Chọn khẳng định đúng.
Khẳng định đúng là:
Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất, bỏ qua thông tin các giá trị còn lại.
Chọn khẳng định đúng.
Khẳng định đúng là:
Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất, bỏ qua thông tin các giá trị còn lại.
Cho số
, trong đó chỉ có chữ số hàng trăm trở lên là đáng tin. Hãy viết chuẩn số gần đúng của
.
Do là số nguyên và hàng thấp nhất có chữ số đáng tin là
nên dạng viết chuẩn của
là
.
Tìm trung vị của dãy số liệu 4 3 5 1 6 8 6.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 3 4 5 6 6 8.
Dãy trên có giá trị chính giữa bằng 5.
Vậy trung vị của mẫu số liệu bằng 5.
Một công ty nhỏ gồm 1 giám đốc và 4 nhân viên. Thu nhập của giám đốc là 15 triệu đồng, thu nhập của nhân viên là 5 triệu đồng. Tìm trung vị cho mẫu số liệu về lương của các thành viên trong công ty.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 5 5 5 5 15.
Dãy trên có giá trị chính giữa bằng 5.
Vậy trung vị của mẫu số liệu trên bằng 5.
Cho giá trị gần đúng của
là 0,47. Sai số tuyệt đối của số 0,47 là:
Ta có nên sai số tuyệt đối của 0,47 là
Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng nào sau đây?
Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng phương sai.
Dung tích của một nồi cơm điện là 1,1 lít ± 0,01 lít. Sai số tương đối của dung tích nồi cơm điện không vượt quá giá trị nào sau đây?
Ta có:
Sai số tương đối của dung tích nồi cơm điện là:
Vậy sai số tương đối của dung tích nồi cơm điện không vượt quá giá trị 1%
Làm tròn số
đến hàng đơn vị?
Số làm tròn đến hàng đơn vị là
.
Phát biểu nào sau đây sai?
Phát biểu sai là: "Khoảng tứ phân vị bị ảnh hưởng bởi các giá trị rất lớn hoặc rất bé trong mẫu."
Tiến hành đo huyết áp của 8 người ta thu được kết quả sau: 77 105 117 84 96 72 105 124.
Hãy tìm khoảng tứ phân vị của mẫu số liệu trên.
Sắp xếp mẫu theo thứ tự không giảm: 72 77 84 96 105 105 117 124.
Hai giá trị chính giữa là 96 105. Do đó .
Tứ phân vị của mẫu số liệu: 72 77 84 96 là
.
Tứ phân vị của mẫu số liệu 105 105 117 124 là:
.
Khoảng tứ phân vị .
Hãy viết số quy tròn số gần đúng
với độ chính xác
.
Ta có: nên làm tròn đến hàng nghìn
Vậy đáp án là: .
Cho dãy số liệu thống kê
. Tính số trung bình cộng của dãy số liệu thống kê đã cho?
Số trung bình cộng của dãy số liệu đã cho là:
Vậy số trung bình cộng của dãy số liệu thống kê bằng 22,5.
Bảng sau đây cho ta biết số cuốn sách mà học sinh của một lớp ở trường Trung học phổ thông đã đọc:
Số sách | 1 | 2 | 3 | 4 | 5 | 6 | |
Số học sinh đọc | 10 | m | 8 | 6 | n | 3 | n = 40 |
Tìm m và n, biết phương sai của mẫu số liệu trên xấp xỉ 2,52.
Số trung bình là:
Phương sai là:
Theo bài ra ta có:
Kiểm tra được: m = 8 và n = 5 thỏa mãn.
Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của
chính xác đến hàng phần nghìn.
Sử dụng máy tính bỏ túi ta có giá trị của là 9,8696044. Do đó giá trị gần đúng của
chính xác đến hàng phần nghìn là 9,870.
Điểm kiểm tra môn Toán của Hoa thời gian gần đây được liệt kê như sau:
. Khoảng biến thiên của mẫu số liệu trên là:
Quan sát mẫu số liệu đã cho ta thấy:
Giá trị lớn nhất là 9
Giá trị nhỏ nhất là 3
Suy ra khoảng biến thiên của mẫu số liệu là: 9 – 3 = 6.
Một học sinh đo đường kính của một hình tròn là
(cm). Bạn đó tính được chu vi hình tròn là
(cm). Biết
. Hãy ước lượng sai số tuyệt đối của
.
Gọi và
lần lượt là đường kính và chu vi của hình tròn.
Ta có: .
Ta có: .
Do đó .
Vậy sai số tuyệt đối của là
.
Cho dãy số liệu:
. Tìm khoảng tứ phân vị của mẫu số liệu đã cho?
Sắp xếp dãy số liệu theo thứ tự không giảm ta được:
Dãy số liệu có số chính giữa là 8 nên tứ phân vị thứ hai là
Tứ phân vị thứ nhất là trung vị của dãy số liệu: . Khi đó
.
Tứ phân vị thứ ba là trung vị của dãy số liệu: . Khi đó
Vậy khoảng tứ phân vị của mẫu số liệu là
Cho bảng thống kê điểm thi của 100 học sinh (thang điểm 20) trong kì thi khảo sát chất lượng đầu năm như sau:
|
Điểm |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
|
Số học sinh |
1 |
1 |
3 |
5 |
8 |
13 |
19 |
24 |
14 |
10 |
2 |
Giá trị của phương sai gần nhất với giá trị nào sau đây?
Ta có:
Điểm số trung bình của 100 học sinh là:
Giá trị phương sai của mẫu số liệu là:
Vậy phương sai cần tìm là
Cho biểu đồ lượng mưa trung bình các tháng năm 2019 tại Thành phố Hồ Chí Minh như sau:

Mẫu số liệu nhận được từ biểu đồ trên có khoảng biến thiên là:
Quan sát biểu đồ ta thấy:
Giá trị lớn nhất là 342
Giá trị nhỏ nhất là: 4
Vậy khoảng biến thiên của mẫu số liệu là: 342 – 4 = 338.
Số quy tròn của
với độ chính xác
là:
Xét ta thấy chữ số khác
đầu tiên bên trái của d nằm ở hàng phần trăm.
Nên suy ra hàng lớn nhất có độ chính xác là hàng phần trăm nên ta quy tròn số
ở hàng gấp 10 lần hàng vừa tìm được, tức là hàng phần mười.
Xét chữ số ở hàng phần trăm của là 5 nên ta suy ra được số quy tròn của
đến hàng phần mười là
.
Cho số
. Số quy tròn của số gần đúng
bằng:
Hàng lớn nhất có độ chính xác là hàng trăm nên ta quy tròn số a đến hàng nghìn.
Vậy số quy tròn của a là: .
Cho mẫu số liệu: 10; 8; 6; 2; 4. Tính phương sai của mẫu.
Số trung bình là
.
Phương sai là
.
Phương sai của một mẫu số liệu
bằng
Phương sai của một mẫu số liệu bằng bình phương của độ lệch chuẩn.
Tìm mốt của mẫu số liệu: 10 9 7 9 8 1 3 7 8 11 8.
Giá trị 8 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 8.
Cho bảng thống kê điểm kiểm tra môn Hóa học của học sinh lớp 10C như sau:
|
Điểm |
4 |
5 |
6 |
7 |
8 |
|
Số học sinh |
2 |
8 |
7 |
10 |
8 |
Tính điểm kiểm tra trung bình của học sinh lớp 10C?
Số học sinh lớp 10C bằng: (học sinh)
Điểm kiểm tra trung bình của học sinh lớp 10C là:
Vậy điểm kiểm tra trung bình của 35 học sinh lớp 10C bằng 6,4.
Cho dãy số liệu thống kê
. Tìm số nguyên dương
, biết số trung bình cộng của dãy số liệu thống kê đó bằng
.
Điểm trung bình cộng của dãy số trên là
Vậy thỏa mãn yêu cầu bài toán.
Giả sử
là các tứ phân vị của mẫu số liệu. Khoảng tứ phân vị của mẫu số liệu là:
Khoảng tứ phân vị của mẫu số liệu là: .
Cho dãy số liệu về chiều cao của một nhóm học sinh như sau:
. Các tứ phân vị của mẫu số liệu là:
Dãy số liệu sắp xếp theo thứ tự không giảm là:
Trung vị là
Nửa dữ liệu bên trái là:
Do đó
Nửa dữ liệu bên phải là:
Do đó
Điểm thi học kì của một học sinh như sau: 4 6 7 2 10 9 3 5 8 7 3 8.
Tính số trung bình cộng của mẫu số liệu trên.
Số trung bình cộng của mẫu số liệu trên là:
.
Viết số quy tròn của
đến hàng phần nghìn?
Ta có số quy tròn của đến hàng phần nghìn là
.
Bảng dưới đây thống kê điểm Văn của lớp 10H.

Biết
. Tìm mốt của bảng số liệu.
Vì tổng số học sinh bằng 40 nên ta có: .
Thống kê lại bảng:
Vậy mốt là giá trị 6 (xuất hiện 14 lần, nhiều nhất).
Hãy chọn kết quả lần lượt là số trung bình và phương sai của mẫu số liệu
?
Ta có:
Số trung bình của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Vậy số trung bình và phương sai của mẫu số liệu lần lượt là: .
Nhà sản xuất công bố chiều dài và chiều rộng của 1 tấm ván hình chữ nhật lần lượt là
và
(đơn vị: cm). Tính diện tích của tấm thép.
Gọi và
lần lượt là chiều dài và chiều rộng thực của tấm thép.
Ta có: và
.
Suy ra: .
Do đó:
Vậy diện tích tấm thép là .
Làm tròn số
đến hàng phần trăm ta được kết quả là:
Làm tròn số đến hàng phần trăm ta được kết quả là
.
Xác định mốt của mẫu số liệu: ![]()
Ta có: số 17 có tần số xuất hiện nhiều nhất
Suy ra mốt của mẫu số liệu là 17.
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được
. Giá trị gần đúng của
chính xác đến hàng phần trăm là:
Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 4 ở hàng phần trăm là số 5 nên theo nguyên lý làm tròn ra được kết quả là:
Lớp trưởng lớp 10A thống kê số học sinh và số cây trồng được theo từng tổ trong buổi ngoại khóa như sau:
Tổ | 1 | 2 | 3 | 4 |
Số học sinh | 11 | 10 | 12 | 10 |
Số cây | 30 | 30 | 38 | 29 |
Bạn lớp trưởng cho biết số cây mỗi bạn trong lớp trồng được đều không vượt quá 3 cây. Biết rằng bảng trên có một tổ bị thống kê sai. Tổ mà bạn lớp trưởng đã thống kê sai là:
Xét đáp án Tổ 1
Số cây tối đa tổ 1 trồng được là: 11.3 = 33 (cây)
Vì 30 (cây) < 33 (cây) nên thống kê số cây tổ 1 trồng được không sai.
Xét đáp án Tổ 2
Số cây tối đa tổ 2 trồng được là: 10.3 = 30 (cây)
Vì 30 (cây) = 30 (cây) nên thống kê số cây tổ 1 trồng được không sai.
Xét đáp án Tổ 3
Số cây tối đa tổ 3 trồng được là: 12.3 = 36 (cây)
Vì 38 (cây) > 36 (cây) nên thống kê số cây tổ 3 trồng được là sai.
Xét đáp án Tổ 4
Số cây tối đa tổ 3 trồng được là: 10.3 = 30 (cây)
Vì 29 (cây) < 30 (cây) nên thống kê số cây tổ 4 trồng được không sai.
Tìm trung vị của dãy số liệu 2 3 1 5 3 7 9 10.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 2 3 3 5 7 9 10.
Dãy trên có hai giá trị chính giữa là 3 và 5.
Suy ra trung vị là: .
Trong một bài kiểm tra chạy của 20 học sinh, thầy giáo đã ghi lại kết quả trong bảng sau:
|
Thời gian (giây) |
8,3 |
8,4 |
8,5 |
8,7 |
8,8 |
|
Số học sinh |
2 |
3 |
9 |
5 |
1 |
Số trung bình cộng thời gian chạy của học sinh là:
Số trung bình cộng thời gian chạy của học sinh là:
Vậy thời gian chạy trung bình của 20 học sinh là 8,53.
Cho bảng số liệu thống kê kết quả thi của một số học sinh như sau:
|
Học sinh |
An |
Hoa |
Tuấn |
Hùng |
Quân |
Linh |
|
Điểm |
9 |
8 |
7 |
10 |
8 |
6 |
Tìm phương sai của mẫu số liệu?
Ta có:
Điểm trung bình của các học sinh trong bảng số liệu là:
Ta có bảng sau:
|
Giá trị |
Độ lệch |
Bình phương độ lệch |
|
9 |
9 – 8 = 1 |
1 |
|
8 |
8 – 8 = 0 |
0 |
|
7 |
7 – 8 = -1 |
1 |
|
10 |
10 – 8 = 2 |
4 |
|
8 |
8 – 8 = 0 |
0 |
|
6 |
6 – 8 = -2 |
4 |
|
Tổng |
10 |
|
Suy ra phương sai của mẫu số liệu là:
Vậy phương sai cần tìm là .