Đề kiểm tra 45 phút Chương 5 Vectơ Sách CTST

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Vectơ gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho 5 điểm M, N, P, Q, R. Tính tổng \overrightarrow{MN}+\overrightarrow{PQ}+\overrightarrow{RN}+\overrightarrow{NP}+\overrightarrow{QR}

    Ta có:

    \begin{matrix}  \overrightarrow {MN}  + \overrightarrow {PQ}  + \overrightarrow {RN}  + \overrightarrow {NP}  + \overrightarrow {QR}  \hfill \\   = \left( {\overrightarrow {MN}  + \overrightarrow {NP} } ight) + \left( {\overrightarrow {PQ}  + \overrightarrow {QR} } ight) + \overrightarrow {RN}  \hfill \\   = \overrightarrow {MP}  + \overrightarrow {PR}  + \overrightarrow {RN}  \hfill \\   = \left( {\overrightarrow {MP}  + \overrightarrow {PR} } ight) + \overrightarrow {RN}  \hfill \\   = \overrightarrow {MR}  + \overrightarrow {RN}  = \overrightarrow {MN}  \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu

    Cho \overrightarrow{u} = (3; - 2),\ \overrightarrow{v}
= (1;6). Khẳng định nào sau đây là đúng?

    Ta có \overrightarrow{u} +
\overrightarrow{v} = (4;4)\overrightarrow{u} - \overrightarrow{v} = (2; -
8).

    Xét tỉ số \frac{4}{- 4} eq
\frac{4}{4}\overset{}{ightarrow}\overrightarrow{u} +
\overrightarrow{v}\overrightarrow{a} = ( - 4;4) không cùng phương. Loại \overrightarrow{u} +
\overrightarrow{v}\overrightarrow{a} = ( - 4;4) ngược hướng.

    Xét tỉ số \frac{3}{1} eq \frac{-
2}{6}\overset{}{ightarrow}\overrightarrow{u},\
\overrightarrow{v} không cùng phương. Loại \overrightarrow{u},\ \overrightarrow{v} cùng phương.

    Xét tỉ số \frac{2}{6} = \frac{- 8}{- 24}
= \frac{1}{3} > 0\overset{}{ightarrow}\overrightarrow{u} -
\overrightarrow{v}\overrightarrow{b} = (6; - 24) cùng hướng. Chọn \overrightarrow{u} -
\overrightarrow{v}\overrightarrow{b} = (6; - 24) cùng hướng.

  • Câu 3: Nhận biết

    Cho hình bình hành ABCD, vectơ có điểm đầu và điểm cuối là các đỉnh của hình bình hành bằng với vectơ \overrightarrow{AB} là:

    Ta có ABCD là hình bình hành nên \left\{ \begin{matrix}
AB = CD \\
AB \parallel CD \\
\end{matrix} ight. do đó \overrightarrow{AB} =
\overrightarrow{DC}.

  • Câu 4: Nhận biết

    Điều kiện nào là điều kiện cần và đủ để I là trung điểm của đoạn thẳng AB?

    Điều kiện cần và đủ để I là trung điểm của đoạn thẳng AB\overrightarrow{IA} = - \overrightarrow{IB}
\Leftrightarrow \overrightarrow{IA} + \overrightarrow{IB} =
\overrightarrow{0}.

  • Câu 5: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho hai điểm B( - 3;6),\ C(1; - 3). Xác định điểm E trên trục hoành sao cho ba điểm B,\ \ C,\ \ E thẳng hàng.

    Gọi E(x;0) khi đó \overrightarrow{BE}(x + 3; - 6),\ \
\overrightarrow{EC}(1 - x; - 3)

    Ba điểm B,C,E thẳng hàng khi và chỉ khi \overrightarrow{BE} cùng phương với \overrightarrow{EC}

    \Leftrightarrow \frac{x + 3}{1 - x} =
\frac{- 6}{- 3} \Leftrightarrow x = - \frac{1}{3}.

  • Câu 6: Thông hiểu

    Cho tam giác ABCM là trung điểm của BC,\ \ \ I là trung điểm của AM. Khẳng định nào sau đây đúng?

    M là trung điểm BC nên \overrightarrow{IB} + \overrightarrow{IC} =
2\overrightarrow{IM}. Mặt khác I là trung điểm AM nên \overrightarrow{IA} + \overrightarrow{IM} =
\overrightarrow{0}. Suy ra \overrightarrow{IB} + \overrightarrow{IC} +
2\overrightarrow{IA} = 2\overrightarrow{IM} + 2\overrightarrow{IA} =
2\left( \overrightarrow{IM} + \overrightarrow{IA} ight) =
\overrightarrow{0}.

  • Câu 7: Thông hiểu

    Mệnh đề nào sau đây đúng?

    Ta có: \overrightarrow{u} = (2; - 1) = -( - 2;1) = - \overrightarrow{v}\ \ \ \ \  \Rightarrow \ \\overrightarrow{u}\overrightarrow{v} đối nhau.

  • Câu 8: Nhận biết

    Cho hai điểm AB phân biệt. Điều kiện để I là trung điểm AB là:

    Điều kiện để I là trung điểm AB là: \overrightarrow{IA} = -
\overrightarrow{IB}.

  • Câu 9: Thông hiểu

    Cho hình vuông ABCD, tâm O, cạnh 4 cm. Điểm E, H lần lượt thuộc các cạnh BC, CD sao cho \overrightarrow{BE}=\frac{1}{4}\overrightarrow{BC}\overrightarrow{CH}=\frac{3}{4}\overrightarrow{CD}. Độ dài vecto |\overrightarrow{OE}+\overrightarrow{OH}| là:

    Ta có:

    \begin{matrix}  \overrightarrow {OE}  + \overrightarrow {OH}  \hfill \\   = \overrightarrow {OB}  + \overrightarrow {BE}  + \overrightarrow {OC}  + \overrightarrow {CH}  \hfill \\   = \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {BE}  + \overrightarrow {CH}  \hfill \\   = \overrightarrow {AB}  + \dfrac{1}{4}\overrightarrow {BC}  + \dfrac{3}{4}\overrightarrow {BA}  \hfill \\   = \dfrac{1}{4}\overrightarrow {AB}  + \dfrac{1}{4}\overrightarrow {BC}  \hfill \\   = \dfrac{1}{4}\left( {\overrightarrow {AB}  + \overrightarrow {BC} } ight) \hfill \\   = \dfrac{1}{4}\overrightarrow {AC}  \hfill \\ \end{matrix}

    \Rightarrow \left| {\overrightarrow {OE}  + \overrightarrow {OH} } ight| = \frac{1}{4}\left| {\overrightarrow {AC} } ight| = \frac{1}{4}AC = \frac{1}{4}.4\sqrt 2  = \sqrt 2

  • Câu 10: Thông hiểu

    Cho hai vecto \overrightarrow{a}\overrightarrow{b} biết |\overrightarrow{a}| = 4,|\overrightarrow{b}| =
5(\overrightarrow{a},\overrightarrow{b}) =
120^{\circ}. Tính |\overrightarrow{a} +
\overrightarrow{b}|.

    Ta có:

    \left|\overrightarrow{a} + \overrightarrow{b} ight| =\sqrt{(\overrightarrow{a} + \overrightarrow{b})^{2}} =\sqrt{{\overrightarrow{a}}^{2} + {\overrightarrow{b}}^{2} +2\overrightarrow{a}.\overrightarrow{b}}

    = \sqrt{|\overrightarrow{a}|^{2} +
|\overrightarrow{b}|^{2} +
2|\overrightarrow{a}||\overrightarrow{b}|cos(\overrightarrow{a},\overrightarrow{b})}
= \sqrt{21}.

  • Câu 11: Nhận biết

    Cho tam giác ABC đều cạnh 2a. Đẳng thức nào sau đây là đúng?

    Theo bài ra ta có: 

    Tam giác ABC đều cạnh 2a => AB = BC = AC = 2a

    => |\overrightarrow{AB}|=AB=2a

  • Câu 12: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A(3; - 1),B(2;10),C( - 4;2). Tính tích vô hướng \overrightarrow{AB}.\overrightarrow{AC}.

    Ta có: \overrightarrow{AB} = ( -
1;11),\overrightarrow{AC} = ( -
7;3) \Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=40.

  • Câu 13: Thông hiểu

    Cho hình vuông ABCD. Khẳng định nào sau đây đúng?

    ABCD là hình vuông \Rightarrow \overrightarrow{AD} =
\overrightarrow{BC} = - \overrightarrow{CB} \Rightarrow \left|
\overrightarrow{AD} ight| = \left| \overrightarrow{CB}
ight|.

  • Câu 14: Nhận biết

    Khẳng định nào sau đây là đúng?

    Ta có \overrightarrow{a} =
\frac{5}{4}\overrightarrow{b}\overset{}{ightarrow}\overrightarrow{a},\
\overrightarrow{b} cùng hướng.

  • Câu 15: Vận dụng

    Cho tam giác ABC có điểm O thỏa mãn |\overrightarrow{OA}+\overrightarrow{OB}-2\overrightarrow{OC}|=|\overrightarrow{OA}-\overrightarrow{OB}|. Khẳng định nào sau đây là đúng?

     Ta có: |\overrightarrow{OA}+\overrightarrow{OB}-2\overrightarrow{OC}|=|\overrightarrow{OA}-\overrightarrow{OB}| \Leftrightarrow\left| {\overrightarrow {CA}  + \overrightarrow {CB} } ight| = \left| {\overrightarrow {BA} } ight|.

    Vẽ hình bình hành ACBD, suy ra \left| {\overrightarrow {CA}  + \overrightarrow {CB} } ight| = \left| {\overrightarrow {CD} } ight|. Mà \left| {\overrightarrow {CA}  + \overrightarrow {CB} } ight| = \left| {\overrightarrow {BA} } ight|. Suy ra CD=BA. Do đó ACBD là hình chữ nhật. Do đó tam giác ACB vuông C.

  • Câu 16: Nhận biết

    Trong hệ trục tọa độ \left( O;\overrightarrow{i};\overrightarrow{j}
ight), tọa độ của vectơ \overrightarrow{i} + \overrightarrow{j}

    Ta có \left\{ \begin{matrix}
\overrightarrow{i} = (1;0) \\
\overrightarrow{j} = (0;1) \\
\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{i} +
\overrightarrow{j} = (1;1).

  • Câu 17: Nhận biết

    Cho tam giác ABC có trọng tâm G và trung tuyến AM. Khẳng định nào sau đây là sai.

    Ta có AM = 3MG

    Mặt khác \overrightarrow{AM}\overrightarrow{MG} ngược hướng \mathbf{\Rightarrow}\overrightarrow{AM} = -
3\overrightarrow{MG}.

  • Câu 18: Vận dụng

    Cho tam giác ABC có trực tâm H. Gọi D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây đúng?

    Ta có AH\bot BCDC\bot BC (do góc \widehat{DCB} chắn nửa đường tròn).

    Suy ra AH \parallel DC.

    Tương tự ta cũng có CH \parallel
AD.

    Suy ra tứ giác ADCHlà hình bình hành. Do đó \overrightarrow{HA} =
\overrightarrow{CD}\overrightarrow{AD} =
\overrightarrow{HC}.

  • Câu 19: Nhận biết

    Cho hình vuông ABCD, tính cos(\overrightarrow{AB},\overrightarrow{CA}).

     

    Vẽ \overrightarrow {CE}  = \overrightarrow {AB}.

    Ta có: \left( {\overrightarrow {AB} ,\overrightarrow {CA} } ight) = \left( {\overrightarrow {CE} ,\overrightarrow {CA} } ight) = 45^\circ  + 90^\circ  = 135^\circ\Rightarrow \cos 135^\circ  = \frac{{ - \sqrt 2 }}{2}.

     

  • Câu 20: Vận dụng cao

    Cho tam giác đều ABC cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức \left| 2\overrightarrow{MA} + 3\overrightarrow{MB}
+ 4\overrightarrow{MC} ight| = \left| \overrightarrow{MB} -
\overrightarrow{MA} ight| là đường tròn cố định có bán kính R. Tính bán kính R theo a.

    Gọi G là trọng tâm của tam giác ABC. Ta có

    2\overrightarrow{MA} +3\overrightarrow{MB} + 4\overrightarrow{MC}= 2\left(\overrightarrow{MI} + \overrightarrow{IA} ight) + 3\left(\overrightarrow{MI} + \overrightarrow{IB} ight) + 4\left(\overrightarrow{MI} + \overrightarrow{IC} ight).

    Chọn điểm I sao cho 2\overrightarrow{IA} + 3\overrightarrow{IB} +4\overrightarrow{IC} = \overrightarrow{0}\Leftrightarrow 3\left(\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} ight)+ \overrightarrow{IC} - \overrightarrow{IA} =\overrightarrow{0}.

    G là trọng tâm của tam giác ABCnên \overrightarrow{IA} + \overrightarrow{IB} +
\overrightarrow{IC} = 3\ \overrightarrow{IG}.

    Khi đó \overrightarrow{IG} +\overrightarrow{IC} - \overrightarrow{IA} = \overrightarrow{0}\Leftrightarrow 9\ \overrightarrow{IG} + \overrightarrow{AI} +\overrightarrow{IC} = \overrightarrow{0}\Leftrightarrow \overrightarrow{IG} = \overrightarrow{CA}. (*)

    Do đó \left| 2\overrightarrow{MA} +3\overrightarrow{MB} + 4\overrightarrow{MC} ight| = \left|\overrightarrow{MB} - \overrightarrow{MA} ight|\Leftrightarrow \left|9\overrightarrow{MI} + 2\overrightarrow{IA} + 3\overrightarrow{IB} +4\overrightarrow{IC} ight| = \left| \overrightarrow{AB} ight|\Leftrightarrow 9MI = AB.

    I là điểm cố định thỏa mãn (*) nên tập hợp các điểm M cần tìm là đường tròn tâm I, bán kính R
= \frac{AB}{9} = \frac{a}{9}.

  • Câu 21: Thông hiểu

    Cho lục giác đều ABCDEF có tâm O. Đẳng thức nào sau đây sai?

    Đẳng thức sai là \overrightarrow{OB} =
\overrightarrow{OE}.

  • Câu 22: Nhận biết

    Cho đoạn thẳng ABM là một điểm trên đoạn AB sao cho MA
= \frac{1}{5}AB. Trong các khẳng định sau, khẳng định nào sai?

    Hình vẽ minh họa

    Ta thấy \overrightarrow{MB}\overrightarrow{AB} cùng hướng nên \overrightarrow{MB} = -
\frac{4}{5}\overrightarrow{AB} là sai.

  • Câu 23: Vận dụng cao

    Chp parabol như hình vẽ:

    Biết G là đỉnh parabol cách AB một khoảng bằng 6, CD = 4;DE = \frac{10}{3}. Tính khoảng cách giữa hai điểm A,B?

    Xét hệ tọa độ Oxy với O là trung điểm AB, tia Ox là tia OB.

    Khi đó tọa độ E\left( 2;\frac{10}{3}
ight),G(0;6)

    Gọi biểu thức hàm số có đồ thị là hình parabol là y = ax^{2} + bx + c

    Có G là đỉnh parabol suy ra c = 6;b =
0

    E\left( 2;\frac{10}{3} ight) \in
(P) suy ra \frac{10}{3} = 4a + 6
\Rightarrow a = - \frac{2}{3}

    Biểu thức hàm số là y = -
\frac{2}{3}x^{2} + 6

    Hoành độ giao điểm với trục hoành: -
\frac{2}{3}x^{2} + 6 = 0 \Leftrightarrow x = \pm 3

    Vậy khoảng cách giữa hai điểm A và B là 6.

  • Câu 24: Nhận biết

    Tích vô hướng của hai vecto \overrightarrow{a} = (2; - 5)\overrightarrow{b} = ( - 5;2) là:

    Ta có:

    \overrightarrow{a}.\overrightarrow{b} =
2.( - 5) + ( - 5).2 = - 20

  • Câu 25: Thông hiểu

    Mệnh đề nào sau đây sai?

    Chọn \left| \overrightarrow{AB} ight|
> 0.

    Vì có thể xảy ra trường hợp \left|
\overrightarrow{AB} ight| = 0 \Leftrightarrow A \equiv B.

  • Câu 26: Vận dụng

    Cho tam giác ABC vuông cân tại CAB =
\sqrt{2}. Tính độ dài của \overrightarrow{AB} +
\overrightarrow{AC}.

    Ta có AB = \sqrt{2} \Rightarrow AC = CB =
1.

    Gọi I là trung điểm BC \Rightarrow AI = \sqrt{AC^{2} + CI^{2}} =
\frac{\sqrt{5}}{2}.

    Khi đó \overrightarrow{AC} +
\overrightarrow{AB} = 2\overrightarrow{AI} \Rightarrow \left|
\overrightarrow{AC} + \overrightarrow{AB} ight| = 2\left|
\overrightarrow{AI} ight| = 2.\frac{\sqrt{5}}{2} =
\sqrt{5}.

  • Câu 27: Nhận biết

    Cho \overrightarrow{AB} = -
\overrightarrow{CD}. Khẳng định nào sau đây đúng?

    Ta có \overrightarrow{AB} = -
\overrightarrow{CD} = \overrightarrow{DC}. Do đó:

    \overrightarrow{AB}\overrightarrow{CD} ngược hướng.

    \overrightarrow{AB}\overrightarrow{CD} cùng độ dài.

    ABCD là hình bình hành nếu \overrightarrow{AB}\overrightarrow{CD} không cùng giá.

    \overrightarrow{AB} + \overrightarrow{CD}
= \overrightarrow{0}.

    Chọn đáp án \overrightarrow{AB}\overrightarrow{CD} cùng độ dài.

  • Câu 28: Nhận biết

    Tìm tọa độ vecto \overrightarrow{AB} biết A(5;3),B(7;8)?

    Ta có:

    \overrightarrow{AB} = (7 - 5,8 - 3) =
(2;5)

  • Câu 29: Vận dụng

    Trong mặt phẳng Oxy cho A( - 1;1), B(1;3), C(1;
- 1). Khẳng định nào sau đây đúng.

    Do \overrightarrow{AB} = (2;2) nên loại đáp án \overrightarrow {AB}=(-4;2).

    Do\overrightarrow{AB} =
(2;2),\overrightarrow{BC} = (0; -
4),\overrightarrow{AB}.\overrightarrow{BC} = -
8 suy ra\overrightarrow{AB} không vuông góc \overrightarrow{BC} nên loại đáp án \overrightarrow{AB}\bot\overrightarrow{BC}.

    Ta có \overrightarrow{AB} =
(2;2), \overrightarrow{AC} = (2; -
2), \overrightarrow{BC} = (0; -
4), suy ra AB = AC =
\sqrt{8}, \overrightarrow{AB}.\overrightarrow{AC} =
0. Do đó tam giác ABC vuông cân tại A.

  • Câu 30: Thông hiểu

    Cho hình vuông ABCD cạnh a. Tính \left| \overrightarrow{AB} - \overrightarrow{DA}
ight|.

    Ta có \left| \overrightarrow{AB} -
\overrightarrow{DA} ight| = \left| \overrightarrow{AB} +
\overrightarrow{AD} ight| = \left| \overrightarrow{AC} ight| = AC =
a\sqrt{2}.

  • Câu 31: Thông hiểu

    Cho hình bình hành ABCD, điểm M thoả mãn: \overrightarrow{MA} + \overrightarrow{MC} =
\overrightarrow{AB}. Khi đó M là trung điểm của:

    Ta có: \overrightarrow{MA} +
\overrightarrow{MC} = 2\overrightarrow{MI} =
\overrightarrow{AB}.

    Vậy M là trung điểm của AD.

  • Câu 32: Nhận biết

    Hai vectơ được gọi là bằng nhau khi và chỉ khi

    Hai vectơ được gọi là bằng nhau khi và chỉ khi: Chúng cùng hướng và độ dài của chúng bằng nhau.

  • Câu 33: Nhận biết

    Cho hình vuông ABCD cạnh bằng a. Tính độ dài véctơ \overrightarrow{BA} +
\overrightarrow{BC}.

    Hình vẽ minh họa:

    |\overrightarrow{BA} +
\overrightarrow{BC}| = |\overrightarrow{BD}| = a\sqrt{2}.

  • Câu 34: Nhận biết

    Cho hai vecto \overrightarrow{a},\overrightarrow{b}eq \overrightarrow{0}. Xác định góc giữa hai vecto \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}\times \overrightarrow{b}=-|\overrightarrow{a}|\times |\overrightarrow{b}|

    Ta có: 

    \begin{matrix}  \vec a \times \vec b =  - |\vec a|.|\vec b| = |\vec a|.|\vec b|.\cos {180^0} \hfill \\   \Rightarrow \left( {\vec a,\vec b} ight) = {180^0} \hfill \\ \end{matrix}

  • Câu 35: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Khi đó:

    Chọn: Điều kiện cần và đủ để A,\ B,\
C thẳng hàng là \overrightarrow{AB} cùng phương với \overrightarrow{AC}.

  • Câu 36: Nhận biết

    Cho tam giác ABC và đặt \overrightarrow{a} = \overrightarrow{BC},\ \
\overrightarrow{b} = \overrightarrow{AC}. Cặp vectơ nào sau đây cùng phương?

    Dễ thấy - 10\ \overrightarrow{a} -
2\overrightarrow{b} = - \ 2\ \left( 5\overrightarrow{a} +
\overrightarrow{b} ight)\overset{}{ightarrow} hai vectơ 5\overrightarrow{a} + \overrightarrow{b},\
\  - 10\overrightarrow{a} - 2\overrightarrow{b} cùng phương.

  • Câu 37: Thông hiểu

    Cho lục giác đều ABCDEF có tâm O. Đẳng thức nào sau đây sai?

    Đẳng thức sai là \overrightarrow{OB} =
\overrightarrow{OE}.

  • Câu 38: Thông hiểu

    Trong mặt phẳng Oxy cho A(1;2),\ \ B(4;1),\ \ C(5;4). Tính \widehat{BAC} ?

    Ta có \overrightarrow{AB} = (3; -
1), \overrightarrow{AC} =
(4;2) suy ra \cos\left(
\overrightarrow{AB};\overrightarrow{AC} ight) =
\frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB.AC} =
\frac{10}{\sqrt{10}.\sqrt{20}} = \frac{\sqrt{2}}{2} \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{AC} ight) = 45^{o}.

  • Câu 39: Vận dụng cao

    Cho tam giác ABC\widehat{A} = 90^{0}. Gọi các vectơ \overrightarrow{\alpha};\overrightarrow{\beta};\overrightarrow{\lambda} theo thư tự là các vectơ có giá vuông góc với các đường thẳng AB.AC,BC\left| \overrightarrow{\alpha} ight| = AB;\left|
\overrightarrow{\beta} ight| = AC;\left| \overrightarrow{\lambda}
ight| = BC. Tính độ dài vectơ \overrightarrow{\alpha} + \overrightarrow{\beta} -
\overrightarrow{\lambda}, biết AB =
3,AC = 4.

    Hình vẽ minh họa:

    Gọi D là điểm thuộc miền trong tam giác ABC, dựng các vectơ \overrightarrow{\alpha} =
\overrightarrow{DG};\overrightarrow{\beta} =
\overrightarrow{DE};\overrightarrow{\lambda} =
\overrightarrow{DF} dựng hình chữ nhật DGHE ta có: \overrightarrow{\alpha} + \overrightarrow{\beta} =
\overrightarrow{DH}

    Ta lại có: \Delta GDH = \Delta ABC
\Rightarrow \widehat{GDH} = \widehat{ABC}

    Mặt khác \widehat{GDF} + \widehat{ABC} =
180^{0}

    \Rightarrow \widehat{GDF} +
\widehat{GDH} = 180^{0}

    => Ba điểm H, D, F thẳng hàng.

    Khi đó: \left| \overrightarrow{\alpha} +
\overrightarrow{\beta} - \overrightarrow{\lambda} ight| = \left|
\overrightarrow{DH} + \overrightarrow{FD} ight| = \left|
\overrightarrow{FH} ight| = 10

  • Câu 40: Thông hiểu

    Cho tam giác ABCAB =
2\ \ cm,BC = 3\ \ cm,CA = 5\ \ cm. Tính \overrightarrow{CA}.\overrightarrow{CB}.

    Ta có \cos C = \frac{BC^{2} + AC^{2} -AB^{2}}{2.BC.AC}= \frac{3^{2} + 5^{2} - 2^{2}}{2.3.5} = 1

    \overrightarrow{CA}.\overrightarrow{CB}
= \left| \overrightarrow{CA} ight|.\left| \overrightarrow{CB}
ight|.cosC = 15

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 5 Vectơ Sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo