Gieo đồng tiền hai lần. Biến cố để mặt ngửa xuất hiện đúng
lần có bao nhiêu phần tử?
Liệt kê ta có: . (2 phần tử)
Gieo đồng tiền hai lần. Biến cố để mặt ngửa xuất hiện đúng
lần có bao nhiêu phần tử?
Liệt kê ta có: . (2 phần tử)
Cho biểu đồ lượng mưa trung bình các tháng năm 2019 tại Thành phố Hồ Chí Minh như sau:

Mẫu số liệu nhận được từ biểu đồ trên có khoảng biến thiên là:
Quan sát biểu đồ ta thấy:
Giá trị lớn nhất là 342
Giá trị nhỏ nhất là: 4
Vậy khoảng biến thiên của mẫu số liệu là: 342 – 4 = 338.
Một lớp học có
học sinh trong đó có
cặp anh em sinh đôi. Trong buổi họp đầu năm thầy giáo chủ nhiệm lớp muốn chọn ra
học sinh để làm cán sự lớp gồm lớp trưởng, lớp phó và bí thư. Xác suất để chọn ra
học sinh làm cán sự lớp mà không có cặp anh em sinh đôi nào là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên học sinh trong
học sinh.
Suy ra số phần tử không gian mẫu là .
Gọi là biến cố
học sinh được chọn không có cặp anh em sinh đôi nào
. Để tìm số phần tử của
, ta đi tìm số phần tử của biến cố
, với biến cố
là
học sinh được chọn luôn có
cặp anh em sinh đôi.
+ Chọn cặp em sinh đôi trong
cặp em sinh đôi, có
cách.
+ Chọn thêm học sinh trong 38 học sinh, có
cách.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Chọn ngẫu nhiên một gia đình có 4 người con và quan sát giới tính của bốn người con này. Xác suất của biến cố hai con đầu là con trai bằng:
Ta có:
Gọi A là biến cố “Hai con đầu là con trai”
Vậy .
Bảng dưới đây ghi lại thời gian chạy trong 1 cuộc thi của các bạn lớp 10B. (đơn vị: giây)

Hãy tính thời gian chạy trung bình của các bạn. (kết quả làm tròn đến hàng phần nghìn)
Lớp 10B có: (bạn).
Thời gian chạy trung bình của các bạn là:
(giây).
Cho dãy số liệu:
![]()
![]()
Tìm giá trị bất thường của mẫu số liệu trên?
Các giá trị của mẫu số liệu được sắp xếp theo thứ tự không giảm như sau:
Ta tìm được các tứ phân vị
Suy ra khoảng biến thiên tứ phân vị là
Suy ra các giá trị bất thường nằm ngoài đoạn
Vậy các giá trị bất thường là .
Cho tập hợp
. Gọi
là tập hợp các số tự nhiên có 3 chữ đôi một khác nhau được lập thành từ các chữ số thuộc tập
. Chọn ngẫu nhiên hai số từ tập
, tính xác suất để hai số được chọn đều chia hết cho 3?
Gọi B là biến cố chọn được hai số đều chia hết cho 3
Số các số tự nhiên có 3 chữ số được lập thành từ tập M là:
Khi đó số phần tử của không gian mẫu là:
Tập các số gồm 3 chữ số tạo thành các số chia hết cho 3 là:
Mỗi tập trên tạo thành số chia hết cho 3 nên ta có:
số chia hết cho 3
Khi đó
Vậy xác suất để chọn được hai số đều chia hết cho 3 từ tập S là:
Kết quả điều tra dân số của tỉnh A năm 2024 là
người. Số quy tròn dân số trên là:
Hàng lớn nhất của độ chính xác là hàng năm nên ta quy tròn
đến hàng nghìn.
Vậy số quy tròn của là
.
Biểu đồ dưới đây thể hiện tốc độ tăng trưởng GDP của Việt Nam giai đoạn 2014 – 2021. Tính độ lệch chuẩn của mẫu số liệu.

Số trung bình của mẫu là:
Từ đó tính được phương sai: .
Suy ra độ lệch chuẩn: .
Một lớp có
học sinh, trong đó có
học sinh tên Anh. Trong một lần kiểm tra bài cũ, thầy giáo gọi ngẫu nhiên hai học sinh trong lớp lên bảng. Tính xác suất để 2 bạn học sinh tên Anh cùng lên bảng.
Số phần tử của không gian mẫu .
Gọi là biến cố gọi hai học sinh tên Anh lên bảng, ta có
.
Vậy xác suất cần tìm là .
Một lô sản phẩm gồm 35 sản phẩm đạt chuẩn và 15 sản phẩm lỗi. Lấy ngẫu nhiên 3 sản phẩm từ trong hộp. Tính xác suất để 3 sản phẩm lấy ra đều là sản phẩm đạt chuẩn?
Ta có:
Gọi B là biến cố cả ba sản phẩm lấy ra đều là sản phẩm đạt chuẩn.
Chọn 3 trong 35 sản phẩm đạt chuẩn ta có:
Vậy xác suất của biến cố B là: .
Tìm trung vị của dãy số liệu 2 3 1 5 3 7 9 10.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 2 3 3 5 7 9 10.
Dãy trên có hai giá trị chính giữa là 3 và 5.
Suy ra trung vị là: .
Tính độ lệch chuẩn của mẫu số liệu: 10; 8; 6; 2; 4.
Số trung bình là
.
Phương sai là
.
Độ lệch chuẩn là .
Bạn Bình ghi lại bảng thống kê số sách mà mà mỗi bạn học sinh lớp 10A đã đọc trong năm 2023. Hỏi trung bình mỗi bạn trong lớp đọc bao nhiêu cuốn sách?

Số học sinh lớp 10A là: (bạn).
Trung bình mỗi bạn đọc: (cuốn sách).
Tìm mốt của mẫu số liệu: 10 9 7 9 8 1 3 7 8 11 8.
Giá trị 8 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 8.
Số quy tròn của số gần đúng
với
là:
Quy tròn đến hàng trăm nên số quy tròn của số gần đúng
là:
.
Một hộp chứa 2 bi xanh, 3 bi đỏ. Lấy ngẫu nhiên 3 bi. Tính xác suất để có ít nhất một bi xanh trong 3 viên.
Số phần tử của không gian mẫu là .
Gọi là biến cố lấy ít nhất 1 bi xanh.
Chọn 1 bi xanh, 2 bi đỏ, có (cách).
Chọn 2 bi xanh, 1 bi đỏ, có (cách).
Suy ra .
Xác suất cần tìm là .
Quy tròn số 0,1352 đến hàng phần mười.
Vì số 0,1352 có chữ số hàng phần trăm là 3 < 5 nên khi làm tròn số 0,1352 đến hàng phần mười, ta được 0,1352 ≈ 0,1
Tìm tứ phân vị trên của bảng số liệu sau:

Cỡ mẫu số liệu trên là: .
Giá trị chính giữa của mẫu là giá trị ở vị trí thứ 13, đó là số 27. Suy ra .
Ta đi tìm trung vị của mẫu số liệu gồm 12 giá trị bên phải . Hai giá trị chính giữa là giá trị ở vị trí thứ 19 và 20. Đó là số 28 và số 28.
Suy ra . Vậy tứ phân vị trên là 28.
Cho bảng số liệu điểm kiểm tra môn Toán của 20 học sinh
Điểm | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Số học sinh | 1 | 2 | 3 | 4 | 5 | 4 | 1 |
Tìm trung vị của bảng số liệu trên.
Bảng số liệu có 20 giá trị => .
=> .
Trên kệ sách có 5 quyển sách Hóa học và 7 quyển sách Vật lí. Lấy ngẫu nhiên 3 quyển sách. Xác suất để ba quyển sách lấy ra có cả sách Hóa học và Vật lí bằng:
Số phần tử không gian mẫu (lấy 3 trong 12 quyển sách)
Gọi B là biến cố lấy được 3 quyển sách có cả sách Hóa học và sách Vật lí.
Khi đó là biến cố lấy được 3 quyển sách trong đó chỉ có 1 loại sách hoặc là Hóa học hoặc là Vật lí
TH1: 2 quyển sách được chọn là sách Hóa học ta có: cách chọn.
TH2: 2 quyển sách được chọn là sách Vật lí ta có: cách chọn.
Số phần tử của biến cố là:
Vậy xác suất của biến cố B cần tìm là:
Chọn ngẫu nhiên một số trong 20 số nguyên dương đầu tiên. Tính xác suất để chọn được số chia hết cho 3 là:
Chọn ngẫu nhiên một số trong 20 số nguyên dương đầu tiên có 20 cách chọn
Gọi A là biến cố “chọn được số chia hết cho 3”
Vậy .
Bảng dưới đây thống kê điểm Văn của lớp 11C.

Biết
. Tìm trung vị của bảng số liệu.
Vì tổng số học sinh bằng 40 nên ta có: .
Thống kê lại bảng:
Hai giá trị chính giữa của mẫu số liệu là giá trị ở vị trí thứ 20 và 21. Đó là số 6 và số 6.
Suy ra trung vị .
Một shop bán giày thống kê số lượng giày bán trong vài ngày trong bảng sau:
|
Cỡ giày |
37 |
38 |
39 |
40 |
41 |
42 |
|
Số lượng |
35 |
42 |
50 |
38 |
32 |
48 |
Mốt của bảng số liệu trên là:
Mốt là giá trị có tần số lớn nhất trong bảng số liệu
Quan sát bảng số liệu đã cho suy ra mốt của bảng số liệu là 39.
Cho một đa giác
có
đỉnh nội tiếp một đường tròn
. Người ta lập một tứ giác tùy ý có bốn đỉnh là các đỉnh của
. Tính xác suất để lập được một tứ giác có bốn cạnh đều là đường chéo của
, số đó gần với số nào nhất trong các số sau?
Số phần tử của không gian mẫu là: .
Gọi là biến cố “lập được một tứ giác có bốn cạnh đều là đường chéo của
”.
Để chọn ra một tứ giác thỏa mãn đề bài ta làm như sau:
Bước 1: Chọn đỉnh đầu tiên của tứ giác, có cách.
Bước 2: Chọn đỉnh còn lại sao cho hai đỉnh bất kỳ của tứ giác cách nhau ít nhất 1 đỉnh. Điều này tương đương với việc ta phải chia
chiếc kẹo cho
đứa trẻ sao cho mỗi đứa trẻ có ít nhất
cái, có
cách, nhưng làm như thế mỗi tứ giác lặp lại 4 lần.
Số phần tử của biến cố
là:
.
Xác suất của biến cố là:
.
Một hộp đựng
thẻ, đánh số từ
đến
. Chọn ngẫu nhiên
thẻ. Gọi
là biến cố để tổng số của
thẻ được chọn không vượt quá
. Tìm số phần tử của biến cố
.
Liệt kê ta có: . (4 phần tử)
Cho
Hãy xác định số gần đúng của
với độ chính xác d = 0,0001.
Hàng của chữ số khác 0 đầu tiên bên trái của d = 0,0001 là hàng phần chục nghìn.
Quy tròn đến hàng phần chục nghỉn ra được số gần đúng của
là
Điểm kiểm tra môn Toán của Hoa thời gian gần đây được liệt kê như sau:
. Khoảng biến thiên của mẫu số liệu trên là:
Quan sát mẫu số liệu đã cho ta thấy:
Giá trị lớn nhất là 9
Giá trị nhỏ nhất là 3
Suy ra khoảng biến thiên của mẫu số liệu là: 9 – 3 = 6.
Tìm các giá trị bất thường của mẫu số liệu:
5 6 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 48 49
Mẫu số liệu đã được sắp xếp theo thứ tự không giảm.
Giá trị chính giữa là 27 nên .
Giá trị chính giữa của mẫu 5 6 19 21 22 23 24 25 26 là 22 nên .
Giá trị chính giữa của mẫu 28 29 30 31 32 33 34 48 49 là 32 nên .
Khoảng tứ phân vị .
Ta có:
.
Ta co:
.
Ta thấy có giá trị 5 và 6 nhỏ hơn 7 nên đây là 2 giá trị bất thường.
Ta thấy có 48 và 49 là hai giá trị lớn hơn 47 nên đây là 2 giá trị bất thường.
Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số được lập từ tập hợp X = {1;2;3;4;5;6;7;8;9}. Chọn ngẫu nhiên một số từ S. Xác suất để số chọn được chia hết cho 6 bằng:
Số phần tử trong không gian mẫu là .
Gọi A là biến cố: “số chọn được chia hết cho 6”.
Giả sử số cần tìm là .
Do số cần tìm chia hết cho 6 nên chia hết cho 2.
Do đó chọn có 4 cách.
Chọn a, b có cách. Để chọn c ta xét tổng
:
Nếu M chia cho 3 dư 0 thì suy ra có 3 cách chọn.
Nếu M chia cho 3 dư 1 thì suy ra có 3 cách chọn.
Nếu M chia cho 3 dư 2 thì suy ra có 3 cách chọn.
Do đó .
Vậy .
Cho A là biến cố liên quan phép thử T. Mệnh đề nào sau đây là mệnh đề đúng?
Mệnh đề đúng là:
Hãy chọn kết quả lần lượt là số trung bình và phương sai của mẫu số liệu
?
Ta có:
Số trung bình của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Vậy số trung bình và phương sai của mẫu số liệu lần lượt là: .
Gieo hai con xúc xắc cân đối. Xác suất để tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 3 là:
Số phàn tử không gian mẫu là:
Số kết quả thuận lợi cho biến cố A: “Tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 3” là:
Vậy xác suất của biến cố A cần tìm là:
Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất
lần. Số phần tử không gian mẫu là bao nhiêu?
Mỗi lần gieo có hai khả năng nên gieo 5 lần theo quy tắc nhân ta có .
Số phần tử không gian mẫu là .
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được
. Giá trị gần đúng của
chính xác đến hàng phần nghìn là:
Cần lấy chính xác đến hàng phần trăm nên ta phải lấy ba chữ số thập phân. Vì đứng sau số 8 ở hàng phần trăm là số 4 < 5 nên theo nguyên lý làm tròn ra được kết quả là: .
Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây:
= 17658 ± 16.
Vì độ chính xác đến hàng chục nên ta phải quy tròn số 17638 đến hàng trăm. Vậy số quy tròn là 17700 (hay viết ≈ 17700).
Cho bảng kết quả kiểm tra khối lượng của 30 quả trứng gà như sau:
|
Khối lượng (gram) |
25 |
30 |
35 |
40 |
45 |
50 |
|
Số quả trứng |
3 |
5 |
7 |
9 |
4 |
2 |
Xác định mốt của mẫu số liệu?
Mốt của mẫu số liệu là 40 (vì có tần số lớn nhất).
Kết quả thống kê số tiền điện của một hộ gia đình trong 6 tháng liên tiếp (đơn vị: nghìn đồng) như sau:
. Khoảng biến thiên của mẫu số liệu bằng:
Giá trị lớn nhất bằng 350
Giá trị nhỏ nhất bằng 270
=> Khoảng biến thiên của mẫu số liệu là: 350 – 270 = 80.
Vậy khoảng biến thiên của mẫu số liệu bằng 80.