Đề kiểm tra 45 phút Chương 5 Vectơ Sách CTST

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Vectơ gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Đẳng thức nào sau đây sai?

    Đẳng thức sai là \overrightarrow{OA} =
\overrightarrow{OC}.

  • Câu 2: Nhận biết

    Tứ giác MNPQ là hình bình hành nếu:

    Hình vẽ minh họa

    Hoàn thành khẳng định

    Ta có MNPQ là hình bình hành nếu \overrightarrow {MN}  = \overrightarrow {QP}

  • Câu 3: Vận dụng

    Cho tam giác ABC, tập hợp các điểm M sao cho \left| \ \overrightarrow{MA} + \overrightarrow{MB}
+ \overrightarrow{MC}\  ight| = 6 là:

    Gọi G là trọng tâm của tam giác ABC , ta có \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} = 3\overrightarrow{MG}.

    Thay vào ta được : \left|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} ight|= 6\Leftrightarrow \left| 3\overrightarrow{MG} ight| = 6\Leftrightarrow MG = 2, hay tập hợp các điểm M là đường tròn có tâm là trọng tâm của tam giác ABC và bán kính bằng 2.

  • Câu 4: Nhận biết

    Hai vectơ được gọi là bằng nhau khi và chỉ khi

    Hai vectơ được gọi là bằng nhau khi và chỉ khi: Chúng cùng hướng và độ dài của chúng bằng nhau.

  • Câu 5: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Khi đó:

    Chọn: Điều kiện cần và đủ để A,\ B,\
C thẳng hàng là \overrightarrow{AB} cùng phương với \overrightarrow{AC}.

  • Câu 6: Vận dụng cao

    Cho tam giác ABC. Lấy các điểm M,N sao cho \overrightarrow{MA} + \overrightarrow{MB} =
\overrightarrow{0};2\overrightarrow{NA} + 3\overrightarrow{NC} =
\overrightarrow{0}\overrightarrow{BC} =
k\overrightarrow{BP}. Xác định k để ba điểm M,N,P thẳng hàng.

    Ta có:

    \overrightarrow{MN} =
\overrightarrow{AN} - \overrightarrow{AM} =
\frac{3}{5}\overrightarrow{AC} -
\frac{1}{2}\overrightarrow{AB}

    \overrightarrow{NP} =
\overrightarrow{NC} + \overrightarrow{CP}

    = \frac{2}{5}\overrightarrow{AC} -
\left( \overrightarrow{BP} - \overrightarrow{BC} ight)

    = \frac{2}{5}\overrightarrow{AC} +
\left( \frac{1}{k} - 1 ight)\overrightarrow{BC}

    = \frac{2}{5}\overrightarrow{AC} +
\left( \frac{1}{k} - 1 ight)\left( \overrightarrow{AC} -
\overrightarrow{AB} ight)

    = \left( \frac{1}{k} - \frac{2}{5}
ight)\overrightarrow{AC} + \left( \frac{1}{k} - 1
ight)\overrightarrow{AB}

    Để ba điểm M,N,Pthẳng hàng thì \exists m\mathbb{\in R}:\overrightarrow{NP}
= m\overrightarrow{MN} hay

    \left( \frac{1}{k} - \frac{2}{5}
ight)\overrightarrow{AC} + \left( \frac{1}{k} - 1
ight)\overrightarrow{AB} = \frac{3m}{5}\overrightarrow{AC} -
\frac{m}{2}\overrightarrow{AB}

    \left\{ \begin{matrix}\dfrac{1}{k} - \dfrac{2}{5} = \dfrac{3m}{5} \\\dfrac{1}{k} - 1 = - \dfrac{m}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = 4 \\k = \dfrac{1}{3} \\\end{matrix} ight.

  • Câu 7: Vận dụng

    Cho tam giác ABC đều cạnh a. Gọi M là trung điểm BC. Khẳng định nào sau đây đúng?

    Tam giác ABC đều cạnh a nên độ dài đường trung tuyến bằng \frac{a\sqrt{3}}{2}.

    Chọn \left| \overrightarrow{AM} ight| =
\frac{a\sqrt{3}}{2}.

  • Câu 8: Thông hiểu

    Cho tam giác ABC, có trọng tâm G. Gọi A_{1},B_{1},C_{1} lần lượt là trung điểm của BC,CA,AB. Chọn khẳng định sai?

    Ta có: \overrightarrow{GC} = -
2\overrightarrow{GC_{1}} nên \overrightarrow{GC} =
2\overrightarrow{GC_{1}} sai.

    Chọn \overrightarrow{GC} =
2\overrightarrow{GC_{1}}.

  • Câu 9: Nhận biết

    Cho hình vuông ABCD, tính cos(\overrightarrow{AB},\overrightarrow{CA}).

     

    Vẽ \overrightarrow {CE}  = \overrightarrow {AB}.

    Ta có: \left( {\overrightarrow {AB} ,\overrightarrow {CA} } ight) = \left( {\overrightarrow {CE} ,\overrightarrow {CA} } ight) = 45^\circ  + 90^\circ  = 135^\circ\Rightarrow \cos 135^\circ  = \frac{{ - \sqrt 2 }}{2}.

     

  • Câu 10: Nhận biết

    Hãy chọn kết quả đúng khi phân tích vectơ \overrightarrow{AM} theo hai vectơ \overrightarrow{AB}\overrightarrow{AC} của tam giác ABC với trung tuyến AM.

    Do M là trung điểm của BC nên ta có \overrightarrow{AM} =
\frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC}).

  • Câu 11: Thông hiểu

    Cho tam giác ABC, có thể xác định được bao nhiêu vectơ khác \vec{0} có điểm đầu và điểm cuối là các đỉnh A, B, C?

    Ta có các vectơ khác \vec{0} có điểm đầu và điểm cuối là các đỉnh tam giác ABC là:

    \begin{matrix}  \overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {BC}  \hfill \\  \overrightarrow {BA} ,\overrightarrow {CA} ,\overrightarrow {CB}  \hfill \\ \end{matrix}

  • Câu 12: Thông hiểu

    Cho tam giác ABC với M,\ \
N,\ \ P lần lượt là trung điểm của. Khẳng định nào sau đây sai?

    Xét các đáp án:

    Đáp án \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CA} =
\overrightarrow{0}.. Ta có \overrightarrow{AB} + \overrightarrow{BC} +
\overrightarrow{CA} = \overrightarrow{AA} =
\overrightarrow{0}.

    Đáp án \overrightarrow{AP} +
\overrightarrow{BM} + \overrightarrow{CN} =
\overrightarrow{0}.. Ta có \overrightarrow{AP} + \overrightarrow{BM} +
\overrightarrow{CN} = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{BC} +
\frac{1}{2}\overrightarrow{CA}

    = \frac{1}{2}\left( \overrightarrow{AB}
+ \overrightarrow{BC} + \overrightarrow{CA} ight) =
\frac{1}{2}\overrightarrow{AA} = \overrightarrow{0}.

    Đáp án \overrightarrow{MN} +
\overrightarrow{NP} + \overrightarrow{PM} =
\overrightarrow{0}.. Ta có \overrightarrow{MN} + \overrightarrow{NP} +
\overrightarrow{PM} = \overrightarrow{MM} =
\overrightarrow{0}.

    Đáp án \overrightarrow{PB} +
\overrightarrow{MC} = \overrightarrow{MP}.. Ta có \overrightarrow{PB} + \overrightarrow{MC} =
\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} =
\frac{1}{2}\overrightarrow{AC} = \overrightarrow{AN} =
\overrightarrow{PM} = - \overrightarrow{MP}. Chọn đáp án này.

  • Câu 13: Nhận biết

    Cho hai điểm AB phân biệt. Điều kiện để I là trung điểm AB là:

    Điều kiện để I là trung điểm AB là: \overrightarrow{IA} = -
\overrightarrow{IB}.

  • Câu 14: Nhận biết

    Cho \overrightarrow{a} = (3; - 4),\ \overrightarrow{b}
= ( - 1;2). Tìm tọa độ của vectơ \overrightarrow{a} +
\overrightarrow{b}.

    Ta có \overrightarrow{a} +
\overrightarrow{b} = \left( 3 + ( - 1); - 4 + 2 ight) = (2; -
2).

  • Câu 15: Thông hiểu

    Cho hình bình hành ABCD tâm O. Khẳng định nào sau đây sai?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AO} +
\overrightarrow{BO} + \overrightarrow{CO} + \overrightarrow{DO} =
\overrightarrow{AO} + \overrightarrow{CO} + \overrightarrow{BO} +
\overrightarrow{DO} = \overrightarrow{0}.

    Suy ra \overrightarrow{AO} +
\overrightarrow{BO} + \overrightarrow{CO} + \overrightarrow{DO} =
\overrightarrow{0} đúng.

    Ta có: \overrightarrow{AO} +
\overrightarrow{DA} = \overrightarrow{OC} + \overrightarrow{CB} =
\overrightarrow{OB}. Suy ra \overrightarrow{AO} + \overrightarrow{DA} =
\overrightarrow{OB} đúng.

    Ta có: \overrightarrow{OA} -
\overrightarrow{BO} = \overrightarrow{OA} + \overrightarrow{OB} eq
\overrightarrow{AB}. Suy ra \overrightarrow{OA} - \overrightarrow{BO} =
\overrightarrow{AB} sai.

    Ta có: \overrightarrow{AB} =
\overrightarrow{DC} đúng.

  • Câu 16: Thông hiểu

    Cho tam giác ABC, có bao nhiêu điểm M thỏa \left|
\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} ight|
= 5?

    Gọi G là trọng tâm của tam giác ABC , ta có \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} = 3\overrightarrow{MG}.

    Thay vào ta được : \left|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} ight|= 5\Leftrightarrow \left| 3\overrightarrow{MG} ight| = 5\Leftrightarrow MG = \frac{5}{3}, hay tập hợp các điểm M là đường tròn có tâm là trọng tâm của tam giác ABC và bán kính bằng \frac{5}{3} .

  • Câu 17: Vận dụng cao

    Cho tam giác ABC, kẻ đường cao AHAH =
3,cos\widehat{ACB} = \frac{3}{5};tan\widehat{ABC} = 3. Gọi M là trung điểm của BC, K là điểm thỏa mãn KA = \frac{5}{2}\left| \overrightarrow{KA} - \overrightarrow{KB} +
\overrightarrow{KC} - \overrightarrow{AC} ight| = \left|
\overrightarrow{CK} ight|. Khi đó độ dài vectơ \overrightarrow{MK} bằng bao nhiêu?

    Hình vẽ minh họa

    Tính độ dài vectơ

    Gọi E là điểm đối xứng của B qua A, ta có:

    \left| \overrightarrow{KA} -
\overrightarrow{KB} + \overrightarrow{KC} - \overrightarrow{AC} ight|
= \left| \overrightarrow{CK} ight|

    \Rightarrow KE = CK

    Nên K thuộc đường thẳng a là trung trực của đoạn thẳng CE, mặt khác KA = \frac{5}{2}

    Suy ra K là giao điểm của a và đường tròn tâm A bán kính KA = \frac{5}{2}.

    Điểm K cần tìm là N hoặc P

    Ta có: MK = MP = AB =
\sqrt{10}.

  • Câu 18: Thông hiểu

    Cho \overrightarrow{a} = ( - 5;0),\ \overrightarrow{b}
= (4;x). Tìm x để hai vectơ \overrightarrow{a},\
\overrightarrow{b} cùng phương.

    Hai vectơ \overrightarrow{a},\
\overrightarrow{b} cùng phương \Leftrightarrow - 5.x =
0.4\overset{}{ightarrow}x = 0.

  • Câu 19: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tọa độ hai điểm A(1;5),B(2;6). Tìm tọa độ điểm C đối xứng với điểm B qua A?

    Gọi tọa độ điểm C là C(x;y)

    Vì điểm C đối xứng với điểm B qua A suy ra A là trung điểm của BC

    \Leftrightarrow \left\{ \begin{matrix}1 = \dfrac{- 2 + x}{2} \\5 = \dfrac{6 + y}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 4 \\y = 4 \\\end{matrix} ight.\  \Leftrightarrow C(4;4)

    Vậy tọa độ điểm C cần tìm là C(4;4).

  • Câu 20: Vận dụng

    Trong hệ tọa độ Oxy, cho A( -
1;5),\ B(5;5),\ C( - 1;11). Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (6;0) \\
\overrightarrow{AC} = (0;6) \\
\end{matrix} ight.\ \overset{}{ightarrow}6.6 eq
0.0\overset{}{ightarrow}\overrightarrow{AB},\
\overrightarrow{AC} không cùng phương.

  • Câu 21: Vận dụng cao

    Chp parabol như hình vẽ:

    Biết G là đỉnh parabol cách AB một khoảng bằng 6, CD = 4;DE = \frac{10}{3}. Tính khoảng cách giữa hai điểm A,B?

    Xét hệ tọa độ Oxy với O là trung điểm AB, tia Ox là tia OB.

    Khi đó tọa độ E\left( 2;\frac{10}{3}
ight),G(0;6)

    Gọi biểu thức hàm số có đồ thị là hình parabol là y = ax^{2} + bx + c

    Có G là đỉnh parabol suy ra c = 6;b =
0

    E\left( 2;\frac{10}{3} ight) \in
(P) suy ra \frac{10}{3} = 4a + 6
\Rightarrow a = - \frac{2}{3}

    Biểu thức hàm số là y = -
\frac{2}{3}x^{2} + 6

    Hoành độ giao điểm với trục hoành: -
\frac{2}{3}x^{2} + 6 = 0 \Leftrightarrow x = \pm 3

    Vậy khoảng cách giữa hai điểm A và B là 6.

  • Câu 22: Thông hiểu

    Trong hệ tọa độ Oxy, cho tọa độ bốn điểm A(1;2),B( - 1;3), C( - 2; - 1),D(0; - 2). Chọn khẳng định đúng?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AD} = ( - 1; - 4) \\
\overrightarrow{BC} = ( - 1; - 4) \\
\end{matrix} ight.. Vậy ABCD là hình bình hành.

  • Câu 23: Nhận biết

    Cho tam giác đều ABC có cạnh bằng a. Tính tích vô hướng \overrightarrow{AB}.\overrightarrow{AC}.

    \overrightarrow{AB}.\overrightarrow{AC}.
= \left| \overrightarrow{AB} ight|.\left| \overrightarrow{AC}
ight|.cos\left( \overrightarrow{AB},\overrightarrow{AC} ight) =
a.a.cos60^{{^\circ}} = \frac{a^{2}}{2}.

  • Câu 24: Thông hiểu

    Cho tam giác ABC vuông tại A\widehat{B} = 60^{\circ},AB = a. Tính \overrightarrow{AC} \cdot
\overrightarrow{CB}

    Ta có:

    \overrightarrow{AC} \cdot
\overrightarrow{CB} = AC \cdot BC \cdot \cos 150^{\circ}

    = a\sqrt{3} \cdot 2a \cdot \left( -
\frac{\sqrt{3}}{2} ight) = - 3a^{2}

  • Câu 25: Thông hiểu

    Cho tam giác ABC vuông tại A có AB = 3, AC = 4. Tính độ dài \overrightarrow{CB}+\overrightarrow{AB}

    Dựng hình bình hành tâm O như sau:

    Tính độ lớn tổng vectơ

    Ta có:

    \begin{matrix}  \overrightarrow {CB}  + \overrightarrow {AB}  = \overrightarrow {DA}  + \overrightarrow {DC}  = \overrightarrow {DB}  \hfill \\   \Rightarrow \left| {\overrightarrow {CB}  + \overrightarrow {AB} } ight| = \left| {\overrightarrow {DB} } ight| = DB = 2OB \hfill \\ \end{matrix}

    Vì tam giác AOB vuông tại A ta có:

    \begin{matrix}  B{O^2} = A{B^2} + A{O^2} \hfill \\   \Rightarrow B{O^2} = {3^2} + {2^2} = 13 \hfill \\   \Rightarrow BO = \sqrt {13}  \hfill \\   \Rightarrow \left| {\overrightarrow {CB}  + \overrightarrow {AB} } ight| = \sqrt {13}  \hfill \\ \end{matrix}

  • Câu 26: Nhận biết

    Cho tam giác ABCAM là một đường trung tuyến. Biểu diễn vectơ \overrightarrow {AM} theo hai vectơ \overrightarrow {AB}\overrightarrow {AC}.

     Vì M là trung điểm BC nên \overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AM}  \Leftrightarrow \overrightarrow {AM}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC}.

  • Câu 27: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Khẳng định nào sau đây đúng?

    Xét đáp án \overrightarrow{MP} +
\overrightarrow{NM} = \overrightarrow{NP}. Ta có \overrightarrow{MP} + \overrightarrow{NM} =
\overrightarrow{NM} + \overrightarrow{MP} =
\overrightarrow{NP}. Vậy đáp án này đúng.

  • Câu 28: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA( -
1;1),B(1;3)C(1; - 1). Khẳng định nào sau đây là đúng?

    \overrightarrow{AB}\mathbf{=}(2;2)\Rightarrow\left|\overrightarrow{{AB}}ight|\mathbf{=}{2}\sqrt{{2}}.

    \overrightarrow{AC}=(2;-2)\Rightarrow\left|\overrightarrow {AC}ight|\mathbf{=}2\sqrt{{2}}.

    Ta có: AB = AC\Rightarrow \Delta{ABC} cân tại A.

    \overrightarrow{BC}=(0;-4)\Rightarrow\left|\overrightarrow{BC}ight|={4}.

    BC^2=AB^2+AC^2 =8+8=4^2 \Rightarrow \Delta ABC vuông tại A.

    Vậy \Delta ABC vuông cân tại A.

  • Câu 29: Nhận biết

    Cho tam giác đều ABC có cạnh a. Tính tích vô hướng \overrightarrow{AB}\times \overrightarrow{AC}.

     Ta có: \overrightarrow {AB} .\overrightarrow {AC}  = AB.AC.\cos A = a.a.\cos 60^\circ  = \frac{{{a^2}}}{2}.

  • Câu 30: Nhận biết

    Tính giá trị \overrightarrow{a}.\overrightarrow{b} biết rằng \overrightarrow{a} = (1; -
3),\overrightarrow{b} = (2;5)?

    Ta có:

    \overrightarrow{a}.\overrightarrow{b} =
1.2 + ( - 3).5 = - 13

  • Câu 31: Thông hiểu

    Cho lục giác đều ABCDEF tâm O. Số các vectơ khác vectơ - không, cùng phương với \overrightarrow{OC} có điểm đầu và điểm cuối là các đỉnh của lục giác là

    Đó là các vectơ: \overrightarrow{AB},\ \
\overrightarrow{BA},\ \ \overrightarrow{DE},\ \ \overrightarrow{ED},\ \
\overrightarrow{FC},\ \ \overrightarrow{CF}. Chọn 6.

  • Câu 32: Thông hiểu

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} khác \overrightarrow{0}. Xác định góc \alpha giữa hai vectơ \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}.\overrightarrow{b} = - \left|
\overrightarrow{a} ight|.|\overrightarrow{b}|.

    Ta có \overrightarrow{a}.\overrightarrow{b} = \left|\overrightarrow{a} ight|.\left| \overrightarrow{b}ight|.\cos(\overrightarrow{a},\overrightarrow{b}).

    Mà theo giả thiết \overrightarrow{a}.\overrightarrow{b} = - \left|\overrightarrow{a} ight|.|\overrightarrow{b}|

    Suy ra \cos(\overrightarrow{a},\overrightarrow{b}) = - 1\longrightarrow (\overrightarrow{a},\overrightarrow{b}) =180^{\circ}

  • Câu 33: Nhận biết

    Trong mặt phẳng tọa độ Oxy cho \overrightarrow{a} = ( - 1;1),\overrightarrow{b} =
(4; - 2). Xác định tọa độ vecto \overrightarrow{v} = \overrightarrow{a} +
2\overrightarrow{b}?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{a} = ( - 1;1) \Rightarrow 2\overrightarrow{a} = ( - 2;2)
\\
\overrightarrow{b} = (4; - 2) \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{v} =
\overrightarrow{a} + 2\overrightarrow{b} = \left( - 2 + 4;2 + ( - 2)
ight) = (2;0)

  • Câu 34: Nhận biết

    Trên đường thẳng MN lấy điểm P sao cho \overrightarrow{MN} = -
3\overrightarrow{MP}. Điểm P được xác định đúng trong hình vẽ nào sau đây:

    Ta có \overrightarrow{MN} = -
3\overrightarrow{MP} nên MN =
3MP\overrightarrow{MN}\overrightarrow{MP} ngược hướng.

  • Câu 35: Nhận biết

    Cho tọa độ hai điểm P(1;2)Q(3; - 4). Khẳng định nào sau đây đúng?

    Ta có: \overrightarrow{PQ} = (3 - 1; - 4
- 2) = (2; - 6)

  • Câu 36: Thông hiểu

    Gọi O là giao điểm của hai đường chéo hình chữ nhật ABCD. Mệnh đề nào sau đây đúng?

    Mệnh đề đúng là \left|
\overrightarrow{AC} ight| = \left| \overrightarrow{BD}
ight|. Do độ dài hai đường chéo hình chữ nhật bằng nhau.

  • Câu 37: Vận dụng

    Cho hình bình hành ABCDO là giao điểm của hai đường chéo. Đẳng thức nào sau đây sai?

    Xét các đáp án:

    Đáp án \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}. Ta có \overrightarrow{OA} + \overrightarrow{OB} +
\overrightarrow{OC} + \overrightarrow{OD} = \left( \overrightarrow{OA} +
\overrightarrow{OC} ight) + \left( \overrightarrow{OB} +
\overrightarrow{OD} ight) = \overrightarrow{0}.

    Đáp án \overrightarrow{AC} =
\overrightarrow{AB} + \overrightarrow{AD}. Ta có \overrightarrow{AB} + \overrightarrow{AD} =
\overrightarrow{AC} (quy tắc hình bình hành).

    Đáp án \left| \overrightarrow{BA} +
\overrightarrow{BC} ight| = \left| \overrightarrow{DA} +
\overrightarrow{DC} ight|. Ta có \left\{ \begin{matrix}
\left| \overrightarrow{BA} + \overrightarrow{BC} ight| = \left|
\overrightarrow{BD} ight| = BD \\
\left| \overrightarrow{DA} + \overrightarrow{DC} ight| = \left|
\overrightarrow{DB} ight| = BD \\
\end{matrix} ight..

    Đáp án \overrightarrow{AB} +
\overrightarrow{CD} = \overrightarrow{AB} +
\overrightarrow{CB}. Do \overrightarrow{CD} eq \overrightarrow{CB}
\Rightarrow \left( \overrightarrow{AB} + \overrightarrow{CD} ight)
eq \left( \overrightarrow{AB} + \overrightarrow{CB} ight). Chọn đáp án này.

  • Câu 38: Nhận biết

    Cho \overrightarrow{a}\overrightarrow{b} là các vectơ khác \overrightarrow{0} với \overrightarrow{a} là vectơ đối của \overrightarrow{b}. Khẳng định nào sau đây sai?

    Ta có \overrightarrow{a} = -
\overrightarrow{b}. Do đó, \overrightarrow{a}\overrightarrow{b} cùng phương, cùng độ dài và ngược hướng nhau.

    Chọn đáp án sai là: Hai vectơ \overrightarrow{a},\ \ \overrightarrow{b} chung điểm đầu.

  • Câu 39: Thông hiểu

    Cho hình vuông ABCD. Khẳng định nào sau đây đúng?

    ABCD là hình vuông \Rightarrow \overrightarrow{AD} =
\overrightarrow{BC} = - \overrightarrow{CB} \Rightarrow \left|
\overrightarrow{AD} ight| = \left| \overrightarrow{CB}
ight|.

  • Câu 40: Nhận biết

    Cho tam giác ABC đều cạnh a. Mệnh đề nào sau đây đúng?

    Độ dài các cạnh của tam giác là a thì độ dài các vectơ \left| \overrightarrow{AB} ight| = \left|
\overrightarrow{BC} ight| = \left| \overrightarrow{CA} ight| =
a.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 5 Vectơ Sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 30 lượt xem
Sắp xếp theo