Đề kiểm tra 45 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 5. Phương trình mặt phẳng, đường thẳng, mặt cầu được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 2;7),B( - 3;8; - 1). Mặt cầu đường kính AB có phương trình là:

    Gọi I là trung điểm của AB khi đó I(
- 1;3;3) là tâm mặt cầu (S).

    Bán kính R = IA = \sqrt{(1 + 1)^{2} + ( -
2 - 3)^{2} + (7 - 3)^{2}} = \sqrt{45}

    Vậy phương trình mặt cầu cần tìm là: (x +
1)^{2} + (y - 3)^{2} + (z - 3)^{2} = 45.

  • Câu 2: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz; cho điểm A(1;2; - 3). Gọi M,N,P là hình chiếu vuông góc của điểm A trên ba trục tọa độ Ox,Oy,Oz. Viết phương trình mặt phẳng (MNP)?

    M(1;0;0),N(0;2;0),P(0;0; - 3) là hình chiếu của A lên các trục tọa độ nên mặt phẳng cần tìm là (MNP):\frac{x}{1} + \frac{y}{2} + \frac{z}{- 3} =
1

    \Rightarrow (MNP):6x + 3y - 2z - 6 =
0

  • Câu 3: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):x + z + 4 = 0,(Q):x - 2y + 2z
+ 4 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):x + z + 4 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} =
(1;0;1)

    (Q):x - 2y + 2z + 4 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} =
(1; - 2;2)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)= \frac{\left|
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} ight|}{\left|
\overrightarrow{n_{1}} ight|.\left| \overrightarrow{n_{2}} ight|} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 4: Vận dụng cao

    Cho hai đường thẳng: ({d_1}):\frac{{x - 3}}{{ - 7}} = \frac{{y - 1}}{2} = \frac{{z - 1}}{3},({d_2}):\frac{{x - 7}}{1} = \frac{{y - 3}}{2} = \frac{{z - 9}}{{ - 1}}

    và mặt phẳng (\alpha ):x + y + z + 3 = 0 .

    Hình chiếu của ({d_2}) theo phương của ({d_1})  lên mặt phẳng (\alpha ) có phương trình tổng quát:

    Vectơ chỉ phương của ({d_1}):\overrightarrow a  = ( - 7,2,3). Vectơ chỉ phương của ({d_2}):\overrightarrow b  = (1,2, - 1).

    Phương trình của mặt phẳng chứa ({d_2}) và có phương của ({d_1})có dạng: 

    2x + y + 4z + D = 0

    Điểm A (7, 3, 9) thuộc mặt phẳng này 

    => D = -53

    Giao tuyến của mặt phẳng này với mặt phẳng (\alpha ) là hình chiếu của ({d_2}) theo phương của ({d_1}) lên (\alpha ): \left\{ \begin{array}{l}2x + y + 4z - 53 = 0\\x + y + z + 3 = 0\end{array} ight.

  • Câu 5: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, tính thể tích tứ diện OABC, biết A;B;C lần lượt là giao điểm của mặt phẳng 2x - 3y + 4z + 24 = 0 với trục Ox,Oy,Oz.

    Theo giả thiết ta có: A( -
12;0;0),B(0;8;0),C(0;0; - 6) suy ra

    V_{OABC} = \frac{1}{6}OA.OB.OC =
\frac{1}{6}.12.8.6 = 96

  • Câu 6: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có AB =
a;SA = a\sqrt{2}. Gọi G là trọng tâm tam giác SCD. Góc giữa đường thẳng BG với đường thẳng SA bằng:

    Gọi O = AC ∩ BD

    Tam giác SAO vuông nên suy ra SO =
\sqrt{SA^{2} - AO^{2}} = \frac{a\sqrt{6}}{2}

    Gắn tọa độ như hình vẽ:

    Ta có: \left\{ \begin{matrix}A(0;0;0),B(a;0;0),C(a;a;0) \\D(0;a;0),O\left( \dfrac{a}{2};\dfrac{a}{2};0 ight),S\left(\dfrac{a}{2};\dfrac{a}{2};\dfrac{a\sqrt{6}}{2} ight) \\\end{matrix} ight.

    Vì G là trọng tâm tam giác SCD nên G\left(
\frac{a}{2};\frac{5a}{6};\frac{a\sqrt{6}}{6} ight)

    Ta có: \left\{ \begin{matrix}\overrightarrow{AS} = \left( \dfrac{a}{2};\dfrac{a}{2};\dfrac{a\sqrt{6}}{2}ight) = \dfrac{a}{2}\left( 1;1;\sqrt{6} ight) \\\overrightarrow{BG} = \left( -\dfrac{a}{2};\dfrac{5a}{6};\dfrac{a\sqrt{6}}{6} ight) = \dfrac{a}{6}\left(- 3;5;\sqrt{6} ight) \\\end{matrix} ight.

    Góc giữa đường thẳng BG với đường thẳng SA bằng:

    \cos(BG;SA) = \frac{\left|
\overrightarrow{AS}.\overrightarrow{BG} ight|}{BG.AS} = \frac{| - 3 +
5 + 6|}{\sqrt{40}.\sqrt{8}} = \frac{\sqrt{5}}{5}

    Vậy đáp án cần tìm là: \arccos\frac{\sqrt{5}}{5}.

  • Câu 7: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, đường thẳng d:\frac{x - 1}{3} = \frac{y + 2}{- 4} = \frac{z -
3}{- 5} đi qua điểm nào sau đây?

    Thay tọa độ điểm (1; - 2;3) vào phương trình đường thẳng d ta được \frac{0}{3} = \frac{0}{- 4} = \frac{0}{-
5}, do đó điểm này thuộc đường thẳng d.

  • Câu 8: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;0;0),B(0;2;0),C(0;0;m). Để mặt phẳng (ABC) hợp với mặt phẳng (Oxy) một góc 60^{0} thì giá trị của m là

    Mặt phẳng Oxy có vectơ pháp tuyến là \overrightarrow{k} = (0;0;1)

    Ta có \overrightarrow{AB} = ( -
1;2;0);\overrightarrow{AC} = ( - 1;0;m), suy ra vectơ pháp tuyến của mặt phẳng (ABC)\overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
(2m;m;2)

    Theo bài ra ta có:

    cos60^{0} = \frac{\left|
\overrightarrow{k}.\overrightarrow{n} ight|}{\left| \overrightarrow{k}
ight|.\left| \overrightarrow{n} ight|} \Leftrightarrow \sqrt{5m^{2}
+ 4} = 4

    \Leftrightarrow m^{2} = \frac{12}{5}
\Leftrightarrow m = \pm \sqrt{\frac{12}{5}}

  • Câu 9: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 5 + t \\
y = - 2 + t \\
z = 4 + \sqrt{2}t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) và mặt phẳng (P):\ x - y + \sqrt{2}z - 7 =
0. Hãy xác định góc giữa đường thẳng d và mặt phẳng (P)?

    Đường thẳng d có vectơ chỉ phương \overrightarrow{u} = \left(
1;1;\sqrt{2} ight)

    Mặt phẳng (P) có vectơ pháp tuyến \overrightarrow{n} = \left( 1; -
1;\sqrt{2} ight)

    Gọi \varphi là góc giữa đường thẳng và mặt phẳng, khi đó ta có:

    \sin\varphi = \frac{\left|
\overrightarrow{n}.\overrightarrow{u} ight|}{\left| \overrightarrow{n}
ight|.\left| \overrightarrow{u} ight|} = \frac{\left| 1.1 + 1.( - 1)
+ \sqrt{2}.\sqrt{2} ight|}{\sqrt{1^{2} + 1^{2} +
{\sqrt{2}}^{2}}.\sqrt{1^{2} + ( - 1)^{2} + {\sqrt{2}}^{2}}} =
\frac{1}{2}

    \Rightarrow \varphi =
30^{0}

  • Câu 10: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho tứ diện đều ABCDA(4;
- 1;2),B(1;2;2),C(1; - 1;5),D\left( x_{D};\ y_{D};z_{D} ight) với y_{D} > 0. Tính p = 2x_{D} + \ y_{D} - z_{D}?

    Gọi G là trọng tâm tam giác ABC, suy ra G(2; 0; 3).

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 3;3;0) \\
\overrightarrow{AC} = ( - 3;0;3) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (1;\ 1;\ 1)

    AB = 3\sqrt{2}

    Đường thẳng đi qua G vuông góc với (ABC) có phương trình \left\{ \begin{matrix}
x = 2 + t \\
y = t \\
z = 3 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Do đó D(2 + t;t;3 + t)

    AD = AB \Rightarrow (t - 2)^{2} + 2(t
+ 1)^{2} = 18 \Rightarrow \left\lbrack \begin{matrix}
t = 2 \\
t = - 2 \\
\end{matrix} ight.

    y_{D} > 0 \Rightarrow y = 2
\Rightarrow P = 5

  • Câu 11: Nhận biết

    Trong không gian Oxyz, cho đường thẳng \Delta đi qua điểm M(2;0; - 1) và có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2). Phương trình tham số của đường thẳng \Delta là:

    Do (2; - 2;1) cũng là vectơ chỉ phương nên phương trình tham số là: \left\{
\begin{matrix}
x = 2 + 2t \\
y = - 3t \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 12: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(0; - 2; - 1),B( - 2; - 4;3),C(1;3; - 1) và mặt phẳng (P):x + y - 2z - 3 =
0. Tìm điểm M \in (P) sao cho |\overrightarrow{MA} +
\overrightarrow{MB} + 2\overrightarrow{MC}| dạt giá trị nhỏ nhất.

    Gọi I là điểm sao cho \overrightarrow{IA} + \overrightarrow{IB} +
2\overrightarrow{IC} = 0 \Rightarrow I(0;0;0).

    Từ đó:

    |\overrightarrow{MA} +
\overrightarrow{MB} + 2\overrightarrow{MC}| = |4\overrightarrow{MI} +
(\overrightarrow{IA} + \overrightarrow{IB} + 2\overrightarrow{IC})| =
4IM \geq 4IH

    với H là hình chiếu của I trên mặt phẳng (P).

    Từ đó suy ra |\overrightarrow{MA} +
\overrightarrow{MB} + 2\overrightarrow{MC}| dạt giá trị nhỏ nhất khi và chỉ khi M \equiv H.

    Phương trình đường thẳng đi qua I và vuông góc với mặt phẳng (P) là: \left\{ \begin{matrix}
x = t \\
y = t \\
z = - 2t \\
\end{matrix} ight..

    Tọa độ diểm H là nghiệm (x;y;z) của hệ

    \left\{ \begin{matrix}x = t \\y = t \\z = - 2t \\x + y - 2z - 3 = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = \dfrac{1}{2} \\y = \dfrac{1}{2} \\z = - 1 \\t = \dfrac{1}{2} \\\end{matrix} ight.\  ight.

    Suy ra H = \left(
\frac{1}{2};\frac{1}{2}; - 1 ight).

    Vậy, tọa độ điểm M cần tìm là M = \left( \frac{1}{2};\frac{1}{2}; - 1
ight).

  • Câu 13: Nhận biết

    Trong không gian Oxyz đường thẳng \Delta:\frac{x}{1} = \frac{y}{2} =
\frac{z}{- 1} = 1 và mặt phẳng (\alpha):x - y + 2z = 0. Góc giữa mặt phẳng (\alpha) và đường thẳng \Delta bằng:

    Mặt phẳng (\alpha):x - y + 2z =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;2)

    Đường thẳng \Delta:\frac{x}{1} =
\frac{y}{2} = \frac{z}{- 1} = 1 có một vectơ chỉ phương là \overrightarrow{u} = (1;2; - 1)

    Gọi α là góc giữa đường thẳng \Delta và mặt phẳng (\alpha):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} = \frac{|1
- 2 - 2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2} \Rightarrow \alpha =
30^{0}

  • Câu 14: Vận dụng

    Trong hệ tọa độ Oxyz, cho mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z -
3)^{2} = 16 và các điểm A(1; 0; 2); B(−1; 2; 2). Gọi (P) là mặt phẳng đi qua hai điểm A; B sao cho thiết diện của mặt phẳng (P) với mặt cầu (S) có diện tích nhỏ nhất. Khi viết phương trình (P) dưới dạng ax + by + cz + 3 = 0. Tính T = a + b + c.

    Ta có:

    (S) có tâm I(1; 2; 3), bán kính R = 4.

    Nhận thấy: IA = IB = \sqrt{5} <
R ⇒ A; B nằm bên trong mặt cầu.

    Gọi K là trung đểm của AB ⇒ K(0; 1; 2); IK ⊥ AB.

    Gọi H là hình chiếu của I trên (P),(P) cắt (S) theo thiết diện là đường tròn tâm H bán kính r.

    Std nhỏ nhất ⇔ r nhỏ nhất ⇔ IH lớn nhất

    ⇔ IH = IK ⇔ H ≡ K.

    Khi đó mặt phẳng (P): Đi qua A và có VTPT là \overrightarrow{IK} = ( - 1; - 1; -
1)

    ⇒ Phương trình mặt phẳng (P) : −x−y−z+3 = 0 ⇒ a+b+c = −3

  • Câu 15: Vận dụng cao

    Trong không gian Oxyz, cho mặt cầu (S): x^2 +y^2 +z^2 −2x+ 2z −2 = 0 và các điểm A(0; 1; 1), B(−1; −2; −3), C(1; 0; −3). Điểm D thuộc mặt cầu (S). Thể tích lớn nhất của tứ diện ABCD bằng:

    Mặt cầu (S) có tâm là I(1; 0; −1) và bán kính R = 2.

    Khi V_{DABC} lớn nhất thì \frac{V_{DABC}}{V_{IABC}} = \frac{d\left( D;(ABC)
ight)}{d\left( I;(ABC) ight)} = \frac{R + d\left( I;(ABC)
ight)}{d\left( I;(ABC) ight)}

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1; - 3; - 4) \\
\overrightarrow{AC} = (1; - 1; - 4) \\
\overrightarrow{AI} = (1; - 1; - 2) \\
\end{matrix} ight. suy ra:

    V_{IABC} = \frac{1}{6}\left|
\left\lbrack \left\lbrack \overrightarrow{AB};\overrightarrow{AC}
ightbrack.\overrightarrow{AI} ightbrack ight| =
\frac{4}{3}

    \Rightarrow d\left( I;(ABC) ight) =
\frac{6.V_{IABC}}{\left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack ight|} =
\frac{2}{3}

    \Rightarrow V_{DABC} =\dfrac{4}{3}.\dfrac{2 + \dfrac{2}{3}}{\dfrac{2}{3}} =\dfrac{16}{3}.

  • Câu 16: Nhận biết

    Trong không gian Oxyz, cho mặt cầu (S):(x + 3)^{2} + (y + 1)^{2} + (z -
1)^{2} = 2 có tọa độ tâm I là:

    Tâm của (S) có tọa độ là I( - 3; - 1;1).

  • Câu 17: Vận dụng

    Viết phương trình tổng quát của mặt phẳng (P) qua giao tuyến của hai mặt phẳng \left( Q ight):2x - y + z + 2 = 0;\,\,\,\,\,\,\left( R ight):x + y - z - 3 = 0  và vuông góc với mặt phẳng \left( S ight):x - 3y + z - 4 = 0

    Theo đề bài, (P) qua giao tuyến của hai mặt phẳng \left( Q ight):2x - y + z + 2 = 0;\,\,\,\,\,\,\left( R ight):x + y - z - 3 = 0 nên (P) có dạng là 

    \begin{array}{l}\left( P ight):2x - y + z + 2 + m\left( {x + y - z - 3} ight) = 0,\,\,m \in \mathbb{R} \\ \Leftrightarrow \left( P ight):\left( {m + 2} ight)x + \left( {m - 1} ight)y + \left( {1 - m} ight)z + 2 - 3m = 0\end{array}

    Chọn \vec{n} làm vectơ pháp tuyến của (P), ta có: \left( P ight):\overrightarrow n  = \left( {m + 2,m - 1,1 - m} ight) \bot \overrightarrow {{n_s}}  = \left( {1, - 3,1} ight) 

    \begin{array}{l} \Rightarrow \left( {m + 2} ight)1 + \left( {m - 1} ight)\left( { - 3} ight) + \left( {1 - m} ight)1 = 0 \Leftrightarrow m = 2\\ \Rightarrow \left( P ight):4x + y - z - 4 = 0\end{array}

  • Câu 18: Nhận biết

    Ba mặt phẳng x + 2y - z - 6 = 0,2x - y +
3z + 13 = 0,3x - 2y + 3z + 16 = 0 cắt nhau tại điểm A. Chọn kết luận đúng?

    Tọa độ điểm A là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
x + 2y - z - 6 = 0 \\
2x - y + 3z + 13 = 0 \\
3x - 2y + 3z + 16 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 2 \\
z = - 3 \\
\end{matrix} ight.\  \Rightarrow A( - 1;2; - 3)

  • Câu 19: Nhận biết

    Phương trình tổng quát của mặt phẳng qua A(3,-1, 2), B(4, -2, -1), C(2, 0, 2) là:

     Theo đề bài, ta có được các vecto sau:

    \begin{array}{l}\overrightarrow {AB}  = \left( {1, - 1, - 3} ight),\overrightarrow {AC}  = \left( { - 1,1,0} ight);\\ \Rightarrow \left[ {\overrightarrow {AB,} \overrightarrow {AC} } ight] = \left( {3,3,0} ight) = 3(1,1,0) = 3\overrightarrow n \end{array}

    Vì mặt phẳng đi qua 3 điểm nên VTPT của mp là tích có hướng của \vec{AB}\vec{AC} .

    Chọn \overrightarrow n  = \left( {1,1,0} ight) làm một vectơ pháp tuyến.

    Phương trình mp (ABC)có dạng x+y+D=0

    (ABC) là mp qua A  \Leftrightarrow 3 - 1 + D = 0 \Leftrightarrow D =  - 2

    Vậy phương trình (ABC): x + y -2=0.

  • Câu 20: Nhận biết

    Trong không gian Oxyz, cho ba mặt phẳng (P),(Q),(R) lần lượt có phương trình là x - 4z + 8 = 0,2x - 8z = 0,y
= 0. Mệnh đề nào dưới đây đúng?

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{p} = (1;0; - 4) và mặt phẳng (R) có một vectơ pháp tuyến là \overrightarrow{r} = (0;1;0)

    Do \overrightarrow{p} eq
k.\overrightarrow{r};\forall k\mathbb{\in R} nên vectơ \overrightarrow{p} không cùng phương với vectơ \overrightarrow{r}.

    Vậy mặt phẳng (R) cắt mặt phẳng (P).

  • Câu 21: Thông hiểu

    Trong không gian Oxyz, cho các điểm A(1;0;0),C(0;0;3),B(0;2;0). Tập hợp các điểm M thỏa mãn MA^{2} = MB^{2} + MC^{2} là mặt cầu có bán kính là:

    Giả sử M(x;y;z)

    Ta có:\left\{ \begin{matrix}
MA^{2} = (x - 1)^{2} + y^{2} + z^{2} \\
MB^{2} = x^{2} + (y - 2)^{2} + z^{2} \\
MC^{2} = x^{2} + y^{2} + (z - 3)^{2} \\
\end{matrix} ight.

    Theo bài ra ta có:

    MA^{2} = MB^{2} + MC^{2}

    \Leftrightarrow (x - 1)^{2} + y^{2} +
z^{2} = x^{2} + (y - 2)^{2} + z^{2} + x^{2} + y^{2} + (z -
3)^{2}

    \Leftrightarrow - 2x + 1 = (y - 2)^{2} +
x^{2} + (z - 3)^{2}

    \Leftrightarrow (x + 1)^{2} + (y -
2)^{2} + (z - 3)^{2} = 2

    Vậy tập hợp điểm M thỏa mãn MA^{2} = MB^{2} + MC^{2} là mặt cầu có bán kính là R = \sqrt{2}.

  • Câu 22: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d đi qua điểm M, nhận vectơ \overrightarrow{a} làm vectơ chỉ phương và đường thẳng d' đi qua điểm M', nhận vectơ \overrightarrow{a'} làm vectơ chỉ phương. Điều kiện để đường thẳng d song song với d' là:

    Điều kiện để d//d' là: \left\{ \begin{matrix}
\overrightarrow{a} = k.\overrightarrow{a'};(k eq 0) \\
M otin d' \\
\end{matrix} ight..

  • Câu 23: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + (y - 2)^{2} + (z + 1)^{2} =
6. Đường kính (S) bằng:

    Đường kính của mặt cầu (S) bằng: 2R = 2\sqrt{6}.

  • Câu 24: Thông hiểu

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình tổng quát của cạnh AC.

    (AC) là đường thẳng đi qua 2 điểm A và C nên nhận \overrightarrow {AC}  = 2\left( {1, - 2,4} ight) làm 1 VTCP.

    (AC) đi qua C (3,-2,5) và có 1 VTCP là (1,-2,4) có phương trình chính tắc:

    \begin{array}{l}x - 3 = \frac{{y + 2}}{{ - 2}} = \frac{{z - 5}}{4}\\ \Rightarrow PTTQ\,\,\,(AC):\left\{ \begin{array}{l}2x + y - 4 = 0\\4x - z - 7 = 0\end{array} ight. \vee \left\{ \begin{array}{l}2x + y - 4 = 0\\2y + z - 1 = 0\end{array} ight.\end{array}

     

  • Câu 25: Nhận biết

    Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm A(1;1;2)B(2; - 1;0) là:

    Ta có \overrightarrow{AB} = (1, - 2, -
2)

    Phương trình đường thẳng AB đi qua B(2; -
1;0) nhận vectơ \overrightarrow{AB} làm vectơ chỉ phương nên có phương trình là: \frac{x - 2}{- 1} =
\frac{y + 1}{2} = \frac{z}{2}.

  • Câu 26: Thông hiểu

    Viết phương trình tham số của đường thẳng \left( d ight):\,\left\{ \begin{array}{l}2x - 3y + z - 4 = 0\\2x + 5y - 3z + 4 = 0\end{array} ight.

     Theo đề bài, đường thẳng d là giao của 2 mặt phẳng, ta gọi 2 mặt phẳng (P) và (Q) tương ứng lần lượt là:\left( P ight):2x - 3y + z - 4 = 0;\,\left( Q ight):2x + 5y - 3z + 4 = 0

    Mp (P) và (Q) có 2 vecto pháp tuyến tương ứng là: \overrightarrow {{n_1}}  = \left( {2, - 3,1} ight);\overrightarrow {{n_2}}  = \left( {2,5, - 3} ight)

    Từ đây ta suy ra vecto chỉ phương của đường thẳng (d) là tích có hướng của 2 VTPT:

    \overrightarrow a  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] = \left( {4,8,16} ight) \Leftrightarrow \overrightarrow a  = 4\left( {1,2,4} ight)

    Cho y = 0, ta có:

    y = 0 \Rightarrow \left\{ \begin{array}{l}2x + z = 4\\2x - 3z =  - 4\end{array} ight.\, \Leftrightarrow x = 1;z = 2

    Đường thẳng (d) đi qua A( 1, 0, 2) và nhận vecto (1,2,4) làm 1 VTCP có PTTS là:

    A\left( {1,0,2} ight) \in \left( d ight) \Rightarrow \left( d ight)\left\{ \begin{array}{l}x = 1 + t\\y = 2t\\z = 2 + 4t\end{array} ight.\,\,;t \in R

  • Câu 27: Thông hiểu

    Trong không gian Oxyz, cho tứ diện ABCD có tọa độ đỉnh A(2;0;0),B(0;4;0),C(0;0;6),D(2;4;6). Gọi (S) là mặt cầu ngoại tiếp tứ diện ABCD. Viết phương trình mặt cầu (S') có tâm trùng với tâm của mặt cầu (S) và có bán kính gấp hai lần bán kính của mặt cầu (S)?

    Gọi phương trình mặt cầu (S):x^{2} +
y^{2} + z^{2} - 2ax - 2by - 2cz + d = 0a^{2} + b^{2} + c^{2} - d > 0

    (S) là mặt cầu ngoại tiếp tứ diện ABCD nên ta có hệ phương trình

    \left\{ \begin{matrix}
2^{2} + 0^{2} + 0^{2} - 2.a.2 - 2.b.0 - 2.c.0 + d = 0 \\
0^{2} + 4^{2} + 0^{2} - 2.a.0 - 2.b.4 - 2.c.0 + d = 0 \\
0^{2} + 0^{2} + 6^{2} - 2.a.0 - 2.b.0 - 2.c.6 + d = 0 \\
2^{2} + 4^{2} + 6^{2} - 2.a.2 - 2.b.4 - 2.c.6 + d = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 4a + d = - 4 \\
- 8b + d = - 16 \\
- 12c + d = - 36 \\
- 4a - 8b - 12c + d = - 56 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
c = 3 \\
d = 0 \\
\end{matrix} ight.. Suy ra tâm mặt cầu I(1;2;3) và bán kính R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{14}

    Vậy phương trình mặt cầu (S') có tâm trùng với tâm của mặt cầu (S) và có bán kính gấp hai lần bán kính của mặt cầu (S)là:

    (x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2}
= 56

  • Câu 28: Nhận biết

    Trong không gian Oxyz, cho hai mặt phẳng (P);(Q) có các vectơ pháp tuyến là \overrightarrow{a}\left(
a_{1};b_{1};c_{1} ight),\overrightarrow{b}\left( a_{2};b_{2};c_{2}
ight). Góc \alpha là góc giữa hai mặt phẳng đó \cos\alpha là biểu thức nào sau đây?

    Theo công thức góc giữa hai mặt phẳng ta có:

    \cos\alpha = \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) = \frac{\left| a_{1}a_{2}
+ b_{1}b_{2} + c_{1}c_{2} ight|}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|}

  • Câu 29: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và BA = BC = a. Cạnh bên SA = 2a và vuông góc với mặt phẳng đáy. Bán kính mặt cầu ngoại tiếp hình chóp S.ABC  là:

     Tìm bán kính

    Gọi M là trung điểm AC, suy ra M là tâm đường tròn ngoại tiếp tam giác ABC.

    Gọi I là trung điểm SC, suy ra IM ||SA nên IM \bot \left( {ABC} ight) .

    Do đó IM là trục của \triangle ABC, suy ra IA=IB=IC     (1)

    Hơn nữa, tam giác SAC vuông tại A có I là trung điểm SC nên IS=IC=IA.  (2)

    Từ (1) và (2) , ta có IS=IA=IB=IC

    hay I là tâm của mặt cầu ngoại tiếp hình chóp S.ABC.

    Vậy bán kính R = IS = \frac{{SC}}{2} = \frac{{\sqrt {S{A^2} + A{C^2}} }}{2} = \frac{{a\sqrt 6 }}{2} .

  • Câu 30: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (\alpha):2x + y - z - 3 = 0,(\beta):2x - y + 5 =0. Viết phương trình của mặt phẳng (P) song song với trục Oz và chứa giao tuyến của (\alpha)(\beta)?

    Mặt phẳng (P) chứa giao tuyến của hai mặt phẳng (\alpha)(\beta) nên có dạng:

    m(2x + y - z - 3) + n(2x - y + 5) =
0

    \Leftrightarrow (2m + 2n)x + (m - n)y -
mz - 3m + 5n = 0

    Mặt phẳng (P) song song với trục Oz nên m = 0.

    Chọn n = 1 ta có (P):2x - y + 5 =
0

  • Câu 31: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;0;1),B( - 1; - 2;0),C(2;1; - 1). Đường thẳng \Delta đi qua C và song song với AB có phương trình là:

    Một vectơ chỉ phương của đường thẳng ∆ là \overrightarrow{BA} = (1;2;1)

    Vậy phương trình tham số của đường thẳng ∆ là \left\{ \begin{matrix}
x = 2 + t \\
y = 1 + 2t \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 32: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho hai điểm A( - 1;2;4),B(0;1;5). Gọi (P) là mặt phẳng đi qua A sao cho khoảng cách từ B đến (P) là lớn nhất. Khi đó, khoảng cách d từ O đến mặt phẳng (P) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ toạ độ Oxyz, cho hai điểm A( - 1;2;4),B(0;1;5). Gọi (P) là mặt phẳng đi qua A sao cho khoảng cách từ B đến (P) là lớn nhất. Khi đó, khoảng cách d từ O đến mặt phẳng (P) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 33: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):8x - 4y - 8z - 11 =0,(Q):\sqrt{2}x - \sqrt{2}y + 7 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):8x - 4y - 8z - 11 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} = (8; - 4; -
8)

    (Q):\sqrt{2}x - \sqrt{2}y + 7 =
0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} = \left( \sqrt{2}; -
\sqrt{2};0 ight)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)

    = \frac{\left| 8.\sqrt{2} + 4.\sqrt{2} -
8.0 ight|}{\sqrt{8^{2} + ( - 4)^{2} + ( - 8)^{2}}.\sqrt{\left(
\sqrt{2} ight)^{2} + \left( - \sqrt{2} ight)^{2} + 0}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 34: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\frac{x - 1}{1} = \frac{y - 2}{3} = \frac{z
- 3}{- 1}. Gọi ∆’ là đường thẳng đối xứng với đường thẳng ∆ qua (Oxy). Tìm một vectơ chỉ phương của đường thẳng ∆’.

    Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm A(4; 11; 0).

    Ta thấy B(1; 2; 3) ∈ ∆ và B’(1; 2; −3) là điểm đối xứng của điểm B qua mặt phẳng (Oxy).

    Đường thẳng ∆’ đi qua các điểm A, B’.

    Ta có \overrightarrow{AB} = ( - 3; - 9; -
3), từ đó suy ra \overrightarrow{u}
= (1;3;1) là một vectơ chỉ phương của đường thẳng ∆’.

  • Câu 35: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (P) đi qua hai điểm M(1;8;0),C(0;0;3) cắt các tia Ox,Oy lần lượt tại A;B sao cho OG nhỏ nhất, với G là trọng tâm tam giác ABC. Biết G(a;b;c), hãy tính T = a + b + c.

    Gọi A(m;0;0),B(0;n;0) với m,n > 0.

    Khi đó phương trình của (ABC):\frac{x}{m}
+ \frac{y}{n} + \frac{z}{3} = 1.

    M \in (ABC) nên \frac{1}{m} + \frac{8}{n} = 1. Kết hợp với điều kiện m > 0,n > 0 suy ra m > 1n > 8.

    Cũng từ trên ta có m = \frac{n}{n -
8}.

    Trọng tâm G của tam giác ABC có tọa độ \left( \frac{m}{3};\frac{n}{3};1
ight).

    OG^{2} = |\overrightarrow{OG}|^{2} =
\left( \frac{m}{3} ight)^{2} + \left( \frac{n}{3} ight)^{2} + 1^{2}
= \frac{1}{9}\left\lbrack \left( \frac{n}{n - 8} ight)^{2} + n^{2}
ightbrack + 1

    Xét hàm số f(n) = \left( \frac{n}{n - 8}
ight)^{2} + n^{2} với n >
8.

    Ta có f^{'}(n) = 2 \cdot \frac{n}{n -
8} \cdot \frac{- 8}{(n - 8)^{2}} + 2n = 2n\left\lbrack \frac{- 8}{(n -
8)^{3}} + 1 ightbrack.

    f^{'}(n) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
n = 0 \\
n = 10 \\
\end{matrix} \Leftrightarrow n = 10 ight.

    Bảng biến thiên

    OG đạt giá trị nhỏ nhất khi và chỉ khi f(n) đạt giá trị nhỏ nhất. Điều này xảy ra khi n = 10; lúc đó m = 5G\left( \frac{5}{3};\frac{10}{3};1
ight).

    Vậy T = a + b + c = 6

  • Câu 36: Thông hiểu

    Với giá trị nào của m thì mặt phẳng \left( Q ight):x + y + z + 3 = 0 cắt mặt cầu

    \left( S ight):{x^2} + {y^2} + {z^2} - 2\left( {m + 1} ight)x + 2my - 2mz + 2{m^2} + 9 = 0?

    Theo đề bài, ta xác định các hệ số của (S):

    a = m + 1;b =  - m;c = m;d = 2{m^2} + 9.

    Suy ra tâm I có tọa độ là I\left( {m + 1, - m,m} ight)

    \Rightarrow {R^2} = {\left( {m + 1} ight)^2} + {m^2} + {m^2} - 2{m^2} - 9 = {m^2} + 2m - 8 > 0

    \Rightarrow m <  - 4 \vee m > 2

    (P) cắt (S) khi:

    d\left( {I,P} ight) < R \Leftrightarrow \frac{{\left| {m + 4} ight|}}{{\sqrt 3 }} < \sqrt {{m^2} + 2m - 8}  \Leftrightarrow m <  - 4 \vee m > 5

  • Câu 37: Thông hiểu

    Trong không gian Oxyz, cho A(1;2;0),B(3; - 1;1),C(1;1;1). Tính diện tích tam giác ABC?

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 3;1) \\
\overrightarrow{AC} = (0; - 1;1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = ( - 2; - 2; -
2)

    Lại có diện tích tam giác ABC là:

    S_{ABC} = \frac{1}{2}\left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
\sqrt{3}

  • Câu 38: Nhận biết

    Trong không gian với hệ tọa độ Oxyz cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 2t \\
z = 3 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) và mặt phẳng (P):x - y + 3 = 0. Tính số đo góc giữa đường thẳng d và mặt phẳng (P).

    Đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = ( - 1;2;1)

    Mặt phẳng (P) có vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;0)

    Gọi α là góc giữa đường thẳng d và mặt phẳng (P) .

    Khi đó ta có:

    \sin\alpha = \frac{\left|
\overrightarrow{u}.\overrightarrow{n} ight|}{\left| \overrightarrow{u}
ight|.\left| \overrightarrow{n} ight|} = \frac{\left| - 1.1 + 2.( -
1) + 1.0 ight|}{\sqrt{( - 1)^{2} + 2^{2} + 1^{2}}.\sqrt{1^{2} + ( -
1)^{2} + 0^{2}}} = \frac{\sqrt{3}}{2}

    \Rightarrow \alpha = 60^{0}

  • Câu 39: Thông hiểu

    Hai đường thẳng \left( {d'} ight):\left\{ \begin{array}{l}x = 2 + 4t\\y =  - 3m - t\\z = 2t - 1\end{array} ight.\left( d ight):\left\{ \begin{array}{l}x = 4 - 2m\\y = m + 2\\z =  - m\end{array} ight.với cắt nhau tại M có tọa độ là :

     

    Để (d’) cắt (d) tại M \Leftrightarrow \left\{ \begin{array}{l}2 + 4t = 4 - 2m\\ - 3 - t = m + 2\\2t - 1 =  - m\end{array} ight. \\\Leftrightarrow \left\{ \begin{array}{l}2t + m = 1\\t + m =  - 5\end{array} ight. \\\Leftrightarrow t = 6;m =  - 11

    \Rightarrow M\left( {26, - 9,11} ight)

     

  • Câu 40: Nhận biết

    Trong các khẳng định sau, khẳng định nào sai?

    Ta có: \left| \left\lbrack
\overrightarrow{u};\overrightarrow{v} ightbrack ight| = \left|
\overrightarrow{u} ight|.\left| \overrightarrow{v} ight|.sin\left(
\overrightarrow{u};\overrightarrow{v} ight)

    Vậy khẳng định sai là: \left|\left\lbrack \overrightarrow{u};\overrightarrow{v} ightbrack ight|= \left| \overrightarrow{u} ight|.\left| \overrightarrow{v}ight|.\cos\left( \overrightarrow{u};\overrightarrow{v}ight).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo