Đề kiểm tra 45 phút Chương 5 Phương pháp tọa độ trong không gian

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 5. Phương pháp tọa độ trong không gian được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian Oxyz, cho hai điểm I(1;1;1)A(1;2;3). Phương trình mặt cầu có tâm I và đi qua A là:

    Ta có: R = IA = \sqrt{(1 - 1)^{2} + (2 -
1)^{2} + (3 - 1)^{2}} = \sqrt{5}

    Vậy phương trình mặt cầu tâm I và đi qua điểm A có phương trình là:

    (x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2} =
5.

  • Câu 2: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0; −1; 2), B(1; 1; 2) và đường thẳng d:\frac{x + 1}{1} =
\frac{y}{1} = \frac{z - 1}{1}. Biết điểm M(a; b; c) thuộc đường thẳng d sao cho tam giác MAB có diện tích nhỏ nhất. Khi đó giá trị T = a + 2b + 3c bằng:

    S_{MAB} =
\frac{1}{2}.AB.d(M,AB) nên SMAB nhỏ nhất khi d(M, AB) nhỏ nhất. Phương trình của AB:\left\{ \begin{matrix}
x = t \\
y = - 1 + 2t \\
z = 2 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Dễ dàng kiểm tra AB và d chéo nhau.

    Gọi H là hình chiếu của M lên đường thẳng AB.

    Khi đó d(M, AB) = MH nhỏ nhất khi MH là đoạn vuông góc chung của d và AB.

    Ta có: M \in d \Rightarrow M( - 1 + s;s;1
+ s),H \in AB

    \Rightarrow H(t; - 1 +
2t;2)

    \Rightarrow \overrightarrow{MH} = (t - s
+ 1;2t - s - 1;1 - s)

    Vectơ chỉ phương của d và AB theo thứ tự là \overrightarrow{u} = (1;1;1),\overrightarrow{v} =
(1;2;0)

    \left\{ \begin{matrix}\overrightarrow{MH}\bot\overrightarrow{u} \\\overrightarrow{MH}\bot\overrightarrow{v} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}1(t - s + 1) + 1(2t - s - 1) + 1(1 - s) = 0\  \\1(t - s + 1) + 2(2t - s - 1) + 0(1 - s) = 0 \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}t = 1 \\s = \dfrac{4}{3} \\\end{matrix} ight.

    Vậy M\left(
\frac{1}{3};\frac{4}{3};\frac{7}{3} ight) \Rightarrow T =
10

  • Câu 3: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCDA(1;1;1),B(2;0;2), C( - 1; - 1;0),D(0;3;4). Trên các cạnh AB,AC,AD lần lượt lấy các điểm B';C';D' sao cho \frac{AB}{AB'} + \frac{AC}{AC'} +\frac{AD}{AD'} = 4. Viết phương trình mặt phẳng (B'C'D') biết tứ diện AB'C'D' có thể tích nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCDA(1;1;1),B(2;0;2), C( - 1; - 1;0),D(0;3;4). Trên các cạnh AB,AC,AD lần lượt lấy các điểm B';C';D' sao cho \frac{AB}{AB'} + \frac{AC}{AC'} +\frac{AD}{AD'} = 4. Viết phương trình mặt phẳng (B'C'D') biết tứ diện AB'C'D' có thể tích nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, khoảng cách từ A( - 2;1; - 6) đến mặt phẳng (Oxy)

    Khoảng cách từ điểm A đến mặt phẳng (Oxy):z = 0 là:

    d\left( A;(Oxy) ight) = \frac{| -
6|}{\sqrt{1}} = 6

  • Câu 5: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, khoảng cách từ điểm M(2; - 4; - 1) tới đường thẳng \Delta:\left\{ \begin{matrix}
x = t \\
y = 2 - t \\
z = 3 + t \\
\end{matrix} ight. bằng:

    Đường thẳng \Delta đi qua N(0;2;3), có véc-tơ chỉ phương \overrightarrow{u} = (1; - 1;2).

    Ta có \overrightarrow{MN} = ( -
2;6;4)\left\lbrack
\overrightarrow{MN},\overrightarrow{u} ightbrack = (16;8; -
4).

    Vậy khoảng cách từ M đến đường thẳng \Delta là:

    d(M;\Delta) = \frac{\left| \left\lbrack
\overrightarrow{MN},\overrightarrow{u} ightbrack ight|}{\left|
\overrightarrow{u} ight|} = \frac{\sqrt{336}}{\sqrt{6}} =
2\sqrt{14}

  • Câu 6: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P):x - y + 2z + 1 = 0 và đường thẳng (d):\frac{x - 1}{1} = \frac{y}{2} = \frac{z
+ 1}{- 1}. Tính góc giữa đường thẳng (d) và mặt phẳng (P).

    Ta có: \overrightarrow{u_{d}} = (1;2; -
1);\overrightarrow{n_{(P)}} = (1; - 1;2)

    Do đó: \cos\left(
\overrightarrow{u_{d}};\overrightarrow{n_{(P)}} ight) = \frac{|1 - 2 -
2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2}

    Suy ra góc giữa đường thẳng d và mặt phẳng (P) bằng 90^{0} -
60^{0} = 30^{0}.

  • Câu 7: Nhận biết

    Cho mặt cầu S(O; R) và một điểm A, biết OA = 2R. Qua A kẻ một cát tuyến cắt (S) tại B và C sao cho BC = R\sqrt 3. Khi đó khoảng cách từ O đến BC bằng:

     Gọi H là hình chiếu của O lên BC.

    Ta có OB=OC=R , suy ra H là trung điểm của BC nên HC = \frac{{CD}}{2} = \frac{{R\sqrt 3 }}{2}

    Suy ra OH = \sqrt {O{C^2} - H{C^2}}  = \frac{R}{2}.

  • Câu 8: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, phương trình chính tắc của đường thẳng d đi qua điểm M(2;0; - 1) có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2) là:

    Phương trình đường thẳng đi qua điểm M(2;0; - 1) có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2) nên có phương trình: \frac{x - 2}{2} = \frac{y}{-
3} = \frac{z + 1}{1}.

  • Câu 9: Nhận biết

    Trong không gian Oxyz, cho đường thẳng \Delta đi qua điểm M(2;0; - 1) và có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2). Phương trình tham số của đường thẳng \Delta

    đường thẳng \Delta đi qua điểm M(2;0; - 1) và có vectơ chỉ phương \overrightarrow{u} = (2; - 3;1) nên có phương trình tham số \left\{
\begin{matrix}
x = 2 + 2t \\
y = - 3t \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 10: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (2; 1; 3) , B (6; 5; 5). Gọi (S) là mặt cầu có đường kính AB. Mặt phẳng (P) vuông góc với đoạn AB tại H sao cho khối nón đỉnh A và đáy là hình tròn tâm H (giao tuyến của mặt cầu (S) và mặt phẳng (P)) có thể tích lớn nhất, biết rằng (P) : 2x + by + cz + d = 0 với b, c, d ∈ \mathbb{Z}. Tính giá trị T = b − c + d.

    Hình vẽ minh họa

    Ta có: \overrightarrow{AB} =
(4;4;2)\overrightarrow{AB}\bot(P) nên \frac{2}{4} = \frac{b}{4} = \frac{c}{2}
\Rightarrow \left\{ \begin{matrix}
b = 2 \\
c = 1 \\
\end{matrix} ight.

    Suy ra (P): 2x + 2y + z + d = 0.

    Ta có AB = 6. Gọi I là trung điểm của đoạn thẳng AB, suy ra I (4; 3; 4).

    Ta có (S) là mặt cầu có đường kính AB nên (S)I(4;3;4);R = \frac{AB}{2} = 3

    Gọi r là bán kính đường tròn tâm H.

    Khi đó, thể tích khối nón đỉnh cần tìm được xác định bởi công thức

    Ta có:

    V = \frac{1}{3}\pi r^{2}AH =
\frac{1}{3}\pi r^{2}(R + IH)

    = \frac{1}{3}\pi r^{2}\left( R +
\sqrt{R^{2} - r^{2}} ight)

    = \frac{1}{3}\pi r^{2}\left( 3r^{2} +
r^{2}.\sqrt{9 - r^{2}} ight)

    Đặt f(r) = 3r^{2} + r^{2}.\sqrt{9 -
r^{2}};r \in (0;3brack

    \Rightarrow f'(r) = r\left( 6 +
2\sqrt{9 - r^{2}} - \frac{r^{2}}{\sqrt{9 - r^{2}}} ight)

    \Rightarrow f'(r) = 0\Leftrightarrow \left\lbrack \begin{matrix}r = 0(ktm) \\6 + 2\sqrt{9 - r^{2}} - \dfrac{r^{2}}{\sqrt{9 - r^{2}}} = 0 \\\end{matrix} ight.

    \Leftrightarrow 2\sqrt{9 - r^{2}} =
r^{2} - 6;\left( r^{2} \geq 6 ight)

    \Leftrightarrow r^{4} - 8r^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
r = 0(L) \\
r^{2} = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
r = - 2\sqrt{2}(L) \\
r = 2\sqrt{2}(tm) \\
\end{matrix} ight.

    \Rightarrow HI = \sqrt{R^{2} - r^{2}} =
1

    \Rightarrow \frac{AH}{AI} = \frac{AI +
HI}{AI} = \frac{R + HI}{R} = \frac{4}{3}

    \Rightarrow AH = \frac{4}{3}AI
\Rightarrow \overrightarrow{AH} = \frac{4}{3}\overrightarrow{AI}
\Rightarrow H\left( \frac{13}{3};\frac{11}{3};\frac{13}{3}
ight)

    H\left(
\frac{13}{3};\frac{11}{3};\frac{13}{3} ight) \in (P):2x + 2y + z + d =
0 \Rightarrow d = - 21

    Vậy T = b − c + d = −20.

  • Câu 11: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm H(2; - 1; - 2) là hình chiếu vuông góc của gốc tọa độ O xuống mặt phẳng (P), số đo góc giữa mặt phẳng (P) và mặt phẳng (Q):x - y - 11 = 0 bằng bao nhiêu?

    H(2; - 1; - 2) là hình chiếu vuông góc của gốc tọa độ O xuống mặt phẳng (P) nên mặt phẳng (P) có vectơ pháp tuyến \overrightarrow{n_{(P)}} = \overrightarrow{OH} =
(2; - 1; - 2).

    Mặt phẳng (Q) có vectơ pháp tuyến \overrightarrow{n_{(Q)}} = (1; -
1;0).

    Gọi \varphi là số đo góc giữa mặt phẳng (P) và mặt phẳng (Q), ta có:

    \cos\varphi = \frac{\left|
\overrightarrow{n_{(P)}}.\overrightarrow{n_{(Q)}} ight|}{\left|
\overrightarrow{n_{(P)}} ight|.\left| \overrightarrow{n_{(Q)}}
ight|}

    = \frac{\left| 2.1 + ( - 1).( - 1) + ( -
2).0 ight|}{\sqrt{2^{2} + ( - 1)^{2} + ( - 2)^{2}}.\sqrt{1^{2} + ( -
1)^{2} + 0^{2}}} = \frac{\sqrt{2}}{2}

    \Rightarrow \varphi =
45^{0}

  • Câu 12: Thông hiểu

    Trong không gian Oxyz, viết phương trình mặt phẳng (P) biết (P) đi qua hai điểm M(0; - 1;0),N( - 1;1;1) và vuông góc với mặt phẳng (Oxz).

    Ta có \overrightarrow{MN} = ( -
1;2;1)(Oxz) có một vectơ pháp tuyến là \overrightarrow{j}\  =
(0;1;0)

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{n} = \left\lbrack
\overrightarrow{MN};\overrightarrow{j} ightbrack = ( - 1;0; -
1)

    Do đó, (P) có phương trình là - 1(x - 0) + 0(y + 1) - 1(z - 0) = 0
\Leftrightarrow x + z = 0.

  • Câu 13: Nhận biết

    Trong các khẳng định sau, khẳng định nào sai?

    Ta có: \left| \left\lbrack
\overrightarrow{u};\overrightarrow{v} ightbrack ight| = \left|
\overrightarrow{u} ight|.\left| \overrightarrow{v} ight|.sin\left(
\overrightarrow{u};\overrightarrow{v} ight)

    Vậy khẳng định sai là: \left|\left\lbrack \overrightarrow{u};\overrightarrow{v} ightbrack ight|= \left| \overrightarrow{u} ight|.\left| \overrightarrow{v}ight|.\cos\left( \overrightarrow{u};\overrightarrow{v}ight).

  • Câu 14: Vận dụng cao

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm A(100;50;100) và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là B(50;100;50),C(150;100;100). Máy bay sẽ bay qua điểm W của đường màu BC để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm W(a;b;c), hãy tính giá trị biểu thức T = a + b -
2c.

    Đáp án: 50

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm A(100;50;100) và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là B(50;100;50),C(150;100;100). Máy bay sẽ bay qua điểm W của đường màu BC để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm W(a;b;c), hãy tính giá trị biểu thức T = a + b -
2c.

    Đáp án: 50

    Ta có: \overrightarrow{BC} =
(100;0;50)

    Đường thẳng (BC) đi qua điểm B có VTCP \overrightarrow{u} = (2;0;1)có dạng (BC):\left\{ \begin{matrix}
x = 50 + 2t \\
y = 100 \\
z = 50 + t \\
\end{matrix} ight.

    Điểm W \in (BC) \Rightarrow W(50 +
2t;100;50 + t) \overrightarrow{AW} = (2t - 50;50;t -
50)

    Ta có: \overrightarrow{AW}.\overrightarrow{BC} =
0

    \Rightarrow 2(2t - 50) + (t - 50) = 0
\Rightarrow t = 30

    Vậy H(110;100;80) \Rightarrow a + b - 2c
= 50.

  • Câu 15: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' cạnh a.

    a) Khoảng cách giữa hai đường thẳng A'B'BC bằng a. Đúng||Sai

    b) Góc giữa hai đường thẳng ABB^{'}D^{'} bằng \ 45{^\circ}. Đúng||Sai

    c) Góc giữa đường thẳng CD' và mặt phẳng (A'B'C'D') bằng 60{^\circ}. Sai||Đúng

    d) Góc nhị diện \left\lbrack
(BCC'B'),BB',(BDD'B') ightbrack có số đo bằng 45{^\circ}. Đúng||Sai

    Đáp án là:

    Cho hình lập phương ABCD.A'B'C'D' cạnh a.

    a) Khoảng cách giữa hai đường thẳng A'B'BC bằng a. Đúng||Sai

    b) Góc giữa hai đường thẳng ABB^{'}D^{'} bằng \ 45{^\circ}. Đúng||Sai

    c) Góc giữa đường thẳng CD' và mặt phẳng (A'B'C'D') bằng 60{^\circ}. Sai||Đúng

    d) Góc nhị diện \left\lbrack
(BCC'B'),BB',(BDD'B') ightbrack có số đo bằng 45{^\circ}. Đúng||Sai

    a) Vì A'B'\bot BB', BC\bot BB' nên d(A'B',BC) = BB' = a. Mệnh đề đúng.

    b) Do AB//A'B' nên (AB,B'D') = (A'B',B'D') =
45{^\circ}. Mệnh đề đúng.

    c) Vì CC'\bot(A'B'C'D') nên \left( CD',(A'B'C'D')
ight) = (CD',C'D') = 45{^\circ}. Mệnh đề sai.

    d) Ta có B'C'\bot
BB', B'D'\bot
BB' nên góc nhị diện \left\lbrack
(BCC'B'),BB',(BDD'B') ightbrack có số đo bằng \widehat{D'B'C'} =
45{^\circ}. Mệnh đề đúng

  • Câu 16: Thông hiểu

    Trong không gian Oxyz (đơn vị trên mỗi trục tính theo kilômét), một trạm thu phát sóng điện thoại di động được đặt ở vị trí I(1;3;7). Trạm thu phát sóng đó được thiết kế với bán kính phủ sóng là 3\ km.

    a) Phương trình mặt cầu (S) để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là (x + 1)^{2} + (y + 3)^{2} + (z + 7)^{2} =
9. Sai||Đúng

    b) Điểm A(2;2;7) nằm ngoài mặt cầu (S). Sai||Đúng

    c) Nếu người dùng điện thoại ở vị trí có tọa độ (2;2;7) thì có thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai

    d) Nếu người dùng điện thoại ở vị trí có tọa độ (5;6;7) thì không thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz (đơn vị trên mỗi trục tính theo kilômét), một trạm thu phát sóng điện thoại di động được đặt ở vị trí I(1;3;7). Trạm thu phát sóng đó được thiết kế với bán kính phủ sóng là 3\ km.

    a) Phương trình mặt cầu (S) để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là (x + 1)^{2} + (y + 3)^{2} + (z + 7)^{2} =
9. Sai||Đúng

    b) Điểm A(2;2;7) nằm ngoài mặt cầu (S). Sai||Đúng

    c) Nếu người dùng điện thoại ở vị trí có tọa độ (2;2;7) thì có thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai

    d) Nếu người dùng điện thoại ở vị trí có tọa độ (5;6;7) thì không thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai

    Phương trình mặt cầu (S) tâm I(1;3;7) bán kính 3\ km mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là (x - 1)^{2} +
(y - 3)^{2} + (z - 7)^{2} = 9.

    Ta có: IA = \sqrt{(2 - 1)^{2} + (2 -
3)^{2} + (7 - 7)^{2}} = \sqrt{2} < 3 nên điểm A nằm trong mặt cầu.

    Vì điểm A nằm trong mặt cầu nên người dùng điện thoại ở vị trí có toạ độ (2;2;7) có thể sử dưng dịch vụ của trạm thu phát sóng đó.

    Ta có: IB = \sqrt{(5 - 1)^{2} + (6 -
3)^{2} + (7 - 7)^{2}} = 5' > 3 nên điểm B nằm ngoài mặt cầu.

    Vậy người dùng điện thoại ở vị trí có tọa độ (5;6;7) không thể sử dựng dịch vụ của trạm thu phát sóng đó

  • Câu 17: Nhận biết

    Trong không gian với hệ tọa độ Oxyz cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 2t \\
z = 3 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) và mặt phẳng (P):x - y + 3 = 0. Tính số đo góc giữa đường thẳng d và mặt phẳng (P).

    Đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = ( - 1;2;1)

    Mặt phẳng (P) có vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;0)

    Gọi α là góc giữa đường thẳng d và mặt phẳng (P) .

    Khi đó ta có:

    \sin\alpha = \frac{\left|
\overrightarrow{u}.\overrightarrow{n} ight|}{\left| \overrightarrow{u}
ight|.\left| \overrightarrow{n} ight|} = \frac{\left| - 1.1 + 2.( -
1) + 1.0 ight|}{\sqrt{( - 1)^{2} + 2^{2} + 1^{2}}.\sqrt{1^{2} + ( -
1)^{2} + 0^{2}}} = \frac{\sqrt{3}}{2}

    \Rightarrow \alpha = 60^{0}

  • Câu 18: Nhận biết

    Phương trình tổng quát của mặt phẳng qua A(3,-1, 2), B(4, -2, -1), C(2, 0, 2) là:

     Theo đề bài, ta có được các vecto sau:

    \begin{array}{l}\overrightarrow {AB}  = \left( {1, - 1, - 3} ight),\overrightarrow {AC}  = \left( { - 1,1,0} ight);\\ \Rightarrow \left[ {\overrightarrow {AB,} \overrightarrow {AC} } ight] = \left( {3,3,0} ight) = 3(1,1,0) = 3\overrightarrow n \end{array}

    Vì mặt phẳng đi qua 3 điểm nên VTPT của mp là tích có hướng của \vec{AB}\vec{AC} .

    Chọn \overrightarrow n  = \left( {1,1,0} ight) làm một vectơ pháp tuyến.

    Phương trình mp (ABC)có dạng x+y+D=0

    (ABC) là mp qua A  \Leftrightarrow 3 - 1 + D = 0 \Leftrightarrow D =  - 2

    Vậy phương trình (ABC): x + y -2=0.

  • Câu 19: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(2;0;0),B(2;3;0) và mặt phẳng (P):x + y + z - 7 = 0. Tìm hoành độ x_{M} của điểm M thuộc mặt phẳng (P) sao cho \left| \overrightarrow{MA} + 2\overrightarrow{MB}ight| đạt giá trị nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(2;0;0),B(2;3;0) và mặt phẳng (P):x + y + z - 7 = 0. Tìm hoành độ x_{M} của điểm M thuộc mặt phẳng (P) sao cho \left| \overrightarrow{MA} + 2\overrightarrow{MB}ight| đạt giá trị nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Nhận biết

    Trong không gian Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 2t \\
z = - 1 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm nào sau đây không thuộc đường thẳng d?

    Thay M(1;2; - 1) vào d ta được: \left\{ \begin{matrix}
1 = 1 - t \\
2 = 2 + 2t \\
- 1 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = 0 \Rightarrow M \in
d

    Thay N(6; - 8;9) vào d ta được: \left\{ \begin{matrix}
6 = 1 - t \\
- 8 = 2 + 2t \\
9 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = - 5 \Rightarrow N \in
d

    Thay P( - 6;16; - 14) vào d ta được: \left\{ \begin{matrix}
- 6 = 1 - t \\
16 = 2 + 2t \\
- 14 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = 7 \\
t = 7 \\
t = \frac{13}{2} \\
\end{matrix} ight. hệ vô nghiệm nên P otin d.

    Thay Q( - 19;42; - 41) vào d ta được: \left\{ \begin{matrix}
19 = 1 - t \\
42 = 2 + 2t \\
- 41 = - 1 - 2t \\
\end{matrix} ight.\  \Leftrightarrow t = 20 \Rightarrow Q \in
d

  • Câu 21: Vận dụng

    Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):x + y - 2z - 5 = 0 và đường thẳng\Delta:\frac{x - 1}{2} = \frac{y -
2}{1} = \frac{z}{3}. Gọi A là giao điểm của \Delta(P)M là điểm thuộc đường thẳng \Delta sao cho AM = \sqrt{84}. Tính khoảng cách từ M đến mặt phẳng (P).

    Gọi \alpha = \left( \Delta,(P)
ight)

    Khi đó ta có: \cos\alpha = \frac{|1.2 +
1.1 - 2.3|}{\sqrt{1^{2} + 1^{2} + ( - 2)^{2}}.\sqrt{2^{2} + 1^{2} +
3^{2}}} = \frac{\sqrt{21}}{14}

    Gọi H là hình chiếu của M lên mặt phẳng (P), khi đó:

    HM = MA.cos\alpha = \sqrt{84}.\frac{\sqrt{21}}{14}
= 3

  • Câu 22: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):8x - 4y - 8z - 11 =0,(Q):\sqrt{2}x - \sqrt{2}y + 7 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):8x - 4y - 8z - 11 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} = (8; - 4; -
8)

    (Q):\sqrt{2}x - \sqrt{2}y + 7 =
0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} = \left( \sqrt{2}; -
\sqrt{2};0 ight)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)

    = \frac{\left| 8.\sqrt{2} + 4.\sqrt{2} -
8.0 ight|}{\sqrt{8^{2} + ( - 4)^{2} + ( - 8)^{2}}.\sqrt{\left(
\sqrt{2} ight)^{2} + \left( - \sqrt{2} ight)^{2} + 0}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 23: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a, gọi α là góc giữa đường thẳng AB' và mặt phẳng (BB'D'D). Tính sinα.

    Hình vẽ minh họa

    Chọn hệ trục tọa độ Oxyz với A \equiv
O(0;0;0),B(a;0;0),C(a;a;0),D(0;a;0),A^{'}(0;0;a),

    B^{'}(a;0;a),C^{'}(a;a;a),D^{'}(0;a;a)

    Ta thấy OC\bot\left( BB^{'}D^{'}D
ight)\overrightarrow{OC} =
(a;a;0) nên suy ra mặt phẳng \left(
BB^{'}D^{'}D ight) có một vec tơ pháp tuyến là \overrightarrow{n} = (1;1;0.).

    Đường thẳng A^{'}B có vectơ chỉ phương là \overrightarrow{A^{'}B} =
(a;0; - a) ta chọn \overrightarrow{u} = (1;0; - 1).

    Ta có \sin\alpha =\frac{|\overrightarrow{n} \cdot\overrightarrow{u}|}{|\overrightarrow{n}| \cdot |\overrightarrow{u}|}=\frac{|1 \cdot 1 + 1 \cdot 0 + 0 \cdot ( - 1)|}{\sqrt{1^{2} + 1^{2} +0^{2}} \cdot \sqrt{1^{2} + 0^{2} + ( - 1)^{2}}} =\frac{1}{2}.

  • Câu 24: Nhận biết

    Trong không gian với hệ toạ độ Oxyz, phương trình nào sau đây là phương trình mặt cầu

    Phương trình mặt cầu tâm I bán kính R có dạng: (x - a)^{2} + (y - b)^{2} + (z - c)^{2} =
R^{2}

    Vậy đáp án cần tìm là: (x - 13)^{2} + (y
- 24)^{2} + (z - 36)^{2} = 7^{2} .

  • Câu 25: Thông hiểu

    Trong không gian Oxyz, viết phương trình mặt phẳng (P) chứa Oz và đi qua điểm P(3; - 4;7)?

    Mặt phẳng (P) có cặp véc-tơ chỉ phương là \overrightarrow{k} =
(0;0;1),\overrightarrow{OP} = (3; - 4;7)

    Suy ra mặt phẳng có (P) một véc-tơ pháp tuyến là \overrightarrow{n} =
\overrightarrow{k} \land \overrightarrow{OP} = ( - 4; - 3;0) = -
1(4;3;0).

    Mặt phẳng (P) đi qua O(0;0;0) có vectơ pháp tuyến (4; 3; 0).

    Vậy mặt phẳng (P) có phương trình tổng quát là 4x + 3y = 0.

  • Câu 26: Nhận biết

    Trong không gian Oxyz, mặt phẳng (Oxz) có phương trình là

    Mặt phẳng (Oxz) đi qua điểm O(0;0;0) và nhận \overrightarrow{j} = (0;1;0) là một véc-tơ pháp tuyến nên phương trình của mặt phẳng (Oxz)(Oxz).

  • Câu 27: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (\alpha):x - y + 2z = 1. Trong các đường thẳng sau, đường thẳng nào vuông góc với (\alpha).

    Mặt phẳng (\alpha):x - y + 2z =
1 có một vectơ pháp tuyến là \overrightarrow{n_{(\alpha)}} = (1; -
1;2).

    Đường thẳng d_{1} có một vectơ chỉ phương là \overrightarrow{u_{d_{1}}} =
(1; - 1;2) = \overrightarrow{n_{(\alpha)}}

    Suy ra d_{1}\bot(\alpha).

  • Câu 28: Vận dụng

    Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)

    A basketball on the groundDescription automatically generated

    Trả lời: 23,9 cm

    Đáp án là:

    Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)

    A basketball on the groundDescription automatically generated

    Trả lời: 23,9 cm

    Ta đặt hệ trục vào căn phòng sao cho có hai bức tường là mặt (Oxz),(Oyz), và nền là (Oxy)

    Vậy bài toán dẫn đến việc tìm đường kính của mặt cầu tiếp xúc với 3 mặt phẳng toạ độ và chứa điểm M(17\ ;\ 18\ ;\ 21).

    Ta có thể gọi phương trình mặt cầu là (S):(x - a)^{2} + (y - b)^{2} + (z - c)^{2} =
R^{2}, với a,b,c,R >
0

    Do mặt cầu tiếp xúc với các mặt phẳng toạ độ nên a = b = c = R

    \Rightarrow (S):(x - a)^{2} + (y -
a)^{2} + (z - a)^{2} = a^{2}

    Do M(17\ ;\ 18\ ;\ 21) \in (S) nên (17 - a)^{2} + (18 - a)^{2} + (21 -
a)^{2} = a^{2}.

    \Rightarrow 2a^{2} - 112a + 1054 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = 28 - \sqrt{257} \\
a = 28 + \sqrt{257} \\
\end{matrix} ight.

    Vì quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm nên a = 28 - \sqrt{257} thỏa.

    Vậy đường kính quả bóng bằng 2a = 56 -
2\sqrt{257} \approx 23,9\ (cm).

  • Câu 29: Nhận biết

    Trong không gian Oxyz, hai điểm A(7; - 2;2)B(1;2;4). Phương trình nào sau đây là phương trình mặt cầu đường kính AB?

    Mặt cầu nhận AB làm đường kính, do đó mặt cầu nhận trung điểm I(4;0;3) của AB làm tâm và có bán kính R = \frac{AB}{2} = \sqrt{56}

    Suy ra phương trình mặt cầu cần tìm là (x
- 4)^{2} + y^{2} + (z - 3)^{2} = 56.

  • Câu 30: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A'B'C'D', có AB = 2a;AD = a\sqrt{2}, góc giữa AC' và mặt phẳng (ABCD) bằng 30^{0}. Gọi H là hình chiếu vuông góc của A trên AB′ và K là hình chiếu vuông góc của A trên AD'. Tính góc giữa hai mặt phẳng (AHK)(ABB'A')

    60^{0}

    Hình vẽ minh họa

    Do ABCD \cdot
A^{'}B^{'}C^{'}D^{'} là hình hộp chữ nhật nên A^{'}C^{'} là hình chiếu vuông góc của A^{'}C trên (ABCD) \Rightarrow \left( A^{'}C,(ABCD)
ight) = \left( A^{'}C,A^{'}C^{'} ight) =
CA^{'}C^{'} = 30^{\circ}.

    Ta có AC = \sqrt{AB^{2} + AD^{2}} =
a\sqrt{3};tanCA^{'}C^{'} = \frac{CC^{'}}{A^{'}C^{'}}
\Rightarrow CC^{'} = a.

    Kết hợp với giả thiết ta được ABB^{'}A^{'} là hình vuông và có H là tâm.

    Gọi E,F lần lượt là hình chiếu vuông góc của K trên A^{'}D^{'}\& A^{'}A.

    Ta có \frac{1}{AK^{2}} =
\frac{1}{A^{'}A^{2}} + \frac{1}{AD^{2}} \Rightarrow AK =
\frac{a\sqrt{6}}{3};A^{'}K = \sqrt{A^{'}A^{2} - AK^{2}} =
\frac{a}{\sqrt{3}};

    \frac{1}{KF^{2}} = \frac{1}{KA^{2}} +
\frac{1}{A^{'}K^{2}} \Rightarrow KF = \frac{a\sqrt{2}}{3};KE =
\sqrt{A^{'}K^{2} - KF^{2}} \Rightarrow KE = \frac{a}{3}

    Ta chọn hệ trục tọa độ Oxyz thỏa mãn O \equiv A^{'} còn D^{'},B^{'},A theo thứ tự thuộc các tia Ox,Oy,Oz.

    Khi đó ta có tọa độ các điểm lần lượt là:

    A(0;0;a),B^{'}(0;a;0),H\left(
0;\frac{a}{2};\frac{a}{2} ight),K\left(
\frac{a\sqrt{2}}{3};0;\frac{a}{3} ight),E\left(
\frac{a\sqrt{2}}{3};0;0 ight),F\left( 0;0;\frac{a\sqrt{2}}{3}
ight)

    Mặt phẳng \left( ABB^{'}A^{'}
ight) là mặt phẳng (yOz) nên có VTPT là {\overrightarrow{n}}_{1} =
(1;0;0);

    Ta có \lbrack\overrightarrow{AK},\overrightarrow{AH}brack
=
\frac{a^{2}}{6}{\overrightarrow{n}}_{2},{\overrightarrow{n}}_{2}(2;\sqrt{2};\sqrt{2}).

    Mặt phẳng (AKH) có VTPT là {\overrightarrow{n}}_{2} =
(2;\sqrt{2};\sqrt{2});

    Gọi \alpha là góc giữa hai mặt phẳng (AHK)\left( ABB^{'}A^{'} ight).

    Ta có cos\alpha = \left| cos\left(
{\overrightarrow{n}}_{1},{\overrightarrow{n}}_{2} ight) ight| =
\frac{1}{\sqrt{2}} \Rightarrow \alpha = 45^{\circ}.

  • Câu 31: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz cho A(1;
- 1;2),B(2;1;1) và mặt phẳng (P):x
+ y + z + 1 = 0. Mặt phẳng (Q) chứa A;B và vuông góc với mặt phẳng (P). Tìm phương trình mặt phẳng (Q).

    Ta có \left\{ \begin{matrix}
\overrightarrow{n_{P}} = (1;1;1) \\
\overrightarrow{AB} = (1;2; - 1) \\
\end{matrix} ight.

    Do mặt phẳng Q chứa A, B và vuông góc với mặt phẳng (P) \Rightarrow \overrightarrow{n_{q}} = \left\lbrack
\overrightarrow{n_{P}};\overrightarrow{AB} ightbrack = ( -
3;2;1)

    Do đó (Q):3x - 2y - x - 3 =
0.

  • Câu 32: Thông hiểu

    Trong không gian Oxyz, cho hai đường thẳng song song d:\left\{
\begin{matrix}
x = 2 - t \\
y = 1 + 2t \\
z = 4 - 2t \\
\end{matrix} ight.d':\frac{x - 4}{1} = \frac{y + 1}{- 2} =
\frac{z}{2}. Viết phương trình đường thẳng nằm trong mặt phẳng (d, d’), đồng thời cách đều hai đường thẳng d và d’.

    Lấy M(2;1;4) \in d,N(4; - 1;0) \in
d'.

    Đường thẳng cần tìm đi qua trung điểm của MN, là điểm I(3; 0; 2), và song song với d và d’.

    Phương trình đường thẳng cần tìm là: \frac{x - 3}{1} = \frac{y}{- 2} = \frac{z -
2}{2}

  • Câu 33: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho điểm M(1; - 2;3). Gọi I là hình chiếu vuông góc của M trên trục Ox. Phương trình nào dưới đây là phương trình mặt cầu tâm I bán kính IM?

    Hình chiếu vuông góc của M trên Ox là: I(1;0;0)

    \Rightarrow IM = \sqrt{13}

    Suy ra phương trình mặt cầu tâm I bán kính IM là: (x -
1)^{2} + y^{2} + z^{2} = 13.

  • Câu 34: Thông hiểu

    Cho hai đường thẳng \left( {d'} ight)\left\{ \begin{array}{l}x = 3 - 2t\\y = 1 + t\\z =  - 2 - t\end{array} ight.\,\,;\,\,\,\,\,\left( {d''} ight)\left\{ \begin{array}{l}x = m - 3\\y = 2 + 2m\\z = 1 - 4m\end{array} ight.\,\,;t,\,\,m \in \mathbb{R}

    Viết phương trình tổng quát của mặt phẳng (P) qua (d’)và song song với (d’’).

     Vì (P) đi qua (d’) nên (P) nhận VTCP của (d’) làm 1 VTCP

    VTCP\left( P ight):\overrightarrow a  = \left( { - 2,1, - 1} ight)

    Vì (P) song song với (d’’) nên (P) có VTCP thứ hai là :

    VTCP\left( P ight):\overrightarrow b  = \left( {1,2, - 4} ight)

    Từ đây, ta suy ra VTPT của (P) chính là tích có hướng của 2 VTCP và :

    VTPT\left( P ight):\left[ {\overrightarrow a ,\overrightarrow b } ight] = \left( {2,9,5} ight)

    Lấy điểm A(3,1,-2) trên đường thẳng (d’) mà (d’) nằm trong (P) nên ta có được A cũng phải thuộc (P):

    \begin{array}{l}A\left( {3,1, - 2} ight) \in \left( P ight) \Rightarrow \left( {x - 3} ight)2 + \left( {y - 1} ight)9 + \left( {z + 2} ight)5 = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow \left( P ight):2x + 9y + 5z - 5 = 0\end{array}

  • Câu 35: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABCA(1;0;1),B(0;2;3),C(2;1;0). Độ dài đường cao của tam giác ABC kẻ từ C là:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1;2;2) \Rightarrow \left| \overrightarrow{AB}
ight| = 3 \\
\overrightarrow{AC} = (1;1; - 1) \\
\end{matrix} ight.

    \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = ( -
4;1;3)

    S_{ABC} = \frac{1}{2}\left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack ight| =
\frac{\sqrt{26}}{2}

    S_{ABC} =
\frac{1}{2}d(C;AB).AB

    \Rightarrow d(C;AB) =
\frac{2S_{ABC}}{AB} = \frac{\sqrt{26}}{3}

  • Câu 36: Thông hiểu

    Trong không gian Oxyz, cho các điểm A(1;0;0),C(0;0;3),B(0;2;0). Tập hợp các điểm M thỏa mãn MA^{2} = MB^{2} + MC^{2} là mặt cầu có bán kính là:

    Giả sử M(x;y;z)

    Ta có:\left\{ \begin{matrix}
MA^{2} = (x - 1)^{2} + y^{2} + z^{2} \\
MB^{2} = x^{2} + (y - 2)^{2} + z^{2} \\
MC^{2} = x^{2} + y^{2} + (z - 3)^{2} \\
\end{matrix} ight.

    Theo bài ra ta có:

    MA^{2} = MB^{2} + MC^{2}

    \Leftrightarrow (x - 1)^{2} + y^{2} +
z^{2} = x^{2} + (y - 2)^{2} + z^{2} + x^{2} + y^{2} + (z -
3)^{2}

    \Leftrightarrow - 2x + 1 = (y - 2)^{2} +
x^{2} + (z - 3)^{2}

    \Leftrightarrow (x + 1)^{2} + (y -
2)^{2} + (z - 3)^{2} = 2

    Vậy tập hợp điểm M thỏa mãn MA^{2} = MB^{2} + MC^{2} là mặt cầu có bán kính là R = \sqrt{2}.

  • Câu 37: Vận dụng

    Hai đường thẳng \left( {d'} ight):x = 8t - 1;\,\,y =  - 1 - 14t;\,\,z =  - 12t và  \left( d ight):x - 2y + 3z - 1 = 0;\,\,\,2x + 2y - z + 4 = 0\,\,\,\left( {t \in R } ight)

    Ta có đường thẳng (d’) qua E (-1, -1, 0) có vecto chỉ phương \overrightarrow a  = \left( {8, - 14, - 12} ight)

    Hai pháp vecto của hai đường thẳng \left( d ight):x - 2y + 3z - 1 = 0;\,\,\,2x + 2y - z + 4 = 0\,\,\,\left( {t \in R } ight) lần lượt là \overrightarrow {{n_1}}  = \left( {1, - 2,3} ight);\overrightarrow {{n_2}}  = \left( {2,2, - 1} ight)

    Vecto chỉ phương của \left( d ight):\overrightarrow b  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] = \left( { - 4,7,6} ight)

    Ta có: \frac{8}{{ - 4}} = \frac{{ - 14}}{7} = \frac{{ - 12}}{6} =  - 2 và tọa độ E\left( { - 1, - 1,0} ight) thỏa mãn phương trình của \left( d ight) \Rightarrow \left( D ight) \equiv \left( d ight)

  • Câu 38: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 1 + mt \\
y = t \\
z = - 1 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d_{2}:\left\{ \begin{matrix}
x = 1 - t' \\
y = 2 + 2t' \\
z = 3 - t' \\
\end{matrix} ight.\ ;\left( t'\mathbb{\in R} ight). Giá trị của m để hai đường thẳng d_{1}d_{2} cắt nhau là

    Đường thẳng d_{1} đi qua A(1; 0; −1), có vectơ chỉ phương \overrightarrow{u_{1}} = (m;1;2)

    Đường thẳng d_{2} đi qua B(1; 2; 3), có vectơ chỉ phương \overrightarrow{u_{2}} = ( - 1;2; -
1)

    Ta có \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack = ( - 5;m -
2;2m + 1)\overrightarrow{AB} =
(0;2;4)

    Hai đường thẳng d và d 0 cắt nhau \Rightarrow \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack.\overrightarrow{AB} = 0 \Leftrightarrow m = 0

  • Câu 39: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;0;1),B(3; - 2;0),C(1;2; - 2). Gọi (P) là mặt phẳng đi qua A sao cho tổng khoảng cách từ BC đến (P) lớn nhất, biết rằng (P) không cắt đoạn BC. Khi đó vectơ pháp tuyến của mặt phẳng (P) là:

    Kiểm tra \overrightarrow{n} = (2; - 2; -
1): Mặt phẳng (P) có phương trình 2x − 2y − z − 1 = 0.

    Thay tọa độ B, C vào (P) ta thấy B, C nằm về 2 phía (P) nên loại \overrightarrow{n} = (2; - 2; -
1).

    Kiểm tra \overrightarrow{n} =
(1;0;2): Mặt phẳng (P) có phương trình x+ 2z −3 = 0.

    Thay tọa độ B, C vào (P) ta thấy B ∈ (P) nên loại \overrightarrow{n} = (1;0;2).

    Kiểm tra \overrightarrow{n} = ( - 1;2; -
1): Mặt phẳng (P) có phương trình −x + 2y − z + 2 = 0.

    Thay tọa độ B, C vào (P) ta thấy B, C nằm về 2 phía (P) nên loại \overrightarrow{n} = ( - 1;2; -
1).

    Kiểm tra v: Mặt phẳng (P) có phương trình x − 2z + 1 = 0.

    Thay tọa độ B, C vào (P) ta thấy B, C nằm về cùng phía (P) nên chọn \overrightarrow{n} = (1;0; -
2).

  • Câu 40: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Đường thẳng SA = a\sqrt 2 vuông góc với đáy (ABCD) . Gọi M là trung điểm SC, mặt phẳng (\alpha) đi qua hai điểm A và M đồng thời song song với BD cắt SB, SD lần lượt tại E và F. Bán kính mặt cầu đi qua năm điểm S, A, E, M, Fnhận giá trị nào sau đây?

     Tính bán kính

    Mặt phẳng (\alpha) song song với BD cắt SB, SD lần lượt tại E, F nên EF||BD.

    \triangle SAC cân tại A , trung tuyến AM nên AM \bot SC  (1)

    Ta có \left\{ \begin{array}{l}BD \bot AC\\BD \bot SA\end{array} ight. \Rightarrow BD \bot \left( {SAC} ight) \Rightarrow BD \bot SC

    Do đó EF \bot SC   (2)

    Từ (1) và (2), suy ra SC \bot \left( \alpha  ight) \Rightarrow SC \bot AE   (*)

    Lại có \left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} ight. \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow BC \bot AE  (**)

    Từ (*) và (**), suy ra AE \bot \left( {SBC} ight) \Rightarrow AE \bot SB. Tương tự ta cũng có AF \bot SD.

    Do đó \widehat {SEA} = \widehat {SMA} = \widehat {SFA} = {90^0} nên năm điểm S,{m{ }}A,{m{ }}E,{m{ }}M,{m{ }}F cùng thuộc mặt cầu tâm I là trung điểm của SA, bán kính R = \frac{{SA}}{2} = \frac{{a\sqrt 2 }}{2}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 5 Phương pháp tọa độ trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo