Số trung bình của mẫu số liệu
là:
Số trung bình của mẫu số liệu là:
Vậy số trung bình là 46,25.
Số trung bình của mẫu số liệu
là:
Số trung bình của mẫu số liệu là:
Vậy số trung bình là 46,25.
Một người bỏ ngẫu nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Tính xác suất để có ít nhất một lá thư được bỏ đúng phong bì.
Số phần tử không gian mẫu là: .
Gọi là biến cố “Có ít nhất một lá thư được bỏ đúng phong bì”.
Ta xét các trường hợp sau:
Nếu lá thứ nhất bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất cách.
Nếu lá thứ hai bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất cách.
Nếu lá thứ ba bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất cách.
Không thể có trường hợp hai lá thư bỏ đúng và một lá thư bỏ sai.
Cả ba lá thư đều được bỏ đúng có duy nhất cách.
.
Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là: .
Cách 2:
Gọi là biến cố “Không có lá thư nào được bỏ đúng phong bì”.
.
Tính độ lệch chuẩn của mẫu số liệu: 10; 8; 6; 2; 4.
Số trung bình là
.
Phương sai là
.
Độ lệch chuẩn là .
Tốc độ di chuyển của 25 xe qua một điểm kiểm tra được liệt kê trong bảng dưới đây:
|
20 |
41 |
41 |
80 |
40 |
|
52 |
52 |
52 |
60 |
55 |
|
60 |
60 |
62 |
60 |
55 |
|
60 |
55 |
90 |
70 |
35 |
|
40 |
30 |
30 |
80 |
25 |
Có bao nhiêu số liệu bất thường có trong mẫu số liệu đã cho?
Sắp xếp mẫu số liệu theo thứ tự không giảm như sau:
|
20 |
25 |
30 |
30 |
35 |
|
40 |
40 |
41 |
41 |
52 |
|
52 |
52 |
55 |
55 |
55 |
|
60 |
60 |
60 |
60 |
60 |
|
62 |
70 |
80 |
80 |
90 |
Mẫu số liệu có cỡ mẫu bằng 25 suy ra trung vị là số liệu thứ 13 trong dãy số liệu
Suy ra
Tứ phân vị thứ nhất của mẫu số liệu gồm 12 số liệu sau:
|
20 |
25 |
30 |
30 |
35 |
|
40 |
40 |
41 |
41 |
52 |
|
52 |
52 |
|
||
Suy ra
Tứ phân vị thứ ba của mẫu số liệu gồm 12 số liệu sau:
|
55 |
55 |
|
||
|
60 |
60 |
60 |
60 |
60 |
|
62 |
70 |
80 |
80 |
90 |
Suy ra
Nhận thấy trong mẫu số liệu đã cho không có giá trị nào nhỏ hơn 10 và lớn hơn 90.
Vậy không có giá trị nào bất thường trong mẫu số liệu.
Cho
. Số quy tròn của số gần đúng
là:
Số quy tròn của số gần đúng là:
.
Cửa hàng thống kê cỡ giày trong một đơn hàng ngẫu nhiên của một vị khách như sau:
. Xác định trung vị của mẫu số liệu?
Sắp xếp mẫu số liệu theo thứ tự không giảm như sau:
Trung vị của mẫu số liệu là .
Cho dữ liệu thống kê số vốn (đơn vị: triệu đồng) mua phân bón vụ mùa của 10 hộ nông dân ở thôn B như sau:
![]()
Tìm các giá trị bất thường của mẫu số liệu đã cho?
Sắp xếp dãy số liệu theo thứ tự không giảm ta được:
Ta xác định được các tứ phân vị:
Suy ra có hai giá trị bất thường là .
Lấy ngẫu nhiên đồng thời 3 quả cầu từ trong hộp chứa 10 quả cầu đỏ và 5 quả cầu xanh. Xác suất để ba quả cầu được chọn đều là màu xanh bằng:
Số phần tử không gian mẫu là:
Gọi A là biến cố lấy được 3 quả màu xanh
Số phần tử của biến cố A là:
Vậy xác suất của biến cố A là:
Gieo ba con xúc xắc một cách độc lập. Tính xác suất để tổng số chấm trên mặt xuất hiện trên ba con xúc xắc bằng 9?
Gọi A là biến cố: “Tổng số chấm trên ba mặt của ba con xúc xắc là 9”
Vì nên
Lại có
Khi đó xác suất của biến cố A là:
Kết quả điều tra dân số của tỉnh A năm 2024 là
người. Số quy tròn dân số trên là:
Hàng lớn nhất của độ chính xác là hàng năm nên ta quy tròn
đến hàng nghìn.
Vậy số quy tròn của là
.
Làm tròn số
đến hàng đơn vị?
Số làm tròn đến hàng đơn vị là
.
Chiều cao của một số học sinh nữ lớp 9 (đơn vị cm) được cho trong bảng.

Tìm khoảng tứ phân vị của mẫu số liệu này.
Nhận thấy mẫu đã được sắp xếp theo thứ tự không giảm.
Số liệu chính giữa là 162 nên .
Số liệu chính giữa của mẫu 151 152 153 154 155 160 160 là 154 nên .
Số liệu chính giữa của mẫu 163 165 165 165 166 167 167 là 165 nên .
Khoảng tứ phân vị
.
Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của biến cố B: “Tổng số chấm xuất hiện trong hai lần gieo nhỏ hơn 4”.
Ta có:
Các kết quả thuận lợi cho biến cố: “Tổng số chấm xuất hiện trong hai lần gieo nhỏ hơn 4” là:
Vậy xác suất của biến cố B là:
Dưới đây là bảng thống kê số lần làm bài tập Toán của học sinh lớp 10A.

Tìm trung vị của mẫu số liệu này.
Cỡ mẫu số liệu này là: .
Suy ra giá trị chính giữa là giá trị ở vị trí thứ 18. Đó là số 3.
Vậy trung vị .
Phường A thống kê số con của mỗi hộ gia đình trong khu dân cư như sau:
|
Số con |
0 |
1 |
2 |
3 |
4 |
|
Số hộ gia đình |
2 |
7 |
5 |
1 |
1 |
Phương sai của mẫu số liệu bằng:
Số con trung bình là:
Phương sai của mẫu số liệu là:
Vậy phương sai cần tìm là .
Bảng dưới đây ghi lại thời gian chạy trong 1 cuộc thi của các bạn lớp 10B. (đơn vị: giây)

Hãy tính thời gian chạy trung bình của các bạn. (kết quả làm tròn đến hàng phần nghìn)
Lớp 10B có: (bạn).
Thời gian chạy trung bình của các bạn là:
(giây).
Lấy ngẫu nhiên hai tấm thẻ trong một hộp chứa 9 tấm thẻ được đánh số t 1 đến 9. Tính xác suất để tổng của các số trên hai tấm thẻ lấy ra là số chẵn?
Từ 1 đến 9 có 4 số chẵn và 5 số lẻ.
Số phần tử không gian mẫu là:
Gọi A là biến cố tổng của các số trên hai thẻ lấy ra là số chẵn.
Để tổng nhận được là số chẵn thì 2 số được chọn hoặc là hai số chẵn hoặc là hai số lẻ.
2 số được chọn là 2 số chẵn ta có: cách chọn.
2 số được chọn là 2 số lẻ ta có: cách chọn.
Suy ra số kết quả thuận lợi cho biến cố A là:
Vậy xác suất của biến cố A là:
Cho số
Số quy tròn của số gần đúng
là:
Vì độ chính xác đến hàng trăm nên ta quy tròn đến hàng nghìn và theo quy tắc làm tròn nên số quy tròn là: .
Xét một phép thử có không gian mẫu
gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là một biến cố bất kì của phép thử đó. Biến cố đối của biến cố A là
Biến cố đối của biến cố A là biến cố “A không xảy ra”.
Kết quả đo chiều cao của một học sinh được ghi là
. Điều đó có nghĩa là gì?
Kết quả đo chiều cao của một học sinh được ghi là có nghĩa là: “Chiều cao đúng của học sinh là một số nằm trong khoảng từ
đến
.”
Gieo một con xúc xắc cân đối và đồng chất. Tính xác suất của biến cố “Số chấm xuất hiện trong lần gieo không bé hơn 3”.
Số phần tử của không gian mẫu là:
Số kết quả thuận lợi cho biến cố A: “Số chấm xuất hiện trong lần gieo không bé hơn 3” là:
Xác suất của biến cố A là: .
Cho số đúng
và số gần đúng của
của
. Xác định sai số tuyệt đối
.
Ta có:
Suy ra sai số tuyệt đối là:
Tìm trung vị của dãy số liệu 2 3 1 5 3 7 9 10.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 2 3 3 5 7 9 10.
Dãy trên có hai giá trị chính giữa là 3 và 5.
Suy ra trung vị là: .
Cho kết quả ném phi tiêu của Hùng như sau:
. Hãy các tứ phân vị của mẫu số liệu đã cho?
Sắp xếp điểm ném phi tiêu theo thứ tự không giảm như sau:
Ta có: là số đứng thứ 7.
là trung bình cộng 2 số đứng thứ
.
là trung bình cộng 2 số đứng thứ
.
Cho bảng kết quả kiểm tra khối lượng của 30 quả trứng gà như sau:
|
Khối lượng (gram) |
25 |
30 |
35 |
40 |
45 |
50 |
|
Số quả trứng |
3 |
5 |
7 |
9 |
4 |
2 |
Xác định mốt của mẫu số liệu?
Mốt của mẫu số liệu là 40 (vì có tần số lớn nhất).
Một xạ thủ bán từ khoảng cách 100m có xác suất bắn trúng đích là:
- Tâm 10 điểm: 0,5.
- Vòng 9 điểm: 0,25.
- Vòng 8 điểm: 0,1.
- Vòng 7 điểm: 0,1.
- Ngoài vòng 7 điểm: 0,05.
Tính xác suất để sau 3 lần bắn xạ thủ đó được 27 điểm.
Ta có
Với bộ có 3 cách xáo trộn điểm các lần bắn
Với bộ có 6 cách xáo trộn điểm các lần bắn
Với bộ có 1 cách xáo trộn điểm các lần bắn.
Do đó xác suất để sau 3 lần bắn xạ thủ được đúng 27 điểm là:
.
Tìm mốt của mẫu số liệu: 1 3 4 2 0 0 5 6.
Giá trị 0 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 0.
Gieo một con xúc xắc cân đối đồng chất 2 lần. Tính xác suất để biến cố có tích 2 lần số chấm khi gieo xúc xắc là một số chẵn.
Số phần tử của không gian mẫu là
Gọi là biến cố
Tích hai lần số chấm khi gieo xúc xắc là một số chẵn
. Ta xét các trường hợp:
TH1:. Gieo lần một, số chấm xuất hiện trên mặt là số lẻ thì khi gieo lần hai, số chấm xuất hiện phải là số chẵn. Khi đó có cách gieo.
TH2:. Gieo lần một, số chấm xuất hiện trên mặt là số chẵn thì có hai trường hợp xảy ra là số chấm xuất hiện trên mặt khi gieo lần hai là số lẻ hoặc số chẵn. Khi đó có cách gieo.
Suy ra số kết quả thuận lợi cho biến cố là
Vậy xác suất cần tìm tính
Cho mẫu số liệu: 6; 7; 8; 9; 10. Tính phương sai của mẫu.
Số trung bình là
.
Phương sai là
.
Gieo hai đồng tiền một lần. Kí hiệu S, N lần lượt để chỉ đồng tiền lật sấp, lật ngửa. Mô tả không gian mẫu nào dưới đây là đúng?
Gieo hai đồng tiền một lần ta được không gian mẫu là:
Gieo đồng tiền hai lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là bao nhiêu?
Số phần tử không gian mẫu:.
Biến cố xuất hiện mặt sấp ít nhất một lần: .
Suy ra .
Kết quả kiểm tra của 40 học sinh lớp 10A được thống kê trong bảng sau:
|
Điểm |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
Số học sinh |
2 |
3 |
7 |
18 |
3 |
2 |
4 |
1 |
Tìm mốt của mẫu số liệu đã cho?
Mốt của mẫu số liệu là: (vì có nhiều học sinh đạt điểm 6 nhất trong 40 học sinh).
Tìm giá trị bất thường của dãy số liệu: 3 6 8 14 19 28.
Hai giá trị chính giữa là 8 và 14. Suy ra trung vị .
Trung vị của mẫu 3 6 8 là
.
Trung vị của mẫu 14 19 28 là
.
Suy ra .
Xét: .
Xét: .
Ta thấy không có giá trị nào nhỏ hơn và lớn hơn
nên dãy không có giá trị bất thường.
Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố
: "ít nhất một lần xuất hiện mặt sấp" là bao nhiêu?
Ta có: : "không có lần nào xuất hiện mặt sấp" hay cả 3 lần đều mặt ngửa.
Theo quy tắc nhân xác suất: .
Vậy: .
Cho biểu đồ lượng mưa trung bình các tháng năm 2019 tại Thành phố Hồ Chí Minh như sau:

Mẫu số liệu nhận được từ biểu đồ trên có khoảng biến thiên là:
Quan sát biểu đồ ta thấy:
Giá trị lớn nhất là 342
Giá trị nhỏ nhất là: 4
Vậy khoảng biến thiên của mẫu số liệu là: 342 – 4 = 338.
Một người có
đôi giày khác nhau và trong lúc đi du lịch vội vã lấy ngẫu nhiên
chiếc.
Xác suất để trong
chiếc giày lấy ra có ít nhất một đôi là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên chiếc giày từ
chiếc giày.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
chiếc giày lấy ra có ít nhất một đôi
. Để tìm số phần tử của biến cố
, ta đi tìm số phần tử của biến cố
, với biến cố
là
chiếc giày được chọn không có đôi nào.
● Số cách chọn đôi giày từ
đôi giày là
.
● Mỗi đôi chọn ra chiếc, thế thì mỗi chiếc có
cách chọn. Suy ra
chiếc có
cách chọn.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Một bình chứa 16 viên vi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi từ bình đó. Tính xác suất lấy được cả 3 viên bi đều không có màu đỏ.
Số cách lấy 3 viên bi bất kì là .
Số cách lấy được 3 viên bi trắng là .
Số cách lấy được 2 viên bi trắng, 1 viên bi đen là .
Số cách lấy được 1 viên bi trắng, 2 viên bi đen là .
Số cách lấy được 3 viên bi đen là .
Số cách lấy được cả 2 viên bi không đỏ là .
Suy ra xác suất cần tìm là .
Một hộp có
bi đen,
bi trắng. Chọn ngẫu nhiên
bi. Tính xác suất
bi được chọn có đủ hai màu.
Số phần tử không gian mẫu: .
(bốc 2 bi bất kì từ 9 bi trong hộp ).
Gọi : “hai bi được chọn có đủ hai màu”. Ta có:
.
( chọn 1 bi đen từ 5 bi đen – chọn 1 bi trắng từ 4 bi trắng ).
Khi đó: .
Đề thi kiểm tra 15 phút có 10 câu trắc nghiệm mỗi câu có bốn phương án trả lời, trong đó có một phương án đúng, trả lời đúng mỗi câu được 1,0 điểm. Một thí sinh làm cả 10 câu, mỗi câu chọn một phương án. Tính xác suất để thí sinh đó đạt từ 8,0 điểm trở lên.
Với mỗi câu hỏi, thí sinh có 4 phương án lựa chọn nên số phần tử của không gian mẫu là .
Gọi X là biến cố “thí sinh đó đạt từ 8,0 điểm trở lên”.
Trường hợp 1: Thí sinh đó là được 8 câu (tức là 8,0 điểm): Chọn 8 câu trong số 10 câu hỏi và 2 câu còn lại mỗi câu có 3 cách chọn đáp án sai nên có cách để thí sinh đúng 8 câu.
Trường hợp 2: Thí sinh đó là được 9 câu (tức là 9,0 điểm): Chọn 9 câu trong số 10 câu hỏi và câu còn lại có 3 cách chọn đáp án sai nên có cách để thí sinh đúng 9 câu.
Trường hợp 3: Thí sinh đó là được 10 câu (tức là 10,0 điểm): Chỉ có 1 cách duy nhất.
Suy ra số kết quả thuận lợi cho biến cố X là .
Vậy xác suất cần tìm là .