Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Số phức nào dưới đây là số thuần ảo?
Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.
Gọi (C) là tập hợp các điểm trên mặt phẳng biểu diễn số phức ![]()
thỏa mãn
và N là điểm biểu diễn số phức
. M là một điểm thuộc (C)
sao cho MN có độ dài bé nhất. Khi đó độ dài MN bé nhất bằng
Ta có: M(x; y) nằm trên đường tròn (C). Tâm I(1; 0)
Do N(5, 3) nằm ngoài (C) nên MN có độ dài bé nhất khi
Cho biểu thức
với
. Biểu thức M có giá tri là?
Ta có: .
Khi đó:
.
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Cho a, b, c là các số thực và
. Giá trị của
bằng:
Cách 1: Ta có
và
.
Ta có
Cách 2: Chọn .
Ta có
Thử lại các đáp án với ta thấy chỉ có đáp án
thỏa mãn.
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Số phức
có phần thực bằng
Số phức z = a + bi có b được gọi là phần thực.
Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn
và
. Tìm số phần tử của S.
2 || Hai || hai
Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn và
. Tìm số phần tử của S.
2 || Hai || hai
Điều kiện: .
Đặt .
Theo giả thiết .
là đường tròn tâm O(0; 0), bán kính
.
Mặt khác
là đường tròn tâm
, bán kính
.
Để tồn tại duy nhất số phức z thì và
tiếp xúc ngoài hoặc trong.
TH1: và
tiếp xúc ngoài khi và chỉ khi
.
TH2: và
tiếp xúc trong khi và chỉ khi
.
Vậy .
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Cho số phức
. Tìm phần thực và phần ảo của số phức
.
Ta có nên suy ra phần thực a = -6; phần ảo b = 3.
Cho hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự
, khác 0 và
thỏa mãn đẳng thức
. Hỏi ba điểm O, A, B tạo thành tam giác gì? (O là gốc tọa độ) ? Chọn phương án đúng và đầy đủ nhất.
Hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự .
Theo giả thiết suy ra: và
.
Ta có:
.
Xét
.
Vậy hay tam giác
là tam giác đều.
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Cho số phức
thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Gọi tìm được
.
Tính mô đun ta được .
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Số nghiệm của phương trình:
là?
Đặt phương trình đã cho có dang:
+ Với
+ Với
Vậy phương trình đã cho có 4 nghiệm.
Cho hai số phức
. Trong mặt phẳng Oxy, gọi các điểm M, N lần lượt là điểm biểu diễn số phức
, gọi G là trọng tâm của tam giác OMN, với O là gốc tọa độ. Hỏi G là điểm biểu diễn của số phức nào sau đây?
Do M, N lần lượt là điểm biểu diễn số phức nên
Khi đó tọa độ điểm G là trọng tâm của tam giác OMN có tọa độ
Vậy G là điểm biểu diễn của số phức:
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Cho số phức z thỏa mãn điêu kiện
. Tính giá trị lớn nhất của biểu thức ![]()
Đặt , ta có:
Mặt khác:
Kết hợp với (*), ta được:
Áp dụng bất đẳng thức Bunhacopxki ta được
Vậy
Có bao nhiêu số phức z thỏa mãn
và ![]()
Ta có:
Cho số phức z thỏa mãn
, gọi
lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính ![]()
Ta có
Vì nên
.
Suy ra
Cho số phức z thỏa mãn
. Điểm nào sau đây là điểm biểu diễn của z trong các điểm M, N, P, Q ở hình bên?
Ta có:
Số phức z thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Tập hợp các điểm biểu diễn các số phức z thỏa mãn phần thực của
bằng 0 là đường tròn tâm I, bán kính R (trừ một điểm):
Giả sử:
Theo bài ra ta có:
Vậy biểu diễn hình học của số phức z là:
Tìm các căn bậc hai của số phức ![]()
Giả sử m + ni (m; n R) là căn bậc hai của z
Ta có:
Thay (2) vào (1) ta có:
Vậy z có hai căn bậc hai là 3+2i và -3-2i.
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z lần lượt là?
Ta có:
Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Cho
. Giá trị của x và y bằng:
Ta có:
Số phức
bằng:
Ta có:
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Số phức
là số phức nào sau đây?
Cho số phức
. Phần thực của số phức
là?
Ta có:
Vậy phần thực là .
Cho z1 = 1 + i; z2 = -1 - i. Tìm
sao cho các điểm biểu diễn của
tạo thành tam giác đều.
Giả sử
Để các điểm biểu diễn của tạo thành một tam giác đều thì
Vậy có hai số phức thoả mãn là:
Gọi
và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Gọi và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Ta có .
Vậy phương trình có hai nghiệm phức lần lượt là:
.
Do đó .
Gọi (C) là tập hợp các điểm trên mặt phẳng biểu diễn số phức ![]()
thỏa mãn
và N là điểm biểu diễn số phức
. M là một điểm thuộc (C)
sao cho MN có độ dài lớn nhất. Khi đó độ dài MN lớn nhất bằng
Ta có: M(x; y) nằm trên đường tròn (C): . Tâm i(1; 0)
Do N(5; 3) nằm ngoài (C) nên MN có độ dài lớn nhất khi
Cho số phức
thoả mãn
là số thực và
với
. Gọi
là một giá trị của
để có đúng một số phức thoả mãn bài toán. Khi đó:
Giả sử .
Đặt:
.
là số thực nên:
.
Mặt khác:
Thay (1) vào (2) được:
Để có đúng một số phức thoả mãn bài toán thì PT (3) phải có nghiệm duy nhất .
(Vì là mô-đun).
PT sau có số nghiệm là : ![]()
3 || ba || Ba
PT sau có số nghiệm là :
3 || ba || Ba
Ta có:
Vậy phương trình đã cho có 3 nghiệm.