Đề kiểm tra 45 phút Chương 5 Vectơ Sách CTST

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Vectơ gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Gọi O là giao điểm hai đường chéo ACBD của hình bình hành ABCD. Đẳng thức nào sau đây là đẳng thức sai?

    Từ hình vẽ ta thấy đẳng thức sai là \overrightarrow{OA} =
\overrightarrow{OC}.

  • Câu 2: Thông hiểu

    Trong mp Oxy cho A(4;6), B(1;4), C\left( 7;\frac{3}{2} ight). Khẳng định nào sau đây sai?

    Ta có \overrightarrow{BC} = \left( 6; -
\frac{5}{2} ight) suy ra BC =
\sqrt{6^{2} + \left( - \frac{5}{2} ight)^{2}} =
\frac{13}{2}nên chọn đáp án sai \left| \overrightarrow{BC} ight| =
\frac{\sqrt{13}}{2}.

  • Câu 3: Nhận biết

    Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:

     Ta có: \overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{0} (2 vectơ đối nhau).

  • Câu 4: Nhận biết

    Khẳng định nào sau đây đúng?

    Theo định nghĩa, hai véctơ bằng nhau phải thỏa mãn hai điều kiện:

    +) Cùng hướng

    +) Cùng độ dài.

    Chọn đáp án: Hai vectơ được gọi là bằng nhau nếu chúng cùng hướng và cùng độ dài.

  • Câu 5: Thông hiểu

    Trong hệ tọa độ Oxy, cho các điểm A(0;1),B(1;3),C(2;7). Xác định tọa độ điểm N thỏa mãn biểu thức \overrightarrow{AB} = 2\overrightarrow{AN} +
3\overrightarrow{CN}?

    Theo bài ra ta có:

    \overrightarrow{AB} =
2\overrightarrow{AN} + 3\overrightarrow{CN}

    \Leftrightarrow \overrightarrow{AO} +
\overrightarrow{OB} = 2\overrightarrow{AO} + 2\overrightarrow{ON} +
3\overrightarrow{CO} + 3\overrightarrow{ON}

    \Leftrightarrow \overrightarrow{ON} =
\frac{1}{5}\left( \overrightarrow{OA} + \overrightarrow{OB} +
2\overrightarrow{OC} ight)

    \Rightarrow N\left( \frac{1 +
6}{5};\frac{1 + 3 + 21}{5} ight) = \left( \frac{7}{5};5
ight)

  • Câu 6: Vận dụng

    Cho ba điểm A,B,C phân biệt. Tập hợp những điểm M\overrightarrow{CM}.\overrightarrow{CB} =
\overrightarrow{CA}.\overrightarrow{CB} là :

    Ta có: \overrightarrow{CM}.\overrightarrow{CB} =
\overrightarrow{CA}.\overrightarrow{CB} \Leftrightarrow \overrightarrow{CM}.\overrightarrow{CB} -
\overrightarrow{CA}.\overrightarrow{CB} = 0 \Leftrightarrow \left( \overrightarrow{CM} -
\overrightarrow{CA} ight).\overrightarrow{CB} = 0 \Leftrightarrow
\overrightarrow{AM}.\overrightarrow{CB} = 0.

    Tập hợp điểm M là đường thẳng đi qua A và vuông góc với BC.

  • Câu 7: Nhận biết

    Cho \overrightarrow{a} = (3; - 4),\ \overrightarrow{b}
= ( - 1;2). Tìm tọa độ của vectơ \overrightarrow{a} +
\overrightarrow{b}.

    Ta có \overrightarrow{a} +
\overrightarrow{b} = \left( 3 + ( - 1); - 4 + 2 ight) = (2; -
2).

  • Câu 8: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Khẳng định nào sau đây đúng?

    Xét đáp án \overrightarrow{MP} +
\overrightarrow{NM} = \overrightarrow{NP}. Ta có \overrightarrow{MP} + \overrightarrow{NM} =
\overrightarrow{NM} + \overrightarrow{MP} =
\overrightarrow{NP}. Vậy đáp án này đúng.

  • Câu 9: Nhận biết

    Cặp vectơ nào sau đây vuông góc?

    \overrightarrow{a}.\overrightarrow{b}
= 2.( - 3) + ( - 1).4 = - 10 eq 0 suy ra đáp án \overrightarrow{a} = (2; - 1)\overrightarrow{b} = ( - 3;4) sai.

    \overrightarrow{a}.\overrightarrow{b}
= 3.( - 3) + ( - 4).4 = - 25 eq 0 suy ra đáp án \overrightarrow{a} = (3; - 4)\overrightarrow{b} = ( - 3;4) sai.

    \overrightarrow{a}.\overrightarrow{b}
= - 2.( - 6) - 3.4 = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{b} suy ra đáp án \overrightarrow{a} = ( - 2; - 3)\overrightarrow{b} = ( - 6;4) đúng.

    \overrightarrow{a}.\overrightarrow{b}
= 7.3 + ( - 3).( - 7) = 42 eq 0 suy ra đáp án \overrightarrow{a} = (7; - 3)\overrightarrow{b} = (3; - 7) sai.

  • Câu 10: Thông hiểu

    Cho bốn điểm phân biệt A,\ B,\ C,\ D thỏa mãn \overrightarrow{AB} =
\overrightarrow{CD}. Khẳng định nào sau đây sai?

    Phải suy ra ABDC là hình bình hành (nếu A,\ B,\ C,\ D không thẳng hàng) hoặc bốn điểm A,\ B,\ C,\ D thẳng hàng.

    Đáp án sai là ABCD là hình bình hành.

  • Câu 11: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là

    Ta có tính chất: Điều kiện cần và đủ để ba điểm A,\ B,\ C phân biệt thẳng hàng là \exists k \in R:\overrightarrow{AB} =
k\overrightarrow{AC}.

  • Câu 12: Nhận biết

    Trong hệ trục tọa độ \left( O;\overrightarrow{i};\overrightarrow{j}
ight), tọa độ vecto \overrightarrow{i} + \overrightarrow{j} là:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{i} = (1;0) \\
\overrightarrow{j} = (0;1) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{i} +
\overrightarrow{j} = (1;1)

  • Câu 13: Nhận biết

    Gọi M,\ \
N lần lượt là trung điểm của các cạnh AB,\ \ AC của tam giác đều ABC. Hỏi cặp vectơ nào sau đây cùng hướng?

    Cặp \overrightarrow{AB}\overrightarrow{MB} là cặp vectơ cùng hướng.

  • Câu 14: Nhận biết

    Cho tam giác đều ABC có cạnh a. Tính tích vô hướng \overrightarrow{AB}\times \overrightarrow{AC}.

     Ta có: \overrightarrow {AB} .\overrightarrow {AC}  = AB.AC.\cos A = a.a.\cos 60^\circ  = \frac{{{a^2}}}{2}.

  • Câu 15: Nhận biết

    Cho tam giác đều ABC có cạnh bằng a. Tính tích vô hướng \overrightarrow{AB}.\overrightarrow{AC}.

    \overrightarrow{AB}.\overrightarrow{AC}.
= \left| \overrightarrow{AB} ight|.\left| \overrightarrow{AC}
ight|.cos\left( \overrightarrow{AB},\overrightarrow{AC} ight) =
a.a.cos60^{{^\circ}} = \frac{a^{2}}{2}.

  • Câu 16: Nhận biết

    Hai vectơ được gọi là bằng nhau khi và chỉ khi

    Hai vectơ được gọi là bằng nhau khi và chỉ khi chúng có cùng hướng và độ dài của chúng bằng nhau.

  • Câu 17: Vận dụng

    Cho hình thang ABCD có đáy là ABCD. Gọi MN lần lượt là trung điểm của ADBC. Khẳng định nào sau đây sai?

    M,\ \ N lần lượt là trung điểm của AD,\ \ BC \Rightarrow \left\{
\begin{matrix}
\overrightarrow{MA} + \overrightarrow{MD} = \overrightarrow{0} \\
\overrightarrow{BN} + \overrightarrow{CN} = \overrightarrow{0} \\
\end{matrix} ight.\ . Dựa vào đáp án, ta có nhận xét sau:

    \bullet \overrightarrow{MN} = \overrightarrow{MD} +
\overrightarrow{CN} + \overrightarrow{DC} đúng, vì \overrightarrow{MD} + \overrightarrow{CN} +\overrightarrow{DC} = \overrightarrow{MN}= \left( \overrightarrow{MD} +\overrightarrow{DC} ight) + \overrightarrow{CN} = \overrightarrow{MC}+ \overrightarrow{CN}= \overrightarrow{MN}

    \bullet \overrightarrow{MN} = \overrightarrow{AB} -
\overrightarrow{MD} + \overrightarrow{BN} đúng, vì \overrightarrow{AB} - \overrightarrow{MD} +\overrightarrow{BN} = \left( \overrightarrow{AB} + \overrightarrow{BN}ight) - \overrightarrow{MD}= \overrightarrow{AN} -\overrightarrow{AM} = \overrightarrow{MN}

    \bullet \overrightarrow{MN} =
\frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{DC}
ight) đúng, vì \overrightarrow{MN} = \overrightarrow{MA} +
\overrightarrow{AB} + \overrightarrow{BN}\overrightarrow{MN} = \overrightarrow{MD} +
\overrightarrow{DC} + \overrightarrow{CN}.

    Suy ra 2\overrightarrow{MN}= \left(\overrightarrow{MA} + \overrightarrow{MD} ight) + \overrightarrow{AB}+ \overrightarrow{DC} + \left( \overrightarrow{BN} + \overrightarrow{CN}ight)= \overrightarrow{0} + \overrightarrow{AB} + \overrightarrow{DC}+ \overrightarrow{0} = \overrightarrow{AB} +\overrightarrow{DC}\overset{}{ightarrow}\overrightarrow{MN} =\frac{1}{2}\left( \overrightarrow{AD} + \overrightarrow{BC}ight).

    \bullet \overrightarrow{MN} =
\frac{1}{2}\left( \overrightarrow{AD} + \overrightarrow{BC}
ight) sai, vì theo phân tích ở đáp án trên. Chọn đáp án này.

  • Câu 18: Thông hiểu

    Cho tam giác ABC, gọi Mlà trung điểm của BCG là trọng tâm của tam giác ABC. Đẳng thức vectơ nào sau đây đúng?

    Ta có AM = \frac{3}{2}AG

    Mặt khác \overrightarrow{AM}\overrightarrow{AG} cùng hướng\mathbf{\Rightarrow}\overrightarrow{AM} =
\frac{3}{2}\overrightarrow{AG} hay 2\overrightarrow{AM} =
3\overrightarrow{AG}.

  • Câu 19: Vận dụng cao

    Cho hai điểm A,\
\ B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức \left| 2\overrightarrow{MA} + \overrightarrow{MB}
ight| = \left| \overrightarrow{MA} + 2\overrightarrow{MB}
ight|

    Chọn điểm E thuộc đoạn AB sao cho EB
= 2EA \Rightarrow 2\overrightarrow{EA} + \overrightarrow{EB} =
\overrightarrow{0}.

    Chọn điểm F thuộc đoạn AB sao cho FA
= 2FB \Rightarrow 2\overrightarrow{FB} + \overrightarrow{FA} =
\overrightarrow{0}.

    Ta có \left| 2\overrightarrow{MA} +\overrightarrow{MB} ight| = \left| \overrightarrow{MA} +2\overrightarrow{MB} ight|

    \Leftrightarrow \left| 2\overrightarrow{ME}+ 2\overrightarrow{EA} + \overrightarrow{ME} + \overrightarrow{EB}ight|= \left| 2\overrightarrow{MF} + 2\overrightarrow{FB} +\overrightarrow{MF} + \overrightarrow{FA} ight|

    \Leftrightarrow \left| 3\
\overrightarrow{ME} + \underset{\overrightarrow{0}}{\overset{2\
\overrightarrow{EA} + \overrightarrow{EB}}{︸}} ight| = \left| 3\
\overrightarrow{MF} + \underset{\overrightarrow{0}}{\overset{2\
\overrightarrow{FA} + \overrightarrow{FB}}{︸}} ight| \Leftrightarrow
\left| 3\ \overrightarrow{ME} ight| = \left| 3\ \overrightarrow{MF}
ight| \Leftrightarrow ME = MF. \
(*)

    E,\ \ F là hai điểm cố định nên từ đẳng thức (*) suy ra tập hợp các điểm M là trung trực của đoạn thẳng EF. Gọi I là trung điểm của AB suy ra I cũng là trung điểm của EF.

    Vậy tập hợp các điểm M thỏa mãn \left| 2\overrightarrow{MA} +
\overrightarrow{MB} ight| = \left| \overrightarrow{MA} +
2\overrightarrow{MB} ight| là đường trung trực của đoạn thẳng AB.

  • Câu 20: Nhận biết

    Cho hai điểm AB phân biệt. Điều kiện để I là trung điểm AB là:

    Điều kiện để I là trung điểm AB là: \overrightarrow{IA} = -
\overrightarrow{IB}.

  • Câu 21: Vận dụng cao

    Chp parabol như hình vẽ:

    Biết G là đỉnh parabol cách AB một khoảng bằng 6, CD = 4;DE = \frac{10}{3}. Tính khoảng cách giữa hai điểm A,B?

    Xét hệ tọa độ Oxy với O là trung điểm AB, tia Ox là tia OB.

    Khi đó tọa độ E\left( 2;\frac{10}{3}
ight),G(0;6)

    Gọi biểu thức hàm số có đồ thị là hình parabol là y = ax^{2} + bx + c

    Có G là đỉnh parabol suy ra c = 6;b =
0

    E\left( 2;\frac{10}{3} ight) \in
(P) suy ra \frac{10}{3} = 4a + 6
\Rightarrow a = - \frac{2}{3}

    Biểu thức hàm số là y = -
\frac{2}{3}x^{2} + 6

    Hoành độ giao điểm với trục hoành: -
\frac{2}{3}x^{2} + 6 = 0 \Leftrightarrow x = \pm 3

    Vậy khoảng cách giữa hai điểm A và B là 6.

  • Câu 22: Thông hiểu

    Cho tam giác ABCA(1;2),B( -
1;1),C(5; - 1).Tính \cos A.

    Ta có \overrightarrow{AB} = ( - 2; -
1),\overrightarrow{AC} = (4; -
3) suy ra

    \cos A =\frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB.AC}= \frac{( - 2).4 +( - 1).( - 3)}{\sqrt{( - 2)^{2} + ( - 1)^{2}}.\sqrt{4^{2} + ( - 3)^{2}}}= \frac{- 5}{\sqrt{5}\sqrt{25}}= - \frac{1}{\sqrt{5}}.

  • Câu 23: Thông hiểu

    Cho lục giác đều ABCDEF tâm O. Số các vectơ khác vectơ - không, cùng phương với \overrightarrow{OC} có điểm đầu và điểm cuối là các đỉnh của lục giác là

    Đó là các vectơ: \overrightarrow{AB},\ \
\overrightarrow{BA},\ \ \overrightarrow{DE},\ \ \overrightarrow{ED},\ \
\overrightarrow{FC},\ \ \overrightarrow{CF}. Chọn 6.

  • Câu 24: Nhận biết

    Cho tam giác ABCAM là một đường trung tuyến. Biểu diễn vectơ \overrightarrow {AM} theo hai vectơ \overrightarrow {AB}\overrightarrow {AC}.

     Vì M là trung điểm BC nên \overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AM}  \Leftrightarrow \overrightarrow {AM}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC}.

  • Câu 25: Thông hiểu

    Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?

    Do ABCD là hình bình hành nên \overrightarrow{BC} =
\overrightarrow{AD}.

    Suy ra \overrightarrow{AB} -
\overrightarrow{BC} = \overrightarrow{AB} - \overrightarrow{AD} =
\overrightarrow{DB}.

  • Câu 26: Nhận biết

    Cho hình vuông ABCD, tính cos(\overrightarrow{AB},\overrightarrow{CA}).

     

    Vẽ \overrightarrow {CE}  = \overrightarrow {AB}.

    Ta có: \left( {\overrightarrow {AB} ,\overrightarrow {CA} } ight) = \left( {\overrightarrow {CE} ,\overrightarrow {CA} } ight) = 45^\circ  + 90^\circ  = 135^\circ\Rightarrow \cos 135^\circ  = \frac{{ - \sqrt 2 }}{2}.

     

  • Câu 27: Vận dụng cao

    Cho tam giác ABC, kẻ đường cao AHAH =
3,cos\widehat{ACB} = \frac{3}{5};tan\widehat{ABC} = 3. Gọi M là trung điểm của BC, K là điểm thỏa mãn KA = \frac{5}{2}\left| \overrightarrow{KA} - \overrightarrow{KB} +
\overrightarrow{KC} - \overrightarrow{AC} ight| = \left|
\overrightarrow{CK} ight|. Khi đó độ dài vectơ \overrightarrow{MK} bằng bao nhiêu?

    Hình vẽ minh họa

    Tính độ dài vectơ

    Gọi E là điểm đối xứng của B qua A, ta có:

    \left| \overrightarrow{KA} -
\overrightarrow{KB} + \overrightarrow{KC} - \overrightarrow{AC} ight|
= \left| \overrightarrow{CK} ight|

    \Rightarrow KE = CK

    Nên K thuộc đường thẳng a là trung trực của đoạn thẳng CE, mặt khác KA = \frac{5}{2}

    Suy ra K là giao điểm của a và đường tròn tâm A bán kính KA = \frac{5}{2}.

    Điểm K cần tìm là N hoặc P

    Ta có: MK = MP = AB =
\sqrt{10}.

  • Câu 28: Vận dụng

    Trong hệ tọa độ Oxy, cho tam giác ABCA(1; -
1), B(5; - 3)C thuộc trục Oy, trọng tâm G của tam giác thuộc trục Ox. Tìm tọa độ điểm C.

    C thuộc trục Oy\overset{}{ightarrow} C có hoành độ bằng 0. Loại C(2;4).

    Trọng tâm G thuộc trục Ox\overset{}{ightarrow} G có tung độ bằng 0. Xét các đáp án còn lại chỉ có đáp án C(0;4) thỏa mãn \frac{y_{A} + y_{B} + y_{C}}{3} = 0.

  • Câu 29: Vận dụng

    Cho tam giác ABC và điểm M thỏa mãn \overrightarrow{MB} + \overrightarrow{MC} =
\overrightarrow{AB}. Tìm vị trí điểm M.

    Gọi I là trung điểm của BC \Rightarrow \overrightarrow{MB} +
\overrightarrow{MC} = 2\overrightarrow{MI}

    \Rightarrow \overrightarrow{AB} =
2\overrightarrow{MI} \Rightarrow
M là trung điểm AC.

  • Câu 30: Nhận biết

    Cho hai vectơ không cùng phương \overrightarrow{a}\overrightarrow{b}. Mệnh đề nào sau đây đúng?

    Mệnh đề đúng là: "Có một vectơ cùng phương với cả hai vectơ \overrightarrow{a}\overrightarrow{b}, đó là \overrightarrow{0}."

  • Câu 31: Thông hiểu

    Cho ba vectơ \overrightarrow{a} = (2;1),\ \overrightarrow{b} =
(3;4),\ \overrightarrow{c} = (7;2). Giá trị của k,\ h để \overrightarrow{c} = k.\overrightarrow{a} +
h.\overrightarrow{b}

    Ta có \left. \ \begin{matrix}k.\overrightarrow{a} = (2k;k) \\h.\overrightarrow{b} = (3h;4h) \\\end{matrix} ight\}\overset{}{ightarrow}k.\overrightarrow{a} +h.\overrightarrow{b} = (2k + 3h;k + 4h).

    Theo đề bài: \overrightarrow{c} =k.\overrightarrow{a} + h.\overrightarrow{b} \Leftrightarrow \left\{\begin{matrix}7 = 2k + 3h \\2 = k + 4h \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}k = 4,4 \\h = - 0,6 \\\end{matrix} ight.\ .

  • Câu 32: Thông hiểu

    Cho hình chữ nhật ABCD. Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\left| \overrightarrow{AB} - \overrightarrow{AD} ight| = \left|
\overrightarrow{DB} ight| = BD \\
\left| \overrightarrow{AB} + \overrightarrow{AD} ight| = \left|
\overrightarrow{AC} ight| = AC \\
\end{matrix} ight.\ .

    BD = AC \Rightarrow \left|
\overrightarrow{AB} - \overrightarrow{AD} ight| = \left|
\overrightarrow{AB} + \overrightarrow{AD} ight|.

  • Câu 33: Nhận biết

    Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?

    Ta có: ABCD là hình bình hành tâm O

    => OA = OC, OB = OD

    \begin{matrix}   \Rightarrow \left\{ \begin{gathered}  \overrightarrow {MA}  + \overrightarrow {MC}  = 2\overrightarrow {MO}  \hfill \\  \overrightarrow {MB}  + \overrightarrow {MD}  = 2\overrightarrow {MO}  \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MO}  \hfill \\ \end{matrix}

  • Câu 34: Thông hiểu

    Cho tam giác ABC. Hai điểm M,\ \ N chia cạnh BC theo ba phần bằng nhau BM = MN = NC. Tính \overrightarrow{AM} theo \overrightarrow{AB}\overrightarrow{AC}.

    Ta có \overrightarrow{AM} =
\overrightarrow{AB} + \overrightarrow{BM} = \overrightarrow{AB} +
\frac{1}{3}\overrightarrow{BC} = \overrightarrow{AB} + \frac{1}{3}\left(
\overrightarrow{AC} - \overrightarrow{AB} ight) =
\frac{2}{3}\overrightarrow{AB} +
\frac{1}{3}\overrightarrow{AC}.

  • Câu 35: Thông hiểu

    Cho tam giác ABC, gọi M là trung điểm của BCG là trọng tâm của tam giác ABC. Câu nào sau đây đúng?

    Do M là trung điểm của BC nên ta có: \overrightarrow{GB} + \overrightarrow{GC} =
2\overrightarrow{GM}.

  • Câu 36: Thông hiểu

    Cho tam giác ABC đều có cạnh là 6. Tính |\overrightarrow{AB} +
\overrightarrow{AC}|.

    Hình vẽ minh họa

    Gọi I là trung điểm của BC. Vì tam giác ABC đều có cạnh là 6, nên ta có AI\bot BC.

    Xét tam giác AIB vuông tại I, có

    AB^{2} = AI^{2} + IB^{2}

    \Rightarrow AI^{2} = AB^{2} - IB^{2} =
6^{2} - 3^{2} = 27.

    Suy ra AI = \sqrt{27} =
3\sqrt{3}

    Mặt khác ta có:

    \overrightarrow{AB} + \overrightarrow{AC}
= 2\overrightarrow{AI}

    \Rightarrow |\overrightarrow{AB} +
\overrightarrow{AC}| = |2\overrightarrow{AI}| = 2|\overrightarrow{AI}| =
2AI = 6\sqrt{3}.

  • Câu 37: Nhận biết

    Cho ba điểm phân biệt A,\ \ B,\ \ C. Đẳng thức nào sau đây đúng?

    Ta có \overrightarrow{AB} +\overrightarrow{CA} = \overrightarrow{CA} + \overrightarrow{AB} =\overrightarrow{CB}. Vậy \overrightarrow{AB} + \overrightarrow{CA} =\overrightarrow{CB} đúng.

  • Câu 38: Vận dụng

    Cho \overrightarrow{AB} eq
\overrightarrow{0} và một điểm C. Có bao nhiêu điểm D thỏa mãn \left| \overrightarrow{AB} ight| = \left|
\overrightarrow{CD} ight|\ ?

    Ta có \left| \overrightarrow{AB} ight|
= \left| \overrightarrow{CD} ight| \Leftrightarrow AB = CD. Suy ra tập hợp các điểm D thỏa mãn yêu cầu bài toán là đường tròn tâm C, bán kính AB.

  • Câu 39: Nhận biết

    Trong hệ tọa độ Oxy, cho tam giác ABCA(3;5),\ B(1;2),\ C(5;2). Tìm tọa độ trọng tâm G của tam giác ABC?

    Ta có \left\{ \begin{matrix}
x_{G} = \frac{3 + 1 + 5}{3} = 3 \\
y_{G} = \frac{5 + 2 + 2}{3} = 3 \\
\end{matrix} ight.\ \overset{}{ightarrow}G(3;3).

  • Câu 40: Thông hiểu

    Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC biết rằng A(6;3),B( - 3;6),C(1; - 2)?

    Gọi M, N lần lượt là trung điểm của AB và BC.

    I(x; y) là tâm đường tròn ngoại tiếp tam giác ABC khi và chỉ khi:

    \left\{ \begin{matrix}
\overrightarrow{MI}.\overrightarrow{AB} = 0 \\
\overrightarrow{MI}.\overrightarrow{BC} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3x + y = 0 \\
x - 2y + 5 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 3 \\
\end{matrix} ight.\  \Leftrightarrow I(1;3)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 5 Vectơ Sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo