Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Thống kê gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Sản lượng lúa (đơn vị là tạ) của 11 thửa ruộng thí nghiệm có cùng diện tích lần lượt là: 20; 19; 17; 21; 24; 22; 23; 16; 11; 25; 23. Tìm mốt của mẫu số liệu trên.

     Số 23 xuất hiện nhiều nhất nên nó là mốt.

  • Câu 2: Nhận biết

    Tiền lương hàng tháng của 7 nhân viên trong một công ty du lịch lần lượt là: 6,5; 8,4; 6,9; 7,2; 2,5; 6,7; 3,0. (đơn vị: triệu đồng). Khoảng biến thiên của dãy số liệu thống kê trên bằng:

     Khoảng biến thiên: R = 8,4 - 2,5 = 5,9.

  • Câu 3: Nhận biết

    Viết số quy tròn của số a = 80,3654 đến hàng phần trăm.

    Số quy tròn của số a = 80,3654 đến hàng phần trăm là 80,37.

  • Câu 4: Thông hiểu

    Liệt kê sĩ số của từng lớp trong khối 10 ta được bảng số liệu như sau:

    Lớp

    10A

    10B

    10C

    10D

    10E

    Sĩ số

    40

    43

    45

    41

    46

    Xác định giá trị gần nhất với độ lệch chuẩn của mẫu số liệu?

    Ta có: N = 5

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{40 + 43 + 45 + 42 +
46}{5} = 43

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{(40 - 43)^{2} + (43 -
43)^{2} + (45 - 43)^{2} + (41 - 43)^{2} + (46 - 43)^{2}}{5} =
5,2

    Suy ra độ lệch chuẩn của mẫu số liệu là:

    s = \sqrt{s^{2}} = 2,28

    Vậy độ lệch chuẩn của mẫu số liệu là 2,28.

  • Câu 5: Nhận biết

    Cho số gần đúng a = 32567 với độ chính xác d = 300. Số quy tròn của số a là:

    Độ chính xác đến hàng trăm nên ta quy tròn đến hàng nghìn, ta được số quy tròn là 33000.

  • Câu 6: Vận dụng

    Dưới đây là bảng thống kê số lần làm bài tập Toán của học sinh lớp 10A.

    Tìm tứ phân vị của mẫu số liệu này.

    Cỡ mẫu số liệu này là: 2 + 4 + 6 + 12 + 8
+ 3 = 35.

    Suy ra giá trị chính giữa là giá trị ở vị trí thứ 18. Đó là số 3. Suy ra trung vị M_{e} = 3 = Q_{2}.

    Trung vị của 17 giá trị bên trái Q_{2} là giá trị ở vị trí thứ 9. Đó là số 2. Suy ra Q_{1} = 2.

    Trung vị của 17 giá trị bên phải Q_{2} là giá trị ở vị trí thứ 27. Đó là số 4. Suy ra Q_{3} = 4.

  • Câu 7: Thông hiểu

    Tìm các giá trị bất thường của mẫu số liệu:

    5 6 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 48 49

    Mẫu số liệu đã được sắp xếp theo thứ tự không giảm.

    Giá trị chính giữa là 27 nên Q_{2} =
27.

    Giá trị chính giữa của mẫu 5 6 19 21 22 23 24 25 26 là 22 nên Q_{1} = 22.

    Giá trị chính giữa của mẫu 28 29 30 31 32 33 34 48 49 là 32 nên Q_{3} = 32.

    Khoảng tứ phân vị \Delta_{Q} = 32 - 22 =
10.

    Ta có: Q_{1} - 1,5\Delta_{Q} = 22 - 1,5.10 = 7.

    Ta co: Q_{3} - 1,5\Delta_{Q} = 32 + 1,5.10 = 47.

    Ta thấy có giá trị 5 và 6 nhỏ hơn 7 nên đây là 2 giá trị bất thường.

    Ta thấy có 48 và 49 là hai giá trị lớn hơn 47 nên đây là 2 giá trị bất thường.

  • Câu 8: Vận dụng

    Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện nhân 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.

    Giả sử các số liệu trong mẫu là: a_{1};a_{2};...;a_{10} đã sắp xếp theo thứ tự không giảm.

    Khoảng biến thiên: R_{1} = a_{10} -
a_{1}.

    Nhân hai với tất cả các số liệu: 2a_{1};2a_{2};...;2a_{10}.

    Khoảng biến thiên: R_{2} = 2a_{10} -
2a_{1} = 2(a_{10} - a_{1}).

    Suy ra R_{2} = 2R_{1}.

  • Câu 9: Thông hiểu

    Cho \overline{m}=2 +\sqrt{3}= 3,7320508...  Hãy xác định số gần đúng của \overline{m} với độ chính xác d = 0,0001.

    Hàng của chữ số khác 0 đầu tiên bên trái của d = 0,0001 là hàng phần chục nghìn.

    Quy tròn \overline{m} đến hàng phần chục nghỉn ra được số gần đúng của \overline{m}m=3,7321

  • Câu 10: Thông hiểu

    Kết quả đo chiều dài của một cây cầu được ghi là 152m \pm 0,2m, điều đó có nghĩa là gì?

    Kết quả đo chiều dài của một cây cầu được ghi là 152m \pm 0,2m có nghĩa là chiều dài đúng của cây cầu là một số nằm trong khoảng từ 151,8m đến 152,2m.

  • Câu 11: Thông hiểu

    Cho kết quả đo chiều cao của 5 học sinh bất kì trong lớp như sau: 168;155;164;158;163. Tính độ lệch chuẩn của mẫu số liệu? (Kết quả làm tròn đến chữ số thập phân thứ hai)

    Chiều cao trung bình của 5 bạn là:

    \overline{x} = \frac{168 + 155 + 164 +
158 + 163}{5} = \frac{808}{5}

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{5}\lbrack\left( 168 -
\frac{808}{5} ight)^{2} + \left( 155 - \frac{808}{5} ight)^{2} +
\left( 164 - \frac{808}{5} ight)^{2}

    + \left( 158 - \frac{808}{5} ight)^{2}
+ \left( 163 - \frac{808}{5} ight)^{2}brack =
\frac{526}{25}

    Độ lệch chuẩn của mẫu số liệu là: s =
\sqrt{s^{2}} = \sqrt{\frac{526}{25}} \approx 4,59.

  • Câu 12: Vận dụng

    Cho dữ liệu thống kê số vốn (đơn vị: triệu đồng) mua phân bón vụ mùa của 10 hộ nông dân ở thôn B như sau:

    2,9;\ 1,2;\ 1,1;\ 0,8;\ 3,5;\ 1,6;\
1,8;\ 1,2;\ 1,3;\ 0,7

    Tìm các giá trị bất thường của mẫu số liệu đã cho?

    Sắp xếp dãy số liệu theo thứ tự không giảm ta được:

    \ 0,7;\ 0,8;1,1;\ 1,2;\ 1,2;\ 1,3;\
1,6;\ 1,8;\ 2,9;\ 3,5

    Ta xác định được các tứ phân vị:\left\{
\begin{matrix}
Q_{2} = 1,25 \\
Q_{1} = 1,1 \\
Q_{3} = 1,8 \\
\end{matrix} ight.

    \Rightarrow \Delta Q = Q_{3} - Q_{1} =
1,8 - 1,1 = 0,7

    \Rightarrow \left\{ \begin{matrix}Q_{1} - \dfrac{3}{2}\Delta Q = 0,05 \\Q_{3} + \dfrac{1}{2}\Delta Q = 2,85 \\\end{matrix} ight.

    Suy ra có hai giá trị bất thường là 2,9;\
3,5.

  • Câu 13: Thông hiểu

    Số kênh của một số hãng truyền hình cáp được ghi như sau: 36 38 33 34 32 30 34 35.

    Tìm tứ phân vị của mẫu số liệu trên.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 30 32 33 34 34 35 36 38.

    Trung vị của mẫu số liệu trên là: \frac{34 + 34}{2} = 34.

    Trung vị của mẫu số liệu 30 32 33 34 là: \frac{32 + 33}{2} = 32,5.

    Trung vị của mẫu số liệu 34 35 36 38 là: \frac{35 + 36}{2} = 35,5.

    Vậy Q_{1} = 32,5;\ Q_{2} = 34;\ Q_{3} =
35,5.

  • Câu 14: Thông hiểu

    Cho mẫu số liệu: 1;3;4;6;7;9;12. Tìm phương sai của mẫu số liệu?

    Ta có: N = 7

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{1 + 3 + 4 + 6 + 7 +
9 + 12}{7} = 6

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{7}.\lbrack(1 - 6)^{2} +
(3 - 6)^{2} + (4 - 6)^{2} + (6 - 6)^{2}+ (7 - 6)^{2} + (9 - 6)^{2} + (12 -
6)^{2}brack = 12

    Vậy phương sai cần tìm là: s^{2} =
12

  • Câu 15: Nhận biết

    Cho a là số gần đúng của số đúng \overline{a}. Sai số tuyệt đối của số gần đúng a là:

    Sai số tuyệt đối của số gần đúng a là: \Delta_{a} = \left| \overline{a} - a
ight|

  • Câu 16: Nhận biết

    Tính độ lệch chuẩn của mẫu số liệu: 10; 8; 6; 2; 4.

    Số trung bình là \overline{x} = \frac{10 + 8 + 6 + 2 + 4}{5} = 6.

    Phương sai là s^{2} = \frac{(10 - 6)^{2} + (8 - 6)^{2} + (6 - 6)^{2} +
(2 - 6)^{2} + (4 - 6)^{2}}{5} =
8.

    Độ lệch chuẩn là \sqrt{s^{2}} = \sqrt{8}
= 2\sqrt{2}.

  • Câu 17: Vận dụng

    Bảng dưới đây thống kê điểm Văn của lớp 11C.

    Biết n\mathbb{\in N}. Tìm trung vị của bảng số liệu.

    Vì tổng số học sinh bằng 40 nên ta có: 5n
+ 15 = 40 \Leftrightarrow n = 5.

    Thống kê lại bảng:

    Hai giá trị chính giữa của mẫu số liệu là giá trị ở vị trí thứ 20 và 21. Đó là số 6 và số 6.

    Suy ra trung vị M_{e} = \frac{6 + 6}{2} =
6.

  • Câu 18: Thông hiểu

    Cho bảng kết quả kiểm tra môn Tiếng Anh của học sinh như sau:

    Điểm

    4

    5

    6

    7

    8

    9

    10

    Tổng

    Số học sinh

    1

    2

    3

    4

    5

    4

    1

    N = 20

    Tính số trung vị của mẫu số liệu đã cho?

    Dãy số liệu đã cho có 20 số liệu nên số hạng chính giữa nằm ở số liệu thứ 10 và 11.

    Đó là số 7 và số 8.

    Suy ra M_{e} = \frac{7 + 8}{2} =
7,5.

  • Câu 19: Nhận biết

    Số quy tròn của số 2025 đến hàng chục bằng:

    Số quy tròn của số 2025 đến hàng chục bằng 2030.

  • Câu 20: Thông hiểu

    Cho bảng điểm kiểm tra môn Toán của học sinh lớp 10B như sau:

    Điểm

    4

    5

    6

    7

    8

    9

    10

    Tổng

    Số học sinh

    2

    8

    7

    10

    8

    3

    2

    N = 40

    Tính số trung bình của mẫu số liệu? (Làm tròn kết quả đến chữ số thập phân thứ nhất).

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{2.4 + 5.8 + 6.7 +
7.10 + 8.8 + 9.3 + 10.2}{40} \approx 6,8

    Vậy số trung bình của mẫu số liệu bằng 6,8.

  • Câu 21: Thông hiểu

    Một thửa ruộng hình chữ nhật có chiều dài là x = 23m ± 0,01m và chiều rộng là y = 15m ± 0,01m. Tính diện tích S của thửa ruộng đã cho.

    Diện tích của thửa ruộng là: S = x.y = (23 ± 0,01).(15 ± 0,01)= 23.15 ± (23.0,01 + 15.0,01 + 0,01.0,01)= 345 ± 0,3801 (m^2).

  • Câu 22: Thông hiểu

    Hãy xác định sai số tuyệt đối của số a = 123456 biết sai số tương đối \delta_{a} = 0,2\%.

    Ta có: \delta_{a} =
\frac{\Delta_{a}}{|a|} \Rightarrow \Delta_{a} = \delta_{a}|a| =
146,912.

  • Câu 23: Vận dụng

    Một người đo kích thước mảnh vườn hình chữ nhật rồi ghi lại chiều dài là 5 \pm
0,03 (m) và chiều rộng là 3 \pm
0,01 (m). Xác định sai số tương đối của phép đo diện tích mảnh vườn.

    Gọi x\ ;\ y là chiều dài và chiều rộng của mảnh vườn.

    \left\{ \begin{matrix}
5 \pm 0,03 \\
3 \pm 0,01 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
4,97 \leq x \leq 5,03 \\
2,99 \leq y \leq 3,01 \\
\end{matrix} ight.

    Gọi diện tích mảnh vườn là S. Khi đó 14,8603 \leq S \leq 15,1403. Suy ra S = 14,72 \pm
0,14(m2).

    Sai số tương đối trong phép đo là \delta
\leq \frac{0,14}{14,72} \approx 0,0095 = 0,95\%.

  • Câu 24: Thông hiểu

    Cho số a =
6653964 \pm 300. Số quy tròn của số gần đúng 6653964 là:

    Do độ chính xác d = 300 <
\frac{1000}{2} nên làm quy tròn số gần đúng 6653964 đến hàng nghìn ta được: 6654000

  • Câu 25: Nhận biết

    Cho biết kết quả đo chiều cao của một số học sinh lớp 10E như sau: 163;165;169;167;164;168;150;161. Xác định khoảng biến thiên của mẫu số liệu?

    Quan sát dãy số liệu ta thấy:

    Giá trị lớn nhất là 169

    Giá trị nhỏ nhất là 150

    Vậy khoảng biến thiên của mẫu số liệu bằng 169 – 150 = 19.

  • Câu 26: Nhận biết

    Số cam có trong các giỏ được ghi lại như sau: 2;8;12;16. Số trung vị của mẫu số liệu là:

    Vì cỡ mẫu N = 4 là số chẵn nên trung vị bằng trung bình cộng của số liệu ở vị trí thứ hai và thứ ba.

    => Số trung vị của mẫu số liệu: \frac{8 + 12}{2} = 10

  • Câu 27: Nhận biết

    Trong kết quả thống kê điểm môn Tiếng Anh của một lớp có 40 học sinh, điểm thấp nhất là 2 điểm và cao nhất là 10 điểm. Khẳng định nào sau đây đúng?

    Khi thực hiện tính điểm trung bình hay trung vị còn phụ thuộc vào tần số của mỗi điểm.

    Nếu chỉ có khoảng điểm thì không thể kết luận về điểm trung bình môn Tiếng Anh của lớp đó và trung vị.

  • Câu 28: Nhận biết

    Chiều cao của một ngọn đồi là \overline{h} = 347,13m \pm 0,2m. Tính độ cao chính xác d của phép đo trên?

    Độ chính xác của phép đo d =
0,2m

  • Câu 29: Vận dụng

    Bạn An đo chiều dài của một sân bóng ghi được 250 \pm 0,2m. Bạn Bằng đo chiều cao của một cột cờ được 15 \pm 0,1m. Trong 2 bạn An và Bằng, bạn nào có phép đo chính xác hơn và sai số tương đối trong phép đo của bạn đó là bao nhiêu?

    Phép đo của bạn A có sai số tương đối \delta_{1} \leq \frac{0,2}{250} = 0,0008 =
0,08\%

    Phép đo của bạn B có sai số tương đối \delta_{2} \leq \frac{0,1}{15} = 0,0066 =
0,66\%

    Như vậy phép đo của bạn A có độ chính xác cao hơn.

  • Câu 30: Nhận biết

    Biểu đồ sau biểu diễn tốc độ tăng trưởng GDP của Nhật Bản trong giai đoạn 1990 đến 2005. Hãy tìm khoảng biến thiên của mẫu số liệu đó.

     Khoảng biến thiên R = 5,1 - 0,4 = 4,7.

  • Câu 31: Nhận biết

    Độ lệch chuẩn là gì?

     Độ lệch chuẩn là căn bậc hai của phương sai.

  • Câu 32: Thông hiểu

    Tìm phương sai của dãy số liệu: 43 45 46 41 40.

    Số trung bình của mẫu số liệu là: \overline{x} = \frac{43 + 45 + 46 + 41 + 40}{5} = 43.

    Ta có phương sai: s^{2} = \frac{(43 - 43)^{2} + (45 - 43)^{2} + (46 -
43)^{2} + (41 - 43)^{2} + (40 - 43)^{2}}{5} = 5,2.

    Độ lệch chuẩn: \sqrt{s^{2}} = \sqrt{5,2}
= \frac{\sqrt{130}}{5}.

  • Câu 33: Nhận biết

    Giá của một số bó hoa (đơn vị: nghìn đồng) trong cửa hàng được thống kê như sau: 350;300;650;300;450;500;300;250. Mốt của mẫu số liệu này là:

    Bó hoa có giá 300 nghìn đồng có tần số lớn nhất nên suy ra M_{0} = 300.

  • Câu 34: Nhận biết

    Câu lạc bộ Liverpool đạt được điểm số tại giải Ngoại hạng Anh từ mùa giải 2010-2011 đến mùa 2018-2019 như sau: 75 82 87 50 93 70 72 66 67.

    Khoảng biến thiên điểm số là:

    Khoảng biến thiên là R = 93 - 50 =
43.

  • Câu 35: Nhận biết

    Hãy viết số quy tròn số gần đúng \overline{a} = 56782349 với độ chính xác d = 100.

    Ta có: d = 100 nên làm tròn đến hàng nghìn

    Vậy đáp án là: 56782000.

  • Câu 36: Nhận biết

    Cho mẫu số liệu có s^{2} = 9. Khi đó độ lệch chuẩn của mẫu số liệu bằng:

    Độ lệch chuẩn s = \sqrt{s^{2}} = \sqrt{9}
= 3

  • Câu 37: Thông hiểu

    Một công ty nhỏ gồm 1 giám đốc và 4 nhân viên. Thu nhập của giám đốc là 15 triệu đồng, thu nhập của nhân viên là 5 triệu đồng. Tìm trung vị cho mẫu số liệu về lương của các thành viên trong công ty.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 5 5 5 5 15.

    Dãy trên có giá trị chính giữa bằng 5.

    Vậy trung vị của mẫu số liệu trên bằng 5.

  • Câu 38: Nhận biết

    Cho bảng số liệu số máy tính bán được trong quý I đầu năm 2022 của một cửa hàng:

    Hãng

    HP

    Lenovo

    Asus

    Apple

    Dell

    Razer

    Số máy tính bán được

    55

    45

    42

    36

    60

    15

    Mốt của bảng số liệu trên là hãng máy tính nào?

    Số máy tính bán được nhiều nhất là 60 máy thuộc hãng Dell

    => Mốt của bảng số liệu trên là hãng Dell.

  • Câu 39: Nhận biết

    Cho các mệnh đề:

    i) Một túi cam nặng khoảng 10,5kg.

    ii) Độ dài đường chéo hình vuông cạnh bằng 1 là \sqrt{2}.

    iii) Bán kính Trái Đất khoảng 6371km.

    Trong các mệnh đề trên, có bao nhiêu số là số gần đúng?

    Có hai số là số gần đúng thuộc các mệnh đề:

    i) Một túi cam nặng khoảng 10,5kg.

    iii) Bán kính Trái Đất khoảng 6371km.

  • Câu 40: Nhận biết

    Điểm kiểm tra môn Văn của bạn Lan là: 7; 9; 8; 9. Tính số trung bình cộng \overline{x} của mẫu số liệu trên.

    Số trung bình cộng của mẫu số liệu trên là: \overline{x} = \frac{7 + 9 + 8 + 9}{4} =
8,25.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 18 lượt xem
Sắp xếp theo