Đề kiểm tra 45 phút Chương 4 Số phức

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 4. Số phức được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho z1 = 1 + i; z2 = -1 - i. Tìm {z_3} \in \mathbb{C} sao cho các điểm biểu diễn của {z_1};\,\,{z_2};\,\,{z_3} tạo thành tam giác đều.

     Giả sử {z_3} = x + yi

    Để các điểm biểu diễn của {z_1};\,\,{z_2};\,\,{z_3} tạo thành một tam giác đều thì

    \left\{ {\begin{array}{*{20}{c}}  {\left| {{z_1} - {z_2}} ight| = \left| {{z_1} - {z_3}} ight|} \\   {\left| {{z_1} - {z_2}} ight| = \left| {{z_2} - {z_3}} ight|} \end{array}} ight.

    \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\sqrt {4 + 4}  = \sqrt {{{\left( {x - 1} ight)}^2} + {{\left( {y - 1} ight)}^2}} } \\   {\sqrt {4 + 4}  = \sqrt {{{\left( {x + 1} ight)}^2} + {{\left( {y + 1} ight)}^2}} } \end{array}} ight.

    \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{{\left( {x - 1} ight)}^2} + {{\left( {y - 1} ight)}^2} = 8} \\   {x + y = 0} \end{array}} ight.

    \Rightarrow 2{y^2} = 6 \Rightarrow y =  \pm \sqrt 3  \Rightarrow x =  \mp \sqrt 3

    Vậy có hai số phức thoả mãn là: {z_3} = {\text{\{ }}\sqrt 3  - \sqrt 3 i;\,\, - \sqrt 3  + \sqrt 3 i\}

  • Câu 2: Nhận biết

    Số phức có phần thực bằng 3 và phần ảo bằng 4 là

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 3: Nhận biết

    Số phức liên hợp của số phức 3 - 2i là

     \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {3 - 2i}  = 3 - ( - 2i) = 3 + 2i

  • Câu 4: Vận dụng cao

    Cho số phức z thỏa mãn \left| z ight| = 1 , gọi m,M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của P = \left| {{z^5} + {{\overline z }^3} + 4z} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|. Tính \left| {M - mi} ight|

     Ta có P = \left| {{z^5} + {{\overline z }^3} + 4z} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = \left| {{z^4} + {{\overline z }^4} + 4} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = \left| {{{\left( {{z^2} + {{\overline z }^2}} ight)}^2} + 2} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = {\left( {{z^2} + {{\overline z }^2}} ight)^2} + 2 - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = {\left( {\left| {{z^2} + {{\overline z }^2}} ight| - 1} ight)^2} + 1

    Vì \left\{ \begin{array}{l}{z^2} + {\overline z ^2} \in \mathbb{R} \\ - 2 \le {z^2} + {\overline z ^2} \le 2\end{array} ight.  nên {P_{{m{max}}}} = 2; {P_{{m{min}}}} = 1.

    Suy ra  \left| {M - mi} ight| = \sqrt 5

  • Câu 5: Thông hiểu

    Tìm các số thực x, y thoả mãn:

    3x + y + 5xi = 2y – 1 +(x – y)i

    Theo giả thiết: 3x + y + 5xi = 2y – 1 +(x – y)i

    => (3x + y) + (5x)i = (2y – 1) +(x – y)i

    =>\left\{ \begin{gathered}  3x + y = 2y - 1 \hfill \\  5x = x - y \hfill \\ \end{gathered}  ight.

    => \left\{ \begin{gathered}  x =  - \frac{1}{7} \hfill \\  y = \frac{4}{7} \hfill \\ \end{gathered}  ight.

  • Câu 6: Thông hiểu

    Tính tổng tất cả các nghiệm của phương trình sau: (z^2 + z)^2 + 4(z^2 + z) -12 = 0 là?

     Đặt t = z^2 + z, khi đó phương trình đã cho có dạng:

    t^2 + 4t – 12 = 0 \Leftrightarrow\left[ \begin{array}{l}t =  - 6\\t = 2\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}{z^2} + z - 6 = 0\\{z^2} + z - 2 = 0\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}z = \dfrac{{ - 1 + \sqrt {23} i}}{2}\\z = \dfrac{{ - 1 - \sqrt {23} i}}{2}\\z = 1\\z =  - 2\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm có tổng là

    \frac{{ - 1 + \sqrt {23} i}}{2} + \frac{{ - 1 - \sqrt {23} i}}{2} + 1 - 2 =  - 1 + 1 - 2 =  - 2

  • Câu 7: Thông hiểu

    Cho số phức z thỏa mãn điều kiện \left( {2 + i} ight)z + \frac{{1 - i}}{{1 + i}} = 5 - i. Môđun của số phứcw = 1 + 2z + {z^2} có giá trị là

    10

    Đáp án là:

    Cho số phức z thỏa mãn điều kiện \left( {2 + i} ight)z + \frac{{1 - i}}{{1 + i}} = 5 - i. Môđun của số phứcw = 1 + 2z + {z^2} có giá trị là

    10

    Ta có: \left( {2 + i} ight)z + \frac{{1 - i}}{{1 + i}} = 5 - i  \Leftrightarrow \left( {2 + i} ight)z + \frac{{{{\left( {1 - i} ight)}^2}}}{{\left( {1 + i} ight)\left( {1 - i} ight)}} = 5 - i

    \Leftrightarrow \left( {2 + i} ight)z + \frac{{ - 2i}}{2} = 5 - i

    \Leftrightarrow \left( {2 + i} ight)z = 5 \Leftrightarrow z = \frac{5}{{2 + i}} = 2 - i

    \Rightarrow w = 1 + 2z + {z^2} = {\left( {1 + z} ight)^2} = {\left( {3 - i} ight)^2} = 8 - 6i

    \Leftrightarrow \left| w ight| = \sqrt {{8^2} + {{\left( { - 6} ight)}^2}}  = 10

  • Câu 8: Thông hiểu

    Cho số phức z =  - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i. Số phức w = 1 + z + {z^2},\left| w ight| bằng:

     Ta có: \left| w ight| = \left| {1 + z + {z^2}} ight| = \left| {1 - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i - \frac{1}{2} - \frac{{\sqrt 3 }}{2}i} ight| = 0

  • Câu 9: Thông hiểu

    Cho số phức \frac{{3 - i}}{z} + {\left( {2 - i} ight)^3} = 3 - 13i. Số phức \frac{{{{\left( {z + 12i} ight)}^2}}}{i} + {z^2} là số phức nào sau đây?

     Ta có: {\left( {2 - i} ight)^3} = 2 - 11i \Rightarrow z = \frac{{3 - i}}{{1 - 2i}} = 1 + i

    Suy ra  \frac{{{{\left( {z + 12i} ight)}^2}}}{i} + {z^2} = ((1+i) +12i)^2 :i +(1+i)^2

    =(1+13i)^2 :i +(1+i)^2 =26+168i +2i =26+170i.

  • Câu 10: Nhận biết

    Cho số phức {\left( {\overline {2 + i} } ight)^5} - \left( {2 + i} ight).\overline z  =  - 37 - 43i. Khẳng định nào sau đây là khẳng định sai?

     Ta có: {\left( {\overline {2 + i} } ight)^5} =  - 38 - 41i \Rightarrow \overline z  = \frac{{1 - 2i}}{{ - \left( {2 + i} ight)}} = i.

  • Câu 11: Nhận biết

    Xác định phần ảo của số phức z = 18 - 12i.

     Phần ảo của số phức z = 18 - 12i là -12

  • Câu 12: Thông hiểu

    Cho số phức z =  - 6 - 3i. Tìm phần thực và phần ảo của số phức \overline z.

     Ta có \overline z  = \overline { - 6 - 3i}  =  - 6 + 3i nên suy ra phần thực a = -6; phần ảo b = 3.

  • Câu 13: Nhận biết

    Số phức liên hợp của số phức 3 - 4i là:

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {3 - 4i}  = 3 - ( - 4i) = 3 + 4i

  • Câu 14: Vận dụng

    Xét phương trình {z^3} = 1 trên tập số phức. Tập nghiệm của phương trình là:

     Ta có:

    {z^3} = 1 \Leftrightarrow \left( {z - 1} ight)\left( {{z^2} + z + 1} ight) = 0

    \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z^2} + z + 1 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z =  - \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i\end{array} ight.

    Suy ra: S = \left\{ {1; - \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i} ight\}

  • Câu 15: Thông hiểu

    Tìm phần thực, phần ảo của số phức z thỏa mãn \left( {\frac{z}{2} - i} ight)\left( {1 - i} ight) = {(1 + i)^{3979}}

     Ta có: \left( {\frac{z}{2} - i} ight)\left( {1 - i} ight) = {(1 + i)^{3979}} \Leftrightarrow \frac{z}{2} - i = \frac{{{{(1 + i)}^{3980}}}}{2}

    \Leftrightarrow \frac{z}{2} - i = {2^{1989}}.{i^{1990}} \Leftrightarrow z =  - {2^{1990}} + 2i

     Vậy số phức có phần thực là -2^{1990} và phần ảo là 2.

  • Câu 16: Vận dụng cao

    Cho số phức z thỏa mãn \left| {i.z + 3} ight| = \sqrt {\frac{5}{2}}. Giá trị lớn nhất của biểu thức P = \left| {2{\text{z}} + 1 - 4i} ight| + \left| {z - 1 - 5i} ight| là:

    Ta gọi M(x;y) là điểm biểu diễn số phức z

    \left| {i.z + 3} ight| = \sqrt {\frac{5}{2}}  \Leftrightarrow {x^2} + {\left( {y - 3} ight)^2} = \frac{5}{2}

    => M(x;y) \in C\left( {I(0;3);R = \sqrt {\frac{5}{2}} } ight)

    Khi đó:

    \begin{matrix}  P = \left| {2{\text{z}} + 1 - 4i} ight| + \left| {z - 1 - 5i} ight| \hfill \\   = 2\left| {{\text{z}} + \frac{1}{2} - 2i} ight| + \left| {z - 1 - 5i} ight| \hfill \\   = 2\left| {\overrightarrow {MA} } ight| + \left| {\overrightarrow {MB} } ight| \hfill \\ \end{matrix}

    với A\left( { - \frac{1}{2};2} ight);B\left( {1;5} ight)

    Ta có: \overrightarrow {IA}  = \left( { - \frac{1}{2}; - 1} ight),;\overrightarrow {IB}  = \left( {1;2} ight) suy ra \overrightarrow {IB}  =  - 2.\overrightarrow {IA}.

    Theo định lý Stewart ta có:

    \sqrt 5 M{A^2} + \frac{{\sqrt 5 }}{2}M{B^2} = \frac{{3\sqrt 5 }}{2}\left( {M{I^2} + \frac{{\sqrt 5 }}{2}.\sqrt 5 } ight)

    \Rightarrow 2M{A^2} + M{B^2} = 15

    (Hoặc có thể chứng minh theo phương pháp véc tơ

    \overrightarrow {MI}  = \overrightarrow {MA}  + \overrightarrow {AB}  = \overrightarrow {MA}  + \frac{1}{3}\overrightarrow {AB}  = \overrightarrow {MA}  + \frac{1}{3}\left( {\overrightarrow {MB}  - \overrightarrow {MA} } ight) = \frac{2}{3}\overrightarrow {MA}  + \frac{1}{3}\overrightarrow {MB}

    Suy ra:

    \begin{matrix}  M{I^2} = \dfrac{4}{9}M{A^2} + \dfrac{1}{9}M{B^2} + \dfrac{4}{9}MA.MB.cos\left( {\overrightarrow {MA} ,\overrightarrow {MB} } ight) \hfill \\   = \dfrac{4}{9}M{A^2} + \dfrac{1}{9}M{B^2} + \dfrac{4}{9}MA.MB.cos\widehat {AMB} \hfill \\   = \dfrac{4}{9}M{A^2} + \dfrac{1}{9}M{B^2} + \dfrac{4}{9}MA.MB\left( {\dfrac{{M{A^2} + M{B^2} - A{B^2}}}{{2.MA.MB}}} ight) \hfill \\   = \dfrac{2}{3}M{A^2} + \dfrac{1}{3}M{B^2} - \dfrac{2}{9}A{B^2} \hfill \\   \Rightarrow 2M{A^2} + M{B^2} = 3M{I^2} + \dfrac{2}{3}A{B^2} = 15 \hfill \\ \end{matrix}

    Khi đó suy ra:

    P = 2\left| {\overrightarrow {MA} } ight| + \left| {\overrightarrow {MB} } ight|

    = \left( {\sqrt {2.} \sqrt 2 .MA + MB} ight) \leqslant \sqrt {\left( {{{\sqrt 2 }^2} + {1^2}} ight)\left( {2M{A^2} + M{B^2}} ight)}  = \sqrt {45}  = 3\sqrt 5 .

  • Câu 17: Vận dụng cao

    Gọi (C) là tập hợp các điểm trên mặt phẳng biểu diễn số phức z = x - 1 + yi;\left( {x,y \in \mathbb{R}} ight)

    thỏa mãn \left| z ight| = 1 và N là điểm biểu diễn số phức {z_0} = 5 + 3i. M là một điểm thuộc (C)

    sao cho MN có độ dài bé nhất. Khi đó độ dài MN bé nhất bằng

    Ta có: M(x; y) nằm trên đường tròn (C). Tâm I(1; 0)

    Do N(5, 3) nằm ngoài (C) nên MN có độ dài bé nhất khi MN = NI - R = 5 - 1 = 4

  • Câu 18: Nhận biết

    Phương trình {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 có tập nghiệm là:

    Dễ thấy z=-i  là nghiệm của {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0

    Nên {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 \Leftrightarrow \,(z + i)({z^2} + (4 - i)z + 3 - 3i) = 0

    \Leftrightarrow \left[ \begin{array}{l}z + i = 0\\{z^2} + (4 - i)z + 3 - 3i = 0\,\,\,(*)\end{array} ight.

    Giải (*), ta được:

    \Delta  = {(4 - i)^2} - 12 + 12i = 16 - 1 - 8i - 12 + 12i

    = 3 + 4i = 4 + 2.2.i + {i^2} = {(2 + i)^2}

    Vậy có hai căn bậc hai là: 2+i-2-i

    Do đó nghiệm của pt là \left[ \begin{array}{l}z = \dfrac{{ - 4 + i + 2 + i}}{2} =  - 1 + i\\z = \dfrac{{ - 4 + i - 2 - i - 2}}{2} =  - 3\end{array} ight.

    Vậy PT có 3 nghiệm là –i, -3, -1+i.

  • Câu 19: Thông hiểu

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

    Đáp án là:

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

     Ta có: z^3 – 27 = 0 \Leftrightarrow (z – 1) (z^2 + 3z + 9) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\{z^2} + 3z + 9 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z_{2,3}} = \dfrac{{ - 3 \pm 3\sqrt 3 i}}{2}\end{array} ight.

    Vậy phương trình đã cho có 3 nghiệm.

  • Câu 20: Vận dụng

    Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện \left| {zi - \left( {2 + i} ight)} ight| = 2 là:

     Giả sử: z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight)

    Theo bài ra ta có: \left| {zi - \left( {2 + i} ight)} ight| = 2

    \Leftrightarrow \left| {xi - y - 2 - i} ight| = 2

    \Leftrightarrow {\left( {x - 1} ight)^2} + {\left( {y + 2} ight)^2} = 4

  • Câu 21: Nhận biết

    Cho số phức z thỏa mãn: \frac{{z - 1}}{{z - i}} = i. Môđun của số phức w = \left( {2 - i} ight)z - 1 là?

     Ta có:

    \frac{{z - 1}}{{z - i}} = i \Rightarrow z\left( {1 - i} ight) = 2

    \Leftrightarrow z = 1 + i \Rightarrow w = \left( {2 - i} ight)\left( {1 + i} ight) - 1 = 2 + i

    \left| w ight| = \sqrt 5

  • Câu 22: Vận dụng

    Biết z_1z_2 là hai nghiệm phức của phương trình: 2{x^2} + \sqrt 3 x + 3 = 0. Khi đó z_1^2 + z_2^2  bằng:

     Ta có: z_1^2 + z_2^2 = {\left( {{z_1} + {z_2}} ight)^2} - 2{z_1}{z_2}

    Áp dụng hệ thức Viet ta có: \left\{ \begin{array}{l}{z_1} + {z_2} =  - \dfrac{{\sqrt 3 }}{2}\\{z_1}{z_2} = \dfrac{3}{2}\end{array} ight.

    Suy ra ta có:z_1^2 + z_2^2 = {\left( { - \frac{{\sqrt 3 }}{2}} ight)^2} - 2.\frac{3}{2} =  - \frac{9}{4}.

  • Câu 23: Thông hiểu

    Cho số phức z thỏa mãn iz = 2 + i. Khi đó phần thực và phần ảo của z là

     Ta có: z = \frac{{2 + i}}{i} = 1 - 2i

  • Câu 24: Vận dụng

    Cho số phức z thỏa mãn \left( {1 + 3i} ight)z + 2i =  - 4. Điểm nào sau đây là điểm biểu diễn của z trong các điểm M, N, P, Q ở hình bên?

    Ta có: \left( {1 + 3i} ight)z + 2i =  - 4 \Leftrightarrow z = \frac{{ - 4 - 2i}}{{1 + 3i}} =  - 1 + i

  • Câu 25: Thông hiểu

    Cho z = x + yi ;\,\, x, y \in \mathbb{Z} là nghiệm của phương trình sau: z^3=18+26i.

    Tính M=x+2020y

    M=2023 || 2023 || hai nghìn không trăm hai mưới ba

    Đáp án là:

    Cho z = x + yi ;\,\, x, y \in \mathbb{Z} là nghiệm của phương trình sau: z^3=18+26i.

    Tính M=x+2020y

    M=2023 || 2023 || hai nghìn không trăm hai mưới ba

    Ta có: (x + yi)^3 = x^3 – 3xy^2 + (3x^2y – y^3)i = 18 + 26i

    Theo định nghĩa hai số phức bằng nhau, ta được: \left\{ \begin{array}{l}{x^3} - 3x{y^2} = 18\\3{x^2}y - {y^3} = 26\end{array} ight.

    Từ hệ trên, rõ ràng x eq 0y eq 0.

    Đặt y= tx , hệ \Rightarrow 18(3x^2y – y^3) = 26(x^3 – 3xy^2 )

    \Rightarrow 18(3t-t^3 ) = 26(1-3t^2)

    \Leftrightarrow 18t^3 – 78t^2 – 54t+26 = 0

    \Leftrightarrow  ( 3t- 1)(3t^2 – 12t – 13) = 0.

    x, y \in \mathbb{Z} \Rightarrow t \in \mathbb{Q} \Rightarrow t = \frac{1}{3} \Rightarrow x = 3 ; y = 1 \mbox{ hay } z = 3 + i.

    \Rightarrow M= x+2020y=3+2020.1=2023

  • Câu 26: Vận dụng

    Cho số phức w = x + yi;\left( {x,y \in \mathbb{R}} ight) thoả điều kiện \left| {{w^2} + 4} ight| = 2\left| w ight|.

    Đặt P = 8\left( {{x^2} - {y^2}} ight) + 12. Khẳng định nào sau đây đúng?

     Ta có:

    \left| {{w^2} + 4} ight| = 2\left| w ight| \Leftrightarrow \left| {{x^2} - {y^2} + 4 + 2xyi} ight| = 2\left| {x + yi} ight|

    \Leftrightarrow {\left( {{x^2} - {y^2} + 4} ight)^2} + 4{x^2}{y^2} = 4\left( {{x^2} + {y^2}} ight)

    \begin{matrix}   \Leftrightarrow {x^4} + {y^4} + 16 + 2{x^2}{y^2} + 4{x^2} - 12{y^2} = 0 \hfill \\   \Leftrightarrow {x^4} + {y^4} + 2{x^2}{y^2} - 4{x^2} - 4{y^2} + 4 + 8\left( {{x^2} - {y^2}} ight) + 12 = 0 \hfill \\ \end{matrix}

    \begin{matrix}   \Leftrightarrow 8\left( {{x^2} - {y^2}} ight) + 12 =  - \left( {{x^4} + {y^4} + 2{x^2}{y^2} - 4{x^2} - 4{y^2} + 4} ight) \hfill \\   \Leftrightarrow P =  - {\left( {{x^2} + {y^2} - 2} ight)^2} =  - {\left( {{{\left| {\text{w}} ight|}^2} - 2} ight)^2}. \hfill \\ \end{matrix}

    Nhận xét: câu này đáp án A cũng đúng vì \left| {\text{w}} ight| = \left| {\overline {\text{w}} } ight|.

  • Câu 27: Thông hiểu

    Số phức z thỏa mãn z = 1 + 2i + 3{i^2} + 4{i^3} + ... + 18{i^{19}}. Khẳng định nào sau đây là khẳng định đúng?

    Ta có:  z - iz = 1 + i + ... + {i^{19}} - 18{i^{20}} = 1.\frac{{1 - {i^{20}}}}{{1 - i}} - 18{i^{20}} =  - 18

    \Rightarrow z = \frac{{ - 18}}{{1 - i}} =  - 9 - 9i

  • Câu 28: Vận dụng

    Cho hai số phức z, w thỏa mãn \left| {z - 1} ight| = \left| {z + 3 - 2i} ight|; w = z + m + i với m \in \mathbb{R} là tham số. Giá trị của m để ta luôn có \left| w ight| \geqslant 2\sqrt 5 là:

     Đặt z = a + ib,\left( {a,b \in \mathbb{R}} ight) có biểu diễn hình học là điểm M\left( {x;y} ight)

    Ta có:

    \left| {z - 1} ight| = \left| {z + 3 - 2i} ight|

    \Leftrightarrow \left| {x - 1 + iy} ight| = \left| {x + 3 + \left( {y - 2} ight)i} ight|

    \Leftrightarrow \sqrt {{{\left( {x - 1} ight)}^2} + {y^2}}  = \sqrt {{{\left( {x + 3} ight)}^2} + {{\left( {y - 2} ight)}^2}}

    \Leftrightarrow  - 2x + 1 = 6x + 9 - 4y + 4 \Leftrightarrow 2x - y + 3 = 0

    Suy ra biểu diễn của số phức là đường thẳng \Delta :2x - y + 3 = 0

    Ta xét: \left| \omega  ight| \geqslant 2\sqrt 5  \Leftrightarrow \left| {z + m + i} ight| \geqslant 2\sqrt 5  \Leftrightarrow \left| {x + m +  + \left( {y + 1} ight)i} ight| \geqslant 2\sqrt 5

    với I\left( { - m; - 1} ight).

    Mà ta có MI \geqslant d\left( {I,\Delta } ight)

    Nên MI \geqslant 2\sqrt 5  \Leftrightarrow d\left( {I,\Delta } ight) \geqslant 2\sqrt 5  \Leftrightarrow \frac{{\left| { - 2m + 4} ight|}}{{\sqrt 5 }} \geqslant 2\sqrt 5  \Leftrightarrow \left| { - 2m + 4} ight| \geqslant 10

    \Leftrightarrow \left[ \begin{gathered}   - 2m + 4 \geqslant 10 \hfill \\   - 2m + 4 \leqslant  - 10 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  m \leqslant  - 3 \hfill \\  m \geqslant 7 \hfill \\ \end{gathered}  ight.

  • Câu 29: Thông hiểu

    Số nghiệm của phương trình: (z^2 + 3z +6)^2 + 2z(z^2 + 3z +6) – 3z^2 = 0 là?

     Đặt t = z^2 + 3z +6 phương trình đã cho có dang:

    t^2 +2zt – 3z^2 = 0 \Leftrightarrow (t – z)(t+3z) = 0 \Leftrightarrow\left[ \begin{array}{l}t = z\\t =  - 3z\end{array} ight.

    + Với t = z \Leftrightarrow z^2 + 3z +6 –z = 0  \Leftrightarrow  z^2 + 2z + 6 = 0  \Leftrightarrow\left[ \begin{array}{l}z =  - 1 + \sqrt 5 i\\z =  - 1 - \sqrt 5 i\end{array} ight.

    + Với t = -3z \Leftrightarrow  z^2 + 3z +6 +3z = 0 \Leftrightarrow z^2 + 6z + 6 = 0 \Leftrightarrow\left[ \begin{array}{l}z =  - 3 + \sqrt 3 \\z =  - 3 - \sqrt 3 \end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm.

  • Câu 30: Thông hiểu

    Tìm nghiệm của phương trình sau trên tập số phức \mathbb C: {z^4} - {z^3} + \frac{{{z^2}}}{2} + z + 1 = 0 (1)

    Kiểm tra nghiệm z=0 ta dễ dàng nhận xét z=0 không là nghiệm của phương trình đã cho vậy z eq 0.

    Chia hai vế PT (1) cho z2 ta được : ({z^2} + \frac{1}{{{z^2}}}) - (z - \frac{1}{z}) + \frac{1}{2} = 0 (2)

    Đặt t= z - \frac{1}{z} .  Khi đó {t^2} = {z^2} + \frac{1}{{{z^2}}} - 2 \Leftrightarrow {z^2} + \frac{1}{{{z^2}}} = {t^2} + 2

    Phương trình (2) có dạng :t^2-t+\frac{5}{2} = 0 (3)

    \Delta  = 1 - 4.\frac{5}{2} =  - 9 = 9{i^2}

    Vậy PT (3) có 2 nghiệm:    t=\frac{{1 + 3i}}{2};t=\frac{{1 - 3i}}{2} 

    Với  t=\frac{{1 + 3i}}{2},  ta có z - \frac{1}{z} = \frac{{1 + 3i}}{2} \Leftrightarrow 2{z^2} - (1 + 3i)z - 2 = 0(4)

    \Delta  = {(1 + 3i)^2} + 16 = 8 + 6i = 9 + 6i + {i^2} = {(3 + i)^2}

    Vậy PT(4) có 2 nghiệm :

    z=\frac{{(1 + 3i) + (3 + i)}}{4} = 1 + iz= \frac{{(1 + 3i) - (3 + i)}}{4} = \frac{{i - 1}}{2}

    Do đó PT đã cho có 4 nghiệm : z=1+i; z=1-iz=\frac{{i - 1}}{2}; z=\frac{{-i - 1}}{2}

  • Câu 31: Vận dụng

    Nếu số phức z e 1 thỏa mãn \left| z ight| = 1 thì phần thực của \frac{1}{{1 - z}} bằng:

    Gọi z = a + bi,\left( {a,b \in \mathbb{R}} ight),z e 1

    Do \left| z ight| = 1 \Rightarrow {a^2} + {b^2} = 1

    Ta có

    \frac{1}{{1 - z}} = \frac{1}{{\left( {1 - a} ight) - bi}} = \frac{{\left( {1 - a} ight) + bi}}{{{{\left( {1 - a} ight)}^2} + {b^2}}}

    = \frac{{1 - a}}{{2 - 2a}} + \frac{b}{{2 - 2a}}i = \frac{1}{2} + \frac{b}{{2 - 2a}}i

    Vậy phần thực của số phức \frac{1}{{1 - z}}\frac{1}{2}

  • Câu 32: Vận dụng cao

    Cho số phức z thỏa mãn \left| {z + 1} ight| = \left| {z - 2i + 3} ight|. Biết tập các điểm biểu thị cho z là một đường thẳng. Phương trình đường thẳng đó là:

     Giả sử: z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight)

    Theo bài ra ta có:

    \begin{matrix}  \left| {z + 1} ight| = \left| {z - 2i + 3} ight| \hfill \\   \Leftrightarrow {\left( {x + 1} ight)^2} + {y^2} = {\left( {x + 3} ight)^2} + {\left( {y - 2} ight)^2} \hfill \\   \Leftrightarrow x - y + 3 = 0 \hfill \\ \end{matrix}

  • Câu 33: Nhận biết

    Số phức nào dưới đây là số thuần ảo?

     Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.

  • Câu 34: Thông hiểu

    Cho hai số phức {z_1} = 1 - i;{z_2} = 3 + 2i. Phần thực và phần ảo của số phức {z_1},{z_2} tương ứng bằng:

     Ta có: {z_1}.{z_2} = \left( {1 - i} ight)\left( {3 + 2i} ight) = 5 - i

  • Câu 35: Thông hiểu

    Có bao nhiêu số phức z thỏa mãn \left| {\frac{{z + 1}}{{i - z}}} ight| = 1\left| {\frac{{z - i}}{{2 + z}}} ight| = 1

    Ta có:  \left\{ \begin{array}{l}\left| {\dfrac{{z + 1}}{{i - z}}} ight| = 1\\\left| {\dfrac{{z - i}}{{2 + z}}} ight| = 1\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}\left| {z + 1} ight| = \left| {i - z} ight|\\\left| {z - i} ight| = \left| {2 + z} ight|\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}x =  - y\\4x + 2y =  - 3\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{3}{2}\\y = \frac{3}{2}\end{array} ight.

    \Rightarrow z =  - \frac{3}{2} + \frac{3}{2}i

  • Câu 36: Nhận biết

    Cho số phức z = {\left( {2i} ight)^4} - \frac{{{{\left( {1 + i} ight)}^6}}}{{5i}}. Số phức \overline {5z + 3i} là số phức nào sau đây?

     Ta tính được z = \frac{{88}}{5} \Rightarrow 5z + 3i = 88 + 3i

  • Câu 37: Nhận biết

    Nghiệm của phương trình: {z^2} - (3i + 8)z + 11\,.i + 13 = 0  là 

     Ta có: \Delta  = {(3i + 8)^2} - 4(11.i + 13) = 4i + 3.

    Giả sử m+ni \,\,(m; n \in \mathbb R)  là căn bậc hai của \triangle.

    Ta có: {(m + ni)^2} = 5 + 12i

    \Leftrightarrow {m^2} + 2mni + {n^2}{i^2} = 3 + 4i \Leftrightarrow {m^2} + 2mni - {n^2} = 3 + 4i

    \Leftrightarrow \left\{ \begin{array}{l}{m^2} - {n^2} = 3\\2mn = 4\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - {n^2} = 3 \,\,  (1)\ = \dfrac{2}{m}\,\,\,\, \,\,\,\,  (2)\end{array} ight.

    Thay (2) vào (1) ta có:

    {m^2} - {\left( {\frac{2}{m}} ight)^2} = 3 \Leftrightarrow {m^4} - 3{m^2} - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}{m^2} = 4\,\,\,\,\,\,\,\,(TM)\\{m^2} =  - 1\,\,\,\,\,\,\,(L{m{)}}\end{array} ight.

    \Rightarrow \left[ \begin{array}{l}m = 2 \Rightarrow n = 1\\m =  - 2 \Rightarrow n =  - 1\end{array} ight.

    Vậy \triangle có hai căn bậc hai là  2+i  và -2-i.

    Do đó nghiệm của phương trình là:

    \left[ \begin{array}{l}z = \dfrac{{3i + 8 + i + 2}}{2} = 2i + 5\\z = \dfrac{{3i + 8 - i - 2}}{2} = i + 3\end{array} ight.

  • Câu 38: Thông hiểu

    Số phức liên hợp của số phức 2022i - 2023

     \overline z = \overline {a + bi} = a - bi

    \Rightarrow \overline z  = \overline {2022i - 2023}  = \overline { - 2023 + 2022i}  =  - 2023 - 2022i

  • Câu 39: Thông hiểu

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Đáp án là:

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Do tổng tất cả các hệ số của phương trình z^4 – 4z^3 +7z^2 – 16z + 12 = 0 bằng 0 nên z^4 – 4z^3 +7z^2 – 16z + 12 = 0 có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0\Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.

  • Câu 40: Vận dụng cao

    Cho số phức thỏa mãn điều kiện \left| {{z^2} - 2z + 5} ight| = \left| {(z - 1 + 2i)(z + 3i - 1)} ight|.

    Tìm giá trị nhỏ nhất của \left| {z - 2 + 2i} ight|

    1 || Một || một

    Đáp án là:

    Cho số phức thỏa mãn điều kiện \left| {{z^2} - 2z + 5} ight| = \left| {(z - 1 + 2i)(z + 3i - 1)} ight|.

    Tìm giá trị nhỏ nhất của \left| {z - 2 + 2i} ight|

    1 || Một || một

     Đặt {m{w}} = z - 2 + 2i

    Ta có = \left| {(z - 1 + 2i)(z + 3i - 1)} ight|

    \Leftrightarrow \left| {(z - 1 + 2i)} ight|.\left| {(z - 1 - 2i)} ight|=\left| {(z - 1 + 2i)} ight|.\left| {(z + 3i - 1)} ight|

    \Leftrightarrow \left[ \begin{array}{l}z - 1 + 2i = 0\\\left| {z - 1 - 2i} ight| = \left| {z + 3i - 1} ight|\end{array} ight..

    TH1: z = 1 - 2i \Rightarrow {m{w}} =  - 1 \Rightarrow \left| {m{w}} ight| = 1  (1)

    TH2: \left| {z - 1 - 2i} ight| = \left| {z + 3i - 1} ight|.

    Đặt z=a+bi; a, b \in \mathbb R.

    \Rightarrow {(a - 1)^2} + {(b - 2)^2} = {(a - 1)^2} + {(b + 3)^2}\Leftrightarrow b = \frac{{ - 1}}{2}.

    \Rightarrow z = a - \frac{1}{2}i  \Rightarrow \left| {m{w}} ight| = \sqrt {{{(a - 2)}^2} + \frac{9}{4}}  \ge \frac{3}{2}    (2)

    Từ (1) và (2) , suy ra \min |w| = 1.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Số phức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo