Đề kiểm tra 45 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Một số yếu tố thống kê và xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

    Không tính toán, hãy chọn kết luận đúng.

    Quan sát hai mẫu số liệu, ta thấy mẫu A có độ phân tán lớn hơn mẫu B. Suy ra mẫu A có phương sai lớn hơn. (Các số liệu ở mẫu B tập trung ở trung tâm)

  • Câu 2: Nhận biết

    Cho mẫu số liệu như sau:

    Khoảng biến thiên của mẫu số liệu trên là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 29.

    Giá trị nhỏ nhất là 23

    Suy ra khoảng biến thiên của mẫu số liệu là: 29 – 23 = 6.

    Vậy đáp án là 6.

  • Câu 3: Nhận biết

    Điều tra về số học sinh của một trường THPT như sau:

    Khối lớp

    10

    11

    12

    Số học sinh

    1120

    1075

    900

    Khoảng biến thiên của mẫu số liệu trên là.

     Khoảng biến thiên R = 1120 - 900 = 220.

  • Câu 4: Thông hiểu

    Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của biến cố “Tổng số chấm trong hai lần gieo bằng 6”.

    Số phần tử không gian mẫu là: n(\Omega) =
6^{2} = 36

    Gọi A là biến cố: “Tổng số chấm trong hai lần gieo bằng 6”.

    Tập hợp các kết quả của biến cố A là: A =
\left\{ (2;4),(5;1),(1;5),(4;2),(3;3) ight\}

    Suy ra n(A) = 5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{36}

  • Câu 5: Nhận biết

    Số cam có trong các giỏ được ghi lại như sau: 2;8;12;16. Số trung vị của mẫu số liệu là:

    Vì cỡ mẫu N = 4 là số chẵn nên trung vị bằng trung bình cộng của số liệu ở vị trí thứ hai và thứ ba.

    => Số trung vị của mẫu số liệu: \frac{8 + 12}{2} = 10

  • Câu 6: Vận dụng

    Cho dãy số liệu:

    5;6;19;21;22;23;24;25;

    26;27;28;31;35;38;47.

    Tìm giá trị bất thường của mẫu số liệu trên?

    Các giá trị của mẫu số liệu được sắp xếp theo thứ tự không giảm như sau:

    5;6;19;21;22;23;24;25;

    26;27;28;31;35;38;47

    Ta tìm được các tứ phân vị Q_{1} =
21;Q_{3} = 31

    Suy ra khoảng biến thiên tứ phân vị là \Delta Q = Q_{3} - Q_{1} = 31 - 21 =
10

    \Rightarrow \left\{ \begin{matrix}
Q_{3} + 1,5\Delta Q = 46 \\
Q_{1} - 1,5\Delta Q = 6 \\
\end{matrix} ight.

    Suy ra các giá trị bất thường nằm ngoài đoạn \lbrack 6;46brack

    Vậy các giá trị bất thường là 5;47.

  • Câu 7: Thông hiểu

    Giả sử tập hợp B là tập hợp các số có 4 chữ số được tạo thành từ tập hợp C = \left\{
1;2;3;4;5;6;7;8;9 ight\}. Lấy ngẫu nhiên một số bất kì từ tập B. Xác suất để số được chọn có đúng hai chữ số chẵn và hai chữ số lẻ:

    Mỗi số tự nhiên có 4 chữ số khác nhau lập từ các số của tập C là một chỉnh hợp chập 4 của 9

    \Rightarrow n(\Omega) = A_{9}^{4} =
3024

    Số cách lấy một bộ có 4 chữ số gồm 2 chữ số chẵn và 2 chữ số lẻ được tập từ C là:

    C_{4}^{2}.C_{5}^{2} = 60

    Mỗi bộ như vậy sẽ lập được 4! số

    Suy ra n(B) = 60.4! = 1440

    Vậy xác suất của biến cố B là: P(B) =
\frac{1440}{3024} = \frac{10}{21}

  • Câu 8: Thông hiểu

    Một hộp có:

    • 2 viên bi trắng được đánh số từ 1 đến 2;

    • 3 viên bi xanh được đánh số từ 3 đến 5;

    • 2 viên bi đỏ được đánh số từ 6 đến 7.

    Lấy ngẫu nhiên hai viên bi, mô tả không gian mẫu nào dưới đây là đúng?

    Mỗi viên bi đánh một số, nên 2 viên bi lấy ra mang số khác nhau.

    Vậy Ω ={(m, n)| 1 ≤ m ≤ 7, 1 ≤ n ≤ 7 và m ≠ n}.

  • Câu 9: Thông hiểu

    Cho 40 tấm thẻ được đánh số theo thứ tự từ 1 đến 40. Chọn ngẫu nhiên 3 tấm thẻ. Tính xác suất để ba tấm thẻ được chọn có tổng các số ghi trên ba tấm thẻ đó là một số chẵn?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{40}^{3} = 9880

    Gọi A là biến cố chọn được 3 tấm thẻ có các số ghi trên ba tấm thẻ đó là một số chẵn.

    TH1: 2 số ghi số lẻ, 1 số ghi số chẵn ta có: C_{20}^{2}.C_{20}^{1} = 3800

    TH2: 3 số ghi số chẵn ta có: C_{20}^{3} =
1140

    Vậy xác suất để chọn được 3 tấm thẻ có tổng các số ghi trên các thẻ là một số chẵn là: \frac{3800 + 1140}{9880}
= \frac{1}{2}

  • Câu 10: Vận dụng

    Cho kết quả ném phi tiêu của Hùng như sau: 9;9;10;8;9;10;10;7;8;8;10;9;8. Hãy các tứ phân vị của mẫu số liệu đã cho?

    Sắp xếp điểm ném phi tiêu theo thứ tự không giảm như sau:

    7;8;8;8;8;9;9;9;9;10;10;10;10

    Ta có: Q_{2} = 9 là số đứng thứ 7.

    Q_{1} = 8 là trung bình cộng 2 số đứng thứ 3;4.

    Q_{3} = 10 là trung bình cộng 2 số đứng thứ 10;11.

  • Câu 11: Thông hiểu

    Cho 2145623 \pm
30000. Sai số tương đối của số gần đúng này là:

    Ta có:

    \delta_{a} \leq \frac{|d|}{a}
\Rightarrow \delta_{a} \leq \frac{30000}{2145623} \approx
1,4\%

  • Câu 12: Thông hiểu

    Kết quả khi đo chiều dài của một cây thước là \overline{a} = 45 \pm 0,2(cm). Khi đó sai số tuyệt đối của phép đo được ước lượng là:

    Ta có độ dài gần đúng của cây thước là a= 45 với độ chính xác d =0,2cm

    Nên sai số tuyệt đối là \Delta_{a} \leq d= 0,2.

  • Câu 13: Nhận biết

    Một tổ có 6 học sinh nam và 4 học sinh nữ. Chọn ngẫu nhiên 4 học sinh. Xác suất để trong 4 học sinh được chọn luôn có học sinh nữ là:

    n(\Omega) = C_{10}^{4} =
210.

    Gọi A là biến cố:” trong 4 học sinh được chọn luôn có học sinh nữ” \Rightarrow n(A) = C_{10}^{4} - C_{6}^{4} =
195

    Vậy xác suất của biến cố AP(A) = \frac{n(A)}{n(\Omega)} =
\frac{195}{210} = \frac{13}{14}.

  • Câu 14: Nhận biết

    Số quy tròn của số gần đúng a với \overline{a} = 18658 \pm 25 là:

    Quy tròn a đến hàng trăm nên số quy tròn của số gần đúng a là: 18700.

  • Câu 15: Thông hiểu

    Cho mẫu số liệu: 17 21 35 43 8 59 72 119. Tìm tứ phân vị.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 8 17 21 35 43 59 72 119.

    Trung vị của mẫu số liệu trên là: \frac{35 + 43}{2} = 39.

    Trung vị của dãy 8 17 21 35 là: \frac{17
+ 21}{2} = 19.

    Trung vị của dãy 43 59 72 119 là: \frac{59 + 72}{2} = 65,5.

    Vậy Q_{1} = 19;\ Q_{2} = 39;\ Q_{3} =
65,5.

  • Câu 16: Thông hiểu

    Chọn ngẫu nhiên 2 học sinh từ một tổ có 9 học sinh. Biết rằng xác suất chọn được 2 học sinh nữ bằng \frac{5}{18}, hỏi tổ có bao nhiêu học sinh nữ?

    Gọi số học sinh nữ là n (2 ≤ n ≤ 9, n ∈ \mathbb{N})

    Chọn bất kỳ 2 học sinh ta có C_9^2 = 36 cách.

    Do đó số phần tử của không gian mẫu là n(Ω) = 36

    Gọi biến cố A: “2 học sinh được chọn là 2 học sinh nữ”.

    Để chọn 2 học sinh được 2 học sinh nữ có:

    C_n^2 = \frac{{n!}}{{2!\left( {n - 2} ight)!}} = \frac{{n\left( {n - 1} ight)}}{2} (cách)

    Do đó số kết quả thuận lợi cho biến cố A là: 

    n\left( A ight) = \frac{1}{2}n\left( {n-1} ight)

    Xác suất để chọn được 2 học sinh nữ là:

    P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \dfrac{{\dfrac{1}{2}.n.\left( {n - 1} ight)}}{{36}} = \frac{{n\left( {n - 1} ight)}}{{72}}

    P\left( A ight) = \frac{5}{{18}}

    \begin{matrix}   \Leftrightarrow \dfrac{{n\left( {n - 1} ight)}}{{72}} = \dfrac{5}{{18}} \hfill \\   \Leftrightarrow n\left( {n - 1} ight) = 20 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 5\left( {tm} ight)} \\   {n =  - 4\left( {ktm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy có 5 học sinh nữ trong tổ.

  • Câu 17: Nhận biết

    Gieo ngẫu nhiên 2 đồng tiền thì không gian mẫu của phép thử có bao nhiêu biến cố:

    Mô tả không gian mẫu ta có: \Omega =
\left\{ SS;SN;NS;NN ight\}. (4 phần tử)

  • Câu 18: Vận dụng

    Một túi đựng 10 tấm thẻ được đánh số từ 1 đến 10. Rút ngẫu nhiên ba tấm thẻ từ túi đó. Xác suất để tổng số ghi trên ba thẻ rút được là một số chia hết cho 3 bằng:

    Số cách rút ngẫu nhiên ba tấm thẻ từ túi có 10 thẻ là: C_{10}^{3} cách.

    Trong các số từ 1 đến 10 có ba số chia hết cho 3, bốn số chia cho 3 dư 1, ba số chia cho 3 dư 2.

    Để tổng các số ghi trên ba thẻ rút được là một số chia hết cho 3 thì ba thẻ đó phải có số được ghi thỏa mãn một trong các trường hợp sau:

    - Ba số đều chia hết cho 3.

    - Ba số đều chia cho 3 dư 1.

    - Ba số đều chia cho 3 dư 2.

    - Một số chia hết cho 3, một số chia cho 3 dư 1, một số chia cho 3 dư 2.

    Do đó số cách rút để tổng số ghi trên 3 thẻ rút được là một số chia hết cho 3 là C_{3}^{3} + C_{4}^{3} +
C_{3}^{3} + C_{3}^{1}C_{4}^{1}C_{3}^{1} (cách).

    Vậy xác suất cần tìm là: \frac{2C_{3}^{3}
+ C_{4}^{3} + C_{3}^{1}C_{3}^{1}C_{4}^{1}}{C_{10}^{3}}.

  • Câu 19: Thông hiểu

    Cho mẫu số liệu: 5;9;8;7;10;9. Số trung bình của mẫu số liệu là:

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{5 + 9 + 8 + 7 + 10
+ 9}{6} = 8

    Vậy số trung bình là 8.

  • Câu 20: Thông hiểu

    Hãy chọn kết quả lần lượt là số trung bình và phương sai của mẫu số liệu 3;5;5;6;7;7;8;9;10?

    Ta có:

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{3 + 5 + 5 + 6 + 7 +
7 + 8 + 9 + 10}{9} \approx 6,7

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{9}.\lbrack(3 - 6,7)^{2}
+ 2.(5 - 6,7)^{2} + (6 - 6,7)^{2} + 2.(7 - 6,7)^{2}

    + (8 - 6,7)^{2} + (9 - 6,7)^{2} + (10 -
6,7)^{2}brack \approx 4,2

    Vậy số trung bình và phương sai của mẫu số liệu lần lượt là: 6,7;\ 4,2.

  • Câu 21: Nhận biết

    Phát biểu nào sau đây đúng?

    Nếu một biến cố có xác suất rất bé thì trong một phép thử, biến cố đó sẽ không xảy ra.

  • Câu 22: Nhận biết

    Khi sử dụng máy tính bỏ túi ta được \sqrt{5} = 2,236067977. Giá trị gần đúng của \sqrt{5} quy tròn đến hàng phần trăm là:

    Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 3 ở hàng phần trăm là số 6 > 5 nên theo nguyên lý làm tròn ra được kết quả là: 2,24.

  • Câu 23: Nhận biết

    Xét một phép thử có không gian mẫu \Omega gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là một biến cố bất kì trong phép thử đó. Chọn phát biểu đúng dưới đây?

    Xét một phép thử có không gian mẫu \Omega gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là một biến cố bất kì của phép thử đó. Khi đó A \subset \Omega là phát biểu đúng.

  • Câu 24: Vận dụng

    Trong một buổi liên hoan có 10 cặp nam nữ, trong đó có 4 cặp vợ chồng. Chọn ngẫu nhiên 3 người để biểu diễn một tiết mục văn nghệ. Xác suất để 3 người được chọn không có cặp vợ chồng nào là bao nhiêu?

    Không gian mẫu là số cách chọn ngẫu nhiên 3 người trong 20 người.

    Suy ra số phần tử không gian mẫu là |\Omega| = C_{20}^{3} = 1140.

    Gọi A là biến cố ''3 người được chọn không có cặp vợ chồng nào''. Để tìm số phần tử của A, ta đi tìm số phần tử của biến cố \overline{A}, với biến cố \overline{A}3 người được chọn luôn có 1 cặp vợ chồng.

    + Chọn 1 cặp vợ chồng trong 4 cặp vợ chồng, có C_{4}^{1} cách.

    + Chọn thêm 1 người trong 18 người, có C_{18}^{1} cách.

    Suy ra số phần tử của biến cố \overline{A}\left| \Omega_{\overline{A}} ight| =
C_{4}^{1}.C_{18}^{1} = 72.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = 1140 - 72 =
1068.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{1068}{1140} =
\frac{89}{95}.

  • Câu 25: Nhận biết

    Cho a là số gần đúng của số đúng \overline{a}. Sai số tuyệt đối của số gần đúng a là:

    Sai số tuyệt đối của số gần đúng a là: \Delta_{a} = \left| \overline{a} - a
ight|

  • Câu 26: Thông hiểu

    Tìm phương sai trong mẫu số liệu: 4;5;7;9;10?

    Số trung bình bằng: \overline{x} =
\frac{4 + 5 + 7 + 9 + 10}{5} = 7

    Phương sai bằng:

    s^{2} = \frac{1}{5}\lbrack(4 - 7)^{2} +
(5 - 7)^{2}

    + (7 - 7)^{2} + (9 - 7)^{2} + (10 -
7)^{2}brack = 5,2

    Vậy phương sai cần tìm là 5,2.

  • Câu 27: Nhận biết

    Cho dãy số liệu thống kê 21,23,24,25,22,20. Tính số trung bình cộng của dãy số liệu thống kê đã cho?

    Số trung bình cộng của dãy số liệu đã cho là:

    \frac{21 + 23 + 24 + 25 + 22 + 20}{6} =
22,5

    Vậy số trung bình cộng của dãy số liệu thống kê bằng 22,5.

  • Câu 28: Nhận biết

    Cho mẫu số liệu: 6; 7; 8; 9; 10. Tính phương sai của mẫu.

    Số trung bình là \overline{x} = \frac{6 + 7 + 8 + 9 + 10}{5} = 8.

    Phương sai là s^{2} = \frac{(6 - 8)^{2} + (7 - 8)^{2} + (8 - 8)^{2} + (9
- 8)^{2} + (10 - 8)^{2}}{5} =
2.

  • Câu 29: Nhận biết

    Kết quả kiểm tra Toán của một số học sinh như sau: 9;\ 9;\ 7;\ 8;\ 9;\ 7;\ 10;\ 8;\
8. Khoảng biến thiên của mẫu số liệu là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 10

    Giá trị nhỏ nhất là 7

    Suy ra khoảng biến thiên của mẫu số liệu là: 10 – 7 = 3

  • Câu 30: Nhận biết

    Xác định số trung vị của dãy số liệu 1;3;4;5;7;8;9?

    Dãy số đã cho được sắp xếp theo thứ tự không giảm.

    Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.

    Do đó số trung vị của dãy trên là 5.

  • Câu 31: Vận dụng

    Một người có 10 đôi giày khác nhau và trong lúc đi du lịch vội vã lấy ngẫu nhiên 4 chiếc.

    Xác suất để trong 4 chiếc giày lấy ra có ít nhất một đôi là bao nhiêu?

    Không gian mẫu là số cách chọn ngẫu nhiên 4 chiếc giày từ 20 chiếc giày.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{20}^{4} = 4845.

    Gọi A là biến cố ''4 chiếc giày lấy ra có ít nhất một đôi''. Để tìm số phần tử của biến cố A, ta đi tìm số phần tử của biến cố \overline{A}, với biến cố \overline{A}4 chiếc giày được chọn không có đôi nào.

    ● Số cách chọn 4 đôi giày từ 10 đôi giày là C_{10}^{4}.

    ● Mỗi đôi chọn ra 1 chiếc, thế thì mỗi chiếc có C_{2}^{1} cách chọn. Suy ra 4 chiếc có \left( C_{2}^{1} ight)^{4} cách chọn.

    Suy ra số phần tử của biến cố \overline{A}\left| \Omega_{\overline{A}} ight| =
C_{10}^{4}.\left( C_{2}^{1} ight)^{4} = 3360.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = 4845 - 3360 =
1485.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{1485}{4845} =
\frac{99}{323}.

  • Câu 32: Thông hiểu

    Một cửa hàng bán ra một loại áo với các cỡ được thống kê trong bảng sau:

    Tìm mốt của mẫu số liệu này.

    Vì cỡ áo 40 bán được 81 cái (nhiều nhất) nên mốt của mẫu số liệu là 40.

  • Câu 33: Nhận biết

    Tìm khoảng tứ phân vị mẫu số liệu điểm của một nhóm học sinh lớp 10:

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 4 5 5 6 7 7 7 8 8 9 9 10.

    Hai số liệu chính giữa là 7 và 7 nên Q_{2} = \frac{7 + 7}{2} = 7.

    Trung vị của mẫu số liệu 4 5 5 6 7 7 chính là Q_{1} = \frac{5 + 6}{2} = 5,5.

    Trung vị của mẫu số liệu 7 8 8 9 9 10 chính là Q_{3} = \frac{8 + 9}{2} = 8,5.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1} = 8,5 - 5,5 = 3.

  • Câu 34: Thông hiểu

    Một bình chứa 16 viên vi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi từ bình đó. Tính xác suất lấy được cả 3 viên bi đều không có màu đỏ.

    Số cách lấy 3 viên bi bất kì là C_{16}^{3} = 560.

    Số cách lấy được 3 viên bi trắng là C_{7}^{3}.C_{6}^{0}.C_{3}^{0} = 35.

    Số cách lấy được 2 viên bi trắng, 1 viên bi đen là C_{7}^{2}.C_{6}^{1}.C_{3}^{0} = 126.

    Số cách lấy được 1 viên bi trắng, 2 viên bi đen là C_{7}^{1}.C_{6}^{2}.C_{3}^{0} = 105.

    Số cách lấy được 3 viên bi đen là C_{7}^{0}.C_{6}^{3}.C_{3}^{0} = 20.

    Số cách lấy được cả 2 viên bi không đỏ là 35 + 126 + 105 + 20 = 286.

    Suy ra xác suất cần tìm là \frac{143}{280}.

  • Câu 35: Nhận biết

    Tìm số gần đúng của a = 2851275 với độ chính xác d = 300.

    Vì độ chính xác đến hàng trăm nên ta quy tròn a đến hàng nghìn, vậy số quy tròn của a là 2851000.

  • Câu 37: Vận dụng

    Bảng dưới đây thống kê điểm Văn của lớp 10H.

    Biết n\mathbb{\in N}. Tìm mốt của bảng số liệu.

    Vì tổng số học sinh bằng 40 nên ta có: 5n
+ 15 = 40 \Leftrightarrow n = 5.

    Thống kê lại bảng:

    Vậy mốt là giá trị 6 (xuất hiện 14 lần, nhiều nhất).

  • Câu 38: Nhận biết

    Gieo 2 con súc sắc và gọi kết quả xảy ra là tích số hai nút ở mặt trên. Không gian mẫu có bao nhiêu phần tử?

    Mô tả không gian mẫu ta có: \Omega =
\left\{ 1;2;3;4;5;6;8;9;10;12;15;16;18;20;24;25;30;36 ight\}. (18 phần tử)

  • Câu 39: Vận dụng

    Năm đoạn thẳng có độ dài 1cm; 3cm; 5cm; 7cm; 9cm. Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng trên. Xác suất để ba đoạn thẳng lấy ra có thể tạo thành 1 tam giác là:

    Phân tích: Cần nhớ lại kiến thức cơ bản về bất đẳng thức tam giác.

    Ba đoạn thẳng với chiều dài a,b,c có thể là 3 cạch của một tam giác khi và chỉ khi \left\{ \begin{matrix}
a + b > c \\
a + c > b \\
b + c > a \\
\end{matrix} ight.

    Số phần tử của không gian mẫu là: C_{5}^{3} = 10

    Gọi A là biến cố “lấy ba đoạn thẳng lấy ra lập thành một tam giác”

    Các khả năng chọn được ba đoạn thẳng lập thành một tam giác là (3;5;7);(3;5;9);(5;7;9)

    Số trường hợp thuận lợi của biến cố A là 3. Suy ra xác suất của biến cố AP(A) =
\frac{3}{10}.

  • Câu 40: Nhận biết

    Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:

    "Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm có tất bao nhiêu viên bi". Đây không phải là phép thử ngẫu nhiên.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo