Đề kiểm tra 45 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Một số yếu tố thống kê và xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho mẫu số liệu có s^{2} = 9. Khi đó độ lệch chuẩn của mẫu số liệu bằng:

    Độ lệch chuẩn s = \sqrt{s^{2}} = \sqrt{9}
= 3

  • Câu 2: Nhận biết

    Xác định số trung vị của dãy số liệu 1;3;4;5;7;8;9?

    Dãy số đã cho được sắp xếp theo thứ tự không giảm.

    Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.

    Do đó số trung vị của dãy trên là 5.

  • Câu 3: Vận dụng

    Bảng dưới đây thống kê lại tốc độ phát triển của 1 loại vi khuẩn (đơn vị: nghìn con).

    Ta nên lấy giá trị nào là giá trị đại diện của bảng trên?

    Sắp xếp lại số liệu theo thứ tự không giảm:

    20 20 20 30 60 100 150 270 440 980

    Do mẫu số liệu chứa các giá trị chênh lệch rất lớn nên không thể lấy số trung bình hoặc mốt làm giá trị đại diện.

    Tứ phân vị không được coi là giá trị đại diện.

    Do đó ta lấy trung vị làm giá trị đại diện. Ta có:M_{e} = \frac{60 + 100}{2} = 80.

    Chọn đáp án: Trung vị, giá trị đại diện là 80.

  • Câu 4: Thông hiểu

    Cho dãy số liệu 21;35;17;43;8;59;72;119. Kết luận nào dưới đây đúng?

    Sắp xếp dãy số liệu theo thứ tự không tăng như sau:

    8;17;21;35;43;59;72;119

    Khi đó:

    Q_{2} = \frac{x_{4} + x_{5}}{2} =
\frac{35 + 43}{2} = 39

    Q_{1} = \frac{x_{2} + x_{3}}{2} =
\frac{17 + 21}{2} = 19

    Q_{3} = \frac{x_{6} + x_{7}}{2} =
\frac{59 + 72}{2} = 65,5

    Vậy kết luận đúng là: Q_{1} = 19,Q_{3} =
65,5.

  • Câu 5: Vận dụng

    Cho đa giác đều có 14 đỉnh. Chọn ngẫu nhiên 3 đỉnh trong số 14 đỉnh của đa giác. Xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác vuông là bao nhiêu?

    Số phần tử không gian mẫu là |\Omega| =
C_{14}^{3}.

    Giả sử tam giác cần lập là ABC vuông tại A.

    Chọn đỉnh A của tam giác có 14 cách.

    Để tam giác vuông tại A thì cung BC có số đo là \pi, hay BC là đường kính của đường tròn ngoại tiếp đa giác, do đó có 6 cách chọn BC.

    Gọi E là biến cố "3 đỉnh được chọn là 3 đỉnh của một tam giác vuông"

    Số phần tử của E14.6 = 84.

    Xác suất cần tìm là P(E) =
\frac{84}{C_{14}^{3}} = \frac{3}{13}.

  • Câu 6: Nhận biết

    Cho bảng kết quả kiểm tra khối lượng của 30 quả trứng gà như sau:

    Khối lượng (gram)

    25

    30

    35

    40

    45

    50

    Số quả trứng

    3

    5

    7

    9

    4

    2

    Xác định mốt của mẫu số liệu?

    Mốt của mẫu số liệu là 40 (vì có tần số lớn nhất).

  • Câu 7: Nhận biết

    Gieo con súc sắc hai lần. Biến cố A là biến cố để sau hai lần gieo có ít nhất một mặt 6 chấm. Mô tả biến cố A.

    Liệt kê ta có: A = \left\{ (1,6),\
(2,6),\ (3,6),\ (4,6),\ (5,6),\ (6,6),\ (6,1),\ (6,2),\ (6,3),\ (6,4),\
(6,5) ight\}.

  • Câu 8: Vận dụng

    Cho 8 quả cân có trọng lượng lần lượt là 1; 2; 3; 4; 5; 6; 7; 8 (kg). Chọn ngẫu nhiên 3 quả trong số đó. Xác suất để trọng lượng 3 quả không nhỏ hơn 10 (kg) là:

    Chọn ba quả cân có |\Omega| = C_{8}^{3} =
56cách.

    Chọn ba quả cân có tổng trọng lượng nhỏ hơn hoặc bằng 9 có các trường hợp sau:

    TH1: Trong các quả được lấy ra không có quả cân trọng lượng 1 kg.

    Ta có 2 + 3 + 4 = 9 là tổng trọng lượng nhỏ nhất có thể. Do đó trong trường hợp này có đúng 1 cách chọn.

    TH2: Trong các quả được lấy ra có quả cân trọng lượng 1 kg. Khi đó ta có:

    \mathbf{1}\mathbf{+}\mathbf{2}\mathbf{+}\mathbf{3}\mathbf{=}\mathbf{6;1}\mathbf{+}\mathbf{2}\mathbf{+}\mathbf{4}\mathbf{=}\mathbf{7;1}\mathbf{+}\mathbf{2}\mathbf{+}\mathbf{5}\mathbf{=}\mathbf{8;1}\mathbf{+}\mathbf{2}\mathbf{+}\mathbf{6}\mathbf{=}\mathbf{9;1}\mathbf{+}\mathbf{3}\mathbf{+}\mathbf{4}\mathbf{=}\mathbf{8;1}\mathbf{+}\mathbf{3}\mathbf{+}\mathbf{5}\mathbf{=}\mathbf{9}.

    Trường hợp này ta có 6 cách chọn.

    Vậy số cách chọn thỏa mãn yêu cầu bài toán là 56 - 1 - 6 = 49.

    Xác suất cần tính là: \frac{49}{56} =
\frac{7}{8}.

  • Câu 9: Thông hiểu

    Chọn ngẫu nhiên hai số khác nhau từ tập hợp số A = \left\{ 1;2;3;4;5;6;7;8;9
ight\}. Tính xác suất để trong hai số lấy ra có ít nhất một số lẻ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{9}^{2} = 36

    Gọi B là biến cố: “Cả hai số lấy ra đều là số chẵn” \Rightarrow n(B) = C_{6}^{4} = 6

    Suy ra xác suất của biến cố B là: P(B) =
\frac{n(B)}{n(\Omega)} = \frac{6}{36} = \frac{1}{6}

    Ta có biến cố \overline{B} là biến cố: “Trong hai số lấy ra có ít nhất một số lẻ”

    Khi đó P\left( \overline{B} ight) = 1 -
P(B) = 1 - \frac{1}{6} = \frac{5}{6}

  • Câu 10: Nhận biết

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được \sqrt{8} =
2,828427125. Giá trị gần đúng của \sqrt{8} chính xác đến hàng phần trăm là:

    Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 2 ở hàng phần trăm là số 8 > 5 nên theo nguyên lý làm tròn ra được kết quả là: 2,83

  • Câu 11: Nhận biết

    Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố chắc chắn?

    Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố chắc chắn là “Mặt xuất hiện của xúc xắc có số chấm không vượt quá 6”.

  • Câu 12: Nhận biết

    Tìm số gần đúng của a = 3456782 với độ chính xác d = 100.

    Vì độ chính xác đến hàng trăm nên ta quy tròn a đến hàng nghìn, vậy số quy tròn của a là 3457000.

  • Câu 13: Nhận biết

    Phương sai của một mẫu số liệu \left \{ x_1;x_2;...;x_N ight \} bằng

     Phương sai của một mẫu số liệu \left \{ x_1;x_2;...;x_N ight \} bằng bình phương của độ lệch chuẩn.

  • Câu 14: Nhận biết

    Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:

    "Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm có tất bao nhiêu viên bi". Đây không phải là phép thử ngẫu nhiên.

  • Câu 15: Vận dụng

    Một đề thi trắc nghiệm gồm 50 câu, mỗi câu có bốn phương án trả lời trong đó chỉ có một phương án đúng, mỗi câu trả lời đúng được 0,2 điểm. Một thí sinh làm bài bằng cách chọn ngẫu nhiên 1 trong 4 phương án ở mỗi câu. Xác suất để thí sinh đó được 6 điểm là bao nhiêu?

    Không gian mẫu của phép thử trên có số phần tử là |\Omega| = 4^{50}.

    Gọi A là biến cố: “ Thí sinh đó được 6 điểm”

    Tìm \left| \Omega_{A}
ight|: Để được 6 điểm, thí sinh đó phải làm đúng 30 câu và làm sai 20 câu.

    Công đoạn 1: Chọn 30 câu từ 50 câu để làm câu đúng. Có C_{50}^{30} cách.

    Công đoạn 2: Chọn phương án đúng của mỗi câu từ 30 câu đã chọn. Có 1^{30} cách.

    Công đoạn 3: Chọn một phương án sai trong ba phương án sai của mỗi câu từ 20 còn lại. Có 3^{20}cách.

    Theo quy tắc nhân, số kết quả thuận lợi cho biến cố A\left|
\Omega_{A} ight| = C_{50}^{30}.1^{30}.3^{20}.

    Vậy xác suất để học sinh đó được 6 điểm là:P(A) = \frac{\left| \Omega_{A} ight|}{|\Omega|}
= \frac{C_{50}^{30}.1^{30}.3^{20}}{4^{50}} =
C_{50}^{30}.0,25^{30}.0,75^{20} =
C_{50}^{20}.0,25^{30}.0,75^{20}.

  • Câu 16: Nhận biết

    Chiều cao của một số học sinh nữ lớp 9 (đơn vị cm) được cho trong bảng.

    Tìm khoảng tứ phân vị của mẫu số liệu này.

    Nhận thấy mẫu đã được sắp xếp theo thứ tự không giảm.

    Số liệu chính giữa là 162 nên Q_{2} =
162.

    Số liệu chính giữa của mẫu 151 152 153 154 155 160 160 là 154 nên Q_{1} = 154.

    Số liệu chính giữa của mẫu 163 165 165 165 166 167 167 là 165 nên Q_{3} = 165.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1} = 165 - 154 =
11.

  • Câu 18: Thông hiểu

    Một hộp chứ 3 quả cầu xanh và 7 quả cầu đỏ. Chọn ngẫu nhiên đồng thời hai quả cầu trong hộp. Tính xác suất để hai quả cầu được chọn ra có cùng màu?

    Ta có: n(\Omega) = C_{10}^{2} =
45

    Gọi A là biến cố: “Chọn được hai quả cầu cùng màu”

    TH1: 2 quả cầu cùng màu xanh ta có: C_{3}^{2} cách chọn

    TH2: 2 quả cầu cùng màu đỏ ta có: C_{7}^{2} cách chọn.

    \Rightarrow n(A) = C_{3}^{2} + C_{7}^{2}
= 24

    Vậy xác suất của biến cố A là: P(A) =
\frac{24}{45} = \frac{8}{15}

  • Câu 19: Thông hiểu

    Tìm các giá trị bất thường của mẫu số liệu:

    5 6 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 48 49

    Mẫu số liệu đã được sắp xếp theo thứ tự không giảm.

    Giá trị chính giữa là 27 nên Q_{2} =
27.

    Giá trị chính giữa của mẫu 5 6 19 21 22 23 24 25 26 là 22 nên Q_{1} = 22.

    Giá trị chính giữa của mẫu 28 29 30 31 32 33 34 48 49 là 32 nên Q_{3} = 32.

    Khoảng tứ phân vị \Delta_{Q} = 32 - 22 =
10.

    Ta có: Q_{1} - 1,5\Delta_{Q} = 22 - 1,5.10 = 7.

    Ta co: Q_{3} - 1,5\Delta_{Q} = 32 + 1,5.10 = 47.

    Ta thấy có giá trị 5 và 6 nhỏ hơn 7 nên đây là 2 giá trị bất thường.

    Ta thấy có 48 và 49 là hai giá trị lớn hơn 47 nên đây là 2 giá trị bất thường.

  • Câu 20: Thông hiểu

    Cho bảng điểm kiểm tra môn Toán của học sinh lớp 10B như sau:

    Điểm

    4

    5

    6

    7

    8

    9

    10

    Tổng

    Số học sinh

    2

    8

    7

    10

    8

    3

    2

    N = 40

    Tính số trung bình của mẫu số liệu? (Làm tròn kết quả đến chữ số thập phân thứ nhất).

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{2.4 + 5.8 + 6.7 +
7.10 + 8.8 + 9.3 + 10.2}{40} \approx 6,8

    Vậy số trung bình của mẫu số liệu bằng 6,8.

  • Câu 21: Thông hiểu

    Chọn ngẫu nhiên một gia đình có 4 người con và quan sát giới tính của bốn người con này. Xác suất của biến cố hai con đầu là con trai bằng:

    Ta có: n(\Omega) = 2^{4} =16

    Gọi A là biến cố “Hai con đầu là con trai”

    \Rightarrow A = \left\{TTGG;TTGT;TTTG;TTTT ight\}

    \Rightarrow n(A) = 4

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =\frac{4}{16} = \frac{1}{4}.

  • Câu 22: Vận dụng

    Chọn khẳng định đúng.

    Khẳng định đúng là:

    Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất, bỏ qua thông tin các giá trị còn lại.

  • Câu 23: Thông hiểu

    Một hộp chứa 7 bi xanh, 6 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất để được hai bi cùng màu là bao nhiêu?

    Số phần tử của không gian mẫu là |\Omega|
= C_{13}^{2} = 78.

    Gọi A là biến cố lấy được hai bi cùng màu.

    Chọn 2 bi xanh, có C_{7}^{2} =
21(cách).

    Chọn 2 bi đỏ, có C_{6}^{2} =
15(cách).

    Suy ra \left| \Omega_{A} ight| = 21 +
15 = 36.

    Xác suất cần tìm là P(A) = \frac{36}{78}
\simeq 0,46.

  • Câu 24: Thông hiểu

    Một bình chứa 6 viên bi màu, trong đó có 2 bi xanh, 2 bi đỏ, 2 bi trắng. Lấy ngẫu nhiên 2 viên bi từ bình đó. Tính xác suất để lấy được 2 viên bi khác màu.

    Lấy 2 viên bi bất kì trong 6 viên bi trong bình thì có C_{6}^{2} = 15(cách).

    Lấy 2 viên bi cùng màu thì có C_{2}^{2} + C_{2}^{2} + C_{2}^{2} =
3 (cách) nên có 15 - 3 =
12(cách) lấy được 2 viên bi khác màu.

    Xác suất để lấy được 2viên bi khác màu trong tổng số 6 viên bi là P = \frac{12}{15} =
\frac{4}{5}.

  • Câu 25: Vận dụng

    Một bác sĩ ghi lại độ tuổi của một số người đến khám trong bảng:

    Tìm trung vị của mẫu số liệu trên.

    Cỡ mẫu số liệu trên là n =
30.

    Thống kê lại:

    Hai giá trị chính giữa của mẫu là giá trị ở vị trí thứ 15 và thứ 16. Đó là số 17 và số 17.

    Suy ra trung vị

    M_{e} = \frac{17 + 17}{2} =
17.

  • Câu 26: Nhận biết

    Tìm trung vị của dãy số liệu 4 3 5 1 6 8 6.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 3 4 5 6 6 8.

    Dãy trên có giá trị chính giữa bằng 5.

    Vậy trung vị của mẫu số liệu bằng 5.

  • Câu 27: Thông hiểu

    Cho bảng số liệu điểm kiểm tra môn Toán của 20 học sinh

    Điểm

    4

    5

    6

    7

    8

    9

    10

    Số học sinh

    1

    2

    3

    4

    5

    4

    1

    Tìm trung vị của bảng số liệu trên.

    Bảng số liệu có 20 giá trị => n = 20.

    => {M_e} = \frac{{{x_{10}} + {x_{11}}}}{2} = \frac{{7 + 8}}{2} = 7,5.

  • Câu 28: Nhận biết

    Gieo hai đồng tiền một lần. Kí hiệu S, N lần lượt để chỉ đồng tiền lật sấp, lật ngửa. Mô tả không gian mẫu nào dưới đây là đúng?

    Gieo hai đồng tiền một lần ta được không gian mẫu là: Ω = \left \{ {SN, NS, SS, NN}  ight \}

  • Câu 29: Nhận biết

    Một nhóm học sinh lớp 10A gồm 10 học sinh trong đó có 4 học sinh nữ và 6 học sinh nam. Chọn ngẫu nhiên bốn học sinh trong nhóm để tham gia cuộc thi hùng biện. Xác suất để bốn bạn được chọn có ba nam và một nữ bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
C_{10}^{4} = 210

    Số kết quả thuận lợi cho biến cố: “Bốn bạn được chọn có ba nam và một nữ” bằng: C_{6}^{3}.C_{4}^{1} =
80

    Vậy xác suất của biến cố “Bốn bạn được chọn có ba nam và một nữ” bằng: \frac{80}{210} =
\frac{8}{21}

  • Câu 30: Thông hiểu

    Bạn Linh đo quãng đường đi học từ nhà đến trường là a = 568m với độ chính xác d = 0,3m. Sai số tương đối trong phép đo là:

    Sai số tương đối trong phép đo là \delta
= \frac{d}{|a|} = \frac{0,3}{568} \approx 0,05\%.

  • Câu 31: Thông hiểu

    Gieo hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai mặt của hai con xúc xắc bằng 7?

    Ta có:

    Số phần tử không gian mẫu là: n(\Omega) =
6.6 = 36

    Gọi A là biến cố “tổng số chấm xuất hiện trên hai mặt của hai con xúc xắc bằng “.

    \Rightarrow A = \left\{
(1;6),(6;1),(2;5),(5;2),(4;3),(3;4) ight\}

    \Rightarrow n(A) = 6

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{6}{20} = \frac{3}{10}.

  • Câu 32: Nhận biết

    Kết quả kiểm tra Toán của một số học sinh như sau: 9;\ 9;\ 7;\ 8;\ 9;\ 7;\ 10;\ 8;\
8. Khoảng biến thiên của mẫu số liệu là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 10

    Giá trị nhỏ nhất là 7

    Suy ra khoảng biến thiên của mẫu số liệu là: 10 – 7 = 3

  • Câu 33: Nhận biết

    Tìm mốt của mẫu số liệu: 1 3 4 2 0 0 5 6.

    Giá trị 0 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 0.

  • Câu 34: Nhận biết

    Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên?

    Thí nghiệm không phải là phép thử ngẫu nhiên là: “Quan sát vận động viên chạy bộ xem được bao nhiêu km/h”.

  • Câu 35: Nhận biết

    Kết quả làm tròn số b = 500\sqrt{7} đến chữ số thập phân thứ hai là:

    Ta có: b \approx 1322,88

  • Câu 36: Thông hiểu

    Tìm phương sai của dãy số liệu: 8 15 14 18.

    Số trung bình của mẫu số liệu là: \overline{x} = \frac{8 + 15 + 14 + 18}{4} = 13.

    Ta có phương sai: s^{2} = \frac{(8 - 13)^{2} + (15 - 13)^{2} + (14 - 13)^{2}
+ (18 - 13)^{2}}{4} =
13,75.

  • Câu 37: Vận dụng

    Bảng dưới đây thống kê điểm của bạn Dũng và Huy:

    Hãy tính phương sai của mẫu số liệu về điểm của hai bạn, từ đó so sánh và chọn kết luận đúng.

    Số trung bình của mẫu số liệu (1) và (2) là:

    \overline{x_{1}} = \frac{8 + 6 + 7 + 5 + 9}{5} = 7

    \overline{x_{2}} = \frac{6 + 7 + 7 + 8 + 7}{5} = 7

    Phương sai của (1) là: {s_{1}}^{2}
= \frac{(8 - 7)^{2} + (6 - 7)^{2} +
(7 - 7)^{2} + (5 - 7)^{2} + (9 - 7)^{2}}{5} = 2

    Phương sai của (2) là: {s_{2}}^{2}
= \frac{(6 - 7)^{2} + (7 - 7)^{2} +
(7 - 7)^{2} + (8 - 7)^{2} + (7 - 7)^{2}}{5} = 0,4

    {s_{2}}^{2} < {s_{1}}^{2} nên bạn Huy học đều hơn bạn Dũng.

  • Câu 38: Thông hiểu

    Quy tròn số 2,473 đến hàng phần chục được số 2,5. Sai số tuyệt đối là:

    Sai số tuyệt đối là: |2,5 - 2,473| =
0,027.

  • Câu 39: Nhận biết

    Dung tích của một nồi cơm điện là 1,1 lít ± 0,01 lít. Sai số tương đối của dung tích nồi cơm điện không vượt quá giá trị nào sau đây?

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {a = 1,1} \\   {d = 0,01} \end{array}} ight.

    Sai số tương đối của dung tích nồi cơm điện là: 

    \delta  \leqslant \frac{d}{{\left| a ight|}} = \frac{{0,01}}{{1,1}} \approx 0,909\%  < 1\%

    Vậy sai số tương đối của dung tích nồi cơm điện không vượt quá giá trị 1%

  • Câu 40: Vận dụng

    Đạt và Phong tham gia chơi trò một trò chơi đối kháng, thỏa thuận rằng ai thắng 5 ván trước là thắng chung cuộc và được hưởng toàn bộ số tiền thưởng của chương trình (không có ván nào hòa). Tuy nhiên khi Đạt thắng được 4 ván và Phong thắng được 2 ván rồi thì xảy ra sự cố kĩ thuật và chương trình buộc phải dừng lại. Biết rằng giới chuyên môn đánh giá Phong và Đạt ngang tài ngang sức. Hỏi phải chia số tiền thưởng như thế nào cho hợp lý (dựa trên quan điểm tiền thưởng tỉ lệ thuận với xác suất thắng cuộc của mỗi người).

    Phân tích: Đề bài cho các điều kiện khá dài dòng, ta cần đưa chúng về dạng ngắn gọn dễ hiểu hơn.

    +) “Biết rằng giới chuyên môn đánh giá Phong và Đạt ngang tài ngang sức”: xác suất để Phong và Đạt thắng trong một ván là như nhau và bằng 0,5.

    +) “Khi Đạt thắng được 4 ván và Phong thắng được 2 ván rồi”: nghĩa là Đạt chỉ cần thắng một ván nữa là được 5 ván, còn Phong phải thắng 3 ván nữa mới đạt được.

    Để xác định xác suất thắng chung cuộc của Đạt và Phong ta tiếp tục chơi thêm các ván “giả tưởng”. Để Phong có thể thắng chung cuộc thì anh phải thắng Đạt 3 ván liên tiếp (vì Đạt chỉ còn một ván nữa là thắng).

    Như vậy xác suất thắng cuộc của Phong là: P(P) = 0,5^{3} = \frac{1}{8}.

     Xác suất thắng cuộc của Đạt là P(Ð) = 1 - \frac{1}{8} =
\frac{7}{8}.

    Vậy Tỉ lệ chia tiền phù hợp là \frac{7}{8}:\frac{1}{8} = 7:1.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo