
f(x) + \frac{1}{f(x)} ightbrack dx} \leq 5

    \Rightarrow \int_{1}^{3}{f(x)dx} +
\int_{1}^{3}{\frac{1}{f(x)}dx} \leq 5

    \Rightarrow
\int_{1}^{3}{\frac{1}{f(x)}dx} \leq 5 -
\int_{1}^{3}{f(x)dx}

    \Rightarrow S =
\int_{1}^{3}{f(x)dx}.\int_{1}^{3}{\frac{1}{f(x)}dx} \leq
5\int_{1}^{3}{f(x)dx} - \left\lbrack \int_{1}^{3}{f(x)dx}
ightbrack^{2}

    \leq \frac{25}{4} - \left\lbrack
\int_{1}^{3}{f(x)dx - \frac{5}{2}} ightbrack^{2} \leq
\frac{25}{4}

    Dấu bằng xảy ra khi và chỉ khi \int_{1}^{3}{f(x)dx} = \frac{5}{2}.

  • Câu 16: Nhận biết

    Cho hàm số f(x) liên tục trên tập số thực và thỏa mãn \int_{0}^{6}{f(x)dx}= 7;\int_{3}^{10}{f(x)dx} = 8;\int_{3}^{6}{f(x)dx} = 9. Khi đó giá trị I = \int_{0}^{10}{f(x)dx} bằng:

    Ta có:

    \int_{3}^{10}{f(x)dx} =
\int_{3}^{6}{f(x)dx} + \int_{6}^{10}{f(x)dx}

    \Leftrightarrow \int_{6}^{10}{f(x)dx} =
\int_{3}^{6}{f(x)dx} - \int_{3}^{10}{f(x)dx} = 8 - 9 = 1

    \Rightarrow I = \int_{0}^{6}{f(x)dx} +
\int_{6}^{10}{f(x)dx} = 7 - 1 = 6

  • Câu 17: Nhận biết

    Một xe ô tô đang chạy với vận tốc 72 km/h thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó 45\ \
m. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ v(t) = - 12t + 24\ \ (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quảng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.

    a) Quảng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Đúng||Sai

    b) Quãng đường s(t) = - 12t^{2} +
24t. Đúng||Sai

    c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 10 giây. Sai||Đúng

    d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai

    Đáp án là:

    Một xe ô tô đang chạy với vận tốc 72 km/h thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó 45\ \
m. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ v(t) = - 12t + 24\ \ (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quảng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.

    a) Quảng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Đúng||Sai

    b) Quãng đường s(t) = - 12t^{2} +
24t. Đúng||Sai

    c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 10 giây. Sai||Đúng

    d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai

    Do s'(t) = v(t) nên quãng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Ta có: \int_{}^{}{( - 12t + 24)}dt = - 6t^{2} + 24t +
C với C là hằng số.

    Khi đó, ta gọi hàm số s(t) = - 6t^{2} + 24t +
C.

    Do s(0) = 0 nên C = 0. Suy ra s(t) = - 6t^{2} + 24t.

    Xe ô tô dừng hẳn khi v(t) = 0 hay - 12t + 24 = 0 \Leftrightarrow t =
2. Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 2 giây.

    Ta có xe ô tô đang chạy với tốc độ 72\
km/h = 20\ m/s.

    Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: s(2) = - 6.2^{2} + 24.2
= 24(\ m).

    Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: 20 + 24 \approx 44\ (\ m).

    Do 44 < 45 nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường.

  • Câu 18: Thông hiểu

    Một chất điểm đang chuyển động với vận tốc v_{0} = 18(m/s) thì tăng tốc với gia tốc a(t) = t^{2} + 5t\left( m/s^{2}
ight). Tính quãng đường chất điểm đó đi được trong khoảng thời gian 3s kể từ lúc bắt đầu tăng tốc.

    Ta có:

    v(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{\left( t^{2} + 5t ight)dt} = \frac{t^{3}}{3} +
\frac{5t^{2}}{2} + C

    Do khi bắt đầu tăng tốc v_{0} =
18 nên v_{(t = 0)} = 18 \Rightarrow
C = 18

    \Rightarrow v(t) = \frac{t^{3}}{3} +
\frac{5t^{2}}{2} + 18

    Khi đó quãng đường xe đi được sau 3 giây kể từ khi ô tô bắt đầu tăng tốc bằng

    S = \int_{0}^{3}{v(t)dt} =
\int_{0}^{3}{\left( \frac{t^{3}}{3} + \frac{5t^{2}}{2} + 18 ight)dt} =
\frac{333}{4}(m)

  • Câu 19: Vận dụng

    Tổng tất cả các giá trị của tham số m thỏa mãn \int_{0}^{1}{\frac{9^{x} + 3m}{9^{x} + 3}dx} =
m^{2} - 1 bằng:

    Ta có:

    \int_{0}^{1}{\frac{9^{x} + 3m}{9^{x} +
3}dx} = m^{2} - 1

    \Leftrightarrow
\int_{0}^{1}{\frac{9^{x}}{9^{x} + 3}dx} + m\int_{0}^{1}{\frac{3}{9^{x} +
3}dx} = m^{2} - 1

    \Leftrightarrow m^{2} -
m\int_{0}^{1}{\frac{3}{9^{x} + 3}dx} - \int_{0}^{1}{\frac{9^{x}}{9^{x} +
3}dx} - 1 = 0

    Phương trình trên là phương trình bậc hai đối với biến m, với các hệ số
    \left\{ \begin{matrix}a = 1 \\b = - \int_{0}^{1}{\dfrac{3}{9^{x} + 3}dx} \\c = - \int_{0}^{1}{\dfrac{9^{x}}{9^{x} + 3}dx} \\\end{matrix} ight..

    Áp dụng hệ thứ Vi- et \Rightarrow m_{1} +
m_{2} = \frac{- b}{a} = \int_{0}^{1}{\frac{3}{9^{x} + 3}dx} =
\frac{1}{2}

  • Câu 20: Thông hiểu

    Cho hàm số f(x);g(x) là các hàm số liên tục trên \lbrack 1;3brack và thỏa mãn \int_{1}^{3}{\left\lbrack f(x) +
3g(x) ightbrack dx} = 10\int_{1}^{3}{\left\lbrack 2f(x) - g(x)
ightbrack dx} = 6. Tính tích phân K = \int_{1}^{3}{\left\lbrack f(x) + g(x)
ightbrack dx}?

    Theo bài ra ta có:

    \left\{ \begin{matrix}\int_{1}^{3}{\left\lbrack f(x) + 3g(x) ightbrack dx} = 10 \\\int_{1}^{3}{\left\lbrack 2f(x) - g(x) ightbrack dx} = 6 \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}\int_{1}^{3}{f(x)dx} + 3\int_{1}^{3}{g(x)dx} = 10 \\2\int_{1}^{3}{f(x)dx} - \int_{1}^{3}{g(x)dx} = 6 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\int_{1}^{3}{f(x)dx} = 4 \\\int_{1}^{3}{g(x)dx} = 2 \\\end{matrix} ight.\Rightarrow K = \int_{1}^{3}{\left\lbrack f(x) +g(x) ightbrack dx} = 4.2 = 6

  • Câu 21: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}
2x\ \ \ \ \ \ \ \ khi\ x \geq 1 \\
3x^{2} - 1\ \ khi\ x < 1 \\
\end{matrix} ight. có một nguyên hàm là F(x) thỏa mãn F(0) = 1F(x) liên túc trên \mathbb{R}. Giá trị biểu thức K = F( - 1) - F(2) bằng:

    Ta có: F(x) = \int_{}^{}{f(x)dx} =
\left\{ \begin{matrix}
x^{2} + C_{1}\ \ \ \ \ \ \ \ khi\ x \geq 1 \\
x^{3} - x + C_{2}\ \ khi\ x < 1 \\
\end{matrix} ight.

    F(0) = 1 \Rightarrow C_{2} =
1

    Vì hàm số F(x) liên tục trên \mathbb{R} nên liên tục tại x = 1 tức là

    \lim_{x ightarrow 1^{+}}F(x) = \lim_{x
ightarrow 1^{-}}F(x) = F(1)

    \Leftrightarrow 1 + C_{1} = C_{2}
\Leftrightarrow C_{1} = 0

    Do đó F(x) = \left\{ \begin{matrix}
x^{2}\ \ \ \ \ \ \ \ khi\ x \geq 1 \\
x^{3} - x + 1\ \ khi\ x < 1 \\
\end{matrix} ight.

    K = F( - 1) - F(2) = ( - 1 + 1 + 1) +
\left( 2^{2} ight) = 5

  • Câu 22: Vận dụng cao

    Cho hàm số y = f(x) liên tục, f(x) nhận giá trị dương trên \left( {0; + \infty } ight) và thỏa mãn f(1) = 1, f\left( x ight) = f'\left( x ight)\sqrt {3x + 1} ,\forall x > 0. Mệnh đề nào sau đây đúng?

    Ta có: f\left( x ight) > 0f\left( x ight) = f'\left( x ight)\sqrt {3x + 1}

    => \frac{{f'\left( x ight)}}{{f\left( x ight)}} = \frac{1}{{\sqrt {3x + 1} }}

    => \int {\frac{{f'\left( x ight)}}{{f\left( x ight)}}dx}  = \int {\frac{1}{{\sqrt {3x + 1} }}} dx \Rightarrow \ln f\left( x ight) = \frac{{2\sqrt {3x + 1} }}{3} + C

    Mà f(1) = 1 => C =  - \frac{4}{3}f\left( x ight) = {e^{\frac{2}{3}\sqrt {3x + 1}  - \frac{4}{3}}}.f\left( 5 ight) = {e^{\frac{4}{3}}} \approx 3,79

  • Câu 23: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f(x) = 4\cos^{2}x - 5 thỏa mãn F(\pi) = 0. Tìm F(x)?

    Ta có: F(x) = \int_{}^{}{\left( 4\cos^{2}x- 5 ight)dx} \Leftrightarrow F(x) = \int_{}^{}{(2\cos2x -3)dx}

    \Leftrightarrow F(x) = \sin2x - 3x +C

    Lại có F(\pi) = 0 \Leftrightarrow - 3\pi
+ C = 0 \Leftrightarrow C = 3\pi

    Vậy F(x) = - 3x + \sin2x +3\pi.

  • Câu 24: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi các đường y = x\sin2x;y = 2x;x = \frac{\pi}{2}?

    Phương trình hoành độ giao điểm

    x\sin2x = 2x \Leftrightarrow \left\lbrack\begin{matrix}x = 0 \\\sin2x = 2(L) \\\end{matrix} ight.

    Diện tích hình phẳng là:

    S = \int_{0}^{\frac{\pi}{2}}{\left|
x\sin x - 2x ight|dx} = \left| \int_{0}^{\frac{\pi}{2}}{\left( x\sin x
- 2x ight)dx} ight|

    = \left| \left. \ \left(\frac{1}{4}\sin2x - \frac{1}{2}x\cos2x - x^{2} ight)ight|_{0}^{\frac{\pi}{2}} ight| = \frac{\pi^{2}}{4} -\frac{\pi}{4}

  • Câu 25: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =
e^{x}\left( 2017 - \frac{2018e^{- x}}{x^{5}} ight)?

    Ta có: \int_{}^{}\left\lbrack e^{x}\left(
2017 - \frac{2018e^{- x}}{x^{5}} ight) ightbrack dx =
\int_{}^{}\left( 2017e^{x} - \frac{2018}{x^{5}} ight)dx

    = 2017e^{x} + \frac{504,5}{x^{4}} +
C

  • Câu 26: Thông hiểu

    Cho \int_{0}^{\frac{\pi}{2}}{f(x)dx =
6}. Tính I =\int_{0}^{\frac{\pi}{2}}{\lbrack 3f(x) - 2sinxbrack dx}.

    Ta có:

    I = \int_{0}^{\frac{\pi}{2}}{\lbrack
3f(x) - 2sinxbrack dx}

    = 3\int_{0}^{\frac{\pi}{2}}{f(x)dx} -
2\int_{0}^{\frac{\pi}{2}}{\sin xdx} = 3.6 - 2 = 16.

  • Câu 27: Nhận biết

    Nguyên hàm của hàm số f(x) =
\frac{1}{x\sqrt{x}} là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\frac{1}{x\sqrt{x}}dx}

    = \int_{}^{}{x^{- \frac{3}{2}}dx=}\dfrac{x^{- \frac{1}{2}}}{- \dfrac{1}{2}} + C = - \frac{2}{\sqrt{x}} +C.

  • Câu 28: Nhận biết

    Cho hình phẳng (H) giới hạn bởi các đường y = \cos x;y = 0;x = 0;x =
\frac{\pi}{2}. Thể tích vật thể tròn xoay có được khi (H) quay quanh trục Ox bằng:

    Gọi V là thể tích khối tròn xoay cần tính. Ta có:

    V = \pi\int_{0}^{\frac{\pi}{2}}{\left(\cos x ight)^{2}dx} = \pi\int_{0}^{\frac{\pi}{2}}{\frac{1 +\cos2x}{2}dx}

    = \pi\left. \ \left( \frac{x}{2} +\frac{\sin2x}{4} ight) ight|_{0}^{\frac{\pi}{2}} =\frac{\pi^{2}}{4}

  • Câu 29: Nhận biết

    Xét hình phẳng (H) giới hạn bởi các đường như hình vẽ (phần gạch sọc).

    Diện tích hình phẳng (H) được tính theo công thức

    Ta có:

    S = \int_{0}^{1}{\left| f(x) ight|dx}
+ \int_{1}^{4}{\left| g(x) ight|dx}

    = \int_{0}^{1}{f(x)dx} +
\int_{1}^{4}{g(x)dx}

  • Câu 30: Vận dụng

    Cho hàm số f(x) xác định trên \mathbb{R}\backslash \left\{ 1 ight\} thỏa mãn f'\left( x ight) = \frac{1}{{x - 1}};f\left( 0 ight) = 2017;f\left( 2 ight) = 2018. Giá trị của biểu thức T = \left[ {f\left( 3 ight) - 2018} ight].\left[ {f\left( { - 1} ight) - 2017} ight] là bao nhiêu?

     \begin{matrix}  f\left( x ight) = \int {f'\left( x ight)dx}  = \int {\dfrac{1}{{x - 1}}dx}  \hfill \\   = \ln \left| {x - 1} ight| + C = \left\{ {\begin{array}{*{20}{c}}  {\ln \left( {x - 1} ight) + {C_1}{\text{ khi x  >  1}}} \\   {\ln \left( {1 - x} ight) + {C_2}{\text{ khi x  <  1}}} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) = 2017 \Rightarrow \ln \left( {1 - 0} ight) + {C_2} = 2017} \\   {f\left( 2 ight) = 2018 \Rightarrow \ln \left( {2 - 1} ight) + {C_1} = 2018} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{C_2} = 2017} \\   {{C_1} = 2018} \end{array}} ight.

    Khi đó

    \begin{matrix}  T = \left[ {f\left( 3 ight) - 2018} ight].\left[ {f\left( { - 1} ight) - 2017} ight] \hfill \\   = \left[ {\ln \left( {3 - 1} ight) + 2018 - 2018} ight].\left[ {\ln \left( {1 - \left( { - 1} ight)} ight) + 2017 - 2017} ight] \hfill \\   = \ln 2.\ln 2 = {\ln ^2}2 \hfill \\ \end{matrix}

  • Câu 31: Nhận biết

    Cho hình phẳng (H) giới hạn bởi các đường y = 2x - x^{2};y = 0. Quay (H) quanh trục hoành tạo thành khối tròn xoay có thể tích là:

    Ta có: 2x - x^{2} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Theo công thức thể tích giới hạn bởi các đường ta có:

    V = \pi\int_{0}^{2}{\left( 2x - x^{2}
ight)^{2}dx}

  • Câu 32: Nhận biết

    Một vật chuyển động với vận tốc v(t) =
\frac{6}{5} + \frac{t^{2} + 4}{t + 3}(m/s). Tính quãng đường vật đó đi được trong 4 giây đầu (làm tròn kết quả đến chữ số thập phân thứ hai).?

    Quãng đường vật đó đi được trong 4 giây đầu là:

    S = \int_{0}^{4}{v(t)dt} = \int_{0}^{4}{\left(
\frac{6}{5} + \frac{t^{2} + 4}{t + 3} ight)dt} \approx
11,81(m).

  • Câu 33: Thông hiểu

    Tìm nguyên hàm của hàm số f\left( x ight) = {\cos ^2}x

     f\left( x ight) = {\cos ^2}x = \frac{{\cos 2x + 1}}{2} = \frac{{\cos 2x}}{2} + \frac{1}{2}

    \int {f\left( x ight)dx}  = \int {\left( {\frac{{\cos 2x}}{2} + \frac{1}{2}} ight)dx = } \frac{x}{2} + \frac{1}{4}\sin 2x + C

  • Câu 34: Nhận biết

    Tính tích phân I = \int_{0}^{1}{(2x +
1)e^{x}dx} bằng cách đặt u = 2x +
1;dv = e^{x}dx. Công thức nào dưới đây chính xác?

    Đặt \left\{ \begin{matrix}
u = 2x + 1 \\
dv = e^{x}dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = 2dx \\
v = e^{x} \\
\end{matrix} ight.

    Suy ra I =
\int_{0}^{1}{(2x + 1)e^{x}dx} = \left. \ \left\lbrack (2x + 1)e^{x}
ightbrack ight|_{0}^{1} - 2\int_{0}^{1}{e^{x}dx}

  • Câu 35: Thông hiểu

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack a;bbrack. Gọi D là hình phẳng giới hạn bởi đồ thị (C):y = f(x), trục hoành, hai đường thẳng x = a;x = b (như hình vẽ bên).

    Giả sử S_{D} là diện tích của hình phẳng D. Chọn công thức đúng?

    Dựa vào đồ thị hình vẽ ta thấy:

    + Đồ thị cắt trục hoành tại điểm O(0;0)

    + Trên đoạn \lbrack a;0brack, đồ thị ở phía dưới trục hoành nên \left|
f(x) ight| = - f(x)

    + Trên đoạn \lbrack 0;bbrack, đồ thị ở phía trên trục hoành nên \left|
f(x) ight| = f(x)

    Do đó: S_{D} = \int_{a}^{b}{\left| f(x)
ight|dx} = - \int_{a}^{0}{f(x)dx} + \int_{0}^{b}{f(x)dx}

  • Câu 36: Vận dụng

    Cho hàm số f(x) thỏa mãn f(1) = 3x\left\lbrack 4 - f'(x) ightbrack = f(x) -
1 với mọi x > 0. Tính f(2)?

    Ta có:

    x\left\lbrack 4 - f'(x)
ightbrack = f(x) - 1

    \Leftrightarrow f(x) + xf'(x) = 4x +
1

    \Leftrightarrow \left( xf(x)
ight)' = 4x + 1

    \Leftrightarrow xf(x) =
\int_{}^{}{\left( xf(x) ight)'dx} = \int_{}^{}{(4x +
1)dx}

    \Leftrightarrow \int_{}^{}{(4x + 1)dx} =
2x^{2} + x + C

    Với x = 1 \Rightarrow 1.f(1) = 3 + C
\Leftrightarrow 3 = 3 + C \Rightarrow C = 0

    Do đó xf(x) = 2x^{2} + x

    Vậy 2f(2) = 2.2^{2} + 2 \Rightarrow f(2)
= 5

  • Câu 37: Vận dụng

    Cho đường cong (C):y = x^{3}. Xét điểm A có hoành độ dương thuộc (C), tiếp tuyến của (C) tại A tạo với (C) một hình phẳng có diện tích bằng 27. Hoành độ điểm A thuộc khoảng nào dưới đây??

    Ta có: y' = 3x^{2}A \in (C) \Rightarrow A\left( a;a^{3} ight);(a
> 0)

    Phương trình tiếp tuyến d của (C) tại A là d:y = 3a^{2}(x - a) + a^{3}

    x^{3} = 3a^{2}(x - a) +
a^{3}

    \Leftrightarrow (x - a)^{2}(x + 2a) =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = a \\
x = - 2a \\
\end{matrix} ight.

    Gọi S là diện tích của hình phẳng giới hạn bởi tiếp tuyến d và (C)

    S = 27 \Leftrightarrow \int_{-
2a}^{a}\left| x^{3} - 3a^{2}(x - a) - a^{3} ight|dx = 27

    \Leftrightarrow \left| \int_{-
2a}^{a}\left( x^{3} - 3a^{2}x + 2a^{3} ight)dx ight| =
27

    \Leftrightarrow \left| \left. \ \left(
\frac{x^{4}}{4} - \frac{3a^{2}x^{2}}{2} + 2a^{3}x ight) ight|_{-
2a}^{a} ight| = 27

    \Leftrightarrow \frac{27}{4}a^{4} = 27
\Leftrightarrow \left\lbrack \begin{matrix}
a = \sqrt{2}(tm) \\
a = - \sqrt{2}(ktm) \\
\end{matrix} ight.

    Vậy a = \sqrt{2} \in \left( 1;\frac{3}{2}
ight)

  • Câu 38: Vận dụng

    Một quả bóng bầu dục có khoảng cách giữa 2 điểm xa nhất bằng 10 cm và cắt quả bóng bằng mặt phẳng trung trực của đoạn thẳng đó thì được đường tròn có diện tích bằng 16\pi\left( \ cm^{2}
ight). Thể tích của quả bóng bằng (Tính gần đúng đến hai chữ số thập phân, đơn vị lít)

    Quả bóng bầu dục sẽ có dạng elip.

    Độ dài trục lớn bằng 20\ cm \Rightarrow2a = 20 \Rightarrow a = 5\ \ (cm)

    Ta có diện tích đường tròn thiết diện là

    S = \pi b^{2} = 16\pi \Rightarrow b =4(\ cm)

    Ta sẽ có phương trình elip \frac{x^{2}}{25} + \frac{y^{2}}{16} =
1

    \Rightarrow V = \pi\int_{-
5}^{5}{16\left( 1 - \frac{x^{2}}{25} ight)}dx \approx 335\ \ \left( \
cm^{3} ight) = 0,34\ (l).

  • Câu 39: Thông hiểu

    Một vật thể nằm giữa hai mặt phẳng x = -
1;x = 1 và thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ x;(
- 1 \leq x \leq 1) là một hình tròn có diện tích bằng 3\pi. Thể tích của vật thể là?

    Ta có: V = \int_{- 1}^{1}{S(x)dx} =
\int_{- 1}^{1}{3\pi dx} = 6\pi

  • Câu 40: Nhận biết

    Vật thể B giới hạn bởi mặt phẳng có phương trình x = 0x = 2. Cắt vật thể B với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ bằng x;(0 \leq x \leq 2) ta được thiết diện có diện tích bằng x^{2}(2 - x). Thể tích của vật thể B:

    Thể tích của vật thể B là:

    V = \int_{0}^{2}{x^{2}(2 - x)dx} =
\int_{0}^{2}{\left( 2x^{2} - x^{3} ight)dx} = \frac{4}{3}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo