Đề kiểm tra 45 phút Chương 4 Số phức

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 4. Số phức được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Gọi {z_1},{z_2},{z_3},{z_4} là bốn nghiệm phức của phương trình 2{z^4} - 3{z^2} - 2 = 0. Tổng T = \left| {{z_1}} ight| + \left| {{z_2}} ight| + \left| {{z_3}} ight| + \left| {{z_4}} ight|  bằng:

     Ta có:  2{z^4} - 3{z^2} - 2 = 0 \Leftrightarrow \left( {2{z^2} + 1} ight)\left( {{z^2} - 2} ight) = 0

    \Leftrightarrow \left( {z + \frac{{\sqrt 2 }}{2}i} ight)\left( {z - \frac{{\sqrt 2 }}{2}i} ight)\left( {z - \sqrt 2 } ight)\left( {z + \sqrt 2 } ight) = 0

    \Leftrightarrow \left[ \begin{array}{l}{z_1} =  - \dfrac{{\sqrt 2 }}{2}i\\{z_2} = \dfrac{{\sqrt 2 }}{2}i\\{z_3} = \sqrt 2 \\{z_4} =  - \sqrt 2 \end{array} ight.

    T = \left| {{z_1}} ight| + \left| {{z_2}} ight| + \left| {{z_3}} ight| + \left| {{z_4}} ight| = 3\sqrt 2

  • Câu 2: Thông hiểu

    Số nghiệm của phương trình: (z^2 + 3z +6)^2 + 2z(z^2 + 3z +6) – 3z^2 = 0 là?

     Đặt t = z^2 + 3z +6 phương trình đã cho có dang:

    t^2 +2zt – 3z^2 = 0 \Leftrightarrow (t – z)(t+3z) = 0 \Leftrightarrow\left[ \begin{array}{l}t = z\\t =  - 3z\end{array} ight.

    + Với t = z \Leftrightarrow z^2 + 3z +6 –z = 0  \Leftrightarrow  z^2 + 2z + 6 = 0  \Leftrightarrow\left[ \begin{array}{l}z =  - 1 + \sqrt 5 i\\z =  - 1 - \sqrt 5 i\end{array} ight.

    + Với t = -3z \Leftrightarrow  z^2 + 3z +6 +3z = 0 \Leftrightarrow z^2 + 6z + 6 = 0 \Leftrightarrow\left[ \begin{array}{l}z =  - 3 + \sqrt 3 \\z =  - 3 - \sqrt 3 \end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm.

  • Câu 3: Thông hiểu

    Cho số phức {z_1} = 1 - i,{z_2} = 3 + 2i. Tìm số phức z thỏa mãn \overline z .{z_1} + {z_2} = 0.

     Ta có: \overline z  = \frac{{ - {z_2}}}{{{z_1}}} = \frac{{ - 3 - 2i}}{{1 - i}} =  - \frac{1}{2} - \frac{5}{2}i \Rightarrow z =  - \frac{1}{2} + \frac{5}{2}i

  • Câu 4: Thông hiểu

    Số phức z = 1 + i + {\left( {1 + i} ight)^2} + {\left( {1 + i} ight)^3} + ... + {\left( {1 + i} ight)^{20}} là số phức nào sau đây?

     z = \left( {1 + i} ight)\frac{{1 - {{\left( {1 + i} ight)}^{20}}}}{{1 - \left( {1 + i} ight)}} =  - 1025 + 1025i

  • Câu 5: Nhận biết

    Phần thực và phần ảo của số phức liên hợp của số phức z = 1 + i là:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 6: Vận dụng cao

    Gọi {z_1},{z_2} là 2 nghiệm của phương trình \left| {z - 1 + 2i} ight| = \left| {z + 1 + 2i} ight| thỏa mãn \left| {{z_1} - {z_2}} ight| = \sqrt 2. Biết rằng w là số phức thỏa mãn \left| {{\text{w}} - 3 - 2i} ight| = 2. Tìm GTNN của biểu thức P = \left| {{\text{w}} - {z_1}} ight| + \left| {{\text{w}} - {z_2}} ight|.

    Giả sử z = x  yi\left( {x,y \in R} ight)

    Ta có: \left| {z - 1 + 2i} ight| = \left| {z + 1 + 2i} ight|

    => x = 0

    => Tập hợp điểm biểu diễn {z_1},{z_2} là trục tung.

    Giả sử A, B lần lượt là 2 điểm biểu diễn cho {z_1},{z_2}, ta có \left| {{z_1} - {z_2}} ight| = \sqrt 2  \Leftrightarrow AB = \sqrt 2

    Giả sử {\text{w}} = a + bi\left( {a,b \in R} ight) và M là điểm biểu diễn cho số phức w, ta có \left| {{\text{w}} - 3 - 2i} ight| = 2 \Leftrightarrow {(a - 3)^2} + {(b - 2)^2} = 4a suy ra tập hợp điểm biểu diễn M cho số phức w là đường tròn tâm I\left( {3;2} ight) bán kính R = 2

    Ta có P = MA + MB, gọi E là hình chiếu vuông góc của I lên trục tung, ta thấy P nhỏ nhất khi E là trung điểm AB suy ra MA = MB = \frac{{\sqrt 6 }}{2}, vậy MinP = 2.\frac{{\sqrt 6 }}{2} = \sqrt 6

    Tìm giá trị nhỏ nhất của biểu thức

  • Câu 7: Nhận biết

    Số phức liên hợp của số phức 3 - 4i là:

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {3 - 4i}  = 3 - ( - 4i) = 3 + 4i

  • Câu 8: Nhận biết

    Nghiệm của phương trình sau trên trường số phức là:z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    \Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow  (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm:z = {m{\{ }}1;\,\,3;\,\,2i;\,\, - 2i{m{ \} }}.

  • Câu 9: Thông hiểu

    Cho số phức z = 3 + 2i. Tìm số phức w = 2i - \left( {3 - i} ight)\overline z  + 2iz - 1?

     Ta có: w = 2i - \left( {3 - i} ight)\overline z  + 2iz - 1

    = 2i - \left( {3 - i} ight)\left( {3 - 2i} ight) + 2i\left( {3 + 2i} ight) - 1

    =  - 12 + 17i

  • Câu 10: Vận dụng

    Tập hợp các điểm biểu diễn các số phức z thỏa mãn phần thực của \frac{{z - 1}}{{z - i}} bằng 0 là đường tròn tâm I, bán kính R (trừ một điểm):

    Giả sử: z = x + yi{\text{ }}\left( {x,y e 0} ight)

    Theo bài ra ta có:

    \frac{{z - 1}}{{z - i}} = \frac{{x + yi - 1}}{{x + yi - i}} = \frac{{x + yi - 1}}{{x + i\left( {y - 1} ight)}} = \frac{{\left( {x + yi - 1} ight)\left( {x - i\left( {y - 1} ight)} ight)}}{{{x^2} + {{\left( {y - 1} ight)}^2}}}

    \Rightarrow \frac{{{x^2} - x + y\left( {y - 1} ight)}}{{{x^2} + {{\left( {y - 1} ight)}^2}}} = 0

    Vậy biểu diễn hình học của số phức z là: {\left( {x - \frac{1}{2}} ight)^2} + {\left( {y - \frac{1}{2}} ight)^2} = \frac{1}{2}

  • Câu 11: Thông hiểu

    Tìm các căn bậc hai của số phức z = 5 + 12i

     Giả sử m + ni (m; n \in R) là căn bậc hai của z

    Ta có: {(m + ni)^2} = 5 + 12i

    \Leftrightarrow {m^2} + 2mni + {n^2}{i^2} = 5 + 12i \Leftrightarrow {m^2} + 2mni - {n^2} = 5 + 12i

    \Leftrightarrow \left\{ \begin{gathered}  {m^2} - {n^2} = 5 \hfill \\  2mn = 12 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  {m^2} - {n^2} = 5(1) \hfill \\  m = \frac{6}{n}(2) \hfill \\ \end{gathered}  ight.

    Thay (2) vào (1) ta có: {\left( {\frac{6}{n}} ight)^2} - {n^2} = 5 \Leftrightarrow 36 - {n^4} = 5{n^2}

    \Leftrightarrow {n^4} + 5{n^2} - 36 = 0 \Leftrightarrow {n^2} = 4;{n^2} =  - 9(loai)

    \left[ \begin{gathered}  n = 2 \Rightarrow m = 3 \hfill \\  n =  - 2 \Rightarrow m =  - 3 \hfill \\ \end{gathered}  ight.

    Vậy z có hai căn bậc hai là 3+2i và -3-2i.

  • Câu 12: Nhận biết

    Số phức 5 + 6i có phần thực bằng 

     Số phức z = a + bi có b được gọi là phần thực.

  • Câu 13: Vận dụng cao

    Cho hai số phức {z_1};{z_2} thỏa mãn \left| {{z_1} + 5} ight| = 5\,;\,\left| {{z_2} + 1 - 3i} ight| = \left| {{z_2} - 3 - 6i} ight|. Tìm giá trị nhỏ nhất của \left| {{z_1} - {z_2}} ight|.

    Gọi {z_1} = {a_1} + {b_1}i,\,\,\,{z_2} = {a_2} + {b_2}i\,\,\,({a_1},{b_1},{a_2},{b_2} \in \mathbb{R})

    Khi đó \left| {{z_1} + 5} ight| = 5 \Leftrightarrow {\left( {{a_1} + 5} ight)^2} + {b_1}^2 = 25

    Tập hợp điểm biểu diễn {z_1} là đường tròn tâm I\left( { - 5;0} ight);R = 5

    Cũng theo giả thiết, ta có:

    \begin{matrix}  \left| {{z_2} + 1 - 3i} ight| = \left| {{z_2} - 3 - 6i} ight| \hfill \\   \Leftrightarrow {\left( {{a_2} + 1} ight)^2} + {\left( {{b_2} - 3} ight)^2} = {\left( {{a_2} - 3} ight)^2} + {\left( {{b_2} - 6} ight)^2} \hfill \\   \Rightarrow 8{a_2} + 6{b_2} - 35 = 0. \hfill \\ \end{matrix}

    Tập hợp điểm biểu diễn {z_2} là đường thẳng \Delta :\,\,8x + 6y - 35 = 0

    d(I,\Delta ) = \frac{{\left| { - 5.8 - 35} ight|}}{{\sqrt {{8^2} + {6^2}} }} = \frac{{15}}{2} \Rightarrow d\left( {I,\Delta } ight) > R

    \Rightarrow \min \left| {{z_1} - {z_2}} ight| = d\left( {I,\Delta } ight) - R = \frac{5}{2}

  • Câu 14: Vận dụng cao

    Tính môđun của số phức z thỏa mãn 3z.\overline z  + 2023(z + \overline z ) = 48 - 2022i

     - Đặt z = a + bi{\text{ }}(a,b \in \mathbb{R}); \Rightarrow \overline z  = a - b

    - Ta có: 3z.\overline z  + 2023(z + \overline z ) = 48 - 2022i

    \Leftrightarrow 3({a^2} + {b^2}) + 4046b.i = 48 - 2022i \Rightarrow {a^2} + {b^2} = 16

    - Vậy \left| z ight| = \sqrt {{a^2} + {b^2}}  = 4

  • Câu 15: Thông hiểu

    Số phức z = \frac{{3 - 4i}}{{4 - i}} bằng:

     Ta có: z = \frac{{3 - 4i}}{{4 - i}} = \frac{{16}}{{17}} - \frac{{13}}{{17}}i

  • Câu 16: Thông hiểu

    Cho hai số phức {z_1} = 1 - i,{z_2} = 3 + 2i. Tìm môđun của số phức \overline {{z_1}}  - {z_2}.

     Ta có: \left| {\overline {{z_1}}  - {z_2}} ight| = \left| {1 + i - 3 - 2i} ight| = \sqrt 5

  • Câu 17: Nhận biết

    Xác định phần ảo của số phức z = 18 - 12i.

     Phần ảo của số phức z = 18 - 12i là -12

  • Câu 18: Thông hiểu

    Tính tổng tất cả các nghiệm của phương trình sau: (z^2 + z)^2 + 4(z^2 + z) -12 = 0 là?

     Đặt t = z^2 + z, khi đó phương trình đã cho có dạng:

    t^2 + 4t – 12 = 0 \Leftrightarrow\left[ \begin{array}{l}t =  - 6\\t = 2\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}{z^2} + z - 6 = 0\\{z^2} + z - 2 = 0\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}z = \dfrac{{ - 1 + \sqrt {23} i}}{2}\\z = \dfrac{{ - 1 - \sqrt {23} i}}{2}\\z = 1\\z =  - 2\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm có tổng là

    \frac{{ - 1 + \sqrt {23} i}}{2} + \frac{{ - 1 - \sqrt {23} i}}{2} + 1 - 2 =  - 1 + 1 - 2 =  - 2

  • Câu 19: Nhận biết

    Cho số phức z = a + bi,\left( {a,b \in \mathbb{R}} ight) thỏa mãn \left( {1 + i} ight)z + 2\overline z  = 3 + 2i. Tính P = a + b

    Giả sử: z = a + bi{\text{ }}\left( {a,b \in \mathbb{R}} ight)

    \left( {1 + i} ight)\left( {a + bi} ight) + 2\left( {a - bi} ight) = 3 + 2i

    \Leftrightarrow 3a - b + \left( {a - b} ight)i = 3 + 2i

    \Leftrightarrow \left\{ \begin{gathered}  3a - b = 3 \hfill \\  a - b = 2 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = \frac{1}{2} \hfill \\  b =  - \frac{3}{2} \hfill \\ \end{gathered}  ight.

    \Rightarrow P = a + b =  - 1

  • Câu 20: Thông hiểu

    Cho z = x + yi ;\,\, x, y \in \mathbb{Z} là nghiệm của phương trình sau: z^3=18+26i.

    Tính M=x+2020y

    M=2023 || 2023 || hai nghìn không trăm hai mưới ba

    Đáp án là:

    Cho z = x + yi ;\,\, x, y \in \mathbb{Z} là nghiệm của phương trình sau: z^3=18+26i.

    Tính M=x+2020y

    M=2023 || 2023 || hai nghìn không trăm hai mưới ba

    Ta có: (x + yi)^3 = x^3 – 3xy^2 + (3x^2y – y^3)i = 18 + 26i

    Theo định nghĩa hai số phức bằng nhau, ta được: \left\{ \begin{array}{l}{x^3} - 3x{y^2} = 18\\3{x^2}y - {y^3} = 26\end{array} ight.

    Từ hệ trên, rõ ràng x eq 0y eq 0.

    Đặt y= tx , hệ \Rightarrow 18(3x^2y – y^3) = 26(x^3 – 3xy^2 )

    \Rightarrow 18(3t-t^3 ) = 26(1-3t^2)

    \Leftrightarrow 18t^3 – 78t^2 – 54t+26 = 0

    \Leftrightarrow  ( 3t- 1)(3t^2 – 12t – 13) = 0.

    x, y \in \mathbb{Z} \Rightarrow t \in \mathbb{Q} \Rightarrow t = \frac{1}{3} \Rightarrow x = 3 ; y = 1 \mbox{ hay } z = 3 + i.

    \Rightarrow M= x+2020y=3+2020.1=2023

  • Câu 21: Thông hiểu

    Tìm nghiệm của phương trình sau trên tập số phức \mathbb C: {z^4} - {z^3} + \frac{{{z^2}}}{2} + z + 1 = 0 (1)

    Kiểm tra nghiệm z=0 ta dễ dàng nhận xét z=0 không là nghiệm của phương trình đã cho vậy z eq 0.

    Chia hai vế PT (1) cho z2 ta được : ({z^2} + \frac{1}{{{z^2}}}) - (z - \frac{1}{z}) + \frac{1}{2} = 0 (2)

    Đặt t= z - \frac{1}{z} .  Khi đó {t^2} = {z^2} + \frac{1}{{{z^2}}} - 2 \Leftrightarrow {z^2} + \frac{1}{{{z^2}}} = {t^2} + 2

    Phương trình (2) có dạng :t^2-t+\frac{5}{2} = 0 (3)

    \Delta  = 1 - 4.\frac{5}{2} =  - 9 = 9{i^2}

    Vậy PT (3) có 2 nghiệm:    t=\frac{{1 + 3i}}{2};t=\frac{{1 - 3i}}{2} 

    Với  t=\frac{{1 + 3i}}{2},  ta có z - \frac{1}{z} = \frac{{1 + 3i}}{2} \Leftrightarrow 2{z^2} - (1 + 3i)z - 2 = 0(4)

    \Delta  = {(1 + 3i)^2} + 16 = 8 + 6i = 9 + 6i + {i^2} = {(3 + i)^2}

    Vậy PT(4) có 2 nghiệm :

    z=\frac{{(1 + 3i) + (3 + i)}}{4} = 1 + iz= \frac{{(1 + 3i) - (3 + i)}}{4} = \frac{{i - 1}}{2}

    Do đó PT đã cho có 4 nghiệm : z=1+i; z=1-iz=\frac{{i - 1}}{2}; z=\frac{{-i - 1}}{2}

  • Câu 22: Thông hiểu

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

    Đáp án là:

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

     Ta có: z^3 – 27 = 0 \Leftrightarrow (z – 1) (z^2 + 3z + 9) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\{z^2} + 3z + 9 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z_{2,3}} = \dfrac{{ - 3 \pm 3\sqrt 3 i}}{2}\end{array} ight.

    Vậy phương trình đã cho có 3 nghiệm.

  • Câu 23: Nhận biết

    Cho số phức z thỏa mãn: \frac{{z - 1}}{{z - i}} = i. Môđun của số phức w = \left( {2 - i} ight)z - 1 là?

     Ta có:

    \frac{{z - 1}}{{z - i}} = i \Rightarrow z\left( {1 - i} ight) = 2

    \Leftrightarrow z = 1 + i \Rightarrow w = \left( {2 - i} ight)\left( {1 + i} ight) - 1 = 2 + i

    \left| w ight| = \sqrt 5

  • Câu 24: Thông hiểu

    Kí hiệu z_0 là nghiệm phức có phần ảo dương của phương trình 4{z^2} - 16z + 17 = 0. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức w = i{z_0}?

     Ta có:

    4{z^2} - 16z + 17 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_0} = 2 + \dfrac{1}{2}i\\z = 2 - \dfrac{1}{2}i\end{array} ight.

    \Rightarrow w = i{z_0} =  - \frac{1}{2} + 2i

  • Câu 25: Thông hiểu

    Cho số phức z =  - 1 + 3i. Phần thực và phần ảo của số phức w = 2i - 3\overline z lần lượt là:

     Ta có: w = 2i - 3\overline z  = 2i - 3\left( { - 1 - 3i} ight) = 11i + 3

  • Câu 26: Vận dụng

    Cho số phức z = a + bi , \left( {a,b \in \mathbb{R}} ight)thỏa mãn \left( {z + 1 + i} ight)\left( {\overline z  - i} ight) + 3i = 9\left| {\overline z } ight| > 2.

    Tính P = a + b.

     Ta áp dụng công thức z = a + bi \Rightarrow \overline z  = a - bi, có:

    \left( {z + 1 + i} ight)\left( {\overline z  - i} ight) + 3i = 9

    \Leftrightarrow \left( {a + bi + 1 + i} ight)\left( {a - bi - i} ight) + 3i = 9

    \Leftrightarrow {a^2} + {b^2} + 2b + a + 1 - \left( {b + 1} ight)i = 9 - 3i

    Ta xét: \left\{ \begin{gathered}  {a^2} + {b^2} + 2b + a + 1 = 9 \hfill \\  b + 1 = 3 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  b = 2 \hfill \\  {a^2} + a = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  b = 2 \hfill \\  a = 0 \hfill \\ \end{gathered}  ight. \vee \left\{ \begin{gathered}  b = 2 \hfill \\  a =  - 1 \hfill \\ \end{gathered}  ight.

    Với {z_1} = 2i \Rightarrow \left| {{z_1}} ight| = 2 nên không thỏa yêu cầu bài toán.

    Với {z_2} =  - 1 + 2i \Rightarrow \left| {{z_2}} ight| = \sqrt {{2^2} + {1^2}}  = \sqrt 5 thỏa yêu cầu bài toán.

    Vậy P = a + b = 1

  • Câu 27: Vận dụng

    Cho hai số phức {z_1} = 1 - i,{z_2} = 3 + 2i. Trong mặt phẳng Oxy, gọi các điểm M, N lần lượt là điểm biểu diễn số phức {z_1},{z_2}, gọi G là trọng tâm của tam giác OMN, với O là gốc tọa độ. Hỏi G là điểm biểu diễn của số phức nào sau đây?

    Do M, N lần lượt là điểm biểu diễn số phức {z_1},{z_2} nên M\left( {1; - 1} ight),N\left( {3;2} ight)

    Khi đó tọa độ điểm G là trọng tâm của tam giác OMN có tọa độ G\left( {\frac{4}{3};\frac{1}{3}} ight)

    Vậy G là điểm biểu diễn của số phức: z = \frac{4}{3} + \frac{1}{3}i

  • Câu 28: Thông hiểu

    Số phức z thỏa mãn: \left( {1 + i} ight)z + \left( {2 - 3i} ight)\left( {1 + 2i} ight) = 7 + 3i là:

     Ta áp dụng các quy tắc thực hiện phép tính, có:

    \begin{matrix}  \left( {1 + i} ight)z + \left( {2 - 3i} ight)\left( {1 + 2i} ight) = 7 + 3i \hfill \\   \Leftrightarrow (1 + i)z = 7 + 3i - (2 - 3i)(1 + 2i) \hfill \\   \Leftrightarrow (1 + i)z =  - 1 + 2i \hfill \\   \Leftrightarrow z = \dfrac{{ - 1 + 2i}}{{1 + i}} \hfill \\   \Leftrightarrow z = \dfrac{1}{2} + \dfrac{3}{2}i \hfill \\ \end{matrix}

    Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.

  • Câu 29: Thông hiểu

    Cho số phức z = a + bi. Số phức {z^2} có phần ảo là:

    Ta có: {z^2} = {\left( {a + bi} ight)^2} = {a^2} - {b^2} + 2abi

  • Câu 30: Thông hiểu

    Số phức liên hợp của số phức 2022i - 2023

     \overline z = \overline {a + bi} = a - bi

    \Rightarrow \overline z  = \overline {2022i - 2023}  = \overline { - 2023 + 2022i}  =  - 2023 - 2022i

  • Câu 31: Vận dụng

    Nếu số phức z e 1 thỏa mãn \left| z ight| = 1 thì phần thực của \frac{1}{{1 - z}} bằng:

    Gọi z = a + bi,\left( {a,b \in \mathbb{R}} ight),z e 1

    Do \left| z ight| = 1 \Rightarrow {a^2} + {b^2} = 1

    Ta có

    \frac{1}{{1 - z}} = \frac{1}{{\left( {1 - a} ight) - bi}} = \frac{{\left( {1 - a} ight) + bi}}{{{{\left( {1 - a} ight)}^2} + {b^2}}}

    = \frac{{1 - a}}{{2 - 2a}} + \frac{b}{{2 - 2a}}i = \frac{1}{2} + \frac{b}{{2 - 2a}}i

    Vậy phần thực của số phức \frac{1}{{1 - z}}\frac{1}{2}

  • Câu 32: Vận dụng cao

    Cho số phức thỏa mãn điều kiện \left| {{z^2} - 2z + 5} ight| = \left| {(z - 1 + 2i)(z + 3i - 1)} ight|.

    Tìm giá trị nhỏ nhất của \left| {z - 2 + 2i} ight|

    1 || Một || một

    Đáp án là:

    Cho số phức thỏa mãn điều kiện \left| {{z^2} - 2z + 5} ight| = \left| {(z - 1 + 2i)(z + 3i - 1)} ight|.

    Tìm giá trị nhỏ nhất của \left| {z - 2 + 2i} ight|

    1 || Một || một

     Đặt {m{w}} = z - 2 + 2i

    Ta có = \left| {(z - 1 + 2i)(z + 3i - 1)} ight|

    \Leftrightarrow \left| {(z - 1 + 2i)} ight|.\left| {(z - 1 - 2i)} ight|=\left| {(z - 1 + 2i)} ight|.\left| {(z + 3i - 1)} ight|

    \Leftrightarrow \left[ \begin{array}{l}z - 1 + 2i = 0\\\left| {z - 1 - 2i} ight| = \left| {z + 3i - 1} ight|\end{array} ight..

    TH1: z = 1 - 2i \Rightarrow {m{w}} =  - 1 \Rightarrow \left| {m{w}} ight| = 1  (1)

    TH2: \left| {z - 1 - 2i} ight| = \left| {z + 3i - 1} ight|.

    Đặt z=a+bi; a, b \in \mathbb R.

    \Rightarrow {(a - 1)^2} + {(b - 2)^2} = {(a - 1)^2} + {(b + 3)^2}\Leftrightarrow b = \frac{{ - 1}}{2}.

    \Rightarrow z = a - \frac{1}{2}i  \Rightarrow \left| {m{w}} ight| = \sqrt {{{(a - 2)}^2} + \frac{9}{4}}  \ge \frac{3}{2}    (2)

    Từ (1) và (2) , suy ra \min |w| = 1.

  • Câu 33: Nhận biết

    Số phức nào dưới đây là số thuần ảo?

     Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.

  • Câu 34: Vận dụng cao

    Cho số phức z thỏa mãn \left| z ight| = 1. Tìm giá trị lớn nhất của biểu thức P = \left| {1 + z} ight| + 3\left| {1 - z} ight|.

     Gọi z = x + yi,\left( {x \in \mathbb R;y \in \mathbb R } ight).

    Ta có:

    \left| z ight| = 1 \Rightarrow \sqrt {{x^2} + {y^2}}  = 1 \Rightarrow {y^2} = 1 - {x^2}\Rightarrow x \in \left[ { - 1;1} ight].

    Ta có:

    P = \left| {1 + z} ight| + 3\left| {1 - z} ight| = \sqrt {{{\left( {1 + x} ight)}^2} + {y^2}}+ 3\sqrt {{{\left( {1 - x} ight)}^2} + {y^2}}

    = \sqrt {2\left( {1 + x} ight)}  + 3\sqrt {2\left( {1 - x} ight)}

    Xét hàm số

    f\left( x ight) = \sqrt {2\left( {1 + x} ight)}  + 3\sqrt {2\left( {1 - x} ight)} ;x \in \left[ { - 1;1} ight].

    Hàm số liên tục trên \left[ { - 1;1} ight] và với x \in \left( { - 1;1} ight) ta có:

    f'\left( x ight) = \frac{1}{{\sqrt {2\left( {1 + x} ight)} }} - \frac{3}{{\sqrt {2\left( {1 - x} ight)} }} = 0 \Leftrightarrow x =  - \frac{4}{5} \in \left( { - 1;1} ight)

    Ta có:

    f\left( 1 ight) = 2;f\left( { - 1} ight) = 6;f\left( { - \frac{4}{5}} ight) = 2\sqrt {10}  \Rightarrow {P_{\max }} = 2\sqrt {10}

  • Câu 35: Thông hiểu

    Cho {\left( {x + 2i} ight)^2} = 3x + yi,\left( {x,y \in \mathbb{R}} ight). Giá trị của x và y bằng:

     Ta có:

    {\left( {x + 2i} ight)^2} = 3x + yi \Leftrightarrow {x^2} - 4 + 4xi = 3x + yi

    \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 4 = 3x \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \left[ \begin{gathered}  x =  - 1 \hfill \\  x = 4 \hfill \\ \end{gathered}  ight. \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  x =  - 1 \hfill \\  y =  - 4 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  x = 4 \hfill \\  y = 16 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

  • Câu 36: Vận dụng

    Gọi và là hai nghiệm phức của phương trình {z^2} + 2z + 10 = 0. Giá trị của biểu thức A = {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} là:

    Ta có:

    {z^2} + 2z + 10 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_1} =  - 1 + 3i\\{z_2} =  - 1 - 3i\end{array} ight.

    Suy ra  A = {\left| { - 1 + 3i} ight|^2} + {\left| { - 1 - 3i} ight|^2} = 20

  • Câu 37: Vận dụng

    Cho số phức {z_1},{z_2} thỏa mãn \left| {z + 2 - i} ight| = 2\left| {z - 1 - i} ight|{z_1} + {z_2} = 1 + i.

    Tính giá trị biểu thức P = {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2}.

     Ta có \left| {{z_1} + 2 - i} ight| = 2\left| {{z_1} - 1 - i} ight|{z_1} + {z_2} = 1 + i

    \Rightarrow \left| {{z_1} + 2 - i} ight| = 2\left| {{z_2}} ight|

    \Rightarrow 4{\left| {{z_2}} ight|^2} = \left( {{z_1} + 2 - i} ight)\left( {\overline {{z_1}}  + 2 + i} ight) = {\left| {{z_1}} ight|^2} + \left( {2 - i} ight)\overline {{z_1}}  + \left( {2 + i} ight){z_1} + 5.(1)

    Tương tự ta có

    4{\left| {{z_1}} ight|^2} = {\left| {{z_2}} ight|^2} + \left( {2 - i} ight)\overline {{z_2}}  + \left( {2 + i} ight){z_2} + 5.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( 2 ight)

    Cộng (1) và (2) ta có:

    4P = P + \left( {2 - i} ight)\overline {{z_1} + {z_2}}  + \left( {2 + i} ight)\left( {{z_1} + {z_2}} ight) + 10

    = P + \left( {2 - i} ight)\left( {1 - i} ight) + \left( {2 + i} ight)\left( {1 + i} ight) + 10 = P + 12 \Rightarrow P = 4.

  • Câu 38: Vận dụng

    Cho {z_1},{z_2} là hai số phức thỏa mãn \left| {2z - i} ight| = \left| {2 + iz} ight|, biết \left| {{z_1} - {z_2}} ight| = 1. Tính giá trị của biểu thức P = \left| {{z_1} + {z_2}} ight|

    Cách 1: + Đặt z = x + yi,x,y \in \mathbb{R} ta có

    \left| {2z - i} ight| = \left| {2 + iz} ight| \Leftrightarrow \left| {2x + \left( {2y - 1} ight)i} ight| = \left| {\left( {2 - y} ight) + xi} ight|

    \sqrt {4{x^2} + {{\left( {2y - 1} ight)}^2}}  = \sqrt {{{\left( {2 - y} ight)}^2} + {x^2}}  \Leftrightarrow 4{x^2} + 4{y^2} - 4y + 1 = 4 - 4y + {y^2} + {x^2}

    \Leftrightarrow {x^2} + {y^2} = 1 \Rightarrow \left| z ight| = 1 \Rightarrow \left| {{z_1}} ight| = \left| {{z_2}} ight| = 1

    + Sử dụng công thức: \forall {z_1},{z_2} \in \mathbb{C} ta có

    {\left| {{z_1} + {z_2}} ight|^2} + {\left| {{z_1} - {z_2}} ight|^2} = 2\left( {{{\left| {{z_1}} ight|}^2} + {{\left| {{z_2}} ight|}^2}} ight)

    => P = \sqrt 3

    Cách 2.

    + Biến đổi: \left| {iz + 2} ight| = \left| { - i\left( {iz + 2} ight)} ight| = \left| {z - 2i} ight|

    Ta có \left| {2z - i} ight| = \left| {z - 2i} ight| \Rightarrow {\left| {2z - i} ight|^2} = {\left| {z - 2i} ight|^2} \Rightarrow \left| z ight| = 1 \Rightarrow \left| {{z_1}} ight| = \left| {{z_2}} ight| = 1

    + Sử dụng công thức bình phương mô đun:

    {\left| {m{z_1} + n{z_2}} ight|^2} = {m^2}{z_1}^2 + 2mn{z_1}{z_2}cos\left( {{z_1},{z_2}} ight) + {n^2}{z_2}^2

    Trong đó \left( {{z_1},{z_2}} ight) là góc \widehat {MON} với M, N lần lượt là các điểm biểu diễn số phức {z_1},{z_2} trên mặt phẳng phức

    \left| {{z_1} - {z_2}} ight| = 1 \Rightarrow {\left| {{z_1} - {z_2}} ight|^2} = 1

    \Rightarrow {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} - 2\left| {{z_1}} ight|.\left| {{z_2}} ight|.cos\left( {{z_1},{z_2}} ight) = 1 \Rightarrow cos\left( {{z_1},{z_2}} ight) = \frac{1}{2}

    {P^2} = {\left| {{z_1} + {z_2}} ight|^2} = 1 \Rightarrow {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} + 2\left| {{z_1}} ight|.\left| {{z_2}} ight|.cos\left( {{z_1},{z_2}} ight) = 3 \Rightarrow P = \sqrt 3

    Vậy {P^2} = {\left| {{z_1} + {z_2}} ight|^2} = 1 \Rightarrow {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} + 2\left| {{z_1}} ight|.\left| {{z_2}} ight|.cos\left( {{z_1},{z_2}} ight) = 3 \Rightarrow P = \sqrt 3

  • Câu 39: Nhận biết

    Cho số phức z thỏa mãn z + \frac{{2{{\left( {2 - i} ight)}^3}\overline z }}{{1 + i}} + {\left( {4 + i} ight)^5} = 422 + 1088i . Khẳng định nào sau đây là khẳng định đúng?

     Gọi z = x + yi,x,y \in \mathbb{R} tìm được z = 1 - 2i.

    Tính mô đun ta được  \left| z ight| = \sqrt 5.

  • Câu 40: Nhận biết

    Phương trình sau có tập nghiệm trên trường số phức là: z^4 + 2z^2 -3 = 0

     Ta có  z^4 + 2z^2 -3 = 0

    \Leftrightarrow \left[ \begin{array}{l}{z^2} = 1\\{z^2} =  - 3\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

    Vậy phương trình có 4 nghiệm: \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Số phức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo