Quy tròn số 3,1234567 đến hàng phần nghìn. Số gần đúng nhận được là:
Quy tròn số 3,1234567 đến hàng phần nghìn ta được số: 3,123.
Quy tròn số 3,1234567 đến hàng phần nghìn. Số gần đúng nhận được là:
Quy tròn số 3,1234567 đến hàng phần nghìn ta được số: 3,123.
Gieo một con xúc xắc cân đối đồng chất 2 lần. Tính xác suất để biến cố có tích 2 lần số chấm khi gieo xúc xắc là một số chẵn.
Số phần tử của không gian mẫu là
Gọi là biến cố
Tích hai lần số chấm khi gieo xúc xắc là một số chẵn
. Ta xét các trường hợp:
TH1:. Gieo lần một, số chấm xuất hiện trên mặt là số lẻ thì khi gieo lần hai, số chấm xuất hiện phải là số chẵn. Khi đó có cách gieo.
TH2:. Gieo lần một, số chấm xuất hiện trên mặt là số chẵn thì có hai trường hợp xảy ra là số chấm xuất hiện trên mặt khi gieo lần hai là số lẻ hoặc số chẵn. Khi đó có cách gieo.
Suy ra số kết quả thuận lợi cho biến cố là
Vậy xác suất cần tìm tính
Cho biểu đồ lượng mưa trung bình các tháng năm 2019 tại Thành phố Hồ Chí Minh như sau:

Mẫu số liệu nhận được từ biểu đồ trên có khoảng biến thiên là:
Quan sát biểu đồ ta thấy:
Giá trị lớn nhất là 342
Giá trị nhỏ nhất là: 4
Vậy khoảng biến thiên của mẫu số liệu là: 342 – 4 = 338.
Năm đoạn thẳng có độ dài 1cm; 3cm; 5cm; 7cm; 9cm. Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng trên. Xác suất để ba đoạn thẳng lấy ra có thể tạo thành 1 tam giác là:
Phân tích: Cần nhớ lại kiến thức cơ bản về bất đẳng thức tam giác.
Ba đoạn thẳng với chiều dài có thể là 3 cạch của một tam giác khi và chỉ khi
Số phần tử của không gian mẫu là:
Gọi là biến cố “lấy ba đoạn thẳng lấy ra lập thành một tam giác”
Các khả năng chọn được ba đoạn thẳng lập thành một tam giác là
Số trường hợp thuận lợi của biến cố là 3. Suy ra xác suất của biến cố
là
.
Tìm khoảng tứ phân vị mẫu số liệu điểm của một nhóm học sinh lớp 10:

Sắp xếp mẫu số liệu theo thứ tự không giảm: 4 5 5 6 7 7 7 8 8 9 9 10.
Hai số liệu chính giữa là 7 và 7 nên .
Trung vị của mẫu số liệu 4 5 5 6 7 7 chính là .
Trung vị của mẫu số liệu 7 8 8 9 9 10 chính là .
Khoảng tứ phân vị
.
Một hộp có 3 viên bi đỏ, 4 viên bi vàng và 5 viên bi xanh. Lấy ngẫu nhiên 2 viên bi. Tính xác suất để lấy được 2 viên màu vàng.
Lấy ngẫu nhiên 2 viên bi từ 12 viên bi, suy ra .
Gọi A là biến cố "lấy được 2 viên bi vàng", suy ra .
Vậy xác suất: .
Một hộp đựng 8 quả cầu trắng, 12 quả cầu đen. Lần thứ nhất lấy ngẫu nhiên 1 quả cầu trong hộp, lần thứ hai lấy ngẫu nhiên 1 quả cầu trong các quả cầu còn lại. Tính xác suất để kết quả của hai lần lấy được 2 quả cầu cùng màu.
Không gian mẫu là lấy 2 quả cầu trong hộp một cách lần lượt ngẫu nhiên.
Suy ra số phần tử của không gian mẫu là .
Gọi biến cố
2 quả cầu được lấy cùng màu
. Ta có các trường hợp thuận lợi cho biến cố
như sau:
TH1: Lần thứ nhất lấy quả màu trắng và lần thứ hai cũng màu trắng.
Do đó trường hợp này có cách.
TH2: Lần thứ nhất lấy quả màu đen và lần thứ hai cũng màu đen.
Do đó trường hợp này có cách.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính
Một tổ có
học sinh nam và
học sinh nữ. Chọn ngẫu nhiên
học sinh. Xác suất để trong
học sinh được chọn luôn có học sinh nữ là:
.
Gọi là biến cố:” trong
học sinh được chọn luôn có học sinh nữ”
Vậy xác suất của biến cố là
.
Trong kết quả thống kê điểm môn Tiếng Anh của một lớp có 40 học sinh, điểm thấp nhất là 2 điểm và cao nhất là 10 điểm. Khẳng định nào sau đây đúng?
Khi thực hiện tính điểm trung bình hay trung vị còn phụ thuộc vào tần số của mỗi điểm.
Nếu chỉ có khoảng điểm thì không thể kết luận về điểm trung bình môn Tiếng Anh của lớp đó và trung vị.
Tính sản lượng lúa trung bình trong bảng thống kê dưới đây:
|
Sản lượng (tạ) |
20 |
21 |
22 |
23 |
24 |
|
Tần số |
5 |
8 |
11 |
10 |
6 |
Sản lượng lúa trung bình là:
Vậy sản lượng lúa trung bình là 22,1 tạ.
Một người bỏ ngẫu nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Tính xác suất để có ít nhất một lá thư được bỏ đúng phong bì.
Số phần tử không gian mẫu là: .
Gọi là biến cố “Có ít nhất một lá thư được bỏ đúng phong bì”.
Ta xét các trường hợp sau:
Nếu lá thứ nhất bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất cách.
Nếu lá thứ hai bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất cách.
Nếu lá thứ ba bỏ đúng phong bì, hai lá còn lại để sai thì có duy nhất cách.
Không thể có trường hợp hai lá thư bỏ đúng và một lá thư bỏ sai.
Cả ba lá thư đều được bỏ đúng có duy nhất cách.
.
Vậy xác suất để có ít nhất một lá thư được bỏ đúng phong bì là: .
Cách 2:
Gọi là biến cố “Không có lá thư nào được bỏ đúng phong bì”.
.
Số trung bình của mẫu số liệu
là:
Số trung bình của mẫu số liệu là:
Vậy số trung bình là 46,25.
Từ một hộp có 6 viên bi xanh, 5 viên bi đỏ và 4 viên bi vàng. Lấy ngẫu nhiên 7 viên bi. Tính xác suất để lấy được ít nhất một viên bi vàng?
Số phần tử không gian mẫu:
Số phần tử biến cố lấy ngẫu nhiên 7 viên bi không có viên bi màu vàng là:
Vậy xác suất để lấy được ít nhất một viên bi vàng là:
Cho giá trị gần đúng của
là
. Sai số tuyệt đối của số
không vượt quá giá trị nào sau đây?
Sai số tuyệt đối của số là:
Suy ra sai số tuyệt đối của số không vượt quá
.
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được
. Giá trị gần đúng của
chính xác đến hàng phần nghìn là:
Cần lấy chính xác đến hàng phần trăm nên ta phải lấy ba chữ số thập phân. Vì đứng sau số 8 ở hàng phần trăm là số 4 < 5 nên theo nguyên lý làm tròn ra được kết quả là: .
Một nhóm học sinh lớp 10A gồm 10 học sinh trong đó có 4 học sinh nữ và 6 học sinh nam. Chọn ngẫu nhiên bốn học sinh trong nhóm để tham gia cuộc thi hùng biện. Xác suất để bốn bạn được chọn có ba nam và một nữ bằng:
Số phần tử không gian mẫu là:
Số kết quả thuận lợi cho biến cố: “Bốn bạn được chọn có ba nam và một nữ” bằng:
Vậy xác suất của biến cố “Bốn bạn được chọn có ba nam và một nữ” bằng:
Tốc độ di chuyển của 25 xe qua một điểm kiểm tra được liệt kê trong bảng dưới đây:
|
20 |
41 |
41 |
80 |
40 |
|
52 |
52 |
52 |
60 |
55 |
|
60 |
60 |
62 |
60 |
55 |
|
60 |
55 |
90 |
70 |
35 |
|
40 |
30 |
30 |
80 |
25 |
Có bao nhiêu số liệu bất thường có trong mẫu số liệu đã cho?
Sắp xếp mẫu số liệu theo thứ tự không giảm như sau:
|
20 |
25 |
30 |
30 |
35 |
|
40 |
40 |
41 |
41 |
52 |
|
52 |
52 |
55 |
55 |
55 |
|
60 |
60 |
60 |
60 |
60 |
|
62 |
70 |
80 |
80 |
90 |
Mẫu số liệu có cỡ mẫu bằng 25 suy ra trung vị là số liệu thứ 13 trong dãy số liệu
Suy ra
Tứ phân vị thứ nhất của mẫu số liệu gồm 12 số liệu sau:
|
20 |
25 |
30 |
30 |
35 |
|
40 |
40 |
41 |
41 |
52 |
|
52 |
52 |
|
||
Suy ra
Tứ phân vị thứ ba của mẫu số liệu gồm 12 số liệu sau:
|
55 |
55 |
|
||
|
60 |
60 |
60 |
60 |
60 |
|
62 |
70 |
80 |
80 |
90 |
Suy ra
Nhận thấy trong mẫu số liệu đã cho không có giá trị nào nhỏ hơn 10 và lớn hơn 90.
Vậy không có giá trị nào bất thường trong mẫu số liệu.
Một hộp chứa các viên bi kích thước khác nhau, trong đó có 5 viên bi màu đỏ và 6 viên bi màu vàng. Lấy ngẫu nhiên đồng thời 4 viên bi từ hộp. Tính xác suất để trong 4 viên bi lấy ra có đúng 1 viên bi màu vàng.
Số phần tử của không gian mẫu là:
Số cách để lấy 4 viên bi trong đó có đúng một viên bi màu vàng là:
Xác suất của biến cố A là:
Gieo một con súc sắc. Xác suất để mặt
chấm xuất hiện là:
Gieo một con súc sắc có không gian mẫu .
Xét biến cố : “mặt
chấm xuất hiện”.
.
Do đó .
Dân số một tỉnh B năm 2024 là
người, với độ chính xác
. Số quy tròn của
là:
Quy tròn số với độ chính xác
ta biết
=> Ta cần quy tròn đến hàng nghìn, số đã được quy tròn là .
Gieo hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai mặt của hai con xúc xắc bằng 7?
Ta có:
Số phần tử không gian mẫu là:
Gọi A là biến cố “tổng số chấm xuất hiện trên hai mặt của hai con xúc xắc bằng “.
Vậy .
Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố không?
Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố không là “Mặt xuất hiện của con xúc xắc có số chấm là 8 chấm.”
Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố
: "kết quả của 3 lần gieo là như nhau" là bao nhiêu?
Lần đầu có thể ra tùy ý nên xác suất là 1. Lần 2 và 3 phải giống lần 1 xác suất là .
Theo quy tắc nhân xác suất: .
Gieo ba con súc sắc cân đối đồng chất. Tính xác suất để số chấm xuất hiện trên ba con súc sắc như nhau.
Số phần tử của không gian mẫu là
Gọi là biến cố
Số chấm xuất hiện trên ba con súc sắc như nhau
. Ta có các trường hợp thuận lợi cho biến cố
là
Suy ra
Vậy xác suất cần tính .
Một người thống kê lại số giày bán được trong tháng của một công ty.

Hỏi công ty nên nhập nhiều hơn loại cỡ giày nào để bán trong tháng tới?
Tháng vừa rồi, công ty bán được 70 đôi giày cỡ 40 (nhiều nhất). Đây chính là mốt.
Vậy suy ra tháng tới, công ty nên nhập thêm giày cỡ 40 để bán.
Nhiệt độ (đơn vị: 0C) tại Mộc Châu trong một ngày sau một vài lần đo như sau:
![]()
![]()
Kết quả nào dưới đây gần nhất với độ lệch chuẩn của mẫu số liệu đã cho?
Ta có:
Nhiệt độ trung bình trong ngày là:
Ta có bảng sau:
|
Giá trị |
Độ lệch |
Bình phương độ lệch |
|
21 |
47,61 |
|
|
23 |
24,01 |
|
|
25 |
8,41 |
|
|
28 |
0,01 |
|
|
30 |
4,41 |
|
|
32 |
16,81 |
|
|
34 |
37,21 |
|
|
31 |
9,61 |
|
|
29 |
1,21 |
|
|
26 |
3,61 |
|
|
Tổng |
152,9 |
|
Suy ra phương sai của mẫu số liệu là:
Suy ra độ lệch chuẩn của mẫu số liệu là:
Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho bằng:
Số phần tử của không gian mẫu là: .
Gọi A: “Chọn được ba đỉnh tạo thành tam giác không có cạnh nào là cạnh của đa giác đã cho”
Suy ra : “Chọn được ba đỉnh tạo thành tam giác có ít nhất một cạnh là cạnh của đa giác đã cho”.
Do đó : “Chọn được ba đỉnh tạo thành tam giác có một cạnh hoặc hai cạnh là cạnh của đa giác đã cho”.
Trường hợp 1: Chọn ra tam giác có 2 cạnh là 2 cạnh của đa giác đã cho, ta chọn ra 3 đỉnh liên tiếp của đa giác 12 cạnh. Có 12 cách.
Trường hợp 2: Chọn ra tam giác có đúng 1 cạnh là cạnh của đa giác đã cho, ta chọn ra 1 cạnh và 1 đỉnh không liền với 2 đỉnh của cạnh đó. Suy ra có 12 cách chọn một cạnh và cách chọn đỉnh.
Vậy có 12.8 cách.
Số phần tử của biến cố là:
.
Số phần tử của biến cố A là: .
Xác suất của biến cố A là .
Liệt kê sĩ số của từng lớp trong khối 10 ta được bảng số liệu như sau:
|
Lớp |
10A |
10B |
10C |
10D |
10E |
|
Sĩ số |
40 |
43 |
45 |
41 |
46 |
Xác định giá trị gần nhất với độ lệch chuẩn của mẫu số liệu?
Ta có:
Số trung bình của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Suy ra độ lệch chuẩn của mẫu số liệu là:
Vậy độ lệch chuẩn của mẫu số liệu là 2,28.
Cho số gần đúng
. Hãy viết số quy tròn của
?
Ta có số quy tròn của là:
.
Một nhà nghiên cứu ghi lại tuổi của 30 bệnh nhân mắc bệnh đau mắt hột như sau:
21 | 17 | 22 | 18 | 20 | 17 | 15 | 13 | 15 | 20 | 15 | 12 | 18 | 17 | 25 |
17 | 21 | 15 | 12 | 18 | 16 | 23 | 14 | 18 | 19 | 13 | 16 | 19 | 18 | 17 |
Khoảng biến thiên
của mẫu số liệu trên là:
Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột cao nhất là 25 tuổi.
Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột thấp nhất là 12 tuổi.
Khoảng biến thiên của mẫu số liệu trên là:
Điểm kiểm tra môn Hóa của một nhóm gồm 9 bạn như sau: 1; 1; 3; 6; 7; 8; 8; 9; 10. Tính trung bình cộng của mẫu số liệu trên. (làm tròn đến hàng phần chục)
Số trung bình của mẫu số liệu trên là: .
Cho số
Số quy tròn của số gần đúng
là:
Vì độ chính xác đến hàng trăm nên ta quy tròn đến hàng nghìn và theo quy tắc làm tròn nên số quy tròn là: .
Dưới đây là bảng thống kê số lần làm bài tập Toán của học sinh lớp 10A.

Tìm tứ phân vị của mẫu số liệu này.
Cỡ mẫu số liệu này là: .
Suy ra giá trị chính giữa là giá trị ở vị trí thứ 18. Đó là số 3. Suy ra trung vị .
Trung vị của 17 giá trị bên trái là giá trị ở vị trí thứ 9. Đó là số 2. Suy ra
.
Trung vị của 17 giá trị bên phải là giá trị ở vị trí thứ 27. Đó là số 4. Suy ra
.
Tính chiều cao trung bình của học sinh biết chiều cao của từng học sinh được ghi lại như sau:
|
Chiều cao (cm) |
150 |
155 |
160 |
165 |
170 |
175 |
|
Số học sinh |
4 |
6 |
7 |
6 |
5 |
3 |
Chiều cao trung bình của các học sinh là:
Kết quả kiểm tra của 40 học sinh lớp 10A được thống kê trong bảng sau:
|
Điểm |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
Số học sinh |
2 |
3 |
7 |
18 |
3 |
2 |
4 |
1 |
Tìm mốt của mẫu số liệu đã cho?
Mốt của mẫu số liệu là: (vì có nhiều học sinh đạt điểm 6 nhất trong 40 học sinh).
Tìm phương sai của mẫu số liệu
?
Số trung bình của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Vậy phương sai cần tìm bằng 2.
Một hộp chứa 10 tấm thẻ được đánh số thứ tự từ 1 đến 10. Chọn ngẫu nhiên hai tấm thẻ. Tính xác suất để chọn được hai tấm thẻ đều ghi số chẵn?
Từ 1 đến 10 có 5 số chẵn.
Số cách chọn ngẫu nhiên hai tấm thẻ trong hộp là:
Số cách chọn được hai tấm thẻ đều ghi số chẵn là:
Vậy xác suất của biến cố A là:
Xác định mốt của mẫu số liệu: ![]()
Ta có: số 17 có tần số xuất hiện nhiều nhất
Suy ra mốt của mẫu số liệu là 17.
Cho năm đoạn thẳng có độ dài:
,
,
,
,
. Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng đó. Tính xác suất để ba đoạn thẳng lấy ra là ba cạnh của một tam giác.
* Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng đã cho có cách.
Suy ra .
* Gọi là biến cố "lấy được ba đoạn thẳng là ba cạnh của một tam giác".
Các trường hợp ba đoạn thẳng là ba cạnh của một tam giác là:
(thỏa mãn: hiệu hai cạnh bé hơn cạnh còn lại, tổng hai cạnh lớn hơn cạnh còn lại).
Do đó Vậy sác xuất cần tìm là
.
Cho mẫu số liệu có
. Khi đó độ lệch chuẩn của mẫu số liệu bằng:
Độ lệch chuẩn