Tìm mốt của mẫu số liệu: 10 9 7 9 8 1 3 7 8 11 8.
Giá trị 8 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 8.
Tìm mốt của mẫu số liệu: 10 9 7 9 8 1 3 7 8 11 8.
Giá trị 8 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 8.
Một nhà nghiên cứu ghi lại tuổi của 30 bệnh nhân mắc bệnh đau mắt hột như sau:
21 | 17 | 22 | 18 | 20 | 17 | 15 | 13 | 15 | 20 | 15 | 12 | 18 | 17 | 25 |
17 | 21 | 15 | 12 | 18 | 16 | 23 | 14 | 18 | 19 | 13 | 16 | 19 | 18 | 17 |
Khoảng biến thiên
của mẫu số liệu trên là:
Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột cao nhất là 25 tuổi.
Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột thấp nhất là 12 tuổi.
Khoảng biến thiên của mẫu số liệu trên là:
Năm đoạn thẳng có độ dài 1cm; 3cm; 5cm; 7cm; 9cm. Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng trên. Xác suất để ba đoạn thẳng lấy ra có thể tạo thành 1 tam giác là:
Phân tích: Cần nhớ lại kiến thức cơ bản về bất đẳng thức tam giác.
Ba đoạn thẳng với chiều dài có thể là 3 cạch của một tam giác khi và chỉ khi
Số phần tử của không gian mẫu là:
Gọi là biến cố “lấy ba đoạn thẳng lấy ra lập thành một tam giác”
Các khả năng chọn được ba đoạn thẳng lập thành một tam giác là
Số trường hợp thuận lợi của biến cố là 3. Suy ra xác suất của biến cố
là
.
Cho biết:
Hộp 1: chứa 4 viên bi đỏ và 3 viên bi xanh.
Hộp 2: chứa 5 viên bi đỏ và 2 viên bi xanh.
Lấy ngẫu nhiên từ mỗi hộp 2 viên bi. Xác suất để lấy các viên bi có cùng màu bằng:
Lấy ngẫu nhiên 2 viên bi từ hộp 1 ta có:
Lấy ngẫu nhiên 2 viên bi từ hộp 2 ta có:
Ta có số phần tử không gian mẫu là:
Gọi A là biến cố các viên bi lấy ra cùng màu.
Số phần tử của biến cố A là:
Vậy xác suất cần tìm là:
Cho dãy số liệu thống kê
. Tìm số nguyên dương
, biết số trung bình cộng của dãy số liệu thống kê đó bằng
.
Điểm trung bình cộng của dãy số trên là
Vậy thỏa mãn yêu cầu bài toán.
Bảng dưới đây thống kê lại tốc độ phát triển của 1 loại vi khuẩn (đơn vị: nghìn con).

Ta nên lấy giá trị nào là giá trị đại diện của bảng trên?
Sắp xếp lại số liệu theo thứ tự không giảm:
20 20 20 30 60 100 150 270 440 980
Do mẫu số liệu chứa các giá trị chênh lệch rất lớn nên không thể lấy số trung bình hoặc mốt làm giá trị đại diện.
Tứ phân vị không được coi là giá trị đại diện.
Do đó ta lấy trung vị làm giá trị đại diện. Ta có:.
Chọn đáp án: Trung vị, giá trị đại diện là 80.
Gieo xúc xắc hai lần. Tính xác suất để tổng hai số chấm xuất hiện trên hai con xúc xắc là một số nguyên tố.
Gieo một con xúc xắc 2 lần. Suy ra .
Các kết quả thỏa mãn yêu cầu đề bài là: (1; 1), (1; 2), (2; 1),(1; 4), (4; 1), (2;3), (3;2). 7 kết quả.
Vậy xác suất .
Xác định số trung vị của dãy số liệu
?
Dãy số đã cho được sắp xếp theo thứ tự không giảm.
Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.
Do đó số trung vị của dãy trên là 5.
Cho bảng số liệu như sau:
|
Đại diện |
35 |
36 |
37 |
38 |
39 |
40 |
|
Tần số |
7 |
11 |
x |
y |
8 |
5 |
Biết rằng trung vị và cỡ mẫu của mẫu số liệu lần lượt là
và
. Tính giá trị
?
Vì cỡ mẫu bằng 50 nên trung vị của mẫu số liệu là trung bình cộng của 2 số ở chính giữa (vị trí 25 và 26).
Mà trung vị của mẫu số liệu trên là
Hay
Từ đó ta có số liệu đứng thứ 25 là 37 và thứ 26 là 38.
Suy ra
Mà cỡ mẫu bằng 50 suy ra
Một bộ đề thi Olympic Toán lớp 11 của Trường THPT Z mà mỗi đề gồm 5 câu được chọn từ 15 câu mức dễ, 10 câu mức trung bình và 5 câu mức khó. Một đề thi được gọi là “Tốt” nếu trong đề thi phải có cả mức dễ, mức trung bình và khó, đồng thời số câu mức khó không ít hơn 2. Lấy ngẫu nhiên một đề thi trong bộ đề trên. Tìm xác suất để đề thi lấy ra là một đề thi “Tốt”.
Chọn 5 câu trong tổng số 30 câu nên ta có không gian mẫu .
Gọi A là biến cố “Lấy ra được một đề thi “Tốt””.
TH1: 5 câu lấy ra có 2 câu khó, 1 câu dễ, 2 câu trung bình (cách).
TH2: 5 câu lấy ra có 2 câu khó, 2 câu dễ, 1 câu trung bình (cách).
TH3: 5 câu lấy ra có 3 câu khó, 1 câu dễ, 1 câu trung bình (cách).
Số kết quả thuận lợi của biến cố A là: .
Xác suất của biến cố A là: .
Cho ba chiếc hộp như sau:
Hộp 1 chứa 1 viên bi đỏ, 1 viên bi vàng.
Hộp 2 chứa 1 viên bi đỏ, 1 viên bi xanh.
Hộp 3 chứa 1 viên bi vàng, 1 viên bi xanh.
Từ mỗi hộp lấy ngẫu nhiên một viên bi và các phần tử của không gian mẫu được mô tả bằng sơ đồ sau:

Gọi A là biến cố: “Trong ba viên bi lấy ra có đúng một viên bi màu đỏ”. Xác định số kết quả thuận lợi cho biến cố A?
Số kết quả thuận lợi cho biến cố A là 4.
Biết
Viết gần đúng
theo nguyên tắc làm tròn với ba chữ số thập phân và ước lượng sai số tuyệt đối.
Làm tròn với ba chữ số thập phân:
Sai số tuyệt đối:
Vậy sai số tuyệt đối không vượt quá 0,0001.
Một người có
đôi giày khác nhau và trong lúc đi du lịch vội vã lấy ngẫu nhiên
chiếc.
Xác suất để trong
chiếc giày lấy ra có ít nhất một đôi là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên chiếc giày từ
chiếc giày.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
chiếc giày lấy ra có ít nhất một đôi
. Để tìm số phần tử của biến cố
, ta đi tìm số phần tử của biến cố
, với biến cố
là
chiếc giày được chọn không có đôi nào.
● Số cách chọn đôi giày từ
đôi giày là
.
● Mỗi đôi chọn ra chiếc, thế thì mỗi chiếc có
cách chọn. Suy ra
chiếc có
cách chọn.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Kí hiệu nào sau đây là kí hiệu của biến cố chắc chắn?
Kí hiệu biến cố chắc chắn là Ω.
Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố
: "lần đầu tiên xuất hiện mặt sấp" là bao nhiêu?
Xác suất để lần đầu xuất hiện mặt sấp là . Lần 2 và 3 thì tùy ý nên xác suất là 1.
Theo quy tắc nhân xác suất: .
Cho biết kết quả đo chiều cao của một số học sinh lớp 10E như sau:
. Xác định khoảng biến thiên của mẫu số liệu?
Quan sát dãy số liệu ta thấy:
Giá trị lớn nhất là 169
Giá trị nhỏ nhất là 150
Vậy khoảng biến thiên của mẫu số liệu bằng 169 – 150 = 19.
Một hộp đèn có 12 bóng, trong đó có 4 bóng hỏng. Lấy ngẫu nhiên 3 bóng. Xác suất luôn lấy được 1 bóng hỏng là:
Trong 3 bóng có 1 bóng hỏng
Ta có .
Gọi biến cố A : “Trong 3 bóng lấy ra có 1 bóng hỏng”.
Tính được .
Vậy .
Một bình chứa
viên bi màu, trong đó có
bi xanh,
bi đỏ,
bi trắng. Lấy ngẫu nhiên
viên bi từ bình đó. Tính xác suất để lấy được
viên bi khác màu.
Lấy viên bi bất kì trong
viên bi trong bình thì có
(cách).
Lấy viên bi cùng màu thì có
(cách) nên có
(cách) lấy được
viên bi khác màu.
Xác suất để lấy được viên bi khác màu trong tổng số
viên bi là
.
Cho bảng số liệu ghi lại điểm của 40 học sinh trong bài kiểm tra 1 tiết môn toán như sau:
Điểm | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Cộng |
Số học sinh | 2 | 3 | 7 | 18 | 3 | 2 | 4 | 1 | 40 |
Số trung bình cộng
của mẫu số liệu trên là:
Số trung bình cộng của mẫu số liệu trên là:
.
Nhiệt độ (đơn vị: 0C) tại Mộc Châu trong một ngày sau một vài lần đo như sau:
![]()
![]()
Kết quả nào dưới đây gần nhất với độ lệch chuẩn của mẫu số liệu đã cho?
Ta có:
Nhiệt độ trung bình trong ngày là:
Ta có bảng sau:
|
Giá trị |
Độ lệch |
Bình phương độ lệch |
|
21 |
47,61 |
|
|
23 |
24,01 |
|
|
25 |
8,41 |
|
|
28 |
0,01 |
|
|
30 |
4,41 |
|
|
32 |
16,81 |
|
|
34 |
37,21 |
|
|
31 |
9,61 |
|
|
29 |
1,21 |
|
|
26 |
3,61 |
|
|
Tổng |
152,9 |
|
Suy ra phương sai của mẫu số liệu là:
Suy ra độ lệch chuẩn của mẫu số liệu là:
Điểm kiểm tra môn Hóa của một nhóm gồm 9 bạn như sau: 1; 1; 3; 6; 7; 8; 8; 9; 10. Tính trung bình cộng của mẫu số liệu trên. (làm tròn đến hàng phần chục)
Số trung bình của mẫu số liệu trên là: .
Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?
Số đặc trưng đo độ đo phân tán của mẫu số liệu là phương sai.
Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là:
Các cặp số thỏa mãn tổng số ba thẻ được chọn không vượt quá 8 là: {1; 2; 3}, {1; 2; 4}, {1; 2; 5}, {1; 3; 4}.
Vậy số phần tử của A là 4 phần tử.
Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện nhân 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.
Giả sử các số liệu trong mẫu là: đã sắp xếp theo thứ tự không giảm.
Khoảng biến thiên: .
Nhân hai với tất cả các số liệu: .
Khoảng biến thiên: .
Suy ra .
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Xác suất để 3 quyển được lấy ra đều là môn toán là bao nhiêu?
Số cách lấy 3 quyển sách bất kì là .
Số cách lấy được 3 quyển thuộc môn toán là .
Suy ra xác suất cần tìm là .
Xác định các tứ phân vị của mẫu số liệu:
?
Sắp xếp mẫu dữ liệu theo thứ tự không giảm như sau:
Ta có: suy ra trung vị bằng trung bình cộng của dữ liệu nằm ở vị trí thứ 5 và thứ 6
Vậy đáp án đúng là: .
Cho
là số gần đúng của số đúng
. Sai số tuyệt đối của số gần đúng
là:
Sai số tuyệt đối của số gần đúng a là:
Cho mẫu số liệu:
. Xác định phương sai của mẫu số liệu đã cho?
Ta có:
Số trung bình của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Vậy phương sai của mẫu số liệu bằng 4.
Gieo một con xúc xắc cân đối và đồng chất. Giả sử xúc xắc xuất hiện mặt b chấm. Xác suất để phương trình
có hai nghiệm phân biệt là:
Phương trình có hai nghiệm phân biệt khi và chỉ khi
Mà
=>
Gieo con xúc xắc cân đối và đồng chất =>
Biến cố A xúc xắc xuất hiện mặt b chấm thỏa mãn phương trình =>
=> Xác suất để phương trình có hai nghiệm phân biệt là:
Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây:
= 17658 ± 16.
Vì độ chính xác đến hàng chục nên ta phải quy tròn số 17638 đến hàng trăm. Vậy số quy tròn là 17700 (hay viết ≈ 17700).
Cho
. Số quy tròn của số gần đúng
là:
Số quy tròn của số gần đúng là:
.
Dùng máy tính cầm tay để viết quy tròn số gần đúng
đến hàng phần trăm là:
Ta có: .
Chữ số hàng phần nghìn bằng 0 < 5 nên chọn .
Một hộp chứa 8 tấm thẻ được đánh số theo thứ tự từ 1 đến 8 (hai tấm thẻ khác nhau ghi hai số khác nhau). Rút ngẫu nhiên đồng thời hai tấm thẻ trong hộp. Tính xác suất để rút được hai tấm thẻ đều ghi số chẵn?
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Rút được hai tấm thẻ đều ghi số chẵn”
Vậy xác suất của biến cố A là:
Xác định khoảng biến thiên
của mẫu số liệu: 6 5 3 7 8 10 15.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 3 5 6 7 8 10 15.
Suy ra khoảng biến thiên .
Cho mẫu số liệu:
. Số trung bình của mẫu số liệu là:
Số trung bình của mẫu số liệu là:
Vậy số trung bình là 8.
Cho bảng số liệu thống kê điểm kiểm tra môn Hóa học của lớp 10A như sau:
|
Điểm |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
Số học sinh |
2 |
2 |
4 |
6 |
15 |
9 |
3 |
1 |
Độ lệch chuẩn của mẫu số liệu trên là:
Ta có:
Điểm trung bình của học sinh lớp 10A là:
Phương sai của mẫu số liệu là:
Độ lệch chuẩn của mẫu số liệu đã cho là:
Vậy độ lệch chuẩn cần tìm là: .
Hai cậu bé cùng bắn bi vào lỗ. Xác suất người thứ nhất bắn trúng vào lỗ là 85%, xác suất người thứ hai bắn trúng vào lỗ là 70%. Hỏi xác suất để cả hai người cùng bắn trúng vào lỗ:
Xác suất người thứ nhất bắn trúng lỗ: 0,85
Xác suất người thứ hai bắn trúng bia: 0,7
Xác suất để cả hai người cùng bắn trúng bia: 0,85.0,7 = 0,595 = 59,5%
Tìm số gần đúng của a = 5,2463 với độ chính xác d = 0,001.
Vì độ chính xác đến hàng phần nghìn nên ta quy tròn a đến hàng phần trăm, vậy số quy tròn của a là 5,25.