Biết
. Khi đó
tương ứng bằng
Ta có:
Biết
. Khi đó
tương ứng bằng
Ta có:
Tìm nguyên hàm của hàm số
?
Ta có:
Xét hình phẳng
giới hạn bởi đồ thị hàm số
, trục hoành và đường thẳng
. Gọi
. Tính giá trị của tham số
để đoạn thẳng
chia
thành hai phần có diện tích bằng nhau?

Biết rằng
liên tục trên
là một nguyên hàm của hàm số
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Cho hàm số
thỏa mãn
và
. Mệnh đề nào sau đây đúng?
Ta có:
.
Theo bài ra ta có:
Vậy .
Gọi
là hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
. Gọi
là thể tích của khối tròn xoay thu được khi quay hình
xung quanh trục hoành. Chọn khẳng định đúng trong các khẳng định sau đây?
Áp dụng công thức thể tích khối tròn xoay ta có:
Khi đó áp dụng vào bài toán ta được:
.
Một vật chuyển động với vận tốc
thì tăng tốc với gia tốc
Tính quãng đường vật đi được trong khoảng thời gian
giây kể từ lúc bắt đầu tăng tốc.
Ta có:
Do khi bắt đầu tăng tốc
Khi đó quãng đường đi được bằng
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó
Cho hàm số
thỏa mãn
và
với mọi
. Tính
?
Ta có:
Với
Do đó
Vậy
Tìm nguyên hàm của hàm số 
Đặt
=>
=>
Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số
liên tục trên đoạn
và hai đường thẳng
là
Ta có hình phẳng giới hạn bởi là
.
Cho hàm số
liên tục trên đoạn
có đồ thị gồm hai đoạn thẳng và nửa đường tròn như hình vẽ:

Tính giá trị
?
Hình vẽ minh họa
Dựa vào đồ thị ta có: suy ra phương trình đường thẳng
Phương trình đường tròn :
Điểm nên phương trình đường thẳng
là:
Vậy
Cho
. Hãy tính
?
Đặt
Đổi cận ta có:
Vậy
Nếu
thì
bằng:
Ta có:
Một khối cầu có bán kính
, người ta cắt bỏ
phần bằng
mặt phẳng song song và vuông góc với bán kính, hai mặt phẳng đó đều cách tâm của khối cầu
để làm một chiếc lu đựng nước. Tính thể tích nước mà chiếc lu chứa được (coi độ dày của bề mặt không đáng kể).
Hình vẽ minh họa
Đặt trục tọa độ như hình vẽ. Thể tích cái được tính bằng cách cho đường tròn có phương trình quay quanh trục Ox.
Thể tích cái lu bằng;
Tìm nguyên hàm của hàm số
??
Đặt
Một vật chuyển động với vận tốc
. Tính quãng đường vật đó đi được trong
giây đầu (làm tròn kết quả đến chữ số thập phân thứ hai).?
Quãng đường vật đó đi được trong 4 giây đầu là:
.
Cho hình phẳng
giới hạn bởi đường cong
, trục hoành và các đường thẳng
. Khối tròn xoay tạo thành khi quay
quanh trục hoành có thể tích V bằng bao nhiêu?
Ta có:
.
Họ nguyên hàm của hàm số
là:
Ta có:
Gọi
là diện tích hình phẳng giới hạn bởi đồ thị hàm số
và trục hoành như hình vẽ:

Mệnh đề nào sau đây sai?
Phương trình hoành độ giao điểm của đồ thị hàm số và trục hoành là:
Từ hình vẽ ta thấy
Do đó
Vậy mệnh đề sai là:
Cho hàm số
biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành. Chọn công thức đúng của
?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(0; 1)
=>
=> Hay
Cho hình
giới hạn bởi các đường
, trục hoành. Quay hình phẳng
quanh trục
ta được khối tròn xoay có thể tích là:
Phương trình hoành độ giao điểm của là:
Khi đó .
Cho hàm số
có đạo hàm trên khoảng
thỏa mãn
và
. Giá trị tích phân
bằng:
Từ giả thiết ta có:
Lấy nguyên hàm hai vế của (*) suy ra
Vì nên
Đặt
Theo công thức tích phân từng phần ta được:
Biết rằng
. Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra
Thể tích khối tròn xoay khi quay hình phẳng
giới hạn bởi các đường
quanh trục
có kết quả có dạng
với
là các số nguyên dương và
là phân số tối giản. Khi đó giá trị của
bằng:
Phương trình hoành độ giao
Thể tích cần tính
Suy ra .
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số
với các trục tọa độ?
Xét .
Ta có diện tích hình phẳng giới hạn bởi đồ thị hàm số với các trục tọa độ là:
.
Vì biểu thức không đổi dấu trên miền
nên:
Nguyên hàm của hàm số
là:
Ta có:
.
Một xe ô tô đang chạy với vận tốc
thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó
. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi
là quảng đường xe ô tô đi được trong
(giây) kể từ lúc đạp phanh.
a) Quảng đường
mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
. Đúng||Sai
b) Quãng đường
. Đúng||Sai
c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là
giây. Sai||Đúng
d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai
Một xe ô tô đang chạy với vận tốc
thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó
. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi
là quảng đường xe ô tô đi được trong
(giây) kể từ lúc đạp phanh.
a) Quảng đường mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
. Đúng||Sai
b) Quãng đường . Đúng||Sai
c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là giây. Sai||Đúng
d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai
Do nên quãng đường
mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
. Ta có:
với
là hằng số.
Khi đó, ta gọi hàm số .
Do nên
. Suy ra
.
Xe ô tô dừng hẳn khi hay
. Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 2 giây.
Ta có xe ô tô đang chạy với tốc độ .
Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: .
Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: .
Do nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường.
Xe đạp A xuất phát từ C, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật
trong đó
(giây) là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một xe đạp B cũng xuất phát từ C, chuyển động thẳng cùng hướng với A nhưng chậm hơn
giây so với A và có gia tốc bằng
(
là hằng số). Sau khi B xuất phát được
giây thì đuổi kịp A. Vận tốc của B tại thời điểm đuổi kịp A bằng bao nhiêu?
Quãng đường xe đạp A đi được cho đến khi hai xe gặp nhau là:
Vận tốc của xe đạp B tại thời điểm tính từ lúc B xuất phát là:
Quãng đường xe đạp B đi được cho đến khi hai xe gặp nhau là:
Vậy vận tốc của B tại thời điểm đuổi kịp A là:
Một chiếc máy bay di chuyển với vận tốc là
. Hỏi quãng đường máy bay đi được từ giây thứ
đến giây thứ
bằng bao nhiêu?
Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là:
Thành phố định xây cây cầu bắc ngang con sông dài
, biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng
khoảng cách giữa 2 chân trụ liên tiếp là
. Bề dày nhịp cầu không đổi là
. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu
? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 40 m3.
Thành phố định xây cây cầu bắc ngang con sông dài , biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng
khoảng cách giữa 2 chân trụ liên tiếp là
. Bề dày nhịp cầu không đổi là
. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu
? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 40 m3.
Cả hai bên cầu có tất cả nhịp cầu.
Chọn hệ trục tọa độ như hình vẽ với gốc là chân cầu, đỉnh
, điểm
Gọi Parabol phía trên có phương trình: (vì
)
là phương trình parabol phía dưới
(Vì bề dày nhịp cầu là )
Ta có
Khi đó diện tích S của mỗi nhịp cầu là diện tích phần hình phẳng giới hạn bởi và trục Ox nên ta có:
Vì bề dày nhịp cầu không đổi nên thể tích của mỗi nhịp cầu là
Suy ra lượng bê tông cần cho 20 nhịp của cả hai bên cầu (mỗi bên 10 nhịp cầu) là
Cho hàm số
biết
,
liên tục trên
và
. Tính
?
Ta có:
Tìm tất cả các giá trị thực của tham số
để tồn tại tích phân
?
Tích phân tồn tại khi và chỉ khi hàm số
liên tục trên
hoặc
Mà hàm số liên tục trên các khoảng
Nên hàm số liên tục trên
hoặc
khi và chỉ khi
.
Gọi
là một nguyên hàm của hàm số
, thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
là một nguyên hàm của hàm số
, ta có:
mà
Cho hai hàm số
và
liên tục trên tập số thực và thỏa mãn
. Tính tích phân
?
Đặt
Đổi cận
Theo bài ra ta có:
Đặt
Đổi cận
Cho
. Tính
.
Ta có:
Họ các nguyên hàm của hàm số
trên khoảng ![]()
Tính thể tích
của khối tròn xoay được sinh ra khi xoay hình phẳng giới hạn bởi các đường
và hai đường thẳng
quanh trục
:
Thể tích của khối tròn xoay được sinh ra khi xoay hình phẳng giới hạn bởi các đường
và hai đường thẳng
quanh trục
là:
.
Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là
, chiều cao trong lòng cốc là
đang đựng một lượng nước.

Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.
Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là , chiều cao trong lòng cốc là
đang đựng một lượng nước.
Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.
Tính tích phân
bằng cách đặt
. Công thức nào dưới đây chính xác?
Đặt
Suy ra