Hàm số
có một nguyên hàm F(x). Biết đồ thị hàm số y = F(x) đi qua điểm B(2; 10). Giá trị F(-2) là:
Hàm số đi qua B(2; 10) =>
=>
=>
Hàm số
có một nguyên hàm F(x). Biết đồ thị hàm số y = F(x) đi qua điểm B(2; 10). Giá trị F(-2) là:
Hàm số đi qua B(2; 10) =>
=>
=>
Xét hình phẳng
giới hạn bởi đồ thị hàm số
, trục hoành và đường thẳng
. Gọi
. Tính giá trị của tham số
để đoạn thẳng
chia
thành hai phần có diện tích bằng nhau?

Tìm nguyên hàm của hàm số 
Đặt
=>
=>
Gọi
là diện tích hình phẳng giới hạn bởi các đường
. Mệnh đề nào dưới đây đúng?
Ta có:
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Ta có:
Cho hình phẳng
giới hạn bởi các đường
. Thể tích vật thể tròn xoay có được khi
quay quanh trục
bằng:
Gọi là thể tích khối tròn xoay cần tính. Ta có:
Đặt
với
là tham số thực. Tìm giá trị của tham số
để
?
Ta có:
Do .
Nếu
thì
bằng:
Ta có:
Tìm công thức tính thể tích V của khối tròn xoay được tao ra khi quay hình thang cong giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng
xung quanh trục Ox.
Ta có :
Trong mặt phẳng tọa độ
, cho đường tròn
.

Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn
quanh trục hoành.
Trong mặt phẳng tọa độ , cho đường tròn
.
Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn quanh trục hoành.
Cho hàm số
liên tục trên
. Gọi
là hình phẳng giới hạn bởi hai đồ thị
và các đường thẳng
. Diện tích hình
được tính theo công thức?
Ta có diện tích hình (H) được tính bằng công thức .
Cho hàm số
có đạo hàm trên khoảng
thỏa mãn
và
. Giá trị tích phân
bằng:
Từ giả thiết ta có:
Lấy nguyên hàm hai vế của (*) suy ra
Vì nên
Đặt
Theo công thức tích phân từng phần ta được:
Cho
với
là các số hữu tỉ. Giá trị của biểu thức
bằng
Đặt khi đó:
Cho hàm số
có đạo hàm dương và liên tục trên
thỏa mãn
và
. Tích phân
là:
Áp dụng BĐT Cauchy-Schwarz:
Dấu "=" xảy ra khi chỉ khi
Cho hàm số
liên tục trên đoạn
và
là một nguyên hàm của
. Biết rằng
. Xác định tích phân
?
Ta có: .
Một ô tô đang chạy đều với vận tốc
thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng
. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là
. Sai||Đúng
c)
. Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là
. Sai||Đúng
Một ô tô đang chạy đều với vận tốc thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng . Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là . Sai||Đúng
c) . Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là . Sai||Đúng
a) Khi xe dừng hẳn thì vận tốc bằng . Mệnh đề đúng
b) Cho . Mệnh đề sai
c) . Mệnh đề đúng
d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là . Mệnh đề sai
Biết rằng
là một nguyên hàm của hàm số
trên
. Giá trị của biểu thức
bằng:
Ta có:
suy ra
Tìm nguyên hàm
của hàm số
, biết rằng
?
Ta có:
Vậy .
Tìm nguyên hàm của hàm số
bằng:
Một vận động viên đua xe đang chạy với vận tốc
thì anh ta tăng tốc với vận tốc
, trong đó
là khoảng thời gian tính bằng giây kể từ lúc tăng tốc, hỏi quãng đường xe của anh ta đi được trong thời gian
kể từ lúc bắt đầu tăng tốc là bao nhiêu?
Ta có:
Do khi bắt đầu tăng tốc
Khi đó quãng đường xe đi được sau 10 giây kể từ khi ô tô bắt đầu tăng tốc bằng
Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và
. Giá trị của f(2) là:
Chọn f(x) = ax3 + bx2 + cx + d
Ta có:
Vậy => f(x) = 20
Một ô tô đang chuyển động đều với vận tốc
thì người lái đạp phanh; từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc
(trong đó
là thời gian tính bằng giây, kể từ lúc đạp phanh). Hỏi trong thời gian
giây cuối (tính đến khi xe dừng hẳn) thì ô tô đi được quãng đường bằng bao nhiêu?
Khi dừng hẳn
Khi đó trong 8s trước khi dừng hẳn vật di chuyển được (bao gồm 2s trước khi đạp phanh):
Cho
là một nguyên hàm của hàm số
thỏa mãn
. Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
là một nguyên hàm của hàm số
suy ra
có dạng
Theo bài ra ta có:
Vậy .
Họ nguyên hàm của hàm số
là:
Ta có:
.
Cho hình phẳng
giới hạn bởi đồ thị hàm số
và các đường thẳng
. Thể tích
của khối tròn xoay sinh ra khi cho hình phẳng
quay quanh trục?
Thể tích V của khối tròn xoay sinh ra khi cho hình phẳng quay quanh trục
là:
.
Tích phân
bằng:
Ta có:
Kí hiệu
là hình phẳng giới hạn bởi đồ thị
với trục hoành (
). Quay hình
xung quanh trục hoành ta thu được khối tròn xoay có thể tích
. Tìm
?
Phương trình hoành độ giao điểm
Trường hợp 1: Với thì thể tích khối tròn xoay là:
Trường hợp 2: Với thì thể tích khối tròn xoay là:
Vậy .
Tìm nguyên hàm của hàm số ![]()
Ta có:
Cho hàm số
. Tính tích phân
?
Ta có:
Tìm nguyên hàm
.
Ta có:
Tính tích phân
?
Đặt
Đổi cận
Khi đó:
.
Một xe ô tô đang chạy với vận tốc
thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó
. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi
là quảng đường xe ô tô đi được trong
(giây) kể từ lúc đạp phanh.
a) Quảng đường
mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
. Đúng||Sai
b) Quãng đường
. Đúng||Sai
c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là
giây. Sai||Đúng
d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai
Một xe ô tô đang chạy với vận tốc
thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó
. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi
là quảng đường xe ô tô đi được trong
(giây) kể từ lúc đạp phanh.
a) Quảng đường mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
. Đúng||Sai
b) Quãng đường . Đúng||Sai
c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là giây. Sai||Đúng
d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai
Do nên quãng đường
mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
. Ta có:
với
là hằng số.
Khi đó, ta gọi hàm số .
Do nên
. Suy ra
.
Xe ô tô dừng hẳn khi hay
. Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 2 giây.
Ta có xe ô tô đang chạy với tốc độ .
Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: .
Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: .
Do nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường.
Cho hình thang cong
giới hạn bởi các đường
. Đường thẳng
chia
thành hai phần có diện tích
và
(hình vẽ bên).

Tính giá trị
để
?
Ta có: do đó ta được:
Theo bài ra ta có:
.
Cho hàm số
là một nguyên hàm của hàm số
. Biết rằng giá trị lớn nhất của
trên khoảng
là
. Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Suy ra
Trên khoảng ta có:
Ta có bảng biến thiên
Giá trị lớn nhất của trên khoảng
là
nên t s có:
Vậy .
Gọi
là đường thẳng tùy ý đi qua điểm
và có hệ số góc âm. Giả sử
cắt các trục
lần lượt tại
. Quay tam giác
quanh trục
thu được một khối tròn xoay có thể tích là
. Giá trị nhỏ nhất của
bằng
Hình vẽ minh họa
Giả sử A(a; 0), B(0; b). Phương trình đường thẳng d:
Mà M(1; 1) ∈ d nên
Từ (1) suy ra d có hệ số góc là ; theo giả thiết ta có
Nếu mẫu thuẫn với (2) suy ra
Mặt khác từ (2) suy ra kết hợp với a > 0, b > 0 suy ra a > 1.
Khi quay ∆OAB quanh trục Oy, ta được hình nón có chiều cao và bán kính đường tròn đáy
Thể tích khối nón là
Suy ra V đạt giá trị nhỏ nhất khi đạt giá trị nhỏ nhất.
Xét hàm số trên khoảng
Ta có bảng biến thiên như sau:
Vậy giá trị nhỏ nhất của V bằng
Với giá trị nào của
thì diện tích của hình phẳng giới hạn bởi hai đồ thị
và
bằng
?
Xét phương trình hoành độ giao điểm .
Khi đó diện tích hình phẳng giới hạn bởi hai đồ thị trên được tính bởi
.
Tính tích phân
?
Ta có:
Cho hàm số y = f(x) xác định trên
thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Mặt khác
=>
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Cho là một nguyên hàm của hàm số
và
. Tính ![]()
Cách 1:
Đặt
Khi đó
=>
Mặt khác
=> C = 0
=>
=>
Cách 2: . Sử dụng máy tính cầm tay để tính.
Một khối cầu có bán kính
, người ta cắt bỏ
phần bằng
mặt phẳng song song và vuông góc với bán kính, hai mặt phẳng đó đều cách tâm của khối cầu
để làm một chiếc lu đựng nước. Tính thể tích nước mà chiếc lu chứa được (coi độ dày của bề mặt không đáng kể).
Hình vẽ minh họa
Đặt trục tọa độ như hình vẽ. Thể tích cái được tính bằng cách cho đường tròn có phương trình quay quanh trục Ox.
Thể tích cái lu bằng;