Đề kiểm tra 45 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Một số yếu tố thống kê và xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho đa giác đều có 24 đỉnh. Chọn ngẫu nhiên bốn đỉnh. Tính xác suất chọn ra được hình chữ nhật có các đỉnh là 4 trong 24 đỉnh của đa giác đó?

    Số phần tử của không gian mẫu là: n(\Omega) = C_{24}^{4}

    Ta vẽ đường tròn ngoại tiếp đa giác đều 24 đỉnh. Vẽ một đường kính của đường tròn này. Khi đó 2 nửa đường tròn đều chứa 12 đình.

    Với mỗi đỉnh thuộc nửa đường tròn thứ nhất ta đều có 1 đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại.

    Như vậy cứ 2 đỉnh thuộc đường tròn thứ nhất ta xác định được hai đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại, bốn đỉnh này tạo thành hình chữ nhật.

    Vậy số hình chữ nhật tạo thành từ 4 đa giác đã cho là C_{12}^{2}

    Xác suất cần tìm là: P =
\frac{C_{12}^{2}}{C_{24}^{4}} = \frac{1}{161}.

  • Câu 2: Nhận biết

    Tìm mốt của mẫu số liệu: 1 3 4 2 0 0 5 6.

    Giá trị 0 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 0.

  • Câu 3: Thông hiểu

    Khối lượng 30 gói hàng được cho bởi bảng:

    Tính số trung bình của bảng trên. (làm tròn đến hàng phần trăm).

    Số trung bình cộng của mẫu số liệu trên là:

    \overline{x} =\frac{4.250 + 4.300 + 5.350 + 6.400+ 4.450 + 7.500}{30}\approx 388,33.

  • Câu 4: Thông hiểu

    Số kênh của một số hãng truyền hình cáp được ghi như sau: 36 38 33 34 32 30 34 35.

    Tìm tứ phân vị của mẫu số liệu trên.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 30 32 33 34 34 35 36 38.

    Trung vị của mẫu số liệu trên là: \frac{34 + 34}{2} = 34.

    Trung vị của mẫu số liệu 30 32 33 34 là: \frac{32 + 33}{2} = 32,5.

    Trung vị của mẫu số liệu 34 35 36 38 là: \frac{35 + 36}{2} = 35,5.

    Vậy Q_{1} = 32,5;\ Q_{2} = 34;\ Q_{3} =
35,5.

  • Câu 5: Nhận biết

    Quy tròn số 21569 đến hàng chục nghìn ta được:

    Quy tròn số 21569 đến hàng nghìn ta được số quy tròn là 22000.

  • Câu 6: Nhận biết

    Chiều cao của một số học sinh nữ lớp 9 (đơn vị cm) được cho trong bảng.

    Tìm khoảng tứ phân vị của mẫu số liệu này.

    Nhận thấy mẫu đã được sắp xếp theo thứ tự không giảm.

    Số liệu chính giữa là 162 nên Q_{2} =
162.

    Số liệu chính giữa của mẫu 151 152 153 154 155 160 160 là 154 nên Q_{1} = 154.

    Số liệu chính giữa của mẫu 163 165 165 165 166 167 167 là 165 nên Q_{3} = 165.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1} = 165 - 154 =
11.

  • Câu 7: Vận dụng

    Nhiệt độ (đơn vị: 0C) tại Mộc Châu trong một ngày sau một vài lần đo như sau:

    21^{0}C;23^{0}C;25^{0}C;28^{0}C;30^{0}C;

    32^{0}C;34^{0}C;31^{0}C;29^{0}C;26^{0}C.

    Kết quả nào dưới đây gần nhất với độ lệch chuẩn của mẫu số liệu đã cho?

    Ta có: N = 10

    Nhiệt độ trung bình trong ngày là:

    \overline{x} = \frac{21 + 23 + 25 + 28 +
30 + 32 + 34 + 31 + 29 + 26}{10} = 27,9

    Ta có bảng sau:

    Giá trị

    Độ lệch

    Bình phương độ lệch

    21

    21 - 27,9 = - 6,9

    47,61

    23

    23 - 27,9 = - 4,9

    24,01

    25

    25 - 27,9 = - 2,9

    8,41

    28

    28 - 27,9 = 0,1

    0,01

    30

    30 - 27,9 = 2,1

    4,41

    32

    32 - 27,9 = 4,1

    16,81

    34

    34 - 27,9 = 6,1

    37,21

    31

    31 - 27,9 = 3,1

    9,61

    29

    29 - 27,9 = 1,1

    1,21

    26

    26 - 27,9 = - 1,9

    3,61

    Tổng

    152,9

    Suy ra phương sai của mẫu số liệu là: s^{2} = \frac{152,9}{10} =
15,29

    Suy ra độ lệch chuẩn của mẫu số liệu là: s = \sqrt{s^{2}} \approx
3,91

  • Câu 8: Thông hiểu

    Cho số gần đúng a = 23748123 với độ chính xác d = 101. Số quy tròn của số a là:

    Độ chính xác d = 101 nên ta làm tròn số a = 23748123 đến hàng nghìn, ta được kết quả là a =
23748000.

  • Câu 9: Nhận biết

    Cho phép thử với không gian mẫu Ω = {1; 2; 3; 4; 5; 6}. Đâu không phải là cặp biến cố đối nhau.

     Cặp E = {1; 4; 6} và F = {2; 3} không phải là biến cố đối.

  • Câu 10: Nhận biết

    Kết quả đo chiều cao của một học sinh được ghi là 175cm \pm 0,2cm. Điều đó có nghĩa là gì?

    Kết quả đo chiều cao của một học sinh được ghi là 175cm \pm 0,2cm có nghĩa là: “Chiều cao đúng của học sinh là một số nằm trong khoảng từ 174,8cm đến 175,2cm.”

  • Câu 11: Nhận biết

    Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?

    Số đặc trưng đo độ đo phân tán của mẫu số liệu là phương sai.

  • Câu 12: Vận dụng

    Bảng dưới đây thể hiện sản lượng lúa (đơn vị: tạ) của một số thửa ruộng:

    Tính phương sai của mẫu số liệu.

    Số trung bình của mẫu là:

    \overline{x} =\frac{1.4 + 3.4,5 +
4.5 + 1.5,5 + 1.6}{1 + 3 + 4 + 1 + 1} = 4,9.

    Phương sai:

    s^{2} = \frac{(4 - 4,9)^{2} + 3.(4,5 - 4,9)^{2} + 4(5 -
4,9)^{2} + (5,5 - 4,9)^{2} + (6 - 4,9)^{2}}{10} = 0,29.

  • Câu 13: Thông hiểu

    Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của biến cố “Tổng số chấm trong hai lần gieo bằng 6”.

    Số phần tử không gian mẫu là: n(\Omega) =
6^{2} = 36

    Gọi A là biến cố: “Tổng số chấm trong hai lần gieo bằng 6”.

    Tập hợp các kết quả của biến cố A là: A =
\left\{ (2;4),(5;1),(1;5),(4;2),(3;3) ight\}

    Suy ra n(A) = 5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{36}

  • Câu 14: Nhận biết

    Gieo đồng tiền hai lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là bao nhiêu?

    Số phần tử không gian mẫu:n(\Omega) = 2.2
= 4.

    Biến cố xuất hiện mặt sấp ít nhất một lần: A = \left\{ SN;NS;SS ight\}.

    Suy ra P(A) = \frac{n(A)}{n(\Omega)} =
\frac{3}{4}.

  • Câu 15: Vận dụng

    Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng (xem hình minh họa). Bạn An di chuyển quân vua ngẫu nhiên 3 bước. Xác suất sau 3 bước quân vua trở về ô xuất phát là bao nhiêu?

    Tại mọi ô đang đứng, ông vua có 8 khả năng lựa chọn để bước sang ô bên cạnh.

    Do đó không gian mẫu n(\Omega) =
8^{3}.

    Gọi A là biến cố “sau 3 bước quân vua trở về ô xuất phát”. Sau ba bước quân vua muốn quay lại ô ban đầu khi ông vua đi theo đường khép kín tam giá

    Chia hai trường hợp:

    + Từ ô ban đầu đi đến ô đen, đến đây có 4 cách để đi bước hai rồi về lại vị trí ban đầu.

    + Từ ô ban đầu đi đến ô trắng, đến đây có 2 cách để đi bước hai rồi về lại vị trí ban đầu.

    Do số phần tử của biến cố A là n(A) = 4.4
+ 2.4 = 24.

    Vậy xác suất P(A) = \frac{24}{8^{3}} =
\frac{3}{64}.

  • Câu 16: Thông hiểu

    Phát biểu nào sau đây sai?

    Phát biểu sai là: "Khoảng tứ phân vị bị ảnh hưởng bởi các giá trị rất lớn hoặc rất bé trong mẫu."

  • Câu 17: Thông hiểu

    Gieo một con xúc xắc cân đối và đồng chất ba lần. Xác suất để ít nhất một lần xuất hiện mặt sáu chấm bằng bao nhiêu?

    Ta có: n(\Omega) = 6^{3} =216

    Gọi A là biến cố ít nhất một lần xuất hiện mặt sáu chấm

    Suy ra \overline{A} là biến cố không có lần nào xuất hiện mặt sáu chấm.

    \Rightarrow n\left( \overline{A} ight)= 5^{3} = 125

    Khi đó xác suất của biến cố A cần tìm là: P(A) = 1 - P\left( \overline{A} ight) = 1 -\frac{125}{216} = \frac{91}{216}

  • Câu 18: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau:

    Cả 3 phương án trên đều đúng.

  • Câu 19: Vận dụng

    Một xạ thủ bán từ khoảng cách 100m có xác suất bắn trúng đích là:

    - Tâm 10 điểm: 0,5.

    - Vòng 9 điểm: 0,25.

    - Vòng 8 điểm: 0,1.

    - Vòng 7 điểm: 0,1.

    - Ngoài vòng 7 điểm: 0,05.

    Tính xác suất để sau 3 lần bắn xạ thủ đó được 27 điểm.

    Ta có 27 = 10 + 10 + 7 = 10 + 9 + 8 = 9 +
9 + 9

    Với bộ (10;10;7) có 3 cách xáo trộn điểm các lần bắn

    Với bộ (10;9;8) có 6 cách xáo trộn điểm các lần bắn

    Với bộ (9;9;9) có 1 cách xáo trộn điểm các lần bắn.

    Do đó xác suất để sau 3 lần bắn xạ thủ được đúng 27 điểm là:

    P = 3.0,5^{2}.0,1 + 6.0,5.0,25.0,1 +
0,25^{3} = 0,165625.

  • Câu 20: Thông hiểu

    Cho bảng tần số như sau:

    Giá trị

    x1

    x2

    x3

    x4

    x5

    x6

    Tần số

    15

    9n - 1

    12

    n^{2} + 7

    10

    17

    Tìm n để M_{0}^{(1)}=x_2;M_{0}^{(2)}=x_4 là hai mốt của bảng tần số trên.

    Ta có: 

    M_{0}^{(1)}=x_2;M_{0}^{(2)}=x_4

    \begin{matrix}   \Rightarrow 9n - 1 = {n^2} + 7,\left( {n > 2} ight) \hfill \\   \Leftrightarrow {n^2} - 9n + 8 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 1\left( {ktm} ight)} \\   {n = 8\left( {tm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy n = 8.

     

  • Câu 21: Nhận biết

    Trong chiếc túi du lịch của anh X gồm 3 hộp thịt, 2 hộp cam và 3 hộp cơm. Vì một vài lí do mà những chiếc hộp đều bị mất nhãn. Anh X chọn ngẫu nhiên 3 hộp. Tính xác suất để 3 hộp có đủ 3 loại thực phẩm?

    Chọn ngẫu nhiên 3 hộp từ 8 hộp ta có n(\Omega) = C_{8}^{3}

    Để chọn được một hộp thịt; một hộp quả và 1 hộp sữa ta có số cách chọn là:

    C_{3}^{1}.C_{2}^{1}.C_{3}^{1}

    Vậy xác suất cần tìm là: P =
\frac{C_{3}^{1}.C_{2}^{1}.C_{3}^{1}}{n(\Omega)} =
\frac{9}{28}.

  • Câu 22: Nhận biết

    Cho giá trị gần đúng của \frac{8}{17} là 0,47. Sai số tuyệt đối của 0,47 là:

    Ta có \left| 0,47 - \frac{8}{17} ight|
< 0,00059 suy ra sai số tuyệt đối của 0,47 là 0,001.

  • Câu 23: Nhận biết

    Gieo một đồng tiền hai lần. Xác xuất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất 1 lần là:

    Gieo một đồng xu 2 lần, số kết quả của không gian mẫu là n(\Omega)=2.2=4 

    Các kết quả thỏa mãn là: SN, NS, SS. (3 kết quả).

    Vậy P=\frac34.

  • Câu 24: Nhận biết

    Cho biểu đồ lượng mưa trung bình các tháng năm 2019 tại Thành phố Hồ Chí Minh như sau:

    Mẫu số liệu nhận được từ biểu đồ trên có khoảng biến thiên là:

    Quan sát biểu đồ ta thấy:

    Giá trị lớn nhất là 342

    Giá trị nhỏ nhất là: 4

    Vậy khoảng biến thiên của mẫu số liệu là: 342 – 4 = 338.

  • Câu 25: Thông hiểu

    Tìm phương sai của mẫu số liệu: 8;\ 6;\ 7;\ 5;\ 9?

    Ta có: N = 5

    Số trung bình là:

    \overline{x} = \frac{8 + 6 + 7 + 5 +
9}{5} = 7

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{(8 - 7)^{2} + (6 - 7)^{2}
+ (7 - 7)^{2} + (5 - 7)^{2} + (9 - 7)^{2}}{5} = 2

    Vậy đáp án là 2.

  • Câu 26: Thông hiểu

    Trong một chiếc hộp đựng 5 quả cầu xanh, 4 quả cầu đỏ và 3 quả cầu vàng. Chọn ngẫu nhiên 3 quả cầu. Tính xác suất của biến cố “3 quả cầu có đủ ba màu”?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{12}^{3} = 220

    Gọi A là biến cố chọn được 3 quả có đủ ba màu.

    Số phần tử của biến cố A là: n(A) = 5.4.3
= 60

    Khi đó xác suất của biến cố A là: P(A) =
\frac{60}{220} = \frac{3}{11}

  • Câu 27: Nhận biết

    Số cam có trong các giỏ được ghi lại như sau: 2;8;12;16. Số trung vị của mẫu số liệu là:

    Vì cỡ mẫu N = 4 là số chẵn nên trung vị bằng trung bình cộng của số liệu ở vị trí thứ hai và thứ ba.

    => Số trung vị của mẫu số liệu: \frac{8 + 12}{2} = 10

  • Câu 28: Thông hiểu

    Gieo hai con xúc xắc cân đối. Xác suất để tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 3 là:

    Số phàn tử không gian mẫu là: n(\Omega) =
36

    Số kết quả thuận lợi cho biến cố A: “Tổng số chấm xuất hiện trên hai con xúc xắc không lớn hơn 3” là: A = \left\{
(1;2),(2;1),(1;1) ight\}

    \Rightarrow n(A) = 3

    Vậy xác suất của biến cố A cần tìm là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{3}{36} =
\frac{1}{12}

  • Câu 29: Vận dụng

    Cho ba nhóm học sinh:

    Nhóm 1 gồm 6 học sinh có cân nặng trung bình là 45kg.

    Nhóm 2 gồm 11 học sinh có cân nặng trung bình là 50kg.

    Nhóm 3 gồm 8 học sinh có cân nặng trung bình là 42kg.

    Hãy tính khối lượng trung bình của cả ba nhóm học sinh trên?

    Tổng khối lượng của mỗi nhóm lần lượt là: \left\{ \begin{matrix}
N_{1} = 6.45kg \\
N_{2} = 11.50kg \\
N_{3} = 8.42kg \\
\end{matrix} ight.

    Khối lượng trung bình của cả ba nhóm là:

    \overline{x} = \frac{N_{1} + N_{2} +
N_{3}}{6 + 8 + 11}

    \Rightarrow \overline{x} = \frac{6.45 +
11.50 + 8.42}{25} = 46,24kg

    Vậy khối lượng trung bình của cả ba nhóm học sinh là \overline{x} = 46,24kg.

  • Câu 31: Thông hiểu

    Kết quả đi chiều dài của một cây thước là l = 50 \pm 0,2(cm) thì sai số tương đối của phép đo là:

    Ta có:

    \delta_{l} \leq \frac{d_{l}}{|l|} =
\frac{0,2}{50} = \frac{1}{250}

  • Câu 32: Nhận biết

    Hộp A4 viên bi trắng, 5 viên bi đỏ và 6 viên bi xanh. Hộp B7 viên bi trắng, 6 viên bi đỏ và 5 viên bi xanh. Lấy ngẫu nhiên mỗi hộp một viên bi. Xác suất để hai viên bi được lấy ra có cùng màu là bao nhiêu?

    Số phần tử của không gian mẫu: 15.18 =
270.

    Số cách chọn từ mỗi hộp 1 viên bi sau cho 2 viên bi cùng màu là: 4.7 + 5.6 + 6.5 = 88.

    Vậy xác suất cần tìm là \frac{88}{270} =
\frac{44}{135}.

  • Câu 33: Thông hiểu

    Chọn ngẫu nhiên 2 học sinh từ một tổ có 9 học sinh. Biết rằng xác suất chọn được 2 học sinh nữ bằng \frac{5}{18}, hỏi tổ có bao nhiêu học sinh nữ?

    Gọi số học sinh nữ là n (2 ≤ n ≤ 9, n ∈ \mathbb{N})

    Chọn bất kỳ 2 học sinh ta có C_9^2 = 36 cách.

    Do đó số phần tử của không gian mẫu là n(Ω) = 36

    Gọi biến cố A: “2 học sinh được chọn là 2 học sinh nữ”.

    Để chọn 2 học sinh được 2 học sinh nữ có:

    C_n^2 = \frac{{n!}}{{2!\left( {n - 2} ight)!}} = \frac{{n\left( {n - 1} ight)}}{2} (cách)

    Do đó số kết quả thuận lợi cho biến cố A là: 

    n\left( A ight) = \frac{1}{2}n\left( {n-1} ight)

    Xác suất để chọn được 2 học sinh nữ là:

    P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \dfrac{{\dfrac{1}{2}.n.\left( {n - 1} ight)}}{{36}} = \frac{{n\left( {n - 1} ight)}}{{72}}

    P\left( A ight) = \frac{5}{{18}}

    \begin{matrix}   \Leftrightarrow \dfrac{{n\left( {n - 1} ight)}}{{72}} = \dfrac{5}{{18}} \hfill \\   \Leftrightarrow n\left( {n - 1} ight) = 20 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 5\left( {tm} ight)} \\   {n =  - 4\left( {ktm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy có 5 học sinh nữ trong tổ.

  • Câu 34: Thông hiểu

    13 học sinh của một trường THPT đạt danh hiệu học sinh xuất sắc trong đó khối 128 học sinh nam và 3 học sinh nữ, khối 112 học sinh nam. Chọn ngẫu nhiên 3 học sinh bất kỳ để trao thưởng, xác suất để 3 học sinh được có cả nam và nữ đồng thời có cả khối 11 và khối 12 là bao nhiêu?

    Không gian mẫu là số cách chọn ngẫu nhiên 3 học sinh từ 13 học sinh.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{13}^{3} = 286.

    Gọi A là biến cố ''3 học sinh được ó cả nam và nữ đồng thời có cả khối 11 và khối 12''. Ta có các trường hợp thuận lợi cho biến cố A là:

    TH1: Chọn 1 học sinh khối 11; 1 học sinh nam khối 12 và 1 học sinh nữ khối 12 nên có C_{2}^{1}C_{8}^{1}C_{3}^{1} = 48 cách.

    TH2: Chọn 1 học sinh khối 11; 2 học sinh nữ khối 12 có C_{2}^{1}C_{3}^{2} = 6 cách.

    TH3: Chọn 2 học sinh khối 11; 1 học sinh nữ khối 12 có C_{2}^{2}C_{3}^{1} = 3 cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = 48 + 6 + 3 =
57.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{57}{286}.

  • Câu 35: Nhận biết

    Kết quả đo chiều cao của một tòa nhà được ghi là 120m \pm 0,5m. Tìm độ chính xác của phép đo trên.

    Độ chính xác của phép đo trên là: 0,5m.

  • Câu 36: Nhận biết

    Kết quả thống kê số tiền điện của một hộ gia đình trong 6 tháng liên tiếp (đơn vị: nghìn đồng) như sau: 270;\ 300;\ 350;\ 320;\ 310;\ 280. Khoảng biến thiên của mẫu số liệu bằng:

    Giá trị lớn nhất bằng 350

    Giá trị nhỏ nhất bằng 270

    => Khoảng biến thiên của mẫu số liệu là: 350 – 270 = 80.

    Vậy khoảng biến thiên của mẫu số liệu bằng 80.

  • Câu 37: Nhận biết

    Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là:

    Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.

  • Câu 38: Vận dụng

    Một người thống kê lại số giày bán được trong tháng của một công ty.

    Hỏi công ty nên nhập nhiều hơn loại cỡ giày nào để bán trong tháng tới?

    Tháng vừa rồi, công ty bán được 70 đôi giày cỡ 40 (nhiều nhất). Đây chính là mốt.

    Vậy suy ra tháng tới, công ty nên nhập thêm giày cỡ 40 để bán.

  • Câu 39: Nhận biết

    Điều tra tiền lương một tháng của 100 người lao động trên địa bàn một xã ta có bàng phân bố tần số sau:

    Tiền lương (VND)

    5.000.000

    6.000.000

    7.000.000

    8.000.000

    9.000.000

    9.500.000

    Tần số

    26

    34

    20

    10

    5

    5

    Tìm mốt của bảng phân bổ tần số trên.

    Ta có giá trị 6.000.000 có tần số lớn nhất nên là mốt của bảng phân bố tần số trên.

  • Câu 40: Vận dụng

    Một đề thi trắc nghiệm gồm 50 câu, mỗi câu có bốn phương án trả lời trong đó chỉ có một phương án đúng, mỗi câu trả lời đúng được 0,2 điểm. Một thí sinh làm bài bằng cách chọn ngẫu nhiên 1 trong 4 phương án ở mỗi câu. Xác suất để thí sinh đó được 6 điểm là bao nhiêu?

    Không gian mẫu của phép thử trên có số phần tử là |\Omega| = 4^{50}.

    Gọi A là biến cố: “ Thí sinh đó được 6 điểm”

    Tìm \left| \Omega_{A}
ight|: Để được 6 điểm, thí sinh đó phải làm đúng 30 câu và làm sai 20 câu.

    Công đoạn 1: Chọn 30 câu từ 50 câu để làm câu đúng. Có C_{50}^{30} cách.

    Công đoạn 2: Chọn phương án đúng của mỗi câu từ 30 câu đã chọn. Có 1^{30} cách.

    Công đoạn 3: Chọn một phương án sai trong ba phương án sai của mỗi câu từ 20 còn lại. Có 3^{20}cách.

    Theo quy tắc nhân, số kết quả thuận lợi cho biến cố A\left|
\Omega_{A} ight| = C_{50}^{30}.1^{30}.3^{20}.

    Vậy xác suất để học sinh đó được 6 điểm là:P(A) = \frac{\left| \Omega_{A} ight|}{|\Omega|}
= \frac{C_{50}^{30}.1^{30}.3^{20}}{4^{50}} =
C_{50}^{30}.0,25^{30}.0,75^{20} =
C_{50}^{20}.0,25^{30}.0,75^{20}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo