Gieo ngẫu nhiên một con xúc sắc cân đối đồng chất
lần. Xác suất mà số chấm của hai lần gieo là như nhau là bao nhiêu?
Gọi là biến cố “Số chấm trong hai lần gieo là bằng nhau”.
.
,
.
Vậy .
Gieo ngẫu nhiên một con xúc sắc cân đối đồng chất
lần. Xác suất mà số chấm của hai lần gieo là như nhau là bao nhiêu?
Gọi là biến cố “Số chấm trong hai lần gieo là bằng nhau”.
.
,
.
Vậy .
Lớp 12 có 9 học sinh giỏi, lớp 11 có 10 học sinh giỏi, lớp 10 có 3 học sinh giỏi. Chọn ngẫu nhiên hai trong số học sinh đó. Tính xác suất để cả hai học sinh đó cùng một lớp.
Số phần tử của không gian mẫu là .
Gọi là biến cố cả hai học sinh được chọn từ cùng một lớp.
Chọn 2 học sinh của lớp 12, có (cách).
Chọn 2 học sinh của lớp 11, có (cách).
Chọn 2 học sinh của lớp 10, có (cách).
Suy ra .
Xác suất cần tìm là .
Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?
Đáp án: Độ lệch chuẩn.
Thống kê số cuốn sách mỗi bạn trong lớp đã đọc trong năm 2023, lớp trưởng thu được kết quả như sau:
|
Số cuốn sách |
3 |
4 |
5 |
6 |
7 |
|
Số học sinh |
6 |
15 |
3 |
8 |
8 |
Tìm mốt của mẫu số liệu đã cho?
Mốt của mẫu số liệu là 4 (vì có tần số lớn nhất).
Trong hộp có 3 viên bi xanh và 5 viên bi đỏ. Lấy ngẫu nhiên trong hộp 3 viên bi. Xác suất của biến cố A: “Lấy ra được 3 viên bi màu đỏ” là:
Chọn ba viên bi ngẫu nhiên trong hộp =>
Biến cố A: “Lấy ra được 3 viên bi màu đỏ” =>
=> Xác suất của biến cố A là:
Một hộp chứa 5 viên bi trắng, 10 viên bi xanh và 15 viên bi đỏ. Lấy ngẫu nhiên từ trong hộp 7 viên bi. Xác suất để trong số 7 viên bi lấy ra có ít nhất 2 viên bi màu đỏ?
Số phần tử không gian mẫu là:
Gọi A là biến cố để trong 7 viên bi lấy ra có ít nhất 2 viên bi màu đỏ
là biến cố để trong 7 viên bi được lấy ra có số viên bi nhỏ hơn 2.
TH1: 7 viên bi trong đó có 1 viên bi đỏ ta có:
TH2: 7 viên bi trong đó có không có viên bi đỏ ta có:
Vậy xác suất của biến cố A cần tìm là:
Sản lượng lúa (đơn vị là tạ) của 11 thửa ruộng thí nghiệm có cùng diện tích lần lượt là: 20; 19; 17; 21; 24; 22; 23; 16; 11; 25; 23. Tìm mốt của mẫu số liệu trên.
Số 23 xuất hiện nhiều nhất nên nó là mốt.
Cho số
. Số quy tròn của số gần đúng
là:
Với suy ra độ chính xác
Vì độ chính xác đến hàng trăm nên số quy trình của số a được làm tròn đến hàng nghìn.
Vì chữ số hàng năm là 9 > 5
=> Chữ số hàng nghìn được tăng thêm 1 đơn vị từ 3 đến 4 và các chữ số đằng sau thay bởi chữ số 0.
=> Số quy tròn của số gần đúng là: .
.
Tìm số gần đúng của a = 5,2463 với độ chính xác d = 0,001.
Vì độ chính xác đến hàng phần nghìn nên ta quy tròn a đến hàng phần trăm, vậy số quy tròn của a là 5,25.
Gọi
là tập hợp tất cả các số tự nhiên gồm 2 chữ số khác nhau lập từ
. Chọn ngẫu nhiên 2 số từ tập
. Xác suất để tích hai số chọn được là một số chẵn là:
Ta có điều kiện chủ chốt “tích hai số được chọn là một số chẵn” Tồn tại ít nhất một trong hai số được chọn là chẵn.
Gọi là số tự nhiên có hai chữ số khác nhau được lập từ các số đã cho
Số cách chọn là 6 cách; Số cách chọn
cách
Số các số có hai chữ số khác nhau tạo được là
số. Suy ra
có
phần tử.
Số cách lấy ngẫu nhiên 2 số từ tập :
cách
Gọi biến cố : “Tích hai số được chọn là một số chẵn”
Gọi biến cố : “Tích hai số được chọn là một số lẻ”
Số các số lẻ trong :
(3 cách chọn chữ số hàng đơn vị là lẻ, 5 cách chọn chữ số hàng chục khác 0).
Số cách lấy ngẫu nhiên 2 số lẻ trong 15 số lẻ: cách
Suy ra . Vậy
.
Kết quả điều tra dân số của tỉnh A năm 2024 là
người. Số quy tròn dân số trên là:
Hàng lớn nhất của độ chính xác là hàng năm nên ta quy tròn
đến hàng nghìn.
Vậy số quy tròn của là
.
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Xác suất để 3 quyển được lấy ra có ít nhất 1 quyển là toán là bao nhiêu?
Số cách lấy 3 quyển sách bất kì là .
Số cách lấy được 3 quyển lý là .
Số cách lấy được 2 quyển lý, 1 quyển hóa là .
Số cách lấy được 1 quyển lý, 2 quyển hóa là .
Số cách lấy 3 quyển sách mà không có sách toán là .
Suy ra số cách lấy 3 quyển sách mà có ít nhất 1 quyển sách toán là 74 cách.
Suy ra xác suất cần tìm là .
Cho 40 tấm thẻ được đánh số theo thứ tự từ 1 đến 40. Chọn ngẫu nhiên 3 tấm thẻ. Tính xác suất để ba tấm thẻ được chọn có tổng các số ghi trên ba tấm thẻ đó là một số chẵn?
Số phần tử không gian mẫu là:
Gọi A là biến cố chọn được 3 tấm thẻ có các số ghi trên ba tấm thẻ đó là một số chẵn.
TH1: 2 số ghi số lẻ, 1 số ghi số chẵn ta có:
TH2: 3 số ghi số chẵn ta có:
Vậy xác suất để chọn được 3 tấm thẻ có tổng các số ghi trên các thẻ là một số chẵn là:
Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng nào sau đây?
Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng phương sai.
Chọn ngẫu nhiên 2 học sinh từ một tổ có 9 học sinh. Biết rằng xác suất chọn được 2 học sinh nữ bằng
, hỏi tổ có bao nhiêu học sinh nữ?
Gọi số học sinh nữ là
Chọn bất kỳ 2 học sinh ta có cách.
Do đó số phần tử của không gian mẫu là
Gọi biến cố A: “2 học sinh được chọn là 2 học sinh nữ”.
Để chọn 2 học sinh được 2 học sinh nữ có:
(cách)
Do đó số kết quả thuận lợi cho biến cố A là:
Xác suất để chọn được 2 học sinh nữ là:
Mà
Vậy có 5 học sinh nữ trong tổ.
Cho bảng kết quả kiểm tra khối lượng của 30 quả trứng gà như sau:
|
Khối lượng (gram) |
25 |
30 |
35 |
40 |
45 |
50 |
|
Số quả trứng |
3 |
5 |
7 |
9 |
4 |
2 |
Xác định mốt của mẫu số liệu?
Mốt của mẫu số liệu là 40 (vì có tần số lớn nhất).
Gieo 2 con súc sắc và gọi kết quả xảy ra là tích số hai nút ở mặt trên. Không gian mẫu có bao nhiêu phần tử?
Mô tả không gian mẫu ta có: . (18 phần tử)
Cho mẫu số liệu: 17 21 35 43 8 59 72 119. Tìm tứ phân vị.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 8 17 21 35 43 59 72 119.
Trung vị của mẫu số liệu trên là: .
Trung vị của dãy 8 17 21 35 là: .
Trung vị của dãy 43 59 72 119 là: .
Vậy .
Kết quả đo chiều cao của một học sinh được ghi là
. Điều đó có nghĩa là gì?
Kết quả đo chiều cao của một học sinh được ghi là có nghĩa là: “Chiều cao đúng của học sinh là một số nằm trong khoảng từ
đến
.”
Bảng sau thống kê điểm kiểm tra của học sinh lớp 10C.

Tìm trung vị của dãy số liệu trên.
Cỡ mẫu số liệu này là:
.
Suy ra giá trị chính giữa là giá trị ở vị trí thứ 20. Đó là số 17.
Vậy trung vị .
Người ta phân tích thuế mặt hàng A tại 30 tỉnh một quốc gia và tính được:
. Giá trị nhỏ nhất bằng 20, giá trị lớn nhất bằng 120. Chọn kết luận đúng.
Khoảng tứ phân vị
.
Khoảng biến thiên .
Ý nghĩa của khoảng tứ phân vị được thể hiện ở hình ảnh bên dưới:
Như vậy có khoảng 75% số tỉnh có thuế mặt hàng A lớn hơn 26.
Cho bảng số liệu ghi lại điểm của 40 học sinh trong bài kiểm tra 1 tiết môn toán như sau:
Điểm | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Cộng |
Số học sinh | 2 | 3 | 7 | 18 | 3 | 2 | 4 | 1 | 40 |
Số trung bình cộng
của mẫu số liệu trên là:
Số trung bình cộng của mẫu số liệu trên là:
.
Cho biến cố A có không gian mẫu là Ω và
là biến cố đối của biến cố A. Khẳng định nào sau đây sai?
Khẳng định sai là: "P(Ω) > 1." vì P(Ω) = 1
Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng (xem hình minh họa). Bạn An di chuyển quân vua ngẫu nhiên
bước. Xác suất sau
bước quân vua trở về ô xuất phát là bao nhiêu?

Tại mọi ô đang đứng, ông vua có khả năng lựa chọn để bước sang ô bên cạnh.
Do đó không gian mẫu .
Gọi là biến cố “sau 3 bước quân vua trở về ô xuất phát”. Sau ba bước quân vua muốn quay lại ô ban đầu khi ông vua đi theo đường khép kín tam giá
Chia hai trường hợp:
+ Từ ô ban đầu đi đến ô đen, đến đây có cách để đi bước hai rồi về lại vị trí ban đầu.
+ Từ ô ban đầu đi đến ô trắng, đến đây có cách để đi bước hai rồi về lại vị trí ban đầu.
Do số phần tử của biến cố A là .
Vậy xác suất .
Cho một đa giác
có
đỉnh nội tiếp một đường tròn
. Người ta lập một tứ giác tùy ý có bốn đỉnh là các đỉnh của
. Tính xác suất để lập được một tứ giác có bốn cạnh đều là đường chéo của
, số đó gần với số nào nhất trong các số sau?
Số phần tử của không gian mẫu là: .
Gọi là biến cố “lập được một tứ giác có bốn cạnh đều là đường chéo của
”.
Để chọn ra một tứ giác thỏa mãn đề bài ta làm như sau:
Bước 1: Chọn đỉnh đầu tiên của tứ giác, có cách.
Bước 2: Chọn đỉnh còn lại sao cho hai đỉnh bất kỳ của tứ giác cách nhau ít nhất 1 đỉnh. Điều này tương đương với việc ta phải chia
chiếc kẹo cho
đứa trẻ sao cho mỗi đứa trẻ có ít nhất
cái, có
cách, nhưng làm như thế mỗi tứ giác lặp lại 4 lần.
Số phần tử của biến cố
là:
.
Xác suất của biến cố là:
.
Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố
: "lần đầu tiên xuất hiện mặt sấp" là bao nhiêu?
Xác suất để lần đầu xuất hiện mặt sấp là . Lần 2 và 3 thì tùy ý nên xác suất là 1.
Theo quy tắc nhân xác suất: .
Xác định khoảng tứ phân vị của mẫu số liệu:
?
Ta có: là số lẻ
Suy ra
Vậy khoảng tứ phân vị của mẫu số liệu bằng 3.
Ba xạ thủ cùng bắn vào một tấm bia, xác suất trúng đích lần lượt là 0,5; 0,6 và 0,7. Xác suất để có đúng 2 người bắn trúng bia là:
Gọi A là biến có người thứ nhất bắn trúng thì là biến cố người thứ nhất bắn trượt.
Vậy ;
.
Gọi B là biến cố người thứ hai bắn trúng và C là biến cố người thứ ba bắn trúng.
Tương tự ta có ;
;
;
.
Để hai người bắn trúng bia có các khả năng sau xảy ra:
Trường hợp 1: Người thứ nhất và thứ hai bắn trúng, người thứ ba bắn trượt.
Xác suất xảy ra là: .
Trường hợp 2: Người thứ nhất và thứ ba bắn trúng, người thứ hai bắn trượt.
Xác suất xảy ra là: .
Trường hợp 3: Người thứ hai và thứ ba bắn trúng, người thứ nhất bắn trượt.
Xác suất xảy ra là: .
Vậy xác suất để hai người bắn trúng bia là: .
Cho
. Số quy tròn của số gần đúng
là:
Số quy tròn của số gần đúng là:
.
Dưới đây là bảng thống kê số lần làm bài tập Toán của học sinh lớp 10A.

Tìm trung vị của mẫu số liệu này.
Cỡ mẫu số liệu này là: .
Suy ra giá trị chính giữa là giá trị ở vị trí thứ 18. Đó là số 3.
Vậy trung vị .
Một homestay có 6 phòng đơn. Trên trang web của homestay có 6 nam và 4 nữ đặt phòng. Người chủ homestay chọn ngẫu nhiên 6 người cho nhận phòng. Tính xác suất để cả 6 người được chọn là nam?
Số phần tử không gian mẫu là:
Chọn ngẫu nhiên 6 người đều là nam ta có: cách chọn
Vậy xác suất để chọn 6 người đều là nam là: .
Chọn ngẫu nhiên hai số khác nhau từ 30 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tổng là một số chẵn bằng:
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Hai số được chọn có tổng là một số chẵn”
Tổng của hai số là một số chẵn khi và chỉ khi hai số đó đều chẵn hoặc đều lẻ.
Trong 30 số nguyên dương đầu tiên có 15 số lẻ và 15 số chẵn.
Xét trường hợp chọn được hai số lẻ ta có: cách chọn.
Xét trường hợp chọn được hai số chẵn ta có: cách chọn.
Suy ra số kết quả thuận lợi cho biến cố A là:
Khi đó xác suất của biến cố A là: .
Bảng dưới đây thể hiện sản lượng lúa (đơn vị: tạ) của một số thửa ruộng:

Tính phương sai của mẫu số liệu.
Số trung bình của mẫu là:
.
Phương sai:
.
Cho giá trị gần đúng của
là 0,47. Sai số tuyệt đối của 0,47 là:
Ta có suy ra sai số tuyệt đối của 0,47 là 0,001.
Cho một phép thử
có không gian mẫu
. Giả thiết rằng các kết quả có thể của
là đồng khả năng. Khi đó nếu
là một biến cố liên quan đến phép thử
thì xác suất của
(kí hiệu là
) được cho bởi công thức nào sau đây? Biết rằng kí hiệu số phần tử của không gian mẫu và tập E lần lượt là
.
Nếu E là một biến cố có liên quan đến phép thử T thì xác suất của biến cố E được xác định bởi công thức .
Cho bảng tần số như sau:
Giá trị | x1 | x2 | x3 | x4 | x5 | x6 |
Tần số | 15 | 9n - 1 | 12 |
| 10 | 17 |
Tìm n để
là hai mốt của bảng tần số trên.
Ta có:
Vậy n = 8.
Tìm khoảng tứ phân vị của mẫu số liệu sau: 200 240 220 210 225 235 225 270 250 280.
Sắp xếp mẫu theo thứ tự không giảm: 200 210 220 225 225 235 240 250 270 280
Mẫu 200 210 220 225 225 235 240 250 270 280 có 2 số chính giữa là 225 và 235. Suy ra .
Mẫu 200 210 220 225 225 có số chính giữa là 220. Suy ra .
Mẫu 235 240 250 270 280 có số chính giữa là 270. Suy ra .
Khoảng tứ phân vị: .
Tìm trung vị của dãy số liệu 4 3 5 1 6 8 6.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 3 4 5 6 6 8.
Dãy trên có giá trị chính giữa bằng 5.
Vậy trung vị của mẫu số liệu bằng 5.
Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?
Số đặc trưng đo độ đo phân tán của mẫu số liệu là phương sai.
Sản lượng lúa (đơn vị: tạ) của 40 thửa ruộng thí nghiệm có cùng diện tích được trình bày trong bảng số liệu sau:
| Sản lượng | 20 | 21 | 22 | 23 | 24 | |
Tần số | 5 | 8 | 11 | 10 | 6 | n = 40 |
Phương sai là:
Sản lượng lúa trung bình là:
Phương sai là: