Đề kiểm tra 45 phút Chương 5 Phương pháp tọa độ trong không gian

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 5. Phương pháp tọa độ trong không gian được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian Oxyz, cho hai mặt phẳng (P):x + 2y - 2z + 2018 = 0,(Q):x +
my + (m - 1)z + 2017 = 0 (với m là tham số thực). Khi hai mặt phẳng (P)(Q) tạo với nhau một góc nhỏ nhất thì điểm M nào dưới đây nằm trong (Q) ?

    Ta có: (P) có 1 VTPT {\overrightarrow{n}}_{P} = (1;2; - 2),(Q) có 1 VTPT {\overrightarrow{n}}_{Q} = (1;m;m
- 1).

    Gọi \alpha là góc giữa (P)(Q).

    Ta có:

    cos\alpha = \frac{\left|
{\overrightarrow{n}}_{P} \cdot {\overrightarrow{n}}_{Q} ight|}{\left|
{\overrightarrow{n}}_{P} ight| \cdot \left| {\overrightarrow{n}}_{Q}
ight|} = \frac{|1 + 2m - 2m + 2|}{3\sqrt{1 + m^{2} + (m - 1)^{2}}} =
\frac{1}{\sqrt{2m^{2} - 2m + 2}} = \frac{1}{\sqrt{2\left( m -
\frac{1}{2} ight)^{2} + \frac{3}{2}}}.

    Do 0 \leq \alpha \leq 90^{\circ} nên \alpha nhỏ nhất khi cos\alpha lớn nhất \Leftrightarrow \sqrt{2\left( m - \frac{1}{2}
ight)^{2} + \frac{3}{2}} nhỏ nhất

    \Leftrightarrow m =
\frac{1}{2}.

    \Rightarrow (Q):2x + y - z + 4034 = 0
\Rightarrow M( - 2017;1;1) \in (Q).

  • Câu 2: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, phương trình đường thẳng tiếp xúc với mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} +
(z - 3)^{2} = 81 tại điểm P( - 5; -
4;6) là:

    Mặt cầu (S) có tâm I(1; 2; 3).

    Gọi (α) là mặt phẳng cần tìm.

    Do (α) tiếp xúc với (S) tại P nên mặt phẳng (α) đi qua P và có vectơ pháp tuyến \overrightarrow{n} =
\overrightarrow{IP} = ( - 6; - 6;3)

    Phương trình mặt phẳng (α) là

    - 6(x + 5) - 6(y + 4) + 3(z - 6) =
0

    \Leftrightarrow 2x + 2y - z + 24 =
0

  • Câu 3: Vận dụng

    Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)

    A basketball on the groundDescription automatically generated

    Trả lời: 23,9 cm

    Đáp án là:

    Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)

    A basketball on the groundDescription automatically generated

    Trả lời: 23,9 cm

    Ta đặt hệ trục vào căn phòng sao cho có hai bức tường là mặt (Oxz),(Oyz), và nền là (Oxy)

    Vậy bài toán dẫn đến việc tìm đường kính của mặt cầu tiếp xúc với 3 mặt phẳng toạ độ và chứa điểm M(17\ ;\ 18\ ;\ 21).

    Ta có thể gọi phương trình mặt cầu là (S):(x - a)^{2} + (y - b)^{2} + (z - c)^{2} =
R^{2}, với a,b,c,R >
0

    Do mặt cầu tiếp xúc với các mặt phẳng toạ độ nên a = b = c = R

    \Rightarrow (S):(x - a)^{2} + (y -
a)^{2} + (z - a)^{2} = a^{2}

    Do M(17\ ;\ 18\ ;\ 21) \in (S) nên (17 - a)^{2} + (18 - a)^{2} + (21 -
a)^{2} = a^{2}.

    \Rightarrow 2a^{2} - 112a + 1054 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = 28 - \sqrt{257} \\
a = 28 + \sqrt{257} \\
\end{matrix} ight.

    Vì quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm nên a = 28 - \sqrt{257} thỏa.

    Vậy đường kính quả bóng bằng 2a = 56 -
2\sqrt{257} \approx 23,9\ (cm).

  • Câu 4: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, cạnh bên SA = a và vuông góc với mặt phẳng đáy. Gọi M là trung điểm cạnh SD. Tan của góc tạo bởi hai mặt phẳng (AMC) và (SBC) bằng:

    Hình vẽ minh họa

    Chọn hệ trục tọa độ sao cho A \equiv
O, như hình vẽ:

    Khi đó ta có:

    \overrightarrow{n_{1}} =\lbrack\overrightarrow{SB},\overrightarrow{SC}brack = \left(2a^{2};0;4a^{2} ight)\overrightarrow{n_{2}} =\lbrack\overrightarrow{MA},\overrightarrow{MC}brack = \left( a^{2}; -a^{2};2a^{2} ight)

    \overrightarrow{SB} = (2a;0; -a),\overrightarrow{SC} = (2a;2a; - a),\overrightarrow{MA} = \left( 0; -a; - \frac{a}{2} ight),\overrightarrow{MC} = \left( 2a;a; -\frac{a}{2} ight)

    A(0;0;0),B(2a;0;0),D(0;2a;0),C(2a;2a;0),S(0;0;a),M\left(0;a;\frac{a}{2} ight)

    Gọi \alpha\left( 0^{\circ} \leq \alpha
\leq 90^{\circ} ight) là góc tạo bởi hai mặt phẳng (AMC)(SBC).

    Ta có \cos\alpha = \left| \cos\left(
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ight) ight| =
\frac{\left| \overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight| \cdot \left|
\overrightarrow{n_{2}} ight|}

    = \frac{\left| 2a^{2} \cdot a^{2} +
4a^{2} \cdot 2a^{2} ight|}{\sqrt{\left( 2a^{2} ight)^{2} + \left(
4a^{2} ight)^{2}} \cdot \sqrt{\left( a^{2} ight)^{2} + \left( -
a^{2} ight)^{2} + \left( 2a^{2} ight)^{2}}}

    = \frac{10a^{4}}{\sqrt{20 \cdot 6 \cdot
\left( a^{4} ight)^{2}}} = \frac{5}{\sqrt{30}}

    \tan^{2}\alpha =
\frac{1}{\cos^{2}\alpha} - 1 = \left( \frac{\sqrt{30}}{5} ight)^{2} -
1 = \frac{5}{25}.

    Suy ra \tan\alpha =\frac{\sqrt{5}}{5}.

  • Câu 5: Thông hiểu

    Trong không gian Oxyz, cho điểm A(0;1;1) và hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 1 \\
y = - 1 + t \\
z = t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d_{2}:\frac{x - 1}{3} = \frac{y - 2}{1} =
\frac{z}{1}. Gọi d là đường thẳng đi qua điểm A, cắt đường thẳng d_{1} và vuông góc với đường thẳng d_{2}. Đường thẳng d đi qua điểm nào trong các điểm dưới đây?

    Gọi \left\{ \begin{matrix}
B = d_{1} \cap d \\
B \in d_{1} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
B( - 1; - 1 + t;t) \\
\overrightarrow{AB} = ( - 1;t - 2;t - 1) \\
\end{matrix} ight.

    d_{2} có một vectơ chỉ phương \overrightarrow{u} = (3;1;1).

    Do d\bot d_{2} nên \overrightarrow{u}.\overrightarrow{AB} = 0
\Leftrightarrow - 3 + t - 2 + t - 1 = 0

    \Leftrightarrow t = 3 \Rightarrow
\overrightarrow{AB} = ( - 1;1;2)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AN} = (2;0;6);\overrightarrow{AQ} = (3;1;4) \\
\overrightarrow{AP} = ( - 2; - 4;10);\overrightarrow{AM} = (1; - 1; - 2)
\\
\end{matrix} ight.

    Suy ra đường thẳng d đi qua M.

  • Câu 6: Thông hiểu

    Tìm tọa độ giao điểm của hai đường thẳng:

     Theo đề bài, ta biến đổi được (b) có dạng:

    \begin{array}{l}\left( b ight):\frac{{x - 2}}{2} = \frac{{y + 3}}{1} = \frac{{z - 1}}{2}\\ \Rightarrow \frac{{x - 2}}{2} = \frac{{y + 3}}{1} = \frac{{z - 1}}{2} = t\\ \Rightarrow \left\{ \begin{array}{l}x - 2 = 2t\\y + 3 = t\\z - 1 = 2t\end{array} ight.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 2 + 2t\\y =  - 3 + t\\z = 1 + 2t\end{array} ight.\end{array}

    Thay x, y, z vào phương trình x+2y+z =9 , ta có:

    => Tọa độ giao điểm của (a) và (b): A (0, - 4, - 1)

  • Câu 7: Vận dụng cao

    Cho ba mặt phẳng \left( P ight):2x + 2y - 6z + 5 = 0;\,\,\,\,\left( Q ight):3x + 4y + 2z - 6 = 0(R) qua hai điểm A\left( {1,3, - 1} ight);\,\,\,\,B\left( { - 2,4, - 1} ight) và vuông góc với (R)  . Câu nào sau đây đúng? (Có thể chọn nhiều hơn 1 đáp án)

    Theo đề bài ta có \left( R ight) \bot \left( P ight) \Rightarrow Một vecto chỉ phương của (R) là: \overrightarrow {{n_P}}  = \left( {2,2, - 6} ight) \Rightarrow \overrightarrow a  = \left( { - 1, - 1,3} ight)

    => A đúng

    Vecto chỉ phương thứ hai của (R) là: \overrightarrow b  = \overrightarrow {AB}  = \left( { - 3,1,1} ight)

    Một vecto pháp tuyến của (R) là: \overrightarrow {{n_R}}  = \left[ {\overrightarrow a ,\overrightarrow b } ight] =  - 4\left( {1,2,1} ight)

    \Rightarrow \overrightarrow n  = 4\left( {1,2,1} ight)

    => B đúng.

    Vecto chỉ phương của (D) là: \overrightarrow d  = 2\left( {14, - 11,1} ight)

    Ta có: \frac{1}{{14}} e  - \frac{2}{{11}} e \frac{1}{1},nên (R) không vuông góc với (D).

  • Câu 8: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(0; 8; 2), điểm B(9; −7; 23) và mặt cầu (S) : (x − 5)^2 + (y + 3)^2 + (z − 7)^2 = 72. Gọi (P) là mặt phẳng qua A và tiếp xúc với (S) sao cho khoảng cách từ B đến (P) là lớn nhất. Biết \vec{n} = (1; m; n) là một vectơ pháp tuyến của (P). Tính mn.

    Mặt cầu (S) có tâm I(5; −3; 7); bán kính R = 6\sqrt{2}.

    Phương trình mặt phẳng (P) : 1(x − 0) + m(y − 8) + n(z − 2) = 0.

    Vì (P) và (S) tiếp xúc nhau nên:

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|5 - 11m + 5n|}{\sqrt{1 + m^{2} + n^{2}}} =
6\sqrt{2}

    \Leftrightarrow |5 - 11m + 5n| =
6\sqrt{2}\sqrt{1 + m^{2} + n^{2}}(*)

    Ta có: d\left( B;(P) ight) = \frac{|9 -
15m + 21n|}{\sqrt{1 + m^{2} + n^{2}}}

    Ta có:

    |9 - 15m + 21n| = |5 - 11m + 5n + 4 - 4m
+ 16n|

    \leq |5 - 11m + 5n| + |4 - 4m +
16n|(**)

    Áp dụng BĐT Bunhiacopxki ta có

    (4 - 4m + 16n)^{2} \leq \left( 4^{2} +
4^{2} + 16^{2} ight)\left( 1 + m^{2} + n^{2} ight) = 288\left( 1 +
m^{2} + n^{2} ight)

    \Rightarrow |4 - 4m + 16n| \leq
12\sqrt{2}.\sqrt{1 + m^{2} + n^{2}}(***)

    Từ (*); (**); (***) ta có:

    |9 - 15m + 21n| \leq 18\sqrt{2}\sqrt{1 +
m^{2} + n^{2}}

    Dấu “=” xảy ra khi và chỉ khi: \left\{\begin{matrix}|5 - 11m + 5n| = 6\sqrt{2}\sqrt{1 + m^{2} + n^{2}} \\(5 - 11m + 5n)(4 - 4m + 16n) \geq 0 \\\dfrac{1}{4} = \dfrac{m}{- 4} = \dfrac{n}{16} \\\end{matrix} ight.

    \Rightarrow m = - 1;n = 4 \Rightarrow mn
= - 4.

  • Câu 9: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d:\frac{x + 2}{4} = \frac{y - 1}{- 4} = \frac{z +
2}{3} và mặt phẳng (P):2x - y + 2z
+ 1 = 0. Đường thẳng ∆ đi qua E( -
2;1; - 2) song song với (P) đồng thời tạo với d góc bé nhất. Biết rằng \Delta có một vectơ chỉ phương \overrightarrow{u} = (m;n;1). Tính T = m^{2} + n^{2}

    Ta có: ∆ // (P) nên \overrightarrow{u_{(\Delta)}}\bot\overrightarrow{u_{(d)}}
\Rightarrow \overrightarrow{u_{(\Delta)}}.\overrightarrow{u_{(d)}} =
0

    \Rightarrow n = 2m + 2 \Rightarrow
\overrightarrow{u_{(\Delta)}} = (m;2m + 2;1)

    Do đó, gọi α góc giữa hai đường thẳng ∆ và d, ta có:

    \cos\alpha = \frac{\left|\overrightarrow{u_{(\Delta)}}.\overrightarrow{u_{(d)}} ight|}{\left|\overrightarrow{u_{(\Delta)}} ight|.\left| \overrightarrow{u_{(d)}}ight|}= \frac{|4m + 5|}{\sqrt{41\left( 5m^{2} + 8m + 5 ight)}}=\frac{1}{\sqrt{41}}.\sqrt{\frac{16m^{2} + 40m + 25}{5m^{2} + 8m +5}}

    Góc α nhỏ nhất khi và chỉ khi cos α đạt giá trị lớn nhất.

    Xét hàm số f(m) = \frac{16m^{2} + 40m +
25}{5m^{2} + 8m + 5} trên \mathbb{R}, ta có:

    f'(m) = \frac{- 72m^{2} -90m}{\left( 5m^{2} + 8m + 5 ight)^{2}} = 0 \Leftrightarrow\left\lbrack \begin{matrix}m = 0 \\m = - \dfrac{5}{4} \\\end{matrix} ight.

    Bảng biến thiên:

    Suy ra max \max_{x\mathbb{\in R}}f(m) =
f(0) = 5.

    Với m = 0 suy ra n = 2. Do đó T = -4.

  • Câu 10: Thông hiểu

    Trong hệ tọa độ Oxyz, cho hai đường thẳng chéo nhau \left( d_{1}
ight):\frac{x - 2}{2} = \frac{y + 2}{1} = \frac{z - 6}{- 2}\left( d_{2} ight):\frac{x - 4}{1} =
\frac{y + 2}{- 2} = \frac{z + 1}{3}. Phương trình mặt phẳng (P) chứa \left( d_{1} ight) và song song với \left( d_{2} ight)

    Phương trình tham số \left( d_{1}
ight):\left\{ \begin{matrix}
x = 2 + 2t_{1} \\
y = - 2 + t_{1} \\
z = 6 - 2t_{1} \\
\end{matrix} ight.\ ;\left( t_{1}\mathbb{\in R} ight)

    \left( d_{1} ight) đi qua điểm M(2; - 2;6) và có vectơ chỉ phương \overrightarrow{u_{1}} = (2;1; -
2)

    Phương trình tham số \left( d_{2}
ight):\left\{ \begin{matrix}
x = 4 + t_{2} \\
y = - 2 - 2t_{2} \\
z = - 1 + 3t_{2} \\
\end{matrix} ight.\ ;\left( t_{2}\mathbb{\in R} ight)

    \left( d_{2} ight) đi qua điểm N(4; - 2; - 1) và có vectơ chỉ phương \overrightarrow{u_{2}} = (1; -
2;3)

    Vì mặt phẳng (P) chứa \left( d_{1} ight) và song song với \left( d_{2} ight), ta có:

    \left\{ \begin{matrix}
\overrightarrow{n_{P}}\bot\overrightarrow{u_{1}} \\
\overrightarrow{n_{P}}\bot\overrightarrow{u_{2}} \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{u_{P}} = \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack = -
(1;8;5)

    Mặt phẳng (P) đi qua M(2; - 2;6) và vectơ pháp tuyến \overrightarrow{u_{1}} = (2;1; - 2) nên phương trình mặt phẳng (P):(x - 2) + 8(y +
2) + 5(z - 6) = 0 hay (P):x + 8y +
5z - 16 = 0.

  • Câu 11: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm H(2;1;2) là hình chiếu vuông góc của gốc tọa độ O xuống mặt phẳng (P), số đo góc giữa mặt phẳng (P) và mặt phẳng (Q):x + y - 11 = 0 bằng bao nhiêu?

    H(2;1;2) là hình chiếu vuông góc của gốc tọa độ O xuống mặt phẳng (P) nên mặt phẳng (P) có vectơ pháp tuyến \overrightarrow{n_{(P)}} = \overrightarrow{OH} =
(2;1;2).

    Mặt phẳng (Q) có vectơ pháp tuyến \overrightarrow{n_{(Q)}} =
(1;1;0).

    Gọi \varphi là số đo góc giữa mặt phẳng (P) và mặt phẳng (Q), ta có:

    \cos\varphi = \frac{\left|
\overrightarrow{n_{(P)}}.\overrightarrow{n_{(Q)}} ight|}{\left|
\overrightarrow{n_{(P)}} ight|.\left| \overrightarrow{n_{(Q)}}
ight|} = \frac{1}{\sqrt{2}}

    \Rightarrow \varphi =
45^{0}

  • Câu 12: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với  AB=2a, AD=a. Cạnh bên SA vuông góc với đáy và góc giữa SC với đáy bằng 45^0 . Gọi N là trung điểm SA, h là chiều cao của khối chóp S.ABCD và R là bán kính mặt cầu ngoại tiếp khối chóp N.ABC. Biểu thức liên hệ giữa R và h là:

    Tìm biểu thức liên hệ

    Ta có {45^0} = \widehat {SC,\left( {ABCD} ight)} = \widehat {SC,AC} = \widehat {SCA} .

    Trong \Delta SAC, ta có h = SA = a\sqrt 5

    Ta có \left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} ight. \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow BC \bot BN.

    Mặt khác, ta lại có NA \bot AC.

    Do đó hai điểm A, B cùng nhìn đoạn dưới một góc vuông nên hình chóp N.ABC nội tiếp mặt cầu tâm J là trung điểm NC, bán kính

    R = JN = \frac{{NC}}{2} = \frac{1}{2}.\sqrt {A{C^2} + {{\left( {\frac{{SA}}{2}} ight)}^2}}  = \frac{{5a}}{4}.

  • Câu 13: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 2;7),B( - 3;8; - 1). Mặt cầu đường kính AB có phương trình là:

    Gọi I là trung điểm của AB khi đó I(
- 1;3;3) là tâm mặt cầu (S).

    Bán kính R = IA = \sqrt{(1 + 1)^{2} + ( -
2 - 3)^{2} + (7 - 3)^{2}} = \sqrt{45}

    Vậy phương trình mặt cầu cần tìm là: (x +
1)^{2} + (y - 3)^{2} + (z - 3)^{2} = 45.

  • Câu 14: Vận dụng

    Hai đường thẳng \left( {d'} ight):x = 8t - 1;\,\,y =  - 1 - 14t;\,\,z =  - 12t và  \left( d ight):x - 2y + 3z - 1 = 0;\,\,\,2x + 2y - z + 4 = 0\,\,\,\left( {t \in R } ight)

    Ta có đường thẳng (d’) qua E (-1, -1, 0) có vecto chỉ phương \overrightarrow a  = \left( {8, - 14, - 12} ight)

    Hai pháp vecto của hai đường thẳng \left( d ight):x - 2y + 3z - 1 = 0;\,\,\,2x + 2y - z + 4 = 0\,\,\,\left( {t \in R } ight) lần lượt là \overrightarrow {{n_1}}  = \left( {1, - 2,3} ight);\overrightarrow {{n_2}}  = \left( {2,2, - 1} ight)

    Vecto chỉ phương của \left( d ight):\overrightarrow b  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] = \left( { - 4,7,6} ight)

    Ta có: \frac{8}{{ - 4}} = \frac{{ - 14}}{7} = \frac{{ - 12}}{6} =  - 2 và tọa độ E\left( { - 1, - 1,0} ight) thỏa mãn phương trình của \left( d ight) \Rightarrow \left( D ight) \equiv \left( d ight)

  • Câu 15: Vận dụng

    Trong không gian Oxyz, cho mặt cầu (S):(x + 2)^{2} + (y - 1)^{2} + \left( z
+ \sqrt{2} ight)^{2} = 9 và hai điểm A\left( - 2;0; - 2\sqrt{2} ight),B( - 4; -
4;0). Biết tập hợp tất cả các điểm M \in (S) để MA^{2} + \overrightarrow{MO}.\overrightarrow{MB} =
16 là một đường tròn. Bán kính của đường tròn đó là:

    Gọi M(x;y;z) \in (S) khi đó ta có: \left\{ \begin{matrix}
\overrightarrow{AM} = \left( x + 2;y;z + 2\sqrt{2} ight) \\
\overrightarrow{OM} = (x;y;z) \\
\overrightarrow{BM} = (x + 4;y + 4;z) \\
\end{matrix} ight..

    Ta có:

    MA^{2} +
\overrightarrow{MO}.\overrightarrow{MB} = 16

    \Leftrightarrow MA^{2} +
\overrightarrow{OM}.\overrightarrow{BM} = 16

    \Leftrightarrow (x + 2)^{2} + y^{2} +
\left( z + 2\sqrt{2} ight)^{2} + x(x + 4) + y(y + 4) + z^{2} =
16

    \Leftrightarrow x^{2} + y^{2} + z^{2} +
4x + 4y + 2\sqrt{2}z - 2 = 0

    Ta lại có:

    M \in (S) \Leftrightarrow (x + 2)^{2} +
(y - 1)^{2} + \left( z + \sqrt{2} ight)^{2} = 9

    \Leftrightarrow x^{2} + y^{2} + z^{2} +
4x - 2y + 2\sqrt{2}z - 2 = 0

    Từ (1) và (2) ta có hệ phương trình:

    \left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} + 4x + 4y + 2\sqrt{2}z - 2 = 0 \\
x^{2} + y^{2} + z^{2} + 4x - 2y + 2\sqrt{2}z - 2 = 0 \\
\end{matrix} ight.\  \Rightarrow y = 0

    Vậy tập hợp tất cả các điểm M là đường tròn giao tuyến (C) của (S) và mặt phẳng (P): y = 0.

    Mặt cầu (S) có bán kính R = 3, tâm I\left( - 2;1; - \sqrt{2} ight) nên d [I,(P)] = 1.

    Suy ra đường tròn (C) có bán kính:

    r = \sqrt{R^{2} - \left( d\left( I;(P)
ight) ight)^{2}} = 2\sqrt{2}

  • Câu 16: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;1;0)B(0;1;2). Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng AB?

    Ta có:

    \overrightarrow{AB} = ( - 1;0;2) là một vectơ chỉ phương của đường thẳng AB.

    Vậy đáp án cần tìm là: \overrightarrow{b}
= ( - 1;0;2).

  • Câu 17: Nhận biết

    Trong không gian Oxyz đường thẳng \Delta:\frac{x}{1} = \frac{y}{2} =
\frac{z}{- 1} = 1 và mặt phẳng (\alpha):x - y + 2z = 0. Góc giữa mặt phẳng (\alpha) và đường thẳng \Delta bằng:

    Mặt phẳng (\alpha):x - y + 2z =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;2)

    Đường thẳng \Delta:\frac{x}{1} =
\frac{y}{2} = \frac{z}{- 1} = 1 có một vectơ chỉ phương là \overrightarrow{u} = (1;2; - 1)

    Gọi α là góc giữa đường thẳng \Delta và mặt phẳng (\alpha):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} = \frac{|1
- 2 - 2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2} \Rightarrow \alpha =
30^{0}

  • Câu 18: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 1}{1} = \frac{y + 2}{- 1} = \frac{z}{-
2}. Mặt phẳng (P) chứa đường thẳng d và tạo với trục tung góc lớn nhất. Biết rằng phương trình (P) có dạng là ax + by + cz + 9 = 0. Tính tổng a + b + c

    Hình vẽ minh họa

    Đường thẳng d đi qua điểm M(1; −2; 0), có véc-tơ chỉ phương \overrightarrow{u} = (1; - 1; - 2)

    Gọi ∆ là đường thẳng đi qua M và song song với trục Oy.

    Phương trình tham số của \Delta:\left\{
\begin{matrix}
x = 1 \\
y = - 2 + t \\
z = 0 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Lấy điểm N(1; 2; 0) ∈ ∆.

    Gọi H, K lần lượt là hình chiếu vuông góc của N lên mặt phẳng (P) và đường thẳng d.

    Khi đó \left( (P),d ight) = \left(
(P),\Delta ight) = \widehat{NMH}

    Lại có: \cos\widehat{NMH} = \frac{MH}{NM}
\leq \frac{MK}{NM}

    Vậy \widehat{NMH}lớn nhất khi và chỉ khi H trùng với K

    Suy ra (P) đi qua d và vuông góc với mặt phẳng (Q), ((Q) là mặt phẳng chứa d và song song với Oy).

    Vectơ pháp tuyến của (Q) là \overrightarrow{n_{Q}} = \left\lbrack
\overrightarrow{u},\overrightarrow{j} ightbrack =
(2;0;1)

    Vectơ pháp tuyến của (P) là \overrightarrow{n_{P}} = \left\lbrack
\overrightarrow{n_{Q}},\overrightarrow{u} ightbrack = (1;5; -
2)

    Phương trình mặt phẳng (P) là 1(x - 1) +
5(y + 2) - 2(z - 0) = 0

    \Leftrightarrow x + 5y - 2z + 9 =
0

    Vậy a + b + c = 4

  • Câu 19: Nhận biết

    Trong không gian Oxyz, đường thẳng (d) qua M\left( {\,{x_0},\,\,{y_0},\,\,{z_0}} ight) và có một vectơ chỉ phương \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight) với  {a_1},\,\,{a_2},\,\,{a_3} e 0  có phương trình chính tắc là:

    Trong không gian Oxyz, đường thẳng (d) qua M\left( {\,{x_0},\,\,{y_0},\,\,{z_0}} ight) và có một vectơ chỉ phương \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight) với {a_1},\,\,{a_2},\,\,{a_3} e 0 có phương trình chính tắc là:

    \frac{{x\, - \,{x_0}}}{{{a_1}}} = \frac{{y\, - \,{y_0}}}{{{a_2}}} = \frac{{z\, - \,{z_0}}}{{{a_3}}}

  • Câu 20: Thông hiểu

    Trong không gian Oxyz, cho đường thẳng d:\frac{x + 1}{1} = \frac{y}{- 1} =
\frac{z - 1}{- 3} và mặt phẳng (P):3x - 3y + 2z + 1 = 0. Mệnh đề nào sau đây là đúng?

    Viết lại đường thẳng d ở dạng tham số \left\{ \begin{matrix}
x = - 1 + t \\
y = - t \\
z = 1 - 3t \\
\end{matrix} ight.

    Xét phương trình 3.( - 1 + t) - 3.( - t)
+ 2.(1 - 3t) + 1 = 0 \Leftrightarrow 0 = 0

    Kết luận phương trình có vô số nghiệm \Rightarrow d \subset (P)

  • Câu 21: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng (P):x - 2y + z - 1 = 0;(Q):x - 2y + z + 8 =0;(R):x - 2y + z - 4 = 0. Một đường thẳng d thay đổi cắt ba mặt (P),(Q),(R) lần lượt tại A,B,C. Tìm giá trị nhỏ nhất của T = AB^{2} + \frac{144}{AC^{2}}.

    Dễ dàng nhận thấy (P)//(Q)//(R).

    Kẻ đường thẳng qua B vuông góc với cả 3 mặt phẳng (P),(Q),(R) cắt (P) tại H và cắt (Q) tại K.

    Ta có BH = d\left( (Q),(P) ight) = 9;HK
= d\left( (P),(R) ight) = 3

    Khi đó ta có:

    T = AB^{2} + \frac{144}{AC^{2}} \geq
2\sqrt{AB^{2}.\frac{144}{AC^{2}}} = 24.\frac{AB}{AC} = 24.\frac{BH}{HK}
= 24.\frac{9}{3} = 72

    Vậy T_{\min} = 72.

  • Câu 22: Nhận biết

    Câu nào sau đây đúng? Trong không gian Oxyz:

     A sai và có thể (P) và (Q) trùng nhau

    B sai, vì mỗi mặt phẳng có vô số vecto pháp tuyến. Suy ra D sai.

    C đúng vì 1 mặt phẳng được xác định nếu biết một điểm và một VTPT của nó.

  • Câu 23: Vận dụng

    Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (P):x + y + z - 9 = 0. Hỏi có bao nhiêu điểm M(a;b;c) thuộc mặt phẳng (P) với a,b,c là các số nguyên không âm.

    Ta có (P):x + y + z - 9 = 0 \Rightarrow
\frac{x}{9} + \frac{y}{9} + \frac{z}{9} = 1 nên mặt phẳng (P) đi qua các điểm A(9; 0; 0), B(0; 9; 0), C(0; 0; 9).

    Từ đó suy ra tất cả các điểm có toạ độ nguyên của mặt phẳng (P) đều nằm trong miền tam giác ABC.

    Tam giác ABC đều có các cạnh bằng 9\sqrt{2}, chiếu các điểm có toạ độ nguyên của hình tam giác ABC xuống mặt phẳng (Oxy) ta được các điểm có toạ độ nguyên của hình tam giác OAB.

    Mà số điểm có toạ độ nguyên của tam giác OAB bằng 1\  + \ 2\  + \ ...\  + \ 10\  = \ 55

  • Câu 24: Nhận biết

    Trong không gian Oxyz cho hai điểm A(2;0; - 1),B(1;1;0)(\alpha) là mặt phẳng trung trực của đoạn thẳng AB. Vectơ nào sau đây là một vectơ pháp tuyến của (\alpha)?

    Do (\alpha) là mặt phẳng trung trực của đoạn thẳng AB nên (\alpha) nhận \overrightarrow{AB} = ( - 1;1;1) làm vectơ pháp tuyến.

    Suy ra \overrightarrow{n}(1; - 1; - 1) =
- \overrightarrow{AB} cũng là vectơ pháp tuyến của (α).

  • Câu 25: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):x + z + 4 = 0,(Q):x - 2y + 2z
+ 4 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):x + z + 4 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} =
(1;0;1)

    (Q):x - 2y + 2z + 4 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} =
(1; - 2;2)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)= \frac{\left|
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} ight|}{\left|
\overrightarrow{n_{1}} ight|.\left| \overrightarrow{n_{2}} ight|} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 26: Nhận biết

    Cho hai mặt phẳng \left( P ight):x - 2y + 3z - 5 = 0;\,\,\left( Q ight):3x + 4y - z + 3 = 0. Đường thẳng (D) qua M (1, -2, 3) song song với (P) và (Q):

     Vì (D) song song với (P) và (Q)

    => Một vectơ chỉ phương của (D) là:

    \overrightarrow {{a_P}}  = \left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } ight] = 10\left( { - 1,1,1} ight) \Rightarrow \overrightarrow a  = \left( { - 1,1,1} ight)

    Xét vecto pháp tuyến của (R), có:

    \overrightarrow {{n_R}}  = \left( {3,1,2} ight) \Rightarrow \overrightarrow a .\overrightarrow {{n_R}}  =  - 3 + 1 + 2 = 0 \Rightarrow \left( D ight)//\left( R ight)

    Xét đáp án có điểm N

    \overrightarrow {NM}  = \left( { - 2,2,2} ight) = 2\left( { - 1,1,1} ight) = 2\overrightarrow a  \Rightarrow \left( D ight)qua\,\,N\left( {3, - 4,1} ight)

    \overrightarrow {{n_s}}  = \left( {2, - 2, - 2} ight) \Rightarrow \frac{2}{{ - 1}} = \frac{{ - 2}}{1} = \frac{{ - 2}}{1} =  - 2 \Rightarrow \overrightarrow acùng phương với \overrightarrow {{n_s}}

    => (D) vuông góc với (S).

  • Câu 27: Nhận biết

    Cho A( - 1;2;1) và hai mặt phẳng (P):2x + 4y - 6z - 5 = 0;(Q):x + 2y - 3z =
0. Khi đó:

    Thay tọa độ điểm A vào phương trình mặt phẳng (Q) thỏa mãn, do đó A ∈ (Q).

    {\overrightarrow{n}}_{(P)} = (2;4; -
6) = 2(1;2; - 3) = {\overrightarrow{n}}_{(Q)} nên (Q)//(P).

  • Câu 28: Nhận biết

    Trong không gian Oxyz, tìm tất cả các giá trị của tham số m để x^{2} + y^{2} + z^{2} + 2(m + 2)x + 4my +
19m - 6 = 0 là phương trình mặt cầu

    Phương trình đã cho là phương trình mặt cầu khi và chỉ khi

    (m + 2)^{2} + 4m^{2} - 19m + 6 >
0

    \Leftrightarrow 5m^{2} - 15m + 10 > 0
\Leftrightarrow \left\lbrack \begin{matrix}
m < 1 \\
m > 2 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: \left\lbrack
\begin{matrix}
m < 1 \\
m > 2 \\
\end{matrix} ight.

  • Câu 29: Nhận biết

    Trong không gian Oxyz, cho hai mặt phẳng (P):2x + 4y + 3z - 5 = 0(Q):mx - ny - 6z + 2\  = \ 0. Giá trị của m, n sao cho (P)//(Q)

    Ta có: (P) có vectơ chỉ phương \overrightarrow{u_{(P)}} = (2;4;3), (Q) có vectơ chỉ phương \overrightarrow{u_{(Q)}} = (m; - n; -
6)

    Để hai mặt phẳng song song thì \overrightarrow{u_{(P)}} =
k\overrightarrow{u_{(Q)}} \Leftrightarrow \left\{ \begin{matrix}
m = 2k \\
- n = 4k \\
- 6 = 3k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k = - 2 \\
m = - 4 \\
n = 8 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: m = - 4;n =
8.

  • Câu 30: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;1;1),B( - 1;2;1),C(36; - 5). Điểm M thuộc mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất là:

    Gọi G là trọng tâm của tam giác ABC.

    Ta có: MA^{2} + MB^{2} + MC^{2} = 3MG^{2}
+ GA^{2} + GB^{2} + GC^{2}

    Dễ thấy MA^{2} + MB^{2} + MC^{2} nhỏ nhất khi MG nhỏ nhất, suy ra M là hình chiếu vuông góc của G trên mặt phẳng (Oxy).

    Dễ thấy G(1;3; - 1) \Rightarrow
M(1;3;0).

  • Câu 31: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng nhau. Gọi E,M lần lượt là trung điểm của các cạnh BCSA, \alpha là góc tạo bởi đường thẳng EM và mặt phẳng (SBD). Tính \tan\alpha?

    Hình vẽ minh họa

    Không mất tính tổng quát, giả sử các cạnh của hình chóp bằng 2\sqrt{2}.

    Chọn hệ trục tọa độ như hình vẽ.

    Khi đó: E(1;1;0),M(0; -
1;1),\overrightarrow{ME} = (1;2; - 1)\overrightarrow{OC} = (0;2;0) là vectơ pháp tuyến của (SBD).

    Do đó:

    \sin\alpha = \sin\left( EM,(SBD) ight)
= \left| \cos\left( \overrightarrow{EM};\overrightarrow{OC} ight)
ight| = \frac{\left| \overrightarrow{EM}.\overrightarrow{OC}
ight|}{\left| \overrightarrow{EM} ight|.\left| \overrightarrow{OC}
ight|} = \frac{2}{\sqrt{6}}

    Vậy \tan\alpha =
\frac{\sin\alpha}{\cos\alpha} = \frac{\sin\alpha}{\sqrt{1 - \left(
\sin\alpha ight)^{2}}} = \sqrt{2}

  • Câu 32: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P):x + \sqrt{2}y - z + 3 = 0 cắt mặt cầu (S):x^{2} + y^{2} + z^{2} = 5 theo giao tuyến là đường tròn có diện tích là:

    Mặt cầu (S) có tâm O(0;0;0) và bán kính R = \sqrt{5}

    Khoảng cách từ O đến (P): d\left( O;(P) ight) = \frac{3}{2}

    Bán kính đường tròn giao tuyến

    r = \sqrt{R^{2} - \left\lbrack d\left(
O;(P) ight) ightbrack^{2}} = \sqrt{5 - \frac{9}{4}} =
\sqrt{\frac{11}{4}}

    Diện tích đường tròn giao tuyến S = 2\pi
r^{2} = \frac{11\pi}{4}.

  • Câu 33: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x - 2)^{2} + (y + 1)^{2} + (z - 3)^{2} =
4. Tâm mặt cầu (S) có tọa độ là:

    Mặt cầu (S):(x - a)^{2} + (y - b)^{2} +
(z - c)^{2} = R^{2} có tâm là I(a;b;c)

    Mặt cầu (S):(x - 2)^{2} + (y + 1)^{2} +
(z - 3)^{2} = 4 có tâm I(2; -
1;3).

  • Câu 34: Nhận biết

    Trong không gian với hệ toạ độ Oxyz, phương trình đường thẳng đi qua hai điểm A( - 2;3;2)B(5;4; - 1)

    Vectơ chỉ phương của đường thẳng cần tìm là \overrightarrow{AB} = (7;1; - 3) và đường thẳng đi qua điểm A( - 2;3;2).

    Vậy phương trình đường thẳng cần tìm là: \frac{x + 2}{7} = \frac{y - 3}{1} = \frac{z - 2}{-
3}.

  • Câu 35: Thông hiểu

    Trong không gian Oxyz, cho mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C (khác O). Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC.

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
AM\bot BC \\
OA\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot OM

    Ta có: \left\{ \begin{matrix}
BM\bot AC \\
OB\bot AC \\
\end{matrix} ight.\  \Rightarrow AC\bot OM

    Vậy OM\bot(ABC) nên (P) nhận \overrightarrow{OM} = (1;2;3) làm vectơ pháp tuyến.

    Do (P) đi qua M(1;2;3) nên (P):x - 1 + 2(y - 2) + 3(z - 3) = 0

    \Leftrightarrow x + 2y + 3z - 14 =
0

  • Câu 36: Nhận biết

    Trong không gian tọa độ Oxyz, cho đường thẳng \Delta:\frac{x - 1}{- 2} =
\frac{y + 1}{2} = \frac{z - 2}{- 1} và mặt phẳng (P):2x - y - 2z + 1 = 0. Gọi \alpha là góc giữa đường thẳng \Delta và mặt phẳng (P). Khẳng định nào sau đây đúng?

    Ta có: \Delta có một vectơ chỉ phương là \overrightarrow{u} = ( - 2;2; -
1), (P) có một vectơ pháp tuyến là \overrightarrow{n} = (2; - 1; -
2).

    Từ đó: \sin\alpha = \left| \cos\left(
\overrightarrow{n};\overrightarrow{u} ight) ight| = \left|
\frac{\overrightarrow{n}.\overrightarrow{u}}{\left| \overrightarrow{n}
ight|.\left| \overrightarrow{u} ight|} ight| =
\frac{4}{9}

  • Câu 37: Thông hiểu

    Trong không gian Oxyz, cho các điểm A(1;0;0),C(0;0;3),B(0;2;0). Tập hợp các điểm M thỏa mãn MA^{2} = MB^{2} + MC^{2} là mặt cầu có bán kính là:

    Giả sử M(x;y;z)

    Ta có:\left\{ \begin{matrix}
MA^{2} = (x - 1)^{2} + y^{2} + z^{2} \\
MB^{2} = x^{2} + (y - 2)^{2} + z^{2} \\
MC^{2} = x^{2} + y^{2} + (z - 3)^{2} \\
\end{matrix} ight.

    Theo bài ra ta có:

    MA^{2} = MB^{2} + MC^{2}

    \Leftrightarrow (x - 1)^{2} + y^{2} +
z^{2} = x^{2} + (y - 2)^{2} + z^{2} + x^{2} + y^{2} + (z -
3)^{2}

    \Leftrightarrow - 2x + 1 = (y - 2)^{2} +
x^{2} + (z - 3)^{2}

    \Leftrightarrow (x + 1)^{2} + (y -
2)^{2} + (z - 3)^{2} = 2

    Vậy tập hợp điểm M thỏa mãn MA^{2} = MB^{2} + MC^{2} là mặt cầu có bán kính là R = \sqrt{2}.

  • Câu 38: Vận dụng

    Trong không gian Oxyz cho điểm M(2;1;5). Mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho M là trực tâm của tam giác ABC. Tính khoảng cách từ điểm I(1;2;3) đến mặt phẳng (P).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz cho điểm M(2;1;5). Mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho M là trực tâm của tam giác ABC. Tính khoảng cách từ điểm I(1;2;3) đến mặt phẳng (P).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 39: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, mặt phẳng (P):ax + by + cz - 27 = 0 đi qua hai điểm A(3;2;1),B( - 3;5;2) và vuông góc với mặt phẳng (Q):3x + y + z + 4 =
0. Tính tổng S = a + b +
c.

    Từ giả thiết ta có hệ phương trình:

    \left\{ \begin{matrix}
3a + 2b + c - 27 = 0 \\
- 3a + 5b + 2c - 27 = 0 \\
3a + b + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 6 \\
b = 27 \\
c = - 45 \\
\end{matrix} ight.

    \Rightarrow S = a + b + c = -
12

  • Câu 40: Thông hiểu

    Trong không gian với hệ trục toạ độ Oxyz, tìm tất cả giá trị tham số m để đường thẳng d:\frac{x - 1}{1} = \frac{y}{2} = \frac{z -
1}{1} song song với mặt phẳng (P):2x + y - m^{2}z + m = 0.

    Ta có:

    d qua điểm M(1; 0; 1) và có VTCP là \overrightarrow{u} = (1;2;1)

    (P) có VTPT là \overrightarrow{n} =
\left( 2;1; - m^{2} ight)

    Vì d // (P) nên \overrightarrow{u}\bot\overrightarrow{n}
\Rightarrow \overrightarrow{u}.\overrightarrow{n} = 0 \Leftrightarrow m
= \pm 2

    Với m = 2, (P): 2x + y − 4z + 2 = 0 ⇒ M ∈ (P) (loại).

    Với m = −2, (P): 2x + y − 4z − 2 = 0\Rightarrow M otin (P) (thỏa mãn).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 5 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo