Cho mẫu số liệu có
. Khi đó độ lệch chuẩn của mẫu số liệu bằng:
Độ lệch chuẩn
Cho mẫu số liệu có
. Khi đó độ lệch chuẩn của mẫu số liệu bằng:
Độ lệch chuẩn
Xác định số trung vị của dãy số liệu
?
Dãy số đã cho được sắp xếp theo thứ tự không giảm.
Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.
Do đó số trung vị của dãy trên là 5.
Bảng dưới đây thống kê lại tốc độ phát triển của 1 loại vi khuẩn (đơn vị: nghìn con).

Ta nên lấy giá trị nào là giá trị đại diện của bảng trên?
Sắp xếp lại số liệu theo thứ tự không giảm:
20 20 20 30 60 100 150 270 440 980
Do mẫu số liệu chứa các giá trị chênh lệch rất lớn nên không thể lấy số trung bình hoặc mốt làm giá trị đại diện.
Tứ phân vị không được coi là giá trị đại diện.
Do đó ta lấy trung vị làm giá trị đại diện. Ta có:.
Chọn đáp án: Trung vị, giá trị đại diện là 80.
Cho dãy số liệu
. Kết luận nào dưới đây đúng?
Sắp xếp dãy số liệu theo thứ tự không tăng như sau:
Khi đó:
Vậy kết luận đúng là: .
Cho đa giác đều có
đỉnh. Chọn ngẫu nhiên
đỉnh trong số
đỉnh của đa giác. Xác suất để
đỉnh được chọn là
đỉnh của một tam giác vuông là bao nhiêu?
Số phần tử không gian mẫu là .
Giả sử tam giác cần lập là vuông tại
.
Chọn đỉnh của tam giác có
cách.
Để tam giác vuông tại thì cung
có số đo là
, hay
là đường kính của đường tròn ngoại tiếp đa giác, do đó có
cách chọn
.
Gọi là biến cố "
đỉnh được chọn là
đỉnh của một tam giác vuông"
Số phần tử của là
.
Xác suất cần tìm là .
Cho bảng kết quả kiểm tra khối lượng của 30 quả trứng gà như sau:
|
Khối lượng (gram) |
25 |
30 |
35 |
40 |
45 |
50 |
|
Số quả trứng |
3 |
5 |
7 |
9 |
4 |
2 |
Xác định mốt của mẫu số liệu?
Mốt của mẫu số liệu là 40 (vì có tần số lớn nhất).
Gieo con súc sắc hai lần. Biến cố A là biến cố để sau hai lần gieo có ít nhất một mặt 6 chấm. Mô tả biến cố A.
Liệt kê ta có: .
Cho 8 quả cân có trọng lượng lần lượt là 1; 2; 3; 4; 5; 6; 7; 8 (kg). Chọn ngẫu nhiên 3 quả trong số đó. Xác suất để trọng lượng 3 quả không nhỏ hơn 10 (kg) là:
Chọn ba quả cân có cách.
Chọn ba quả cân có tổng trọng lượng nhỏ hơn hoặc bằng 9 có các trường hợp sau:
TH1: Trong các quả được lấy ra không có quả cân trọng lượng 1 kg.
Ta có là tổng trọng lượng nhỏ nhất có thể. Do đó trong trường hợp này có đúng 1 cách chọn.
TH2: Trong các quả được lấy ra có quả cân trọng lượng 1 kg. Khi đó ta có:
.
Trường hợp này ta có 6 cách chọn.
Vậy số cách chọn thỏa mãn yêu cầu bài toán là .
Xác suất cần tính là: .
Chọn ngẫu nhiên hai số khác nhau từ tập hợp số
. Tính xác suất để trong hai số lấy ra có ít nhất một số lẻ?
Số phần tử không gian mẫu là:
Gọi B là biến cố: “Cả hai số lấy ra đều là số chẵn”
Suy ra xác suất của biến cố B là:
Ta có biến cố là biến cố: “Trong hai số lấy ra có ít nhất một số lẻ”
Khi đó
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được
. Giá trị gần đúng của
chính xác đến hàng phần trăm là:
Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 2 ở hàng phần trăm là số 8 > 5 nên theo nguyên lý làm tròn ra được kết quả là:
Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố chắc chắn?
Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố chắc chắn là “Mặt xuất hiện của xúc xắc có số chấm không vượt quá 6”.
Tìm số gần đúng của a = 3456782 với độ chính xác d = 100.
Vì độ chính xác đến hàng trăm nên ta quy tròn a đến hàng nghìn, vậy số quy tròn của a là 3457000.
Phương sai của một mẫu số liệu
bằng
Phương sai của một mẫu số liệu bằng bình phương của độ lệch chuẩn.
Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:
"Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm có tất bao nhiêu viên bi". Đây không phải là phép thử ngẫu nhiên.
Một đề thi trắc nghiệm gồm
câu, mỗi câu có bốn phương án trả lời trong đó chỉ có một phương án đúng, mỗi câu trả lời đúng được
điểm. Một thí sinh làm bài bằng cách chọn ngẫu nhiên
trong
phương án ở mỗi câu. Xác suất để thí sinh đó được
điểm là bao nhiêu?
Không gian mẫu của phép thử trên có số phần tử là .
Gọi là biến cố: “ Thí sinh đó được 6 điểm”
Tìm : Để được 6 điểm, thí sinh đó phải làm đúng 30 câu và làm sai 20 câu.
Công đoạn 1: Chọn 30 câu từ 50 câu để làm câu đúng. Có cách.
Công đoạn 2: Chọn phương án đúng của mỗi câu từ 30 câu đã chọn. Có cách.
Công đoạn 3: Chọn một phương án sai trong ba phương án sai của mỗi câu từ 20 còn lại. Có cách.
Theo quy tắc nhân, số kết quả thuận lợi cho biến cố là
.
Vậy xác suất để học sinh đó được 6 điểm là:.
Chiều cao của một số học sinh nữ lớp 9 (đơn vị cm) được cho trong bảng.

Tìm khoảng tứ phân vị của mẫu số liệu này.
Nhận thấy mẫu đã được sắp xếp theo thứ tự không giảm.
Số liệu chính giữa là 162 nên .
Số liệu chính giữa của mẫu 151 152 153 154 155 160 160 là 154 nên .
Số liệu chính giữa của mẫu 163 165 165 165 166 167 167 là 165 nên .
Khoảng tứ phân vị
.
Một hộp chứ 3 quả cầu xanh và 7 quả cầu đỏ. Chọn ngẫu nhiên đồng thời hai quả cầu trong hộp. Tính xác suất để hai quả cầu được chọn ra có cùng màu?
Ta có:
Gọi A là biến cố: “Chọn được hai quả cầu cùng màu”
TH1: 2 quả cầu cùng màu xanh ta có: cách chọn
TH2: 2 quả cầu cùng màu đỏ ta có: cách chọn.
Vậy xác suất của biến cố A là:
Tìm các giá trị bất thường của mẫu số liệu:
5 6 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 48 49
Mẫu số liệu đã được sắp xếp theo thứ tự không giảm.
Giá trị chính giữa là 27 nên .
Giá trị chính giữa của mẫu 5 6 19 21 22 23 24 25 26 là 22 nên .
Giá trị chính giữa của mẫu 28 29 30 31 32 33 34 48 49 là 32 nên .
Khoảng tứ phân vị .
Ta có:
.
Ta co:
.
Ta thấy có giá trị 5 và 6 nhỏ hơn 7 nên đây là 2 giá trị bất thường.
Ta thấy có 48 và 49 là hai giá trị lớn hơn 47 nên đây là 2 giá trị bất thường.
Cho bảng điểm kiểm tra môn Toán của học sinh lớp 10B như sau:
|
Điểm |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Tổng |
|
Số học sinh |
2 |
8 |
7 |
10 |
8 |
3 |
2 |
N = 40 |
Tính số trung bình của mẫu số liệu? (Làm tròn kết quả đến chữ số thập phân thứ nhất).
Số trung bình của mẫu số liệu là:
Vậy số trung bình của mẫu số liệu bằng 6,8.
Chọn ngẫu nhiên một gia đình có 4 người con và quan sát giới tính của bốn người con này. Xác suất của biến cố hai con đầu là con trai bằng:
Ta có:
Gọi A là biến cố “Hai con đầu là con trai”
Vậy .
Chọn khẳng định đúng.
Khẳng định đúng là:
Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất, bỏ qua thông tin các giá trị còn lại.
Một hộp chứa 7 bi xanh, 6 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất để được hai bi cùng màu là bao nhiêu?
Số phần tử của không gian mẫu là .
Gọi là biến cố lấy được hai bi cùng màu.
Chọn 2 bi xanh, có (cách).
Chọn 2 bi đỏ, có (cách).
Suy ra .
Xác suất cần tìm là .
Một bình chứa
viên bi màu, trong đó có
bi xanh,
bi đỏ,
bi trắng. Lấy ngẫu nhiên
viên bi từ bình đó. Tính xác suất để lấy được
viên bi khác màu.
Lấy viên bi bất kì trong
viên bi trong bình thì có
(cách).
Lấy viên bi cùng màu thì có
(cách) nên có
(cách) lấy được
viên bi khác màu.
Xác suất để lấy được viên bi khác màu trong tổng số
viên bi là
.
Một bác sĩ ghi lại độ tuổi của một số người đến khám trong bảng:

Tìm trung vị của mẫu số liệu trên.
Cỡ mẫu số liệu trên là .
Thống kê lại:
Hai giá trị chính giữa của mẫu là giá trị ở vị trí thứ 15 và thứ 16. Đó là số 17 và số 17.
Suy ra trung vị
.
Tìm trung vị của dãy số liệu 4 3 5 1 6 8 6.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 3 4 5 6 6 8.
Dãy trên có giá trị chính giữa bằng 5.
Vậy trung vị của mẫu số liệu bằng 5.
Cho bảng số liệu điểm kiểm tra môn Toán của 20 học sinh
Điểm | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Số học sinh | 1 | 2 | 3 | 4 | 5 | 4 | 1 |
Tìm trung vị của bảng số liệu trên.
Bảng số liệu có 20 giá trị => .
=> .
Gieo hai đồng tiền một lần. Kí hiệu S, N lần lượt để chỉ đồng tiền lật sấp, lật ngửa. Mô tả không gian mẫu nào dưới đây là đúng?
Gieo hai đồng tiền một lần ta được không gian mẫu là:
Một nhóm học sinh lớp 10A gồm 10 học sinh trong đó có 4 học sinh nữ và 6 học sinh nam. Chọn ngẫu nhiên bốn học sinh trong nhóm để tham gia cuộc thi hùng biện. Xác suất để bốn bạn được chọn có ba nam và một nữ bằng:
Số phần tử không gian mẫu là:
Số kết quả thuận lợi cho biến cố: “Bốn bạn được chọn có ba nam và một nữ” bằng:
Vậy xác suất của biến cố “Bốn bạn được chọn có ba nam và một nữ” bằng:
Bạn Linh đo quãng đường đi học từ nhà đến trường là
với độ chính xác
. Sai số tương đối trong phép đo là:
Sai số tương đối trong phép đo là .
Gieo hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai mặt của hai con xúc xắc bằng 7?
Ta có:
Số phần tử không gian mẫu là:
Gọi A là biến cố “tổng số chấm xuất hiện trên hai mặt của hai con xúc xắc bằng “.
Vậy .
Kết quả kiểm tra Toán của một số học sinh như sau:
. Khoảng biến thiên của mẫu số liệu là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 10
Giá trị nhỏ nhất là 7
Suy ra khoảng biến thiên của mẫu số liệu là: 10 – 7 = 3
Tìm mốt của mẫu số liệu: 1 3 4 2 0 0 5 6.
Giá trị 0 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 0.
Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên?
Thí nghiệm không phải là phép thử ngẫu nhiên là: “Quan sát vận động viên chạy bộ xem được bao nhiêu ”.
Kết quả làm tròn số
đến chữ số thập phân thứ hai là:
Ta có:
Tìm phương sai của dãy số liệu: 8 15 14 18.
Số trung bình của mẫu số liệu là:
.
Ta có phương sai:
.
Bảng dưới đây thống kê điểm của bạn Dũng và Huy:

Hãy tính phương sai của mẫu số liệu về điểm của hai bạn, từ đó so sánh và chọn kết luận đúng.
Số trung bình của mẫu số liệu (1) và (2) là:
Phương sai của (1) là:
Phương sai của (2) là:
Vì nên bạn Huy học đều hơn bạn Dũng.
Quy tròn số
đến hàng phần chục được số
. Sai số tuyệt đối là:
Sai số tuyệt đối là: .
Dung tích của một nồi cơm điện là 1,1 lít ± 0,01 lít. Sai số tương đối của dung tích nồi cơm điện không vượt quá giá trị nào sau đây?
Ta có:
Sai số tương đối của dung tích nồi cơm điện là:
Vậy sai số tương đối của dung tích nồi cơm điện không vượt quá giá trị 1%
Đạt và Phong tham gia chơi trò một trò chơi đối kháng, thỏa thuận rằng ai thắng 5 ván trước là thắng chung cuộc và được hưởng toàn bộ số tiền thưởng của chương trình (không có ván nào hòa). Tuy nhiên khi Đạt thắng được 4 ván và Phong thắng được 2 ván rồi thì xảy ra sự cố kĩ thuật và chương trình buộc phải dừng lại. Biết rằng giới chuyên môn đánh giá Phong và Đạt ngang tài ngang sức. Hỏi phải chia số tiền thưởng như thế nào cho hợp lý (dựa trên quan điểm tiền thưởng tỉ lệ thuận với xác suất thắng cuộc của mỗi người).
Phân tích: Đề bài cho các điều kiện khá dài dòng, ta cần đưa chúng về dạng ngắn gọn dễ hiểu hơn.
+) “Biết rằng giới chuyên môn đánh giá Phong và Đạt ngang tài ngang sức”: xác suất để Phong và Đạt thắng trong một ván là như nhau và bằng .
+) “Khi Đạt thắng được 4 ván và Phong thắng được 2 ván rồi”: nghĩa là Đạt chỉ cần thắng một ván nữa là được 5 ván, còn Phong phải thắng 3 ván nữa mới đạt được.
Để xác định xác suất thắng chung cuộc của Đạt và Phong ta tiếp tục chơi thêm các ván “giả tưởng”. Để Phong có thể thắng chung cuộc thì anh phải thắng Đạt 3 ván liên tiếp (vì Đạt chỉ còn một ván nữa là thắng).
Như vậy xác suất thắng cuộc của Phong là: .
Xác suất thắng cuộc của Đạt là .
Vậy Tỉ lệ chia tiền phù hợp là .