Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Thống kê gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tìm số gần đúng của a = 5,2463 với độ chính xác d = 0,001?

    Độ chính xác d = 0,001 nên ta quy tròn số gần đúng a = 5,2463 đến hàng phần trăm và ta được số gần đúng là a
\approx 5,25.

  • Câu 2: Thông hiểu

    Sản lượng lúa (đơn vị: tạ) của 40 thửa ruộng thí nghiệm có cùng diện tích được trình bày trong bảng số liệu sau:

    Sản lượng

    20

    21

    22

    23

    24

     

    Tần số

    5

    8

    11

    10

    6

    n = 40

    Phương sai là:

    Sản lượng lúa trung bình là:

    \overline x  = \frac{{5.20 + 8.21 + 11.22 + 10.23 + 6.24}}{{40}} = 22,1

    Phương sai là:

    \begin{matrix}  {S^2} = \dfrac{1}{{40}}\left( {{{5.20}^2} + {{8.21}^2} + {{11.22}^2} + {{10.23}^2} + {{6.24}^2}} ight) - {\left( {22,1} ight)^2} \hfill \\   \Rightarrow {S^2} = 1,54 \hfill \\ \end{matrix}

  • Câu 3: Nhận biết

    Tìm mốt của mẫu số liệu: 1 3 4 2 0 0 5 6.

    Giá trị 0 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 0.

  • Câu 4: Thông hiểu

    Kết quả đo chiều dài của một cây cầu được ghi là 152m \pm 0,2m, điều đó có nghĩa là gì?

    Kết quả đo chiều dài của một cây cầu được ghi là 152m \pm 0,2m có nghĩa là chiều dài đúng của cây cầu là một số nằm trong khoảng từ 151,8m đến 152,2m.

  • Câu 5: Vận dụng

    Tìm tứ phân vị dưới của bảng số liệu sau:

    Cỡ mẫu số liệu trên là: n = 10 + 8 + 4 +
2 + 1 = 25.

    Giá trị chính giữa của mẫu là giá trị ở vị trí thứ 13, đó là số 27. Suy ra M_{e} = Q_{2} = 27.

    Ta đi tìm trung vị của mẫu số liệu gồm 12 giá trị bên trái M_{e}. Hai giá trị chính giữa là giá trị ở vị trí thứ 6 và 7. Đó là số 26 và số 26.

    Suy ra Q_{1} = \frac{26 + 26}{2} =
26. Vậy tứ phân vị dưới là 26.

  • Câu 6: Thông hiểu

    Khi điều tra về số dân của tỉnh A, người ta thu được kết quả là \overline{a} = 1.234.872
\pm 30. Tìm số quy tròn của a.

    Số quy tròn của số a là: 1.234.900

  • Câu 7: Vận dụng

    Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện cộng 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.

    Giả sử các số liệu trong mẫu là: a_{1};a_{2};...;a_{10} đã sắp xếp theo thứ tự không giảm.

    Khoảng biến thiên: R_{1} = a_{10} -
a_{1}.

    Cộng hai với tất cả các số liệu: a_{1} +
2;a_{2} + 2;...;a_{10} + 2.

    Khoảng biến thiên: R_{2} = (a_{10} + 2) -
(a_{1} + 2 ) = a_{10} -
a_{1}.

    Suy ra R_{2} = R_{1}.

  • Câu 8: Nhận biết

    Khoảng biến thiên tứ phân vị \Delta Q được xác định bởi:

    Khoảng biến thiên tứ phân vị \Delta
Q được xác định bởi Q_{3} -
Q_{1}.

  • Câu 9: Nhận biết

    Khoảng biến thiên của mẫu số liệu: 2;5;16;8;7;9;10;12;14;11;6 là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 16

    Giá trị nhỏ nhất là 2

    Suy ra khoảng biến thiên của mẫu số liệu là: 16 – 2 = 14.

  • Câu 10: Nhận biết

    Xác định số trung vị của dãy số liệu 1;3;4;5;7;8;9?

    Dãy số đã cho được sắp xếp theo thứ tự không giảm.

    Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.

    Do đó số trung vị của dãy trên là 5.

  • Câu 11: Vận dụng

    Bạn An đo chiều dài của một sân bóng ghi được 250 \pm 0,2m. Bạn Bằng đo chiều cao của một cột cờ được 15 \pm 0,1m. Trong 2 bạn An và Bằng, bạn nào có phép đo chính xác hơn và sai số tương đối trong phép đo của bạn đó là bao nhiêu?

    Phép đo của bạn A có sai số tương đối \delta_{1} \leq \frac{0,2}{250} = 0,0008 =
0,08\%

    Phép đo của bạn B có sai số tương đối \delta_{2} \leq \frac{0,1}{15} = 0,0066 =
0,66\%

    Như vậy phép đo của bạn A có độ chính xác cao hơn.

  • Câu 12: Nhận biết

    Kết quả đo chiều cao của một học sinh được ghi là 175cm \pm 0,2cm. Điều đó có nghĩa là gì?

    Kết quả đo chiều cao của một học sinh được ghi là 175cm \pm 0,2cm có nghĩa là: “Chiều cao đúng của học sinh là một số nằm trong khoảng từ 174,8cm đến 175,2cm.”

  • Câu 13: Thông hiểu

    Số trung bình của mẫu số liệu 23;41;71;29;48;45;72;41 là:

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{23 + 29 + 2.41 + 45
+ 48 + 71 + 72}{8} = 46,25

    Vậy số trung bình là 46,25.

  • Câu 14: Thông hiểu

    Dự báo thời tiết trong 10 ngày tại tỉnh A được ghi lại trong bảng sau:

    Ngày

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    Nhiệt độ (0C)

    24

    25

    26

    27

    27

    26

    27

    21

    19

    18

    Tìm phương sai của mẫu số liệu đã cho?

    Ta có: N = 10

    Nhiệt độ trung bình của 10 ngày là:

    \overline{x} = \frac{24 + 25 + 26 + 27 +
28 + 26 + 27 + 21 + 19 + 18}{10} = 24

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{10}\lbrack(24 - 24)^{2}
+ (25 - 24)^{2} + (26 - 24)^{2}

    + (27 - 24)^{2} + (28 - 24)^{2} + (26 -
24)^{2} + (27 - 24)^{2}

    + (21 - 24)^{2} + (19 - 24)^{2} + (18 -
24)^{2}brack = 10,6

    Vậy phương sai cần tìm là 10,6.

  • Câu 15: Nhận biết

    Một nhà nghiên cứu ghi lại tuổi của 30 bệnh nhân mắc bệnh đau mắt hột như sau:

    21

    17

    22

    18

    20

    17

    15

    13

    15

    20

    15

    12

    18

    17

    25

    17

    21

    15

    12

    18

    16

    23

    14

    18

    19

    13

    16

    19

    18

    17

    Khoảng biến thiên R của mẫu số liệu trên là:

    Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột cao nhất là 25 tuổi.

    Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột thấp nhất là 12 tuổi.

    Khoảng biến thiên của mẫu số liệu trên là: R=25-12=13

  • Câu 16: Thông hiểu

    Khối lượng 30 gói hàng được cho bởi bảng:

    Tính số trung bình của bảng trên. (làm tròn đến hàng phần trăm).

    Số trung bình cộng của mẫu số liệu trên là:

    \overline{x} =\frac{4.250 + 4.300 + 5.350 + 6.400+ 4.450 + 7.500}{30}\approx 388,33.

  • Câu 17: Nhận biết

    Điểm kiểm tra môn Toán của Hoa thời gian gần đây được liệt kê như sau: 3;\ 4;\ 7;\ 7;\
9. Khoảng biến thiên của mẫu số liệu trên là:

    Quan sát mẫu số liệu đã cho ta thấy:

    Giá trị lớn nhất là 9

    Giá trị nhỏ nhất là 3

    Suy ra khoảng biến thiên của mẫu số liệu là: 9 – 3 = 6.

  • Câu 18: Thông hiểu

    Một miếng đất hình chữ nhật có chiều rộng x = 43m ± 0,5m và chiều dài y = 63m ± 0,5m. Tính chu vi P của miếng đất đã cho.

     Giả sử x = 43 + a, y = 63 + b.

    Chu vi miếng đất: P = 2x + 2y = 212 + 2(a + b).

    Theo giả thiết -0,5 ≤ a ≤ 0,5 và -0,5 ≤ b ≤ 0,5 nên -2 ≤ 2(a +b) ≤ 2.

    Do đó P = 212m ± 2m.

  • Câu 19: Nhận biết

    Một shop bán giày thống kê số lượng giày bán trong vài ngày trong bảng sau:

    Cỡ giày

    37

    38

    39

    40

    41

    42

    Số lượng

    35

    42

    50

    38

    32

    48

    Mốt của bảng số liệu trên là:

    Mốt là giá trị có tần số lớn nhất trong bảng số liệu

    Quan sát bảng số liệu đã cho suy ra mốt của bảng số liệu là 39.

  • Câu 20: Nhận biết

    Dung tích của một nồi cơm điện là 1,1 lít ± 0,01 lít. Sai số tương đối của dung tích nồi cơm điện không vượt quá giá trị nào sau đây?

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {a = 1,1} \\   {d = 0,01} \end{array}} ight.

    Sai số tương đối của dung tích nồi cơm điện là: 

    \delta  \leqslant \frac{d}{{\left| a ight|}} = \frac{{0,01}}{{1,1}} \approx 0,909\%  < 1\%

    Vậy sai số tương đối của dung tích nồi cơm điện không vượt quá giá trị 1%

  • Câu 21: Thông hiểu

    Tìm phương sai của dãy số liệu: 43 45 46 41 40.

    Số trung bình của mẫu số liệu là: \overline{x} = \frac{43 + 45 + 46 + 41 + 40}{5} = 43.

    Ta có phương sai: s^{2} = \frac{(43 - 43)^{2} + (45 - 43)^{2} + (46 -
43)^{2} + (41 - 43)^{2} + (40 - 43)^{2}}{5} = 5,2.

    Độ lệch chuẩn: \sqrt{s^{2}} = \sqrt{5,2}
= \frac{\sqrt{130}}{5}.

  • Câu 22: Vận dụng

    Khi tính diện tích hình tròn bán kính R = 3cm, nếu lấy \pi = 3,14 thì độ chính xác là bao nhiêu?

    Ta có diện tích hình tròn S = 3,14. 32\overline{S} = \pi. 32 = 9\pi

    Ta có: 3,14 < \pi < 3,15 \Rightarrow 3,14.9 < 9\pi <
3,15.9 \Rightarrow 28,26 <
\overline{S} < 28,35

    Do đó: \overline{S} - S = \overline{S} -
28,26 < 28,35 - 28,26 =
0,09 \Rightarrow \Delta(S) = \left|
\overline{S} - S ight| < 0,09

    Vậy nếu ta lấy \pi = 3,14 thì diện tích hình tròn là S = 28,26cm2 với độ chính xác d = 0,09.

  • Câu 23: Thông hiểu

    Tìm các giá trị bất thường của mẫu số liệu:

    5 6 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 48 49

    Mẫu số liệu đã được sắp xếp theo thứ tự không giảm.

    Giá trị chính giữa là 27 nên Q_{2} =
27.

    Giá trị chính giữa của mẫu 5 6 19 21 22 23 24 25 26 là 22 nên Q_{1} = 22.

    Giá trị chính giữa của mẫu 28 29 30 31 32 33 34 48 49 là 32 nên Q_{3} = 32.

    Khoảng tứ phân vị \Delta_{Q} = 32 - 22 =
10.

    Ta có: Q_{1} - 1,5\Delta_{Q} = 22 - 1,5.10 = 7.

    Ta co: Q_{3} - 1,5\Delta_{Q} = 32 + 1,5.10 = 47.

    Ta thấy có giá trị 5 và 6 nhỏ hơn 7 nên đây là 2 giá trị bất thường.

    Ta thấy có 48 và 49 là hai giá trị lớn hơn 47 nên đây là 2 giá trị bất thường.

  • Câu 24: Thông hiểu

    Hãy chọn kết quả lần lượt là số trung bình và phương sai của mẫu số liệu 3;5;5;6;7;7;8;9;10?

    Ta có:

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{3 + 5 + 5 + 6 + 7 +
7 + 8 + 9 + 10}{9} \approx 6,7

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{9}.\lbrack(3 - 6,7)^{2}
+ 2.(5 - 6,7)^{2} + (6 - 6,7)^{2} + 2.(7 - 6,7)^{2}

    + (8 - 6,7)^{2} + (9 - 6,7)^{2} + (10 -
6,7)^{2}brack \approx 4,2

    Vậy số trung bình và phương sai của mẫu số liệu lần lượt là: 6,7;\ 4,2.

  • Câu 25: Nhận biết

    Số quy tròn của số gần đúng a với \overline{a} = 18658 \pm 25 là:

    Quy tròn a đến hàng trăm nên số quy tròn của số gần đúng a là: 18700.

  • Câu 26: Nhận biết

    Kết quả đo chiều cao của một tòa nhà được ghi là 120m \pm 0,5m. Tìm độ chính xác của phép đo trên.

    Độ chính xác của phép đo trên là: 0,5m.

  • Câu 27: Nhận biết

    Cho mẫu số liệu có s^{2} = 9. Khi đó độ lệch chuẩn của mẫu số liệu bằng:

    Độ lệch chuẩn s = \sqrt{s^{2}} = \sqrt{9}
= 3

  • Câu 28: Thông hiểu

    Cho số đúng \overline{a} = 1,12512 và số gần đúng của \overline{a} của 1,125. Xác định sai số tuyệt đối \Delta_{a}.

    Ta có: a = 1,125

    Suy ra sai số tuyệt đối là:

    \Delta_{a} = \left| \overline{a} - a
ight| = |1,12512 - 1,125| = 0,00012

  • Câu 29: Nhận biết

    Trong một bài kiểm tra chạy của 20 học sinh, thầy giáo đã ghi lại kết quả trong bảng sau:

    Thời gian (giây)

    8,3

    8,4

    8,5

    8,7

    8,8

    Số học sinh

    2

    3

    9

    5

    1

    Mốt của bảng số liệu trên là:

    Quan sát bảng số liệu ta thấy:

    Số học sinh đạt kết quả 8,5 giây là lớn nhất bằng 9 học sinh.

    => Mốt của bảng số liệu là 8,5.

  • Câu 30: Vận dụng

    Hình dưới thống kê tỉ lệ phần trăm thất nghiệp ở một số quốc gia:

    Hãy tìm giá trị bất thường (nếu có) của mẫu số liệu.

    Sắp xếp các giá trị theo thứ tự không giảm:

    3,2 3,6 4,4 4,5 5,0 5,4 6,0 6,7 7,0 7,2 7,7 7,8 8,4 8,6 8,7

    Từ mẫu số liệu ta tính được: Q_{2} =
6,7Q_{1} = 4,5, Q_{3} = 7,8.

    Suy ra \Delta_{Q} = Q_{3} - Q_{1} = 7,8 -
4,5 = 3,3.

    Ta có: Q_{1} - 1,5\Delta_{Q} = 4,5 -
1,5.3,3 = - 0,45.

    Ta có: Q_{3} + 1,5\Delta_{Q} = 7,8 +
1,5.3,3 = 12,75.

    Ta thấy không có số liệu nào nhỏ hơn -
0,45 và lớn hơn 12,75 nên mẫu không có giá trị bất thường.

  • Câu 31: Thông hiểu

    Trong một bài kiểm tra chạy của 20 học sinh, thầy giáo đã ghi lại kết quả trong bảng sau:

    Thời gian (giây)

    8,3

    8,4

    8,5

    8,7

    8,8

    Số học sinh

    2

    3

    9

    5

    1

    Số trung bình cộng thời gian chạy của học sinh là:

    Số trung bình cộng thời gian chạy của học sinh là:

    \overline{x} = \frac{2.8,3 + 3.8,4 +
9.8,5 + 5.8,7 + 1.8,8}{20} = 8,53

    Vậy thời gian chạy trung bình của 20 học sinh là 8,53.

  • Câu 32: Vận dụng

    Cho kết quả ném phi tiêu của Hùng như sau: 9;9;10;8;9;10;10;7;8;8;10;9;8. Hãy các tứ phân vị của mẫu số liệu đã cho?

    Sắp xếp điểm ném phi tiêu theo thứ tự không giảm như sau:

    7;8;8;8;8;9;9;9;9;10;10;10;10

    Ta có: Q_{2} = 9 là số đứng thứ 7.

    Q_{1} = 8 là trung bình cộng 2 số đứng thứ 3;4.

    Q_{3} = 10 là trung bình cộng 2 số đứng thứ 10;11.

  • Câu 33: Nhận biết

    Điều tra tiền lương một tháng của 100 người lao động trên địa bàn một xã ta có bàng phân bố tần số sau:

    Tiền lương (VND)

    5.000.000

    6.000.000

    7.000.000

    8.000.000

    9.000.000

    9.500.000

    Tần số

    26

    34

    20

    10

    5

    5

    Tìm mốt của bảng phân bổ tần số trên.

    Ta có giá trị 6.000.000 có tần số lớn nhất nên là mốt của bảng phân bố tần số trên.

  • Câu 34: Nhận biết

    Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là:

    Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.

  • Câu 35: Nhận biết

    Thống kê số cuốn sách mỗi bạn trong lớp đã đọc trong năm 2023, lớp trưởng thu được kết quả như sau:

    Số cuốn sách

    3

    4

    5

    6

    7

    Số học sinh

    6

    15

    3

    8

    8

    Tìm mốt của mẫu số liệu đã cho?

    Mốt của mẫu số liệu là 4 (vì có tần số lớn nhất).

  • Câu 36: Thông hiểu

    Hãy tìm số trung bình của mẫu số liệu khi cho bảng tần số dưới đây:

    Giá trị \mathbf{x}_{\mathbf{i}}

    4

    6

    8

    10

    12

    Tần số \mathbf{n}_{\mathbf{i}}

    1

    4

    9

    5

    2

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{4.1 + 6.4 + 8.9 +
10.5 + 12.2}{21} \approx 8,29

    Vậy đáp án bằng 8,29

  • Câu 37: Nhận biết

    Tìm số gần đúng của a = 3456782 với độ chính xác d = 100.

    Vì độ chính xác đến hàng trăm nên ta quy tròn a đến hàng nghìn, vậy số quy tròn của a là 3457000.

  • Câu 38: Nhận biết

    Quy tròn số 73,316 đến hàng phần trăm.

    Quy tròn số 73,316 đến hàng phần trăm ta được số 73,32.

  • Câu 39: Nhận biết

    Cho biết kết quả đo chiều cao của một số học sinh lớp 10E như sau: 163;165;169;167;164;168;150;161. Xác định khoảng biến thiên của mẫu số liệu?

    Quan sát dãy số liệu ta thấy:

    Giá trị lớn nhất là 169

    Giá trị nhỏ nhất là 150

    Vậy khoảng biến thiên của mẫu số liệu bằng 169 – 150 = 19.

  • Câu 40: Nhận biết

    Chiều cao của một ngọn đồi là \overline{h} = 347,13m \pm 0,2m. Tính độ cao chính xác d của phép đo trên?

    Độ chính xác của phép đo d =
0,2m

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo