Cho đường tròn
và hai tiếp tuyến
(
và
là hai tiếp điểm). Khẳng định nào sau đây đúng?
Do là hai tiếp tuyến (
và
là hai tiếp điểm) nên
.
Cho đường tròn
và hai tiếp tuyến
(
và
là hai tiếp điểm). Khẳng định nào sau đây đúng?
Do là hai tiếp tuyến (
và
là hai tiếp điểm) nên
.
Cho tam giác
có trọng tâm
và trung tuyến
. Khẳng định nào sau đây là sai.
Ta có
Mặt khác và
ngược hướng
.
Cho tam giác đều
có đường cao
. Tính
.
Lấy sao cho
.
Ta có: .
Tam giác
vuông tại
. Độ dài vectơ
bằng:
Vẽ . Vẽ hình bình hành
Ta có:
Do đó .
Cho
và tọa độ hai điểm
. Biết
, tọa độ vecto
là:
Tọa độ vecto .
Trong hệ tọa độ
cho hình bình hành
, điểm
thuộc trục hoành. Khẳng định nào sau đây đúng?
Từ giả thiết suy ra cạnh thuộc trục hoành
cạnh
song song với trục hoành nên
. Do đó loại đáp án
có tung độ khác
và đáp án hai điểm
có tung độ khác nhau.
Nếu có hoành độ bằng
: mâu thuẩn với giả thiết
là hình bình hành. Loại đáp án
có hoành độ bằng
Dùng phương pháp loại trừ, ta chọn
Cách 2. Gọi là tâm của hình bình hành
. Suy ra
là trung điểm
là trung điểm
Từ đó suy ra
Tứ giác MNPQ là hình bình hành nếu:
Hình vẽ minh họa

Ta có MNPQ là hình bình hành nếu
Cho tam giác
và điểm
thỏa mãn
Khẳng định nào sau đây đúng?
Gọi lần lượt là trung điểm
và trọng tâm tam giác
Vì
là trung điểm
nên
Theo bài ra, ta có suy ra
thẳng hàng
Mặt khác là trọng tâm của tam giác
Do đó, ba điểm
thẳng hàng.
Cho tam giác
Hai điểm
chia cạnh
theo ba phần bằng nhau
Tính
theo
và ![]()
Ta có
Cho hình vuông
cạnh bằng
. Tính độ dài véctơ
.
Hình vẽ minh họa:
Chp parabol như hình vẽ:

Biết G là đỉnh parabol cách AB một khoảng bằng 6,
. Tính khoảng cách giữa hai điểm
?
Xét hệ tọa độ Oxy với O là trung điểm AB, tia Ox là tia OB.
Khi đó tọa độ
Gọi biểu thức hàm số có đồ thị là hình parabol là
Có G là đỉnh parabol suy ra
Có suy ra
Biểu thức hàm số là
Hoành độ giao điểm với trục hoành:
Vậy khoảng cách giữa hai điểm A và B là .
Cho tam giác
Gọi
và
lần lượt là trung điểm của
và
Khẳng định nào sau đây sai?
Vì lần lượt là trung điểm của
Suy ra
là đường trung bình của tam giác
Mà
là hai vectơ cùng hướng nên
Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?
Áp dụng quy tắc hình bình hành tại điểm B ta có:
Trong mặt phẳng tọa độ
, cho tọa độ hai điểm
. Tìm tọa độ điểm
đối xứng với điểm
qua
?
Gọi tọa độ điểm C là
Vì điểm đối xứng với điểm
qua
suy ra
là trung điểm của
Vậy tọa độ điểm C cần tìm là .
Cho tam giác
có trực tâm
. Gọi
là điểm đối xứng với
qua tâm
của đường tròn ngoại tiếp tam giác
. Khẳng định nào sau đây đúng?
Ta có và
(do góc
chắn nửa đường tròn).
Suy ra
Tương tự ta cũng có
Suy ra tứ giác là hình bình hành. Do đó
và
.
Cho tam giác
đều cạnh
Mệnh đề nào sau đây đúng?
Độ dài các cạnh của tam giác là thì độ dài các vectơ
.
Cho 2 vectơ
và
có
,
và
. Tính
.
Ta có
.
Cho hình vuông
cạnh
, tính độ dài vectơ
.
Ta có: .
Áp dụng định lí Pytago trong tam giác :
.
Cho hình thang vuông
có
. Tính độ dài vectơ
, biết
.
Hình vẽ minh họa
Dựng hình bình hành ADBM ta có:
Do nên
tại H,
Tứ giác ADBH là hình vuông nên , ta cũng tính được
.
Dựng hình bình hành DMNC ta có: .
Gọi K là hình chiếu vuông góc của N lên DC. Ta chứng minh được HMNK là hình vuông.
Ta có:
Cho tam giác đều
cạnh
trọng tâm
Tập hợp các điểm
thỏa mãn
là
Gọi lần lượt là trung điểm của
Khi đó
Theo bài ra, ta có
Vậy tập hợp các điểm thỏa mãn
là đường trung trực của đoạn thẳng
cũng chính là đường trung trực của đoạn thẳng
vì
là đường trung bình của tam giác
Cho tam giác
có
Tính ![]()
Ta có
Cho tam giác
có
là một đường trung tuyến. Biểu diễn vectơ
theo hai vectơ
và
.
Vì là trung điểm
nên
.
Cho hai vecto
và
biết
và
. Tính
.
Ta có:
Cho lục giác đều
tâm
. Ba vectơ bằng vectơ
là:
Ba vectơ bằng vectơ là:
,
,
.
Hình bình hành
tâm
. Khẳng định sai là:
Ta có: .
Chọn đáp án sai .
Cho ngũ giác
. Có bao nhiêu vectơ khác vectơ – không có điểm đầu và điểm cuối là đỉnh của ngũ giác đó?
,
,
,
,
.
Trong mặt phẳng tọa độ
cho ba điểm
Tính tích vô hướng ![]()
Ta có: ,
Gọi
lần lượt là trung điểm của các cạnh
của tam giác đều
. Đẳng thức nào sau đây đúng?
Ta có là đường trung bình của tam giác
.
Do đó
Trong hệ tọa độ
cho tam giác
có
Tìm tọa độ trọng tâm
của tam giác ![]()
Ta có
Cho tam giác
vuông cân tại
có
. Tính ![]()
Gọi là trung điểm
Ta có
Cho tam giác
có
là trọng tâm và
là trung điểm của
Đẳng thức nào sau đây đúng?
Vì là trung điểm của
suy ra
Ta có
Cho các vectơ
. Tính tích vô hướng của
.
Ta có ,
suy ra
.
Cho tam giác
đều có cạnh là 6. Tính
.
Hình vẽ minh họa
Gọi là trung điểm của
. Vì tam giác
đều có cạnh là 6, nên ta có
.
Xét tam giác vuông tại
, có
.
Suy ra
Mặt khác ta có:
.
Trong mặt phẳng tọa độ Oxy cho điểm C có tọa độ là C(‒2; ‒5). Biểu diễn vectơ
theo các vectơ đơn vị là
Điều kiện nào là điều kiện cần và đủ để
là trung điểm của đoạn thẳng
?
Điều kiện cần và đủ để là trung điểm của đoạn thẳng
là
.
Tính giá trị
biết rằng
?
Ta có:
Trong mặt phẳng tọa độ
cho hai vectơ
và
. Tính cosin của góc giữa hai vectơ
và ![]()
Ta có: .
Cho
và
. Xác định
sao cho
và
cùng phương.
Ta có
Để và
cùng phương
Cho tam giác
Có bao nhiêu vectơ khác vectơ - không có điểm đầu và điểm cuối là các đỉnh ![]()
Đó là các vectơ:
Cho tam giác ABC đều cạnh 2a. Đẳng thức nào sau đây là đúng?
Theo bài ra ta có:
Tam giác ABC đều cạnh 2a => AB = BC = AC = 2a
=>