Cho mẫu số liệu có
. Khi đó độ lệch chuẩn của mẫu số liệu bằng:
Độ lệch chuẩn
Cho mẫu số liệu có
. Khi đó độ lệch chuẩn của mẫu số liệu bằng:
Độ lệch chuẩn
Kết quả đo chiều dài của một cây cầu được ghi là
. Tìm sai số tương đối của phép đo chiều dài cây cầu.
Phép đo cây cầu có sai số tương đối thỏa mãn .
Cho bảng số liệu điểm kiểm tra môn Toán của 20 học sinh
Điểm | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Số học sinh | 1 | 2 | 3 | 4 | 5 | 4 | 1 |
Tìm trung vị của bảng số liệu trên.
Bảng số liệu có 20 giá trị => .
=> .
Khẳng định nào sau đây là đúng?
Trong đo đạc và tính toán, ta thường chỉ nhận được số gần đúng.
Tiến hành đo huyết áp của 8 người ta thu được kết quả sau: 77 105 117 84 96 72 105 124.
Hãy tìm khoảng tứ phân vị của mẫu số liệu trên.
Sắp xếp mẫu theo thứ tự không giảm: 72 77 84 96 105 105 117 124.
Hai giá trị chính giữa là 96 105. Do đó .
Tứ phân vị của mẫu số liệu: 72 77 84 96 là
.
Tứ phân vị của mẫu số liệu 105 105 117 124 là:
.
Khoảng tứ phân vị .
Khi tính diện tích hình tròn bán kính R = 3cm, nếu lấy
thì độ chính xác là bao nhiêu?
Ta có diện tích hình tròn S = 3,14. 32 và . 32 =
Ta có:
Do đó:
Vậy nếu ta lấy thì diện tích hình tròn là S = 28,26cm2 với độ chính xác
.
Tìm giá trị bất thường của dãy số liệu: 3 6 8 14 19 28.
Hai giá trị chính giữa là 8 và 14. Suy ra trung vị .
Trung vị của mẫu 3 6 8 là
.
Trung vị của mẫu 14 19 28 là
.
Suy ra .
Xét: .
Xét: .
Ta thấy không có giá trị nào nhỏ hơn và lớn hơn
nên dãy không có giá trị bất thường.
Cho bảng điểm kiểm tra môn Toán của học sinh lớp 10B như sau:
|
Điểm |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Tổng |
|
Số học sinh |
2 |
8 |
7 |
10 |
8 |
3 |
2 |
N = 40 |
Tính số trung bình của mẫu số liệu? (Làm tròn kết quả đến chữ số thập phân thứ nhất).
Số trung bình của mẫu số liệu là:
Vậy số trung bình của mẫu số liệu bằng 6,8.
Số tiền nước phải nộp (đơn vị: nghìn đồng) của 5 hộ gia đình là: 56; 45; 103; 239; 125. Độ lệch chuẩn gần bằng:
Số tiền nước trung bình là:
Phương sai là:
Độ lệch chuẩn là:
Một shop bán giày thống kê số lượng giày bán trong vài ngày trong bảng sau:
|
Cỡ giày |
37 |
38 |
39 |
40 |
41 |
42 |
|
Số lượng |
35 |
42 |
50 |
38 |
32 |
48 |
Mốt của bảng số liệu trên là:
Mốt là giá trị có tần số lớn nhất trong bảng số liệu
Quan sát bảng số liệu đã cho suy ra mốt của bảng số liệu là 39.
Cho số
. Số quy tròn của số gần đúng
là:
Do độ chính xác nên làm quy tròn số gần đúng
đến hàng nghìn ta được:
Độ dài các cạnh của đám vườn hình chữ nhật là
và
. Cách viết chuẩn của diện tích là:
.
Diện tích mảnh ruộng là , khi đó:
.
Cách viết chuẩn của diện tích là .
Bảng dưới đây là nhiệt độ của một thành phố (đơn vị: độ C).

Tính độ lệch chuẩn của mẫu số liệu về nhiệt độ.
Số trung bình là:
.
Tính được phương sai là: .
Độ lệch chuẩn là .
Sản lượng lúa (đơn vị là tạ) của 11 thửa ruộng thí nghiệm có cùng diện tích lần lượt là: 20; 19; 17; 21; 24; 22; 23; 16; 11; 25; 23. Tìm mốt của mẫu số liệu trên.
Số 23 xuất hiện nhiều nhất nên nó là mốt.
Điểm kiểm tra môn Hóa của một nhóm gồm 9 bạn như sau: 1; 1; 3; 6; 7; 8; 8; 9; 10. Tính trung bình cộng của mẫu số liệu trên. (làm tròn đến hàng phần chục)
Số trung bình của mẫu số liệu trên là: .
Dưới đây là bảng thống kê số lần làm bài tập Toán của học sinh lớp 10A.

Tìm trung vị của mẫu số liệu này.
Cỡ mẫu số liệu này là: .
Suy ra giá trị chính giữa là giá trị ở vị trí thứ 18. Đó là số 3.
Vậy trung vị .
Khẳng định nào sau đây là đúng?
Khẳng định đúng là: "Nếu sai số tương đối của phép đo càng nhỏ thì chất lượng phép đo càng cao."
Quy tròn số
đến hàng chục, được số
. Khi đó sai số tuyệt đối là:
Sai số tuyệt đối là:
Kết quả kiểm tra của 40 học sinh lớp 10A được thống kê trong bảng sau:
|
Điểm |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
Số học sinh |
2 |
3 |
7 |
18 |
3 |
2 |
4 |
1 |
Tìm mốt của mẫu số liệu đã cho?
Mốt của mẫu số liệu là: (vì có nhiều học sinh đạt điểm 6 nhất trong 40 học sinh).
Cho dãy số liệu
. Xác định mốt của mẫu số liệu?
Mốt số liệu đã cho có số 5 xuất hiện nhiều lần nhất
Suy ra mốt của mẫu số liệu là 5.
Quy tròn số 73,316 đến hàng phần trăm.
Quy tròn số 73,316 đến hàng phần trăm ta được số 73,32.
Bạn Linh đo quãng đường đi học từ nhà đến trường là
với độ chính xác
. Sai số tương đối trong phép đo là:
Sai số tương đối trong phép đo là .
Quy tròn số 0,1352 đến hàng phần mười.
Vì số 0,1352 có chữ số hàng phần trăm là 3 < 5 nên khi làm tròn số 0,1352 đến hàng phần mười, ta được 0,1352 ≈ 0,1
Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?
Đáp án: Độ lệch chuẩn.
Kết quả khi đo chiều dài của một cây thước là
. Khi đó sai số tuyệt đối của phép đo được ước lượng là:
Ta có độ dài gần đúng của cây thước là với độ chính xác
Nên sai số tuyệt đối là .
Giả sử
là các tứ phân vị của mẫu số liệu. Khoảng tứ phân vị của mẫu số liệu là:
Khoảng tứ phân vị của mẫu số liệu là: .
Kết quả điều tra về điện năng tiêu thụ (đơn vị: kw/h) của một số hộ dân trong khu vực được thống kê như sau:
. Tính trung vị của dãy số liệu đã cho?
Sắp xếp mẫu số liệu theo thứ tự không giảm như sau:
Vì cỡ mẫu (số lẻ) nên số trung vị của dãy số liệu trên là số liệu thứ 6.
Suy ra .
Bảng dưới đây thể hiện sản lượng lúa (đơn vị: tạ) của một số thửa ruộng:

Tính phương sai của mẫu số liệu.
Số trung bình của mẫu là:
.
Phương sai:
.
Cho bảng số liệu thống kê kết quả thi của một số học sinh như sau:
|
Học sinh |
An |
Hoa |
Tuấn |
Hùng |
Quân |
Linh |
|
Điểm |
9 |
8 |
7 |
10 |
8 |
6 |
Tìm phương sai của mẫu số liệu?
Ta có:
Điểm trung bình của các học sinh trong bảng số liệu là:
Ta có bảng sau:
|
Giá trị |
Độ lệch |
Bình phương độ lệch |
|
9 |
9 – 8 = 1 |
1 |
|
8 |
8 – 8 = 0 |
0 |
|
7 |
7 – 8 = -1 |
1 |
|
10 |
10 – 8 = 2 |
4 |
|
8 |
8 – 8 = 0 |
0 |
|
6 |
6 – 8 = -2 |
4 |
|
Tổng |
10 |
|
Suy ra phương sai của mẫu số liệu là:
Vậy phương sai cần tìm là .
Sản lượng lúa (đơn vị: tạ) của 40 thửa ruộng thí nghiệm có cùng diện tích được trình bày trong bảng số liệu sau:
| Sản lượng | 20 | 21 | 22 | 23 | 24 | |
Tần số | 5 | 8 | 11 | 10 | 6 | n = 40 |
Phương sai là:
Sản lượng lúa trung bình là:
Phương sai là:
Số kênh của một số hãng truyền hình cáp được ghi như sau: 36 38 33 34 32 30 34 35.
Tìm tứ phân vị của mẫu số liệu trên.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 30 32 33 34 34 35 36 38.
Trung vị của mẫu số liệu trên là: .
Trung vị của mẫu số liệu 30 32 33 34 là: .
Trung vị của mẫu số liệu 34 35 36 38 là: .
Vậy .
Điều tra về số học sinh của một trường THPT như sau:
Khối lớp | 10 | 11 | 12 |
Số học sinh | 1120 | 1075 | 900 |
Khoảng biến thiên của mẫu số liệu trên là.
Khoảng biến thiên R = 1120 - 900 = 220.
Viết số quy tròn của số gần đúng
có độ chính xác
.
Vì nhỏ hơn một đơn vị ở hàng phần trăm nên ta làm tròn số đến hàng phần trăm. Số quy tròn là:
.
Khoảng biến thiên của mẫu số liệu:
là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 16
Giá trị nhỏ nhất là 2
Suy ra khoảng biến thiên của mẫu số liệu là: 16 – 2 = 14.
Kết quả kiểm tra Toán của một số học sinh như sau:
. Khoảng biến thiên của mẫu số liệu là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 10
Giá trị nhỏ nhất là 7
Suy ra khoảng biến thiên của mẫu số liệu là: 10 – 7 = 3
Cho kết quả ném phi tiêu của Hùng như sau:
. Hãy các tứ phân vị của mẫu số liệu đã cho?
Sắp xếp điểm ném phi tiêu theo thứ tự không giảm như sau:
Ta có: là số đứng thứ 7.
là trung bình cộng 2 số đứng thứ
.
là trung bình cộng 2 số đứng thứ
.
Tìm số gần đúng của a = 2851275 với độ chính xác d = 300.
Vì độ chính xác đến hàng trăm nên ta quy tròn a đến hàng nghìn, vậy số quy tròn của a là 2851000.
Hình dưới thống kê tỉ lệ phần trăm thất nghiệp ở một số quốc gia:

Hãy tìm giá trị bất thường (nếu có) của mẫu số liệu.
Sắp xếp các giá trị theo thứ tự không giảm:
3,2 3,6 4,4 4,5 5,0 5,4 6,0 6,7 7,0 7,2 7,7 7,8 8,4 8,6 8,7
Từ mẫu số liệu ta tính được: và
,
.
Suy ra .
Ta có:
.
Ta có:
.
Ta thấy không có số liệu nào nhỏ hơn và lớn hơn
nên mẫu không có giá trị bất thường.
Khi sử dụng máy tính bỏ túi ta được
. Giá trị gần đúng của
quy tròn đến hàng phần trăm là:
Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 3 ở hàng phần trăm là số 6 > 5 nên theo nguyên lý làm tròn ra được kết quả là: .
Tìm mốt của mẫu số liệu: 1 3 4 2 0 0 5 6.
Giá trị 0 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 0.