Tổng tất cả các giá trị của tham số m thỏa mãn
bằng:
Ta có:
Phương trình trên là phương trình bậc hai đối với biến m, với các hệ số.
Áp dụng hệ thứ Vi- et
Tổng tất cả các giá trị của tham số m thỏa mãn
bằng:
Ta có:
Phương trình trên là phương trình bậc hai đối với biến m, với các hệ số.
Áp dụng hệ thứ Vi- et
Cho F(x) là nguyên hàm của hàm số
thỏa mãn
. Tìm tập nghiệm S của phương trình ![]()
Đặt
Ta có:
Biết rằng
liên tục trên
là một nguyên hàm của hàm số
và
. Giá trị biểu thức
bằng:
Ta có:
Do đó:
Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành, đường thẳng
như hình vẽ sau:

Hỏi khẳng định nào dưới đây là khẳng định đúng?
Dựa vào hình biểu diễn hình phẳng giới hạn bởi đồ thị hàm số trục hoành, đường thẳng
ta có:
.
Cho biết
với
là phân số tối giản. Giá trị của biểu thức
bằng:
Đặt . Khi đó
Đổi cận
. Suy ra
. Do đó
.
Một vật chuyển động với vận tốc
có gia tốc
. Vận tốc ban đầu của vật là
. Tính vận tốc của vật sau
giây, (làm tròn kết quả đến hàng đơn vị).
Vận tốc của vật là:
Do vận tốc ban đầu của vật là
Vận tốc của vật sau 10s là
Vật thể
giới hạn bởi mặt phẳng có phương trình
và
. Cắt vật thể
với mặt phẳng vuông góc với trục
tại điểm có hoành độ bằng
ta được thiết diện có diện tích bằng
. Thể tích của vật thể
:
Thể tích của vật thể B là:
Xác định nguyên hàm
của hàm số
?
Ta có:
Diện tích hình phẳng được gạch chéo trong hình bên bằng

Dựa và hình vẽ ta có diện tích hình phẳng được gạch chéo trong hình bên là:
Thành phố định xây cây cầu bắc ngang con sông dài
, biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng
khoảng cách giữa 2 chân trụ liên tiếp là
. Bề dày nhịp cầu không đổi là
. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu
? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 40 m3.
Thành phố định xây cây cầu bắc ngang con sông dài , biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng
khoảng cách giữa 2 chân trụ liên tiếp là
. Bề dày nhịp cầu không đổi là
. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu
? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 40 m3.
Cả hai bên cầu có tất cả nhịp cầu.
Chọn hệ trục tọa độ như hình vẽ với gốc là chân cầu, đỉnh
, điểm
Gọi Parabol phía trên có phương trình: (vì
)
là phương trình parabol phía dưới
(Vì bề dày nhịp cầu là )
Ta có
Khi đó diện tích S của mỗi nhịp cầu là diện tích phần hình phẳng giới hạn bởi và trục Ox nên ta có:
Vì bề dày nhịp cầu không đổi nên thể tích của mỗi nhịp cầu là
Suy ra lượng bê tông cần cho 20 nhịp của cả hai bên cầu (mỗi bên 10 nhịp cầu) là
Một vật chuyển động chậm dần đều với vận tốc
. Hỏi trong
trước khi dừng hẳn, vật di chuyển động được bao nhiêu mét?
Khi dừng hẳn
Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:
.
Nguyên hàm của hàm số
là:
Ta có:
.
Cho tích phân
với
. Mệnh đề nào sau đây đúng?
Ta có:
Suy ra .
Cho hàm số
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ bằng
là:
Ta có:
Lấy nguyên hàm hai vế ta được:
. Theo bài ra ta có:
Suy ra
Vậy
Ta có:
Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng 3 là:
Cho hàm số
có đạo hàm trên
thỏa mãn
với
ta có:
. Tính tích phân
?
Ta có:
Lấy nguyên hàm hai vế ta được:
Theo bài ra ta có:
Vì nên nhận
Vậy
Cho hình phẳng
được giới hạn bởi đồ thị các hàm số ![]()
. Tính diện tích hình phẳng
?
Cho hình phẳng được giới hạn bởi đồ thị các hàm số
. Tính diện tích hình phẳng
?
Cho F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tìm F(x)
Mặt khác
=>
Hàm số
có nguyên hàm là:
Ta có:
Họ nguyên hàm của hàm số
là:
Ta có:
Cho
là một nguyên hàm của hàm số
trên khoảng
thỏa mãn
. Giá trị của biểu thức
bằng:
Ta có:
Suy ra mà
.Hay
Ta có:
Nếu
thì
bằng:
Ta có:
Gọi
là hình phẳng giới hạn bởi các đường
. Tính thể tích vật thể tròn xoay tạo thành khi quay hình
quanh trục
?
Thể tích vật thể tròn xoay tạo thành khi quay hình quanh trục
là
.
Cho hàm số
là một nguyên hàm của
trên khoảng
thỏa mãn
. Xác định công thức
?
Ta có: (vì
)
Mà
Vậy .
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Tìm nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy .
Cho hàm số
xác định trên
thỏa mãn
và
. Hệ số góc của phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Lại có
Từ đó suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Vậy hệ số góc phương trình tiếp tuyến cần tìm là 1.
Cho hàm số
liên tục trên đoạn
. Diện tích
của hình phẳng giới hạn bởi đồ thị của hàm số
, trục hoành và hai đường thẳng
được tính theo công thức
Theo lí thuyết về tính diện tích hình phẳng ta có diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số , trục hoành và hai đường thẳng
được tính theo công thức:
.
Cho hai hàm số
và
liên tục trên tập số thực và thỏa mãn
. Tính tích phân
?
Đặt
Đổi cận
Theo bài ra ta có:
Đặt
Đổi cận
Cho a, b là các số hữu tỉ thỏa mãn
![]()
Tính giá trị biểu thức M = a + b.
=>
=>
Cho
với
là các số hữu tỉ. Giá trị của biểu thức
bằng
Đặt khi đó:
Tích phân
với
. Giá trị của
bằng:
Ta có:
Giả sử
là các hàm số bất kì liên tục trên
và
là các số thực. Mệnh đề nào sau đây sai?
Theo tính chất tích phân ta có:
Vậy mệnh đề sai:
Cho
là hình phẳng giới hạn bởi parabol
và nửa elip có phương trình
(với
) và trục hoành (phần tô đậm trong hình vẽ).

Gọi
là diện tích của, biết
(với
). Tính
?
Hoành độ giao điểm của hai đồ thị:
Do tính chất đối xứng của đồ thị nên
. Đặt
Đổi cận
Với
Suy ra
Vậy
Tìm nguyên hàm của hàm số ![]()
Một khối cầu có bán kính
, người ta cắt bỏ
phần bằng
mặt phẳng song song và vuông góc với bán kính, hai mặt phẳng đó đều cách tâm của khối cầu
để làm một chiếc lu đựng nước. Tính thể tích nước mà chiếc lu chứa được (coi độ dày của bề mặt không đáng kể).
Hình vẽ minh họa
Đặt trục tọa độ như hình vẽ. Thể tích cái được tính bằng cách cho đường tròn có phương trình quay quanh trục Ox.
Thể tích cái lu bằng;
Tính tích phân
bằng cách đặt
. Công thức nào dưới đây chính xác?
Đặt
Suy ra
Tính diện tích hình phẳng giới hạn bởi các đường
và trục hoành?
Phương trình hoành độ giao điểm
Khi đó diện tích hình phẳng theo yêu cầu bài toán là:
.
Gọi
là diện tích hình phẳng giới hạn bởi đồ thị hàm số
và trục hoành như hình vẽ:

Mệnh đề nào sau đây sai?
Phương trình hoành độ giao điểm của đồ thị hàm số và trục hoành là:
Từ hình vẽ ta thấy
Do đó
Vậy mệnh đề sai là:
Diện tích hình phẳng giới hạn bởi các đường
bằng:
Gọi S là diện tích hình phẳng cần tìm. Khi đó
Giá trị của tích phân
bằng:
Ta có: .