Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của
chính xác đến hàng phần trăm.
Sử dụng máy tính bỏ túi ta có = 1,732050808. Do đó: Giá trị gần đúng của
chính xác đến hàng phần trăm là 1,73.
Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của
chính xác đến hàng phần trăm.
Sử dụng máy tính bỏ túi ta có = 1,732050808. Do đó: Giá trị gần đúng của
chính xác đến hàng phần trăm là 1,73.
Bảng dưới đây thống kê điểm của An và Bình:

Dựa vào khoảng biến thiên thì bạn nào học đều hơn?
Khoảng biến thiên điểm của bạn An là .
Khoảng biến thiên điểm của bạn Bình là .
Vì nên Bình học đều hơn.
Quy tròn số
đến hàng chục nghìn ta được:
Quy tròn số đến hàng nghìn ta được số quy tròn là
.
Cho mẫu số liệu: 10; 8; 6; 2; 4. Tính phương sai của mẫu.
Số trung bình là
.
Phương sai là
.
Cho số gần đúng
với độ chính xác
. Số quy tròn của số
là:
Độ chính xác đến hàng trăm nên ta quy tròn đến hàng nghìn, ta được số quy tròn là .
Bảng sau đây cho ta biết số cuốn sách mà học sinh của một lớp ở trường Trung học phổ thông đã đọc:
Số sách | 1 | 2 | 3 | 4 | 5 | 6 | |
Số học sinh đọc | 10 | m | 8 | 6 | n | 3 | n = 40 |
Tìm m và n, biết phương sai của mẫu số liệu trên xấp xỉ 2,52.
Số trung bình là:
Phương sai là:
Theo bài ra ta có:
Kiểm tra được: m = 8 và n = 5 thỏa mãn.
Quy tròn số
đến hàng phần chục được số
. Sai số tuyệt đối là:
Sai số tuyệt đối là: .
Cho mẫu số liệu: 6; 7; 8; 9; 10. Tính phương sai của mẫu.
Số trung bình là
.
Phương sai là
.
Cho dãy số liệu:
. Tìm khoảng tứ phân vị của mẫu số liệu đã cho?
Sắp xếp dãy số liệu theo thứ tự không giảm ta được:
Dãy số liệu có số chính giữa là 8 nên tứ phân vị thứ hai là
Tứ phân vị thứ nhất là trung vị của dãy số liệu: . Khi đó
.
Tứ phân vị thứ ba là trung vị của dãy số liệu: . Khi đó
Vậy khoảng tứ phân vị của mẫu số liệu là
Hãy viết số quy tròn số gần đúng
với độ chính xác
.
Ta có: nên làm tròn đến hàng nghìn
Vậy đáp án là: .
Cho dãy số liệu
. Xác định mốt của mẫu số liệu?
Mốt số liệu đã cho có số 5 xuất hiện nhiều lần nhất
Suy ra mốt của mẫu số liệu là 5.
Tìm trung vị của dãy số liệu 4 3 5 1 6 8 6.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 3 4 5 6 6 8.
Dãy trên có giá trị chính giữa bằng 5.
Vậy trung vị của mẫu số liệu bằng 5.
Kết quả điều tra dân số của tỉnh A năm 2024 là
người. Số quy tròn dân số trên là:
Hàng lớn nhất của độ chính xác là hàng năm nên ta quy tròn
đến hàng nghìn.
Vậy số quy tròn của là
.
Một shop bán giày thống kê số lượng giày bán trong vài ngày trong bảng sau:
|
Cỡ giày |
37 |
38 |
39 |
40 |
41 |
42 |
|
Số lượng |
35 |
42 |
50 |
38 |
32 |
48 |
Mốt của bảng số liệu trên là:
Mốt là giá trị có tần số lớn nhất trong bảng số liệu
Quan sát bảng số liệu đã cho suy ra mốt của bảng số liệu là 39.
Điểm thi học kì của một học sinh như sau: 4 6 7 2 10 9 3 5 8 7 3 8.
Tính số trung bình cộng của mẫu số liệu trên.
Số trung bình cộng của mẫu số liệu trên là:
.
Một người thống kê lại số giày bán được trong tháng của một công ty.

Hỏi công ty nên nhập nhiều hơn loại cỡ giày nào để bán trong tháng tới?
Tháng vừa rồi, công ty bán được 70 đôi giày cỡ 40 (nhiều nhất). Đây chính là mốt.
Vậy suy ra tháng tới, công ty nên nhập thêm giày cỡ 40 để bán.
Trong một bài kiểm tra chạy của 20 học sinh, thầy giáo đã ghi lại kết quả trong bảng sau:
|
Thời gian (giây) |
8,3 |
8,4 |
8,5 |
8,7 |
8,8 |
|
Số học sinh |
2 |
3 |
9 |
5 |
1 |
Mốt của bảng số liệu trên là:
Quan sát bảng số liệu ta thấy:
Số học sinh đạt kết quả 8,5 giây là lớn nhất bằng 9 học sinh.
=> Mốt của bảng số liệu là 8,5.
Cho số
. Số quy tròn của số gần đúng
là:
Do độ chính xác nên làm quy tròn số gần đúng
đến hàng nghìn ta được:
Độ dài các cạnh của đám vườn hình chữ nhật là
và
. Cách viết chuẩn của diện tích là:
.
Diện tích mảnh ruộng là , khi đó:
.
Cách viết chuẩn của diện tích là .
Cho
. Số quy tròn của số gần đúng
là:
Số quy tròn của số gần đúng là:
.
Một công ty sử dụng dây chuyền X để đóng xi măng với khối lượng mong muốn là 5 kg. Trên bao bì ghi khối lượng là
(kg). Bên cạnh đó, công ty cũng sử dụng dây chuyền Y để đóng gói xi măng với khối lượng chính xác là 20 kg. Trên bao bì ghi thông tin khối lượng là
kg. Chọn kết luận đúng.
Sai số tương đối của dây chuyền X: .
Sai số tương đối của dây chuyền Y: .
Như vậy dây chuyền Y đóng gói tốt hơn do có sai số tương đối nhỏ hơn.
Một công ty nhỏ gồm 1 giám đốc và 4 nhân viên. Thu nhập của giám đốc là 15 triệu đồng, thu nhập của nhân viên là 5 triệu đồng. Tìm trung vị cho mẫu số liệu về lương của các thành viên trong công ty.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 5 5 5 5 15.
Dãy trên có giá trị chính giữa bằng 5.
Vậy trung vị của mẫu số liệu trên bằng 5.
Tìm mốt của mẫu số liệu: 10 9 7 9 8 1 3 7 8 11 8.
Giá trị 8 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 8.
Khoảng biến thiên của mẫu số liệu:
là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 16
Giá trị nhỏ nhất là 2
Suy ra khoảng biến thiên của mẫu số liệu là: 16 – 2 = 14.
Cho biểu đồ lượng mưa trung bình các tháng năm 2019 tại Thành phố Hồ Chí Minh như sau:

Mẫu số liệu nhận được từ biểu đồ trên có khoảng biến thiên là:
Quan sát biểu đồ ta thấy:
Giá trị lớn nhất là 342
Giá trị nhỏ nhất là: 4
Vậy khoảng biến thiên của mẫu số liệu là: 342 – 4 = 338.
Cho dãy số liệu
. Kết luận nào dưới đây đúng?
Sắp xếp dãy số liệu theo thứ tự không tăng như sau:
Khi đó:
Vậy kết luận đúng là: .
Cho số gần đúng
với độ chính xác
. Số quy tròn của số
là:
Độ chính xác nên ta làm tròn số
đến hàng nghìn, ta được kết quả là
.
Tìm tứ phân vị dưới của bảng số liệu sau:

Cỡ mẫu số liệu trên là: .
Giá trị chính giữa của mẫu là giá trị ở vị trí thứ 13, đó là số 27. Suy ra .
Ta đi tìm trung vị của mẫu số liệu gồm 12 giá trị bên trái . Hai giá trị chính giữa là giá trị ở vị trí thứ 6 và 7. Đó là số 26 và số 26.
Suy ra . Vậy tứ phân vị dưới là 26.
Số cuộn phim mà 20 nhà nhiếp ảnh nghiệp dư sử dụng trong một tháng được cho trong bảng sau:
0 | 5 | 7 | 6 | 2 | 5 | 9 | 7 | 6 | 9 |
20 | 6 | 10 | 7 | 5 | 8 | 9 | 7 | 8 | 5 |
Giá trị ngoại lệ trong mẫu số liệu trên là:
Ta có bảng tần số sau:
Số cuộn phim | 0 | 2 | 5 | 6 | 7 | 8 | 9 | 10 | 20 |
|
Số nhiếp ảnh gia | 1 | 1 | 4 | 3 | 4 | 2 | 3 | 1 | 1 | n = 20 |
Vì cỡ mẫu n = 20 = 2.10 là số chẵn. Nên giá trị tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 10 và số liệu thứ 11.
Khi sắp xếp mẫu số liệu đã cho theo thứ tự không giảm, ta được số liệu thứ 10 và số liệu thứ 11 cùng bằng 7.
=> Q2 = 7.
- Ta tìm tứ phân vị thứ nhất là trung vị của nửa mẫu số liệu bên trái Q2.
Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ nhất là trung bình cộng của số liệu thứ 5 và số liệu thứ 6.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 5 và số liệu thứ 6 cùng bằng 5.
=> Q1 = 5.
Ta tìm tứ phân vị thứ ba là trung vị của nửa mẫu số liệu bên phải Q2.
Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 5 và số liệu thứ 6 (tính từ số liệu thứ 11 trở đi). Tức là giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 15 và số liệu thứ 16.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 15 và số liệu thứ 16 lần lượt là 8 và 9.
=> Q3 = (8 + 9) : 2 = 8,5.
Ta suy ra khoảng tứ phân vị ∆Q = Q3 – Q1 = 8,5 – 5 = 3,5.
Ta có Q3 + 1,5.∆Q = 13,75 và Q1 – 1,5.∆Q = – 0,25.
Số liệu x trong mẫu là giá trị ngoại lệ nếu x > Q3 + 1,5.∆Q (1) hoặc x < Q1 – 1,5.∆Q (2)
Quan sát bảng số liệu ta thấy có số liệu x = 20 thoả mãn điều kiện (1) : 20 > 13,75.
Vậy mẫu số liệu có giá trị ngoại lệ là 20.
Cho mẫu số liệu:
. Tứ phân vị thứ ba của mẫu số liệu là:
Sắp xếp lại mẫu số liệu theo thứ tự không giảm ta được:
Tứ phân vị thứ ba là trung vị của mẫu
Do đó .
Kết quả kiểm tra Toán của một số học sinh như sau:
. Khoảng biến thiên của mẫu số liệu là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 10
Giá trị nhỏ nhất là 7
Suy ra khoảng biến thiên của mẫu số liệu là: 10 – 7 = 3
Làm tròn số
đến hàng phần trăm ta được kết quả là:
Làm tròn số đến hàng phần trăm ta được kết quả là
.
Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của
chính xác đến hàng phần trăm.
Sử dụng máy tính bỏ túi ta có giá trị của là 9,8696044. Do đó, giá trị gần đúng của
chính xác đến hàng phần trăm là 9,9.
Chiều cao của một ngọn đồi là
. Tính độ cao chính xác
của phép đo trên?
Độ chính xác của phép đo
Cho kết quả đo chiều cao của 5 học sinh bất kì trong lớp như sau:
. Tính độ lệch chuẩn của mẫu số liệu? (Kết quả làm tròn đến chữ số thập phân thứ hai)
Chiều cao trung bình của 5 bạn là:
Phương sai của mẫu số liệu là:
Độ lệch chuẩn của mẫu số liệu là: .
Thống kê số cuốn sách mỗi bạn trong lớp đã đọc trong năm 2023, lớp trưởng thu được kết quả như sau:
|
Số cuốn sách |
3 |
4 |
5 |
6 |
7 |
|
Số học sinh |
6 |
15 |
3 |
8 |
8 |
Tìm mốt của mẫu số liệu đã cho?
Mốt của mẫu số liệu là 4 (vì có tần số lớn nhất).
Bảng dưới đây là sản lượng lúa gạo của nước ta giai đoạn 2007 – 2017 (đơn vị: triệu tấn).

Khoảng biến thiên của mẫu số liệu là:
Khoảng biến thiên là .
Hãy chọn kết quả lần lượt là số trung bình và phương sai của mẫu số liệu
?
Ta có:
Số trung bình của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Vậy số trung bình và phương sai của mẫu số liệu lần lượt là: .
Cho mẫu số liệu:
. Tìm phương sai của mẫu số liệu?
Ta có:
Số trung bình của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Vậy phương sai cần tìm là:
Trong một bài kiểm tra chạy của 20 học sinh, thầy giáo đã ghi lại kết quả trong bảng sau:
|
Thời gian (giây) |
8,3 |
8,4 |
8,5 |
8,7 |
8,8 |
|
Số học sinh |
2 |
3 |
9 |
5 |
1 |
Số trung bình cộng thời gian chạy của học sinh là:
Số trung bình cộng thời gian chạy của học sinh là:
Vậy thời gian chạy trung bình của 20 học sinh là 8,53.