Cho tam giác ABC có AK, BM là trung tuyến. Cho
. Tính
.
.
Cho tam giác ABC có AK, BM là trung tuyến. Cho
. Tính
.
.
Cho tam giác đều
có cạnh bằng
Tính tích vô hướng ![]()
.
Điều kiện nào dưới đây là điều kiện cần và đủ để điểm
là trung điểm của đoạn
.
Điểm là trung điểm của đoạn
khi và chỉ khi
và ngược hướng.
Vậy .
Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?
Áp dụng quy tắc hình bình hành tại điểm B ta có:
Cho lục giác đều
tâm
. Ba vectơ bằng vectơ
là:
Ba vectơ bằng vectơ là:
,
,
.
Cho hình chữ nhật
Khẳng định nào sau đây đúng?
Ta có
Mà
Cho ba điểm phân biệt
Có bao nhiêu vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm
đã cho?
Các vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm đã cho là
.
Cho mặt phẳng Oxy, cho ∆ABC có G là trọng tâm. Biết B(4; 1), C(1; –2) và G(2; 1). Tọa độ điểm A là:
Theo bài ra:
G là trọng tâm tam giác ABC nên ta có:
Cho tam giác
có
. Gọi các vectơ
theo thư tự là các vectơ có giá vuông góc với các đường thẳng
và
. Tính độ dài vectơ
, biết
.
Hình vẽ minh họa:
Gọi D là điểm thuộc miền trong tam giác ABC, dựng các vectơ dựng hình chữ nhật DGHE ta có:
Ta lại có:
Mặt khác
=> Ba điểm H, D, F thẳng hàng.
Khi đó:
Cho tam giác
cân tại
,
và
. Tính
.
Ta có .
Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:
Ta có: (2 vectơ đối nhau).
Cho hai điểm
phân biệt. Tập hợp những điểm
thỏa mãn
là
Ta có:
.
Tập hợp điểm là đường tròn đường kính
.
Gọi
là tâm hình vuông
. Tính
.
Ta có .
Cho tam giác ABC có điểm O thỏa mãn
. Khẳng định nào sau đây là đúng?
Ta có: .

Vẽ hình bình hành , suy ra
. Mà
. Suy ra
. Do đó
là hình chữ nhật. Do đó tam giác
vuông
.
Trong mặt phẳng tọa độ
cho tọa độ hai điểm
. Tính tọa độ vecto
?
Ta có:
Vậy .
Cho M là trung điểm AB, tìm đẳng thức sai
![]()
Ta có: .
Đáp án sai là .
Cho tam giác
vuông cân tại
có
. Tính ![]()
Gọi là trung điểm
Ta có
Cho hình bình hành ABCD, điểm M thỏa mãn
. Xác định vị trí điểm M.
Ta có: ABCD là hình bình hành
=>
Xét biểu thức:
Vậy M là trung điểm của AC.
Cho M, N, P, Q là bốn điểm tùy ý. Trong các hệ thức sau, hệ thức nào sai?
Hệ thức sai là:
Vì (tính chất giao hoán)
Trong hệ tọa độ
cho
Khẳng định nào sau đây đúng?
Ta có không cùng phương.
Cho hai vectơ không cùng phương
và
. Mệnh đề nào sau đây đúng?
Mệnh đề đúng là: "Có một vectơ cùng phương với cả hai vectơ và
, đó là
."
Cho tam giác
, gọi
là trung điểm
và
là một điểm trên cạnh
sao cho
. Gọi
là trung điểm của
. Khi đó
Ta có .
Cho ba điểm
phân biệt. Khi đó:
Chọn: Điều kiện cần và đủ để thẳng hàng là
cùng phương với
Gọi
lần lượt là trung điểm của các cạnh
của tam giác đều
. Đẳng thức nào sau đây đúng?
Ta có là đường trung bình của tam giác
.
Do đó
Cho tam giác
có trọng tâm
và trung tuyến
. Khẳng định nào sau đây là sai.
Ta có
Mặt khác và
ngược hướng
.
Cho ba điểm
phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là
Ta có tính chất: Điều kiện cần và đủ để ba điểm phân biệt thẳng hàng là
.
Cho
và
là các vectơ khác
với
là vectơ đối của
. Khẳng định nào sau đây sai?
Ta có . Do đó,
và
cùng phương, cùng độ dài và ngược hướng nhau.
Chọn đáp án sai là: Hai vectơ chung điểm đầu.
Chp parabol như hình vẽ:

Biết G là đỉnh parabol cách AB một khoảng bằng 6,
. Tính khoảng cách giữa hai điểm
?
Xét hệ tọa độ Oxy với O là trung điểm AB, tia Ox là tia OB.
Khi đó tọa độ
Gọi biểu thức hàm số có đồ thị là hình parabol là
Có G là đỉnh parabol suy ra
Có suy ra
Biểu thức hàm số là
Hoành độ giao điểm với trục hoành:
Vậy khoảng cách giữa hai điểm A và B là .
Cho tam giác ABC. Tập hợp các điểm M thỏa mãn
là:
Ta có:
Vậy tập hợp các điểm M là đường thẳng đi qua A và vuông góc với BC.
Cho
Tìm
biết
.
Ta có
Để
Cho tam giác
có tọa độ ba đỉnh
. Xác định tọa độ điểm
thỏa mãn
?
Giả sử tọa độ điểm D là:
Ta có: thỏa mãn
Ta có:
Trong mặt phẳng tọa độ
cho tam giác
có
và
. Tính số đo góc
của tam giác đã cho.
Ta có: và
.
.
Cho tam giác ABC đều cạnh 2a. Đẳng thức nào sau đây là đúng?
Theo bài ra ta có:
Tam giác ABC đều cạnh 2a => AB = BC = AC = 2a
=>
Cho tam giác
và điểm
thỏa mãn điều kiện
. Mệnh đề nào sau đây sai?
Ta có
là hình bình hành
Do đó sai.
Tính độ dài đoạn thẳng
biết tọa độ
?
Ta có:
Cho tam giác
có trực tâm
. Gọi
là điểm đối xứng với
qua tâm
của đường tròn ngoại tiếp tam giác
. Khẳng định nào sau đây đúng?
Ta có và
(do góc
chắn nửa đường tròn).
Suy ra
Tương tự ta cũng có
Suy ra tứ giác là hình bình hành. Do đó
và
.
Cho tam giác
đều cạnh
nội tiếp đường tròn
,
là một điểm thay đổi trên
. Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức
. Tính tổng
.
Hình vẽ minh họa
Dựng hình bình hành DBCA. Ta có:
Gọi E là giao điểm khác C của DC với (O). Áp dụng bất đẳng thức tam giác ta có:
Dấu bằng xảy ra khi và chỉ khi M trùng E và M trùng C.
Vậy
Cho bốn điểm phân biệt
và không cùng nằm trên một đường thẳng. Điều kiện nào trong các đáp án A, B, C, D sau đây là điều kiện cần và đủ để
?
Ta có:
là hình bình hành.
Mặt khác, là hình bình hành
.
Do đó, điều kiện cần và đủ để là
là hình bình hành.
Cho 6 điểm phân biệt A, B, C, D, E, F. Đẳng thức nào sau đây đúng?
Ta có:.
Trong hệ trục tọa độ
, tọa độ của vectơ
là
Ta có