Làm tròn số
đến hàng phần trăm ta được kết quả là:
Làm tròn số đến hàng phần trăm ta được kết quả là
.
Làm tròn số
đến hàng phần trăm ta được kết quả là:
Làm tròn số đến hàng phần trăm ta được kết quả là
.
Trong một bài kiểm tra chạy của 20 học sinh, thầy giáo đã ghi lại kết quả trong bảng sau:
|
Thời gian (giây) |
8,3 |
8,4 |
8,5 |
8,7 |
8,8 |
|
Số học sinh |
2 |
3 |
9 |
5 |
1 |
Số trung bình cộng thời gian chạy của học sinh là:
Số trung bình cộng thời gian chạy của học sinh là:
Vậy thời gian chạy trung bình của 20 học sinh là 8,53.
Cho mẫu số liệu: 10; 8; 6; 2; 4. Tính phương sai của mẫu.
Số trung bình là
.
Phương sai là
.
Một nhà nghiên cứu ghi lại tuổi của 30 bệnh nhân mắc bệnh đau mắt hột như sau:
21 | 17 | 22 | 18 | 20 | 17 | 15 | 13 | 15 | 20 | 15 | 12 | 18 | 17 | 25 |
17 | 21 | 15 | 12 | 18 | 16 | 23 | 14 | 18 | 19 | 13 | 16 | 19 | 18 | 17 |
Khoảng biến thiên
của mẫu số liệu trên là:
Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột cao nhất là 25 tuổi.
Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột thấp nhất là 12 tuổi.
Khoảng biến thiên của mẫu số liệu trên là:
Cho mẫu số liệu:
. Tứ phân vị thứ ba của mẫu số liệu là:
Sắp xếp lại mẫu số liệu theo thứ tự không giảm ta được:
Tứ phân vị thứ ba là trung vị của mẫu
Do đó .
Một túi gạo có ghi thông tin khối lượng là
. Khi đó khối lượng thực của bao gạo nằm trong đoạn nào sau đây?
Khi một túi gạo có ghi thông tin khối lượng là thì khối lượng thực của bao gạo nằm trong đoạn
.
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được
. Giá trị gần đúng của
chính xác đến hàng phần trăm là:
Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 4 ở hàng phần trăm là số 5 nên theo nguyên lý làm tròn ra được kết quả là:
Cho dãy số liệu
. Xác định mốt của mẫu số liệu?
Mốt số liệu đã cho có số 5 xuất hiện nhiều lần nhất
Suy ra mốt của mẫu số liệu là 5.
Cho số
, trong đó chỉ có chữ số hàng trăm trở lên là đáng tin. Hãy viết chuẩn số gần đúng của
.
Do là số nguyên và hàng thấp nhất có chữ số đáng tin là
nên dạng viết chuẩn của
là
.
Cho một mẫu dữ liệu đã được sắp xếp theo thứ tự không giảm
. Khi đó khoảng biến thiên
của mẫu số liệu bằng:
Khoảng biến thiên của mẫu số liệu bằng:
Bảng dưới đây thống kê thời gian nảy mầm của một giống cây trong các điều kiện khác nhau.

Tính thời gian trung bình thời gian nảy mầm của loại giống cây trên.
Thời gian trung bình thời gian nảy mầm của loại giống cây trên là:
.
Chiều cao của một số học sinh nữ lớp 9 (đơn vị cm) được cho trong bảng.

Tìm khoảng tứ phân vị của mẫu số liệu này.
Nhận thấy mẫu đã được sắp xếp theo thứ tự không giảm.
Số liệu chính giữa là 162 nên .
Số liệu chính giữa của mẫu 151 152 153 154 155 160 160 là 154 nên .
Số liệu chính giữa của mẫu 163 165 165 165 166 167 167 là 165 nên .
Khoảng tứ phân vị
.
Kết quả đo chiều dài của một cây cầu được ghi là
. Tìm sai số tương đối của phép đo chiều dài cây cầu.
Phép đo cây cầu có sai số tương đối thỏa mãn .
Tìm giá trị bất thường của dãy số liệu: 3 6 8 14 19 28.
Hai giá trị chính giữa là 8 và 14. Suy ra trung vị .
Trung vị của mẫu 3 6 8 là
.
Trung vị của mẫu 14 19 28 là
.
Suy ra .
Xét: .
Xét: .
Ta thấy không có giá trị nào nhỏ hơn và lớn hơn
nên dãy không có giá trị bất thường.
Tìm số gần đúng của a = 2851275 với độ chính xác d = 300.
Vì độ chính xác đến hàng trăm nên ta quy tròn a đến hàng nghìn, vậy số quy tròn của a là 2851000.
Biểu đồ sau biểu diễn tốc độ tăng trưởng GDP của Nhật Bản trong giai đoạn 1990 đến 2005. Hãy tìm khoảng biến thiên của mẫu số liệu đó.

Khoảng biến thiên R = 5,1 - 0,4 = 4,7.
Biểu đồ dưới đây thể hiện tốc độ tăng trưởng GDP của Việt Nam giai đoạn 2014 – 2021. Tính độ lệch chuẩn của mẫu số liệu.

Số trung bình của mẫu là:
Từ đó tính được phương sai: .
Suy ra độ lệch chuẩn: .
Để điều tra các con trong mỗi gia đình của một chung cư gồm 100 gia đình. Người ta chọn ra 20 gia đình ở tầng 4 và thu được mẫu số liệu sau đây:
2 4 2 1 3 5 1 1 2 3 1 2 2 3 4 1 1 2 3 4.
Số trung bình cộng
của mẫu số liệu trên là:
Số trung bình cộng của mẫu số liệu trên là:
Tiến hành đo huyết áp của 8 người ta thu được kết quả sau: 77 105 117 84 96 72 105 124.
Hãy tìm khoảng tứ phân vị của mẫu số liệu trên.
Sắp xếp mẫu theo thứ tự không giảm: 72 77 84 96 105 105 117 124.
Hai giá trị chính giữa là 96 105. Do đó .
Tứ phân vị của mẫu số liệu: 72 77 84 96 là
.
Tứ phân vị của mẫu số liệu 105 105 117 124 là:
.
Khoảng tứ phân vị .
Xác định khoảng tứ phân vị của mẫu số liệu 1 6 4 7 8 20 15 10.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 4 6 7 8 10 15 20.
Hai giá trị chính giữa là 7 và 8. Suy ra trung vị .
Trung vị của mẫu 1 4 6 7 là
.
Trung vị của mẫu 8 20 15 10 là
.
Vậy khoảng tứ phân vị .
Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là:
Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.
Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

Chọn kết luận đúng.
Giá trị trung bình của hai mẫu:
Vậy hai mẫu có giá trị trung bình bằng nhau.
Quy tròn số
đến hàng phần chục được số
. Sai số tuyệt đối là:
Sai số tuyệt đối là: .
Bảng dưới đây thống kê điểm của An và Bình:

Dựa vào khoảng biến thiên thì bạn nào học đều hơn?
Khoảng biến thiên điểm của bạn An là .
Khoảng biến thiên điểm của bạn Bình là .
Vì nên Bình học đều hơn.
Một người cần đo chiều cao của một cái cây. Anh ta thực hiện ba phép đo, kết quả được ghi lại như sau:
(m),
(m),
(m). Trong ba số liệu trên, người thợ nên chọn số liệu nào làm chiều cao của cái cây?
Phép đo lần 1 có sai số tương đối .
Phép đo lần 2 có sai số tương đối .
Phép đo lần 3 có sai số tương đối .
Vì phép đo lần 2 có sai số nhỏ nhất nên người thợ nên chọn làm chiều cao của ngôi nhà.
Điểm kiểm tra của 24 học sinh được ghi lại trong bảng sau:

Mốt của mẫu số liệu là:
Điểm 8 có tần số xuất hiện nhiều nhất nên mốt của mẫu số liệu là 8.
Bảng dưới đây ghi lại thời gian chạy trong 1 cuộc thi của các bạn lớp 10B. (đơn vị: giây)

Hãy tính thời gian chạy trung bình của các bạn. (kết quả làm tròn đến hàng phần nghìn)
Lớp 10B có: (bạn).
Thời gian chạy trung bình của các bạn là:
(giây).
Quy tròn số
đến hàng chục, được số
. Khi đó sai số tuyệt đối là:
Sai số tuyệt đối là:
Cho giá trị gần đúng của
là 0,47. Sai số tuyệt đối của 0,47 là:
Ta có suy ra sai số tuyệt đối của 0,47 là 0,001.
Câu lạc bộ Liverpool đạt được điểm số tại giải Ngoại hạng Anh từ mùa giải 2010-2011 đến mùa 2018-2019 như sau: 75 82 87 50 93 70 72 66 67.
Khoảng biến thiên điểm số là:
Khoảng biến thiên là .
Cho mẫu số liệu:
. Xác định khoảng tứ phân vị của mẫu số liệu?
Ta có N = 10
Suy ra
Vậy khoảng tứ phân vị bằng 2.
Dân số một tỉnh B năm 2024 là
người, với độ chính xác
. Số quy tròn của
là:
Quy tròn số với độ chính xác
ta biết
=> Ta cần quy tròn đến hàng nghìn, số đã được quy tròn là .
Số quy tròn của số
đến hàng chục bằng:
Số quy tròn của số đến hàng chục bằng
.
Bảng dưới đây thống kê điểm Văn của lớp 11C.

Biết
. Tìm trung vị của bảng số liệu.
Vì tổng số học sinh bằng 40 nên ta có: .
Thống kê lại bảng:
Hai giá trị chính giữa của mẫu số liệu là giá trị ở vị trí thứ 20 và 21. Đó là số 6 và số 6.
Suy ra trung vị .
Cho bảng số liệu ghi lại điểm của 40 học sinh trong bài kiểm tra 1 tiết môn toán như sau:
Điểm | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Cộng |
Số học sinh | 2 | 3 | 7 | 18 | 3 | 2 | 4 | 1 | 40 |
Số trung bình cộng
của mẫu số liệu trên là:
Số trung bình cộng của mẫu số liệu trên là:
.
Điểm kiểm tra môn Lịch Sử của một học sinh qua 8 lần thi được ghi lại như sau:
![]()
Biết số trung vị của mẫu số liệu trên bằng
. Kết quả nào dưới đây đúng?
Vì là số chẵn nên trung vị của mẫu số liệu là trung bình cộng của số liện ở vị trí thứ 4 và thứ 5.
Suy ra
Vậy .
Điều tra tiền lương một tháng của 100 người lao động trên địa bàn một xã ta có bàng phân bố tần số sau:
|
Tiền lương (VND) |
5.000.000 |
6.000.000 |
7.000.000 |
8.000.000 |
9.000.000 |
9.500.000 |
|
Tần số |
26 |
34 |
20 |
10 |
5 |
5 |
Tìm mốt của bảng phân bổ tần số trên.
Ta có giá trị 6.000.000 có tần số lớn nhất nên là mốt của bảng phân bố tần số trên.
Bạn An đo chiều dài của một sân bóng ghi được
. Bạn Bằng đo chiều cao của một cột cờ được
. Trong 2 bạn An và Bằng, bạn nào có phép đo chính xác hơn và sai số tương đối trong phép đo của bạn đó là bao nhiêu?
Phép đo của bạn A có sai số tương đối
Phép đo của bạn B có sai số tương đối
Như vậy phép đo của bạn A có độ chính xác cao hơn.
Hãy viết số quy tròn của số gần đúng sau: ![]()
Ta có:hàng lớn nhất có độ chinh xác d = 0,001 là hàng phần nghìn
=> Ta quy tròn số đến hàng phần trăm
Vậy số quy tròn là 4,14.
Tìm độ lệch chuẩn của dãy số liệu: 18 14 15 8.
Số trung bình của mẫu số liệu là:
.
Ta có phương sai:
.
Độ lệch chuẩn: .