Số quy tròn của số
đến hàng chục bằng:
Số quy tròn của số đến hàng chục bằng
.
Số quy tròn của số
đến hàng chục bằng:
Số quy tròn của số đến hàng chục bằng
.
Tìm khoảng tứ phân vị của mẫu số liệu sau: 200 240 220 210 225 235 225 270 250 280.
Sắp xếp mẫu theo thứ tự không giảm: 200 210 220 225 225 235 240 250 270 280
Mẫu 200 210 220 225 225 235 240 250 270 280 có 2 số chính giữa là 225 và 235. Suy ra .
Mẫu 200 210 220 225 225 có số chính giữa là 220. Suy ra .
Mẫu 235 240 250 270 280 có số chính giữa là 270. Suy ra .
Khoảng tứ phân vị: .
Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện cộng 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.
Giả sử các số liệu trong mẫu là: đã sắp xếp theo thứ tự không giảm.
Khoảng biến thiên: .
Cộng hai với tất cả các số liệu: .
Khoảng biến thiên:
.
Suy ra .
Một hộp chứa 7 bi xanh, 6 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất để được hai bi cùng màu là bao nhiêu?
Số phần tử của không gian mẫu là .
Gọi là biến cố lấy được hai bi cùng màu.
Chọn 2 bi xanh, có (cách).
Chọn 2 bi đỏ, có (cách).
Suy ra .
Xác suất cần tìm là .
Gieo một đồng tiền hai lần. Xác xuất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất 1 lần là:
Gieo một đồng xu 2 lần, số kết quả của không gian mẫu là
Các kết quả thỏa mãn là: SN, NS, SS. (3 kết quả).
Vậy .
Cho mẫu số liệu:
. Tìm phương sai của mẫu số liệu?
Ta có:
Số trung bình của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Vậy phương sai cần tìm là:
Gieo hai con xúc xắc. Xác suất để tổng số chấm trên hai mặt xúc xắc chia hết cho 3 là.
Gieo 2 con xúc sắc, số kết quả của không gian mẫu là: .
Các kết quả thỏa mãn yêu cầu đề bài là: (1; 2); (1; 5); (2; 1); (2; 4); (3; 3); (3; 6); (4; 2); (4; 5); (5; 1); (5; 4); (6; 3); (6; 6). Có 12 phần tử.
Xác suất là: .
Đạt và Phong tham gia chơi trò một trò chơi đối kháng, thỏa thuận rằng ai thắng 5 ván trước là thắng chung cuộc và được hưởng toàn bộ số tiền thưởng của chương trình (không có ván nào hòa). Tuy nhiên khi Đạt thắng được 4 ván và Phong thắng được 2 ván rồi thì xảy ra sự cố kĩ thuật và chương trình buộc phải dừng lại. Biết rằng giới chuyên môn đánh giá Phong và Đạt ngang tài ngang sức. Hỏi phải chia số tiền thưởng như thế nào cho hợp lý (dựa trên quan điểm tiền thưởng tỉ lệ thuận với xác suất thắng cuộc của mỗi người).
Phân tích: Đề bài cho các điều kiện khá dài dòng, ta cần đưa chúng về dạng ngắn gọn dễ hiểu hơn.
+) “Biết rằng giới chuyên môn đánh giá Phong và Đạt ngang tài ngang sức”: xác suất để Phong và Đạt thắng trong một ván là như nhau và bằng .
+) “Khi Đạt thắng được 4 ván và Phong thắng được 2 ván rồi”: nghĩa là Đạt chỉ cần thắng một ván nữa là được 5 ván, còn Phong phải thắng 3 ván nữa mới đạt được.
Để xác định xác suất thắng chung cuộc của Đạt và Phong ta tiếp tục chơi thêm các ván “giả tưởng”. Để Phong có thể thắng chung cuộc thì anh phải thắng Đạt 3 ván liên tiếp (vì Đạt chỉ còn một ván nữa là thắng).
Như vậy xác suất thắng cuộc của Phong là: .
Xác suất thắng cuộc của Đạt là .
Vậy Tỉ lệ chia tiền phù hợp là .
Trên kệ sách có 5 quyển sách Hóa học và 7 quyển sách Vật lí. Lấy ngẫu nhiên 3 quyển sách. Xác suất để ba quyển sách lấy ra có cả sách Hóa học và Vật lí bằng:
Số phần tử không gian mẫu (lấy 3 trong 12 quyển sách)
Gọi B là biến cố lấy được 3 quyển sách có cả sách Hóa học và sách Vật lí.
Khi đó là biến cố lấy được 3 quyển sách trong đó chỉ có 1 loại sách hoặc là Hóa học hoặc là Vật lí
TH1: 2 quyển sách được chọn là sách Hóa học ta có: cách chọn.
TH2: 2 quyển sách được chọn là sách Vật lí ta có: cách chọn.
Số phần tử của biến cố là:
Vậy xác suất của biến cố B cần tìm là:
Gieo hai đồng tiền một lần. Kí hiệu S, N lần lượt để chỉ đồng tiền lật sấp, lật ngửa. Mô tả không gian mẫu nào dưới đây là đúng?
Gieo hai đồng tiền một lần ta được không gian mẫu là:
Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây:
= 28658 ± 100.
Vì độ chính xác đến hàng trăm nên ta phải quy tròn số 17638 đến hàng nghìn. Vậy số quy tròn là 29000 (hay viết ≈ 29000).
Cho bảng số liệu như sau:
|
Đại diện |
35 |
36 |
37 |
38 |
39 |
40 |
|
Tần số |
7 |
11 |
x |
y |
8 |
5 |
Biết rằng trung vị và cỡ mẫu của mẫu số liệu lần lượt là
và
. Tính giá trị
?
Vì cỡ mẫu bằng 50 nên trung vị của mẫu số liệu là trung bình cộng của 2 số ở chính giữa (vị trí 25 và 26).
Mà trung vị của mẫu số liệu trên là
Hay
Từ đó ta có số liệu đứng thứ 25 là 37 và thứ 26 là 38.
Suy ra
Mà cỡ mẫu bằng 50 suy ra
Phương sai của một mẫu số liệu
bằng
Phương sai của một mẫu số liệu bằng bình phương của độ lệch chuẩn.
Một người thống kê lại số giày bán được trong tháng của một công ty.

Hỏi công ty nên nhập nhiều hơn loại cỡ giày nào để bán trong tháng tới?
Tháng vừa rồi, công ty bán được 70 đôi giày cỡ 40 (nhiều nhất). Đây chính là mốt.
Vậy suy ra tháng tới, công ty nên nhập thêm giày cỡ 40 để bán.
Kết quả điều tra về điện năng tiêu thụ (đơn vị: kw/h) của một số hộ dân trong khu vực được thống kê như sau:
. Tính trung vị của dãy số liệu đã cho?
Sắp xếp mẫu số liệu theo thứ tự không giảm như sau:
Vì cỡ mẫu (số lẻ) nên số trung vị của dãy số liệu trên là số liệu thứ 6.
Suy ra .
Một miếng đất hình chữ nhật có chiều rộng x = 43m ± 0,5m và chiều dài y = 63m ± 0,5m. Tính chu vi P của miếng đất đã cho.
Giả sử x = 43 + a, y = 63 + b.
Chu vi miếng đất: P = 2x + 2y = 212 + 2(a + b).
Theo giả thiết -0,5 ≤ a ≤ 0,5 và -0,5 ≤ b ≤ 0,5 nên -2 ≤ 2(a +b) ≤ 2.
Do đó P = 212m ± 2m.
Điểm kiểm tra của 24 học sinh được ghi lại trong bảng sau:

Mốt của mẫu số liệu là:
Điểm 8 có tần số xuất hiện nhiều nhất nên mốt của mẫu số liệu là 8.
Có
học sinh của một trường THPT đạt danh hiệu học sinh xuất sắc trong đó khối
có
học sinh nam và
học sinh nữ, khối
có
học sinh nam. Chọn ngẫu nhiên
học sinh bất kỳ để trao thưởng, xác suất để
học sinh được có cả nam và nữ đồng thời có cả khối
và khối
là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên 3 học sinh từ 13 học sinh.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
học sinh được ó cả nam và nữ đồng thời có cả khối
và khối
. Ta có các trường hợp thuận lợi cho biến cố
là:
TH1: Chọn 1 học sinh khối 11; 1 học sinh nam khối 12 và 1 học sinh nữ khối 12 nên có cách.
TH2: Chọn 1 học sinh khối 11; 2 học sinh nữ khối 12 có cách.
TH3: Chọn 2 học sinh khối 11; 1 học sinh nữ khối 12 có cách.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính
Gieo xúc xắc hai lần. Tính xác suất để tổng hai số chấm xuất hiện trên hai con xúc xắc là một số nguyên tố.
Gieo một con xúc xắc 2 lần. Suy ra .
Các kết quả thỏa mãn yêu cầu đề bài là: (1; 1), (1; 2), (2; 1),(1; 4), (4; 1), (2;3), (3;2). 7 kết quả.
Vậy xác suất .
Bốn quyển sách được đánh dấu bằng những chữ cái U, V, X, Y được xếp tuỳ ý trên 1 kệ sách dài. Xác suất để chúng được sắp xếp theo thứ tự bảng chữ cái là:
Số cách sắp xếp 4 phần tử vào dãy nằm ngang gồm 4 vị trí có (cách). Suy ra
.
Chỉ có duy nhất 1 cách sắp xếp 4 chữ U, V, X, Y theo thứ tự bảng chữ cái.
Vậy xác suất .
Hình dưới thống kê tỉ lệ phần trăm thất nghiệp ở một số quốc gia:

Hãy tìm giá trị bất thường (nếu có) của mẫu số liệu.
Sắp xếp các giá trị theo thứ tự không giảm:
3,2 3,6 4,4 4,5 5,0 5,4 6,0 6,7 7,0 7,2 7,7 7,8 8,4 8,6 8,7
Từ mẫu số liệu ta tính được: và
,
.
Suy ra .
Ta có:
.
Ta có:
.
Ta thấy không có số liệu nào nhỏ hơn và lớn hơn
nên mẫu không có giá trị bất thường.
Điều tra về số học sinh của một trường THPT như sau:
Khối lớp | 10 | 11 | 12 |
Số học sinh | 1120 | 1075 | 900 |
Khoảng biến thiên của mẫu số liệu trên là.
Khoảng biến thiên R = 1120 - 900 = 220.
Ba xạ thủ cùng bắn vào một tấm bia, xác suất trúng đích lần lượt là 0,5; 0,6 và 0,7. Xác suất để có đúng 2 người bắn trúng bia là:
Gọi A là biến có người thứ nhất bắn trúng thì là biến cố người thứ nhất bắn trượt.
Vậy ;
.
Gọi B là biến cố người thứ hai bắn trúng và C là biến cố người thứ ba bắn trúng.
Tương tự ta có ;
;
;
.
Để hai người bắn trúng bia có các khả năng sau xảy ra:
Trường hợp 1: Người thứ nhất và thứ hai bắn trúng, người thứ ba bắn trượt.
Xác suất xảy ra là: .
Trường hợp 2: Người thứ nhất và thứ ba bắn trúng, người thứ hai bắn trượt.
Xác suất xảy ra là: .
Trường hợp 3: Người thứ hai và thứ ba bắn trúng, người thứ nhất bắn trượt.
Xác suất xảy ra là: .
Vậy xác suất để hai người bắn trúng bia là: .
Lấy ngẫu nhiên 3 quả cầu từ hộp gồm 6 quả cầu trắng và 3 quả cầu đen. Tính xác suất để lấy được ba quả cùng màu?
Số phần tử của không gian mẫu
Gọi A là biến cố lấy được 3 quả cùng màu
TH1: Lấy được 3 quả màu trắng có: cách
TH2: Lấy được 3 quả màu đen có: cách
Vậy xác suất của biến cố A cần tìm là:
Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là:
Nếu đơn vị đo của số liệu là thì đơn vị của độ lệch chuẩn là:
Hãy viết số quy tròn số gần đúng
với độ chính xác
.
Ta có: nên làm tròn đến hàng nghìn
Vậy đáp án là: .
Bảng dưới đây là nhiệt độ của một thành phố (đơn vị: độ C).

Tính độ lệch chuẩn của mẫu số liệu về nhiệt độ.
Số trung bình là:
.
Tính được phương sai là: .
Độ lệch chuẩn là .
Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?
Đáp án: Độ lệch chuẩn.
Một lớp học có
học sinh trong đó có
cặp anh em sinh đôi. Trong buổi họp đầu năm thầy giáo chủ nhiệm lớp muốn chọn ra
học sinh để làm cán sự lớp gồm lớp trưởng, lớp phó và bí thư. Xác suất để chọn ra
học sinh làm cán sự lớp mà không có cặp anh em sinh đôi nào là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên học sinh trong
học sinh.
Suy ra số phần tử không gian mẫu là .
Gọi là biến cố
học sinh được chọn không có cặp anh em sinh đôi nào
. Để tìm số phần tử của
, ta đi tìm số phần tử của biến cố
, với biến cố
là
học sinh được chọn luôn có
cặp anh em sinh đôi.
+ Chọn cặp em sinh đôi trong
cặp em sinh đôi, có
cách.
+ Chọn thêm học sinh trong 38 học sinh, có
cách.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Chọn ngẫu nhiên 2 học sinh từ một tổ có 9 học sinh. Biết rằng xác suất chọn được 2 học sinh nữ bằng
, hỏi tổ có bao nhiêu học sinh nữ?
Gọi số học sinh nữ là
Chọn bất kỳ 2 học sinh ta có cách.
Do đó số phần tử của không gian mẫu là
Gọi biến cố A: “2 học sinh được chọn là 2 học sinh nữ”.
Để chọn 2 học sinh được 2 học sinh nữ có:
(cách)
Do đó số kết quả thuận lợi cho biến cố A là:
Xác suất để chọn được 2 học sinh nữ là:
Mà
Vậy có 5 học sinh nữ trong tổ.
Gieo đồng tiền hai lần. Biến cố để mặt ngửa xuất hiện đúng
lần có bao nhiêu phần tử?
Liệt kê ta có: . (2 phần tử)
Xác định mốt của mẫu số liệu: ![]()
Ta có: số 17 có tần số xuất hiện nhiều nhất
Suy ra mốt của mẫu số liệu là 17.
Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng (xem hình minh họa). Bạn An di chuyển quân vua ngẫu nhiên
bước. Xác suất sau
bước quân vua trở về ô xuất phát là bao nhiêu?

Tại mọi ô đang đứng, ông vua có khả năng lựa chọn để bước sang ô bên cạnh.
Do đó không gian mẫu .
Gọi là biến cố “sau 3 bước quân vua trở về ô xuất phát”. Sau ba bước quân vua muốn quay lại ô ban đầu khi ông vua đi theo đường khép kín tam giá
Chia hai trường hợp:
+ Từ ô ban đầu đi đến ô đen, đến đây có cách để đi bước hai rồi về lại vị trí ban đầu.
+ Từ ô ban đầu đi đến ô trắng, đến đây có cách để đi bước hai rồi về lại vị trí ban đầu.
Do số phần tử của biến cố A là .
Vậy xác suất .
Kết quả kiểm tra cân nặng của 10 học sinh lớp 10C được liệt kê như sau:
. Khoảng biến thiên của mẫu số liệu này bằng:
Quan sát dãy số liệu ta có:
Giá trị lớn nhất bằng 60
Giá trị nhỏ nhất bằng 38
Suy ra khoảng biến thiên của mẫu số liệu là 60 – 38 = 22.
Khoảng biến thiên tứ phân vị
được xác định bởi:
Khoảng biến thiên tứ phân vị được xác định bởi
.
Cho ba chiếc hộp như sau:
Hộp 1 chứa 1 viên bi đỏ, 1 viên bi vàng.
Hộp 2 chứa 1 viên bi đỏ, 1 viên bi xanh.
Hộp 3 chứa 1 viên bi vàng, 1 viên bi xanh.
Từ mỗi hộp lấy ngẫu nhiên một viên bi và các phần tử của không gian mẫu được mô tả bằng sơ đồ sau:

Gọi A là biến cố: “Trong ba viên bi lấy ra có đúng một viên bi màu đỏ”. Xác định số kết quả thuận lợi cho biến cố A?
Số kết quả thuận lợi cho biến cố A là 4.
Kết quả đo chiều dài của một cây cầu được ghi là
. Tìm sai số tương đối của phép đo chiều dài cây cầu.
Phép đo cây cầu có sai số tương đối thỏa mãn .
Trong các thí nghiệm hằng số C được xác định là 5,73675 với cận trên sai số tuyệt đối là d = 0,00421. Viết chuẩn giá trị gần đúng của C là:
Vì độ chính xác d = 0,00421 (hàng phần trăm nghìn) nên ta quy tròn số gần đúng đến hàng phần chục nghìn. Ta được: 5,7368.
Bạn Bình ghi lại bảng thống kê số sách mà mà mỗi bạn học sinh lớp 10A đã đọc trong năm 2023. Hỏi trung bình mỗi bạn trong lớp đọc bao nhiêu cuốn sách?

Số học sinh lớp 10A là: (bạn).
Trung bình mỗi bạn đọc: (cuốn sách).