Đề kiểm tra 45 phút Chương 4 Số phức

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 4. Số phức được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho phương trình {z^2} - 2z + 3 = 0 có hai nghiệm {z_1},{z_2} là . Giá trị của w = z_1^2 + z_2^2 + {z_1}{z_2} là?

    1 || Một || một

    Đáp án là:

    Cho phương trình {z^2} - 2z + 3 = 0 có hai nghiệm {z_1},{z_2} là . Giá trị của w = z_1^2 + z_2^2 + {z_1}{z_2} là?

    1 || Một || một

    Ta có:

    {z^2} - 2z + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}z = 1 + \sqrt 2 i\\z = 1 - \sqrt 2 i\end{array} ight.

    Suy ra:  w = z_1^2 + z_2^2 + {z_1}{z_2}

    = {\left( {1 + \sqrt 2 i} ight)^2} + {\left( {1 - \sqrt 2 i} ight)^2} + \left( {1 + \sqrt 2 i} ight)\left( {1 - \sqrt 2 i} ight) = 1

  • Câu 2: Vận dụng

    Cho {z_1},{z_2} là hai số phức thỏa mãn \left| {2z - i} ight| = \left| {2 + iz} ight|, biết \left| {{z_1} - {z_2}} ight| = 1. Tính giá trị của biểu thức P = \left| {{z_1} + {z_2}} ight|

    Cách 1: + Đặt z = x + yi,x,y \in \mathbb{R} ta có

    \left| {2z - i} ight| = \left| {2 + iz} ight| \Leftrightarrow \left| {2x + \left( {2y - 1} ight)i} ight| = \left| {\left( {2 - y} ight) + xi} ight|

    \sqrt {4{x^2} + {{\left( {2y - 1} ight)}^2}}  = \sqrt {{{\left( {2 - y} ight)}^2} + {x^2}}  \Leftrightarrow 4{x^2} + 4{y^2} - 4y + 1 = 4 - 4y + {y^2} + {x^2}

    \Leftrightarrow {x^2} + {y^2} = 1 \Rightarrow \left| z ight| = 1 \Rightarrow \left| {{z_1}} ight| = \left| {{z_2}} ight| = 1

    + Sử dụng công thức: \forall {z_1},{z_2} \in \mathbb{C} ta có

    {\left| {{z_1} + {z_2}} ight|^2} + {\left| {{z_1} - {z_2}} ight|^2} = 2\left( {{{\left| {{z_1}} ight|}^2} + {{\left| {{z_2}} ight|}^2}} ight)

    => P = \sqrt 3

    Cách 2.

    + Biến đổi: \left| {iz + 2} ight| = \left| { - i\left( {iz + 2} ight)} ight| = \left| {z - 2i} ight|

    Ta có \left| {2z - i} ight| = \left| {z - 2i} ight| \Rightarrow {\left| {2z - i} ight|^2} = {\left| {z - 2i} ight|^2} \Rightarrow \left| z ight| = 1 \Rightarrow \left| {{z_1}} ight| = \left| {{z_2}} ight| = 1

    + Sử dụng công thức bình phương mô đun:

    {\left| {m{z_1} + n{z_2}} ight|^2} = {m^2}{z_1}^2 + 2mn{z_1}{z_2}cos\left( {{z_1},{z_2}} ight) + {n^2}{z_2}^2

    Trong đó \left( {{z_1},{z_2}} ight) là góc \widehat {MON} với M, N lần lượt là các điểm biểu diễn số phức {z_1},{z_2} trên mặt phẳng phức

    \left| {{z_1} - {z_2}} ight| = 1 \Rightarrow {\left| {{z_1} - {z_2}} ight|^2} = 1

    \Rightarrow {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} - 2\left| {{z_1}} ight|.\left| {{z_2}} ight|.cos\left( {{z_1},{z_2}} ight) = 1 \Rightarrow cos\left( {{z_1},{z_2}} ight) = \frac{1}{2}

    {P^2} = {\left| {{z_1} + {z_2}} ight|^2} = 1 \Rightarrow {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} + 2\left| {{z_1}} ight|.\left| {{z_2}} ight|.cos\left( {{z_1},{z_2}} ight) = 3 \Rightarrow P = \sqrt 3

    Vậy {P^2} = {\left| {{z_1} + {z_2}} ight|^2} = 1 \Rightarrow {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} + 2\left| {{z_1}} ight|.\left| {{z_2}} ight|.cos\left( {{z_1},{z_2}} ight) = 3 \Rightarrow P = \sqrt 3

  • Câu 3: Thông hiểu

    Số phức z = \frac{{3 - 4i}}{{4 - i}} bằng:

     Ta có: z = \frac{{3 - 4i}}{{4 - i}} = \frac{{16}}{{17}} - \frac{{13}}{{17}}i

  • Câu 4: Nhận biết

    Số phức 5 + 6i có phần thực bằng 

     Số phức z = a + bi có b được gọi là phần thực.

  • Câu 5: Nhận biết

    Xác định phần ảo của số phức z = 18 - 12i.

     Phần ảo của số phức z = 18 - 12i là -12

  • Câu 6: Thông hiểu

    Tìm nghiệm của phương trình sau trên tập số phức \mathbb C: {z^4} - {z^3} + \frac{{{z^2}}}{2} + z + 1 = 0 (1)

    Kiểm tra nghiệm z=0 ta dễ dàng nhận xét z=0 không là nghiệm của phương trình đã cho vậy z eq 0.

    Chia hai vế PT (1) cho z2 ta được : ({z^2} + \frac{1}{{{z^2}}}) - (z - \frac{1}{z}) + \frac{1}{2} = 0 (2)

    Đặt t= z - \frac{1}{z} .  Khi đó {t^2} = {z^2} + \frac{1}{{{z^2}}} - 2 \Leftrightarrow {z^2} + \frac{1}{{{z^2}}} = {t^2} + 2

    Phương trình (2) có dạng :t^2-t+\frac{5}{2} = 0 (3)

    \Delta  = 1 - 4.\frac{5}{2} =  - 9 = 9{i^2}

    Vậy PT (3) có 2 nghiệm:    t=\frac{{1 + 3i}}{2};t=\frac{{1 - 3i}}{2} 

    Với  t=\frac{{1 + 3i}}{2},  ta có z - \frac{1}{z} = \frac{{1 + 3i}}{2} \Leftrightarrow 2{z^2} - (1 + 3i)z - 2 = 0(4)

    \Delta  = {(1 + 3i)^2} + 16 = 8 + 6i = 9 + 6i + {i^2} = {(3 + i)^2}

    Vậy PT(4) có 2 nghiệm :

    z=\frac{{(1 + 3i) + (3 + i)}}{4} = 1 + iz= \frac{{(1 + 3i) - (3 + i)}}{4} = \frac{{i - 1}}{2}

    Do đó PT đã cho có 4 nghiệm : z=1+i; z=1-iz=\frac{{i - 1}}{2}; z=\frac{{-i - 1}}{2}

  • Câu 7: Nhận biết

    Nghiệm của phương trình: {z^2} - (3i + 8)z + 11\,.i + 13 = 0  là 

     Ta có: \Delta  = {(3i + 8)^2} - 4(11.i + 13) = 4i + 3.

    Giả sử m+ni \,\,(m; n \in \mathbb R)  là căn bậc hai của \triangle.

    Ta có: {(m + ni)^2} = 5 + 12i

    \Leftrightarrow {m^2} + 2mni + {n^2}{i^2} = 3 + 4i \Leftrightarrow {m^2} + 2mni - {n^2} = 3 + 4i

    \Leftrightarrow \left\{ \begin{array}{l}{m^2} - {n^2} = 3\\2mn = 4\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - {n^2} = 3 \,\,  (1)\ = \dfrac{2}{m}\,\,\,\, \,\,\,\,  (2)\end{array} ight.

    Thay (2) vào (1) ta có:

    {m^2} - {\left( {\frac{2}{m}} ight)^2} = 3 \Leftrightarrow {m^4} - 3{m^2} - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}{m^2} = 4\,\,\,\,\,\,\,\,(TM)\\{m^2} =  - 1\,\,\,\,\,\,\,(L{m{)}}\end{array} ight.

    \Rightarrow \left[ \begin{array}{l}m = 2 \Rightarrow n = 1\\m =  - 2 \Rightarrow n =  - 1\end{array} ight.

    Vậy \triangle có hai căn bậc hai là  2+i  và -2-i.

    Do đó nghiệm của phương trình là:

    \left[ \begin{array}{l}z = \dfrac{{3i + 8 + i + 2}}{2} = 2i + 5\\z = \dfrac{{3i + 8 - i - 2}}{2} = i + 3\end{array} ight.

  • Câu 8: Vận dụng cao

    Gọi {z_1},{z_2},{z_3},{z_4} là các nghiệm của phương trình {\left( {\frac{{z - 1}}{{2z - i}}} ight)^4} = 1 . Tính giá trị biểu thức P = \left( {z_1^2 + 1} ight)\left( {z_2^2 + 1} ight)\left( {z_3^2 + 1} ight)\left( {z_4^2 + 1} ight)

     Ta có phương trình

    f\left( z ight) = {\left( {2z - i} ight)^4} - {\left( {z - 1} ight)^4} = 0

    Suy ra: f\left( z ight) = 15\left( {z - {z_1}} ight)\left( {z - {z_2}} ight)\left( {z - {z_3}} ight)\left( {z - {z_4}} ight)

    z_1^2 + 1 = \left( {{z_1} - i} ight)\left( {{z_1} + i} ight) \Rightarrow P = \frac{{f\left( i ight).f\left( { - i} ight)}}{{225}}    (1)

    f\left( i ight) = {i^4} - {\left( {i - 1} ight)^4} = 5;

    f\left( { - i} ight) = {\left( { - 3i} ight)^4} - {\left( {i + 1} ight)^4} = 85.

    Vậy từ \left( 1 ight) \Rightarrow P = \frac{{17}}{9}.

  • Câu 9: Thông hiểu

    Cho hai số phức {z_1} = 1 - i,{z_2} = 3 + 2i. Tìm môđun của số phức \overline {{z_1}}  - {z_2}.

     Ta có: \left| {\overline {{z_1}}  - {z_2}} ight| = \left| {1 + i - 3 - 2i} ight| = \sqrt 5

  • Câu 10: Vận dụng cao

    Cho hai số phức z, w thỏa mãn \left\{ \begin{gathered}  \left| {z - 3 - 2i} ight| \leqslant 1 \hfill \\  \left| {w + 1 + 2i} ight| \leqslant \left| {w - 2 - i} ight| \hfill \\ \end{gathered}  ight.. Tìm giá trị nhỏ nhất của biểu thức P = \left| {z - w} ight|

     Cách 1 :

    Giả sử z = a + bi,\left( {a,b \in \mathbb{R}} ight);w = x + yi,\left( {x,y \in \mathbb{R}} ight)

    \left| {z - 3 - 2i} ight| \leqslant 1 \Leftrightarrow {\left( {a - 3} ight)^2} + {\left( {b - 2} ight)^2} \leqslant 1(1)

    \left| {w + 1 + 2i} ight| \leqslant \left| {w - 2 - i} ight| \Leftrightarrow {\left( {x + 1} ight)^2} + {\left( {y + 2} ight)^2} \leqslant {\left( {x - 2} ight)^2} + {\left( {y - 1} ight)^2}

    Suy ra x + y = 0

    P = \left| {z - w} ight| = \sqrt {{{\left( {a - x} ight)}^2} + {{\left( {b - y} ight)}^2}}  = \sqrt {{{\left( {a - x} ight)}^2} + {{\left( {b + x} ight)}^2}}

    Từ (1) ta có I(3; 2), bán kính r = 1. Gọi H là hình chiếu của I trên d:y =  - x.

    Đường thẳng HI có PTTS: \left\{ \begin{gathered}  x = 3 + t \hfill \\  y = 2 + t \hfill \\ \end{gathered}  ight.

    \begin{matrix}  M \in HI \Rightarrow M\left( {3 + t;\,2 + t} ight) \hfill \\  M \in \left( C ight) \Leftrightarrow 2{t^2} = 1 \Leftrightarrow \left[ \begin{gathered}  t = \dfrac{1}{{\sqrt 2 }} \hfill \\  t =  - \dfrac{1}{{\sqrt 2 }} \hfill \\ \end{gathered}  ight. \hfill \\  t = 2 \Rightarrow M\left( {3 + \dfrac{1}{{\sqrt 2 }};\,2 + \dfrac{1}{{\sqrt 2 }}} ight),MH = \dfrac{{5 + \sqrt 2 }}{{\sqrt 2 }} \hfill \\  t = 3 \Rightarrow M\left( {3 - \dfrac{1}{{\sqrt 2 }};\,2 - \dfrac{1}{{\sqrt 2 }}} ight),MH = \dfrac{{5 - \sqrt 2 }}{{\sqrt 2 }} \hfill \\ \end{matrix}

    Vậy {P_{\min }} = \frac{{5\sqrt 2  - 2}}{2}

    Cách 2 :

    \left| {z - 3 - 2i} ight| \leqslant 1 điều này cho thấy M(z) đang nằm trên hình tròn tâm I(3; 2) bán kính bằng 1.

    \left| {w + 1 + 2i} ight| \leqslant \left| {w - 2 - i} ight| điều này cho thấy N(w) đang thuộc nửa mặt phẳng tạo bởi đường thẳng \Delta là trung trực của đoạn AB với A\left( { - 1; - 2} ight),B\left( {2;1} ight).

    \Delta :x + y = 0.

    (Minh hoạ như hình vẽ)

    Tìm giá trị nhỏ nhất của P

    P = \left| {z - w} ight| = MN.

    {P_{\min }} = d\left( {I,\Delta } ight) - R = \frac{{\left| {3 + 2} ight|}}{{\sqrt 2 }} - 1 = \frac{{5\sqrt 2  - 2}}{2}.

  • Câu 11: Vận dụng

    Tính số phức sau: z = (1+i)15

    Ta có: (1 + i)2 = 1 + 2i – 1 = 2i => (1 + i)14 = (2i)7 = 128.i7 = -128.i

    z = (1+i)15 = (1+i)14(1+i) = -128i (1+i) = -128 (-1 + i) = 128 – 128i

  • Câu 12: Thông hiểu

    Cho số phức z thỏa mãn iz = 2 + i. Khi đó phần thực và phần ảo của z là

     Ta có: z = \frac{{2 + i}}{i} = 1 - 2i

  • Câu 13: Vận dụng

    Biết z_1z_2 là hai nghiệm phức của phương trình: 2{x^2} + \sqrt 3 x + 3 = 0. Khi đó z_1^2 + z_2^2  bằng:

     Ta có: z_1^2 + z_2^2 = {\left( {{z_1} + {z_2}} ight)^2} - 2{z_1}{z_2}

    Áp dụng hệ thức Viet ta có: \left\{ \begin{array}{l}{z_1} + {z_2} =  - \dfrac{{\sqrt 3 }}{2}\\{z_1}{z_2} = \dfrac{3}{2}\end{array} ight.

    Suy ra ta có:z_1^2 + z_2^2 = {\left( { - \frac{{\sqrt 3 }}{2}} ight)^2} - 2.\frac{3}{2} =  - \frac{9}{4}.

  • Câu 14: Vận dụng cao

    Cho số phức z thỏa mãn \left| z ight| = 1. Tìm \min \left| {{z^3} - z + 2} ight|.

     Gọi z = a + bi, với a, b \in \mathbb{R}.

    Theo giả thiết ta có \left| z ight| = 1 suy ra z.\bar z = 1{a^2} + {b^2} = 1, - 1 \le a \le 1.

    Ta có \left| {{z^3} - z + 2} ight| = \left| {{z^3} - z + 2z.\bar z} ight| = \left| z ight|\left| {{z^2} - 1 + 2\bar z} ight|

    = \left| {{a^2} - {b^2} + 2a - 1 + \left( {2ab - 2b} ight)i} ight| = \left| {2\left( {{a^2} + a - 1} ight) + 2b\left( {a - 1} ight)i} ight|

    = \sqrt {4{{\left( {{a^2} + a - 1} ight)}^2} + 4{b^2}{{\left( {a - 1} ight)}^2}}

    = \sqrt {16{a^3} - 4{a^2} - 16a + 8}  = 2\sqrt {4{a^3} - {a^2} - 4a + 2}

    Xét hàm số f\left( x ight) = 4{x^3} - {x^2} - 4x + 2 trên \left[ { - 1;\,1} ight].

    Ta có f'\left( x ight) = 12{x^2} - 2x - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{2}{3}\\x =  - \dfrac{1}{2}\end{array} ight..

    Ta có f\left( { - 1} ight) = 1;f\left( 1 ight) = 1;f\left( {\frac{2}{3}} ight) = \frac{2}{{27}};f\left( { - \frac{1}{2}} ight) = \frac{{13}}{4}.

    Vậy \mathop {\min }\limits_{\left[ { - 1;\,1} ight]} f\left( x ight) = f\left( {\frac{2}{3}} ight) = \frac{2}{{27}}.

    Do đó \min \left| {{z^3} - z + 2} ight| = \frac{{2\sqrt 6 }}{9} khi a = \frac{2}{3}b =  \pm \frac{{\sqrt 5 }}{3}.

  • Câu 15: Nhận biết

    Số phức liên hợp của số phức 5 - 3i là

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {5 - 3i}  = 5 - ( - 3i) = 5 + 3i

  • Câu 16: Thông hiểu

    Cho số phức {z_1} = 1 - i,{z_2} = 3 + 2i. Tìm số phức z thỏa mãn \overline z .{z_1} + {z_2} = 0.

     Ta có: \overline z  = \frac{{ - {z_2}}}{{{z_1}}} = \frac{{ - 3 - 2i}}{{1 - i}} =  - \frac{1}{2} - \frac{5}{2}i \Rightarrow z =  - \frac{1}{2} + \frac{5}{2}i

  • Câu 17: Vận dụng

    Cho hai số thực bc (c>0). Kí hiệu A , B là hai điểm biểu diễn hai nghiệm phức của phương trình {z^2} + 2bz + c = 0 trong mặt phẳng phức. Tìm điều kiện của b và c để tam giác OAB là tam giác vuông (O là gốc tọa độ).

     Ta có: {z^2} + 2bz + c = 0 . Vì {z_1} + {z_2} =  - 2b{z_1}{z_2} = c là số thực.

    \Rightarrow {z_2} = \overline {{z_1}} \Rightarrow \left| {{z_2}} ight| = \left| {\overline {{z_1}} } ight| = \left| {{z_1}} ight|. Vậy ta có: {x_1} = bx_1^2 + y_2^2 = c .

    Ta có: {z_1} = {x_1} + {y_1}i \Rightarrow A\left( {{x_1};{y_1}} ight); {z_1} = {x_2} + {y_2}i \Rightarrow B(x_2;y_2).

    Để tam giác OAB là tam giác vuông tại O =  > \overrightarrow {OA} .\overrightarrow {OB}  = 0

    \Rightarrow {x_1}{x_2} + {y_1}{y_2} = 0\Rightarrow x_1^2-y_1^2=0\Rightarrow x_1^2=y_1^2\Rightarrow c=2b^2.

  • Câu 18: Vận dụng

    Nếu số phức z e 1 thỏa mãn \left| z ight| = 1 thì phần thực của \frac{1}{{1 - z}} bằng:

    Gọi z = a + bi,\left( {a,b \in \mathbb{R}} ight),z e 1

    Do \left| z ight| = 1 \Rightarrow {a^2} + {b^2} = 1

    Ta có

    \frac{1}{{1 - z}} = \frac{1}{{\left( {1 - a} ight) - bi}} = \frac{{\left( {1 - a} ight) + bi}}{{{{\left( {1 - a} ight)}^2} + {b^2}}}

    = \frac{{1 - a}}{{2 - 2a}} + \frac{b}{{2 - 2a}}i = \frac{1}{2} + \frac{b}{{2 - 2a}}i

    Vậy phần thực của số phức \frac{1}{{1 - z}}\frac{1}{2}

  • Câu 19: Thông hiểu

    Cho số phức z = a + bi. Số phức {z^2} có phần ảo là:

    Ta có: {z^2} = {\left( {a + bi} ight)^2} = {a^2} - {b^2} + 2abi

  • Câu 20: Nhận biết

    Cho số phức {z_1} = 1 + 2i{z_2} =  - 1 - 2i. Khẳng định nào sau đây là khẳng định đúng?

     Ta có: {z_1}.{z_2} =  - {\left( {1 + 2i} ight)^2} =  - \left( {1 + 4i - 4} ight) = 3 - 4i

    Vậy {z_1}.{z_2} = 3 - 4i là khẳng định đúng.

  • Câu 21: Thông hiểu

    Cho z = x + yi ;\,\, x, y \in \mathbb{Z} là nghiệm của phương trình sau: z^3=18+26i.

    Tính M=x+2020y

    M=2023 || 2023 || hai nghìn không trăm hai mưới ba

    Đáp án là:

    Cho z = x + yi ;\,\, x, y \in \mathbb{Z} là nghiệm của phương trình sau: z^3=18+26i.

    Tính M=x+2020y

    M=2023 || 2023 || hai nghìn không trăm hai mưới ba

    Ta có: (x + yi)^3 = x^3 – 3xy^2 + (3x^2y – y^3)i = 18 + 26i

    Theo định nghĩa hai số phức bằng nhau, ta được: \left\{ \begin{array}{l}{x^3} - 3x{y^2} = 18\\3{x^2}y - {y^3} = 26\end{array} ight.

    Từ hệ trên, rõ ràng x eq 0y eq 0.

    Đặt y= tx , hệ \Rightarrow 18(3x^2y – y^3) = 26(x^3 – 3xy^2 )

    \Rightarrow 18(3t-t^3 ) = 26(1-3t^2)

    \Leftrightarrow 18t^3 – 78t^2 – 54t+26 = 0

    \Leftrightarrow  ( 3t- 1)(3t^2 – 12t – 13) = 0.

    x, y \in \mathbb{Z} \Rightarrow t \in \mathbb{Q} \Rightarrow t = \frac{1}{3} \Rightarrow x = 3 ; y = 1 \mbox{ hay } z = 3 + i.

    \Rightarrow M= x+2020y=3+2020.1=2023

  • Câu 22: Nhận biết

    Số phức liên hợp của số phức 3 - 2i là

     \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {3 - 2i}  = 3 - ( - 2i) = 3 + 2i

  • Câu 23: Thông hiểu

    Cho số phức \frac{{3 - i}}{z} + {\left( {2 - i} ight)^3} = 3 - 13i. Số phức \frac{{{{\left( {z + 12i} ight)}^2}}}{i} + {z^2} là số phức nào sau đây?

     Ta có: {\left( {2 - i} ight)^3} = 2 - 11i \Rightarrow z = \frac{{3 - i}}{{1 - 2i}} = 1 + i

    Suy ra  \frac{{{{\left( {z + 12i} ight)}^2}}}{i} + {z^2} = ((1+i) +12i)^2 :i +(1+i)^2

    =(1+13i)^2 :i +(1+i)^2 =26+168i +2i =26+170i.

  • Câu 24: Thông hiểu

    Cho số phức z = 2 + i. Tính |z|

     Ta có \left| z ight| = \sqrt {{2^2} + {1^2}}  = \sqrt 5

  • Câu 25: Thông hiểu

    Số nghiệm của phương trình: (z^2 + 3z +6)^2 + 2z(z^2 + 3z +6) – 3z^2 = 0 là?

     Đặt t = z^2 + 3z +6 phương trình đã cho có dang:

    t^2 +2zt – 3z^2 = 0 \Leftrightarrow (t – z)(t+3z) = 0 \Leftrightarrow\left[ \begin{array}{l}t = z\\t =  - 3z\end{array} ight.

    + Với t = z \Leftrightarrow z^2 + 3z +6 –z = 0  \Leftrightarrow  z^2 + 2z + 6 = 0  \Leftrightarrow\left[ \begin{array}{l}z =  - 1 + \sqrt 5 i\\z =  - 1 - \sqrt 5 i\end{array} ight.

    + Với t = -3z \Leftrightarrow  z^2 + 3z +6 +3z = 0 \Leftrightarrow z^2 + 6z + 6 = 0 \Leftrightarrow\left[ \begin{array}{l}z =  - 3 + \sqrt 3 \\z =  - 3 - \sqrt 3 \end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm.

  • Câu 26: Vận dụng

    Tập hợp các điểm biểu diễn các số phức z thỏa mãn phần thực của \frac{{z - 1}}{{z - i}} bằng 0 là đường tròn tâm I, bán kính R (trừ một điểm):

    Giả sử: z = x + yi{\text{ }}\left( {x,y e 0} ight)

    Theo bài ra ta có:

    \frac{{z - 1}}{{z - i}} = \frac{{x + yi - 1}}{{x + yi - i}} = \frac{{x + yi - 1}}{{x + i\left( {y - 1} ight)}} = \frac{{\left( {x + yi - 1} ight)\left( {x - i\left( {y - 1} ight)} ight)}}{{{x^2} + {{\left( {y - 1} ight)}^2}}}

    \Rightarrow \frac{{{x^2} - x + y\left( {y - 1} ight)}}{{{x^2} + {{\left( {y - 1} ight)}^2}}} = 0

    Vậy biểu diễn hình học của số phức z là: {\left( {x - \frac{1}{2}} ight)^2} + {\left( {y - \frac{1}{2}} ight)^2} = \frac{1}{2}

  • Câu 27: Nhận biết

    Phương trình sau có tập nghiệm trên trường số phức là: z^4 + 2z^2 -3 = 0

     Ta có  z^4 + 2z^2 -3 = 0

    \Leftrightarrow \left[ \begin{array}{l}{z^2} = 1\\{z^2} =  - 3\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

    Vậy phương trình có 4 nghiệm: \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

  • Câu 28: Vận dụng

    Cho số phức z thỏa mãn \left| {z - 1 + 2i} ight| = 2 Biết rằng tập hợp các điểm biểu diễn số phức {\text{w}} = 3 - 2i + \left( {2 - i} ight)z là một đường tròn. Tính bán kính của đường tròn đó.

    Ta có: {\text{w}} = 3 - 2i + \left( {2 - i} ight)z = 3 - 7i + \left( {2 - i} ight)\left( {z - 1 + 2i} ight)

    \Rightarrow {\text{w}} - 3 + 7i = \left( {2 - i} ight)\left( {z - 1 + 2i} ight)

    \Rightarrow \left| {{\text{w}} - 3 + 7i} ight| = \left| {\left( {2 - i} ight)\left( {z - 1 + 2i} ight)} ight| = \left| {2 - i} ight|\left| {z - 1 + 2i} ight| = 2\sqrt 5

    => Tập hợp các điểm biểu diễn số phức {\text{w}} = 3 - 2i + \left( {2 - i} ight)z là một đường tròn bán kính R = 2\sqrt 5

  • Câu 29: Nhận biết

    Số phức có phần thực bằng 1 và phần ảo bằng 3 là

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 30: Thông hiểu

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Đáp án là:

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Do tổng tất cả các hệ số của phương trình z^4 – 4z^3 +7z^2 – 16z + 12 = 0 bằng 0 nên z^4 – 4z^3 +7z^2 – 16z + 12 = 0 có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0\Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.

  • Câu 31: Nhận biết

    Cho số phức z thỏa mãn z + \frac{{2{{\left( {2 - i} ight)}^3}\overline z }}{{1 + i}} + {\left( {4 + i} ight)^5} = 422 + 1088i . Khẳng định nào sau đây là khẳng định đúng?

     Gọi z = x + yi,x,y \in \mathbb{R} tìm được z = 1 - 2i.

    Tính mô đun ta được  \left| z ight| = \sqrt 5.

  • Câu 32: Thông hiểu

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

    Đáp án là:

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

     Ta có: z^3 – 27 = 0 \Leftrightarrow (z – 1) (z^2 + 3z + 9) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\{z^2} + 3z + 9 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z_{2,3}} = \dfrac{{ - 3 \pm 3\sqrt 3 i}}{2}\end{array} ight.

    Vậy phương trình đã cho có 3 nghiệm.

  • Câu 33: Vận dụng cao

    Tính môđun của số phức z thỏa mãn 3z.\overline z  + 2023(z + \overline z ) = 48 - 2022i

     - Đặt z = a + bi{\text{ }}(a,b \in \mathbb{R}); \Rightarrow \overline z  = a - b

    - Ta có: 3z.\overline z  + 2023(z + \overline z ) = 48 - 2022i

    \Leftrightarrow 3({a^2} + {b^2}) + 4046b.i = 48 - 2022i \Rightarrow {a^2} + {b^2} = 16

    - Vậy \left| z ight| = \sqrt {{a^2} + {b^2}}  = 4

  • Câu 34: Vận dụng cao

    Cho số phức z thỏa mãn \left| {z + 1} ight| = \left| {z - 2i + 3} ight|. Biết tập các điểm biểu thị cho z là một đường thẳng. Phương trình đường thẳng đó là:

     Giả sử: z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight)

    Theo bài ra ta có:

    \begin{matrix}  \left| {z + 1} ight| = \left| {z - 2i + 3} ight| \hfill \\   \Leftrightarrow {\left( {x + 1} ight)^2} + {y^2} = {\left( {x + 3} ight)^2} + {\left( {y - 2} ight)^2} \hfill \\   \Leftrightarrow x - y + 3 = 0 \hfill \\ \end{matrix}

  • Câu 35: Vận dụng

    Điểm biểu diễn của số phức z = \frac{1}{{2 - 3i}} là:

     Ta có: z = \frac{1}{{2 - 3i}} = \frac{2}{{13}} + \frac{3}{{13}}i

  • Câu 36: Thông hiểu

    Cho số phức z =  - 1 + 3i. Phần thực và phần ảo của số phức w = 2i - 3\overline z lần lượt là:

     Ta có: w = 2i - 3\overline z  = 2i - 3\left( { - 1 - 3i} ight) = 11i + 3

  • Câu 37: Thông hiểu

    Số phức z thỏa mãn: \left( {1 + i} ight)z + \left( {2 - 3i} ight)\left( {1 + 2i} ight) = 7 + 3i là:

     Ta áp dụng các quy tắc thực hiện phép tính, có:

    \begin{matrix}  \left( {1 + i} ight)z + \left( {2 - 3i} ight)\left( {1 + 2i} ight) = 7 + 3i \hfill \\   \Leftrightarrow (1 + i)z = 7 + 3i - (2 - 3i)(1 + 2i) \hfill \\   \Leftrightarrow (1 + i)z =  - 1 + 2i \hfill \\   \Leftrightarrow z = \dfrac{{ - 1 + 2i}}{{1 + i}} \hfill \\   \Leftrightarrow z = \dfrac{1}{2} + \dfrac{3}{2}i \hfill \\ \end{matrix}

    Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.

  • Câu 38: Thông hiểu

    Cho các số phức z_1 , z_2. Khẳng định nào trong các khẳng định sau là khẳng định đúng?

    \left( I ight):\left| {\frac{{{z_1}}}{{{z_2}}}} ight| = \frac{{\left| {{z_1}} ight|}}{{\left| {{z_2}} ight|}}.

    \left( {II} ight):\left| {{z_1}.{z_2}} ight| = \left| {{z_1}} ight|.\left| {{z_2}} ight|.

    \left( {III} ight):{\left| {{z_1}} ight|^2} = {z_1}^2.

    Áp dụng tính chất số phức, ta có: 

    - Môđun của 1 thương hai số phức thì bằng thương của từng môđun \left| {\frac{{{z_1}}}{{{z_2}}}} ight| = \frac{{\left| {{z_1}} ight|}}{{\left| {{z_2}} ight|}}

    -  Môđun của 1 tích hai số phức thì bằng tích của từng môđun  \left| {{z_1}.{z_2}} ight| = \left| {{z_1}} ight|.\left| {{z_2}} ight|

    Vậy khẳng địn (I) và (II) là đúng.

  • Câu 39: Nhận biết

    Cho số phức z thỏa mãn {z^2} - 6z + 13 = 0. Giá trị của \left| {z + \frac{6}{{z + i}}} ight| là:

     {z^2} - 6z + 13 = 0 \Leftrightarrow \left[ \begin{gathered}  z = 3 + 2i \hfill \\  z = 3 - 2i \hfill \\ \end{gathered}  ight.

    Với z = 3 + 2i \Rightarrow z + \frac{6}{{z + i}} = 4 + i \Rightarrow \left| {z + \frac{6}{{z + i}}} ight| = \sqrt {17}

    Với z = 3 - 2i \Rightarrow z + \frac{6}{{z + i}} = \frac{{24}}{5} - \frac{7}{5}i \Rightarrow \left| {z + \frac{6}{{z + i}}} ight| = 5

  • Câu 40: Thông hiểu

    Số phức z = 1 + i + {\left( {1 + i} ight)^2} + {\left( {1 + i} ight)^3} + ... + {\left( {1 + i} ight)^{20}} là số phức nào sau đây?

     z = \left( {1 + i} ight)\frac{{1 - {{\left( {1 + i} ight)}^{20}}}}{{1 - \left( {1 + i} ight)}} =  - 1025 + 1025i

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Số phức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo