Độ lệch chuẩn là gì?
Độ lệch chuẩn là căn bậc hai của phương sai.
Độ lệch chuẩn là gì?
Độ lệch chuẩn là căn bậc hai của phương sai.
Cho bảng điểm kiểm tra môn Toán của học sinh lớp 10B như sau:
|
Điểm |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Tổng |
|
Số học sinh |
2 |
8 |
7 |
10 |
8 |
3 |
2 |
N = 40 |
Tính số trung bình của mẫu số liệu? (Làm tròn kết quả đến chữ số thập phân thứ nhất).
Số trung bình của mẫu số liệu là:
Vậy số trung bình của mẫu số liệu bằng 6,8.
Ba nhóm học sinh gồm 5 người, 10 người và 15 người. Khối lượng trung bình của mỗi nhóm lần lượt là 48 kg, 45kg và 40 kg. Khối lượng trung bình của 3 nhóm học sinh là:
Khối lượng trung bình của 3 nhóm học sinh là:
Hãy viết số quy tròn số gần đúng
với độ chính xác
.
Ta có: nên làm tròn đến hàng nghìn
Vậy đáp án là: .
Tính độ lệch chuẩn của mẫu số liệu: 10; 8; 6; 2; 4.
Số trung bình là
.
Phương sai là
.
Độ lệch chuẩn là .
Tìm khoảng tứ phân vị mẫu số liệu điểm của một nhóm học sinh lớp 10:

Sắp xếp mẫu số liệu theo thứ tự không giảm: 4 5 5 6 7 7 7 8 8 9 9 10.
Hai số liệu chính giữa là 7 và 7 nên .
Trung vị của mẫu số liệu 4 5 5 6 7 7 chính là .
Trung vị của mẫu số liệu 7 8 8 9 9 10 chính là .
Khoảng tứ phân vị
.
Tốc độ di chuyển của 25 xe qua một điểm kiểm tra được liệt kê trong bảng dưới đây:
|
20 |
41 |
41 |
80 |
40 |
|
52 |
52 |
52 |
60 |
55 |
|
60 |
60 |
62 |
60 |
55 |
|
60 |
55 |
90 |
70 |
35 |
|
40 |
30 |
30 |
80 |
25 |
Có bao nhiêu số liệu bất thường có trong mẫu số liệu đã cho?
Sắp xếp mẫu số liệu theo thứ tự không giảm như sau:
|
20 |
25 |
30 |
30 |
35 |
|
40 |
40 |
41 |
41 |
52 |
|
52 |
52 |
55 |
55 |
55 |
|
60 |
60 |
60 |
60 |
60 |
|
62 |
70 |
80 |
80 |
90 |
Mẫu số liệu có cỡ mẫu bằng 25 suy ra trung vị là số liệu thứ 13 trong dãy số liệu
Suy ra
Tứ phân vị thứ nhất của mẫu số liệu gồm 12 số liệu sau:
|
20 |
25 |
30 |
30 |
35 |
|
40 |
40 |
41 |
41 |
52 |
|
52 |
52 |
|
||
Suy ra
Tứ phân vị thứ ba của mẫu số liệu gồm 12 số liệu sau:
|
55 |
55 |
|
||
|
60 |
60 |
60 |
60 |
60 |
|
62 |
70 |
80 |
80 |
90 |
Suy ra
Nhận thấy trong mẫu số liệu đã cho không có giá trị nào nhỏ hơn 10 và lớn hơn 90.
Vậy không có giá trị nào bất thường trong mẫu số liệu.
Cho tập hợp
. Chọn ngẫu nhiên ba số từ tập đó. Tính xác suất để trong ba số chọn ra không có hai số nào là hai số nguyên liên tiếp.
Số phần tử không gian mẫu là .
Gọi là biến cố “Ba số chọn ra không có hai số nào là hai số nguyên liên tiếp”.
là biến cố “Ba số được chọn có ít nhất hai số là các số tự nhiên liên tiếp”.
+ Bộ ba số dạng , với
: có
bộ ba số.
+ Bộ ba số có dạng , với
: có
bộ ba số.
+ Tương tự mỗi bộ ba số dạng ,
,
,
,
,
,
đều có
bộ.
.
.
Một hộp chứa 7 bi xanh, 6 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất để được hai bi cùng màu là bao nhiêu?
Số phần tử của không gian mẫu là .
Gọi là biến cố lấy được hai bi cùng màu.
Chọn 2 bi xanh, có (cách).
Chọn 2 bi đỏ, có (cách).
Suy ra .
Xác suất cần tìm là .
Cho phép thử với không gian mẫu Ω = {1; 2; 3; 4; 5; 6}. Đâu không phải là cặp biến cố đối nhau.
Cặp E = {1; 4; 6} và F = {2; 3} không phải là biến cố đối.
Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện nhân 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.
Giả sử các số liệu trong mẫu là: đã sắp xếp theo thứ tự không giảm.
Khoảng biến thiên: .
Nhân hai với tất cả các số liệu: .
Khoảng biến thiên: .
Suy ra .
Số cam có trong các giỏ được ghi lại như sau:
. Số trung vị của mẫu số liệu là:
Vì cỡ mẫu là số chẵn nên trung vị bằng trung bình cộng của số liệu ở vị trí thứ hai và thứ ba.
=> Số trung vị của mẫu số liệu:
Từ một hộp chứa
quả cầu màu đỏ và
quả cầu màu xanh, lấy ngẫu nhiên đồng thời
quả cầu. Tính xác suất để 3 quả cầu lấy được đều màu xanh.
Gọi là biến cố: “lấy được
quả cầu màu xanh”.
Ta có .
Cho mẫu số liệu: 6; 7; 8; 9; 10. Tính phương sai của mẫu.
Số trung bình là
.
Phương sai là
.
Hai cậu bé cùng bắn bi vào lỗ. Xác suất người thứ nhất bắn trúng vào lỗ là 85%, xác suất người thứ hai bắn trúng vào lỗ là 70%. Hỏi xác suất để cả hai người cùng bắn trúng vào lỗ:
Xác suất người thứ nhất bắn trúng lỗ: 0,85
Xác suất người thứ hai bắn trúng bia: 0,7
Xác suất để cả hai người cùng bắn trúng bia: 0,85.0,7 = 0,595 = 59,5%
Quy tròn số 54 739 đến hàng trăm và ước lượng sai số tương đối.
Quy tròn số 54 739 đến hàng trăm ta được số gần đúng là
Ta có:
=>
Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố
: "kết quả của 3 lần gieo là như nhau" là bao nhiêu?
Lần đầu có thể ra tùy ý nên xác suất là 1. Lần 2 và 3 phải giống lần 1 xác suất là .
Theo quy tắc nhân xác suất: .
Kết quả điểm kiểm tra 45 phút môn Hóa Học của 100 em học sinh được trình bày ở bảng sau:
|
Điểm |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Cộng |
|
Tần số |
3 |
5 |
14 |
14 |
30 |
22 |
7 |
5 |
100 |
Số trung bình cộng của bảng phân bố tần số nói trên là:
Số trung bình cộng của bảng phân bố tần số nói trên là
Một hộp đựng 8 quả cầu trắng, 12 quả cầu đen. Lần thứ nhất lấy ngẫu nhiên 1 quả cầu trong hộp, lần thứ hai lấy ngẫu nhiên 1 quả cầu trong các quả cầu còn lại. Tính xác suất để kết quả của hai lần lấy được 2 quả cầu cùng màu.
Không gian mẫu là lấy 2 quả cầu trong hộp một cách lần lượt ngẫu nhiên.
Suy ra số phần tử của không gian mẫu là .
Gọi biến cố
2 quả cầu được lấy cùng màu
. Ta có các trường hợp thuận lợi cho biến cố
như sau:
TH1: Lần thứ nhất lấy quả màu trắng và lần thứ hai cũng màu trắng.
Do đó trường hợp này có cách.
TH2: Lần thứ nhất lấy quả màu đen và lần thứ hai cũng màu đen.
Do đó trường hợp này có cách.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính
Gieo con súc sắc hai lần. Biến cố A là biến cố để sau hai lần gieo có ít nhất một mặt 6 chấm. Mô tả biến cố A.
Liệt kê ta có: .
Tìm phương sai của mẫu số liệu
?
Số trung bình của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Vậy phương sai cần tìm bằng 2.
Để điều tra các con trong mỗi gia đình của một chung cư gồm 100 gia đình. Người ta chọn ra 20 gia đình ở tầng 4 và thu được mẫu số liệu sau đây:
2 4 2 1 3 5 1 1 2 3 1 2 2 3 4 1 1 2 3 4.
Số trung bình cộng
của mẫu số liệu trên là:
Số trung bình cộng của mẫu số liệu trên là:
Xếp ngẫu nhiên 5 bạn nam và 3 bạn nữ vào một bàn tròn. Xác suất để không có ba bạn nữ nào ngồi cạnh nhau.
Theo công thức hoán vị vòng quanh ta có:
Để xếp các bạn nữ không ngồi cạnh nhau, trước hết ta xếp các bạn nam vào bàn tròn: có cách, giữa 5 bạn nam đó ta sẽ có được 5 ngăn (do ở đây là bàn tròn). Xếp chỉnh hợp 3 bạn nữ vào 5 ngăn đó có
cách.
Vậy xác suất xảy ra là:.
Kết quả làm tròn số
đến chữ số thập phân thứ hai là:
Ta có:
Cho số gần đúng
. Hãy viết số quy tròn của
?
Ta có số quy tròn của là:
.
Xét một phép thử có không gian mẫu
gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là một biến cố bất kì trong phép thử đó. Chọn phát biểu đúng dưới đây?
Xét một phép thử có không gian mẫu gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là một biến cố bất kì của phép thử đó. Khi đó
là phát biểu đúng.
Một xạ thủ bán từ khoảng cách 100m có xác suất bắn trúng đích là:
- Tâm 10 điểm: 0,5.
- Vòng 9 điểm: 0,25.
- Vòng 8 điểm: 0,1.
- Vòng 7 điểm: 0,1.
- Ngoài vòng 7 điểm: 0,05.
Tính xác suất để sau 3 lần bắn xạ thủ đó được 27 điểm.
Ta có
Với bộ có 3 cách xáo trộn điểm các lần bắn
Với bộ có 6 cách xáo trộn điểm các lần bắn
Với bộ có 1 cách xáo trộn điểm các lần bắn.
Do đó xác suất để sau 3 lần bắn xạ thủ được đúng 27 điểm là:
.
Tìm các giá trị bất thường của mẫu số liệu:
5 6 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 48 49
Mẫu số liệu đã được sắp xếp theo thứ tự không giảm.
Giá trị chính giữa là 27 nên .
Giá trị chính giữa của mẫu 5 6 19 21 22 23 24 25 26 là 22 nên .
Giá trị chính giữa của mẫu 28 29 30 31 32 33 34 48 49 là 32 nên .
Khoảng tứ phân vị .
Ta có:
.
Ta co:
.
Ta thấy có giá trị 5 và 6 nhỏ hơn 7 nên đây là 2 giá trị bất thường.
Ta thấy có 48 và 49 là hai giá trị lớn hơn 47 nên đây là 2 giá trị bất thường.
Một bác sĩ ghi lại độ tuổi của một số người đến khám trong bảng:

Tìm trung vị của mẫu số liệu trên.
Cỡ mẫu số liệu trên là .
Thống kê lại:
Hai giá trị chính giữa của mẫu là giá trị ở vị trí thứ 15 và thứ 16. Đó là số 17 và số 17.
Suy ra trung vị
.
Cho số
. Số quy tròn của số gần đúng
bằng:
Hàng lớn nhất có độ chính xác là hàng trăm nên ta quy tròn số a đến hàng nghìn.
Vậy số quy tròn của a là: .
Trên bàn có 3 quả táo và 4 quả cam. Xác định số phần tử không gian mẫu của phép thử lấy 2 quả ở trên bàn sau đó bỏ ra ngoài rồi lấy tiếp 1 quả nữa.
Lấy 2 quả trong 7 quả ở trên bàn và không tính thứ tự nên số cách là: (cách).
Sau khi bỏ 2 quả ra ngoài còn lại 5 quả. Lấy 1 quả trong 5 quả trên bàn có 5 cách.
Vậy số phần tử không gian mẫu là:
Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố không?
Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố không là “Mặt xuất hiện của con xúc xắc có số chấm là 8 chấm.”
Số quy tròn của
với độ chính xác đã cho là:
Số quy tròn của số là:
.
Bảng dưới đây thống kê điểm Văn của lớp 10H.

Biết
. Tìm mốt của bảng số liệu.
Vì tổng số học sinh bằng 40 nên ta có: .
Thống kê lại bảng:
Vậy mốt là giá trị 6 (xuất hiện 14 lần, nhiều nhất).
Từ một hộp có 6 viên bi xanh, 5 viên bi đỏ và 4 viên bi vàng. Lấy ngẫu nhiên 7 viên bi. Tính xác suất để lấy được ít nhất một viên bi vàng?
Số phần tử không gian mẫu:
Số phần tử biến cố lấy ngẫu nhiên 7 viên bi không có viên bi màu vàng là:
Vậy xác suất để lấy được ít nhất một viên bi vàng là:
Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa. Lấy ngẫu nhiên 3 quyển sách. Xác suất để 3 quyển được lấy ra đều là môn toán là bao nhiêu?
Số cách lấy 3 quyển sách bất kì là .
Số cách lấy được 3 quyển thuộc môn toán là .
Suy ra xác suất cần tìm là .
Giả sử
là các tứ phân vị của mẫu số liệu. Khoảng tứ phân vị của mẫu số liệu là:
Khoảng tứ phân vị của mẫu số liệu là: .
Một người có
đôi giày khác nhau và trong lúc đi du lịch vội vã lấy ngẫu nhiên
chiếc.
Xác suất để trong
chiếc giày lấy ra có ít nhất một đôi là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên chiếc giày từ
chiếc giày.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
chiếc giày lấy ra có ít nhất một đôi
. Để tìm số phần tử của biến cố
, ta đi tìm số phần tử của biến cố
, với biến cố
là
chiếc giày được chọn không có đôi nào.
● Số cách chọn đôi giày từ
đôi giày là
.
● Mỗi đôi chọn ra chiếc, thế thì mỗi chiếc có
cách chọn. Suy ra
chiếc có
cách chọn.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Cho bảng số liệu ghi lại điểm của 40 học sinh trong bài kiểm tra 1 tiết môn toán như sau:
Điểm | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Cộng |
Số học sinh | 2 | 3 | 7 | 18 | 3 | 2 | 4 | 1 | 40 |
Số trung bình cộng
của mẫu số liệu trên là:
Số trung bình cộng của mẫu số liệu trên là:
.