Đề kiểm tra 45 phút Chương 5 Vectơ Sách CTST

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Vectơ gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Đẳng thức nào sau đây mô tả đúng hình vẽ bên:

     Nhận xét: \overrightarrow {AB}  =  - 3\overrightarrow {AI}  \Leftrightarrow \overrightarrow {AB}  + 3\overrightarrow {AI}  = \overrightarrow 0.

  • Câu 2: Vận dụng

    Cho hình thoi ABCD cạnh a\widehat{BAD} = 60{^\circ}. Đẳng thức nào sau đây đúng?

    Vì tam giác BAD cân và \widehat{BAD} = 60{^\circ}, suy ra tam giác ABD đều cạnh a nên BD =
a\overset{}{ightarrow}\left| \overrightarrow{BD} ight| =
a.

  • Câu 3: Nhận biết

    Hai vectơ được gọi là bằng nhau khi và chỉ khi

    Hai vectơ được gọi là bằng nhau khi và chỉ khi: Chúng cùng hướng và độ dài của chúng bằng nhau.

  • Câu 4: Vận dụng cao

    Cho hình thang vuông ABCD\widehat{A} = \widehat{D} = 90^{0}. Tính độ dài vectơ \overrightarrow{\alpha} =
\overrightarrow{DA} + \overrightarrow{DB} +
\overrightarrow{DC}, biết AB = AD =
2,CD = 4.

    Hình vẽ minh họa

    Dựng hình bình hành ADBM ta có: \overrightarrow{DA} + \overrightarrow{DB} =
\overrightarrow{DM}

    Do BM//DA nên BM\bot DC tại H,

    Tứ giác ADBH là hình vuông nên BH =
2, ta cũng tính được MH =
4.

    Dựng hình bình hành DMNC ta có: \overrightarrow{DA} + \overrightarrow{DB} +
\overrightarrow{DC} = \overrightarrow{DN}.

    Gọi K là hình chiếu vuông góc của N lên DC. Ta chứng minh được HMNK là hình vuông.

    \Rightarrow HK = NK = 4,DK =
6

    Ta có: DN = \sqrt{DK^{2} + KN^{2}} =
2\sqrt{13}

  • Câu 5: Thông hiểu

    Cho tam giác ABC và điểm M thỏa mãn \overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}. Xác định vị trí điểm M.

     Điểm M là trọng tâm tam giác ABC khi và chỉ khi \overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}.

  • Câu 6: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Khi đó:

    Chọn: Điều kiện cần và đủ để A,\ B,\
C thẳng hàng là \overrightarrow{AB} cùng phương với \overrightarrow{AC}.

  • Câu 7: Nhận biết

    Cho ba điểm phân biệt A,\ \ B,\ \ C. Mệnh đề nào sau đây đúng?

    Đáp án AB + BC = AC. chỉ đúng khi ba điểmA,\ \ B,\ \ C thẳng hàng và B nằm giữaA,\ \ C.

    Đáp án \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}. đúng theo quy tắc ba điểm. Chọn đáp án này.

  • Câu 8: Vận dụng cao

    Cho tam giác đều ABC cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức \left| 2\overrightarrow{MA} + 3\overrightarrow{MB}
+ 4\overrightarrow{MC} ight| = \left| \overrightarrow{MB} -
\overrightarrow{MA} ight| là đường tròn cố định có bán kính R. Tính bán kính R theo a.

    Gọi G là trọng tâm của tam giác ABC. Ta có

    2\overrightarrow{MA} +3\overrightarrow{MB} + 4\overrightarrow{MC}= 2\left(\overrightarrow{MI} + \overrightarrow{IA} ight) + 3\left(\overrightarrow{MI} + \overrightarrow{IB} ight) + 4\left(\overrightarrow{MI} + \overrightarrow{IC} ight).

    Chọn điểm I sao cho 2\overrightarrow{IA} + 3\overrightarrow{IB} +4\overrightarrow{IC} = \overrightarrow{0}\Leftrightarrow 3\left(\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} ight)+ \overrightarrow{IC} - \overrightarrow{IA} =\overrightarrow{0}.

    G là trọng tâm của tam giác ABCnên \overrightarrow{IA} + \overrightarrow{IB} +
\overrightarrow{IC} = 3\ \overrightarrow{IG}.

    Khi đó \overrightarrow{IG} +\overrightarrow{IC} - \overrightarrow{IA} = \overrightarrow{0}\Leftrightarrow 9\ \overrightarrow{IG} + \overrightarrow{AI} +\overrightarrow{IC} = \overrightarrow{0}\Leftrightarrow \overrightarrow{IG} = \overrightarrow{CA}. (*)

    Do đó \left| 2\overrightarrow{MA} +3\overrightarrow{MB} + 4\overrightarrow{MC} ight| = \left|\overrightarrow{MB} - \overrightarrow{MA} ight|\Leftrightarrow \left|9\overrightarrow{MI} + 2\overrightarrow{IA} + 3\overrightarrow{IB} +4\overrightarrow{IC} ight| = \left| \overrightarrow{AB} ight|\Leftrightarrow 9MI = AB.

    I là điểm cố định thỏa mãn (*) nên tập hợp các điểm M cần tìm là đường tròn tâm I, bán kính R
= \frac{AB}{9} = \frac{a}{9}.

  • Câu 9: Thông hiểu

    Mệnh đề nào sau đây đúng?

    Ta có: \overrightarrow{u} = (2; - 1) = -( - 2;1) = - \overrightarrow{v}\ \ \ \ \  \Rightarrow \ \\overrightarrow{u}\overrightarrow{v} đối nhau.

  • Câu 10: Thông hiểu

    Cho tam giác ABC có I là trung điểm của AB. Điểm M thỏa mãn \overrightarrow{MA} +
\overrightarrow{MB} + 3\overrightarrow{MC} =
\overrightarrow{0}. Chọn mệnh đề đúng.

    \overrightarrow{MA} + \overrightarrow{MB}+ 3\overrightarrow{MC} = \overrightarrow{0}\Leftrightarrow2\overrightarrow{MI} = - 3\overrightarrow{MC}\Leftrightarrow2\overrightarrow{MI} = 3\overrightarrow{IM} - 3\overrightarrow{IC}\Leftrightarrow 5\overrightarrow{MI} =3\overrightarrow{CI}.

  • Câu 11: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai vecto \overrightarrow{u} = (1;3)\overrightarrow{v} = ( - 2;2). Tính \overrightarrow{u}.\overrightarrow{v}?

    Theo bài ra ta có:

    \overrightarrow{u} = (1;3)\overrightarrow{v} = ( - 2;2)

    Khi đó: \overrightarrow{u}.\overrightarrow{v} = 1.( - 2) +3.2 = 4

  • Câu 12: Vận dụng

    Gọi AN,\
CM là các trung tuyến của tam giác ABC. Đẳng thức nào sau đây đúng?

    Ta có \overrightarrow{AN} =
\frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{AC} ight) =
\frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC}

    \overrightarrow{CM} =
\overrightarrow{CA} + \overrightarrow{AM} \Rightarrow
\frac{1}{2}\overrightarrow{CM} = \frac{1}{2}\overrightarrow{CA} +
\frac{1}{2}\overrightarrow{AM}

    Suy ra

    \overrightarrow{AN} +\frac{1}{2}\overrightarrow{CM} =\frac{1}{2}\overrightarrow{AB} +\frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{CA} +\frac{1}{2}\overrightarrow{AM}= \frac{1}{2}\overrightarrow{AB} +\frac{1}{2}\overrightarrow{AC} - \frac{1}{2}\overrightarrow{AC} +\frac{1}{2} \cdot \frac{1}{2}\overrightarrow{AB} =\frac{3}{4}\overrightarrow{AB}

    Do đó \overrightarrow{AB} =
\frac{4}{3}\overrightarrow{AN} +
\frac{2}{3}\overrightarrow{CM}.

  • Câu 13: Nhận biết

    Cho tam giác đều ABC có đường cao AH. Tính (\overrightarrow{AH},\overrightarrow{BA}).

     Lấy D sao cho \overrightarrow {BD}=\overrightarrow {AH}.

    Ta có: (\overrightarrow{AH},\overrightarrow{BA}) =(\overrightarrow{BD},\overrightarrow{BA})=90^{\circ} +60^{\circ}= 150^{\circ}.

  • Câu 14: Vận dụng

    Cho A(1;2),\ B( -
2;6). Điểm M trên trục Oy sao cho ba điểm A,B,M thẳng hàng thì tọa độ điểm M là:

    Ta có: M trên trục Oy \Rightarrow M(0;y).

    Ba điểm A,B,M thẳng hàng khi \overrightarrow{AB} cùng phương với \overrightarrow{AM}.

    Ta có \overrightarrow{AB} = ( - 3;4),\ \
\overrightarrow{AM} = ( - 1;y - 2). Do đó, \overrightarrow{AB} cùng phương với \overrightarrow{AM} \Leftrightarrow \frac{- 1}{-
3} = \frac{y - 2}{4} \Rightarrow y = \frac{10}{3}. Vậy M\left( 0;\frac{10}{3} ight).Đáp án là M\left( 0;\frac{10}{3} ight)

  • Câu 15: Thông hiểu

    Cho bốn điểm phân biệt A,\ B,\ C,\ D và không cùng nằm trên một đường thẳng. Điều kiện nào trong các đáp án A, B, C, D sau đây là điều kiện cần và đủ để \overrightarrow{AB} =
\overrightarrow{CD}?

    Ta có:

    \overrightarrow{AB} = \overrightarrow{CD}
\Rightarrow \left\{ \begin{matrix}
AB \parallel CD \\
AB = CD \\
\end{matrix} ight.\  \Rightarrow ABDC là hình bình hành.

    Mặt khác, ABDC là hình bình hành \Rightarrow \left\{ \begin{matrix}
AB \parallel CD \\
AB = CD \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{AB} =
\overrightarrow{CD}.

    Do đó, điều kiện cần và đủ để \overrightarrow{AB} = \overrightarrow{CD}ABDC là hình bình hành.

  • Câu 16: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là

    Ta có tính chất: Điều kiện cần và đủ để ba điểm A,\ B,\ C phân biệt thẳng hàng là \exists k \in R:\overrightarrow{AB} =
k\overrightarrow{AC}.

  • Câu 17: Thông hiểu

    Trong mặt phẳng Oxy, cho hai điểm A(1; 2) và B(–2; 3). Gọi B’ là điểm đối xứng của B qua A. Tọa độ điểm B’ là:

     Vì B' đối xứng với B qua A => A là trung điểm của BB'

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_B} + {x_{B'}} = 2{x_A}} \\   {{y_B} + {y_{B'}} = 2{x_A}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_{B'}} = 2{x_A} - {x_B}} \\   {{y_{B'}} = 2{x_A} - {y_B}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_{B'}} = 4} \\   {{y_{B'}} = 1} \end{array}} ight. \Leftrightarrow B'\left( {4;1} ight) \hfill \\ \end{matrix}

  • Câu 18: Nhận biết

    Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:

     Ta có: \overrightarrow{MB}-\overrightarrow{MA}=\overrightarrow{MC}-\overrightarrow{MD}  \Leftrightarrow \overrightarrow {AB}= \overrightarrow {DC} (Đúng).

  • Câu 19: Thông hiểu

    Cho tam giác ABCI,\
D lần lượt là trung điểm AB,\
CI, điểm N thuộc cạnh BC sao cho BN = 2NC. Đẳng thức nào sau đây đúng?

    Gọi K là trung điểm BN.

    Xét \Delta CKI ta có

    \left\{ \begin{matrix}
DN//IK \\
DN = \frac{1}{2}IK \\
\end{matrix} ight.\ \ \ \  \Rightarrow \ \ \overrightarrow{DN} =
\frac{1}{2}\overrightarrow{IK} (1)

    Xét \Delta ABN ta có

    \left\{ \begin{matrix}
AN//IK \\
AN = \frac{1}{2}IK \\
\end{matrix} ight.\ \ \ \  \Rightarrow \ \ \overrightarrow{AN} =
2\overrightarrow{IK} (2)

    Từ (1) và (2) suy ra \
\overrightarrow{AN} = 2\overrightarrow{IK} = 2.2\ \ \overrightarrow{DN}
= 4\ \ \overrightarrow{DN}.

  • Câu 20: Thông hiểu

    Tổng \overrightarrow{MN} + \overrightarrow{PQ} +
\overrightarrow{RN} + \overrightarrow{NP} + \overrightarrow{QR} bằng vectơ nào sau đây?

    Ta có

    \overrightarrow{MN} + \overrightarrow{PQ}
+ \overrightarrow{RN} + \overrightarrow{NP} +
\overrightarrow{QR}

    = \overrightarrow{MN} +
\overrightarrow{NP} + \overrightarrow{PQ} + \overrightarrow{QR} +
\overrightarrow{RN}

    = \overrightarrow{MN}.

  • Câu 21: Thông hiểu

    Cho tam giác ABC với M,\ \
N,\ \ P lần lượt là trung điểm của. Khẳng định nào sau đây sai?

    Xét các đáp án:

    Đáp án \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CA} =
\overrightarrow{0}.. Ta có \overrightarrow{AB} + \overrightarrow{BC} +
\overrightarrow{CA} = \overrightarrow{AA} =
\overrightarrow{0}.

    Đáp án \overrightarrow{AP} +
\overrightarrow{BM} + \overrightarrow{CN} =
\overrightarrow{0}.. Ta có \overrightarrow{AP} + \overrightarrow{BM} +
\overrightarrow{CN} = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{BC} +
\frac{1}{2}\overrightarrow{CA}

    = \frac{1}{2}\left( \overrightarrow{AB}
+ \overrightarrow{BC} + \overrightarrow{CA} ight) =
\frac{1}{2}\overrightarrow{AA} = \overrightarrow{0}.

    Đáp án \overrightarrow{MN} +
\overrightarrow{NP} + \overrightarrow{PM} =
\overrightarrow{0}.. Ta có \overrightarrow{MN} + \overrightarrow{NP} +
\overrightarrow{PM} = \overrightarrow{MM} =
\overrightarrow{0}.

    Đáp án \overrightarrow{PB} +
\overrightarrow{MC} = \overrightarrow{MP}.. Ta có \overrightarrow{PB} + \overrightarrow{MC} =
\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} =
\frac{1}{2}\overrightarrow{AC} = \overrightarrow{AN} =
\overrightarrow{PM} = - \overrightarrow{MP}. Chọn đáp án này.

  • Câu 22: Nhận biết

    Hình bình hành ABCD tâm O. Khẳng định sai là:

    Ta có: \overrightarrow{OA} -
\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{BO} =
\overrightarrow{BA}.

    Chọn đáp án sai \overrightarrow{OA} -
\overrightarrow{OD} = \overrightarrow{BC}.

  • Câu 23: Nhận biết

    Trong mặt phẳng tọa độ Oxy cho 2 điểm M(2; 1) và N(1; 2). Tọa độ vectơ \overrightarrow{MN}

    Ta có: 

    \overrightarrow {MN}  = \left( {{x_N} - {x_M};{y_M} - {y_N}} ight) = \left( { - 1;1} ight)

  • Câu 24: Thông hiểu

    Cho tam giác ABCG là trọng tâm và I là trung điểm của BC. Đẳng thức nào sau đây đúng?

    I là trung điểm của BC suy ra \overrightarrow{IB} + \overrightarrow{IC} =
\overrightarrow{0}.

    Ta có \left\{ \begin{matrix}
\overrightarrow{GB} = \overrightarrow{GI} + \overrightarrow{IB} \\
\overrightarrow{GC} = \overrightarrow{GI} + \overrightarrow{IC} \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{GB} +
\overrightarrow{GC} =
\underset{\overrightarrow{0}}{\overset{\overrightarrow{IB} +
\overrightarrow{IC}}{︸}} + 2\ \overrightarrow{GI} = 2\
\overrightarrow{GI}.

  • Câu 25: Vận dụng cao

    Chp parabol như hình vẽ:

    Biết G là đỉnh parabol cách AB một khoảng bằng 6, CD = 4;DE = \frac{10}{3}. Tính khoảng cách giữa hai điểm A,B?

    Xét hệ tọa độ Oxy với O là trung điểm AB, tia Ox là tia OB.

    Khi đó tọa độ E\left( 2;\frac{10}{3}
ight),G(0;6)

    Gọi biểu thức hàm số có đồ thị là hình parabol là y = ax^{2} + bx + c

    Có G là đỉnh parabol suy ra c = 6;b =
0

    E\left( 2;\frac{10}{3} ight) \in
(P) suy ra \frac{10}{3} = 4a + 6
\Rightarrow a = - \frac{2}{3}

    Biểu thức hàm số là y = -
\frac{2}{3}x^{2} + 6

    Hoành độ giao điểm với trục hoành: -
\frac{2}{3}x^{2} + 6 = 0 \Leftrightarrow x = \pm 3

    Vậy khoảng cách giữa hai điểm A và B là 6.

  • Câu 26: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Khẳng định nào sau đây đúng?

    Xét đáp án \overrightarrow{MP} +
\overrightarrow{NM} = \overrightarrow{NP}. Ta có \overrightarrow{MP} + \overrightarrow{NM} =
\overrightarrow{NM} + \overrightarrow{MP} =
\overrightarrow{NP}. Vậy đáp án này đúng.

  • Câu 27: Thông hiểu

    Trong hệ tọa độ Oxy, cho ba điểm A(1;3),\ B( - 1;2),\ C( - 2;1). Tìm tọa độ của vectơ \overrightarrow{AB} -
\overrightarrow{AC}.

    Ta có \left\{ \begin{matrix}\overrightarrow{AB} = ( - 2; - 1) \\\overrightarrow{AC} = ( - 3; - 2) \\\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{AB} -\overrightarrow{AC} = \left( - 2 - ( - 3); - 1 - ( - 2) ight) =(1;1).

    Cách khác: \overrightarrow{AB} -
\overrightarrow{AC} = \overrightarrow{CB} = (1;1).

  • Câu 28: Nhận biết

    Trong mặt phẳng tọa độ Oxy cho \overrightarrow{a} = ( - 1;1),\overrightarrow{b} =
(4; - 2). Xác định tọa độ vecto \overrightarrow{v} = \overrightarrow{a} +
2\overrightarrow{b}?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{a} = ( - 1;1) \Rightarrow 2\overrightarrow{a} = ( - 2;2)
\\
\overrightarrow{b} = (4; - 2) \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{v} =
\overrightarrow{a} + 2\overrightarrow{b} = \left( - 2 + 4;2 + ( - 2)
ight) = (2;0)

  • Câu 29: Nhận biết

    Cho \overrightarrow{a} e\overrightarrow{0} và điểm O. Gọi M, N lần lượt là hai điểm thỏa mãn \overrightarrow{OM}=3\overrightarrow{a}\overrightarrow{ON}=-4\overrightarrow{a}. Tìm \overrightarrow{MN}.

    Ta có:

    \begin{matrix}  \overrightarrow {MN}  = \overrightarrow {MO}  + \overrightarrow {ON}  \hfill \\   \Rightarrow \overrightarrow {MN}  =  - \overrightarrow {OM}  + \overrightarrow {ON}  \hfill \\   \Rightarrow \overrightarrow {MN}  =  - 3\overrightarrow a  + \left( { - 4\overrightarrow a } ight) \hfill \\   \Rightarrow \overrightarrow {MN}  =  - 3\overrightarrow a  - 4\overrightarrow a  = 7\overrightarrow a  \hfill \\ \end{matrix}

  • Câu 30: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{u} = (3;4)\overrightarrow{v} = ( - \ 8;6). Khẳng định nào sau đây đúng?

    \overrightarrow{u} = (3;4) \Rightarrow
\left| \overrightarrow{u} ight| = \sqrt{3^{2} + 4^{2}} = 5\overrightarrow{v} = ( - \ 8;6) \Rightarrow
\left| \overrightarrow{v} ight| = \sqrt{( - 8)^{2} + 6^{2}} =
10 nên đáp án \left|
\overrightarrow{u} ight| = \left| \overrightarrow{v} ight| sai.

    \frac{3}{- 8} eq
\frac{4}{6} nên đáp án M\left( 0; -
\frac{1}{2} ight).\overrightarrow{v} cùng phương sai.

    \overrightarrow{u}.\overrightarrow{v}
= 3.( - 8) + 4.6 = 0 \Rightarrow
\overrightarrow{u}\bot\overrightarrow{v} nên đáp án \overrightarrow{u} vuông góc với \overrightarrow{v} đúng.

  • Câu 31: Thông hiểu

    Tam giác ABC vuông ở A và có góc \widehat{B} = 50^{o}. Hệ thức nào sau đây là sai?

    \left( \overrightarrow{AB},\
\overrightarrow{BC} ight) = 180^{0} - \left( \overrightarrow{AB},\
\overrightarrow{CB} ight) = 130^{o} nên loại \left( \overrightarrow{AB},\ \overrightarrow{BC}
ight) = 130^{o}.

    \left( \overrightarrow{BC},\
\overrightarrow{AC} ight) = \left( \overrightarrow{CB},\
\overrightarrow{CA} ight) = 40^{o} nên loại \left( \overrightarrow{BC},\ \overrightarrow{AC}
ight) = 40^{o}.

    \left( \overrightarrow{AB},\
\overrightarrow{CB} ight) = \left( \overrightarrow{BA},\
\overrightarrow{BC} ight) = 50^{o} nên loại \left( \overrightarrow{AB},\ \overrightarrow{CB}
ight) = 50^{o}.

    \left( \overrightarrow{AC},\
\overrightarrow{CB} ight) = 180^{0} - \left( \overrightarrow{CA},\
\overrightarrow{CB} ight) = 140^{o}nên chọn \left( \overrightarrow{AC},\ \overrightarrow{CB}
ight) = 120^{o}.

  • Câu 32: Vận dụng

    Cho tam giác ABC và điểm M thỏa mãn điều kiện \overrightarrow{MA} - \overrightarrow{MB} +
\overrightarrow{MC} = \overrightarrow{0}. Mệnh đề nào sau đây sai?

    Ta có \overrightarrow{MA} -
\overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}
\Leftrightarrow \overrightarrow{BA} + \overrightarrow{MC} =
\overrightarrow{0} \Leftrightarrow \overrightarrow{MC} =
\overrightarrow{AB}

    \Rightarrow MABC là hình bình hành \Rightarrow \overrightarrow{MA} =
\overrightarrow{CB}.

    Do đó \overrightarrow{MA} =
\overrightarrow{BC} sai.

  • Câu 33: Nhận biết

    Tích vô hướng của hai vecto \overrightarrow{a} = (2; - 5)\overrightarrow{b} = ( - 5;2) là:

    Ta có:

    \overrightarrow{a}.\overrightarrow{b} =
2.( - 5) + ( - 5).2 = - 20

  • Câu 34: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{a} = ( - 2; - 1)\overrightarrow{b} = (4; - 3). Tính cosin của góc giữa hai vectơ \overrightarrow{a}\overrightarrow{b}.

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{- 5}{\sqrt{5}.5} =
\frac{- \sqrt{5}}{5}.

  • Câu 35: Nhận biết

    Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?

    Áp dụng quy tắc hình bình hành tại điểm B ta có:

    \overrightarrow{BC}+\overrightarrow{BA}=\overrightarrow{BD}

  • Câu 36: Thông hiểu

    Cho bốn điểm phân biệt A,\ B,\ C,\ D thỏa mãn \overrightarrow{AB} =
\overrightarrow{CD}. Khẳng định nào sau đây sai?

    Phải suy ra ABDC là hình bình hành (nếu A,\ B,\ C,\ D không thẳng hàng) hoặc bốn điểm A,\ B,\ C,\ D thẳng hàng.

    Đáp án sai là ABCD là hình bình hành.

  • Câu 37: Nhận biết

    Trong mặt phẳng tọa độ Oxy, tọa độ trung điểm M của đoạn thẳng AB với A(3; -
4),B(7;2) là:

    Tọa độ trung điểm M của AB là:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} \\y_{M} = \dfrac{y_{A} + y_{B}}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{M} = \dfrac{3 + 7}{2} = 5 \\y_{M} = \dfrac{- 4 + 2}{2} = - 1 \\\end{matrix} ight.

    \Rightarrow M(5; - 1)

    Vậy tọa độ trung điểm M của AB là M(5; -
1).

  • Câu 38: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho ba vectơ \overrightarrow{u} = (4;1),\overrightarrow{v} =
(1;4)\overrightarrow{a} =
\overrightarrow{u} + m.\overrightarrow{v} với m\mathbb{\in R}. Tìm m để \overrightarrow{a} vuông góc với trục hoành.

    Trục hoành có vtcp \overrightarrow{i}(1;0).

    m = 4 \Rightarrow \overrightarrow{a} =
\overrightarrow{u} + 4\overrightarrow{v} = (8;17). Do đó: \overrightarrow{a}.\overrightarrow{i} = 8.1 + 17.0
eq 0 nên đáp án m = 4 sai.

    m = - 4 \Rightarrow \overrightarrow{a} =
\overrightarrow{u} - 4\overrightarrow{v} = (0; - 15). Do đó: \overrightarrow{a}.\overrightarrow{i} = 0.1
+ ( - 15).0 = 0 nên đáp án m = -
4 đúng.

    m = - 2 \Rightarrow \overrightarrow{a} =
\overrightarrow{u} - 2\overrightarrow{v} = (2; - 7). Do đó: \overrightarrow{a}.\overrightarrow{i} = 2.1
+ ( - 7).0 eq 0 nên đáp án m = -
2 sai.

    m = 2 \Rightarrow \overrightarrow{a} =
\overrightarrow{u} + 2\overrightarrow{v} = (6;9). Do đó: \overrightarrow{a}.\overrightarrow{i} = 6.1 + 9.0
eq 0 nên đáp án m = 2 sai.

  • Câu 39: Nhận biết

    Cho tam giác ABC đều cạnh 2a. Đẳng thức nào sau đây là đúng?

    Theo bài ra ta có: 

    Tam giác ABC đều cạnh 2a => AB = BC = AC = 2a

    => |\overrightarrow{AB}|=AB=2a

  • Câu 40: Thông hiểu

    Cho hình thang ABCD\ \ (AB//CD),\ \ CD = 2AB, M là trung điểm của AB. Có bao nhiêu vectơ khác vectơ – không cùng phương với \overrightarrow{AM}?

    Vì ABCD là hình thang nên ta có các vectơ thỏa mãn yêu cầu là\overrightarrow{MA},\ \ \overrightarrow{BM},\ \
\overrightarrow{MB},\ \ \overrightarrow{AB},\ \ \overrightarrow{BA},\ \
\overrightarrow{CD},\ \ \overrightarrow{DC}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 5 Vectơ Sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo