Cho hàm số liên tục và có đạo hàm trên
thỏa mãn
. Biết rằng
trong đó
. Kết luận nào sau đây đúng?
Ta có:
.
Tính . Đặt
khi đó:
Theo bài ra ta có:
Cho hàm số liên tục và có đạo hàm trên
thỏa mãn
. Biết rằng
trong đó
. Kết luận nào sau đây đúng?
Ta có:
.
Tính . Đặt
khi đó:
Theo bài ra ta có:
Biết luôn có hai số để
là một nguyên hàm của hàm số
và thỏa mãn
. Khẳng định nào sau đây là đúng và đầy đủ nhất?
Do . Vì luôn có hai số
để
là một nguyên hàm của hàm số
nên
không phải là hàm hằng.
Từ giả thiết
Lấy nguyên hàm hai vế với vi phân ta được:
với C là hằng số.
TH1: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
TH2: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
Vậy khẳng định đúng và đầy đủ nhất là .
Cho hình là hình phẳng giới hạn bởi parabol
, đường cong
và trục hoành (phần tô đậm trong hình vẽ).
Tính diện tích của hình
?
Phương trình hoành độ giao điểm
Diện tích hình phẳng là:
Cho hàm số là các hàm số liên tục trên
và thỏa mãn
và
. Tính tích phân
?
Theo bài ra ta có:
Gọi là hình phẳng giới hạn bởi các đường
. Tính thể tích vật thể tròn xoay tạo thành khi quay hình
quanh trục
?
Thể tích vật thể tròn xoay tạo thành khi quay hình quanh trục
là
.
Xét là hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành, trục tung và đường thẳng
. Giá trị của
sao cho thể tích của khối tròn xoay tạo thành khi quay
quanh trục hoành bằng
là?
Thể tích khối tròn xoay tạo thành khi quay quanh trục hoành là:
Mà
Vậy là giá trị cần tìm.
Cho hàm số liên tục trên đoạn
có đồ thị gồm hai đoạn thẳng và nửa đường tròn như hình vẽ:
Tính giá trị ?
Hình vẽ minh họa
Dựa vào đồ thị ta có: suy ra phương trình đường thẳng
Phương trình đường tròn :
Điểm nên phương trình đường thẳng
là:
Vậy
Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và . Giá trị của f(2) là:
Chọn f(x) = ax3 + bx2 + cx + d
Ta có:
Vậy => f(x) = 20
Giả sử với
là hằng số. Tổng các nghiệm của phương trình
bằng:
Ta có:
Đặt
Theo định lí Vi – et ta thấy phương trình có hai nghiệm
và
.
Một vận động viên đua xe đang chạy với vận tốc thì anh ta tăng tốc với vận tốc
, trong đó
là khoảng thời gian tính bằng giây kể từ lúc tăng tốc, hỏi quãng đường xe của anh ta đi được trong thời gian
kể từ lúc bắt đầu tăng tốc là bao nhiêu?
Ta có:
Do khi bắt đầu tăng tốc
Khi đó quãng đường xe đi được sau 10 giây kể từ khi ô tô bắt đầu tăng tốc bằng
Cho hai hàm số có đạo hàm trên
thỏa mãn
và
. Giá trị
bằng:
Chọn
Từ đó suy ra
Vậy
Dòng diện xoay chiều hình sin chạy qua mạch điện dao động lí tưởng có phương trình
. Ngoài ra
với
là điện tích tức thời trong tụ. Tính từ lúc
, điện lượng chạy qua tiết diện thẳng của dây dẫn của mạch trong thời gian
là
Điện lượng cần tìm là:
Cho F(x) là một nguyên hàm của hàm số thỏa mãn
. Tìm F(x)
Mặt khác
=>
Cho hàm số thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ bằng
là:
Ta có:
Lấy nguyên hàm hai vế ta được:
. Theo bài ra ta có:
Suy ra
Vậy
Ta có:
Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng 3 là:
Một ô tô đang chạy đều với vận tốc thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng . Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là . Sai||Đúng
c) . Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là . Sai||Đúng
Một ô tô đang chạy đều với vận tốc thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng . Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là . Sai||Đúng
c) . Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là . Sai||Đúng
a) Khi xe dừng hẳn thì vận tốc bằng . Mệnh đề đúng
b) Cho . Mệnh đề sai
c) . Mệnh đề đúng
d) Quãng đường từ lúc đạp phanh cho đến khi xe dừng hẳn là . Mệnh đề sai
Tìm công thức tính thể tích V của khối tròn xoay được tao ra khi quay hình thang cong giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng xung quanh trục Ox.
Ta có :
Trong mặt phẳng tọa độ , cho đường tròn
.
Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn quanh trục hoành.
Trong mặt phẳng tọa độ , cho đường tròn
.
Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn quanh trục hoành.
Cho hàm số có đạo hàm với mọi
và
. Giá trị của
bằng:
Ta có:
Giá trị của bằng
Ta có:
Cho hàm số liên tục trên
thỏa mãn
. Giá trị của biểu thức
bằng
Ta có:
Cho đường cong . Xét điểm
có hoành độ dương thuộc
, tiếp tuyến của
tại
tạo với
một hình phẳng có diện tích bằng
. Hoành độ điểm
thuộc khoảng nào dưới đây??
Ta có: có
Phương trình tiếp tuyến d của (C) tại A là
Gọi S là diện tích của hình phẳng giới hạn bởi tiếp tuyến d và (C)
Vậy
Công thức diện tích hình phẳng giới hạn bởi đồ thị hàm số ,
liên tục trên đoạn
và hai đường thẳng
,
là
Diện tích hình phẳng giới hạn bởi đồ thị hàm số ,
liên tục trên đoạn
và hai đường thẳng
,
là
.
Tính tích phân ?
Ta có:
.
Tìm nguyên hàm của hàm số .
Ta có
Diện tích hình phẳng H được giới hạn bởi hai đồ thị và
được tính theo công thức
Phương trình hoành độ giao điểm của và
là:
Vậy diện tích hình phẳng được giới hạn bởi hai đồ thị
và
được tính theo công thức
.
Họ nguyên hàm của hàm số là:
Ta có:
Khi đó:
Cho hàm số là một nguyên hàm của
, biết rằng
. Khi đó giá trị
là:
Ta có:
Mà . Vậy với
thì
Vậy .
Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất , sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).
Đáp án: 667m
Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất , sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).
Đáp án: 667m
Giả sử hàm số biểu thị cho vận tốc có dạng
Do đi qua gốc
nên
có đỉnh là
Do đó
Xe dừng lại khi
Quảng đường xe ô tô di chuyển trong 20 giây là
Cho hình phẳng giới hạn bởi đường parabol
và tiếp tuyến của đồ thị hàm số
tại điểm có tọa độ
. Diện tích của hình (H) là:
Xét hàm số trên
. Ta có:
Khi đó phương trình tiếp tuyến tại điểm của đồ thị hàm số
là
Gọi ∆ là đường thẳng có phương trình . Xét phương trình tương giao của (P) và ∆
Gọi là diện tích hình phẳng
khi đó
Vì nên
Cho hàm số có đồ thị
. Xét các điểm
sao cho tiếp tuyến tại
và
của
vuông góc với nhau, diện tích hình phẳng giới hạn bởi
và đường thẳng
bằng
. Gọi
lần lượt là hoành độ của
và
. Giá trị của
bằng:
Hình vẽ minh họa
Ta có: có TXĐ:
Giả sử và
Phương trình tiếp tuyến tại điểm A của (P) là
Phương trình tiếp tuyến tại điểm B của (P) là
Vì nên ta có:
Phương trình đường thẳng AB
Do đó diện tích hình phẳng giới hạn bởi AB, (P) là:
Thay ta có:
Giả sử là một hàm số bất kì và liên tục trên khoảng
và
. Mệnh đề nào sau đây sai?
Dựa vào tính chất của tích phân với là một số bất kì liên tục trên khoảng
và
ta có:
Cho hàm số dương và liên tục trên
thỏa mãn
và biểu thức
đạt giá trị lớn nhất, khi đó
bằng:
Do
Dấu bằng xảy ra khi và chỉ khi .
Một ô tô đang dừng và bắt đầu chuyển động theo một đường thẳng với gia tốc , trong đó
là khoảng thời gian tính bằng giây kể từ lúc ô tô bắt đầu chuyển động. Hỏi quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là bao nhiêu mét?
Ta có:
Khi đó do ban đầu ô tô đang dừng nên
Quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là: .
Giá trị tích phân bằng:
Ta có:
Nguyên hàm của hàm số là:
Ta có:
.
Diện tích hình phẳng giới hạn bởi hai đường và
bằng:
Xét phương trình hoành độ giao điểm
Hình vẽ minh họa
Diện tích hình phẳng là:
Cho với
là các số hữu tỉ. Giá trị của biểu thức
bằng:
Ta có:
Suy ra
Diện tích hình phẳng giới hạn bởi các đường , trục hoành,
và
bằng
Diện tích hình giới hạn là
Nguyên hàm của hàm số là
Ta có: .
Biết F(x) = x2+ 4x + 1 là một nguyên hàm của hàm số y = f(x) . Tính giá trị của hàm số y = f(x) tại x = 3