Đề kiểm tra 45 phút Chương 5 Vectơ Sách CTST

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Vectơ gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho \overrightarrow{a}\overrightarrow{b} là hai vectơ cùng hướng và đều khác vectơ \overrightarrow{0}.Trong các kết quả sau đây,hãy chọn kết quả đúng.

    Ta thấy vế trái của 4 phương án giống nhau.

    Bài toán cho \overrightarrow{a}\overrightarrow{b} là hai vectơ cùng hướng và đều khác vectơ \overrightarrow{0} suy ra \left( \overrightarrow{a},\overrightarrow{b}
ight) = 0^{0}

    Do đó \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|.cos0^{o} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight| nên

  • Câu 2: Vận dụng

    Cho hình thoi ABCD cạnh a\widehat{BAD} = 60{^\circ}. Đẳng thức nào sau đây đúng?

    Vì tam giác BAD cân và \widehat{BAD} = 60{^\circ}, suy ra tam giác ABD đều cạnh a nên BD =
a\overset{}{ightarrow}\left| \overrightarrow{BD} ight| =
a.

  • Câu 3: Thông hiểu

    Gọi O là giao điểm hai đường chéo ACBD của hình bình hành ABCD. Đẳng thức nào sau đây là đẳng thức sai?

    Từ hình vẽ ta thấy đẳng thức sai là \overrightarrow{OA} =
\overrightarrow{OC}.

  • Câu 4: Nhận biết

    Trên đường thẳng MN lấy điểm P sao cho \overrightarrow{MN} = -
3\overrightarrow{MP}. Điểm P được xác định đúng trong hình vẽ nào sau đây:

    Ta có \overrightarrow{MN} = -
3\overrightarrow{MP} nên MN =
3MP\overrightarrow{MN}\overrightarrow{MP} ngược hướng.

  • Câu 5: Nhận biết

    Cho tam giác ABCAM là một đường trung tuyến. Biểu diễn vectơ \overrightarrow {AM} theo hai vectơ \overrightarrow {AB}\overrightarrow {AC}.

     Vì M là trung điểm BC nên \overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AM}  \Leftrightarrow \overrightarrow {AM}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC}.

  • Câu 6: Nhận biết

    Cặp vectơ nào sau đây vuông góc?

    \overrightarrow{a}.\overrightarrow{b}
= 2.( - 3) + ( - 1).4 = - 10 eq 0 suy ra đáp án \overrightarrow{a} = (2; - 1)\overrightarrow{b} = ( - 3;4) sai.

    \overrightarrow{a}.\overrightarrow{b}
= 3.( - 3) + ( - 4).4 = - 25 eq 0 suy ra đáp án \overrightarrow{a} = (3; - 4)\overrightarrow{b} = ( - 3;4) sai.

    \overrightarrow{a}.\overrightarrow{b}
= - 2.( - 6) - 3.4 = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{b} suy ra đáp án \overrightarrow{a} = ( - 2; - 3)\overrightarrow{b} = ( - 6;4) đúng.

    \overrightarrow{a}.\overrightarrow{b}
= 7.3 + ( - 3).( - 7) = 42 eq 0 suy ra đáp án \overrightarrow{a} = (7; - 3)\overrightarrow{b} = (3; - 7) sai.

  • Câu 7: Thông hiểu

    Cho ba điểm phân biệt A, B, C. Khẳng định nào sau đây đúng?

     Ta có:

    \overrightarrow{CA}-\overrightarrow{BA}=\overrightarrow{CB}e  \overrightarrow{BC} => Khẳng định sai

    \overrightarrow{AB}+\overrightarrow{CA}=\overrightarrow{CB} e\overrightarrow{BC} => Khẳng định sai

     \overrightarrow{AB}+\overrightarrow{CA}=\overrightarrow{CB} => Khẳng định đúng

    \overrightarrow{AB}-\overrightarrow{BC}e\overrightarrow{CA}=> Khẳng định sa

  • Câu 8: Thông hiểu

    Cho \overrightarrow{a}, \overrightarrow{b}không cùng phương, \overrightarrow{\ x\ } = - 2\ \overrightarrow{\ a\
\ } + \overrightarrow{\ b\ }. Vectơ cùng hướng với \overrightarrow{\ x\ \ } là:

    Ta có- \ \overrightarrow{\ a\ \ } +
\frac{1}{2}\overrightarrow{\ b\ } = \frac{1}{2}\left( - 2\
\overrightarrow{\ a\ \ } + \overrightarrow{\ b\ } ight) =
\frac{1}{2}\overrightarrow{\ x\ }. Chọn - \ \overrightarrow{\ a\ \ } +
\frac{1}{2}\overrightarrow{\ b\ }.

  • Câu 9: Nhận biết

    Cho ba điểm A,\
B,\ C phân biệt. Khi đó:

    Chọn: Điều kiện cần và đủ để A,\ B,\
C thẳng hàng là \overrightarrow{AB} cùng phương với \overrightarrow{AC}.

  • Câu 10: Nhận biết

    Tứ giác MNPQ là hình bình hành nếu:

    Hình vẽ minh họa

    Hoàn thành khẳng định

    Ta có MNPQ là hình bình hành nếu \overrightarrow {MN}  = \overrightarrow {QP}

  • Câu 11: Nhận biết

    Cho hai điểm A(4; - 1),B( - 2;5). Tọa độ trung điểm của đoạn AB là:

    Gọi M là trung điểm của đoạn thẳng AB. Khi đó tọa độ điểm M là:

    \left\{ \begin{matrix}x_{M} = \dfrac{4 + ( - 2)}{2} = 1 \\y_{M} = \dfrac{- 1 + 5}{2} = 2 \\\end{matrix} ight.\  \Rightarrow M(1;2)

  • Câu 12: Nhận biết

    Hai vectơ được gọi là bằng nhau khi và chỉ khi

    Hai vectơ được gọi là bằng nhau khi và chỉ khi chúng có cùng hướng và độ dài của chúng bằng nhau.

  • Câu 13: Nhận biết

    Cho 4 điểm A, B, C, D phân biệt. Khi đó \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} bằng

     \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} =\overrightarrow{AB}+\overrightarrow{BC}-(\overrightarrow{AD}+\overrightarrow{DC})=\overrightarrow{AC}-\overrightarrow{AC}=\overrightarrow{0}.

  • Câu 14: Thông hiểu

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} khác \overrightarrow{0}. Xác định góc \alpha giữa hai vectơ \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}.\overrightarrow{b} = - \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.

    \overrightarrow{a}.\overrightarrow{b} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.cos(\overrightarrow{a},\overrightarrow{b}) = - \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight| nên cos(\overrightarrow{a},\overrightarrow{b}) = - 1
\Rightarrow (\overrightarrow{a},\overrightarrow{b}) =
180^{o}.

  • Câu 15: Nhận biết

    Gọi O là tâm hình vuông ABCD. Tính \overrightarrow{OB} -
\overrightarrow{OC}.

    Ta có \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{CB} =
\overrightarrow{DA}.

  • Câu 16: Nhận biết

    Tìm tọa độ vecto \overrightarrow{AB} biết A(5;3),B(7;8)?

    Ta có:

    \overrightarrow{AB} = (7 - 5,8 - 3) =
(2;5)

  • Câu 17: Thông hiểu

    Trong hệ tọa độ Oxy, cho tam giác ABCA( -
2;2),\ B(3;5) và trọng tâm là gốc tọa độ O(0;0). Tìm tọa độ đỉnh C?

    Gọi C(x;y).

    O là trọng tâm tam giác ABC nên \left\{ \begin{matrix}
\frac{- 2 + 3 + x}{3} = 0 \\
\frac{2 + 5 + y}{3} = 0 \\
\end{matrix} ight.\ \overset{}{\leftrightarrow}\left\{ \begin{matrix}
x = - 1 \\
y = - 7 \\
\end{matrix} ight.\ .

  • Câu 18: Thông hiểu

    Trong mặt phẳng Oxy, cho \overrightarrow{a} = (2; - 1)\overrightarrow{b} = ( - 3;4). Khẳng định nào sau đây là sai?

    Ta có: \overrightarrow{a}.\overrightarrow{b} = 2.( - 3) +
( - 1).4 = - 10 eq 0 nên đáp án Tích vô hướng của hai vectơ đã cho là - 10 đúng.

    Ta có: \left| \overrightarrow{a} ight|
= \sqrt{2^{2} + ( - 1)^{2}} = \sqrt{5} nên đáp án Độ lớn của vectơ \overrightarrow{a}\sqrt{5} đúng.

    Ta có: \left| \overrightarrow{b} ight|
= \sqrt{( - 3)^{2} + 4^{2}} = 5 nên đáp án Độ lớn của vectơ \overrightarrow{b}5 đúng.

    Đáp án sai là Góc giữa hai vectơ là 90^{o}.

  • Câu 19: Nhận biết

    Cho hình bình hành ABCD, vectơ có điểm đầu và điểm cuối là các đỉnh của hình bình hành bằng với vectơ \overrightarrow{AB} là:

    Ta có ABCD là hình bình hành nên \left\{ \begin{matrix}
AB = CD \\
AB \parallel CD \\
\end{matrix} ight. do đó \overrightarrow{AB} =
\overrightarrow{DC}.

  • Câu 20: Thông hiểu

    Cho ngũ giác ABCDE. Có bao nhiêu vectơ khác vectơ – không có điểm đầu và điểm cuối là đỉnh của ngũ giác đó?

    \overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD},\overrightarrow{AE}, \overrightarrow{BA},\overrightarrow{BC},\overrightarrow{BD},\overrightarrow{BE}, \overrightarrow{CA},\overrightarrow{CB},\overrightarrow{CD},\overrightarrow{CE}, \overrightarrow{DA},\overrightarrow{DC},\overrightarrow{DB},\overrightarrow{DE}, \overrightarrow{EA},\overrightarrow{EC},\overrightarrow{EB},\overrightarrow{ED}.

  • Câu 21: Vận dụng cao

    Cho tam giác ABC đều cạnh a. Đường thẳng \Delta qua A và song song với BC, lấy điểm M \in \Delta. Tính giá trị nhỏ nhất của \left| \overrightarrow{CA} +
2\overrightarrow{MB} ight| khi M di động trên \Delta.

    Hình vẽ minh họa

    Kẻ hình bình hành ACBD. Gọi I là trung điểm BD, khi đó, ta có

    Ta có:

    \left| \overrightarrow{CA} +
2\overrightarrow{MB} ight| = \left| \overrightarrow{CA} + 2\left(
\overrightarrow{IB} - \overrightarrow{IM} ight) ight|

    = \left| \overrightarrow{CA} +
2\overrightarrow{IB} - 2\overrightarrow{IM} ight| = \left|
\overrightarrow{CA} + \overrightarrow{DB} - 2\overrightarrow{IM}
ight|

    = \left| \overrightarrow{CA} -
\overrightarrow{CA} - 2\overrightarrow{IM} ight|

    = 2\left| \overrightarrow{IM} ight|
\geq 2IH = 2.\frac{1}{2}.\frac{a\sqrt{3}}{2} =
\frac{a\sqrt{3}}{2}

    Dấu “=” xảy ra khi và chỉ khi M trùng với điểm H là hình chiếu vuông góc của điểm I trên đường thẳng \Delta.

  • Câu 22: Nhận biết

    Cho hình vuông ABCD, tính cos(\overrightarrow{AB},\overrightarrow{CA}).

     

    Vẽ \overrightarrow {CE}  = \overrightarrow {AB}.

    Ta có: \left( {\overrightarrow {AB} ,\overrightarrow {CA} } ight) = \left( {\overrightarrow {CE} ,\overrightarrow {CA} } ight) = 45^\circ  + 90^\circ  = 135^\circ\Rightarrow \cos 135^\circ  = \frac{{ - \sqrt 2 }}{2}.

     

  • Câu 23: Vận dụng cao

    Trong mặt phẳng tọa độ Oxy, cho tọa độ A(1; - 4),B(4;5),C(0; - 7). Một điểm M \in Ox bất kì. Tìm giá trị nhỏ nhất của biểu thức T = 2\left|
\overrightarrow{MA} + 2\overrightarrow{MB} ight| + 3\left|
\overrightarrow{MB} + \overrightarrow{MC} ight|?

    Ta có: M \in Ox \Rightarrow
M(x;0)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MA} = (1 - x; - 4) \\
\overrightarrow{MB} = (4 - x;5) \\
\overrightarrow{MC} = ( - x; - 7) \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{MA} + 2\overrightarrow{MB} = (9 - 3x;6) \\
\overrightarrow{MB} + \overrightarrow{MC} = (4 - 2x; - 2) \\
\end{matrix} ight.

    Ta có:

    T = 2\left| \overrightarrow{MA} +
2\overrightarrow{MB} ight| + 3\left| \overrightarrow{MB} +
\overrightarrow{MC} ight|

    = 2\sqrt{(9 - 3x)^{2} + 6^{2}} +
3\sqrt{(4 - 2x)^{2} + ( - 2)^{2}}

    = 6\left( \sqrt{(3 - x)^{2} + 2^{2}} +
\sqrt{(2 - x)^{2} + ( - 1)^{2}} ight) = 6(ME + MF)

    (Với E(3;2),F(2; - 1))

    Lại có: \overrightarrow{EF} = ( - 1; - 3)
\Rightarrow \left| \overrightarrow{EF} ight| = \sqrt{10}

    ME + MF \geq EF \Rightarrow T \geq
6\sqrt{10}

    Dấu đẳng thức xảy ra khi M là giao điểm của EF và Ox => M\left( \frac{7}{3};0 ight)

    Vậy biểu thức T đạt giá trị nhỏ nhất là 6\sqrt{10}.

  • Câu 24: Vận dụng

    Trong mặt phẳng tọa độ Oxy cho\overrightarrow{a} = (2;1),\overrightarrow{\ b} =
(3;4),\ \overrightarrow{c} = (7;2). Cho biết \overrightarrow{c} = m.\overrightarrow{a} +
n.\overrightarrow{b}. Khi đó

    Ta có: \overrightarrow{c} =m.\overrightarrow{a} + n.\overrightarrow{b} \Leftrightarrow \left\{\begin{matrix}7 = 2m + 3n \\2 = m + 4n \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \frac{22}{5} \ = - \frac{3}{5} \\\end{matrix} ight..

  • Câu 25: Thông hiểu

    Cho hai vecto \overrightarrow{a}\overrightarrow{b} biết |\overrightarrow{a}| = 4,|\overrightarrow{b}| =
5(\overrightarrow{a},\overrightarrow{b}) =
120^{\circ}. Tính |\overrightarrow{a} +
\overrightarrow{b}|.

    Ta có:

    \left|\overrightarrow{a} + \overrightarrow{b} ight| =\sqrt{(\overrightarrow{a} + \overrightarrow{b})^{2}} =\sqrt{{\overrightarrow{a}}^{2} + {\overrightarrow{b}}^{2} +2\overrightarrow{a}.\overrightarrow{b}}

    = \sqrt{|\overrightarrow{a}|^{2} +
|\overrightarrow{b}|^{2} +
2|\overrightarrow{a}||\overrightarrow{b}|cos(\overrightarrow{a},\overrightarrow{b})}
= \sqrt{21}.

  • Câu 26: Thông hiểu

    Cho tam giác ABC, có bao nhiêu điểm M thỏa \left|
\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} ight|
= 5?

    Gọi G là trọng tâm của tam giác ABC , ta có \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} = 3\overrightarrow{MG}.

    Thay vào ta được : \left|\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} ight|= 5\Leftrightarrow \left| 3\overrightarrow{MG} ight| = 5\Leftrightarrow MG = \frac{5}{3}, hay tập hợp các điểm M là đường tròn có tâm là trọng tâm của tam giác ABC và bán kính bằng \frac{5}{3} .

  • Câu 27: Nhận biết

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} đều khác vectơ \overrightarrow{0}. Tích vô hướng của \overrightarrow{a}\overrightarrow{b} được xác định bằng công thức nào dưới đây?

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} đều khác vectơ \overrightarrow{0}. Tích vô hướng của \overrightarrow{a}\overrightarrow{b} là một số, kí hiệu là \overrightarrow{a}.\overrightarrow{b}, được xác định bởi công thức sau:

    \overrightarrow{a}.\overrightarrow{b} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|\cos\left( \overrightarrow{a},\overrightarrow{b}
ight).

  • Câu 28: Vận dụng

    Cho hai điểm B,C phân biệt. Tập hợp những điểm M thỏa mãn \overrightarrow{CM}.\overrightarrow{CB} =
{\overrightarrow{CM}}^{2}

    Ta có: \overrightarrow{CM}.\overrightarrow{CB} =
{\overrightarrow{CM}}^{2} \Leftrightarrow
\overrightarrow{CM}.\overrightarrow{CB} - {\overrightarrow{CM}}^{2} =
0 \Leftrightarrow
\overrightarrow{CM}.\left( \overrightarrow{CB} - \overrightarrow{CM}
ight) = \overrightarrow{CM}.\overrightarrow{MB} = 0.

    Tập hợp điểm M là đường tròn đường kính BC.

  • Câu 29: Thông hiểu

    Cho 4 điểm A, B, C, D phân biệt. Khi đó \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} bằng

    Ta có:

    \begin{matrix}  \overrightarrow {AB}  - \overrightarrow {DC}  + \overrightarrow {BC}  - \overrightarrow {AD}  \hfill \\   = \left( {\overrightarrow {AB}  + \overrightarrow {BC} } ight) - \left( {\overrightarrow {DC}  + \overrightarrow {AD} } ight) \hfill \\   = \overrightarrow {AC}  - \overrightarrow {AC}  = \overrightarrow 0  \hfill \\ \end{matrix}

  • Câu 30: Vận dụng

    Cho đường tròn O và hai tiếp tuyến MT,\ \ MT' (TT' là hai tiếp điểm). Khẳng định nào sau đây đúng?

    Do MT,\ \ MT' là hai tiếp tuyến (TT' là hai tiếp điểm) nên MT = MT'.

  • Câu 31: Nhận biết

    Đẳng thức nào sau đây mô tả đúng hình vẽ bên:

     Nhận xét: \overrightarrow {AB}  =  - 3\overrightarrow {AI}  \Leftrightarrow \overrightarrow {AB}  + 3\overrightarrow {AI}  = \overrightarrow 0.

  • Câu 32: Vận dụng

    Cho tam giác OAB vuông cân tại O, cạnh OA =
a. Khẳng định nào sau đây sai?

    Dựa vào các đáp án, ta có nhận xét sau:

    \left| 3\ \overrightarrow{OA} + 4\
\overrightarrow{OB} ight| = 5a đúng, gọi C nằm trên tia đối của tia AO sao cho OC
= 3\ OA \Rightarrow 3\ \overrightarrow{OA} =
\overrightarrow{OC}.D nằm trên tia đối của tia BO sao cho OD = 4\ OB \Rightarrow 4\
\overrightarrow{OB} = \overrightarrow{OD}.Dựng hình chữ nhật OCED suy ra \overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{OE} (quy tắc hình bình hành).

    Ta có \left| 3\overrightarrow{OA} +
4\overrightarrow{OB} ight| = \left| \overrightarrow{OC} +
\overrightarrow{OD} ight| = \left| \overrightarrow{OE} ight| = OE =
CD = \sqrt{OC^{2} + OD^{2}} = 5a.

    \left| 2\ \overrightarrow{OA} ight| +
\left| 3\ \overrightarrow{OB} ight| = 5a đúng, vì \left| 2\ \overrightarrow{OA} ight| + \left| 3\
\overrightarrow{OB} ight| = 2\left| \overrightarrow{OA} ight| +
3\left| \overrightarrow{OB} ight| = 2a + 3a = 5a.

    \left| 7\ \overrightarrow{OA} - 2\
\overrightarrow{OB} ight| = 5a sai, xử lý tương tự như ở trên. Chọn đáp án này.

    \left| 11\ \overrightarrow{OA} ight| -
\left| 6\ \overrightarrow{OB} ight| = 5a đúng, vì \left| 11\ \overrightarrow{OA} ight| - \left| 6\
\overrightarrow{OB} ight| = 11\left| \overrightarrow{OA} ight| -
6\left| \overrightarrow{OB} ight| = 11a - 6a = 5a.

  • Câu 33: Thông hiểu

    Cho tam giác ABCM là trung điểm của BC,\ \ \ I là trung điểm của AM. Khẳng định nào sau đây đúng?

    M là trung điểm BC nên \overrightarrow{AB} + \overrightarrow{AC} = 2\
\overrightarrow{AM}. (1) Mặt khác I là trung điểm AM nên 2\
\overrightarrow{AI} = \overrightarrow{AM}. (2)

    Từ (1),\ \ (2) suy ra \overrightarrow{AB} + \overrightarrow{AC} = 4\
\overrightarrow{AI} \Leftrightarrow \overrightarrow{AI} =
\frac{1}{4}\left( \overrightarrow{AB} + \overrightarrow{AC}
ight).

  • Câu 34: Nhận biết

    Cho tam giác ABC đều cạnh a. Mệnh đề nào sau đây đúng?

    Độ dài các cạnh của tam giác là a thì độ dài các vectơ \left| \overrightarrow{AB} ight| = \left|
\overrightarrow{BC} ight| = \left| \overrightarrow{CA} ight| =
a.

  • Câu 35: Thông hiểu

    Cho lục giác đều ABCDEF có tâm O. Đẳng thức nào sau đây sai?

    Đẳng thức sai là \overrightarrow{OB} =
\overrightarrow{OE}.

  • Câu 36: Thông hiểu

    Cho hình bình hành ABCD, điểm M thỏa mãn: 4\overrightarrow{AM} = \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AC}. Khi đó điểm M là:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{AB} + \overrightarrow{AD}
+ \overrightarrow{AC} = \overrightarrow{AC} + \overrightarrow{AC} =
2\overrightarrow{AC} = 4\overrightarrow{AM}

  • Câu 37: Nhận biết

    Cho hình bình hành ABCD tâm O. Khi đó \overrightarrow{OA}+\overrightarrow{BO} bằng:

     

    Ta có: \overrightarrow {BO}  + \overrightarrow {OA}  = \overrightarrow {BA}  = \overrightarrow {CD}

  • Câu 38: Thông hiểu

    Cho \overrightarrow{u} = 2\overrightarrow{i} -
\overrightarrow{j}\overrightarrow{v} = \overrightarrow{i} +
x\overrightarrow{j}. Xác định x sao cho \overrightarrow{u}\overrightarrow{v} cùng phương.

    Ta có \left\{ \begin{matrix}
\overrightarrow{u} = 2\overrightarrow{i} -
\overrightarrow{j}\overset{}{ightarrow}\overrightarrow{u} = (2;\ \  -
1) \\
\overrightarrow{v} = \overrightarrow{i} +
x\overrightarrow{j}\overset{}{ightarrow}\overrightarrow{v} = (1;\ \ x)
\\
\end{matrix} ight.\ .

    Để \overrightarrow{u}\overrightarrow{v} cùng phương \Leftrightarrow \frac{1}{2} = \frac{x}{- 1}
\Leftrightarrow x = - \frac{1}{2}.

  • Câu 39: Nhận biết

    Trong hệ tọa độ Oxy, cho A(5;2),\ B(10;8). Tìm tọa độ của vectơ \overrightarrow{AB}?

    Ta có \overrightarrow{AB} =
(5;6).

  • Câu 40: Vận dụng cao

    Cho hình thang vuông ABCD\widehat{A} = \widehat{D} = 90^{0}. Tính độ dài vectơ \overrightarrow{\alpha} =
\overrightarrow{DA} + \overrightarrow{DB} +
\overrightarrow{DC}, biết AB = AD =
2,CD = 4.

    Hình vẽ minh họa

    Dựng hình bình hành ADBM ta có: \overrightarrow{DA} + \overrightarrow{DB} =
\overrightarrow{DM}

    Do BM//DA nên BM\bot DC tại H,

    Tứ giác ADBH là hình vuông nên BH =
2, ta cũng tính được MH =
4.

    Dựng hình bình hành DMNC ta có: \overrightarrow{DA} + \overrightarrow{DB} +
\overrightarrow{DC} = \overrightarrow{DN}.

    Gọi K là hình chiếu vuông góc của N lên DC. Ta chứng minh được HMNK là hình vuông.

    \Rightarrow HK = NK = 4,DK =
6

    Ta có: DN = \sqrt{DK^{2} + KN^{2}} =
2\sqrt{13}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 5 Vectơ Sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 23 lượt xem
Sắp xếp theo