Gọi là bốn nghiệm của phương trình
trên tập
số phức tính tổng: .
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Gọi là bốn nghiệm của phương trình
trên tập
số phức tính tổng: .
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Cho số phức z thỏa mãn . Khi đó phần thực và phần ảo của z là
Ta có:
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Cho số phức . Số phức
là số phức nào sau đây?
Ta tính được
Số phức liên hợp của số phức là
=
= a - bi
Cho biểu thức với
. Biểu thức A có giá tri là?
1 || Một || một
Cho biểu thức với
. Biểu thức A có giá tri là?
1 || Một || một
Ta có
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Phần thực và phần ảo của số phức liên hợp của số phức là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Tìm các số thực x, y thoả mãn:
Theo giả thiết:
=>
=>
Cho số phức z thỏa mãn . Giá trị lớn nhất của biểu thức
là:
Ta gọi là điểm biểu diễn số phức z
=>
Khi đó:
với
Ta có: suy ra
.
Theo định lý Stewart ta có:
(Hoặc có thể chứng minh theo phương pháp véc tơ
Suy ra:
Khi đó suy ra:
Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện là:
Giả sử:
Theo bài ra ta có:
Tìm các căn bậc hai của số phức
Giả sử m + ni (m; n R) là căn bậc hai của z
Ta có:
Thay (2) vào (1) ta có:
Vậy z có hai căn bậc hai là 3+2i và -3-2i.
Cho số phức z thỏa mãn . Giá trị của
là:
Với
Với
Cho số phức , m nguyên dương. Có bao nhiêu giá trị
để z là số thuần ảo?
25|| hai mươi lăm||Hai mươi lăm
Cho số phức , m nguyên dương. Có bao nhiêu giá trị
để z là số thuần ảo?
25|| hai mươi lăm||Hai mươi lăm
Ta có:
z là số thuần ảo khi và chỉ khi
Vậy có 25 giá trị m thỏa yêu cầu đề bài.
Tập hợp các điểm biểu diễn các số phức z thỏa mãn phần thực của bằng 0 là đường tròn tâm I, bán kính R (trừ một điểm):
Giả sử:
Theo bài ra ta có:
Vậy biểu diễn hình học của số phức z là:
Số phức có phần thực bằng
Số phức z = a + bi có b được gọi là phần thực.
Gọi (C) là tập hợp các điểm trên mặt phẳng biểu diễn số phức
thỏa mãn và N là điểm biểu diễn số phức
. M là một điểm thuộc (C)
sao cho MN có độ dài bé nhất. Khi đó độ dài MN bé nhất bằng
Ta có: M(x; y) nằm trên đường tròn (C). Tâm I(1; 0)
Do N(5, 3) nằm ngoài (C) nên MN có độ dài bé nhất khi
Gọi và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Gọi và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Ta có .
Vậy phương trình có hai nghiệm phức lần lượt là:
.
Do đó .
PT sau có số nghiệm là :
3 || ba || Ba
PT sau có số nghiệm là :
3 || ba || Ba
Ta có:
Vậy phương trình đã cho có 3 nghiệm.
Cho phương trình có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Cho phương trình có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Ta có:
Suy ra:
Cho số phức thỏa mãn điều kiện .
Tìm giá trị nhỏ nhất của
1 || Một || một
Cho số phức thỏa mãn điều kiện .
Tìm giá trị nhỏ nhất của
1 || Một || một
Đặt
Ta có
.
TH1: (1)
TH2: .
Đặt .
.
(2)
Từ (1) và (2) , suy ra .
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho số phức . Tìm số phức z thỏa mãn
.
Ta có:
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Do tổng tất cả các hệ số của phương trình bằng 0 nên
có nghiệm
.
Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.
Cho số phức z thỏa mãn . Khi đó phần thực và phần ảo của z lần lượt là?
Ta có:
Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.
Cho số phức z thỏa mãn . Môđun của z là:
Giả sử: .
Phương trình có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Cho số phức . Số phức
có phần ảo là:
Ta có:
Cho hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự , khác 0 và
thỏa mãn đẳng thức . Hỏi ba điểm O, A, B tạo thành tam giác gì? (O là gốc tọa độ) ? Chọn phương án đúng và đầy đủ nhất.
Hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự .
Theo giả thiết suy ra: và
.
Ta có:
.
Xét
.
Vậy hay tam giác
là tam giác đều.
Cho . Giá trị của x và y bằng:
Ta có:
Cho số phức z thỏa mãn . Tìm
.
Gọi , với
.
Theo giả thiết ta có suy ra
và
,
.
Ta có
Xét hàm số trên
.
Ta có .
Ta có .
Vậy .
Do đó khi
và
.
Tìm phần thực, phần ảo của số phức z thỏa mãn
Ta có:
Vậy số phức có phần thực là và phần ảo là 2.
Cho a, b, c là các số thực và . Giá trị của
bằng:
Cách 1: Ta có
và
.
Ta có
Cách 2: Chọn .
Ta có
Thử lại các đáp án với ta thấy chỉ có đáp án
thỏa mãn.
Cho hai số phức . Môđun của số phức
là:
Ta có:
Số nghiệm của phương trình: là?
Đặt phương trình đã cho có dang:
+ Với
+ Với
Vậy phương trình đã cho có 4 nghiệm.
Cho số phức . Khẳng định nào sau đây là khẳng định sai?
Ta có: .
Tính số phức sau: z = (1+i)15
Ta có: (1 + i)2 = 1 + 2i – 1 = 2i => (1 + i)14 = (2i)7 = 128.i7 = -128.i
z = (1+i)15 = (1+i)14(1+i) = -128i (1+i) = -128 (-1 + i) = 128 – 128i
Cho số phức . Phần thực của số phức z là:
Ta có:
Kí hiệu là hai nghiệm phức của phương trình
. Tính
Phương trình có hai nghiệm
.
Khi đó
Cho số phức z thỏa mãn . Điểm nào sau đây là điểm biểu diễn của z trong các điểm M, N, P, Q ở hình bên?
Ta có: