Cho tam giác ABC vuông tại A có AB = 3, BC = 5. Tính ![]()
Ta có:
Tam giác ABC vuông tại A ta có:
Cho tam giác ABC vuông tại A có AB = 3, BC = 5. Tính ![]()
Ta có:
Tam giác ABC vuông tại A ta có:
Cho tam giác OAB có M, N là trung điểm của OA, OB. Chọn mệnh đề đúng.
Cho tam giác
có tọa độ ba đỉnh
. Trọng tâm G của tam giác
là:
Vì G là trọng tâm tam giác ABC nên tọa độ G là nghiệm hệ phương trình:
Cho hình bình hành
. Lấy hai điểm
sao cho
, lấy tiếp hai điểm
sao cho
. Để
là trọng tâm tam giác
thì
thỏa mãn điều kiện nào sau đây:
Hình vẽ minh họa

Để J là trọng tâm tam giác AMN thì
Mặt khác do không cùng phương nên ta suy ra:
Vậy với thì điểm J là trọng tâm tam giác AMN.
Cho tam giác
có
Tính ![]()
Ta có
Cho M, N, P, Q là bốn điểm tùy ý. Trong các hệ thức sau, hệ thức nào sai?
Hệ thức sai là:
Vì (tính chất giao hoán)
Trong hệ tọa độ
, cho bốn điểm
. Các điểm nào trong các điểm đã cho thẳng hàng với nhau?
Ta có:
Vậy ba điểm thẳng hàng.
Trong mặt phẳng tọa độ
cho hai vectơ
và
. Tính cosin của góc giữa hai vectơ
và ![]()
Ta có: .
Gọi
là tâm hình bình hành
. Đẳng thức nào sau đây sai?
Xét các đáp án:
Đáp án . Ta có
. Vậy đáp án này đúng.
Đáp án . Ta có
. Vậy đáp án này sai.
Đáp án . Ta có
Vậy đáp án này đúng.
Đáp án . Ta có
. Vậy đáp án này đúng.
Trong mặt phẳng tọa độ
, cho tọa độ
. Một điểm
bất kì. Tìm giá trị nhỏ nhất của biểu thức
?
Ta có:
Ta có:
Suy ra
Ta có:
(Với )
Lại có:
Mà
Dấu đẳng thức xảy ra khi M là giao điểm của EF và Ox =>
Vậy biểu thức T đạt giá trị nhỏ nhất là .
Cho hình thoi
cạnh
và
. Đẳng thức nào sau đây đúng?
Vì tam giác cân và
, suy ra tam giác
đều cạnh
nên
Cho tam giác
có
thuộc cạnh
sao cho
. Đẳng thức nào sau đây đúng?
Ta có
.
Cho
Tìm
để hai vectơ
cùng phương.
Hai vectơ cùng phương
Cho hình thoi
có
. Tính
.

Vì nên
.
Cho tam giác
Hai điểm
chia cạnh
theo ba phần bằng nhau
Tính
theo
và ![]()
Ta có
Cho tam giác
có
. Gọi các vectơ
theo thư tự là các vectơ có giá vuông góc với các đường thẳng
và
. Tính độ dài vectơ
, biết
.
Hình vẽ minh họa:
Gọi D là điểm thuộc miền trong tam giác ABC, dựng các vectơ dựng hình chữ nhật DGHE ta có:
Ta lại có:
Mặt khác
=> Ba điểm H, D, F thẳng hàng.
Khi đó:
Trong mặt phẳng tọa độ
cho tam giác
có
và
. Khẳng định nào sau đây là đúng?
.
.
Ta có: cân tại A.
.
vuông tại A.
Vậy vuông cân tại A.
Cho hình vuông
. Khẳng định nào sau đây đúng?
Chọn Vì
Trong mặt phẳng tọa độ Oxy, cho
. Đâu là tọa độ của điểm A?
Ta có: O(0; 0)
Cho tam giác ABC, có thể xác định được bao nhiêu vectơ khác
có điểm đầu và điểm cuối là các đỉnh A, B, C?
Ta có các vectơ khác có điểm đầu và điểm cuối là các đỉnh tam giác ABC là:
Cho tam giác
đều cạnh
là trung điểm của
. Tính ![]()
Gọi là điểm thỏa mãn tứ giác
là hình bình hành
là hình chữ nhật.
Ta có
Mệnh đề nào sau đây đúng?
Vì vectơ - không cùng phương với mọi vectơ.
Cho tam giác
có
là một đường trung tuyến. Biểu diễn vectơ
theo hai vectơ
và
.
Vì là trung điểm
nên
.
Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:
Ta có: (2 vectơ đối nhau).
Cho hình thoi ABCD tâm O, cạnh bằng a và
. Kết luận nào sau đây là đúng?
Hình vẽ minh họa

Ta có: ABCD là hình thoi
=>
Áp dụng định lí cosin trong tam giác ADC ta có:
Cho ba điểm phân biệt
. Đẳng thức nào sau đây đúng?
Ta có . Vậy
đúng.
Cho
không cùng phương,
. Vectơ cùng hướng với
là:
Ta có. Chọn
.
Cho tam giác
và đặt
Cặp vectơ nào sau đây cùng phương?
Dễ thấy hai vectơ
cùng phương.
Trên mặt phẳng tọa độ Oxy, cho các điểm
. Chọn khẳng định đúng.
Biểu diễn các điểm trên hệ trục tọa độ như sau:

Ta có:
Vậy hai vectơ cùng phương, ngược hướng.
Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?
Áp dụng quy tắc hình bình hành tại điểm B ta có:
Cho ngũ giác
. Từ các đỉnh của ngũ giác đã cho có thể lập được bao nhiêu vectơ có điểm cuối là điểm
?
Các vectơ có điểm cuối là điểm là
;
;
;
.
Gọi
lần lượt là trung điểm của các cạnh
của tam giác đều
. Hỏi cặp vectơ nào sau đây cùng hướng?
Cặp và
là cặp vectơ cùng hướng.
Cho hai điểm
. Tọa độ trung điểm của đoạn AB là:
Gọi M là trung điểm của đoạn thẳng AB. Khi đó tọa độ điểm M là:
Gọi
là tâm hình vuông
. Tính
.
Ta có .
Cho ba điểm
phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là
Ta có tính chất: Điều kiện cần và đủ để ba điểm phân biệt thẳng hàng là
.
Trong hệ tọa độ
cho ba điểm
Tìm tọa độ của vectơ ![]()
Ta có
Cách khác:
Cho hình chữ nhật
Khẳng định nào sau đây đúng?
Ta có
Mà
Trong hệ tọa độ
, cho hai điểm
Tìm tọa độ điểm
thuộc trục hoành sao cho
thẳng hàng.
Điểm Ta có
và
Để thẳng hàng
cùng phương với
Tích vô hướng của hai vecto
và
là:
Ta có:
Cho tam giác đều
có cạnh bằng
và chiều cao
. Mệnh đề nào sau đây là sai?
+) nên đáp án
đúng.
+) Đáp án
đúng.
+) Đáp án
đúng.
+) Đáp án
sai.