Đề kiểm tra 45 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Một số yếu tố thống kê và xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Bảng dưới đây thống kê điểm Văn của lớp 11C.

    Biết n\mathbb{\in N}. Tìm trung vị của bảng số liệu.

    Vì tổng số học sinh bằng 40 nên ta có: 5n
+ 15 = 40 \Leftrightarrow n = 5.

    Thống kê lại bảng:

    Hai giá trị chính giữa của mẫu số liệu là giá trị ở vị trí thứ 20 và 21. Đó là số 6 và số 6.

    Suy ra trung vị M_{e} = \frac{6 + 6}{2} =
6.

  • Câu 2: Nhận biết

    Cho A là biến cố liên quan phép thử T. Mệnh đề nào sau đây là mệnh đề đúng?

    Mệnh đề đúng là: P(A) = 1 - P\left(
\overline{A} ight)

  • Câu 3: Nhận biết

    Một shop bán giày thống kê số lượng giày bán trong vài ngày trong bảng sau:

    Cỡ giày

    37

    38

    39

    40

    41

    42

    Số lượng

    35

    42

    50

    38

    32

    48

    Mốt của bảng số liệu trên là:

    Mốt là giá trị có tần số lớn nhất trong bảng số liệu

    Quan sát bảng số liệu đã cho suy ra mốt của bảng số liệu là 39.

  • Câu 4: Nhận biết

    Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố A: "có đúng 2 lần xuất hiện mặt sấp" là bao nhiêu?

    Chọn 2 trong 3 lần để xuất hiện mặt sấp có C_{3}^{2} = 3 cách.

    2 lần xuất hiện mặt sấp có xác suất mỗi lần là \frac{1}{2}. Lần xuất hiện mặt ngửa có xác suất là \frac{1}{2}.

    Vậy: P(A) =3.\frac{1}{2}.\frac{1}{2}.\frac{1}{2} = \frac{3}{8}.

  • Câu 5: Thông hiểu

    Gieo một con xúc xắc cân đối đồng chất 2 lần. Tính xác suất để biến cố có tích 2 lần số chấm khi gieo xúc xắc là một số chẵn.

    Số phần tử của không gian mẫu là |\Omega|
= 6.6 = 36.

    Gọi A là biến cố ''Tích hai lần số chấm khi gieo xúc xắc là một số chẵn''. Ta xét các trường hợp:

    TH1:. Gieo lần một, số chấm xuất hiện trên mặt là số lẻ thì khi gieo lần hai, số chấm xuất hiện phải là số chẵn. Khi đó có 3.3 = 9 cách gieo.

    TH2:. Gieo lần một, số chấm xuất hiện trên mặt là số chẵn thì có hai trường hợp xảy ra là số chấm xuất hiện trên mặt khi gieo lần hai là số lẻ hoặc số chẵn. Khi đó có 3.3
+ 3.3 = 18 cách gieo.

    Suy ra số kết quả thuận lợi cho biến cố là \left| \Omega_{A} ight| = 9 + 18 =
27.

    Vậy xác suất cần tìm tính P(A) =
\frac{27}{36} = 0,75.

  • Câu 6: Nhận biết

    Một hộp gồm có 4 bi xanh và 5 bi đỏ. Lấy ngẫu nhiên hai viên bi trong hộp. Biến cố đối của biến cố D: “Hai viên bi cùng màu” là:

    Biến cố đối của biến cố D: “Hai viên bi cùng màu” là: \overline{D}: “Hai viên bi khác màu”.

  • Câu 7: Thông hiểu

    Kết quả khi đo chiều dài của một cây thước là \overline{a} = 45 \pm 0,2(cm). Khi đó sai số tuyệt đối của phép đo được ước lượng là:

    Ta có độ dài gần đúng của cây thước là a= 45 với độ chính xác d =0,2cm

    Nên sai số tuyệt đối là \Delta_{a} \leq d= 0,2.

  • Câu 8: Nhận biết

    Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?

    Số đặc trưng đo độ đo phân tán của mẫu số liệu là phương sai.

  • Câu 9: Nhận biết

    Viết số quy tròn của số a = 80,3654 đến hàng phần trăm.

    Số quy tròn của số a = 80,3654 đến hàng phần trăm là 80,37.

  • Câu 10: Nhận biết

    Cho biết kết quả đo chiều cao của một số học sinh lớp 10E như sau: 163;165;169;167;164;168;150;161. Xác định khoảng biến thiên của mẫu số liệu?

    Quan sát dãy số liệu ta thấy:

    Giá trị lớn nhất là 169

    Giá trị nhỏ nhất là 150

    Vậy khoảng biến thiên của mẫu số liệu bằng 169 – 150 = 19.

  • Câu 11: Thông hiểu

    Tìm khoảng tứ phân vị của mẫu số liệu sau: 200 240 220 210 225 235 225 270 250 280.

    Sắp xếp mẫu theo thứ tự không giảm: 200 210 220 225 225 235 240 250 270 280

    Mẫu 200 210 220 225 225 235 240 250 270 280 có 2 số chính giữa là 225 và 235. Suy ra   {Q_2} = \frac{{225 + 235}}{2} = 230.

    Mẫu 200 210 220 225 225 có số chính giữa là 220. Suy ra Q_1=220.

    Mẫu 235 240 250 270 280 có số chính giữa là 270. Suy ra Q_3=250.

    Khoảng tứ phân vị: \Delta_Q=250-220=30.

  • Câu 13: Nhận biết

    Cho a là số gần đúng của số đúng \overline{a}. Sai số tuyệt đối của số gần đúng a là:

    Sai số tuyệt đối của số gần đúng a là: \Delta_{a} = \left| \overline{a} - a
ight|

  • Câu 14: Nhận biết

    Một chiếc hộp đựng 5 chiếc thẻ được đánh số từ 1 đến 5. Rút ngẫu nhiên đồng thời 2 thẻ trong hộp. Xét biến cố A: “Số ghi trên hai thẻ đều là số lẻ”. Tính số phần tử của biến cố A?

    Số phần tử của biến cố A là: C_{3}^{2} =
3

  • Câu 15: Vận dụng

    Gieo một con xúc xắc 2 lần liên tiếp. Gọi số chấm xuất hiện của hai lần gieo lần lượt là bc. Tính xác suất để phương trình bậc hai x^{2} - bx + c = 0 có nghiệm?

    Gieo con xúc xắc hai lần nên ta có: n(\Omega) = 36

    Để phương trình bậc hai có nghiệm thì \Delta \geq 0 \Leftrightarrow b^{2} - 4ac \geq 0
\Leftrightarrow b^{2} \geq 4ac

    c \geq 1 \Rightarrow b^{2} \geq 4\Rightarrow \left\{ \begin{matrix}b \geq 2 \\c \leq \dfrac{b^{2}}{4} \\\end{matrix} ight.

    Lập bảng chọn giá trị của b và c như sau:

    b

    2

    3

    4

    5

    6

    c

    1

    1; 2

    1; 2; 3; 4

    1; 2; 3; 4; 5; 6

    1; 2; 3; 4; 5; 6

    Gọi A là biến cố “phương trình x^{2} - bx
+ c = 0 có nghiệm” ta có:

    n(A) = 1 + 2 + 4 + 6 + 6 =
19

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{19}{36}

  • Câu 16: Vận dụng

    Điểm kiểm tra môn Lịch Sử của một học sinh qua 8 lần thi được ghi lại như sau:

    5,5;\ 6;\ 6;\ x;\ 7;\ 7,5;\ 8;\
9

    Biết số trung vị của mẫu số liệu trên bằng 6,5. Kết quả nào dưới đây đúng?

    N = 8 là số chẵn nên trung vị của mẫu số liệu là trung bình cộng của số liện ở vị trí thứ 4 và thứ 5.

    Suy ra 6,5 = \frac{x + 7}{2}
\Leftrightarrow x = 6

    Vậy x = 6.

  • Câu 17: Vận dụng

    Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện nhân 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.

    Giả sử các số liệu trong mẫu là: a_{1};a_{2};...;a_{10} đã sắp xếp theo thứ tự không giảm.

    Khoảng biến thiên: R_{1} = a_{10} -
a_{1}.

    Nhân hai với tất cả các số liệu: 2a_{1};2a_{2};...;2a_{10}.

    Khoảng biến thiên: R_{2} = 2a_{10} -
2a_{1} = 2(a_{10} - a_{1}).

    Suy ra R_{2} = 2R_{1}.

  • Câu 18: Thông hiểu

    Một đội gồm 5 nam và 8 nữ. Lập một nhóm gồm 4 người hát tốp ca. Tính xác suất để trong 4 người được chọn có ít nhất 3 nữ.

    Không gian mẫu là chọn tùy ý 4 người từ 13 người.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{13}^{4} = 715.

    Gọi A là biến cố ''4 người được ó ít nhất 3 nữ''. Ta có hai trường hợp thuận lợi cho biến cố A như sau:

    TH1:: Chọn 3 nữ và 1 nam, có C_{8}^{3}C_{5}^{1} cách.

    TH2:: Cả 4 nữ, có C_{8}^{4} cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| =
C_{8}^{3}C_{5}^{1} + C_{8}^{4} = 350.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{350}{715} =
\frac{70}{143}.

  • Câu 19: Nhận biết

    Khoảng biến thiên tứ phân vị \Delta Q được xác định bởi:

    Khoảng biến thiên tứ phân vị \Delta
Q được xác định bởi Q_{3} -
Q_{1}.

  • Câu 21: Thông hiểu

    Điểm kiểm tra giữa học kì 2 môn Toán của một nhóm học sinh được ghi lại như sau: 4,5;\
5,0;\ 7,5;\ 8,5;\ 5,5;\ 6,0;\ 6,5;\ 9,0;\ 4,5;\ 10;\ 9,0. Số trung vị của mẫu số liệu đã cho là:

    Sắp xếp dãy số liệu theo thứ tự không giảm như sau:

    4,5;\ 4,5;\ 5,0;\ 5,5;\ 6,0;6,5;\ 7,5;\
8,5;\ 9,0;\ 9,0;\ 10

    Ta có: N = 11 là số lẻ suy ra trung vị của mẫu số liệu đứng ở vị trí số \frac{11 + 1}{2} = 6

    Hay trung vị của mẫu số liệu là 6,5.

  • Câu 22: Vận dụng

    Ba xạ thủ cùng bắn vào một tấm bia, xác suất trúng đích lần lượt là 0,5; 0,6 và 0,7. Xác suất để có đúng 2 người bắn trúng bia là:

    Gọi A là biến có người thứ nhất bắn trúng thì \overline{A} là biến cố người thứ nhất bắn trượt.

    Vậy P(A) = 0,5; P\left( \overline{A} ight) = 0,5.

    Gọi B là biến cố người thứ hai bắn trúng và C là biến cố người thứ ba bắn trúng.

    Tương tự ta có P(B) = 0,6; P\left( \overline{B} ight) = 0,4; P(C) = 0,7; P\left( \overline{C} ight) = 0,3.

    Để hai người bắn trúng bia có các khả năng sau xảy ra:

    Trường hợp 1: Người thứ nhất và thứ hai bắn trúng, người thứ ba bắn trượt.

    Xác suất xảy ra là: P(A).P(B).P\left(
\overline{C} ight) = 0,5.0,6.0,3 = 0,09.

    Trường hợp 2: Người thứ nhất và thứ ba bắn trúng, người thứ hai bắn trượt.

    Xác suất xảy ra là: P(A).P\left(
\overline{B} ight).P(C) = 0,5.0,4.0,7 = 0,14.

    Trường hợp 3: Người thứ hai và thứ ba bắn trúng, người thứ nhất bắn trượt.

    Xác suất xảy ra là: P\left( \overline{A}
ight).P(B).P(C) = 0,5.0,6.0,7 = 0,21.

    Vậy xác suất để hai người bắn trúng bia là: 0,09 + 0,14 + 0,21 = 0,44.

  • Câu 23: Thông hiểu

    Cho 2145623 \pm
30000. Sai số tương đối của số gần đúng này là:

    Ta có:

    \delta_{a} \leq \frac{|d|}{a}
\Rightarrow \delta_{a} \leq \frac{30000}{2145623} \approx
1,4\%

  • Câu 24: Nhận biết

    Tìm mốt của mẫu số liệu: 1 3 4 2 0 0 5 6.

    Giá trị 0 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 0.

  • Câu 25: Thông hiểu

    Cho mẫu số liệu: 8;4;7;6;5;10;9. Xác định phương sai của mẫu số liệu đã cho?

    Ta có: N = 7

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{8 + 4 + 7 + 6 + 5 +
10 + 9}{7} = 7

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{7}\lbrack(8 - 7)^{2} +
(4 - 7)^{2} + (7 - 7)^{2}

    + (6 - 7)^{2} + (5 - 7)^{2} + (10 -
7)^{2} + (9 - 7)^{2}brack = 4

    Vậy phương sai của mẫu số liệu bằng 4.

  • Câu 26: Nhận biết

    Phép thử ngẫu nhiên (gọi tắt là phép thử) là gì?

    Phép thử ngẫu nhiên (gọi tắt là phép thử) là hoạt động mà ta không thể biết trước được kết quả của nó.

  • Câu 27: Thông hiểu

    Xác định khoảng tứ phân vị của mẫu số liệu: 2;3;4;5;6?

    Ta có: N = 5 là số lẻ

    Suy ra Q_{2} = 4

    \Rightarrow \left\{ \begin{matrix}Q_{1} = \dfrac{2 + 3}{2} = 2,5 \\Q_{3} = \dfrac{5 + 6}{2} = 5,5 \\\end{matrix} ight.\  \Rightarrow \Delta Q = 5,5 - 2,5 = 3

    Vậy khoảng tứ phân vị của mẫu số liệu bằng 3.

  • Câu 28: Nhận biết

    Chọn khẳng định sai?

    Khẳng định sai: “Giá trị bất thường trong mẫu số liệu thuộc \left\lbrack Q_{1} - \frac{3}{2}\Delta Q;Q_{3} +
\frac{1}{2}\Delta Q ightbrack

    Sửa lại: “Giá trị bất thường trong mẫu số liệu nằm ngoài đoạn \left\lbrack Q_{1} - \frac{3}{2}\Delta Q;Q_{3} +
\frac{1}{2}\Delta Q ightbrack”.

  • Câu 29: Nhận biết

    Điểm kiểm tra môn Hóa của một nhóm gồm 9 bạn như sau: 1; 1; 3; 6; 7; 8; 8; 9; 10. Tính trung bình cộng của mẫu số liệu trên. (làm tròn đến hàng phần chục)

    Số trung bình của mẫu số liệu trên là: \overline{x} = \frac{1 + 1 + 3 + 6 + 7 + 8 + 8 + 9
+ 10}{9} \approx 5,9.

  • Câu 30: Vận dụng

    Cho đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm O. Chọn ngẫu nhiên 4 đỉnh của đa giác. Xác suất để 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật bằng bao nhiêu?

    Xét phép thử: “Chọn ngẫu nhiên 4 đỉnh của đa giác đều 20 đỉnh nội tiếp trong đường tròn tâm O\Rightarrow n(\Omega) = C_{20}^{4} =
4845.

    Gọi A là biến cố:” 4 đỉnh được chọn là 4 đỉnh của một hình chữ nhật”

    Đa giác có 20 đỉnh sẽ có 10 đường chéo đi qua tâm mà cứ 2 đường chéo qua tâm sẽ có 1 hình chữ nhật nên số HCN là: n(A) = C_{10}^{2} = 45.

    P(A) = \frac{45}{4845} =
\frac{3}{323}.

  • Câu 31: Nhận biết

    Chọn phát biểu đúng trong các phát biểu sau:

    Phát biểu đúng là: "Độ chính xác của số quy tròn bằng một đơn vị của hàng quy tròn."

  • Câu 32: Nhận biết

    Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là:

    Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.

  • Câu 33: Nhận biết

    Kết quả đo chiều cao của một tòa nhà được ghi là 120m \pm 0,5m. Tìm độ chính xác của phép đo trên.

    Độ chính xác của phép đo trên là: 0,5m.

  • Câu 34: Thông hiểu

    Có 3 bó hoa. Bó thứ nhất có 8 hoa hồng, bó thứ hai có 7 bông hoa ly, bó thứ ba có 6 bông hoa huệ. Chọn ngẫu nhiên 7 hoa từ ba bó hoa trên để cắm vào lọ hoa, tính xác suất để trong 7 hoa được có số hoa hồng bằng số hoa ly.

    Không gian mẫu là số cách chọn ngẫu nhiên 7 hoa từ ba bó hoa gồm 21 hoa.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{21}^{7} = 116280.

    Gọi A là biến cố ''7 hoa được ó số hoa hồng bằng số hoa ly''. Ta có các trường hợp thuận lợi cho biến cố A là:

    TH1: Chọn 1 hoa hồng, 1 hoa ly và 5 hoa huệ nên có C_{8}^{1}.C_{7}^{1}.C_{6}^{5} cách.

    TH2: Chọn 2 hoa hồng, 2 hoa ly và 3 hoa huệ nên có C_{8}^{2}.C_{7}^{2}.C_{6}^{3} cách.

    TH3: Chọn 3 hoa hồng, 3 hoa ly và 1 hoa huệ nên có C_{8}^{3}.C_{7}^{3}.C_{6}^{1} cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| =
C_{8}^{1}.C_{7}^{1}.C_{6}^{5} + C_{8}^{2}.C_{7}^{2}.C_{6}^{3} +
C_{8}^{3}.C_{7}^{3}.C_{6}^{1} = 23856.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{23856}{116280} =
\frac{994}{4845}.

  • Câu 35: Vận dụng

    Đạt và Phong tham gia chơi trò một trò chơi đối kháng, thỏa thuận rằng ai thắng 5 ván trước là thắng chung cuộc và được hưởng toàn bộ số tiền thưởng của chương trình (không có ván nào hòa). Tuy nhiên khi Đạt thắng được 4 ván và Phong thắng được 2 ván rồi thì xảy ra sự cố kĩ thuật và chương trình buộc phải dừng lại. Biết rằng giới chuyên môn đánh giá Phong và Đạt ngang tài ngang sức. Hỏi phải chia số tiền thưởng như thế nào cho hợp lý (dựa trên quan điểm tiền thưởng tỉ lệ thuận với xác suất thắng cuộc của mỗi người).

    Phân tích: Đề bài cho các điều kiện khá dài dòng, ta cần đưa chúng về dạng ngắn gọn dễ hiểu hơn.

    +) “Biết rằng giới chuyên môn đánh giá Phong và Đạt ngang tài ngang sức”: xác suất để Phong và Đạt thắng trong một ván là như nhau và bằng 0,5.

    +) “Khi Đạt thắng được 4 ván và Phong thắng được 2 ván rồi”: nghĩa là Đạt chỉ cần thắng một ván nữa là được 5 ván, còn Phong phải thắng 3 ván nữa mới đạt được.

    Để xác định xác suất thắng chung cuộc của Đạt và Phong ta tiếp tục chơi thêm các ván “giả tưởng”. Để Phong có thể thắng chung cuộc thì anh phải thắng Đạt 3 ván liên tiếp (vì Đạt chỉ còn một ván nữa là thắng).

    Như vậy xác suất thắng cuộc của Phong là: P(P) = 0,5^{3} = \frac{1}{8}.

     Xác suất thắng cuộc của Đạt là P(Ð) = 1 - \frac{1}{8} =
\frac{7}{8}.

    Vậy Tỉ lệ chia tiền phù hợp là \frac{7}{8}:\frac{1}{8} = 7:1.

  • Câu 36: Thông hiểu

    Gieo ba con súc sắc cân đối đồng chất. Tính xác suất để số chấm xuất hiện trên ba con súc sắc như nhau.

    Số phần tử của không gian mẫu là |\Omega|
= 6.6.6 = 36.

    Gọi A là biến cố ''Số chấm xuất hiện trên ba con súc sắc như nhau''. Ta có các trường hợp thuận lợi cho biến cố A(1;1;1),\ (2;2;2),\ (3;3;3),\ \cdots\
,(6;6;6).

    Suy ra \left| \Omega_{A} ight| =
6.

    Vậy xác suất cần tính P(A) =
\frac{1}{36}.

  • Câu 37: Vận dụng

    Bảng sau đây cho ta biết số cuốn sách mà học sinh của một lớp ở trường Trung học phổ thông đã đọc:

    Số sách

    1

    2

    3

    4

    5

    6

     

    Số học sinh đọc

    10

    m

    8

    6

    n

    3

    n = 40

    Tìm m và n, biết phương sai của mẫu số liệu trên xấp xỉ 2,52.

     Số trung bình là: 

    \overline x  = \frac{{10.1 + 2.m + 8.3 + 4.6 + 5.n + 6.3}}{{40}} = \frac{{76 + 2m + 5n}}{{40}}

    Phương sai là:

    \begin{matrix}  {S^2} = \dfrac{1}{{40}}\left( {{{10.1}^2} + m{{.2}^2} + {{8.3}^2} + {{6.4}^2} + n{{.5}^2} + {{3.6}^2}} ight) - {\left( {\dfrac{{76 + 2m + 5n}}{{40}}} ight)^2} \hfill \\   \Rightarrow {S^2} = \dfrac{1}{{40}}\left( {286 + 4m + 25n} ight) - {\left( {\dfrac{{76 + 2m + 5n}}{{40}}} ight)^2} \hfill \\ \end{matrix}

    Theo bài ra ta có:

    Kiểm tra được: m = 8 và n = 5 thỏa mãn.

  • Câu 39: Thông hiểu

    Kết quả thi Toán của một số học sinh trong lớp là: 3;6;7;8;8. Trung vị là:

    Dãy số liệu gồm 5 số liệu đã được sắp xếp theo thứ tự không giảm.

    Vì 5 là số lẻ nên trung vị nằm ở vị trí \frac{5 + 1}{2} = 3. Có nghĩa là trung vị bằng 7.

  • Câu 40: Nhận biết

    Gieo một con xúc sắc cân đối và đồng chất hai lần. Tính xác suất để cả hai lần xuất hiện mặt 6 chấm.

    * Số phần tử của không gian mẫu là: n(\Omega) = C_{6}^{1}.C_{6}^{1} = 36.

    * Gọi A =”Cả hai lần xuất hiện mặt sáu chấm”. Số phần tử của biến cố An(A) =
1.

    * Xác suất của biến cố AP(A) = \frac{n(A)}{n(\Omega)} =
\frac{1}{36}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo