Cho mẫu số liệu: 6; 7; 8; 9; 10. Tính phương sai của mẫu.
Số trung bình là
.
Phương sai là
.
Cho mẫu số liệu: 6; 7; 8; 9; 10. Tính phương sai của mẫu.
Số trung bình là
.
Phương sai là
.
Quy tròn số 14869 đến hàng trăm. Số gần đúng nhận được là:
Quy tròn 14869 đến hàng trăm, ta được: 14900.
Lớp trưởng lớp 10A thống kê số học sinh và số cây trồng được theo từng tổ trong buổi ngoại khóa như sau:
Tổ | 1 | 2 | 3 | 4 |
Số học sinh | 11 | 10 | 12 | 10 |
Số cây | 30 | 30 | 38 | 29 |
Bạn lớp trưởng cho biết số cây mỗi bạn trong lớp trồng được đều không vượt quá 3 cây. Biết rằng bảng trên có một tổ bị thống kê sai. Tổ mà bạn lớp trưởng đã thống kê sai là:
Xét đáp án Tổ 1
Số cây tối đa tổ 1 trồng được là: 11.3 = 33 (cây)
Vì 30 (cây) < 33 (cây) nên thống kê số cây tổ 1 trồng được không sai.
Xét đáp án Tổ 2
Số cây tối đa tổ 2 trồng được là: 10.3 = 30 (cây)
Vì 30 (cây) = 30 (cây) nên thống kê số cây tổ 1 trồng được không sai.
Xét đáp án Tổ 3
Số cây tối đa tổ 3 trồng được là: 12.3 = 36 (cây)
Vì 38 (cây) > 36 (cây) nên thống kê số cây tổ 3 trồng được là sai.
Xét đáp án Tổ 4
Số cây tối đa tổ 3 trồng được là: 10.3 = 30 (cây)
Vì 29 (cây) < 30 (cây) nên thống kê số cây tổ 4 trồng được không sai.
Trong kết quả thống kê điểm môn Tiếng Anh của một lớp có 40 học sinh, điểm thấp nhất là 2 điểm và cao nhất là 10 điểm. Khẳng định nào sau đây đúng?
Khi thực hiện tính điểm trung bình hay trung vị còn phụ thuộc vào tần số của mỗi điểm.
Nếu chỉ có khoảng điểm thì không thể kết luận về điểm trung bình môn Tiếng Anh của lớp đó và trung vị.
Kết quả đo chiều dài của một cây cầu được ghi là
. Tìm sai số tương đối của phép đo chiều dài cây cầu.
Phép đo cây cầu có sai số tương đối thỏa mãn .
Liệt kê sĩ số của từng lớp trong khối 10 ta được bảng số liệu như sau:
|
Lớp |
10A |
10B |
10C |
10D |
10E |
|
Sĩ số |
40 |
43 |
45 |
41 |
46 |
Xác định giá trị gần nhất với độ lệch chuẩn của mẫu số liệu?
Ta có:
Số trung bình của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Suy ra độ lệch chuẩn của mẫu số liệu là:
Vậy độ lệch chuẩn của mẫu số liệu là 2,28.
Dự báo thời tiết trong 10 ngày tại tỉnh A được ghi lại trong bảng sau:
|
Ngày |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
|
Nhiệt độ (0C) |
24 |
25 |
26 |
27 |
27 |
26 |
27 |
21 |
19 |
18 |
Tìm phương sai của mẫu số liệu đã cho?
Ta có:
Nhiệt độ trung bình của 10 ngày là:
Phương sai của mẫu số liệu là:
Vậy phương sai cần tìm là .
Cho
Hãy xác định số gần đúng
của
với độ chính xác
.
Ta có hàng của chữ số 0 đầu tiên bên trái của d là hàng phần trăm. Ta cần quy tròn đến hàng phần trăm được số gần đúng là .
Người ta phân tích thuế mặt hàng A tại 30 tỉnh một quốc gia và tính được:
. Giá trị nhỏ nhất bằng 20, giá trị lớn nhất bằng 120. Chọn kết luận đúng.
Khoảng tứ phân vị
.
Khoảng biến thiên .
Ý nghĩa của khoảng tứ phân vị được thể hiện ở hình ảnh bên dưới:
Như vậy có khoảng 75% số tỉnh có thuế mặt hàng A lớn hơn 26.
Một nhà nghiên cứu ghi lại tuổi của 30 bệnh nhân mắc bệnh đau mắt hột như sau:
21 | 17 | 22 | 18 | 20 | 17 | 15 | 13 | 15 | 20 | 15 | 12 | 18 | 17 | 25 |
17 | 21 | 15 | 12 | 18 | 16 | 23 | 14 | 18 | 19 | 13 | 16 | 19 | 18 | 17 |
Khoảng biến thiên
của mẫu số liệu trên là:
Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột cao nhất là 25 tuổi.
Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột thấp nhất là 12 tuổi.
Khoảng biến thiên của mẫu số liệu trên là:
Tiền lương hàng tháng của 7 nhân viên trong một công ty du lịch lần lượt là: 6,5; 8,4; 6,9; 7,2; 2,5; 6,7; 3,0. (đơn vị: triệu đồng). Khoảng biến thiên của dãy số liệu thống kê trên bằng:
Khoảng biến thiên: R = 8,4 - 2,5 = 5,9.
Khẳng định nào sau đây là đúng?
Khẳng định đúng là: "Nếu sai số tương đối của phép đo càng nhỏ thì chất lượng phép đo càng cao."
Thời gian chạy 50 m của 20 học sinh được ghi lại trong bảng sau đây:
Thời gian (giây) | 8,3 | 8,4 | 8,5 | 8,7 | 8,8 |
Tần số | 2 | 3 | 9 | 5 | 1 |
Hãy tìm khoảng biến thiên của mẫu số liệu đã cho.
Khoảng biến thiên: .
Tính chiều cao trung bình của học sinh biết chiều cao của từng học sinh được ghi lại như sau:
|
Chiều cao (cm) |
150 |
155 |
160 |
165 |
170 |
175 |
|
Số học sinh |
4 |
6 |
7 |
6 |
5 |
3 |
Chiều cao trung bình của các học sinh là:
Điểm kiểm tra của 24 học sinh được ghi lại trong bảng sau:

Mốt của mẫu số liệu là:
Điểm 8 có tần số xuất hiện nhiều nhất nên mốt của mẫu số liệu là 8.
Biểu đồ dưới đây thể hiện tỉ lệ lạm phát cơ bản bình quân năm trong giai đoạn 2018 – 2022:

(Nguồn: Niêm giám thống kê 2022)
Trong giai đoạn từ 2018 – 2021, năm có tỉ lệ lạm phát cơ bản bình quân năm cao nhất là?
Trong giai đoạn từ 2018 – 2021, năm 2020 có tỉ lệ lạm phát cơ bản bình quân năm cao nhất.
Nhà sản xuất công bố chiều dài và chiều rộng của 1 tấm ván hình chữ nhật lần lượt là
và
(đơn vị: cm). Tính diện tích của tấm thép.
Gọi và
lần lượt là chiều dài và chiều rộng thực của tấm thép.
Ta có: và
.
Suy ra: .
Do đó:
Vậy diện tích tấm thép là .
Tìm khoảng tứ phân vị mẫu số liệu điểm của một nhóm học sinh lớp 10:

Sắp xếp mẫu số liệu theo thứ tự không giảm: 4 5 5 6 7 7 7 8 8 9 9 10.
Hai số liệu chính giữa là 7 và 7 nên .
Trung vị của mẫu số liệu 4 5 5 6 7 7 chính là .
Trung vị của mẫu số liệu 7 8 8 9 9 10 chính là .
Khoảng tứ phân vị
.
Quy tròn số
đến hàng chục nghìn ta được:
Quy tròn số đến hàng nghìn ta được số quy tròn là
.
Kết quả khi đo chiều dài của một cây thước là
. Khi đó sai số tuyệt đối của phép đo được ước lượng là:
Ta có độ dài gần đúng của cây thước là với độ chính xác
Nên sai số tuyệt đối là .
Một người sử dụng cùng lúc ba thiết bị khác nhau để đo thành tích chạy của vận động viên A. Người ta ghi lại ba kết quả như sau:
,
,
(đơn vị: giây). Hỏi thiết bị nào đo chính xác nhất theo sai số tương đối?
Sai số tương đối của thiết bị 1: .
Sai số tương đối của thiết bị 2: .
Sai số tương đối của thiết bị 3: .
Vậy thiết bị 1 đo chính xác nhất.
Quy tròn số 0,1352 đến hàng phần mười.
Vì số 0,1352 có chữ số hàng phần trăm là 3 < 5 nên khi làm tròn số 0,1352 đến hàng phần mười, ta được 0,1352 ≈ 0,1
Tìm các giá trị bất thường của mẫu số liệu:
5 6 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 48 49
Mẫu số liệu đã được sắp xếp theo thứ tự không giảm.
Giá trị chính giữa là 27 nên .
Giá trị chính giữa của mẫu 5 6 19 21 22 23 24 25 26 là 22 nên .
Giá trị chính giữa của mẫu 28 29 30 31 32 33 34 48 49 là 32 nên .
Khoảng tứ phân vị .
Ta có:
.
Ta co:
.
Ta thấy có giá trị 5 và 6 nhỏ hơn 7 nên đây là 2 giá trị bất thường.
Ta thấy có 48 và 49 là hai giá trị lớn hơn 47 nên đây là 2 giá trị bất thường.
Bảng dưới đây là sản lượng lúa gạo của nước ta giai đoạn 2007 – 2017 (đơn vị: triệu tấn).

Khoảng biến thiên của mẫu số liệu là:
Khoảng biến thiên là .
Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là:
Nếu đơn vị đo của số liệu là thì đơn vị của độ lệch chuẩn là:
Cho ba nhóm học sinh:
Nhóm 1 gồm 6 học sinh có cân nặng trung bình là 45kg.
Nhóm 2 gồm 11 học sinh có cân nặng trung bình là 50kg.
Nhóm 3 gồm 8 học sinh có cân nặng trung bình là 42kg.
Hãy tính khối lượng trung bình của cả ba nhóm học sinh trên?
Tổng khối lượng của mỗi nhóm lần lượt là:
Khối lượng trung bình của cả ba nhóm là:
Vậy khối lượng trung bình của cả ba nhóm học sinh là .
Biểu đồ sau biểu diễn tốc độ tăng trưởng GDP của Nhật Bản trong giai đoạn 1990 đến 2005. Hãy tìm khoảng biến thiên của mẫu số liệu đó.

Khoảng biến thiên R = 5,1 - 0,4 = 4,7.
Điểm kiểm tra giữa học kì 2 môn Toán của một nhóm học sinh được ghi lại như sau:
. Số trung vị của mẫu số liệu đã cho là:
Sắp xếp dãy số liệu theo thứ tự không giảm như sau:
Ta có: là số lẻ suy ra trung vị của mẫu số liệu đứng ở vị trí số
Hay trung vị của mẫu số liệu là .
Hãy tìm số trung bình của mẫu số liệu khi cho bảng tần số dưới đây:
|
Giá trị |
4 |
6 |
8 |
10 |
12 |
|
Tần số |
1 |
4 |
9 |
5 |
2 |
Số trung bình của mẫu số liệu là:
Vậy đáp án bằng
Kết quả đi chiều dài của một cây thước là
thì sai số tương đối của phép đo là:
Ta có:
Bảng sau thống kê điểm kiểm tra của học sinh lớp 10C.

Tìm trung vị của dãy số liệu trên.
Cỡ mẫu số liệu này là:
.
Suy ra giá trị chính giữa là giá trị ở vị trí thứ 20. Đó là số 17.
Vậy trung vị .
Hãy viết số quy tròn số gần đúng
với độ chính xác
.
Ta có: nên làm tròn đến hàng nghìn
Vậy đáp án là: .
Cho
. Số gần đúng của
với độ chính xác
là:
Vì độ chính xác nên số gần đúng được quy tròn đến hàng phần chục.
Vậy đáp án đúng là .
Ba nhóm học sinh gồm 5 người, 10 người và 15 người. Khối lượng trung bình của mỗi nhóm lần lượt là 48 kg, 45kg và 40 kg. Khối lượng trung bình của 3 nhóm học sinh là:
Khối lượng trung bình của 3 nhóm học sinh là:
Tìm trung vị của dãy số liệu 4 3 5 1 6 8 6.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 3 4 5 6 6 8.
Dãy trên có giá trị chính giữa bằng 5.
Vậy trung vị của mẫu số liệu bằng 5.
Một mẫu số liệu có giá trị tứ phân vị thứ nhất và tứ phân vị thứ ba lần lượt là:
. Hãy chỉ ra giá trị bất thường trong các đáp án dưới đây?
Ta có:
Vậy giá trị bất thường là .
Trong 9 ngày liên tiếp, số sản phẩm mà tổ sản xuất hoàn thành mỗi ngày được ghi lại như sau:
. Giá trị khoảng biến thiên của mẫu số liệu là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 30
Giá trị nhỏ nhất là 21
Suy ra khoảng biến thiên của mẫu số liệu là: 30 – 21 = 9.
Cho dãy số liệu:
![]()
![]()
Tìm giá trị bất thường của mẫu số liệu trên?
Các giá trị của mẫu số liệu được sắp xếp theo thứ tự không giảm như sau:
Ta tìm được các tứ phân vị
Suy ra khoảng biến thiên tứ phân vị là
Suy ra các giá trị bất thường nằm ngoài đoạn
Vậy các giá trị bất thường là .
Viết số quy tròn của số
đến hàng trăm.
Quy tròn số đến hàng trăm nên chữ số quy tròn là chữ số, mà chữ số sau chữ số 7 là 9 > 5 nên số quy tròn của số đến hàng trăm là
.
Cho biểu đồ lượng mưa trung bình các tháng năm 2019 tại Thành phố Hồ Chí Minh như sau:

Mẫu số liệu nhận được từ biểu đồ trên có khoảng biến thiên là:
Quan sát biểu đồ ta thấy:
Giá trị lớn nhất là 342
Giá trị nhỏ nhất là: 4
Vậy khoảng biến thiên của mẫu số liệu là: 342 – 4 = 338.