Đề kiểm tra 45 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Một số yếu tố thống kê và xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho \overline{a}
= \frac{16}{7} = 2,285714... Hãy xác định số gần đúng a của \overline{a} với độ chính xác d = 0,03.

    Ta có hàng của chữ số 0 đầu tiên bên trái của d là hàng phần trăm. Ta cần quy tròn đến hàng phần trăm được số gần đúng là a = 2,29.

  • Câu 2: Nhận biết

    Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Tìm số phần tử của biến cố A.

    Liệt kê ta có: A = \left\{
(1;2;3);(1;2;4);(1;2;5);(1;3;4) ight\}. (4 phần tử)

  • Câu 3: Thông hiểu

    Xác suất của biến cố A kí hiệu là P(A). Biến cố \overline{A} là biến cố đối của A, có xác suất là P(\overline{A})

    Chọn phát biểu sai trong các phát biểu sau:

    Phát biểu sai là: "Xác suất của mỗi biến cố đo lường xảy ra của biến cố đó. Biến cố có khả năng xảy ra càng cao thì xác suất của nó càng xa 1."

  • Câu 4: Nhận biết

    Trong 9 ngày liên tiếp, số sản phẩm mà tổ sản xuất hoàn thành mỗi ngày được ghi lại như sau: 27;26;21;28;25;30;26;23;26. Giá trị khoảng biến thiên của mẫu số liệu là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 30

    Giá trị nhỏ nhất là 21

    Suy ra khoảng biến thiên của mẫu số liệu là: 30 – 21 = 9.

  • Câu 5: Vận dụng

    Gọi S là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp S. Xác suất để hai số được ó chữ số hàng đơn vị giống nhau là bao nhiêu?

    Số phần tử của tập S9.10 = 90.

    Không gian mẫu là chọn ngẫu nhiên 2 số từ tập S.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{90}^{2} = 4005.

    Gọi X là biến cố ''Số được ó chữ số hàng đơn vị giống nhau''. Ta mô tả không gian của biến cố X nhưu sau

    ● Có 10 cách hữ số hàng đơn vị (chọn từ các chữ số \left\{ 0;\ 1;\ 2;\
3;...;\ 9 ight\}).

    ● Có C_{9}^{2} cách chọn hai chữ số hàng chục (chọn từ các chữ số \left\{ 1;\
2;\ 3;...;\ 9 ight\}).

    Suy ra số phần tử của biến cố X\left| \Omega_{X} ight| = 10.C_{9}^{2}
= 360.

    Vậy xác suất cần tính P(X) = \frac{\left|
\Omega_{X} ight|}{|\Omega|} = \frac{360}{4005} =
\frac{8}{89}..

  • Câu 6: Vận dụng

    Trong chiếc hộp chứa 37 tấm thẻ được đánh số theo thứ tự từ 1 đến 37 (hai tấm thẻ khác nhau được đánh số khác nhau). Lấy ngẫu nhiên đồng thời 3 thẻ trong hộp. Xác suất để các số ghi trên ba tấm thẻ có tổng là một số chia hết cho 3 bằng bao nhiêu?

    Từ 1 đến 37 có 12 số chia hết cho 3; 13 số chia cho 3 dư 1 và 12 số chia cho 3 dư 2

    Số phần tử không gian mẫu là: n(\Omega) =
C_{37}^{3} = 7770

    Để lấy được 3 tấm thẻ mà tổng các số ghi trên ba tấm thẻ chia hết cho 3 ta có các trường hợp sau:

    TH1: 3 số đều chia hết cho 3 ta có: C_{12}^{3} = 220 cách chọn.

    TH2: 3 số chia 3 dư 1 ta có: C_{13}^{3} =
286 cách chọn.

    TH3: 3 số chia 3 dư 2 ta có: C_{12}^{3} =
220 cách chọn.

    TH4: 1 số chia hết cho 3, 1 số chia 3 dư 1 và 1 số chia cho 3 dư 2 ta có: 12.13.12 = 1872 cách chọn.

    Suy ra có tất cả 220 + 286 + 220 + 1872 =
2598 cách chọn thỏa mãn yêu cầu đề bài.

    Vậy xác suất của biến cố: “Các số ghi trên ba tấm thẻ có tổng là một số chia hết cho 3” là: P = \frac{2598}{7770}
= \frac{433}{1295}

  • Câu 7: Thông hiểu

    Đội tuyển của một lớp có 8 học sinh nam và 4 học sinh nữ. Trong buổi dự lễ trao thưởng, các học sinh được xếp thành 1 hàng ngang. Xác suất để xếp cho 2 học sinh nữ không đứng cạnh nhau là:

    12 vị trí là hoán vị của 12 học sinh đó.

    Do đó số phần tử của không gian mẫu là: n(Ω) = 12!.

    Gọi A là biến cố “Xếp 2 bạn nữ không đứng cạnh nhau”.

    Chia việc xếp thành 2 công đoạn:

    Công đoạn 1: Xếp 8 bạn nam vào 8 chỗ có 8! cách.

    Công đoạn 2: Khi đó 8 bạn nam tạo ra 9 khe trống, xếp 4 bạn nữ vào 9 khe trống đó có A_9^4 cách.

    Theo quy tắc nhân, xếp 12 bạn mà 2 bạn nữ không đứng cạnh nhau có: 8!. cách.

    => n\left( A ight) = 8!.A_9^4

     Xác suất biến cố A là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{8!.A_9^4}}{{12!}} = \frac{{14}}{{55}}

  • Câu 8: Nhận biết

    Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây: \overline{a} = 17658 ± 16.

    Vì độ chính xác đến hàng chục nên ta phải quy tròn số 17638 đến hàng trăm. Vậy số quy tròn là 17700 (hay viết \overline{a} ≈ 17700).

  • Câu 9: Nhận biết

    Cho bảng số liệu số máy tính bán được trong quý I đầu năm 2022 của một cửa hàng:

    Hãng

    HP

    Lenovo

    Asus

    Apple

    Dell

    Razer

    Số máy tính bán được

    55

    45

    42

    36

    60

    15

    Mốt của bảng số liệu trên là hãng máy tính nào?

    Số máy tính bán được nhiều nhất là 60 máy thuộc hãng Dell

    => Mốt của bảng số liệu trên là hãng Dell.

  • Câu 10: Nhận biết

    Tiền lương hàng tháng của 7 nhân viên trong một công ty du lịch lần lượt là: 6,5; 8,4; 6,9; 7,2; 2,5; 6,7; 3,0. (đơn vị: triệu đồng). Khoảng biến thiên của dãy số liệu thống kê trên bằng:

     Khoảng biến thiên: R = 8,4 - 2,5 = 5,9.

  • Câu 11: Nhận biết

    Cho mẫu số liệu có s^{2} = 9. Khi đó độ lệch chuẩn của mẫu số liệu bằng:

    Độ lệch chuẩn s = \sqrt{s^{2}} = \sqrt{9}
= 3

  • Câu 12: Nhận biết

    Cho a = 235618
\pm 300. Số quy tròn của số gần đúng 235618 là:

    Số quy tròn của số gần đúng 235618 là: 236000.

  • Câu 13: Nhận biết

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được \sqrt{8} =2,828427125. Giá trị gần đúng của \sqrt{8} chính xác đến hàng phần nghìn là:

    Cần lấy chính xác đến hàng phần trăm nên ta phải lấy ba chữ số thập phân. Vì đứng sau số 8 ở hàng phần trăm là số 4 < 5 nên theo nguyên lý làm tròn ra được kết quả là: 2,828.

  • Câu 14: Nhận biết

    Một hộp chứa: bi xanh, bi đỏ và bi vàng. Lấy ngẫu nhiên một viên bi trong hộp. Gọi A là biến cố: “Lấy được viên bi đỏ”. Biến cố đối của biến cố A là:

    Biến cố đối của biến cố A là “Lấy được viên bi xanh hoặc bi vàng”.

  • Câu 15: Nhận biết

    Trong kết quả thống kê điểm môn Tiếng Anh của một lớp có 40 học sinh, điểm thấp nhất là 2 điểm và cao nhất là 10 điểm. Khẳng định nào sau đây đúng?

    Khi thực hiện tính điểm trung bình hay trung vị còn phụ thuộc vào tần số của mỗi điểm.

    Nếu chỉ có khoảng điểm thì không thể kết luận về điểm trung bình môn Tiếng Anh của lớp đó và trung vị.

  • Câu 16: Nhận biết

    Cho số a = 367\
653\ 964\  \pm 213. Số quy tròn của số gần đúng 367\ 653\ 964 là:

    Vì độ chính xác đến hàng trăm nên ta quy tròn đến hàng nghìn và theo quy tắc làm tròn nên số quy tròn là: 367\
654\ 000.

  • Câu 17: Vận dụng

    Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

    Chọn kết luận đúng.

    Giá trị trung bình của hai mẫu:

    \overline{x_{A}} = \frac{2.3 + 2.4 + 2.5 + 3.6 + 2.7 + 2.8 + 2.9}{2 +2 + 2 + 3 + 2 + 2 + 2} =6

    \overline{x_{A}} = \frac{1.3 + 4.5 + 5.6 + 4.7 + 1.9}{1 + 4 + 5 + 4 +1} = 6

    Vậy hai mẫu có giá trị trung bình bằng nhau.

  • Câu 18: Vận dụng

    Cho bảng số liệu như sau:

    Đại diện

    35

    36

    37

    38

    39

    40

    Tần số

    7

    11

    x

    y

    8

    5

    Biết rằng trung vị và cỡ mẫu của mẫu số liệu lần lượt là 37,550. Tính giá trị x;y?

    Vì cỡ mẫu bằng 50 nên trung vị của mẫu số liệu là trung bình cộng của 2 số ở chính giữa (vị trí 25 và 26).

    Mà trung vị của mẫu số liệu trên là 37,5

    Hay M_{e} = \frac{37 +
38}{2}

    Từ đó ta có số liệu đứng thứ 25 là 37 và thứ 26 là 38.

    Suy ra x = 7

    Mà cỡ mẫu bằng 50 suy ra y =
12

  • Câu 19: Nhận biết

    Một tổ trong lớp 10A có 5 học sinh nam và 7 học sinh nữ. Chọn ngẫu nhiên một học sinh trong tổ đó để tham gia câu lạc bộ phát thanh. Tính xác suất để học sinh được chọn là học sinh nam?

    Số phần tử không gian mẫu là:

    n(\Omega) = C_{12}^{1} = 12

    Gọi A là biến cố: “học sinh được chọn là học sinh nam?”

    \Rightarrow n(A) = C_{5}^{1} =
5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{12}

  • Câu 20: Thông hiểu

    Một chiếc hộp chứa 20 quả cầu gồm 8 quả màu xanh, 7 quả màu đỏ và 5 quả màu vàng. Lấy ngẫu nhiên 6 quả cầu từ chiếc hộp. Tính xác suất để 6 quả cầu lấy được ít nhất một quả màu đỏ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{20}^{6}

    Gọi A là biến cố trong 6 quả cầu lấy được ít nhất một quả đỏ.

    Gọi B là biến cố trong 6 quả cầu lấy được không có quả đỏ.

    Số phần tử của biến cố B là: n(B) =
C_{13}^{6}

    Xác suất của biến cố B là: P(B) =
\frac{n(B)}{n(\Omega)} = \frac{143}{3230}

    Vậy xác suất của biến cố A cần tìm là: P(A) = 1 - P(B) = 1 - \frac{143}{3230} =
\frac{3087}{3230}

  • Câu 21: Thông hiểu

    Một hộp chứ 3 quả cầu xanh và 7 quả cầu đỏ. Chọn ngẫu nhiên đồng thời hai quả cầu trong hộp. Tính xác suất để hai quả cầu được chọn ra có cùng màu?

    Ta có: n(\Omega) = C_{10}^{2} =
45

    Gọi A là biến cố: “Chọn được hai quả cầu cùng màu”

    TH1: 2 quả cầu cùng màu xanh ta có: C_{3}^{2} cách chọn

    TH2: 2 quả cầu cùng màu đỏ ta có: C_{7}^{2} cách chọn.

    \Rightarrow n(A) = C_{3}^{2} + C_{7}^{2}
= 24

    Vậy xác suất của biến cố A là: P(A) =
\frac{24}{45} = \frac{8}{15}

  • Câu 22: Thông hiểu

    Gieo một con xúc xắc cân đối đồng chất 2 lần. Tính xác suất để biến cố có tích 2 lần số chấm khi gieo xúc xắc là một số chẵn.

    Số phần tử của không gian mẫu là |\Omega|
= 6.6 = 36.

    Gọi A là biến cố ''Tích hai lần số chấm khi gieo xúc xắc là một số chẵn''. Ta xét các trường hợp:

    TH1:. Gieo lần một, số chấm xuất hiện trên mặt là số lẻ thì khi gieo lần hai, số chấm xuất hiện phải là số chẵn. Khi đó có 3.3 = 9 cách gieo.

    TH2:. Gieo lần một, số chấm xuất hiện trên mặt là số chẵn thì có hai trường hợp xảy ra là số chấm xuất hiện trên mặt khi gieo lần hai là số lẻ hoặc số chẵn. Khi đó có 3.3
+ 3.3 = 18 cách gieo.

    Suy ra số kết quả thuận lợi cho biến cố là \left| \Omega_{A} ight| = 9 + 18 =
27.

    Vậy xác suất cần tìm tính P(A) =
\frac{27}{36} = 0,75.

  • Câu 23: Thông hiểu

    Tính sản lượng lúa trung bình trong bảng thống kê dưới đây:

    Sản lượng (tạ)

    20

    21

    22

    23

    24

    Tần số

    5

    8

    11

    10

    6

    Sản lượng lúa trung bình là:

    \overline{x} = \frac{5.20 + 8.21 + 11.22
+ 10.23 + 6.24}{40} = 22,1

    Vậy sản lượng lúa trung bình là 22,1 tạ.

  • Câu 24: Nhận biết

    Một nhóm học sinh lớp 10A gồm 10 học sinh trong đó có 4 học sinh nữ và 6 học sinh nam. Chọn ngẫu nhiên bốn học sinh trong nhóm để tham gia cuộc thi hùng biện. Xác suất để cả bốn bạn được chọn đều là nữ bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
C_{10}^{4} = 210

    Số kết quả thuận lợi cho biến cố: “Cả bốn bạn được chọn đều là nữ” bằng: C_{4}^{4} = 1

    Vậy xác suất của biến cố ”Cả bốn bạn được chọn đều là nữ” bằng: \frac{1}{210}

  • Câu 25: Nhận biết

    Độ lệch chuẩn là gì?

     Độ lệch chuẩn là căn bậc hai của phương sai.

  • Câu 26: Thông hiểu

    Xác định khoảng tứ phân vị của mẫu số liệu: 8 6 5 1 9 10 15.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 5 6 8 9 10 15

    Trung vị Q_{2} là giá trị chính giữa của mẫu số liệu, suy ra Q_{2} =
8.

    Trung vị Q_{1} của mẫu 1 5 6 là Q_{1} = 5.

    Trung vị Q_{3} của mẫu 9 10 15 là Q_{3} = 10.

    Vậy khoảng tứ phân vị \Delta_{Q} = Q_{3}
- Q_{1} = 10 - 5 = 5.

  • Câu 27: Thông hiểu

    Cho bảng kết quả kiểm tra môn Tiếng Anh của học sinh như sau:

    Điểm

    4

    5

    6

    7

    8

    9

    10

    Tổng

    Số học sinh

    1

    2

    3

    4

    5

    4

    1

    N = 20

    Tính số trung vị của mẫu số liệu đã cho?

    Dãy số liệu đã cho có 20 số liệu nên số hạng chính giữa nằm ở số liệu thứ 10 và 11.

    Đó là số 7 và số 8.

    Suy ra M_{e} = \frac{7 + 8}{2} =
7,5.

  • Câu 28: Vận dụng

    Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

    Chọn kết luận đúng.

    Khoảng biến thiên của mẫu A và mẫu B đều là R = 9 - 3 = 6.

    Vậy hai mẫu số liệu có khoảng biến thiên như nhau.

  • Câu 29: Nhận biết

    Cho biết kết quả đo chiều cao của một số học sinh lớp 10E như sau: 163;165;169;167;164;168;150;161. Xác định khoảng biến thiên của mẫu số liệu?

    Quan sát dãy số liệu ta thấy:

    Giá trị lớn nhất là 169

    Giá trị nhỏ nhất là 150

    Vậy khoảng biến thiên của mẫu số liệu bằng 169 – 150 = 19.

  • Câu 30: Nhận biết

    Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:

    "Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm có tất bao nhiêu viên bi". Đây không phải là phép thử ngẫu nhiên.

  • Câu 31: Thông hiểu

    Từ một hộp có 6 viên bi xanh, 5 viên bi đỏ và 4 viên bi vàng. Lấy ngẫu nhiên 7 viên bi. Tính xác suất để lấy được ít nhất một viên bi vàng?

    Số phần tử không gian mẫu: n(\Omega) =
C_{15}^{7} = 6435

    Số phần tử biến cố lấy ngẫu nhiên 7 viên bi không có viên bi màu vàng là: C_{11}^{7} = 330

    Vậy xác suất để lấy được ít nhất một viên bi vàng là: P = \frac{6435 - 330}{6435} =
\frac{37}{39}

  • Câu 32: Vận dụng

    Một túi đựng 10 tấm thẻ được đánh số từ 1 đến 10. Rút ngẫu nhiên ba tấm thẻ từ túi đó. Xác suất để tổng số ghi trên ba thẻ rút được là một số chia hết cho 3 bằng:

    Số cách rút ngẫu nhiên ba tấm thẻ từ túi có 10 thẻ là: C_{10}^{3} cách.

    Trong các số từ 1 đến 10 có ba số chia hết cho 3, bốn số chia cho 3 dư 1, ba số chia cho 3 dư 2.

    Để tổng các số ghi trên ba thẻ rút được là một số chia hết cho 3 thì ba thẻ đó phải có số được ghi thỏa mãn một trong các trường hợp sau:

    - Ba số đều chia hết cho 3.

    - Ba số đều chia cho 3 dư 1.

    - Ba số đều chia cho 3 dư 2.

    - Một số chia hết cho 3, một số chia cho 3 dư 1, một số chia cho 3 dư 2.

    Do đó số cách rút để tổng số ghi trên 3 thẻ rút được là một số chia hết cho 3 là C_{3}^{3} + C_{4}^{3} +
C_{3}^{3} + C_{3}^{1}C_{4}^{1}C_{3}^{1} (cách).

    Vậy xác suất cần tìm là: \frac{2C_{3}^{3}
+ C_{4}^{3} + C_{3}^{1}C_{3}^{1}C_{4}^{1}}{C_{10}^{3}}.

  • Câu 33: Nhận biết

    Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là:

    Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.

  • Câu 34: Thông hiểu

    Một cái túi chứa 3 viên bi đỏ và 5 bi xanh, 6 viên bi vàng. Chọn ngẫu nhiên 3 viên bi. Xác suất để 3 viên bi có cả ba màu đỏ, xanh, vàng là:

    Chọn ngẫu nhiên ba viên bi => n\left( \Omega  ight) = C_{14}^3

    Gọi A là biến cố lấy được ba viên bi có cả ba màu. Khi đó: n\left( A ight) = C_3^1.C_5^1.C_6^1 = 90

    => Xác suất để 3 viên bi có cả ba màu là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{90}}{{C_{14}^3}} = \frac{{45}}{{182}}

  • Câu 35: Thông hiểu

    Dùng máy tính cầm tay để viết quy tròn số gần đúng \sqrt{2} + \sqrt{5} đến hàng phần trăm là:

    Ta có: \sqrt{2} + \sqrt{5} \approx
3,65028154.

    Chữ số hàng phần nghìn bằng 0 < 5 nên chọn 3,65.

  • Câu 36: Thông hiểu

    Ba nhóm học sinh gồm 5 người, 10 người và 15 người. Khối lượng trung bình của mỗi nhóm lần lượt là 48 kg, 45kg và 40 kg. Khối lượng trung bình của 3 nhóm học sinh là:

    Khối lượng trung bình của 3 nhóm học sinh là:

    \overline x  = \frac{{48.5 + 45.10 + 40.15}}{{5 + 10 + 15}} = 43

  • Câu 37: Vận dụng

    20 tấm thẻ được đánh số từ 1 đến 20. Chọn ngẫu nhiên ra 8 tấm thẻ. Hãy tính xác suất để có 3 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng 1 tấm thẻ mang số chia hết cho 10.

    Không gian mẫu là cách chọn 8 tấm thể trong 20 tấm thẻ.

    Suy ra số phần tử của không mẫu là |\Omega| = C_{20}^{8}.

    Gọi A là biến cố ''3 tấm thẻ mang số lẻ, 5 tấm thẻ mang số chẵn trong đó chỉ có đúng 1 tấm thẻ mang số chia hết cho 10''. Để tìm số phần tử của A ta làm như sau

    ● Đầu tiên chọn 3 tấm thẻ trong 10 tấm thẻ mang số lẻ, có C_{10}^{3} cách.

    ● Tiếp theo chọn 4 tấm thẻ trong 8 tấm thẻ mang số chẵn (không chia hết cho 10), có C_{8}^{4} cách.

    ● Sau cùng ta chọn 1 trong 2 tấm thẻ mang số chia hết cho 10, có C_{2}^{1} cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| =
C_{10}^{3}.C_{8}^{4}.C_{2}^{1}.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} =
\frac{C_{10}^{3}.C_{8}^{4}.C_{2}^{1}}{C_{20}^{8}} =
\frac{560}{4199}.

  • Câu 38: Vận dụng

    Bảng dưới đây thống kê tuổi thọ của một số bóng đèn (đơn vị: giờ):

    Tìm mốt của bảng trên.

    Ta thấy giá trị 1170 xuất hiện nhiều nhất. Suy ra mốt của bảng trên là 1170.

  • Câu 39: Thông hiểu

    Cho dãy số liệu: 5;1;3;8;6;9;10;20;18. Tìm khoảng tứ phân vị của mẫu số liệu đã cho?

    Sắp xếp dãy số liệu theo thứ tự không giảm ta được:

    1;3;5;6;8;9;10;18;20

    Dãy số liệu có số chính giữa là 8 nên tứ phân vị thứ hai là Q_{2} = 8

    Tứ phân vị thứ nhất là trung vị của dãy số liệu: 1;3;5;6. Khi đó Q_{1} = \frac{3 + 5}{2} = 4.

    Tứ phân vị thứ ba là trung vị của dãy số liệu: 9;10;18;20. Khi đó Q_{3} = \frac{10 + 18}{2} = 14

    Vậy khoảng tứ phân vị của mẫu số liệu là

    \Delta Q = Q_{3} - Q_{1} = 14 - 4 =
10

  • Câu 40: Nhận biết

    Gieo một con xúc xắc cân đối, đồng chất 6 mặt và quan sát số chấm xuấ hiện trên con xúc xắc. Xác suất để mặt 4 chấm xuất hiện là:

    Số phần tử không gian mẫu là: n(\Omega) =
6

    Gọi A là biến cố: “Số chấm xuất hiện trên mặt xúc xắc là 5”

    \Rightarrow n(A) = 1

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{1}{6}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo