Đề kiểm tra 45 phút Chương 4 Số phức

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 4. Số phức được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho số phức z thỏa mãn: \frac{{z - 1}}{{z - i}} = i. Môđun của số phức w = \left( {2 - i} ight)z - 1 là?

     Ta có:

    \frac{{z - 1}}{{z - i}} = i \Rightarrow z\left( {1 - i} ight) = 2

    \Leftrightarrow z = 1 + i \Rightarrow w = \left( {2 - i} ight)\left( {1 + i} ight) - 1 = 2 + i

    \left| w ight| = \sqrt 5

  • Câu 2: Thông hiểu

    Cho số phức z thỏa mãn điều kiện \left( {2 + i} ight)z + \frac{{1 - i}}{{1 + i}} = 5 - i. Môđun của số phứcw = 1 + 2z + {z^2} có giá trị là

    10

    Đáp án là:

    Cho số phức z thỏa mãn điều kiện \left( {2 + i} ight)z + \frac{{1 - i}}{{1 + i}} = 5 - i. Môđun của số phứcw = 1 + 2z + {z^2} có giá trị là

    10

    Ta có: \left( {2 + i} ight)z + \frac{{1 - i}}{{1 + i}} = 5 - i  \Leftrightarrow \left( {2 + i} ight)z + \frac{{{{\left( {1 - i} ight)}^2}}}{{\left( {1 + i} ight)\left( {1 - i} ight)}} = 5 - i

    \Leftrightarrow \left( {2 + i} ight)z + \frac{{ - 2i}}{2} = 5 - i

    \Leftrightarrow \left( {2 + i} ight)z = 5 \Leftrightarrow z = \frac{5}{{2 + i}} = 2 - i

    \Rightarrow w = 1 + 2z + {z^2} = {\left( {1 + z} ight)^2} = {\left( {3 - i} ight)^2} = 8 - 6i

    \Leftrightarrow \left| w ight| = \sqrt {{8^2} + {{\left( { - 6} ight)}^2}}  = 10

  • Câu 3: Thông hiểu

    Tìm các căn bậc hai của số phức z = 5 + 12i

     Giả sử m + ni (m; n \in R) là căn bậc hai của z

    Ta có: {(m + ni)^2} = 5 + 12i

    \Leftrightarrow {m^2} + 2mni + {n^2}{i^2} = 5 + 12i \Leftrightarrow {m^2} + 2mni - {n^2} = 5 + 12i

    \Leftrightarrow \left\{ \begin{gathered}  {m^2} - {n^2} = 5 \hfill \\  2mn = 12 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  {m^2} - {n^2} = 5(1) \hfill \\  m = \frac{6}{n}(2) \hfill \\ \end{gathered}  ight.

    Thay (2) vào (1) ta có: {\left( {\frac{6}{n}} ight)^2} - {n^2} = 5 \Leftrightarrow 36 - {n^4} = 5{n^2}

    \Leftrightarrow {n^4} + 5{n^2} - 36 = 0 \Leftrightarrow {n^2} = 4;{n^2} =  - 9(loai)

    \left[ \begin{gathered}  n = 2 \Rightarrow m = 3 \hfill \\  n =  - 2 \Rightarrow m =  - 3 \hfill \\ \end{gathered}  ight.

    Vậy z có hai căn bậc hai là 3+2i và -3-2i.

  • Câu 4: Nhận biết

    Phương trình nào dưới đây nhận hai số phức 1 + \sqrt 2 i  và 1 - \sqrt 2 i là nghiệm ?

     Ta có \left( {1 + \sqrt 2 i} ight) + \left( {1 - \sqrt 2 i} ight) = 2 =\frac{-b}{a} và  \left( {1 + \sqrt 2 i} ight) . \left( {1 - \sqrt 2 i} ight) = 3 =\frac c a.

    Suy ra 1 \pm  \sqrt 2 i là nghiệm của phương trình {z^2} - 2z + 3 = 0.

  • Câu 5: Thông hiểu

    Cho z = x + yi ;\,\, x, y \in \mathbb{Z} là nghiệm của phương trình sau: z^3=18+26i.

    Tính M=x+2020y

    M=2023 || 2023 || hai nghìn không trăm hai mưới ba

    Đáp án là:

    Cho z = x + yi ;\,\, x, y \in \mathbb{Z} là nghiệm của phương trình sau: z^3=18+26i.

    Tính M=x+2020y

    M=2023 || 2023 || hai nghìn không trăm hai mưới ba

    Ta có: (x + yi)^3 = x^3 – 3xy^2 + (3x^2y – y^3)i = 18 + 26i

    Theo định nghĩa hai số phức bằng nhau, ta được: \left\{ \begin{array}{l}{x^3} - 3x{y^2} = 18\\3{x^2}y - {y^3} = 26\end{array} ight.

    Từ hệ trên, rõ ràng x eq 0y eq 0.

    Đặt y= tx , hệ \Rightarrow 18(3x^2y – y^3) = 26(x^3 – 3xy^2 )

    \Rightarrow 18(3t-t^3 ) = 26(1-3t^2)

    \Leftrightarrow 18t^3 – 78t^2 – 54t+26 = 0

    \Leftrightarrow  ( 3t- 1)(3t^2 – 12t – 13) = 0.

    x, y \in \mathbb{Z} \Rightarrow t \in \mathbb{Q} \Rightarrow t = \frac{1}{3} \Rightarrow x = 3 ; y = 1 \mbox{ hay } z = 3 + i.

    \Rightarrow M= x+2020y=3+2020.1=2023

  • Câu 6: Vận dụng

    Tập hợp các điểm biểu diễn các số phức z thỏa mãn phần thực của \frac{{z - 1}}{{z - i}} bằng 0 là đường tròn tâm I, bán kính R (trừ một điểm):

    Giả sử: z = x + yi{\text{ }}\left( {x,y e 0} ight)

    Theo bài ra ta có:

    \frac{{z - 1}}{{z - i}} = \frac{{x + yi - 1}}{{x + yi - i}} = \frac{{x + yi - 1}}{{x + i\left( {y - 1} ight)}} = \frac{{\left( {x + yi - 1} ight)\left( {x - i\left( {y - 1} ight)} ight)}}{{{x^2} + {{\left( {y - 1} ight)}^2}}}

    \Rightarrow \frac{{{x^2} - x + y\left( {y - 1} ight)}}{{{x^2} + {{\left( {y - 1} ight)}^2}}} = 0

    Vậy biểu diễn hình học của số phức z là: {\left( {x - \frac{1}{2}} ight)^2} + {\left( {y - \frac{1}{2}} ight)^2} = \frac{1}{2}

  • Câu 7: Vận dụng

    Gọi {z_1},{z_2},{z_3},{z_4} là bốn nghiệm phức của phương trình 2{z^4} - 3{z^2} - 2 = 0. Tổng T = \left| {{z_1}} ight| + \left| {{z_2}} ight| + \left| {{z_3}} ight| + \left| {{z_4}} ight|  bằng:

     Ta có:  2{z^4} - 3{z^2} - 2 = 0 \Leftrightarrow \left( {2{z^2} + 1} ight)\left( {{z^2} - 2} ight) = 0

    \Leftrightarrow \left( {z + \frac{{\sqrt 2 }}{2}i} ight)\left( {z - \frac{{\sqrt 2 }}{2}i} ight)\left( {z - \sqrt 2 } ight)\left( {z + \sqrt 2 } ight) = 0

    \Leftrightarrow \left[ \begin{array}{l}{z_1} =  - \dfrac{{\sqrt 2 }}{2}i\\{z_2} = \dfrac{{\sqrt 2 }}{2}i\\{z_3} = \sqrt 2 \\{z_4} =  - \sqrt 2 \end{array} ight.

    T = \left| {{z_1}} ight| + \left| {{z_2}} ight| + \left| {{z_3}} ight| + \left| {{z_4}} ight| = 3\sqrt 2

  • Câu 8: Thông hiểu

    Cho số phức \frac{{3 - i}}{z} + {\left( {2 - i} ight)^3} = 3 - 13i. Số phức \frac{{{{\left( {z + 12i} ight)}^2}}}{i} + {z^2} là số phức nào sau đây?

     Ta có: {\left( {2 - i} ight)^3} = 2 - 11i \Rightarrow z = \frac{{3 - i}}{{1 - 2i}} = 1 + i

    Suy ra  \frac{{{{\left( {z + 12i} ight)}^2}}}{i} + {z^2} = ((1+i) +12i)^2 :i +(1+i)^2

    =(1+13i)^2 :i +(1+i)^2 =26+168i +2i =26+170i.

  • Câu 9: Thông hiểu

    Số nghiệm của phương trình: (z^2 + 3z +6)^2 + 2z(z^2 + 3z +6) – 3z^2 = 0 là?

     Đặt t = z^2 + 3z +6 phương trình đã cho có dang:

    t^2 +2zt – 3z^2 = 0 \Leftrightarrow (t – z)(t+3z) = 0 \Leftrightarrow\left[ \begin{array}{l}t = z\\t =  - 3z\end{array} ight.

    + Với t = z \Leftrightarrow z^2 + 3z +6 –z = 0  \Leftrightarrow  z^2 + 2z + 6 = 0  \Leftrightarrow\left[ \begin{array}{l}z =  - 1 + \sqrt 5 i\\z =  - 1 - \sqrt 5 i\end{array} ight.

    + Với t = -3z \Leftrightarrow  z^2 + 3z +6 +3z = 0 \Leftrightarrow z^2 + 6z + 6 = 0 \Leftrightarrow\left[ \begin{array}{l}z =  - 3 + \sqrt 3 \\z =  - 3 - \sqrt 3 \end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm.

  • Câu 10: Nhận biết

    Cho số phức z = 1 - i + {i^3}. Tìm phần thực a và phần ảo b của z.

     Ta có z = 1 - i + {i^3} = 1 - i - i = 1 - 2i \Rightarrow a = 1,b =  - 2

  • Câu 11: Vận dụng cao

    Gọi (C) là tập hợp các điểm trên mặt phẳng biểu diễn số phức z = x - 1 + yi;\left( {x,y \in \mathbb{R}} ight)

    thỏa mãn \left| z ight| = 1 và N là điểm biểu diễn số phức {z_0} = 5 + 3i. M là một điểm thuộc (C)

    sao cho MN có độ dài bé nhất. Khi đó độ dài MN bé nhất bằng

    Ta có: M(x; y) nằm trên đường tròn (C). Tâm I(1; 0)

    Do N(5, 3) nằm ngoài (C) nên MN có độ dài bé nhất khi MN = NI - R = 5 - 1 = 4

  • Câu 12: Thông hiểu

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Đáp án là:

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Do tổng tất cả các hệ số của phương trình z^4 – 4z^3 +7z^2 – 16z + 12 = 0 bằng 0 nên z^4 – 4z^3 +7z^2 – 16z + 12 = 0 có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0\Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.

  • Câu 13: Thông hiểu

    Số phức z thỏa mãn z = 1 + 2i + 3{i^2} + 4{i^3} + ... + 18{i^{19}}. Khẳng định nào sau đây là khẳng định đúng?

    Ta có:  z - iz = 1 + i + ... + {i^{19}} - 18{i^{20}} = 1.\frac{{1 - {i^{20}}}}{{1 - i}} - 18{i^{20}} =  - 18

    \Rightarrow z = \frac{{ - 18}}{{1 - i}} =  - 9 - 9i

  • Câu 14: Thông hiểu

    Phần thực của số phức z = 5 + 2i - {\left( {1 + i} ight)^3} là:

    Ta có:

    z = 5 + 2i - {\left( {1 + i} ight)^3} = 5 + 2i + 2 - 2i = 7

  • Câu 15: Vận dụng

    Cho hai số thực bc (c>0). Kí hiệu A , B là hai điểm biểu diễn hai nghiệm phức của phương trình {z^2} + 2bz + c = 0 trong mặt phẳng phức. Tìm điều kiện của b và c để tam giác OAB là tam giác vuông (O là gốc tọa độ).

     Ta có: {z^2} + 2bz + c = 0 . Vì {z_1} + {z_2} =  - 2b{z_1}{z_2} = c là số thực.

    \Rightarrow {z_2} = \overline {{z_1}} \Rightarrow \left| {{z_2}} ight| = \left| {\overline {{z_1}} } ight| = \left| {{z_1}} ight|. Vậy ta có: {x_1} = bx_1^2 + y_2^2 = c .

    Ta có: {z_1} = {x_1} + {y_1}i \Rightarrow A\left( {{x_1};{y_1}} ight); {z_1} = {x_2} + {y_2}i \Rightarrow B(x_2;y_2).

    Để tam giác OAB là tam giác vuông tại O =  > \overrightarrow {OA} .\overrightarrow {OB}  = 0

    \Rightarrow {x_1}{x_2} + {y_1}{y_2} = 0\Rightarrow x_1^2-y_1^2=0\Rightarrow x_1^2=y_1^2\Rightarrow c=2b^2.

  • Câu 16: Vận dụng cao

    Biết số phức z = x + yi,\left( {x,y \in \mathbb{R}} ight) thỏa mãn đồng thời hai điều kiện \left| z ight| = \left| {\bar z + 4 - 3i} ight| và biểu thức P = \left| {z + 1 - i} ight| + \left| {z - 2 + 3i} ight| đạt giá trị nhỏ nhất. Tính P = x + 2y?

    Theo giả thiết

    \left| z ight| = \left| {\bar z + 4 - 3i} ight| \Leftrightarrow \left| {x + yi} ight| = \left| {\left( {x + 4} ight) - \left( {y + 3} ight)i} ight|

    \begin{matrix}   \Leftrightarrow \sqrt {{x^2} + {y^2}}  = \sqrt {{{\left( {x + 4} ight)}^2} + {{\left( {y + 3} ight)}^2}}  \hfill \\   \Leftrightarrow {x^2} + {y^2} = {x^2} + 8x + 16 + {y^2} + 6y + 9 \hfill \\   \Leftrightarrow 8x + 6y + 25 = 0 \hfill \\ \end{matrix}

    Ta có P = \sqrt {{{\left( {x + 1} ight)}^2} + {{\left( {y - 1} ight)}^2}}  + \sqrt {{{\left( {x - 2} ight)}^2} + {{\left( {y + 3} ight)}^2}}

    Xét điểm E\left( { - 1;1} ight),F\left( {2; - 3} ight)M\left( {x;y} ight). Khi đó P = ME + MF

    Bài toán trở thành tìm điểm M \in \Delta :8x + 6y + 25 = 0 sao cho ME + MF đạt giá trị nhỏ nhất.

    \left( {8{x_E} + 8{y_E} + 25} ight).\left( {8{x_F} + 8{y_F} + 25} ight) > 0 nên hai điểm E, F nằm cùng phía đối với đường thẳng \Delta.

    Gọi E' là điểm đối xứng với E qua \Delta

    Đường thẳng EE' đi qua điểm E\left( {1; - 1} ight) và có VTPT {\vec n_{EE'}} = {\vec u_\Delta } = \left( {3; - 4} ight) nên có phương trình

    3\left( {x + 1} ight) - 4\left( {y - 1} ight) = 0

    \Leftrightarrow 3x - 4y + 7 = 0

    Gọi H là giao điểm của EE' và \Delta. Tọa độ điểm H là nghiệm của hệ phương trình:

    \left\{ \begin{gathered}  3x - 4y =  - 7 \hfill \\  8x + 6y =  - 25 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x =  - \frac{{71}}{{25}} \hfill \\  y =  - \frac{{19}}{{50}} \hfill \\ \end{gathered}  ight.suy ra H\left( { - \frac{{71}}{{25}}; - \frac{{19}}{{50}}} ight)

    E' đối xứng với E' qua H nên \left\{ \begin{gathered}  {x_{E'}} =  - \frac{{117}}{{25}} \hfill \\  {y_{E'}} =  - \frac{{44}}{{25}} \hfill \\ \end{gathered}  ight.

    Ta có ME + MF = ME' + MF \geqslant E'F

    Dấu bằng xảy ra khi và chỉ khi M là giao điểm của E'F và đường thẳng \Delta

    Đường thẳng E'F đi qua điểm F\left( {2; - 3} ight) và có VTPT {\vec n_{EE'}} = \left( {31;167} ight) có phương trình

    31\left( {x - 2} ight) + 167\left( {y + 3} ight) = 0

    => 31x + 167y + 439 = 0

    Tọa độ điểm M là nghiệm của hệ phương trình

    \left\{ \begin{gathered}  31x + 167y =  - 439 \hfill \\  8x + 6y =  - 25 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x =  - \frac{{67}}{{50}} \hfill \\  y =  - \frac{{119}}{{50}} \hfill \\ \end{gathered}  ight.

    Vậy P = x + 2y =  - \frac{{61}}{{10}}.

  • Câu 17: Thông hiểu

    Cho số phức z =  - 6 - 3i. Tìm phần thực và phần ảo của số phức \overline z.

     Ta có \overline z  = \overline { - 6 - 3i}  =  - 6 + 3i nên suy ra phần thực a = -6; phần ảo b = 3.

  • Câu 18: Nhận biết

    Phần thực và phần ảo của số phức liên hợp của số phức z = 1 + i là:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 19: Thông hiểu

    Cho số phức z = a + bi. Số phức {z^2} có phần ảo là:

    Ta có: {z^2} = {\left( {a + bi} ight)^2} = {a^2} - {b^2} + 2abi

  • Câu 20: Vận dụng

    Điểm biểu diễn của số phức z = \frac{1}{{2 - 3i}} là:

     Ta có: z = \frac{1}{{2 - 3i}} = \frac{2}{{13}} + \frac{3}{{13}}i

  • Câu 21: Nhận biết

    Số phức có phần thực bằng 1 và phần ảo bằng 3 là

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 22: Vận dụng cao

    Biết {z_1},{z_2} = 5 - 4i{z_3} là ba nghiệm của phương trình {z^3} + b{z^2} + cz + d = 0\,\,\,\left( {b,c,d \in \mathbb R} ight),

    trong đó {z_3} là nghiệm có phần ảo dương. Phần ảo của số phức w = {z_1} + 3{z_2} + 2\,{z_3} bằng:

     Xét phương trình {z^3} + b{z^2} + cz + d = 0\,\,\,\left( {b,c,d \in \mathbb R} ight) là phương trình bậc ba với hệ số thực nên luôn có một nghiệm thực là z_1.

    Do đó phương trình tương đương với:

    \left( {z - {z_1}} ight)\left( {{z^2} + a'z + b'} ight) = 0\,\,\,\left( {a',b' \in \mathbb R} ight)

    \Leftrightarrow \left[ \begin{array}{l}z = {z_1}\,\, \in \mathbb R\\{z^2} + a'z + b' = 0\,\,\,\left( 1 ight)\end{array} ight..

    Nên {z_3},{z_2} = 5 - 4i là hai nghiệm phức của phương trình bậc hai với hệ số thực (1).

    Suy ra .{z_3} = 5 + 4i

    Khi đó : w = {z_1} + 3{z_2} + 2\,{z_3} = {z_1} + 3.\left( {5 - 4i} ight) + 2.\left( {5 + 4i} ight) = \left( {25 + 2{z_3}} ight) - 4i.

    Vậy phần ảo của w = {z_1} + 3{z_2} + 2\,{z_3}-4.

  • Câu 23: Nhận biết

    Số phức có phần thực bằng 3 và phần ảo bằng 4 là

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 24: Vận dụng cao

    Cho số phức z = {\left( {1 + i} ight)^2} + {\left( {1 + i} ight)^2} + ... + {\left( {1 + i} ight)^{22}}. Phần thực của số phức z là:

    Ta có: {S_n} = 1 + {p^1} + {p^2} + ... + {p^n} = \frac{{{p^{n + 1}} - 1}}{{p - 1}}

    \Rightarrow z = \frac{{{{\left( {1 + i} ight)}^{23}} - 1}}{i} - 1 - \left( {1 + i} ight)

    \Rightarrow z =  - 2050 - 2048i =  - {2^{11}} - 2 - 2048i

  • Câu 25: Nhận biết

    Xác định phần ảo của số phức z = 18 - 12i.

     Phần ảo của số phức z = 18 - 12i là -12

  • Câu 26: Thông hiểu

    Cho {\left( {x + 2i} ight)^2} = 3x + yi,\left( {x,y \in \mathbb{R}} ight). Giá trị của x và y bằng:

     Ta có:

    {\left( {x + 2i} ight)^2} = 3x + yi \Leftrightarrow {x^2} - 4 + 4xi = 3x + yi

    \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 4 = 3x \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \left[ \begin{gathered}  x =  - 1 \hfill \\  x = 4 \hfill \\ \end{gathered}  ight. \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  x =  - 1 \hfill \\  y =  - 4 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  x = 4 \hfill \\  y = 16 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

  • Câu 27: Nhận biết

    Nghiệm của phương trình: {z^2} - (3i + 8)z + 11\,.i + 13 = 0  là 

     Ta có: \Delta  = {(3i + 8)^2} - 4(11.i + 13) = 4i + 3.

    Giả sử m+ni \,\,(m; n \in \mathbb R)  là căn bậc hai của \triangle.

    Ta có: {(m + ni)^2} = 5 + 12i

    \Leftrightarrow {m^2} + 2mni + {n^2}{i^2} = 3 + 4i \Leftrightarrow {m^2} + 2mni - {n^2} = 3 + 4i

    \Leftrightarrow \left\{ \begin{array}{l}{m^2} - {n^2} = 3\\2mn = 4\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - {n^2} = 3 \,\,  (1)\ = \dfrac{2}{m}\,\,\,\, \,\,\,\,  (2)\end{array} ight.

    Thay (2) vào (1) ta có:

    {m^2} - {\left( {\frac{2}{m}} ight)^2} = 3 \Leftrightarrow {m^4} - 3{m^2} - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}{m^2} = 4\,\,\,\,\,\,\,\,(TM)\\{m^2} =  - 1\,\,\,\,\,\,\,(L{m{)}}\end{array} ight.

    \Rightarrow \left[ \begin{array}{l}m = 2 \Rightarrow n = 1\\m =  - 2 \Rightarrow n =  - 1\end{array} ight.

    Vậy \triangle có hai căn bậc hai là  2+i  và -2-i.

    Do đó nghiệm của phương trình là:

    \left[ \begin{array}{l}z = \dfrac{{3i + 8 + i + 2}}{2} = 2i + 5\\z = \dfrac{{3i + 8 - i - 2}}{2} = i + 3\end{array} ight.

  • Câu 28: Vận dụng

    Cho {z_1},{z_2} là hai số phức thỏa mãn \left| {2z - i} ight| = \left| {2 + iz} ight|, biết \left| {{z_1} - {z_2}} ight| = 1. Tính giá trị của biểu thức P = \left| {{z_1} + {z_2}} ight|

    Cách 1: + Đặt z = x + yi,x,y \in \mathbb{R} ta có

    \left| {2z - i} ight| = \left| {2 + iz} ight| \Leftrightarrow \left| {2x + \left( {2y - 1} ight)i} ight| = \left| {\left( {2 - y} ight) + xi} ight|

    \sqrt {4{x^2} + {{\left( {2y - 1} ight)}^2}}  = \sqrt {{{\left( {2 - y} ight)}^2} + {x^2}}  \Leftrightarrow 4{x^2} + 4{y^2} - 4y + 1 = 4 - 4y + {y^2} + {x^2}

    \Leftrightarrow {x^2} + {y^2} = 1 \Rightarrow \left| z ight| = 1 \Rightarrow \left| {{z_1}} ight| = \left| {{z_2}} ight| = 1

    + Sử dụng công thức: \forall {z_1},{z_2} \in \mathbb{C} ta có

    {\left| {{z_1} + {z_2}} ight|^2} + {\left| {{z_1} - {z_2}} ight|^2} = 2\left( {{{\left| {{z_1}} ight|}^2} + {{\left| {{z_2}} ight|}^2}} ight)

    => P = \sqrt 3

    Cách 2.

    + Biến đổi: \left| {iz + 2} ight| = \left| { - i\left( {iz + 2} ight)} ight| = \left| {z - 2i} ight|

    Ta có \left| {2z - i} ight| = \left| {z - 2i} ight| \Rightarrow {\left| {2z - i} ight|^2} = {\left| {z - 2i} ight|^2} \Rightarrow \left| z ight| = 1 \Rightarrow \left| {{z_1}} ight| = \left| {{z_2}} ight| = 1

    + Sử dụng công thức bình phương mô đun:

    {\left| {m{z_1} + n{z_2}} ight|^2} = {m^2}{z_1}^2 + 2mn{z_1}{z_2}cos\left( {{z_1},{z_2}} ight) + {n^2}{z_2}^2

    Trong đó \left( {{z_1},{z_2}} ight) là góc \widehat {MON} với M, N lần lượt là các điểm biểu diễn số phức {z_1},{z_2} trên mặt phẳng phức

    \left| {{z_1} - {z_2}} ight| = 1 \Rightarrow {\left| {{z_1} - {z_2}} ight|^2} = 1

    \Rightarrow {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} - 2\left| {{z_1}} ight|.\left| {{z_2}} ight|.cos\left( {{z_1},{z_2}} ight) = 1 \Rightarrow cos\left( {{z_1},{z_2}} ight) = \frac{1}{2}

    {P^2} = {\left| {{z_1} + {z_2}} ight|^2} = 1 \Rightarrow {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} + 2\left| {{z_1}} ight|.\left| {{z_2}} ight|.cos\left( {{z_1},{z_2}} ight) = 3 \Rightarrow P = \sqrt 3

    Vậy {P^2} = {\left| {{z_1} + {z_2}} ight|^2} = 1 \Rightarrow {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} + 2\left| {{z_1}} ight|.\left| {{z_2}} ight|.cos\left( {{z_1},{z_2}} ight) = 3 \Rightarrow P = \sqrt 3

  • Câu 29: Thông hiểu

    Cho số phức z thỏa mãn z = 1 + i + {i^2} + {i^3} + ... + {i^{2022}}. Khi đó phần thực và phần ảo của z lần lượt là?

     Ta có: z = 1 + i\frac{{1 - {i^{2022}}}}{{1 - i}} = i

    Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.

  • Câu 30: Thông hiểu

    Tính tổng tất cả các nghiệm của phương trình sau: (z^2 + z)^2 + 4(z^2 + z) -12 = 0 là?

     Đặt t = z^2 + z, khi đó phương trình đã cho có dạng:

    t^2 + 4t – 12 = 0 \Leftrightarrow\left[ \begin{array}{l}t =  - 6\\t = 2\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}{z^2} + z - 6 = 0\\{z^2} + z - 2 = 0\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}z = \dfrac{{ - 1 + \sqrt {23} i}}{2}\\z = \dfrac{{ - 1 - \sqrt {23} i}}{2}\\z = 1\\z =  - 2\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm có tổng là

    \frac{{ - 1 + \sqrt {23} i}}{2} + \frac{{ - 1 - \sqrt {23} i}}{2} + 1 - 2 =  - 1 + 1 - 2 =  - 2

  • Câu 31: Thông hiểu

    Cho hai số phức {z_1} = 1 - i,{z_2} = 3 + 2i. Tìm môđun của số phức \overline {{z_1}}  - {z_2}.

     Ta có: \left| {\overline {{z_1}}  - {z_2}} ight| = \left| {1 + i - 3 - 2i} ight| = \sqrt 5

  • Câu 32: Vận dụng

    Cho số phức z thỏa mãn \left| {z - 1 + i} ight| = 2. Chọn phát biểu đúng:

     Giả sử: z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight)

    Theo bài ra ta có:

    \left| {z - 1 + i} ight| = 2

    \Leftrightarrow \left| {\left( {x - 1} ight) + \left( {y + 1} ight)i} ight| = 2

    \Leftrightarrow {\left( {x - 1} ight)^2} + {\left( {y + 1} ight)^2} = 4

  • Câu 33: Thông hiểu

    Cho số phức z thỏa mãn \left( {1 - i} ight)z + 2i\overline z  = 5 + 3i. Môđun của z là:

     Giả sử: z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight).

    \left( {1 - i} ight)\left( {x + yi} ight) + 2i\left( {x - yi} ight) = 5 + 3i

    \Leftrightarrow \left( {x + 3y} ight) + \left( {x + y} ight)i = 5 + 3i \Leftrightarrow \left\{ \begin{gathered}  x + 3y = 5 \hfill \\  x + y = 3 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x = 2 \hfill \\  y = 1 \hfill \\ \end{gathered}  ight. \Rightarrow \left| z ight| = \sqrt 5

  • Câu 34: Thông hiểu

    Gọi {z_1},{z_2},{z_3},{z_4} là bốn nghiệm của phương trình {z^4} - {z^3} - 2{z^2} + 6z - 4 = 0 trên tập

    số phức tính tổng: S = \frac{1}{{z_1^2}} + \frac{1}{{z_2^2}} + \frac{1}{{z_3^2}} + \frac{1}{{z_4^2}}.

    Ta có: {z^4} - {z^3} - 2{z^2} + 6z - 4 = 0 \Leftrightarrow \left( {z - 1} ight)\left( {z + 2} ight)\left( {{z^2} - 2z + 2} ight) = 0 (1)

    Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:

    \left[ \begin{array}{l}{z_1} = 1\\{z_2} =  - 2\\{z_3} = 1 + i\\{z_4} = 1 - i\end{array} ight.

    Thay và biểu thức ta có: 

    S = \frac{1}{{z_1^2}} + \frac{1}{{z_2^2}} + \frac{1}{{z_3^2}} + \frac{1}{{z_4^2}} = 1 + \frac{1}{4} + \frac{1}{{{{\left( {1 - i} ight)}^2}}} + \frac{1}{{{{\left( {1 + i} ight)}^2}}} = \frac{5}{4}

  • Câu 35: Nhận biết

    Phần thực, phần ảo của số phức z thỏa mãn \overline z  = \frac{5}{{1 - 2i}} - 3i lần lượt là?

    Ta có:

    \overline z  = \frac{5}{{1 - 2i}} - 3i = \frac{{5\left( {1 + 2i} ight)}}{{\left( {1 - 2i} ight)\left( {1 + 2i} ight)}} - 3i = \frac{{5\left( {1 + 2i} ight)}}{5} - 3i = 1 - i

    \Rightarrow z = 1 + i

    Phần thực, phần ảo của z lần lượt là 1;1.

  • Câu 36: Vận dụng

    Cho số phức z = {\left( {\frac{{4i}}{{i + 1}}} ight)^m}, m nguyên dương. Có bao nhiêu giá trị m \in \left[ {1;100} ight] để z là số thực?

    Ta có: z = {\left( {\frac{{4i}}{{i + 1}}} ight)^m} = {(8i)^{\frac{m}{2}}} = {8^{\frac{m}{2}}}.{i^{\frac{m}{2}}}

    z là số thực khi và chỉ khi \frac{m}{2} = 2k \Leftrightarrow m = 4k,\,\,k \in \mathbb N

    Vậy có 25 giá trị m thỏa yêu cầu đề bài.

  • Câu 37: Vận dụng

    Cho số phức z = {\left( {\frac{{2 + 6i}}{{3 - i}}} ight)^m}, m nguyên dương. Có bao nhiêu giá trị m \in \left[ {1;50} ight] để z là số thuần ảo?

    25|| hai mươi lăm||Hai mươi lăm

    Đáp án là:

    Cho số phức z = {\left( {\frac{{2 + 6i}}{{3 - i}}} ight)^m}, m nguyên dương. Có bao nhiêu giá trị m \in \left[ {1;50} ight] để z là số thuần ảo?

    25|| hai mươi lăm||Hai mươi lăm

    Ta có: z = {\left( {\frac{{2 + 6i}}{{3 - i}}} ight)^m} = {(2i)^m} = {2^m}.{i^m}\,

    z là số thuần ảo khi và chỉ khi m = 2k + 1,\,\,k \in \mathbb N

    Vậy có 25 giá trị m thỏa yêu cầu đề bài.

  • Câu 38: Vận dụng cao

    Cho số phức z thỏa mãn \left| z ight| = 1. Tìm giá trị lớn nhất của biểu thức P = \left| {1 + z} ight| + 3\left| {1 - z} ight|.

     Gọi z = x + yi,\left( {x \in \mathbb R;y \in \mathbb R } ight).

    Ta có:

    \left| z ight| = 1 \Rightarrow \sqrt {{x^2} + {y^2}}  = 1 \Rightarrow {y^2} = 1 - {x^2}\Rightarrow x \in \left[ { - 1;1} ight].

    Ta có:

    P = \left| {1 + z} ight| + 3\left| {1 - z} ight| = \sqrt {{{\left( {1 + x} ight)}^2} + {y^2}}+ 3\sqrt {{{\left( {1 - x} ight)}^2} + {y^2}}

    = \sqrt {2\left( {1 + x} ight)}  + 3\sqrt {2\left( {1 - x} ight)}

    Xét hàm số

    f\left( x ight) = \sqrt {2\left( {1 + x} ight)}  + 3\sqrt {2\left( {1 - x} ight)} ;x \in \left[ { - 1;1} ight].

    Hàm số liên tục trên \left[ { - 1;1} ight] và với x \in \left( { - 1;1} ight) ta có:

    f'\left( x ight) = \frac{1}{{\sqrt {2\left( {1 + x} ight)} }} - \frac{3}{{\sqrt {2\left( {1 - x} ight)} }} = 0 \Leftrightarrow x =  - \frac{4}{5} \in \left( { - 1;1} ight)

    Ta có:

    f\left( 1 ight) = 2;f\left( { - 1} ight) = 6;f\left( { - \frac{4}{5}} ight) = 2\sqrt {10}  \Rightarrow {P_{\max }} = 2\sqrt {10}

  • Câu 39: Thông hiểu

    Kí hiệu z_0 là nghiệm phức có phần ảo dương của phương trình 4{z^2} - 16z + 17 = 0. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức w = i{z_0}?

     Ta có:

    4{z^2} - 16z + 17 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_0} = 2 + \dfrac{1}{2}i\\z = 2 - \dfrac{1}{2}i\end{array} ight.

    \Rightarrow w = i{z_0} =  - \frac{1}{2} + 2i

  • Câu 40: Nhận biết

    Số phức 5 + 6i có phần thực bằng 

     Số phức z = a + bi có b được gọi là phần thực.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Số phức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo