Đề kiểm tra 45 phút Chương 4 Số phức

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 4. Số phức được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Gọi {z_1},{z_2},{z_3},{z_4} là bốn nghiệm của phương trình {z^4} - {z^3} - 2{z^2} + 6z - 4 = 0 trên tập

    số phức tính tổng: S = \frac{1}{{z_1^2}} + \frac{1}{{z_2^2}} + \frac{1}{{z_3^2}} + \frac{1}{{z_4^2}}.

    Ta có: {z^4} - {z^3} - 2{z^2} + 6z - 4 = 0 \Leftrightarrow \left( {z - 1} ight)\left( {z + 2} ight)\left( {{z^2} - 2z + 2} ight) = 0 (1)

    Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:

    \left[ \begin{array}{l}{z_1} = 1\\{z_2} =  - 2\\{z_3} = 1 + i\\{z_4} = 1 - i\end{array} ight.

    Thay và biểu thức ta có: 

    S = \frac{1}{{z_1^2}} + \frac{1}{{z_2^2}} + \frac{1}{{z_3^2}} + \frac{1}{{z_4^2}} = 1 + \frac{1}{4} + \frac{1}{{{{\left( {1 - i} ight)}^2}}} + \frac{1}{{{{\left( {1 + i} ight)}^2}}} = \frac{5}{4}

  • Câu 2: Thông hiểu

    Cho số phức z =  - 1 + 3i. Phần thực và phần ảo của số phức w = 2i - 3\overline z lần lượt là:

     Ta có: w = 2i - 3\overline z  = 2i - 3\left( { - 1 - 3i} ight) = 11i + 3

  • Câu 3: Nhận biết

    Cho số phức {\left( {\overline {2 + i} } ight)^5} - \left( {2 + i} ight).\overline z  =  - 37 - 43i. Khẳng định nào sau đây là khẳng định sai?

     Ta có: {\left( {\overline {2 + i} } ight)^5} =  - 38 - 41i \Rightarrow \overline z  = \frac{{1 - 2i}}{{ - \left( {2 + i} ight)}} = i.

  • Câu 4: Vận dụng

    Cho hai số phức z, w thỏa mãn \left| {z - 1} ight| = \left| {z + 3 - 2i} ight|; w = z + m + i với m \in \mathbb{R} là tham số. Giá trị của m để ta luôn có \left| w ight| \geqslant 2\sqrt 5 là:

     Đặt z = a + ib,\left( {a,b \in \mathbb{R}} ight) có biểu diễn hình học là điểm M\left( {x;y} ight)

    Ta có:

    \left| {z - 1} ight| = \left| {z + 3 - 2i} ight|

    \Leftrightarrow \left| {x - 1 + iy} ight| = \left| {x + 3 + \left( {y - 2} ight)i} ight|

    \Leftrightarrow \sqrt {{{\left( {x - 1} ight)}^2} + {y^2}}  = \sqrt {{{\left( {x + 3} ight)}^2} + {{\left( {y - 2} ight)}^2}}

    \Leftrightarrow  - 2x + 1 = 6x + 9 - 4y + 4 \Leftrightarrow 2x - y + 3 = 0

    Suy ra biểu diễn của số phức là đường thẳng \Delta :2x - y + 3 = 0

    Ta xét: \left| \omega  ight| \geqslant 2\sqrt 5  \Leftrightarrow \left| {z + m + i} ight| \geqslant 2\sqrt 5  \Leftrightarrow \left| {x + m +  + \left( {y + 1} ight)i} ight| \geqslant 2\sqrt 5

    với I\left( { - m; - 1} ight).

    Mà ta có MI \geqslant d\left( {I,\Delta } ight)

    Nên MI \geqslant 2\sqrt 5  \Leftrightarrow d\left( {I,\Delta } ight) \geqslant 2\sqrt 5  \Leftrightarrow \frac{{\left| { - 2m + 4} ight|}}{{\sqrt 5 }} \geqslant 2\sqrt 5  \Leftrightarrow \left| { - 2m + 4} ight| \geqslant 10

    \Leftrightarrow \left[ \begin{gathered}   - 2m + 4 \geqslant 10 \hfill \\   - 2m + 4 \leqslant  - 10 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  m \leqslant  - 3 \hfill \\  m \geqslant 7 \hfill \\ \end{gathered}  ight.

  • Câu 5: Vận dụng

    Tập hợp các điểm biểu diễn các số phức z thỏa mãn phần thực của \frac{{z - 1}}{{z - i}} bằng 0 là đường tròn tâm I, bán kính R (trừ một điểm):

    Giả sử: z = x + yi{\text{ }}\left( {x,y e 0} ight)

    Theo bài ra ta có:

    \frac{{z - 1}}{{z - i}} = \frac{{x + yi - 1}}{{x + yi - i}} = \frac{{x + yi - 1}}{{x + i\left( {y - 1} ight)}} = \frac{{\left( {x + yi - 1} ight)\left( {x - i\left( {y - 1} ight)} ight)}}{{{x^2} + {{\left( {y - 1} ight)}^2}}}

    \Rightarrow \frac{{{x^2} - x + y\left( {y - 1} ight)}}{{{x^2} + {{\left( {y - 1} ight)}^2}}} = 0

    Vậy biểu diễn hình học của số phức z là: {\left( {x - \frac{1}{2}} ight)^2} + {\left( {y - \frac{1}{2}} ight)^2} = \frac{1}{2}

  • Câu 6: Thông hiểu

    Tìm nghiệm của phương trình sau trên tập số phức \mathbb C: {z^4} - {z^3} + \frac{{{z^2}}}{2} + z + 1 = 0 (1)

    Kiểm tra nghiệm z=0 ta dễ dàng nhận xét z=0 không là nghiệm của phương trình đã cho vậy z eq 0.

    Chia hai vế PT (1) cho z2 ta được : ({z^2} + \frac{1}{{{z^2}}}) - (z - \frac{1}{z}) + \frac{1}{2} = 0 (2)

    Đặt t= z - \frac{1}{z} .  Khi đó {t^2} = {z^2} + \frac{1}{{{z^2}}} - 2 \Leftrightarrow {z^2} + \frac{1}{{{z^2}}} = {t^2} + 2

    Phương trình (2) có dạng :t^2-t+\frac{5}{2} = 0 (3)

    \Delta  = 1 - 4.\frac{5}{2} =  - 9 = 9{i^2}

    Vậy PT (3) có 2 nghiệm:    t=\frac{{1 + 3i}}{2};t=\frac{{1 - 3i}}{2} 

    Với  t=\frac{{1 + 3i}}{2},  ta có z - \frac{1}{z} = \frac{{1 + 3i}}{2} \Leftrightarrow 2{z^2} - (1 + 3i)z - 2 = 0(4)

    \Delta  = {(1 + 3i)^2} + 16 = 8 + 6i = 9 + 6i + {i^2} = {(3 + i)^2}

    Vậy PT(4) có 2 nghiệm :

    z=\frac{{(1 + 3i) + (3 + i)}}{4} = 1 + iz= \frac{{(1 + 3i) - (3 + i)}}{4} = \frac{{i - 1}}{2}

    Do đó PT đã cho có 4 nghiệm : z=1+i; z=1-iz=\frac{{i - 1}}{2}; z=\frac{{-i - 1}}{2}

  • Câu 7: Vận dụng

    Biết z_1z_2 là hai nghiệm phức của phương trình: 2{x^2} + \sqrt 3 x + 3 = 0. Khi đó z_1^2 + z_2^2  bằng:

     Ta có: z_1^2 + z_2^2 = {\left( {{z_1} + {z_2}} ight)^2} - 2{z_1}{z_2}

    Áp dụng hệ thức Viet ta có: \left\{ \begin{array}{l}{z_1} + {z_2} =  - \dfrac{{\sqrt 3 }}{2}\\{z_1}{z_2} = \dfrac{3}{2}\end{array} ight.

    Suy ra ta có:z_1^2 + z_2^2 = {\left( { - \frac{{\sqrt 3 }}{2}} ight)^2} - 2.\frac{3}{2} =  - \frac{9}{4}.

  • Câu 8: Vận dụng cao

    Cho số phức z thỏa mãn \left| z ight| = 1. Tìm \min \left| {{z^3} - z + 2} ight|.

     Gọi z = a + bi, với a, b \in \mathbb{R}.

    Theo giả thiết ta có \left| z ight| = 1 suy ra z.\bar z = 1{a^2} + {b^2} = 1, - 1 \le a \le 1.

    Ta có \left| {{z^3} - z + 2} ight| = \left| {{z^3} - z + 2z.\bar z} ight| = \left| z ight|\left| {{z^2} - 1 + 2\bar z} ight|

    = \left| {{a^2} - {b^2} + 2a - 1 + \left( {2ab - 2b} ight)i} ight| = \left| {2\left( {{a^2} + a - 1} ight) + 2b\left( {a - 1} ight)i} ight|

    = \sqrt {4{{\left( {{a^2} + a - 1} ight)}^2} + 4{b^2}{{\left( {a - 1} ight)}^2}}

    = \sqrt {16{a^3} - 4{a^2} - 16a + 8}  = 2\sqrt {4{a^3} - {a^2} - 4a + 2}

    Xét hàm số f\left( x ight) = 4{x^3} - {x^2} - 4x + 2 trên \left[ { - 1;\,1} ight].

    Ta có f'\left( x ight) = 12{x^2} - 2x - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{2}{3}\\x =  - \dfrac{1}{2}\end{array} ight..

    Ta có f\left( { - 1} ight) = 1;f\left( 1 ight) = 1;f\left( {\frac{2}{3}} ight) = \frac{2}{{27}};f\left( { - \frac{1}{2}} ight) = \frac{{13}}{4}.

    Vậy \mathop {\min }\limits_{\left[ { - 1;\,1} ight]} f\left( x ight) = f\left( {\frac{2}{3}} ight) = \frac{2}{{27}}.

    Do đó \min \left| {{z^3} - z + 2} ight| = \frac{{2\sqrt 6 }}{9} khi a = \frac{2}{3}b =  \pm \frac{{\sqrt 5 }}{3}.

  • Câu 9: Thông hiểu

    Cho số phức z =  - 6 - 3i. Tìm phần thực và phần ảo của số phức \overline z.

     Ta có \overline z  = \overline { - 6 - 3i}  =  - 6 + 3i nên suy ra phần thực a = -6; phần ảo b = 3.

  • Câu 10: Thông hiểu

    Cho các số phức z_1 , z_2. Khẳng định nào trong các khẳng định sau là khẳng định đúng?

    \left( I ight):\left| {\frac{{{z_1}}}{{{z_2}}}} ight| = \frac{{\left| {{z_1}} ight|}}{{\left| {{z_2}} ight|}}.

    \left( {II} ight):\left| {{z_1}.{z_2}} ight| = \left| {{z_1}} ight|.\left| {{z_2}} ight|.

    \left( {III} ight):{\left| {{z_1}} ight|^2} = {z_1}^2.

    Áp dụng tính chất số phức, ta có: 

    - Môđun của 1 thương hai số phức thì bằng thương của từng môđun \left| {\frac{{{z_1}}}{{{z_2}}}} ight| = \frac{{\left| {{z_1}} ight|}}{{\left| {{z_2}} ight|}}

    -  Môđun của 1 tích hai số phức thì bằng tích của từng môđun  \left| {{z_1}.{z_2}} ight| = \left| {{z_1}} ight|.\left| {{z_2}} ight|

    Vậy khẳng địn (I) và (II) là đúng.

  • Câu 11: Thông hiểu

    Tính tổng tất cả các nghiệm của phương trình sau: (z^2 + z)^2 + 4(z^2 + z) -12 = 0 là?

     Đặt t = z^2 + z, khi đó phương trình đã cho có dạng:

    t^2 + 4t – 12 = 0 \Leftrightarrow\left[ \begin{array}{l}t =  - 6\\t = 2\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}{z^2} + z - 6 = 0\\{z^2} + z - 2 = 0\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}z = \dfrac{{ - 1 + \sqrt {23} i}}{2}\\z = \dfrac{{ - 1 - \sqrt {23} i}}{2}\\z = 1\\z =  - 2\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm có tổng là

    \frac{{ - 1 + \sqrt {23} i}}{2} + \frac{{ - 1 - \sqrt {23} i}}{2} + 1 - 2 =  - 1 + 1 - 2 =  - 2

  • Câu 12: Thông hiểu

    Cho hai số phức {z_1} = 2 + i,{z_2} = 3 - 4i. Môđun của số phức \left( {{z_1} - {z_2}} ight) là:

     Ta có: \left| {{z_1} - {z_2}} ight| = \left| {2 + i - 3 + 4i} ight| = \left| { - 1 + 5i} ight| = \sqrt {26}

  • Câu 13: Vận dụng cao

    Gọi (C) là tập hợp các điểm trên mặt phẳng biểu diễn số phức z = x - 1 + yi,(x,y \in \mathbb{R})

    thỏa mãn \left| z ight| = 1 và N là điểm biểu diễn số phức {z_0} = 1 - i. Tìm điểm thuộc (C) sao

    cho có độ dài lớn nhất.

     Ta có: M\left( {x;y} ight) nằm trên đường tròn (C): {\left( {x - 1} ight)^2} + {y^2} = 1 . Tâm I(1; 0)

    Do N\left( {1; - 1} ight) \in \left( C ight) nên có độ dài lớn nhất khi MN là đường kính, hay I(1; 0) là trung điểm của MN. Vậy M(1; 1)

    Nhận xét: đây là bài toán tọa độ lớp , khi cho một đường tròn (C) và một điểm N. Tìm điểm M trên (C) sao cho đạt min, max.

  • Câu 14: Thông hiểu

    Số phức liên hợp của số phức 2022i - 2023

     \overline z = \overline {a + bi} = a - bi

    \Rightarrow \overline z  = \overline {2022i - 2023}  = \overline { - 2023 + 2022i}  =  - 2023 - 2022i

  • Câu 15: Nhận biết

    Số phức liên hợp của số phức 5 - 3i là

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {5 - 3i}  = 5 - ( - 3i) = 5 + 3i

  • Câu 16: Thông hiểu

    Kí hiệu z_0 là nghiệm phức có phần ảo dương của phương trình 4{z^2} - 16z + 17 = 0. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức w = i{z_0}?

     Ta có:

    4{z^2} - 16z + 17 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_0} = 2 + \dfrac{1}{2}i\\z = 2 - \dfrac{1}{2}i\end{array} ight.

    \Rightarrow w = i{z_0} =  - \frac{1}{2} + 2i

  • Câu 17: Thông hiểu

    Số nghiệm của phương trình: (z^2 + 3z +6)^2 + 2z(z^2 + 3z +6) – 3z^2 = 0 là?

     Đặt t = z^2 + 3z +6 phương trình đã cho có dang:

    t^2 +2zt – 3z^2 = 0 \Leftrightarrow (t – z)(t+3z) = 0 \Leftrightarrow\left[ \begin{array}{l}t = z\\t =  - 3z\end{array} ight.

    + Với t = z \Leftrightarrow z^2 + 3z +6 –z = 0  \Leftrightarrow  z^2 + 2z + 6 = 0  \Leftrightarrow\left[ \begin{array}{l}z =  - 1 + \sqrt 5 i\\z =  - 1 - \sqrt 5 i\end{array} ight.

    + Với t = -3z \Leftrightarrow  z^2 + 3z +6 +3z = 0 \Leftrightarrow z^2 + 6z + 6 = 0 \Leftrightarrow\left[ \begin{array}{l}z =  - 3 + \sqrt 3 \\z =  - 3 - \sqrt 3 \end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm.

  • Câu 18: Thông hiểu

    Số phức z thỏa mãn: \left( {1 + i} ight)z + \left( {2 - 3i} ight)\left( {1 + 2i} ight) = 7 + 3i là:

     Ta áp dụng các quy tắc thực hiện phép tính, có:

    \begin{matrix}  \left( {1 + i} ight)z + \left( {2 - 3i} ight)\left( {1 + 2i} ight) = 7 + 3i \hfill \\   \Leftrightarrow (1 + i)z = 7 + 3i - (2 - 3i)(1 + 2i) \hfill \\   \Leftrightarrow (1 + i)z =  - 1 + 2i \hfill \\   \Leftrightarrow z = \dfrac{{ - 1 + 2i}}{{1 + i}} \hfill \\   \Leftrightarrow z = \dfrac{1}{2} + \dfrac{3}{2}i \hfill \\ \end{matrix}

    Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.

  • Câu 19: Thông hiểu

    Cho z = x + yi ;\,\, x, y \in \mathbb{Z} là nghiệm của phương trình sau: z^3=18+26i.

    Tính M=x+2020y

    M=2023 || 2023 || hai nghìn không trăm hai mưới ba

    Đáp án là:

    Cho z = x + yi ;\,\, x, y \in \mathbb{Z} là nghiệm của phương trình sau: z^3=18+26i.

    Tính M=x+2020y

    M=2023 || 2023 || hai nghìn không trăm hai mưới ba

    Ta có: (x + yi)^3 = x^3 – 3xy^2 + (3x^2y – y^3)i = 18 + 26i

    Theo định nghĩa hai số phức bằng nhau, ta được: \left\{ \begin{array}{l}{x^3} - 3x{y^2} = 18\\3{x^2}y - {y^3} = 26\end{array} ight.

    Từ hệ trên, rõ ràng x eq 0y eq 0.

    Đặt y= tx , hệ \Rightarrow 18(3x^2y – y^3) = 26(x^3 – 3xy^2 )

    \Rightarrow 18(3t-t^3 ) = 26(1-3t^2)

    \Leftrightarrow 18t^3 – 78t^2 – 54t+26 = 0

    \Leftrightarrow  ( 3t- 1)(3t^2 – 12t – 13) = 0.

    x, y \in \mathbb{Z} \Rightarrow t \in \mathbb{Q} \Rightarrow t = \frac{1}{3} \Rightarrow x = 3 ; y = 1 \mbox{ hay } z = 3 + i.

    \Rightarrow M= x+2020y=3+2020.1=2023

  • Câu 20: Vận dụng cao

    Cho hai số phức {z_1},{z_2} thỏa mãn \left| {{z_1} + 1 - i} ight| = 2{z_2} = i{z_1}.

    Tìm giá trị nhỏ nhất m của biểu thức \left| {{z_1} - {z_2}} ight|?

    \left| {{z_1} + 1 - i} ight| = 2 nên điểm biểu diễn {M_1} của {z_1} thuộc đường tròn tâm I(-1; 1) bán kính R = 2

    {z_2} = i{z_1} nên điểm {M_2} (điểm biểu diễn của {z_2}) là ảnh của {M_1} qua phép quay tâm O, góc quay {90^0}

    => \left| {{z_1} - {z_2}} ight| = {M_1}{M_2} = \sqrt 2 O{M_1} ngắn nhất khi O{M_1} ngắn nhất

    Ta có: \min O{M_1} = R - OI = 2 - \sqrt 2

    Vậy: m = \sqrt 2 \left( {2 - \sqrt 2 } ight) = 2\sqrt 2  - 2

    Do \left| {{z_1} + 1 - i} ight| = 2 nên điểm biểu diễn của thuộc đường tròn tâm I\left( { - 1;1} ight) bán kính R  = 2.

    \left| {{z_1} - {z_2}} ight| = \left| {{z_1} - i{z_1}} ight| = \left| {\left( {1 - i} ight){z_1}} ight| = \sqrt 2 \left| {{z_1}} ight| = \sqrt 2 OM \geqslant \sqrt 2 \left( {R - OI} ight) = \sqrt 2 \left( {2 - \sqrt 2 } ight) = 2\sqrt 2  - 2

  • Câu 21: Nhận biết

    Phương trình {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 có tập nghiệm là:

    Dễ thấy z=-i  là nghiệm của {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0

    Nên {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 \Leftrightarrow \,(z + i)({z^2} + (4 - i)z + 3 - 3i) = 0

    \Leftrightarrow \left[ \begin{array}{l}z + i = 0\\{z^2} + (4 - i)z + 3 - 3i = 0\,\,\,(*)\end{array} ight.

    Giải (*), ta được:

    \Delta  = {(4 - i)^2} - 12 + 12i = 16 - 1 - 8i - 12 + 12i

    = 3 + 4i = 4 + 2.2.i + {i^2} = {(2 + i)^2}

    Vậy có hai căn bậc hai là: 2+i-2-i

    Do đó nghiệm của pt là \left[ \begin{array}{l}z = \dfrac{{ - 4 + i + 2 + i}}{2} =  - 1 + i\\z = \dfrac{{ - 4 + i - 2 - i - 2}}{2} =  - 3\end{array} ight.

    Vậy PT có 3 nghiệm là –i, -3, -1+i.

  • Câu 22: Nhận biết

    Xác định phần ảo của số phức z = 18 - 12i.

     Phần ảo của số phức z = 18 - 12i là -12

  • Câu 23: Vận dụng

    Cho {z_1},{z_2} là hai số phức thỏa mãn \left| {2z - i} ight| = \left| {2 + iz} ight|, biết \left| {{z_1} - {z_2}} ight| = 1. Tính giá trị của biểu thức P = \left| {{z_1} + {z_2}} ight|

    Cách 1: + Đặt z = x + yi,x,y \in \mathbb{R} ta có

    \left| {2z - i} ight| = \left| {2 + iz} ight| \Leftrightarrow \left| {2x + \left( {2y - 1} ight)i} ight| = \left| {\left( {2 - y} ight) + xi} ight|

    \sqrt {4{x^2} + {{\left( {2y - 1} ight)}^2}}  = \sqrt {{{\left( {2 - y} ight)}^2} + {x^2}}  \Leftrightarrow 4{x^2} + 4{y^2} - 4y + 1 = 4 - 4y + {y^2} + {x^2}

    \Leftrightarrow {x^2} + {y^2} = 1 \Rightarrow \left| z ight| = 1 \Rightarrow \left| {{z_1}} ight| = \left| {{z_2}} ight| = 1

    + Sử dụng công thức: \forall {z_1},{z_2} \in \mathbb{C} ta có

    {\left| {{z_1} + {z_2}} ight|^2} + {\left| {{z_1} - {z_2}} ight|^2} = 2\left( {{{\left| {{z_1}} ight|}^2} + {{\left| {{z_2}} ight|}^2}} ight)

    => P = \sqrt 3

    Cách 2.

    + Biến đổi: \left| {iz + 2} ight| = \left| { - i\left( {iz + 2} ight)} ight| = \left| {z - 2i} ight|

    Ta có \left| {2z - i} ight| = \left| {z - 2i} ight| \Rightarrow {\left| {2z - i} ight|^2} = {\left| {z - 2i} ight|^2} \Rightarrow \left| z ight| = 1 \Rightarrow \left| {{z_1}} ight| = \left| {{z_2}} ight| = 1

    + Sử dụng công thức bình phương mô đun:

    {\left| {m{z_1} + n{z_2}} ight|^2} = {m^2}{z_1}^2 + 2mn{z_1}{z_2}cos\left( {{z_1},{z_2}} ight) + {n^2}{z_2}^2

    Trong đó \left( {{z_1},{z_2}} ight) là góc \widehat {MON} với M, N lần lượt là các điểm biểu diễn số phức {z_1},{z_2} trên mặt phẳng phức

    \left| {{z_1} - {z_2}} ight| = 1 \Rightarrow {\left| {{z_1} - {z_2}} ight|^2} = 1

    \Rightarrow {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} - 2\left| {{z_1}} ight|.\left| {{z_2}} ight|.cos\left( {{z_1},{z_2}} ight) = 1 \Rightarrow cos\left( {{z_1},{z_2}} ight) = \frac{1}{2}

    {P^2} = {\left| {{z_1} + {z_2}} ight|^2} = 1 \Rightarrow {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} + 2\left| {{z_1}} ight|.\left| {{z_2}} ight|.cos\left( {{z_1},{z_2}} ight) = 3 \Rightarrow P = \sqrt 3

    Vậy {P^2} = {\left| {{z_1} + {z_2}} ight|^2} = 1 \Rightarrow {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} + 2\left| {{z_1}} ight|.\left| {{z_2}} ight|.cos\left( {{z_1},{z_2}} ight) = 3 \Rightarrow P = \sqrt 3

  • Câu 24: Nhận biết

    Số phức 5 + 6i có phần thực bằng 

     Số phức z = a + bi có b được gọi là phần thực.

  • Câu 25: Nhận biết

    Nghiệm của phương trình sau trên trường số phức là:z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    \Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow  (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm:z = {m{\{ }}1;\,\,3;\,\,2i;\,\, - 2i{m{ \} }}.

  • Câu 26: Vận dụng

    Cho số phức z thoả mãn \frac{1+i}{z} là số thực và |z-2|=m với m∈\mathbb{R}. Gọi m_0 là một giá trị của m để có đúng một số phức thoả mãn bài toán. Khi đó:

    Giả sử z=a+bi,(a,b∈ \mathbb R)..

    Đặt: w=\frac{1+i}{z}=\frac{1+i}{a+bi}

    =\frac{1}{a^2+b^2}[a+b+(a-b)i]=\frac{a+b}{a^2+b^2 }+\frac{a-b}{a^2+b^2 } i.

    w là số thực nên: a=b(1).

    Mặt khác:  |a-2+bi|=m⇔(a-2)^2+b^2=m^2

    Thay (1) vào (2) được: (a-2)^2+a^2=m^2⇔2a^2-4a+4-m^2=0

    Để có đúng một số phức thoả mãn bài toán thì PT (3) phải có nghiệm duy nhất a. \Leftrightarrow \Delta '=0 \Leftrightarrow 4-2(4-m^2 )=0 \Leftrightarrow m^2=2 \Leftrightarrow m= \sqrt 2 \in (1;\frac {3}{2})

    (Vì m là mô-đun).

  • Câu 27: Thông hiểu

    Cho số phức z =  - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i. Số phức w = 1 + z + {z^2},\left| w ight| bằng:

     Ta có: \left| w ight| = \left| {1 + z + {z^2}} ight| = \left| {1 - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i - \frac{1}{2} - \frac{{\sqrt 3 }}{2}i} ight| = 0

  • Câu 28: Nhận biết

    Số phức có phần thực bằng 3 và phần ảo bằng 4 là

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 29: Thông hiểu

    Tìm các căn bậc hai của số phức z = 5 + 12i

     Giả sử m + ni (m; n \in R) là căn bậc hai của z

    Ta có: {(m + ni)^2} = 5 + 12i

    \Leftrightarrow {m^2} + 2mni + {n^2}{i^2} = 5 + 12i \Leftrightarrow {m^2} + 2mni - {n^2} = 5 + 12i

    \Leftrightarrow \left\{ \begin{gathered}  {m^2} - {n^2} = 5 \hfill \\  2mn = 12 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  {m^2} - {n^2} = 5(1) \hfill \\  m = \frac{6}{n}(2) \hfill \\ \end{gathered}  ight.

    Thay (2) vào (1) ta có: {\left( {\frac{6}{n}} ight)^2} - {n^2} = 5 \Leftrightarrow 36 - {n^4} = 5{n^2}

    \Leftrightarrow {n^4} + 5{n^2} - 36 = 0 \Leftrightarrow {n^2} = 4;{n^2} =  - 9(loai)

    \left[ \begin{gathered}  n = 2 \Rightarrow m = 3 \hfill \\  n =  - 2 \Rightarrow m =  - 3 \hfill \\ \end{gathered}  ight.

    Vậy z có hai căn bậc hai là 3+2i và -3-2i.

  • Câu 30: Thông hiểu

    Cho số phức z = 3 + 2i. Tìm số phức w = 2i - \left( {3 - i} ight)\overline z  + 2iz - 1?

     Ta có: w = 2i - \left( {3 - i} ight)\overline z  + 2iz - 1

    = 2i - \left( {3 - i} ight)\left( {3 - 2i} ight) + 2i\left( {3 + 2i} ight) - 1

    =  - 12 + 17i

  • Câu 31: Thông hiểu

    Cho số phức z thỏa mãn z = 1 + i + {i^2} + {i^3} + ... + {i^{2022}}. Khi đó phần thực và phần ảo của z lần lượt là?

     Ta có: z = 1 + i\frac{{1 - {i^{2022}}}}{{1 - i}} = i

    Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.

  • Câu 32: Vận dụng

    Cho hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự z_0, z_1, khác 0 và

    thỏa mãn đẳng thức z_0^2+z_1^2=z_0z_1. Hỏi ba điểm O, A, B tạo thành tam giác gì? (O là gốc tọa độ) ? Chọn phương án đúng và đầy đủ nhất.

    Hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự z_0, z_1.

    Theo giả thiết suy ra: OA=|z_0|, OB=|z_1|AB=|z_1-z_0|.

    Ta có: z_0^2+z_1^2=z_0z_1 \Leftrightarrow z_0^2-z_0z_1+z_1^2=0.

    \Leftrightarrow (z_0 +z_1)(z_0^2-z_0z_1+z_1^2)=0

    \Leftrightarrow z_0^3+z_1^3=0 \Leftrightarrow z_0^3=-z_1^2\Leftrightarrow |z_0|=|z_1| \Leftrightarrow OA=OB

    Xét (z_1-z_0)^2=z_0^2+z_1^2-2z_0z_1=-z_0z_1 \Rightarrow |z_1-z_0|^2=|z_1|.|z_0|

    \Leftrightarrow AB^2=OA.OB \Leftrightarrow AB=OB.

    Vậy OA=OB=AB hay tam giác OAB là tam giác đều.

  • Câu 33: Vận dụng

    Phương trình của tập hợp các điểm biểu diễn số phức z thỏa mãn \left| {z + i} ight| = \left| {\overline z  + 1} ight| là?

     Giả sử: z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight)

    Theo bài ra ta có: \left| {z + i} ight| = \left| {\overline z  + 1} ight|

    \Leftrightarrow \left| {x + \left( {y + 1} ight)i} ight| = \left| {\left( {x + 1} ight) - yi} ight|

    \Leftrightarrow {x^2} + {\left( {y + 1} ight)^2} = {\left( {x + 1} ight)^2} + {\left( { - y} ight)^2}

    \Leftrightarrow 2x - 2y = 0

    \Leftrightarrow x - y = 0

  • Câu 34: Vận dụng cao

    Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn z.\bar z = 1\left| {z - \sqrt 3  + i} ight| = m. Tìm số phần tử của S. 

    2 || Hai || hai

    Đáp án là:

    Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn z.\bar z = 1\left| {z - \sqrt 3  + i} ight| = m. Tìm số phần tử của S. 

    2 || Hai || hai

    Điều kiện: m > 0.

    Đặt z = x + yi\left( {x,y \in \mathbb{R}} ight).

    Theo giả thiết z.\bar z = 1 \Leftrightarrow {\left| z ight|^2} = 1 \Leftrightarrow {x^2} + {y^2} = 1\left( {{C_1}} ight).

    \left( {{C_1}} ight) là đường tròn tâm O(0; 0), bán kính {R_1} = 1.

    Mặt khác  {R_1} = 1

    \left( {{C_2}} ight) là đường tròn tâm I\left( {\sqrt 3 ; - 1} ight), bán kính {R_2} = m.

    Để tồn tại duy nhất số phức z thì \left( {{C_1}} ight)\left( {{C_2}} ight) tiếp xúc ngoài hoặc trong.

    TH1: \left( {{C_1}} ight)\left( {{C_2}} ight) tiếp xúc ngoài khi và chỉ khi {R_1} + {R_2} = OI \Leftrightarrow 1 + m = 2 \Leftrightarrow m = 1\left( {TM} ight).

    TH2: \left( {{C_1}} ight)\left( {{C_2}} ight) tiếp xúc trong khi và chỉ khi \left[ \begin{array}{l}{R_1} + OI = {R_2} \Leftrightarrow 1 + 2 = m \Leftrightarrow m = 3\,\,\,\,\,\,\left( {TM} ight)\\OI + {R_2} = {R_1} \Leftrightarrow m + 2 = 1 \Leftrightarrow m =  - 1\,\,\,\,\,\,(L)\end{array} ight..

    Vậy S = \left\{ {1,3} ight\}.

  • Câu 35: Thông hiểu

    Cho hai số phức {z_1} = 1 - i;{z_2} = 3 + 2i. Phần thực và phần ảo của số phức {z_1},{z_2} tương ứng bằng:

     Ta có: {z_1}.{z_2} = \left( {1 - i} ight)\left( {3 + 2i} ight) = 5 - i

  • Câu 36: Nhận biết

    Cho số phức {z_1} = 1 + 2i{z_2} =  - 1 - 2i. Khẳng định nào sau đây là khẳng định đúng?

     Ta có: {z_1}.{z_2} =  - {\left( {1 + 2i} ight)^2} =  - \left( {1 + 4i - 4} ight) = 3 - 4i

    Vậy {z_1}.{z_2} = 3 - 4i là khẳng định đúng.

  • Câu 37: Nhận biết

    Giá trị của z = 1 + i + {i^2} + ... + {i^{2023}} là?

    Ta có: z = \frac{{{i^{2022}} - 1}}{{i - 1}} = 1 + i

    (Áp dụng công thức: {S_n} = 1 + p + {p^2} + ... + {p^n} = \frac{{{p^{n - 1}} - 1}}{{p - 1}})

  • Câu 38: Nhận biết

    Số phức liên hợp của số phức 3 - 4i là:

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {3 - 4i}  = 3 - ( - 4i) = 3 + 4i

  • Câu 39: Vận dụng

    Cho số phức z thỏa mãn \left( {1 + 3i} ight)z + 2i =  - 4. Điểm nào sau đây là điểm biểu diễn của z trong các điểm M, N, P, Q ở hình bên?

    Ta có: \left( {1 + 3i} ight)z + 2i =  - 4 \Leftrightarrow z = \frac{{ - 4 - 2i}}{{1 + 3i}} =  - 1 + i

  • Câu 40: Vận dụng cao

    Gọi M và m lần lượt là giá trị lớn2M - m = \frac{5}{2} nhất và giá trị nhỏ nhất của P = \left| {\frac{{z + i}}{z}} ight| với z là số phức khác 0 và thỏa mãn \left| z ight| \geqslant 2. Tính 2M - m

     Ta có P = \left| {1 + \frac{i}{z}} ight| \leqslant 1 + \frac{1}{{\left| z ight|}} \leqslant \frac{3}{2}

    Mặt khác: \left| {1 + \frac{i}{z}} ight| \geqslant 1 - \frac{1}{{\left| z ight|}} \geqslant \frac{1}{2}

    Vậy giá trị nhỏ nhất của P là \frac{1}{2}, xảy ra khi z =  - 2i giá trị lớn nhất của P bằng \frac{3}{2} xảy ra khi z =  2i

    => 

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Số phức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo