Hãy viết số quy tròn số gần đúng
với độ chính xác
.
Ta có: nên làm tròn đến hàng nghìn
Vậy đáp án là: .
Hãy viết số quy tròn số gần đúng
với độ chính xác
.
Ta có: nên làm tròn đến hàng nghìn
Vậy đáp án là: .
Bảng dưới đây thống kê điểm của An và Bình:

Dựa vào khoảng biến thiên thì bạn nào học đều hơn?
Khoảng biến thiên điểm của bạn An là .
Khoảng biến thiên điểm của bạn Bình là .
Vì nên Bình học đều hơn.
Tìm khoảng tứ phân vị mẫu số liệu điểm của một nhóm học sinh lớp 10:

Sắp xếp mẫu số liệu theo thứ tự không giảm: 4 5 5 6 7 7 7 8 8 9 9 10.
Hai số liệu chính giữa là 7 và 7 nên .
Trung vị của mẫu số liệu 4 5 5 6 7 7 chính là .
Trung vị của mẫu số liệu 7 8 8 9 9 10 chính là .
Khoảng tứ phân vị
.
Cho số gần đúng
với độ chính xác
. Số quy tròn của số
là:
Độ chính xác đến hàng trăm nên ta quy tròn đến hàng nghìn, ta được số quy tròn là .
Cho số gần đúng
. Hãy viết số quy tròn của
?
Với . Số quy tròn của số
là:
.
Kết quả thống kê số tiền điện của một hộ gia đình trong 6 tháng liên tiếp (đơn vị: nghìn đồng) như sau:
. Khoảng biến thiên của mẫu số liệu bằng:
Giá trị lớn nhất bằng 350
Giá trị nhỏ nhất bằng 270
=> Khoảng biến thiên của mẫu số liệu là: 350 – 270 = 80.
Vậy khoảng biến thiên của mẫu số liệu bằng 80.
Người ta phân tích thuế mặt hàng A tại 30 tỉnh một quốc gia và tính được:
. Giá trị nhỏ nhất bằng 20, giá trị lớn nhất bằng 120. Chọn kết luận đúng.
Khoảng tứ phân vị
.
Khoảng biến thiên .
Ý nghĩa của khoảng tứ phân vị được thể hiện ở hình ảnh bên dưới:
Như vậy có khoảng 75% số tỉnh có thuế mặt hàng A lớn hơn 26.
Cho
Hãy xác định số gần đúng của
với độ chính xác d = 0,0001.
Hàng của chữ số khác 0 đầu tiên bên trái của d = 0,0001 là hàng phần chục nghìn.
Quy tròn đến hàng phần chục nghỉn ra được số gần đúng của
là
Cho số
. Số quy tròn của số gần đúng
là:
Với suy ra độ chính xác
Vì độ chính xác đến hàng trăm nên số quy trình của số a được làm tròn đến hàng nghìn.
Vì chữ số hàng năm là 9 > 5
=> Chữ số hàng nghìn được tăng thêm 1 đơn vị từ 3 đến 4 và các chữ số đằng sau thay bởi chữ số 0.
=> Số quy tròn của số gần đúng là: .
.
Trong kết quả thống kê điểm môn Tiếng Anh của một lớp có 40 học sinh, điểm thấp nhất là 2 điểm và cao nhất là 10 điểm. Khẳng định nào sau đây đúng?
Khi thực hiện tính điểm trung bình hay trung vị còn phụ thuộc vào tần số của mỗi điểm.
Nếu chỉ có khoảng điểm thì không thể kết luận về điểm trung bình môn Tiếng Anh của lớp đó và trung vị.
Cho mẫu số liệu:
. Xác định khoảng tứ phân vị của mẫu số liệu?
Ta có N = 10
Suy ra
Vậy khoảng tứ phân vị bằng 2.
Điểm thi học kì của một học sinh như sau: 4 6 7 2 10 9 3 5 8 7 3 8.
Tính số trung bình cộng của mẫu số liệu trên.
Số trung bình cộng của mẫu số liệu trên là:
.
Cho mẫu số liệu có
. Khi đó độ lệch chuẩn của mẫu số liệu bằng:
Độ lệch chuẩn
Cho một mẫu dữ liệu đã được sắp xếp theo thứ tự không giảm
. Khi đó khoảng biến thiên
của mẫu số liệu bằng:
Khoảng biến thiên của mẫu số liệu bằng:
Tìm số gần đúng của a = 2851275 với độ chính xác d = 300.
Vì độ chính xác đến hàng trăm nên ta quy tròn a đến hàng nghìn, vậy số quy tròn của a là 2851000.
Chiều cao của một số học sinh nữ lớp 9 (đơn vị cm) được cho trong bảng.

Tìm khoảng tứ phân vị của mẫu số liệu này.
Nhận thấy mẫu đã được sắp xếp theo thứ tự không giảm.
Số liệu chính giữa là 162 nên .
Số liệu chính giữa của mẫu 151 152 153 154 155 160 160 là 154 nên .
Số liệu chính giữa của mẫu 163 165 165 165 166 167 167 là 165 nên .
Khoảng tứ phân vị
.
Số tiền nước phải nộp (đơn vị: nghìn đồng) của 5 hộ gia đình là: 56; 45; 103; 239; 125. Độ lệch chuẩn gần bằng:
Số tiền nước trung bình là:
Phương sai là:
Độ lệch chuẩn là:
Cho bảng số liệu thống kê kết quả thi của một số học sinh như sau:
|
Học sinh |
An |
Hoa |
Tuấn |
Hùng |
Quân |
Linh |
|
Điểm |
9 |
8 |
7 |
10 |
8 |
6 |
Tìm phương sai của mẫu số liệu?
Ta có:
Điểm trung bình của các học sinh trong bảng số liệu là:
Ta có bảng sau:
|
Giá trị |
Độ lệch |
Bình phương độ lệch |
|
9 |
9 – 8 = 1 |
1 |
|
8 |
8 – 8 = 0 |
0 |
|
7 |
7 – 8 = -1 |
1 |
|
10 |
10 – 8 = 2 |
4 |
|
8 |
8 – 8 = 0 |
0 |
|
6 |
6 – 8 = -2 |
4 |
|
Tổng |
10 |
|
Suy ra phương sai của mẫu số liệu là:
Vậy phương sai cần tìm là .
Cho số đúng
và số gần đúng của
của
. Xác định sai số tuyệt đối
.
Ta có:
Suy ra sai số tuyệt đối là:
Khi tính diện tích hình tròn bán kính R = 3cm, nếu lấy
thì độ chính xác là bao nhiêu?
Ta có diện tích hình tròn S = 3,14. 32 và . 32 =
Ta có:
Do đó:
Vậy nếu ta lấy thì diện tích hình tròn là S = 28,26cm2 với độ chính xác
.
Điều tra tiền lương một tháng của 100 người lao động trên địa bàn một xã ta có bàng phân bố tần số sau:
|
Tiền lương (VND) |
5.000.000 |
6.000.000 |
7.000.000 |
8.000.000 |
9.000.000 |
9.500.000 |
|
Tần số |
26 |
34 |
20 |
10 |
5 |
5 |
Tìm mốt của bảng phân bổ tần số trên.
Ta có giá trị 6.000.000 có tần số lớn nhất nên là mốt của bảng phân bố tần số trên.
Kết quả kiểm tra của 40 học sinh lớp 10A được thống kê trong bảng sau:
|
Điểm |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
Số học sinh |
2 |
3 |
7 |
18 |
3 |
2 |
4 |
1 |
Tìm mốt của mẫu số liệu đã cho?
Mốt của mẫu số liệu là: (vì có nhiều học sinh đạt điểm 6 nhất trong 40 học sinh).
Cho số gần đúng
với độ chính xác
. Số quy tròn của số
là:
Độ chính xác nên ta làm tròn số
đến hàng nghìn, ta được kết quả là
.
Bảng dưới đây thống kê thời gian nảy mầm của một giống cây trong các điều kiện khác nhau.

Tính thời gian trung bình thời gian nảy mầm của loại giống cây trên.
Thời gian trung bình thời gian nảy mầm của loại giống cây trên là:
.
Cho dãy số liệu thống kê
. Tính số trung bình cộng của dãy số liệu thống kê đã cho?
Số trung bình cộng của dãy số liệu đã cho là:
Vậy số trung bình cộng của dãy số liệu thống kê bằng 22,5.
Một bác sĩ ghi lại độ tuổi của một số người đến khám trong bảng:

Tìm mốt của mẫu số liệu trên.
Cỡ mẫu số liệu trên là .
Thống kê lại:
Hai giá trị có tần số lớn nhất 17 (5 lần) và 18 (5 lần).
Vậy mốt là 17 và 18.
Viết số quy tròn của
đến hàng phần nghìn?
Ta có số quy tròn của đến hàng phần nghìn là
.
Số cuộn phim mà 20 nhà nhiếp ảnh nghiệp dư sử dụng trong một tháng được cho trong bảng sau:
0 | 5 | 7 | 6 | 2 | 5 | 9 | 7 | 6 | 9 |
20 | 6 | 10 | 7 | 5 | 8 | 9 | 7 | 8 | 5 |
Giá trị ngoại lệ trong mẫu số liệu trên là:
Ta có bảng tần số sau:
Số cuộn phim | 0 | 2 | 5 | 6 | 7 | 8 | 9 | 10 | 20 |
|
Số nhiếp ảnh gia | 1 | 1 | 4 | 3 | 4 | 2 | 3 | 1 | 1 | n = 20 |
Vì cỡ mẫu n = 20 = 2.10 là số chẵn. Nên giá trị tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 10 và số liệu thứ 11.
Khi sắp xếp mẫu số liệu đã cho theo thứ tự không giảm, ta được số liệu thứ 10 và số liệu thứ 11 cùng bằng 7.
=> Q2 = 7.
- Ta tìm tứ phân vị thứ nhất là trung vị của nửa mẫu số liệu bên trái Q2.
Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ nhất là trung bình cộng của số liệu thứ 5 và số liệu thứ 6.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 5 và số liệu thứ 6 cùng bằng 5.
=> Q1 = 5.
Ta tìm tứ phân vị thứ ba là trung vị của nửa mẫu số liệu bên phải Q2.
Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 5 và số liệu thứ 6 (tính từ số liệu thứ 11 trở đi). Tức là giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 15 và số liệu thứ 16.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 15 và số liệu thứ 16 lần lượt là 8 và 9.
=> Q3 = (8 + 9) : 2 = 8,5.
Ta suy ra khoảng tứ phân vị ∆Q = Q3 – Q1 = 8,5 – 5 = 3,5.
Ta có Q3 + 1,5.∆Q = 13,75 và Q1 – 1,5.∆Q = – 0,25.
Số liệu x trong mẫu là giá trị ngoại lệ nếu x > Q3 + 1,5.∆Q (1) hoặc x < Q1 – 1,5.∆Q (2)
Quan sát bảng số liệu ta thấy có số liệu x = 20 thoả mãn điều kiện (1) : 20 > 13,75.
Vậy mẫu số liệu có giá trị ngoại lệ là 20.
Số trung bình của mẫu số liệu
là:
Số trung bình của mẫu số liệu là:
Vậy số trung bình là 46,25.
Bạn An đo chiều dài của một sân bóng ghi được
. Bạn Bằng đo chiều cao của một cột cờ được
. Trong 2 bạn An và Bằng, bạn nào có phép đo chính xác hơn và sai số tương đối trong phép đo của bạn đó là bao nhiêu?
Phép đo của bạn A có sai số tương đối
Phép đo của bạn B có sai số tương đối
Như vậy phép đo của bạn A có độ chính xác cao hơn.
Dưới đây là bảng thống kê số lần làm bài tập Toán của học sinh lớp 10A.

Tìm tứ phân vị của mẫu số liệu này.
Cỡ mẫu số liệu này là: .
Suy ra giá trị chính giữa là giá trị ở vị trí thứ 18. Đó là số 3. Suy ra trung vị .
Trung vị của 17 giá trị bên trái là giá trị ở vị trí thứ 9. Đó là số 2. Suy ra
.
Trung vị của 17 giá trị bên phải là giá trị ở vị trí thứ 27. Đó là số 4. Suy ra
.
Xác định số trung vị của dãy số liệu
?
Dãy số đã cho được sắp xếp theo thứ tự không giảm.
Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.
Do đó số trung vị của dãy trên là 5.
Hãy tìm số trung bình của mẫu số liệu khi cho bảng tần số dưới đây:
|
Giá trị |
4 |
6 |
8 |
10 |
12 |
|
Tần số |
1 |
4 |
9 |
5 |
2 |
Số trung bình của mẫu số liệu là:
Vậy đáp án bằng
Cho số
Số quy tròn của số gần đúng
là:
Vì độ chính xác đến hàng trăm nên ta quy tròn đến hàng nghìn và theo quy tắc làm tròn nên số quy tròn là: .
Cho bảng điểm kiểm tra môn Toán của học sinh lớp 10B như sau:
|
Điểm |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Tổng |
|
Số học sinh |
2 |
8 |
7 |
10 |
8 |
3 |
2 |
N = 40 |
Tính số trung bình của mẫu số liệu? (Làm tròn kết quả đến chữ số thập phân thứ nhất).
Số trung bình của mẫu số liệu là:
Vậy số trung bình của mẫu số liệu bằng 6,8.
Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây:
= 28658 ± 100.
Vì độ chính xác đến hàng trăm nên ta phải quy tròn số 17638 đến hàng nghìn. Vậy số quy tròn là 29000 (hay viết ≈ 29000).
Khẳng định nào sau đây là đúng?
Trong đo đạc và tính toán, ta thường chỉ nhận được số gần đúng.
Cho mẫu số liệu:
. Xác định phương sai của mẫu số liệu đã cho?
Ta có:
Số trung bình của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Vậy phương sai của mẫu số liệu bằng 4.
Điểm kiểm tra của 24 học sinh được ghi lại trong bảng sau:

Mốt của mẫu số liệu là:
Điểm 8 có tần số xuất hiện nhiều nhất nên mốt của mẫu số liệu là 8.
Cho mẫu số liệu: 10; 8; 6; 2; 4. Tính phương sai của mẫu.
Số trung bình là
.
Phương sai là
.