Đề kiểm tra 45 phút Chương 4 Số phức

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 4. Số phức được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Số phức có phần thực bằng 1 và phần ảo bằng 3 là

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 2: Thông hiểu

    Cho số phức z = 3 + 2i. Tìm số phức w = 2i - \left( {3 - i} ight)\overline z  + 2iz - 1?

     Ta có: w = 2i - \left( {3 - i} ight)\overline z  + 2iz - 1

    = 2i - \left( {3 - i} ight)\left( {3 - 2i} ight) + 2i\left( {3 + 2i} ight) - 1

    =  - 12 + 17i

  • Câu 3: Vận dụng

    Cho số phức z thỏa mãn \left| {z - 1 + i} ight| = 2. Chọn phát biểu đúng:

     Giả sử: z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight)

    Theo bài ra ta có:

    \left| {z - 1 + i} ight| = 2

    \Leftrightarrow \left| {\left( {x - 1} ight) + \left( {y + 1} ight)i} ight| = 2

    \Leftrightarrow {\left( {x - 1} ight)^2} + {\left( {y + 1} ight)^2} = 4

  • Câu 4: Vận dụng cao

    Gọi {z_1},{z_2},{z_3},{z_4} là các nghiệm của phương trình {\left( {\frac{{z - 1}}{{2z - i}}} ight)^4} = 1 . Tính giá trị biểu thức P = \left( {z_1^2 + 1} ight)\left( {z_2^2 + 1} ight)\left( {z_3^2 + 1} ight)\left( {z_4^2 + 1} ight)

     Ta có phương trình

    f\left( z ight) = {\left( {2z - i} ight)^4} - {\left( {z - 1} ight)^4} = 0

    Suy ra: f\left( z ight) = 15\left( {z - {z_1}} ight)\left( {z - {z_2}} ight)\left( {z - {z_3}} ight)\left( {z - {z_4}} ight)

    z_1^2 + 1 = \left( {{z_1} - i} ight)\left( {{z_1} + i} ight) \Rightarrow P = \frac{{f\left( i ight).f\left( { - i} ight)}}{{225}}    (1)

    f\left( i ight) = {i^4} - {\left( {i - 1} ight)^4} = 5;

    f\left( { - i} ight) = {\left( { - 3i} ight)^4} - {\left( {i + 1} ight)^4} = 85.

    Vậy từ \left( 1 ight) \Rightarrow P = \frac{{17}}{9}.

  • Câu 5: Vận dụng cao

    Gọi {z_1},{z_2} là 2 nghiệm của phương trình \left| {z - 1 + 2i} ight| = \left| {z + 1 + 2i} ight| thỏa mãn \left| {{z_1} - {z_2}} ight| = \sqrt 2. Biết rằng w là số phức thỏa mãn \left| {{\text{w}} - 3 - 2i} ight| = 2. Tìm GTNN của biểu thức P = \left| {{\text{w}} - {z_1}} ight| + \left| {{\text{w}} - {z_2}} ight|.

    Giả sử z = x  yi\left( {x,y \in R} ight)

    Ta có: \left| {z - 1 + 2i} ight| = \left| {z + 1 + 2i} ight|

    => x = 0

    => Tập hợp điểm biểu diễn {z_1},{z_2} là trục tung.

    Giả sử A, B lần lượt là 2 điểm biểu diễn cho {z_1},{z_2}, ta có \left| {{z_1} - {z_2}} ight| = \sqrt 2  \Leftrightarrow AB = \sqrt 2

    Giả sử {\text{w}} = a + bi\left( {a,b \in R} ight) và M là điểm biểu diễn cho số phức w, ta có \left| {{\text{w}} - 3 - 2i} ight| = 2 \Leftrightarrow {(a - 3)^2} + {(b - 2)^2} = 4a suy ra tập hợp điểm biểu diễn M cho số phức w là đường tròn tâm I\left( {3;2} ight) bán kính R = 2

    Ta có P = MA + MB, gọi E là hình chiếu vuông góc của I lên trục tung, ta thấy P nhỏ nhất khi E là trung điểm AB suy ra MA = MB = \frac{{\sqrt 6 }}{2}, vậy MinP = 2.\frac{{\sqrt 6 }}{2} = \sqrt 6

    Tìm giá trị nhỏ nhất của biểu thức

  • Câu 6: Vận dụng cao

    Cho hai số phức {z_1};{z_2} thỏa mãn \left| {{z_1} + 5} ight| = 5\,;\,\left| {{z_2} + 1 - 3i} ight| = \left| {{z_2} - 3 - 6i} ight|. Tìm giá trị nhỏ nhất của \left| {{z_1} - {z_2}} ight|.

    Gọi {z_1} = {a_1} + {b_1}i,\,\,\,{z_2} = {a_2} + {b_2}i\,\,\,({a_1},{b_1},{a_2},{b_2} \in \mathbb{R})

    Khi đó \left| {{z_1} + 5} ight| = 5 \Leftrightarrow {\left( {{a_1} + 5} ight)^2} + {b_1}^2 = 25

    Tập hợp điểm biểu diễn {z_1} là đường tròn tâm I\left( { - 5;0} ight);R = 5

    Cũng theo giả thiết, ta có:

    \begin{matrix}  \left| {{z_2} + 1 - 3i} ight| = \left| {{z_2} - 3 - 6i} ight| \hfill \\   \Leftrightarrow {\left( {{a_2} + 1} ight)^2} + {\left( {{b_2} - 3} ight)^2} = {\left( {{a_2} - 3} ight)^2} + {\left( {{b_2} - 6} ight)^2} \hfill \\   \Rightarrow 8{a_2} + 6{b_2} - 35 = 0. \hfill \\ \end{matrix}

    Tập hợp điểm biểu diễn {z_2} là đường thẳng \Delta :\,\,8x + 6y - 35 = 0

    d(I,\Delta ) = \frac{{\left| { - 5.8 - 35} ight|}}{{\sqrt {{8^2} + {6^2}} }} = \frac{{15}}{2} \Rightarrow d\left( {I,\Delta } ight) > R

    \Rightarrow \min \left| {{z_1} - {z_2}} ight| = d\left( {I,\Delta } ight) - R = \frac{5}{2}

  • Câu 7: Vận dụng

    Gọi và là hai nghiệm phức của phương trình {z^2} + 2z + 10 = 0. Giá trị của biểu thức A = {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} là:

    Ta có:

    {z^2} + 2z + 10 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_1} =  - 1 + 3i\\{z_2} =  - 1 - 3i\end{array} ight.

    Suy ra  A = {\left| { - 1 + 3i} ight|^2} + {\left| { - 1 - 3i} ight|^2} = 20

  • Câu 8: Thông hiểu

    Cho z = x + yi ;\,\, x, y \in \mathbb{Z} là nghiệm của phương trình sau: z^3=18+26i.

    Tính M=x+2020y

    M=2023 || 2023 || hai nghìn không trăm hai mưới ba

    Đáp án là:

    Cho z = x + yi ;\,\, x, y \in \mathbb{Z} là nghiệm của phương trình sau: z^3=18+26i.

    Tính M=x+2020y

    M=2023 || 2023 || hai nghìn không trăm hai mưới ba

    Ta có: (x + yi)^3 = x^3 – 3xy^2 + (3x^2y – y^3)i = 18 + 26i

    Theo định nghĩa hai số phức bằng nhau, ta được: \left\{ \begin{array}{l}{x^3} - 3x{y^2} = 18\\3{x^2}y - {y^3} = 26\end{array} ight.

    Từ hệ trên, rõ ràng x eq 0y eq 0.

    Đặt y= tx , hệ \Rightarrow 18(3x^2y – y^3) = 26(x^3 – 3xy^2 )

    \Rightarrow 18(3t-t^3 ) = 26(1-3t^2)

    \Leftrightarrow 18t^3 – 78t^2 – 54t+26 = 0

    \Leftrightarrow  ( 3t- 1)(3t^2 – 12t – 13) = 0.

    x, y \in \mathbb{Z} \Rightarrow t \in \mathbb{Q} \Rightarrow t = \frac{1}{3} \Rightarrow x = 3 ; y = 1 \mbox{ hay } z = 3 + i.

    \Rightarrow M= x+2020y=3+2020.1=2023

  • Câu 9: Thông hiểu

    Tìm nghiệm của phương trình sau trên tập số phức \mathbb C: {z^4} - {z^3} + \frac{{{z^2}}}{2} + z + 1 = 0 (1)

    Kiểm tra nghiệm z=0 ta dễ dàng nhận xét z=0 không là nghiệm của phương trình đã cho vậy z eq 0.

    Chia hai vế PT (1) cho z2 ta được : ({z^2} + \frac{1}{{{z^2}}}) - (z - \frac{1}{z}) + \frac{1}{2} = 0 (2)

    Đặt t= z - \frac{1}{z} .  Khi đó {t^2} = {z^2} + \frac{1}{{{z^2}}} - 2 \Leftrightarrow {z^2} + \frac{1}{{{z^2}}} = {t^2} + 2

    Phương trình (2) có dạng :t^2-t+\frac{5}{2} = 0 (3)

    \Delta  = 1 - 4.\frac{5}{2} =  - 9 = 9{i^2}

    Vậy PT (3) có 2 nghiệm:    t=\frac{{1 + 3i}}{2};t=\frac{{1 - 3i}}{2} 

    Với  t=\frac{{1 + 3i}}{2},  ta có z - \frac{1}{z} = \frac{{1 + 3i}}{2} \Leftrightarrow 2{z^2} - (1 + 3i)z - 2 = 0(4)

    \Delta  = {(1 + 3i)^2} + 16 = 8 + 6i = 9 + 6i + {i^2} = {(3 + i)^2}

    Vậy PT(4) có 2 nghiệm :

    z=\frac{{(1 + 3i) + (3 + i)}}{4} = 1 + iz= \frac{{(1 + 3i) - (3 + i)}}{4} = \frac{{i - 1}}{2}

    Do đó PT đã cho có 4 nghiệm : z=1+i; z=1-iz=\frac{{i - 1}}{2}; z=\frac{{-i - 1}}{2}

  • Câu 10: Vận dụng cao

    Gọi (C) là tập hợp các điểm trên mặt phẳng biểu diễn số phức z = x - 1 + yi;\left( {x,y \in \mathbb{R}} ight)

    thỏa mãn \left| z ight| = 1 và N là điểm biểu diễn số phức {z_0} = 5 + 3i. M là một điểm thuộc (C)

    sao cho MN có độ dài bé nhất. Khi đó độ dài MN bé nhất bằng

    Ta có: M(x; y) nằm trên đường tròn (C). Tâm I(1; 0)

    Do N(5, 3) nằm ngoài (C) nên MN có độ dài bé nhất khi MN = NI - R = 5 - 1 = 4

  • Câu 11: Thông hiểu

    Cho số phức z = a + bi. Số phức {z^2} có phần ảo là:

    Ta có: {z^2} = {\left( {a + bi} ight)^2} = {a^2} - {b^2} + 2abi

  • Câu 12: Thông hiểu

    Cho số phức \frac{{3 - i}}{z} + {\left( {2 - i} ight)^3} = 3 - 13i. Số phức \frac{{{{\left( {z + 12i} ight)}^2}}}{i} + {z^2} là số phức nào sau đây?

     Ta có: {\left( {2 - i} ight)^3} = 2 - 11i \Rightarrow z = \frac{{3 - i}}{{1 - 2i}} = 1 + i

    Suy ra  \frac{{{{\left( {z + 12i} ight)}^2}}}{i} + {z^2} = ((1+i) +12i)^2 :i +(1+i)^2

    =(1+13i)^2 :i +(1+i)^2 =26+168i +2i =26+170i.

  • Câu 13: Thông hiểu

    Cho số phức z = 2 + i. Tính |z|

     Ta có \left| z ight| = \sqrt {{2^2} + {1^2}}  = \sqrt 5

  • Câu 14: Thông hiểu

    Gọi z_1 và  z_2 là hai nghiệm phức của phương trình: 2\left( {1 + i} ight){z^2} - 4\left( {2 - i} ight)z - 5 - 3i = 0 . Tính {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2}.

    9 || chín || Chín

    Đáp án là:

    Gọi z_1 và  z_2 là hai nghiệm phức của phương trình: 2\left( {1 + i} ight){z^2} - 4\left( {2 - i} ight)z - 5 - 3i = 0 . Tính {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2}.

    9 || chín || Chín

     Ta có \Delta ' = 4{\left( {2 - i} ight)^2} + 2\left( {1 + i} ight)\left( {5 + 3i} ight) = 16.

    Vậy phương trình có hai nghiệm phức lần lượt là:

    {z_1} = \frac{3}{2} - \frac{5}{2}i,\,\,\,{z_2} =  - \frac{1}{2} - \frac{1}{2}i.

    Do đó  {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} =9.

  • Câu 15: Nhận biết

    Xác định phần ảo của số phức z = 18 - 12i.

     Phần ảo của số phức z = 18 - 12i là -12

  • Câu 16: Thông hiểu

    Cho số phức z = 1 + \left( {1 + i} ight) + {\left( {1 + i} ight)^2} + ... + {\left( {1 + i} ight)^{26}}. Phần thực của số phức z là?

     Ta có: z = 1 + \left( {1 + i} ight) + {\left( {1 + i} ight)^2} + ... + {\left( {1 + i} ight)^{26}} = \frac{{{{\left( {1 + i} ight)}^{27}} - 1}}{i}

    = \frac{{{{\left( {1 + i} ight)}^{26}}.\left( {1 + i} ight) - 1}}{i} = \frac{{{{(2i)}^{13}}\left( {1 + i} ight) - 1}}{i}

    = \frac{{{2^{13}}i - {2^{13}} - 1}}{i} = {2^{13}} + (1 + {2^{13}})i

    Vậy phần thực là  2^{13}.

  • Câu 17: Nhận biết

    Số phức z = \frac{{7 - 17i}}{{5 - i}} có phần thực là?

    2

    Đáp án là:

    Số phức z = \frac{{7 - 17i}}{{5 - i}} có phần thực là?

    2

     Ta có: z = \frac{{7 - 17i}}{{5 - i}} = \frac{{\left( {7 - 17i} ight)\left( {5 + i} ight)}}{{\left( {5 - i} ight)\left( {5 + i} ight)}} = \frac{{52 - 78i}}{{26}} = 2 - 3i

    Vậy phần thực của số phức z=2

  • Câu 18: Vận dụng

    Cho {z_1},{z_2} là hai số phức thỏa mãn \left| {2z - i} ight| = \left| {2 + iz} ight|, biết \left| {{z_1} - {z_2}} ight| = 1. Tính giá trị của biểu thức P = \left| {{z_1} + {z_2}} ight|

    Cách 1: + Đặt z = x + yi,x,y \in \mathbb{R} ta có

    \left| {2z - i} ight| = \left| {2 + iz} ight| \Leftrightarrow \left| {2x + \left( {2y - 1} ight)i} ight| = \left| {\left( {2 - y} ight) + xi} ight|

    \sqrt {4{x^2} + {{\left( {2y - 1} ight)}^2}}  = \sqrt {{{\left( {2 - y} ight)}^2} + {x^2}}  \Leftrightarrow 4{x^2} + 4{y^2} - 4y + 1 = 4 - 4y + {y^2} + {x^2}

    \Leftrightarrow {x^2} + {y^2} = 1 \Rightarrow \left| z ight| = 1 \Rightarrow \left| {{z_1}} ight| = \left| {{z_2}} ight| = 1

    + Sử dụng công thức: \forall {z_1},{z_2} \in \mathbb{C} ta có

    {\left| {{z_1} + {z_2}} ight|^2} + {\left| {{z_1} - {z_2}} ight|^2} = 2\left( {{{\left| {{z_1}} ight|}^2} + {{\left| {{z_2}} ight|}^2}} ight)

    => P = \sqrt 3

    Cách 2.

    + Biến đổi: \left| {iz + 2} ight| = \left| { - i\left( {iz + 2} ight)} ight| = \left| {z - 2i} ight|

    Ta có \left| {2z - i} ight| = \left| {z - 2i} ight| \Rightarrow {\left| {2z - i} ight|^2} = {\left| {z - 2i} ight|^2} \Rightarrow \left| z ight| = 1 \Rightarrow \left| {{z_1}} ight| = \left| {{z_2}} ight| = 1

    + Sử dụng công thức bình phương mô đun:

    {\left| {m{z_1} + n{z_2}} ight|^2} = {m^2}{z_1}^2 + 2mn{z_1}{z_2}cos\left( {{z_1},{z_2}} ight) + {n^2}{z_2}^2

    Trong đó \left( {{z_1},{z_2}} ight) là góc \widehat {MON} với M, N lần lượt là các điểm biểu diễn số phức {z_1},{z_2} trên mặt phẳng phức

    \left| {{z_1} - {z_2}} ight| = 1 \Rightarrow {\left| {{z_1} - {z_2}} ight|^2} = 1

    \Rightarrow {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} - 2\left| {{z_1}} ight|.\left| {{z_2}} ight|.cos\left( {{z_1},{z_2}} ight) = 1 \Rightarrow cos\left( {{z_1},{z_2}} ight) = \frac{1}{2}

    {P^2} = {\left| {{z_1} + {z_2}} ight|^2} = 1 \Rightarrow {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} + 2\left| {{z_1}} ight|.\left| {{z_2}} ight|.cos\left( {{z_1},{z_2}} ight) = 3 \Rightarrow P = \sqrt 3

    Vậy {P^2} = {\left| {{z_1} + {z_2}} ight|^2} = 1 \Rightarrow {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} + 2\left| {{z_1}} ight|.\left| {{z_2}} ight|.cos\left( {{z_1},{z_2}} ight) = 3 \Rightarrow P = \sqrt 3

  • Câu 19: Thông hiểu

    Tìm các căn bậc hai của số phức z = 5 + 12i

     Giả sử m + ni (m; n \in R) là căn bậc hai của z

    Ta có: {(m + ni)^2} = 5 + 12i

    \Leftrightarrow {m^2} + 2mni + {n^2}{i^2} = 5 + 12i \Leftrightarrow {m^2} + 2mni - {n^2} = 5 + 12i

    \Leftrightarrow \left\{ \begin{gathered}  {m^2} - {n^2} = 5 \hfill \\  2mn = 12 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  {m^2} - {n^2} = 5(1) \hfill \\  m = \frac{6}{n}(2) \hfill \\ \end{gathered}  ight.

    Thay (2) vào (1) ta có: {\left( {\frac{6}{n}} ight)^2} - {n^2} = 5 \Leftrightarrow 36 - {n^4} = 5{n^2}

    \Leftrightarrow {n^4} + 5{n^2} - 36 = 0 \Leftrightarrow {n^2} = 4;{n^2} =  - 9(loai)

    \left[ \begin{gathered}  n = 2 \Rightarrow m = 3 \hfill \\  n =  - 2 \Rightarrow m =  - 3 \hfill \\ \end{gathered}  ight.

    Vậy z có hai căn bậc hai là 3+2i và -3-2i.

  • Câu 20: Thông hiểu

    Tìm các số thực x, y thoả mãn:

    3x + y + 5xi = 2y – 1 +(x – y)i

    Theo giả thiết: 3x + y + 5xi = 2y – 1 +(x – y)i

    => (3x + y) + (5x)i = (2y – 1) +(x – y)i

    =>\left\{ \begin{gathered}  3x + y = 2y - 1 \hfill \\  5x = x - y \hfill \\ \end{gathered}  ight.

    => \left\{ \begin{gathered}  x =  - \frac{1}{7} \hfill \\  y = \frac{4}{7} \hfill \\ \end{gathered}  ight.

  • Câu 21: Thông hiểu

    Cho số phức z thỏa mãn \left( {1 - i} ight)z + 2i\overline z  = 5 + 3i. Môđun của z là:

     Giả sử: z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight).

    \left( {1 - i} ight)\left( {x + yi} ight) + 2i\left( {x - yi} ight) = 5 + 3i

    \Leftrightarrow \left( {x + 3y} ight) + \left( {x + y} ight)i = 5 + 3i \Leftrightarrow \left\{ \begin{gathered}  x + 3y = 5 \hfill \\  x + y = 3 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x = 2 \hfill \\  y = 1 \hfill \\ \end{gathered}  ight. \Rightarrow \left| z ight| = \sqrt 5

  • Câu 22: Nhận biết

    Cho hai số phức {z_1} = 5 - 7i{z_2} = 2 + 3i. Tìm số phức z = {z_1} + {z_2}

     Ta có:

    \begin{matrix}  z = {z_1} + {z_2} \hfill \\  = \left( {5 - 7i} ight) + \left( {2 + 3i} ight) \hfill \\   = (5 + 2) + ( - 7 + 3)i \hfill \\ = 7 - 4i \hfill \\ \end{matrix}

  • Câu 23: Vận dụng

    Cho số phức z thoả mãn \frac{1+i}{z} là số thực và |z-2|=m với m∈\mathbb{R}. Gọi m_0 là một giá trị của m để có đúng một số phức thoả mãn bài toán. Khi đó:

    Giả sử z=a+bi,(a,b∈ \mathbb R)..

    Đặt: w=\frac{1+i}{z}=\frac{1+i}{a+bi}

    =\frac{1}{a^2+b^2}[a+b+(a-b)i]=\frac{a+b}{a^2+b^2 }+\frac{a-b}{a^2+b^2 } i.

    w là số thực nên: a=b(1).

    Mặt khác:  |a-2+bi|=m⇔(a-2)^2+b^2=m^2

    Thay (1) vào (2) được: (a-2)^2+a^2=m^2⇔2a^2-4a+4-m^2=0

    Để có đúng một số phức thoả mãn bài toán thì PT (3) phải có nghiệm duy nhất a. \Leftrightarrow \Delta '=0 \Leftrightarrow 4-2(4-m^2 )=0 \Leftrightarrow m^2=2 \Leftrightarrow m= \sqrt 2 \in (1;\frac {3}{2})

    (Vì m là mô-đun).

  • Câu 24: Thông hiểu

    Cho số phức z thỏa mãn z = 1 + i + {i^2} + {i^3} + ... + {i^{2022}}. Khi đó phần thực và phần ảo của z lần lượt là?

     Ta có: z = 1 + i\frac{{1 - {i^{2022}}}}{{1 - i}} = i

    Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.

  • Câu 25: Thông hiểu

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

    Đáp án là:

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

     Ta có: z^3 – 27 = 0 \Leftrightarrow (z – 1) (z^2 + 3z + 9) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\{z^2} + 3z + 9 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z_{2,3}} = \dfrac{{ - 3 \pm 3\sqrt 3 i}}{2}\end{array} ight.

    Vậy phương trình đã cho có 3 nghiệm.

  • Câu 26: Thông hiểu

    Phần thực của số phức z = 5 + 2i - {\left( {1 + i} ight)^3} là:

    Ta có:

    z = 5 + 2i - {\left( {1 + i} ight)^3} = 5 + 2i + 2 - 2i = 7

  • Câu 27: Vận dụng

    Cho số phức z = 5 - 4i. Số phức đối của z có điểm biểu diễn là:

     z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight) \Rightarrow z' =  - x - yi

  • Câu 28: Vận dụng cao

    Biết {z_1},{z_2} = 5 - 4i{z_3} là ba nghiệm của phương trình {z^3} + b{z^2} + cz + d = 0\,\,\,\left( {b,c,d \in \mathbb R} ight),

    trong đó {z_3} là nghiệm có phần ảo dương. Phần ảo của số phức w = {z_1} + 3{z_2} + 2\,{z_3} bằng:

     Xét phương trình {z^3} + b{z^2} + cz + d = 0\,\,\,\left( {b,c,d \in \mathbb R} ight) là phương trình bậc ba với hệ số thực nên luôn có một nghiệm thực là z_1.

    Do đó phương trình tương đương với:

    \left( {z - {z_1}} ight)\left( {{z^2} + a'z + b'} ight) = 0\,\,\,\left( {a',b' \in \mathbb R} ight)

    \Leftrightarrow \left[ \begin{array}{l}z = {z_1}\,\, \in \mathbb R\\{z^2} + a'z + b' = 0\,\,\,\left( 1 ight)\end{array} ight..

    Nên {z_3},{z_2} = 5 - 4i là hai nghiệm phức của phương trình bậc hai với hệ số thực (1).

    Suy ra .{z_3} = 5 + 4i

    Khi đó : w = {z_1} + 3{z_2} + 2\,{z_3} = {z_1} + 3.\left( {5 - 4i} ight) + 2.\left( {5 + 4i} ight) = \left( {25 + 2{z_3}} ight) - 4i.

    Vậy phần ảo của w = {z_1} + 3{z_2} + 2\,{z_3}-4.

  • Câu 29: Nhận biết

    Phần thực và phần ảo của số phức liên hợp của số phức z = 1 + i là:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 30: Nhận biết

    Cho số phức {z_1} = 1 + 2i{z_2} =  - 1 - 2i. Khẳng định nào sau đây là khẳng định đúng?

     Ta có: {z_1}.{z_2} =  - {\left( {1 + 2i} ight)^2} =  - \left( {1 + 4i - 4} ight) = 3 - 4i

    Vậy {z_1}.{z_2} = 3 - 4i là khẳng định đúng.

  • Câu 31: Nhận biết

    Phương trình {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 có tập nghiệm là:

    Dễ thấy z=-i  là nghiệm của {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0

    Nên {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 \Leftrightarrow \,(z + i)({z^2} + (4 - i)z + 3 - 3i) = 0

    \Leftrightarrow \left[ \begin{array}{l}z + i = 0\\{z^2} + (4 - i)z + 3 - 3i = 0\,\,\,(*)\end{array} ight.

    Giải (*), ta được:

    \Delta  = {(4 - i)^2} - 12 + 12i = 16 - 1 - 8i - 12 + 12i

    = 3 + 4i = 4 + 2.2.i + {i^2} = {(2 + i)^2}

    Vậy có hai căn bậc hai là: 2+i-2-i

    Do đó nghiệm của pt là \left[ \begin{array}{l}z = \dfrac{{ - 4 + i + 2 + i}}{2} =  - 1 + i\\z = \dfrac{{ - 4 + i - 2 - i - 2}}{2} =  - 3\end{array} ight.

    Vậy PT có 3 nghiệm là –i, -3, -1+i.

  • Câu 32: Thông hiểu

    Kí hiệu z_0 là nghiệm phức có phần ảo dương của phương trình 4{z^2} - 16z + 17 = 0. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức w = i{z_0}?

     Ta có:

    4{z^2} - 16z + 17 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_0} = 2 + \dfrac{1}{2}i\\z = 2 - \dfrac{1}{2}i\end{array} ight.

    \Rightarrow w = i{z_0} =  - \frac{1}{2} + 2i

  • Câu 33: Thông hiểu

    Số phức liên hợp của số phức 2022i - 2023

     \overline z = \overline {a + bi} = a - bi

    \Rightarrow \overline z  = \overline {2022i - 2023}  = \overline { - 2023 + 2022i}  =  - 2023 - 2022i

  • Câu 34: Thông hiểu

    Số nghiệm của phương trình: (z^2 + 3z +6)^2 + 2z(z^2 + 3z +6) – 3z^2 = 0 là?

     Đặt t = z^2 + 3z +6 phương trình đã cho có dang:

    t^2 +2zt – 3z^2 = 0 \Leftrightarrow (t – z)(t+3z) = 0 \Leftrightarrow\left[ \begin{array}{l}t = z\\t =  - 3z\end{array} ight.

    + Với t = z \Leftrightarrow z^2 + 3z +6 –z = 0  \Leftrightarrow  z^2 + 2z + 6 = 0  \Leftrightarrow\left[ \begin{array}{l}z =  - 1 + \sqrt 5 i\\z =  - 1 - \sqrt 5 i\end{array} ight.

    + Với t = -3z \Leftrightarrow  z^2 + 3z +6 +3z = 0 \Leftrightarrow z^2 + 6z + 6 = 0 \Leftrightarrow\left[ \begin{array}{l}z =  - 3 + \sqrt 3 \\z =  - 3 - \sqrt 3 \end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm.

  • Câu 35: Vận dụng

    Cho số phức {z_1},{z_2} thỏa mãn \left| {z + 2 - i} ight| = 2\left| {z - 1 - i} ight|{z_1} + {z_2} = 1 + i.

    Tính giá trị biểu thức P = {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2}.

     Ta có \left| {{z_1} + 2 - i} ight| = 2\left| {{z_1} - 1 - i} ight|{z_1} + {z_2} = 1 + i

    \Rightarrow \left| {{z_1} + 2 - i} ight| = 2\left| {{z_2}} ight|

    \Rightarrow 4{\left| {{z_2}} ight|^2} = \left( {{z_1} + 2 - i} ight)\left( {\overline {{z_1}}  + 2 + i} ight) = {\left| {{z_1}} ight|^2} + \left( {2 - i} ight)\overline {{z_1}}  + \left( {2 + i} ight){z_1} + 5.(1)

    Tương tự ta có

    4{\left| {{z_1}} ight|^2} = {\left| {{z_2}} ight|^2} + \left( {2 - i} ight)\overline {{z_2}}  + \left( {2 + i} ight){z_2} + 5.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( 2 ight)

    Cộng (1) và (2) ta có:

    4P = P + \left( {2 - i} ight)\overline {{z_1} + {z_2}}  + \left( {2 + i} ight)\left( {{z_1} + {z_2}} ight) + 10

    = P + \left( {2 - i} ight)\left( {1 - i} ight) + \left( {2 + i} ight)\left( {1 + i} ight) + 10 = P + 12 \Rightarrow P = 4.

  • Câu 36: Vận dụng

    Xét phương trình {z^3} = 1 trên tập số phức. Tập nghiệm của phương trình là:

     Ta có:

    {z^3} = 1 \Leftrightarrow \left( {z - 1} ight)\left( {{z^2} + z + 1} ight) = 0

    \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z^2} + z + 1 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z =  - \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i\end{array} ight.

    Suy ra: S = \left\{ {1; - \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i} ight\}

  • Câu 37: Nhận biết

    Số phức có phần thực bằng 3 và phần ảo bằng 4 là

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 38: Vận dụng

    Cho hai số phức {z_1} = 1 - i,{z_2} = 3 + 2i. Trong mặt phẳng Oxy, gọi các điểm M, N lần lượt là điểm biểu diễn số phức {z_1},{z_2}, gọi G là trọng tâm của tam giác OMN, với O là gốc tọa độ. Hỏi G là điểm biểu diễn của số phức nào sau đây?

    Do M, N lần lượt là điểm biểu diễn số phức {z_1},{z_2} nên M\left( {1; - 1} ight),N\left( {3;2} ight)

    Khi đó tọa độ điểm G là trọng tâm của tam giác OMN có tọa độ G\left( {\frac{4}{3};\frac{1}{3}} ight)

    Vậy G là điểm biểu diễn của số phức: z = \frac{4}{3} + \frac{1}{3}i

  • Câu 39: Nhận biết

    Nghiệm của phương trình: {z^2} + 4z + 7 = 0  là:

     Ta có: \Delta ' = {2^2} - 7 =  - 3 = 3{i^2}

    \Rightarrowcác căn bậc hai của \triangle '  là \pm i\sqrt 3

    Vậy nghiệm của phương trình là: z =  - 2 + \sqrt 3 i,\,\,\,z =  - 2 - \sqrt 3 i

  • Câu 40: Nhận biết

    Số phức nào dưới đây là số thuần ảo?

     Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Số phức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 21 lượt xem
Sắp xếp theo