Đề kiểm tra 45 phút Chương 5 Vectơ Sách CTST

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Vectơ gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho \overrightarrow{a} = ( - 1;2),\ \overrightarrow{b}
= (5; - 7). Tìm tọa độ của vectơ \overrightarrow{a} -
\overrightarrow{b}.

    Ta có \overrightarrow{a} -
\overrightarrow{b} = \left( - 1 - 5;2 - ( - 7) ight) = ( -
6;9).

  • Câu 2: Nhận biết

    Biết \overrightarrow{a},\overrightarrow{b}eq \overrightarrow{0}\overrightarrow{a}\times \overrightarrow{b}=-|\overrightarrow{a}|\times |\overrightarrow{b}|. Câu nào sau đây đúng?

     Ta có:

    \begin{matrix}  \vec a.\vec b =  - |\vec a|.|\vec b| = |\vec a|.|\vec b|.\cos {180^0} \hfill \\   \Rightarrow \left( {\vec a,\vec b} ight) = {180^0} \hfill \\ \end{matrix}

    => \overrightarrow{a}\overrightarrow{b} ngược hướng.

  • Câu 3: Nhận biết

    Cho hình vuông ABCD, tính cos(\overrightarrow{AB},\overrightarrow{CA}).

     

    Vẽ \overrightarrow {CE}  = \overrightarrow {AB}.

    Ta có: \left( {\overrightarrow {AB} ,\overrightarrow {CA} } ight) = \left( {\overrightarrow {CE} ,\overrightarrow {CA} } ight) = 45^\circ  + 90^\circ  = 135^\circ\Rightarrow \cos 135^\circ  = \frac{{ - \sqrt 2 }}{2}.

     

  • Câu 4: Thông hiểu

    Cho hình vuông ABCD. Khẳng định nào sau đậy đúng?

    Ta có tứ giác ABCD là hình vuông nên AD = CB hay \left| \overrightarrow{AD} ight| = \left|
\overrightarrow{CB} ight| nên phương án \left| \overrightarrow{AD} ight| = \left|
\overrightarrow{CB} ight|đúng.

  • Câu 5: Nhận biết

    Tính giá trị \overrightarrow{a}.\overrightarrow{b} biết rằng \overrightarrow{a} = (1; -
3),\overrightarrow{b} = (2;5)?

    Ta có:

    \overrightarrow{a}.\overrightarrow{b} =
1.2 + ( - 3).5 = - 13

  • Câu 6: Nhận biết

    Trong mặt phẳng tọa độ Oxy cho P( -
3;1),Q(6; - 4). Xác định tọa độ trọng tâm H của tam giác OPQ?

    Vì H là trọng tâm tam giác OPQ nên ta có:

    \left\{ \begin{matrix}x_{H} = \dfrac{x_{O} + x_{P} + x_{Q}}{3} \\y_{H} = \dfrac{y_{O} + y_{P} + y_{Q}}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{H} = \dfrac{0 - 3 + 6}{3} = 1 \\y_{H} = \dfrac{0 + 1 - 4}{3} = - 1 \\\end{matrix} ight.

    \Leftrightarrow H(1; - 1)

    Vậy trọng tâm tam giác cần tìm là H(1; - 1).

  • Câu 7: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A(3; - 1),B(2;10),C( - 4;2). Tính tích vô hướng \overrightarrow{AB}.\overrightarrow{AC}.

    Ta có: \overrightarrow{AB} = ( -
1;11),\overrightarrow{AC} = ( -
7;3) \Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=40.

  • Câu 8: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho vectơ \overrightarrow{a} = (9;3). Vectơ nào sau đây không vuông góc với vectơ \overrightarrow{a}?

    \overrightarrow{a}.\overrightarrow{v_{1}} = 9.1 +
3.( - 3) = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{v_{1}} nên đáp án \overrightarrow{v_{1}} = (1; - 3) đúng.

    \overrightarrow{a}.\overrightarrow{v_{2}} = 9.2 +
3.( - 6) = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{v_{2}} nên đáp án \overrightarrow{v_{2}} = (2; - 6) đúng.

    \overrightarrow{a}.\overrightarrow{v_{3}} = 9.1 +
3.3 = 18 eq 0 nên đáp án \overrightarrow{v_{3}} = (1;3) sai.

    \overrightarrow{a}.\overrightarrow{v_{1}} = 9.( -
1) + 3.3 = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{v_{4}} nên đáp án \overrightarrow{v_{4}} = ( - 1;3) đúng.

  • Câu 9: Vận dụng

    Trong mặt phẳng Oxy cho A( - 1;1), B(1;3), C(1;
- 1). Khẳng định nào sau đây đúng.

    Do \overrightarrow{AB} = (2;2) nên loại đáp án \overrightarrow {AB}=(-4;2).

    Do\overrightarrow{AB} =
(2;2),\overrightarrow{BC} = (0; -
4),\overrightarrow{AB}.\overrightarrow{BC} = -
8 suy ra\overrightarrow{AB} không vuông góc \overrightarrow{BC} nên loại đáp án \overrightarrow{AB}\bot\overrightarrow{BC}.

    Ta có \overrightarrow{AB} =
(2;2), \overrightarrow{AC} = (2; -
2), \overrightarrow{BC} = (0; -
4), suy ra AB = AC =
\sqrt{8}, \overrightarrow{AB}.\overrightarrow{AC} =
0. Do đó tam giác ABC vuông cân tại A.

  • Câu 10: Thông hiểu

    Cho hình bình hành ABCD. Tính \overrightarrow{AB} theo \overrightarrow{AC}\overrightarrow{BD}.

    ABCD là hình bình hành nên \overrightarrow{CB} + \overrightarrow{AD} =
\overrightarrow{0}.Ta có \left\{
\begin{matrix}
\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB} \\
\overrightarrow{AB} = \overrightarrow{AD} + \overrightarrow{DB} \\
\end{matrix} ight.

    = > 2\overrightarrow{AB} =
\overrightarrow{AC} + \overrightarrow{DB} + \left( \overrightarrow{CB} +
\overrightarrow{AD} ight) = \overrightarrow{AC} +
\overrightarrow{DB}\overset{}{ightarrow}\overrightarrow{AB} =
\frac{1}{2}\overrightarrow{AC} +
\frac{1}{2}\overrightarrow{BD}.

  • Câu 11: Nhận biết

    Cho ba điểm phân biệt A,\ \ B,\ \ C. Mệnh đề nào sau đây đúng?

    Đáp án AB + BC = AC. chỉ đúng khi ba điểmA,\ \ B,\ \ C thẳng hàng và B nằm giữaA,\ \ C.

    Đáp án \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}. đúng theo quy tắc ba điểm. Chọn đáp án này.

  • Câu 12: Thông hiểu

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} không cùng phương. Hai vectơ nào sau đây cùng phương?

    Ta có \frac{1}{2}\overrightarrow{a} -
\overrightarrow{b} = - \left( - \frac{1}{2}\overrightarrow{a} +
\overrightarrow{b} ight) nên chọn đáp án \frac{1}{2}\overrightarrow{a} -
\overrightarrow{b}-
\frac{1}{2}\overrightarrow{a} + \overrightarrow{b}.

  • Câu 13: Nhận biết

    Cho tam giác ABC có trọng tâm G và trung tuyến AM. Khẳng định nào sau đây là sai.

    Ta có AM = 3MG

    Mặt khác \overrightarrow{AM}\overrightarrow{MG} ngược hướng \mathbf{\Rightarrow}\overrightarrow{AM} = -
3\overrightarrow{MG}.

  • Câu 14: Nhận biết

    Cho ba điểm phân biệt M,N,P. Có bao nhiêu vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm M,N,P đã cho?

    Các vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm M,N,P đã cho là

    \overrightarrow{MN},\overrightarrow{NM},\overrightarrow{MP},\overrightarrow{PM},\overrightarrow{NP},\overrightarrow{PN}.

  • Câu 15: Thông hiểu

    Cho hình chữ nhật ABCD. Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\left| \overrightarrow{AB} - \overrightarrow{AD} ight| = \left|
\overrightarrow{DB} ight| = BD \\
\left| \overrightarrow{AB} + \overrightarrow{AD} ight| = \left|
\overrightarrow{AC} ight| = AC \\
\end{matrix} ight.\ .

    BD = AC \Rightarrow \left|
\overrightarrow{AB} - \overrightarrow{AD} ight| = \left|
\overrightarrow{AB} + \overrightarrow{AD} ight|.

  • Câu 16: Nhận biết

    Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:

     Ta có: \overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{0} (2 vectơ đối nhau).

  • Câu 17: Vận dụng

    Trong hệ tọa độ Oxy, cho A( -
1;5),\ B(5;5),\ C( - 1;11). Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (6;0) \\
\overrightarrow{AC} = (0;6) \\
\end{matrix} ight.\ \overset{}{ightarrow}6.6 eq
0.0\overset{}{ightarrow}\overrightarrow{AB},\
\overrightarrow{AC} không cùng phương.

  • Câu 18: Vận dụng cao

    Cho hình vuông ABCD cạnh a. Gọi M là trung điểm của AB, lấy các điểm P,Q,R lần lượt là các điểm thay đổi trên các cạnh BC,AC,AD sao cho \widehat{PMR} = 90^{0}. Tìm giá trị nhỏ nhất của biểu thức \left|\overrightarrow{MP} + \overrightarrow{MQ} + \overrightarrow{MR}ight|.

    Hình vẽ minh họa

    Tìm giá trị nhỏ nhất của biểu thức

    Đặt \left| {\overrightarrow {AR} } ight| = x;\left| {\overrightarrow {BP} } ight| = y;\left| {\overrightarrow {ME} } ight| = z;\left| {\overrightarrow {EQ} } ight| = t

    Khi đó \Delta AMR\sim\Delta BPM

    \Rightarrow \left\{ \begin{matrix}xy = \dfrac{a^{2}}{4} \\x + y \geq 2\sqrt{xy} = a \\\end{matrix} ight.

    Dấu bằng xảy ra khi và chỉ khi x =y hay P, Q là trung điểm của BC, DA

    Ta có:

    \left| \overrightarrow{MP} +\overrightarrow{MQ} + \overrightarrow{MR} ight|^{2} = (x + y + z)^{2}+ t^{2} \geq (1 + z)^{2} + t^{2} = \left| \overrightarrow{MH}ight|

    Khi P ≡ P∗, R ≡ R∗, Q thay đổi trên AC, H sẽ thay đổi trên đoạn thẳng DK sao cho tam giác DCK vuông cân tại C.

    Ta lại có: \widehat{MDH} \approx 108^{0}\Rightarrow MH \geq MD = \frac{a\sqrt{5}}{2}

  • Câu 19: Nhận biết

    Trên mặt phẳng tọa độ Oxy, cho các điểm A(1;2), B(-1;3), C(-2;1). Chọn khẳng định đúng.

    Biểu diễn các điểm trên hệ trục tọa độ như sau:

    Chọn khẳng định đúng

    Ta có:

    \begin{matrix}  \overrightarrow {OA}  = \left( {1,2} ight) \hfill \\  \overrightarrow {BC}  = \left( { - 2 + 1,1 - 3} ight) = \left( { - 1, - 2} ight) =  - 1.\left( {1,2} ight) =  - 1.\overrightarrow {OA}  \hfill \\ \end{matrix}

    Vậy hai vectơ \overrightarrow{OA},\overrightarrow{BC} cùng phương, ngược hướng.

  • Câu 20: Thông hiểu

    Cho ba vectơ \overrightarrow{a} = (2;1),\ \overrightarrow{b} =
(3;4),\ \overrightarrow{c} = (7;2). Giá trị của k,\ h để \overrightarrow{c} = k.\overrightarrow{a} +
h.\overrightarrow{b}

    Ta có \left. \ \begin{matrix}k.\overrightarrow{a} = (2k;k) \\h.\overrightarrow{b} = (3h;4h) \\\end{matrix} ight\}\overset{}{ightarrow}k.\overrightarrow{a} +h.\overrightarrow{b} = (2k + 3h;k + 4h).

    Theo đề bài: \overrightarrow{c} =k.\overrightarrow{a} + h.\overrightarrow{b} \Leftrightarrow \left\{\begin{matrix}7 = 2k + 3h \\2 = k + 4h \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}k = 4,4 \\h = - 0,6 \\\end{matrix} ight.\ .

  • Câu 21: Vận dụng

    Cho tam giác ABC và điểm M thỏa mãn điều kiện \overrightarrow{MA} - \overrightarrow{MB} +
\overrightarrow{MC} = \overrightarrow{0}. Mệnh đề nào sau đây sai?

    Ta có \overrightarrow{MA} -
\overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}
\Leftrightarrow \overrightarrow{BA} + \overrightarrow{MC} =
\overrightarrow{0} \Leftrightarrow \overrightarrow{MC} =
\overrightarrow{AB}

    \Rightarrow MABC là hình bình hành \Rightarrow \overrightarrow{MA} =
\overrightarrow{CB}.

    Do đó \overrightarrow{MA} =
\overrightarrow{BC} sai.

  • Câu 22: Nhận biết

    Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?

    Áp dụng quy tắc hình bình hành tại điểm B ta có:

    \overrightarrow{BC}+\overrightarrow{BA}=\overrightarrow{BD}

  • Câu 23: Nhận biết

    Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?

     

    Ta có: \overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}+\overrightarrow{OD} \Leftrightarrow \overrightarrow{OA}-\overrightarrow{OC}=\overrightarrow{OD}-\overrightarrow{OB}\Leftrightarrow \overrightarrow{CA}= \overrightarrow{BD} (Sai).

  • Câu 24: Nhận biết

    Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?

    Ta có: ABCD là hình bình hành tâm O

    => OA = OC, OB = OD

    \begin{matrix}   \Rightarrow \left\{ \begin{gathered}  \overrightarrow {MA}  + \overrightarrow {MC}  = 2\overrightarrow {MO}  \hfill \\  \overrightarrow {MB}  + \overrightarrow {MD}  = 2\overrightarrow {MO}  \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MO}  \hfill \\ \end{matrix}

  • Câu 25: Thông hiểu

    Cho tam giác ABC. Tập hợp các điểm M thỏa mãn \overrightarrow{MA}\times \overrightarrow{BC}=0 là:

     Vì \overrightarrow {MA} .\overrightarrow {BC}  = 0, mà A,B,C cố định nên suy ra tập hợp M là đường thẳng đi qua A và vuông góc với BC.

  • Câu 26: Vận dụng

    Gọi AN,\
CM là các trung tuyến của tam giác ABC. Đẳng thức nào sau đây đúng?

    Ta có \overrightarrow{AN} =
\frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{AC} ight) =
\frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC}

    \overrightarrow{CM} =
\overrightarrow{CA} + \overrightarrow{AM} \Rightarrow
\frac{1}{2}\overrightarrow{CM} = \frac{1}{2}\overrightarrow{CA} +
\frac{1}{2}\overrightarrow{AM}

    Suy ra \overrightarrow{AN} +\frac{1}{2}\overrightarrow{CM} = \frac{1}{2}\overrightarrow{AB} +\frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{CA} +\frac{1}{2}\overrightarrow{AM}= \frac{1}{2}\overrightarrow{AB} +\frac{1}{2}\overrightarrow{AC} - \frac{1}{2}\overrightarrow{AC} +\frac{1}{2} \cdot \frac{1}{2}\overrightarrow{AB} =\frac{3}{4}\overrightarrow{AB}

    Do đó \overrightarrow{AB} =
\frac{4}{3}\overrightarrow{AN} +
\frac{2}{3}\overrightarrow{CM}.

  • Câu 27: Vận dụng cao

    Trong mặt phẳng tọa độ Oxy, cho tọa độ A(1; - 4),B(4;5),C(0; - 7). Một điểm M \in Ox bất kì. Tìm giá trị nhỏ nhất của biểu thức T = 2\left|
\overrightarrow{MA} + 2\overrightarrow{MB} ight| + 3\left|
\overrightarrow{MB} + \overrightarrow{MC} ight|?

    Ta có: M \in Ox \Rightarrow
M(x;0)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MA} = (1 - x; - 4) \\
\overrightarrow{MB} = (4 - x;5) \\
\overrightarrow{MC} = ( - x; - 7) \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{MA} + 2\overrightarrow{MB} = (9 - 3x;6) \\
\overrightarrow{MB} + \overrightarrow{MC} = (4 - 2x; - 2) \\
\end{matrix} ight.

    Ta có:

    T = 2\left| \overrightarrow{MA} +
2\overrightarrow{MB} ight| + 3\left| \overrightarrow{MB} +
\overrightarrow{MC} ight|

    = 2\sqrt{(9 - 3x)^{2} + 6^{2}} +
3\sqrt{(4 - 2x)^{2} + ( - 2)^{2}}

    = 6\left( \sqrt{(3 - x)^{2} + 2^{2}} +
\sqrt{(2 - x)^{2} + ( - 1)^{2}} ight) = 6(ME + MF)

    (Với E(3;2),F(2; - 1))

    Lại có: \overrightarrow{EF} = ( - 1; - 3)
\Rightarrow \left| \overrightarrow{EF} ight| = \sqrt{10}

    ME + MF \geq EF \Rightarrow T \geq
6\sqrt{10}

    Dấu đẳng thức xảy ra khi M là giao điểm của EF và Ox => M\left( \frac{7}{3};0 ight)

    Vậy biểu thức T đạt giá trị nhỏ nhất là 6\sqrt{10}.

  • Câu 28: Thông hiểu

    Cho hai lực \overrightarrow{F_1}\overrightarrow{F_2} có cùng điểm đặt O và vuông góc với nhau. Cường độ của hai lực \overrightarrow{F_1}\overrightarrow{F_2} lần lượt là 80N và 60N. Cường độ tổng hợp lực của hai lực đó là:

     

    Ta có: \left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } ight| = \sqrt {{{80}^2} + {{60}^2}}  = 100N.

  • Câu 29: Nhận biết

    Cho hình bình hành ABCD tâm O. Khi đó \overrightarrow{OA}+\overrightarrow{BO} bằng:

     

    Ta có: \overrightarrow {BO}  + \overrightarrow {OA}  = \overrightarrow {BA}  = \overrightarrow {CD}

  • Câu 30: Vận dụng

    Cho \overrightarrow{AB} eq
\overrightarrow{0} và một điểm C. Có bao nhiêu điểm D thỏa mãn \left| \overrightarrow{AB} ight| = \left|
\overrightarrow{CD} ight|\ ?

    Ta có \left| \overrightarrow{AB} ight|
= \left| \overrightarrow{CD} ight| \Leftrightarrow AB = CD. Suy ra tập hợp các điểm D thỏa mãn yêu cầu bài toán là đường tròn tâm C, bán kính AB.

  • Câu 31: Nhận biết

    Cho \overrightarrow{a} = (3; - 4),\ \overrightarrow{b}
= ( - 1;2). Tìm tọa độ của vectơ \overrightarrow{a} +
\overrightarrow{b}.

    Ta có \overrightarrow{a} +
\overrightarrow{b} = \left( 3 + ( - 1); - 4 + 2 ight) = (2; -
2).

  • Câu 32: Thông hiểu

    Gọi M,\
N lần lượt là trung điểm các cạnh AD,\ BC của tứ giác ABCD. Đẳng thức nào sau đây sai?

    Do M là trung điểm các cạnh AD nên \overrightarrow{MD} + \overrightarrow{MA} =
\overrightarrow{0}

    Do N lần lượt là trung điểm các cạnh BC nên 2\overrightarrow{MN} = \overrightarrow{MC} +
\overrightarrow{MB}. Nên \overrightarrow{MB} + \overrightarrow{MC} =
2\overrightarrow{MN} đúng.

    Ta có

    2\overrightarrow{MN} =\overrightarrow{MC} + \overrightarrow{MB}= \overrightarrow{MD} +\overrightarrow{DC} + \overrightarrow{MA} + \overrightarrow{AB}=\overrightarrow{AB} + \overrightarrow{DC} + \left( \overrightarrow{MD} +\overrightarrow{MA} ight) = \overrightarrow{AB} +\overrightarrow{DC}

    Vậy \overrightarrow{AB} +
\overrightarrow{DC} = 2\overrightarrow{MN}. Nên \overrightarrow{AB} + \overrightarrow{DC} =
2\overrightarrow{MN} đúng.

    \overrightarrow{AB} +\overrightarrow{DC} = \overrightarrow{AC} + \left( \overrightarrow{CB} +\overrightarrow{DC} ight)= \overrightarrow{AC} + \overrightarrow{DB}= 2\overrightarrow{MN}. Nên \overrightarrow{AC} + \overrightarrow{DB} =
2\overrightarrow{MN} đúng.

    Vậy \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} sai.

  • Câu 33: Thông hiểu

    Cho lục giác đều ABCDEF tâm O. Ba vectơ bằng vectơ \overrightarrow{BA} là:

    Ba vectơ bằng vectơ \overrightarrow{BA} là: \overrightarrow{DE}, \overrightarrow{CO}, \overrightarrow{OF}.

  • Câu 34: Thông hiểu

    Cho tam giác ABC vuông cân tại AAB =
a. Tính \left| \overrightarrow{AB}
+ \overrightarrow{AC} ight|.

    Gọi M là trung điểm BC\overset{}{ightarrow}AM =
\frac{1}{2}BC.

    Ta có \left| \overrightarrow{AB} +
\overrightarrow{AC} ight| = \left| 2\overrightarrow{AM} ight| = 2AM
= BC = a\sqrt{2}.

  • Câu 35: Thông hiểu

    Trong hệ tọa độ Oxy, cho tọa độ bốn điểm A(1;2),B( - 1;3), C( - 2; - 1),D(0; - 2). Chọn khẳng định đúng?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AD} = ( - 1; - 4) \\
\overrightarrow{BC} = ( - 1; - 4) \\
\end{matrix} ight.. Vậy ABCD là hình bình hành.

  • Câu 36: Nhận biết

    Cho hai vectơ không cùng phương \overrightarrow{a}\overrightarrow{b}. Mệnh đề nào sau đây đúng?

    Mệnh đề đúng là: "Có một vectơ cùng phương với cả hai vectơ \overrightarrow{a}\overrightarrow{b}, đó là \overrightarrow{0}."

  • Câu 37: Thông hiểu

    Cho lục giác đều ABCDEF tâm O. Số các vectơ khác vectơ - không, cùng phương với \overrightarrow{OC} có điểm đầu và điểm cuối là các đỉnh của lục giác là

    Đó là các vectơ: \overrightarrow{AB},\ \
\overrightarrow{BA},\ \ \overrightarrow{DE},\ \ \overrightarrow{ED},\ \
\overrightarrow{FC},\ \ \overrightarrow{CF}. Chọn 6.

  • Câu 38: Vận dụng cao

    Cho hình bình hành ABCD. Lấy hai điểm M,N sao cho \overrightarrow{CM} =
\frac{1}{2}\overrightarrow{CB};\overrightarrow{CN} =
\frac{1}{3}\overrightarrow{CD}, lấy tiếp hai điểm I,J sao cho \overrightarrow{CI} =
x\overrightarrow{CD};\overrightarrow{BJ} =
y\overrightarrow{BI}. Để J là trọng tâm tam giác AMN thì x,y thỏa mãn điều kiện nào sau đây:

    Hình vẽ minh họa

    Tìm điều kiện của x và y

    \overrightarrow{JA} +
\overrightarrow{JM} + \overrightarrow{JN} = \overrightarrow{BA} -
\overrightarrow{BJ} + \overrightarrow{JB} + \overrightarrow{BM} +
\overrightarrow{JI} + \overrightarrow{IN}

    = \overrightarrow{BA} -
2\overrightarrow{BJ} + \frac{\overrightarrow{BC}}{2} +
\overrightarrow{BI} - \overrightarrow{BJ} + \overrightarrow{CN} -
\overrightarrow{CI}

    = \overrightarrow{BA} +
\frac{\overrightarrow{BC}}{2} + ( - 3y + 1).\overrightarrow{BI} +
\overrightarrow{CN} - \overrightarrow{CI}

    = \overrightarrow{BA} +
\frac{\overrightarrow{BC}}{2} + ( - 3y + 1).\left( \overrightarrow{BC} +
\overrightarrow{CI} ight) + \overrightarrow{CN} -
\overrightarrow{CI}

    = \overrightarrow{BA} + \left(
\frac{3}{2} - 3y ight)\left( \overrightarrow{AC} - \overrightarrow{AB}
ight) + \overrightarrow{CN} - 3y.\overrightarrow{CI}

    = \overrightarrow{BA} + \left(
\frac{3}{2} - 3y ight)\left( \overrightarrow{AC} - \overrightarrow{AB}
ight) + \frac{1}{3}\overrightarrow{CD} -
3xy.\overrightarrow{CD}

    = \overrightarrow{BA} + \left(
\frac{3}{2} - 3y ight)\left( \overrightarrow{AC} - \overrightarrow{AB}
ight) + \left( \frac{1}{3} - 3xy
ight).\overrightarrow{BA}

    = \left( - \frac{17}{6} + 3y + 3xy
ight).\overrightarrow{AB} + \left( \frac{3}{2} - 3y
ight).\overrightarrow{AC}

    Để J là trọng tâm tam giác AMN thì

    \overrightarrow{JA} +
\overrightarrow{JM} + \overrightarrow{JN} =
\overrightarrow{0}

    \Leftrightarrow \left( - \frac{17}{6} +
3y + 3xy ight).\overrightarrow{AB} + \left( \frac{3}{2} - 3y
ight).\overrightarrow{AC} = \overrightarrow{0}

    Mặt khác do \overrightarrow{AB};\overrightarrow{AC} không cùng phương nên ta suy ra:

    \left\{ \begin{matrix}- \dfrac{17}{6} + 3y + 3xy = 0 \\\dfrac{3}{2} - 3y = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = \dfrac{8}{9} \\y = \dfrac{1}{2} \\\end{matrix} ight.

    Vậy với x = \frac{8}{9};y =
\frac{1}{2} thì điểm J là trọng tâm tam giác AMN.

  • Câu 39: Nhận biết

    Vectơ có điểm đầu là D, điểm cuối là E được kí hiệu là

    Vectơ có điểm đầu là D, điểm cuối là E được kí hiệu là \overrightarrow{DE}.

  • Câu 40: Thông hiểu

    Cho \overrightarrow{u} = (3; - 2),\ \overrightarrow{v}
= (1;6). Khẳng định nào sau đây là đúng?

    Ta có \overrightarrow{u} +
\overrightarrow{v} = (4;4)\overrightarrow{u} - \overrightarrow{v} = (2; -
8).

    Xét tỉ số \frac{4}{- 4} eq
\frac{4}{4}\overset{}{ightarrow}\overrightarrow{u} +
\overrightarrow{v}\overrightarrow{a} = ( - 4;4) không cùng phương. Loại \overrightarrow{u} +
\overrightarrow{v}\overrightarrow{a} = ( - 4;4) ngược hướng.

    Xét tỉ số \frac{3}{1} eq \frac{-
2}{6}\overset{}{ightarrow}\overrightarrow{u},\
\overrightarrow{v} không cùng phương. Loại \overrightarrow{u},\ \overrightarrow{v} cùng phương.

    Xét tỉ số \frac{2}{6} = \frac{- 8}{- 24}
= \frac{1}{3} > 0\overset{}{ightarrow}\overrightarrow{u} -
\overrightarrow{v}\overrightarrow{b} = (6; - 24) cùng hướng. Chọn \overrightarrow{u} -
\overrightarrow{v}\overrightarrow{b} = (6; - 24) cùng hướng.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 5 Vectơ Sách CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 24 lượt xem
Sắp xếp theo