Dưới đây là bảng thống kê số lần làm bài tập Toán của học sinh lớp 10A.

Tìm trung vị của mẫu số liệu này.
Cỡ mẫu số liệu này là: .
Suy ra giá trị chính giữa là giá trị ở vị trí thứ 18. Đó là số 3.
Vậy trung vị .
Dưới đây là bảng thống kê số lần làm bài tập Toán của học sinh lớp 10A.

Tìm trung vị của mẫu số liệu này.
Cỡ mẫu số liệu này là: .
Suy ra giá trị chính giữa là giá trị ở vị trí thứ 18. Đó là số 3.
Vậy trung vị .
Một hộp đựng
thẻ, đánh số từ
đến
. Chọn ngẫu nhiên
thẻ. Gọi
là biến cố để tổng số của
thẻ được chọn không vượt quá
. Tìm số phần tử của biến cố
.
Liệt kê ta có: . (4 phần tử)
Trong kết quả thống kê điểm môn Tiếng Anh của một lớp có 40 học sinh, điểm thấp nhất là 2 điểm và cao nhất là 10 điểm. Khẳng định nào sau đây đúng?
Khi thực hiện tính điểm trung bình hay trung vị còn phụ thuộc vào tần số của mỗi điểm.
Nếu chỉ có khoảng điểm thì không thể kết luận về điểm trung bình môn Tiếng Anh của lớp đó và trung vị.
Độ lệch chuẩn là gì?
Độ lệch chuẩn là căn bậc hai của phương sai.
Lớp 12 có 9 học sinh giỏi, lớp 11 có 10 học sinh giỏi, lớp 10 có 3 học sinh giỏi. Chọn ngẫu nhiên hai trong số học sinh đó. Tính xác suất để cả hai học sinh đó cùng một lớp.
Số phần tử của không gian mẫu là .
Gọi là biến cố cả hai học sinh được chọn từ cùng một lớp.
Chọn 2 học sinh của lớp 12, có (cách).
Chọn 2 học sinh của lớp 11, có (cách).
Chọn 2 học sinh của lớp 10, có (cách).
Suy ra .
Xác suất cần tìm là .
Một hộp chứa các viên bi kích thước khác nhau, trong đó có 5 viên bi màu đỏ và 6 viên bi màu vàng. Lấy ngẫu nhiên đồng thời 4 viên bi từ hộp. Tính xác suất để trong 4 viên bi lấy ra có đúng 1 viên bi màu vàng.
Số phần tử của không gian mẫu là:
Số cách để lấy 4 viên bi trong đó có đúng một viên bi màu vàng là:
Xác suất của biến cố A là:
Chọn ngẫu nhiên 3 số tự nhiên từ tập hợp
. Xác suất của
để trong 3 số tự nhiên được chọn không có 2 số tự nhiên liên tiếp bằng bao nhiêu?
Có tất cả cách chọn 3 số tự nhiên từ tập hợp
.
Suy ra .
Xét biến cố “Chọn 3 số tự nhiên sao cho không có 2 số tự nhiên liên tiếp”.
Ta có “Chọn 3 số tự nhiên sao luôn có 2 số tự nhiên liên tiếp”.
Xét các trường hợp sau:
+ Trường hợp 1: Trong ba số chọn được chỉ có 2 số liên tiếp:
- Nếu 2 số liên tiếp là hoặc
thì số thứ ba có
cách chọn (do không tính số liên tiếp sau và trước mỗi cặp số đó).
- Nếu 2 số liên tiếp là ,
,.,
thì số thứ ba có
cách chọn (do không tính 2 số liền trước và sau mỗi cặp số đó).
Trường hợp này có cách chọn.
+ Trường hợp 2: Chọn được 3 số liên tiếp.
Tức là chọn các bộ ,
,.,
: có tất cả 2017 cách.
Suy ra .
Vậy .
Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố chắc chắn?
Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố chắc chắn là “Mặt xuất hiện của xúc xắc có số chấm không vượt quá 6”.
Cho bảng thống kê điểm thi của 100 học sinh (thang điểm 20) trong kì thi khảo sát chất lượng đầu năm như sau:
|
Điểm |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
|
Số học sinh |
1 |
1 |
3 |
5 |
8 |
13 |
19 |
24 |
14 |
10 |
2 |
Giá trị của phương sai gần nhất với giá trị nào sau đây?
Ta có:
Điểm số trung bình của 100 học sinh là:
Giá trị phương sai của mẫu số liệu là:
Vậy phương sai cần tìm là
Viết số quy tròn của số gần đúng
có độ chính xác
.
Vì nhỏ hơn một đơn vị ở hàng phần trăm nên ta làm tròn số đến hàng phần trăm. Số quy tròn là:
.
Cho mẫu số liệu:
. Xác định khoảng tứ phân vị của mẫu số liệu?
Ta có N = 10
Suy ra
Vậy khoảng tứ phân vị bằng 2.
Gieo một con xúc xắc cân đối đồng chất 2 lần. Tính xác suất để biến cố có tích 2 lần số chấm khi gieo xúc xắc là một số chẵn.
Số phần tử của không gian mẫu là
Gọi là biến cố
Tích hai lần số chấm khi gieo xúc xắc là một số chẵn
. Ta xét các trường hợp:
TH1:. Gieo lần một, số chấm xuất hiện trên mặt là số lẻ thì khi gieo lần hai, số chấm xuất hiện phải là số chẵn. Khi đó có cách gieo.
TH2:. Gieo lần một, số chấm xuất hiện trên mặt là số chẵn thì có hai trường hợp xảy ra là số chấm xuất hiện trên mặt khi gieo lần hai là số lẻ hoặc số chẵn. Khi đó có cách gieo.
Suy ra số kết quả thuận lợi cho biến cố là
Vậy xác suất cần tìm tính
Điểm thi học kì của một học sinh như sau: 4 6 7 2 10 9 3 5 8 7 3 8.
Tính số trung bình cộng của mẫu số liệu trên.
Số trung bình cộng của mẫu số liệu trên là:
.
Quy tròn số 3,1234567 đến hàng phần nghìn. Số gần đúng nhận được là:
Quy tròn số 3,1234567 đến hàng phần nghìn ta được số: 3,123.
Điểm kiểm tra môn Toán của Hoa thời gian gần đây được liệt kê như sau:
. Khoảng biến thiên của mẫu số liệu trên là:
Quan sát mẫu số liệu đã cho ta thấy:
Giá trị lớn nhất là 9
Giá trị nhỏ nhất là 3
Suy ra khoảng biến thiên của mẫu số liệu là: 9 – 3 = 6.
Tại khoa truyền nhiễm của bệnh viện A có 12 bác sĩ và tỉ lệ bác sĩ nam và bác sĩ nữ bằng nhau. Chọn ngẫu nhiên 6 bác sĩ trong khoa để lập đoàn kiểm tra truyền nhiễm trong khu vực B. Tính xác suất để 6 bác sĩ được chọn có số bác sĩ nam bằng số bác sĩ nữ?
Số phần tử không gian mẫu là:
Số kết quả thuận lợi cho biến cố A: “6 bác sĩ được chọn có số bác sĩ nam bằng số bác sĩ nữ” là:
Vậy xác suất của biến cố A cần tìm là:
Cho
. Số gần đúng của
với độ chính xác
là:
Vì độ chính xác nên số gần đúng được quy tròn đến hàng phần chục.
Vậy đáp án đúng là .
Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây:
= 28658 ± 100.
Vì độ chính xác đến hàng trăm nên ta phải quy tròn số 17638 đến hàng nghìn. Vậy số quy tròn là 29000 (hay viết ≈ 29000).
Khẳng định nào sau đây là đúng?
Trong đo đạc và tính toán, ta thường chỉ nhận được số gần đúng.
Một bác sĩ ghi lại độ tuổi của một số người đến khám trong bảng:

Tìm mốt của mẫu số liệu trên.
Cỡ mẫu số liệu trên là .
Thống kê lại:
Hai giá trị có tần số lớn nhất 17 (5 lần) và 18 (5 lần).
Vậy mốt là 17 và 18.
Xác định khoảng biến thiên
của mẫu số liệu: 6 5 3 7 8 10 15.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 3 5 6 7 8 10 15.
Suy ra khoảng biến thiên .
Cho dãy số liệu
. Kết luận nào dưới đây đúng?
Sắp xếp dãy số liệu theo thứ tự không tăng như sau:
Khi đó:
Vậy kết luận đúng là: .
Một tổ học sinh lớp 10A có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 4 học sinh trong tổ đó để tham gia đội tình nguyện. Tính xác suất để bốn học sinh được chọn đều là nữ?
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Bốn học sinh được chọn đều là nữ”
Vậy xác suất của biến cố A là:
Gieo một con xúc sắc cân đối và đồng chất hai lần. Tính xác suất để cả hai lần xuất hiện mặt 6 chấm.
* Số phần tử của không gian mẫu là: .
* Gọi ”Cả hai lần xuất hiện mặt sáu chấm”. Số phần tử của biến cố
là
.
* Xác suất của biến cố là
.
Hình dưới thống kê tỉ lệ phần trăm thất nghiệp ở một số quốc gia:

Hãy tìm giá trị bất thường (nếu có) của mẫu số liệu.
Sắp xếp các giá trị theo thứ tự không giảm:
3,2 3,6 4,4 4,5 5,0 5,4 6,0 6,7 7,0 7,2 7,7 7,8 8,4 8,6 8,7
Từ mẫu số liệu ta tính được: và
,
.
Suy ra .
Ta có:
.
Ta có:
.
Ta thấy không có số liệu nào nhỏ hơn và lớn hơn
nên mẫu không có giá trị bất thường.
Bảng dưới đây thống kê điểm của bạn Dũng và Huy:

Hãy tính phương sai của mẫu số liệu về điểm của hai bạn, từ đó so sánh và chọn kết luận đúng.
Số trung bình của mẫu số liệu (1) và (2) là:
Phương sai của (1) là:
Phương sai của (2) là:
Vì nên bạn Huy học đều hơn bạn Dũng.
Gieo ngẫu nhiên
đồng tiền thì không gian mẫu của phép thử có bao nhiêu biến cố:
Mô tả không gian mẫu ta có: . (4 phần tử)
Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của biến cố “Tổng số chấm trong hai lần gieo bằng 6”.
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Tổng số chấm trong hai lần gieo bằng 6”.
Tập hợp các kết quả của biến cố A là:
Suy ra
Vậy xác suất của biến cố A là:
Gieo ngẫu nhiên hai con xúc xắc cân đối và đồng chất. Tính xác suất của biến cố: “Hiệu số chấm xuất hiện trên 2 con xúc xắc bằng 1”.
Ta có:
Gọi A là biến cố “Hiệu số chấm xuất hiện trên 2 con xúc xắc bằng 1”
Vậy
Một người bỏ ngẫu nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Tính xác suất để có ít nhất một lá thư được bỏ đúng phong bì.
Số phần tử không gian mẫu là: .
Gọi là biến cố “Có ít nhất một lá thư được bỏ đúng phong bì”.
Ta xét các trường hợp sau:
Nếu lá thứ nhất bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất cách.
Nếu lá thứ hai bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất cách.
Nếu lá thứ ba bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất cách.
Không thể có trường hợp hai lá thư bỏ đúng và một lá thư bỏ sai.
Cả ba lá thư đều được bỏ đúng có duy nhất cách.
.
Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là: .
Cách 2:
Gọi là biến cố “Không có lá thư nào được bỏ đúng phong bì”.
.
Chiều cao của một số học sinh nữ lớp 9 (đơn vị cm) được cho trong bảng.

Tìm khoảng tứ phân vị của mẫu số liệu này.
Nhận thấy mẫu đã được sắp xếp theo thứ tự không giảm.
Số liệu chính giữa là 162 nên .
Số liệu chính giữa của mẫu 151 152 153 154 155 160 160 là 154 nên .
Số liệu chính giữa của mẫu 163 165 165 165 166 167 167 là 165 nên .
Khoảng tứ phân vị
.
Kết quả điều tra về điện năng tiêu thụ (đơn vị: kw/h) của một số hộ dân trong khu vực được thống kê như sau:
. Tính trung vị của dãy số liệu đã cho?
Sắp xếp mẫu số liệu theo thứ tự không giảm như sau:
Vì cỡ mẫu (số lẻ) nên số trung vị của dãy số liệu trên là số liệu thứ 6.
Suy ra .
Cho mẫu số liệu: 17 21 35 43 8 59 72 119. Tìm tứ phân vị.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 8 17 21 35 43 59 72 119.
Trung vị của mẫu số liệu trên là: .
Trung vị của dãy 8 17 21 35 là: .
Trung vị của dãy 43 59 72 119 là: .
Vậy .
Một chiếc hộp chứa 20 quả cầu gồm 8 quả màu xanh, 7 quả màu đỏ và 5 quả màu vàng. Lấy ngẫu nhiên 6 quả cầu từ chiếc hộp. Tính xác suất để 6 quả cầu lấy được ít nhất một quả màu đỏ?
Số phần tử không gian mẫu là:
Gọi A là biến cố trong 6 quả cầu lấy được ít nhất một quả đỏ.
Gọi B là biến cố trong 6 quả cầu lấy được không có quả đỏ.
Số phần tử của biến cố B là:
Xác suất của biến cố B là:
Vậy xác suất của biến cố A cần tìm là:
Ba xạ thủ cùng bắn vào một tấm bia, xác suất trúng đích lần lượt là 0,5; 0,6 và 0,7. Xác suất để có đúng 2 người bắn trúng bia là:
Gọi A là biến có người thứ nhất bắn trúng thì là biến cố người thứ nhất bắn trượt.
Vậy ;
.
Gọi B là biến cố người thứ hai bắn trúng và C là biến cố người thứ ba bắn trúng.
Tương tự ta có ;
;
;
.
Để hai người bắn trúng bia có các khả năng sau xảy ra:
Trường hợp 1: Người thứ nhất và thứ hai bắn trúng, người thứ ba bắn trượt.
Xác suất xảy ra là: .
Trường hợp 2: Người thứ nhất và thứ ba bắn trúng, người thứ hai bắn trượt.
Xác suất xảy ra là: .
Trường hợp 3: Người thứ hai và thứ ba bắn trúng, người thứ nhất bắn trượt.
Xác suất xảy ra là: .
Vậy xác suất để hai người bắn trúng bia là: .
Xếp ngẫu nhiên 5 bạn nam và 3 bạn nữ vào một bàn tròn. Xác suất để không có ba bạn nữ nào ngồi cạnh nhau.
Theo công thức hoán vị vòng quanh ta có:
Để xếp các bạn nữ không ngồi cạnh nhau, trước hết ta xếp các bạn nam vào bàn tròn: có cách, giữa 5 bạn nam đó ta sẽ có được 5 ngăn (do ở đây là bàn tròn). Xếp chỉnh hợp 3 bạn nữ vào 5 ngăn đó có
cách.
Vậy xác suất xảy ra là:.
Số gần đúng của
có ba chữ số đáng tin viết dưới dạng chuẩn là:
Vì số gần đúng của số có ba chữ số đáng tin nên ba chữ số đó là
,
,
.
Nên cách viết dưới dạng chuẩn là
Gieo một con súc sắc cân đối và đồng chất. Xác suất mà mặt có số chấm chẵn xuất hiện là bao nhiêu?
Ta có: Không gian mẫu suy ra
.
Gọi biến cố : “Con súc sắc có số chấm chẵn xuất hiện” hay
suy ra
.
Từ đó suy ra .
Vậy xác suất để mặt có số chấm chẵn xuất hiện là .
Cho bảng số liệu ghi lại điểm của 40 học sinh trong bài kiểm tra 1 tiết môn toán như sau:
Điểm | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Cộng |
Số học sinh | 2 | 3 | 7 | 18 | 3 | 2 | 4 | 1 | 40 |
Số trung bình cộng
của mẫu số liệu trên là:
Số trung bình cộng của mẫu số liệu trên là:
.
Giả sử
là các tứ phân vị của mẫu số liệu. Khoảng tứ phân vị của mẫu số liệu là:
Khoảng tứ phân vị của mẫu số liệu là: .