Đề kiểm tra 45 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Một số yếu tố thống kê và xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho bảng số liệu điểm kiểm tra môn Toán của 20 học sinh

    Điểm

    4

    5

    6

    7

    8

    9

    10

    Số học sinh

    1

    2

    3

    4

    5

    4

    1

    Tìm trung vị của bảng số liệu trên.

    Bảng số liệu có 20 giá trị => n = 20.

    => {M_e} = \frac{{{x_{10}} + {x_{11}}}}{2} = \frac{{7 + 8}}{2} = 7,5.

  • Câu 2: Vận dụng

    Một lớp học có 30 học sinh gồm có nam và nữ. Chọn ngẫu nhiên 3 học sinh để tham gia hoạt động của Đoàn trường. Xác suất chọn được 2 nam và 1 nữ là \frac{12}{29}. Tính số học sinh nữ của lớp.

     Gọi số học sinh nữ là x. Suy ra số học sinh nam là 30-x.

    Chọn 3 học sinh từ 30 học sinh, không gian mẫu là: n(\Omega)=C_{30}^3=4060.

    Gọi A là biến cố "Chọn được 2 nam và 1 nữ". Suy ra n(A) = C_{30 - x}^2.C_x^1 = xC_{30 - x}^2.

    Theo đề bài: P(A) = \frac{{12}}{{29}} \Leftrightarrow \frac{{xC_{30 - x}^2}}{{4060}} = \frac{{12}}{{29}} \Leftrightarrow x = 14.

    Vậy có 14 học sinh nữ.

  • Câu 3: Thông hiểu

    Bạn Bình ghi lại bảng thống kê số sách mà mà mỗi bạn học sinh lớp 10A đã đọc trong năm 2023. Hỏi trung bình mỗi bạn trong lớp đọc bao nhiêu cuốn sách?

    Số học sinh lớp 10A là: 3 + 5 + 15 + 10 +
7 = 40 (bạn).

    Trung bình mỗi bạn đọc: \overline{x} =\frac{3.1 + 5.2 + 15.3 + 4.10 + 7.5}{40}= 3,325 (cuốn sách).

  • Câu 4: Thông hiểu

    Tìm phương sai của dãy số liệu: 8 15 14 18.

    Số trung bình của mẫu số liệu là: \overline{x} = \frac{8 + 15 + 14 + 18}{4} = 13.

    Ta có phương sai: s^{2} = \frac{(8 - 13)^{2} + (15 - 13)^{2} + (14 - 13)^{2}
+ (18 - 13)^{2}}{4} =
13,75.

  • Câu 5: Vận dụng

    Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng (xem hình minh họa). Bạn An di chuyển quân vua ngẫu nhiên 3 bước. Xác suất sau 3 bước quân vua trở về ô xuất phát là bao nhiêu?

    Tại mọi ô đang đứng, ông vua có 8 khả năng lựa chọn để bước sang ô bên cạnh.

    Do đó không gian mẫu n(\Omega) =
8^{3}.

    Gọi A là biến cố “sau 3 bước quân vua trở về ô xuất phát”. Sau ba bước quân vua muốn quay lại ô ban đầu khi ông vua đi theo đường khép kín tam giá

    Chia hai trường hợp:

    + Từ ô ban đầu đi đến ô đen, đến đây có 4 cách để đi bước hai rồi về lại vị trí ban đầu.

    + Từ ô ban đầu đi đến ô trắng, đến đây có 2 cách để đi bước hai rồi về lại vị trí ban đầu.

    Do số phần tử của biến cố A là n(A) = 4.4
+ 2.4 = 24.

    Vậy xác suất P(A) = \frac{24}{8^{3}} =
\frac{3}{64}.

  • Câu 6: Nhận biết

    Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Tìm số phần tử của biến cố A.

    Liệt kê ta có: A = \left\{
(1;2;3);(1;2;4);(1;2;5);(1;3;4) ight\}. (4 phần tử)

  • Câu 8: Thông hiểu

    Trong hộp có 3 viên bi xanh và 5 viên bi đỏ. Lấy ngẫu nhiên trong hộp 3 viên bi. Xác suất của biến cố A: “Lấy ra được 3 viên bi màu đỏ” là:

    Chọn ba viên bi ngẫu nhiên trong hộp => n\left( \Omega  ight) = C_8^3

    Biến cố A: “Lấy ra được 3 viên bi màu đỏ” => n\left( A ight) = C_5^3

    => Xác suất của biến cố A là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{C_5^3}}{{C_8^3}} = \frac{5}{{28}}

  • Câu 9: Thông hiểu

    Số gần đúng của a
= 2,57656 có ba chữ số đáng tin viết dưới dạng chuẩn là:

    Vì số gần đúng của số a có ba chữ số đáng tin nên ba chữ số đó là 2,5,7.

    Nên cách viết dưới dạng chuẩn là 2,57.

  • Câu 10: Vận dụng

    Trong chiếc hộp chứa 37 tấm thẻ được đánh số theo thứ tự từ 1 đến 37 (hai tấm thẻ khác nhau được đánh số khác nhau). Lấy ngẫu nhiên đồng thời 3 thẻ trong hộp. Xác suất để các số ghi trên ba tấm thẻ có tổng là một số chia hết cho 3 bằng bao nhiêu?

    Từ 1 đến 37 có 12 số chia hết cho 3; 13 số chia cho 3 dư 1 và 12 số chia cho 3 dư 2

    Số phần tử không gian mẫu là: n(\Omega) =
C_{37}^{3} = 7770

    Để lấy được 3 tấm thẻ mà tổng các số ghi trên ba tấm thẻ chia hết cho 3 ta có các trường hợp sau:

    TH1: 3 số đều chia hết cho 3 ta có: C_{12}^{3} = 220 cách chọn.

    TH2: 3 số chia 3 dư 1 ta có: C_{13}^{3} =
286 cách chọn.

    TH3: 3 số chia 3 dư 2 ta có: C_{12}^{3} =
220 cách chọn.

    TH4: 1 số chia hết cho 3, 1 số chia 3 dư 1 và 1 số chia cho 3 dư 2 ta có: 12.13.12 = 1872 cách chọn.

    Suy ra có tất cả 220 + 286 + 220 + 1872 =
2598 cách chọn thỏa mãn yêu cầu đề bài.

    Vậy xác suất của biến cố: “Các số ghi trên ba tấm thẻ có tổng là một số chia hết cho 3” là: P = \frac{2598}{7770}
= \frac{433}{1295}

  • Câu 11: Nhận biết

    Cho biết kết quả đo chiều cao của một số học sinh lớp 10E như sau: 163;165;169;167;164;168;150;161. Xác định khoảng biến thiên của mẫu số liệu?

    Quan sát dãy số liệu ta thấy:

    Giá trị lớn nhất là 169

    Giá trị nhỏ nhất là 150

    Vậy khoảng biến thiên của mẫu số liệu bằng 169 – 150 = 19.

  • Câu 12: Nhận biết

    Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là:

    Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.

  • Câu 13: Nhận biết

    Gieo một đồng tiền và một con súc sắc. Số phần tử của không gian mẫu là bao nhiêu?

    Mô tả không gian mẫu ta có: \Omega =
\left\{ S1;\ S2;\ S3;\ S4;\ S5;S6;N1;N2;N3;N4;N5;N6
ight\}.

  • Câu 14: Thông hiểu

    Gieo cùng một lúc hai con xúc xắc khác màu nhưng cân đối và đồng chất một lần. Tính xác suất để tổng số chấm xuất hiện trên hai mặt xúc xắc lớn hơn 7?

    Ta có:

    n(\Omega) = 6^{2} = 36

    Các kết quả thuận lợi cho biến cố C: “tổng số chấm xuất hiện trên hai mặt xúc xắc lớn hơn 7” là:

    C = \begin{Bmatrix}
(2;6),(3;5),(3;6),(4;4),(4;5) \\
(4;6),(5;3),(5;4),(5;5),(5;6) \\
(6;2),(6;3),(6;4),(6;5),(6;6) \\
\end{Bmatrix}

    \Rightarrow n(C) = 15

    Vậy xác suất của biến cố C là: P(C) =
\frac{n(C)}{n(\Omega)} = \frac{15}{36} = \frac{5}{12}.

  • Câu 15: Nhận biết

    Cho giá trị gần đúng của \frac{8}{17} là 0,47. Sai số tuyệt đối của 0,47 là:

    Ta có \left| 0,47 - \frac{8}{17} ight|
< 0,00059 suy ra sai số tuyệt đối của 0,47 là 0,001.

  • Câu 16: Vận dụng

    Một bác sĩ ghi lại độ tuổi của một số người đến khám trong bảng:

    Tìm mốt của mẫu số liệu trên.

    Cỡ mẫu số liệu trên là n =
30.

    Thống kê lại:

    Hai giá trị có tần số lớn nhất 17 (5 lần) và 18 (5 lần).

    Vậy mốt là 17 và 18.

  • Câu 17: Nhận biết

    Xác định số trung vị của dãy số liệu 1;2;5;7;8;9;10?

    Dãy số đã cho được sắp xếp theo thứ tự không giảm.

    Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.

    Do đó số trung vị của dãy trên là 7.

  • Câu 18: Nhận biết

    Rút ngẫu nhiên một thẻ từ hộp chứa 10 thẻ được đánh số từ 1 đến 10. Tính xác suất của biến cố “Rút được tấm thẻ ghi số chia hết cho 3”.

    Số phần tử của không gian mẫu là: n(\Omega) = 10

    Số kết quả thuận lợi cho biến cố A: “Số trên tấm thẻ được rút ra chia hết cho 3” là:

    A = \left\{ 3;6;9 ight\}

    \Rightarrow n(A) = 3

    Xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{3}{10} = 0,3

  • Câu 19: Thông hiểu

    Một bình chứa 16 viên vi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi trong bình đó. Tính xác suất lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ.

    Số cách lấy 3 viên bi bất kì là C_{16}^{3} = 560.

    Số cách lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ là C_{7}^{1}.C_{6}^{1}.C_{3}^{1} =
126.

    Suy ra xác suất cần tìm là\frac{9}{40}.

  • Câu 20: Vận dụng

    Một người bỏ ngẫu nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Tính xác suất để có ít nhất một lá thư được bỏ đúng phong bì.

    Số phần tử không gian mẫu là: n(\Omega) =
3! = 6.

    Gọi A là biến cố “Có ít nhất một lá thư được bỏ đúng phong bì”.

    Ta xét các trường hợp sau:

    Nếu lá thứ nhất bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất 1 cách.

    Nếu lá thứ hai bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất 1 cách.

    Nếu lá thứ ba bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất 1 cách.

    Không thể có trường hợp hai lá thư bỏ đúng và một lá thư bỏ sai.

    Cả ba lá thư đều được bỏ đúng có duy nhất 1 cách.

    \Rightarrow n(A) = 4.

    Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{4}{6} =
\frac{2}{3}.

    Cách 2:

    Gọi B là biến cố “Không có lá thư nào được bỏ đúng phong bì”.

    \Rightarrow n(B) = 2 \Rightarrow P(A) = 1
- P(B) = 1 - \frac{n(B)}{n(\Omega)} = 1 - \frac{2}{6} =
\frac{2}{3}.

  • Câu 21: Nhận biết

    Tìm khoảng tứ phân vị mẫu số liệu điểm của một nhóm học sinh lớp 10:

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 4 5 5 6 7 7 7 8 8 9 9 10.

    Hai số liệu chính giữa là 7 và 7 nên Q_{2} = \frac{7 + 7}{2} = 7.

    Trung vị của mẫu số liệu 4 5 5 6 7 7 chính là Q_{1} = \frac{5 + 6}{2} = 5,5.

    Trung vị của mẫu số liệu 7 8 8 9 9 10 chính là Q_{3} = \frac{8 + 9}{2} = 8,5.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1} = 8,5 - 5,5 = 3.

  • Câu 22: Nhận biết

    Cho mẫu số liệu: 10; 8; 6; 2; 4. Tính phương sai của mẫu.

    Số trung bình là \overline{x} = \frac{10 + 8 + 6 + 2 + 4}{5} = 6.

    Phương sai là s^{2} = \frac{(10 - 6)^{2} + (8 - 6)^{2} + (6 - 6)^{2} +
(2 - 6)^{2} + (4 - 6)^{2}}{5} =
8.

  • Câu 24: Nhận biết

    Quy tròn số 14869 đến hàng trăm. Số gần đúng nhận được là:

     Quy tròn 14869 đến hàng trăm, ta được: 14900.

  • Câu 26: Nhận biết

    Cho một mẫu dữ liệu đã được sắp xếp theo thứ tự không giảm x_1 ≤ x_2 ≤ x_3 ≤ ... ≤ x_n. Khi đó khoảng biến thiên R của mẫu số liệu bằng:

    Khoảng biến thiên của mẫu số liệu bằng: R = x_n – x_1

  • Câu 27: Nhận biết

    Kết quả kiểm tra của 40 học sinh lớp 10A được thống kê trong bảng sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Số học sinh

    2

    3

    7

    18

    3

    2

    4

    1

    Tìm mốt của mẫu số liệu đã cho?

    Mốt của mẫu số liệu là: 6 (vì có nhiều học sinh đạt điểm 6 nhất trong 40 học sinh).

  • Câu 28: Nhận biết

    Cho a là số gần đúng của số đúng \overline{a}. Khi đó \Delta_{a} = \left| \overline{a} - a
ight| gọi là:

    Ta có: \Delta_{a} = \left| \overline{a} -
a ight| gọi là sai số tuyệt đối của số gần đúng a.

  • Câu 29: Thông hiểu

    Tìm khoảng tứ phân vị của mẫu số liệu sau: 200 240 220 210 225 235 225 270 250 280.

    Sắp xếp mẫu theo thứ tự không giảm: 200 210 220 225 225 235 240 250 270 280

    Mẫu 200 210 220 225 225 235 240 250 270 280 có 2 số chính giữa là 225 và 235. Suy ra   {Q_2} = \frac{{225 + 235}}{2} = 230.

    Mẫu 200 210 220 225 225 có số chính giữa là 220. Suy ra Q_1=220.

    Mẫu 235 240 250 270 280 có số chính giữa là 270. Suy ra Q_3=250.

    Khoảng tứ phân vị: \Delta_Q=250-220=30.

  • Câu 30: Thông hiểu

    Bảng dưới đây thống kê điểm của An và Bình:

    Dựa vào khoảng biến thiên thì bạn nào học đều hơn?

    Khoảng biến thiên điểm của bạn An là R_{1} = 9,5 - 6,5 = 3.

    Khoảng biến thiên điểm của bạn Bình là R_{2} = 8,3 - 7,6 = 0,7.

    R_{2} < R_{1} nên Bình học đều hơn.

  • Câu 31: Thông hiểu

    Biết \sqrt[3]{5}=1.709975947.... Viết gần đúng \sqrt[3]{5} theo nguyên tắc làm tròn với ba chữ số thập phân và ước lượng sai số tuyệt đối.

    Làm tròn với ba chữ số thập phân: \sqrt[3]{5} = 1,710

    Sai số tuyệt đối: \left| {1,71 - \sqrt[3]{5}} ight| < \left| {1,71 - 1,7099} ight| = 0,0001

    Vậy sai số tuyệt đối không vượt quá 0,0001.

  • Câu 32: Nhận biết

    Điều tra về số học sinh của một trường THPT như sau:

    Khối lớp

    10

    11

    12

    Số học sinh

    1120

    1075

    900

    Khoảng biến thiên của mẫu số liệu trên là.

     Khoảng biến thiên R = 1120 - 900 = 220.

  • Câu 33: Nhận biết

    Một cái hộp chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy lần lượt 2 viên bi từ hộp này. Xác suất để viên bi được lấy lần thứ 2 là bi xanh là:

    Ta có: Số phần tử của không gian mẫu n(\Omega) = C_{10}^{1}.C_{9}^{1}.

    Gọi A là biến cố: “ Viên bi được lấy lần thứ 2là bi xanh”.

    - Trường hợp 1: Lần 1 lấy viên đỏ, lần 2 lấy viên xanh: Có C_{6}^{1}.C_{4}^{1} cách chọn.

    - Trường hợp 2: Lần 1 lấy viên xanh, lần 2 lấy viên xanh: Có C_{4}^{1}.C_{3}^{1} cách chọn.

    n(A) = C_{6}^{1}.C_{4}^{1} +
C_{4}^{1}.C_{3}^{1}.

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{24 + 12}{10.9} = \frac{2}{5}.

  • Câu 34: Vận dụng

    Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện cộng 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.

    Giả sử các số liệu trong mẫu là: a_{1};a_{2};...;a_{10} đã sắp xếp theo thứ tự không giảm.

    Khoảng biến thiên: R_{1} = a_{10} -
a_{1}.

    Cộng hai với tất cả các số liệu: a_{1} +
2;a_{2} + 2;...;a_{10} + 2.

    Khoảng biến thiên: R_{2} = (a_{10} + 2) -
(a_{1} + 2 ) = a_{10} -
a_{1}.

    Suy ra R_{2} = R_{1}.

  • Câu 35: Thông hiểu

    Lớp 12 có 9 học sinh giỏi, lớp 11 có 10 học sinh giỏi, lớp 10 có 3 học sinh giỏi. Chọn ngẫu nhiên hai trong số học sinh đó. Tính xác suất để cả hai học sinh đó cùng một lớp.

    Số phần tử của không gian mẫu là |\Omega|
= C_{22}^{2} = 231.

    Gọi A là biến cố cả hai học sinh được chọn từ cùng một lớp.

    Chọn 2 học sinh của lớp 12, có C_{9}^{2}
= 36(cách).

    Chọn 2 học sinh của lớp 11, có C_{10}^{2}
= 45(cách).

    Chọn 2 học sinh của lớp 10, có C_{3}^{2}
= 3(cách).

    Suy ra \left| \Omega_{A} ight| = 36 +
45 + 3 = 84.

    Xác suất cần tìm là P(A) = \frac{84}{231}
= \frac{4}{11}.

  • Câu 36: Nhận biết

    Trong một hộp đựng 7 bi màu đỏ, 5 bi màu xanh và 3 bi vàng, lấy ngẫu nhiên 3 viên bi. Xác suất để 3 viên bi lấy được đều có màu đỏ là:

    Tổng số có 7 + 5 + 3 = 15 viên bi.

    Lấy ngẫu nhiên 3 viên bi từ 15 viên có C_{15}^{3} = 455 (cách lấy).

    Số phần tử của không gian mẫu là n(\Omega) = 455.

    Gọi A: 3 viên bi lấy được đều có màu đỏ<img class="data-latex" data-type="2" src="https://tex.vdoc.vn?tex=%22" data-latex="" "="" alt=""">.

    Lấy 3 viên bi màu đỏ từ 7 viên bi màu đỏ có C_{7}^{3} = 35 \Rightarrow n(A) = 35.

    Vậy xác suất để 3 viên bi lấy được đều có màu đỏ là P(A) =
\frac{n(A)}{n(\Omega)} = \frac{45}{455} = \frac{1}{13}.

  • Câu 37: Nhận biết

    Gieo một đồng tiền liên tiếp 2 lần. Số phần tử của không gian mẫu là bao nhiêu?

    n(\Omega) = 2.2 = 4.

    (lần 1 có 2 khả năng xảy ra - lần 2 có 2 khả năng xảy ra).

  • Câu 38: Vận dụng

    Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

    Chọn kết luận đúng.

    Giá trị trung bình của hai mẫu:

    \overline{x_{A}} = \frac{2.3 + 2.4 + 2.5 + 3.6 + 2.7 + 2.8 + 2.9}{2 +2 + 2 + 3 + 2 + 2 + 2} =6

    \overline{x_{A}} = \frac{1.3 + 4.5 + 5.6 + 4.7 + 1.9}{1 + 4 + 5 + 4 +1} = 6

    Vậy hai mẫu có giá trị trung bình bằng nhau.

  • Câu 39: Nhận biết

    Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây: \overline{a} = 28658 ± 100.

    Vì độ chính xác đến hàng trăm nên ta phải quy tròn số 17638 đến hàng nghìn. Vậy số quy tròn là 29000 (hay viết \overline{a} ≈ 29000).

  • Câu 40: Vận dụng

    Cho ba nhóm học sinh:

    Nhóm 1 gồm 6 học sinh có cân nặng trung bình là 45kg.

    Nhóm 2 gồm 11 học sinh có cân nặng trung bình là 50kg.

    Nhóm 3 gồm 8 học sinh có cân nặng trung bình là 42kg.

    Hãy tính khối lượng trung bình của cả ba nhóm học sinh trên?

    Tổng khối lượng của mỗi nhóm lần lượt là: \left\{ \begin{matrix}
N_{1} = 6.45kg \\
N_{2} = 11.50kg \\
N_{3} = 8.42kg \\
\end{matrix} ight.

    Khối lượng trung bình của cả ba nhóm là:

    \overline{x} = \frac{N_{1} + N_{2} +
N_{3}}{6 + 8 + 11}

    \Rightarrow \overline{x} = \frac{6.45 +
11.50 + 8.42}{25} = 46,24kg

    Vậy khối lượng trung bình của cả ba nhóm học sinh là \overline{x} = 46,24kg.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 7 lượt xem
Sắp xếp theo