Cho
và
. Tính
?
Ta có và
. Tính:
Cho
và
. Tính
?
Ta có và
. Tính:
Cho số phức
. Tìm số phức z thỏa mãn
.
Ta có:
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z lần lượt là?
Ta có:
Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.
Cho số phức z thỏa mãn
, gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Cho số phức z thỏa mãn , gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Ta có
Vì nên
Suy ra
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Cho
là hai số phức thỏa mãn phương trình
, biết ![]()
Tính giá trị của biểu thức: ![]()
Cách 1. Ta có:
và
Chú ý:
Tập hợp điểm biểu diễn số phức là đường tròn tâm O bán kính
.

Gọi
Ta có: đều
Mà với M là điểm thỏa
mãn là hình thoi cạnh 1
Cách 2. Đặt , ta có
và
Khi đó:
Sử dụng công thức
Điểm biểu diễn của số phức
là:
Ta có:
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn
và
. Tìm số phần tử của S.
2 || Hai || hai
Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn và
. Tìm số phần tử của S.
2 || Hai || hai
Điều kiện: .
Đặt .
Theo giả thiết .
là đường tròn tâm O(0; 0), bán kính
.
Mặt khác
là đường tròn tâm
, bán kính
.
Để tồn tại duy nhất số phức z thì và
tiếp xúc ngoài hoặc trong.
TH1: và
tiếp xúc ngoài khi và chỉ khi
.
TH2: và
tiếp xúc trong khi và chỉ khi
.
Vậy .
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho số phức z thỏa mãn
. Môđun của z là:
Giả sử: .
Cho số phức
, m nguyên dương. Có bao nhiêu giá trị
để z là số thực?
Ta có:
z là số thực khi và chỉ khi
Vậy có 25 giá trị m thỏa yêu cầu đề bài.
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Gọi (C) là tập hợp các điểm trên mặt phẳng biểu diễn số phức ![]()
thỏa mãn
và N là điểm biểu diễn số phức
. Tìm điểm thuộc (C) sao
cho có độ dài lớn nhất.
Ta có: nằm trên đường tròn (C):
. Tâm I(1; 0)
Do nên có độ dài lớn nhất khi MN là đường kính, hay I(1; 0) là trung điểm của MN. Vậy M(1; 1)
Nhận xét: đây là bài toán tọa độ lớp , khi cho một đường tròn (C) và một điểm N. Tìm điểm M trên (C) sao cho đạt min, max.
Tìm phần thực, phần ảo của số phức z thỏa mãn ![]()
Ta có:
Vậy số phức có phần thực là và phần ảo là 2.
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Phần thực của số phức
là:
Ta có:
Cho hai số phức
thỏa mãn
và
.
Tìm giá trị nhỏ nhất m của biểu thức
?
Vì nên điểm biểu diễn
của
thuộc đường tròn tâm I(-1; 1) bán kính R = 2
Vì nên điểm
(điểm biểu diễn của
) là ảnh của
qua phép quay tâm O, góc quay
=> ngắn nhất khi
ngắn nhất
Ta có:
Vậy:
Do nên điểm biểu diễn của thuộc đường tròn tâm
bán kính R = 2.
Cho số phức z thỏa mãn điều kiện
. Môđun của số phức
có giá trị là
10
Cho số phức z thỏa mãn điều kiện . Môđun của số phức
có giá trị là
10
Ta có:
Cho số phức
, m nguyên dương. Có bao nhiêu giá trị
để z là số thuần ảo?
25|| hai mươi lăm||Hai mươi lăm
Cho số phức , m nguyên dương. Có bao nhiêu giá trị
để z là số thuần ảo?
25|| hai mươi lăm||Hai mươi lăm
Ta có:
z là số thuần ảo khi và chỉ khi
Vậy có 25 giá trị m thỏa yêu cầu đề bài.
Gọi
là bốn nghiệm phức của phương trình
. Tổng
bằng:
Ta có:
Cho số phức
thoả điều kiện
.
Đặt
. Khẳng định nào sau đây đúng?
Ta có:
Nhận xét: câu này đáp án A cũng đúng vì
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Số phức liên hợp của số phức
là
=
= a - bi
Cho hai số thực
và
. Kí hiệu
là hai điểm biểu diễn hai nghiệm phức của phương trình
trong mặt phẳng phức. Tìm điều kiện của b và c để tam giác
là tam giác vuông (O là gốc tọa độ).
Ta có: . Vì
và
là số thực.
. Vậy ta có:
và
.
Ta có:
;
.
Để tam giác OAB là tam giác vuông tại O
.
Số phức nào dưới đây là số thuần ảo?
Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.
Cho số phức z thỏa mãn
. Chọn phát biểu đúng:
Giả sử:
Theo bài ra ta có:
Số phức z thỏa mãn:
là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.
Cho số phức
. Tìm phần thực a và phần ảo b của z.
Ta có
Số phức
có phần thực bằng
Số phức z = a + bi có b được gọi là phần thực.
Số nghiệm của phương trình:
là?
Đặt phương trình đã cho có dang:
+ Với
+ Với
Vậy phương trình đã cho có 4 nghiệm.
Kí hiệu
là nghiệm phức có phần ảo dương của phương trình
. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức
?
Ta có:
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Số phức
là số phức nào sau đây?
Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện
là:
Giả sử:
Theo bài ra ta có: