Số phức liên hợp của số phức là
=
= a - bi
Số phức liên hợp của số phức là
=
= a - bi
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Do tổng tất cả các hệ số của phương trình bằng 0 nên
có nghiệm
.
Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.
Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện là:
Giả sử:
Theo bài ra ta có:
Cho số phức z thỏa mãn điêu kiện . Tính giá trị lớn nhất của biểu thức
Đặt , ta có:
Mặt khác:
Kết hợp với (*), ta được:
Áp dụng bất đẳng thức Bunhacopxki ta được
Vậy
Số nghiệm của phương trình: là?
Đặt phương trình đã cho có dang:
+ Với
+ Với
Vậy phương trình đã cho có 4 nghiệm.
Gọi là bốn nghiệm của phương trình
trên tập
số phức tính tổng: .
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Cho số phức . Tìm phần thực và phần ảo của số phức
.
Ta có nên suy ra phần thực a = -6; phần ảo b = 3.
Xét các số phức z thỏa mãn . Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn của các số phức
là một đường tròn có bán kính bằng
Ta có
Đặt
Ta có
Gọi là bốn nghiệm phức của phương trình
. Tổng
bằng:
Ta có:
Phần thực và phần ảo của số phức liên hợp của số phức là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho số phức z thỏa mãn . Môđun của số phức
là:
Ta có:
Cho số phức z thỏa mãn . Giá trị của
là:
Với
Với
Số phức z thỏa mãn: là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.
Gọi là các nghiệm của phương trình
. Tính giá trị biểu thức
Ta có phương trình
Suy ra:
Vì (1)
Mà ;
.
Vậy từ .
Gọi (C) là tập hợp các điểm trên mặt phẳng biểu diễn số phức
thỏa mãn và N là điểm biểu diễn số phức
. M là một điểm thuộc (C)
sao cho MN có độ dài lớn nhất. Khi đó độ dài MN lớn nhất bằng
Ta có: M(x; y) nằm trên đường tròn (C): . Tâm i(1; 0)
Do N(5; 3) nằm ngoài (C) nên MN có độ dài lớn nhất khi
Cho hai số phức z, w thỏa mãn ;
với
là tham số. Giá trị của m để ta luôn có
là:
Đặt có biểu diễn hình học là điểm
Ta có:
Suy ra biểu diễn của số phức là đường thẳng
Ta xét:
với .
Mà ta có
Nên
Cho số phức z thỏa mãn . Môđun của z là:
Giả sử: .
Tìm số phức trong phương trình sau:
Ta có
Phần thực, phần ảo của số phức z thỏa mãn lần lượt là?
Ta có:
Phần thực, phần ảo của z lần lượt là 1;1.
Cho số phức . Tìm số phức
?
Ta có:
Nghiệm của phương trình sau trên trường số phức là:
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho số phức z thỏa mãn điều kiện . Môđun của số phức
có giá trị là
10
Cho số phức z thỏa mãn điều kiện . Môđun của số phức
có giá trị là
10
Ta có:
Kí hiệu là nghiệm phức có phần ảo dương của phương trình
. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức
?
Ta có:
Cho số phức z thỏa mãn . Khi đó phần thực và phần ảo của z lần lượt là?
Ta có:
Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.
Gọi và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Gọi và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Ta có .
Vậy phương trình có hai nghiệm phức lần lượt là:
.
Do đó .
Phần thực của số phức là:
Ta có:
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Giá trị của là?
Ta có:
(Áp dụng công thức: )
Xét phương trình trên tập số phức. Tập nghiệm của phương trình là:
Ta có:
Suy ra:
Cho hai số phức . Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Cho số phức z thỏa mãn . Điểm nào sau đây là điểm biểu diễn của z trong các điểm M, N, P, Q ở hình bên?
Ta có:
Cho số phức thỏa mãn điều kiện .
Tìm giá trị nhỏ nhất của
1 || Một || một
Cho số phức thỏa mãn điều kiện .
Tìm giá trị nhỏ nhất của
1 || Một || một
Đặt
Ta có
.
TH1: (1)
TH2: .
Đặt .
.
(2)
Từ (1) và (2) , suy ra .
Tập hợp các điểm biểu diễn các số phức
Giả sử:
Ta có:
Tính môđun của số phức z thỏa mãn
- Đặt
- Ta có:
- Vậy
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Xác định phần ảo của số phức .
Phần ảo của số phức z = 18 - 12i là -12
PT sau có số nghiệm là :
3 || ba || Ba
PT sau có số nghiệm là :
3 || ba || Ba
Ta có:
Vậy phương trình đã cho có 3 nghiệm.
Cho là hai số phức thỏa mãn
, biết
. Tính giá trị của biểu thức
Cách 1: + Đặt ta có
+ Sử dụng công thức: ta có
=>
Cách 2.
+ Biến đổi:
Ta có
+ Sử dụng công thức bình phương mô đun:
Trong đó là góc
với M, N lần lượt là các điểm biểu diễn số phức
trên mặt phẳng phức
Vậy
Cho hai số phức . Tìm môđun của số phức
.
Ta có: