Cho
Tìm tọa độ của vectơ ![]()
Ta có
Cho
Tìm tọa độ của vectơ ![]()
Ta có
Biết
và
. Câu nào sau đây đúng?
Ta có:
=> và
ngược hướng.
Cho hình vuông
, tính
.

Vẽ .
Ta có: .
Cho hình vuông
. Khẳng định nào sau đậy đúng?
Ta có tứ giác là hình vuông nên
hay
nên phương án
đúng.
Tính giá trị
biết rằng
?
Ta có:
Trong mặt phẳng tọa độ
cho
. Xác định tọa độ trọng tâm
của tam giác
?
Vì H là trọng tâm tam giác OPQ nên ta có:
Vậy trọng tâm tam giác cần tìm là .
Trong mặt phẳng tọa độ
cho ba điểm
Tính tích vô hướng ![]()
Ta có: ,
Trong mặt phẳng tọa độ
cho vectơ
. Vectơ nào sau đây không vuông góc với vectơ
?
Vì nên đáp án
đúng.
Vì nên đáp án
đúng.
Vì nên đáp án
sai.
Vì nên đáp án
đúng.
Trong mặt phẳng Oxy cho
,
,
. Khẳng định nào sau đây đúng.
Do nên loại đáp án
.
Do,
,
suy ra
không vuông góc
nên loại đáp án
.
Ta có ,
,
, suy ra
,
. Do đó tam giác
vuông cân tại
.
Cho hình bình hành
Tính
theo
và ![]()
Vì là hình bình hành nên
Ta có
Cho ba điểm phân biệt
Mệnh đề nào sau đây đúng?
Đáp án chỉ đúng khi ba điểm
thẳng hàng và
nằm giữa
.
Đáp án đúng theo quy tắc ba điểm. Chọn đáp án này.
Cho hai vectơ
và
không cùng phương. Hai vectơ nào sau đây cùng phương?
Ta có nên chọn đáp án
và
.
Cho tam giác
có trọng tâm
và trung tuyến
. Khẳng định nào sau đây là sai.
Ta có
Mặt khác và
ngược hướng
.
Cho ba điểm phân biệt
Có bao nhiêu vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm
đã cho?
Các vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm đã cho là
.
Cho hình chữ nhật
Khẳng định nào sau đây đúng?
Ta có
Mà
Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:
Ta có: (2 vectơ đối nhau).
Trong hệ tọa độ
cho
Khẳng định nào sau đây đúng?
Ta có không cùng phương.
Cho hình vuông
cạnh
. Gọi
là trung điểm của
, lấy các điểm
lần lượt là các điểm thay đổi trên các cạnh
sao cho
. Tìm giá trị nhỏ nhất của biểu thức
.
Hình vẽ minh họa

Đặt
Khi đó
Dấu bằng xảy ra khi và chỉ khi hay P, Q là trung điểm của BC, DA
Ta có:
Khi P ≡ P∗, R ≡ R∗, Q thay đổi trên AC, H sẽ thay đổi trên đoạn thẳng DK sao cho tam giác DCK vuông cân tại C.
Ta lại có:
Trên mặt phẳng tọa độ Oxy, cho các điểm
. Chọn khẳng định đúng.
Biểu diễn các điểm trên hệ trục tọa độ như sau:

Ta có:
Vậy hai vectơ cùng phương, ngược hướng.
Cho ba vectơ
Giá trị của
để
là
Ta có
Theo đề bài:
Cho tam giác
và điểm
thỏa mãn điều kiện
. Mệnh đề nào sau đây sai?
Ta có
là hình bình hành
Do đó sai.
Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?
Áp dụng quy tắc hình bình hành tại điểm B ta có:
Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?

Ta có: (Sai).
Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?
Ta có: ABCD là hình bình hành tâm O
=>
Cho tam giác
. Tập hợp các điểm
thỏa mãn
là:
Vì , mà
cố định nên suy ra tập hợp
là đường thẳng đi qua
và vuông góc với
.
Gọi
là các trung tuyến của tam giác
. Đẳng thức nào sau đây đúng?
Ta có
Suy ra
Do đó .
Trong mặt phẳng tọa độ
, cho tọa độ
. Một điểm
bất kì. Tìm giá trị nhỏ nhất của biểu thức
?
Ta có:
Ta có:
Suy ra
Ta có:
(Với )
Lại có:
Mà
Dấu đẳng thức xảy ra khi M là giao điểm của EF và Ox =>
Vậy biểu thức T đạt giá trị nhỏ nhất là .
Cho hai lực
và
có cùng điểm đặt O và vuông góc với nhau. Cường độ của hai lực
và
lần lượt là 80N và 60N. Cường độ tổng hợp lực của hai lực đó là:

Ta có: .
Cho hình bình hành ABCD tâm O. Khi đó
bằng:

Ta có:
Cho
và một điểm
Có bao nhiêu điểm
thỏa mãn ![]()
Ta có . Suy ra tập hợp các điểm
thỏa mãn yêu cầu bài toán là đường tròn tâm
bán kính
.
Cho
Tìm tọa độ của vectơ ![]()
Ta có
Gọi
lần lượt là trung điểm các cạnh
của tứ giác
. Đẳng thức nào sau đây sai?
Do M là trung điểm các cạnh AD nên
Do N lần lượt là trung điểm các cạnh BC nên . Nên
đúng.
Ta có
Vậy . Nên
đúng.
Mà . Nên
đúng.
Vậy sai.
Cho lục giác đều
tâm
. Ba vectơ bằng vectơ
là:
Ba vectơ bằng vectơ là:
,
,
.
Cho tam giác
vuông cân tại
có
. Tính ![]()
Gọi là trung điểm
Ta có
Trong hệ tọa độ
, cho tọa độ bốn điểm
,
. Chọn khẳng định đúng?
Ta có: . Vậy
là hình bình hành.
Cho hai vectơ không cùng phương
và
. Mệnh đề nào sau đây đúng?
Mệnh đề đúng là: "Có một vectơ cùng phương với cả hai vectơ và
, đó là
."
Cho lục giác đều
tâm
Số các vectơ khác vectơ - không, cùng phương với
có điểm đầu và điểm cuối là các đỉnh của lục giác là
Đó là các vectơ: . Chọn 6.
Cho hình bình hành
. Lấy hai điểm
sao cho
, lấy tiếp hai điểm
sao cho
. Để
là trọng tâm tam giác
thì
thỏa mãn điều kiện nào sau đây:
Hình vẽ minh họa

Để J là trọng tâm tam giác AMN thì
Mặt khác do không cùng phương nên ta suy ra:
Vậy với thì điểm J là trọng tâm tam giác AMN.
Vectơ có điểm đầu là
, điểm cuối là
được kí hiệu là
Vectơ có điểm đầu là , điểm cuối là
được kí hiệu là
Cho
Khẳng định nào sau đây là đúng?
Ta có và
Xét tỉ số và
không cùng phương. Loại
và
ngược hướng.
Xét tỉ số không cùng phương. Loại
cùng phương.
Xét tỉ số và
cùng hướng. Chọn
và
cùng hướng.