Trong không gian , có tất cả bao nhiêu giá trị nguyên của tham số
để
là một phương trình mặt cầu
Phương trình đã cho là phương trình mặt cầu khi và chỉ khi
Theo bài ra
Vậy có tất cả 7 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Trong không gian , có tất cả bao nhiêu giá trị nguyên của tham số
để
là một phương trình mặt cầu
Phương trình đã cho là phương trình mặt cầu khi và chỉ khi
Theo bài ra
Vậy có tất cả 7 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Cho hình lập phương cạnh
.
a) Khoảng cách giữa hai đường thẳng và
bằng
. Đúng||Sai
b) Góc giữa hai đường thẳng và
bằng
. Đúng||Sai
c) Góc giữa đường thẳng và mặt phẳng
bằng
. Sai||Đúng
d) Góc nhị diện có số đo bằng
. Đúng||Sai
Cho hình lập phương cạnh
.
a) Khoảng cách giữa hai đường thẳng và
bằng
. Đúng||Sai
b) Góc giữa hai đường thẳng và
bằng
. Đúng||Sai
c) Góc giữa đường thẳng và mặt phẳng
bằng
. Sai||Đúng
d) Góc nhị diện có số đo bằng
. Đúng||Sai
a) Vì ,
nên
. Mệnh đề đúng.
b) Do nên
. Mệnh đề đúng.
c) Vì nên
. Mệnh đề sai.
d) Ta có ,
nên góc nhị diện
có số đo bằng
. Mệnh đề đúng
Trong không gian với hệ tọa độ , cho đường thẳng
đi qua điểm
, nhận vectơ
làm vectơ chỉ phương và đường thẳng
đi qua điểm
, nhận vectơ
làm vectơ chỉ phương. Điều kiện để đường thẳng
song song với
là:
Điều kiện để là:
.
Trong không gian với hệ trục tọa độ , khoảng cách từ
đến mặt phẳng
là
Khoảng cách từ điểm đến mặt phẳng
là:
Trong không gian , cho các điểm
và
. Mặt phẳng
đi qua các điểm
sao cho khoảng cách từ điểm
đến
gấp hai lần khoảng cách từ điểm
đến
. Hỏi có bao nhiêu mặt phẳng
thỏa mãn đề bài?
Gọi là vectơ pháp tuyến của
. Khi đó
.
Do đó
Khoảng cách từ điểm B đến gấp hai lần khoảng cách từ điểm A đến
(luôn đúng)
Vậy có vô số mặt phẳng .
Trong không gian , cho điểm
và hai đường thẳng
và
. Gọi
là đường thẳng đi qua điểm
, cắt đường thẳng
và vuông góc với đường thẳng
. Đường thẳng
đi qua điểm nào trong các điểm dưới đây?
Gọi
có một vectơ chỉ phương
.
Do nên
Ta có:
Suy ra đường thẳng đi qua
.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, cạnh bên SA = a và vuông góc với mặt phẳng đáy. Gọi M là trung điểm cạnh SD. Tan của góc tạo bởi hai mặt phẳng (AMC) và (SBC) bằng:
Hình vẽ minh họa
Chọn hệ trục tọa độ sao cho , như hình vẽ:
Khi đó ta có:
và
Gọi là góc tạo bởi hai mặt phẳng
và
.
Ta có
Mà .
Suy ra .
Trong không gian hệ trục tọa độ , cho các điểm
và mặt phẳng
. Tìm hoành độ
của điểm
thuộc mặt phẳng (P) sao cho
đạt giá trị nhỏ nhất.
Trong không gian hệ trục tọa độ , cho các điểm
và mặt phẳng
. Tìm hoành độ
của điểm
thuộc mặt phẳng (P) sao cho
đạt giá trị nhỏ nhất.
Trong các khẳng định sau, khẳng định nào sai?
Ta có:
Vậy khẳng định sai là: .
Trong không gian , cho hai đường thẳng
và
, (với
là tham số). Tìm
để hai đường thẳng
và
cắt nhau
Ta có:
đi qua điểm M1(1; 2; 3) và có vectơ chỉ phương
đi qua điểm M2(1; m; −2) và có vectơ chỉ phương
Ta có:
và
cắt nhau
Trong không gian , cho đường thẳng
đi qua điểm
và có vectơ chỉ phương
. Phương trình tham số của đường thẳng
là:
Do cũng là vectơ chỉ phương nên phương trình tham số là:
.
Mặt phẳng và đường thẳng
:
Theo đề bài, ta có vecto pháp tuyến của
Đường thẳng (d) được cho dưới dạng hệ của hai mặt phẳng: và
cũng có 2 VTPT lần lượt
Như vậy, VTCP của (d) sẽ là tích có hướng của 2 VTPT:
và tọa độ của A không thỏa mãn phương trình của (P).
Vậy (d) // (P) .
Trong không gian với hệ tọa độ , cho đường thẳng
. Phương trình nào sau đây là phương trình chính tắc của
?
Đường thẳng d có vectơ chỉ phương và đi qua điểm
. Do đó phương trình chính tắc của
là:
Trong không gian với hệ tọa độ , mặt phẳng
cắt mặt cầu
theo thiết diện là đường tròn bán kính
bằng bao nhiêu?
Mặt cầu có tâm
và bán kính
.
Khoảng cách từ tâm đến
bằng
.
Trong không gian với hệ toạ độ , phương trình nào sau đây là phương trình mặt cầu
Phương trình mặt cầu tâm bán kính
có dạng:
Vậy đáp án cần tìm là: .
Trong không gian với hệ toạ độ , cho điểm
. Gọi
là hình chiếu vuông góc của
trên trục
. Phương trình nào dưới đây là phương trình mặt cầu tâm
bán kính
?
Hình chiếu vuông góc của trên
là:
Suy ra phương trình mặt cầu tâm bán kính
là:
.
Viết phương trình tham số của đường thẳng (d) qua điểm E(2, -4, 3) và song song với đường thẳng MN với tọa độ M(3, 2, 5) và N(1, -2, 2)
Đường thẳng d song song với MN nên VTCP của đường thẳng d chính là hay ta có
Như vậy, (d) là đường thẳng đi qua điểm E (2, -4, 3) và nhận làm 1 VTCP có phương trình là:
Cho hình chóp tứ giác đều có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc
. Thể tích của khối cầu ngoại tiếp khối chóp
là:
Gọi , suy ra
.
Ta có .
Trong , ta có
.
Ta có SO là trục của hình vuông ABCD.
Trong mặt phẳng SOB, kẻ đường trung trực d của đoạn B.
Gọi
Xét có
đều.
Do đó d cũng là đường trung tuyến của . Suy ra I là trọng tâm
.
Bán kính mặt cầu .
Suy ra
Trong không gian tọa độ , cho tọa độ hai điểm
. Phương trình mặt cầu đường kính
là:
Gọi I là trung điểm của AB suy ra
Mặt cầu đường kính có tâm
và bán kính
có phương trình là:
Trong không gian với hệ tọa độ , cho mặt phẳng
và mặt cầu
. Khẳng định nào sau đây đúng?
Mặt cầu (S) có tâm , bán kính
Ta có:
Do đó (P) cắt mặt cầu (S).
Trong không gian đường thẳng
và mặt phẳng
. Góc giữa mặt phẳng
và đường thẳng
bằng:
Mặt phẳng có một vectơ pháp tuyến là
Đường thẳng có một vectơ chỉ phương là
Gọi α là góc giữa đường thẳng và mặt phẳng
:
Trong không gian với hệ tọa độ , cho hai mặt phẳng
. Chọn khẳng định đúng.
Hai mặt phẳng có vectơ pháp tuyến lần lượt là
Ta có
⇒ .
Trong không gian , mặt phẳng
có một vectơ pháp tuyến là:
Mặt phẳng có một vectơ pháp tuyến là:
.
Trong không gian với hệ tọa độ , cho ba điểm
. Viết phương trình mặt phẳng đi qua ba điểm
.
Ta có:
Mặt phẳng có một vectơ pháp tuyến là
Từ đó phương trình mặt phẳng là
.
Trong không gian với hệ tọa độ , tính khoảng cách giữa đường thẳng
và trục
.
Đường thẳng d có vectơ chỉ phương và đi qua điểm
Trục Ox có vectơ chỉ phương và đi qua điểm
Khoảng cách giữa đường thẳng d và trục Ox là:
Trong không gian , cho mặt phẳng
đi qua điểm
và chắn trên các trục tọa độ
theo ba đoạn có độ dài đại số lần lượt là
. Phương trình tổng quát của mặt phẳng
khi
theo thứ tự tạo thành một cấp số nhân có công bội bằng
là:
Do giả thiết suy ra .
Giả sử khi đó phương trình mặt phẳng
.
Do M thuộc (P) nên
Suy ra do đó phương trình mặt phẳng
.
Trong không gian với hệ tọa độ , cho mặt phẳng
có phương trình
. Gọi
lần lượt là giao điểm của mặt phẳng
với các trục tọa độ
. Tính thể tích
của khối chóp
.
Ta có:
cắt các trục tọa độ tại
Do đôi một vuông góc nên
Cho tam giác ABC có .
Viết phương trình chính tắc của cạnh AB.
(AB) là đường thẳng đi qua A và B nên có 1 vecto chỉ phương:
(AB) đi qua A (1, 2, -3) và nhận vecto làm 1 VTCP có phương trình chính tắc là:
Cho điểm và mặt phẳng
. Xét điểm
thay đổi trên
, giá trị lớn nhất của
bằng:
Hình vẽ minh họa
Xét là điểm thỏa mãn
thế thì
hay .
Ta có
=
Dấu " " xảy ra khi
là hình chiếu của
lên
.
Trong không gian với hệ trục tọa độ , cho mặt phẳng
và đường thẳng
. Tính góc giữa đường thẳng
và mặt phẳng
.
Ta có:
Do đó:
Suy ra góc giữa đường thẳng d và mặt phẳng (P) bằng .
Cho điểm và đường thẳng
. Gọi A' là điểm đối xứng của A qua
. Tọa độ điểm A' là:
Đưa phương trình về dạng tham số:
Gọi (P) là mặt phẳng qua A và vuông góc với .
Phương trình mp (P) có dạng , qua A nên D = -2
Phương trình (P) là:
Thế x, y, z từ phương trình vào phương trình (P) được t=1
I là trung điểm của AA' nên:
.
Trong không gian , cho hai điểm
. Điểm
nằm trên mặt phẳng
sao cho
nhỏ nhất là:
Thay tọa độ của A, B vào vế trái của phương trình mặt phẳng ta được:
Suy ra A, B nằm về hai phía của mặt phẳng (P).
Vậy dấu “ = ” xảy ra khi
.
Ta có chọn vtcp của đường thẳng AB:
.
Vậy phương trình đường thẳng AB: .
Tọa độ của M là nghiệm hệ:
Trong không gian , cho hai mặt phẳng
có các vectơ pháp tuyến là
. Góc
là góc giữa hai mặt phẳng đó
là biểu thức nào sau đây?
Theo công thức góc giữa hai mặt phẳng ta có:
Trong không gian , hãy viết phương trình của đường thẳng
đi qua điểm
và vuông góc với mặt phẳng
?
Đường thẳng đi qua điểm
và có một véc-tơ chỉ phương là
nên
có phương trình chính tắc là
.
Trong không gian tọa độ , cho đường thẳng
và mặt phẳng
. Gọi
là góc giữa đường thẳng
và mặt phẳng
. Khẳng định nào sau đây đúng?
Ta có: có một vectơ chỉ phương là
,
có một vectơ pháp tuyến là
.
Từ đó:
Trong không gian với hệ tọa độ , cho hai điểm
. Độ dài của đoạn
là
Ta có:
khi đó độ dài đoạn
bằng:
Trong không gian , , cho hai mặt cầu
có phương trình lần lượt là
và
. Gọi
là mặt phẳng thay đổi tiếp xúc với cả hai mặt cầu
. Tính khoảng cách lớn nhất từ gốc tọa độ O đến mặt phẳng
.
Hình vẽ minh họa
Mặt cầu (S1) có tâm I(2; 1; 1) và bán kính .
Mặt cầu (S2) có tâm J(2; 1; 5) và bán kính .
Gọi A, B lần lượt là hai tiếp điểm của (S1), (S2) với mặt phẳng (P).
Gọi M là giao điểm của IJ với mặt phẳng (P). Ta có:
Suy ra J là trung điểm của IM, do đó M(2; 1; 9).
Gọi véc-tơ pháp tuyến của mặt phẳng (P) là khi đó phương trình của mặt phẳng (P) là
Ta có:
Mặt khác
Áp dụng bất đẳng thức Bunhiacopxki ta có
Từ (1) và (3) ta có:
Từ (2) và (4) suy ra:
Vậy khoảng cách lớn nhất từ gốc tọa độ O đến mặt phẳng (P) bằng .
Trong không gian , cho hai mặt phẳng
(với
là tham số thực). Khi hai mặt phẳng
và
tạo với nhau một góc nhỏ nhất thì điểm
nào dưới đây nằm trong
?
Ta có: có 1 VTPT
có 1 VTPT
.
Gọi là góc giữa
và
.
Ta có:
.
Do nên
nhỏ nhất khi
lớn nhất
nhỏ nhất
.
.
Trong không gian với hệ tọa độ Oxyz cho đường thẳng và mặt phẳng
. Tính số đo góc giữa đường thẳng
và mặt phẳng
.
Đường thẳng d có vectơ chỉ phương là
Mặt phẳng (P) có vectơ pháp tuyến là
Gọi α là góc giữa đường thẳng d và mặt phẳng (P) .
Khi đó ta có:
Trong không gian với hệ tọa độ , cho hai điểm
và
và mặt phẳng
. Phương trình mặt cầu
có bán kính bằng
có tâm thuộc đường thẳng
và
tiếp xúc với mặt phẳng
là:
Ta có: suy ra
Ta có:
Tâm I thuộc AB nên
Mặt phẳng (P) tiếp xúc mặt cầu nên
Ta có phương trình đường tròn (C) tâm , bán kính
là:
Ta có phương trình đường tròn (C) tâm I(−6; 5; −4), bán kính là:
Vậy đáp án cần tìm là: