Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Thống kê gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm mốt của mẫu số liệu: 1 3 4 2 0 0 5 6.

    Giá trị 0 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 0.

  • Câu 2: Thông hiểu

    Sản lượng lúa (đơn vị: tạ) của 40 thửa ruộng thí nghiệm có cùng diện tích được trình bày trong bảng số liệu sau:

    Sản lượng

    20

    21

    22

    23

    24

     

    Tần số

    5

    8

    11

    10

    6

    n = 40

    Phương sai là:

    Sản lượng lúa trung bình là:

    \overline x  = \frac{{5.20 + 8.21 + 11.22 + 10.23 + 6.24}}{{40}} = 22,1

    Phương sai là:

    \begin{matrix}  {S^2} = \dfrac{1}{{40}}\left( {{{5.20}^2} + {{8.21}^2} + {{11.22}^2} + {{10.23}^2} + {{6.24}^2}} ight) - {\left( {22,1} ight)^2} \hfill \\   \Rightarrow {S^2} = 1,54 \hfill \\ \end{matrix}

  • Câu 3: Nhận biết

    Cho mẫu số liệu: 6; 7; 8; 9; 10. Tính phương sai của mẫu.

    Số trung bình là \overline{x} = \frac{6 + 7 + 8 + 9 + 10}{5} = 8.

    Phương sai là s^{2} = \frac{(6 - 8)^{2} + (7 - 8)^{2} + (8 - 8)^{2} + (9
- 8)^{2} + (10 - 8)^{2}}{5} =
2.

  • Câu 4: Vận dụng

    Một người cần đo chiều cao của một cái cây. Anh ta thực hiện ba phép đo, kết quả được ghi lại như sau: h_{1} = 10,23 \pm 0,43(m), h_{2} = 10,58 \pm 0,2(m), h_{3} = 9,92 \pm 0,63(m). Trong ba số liệu trên, người thợ nên chọn số liệu nào làm chiều cao của cái cây?

    Phép đo lần 1 có sai số tương đối \delta_{1} \leq \frac{0,43}{10,23} \approx 0,042 =
4,2\%.

    Phép đo lần 2 có sai số tương đối \delta_{2} \leq \frac{0,2}{10,58} \approx 0,0189 =
1,89\%.

    Phép đo lần 3 có sai số tương đối \delta_{3} \leq \frac{0,63}{9,92} \approx 0,0635 =
6,35\%.

    Vì phép đo lần 2 có sai số nhỏ nhất nên người thợ nên chọn h_{2} làm chiều cao của ngôi nhà.

  • Câu 5: Thông hiểu

    Xác định khoảng tứ phân vị của mẫu số liệu 1 6 4 7 8 20 15 10.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 4 6 7 8 10 15 20.

    Hai giá trị chính giữa là 7 và 8. Suy ra trung vị Q_{2} = \frac{7 + 8}{2} = 7,5.

    Trung vị Q_{1} của mẫu 1 4 6 7 là Q_{1} = \frac{4 + 6}{2} = 5.

    Trung vị Q_{3} của mẫu 8 20 15 10 là Q_{3} = \frac{10 + 15}{2} =
12,5.

    Vậy khoảng tứ phân vị \Delta_{Q} = Q_{3}
- Q_{1} = 12,5 - 5 = 7,5.

  • Câu 6: Thông hiểu

    Cho số a =
1754731, trong đó chỉ có chữ số hàng trăm trở lên là đáng tin. Hãy viết chuẩn số gần đúng của a.

    Do alà số nguyên và hàng thấp nhất có chữ số đáng tin là 10^{2} nên dạng viết chuẩn của a

    17547.10^{2}.

  • Câu 7: Nhận biết

    Kết quả đo chiều cao của một tòa nhà được ghi là 120m \pm 0,5m. Tìm độ chính xác của phép đo trên.

    Độ chính xác của phép đo trên là: 0,5m.

  • Câu 8: Nhận biết

    Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng nào sau đây?

    Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng phương sai.

  • Câu 9: Thông hiểu

    Một túi gạo có ghi thông tin khối lượng là 5 \pm 0,2kg. Khi đó khối lượng thực của bao gạo nằm trong đoạn nào sau đây?

    Khi một túi gạo có ghi thông tin khối lượng là 5 \pm 0,2kg thì khối lượng thực của bao gạo nằm trong đoạn \lbrack
4,8;5,2brack.

  • Câu 10: Thông hiểu

    Cho \overline{a}
= \frac{16}{7} = 2,285714... Hãy xác định số gần đúng a của \overline{a} với độ chính xác d = 0,03.

    Ta có hàng của chữ số 0 đầu tiên bên trái của d là hàng phần trăm. Ta cần quy tròn đến hàng phần trăm được số gần đúng là a = 2,29.

  • Câu 11: Nhận biết

    Chọn khẳng định sai?

    Khẳng định sai: “Giá trị bất thường trong mẫu số liệu thuộc \left\lbrack Q_{1} - \frac{3}{2}\Delta Q;Q_{3} +
\frac{1}{2}\Delta Q ightbrack

    Sửa lại: “Giá trị bất thường trong mẫu số liệu nằm ngoài đoạn \left\lbrack Q_{1} - \frac{3}{2}\Delta Q;Q_{3} +
\frac{1}{2}\Delta Q ightbrack”.

  • Câu 12: Nhận biết

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được \sqrt{7} =
2,645751311. Giá trị gần đúng của \sqrt{7} chính xác đến hàng phần trăm là:

    Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 4 ở hàng phần trăm là số 5 nên theo nguyên lý làm tròn ra được kết quả là: 2,65

  • Câu 13: Thông hiểu

    Tìm phương sai của dãy số liệu: 8 15 14 18.

    Số trung bình của mẫu số liệu là: \overline{x} = \frac{8 + 15 + 14 + 18}{4} = 13.

    Ta có phương sai: s^{2} = \frac{(8 - 13)^{2} + (15 - 13)^{2} + (14 - 13)^{2}
+ (18 - 13)^{2}}{4} =
13,75.

  • Câu 14: Thông hiểu

    Hãy tìm số trung bình của mẫu số liệu khi cho bảng tần số dưới đây:

    Giá trị \mathbf{x}_{\mathbf{i}}

    4

    6

    8

    10

    12

    Tần số \mathbf{n}_{\mathbf{i}}

    1

    4

    9

    5

    2

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{4.1 + 6.4 + 8.9 +
10.5 + 12.2}{21} \approx 8,29

    Vậy đáp án bằng 8,29

  • Câu 15: Nhận biết

    Điều tra về số học sinh của một trường THPT như sau:

    Khối lớp

    10

    11

    12

    Số học sinh

    1120

    1075

    900

    Khoảng biến thiên của mẫu số liệu trên là.

     Khoảng biến thiên R = 1120 - 900 = 220.

  • Câu 16: Vận dụng

    Độ dài các cạnh của đám vườn hình chữ nhật là x = 7,8\ m \pm 2\ cmy = 25,6\ m \pm 4\ cm. Cách viết chuẩn của diện tích là:

    x = 7,8m \pm 2cm = 7,8m \pm
0,02m \Rightarrow 7,78 \leq x \leq
7,82

    y = 25,6m \pm 4cm = 25,6m \pm 0,04m
\Rightarrow 25,56 \leq y \leq 25,64.

    Diện tích mảnh ruộng là S, khi đó:

    198,8568 \leq S \leq 200,5048 \Rightarrow S = 199,6808\ m^{2} \pm 0,824\
m^{2}.

    Cách viết chuẩn của diện tích là 199m^{2}
\pm 0,8m^{2}.

  • Câu 17: Nhận biết

    Làm tròn số 1234,567 đến hàng đơn vị?

    Số 1234,567 làm tròn đến hàng đơn vị là 1235.

  • Câu 18: Thông hiểu

    Tìm phương sai trong mẫu số liệu: 4;5;7;9;10?

    Số trung bình bằng: \overline{x} =
\frac{4 + 5 + 7 + 9 + 10}{5} = 7

    Phương sai bằng:

    s^{2} = \frac{1}{5}\lbrack(4 - 7)^{2} +
(5 - 7)^{2}

    + (7 - 7)^{2} + (9 - 7)^{2} + (10 -
7)^{2}brack = 5,2

    Vậy phương sai cần tìm là 5,2.

  • Câu 19: Nhận biết

    Tiền lương hàng tháng của 7 nhân viên trong một công ty du lịch lần lượt là: 6,5; 8,4; 6,9; 7,2; 2,5; 6,7; 3,0. (đơn vị: triệu đồng). Khoảng biến thiên của dãy số liệu thống kê trên bằng:

     Khoảng biến thiên: R = 8,4 - 2,5 = 5,9.

  • Câu 20: Vận dụng

    Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện nhân 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.

    Giả sử các số liệu trong mẫu là: a_{1};a_{2};...;a_{10} đã sắp xếp theo thứ tự không giảm.

    Khoảng biến thiên: R_{1} = a_{10} -
a_{1}.

    Nhân hai với tất cả các số liệu: 2a_{1};2a_{2};...;2a_{10}.

    Khoảng biến thiên: R_{2} = 2a_{10} -
2a_{1} = 2(a_{10} - a_{1}).

    Suy ra R_{2} = 2R_{1}.

  • Câu 21: Nhận biết

    Tìm khoảng tứ phân vị mẫu số liệu điểm của một nhóm học sinh lớp 10:

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 4 5 5 6 7 7 7 8 8 9 9 10.

    Hai số liệu chính giữa là 7 và 7 nên Q_{2} = \frac{7 + 7}{2} = 7.

    Trung vị của mẫu số liệu 4 5 5 6 7 7 chính là Q_{1} = \frac{5 + 6}{2} = 5,5.

    Trung vị của mẫu số liệu 7 8 8 9 9 10 chính là Q_{3} = \frac{8 + 9}{2} = 8,5.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1} = 8,5 - 5,5 = 3.

  • Câu 22: Thông hiểu

    Số điểm của một vận động viên trong 5 hiệp được ghi lại như sau: 9 8 15 8 20. Tính tứ phân vị của mẫu số liệu trên.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 8 8 9 15 20.

    Số liệu chính giữa là 9 nên trung vị của mẫu số liệu trên là 9.

    Trung vị của mẫu số liệu 8 8 là \frac{8 +
8}{2} = 8.

    Trung vị của mẫu số liệu 15 20 là \frac{15 + 20}{2} = 17,5.

    Vậy Q_{1} = 8;\ Q_{2} = 9;\ Q_{3} =
17,5.

  • Câu 23: Nhận biết

    Cho số gần đúng a = 23748023 với độ chính xác d = 101. Hãy viết số quy tròn của số a.

    Vì độ chính xác d = 101 là hàng trăm nên ta quy tròn đến hàng nghìn, ta được số:

    a = 23748023.

  • Câu 24: Nhận biết

    Cho mẫu số liệu: 10; 8; 6; 2; 4. Tính phương sai của mẫu.

    Số trung bình là \overline{x} = \frac{10 + 8 + 6 + 2 + 4}{5} = 6.

    Phương sai là s^{2} = \frac{(10 - 6)^{2} + (8 - 6)^{2} + (6 - 6)^{2} +
(2 - 6)^{2} + (4 - 6)^{2}}{5} =
8.

  • Câu 25: Thông hiểu

    Cho mẫu số liệu 1;3;4;13;x^{2} - 1;18;19;21 (đã sắp xếp thứ tự và x \in \mathbb{N}^{*}). Biết rằng trung vị của mẫu số liệu bằng 14. Tìm x?

    Dãy số liệu có 8 số liệu nên

    14 = \frac{13 + x^{2} - 1}{2}
\Leftrightarrow x^{2} = 16

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 4(tm) \\
x = - 4(ktm) \\
\end{matrix} ight.

    Vậy x = 4 thỏa mãn điều kiện đề bài.

  • Câu 26: Nhận biết

    Số cam có trong các giỏ được ghi lại như sau: 2;8;12;16. Số trung vị của mẫu số liệu là:

    Vì cỡ mẫu N = 4 là số chẵn nên trung vị bằng trung bình cộng của số liệu ở vị trí thứ hai và thứ ba.

    => Số trung vị của mẫu số liệu: \frac{8 + 12}{2} = 10

  • Câu 27: Nhận biết

    Viết số quy tròn của số a = 80,3654 đến hàng phần trăm.

    Số quy tròn của số a = 80,3654 đến hàng phần trăm là 80,37.

  • Câu 28: Thông hiểu

    Người ta thống kê cân nặng của 10 học sinh theo thứ tự tăng dần. Số trung vị của mẫu số liệu trên là:

    Ta có: n=10 là một số chẵn

    => Số trung vị là: {M_e} = \frac{{{x_5} + {x_6}}}{2}

    Hay số trung vị của mẫu số liệu trên bằng trung bình cộng của khối lượng của học sinh thứ 5 và thứ 6.

  • Câu 29: Nhận biết

    Kết quả kiểm tra của 40 học sinh lớp 10A được thống kê trong bảng sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Số học sinh

    2

    3

    7

    18

    3

    2

    4

    1

    Tìm mốt của mẫu số liệu đã cho?

    Mốt của mẫu số liệu là: 6 (vì có nhiều học sinh đạt điểm 6 nhất trong 40 học sinh).

  • Câu 30: Vận dụng

    Cho dãy số liệu về chiều cao của một nhóm học sinh như sau: 160;178;150;164;168;176;156;172. Các tứ phân vị của mẫu số liệu là:

    Dãy số liệu sắp xếp theo thứ tự không giảm là: 150;156;160;164;168;172;176;178

    Trung vị là Q_{2} = \frac{164 + 168}{2} =
166

    Nửa dữ liệu bên trái Q_{2} là: 150;156;160;164

    Do đó Q_{1} = \frac{156 + 160}{2} =
158

    Nửa dữ liệu bên phải Q_{2} là: 168;172;176;178

    Do đó Q_{3} = \frac{172 + 176}{2} =
174

  • Câu 31: Vận dụng

    Một bác sĩ ghi lại độ tuổi của một số người đến khám trong bảng:

    Tìm mốt của mẫu số liệu trên.

    Cỡ mẫu số liệu trên là n =
30.

    Thống kê lại:

    Hai giá trị có tần số lớn nhất 17 (5 lần) và 18 (5 lần).

    Vậy mốt là 17 và 18.

  • Câu 32: Thông hiểu

    Cho số a =
367653964 \pm 213. Số quy tròn của số gần đúng 367653964 bằng:

    Hàng lớn nhất có độ chính xác d =
213 là hàng trăm nên ta quy tròn số a đến hàng nghìn.

    Vậy số quy tròn của a là: 367654000.

  • Câu 33: Thông hiểu

    Cho giá trị gần đúng của \frac{3}{7}0,429. Sai số tuyệt đối của số 0,429 không vượt quá giá trị nào sau đây?

    Sai số tuyệt đối của số 0,429 là: \left| \frac{3}{7} - 0,429 ight|
\approx 4,3.10^{- 4}

    Suy ra sai số tuyệt đối của số 0,429 không vượt quá 0,0005.

  • Câu 34: Nhận biết

    Quy tròn số 14869 đến hàng trăm. Số gần đúng nhận được là:

     Quy tròn 14869 đến hàng trăm, ta được: 14900.

  • Câu 35: Thông hiểu

    Hãy chọn kết quả lần lượt là số trung bình và phương sai của mẫu số liệu 3;5;5;6;7;7;8;9;10?

    Ta có:

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{3 + 5 + 5 + 6 + 7 +
7 + 8 + 9 + 10}{9} \approx 6,7

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{9}.\lbrack(3 - 6,7)^{2}
+ 2.(5 - 6,7)^{2} + (6 - 6,7)^{2} + 2.(7 - 6,7)^{2}

    + (8 - 6,7)^{2} + (9 - 6,7)^{2} + (10 -
6,7)^{2}brack \approx 4,2

    Vậy số trung bình và phương sai của mẫu số liệu lần lượt là: 6,7;\ 4,2.

  • Câu 36: Nhận biết

    Làm tròn số 5,2463 đến hàng phần trăm ta được kết quả là:

    Làm tròn số 5,2463 đến hàng phần trăm ta được kết quả là 5,25.

  • Câu 37: Vận dụng

    Bảng sau đây cho ta biết số cuốn sách mà học sinh của một lớp ở trường Trung học phổ thông đã đọc:

    Số sách

    1

    2

    3

    4

    5

    6

     

    Số học sinh đọc

    10

    m

    8

    6

    n

    3

    n = 40

    Tìm m và n, biết phương sai của mẫu số liệu trên xấp xỉ 2,52.

     Số trung bình là: 

    \overline x  = \frac{{10.1 + 2.m + 8.3 + 4.6 + 5.n + 6.3}}{{40}} = \frac{{76 + 2m + 5n}}{{40}}

    Phương sai là:

    \begin{matrix}  {S^2} = \dfrac{1}{{40}}\left( {{{10.1}^2} + m{{.2}^2} + {{8.3}^2} + {{6.4}^2} + n{{.5}^2} + {{3.6}^2}} ight) - {\left( {\dfrac{{76 + 2m + 5n}}{{40}}} ight)^2} \hfill \\   \Rightarrow {S^2} = \dfrac{1}{{40}}\left( {286 + 4m + 25n} ight) - {\left( {\dfrac{{76 + 2m + 5n}}{{40}}} ight)^2} \hfill \\ \end{matrix}

    Theo bài ra ta có:

    Kiểm tra được: m = 8 và n = 5 thỏa mãn.

  • Câu 38: Nhận biết

    Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?

    Đáp án: Độ lệch chuẩn.

  • Câu 39: Nhận biết

    Điểm kiểm tra môn Hóa của một nhóm gồm 9 bạn như sau: 1; 1; 3; 6; 7; 8; 8; 9; 10. Tính trung bình cộng của mẫu số liệu trên. (làm tròn đến hàng phần chục)

    Số trung bình của mẫu số liệu trên là: \overline{x} = \frac{1 + 1 + 3 + 6 + 7 + 8 + 8 + 9
+ 10}{9} \approx 5,9.

  • Câu 40: Nhận biết

    Xác định số trung vị của dãy số liệu 1;2;5;7;8;9;10?

    Dãy số đã cho được sắp xếp theo thứ tự không giảm.

    Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.

    Do đó số trung vị của dãy trên là 7.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo