Đề kiểm tra 45 phút Chương 5 Phương pháp tọa độ trong không gian

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 5. Phương pháp tọa độ trong không gian được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: \dfrac{x-2}{2}=\dfrac{y}{-1} = \dfrac z 4và mặt

    cầu (S) tâm I(1;2;1), bán kính R. Hai mặt phẳng (P) và (Q) chứa d và tiếp xúc với

    (S) tạo với nhau góc 60^0 . Hãy viết phương trình mặt cầu (S)

     Viết phương trình mặt cầu

    Gọi M, N là tiếp điểm của mặt phẳng (P), (Q) và mặt cầu (S). Gọi H là hình chiếu của điểm I trên đường thẳng d.

    \Rightarrow IH=d(I,d)= \sqrt 6

    TH1: Góc \widehat {MHN}=60^0:

    Theo bài ra ta có: R=IM=IH.\sin30^0= \sqrt 6 .\frac 1 2 = \frac{\sqrt 6}{2}

    \Rightarrow(S) : (x-1)^2+(y-2)^2+(z-1)^2= \frac 3 2

    TH2: Góc \widehat {MHN}=120^0:

    Theo bài ra ta có: R=IM=IH.\sin60^0= \sqrt 6 .\frac {\sqrt 3}{2} = \frac{\sqrt18}{2}

    \Rightarrow(S) : (x-1)^2+(y-2)^2+(z-1)^2= \frac 9 2.

  • Câu 2: Thông hiểu

    Trong không gian Oxyz, cho ba điểm A(0;1; - 2),B(3;1;1);C( -
2;0;3). Mặt phẳng (ABC) đi qua điểm nào dưới đây?

    Ta có: \overrightarrow{AB} =
(3;0;3),\overrightarrow{AC} = ( - 2; - 1;5) suy ra \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = (3; - 21; -
3)

    Mặt phẳng (ABC) đi qua điểm B (3; 1; 1), có 1 vectơ pháp tuyến \overrightarrow{n} = \frac{1}{3}\left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = (1; - 7; -
1) nên có phương trình là: x - 7y -
z + 5 = 0

    2 - 7.1 - 0 + 5 = 0 nên N(2;1;0) \in (ABC).

  • Câu 3: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;0;1),B(3; - 2;0),C(1;2; - 2). Gọi (P) là mặt phẳng đi qua A sao cho tổng khoảng cách từ BC đến (P) lớn nhất, biết rằng (P) không cắt đoạn BC. Khi đó vectơ pháp tuyến của mặt phẳng (P) là:

    Kiểm tra \overrightarrow{n} = (2; - 2; -
1): Mặt phẳng (P) có phương trình 2x − 2y − z − 1 = 0.

    Thay tọa độ B, C vào (P) ta thấy B, C nằm về 2 phía (P) nên loại \overrightarrow{n} = (2; - 2; -
1).

    Kiểm tra \overrightarrow{n} =
(1;0;2): Mặt phẳng (P) có phương trình x+ 2z −3 = 0.

    Thay tọa độ B, C vào (P) ta thấy B ∈ (P) nên loại \overrightarrow{n} = (1;0;2).

    Kiểm tra \overrightarrow{n} = ( - 1;2; -
1): Mặt phẳng (P) có phương trình −x + 2y − z + 2 = 0.

    Thay tọa độ B, C vào (P) ta thấy B, C nằm về 2 phía (P) nên loại \overrightarrow{n} = ( - 1;2; -
1).

    Kiểm tra v: Mặt phẳng (P) có phương trình x − 2z + 1 = 0.

    Thay tọa độ B, C vào (P) ta thấy B, C nằm về cùng phía (P) nên chọn \overrightarrow{n} = (1;0; -
2).

  • Câu 4: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d:\frac{x + 2}{4} = \frac{y - 1}{- 4} = \frac{z +
2}{3} và mặt phẳng (P):2x - y + 2z
+ 1 = 0. Đường thẳng ∆ đi qua E( -
2;1; - 2) song song với (P) đồng thời tạo với d góc bé nhất. Biết rằng \Delta có một vectơ chỉ phương \overrightarrow{u} = (m;n;1). Tính T = m^{2} + n^{2}

    Ta có: ∆ // (P) nên \overrightarrow{u_{(\Delta)}}\bot\overrightarrow{u_{(d)}}
\Rightarrow \overrightarrow{u_{(\Delta)}}.\overrightarrow{u_{(d)}} =
0

    \Rightarrow n = 2m + 2 \Rightarrow
\overrightarrow{u_{(\Delta)}} = (m;2m + 2;1)

    Do đó, gọi α góc giữa hai đường thẳng ∆ và d, ta có:

    \cos\alpha = \frac{\left|\overrightarrow{u_{(\Delta)}}.\overrightarrow{u_{(d)}} ight|}{\left|\overrightarrow{u_{(\Delta)}} ight|.\left| \overrightarrow{u_{(d)}}ight|}= \frac{|4m + 5|}{\sqrt{41\left( 5m^{2} + 8m + 5 ight)}}=\frac{1}{\sqrt{41}}.\sqrt{\frac{16m^{2} + 40m + 25}{5m^{2} + 8m +5}}

    Góc α nhỏ nhất khi và chỉ khi cos α đạt giá trị lớn nhất.

    Xét hàm số f(m) = \frac{16m^{2} + 40m +
25}{5m^{2} + 8m + 5} trên \mathbb{R}, ta có:

    f'(m) = \frac{- 72m^{2} -90m}{\left( 5m^{2} + 8m + 5 ight)^{2}} = 0 \Leftrightarrow\left\lbrack \begin{matrix}m = 0 \\m = - \dfrac{5}{4} \\\end{matrix} ight.

    Bảng biến thiên:

    Suy ra max \max_{x\mathbb{\in R}}f(m) =
f(0) = 5.

    Với m = 0 suy ra n = 2. Do đó T = -4.

  • Câu 5: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABCA(0;0;1),B( - 3;2;0),C(2; - 2;3). Đường cao kẻ từ B của tam giác ABC đi qua điểm nào trong các điểm sau?

    Ta có: \overrightarrow{AB} = ( -
3;2;1),\overrightarrow{AC} = (2; - 2;2)

    \overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
(2;4;2)

    Một vectơ chỉ phương của đường cao kẻ từ B của tam giác ABC\overrightarrow{u} = \frac{1}{12}.\left\lbrack
\overrightarrow{n};\overrightarrow{AC} ightbrack = (1;0; -
1)

    Phương trình đường cao kẻ từ B là: \left\{ \begin{matrix}
x = - 3 + t \\
y = 2 \\
z = - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

    Ta thấy điểm P( - 1;2; - 2) thuộc đường thẳng trên.

  • Câu 6: Nhận biết

    Cho mặt cầu S\left( {O;R} ight) và một điểm A, biết OA = 2R. Qua A kẻ một tiếp tuyến tiếp xúc với (S) tại B. Khi đó độ dài đoạn AB bằng:

    Vì AB tiếp xúc với (S) tại B nên AB \bot OB.

    Suy ra AB = \sqrt {O{A^2} - O{B^2}}  = \sqrt {4{R^2} - {R^2}}  = R\sqrt 3 .

  • Câu 7: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm I(2;3;4)A(1;2;3). Phương trình mặt cầu tâm I và đi qua A có phương trình là:

    Bán kính mặt cầu là R = IA =
\sqrt{3}

    Phương trình mặt cầu tâm I(2;3;4)R
= IA = \sqrt{3} là:

    (x - 2)^{2} + (y - 3)^{2} + (z - 4)^{2}
= 3

  • Câu 8: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):2x + y - z - 3 = 0(Q):x + y + z - 1 = 0. Phương trình chính tắc đường thẳng giao tuyến của hai mặt phẳng (P),(Q) là:

    Xét hệ phương trình \left\{
\begin{matrix}
2x + y - z - 3 = 0 \\
x + y + z - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x - 2z - 2 = 0 \\
x + y + z - 1 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 2z + 2 \\
y = - 3z - 1 \\
\end{matrix} ight.. Đặt z =
t ta suy ra x = 2t + 2,y = - 3t -
1.

    Từ đó ta thu được phương trình đường thẳng: d:\frac{x - 2}{2} = \frac{y + 1}{- 3} =
\frac{z}{1}

    Xét điểm A(2; - 1;0) \in d, ta thấy A chỉ thuộc đường thẳng: \frac{x}{2} = \frac{y - 2}{3} = \frac{z +
1}{1}

  • Câu 9: Vận dụng

    Trong không gian Oxyz, cho điểm M( - 1;0;3). Hỏi có bao nhiêu mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại A,B,C sao cho 3OA = 2OB = OC eq 0?

    Từ giả thiết, ta có thể coi A(2a;0;0),B(0;3b;0),C(0;0;6c) (với |a| = |b| = |c| eq 0).

    Khi đó, phương trình mặt phẳng (P) là \frac{x}{2a} + \frac{y}{3b} + \frac{z}{6c} =1.

    Do (P) đi qua M(−1; 0; 3) nên -\frac{1}{2a} + \frac{1}{2c} = 1.

    Theo trên có c = ±a, kết hợp với phương trình vừa thu được, ta suy ra a = −1, c = 1.

    Cũng theo trên, b = ±a, nên có 2 giá trị của b.

    Suy ra có 2 bộ (a, b, c) thỏa mãn, hay có 2 mặt phẳng thỏa yêu cầu đề bài.

  • Câu 10: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x - 3y + 2z - 1 = 0,(Q):x - z + 2 =0. Mặt phẳng (\alpha) vuông góc với cả (P)(Q) đồng thời cắt trục Ox tại điểm có hoành độ bằng 3. Phương trình của mặt phẳng (\alpha) là:

    Ta có: (P) có vectơ pháp tuyến \overrightarrow{n_{P}} = (1; - 3;2), (Q) có vectơ pháp tuyến \overrightarrow{n_{Q}} =
(1;0; - 1).

    Vì mặt phẳng (α) vuông góc với cả (P) và (Q) nên (α) có một vectơ pháp tuyến là \left\lbrack
\overrightarrow{n_{P}};\overrightarrow{n_{Q}} ightbrack = (3;3;3) =
3(1;1;1)

    Vì mặt phẳng (α) cắt trục Ox tại điểm có hoành độ bằng 3 nên (α) đi qua điểm M(3; 0; 0).

    Vậy (α) đi qua điểm M(3; 0; 0) và có vectơ pháp tuyến \overrightarrow{n_{(\alpha)}} = (1;1;1) nên (α) có phương trình x + y + z - 3 =
0.

  • Câu 11: Thông hiểu

    Trong không gian Oxyz, một vectơ pháp tuyến của mặt phẳng \frac{x}{- 2} +
\frac{y}{- 1} + \frac{z}{3} = 1 là:

    Mặt phẳng trên đi qua các điểm A( -
2;0;0),B(0; - 1;0),C(0;0;3)

    Do đó vectơ pháp tuyến của mặt phẳng cùng phương với \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack.

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 1;0) \\
\overrightarrow{AC} = (2;0;3) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = ( - 3; -
6;2)

    Vậy chọn một vectơ pháp tuyến của mặt phẳng đó là \overrightarrow{n} = (3;6; - 2).

  • Câu 12: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho phương trình đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = - 1 + 3t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Trong các điểm có tọa độ dưới đây, điểm nào thuộc đường thẳng \Delta?

    Thay tọa độ các điểm và phương trình đường thẳng ∆, ta thấy:

    \left\{ \begin{matrix}
- 1 = 1 + 2t \\
- 4 = - 1 + 3t \\
3 = 2 - t \\
\end{matrix} ight.\  \Leftrightarrow t = - 1 \Rightarrow M( - 1; -
4;3) \in \Delta.

  • Câu 13: Nhận biết

    Trong không gian với hệ tọa độ Oxyz cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 2t \\
z = 3 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) và mặt phẳng (P):x - y + 3 = 0. Tính số đo góc giữa đường thẳng d và mặt phẳng (P).

    Đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = ( - 1;2;1)

    Mặt phẳng (P) có vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;0)

    Gọi α là góc giữa đường thẳng d và mặt phẳng (P) .

    Khi đó ta có:

    \sin\alpha = \frac{\left|
\overrightarrow{u}.\overrightarrow{n} ight|}{\left| \overrightarrow{u}
ight|.\left| \overrightarrow{n} ight|} = \frac{\left| - 1.1 + 2.( -
1) + 1.0 ight|}{\sqrt{( - 1)^{2} + 2^{2} + 1^{2}}.\sqrt{1^{2} + ( -
1)^{2} + 0^{2}}} = \frac{\sqrt{3}}{2}

    \Rightarrow \alpha = 60^{0}

  • Câu 14: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Đường thẳng \Delta đi qua C và song song với AB có phương trình là:

    Một vectơ chỉ phương của đường thẳng ∆ là \overrightarrow{BA} = (1;2;1)

    Vậy phương trình tham số của đường thẳng ∆ là \left\{ \begin{matrix}
x = 2 + t \\
y = 1 + 2t \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 15: Vận dụng

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} = 9 và mặt phẳng (P):x + y + z - 3 = 0. Gọi (S') là mặt cầu chứa đường tròn giao tuyến của (S)(P) đồng thời (S') tiếp xúc với mặt phẳng (Q):x - y + z - 5 = 0. Gọi I(a;b;c) là tâm của (S'). Tính giá trị biểu thức T = abc.

    Phương trình mặt cầu (S’) có dạng:

    x^{2} + y^{2} + z^{2} - 9 + m(x + y + z
- 3) = 0

    \Leftrightarrow x^{2} + y^{2} + z^{2} +
mx + my + mz - 9 - 3m = 0

    Mặt cầu (S') có tâm I\left( - \frac{m}{2}; - \frac{m}{2}; -
\frac{m}{2} ight), bán kính R =
\sqrt{\frac{3m^{2}}{4} + 3m + 9}.

    Mặt cầu (S') tiếp xúc với (Q) nên

    d\left( I;(Q) ight) = R\Leftrightarrow \dfrac{\left| - \dfrac{m}{2} - 5 ight|}{\sqrt{2}} =\sqrt{\frac{3m^{2}}{4} + 3m + 9}

    \Leftrightarrow |m + 10| = \sqrt{9m^{2}
+ 36m + 108}

    \Leftrightarrow m = - 1 \Rightarrow
I\left( \frac{1}{2};\frac{1}{2};\frac{1}{2} ight)

    Vậy T = abc = \frac{1}{8}.

  • Câu 16: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm H(2;1;2) là hình chiếu vuông góc của gốc tọa độ O xuống mặt phẳng (P), số đo góc giữa mặt phẳng (P) và mặt phẳng (Q):x + y - 11 = 0 bằng bao nhiêu?

    H(2;1;2) là hình chiếu vuông góc của gốc tọa độ O xuống mặt phẳng (P) nên mặt phẳng (P) có vectơ pháp tuyến \overrightarrow{n_{(P)}} = \overrightarrow{OH} =
(2;1;2).

    Mặt phẳng (Q) có vectơ pháp tuyến \overrightarrow{n_{(Q)}} =
(1;1;0).

    Gọi \varphi là số đo góc giữa mặt phẳng (P) và mặt phẳng (Q), ta có:

    \cos\varphi = \frac{\left|
\overrightarrow{n_{(P)}}.\overrightarrow{n_{(Q)}} ight|}{\left|
\overrightarrow{n_{(P)}} ight|.\left| \overrightarrow{n_{(Q)}}
ight|} = \frac{1}{\sqrt{2}}

    \Rightarrow \varphi =
45^{0}

  • Câu 17: Thông hiểu

    Cho hình chóp :\ O(0;0;0)\ ,\ A\ a\ (0;\
;0)\ ,\ B\ a(\ ;0;0)\ ,\ C\ a\ (0;0;\ ) có ba cạnh OA,OB,OC đôi một vuông góc và OA = OB = OC = a. Gọi M là trung điểm cạnh AB. Góc tạo bởi hai vectơ \overrightarrow{BC}\overrightarrow{OM} bằng:

    Hình vẽ minh họa

    Chọn hệ trục tọa độ Oxyz như hình vẽ

    Ta có: \left\{ \begin{matrix}O(0;0;0),A(0;a;0),B(a;0;0) \\C(0;0;a),M\left( \dfrac{a}{2};\dfrac{a}{2};0 ight) \\\end{matrix} ight.

    Khi đó ta có: \overrightarrow{BC} = ( -
a;0;a);\overrightarrow{OM} = \left( \frac{a}{2};\frac{a}{2};0
ight)

    \Rightarrow \cos\left(\overrightarrow{BC};\overrightarrow{OM} ight) =\dfrac{\overrightarrow{BC}.\overrightarrow{OM}}{BC.OM} = \dfrac{-\dfrac{a^{2}}{2}}{a\sqrt{2}.\dfrac{a\sqrt{2}}{2}} = -\dfrac{1}{2}

    \Rightarrow \left(
\overrightarrow{BC};\overrightarrow{OM} ight) = 120^{0}

  • Câu 18: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, tìm tọa độ tâm I và bán kính R của mặt cầu (S):(x - 1)^{2} + (y + 2)^{2} + (z - 4)^{2} =
20

    Tâm của (S) có tọa độ là I(1; - 2;4)

    Bán kính mặt cầu (S) là: R = \sqrt{20} = 2\sqrt{5}.

  • Câu 19: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳngd:\left\{ \begin{matrix}
x = 0 \\
y = 3 - t \\
z = t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Gọi (P) là mặt phẳng chứa đường thẳng d và tạo với mặt phẳng (Oxy) một góc 45^{0}. Điểm nào sau đây thuộc mặt phẳng (P)?

    Ta viết phương trình đường thẳngd:\left\{
\begin{matrix}
x = 0 \\
y + z - 3 = 0 \\
\end{matrix} ight.

    Mặt phẳng (P) chứa đường thẳng d nên có dạng:

    \left\{ \begin{matrix}
mx + n(y + z - 3) = 0 \\
m^{2} + n^{2} eq 0 \\
\end{matrix} ight.

    \Leftrightarrow mx + ny + nz - 3n =
0

    (P) có một vectơ pháp tuyến là \overrightarrow{n_{(P)}} = (m;n;n)

    Mặt phẳng (Oxy) có một vectơ pháp tuyến là \overrightarrow{k} = (0;0;1)

    Ta có:

    \cos\left( (P);(Oxy) ight) = \left|
\cos\left( \overrightarrow{n_{(P)}};\overrightarrow{k} ight)
ight|

    \Leftrightarrow \cos45^{0} = \frac{\left|\overrightarrow{n_{(P)}}.\overrightarrow{k} ight|}{\left|\overrightarrow{n_{(P)}} ight|.\left| \overrightarrow{k} ight|}\Leftrightarrow \frac{1}{\sqrt{2}} = \frac{|n|}{\left| m^{2} + n^{2} +n^{2} ight|}

    \Leftrightarrow \left| m^{2} + 2n^{2}
ight| = \sqrt{2}|n| \Leftrightarrow m^{2} = 0 \Leftrightarrow m =
0

    Chọn n = 1 \Rightarrow (P):y + z - 3 = 0
\Rightarrow M(3;2;1) \in (P)

  • Câu 20: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu tâm I(2;1; - 2) bán kính R = 2 là:

    Phương trình mặt cầu tâm I(2;1; -
2) bán kính R = 2 là:

    (x - 2)^{2} + (y - 1)^{2} + (z + 2)^{2}
= 2^{2}

    Tổng quát x^{2} + y^{2} + z^{2} - 4x - 2y
+ 4z + 5 = 0.

  • Câu 21: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 1;2),B(3; - 4; - 2) và đường thẳng d:\left\{ \begin{matrix}
x = 2 + 4t \\
y = - 6t \\
z = - 1 - 8t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm I(a;b;c) thuộc d là điểm thỏa mãn IA + IB đạt giá trị nhỏ nhất. Khi đó T = a + b + c bằng?

    Hình vẽ minh họa

    Ta có: d:\left\{ \begin{matrix}
x = 2 + 4t \\
y = - 6t \\
z = - 1 - 8t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là \overrightarrow{u} = (4;
- 6; - 8)

    A = (1; - 1;2),B = (3; - 4; - 2)
\Rightarrow \overrightarrow{AB} = (2; - 3; - 4)

    Ta có \overrightarrow{AB} = (2; - 3; -
4) cùng phương với \overrightarrow{u} = (4; - 6; - 8)

    A(1; - 1;2) otin d \Rightarrow
\overrightarrow{AB}//d \Rightarrow A,B,d đồng phẳng.

    Xét mặt phẳng chứa ABd. Gọi A^{'} là điểm đối xứng của A qua d_{1}

    (\alpha) là mặt phẳng qua A, vuông góc với d.

    Khi đó, giao điểm H của d với (\alpha) là trung điểm của AA^{'}.

    (\alpha) có 1 vectơ pháp tuyến \overrightarrow{n} = (2; - 3; - 4) đi qua A(1; - 1;2) có phương trình:

    2(x - 1) - 3(y + 1) - 4(z - 2) =
0

    \Leftrightarrow 2x - 3y - 4z + 3 =
0

    H \in d:\left\{ \begin{matrix}
x = 2 + 4t \\
y = - 6t \\
z = - 1 - 8t \\
\end{matrix} \Rightarrow ight. Giả sử H(2 + 4t; - 6t; - 1 - 8t).

    H \in (\alpha) \Rightarrow 2(2 + 4t) -
3( - 6t) - 4( - 1 - 8t) + 3 = 0

    \Leftrightarrow 58t + 11 = 0
\Leftrightarrow t = - \frac{11}{58} \Rightarrow H\left(
\frac{36}{29};\frac{33}{29};\frac{15}{29} ight)

    Ta có IA + IB = IA^{'} + IB^{'}
\geq A^{'}B \Rightarrow min(IA + IB) = A^{'}B khi và chỉ khi I trùng với I_{0} là giao điểm của A^{'}Bd.

    \Rightarrow \overrightarrow{HI_{0}} =\frac{1}{2}\overrightarrow{AB} \Leftrightarrow \left\{ \begin{matrix}x_{I_{0}} - \dfrac{36}{29} = \dfrac{1}{2}.2 \\y_{I_{0}} - \dfrac{33}{29} = \dfrac{1}{2}.( - 3) \\z_{I_{0}} - \dfrac{15}{29} = \dfrac{1}{2}.( - 4) \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x_{I_{0}} = \dfrac{65}{29} \\y_{I_{0}} = - \dfrac{21}{58} \\z_{I_{0}} = - \dfrac{43}{29} \\\end{matrix} ight.\  ight.\\Rightarrow I_{0}\left( \dfrac{65}{29}; - \dfrac{21}{58}; - \frac{43}{29}ight)

    \Rightarrow a + b + c = \frac{65}{29} -
\frac{21}{58} - \frac{43}{29} = - \frac{21}{58}.

  • Câu 22: Nhận biết

    Trong không gian Oxyz, mặt phẳng (P):2x - y + 3 = 0. Một véc tơ pháp tuyến của (P) có tọa độ là?

    Mặt phẳng (P) có VTPT là: \overrightarrow{n} = (2; - 1;0)

  • Câu 23: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, đường thẳng đi qua điểm M(1;2;3) và song song với trục Oy có phương trình tham số là:

    Gọi d là đường thẳng cần tìm.

    Ta có d//Oy nên d có vectơ chỉ phương là \overrightarrow{u} = (0;1;0).

    Do đó \left\{ \begin{matrix}
x = 1 \\
y = 2 + t \\
z = 3 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 24: Vận dụng

    Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên bằng \frac{{a\sqrt {21} }}{6}. Gọi h là chiều cao của khối chóp và R là bán kính mặt cầu ngoại tiếp khối chóp. Tỉ số \frac{R}{h} bằng:

     Tính tỉ số

    Gọi O là tâm \triangle ABC, suy ra SO \bot \left( {ABC} ight)AO = \frac{{a\sqrt 3 }}{3}

    Trong SOA, ta có h = SO = \sqrt {S{A^2} - A{O^2}}  = \frac{a}{2}

    Trong mặt phẳng SOA, kẻ trung trực d của đoạn SA cắt SO tại I, suy ra:

    • I \in d nên IS =IA.
    • I \in SO nên IA=IB=IC.

    Do đó IA=IB=IC=IS nên I là tâm mặt cầu ngoại tiếp khối chóp .

    Gọi M là tung điểm SA, ta có \Delta SMI\,\, \backsim \,\,\Delta SOA nên R = SI = \frac{{SM.SA}}{{SO}} = \frac{{S{A^2}}}{{2SO}} = \frac{{7{m{a}}}}{{12}}

    Vậy \frac{R}{h} = \frac{7}{6}.

  • Câu 25: Thông hiểu

    Trong không gian với hệ trục toạ độ Oxyz, tìm tất cả giá trị tham số m để đường thẳng d:\frac{x - 1}{1} = \frac{y}{2} = \frac{z -
1}{1} song song với mặt phẳng (P):2x + y - m^{2}z + m = 0.

    Ta có:

    d qua điểm M(1; 0; 1) và có VTCP là \overrightarrow{u} = (1;2;1)

    (P) có VTPT là \overrightarrow{n} =
\left( 2;1; - m^{2} ight)

    Vì d // (P) nên \overrightarrow{u}\bot\overrightarrow{n}
\Rightarrow \overrightarrow{u}.\overrightarrow{n} = 0 \Leftrightarrow m
= \pm 2

    Với m = 2, (P): 2x + y − 4z + 2 = 0 ⇒ M ∈ (P) (loại).

    Với m = −2, (P): 2x + y − 4z − 2 = 0\Rightarrow M otin (P) (thỏa mãn).

  • Câu 26: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):8x - 4y - 8z - 11 =0,(Q):\sqrt{2}x - \sqrt{2}y + 7 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):8x - 4y - 8z - 11 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} = (8; - 4; -
8)

    (Q):\sqrt{2}x - \sqrt{2}y + 7 =
0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} = \left( \sqrt{2}; -
\sqrt{2};0 ight)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)

    = \frac{\left| 8.\sqrt{2} + 4.\sqrt{2} -
8.0 ight|}{\sqrt{8^{2} + ( - 4)^{2} + ( - 8)^{2}}.\sqrt{\left(
\sqrt{2} ight)^{2} + \left( - \sqrt{2} ight)^{2} + 0}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 27: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D' có tâm O. Gọi I là tâm của hình vuông A'B'C'D' và điểm M \in OI sao cho MO = \frac{1}{2}MI (tham khảo hình vẽ).

    Khi đó cosin của góc tạo bởi hai mặt phẳng (MC’D′) và (MAB) bằng

    Không mất tính tổng quát ta đặt cạnh của khối lập phương là 1.

    Chọn hệ trục tọa độ sao cho A′(0;0;0), B′(1;0;0), D′(0;1;0) và A(0;0;1) (như hình vẽ)

    Khi đó ta có: M\left(
\frac{1}{2};\frac{1}{2};\frac{1}{3} ight)

    Khi đó \left\{ \begin{matrix}\overrightarrow{AB} = (1;0;0) \\\overrightarrow{MA} = \left( \dfrac{1}{2};\dfrac{1}{2}; - \dfrac{2}{3}ight) \\\end{matrix} ight.\  \Rightarrow \left\lbrack\overrightarrow{AB};\overrightarrow{MA} ightbrack = \left( 0; -\dfrac{2}{3};\dfrac{1}{2} ight)

    \Rightarrow \overrightarrow{n_{1}} = (0;
- 4;3) là VTPT của mặt phẳng (MAB)

    Lại có: \left\{ \begin{matrix}\overrightarrow{D'C'} = (1;0;0) \\\overrightarrow{MD'} = \left( \dfrac{1}{2}; - \dfrac{1}{2};\dfrac{1}{3}ight) \\\end{matrix} ight.\Rightarrow \left\lbrack\overrightarrow{D'C'};\overrightarrow{MD'} ightbrack =\left( 0;\frac{1}{3}; - \frac{1}{2} ight)

    \Rightarrow \overrightarrow{n_{2}} =
(0;2; - 3) là VTPT của mặt phẳng (MC’D’)

    Cosin của góc tạo bởi hai mặt phẳng (MC’D′) và (MAB) bằng:

    \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight) = \frac{\left|
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} ight|}{\left|
\overrightarrow{n_{1}} ight|.\left| \overrightarrow{n_{2}}
ight|}

    = \frac{\left| 0.0 - 4.2 + 3.( - 3)
ight|}{\sqrt{0^{2} + ( - 4)^{2} + 3^{2}}.\sqrt{0^{2} + 2^{2} + ( -
3)^{2}}} = \frac{17\sqrt{13}}{65}

  • Câu 28: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P):x + \sqrt{2}y - z + 3 = 0 cắt mặt cầu (S):x^{2} + y^{2} + z^{2} = 5 theo giao tuyến là đường tròn có diện tích là:

    Mặt cầu (S) có tâm O(0;0;0) và bán kính R = \sqrt{5}

    Khoảng cách từ O đến (P): d\left( O;(P) ight) = \frac{3}{2}

    Bán kính đường tròn giao tuyến

    r = \sqrt{R^{2} - \left\lbrack d\left(
O;(P) ight) ightbrack^{2}} = \sqrt{5 - \frac{9}{4}} =
\sqrt{\frac{11}{4}}

    Diện tích đường tròn giao tuyến S = 2\pi
r^{2} = \frac{11\pi}{4}.

  • Câu 29: Nhận biết

    Trong không gian tọa độ Oxyz, cho mặt phẳng (P):4x + 3y - z + 1 =
0 và đường thẳng d:\frac{x - 1}{4}
= \frac{y - 6}{3} = \frac{z + 4}{1}, sin của góc giữa đường thẳng d và mặt phẳng (P) bằng:

    Mặt phẳng (P):4x + 3y - z + 1 =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (4;3; - 1)

    Đường thẳng d:\frac{x - 1}{4} = \frac{y -
6}{3} = \frac{z + 4}{1} có một vectơ chỉ phương là \overrightarrow{u} = (4;3;1)

    Gọi α là góc giữa đường thẳng d và mặt phẳng (P):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} =
\frac{12}{13}

  • Câu 30: Vận dụng cao

    Trong không gian Oxyz, cho điểm A(1;4;3) và mặt phẳng (P):2y - z = 0. Tìm điểm C thuộc (P), điểm B thuộc mặt phẳng (Oxy) sao cho chu vi tam giác ABC bé nhất. Giá trị chu vi tam giác ABC bé nhất là:

    Hình vẽ minh họa:

    Gọi H;K lần lượt là hình chiếu của A lên các mặt phẳng (P) và (Oxy) ta được H(1;2;4),K(1;4;0).

    Gọi M, N lần lượt là các điểm đối xứng với A qua các mặt phẳng (P) và (Oxy).

    Khi đó ta có AB = NB,CA = CM nên AB + BC + CA = NB + BC + CM \geq MN = 2KH =
4\sqrt{5}

    Dấu đẳng thức xảy ra khi và chỉ khi B, C lần lượt là giao điểm của đường thẳng MN với các mặt phẳng (Oxy) và (P).

  • Câu 31: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với  AB=2a, AD=a. Cạnh bên SA vuông góc với đáy và góc giữa SC với đáy bằng 45^0 . Gọi N là trung điểm SA, h là chiều cao của khối chóp S.ABCD và R là bán kính mặt cầu ngoại tiếp khối chóp N.ABC. Biểu thức liên hệ giữa R và h là:

    Tìm biểu thức liên hệ

    Ta có {45^0} = \widehat {SC,\left( {ABCD} ight)} = \widehat {SC,AC} = \widehat {SCA} .

    Trong \Delta SAC, ta có h = SA = a\sqrt 5

    Ta có \left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} ight. \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow BC \bot BN.

    Mặt khác, ta lại có NA \bot AC.

    Do đó hai điểm A, B cùng nhìn đoạn dưới một góc vuông nên hình chóp N.ABC nội tiếp mặt cầu tâm J là trung điểm NC, bán kính

    R = JN = \frac{{NC}}{2} = \frac{1}{2}.\sqrt {A{C^2} + {{\left( {\frac{{SA}}{2}} ight)}^2}}  = \frac{{5a}}{4}.

  • Câu 32: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho A(1; −1; 2), B(−2; 0; 3), C(0; 1; −2). Điểm M(a; b; c) là điểm thuộc mặt phẳng (Oxy) sao cho biểu thức S = \overrightarrow{MA}.\overrightarrow{MB} +
2\overrightarrow{MB}.\overrightarrow{MC} +
3\overrightarrow{MC}.\overrightarrow{MA} đạt giá trị nhỏ nhất. Khi đó, T = 12a + 12b + c có giá trị là:

    Chọn I sao cho 4\overrightarrow{IA} + 3\overrightarrow{IB} +
5\overrightarrow{IC} = \overrightarrow{0}

    Ta tính được I\left( -
\frac{1}{6};\frac{1}{12};\frac{7}{12} ight)

    Ta thấy

    \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = \left( \overrightarrow{MI} +
\overrightarrow{IA} ight).\left( \overrightarrow{MI} +
\overrightarrow{IB} ight) \\
\overrightarrow{MB}.\overrightarrow{MC} = \left( \overrightarrow{MI} +
\overrightarrow{IB} ight).\left( \overrightarrow{MI} +
\overrightarrow{IC} ight) \\
\overrightarrow{MC}.\overrightarrow{MA} = \left( \overrightarrow{MI} +
\overrightarrow{IC} ight).\left( \overrightarrow{MI} +
\overrightarrow{IA} ight) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IA} + \overrightarrow{IB}
ight) + \overrightarrow{IA}.\overrightarrow{IB} \\
\overrightarrow{MB}.\overrightarrow{MC} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IB} + \overrightarrow{IC}
ight) + \overrightarrow{IB}.\overrightarrow{IC} \\
\overrightarrow{MC}.\overrightarrow{MA} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IC} + \overrightarrow{IA}
ight) + \overrightarrow{IC}.\overrightarrow{IA} \\
\end{matrix} ight.

    S = 6{\overrightarrow{MI}}^{2} +
\overrightarrow{IA}.\overrightarrow{IB} +
2\overrightarrow{IB}.\overrightarrow{IC} +
3\overrightarrow{IC}.\overrightarrow{IA} + \overrightarrow{MI}\left(
4\overrightarrow{IA} + 3\overrightarrow{IB} + 5\overrightarrow{IC}
ight)

    \Rightarrow S = 6MI^{2} +\underset{CONST}{\overset{4\overrightarrow{IA} + 3\overrightarrow{IB} +5\overrightarrow{IC}}{︸}}

    Do vậy, biểu thức S đạt giá trị nhỏ nhất khi MI nhỏ nhất.

    Vậy M là hình chiếu vuông góc của I\left(
\frac{- 1}{6};\frac{1}{12};\frac{7}{12} ight) lên (Oxy) \Rightarrow M\left( \frac{- 1}{6};\frac{1}{12};0
ight)

    Ta xác định được \left\{ \begin{matrix}a = - \dfrac{1}{6} \\b = \dfrac{1}{12} \\c = 0 \\\end{matrix} ight.\  \Rightarrow T = - 1

  • Câu 33: Nhận biết

    Trong không gian Oxyz, mặt phẳng (Oxz) có phương trình là

    Mặt phẳng (Oxz) đi qua điểm O(0;0;0) và nhận \overrightarrow{j} = (0;1;0) là một véc-tơ pháp tuyến nên phương trình của mặt phẳng (Oxz)(Oxz).

  • Câu 34: Vận dụng

    Mặt phẳng \left( P ight):2x - 2y + 4z + 5 = 0  và đường thẳng (d):\left\{ \begin{array}{l}x - y + 2z + 1 = 0\\y + 2z - 3 = 0\end{array} ight. :   

    Theo đề bài, ta có vecto pháp tuyến của \left( P ight):\overrightarrow n  = \left( {2, - 2,4} ight)

    Đường thẳng (d) được cho dưới dạng hệ của hai mặt phẳng: x - y + 2z + 1 = 02x + y - z - 3 = 0 cũng có 2 VTPT lần lượt \overrightarrow {{n_1}}  = \left( {1, - 1,2} ight);\overrightarrow {{n_2}}  = \left( {2,1, - 1} ight)

    Như vậy, VTCP của (d) sẽ là tích có hướng của 2 VTPT: \left( d ight):\overrightarrow a  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] = \left( { - 1,5,3} ight)

    \Rightarrow \overrightarrow n .\overrightarrow a  =  - 2 - 10 + 12 = 0

    Cho\,\,\,\,\,z = 0 \Rightarrow \left\{ \begin{array}{l}x - y =  - 1\\2x + y = 3\end{array} ight. \Rightarrow \left\{ \begin{array}{l}x = \dfrac{2}{3}\\y = \dfrac{5}{3}\end{array} ight.

    \Rightarrow A\left( {\frac{2}{3},\frac{5}{3},0} ight) \in \left( d ight) và tọa độ của A không thỏa mãn phương trình của (P).

    Vậy (d) // (P) .

  • Câu 35: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (P):x + y - 2z + 5 = 0(Q): - x - y + 2z + 9 = 0. Mặt phẳng nào sau đây cách đều hai mặt phẳng (P) và (Q)?

    Gọi (R) là mặt phẳng cách đều hai mặt phẳng (P) và (Q) thì (P)//(Q)//(R)

    Do đó (R) có dạng x + y − 2z + m = 0.

    Gọi A(1; 0; 3) ∈ (P) , B(1; 0; −4) ∈ (Q).

    Khi đó trung điểm M của đoạn AB nằm trên (R), tức M\left( 1;0; - \frac{1}{2} ight) \in
(R).

    Suy ra 1 + 0 - 2.\left( - \frac{1}{2}
ight) + m = 0 \Leftrightarrow m = - 2.

    Vậy (R): x + y − 2z − 2 = 0 hay (R): −x − y + 2z + 2 = 0.

  • Câu 36: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;3) và hai mặt phẳng (P):2x + 3y = 0,(Q):3x + 4y = 0. Dường thẳng đi qua A và song song với hai mặt phẳng (P),(Q) có phương trình là

    Gọi \Delta là đường thẳng cần tìm.

    Mặt phẳng (P) có một véc-tơ pháp tuyến là {\overrightarrow{n}}_{1} =
(2;3;0)(Q) có một vectơ pháp tuyến là {\overrightarrow{n}}_{2}
= (3;4;0). Ta có \left\lbrack
{\overrightarrow{n}}_{1},{\overrightarrow{n}}_{2} ightbrack =
(0;0;2).

    Khi đó, \Delta đi qua điểm A và nhận véc-tơ \overrightarrow{u} = (0;0;1) làm vec-tơ chỉ phương. Phương trình đường thẳng \Delta\left\{ \begin{matrix}
x = 1 \\
y = 2 \\
z = 3 + t \\
\end{matrix} ight.
    Với t = - 3 thì điểm B(1;2;0) thuộc \Delta. Viết lại phương trình đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 \\
y = 2 \\
z = t \\
\end{matrix} ight.

  • Câu 37: Thông hiểu

    Cho mặt phẳng \left( P ight):2x - 4y + 4z + 5 = 0 và mặt cầu \left( S ight):{x^2} + {y^2} + {z^2} - 2x + 4y + 2z - 3 = 0. Xét vị trí tương đối của mặt phẳng với mặt cầu?Cắt nhau || cắt nhau

    Đáp án là:

    Cho mặt phẳng \left( P ight):2x - 4y + 4z + 5 = 0 và mặt cầu \left( S ight):{x^2} + {y^2} + {z^2} - 2x + 4y + 2z - 3 = 0. Xét vị trí tương đối của mặt phẳng với mặt cầu?Cắt nhau || cắt nhau

    Theo đề bài, ta xác định các hệ số của (S): 

    a = 1;b =  - 2;c =  - 1;d =  - 3 \Rightarrow R = 3.

    Suy ra tâm I có tọa độ là: I = \left( {1, - 2, - 1} ight)

    Áp dụng CT, ta có d\left( {I,P} ight) = \frac{{11}}{6} < R = 3 \Rightarrow (P) cắt (S)

  • Câu 38: Nhận biết

    Trong không gian Oxyz, phương trình nào dưới đây là phương trình của mặt phẳng đi qua điểm E(1;2;3) và song song với mặt phẳng (Oxy)?

    Mặt phẳng (Oxy) có phương trình là z = 0 nên có một vectơ pháp tuyến là \overrightarrow{k} =
(0;0;1).

    Phương trình của mặt phẳng cần tìm có dạng

    0(x - 1) + 0(y - 2) + 1(z - 3) = 0
\Leftrightarrow z = 3.

  • Câu 39: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình đường thẳng \Delta đi qua điểm A(1;2;0) và vuông góc với mặt phẳng (P):2x + y - 3z + 5 = 0?

    Đường thẳng \Delta vuông góc với mặt phẳng (P):2x + y - 3z + 5 = 0 nên \Delta có một vectơ chỉ phương là \overrightarrow{u} =
\overrightarrow{n_{P}} = (2;1; - 3).

    Phương trình \Delta\left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 + t \\
z = - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)\ \ \
(*)

    Kiểm tra được điểm M(3;3; - 3) thỏa mãn hệ (*).

    Vậy phương trình: \left\{ \begin{matrix}
x = 3 + 2t \\
y = 3 + t \\
z = 3 - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) cũng là phương trình của \Delta.

  • Câu 40: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - 2y + z + 2017 = 0, véc tơ nào trong các vectơ được cho dưới đây là một vectơ pháp tuyến của (P)?

    Ta có phương trình mặt phẳng (P):2x - 2y
+ z + 2017 = 0 nên có một vectơ pháp tuyến của mặt phẳng (P) là: \overrightarrow{n_{(P)}} = (2; - 2;1)

    Mặt khác \overrightarrow{n} = (4; -
4;2) cùng phương với \overrightarrow{n_{(P)}} = (2; - 2;1)

    Do đó \overrightarrow{n} = (4; -
4;2) là một vectơ pháp tuyến của (P):2x - 2y + z + 2017 = 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 5 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo