Đề kiểm tra 45 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Một số yếu tố thống kê và xác suất gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một mẫu số liệu có giá trị tứ phân vị thứ nhất và tứ phân vị thứ ba lần lượt là: 135;205. Hãy chỉ ra giá trị bất thường trong các đáp án dưới đây?

    Ta có: \left\{ \begin{matrix}Q_{3} = 205 \\Q_{1} = 135 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}Q_{1} - \dfrac{3}{2}\Delta Q = 30 \\Q_{3} + \dfrac{1}{2}\Delta Q = 310 \\\end{matrix} ight.

    Vậy giá trị bất thường là 312.

  • Câu 2: Thông hiểu

    Cho giá trị gần đúng của \frac{3}{7} là 0,429. Sai số tuyệt đối của số 0,429 là:

    Ta có: \frac{3}{7} =0,428571… nên sai số tuyệt đối của 0,429 là

    \Delta = \left| 0,429 - \frac{3}{7}
ight| < |0,429 - 4,4285| = 0,0005

  • Câu 3: Thông hiểu

    Cho bảng kết quả kiểm tra môn Tiếng Anh của học sinh như sau:

    Điểm

    4

    5

    6

    7

    8

    9

    10

    Tổng

    Số học sinh

    1

    2

    3

    4

    5

    4

    1

    N = 20

    Tính số trung vị của mẫu số liệu đã cho?

    Dãy số liệu đã cho có 20 số liệu nên số hạng chính giữa nằm ở số liệu thứ 10 và 11.

    Đó là số 7 và số 8.

    Suy ra M_{e} = \frac{7 + 8}{2} =
7,5.

  • Câu 4: Thông hiểu

    Một nhóm có 6 nam và 4 nữ. Cần chọn 3 bạn để đi trực nhật. Tính xác suất sao cho trong các bạn được chọn luôn có bạn nữ.

    Chọn 3 bạn bất kì từ 10 bạn, suy ra n(\Omega)=C_{10}^3=120.

    Gọi A là biến cố "3 bạn đi trực nhật luôn có mặt bạn nữ".

    Trường hợp 1: 3 bạn nữ

    Có: C_4^3 = 4 (cách)

    Trường hợp 2: 2 bạn nữ + 1 bạn nam

    Có: C_4^2.C_6^1 = 36 (cách)

    Trường hợp 3: 1 bạn nữ + 2 bạn nam

    Có: C_4^1.C_6^2 = 60 (cách)

    Vậy n(A)=4+36+60=100.

    Xác suất P(A)=\frac{100}{120}=\frac56.

  • Câu 5: Vận dụng

    Cho dãy số liệu:

    5;6;19;21;22;23;24;25;

    26;27;28;31;35;38;47.

    Tìm giá trị bất thường của mẫu số liệu trên?

    Các giá trị của mẫu số liệu được sắp xếp theo thứ tự không giảm như sau:

    5;6;19;21;22;23;24;25;

    26;27;28;31;35;38;47

    Ta tìm được các tứ phân vị Q_{1} =
21;Q_{3} = 31

    Suy ra khoảng biến thiên tứ phân vị là \Delta Q = Q_{3} - Q_{1} = 31 - 21 =
10

    \Rightarrow \left\{ \begin{matrix}
Q_{3} + 1,5\Delta Q = 46 \\
Q_{1} - 1,5\Delta Q = 6 \\
\end{matrix} ight.

    Suy ra các giá trị bất thường nằm ngoài đoạn \lbrack 6;46brack

    Vậy các giá trị bất thường là 5;47.

  • Câu 6: Thông hiểu

    Bạn Bình ghi lại bảng thống kê số sách mà mà mỗi bạn học sinh lớp 10A đã đọc trong năm 2023. Hỏi trung bình mỗi bạn trong lớp đọc bao nhiêu cuốn sách?

    Số học sinh lớp 10A là: 3 + 5 + 15 + 10 +
7 = 40 (bạn).

    Trung bình mỗi bạn đọc: \overline{x} =\frac{3.1 + 5.2 + 15.3 + 4.10 + 7.5}{40}= 3,325 (cuốn sách).

  • Câu 7: Vận dụng

    Gieo một con xúc xắc 2 lần liên tiếp. Gọi số chấm xuất hiện của hai lần gieo lần lượt là bc. Tính xác suất để phương trình bậc hai x^{2} - bx + c = 0 có nghiệm?

    Gieo con xúc xắc hai lần nên ta có: n(\Omega) = 36

    Để phương trình bậc hai có nghiệm thì \Delta \geq 0 \Leftrightarrow b^{2} - 4ac \geq 0
\Leftrightarrow b^{2} \geq 4ac

    c \geq 1 \Rightarrow b^{2} \geq 4\Rightarrow \left\{ \begin{matrix}b \geq 2 \\c \leq \dfrac{b^{2}}{4} \\\end{matrix} ight.

    Lập bảng chọn giá trị của b và c như sau:

    b

    2

    3

    4

    5

    6

    c

    1

    1; 2

    1; 2; 3; 4

    1; 2; 3; 4; 5; 6

    1; 2; 3; 4; 5; 6

    Gọi A là biến cố “phương trình x^{2} - bx
+ c = 0 có nghiệm” ta có:

    n(A) = 1 + 2 + 4 + 6 + 6 =
19

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{19}{36}

  • Câu 8: Vận dụng

    Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện nhân 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.

    Giả sử các số liệu trong mẫu là: a_{1};a_{2};...;a_{10} đã sắp xếp theo thứ tự không giảm.

    Khoảng biến thiên: R_{1} = a_{10} -
a_{1}.

    Nhân hai với tất cả các số liệu: 2a_{1};2a_{2};...;2a_{10}.

    Khoảng biến thiên: R_{2} = 2a_{10} -
2a_{1} = 2(a_{10} - a_{1}).

    Suy ra R_{2} = 2R_{1}.

  • Câu 9: Nhận biết

    Gieo một đồng xu cân đối và đồng chất hai lần liên tiếp. Tính xác suất của biến cố: “Cả hai lần gieo đều xuất hiện mặt sấp”?

    Số phần tử không gian mẫu là:

    \Omega = \left\{ SS;SN;NS;NN ight\}
\Rightarrow n(\Omega) = 2.2 = 4

    Gọi A là biến cố: “Cả hai lần gieo đều xuất hiện mặt sấp”

    A = \left\{ SS ight\} \Rightarrow n(A)
= 1

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{1}{4}

  • Câu 10: Nhận biết

    Cho mẫu số liệu: 10; 8; 6; 2; 4. Tính phương sai của mẫu.

    Số trung bình là \overline{x} = \frac{10 + 8 + 6 + 2 + 4}{5} = 6.

    Phương sai là s^{2} = \frac{(10 - 6)^{2} + (8 - 6)^{2} + (6 - 6)^{2} +
(2 - 6)^{2} + (4 - 6)^{2}}{5} =
8.

  • Câu 11: Nhận biết

    Quy tròn số 73,316 đến hàng phần trăm.

    Quy tròn số 73,316 đến hàng phần trăm ta được số 73,32.

  • Câu 12: Thông hiểu

    Cho kết quả kiểm tra cân nặng của 6 học sinh nam trong lớp như sau: 62;68;69;63;66;71. Hãy xác định khoảng tứ phân vị của mẫu số liệu?

    Sắp xếp mẫu dữ liệu theo thứ tự không giảm như sau:

    62;63;66;68;69;71

    Ta có: N = 6 suy ra trung vị bằng trung bình cộng của dữ liệu nằm ở vị trí thứ 3 và thứ 4

    Q_{2} = \frac{66 + 68}{2} =
67

    \Rightarrow Q_{1} = 63,Q_{3} =
69

    \Rightarrow \Delta Q = Q_{3} - Q_{1} =
6

    Vậy khoảng biến thiên tứ phân vị bằng 6.

  • Câu 13: Thông hiểu

    Kết quả đo chiều dài của một cây cầu được ghi là 152m \pm 0,2m. Tìm sai số tương đối của phép đo chiều dài cây cầu.

    Phép đo cây cầu có sai số tương đối thỏa mãn \delta < \frac{0,2}{152} \approx
0,1316\%.

  • Câu 14: Thông hiểu

    Xác suất của biến cố A kí hiệu là P(A). Biến cố \overline{A} là biến cố đối của A, có xác suất là P(\overline{A})

    Chọn phát biểu sai trong các phát biểu sau:

    Phát biểu sai là: "Xác suất của mỗi biến cố đo lường xảy ra của biến cố đó. Biến cố có khả năng xảy ra càng cao thì xác suất của nó càng xa 1."

  • Câu 15: Nhận biết

    Tìm mốt của mẫu số liệu: 10 9 7 9 8 1 3 7 8 11 8.

    Giá trị 8 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 8.

  • Câu 16: Nhận biết

    Cho giá trị gần đúng của \frac{8}{17} là 0,47. Sai số tuyệt đối của 0,47 là:

    Ta có \left| 0,47 - \frac{8}{17} ight|
< 0,00059 suy ra sai số tuyệt đối của 0,47 là 0,001.

  • Câu 17: Thông hiểu

    Một hộp đựng 8 quả cầu trắng, 12 quả cầu đen. Lần thứ nhất lấy ngẫu nhiên 1 quả cầu trong hộp, lần thứ hai lấy ngẫu nhiên 1 quả cầu trong các quả cầu còn lại. Tính xác suất để kết quả của hai lần lấy được 2 quả cầu cùng màu.

    Không gian mẫu là lấy 2 quả cầu trong hộp một cách lần lượt ngẫu nhiên.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{20}^{1}.C_{19}^{1}.

    Gọi A biến cố ''2 quả cầu được lấy cùng màu''. Ta có các trường hợp thuận lợi cho biến cố A như sau:

    TH1: Lần thứ nhất lấy quả màu trắng và lần thứ hai cũng màu trắng.

    Do đó trường hợp này có C_{8}^{1}.C_{7}^{1} cách.

    TH2: Lần thứ nhất lấy quả màu đen và lần thứ hai cũng màu đen.

    Do đó trường hợp này có C_{12}^{1}.C_{11}^{1} cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| =
C_{8}^{1}.C_{7}^{1} + C_{12}^{1}.C_{11}^{1}.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{C_{8}^{1}.C_{7}^{1} +
C_{12}^{1}.C_{11}^{1}}{C_{20}^{1}.C_{19}^{1}} =
\frac{47}{95}.

  • Câu 18: Vận dụng

    Bảng dưới đây thống kê điểm Văn của lớp 10H.

    Biết n\mathbb{\in N}. Tìm mốt của bảng số liệu.

    Vì tổng số học sinh bằng 40 nên ta có: 5n
+ 15 = 40 \Leftrightarrow n = 5.

    Thống kê lại bảng:

    Vậy mốt là giá trị 6 (xuất hiện 14 lần, nhiều nhất).

  • Câu 19: Nhận biết

    Một shop bán giày thống kê số lượng giày bán trong vài ngày trong bảng sau:

    Cỡ giày

    37

    38

    39

    40

    41

    42

    Số lượng

    35

    42

    50

    38

    32

    48

    Mốt của bảng số liệu trên là:

    Mốt là giá trị có tần số lớn nhất trong bảng số liệu

    Quan sát bảng số liệu đã cho suy ra mốt của bảng số liệu là 39.

  • Câu 20: Nhận biết

    Cho dãy số liệu 1;1;2;3;4;4;5;5;5;6. Xác định mốt của mẫu số liệu?

    Mốt số liệu đã cho có số 5 xuất hiện nhiều lần nhất

    Suy ra mốt của mẫu số liệu là 5.

  • Câu 21: Thông hiểu

    Số trung bình của mẫu số liệu 23;41;71;29;48;45;72;41 là:

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{23 + 29 + 2.41 + 45
+ 48 + 71 + 72}{8} = 46,25

    Vậy số trung bình là 46,25.

  • Câu 22: Nhận biết

    Chọn khẳng định sai?

    Khẳng định sai: “Giá trị bất thường trong mẫu số liệu thuộc \left\lbrack Q_{1} - \frac{3}{2}\Delta Q;Q_{3} +
\frac{1}{2}\Delta Q ightbrack

    Sửa lại: “Giá trị bất thường trong mẫu số liệu nằm ngoài đoạn \left\lbrack Q_{1} - \frac{3}{2}\Delta Q;Q_{3} +
\frac{1}{2}\Delta Q ightbrack”.

  • Câu 23: Thông hiểu

    Một hộp chứa 7 bi xanh, 6 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất để được hai bi cùng màu là bao nhiêu?

    Số phần tử của không gian mẫu là |\Omega|
= C_{13}^{2} = 78.

    Gọi A là biến cố lấy được hai bi cùng màu.

    Chọn 2 bi xanh, có C_{7}^{2} =
21(cách).

    Chọn 2 bi đỏ, có C_{6}^{2} =
15(cách).

    Suy ra \left| \Omega_{A} ight| = 21 +
15 = 36.

    Xác suất cần tìm là P(A) = \frac{36}{78}
\simeq 0,46.

  • Câu 24: Nhận biết

    Hoạt động nào sau đây không phải là phép thử?

    Các hoạt động ở các phương án:

    " Chọn một trong ba bạn An, Bình, Cường tham gia cuộc thi chạy điền kinh."

    "Chơi trò chơi gắp thú nhồi bông."

    "Chọn một quyển sách bất kì trên giá sách và đọc tên của quyển sách đó."

    Đều là phép thử vì ta không thể đoán trước được kết quả của hoạt động đó mặc dù biết được tất cả các kết quả có thể xảy ra.

    Hoạt động ở phương án A không phải là phép thử vì ta có thể đoán trước được kết quả của hoạt động đó là: 2 + 5 + 3 = 10 (chiếc bút bi).

  • Câu 25: Nhận biết

    Cho một mẫu dữ liệu đã được sắp xếp theo thứ tự không giảm x_1 ≤ x_2 ≤ x_3 ≤ ... ≤ x_n. Khi đó khoảng biến thiên R của mẫu số liệu bằng:

    Khoảng biến thiên của mẫu số liệu bằng: R = x_n – x_1

  • Câu 26: Nhận biết

    Cho B\overline{B} là hai biến cố đối nhau. Chọn mệnh đề đúng trong các mệnh đề sau đây?

    Mệnh đề đúng là: P(A) = 1 - P\left(
\overline{A} ight)

  • Câu 27: Vận dụng

    Gọi S là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp S. Xác suất để hai số được ó chữ số hàng đơn vị giống nhau là bao nhiêu?

    Số phần tử của tập S9.10 = 90.

    Không gian mẫu là chọn ngẫu nhiên 2 số từ tập S.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{90}^{2} = 4005.

    Gọi X là biến cố ''Số được ó chữ số hàng đơn vị giống nhau''. Ta mô tả không gian của biến cố X nhưu sau

    ● Có 10 cách hữ số hàng đơn vị (chọn từ các chữ số \left\{ 0;\ 1;\ 2;\
3;...;\ 9 ight\}).

    ● Có C_{9}^{2} cách chọn hai chữ số hàng chục (chọn từ các chữ số \left\{ 1;\
2;\ 3;...;\ 9 ight\}).

    Suy ra số phần tử của biến cố X\left| \Omega_{X} ight| = 10.C_{9}^{2}
= 360.

    Vậy xác suất cần tính P(X) = \frac{\left|
\Omega_{X} ight|}{|\Omega|} = \frac{360}{4005} =
\frac{8}{89}..

  • Câu 29: Nhận biết

    Giả sử Q_{1},Q_{2},Q_{3} là các tứ phân vị của mẫu số liệu. Khoảng tứ phân vị của mẫu số liệu là:

    Khoảng tứ phân vị của mẫu số liệu là: \Delta Q = Q_{3} - Q_{1}.

  • Câu 30: Nhận biết

    Cho số gần đúng của \pi3,142. Sai số tuyệt đối của số gần đúng này là:

    Sai số tuyệt đối là: |\pi - 3,142| =
0,0004

  • Câu 31: Nhận biết

    Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng nào sau đây?

    Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng phương sai.

  • Câu 32: Nhận biết

    Cho biến cố A có không gian mẫu là Ω và \overline A là biến cố đối của biến cố A. Khẳng định nào sau đây sai?

     Khẳng định sai là: "P(Ω) > 1." vì P(Ω) = 1

  • Câu 33: Vận dụng

    Một bác sĩ ghi lại độ tuổi của một số người đến khám trong bảng:

    Tìm trung vị của mẫu số liệu trên.

    Cỡ mẫu số liệu trên là n =
30.

    Thống kê lại:

    Hai giá trị chính giữa của mẫu là giá trị ở vị trí thứ 15 và thứ 16. Đó là số 17 và số 17.

    Suy ra trung vị

    M_{e} = \frac{17 + 17}{2} =
17.

  • Câu 34: Nhận biết

    Quy tròn số 14869 đến hàng trăm. Số gần đúng nhận được là:

     Quy tròn 14869 đến hàng trăm, ta được: 14900.

  • Câu 35: Nhận biết

    Một hộp có 3 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3. Rút ngẫu nhiên một chiếc thẻ từ trong hộp. Không gian mẫu của phép thử đó là:

     Mô tả không gian mẫu: \Omega=\{1;2;3\}.

  • Câu 36: Thông hiểu

    Hai cậu bé cùng bắn bi vào lỗ. Xác suất người thứ nhất bắn trúng vào lỗ là 85%, xác suất người thứ hai bắn trúng vào lỗ là 70%. Hỏi xác suất để cả hai người cùng bắn trúng vào lỗ:

    Xác suất người thứ nhất bắn trúng lỗ: 0,85

    Xác suất người thứ hai bắn trúng bia: 0,7

    Xác suất để cả hai người cùng bắn trúng bia: 0,85.0,7 = 0,595 = 59,5%

  • Câu 37: Vận dụng

    Một lớp học có 30 học sinh gồm có nam và nữ. Chọn ngẫu nhiên 3 học sinh để tham gia hoạt động của Đoàn trường. Xác suất chọn được 2 nam và 1 nữ là \frac{12}{29}. Tính số học sinh nữ của lớp.

     Gọi số học sinh nữ là x. Suy ra số học sinh nam là 30-x.

    Chọn 3 học sinh từ 30 học sinh, không gian mẫu là: n(\Omega)=C_{30}^3=4060.

    Gọi A là biến cố "Chọn được 2 nam và 1 nữ". Suy ra n(A) = C_{30 - x}^2.C_x^1 = xC_{30 - x}^2.

    Theo đề bài: P(A) = \frac{{12}}{{29}} \Leftrightarrow \frac{{xC_{30 - x}^2}}{{4060}} = \frac{{12}}{{29}} \Leftrightarrow x = 14.

    Vậy có 14 học sinh nữ.

  • Câu 38: Vận dụng

    Cho tập hợp M =
\left\{ 1;2;3;4;5 ight\}. Gọi S là tập hợp các số tự nhiên có 3 chữ đôi một khác nhau được lập thành từ các chữ số thuộc tập M. Chọn ngẫu nhiên hai số từ tập S, tính xác suất để hai số được chọn đều chia hết cho 3?

    Gọi B là biến cố chọn được hai số đều chia hết cho 3

    Số các số tự nhiên có 3 chữ số được lập thành từ tập M là: A_{5}^{3} = 60

    Khi đó số phần tử của không gian mẫu là: n(\Omega) = C_{60}^{2}

    Tập các số gồm 3 chữ số tạo thành các số chia hết cho 3 là:

    \left\{ (1;2;3),(1;3;5),(2;3;4)
ight\}

    Mỗi tập trên tạo thành 3! số chia hết cho 3 nên ta có: 3.3! = 18 số chia hết cho 3

    Khi đó n(B) = C_{18}^{2}

    Vậy xác suất để chọn được hai số đều chia hết cho 3 từ tập S là: p(B) = \frac{n(B)}{n(\Omega)} =
\frac{C_{18}^{2}}{C_{60}^{2}} = \frac{51}{590}

  • Câu 39: Thông hiểu

    Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của biến cố “Tổng số chấm trong hai lần gieo bằng 6”.

    Số phần tử không gian mẫu là: n(\Omega) =
6^{2} = 36

    Gọi A là biến cố: “Tổng số chấm trong hai lần gieo bằng 6”.

    Tập hợp các kết quả của biến cố A là: A =
\left\{ (2;4),(5;1),(1;5),(4;2),(3;3) ight\}

    Suy ra n(A) = 5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{36}

  • Câu 40: Nhận biết

    Cho A là một biến cố trong phép thử T. Xác suất của biến cố đối \overline{A} liên hệ với xác suất của biến cố A được xác định theo công thức nào sau đây?

    Xác suất của biến cố đối \overline{A} liên hệ với xác suất của biến cố A theo công thức:

    P\left( \overline{A} ight) = 1 -
P(A)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo