Điểm thi học kì của một học sinh như sau: 4 6 7 2 10 9 3 5 8 7 3 8.
Tính số trung bình cộng của mẫu số liệu trên.
Số trung bình cộng của mẫu số liệu trên là:
.
Điểm thi học kì của một học sinh như sau: 4 6 7 2 10 9 3 5 8 7 3 8.
Tính số trung bình cộng của mẫu số liệu trên.
Số trung bình cộng của mẫu số liệu trên là:
.
Cho dãy số liệu
. Xác định mốt của mẫu số liệu?
Mốt số liệu đã cho có số 5 xuất hiện nhiều lần nhất
Suy ra mốt của mẫu số liệu là 5.
Tìm phương sai của mẫu số liệu
?
Số trung bình của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Vậy phương sai cần tìm bằng 2.
Quy tròn số 3,1234567 đến hàng phần nghìn. Số gần đúng nhận được là:
Quy tròn số 3,1234567 đến hàng phần nghìn ta được số: 3,123.
Kết quả kiểm tra Toán của một số học sinh như sau:
. Khoảng biến thiên của mẫu số liệu là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 10
Giá trị nhỏ nhất là 7
Suy ra khoảng biến thiên của mẫu số liệu là: 10 – 7 = 3
Cho dãy số liệu:
. Tìm khoảng tứ phân vị của mẫu số liệu đã cho?
Sắp xếp dãy số liệu theo thứ tự không giảm ta được:
Dãy số liệu có số chính giữa là 8 nên tứ phân vị thứ hai là
Tứ phân vị thứ nhất là trung vị của dãy số liệu: . Khi đó
.
Tứ phân vị thứ ba là trung vị của dãy số liệu: . Khi đó
Vậy khoảng tứ phân vị của mẫu số liệu là
Một mẫu số liệu có giá trị tứ phân vị thứ nhất và tứ phân vị thứ ba lần lượt là:
. Hãy chỉ ra giá trị bất thường trong các đáp án dưới đây?
Ta có:
Vậy giá trị bất thường là .
Điểm kiểm tra giữa học kì 2 môn Toán của một nhóm học sinh được ghi lại như sau:
. Số trung vị của mẫu số liệu đã cho là:
Sắp xếp dãy số liệu theo thứ tự không giảm như sau:
Ta có: là số lẻ suy ra trung vị của mẫu số liệu đứng ở vị trí số
Hay trung vị của mẫu số liệu là .
Kết quả làm tròn số
đến chữ số thập phân thứ hai là:
Ta có:
Độ lệch chuẩn là gì?
Độ lệch chuẩn là căn bậc hai của phương sai.
Bảng dưới đây thống kê tuổi thọ của một số bóng đèn (đơn vị: giờ):

Tìm mốt của bảng trên.
Ta thấy giá trị 1170 xuất hiện nhiều nhất. Suy ra mốt của bảng trên là 1170.
Bảng dưới đây thống kê điểm của bạn Dũng và Huy:

Hãy tính phương sai của mẫu số liệu về điểm của hai bạn, từ đó so sánh và chọn kết luận đúng.
Số trung bình của mẫu số liệu (1) và (2) là:
Phương sai của (1) là:
Phương sai của (2) là:
Vì nên bạn Huy học đều hơn bạn Dũng.
Số gần đúng của
có ba chữ số đáng tin viết dưới dạng chuẩn là:
Vì số gần đúng của số có ba chữ số đáng tin nên ba chữ số đó là
,
,
.
Nên cách viết dưới dạng chuẩn là
Số quy tròn số
với độ chính xác
là:
Theo bài ra ta có: Độ chính xác nên ta quy tròn số đến số thập phân thứ nhất.
Vậy số quy tròn là .
Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?
Số đặc trưng đo độ đo phân tán của mẫu số liệu là phương sai.
Một miếng đất hình chữ nhật có chiều rộng x = 43m ± 0,5m và chiều dài y = 63m ± 0,5m. Tính chu vi P của miếng đất đã cho.
Giả sử x = 43 + a, y = 63 + b.
Chu vi miếng đất: P = 2x + 2y = 212 + 2(a + b).
Theo giả thiết -0,5 ≤ a ≤ 0,5 và -0,5 ≤ b ≤ 0,5 nên -2 ≤ 2(a +b) ≤ 2.
Do đó P = 212m ± 2m.
Cho bảng số liệu ghi lại điểm của 40 học sinh trong bài kiểm tra 1 tiết môn toán như sau:
Điểm | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Cộng |
Số học sinh | 2 | 3 | 7 | 18 | 3 | 2 | 4 | 1 | 40 |
Số trung bình cộng
của mẫu số liệu trên là:
Số trung bình cộng của mẫu số liệu trên là:
.
Một người cần đo chiều cao của một cái cây. Anh ta thực hiện ba phép đo, kết quả được ghi lại như sau:
(m),
(m),
(m). Trong ba số liệu trên, người thợ nên chọn số liệu nào làm chiều cao của cái cây?
Phép đo lần 1 có sai số tương đối .
Phép đo lần 2 có sai số tương đối .
Phép đo lần 3 có sai số tương đối .
Vì phép đo lần 2 có sai số nhỏ nhất nên người thợ nên chọn làm chiều cao của ngôi nhà.
Điều tra tiền lương một tháng của 100 người lao động trên địa bàn một xã ta có bàng phân bố tần số sau:
|
Tiền lương (VND) |
5.000.000 |
6.000.000 |
7.000.000 |
8.000.000 |
9.000.000 |
9.500.000 |
|
Tần số |
26 |
34 |
20 |
10 |
5 |
5 |
Tìm mốt của bảng phân bổ tần số trên.
Ta có giá trị 6.000.000 có tần số lớn nhất nên là mốt của bảng phân bố tần số trên.
Cho mẫu số liệu: 10; 8; 6; 2; 4. Tính phương sai của mẫu.
Số trung bình là
.
Phương sai là
.
Kết quả đi chiều dài của một cây thước là
thì sai số tương đối của phép đo là:
Ta có:
Cửa hàng thống kê cỡ giày trong một đơn hàng ngẫu nhiên của một vị khách như sau:
. Xác định trung vị của mẫu số liệu?
Sắp xếp mẫu số liệu theo thứ tự không giảm như sau:
Trung vị của mẫu số liệu là .
Cho số đúng
và số gần đúng của
của
. Xác định sai số tuyệt đối
.
Ta có:
Suy ra sai số tuyệt đối là:
Bảng sau thống kê điểm kiểm tra của học sinh lớp 10C.

Tìm trung vị của dãy số liệu trên.
Cỡ mẫu số liệu này là:
.
Suy ra giá trị chính giữa là giá trị ở vị trí thứ 20. Đó là số 17.
Vậy trung vị .
Cho
. Số gần đúng của
với độ chính xác
là:
Vì độ chính xác nên số gần đúng được quy tròn đến hàng phần chục.
Vậy đáp án đúng là .
Số điểm của một vận động viên trong 5 hiệp được ghi lại như sau: 9 8 15 8 20. Tính tứ phân vị của mẫu số liệu trên.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 8 8 9 15 20.
Số liệu chính giữa là 9 nên trung vị của mẫu số liệu trên là 9.
Trung vị của mẫu số liệu 8 8 là .
Trung vị của mẫu số liệu 15 20 là .
Vậy .
Tính sản lượng lúa trung bình trong bảng thống kê dưới đây:
|
Sản lượng (tạ) |
20 |
21 |
22 |
23 |
24 |
|
Tần số |
5 |
8 |
11 |
10 |
6 |
Sản lượng lúa trung bình là:
Vậy sản lượng lúa trung bình là 22,1 tạ.
Phương sai của một mẫu số liệu
bằng
Phương sai của một mẫu số liệu bằng bình phương của độ lệch chuẩn.
Biết
Viết gần đúng
theo nguyên tắc làm tròn với ba chữ số thập phân và ước lượng sai số tuyệt đối.
Làm tròn với ba chữ số thập phân:
Sai số tuyệt đối:
Vậy sai số tuyệt đối không vượt quá 0,0001.
Điểm kiểm tra môn Văn của bạn Lan là: 7; 9; 8; 9. Tính số trung bình cộng
của mẫu số liệu trên.
Số trung bình cộng của mẫu số liệu trên là: .
Tiền lương hàng tháng của 7 nhân viên trong một công ty du lịch lần lượt là: 6,5; 8,4; 6,9; 7,2; 2,5; 6,7; 3,0. (đơn vị: triệu đồng). Khoảng biến thiên của dãy số liệu thống kê trên bằng:
Khoảng biến thiên: R = 8,4 - 2,5 = 5,9.
Biểu đồ dưới đây thể hiện tốc độ tăng trưởng GDP của Việt Nam giai đoạn 2014 – 2021. Tính độ lệch chuẩn của mẫu số liệu.

Số trung bình của mẫu là:
Từ đó tính được phương sai: .
Suy ra độ lệch chuẩn: .
Độ dài các cạnh của đám vườn hình chữ nhật là
và
. Cách viết chuẩn của diện tích là:
.
Diện tích mảnh ruộng là , khi đó:
.
Cách viết chuẩn của diện tích là .
Quy tròn số
đến hàng chục nghìn ta được:
Quy tròn số đến hàng nghìn ta được số quy tròn là
.
Số tiền nước phải nộp (đơn vị: nghìn đồng) của 5 hộ gia đình là: 56; 45; 103; 239; 125. Độ lệch chuẩn gần bằng:
Số tiền nước trung bình là:
Phương sai là:
Độ lệch chuẩn là:
Để điều tra các con trong mỗi gia đình của một chung cư gồm 100 gia đình. Người ta chọn ra 20 gia đình ở tầng 4 và thu được mẫu số liệu sau đây:
2 4 2 1 3 5 1 1 2 3 1 2 2 3 4 1 1 2 3 4.
Số trung bình cộng
của mẫu số liệu trên là:
Số trung bình cộng của mẫu số liệu trên là:
Quy tròn số
đến hàng phần chục ta được số
. Sai số tuyệt đối là:
Sai số tuyệt đối là: .
Chiều cao của một số học sinh nữ lớp 9 (đơn vị cm) được cho trong bảng.

Tìm khoảng tứ phân vị của mẫu số liệu này.
Nhận thấy mẫu đã được sắp xếp theo thứ tự không giảm.
Số liệu chính giữa là 162 nên .
Số liệu chính giữa của mẫu 151 152 153 154 155 160 160 là 154 nên .
Số liệu chính giữa của mẫu 163 165 165 165 166 167 167 là 165 nên .
Khoảng tứ phân vị
.
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được
. Giá trị gần đúng của
chính xác đến hàng phần trăm là:
Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 4 ở hàng phần trăm là số 5 nên theo nguyên lý làm tròn ra được kết quả là:
Liệt kê sĩ số của từng lớp trong khối 10 ta được bảng số liệu như sau:
|
Lớp |
10A |
10B |
10C |
10D |
10E |
|
Sĩ số |
40 |
43 |
45 |
41 |
46 |
Xác định giá trị gần nhất với độ lệch chuẩn của mẫu số liệu?
Ta có:
Số trung bình của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Suy ra độ lệch chuẩn của mẫu số liệu là:
Vậy độ lệch chuẩn của mẫu số liệu là 2,28.