Gọi
lần lượt là trung điểm các cạnh
của tứ giác
. Đẳng thức nào sau đây sai?
Do M là trung điểm các cạnh AD nên
Do N lần lượt là trung điểm các cạnh BC nên . Nên
đúng.
Ta có
Vậy . Nên
đúng.
Mà . Nên
đúng.
Vậy sai.
Gọi
lần lượt là trung điểm các cạnh
của tứ giác
. Đẳng thức nào sau đây sai?
Do M là trung điểm các cạnh AD nên
Do N lần lượt là trung điểm các cạnh BC nên . Nên
đúng.
Ta có
Vậy . Nên
đúng.
Mà . Nên
đúng.
Vậy sai.
Cho ba điểm
phân biệt. Khi đó:
Chọn: Điều kiện cần và đủ để thẳng hàng là
cùng phương với
Cho
Tìm
biết
.
Ta có
Để
Cho hình thang
có đáy là
và
Gọi
và
lần lượt là trung điểm của
và
Khẳng định nào sau đây sai?
Vì lần lượt là trung điểm của
Dựa vào đáp án, ta có nhận xét sau:
đúng, vì
đúng, vì
đúng, vì
và
Suy ra
sai, vì theo phân tích ở đáp án trên. Chọn đáp án này.
Cho hình vuông
cạnh bằng
. Tính độ dài véctơ
.
Hình vẽ minh họa:
Cho 4 điểm
phân biệt. Khi đó
bằng
.
Trong mặt phẳng tọa độ
, cho tam giác
biết
. Tính độ dài đường trung tuyến kẻ từ đỉnh
của tam giác
?
Gọi M là trung điểm của BC
Khi đó tọa độ của M là:
Suy ra độ dài đường trung tuyến kẻ từ đỉnh A hay độ dài đoạn AM là:
Vậy độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC là .
Trong hệ tọa độ
cho tam giác
có
Tìm tọa độ trọng tâm
của tam giác ![]()
Ta có
Hãy chọn kết quả đúng khi phân tích vectơ
theo hai vectơ
và
của tam giác
với trung tuyến
.
Do là trung điểm của
nên ta có
.
Cho 4 điểm A, B, C, D phân biệt. Khi đó
bằng
Ta có:
Cho lục giác đều
có tâm
Đẳng thức nào sau đây sai?
Đẳng thức sai là
Cho tam giác
có trực tâm
. Gọi
là điểm đối xứng với
qua tâm
của đường tròn ngoại tiếp tam giác
. Khẳng định nào sau đây đúng?
Ta có và
(do góc
chắn nửa đường tròn).
Suy ra
Tương tự ta cũng có
Suy ra tứ giác là hình bình hành. Do đó
và
.
Cho tam giác
điểm
thuộc cạnh
sao cho
và
là trung điểm của
Tính
theo
và ![]()
Vì là trung điểm
nên
Suy ra
Cho hai vectơ
và
khác
. Xác định góc
giữa hai vectơ
và
khi ![]()
nên
.
Trong mặt phẳng tọa độ
, tọa độ vecto
là:
Ta có: .
Trong mặt phẳng tọa độ
cho ba điểm
Tính tích vô hướng ![]()
Ta có: ,
Trong các điều kiện dưới đây, chọn điều kiện cần và đủ để một điểm M nằm giữa hai điểm phân biệt A và B?
Điều kiện cần và đủ để một điểm M nằm giữa hai điểm phân biệt A và B là và
ngược hướng.
Cho
và một điểm C. Có bao nhiêu điểm D thỏa mãn ![]()
Có một và chỉ một điểm D thỏa mãn
Cho tam giác đều
có cạnh bằng
Tính tích vô hướng ![]()
.
Cho tam giác
đều cạnh
nội tiếp đường tròn
,
là một điểm thay đổi trên
. Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức
. Tính tổng
.
Hình vẽ minh họa
Dựng hình bình hành DBCA. Ta có:
Gọi E là giao điểm khác C của DC với (O). Áp dụng bất đẳng thức tam giác ta có:
Dấu bằng xảy ra khi và chỉ khi M trùng E và M trùng C.
Vậy
Cho tam giác ABC và điểm M thỏa mãn
Xác định vị trí điểm M.
Giả sử G là trọng tâm tam giác ABC, khi đó ta có:
=> M là trọng tâm của tam giác ABC.
Cho hai vectơ
và
đều khác vectơ
Tích vô hướng của
và
được xác định bằng công thức nào dưới đây?
Cho hai vectơ và
đều khác vectơ
Tích vô hướng của
và
là một số, kí hiệu là
được xác định bởi công thức sau:
.
Biết
và
. Câu nào sau đây đúng?
Ta có: .
Suy ra và
ngược hướng.
Trong mặt phẳng tọa độ
cho hai điểm
và
Tìm tọa độ điểm
thuộc trục tung sao cho tam giác
vuông tại ![]()
Vì .
Ta có:
Để tam giác ABC vuông tại A khi và chỉ khi
.
Cho bốn điểm phân biệt
thỏa mãn
. Khẳng định nào sau đây sai?
Phải suy ra là hình bình hành (nếu
không thẳng hàng) hoặc bốn điểm
thẳng hàng.
Đáp án sai là là hình bình hành.
Gọi
là tâm hình vuông
. Tính
.
Ta có .
Cho M, N, P, Q là bốn điểm tùy ý. Trong các hệ thức sau, hệ thức nào sai?
Hệ thức sai là:
Vì (tính chất giao hoán)
Cho tam giác
vuông tại
là trung điểm của
Khẳng định nào sau đây đúng?
Vì là trung điểm của
nên
Cho tam giác
có
. Gọi các vectơ
theo thư tự là các vectơ có giá vuông góc với các đường thẳng
và
. Tính độ dài vectơ
, biết
.
Hình vẽ minh họa:
Gọi D là điểm thuộc miền trong tam giác ABC, dựng các vectơ dựng hình chữ nhật DGHE ta có:
Ta lại có:
Mặt khác
=> Ba điểm H, D, F thẳng hàng.
Khi đó:
Cho hai lực
và
cùng tác động vào một vật đứng tại điểm
, biết hai lực
và
đều có cường độ là 50 (N) và chúng hợp với nhau một góc 60°. Hỏi vật đó phải chịu một lực tổng hợp có cường độ bằng bao nhiêu?

Đặt tương ứng với các vectơ
như hình vẽ.
Ta có: .
Theo đề bài, góc bằng 60 độ. Suy ra
.
. Suy ra
.
Trên mặt phẳng tọa độ Oxy, cho các điểm
. Chọn khẳng định đúng.
Biểu diễn các điểm trên hệ trục tọa độ như sau:

Ta có:
Vậy hai vectơ cùng phương, ngược hướng.
Trong mặt phẳng Oxy, cho
và
. Kết luận nào sau đây sai?
Ta có:
Vậy kết luận sai là:
Điều kiện nào dưới đây là điều kiện cần và đủ để điểm
là trung điểm của đoạn
.
Điểm là trung điểm của đoạn
khi và chỉ khi
và ngược hướng.
Vậy .
Trong mặt phẳng tọa độ
cho
. Xác định tọa độ vecto
?
Ta có:
Cho tam giác
có
là trọng tâm và
là trung điểm của
Đẳng thức nào sau đây đúng?
Vì là trung điểm của
suy ra
Ta có
Chp parabol như hình vẽ:

Biết G là đỉnh parabol cách AB một khoảng bằng 6,
. Tính khoảng cách giữa hai điểm
?
Xét hệ tọa độ Oxy với O là trung điểm AB, tia Ox là tia OB.
Khi đó tọa độ
Gọi biểu thức hàm số có đồ thị là hình parabol là
Có G là đỉnh parabol suy ra
Có suy ra
Biểu thức hàm số là
Hoành độ giao điểm với trục hoành:
Vậy khoảng cách giữa hai điểm A và B là .
Với
(khác vectơ - không) thì độ dài đoạn
được gọi là
Với (khác vectơ - không) thì độ dài đoạn
được gọi là: Độ dài của
Cho hình bình hành
tâm
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
Ta có: .
Suy ra đúng.
Ta có: . Suy ra
đúng.
Ta có: . Suy ra
sai.
Ta có: đúng.
Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:
Ta có: (2 vectơ đối nhau).
Trong hệ tọa độ
cho tam giác
có
lần lượt là trung điểm của các cạnh
. Tìm tọa độ đỉnh
?

Gọi .
Từ giả thiết, ta suy ra
Ta có và
Khi đó