Giả sử
là các tứ phân vị của mẫu số liệu. Khoảng tứ phân vị của mẫu số liệu là:
Khoảng tứ phân vị của mẫu số liệu là: .
Giả sử
là các tứ phân vị của mẫu số liệu. Khoảng tứ phân vị của mẫu số liệu là:
Khoảng tứ phân vị của mẫu số liệu là: .
Số trung bình của mẫu số liệu
là:
Số trung bình của mẫu số liệu là:
Vậy số trung bình là 46,25.
Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

Chọn kết luận đúng.
Giá trị trung bình của hai mẫu:
Vậy hai mẫu có giá trị trung bình bằng nhau.
Bảng dưới đây thống kê điểm của An và Bình:

Dựa vào khoảng biến thiên thì bạn nào học đều hơn?
Khoảng biến thiên điểm của bạn An là .
Khoảng biến thiên điểm của bạn Bình là .
Vì nên Bình học đều hơn.
Tìm phương sai của dãy số liệu: 43 45 46 41 40.
Số trung bình của mẫu số liệu là:
.
Ta có phương sai:
.
Cho
. Số quy tròn của số gần đúng
là:
Số quy tròn của số gần đúng là:
.
Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện nhân 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.
Giả sử các số liệu trong mẫu là: đã sắp xếp theo thứ tự không giảm.
Khoảng biến thiên: .
Nhân hai với tất cả các số liệu: .
Khoảng biến thiên: .
Suy ra .
Kết quả đo chiều cao của một học sinh được ghi là
. Điều đó có nghĩa là gì?
Kết quả đo chiều cao của một học sinh được ghi là có nghĩa là: “Chiều cao đúng của học sinh là một số nằm trong khoảng từ
đến
.”
Số quy tròn của
với độ chính xác đã cho là:
Số quy tròn của số là:
.
Tìm phương sai trong mẫu số liệu:
?
Số trung bình bằng:
Phương sai bằng:
Vậy phương sai cần tìm là 5,2.
Một người cần đo chiều cao của một cái cây. Anh ta thực hiện ba phép đo, kết quả được ghi lại như sau:
(m),
(m),
(m). Trong ba số liệu trên, người thợ nên chọn số liệu nào làm chiều cao của cái cây?
Phép đo lần 1 có sai số tương đối .
Phép đo lần 2 có sai số tương đối .
Phép đo lần 3 có sai số tương đối .
Vì phép đo lần 2 có sai số nhỏ nhất nên người thợ nên chọn làm chiều cao của ngôi nhà.
Bạn Linh đo quãng đường đi học từ nhà đến trường là
với độ chính xác
. Sai số tương đối trong phép đo là:
Sai số tương đối trong phép đo là .
Kết quả đo chiều dài của một cây cầu được ghi là
. Tìm sai số tương đối của phép đo chiều dài cây cầu.
Phép đo cây cầu có sai số tương đối thỏa mãn .
Một bác sĩ ghi lại độ tuổi của một số người đến khám trong bảng:

Tìm mốt của mẫu số liệu trên.
Cỡ mẫu số liệu trên là .
Thống kê lại:
Hai giá trị có tần số lớn nhất 17 (5 lần) và 18 (5 lần).
Vậy mốt là 17 và 18.
Giá của một số bó hoa (đơn vị: nghìn đồng) trong cửa hàng được thống kê như sau:
. Mốt của mẫu số liệu này là:
Bó hoa có giá 300 nghìn đồng có tần số lớn nhất nên suy ra .
Một miếng đất hình chữ nhật có chiều rộng x = 43m ± 0,5m và chiều dài y = 63m ± 0,5m. Tính chu vi P của miếng đất đã cho.
Giả sử x = 43 + a, y = 63 + b.
Chu vi miếng đất: P = 2x + 2y = 212 + 2(a + b).
Theo giả thiết -0,5 ≤ a ≤ 0,5 và -0,5 ≤ b ≤ 0,5 nên -2 ≤ 2(a +b) ≤ 2.
Do đó P = 212m ± 2m.
Điểm kiểm tra của 24 học sinh được ghi lại trong bảng sau:

Mốt của mẫu số liệu là:
Điểm 8 có tần số xuất hiện nhiều nhất nên mốt của mẫu số liệu là 8.
Quy tròn số
đến hàng chục, được số
. Khi đó sai số tuyệt đối là:
Sai số tuyệt đối là:
Một mẫu số liệu có giá trị tứ phân vị thứ nhất và tứ phân vị thứ ba lần lượt là:
. Hãy chỉ ra giá trị bất thường trong các đáp án dưới đây?
Ta có:
Vậy giá trị bất thường là .
Cho biểu đồ lượng mưa trung bình các tháng năm 2019 tại Thành phố Hồ Chí Minh như sau:

Mẫu số liệu nhận được từ biểu đồ trên có khoảng biến thiên là:
Quan sát biểu đồ ta thấy:
Giá trị lớn nhất là 342
Giá trị nhỏ nhất là: 4
Vậy khoảng biến thiên của mẫu số liệu là: 342 – 4 = 338.
Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?
Số đặc trưng đo độ đo phân tán của mẫu số liệu là phương sai.
Cho số đúng
. Giá trị của
thuộc đoạn nào sau đây?
Ta có:
Số cam có trong các giỏ được ghi lại như sau:
. Số trung vị của mẫu số liệu là:
Vì cỡ mẫu là số chẵn nên trung vị bằng trung bình cộng của số liệu ở vị trí thứ hai và thứ ba.
=> Số trung vị của mẫu số liệu:
Cho dãy số liệu
. Kết luận nào dưới đây đúng?
Sắp xếp dãy số liệu theo thứ tự không tăng như sau:
Khi đó:
Vậy kết luận đúng là: .
Số quy tròn số
với độ chính xác
là:
Theo bài ra ta có: Độ chính xác nên ta quy tròn số đến số thập phân thứ nhất.
Vậy số quy tròn là .
Kết quả thống kê số tiền điện của một hộ gia đình trong 6 tháng liên tiếp (đơn vị: nghìn đồng) như sau:
. Khoảng biến thiên của mẫu số liệu bằng:
Giá trị lớn nhất bằng 350
Giá trị nhỏ nhất bằng 270
=> Khoảng biến thiên của mẫu số liệu là: 350 – 270 = 80.
Vậy khoảng biến thiên của mẫu số liệu bằng 80.
Một người thống kê lại số giày bán được trong tháng của một công ty.

Hỏi công ty nên nhập nhiều hơn loại cỡ giày nào để bán trong tháng tới?
Tháng vừa rồi, công ty bán được 70 đôi giày cỡ 40 (nhiều nhất). Đây chính là mốt.
Vậy suy ra tháng tới, công ty nên nhập thêm giày cỡ 40 để bán.
Lớp trưởng lớp 10A thống kê số học sinh và số cây trồng được theo từng tổ trong buổi ngoại khóa như sau:
Tổ | 1 | 2 | 3 | 4 |
Số học sinh | 11 | 10 | 12 | 10 |
Số cây | 30 | 30 | 38 | 29 |
Bạn lớp trưởng cho biết số cây mỗi bạn trong lớp trồng được đều không vượt quá 3 cây. Biết rằng bảng trên có một tổ bị thống kê sai. Tổ mà bạn lớp trưởng đã thống kê sai là:
Xét đáp án Tổ 1
Số cây tối đa tổ 1 trồng được là: 11.3 = 33 (cây)
Vì 30 (cây) < 33 (cây) nên thống kê số cây tổ 1 trồng được không sai.
Xét đáp án Tổ 2
Số cây tối đa tổ 2 trồng được là: 10.3 = 30 (cây)
Vì 30 (cây) = 30 (cây) nên thống kê số cây tổ 1 trồng được không sai.
Xét đáp án Tổ 3
Số cây tối đa tổ 3 trồng được là: 12.3 = 36 (cây)
Vì 38 (cây) > 36 (cây) nên thống kê số cây tổ 3 trồng được là sai.
Xét đáp án Tổ 4
Số cây tối đa tổ 3 trồng được là: 10.3 = 30 (cây)
Vì 29 (cây) < 30 (cây) nên thống kê số cây tổ 4 trồng được không sai.
Cho bảng số liệu điểm kiểm tra môn Toán của 20 học sinh
Điểm | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Số học sinh | 1 | 2 | 3 | 4 | 5 | 4 | 1 |
Tìm trung vị của bảng số liệu trên.
Bảng số liệu có 20 giá trị => .
=> .
Cho dãy số liệu thống kê
. Tính số trung bình cộng của dãy số liệu thống kê đã cho?
Số trung bình cộng của dãy số liệu đã cho là:
Vậy số trung bình cộng của dãy số liệu thống kê bằng 22,5.
Sản lượng lúa (đơn vị là tạ) của 11 thửa ruộng thí nghiệm có cùng diện tích lần lượt là: 20; 19; 17; 21; 24; 22; 23; 16; 11; 25; 23. Tìm mốt của mẫu số liệu trên.
Số 23 xuất hiện nhiều nhất nên nó là mốt.
Cho bảng thống kê điểm thi của 100 học sinh (thang điểm 20) trong kì thi khảo sát chất lượng đầu năm như sau:
|
Điểm |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
|
Số học sinh |
1 |
1 |
3 |
5 |
8 |
13 |
19 |
24 |
14 |
10 |
2 |
Giá trị của phương sai gần nhất với giá trị nào sau đây?
Ta có:
Điểm số trung bình của 100 học sinh là:
Giá trị phương sai của mẫu số liệu là:
Vậy phương sai cần tìm là
Độ dài các cạnh của đám vườn hình chữ nhật là
và
. Cách viết chuẩn của diện tích là:
.
Diện tích mảnh ruộng là , khi đó:
.
Cách viết chuẩn của diện tích là .
Chọn khẳng định sai?
Khẳng định sai: “Giá trị bất thường trong mẫu số liệu thuộc ”
Sửa lại: “Giá trị bất thường trong mẫu số liệu nằm ngoài đoạn ”.
Điều tra tiền lương một tháng của 100 người lao động trên địa bàn một xã ta có bàng phân bố tần số sau:
|
Tiền lương (VND) |
5.000.000 |
6.000.000 |
7.000.000 |
8.000.000 |
9.000.000 |
9.500.000 |
|
Tần số |
26 |
34 |
20 |
10 |
5 |
5 |
Tìm mốt của bảng phân bổ tần số trên.
Ta có giá trị 6.000.000 có tần số lớn nhất nên là mốt của bảng phân bố tần số trên.
Tìm mốt của mẫu số liệu: 10 9 7 9 8 1 3 7 8 11 8.
Giá trị 8 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 8.
Số gần đúng của
có ba chữ số đáng tin viết dưới dạng chuẩn là:
Vì số gần đúng của số có ba chữ số đáng tin nên ba chữ số đó là
,
,
.
Nên cách viết dưới dạng chuẩn là
Một cửa hàng bán ra một loại áo với các cỡ được thống kê trong bảng sau:

Tìm mốt của mẫu số liệu này.
Vì cỡ áo 40 bán được 81 cái (nhiều nhất) nên mốt của mẫu số liệu là 40.
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được
. Giá trị gần đúng của
chính xác đến hàng phần trăm là:
Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 2 ở hàng phần trăm là số 8 > 5 nên theo nguyên lý làm tròn ra được kết quả là:
Cho mẫu số liệu như sau:

Khoảng biến thiên của mẫu số liệu trên là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 29.
Giá trị nhỏ nhất là 23
Suy ra khoảng biến thiên của mẫu số liệu là: 29 – 23 = 6.
Vậy đáp án là 6.