Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 4. Nguyên hàm Tích phân được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Giá trị của \int_{0}^{3}{dx} bằng

    Ta có: \int_{0}^{3}{dx} = \left. \ x
ight|_{0}^{3} = 3 - 0 = 3

  • Câu 2: Vận dụng

    Cho hình phẳng (S) được giới hạn bởi đồ thị các hàm số \left( P_{1} ight):y= x^{2},\left( P_{2} ight):y = \frac{x^{2}}{4},\left( H_{1} ight):y= \frac{2}{x},\left( H_{2} ight):y = \frac{8}{x}. Tính diện tích hình phẳng (S)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình phẳng (S) được giới hạn bởi đồ thị các hàm số \left( P_{1} ight):y= x^{2},\left( P_{2} ight):y = \frac{x^{2}}{4},\left( H_{1} ight):y= \frac{2}{x},\left( H_{2} ight):y = \frac{8}{x}. Tính diện tích hình phẳng (S)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Nhận biết

    Cho hàm số f(x) liên tục trên tập số thực và thỏa mãn \int_{0}^{6}{f(x)dx}= 7;\int_{3}^{10}{f(x)dx} = 8;\int_{3}^{6}{f(x)dx} = 9. Khi đó giá trị I = \int_{0}^{10}{f(x)dx} bằng:

    Ta có:

    \int_{3}^{10}{f(x)dx} =
\int_{3}^{6}{f(x)dx} + \int_{6}^{10}{f(x)dx}

    \Leftrightarrow \int_{6}^{10}{f(x)dx} =
\int_{3}^{6}{f(x)dx} - \int_{3}^{10}{f(x)dx} = 8 - 9 = 1

    \Rightarrow I = \int_{0}^{6}{f(x)dx} +
\int_{6}^{10}{f(x)dx} = 7 - 1 = 6

  • Câu 4: Thông hiểu

    Biết rằng \int_{0}^{\pi^{2}}{\left(
\sin\sqrt{x} - \cos\sqrt{x} ight)dx = A + Bx} với A;B\mathbb{\in Z}. Chọn kết luận đúng?

    Đặt t = \sqrt{x} \Rightarrow t^{2} = x
\Rightarrow 2tdt = dx

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 0 \\
x = \pi^{2} \Rightarrow t = \pi \\
\end{matrix} ight. khi đó ta được:

    \int_{0}^{\pi^{2}}{\left( \sin\sqrt{x} -\cos\sqrt{x} ight)dx =}\int_{0}^{\pi}{\left( \sin t - \cos tight)tdt} = I

    Đặt \left\{ \begin{matrix}
u = t \\
dv = \left( \sin t - \cos t ight)dt \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = dt \\
v = - \cos t - \sin t \\
\end{matrix} ight.

    \Rightarrow I = 2\left\lbrack \left. \
t\left( - \cos t - \sin t ight) ight|_{0}^{\pi} +
\int_{0}^{\pi}{\left( \cos t + \sin t ight)dt}
ightbrack

    \Rightarrow I = 2\left\lbrack \left. \
\pi + \left( \sin t - \cos t ight) ight|_{0}^{\pi} ightbrack = 4
+ 2\pi

    \Rightarrow \left\{ \begin{matrix}
A = 4 \\
B = 2 \\
\end{matrix} ight.\  \Rightarrow A + B = 6

  • Câu 5: Thông hiểu

    Tích phân \int_{1}^{2}{\frac{\ln x}{x\left( \ln x + 2 ight)^{2}}dx} = a\ln3 + b\ln2 +\frac{c}{3} với a;b;c\mathbb{\in
Z}. Kết luận nào dưới đây đúng?

    Ta có:I = \int_{1}^{2}{\frac{\ln
x}{x\left( \ln x + 2 ight)^{2}}dx}. Đặt t = \ln x + 2 \Rightarrow dt =
\frac{dx}{x}

    Đổi cận tích phân \left\{ \begin{matrix}
x = 1 \Rightarrow t = 2 \\
x = e \Rightarrow t = 3 \\
\end{matrix} ight.

    Vậy I = \int_{2}^{3}{\frac{t -2}{t^{2}}dt} = \int_{2}^{3}{\left( \frac{1}{t} - \frac{2}{t^{2}}ight)dt} = \left. \ \left( \ln t + \frac{2}{t} ight) ight|_{2}^{3}= \ln3 - \ln2 - \frac{1}{3}

    Suy ra a = 1;b = - 1;c = - 1. Vậy a^{2} + b^{2} + c^{2} = 3.

  • Câu 6: Thông hiểu

    Tính tích phân I =\int_{0}^{\frac{\pi}{3}}{\frac{\sin x}{\cos^{3}x}dx}?

    Đặt t = \cos x \Rightarrow dt = - \sin
xdx

    Đổi cận \left\{ \begin{matrix}x = 0 \Rightarrow t = 1 \\x = \dfrac{\pi}{3} \Rightarrow t = \dfrac{1}{2} \\\end{matrix} ight.

    Khi đó:

    I = \int_{1}^{\frac{1}{2}}{\frac{-
1}{t^{3}}dt} = \int_{\frac{1}{2}}^{1}{\frac{1}{t^{3}}dt} = \left. \  -
\frac{1}{2t^{2}} ight|_{\frac{1}{2}}^{1} = - \frac{1}{2} + 2 =
\frac{3}{2}.

  • Câu 7: Vận dụng

    Cho hàm số f(x) liên tục và có đạo hàm trên \left( 0;\frac{\pi}{2}
ight) thỏa mãn f(x) + \tan xf'(x) = \frac{x}{\cos^{3}x}. Biết rằng \sqrt{3}f\left( \frac{\pi}{3} ight) - f\left(
\frac{\pi}{6} ight) = a\pi\sqrt{3} + bln3 trong đó a;b\mathbb{\in R}. Kết luận nào sau đây đúng?

    Ta có: f(x) + \tan xf'(x) =\frac{x}{\cos^{3}x}

    \Leftrightarrow \cos xf(x) + \sin xf'(x) = \frac{x}{\cos^{2}x}

    \Leftrightarrow \left\lbrack \sin xf(x)ightbrack' = \frac{x}{\cos^{2}x}

    \Rightarrow \int_{}^{}{\left\lbrack \sin xf(x) ightbrack'dx} =\int_{}^{}{\frac{x}{\cos^{2}x}dx}

    \Rightarrow \sin xf(x) =\int_{}^{}{\frac{x}{\cos^{2}x}dx}.

    Tính I =
\int_{}^{}{\frac{x}{cos^{2}x}dx}. Đặt \left\{ \begin{matrix}u = x \\dv = \dfrac{dx}{\cos^{2}x} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = dx \\v = \tan x \\\end{matrix} ight. khi đó:

    I = x\tan x - \int_{}^{}{\tan xdx} =
x\tan x - \int_{}^{}\frac{d\left( \cos x ight)}{\cos x}

    = x\tan x + \ln\left| \cos x
ight|

    \Rightarrow f(x) = \frac{x\tan x +
\ln\left| \cos x ight|}{\sin x} = \frac{x}{\cos x} + \frac{\ln\left|
\cos x ight|}{\sin x}

    Theo bài ra ta có:

    \Rightarrow \sqrt{3}f\left(\frac{\pi}{3} ight) - f\left( \frac{\pi}{6} ight) = \sqrt{3}\left(\frac{2\pi}{3} - \dfrac{2\ln2}{\sqrt{3}} ight)- \left(\frac{\pi\sqrt{3}}{9} + 2\ln\dfrac{\sqrt{3}}{2} ight) =\dfrac{5\pi\sqrt{3}}{9}\ln3

    \Rightarrow \left\{ \begin{matrix}a = \dfrac{5}{9} \\b = - 1 \\\end{matrix} ight.\  \Rightarrow a + b = - \frac{4}{9}

  • Câu 8: Nhận biết

    Họ nguyên hàm của hàm số f(x) =2\sin x.\cos2x là:

    Ta có: f(x) = 2\sin x.\cos2x = \sin( - x) +\sin3x = - \sin x + \sin3x

    Khi đó:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left( -\sin x + \sin3x ight)dx}

    = \int_{}^{}{\left( - \sin x ight)dx}+ \int_{}^{}{(\sin3x)dx} = \cos x - \frac{1}{3}\cos3x + C

  • Câu 9: Vận dụng

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R}, f(0) = 0;f'(0) eq 0;f( - 2) > 2 và thỏa mãn hệ thức f(x)f'(x) + 18x^{2}
= \left( 3x^{2} + x ight)f'(x) + (6x + 1)f(x) với \forall x\mathbb{\in R}. Giá trị của f( - 2) là:

    Ta có:

    f(x)f'(x) + 18x^{2} = \left( 3x^{2}
+ x ight)f'(x) + (6x + 1)f(x)

    \Leftrightarrow 2f(x)f'(x) + 36x^{2}
= 2\left( 3x^{2} + x ight)f'(x) + 2(6x + 1)f(x)

    \Leftrightarrow 2f(x)f'(x) -
\left\lbrack 2\left( 3x^{2} + x ight)f'(x) + 2(6x + 1)f(x)
ightbrack = - 36x^{2}

    \Rightarrow \left\lbrack f^{2}(x) -
2\left( 3x^{2} + x ight)f(x) ightbrack' = -
36x^{2}

    \Rightarrow \int_{}^{}{\left\lbrack
f^{2}(x) - 2\left( 3x^{2} + x ight)f(x) ightbrack'dx} =
\int_{}^{}{\left( - 36x^{2} ight)dx}

    \Rightarrow f^{2}(x) - 2\left( 3x^{2} +
x ight)f(x) = - 12x^{3} + C

    Mặt khác f(0) = 0 \Rightarrow C =
0

    Vậy f^{2}(x) - 2\left( 3x^{2} + x
ight)f(x) = - 12x^{3}

    \Rightarrow f^{2}( - 2) - 20f( - 2) = 96
\Leftrightarrow \left\lbrack \begin{matrix}
f( - 2) = 24 \\
f( - 2) = - 4 \\
\end{matrix} ight.

    f( - 2) > 2 \Rightarrow f( - 2) =
24.

  • Câu 10: Nhận biết

    Giá trị của tích phân \int_{- 1}^{0}{e^{x
+ 1}dx} bằng:

    Ta có: \int_{- 1}^{0}{e^{x + 1}dx} =
\left. \ e^{x + 1} ight|_{- 1}^{0} = e^{1} - e^{0} = e -
1.

  • Câu 11: Thông hiểu

    Hàm số F(x) là một nguyên hàm của hàm số y = \frac{1}{x} trên ( - \infty;0) thỏa mãn F( - 2) = 0. Khẳng định nào sau đây đúng?

    Ta có: F(x) = \int_{}^{}{\frac{1}{x}dx} =
\ln|x| + C = \ln( - x) + C;\forall x \in ( - \infty;0)

    Lại có F( - 2) = 0 \Leftrightarrow \ln(2)
+ C = 0 \Rightarrow C = - ln2

    Do đó F(x) = \ln( - x) - ln2 = \ln\left(
- \frac{x}{2} ight)

    Vậy F(x) = \ln\left( - \frac{x}{2}
ight);\forall x \in ( - \infty;0).

  • Câu 12: Vận dụng cao

    Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.

    Đáp án: 6750000 đồng.

    Đáp án là:

    Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.

    Đáp án: 6750000 đồng.

    Gọi phương trình parabol (P):y = ax^{2} +
bx + c.

    Do tính đối xứng của parabol nên ta có thể chọn hệ trục tọa độ Oxy sao cho ( P) có đỉnh I ∈ Oy (như hình vẽ)

    Ta có hệ phương trình: \left\{
\begin{matrix}
\frac{9}{4} = c\ (I \in (P))\ \ \ \ \ \ \  \\
\frac{9}{4}a - \frac{3}{2}b + c = 0 \\
\frac{9}{4}a - \frac{3}{2}b + c = 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
c = \frac{9}{4} \\
a = - 1 \\
b = 0 \\
\end{matrix} ight.\  ight.

    Vậy (P):y = - x^{2} +
\frac{9}{4}

    Dựa vào đồ thị, diện tích cửa parabol là: S = \int_{\frac{- 3}{2}}^{\frac{3}{2}}\left( -
x^{2} + \frac{9}{4} ight)dx = 2\left. \ \left( - \frac{x}{3}^{3} +
\frac{9}{4}x ight) ight|_{0}^{\frac{9}{4}} =
\frac{9}{2}(m^{2}).

    Số tiền phải trả là \frac{9}{2}.1500000 =
6750000 đồng.

  • Câu 13: Thông hiểu

    Diện tích hình phẳng giới hạn bởi các đường y = (x - 1)e^{2x}, trục hoành; x = 0x =
2 bằng:

    Hoành độ giao điểm của đồ thị hàm số y =
(x - 1)e^{2x} và trục hoành là nghiệm của phương trình: (x - 1)e^{2x} = 0 \Leftrightarrow x =
1

    Diện tích hình phẳng giới hạn bởi các đường là:

    S = \int_{0}^{2}{\left| (x - 1)e^{2x}
ight|dx}

    = \int_{0}^{1}{\left\lbrack (1 -
x)e^{2x} ightbrack dx} + \int_{1}^{2}{\left\lbrack (x - 1)e^{2x}
ightbrack dx}

    = \frac{1}{2}\int_{0}^{1}{(1 - x)d\left(
e^{2x} ight)} + \frac{1}{2}\int_{1}^{2}{(x - 1)d\left( e^{2x}
ight)}

    = \frac{1}{2}\left. \ (1 - x)e^{2x}
ight|_{0}^{1} + \frac{1}{2}\int_{0}^{1}{e^{2x}dx} + \frac{1}{2}\left.
\ (x - 1)e^{2x} ight|_{1}^{2} -
\frac{1}{2}\int_{1}^{2}{e^{2x}dx}

    = \frac{e^{4}}{2} - \frac{1}{2} +
\frac{1}{4}\left. \ e^{2x} ight|_{0}^{1} - \frac{1}{4}\left. \ e^{2x}
ight|_{1}^{2}

    = \frac{e^{4}}{4} + \frac{e^{2}}{2} -
\frac{3}{4}

  • Câu 14: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f(x) = 4\cos^{2}x - 5 thỏa mãn F(\pi) = 0. Tìm F(x)?

    Ta có: F(x) = \int_{}^{}{\left( 4\cos^{2}x- 5 ight)dx} \Leftrightarrow F(x) = \int_{}^{}{(2\cos2x -3)dx}

    \Leftrightarrow F(x) = \sin2x - 3x +C

    Lại có F(\pi) = 0 \Leftrightarrow - 3\pi
+ C = 0 \Leftrightarrow C = 3\pi

    Vậy F(x) = - 3x + \sin2x +3\pi.

  • Câu 15: Nhận biết

    Một vật chuyển động chậm dần với vận tốc v(t) = 150 - 15t(m/s). Hỏi rằng trong 5s trước khi dừng hẳn vật di chuyển được bao nhiêu mét?

    Khi dừng hẳn v(t) = 150 - 15t = 0
\Rightarrow t = 10(s)

    Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:

    S = \int_{0}^{10}{v(t)dt} =
\int_{0}^{10}{(150 - 15t)dt} = \frac{375}{2}m.

  • Câu 16: Nhận biết

    Tìm nguyên hàm F(x) của hàm số f(x) = 2x + 3\sqrt{x} thỏa mãn F(1) = 0?

    Ta có:

    F(x) = \int_{}^{}{f(x)dx =
\int_{}^{}{\left( 2x + 3\sqrt{x} ight)dx}}

    \Rightarrow F(x) = \int_{}^{}{(2x)dx} +
6\int_{}^{}{\left( \sqrt{x} ight)^{2}d\left( \sqrt{x}
ight)}

    \Rightarrow F(x) = x^{2} + 2\sqrt{x^{3}}
+ C

    Theo bài ra ta có: F(1) = 0
\Leftrightarrow 3 + C = 0 \Leftrightarrow C = - 3

    Vậy x^{2} + 2\sqrt{x^{3}} -
3.

  • Câu 17: Nhận biết

    Họ nguyên hàm của hàm số f(x) =2\sin x.\cos2x là:

    Ta có: f(x) = 2\sin x.\cos2x = \sin( - x) +\sin3x = - \sin x + \sin3x

    Khi đó:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left( -\sin x + \sin3x ight)dx}

    = \int_{}^{}{\left( - \sin x ight)dx}+ \int_{}^{}{(\sin3x)dx} = \cos x - \frac{1}{3}\cos3x + C

  • Câu 18: Vận dụng

    Tìm nguyên hàm của hàm số  f\left( x ight) = \frac{{{{\left( {x - 2} ight)}^{10}}}}{{{{\left( {x + 1} ight)}^{12}}}}

     \int {f\left( x ight)} dx = \int {\frac{{{{\left( {x - 2} ight)}^{10}}}}{{{{\left( {x + 1} ight)}^{12}}}}} dx = {\int {\left( {\frac{{x - 2}}{{x + 1}}} ight)} ^{10}}.\frac{1}{{{{\left( {x + 1} ight)}^2}}}dx

    Đặt t = \frac{{x - 2}}{{x + 1}} \Rightarrow dt = \frac{3}{{{{\left( {x + 1} ight)}^2}dx}} \Rightarrow \frac{1}{3}dt = \frac{1}{{{{\left( {x + 1} ight)}^2}}}dx

    => \int {f\left( x ight)} dx = \int {{t^{10}}.\frac{1}{3}dt = \frac{1}{{33}}.{t^{11}} + C}

    => \frac{1}{{33}}{\left( {\frac{{x - 2}}{{x + 1}}} ight)^{11}} + C

  • Câu 19: Thông hiểu

    Trong các khẳng định sau đây, khẳng định nào đúng?

    Ta có: x^{4} - x^{2} + 1 = \left( x^{2} -
\frac{1}{2} ight)^{2} + \frac{3}{4} > 0;\forall x\mathbb{\in
R}

    Do \int_{- 1}^{2018}{\left| x^{4} - x^{2}
+ 1 ight|^{3}dx} = \int_{- 1}^{2018}{\left( x^{4} - x^{2} + 1
ight)^{3}dx}

  • Câu 20: Vận dụng

    Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất v =
50m/s, sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).

    Đáp án: 667m

    Đáp án là:

    Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất v =
50m/s, sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).

    Đáp án: 667m

    Giả sử hàm số biểu thị cho vận tốc có dạng (P):v(t) = at^{2} + bt + c\left( a,b,c\mathbb{\in
R} ight)

    Do (P) đi qua gốc O nên c =
0

    (P) có đỉnh là I(10;50) \Rightarrow \left\{ \begin{matrix}
\frac{- b}{2a} = 10 \\
50 = a.100 + b.10 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - \frac{1}{2} \\
b = 10 \\
\end{matrix} ight.

    Do đó (P):v(t) = - \frac{1}{2}t^{2} +
10t

    Xe dừng lại khi v(t) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = 0 \\
t = 20 \\
\end{matrix} ight.

    Quảng đường xe ô tô di chuyển trong 20 giây là S = \int_{0}^{20}{\left( - \frac{1}{2}t^{2} + 10t
ight)dt} \approx 667m

  • Câu 21: Vận dụng cao

    Một biển quảng cáo có dạng hình elip với bốn đỉnh A_{1};A_{2};B_{1};B_{2} như hình vẽ:

    Người ta chia elip bởi Parabol có đỉnh B_{1}, trục đối xứng B_{1}B_{2} và đi qua các điểm M;N. Sau đó sơn phần tô đậm với giá 200 nghìn đồng/m2 và trang trí đèn led phần còn lại với giá 500 nghìn đồng/m2. Hỏi kinh phí sử dụng gần nhất với giá trị nào dưới đây? Biết rằng A_{1}A_{2} =4m;B_{1}B_{2} = MN = 2m

    Chọn hệ trục tọa độ Oxy sao cho O là trung điểm của A1A2. Tọa độ các đỉnh A1(−2; 0), A2(2; 0), B1(0; −1), B2(0; 1)

    Phương trình đường Elip (E):\frac{x^{2}}{4} + \frac{y^{2}}{9} = 1\Leftrightarrow y = \pm \sqrt{1 - \frac{x^{2}}{4}}

    Ta có: M\left( - 1;\frac{\sqrt{3}}{2}ight),N\left( 1;\frac{\sqrt{3}}{2} ight) \in (E)

    Parabol (P) có đỉnh B1(0; −1) và trục đối xứng là Ox nên (P) có phương trình y = ax^{2} - 1, (a > 0), đi qua M; N

    \Rightarrow a = \frac{\sqrt{3}}{2} + 1\Rightarrow (P):y = \left( \frac{\sqrt{3}}{2} + 1 ight)x^{2} -1

    Diện tích phần tô đậm

    S_{1} = 2\int_{0}^{1}{\left\lbrack\sqrt{1 - \frac{x^{2}}{4}} - \left( \frac{\sqrt{3}}{2} + 1 ight)x^{2}+ 1 ightbrack dx}

    = \int_{0}^{1}{\sqrt{4 - x^{2}}dx} -\frac{2}{3}\left( \frac{\sqrt{3}}{2} + 1 ight) + 2

    Đặt x = 2\sin t;t \in \left\lbrack -\frac{\pi}{2};\frac{\pi}{2} ightbrack \Rightarrow dx =2\cos tdt

    Đổi cận \left\{ \begin{matrix}x = 0 \Rightarrow t = 0 \\x = 1 \Rightarrow t = \dfrac{\pi}{6} \\\end{matrix} ight.

    \Rightarrow S_{1} =\int_{0}^{\frac{\pi}{6}}{\sqrt{4 - 4\sin^{2}t}.2\cos tdt} -\frac{2}{3}\left( \frac{\sqrt{3}}{2} + 1 ight) + 2

    = 4\int_{0}^{\frac{\pi}{6}}{\cos^{2}tdt}- \frac{\sqrt{3}}{4} + \frac{4}{3} = 2\int_{0}^{\frac{\pi}{6}}{(1 +\cos2t)dt} - \frac{\sqrt{3}}{4} + \frac{4}{3}

    = \left. \ (2t + \sin2t)ight|_{0}^{\frac{\pi}{6}} - \frac{\sqrt{3}}{4} + \frac{4}{3} =\frac{\pi}{3} + \frac{\sqrt{3}}{6} + \frac{4}{3}

    Diện tích hình Elip là S = πab = 2π

    Suy ra diện tích phần còn lại là: S_{2} =S - S_{1} = \frac{5\pi}{3} - \frac{\sqrt{3}}{6} -\frac{4}{3}

    Kinh phí sử dụng là 2.10^{5}S_{1} +5.10^{5}S_{2} \approx 2.341.000 đồng.

  • Câu 22: Nhận biết

    Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = \frac{1}{x} và các đường thẳng y = 0;x = 1;x = 4. Thể tích V của khối tròn xoay sinh ra khi cho hình phẳng (H) quay quanh trục?

    Thể tích V của khối tròn xoay sinh ra khi cho hình phẳng (H) quay quanh trục Ox là:

    V = \pi\int_{1}^{4}{\left( \frac{1}{x}
ight)^{2}dx} = \pi\left. \ \left( - \frac{1}{x^{4}} ight)
ight|_{1}^{4} = \pi\left( - \frac{1}{4} + 1 ight) =
\frac{3\pi}{4}.

  • Câu 23: Nhận biết

    Cho hình vẽ:

    Diện tích hình phẳng bôi đậm trong hình vẽ được xác định theo công thức:

    Dựa vào đồ thị hàm số ta thấy công thức tính diện tích hình phẳng cần tìm là:

    S = \int_{- 1}^{2}{\left( - x^{2} + 3 -
x^{2} + 2x + 1 ight)dx} = \int_{- 1}^{2}{\left( - 2x^{2} + 2x + 4
ight)dx}.

  • Câu 24: Nhận biết

    Cho hàm số y = f(x) là một nguyên hàm của hàm số y =
x^{5}.Phát biểu nào sau đây đúng?

    Ta có \left(
\frac{\mathbf{1}}{\mathbf{6}}\mathbf{x}^{\mathbf{6}}
ight)\mathbf{'}\mathbf{=}\mathbf{x}^{\mathbf{5}}

    Vậy đáp án cần tìm là: \frac{\mathbf{1}}{\mathbf{6}}\mathbf{x}^{\mathbf{6}}\mathbf{+
C}.

  • Câu 25: Thông hiểu

    Cho \int_{}^{}{\frac{1}{x^{2} - 1}dx} =
a\ln|x - 1| + b\ln|x + 1| + C với a;b là các số hữu tỉ. Khi đó a - b bằng:

    Ta có: \frac{1}{x^{2} - 1} = \frac{1}{(x
- 1)(x + 1)} = \frac{1}{x - 1} - \frac{1}{x + 1}

    \Rightarrow \int_{}^{}{\frac{1}{x^{2} -
1}dx} = \int_{}^{}{\left( \frac{1}{x - 1} - \frac{1}{x + 1} ight)dx} =
\frac{1}{2}\ln|x - 1| - \frac{1}{2}\ln|x + 1| + C

    Suy ra a = \frac{1}{2};b = - \frac{1}{2}
\Rightarrow a - b = 1.

  • Câu 26: Vận dụng

    Cho hai hàm số f(x) = ax^{3} + bx +
c;g(x) = bx^{3} + ax + c;(a > 0) có đồ thị như hình vẽ:

    Gọi S_{1};S_{2} là diện tích hình phẳng được gạch trong hình vẽ. Khi S_{1} + S_{2} = 3 thì \int_{0}^{1}{f(x)dx} bằng bao nhiêu?

    Phương trình hoành độ giao điểm

    (a - b)x^{3} + (b - a)x = 0

    \Leftrightarrow (a - b)\left( x^{3} - x
ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
x = 0 \\
\end{matrix} ight.

    Ký hiệu S_{3} là diện tích hình phẳng như hình vẽ:

    Ta có:

    S_{1} = \int_{- 1}^{0}{\left\lbrack f(x)
- g(x) ightbrack dx} = (a - b)\int_{- 1}^{0}{\left( x^{3} - x
ight)dx} = \frac{1}{4}(a - b)

    S_{2} = - \int_{- 1}^{0}{g(x)dx} = -
\int_{- 1}^{0}{\left( bx^{3} + ax + c ight)dx} = - \left( \frac{b}{4}
+ \frac{a}{2} + c ight)

    Vì vậy S_{1} + S_{2} = 3 \Leftrightarrow
\frac{1}{4}(a - b) - \left( \frac{b}{4} + \frac{a}{2} + c ight) =
3

    \Leftrightarrow a + 2b + 4c = -
12

    \Rightarrow \int_{0}^{1}{f(x)dx} =
\int_{0}^{1}{\left( ax^{3} + bx + c ight)dx} = \frac{a}{4} +
\frac{b}{2} + c = \frac{a + 2b + 4c}{4} = - 3

  • Câu 27: Vận dụng cao

    Gọi F(x) là một nguyên hàm của hàm số f\left( x ight) = \frac{1}{{{x^2}\left( {x + 1} ight)}}, F(x) thỏa mãn F(X) + F(-2) = 0,5. Tính F(2) + F(-3)

     Ta có: f\left( x ight) = \frac{1}{{{x^2}\left( {x + 1} ight)}} = \frac{A}{x} + \frac{B}{{{x^2}}} + \frac{C}{{x + 1}} = \frac{{\left( {A + C} ight){x^2} + (A + B)x + B}}{{{x^2}\left( {x + 1} ight)}}

    => \left\{ {\begin{array}{*{20}{c}}  {A + C = 0} \\   {B = 1} \\   {A + B = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {A =  - 1} \\   {B = 1} \\   {B = 1} \end{array}} ight.

    => F\left( x ight) = \int {f\left( x ight)dx = \int {\left( { - \frac{1}{x} + \frac{1}{{{x^2}}} + \frac{1}{{x + 1}}} ight)dx} }

    => F\left( x ight) =  - \ln \left| x ight| - \frac{1}{x} + \ln \left| {x + 1} ight| + C = \ln \left| {\frac{{x + 1}}{x}} ight| - \frac{1}{x} + C

    Khi đó: F\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\ln \left( {\dfrac{{x + 1}}{x}} ight) - \dfrac{1}{x} + {C_1}{\text{ khi x}} \in \left( {0; + \infty } ight)} \\   {\ln \left( {\dfrac{{ - x - 1}}{x}} ight) - \dfrac{1}{x} + {C_2}{\text{ khi x}} \in \left( { - 1; + \infty } ight)} \\   {\ln \left( {\dfrac{{x + 1}}{x}} ight) - \dfrac{1}{x} + {C_3}{\text{ khi x}} \in \left( { - \infty ; - 1} ight)} \end{array}} ight.

    Theo bài ra ta có: F(x) + F(-2) = 0,5

    => \left( {\ln 2 - 1 + {C_1}} ight) + \left( {\ln \frac{1}{2} + \frac{1}{2} + {C_2}} ight) = \frac{1}{2}

    => {C_1} + {C_2} = 1

    => F\left( 2 ight) + F\left( { - 3} ight) = \left( {\ln \frac{3}{2} + \frac{1}{2} + {C_1}} ight) + \left( {\ln \frac{2}{3} + \frac{1}{2} + {C_1}} ight) = \frac{5}{6}

  • Câu 28: Nhận biết

    Cho các hàm số y = f(x)y = g(x) liên tục trên \lbrack a;bbrack và số k tùy ý. Trong các khẳng định sau, khẳng định nào sai?

    Khẳng định sai là: \int_{a}^{b}{x.f(x)dx}
= x\int_{a}^{b}{f(x)dx}

  • Câu 29: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = {\left( {2x + 1} ight)^{2019}} bằng:

     \int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]dx}  = \frac{1}{2}\int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]d\left( {2x + 1} ight)}

    = \frac{1}{2}\frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{2020}} + C = \frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{4040}} + C

  • Câu 30: Thông hiểu

    Biết rằng hàm số y = f(x)f'(x) = 3x^{2} + 2x + m;f(2) =
1 và đồ thị hàm số y =
f(x) cắt trục tung tại điểm có tung độ bằng - 5. Hàm số f(x) là:

    Theo lí thuyết \int_{}^{}{f'(x)dx =
f(x) + C}

    Ta có: \int_{}^{}{f'(x)dx
=}\int_{}^{}{\left( 3x^{2} + 2x + m ight)dx} = x^{3} + x^{2} + mx +
C

    Khi đó f(x) có dạng f(x) = x^{3} + x^{2} + mx + C_{1}

    Theo đề ta có: \left\{ \begin{matrix}
f(2) = 1 \\
f(0) = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2^{3} + 2^{2} + 2m + C_{1} = 1 \\
C_{1} = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = - 3 \\
C_{1} = - 5 \\
\end{matrix} ight.

    Vậy hàm số là f(x) = x^{3} + x^{2} - 3x -
5.

  • Câu 31: Nhận biết

    Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x);y = g(x) liên tục trên đoạn \lbrack a;bbrack và hai đường thẳng x = a;x = b;a < b

    Ta có hình phẳng giới hạn bởi \left\{
\begin{matrix}
\left( C_{1} ight):y = f(x) \\
\left( C_{2} ight):y = g(x) \\
x = a \\
x = b \\
\end{matrix} ight.S =
\int_{a}^{b}{\left| f(x) - g(x) ight|dx}.

  • Câu 32: Thông hiểu

    Cắt một vật thể bởi hai mặt phẳng vuông góc với trục Ox tại x =
1x = 3. Một mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x (1 \leq x \leq 3) cắt vật thể đó theo thiết diện là một hình chữ nhật có độ dài hai cạnh là 3x3x^{2}
- 2. Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng trên

    Diện tích thiết diện là: S(x) = 3x.\left(
3x^{2} - 2 ight) = 9x^{3} - 6x

    \Rightarrow Thể tích vật thể là: V = \int_{1}^{3}{\left( 9x^{3} - 6x
ight)dx = 156}

  • Câu 33: Thông hiểu

    Tìm a + b biết rằng \int_{0}^{1}{x\sqrt[3]{1 - x}dx} =
\frac{a}{b} là phân số tối giản?

    Ta có: t = \sqrt[3]{1 - x} \Rightarrow
t^{3} = 1 - x \Rightarrow 3t^{2}dt = - dx

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 1 \\
x = 1 \Rightarrow t = 0 \\
\end{matrix} ight. khi đó suy ra

    \Rightarrow \int_{0}^{1}{x\sqrt[3]{1 -
x}dx} = 3\int_{0}^{1}{\left( 1 - t^{3} ight)t^{3}dt}

    = \left. \ 3\left( \frac{t^{4}}{4} -
\frac{t^{7}}{7} ight) ight|_{0}^{1} = \frac{9}{28}

  • Câu 34: Thông hiểu

    Hàm số y = f(x) có một nguyên hàm là F(x) = e^{2x}. Tìm nguyên hàm của hàm số \frac{f(x) +
1}{e^{x}}?

    Ta có: f(x) = F'(x) = \left( e^{2x}
ight)' = 2.e^{2x}

    \Rightarrow \int_{}^{}{\frac{f(x) +
1}{e^{x}}dx} = \int_{}^{}{\frac{2e^{2x} + 1}{e^{x}}dx}

    = 2e^{x} - e^{- x} + C

  • Câu 35: Nhận biết

    Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi đồ thị các hàm số y = x^{2} - 2;y = 0;x = - 1;x
= 2 quanh trục Ox bằng

    Ta có:

    V = \pi\int_{- 1}^{2}{\left( x^{2} - 2x
ight)^{2}dx} = \pi\int_{- 1}^{2}{\left( x^{4} - 4x^{3} + 4x^{2}
ight)dx}

    = \pi\left. \ \left( \frac{x^{5}}{5} -
x^{4} + \frac{4x^{3}}{3} ight) ight|_{- 1}^{2} =
\frac{18\pi}{5}

  • Câu 36: Nhận biết

    Tìm họ các nguyên hàm của hàm số f(x) =\sin5x.\cos x?

    Ta có:

    \int_{}^{}{(\sin5x.\cos x)dx} =\frac{1}{2}\int_{}^{}{(\sin6x + \sin4x)dx}

    = - \frac{\cos4x}{8} - \frac{\cos6x}{12} +C

  • Câu 37: Nhận biết

    Diện tích hình phẳng giới hạn bởi các đường y = (x + 2)^{2};y = 0;x = 1;x = 3 bằng:

    Gọi S là diện tích hình phẳng cần tìm. Khi đó

    S = \int_{1}^{3}{(x + 2)^{2}dx} = \left.
\ \frac{1}{3}(x + 2)^{3} ight|_{1}^{3} = \frac{98}{3}

  • Câu 38: Vận dụng

    Cho F(x) là nguyên hàm của hàm số f(x) = \frac{1}{e^{x} + 3} thỏa mãn F(0) = - \frac{1}{3}ln4. Tổng các nghiệm của phương trình 3F(x) +
\ln\left( e^{x} + 3 ight) = 2 là:

    Ta có: F(x) = \int_{}^{}{f(x)}dx =
\int_{}^{}{\left( \frac{1}{e^{x} + 3} ight)dx} =
\int_{}^{}{\frac{e^{x}}{e^{x}\left( e^{x} + 3 ight)}dx}

    Đặt t = e^{x} \Rightarrow dt =
e^{x}dx

    \Rightarrow
\int_{}^{}{\frac{e^{x}}{e^{x}\left( e^{x} + 3 ight)}dx} =
\int_{}^{}{\frac{t}{t(t + 3)}dt}

    = \int_{}^{}{\left\lbrack \frac{1}{3t} -
\frac{1}{3(t + 3)} ightbrack dt} = \frac{\ln|t|}{3} - \frac{\ln|t +
3|}{3} + C

    = \frac{\ln e^{x}}{3} - \frac{\ln\left(
e^{x} + 3 ight)}{3} + C = \frac{x}{3} - \frac{\ln\left( e^{x} + 3
ight)}{3} + C

    Theo bài ra ta có:

    F(0) = - \frac{1}{3}\ln4

    \Leftrightarrow \frac{x}{3} -\frac{\ln\left( e^{x} + 3 ight)}{3} + C = -\frac{1}{3}\ln4

    \Leftrightarrow C = 0

    Ta có:

    3F(x) + \ln\left( e^{x} + 3 ight) =
2

    \Leftrightarrow 3\left( \frac{x}{3} -
\frac{\ln\left( e^{x} + 3 ight)}{3} ight) + \ln\left( e^{x} + 3
ight) = 2

    \Leftrightarrow x = 2

    Vậy tổng các nghiệm của phương trình bằng 2.

  • Câu 39: Thông hiểu

    Cho hình phẳng (H) giới hạn bởi Parabol y = \frac{x^{2}}{12} và đường cong có phương trình y = \sqrt{4 -
\frac{x^{2}}{4}} như hình vẽ:

    Diện tích của hình phẳng (H) bằng:

    Phương trình hoành độ giao điểm:

    \frac{x^{2}}{12} = \sqrt{4 -
\frac{x^{2}}{4}} \Leftrightarrow x = \pm 2\sqrt{3}

    Diện tích hình phẳng (H) bằng:

    S = 2\int_{0}^{2\sqrt{3}}{\left\lbrack
\sqrt{4 - \frac{x^{2}}{4}} - \frac{x^{2}}{12} ightbrack
dx}

    = \int_{0}^{2\sqrt{3}}{\sqrt{16 -
x^{2}}dx} - \frac{1}{6}\int_{0}^{2\sqrt{3}}{x^{2}dx}

    = \int_{0}^{2\sqrt{3}}{\sqrt{16 -
x^{2}}dx} + \frac{4\sqrt{3}}{3}

    Đặt x = 4\sin t

    \Rightarrow\int_{0}^{2\sqrt{3}}{\sqrt{16 - x^{2}}dx} =\int_{0}^{\frac{\pi}{3}}{16\cos^{2}tdt} = \frac{8\pi}{3} +2\sqrt{3}

    \Rightarrow S = \frac{8\pi +
2\sqrt{3}}{3}

  • Câu 40: Thông hiểu

    Với giá trị nào của m > 0 thì diện tích của hình phẳng giới hạn bởi hai đồ thị y = x^{2}y = mx bằng \frac{4}{3}?

    Xét phương trình hoành độ giao điểm x^{2}
= mx \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = m \\
\end{matrix} ight..

    Khi đó diện tích hình phẳng giới hạn bởi hai đồ thị trên được tính bởi

    \int_{0}^{m}{\left| x^{2} - mx
ight|dx} = \int_{0}^{m}{\left( mx - x^{2} ight)dx} = \frac{m^{3}}{6}
= \frac{4}{3} \Rightarrow m = 2.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo