Đề kiểm tra 45 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Một số yếu tố thống kê và xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm mốt của mẫu số liệu: 10 9 7 9 8 1 3 7 8 11 8.

    Giá trị 8 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 8.

  • Câu 2: Nhận biết

    Một nhà nghiên cứu ghi lại tuổi của 30 bệnh nhân mắc bệnh đau mắt hột như sau:

    21

    17

    22

    18

    20

    17

    15

    13

    15

    20

    15

    12

    18

    17

    25

    17

    21

    15

    12

    18

    16

    23

    14

    18

    19

    13

    16

    19

    18

    17

    Khoảng biến thiên R của mẫu số liệu trên là:

    Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột cao nhất là 25 tuổi.

    Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột thấp nhất là 12 tuổi.

    Khoảng biến thiên của mẫu số liệu trên là: R=25-12=13

  • Câu 3: Vận dụng

    Năm đoạn thẳng có độ dài 1cm; 3cm; 5cm; 7cm; 9cm. Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng trên. Xác suất để ba đoạn thẳng lấy ra có thể tạo thành 1 tam giác là:

    Phân tích: Cần nhớ lại kiến thức cơ bản về bất đẳng thức tam giác.

    Ba đoạn thẳng với chiều dài a,b,c có thể là 3 cạch của một tam giác khi và chỉ khi \left\{ \begin{matrix}
a + b > c \\
a + c > b \\
b + c > a \\
\end{matrix} ight.

    Số phần tử của không gian mẫu là: C_{5}^{3} = 10

    Gọi A là biến cố “lấy ba đoạn thẳng lấy ra lập thành một tam giác”

    Các khả năng chọn được ba đoạn thẳng lập thành một tam giác là (3;5;7);(3;5;9);(5;7;9)

    Số trường hợp thuận lợi của biến cố A là 3. Suy ra xác suất của biến cố AP(A) =
\frac{3}{10}.

  • Câu 4: Vận dụng

    Cho biết:

    Hộp 1: chứa 4 viên bi đỏ và 3 viên bi xanh.

    Hộp 2: chứa 5 viên bi đỏ và 2 viên bi xanh.

    Lấy ngẫu nhiên từ mỗi hộp 2 viên bi. Xác suất để lấy các viên bi có cùng màu bằng:

    Lấy ngẫu nhiên 2 viên bi từ hộp 1 ta có: C_{7}^{2} = 21

    Lấy ngẫu nhiên 2 viên bi từ hộp 2 ta có: C_{7}^{2} = 21

    Ta có số phần tử không gian mẫu là: n(\Omega) = 21.21 = 441

    Gọi A là biến cố các viên bi lấy ra cùng màu.

    Số phần tử của biến cố A là: n(A) =
C_{4}^{2}.C_{5}^{2} + C_{3}^{2}.C_{2}^{2}

    Vậy xác suất cần tìm là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{1}{7}

  • Câu 6: Thông hiểu

    Cho dãy số liệu thống kê 11,13,x + 10,x^{2} - 1,11,10. Tìm số nguyên dương x, biết số trung bình cộng của dãy số liệu thống kê đó bằng 12,5.

    Điểm trung bình cộng của dãy số trên là

    \frac{11 + 13 + (x + 10) + \left( x^{2}
- 1 ight) + 12 + 10}{6} = 12,5

    \Leftrightarrow x^{2} + x - 20 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 4(tm) \\
x = - 5(ktm) \\
\end{matrix} ight.

    Vậy x = 4 thỏa mãn yêu cầu bài toán.

  • Câu 7: Vận dụng

    Bảng dưới đây thống kê lại tốc độ phát triển của 1 loại vi khuẩn (đơn vị: nghìn con).

    Ta nên lấy giá trị nào là giá trị đại diện của bảng trên?

    Sắp xếp lại số liệu theo thứ tự không giảm:

    20 20 20 30 60 100 150 270 440 980

    Do mẫu số liệu chứa các giá trị chênh lệch rất lớn nên không thể lấy số trung bình hoặc mốt làm giá trị đại diện.

    Tứ phân vị không được coi là giá trị đại diện.

    Do đó ta lấy trung vị làm giá trị đại diện. Ta có:M_{e} = \frac{60 + 100}{2} = 80.

    Chọn đáp án: Trung vị, giá trị đại diện là 80.

  • Câu 8: Nhận biết

    Gieo xúc xắc hai lần. Tính xác suất để tổng hai số chấm xuất hiện trên hai con xúc xắc là một số nguyên tố.

    Gieo một con xúc xắc 2 lần. Suy ra n(\Omega)=6.6=36.

    Các kết quả thỏa mãn yêu cầu đề bài là: (1; 1), (1; 2), (2; 1),(1; 4), (4; 1), (2;3), (3;2). 7 kết quả.

    Vậy xác suất P=\frac7{36}.

  • Câu 9: Nhận biết

    Xác định số trung vị của dãy số liệu 1;3;4;5;7;8;9?

    Dãy số đã cho được sắp xếp theo thứ tự không giảm.

    Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.

    Do đó số trung vị của dãy trên là 5.

  • Câu 10: Vận dụng

    Cho bảng số liệu như sau:

    Đại diện

    35

    36

    37

    38

    39

    40

    Tần số

    7

    11

    x

    y

    8

    5

    Biết rằng trung vị và cỡ mẫu của mẫu số liệu lần lượt là 37,550. Tính giá trị x;y?

    Vì cỡ mẫu bằng 50 nên trung vị của mẫu số liệu là trung bình cộng của 2 số ở chính giữa (vị trí 25 và 26).

    Mà trung vị của mẫu số liệu trên là 37,5

    Hay M_{e} = \frac{37 +
38}{2}

    Từ đó ta có số liệu đứng thứ 25 là 37 và thứ 26 là 38.

    Suy ra x = 7

    Mà cỡ mẫu bằng 50 suy ra y =
12

  • Câu 11: Vận dụng

    Một bộ đề thi Olympic Toán lớp 11 của Trường THPT Z mà mỗi đề gồm 5 câu được chọn từ 15 câu mức dễ, 10 câu mức trung bình và 5 câu mức khó. Một đề thi được gọi là “Tốt” nếu trong đề thi phải có cả mức dễ, mức trung bình và khó, đồng thời số câu mức khó không ít hơn 2. Lấy ngẫu nhiên một đề thi trong bộ đề trên. Tìm xác suất để đề thi lấy ra là một đề thi “Tốt”.

    Chọn 5 câu trong tổng số 30 câu nên ta có không gian mẫu n(\Omega) = C_{30}^{5}.

    Gọi A là biến cố “Lấy ra được một đề thi “Tốt””.

    TH1: 5 câu lấy ra có 2 câu khó, 1 câu dễ, 2 câu trung bình C_{5}^{2}.C_{15}^{1}.C_{10}^{2} (cách).

    TH2: 5 câu lấy ra có 2 câu khó, 2 câu dễ, 1 câu trung bình C_{5}^{2}.C_{15}^{2}.C_{10}^{1} (cách).

    TH3: 5 câu lấy ra có 3 câu khó, 1 câu dễ, 1 câu trung bình C_{5}^{3}.C_{15}^{1}.C_{10}^{1} (cách).

    Số kết quả thuận lợi của biến cố A là: n(A) = C_{5}^{2}.C_{15}^{1}.C_{10}^{2} +
C_{5}^{2}.C_{15}^{2}.C_{10}^{1} +
C_{5}^{3}.C_{15}^{1}.C_{10}^{1}.

    Xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{3125}{23751}.

  • Câu 12: Nhận biết

    Cho ba chiếc hộp như sau:

    Hộp 1 chứa 1 viên bi đỏ, 1 viên bi vàng.

    Hộp 2 chứa 1 viên bi đỏ, 1 viên bi xanh.

    Hộp 3 chứa 1 viên bi vàng, 1 viên bi xanh.

    Từ mỗi hộp lấy ngẫu nhiên một viên bi và các phần tử của không gian mẫu được mô tả bằng sơ đồ sau:

    Gọi A là biến cố: “Trong ba viên bi lấy ra có đúng một viên bi màu đỏ”. Xác định số kết quả thuận lợi cho biến cố A?

    Số kết quả thuận lợi cho biến cố A là 4.

  • Câu 13: Thông hiểu

    Biết \sqrt[3]{5}=1.709975947.... Viết gần đúng \sqrt[3]{5} theo nguyên tắc làm tròn với ba chữ số thập phân và ước lượng sai số tuyệt đối.

    Làm tròn với ba chữ số thập phân: \sqrt[3]{5} = 1,710

    Sai số tuyệt đối: \left| {1,71 - \sqrt[3]{5}} ight| < \left| {1,71 - 1,7099} ight| = 0,0001

    Vậy sai số tuyệt đối không vượt quá 0,0001.

  • Câu 14: Vận dụng

    Một người có 10 đôi giày khác nhau và trong lúc đi du lịch vội vã lấy ngẫu nhiên 4 chiếc.

    Xác suất để trong 4 chiếc giày lấy ra có ít nhất một đôi là bao nhiêu?

    Không gian mẫu là số cách chọn ngẫu nhiên 4 chiếc giày từ 20 chiếc giày.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{20}^{4} = 4845.

    Gọi A là biến cố ''4 chiếc giày lấy ra có ít nhất một đôi''. Để tìm số phần tử của biến cố A, ta đi tìm số phần tử của biến cố \overline{A}, với biến cố \overline{A}4 chiếc giày được chọn không có đôi nào.

    ● Số cách chọn 4 đôi giày từ 10 đôi giày là C_{10}^{4}.

    ● Mỗi đôi chọn ra 1 chiếc, thế thì mỗi chiếc có C_{2}^{1} cách chọn. Suy ra 4 chiếc có \left( C_{2}^{1} ight)^{4} cách chọn.

    Suy ra số phần tử của biến cố \overline{A}\left| \Omega_{\overline{A}} ight| =
C_{10}^{4}.\left( C_{2}^{1} ight)^{4} = 3360.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = 4845 - 3360 =
1485.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{1485}{4845} =
\frac{99}{323}.

  • Câu 15: Nhận biết

    Kí hiệu nào sau đây là kí hiệu của biến cố chắc chắn?

    Kí hiệu biến cố chắc chắn là Ω.

  • Câu 16: Nhận biết

    Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố A: "lần đầu tiên xuất hiện mặt sấp" là bao nhiêu?

    Xác suất để lần đầu xuất hiện mặt sấp là \frac{1}{2}. Lần 2 và 3 thì tùy ý nên xác suất là 1.

    Theo quy tắc nhân xác suất: P(A) =\frac{1}{2}.1.1 = \frac{1}{2}.

  • Câu 17: Nhận biết

    Cho biết kết quả đo chiều cao của một số học sinh lớp 10E như sau: 163;165;169;167;164;168;150;161. Xác định khoảng biến thiên của mẫu số liệu?

    Quan sát dãy số liệu ta thấy:

    Giá trị lớn nhất là 169

    Giá trị nhỏ nhất là 150

    Vậy khoảng biến thiên của mẫu số liệu bằng 169 – 150 = 19.

  • Câu 18: Nhận biết

    Một hộp đèn có 12 bóng, trong đó có 4 bóng hỏng. Lấy ngẫu nhiên 3 bóng. Xác suất luôn lấy được 1 bóng hỏng là:

    Trong 3 bóng có 1 bóng hỏng

    Ta có n(\Omega) = C_{12}^{3} =
220.

    Gọi biến cố A : “Trong 3 bóng lấy ra có 1 bóng hỏng”.

    Tính được n\left( \Omega_{A} ight) =
C_{4}^{1}.C_{8}^{2} = 112.

    Vậy P(A) = \frac{112}{220} =
\frac{28}{55}.

  • Câu 19: Thông hiểu

    Một bình chứa 6 viên bi màu, trong đó có 2 bi xanh, 2 bi đỏ, 2 bi trắng. Lấy ngẫu nhiên 2 viên bi từ bình đó. Tính xác suất để lấy được 2 viên bi khác màu.

    Lấy 2 viên bi bất kì trong 6 viên bi trong bình thì có C_{6}^{2} = 15(cách).

    Lấy 2 viên bi cùng màu thì có C_{2}^{2} + C_{2}^{2} + C_{2}^{2} =
3 (cách) nên có 15 - 3 =
12(cách) lấy được 2 viên bi khác màu.

    Xác suất để lấy được 2viên bi khác màu trong tổng số 6 viên bi là P = \frac{12}{15} =
\frac{4}{5}.

  • Câu 20: Nhận biết

    Cho bảng số liệu ghi lại điểm của 40 học sinh trong bài kiểm tra 1 tiết môn toán như sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Cộng

    Số học sinh

    2

    3

    7

    18

    3

    2

    4

    1

    40

    Số trung bình cộng \bar{x} của mẫu số liệu trên là:

    Số trung bình cộng của mẫu số liệu trên là:

    \overline x  = \frac{{3.2 + 4.3 + 5.7 + 6.18 + 7.3 + 8.2 + 9.4 + 10.1}}{{40}} = 6,1.

  • Câu 21: Vận dụng

    Nhiệt độ (đơn vị: 0C) tại Mộc Châu trong một ngày sau một vài lần đo như sau:

    21^{0}C;23^{0}C;25^{0}C;28^{0}C;30^{0}C;

    32^{0}C;34^{0}C;31^{0}C;29^{0}C;26^{0}C.

    Kết quả nào dưới đây gần nhất với độ lệch chuẩn của mẫu số liệu đã cho?

    Ta có: N = 10

    Nhiệt độ trung bình trong ngày là:

    \overline{x} = \frac{21 + 23 + 25 + 28 +
30 + 32 + 34 + 31 + 29 + 26}{10} = 27,9

    Ta có bảng sau:

    Giá trị

    Độ lệch

    Bình phương độ lệch

    21

    21 - 27,9 = - 6,9

    47,61

    23

    23 - 27,9 = - 4,9

    24,01

    25

    25 - 27,9 = - 2,9

    8,41

    28

    28 - 27,9 = 0,1

    0,01

    30

    30 - 27,9 = 2,1

    4,41

    32

    32 - 27,9 = 4,1

    16,81

    34

    34 - 27,9 = 6,1

    37,21

    31

    31 - 27,9 = 3,1

    9,61

    29

    29 - 27,9 = 1,1

    1,21

    26

    26 - 27,9 = - 1,9

    3,61

    Tổng

    152,9

    Suy ra phương sai của mẫu số liệu là: s^{2} = \frac{152,9}{10} =
15,29

    Suy ra độ lệch chuẩn của mẫu số liệu là: s = \sqrt{s^{2}} \approx
3,91

  • Câu 22: Nhận biết

    Điểm kiểm tra môn Hóa của một nhóm gồm 9 bạn như sau: 1; 1; 3; 6; 7; 8; 8; 9; 10. Tính trung bình cộng của mẫu số liệu trên. (làm tròn đến hàng phần chục)

    Số trung bình của mẫu số liệu trên là: \overline{x} = \frac{1 + 1 + 3 + 6 + 7 + 8 + 8 + 9
+ 10}{9} \approx 5,9.

  • Câu 23: Nhận biết

    Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?

    Số đặc trưng đo độ đo phân tán của mẫu số liệu là phương sai.

  • Câu 24: Thông hiểu

    Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là:

    Các cặp số thỏa mãn tổng số ba thẻ được chọn không vượt quá 8 là: {1; 2; 3}, {1; 2; 4}, {1; 2; 5}, {1; 3; 4}.

    Vậy số phần tử của A là 4 phần tử.

  • Câu 25: Vận dụng

    Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện nhân 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.

    Giả sử các số liệu trong mẫu là: a_{1};a_{2};...;a_{10} đã sắp xếp theo thứ tự không giảm.

    Khoảng biến thiên: R_{1} = a_{10} -
a_{1}.

    Nhân hai với tất cả các số liệu: 2a_{1};2a_{2};...;2a_{10}.

    Khoảng biến thiên: R_{2} = 2a_{10} -
2a_{1} = 2(a_{10} - a_{1}).

    Suy ra R_{2} = 2R_{1}.

  • Câu 27: Thông hiểu

    Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Xác suất để 3 quyển được lấy ra đều là môn toán là bao nhiêu?

    Số cách lấy 3 quyển sách bất kì là C_{9}^{3} = 84.

    Số cách lấy được 3 quyển thuộc môn toán là C_{4}^{3}.C_{3}^{0}.C_{2}^{0} = 4.

    Suy ra xác suất cần tìm là \frac{1}{21}.

  • Câu 28: Thông hiểu

    Xác định các tứ phân vị của mẫu số liệu: 60;78;80;64;70;76;80;74;86;90?

    Sắp xếp mẫu dữ liệu theo thứ tự không giảm như sau:

    60;64;70;74;76;78;80;80;86;90

    Ta có: N = 10 suy ra trung vị bằng trung bình cộng của dữ liệu nằm ở vị trí thứ 5 và thứ 6

    Q_{2} = \frac{76 + 78}{2} =
77

    Vậy đáp án đúng là: Q_{1} = 70,Q_{2} =
77,Q_{3} = 80.

  • Câu 29: Nhận biết

    Cho a là số gần đúng của số đúng \overline{a}. Sai số tuyệt đối của số gần đúng a là:

    Sai số tuyệt đối của số gần đúng a là: \Delta_{a} = \left| \overline{a} - a
ight|

  • Câu 30: Thông hiểu

    Cho mẫu số liệu: 8;4;7;6;5;10;9. Xác định phương sai của mẫu số liệu đã cho?

    Ta có: N = 7

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{8 + 4 + 7 + 6 + 5 +
10 + 9}{7} = 7

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{7}\lbrack(8 - 7)^{2} +
(4 - 7)^{2} + (7 - 7)^{2}

    + (6 - 7)^{2} + (5 - 7)^{2} + (10 -
7)^{2} + (9 - 7)^{2}brack = 4

    Vậy phương sai của mẫu số liệu bằng 4.

  • Câu 31: Thông hiểu

    Gieo một con xúc xắc cân đối và đồng chất. Giả sử xúc xắc xuất hiện mặt b chấm. Xác suất để phương trình x^{2} + bx + 2 = 0 có hai nghiệm phân biệt là:

    Phương trình x^{2} + bx + 2 = 0 có hai nghiệm phân biệt khi và chỉ khi 

    \begin{matrix}  \Delta  > 0 \hfill \\   \Leftrightarrow {b^2} - 4.2 > 0 \hfill \\   \Leftrightarrow {b^2} - 8 > 0 \hfill \\   \Leftrightarrow b \in \left( { - \infty ; - 2\sqrt 2 } ight) \cup \left( {2\sqrt 2 ; + \infty } ight) \hfill \\ \end{matrix}

    b \in \left\{ {1;2;3;4;5;6} ight\}

    => b \in \left\{ {3;4;5;6} ight\}

    Gieo con xúc xắc cân đối và đồng chất => n\left( \Omega  ight) = 6

    Biến cố A xúc xắc xuất hiện mặt b chấm thỏa mãn phương trình => n\left( A ight) = 4

    => Xác suất để phương trình x^{2} + bx + 2 = 0 có hai nghiệm phân biệt là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{4}{6} = \frac{2}{3}

  • Câu 32: Nhận biết

    Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây: \overline{a} = 17658 ± 16.

    Vì độ chính xác đến hàng chục nên ta phải quy tròn số 17638 đến hàng trăm. Vậy số quy tròn là 17700 (hay viết \overline{a} ≈ 17700).

  • Câu 33: Nhận biết

    Cho a = 235618
\pm 300. Số quy tròn của số gần đúng 235618 là:

    Số quy tròn của số gần đúng 235618 là: 236000.

  • Câu 34: Thông hiểu

    Dùng máy tính cầm tay để viết quy tròn số gần đúng \sqrt{2} + \sqrt{5} đến hàng phần trăm là:

    Ta có: \sqrt{2} + \sqrt{5} \approx
3,65028154.

    Chữ số hàng phần nghìn bằng 0 < 5 nên chọn 3,65.

  • Câu 35: Nhận biết

    Một hộp chứa 8 tấm thẻ được đánh số theo thứ tự từ 1 đến 8 (hai tấm thẻ khác nhau ghi hai số khác nhau). Rút ngẫu nhiên đồng thời hai tấm thẻ trong hộp. Tính xác suất để rút được hai tấm thẻ đều ghi số chẵn?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{8}^{2} = 28

    Gọi A là biến cố: “Rút được hai tấm thẻ đều ghi số chẵn”

    \Rightarrow n(A) = 4

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{4}{28} = \frac{1}{7}

  • Câu 36: Nhận biết

    Xác định khoảng biến thiên R của mẫu số liệu: 6 5 3 7 8 10 15.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 3 5 6 7 8 10 15.

    Suy ra khoảng biến thiên R = 15 - 3 =
12.

  • Câu 37: Thông hiểu

    Cho mẫu số liệu: 5;9;8;7;10;9. Số trung bình của mẫu số liệu là:

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{5 + 9 + 8 + 7 + 10
+ 9}{6} = 8

    Vậy số trung bình là 8.

  • Câu 38: Thông hiểu

    Cho bảng số liệu thống kê điểm kiểm tra môn Hóa học của lớp 10A như sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Số học sinh

    2

    2

    4

    6

    15

    9

    3

    1

    Độ lệch chuẩn của mẫu số liệu trên là:

    Ta có: N = 42

    Điểm trung bình của học sinh lớp 10A là:

    \overline{x} = \frac{2.3 + 2.4 + 4.5 +
6.6 + 15.7 + 9.8 + 3.9 + 1.10}{42} \approx 6,76

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{42}\lbrack 2.(3 -
6,67)^{2} + 2.(4 - 6,76)^{2} + ... + 1(10 - 6,67)^{2}brack \approx
2,37

    Độ lệch chuẩn của mẫu số liệu đã cho là:

    s = \sqrt{s^{2}} \approx
1,54

    Vậy độ lệch chuẩn cần tìm là: 1,54.

  • Câu 39: Thông hiểu

    Hai cậu bé cùng bắn bi vào lỗ. Xác suất người thứ nhất bắn trúng vào lỗ là 85%, xác suất người thứ hai bắn trúng vào lỗ là 70%. Hỏi xác suất để cả hai người cùng bắn trúng vào lỗ:

    Xác suất người thứ nhất bắn trúng lỗ: 0,85

    Xác suất người thứ hai bắn trúng bia: 0,7

    Xác suất để cả hai người cùng bắn trúng bia: 0,85.0,7 = 0,595 = 59,5%

  • Câu 40: Nhận biết

    Tìm số gần đúng của a = 5,2463 với độ chính xác d = 0,001.

    Vì độ chính xác đến hàng phần nghìn nên ta quy tròn a đến hàng phần trăm, vậy số quy tròn của a là 5,25.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo