Quy tròn số
đến hàng phần chục được số
. Sai số tuyệt đối là:
Sai số tuyệt đối là: .
Quy tròn số
đến hàng phần chục được số
. Sai số tuyệt đối là:
Sai số tuyệt đối là: .
Giả sử
là các tứ phân vị của mẫu số liệu. Khoảng tứ phân vị của mẫu số liệu là:
Khoảng tứ phân vị của mẫu số liệu là: .
Cho dãy số liệu thống kê
. Tính số trung bình cộng của dãy số liệu thống kê đã cho?
Số trung bình cộng của dãy số liệu đã cho là:
Vậy số trung bình cộng của dãy số liệu thống kê bằng 22,5.
Bảng dưới đây thể hiện sản lượng lúa (đơn vị: tạ) của một số thửa ruộng:

Tính phương sai của mẫu số liệu.
Số trung bình của mẫu là:
.
Phương sai:
.
Phường A thống kê số con của mỗi hộ gia đình trong khu dân cư như sau:
|
Số con |
0 |
1 |
2 |
3 |
4 |
|
Số hộ gia đình |
2 |
7 |
5 |
1 |
1 |
Phương sai của mẫu số liệu bằng:
Số con trung bình là:
Phương sai của mẫu số liệu là:
Vậy phương sai cần tìm là .
Phương sai của dãy số 2; 3; 4; 5; 6; 7 là:
Số trung bình: .
Phương sai: .
Câu lạc bộ Liverpool đạt được điểm số tại giải Ngoại hạng Anh từ mùa giải 2010-2011 đến mùa 2018-2019 như sau: 75 82 87 50 93 70 72 66 67.
Khoảng biến thiên điểm số là:
Khoảng biến thiên là .
Kết quả đi chiều dài của một cây thước là
thì sai số tương đối của phép đo là:
Ta có:
Cho ba nhóm học sinh:
Nhóm 1 gồm 6 học sinh có cân nặng trung bình là 45kg.
Nhóm 2 gồm 11 học sinh có cân nặng trung bình là 50kg.
Nhóm 3 gồm 8 học sinh có cân nặng trung bình là 42kg.
Hãy tính khối lượng trung bình của cả ba nhóm học sinh trên?
Tổng khối lượng của mỗi nhóm lần lượt là:
Khối lượng trung bình của cả ba nhóm là:
Vậy khối lượng trung bình của cả ba nhóm học sinh là .
Có 100 học sinh tham dự kì thi học sinh giỏi Toán (thang điểm 20). Kết quả sau kì thi được thống kê như sau:
Điểm | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
Tần số | 1 | 1 | 3 | 5 | 8 | 13 | 19 | 24 | 14 | 10 | 2 |
Giá trị của phương sai gần bằng:
Kết quả trung bình là:
Giá trị của phương sai là:
Điểm thi học kì của một học sinh như sau: 4 6 7 2 10 9 3 5 8 7 3 8.
Tính số trung bình cộng của mẫu số liệu trên.
Số trung bình cộng của mẫu số liệu trên là:
.
Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng nào sau đây?
Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng phương sai.
Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của
chính xác đến hàng phần trăm.
Sử dụng máy tính bỏ túi ta có giá trị của là 9,8696044. Do đó, giá trị gần đúng của
chính xác đến hàng phần trăm là 9,9.
Khi tính diện tích hình tròn bán kính R = 3cm, nếu lấy
thì độ chính xác là bao nhiêu?
Ta có diện tích hình tròn S = 3,14. 32 và . 32 =
Ta có:
Do đó:
Vậy nếu ta lấy thì diện tích hình tròn là S = 28,26cm2 với độ chính xác
.
Chọn khẳng định sai?
Khẳng định sai: “Giá trị bất thường trong mẫu số liệu thuộc ”
Sửa lại: “Giá trị bất thường trong mẫu số liệu nằm ngoài đoạn ”.
Hãy viết số quy tròn số gần đúng
với độ chính xác
.
Ta có: nên làm tròn đến hàng nghìn
Vậy đáp án là: .
Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là:
Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.
Dưới đây là bảng thống kê số lần làm bài tập Toán của học sinh lớp 10A.

Tìm trung vị của mẫu số liệu này.
Cỡ mẫu số liệu này là: .
Suy ra giá trị chính giữa là giá trị ở vị trí thứ 18. Đó là số 3.
Vậy trung vị .
Điểm kiểm tra của 24 học sinh được ghi lại trong bảng sau:

Mốt của mẫu số liệu là:
Điểm 8 có tần số xuất hiện nhiều nhất nên mốt của mẫu số liệu là 8.
Bạn An đo chiều dài của một sân bóng ghi được
. Bạn Bằng đo chiều cao của một cột cờ được
. Trong 2 bạn An và Bằng, bạn nào có phép đo chính xác hơn và sai số tương đối trong phép đo của bạn đó là bao nhiêu?
Phép đo của bạn A có sai số tương đối
Phép đo của bạn B có sai số tương đối
Như vậy phép đo của bạn A có độ chính xác cao hơn.
Viết số quy tròn của số
đến hàng trăm.
Quy tròn số đến hàng trăm nên chữ số quy tròn là chữ số, mà chữ số sau chữ số 7 là 9 > 5 nên số quy tròn của số đến hàng trăm là
.
Cửa hàng thống kê cỡ giày trong một đơn hàng ngẫu nhiên của một vị khách như sau:
. Xác định trung vị của mẫu số liệu?
Sắp xếp mẫu số liệu theo thứ tự không giảm như sau:
Trung vị của mẫu số liệu là .
Biểu đồ sau biểu diễn tốc độ tăng trưởng GDP của Nhật Bản trong giai đoạn 1990 đến 2005. Hãy tìm khoảng biến thiên của mẫu số liệu đó.

Khoảng biến thiên R = 5,1 - 0,4 = 4,7.
Làm tròn số
đến hàng đơn vị?
Số làm tròn đến hàng đơn vị là
.
Tiến hành đo huyết áp của 8 người ta thu được kết quả sau: 77 105 117 84 96 72 105 124.
Hãy tìm khoảng tứ phân vị của mẫu số liệu trên.
Sắp xếp mẫu theo thứ tự không giảm: 72 77 84 96 105 105 117 124.
Hai giá trị chính giữa là 96 105. Do đó .
Tứ phân vị của mẫu số liệu: 72 77 84 96 là
.
Tứ phân vị của mẫu số liệu 105 105 117 124 là:
.
Khoảng tứ phân vị .
Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của
chính xác đến hàng phần nghìn.
Sử dụng máy tính bỏ túi ta có giá trị của là 9,8696044. Do đó giá trị gần đúng của
chính xác đến hàng phần nghìn là 9,870.
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được
. Giá trị gần đúng của
chính xác đến hàng phần trăm là:
Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 2 ở hàng phần trăm là số 8 > 5 nên theo nguyên lý làm tròn ra được kết quả là:
Cho dãy số liệu
. Tứ phân vị thứ nhất của mẫu số liệu là:
Vì cỡ mẫu của mẫu số liệu bằng 11 là số lẻ
=> Số trung vị của mẫu số liệu trên là
Nửa dữ liệu bên trái là:
Do đó
Suy ra tứ phân vị thứ nhất của mẫu số liệu là .
Điểm kiểm tra môn Văn của 2 tổ học sinh được thống kê:

Dựa vào khoảng biến thiên thì tổ nào học đều hơn?
Khoảng biến thiên điểm của tổ 1 là .
Khoảng biến thiên điểm của bạn Bình là .
Vì nên tổ 1 học đều hơn.
Dùng máy tính cầm tay để viết quy tròn số gần đúng
đến hàng phần trăm là:
Ta có: .
Chữ số hàng phần nghìn bằng 0 < 5 nên chọn .
Cho
. Sai số tương đối của số gần đúng này là:
Ta có:
Tìm các giá trị bất thường của mẫu số liệu:
5 6 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 48 49
Mẫu số liệu đã được sắp xếp theo thứ tự không giảm.
Giá trị chính giữa là 27 nên .
Giá trị chính giữa của mẫu 5 6 19 21 22 23 24 25 26 là 22 nên .
Giá trị chính giữa của mẫu 28 29 30 31 32 33 34 48 49 là 32 nên .
Khoảng tứ phân vị .
Ta có:
.
Ta co:
.
Ta thấy có giá trị 5 và 6 nhỏ hơn 7 nên đây là 2 giá trị bất thường.
Ta thấy có 48 và 49 là hai giá trị lớn hơn 47 nên đây là 2 giá trị bất thường.
Giá của một số bó hoa (đơn vị: nghìn đồng) trong cửa hàng được thống kê như sau:
. Mốt của mẫu số liệu này là:
Bó hoa có giá 300 nghìn đồng có tần số lớn nhất nên suy ra .
Cho mẫu số liệu:
. Số trung bình của mẫu số liệu là:
Số trung bình của mẫu số liệu là:
Vậy số trung bình là 8.
Bảng dưới đây là sản lượng lúa gạo của nước ta giai đoạn 2007 – 2017 (đơn vị: triệu tấn).

Khoảng biến thiên của mẫu số liệu là:
Khoảng biến thiên là .
Khẳng định nào sau đây là đúng?
Trong đo đạc và tính toán, ta thường chỉ nhận được số gần đúng.
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được:
. Giá trị gần đúng của
chính xác đến hàng phần trăm là:
Quy tròn đến hàng phần trăm, ta được:
.
Tìm phương sai trong mẫu số liệu:
?
Số trung bình bằng:
Phương sai bằng:
Vậy phương sai cần tìm là 5,2.
Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện cộng 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.
Giả sử các số liệu trong mẫu là: đã sắp xếp theo thứ tự không giảm.
Khoảng biến thiên: .
Cộng hai với tất cả các số liệu: .
Khoảng biến thiên:
.
Suy ra .
Kết quả thống kê số tiền điện của một hộ gia đình trong 6 tháng liên tiếp (đơn vị: nghìn đồng) như sau:
. Khoảng biến thiên của mẫu số liệu bằng:
Giá trị lớn nhất bằng 350
Giá trị nhỏ nhất bằng 270
=> Khoảng biến thiên của mẫu số liệu là: 350 – 270 = 80.
Vậy khoảng biến thiên của mẫu số liệu bằng 80.