Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 4. Nguyên hàm Tích phân được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số y = f(x) là một nguyên hàm của hàm số y = 3x^{2} -
1. Phát biểu nào sau đây đúng?

    Ta có \int_{}^{}{\left( 3x^{2} - 1
ight)dx = x^{3} - x + C}.

  • Câu 2: Vận dụng

    Cho các hàm số f(x) có đạo hàm cấp một, đạo hàm cấp hai liên tục trên \lbrack 0;1brack và thỏa mãn \int_{0}^{1}{e^{x}f(x)dx} =
\int_{0}^{1}{e^{x}f'(x)dx} = \int_{0}^{1}{e^{x}f''(x)dx}
eq 0. Giá trị của biểu thức \frac{ef'(x) - f'(0)}{ef(1) -
f(0)} bằng:

    Đặt \int_{0}^{1}{e^{x}f(x)dx} =
\int_{0}^{1}{e^{x}f'(x)dx} = \int_{0}^{1}{e^{x}f''(x)dx} =
k

    Ta có:

    k = \int_{0}^{1}{e^{x}f''(x)dx}
= \int_{0}^{1}{e^{x}d\left\lbrack f'(x) ightbrack}

    = \left. \ e^{x}f'(x)
ight|_{0}^{1} - \int_{0}^{1}{e^{x}f'(x)dx} = \left. \
e^{x}f'(x) ight|_{0}^{1} - k

    \Rightarrow 2k = \left. \ e^{x}f'(x)
ight|_{0}^{1}

    Ta có:

    k = \int_{0}^{1}{e^{x}f'(x)dx} =
\int_{0}^{1}{e^{x}d\left\lbrack f(x) ightbrack}

    = \left. \ e^{x}f(x) ight|_{0}^{1} -
\int_{0}^{1}{e^{x}f(x)dx} = \left. \ e^{x}f(x) ight|_{0}^{1} -
k

    \Rightarrow 2k = \left. \ e^{x}f(x)
ight|_{0}^{1}

    Vậy \frac{ef'(x) - f'(0)}{ef(1) -
f(0)} = \frac{\left. \ e^{x}f'(x) ight|_{0}^{1}}{\left. \
e^{x}f(x) ight|_{0}^{1}} = 1

  • Câu 3: Nhận biết

    Một vật chuyển động chậm dần với vận tốc v(t) = 150 - 15t(m/s). Hỏi rằng trong 5s trước khi dừng hẳn vật di chuyển được bao nhiêu mét?

    Khi dừng hẳn v(t) = 150 - 15t = 0
\Rightarrow t = 10(s)

    Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:

    S = \int_{0}^{10}{v(t)dt} =
\int_{0}^{10}{(150 - 15t)dt} = \frac{375}{2}m.

  • Câu 4: Thông hiểu

    Cho hàm số f(x);g(x) là các hàm số liên tục trên \lbrack 1;3brack và thỏa mãn \int_{1}^{3}{\left\lbrack f(x) +
3g(x) ightbrack dx} = 10\int_{1}^{3}{\left\lbrack 2f(x) - g(x)
ightbrack dx} = 6. Tính tích phân K = \int_{1}^{3}{\left\lbrack f(x) + g(x)
ightbrack dx}?

    Theo bài ra ta có:

    \left\{ \begin{matrix}\int_{1}^{3}{\left\lbrack f(x) + 3g(x) ightbrack dx} = 10 \\\int_{1}^{3}{\left\lbrack 2f(x) - g(x) ightbrack dx} = 6 \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}\int_{1}^{3}{f(x)dx} + 3\int_{1}^{3}{g(x)dx} = 10 \\2\int_{1}^{3}{f(x)dx} - \int_{1}^{3}{g(x)dx} = 6 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\int_{1}^{3}{f(x)dx} = 4 \\\int_{1}^{3}{g(x)dx} = 2 \\\end{matrix} ight.\Rightarrow K = \int_{1}^{3}{\left\lbrack f(x) +g(x) ightbrack dx} = 4.2 = 6

  • Câu 5: Thông hiểu

    Tìm nguyên hàm F(x) của hàm số f(x) = \frac{2x}{x + \sqrt{x^{2} -
1}}?

    Ta có: F(x) = \int_{}^{}{\frac{2x}{x +
\sqrt{x^{2} - 1}}dx} = \int_{}^{}{\left\lbrack 2x\left( x - \sqrt{x^{2}
- 1} ight) ightbrack dx}

    = \int_{}^{}{2x^{2}dx} -
\int_{}^{}{\left\lbrack 2x\sqrt{x^{2} - 1} ightbrack dx} =
\frac{2}{3}x^{3} - \int_{}^{}{\left( x^{2} - 1
ight)^{\frac{1}{2}}d\left( x^{2} - 1 ight)}

    = \frac{2}{3}x^{3} - \frac{2}{3}\left(
x^{2} - 1 ight)\sqrt{x^{2} - 1} + C

    Vậy một nguyên hàm của hàm số là F(x) =
\frac{2}{3}x^{3} - \frac{2}{3}\left( x^{2} - 1 ight)\sqrt{x^{2} -
1}.

  • Câu 6: Thông hiểu

    Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

    a) \int_{0}^{\frac{\pi}{2}}{\sin2x.f\left( \sin xight)dx} = 2\int_{0}^{1}{x.f(x)dx} Đúng||Sai

    b) \int_{0}^{1}{\frac{f\left( e^{x}
ight)}{e^{x}}dx} = \int_{1}^{e}{\frac{f(x)}{x^{2}}dx} Đúng||Sai

    c) \int_{0}^{a}{x^{3}f\left( x^{2}
ight)dx} = \frac{1}{2}\int_{0}^{a^{2}}{x.f(x)dx} Đúng||Sai

    Đáp án là:

    Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

    a) \int_{0}^{\frac{\pi}{2}}{\sin2x.f\left( \sin xight)dx} = 2\int_{0}^{1}{x.f(x)dx} Đúng||Sai

    b) \int_{0}^{1}{\frac{f\left( e^{x}
ight)}{e^{x}}dx} = \int_{1}^{e}{\frac{f(x)}{x^{2}}dx} Đúng||Sai

    c) \int_{0}^{a}{x^{3}f\left( x^{2}
ight)dx} = \frac{1}{2}\int_{0}^{a^{2}}{x.f(x)dx} Đúng||Sai

    Ta có:

    \int_{0}^{\frac{\pi}{2}}{\sin2x.f\left(\sin x ight)dx} = \int_{0}^{\frac{\pi}{2}}{2\sin x.\cos x.f\left( \sin xight)dx}

    Đặt t = \sin x \Rightarrow dt = \cos
xdx

    Đổi cận \left\{ \begin{matrix}x = 0 \Rightarrow t = 0 \\x = \dfrac{\pi}{2} \Rightarrow t = 1 \\\end{matrix} ight. từ đó ta có:

    \int_{0}^{\frac{\pi}{2}}{\sin2x.f\left(\sin x ight)dx} = \int_{0}^{1}{2tf(t)dt} =2\int_{0}^{1}{2xf(x)dx}

    Ta có: \int_{0}^{1}{\frac{f\left( e^{x}
ight)}{e^{x}}dx}

    Đặt t = e^{x} \Rightarrow dt =
e^{x}dx

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 1 \\
x = 1 \Rightarrow t = e \\
\end{matrix} ight. từ đó ta có:

    \int_{0}^{1}{\frac{f\left( e^{x}
ight)}{e^{x}}dx} = \int_{0}^{e}{\frac{f(t)}{t^{2}}dt} =
\int_{0}^{e}{\frac{f(x)}{x^{2}}dx}

    Ta có: \int_{0}^{a}{x^{3}f\left( x^{2}
ight)dx}

    Đặt t = x^{2} \Rightarrow dt =
2xdx

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 0 \\
x = a \Rightarrow t = a^{2} \\
\end{matrix} ight. từ đó ta có:

    \int_{0}^{a}{x^{3}f\left( x^{2}
ight)dx} = \frac{1}{2}\int_{0}^{a^{2}}{tf(t)}dt =
\frac{1}{2}\int_{0}^{a^{2}}{xf(x)}dx

  • Câu 7: Nhận biết

    Tìm họ nguyên hàm của hàm số f(x) = x -\sin2x?

    Ta có: \int_{}^{}{f(x)}dx = \int_{}^{}{(x- \sin2x)dx} = \frac{x^{2}}{2} + \frac{1}{2}\cos2x + C

  • Câu 8: Thông hiểu

    Một ô tô đang chạy đều với vận tốc x(m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v = - 5t + 20(m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s). Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5\ s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400\ m. Sai||Đúng

    Đáp án là:

    Một ô tô đang chạy đều với vận tốc x(m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v = - 5t + 20(m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s). Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5\ s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400\ m. Sai||Đúng

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s). Mệnh đề đúng

    b) Cho v = 0 \Leftrightarrow - 5t + 20 =
0 \Leftrightarrow t\  = \ 4\ (s). Mệnh đề sai

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Mệnh đề đúng

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là S = \int_{0}^{4}{( - 5t + 20)dt} = 40\
(m). Mệnh đề sai

  • Câu 9: Thông hiểu

    Cho biết I =
\int_{0}^{\sqrt{7}}{\frac{x^{3}}{\sqrt[3]{1 + x^{2}}}dx} =
\frac{m}{n} với \frac{m}{n} là phân số tối giản. Giá trị của biểu thức m - 7n bằng:

    Đặt u = \sqrt[3]{1 + x^{2}}. Khi đó x^{2} = u^{3} - 1 \Rightarrow 2xdx =
3u^{2}du

    Đổi cận

    I = \int_{1}^{2}{\frac{\left( u^{3} - 1
ight)}{u}.\frac{3}{2}u^{2}du} = \frac{3}{2}\int_{1}^{2}{\left( u^{4} -
u ight)du}= \left. \ \frac{3}{2}\left(
\frac{u^{5}}{5} - \frac{u^{2}}{2} ight) ight|_{1}^{2} =
\frac{141}{20}. Suy ra m = 141;n =
20. Do đó m - 7n = 1.

  • Câu 10: Nhận biết

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack a;bbrack. Diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số y = f(x), trục hoành và hai đường thẳng x = a;x = b;(a <
b) được tính theo công thức

    Theo lí thuyết về tính diện tích hình phẳng ta có diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số y
= f(x), trục hoành và hai đường thẳng x = a;x = b;(a < b) được tính theo công thức: S = \int_{a}^{b}{\left| f(x)
ight|dx}.

  • Câu 11: Thông hiểu

    Tìm một nguyên hàm của hàm số f\left( x ight) = \frac{{\ln x}}{x}.\sqrt {{{\ln }^2}x + 1}?

    Ta có: F(x) = \int_{}^{}{\frac{\ln x}{x}\sqrt{\ln^{2}x + 1}dx}

    Đặt \sqrt{ln^{2}x + 1} \Rightarrow t^{2}= \ln^{2}x + 1 \Rightarrow tdt = \frac{\ln x}{x}dx

    Khi đó F(x) = \int_{}^{}{t^{2}dt} =\frac{t^{3}}{3} + C = \frac{\sqrt{\left( \ln^{2}x + 1 ight)^{3}}}{3} +C.

  • Câu 12: Nhận biết

    Tính tích phân I = \int_{0}^{1}{(2x +
1)e^{x}dx} bằng cách đặt u = 2x +
1;dv = e^{x}dx. Công thức nào dưới đây chính xác?

    Đặt \left\{ \begin{matrix}
u = 2x + 1 \\
dv = e^{x}dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = 2dx \\
v = e^{x} \\
\end{matrix} ight.

    Suy ra I =
\int_{0}^{1}{(2x + 1)e^{x}dx} = \left. \ \left\lbrack (2x + 1)e^{x}
ightbrack ight|_{0}^{1} - 2\int_{0}^{1}{e^{x}dx}

  • Câu 13: Vận dụng

    Cho hàm số y = f(x) thỏa mãn f'(x).f^{2}(x) = x^{2}f(2) = 2. Phương trình tiếp tuyến của đồ thị hàm số g(x) = f(x) + x^{2} tại điểm có hoành độ bằng 3 là:

    Ta có: f'(x).f^{2}(x) =
x^{2}

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}{f'(x).f^{2}(x)dx} =
\int_{}^{}{x^{2}dx}

    \Leftrightarrow
\int_{}^{}{f^{2}(x)df(x)} = \frac{x^{3}}{3} + C

    \Leftrightarrow \frac{f^{3}(x)}{3} =
\frac{x^{3}}{3} + C. Theo bài ra ta có: f(2) = 2 \Rightarrow \frac{f^{3}(2)}{3} =
\frac{2^{3}}{3} + C \Rightarrow C = 0

    Suy ra \frac{f^{3}(x)}{3} =
\frac{x^{3}}{3} \Leftrightarrow f(x) = x

    Vậy g(x) = x^{2} + x \Rightarrow
g'(x) = 2x + 1

    Ta có: g'(3) = 7;g(3) =
12

    Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng 3 là:

    y = g'(3)(x - 3) + g(3)

    \Leftrightarrow y = 7(x - 3) + 12
\Leftrightarrow y = 7x - 9

  • Câu 14: Nhận biết

    Cho hàm số y = f(x) là một nguyên hàm của hàm số y =
x^{5}.Phát biểu nào sau đây đúng?

    Ta có \left(
\frac{\mathbf{1}}{\mathbf{6}}\mathbf{x}^{\mathbf{6}}
ight)\mathbf{'}\mathbf{=}\mathbf{x}^{\mathbf{5}}

    Vậy đáp án cần tìm là: \frac{\mathbf{1}}{\mathbf{6}}\mathbf{x}^{\mathbf{6}}\mathbf{+
C}.

  • Câu 15: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi các đường cong y = \sin x;y = \cos x và các đường thẳng x = 0;x = \pi?

    Hình vẽ minh họa

    Với x \in \lbrack 0;\pibrack khi đó \sin x = \cos x \Rightarrow x =
\frac{\pi}{4}

    Diện tích hình phẳng S =
\int_{0}^{\pi}{\left| \sin x - \cos x ight|dx} ta được:

    S = \int_{0}^{\frac{\pi}{4}}{\left( \cos
x - \sin x ight)dx} + \int_{\frac{\pi}{4}}^{\pi}{\left( \sin x - \cos
x ight)dx}

    = \left. \ \left( \sin x - \cos x
ight) ight|_{0}^{\frac{\pi}{4}} + \left. \ \left( - \sin x - \cos x
ight) ight|_{\frac{\pi}{4}}^{\pi}

    = \left( \sqrt{2} - 1 ight) + \left( 1
+ \sqrt{2} ight) = 2\sqrt{2}

  • Câu 16: Nhận biết

    Vật thể B giới hạn bởi mặt phẳng có phương trình x = 0x = 2. Cắt vật thể B với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ bằng x;(0 \leq x \leq 2) ta được thiết diện có diện tích bằng x^{2}(2 - x). Thể tích của vật thể B:

    Thể tích của vật thể B là:

    V = \int_{0}^{2}{x^{2}(2 - x)dx} =
\int_{0}^{2}{\left( 2x^{2} - x^{3} ight)dx} = \frac{4}{3}

  • Câu 17: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = {\left( {2x + 1} ight)^{2019}} bằng:

     Ta có:

    \int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]dx}  = \frac{1}{2}\int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]d\left( {2x + 1} ight)}

    = \frac{1}{2}\frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{2020}} + C = \frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{4040}} + C

  • Câu 18: Vận dụng

    Cho hàm số f(x) thỏa mãn \int_{0}^{3}\left\lbrack 2x\ln(x + 1) + xf'(x)
ightbrack dx = 0f(3) =
1. Biết \int_{0}^{3}{f(x)}dx =\frac{a + b\ln2}{2} với a;b \in
\mathbb{R}^{+}. Giá trị của biểu thức a + b là:

    Tính I = \int_{0}^{3}{2x\ln(x +
1)}dx

    Đặt \left\{ \begin{matrix}u = \ln(x + 1) \\dv = 2xdx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{1}{x + 1}dx \\v = x^{2} \\\end{matrix} ight. khi đó:

    I = \left. \ x^{2}\ln(x + 1)
ight|_{0}^{3} - \int_{0}^{3}{\frac{x^{2}}{x + 1}dx}

    = 9ln4 - \left. \ \left( \frac{x^{2}}{2}
- x + \ln|x + 1| ight) ight|_{0}^{3} = 16ln2 -
\frac{3}{2}

    Tính J =
\int_{0}^{3}{xf'(x)}dx.

    Đặt \left\{ \begin{matrix}
u_{J} = x \\
dv_{J} = f'(x)dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du_{J} = dx \\
v_{J} = f(x) \\
\end{matrix} ight. khi đó

    J = \int_{0}^{3}{xf'(x)}dx = \left.
\ xf(x) ight|_{0}^{3} - \int_{0}^{3}{f(x)}dx

    \int_{0}^{3}\left\lbrack 2x\ln(x + 1)
+ xf'(x) ightbrack dx = 0

    \Rightarrow I + J = 0 \Rightarrow 16\ln2- \frac{3}{2} + 3 - \int_{0}^{3}{f(x)}dx = 0

    \Rightarrow \int_{0}^{3}{f(x)}dx = 16\ln2+ \frac{3}{2} = \frac{3 + 32\ln2}{2}

    \Rightarrow \left\{ \begin{matrix}
a = 3 \\
b = 32 \\
\end{matrix} ight.\  \Rightarrow a + b = 35

  • Câu 19: Nhận biết

    Một xe ô tô đang chạy với vận tốc 72 km/h thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó 45\ \
m. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ v(t) = - 12t + 24\ \ (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quảng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.

    a) Quảng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Đúng||Sai

    b) Quãng đường s(t) = - 12t^{2} +
24t. Đúng||Sai

    c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 10 giây. Sai||Đúng

    d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai

    Đáp án là:

    Một xe ô tô đang chạy với vận tốc 72 km/h thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó 45\ \
m. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ v(t) = - 12t + 24\ \ (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quảng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.

    a) Quảng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Đúng||Sai

    b) Quãng đường s(t) = - 12t^{2} +
24t. Đúng||Sai

    c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 10 giây. Sai||Đúng

    d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai

    Do s'(t) = v(t) nên quãng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Ta có: \int_{}^{}{( - 12t + 24)}dt = - 6t^{2} + 24t +
C với C là hằng số.

    Khi đó, ta gọi hàm số s(t) = - 6t^{2} + 24t +
C.

    Do s(0) = 0 nên C = 0. Suy ra s(t) = - 6t^{2} + 24t.

    Xe ô tô dừng hẳn khi v(t) = 0 hay - 12t + 24 = 0 \Leftrightarrow t =
2. Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 2 giây.

    Ta có xe ô tô đang chạy với tốc độ 72\
km/h = 20\ m/s.

    Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: s(2) = - 6.2^{2} + 24.2
= 24(\ m).

    Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: 20 + 24 \approx 44\ (\ m).

    Do 44 < 45 nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường.

  • Câu 20: Thông hiểu

    Có bao nhiêu số thực b \in
(\pi;3\pi) sao cho \int_{\pi}^{b}{4\cos2xdx} = 1?

    Ta có:

    \int_{\pi}^{b}{4\cos2xdx} = 1\Leftrightarrow \left. \ 2\sin2x ight|_{\pi}^{b} = 1

    \Leftrightarrow \sin2b = 1\Leftrightarrow \left\lbrack \begin{matrix}b = \dfrac{\pi}{12} + k\pi \\b = \dfrac{5\pi}{12} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Do b \in (\pi;3\pi) nên có đúng 4 giá trị của b thỏa mãn.

  • Câu 21: Nhận biết

    Cho hàm số f(x) liên tục trên đoạn \lbrack - 5;3brackF(x) là một nguyên hàm của f(x). Biết rằng F( - 5) = 3;F(3) = \frac{15}{7}. Xác định tích phân I = \int_{- 5}^{3}{\left\lbrack
7f(x) - x ightbrack dx}?

    Ta có: I = \int_{- 5}^{3}{\left\lbrack
7f(x) - x ightbrack dx} = \left. \ \left( 7F(x) ight) ight|_{-
5}^{3} - \left. \ \frac{x^{2}}{2} ight|_{- 5}^{3} = 2.

  • Câu 22: Nhận biết

    Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = x^{2} + 2x +
1 trục hoành và hai đường thẳng x =
- 1;x = 3.

    Diện tích hình phẳng được tính như sau:

    S = \int_{- 1}^{3}{\left( x^{2} + 2x + 1
ight)dx} = \left. \ \left( \frac{x^{3}}{3} + x^{2} + x ight)
ight|_{- 1}^{3} = \frac{64}{3}.

  • Câu 23: Vận dụng

    Cho F(x) là một nguyên hàm của hàm số f(x) = \frac{2x + 1}{x^{3} + 2x^{3} +
x^{2}} trên khoảng (0; +
\infty) thỏa mãn F(1) =
\frac{1}{2}. Giá trị của biểu thức T = F(1) + F(2) + F(3) + ... + F(2019) bằng:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\frac{2x + 1}{x^{2}(x + 1)^{2}}dx} = \int_{}^{}{\left(
\frac{1}{x^{2}} - \frac{1}{(x + 1)^{2}} ight)dx}

    Suy ra F(x) = - \frac{1}{x} + \frac{1}{x
+ 1} + CF(1) = \frac{1}{2}
\Rightarrow C = 1 .Hay F(x) = -
\frac{1}{x} + \frac{1}{x + 1} + 1

    Ta có:

    T = F(1) + F(2) + F(3) + ... +
F(2019)

    T = \left( - \frac{1}{1} + \frac{1}{2} +
1 ight) + \left( - \frac{1}{2} + \frac{1}{3} + 1 ight) + \left( -
\frac{1}{3} + \frac{1}{4} + 4 ight) + ... + \left( - \frac{1}{2019} +
\frac{1}{2020} + 1 ight)

    T = - 1 + \frac{1}{2020} + 2019.1 = 2018
+ \frac{1}{2020} = 2018\frac{1}{2020}

  • Câu 24: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm liên tục trên \lbrack 0;1brack và thỏa mãn f(0) = 0. Biết rằng \int_{0}^{1}{f^{2}(x)dx} = \frac{9}{2}\int_{0}^{1}{f'(x)\cos\frac{\pi x}{2}}dx= \frac{3\pi}{4}. Tích phân \int_{0}^{1}{f(x)d(x)} bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm liên tục trên \lbrack 0;1brack và thỏa mãn f(0) = 0. Biết rằng \int_{0}^{1}{f^{2}(x)dx} = \frac{9}{2}\int_{0}^{1}{f'(x)\cos\frac{\pi x}{2}}dx= \frac{3\pi}{4}. Tích phân \int_{0}^{1}{f(x)d(x)} bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 25: Thông hiểu

    Biết rằng \int_{}^{}{\frac{1}{x^{3} -
x}dx = a\ln\left| (x - 1)(x + 1) ight| + b\ln|x| + C}. Tính giá trị biểu thức H = 2a + b?

    Ta có:

    \frac{1}{x^{3} - x} = \frac{A}{x} +
\frac{B}{x - 1} + \frac{D}{c + 1}

    = \frac{A\left( x^{2} - 1 ight) + Bx(x
+ 1) + Dx(x - 1)}{x^{3} - x}

    = \frac{(A + B + D)x^{2} + (B - D)x -
A}{x^{3} - x}

    \Rightarrow \left\{ \begin{matrix}A + B + D = 0 \\B - D = 0 \\- A = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}A = - 1 \\B = \dfrac{1}{2} \\D = \dfrac{1}{2} \\\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{1}{x^{3} - x}dx}
= \int_{}^{}{\left\lbrack \frac{- 1}{x} + \frac{1}{2(x - 1)} +
\frac{1}{2(x + 1)} ightbrack dx}

    = \frac{1}{2}\ln\left| (x - 1)(x + 1)
ight| - \ln|x| + C

    Suy ra a = \frac{1}{2};b = - 1
\Rightarrow H = 0.

  • Câu 26: Thông hiểu

    Chọn khẳng định đúng trong các khẳng định sau?

    Đặt t = 1 - x \Rightarrow dt = -
dx. Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 1 \\
x = 1 \Rightarrow t = 0 \\
\end{matrix} ight.

    Ta có: \int_{0}^{1}{\sin(1 - x)dx} = -
\int_{1}^{0}{\sin tdt} = \int_{0}^{1}{\sin xdx}.

    Vậy khẳng định đúng \int_{0}^{1}{\sin(1 -
x)dx} = \int_{0}^{1}{\sin xdx}.

  • Câu 27: Nhận biết

    Một chiếc máy bay di chuyển với vận tốc là v(t) = 3t^{2} + 5(m/s). Hỏi quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 bằng bao nhiêu?

    Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là:

    S = \int_{4}^{10}{v(t)dt} =
\int_{4}^{10}{\left( 3t^{2} + 5 ight)dt}

    = \left. \ \left( t^{3} + 5t ight)
ight|_{4}^{10} = 996(m)

  • Câu 28: Nhận biết

    Cho hàm số f(x) liên tục trên tập số thực và thỏa mãn \int_{0}^{6}{f(x)dx}= 7;\int_{3}^{10}{f(x)dx} = 8;\int_{3}^{6}{f(x)dx} = 9. Khi đó giá trị I = \int_{0}^{10}{f(x)dx} bằng:

    Ta có:

    \int_{3}^{10}{f(x)dx} =
\int_{3}^{6}{f(x)dx} + \int_{6}^{10}{f(x)dx}

    \Leftrightarrow \int_{6}^{10}{f(x)dx} =
\int_{3}^{6}{f(x)dx} - \int_{3}^{10}{f(x)dx} = 8 - 9 = 1

    \Rightarrow I = \int_{0}^{6}{f(x)dx} +
\int_{6}^{10}{f(x)dx} = 7 - 1 = 6

  • Câu 29: Thông hiểu

    Đặt S là diện tích của hình phẳng giới hạn bởi đồ thị hàm số y = \frac{x^{2} - 2x}{x - 1}, đường thẳng y = x - 1 và các đường thẳng x = m;x = 2m;(m > 1). Giá trị của m sao cho S = ln3

    Diện tích cần tìm chính là tích phân:

    S = \int_{m}^{2m}{\left| \frac{x^{2} -
2x}{x - 1} - (x - 1) ight|dx}

    Ta có:

    S = \int_{m}^{2m}{\left| \frac{x^{2} -
2x}{x - 1} - (x - 1) ight|dx} = \int_{m}^{2m}{\left| \frac{- 1}{x - 1}
ight|dx}

    = \int_{m}^{2m}{\frac{1}{|x - 1|}dx} =
\int_{m}^{2m}{\frac{1}{x - 1}dx};(m > 1)

    = \left. \ \left\lbrack \ln|x - 1|
ightbrack ight|_{m}^{2m} = \ln\frac{2m - 1}{m - 1}

    Do đó S = ln3 \Leftrightarrow \ln\frac{2m
- 1}{m - 1} = ln3 \Leftrightarrow m = 2

    Vậy m = 2 là giá trị cần tìm.

  • Câu 30: Vận dụng cao

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash \left\{ 0 ight\} thỏa mãn f\left( x ight) + x'f\left( x ight) = 3{x^2};f\left( 2 ight) = 8. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

     Ta có:

    \begin{matrix}  f\left( x ight) + x'f\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left( x ight)'f\left( x ight) + xf'\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left[ {xf\left( x ight)} ight]' = 3{x^2} \hfill \\ \end{matrix}

    Lấy nguyên hàm hai vế ta được:

    \begin{matrix}  \int {\left[ {xf\left( x ight)} ight]'dx = \int {3{x^2}dx} }  \hfill \\   \Leftrightarrow xf\left( x ight) = {x^3} + C \hfill \\ \end{matrix}

    Mặt khác f\left( 2 ight) = 8 \Rightarrow 3.f\left( 2 ight) = 8 + C \Rightarrow C = 8

    => xf\left( x ight) = {x^3} + 8 \Rightarrow f\left( x ight) = \frac{{{x^3} + 8}}{x}

    Xét phương trình hoành độ giao điểm \frac{{{x^3} + 8}}{x} = 0 \Rightarrow x =  - 2

    Ta có: f'\left( x ight) = \frac{{2{x^3} - 8}}{{{x^2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {f'\left( { - 2} ight) =  - 6} \\   {f\left( { - 2} ight) = 0} \end{array}} ight.

    Phương trình tiếp tuyến tại giao điểm với trục hoành là:

    y = f'\left( { - 2} ight)\left( {x + 2} ight) + f\left( { - 2} ight) \Rightarrow y =  - 6x - 12

  • Câu 31: Thông hiểu

    Một vật thể nằm giữa hai mặt phẳng x = -
1;x = 1 và thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ x;(
- 1 \leq x \leq 1) là một hình tròn có diện tích bằng 3\pi. Thể tích của vật thể là?

    Ta có: V = \int_{- 1}^{1}{S(x)dx} =
\int_{- 1}^{1}{3\pi dx} = 6\pi

  • Câu 32: Vận dụng

    Cho hàm số y = f(x) liên tục nhận giá trị dương trên (0; +\infty) và thỏa mãn f(1) =1; f(x) = f'(x).\sqrt{3x +1};\forall x > 0. Giá trị f(3) gần nhất với giá trị nào sau đây?

    \left\{ \begin{matrix}f(x) > 0 \\f(x) = f'(x)\sqrt{3x + 1} \\\end{matrix} ight.\  \Rightarrow \frac{f'(x)}{f(x)} =\frac{1}{\sqrt{3x + 1}}

    \Rightarrow\int_{}^{}{\frac{f'(x)}{f(x)}dx} = \int_{}^{}{\frac{1}{\sqrt{3x +1}}dx} \Rightarrow \ln f(x) = \frac{2\sqrt{3x + 1}}{3} + C

    f(1) = 1 \Rightarrow C = -\frac{4}{3}

    \Rightarrow f\left( x ight) = {e^{\frac{2}{3}\sqrt {3x + 1}  - \frac{4}{3}}} \Rightarrow f\left( 3 ight)  \approx 2,17

  • Câu 33: Thông hiểu

    Tính diện tích S của hình phẳng giới hạn bởi đồ thị hai hàm số f(x) = x^{3}
- 3x + 2g(x) = x +
2?

    Hoành độ giao điểm của đồ thị hai hàm số f(x);g(x) là nghiệm của phương trình

    x^{3} - 3x + 2 = x + 2 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 2 \\
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Hình vẽ minh hoạ

    Diện tích S cần tìm là:

    S = \int_{- 2}^{0}{\left( x^{3} - 4x
ight)dx} - \int_{0}^{2}{\left( x^{3} - 4x ight)dx}

    = \left. \ \left( \frac{x^{4}}{4} -
2x^{2} ight) ight|_{- 2}^{0} - \left. \ \left( \frac{x^{4}}{4} -
2x^{2} ight) ight|_{0}^{2} = 8

  • Câu 34: Nhận biết

    Diện tích hình phẳng giới hạn bởi các đường y = x^{3}, trục hoành, x = 0x =
2 bằng

    Hình vẽ minh họa

    Phương trình hoành độ giao điểm x^{3} = 0
\Leftrightarrow x = 0

    Diện tích hình giới hạn là S =
\int_{0}^{2}{\left| x^{3} ight|dx} = \left| \int_{0}^{2}{x^{3}dx}
ight| = \left| \left. \ \left( \frac{x^{4}}{4} ight) ight|_{0}^{2}
ight| = 4

  • Câu 35: Vận dụng cao

    Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

    Đáp án:  4,32m2.

    Đáp án là:

    Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

    Đáp án:  4,32m2.

    Đặt hệ trục tọa độ có gốc O trùng với giao điểm hai đường chéo hình chữ nhật.

    Đồ thị của hàm số y = f(x)nhận trục Oy làm trục đối xứng đi qua hai điểm A(
- 1;0)A(2;1) có dạng hàm số (P_{1}):y = \frac{1}{2}x^{2} -
1.

    Đồ thị của hàm số y = g(x)nhận trục Oy làm trục đối xứng đi qua hai điểm C(1;0)D(2;
- 1) có dạng hàm số (P_{1}):y = -
\frac{1}{2}x^{2} + 1.

    Giao điểm của hai parabol tại x_{1} = -
\sqrt{2};x_{2} = \sqrt{2}

    Do đó, diện tích của con cá là S =
\int_{- \sqrt{2}}^{2}{\left| x^{2} - 2 ight|dx} \approx
4,32m^{2}

  • Câu 36: Nhận biết

    Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x);y = g(x) liên tục trên đoạn \lbrack a;bbrack và hai đường thẳng x = a;x = b;a < b

    Ta có hình phẳng giới hạn bởi \left\{
\begin{matrix}
\left( C_{1} ight):y = f(x) \\
\left( C_{2} ight):y = g(x) \\
x = a \\
x = b \\
\end{matrix} ight.S =
\int_{a}^{b}{\left| f(x) - g(x) ight|dx}.

  • Câu 37: Vận dụng

    Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước.

    Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước.

    Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 38: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = 3x + \cos 3x

     Ta có: \int {\left( {3x + \cos 3x} ight)dx = \frac{{3{x^2}}}{2} + \frac{{\sin 3x}}{3} + C}

  • Câu 39: Thông hiểu

    Cho a;b là các số hữu tỉ thỏa mãn \int_{}^{}\frac{dx}{\sqrt{x + 2} +
\sqrt{x + 1}} = a(x + 2)\sqrt{x + 2} + b(x + 1)\sqrt{x + 1} +
C. Tính giá trị biểu thức H = 3a +
b?

    Ta có:

    I = \int_{}^{}{\frac{dx}{\sqrt{x + 2} +
\sqrt{x + 1}} =}\int_{}^{}{\frac{\sqrt{x + 2} - \sqrt{x + 1}}{x + 2 - x
+ 1}dx}

    = \int_{}^{}{\left( \sqrt{x + 2} -
\sqrt{x + 1} ight)dx}

    \Rightarrow I = \frac{2}{3}(x +
2)\sqrt{x + 2} - \frac{2}{3}(x + 1)\sqrt{x + 1} + C

    \Rightarrow a = \frac{2}{3};b = -
\frac{2}{3} \Rightarrow H = \frac{4}{3}

  • Câu 40: Vận dụng

    Cho hàm số f(x) có đồ thị như hình vẽ:

    Các biểu thức E;F;G;H xác định bởi E = \int_{0}^{3}{f(x)dx};F =
\int_{3}^{5}{f(x)dx};G = \int_{2}^{4}{f(x)dx};H = f'(x). Mệnh đề nào sau đây đúng?

    Dựa vào hình vẽ và diện tích hình phẳng ta có:

    E = \int_{0}^{3}{f(x)dx} = -
\int_{0}^{3}{\left| f(x) ight|dx} < - 2

    F = \int_{3}^{5}{f(x)dx} >
3

    0 < G = \int_{2}^{4}{f(x)dx} <
2

    - 1 < H = f'(1) < 0 (hệ số góc của tiếp tuyến tại x = 1)

    Như vậy E < H < G <
F

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo