Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Thống kê gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho dữ liệu thống kê số vốn (đơn vị: triệu đồng) mua phân bón vụ mùa của 10 hộ nông dân ở thôn B như sau:

    2,9;\ 1,2;\ 1,1;\ 0,8;\ 3,5;\ 1,6;\
1,8;\ 1,2;\ 1,3;\ 0,7

    Tìm các giá trị bất thường của mẫu số liệu đã cho?

    Sắp xếp dãy số liệu theo thứ tự không giảm ta được:

    \ 0,7;\ 0,8;1,1;\ 1,2;\ 1,2;\ 1,3;\
1,6;\ 1,8;\ 2,9;\ 3,5

    Ta xác định được các tứ phân vị:\left\{
\begin{matrix}
Q_{2} = 1,25 \\
Q_{1} = 1,1 \\
Q_{3} = 1,8 \\
\end{matrix} ight.

    \Rightarrow \Delta Q = Q_{3} - Q_{1} =
1,8 - 1,1 = 0,7

    \Rightarrow \left\{ \begin{matrix}Q_{1} - \dfrac{3}{2}\Delta Q = 0,05 \\Q_{3} + \dfrac{1}{2}\Delta Q = 2,85 \\\end{matrix} ight.

    Suy ra có hai giá trị bất thường là 2,9;\
3,5.

  • Câu 2: Thông hiểu

    Cho dãy số liệu 9;10;15;18;19;27;30;40;46;100;200. Tứ phân vị thứ nhất của mẫu số liệu là:

    Vì cỡ mẫu của mẫu số liệu bằng 11 là số lẻ

    => Số trung vị của mẫu số liệu trên là 27 \Rightarrow Q_{2} = 27

    Nửa dữ liệu bên trái Q_{2} là: 9;10;15;18;19

    Do đó Q_{1} = 15

    Suy ra tứ phân vị thứ nhất của mẫu số liệu là Q_{1} = 15.

  • Câu 3: Thông hiểu

    Viết số quy tròn của số gần đúng 123,4167 có độ chính xác d = 0,005.

    d = 0,005 nhỏ hơn một đơn vị ở hàng phần trăm nên ta làm tròn số đến hàng phần trăm. Số quy tròn là: 123,42.

  • Câu 4: Thông hiểu

    Liệt kê sĩ số của từng lớp trong khối 10 ta được bảng số liệu như sau:

    Lớp

    10A

    10B

    10C

    10D

    10E

    Sĩ số

    40

    43

    45

    41

    46

    Xác định giá trị gần nhất với độ lệch chuẩn của mẫu số liệu?

    Ta có: N = 5

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{40 + 43 + 45 + 42 +
46}{5} = 43

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{(40 - 43)^{2} + (43 -
43)^{2} + (45 - 43)^{2} + (41 - 43)^{2} + (46 - 43)^{2}}{5} =
5,2

    Suy ra độ lệch chuẩn của mẫu số liệu là:

    s = \sqrt{s^{2}} = 2,28

    Vậy độ lệch chuẩn của mẫu số liệu là 2,28.

  • Câu 5: Nhận biết

    Xác định số trung vị của dãy số liệu 1;2;5;7;8;9;10?

    Dãy số đã cho được sắp xếp theo thứ tự không giảm.

    Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.

    Do đó số trung vị của dãy trên là 7.

  • Câu 6: Thông hiểu

    Điểm kiểm tra môn Văn của 2 tổ học sinh được thống kê:

    Dựa vào khoảng biến thiên thì tổ nào học đều hơn?

    Khoảng biến thiên điểm của tổ 1 là R_{1}
= 9 - 7 = 2.

    Khoảng biến thiên điểm của bạn Bình là R_{2} = 10 - 6 = 4.

    R_{1} < R_{2} nên tổ 1 học đều hơn.

  • Câu 7: Nhận biết

    Cho \overline{a}
= 12,2474487. Số gần đúng của \overline{a} với độ chính xác d = 0,003 là:

    Vì độ chính xác d = 0,003 nên số gần đúng được quy tròn đến hàng phần chục.

    Vậy đáp án đúng là 12,25.

  • Câu 8: Nhận biết

    Cho mẫu số liệu: 6; 7; 8; 9; 10. Tính phương sai của mẫu.

    Số trung bình là \overline{x} = \frac{6 + 7 + 8 + 9 + 10}{5} = 8.

    Phương sai là s^{2} = \frac{(6 - 8)^{2} + (7 - 8)^{2} + (8 - 8)^{2} + (9
- 8)^{2} + (10 - 8)^{2}}{5} =
2.

  • Câu 9: Thông hiểu

    Số gần đúng của a
= 2,57656 có ba chữ số đáng tin viết dưới dạng chuẩn là:

    Vì số gần đúng của số a có ba chữ số đáng tin nên ba chữ số đó là 2,5,7.

    Nên cách viết dưới dạng chuẩn là 2,57.

  • Câu 10: Nhận biết

    Cho dãy số liệu 1;1;2;3;4;4;5;5;5;6. Xác định mốt của mẫu số liệu?

    Mốt số liệu đã cho có số 5 xuất hiện nhiều lần nhất

    Suy ra mốt của mẫu số liệu là 5.

  • Câu 11: Nhận biết

    Chiều cao của một số học sinh nữ lớp 9 (đơn vị cm) được cho trong bảng.

    Tìm khoảng tứ phân vị của mẫu số liệu này.

    Nhận thấy mẫu đã được sắp xếp theo thứ tự không giảm.

    Số liệu chính giữa là 162 nên Q_{2} =
162.

    Số liệu chính giữa của mẫu 151 152 153 154 155 160 160 là 154 nên Q_{1} = 154.

    Số liệu chính giữa của mẫu 163 165 165 165 166 167 167 là 165 nên Q_{3} = 165.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1} = 165 - 154 =
11.

  • Câu 12: Nhận biết

    Khẳng định nào sau đây là đúng?

     Trong đo đạc và tính toán, ta thường chỉ nhận được số gần đúng.

  • Câu 13: Thông hiểu

    Phát biểu nào sau đây sai?

    Phát biểu sai là: "Khoảng tứ phân vị bị ảnh hưởng bởi các giá trị rất lớn hoặc rất bé trong mẫu."

  • Câu 14: Nhận biết

    Giả sử Q_{1},Q_{2},Q_{3} là các tứ phân vị của mẫu số liệu. Khoảng tứ phân vị của mẫu số liệu là:

    Khoảng tứ phân vị của mẫu số liệu là: \Delta Q = Q_{3} - Q_{1}.

  • Câu 15: Nhận biết

    Cho mẫu số liệu có s^{2} = 9. Khi đó độ lệch chuẩn của mẫu số liệu bằng:

    Độ lệch chuẩn s = \sqrt{s^{2}} = \sqrt{9}
= 3

  • Câu 16: Nhận biết

    Điểm kiểm tra môn Văn của bạn Lan là: 7; 9; 8; 9. Tính số trung bình cộng \overline{x} của mẫu số liệu trên.

    Số trung bình cộng của mẫu số liệu trên là: \overline{x} = \frac{7 + 9 + 8 + 9}{4} =
8,25.

  • Câu 17: Thông hiểu

    Tìm phương sai của mẫu số liệu: 8;\ 6;\ 7;\ 5;\ 9?

    Ta có: N = 5

    Số trung bình là:

    \overline{x} = \frac{8 + 6 + 7 + 5 +
9}{5} = 7

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{(8 - 7)^{2} + (6 - 7)^{2}
+ (7 - 7)^{2} + (5 - 7)^{2} + (9 - 7)^{2}}{5} = 2

    Vậy đáp án là 2.

  • Câu 18: Thông hiểu

    Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của \pi^{2}chính xác đến hàng phần trăm.

    Sử dụng máy tính bỏ túi ta có giá trị của \pi^{2} là 9,8696044. Do đó, giá trị gần đúng của \pi^{2} chính xác đến hàng phần trăm là 9,9.

  • Câu 19: Nhận biết

    Số quy tròn của a = 15,31828 \pm 0,001 với độ chính xác đã cho là:

    Số quy tròn của số a = 15,31828 \pm
0,001 là: 15,32.

  • Câu 20: Vận dụng

    Bảng dưới đây thể hiện sản lượng lúa (đơn vị: tạ) của một số thửa ruộng:

    Tính phương sai của mẫu số liệu.

    Số trung bình của mẫu là:

    \overline{x} =\frac{1.4 + 3.4,5 +
4.5 + 1.5,5 + 1.6}{1 + 3 + 4 + 1 + 1} = 4,9.

    Phương sai:

    s^{2} = \frac{(4 - 4,9)^{2} + 3.(4,5 - 4,9)^{2} + 4(5 -
4,9)^{2} + (5,5 - 4,9)^{2} + (6 - 4,9)^{2}}{10} = 0,29.

  • Câu 21: Nhận biết

    Quy tròn số 73,316 đến hàng phần trăm.

    Quy tròn số 73,316 đến hàng phần trăm ta được số 73,32.

  • Câu 22: Nhận biết

    Biết \sqrt[3]{5}=1.709975947....  Viết gần đúng \sqrt[3]{5} theo nguyên tắc làm tròn với hai chữ số thập phân và ước lượng sai số tuyệt đối.

    Làm tròn với hai chữ số thập phân: \sqrt[3]{5} = 1,71

    Sai số tuyệt đối: \left| {1,71-\sqrt[3]{5}} ight| < \left| {1,71-1,7099} ight| = 0,0001

    Vậy sai số tuyệt đối không vượt quá 0,0001.

    Làm tròn với ba chữ số thập phân: \sqrt[3]{5} = 1,710

    Sai số tuyệt đối: \left| {1,71 - \sqrt[3]{5}} ight| < \left| {1,71 - 1,7099} ight| = 0,0001

    Vậy sai số tuyệt đối không vượt quá 0,0001.

    Làm tròn với bốn chữ số thập phân: \sqrt[3]{5} = 1,7100

    \left| {1,71 - \sqrt[3]{5}} ight| < \left| {1,71 - 1,7099} ight| = 0,0001

    Vậy sai số tuyệt đối không vượt quá 0,0001.

  • Câu 23: Thông hiểu

    Cho số đúng \overline{a} = 1,12512 và số gần đúng của \overline{a} của 1,125. Xác định sai số tuyệt đối \Delta_{a}.

    Ta có: a = 1,125

    Suy ra sai số tuyệt đối là:

    \Delta_{a} = \left| \overline{a} - a
ight| = |1,12512 - 1,125| = 0,00012

  • Câu 24: Vận dụng

    Tìm tứ phân vị dưới của bảng số liệu sau:

    Cỡ mẫu số liệu trên là: n = 10 + 8 + 4 +
2 + 1 = 25.

    Giá trị chính giữa của mẫu là giá trị ở vị trí thứ 13, đó là số 27. Suy ra M_{e} = Q_{2} = 27.

    Ta đi tìm trung vị của mẫu số liệu gồm 12 giá trị bên trái M_{e}. Hai giá trị chính giữa là giá trị ở vị trí thứ 6 và 7. Đó là số 26 và số 26.

    Suy ra Q_{1} = \frac{26 + 26}{2} =
26. Vậy tứ phân vị dưới là 26.

  • Câu 25: Nhận biết

    Điểm kiểm tra môn Toán của Hoa thời gian gần đây được liệt kê như sau: 3;\ 4;\ 7;\ 7;\
9. Khoảng biến thiên của mẫu số liệu trên là:

    Quan sát mẫu số liệu đã cho ta thấy:

    Giá trị lớn nhất là 9

    Giá trị nhỏ nhất là 3

    Suy ra khoảng biến thiên của mẫu số liệu là: 9 – 3 = 6.

  • Câu 26: Nhận biết

    Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là:

     Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là: kg

  • Câu 27: Thông hiểu

    Sản lượng lúa (đơn vị: tạ) của 40 thửa ruộng thí nghiệm có cùng diện tích được trình bày trong bảng số liệu sau:

    Sản lượng

    20

    21

    22

    23

    24

     

    Tần số

    5

    8

    11

    10

    6

    n = 40

    Phương sai là:

    Sản lượng lúa trung bình là:

    \overline x  = \frac{{5.20 + 8.21 + 11.22 + 10.23 + 6.24}}{{40}} = 22,1

    Phương sai là:

    \begin{matrix}  {S^2} = \dfrac{1}{{40}}\left( {{{5.20}^2} + {{8.21}^2} + {{11.22}^2} + {{10.23}^2} + {{6.24}^2}} ight) - {\left( {22,1} ight)^2} \hfill \\   \Rightarrow {S^2} = 1,54 \hfill \\ \end{matrix}

  • Câu 28: Thông hiểu

    Cho bảng điểm kiểm tra môn Toán của học sinh lớp 10B như sau:

    Điểm

    4

    5

    6

    7

    8

    9

    10

    Tổng

    Số học sinh

    2

    8

    7

    10

    8

    3

    2

    N = 40

    Tính số trung bình của mẫu số liệu? (Làm tròn kết quả đến chữ số thập phân thứ nhất).

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{2.4 + 5.8 + 6.7 +
7.10 + 8.8 + 9.3 + 10.2}{40} \approx 6,8

    Vậy số trung bình của mẫu số liệu bằng 6,8.

  • Câu 29: Thông hiểu

    Cho bảng số liệu điểm kiểm tra môn Toán của 20 học sinh

    Điểm

    4

    5

    6

    7

    8

    9

    10

    Số học sinh

    1

    2

    3

    4

    5

    4

    1

    Tìm trung vị của bảng số liệu trên.

    Bảng số liệu có 20 giá trị => n = 20.

    => {M_e} = \frac{{{x_{10}} + {x_{11}}}}{2} = \frac{{7 + 8}}{2} = 7,5.

  • Câu 30: Nhận biết

    Khoảng biến thiên tứ phân vị \Delta Q được xác định bởi:

    Khoảng biến thiên tứ phân vị \Delta
Q được xác định bởi Q_{3} -
Q_{1}.

  • Câu 31: Nhận biết

    Kết quả đo chiều cao của một học sinh được ghi là 175cm \pm 0,2cm. Điều đó có nghĩa là gì?

    Kết quả đo chiều cao của một học sinh được ghi là 175cm \pm 0,2cm có nghĩa là: “Chiều cao đúng của học sinh là một số nằm trong khoảng từ 174,8cm đến 175,2cm.”

  • Câu 32: Vận dụng

    Cho dãy số liệu về chiều cao của một nhóm học sinh như sau: 160;178;150;164;168;176;156;172. Các tứ phân vị của mẫu số liệu là:

    Dãy số liệu sắp xếp theo thứ tự không giảm là: 150;156;160;164;168;172;176;178

    Trung vị là Q_{2} = \frac{164 + 168}{2} =
166

    Nửa dữ liệu bên trái Q_{2} là: 150;156;160;164

    Do đó Q_{1} = \frac{156 + 160}{2} =
158

    Nửa dữ liệu bên phải Q_{2} là: 168;172;176;178

    Do đó Q_{3} = \frac{172 + 176}{2} =
174

  • Câu 33: Nhận biết

    Trong kết quả thống kê điểm môn Tiếng Anh của một lớp có 40 học sinh, điểm thấp nhất là 2 điểm và cao nhất là 10 điểm. Khẳng định nào sau đây đúng?

    Khi thực hiện tính điểm trung bình hay trung vị còn phụ thuộc vào tần số của mỗi điểm.

    Nếu chỉ có khoảng điểm thì không thể kết luận về điểm trung bình môn Tiếng Anh của lớp đó và trung vị.

  • Câu 34: Vận dụng

    Khi tính diện tích hình tròn bán kính R = 3cm, nếu lấy \pi = 3,14 thì độ chính xác là bao nhiêu?

    Ta có diện tích hình tròn S = 3,14. 32\overline{S} = \pi. 32 = 9\pi

    Ta có: 3,14 < \pi < 3,15 \Rightarrow 3,14.9 < 9\pi <
3,15.9 \Rightarrow 28,26 <
\overline{S} < 28,35

    Do đó: \overline{S} - S = \overline{S} -
28,26 < 28,35 - 28,26 =
0,09 \Rightarrow \Delta(S) = \left|
\overline{S} - S ight| < 0,09

    Vậy nếu ta lấy \pi = 3,14 thì diện tích hình tròn là S = 28,26cm2 với độ chính xác d = 0,09.

  • Câu 35: Nhận biết

    Cho bảng số liệu số máy tính bán được trong quý I đầu năm 2022 của một cửa hàng:

    Hãng

    HP

    Lenovo

    Asus

    Apple

    Dell

    Razer

    Số máy tính bán được

    55

    45

    42

    36

    60

    15

    Mốt của bảng số liệu trên là hãng máy tính nào?

    Số máy tính bán được nhiều nhất là 60 máy thuộc hãng Dell

    => Mốt của bảng số liệu trên là hãng Dell.

  • Câu 36: Thông hiểu

    Tìm số gần đúng của a = 5,2463 với độ chính xác d = 0,001?

    Độ chính xác d = 0,001 nên ta quy tròn số gần đúng a = 5,2463 đến hàng phần trăm và ta được số gần đúng là a
\approx 5,25.

  • Câu 37: Nhận biết

    Quy tròn số 2,654 đến hàng chục, được số 2,7. Khi đó sai số tuyệt đối là:

    Sai số tuyệt đối là:

    \Delta_{a} = \left| a - \overline{a}
ight| = |2,7 - 2,654| = 0,046

  • Câu 38: Nhận biết

    Kết quả kiểm tra Toán của một số học sinh như sau: 9;\ 9;\ 7;\ 8;\ 9;\ 7;\ 10;\ 8;\
8. Khoảng biến thiên của mẫu số liệu là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 10

    Giá trị nhỏ nhất là 7

    Suy ra khoảng biến thiên của mẫu số liệu là: 10 – 7 = 3

  • Câu 39: Vận dụng

    Một học sinh đo đường kính của một hình tròn là 24 \pm 0,2 (cm). Bạn đó tính được chu vi hình tròn là p = 75,36 (cm). Biết 3,141 < \pi <
3,142. Hãy ước lượng sai số tuyệt đối của p.

    Gọi \overline{a}\overline{p} lần lượt là đường kính và chu vi của hình tròn.

    Ta có: 23,8 \leq \overline{a} \leq
24,2.

    Ta có: 3,141.23,8 = 74,7558 \leq\overline{p} = \pi\overline{a}\leq 3,142.24,2 = 76,0364.

    Do đó 74,7558 - 75,36 = - 0,6042 \leq\overline{p} - 75,36\leq 76,0364 - 75,36 = 0,6764.

    Vậy sai số tuyệt đối của p\Delta_{p} = \left| \overline{p} - 75,36
ight| \leq 0,6764.

  • Câu 40: Thông hiểu

    Cho mẫu số liệu 1;3;4;13;x^{2} - 1;18;19;21 (đã sắp xếp thứ tự và x \in \mathbb{N}^{*}). Biết rằng trung vị của mẫu số liệu bằng 14. Tìm x?

    Dãy số liệu có 8 số liệu nên

    14 = \frac{13 + x^{2} - 1}{2}
\Leftrightarrow x^{2} = 16

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 4(tm) \\
x = - 4(ktm) \\
\end{matrix} ight.

    Vậy x = 4 thỏa mãn điều kiện đề bài.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 4 lượt xem
Sắp xếp theo