Tính độ lệch chuẩn của mẫu số liệu: 10; 8; 6; 2; 4.
Số trung bình là
.
Phương sai là
.
Độ lệch chuẩn là .
Tính độ lệch chuẩn của mẫu số liệu: 10; 8; 6; 2; 4.
Số trung bình là
.
Phương sai là
.
Độ lệch chuẩn là .
Kết quả điểm kiểm tra 45 phút môn Hóa Học của 100 em học sinh được trình bày ở bảng sau:
|
Điểm |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Cộng |
|
Tần số |
3 |
5 |
14 |
14 |
30 |
22 |
7 |
5 |
100 |
Số trung bình cộng của bảng phân bố tần số nói trên là:
Số trung bình cộng của bảng phân bố tần số nói trên là
Một tổ học sinh gồm 7 học sinh nam và 3 học sinh nữ. Chọn ngẫu nhiên 2 học sinh. Tính xác suất sao cho 2 người có cả nam và nữ?
Số phần tử không gian mẫu là:
Gọi A là biến cố 2 người được chọn có đủ nam và nữ
Số phần tử của biến cố A là:
Vậy xác suất của biến cố A cần tìm là:
Kết quả thống kê số tiền điện của một hộ gia đình trong 6 tháng liên tiếp (đơn vị: nghìn đồng) như sau:
. Khoảng biến thiên của mẫu số liệu bằng:
Giá trị lớn nhất bằng 350
Giá trị nhỏ nhất bằng 270
=> Khoảng biến thiên của mẫu số liệu là: 350 – 270 = 80.
Vậy khoảng biến thiên của mẫu số liệu bằng 80.
Làm tròn số
đến hàng phần trăm ta được kết quả là:
Làm tròn số đến hàng phần trăm ta được kết quả là
.
Chọn ngẫu nhiên một gia đình có 4 người con và quan sát giới tính của bốn người con này. Xác suất của biến cố hai con đầu là con trai bằng:
Ta có:
Gọi A là biến cố “Hai con đầu là con trai”
Vậy .
Biết
Viết gần đúng
theo nguyên tắc làm tròn với hai chữ số thập phân và ước lượng sai số tuyệt đối.
Làm tròn với hai chữ số thập phân:
Sai số tuyệt đối:
Vậy sai số tuyệt đối không vượt quá 0,0001.
Làm tròn với ba chữ số thập phân:
Sai số tuyệt đối:
Vậy sai số tuyệt đối không vượt quá 0,0001.
Làm tròn với bốn chữ số thập phân:
Vậy sai số tuyệt đối không vượt quá 0,0001.
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được
. Giá trị gần đúng của
chính xác đến hàng phần trăm là:
Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 2 ở hàng phần trăm là số 8 > 5 nên theo nguyên lý làm tròn ra được kết quả là:
Cho mẫu số liệu
(đã sắp xếp thứ tự và
). Biết rằng trung vị của mẫu số liệu bằng
. Tìm
?
Dãy số liệu có 8 số liệu nên
Vậy thỏa mãn điều kiện đề bài.
Tìm giá trị bất thường của dãy số liệu: 3 6 8 14 19 28.
Hai giá trị chính giữa là 8 và 14. Suy ra trung vị .
Trung vị của mẫu 3 6 8 là
.
Trung vị của mẫu 14 19 28 là
.
Suy ra .
Xét: .
Xét: .
Ta thấy không có giá trị nào nhỏ hơn và lớn hơn
nên dãy không có giá trị bất thường.
Cho
là một biến cố trong phép thử
. Xác suất của biến cố đối
liên hệ với xác suất của biến cố
được xác định theo công thức nào sau đây?
Xác suất của biến cố đối liên hệ với xác suất của biến cố
theo công thức:
Gieo một đồng tiền và một con súc sắc. Số phần tử của không gian mẫu là bao nhiêu?
Mô tả không gian mẫu ta có: .
Cho đa giác đều có
đỉnh. Chọn ngẫu nhiên
đỉnh trong số
đỉnh của đa giác. Xác suất để
đỉnh được chọn là
đỉnh của một tam giác vuông là bao nhiêu?
Số phần tử không gian mẫu là .
Giả sử tam giác cần lập là vuông tại
.
Chọn đỉnh của tam giác có
cách.
Để tam giác vuông tại thì cung
có số đo là
, hay
là đường kính của đường tròn ngoại tiếp đa giác, do đó có
cách chọn
.
Gọi là biến cố "
đỉnh được chọn là
đỉnh của một tam giác vuông"
Số phần tử của là
.
Xác suất cần tìm là .
Sản lượng lúa (đơn vị: tạ) của 40 thửa ruộng thí nghiệm có cùng diện tích được trình bày trong bảng số liệu sau:
| Sản lượng | 20 | 21 | 22 | 23 | 24 | |
Tần số | 5 | 8 | 11 | 10 | 6 | n = 40 |
Phương sai là:
Sản lượng lúa trung bình là:
Phương sai là:
Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của
chính xác đến hàng phần trăm.
Sử dụng máy tính bỏ túi ta có giá trị của là 9,8696044. Do đó, giá trị gần đúng của
chính xác đến hàng phần trăm là 9,9.
Kết quả kiểm tra cân nặng của 10 học sinh lớp 10C được liệt kê như sau:
. Khoảng biến thiên của mẫu số liệu này bằng:
Quan sát dãy số liệu ta có:
Giá trị lớn nhất bằng 60
Giá trị nhỏ nhất bằng 38
Suy ra khoảng biến thiên của mẫu số liệu là 60 – 38 = 22.
Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện cộng 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.
Giả sử các số liệu trong mẫu là: đã sắp xếp theo thứ tự không giảm.
Khoảng biến thiên: .
Cộng hai với tất cả các số liệu: .
Khoảng biến thiên:
.
Suy ra .
Gieo một con súc sắc. Xác suất để mặt
chấm xuất hiện là:
Gieo một con súc sắc có không gian mẫu .
Xét biến cố : “mặt
chấm xuất hiện”.
.
Do đó .
Một hộp có 5 viên bi xanh, 6 viên bi đỏ và 7 viên bi vàng. Chọn ngẫu nhiên 5 viên bi trong hộp. Tính xác suất để 5 viên bi được chọn có đủ màu và số bi đỏ bằng số bi vàng.
Không gian mẫu là số cách chọn ngẫu nhiên 5 viên bi từ hộp chứa 18 viên bi. Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
5 viên bi được ó đủ màu và số bi đỏ bằng số bi vàng
. Ta có các trường hợp thuận lợi cho biến cố
là:
TH1: Chọn 1 bi đỏ, 1 bi vàng và 3 bi xanh nên có cách.
TH2: Chọn 2 bi đỏ, 2 bi vàng và 1 bi xanh nên có cách.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Để điều tra các con trong mỗi gia đình của một chung cư gồm 100 gia đình. Người ta chọn ra 20 gia đình ở tầng 4 và thu được mẫu số liệu sau đây:
2 4 2 1 3 5 1 1 2 3 1 2 2 3 4 1 1 2 3 4.
Số trung bình cộng
của mẫu số liệu trên là:
Số trung bình cộng của mẫu số liệu trên là:
Gieo một con xúc xắc cân đối, đồng chất 6 mặt và quan sát số chấm xuấ hiện trên con xúc xắc. Xác suất của biến cố: “Số chấm xuất hiện trên mặt xúc xắc là 5” bằng:
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Số chấm xuất hiện trên mặt xúc xắc là 5”
Vậy xác suất của biến cố A là:
Nhiệt độ (đơn vị: 0C) tại Mộc Châu trong một ngày sau một vài lần đo như sau:
![]()
![]()
Kết quả nào dưới đây gần nhất với độ lệch chuẩn của mẫu số liệu đã cho?
Ta có:
Nhiệt độ trung bình trong ngày là:
Ta có bảng sau:
|
Giá trị |
Độ lệch |
Bình phương độ lệch |
|
21 |
47,61 |
|
|
23 |
24,01 |
|
|
25 |
8,41 |
|
|
28 |
0,01 |
|
|
30 |
4,41 |
|
|
32 |
16,81 |
|
|
34 |
37,21 |
|
|
31 |
9,61 |
|
|
29 |
1,21 |
|
|
26 |
3,61 |
|
|
Tổng |
152,9 |
|
Suy ra phương sai của mẫu số liệu là:
Suy ra độ lệch chuẩn của mẫu số liệu là:
Các bạn sinh viên đi đo chỉ số EQ thu được kết quả: 60 72 63 83 68 74 90 86 74 80.
Ta nên chọn giá trị đại diện cho mẫu số liệu trên thế nào?
Sắp xếp lại mẫu số liệu theo thứ tự không giảm: 60 63 68 72 74 74 80 83 86 90.
Các giá trị của mẫu số liệu có độ lớn không chênh lệch quá nhiều. Do đó ta nên chọn số trung bình cộng làm giá trị đại diện.
Ta có:
.
Trong một chiếc hộp đựng 6 viên bi đỏ, 8 viên bi xanh, 10 viên bi trắng. Lấy ngẫu nhiên 4 viên bi. Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:
Lấy ngẫu nhiên cùng lúc 4 viên bi trong 6 + 8 + 10 = 24 viên bi có số cách là:
Số phần tử của không gian mẫu là 10 626.
Lấy 4 viên bi trong 16 viên bi đỏ, trắng có cách. Như vậy số kết quả thuận lợi cho biến cố “Lấy 4 viên bi không có màu xanh” là
=> Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:
Vậy có 8 806 kết quả thuận lợi cho biến cố B.
Điểm thi học kì của một học sinh như sau: 4 6 7 2 10 9 3 5 8 7 3 8.
Tính số trung bình cộng của mẫu số liệu trên.
Số trung bình cộng của mẫu số liệu trên là:
.
Biết
Viết gần đúng
theo nguyên tắc làm tròn với ba chữ số thập phân và ước lượng sai số tuyệt đối.
Làm tròn với ba chữ số thập phân:
Sai số tuyệt đối:
Vậy sai số tuyệt đối không vượt quá 0,0001.
Điểm kiểm tra của 24 học sinh được ghi lại trong bảng sau:

Mốt của mẫu số liệu là:
Điểm 8 có tần số xuất hiện nhiều nhất nên mốt của mẫu số liệu là 8.
Một hộp đựng
thẻ được đánh số từ
đến
. Phải rút ra ít nhất k thẻ để xác suất có ít nhất một thẻ ghi số chia hết cho
lớn hơn
. Tính giá trị của k.
Gọi biến cố : Lấy
tấm thẻ có ít nhất một tấm thẻ chia hết cho
. Với
.
Suy ra : Lấy
tấm thẻ không có tấm thẻ nào chia hết cho
.
Ta có:
.
Theo đề: .
Vậy là giá trị cần tìm.
Cho mẫu số liệu như sau:

Khoảng biến thiên của mẫu số liệu trên là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 29.
Giá trị nhỏ nhất là 23
Suy ra khoảng biến thiên của mẫu số liệu là: 29 – 23 = 6.
Vậy đáp án là 6.
Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố
: "lần đầu tiên xuất hiện mặt sấp" là bao nhiêu?
Xác suất để lần đầu xuất hiện mặt sấp là . Lần 2 và 3 thì tùy ý nên xác suất là 1.
Theo quy tắc nhân xác suất: .
Một bình chứa 16 viên vi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi từ bình đó. Tính xác suất lấy được cả 3 viên bi đều không có màu đỏ.
Số cách lấy 3 viên bi bất kì là .
Số cách lấy được 3 viên bi trắng là .
Số cách lấy được 2 viên bi trắng, 1 viên bi đen là .
Số cách lấy được 1 viên bi trắng, 2 viên bi đen là .
Số cách lấy được 3 viên bi đen là .
Số cách lấy được cả 2 viên bi không đỏ là .
Suy ra xác suất cần tìm là .
Thống kê số cuốn sách mỗi bạn trong lớp đã đọc trong năm 2023, lớp trưởng thu được kết quả như sau:
|
Số cuốn sách |
3 |
4 |
5 |
6 |
7 |
|
Số học sinh |
6 |
15 |
3 |
8 |
8 |
Tìm mốt của mẫu số liệu đã cho?
Mốt của mẫu số liệu là 4 (vì có tần số lớn nhất).
Trong chiếc hộp chứa 37 tấm thẻ được đánh số theo thứ tự từ 1 đến 37 (hai tấm thẻ khác nhau được đánh số khác nhau). Lấy ngẫu nhiên đồng thời 3 thẻ trong hộp. Xác suất để các số ghi trên ba tấm thẻ có tổng là một số chia hết cho 3 bằng bao nhiêu?
Từ 1 đến 37 có 12 số chia hết cho 3; 13 số chia cho 3 dư 1 và 12 số chia cho 3 dư 2
Số phần tử không gian mẫu là:
Để lấy được 3 tấm thẻ mà tổng các số ghi trên ba tấm thẻ chia hết cho 3 ta có các trường hợp sau:
TH1: 3 số đều chia hết cho 3 ta có: cách chọn.
TH2: 3 số chia 3 dư 1 ta có: cách chọn.
TH3: 3 số chia 3 dư 2 ta có: cách chọn.
TH4: 1 số chia hết cho 3, 1 số chia 3 dư 1 và 1 số chia cho 3 dư 2 ta có: cách chọn.
Suy ra có tất cả cách chọn thỏa mãn yêu cầu đề bài.
Vậy xác suất của biến cố: “Các số ghi trên ba tấm thẻ có tổng là một số chia hết cho 3” là:
Ba nhóm học sinh gồm 5 người, 10 người và 15 người. Khối lượng trung bình của mỗi nhóm lần lượt là 48 kg, 45kg và 40 kg. Khối lượng trung bình của 3 nhóm học sinh là:
Khối lượng trung bình của 3 nhóm học sinh là:
Cho đa giác đều có
đỉnh. Chọn ngẫu nhiên bốn đỉnh. Tính xác suất chọn ra được hình chữ nhật có các đỉnh là
trong
đỉnh của đa giác đó?
Số phần tử của không gian mẫu là:
Ta vẽ đường tròn ngoại tiếp đa giác đều 24 đỉnh. Vẽ một đường kính của đường tròn này. Khi đó 2 nửa đường tròn đều chứa 12 đình.
Với mỗi đỉnh thuộc nửa đường tròn thứ nhất ta đều có 1 đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại.
Như vậy cứ 2 đỉnh thuộc đường tròn thứ nhất ta xác định được hai đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại, bốn đỉnh này tạo thành hình chữ nhật.
Vậy số hình chữ nhật tạo thành từ 4 đa giác đã cho là
Xác suất cần tìm là: .
Gieo ngẫu nhiên một con xúc sắc cân đối đồng chất
lần. Xác suất mà số chấm của hai lần gieo là như nhau là bao nhiêu?
Gọi là biến cố “Số chấm trong hai lần gieo là bằng nhau”.
.
,
.
Vậy .
Bảng dưới đây thống kê tuổi thọ của một số bóng đèn (đơn vị: giờ):

Tìm mốt của bảng trên.
Ta thấy giá trị 1170 xuất hiện nhiều nhất. Suy ra mốt của bảng trên là 1170.
Hãy viết số quy tròn số gần đúng
với độ chính xác
.
Ta có: nên làm tròn đến hàng nghìn
Vậy đáp án là: .