Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Thống kê gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Dự báo thời tiết trong 10 ngày tại tỉnh A được ghi lại trong bảng sau:

    Ngày

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    Nhiệt độ (0C)

    24

    25

    26

    27

    27

    26

    27

    21

    19

    18

    Tìm phương sai của mẫu số liệu đã cho?

    Ta có: N = 10

    Nhiệt độ trung bình của 10 ngày là:

    \overline{x} = \frac{24 + 25 + 26 + 27 +
28 + 26 + 27 + 21 + 19 + 18}{10} = 24

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{10}\lbrack(24 - 24)^{2}
+ (25 - 24)^{2} + (26 - 24)^{2}

    + (27 - 24)^{2} + (28 - 24)^{2} + (26 -
24)^{2} + (27 - 24)^{2}

    + (21 - 24)^{2} + (19 - 24)^{2} + (18 -
24)^{2}brack = 10,6

    Vậy phương sai cần tìm là 10,6.

  • Câu 2: Thông hiểu

    Nhiệt độ của thành phố Hà Nội ghi nhận trong 10 ngày lần lượt là: 24;\ 21;\ 30;\ 34;\
28;\ 35;\ 33;\ 36;\ 25;\ 27. Khoảng tứ phân vị của mẫu số liệu là:

    Sắp xếp dãy dữ liệu theo thứ tự không giảm là:

    21;24;25;27;28;30;33;34;35;36

    Suy ra Q_{2} = 29;Q_{1} = 25;Q_{3} =
34

    Khoảng tứ phân vị của mẫu số liệu là:

    \Delta Q = Q_{3} - Q_{1} =
9

  • Câu 3: Thông hiểu

    Cho bảng số liệu điểm kiểm tra môn Toán của 20 học sinh

    Điểm

    4

    5

    6

    7

    8

    9

    10

    Số học sinh

    1

    2

    3

    4

    5

    4

    1

    Tìm trung vị của bảng số liệu trên.

    Bảng số liệu có 20 giá trị => n = 20.

    => {M_e} = \frac{{{x_{10}} + {x_{11}}}}{2} = \frac{{7 + 8}}{2} = 7,5.

  • Câu 4: Vận dụng

    Bảng dưới đây thống kê lại tốc độ phát triển của 1 loại vi khuẩn (đơn vị: nghìn con).

    Ta nên lấy giá trị nào là giá trị đại diện của bảng trên?

    Sắp xếp lại số liệu theo thứ tự không giảm:

    20 20 20 30 60 100 150 270 440 980

    Do mẫu số liệu chứa các giá trị chênh lệch rất lớn nên không thể lấy số trung bình hoặc mốt làm giá trị đại diện.

    Tứ phân vị không được coi là giá trị đại diện.

    Do đó ta lấy trung vị làm giá trị đại diện. Ta có:M_{e} = \frac{60 + 100}{2} = 80.

    Chọn đáp án: Trung vị, giá trị đại diện là 80.

  • Câu 5: Nhận biết

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được \sqrt{8} =2,828427125. Giá trị gần đúng của \sqrt{8} chính xác đến hàng phần nghìn là:

    Cần lấy chính xác đến hàng phần trăm nên ta phải lấy ba chữ số thập phân. Vì đứng sau số 8 ở hàng phần trăm là số 4 < 5 nên theo nguyên lý làm tròn ra được kết quả là: 2,828.

  • Câu 6: Thông hiểu

    Cho \overline{m}=2 +\sqrt{3}= 3,7320508...  Hãy xác định số gần đúng của \overline{m} với độ chính xác d = 0,0001.

    Hàng của chữ số khác 0 đầu tiên bên trái của d = 0,0001 là hàng phần chục nghìn.

    Quy tròn \overline{m} đến hàng phần chục nghỉn ra được số gần đúng của \overline{m}m=3,7321

  • Câu 7: Nhận biết

    Điểm kiểm tra môn Hóa của một nhóm gồm 9 bạn như sau: 1; 1; 3; 6; 7; 8; 8; 9; 10. Tính trung bình cộng của mẫu số liệu trên. (làm tròn đến hàng phần chục)

    Số trung bình của mẫu số liệu trên là: \overline{x} = \frac{1 + 1 + 3 + 6 + 7 + 8 + 8 + 9
+ 10}{9} \approx 5,9.

  • Câu 8: Nhận biết

    Số cam có trong các giỏ được ghi lại như sau: 2;8;12;16. Số trung vị của mẫu số liệu là:

    Vì cỡ mẫu N = 4 là số chẵn nên trung vị bằng trung bình cộng của số liệu ở vị trí thứ hai và thứ ba.

    => Số trung vị của mẫu số liệu: \frac{8 + 12}{2} = 10

  • Câu 9: Thông hiểu

    Số gần đúng của a
= 2,57656 có ba chữ số đáng tin viết dưới dạng chuẩn là:

    Vì số gần đúng của số a có ba chữ số đáng tin nên ba chữ số đó là 2,5,7.

    Nên cách viết dưới dạng chuẩn là 2,57.

  • Câu 10: Nhận biết

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được: \sqrt{8}= 2,828427125. Giá trị gần đúng của \sqrt{8} chính xác đến hàng phần trăm là:

     Quy tròn \sqrt8 đến hàng phần trăm, ta được: 2,83.

  • Câu 11: Nhận biết

    Điều tra tiền lương một tháng của 100 người lao động trên địa bàn một xã ta có bàng phân bố tần số sau:

    Tiền lương (VND)

    5.000.000

    6.000.000

    7.000.000

    8.000.000

    9.000.000

    9.500.000

    Tần số

    26

    34

    20

    10

    5

    5

    Tìm mốt của bảng phân bổ tần số trên.

    Ta có giá trị 6.000.000 có tần số lớn nhất nên là mốt của bảng phân bố tần số trên.

  • Câu 12: Nhận biết

    Quy tròn số 2,663 đến hàng phần chục ta được số 2,7. Sai số tuyệt đối là:

    Sai số tuyệt đối là: d = |2,7 - 2,663| =
0,037.

  • Câu 13: Nhận biết

    Xác định mốt của mẫu số liệu: 11;17;13;14;15;14;15;16;17;17

    Ta có: số 17 có tần số xuất hiện nhiều nhất

    Suy ra mốt của mẫu số liệu là 17.

  • Câu 14: Nhận biết

    Tìm khoảng tứ phân vị mẫu số liệu điểm của một nhóm học sinh lớp 10:

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 4 5 5 6 7 7 7 8 8 9 9 10.

    Hai số liệu chính giữa là 7 và 7 nên Q_{2} = \frac{7 + 7}{2} = 7.

    Trung vị của mẫu số liệu 4 5 5 6 7 7 chính là Q_{1} = \frac{5 + 6}{2} = 5,5.

    Trung vị của mẫu số liệu 7 8 8 9 9 10 chính là Q_{3} = \frac{8 + 9}{2} = 8,5.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1} = 8,5 - 5,5 = 3.

  • Câu 15: Nhận biết

    Làm tròn số gần đúng 3,14159 với độ chính xác 0,001?

    Số gần đúng 3,14159 làm tròn với độ chính xác 0,001 là: 3,14.

  • Câu 16: Vận dụng

    Độ dài các cạnh của đám vườn hình chữ nhật là x = 7,8\ m \pm 2\ cmy = 25,6\ m \pm 4\ cm. Cách viết chuẩn của diện tích là:

    x = 7,8m \pm 2cm = 7,8m \pm
0,02m \Rightarrow 7,78 \leq x \leq
7,82

    y = 25,6m \pm 4cm = 25,6m \pm 0,04m
\Rightarrow 25,56 \leq y \leq 25,64.

    Diện tích mảnh ruộng là S, khi đó:

    198,8568 \leq S \leq 200,5048 \Rightarrow S = 199,6808\ m^{2} \pm 0,824\
m^{2}.

    Cách viết chuẩn của diện tích là 199m^{2}
\pm 0,8m^{2}.

  • Câu 17: Nhận biết

    Tính độ lệch chuẩn của mẫu số liệu: 10; 8; 6; 2; 4.

    Số trung bình là \overline{x} = \frac{10 + 8 + 6 + 2 + 4}{5} = 6.

    Phương sai là s^{2} = \frac{(10 - 6)^{2} + (8 - 6)^{2} + (6 - 6)^{2} +
(2 - 6)^{2} + (4 - 6)^{2}}{5} =
8.

    Độ lệch chuẩn là \sqrt{s^{2}} = \sqrt{8}
= 2\sqrt{2}.

  • Câu 18: Thông hiểu

    Cho số a =
6653964 \pm 300. Số quy tròn của số gần đúng 6653964 là:

    Do độ chính xác d = 300 <
\frac{1000}{2} nên làm quy tròn số gần đúng 6653964 đến hàng nghìn ta được: 6654000

  • Câu 19: Nhận biết

    Khoảng biến thiên tứ phân vị \Delta Q được xác định bởi:

    Khoảng biến thiên tứ phân vị \Delta
Q được xác định bởi Q_{3} -
Q_{1}.

  • Câu 20: Thông hiểu

    Xác định khoảng tứ phân vị của mẫu số liệu 1 6 4 7 8 20 15 10.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 4 6 7 8 10 15 20.

    Hai giá trị chính giữa là 7 và 8. Suy ra trung vị Q_{2} = \frac{7 + 8}{2} = 7,5.

    Trung vị Q_{1} của mẫu 1 4 6 7 là Q_{1} = \frac{4 + 6}{2} = 5.

    Trung vị Q_{3} của mẫu 8 20 15 10 là Q_{3} = \frac{10 + 15}{2} =
12,5.

    Vậy khoảng tứ phân vị \Delta_{Q} = Q_{3}
- Q_{1} = 12,5 - 5 = 7,5.

  • Câu 21: Nhận biết

    Trong một bài kiểm tra chạy của 20 học sinh, thầy giáo đã ghi lại kết quả trong bảng sau:

    Thời gian (giây)

    8,3

    8,4

    8,5

    8,7

    8,8

    Số học sinh

    2

    3

    9

    5

    1

    Mốt của bảng số liệu trên là:

    Quan sát bảng số liệu ta thấy:

    Số học sinh đạt kết quả 8,5 giây là lớn nhất bằng 9 học sinh.

    => Mốt của bảng số liệu là 8,5.

  • Câu 22: Thông hiểu

    Điểm kiểm tra môn Văn của 2 tổ học sinh được thống kê:

    Dựa vào khoảng biến thiên thì tổ nào học đều hơn?

    Khoảng biến thiên điểm của tổ 1 là R_{1}
= 9 - 7 = 2.

    Khoảng biến thiên điểm của bạn Bình là R_{2} = 10 - 6 = 4.

    R_{1} < R_{2} nên tổ 1 học đều hơn.

  • Câu 23: Nhận biết

    Sản lượng lúa (đơn vị là tạ) của 11 thửa ruộng thí nghiệm có cùng diện tích lần lượt là: 20; 19; 17; 21; 24; 22; 23; 16; 11; 25; 23. Tìm mốt của mẫu số liệu trên.

     Số 23 xuất hiện nhiều nhất nên nó là mốt.

  • Câu 24: Nhận biết

    Tìm trung vị của dãy số liệu 4 3 5 1 6 8 6.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 3 4 5 6 6 8.

    Dãy trên có giá trị chính giữa bằng 5.

    Vậy trung vị của mẫu số liệu bằng 5.

  • Câu 25: Nhận biết

    Kết quả đo chiều cao của một tòa nhà được ghi là 120m \pm 0,5m. Tìm độ chính xác của phép đo trên.

    Độ chính xác của phép đo trên là: 0,5m.

  • Câu 26: Thông hiểu

    Ba nhóm học sinh gồm 5 người, 10 người và 15 người. Khối lượng trung bình của mỗi nhóm lần lượt là 48 kg, 45kg và 40 kg. Khối lượng trung bình của 3 nhóm học sinh là:

    Khối lượng trung bình của 3 nhóm học sinh là:

    \overline x  = \frac{{48.5 + 45.10 + 40.15}}{{5 + 10 + 15}} = 43

  • Câu 27: Thông hiểu

    Có 100 học sinh tham dự kì thi học sinh giỏi Toán (thang điểm 20). Kết quả sau kì thi được thống kê như sau:

    Điểm

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    Tần số

    1

    1

    3

    5

    8

    13

    19

    24

    14

    10

    2

    Giá trị của phương sai gần bằng:

    Kết quả trung bình là:

    \overline x  = \frac{{9.1 + 10.1 + 11.3 + 12.5 + 13.8 + 14.13 + 15.19 + 16.24 + 17.14 + 18.10 + 19.2}}{{100}} = 15,23

    Giá trị của phương sai là:

     \begin{matrix}  {S^2} = \dfrac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + {n_3}{x_4}^2 + ... + {n_k}{x_k}^2} ight) - {\left( {\overline x } ight)^2} \hfill \\   \Rightarrow {S^2} = \dfrac{1}{{100}}({1.9^2} + {1.10^2} + {3.11^2} + {5.12^2} + {8.13^2} + {13.14^2} \hfill \\   + {19.15^2} + {24.16^2} + {14.17^2} + {10.18^2} + {2.19^2}) - {\left( {15,23} ight)^2} \hfill \\   \Rightarrow {S^2} \approx 3,96 \hfill \\ \end{matrix}

  • Câu 28: Nhận biết

    Để điều tra các con trong mỗi gia đình của một chung cư gồm 100 gia đình. Người ta chọn ra 20 gia đình ở tầng 4 và thu được mẫu số liệu sau đây:

    2  4  2  1  3  5  1  1  2  3  1  2  2  3  4  1  1  2  3  4.

    Số trung bình cộng \bar{x} của mẫu số liệu trên là:

    Số trung bình cộng của mẫu số liệu trên là:

    \overline x  = \frac{{1.6 + 2.6 + 3.4 + 4.3 + 5}}{{20}} = 2,35

  • Câu 29: Vận dụng

    Bảng dưới đây thống kê điểm của bạn Dũng và Huy:

    Hãy tính phương sai của mẫu số liệu về điểm của hai bạn, từ đó so sánh và chọn kết luận đúng.

    Số trung bình của mẫu số liệu (1) và (2) là:

    \overline{x_{1}} = \frac{8 + 6 + 7 + 5 + 9}{5} = 7

    \overline{x_{2}} = \frac{6 + 7 + 7 + 8 + 7}{5} = 7

    Phương sai của (1) là: {s_{1}}^{2}
= \frac{(8 - 7)^{2} + (6 - 7)^{2} +
(7 - 7)^{2} + (5 - 7)^{2} + (9 - 7)^{2}}{5} = 2

    Phương sai của (2) là: {s_{2}}^{2}
= \frac{(6 - 7)^{2} + (7 - 7)^{2} +
(7 - 7)^{2} + (8 - 7)^{2} + (7 - 7)^{2}}{5} = 0,4

    {s_{2}}^{2} < {s_{1}}^{2} nên bạn Huy học đều hơn bạn Dũng.

  • Câu 30: Nhận biết

    Cho a = 235618
\pm 300. Số quy tròn của số gần đúng 235618 là:

    Số quy tròn của số gần đúng 235618 là: 236000.

  • Câu 31: Thông hiểu

    Một túi gạo có ghi thông tin khối lượng là 5 \pm 0,2kg. Khi đó khối lượng thực của bao gạo nằm trong đoạn nào sau đây?

    Khi một túi gạo có ghi thông tin khối lượng là 5 \pm 0,2kg thì khối lượng thực của bao gạo nằm trong đoạn \lbrack
4,8;5,2brack.

  • Câu 32: Nhận biết

    Phương sai của một mẫu số liệu \left \{ x_1;x_2;...;x_N ight \} bằng

     Phương sai của một mẫu số liệu \left \{ x_1;x_2;...;x_N ight \} bằng bình phương của độ lệch chuẩn.

  • Câu 33: Thông hiểu

    Cho bảng điểm kiểm tra môn Toán của học sinh lớp 10B như sau:

    Điểm

    4

    5

    6

    7

    8

    9

    10

    Tổng

    Số học sinh

    2

    8

    7

    10

    8

    3

    2

    N = 40

    Tính số trung bình của mẫu số liệu? (Làm tròn kết quả đến chữ số thập phân thứ nhất).

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{2.4 + 5.8 + 6.7 +
7.10 + 8.8 + 9.3 + 10.2}{40} \approx 6,8

    Vậy số trung bình của mẫu số liệu bằng 6,8.

  • Câu 34: Nhận biết

    Khoảng biến thiên của mẫu số liệu: 2;5;16;8;7;9;10;12;14;11;6 là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 16

    Giá trị nhỏ nhất là 2

    Suy ra khoảng biến thiên của mẫu số liệu là: 16 – 2 = 14.

  • Câu 35: Thông hiểu

    Tìm số trung vị của dãy số liệu 1;1;2;3;4;4;5;5;5;6?

    Dãy số liệu được sắp xếp theo thứ tự không giảm

    Suy ra số trung vị của dãy số liệu đã cho là \frac{4 + 4}{2} = 4.

  • Câu 36: Nhận biết

    Quy tròn số 21569 đến hàng chục nghìn ta được:

    Quy tròn số 21569 đến hàng nghìn ta được số quy tròn là 22000.

  • Câu 37: Vận dụng

    Một học sinh đo đường kính của một hình tròn là 24 \pm 0,2 (cm). Bạn đó tính được chu vi hình tròn là p = 75,36 (cm). Biết 3,141 < \pi <
3,142. Hãy ước lượng sai số tuyệt đối của p.

    Gọi \overline{a}\overline{p} lần lượt là đường kính và chu vi của hình tròn.

    Ta có: 23,8 \leq \overline{a} \leq
24,2.

    Ta có: 3,141.23,8 = 74,7558 \leq\overline{p} = \pi\overline{a}\leq 3,142.24,2 = 76,0364.

    Do đó 74,7558 - 75,36 = - 0,6042 \leq\overline{p} - 75,36\leq 76,0364 - 75,36 = 0,6764.

    Vậy sai số tuyệt đối của p\Delta_{p} = \left| \overline{p} - 75,36
ight| \leq 0,6764.

  • Câu 38: Thông hiểu

    Cho giá trị gần đúng của \frac{3}{7} là 0,429. Sai số tuyệt đối của số 0,429 là:

    Ta có: \frac{3}{7} =0,428571… nên sai số tuyệt đối của 0,429 là

    \Delta = \left| 0,429 - \frac{3}{7}
ight| < |0,429 - 4,4285| = 0,0005

  • Câu 39: Vận dụng

    Cho bảng số liệu như sau:

    Đại diện

    35

    36

    37

    38

    39

    40

    Tần số

    7

    11

    x

    y

    8

    5

    Biết rằng trung vị và cỡ mẫu của mẫu số liệu lần lượt là 37,550. Tính giá trị x;y?

    Vì cỡ mẫu bằng 50 nên trung vị của mẫu số liệu là trung bình cộng của 2 số ở chính giữa (vị trí 25 và 26).

    Mà trung vị của mẫu số liệu trên là 37,5

    Hay M_{e} = \frac{37 +
38}{2}

    Từ đó ta có số liệu đứng thứ 25 là 37 và thứ 26 là 38.

    Suy ra x = 7

    Mà cỡ mẫu bằng 50 suy ra y =
12

  • Câu 40: Vận dụng

    Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

    Không tính toán, hãy chọn kết luận đúng.

    Quan sát hai mẫu số liệu, ta thấy mẫu A có độ phân tán lớn hơn mẫu B. Suy ra mẫu A có phương sai lớn hơn. (Các số liệu ở mẫu B tập trung ở trung tâm)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo