Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Tìm số phức z thỏa mãn ![]()
Ta có
Số phức liên hợp của số phức
là
=
= a - bi
Cho hai số phức z, w thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức ![]()
Cách 1 :
Giả sử
(1)
Suy ra x + y = 0
Từ (1) ta có I(3; 2), bán kính r = 1. Gọi H là hình chiếu của I trên .
Đường thẳng HI có PTTS:
Vậy
Cách 2 :
điều này cho thấy M(z) đang nằm trên hình tròn tâm I(3; 2) bán kính bằng 1.
điều này cho thấy N(w) đang thuộc nửa mặt phẳng tạo bởi đường thẳng
là trung trực của đoạn AB với
(Minh hoạ như hình vẽ)

Cho số phức
thoả mãn
là số thực và
với
. Gọi
là một giá trị của
để có đúng một số phức thoả mãn bài toán. Khi đó:
Giả sử .
Đặt:
.
là số thực nên:
.
Mặt khác:
Thay (1) vào (2) được:
Để có đúng một số phức thoả mãn bài toán thì PT (3) phải có nghiệm duy nhất .
(Vì là mô-đun).
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Cho z1 = 1 + i; z2 = -1 - i. Tìm
sao cho các điểm biểu diễn của
tạo thành tam giác đều.
Giả sử
Để các điểm biểu diễn của tạo thành một tam giác đều thì
Vậy có hai số phức thoả mãn là:
Biết
và
là ba nghiệm của phương trình
,
trong đó
là nghiệm có phần ảo dương. Phần ảo của số phức
bằng:
Xét phương trình là phương trình bậc ba với hệ số thực nên luôn có một nghiệm thực là
.
Do đó phương trình tương đương với:
.
Nên là hai nghiệm phức của phương trình bậc hai với hệ số thực (1).
Suy ra .
Khi đó : .
Vậy phần ảo của là
.
Cho phương trình
có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Cho phương trình có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Ta có:
Suy ra:
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Cho số phức z thỏa mãn
. Tìm
.
Gọi , với
.
Theo giả thiết ta có suy ra
và
,
.
Ta có
Xét hàm số trên
.
Ta có .
Ta có .
Vậy .
Do đó khi
và
.
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện
là:
Giả sử:
Theo bài ra ta có:
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Gọi
và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Gọi và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Ta có .
Vậy phương trình có hai nghiệm phức lần lượt là:
.
Do đó .
Tìm số phức
trong phương trình sau: ![]()
Ta có
Số phức nào dưới đây là số thuần ảo?
Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Tập hợp các điểm biểu diễn các số phức z thỏa mãn phần thực của
bằng 0 là đường tròn tâm I, bán kính R (trừ một điểm):
Giả sử:
Theo bài ra ta có:
Vậy biểu diễn hình học của số phức z là:
Cho số phức z thỏa mãn điều kiện
. Môđun của số phức
có giá trị là
10
Cho số phức z thỏa mãn điều kiện . Môđun của số phức
có giá trị là
10
Ta có:
Cho các số phức
. Khẳng định nào trong các khẳng định sau là khẳng định đúng?
![]()
![]()
![]()
Áp dụng tính chất số phức, ta có:
- Môđun của 1 thương hai số phức thì bằng thương của từng môđun
- Môđun của 1 tích hai số phức thì bằng tích của từng môđun
Vậy khẳng địn (I) và (II) là đúng.
Số nghiệm của phương trình:
là?
Đặt phương trình đã cho có dang:
+ Với
+ Với
Vậy phương trình đã cho có 4 nghiệm.
Cho biểu thức
với
. Biểu thức M có giá tri là?
Ta có: .
Khi đó:
.
Cho hai số phức
thỏa mãn
. Tìm giá trị nhỏ nhất của
.
Gọi
Khi đó
Tập hợp điểm biểu diễn là đường tròn tâm
Cũng theo giả thiết, ta có:
Tập hợp điểm biểu diễn là đường thẳng
Cho
. Giá trị của x và y bằng:
Ta có:
Tìm các căn bậc hai của số phức ![]()
Giả sử m + ni (m; n R) là căn bậc hai của z
Ta có:
Thay (2) vào (1) ta có:
Vậy z có hai căn bậc hai là 3+2i và -3-2i.
Cho hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự
, khác 0 và
thỏa mãn đẳng thức
. Hỏi ba điểm O, A, B tạo thành tam giác gì? (O là gốc tọa độ) ? Chọn phương án đúng và đầy đủ nhất.
Hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự .
Theo giả thiết suy ra: và
.
Ta có:
.
Xét
.
Vậy hay tam giác
là tam giác đều.
Cho số phức z thỏa mãn
. Biết tập các điểm biểu thị cho z là một đường thẳng. Phương trình đường thẳng đó là:
Giả sử:
Theo bài ra ta có:
PT sau có số nghiệm là : ![]()
3 || ba || Ba
PT sau có số nghiệm là :
3 || ba || Ba
Ta có:
Vậy phương trình đã cho có 3 nghiệm.
Gọi
là số phức thoả mãn
.
Giá trị của biểu thức
là?
30 || Ba mươi || ba mươi
Gọi là số phức thoả mãn
.
Giá trị của biểu thức là?
30 || Ba mươi || ba mươi
Dễ thấy rằng z=0 không thoả mãn .
Do đó ta có
Ta cũng có
và
Vậy .
Cho hai số phức
và
. Tìm phần ảo b của số phức
.
Ta có:
Cho số phức
. Tìm số phức z thỏa mãn
.
Ta có:
Có bao nhiêu số phức z thỏa mãn
và ![]()
Ta có:
Số phức z thỏa mãn:
là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.
Cho số phức
. Số phức đối của z có điểm biểu diễn là:
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Cho hai số phức
. Môđun của số phức
là:
Ta có: