Đề kiểm tra 45 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Một số yếu tố thống kê và xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Chọn ngẫu nhiên 2 học sinh từ một tổ có 9 học sinh. Biết rằng xác suất chọn được 2 học sinh nữ bằng \frac{5}{18}, hỏi tổ có bao nhiêu học sinh nữ?

    Gọi số học sinh nữ là n (2 ≤ n ≤ 9, n ∈ \mathbb{N})

    Chọn bất kỳ 2 học sinh ta có C_9^2 = 36 cách.

    Do đó số phần tử của không gian mẫu là n(Ω) = 36

    Gọi biến cố A: “2 học sinh được chọn là 2 học sinh nữ”.

    Để chọn 2 học sinh được 2 học sinh nữ có:

    C_n^2 = \frac{{n!}}{{2!\left( {n - 2} ight)!}} = \frac{{n\left( {n - 1} ight)}}{2} (cách)

    Do đó số kết quả thuận lợi cho biến cố A là: 

    n\left( A ight) = \frac{1}{2}n\left( {n-1} ight)

    Xác suất để chọn được 2 học sinh nữ là:

    P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \dfrac{{\dfrac{1}{2}.n.\left( {n - 1} ight)}}{{36}} = \frac{{n\left( {n - 1} ight)}}{{72}}

    P\left( A ight) = \frac{5}{{18}}

    \begin{matrix}   \Leftrightarrow \dfrac{{n\left( {n - 1} ight)}}{{72}} = \dfrac{5}{{18}} \hfill \\   \Leftrightarrow n\left( {n - 1} ight) = 20 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 5\left( {tm} ight)} \\   {n =  - 4\left( {ktm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy có 5 học sinh nữ trong tổ.

  • Câu 2: Nhận biết

    Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố không?

    Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố không là “Mặt xuất hiện của con xúc xắc có số chấm là 8 chấm.”

  • Câu 3: Nhận biết

    Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây: \overline{a} = 28658 ± 100.

    Vì độ chính xác đến hàng trăm nên ta phải quy tròn số 17638 đến hàng nghìn. Vậy số quy tròn là 29000 (hay viết \overline{a} ≈ 29000).

  • Câu 4: Nhận biết

    Chiều cao của một số học sinh nữ lớp 9 (đơn vị cm) được cho trong bảng.

    Tìm khoảng tứ phân vị của mẫu số liệu này.

    Nhận thấy mẫu đã được sắp xếp theo thứ tự không giảm.

    Số liệu chính giữa là 162 nên Q_{2} =
162.

    Số liệu chính giữa của mẫu 151 152 153 154 155 160 160 là 154 nên Q_{1} = 154.

    Số liệu chính giữa của mẫu 163 165 165 165 166 167 167 là 165 nên Q_{3} = 165.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1} = 165 - 154 =
11.

  • Câu 5: Thông hiểu

    Phương sai của dãy số 2; 3; 4; 5; 6; 7 là:

     Số trung bình: \overline x  = \frac{{2 + 3 + 4 + 5 + 6 + 7}}{6} = 4,5.

    Phương sai: {s^2} =\frac{{{{(2 - 4,5)}^2} + {{(3 - 4,5)}^2} + ... + {{(7 - 4,5)}^2}}}{6}\approx 2,92.

  • Câu 6: Vận dụng

    Cho đa giác đều có 24 đỉnh. Chọn ngẫu nhiên bốn đỉnh. Tính xác suất chọn ra được hình chữ nhật có các đỉnh là 4 trong 24 đỉnh của đa giác đó?

    Số phần tử của không gian mẫu là: n(\Omega) = C_{24}^{4}

    Ta vẽ đường tròn ngoại tiếp đa giác đều 24 đỉnh. Vẽ một đường kính của đường tròn này. Khi đó 2 nửa đường tròn đều chứa 12 đình.

    Với mỗi đỉnh thuộc nửa đường tròn thứ nhất ta đều có 1 đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại.

    Như vậy cứ 2 đỉnh thuộc đường tròn thứ nhất ta xác định được hai đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại, bốn đỉnh này tạo thành hình chữ nhật.

    Vậy số hình chữ nhật tạo thành từ 4 đa giác đã cho là C_{12}^{2}

    Xác suất cần tìm là: P =
\frac{C_{12}^{2}}{C_{24}^{4}} = \frac{1}{161}.

  • Câu 7: Nhận biết

    Cho mẫu số liệu có s^{2} = 9. Khi đó độ lệch chuẩn của mẫu số liệu bằng:

    Độ lệch chuẩn s = \sqrt{s^{2}} = \sqrt{9}
= 3

  • Câu 8: Nhận biết

    Một tổ học sinh có 6 nam và 4 nữ. Chọn ngẫu nhiên 2 người. Xác suất chọn được 2 nữ là:

    Chọn ngẫu nhiên 2 người trong 10 người có C_{10}^{2} cách chọn.

    Hai người được chọn đều là nữ có C_{4}^{2} cách.

    Xác suất để hai người được chọn đều là nữ là: \frac{C_{4}^{2}}{C_{10}^{2}} =
\frac{2}{15}.

  • Câu 9: Nhận biết

    Khẳng định nào sau đây là đúng?

     Khẳng định đúng là: "Nếu sai số tương đối của phép đo càng nhỏ thì chất lượng phép đo càng cao."

  • Câu 11: Nhận biết

    Kết quả kiểm tra cân nặng của 10 học sinh lớp 10C được liệt kê như sau: 45;46;42;50;38;42;44;42;40;60. Khoảng biến thiên của mẫu số liệu này bằng:

    Quan sát dãy số liệu ta có:

    Giá trị lớn nhất bằng 60

    Giá trị nhỏ nhất bằng 38

    Suy ra khoảng biến thiên của mẫu số liệu là 60 – 38 = 22.

  • Câu 12: Thông hiểu

    Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của \pi^{2}chính xác đến hàng phần trăm.

    Sử dụng máy tính bỏ túi ta có giá trị của \pi^{2} là 9,8696044. Do đó, giá trị gần đúng của \pi^{2} chính xác đến hàng phần trăm là 9,9.

  • Câu 13: Thông hiểu

    13 học sinh của một trường THPT đạt danh hiệu học sinh xuất sắc trong đó khối 128 học sinh nam và 3 học sinh nữ, khối 112 học sinh nam. Chọn ngẫu nhiên 3 học sinh bất kỳ để trao thưởng, xác suất để 3 học sinh được có cả nam và nữ đồng thời có cả khối 11 và khối 12 là bao nhiêu?

    Không gian mẫu là số cách chọn ngẫu nhiên 3 học sinh từ 13 học sinh.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{13}^{3} = 286.

    Gọi A là biến cố ''3 học sinh được ó cả nam và nữ đồng thời có cả khối 11 và khối 12''. Ta có các trường hợp thuận lợi cho biến cố A là:

    TH1: Chọn 1 học sinh khối 11; 1 học sinh nam khối 12 và 1 học sinh nữ khối 12 nên có C_{2}^{1}C_{8}^{1}C_{3}^{1} = 48 cách.

    TH2: Chọn 1 học sinh khối 11; 2 học sinh nữ khối 12 có C_{2}^{1}C_{3}^{2} = 6 cách.

    TH3: Chọn 2 học sinh khối 11; 1 học sinh nữ khối 12 có C_{2}^{2}C_{3}^{1} = 3 cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = 48 + 6 + 3 =
57.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{57}{286}.

  • Câu 14: Nhận biết

    Trong kết quả thống kê điểm môn Tiếng Anh của một lớp có 40 học sinh, điểm thấp nhất là 2 điểm và cao nhất là 10 điểm. Khẳng định nào sau đây đúng?

    Khi thực hiện tính điểm trung bình hay trung vị còn phụ thuộc vào tần số của mỗi điểm.

    Nếu chỉ có khoảng điểm thì không thể kết luận về điểm trung bình môn Tiếng Anh của lớp đó và trung vị.

  • Câu 15: Thông hiểu

    Cho dãy số liệu 9;10;15;18;19;27;30;40;46;100;200. Tứ phân vị thứ nhất của mẫu số liệu là:

    Vì cỡ mẫu của mẫu số liệu bằng 11 là số lẻ

    => Số trung vị của mẫu số liệu trên là 27 \Rightarrow Q_{2} = 27

    Nửa dữ liệu bên trái Q_{2} là: 9;10;15;18;19

    Do đó Q_{1} = 15

    Suy ra tứ phân vị thứ nhất của mẫu số liệu là Q_{1} = 15.

  • Câu 16: Nhận biết

    Điểm kiểm tra môn Văn của bạn Lan là: 7; 9; 8; 9. Tính số trung bình cộng \overline{x} của mẫu số liệu trên.

    Số trung bình cộng của mẫu số liệu trên là: \overline{x} = \frac{7 + 9 + 8 + 9}{4} =
8,25.

  • Câu 17: Vận dụng

    Trong chiếc hộp chứa 37 tấm thẻ được đánh số theo thứ tự từ 1 đến 37 (hai tấm thẻ khác nhau được đánh số khác nhau). Lấy ngẫu nhiên đồng thời 3 thẻ trong hộp. Xác suất để các số ghi trên ba tấm thẻ có tổng là một số chia hết cho 3 bằng bao nhiêu?

    Từ 1 đến 37 có 12 số chia hết cho 3; 13 số chia cho 3 dư 1 và 12 số chia cho 3 dư 2

    Số phần tử không gian mẫu là: n(\Omega) =
C_{37}^{3} = 7770

    Để lấy được 3 tấm thẻ mà tổng các số ghi trên ba tấm thẻ chia hết cho 3 ta có các trường hợp sau:

    TH1: 3 số đều chia hết cho 3 ta có: C_{12}^{3} = 220 cách chọn.

    TH2: 3 số chia 3 dư 1 ta có: C_{13}^{3} =
286 cách chọn.

    TH3: 3 số chia 3 dư 2 ta có: C_{12}^{3} =
220 cách chọn.

    TH4: 1 số chia hết cho 3, 1 số chia 3 dư 1 và 1 số chia cho 3 dư 2 ta có: 12.13.12 = 1872 cách chọn.

    Suy ra có tất cả 220 + 286 + 220 + 1872 =
2598 cách chọn thỏa mãn yêu cầu đề bài.

    Vậy xác suất của biến cố: “Các số ghi trên ba tấm thẻ có tổng là một số chia hết cho 3” là: P = \frac{2598}{7770}
= \frac{433}{1295}

  • Câu 18: Thông hiểu

    Gieo một con xúc xắc cân đối đồng chất 2 lần. Tính xác suất để biến cố có tích 2 lần số chấm khi gieo xúc xắc là một số chẵn.

    Số phần tử của không gian mẫu là |\Omega|
= 6.6 = 36.

    Gọi A là biến cố ''Tích hai lần số chấm khi gieo xúc xắc là một số chẵn''. Ta xét các trường hợp:

    TH1:. Gieo lần một, số chấm xuất hiện trên mặt là số lẻ thì khi gieo lần hai, số chấm xuất hiện phải là số chẵn. Khi đó có 3.3 = 9 cách gieo.

    TH2:. Gieo lần một, số chấm xuất hiện trên mặt là số chẵn thì có hai trường hợp xảy ra là số chấm xuất hiện trên mặt khi gieo lần hai là số lẻ hoặc số chẵn. Khi đó có 3.3
+ 3.3 = 18 cách gieo.

    Suy ra số kết quả thuận lợi cho biến cố là \left| \Omega_{A} ight| = 9 + 18 =
27.

    Vậy xác suất cần tìm tính P(A) =
\frac{27}{36} = 0,75.

  • Câu 19: Nhận biết

    Xác định số trung vị của dãy số liệu 1;3;4;5;7;8;9?

    Dãy số đã cho được sắp xếp theo thứ tự không giảm.

    Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.

    Do đó số trung vị của dãy trên là 5.

  • Câu 20: Vận dụng

    Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện cộng 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.

    Giả sử các số liệu trong mẫu là: a_{1};a_{2};...;a_{10} đã sắp xếp theo thứ tự không giảm.

    Khoảng biến thiên: R_{1} = a_{10} -
a_{1}.

    Cộng hai với tất cả các số liệu: a_{1} +
2;a_{2} + 2;...;a_{10} + 2.

    Khoảng biến thiên: R_{2} = (a_{10} + 2) -
(a_{1} + 2 ) = a_{10} -
a_{1}.

    Suy ra R_{2} = R_{1}.

  • Câu 21: Nhận biết

    Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố A: "kết quả của 3 lần gieo là như nhau" là bao nhiêu?

    Lần đầu có thể ra tùy ý nên xác suất là 1. Lần 2 và 3 phải giống lần 1 xác suất là \frac{1}{2}.

    Theo quy tắc nhân xác suất: P(A) =1.\frac{1}{2}.\frac{1}{2} = \frac{1}{4}.

  • Câu 22: Nhận biết

    Khoảng biến thiên tứ phân vị \Delta Q được xác định bởi:

    Khoảng biến thiên tứ phân vị \Delta
Q được xác định bởi Q_{3} -
Q_{1}.

  • Câu 23: Thông hiểu

    Kết quả điểm kiểm tra 45 phút môn Hóa Học của 100 em học sinh được trình bày ở bảng sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Cộng

    Tần số

    3

    5

    14

    14

    30

    22

    7

    5

    100

    Số trung bình cộng của bảng phân bố tần số nói trên là:

    Số trung bình cộng của bảng phân bố tần số nói trên là

    \bar{x} = \frac{3.3 + 4.5 + 5.14 + 6.14
+ 7.30 + 8.22 + 9.7 + 10.5}{100} = 6,82.

  • Câu 24: Nhận biết

    Chọn phát biểu đúng trong các phát biểu sau:

    Phát biểu đúng là: "Độ chính xác của số quy tròn bằng một đơn vị của hàng quy tròn."

  • Câu 25: Thông hiểu

    Cho kết quả đo chiều cao của 5 học sinh bất kì trong lớp như sau: 168;155;164;158;163. Tính độ lệch chuẩn của mẫu số liệu? (Kết quả làm tròn đến chữ số thập phân thứ hai)

    Chiều cao trung bình của 5 bạn là:

    \overline{x} = \frac{168 + 155 + 164 +
158 + 163}{5} = \frac{808}{5}

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{5}\lbrack\left( 168 -
\frac{808}{5} ight)^{2} + \left( 155 - \frac{808}{5} ight)^{2} +
\left( 164 - \frac{808}{5} ight)^{2}

    + \left( 158 - \frac{808}{5} ight)^{2}
+ \left( 163 - \frac{808}{5} ight)^{2}brack =
\frac{526}{25}

    Độ lệch chuẩn của mẫu số liệu là: s =
\sqrt{s^{2}} = \sqrt{\frac{526}{25}} \approx 4,59.

  • Câu 26: Vận dụng

    Bảng dưới đây thống kê lại tốc độ phát triển của 1 loại vi khuẩn (đơn vị: nghìn con).

    Ta nên lấy giá trị nào là giá trị đại diện của bảng trên?

    Sắp xếp lại số liệu theo thứ tự không giảm:

    20 20 20 30 60 100 150 270 440 980

    Do mẫu số liệu chứa các giá trị chênh lệch rất lớn nên không thể lấy số trung bình hoặc mốt làm giá trị đại diện.

    Tứ phân vị không được coi là giá trị đại diện.

    Do đó ta lấy trung vị làm giá trị đại diện. Ta có:M_{e} = \frac{60 + 100}{2} = 80.

    Chọn đáp án: Trung vị, giá trị đại diện là 80.

  • Câu 27: Nhận biết

    Gieo 1 con xúc xắc 1 lần. Biến cố A: “Số chấm xuất hiện nhỏ hơn 4”. Mô tả biến cố A.

     Mô tả biến cố A: A = {1;2;3}.

  • Câu 28: Nhận biết

    Gieo đồng tiền 5 lần cân đối và đồng chất. Xác suất để được ít nhất một lần xuất hiện mặt sấp là bao nhiêu?

    Phép thử: Gieo đồng tiền 5 lần cân đối và đồng chất.

    Ta có n(\Omega) = 2^{5} =
32.

    Biến cố A: Được ít nhất một lần xuất hiện mặt sấp.

    \overline{A}: Tất cả đều là mặt ngửa.

    n\left( \overline{A} ight) =
1.

    \Rightarrow n(A) = n(\Omega) - n\left(
\overline{A} ight) = 31.

    \Rightarrow p(A) = \frac{n(A)}{n(\Omega)}
= \frac{31}{32}.

  • Câu 29: Vận dụng

    Số cuộn phim mà 20 nhà nhiếp ảnh nghiệp dư sử dụng trong một tháng được cho trong bảng sau:

    0

    5

    7

    6

    2

    5

    9

    7

    6

    9

    20

    6

    10

    7

    5

    8

    9

    7

    8

    5

    Giá trị ngoại lệ trong mẫu số liệu trên là:

    Ta có bảng tần số sau:

    Số cuộn phim

    0

    2

    5

    6

    7

    8

    9

    10

    20

     

    Số nhiếp ảnh gia

    1

    1

    4

    3

    4

    2

    3

    1

    1

    n = 20

    Vì cỡ mẫu n = 20 = 2.10 là số chẵn. Nên giá trị tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 10 và số liệu thứ 11.

    Khi sắp xếp mẫu số liệu đã cho theo thứ tự không giảm, ta được số liệu thứ 10 và số liệu thứ 11 cùng bằng 7.

    => Q2 = 7.

    - Ta tìm tứ phân vị thứ nhất là trung vị của nửa mẫu số liệu bên trái Q2.

    Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ nhất là trung bình cộng của số liệu thứ 5 và số liệu thứ 6.

    Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 5 và số liệu thứ 6 cùng bằng 5.

    => Q1 = 5.

    Ta tìm tứ phân vị thứ ba là trung vị của nửa mẫu số liệu bên phải Q2.

    Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 5 và số liệu thứ 6 (tính từ số liệu thứ 11 trở đi). Tức là giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 15 và số liệu thứ 16.

    Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 15 và số liệu thứ 16 lần lượt là 8 và 9.

    => Q3 = (8 + 9) : 2 = 8,5.

    Ta suy ra khoảng tứ phân vị ∆Q = Q3 – Q1 = 8,5 – 5 = 3,5.

    Ta có Q3 + 1,5.∆Q = 13,75 và Q1 – 1,5.∆Q = – 0,25.

    Số liệu x trong mẫu là giá trị ngoại lệ nếu x > Q3 + 1,5.∆Q (1) hoặc x < Q1 – 1,5.∆Q (2)

    Quan sát bảng số liệu ta thấy có số liệu x = 20 thoả mãn điều kiện (1) : 20 > 13,75.

    Vậy mẫu số liệu có giá trị ngoại lệ là 20.

  • Câu 30: Vận dụng

    Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng (xem hình minh họa). Bạn An di chuyển quân vua ngẫu nhiên 3 bước. Xác suất sau 3 bước quân vua trở về ô xuất phát là bao nhiêu?

    Tại mọi ô đang đứng, ông vua có 8 khả năng lựa chọn để bước sang ô bên cạnh.

    Do đó không gian mẫu n(\Omega) =
8^{3}.

    Gọi A là biến cố “sau 3 bước quân vua trở về ô xuất phát”. Sau ba bước quân vua muốn quay lại ô ban đầu khi ông vua đi theo đường khép kín tam giá

    Chia hai trường hợp:

    + Từ ô ban đầu đi đến ô đen, đến đây có 4 cách để đi bước hai rồi về lại vị trí ban đầu.

    + Từ ô ban đầu đi đến ô trắng, đến đây có 2 cách để đi bước hai rồi về lại vị trí ban đầu.

    Do số phần tử của biến cố A là n(A) = 4.4
+ 2.4 = 24.

    Vậy xác suất P(A) = \frac{24}{8^{3}} =
\frac{3}{64}.

  • Câu 31: Thông hiểu

    Một hộp có 5 bi đen, 4 bi trắng. Chọn ngẫu nhiên 2 bi. Tính xác suất 2 bi được chọn có đủ hai màu.

    Số phần tử không gian mẫu: n(\Omega) =C_{9}^{2} = 36.

    (bốc 2 bi bất kì từ 9 bi trong hộp ).

    Gọi A: “hai bi được chọn có đủ hai màu”. Ta có: n(A) = C_{5}^{1}.C_{4}^{1}= 20.

    ( chọn 1 bi đen từ 5 bi đen – chọn 1 bi trắng từ 4 bi trắng ).

    Khi đó: P(A) = \frac{n(A)}{n(\Omega)} =\frac{20}{36} = \frac{5}{9}.

  • Câu 32: Thông hiểu

    Một nhóm có 6 nam và 4 nữ. Cần chọn 3 bạn để đi trực nhật. Tính xác suất sao cho trong các bạn được chọn luôn có bạn nữ.

    Chọn 3 bạn bất kì từ 10 bạn, suy ra n(\Omega)=C_{10}^3=120.

    Gọi A là biến cố "3 bạn đi trực nhật luôn có mặt bạn nữ".

    Trường hợp 1: 3 bạn nữ

    Có: C_4^3 = 4 (cách)

    Trường hợp 2: 2 bạn nữ + 1 bạn nam

    Có: C_4^2.C_6^1 = 36 (cách)

    Trường hợp 3: 1 bạn nữ + 2 bạn nam

    Có: C_4^1.C_6^2 = 60 (cách)

    Vậy n(A)=4+36+60=100.

    Xác suất P(A)=\frac{100}{120}=\frac56.

  • Câu 33: Vận dụng

    Trong một buổi liên hoan có 10 cặp nam nữ, trong đó có 4 cặp vợ chồng. Chọn ngẫu nhiên 3 người để biểu diễn một tiết mục văn nghệ. Xác suất để 3 người được chọn không có cặp vợ chồng nào là bao nhiêu?

    Không gian mẫu là số cách chọn ngẫu nhiên 3 người trong 20 người.

    Suy ra số phần tử không gian mẫu là |\Omega| = C_{20}^{3} = 1140.

    Gọi A là biến cố ''3 người được chọn không có cặp vợ chồng nào''. Để tìm số phần tử của A, ta đi tìm số phần tử của biến cố \overline{A}, với biến cố \overline{A}3 người được chọn luôn có 1 cặp vợ chồng.

    + Chọn 1 cặp vợ chồng trong 4 cặp vợ chồng, có C_{4}^{1} cách.

    + Chọn thêm 1 người trong 18 người, có C_{18}^{1} cách.

    Suy ra số phần tử của biến cố \overline{A}\left| \Omega_{\overline{A}} ight| =
C_{4}^{1}.C_{18}^{1} = 72.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = 1140 - 72 =
1068.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{1068}{1140} =
\frac{89}{95}.

  • Câu 34: Vận dụng

    Tìm tứ phân vị trên của bảng số liệu sau:

    Cỡ mẫu số liệu trên là: n = 10 + 8 + 4 +
2 + 1 = 25.

    Giá trị chính giữa của mẫu là giá trị ở vị trí thứ 13, đó là số 27. Suy ra M_{e} = Q_{2} = 27.

    Ta đi tìm trung vị của mẫu số liệu gồm 12 giá trị bên phải M_{e}. Hai giá trị chính giữa là giá trị ở vị trí thứ 19 và 20. Đó là số 28 và số 28.

    Suy ra Q_{3} = \frac{28 + 28}{2} =
28. Vậy tứ phân vị trên là 28.

  • Câu 35: Thông hiểu

    Viết số quy tròn của số gần đúng 123,4167 có độ chính xác d = 0,005.

    d = 0,005 nhỏ hơn một đơn vị ở hàng phần trăm nên ta làm tròn số đến hàng phần trăm. Số quy tròn là: 123,42.

  • Câu 36: Thông hiểu

    Tìm phương sai của dãy số liệu: 43 45 46 41 40.

    Số trung bình của mẫu số liệu là: \overline{x} = \frac{43 + 45 + 46 + 41 + 40}{5} = 43.

    Ta có phương sai: s^{2} = \frac{(43 - 43)^{2} + (45 - 43)^{2} + (46 -
43)^{2} + (41 - 43)^{2} + (40 - 43)^{2}}{5} = 5,2.

    Độ lệch chuẩn: \sqrt{s^{2}} = \sqrt{5,2}
= \frac{\sqrt{130}}{5}.

  • Câu 37: Nhận biết

    Điểm thi học kì của một học sinh như sau: 4  6  7  2  10  9  3  5  8  7  3  8.

    Tính số trung bình cộng của mẫu số liệu trên.

    Số trung bình cộng của mẫu số liệu trên là:

    \overline x  = \frac{{4 + 6 + 7.2 + 2 + 10 + 9 + 3.2 + 5 + 8.2}}{{12}} = 6.

  • Câu 38: Nhận biết

    Số quy tròn số 2,718282 với độ chính xác d = 0,01 là:

    Theo bài ra ta có: Độ chính xác 0,001
< d = 0,01 nên ta quy tròn số đến số thập phân thứ nhất.

    Vậy số quy tròn là 2,7.

  • Câu 39: Nhận biết

    Gieo một đồng tiền hai lần. Xác xuất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất 1 lần là:

    Gieo một đồng xu 2 lần, số kết quả của không gian mẫu là n(\Omega)=2.2=4 

    Các kết quả thỏa mãn là: SN, NS, SS. (3 kết quả).

    Vậy P=\frac34.

  • Câu 40: Thông hiểu

    Một lô sản phẩm gồm 35 sản phẩm đạt chuẩn và 15 sản phẩm lỗi. Lấy ngẫu nhiên 3 sản phẩm từ trong hộp. Tính xác suất để 3 sản phẩm lấy ra đều là sản phẩm đạt chuẩn?

    Ta có: n(\Omega) =
C_{50}^{3}

    Gọi B là biến cố cả ba sản phẩm lấy ra đều là sản phẩm đạt chuẩn.

    Chọn 3 trong 35 sản phẩm đạt chuẩn ta có: \Rightarrow n(B) = C_{35}^{3}

    Vậy xác suất của biến cố B là: P(B) =
\frac{C_{35}^{3}}{C_{50}^{3}} = \frac{187}{560}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 1 lượt xem
Sắp xếp theo