Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Thống kê gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một túi gạo có ghi thông tin khối lượng là 5 \pm 0,2kg. Khi đó khối lượng thực của bao gạo nằm trong đoạn nào sau đây?

    Khi một túi gạo có ghi thông tin khối lượng là 5 \pm 0,2kg thì khối lượng thực của bao gạo nằm trong đoạn \lbrack
4,8;5,2brack.

  • Câu 2: Nhận biết

    Điểm kiểm tra môn Văn của bạn Lan là: 7; 9; 8; 9. Tính số trung bình cộng \overline{x} của mẫu số liệu trên.

    Số trung bình cộng của mẫu số liệu trên là: \overline{x} = \frac{7 + 9 + 8 + 9}{4} =
8,25.

  • Câu 3: Nhận biết

    Số quy tròn của số gần đúng a với \overline{a} = 18658 \pm 25 là:

    Quy tròn a đến hàng trăm nên số quy tròn của số gần đúng a là: 18700.

  • Câu 4: Thông hiểu

    Cho số a =
6653964 \pm 300. Số quy tròn của số gần đúng 6653964 là:

    Do độ chính xác d = 300 <
\frac{1000}{2} nên làm quy tròn số gần đúng 6653964 đến hàng nghìn ta được: 6654000

  • Câu 5: Nhận biết

    Bảng dưới đây là sản lượng lúa gạo của nước ta giai đoạn 2007 – 2017 (đơn vị: triệu tấn).

    Khoảng biến thiên của mẫu số liệu là:

    Khoảng biến thiên là R = 7,72 - 4,53 =
3,19.

  • Câu 6: Nhận biết

    Trong một bài kiểm tra chạy của 20 học sinh, thầy giáo đã ghi lại kết quả trong bảng sau:

    Thời gian (giây)

    8,3

    8,4

    8,5

    8,7

    8,8

    Số học sinh

    2

    3

    9

    5

    1

    Mốt của bảng số liệu trên là:

    Quan sát bảng số liệu ta thấy:

    Số học sinh đạt kết quả 8,5 giây là lớn nhất bằng 9 học sinh.

    => Mốt của bảng số liệu là 8,5.

  • Câu 7: Thông hiểu

    Cho mẫu số liệu: 43;45;46;41;40. Giá trị phương sai và độ lệch chuẩn của mẫu số liệu lần lượt là:

    Trung bình cộng của mẫu số liệu là:

    \overline{x} = \frac{43 + 45 + 46 + 41 +
40}{5} = 43

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{43^{2} + 45^{2} + 46^{2} +
41^{2} + 40^{2}}{5} - 43^{2} = 5,2

    Độ lệch chuẩn của mẫu số liệu là:

    s = \sqrt{s^{2}} \approx
2,28.

  • Câu 8: Thông hiểu

    Cho mẫu số liệu: 0;5;5;5;6;6;6;7;8;10. Xác định khoảng tứ phân vị của mẫu số liệu?

    Ta có N = 10

    Suy ra Q_{2} = \frac{6 + 6}{2} =
6

    \Rightarrow \left\{ \begin{matrix}
Q_{1} = 5 \\
Q_{3} = 7 \\
\end{matrix} ight.\  \Rightarrow \Delta Q = 7 - 5 = 2

    Vậy khoảng tứ phân vị bằng 2.

  • Câu 9: Thông hiểu

    Hãy tìm số trung bình của mẫu số liệu khi cho bảng tần số dưới đây:

    Giá trị \mathbf{x}_{\mathbf{i}}

    4

    6

    8

    10

    12

    Tần số \mathbf{n}_{\mathbf{i}}

    1

    4

    9

    5

    2

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{4.1 + 6.4 + 8.9 +
10.5 + 12.2}{21} \approx 8,29

    Vậy đáp án bằng 8,29

  • Câu 10: Vận dụng

    Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện cộng 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.

    Giả sử các số liệu trong mẫu là: a_{1};a_{2};...;a_{10} đã sắp xếp theo thứ tự không giảm.

    Khoảng biến thiên: R_{1} = a_{10} -
a_{1}.

    Cộng hai với tất cả các số liệu: a_{1} +
2;a_{2} + 2;...;a_{10} + 2.

    Khoảng biến thiên: R_{2} = (a_{10} + 2) -
(a_{1} + 2 ) = a_{10} -
a_{1}.

    Suy ra R_{2} = R_{1}.

  • Câu 11: Nhận biết

    Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây: \overline{a} = 17658 ± 16.

    Vì độ chính xác đến hàng chục nên ta phải quy tròn số 17638 đến hàng trăm. Vậy số quy tròn là 17700 (hay viết \overline{a} ≈ 17700).

  • Câu 12: Nhận biết

    Tìm mốt của mẫu số liệu: 1 3 4 2 0 0 5 6.

    Giá trị 0 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 0.

  • Câu 13: Thông hiểu

    Cho bảng số liệu thống kê điểm kiểm tra môn Hóa học của lớp 10A như sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Số học sinh

    2

    2

    4

    6

    15

    9

    3

    1

    Độ lệch chuẩn của mẫu số liệu trên là:

    Ta có: N = 42

    Điểm trung bình của học sinh lớp 10A là:

    \overline{x} = \frac{2.3 + 2.4 + 4.5 +
6.6 + 15.7 + 9.8 + 3.9 + 1.10}{42} \approx 6,76

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{42}\lbrack 2.(3 -
6,67)^{2} + 2.(4 - 6,76)^{2} + ... + 1(10 - 6,67)^{2}brack \approx
2,37

    Độ lệch chuẩn của mẫu số liệu đã cho là:

    s = \sqrt{s^{2}} \approx
1,54

    Vậy độ lệch chuẩn cần tìm là: 1,54.

  • Câu 14: Nhận biết

    Thống kê số cuốn sách mỗi bạn trong lớp đã đọc trong năm 2023, lớp trưởng thu được kết quả như sau:

    Số cuốn sách

    3

    4

    5

    6

    7

    Số học sinh

    6

    15

    3

    8

    8

    Tìm mốt của mẫu số liệu đã cho?

    Mốt của mẫu số liệu là 4 (vì có tần số lớn nhất).

  • Câu 15: Nhận biết

    Độ lệch chuẩn là gì?

     Độ lệch chuẩn là căn bậc hai của phương sai.

  • Câu 16: Thông hiểu

    Tính chiều cao trung bình của học sinh biết chiều cao của từng học sinh được ghi lại như sau:

    Chiều cao (cm)

    150

    155

    160

    165

    170

    175

    Số học sinh

    4

    6

    7

    6

    5

    3

    Chiều cao trung bình của các học sinh là:

    \overline{x} = \frac{150.4 + 155.6 +
160.7 + 165.6 + 170.5 + 175.3}{4 + 6 + 7 + 6 + 5 + 3}

    \Rightarrow \overline{x} \approx
161,8(cm)

  • Câu 17: Nhận biết

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được: \sqrt{8}= 2,828427125. Giá trị gần đúng của \sqrt{8} chính xác đến hàng phần trăm là:

     Quy tròn \sqrt8 đến hàng phần trăm, ta được: 2,83.

  • Câu 18: Nhận biết

    Quy tròn số 0,1352 đến hàng phần mười.

    Vì số 0,1352 có chữ số hàng phần trăm là 3 < 5 nên khi làm tròn số 0,1352 đến hàng phần mười, ta được 0,1352 ≈ 0,1

  • Câu 19: Thông hiểu

    Số tiền nước phải nộp (đơn vị: nghìn đồng) của 5 hộ gia đình là: 56; 45; 103; 239; 125. Độ lệch chuẩn gần bằng:

    Số tiền nước trung bình là:

    \overline x  = \frac{{56 + 45 + 103 + 239 + 125}}{5} = 113,6

    Phương sai là:

    \begin{matrix}  {S^2} = \dfrac{1}{5}\left( {{{56}^2} + {{45}^2} + {{103}^2} + {{239}^2} + {{125}^2}} ight) - {\left( {113,6} ight)^2} \hfill \\   \Rightarrow {S^2} = 4798,24 \hfill \\ \end{matrix}

    Độ lệch chuẩn là: 

    \Rightarrow S = \sqrt {{S^2}}  = \sqrt {4798,24}  \approx 69,27

  • Câu 20: Thông hiểu

    Cho bảng số liệu thống kê kết quả thi của một số học sinh như sau:

    Học sinh

    An

    Hoa

    Tuấn

    Hùng

    Quân

    Linh

    Điểm

    9

    8

    7

    10

    8

    6

    Tìm phương sai của mẫu số liệu?

    Ta có: N = 6

    Điểm trung bình của các học sinh trong bảng số liệu là:

    \overline{x} = \frac{9 + 8 + 7 + 10 + 8
+ 6}{6} = 8

    Ta có bảng sau:

    Giá trị

    Độ lệch

    Bình phương độ lệch

    9

    9 – 8 = 1

    1

    8

    8 – 8 = 0

    0

    7

    7 – 8 = -1

    1

    10

    10 – 8 = 2

    4

    8

    8 – 8 = 0

    0

    6

    6 – 8 = -2

    4

    Tổng

    10

    Suy ra phương sai của mẫu số liệu là: s^{2} = \frac{10}{6} =
\frac{5}{3}

    Vậy phương sai cần tìm là \frac{5}{3}.

  • Câu 21: Vận dụng

    Một người sử dụng cùng lúc ba thiết bị khác nhau để đo thành tích chạy của vận động viên A. Người ta ghi lại ba kết quả như sau: 9,592 \pm 0,004, 9,593 \pm 0,005, 9,589 \pm 0,006 (đơn vị: giây). Hỏi thiết bị nào đo chính xác nhất theo sai số tương đối?

    Sai số tương đối của thiết bị 1: \delta_{1} \leq \frac{0,004}{9,592} \approx
0,04\%.

    Sai số tương đối của thiết bị 2: \delta_{2} \leq \frac{0,005}{9,593} \approx
0,05\%.

    Sai số tương đối của thiết bị 3: \delta_{3} \leq \frac{0,006}{9,589} \approx
0,06\%.

    Vậy thiết bị 1 đo chính xác nhất.

  • Câu 22: Vận dụng

    Điểm kiểm tra môn Lịch Sử của một học sinh qua 8 lần thi được ghi lại như sau:

    5,5;\ 6;\ 6;\ x;\ 7;\ 7,5;\ 8;\
9

    Biết số trung vị của mẫu số liệu trên bằng 6,5. Kết quả nào dưới đây đúng?

    N = 8 là số chẵn nên trung vị của mẫu số liệu là trung bình cộng của số liện ở vị trí thứ 4 và thứ 5.

    Suy ra 6,5 = \frac{x + 7}{2}
\Leftrightarrow x = 6

    Vậy x = 6.

  • Câu 23: Nhận biết

    Chiều cao của một số học sinh nữ lớp 9 (đơn vị cm) được cho trong bảng.

    Tìm khoảng tứ phân vị của mẫu số liệu này.

    Nhận thấy mẫu đã được sắp xếp theo thứ tự không giảm.

    Số liệu chính giữa là 162 nên Q_{2} =
162.

    Số liệu chính giữa của mẫu 151 152 153 154 155 160 160 là 154 nên Q_{1} = 154.

    Số liệu chính giữa của mẫu 163 165 165 165 166 167 167 là 165 nên Q_{3} = 165.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1} = 165 - 154 =
11.

  • Câu 24: Nhận biết

    Khẳng định nào sau đây là đúng?

     Khẳng định đúng là: "Nếu sai số tương đối của phép đo càng nhỏ thì chất lượng phép đo càng cao."

  • Câu 25: Thông hiểu

    Phương sai của dãy số 2; 3; 4; 5; 6; 7 là:

     Số trung bình: \overline x  = \frac{{2 + 3 + 4 + 5 + 6 + 7}}{6} = 4,5.

    Phương sai: {s^2} =\frac{{{{(2 - 4,5)}^2} + {{(3 - 4,5)}^2} + ... + {{(7 - 4,5)}^2}}}{6}\approx 2,92.

  • Câu 26: Thông hiểu

    Cho \overline{m}=2 +\sqrt{3}= 3,7320508...  Hãy xác định số gần đúng của \overline{m} với độ chính xác d = 0,0001.

    Hàng của chữ số khác 0 đầu tiên bên trái của d = 0,0001 là hàng phần chục nghìn.

    Quy tròn \overline{m} đến hàng phần chục nghỉn ra được số gần đúng của \overline{m}m=3,7321

  • Câu 27: Nhận biết

    Tìm trung vị của dãy số liệu 2 3 1 5 3 7 9 10.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 2 3 3 5 7 9 10.

    Dãy trên có hai giá trị chính giữa là 3 và 5.

    Suy ra trung vị là: M_{e} = \frac{3 +
5}{2} = 4.

  • Câu 28: Nhận biết

    Kết quả thống kê số tiền điện của một hộ gia đình trong 6 tháng liên tiếp (đơn vị: nghìn đồng) như sau: 270;\ 300;\ 350;\ 320;\ 310;\ 280. Khoảng biến thiên của mẫu số liệu bằng:

    Giá trị lớn nhất bằng 350

    Giá trị nhỏ nhất bằng 270

    => Khoảng biến thiên của mẫu số liệu là: 350 – 270 = 80.

    Vậy khoảng biến thiên của mẫu số liệu bằng 80.

  • Câu 29: Nhận biết

    Cho a là số gần đúng của số đúng \overline{a}. Khi đó \Delta_{a} = \left| \overline{a} - a
ight| gọi là:

    Ta có: \Delta_{a} = \left| \overline{a} -
a ight| gọi là sai số tuyệt đối của số gần đúng a.

  • Câu 30: Nhận biết

    Để điều tra các con trong mỗi gia đình của một chung cư gồm 100 gia đình. Người ta chọn ra 20 gia đình ở tầng 4 và thu được mẫu số liệu sau đây:

    2  4  2  1  3  5  1  1  2  3  1  2  2  3  4  1  1  2  3  4.

    Số trung bình cộng \bar{x} của mẫu số liệu trên là:

    Số trung bình cộng của mẫu số liệu trên là:

    \overline x  = \frac{{1.6 + 2.6 + 3.4 + 4.3 + 5}}{{20}} = 2,35

  • Câu 31: Vận dụng

    Chọn khẳng định đúng.

    Khẳng định đúng là:

    Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất, bỏ qua thông tin các giá trị còn lại.

  • Câu 32: Vận dụng

    Một công ty sử dụng dây chuyền X để đóng xi măng với khối lượng mong muốn là 5 kg. Trên bao bì ghi khối lượng là 5 \pm 0,2 (kg). Bên cạnh đó, công ty cũng sử dụng dây chuyền Y để đóng gói xi măng với khối lượng chính xác là 20 kg. Trên bao bì ghi thông tin khối lượng là 20 \pm 0,5 kg. Chọn kết luận đúng.

    Sai số tương đối của dây chuyền X: \delta_{1} \leq \frac{0,2}{5} = 0,04 =
4\%.

    Sai số tương đối của dây chuyền Y: \delta_{2} \leq \frac{0,5}{20} = 0,025 =
2,5\%.

    Như vậy dây chuyền Y đóng gói tốt hơn do có sai số tương đối nhỏ hơn.

  • Câu 33: Nhận biết

    Cho số a = 367\
653\ 964\  \pm 213. Số quy tròn của số gần đúng 367\ 653\ 964 là:

    Vì độ chính xác đến hàng trăm nên ta quy tròn đến hàng nghìn và theo quy tắc làm tròn nên số quy tròn là: 367\
654\ 000.

  • Câu 34: Nhận biết

    Cho mẫu số liệu như sau:

    Khoảng biến thiên của mẫu số liệu trên là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 29.

    Giá trị nhỏ nhất là 23

    Suy ra khoảng biến thiên của mẫu số liệu là: 29 – 23 = 6.

    Vậy đáp án là 6.

  • Câu 35: Nhận biết

    Chọn khẳng định sai?

    Khẳng định sai: “Giá trị bất thường trong mẫu số liệu thuộc \left\lbrack Q_{1} - \frac{3}{2}\Delta Q;Q_{3} +
\frac{1}{2}\Delta Q ightbrack

    Sửa lại: “Giá trị bất thường trong mẫu số liệu nằm ngoài đoạn \left\lbrack Q_{1} - \frac{3}{2}\Delta Q;Q_{3} +
\frac{1}{2}\Delta Q ightbrack”.

  • Câu 36: Thông hiểu

    Quy tròn số 2,473 đến hàng phần chục được số 2,5. Sai số tuyệt đối là:

    Sai số tuyệt đối là: |2,5 - 2,473| =
0,027.

  • Câu 37: Thông hiểu

    Cho bảng tần số như sau:

    Giá trị

    x1

    x2

    x3

    x4

    x5

    x6

    Tần số

    15

    9n - 1

    12

    n^{2} + 7

    10

    17

    Tìm n để M_{0}^{(1)}=x_2;M_{0}^{(2)}=x_4 là hai mốt của bảng tần số trên.

    Ta có: 

    M_{0}^{(1)}=x_2;M_{0}^{(2)}=x_4

    \begin{matrix}   \Rightarrow 9n - 1 = {n^2} + 7,\left( {n > 2} ight) \hfill \\   \Leftrightarrow {n^2} - 9n + 8 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 1\left( {ktm} ight)} \\   {n = 8\left( {tm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy n = 8.

     

  • Câu 38: Nhận biết

    Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là:

    Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.

  • Câu 39: Thông hiểu

    Hãy xác định sai số tuyệt đối của số a = 123456 biết sai số tương đối \delta_{a} = 0,2\%.

    Ta có: \delta_{a} =
\frac{\Delta_{a}}{|a|} \Rightarrow \Delta_{a} = \delta_{a}|a| =
146,912.

  • Câu 40: Vận dụng

    Bảng dưới đây thống kê tuổi thọ của một số bóng đèn (đơn vị: giờ):

    Tìm mốt của bảng trên.

    Ta thấy giá trị 1170 xuất hiện nhiều nhất. Suy ra mốt của bảng trên là 1170.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo