Tính tổng
.
Ta có .
Tính tổng
.
Ta có .
Cho tam giác đều
có cạnh bằng
Tính tích vô hướng ![]()
.
Cho hai vectơ
và
khác
. Xác định góc
giữa hai vectơ
và
khi ![]()
nên
.
Trong hệ tọa độ
cho ba điểm
Tìm tọa độ của vectơ ![]()
Ta có
Cách khác:
Trong mặt phẳng tọa độ Oxy cho 2 điểm M(2; 1) và N(1; 2). Tọa độ vectơ
là
Ta có:
Trong mặt phẳng tọa độ
, cho tọa độ
. Một điểm
bất kì. Tìm giá trị nhỏ nhất của biểu thức
?
Ta có:
Ta có:
Suy ra
Ta có:
(Với )
Lại có:
Mà
Dấu đẳng thức xảy ra khi M là giao điểm của EF và Ox =>
Vậy biểu thức T đạt giá trị nhỏ nhất là .
Mệnh đề nào sau đây đúng?
Vì vectơ - không cùng phương với mọi vectơ.
Cho tam giác
có
là trọng tâm. Mệnh đề nào sau đây đúng?
Gọi là trung điểm của
Mà
là trọng tâm của tam giác
Từ suy ra
Cho tam giác
có
. Gọi các vectơ
theo thư tự là các vectơ có giá vuông góc với các đường thẳng
và
. Tính độ dài vectơ
, biết
.
Hình vẽ minh họa:
Gọi D là điểm thuộc miền trong tam giác ABC, dựng các vectơ dựng hình chữ nhật DGHE ta có:
Ta lại có:
Mặt khác
=> Ba điểm H, D, F thẳng hàng.
Khi đó:
Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?
Ta có: .
Cho tam giác
Có bao nhiêu vectơ khác vectơ - không có điểm đầu và điểm cuối là các đỉnh ![]()
Đó là các vectơ:
Tính giá trị
biết rằng
?
Ta có:
Cho tam giác ABC với trung tuyến AM và trọng tâm G. Khi đó ![]()
Ta có: G là trọng tâm tam giác ABC =>
Trong mặt phẳng tọa độ
cho ba điểm
Tính tích vô hướng ![]()
Ta có: ,
Gọi
là tâm hình bình hành
. Đẳng thức nào sau đây sai?
Xét các đáp án:
Đáp án . Ta có
. Vậy đáp án này đúng.
Đáp án . Ta có
. Vậy đáp án này sai.
Đáp án . Ta có
Vậy đáp án này đúng.
Đáp án . Ta có
. Vậy đáp án này đúng.
Trong các vecto dưới đây, vecto nào cùng phương với vecto
?
Nhận thấy nên
cùng phương với
.
Cho hình vuông
cạnh bằng
. Tính độ dài véctơ
.
Hình vẽ minh họa:
Cho tam giác
có trọng tâm
và trung tuyến
. Khẳng định nào sau đây là sai.
Ta có
Mặt khác và
ngược hướng
.
Cho tam giác
vuông tại
là trung điểm của
Khẳng định nào sau đây đúng?
Vì là trung điểm của
nên
Cho tam giác
có
là trung điểm của
. Điểm
xác định
. Đường thẳng
đi qua
song song với
cắt
lần lượt tại
. Điểm
nằm trên cạnh
sao cho diện tích các tam giác
và
bằng nhau. Biết
. Tính giá trị của
?
Hình vẽ minh họa:
Theo định lí Ta – lét ta có:
Mặt khác mà ba điểm
thẳng hàng nên theo định lí Menelaus ta được:
Ta có:
Chú ý rằng khoảng cách từ F đến AB bằng khoảng cách từ A đến DE nên hai tam giác ADE và BGF có cùng diện tích suy ra BG = DE do đó
Ta có:
Mà
Hay
Vậy
Trong mặt phẳng tọa độ
, cho hai vecto
và
. Tính
?
Theo bài ra ta có:
và
Khi đó:
Cho hình bình hành
Tính
theo
và ![]()
Vì là hình bình hành nên
Ta có
Cho tam giác ABC vuông tại A có AB = 3, BC = 5. Tính ![]()
Ta có:
Tam giác ABC vuông tại A ta có:
Trong mặt phẳng tọa độ
, cho tọa độ hai điểm
. Tìm tọa độ điểm
sao cho điểm
cách đều hai điểm
?
Ta có:
Từ
Vậy tọa độ điểm D cần tìm là: .
Cho hình thang
,
là trung điểm của
. Có bao nhiêu vectơ khác vectơ – không cùng phương với
?
Vì ABCD là hình thang nên ta có các vectơ thỏa mãn yêu cầu là
Cho tam giác
vuông cân tại
và
Tính độ dài của ![]()
Ta có
Gọi là trung điểm
Khi đó
Trong mặt phẳng tọa độ
, tọa độ vecto
là:
Ta có: .
Cho hai vectơ
và
. Góc giữa hai vectơ
và
là:
Cho ba điểm
phân biệt. Khi đó:
Chọn: Điều kiện cần và đủ để thẳng hàng là
cùng phương với
Cho hình vuông
. Khẳng định nào sau đây đúng?
Chọn Vì
Cho ngũ giác
. Từ các đỉnh của ngũ giác đã cho có thể lập được bao nhiêu vectơ có điểm cuối là điểm
?
Các vectơ có điểm cuối là điểm là
;
;
;
.
Cho ba điểm phân biệt
Mệnh đề nào sau đây đúng?
Đáp án chỉ đúng khi ba điểm
thẳng hàng và
nằm giữa
.
Đáp án đúng theo quy tắc ba điểm. Chọn đáp án này.
Trong mặt phẳng tọa độ
, cho tọa độ các điểm
. Xác định tọa độ điểm Q sao cho tứ giác
là hình bình hành?
Gọi tọa độ điểm
Ta có:
Vì MNPQ là hình bình hành nên
Vậy tọa độ điểm Q cần tìm là .
Cho tam giác
với trực tâm
.
là điểm đối xứng với
qua tâm
của đường tròn ngoại tiếp tam giác
. Khẳng định nào sau đây là đúng?
Ta có là đường kính
.
Ta có
Ta lại có
Từ tứ giác
là hình bình hành
.
Cho hai điểm
,
. Tìm
trên tia Ox sao cho
.
Gọi , với
.
Khi đó .
Theo yêu cầu đề bài ta có
.
Cho
. Khẳng định nào sau đây đúng?
Ta có . Do đó:
và
ngược hướng.
và
cùng độ dài.
là hình bình hành nếu
và
không cùng giá.
Chọn đáp án và
cùng độ dài.
Cho các vectơ
. Phân tích vectơ
theo hai vectơ
, ta được:
Giả sử . Vậy
.
Cho hình thang
có đáy là
và
Gọi
và
lần lượt là trung điểm của
và
Khẳng định nào sau đây sai?
Vì lần lượt là trung điểm của
Dựa vào đáp án, ta có nhận xét sau:
đúng, vì
đúng, vì
đúng, vì
và
Suy ra
sai, vì theo phân tích ở đáp án trên. Chọn đáp án này.
Cho tam giác ABC, có thể xác định được bao nhiêu vectơ khác
có điểm đầu và điểm cuối là các đỉnh A, B, C?
Ta có các vectơ khác có điểm đầu và điểm cuối là các đỉnh tam giác ABC là:
Cho tam giác
với
lần lượt là trung điểm của. Khẳng định nào sau đây sai?
Xét các đáp án:
Đáp án . Ta có
Đáp án . Ta có
Đáp án . Ta có
Đáp án . Ta có
Chọn đáp án này.