Đề kiểm tra 45 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 5. Phương trình mặt phẳng, đường thẳng, mặt cầu được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho A(1;2;3) và mặt phẳng (P):x + y + z - 2 = 0. Mặt phẳng (Q) song song với mặt phẳng (P)(Q)cách điểm A một khoảng bằng 3\sqrt{3}. Phương trình mặt phẳng (Q) là:

    (P)//(Q) \Rightarrow (Q):x + y + z + d
= 0;(d eq - 2)

    d\left( A;(Q) ight) = 3\sqrt{3}
\Leftrightarrow |6 + d| = 9 \Leftrightarrow \left\lbrack \begin{matrix}
d = 3 \\
d = - 15 \\
\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
\left( Q_{1} ight):x + y + z + 3 = 0\  \\
\left( Q_{2} ight):x + y + z - 15 = 0 \\
\end{matrix} ight..

  • Câu 2: Vận dụng cao

    Cho hai đường thẳng chéo nhau \left( d ight):\left\{ \begin{array}{l}x = 2 + t\\y = 1 - t\\z = 2t\end{array} ight.\left( d' ight):\left\{ \begin{array}{l}x + 2z - 2 = 0\\y - 3 = 0\end{array} ight.

    Mặt phẳng song song và cách đều và có phương trình tổng quát:

    Phương trình (d) cho biết A(2, 1, 0) \in (d) và (d) có vectơ chỉ phương \overrightarrow a  = \left( {1, - 1,2} ight)

    Chuyển (\triangle ) về dạng tham số \left\{ \begin{array}{l}x = 2 - 2t\\y = 3\\z = t\end{array} ight. để có B(2, 3, 0) \in (\triangle ) và vectơ chỉ phương \overrightarrow b  = \left( { - 2,0,1} ight) .

    Gọi I là trung điểm AB  thì I (2, 2, 0), M(x, y, z) bất kỳ \in (P) .

    \left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {IM}  = 0 \Leftrightarrow x + 5y + 2z - 12 = 0là phương trình của mặt phẳng (P).

  • Câu 3: Nhận biết

    Trong không gian với hệ tọa độ Oxyz,cho đường thẳng d:\left\{ \begin{matrix}
x = 3 - t \\
y = - 1 + 2t \\
z = - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Phương trình nào dưới đây là phương trình chính tắc của đường thẳng (d)?

    Đường thẳng (d) đi qua điểm M(3; - 1;0) và nhận \overrightarrow{u} = ( - 1;2; - 3) làm vectơ chỉ phương.

    Phương trình chính tắc của (d):\frac{x -
3}{- 1} = \frac{y + 1}{2} = \frac{z}{- 3}

  • Câu 4: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và BA = BC = a. Cạnh bên SA = 2a và vuông góc với mặt phẳng đáy. Bán kính mặt cầu ngoại tiếp hình chóp S.ABC  là:

     Tìm bán kính

    Gọi M là trung điểm AC, suy ra M là tâm đường tròn ngoại tiếp tam giác ABC.

    Gọi I là trung điểm SC, suy ra IM ||SA nên IM \bot \left( {ABC} ight) .

    Do đó IM là trục của \triangle ABC, suy ra IA=IB=IC     (1)

    Hơn nữa, tam giác SAC vuông tại A có I là trung điểm SC nên IS=IC=IA.  (2)

    Từ (1) và (2) , ta có IS=IA=IB=IC

    hay I là tâm của mặt cầu ngoại tiếp hình chóp S.ABC.

    Vậy bán kính R = IS = \frac{{SC}}{2} = \frac{{\sqrt {S{A^2} + A{C^2}} }}{2} = \frac{{a\sqrt 6 }}{2} .

  • Câu 5: Nhận biết

    Cho hai mặt phẳng \left( \alpha  ight):x + 5y - z + 1 = 0,\left( \beta  ight):2x - y + z + 4 = 0.

    Gọi \varphi là góc nhọn tạo bởi (\alpha)(\beta) thì giá trị đúng của cos \varphi là:

    Theo đề bài đã cho PTTQ , ta suy ra được các vecto pháp tuyến tương ứng là:

    (\alpha) có vectơ pháp tuyến \overrightarrow a  = \left( {1,5, - 2} ight)

    (\beta) có vectơ pháp tuyến \overrightarrow b  = \left( {2, - 1,1} ight)

    Áp dụng công thức tính cosin giữa 2 vecto, ta có:

    \cos \varphi  = \frac{{\left| {1.2 + 5\left( { - 1} ight) + \left( { - 2} ight).1} ight|}}{{\sqrt {{1^2} + {5^2} + {{\left( { - 2} ight)}^2}} .\sqrt {{2^2} + {{\left( { - 1} ight)}^2} + {1^2}} }} = \frac{{\sqrt 5 }}{6}

  • Câu 6: Thông hiểu

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình chính tắc của cạnh AB.

    (AB) là đường thẳng đi qua A và B nên có 1 vecto chỉ phương:  \overrightarrow {AB}  = \left( {1, - 3,7} ight)

    (AB) đi qua A (1, 2, -3) và nhận vecto \overrightarrow {AB}  = \left( {1, - 3,7} ight) làm 1 VTCP có phương trình chính tắc là:

     \begin{array}{l}AB:x - 1 = \frac{{y - 2}}{{ - 3}} = \frac{{z + 3}}{7}\\ \Leftrightarrow {m{ }}x - 2 = \frac{{y + 1}}{{ - 3}} = \frac{{z - 4}}{7}\\ \Leftrightarrow \,\,x - 1 = \frac{{2 - y}}{3} = \frac{{z + 3}}{7}\end{array}

  • Câu 7: Nhận biết

    Trong không gian Oxyz, cho \overrightarrow{a} = (1;2;1),\overrightarrow{b} =
(1;1;2),\overrightarrow{c} = (x;3x;x + 2). Nếu ba vectơ \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} đồng phẳng thì:

    Ta có: \left\lbrack
\overrightarrow{a},\overrightarrow{b} ightbrack = (3; -
3;3)

    Ba vectơ \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} đồng phẳng

    \Leftrightarrow \left\lbrack
\overrightarrow{a},\overrightarrow{b} ightbrack.\overrightarrow{c} =
0

    \Leftrightarrow 3x - 3(3x) + 3(x + 2) =
0

    \Leftrightarrow x = 2

  • Câu 8: Nhận biết

    Trong không gian Oxyz, cho điểm M(a;b;1) thuộc mặt phẳng (P):2x - y + z - 3 = 0. Mệnh đề nào dưới đây đúng?

    Ta có điểm M(a;b;1) thuộc mặt phẳng (P):2x - y + z - 3 = 0 nên:

    2a - b + 1 - 3 = 0 \Leftrightarrow 2a -
b = 2

  • Câu 9: Vận dụng

    Trong không gian Oxyz, viết phương trình mặt cầu đi qua điểm A(1; -
1;4) và tiếp xúc với các mặt phẳng tọa độ?

    Gọi I(a;b;c) là tâm mặt cầu (S). Mặt cầu (S) tiếp xúc với các mặt phẳng tọa độ nên:

    d\left( I;(Oxy) ight) = d\left(
I;(Oyz) ight) = d\left( I;(Ozx) ight)

    \Leftrightarrow |a| = |b| = |c| =
R(*)

    Mặt cầu đi qua điểm A(1; -
1;4)

    \Rightarrow \left\{ \begin{matrix}
IA = R \\
a > 0;c > 0;b < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
IA^{2} = R^{2} \\
a > 0;c > 0;b < 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(a - 1)^{2} + (b + 1)^{2} + (c - 4)^{2} = R^{2} \\
a = c = - b = R > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(a - 1)^{2} + ( - a + 1)^{2} + (a - 4)^{2} = R^{2} \\
a = c = - b = R > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2a^{2} - 12a + 18 = 0 \\
a = c = - b = R > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} - 6a + 9 = 0 \\
a = c = - b = R > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = c = 3 \\
b = - 3 \\
R = 3 \\
\end{matrix} ight.\  \Rightarrow (S):(x - 3)^{2} + (y + 3)^{2} + (z -
3)^{2} = 9

  • Câu 10: Thông hiểu

    Trong hệ tọa độ Oxyz, cho mặt cầu (S) có đường kính AB, với A(6;2; - 5),B( - 4;0;7). Viết phương trình (P) tiếp xúc với mặt cầu (S) tại A?

    Hình vẽ minh họa

    Vì mặt cầu (S) có đường kính là AB nên tâm I của mặt cầu (S) là trung điểm của AB.

    Mặt cầu (S) có tâm I(1; 1; 1).

    (P) tiếp xúc với (S) tại A nên (P) đi qua A và nhận \overrightarrow{IA} = (5;1; - 6) làm vectơ pháp tuyến.

    Suy ra (P):5(x - 6) + (y - 2) - 6(z + 5)
= 0

    \Rightarrow (P):5x + y - 6z - 62 =
0

  • Câu 11: Vận dụng cao

    Trong không gian với hệ tọa độ cho các điểm A(1;0;0), B(0;2;0), C(0;0;3), D(2;-2;0). Có tất cả bao nhiêu mặt phẳng phân biệt đi qua 3 trong 5 điểmO, A, B, C, D ?

     Mặt phẳng (ABC) có phương trình là:

    \frac{x}{1} + \frac{y}{2} + \frac{z}{3} = 1\Leftrightarrow 6x + 3y + 2z - 6 = 0, do đó D \in \left( {ABC} ight).

    Lại có A là trung điểm BD.

    Ta có (Oxy) chứa các điểm O, A, B, D;

    (Oyz) chứa các điểm O, B, C;

    (Oxz) chứa các điểm O, A, C;

    (ABC) chứa các điểm A, B, C, D;

    (OCD) chứa các điểm O, C ,D.

    Vậy có mặt phẳng phân biệt thỏa mãn bài toán.

  • Câu 12: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(0;0; - 3) và đi qua điểm M(4;0;0). Phương trình mặt cầu (S) là:

    Phương trình mặt cầu (S) có tâm I(0;0; - 3) và bán kính R là:

    x^{2} + y^{2} + (z + 3)^{2} =
R^{2}

    Ta có: M \in (S) \Rightarrow 4^{2} +
0^{2} + (0 + 3)^{2} = R^{2}

    \Leftrightarrow R^{2} = 25

    Vậy phương trình cần tìm là: x^{2} +
y^{2} + (z + 3)^{2} = 25.

  • Câu 13: Thông hiểu

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình tổng quát của cạnh AC.

    (AC) là đường thẳng đi qua 2 điểm A và C nên nhận \overrightarrow {AC}  = 2\left( {1, - 2,4} ight) làm 1 VTCP.

    (AC) đi qua C (3,-2,5) và có 1 VTCP là (1,-2,4) có phương trình chính tắc:

    \begin{array}{l}x - 3 = \frac{{y + 2}}{{ - 2}} = \frac{{z - 5}}{4}\\ \Rightarrow PTTQ\,\,\,(AC):\left\{ \begin{array}{l}2x + y - 4 = 0\\4x - z - 7 = 0\end{array} ight. \vee \left\{ \begin{array}{l}2x + y - 4 = 0\\2y + z - 1 = 0\end{array} ight.\end{array}

     

  • Câu 14: Nhận biết

    Trong không gian Oxyz, cho ba mặt phẳng (P),(Q),(R) lần lượt có phương trình là x - 4z + 8 = 0,2x - 8z = 0,y
= 0. Mệnh đề nào dưới đây đúng?

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{p} = (1;0; - 4) và mặt phẳng (R) có một vectơ pháp tuyến là \overrightarrow{r} = (0;1;0)

    Do \overrightarrow{p} eq
k.\overrightarrow{r};\forall k\mathbb{\in R} nên vectơ \overrightarrow{p} không cùng phương với vectơ \overrightarrow{r}.

    Vậy mặt phẳng (R) cắt mặt phẳng (P).

  • Câu 15: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):x + z + 4 = 0,(Q):x - 2y + 2z
+ 4 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):x + z + 4 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} =
(1;0;1)

    (Q):x - 2y + 2z + 4 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} =
(1; - 2;2)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)= \frac{\left|
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} ight|}{\left|
\overrightarrow{n_{1}} ight|.\left| \overrightarrow{n_{2}} ight|} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 16: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, giá trị dương của tham số m sao cho mặt phẳng (Oxy) tiếp xúc với mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2} = m^{2} +
1 là:

    Ta có: (Oxy) có phương trình z = 0

    Mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2}
= m^{2} + 1 có tâm I(3;0;2) và bán kính R = \sqrt{m^{2} + 1}

    Để mặt phẳng (Oxy) tiếp xúc với mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2} =
m^{2} + 1 thì

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|2|}{\sqrt{1}} = \sqrt{m^{2} + 1}

    \Leftrightarrow m^{2} + 1 = 4
\Leftrightarrow m = \pm \sqrt{3}. Vì m nhận giá trị dương nên m = \sqrt{3}.

    Vậy m = \sqrt{3} thỏa yêu cầu đề bài.

  • Câu 17: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông có độ dài đường chéo bằng a\sqrt{2} và SA vuông góc với mặt phẳng (ABCD). Gọi α là góc giữa hai mặt phẳng (SBD) và (ABCD). Nếu \tan\alpha = \sqrt{2} thì góc giữa hai mặt phẳng (SAC) và (SBC) bằng:

    Hình vẽ minh họa

    Gọi I = AC \cap BD.

    Hình vuông ABCD có độ dài đường chéo bằng a\sqrt{2} suy ra hình vuông đó có cạnh bằng a.

    Ta có \left\{ \begin{matrix}
(SBD) \cap (ABCD) = BD \\
SI\bot BD \\
AI\bot BD \\
\end{matrix} \Rightarrow ((SBD);(ABCD)) = (SI;AI) = SIA ight..

    Ta có tan\alpha = tanSIA = \frac{SA}{AI}
\Leftrightarrow SA = a.

    Chọn hệ trục tọa độ Oxyz như hình vẽ. Ta có A(0;0;0),B(a;0;0),C(a;a;0),S(0;0;a).

    Khi đó \overrightarrow{SA} = (0;0; -
a);\overrightarrow{SC} = (a;a; - a);\overrightarrow{SB} = (a;0; -
a).

    Mặt phẳng (SAC) có vectơ pháp tuyến {\overrightarrow{n}}_{1} = ( -
1;1;0).

    Mặt phẳng (SBC) có vectơ pháp tuyến {\overrightarrow{n}}_{2} =
(1;0;1).

    Suy ra cos((SAC);(SBC)) = \frac{\left|{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2} ight|}{\left|{\overrightarrow{n}}_{1} ight| \cdot \left| {\overrightarrow{n}}_{2}ight|}= \frac{1}{\sqrt{2} \cdot \sqrt{2}} = \frac{1}{2}\Rightarrow((SAC);(SBC)) = 60^{\circ}.

  • Câu 18: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P):x - y + 2z + 1 = 0 và đường thẳng (d):\frac{x - 1}{1} = \frac{y}{2} = \frac{z
+ 1}{- 1}. Tính góc giữa đường thẳng (d) và mặt phẳng (P).

    Ta có: \overrightarrow{u_{d}} = (1;2; -
1);\overrightarrow{n_{(P)}} = (1; - 1;2)

    Do đó: \cos\left(
\overrightarrow{u_{d}};\overrightarrow{n_{(P)}} ight) = \frac{|1 - 2 -
2|}{\sqrt{6}.\sqrt{6}} = \frac{1}{2}

    Suy ra góc giữa đường thẳng d và mặt phẳng (P) bằng 90^{0} -
60^{0} = 30^{0}.

  • Câu 19: Nhận biết

    Phương trình tổng quát của mặt phẳng đi qua A(2,-1,3),  B (3, 1, 2) và song song với vectơ \overrightarrow a  = \left( {3, - 1, - 4} ight) là:

    Theo đề bài, ta có: \overrightarrow {AB}  = \left( {1,2, - 1} ight);\left[ {\overrightarrow {AB} \overrightarrow {,a} } ight] = \overrightarrow n  = \left( { - 9,1, - 7} ight)

    Chọn \overrightarrow n  = \left( {9, - 1,7} ight) làm 1 vectơ pháp tuyến.

    Phương trình mặt phẳng cần tìm có dạng : 9x - y + 7z + D = 0

    Mà mp lại qua A nên 9.2 - ( - 1) + 7.3 + D = 0 \Leftrightarrow D =  - 40

    Phương trình cần tìm là: 9x - y + 7z - 40 = 0.

  • Câu 20: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2; - 2; - 1),B\left( - \frac{4}{3}; -
\frac{8}{3};\frac{8}{3} ight). Đường thẳng \Delta đi qua tâm đường tròn nội tiếp tam giác OAB và vuông góc với mặt phẳng (OAB). Hỏi \Delta đi qua điểm nào dưới đây?

    Ta có: OA = 3,OB = 4,AB = 5

    Gọi I là tâm đường tròn nội tiếp tam giác OAB.

    \left\{ \begin{matrix}
x_{I} = \frac{AB.x_{O} + OB.x_{A} + OA.x_{B}}{AB + OB + OA} \\
y_{I} = \frac{AB.y_{O} + OB.y_{A} + OA.y_{B}}{AB + OB + OA} \\
z_{I} = \frac{AB.z_{O} + OB.z_{A} + OA.z_{B}}{AB + OB + OA} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{I} = \frac{5.0 + 4.2 + 3.\left( - \frac{4}{3} ight)}{5 + 4 + 3} \\
y_{I} = \frac{5.0 + 4.( - 2) + 3.\left( - \frac{8}{3} ight)}{5 + 4 +
3} \\
z_{I} = \frac{5.0 + 4.( - 1) + 3.\frac{8}{3}}{5 + 4 + 3} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{I} = \frac{1}{3} \\
y_{I} = - \frac{4}{3} \\
z_{I} = \frac{1}{3} \\
\end{matrix} ight.\  \Rightarrow I\left( \frac{1}{3}; -
\frac{4}{3};\frac{1}{3} ight)

    \left\lbrack
\overrightarrow{OA};\overrightarrow{OB} ightbrack = ( - 8; - 4; - 8)
= - 4(2;1;2)

    Phương trình đường thẳng \Delta:\frac{x -
\frac{1}{3}}{2} = \frac{y + \frac{4}{3}}{1} = \frac{z -
\frac{1}{3}}{2}

    Đường thẳng ∆ đi qua điểm M(1; −1; 1).

  • Câu 21: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x + 2y - 2z + 3 = 0;(Q):x + 2y - 2z - 1 =0. Khoảng cách giữa hai mặt phẳng (P)(Q)

    Lấy M( - 3;0;0) \in (P).

    (P)//(Q) nên khoảng cách giữa hai mặt phẳng (P) và (Q) bằng khoảng cách từ điểm M đến mặt phẳng (Q).

    d\left( M;(Q) ight) = \frac{\left|
x_{M} + 2y_{M} - 2z_{M} - 1 ight|}{\sqrt{1^{2} + 2^{2} + ( - 2)^{2}}}
= \frac{4}{3}.

  • Câu 22: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (\alpha):x - y + 2z = 1. Trong các đường thẳng sau, đường thẳng nào vuông góc với (\alpha).

    Mặt phẳng (\alpha):x - y + 2z =
1 có một vectơ pháp tuyến là \overrightarrow{n_{(\alpha)}} = (1; -
1;2).

    Đường thẳng d_{1} có một vectơ chỉ phương là \overrightarrow{u_{d_{1}}} =
(1; - 1;2) = \overrightarrow{n_{(\alpha)}}

    Suy ra d_{1}\bot(\alpha).

  • Câu 23: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d là giao tuyến của hai mặt phẳng (\alpha):x + y = 0\ ,(\alpha'):2x - y + z - 15= 0. Tìm tọa độ giao điểm I của đường thẳng dd', biết đường thẳng d' có phương trình \left\{ \begin{matrix}x = 1 - t \\y = 2 + 2t \\z = 3 \\\end{matrix} ight.

    Tọa độ giao điểm I của d và d’ thỏa mãn hệ phương trình:

    \left\{ \begin{matrix}x + y = 0 \\2x - y + z - 15 = 0 \\x = 1 - t \\y = 2 + 2t \\z = 3 \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}1 - t + 2 + 2t = 0 \\2(1 - t) - (2 + 2t) + 3 - 15 = 0 \\x = 1 - t \\y = 2 + 2t \\z = 3 \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}t = - 3 \\x = 4 \\y = - 4 \\z = 3 \\\end{matrix} ight.\  \Rightarrow I(4; - 4;3)

  • Câu 24: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;4;2),B( - 1;2;4) và đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 - t \\
y = - 2 + t \\
z = 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm M \in \Delta mà tổng MA^{2} + MB^{2} có giá trị nhỏ nhất có tọa độ là:

    M \in \Delta nên ta có tọa độ điểm M(1 - t; - 2 + t;2t).

    Ta có:

    MA^{2} + MB^{2} = ( - t)^{2} + (t -
6)^{2} + (2t - 2)^{2} + (2 - t)^{2} + (t - 4)^{2} + (2t - 4)^{2}

    = 12t^{2} - 48t + 76 = 12(t - 2)^{2} +
28 \geq 28

    Vậy giá trị nhỏ nhất của MA^{2} +
MB^{2}28 khi t = 2 \Rightarrow M( - 1;0;4).

  • Câu 25: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai vectơ \overrightarrow{m} = (4;3;1),\overrightarrow{n} =
(0;0;1). Gọi \overrightarrow{p} là vectơ cùng hướng với vectơ \left\lbrack
\overrightarrow{m},\overrightarrow{n} ightbrack (tích có hướng của hai vectơ \overrightarrow{m}\overrightarrow{n}. Biết \left| \overrightarrow{p} ight| = 15, tìm tọa độ vectơ \overrightarrow{p}.

    Ta thấy \left\lbrack
\overrightarrow{m},\overrightarrow{n} ightbrack = (3; -
4;0)

    \overrightarrow{p} là vectơ cùng hướng với vectơ \left\lbrack
\overrightarrow{m},\overrightarrow{n} ightbrack = (3; -
4;0) nên \overrightarrow{p} = (3k;
- 4k;0),k\mathbb{\in R};k > 0.

    Mặt khác \left| \overrightarrow{p}
ight| = 15 \Leftrightarrow \sqrt{9k^{2} + 16k^{2} + 0} = 15
\Rightarrow k = 3

    Vậy \overrightarrow{p} = (9; -
12;0).

  • Câu 26: Thông hiểu

    Trong không gian Oxyz, điểm M thuộc trục Oy và cách đều hai mặt phẳng (P):x + y - z + 1 = 0(Q):x - y + z - 5 = 0 có tọa độ là?

    Ta có M \in Oy suy ra M(0;m;0).

    Theo đề bài ra ta có:

    d\left( M,(P) ight) = d\left( M,(Q)
ight)

    \Leftrightarrow \frac{|m + 1|}{\sqrt{3}}
= \frac{| - m - 5|}{\sqrt{3}} \Leftrightarrow m = - 3

    Vậy M(0; - 3;0).

  • Câu 27: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(0;1;3),N(10;6;0) và mặt phẳng (P):x - 2y + 2z - 10 = 0. Biết rằng tồn tại điểm I( - 10;a;b) thuộc (P) sao cho |IM - IN| đạt giá trị lớn nhất. Tính T = a + b.

    Thay tọa độ điểm M và N vào vế trái phương trình mặt phẳng (P), ta có (0 - 2 + 3 - 10).(10 - 12 - 10) >
0 nên hai điểm M, N nằm cùng phía đối với mặt phẳng (P).

    Khi đó ta có |IM - IN| \leq MN và đẳng thức xảy ra khi I = MN \cap
(P)

    Phương trình tham số của đường thẳng MN là \left\{ \begin{matrix}
x = 10t \\
y = 1 + 5t \\
z = 3 - 3t \\
\end{matrix} ight.

    Tọa độ giao điểm của MN và (P) là nghiệm hệ phương trình

    \left\{ \begin{matrix}
x = 10t \\
y = 1 + 5t \\
z = 3 - 3t \\
x - 2y + 2z - 10 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 10 \\
y = - 4 \\
z = 6 \\
\end{matrix} ight.

    Vậy T = a + b = 2

  • Câu 28: Nhận biết

    Cho hai mặt phẳng \left( P ight):x - 2y + 3z - 5 = 0;\,\,\left( Q ight):3x + 4y - z + 3 = 0. Đường thẳng (D) qua M (1, -2, 3) song song với (P) và (Q):

     Vì (D) song song với (P) và (Q)

    => Một vectơ chỉ phương của (D) là:

    \overrightarrow {{a_P}}  = \left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } ight] = 10\left( { - 1,1,1} ight) \Rightarrow \overrightarrow a  = \left( { - 1,1,1} ight)

    Xét vecto pháp tuyến của (R), có:

    \overrightarrow {{n_R}}  = \left( {3,1,2} ight) \Rightarrow \overrightarrow a .\overrightarrow {{n_R}}  =  - 3 + 1 + 2 = 0 \Rightarrow \left( D ight)//\left( R ight)

    Xét đáp án có điểm N

    \overrightarrow {NM}  = \left( { - 2,2,2} ight) = 2\left( { - 1,1,1} ight) = 2\overrightarrow a  \Rightarrow \left( D ight)qua\,\,N\left( {3, - 4,1} ight)

    \overrightarrow {{n_s}}  = \left( {2, - 2, - 2} ight) \Rightarrow \frac{2}{{ - 1}} = \frac{{ - 2}}{1} = \frac{{ - 2}}{1} =  - 2 \Rightarrow \overrightarrow acùng phương với \overrightarrow {{n_s}}

    => (D) vuông góc với (S).

  • Câu 29: Nhận biết

    Điều kiện để \left( S ight):{x^2} + {y^2} + {z^2} + Ax + By + Cz + D = 0 là một mặt cầu là:

    Theo đề bài, ta có:

    \left( S ight):{x^2} + {y^2} + {z^2} + Ax + By + Cz + D = 0 có dạng:

    \left( S ight):{x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0

    \Rightarrow a =  - \frac{A}{2};\,\,b =  - \frac{B}{2};\,\,c =  - \frac{C}{2};\,\,d = D

    Như vậy, (S) là mặt cầu\Leftrightarrow {a^2} + {b^2} + {c^2} - d > 0 \Leftrightarrow {A^2} + {B^2} + {C^2} - 4D > 0

    \Rightarrow {x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0,\,\,{a^2} + {b^2} + {c^2} - d > 0

  • Câu 30: Nhận biết

    Cho hai đường thẳng trong không gian Oxyz: \left( D ight):\,\frac{{x\, - \,{x_1}}}{{{a_1}}} = \frac{{y\, - \,{y_1}}}{{{a_2}}} = \frac{{z\, - \,{z_1}}}{{{a_3}}} , \left( d ight):\,\frac{{x\, - \,{x_2}}}{{{b_1}}} = \frac{{y\, - \,{y_2}}}{{{b_2}}} = \frac{{z\, - \,{z_2}}}{{{b_3}}}. Với {a_1},\,\,{a_2},\,\,{a_3},\,\,{b_1},\,\,{b_2},\,\,{b_3} e \,0 . Gọi \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight);\,\,\overrightarrow b  = \left( {\,{b_1},\,\,{b_2},\,\,{b_3}} ight)\overrightarrow {AB}  = \left( {\,{x_2}\, - \,{x_1},\,\,{y_2}\, - \,{y_1},\,\,{z_2}\, - \,{z_1}} ight). (D) và (d) song song khi và chỉ khi:

     Để xét điều kiện (D) và (d) cắt nhau ta cẩn kiểm tra rằnng (D) và d cùng nằm trong 1 mặt phẳng hay ta có:

    \left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AB}  = 0 \Rightarrow \left( D ight)và (d) cùng nằm trong một mặt phẳng

    Để (D) và d song song, ta sẽ xét tỉ số chứng minh chúng cùng phương rồi kiểm tra rằng d không nằm trong (D):

      {a_1}:{a_2}:{a_3} = {b_1}:{b_2}:{b_3} \Leftrightarrow \frac{{{a_1}}}{{{b_1}}} = \frac{{{a_2}}}{{{b_2}}} = \frac{{{a_3}}}{{{b_3}}} \Rightarrow \left( D ight)và (d)  cùng phương A\left( {{x_1},{y_1},{z_1}} ight) \in \left( D ight)A otin \left( d ight) \Rightarrow \left( D ight) và (d) song song.

  • Câu 31: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;0;0),B(0;2;0),C(0;0;m). Để mặt phẳng (ABC) hợp với mặt phẳng (Oxy) một góc 60^{0} thì giá trị của m là

    Mặt phẳng Oxy có vectơ pháp tuyến là \overrightarrow{k} = (0;0;1)

    Ta có \overrightarrow{AB} = ( -
1;2;0);\overrightarrow{AC} = ( - 1;0;m), suy ra vectơ pháp tuyến của mặt phẳng (ABC)\overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
(2m;m;2)

    Theo bài ra ta có:

    cos60^{0} = \frac{\left|
\overrightarrow{k}.\overrightarrow{n} ight|}{\left| \overrightarrow{k}
ight|.\left| \overrightarrow{n} ight|} \Leftrightarrow \sqrt{5m^{2}
+ 4} = 4

    \Leftrightarrow m^{2} = \frac{12}{5}
\Leftrightarrow m = \pm \sqrt{\frac{12}{5}}

  • Câu 32: Nhận biết

    Trong không gian tọa độ Oxyz, cho mặt phẳng (P):4x + 3y - z + 1 =
0 và đường thẳng d:\frac{x - 1}{4}
= \frac{y - 6}{3} = \frac{z + 4}{1}, sin của góc giữa đường thẳng d và mặt phẳng (P) bằng:

    Mặt phẳng (P):4x + 3y - z + 1 =
0 có một vectơ pháp tuyến là \overrightarrow{n} = (4;3; - 1)

    Đường thẳng d:\frac{x - 1}{4} = \frac{y -
6}{3} = \frac{z + 4}{1} có một vectơ chỉ phương là \overrightarrow{u} = (4;3;1)

    Gọi α là góc giữa đường thẳng d và mặt phẳng (P):

    \sin\alpha = \left| \cos\alpha ight| =
\frac{\left| \overrightarrow{u}.\overrightarrow{n} ight|}{\left|
\overrightarrow{u} ight|.\left| \overrightarrow{n} ight|} =
\frac{12}{13}

  • Câu 33: Nhận biết

    Trong hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I( - 1;4;2) và có thể tích bằng \frac{256\pi}{3}. Khi đó phương trình mặt cầu (S) là:

    Thể tích mặt cầu là: V = \frac{4\pi
R^{3}}{3} = \frac{256\pi}{3} \Rightarrow R = 4

    Vậy phương trình mặt cầu tâm I có bán kính R = 4 là: (x + 1)^{2} + (y - 4)^{2} + (z - 2)^{2} =
16

  • Câu 34: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm S(0;0;1)A(1;1;1). Hai điểm M(m;0;0),N(0  ;n;0) thay đổi sao cho m + n = 1m > 0,n > 0. Biết rằng luôn tồn tại một mặt cầu cố định đi qua A và tiếp xúc với mặt phẳng (SMN). Bán kính của mặt cầu đó là:

    Phương trình mặt phẳng (SMN)\frac{x}{m} + \frac{y}{n} + \frac{z}{1} =1

    \Leftrightarrow nx + my + mnz - mn =0.

    Gọi I(a;b;c)R là tâm và bán kính của mặt cầu cố định.

    Ta có

    R = d(I;(SMN))

    = \frac{|na + mb + mnc -mn|}{\sqrt{n^{2} + m^{2} + m^{2}n^{2}}}

    = \frac{|(1 - m)a + mb + m(1 - m)(c -1)|}{\sqrt{1 - 2mn + m^{2}n^{2}}}

    = \frac{|(1 - m)a + mb + m(1 - m)(c -1)|}{1 - mn}

    = \frac{\left| (1 - c)m^{2} + (b + c - a- 1)m + a ight|}{m^{2} - m + 1}

    R không đổi nên \frac{1 - c}{1} = \frac{b + c - a - 1}{- 1} =\frac{a}{1} = t \Rightarrow \left\{ \begin{matrix}a = t \\b = t \\c = 1 - t \\\end{matrix} ight., hay I(t;t;1- t).
    Mặt khác ta có R = IA = \sqrt{3t^{3} - 4t +2} = |t| \Rightarrow t = 1.

    Vậy R = 1.

  • Câu 35: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a, gọi α là góc giữa đường thẳng AB' và mặt phẳng (BB'D'D). Tính sinα.

    Hình vẽ minh họa

    Chọn hệ trục tọa độ Oxyz với A \equiv
O(0;0;0),B(a;0;0),C(a;a;0),D(0;a;0),A^{'}(0;0;a),

    B^{'}(a;0;a),C^{'}(a;a;a),D^{'}(0;a;a)

    Ta thấy OC\bot\left( BB^{'}D^{'}D
ight)\overrightarrow{OC} =
(a;a;0) nên suy ra mặt phẳng \left(
BB^{'}D^{'}D ight) có một vec tơ pháp tuyến là \overrightarrow{n} = (1;1;0.).

    Đường thẳng A^{'}B có vectơ chỉ phương là \overrightarrow{A^{'}B} =
(a;0; - a) ta chọn \overrightarrow{u} = (1;0; - 1).

    Ta có \sin\alpha =\frac{|\overrightarrow{n} \cdot\overrightarrow{u}|}{|\overrightarrow{n}| \cdot |\overrightarrow{u}|}=\frac{|1 \cdot 1 + 1 \cdot 0 + 0 \cdot ( - 1)|}{\sqrt{1^{2} + 1^{2} +0^{2}} \cdot \sqrt{1^{2} + 0^{2} + ( - 1)^{2}}} =\frac{1}{2}.

  • Câu 36: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):8x - 4y - 8z - 11 =0,(Q):\sqrt{2}x - \sqrt{2}y + 7 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):8x - 4y - 8z - 11 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} = (8; - 4; -
8)

    (Q):\sqrt{2}x - \sqrt{2}y + 7 =
0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} = \left( \sqrt{2}; -
\sqrt{2};0 ight)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)

    = \frac{\left| 8.\sqrt{2} + 4.\sqrt{2} -
8.0 ight|}{\sqrt{8^{2} + ( - 4)^{2} + ( - 8)^{2}}.\sqrt{\left(
\sqrt{2} ight)^{2} + \left( - \sqrt{2} ight)^{2} + 0}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 37: Nhận biết

    Trong không gian Oxyz cho hai mặt phẳng (P):2x - y - 2z - 9 = 0,(Q):x - y
- 6 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):2x - y - 2z - 9 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} = (2; - 1; -
2)

    (Q):x - y - 6 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} = (1; -
1;0)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)

    = \frac{\left| 2.1 + ( - 1).( - 1) + 0
ight|}{\sqrt{2^{2} + 2^{2} + 2^{2}}.\sqrt{1^{2} + 1^{2} + 0}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 38: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SD =\frac{a\sqrt{17}}{2}, hình chiếu vuông góc Hcủa S trên mặt phẳng (ABCD) là trung điểm của đoạn AB. Gọi K là trung điểm đoạn AD (tham khảo hình vẽ)

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SD =\frac{a\sqrt{17}}{2}, hình chiếu vuông góc Hcủa S trên mặt phẳng (ABCD) là trung điểm của đoạn AB. Gọi K là trung điểm đoạn AD (tham khảo hình vẽ)

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 39: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm là điểm A(2; 2; 2), mặt phẳng (P) : 2x + 2y + z + 8 = 0 cắt mặt cầu (S) theo thiết diện là đường tròn có bán kính r = 8. Diện tích của mặt cầu (S) là:

    Ta có:

    d\left( A;(P) ight) = \frac{|4 + 4 + 2
+ 8|}{\sqrt{2^{2} + 2^{2} + 1^{2}}} = 6

    R^{2} = d^{2}\left( A;(P) ight) +
r^{2} = 100

    Vậy diện tích mặt cầu là: S = 4\pi R^{2}
= 400\pi.

  • Câu 40: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (d):\frac{x + 1}{1} = \frac{y}{2} = \frac{z +
2}{3}. Trong các vectơ sau, vectơ nào là vectơ chỉ phương của đường thẳng (d)?

    Phương trình chính tắc của đường thẳng có dạng:

    \frac{x - x_{0}}{a} = \frac{y - y_{0}}{b}
= \frac{z - z_{0}}{c} với a.b.c
eq 0.

    Vectơ chỉ phương \overrightarrow{\mathbf{u}}\mathbf{=}\left(
\mathbf{a}\mathbf{;}\mathbf{b}\mathbf{;}\mathbf{c}
ight).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo