Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 4. Nguyên hàm Tích phân được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Thể tích của khối tròn xoay sinh ra khi cho hình phẳng giới hạn bởi parabol (P):y = x^{2} và đường thẳng d:y = x xoay quanh trục Ox tính bởi công thức nào sau đây?

    Hình vẽ minh họa

    Ta có (P)d cắt nhau tại hai điểm (0;0),(1;1)x > x^{2};\forall x \in (0;1)

    Suy ra thể tích khối tròn xoay đã cho T bằng thể tích khối tròn xoay T_{1} trừ đi thể tích khối tròn xoay T_{2}. Trong đó:

    T_{1} được sinh ra khi quay hình phẳng giới hạn bởi các đường d, trục Ox, x = 0, x = 1.

    T_{2} được sinh ra khi quay hình phẳng giới hạn bởi các đường (P), trục Ox, x = 0, x = 1.

    Vậy thể tích khối tròn xoay đã cho bằng \pi\int_{0}^{1}{x^{2}dx} -
\pi\int_{0}^{1}{x^{4}dx}.

  • Câu 2: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = \cos 3x

     Ta có: \int {\cos 3xdx}  = \frac{{\sin 3x}}{3} + C

  • Câu 3: Nhận biết

    Trong các khẳng định sau, khẳng định nào sai?

    Ta có: \int_{a}^{b}{f(x)dx} = -
\int_{b}^{a}{f(x)dx} nên khẳng định \int_{a}^{b}{f(x)dx} =
\int_{b}^{a}{f(x)dx} sai.

  • Câu 4: Vận dụng

    Cho hai hàm số y = f(x) có đạo hàm trên \lbrack 1;2brack thỏa mãn f(1) = 4f(x) = x.f'(x) - 2x^{3} - 3x^{2}. Giá trị f(2) bằng:

    Chọn f(x) = ax^{3} + bx^{2} + cx +
d

    f(x) = xf'(x) - 2x^{3} -
3x^{2}

    \Leftrightarrow ax^{3} + bx^{2} + cx + d
= x\left( 3ax^{2} + 2bx + c ight) - 2x^{3} - 3x^{2}

    Từ đó suy ra \left\{ \begin{matrix}
a = 3a - 2 \\
b = 2b - 3 \\
c = 0 \\
d = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 3 \\
c = 0 \\
d = 0 \\
\end{matrix} ight.

    Vậy f(x) = x^{3} + 3x^{2} \Rightarrow
f(2) = 20

  • Câu 5: Thông hiểu

    Một ô tô đang chạy đều với vận tốc x(m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v = - 5t + 20(m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s). Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5\ s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400\ m. Sai||Đúng

    Đáp án là:

    Một ô tô đang chạy đều với vận tốc x(m/s) thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v = - 5t + 20(m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s). Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5\ s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là 400\ m. Sai||Đúng

    a) Khi xe dừng hẳn thì vận tốc bằng 0(m/s). Mệnh đề đúng

    b) Cho v = 0 \Leftrightarrow - 5t + 20 =
0 \Leftrightarrow t\  = \ 4\ (s). Mệnh đề sai

    c) \int_{}^{}{( - 5t + 20)dt =}\frac{-
5t^{2}}{2} + 20t + C. Mệnh đề đúng

    d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là S = \int_{0}^{4}{( - 5t + 20)dt} = 40\
(m). Mệnh đề sai

  • Câu 6: Vận dụng

    Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí vởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ tọa độ Oxy với O là tâm hình vuông sao cho A(1;1) như hình vẽ bên thì các đường cong OA có phương trình y = x^{2}y = ax^{3} + bx. Tính giá trị a.b biết rằng diện tích trang trí màu sẫm chiếm \frac{1}{3} diện tích mặt sàn.

    Đáp án: -2||- 2

    Đáp án là:

    Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí vởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ tọa độ Oxy với O là tâm hình vuông sao cho A(1;1) như hình vẽ bên thì các đường cong OA có phương trình y = x^{2}y = ax^{3} + bx. Tính giá trị a.b biết rằng diện tích trang trí màu sẫm chiếm \frac{1}{3} diện tích mặt sàn.

    Đáp án: -2||- 2

    Diện tích 1 cánh của hình trang trí là:

    S_{1} = \int_{0}^{1}\left( x^{2} -
ax^{3} - bx ight)dx = \left. \ \left( \frac{x^{3}}{3} -
\frac{ax^{4}}{4} - \frac{bx^{2}}{2} ight) ight|_{0}^{1} =
\frac{1}{2} - \frac{a}{4} - \frac{b}{2}

    \Rightarrow Diện tích hình trang trí là: S = 4S_{1} = \frac{4}{3} - a -
2b

    Vì diện tích trang trí màu sẫm chiếm \frac{1}{3} diện tích mặt sàn nên

    \frac{4}{3} - a - 2b = \frac{4}{3}
\Leftrightarrow a + 2b = 0

    Khi đó ta có: \left\{ \begin{matrix}
a + b = 1 \\
a + 2b = 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = - 1 \\
\end{matrix} ight.\  ight.

    Vậy ab = - 2.

  • Câu 7: Nhận biết

    Tìm công thức tính thể tích V của khối tròn xoay được tao ra khi quay hình thang cong giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng x = a;x = b;\left( {a < b} ight) xung quanh trục Ox.

    Ta có : V =
\pi\int_{a}^{b}{f^{2}(x)}dx.

  • Câu 8: Nhận biết

    Cho hình phẳng D giới hạn bởi đường cong y = e^{x}, trục hoành và các đường thẳng x = 0;x = 1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?

    Ta có:

    V = \pi\int_{0}^{1}{e^{2x}dx} = \left. \
\frac{\pi}{2}e^{2x} ight|_{0}^{1} = \frac{\pi\left( e^{2} - 1
ight)}{2}.

  • Câu 9: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m để tồn tại tích phân \int_{1}^{1 + m}\frac{dx}{x(x - 5)(x -
4)}?

    Tích phân \int_{1}^{1 + m}\frac{dx}{x(x -
5)(x - 4)} tồn tại khi và chỉ khi hàm số y = \frac{1}{x(x - 5)(x - 4)} liên tục trên \lbrack 1;1 + mbrack hoặc \lbrack 1 + m;1brack

    Mà hàm số y = \frac{1}{x(x - 5)(x -
4)} liên tục trên các khoảng ( -
\infty;0),(0;4),(4;5),(5; + \infty)

    Nên hàm số y = \frac{1}{x(x - 5)(x -
4)} liên tục trên \lbrack 1;1 +
mbrack hoặc \lbrack 1 +
m;1brack khi và chỉ khi

    0 < 1 + m < 4 \Leftrightarrow - 1
< m < 3 \Rightarrow m \in ( - 1;3).

  • Câu 10: Nhận biết

    Cho hình phẳng (H) giới hạn bởi các đường y = 2x - x^{2};y = 0. Quay (H) quanh trục hoành tạo thành khối tròn xoay có thể tích là:

    Ta có: 2x - x^{2} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Theo công thức thể tích giới hạn bởi các đường ta có:

    V = \pi\int_{0}^{2}{\left( 2x - x^{2}
ight)^{2}dx}

  • Câu 11: Nhận biết

    Cho đồ thị của hàm số y = f(x) như sau:

    Diện tích hình phẳng (phần tô đậm trong hình vẽ) được xác định bởi công thức:

    Dựa vào hình vẽ ta được: S = \int_{-
3}^{0}{f(x)dx} - \int_{0}^{4}{f(x)dx}.

  • Câu 12: Thông hiểu

    Cho hàm số f(x) xác định trên \mathbb{R}\left\{ 1 ight\}thỏa mãn f'(x) = \frac{1}{x - 1}; f(0) = 2017;f(2) = 2018. Tính T = f(3) - f( - 1)?

    Trên khoảng (1; + \infty) ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\frac{1}{x - 1}dx} = \ln(x - 1) + C_{1}

    \Rightarrow f(x) = \ln(x - 1) +
C_{1}

    f(2) = 2018 \Rightarrow C_{1} =
2018

    Trên khoảng ( - \infty;1) ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\frac{1}{x - 1}dx} = \ln(1 - x) + C_{2}

    \Rightarrow f(x) = \ln(1 - x) +
C_{2}

    f(0) = 2017 \Rightarrow C_{2} =
2017

    Vậy f(x) = \left\{ \begin{matrix}
\ln(x - 1) + 2018\ \ \ khi\ x\  > \ 1 \\
\ln(1 - x) + 2017\ \ \ khi\ x\  < \ 1 \\
\end{matrix} ight.

    \Rightarrow T = f(3) - f( - 1) =
1.

  • Câu 13: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =\sin^{4}x\cos x??

    Đặt t = \sin x \Rightarrow dt = \cos
xdx

    \int_{}^{}{\left( \sin^{4}x\cos xight)dx} = \int_{}^{}{t^{4}dt} = \frac{t^{5}}{5} + C =\frac{1}{5}\sin^{5}x + C

  • Câu 14: Thông hiểu

    Cho a là số thực dương. Biết rằng F(x) là một nguyên hàm của hàm số f(x) = e^{x}\left\lbrack \ln(ax) +
\frac{1}{x} ightbrack thỏa mãn F\left( \frac{1}{a} ight) = 0F(2018) = e^{2018}. Mệnh đề nào sau đây đúng?

    Ta có:

    f(x) = e^{x}\left\lbrack \ln(ax) +
\frac{1}{2} ightbrack= \left( e^{x} ight)'\ln(ax) +e^{x}\left\lbrack \ln(ax) ightbrack'= \left\{ e^{x}\left\lbrack \ln(ax)
ightbrack ight\}'

    \Rightarrow
\int_{\frac{1}{a}}^{2018}{f(x)}dx = F(2018) - F\left( \frac{1}{a}
ight)\Leftrightarrow \left. \ \left(
e^{x}\left\lbrack \ln(ax) ightbrack ight)
ight|_{\frac{1}{a}}^{2018} = e^{2018}

    \Leftrightarrow \ln(2018a) = 1
\Leftrightarrow a = \frac{e}{2018}

    Vậy a \in \left( \frac{1}{2018};1
ight).

  • Câu 15: Vận dụng cao

    Cho hàm số y = f(x) dương và liên tục trên \lbrack 1;3brack thỏa mãn \max_{\lbrack 1;3brack}f(x) =
2;\min_{\lbrack 1;3brack}f(x) = \frac{1}{2} và biểu thức S =
\int_{1}^{3}{f(x)dx}.\int_{1}^{3}{\frac{1}{f(x)}dx} đạt giá trị lớn nhất, khi đó \int_{1}^{3}{f(x)dx} bằng:

    Do \frac{1}{2} \leq f(x) \leq 2
\Rightarrow f(x) + \frac{1}{f(x)} \leq \frac{5}{2}

    \Rightarrow \int_{1}^{3}{\left\lbrack
f(x) + \frac{1}{f(x)} ightbrack dx} \leq 5

    \Rightarrow \int_{1}^{3}{f(x)dx} +
\int_{1}^{3}{\frac{1}{f(x)}dx} \leq 5

    \Rightarrow
\int_{1}^{3}{\frac{1}{f(x)}dx} \leq 5 -
\int_{1}^{3}{f(x)dx}

    \Rightarrow S =
\int_{1}^{3}{f(x)dx}.\int_{1}^{3}{\frac{1}{f(x)}dx} \leq
5\int_{1}^{3}{f(x)dx} - \left\lbrack \int_{1}^{3}{f(x)dx}
ightbrack^{2}

    \leq \frac{25}{4} - \left\lbrack
\int_{1}^{3}{f(x)dx - \frac{5}{2}} ightbrack^{2} \leq
\frac{25}{4}

    Dấu bằng xảy ra khi và chỉ khi \int_{1}^{3}{f(x)dx} = \frac{5}{2}.

  • Câu 16: Thông hiểu

    Tích phân \int_{1}^{2}{\frac{\ln x}{x\left( \ln x + 2 ight)^{2}}dx} = a\ln3 + b\ln2 +\frac{c}{3} với a;b;c\mathbb{\in
Z}. Kết luận nào dưới đây đúng?

    Ta có:I = \int_{1}^{2}{\frac{\ln
x}{x\left( \ln x + 2 ight)^{2}}dx}. Đặt t = \ln x + 2 \Rightarrow dt =
\frac{dx}{x}

    Đổi cận tích phân \left\{ \begin{matrix}
x = 1 \Rightarrow t = 2 \\
x = e \Rightarrow t = 3 \\
\end{matrix} ight.

    Vậy I = \int_{2}^{3}{\frac{t -2}{t^{2}}dt} = \int_{2}^{3}{\left( \frac{1}{t} - \frac{2}{t^{2}}ight)dt} = \left. \ \left( \ln t + \frac{2}{t} ight) ight|_{2}^{3}= \ln3 - \ln2 - \frac{1}{3}

    Suy ra a = 1;b = - 1;c = - 1. Vậy a^{2} + b^{2} + c^{2} = 3.

  • Câu 17: Nhận biết

    Diện tích hình phẳng giới hạn bởi các đường y = x^{3}, trục hoành, x = 0x =
2 bằng

    Hình vẽ minh họa

    Phương trình hoành độ giao điểm x^{3} = 0
\Leftrightarrow x = 0

    Diện tích hình giới hạn là S =
\int_{0}^{2}{\left| x^{3} ight|dx} = \left| \int_{0}^{2}{x^{3}dx}
ight| = \left| \left. \ \left( \frac{x^{4}}{4} ight) ight|_{0}^{2}
ight| = 4

  • Câu 18: Thông hiểu

    Cho hình phẳng (H) giới hạn bởi đường parabol (P):y = x^{2} - x + 2 và tiếp tuyến của đồ thị hàm số y = x^{2} +
1 tại điểm có tọa độ (1;2). Diện tích của hình (H) là:

    Xét hàm số y = x^{2} + 1 trên \mathbb{R}. Ta có: y' = 2x

    Khi đó phương trình tiếp tuyến tại điểm (1;2) của đồ thị hàm số y = x^{2} + 1

    y = y'(1)(x - 1) + 2 \Leftrightarrow
y = 2x

    Gọi ∆ là đường thẳng có phương trình y =
2x. Xét phương trình tương giao của (P) và ∆

    x^{2} - x + 2 = 2x \Leftrightarrow x^{2}
- 3x + 2 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Gọi S là diện tích hình phẳng (H) khi đó

    S = \int_{1}^{2}{\left| \left( x^{2} - x
+ 2 ight) - 2x ight|dx} = \int_{1}^{2}{\left| x^{2} - 3x + 2
ight|dx}

    x^{2} - 3x + 2 \leq 0;\forall x \in
\lbrack 1;2bracknên

    S = - \int_{1}^{2}{\left( x^{2} - 3x + 2
ight)dx}

    = - \left. \ \left( \frac{x^{3}}{3} -
\frac{3x^{2}}{2} + 2x ight) ight|_{1}^{2} = - \left( \frac{2}{3} -
\frac{5}{6} ight) = \frac{1}{6}

  • Câu 19: Vận dụng

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R}, f(0) = 0;f'(0) eq 0;f( - 2) > 2 và thỏa mãn hệ thức f(x)f'(x) + 18x^{2}
= \left( 3x^{2} + x ight)f'(x) + (6x + 1)f(x) với \forall x\mathbb{\in R}. Giá trị của f( - 2) là:

    Ta có:

    f(x)f'(x) + 18x^{2} = \left( 3x^{2}
+ x ight)f'(x) + (6x + 1)f(x)

    \Leftrightarrow 2f(x)f'(x) + 36x^{2}
= 2\left( 3x^{2} + x ight)f'(x) + 2(6x + 1)f(x)

    \Leftrightarrow 2f(x)f'(x) -
\left\lbrack 2\left( 3x^{2} + x ight)f'(x) + 2(6x + 1)f(x)
ightbrack = - 36x^{2}

    \Rightarrow \left\lbrack f^{2}(x) -
2\left( 3x^{2} + x ight)f(x) ightbrack' = -
36x^{2}

    \Rightarrow \int_{}^{}{\left\lbrack
f^{2}(x) - 2\left( 3x^{2} + x ight)f(x) ightbrack'dx} =
\int_{}^{}{\left( - 36x^{2} ight)dx}

    \Rightarrow f^{2}(x) - 2\left( 3x^{2} +
x ight)f(x) = - 12x^{3} + C

    Mặt khác f(0) = 0 \Rightarrow C =
0

    Vậy f^{2}(x) - 2\left( 3x^{2} + x
ight)f(x) = - 12x^{3}

    \Rightarrow f^{2}( - 2) - 20f( - 2) = 96
\Leftrightarrow \left\lbrack \begin{matrix}
f( - 2) = 24 \\
f( - 2) = - 4 \\
\end{matrix} ight.

    f( - 2) > 2 \Rightarrow f( - 2) =
24.

  • Câu 20: Nhận biết

    Nguyên hàm của hàm số f\left( x ight) = {2^x} + {e^x} là:

     Ta có: \int {\left( {{2^x} + {e^x}} ight)dx}  = \int {{2^x}dx}  + \int {{e^x}dx}  = \frac{{{2^x}}}{{\ln 2}} + {e^x} + C

  • Câu 21: Vận dụng

    Cho đường cong (C):y = x^{3}. Xét điểm A có hoành độ dương thuộc (C), tiếp tuyến của (C) tại A tạo với (C) một hình phẳng có diện tích bằng 27. Hoành độ điểm A thuộc khoảng nào dưới đây??

    Ta có: y' = 3x^{2}A \in (C) \Rightarrow A\left( a;a^{3} ight);(a
> 0)

    Phương trình tiếp tuyến d của (C) tại A là d:y = 3a^{2}(x - a) + a^{3}

    x^{3} = 3a^{2}(x - a) +
a^{3}

    \Leftrightarrow (x - a)^{2}(x + 2a) =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = a \\
x = - 2a \\
\end{matrix} ight.

    Gọi S là diện tích của hình phẳng giới hạn bởi tiếp tuyến d và (C)

    S = 27 \Leftrightarrow \int_{-
2a}^{a}\left| x^{3} - 3a^{2}(x - a) - a^{3} ight|dx = 27

    \Leftrightarrow \left| \int_{-
2a}^{a}\left( x^{3} - 3a^{2}x + 2a^{3} ight)dx ight| =
27

    \Leftrightarrow \left| \left. \ \left(
\frac{x^{4}}{4} - \frac{3a^{2}x^{2}}{2} + 2a^{3}x ight) ight|_{-
2a}^{a} ight| = 27

    \Leftrightarrow \frac{27}{4}a^{4} = 27
\Leftrightarrow \left\lbrack \begin{matrix}
a = \sqrt{2}(tm) \\
a = - \sqrt{2}(ktm) \\
\end{matrix} ight.

    Vậy a = \sqrt{2} \in \left( 1;\frac{3}{2}
ight)

  • Câu 22: Thông hiểu

    Gọi F(x) là một nguyên hàm của hàm số f\left( x ight) = \cos 5x.\cos x thỏa mãn F\left( {\frac{\pi }{5}} ight) = 0. Tính F\left( {\frac{\pi }{6}} ight).

     \begin{matrix}  \cos 5x + \cos x = \dfrac{1}{2}\left( {\cos 6x + \cos 4x} ight) \hfill \\  \int {\cos 5x.\cos xdx}  = \int {\dfrac{1}{2}\left( {\cos 6x + \cos 4x} ight)} dx = \dfrac{1}{2}.\dfrac{{\sin 6x}}{6} + \dfrac{1}{2}\dfrac{{\sin 4x}}{4} + C \hfill \\  F\left( {\dfrac{\pi }{3}} ight) = 0 \Rightarrow C = \dfrac{{\sqrt 3 }}{6} \hfill \\  F\left( {\dfrac{\pi }{6}} ight) = \dfrac{{\sqrt 3 }}{8} \hfill \\ \end{matrix}

  • Câu 23: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = 3x + \cos 3x

     Ta có: \int {\left( {3x + \cos 3x} ight)dx = \frac{{3{x^2}}}{2} + \frac{{\sin 3x}}{3} + C}

  • Câu 24: Thông hiểu

    Biết rằng A = \int_{}^{}\frac{\cos
x}{\sin x + \cos x}dx;B = \int_{}^{}\frac{\sin x}{\sin x + \cos
x}dx. Xác định T = 4B -
2A?

    Ta có: \left\{ \begin{gathered}
  A + B = \int 1 dx = x + {C_1} \hfill \\
  A - B = \int {\frac{{\cos x - \sin x}}{{\sin x + \cos x}}} dx = \ln \left| {\sin x + \cos x} ight| + {C_2} \hfill \\ 
\end{gathered}  ight.

    Do đó:\left\{ \begin{gathered}
  A = \frac{{x + \ln \left| {\sin x + \cos x} ight|}}{2} + \frac{{{C_1} + {C_2}}}{2} \hfill \\
  B = \frac{{x - \ln \left| {\sin x + \cos x} ight|}}{2} + \frac{{{C_1} - {C_2}}}{2} \hfill \\ 
\end{gathered}  ight.

    \Rightarrow T = 4B - 2A = x - 3\ln\left|\sin x + \cos x ight| + C

  • Câu 25: Vận dụng

    Cho hàm số f(x) thỏa mãn \int_{0}^{3}\left\lbrack 2x\ln(x + 1) + xf'(x)
ightbrack dx = 0f(3) =
1. Biết \int_{0}^{3}{f(x)}dx =\frac{a + b\ln2}{2} với a;b \in
\mathbb{R}^{+}. Giá trị của biểu thức a + b là:

    Tính I = \int_{0}^{3}{2x\ln(x +
1)}dx

    Đặt \left\{ \begin{matrix}u = \ln(x + 1) \\dv = 2xdx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{1}{x + 1}dx \\v = x^{2} \\\end{matrix} ight. khi đó:

    I = \left. \ x^{2}\ln(x + 1)
ight|_{0}^{3} - \int_{0}^{3}{\frac{x^{2}}{x + 1}dx}

    = 9ln4 - \left. \ \left( \frac{x^{2}}{2}
- x + \ln|x + 1| ight) ight|_{0}^{3} = 16ln2 -
\frac{3}{2}

    Tính J =
\int_{0}^{3}{xf'(x)}dx.

    Đặt \left\{ \begin{matrix}
u_{J} = x \\
dv_{J} = f'(x)dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du_{J} = dx \\
v_{J} = f(x) \\
\end{matrix} ight. khi đó

    J = \int_{0}^{3}{xf'(x)}dx = \left.
\ xf(x) ight|_{0}^{3} - \int_{0}^{3}{f(x)}dx

    \int_{0}^{3}\left\lbrack 2x\ln(x + 1)
+ xf'(x) ightbrack dx = 0

    \Rightarrow I + J = 0 \Rightarrow 16\ln2- \frac{3}{2} + 3 - \int_{0}^{3}{f(x)}dx = 0

    \Rightarrow \int_{0}^{3}{f(x)}dx = 16\ln2+ \frac{3}{2} = \frac{3 + 32\ln2}{2}

    \Rightarrow \left\{ \begin{matrix}
a = 3 \\
b = 32 \\
\end{matrix} ight.\  \Rightarrow a + b = 35

  • Câu 26: Thông hiểu

    Tính diện tích S_{D} của hình phẳng D được giới hạn bởi các đường y = \left| \frac{\ln x}{x} ight|, trục hoành và các đường thẳng x =
\frac{1}{e};x = 2?

    Diện tích hình phẳng cần tìm là:

    S_{D} = \int_{\frac{1}{e}}^{2}{\left|
\frac{\ln x}{x} ight|dx} = \int_{\frac{1}{e}}^{1}{\left| \frac{\ln
x}{x} ight|dx} + \int_{1}^{2}{\left| \frac{\ln x}{x}
ight|dx}

    = - \int_{\frac{1}{e}}^{1}{\frac{\ln
x}{x}dx} + \int_{1}^{2}{\frac{\ln x}{x}dx}

    = - \left. \ \frac{\left( \ln x
ight)^{2}}{2} ight|_{\frac{1}{e}}^{1} + \left. \ \frac{\left( \ln x
ight)^{2}}{2} ight|_{1}^{2}

    = \frac{1}{2} + \frac{\ln^{2}2}{2} =\frac{1}{2}\left( 1 + \ln^{2}2 ight)

  • Câu 27: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =\frac{e^{\tan x}}{\cos^{2}x}?

    Đặt t = \tan x \Rightarrow dt =\frac{1}{\cos^{2}x}dx

    \int_{}^{}{\frac{e^{\tan x}}{\cos^{2}x}dx} = \int_{}^{}{e^{t}dt} = e^{t} + C = e^{\tan x} +C

  • Câu 28: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m thỏa mãn \int_{0}^{m}{(2x + 1)dx} < 2?

    Ta có: \int_{0}^{m}{(2x + 1)dx} < 2
\Leftrightarrow \left. \ \left( x^{2} + x ight) ight|_{0}^{m} <
2

    \Leftrightarrow m^{2} + m - 2 < 0
\Leftrightarrow - 2 < m < 1

  • Câu 29: Vận dụng cao

    Biết F\left( x ight) = \left( {a{x^2} + bx + c} ight)\sqrt {2x - 3} là một nguyên hàm của hàm số f\left( x ight) = \frac{{20{x^2} - 30x + 11}}{{\sqrt {2x - 3} }} trên khoảng \left( {\frac{3}{2}; + \infty } ight). Giá trị của biểu thức T = a + b + c bằng

     \begin{matrix}  f\left( x ight) = F'\left( x ight)\left[ {\left( {a{x^{u2}} + bx + c} ight)\sqrt {2x - 3} } ight]' = \dfrac{{5a{x^2} + x\left( {3b - 6a} ight) + c - 3b}}{{\sqrt {2x - 3} }} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {5a = 20} \\   {3b - 6a =  - 30} \\   {c - 3b = 11} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 4} \\   {b =  - 2} \\   {c = 5} \end{array}} ight. \Rightarrow T = 7 \hfill \\ \end{matrix}

  • Câu 30: Vận dụng

    Tổng tất cả các giá trị của tham số m thỏa mãn \int_{0}^{1}{\frac{9^{x} + 3m}{9^{x} + 3}dx} =
m^{2} - 1 bằng:

    Ta có:

    \int_{0}^{1}{\frac{9^{x} + 3m}{9^{x} +
3}dx} = m^{2} - 1

    \Leftrightarrow
\int_{0}^{1}{\frac{9^{x}}{9^{x} + 3}dx} + m\int_{0}^{1}{\frac{3}{9^{x} +
3}dx} = m^{2} - 1

    \Leftrightarrow m^{2} -
m\int_{0}^{1}{\frac{3}{9^{x} + 3}dx} - \int_{0}^{1}{\frac{9^{x}}{9^{x} +
3}dx} - 1 = 0

    Phương trình trên là phương trình bậc hai đối với biến m, với các hệ số
    \left\{ \begin{matrix}a = 1 \\b = - \int_{0}^{1}{\dfrac{3}{9^{x} + 3}dx} \\c = - \int_{0}^{1}{\dfrac{9^{x}}{9^{x} + 3}dx} \\\end{matrix} ight..

    Áp dụng hệ thứ Vi- et \Rightarrow m_{1} +
m_{2} = \frac{- b}{a} = \int_{0}^{1}{\frac{3}{9^{x} + 3}dx} =
\frac{1}{2}

  • Câu 31: Thông hiểu

    Xác định nguyên hàm F(x) của hàm số f(x) = \frac{x^{3} + 3x^{2} + 3x -
1}{x^{2} + 2x + 1}?

    Ta có:

    f(x) = \frac{x^{3} + 3x^{2} + 3x -
1}{x^{2} + 2x + 1} = \frac{(x + 1)^{3} - 2}{(x + 1)^{2}} = x + 1 -
\frac{2}{(x + 1)^{2}}

    \Rightarrow F(x) = \frac{x^{2}}{2} + x +
\frac{2}{x + 1} + C

  • Câu 32: Vận dụng

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0
ight\} thỏa mãn f(x) + xf'(x)
= 3x^{2}f(2) = 8. Phương trình tiếp tuyến của đồ thị hàm số y
= f(x) tại giao điểm với trục hoành là:

    Ta có: f(x) + xf'(x) =
3x^{2}

    \Leftrightarrow (x)'f(x) +
xf'(x) = 3x^{2}

    \Leftrightarrow \left( xf'(x)
ight)' = 3x^{2}

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}{\left( xf'(x)
ight)'dx} = \int_{}^{}{3x^{2}dx} \Leftrightarrow xf(x) = x^{3} +
C

    Lại có f(2) = 8 \Rightarrow 2f(2) = 8 + C
\Leftrightarrow 2.8 = C + 8 \Leftrightarrow C = 8

    Từ đó suy ra xf(x) = x^{3} + 8
\Leftrightarrow f(x) = \frac{x^{3} + 8}{x}

    Xét phương trình hoành độ giao điểm \frac{x^{3} + 8}{x} = 0 \Leftrightarrow x = -
2

    Ta có: f'(x) = \frac{2x^{3} -
8}{x^{2}} \Rightarrow f'( - 2) = - 6;f( - 2) = 0

    Phương trình tiếp tuyến tại giao điểm với trục hoành là

    y = f'( - 2)(x + 2) + f( -
2)

    \Leftrightarrow y = - 6(x + 2)
\Rightarrow y = - 6x - 12

  • Câu 33: Nhận biết

    Tính tích phân \int_{1}^{2}{\frac{x -
1}{x}dx}?

    Ta có: \int_{1}^{2}{\frac{x - 1}{x}dx} =
\int_{1}^{2}{\left( 1 - \frac{1}{x} ight)dx} = \left. \ \left( x -
\ln|x| ight) ight|_{1}^{2}

    = (2 - \ln2) - (1 - \ln1) = 1 -\ln2

  • Câu 34: Thông hiểu

    Cho hai hàm số f(x)g(x) liên tục trên \lbrack a;bbrack và thỏa mãn 0 < g(x) < f(x),\forall x \in \lbrack
a;bbrack. Gọi V là thể tích của khối tròn xoay sinh ra khi quay quanh Ox hình phẳng (H) giới hạn bởi các đường: y = f(x),y = g(x),x = a,x = b. Khi đó V được tính bởi công thức nào sau đây?

    Ta cần nhớ lại công thức sau: Cho hai hàm số y = f(x),y = g(x) liên tục trên \lbrack a;bbrack. Khi đó thể tích của vật thể tròn xoay giới hạn bởi y = f(x),y =
g(x) (với 0 < g(x) <
f(x)) và hai đường thẳng x = a,x =
b khi quay quanh trục OxV = \pi\int_{a}^{b}{\left\lbrack f^{2}(x)
- g^{2}(x) ightbrack dx}.

  • Câu 35: Vận dụng cao

    Cho hình phẳng (H) giới hạn bởi các đường y = \left| x^{2} - 1
ight|y = k, với 0 < k < 1. Tìm k để diện tích hình phẳng (H) gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)

    Đáp án: 0,59

    Đáp án là:

    Cho hình phẳng (H) giới hạn bởi các đường y = \left| x^{2} - 1
ight|y = k, với 0 < k < 1. Tìm k để diện tích hình phẳng (H) gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)

    Đáp án: 0,59

    Gọi S là diện tích hình phẳng (H). Lúc dó S = 2S_{1} + 2S_{2}, trong đó S_{1} là diện tích phần gạch sọc ở bên phải OyS_{2} là diện tích phần gạch ca rô trong hình vẽ bên.

    GọiA,B là các giao diếm có hoành độ dương của đường thẳng y = k và đồ thị hàm sốy = \left| x^{2} - 1
ight|, trong đó A\left( \sqrt{1 -
k};k ight)B\left( \sqrt{1 +
k};k ight).

    Thco yêu cầu bài toán S = 2 \cdot 2S_{1}
\Leftrightarrow S_{1} = S_{2}.

    \Leftrightarrow \int_{0}^{\sqrt{1 -
k}}{\left( 1 - x^{2} - k ight)dx}\  = \int_{\sqrt{1 - k}}^{1}{\left( k
- 1 + x^{2} ight)dx} + \int_{1}^{\sqrt{1 + k}}{\left( k - x^{2} + 1
ight)dx}.

    \Leftrightarrow \ (1 - k)\sqrt{1 - k} -
\frac{1}{3}(1 - k)\sqrt{1 - k}

    = \frac{1}{3} - (1 - k) - \frac{1}{3}(1
- k)\sqrt{1 - k} + (1 - k)\sqrt{1 - k}

    \  + (1 + k)\sqrt{1 + k} - \frac{1}{3}(1
+ k)\sqrt{1 + k} - (1 + k) + \frac{1}{3}

    \Leftrightarrow \ \frac{2}{3}(1 +
k)\sqrt{1 + k} = \frac{4}{3}

    \Leftrightarrow \left( \sqrt{1 + k}
ight)^{3} = 2 \Leftrightarrow k = \sqrt[3]{4} - 1 \approx
0,59.

  • Câu 36: Thông hiểu

    Cho \int_{2}^{3}{\frac{1}{(x + 1)(x +
2)}dx} = aln2 + bln3 + cln5 với a;b;c là các số thực. Giá trị của biểu thức T = a + b^{2} - c^{3} bằng:

    Ta có:

    \int_{2}^{3}{\frac{1}{(x + 1)(x + 2)}dx}
= \int_{2}^{3}{\left( \frac{1}{x + 1} - \frac{1}{x + 2}
ight)dx}

    = \left. \ \ln\left| \frac{x + 1}{x + 2}
ight| ight|_{2}^{3} = \ln\frac{4}{5} - \ln\frac{3}{4} = 4ln2 - ln3 -
ln5

    \Rightarrow \left\{ \begin{matrix}
a = 4 \\
b = - 1 \\
c = - 1 \\
\end{matrix} ight.\  \Rightarrow T = a + b^{2} - c^{3} =
6

  • Câu 37: Nhận biết

    Tìm nguyên hàm của hàm số f(x) = \frac{x
- 1}{x^{2}}?

    Ta có: f(x) = \frac{x - 1}{x^{2}} =
\frac{1}{x} - \frac{1}{x^{2}} \Rightarrow F(x) = \ln|x| + \frac{1}{x} +
C

  • Câu 38: Nhận biết

    Tính tích phân I = \int_{0}^{1}{(2x +
1)e^{x}dx} bằng cách đặt u = 2x +
1;dv = e^{x}dx. Công thức nào dưới đây chính xác?

    Đặt \left\{ \begin{matrix}
u = 2x + 1 \\
dv = e^{x}dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = 2dx \\
v = e^{x} \\
\end{matrix} ight.

    Suy ra I =
\int_{0}^{1}{(2x + 1)e^{x}dx} = \left. \ \left\lbrack (2x + 1)e^{x}
ightbrack ight|_{0}^{1} - 2\int_{0}^{1}{e^{x}dx}

  • Câu 39: Nhận biết

    Giá trị tích phân I =
\int_{1}^{2}{\frac{1}{x^{6}}dx} bằng:

    Ta có:

    I = \int_{1}^{2}{\frac{1}{x^{6}}dx} =
\int_{1}^{2}{x^{- 6}dx} = \left. \ \frac{x^{- 5}}{- 5} ight|_{1}^{2} =
\frac{31}{125}

  • Câu 40: Nhận biết

    Cho hàm số f(x) biết f(0) = 1, f'(x) liên tục trên \lbrack 0;3brack\int_{0}^{3}{f'(x)dx} = 9. Tính f(3)?

    Ta có:

    \int_{0}^{3}{f'(x)dx} = 9
\Leftrightarrow \left. \ f(x) ight|_{0}^{3} = 9 \Rightarrow f(3) -
f(0) = 9

    \Rightarrow f(3) = 9 + f(0) = 9 + 1 =
10

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Nguyên hàm Tích phân CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo