Đề kiểm tra 45 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Một số yếu tố thống kê và xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Thời gian chạy 50 m của 20 học sinh được ghi lại trong bảng sau đây:

    Thời gian

    (giây)

    8,3

    8,4

    8,5

    8,7

    8,8

    Tần số

    2

    3

    9

    5

    1

    Hãy tìm khoảng biến thiên của mẫu số liệu đã cho.

     Khoảng biến thiên: R=8,8-8,3=0,5.

  • Câu 2: Vận dụng

    Gọi S là tập hợp tất cả các số tự nhiên gồm 2 chữ số khác nhau lập từ \{ 0;1;2;3;4;5;6\}. Chọn ngẫu nhiên 2 số từ tập S. Xác suất để tích hai số chọn được là một số chẵn là:

    Ta có điều kiện chủ chốt “tích hai số được chọn là một số chẵn” Tồn tại ít nhất một trong hai số được chọn là chẵn.

    Gọi \overline{ab} là số tự nhiên có hai chữ số khác nhau được lập từ các số đã cho

    Số cách chọn a là 6 cách; Số cách chọn b cách Số các số có hai chữ số khác nhau tạo được là 6.6 = 36 số. Suy ra S36 phần tử.

    Số cách lấy ngẫu nhiên 2 số từ tập S: C_{36}^{2}
= 630 cách

    Gọi biến cố A: “Tích hai số được chọn là một số chẵn”

    Gọi biến cố \overline{A}: “Tích hai số được chọn là một số lẻ”

    Số các số lẻ trong S: 3.5 = 15 (3 cách chọn chữ số hàng đơn vị là lẻ, 5 cách chọn chữ số hàng chục khác 0).

    Số cách lấy ngẫu nhiên 2 số lẻ trong 15 số lẻ: C_{15}^{2} = 105 cách

    Suy ra P(\overline{A}) = \frac{105}{630}
= \frac{1}{6}. Vậy P(A) = 1 -
P(\overline{A}) = \frac{5}{6}.

  • Câu 3: Nhận biết

    Trong kết quả thống kê điểm môn Tiếng Anh của một lớp có 40 học sinh, điểm thấp nhất là 2 điểm và cao nhất là 10 điểm. Khẳng định nào sau đây đúng?

    Khi thực hiện tính điểm trung bình hay trung vị còn phụ thuộc vào tần số của mỗi điểm.

    Nếu chỉ có khoảng điểm thì không thể kết luận về điểm trung bình môn Tiếng Anh của lớp đó và trung vị.

  • Câu 4: Nhận biết

    Cho biến cố A có không gian mẫu là Ω và \overline A là biến cố đối của biến cố A. Khẳng định nào sau đây sai?

     Khẳng định sai là: "P(Ω) > 1." vì P(Ω) = 1

  • Câu 5: Nhận biết

    Hoạt động nào sau đây không phải là phép thử?

    Các hoạt động ở các phương án:

    " Chọn một trong ba bạn An, Bình, Cường tham gia cuộc thi chạy điền kinh."

    "Chơi trò chơi gắp thú nhồi bông."

    "Chọn một quyển sách bất kì trên giá sách và đọc tên của quyển sách đó."

    Đều là phép thử vì ta không thể đoán trước được kết quả của hoạt động đó mặc dù biết được tất cả các kết quả có thể xảy ra.

    Hoạt động ở phương án A không phải là phép thử vì ta có thể đoán trước được kết quả của hoạt động đó là: 2 + 5 + 3 = 10 (chiếc bút bi).

  • Câu 6: Thông hiểu

    Cho giá trị gần đúng của \frac{3}{7} là 0,429. Sai số tuyệt đối của số 0,429 là:

    Ta có: \frac{3}{7} =0,428571… nên sai số tuyệt đối của 0,429 là

    \Delta = \left| 0,429 - \frac{3}{7}
ight| < |0,429 - 4,4285| = 0,0005

  • Câu 7: Thông hiểu

    Gieo ba con súc sắc cân đối đồng chất. Tính xác suất để số chấm xuất hiện trên ba con súc sắc như nhau.

    Số phần tử của không gian mẫu là |\Omega|
= 6.6.6 = 36.

    Gọi A là biến cố ''Số chấm xuất hiện trên ba con súc sắc như nhau''. Ta có các trường hợp thuận lợi cho biến cố A(1;1;1),\ (2;2;2),\ (3;3;3),\ \cdots\
,(6;6;6).

    Suy ra \left| \Omega_{A} ight| =
6.

    Vậy xác suất cần tính P(A) =
\frac{1}{36}.

  • Câu 8: Nhận biết

    Gieo một đồng tiền hai lần. Xác xuất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất 1 lần là:

    Gieo một đồng xu 2 lần, số kết quả của không gian mẫu là n(\Omega)=2.2=4 

    Các kết quả thỏa mãn là: SN, NS, SS. (3 kết quả).

    Vậy P=\frac34.

  • Câu 9: Thông hiểu

    Phát biểu nào sau đây sai?

    Phát biểu sai là: "Khoảng tứ phân vị bị ảnh hưởng bởi các giá trị rất lớn hoặc rất bé trong mẫu."

  • Câu 10: Nhận biết

    Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất bốn lần. Xác suất để cả bốn lần gieo đều xuất hiện mặt sấp là bao nhiêu?

    Gọi A là biến cố: “cả bốn lần gieo đều xuất hiện mặt sấp.”

    Không gian mẫu: 2^{4} = 16.

    n(A) = 1.1.1.1 = 1.

    =>P(A) = \frac{n(A)}{|\Omega|} =
\frac{1}{16}..

  • Câu 11: Vận dụng

    Điểm kiểm tra môn Lịch Sử của một học sinh qua 8 lần thi được ghi lại như sau:

    5,5;\ 6;\ 6;\ x;\ 7;\ 7,5;\ 8;\
9

    Biết số trung vị của mẫu số liệu trên bằng 6,5. Kết quả nào dưới đây đúng?

    N = 8 là số chẵn nên trung vị của mẫu số liệu là trung bình cộng của số liện ở vị trí thứ 4 và thứ 5.

    Suy ra 6,5 = \frac{x + 7}{2}
\Leftrightarrow x = 6

    Vậy x = 6.

  • Câu 12: Nhận biết

    Một nhóm học sinh lớp 10A gồm 10 học sinh trong đó có 4 học sinh nữ và 6 học sinh nam. Chọn ngẫu nhiên bốn học sinh trong nhóm để tham gia cuộc thi hùng biện. Xác suất để bốn bạn được chọn có ba nam và một nữ bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
C_{10}^{4} = 210

    Số kết quả thuận lợi cho biến cố: “Bốn bạn được chọn có ba nam và một nữ” bằng: C_{6}^{3}.C_{4}^{1} =
80

    Vậy xác suất của biến cố “Bốn bạn được chọn có ba nam và một nữ” bằng: \frac{80}{210} =
\frac{8}{21}

  • Câu 13: Nhận biết

    Sản lượng lúa (đơn vị là tạ) của 11 thửa ruộng thí nghiệm có cùng diện tích lần lượt là: 20; 19; 17; 21; 24; 22; 23; 16; 11; 25; 23. Tìm mốt của mẫu số liệu trên.

     Số 23 xuất hiện nhiều nhất nên nó là mốt.

  • Câu 14: Thông hiểu

    Một cái túi chứa 3 viên bi đỏ và 5 bi xanh, 6 viên bi vàng. Chọn ngẫu nhiên 3 viên bi. Xác suất để 3 viên bi có cả ba màu đỏ, xanh, vàng là:

    Chọn ngẫu nhiên ba viên bi => n\left( \Omega  ight) = C_{14}^3

    Gọi A là biến cố lấy được ba viên bi có cả ba màu. Khi đó: n\left( A ight) = C_3^1.C_5^1.C_6^1 = 90

    => Xác suất để 3 viên bi có cả ba màu là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{90}}{{C_{14}^3}} = \frac{{45}}{{182}}

  • Câu 15: Nhận biết

    Số quy tròn của số gần đúng a với \overline{a} = 18658 \pm 25 là:

    Quy tròn a đến hàng trăm nên số quy tròn của số gần đúng a là: 18700.

  • Câu 16: Thông hiểu

    Có 3 bó hoa. Bó thứ nhất có 8 hoa hồng, bó thứ hai có 7 bông hoa ly, bó thứ ba có 6 bông hoa huệ. Chọn ngẫu nhiên 7 hoa từ ba bó hoa trên để cắm vào lọ hoa, tính xác suất để trong 7 hoa được có số hoa hồng bằng số hoa ly.

    Không gian mẫu là số cách chọn ngẫu nhiên 7 hoa từ ba bó hoa gồm 21 hoa.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{21}^{7} = 116280.

    Gọi A là biến cố ''7 hoa được ó số hoa hồng bằng số hoa ly''. Ta có các trường hợp thuận lợi cho biến cố A là:

    TH1: Chọn 1 hoa hồng, 1 hoa ly và 5 hoa huệ nên có C_{8}^{1}.C_{7}^{1}.C_{6}^{5} cách.

    TH2: Chọn 2 hoa hồng, 2 hoa ly và 3 hoa huệ nên có C_{8}^{2}.C_{7}^{2}.C_{6}^{3} cách.

    TH3: Chọn 3 hoa hồng, 3 hoa ly và 1 hoa huệ nên có C_{8}^{3}.C_{7}^{3}.C_{6}^{1} cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| =
C_{8}^{1}.C_{7}^{1}.C_{6}^{5} + C_{8}^{2}.C_{7}^{2}.C_{6}^{3} +
C_{8}^{3}.C_{7}^{3}.C_{6}^{1} = 23856.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{23856}{116280} =
\frac{994}{4845}.

  • Câu 17: Nhận biết

    Điều tra về số học sinh của một trường THPT như sau:

    Khối lớp

    10

    11

    12

    Số học sinh

    1120

    1075

    900

    Khoảng biến thiên của mẫu số liệu trên là.

     Khoảng biến thiên R = 1120 - 900 = 220.

  • Câu 18: Thông hiểu

    Lớp trưởng lớp 10A thống kê số học sinh và số cây trồng được theo từng tổ trong buổi ngoại khóa như sau:

    Tổ

    1

    2

    3

    4

    Số học sinh

    11

    10

    12

    10

    Số cây

    30

    30

    38

    29

    Bạn lớp trưởng cho biết số cây mỗi bạn trong lớp trồng được đều không vượt quá 3 cây. Biết rằng bảng trên có một tổ bị thống kê sai. Tổ mà bạn lớp trưởng đã thống kê sai là:

    Xét đáp án Tổ 1

    Số cây tối đa tổ 1 trồng được là: 11.3 = 33 (cây)

    Vì 30 (cây) < 33 (cây) nên thống kê số cây tổ 1 trồng được không sai.

    Xét đáp án Tổ 2

    Số cây tối đa tổ 2 trồng được là: 10.3 = 30 (cây)

    Vì 30 (cây) = 30 (cây) nên thống kê số cây tổ 1 trồng được không sai.

    Xét đáp án Tổ 3

    Số cây tối đa tổ 3 trồng được là: 12.3 = 36 (cây)

    Vì 38 (cây) > 36 (cây) nên thống kê số cây tổ 3 trồng được là sai.

    Xét đáp án Tổ 4

    Số cây tối đa tổ 3 trồng được là: 10.3 = 30 (cây)

    Vì 29 (cây) < 30 (cây) nên thống kê số cây tổ 4 trồng được không sai.

  • Câu 19: Vận dụng

    Cho năm đoạn thẳng có độ dài: 1\ cm, 3\
cm, 5\ cm,7\ cm, 9\
cm. Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng đó. Tính xác suất để ba đoạn thẳng lấy ra là ba cạnh của một tam giác.

    * Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng đã cho có C_{5}^{3} = 10 cách.

    Suy ra n(\Omega) = 10.

    * Gọi A là biến cố "lấy được ba đoạn thẳng là ba cạnh của một tam giác".

    Các trường hợp ba đoạn thẳng là ba cạnh của một tam giác là:

    \left\{ 3;5;7 ight\},\ \left\{ 3;7;9
ight\},\ \left\{ 5;7;9 ight\} (thỏa mãn: hiệu hai cạnh bé hơn cạnh còn lại, tổng hai cạnh lớn hơn cạnh còn lại).

    Do đó n(A) = 3. Vậy sác xuất cần tìm là P(A) = \frac{n(A)}{n(\Omega)} =
\frac{3}{10}.

  • Câu 20: Nhận biết

    Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?

    Số đặc trưng đo độ đo phân tán của mẫu số liệu là phương sai.

  • Câu 22: Vận dụng

    Một túi đựng 10 tấm thẻ được đánh số từ 1 đến 10. Rút ngẫu nhiên ba tấm thẻ từ túi đó. Xác suất để tổng số ghi trên ba thẻ rút được là một số chia hết cho 3 bằng:

    Số cách rút ngẫu nhiên ba tấm thẻ từ túi có 10 thẻ là: C_{10}^{3} cách.

    Trong các số từ 1 đến 10 có ba số chia hết cho 3, bốn số chia cho 3 dư 1, ba số chia cho 3 dư 2.

    Để tổng các số ghi trên ba thẻ rút được là một số chia hết cho 3 thì ba thẻ đó phải có số được ghi thỏa mãn một trong các trường hợp sau:

    - Ba số đều chia hết cho 3.

    - Ba số đều chia cho 3 dư 1.

    - Ba số đều chia cho 3 dư 2.

    - Một số chia hết cho 3, một số chia cho 3 dư 1, một số chia cho 3 dư 2.

    Do đó số cách rút để tổng số ghi trên 3 thẻ rút được là một số chia hết cho 3 là C_{3}^{3} + C_{4}^{3} +
C_{3}^{3} + C_{3}^{1}C_{4}^{1}C_{3}^{1} (cách).

    Vậy xác suất cần tìm là: \frac{2C_{3}^{3}
+ C_{4}^{3} + C_{3}^{1}C_{3}^{1}C_{4}^{1}}{C_{10}^{3}}.

  • Câu 23: Thông hiểu

    Kết quả thi Toán của một số học sinh trong lớp là: 3;6;7;8;8. Trung vị là:

    Dãy số liệu gồm 5 số liệu đã được sắp xếp theo thứ tự không giảm.

    Vì 5 là số lẻ nên trung vị nằm ở vị trí \frac{5 + 1}{2} = 3. Có nghĩa là trung vị bằng 7.

  • Câu 24: Nhận biết

    Cho các mệnh đề:

    i) Một túi cam nặng khoảng 10,5kg.

    ii) Độ dài đường chéo hình vuông cạnh bằng 1 là \sqrt{2}.

    iii) Bán kính Trái Đất khoảng 6371km.

    Trong các mệnh đề trên, có bao nhiêu số là số gần đúng?

    Có hai số là số gần đúng thuộc các mệnh đề:

    i) Một túi cam nặng khoảng 10,5kg.

    iii) Bán kính Trái Đất khoảng 6371km.

  • Câu 25: Nhận biết

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được \sqrt{8} =2,828427125. Giá trị gần đúng của \sqrt{8} chính xác đến hàng phần nghìn là:

    Cần lấy chính xác đến hàng phần trăm nên ta phải lấy ba chữ số thập phân. Vì đứng sau số 8 ở hàng phần trăm là số 4 < 5 nên theo nguyên lý làm tròn ra được kết quả là: 2,828.

  • Câu 26: Nhận biết

    Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:

    "Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm có tất bao nhiêu viên bi". Đây không phải là phép thử ngẫu nhiên.

  • Câu 27: Nhận biết

    Quy tròn số 2,654 đến hàng chục, được số 2,7. Khi đó sai số tuyệt đối là:

    Sai số tuyệt đối là:

    \Delta_{a} = \left| a - \overline{a}
ight| = |2,7 - 2,654| = 0,046

  • Câu 28: Thông hiểu

    Gieo một con xúc xắc cân đối và đồng chất ba lần. Xác suất để ít nhất một lần xuất hiện mặt sáu chấm bằng bao nhiêu?

    Ta có: n(\Omega) = 6^{3} =216

    Gọi A là biến cố ít nhất một lần xuất hiện mặt sáu chấm

    Suy ra \overline{A} là biến cố không có lần nào xuất hiện mặt sáu chấm.

    \Rightarrow n\left( \overline{A} ight)= 5^{3} = 125

    Khi đó xác suất của biến cố A cần tìm là: P(A) = 1 - P\left( \overline{A} ight) = 1 -\frac{125}{216} = \frac{91}{216}

  • Câu 29: Thông hiểu

    Cho bảng kết quả kiểm tra môn Tiếng Anh của học sinh như sau:

    Điểm

    4

    5

    6

    7

    8

    9

    10

    Tổng

    Số học sinh

    1

    2

    3

    4

    5

    4

    1

    N = 20

    Tính số trung vị của mẫu số liệu đã cho?

    Dãy số liệu đã cho có 20 số liệu nên số hạng chính giữa nằm ở số liệu thứ 10 và 11.

    Đó là số 7 và số 8.

    Suy ra M_{e} = \frac{7 + 8}{2} =
7,5.

  • Câu 31: Nhận biết

    Tìm trung vị của dãy số liệu 2 3 1 5 3 7 9 10.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 2 3 3 5 7 9 10.

    Dãy trên có hai giá trị chính giữa là 3 và 5.

    Suy ra trung vị là: M_{e} = \frac{3 +
5}{2} = 4.

  • Câu 32: Thông hiểu

    Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển được lấy ra có cả 3 môn.

    Số cách lấy 3 quyển sách bất kì là C_{9}^{3} = 84.

    Số cách lấy được 3 quyển thuộc 3 môn khác nhau là C_{4}^{1}.C_{3}^{1}.C_{2}^{1} = 24.

    Suy ra xác suất cần tìm là \frac{2}{7}.

  • Câu 33: Vận dụng

    Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

    Chọn kết luận đúng.

    Khoảng biến thiên của mẫu A và mẫu B đều là R = 9 - 3 = 6.

    Vậy hai mẫu số liệu có khoảng biến thiên như nhau.

  • Câu 34: Thông hiểu

    Bạn Bình ghi lại bảng thống kê số sách mà mà mỗi bạn học sinh lớp 10A đã đọc trong năm 2023. Hỏi trung bình mỗi bạn trong lớp đọc bao nhiêu cuốn sách?

    Số học sinh lớp 10A là: 3 + 5 + 15 + 10 +
7 = 40 (bạn).

    Trung bình mỗi bạn đọc: \overline{x} =\frac{3.1 + 5.2 + 15.3 + 4.10 + 7.5}{40}= 3,325 (cuốn sách).

  • Câu 35: Vận dụng

    Tìm tứ phân vị dưới của bảng số liệu sau:

    Cỡ mẫu số liệu trên là: n = 10 + 8 + 4 +
2 + 1 = 25.

    Giá trị chính giữa của mẫu là giá trị ở vị trí thứ 13, đó là số 27. Suy ra M_{e} = Q_{2} = 27.

    Ta đi tìm trung vị của mẫu số liệu gồm 12 giá trị bên trái M_{e}. Hai giá trị chính giữa là giá trị ở vị trí thứ 6 và 7. Đó là số 26 và số 26.

    Suy ra Q_{1} = \frac{26 + 26}{2} =
26. Vậy tứ phân vị dưới là 26.

  • Câu 36: Vận dụng

    Một người bỏ ngẫu nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Tính xác suất để có ít nhất một lá thư được bỏ đúng phong bì.

    Số phần tử không gian mẫu là: n(\Omega) =
3! = 6.

    Gọi A là biến cố “Có ít nhất một lá thư được bỏ đúng phong bì”.

    Ta xét các trường hợp sau:

    Nếu lá thứ nhất bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất 1 cách.

    Nếu lá thứ hai bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất 1 cách.

    Nếu lá thứ ba bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất 1 cách.

    Không thể có trường hợp hai lá thư bỏ đúng và một lá thư bỏ sai.

    Cả ba lá thư đều được bỏ đúng có duy nhất 1 cách.

    \Rightarrow n(A) = 4.

    Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{4}{6} =
\frac{2}{3}.

    Cách 2:

    Gọi B là biến cố “Không có lá thư nào được bỏ đúng phong bì”.

    \Rightarrow n(B) = 2 \Rightarrow P(A) = 1
- P(B) = 1 - \frac{n(B)}{n(\Omega)} = 1 - \frac{2}{6} =
\frac{2}{3}.

  • Câu 37: Nhận biết

    Một shop bán giày thống kê số lượng giày bán trong vài ngày trong bảng sau:

    Cỡ giày

    37

    38

    39

    40

    41

    42

    Số lượng

    35

    42

    50

    38

    32

    48

    Mốt của bảng số liệu trên là:

    Mốt là giá trị có tần số lớn nhất trong bảng số liệu

    Quan sát bảng số liệu đã cho suy ra mốt của bảng số liệu là 39.

  • Câu 38: Nhận biết

    Kết quả thống kê số tiền điện của một hộ gia đình trong 6 tháng liên tiếp (đơn vị: nghìn đồng) như sau: 270;\ 300;\ 350;\ 320;\ 310;\ 280. Khoảng biến thiên của mẫu số liệu bằng:

    Giá trị lớn nhất bằng 350

    Giá trị nhỏ nhất bằng 270

    => Khoảng biến thiên của mẫu số liệu là: 350 – 270 = 80.

    Vậy khoảng biến thiên của mẫu số liệu bằng 80.

  • Câu 39: Vận dụng

    Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

    Chọn kết luận đúng.

    Giá trị trung bình của hai mẫu:

    \overline{x_{A}} = \frac{2.3 + 2.4 + 2.5 + 3.6 + 2.7 + 2.8 + 2.9}{2 +2 + 2 + 3 + 2 + 2 + 2} =6

    \overline{x_{A}} = \frac{1.3 + 4.5 + 5.6 + 4.7 + 1.9}{1 + 4 + 5 + 4 +1} = 6

    Vậy hai mẫu có giá trị trung bình bằng nhau.

  • Câu 40: Nhận biết

    Tính độ lệch chuẩn của mẫu số liệu: 10; 8; 6; 2; 4.

    Số trung bình là \overline{x} = \frac{10 + 8 + 6 + 2 + 4}{5} = 6.

    Phương sai là s^{2} = \frac{(10 - 6)^{2} + (8 - 6)^{2} + (6 - 6)^{2} +
(2 - 6)^{2} + (4 - 6)^{2}}{5} =
8.

    Độ lệch chuẩn là \sqrt{s^{2}} = \sqrt{8}
= 2\sqrt{2}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo