Cho tam giác với
là trung điểm
Mệnh đề nào sau đây đúng?
Xét đáp án Ta có
(theo quy tắc ba điểm).
Chọn đáp án này.
Cho tam giác với
là trung điểm
Mệnh đề nào sau đây đúng?
Xét đáp án Ta có
(theo quy tắc ba điểm).
Chọn đáp án này.
Cho ba điểm phân biệt. Khẳng định nào sau đây đúng?
Xét đáp án Ta có
. Vậy đáp án này đúng.
Cho hai điểm và
phân biệt. Điều kiện để
là trung điểm
là:
Điều kiện để là trung điểm
là:
Trong mặt phẳng tọa độ , khoảng cách giữa hai điểm
và
bằng:
Khoảng cách giữa hai điểm M, N là
Cho tam giác ABC có AK, BM là trung tuyến. Cho . Tính
.
.
Cho hình thoi ABCD tâm O, cạnh bằng a và . Kết luận nào sau đây là đúng?
Hình vẽ minh họa
Ta có: ABCD là hình thoi
=>
Áp dụng định lí cosin trong tam giác ADC ta có:
Cho tam giác và đặt
Cặp vectơ nào sau đây cùng phương?
Dễ thấy hai vectơ
cùng phương.
Biết và
. Câu nào sau đây đúng?
Ta có: .
Suy ra và
ngược hướng.
Cho hình thoi có
. Tính
.
Vì nên
.
Hãy chọn kết quả đúng khi phân tích vectơ theo hai vectơ
và
của tam giác
với trung tuyến
.
Do là trung điểm của
nên ta có
.
Trong mặt phẳng Oxy, cho hai điểm A(1; 2) và B(–2; 3). Gọi B’ là điểm đối xứng của B qua A. Tọa độ điểm B’ là:
Vì B' đối xứng với B qua A => A là trung điểm của BB'
Trong mặt phẳng tọa độ , cho tọa độ các điểm
. Tìm tọa độ điểm
sao cho ba điểm
thẳng hàng?
Theo bài ra ta có:
Lại có:
Ba điểm thẳng hàng khi và chỉ khi
và
cùng phương hay
Vậy tọa độ điểm M là .
Cho hình vuông , dựng các hình vuông
với
là tâm các hình vuông biểu diễn như hình vẽ dưới đây:
Biết các hình vuông nhỏ có kích thước . Tính độ dài vectơ:
Hình vẽ minh họa
Ta có:
Khi đó tổng vecto cần tính có kết quả là:
Cho tam giác với
lần lượt là trung điểm của. Khẳng định nào sau đây sai?
Xét các đáp án:
Đáp án . Ta có
Đáp án . Ta có
Đáp án . Ta có
Đáp án . Ta có
Chọn đáp án này.
Cho tam giác , gọi
là trung điểm
và
là một điểm trên cạnh
sao cho
. Gọi
là trung điểm của
. Khi đó
Ta có .
Cho tọa độ hai điểm và
. Khẳng định nào sau đây đúng?
Ta có:
Cho tam giác ABC đều cạnh . Đường thẳng
qua
và song song với
, lấy điểm
. Tính giá trị nhỏ nhất của
khi
di động trên
.
Hình vẽ minh họa
Kẻ hình bình hành ACBD. Gọi I là trung điểm BD, khi đó, ta có
Ta có:
Dấu “=” xảy ra khi và chỉ khi M trùng với điểm H là hình chiếu vuông góc của điểm I trên đường thẳng .
Cho tam giác đều có cạnh bằng
Tính tích vô hướng
.
Cho hình vuông cạnh
, tính độ dài vectơ
.
Ta có: .
Áp dụng định lí Pytago trong tam giác :
.
Trên mặt phẳng tọa độ Oxy, cho các điểm . Chọn khẳng định đúng.
Biểu diễn các điểm trên hệ trục tọa độ như sau:
Ta có:
Vậy hai vectơ cùng phương, ngược hướng.
Gọi là giao điểm hai đường chéo
và
của hình bình hành
. Đẳng thức nào sau đây là đẳng thức sai?
Từ hình vẽ ta thấy đẳng thức sai là .
Cho tam giác ABC vuông tại A có AB = 3, BC = 5. Tính
Ta có:
Tam giác ABC vuông tại A ta có:
Trong hệ tọa độ cho hai điểm
Tìm tọa độ trung điểm
của đoạn thẳng
Ta có
Với (khác vectơ - không) thì độ dài đoạn
được gọi là
Với (khác vectơ - không) thì độ dài đoạn
được gọi là: Độ dài của
Chp parabol như hình vẽ:
Biết G là đỉnh parabol cách AB một khoảng bằng 6, . Tính khoảng cách giữa hai điểm
?
Xét hệ tọa độ Oxy với O là trung điểm AB, tia Ox là tia OB.
Khi đó tọa độ
Gọi biểu thức hàm số có đồ thị là hình parabol là
Có G là đỉnh parabol suy ra
Có suy ra
Biểu thức hàm số là
Hoành độ giao điểm với trục hoành:
Vậy khoảng cách giữa hai điểm A và B là .
Trong mặt phẳng tọa độ cho tam giác
có
và
. Tính số đo góc
của tam giác đã cho.
Ta có: và
.
.
Cho M, N, P, Q là bốn điểm tùy ý. Trong các hệ thức sau, hệ thức nào sai?
Hệ thức sai là:
Vì (tính chất giao hoán)
Trong hệ tọa độ cho bốn điểm
Khẳng định nào sau đây đúng?
Ta có ngược hướng.
Cho hình bình hành ABCD tâm O. Khi đó bằng:
Ta có:
Hai vectơ được gọi là bằng nhau khi và chỉ khi
Hai vectơ được gọi là bằng nhau khi và chỉ khi: Chúng cùng hướng và độ dài của chúng bằng nhau.
Cho hình chữ nhật ABCD có AB = 8, AD = 5. Tính .
Do ABCD là hình chữ nhật =>
Xét tam giác ABD vuông tại A ta có:
Ta lại có:
Cho tam giác ABC có điểm O thỏa mãn . Khẳng định nào sau đây là đúng?
Ta có: .
Vẽ hình bình hành , suy ra
. Mà
. Suy ra
. Do đó
là hình chữ nhật. Do đó tam giác
vuông
.
Khẳng định nào sau đây đúng?
Theo định nghĩa, hai véctơ bằng nhau phải thỏa mãn hai điều kiện:
+) Cùng hướng
+) Cùng độ dài.
Chọn đáp án: Hai vectơ được gọi là bằng nhau nếu chúng cùng hướng và cùng độ dài.
Cho đoạn thẳng và
là một điểm trên đoạn
sao cho
. Trong các khẳng định sau, khẳng định nào sai?
Hình vẽ minh họa
Ta thấy và
cùng hướng nên
là sai.
Cho tam giác vuông cân đỉnh
, đường cao
. Khẳng định nào sau đây sai?
Do cân tại
,
là đường cao nên
là trung điểm
.
Xét các đáp án:
Đáp án Ta có
Đáp án . Ta có
Do đó đáp án này sai.
Đáp án . Ta có
Đáp án . Ta có
(do
vuông cân tại
).
Gọi là giao điểm của hai đường chéo hình chữ nhật
. Mệnh đề nào sau đây đúng?
Mệnh đề đúng là Do độ dài hai đường chéo hình chữ nhật bằng nhau.
Cho tam giác đều cạnh
. Gọi
là trung điểm
. Khẳng định nào sau đây đúng?
Tam giác đều cạnh
nên độ dài đường trung tuyến bằng
.
Chọn
Cho tam giác đều có cạnh
. Tính tích vô hướng
.
Ta có: .
Trong hệ tọa độ cho ba điểm
Tìm tọa độ điểm
để tứ giác
là hình bình hành.
Gọi Ta có
Tứ giác là hình bình hành
Cho tam giác có
là trọng tâm và
là trung điểm của
Đẳng thức nào sau đây đúng?
Vì là trung điểm của
suy ra
Ta có