Một hộp gồm có 4 bi xanh và 5 bi đỏ. Lấy ngẫu nhiên hai viên bi trong hộp. Biến cố đối của biến cố D: “Hai viên bi cùng màu” là:
Biến cố đối của biến cố D: “Hai viên bi cùng màu” là: : “Hai viên bi khác màu”.
Một hộp gồm có 4 bi xanh và 5 bi đỏ. Lấy ngẫu nhiên hai viên bi trong hộp. Biến cố đối của biến cố D: “Hai viên bi cùng màu” là:
Biến cố đối của biến cố D: “Hai viên bi cùng màu” là: : “Hai viên bi khác màu”.
Cho mẫu số liệu như sau:

Khoảng biến thiên của mẫu số liệu trên là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 29.
Giá trị nhỏ nhất là 23
Suy ra khoảng biến thiên của mẫu số liệu là: 29 – 23 = 6.
Vậy đáp án là 6.
Xác suất của biến cố
kí hiệu là
. Biến cố
là biến cố đối của A, có xác suất là ![]()
Chọn phát biểu sai trong các phát biểu sau:
Phát biểu sai là: "Xác suất của mỗi biến cố đo lường xảy ra của biến cố đó. Biến cố có khả năng xảy ra càng cao thì xác suất của nó càng xa 1."
Đạt và Phong tham gia chơi trò một trò chơi đối kháng, thỏa thuận rằng ai thắng 5 ván trước là thắng chung cuộc và được hưởng toàn bộ số tiền thưởng của chương trình (không có ván nào hòa). Tuy nhiên khi Đạt thắng được 4 ván và Phong thắng được 2 ván rồi thì xảy ra sự cố kĩ thuật và chương trình buộc phải dừng lại. Biết rằng giới chuyên môn đánh giá Phong và Đạt ngang tài ngang sức. Hỏi phải chia số tiền thưởng như thế nào cho hợp lý (dựa trên quan điểm tiền thưởng tỉ lệ thuận với xác suất thắng cuộc của mỗi người).
Phân tích: Đề bài cho các điều kiện khá dài dòng, ta cần đưa chúng về dạng ngắn gọn dễ hiểu hơn.
+) “Biết rằng giới chuyên môn đánh giá Phong và Đạt ngang tài ngang sức”: xác suất để Phong và Đạt thắng trong một ván là như nhau và bằng .
+) “Khi Đạt thắng được 4 ván và Phong thắng được 2 ván rồi”: nghĩa là Đạt chỉ cần thắng một ván nữa là được 5 ván, còn Phong phải thắng 3 ván nữa mới đạt được.
Để xác định xác suất thắng chung cuộc của Đạt và Phong ta tiếp tục chơi thêm các ván “giả tưởng”. Để Phong có thể thắng chung cuộc thì anh phải thắng Đạt 3 ván liên tiếp (vì Đạt chỉ còn một ván nữa là thắng).
Như vậy xác suất thắng cuộc của Phong là: .
Xác suất thắng cuộc của Đạt là .
Vậy Tỉ lệ chia tiền phù hợp là .
Cho A là biến cố liên quan phép thử T. Mệnh đề nào sau đây là mệnh đề đúng?
Mệnh đề đúng là:
Chọn ngẫu nhiên một số nguyên dương không lớn hơn 30. Xác suất để số được chọn là một số nguyên tố bằng:
Số phần tử không gian mẫu là:
Gọi A là biến cố: “học sinh được chọn là học sinh nam?”
Vậy xác suất của biến cố A là:
Một thùng có
sản phẩm, trong đó có
sản phẩm loại
và
sản phẩm loại
. Lấy ngẫu nhiên
sản phẩm từ thùng đó. Xác suất để lấy được
sản phẩm cùng loại là bao nhiêu?
Lấy ngẫu nhiên sản phẩm trong
sản phẩm thì có
(cách).
sản phẩm được lấy ra đều là sản phẩm loại
có
(cách).
sản phẩm được lấy ra đều là sản phẩm loại
có
(cách).
Xác suất để lấy được sản phẩm cùng loại là
.
Trong một bài kiểm tra chạy của 20 học sinh, thầy giáo đã ghi lại kết quả trong bảng sau:
|
Thời gian (giây) |
8,3 |
8,4 |
8,5 |
8,7 |
8,8 |
|
Số học sinh |
2 |
3 |
9 |
5 |
1 |
Mốt của bảng số liệu trên là:
Quan sát bảng số liệu ta thấy:
Số học sinh đạt kết quả 8,5 giây là lớn nhất bằng 9 học sinh.
=> Mốt của bảng số liệu là 8,5.
Một người chọn ngẫu nhiên đồng thời 4 quân bài từ bộ tú lơ khơ 52 quân bài. Tính xác suất của biến cố: “Cả 4 quân bài đều là Át”?
Số phần tử không gian mẫu:
Chỉ có đúng 1 cách để lấy được cả 4 quân bài đều là Át nên xác suất cần tìm là:
Xác định số trung vị của dãy số liệu
?
Dãy số đã cho được sắp xếp theo thứ tự không giảm.
Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.
Do đó số trung vị của dãy trên là 7.
Gieo ba con súc sắc cân đối đồng chất. Tính xác suất để số chấm xuất hiện trên ba con súc sắc như nhau.
Số phần tử của không gian mẫu là
Gọi là biến cố
Số chấm xuất hiện trên ba con súc sắc như nhau
. Ta có các trường hợp thuận lợi cho biến cố
là
Suy ra
Vậy xác suất cần tính .
Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng (xem hình minh họa). Bạn An di chuyển quân vua ngẫu nhiên
bước. Xác suất sau
bước quân vua trở về ô xuất phát là bao nhiêu?

Tại mọi ô đang đứng, ông vua có khả năng lựa chọn để bước sang ô bên cạnh.
Do đó không gian mẫu .
Gọi là biến cố “sau 3 bước quân vua trở về ô xuất phát”. Sau ba bước quân vua muốn quay lại ô ban đầu khi ông vua đi theo đường khép kín tam giá
Chia hai trường hợp:
+ Từ ô ban đầu đi đến ô đen, đến đây có cách để đi bước hai rồi về lại vị trí ban đầu.
+ Từ ô ban đầu đi đến ô trắng, đến đây có cách để đi bước hai rồi về lại vị trí ban đầu.
Do số phần tử của biến cố A là .
Vậy xác suất .
Kết quả kiểm tra Toán của một số học sinh như sau:
. Khoảng biến thiên của mẫu số liệu là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 10
Giá trị nhỏ nhất là 7
Suy ra khoảng biến thiên của mẫu số liệu là: 10 – 7 = 3
Bảng sau thống kê điểm kiểm tra của học sinh lớp 10C.

Tìm trung vị của dãy số liệu trên.
Cỡ mẫu số liệu này là:
.
Suy ra giá trị chính giữa là giá trị ở vị trí thứ 20. Đó là số 17.
Vậy trung vị .
Kết quả thi Toán của một số học sinh trong lớp là:
. Trung vị là:
Dãy số liệu gồm 5 số liệu đã được sắp xếp theo thứ tự không giảm.
Vì 5 là số lẻ nên trung vị nằm ở vị trí . Có nghĩa là trung vị bằng 7.
Quy tròn số 73,316 đến hàng phần trăm.
Quy tròn số 73,316 đến hàng phần trăm ta được số 73,32.
Bảng sau đây cho ta biết số cuốn sách mà học sinh của một lớp ở trường Trung học phổ thông đã đọc:
Số sách | 1 | 2 | 3 | 4 | 5 | 6 | |
Số học sinh đọc | 10 | m | 8 | 6 | n | 3 | n = 40 |
Tìm m và n, biết phương sai của mẫu số liệu trên xấp xỉ 2,52.
Số trung bình là:
Phương sai là:
Theo bài ra ta có:
Kiểm tra được: m = 8 và n = 5 thỏa mãn.
Câu lạc bộ Liverpool đạt được điểm số tại giải Ngoại hạng Anh từ mùa giải 2010-2011 đến mùa 2018-2019 như sau: 75 82 87 50 93 70 72 66 67.
Khoảng biến thiên điểm số là:
Khoảng biến thiên là .
Giả sử E là một biến cố liên quan phép thử
với không gian mẫu
. Phát biểu nào dưới đây sai?
khi và chỉ khi
là biến cố không thể.
Xác định mốt của mẫu số liệu: ![]()
Ta có: số 17 có tần số xuất hiện nhiều nhất
Suy ra mốt của mẫu số liệu là 17.
Tìm trung vị của dãy số liệu 2 3 1 5 3 7 9 10.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 2 3 3 5 7 9 10.
Dãy trên có hai giá trị chính giữa là 3 và 5.
Suy ra trung vị là: .
Chọn ngẫu nhiên hai số phân biệt từ 15 số nguyên dương đầu tiên. Tính xác suất để tích hai số được chọn là một số chẵn?
Trong 15 số nguyên dương đầu tiên có 7 số chẵn và 8 só lẻ.
Ta có:
Gọi A là biến cố “Tích hai số được chọn là một số chẵn”
TH1: 1 số lẻ và 1 số chẵn ta có: cách chọn
TH2: 2 số chẵn ta có: cách chọn
Vậy
Chọn khẳng định sai?
Khẳng định sai: “Giá trị bất thường trong mẫu số liệu thuộc ”
Sửa lại: “Giá trị bất thường trong mẫu số liệu nằm ngoài đoạn ”.
Cho bảng số liệu thống kê kết quả thi chạy 100m của một nhóm học sinh (đơn vị: giây) như sau:
|
Thời gian |
12 |
13 |
14 |
15 |
16 |
|
Số học sinh |
6 |
4 |
5 |
3 |
2 |
Tính thời gian chạy trung bình của nhóm học sinh đó?
Số học sinh tham gia chạy là 20 (học sinh)
Thi gian chạy trung bình của nhóm 20 học sinh là:
(giây)
Vậy thời gian chạy trung bình của nhóm học sinh bằng 13,55 giây.
Quy tròn số 3,1234567 đến hàng phần nghìn. Số gần đúng nhận được là:
Quy tròn số 3,1234567 đến hàng phần nghìn ta được số: 3,123.
Tìm giá trị bất thường của dãy số liệu: 3 6 8 14 19 28.
Hai giá trị chính giữa là 8 và 14. Suy ra trung vị .
Trung vị của mẫu 3 6 8 là
.
Trung vị của mẫu 14 19 28 là
.
Suy ra .
Xét: .
Xét: .
Ta thấy không có giá trị nào nhỏ hơn và lớn hơn
nên dãy không có giá trị bất thường.
Từ một hộp có 6 viên bi xanh, 5 viên bi đỏ và 4 viên bi vàng. Lấy ngẫu nhiên 7 viên bi. Tính xác suất để lấy được ít nhất một viên bi vàng?
Số phần tử không gian mẫu:
Số phần tử biến cố lấy ngẫu nhiên 7 viên bi không có viên bi màu vàng là:
Vậy xác suất để lấy được ít nhất một viên bi vàng là:
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được
. Giá trị gần đúng của
chính xác đến hàng phần trăm là:
Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 4 ở hàng phần trăm là số 5 nên theo nguyên lý làm tròn ra được kết quả là:
Gieo một con súc sắc cân đối và đồng chất. Xác suất mà mặt có số chấm chẵn xuất hiện là bao nhiêu?
Ta có: Không gian mẫu suy ra
.
Gọi biến cố : “Con súc sắc có số chấm chẵn xuất hiện” hay
suy ra
.
Từ đó suy ra .
Vậy xác suất để mặt có số chấm chẵn xuất hiện là .
Một người có
đôi giày khác nhau và trong lúc đi du lịch vội vã lấy ngẫu nhiên
chiếc.
Xác suất để trong
chiếc giày lấy ra có ít nhất một đôi là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên chiếc giày từ
chiếc giày.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
chiếc giày lấy ra có ít nhất một đôi
. Để tìm số phần tử của biến cố
, ta đi tìm số phần tử của biến cố
, với biến cố
là
chiếc giày được chọn không có đôi nào.
● Số cách chọn đôi giày từ
đôi giày là
.
● Mỗi đôi chọn ra chiếc, thế thì mỗi chiếc có
cách chọn. Suy ra
chiếc có
cách chọn.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Có 100 học sinh tham dự kì thi học sinh giỏi Toán (thang điểm 20). Kết quả sau kì thi được thống kê như sau:
Điểm | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
Tần số | 1 | 1 | 3 | 5 | 8 | 13 | 19 | 24 | 14 | 10 | 2 |
Giá trị của phương sai gần bằng:
Kết quả trung bình là:
Giá trị của phương sai là:
Một chiếc hộp đựng 7 viên bi màu xanh, 6 viên bi màu đen, 5 viên bi màu đỏ, 4 viên bi màu trắng. Chọn ngẫu nhiên ra 4 viên bi, tính xác suất để lấy được ít nhất 2 viên bi cùng màu.
Không gian mẫu là số cách chọn ngẫu nhiên 4 viên bi từ 22 viên bi đã cho.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
Lấy được 4 viên bi trong đó có ít nhất hai viên bi cùng màu
. Để tìm số phần tử của
, ta đi tìm số phần tử của biến cố
, với biến cố
là lấy được 4 viên bi trong đó không có hai viên bi nào cùng màu.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Cho số đúng
và số gần đúng của
của
. Xác định sai số tuyệt đối
.
Ta có:
Suy ra sai số tuyệt đối là:
Khẳng định nào sau đây là đúng?
Khẳng định đúng là: "Nếu sai số tương đối của phép đo càng nhỏ thì chất lượng phép đo càng cao."
Tìm khoảng tứ phân vị của mẫu số liệu sau: 200 240 220 210 225 235 225 270 250 280.
Sắp xếp mẫu theo thứ tự không giảm: 200 210 220 225 225 235 240 250 270 280
Mẫu 200 210 220 225 225 235 240 250 270 280 có 2 số chính giữa là 225 và 235. Suy ra .
Mẫu 200 210 220 225 225 có số chính giữa là 220. Suy ra .
Mẫu 235 240 250 270 280 có số chính giữa là 270. Suy ra .
Khoảng tứ phân vị: .
Kết quả đi chiều dài của một cây thước là
thì sai số tương đối của phép đo là:
Ta có:
Bảng dưới đây thống kê tuổi thọ của một số bóng đèn (đơn vị: giờ):

Tìm mốt của bảng trên.
Ta thấy giá trị 1170 xuất hiện nhiều nhất. Suy ra mốt của bảng trên là 1170.
Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện nhân 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.
Giả sử các số liệu trong mẫu là: đã sắp xếp theo thứ tự không giảm.
Khoảng biến thiên: .
Nhân hai với tất cả các số liệu: .
Khoảng biến thiên: .
Suy ra .
Một lớp có 43 học sinh trong đó có 23 học sinh nữ và 20 học sinh nam. Chọn ngẫu nhiên 5 học sinh. Xác suất để 5 học sinh được chọn có cả nam và nữ gần nhất với kết quả nào dưới đây?
Số phần tử của không gian mẫu là:
Số cách chọn 5 học sinh chỉ có nam hoặc chỉ có nữ là:
Số cách chọn 5 học sinh có cả nam và nữ là:
Xác suất của biến cố 5 học sinh được chọn có cả nam và nữ là:
Một xạ thủ bán từ khoảng cách 100m có xác suất bắn trúng đích là:
- Tâm 10 điểm: 0,5.
- Vòng 9 điểm: 0,25.
- Vòng 8 điểm: 0,1.
- Vòng 7 điểm: 0,1.
- Ngoài vòng 7 điểm: 0,05.
Tính xác suất để sau 3 lần bắn xạ thủ đó được 27 điểm.
Ta có
Với bộ có 3 cách xáo trộn điểm các lần bắn
Với bộ có 6 cách xáo trộn điểm các lần bắn
Với bộ có 1 cách xáo trộn điểm các lần bắn.
Do đó xác suất để sau 3 lần bắn xạ thủ được đúng 27 điểm là:
.