Cho tam giác Gọi
và
lần lượt là trung điểm của
và
Khẳng định nào sau đây sai?
Vì lần lượt là trung điểm của
Suy ra
là đường trung bình của tam giác
Mà
là hai vectơ cùng hướng nên
Cho tam giác Gọi
và
lần lượt là trung điểm của
và
Khẳng định nào sau đây sai?
Vì lần lượt là trung điểm của
Suy ra
là đường trung bình của tam giác
Mà
là hai vectơ cùng hướng nên
Cho và
là các vectơ khác
với
là vectơ đối của
. Khẳng định nào sau đây sai?
Ta có . Do đó,
và
cùng phương, cùng độ dài và ngược hướng nhau.
Chọn đáp án sai là: Hai vectơ chung điểm đầu.
Cho tam giác . Lấy các điểm
sao cho
và
. Xác định
để ba điểm
thẳng hàng.
Ta có:
Để ba điểm thẳng hàng thì
hay
Cho tam giác có
. Gọi các vectơ
theo thư tự là các vectơ có giá vuông góc với các đường thẳng
và
. Tính độ dài vectơ
, biết
.
Hình vẽ minh họa:
Gọi D là điểm thuộc miền trong tam giác ABC, dựng các vectơ dựng hình chữ nhật DGHE ta có:
Ta lại có:
Mặt khác
=> Ba điểm H, D, F thẳng hàng.
Khi đó:
Cho M là trung điểm AB, tìm đẳng thức sai
Ta có: .
Đáp án sai là .
Trong hệ tọa độ cho tam giác
có
và trọng tâm
. Tìm tọa độ đỉnh
?
Gọi
Vì là trọng tâm tam giác
nên
Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?
Ta có: ABCD là hình bình hành tâm O
=>
Cho hình vuông . Khẳng định nào sau đây đúng?
Chọn Vì
Cặp vectơ nào sau đây vuông góc?
Vì suy ra đáp án
và
sai.
Vì suy ra đáp án
và
sai.
Vì suy ra đáp án
và
đúng.
Vì suy ra đáp án
và
sai.
Trong hệ trục tọa độ , tọa độ vecto
là:
Ta có:
Cho hình vuông , tính
.
Vẽ .
Ta có: .
Tổng bằng vectơ nào sau đây?
Ta có
.
Cho ba điểm phân biệt. Khi đó:
Chọn: Điều kiện cần và đủ để thẳng hàng là
cùng phương với
Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác biết rằng
?
Gọi M, N lần lượt là trung điểm của AB và BC.
I(x; y) là tâm đường tròn ngoại tiếp tam giác ABC khi và chỉ khi:
Cho . Điểm
trên trục
sao cho ba điểm
thẳng hàng thì tọa độ điểm
là:
Ta có: trên trục
.
Ba điểm thẳng hàng khi
cùng phương với
.
Ta có . Do đó,
cùng phương với
. Vậy
.Đáp án là
Trong hệ trục tọa độ , cho hai điểm
. Tọa độ của véctơ
bằng
Trong hệ tọa độ cho ba điểm
Tìm tọa độ điểm
để tứ giác
là hình bình hành.
Gọi Ta có
Tứ giác là hình bình hành
Cho ba điểm O, A, B không thẳng hàng. Điều kiện cần và đủ để tích vô hướng là:
Chọn đáp án: Tam giác OAB cân tại O.
Gọi là trung điểm
.
Ta có: (do
).
Cho không cùng phương,
. Vectơ cùng hướng với
là:
Ta có. Chọn
.
Mệnh đề nào sau đây sai?
Giả sử trường hợp
=> Điểm A và điểm B trùng nhau.
=> Có thể xảy ra trường hợp này.
=> Mệnh đề sai là
Trong mặt phẳng tọa độ , gọi
là trực tâm tam giác
có tọa độ các đỉnh
và
là trọng tâm tam giác
. Tính giá trị biểu thức
?
Gọi . Vì I là trọng tâm tam giác ABC nên ta có hệ phương trình:
Ta có: là trực tâm tam giác ABC nên
Ta có hệ phương trình
Vậy biểu thức
Mệnh đề nào sau đây sai?
Chọn
Vì có thể xảy ra trường hợp
Trong hệ trục tọa độ , tọa độ của vectơ
là
Ta có
Cho tam giác đều có cạnh bằng
Tính tích vô hướng
.
Cho tứ giác Trên cạnh
lấy lần lượt các điểm
sao cho
và
Tính vectơ
theo hai vectơ
Ta có và
Suy ra
Theo bài ra, ta có và
Vậy
Cho tam giác , có trọng tâm
. Gọi
lần lượt là trung điểm của
. Chọn khẳng định sai?
Ta có: nên
sai.
Chọn .
Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:
Ta có: (2 vectơ đối nhau).
Cho tam giác ABC đều cạnh 2a. Đẳng thức nào sau đây là đúng?
Theo bài ra ta có:
Tam giác ABC đều cạnh 2a => AB = BC = AC = 2a
=>
Cho tam giác với trực tâm
.
là điểm đối xứng với
qua tâm
của đường tròn ngoại tiếp tam giác
. Khẳng định nào sau đây là đúng?
Ta có là đường kính
.
Ta có
Ta lại có
Từ tứ giác
là hình bình hành
.
Mệnh đề nào sau đây đúng?
Vì vectơ - không cùng phương với mọi vectơ.
Cho tam giác và điểm
thỏa mãn điều kiện
. Mệnh đề nào sau đây sai?
Ta có
là hình bình hành
Do đó sai.
Trong hệ tọa độ cho ba điểm
và
Tìm điểm
thuộc trục hoành sao cho biểu thức
đạt giá trị nhỏ nhất.
Ta có
Chọn điểm sao cho
Gọi , từ
ta có
Khi đó
Để nhỏ nhất
nhỏ nhất. Mà
thuộc trục hoành nên
nhỏ nhất khi
là hình chiếu vuông góc của
lên trục hoành
Cho hai vectơ và
khác
. Xác định góc
giữa hai vectơ
và
khi
.
Ta có .
Mà theo giả thiết
Suy ra
Cho tam giác ABC và điểm M thỏa mãn Xác định vị trí điểm M.
Giả sử G là trọng tâm tam giác ABC, khi đó ta có:
=> M là trọng tâm của tam giác ABC.
Cho tam giác OAB có M, N là trung điểm của OA, OB. Chọn mệnh đề đúng.
Với (khác vectơ - không) thì độ dài đoạn
được gọi là
Với (khác vectơ - không) thì độ dài đoạn
được gọi là: Độ dài của
Điều kiện nào là điều kiện cần và đủ để là trung điểm của đoạn thẳng
?
Điều kiện cần và đủ để là trung điểm của đoạn thẳng
là
.
Gọi là tâm hình vuông
. Tính
.
Ta có .
Gọi là tâm hình bình hành
. Đẳng thức nào sau đây sai?
Xét các đáp án:
Đáp án . Ta có
. Vậy đáp án này đúng.
Đáp án . Ta có
. Vậy đáp án này sai.
Đáp án . Ta có
Vậy đáp án này đúng.
Đáp án . Ta có
. Vậy đáp án này đúng.
Cho và điểm O. Gọi M, N lần lượt là hai điểm thỏa mãn
và
. Tìm
.
Ta có: