Cho lục giác đều
tâm
Số các vectơ bằng
có điểm đầu và điểm cuối là các đỉnh của lục giác là:
Đó là các vectơ: .
Cho lục giác đều
tâm
Số các vectơ bằng
có điểm đầu và điểm cuối là các đỉnh của lục giác là:
Đó là các vectơ: .
Mệnh đề nào sau đây đúng?
Vì vectơ - không cùng phương với mọi vectơ.
Cho ba điểm phân biệt
Có bao nhiêu vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm
đã cho?
Các vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm đã cho là
.
Cho hình bình hành
Gọi
là trọng tâm của tam giác
Mệnh đề nào sau đây đúng?
Vì là trọng tâm của tam giác
nên
Do đó
Cho tam giác
có
,
,
.Tính
.
Ta có ,
suy ra
.
Trong mặt phẳng tọa độ
cho
. Xác định tọa độ trọng tâm
của tam giác
?
Vì H là trọng tâm tam giác OPQ nên ta có:
Vậy trọng tâm tam giác cần tìm là .
Cho tam giác
và đặt
Cặp vectơ nào sau đây cùng phương?
Dễ thấy hai vectơ
cùng phương.
Cho tam giác
đều cạnh
Mệnh đề nào sau đây đúng?
Độ dài các cạnh của tam giác là thì độ dài các vectơ
.
Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?
Ta có: ABCD là hình bình hành tâm O
=>
Tứ giác MNPQ là hình bình hành nếu:
Hình vẽ minh họa

Ta có MNPQ là hình bình hành nếu
Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:
Ta có: (Đúng).
Cho tam giác
với
là trung điểm
Mệnh đề nào sau đây đúng?
Xét đáp án Ta có
(theo quy tắc ba điểm).
Chọn đáp án này.
Cho tứ giác
Gọi
lần lượt là trung điểm của
Khẳng định nào sau đây sai?
Ta có (do cùng song song và bằng
).
Do đó là hình bình hành.
Do đó sai.
Trong mặt phẳng tọa độ
, tọa độ vecto
là:
Ta có: .
Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác
biết rằng
?
Gọi M, N lần lượt là trung điểm của AB và BC.
I(x; y) là tâm đường tròn ngoại tiếp tam giác ABC khi và chỉ khi:
Trong hệ tọa độ
cho
Tìm tọa độ của vectơ ![]()
Ta có
Trong hệ tọa độ
, cho hai điểm
Tìm tọa độ điểm
thuộc trục hoành sao cho
thẳng hàng.
Điểm Ta có
và
Để thẳng hàng
cùng phương với
Trong mặt phẳng tọa độ
, cho tọa độ
. Một điểm
bất kì. Tìm giá trị nhỏ nhất của biểu thức
?
Ta có:
Ta có:
Suy ra
Ta có:
(Với )
Lại có:
Mà
Dấu đẳng thức xảy ra khi M là giao điểm của EF và Ox =>
Vậy biểu thức T đạt giá trị nhỏ nhất là .
Trong mặt phẳng tọa độ
cho ba điểm
Tính tích vô hướng ![]()
Ta có: ,
Cho tứ giác
. Gọi
lần lượt là trung điểm của
. Trong các khẳng định sau, hãy tìm khẳng định sai?
Ta có là đường trung bình của tam giác
. Suy ra
hay
.
Chọn đáp án sai .
Cho tam giác
điểm
thuộc cạnh
sao cho
và
là trung điểm của
Tính
theo
và ![]()
Vì là trung điểm
nên
Suy ra
Gọi
lần lượt là trung điểm của các cạnh
của tam giác đều
. Đẳng thức nào sau đây đúng?
Ta có là đường trung bình của tam giác
.
Do đó
Cho tam giác ABC đều cạnh
. Đường thẳng
qua
và song song với
, lấy điểm
. Tính giá trị nhỏ nhất của
khi
di động trên
.
Hình vẽ minh họa
Kẻ hình bình hành ACBD. Gọi I là trung điểm BD, khi đó, ta có
Ta có:
Dấu “=” xảy ra khi và chỉ khi M trùng với điểm H là hình chiếu vuông góc của điểm I trên đường thẳng .
Cho ba điểm
phân biệt. Tập hợp những điểm
mà
là :
Ta có:
.
Tập hợp điểm là đường thẳng đi qua
và vuông góc với
.
Trong mặt phẳng Oxy, cho
. Tìm x để
và
cùng phương.
Để và
cùng phương thì
Cho hình vuông
cạnh
. Tính
.

Ta có: . (hình vuông cạnh
thì đường chéo bằng
).
Cho tam giác
cân tại
,
và
. Tính
.
Ta có .
Trong hệ tọa độ
cho tam giác
có
và trọng tâm
. Tìm tọa độ đỉnh
?
Gọi
Vì là trọng tâm tam giác
nên
Cho tam giác
vuông tại
có
. Tính ![]()
Ta có:
Cho tam giác ABC có điểm O thỏa mãn
. Khẳng định nào sau đây là đúng?
Ta có: .

Vẽ hình bình hành , suy ra
. Mà
. Suy ra
. Do đó
là hình chữ nhật. Do đó tam giác
vuông
.
Cho
và
là các vectơ khác
với
là vectơ đối của
. Khẳng định nào sau đây sai?
Ta có . Do đó,
và
cùng phương, cùng độ dài và ngược hướng nhau.
Chọn đáp án sai là: Hai vectơ chung điểm đầu.
Cho ba điểm
phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là
Ta có tính chất: Điều kiện cần và đủ để ba điểm phân biệt thẳng hàng là
.
Cho tam giác
, có bao nhiêu điểm
thỏa
?
Gọi là trọng tâm của tam giác
, ta có
.
Thay vào ta được : , hay tập hợp các điểm
là đường tròn có tâm là trọng tâm của tam giác
và bán kính bằng
.
Cho tam giác đều
có cạnh bằng
Tính tích vô hướng ![]()
.
Vectơ có điểm đầu là
, điểm cuối là
được kí hiệu là
Vectơ có điểm đầu là , điểm cuối là
được kí hiệu là
Cho hình bình hành
tâm
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
Ta có: .
Suy ra đúng.
Ta có: . Suy ra
đúng.
Ta có: . Suy ra
sai.
Ta có: đúng.
Cho tam giác
vuông tại
có
. Tính độ dài
.

Đặt .
Ta có: .
Áp dụng định lý Pytago trong tam giác :
.
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm BC, AC, AB. Xác định các vectơ
![]()
Ta có:
Cho hình vuông
tâm
cạnh a. Biết rằng tập hợp điểm
thỏa mãn
là một đường tròn. Tính bán kính của đường tròn.
Ta có:
Do
Vậy tập hợp các điểm là đường tròn tâm
, bán kính
.
Trong mặt phẳng tọa độ
, cho hai vecto
và
. Tính
?
Theo bài ra ta có:
và
Khi đó: