Xác định mốt của mẫu số liệu: ![]()
Ta có: số 17 có tần số xuất hiện nhiều nhất
Suy ra mốt của mẫu số liệu là 17.
Xác định mốt của mẫu số liệu: ![]()
Ta có: số 17 có tần số xuất hiện nhiều nhất
Suy ra mốt của mẫu số liệu là 17.
Kết quả thống kê số tiền điện của một hộ gia đình trong 6 tháng liên tiếp (đơn vị: nghìn đồng) như sau:
. Khoảng biến thiên của mẫu số liệu bằng:
Giá trị lớn nhất bằng 350
Giá trị nhỏ nhất bằng 270
=> Khoảng biến thiên của mẫu số liệu là: 350 – 270 = 80.
Vậy khoảng biến thiên của mẫu số liệu bằng 80.
Phương sai của một mẫu số liệu
bằng
Phương sai của một mẫu số liệu bằng bình phương của độ lệch chuẩn.
Một thùng có
sản phẩm, trong đó có
sản phẩm loại
và
sản phẩm loại
. Lấy ngẫu nhiên
sản phẩm từ thùng đó. Xác suất để lấy được
sản phẩm cùng loại là bao nhiêu?
Lấy ngẫu nhiên sản phẩm trong
sản phẩm thì có
(cách).
sản phẩm được lấy ra đều là sản phẩm loại
có
(cách).
sản phẩm được lấy ra đều là sản phẩm loại
có
(cách).
Xác suất để lấy được sản phẩm cùng loại là
.
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được
. Giá trị gần đúng của
chính xác đến hàng phần trăm là:
Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 4 ở hàng phần trăm là số 5 nên theo nguyên lý làm tròn ra được kết quả là:
Nguyên lí xác suất bé được phát biểu như sau: “Nếu có một biến cố có xác suất rất bé thì trong một phép thử biến cố đó sẽ …”. Cụm từ cần điền vào chỗ trống là:
Nguyên lí xác suất bé được phát biểu như sau: “Nếu có một biến cố có xác suất rất bé thì trong một phép thử biến cố đó sẽ không xảy ra”.
Tìm mốt của mẫu số liệu: 10 9 7 9 8 1 3 7 8 11 8.
Giá trị 8 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 8.
Bảng dưới đây thống kê điểm Văn của lớp 11C.

Biết
. Tìm trung vị của bảng số liệu.
Vì tổng số học sinh bằng 40 nên ta có: .
Thống kê lại bảng:
Hai giá trị chính giữa của mẫu số liệu là giá trị ở vị trí thứ 20 và 21. Đó là số 6 và số 6.
Suy ra trung vị .
Quy tròn số 0,1352 đến hàng phần mười.
Vì số 0,1352 có chữ số hàng phần trăm là 3 < 5 nên khi làm tròn số 0,1352 đến hàng phần mười, ta được 0,1352 ≈ 0,1
Cho dãy số liệu
. Xác định mốt của mẫu số liệu?
Mốt số liệu đã cho có số 5 xuất hiện nhiều lần nhất
Suy ra mốt của mẫu số liệu là 5.
Gieo một con xúc xắc cân đối đồng chất 2 lần. Tính xác suất để biến cố có tích 2 lần số chấm khi gieo xúc xắc là một số chẵn.
Số phần tử của không gian mẫu là
Gọi là biến cố
Tích hai lần số chấm khi gieo xúc xắc là một số chẵn
. Ta xét các trường hợp:
TH1:. Gieo lần một, số chấm xuất hiện trên mặt là số lẻ thì khi gieo lần hai, số chấm xuất hiện phải là số chẵn. Khi đó có cách gieo.
TH2:. Gieo lần một, số chấm xuất hiện trên mặt là số chẵn thì có hai trường hợp xảy ra là số chấm xuất hiện trên mặt khi gieo lần hai là số lẻ hoặc số chẵn. Khi đó có cách gieo.
Suy ra số kết quả thuận lợi cho biến cố là
Vậy xác suất cần tìm tính
Cho dãy số liệu về chiều cao của một nhóm học sinh như sau:
. Các tứ phân vị của mẫu số liệu là:
Dãy số liệu sắp xếp theo thứ tự không giảm là:
Trung vị là
Nửa dữ liệu bên trái là:
Do đó
Nửa dữ liệu bên phải là:
Do đó
Xác định các tứ phân vị của mẫu số liệu:
?
Sắp xếp mẫu dữ liệu theo thứ tự không giảm như sau:
Ta có: suy ra trung vị bằng trung bình cộng của dữ liệu nằm ở vị trí thứ 5 và thứ 6
Vậy đáp án đúng là: .
Một hộp chứa 5 viên bi trắng, 10 viên bi xanh và 15 viên bi đỏ. Lấy ngẫu nhiên từ trong hộp 7 viên bi. Xác suất để trong số 7 viên bi lấy ra có ít nhất 2 viên bi màu đỏ?
Số phần tử không gian mẫu là:
Gọi A là biến cố để trong 7 viên bi lấy ra có ít nhất 2 viên bi màu đỏ
là biến cố để trong 7 viên bi được lấy ra có số viên bi nhỏ hơn 2.
TH1: 7 viên bi trong đó có 1 viên bi đỏ ta có:
TH2: 7 viên bi trong đó có không có viên bi đỏ ta có:
Vậy xác suất của biến cố A cần tìm là:
Cho một đa giác
có
đỉnh nội tiếp một đường tròn
. Người ta lập một tứ giác tùy ý có bốn đỉnh là các đỉnh của
. Tính xác suất để lập được một tứ giác có bốn cạnh đều là đường chéo của
, số đó gần với số nào nhất trong các số sau?
Số phần tử của không gian mẫu là: .
Gọi là biến cố “lập được một tứ giác có bốn cạnh đều là đường chéo của
”.
Để chọn ra một tứ giác thỏa mãn đề bài ta làm như sau:
Bước 1: Chọn đỉnh đầu tiên của tứ giác, có cách.
Bước 2: Chọn đỉnh còn lại sao cho hai đỉnh bất kỳ của tứ giác cách nhau ít nhất 1 đỉnh. Điều này tương đương với việc ta phải chia
chiếc kẹo cho
đứa trẻ sao cho mỗi đứa trẻ có ít nhất
cái, có
cách, nhưng làm như thế mỗi tứ giác lặp lại 4 lần.
Số phần tử của biến cố
là:
.
Xác suất của biến cố là:
.
Cho kết quả đo chiều cao của 5 học sinh bất kì trong lớp như sau:
. Tính độ lệch chuẩn của mẫu số liệu? (Kết quả làm tròn đến chữ số thập phân thứ hai)
Chiều cao trung bình của 5 bạn là:
Phương sai của mẫu số liệu là:
Độ lệch chuẩn của mẫu số liệu là: .
Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?
Số đặc trưng đo độ đo phân tán của mẫu số liệu là phương sai.
Biến cố chắc chắn kí hiệu là gì?
Biến cố chắc chắn kí hiệu là
Gieo một con súc sắc. Xác suất để mặt
chấm xuất hiện là:
Gieo một con súc sắc có không gian mẫu .
Xét biến cố : “mặt
chấm xuất hiện”.
.
Do đó .
Một hộp chứa 9 chiếc thẻ được đánh số từ 1 đến 9. Lấy ngẫu nhiên 3 chiếc thẻ từ hộp. Tính xác suất để tổng các số ghi trên 3 chiếc thẻ được lấy ra là một số lẻ.
Số phần tử của không gian mẫu: .
Gọi A là biến cố "tổng các số ghi trên 3 chiếc thẻ được lấy ra là một số lẻ".
Ta có:
.
Xác suất để tổng các số ghi trên 3 chiếc thẻ được lấy ra là một số lẻ là:
.
Cho tập hợp
. Chọn ngẫu nhiên ba số từ tập đó. Tính xác suất để trong ba số chọn ra không có hai số nào là hai số nguyên liên tiếp.
Số phần tử không gian mẫu là .
Gọi là biến cố “Ba số chọn ra không có hai số nào là hai số nguyên liên tiếp”.
là biến cố “Ba số được chọn có ít nhất hai số là các số tự nhiên liên tiếp”.
+ Bộ ba số dạng , với
: có
bộ ba số.
+ Bộ ba số có dạng , với
: có
bộ ba số.
+ Tương tự mỗi bộ ba số dạng ,
,
,
,
,
,
đều có
bộ.
.
.
Quy tròn số
đến hàng chục, được số
. Khi đó sai số tuyệt đối là:
Sai số tuyệt đối là:
Một đội gồm 5 nam và 8 nữ. Lập một nhóm gồm 4 người hát tốp ca. Tính xác suất để trong 4 người được chọn có ít nhất 3 nữ.
Không gian mẫu là chọn tùy ý người từ
người.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
4 người được ó ít nhất 3 nữ
. Ta có hai trường hợp thuận lợi cho biến cố
như sau:
TH1:: Chọn 3 nữ và 1 nam, có cách.
TH2:: Cả 4 nữ, có cách.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Số kênh của một số hãng truyền hình cáp được ghi như sau: 36 38 33 34 32 30 34 35.
Tìm tứ phân vị của mẫu số liệu trên.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 30 32 33 34 34 35 36 38.
Trung vị của mẫu số liệu trên là: .
Trung vị của mẫu số liệu 30 32 33 34 là: .
Trung vị của mẫu số liệu 34 35 36 38 là: .
Vậy .
Đội tuyển của một lớp có 8 học sinh nam và 4 học sinh nữ. Trong buổi dự lễ trao thưởng, các học sinh được xếp thành 1 hàng ngang. Xác suất để xếp cho 2 học sinh nữ không đứng cạnh nhau là:
12 vị trí là hoán vị của 12 học sinh đó.
Do đó số phần tử của không gian mẫu là: n(Ω) = 12!.
Gọi A là biến cố “Xếp 2 bạn nữ không đứng cạnh nhau”.
Chia việc xếp thành 2 công đoạn:
Công đoạn 1: Xếp 8 bạn nam vào 8 chỗ có 8! cách.
Công đoạn 2: Khi đó 8 bạn nam tạo ra 9 khe trống, xếp 4 bạn nữ vào 9 khe trống đó có cách.
Theo quy tắc nhân, xếp 12 bạn mà 2 bạn nữ không đứng cạnh nhau có: 8!. cách.
=>
Xác suất biến cố A là:
Một hộp có 1 viên bi xanh, 1 viên bi đỏ, 1 viên bi vàng. Chọn ngẫu nhiên 2 viên bi trong hộp (sau khi chọn mỗi viên lại thả lại vào hộp). Không gian mẫu là:
Mô tả không gian mẫu: .
(Xanh là X, đỏ là D, vàng là V).
Quy tròn số
đến hàng chục nghìn ta được:
Quy tròn số đến hàng nghìn ta được số quy tròn là
.
Cho đa giác đều có
đỉnh. Chọn ngẫu nhiên bốn đỉnh. Tính xác suất chọn ra được hình chữ nhật có các đỉnh là
trong
đỉnh của đa giác đó?
Số phần tử của không gian mẫu là:
Ta vẽ đường tròn ngoại tiếp đa giác đều 24 đỉnh. Vẽ một đường kính của đường tròn này. Khi đó 2 nửa đường tròn đều chứa 12 đình.
Với mỗi đỉnh thuộc nửa đường tròn thứ nhất ta đều có 1 đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại.
Như vậy cứ 2 đỉnh thuộc đường tròn thứ nhất ta xác định được hai đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại, bốn đỉnh này tạo thành hình chữ nhật.
Vậy số hình chữ nhật tạo thành từ 4 đa giác đã cho là
Xác suất cần tìm là: .
Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố
: "lần đầu tiên xuất hiện mặt sấp" là bao nhiêu?
Xác suất để lần đầu xuất hiện mặt sấp là . Lần 2 và 3 thì tùy ý nên xác suất là 1.
Theo quy tắc nhân xác suất: .
Cho bảng số liệu thống kê điểm kiểm tra môn Hóa học của lớp 10A như sau:
|
Điểm |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
Số học sinh |
2 |
2 |
4 |
6 |
15 |
9 |
3 |
1 |
Độ lệch chuẩn của mẫu số liệu trên là:
Ta có:
Điểm trung bình của học sinh lớp 10A là:
Phương sai của mẫu số liệu là:
Độ lệch chuẩn của mẫu số liệu đã cho là:
Vậy độ lệch chuẩn cần tìm là: .
Biểu đồ dưới đây thể hiện tốc độ tăng trưởng GDP của Việt Nam giai đoạn 2014 – 2021. Tính độ lệch chuẩn của mẫu số liệu.

Số trung bình của mẫu là:
Từ đó tính được phương sai: .
Suy ra độ lệch chuẩn: .
Cho giá trị gần đúng của
là 0,47. Sai số tuyệt đối của số 0,47 là:
Ta có nên sai số tuyệt đối của 0,47 là
Hình dưới thống kê tỉ lệ phần trăm thất nghiệp ở một số quốc gia:

Hãy tìm giá trị bất thường (nếu có) của mẫu số liệu.
Sắp xếp các giá trị theo thứ tự không giảm:
3,2 3,6 4,4 4,5 5,0 5,4 6,0 6,7 7,0 7,2 7,7 7,8 8,4 8,6 8,7
Từ mẫu số liệu ta tính được: và
,
.
Suy ra .
Ta có:
.
Ta có:
.
Ta thấy không có số liệu nào nhỏ hơn và lớn hơn
nên mẫu không có giá trị bất thường.
Cho bảng kết quả kiểm tra khối lượng của 30 quả trứng gà như sau:
|
Khối lượng (gram) |
25 |
30 |
35 |
40 |
45 |
50 |
|
Số quả trứng |
3 |
5 |
7 |
9 |
4 |
2 |
Xác định mốt của mẫu số liệu?
Mốt của mẫu số liệu là 40 (vì có tần số lớn nhất).
Một túi đựng 10 tấm thẻ được đánh số từ 1 đến 10. Rút ngẫu nhiên ba tấm thẻ từ túi đó. Xác suất để tổng số ghi trên ba thẻ rút được là một số chia hết cho 3 bằng:
Số cách rút ngẫu nhiên ba tấm thẻ từ túi có 10 thẻ là: cách.
Trong các số từ 1 đến 10 có ba số chia hết cho 3, bốn số chia cho 3 dư 1, ba số chia cho 3 dư 2.
Để tổng các số ghi trên ba thẻ rút được là một số chia hết cho 3 thì ba thẻ đó phải có số được ghi thỏa mãn một trong các trường hợp sau:
- Ba số đều chia hết cho 3.
- Ba số đều chia cho 3 dư 1.
- Ba số đều chia cho 3 dư 2.
- Một số chia hết cho 3, một số chia cho 3 dư 1, một số chia cho 3 dư 2.
Do đó số cách rút để tổng số ghi trên 3 thẻ rút được là một số chia hết cho 3 là (cách).
Vậy xác suất cần tìm là: .
Cho số gần đúng
. Hãy viết số quy tròn của
?
Với . Số quy tròn của số
là:
.
Một hộp chứa 8 tấm thẻ được đánh số theo thứ tự từ 1 đến 8 (hai tấm thẻ khác nhau ghi hai số khác nhau). Rút ngẫu nhiên đồng thời hai tấm thẻ trong hộp. Tính xác suất để rút được hai tấm thẻ đều ghi số chẵn?
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Rút được hai tấm thẻ đều ghi số chẵn”
Vậy xác suất của biến cố A là:
Câu lạc bộ Liverpool đạt được điểm số tại giải Ngoại hạng Anh từ mùa giải 2010-2011 đến mùa 2018-2019 như sau: 75 82 87 50 93 70 72 66 67.
Khoảng biến thiên điểm số là:
Khoảng biến thiên là .
Cho bảng điểm kiểm tra môn Toán của học sinh lớp 10B như sau:
|
Điểm |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Tổng |
|
Số học sinh |
2 |
8 |
7 |
10 |
8 |
3 |
2 |
N = 40 |
Tính số trung bình của mẫu số liệu? (Làm tròn kết quả đến chữ số thập phân thứ nhất).
Số trung bình của mẫu số liệu là:
Vậy số trung bình của mẫu số liệu bằng 6,8.