Cho số phức
, giá trị của số phức
là?
Ta có:
Cho số phức
, giá trị của số phức
là?
Ta có:
Số phức
là số phức nào sau đây?
Cho số phức z thỏa mãn
. Môđun của số phức
là:
Ta có:
Cho số phức
. Số phức
là số phức nào sau đây?
Ta có:
Suy ra
.
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z lần lượt là?
Ta có:
Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.
Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Tìm tất cả các số thực x, y sao cho ![]()
Ta có:
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Số phức z thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Phần thực của số phức
là:
Ta có:
Cho biểu thức
với
. Biểu thức A có giá tri là?
1 || Một || một
Cho biểu thức với
. Biểu thức A có giá tri là?
1 || Một || một
Ta có
Gọi
và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Gọi và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Ta có .
Vậy phương trình có hai nghiệm phức lần lượt là:
.
Do đó .
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Cho số phức thỏa mãn điều kiện
.
Tìm giá trị nhỏ nhất của ![]()
1 || Một || một
Cho số phức thỏa mãn điều kiện .
Tìm giá trị nhỏ nhất của
1 || Một || một
Đặt
Ta có
.
TH1: (1)
TH2: .
Đặt .
.
(2)
Từ (1) và (2) , suy ra .
Cho số phức
. Tìm phần thực và phần ảo của số phức
.
Ta có nên suy ra phần thực a = -6; phần ảo b = 3.
PT sau có số nghiệm là : ![]()
3 || ba || Ba
PT sau có số nghiệm là :
3 || ba || Ba
Ta có:
Vậy phương trình đã cho có 3 nghiệm.
Số phức nào dưới đây là số thuần ảo?
Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.
Số nghiệm của phương trình:
là?
Đặt phương trình đã cho có dang:
+ Với
+ Với
Vậy phương trình đã cho có 4 nghiệm.
Cho số phức z thỏa mãn
. Điểm nào sau đây là điểm biểu diễn của z trong các điểm M, N, P, Q ở hình bên?
Ta có:
Số phức z thỏa mãn:
là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.
Số phức
có phần thực bằng
Số phức z = a + bi có b được gọi là phần thực.
Tìm số phức
trong phương trình sau: ![]()
Ta có
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Cho số phức z thỏa mãn
Biết rằng tập hợp các điểm biểu diễn số phức
là một đường tròn. Tính bán kính của đường tròn đó.
Ta có:
=> Tập hợp các điểm biểu diễn số phức là một đường tròn bán kính
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Gọi (C) là tập hợp các điểm trên mặt phẳng biểu diễn số phức ![]()
thỏa mãn
và N là điểm biểu diễn số phức
. Tìm điểm thuộc (C) sao
cho có độ dài lớn nhất.
Ta có: nằm trên đường tròn (C):
. Tâm I(1; 0)
Do nên có độ dài lớn nhất khi MN là đường kính, hay I(1; 0) là trung điểm của MN. Vậy M(1; 1)
Nhận xét: đây là bài toán tọa độ lớp , khi cho một đường tròn (C) và một điểm N. Tìm điểm M trên (C) sao cho đạt min, max.
Cho số phức z thỏa mãn
. Chọn phát biểu đúng:
Giả sử:
Theo bài ra ta có:
Cho số phức z thỏa mãn điêu kiện
. Tính giá trị lớn nhất của biểu thức ![]()
Đặt , ta có:
Mặt khác:
Kết hợp với (*), ta được:
Áp dụng bất đẳng thức Bunhacopxki ta được
Vậy
Cho số phức
thoả điều kiện
.
Đặt
. Khẳng định nào sau đây đúng?
Ta có:
Nhận xét: câu này đáp án A cũng đúng vì
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Cho số phức z thỏa mãn
, gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Cho số phức z thỏa mãn , gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Ta có
Vì nên
Suy ra
Tìm số phức z thỏa mãn ![]()
Ta có
Cho các số phức
. Khẳng định nào trong các khẳng định sau là khẳng định đúng?
![]()
![]()
![]()
Áp dụng tính chất số phức, ta có:
- Môđun của 1 thương hai số phức thì bằng thương của từng môđun
- Môđun của 1 tích hai số phức thì bằng tích của từng môđun
Vậy khẳng địn (I) và (II) là đúng.
Tập hợp các điểm biểu diễn các số phức ![]()
Giả sử:
Ta có:
Gọi
là bốn nghiệm phức của phương trình
. Tổng
bằng:
Ta có:
Cho hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự
, khác 0 và
thỏa mãn đẳng thức
. Hỏi ba điểm O, A, B tạo thành tam giác gì? (O là gốc tọa độ) ? Chọn phương án đúng và đầy đủ nhất.
Hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự .
Theo giả thiết suy ra: và
.
Ta có:
.
Xét
.
Vậy hay tam giác
là tam giác đều.
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được