Số phức z thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Số phức z thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Cho phương trình sau:
. Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Do tổng tất cả các hệ số của phương trình bằng 0 nên
có nghiệm
.
Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.
Cho phương trình
có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Cho phương trình có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Ta có:
Suy ra:
Tìm các số thực x, y thoả mãn:
![]()
Theo giả thiết:
=>
=>
Cho số phức
. Số phức
là số phức nào sau đây?
Ta có:
Suy ra
.
Cho số phức
, giá trị của số phức
là?
Ta có:
Cho số phức z thỏa mãn
. Môđun của z là:
Giả sử: .
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
PT sau có số nghiệm là : ![]()
3 || ba || Ba
PT sau có số nghiệm là :
3 || ba || Ba
Ta có:
Vậy phương trình đã cho có 3 nghiệm.
Số phức nào dưới đây là số thuần ảo?
Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.
Cho số phức
,
thỏa mãn
và
.
Tính
.
Ta áp dụng công thức , có:
Ta xét:
Với nên không thỏa yêu cầu bài toán.
Với thỏa yêu cầu bài toán.
Vậy
Tập hợp các điểm biểu diễn các số phức z thỏa mãn phần thực của
bằng 0 là đường tròn tâm I, bán kính R (trừ một điểm):
Giả sử:
Theo bài ra ta có:
Vậy biểu diễn hình học của số phức z là:
Tìm tất cả các số thực x, y sao cho ![]()
Ta có:
Cho số phức z thỏa mãn
. Giá trị lớn nhất của biểu thức
là:
Ta gọi là điểm biểu diễn số phức z
=>
Khi đó:
với
Ta có: suy ra
.
Theo định lý Stewart ta có:
(Hoặc có thể chứng minh theo phương pháp véc tơ
Suy ra:
Khi đó suy ra:
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Cho số phức
thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Gọi tìm được
.
Tính mô đun ta được .
Phần thực của số phức
là:
Ta có:
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Tìm tổng các giá trị của số thực a sao cho phương trình
có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Tìm tổng các giá trị của số thực a sao cho phương trình có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Ta có với mọi thì phương trình
luôn có nghiệm phức.
và
.
Suy ra .
Từ (1) ta có , từ (2) ta có
.
Vậy tổng .
Cho số phức z thỏa mãn
. Tìm
.
Gọi , với
.
Theo giả thiết ta có suy ra
và
,
.
Ta có
Xét hàm số trên
.
Ta có .
Ta có .
Vậy .
Do đó khi
và
.
Cho số phức
. Tính |z|
Ta có
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Phương trình
có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Gọi
là số phức thoả mãn
.
Giá trị của biểu thức
là?
30 || Ba mươi || ba mươi
Gọi là số phức thoả mãn
.
Giá trị của biểu thức là?
30 || Ba mươi || ba mươi
Dễ thấy rằng z=0 không thoả mãn .
Do đó ta có
Ta cũng có
và
Vậy .
Cho biểu thức
với
. Biểu thức A có giá tri là?
1 || Một || một
Cho biểu thức với
. Biểu thức A có giá tri là?
1 || Một || một
Ta có
Cho hai số phức
. Tìm môđun của số phức
.
Ta có:
Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện
là:
Giả sử:
Theo bài ra ta có:
Cho số phức z thỏa mãn
. Điểm nào sau đây là điểm biểu diễn của z trong các điểm M, N, P, Q ở hình bên?
Ta có:
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Cho các số phức z thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
.
3 || ba || Ba
Cho các số phức z thỏa mãn . Tìm giá trị nhỏ nhất của biểu thức
.
3 || ba || Ba
Gọi là điểm biểu diễn số phức z trong mặt phẳng phức.
Có
Vậy hoặc
.
Gọi thì
. Khi đó
hoặc
.
Vậy
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Tìm các căn bậc hai của số phức ![]()
Giả sử m + ni (m; n R) là căn bậc hai của z
Ta có:
Thay (2) vào (1) ta có:
Vậy z có hai căn bậc hai là 3+2i và -3-2i.
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Kí hiệu
là nghiệm phức có phần ảo dương của phương trình
. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức
?
Ta có:
Cho số phức
. Tìm số phức z thỏa mãn
.
Ta có:
Gọi (C) là tập hợp các điểm trên mặt phẳng biểu diễn số phức ![]()
thỏa mãn
và N là điểm biểu diễn số phức
. M là một điểm thuộc (C)
sao cho MN có độ dài lớn nhất. Khi đó độ dài MN lớn nhất bằng
Ta có: M(x; y) nằm trên đường tròn (C): . Tâm i(1; 0)
Do N(5; 3) nằm ngoài (C) nên MN có độ dài lớn nhất khi
Số phức
có phần thực bằng
Số phức z = a + bi có b được gọi là phần thực.
Tính số phức sau: z = (1+i)15
Ta có: (1 + i)2 = 1 + 2i – 1 = 2i => (1 + i)14 = (2i)7 = 128.i7 = -128.i
z = (1+i)15 = (1+i)14(1+i) = -128i (1+i) = -128 (-1 + i) = 128 – 128i