Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 4. Nguyên hàm Tích phân được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số f(x) = x^{4} - 4x^{3} + 2x^{2}
- x + 1;\forall x\mathbb{\in R}. Tính I =
\int_{0}^{1}{f^{2}(x).f'(x)dx}

    Ta có:

    I = \int_{0}^{1}{f^{2}(x).f'(x)dx} =
\int_{0}^{1}{f^{2}(x)d\left( f(x) ight)} = \left. \ \frac{f^{3}(x)}{3}
ight|_{0}^{1} = - \frac{2}{3}.

  • Câu 2: Nhận biết

    Cho hàm số y = f(x);y = g(x) liên tục trên \lbrack a;bbrack. Gọi (H) là hình phẳng giới hạn bởi hai đồ thị y = f(x);y = g(x) và các đường thẳng x = a;x = b. Diện tích hình (H) được tính theo công thức?

    Ta có diện tích hình (H) được tính bằng công thức S = \int_{a}^{b}{\left| f(x) - g(x)
ight|dx}.

  • Câu 3: Thông hiểu

    Diện tích S của hình phẳng giới hạn bởi đường cong y = - x^{3} + 3x^{2} - 2, trục hoành và hai đường thẳng x = 0;x = 2

    Phương trình hoành độ giao điểm

    - x^{3} + 3x^{2} - 2 = 0 \Leftrightarrow
(1 - x)\left( x^{2} - 2x - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = 1 + \sqrt{3} \\
x = 1 - \sqrt{3} \\
\end{matrix} ight.

    Khi đó:

    S = \int_{0}^{2}{\left| - x^{3} + 3x^{2}
- 2 ight|dx}

    = \int_{0}^{1}{\left| - x^{3} + 3x^{2} -
2 ight|dx} + \int_{1}^{2}{\left| - x^{3} + 3x^{2} - 2
ight|dx}

    = \left| \int_{0}^{1}{\left( - x^{3} +
3x^{2} - 2 ight)dx} ight| + \left| \int_{1}^{2}{\left( - x^{3} +
3x^{2} - 2 ight)dx} ight|

    = \left| \left. \ \left( -
\frac{x^{4}}{4} + x^{3} - 2x ight) ight|_{0}^{1} ight| + \left|
\left. \ \left( - \frac{x^{4}}{4} + x^{3} - 2x ight) ight|_{1}^{2}
ight|

    = \frac{5}{2}

  • Câu 4: Thông hiểu

    Cho \int_{0}^{1}{\frac{x}{(x + 2)^{2}}dx}
= a + ln2 + cln3 với a;b;c là các số hữu tỉ. Giá trị của biểu thức K =
3a + b + c bằng:

    Ta có: \int_{0}^{1}{\frac{x}{(x +
2)^{2}}dx} = \int_{0}^{1}{\frac{x + 2 - 2}{(x + 2)^{2}}dx}

    = \int_{0}^{1}{\frac{x + 2}{(x +
2)^{2}}dx} - \int_{0}^{1}{\frac{2}{(x + 2)^{2}}dx}

    = \int_{0}^{1}{\frac{1}{x + 2}dx} -
\int_{0}^{1}{\frac{2}{(x + 2)^{2}}dx}

    = \left. \ \ln|x + 2| ight|_{0}^{1} -\left. \ \frac{2}{x + 2} ight|_{0}^{1} = \ln3 - \ln2 -\frac{1}{3}

    Suy ra a = - \frac{1}{3};b = - 1;c = 1
\Rightarrow K = - 1

  • Câu 5: Nhận biết

    Họ nguyên hàm của hàm số f(x) = 2x +\sin2x là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{(2x +\sin2x)dx}

    = 2.\frac{x^{2}}{2} - \frac{1}{2}\cos2x +c = x^{2} - \frac{1}{2}\cos2x + c

  • Câu 6: Thông hiểu

    Tìm nguyên hàm của hàm số f\left( x ight) = {\cos ^2}x

     f\left( x ight) = {\cos ^2}x = \frac{{\cos 2x + 1}}{2} = \frac{{\cos 2x}}{2} + \frac{1}{2}

    \int {f\left( x ight)dx}  = \int {\left( {\frac{{\cos 2x}}{2} + \frac{1}{2}} ight)dx = } \frac{x}{2} + \frac{1}{4}\sin 2x + C

  • Câu 7: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho khối cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2} =25, mặt phẳng (P) có phương trình x + 2y - 2z + 5 = 0 cắt khối cầu (S) thành hai phần. Tính thể tích của phần không chứa tâm của mặt cầu (S).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho khối cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z + 1)^{2} =25, mặt phẳng (P) có phương trình x + 2y - 2z + 5 = 0 cắt khối cầu (S) thành hai phần. Tính thể tích của phần không chứa tâm của mặt cầu (S).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Nhận biết

    Nếu \int_{1}^{2}{f(x)dx} =
5;\int_{2}^{5}{f(x)dx} = - 1 thì \int_{1}^{5}{f(x)dx} bằng:

    Ta có:

    \int_{1}^{5}{f(x)dx} =
\int_{1}^{2}{f(x)dx} + \int_{2}^{5}{f(x)dx} = 5 + ( - 1) =
4

  • Câu 9: Thông hiểu

    Cho \int_{0}^{1}\frac{dx}{x^{2} + 3x + 2}
= aln2 + bln3 với a;b là các số hữu tỉ. Tính giá trị biểu thức T = a
+ b?

    Ta có:

    \int_{0}^{1}\frac{dx}{x^{2} + 3x + 2} =
\int_{0}^{1}\frac{dx}{(x + 1)(x + 2)} = \int_{0}^{1}{\left( \frac{1}{x +
1} - \frac{1}{x + 2} ight)dx}

    = \left. \ \ln\left( \frac{x + 1}{x + 2}ight) ight|_{0}^{1} = 2\ln2 - \ln3

    Suy ra a = 2;b = - 1 \Rightarrow a + b =
1.

  • Câu 10: Thông hiểu

    Diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = \frac{1}{2x - 1};y
= 1 và đường thẳng x = 2

    Phương trình hoành độ giao điểm:

    \frac{1}{2x - 1} = 1 \Leftrightarrow\left\{ \begin{matrix}x eq \dfrac{1}{2} \\2x - 1 = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{1}{2} \\x = 1 \\\end{matrix} ight.\  \Leftrightarrow x = 1

    Khi đó:

    S = \int_{1}^{2}{\left| \frac{1}{2x - 1}
- 1 ight|dx} = \left| \int_{1}^{2}{\left( \frac{1}{2x - 1} - 1
ight)dx} ight|

    = \left| \left. \ \left( \frac{\ln|2x -1|}{2} - x ight) ight|_{1}^{2} ight| = \left| \frac{1}{2}\ln3 - 1ight| = 1 - \frac{1}{2}\ln3.

  • Câu 11: Nhận biết

    Xác định nguyên hàm F(x) của hàm số f(x) = 2x + 5?

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{(2x +
5)dx} = x^{2} + 5x + C

  • Câu 12: Vận dụng

    Cho hình phẳng (S) được giới hạn bởi đồ thị các hàm số \left( P_{1} ight):y= x^{2},\left( P_{2} ight):y = \frac{x^{2}}{4},\left( H_{1} ight):y= \frac{2}{x},\left( H_{2} ight):y = \frac{8}{x}. Tính diện tích hình phẳng (S)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình phẳng (S) được giới hạn bởi đồ thị các hàm số \left( P_{1} ight):y= x^{2},\left( P_{2} ight):y = \frac{x^{2}}{4},\left( H_{1} ight):y= \frac{2}{x},\left( H_{2} ight):y = \frac{8}{x}. Tính diện tích hình phẳng (S)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Nhận biết

    Vật thể B giới hạn bởi mặt phẳng có phương trình x = 0x = 2. Cắt vật thể B với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ bằng x;(0 \leq x \leq 2) ta được thiết diện có diện tích bằng x^{2}(2 - x). Thể tích của vật thể B:

    Thể tích của vật thể B là:

    V = \int_{0}^{2}{x^{2}(2 - x)dx} =
\int_{0}^{2}{\left( 2x^{2} - x^{3} ight)dx} = \frac{4}{3}

  • Câu 14: Thông hiểu

    Tính thể tích khối tròn xoay sinh bởi Elip (E): \frac{x^{2}}{4} + \frac{y^{2}}{1} = 1 quay quanh trục hoành?

    Xét (E)a^{2} = 4 \Rightarrow a = 2. Do đó hai đỉnh thuộc trục lớn có tọa độ ( -
2;0),(2;0)

    \frac{x^{2}}{4} + \frac{y^{2}}{1} = 1
\Rightarrow y^{2} = 1 - \frac{x^{2}}{4}

    Do đó thể tích khối tròn xoay là V_{Ox} =
\pi\int_{- 2}^{2}{y^{2}dx} = \pi\int_{- 2}^{2}{\left( 1 -
\frac{x^{2}}{4} ight)dx} = \frac{8\pi}{3}

  • Câu 15: Thông hiểu

    Cho \int {f\left( x ight)dx}  = F\left( x ight) + C. Với a e 0, khẳng định nào sau đây đúng?

     Xét \int {f\left( {ax + b} ight)dx}, đặt t = ax + b

    => I = \int {f\left( t ight)d\left( {\frac{{t - b}}{a}} ight) = \frac{1}{a}} \int {f\left( t ight)dt = \frac{1}{a}} \int {f\left( x ight)d} x

    => \int {f\left( {ax + b} ight)d\left( {ax + b} ight) = \frac{1}{a}\left[ {F\left( {ax + b} ight) + C'} ight] = \frac{1}{a}F\left( {ax + b} ight) + C}

  • Câu 16: Nhận biết

    Xét hình phẳng (H) giới hạn bởi các đường như hình vẽ (phần gạch sọc).

    Diện tích hình phẳng (H) được tính theo công thức

    Ta có:

    S = \int_{0}^{1}{\left| f(x) ight|dx}
+ \int_{1}^{4}{\left| g(x) ight|dx}

    = \int_{0}^{1}{f(x)dx} +
\int_{1}^{4}{g(x)dx}

  • Câu 17: Nhận biết

    Hàm số y = {x^3} + x có nguyên hàm là:

     Ta có: \int {\left( {{x^3} + x} ight)dx}  = \int {{x^3}dx}  + \int {xdx}  = \frac{1}{4}{x^4} + \frac{1}{2}{x^2} + C

  • Câu 18: Vận dụng cao

    Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

    Đáp án:  4,32m2.

    Đáp án là:

    Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

    Đáp án:  4,32m2.

    Đặt hệ trục tọa độ có gốc O trùng với giao điểm hai đường chéo hình chữ nhật.

    Đồ thị của hàm số y = f(x)nhận trục Oy làm trục đối xứng đi qua hai điểm A(
- 1;0)A(2;1) có dạng hàm số (P_{1}):y = \frac{1}{2}x^{2} -
1.

    Đồ thị của hàm số y = g(x)nhận trục Oy làm trục đối xứng đi qua hai điểm C(1;0)D(2;
- 1) có dạng hàm số (P_{1}):y = -
\frac{1}{2}x^{2} + 1.

    Giao điểm của hai parabol tại x_{1} = -
\sqrt{2};x_{2} = \sqrt{2}

    Do đó, diện tích của con cá là S =
\int_{- \sqrt{2}}^{2}{\left| x^{2} - 2 ight|dx} \approx
4,32m^{2}

  • Câu 19: Nhận biết

    Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn \int_{0}^{2}{f(x)dx}\  = 5,\int_{1}^{2}{f(x)dx\ }
= 3. Giá trị của biểu thức \int_{0}^{1}{f(x)dx} bằng

    Ta có: \int_{0}^{2}{f(x)dx} =
\int_{0}^{1}{f(x)dx} + \int_{1}^{2}{f(x)dx}

    \Rightarrow \int_{0}^{1}{f(x)dx} =
\int_{0}^{2}{f(x)dx} - \int_{1}^{2}{f(x)dx} = 5 - 3 = 2

  • Câu 20: Nhận biết

    Tìm nguyên hàm của hàm số f(x) = \frac{x
- 1}{x^{2}}?

    Ta có: f(x) = \frac{x - 1}{x^{2}} =
\frac{1}{x} - \frac{1}{x^{2}} \Rightarrow F(x) = \ln|x| + \frac{1}{x} +
C

  • Câu 21: Vận dụng

    Cho hàm số f(x) liên tục và có đạo hàm trên \left( 0;\frac{\pi}{2}
ight) thỏa mãn f(x) + \tan xf'(x) = \frac{x}{\cos^{3}x}. Biết rằng \sqrt{3}f\left( \frac{\pi}{3} ight) - f\left(
\frac{\pi}{6} ight) = a\pi\sqrt{3} + bln3 trong đó a;b\mathbb{\in R}. Kết luận nào sau đây đúng?

    Ta có: f(x) + \tan xf'(x) =\frac{x}{\cos^{3}x}

    \Leftrightarrow \cos xf(x) + \sin xf'(x) = \frac{x}{\cos^{2}x}

    \Leftrightarrow \left\lbrack \sin xf(x)ightbrack' = \frac{x}{\cos^{2}x}

    \Rightarrow \int_{}^{}{\left\lbrack \sin xf(x) ightbrack'dx} =\int_{}^{}{\frac{x}{\cos^{2}x}dx}

    \Rightarrow \sin xf(x) =\int_{}^{}{\frac{x}{\cos^{2}x}dx}.

    Tính I =
\int_{}^{}{\frac{x}{cos^{2}x}dx}. Đặt \left\{ \begin{matrix}u = x \\dv = \dfrac{dx}{\cos^{2}x} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = dx \\v = \tan x \\\end{matrix} ight. khi đó:

    I = x\tan x - \int_{}^{}{\tan xdx} =
x\tan x - \int_{}^{}\frac{d\left( \cos x ight)}{\cos x}

    = x\tan x + \ln\left| \cos x
ight|

    \Rightarrow f(x) = \frac{x\tan x +
\ln\left| \cos x ight|}{\sin x} = \frac{x}{\cos x} + \frac{\ln\left|
\cos x ight|}{\sin x}

    Theo bài ra ta có:

    \Rightarrow \sqrt{3}f\left(\frac{\pi}{3} ight) - f\left( \frac{\pi}{6} ight) = \sqrt{3}\left(\frac{2\pi}{3} - \dfrac{2\ln2}{\sqrt{3}} ight)- \left(\frac{\pi\sqrt{3}}{9} + 2\ln\dfrac{\sqrt{3}}{2} ight) =\dfrac{5\pi\sqrt{3}}{9}\ln3

    \Rightarrow \left\{ \begin{matrix}a = \dfrac{5}{9} \\b = - 1 \\\end{matrix} ight.\  \Rightarrow a + b = - \frac{4}{9}

  • Câu 22: Thông hiểu

    Cho hàm số f(x) thỏa mãn f'(x) = 2^{x} + 3\sqrt{x}f(4) = \ln\frac{16}{2}. Mệnh đề nào sau đây đúng?

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(
2^{x} + 3\sqrt{x} ight)dx} = \int_{}^{}{\left( 2^{x} +
3x^{\frac{1}{2}} ight)dx}

    = \frac{2^{x}}{\ln2} + 2.x^{\frac{3}{2}} +C = \frac{2^{x}}{\ln2} + 2\sqrt{x^{3}} + C.

    Theo bài ra ta có:

    f(4) = \ln\frac{16}{2} \Leftrightarrow \frac{2^{4}}{\ln2} + 2\sqrt{4^{3}} + C = \ln\frac{16}{2} \Leftrightarrow C = - 16

    Vậy f(x) = \frac{2^{x}}{\ln2} +2\sqrt{x^{3}} - 16.

  • Câu 23: Vận dụng cao

    Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.

    Đáp án: 6750000 đồng.

    Đáp án là:

    Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.

    Đáp án: 6750000 đồng.

    Gọi phương trình parabol (P):y = ax^{2} +
bx + c.

    Do tính đối xứng của parabol nên ta có thể chọn hệ trục tọa độ Oxy sao cho ( P) có đỉnh I ∈ Oy (như hình vẽ)

    Ta có hệ phương trình: \left\{
\begin{matrix}
\frac{9}{4} = c\ (I \in (P))\ \ \ \ \ \ \  \\
\frac{9}{4}a - \frac{3}{2}b + c = 0 \\
\frac{9}{4}a - \frac{3}{2}b + c = 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
c = \frac{9}{4} \\
a = - 1 \\
b = 0 \\
\end{matrix} ight.\  ight.

    Vậy (P):y = - x^{2} +
\frac{9}{4}

    Dựa vào đồ thị, diện tích cửa parabol là: S = \int_{\frac{- 3}{2}}^{\frac{3}{2}}\left( -
x^{2} + \frac{9}{4} ight)dx = 2\left. \ \left( - \frac{x}{3}^{3} +
\frac{9}{4}x ight) ight|_{0}^{\frac{9}{4}} =
\frac{9}{2}(m^{2}).

    Số tiền phải trả là \frac{9}{2}.1500000 =
6750000 đồng.

  • Câu 24: Thông hiểu

    Cho a;b là các số hữu tỉ thỏa mãn \int_{}^{}\frac{dx}{\sqrt{x + 2} +
\sqrt{x + 1}} = a(x + 2)\sqrt{x + 2} + b(x + 1)\sqrt{x + 1} +
C. Tính giá trị biểu thức H = 3a +
b?

    Ta có:

    I = \int_{}^{}{\frac{dx}{\sqrt{x + 2} +
\sqrt{x + 1}} =}\int_{}^{}{\frac{\sqrt{x + 2} - \sqrt{x + 1}}{x + 2 - x
+ 1}dx}

    = \int_{}^{}{\left( \sqrt{x + 2} -
\sqrt{x + 1} ight)dx}

    \Rightarrow I = \frac{2}{3}(x +
2)\sqrt{x + 2} - \frac{2}{3}(x + 1)\sqrt{x + 1} + C

    \Rightarrow a = \frac{2}{3};b = -
\frac{2}{3} \Rightarrow H = \frac{4}{3}

  • Câu 25: Nhận biết

    Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = x^{2} + 2x +
1 trục hoành và hai đường thẳng x =
- 1;x = 3.

    Diện tích hình phẳng được tính như sau:

    S = \int_{- 1}^{3}{\left( x^{2} + 2x + 1
ight)dx} = \left. \ \left( \frac{x^{3}}{3} + x^{2} + x ight)
ight|_{- 1}^{3} = \frac{64}{3}.

  • Câu 26: Vận dụng

    Biết rằng  F(x) nguyên hàm của hàm số f(x) = \frac{1}{x^{2}(x +1)} thỏa mãn F(1) + F( - 2) = \frac{1}{2}. Chọn mệnh đề đúng?

    Sử dụng phương pháp đồng nhất thức, ta có:

    f(x) = \frac{1}{x^{2}(x + 1)} =\frac{A}{x} + \frac{B}{x^{2}} + \frac{C}{x + 1}= \frac{(A + C)x^{2} +(A + B)x + B}{x^{2}(x + 1)}

    Suy ra \left\{ \begin{matrix}A + C = 0 \\A + B = 0 \\B = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}A = - 1 \\B = 1 \\C = 1 \\\end{matrix} ight.

    F(x) = \int_{}^{}{f(x)dx} =\int_{}^{}{\left( - \frac{1}{x} + \frac{1}{x^{2}} + \frac{1}{x + 1}ight)dx}

    \Rightarrow F(x) = - \ln|x| -\frac{1}{x} + \ln|x + 1| + C = \ln\left| \frac{x + 1}{x} ight| -\frac{1}{x} + C

    Khi đó F(x) = \left\{ \begin{matrix}\ln\dfrac{x + 1}{x} - \dfrac{1}{x} + C_{1};x \in (0; + \infty) \\\ln\dfrac{- x - 1}{x} - \dfrac{1}{x} + C_{2};x \in ( - 1;0) \\\ln\frac{x + 1}{x} - \dfrac{1}{x} + C_{3};x \in ( - \infty; - 1) \\\end{matrix} ight.

    F(1) + F( - 2) =\frac{1}{2}

    \Leftrightarrow \ln2 - 1 + C_{1} +\ln\frac{1}{2} + \frac{1}{2} + C_{3} = \frac{1}{2}

    \Leftrightarrow C_{1} + C_{3} =1

    Vậy T = F(2) + F( - 3) = \ln\frac{3}{2} -\frac{1}{2} + C_{1} + \ln\frac{2}{3} + \frac{1}{3} + C_{3} =\frac{5}{6}

  • Câu 27: Nhận biết

    Gọi S là diện tích hình phẳng giới hạn bởi các đường y = 3^{x};y = 0;x = 0;x = 2. Mệnh đề nào dưới đây đúng?

    Ta có: S = \int_{0}^{2}{\left| 3^{x}
ight|dx} = \int_{0}^{2}{3^{x}dx}

  • Câu 28: Vận dụng

    Cho hàm số f(x) thỏa mãn f(1) = 3x\left\lbrack 4 - f'(x) ightbrack = f(x) -
1 với mọi x > 0. Tính f(2)?

    Ta có:

    x\left\lbrack 4 - f'(x)
ightbrack = f(x) - 1

    \Leftrightarrow f(x) + xf'(x) = 4x +
1

    \Leftrightarrow \left( xf(x)
ight)' = 4x + 1

    \Leftrightarrow xf(x) =
\int_{}^{}{\left( xf(x) ight)'dx} = \int_{}^{}{(4x +
1)dx}

    \Leftrightarrow \int_{}^{}{(4x + 1)dx} =
2x^{2} + x + C

    Với x = 1 \Rightarrow 1.f(1) = 3 + C
\Leftrightarrow 3 = 3 + C \Rightarrow C = 0

    Do đó xf(x) = 2x^{2} + x

    Vậy 2f(2) = 2.2^{2} + 2 \Rightarrow f(2)
= 5

  • Câu 29: Thông hiểu

    Hàm số y = f(x) có một nguyên hàm là F(x) = e^{2x}. Tìm nguyên hàm của hàm số \frac{f(x) +
1}{e^{x}}?

    Ta có: f(x) = F'(x) = \left( e^{2x}
ight)' = 2.e^{2x}

    \Rightarrow \int_{}^{}{\frac{f(x) +
1}{e^{x}}dx} = \int_{}^{}{\frac{2e^{2x} + 1}{e^{x}}dx}

    = 2e^{x} - e^{- x} + C

  • Câu 30: Thông hiểu

    Tính tích phân I =\int_{0}^{\pi}{\cos^{3}x.\sin xdx}?

    Đặt x = \pi - t. Ta có:

    I = - \int_{\pi}^{0}{\cos^{3}(\pi -t).\sin(\pi - t)dt} = - \int_{0}^{\pi}{\cos^{3}t.\sin tdt} suy ra 2I = 0 \Rightarrow I = 0.

  • Câu 31: Nhận biết

    Một vật chuyển động chậm dần với vận tốc v(t) = 150 - 15t(m/s). Hỏi rằng trong 5s trước khi dừng hẳn vật di chuyển được bao nhiêu mét?

    Khi dừng hẳn v(t) = 150 - 15t = 0
\Rightarrow t = 10(s)

    Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:

    S = \int_{0}^{10}{v(t)dt} =
\int_{0}^{10}{(150 - 15t)dt} = \frac{375}{2}m.

  • Câu 32: Nhận biết

    Cho hàm số f(x) liên tục trên đoạn \left\lbrack 0;\frac{\pi}{2}
ightbrack\int_{0}^{\frac{\pi}{2}}{f(x)dx} = 5. Tính tích phân I =
\int_{0}^{\frac{\pi}{2}}{\left\lbrack f(x) + 2sinx ightbrack
dx}?

    Ta có:

    I =\int_{0}^{\frac{\pi}{2}}{\left\lbrack f(x) + 2\sin x ightbrack dx} =\int_{0}^{\frac{\pi}{2}}{f(x)dx} +\int_{0}^{\frac{\pi}{2}}{2\sin xdx}

    = 5 - \left. \ 2\cos xight|_{0}^{\frac{\pi}{2}} = 7

  • Câu 33: Vận dụng cao

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash \left\{ 0 ight\} thỏa mãn f\left( x ight) + x'f\left( x ight) = 3{x^2};f\left( 2 ight) = 8. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

     Ta có:

    \begin{matrix}  f\left( x ight) + x'f\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left( x ight)'f\left( x ight) + xf'\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left[ {xf\left( x ight)} ight]' = 3{x^2} \hfill \\ \end{matrix}

    Lấy nguyên hàm hai vế ta được:

    \begin{matrix}  \int {\left[ {xf\left( x ight)} ight]'dx = \int {3{x^2}dx} }  \hfill \\   \Leftrightarrow xf\left( x ight) = {x^3} + C \hfill \\ \end{matrix}

    Mặt khác f\left( 2 ight) = 8 \Rightarrow 3.f\left( 2 ight) = 8 + C \Rightarrow C = 8

    => xf\left( x ight) = {x^3} + 8 \Rightarrow f\left( x ight) = \frac{{{x^3} + 8}}{x}

    Xét phương trình hoành độ giao điểm \frac{{{x^3} + 8}}{x} = 0 \Rightarrow x =  - 2

    Ta có: f'\left( x ight) = \frac{{2{x^3} - 8}}{{{x^2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {f'\left( { - 2} ight) =  - 6} \\   {f\left( { - 2} ight) = 0} \end{array}} ight.

    Phương trình tiếp tuyến tại giao điểm với trục hoành là:

    y = f'\left( { - 2} ight)\left( {x + 2} ight) + f\left( { - 2} ight) \Rightarrow y =  - 6x - 12

  • Câu 34: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\frac{e^{x}}{\left( e^{x} + 1 ight)^{2}} là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\frac{e^{x}}{\left( e^{x} + 1 ight)^{2}}dx} =
\int_{}^{}\frac{d\left( e^{x} + 1 ight)}{\left( e^{x} + 1 ight)^{2}}
= - \frac{1}{e^{x} + 1} + C.

  • Câu 35: Nhận biết

    Hàm số f(x) = e^{- x} + 2x - 5 là một nguyên hàm của hàm số nào sau đây?

    Ta có: f'(x) = - e^{- x} + 2 nên f(x) = e^{- x} + 2x - 5 là một nguyên hàm của hàm số y = - e^{- x} +
2.

  • Câu 36: Thông hiểu

    Cho đồ thị hàm số y = f(x) như hình vẽ và \int_{- 2}^{0}{f(x)dx} =
a;\int_{0}^{3}{f(x)dx} = b.

    Tính diện tích của phần được gạch chéo theo a;b.

    Từ đồ thị ta suy ra \left\{
\begin{matrix}
f(x) \geq 0;\forall x \in \lbrack - 2;0brack \\
f(x) \leq 0;\forall x \in \lbrack 0;3brack \\
\end{matrix} ight.

    Do đó, diện tích phần gạch chéo là

    S = \int_{- 2}^{0}{\left| f(x)
ight|dx} + \int_{0}^{3}{\left| f(x) ight|dx}

    = \int_{- 2}^{0}{f(x)dx} -
\int_{0}^{3}{f(x)dx} = a - b.

  • Câu 37: Thông hiểu

    Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc v_{1}(t) = 2t(m/s). Đi được 12 giây, người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc a = -
12\left( m/s^{2} ight). Tính quãng đường S(m) đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn?

    Quãng đường xe đi được trong 12s đầu là S_{1} = \int_{0}^{12}{2tdt} = 144m

    Sau khi đi được 12s vật đạt vận tốc v =
24(m/s), sau đó vận tốc của vật có phương trình v = 24 - 12t

    Vật dừng hẳn sau 2s kể từ khi phanh.

    Quãng đường vật đi được từ khi đạp phanh đến khi dừng hẳn là

    S_{2} = \int_{0}^{2}{(24 - 22t)dt} =
24m

    Vậy tổng quãng đường ô tô đi được là S =
S_{1} + S_{2} = 144 + 24 = 168(m)

  • Câu 38: Vận dụng

    Cho hàm số f(x) đồng biến và có đạo hàm cấp hai trên đoạn \lbrack
0;2brack và thỏa mãn 2\left\lbrack f(x) ightbrack^{2} -
f(x).f''(x) + \left\lbrack f'(x) ightbrack^{2} =
0 với \forall x \in \lbrack
0;2brack. Biết rằng f(0) = 1;f(2)
= e^{6} khi đó tích phân M =
\int_{- 2}^{0}{(2x + 1)f(x)dx} bằng:

    Ta có:

    2\left\lbrack f(x) ightbrack^{2} -
f(x).f''(x) + \left\lbrack f'(x) ightbrack^{2} =
0

    \Leftrightarrow f(x).f''(x) -
\left\lbrack f'(x) ightbrack^{2} = 2\left\lbrack f(x)
ightbrack^{2}

    \Leftrightarrow
\frac{f(x).f''(x) - \left\lbrack f'(x)
ightbrack^{2}}{\left\lbrack f(x) ightbrack^{2}} = 2

    \Leftrightarrow \left\lbrack
\frac{f'(x)}{f(x)} ightbrack' = 2 \Leftrightarrow
\int_{}^{}{\left\lbrack \frac{f'(x)}{f(x)} ightbrack'dx} =
\int_{}^{}{2dx}

    \Leftrightarrow \frac{f'(x)}{f(x)} =
2x + C_{1} \Leftrightarrow \ln\left| f(x) ight| = x^{2} + C_{1}x +
C_{2}

    Theo bài ra ta có:

    \left\{ \begin{matrix}
f(0) = 1 \\
f(2) = e^{6} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
ln1 = C_{2} \\
4 + 2C_{1} = 6 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
C_{2} = 0 \\
C_{1} = 1 \\
\end{matrix} ight.

    \Rightarrow \ln\left| f(x) ight| =
x^{2} + x \Rightarrow f(x) = e^{x^{2} + x}

    \Rightarrow M = \int_{- 2}^{0}{(2x +
1)e^{x^{2} + x}dx} = \left. \ e^{x^{2} + x} ight|_{- 2}^{0} = 1 -
e^{2}

  • Câu 39: Vận dụng

    Cho hàm số f(x) xác định trên \mathbb{R}\backslash \left\{ 1 ight\} thỏa mãn f'\left( x ight) = \frac{2}{{x - 1}};f\left( 0 ight) = 3;f\left( 2 ight) = 4. Tính giá trị của biểu thức  N = f\left( { - 2} ight) + f\left( 5 ight)

     

    f\left( x ight) = \int {f'\left( x ight)dx}  = \int {\frac{2}{{x - 1}}dx}  = \ln \left| {2x - 1} ight| + C

    => f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {2\ln \left( {x - 1} ight) + {C_1}{\text{ khi x  >  }}1} \\   {2\ln \left| {1 - x} ight| + {C_2}{\text{ khi x  <  }}1} \end{array}} ight.

    Theo bài ra ta có: \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) = 3 \Rightarrow \ln \left( {1 - 0} ight) + {C_2} = 3} \\   {f\left( 2 ight) = 4 \Rightarrow \ln \left( {2 - 1} ight) + {C_1} = 4} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{C_2} = 3} \\   {{C_1} = 4} \end{array}} ight.

    => f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {2\ln \left( {x - 1} ight) + 4{\text{ khi x  >  }}1} \\   {2\ln \left| {1 - x} ight| + 3{\text{ khi x  <  }}1} \end{array}} ight.

    => N = f\left( { - 2} ight) + f\left( 5 ight) = \left\{ {2\ln \left[ {1 - \left( { - 2} ight)} ight] + 3} ight\} + \left\{ {2\ln \left( {5 - 1} ight) + 4} ight\}

    = 2\ln 3 + 2\ln 4 + 7

  • Câu 40: Nhận biết

    Tính tích phân I =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{dx}{\sin^{2}x}?

    Ta có: I =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{dx}{\sin^{2}x} = \left. \  -\cot x ight|_{\frac{\pi}{4}}^{\frac{\pi}{3}}

    = - \left( \cot\frac{\pi}{3} -
\cot\frac{\pi}{4} ight) = - \cot\frac{\pi}{3} +
\cot\frac{\pi}{4}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo