Trong các số phức z thỏa mãn điều kiện
. Số phức z có mô đun bé nhất bằng
Đặt
Khi đó
Số phức có mô đun nhỏ nhất bằng khoảng cách từ đến đường thẳng .
Trong các số phức z thỏa mãn điều kiện
. Số phức z có mô đun bé nhất bằng
Đặt
Khi đó
Số phức có mô đun nhỏ nhất bằng khoảng cách từ đến đường thẳng .
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Cho số phức z thỏa mãn
. Tìm giá trị lớn nhất của biểu thức
.
Gọi .
Ta có:
.
Ta có:
Xét hàm số
.
Hàm số liên tục trên và với
ta có:
Ta có:
Giả sử
là điểm trên mặt phẳng phức biểu diễn số phức z. Tập hợp các điểm
thỏa mãn điều kiện
là một đường tròn.
Giả sử:
Theo bài ra ta có:
Cho số phức z thỏa mãn
. Điểm nào sau đây là điểm biểu diễn của z trong các điểm M, N, P, Q ở hình bên?
Ta có:
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Cho số phức
. Khẳng định nào sau đây là khẳng định sai?
Ta có: .
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Tìm các số thực x, y thoả mãn:
![]()
Theo giả thiết:
=>
=>
Giá trị của b và c để phương trình
nhận
làm nghiệm là?
Do là nghiệm của phương trình đã cho nên:
Số phức z thỏa mãn:
là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z lần lượt là?
Ta có:
Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Kí hiệu
là nghiệm phức có phần ảo dương của phương trình
. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức
?
Ta có:
Cho số phức z thỏa mãn
. Môđun của số phức
là:
Ta có:
Số phức
bằng:
Ta có:
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Cho số phức
thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Cho số phức thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Ta có:
Suy ra .
Nghiệm của phương trình:
là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là:
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Tập hợp các điểm biểu diễn các số phức ![]()
Giả sử:
Ta có:
Cho hai số thực
và
. Kí hiệu
là hai điểm biểu diễn hai nghiệm phức của phương trình
trong mặt phẳng phức. Tìm điều kiện của b và c để tam giác
là tam giác vuông (O là gốc tọa độ).
Ta có: . Vì
và
là số thực.
. Vậy ta có:
và
.
Ta có:
;
.
Để tam giác OAB là tam giác vuông tại O
.
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Cho số phức
. Tìm phần thực a và phần ảo b của z.
Ta có
Số phức z thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Cho số phức z thỏa mãn
. Biết tập các điểm biểu thị cho z là một đường thẳng. Phương trình đường thẳng đó là:
Giả sử:
Theo bài ra ta có:
Số phức nào dưới đây là số thuần ảo?
Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.
Tính số phức sau: z = (1+i)15
Ta có: (1 + i)2 = 1 + 2i – 1 = 2i => (1 + i)14 = (2i)7 = 128.i7 = -128.i
z = (1+i)15 = (1+i)14(1+i) = -128i (1+i) = -128 (-1 + i) = 128 – 128i
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho hai số phức
. Trong mặt phẳng Oxy, gọi các điểm M, N lần lượt là điểm biểu diễn số phức
, gọi G là trọng tâm của tam giác OMN, với O là gốc tọa độ. Hỏi G là điểm biểu diễn của số phức nào sau đây?
Do M, N lần lượt là điểm biểu diễn số phức nên
Khi đó tọa độ điểm G là trọng tâm của tam giác OMN có tọa độ
Vậy G là điểm biểu diễn của số phức:
Cho số phức
, m nguyên dương. Có bao nhiêu giá trị
để z là số thuần ảo?
25|| hai mươi lăm||Hai mươi lăm
Cho số phức , m nguyên dương. Có bao nhiêu giá trị
để z là số thuần ảo?
25|| hai mươi lăm||Hai mươi lăm
Ta có:
z là số thuần ảo khi và chỉ khi
Vậy có 25 giá trị m thỏa yêu cầu đề bài.
Cho số phức z thoả mãn
. Giá trị lớn nhất của biểu thức
bằng?
Đặt .
Từ giả thiết
(1).
Ta có
.
Dễ thấy P lớn nhất khi .
Khi đó
Do nên từ (1) ta có
.
Suy ra
Dấu = xảy ra khi
.
Cho phương trình
có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Cho phương trình có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Ta có:
Suy ra:
Cho số phức z thỏa mãn
. Tìm giá trị lớn nhất của biểu thức ![]()
Gọi
Ta có
Lại có
Mặt khác
Suy ra
Cho số phức
. Tìm số phức z thỏa mãn
.
Ta có:
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có: