Phương sai của một mẫu số liệu
bằng
Phương sai của một mẫu số liệu bằng bình phương của độ lệch chuẩn.
Phương sai của một mẫu số liệu
bằng
Phương sai của một mẫu số liệu bằng bình phương của độ lệch chuẩn.
Một người cần đo chiều cao của một cái cây. Anh ta thực hiện ba phép đo, kết quả được ghi lại như sau:
(m),
(m),
(m). Trong ba số liệu trên, người thợ nên chọn số liệu nào làm chiều cao của cái cây?
Phép đo lần 1 có sai số tương đối .
Phép đo lần 2 có sai số tương đối .
Phép đo lần 3 có sai số tương đối .
Vì phép đo lần 2 có sai số nhỏ nhất nên người thợ nên chọn làm chiều cao của ngôi nhà.
Bảng sau thống kê điểm kiểm tra của học sinh lớp 10C.

Tìm trung vị của dãy số liệu trên.
Cỡ mẫu số liệu này là:
.
Suy ra giá trị chính giữa là giá trị ở vị trí thứ 20. Đó là số 17.
Vậy trung vị .
Cho một mẫu dữ liệu đã được sắp xếp theo thứ tự không giảm
. Khi đó khoảng biến thiên
của mẫu số liệu bằng:
Khoảng biến thiên của mẫu số liệu bằng:
Có 100 học sinh tham dự kì thi học sinh giỏi Toán (thang điểm 20). Kết quả sau kì thi được thống kê như sau:
Điểm | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
Tần số | 1 | 1 | 3 | 5 | 8 | 13 | 19 | 24 | 14 | 10 | 2 |
Giá trị của phương sai gần bằng:
Kết quả trung bình là:
Giá trị của phương sai là:
Cho số đúng
và số gần đúng của
của
. Xác định sai số tuyệt đối
.
Ta có:
Suy ra sai số tuyệt đối là:
Tiến hành đo huyết áp của 8 người ta thu được kết quả sau: 77 105 117 84 96 72 105 124.
Hãy tìm khoảng tứ phân vị của mẫu số liệu trên.
Sắp xếp mẫu theo thứ tự không giảm: 72 77 84 96 105 105 117 124.
Hai giá trị chính giữa là 96 105. Do đó .
Tứ phân vị của mẫu số liệu: 72 77 84 96 là
.
Tứ phân vị của mẫu số liệu 105 105 117 124 là:
.
Khoảng tứ phân vị .
Tìm tứ phân vị trên của bảng số liệu sau:

Cỡ mẫu số liệu trên là: .
Giá trị chính giữa của mẫu là giá trị ở vị trí thứ 13, đó là số 27. Suy ra .
Ta đi tìm trung vị của mẫu số liệu gồm 12 giá trị bên phải . Hai giá trị chính giữa là giá trị ở vị trí thứ 19 và 20. Đó là số 28 và số 28.
Suy ra . Vậy tứ phân vị trên là 28.
Bảng dưới đây thống kê thời gian nảy mầm của một giống cây trong các điều kiện khác nhau.

Tính thời gian trung bình thời gian nảy mầm của loại giống cây trên.
Thời gian trung bình thời gian nảy mầm của loại giống cây trên là:
.
Cho dãy số liệu thống kê
. Tính số trung bình cộng của dãy số liệu thống kê đã cho?
Số trung bình cộng của dãy số liệu đã cho là:
Vậy số trung bình cộng của dãy số liệu thống kê bằng 22,5.
Tìm mốt của mẫu số liệu: 10 9 7 9 8 1 3 7 8 11 8.
Giá trị 8 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 8.
Nhiệt độ của thành phố Hà Nội ghi nhận trong 10 ngày lần lượt là:
. Khoảng tứ phân vị của mẫu số liệu là:
Sắp xếp dãy dữ liệu theo thứ tự không giảm là:
Suy ra
Khoảng tứ phân vị của mẫu số liệu là:
Cho mẫu số liệu: 17 21 35 43 8 59 72 119. Tìm tứ phân vị.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 8 17 21 35 43 59 72 119.
Trung vị của mẫu số liệu trên là: .
Trung vị của dãy 8 17 21 35 là: .
Trung vị của dãy 43 59 72 119 là: .
Vậy .
Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

Chọn kết luận đúng.
Giá trị trung bình của hai mẫu:
Vậy hai mẫu có giá trị trung bình bằng nhau.
Khoảng biến thiên tứ phân vị
được xác định bởi:
Khoảng biến thiên tứ phân vị được xác định bởi
.
Làm tròn số
đến hàng phần trăm ta được kết quả là:
Làm tròn số đến hàng phần trăm ta được kết quả là
.
Quy tròn số
đến hàng chục, được số
. Khi đó sai số tuyệt đối là:
Sai số tuyệt đối là:
Kết quả đi chiều dài của một cây thước là
thì sai số tương đối của phép đo là:
Ta có:
Điểm kiểm tra giữa học kì 2 môn Toán của một nhóm học sinh được ghi lại như sau:
. Số trung vị của mẫu số liệu đã cho là:
Sắp xếp dãy số liệu theo thứ tự không giảm như sau:
Ta có: là số lẻ suy ra trung vị của mẫu số liệu đứng ở vị trí số
Hay trung vị của mẫu số liệu là .
Trong 9 ngày liên tiếp, số sản phẩm mà tổ sản xuất hoàn thành mỗi ngày được ghi lại như sau:
. Giá trị khoảng biến thiên của mẫu số liệu là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 30
Giá trị nhỏ nhất là 21
Suy ra khoảng biến thiên của mẫu số liệu là: 30 – 21 = 9.
Cho
Hãy xác định số gần đúng của
với độ chính xác d = 0,0001.
Hàng của chữ số khác 0 đầu tiên bên trái của d = 0,0001 là hàng phần chục nghìn.
Quy tròn đến hàng phần chục nghỉn ra được số gần đúng của
là
Cho dữ liệu thống kê số vốn (đơn vị: triệu đồng) mua phân bón vụ mùa của 10 hộ nông dân ở thôn B như sau:
![]()
Tìm các giá trị bất thường của mẫu số liệu đã cho?
Sắp xếp dãy số liệu theo thứ tự không giảm ta được:
Ta xác định được các tứ phân vị:
Suy ra có hai giá trị bất thường là .
Viết số quy tròn của
đến hàng phần nghìn?
Ta có số quy tròn của đến hàng phần nghìn là
.
Biểu đồ dưới đây thể hiện tỉ lệ lạm phát cơ bản bình quân năm trong giai đoạn 2018 – 2022:

(Nguồn: Niêm giám thống kê 2022)
Trong giai đoạn từ 2018 – 2021, năm có tỉ lệ lạm phát cơ bản bình quân năm cao nhất là?
Trong giai đoạn từ 2018 – 2021, năm 2020 có tỉ lệ lạm phát cơ bản bình quân năm cao nhất.
Một công ty nhỏ gồm 1 giám đốc và 4 nhân viên. Thu nhập của giám đốc là 15 triệu đồng, thu nhập của nhân viên là 5 triệu đồng. Tìm trung vị cho mẫu số liệu về lương của các thành viên trong công ty.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 5 5 5 5 15.
Dãy trên có giá trị chính giữa bằng 5.
Vậy trung vị của mẫu số liệu trên bằng 5.
Cho số gần đúng của
là
. Sai số tuyệt đối của số gần đúng này là:
Sai số tuyệt đối là:
Một học sinh đo đường kính của một hình tròn là
(cm). Bạn đó tính được chu vi hình tròn là
(cm). Biết
. Hãy ước lượng sai số tuyệt đối của
.
Gọi và
lần lượt là đường kính và chu vi của hình tròn.
Ta có: .
Ta có: .
Do đó .
Vậy sai số tuyệt đối của là
.
Cho số
. Số quy tròn của số gần đúng
bằng:
Hàng lớn nhất có độ chính xác là hàng trăm nên ta quy tròn số a đến hàng nghìn.
Vậy số quy tròn của a là: .
Tìm phương sai của mẫu số liệu
?
Số trung bình của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Vậy phương sai cần tìm bằng 2.
Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là:
Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.
Số cam có trong các giỏ được ghi lại như sau:
. Số trung vị của mẫu số liệu là:
Vì cỡ mẫu là số chẵn nên trung vị bằng trung bình cộng của số liệu ở vị trí thứ hai và thứ ba.
=> Số trung vị của mẫu số liệu:
Tìm phương sai của dãy số liệu: 8 15 14 18.
Số trung bình của mẫu số liệu là:
.
Ta có phương sai:
.
Kết quả thống kê số tiền điện của một hộ gia đình trong 6 tháng liên tiếp (đơn vị: nghìn đồng) như sau:
. Khoảng biến thiên của mẫu số liệu bằng:
Giá trị lớn nhất bằng 350
Giá trị nhỏ nhất bằng 270
=> Khoảng biến thiên của mẫu số liệu là: 350 – 270 = 80.
Vậy khoảng biến thiên của mẫu số liệu bằng 80.
Trong kết quả thống kê điểm môn Tiếng Anh của một lớp có 40 học sinh, điểm thấp nhất là 2 điểm và cao nhất là 10 điểm. Khẳng định nào sau đây đúng?
Khi thực hiện tính điểm trung bình hay trung vị còn phụ thuộc vào tần số của mỗi điểm.
Nếu chỉ có khoảng điểm thì không thể kết luận về điểm trung bình môn Tiếng Anh của lớp đó và trung vị.
Số quy tròn của số gần đúng
với
là:
Quy tròn đến hàng trăm nên số quy tròn của số gần đúng
là:
.
Điều tra tiền lương một tháng của 100 người lao động trên địa bàn một xã ta có bàng phân bố tần số sau:
|
Tiền lương (VND) |
5.000.000 |
6.000.000 |
7.000.000 |
8.000.000 |
9.000.000 |
9.500.000 |
|
Tần số |
26 |
34 |
20 |
10 |
5 |
5 |
Tìm mốt của bảng phân bổ tần số trên.
Ta có giá trị 6.000.000 có tần số lớn nhất nên là mốt của bảng phân bố tần số trên.
Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây:
= 17658 ± 16.
Vì độ chính xác đến hàng chục nên ta phải quy tròn số 17638 đến hàng trăm. Vậy số quy tròn là 17700 (hay viết ≈ 17700).
Cho số gần đúng
. Hãy viết số quy tròn của
?
Với . Số quy tròn của số
là:
.
Xác định khoảng tứ phân vị của mẫu số liệu: 8 6 5 1 9 10 15.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 5 6 8 9 10 15
Trung vị là giá trị chính giữa của mẫu số liệu, suy ra
.
Trung vị của mẫu 1 5 6 là
.
Trung vị của mẫu 9 10 15 là
.
Vậy khoảng tứ phân vị .
Cho số gần đúng a = 23748023 với độ chính xác d = 101. Hãy viết số quy tròn của số a.
Vì độ chính xác d = 101 là hàng trăm nên ta quy tròn đến hàng nghìn, ta được số:
a = 23748023.