Cho mẫu số liệu:
. Giá trị phương sai và độ lệch chuẩn của mẫu số liệu lần lượt là:
Trung bình cộng của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Độ lệch chuẩn của mẫu số liệu là:
.
Cho mẫu số liệu:
. Giá trị phương sai và độ lệch chuẩn của mẫu số liệu lần lượt là:
Trung bình cộng của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Độ lệch chuẩn của mẫu số liệu là:
.
Cho đa giác đều có
đỉnh. Chọn ngẫu nhiên
đỉnh trong số
đỉnh của đa giác. Xác suất để
đỉnh được chọn là
đỉnh của một tam giác vuông là bao nhiêu?
Số phần tử không gian mẫu là .
Giả sử tam giác cần lập là vuông tại
.
Chọn đỉnh của tam giác có
cách.
Để tam giác vuông tại thì cung
có số đo là
, hay
là đường kính của đường tròn ngoại tiếp đa giác, do đó có
cách chọn
.
Gọi là biến cố "
đỉnh được chọn là
đỉnh của một tam giác vuông"
Số phần tử của là
.
Xác suất cần tìm là .
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Xác suất để 3 quyển được lấy ra có ít nhất 1 quyển là toán là bao nhiêu?
Số cách lấy 3 quyển sách bất kì là .
Số cách lấy được 3 quyển lý là .
Số cách lấy được 2 quyển lý, 1 quyển hóa là .
Số cách lấy được 1 quyển lý, 2 quyển hóa là .
Số cách lấy 3 quyển sách mà không có sách toán là .
Suy ra số cách lấy 3 quyển sách mà có ít nhất 1 quyển sách toán là 74 cách.
Suy ra xác suất cần tìm là .
Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố chắc chắn?
Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố chắc chắn là “Mặt xuất hiện của xúc xắc có số chấm không vượt quá 6”.
Trong kết quả thống kê điểm môn Tiếng Anh của một lớp có 40 học sinh, điểm thấp nhất là 2 điểm và cao nhất là 10 điểm. Khẳng định nào sau đây đúng?
Khi thực hiện tính điểm trung bình hay trung vị còn phụ thuộc vào tần số của mỗi điểm.
Nếu chỉ có khoảng điểm thì không thể kết luận về điểm trung bình môn Tiếng Anh của lớp đó và trung vị.
Gieo hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai mặt của hai con xúc xắc bằng 7?
Ta có:
Số phần tử không gian mẫu là:
Gọi A là biến cố “tổng số chấm xuất hiện trên hai mặt của hai con xúc xắc bằng “.
Vậy .
Bảng dưới đây thể hiện sản lượng lúa (đơn vị: tạ) của một số thửa ruộng:

Tính phương sai của mẫu số liệu.
Số trung bình của mẫu là:
.
Phương sai:
.
Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập các tam giác có các đỉnh là đỉnh của đa giác trên. Xác suất để chọn được một tam giác từ tập X là tam giác cân nhưng không phải là tam giác đều bằng:
Số các tam giác bất kỳ là .
Số các tam giác đều là .
Có 18 cách chọn một đỉnh của đa giác, mỗi đỉnh có 8 cách chọn 2 đỉnh còn lại để được một tam giác cân.
Số các tam giác cân là: 18.8 = 144.
Số các tam giác cân không đều là: .
Xác suất cần tìm là .
Cho bảng điểm kiểm tra môn Toán của học sinh lớp 10B như sau:
|
Điểm |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Tổng |
|
Số học sinh |
2 |
8 |
7 |
10 |
8 |
3 |
2 |
N = 40 |
Tính số trung bình của mẫu số liệu? (Làm tròn kết quả đến chữ số thập phân thứ nhất).
Số trung bình của mẫu số liệu là:
Vậy số trung bình của mẫu số liệu bằng 6,8.
Cho bảng tần số như sau:
Giá trị | x1 | x2 | x3 | x4 | x5 | x6 |
Tần số | 15 | 9n - 1 | 12 |
| 10 | 17 |
Tìm n để
là hai mốt của bảng tần số trên.
Ta có:
Vậy n = 8.
Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất bốn lần. Xác suất để cả bốn lần gieo đều xuất hiện mặt sấp là bao nhiêu?
Gọi A là biến cố: “cả bốn lần gieo đều xuất hiện mặt sấp.”
Không gian mẫu:
=>.
Cho mẫu số liệu có
. Khi đó độ lệch chuẩn của mẫu số liệu bằng:
Độ lệch chuẩn
Phương sai của một mẫu số liệu
bằng
Phương sai của một mẫu số liệu bằng bình phương của độ lệch chuẩn.
Gieo một đồng xu cân đối và đồng chất liên tiếp ba lần. Gọi
là biến cố “Có ít nhất hai mặt sấp xuất hiện liên tiếp” và
là biến cố “Kết quả ba lần gieo là như nhau”. Hãy liệt kê các kết quả của biến cố ![]()
,
. Suy ra
.
Cho
. Số quy tròn của số gần đúng
là:
Số quy tròn của số gần đúng là:
.
Cho giá trị gần đúng của
là 0,47. Sai số tuyệt đối của số 0,47 là:
Ta có nên sai số tuyệt đối của 0,47 là
Một hộp chứa 7 bi xanh, 6 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất để được hai bi cùng màu là bao nhiêu?
Số phần tử của không gian mẫu là .
Gọi là biến cố lấy được hai bi cùng màu.
Chọn 2 bi xanh, có (cách).
Chọn 2 bi đỏ, có (cách).
Suy ra .
Xác suất cần tìm là .
Cho biết kết quả đo chiều cao của một số học sinh lớp 10E như sau:
. Xác định khoảng biến thiên của mẫu số liệu?
Quan sát dãy số liệu ta thấy:
Giá trị lớn nhất là 169
Giá trị nhỏ nhất là 150
Vậy khoảng biến thiên của mẫu số liệu bằng 169 – 150 = 19.
Cho bảng số liệu như sau:
|
Đại diện |
35 |
36 |
37 |
38 |
39 |
40 |
|
Tần số |
7 |
11 |
x |
y |
8 |
5 |
Biết rằng trung vị và cỡ mẫu của mẫu số liệu lần lượt là
và
. Tính giá trị
?
Vì cỡ mẫu bằng 50 nên trung vị của mẫu số liệu là trung bình cộng của 2 số ở chính giữa (vị trí 25 và 26).
Mà trung vị của mẫu số liệu trên là
Hay
Từ đó ta có số liệu đứng thứ 25 là 37 và thứ 26 là 38.
Suy ra
Mà cỡ mẫu bằng 50 suy ra
Gieo 1 con xúc xắc 1 lần. Biến cố A: “Số chấm xuất hiện nhỏ hơn 4”. Mô tả biến cố A.
Mô tả biến cố A: A = {1;2;3}.
Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây:
= 28658 ± 100.
Vì độ chính xác đến hàng trăm nên ta phải quy tròn số 17638 đến hàng nghìn. Vậy số quy tròn là 29000 (hay viết ≈ 29000).
Cho một đa giác
có
đỉnh nội tiếp một đường tròn
. Người ta lập một tứ giác tùy ý có bốn đỉnh là các đỉnh của
. Tính xác suất để lập được một tứ giác có bốn cạnh đều là đường chéo của
, số đó gần với số nào nhất trong các số sau?
Số phần tử của không gian mẫu là: .
Gọi là biến cố “lập được một tứ giác có bốn cạnh đều là đường chéo của
”.
Để chọn ra một tứ giác thỏa mãn đề bài ta làm như sau:
Bước 1: Chọn đỉnh đầu tiên của tứ giác, có cách.
Bước 2: Chọn đỉnh còn lại sao cho hai đỉnh bất kỳ của tứ giác cách nhau ít nhất 1 đỉnh. Điều này tương đương với việc ta phải chia
chiếc kẹo cho
đứa trẻ sao cho mỗi đứa trẻ có ít nhất
cái, có
cách, nhưng làm như thế mỗi tứ giác lặp lại 4 lần.
Số phần tử của biến cố
là:
.
Xác suất của biến cố là:
.
Số cuộn phim mà 20 nhà nhiếp ảnh nghiệp dư sử dụng trong một tháng được cho trong bảng sau:
0 | 5 | 7 | 6 | 2 | 5 | 9 | 7 | 6 | 9 |
20 | 6 | 10 | 7 | 5 | 8 | 9 | 7 | 8 | 5 |
Giá trị ngoại lệ trong mẫu số liệu trên là:
Ta có bảng tần số sau:
Số cuộn phim | 0 | 2 | 5 | 6 | 7 | 8 | 9 | 10 | 20 |
|
Số nhiếp ảnh gia | 1 | 1 | 4 | 3 | 4 | 2 | 3 | 1 | 1 | n = 20 |
Vì cỡ mẫu n = 20 = 2.10 là số chẵn. Nên giá trị tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 10 và số liệu thứ 11.
Khi sắp xếp mẫu số liệu đã cho theo thứ tự không giảm, ta được số liệu thứ 10 và số liệu thứ 11 cùng bằng 7.
=> Q2 = 7.
- Ta tìm tứ phân vị thứ nhất là trung vị của nửa mẫu số liệu bên trái Q2.
Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ nhất là trung bình cộng của số liệu thứ 5 và số liệu thứ 6.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 5 và số liệu thứ 6 cùng bằng 5.
=> Q1 = 5.
Ta tìm tứ phân vị thứ ba là trung vị của nửa mẫu số liệu bên phải Q2.
Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 5 và số liệu thứ 6 (tính từ số liệu thứ 11 trở đi). Tức là giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 15 và số liệu thứ 16.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 15 và số liệu thứ 16 lần lượt là 8 và 9.
=> Q3 = (8 + 9) : 2 = 8,5.
Ta suy ra khoảng tứ phân vị ∆Q = Q3 – Q1 = 8,5 – 5 = 3,5.
Ta có Q3 + 1,5.∆Q = 13,75 và Q1 – 1,5.∆Q = – 0,25.
Số liệu x trong mẫu là giá trị ngoại lệ nếu x > Q3 + 1,5.∆Q (1) hoặc x < Q1 – 1,5.∆Q (2)
Quan sát bảng số liệu ta thấy có số liệu x = 20 thoả mãn điều kiện (1) : 20 > 13,75.
Vậy mẫu số liệu có giá trị ngoại lệ là 20.
Điều tra về số học sinh của một trường THPT như sau:
Khối lớp | 10 | 11 | 12 |
Số học sinh | 1120 | 1075 | 900 |
Khoảng biến thiên của mẫu số liệu trên là.
Khoảng biến thiên R = 1120 - 900 = 220.
Một chiếc hộp đựng 7 viên bi màu xanh, 6 viên bi màu đen, 5 viên bi màu đỏ, 4 viên bi màu trắng. Chọn ngẫu nhiên ra 4 viên bi, tính xác suất để lấy được ít nhất 2 viên bi cùng màu.
Không gian mẫu là số cách chọn ngẫu nhiên 4 viên bi từ 22 viên bi đã cho.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
Lấy được 4 viên bi trong đó có ít nhất hai viên bi cùng màu
. Để tìm số phần tử của
, ta đi tìm số phần tử của biến cố
, với biến cố
là lấy được 4 viên bi trong đó không có hai viên bi nào cùng màu.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Một tổ có
học sinh nam và
học sinh nữ. Chọn ngẫu nhiên
học sinh. Xác suất để trong
học sinh được chọn luôn có học sinh nữ là:
.
Gọi là biến cố:” trong
học sinh được chọn luôn có học sinh nữ”
Vậy xác suất của biến cố là
.
Cho mẫu số liệu:
. Có bao nhiêu giá trị bất thường của mẫu số liệu đã cho?
Ta có
Suy ra
Nhận thấy trong mẫu số liệu đã cho không có giá trị nào nhỏ hơn 2 và lớn hơn 10.
Vậy không có giá trị nào bất thường trong mẫu số liệu.
Tìm mốt của mẫu số liệu: 10 9 7 9 8 1 3 7 8 11 8.
Giá trị 8 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 8.
Trong chiếc túi du lịch của anh X gồm 3 hộp thịt, 2 hộp cam và 3 hộp cơm. Vì một vài lí do mà những chiếc hộp đều bị mất nhãn. Anh X chọn ngẫu nhiên 3 hộp. Tính xác suất để 3 hộp có đủ 3 loại thực phẩm?
Chọn ngẫu nhiên 3 hộp từ 8 hộp ta có
Để chọn được một hộp thịt; một hộp quả và 1 hộp sữa ta có số cách chọn là:
Vậy xác suất cần tìm là: .
Quy tròn số 3,1234567 đến hàng phần nghìn. Số gần đúng nhận được là:
Quy tròn số 3,1234567 đến hàng phần nghìn ta được số: 3,123.
Bảng dưới đây là sản lượng lúa gạo của nước ta giai đoạn 2007 – 2017 (đơn vị: triệu tấn).

Khoảng biến thiên của mẫu số liệu là:
Khoảng biến thiên là .
Một túi đựng 10 tấm thẻ được đánh số từ 1 đến 10. Rút ngẫu nhiên ba tấm thẻ từ túi đó. Xác suất để tổng số ghi trên ba thẻ rút được là một số chia hết cho 3 bằng:
Số cách rút ngẫu nhiên ba tấm thẻ từ túi có 10 thẻ là: cách.
Trong các số từ 1 đến 10 có ba số chia hết cho 3, bốn số chia cho 3 dư 1, ba số chia cho 3 dư 2.
Để tổng các số ghi trên ba thẻ rút được là một số chia hết cho 3 thì ba thẻ đó phải có số được ghi thỏa mãn một trong các trường hợp sau:
- Ba số đều chia hết cho 3.
- Ba số đều chia cho 3 dư 1.
- Ba số đều chia cho 3 dư 2.
- Một số chia hết cho 3, một số chia cho 3 dư 1, một số chia cho 3 dư 2.
Do đó số cách rút để tổng số ghi trên 3 thẻ rút được là một số chia hết cho 3 là (cách).
Vậy xác suất cần tìm là: .
Kết quả khi đo chiều dài của một cây thước là
. Khi đó sai số tuyệt đối của phép đo được ước lượng là:
Ta có độ dài gần đúng của cây thước là với độ chính xác
Nên sai số tuyệt đối là .
Tìm khoảng tứ phân vị của mẫu số liệu sau: 200 240 220 210 225 235 225 270 250 280.
Sắp xếp mẫu theo thứ tự không giảm: 200 210 220 225 225 235 240 250 270 280
Mẫu 200 210 220 225 225 235 240 250 270 280 có 2 số chính giữa là 225 và 235. Suy ra .
Mẫu 200 210 220 225 225 có số chính giữa là 220. Suy ra .
Mẫu 235 240 250 270 280 có số chính giữa là 270. Suy ra .
Khoảng tứ phân vị: .
Biết
Viết gần đúng
theo nguyên tắc làm tròn với hai chữ số thập phân và ước lượng sai số tuyệt đối.
Làm tròn với hai chữ số thập phân:
Sai số tuyệt đối:
Vậy sai số tuyệt đối không vượt quá 0,0001.
Làm tròn với ba chữ số thập phân:
Sai số tuyệt đối:
Vậy sai số tuyệt đối không vượt quá 0,0001.
Làm tròn với bốn chữ số thập phân:
Vậy sai số tuyệt đối không vượt quá 0,0001.
Bảng sau thống kê điểm kiểm tra của học sinh lớp 10C.

Tìm trung vị của dãy số liệu trên.
Cỡ mẫu số liệu này là:
.
Suy ra giá trị chính giữa là giá trị ở vị trí thứ 20. Đó là số 17.
Vậy trung vị .
Biểu đồ sau biểu diễn tốc độ tăng trưởng GDP của Nhật Bản trong giai đoạn 1990 đến 2005. Hãy tìm khoảng biến thiên của mẫu số liệu đó.

Khoảng biến thiên R = 5,1 - 0,4 = 4,7.