Tam giác
vuông tại
. Độ dài vectơ
bằng:
Vẽ . Vẽ hình bình hành
Ta có:
Do đó .
Tam giác
vuông tại
. Độ dài vectơ
bằng:
Vẽ . Vẽ hình bình hành
Ta có:
Do đó .
Với
(khác vectơ - không) thì độ dài đoạn
được gọi là
Với (khác vectơ - không) thì độ dài đoạn
được gọi là: Độ dài của
Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:
Ta có: (2 vectơ đối nhau).
Cho hai lực
và
có cùng điểm đặt O và vuông góc với nhau. Cường độ của hai lực
và
lần lượt là 80N và 60N. Cường độ tổng hợp lực của hai lực đó là:

Ta có: .
Chp parabol như hình vẽ:

Biết G là đỉnh parabol cách AB một khoảng bằng 6,
. Tính khoảng cách giữa hai điểm
?
Xét hệ tọa độ Oxy với O là trung điểm AB, tia Ox là tia OB.
Khi đó tọa độ
Gọi biểu thức hàm số có đồ thị là hình parabol là
Có G là đỉnh parabol suy ra
Có suy ra
Biểu thức hàm số là
Hoành độ giao điểm với trục hoành:
Vậy khoảng cách giữa hai điểm A và B là .
Cho hình chữ nhật
Khẳng định nào sau đây đúng?
Ta có
Mà
Cho hai vecto
. Xác định góc giữa hai vecto
và
khi ![]()
Ta có:
Cho tam giác ABC đều cạnh
. Đường thẳng
qua
và song song với
, lấy điểm
. Tính giá trị nhỏ nhất của
khi
di động trên
.
Hình vẽ minh họa
Kẻ hình bình hành ACBD. Gọi I là trung điểm BD, khi đó, ta có
Ta có:
Dấu “=” xảy ra khi và chỉ khi M trùng với điểm H là hình chiếu vuông góc của điểm I trên đường thẳng .
Tìm tọa độ vecto
biết
?
Ta có:
Trong mặt phẳng tọa độ
, tọa độ trung điểm
của đoạn thẳng
với
là:
Tọa độ trung điểm M của AB là:
Vậy tọa độ trung điểm M của AB là .
Cho tam giác ABC có I là trung điểm của AB. Điểm M thỏa mãn
. Chọn mệnh đề đúng.
.
Trong mặt phẳng tọa độ
cho tam giác
có
và
. Khẳng định nào sau đây là đúng?
.
.
Ta có: cân tại A.
.
vuông tại A.
Vậy vuông cân tại A.
Cho hình thoi ABCD tâm O, cạnh bằng a và
. Kết luận nào sau đây là đúng?
Hình vẽ minh họa

Ta có: ABCD là hình thoi
=>
Áp dụng định lí cosin trong tam giác ADC ta có:
Cho tam giác đều
có đường cao
. Tính
.
Lấy sao cho
.
Ta có: .
Trong các vecto dưới đây, vecto nào cùng phương với vecto
?
Nhận thấy nên
cùng phương với
.
Cho hình thoi
cạnh
và
. Đẳng thức nào sau đây đúng?
Vì tam giác cân và
, suy ra tam giác
đều cạnh
nên
Cho hình vuông
tâm
cạnh a. Biết rằng tập hợp điểm
thỏa mãn
là một đường tròn. Tính bán kính của đường tròn.
Ta có:
Do
Vậy tập hợp các điểm là đường tròn tâm
, bán kính
.
Trong hệ tọa độ
cho ba điểm
Tìm tọa độ điểm
để tứ giác
là hình bình hành.
Gọi Ta có
Tứ giác là hình bình hành
Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng
là:
Ta có:
Cho tam giác
, gọi
là trung điểm của
và
là trọng tâm của tam giác
. Câu nào sau đây đúng?
Do là trung điểm của
nên ta có:
.
Cho đường tròn
và hai tiếp tuyến song song với nhau tiếp xúc với
tại hai điểm
và
Mệnh đề nào sau đây đúng?
Do hai tiếp tuyến song song và là hai tiếp điểm nên
là đường kính.
Do đó là trung điểm của
.
Suy ra .
Cho lục giác đều
có tâm
Đẳng thức nào sau đây sai?
Đẳng thức sai là
Cho tam giác
và đặt
Cặp vectơ nào sau đây cùng phương?
Dễ thấy hai vectơ
cùng phương.
Cho hai điểm
và
phân biệt. Điều kiện để
là trung điểm
là:
Điều kiện để là trung điểm
là:
Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?
Ta có: .
Cho lục giác đều
tâm
. Các vectơ đối của vectơ
là:
Các vectơ đối của vectơ là:
.
Cho tam giác
có
Tính ![]()
Ta có
Trên mặt phẳng tọa độ Oxy, cho các điểm
. Chọn khẳng định đúng.
Biểu diễn các điểm trên hệ trục tọa độ như sau:

Ta có:
Vậy hai vectơ cùng phương, ngược hướng.
Tứ giác MNPQ là hình bình hành nếu:
Hình vẽ minh họa

Ta có MNPQ là hình bình hành nếu
Cho tam giác
vuông tại
có
. Tính ![]()
Ta có:
Tích vô hướng của hai vecto
và
là:
Ta có:
Cho
Khẳng định nào sau đây là đúng?
Ta có và
Xét tỉ số và
không cùng phương. Loại
và
ngược hướng.
Xét tỉ số không cùng phương. Loại
cùng phương.
Xét tỉ số và
cùng hướng. Chọn
và
cùng hướng.
Cho tam giác
đều cạnh
Mệnh đề nào sau đây đúng?
Độ dài các cạnh của tam giác là thì độ dài các vectơ
.
Trên đường thẳng MN lấy điểm P sao cho
. Điểm P được xác định đúng trong hình vẽ nào sau đây:

Vì nên
nằm giữa
và
, đồng thời
.
Gọi
là giao điểm của hai đường chéo của hình bình hành
. Đẳng thức nào sau đây sai?
Đẳng thức sai là
Trong mặt phẳng tọa độ
, cho hai điểm
. Xác định điểm
trên trục hoành sao cho ba điểm
thẳng hàng.
Gọi khi đó
Ba điểm thẳng hàng khi và chỉ khi
cùng phương với
.
Tính tổng
.
Ta có .
Cho hình thoi
có
. Tính
.

Vì nên
.
Cho ba điểm phân biệt A, B, C. Khẳng định nào sau đây đúng?
Ta có:
=> Khẳng định sai
=> Khẳng định sai
=> Khẳng định đúng
=> Khẳng định sa
Cho tam giác
có
là một đường trung tuyến. Biểu diễn vectơ
theo hai vectơ
và
.
Vì là trung điểm
nên
.