Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 4. Nguyên hàm Tích phân được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Diện tích hình phẳng giới hạn bởi các đường y = x^{3}, trục hoành, x = 0x =
2 bằng

    Hình vẽ minh họa

    Phương trình hoành độ giao điểm x^{3} = 0
\Leftrightarrow x = 0

    Diện tích hình giới hạn là S =
\int_{0}^{2}{\left| x^{3} ight|dx} = \left| \int_{0}^{2}{x^{3}dx}
ight| = \left| \left. \ \left( \frac{x^{4}}{4} ight) ight|_{0}^{2}
ight| = 4

  • Câu 2: Vận dụng

    Tổng tất cả các giá trị của tham số m thỏa mãn \int_{0}^{1}{\frac{9^{x} + 3m}{9^{x} + 3}dx} =
m^{2} - 1 bằng:

    Ta có:

    \int_{0}^{1}{\frac{9^{x} + 3m}{9^{x} +
3}dx} = m^{2} - 1

    \Leftrightarrow
\int_{0}^{1}{\frac{9^{x}}{9^{x} + 3}dx} + m\int_{0}^{1}{\frac{3}{9^{x} +
3}dx} = m^{2} - 1

    \Leftrightarrow m^{2} -
m\int_{0}^{1}{\frac{3}{9^{x} + 3}dx} - \int_{0}^{1}{\frac{9^{x}}{9^{x} +
3}dx} - 1 = 0

    Phương trình trên là phương trình bậc hai đối với biến m, với các hệ số
    \left\{ \begin{matrix}a = 1 \\b = - \int_{0}^{1}{\dfrac{3}{9^{x} + 3}dx} \\c = - \int_{0}^{1}{\dfrac{9^{x}}{9^{x} + 3}dx} \\\end{matrix} ight..

    Áp dụng hệ thứ Vi- et \Rightarrow m_{1} +
m_{2} = \frac{- b}{a} = \int_{0}^{1}{\frac{3}{9^{x} + 3}dx} =
\frac{1}{2}

  • Câu 3: Thông hiểu

    Cho đồ thị hàm số y = f(x) như hình vẽ và \int_{- 2}^{0}{f(x)dx} =
a;\int_{0}^{3}{f(x)dx} = b.

    Tính diện tích của phần được gạch chéo theo a;b.

    Từ đồ thị ta suy ra \left\{
\begin{matrix}
f(x) \geq 0;\forall x \in \lbrack - 2;0brack \\
f(x) \leq 0;\forall x \in \lbrack 0;3brack \\
\end{matrix} ight.

    Do đó, diện tích phần gạch chéo là

    S = \int_{- 2}^{0}{\left| f(x)
ight|dx} + \int_{0}^{3}{\left| f(x) ight|dx}

    = \int_{- 2}^{0}{f(x)dx} -
\int_{0}^{3}{f(x)dx} = a - b.

  • Câu 4: Vận dụng

    Cho hàm số y = f(x) liên tục nhận giá trị dương trên (0; +\infty) và thỏa mãn f(1) =1; f(x) = f'(x).\sqrt{3x +1};\forall x > 0. Giá trị f(3) gần nhất với giá trị nào sau đây?

    \left\{ \begin{matrix}f(x) > 0 \\f(x) = f'(x)\sqrt{3x + 1} \\\end{matrix} ight.\  \Rightarrow \frac{f'(x)}{f(x)} =\frac{1}{\sqrt{3x + 1}}

    \Rightarrow\int_{}^{}{\frac{f'(x)}{f(x)}dx} = \int_{}^{}{\frac{1}{\sqrt{3x +1}}dx} \Rightarrow \ln f(x) = \frac{2\sqrt{3x + 1}}{3} + C

    f(1) = 1 \Rightarrow C = -\frac{4}{3}

    \Rightarrow f\left( x ight) = {e^{\frac{2}{3}\sqrt {3x + 1}  - \frac{4}{3}}} \Rightarrow f\left( 3 ight)  \approx 2,17

  • Câu 5: Nhận biết

    Hàm số nào sau đây là một nguyên hàm của hàm số y = \frac{1}{x \ln3}?

    Ta có: y = \log_{3}x \Rightarrow y' = \frac{1}{x \ln3}.

  • Câu 6: Nhận biết

    Cho hàm số f(x) liên tục trên đoạn \left\lbrack 0;\frac{\pi}{2}
ightbrack\int_{0}^{\frac{\pi}{2}}{f(x)dx} = 5. Tính tích phân I =
\int_{0}^{\frac{\pi}{2}}{\left\lbrack f(x) + 2sinx ightbrack
dx}?

    Ta có:

    I =\int_{0}^{\frac{\pi}{2}}{\left\lbrack f(x) + 2\sin x ightbrack dx} =\int_{0}^{\frac{\pi}{2}}{f(x)dx} +\int_{0}^{\frac{\pi}{2}}{2\sin xdx}

    = 5 - \left. \ 2\cos xight|_{0}^{\frac{\pi}{2}} = 7

  • Câu 7: Nhận biết

    Tìm nguyên hàm của hàm của hàm số f\left( x ight) = \frac{1}{{5x - 2}}

     \int {\left[ {\frac{1}{{5x - 2}}} ight]dx}  = \frac{1}{5}\int {\frac{{d\left( {5x - 2} ight)}}{{5x - 2}}}  = \frac{1}{5}\ln \left| {5x - 2} ight| + C

  • Câu 8: Nhận biết

    Họ nguyên hàm của hàm số f(x) = 2x +\sin2x là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{(2x +\sin2x)dx}

    = 2.\frac{x^{2}}{2} - \frac{1}{2}\cos2x +c = x^{2} - \frac{1}{2}\cos2x + c

  • Câu 9: Nhận biết

    Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = x^{2} + 2x +
1 trục hoành và hai đường thẳng x =
- 1;x = 3.

    Diện tích hình phẳng được tính như sau:

    S = \int_{- 1}^{3}{\left( x^{2} + 2x + 1
ight)dx} = \left. \ \left( \frac{x^{3}}{3} + x^{2} + x ight)
ight|_{- 1}^{3} = \frac{64}{3}.

  • Câu 10: Thông hiểu

    Một ô tô đang chuyển động đều với vận tốc 12m/s thì người lái đạp phanh; từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc v(t) = 12 - 2t(m/s) (trong đó t là thời gian tính bằng giây, kể từ lúc đạp phanh). Hỏi trong thời gian 8 giây cuối (tính đến khi xe dừng hẳn) thì ô tô đi được quãng đường bằng bao nhiêu?

    Khi dừng hẳn v(t) = 12 - 2t = 0
\Rightarrow t = 6(s)

    Khi đó trong 8s trước khi dừng hẳn vật di chuyển được (bao gồm 2s trước khi đạp phanh):

    S = 2.12 + \int_{0}^{6}{v(t)dt} = 24 +
\int_{0}^{6}{(12 - 2t)dt}

    = 24 + \left. \ \left( 12t - t^{2}
ight) ight|_{0}^{6} = 24 + 36 = 60(m)

  • Câu 11: Thông hiểu

    Cho hai hàm số f(x)g(x) liên tục trên \lbrack a;bbrack và thỏa mãn 0 < g(x) < f(x),\forall x \in \lbrack
a;bbrack. Gọi V là thể tích của khối tròn xoay sinh ra khi quay quanh Ox hình phẳng (H) giới hạn bởi các đường: y = f(x),y = g(x),x = a,x = b. Khi đó V được tính bởi công thức nào sau đây?

    Ta cần nhớ lại công thức sau: Cho hai hàm số y = f(x),y = g(x) liên tục trên \lbrack a;bbrack. Khi đó thể tích của vật thể tròn xoay giới hạn bởi y = f(x),y =
g(x) (với 0 < g(x) <
f(x)) và hai đường thẳng x = a,x =
b khi quay quanh trục OxV = \pi\int_{a}^{b}{\left\lbrack f^{2}(x)
- g^{2}(x) ightbrack dx}.

  • Câu 12: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f(x) = e^{x} + 2x thỏa mãn F(0) = \frac{3}{2}. Chọn khẳng định đúng trong các khẳng định sau?

    Ta có: \int_{}^{}{\left( e^{x} + 2x
ight)dx} = e^{x} + x^{2} + C

    F(x) là một nguyên hàm của hàm số f(x) = e^{x} + 2x suy ra F(x) có dạng e^{x} + x^{2} + C

    Theo bài ra ta có: F(0) = \frac{3}{2}
\Leftrightarrow e^{0} + 0^{2} + C = \frac{3}{2} \Rightarrow C =
\frac{1}{2}

    Vậy F(x) = e^{x} + x^{2} +
\frac{1}{2}.

  • Câu 13: Vận dụng

    Diện tích nhỏ nhất giới hạn bởi parabol (P):y = x^{2} + 1 và đường thẳng d:y = mx + 2 là:

    Hoành độ giao điểm của đồ thị hai hàm số là nghiệm của phương trình

    x^{2} + 1 = mx + 2 \Leftrightarrow x^{2}
- mx - 1 = 0

    \Delta = m^{2} + 4 > 0;\forall
m\mathbb{\in R} nên phương trình luôn có 2 nghiệm phân biệt

    x_{1} = \frac{m - \sqrt{m^{2} +
4}}{2};x_{2} = \frac{m + \sqrt{m^{2} + 4}}{2} với x_{1} < x_{2}

    Ta có: \left\{ \begin{matrix}
x_{1} + x_{2} = m \\
x_{1}.x_{2} = - 1 \\
x_{2} - x_{1} = \sqrt{m^{2} + 4} \\
\end{matrix} ight..

    Diện tích hình phẳng giới hạn bởi (P) và (d) là:

    S = \int_{x_{1}}^{x_{2}}{\left| \left(
x^{2} - mx - 1 ight) ight|dx}

    = \left| \int_{x_{1}}^{x_{2}}{\left(
x^{2} - mx - 1 ight)dx} ight| = \left| \left. \ \left(
\frac{x^{3}}{2} - \frac{mx^{2}}{2} - x ight) ight|_{x_{1}}^{x_{2}}
ight|

    = \left| \frac{1}{3}\left( {x_{2}}^{3} -
{x_{1}}^{3} ight) - \frac{m}{2}\left( {x_{2}}^{2} - {x_{1}}^{2}
ight) - \left( x_{2} - x_{1} ight) ight|

    = \left( x_{2} - x_{1} ight)\left|
\frac{1}{3}\left( {x_{2}}^{2} + x_{1}x_{2} + {x_{1}}^{2} ight) -
\frac{m}{2}\left( x_{2} + x_{1} ight) - 1 ight|

    = \left( x_{2} - x_{1} ight)\left|
\frac{1}{3}\left( x_{2} + x_{1} ight)^{2} - x_{2}x_{1} -
\frac{m}{2}\left( x_{2} + x_{1} ight) - 1 ight|

    = \sqrt{m^{2} + 4}.\left| \frac{m^{2} +
1}{3} - \frac{m^{2}}{2} - 1 ight|

    = \sqrt{m^{2} + 4}.\left|
\frac{m^{2}}{6} - \frac{2}{3} ight| = \sqrt{m^{2} + 4}.\frac{m^{2} +
4}{6} \geq \frac{4}{3};\forall m\mathbb{\in R}

    Vậy diện tích nhỏ nhất giới hạn bởi parabol (P):y = x^{2} + 1 và đường thẳng d:y = mx + 2\frac{4}{3}.

  • Câu 14: Nhận biết

    Cho \int_{- 1}^{2}{f(x)dx} = 2\int_{- 1}^{2}{g(x)dx} = - 1, khi đó \int_{- 1}^{2}{\left\lbrack x + 2f(x)
+ 3g(x) ightbrack dx} bằng:

    Ta có:

    \int_{- 1}^{2}{\left\lbrack x + 2f(x) +
3g(x) ightbrack dx} = \int_{- 1}^{2}{xdx} + 2\int_{- 1}^{2}{f(x)dx}
+ 3\int_{- 1}^{2}{g(x)dx}

    = \left. \ \frac{1}{2}x^{2} ight|_{-
1}^{2} + 2.2 + 3.( - 1) = \frac{5}{2}

  • Câu 15: Vận dụng cao

    Cho F(x) là một nguyên hàm của hàm số f\left( x ight) = {e^{{x^2}}}\left( {{x^3} - 4x} ight). Hàm số F\left( {{x^2} + x} ight) có bao nhiêu điểm cực trị?

     \begin{matrix}  \left[ {F\left( {{x^2} + x} ight)} ight]\prime    \hfill \\   = \left( {2x + 1} ight)f\left( {{x^2} + x} ight) \hfill \\   = \left( {2x + 1} ight){e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}.\left[ {{{\left( {{x^2} + x} ight)}^3} - 4\left( {{x^2} + x} ight)} ight] \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).\left( {{x^2} + x} ight)\left( {{x^2} + x + 2} ight)\left( {{x^2} + x - 2} ight) \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).x\left( {x + 1} ight)\left( {{x^2} + x + 2} ight)\left( {x + 2} ight)\left( {x - 1} ight) \hfill \\ \end{matrix}

    => \left[ {F\left( {{x^2} + x} ight)} ight]' = 0 có 5 nghiệm đơn

    => Hàm số F\left( {{x^2} + x} ight) có 5 điểm cực trị

  • Câu 16: Nhận biết

    Hàm số f(x) = x^{3} + \sin x là một nguyên hàm của hàm số nào sau đây?

    Ta có: F'(x) = 3x^{2} + \cos
x

  • Câu 17: Nhận biết

    Cho hình (H) giới hạn bởi các đường y = - x^{2} + 2x, trục hoành. Quay hình phẳng (H) quanh trục Ox ta được khối tròn xoay có thể tích là:

    Phương trình hoành độ giao điểm của (H);Ox là: -
x^{2} + 2x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Khi đó V = \pi\int_{0}^{2}{\left( - x^{2}
+ 2x ight)^{2}dx} = \pi\int_{0}^{2}{\left( x^{4} - 4x^{3} + 4x^{2}
ight)dx} = \frac{16\pi}{15}.

  • Câu 18: Vận dụng cao

    Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

    Đáp án:  4,32m2.

    Đáp án là:

    Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

    Đáp án:  4,32m2.

    Đặt hệ trục tọa độ có gốc O trùng với giao điểm hai đường chéo hình chữ nhật.

    Đồ thị của hàm số y = f(x)nhận trục Oy làm trục đối xứng đi qua hai điểm A(
- 1;0)A(2;1) có dạng hàm số (P_{1}):y = \frac{1}{2}x^{2} -
1.

    Đồ thị của hàm số y = g(x)nhận trục Oy làm trục đối xứng đi qua hai điểm C(1;0)D(2;
- 1) có dạng hàm số (P_{1}):y = -
\frac{1}{2}x^{2} + 1.

    Giao điểm của hai parabol tại x_{1} = -
\sqrt{2};x_{2} = \sqrt{2}

    Do đó, diện tích của con cá là S =
\int_{- \sqrt{2}}^{2}{\left| x^{2} - 2 ight|dx} \approx
4,32m^{2}

  • Câu 19: Nhận biết

    Tích phân \int_{0}^{1}\frac{dx}{2x +
5} bằng:

    Ta có: \int_{0}^{1}\frac{dx}{2x + 5} =
\frac{1}{2}\int_{0}^{1}\frac{d(2x + 5)}{2x + 5}

    = \left. \ \frac{1}{2}\ln(2x + 5)
ight|_{0}^{1} = \frac{1}{2}\ln\frac{7}{5}

  • Câu 20: Thông hiểu

    Gọi F(x) là một nguyên hàm của hàm số f\left( x ight) = {\left( {2x - 3} ight)^2} thỏa mãn F\left( 0 ight) = \frac{1}{3}. Tính giá trị của biểu thức A = {\log _2}\left[ {3F\left( 1 ight) - 2F\left( 2 ight)} ight]

     F\left( x ight) = \int {{{\left( {2x - 3} ight)}^2}dx = \frac{1}{2}\int {{{\left( {2x - 3} ight)}^2}d\left( {2x - 3} ight) = } \frac{1}{2}.\frac{{{{\left( {2x - 3} ight)}^2}}}{3} + C}

    Ta có: F\left( 0 ight) = \frac{1}{3} \Rightarrow C = \frac{{29}}{6}

    F\left( 1 ight) = \frac{1}{2}.\left( {\frac{{ - 1}}{3}} ight) + \frac{{29}}{6} = \frac{{14}}{3};F\left( 2 ight) = \frac{1}{2}.\left( {\frac{1}{3}} ight) + \frac{{29}}{6} = 5

    => A = {\log _2}\left[ {3F\left( 1 ight) - 2F\left( 2 ight)} ight] = A = {\log _2}\left[ {3\frac{{14}}{3} - 2.5} ight] = {\log _2}4 = 2

  • Câu 21: Vận dụng

    Họ các nguyên hàm của hàm số f\left( x ight) = \frac{{2x - 1}}{{{{\left( {x + 1} ight)}^2}}} trên khoảng \left( { - 1; + \infty } ight)

     f\left( x ight) = \frac{{2x - 1}}{{{{\left( {x + 1} ight)}^2}}} = \frac{2}{{x + 1}} - \frac{3}{{{{\left( {x + 1} ight)}^2}}}

    \int {f\left( x ight)dx}  = \int {\left[ {\frac{2}{{x + 1}} - \frac{3}{{{{\left( {x + 1} ight)}^2}}}} ight]dx}  = 2\ln \left| {x + 1} ight| + \frac{3}{{x + 1}} + C

  • Câu 22: Thông hiểu

    Biết tích phân I = \int_{0}^{1}{\frac{(x
- 1)^{2}}{x^{2} + 1}dx} = a\ln b + c trong đó a;b;c là các số nguyên. Tính giá trị biểu thức a + b + c?

    Ta có:

    I = \int_{0}^{1}{\frac{(x -
1)^{2}}{x^{2} + 1}dx} = \int_{0}^{1}{\left( 1 - \frac{2x}{x^{2} + 1}
ight)dx}

    = \left. \ \left( x - \ln\left| x^{2} +
1 ight| ight) ight|_{0}^{1} = 1 - ln2

    Khi đó a = - 1;b = 2;c = 1 \Rightarrow a
+ b + c = 2

  • Câu 23: Nhận biết

    Viết công thức tính thể tích V của phần vật thể bị giới hạn bởi hai mặt phẳng vuông góc với trục Ox tại các điểm x = a;x = b;a < b, có diện tích thiết diện cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x;(a \leq x \leq b)S(x).

    Thể tích của vật thể đã cho là: V =
\int_{a}^{b}{S(x)dx}.

  • Câu 24: Thông hiểu

    Cho hàm số y = \cos4x có một nguyên hàm là F(x); F\left( \frac{\pi}{4} ight) = 2. Khẳng định nào sau đây đúng?

    Ta có: F(x) = \int_{}^{}{\cos4x}dx =\frac{1}{4}\sin4x + C

    F\left( \frac{\pi}{4} ight) = 2
\Rightarrow C = 2

    Ta được F(x) = \frac{1}{4}\sin4x +2

    \Rightarrow \int_{}^{}{F(x)dx} =\int_{}^{}{\left( \frac{1}{4}\sin4x + 2 ight)dx}

    = - \frac{\cos4x}{16} + 2x +C

  • Câu 25: Nhận biết

    Một xe ô tô đang chạy với vận tốc 72 km/h thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó 45\ \
m. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ v(t) = - 12t + 24\ \ (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quảng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.

    a) Quảng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Đúng||Sai

    b) Quãng đường s(t) = - 12t^{2} +
24t. Đúng||Sai

    c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 10 giây. Sai||Đúng

    d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai

    Đáp án là:

    Một xe ô tô đang chạy với vận tốc 72 km/h thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó 45\ \
m. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ v(t) = - 12t + 24\ \ (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quảng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.

    a) Quảng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Đúng||Sai

    b) Quãng đường s(t) = - 12t^{2} +
24t. Đúng||Sai

    c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 10 giây. Sai||Đúng

    d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai

    Do s'(t) = v(t) nên quãng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Ta có: \int_{}^{}{( - 12t + 24)}dt = - 6t^{2} + 24t +
C với C là hằng số.

    Khi đó, ta gọi hàm số s(t) = - 6t^{2} + 24t +
C.

    Do s(0) = 0 nên C = 0. Suy ra s(t) = - 6t^{2} + 24t.

    Xe ô tô dừng hẳn khi v(t) = 0 hay - 12t + 24 = 0 \Leftrightarrow t =
2. Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 2 giây.

    Ta có xe ô tô đang chạy với tốc độ 72\
km/h = 20\ m/s.

    Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: s(2) = - 6.2^{2} + 24.2
= 24(\ m).

    Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: 20 + 24 \approx 44\ (\ m).

    Do 44 < 45 nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường.

  • Câu 26: Nhận biết

    Cho các hàm số y = f(x)y = g(x) liên tục trên \lbrack a;bbrack và số k tùy ý. Trong các khẳng định sau, khẳng định nào sai?

    Khẳng định sai là: \int_{a}^{b}{x.f(x)dx}
= x\int_{a}^{b}{f(x)dx}

  • Câu 27: Thông hiểu

    Cho hàm số f(x) liên tục trên \mathbb{R}\int_{0}^{2}{\left\lbrack f(x) + 3x^{2}
ightbrack dx} = 10. Xác định giá trị của \int_{0}^{2}{f(x)dx}?

    Ta có: \int_{0}^{2}{\left\lbrack f(x) +
3x^{2} ightbrack dx} = 10 \Leftrightarrow \int_{0}^{2}{f(x)dx} = 10
- \int_{0}^{2}{3x^{2}dx}

    \Leftrightarrow \int_{0}^{2}{f(x)dx} =
10 - \left. \ x^{3} ight|_{0}^{2} = 2

  • Câu 28: Thông hiểu

    Với giá trị nào của m > 0 thì diện tích của hình phẳng giới hạn bởi hai đồ thị y = x^{2}y = mx bằng \frac{4}{3}?

    Xét phương trình hoành độ giao điểm x^{2}
= mx \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = m \\
\end{matrix} ight..

    Khi đó diện tích hình phẳng giới hạn bởi hai đồ thị trên được tính bởi

    \int_{0}^{m}{\left| x^{2} - mx
ight|dx} = \int_{0}^{m}{\left( mx - x^{2} ight)dx} = \frac{m^{3}}{6}
= \frac{4}{3} \Rightarrow m = 2.

  • Câu 29: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi hai đồ thị y = x^{2} - 2x - 2y = \frac{x - 4}{2 - x}?

    Phương trình hoành độ giao điểm x^{2} -
2x - 2 = \frac{x - 4}{2 - x}

    \Leftrightarrow \left\{ \begin{matrix}
x eq 2 \\
\left( x^{2} - 2x - 2 ight)(2 - x) = x - 4 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x eq 2 \\
x\left( x^{2} - 4x + 3 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 3 \\
\end{matrix} ight.

    Diện tích hình giới hạn là

    S = \int_{0}^{1}{\left| x^{2} - 2x - 2 -
\frac{x - 4}{2 - x} ight|dx} + \int_{1}^{3}{\left| x^{2} - 2x - 2 -
\frac{x - 4}{2 - x} ight|dx}

    = \int_{0}^{1}{\left| x^{2} - 2x - 1 -
\frac{2}{2 - x} ight|dx} + \int_{1}^{3}{\left| x^{2} - 2x - 1 -
\frac{2}{x - 2} ight|dx}

    = \left| \left. \ \left( \frac{x^{3}}{3}- x^{2} - x - 2\ln|x - 2| ight) ight|_{0}^{1} ight| + \left| \left.\ \left( \frac{x^{3}}{3} - x^{2} - x - 2\ln|x - 2| ight)ight|_{1}^{3} ight|

    = \frac{5}{3} - 2\ln2 + \frac{4}{3} = 3 -\ln4

  • Câu 30: Thông hiểu

    Biết rằng \int_{0}^{\frac{\pi}{4}}{(x +1)\cos2xdx} = \frac{1}{a} + \frac{\pi}{b} với a;b là các số hữu tỉ. Giá trị của a.b là:

    Ta có: I = \int_{0}^{\frac{\pi}{4}}{(x +1)\cos2xdx}

    Đặt \left\{ \begin{matrix}u = x + 1 \\dv = \cos2xdx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = dx \\v = \dfrac{1}{2}\sin2x \\\end{matrix} ight.

    \Rightarrow I = \left. \ \frac{1}{2}(x +1)\sin2x ight|_{0}^{\frac{\pi}{4}} -\frac{1}{2}\int_{0}^{\frac{\pi}{4}}{\sin2xdx}

    \Rightarrow I = \frac{1}{2}\left(\frac{\pi}{4} + 1 ight) + \left. \ \frac{1}{4}\cos2xight|_{0}^{\frac{\pi}{4}} = \frac{\pi}{8} + \frac{1}{4}

    \Rightarrow a.b = 8.4 = 32

  • Câu 31: Nhận biết

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack a;bbrack. Diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số y = f(x), trục hoành và hai đường thẳng x = a;x = b;(a <
b) được tính theo công thức

    Theo lí thuyết về tính diện tích hình phẳng ta có diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số y
= f(x), trục hoành và hai đường thẳng x = a;x = b;(a < b) được tính theo công thức: S = \int_{a}^{b}{\left| f(x)
ight|dx}.

  • Câu 32: Thông hiểu

    Xe đạp A xuất phát từ C, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật v(t) =
\frac{t^{2}}{100} + \frac{13t}{30}(m/s) trong đó t (giây) là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một xe đạp B cũng xuất phát từ C, chuyển động thẳng cùng hướng với A nhưng chậm hơn 10 giây so với A và có gia tốc bằng a\left( m/s^{2} ight) (a là hằng số). Sau khi B xuất phát được 15 giây thì đuổi kịp A. Vận tốc của B tại thời điểm đuổi kịp A bằng bao nhiêu?

    Quãng đường xe đạp A đi được cho đến khi hai xe gặp nhau là:

    S = \int_{0}^{25}{\left(
\frac{t^{2}}{100} + \frac{13t}{30} ight)dt} =
\frac{375}{2}(m)

    Vận tốc của xe đạp B tại thời điểm t(s) tính từ lúc B xuất phát là: v_{B}(t) = at

    Quãng đường xe đạp B đi được cho đến khi hai xe gặp nhau là:

    S = \int_{0}^{15}{(at)dt} = \left. \
\left( \frac{at^{2}}{2} ight) ight|_{0}^{15} =
\frac{225a}{2}(m)

    \Rightarrow \frac{225a}{2} =
\frac{375}{2} \Rightarrow a = \frac{5}{3}

    Vậy vận tốc của B tại thời điểm đuổi kịp A là: v_{B}(15) = 15a = 25(m/s)

  • Câu 33: Thông hiểu

    Một ô tô đang chạy đều với vận tốc x m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v(t) = - 5t + 20 m/s, trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0 m/s. Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt} = \frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là 400m. Sai||Đúng

    Đáp án là:

    Một ô tô đang chạy đều với vận tốc x m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v(t) = - 5t + 20 m/s, trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0 m/s. Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt} = \frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là 400m. Sai||Đúng

    Khi xe dừng hẳn thì vận tốc bằng 0m/s.

    Khi xe dừng hẳn thì v(t) = 0m/s nên 0 = - 5t + 20 \Leftrightarrow t =
4s.

    Nguyên hàm của hàm số vận tốc \int_{}^{}{( - 5t + 20)dt = \frac{- 5t^{2}}{2} +
20t + C}, C\mathbb{\in
R}.

    Quãng đường từ lúc đạ phanh cho đến khi xe dừng hẳn là

    \int_{0}^{4}{( - 5t + 20)dt} = \left. \
\left( \frac{- 5t^{2}}{2} + 20t ight) ight|_{0}^{4} =
40m.

  • Câu 34: Nhận biết

    Tìm nguyên hàm F(x) của hàm số f(x) = 2x + 3\sqrt{x} thỏa mãn F(1) = 0?

    Ta có:

    F(x) = \int_{}^{}{f(x)dx =
\int_{}^{}{\left( 2x + 3\sqrt{x} ight)dx}}

    \Rightarrow F(x) = \int_{}^{}{(2x)dx} +
6\int_{}^{}{\left( \sqrt{x} ight)^{2}d\left( \sqrt{x}
ight)}

    \Rightarrow F(x) = x^{2} + 2\sqrt{x^{3}}
+ C

    Theo bài ra ta có: F(1) = 0
\Leftrightarrow 3 + C = 0 \Leftrightarrow C = - 3

    Vậy x^{2} + 2\sqrt{x^{3}} -
3.

  • Câu 35: Vận dụng

    Cho hình phẳng (S) được giới hạn bởi đồ thị các hàm số \left( P_{1} ight):y= x^{2},\left( P_{2} ight):y = \frac{x^{2}}{4},\left( H_{1} ight):y= \frac{2}{x},\left( H_{2} ight):y = \frac{8}{x}. Tính diện tích hình phẳng (S)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình phẳng (S) được giới hạn bởi đồ thị các hàm số \left( P_{1} ight):y= x^{2},\left( P_{2} ight):y = \frac{x^{2}}{4},\left( H_{1} ight):y= \frac{2}{x},\left( H_{2} ight):y = \frac{8}{x}. Tính diện tích hình phẳng (S)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 36: Nhận biết

    Một vật chuyển động chậm dần với vận tốc v(t) = 150 - 15t(m/s). Hỏi rằng trong 5s trước khi dừng hẳn vật di chuyển được bao nhiêu mét?

    Khi dừng hẳn v(t) = 150 - 15t = 0
\Rightarrow t = 10(s)

    Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:

    S = \int_{0}^{10}{v(t)dt} =
\int_{0}^{10}{(150 - 15t)dt} = \frac{375}{2}m.

  • Câu 37: Vận dụng cao

    Cho hàm số f(x) là hàm số chẵn, liên tục trên đoạn \lbrack -1;1brack\int_{-1}^{1}{f(x)dx} = 4. Tính tích phân I = \int_{- 1}^{1}{\frac{f(x)}{1 +e^{x}}dx}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) là hàm số chẵn, liên tục trên đoạn \lbrack -1;1brack\int_{-1}^{1}{f(x)dx} = 4. Tính tích phân I = \int_{- 1}^{1}{\frac{f(x)}{1 +e^{x}}dx}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 38: Vận dụng

    Cho F(x) là nguyên hàm của hàm số y = f\left( x ight) = \frac{1}{{{e^x} + 3}} thỏa mãn F\left( 0 ight) =  - \frac{{ - 1}}{3}\ln 4. Tìm tập nghiệm S của phương trình 3F\left( x ight) + \ln \left( {{e^x} + 3} ight) = 2

    F\left( x ight) = \int {\frac{1}{{{e^x} + 3}}dx}  = \int {\frac{{{e^x}}}{{{e^x}\left( {{e^x} + 3} ight)}}dx}

     Đặt t = {e^x} \Rightarrow dt = {e^x}dx

    \int {\frac{{{e^x}}}{{{e^x}\left( {{e^x} + 3} ight)}}dx}  = \int {\frac{1}{{t\left( {t + 3} ight)}}dt}

    = \int {\left( {\frac{1}{{3t}} - \frac{1}{{3\left( {t + 3} ight)}}} ight)dt = \frac{{\ln |t|}}{3} - \frac{{\ln |t + 3|}}{3} + C}

    = \frac{{\ln \left( {{e^x}} ight)}}{3} - \frac{{\ln \left( {{e^x} + 3} ight)}}{3} + C = \frac{x}{3} - \frac{{\ln \left( {{e^x} + 3} ight)}}{3} + C

    F\left( 0 ight) =  - \frac{1}{3}\ln 4 \Rightarrow  - \frac{{\ln 4}}{3} + C =  - \frac{1}{3}\ln 4 \Rightarrow C = 0

    Ta có:

    \begin{matrix}  3F\left( x ight) + \ln \left( {{e^x} + 3} ight) = 2 \hfill \\   \Leftrightarrow 3\left[ {\dfrac{x}{3} - \dfrac{{\ln \left( {{e^x} + 3} ight)}}{3}} ight] + \ln \left( {{e^x} + 3} ight) = 2 \hfill \\   \Leftrightarrow x = 2 \hfill \\ \end{matrix}

  • Câu 39: Thông hiểu

    Hàm số f\left( x ight) = {x^3} + 3x - 2 có một nguyên hàm F(x). Biết đồ thị hàm số y = F(x) đi qua điểm B(2; 10). Giá trị F(-2) là:

     F\left( x ight) = \int {\left( {{x^3} + 3x - 2} ight)dx = \frac{{{x^4}}}{4} + \frac{{3{x^2}}}{2} - 2x + C}

    Hàm số đi qua B(2; 10) => \frac{{{2^4}}}{4} + \frac{{{{3.2}^2}}}{2} - 2.2 + C = 10 \Rightarrow C = 4

    => F\left( x ight) = \frac{{{x^4}}}{4} + \frac{{3{x^2}}}{2} - 2x + 4

    => F\left( { - 2} ight) = \frac{{{{\left( { - 2} ight)}^4}}}{4} + \frac{{3.{{\left( { - 2} ight)}^2}}}{2} - 2\left( { - 2} ight) + 4 = 6

  • Câu 40: Vận dụng

    Cho hai hàm số f(x)f( - x) liên tục trên tập số thực và thỏa mãn 2f(x) + 3f( - x) = \frac{1}{4 +
x^{2}}. Tính tích phân I = \int_{-
2}^{2}{f(x)dx}?

    Đặt t = - x \Rightarrow dt = -
dx

    Đổi cận \left\{ \begin{matrix}
x = - 2 \Rightarrow t = 2 \\
x = 2 \Rightarrow t = - 2 \\
\end{matrix} ight.\  \Rightarrow I = - \int_{2}^{- 2}{f( - t)dt} =
\int_{- 2}^{2}{f( - x)dx}

    Theo bài ra ta có:

    2f(x) + 3f( - x) = \frac{1}{4 +
x^{2}}

    \Leftrightarrow 2\int_{- 2}^{2}{f(x)dx}
+ 3\int_{- 2}^{2}{f( - x)dx} = \int_{- 2}^{2}\frac{1}{4 +
x^{2}}dx

    \Leftrightarrow 2I + 3I = \int_{-
2}^{2}\frac{1}{4 + x^{2}}dx

    \Leftrightarrow I = \frac{1}{5}\int_{-
2}^{2}\frac{1}{4 + x^{2}}dx

    Đặt x = 2\tan u \Rightarrow dx =2.\frac{1}{\cos^{2}u}du = 2\left( 1 + \tan^{2}u ight)du

    Đổi cận \left\{ \begin{matrix}x = - 2 \Rightarrow u = - \dfrac{\pi}{4} \\x = 2 \Rightarrow u = \dfrac{\pi}{4} \\\end{matrix} ight.\Rightarrow I = \dfrac{1}{5}\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}{\frac{2\left( 1 + u^{2} ight)}{4 +4\tan^{2}u}du} = \frac{1}{10}\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}{du}

    = \left. \ \frac{1}{10}u ight|_{-
\frac{\pi}{4}}^{\frac{\pi}{4}} = \frac{1}{10}\left( \frac{\pi}{4} +
\frac{\pi}{4} ight) = \frac{\pi}{20}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo