Cho giá trị gần đúng của
là 0,47. Sai số tuyệt đối của số 0,47 là:
Ta có nên sai số tuyệt đối của 0,47 là
Cho giá trị gần đúng của
là 0,47. Sai số tuyệt đối của số 0,47 là:
Ta có nên sai số tuyệt đối của 0,47 là
Làm tròn số
đến hàng phần trăm ta được kết quả là:
Làm tròn số đến hàng phần trăm ta được kết quả là
.
Sản lượng lúa (đơn vị: tạ) của 40 thửa ruộng thí nghiệm có cùng diện tích được trình bày trong bảng số liệu sau:
| Sản lượng | 20 | 21 | 22 | 23 | 24 | |
Tần số | 5 | 8 | 11 | 10 | 6 | n = 40 |
Phương sai là:
Sản lượng lúa trung bình là:
Phương sai là:
Hãy viết số quy tròn của số gần đúng sau: ![]()
Ta có:hàng lớn nhất có độ chinh xác d = 0,001 là hàng phần nghìn
=> Ta quy tròn số đến hàng phần trăm
Vậy số quy tròn là 4,14.
Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là:
Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.
Nhà sản xuất công bố chiều dài và chiều rộng của 1 tấm ván hình chữ nhật lần lượt là
và
(đơn vị: cm). Tính diện tích của tấm thép.
Gọi và
lần lượt là chiều dài và chiều rộng thực của tấm thép.
Ta có: và
.
Suy ra: .
Do đó:
Vậy diện tích tấm thép là .
Cho giá trị gần đúng của
là
. Sai số tuyệt đối của số
không vượt quá giá trị nào sau đây?
Sai số tuyệt đối của số là:
Suy ra sai số tuyệt đối của số không vượt quá
.
Bảng dưới đây thống kê tuổi thọ của một số bóng đèn (đơn vị: giờ):

Tìm mốt của bảng trên.
Ta thấy giá trị 1170 xuất hiện nhiều nhất. Suy ra mốt của bảng trên là 1170.
Điểm kiểm tra của 24 học sinh được ghi lại trong bảng sau:

Mốt của mẫu số liệu là:
Điểm 8 có tần số xuất hiện nhiều nhất nên mốt của mẫu số liệu là 8.
Một người cần đo chiều cao của một cái cây. Anh ta thực hiện ba phép đo, kết quả được ghi lại như sau:
(m),
(m),
(m). Trong ba số liệu trên, người thợ nên chọn số liệu nào làm chiều cao của cái cây?
Phép đo lần 1 có sai số tương đối .
Phép đo lần 2 có sai số tương đối .
Phép đo lần 3 có sai số tương đối .
Vì phép đo lần 2 có sai số nhỏ nhất nên người thợ nên chọn làm chiều cao của ngôi nhà.
Kết quả thống kê số tiền điện của một hộ gia đình trong 6 tháng liên tiếp (đơn vị: nghìn đồng) như sau:
. Khoảng biến thiên của mẫu số liệu bằng:
Giá trị lớn nhất bằng 350
Giá trị nhỏ nhất bằng 270
=> Khoảng biến thiên của mẫu số liệu là: 350 – 270 = 80.
Vậy khoảng biến thiên của mẫu số liệu bằng 80.
Cho
Hãy xác định số gần đúng của
với độ chính xác d = 0,0001.
Hàng của chữ số khác 0 đầu tiên bên trái của d = 0,0001 là hàng phần chục nghìn.
Quy tròn đến hàng phần chục nghỉn ra được số gần đúng của
là
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được
. Giá trị gần đúng của
chính xác đến hàng phần trăm là:
Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 2 ở hàng phần trăm là số 8 > 5 nên theo nguyên lý làm tròn ra được kết quả là:
Trong một bài kiểm tra chạy của 20 học sinh, thầy giáo đã ghi lại kết quả trong bảng sau:
|
Thời gian (giây) |
8,3 |
8,4 |
8,5 |
8,7 |
8,8 |
|
Số học sinh |
2 |
3 |
9 |
5 |
1 |
Mốt của bảng số liệu trên là:
Quan sát bảng số liệu ta thấy:
Số học sinh đạt kết quả 8,5 giây là lớn nhất bằng 9 học sinh.
=> Mốt của bảng số liệu là 8,5.
Cho mẫu số liệu:
. Xác định khoảng tứ phân vị của mẫu số liệu?
Ta có N = 10
Suy ra
Vậy khoảng tứ phân vị bằng 2.
Tìm phương sai trong mẫu số liệu:
?
Số trung bình bằng:
Phương sai bằng:
Vậy phương sai cần tìm là 5,2.
Kết quả thi Toán của một số học sinh trong lớp là:
. Trung vị là:
Dãy số liệu gồm 5 số liệu đã được sắp xếp theo thứ tự không giảm.
Vì 5 là số lẻ nên trung vị nằm ở vị trí . Có nghĩa là trung vị bằng 7.
Giá của một số bó hoa (đơn vị: nghìn đồng) trong cửa hàng được thống kê như sau:
. Mốt của mẫu số liệu này là:
Bó hoa có giá 300 nghìn đồng có tần số lớn nhất nên suy ra .
Bảng dưới đây thống kê điểm của An và Bình:

Dựa vào khoảng biến thiên thì bạn nào học đều hơn?
Khoảng biến thiên điểm của bạn An là .
Khoảng biến thiên điểm của bạn Bình là .
Vì nên Bình học đều hơn.
Bảng dưới đây thể hiện sản lượng lúa (đơn vị: tạ) của một số thửa ruộng:

Tính phương sai của mẫu số liệu.
Số trung bình của mẫu là:
.
Phương sai:
.
Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện cộng 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.
Giả sử các số liệu trong mẫu là: đã sắp xếp theo thứ tự không giảm.
Khoảng biến thiên: .
Cộng hai với tất cả các số liệu: .
Khoảng biến thiên:
.
Suy ra .
Một người thống kê lại số giày bán được trong tháng của một công ty.

Hỏi công ty nên nhập nhiều hơn loại cỡ giày nào để bán trong tháng tới?
Tháng vừa rồi, công ty bán được 70 đôi giày cỡ 40 (nhiều nhất). Đây chính là mốt.
Vậy suy ra tháng tới, công ty nên nhập thêm giày cỡ 40 để bán.
Ba nhóm học sinh gồm 5 người, 10 người và 15 người. Khối lượng trung bình của mỗi nhóm lần lượt là 48 kg, 45kg và 40 kg. Khối lượng trung bình của 3 nhóm học sinh là:
Khối lượng trung bình của 3 nhóm học sinh là:
Số quy tròn của số
đến hàng chục bằng:
Số quy tròn của số đến hàng chục bằng
.
Tính độ lệch chuẩn của mẫu số liệu: 10; 8; 6; 2; 4.
Số trung bình là
.
Phương sai là
.
Độ lệch chuẩn là .
Cho biểu đồ lượng mưa trung bình các tháng năm 2019 tại Thành phố Hồ Chí Minh như sau:

Mẫu số liệu nhận được từ biểu đồ trên có khoảng biến thiên là:
Quan sát biểu đồ ta thấy:
Giá trị lớn nhất là 342
Giá trị nhỏ nhất là: 4
Vậy khoảng biến thiên của mẫu số liệu là: 342 – 4 = 338.
Số trung bình của mẫu số liệu
là:
Số trung bình của mẫu số liệu là:
Vậy số trung bình là 46,25.
Cho số gần đúng
với độ chính xác
. Số quy tròn của số
là:
Độ chính xác đến hàng trăm nên ta quy tròn đến hàng nghìn, ta được số quy tròn là .
Kết quả đi chiều dài của một cây thước là
thì sai số tương đối của phép đo là:
Ta có:
Bảng dưới đây thống kê thời gian nảy mầm của một giống cây trong các điều kiện khác nhau.

Tính thời gian trung bình thời gian nảy mầm của loại giống cây trên.
Thời gian trung bình thời gian nảy mầm của loại giống cây trên là:
.
Chiều cao của một số học sinh nữ lớp 9 (đơn vị cm) được cho trong bảng.

Tìm khoảng tứ phân vị của mẫu số liệu này.
Nhận thấy mẫu đã được sắp xếp theo thứ tự không giảm.
Số liệu chính giữa là 162 nên .
Số liệu chính giữa của mẫu 151 152 153 154 155 160 160 là 154 nên .
Số liệu chính giữa của mẫu 163 165 165 165 166 167 167 là 165 nên .
Khoảng tứ phân vị
.
Khoảng biến thiên tứ phân vị
được xác định bởi:
Khoảng biến thiên tứ phân vị được xác định bởi
.
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được:
. Giá trị gần đúng của
chính xác đến hàng phần trăm là:
Quy tròn đến hàng phần trăm, ta được:
.
Xác định số trung vị của dãy số liệu
?
Dãy số đã cho được sắp xếp theo thứ tự không giảm.
Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.
Do đó số trung vị của dãy trên là 5.
Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?
Đáp án: Độ lệch chuẩn.
Xác định mốt của mẫu số liệu: ![]()
Ta có: số 17 có tần số xuất hiện nhiều nhất
Suy ra mốt của mẫu số liệu là 17.
Cho
Hãy xác định số gần đúng
của
với độ chính xác
.
Ta có hàng của chữ số 0 đầu tiên bên trái của d là hàng phần trăm. Ta cần quy tròn đến hàng phần trăm được số gần đúng là .
Dự báo thời tiết trong 10 ngày tại tỉnh A được ghi lại trong bảng sau:
|
Ngày |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
|
Nhiệt độ (0C) |
24 |
25 |
26 |
27 |
27 |
26 |
27 |
21 |
19 |
18 |
Tìm phương sai của mẫu số liệu đã cho?
Ta có:
Nhiệt độ trung bình của 10 ngày là:
Phương sai của mẫu số liệu là:
Vậy phương sai cần tìm là .
Cho bảng số liệu số máy tính bán được trong quý I đầu năm 2022 của một cửa hàng:
|
Hãng |
HP |
Lenovo |
Asus |
Apple |
Dell |
Razer |
|
Số máy tính bán được |
55 |
45 |
42 |
36 |
60 |
15 |
Mốt của bảng số liệu trên là hãng máy tính nào?
Số máy tính bán được nhiều nhất là 60 máy thuộc hãng Dell
=> Mốt của bảng số liệu trên là hãng Dell.
Cho giá trị gần đúng của
là 0,47. Sai số tuyệt đối của 0,47 là:
Ta có suy ra sai số tuyệt đối của 0,47 là 0,001.