Cho hai hàm số
có đồ thị như hình vẽ:

Gọi
là diện tích hình phẳng được gạch trong hình vẽ. Khi
thì
bằng bao nhiêu?
Phương trình hoành độ giao điểm
Ký hiệu là diện tích hình phẳng như hình vẽ:
Ta có:
Vì vậy
Cho hai hàm số
có đồ thị như hình vẽ:

Gọi
là diện tích hình phẳng được gạch trong hình vẽ. Khi
thì
bằng bao nhiêu?
Phương trình hoành độ giao điểm
Ký hiệu là diện tích hình phẳng như hình vẽ:
Ta có:
Vì vậy
Cho F(x) là một nguyên hàm của hàm số
. Hàm số
có bao nhiêu điểm cực trị?
=> có 5 nghiệm đơn
=> Hàm số có 5 điểm cực trị
Cho
là các số hữu tỉ thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
Cho
là một nguyên hàm của hàm số
trên khoảng
thỏa mãn
. Giá trị của biểu thức
bằng:
Ta có:
Suy ra mà
.Hay
Ta có:
Tìm một nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
. Theo bài ra ta có:
Vậy là đáp án cần tìm.
Cho
với
là các số hữu tỉ. Khi đó
bằng:
Ta có:
Suy ra .
Họ nguyên hàm của hàm số
là:
Ta có:
Trong mặt phẳng tọa độ
, cho hình thang
với
. Quay hình thang
xung quanh trục
thì thể tích khối tròn xoay tạo thành bằng bao nhiêu??
Phương trình các cạnh của hình thang là:
Ta thấy là hình thang vuông có
nên khối tròn xoay cần tính là
Nguyên hàm của hàm số
là
Ta có: .
Giả sử
là các hàm số bất kì liên tục trên
và
là các số thực. Mệnh đề nào sau đây sai?
Theo tính chất tích phân ta có:
Vậy mệnh đề sai:
Gọi
là hình phẳng giới hạn bởi các đường
. Tính thể tích vật thể tròn xoay tạo thành khi quay hình
quanh trục
?
Thể tích vật thể tròn xoay tạo thành khi quay hình quanh trục
là
.
Cho đồ thị hàm số
như hình vẽ và
.

Tính diện tích của phần được gạch chéo theo
.
Từ đồ thị ta suy ra
Do đó, diện tích phần gạch chéo là
.
Tìm nguyên hàm của hàm số
?
Ta có:
Gọi
là một nguyên hàm của hàm số
, thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
là một nguyên hàm của hàm số
, ta có:
mà
.
Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số
liên tục trên đoạn
và hai đường thẳng
là
Ta có hình phẳng giới hạn bởi là
.
Cho hàm số
. Tính ![]()
Ta có:
.
Tìm họ nguyên hàm của hàm số
?
Ta có:
Biết rằng
liên tục trên
là một nguyên hàm của hàm số
và
. Giá trị biểu thức
bằng:
Ta có:
Do đó:
Tính tích phân
?
Ta có:
Cho
với
là các số hữu tỉ. Giá trị của biểu thức
bằng
Đặt khi đó:
Xác định nguyên hàm của hàm số
?
Ta có: .
Tính diện tích hình phẳng giới hạn bởi các đường
và trục hoành?
Phương trình hoành độ giao điểm
Khi đó diện tích hình phẳng theo yêu cầu bài toán là:
.
Cho hàm số
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có: . Nhân cả hai vế với
ta được:
Lấy nguyên hàm hai vế ta được:
Suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng -2 là:
Cho
là số thực dương. Biết rằng
là một nguyên hàm của hàm số
thỏa mãn
và
. Mệnh đề nào sau đây đúng?
Ta có:
Vậy .
Họ nguyên hàm của hàm số
là:
Ta có:
Cho hàm số
dương và liên tục trên
thỏa mãn
và biểu thức
đạt giá trị lớn nhất, khi đó
bằng:
Do
Dấu bằng xảy ra khi và chỉ khi .
Công thức diện tích hình phẳng giới hạn bởi đồ thị hàm số
,
liên tục trên đoạn
và hai đường thẳng
,
là
Diện tích hình phẳng giới hạn bởi đồ thị hàm số ,
liên tục trên đoạn
và hai đường thẳng
,
là
.
Giá trị của
bằng
Ta có:
Biết
với
là các số nguyên dương. Giá trị của biểu thức
bằng:
Giả sử . Đặt
, đổi cận
Hình phẳng giới hạn bởi đồ thị hàm số
liên tục trên đoạn
, trục Ox và hai đường thẳng
có diện tích là:
Công thức tính diện tích cần tìm là: .
Cho đường thẳng
và parabol
(
là tham số thực). Gọi
lần lượt là diện tích của hai hình phẳng được tô đậm và gạch chéo trong hình vẽ bên. Khi
thì
thuộc khoảng nào dưới đây?

Phương trình hoành độ giao điểm của của hai đồ thị:
Theo giả thiết, phương trình có hai nghiệm phân biệt
Khi đó, phương trình có hai nghiệm thỏa mãn:
Diện tích hình phẳng:
Diện tích hình phẳng:
Theo giả thiết ta có:
Tính thể tích khối tròn xoay sinh ra khi quay quanh trục
hình phẳng giới hạn bởi hai đồ thị
?
Phương trình hoành độ giao điểm
Gọi là hình phẳng giới hạn bởi các đường
Thể tích khối tròn xoay tạo thành khi quay (H) quanh Ox l
Diện tích hình phẳng là:
Vật thể
giới hạn bởi mặt phẳng có phương trình
và
. Cắt vật thể
với mặt phẳng vuông góc với trục
tại điểm có hoành độ bằng
ta được thiết diện có diện tích bằng
. Thể tích của vật thể
:
Thể tích của vật thể B là:
Một vật chuyển động với vận tốc
thì tăng tốc với gia tốc
Tính quãng đường vật đi được trong khoảng thời gian
giây kể từ lúc bắt đầu tăng tốc.
Ta có:
Do khi bắt đầu tăng tốc
Khi đó quãng đường đi được bằng
Cho hàm số
đồng biến và có đạo hàm cấp hai trên đoạn
và thỏa mãn
với
. Biết rằng
khi đó tích phân
bằng:
Ta có:
Theo bài ra ta có:
Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất
, sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).

Đáp án: 667m
Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất , sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).
Đáp án: 667m
Giả sử hàm số biểu thị cho vận tốc có dạng
Do đi qua gốc
nên
có đỉnh là
Do đó
Xe dừng lại khi
Quảng đường xe ô tô di chuyển trong 20 giây là
Tích phân
bằng:
Ta có:
.
Giá trị tích phân
bằng:
Ta có:
Cho hàm số
có đạo hàm liên tục trên
,
và thỏa mãn hệ thức
với
. Giá trị của
là:
Ta có:
Mặt khác
Vậy
Vì .
Tính diện tích hình phẳng giới hạn bởi đồ thị
của hàm số
và đồ thị
của hàm số
?
Phương trình hoành độ giao điểm
Diện tích hình phẳng cần tìm là: