Cho lục giác đều
tâm
. Ba vectơ bằng vectơ
là:
Ba vectơ bằng vectơ là:
,
,
.
Cho lục giác đều
tâm
. Ba vectơ bằng vectơ
là:
Ba vectơ bằng vectơ là:
,
,
.
Cho ba điểm phân biệt A, B, C. Khẳng định nào sau đây đúng?
Ta có:
=> Khẳng định sai
=> Khẳng định sai
=> Khẳng định đúng
=> Khẳng định sa
Trong các điều kiện dưới đây, chọn điều kiện cần và đủ để một điểm M nằm giữa hai điểm phân biệt A và B?
Điều kiện cần và đủ để một điểm M nằm giữa hai điểm phân biệt A và B là và
ngược hướng.
Cho
và
. Xác định
sao cho
và
cùng phương.
Ta có
Để và
cùng phương
Cho hai vecto
. Xác định góc giữa hai vecto
và
khi ![]()
Ta có:
Cho ngũ giác
. Từ các đỉnh của ngũ giác đã cho có thể lập được bao nhiêu vectơ có điểm cuối là điểm
?
Các vectơ có điểm cuối là điểm là
;
;
;
.
Cho đoạn thẳng
và
là một điểm trên đoạn
sao cho
. Trong các khẳng định sau, khẳng định nào sai?
Hình vẽ minh họa
Ta thấy và
cùng hướng nên
là sai.
Trong mặt phẳng Oxy, cho
. Tìm x để
và
cùng phương.
Để và
cùng phương thì
Cho tam giác
có trực tâm
. Gọi
là điểm đối xứng với
qua tâm
của đường tròn ngoại tiếp tam giác
. Khẳng định nào sau đây đúng?
Ta có và
(do góc
chắn nửa đường tròn).
Suy ra
Tương tự ta cũng có
Suy ra tứ giác là hình bình hành. Do đó
và
.
Cho
và
là hai vectơ cùng hướng và đều khác vectơ
.Trong các kết quả sau đây,hãy chọn kết quả đúng.
Ta thấy vế trái của 4 phương án giống nhau.
Bài toán cho và
là hai vectơ cùng hướng và đều khác vectơ
suy ra
Do đó nên
Cho tam giác
vuông tại
và có
. Tính
.
Ta có .
Cho tam giác
vuông cân tại
và
Tính độ dài của ![]()
Ta có
Gọi là trung điểm
Khi đó
Trong mặt phẳng tọa độ
, cho hai vecto
và
. Tính
?
Theo bài ra ta có:
và
Khi đó:
Cho hình thoi
có
. Tính
.

Vì nên
.
Trong mặt phẳng tọa độ
, khoảng cách giữa hai điểm
và
bằng:
Khoảng cách giữa hai điểm M, N là
Cho tam giác
Gọi
và
lần lượt là trung điểm của
và
Khẳng định nào sau đây sai?
Vì lần lượt là trung điểm của
Suy ra
là đường trung bình của tam giác
Mà
là hai vectơ cùng hướng nên
Cho lục giác đều
tâm
Số các vectơ bằng
có điểm đầu và điểm cuối là các đỉnh của lục giác là:
Đó là các vectơ: .
Cho tam giác
có
là trung điểm của
Tính
theo
và ![]()
Ta có
Trong mặt phẳng tọa độ
, cho tọa độ các điểm
. Tìm tọa độ điểm
sao cho ba điểm
thẳng hàng?
Theo bài ra ta có:
Lại có:
Ba điểm thẳng hàng khi và chỉ khi
và
cùng phương hay
Vậy tọa độ điểm M là .
Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:
Ta có: (2 vectơ đối nhau).
Trong hệ tọa độ
, cho hai điểm
Tìm tọa độ điểm
thuộc trục hoành sao cho
thẳng hàng.
Điểm Ta có
và
Để thẳng hàng
cùng phương với
Cho tọa độ ba điểm
. Tính
?
Ta có:
Gọi
lần lượt là trung điểm của các cạnh
và
của tứ giác
. Mệnh đề nào sau đây đúng?
Do M là trung điểm các cạnh AB nên .
Do N lần lượt là trung điểm các cạnh DC nên .
Ta có
Mặt khác
Do đó .
Trong hệ tọa độ
cho hai điểm
Tìm tọa độ trung điểm
của đoạn thẳng ![]()
Ta có
Cho tam giác đều
cạnh
Biết rằng tập hợp các điểm
thỏa mãn đẳng thức
là đường tròn cố định có bán kính
Tính bán kính
theo ![]()
Gọi là trọng tâm của tam giác
Ta có
Chọn điểm sao cho
Vì là trọng tâm của tam giác
nên
Khi đó
Do đó
Vì là điểm cố định thỏa mãn
nên tập hợp các điểm
cần tìm là đường tròn tâm
bán kính
Hình bình hành
tâm
. Khẳng định sai là:
Ta có: .
Chọn đáp án sai .
Cho hình vuông
, dựng các hình vuông
với
là tâm các hình vuông biểu diễn như hình vẽ dưới đây:

Biết các hình vuông nhỏ có kích thước
. Tính độ dài vectơ:
![]()
![]()
![]()
Hình vẽ minh họa
Ta có:
Khi đó tổng vecto cần tính có kết quả là:
Cho tam giác
Có bao nhiêu vectơ khác vectơ - không có điểm đầu và điểm cuối là các đỉnh ![]()
Đó là các vectơ:
Cho hình bình hành ABCD tâm O. Khi đó
bằng:

Ta có:
Cho hình vuông
cạnh
, tính độ dài vectơ
.
Ta có: .
Áp dụng định lí Pytago trong tam giác :
.
Cho tam giác ABC có AK, BM là trung tuyến. Cho
. Tính
.
.
Chp parabol như hình vẽ:

Biết G là đỉnh parabol cách AB một khoảng bằng 6,
. Tính khoảng cách giữa hai điểm
?
Xét hệ tọa độ Oxy với O là trung điểm AB, tia Ox là tia OB.
Khi đó tọa độ
Gọi biểu thức hàm số có đồ thị là hình parabol là
Có G là đỉnh parabol suy ra
Có suy ra
Biểu thức hàm số là
Hoành độ giao điểm với trục hoành:
Vậy khoảng cách giữa hai điểm A và B là .
Cho ba điểm
phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là
Ta có tính chất: Điều kiện cần và đủ để ba điểm phân biệt thẳng hàng là
.
Cho ba điểm phân biệt
Có bao nhiêu vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm
đã cho?
Các vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm đã cho là
.
Cho tam giác
có
lần lượt là trung điểm
, điểm
thuộc cạnh
sao cho
. Đẳng thức nào sau đây đúng?
Gọi K là trung điểm BN.
Xét ta có
(1)
Xét ta có
(2)
Từ (1) và (2) suy ra .
Điều kiện nào là điều kiện cần và đủ để
là trung điểm của đoạn thẳng
?
Điều kiện cần và đủ để là trung điểm của đoạn thẳng
là
.
Trong mặt phẳng tọa độ
cho vectơ
. Vectơ nào sau đây không vuông góc với vectơ
?
Vì nên đáp án
đúng.
Vì nên đáp án
đúng.
Vì nên đáp án
sai.
Vì nên đáp án
đúng.
Trong mặt phẳng tọa độ
cho hai vectơ
và
Tìm
để vectơ
vuông góc với ![]()
Ta có:
Để .
Cho 4 điểm
phân biệt. Khi đó
bằng
.
Trong mặt phẳng tọa độ
, tọa độ vecto
là:
Ta có: .