Trên bàn có 4 quyển sách toán, 3 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để trong ba quyển sách lấy ra có ít nhất một quyển là toán?
Xác suất để trong ba quyển lấy ra có ít nhất một quyển sách Toán là:
Trên bàn có 4 quyển sách toán, 3 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để trong ba quyển sách lấy ra có ít nhất một quyển là toán?
Xác suất để trong ba quyển lấy ra có ít nhất một quyển sách Toán là:
Một bác sĩ ghi lại độ tuổi của một số người đến khám trong bảng:

Tìm trung vị của mẫu số liệu trên.
Cỡ mẫu số liệu trên là .
Thống kê lại:
Hai giá trị chính giữa của mẫu là giá trị ở vị trí thứ 15 và thứ 16. Đó là số 17 và số 17.
Suy ra trung vị
.
Chọn ngẫu nhiên một số nguyên dương không lớn hơn 30. Xác suất để số được chọn là một số nguyên tố bằng:
Số phần tử không gian mẫu là:
Gọi A là biến cố: “học sinh được chọn là học sinh nam?”
Vậy xác suất của biến cố A là:
Kết quả kiểm tra cân nặng của 10 học sinh lớp 10C được liệt kê như sau:
. Khoảng biến thiên của mẫu số liệu này bằng:
Quan sát dãy số liệu ta có:
Giá trị lớn nhất bằng 60
Giá trị nhỏ nhất bằng 38
Suy ra khoảng biến thiên của mẫu số liệu là 60 – 38 = 22.
Chọn phát biểu đúng trong các phát biểu sau:
Phát biểu đúng là: "Độ chính xác của số quy tròn bằng một đơn vị của hàng quy tròn."
Khoảng biến thiên tứ phân vị
được xác định bởi:
Khoảng biến thiên tứ phân vị được xác định bởi
.
Phường A thống kê số con của mỗi hộ gia đình trong khu dân cư như sau:
|
Số con |
0 |
1 |
2 |
3 |
4 |
|
Số hộ gia đình |
2 |
7 |
5 |
1 |
1 |
Phương sai của mẫu số liệu bằng:
Số con trung bình là:
Phương sai của mẫu số liệu là:
Vậy phương sai cần tìm là .
Hãy tìm số trung bình của mẫu số liệu khi cho bảng tần số dưới đây:
|
Giá trị |
4 |
6 |
8 |
10 |
12 |
|
Tần số |
1 |
4 |
9 |
5 |
2 |
Số trung bình của mẫu số liệu là:
Vậy đáp án bằng
Một hộp chứa 7 bi xanh, 6 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất để được hai bi cùng màu là bao nhiêu?
Số phần tử của không gian mẫu là .
Gọi là biến cố lấy được hai bi cùng màu.
Chọn 2 bi xanh, có (cách).
Chọn 2 bi đỏ, có (cách).
Suy ra .
Xác suất cần tìm là .
Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là:
Nếu đơn vị đo của số liệu là thì đơn vị của độ lệch chuẩn là:
Cho giá trị gần đúng của
là
. Sai số tuyệt đối của số
không vượt quá giá trị nào sau đây?
Sai số tuyệt đối của số là:
Suy ra sai số tuyệt đối của số không vượt quá
.
Một người bỏ ngẫu nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Tính xác suất để có ít nhất một lá thư được bỏ đúng phong bì.
Số phần tử không gian mẫu là: .
Gọi là biến cố “Có ít nhất một lá thư được bỏ đúng phong bì”.
Ta xét các trường hợp sau:
Nếu lá thứ nhất bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất cách.
Nếu lá thứ hai bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất cách.
Nếu lá thứ ba bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất cách.
Không thể có trường hợp hai lá thư bỏ đúng và một lá thư bỏ sai.
Cả ba lá thư đều được bỏ đúng có duy nhất cách.
.
Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là: .
Cách 2:
Gọi là biến cố “Không có lá thư nào được bỏ đúng phong bì”.
.
Một hộp chứa 3 viên bi xanh, 5 viên bi đỏ và 6 viên bi vàng. Lấy ngẫu nhiên 6 viên bi từ hộp. Xác suất để 6 viên bi được lấy ra có đủ cả ba màu là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên 6 viên bi từ hộp chứa 14 viên bi. Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
6 viên bi được lấy ra có đủ cả ba màu
. Để tìm số phần tử của biến cố
ta đi tìm số phần tử của biến cố
tức là 6 viên bi lấy ra không có đủ ba màu như sau
TH1: Chọn 6 viên bi chỉ có một màu (chỉ chọn được màu vàng).
Do đó trường hợp này có cách.
TH2: Chọn 6 viên bi có đúng hai màu xanh và đỏ, có cách.
Chọn 6 viên bi có đúng hai màu đỏ và vàng, có cách.
Chọn 6 viên bi có đúng hai màu xanh và vàng, có cách.
Do đó trường hợp này có cách.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Xét phép thử tung con súc sắc 6 mặt hai lần. Xác định số phần tử của không gian mẫu.
Không gian mẫu gồm các bộ , trong đó
.
nhận 6 giá trị,
cũng nhận 6 giá trị nên có
bộ
.
Vậy và
.
Bảng dưới đây thống kê điểm Văn của lớp 11C.

Biết
. Tìm trung vị của bảng số liệu.
Vì tổng số học sinh bằng 40 nên ta có: .
Thống kê lại bảng:
Hai giá trị chính giữa của mẫu số liệu là giá trị ở vị trí thứ 20 và 21. Đó là số 6 và số 6.
Suy ra trung vị .
Trong hộp có 3 viên bi xanh và 5 viên bi đỏ. Lấy ngẫu nhiên trong hộp 3 viên bi. Xác suất của biến cố A: “Lấy ra được 3 viên bi màu đỏ” là:
Chọn ba viên bi ngẫu nhiên trong hộp =>
Biến cố A: “Lấy ra được 3 viên bi màu đỏ” =>
=> Xác suất của biến cố A là:
Quy tròn số 54 739 đến hàng trăm và ước lượng sai số tương đối.
Quy tròn số 54 739 đến hàng trăm ta được số gần đúng là
Ta có:
=>
Số quy tròn của
với độ chính xác đã cho là:
Số quy tròn của số là:
.
Biểu đồ dưới đây thể hiện tỉ lệ lạm phát cơ bản bình quân năm trong giai đoạn 2018 – 2022:

(Nguồn: Niêm giám thống kê 2022)
Trong giai đoạn từ 2018 – 2021, năm có tỉ lệ lạm phát cơ bản bình quân năm cao nhất là?
Trong giai đoạn từ 2018 – 2021, năm 2020 có tỉ lệ lạm phát cơ bản bình quân năm cao nhất.
Nguyên lí xác suất bé được phát biểu như sau: “Nếu có một biến cố có xác suất rất bé thì trong một phép thử biến cố đó sẽ …”. Cụm từ cần điền vào chỗ trống là:
Nguyên lí xác suất bé được phát biểu như sau: “Nếu có một biến cố có xác suất rất bé thì trong một phép thử biến cố đó sẽ không xảy ra”.
Kết quả kiểm tra của 40 học sinh lớp 10A được thống kê trong bảng sau:
|
Điểm |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
Số học sinh |
2 |
3 |
7 |
18 |
3 |
2 |
4 |
1 |
Tìm mốt của mẫu số liệu đã cho?
Mốt của mẫu số liệu là: (vì có nhiều học sinh đạt điểm 6 nhất trong 40 học sinh).
Hình dưới thống kê tỉ lệ phần trăm thất nghiệp ở một số quốc gia:

Hãy tìm giá trị bất thường (nếu có) của mẫu số liệu.
Sắp xếp các giá trị theo thứ tự không giảm:
3,2 3,6 4,4 4,5 5,0 5,4 6,0 6,7 7,0 7,2 7,7 7,8 8,4 8,6 8,7
Từ mẫu số liệu ta tính được: và
,
.
Suy ra .
Ta có:
.
Ta có:
.
Ta thấy không có số liệu nào nhỏ hơn và lớn hơn
nên mẫu không có giá trị bất thường.
Một chiếc hộp đựng 7 viên bi màu xanh, 6 viên bi màu đen, 5 viên bi màu đỏ, 4 viên bi màu trắng. Chọn ngẫu nhiên ra 4 viên bi, tính xác suất để lấy được ít nhất 2 viên bi cùng màu.
Không gian mẫu là số cách chọn ngẫu nhiên 4 viên bi từ 22 viên bi đã cho.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
Lấy được 4 viên bi trong đó có ít nhất hai viên bi cùng màu
. Để tìm số phần tử của
, ta đi tìm số phần tử của biến cố
, với biến cố
là lấy được 4 viên bi trong đó không có hai viên bi nào cùng màu.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Bảng dưới đây thể hiện sản lượng lúa (đơn vị: tạ) của một số thửa ruộng:

Tính phương sai của mẫu số liệu.
Số trung bình của mẫu là:
.
Phương sai:
.
Cho số gần đúng a = 23748023 với độ chính xác d = 101. Hãy viết số quy tròn của số a.
Vì độ chính xác d = 101 là hàng trăm nên ta quy tròn đến hàng nghìn, ta được số:
a = 23748023.
Khẳng định nào sau đây là đúng?
Trong đo đạc và tính toán, ta thường chỉ nhận được số gần đúng.
Tìm phát biểu đúng về phương sai của một mẫu số liệu.
Ý nghĩa của phương sai: Phương sai được sử dụng để đánh giá mức độ phân tán của các số liệu thống kê (so với số trung bình).
Chọn ngẫu nhiên hai số khác nhau từ tập hợp số
. Tính xác suất để trong hai số lấy ra có ít nhất một số lẻ?
Số phần tử không gian mẫu là:
Gọi B là biến cố: “Cả hai số lấy ra đều là số chẵn”
Suy ra xác suất của biến cố B là:
Ta có biến cố là biến cố: “Trong hai số lấy ra có ít nhất một số lẻ”
Khi đó
Tìm khoảng tứ phân vị mẫu số liệu điểm của một nhóm học sinh lớp 10:

Sắp xếp mẫu số liệu theo thứ tự không giảm: 4 5 5 6 7 7 7 8 8 9 9 10.
Hai số liệu chính giữa là 7 và 7 nên .
Trung vị của mẫu số liệu 4 5 5 6 7 7 chính là .
Trung vị của mẫu số liệu 7 8 8 9 9 10 chính là .
Khoảng tứ phân vị
.
Một bình chứa 16 viên vi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi từ bình đó. Tính xác suất lấy được cả 3 viên bi đều không có màu đỏ.
Số cách lấy 3 viên bi bất kì là .
Số cách lấy được 3 viên bi trắng là .
Số cách lấy được 2 viên bi trắng, 1 viên bi đen là .
Số cách lấy được 1 viên bi trắng, 2 viên bi đen là .
Số cách lấy được 3 viên bi đen là .
Số cách lấy được cả 2 viên bi không đỏ là .
Suy ra xác suất cần tìm là .
Cho A là một biến cố liên quan đến phép thử T. Mệnh đề nào sau đây là mệnh đề đúng?
Mệnh đề đúng là: .
Cho bảng thống kê điểm kiểm tra môn Hóa học của học sinh lớp 10C như sau:
|
Điểm |
4 |
5 |
6 |
7 |
8 |
|
Số học sinh |
2 |
8 |
7 |
10 |
8 |
Tính điểm kiểm tra trung bình của học sinh lớp 10C?
Số học sinh lớp 10C bằng: (học sinh)
Điểm kiểm tra trung bình của học sinh lớp 10C là:
Vậy điểm kiểm tra trung bình của 35 học sinh lớp 10C bằng 6,4.
Ba xạ thủ cùng bắn vào một tấm bia, xác suất trúng đích lần lượt là 0,5; 0,6 và 0,7. Xác suất để có đúng 2 người bắn trúng bia là:
Gọi A là biến có người thứ nhất bắn trúng thì là biến cố người thứ nhất bắn trượt.
Vậy ;
.
Gọi B là biến cố người thứ hai bắn trúng và C là biến cố người thứ ba bắn trúng.
Tương tự ta có ;
;
;
.
Để hai người bắn trúng bia có các khả năng sau xảy ra:
Trường hợp 1: Người thứ nhất và thứ hai bắn trúng, người thứ ba bắn trượt.
Xác suất xảy ra là: .
Trường hợp 2: Người thứ nhất và thứ ba bắn trúng, người thứ hai bắn trượt.
Xác suất xảy ra là: .
Trường hợp 3: Người thứ hai và thứ ba bắn trúng, người thứ nhất bắn trượt.
Xác suất xảy ra là: .
Vậy xác suất để hai người bắn trúng bia là: .
Cho biểu đồ lượng mưa trung bình các tháng năm 2019 tại Thành phố Hồ Chí Minh như sau:

Mẫu số liệu nhận được từ biểu đồ trên có khoảng biến thiên là:
Quan sát biểu đồ ta thấy:
Giá trị lớn nhất là 342
Giá trị nhỏ nhất là: 4
Vậy khoảng biến thiên của mẫu số liệu là: 342 – 4 = 338.
Một tổ học sinh có
nam và
nữ. Chọn ngẫu nhiên
người. Xác suất chọn được 2 nữ là:
Chọn ngẫu nhiên người trong
người có
cách chọn.
Hai người được chọn đều là nữ có cách.
Xác suất để hai người được chọn đều là nữ là: .
Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập các tam giác có các đỉnh là đỉnh của đa giác trên. Xác suất để chọn được một tam giác từ tập X là tam giác cân nhưng không phải là tam giác đều bằng:
Số các tam giác bất kỳ là .
Số các tam giác đều là .
Có 18 cách chọn một đỉnh của đa giác, mỗi đỉnh có 8 cách chọn 2 đỉnh còn lại để được một tam giác cân.
Số các tam giác cân là: 18.8 = 144.
Số các tam giác cân không đều là: .
Xác suất cần tìm là .
Cho bảng tần số như sau:
Giá trị | x1 | x2 | x3 | x4 | x5 | x6 |
Tần số | 15 | 9n - 1 | 12 |
| 10 | 17 |
Tìm n để
là hai mốt của bảng tần số trên.
Ta có:
Vậy n = 8.
Cho bảng số liệu ghi lại điểm của 40 học sinh trong bài kiểm tra 1 tiết môn toán như sau:
Điểm | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Cộng |
Số học sinh | 2 | 3 | 7 | 18 | 3 | 2 | 4 | 1 | 40 |
Số trung bình cộng
của mẫu số liệu trên là:
Số trung bình cộng của mẫu số liệu trên là:
.
Một hộp chứa 8 tấm thẻ được đánh số theo thứ tự từ 1 đến 8 (hai tấm thẻ khác nhau ghi hai số khác nhau). Rút ngẫu nhiên đồng thời hai tấm thẻ trong hộp. Tính xác suất để rút được hai tấm thẻ đều ghi số chẵn?
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Rút được hai tấm thẻ đều ghi số chẵn”
Vậy xác suất của biến cố A là: