Khẳng định nào sau đây là đúng?
Ta có cùng hướng.
Khẳng định nào sau đây là đúng?
Ta có cùng hướng.
Cho 6 điểm phân biệt A, B, C, D, E, F. Đẳng thức nào sau đây đúng?
Ta có:.
Cho tam giác
vuông tại
có
. Tính độ dài
.

Đặt .
Ta có: .
Áp dụng định lý Pytago trong tam giác :
.
Cho lục giác đều ABCDEF có tâm O. Số các vectơ bằng vectơ
có điểm đầu và điểm cuối là đỉnh của lục giác bằng :
Các vectơ bằng vectơ có điểm đầu và điểm cuối là đỉnh của lục giác là
và
.
Cho hình bình hành ABCD tâm O. Khi đó
bằng:

Ta có:
Cho hai vecto
và
biết
và
. Tính
.
Ta có:
Cho ba điểm
phân biệt. Tập hợp những điểm
mà
là :
Ta có:
.
Tập hợp điểm là đường thẳng đi qua
và vuông góc với
.
Hai vectơ được gọi là bằng nhau khi và chỉ khi
Hai vectơ được gọi là bằng nhau khi và chỉ khi: Chúng cùng hướng và độ dài của chúng bằng nhau.
Cho lục giác đều
tâm
. Các vectơ đối của vectơ
là:
Các vectơ đối của vectơ là:
.
Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?
Ta có: ABCD là hình bình hành tâm O
=>
Cho 4 điểm
phân biệt. Khi đó
bằng
.
Cho hình vuông
cạnh
. Gọi
là trung điểm của
, lấy các điểm
lần lượt là các điểm thay đổi trên các cạnh
sao cho
. Tìm giá trị nhỏ nhất của biểu thức
.
Hình vẽ minh họa

Đặt
Khi đó
Dấu bằng xảy ra khi và chỉ khi hay P, Q là trung điểm của BC, DA
Ta có:
Khi P ≡ P∗, R ≡ R∗, Q thay đổi trên AC, H sẽ thay đổi trên đoạn thẳng DK sao cho tam giác DCK vuông cân tại C.
Ta lại có:
Trong mặt phẳng tọa độ
cho tọa độ hai điểm
. Tính tọa độ vecto
?
Ta có:
Vậy .
Cho tam giác
, có thể xác định được bao nhiêu véctơ khác véctơ không có điểm đầu và điểm cuối là các đinh của tam giác đã cho?
Các véc tơ khác véc tơ không có điểm đầu và điểm cuối là các đỉnh của tam giác đã cho gồm . Vậy có 6 véc tơ.
Trong mặt phẳng tọa độ
cho ba điểm
Tính tích vô hướng ![]()
Ta có: ,
Cho hình vuông
cạnh bằng
. Tính độ dài véctơ
.
Hình vẽ minh họa:
Trong mp
cho
,
,
. Khẳng định nào sau đây sai?
Ta có suy ra
nên chọn đáp án sai
.
Cho 4 điểm
. Ba điểm nào trong 4 điểm đã cho là thẳng hàng?
Ta có: 3 điểm
thẳng hàng.
Biết
và
. Câu nào sau đây đúng?
Ta có:
=> và
ngược hướng.
Hình bình hành
tâm
. Khẳng định sai là:
Ta có: .
Chọn đáp án sai .
Cho hình thang
,
là trung điểm của
. Có bao nhiêu vectơ khác vectơ – không cùng phương với
?
Vì ABCD là hình thang nên ta có các vectơ thỏa mãn yêu cầu là
Cho hai vecto
. Xác định góc giữa hai vecto
và
khi ![]()
Ta có:
Trong mặt phẳng tọa độ
cho
. Xác định tọa độ vecto
?
Ta có:
Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:
Ta có: (2 vectơ đối nhau).
Trong mặt phẳng Oxy, cho hình chữ nhật ABCD có A(0; 3), D(2; 1) và I(–1; 0) là tâm của hình chữ nhật. Tọa độ trung điểm của đoạn thẳng BC là:
Ta có: I là tâm hình chữ nhật ABCD
=> I là trung điểm của AC và I là trung điểm của BD
Khi đó ta tìm tọa độ điểm B và điểm C
=> Gọi M là trung điểm của BC có tọa độ là:
Gọi
lần lượt là trung điểm của các cạnh
của tam giác đều
. Hỏi cặp vectơ nào sau đây cùng hướng?
Cặp và
là cặp vectơ cùng hướng.
Cho tam giác
đều cạnh
. Tính ![]()
Gọi là trung điểm của
Suy ra
Ta lại có
Cho tam giác
có
là trọng tâm và
là trung điểm
Khẳng định nào sau đây sai?
Vì là trung điểm của
suy ra
Ta có
Cho tam giác đều
có cạnh bằng
và chiều cao
. Mệnh đề nào sau đây là sai?
+) nên đáp án
đúng.
+) Đáp án
đúng.
+) Đáp án
đúng.
+) Đáp án
sai.
Cho hình vuông
cạnh
. Tính
.

Ta có: . (hình vuông cạnh
thì đường chéo bằng
).
Cho tam giác ABC vuông tại A có AB = 3, AC = 4. Tính độ dài ![]()
Dựng hình bình hành tâm O như sau:

Ta có:
Vì tam giác AOB vuông tại A ta có:
Trong mặt phẳng tọa độ
, cho hai vecto
và
. Tính
?
Theo bài ra ta có:
và
Khi đó:
Cho
Tìm
biết
.
Ta có
Để
Cho hình vuông
cạnh
, tâm
Tính
.
Gọi là trung điểm của
.
Ta có
Trên đường thẳng MN lấy điểm P sao cho
. Điểm P được xác định đúng trong hình vẽ nào sau đây:

Vì nên
nằm giữa
và
, đồng thời
.
Cho tam giác ABC đều cạnh
. Đường thẳng
qua
và song song với
, lấy điểm
. Tính giá trị nhỏ nhất của
khi
di động trên
.
Hình vẽ minh họa
Kẻ hình bình hành ACBD. Gọi I là trung điểm BD, khi đó, ta có
Ta có:
Dấu “=” xảy ra khi và chỉ khi M trùng với điểm H là hình chiếu vuông góc của điểm I trên đường thẳng .
Chp parabol như hình vẽ:

Biết G là đỉnh parabol cách AB một khoảng bằng 6,
. Tính khoảng cách giữa hai điểm
?
Xét hệ tọa độ Oxy với O là trung điểm AB, tia Ox là tia OB.
Khi đó tọa độ
Gọi biểu thức hàm số có đồ thị là hình parabol là
Có G là đỉnh parabol suy ra
Có suy ra
Biểu thức hàm số là
Hoành độ giao điểm với trục hoành:
Vậy khoảng cách giữa hai điểm A và B là .
Cho tam giác
có trọng tâm
và trung tuyến
. Khẳng định nào sau đây là sai.
Ta có
Mặt khác và
ngược hướng
.
Tam giác
vuông tại
. Độ dài vectơ
bằng:
Vẽ . Vẽ hình bình hành
Ta có:
Do đó .
Cho tứ giác
. Gọi
lần lượt là trung điểm của
. Trong các khẳng định sau, hãy tìm khẳng định sai?
Ta có là đường trung bình của tam giác
. Suy ra
hay
.
Chọn đáp án sai .