Cho số
. Số quy tròn của số gần đúng
bằng:
Hàng lớn nhất có độ chính xác là hàng trăm nên ta quy tròn số a đến hàng nghìn.
Vậy số quy tròn của a là: .
Cho số
. Số quy tròn của số gần đúng
bằng:
Hàng lớn nhất có độ chính xác là hàng trăm nên ta quy tròn số a đến hàng nghìn.
Vậy số quy tròn của a là: .
Cho dãy số liệu:
. Tìm khoảng tứ phân vị của mẫu số liệu đã cho?
Sắp xếp dãy số liệu theo thứ tự không giảm ta được:
Dãy số liệu có số chính giữa là 8 nên tứ phân vị thứ hai là
Tứ phân vị thứ nhất là trung vị của dãy số liệu: . Khi đó
.
Tứ phân vị thứ ba là trung vị của dãy số liệu: . Khi đó
Vậy khoảng tứ phân vị của mẫu số liệu là
Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của
chính xác đến hàng phần trăm.
Sử dụng máy tính bỏ túi ta có = 1,732050808. Do đó: Giá trị gần đúng của
chính xác đến hàng phần trăm là 1,73.
Tìm giá trị bất thường của mẫu số liệu: 8 50 6 4 2
Sắp xếp mẫu theo thứ tự không giảm: 2 4 6 8 50
Số liệu chính giữa là 6 nên .
Trung vị của mẫu số liệu 2 4 là .
Trung vị của mẫu số liệu 8 50 là .
Khoảng tứ phân vị là .
Ta có: .
Ta có: .
Không có giá trị nào trong mẫu nhỏ hơn -36 và lớn hơn 68. Vậy mẫu không có giá trị bất thường.
Lớp trưởng lớp 10A thống kê số học sinh và số cây trồng được theo từng tổ trong buổi ngoại khóa như sau:
Tổ | 1 | 2 | 3 | 4 |
Số học sinh | 11 | 10 | 12 | 10 |
Số cây | 30 | 30 | 38 | 29 |
Bạn lớp trưởng cho biết số cây mỗi bạn trong lớp trồng được đều không vượt quá 3 cây. Biết rằng bảng trên có một tổ bị thống kê sai. Tổ mà bạn lớp trưởng đã thống kê sai là:
Xét đáp án Tổ 1
Số cây tối đa tổ 1 trồng được là: 11.3 = 33 (cây)
Vì 30 (cây) < 33 (cây) nên thống kê số cây tổ 1 trồng được không sai.
Xét đáp án Tổ 2
Số cây tối đa tổ 2 trồng được là: 10.3 = 30 (cây)
Vì 30 (cây) = 30 (cây) nên thống kê số cây tổ 1 trồng được không sai.
Xét đáp án Tổ 3
Số cây tối đa tổ 3 trồng được là: 12.3 = 36 (cây)
Vì 38 (cây) > 36 (cây) nên thống kê số cây tổ 3 trồng được là sai.
Xét đáp án Tổ 4
Số cây tối đa tổ 3 trồng được là: 10.3 = 30 (cây)
Vì 29 (cây) < 30 (cây) nên thống kê số cây tổ 4 trồng được không sai.
Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng nào sau đây?
Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng phương sai.
Cho dãy số liệu thống kê
. Tính số trung bình cộng của dãy số liệu thống kê đã cho?
Số trung bình cộng của dãy số liệu đã cho là:
Vậy số trung bình cộng của dãy số liệu thống kê bằng 22,5.
Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là:
Nếu đơn vị đo của số liệu là thì đơn vị của độ lệch chuẩn là:
Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

Chọn kết luận đúng.
Giá trị trung bình của hai mẫu:
Vậy hai mẫu có giá trị trung bình bằng nhau.
Khi tính diện tích hình tròn bán kính R = 3cm, nếu lấy
thì độ chính xác là bao nhiêu?
Ta có diện tích hình tròn S = 3,14. 32 và . 32 =
Ta có:
Do đó:
Vậy nếu ta lấy thì diện tích hình tròn là S = 28,26cm2 với độ chính xác
.
Bảng dưới đây ghi lại thời gian chạy trong 1 cuộc thi của các bạn lớp 10B. (đơn vị: giây)

Hãy tính thời gian chạy trung bình của các bạn. (kết quả làm tròn đến hàng phần nghìn)
Lớp 10B có: (bạn).
Thời gian chạy trung bình của các bạn là:
(giây).
Cho ba nhóm học sinh:
Nhóm 1 gồm 6 học sinh có cân nặng trung bình là 45kg.
Nhóm 2 gồm 11 học sinh có cân nặng trung bình là 50kg.
Nhóm 3 gồm 8 học sinh có cân nặng trung bình là 42kg.
Hãy tính khối lượng trung bình của cả ba nhóm học sinh trên?
Tổng khối lượng của mỗi nhóm lần lượt là:
Khối lượng trung bình của cả ba nhóm là:
Vậy khối lượng trung bình của cả ba nhóm học sinh là .
Dung tích của một nồi cơm điện là 1,1 lít ± 0,01 lít. Sai số tương đối của dung tích nồi cơm điện không vượt quá giá trị nào sau đây?
Ta có:
Sai số tương đối của dung tích nồi cơm điện là:
Vậy sai số tương đối của dung tích nồi cơm điện không vượt quá giá trị 1%
Cho
Hãy xác định số gần đúng của
với độ chính xác d = 0,0001.
Hàng của chữ số khác 0 đầu tiên bên trái của d = 0,0001 là hàng phần chục nghìn.
Quy tròn đến hàng phần chục nghỉn ra được số gần đúng của
là
Xác định khoảng tứ phân vị của mẫu số liệu:
?
Ta có: là số lẻ
Suy ra
Vậy khoảng tứ phân vị của mẫu số liệu bằng 3.
Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là:
Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.
Quy tròn số 54 739 đến hàng trăm và ước lượng sai số tương đối.
Quy tròn số 54 739 đến hàng trăm ta được số gần đúng là
Ta có:
=>
Cho bảng kết quả kiểm tra khối lượng của 30 quả trứng gà như sau:
|
Khối lượng (gram) |
25 |
30 |
35 |
40 |
45 |
50 |
|
Số quả trứng |
3 |
5 |
7 |
9 |
4 |
2 |
Xác định mốt của mẫu số liệu?
Mốt của mẫu số liệu là 40 (vì có tần số lớn nhất).
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được
. Giá trị gần đúng của
chính xác đến hàng phần trăm là:
Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 2 ở hàng phần trăm là số 8 > 5 nên theo nguyên lý làm tròn ra được kết quả là:
Cho mẫu số liệu:
. Xác định khoảng tứ phân vị của mẫu số liệu?
Ta có N = 10
Suy ra
Vậy khoảng tứ phân vị bằng 2.
Cho mẫu số liệu:
. Có bao nhiêu giá trị bất thường của mẫu số liệu đã cho?
Ta có
Suy ra
Nhận thấy trong mẫu số liệu đã cho không có giá trị nào nhỏ hơn 2 và lớn hơn 10.
Vậy không có giá trị nào bất thường trong mẫu số liệu.
Cho mẫu số liệu: 17 21 35 43 8 59 72 119. Tìm tứ phân vị.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 8 17 21 35 43 59 72 119.
Trung vị của mẫu số liệu trên là: .
Trung vị của dãy 8 17 21 35 là: .
Trung vị của dãy 43 59 72 119 là: .
Vậy .
Xác định khoảng biến thiên
của mẫu số liệu: 6 5 3 7 8 10 15.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 3 5 6 7 8 10 15.
Suy ra khoảng biến thiên .
Số kênh của một số hãng truyền hình cáp được ghi như sau: 36 38 33 34 32 30 34 35.
Tìm tứ phân vị của mẫu số liệu trên.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 30 32 33 34 34 35 36 38.
Trung vị của mẫu số liệu trên là: .
Trung vị của mẫu số liệu 30 32 33 34 là: .
Trung vị của mẫu số liệu 34 35 36 38 là: .
Vậy .
Số cam có trong các giỏ được ghi lại như sau:
. Số trung vị của mẫu số liệu là:
Vì cỡ mẫu là số chẵn nên trung vị bằng trung bình cộng của số liệu ở vị trí thứ hai và thứ ba.
=> Số trung vị của mẫu số liệu:
Hãy viết số quy tròn số gần đúng
với độ chính xác
.
Ta có: nên làm tròn đến hàng nghìn
Vậy đáp án là: .
Cho số gần đúng a = 23748023 với độ chính xác d = 101. Hãy viết số quy tròn của số a.
Vì độ chính xác d = 101 là hàng trăm nên ta quy tròn đến hàng nghìn, ta được số:
a = 23748023.
Biểu đồ dưới đây thể hiện tỉ lệ lạm phát cơ bản bình quân năm trong giai đoạn 2018 – 2022:

(Nguồn: Niêm giám thống kê 2022)
Trong giai đoạn từ 2018 – 2021, năm có tỉ lệ lạm phát cơ bản bình quân năm cao nhất là?
Trong giai đoạn từ 2018 – 2021, năm 2020 có tỉ lệ lạm phát cơ bản bình quân năm cao nhất.
Điểm kiểm tra môn Văn của bạn Lan là: 7; 9; 8; 9. Tính số trung bình cộng
của mẫu số liệu trên.
Số trung bình cộng của mẫu số liệu trên là: .
Kết quả thống kê số tiền điện của một hộ gia đình trong 6 tháng liên tiếp (đơn vị: nghìn đồng) như sau:
. Khoảng biến thiên của mẫu số liệu bằng:
Giá trị lớn nhất bằng 350
Giá trị nhỏ nhất bằng 270
=> Khoảng biến thiên của mẫu số liệu là: 350 – 270 = 80.
Vậy khoảng biến thiên của mẫu số liệu bằng 80.
Tìm khoảng tứ phân vị mẫu số liệu điểm của một nhóm học sinh lớp 10:

Sắp xếp mẫu số liệu theo thứ tự không giảm: 4 5 5 6 7 7 7 8 8 9 9 10.
Hai số liệu chính giữa là 7 và 7 nên .
Trung vị của mẫu số liệu 4 5 5 6 7 7 chính là .
Trung vị của mẫu số liệu 7 8 8 9 9 10 chính là .
Khoảng tứ phân vị
.
Biết
Viết gần đúng
theo nguyên tắc làm tròn với ba chữ số thập phân và ước lượng sai số tuyệt đối.
Làm tròn với ba chữ số thập phân:
Sai số tuyệt đối:
Vậy sai số tuyệt đối không vượt quá 0,0001.
Số cuộn phim mà 20 nhà nhiếp ảnh nghiệp dư sử dụng trong một tháng được cho trong bảng sau:
0 | 5 | 7 | 6 | 2 | 5 | 9 | 7 | 6 | 9 |
20 | 6 | 10 | 7 | 5 | 8 | 9 | 7 | 8 | 5 |
Giá trị ngoại lệ trong mẫu số liệu trên là:
Ta có bảng tần số sau:
Số cuộn phim | 0 | 2 | 5 | 6 | 7 | 8 | 9 | 10 | 20 |
|
Số nhiếp ảnh gia | 1 | 1 | 4 | 3 | 4 | 2 | 3 | 1 | 1 | n = 20 |
Vì cỡ mẫu n = 20 = 2.10 là số chẵn. Nên giá trị tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 10 và số liệu thứ 11.
Khi sắp xếp mẫu số liệu đã cho theo thứ tự không giảm, ta được số liệu thứ 10 và số liệu thứ 11 cùng bằng 7.
=> Q2 = 7.
- Ta tìm tứ phân vị thứ nhất là trung vị của nửa mẫu số liệu bên trái Q2.
Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ nhất là trung bình cộng của số liệu thứ 5 và số liệu thứ 6.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 5 và số liệu thứ 6 cùng bằng 5.
=> Q1 = 5.
Ta tìm tứ phân vị thứ ba là trung vị của nửa mẫu số liệu bên phải Q2.
Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 5 và số liệu thứ 6 (tính từ số liệu thứ 11 trở đi). Tức là giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 15 và số liệu thứ 16.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 15 và số liệu thứ 16 lần lượt là 8 và 9.
=> Q3 = (8 + 9) : 2 = 8,5.
Ta suy ra khoảng tứ phân vị ∆Q = Q3 – Q1 = 8,5 – 5 = 3,5.
Ta có Q3 + 1,5.∆Q = 13,75 và Q1 – 1,5.∆Q = – 0,25.
Số liệu x trong mẫu là giá trị ngoại lệ nếu x > Q3 + 1,5.∆Q (1) hoặc x < Q1 – 1,5.∆Q (2)
Quan sát bảng số liệu ta thấy có số liệu x = 20 thoả mãn điều kiện (1) : 20 > 13,75.
Vậy mẫu số liệu có giá trị ngoại lệ là 20.
Cho kết quả ném phi tiêu của Hùng như sau:
. Hãy các tứ phân vị của mẫu số liệu đã cho?
Sắp xếp điểm ném phi tiêu theo thứ tự không giảm như sau:
Ta có: là số đứng thứ 7.
là trung bình cộng 2 số đứng thứ
.
là trung bình cộng 2 số đứng thứ
.
Khi sử dụng máy tính bỏ túi ta được
. Giá trị gần đúng của
quy tròn đến hàng phần trăm là:
Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 3 ở hàng phần trăm là số 6 > 5 nên theo nguyên lý làm tròn ra được kết quả là: .
Một người sử dụng cùng lúc ba thiết bị khác nhau để đo thành tích chạy của vận động viên A. Người ta ghi lại ba kết quả như sau:
,
,
(đơn vị: giây). Hỏi thiết bị nào đo chính xác nhất theo sai số tương đối?
Sai số tương đối của thiết bị 1: .
Sai số tương đối của thiết bị 2: .
Sai số tương đối của thiết bị 3: .
Vậy thiết bị 1 đo chính xác nhất.
Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây:
= 28658 ± 100.
Vì độ chính xác đến hàng trăm nên ta phải quy tròn số 17638 đến hàng nghìn. Vậy số quy tròn là 29000 (hay viết ≈ 29000).
Tìm chỉ số IQ trung bình của nhóm học sinh. Biết kết quả đo IQ là
.
Chỉ số IQ trung bình cần tìm là:
Vậy chỉ số IQ trung bình của nhóm học sinh là 72,6.
Một nhà nghiên cứu ghi lại tuổi của 30 bệnh nhân mắc bệnh đau mắt hột như sau:
21 | 17 | 22 | 18 | 20 | 17 | 15 | 13 | 15 | 20 | 15 | 12 | 18 | 17 | 25 |
17 | 21 | 15 | 12 | 18 | 16 | 23 | 14 | 18 | 19 | 13 | 16 | 19 | 18 | 17 |
Khoảng biến thiên
của mẫu số liệu trên là:
Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột cao nhất là 25 tuổi.
Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột thấp nhất là 12 tuổi.
Khoảng biến thiên của mẫu số liệu trên là:
Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?
Số đặc trưng đo độ đo phân tán của mẫu số liệu là phương sai.