Trong mặt phẳng tọa độ cho hai vectơ
và
. Tìm vectơ
biết
và
.
Gọi .
Ta có: và
Giải hệ phương trình: nên
Trong mặt phẳng tọa độ cho hai vectơ
và
. Tìm vectơ
biết
và
.
Gọi .
Ta có: và
Giải hệ phương trình: nên
Gọi là giao điểm của hai đường chéo của hình bình hành
. Đẳng thức nào sau đây sai?
Đẳng thức sai là
Cho ba điểm phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là
Ta có tính chất: Điều kiện cần và đủ để ba điểm phân biệt thẳng hàng là
.
Cho hai vecto . Xác định góc giữa hai vecto
và
khi
Ta có:
Trong mặt phẳng tọa độ , cho tọa độ các điểm
. Tìm tọa độ điểm
sao cho ba điểm
thẳng hàng?
Theo bài ra ta có:
Lại có:
Ba điểm thẳng hàng khi và chỉ khi
và
cùng phương hay
Vậy tọa độ điểm M là .
Trong hệ tọa độ cho tam giác
có
Gọi
lần lượt là trung điểm của
Tìm tọa độ vectơ
?
Ta có .
Cho tam giác ABC có AK, BM là trung tuyến. Cho . Tính
.
.
Trên mặt phẳng tọa độ Oxy, cho các điểm . Chọn khẳng định đúng.
Biểu diễn các điểm trên hệ trục tọa độ như sau:
Ta có:
Vậy hai vectơ cùng phương, ngược hướng.
Cho hình bình hành ABCD, điểm M thỏa mãn . Xác định vị trí điểm M.
Ta có: ABCD là hình bình hành
=>
Xét biểu thức:
Vậy M là trung điểm của AC.
Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?
Ta có: ABCD là hình bình hành tâm O
=>
Cho hình bình hành . Đẳng thức nào sau đây đúng?
Do là hình bình hành nên
Suy ra
Cho tam giác đều có đường cao
. Tính
.
Lấy sao cho
.
Ta có: .
Gọi là giao điểm của hai đường chéo hình chữ nhật
. Mệnh đề nào sau đây đúng?
Mệnh đề đúng là Do độ dài hai đường chéo hình chữ nhật bằng nhau.
Cho tứ giác Trên cạnh
lấy lần lượt các điểm
sao cho
và
Tính vectơ
theo hai vectơ
Ta có và
Suy ra
Theo bài ra, ta có và
Vậy
Cho Tìm tọa độ của
Ta có
Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó
Ta có: G là trọng tâm tam giác ABC =>
Trong mặt phẳng tọa độ Oxy, cho . Đâu là tọa độ của điểm A?
Ta có: O(0; 0)
Cho 4 điểm phân biệt. Khi đó
bằng
.
Điều kiện nào là điều kiện cần và đủ để là trung điểm của đoạn thẳng
?
Điều kiện cần và đủ để là trung điểm của đoạn thẳng
là
.
Trong mặt phẳng tọa độ cho hai vectơ
và
Tính tích vô hướng
Ta có: và
Vậy
Trong mặt phẳng tọa độ , cho hai vecto
và
. Tính
?
Theo bài ra ta có:
và
Khi đó:
Trong mặt phẳng tọa độ cho hai vectơ
và
. Tính cosin của góc giữa hai vectơ
và
Ta có: .
Cho hình vuông ABCD, tâm O, cạnh 4 cm. Điểm E, H lần lượt thuộc các cạnh BC, CD sao cho và
. Độ dài vecto
là:
Ta có:
Cho hình bình hành ABCD tâm O. Khi đó bằng:
Ta có:
Cho tứ giác . Có bao nhiêu vectơ khác vectơ - không có điểm đầu và cuối là các đỉnh của tứ giác?
Xét các vectơ có điểm là điểm đầu thì có các vectơ thỏa mãn bài toán là
có 3 vectơ.
Tương tự cho các điểm còn lại
Vậy chọn đáp án 12.
Cho ba điểm phân biệt. Khi đó:
Chọn: Điều kiện cần và đủ để thẳng hàng là
cùng phương với
Trong mặt phẳng tọa độ , cho tọa độ
. Một điểm
bất kì. Tìm giá trị nhỏ nhất của biểu thức
?
Ta có:
Ta có:
Suy ra
Ta có:
(Với )
Lại có:
Mà
Dấu đẳng thức xảy ra khi M là giao điểm của EF và Ox =>
Vậy biểu thức T đạt giá trị nhỏ nhất là .
Cho đường tròn và hai tiếp tuyến song song với nhau tiếp xúc với
tại hai điểm
và
Mệnh đề nào sau đây đúng?
Do hai tiếp tuyến song song và là hai tiếp điểm nên
là đường kính.
Do đó là trung điểm của
.
Suy ra .
Cho tam giác . Lấy các điểm
sao cho
và
. Xác định
để ba điểm
thẳng hàng.
Ta có:
Để ba điểm thẳng hàng thì
hay
Cho ba điểm phân biệt A, B, C. Khẳng định nào sau đây đúng?
Ta có:
=> Khẳng định sai
=> Khẳng định sai
=> Khẳng định đúng
=> Khẳng định sa
Cho ,
. Tính góc của
.
Ta có .
Cho tam giác ,
. Tính tọa độ điểm
là chân đường phân giác góc
. Biết
.
Theo tính chất đường phân giác: . Suy ra
.
Gọi . Suy ra
.
Ta có:
Vậy tọa độ điểm .
Khẳng định nào sau đây đúng?
Theo định nghĩa, hai véctơ bằng nhau phải thỏa mãn hai điều kiện:
+) Cùng hướng
+) Cùng độ dài.
Chọn đáp án: Hai vectơ được gọi là bằng nhau nếu chúng cùng hướng và cùng độ dài.
Cho tam giác có trực tâm
. Gọi
là điểm đối xứng với
qua tâm
của đường tròn ngoại tiếp tam giác
. Khẳng định nào sau đây đúng?
Ta có và
(do góc
chắn nửa đường tròn).
Suy ra
Tương tự ta cũng có
Suy ra tứ giác là hình bình hành. Do đó
và
.
Cho tam giác có
. Gọi các vectơ
theo thư tự là các vectơ có giá vuông góc với các đường thẳng
và
. Tính độ dài vectơ
, biết
.
Hình vẽ minh họa:
Gọi D là điểm thuộc miền trong tam giác ABC, dựng các vectơ dựng hình chữ nhật DGHE ta có:
Ta lại có:
Mặt khác
=> Ba điểm H, D, F thẳng hàng.
Khi đó:
Trong mặt phẳng tọa độ cho
. Xác định tọa độ trọng tâm
của tam giác
?
Vì H là trọng tâm tam giác OPQ nên ta có:
Vậy trọng tâm tam giác cần tìm là .
Cho tam giác ABC vuông tại A có AB = 3, BC = 5. Tính
Ta có:
Tam giác ABC vuông tại A ta có:
Trong hệ tọa độ cho ba điểm
Tìm tọa độ điểm
để tứ giác
là hình bình hành.
Gọi Ta có
Tứ giác là hình bình hành
Cho tam giác đều với đường cao
. Đẳng thức nào sau đây đúng?
Chọn vì
là trung điểm
và
cùng hướng.
Cho hình vuông cạnh bằng
. Tính độ dài véctơ
.
Hình vẽ minh họa: