Cho tam giác đều
có cạnh bằng
Tính tích vô hướng ![]()
.
Cho tam giác đều
có cạnh bằng
Tính tích vô hướng ![]()
.
Cho
Tìm
biết
.
Ta có
Để
Trong mặt phẳng tọa độ
cho hai vectơ
và
. Khẳng định nào sau đây đúng?
Vì và
nên đáp án
sai.
Vì nên đáp án
và
cùng phương sai.
Vì nên đáp án
vuông góc với
đúng.
Cho hình bình hành
có
là giao điểm của hai đường chéo. Đẳng thức nào sau đây sai?
Xét các đáp án:
Đáp án Ta có
Đáp án Ta có
(quy tắc hình bình hành).
Đáp án Ta có
.
Đáp án Do
Chọn đáp án này.
Với
(khác vectơ - không) thì độ dài đoạn
được gọi là
Với (khác vectơ - không) thì độ dài đoạn
được gọi là: Độ dài của
Vectơ có điểm đầu là
, điểm cuối là
được kí hiệu là
Vectơ có điểm đầu là , điểm cuối là
được kí hiệu là
Cho tam giác
đều cạnh
Mệnh đề nào sau đây đúng?
Độ dài các cạnh của tam giác là thì độ dài các vectơ
.
Trong mặt phẳng tọa độ
cho hai vectơ
và
. Tính cosin của góc giữa hai vectơ
và ![]()
Ta có: .
Trong mặt phẳng tọa độ
, cho hai vecto
và
. Tính
?
Theo bài ra ta có:
và
Khi đó:
Cho tam giác ABC đều cạnh 2a. Đẳng thức nào sau đây là đúng?
Theo bài ra ta có:
Tam giác ABC đều cạnh 2a => AB = BC = AC = 2a
=>
Cho tam giác đều
có cạnh
. Tính tích vô hướng
.
Ta có: .
Cho tam giác ABC có điểm O thỏa mãn
. Khẳng định nào sau đây là đúng?
Ta có: .

Vẽ hình bình hành , suy ra
. Mà
. Suy ra
. Do đó
là hình chữ nhật. Do đó tam giác
vuông
.
Cho 5 điểm M, N, P, Q, R. Tính tổng ![]()
Ta có:
Trên đường thẳng MN lấy điểm P sao cho
. Điểm P được xác định đúng trong hình vẽ nào sau đây:

Vì nên
nằm giữa
và
, đồng thời
.
Cho tam giác
với
là trung điểm
Mệnh đề nào sau đây đúng?
Xét đáp án Ta có
(theo quy tắc ba điểm).
Chọn đáp án này.
Gọi
là giao điểm của hai đường chéo hình chữ nhật
. Mệnh đề nào sau đây đúng?
Mệnh đề đúng là Do độ dài hai đường chéo hình chữ nhật bằng nhau.
Cho ba điểm
phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là
Ta có tính chất: Điều kiện cần và đủ để ba điểm phân biệt thẳng hàng là
.
Tìm tọa độ vecto
biết
?
Ta có:
Cho hình vuông
cạnh
. Tính
.

Ta có: . (hình vuông cạnh
thì đường chéo bằng
).
Trong mặt phẳng Oxy, cho
và
. Kết luận nào sau đây sai?
Ta có:
Vậy kết luận sai là:
Cho tam giác
có
lần lượt là trung điểm
, điểm
thuộc cạnh
sao cho
. Đẳng thức nào sau đây đúng?
Gọi K là trung điểm BN.
Xét ta có
(1)
Xét ta có
(2)
Từ (1) và (2) suy ra .
Cho hình vuông
. Khẳng định nào sau đậy đúng?
Ta có tứ giác là hình vuông nên
hay
nên phương án
đúng.
Chp parabol như hình vẽ:

Biết G là đỉnh parabol cách AB một khoảng bằng 6,
. Tính khoảng cách giữa hai điểm
?
Xét hệ tọa độ Oxy với O là trung điểm AB, tia Ox là tia OB.
Khi đó tọa độ
Gọi biểu thức hàm số có đồ thị là hình parabol là
Có G là đỉnh parabol suy ra
Có suy ra
Biểu thức hàm số là
Hoành độ giao điểm với trục hoành:
Vậy khoảng cách giữa hai điểm A và B là .
Gọi
lần lượt là trung điểm của các cạnh
của tam giác đều
. Đẳng thức nào sau đây đúng?
Ta có là đường trung bình của tam giác
.
Do đó
Cho hai điểm
và
phân biệt. Điều kiện để
là trung điểm
là:
Điều kiện để là trung điểm
là:
Cho tam giác
có
là trọng tâm và
là trung điểm
Khẳng định nào sau đây sai?
Vì là trung điểm của
suy ra
Ta có
Cho
. Điểm
sao cho
là trung điểm
. Tìm tọa độ của điểm
.
Ta có: nên
.
là trung điểm
nên
Vậy .
Trong mặt phẳng tọa độ
, tọa độ vecto
là:
Ta có: .
Gọi
lần lượt là trung điểm của các cạnh
của tam giác đều
. Hỏi cặp vectơ nào sau đây cùng hướng?
Cặp và
là cặp vectơ cùng hướng.
Cho tam giác
điểm
thuộc cạnh
sao cho
và
là trung điểm của
Tính
theo
và ![]()
Vì là trung điểm
nên
Suy ra
Cho tứ giác
. Gọi
lần lượt là trung điểm của
. Trong các khẳng định sau, hãy tìm khẳng định sai?
Ta có là đường trung bình của tam giác
. Suy ra
hay
.
Chọn đáp án sai .
Cho hai điểm
phân biệt và cố định, với
là trung điểm của
Tập hợp các điểm
thỏa mãn đẳng thức
là
Chọn điểm thuộc đoạn
sao cho
Chọn điểm thuộc đoạn
sao cho
Ta có
Vì là hai điểm cố định nên từ đẳng thức
suy ra tập hợp các điểm
là trung trực của đoạn thẳng
Gọi
là trung điểm của
suy ra
cũng là trung điểm của
Vậy tập hợp các điểm thỏa mãn
là đường trung trực của đoạn thẳng
Trong mặt phẳng tọa độ
cho hai vectơ
và
. Tìm vectơ
biết
và
.
Gọi .
Ta có: và
Giải hệ phương trình: nên
Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác
biết rằng
?
Gọi M, N lần lượt là trung điểm của AB và BC.
I(x; y) là tâm đường tròn ngoại tiếp tam giác ABC khi và chỉ khi:
Trong mặt phẳng
, cho
và
. Khẳng định nào sau đây là sai?
Ta có: nên đáp án Tích vô hướng của hai vectơ đã cho là
đúng.
Ta có: nên đáp án Độ lớn của vectơ
là
đúng.
Ta có: nên đáp án Độ lớn của vectơ
là
đúng.
Đáp án sai là Góc giữa hai vectơ là .
Cho hình vuông
cạnh bằng
. Tính độ dài véctơ
.
Hình vẽ minh họa:
Cho hình vuông
tâm
cạnh a. Biết rằng tập hợp điểm
thỏa mãn
là một đường tròn. Tính bán kính của đường tròn.
Ta có:
Do
Vậy tập hợp các điểm là đường tròn tâm
, bán kính
.
Hãy chọn kết quả đúng khi phân tích vectơ
theo hai vectơ
và
của tam giác
với trung tuyến
.
Do là trung điểm của
nên ta có
.
Cho tam giác
có
thỏa mãn điều kiện
. Xác định vị trí điểm ![]()
Gọi là trọng tâm tam giác
.
Ta có .
Cho
Tìm tọa độ của vectơ ![]()
Ta có