Đề kiểm tra 45 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Một số yếu tố thống kê và xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho bảng thống kê sản lượng lúa (đơn vị: ha) của các thửa ruộng có cùng diện tích trong tỉnh A như sau:

    Sản lượng

    20

    21

    22

    23

    24

    Số thửa ruộng

    5

    8

    11

    10

    6

    Tìm phương sai của bảng số liệu?

    Số thửa ruộng được thống kê sản lượng là:

    N = 5 + 8 + 11 + 10 + 6 =
40

    Sản lượng lúa trung bình của 40 thửa ruộng là:

    \overline{x} = \frac{5.20 + 8.21 + 11.22
+ 10.23 + 6.24}{40} = 22,1

    Phương sai của sản lượng lúa của 40 thửa ruộng là:

    S^{2} = \frac{5.20^{2} + 8.21^{2} +
11.22^{2} + 10.23^{2} + 6.24^{2}}{40} - 22,1^{2} = 1,54

  • Câu 2: Nhận biết

    Cho số đúng \overline{a} = 40 \pm 0,5. Giá trị của \overline{a} thuộc đoạn nào sau đây?

    Ta có:

    \overline{a} = 40 \pm 0,5 \Rightarrow
\overline{a} \in \lbrack 39,5;40,5brack

  • Câu 3: Nhận biết

    Bảng dưới đây là sản lượng lúa gạo của nước ta giai đoạn 2007 – 2017 (đơn vị: triệu tấn).

    Khoảng biến thiên của mẫu số liệu là:

    Khoảng biến thiên là R = 7,72 - 4,53 =
3,19.

  • Câu 4: Nhận biết

    Tìm khoảng tứ phân vị mẫu số liệu điểm của một nhóm học sinh lớp 10:

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 4 5 5 6 7 7 7 8 8 9 9 10.

    Hai số liệu chính giữa là 7 và 7 nên Q_{2} = \frac{7 + 7}{2} = 7.

    Trung vị của mẫu số liệu 4 5 5 6 7 7 chính là Q_{1} = \frac{5 + 6}{2} = 5,5.

    Trung vị của mẫu số liệu 7 8 8 9 9 10 chính là Q_{3} = \frac{8 + 9}{2} = 8,5.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1} = 8,5 - 5,5 = 3.

  • Câu 5: Nhận biết

    Gieo 3 đồng tiền. Phép thử ngẫu nhiên này có không gian mẫu là:

    Liệt kê các phần tử: \left\{ NNN,\ SSS,\
NNS,\ SSN,\ NSN,\ SNS,\ NSS,SNN ight\}.

  • Câu 6: Vận dụng

    Một hộp đựng 10 thẻ được đánh số từ 1 đến 10. Phải rút ra ít nhất k thẻ để xác suất có ít nhất một thẻ ghi số chia hết cho 4 lớn hơn \frac{13}{15}. Tính giá trị của k.

    Gọi biến cố A: Lấy k tấm thẻ có ít nhất một tấm thẻ chia hết cho 4. Với 1 \leq k \leq 10.

    Suy ra \overline{A}: Lấy k tấm thẻ không có tấm thẻ nào chia hết cho 4.

    Ta có: P\left( \overline{A} ight) =
\frac{C_{8}^{k}}{C_{10}^{k}} \Rightarrow P(A) = 1 -
\frac{C_{8}^{k}}{C_{10}^{k}} = 1 - \frac{(10 - k)(9 -
k)}{90}.

    Theo đề: 1 - \frac{(10 - k)(9 - k)}{90}
> \frac{13}{15} \Leftrightarrow k^{2} - 19k + 78 < 0
\Leftrightarrow 6 < k < 13.

    Vậy k = 7 là giá trị cần tìm.

  • Câu 7: Thông hiểu

    Bảng dưới đây thống kê thời gian nảy mầm của một giống cây trong các điều kiện khác nhau.

    Tính thời gian trung bình thời gian nảy mầm của loại giống cây trên.

    Thời gian trung bình thời gian nảy mầm của loại giống cây trên là:

    \overline{x} = \frac{8.420 + 17.440 + 18.450 + 16.480 + 11.500 +
10.540}{8 + 17 + 18 + 16 + 11 + 10} = 469.

  • Câu 8: Vận dụng

    Biểu đồ dưới đây thể hiện tốc độ tăng trưởng GDP của Việt Nam giai đoạn 2014 – 2021. Tính độ lệch chuẩn của mẫu số liệu.

    Số trung bình của mẫu là:

    \overline{x} = \frac{5,98 + 6,68 + 6,21 + 6,81 + 7,08 + 7,02 +
2,91 + 2,58}{8} =
5,65875

    Từ đó tính được phương sai: s^{2} =
2,96.

    Suy ra độ lệch chuẩn: \sqrt{s^{2}} =
1,72.

  • Câu 9: Thông hiểu

    Một thùng có 7 sản phẩm, trong đó có 4 sản phẩm loại I3 sản phẩm loại II. Lấy ngẫu nhiên 2 sản phẩm từ thùng đó. Xác suất để lấy được 2 sản phẩm cùng loại là bao nhiêu?

    Lấy ngẫu nhiên 2 sản phẩm trong 7 sản phẩm thì có C_{7}^{2} = 21 (cách).

    2sản phẩm được lấy ra đều là sản phẩm loại IC_{4}^{2} = 6(cách).

    2sản phẩm được lấy ra đều là sản phẩm loại IIC_{3}^{2} = 3(cách).

    Xác suất để lấy được 2sản phẩm cùng loại là P = \frac{6 + 3}{21} =
\frac{3}{7}.

  • Câu 10: Vận dụng

    Dưới đây là bảng thống kê số lần làm bài tập Toán của học sinh lớp 10A.

    Tìm trung vị của mẫu số liệu này.

    Cỡ mẫu số liệu này là: 2 + 4 + 6 + 12 + 8
+ 3 = 35.

    Suy ra giá trị chính giữa là giá trị ở vị trí thứ 18. Đó là số 3.

    Vậy trung vị M_{e} = 3.

  • Câu 11: Nhận biết

    Điểm kiểm tra môn Hóa của một nhóm gồm 9 bạn như sau: 1; 1; 3; 6; 7; 8; 8; 9; 10. Tính trung bình cộng của mẫu số liệu trên. (làm tròn đến hàng phần chục)

    Số trung bình của mẫu số liệu trên là: \overline{x} = \frac{1 + 1 + 3 + 6 + 7 + 8 + 8 + 9
+ 10}{9} \approx 5,9.

  • Câu 12: Nhận biết

    Từ một hộp gồm 12 quả bóng gồm 5 quả đỏ và 7 quả xanh, lấy ngẫu nhiên đồng thời 3 quả. Xác suất để lấy được 3 quả màu xanh bằng bao nhiêu?

    Lấy 3 quả bóng từ 12 quả ta có: n(\Omega)
= C_{12}^{3} = 220

    Lấy ngẫu nhiên 3 quả bóng đều màu xanh có: C_{7}^{3} = 35 cách

    Vậy xác suất để lấy được 3 quả bóng màu xanh là: P = \frac{35}{220} = \frac{7}{44}.

  • Câu 13: Thông hiểu

    Có bốn hành khách bước lên một đoàn tàu gồm 4 toa. Mỗi hành khách độc lập với nhau và chọn ngẫu nhiên một toa. Tính xác suất để 1 toa có 3 người, 1 toa có 1 người và 2 toa còn lại không có người?

    Vì mỗi hành khách có 4 cách chọn toa tàu nên: n(\Omega) = 4^{4} = 256

    Để xếp theo yêu cầu của bài toán ta thực hiện các bước liên tiếp như sau:

    Chọn 1 toa để xếp 3 người ta có: C_{4}^{1} = 4

    Chọn 3 người để xếp vào toa đó là: C_{4}^{3} = 4

    Chọn 1 toa từ 3 toa còn lại để xếp người còn lại vào: C_{3}^{1} = 3

    Theo quy tắc nhân ta có: 4.4.3 =
48

    Vậy xác suất cần tìm là: \frac{48}{256} =
\frac{3}{16}

  • Câu 14: Thông hiểu

    Cho kết quả đo chiều cao của 5 học sinh bất kì trong lớp như sau: 168;155;164;158;163. Tính độ lệch chuẩn của mẫu số liệu? (Kết quả làm tròn đến chữ số thập phân thứ hai)

    Chiều cao trung bình của 5 bạn là:

    \overline{x} = \frac{168 + 155 + 164 +
158 + 163}{5} = \frac{808}{5}

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{5}\lbrack\left( 168 -
\frac{808}{5} ight)^{2} + \left( 155 - \frac{808}{5} ight)^{2} +
\left( 164 - \frac{808}{5} ight)^{2}

    + \left( 158 - \frac{808}{5} ight)^{2}
+ \left( 163 - \frac{808}{5} ight)^{2}brack =
\frac{526}{25}

    Độ lệch chuẩn của mẫu số liệu là: s =
\sqrt{s^{2}} = \sqrt{\frac{526}{25}} \approx 4,59.

  • Câu 15: Nhận biết

    Trong kết quả thống kê điểm môn Tiếng Anh của một lớp có 40 học sinh, điểm thấp nhất là 2 điểm và cao nhất là 10 điểm. Khẳng định nào sau đây đúng?

    Khi thực hiện tính điểm trung bình hay trung vị còn phụ thuộc vào tần số của mỗi điểm.

    Nếu chỉ có khoảng điểm thì không thể kết luận về điểm trung bình môn Tiếng Anh của lớp đó và trung vị.

  • Câu 16: Thông hiểu

    Một đội văn nghệ có 5 nam và 8 nữ, đội trưởng cần lập một nhóm 4 người để tham gia biểu diễn một tiết mục chính. Xác suất để trong bốn người được chọn có ít nhất 3 nam bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
C_{13}^{4}

    Gọi A là biến cố: “chọn được ít nhất 3 nam”

    n(A) = C_{5}^{3}.C_{8}^{1} +
C_{5}^{4}

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{17}{143}

  • Câu 17: Thông hiểu

    Gieo ba con xúc xắc một cách độc lập. Tính xác suất để tổng số chấm trên mặt xuất hiện trên ba con xúc xắc bằng 9?

    Gọi A là biến cố: “Tổng số chấm trên ba mặt của ba con xúc xắc là 9”

    \left\{ \begin{matrix}
9 = 1 + 2 + 6 \\
9 = 2 + 3 + 4 \\
9 = 1 + 3 + 5 \\
9 = 1 + 4 + 4 \\
9 = 2 + 2 + 5 \\
9 = 3 + 3 + 3 \\
\end{matrix} ight. nên n(A) =
3.3! + 3.2 + 1 = 25

    Lại có |\Omega| = 6^{3} =
216

    Khi đó xác suất của biến cố A là: P(A) =
\frac{25}{216}

  • Câu 18: Thông hiểu

    Tính chiều cao trung bình của học sinh biết chiều cao của từng học sinh được ghi lại như sau:

    Chiều cao (cm)

    150

    155

    160

    165

    170

    175

    Số học sinh

    4

    6

    7

    6

    5

    3

    Chiều cao trung bình của các học sinh là:

    \overline{x} = \frac{150.4 + 155.6 +
160.7 + 165.6 + 170.5 + 175.3}{4 + 6 + 7 + 6 + 5 + 3}

    \Rightarrow \overline{x} \approx
161,8(cm)

  • Câu 19: Vận dụng

    Các bạn sinh viên đi đo chỉ số EQ thu được kết quả: 60 72 63 83 68 74 90 86 74 80.

    Ta nên chọn giá trị đại diện cho mẫu số liệu trên thế nào?

    Sắp xếp lại mẫu số liệu theo thứ tự không giảm: 60 63 68 72 74 74 80 83 86 90.

    Các giá trị của mẫu số liệu có độ lớn không chênh lệch quá nhiều. Do đó ta nên chọn số trung bình cộng làm giá trị đại diện.

    Ta có: \overline{x} = \frac{60 + 63 + 68 + 72 + 74 + 74 + 80 + 83 + 86 +
90}{10} = 75.

  • Câu 20: Thông hiểu

    Gieo hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai mặt của hai con xúc xắc bằng 7?

    Ta có:

    Số phần tử không gian mẫu là: n(\Omega) =
6.6 = 36

    Gọi A là biến cố “tổng số chấm xuất hiện trên hai mặt của hai con xúc xắc bằng “.

    \Rightarrow A = \left\{
(1;6),(6;1),(2;5),(5;2),(4;3),(3;4) ight\}

    \Rightarrow n(A) = 6

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{6}{20} = \frac{3}{10}.

  • Câu 21: Thông hiểu

    Một túi gạo có ghi thông tin khối lượng là 5 \pm 0,2kg. Khi đó khối lượng thực của bao gạo nằm trong đoạn nào sau đây?

    Khi một túi gạo có ghi thông tin khối lượng là 5 \pm 0,2kg thì khối lượng thực của bao gạo nằm trong đoạn \lbrack
4,8;5,2brack.

  • Câu 22: Nhận biết

    Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một lần xuất hiện mặt sấp là bao nhiêu?

    Phép thử: Gieo đồng tiền 5 lần cân đối và đồng chất.

    Ta có n(\Omega) = 2^{5} =
32.

    Biến cố A: Được ít nhất một lần xuất hiện mặt sấp.

    \overline{A}: Tất cả đều là mặt ngửa.

    n\left( \overline{A} ight) =
1.

    \Rightarrow n(A) = n(\Omega) - n\left(
\overline{A} ight) = 31.

    \Rightarrow p(A) = \frac{n(A)}{n(\Omega)}
= \frac{31}{32}.

  • Câu 23: Vận dụng

    Bảng sau đây cho ta biết số cuốn sách mà học sinh của một lớp ở trường Trung học phổ thông đã đọc:

    Số sách

    1

    2

    3

    4

    5

    6

     

    Số học sinh đọc

    10

    m

    8

    6

    n

    3

    n = 40

    Tìm m và n, biết phương sai của mẫu số liệu trên xấp xỉ 2,52.

     Số trung bình là: 

    \overline x  = \frac{{10.1 + 2.m + 8.3 + 4.6 + 5.n + 6.3}}{{40}} = \frac{{76 + 2m + 5n}}{{40}}

    Phương sai là:

    \begin{matrix}  {S^2} = \dfrac{1}{{40}}\left( {{{10.1}^2} + m{{.2}^2} + {{8.3}^2} + {{6.4}^2} + n{{.5}^2} + {{3.6}^2}} ight) - {\left( {\dfrac{{76 + 2m + 5n}}{{40}}} ight)^2} \hfill \\   \Rightarrow {S^2} = \dfrac{1}{{40}}\left( {286 + 4m + 25n} ight) - {\left( {\dfrac{{76 + 2m + 5n}}{{40}}} ight)^2} \hfill \\ \end{matrix}

    Theo bài ra ta có:

    Kiểm tra được: m = 8 và n = 5 thỏa mãn.

  • Câu 24: Thông hiểu

    Gieo ngẫu nhiên một đồng tiên cân đối, đồng chất 3 lần liên tiếp. Xác suất để ít nhất một lần xuất hiện mặt sấp là:

    Ta có: n(\Omega) = 2^{3} = 8

    Gọi A là biến cố “ít nhất một lần xuất hiện mặt sấp”

    \Rightarrow A = \left\{
SSS;SSN;SNS;NSS;NSN;NNS ight\}

    \Rightarrow n(A) = 7

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{7}{8}

  • Câu 25: Vận dụng

    Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập các tam giác có các đỉnh là đỉnh của đa giác trên. Xác suất để chọn được một tam giác từ tập X là tam giác cân nhưng không phải là tam giác đều bằng:

    Số các tam giác bất kỳ là n(\Omega) =
C_{18}^{3}.

    Số các tam giác đều là \frac{18}{3} =
6.

    Có 18 cách chọn một đỉnh của đa giác, mỗi đỉnh có 8 cách chọn 2 đỉnh còn lại để được một tam giác cân.

    Số các tam giác cân là: 18.8 = 144.

    Số các tam giác cân không đều là: 144 -
6.3 = 126 \Rightarrow n(A) = 126.

    Xác suất cần tìm là P(A) =
\frac{126}{C_{18}^{3}} = \frac{21}{136}.

  • Câu 26: Nhận biết

    Xác suất của biến cố A, kí hiệu là:

     Xác suất của biến cố A, kí hiệu là: P(A).

  • Câu 27: Nhận biết

    Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của \pi^{2}chính xác đến hàng phần nghìn.

    Sử dụng máy tính bỏ túi ta có giá trị của \pi^{2} là 9,8696044. Do đó giá trị gần đúng của \pi^{2} chính xác đến hàng phần nghìn là 9,870.

  • Câu 28: Thông hiểu

    Tìm chỉ số IQ trung bình của nhóm học sinh. Biết kết quả đo IQ là 60;72;63;63;68;72;90;86;72;80.

    Chỉ số IQ trung bình cần tìm là:

    \overline{x} = \frac{60 + 2.63 + 68 +
3.72 + 80 + 86 + 90}{10} = s72,6

    Vậy chỉ số IQ trung bình của nhóm học sinh là 72,6.

  • Câu 29: Nhận biết

    Cho số gần đúng a = 32567 với độ chính xác d = 300. Số quy tròn của số a là:

    Độ chính xác đến hàng trăm nên ta quy tròn đến hàng nghìn, ta được số quy tròn là 33000.

  • Câu 30: Nhận biết

    Trong một hộp đựng 7 bi màu đỏ, 5 bi màu xanh và 3 bi vàng, lấy ngẫu nhiên 3 viên bi. Xác suất để 3 viên bi lấy được đều có màu đỏ là:

    Tổng số có 7 + 5 + 3 = 15 viên bi.

    Lấy ngẫu nhiên 3 viên bi từ 15 viên có C_{15}^{3} = 455 (cách lấy).

    Số phần tử của không gian mẫu là n(\Omega) = 455.

    Gọi A: 3 viên bi lấy được đều có màu đỏ<img class="data-latex" data-type="2" src="https://tex.vdoc.vn?tex=%22" data-latex="" "="" alt=""">.

    Lấy 3 viên bi màu đỏ từ 7 viên bi màu đỏ có C_{7}^{3} = 35 \Rightarrow n(A) = 35.

    Vậy xác suất để 3 viên bi lấy được đều có màu đỏ là P(A) =
\frac{n(A)}{n(\Omega)} = \frac{45}{455} = \frac{1}{13}.

  • Câu 31: Nhận biết

    Tìm mốt của mẫu số liệu: 1 3 4 2 0 0 5 6.

    Giá trị 0 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 0.

  • Câu 32: Nhận biết

    Cho biết kết quả đo chiều cao của một số học sinh lớp 10E như sau: 163;165;169;167;164;168;150;161. Xác định khoảng biến thiên của mẫu số liệu?

    Quan sát dãy số liệu ta thấy:

    Giá trị lớn nhất là 169

    Giá trị nhỏ nhất là 150

    Vậy khoảng biến thiên của mẫu số liệu bằng 169 – 150 = 19.

  • Câu 33: Vận dụng

    Một người có 10 đôi giày khác nhau và trong lúc đi du lịch vội vã lấy ngẫu nhiên 4 chiếc.

    Xác suất để trong 4 chiếc giày lấy ra có ít nhất một đôi là bao nhiêu?

    Không gian mẫu là số cách chọn ngẫu nhiên 4 chiếc giày từ 20 chiếc giày.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{20}^{4} = 4845.

    Gọi A là biến cố ''4 chiếc giày lấy ra có ít nhất một đôi''. Để tìm số phần tử của biến cố A, ta đi tìm số phần tử của biến cố \overline{A}, với biến cố \overline{A}4 chiếc giày được chọn không có đôi nào.

    ● Số cách chọn 4 đôi giày từ 10 đôi giày là C_{10}^{4}.

    ● Mỗi đôi chọn ra 1 chiếc, thế thì mỗi chiếc có C_{2}^{1} cách chọn. Suy ra 4 chiếc có \left( C_{2}^{1} ight)^{4} cách chọn.

    Suy ra số phần tử của biến cố \overline{A}\left| \Omega_{\overline{A}} ight| =
C_{10}^{4}.\left( C_{2}^{1} ight)^{4} = 3360.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = 4845 - 3360 =
1485.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{1485}{4845} =
\frac{99}{323}.

  • Câu 34: Thông hiểu

    Cho số a =
367653964 \pm 213. Số quy tròn của số gần đúng 367653964 là:

    Với a = 367653964 \pm 213 suy ra độ chính xác d = 213

    Vì độ chính xác đến hàng trăm nên số quy trình của số a được làm tròn đến hàng nghìn.

    Vì chữ số hàng năm là 9 > 5

    => Chữ số hàng nghìn được tăng thêm 1 đơn vị từ 3 đến 4 và các chữ số đằng sau thay bởi chữ số 0.

    => Số quy tròn của số gần đúng 367653964 là: .367654000.

  • Câu 36: Vận dụng

    Cho X = {0; 1; 2; 3; …; 15}. Chọn ngẫu nhiên 3 số trong tập hợp X. Xác suất để trong ba số được chọn không có hai số liên tiếp bằng:

    Không gian mẫu có số phần tử là: |\Omega|
= C_{16}^{3} = 560 (phần tử).

    Ta tìm số cách lấy ra ba số trong đó có đúng hai số liên tiếp nhau hoặc lấy ra được cả ba số liên tiếp nhau.

    Khi đó ta có các trường hợp sau:

    Trường hợp 1: Lấy ra ba số trong đó có đúng hai số liên tiếp nhau.

    Trong ba số lấy ra có hai số 0,1 hoặc 14, 15 khi đó số thứ ba có 13 cách lấy.

    Do đó trường hợp này có: 2.13 = 26 cách lấy.

    Trong ba số lấy ra không có hai số 0,1 hoặc 14, 15 khi đó ta có 13 cặp số liên tiếp nhau khác 0,1 và 14, 15, số thứ ba có 12 cách lấy. Do đó trường hợp này có: 13.12 = 156 cách lấy.

    Trường hợp 2: Lấy ra được cả ba số liên tiếp nhau có 14 cách lấy.

    Vậy ta có 26 + 156 + 14 = 196 cách lấy ra ba số liên tiếp nhau hoặc lấy ra ba số trong đó có hai số liên tiếp nhau.

    Xác suất để trong ba số được chọn không có hai số liên tiếp là: P = \frac{560 - 196}{560} =
\frac{13}{20}.

  • Câu 37: Nhận biết

    Xác định số trung vị của dãy số liệu 1;2;5;7;8;9;10?

    Dãy số đã cho được sắp xếp theo thứ tự không giảm.

    Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.

    Do đó số trung vị của dãy trên là 7.

  • Câu 38: Nhận biết

    Cho a là số gần đúng của số đúng \overline{a}. Sai số tuyệt đối của số gần đúng a là:

    Sai số tuyệt đối của số gần đúng a là: \Delta_{a} = \left| \overline{a} - a
ight|

  • Câu 39: Nhận biết

    Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng nào sau đây?

    Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng phương sai.

  • Câu 40: Nhận biết

    Cho không gian mẫu Ω có n(Ω) = 10. Biến cố A có số các kết quả thuận lợi là n(A) = 5. Xác suất của biến cố A là:

     Ta có: P(A)=\frac{n(A)}{n(\Omega}=\frac12.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 4 lượt xem
Sắp xếp theo