Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Thống kê gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Số gần đúng của a
= 2,57656 có ba chữ số đáng tin viết dưới dạng chuẩn là:

    Vì số gần đúng của số a có ba chữ số đáng tin nên ba chữ số đó là 2,5,7.

    Nên cách viết dưới dạng chuẩn là 2,57.

  • Câu 2: Vận dụng

    Một người đo kích thước mảnh vườn hình chữ nhật rồi ghi lại chiều dài là 5 \pm
0,03 (m) và chiều rộng là 3 \pm
0,01 (m). Xác định sai số tương đối của phép đo diện tích mảnh vườn.

    Gọi x\ ;\ y là chiều dài và chiều rộng của mảnh vườn.

    \left\{ \begin{matrix}
5 \pm 0,03 \\
3 \pm 0,01 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
4,97 \leq x \leq 5,03 \\
2,99 \leq y \leq 3,01 \\
\end{matrix} ight.

    Gọi diện tích mảnh vườn là S. Khi đó 14,8603 \leq S \leq 15,1403. Suy ra S = 14,72 \pm
0,14(m2).

    Sai số tương đối trong phép đo là \delta
\leq \frac{0,14}{14,72} \approx 0,0095 = 0,95\%.

  • Câu 3: Nhận biết

    Tìm mốt của mẫu số liệu: 1 3 4 2 0 0 5 6.

    Giá trị 0 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 0.

  • Câu 4: Nhận biết

    Cho một mẫu dữ liệu đã được sắp xếp theo thứ tự không giảm x_1 ≤ x_2 ≤ x_3 ≤ ... ≤ x_n. Khi đó khoảng biến thiên R của mẫu số liệu bằng:

    Khoảng biến thiên của mẫu số liệu bằng: R = x_n – x_1

  • Câu 5: Nhận biết

    Quy tròn số 14869 đến hàng trăm. Số gần đúng nhận được là:

     Quy tròn 14869 đến hàng trăm, ta được: 14900.

  • Câu 6: Nhận biết

    Điều tra về số học sinh của một trường THPT như sau:

    Khối lớp

    10

    11

    12

    Số học sinh

    1120

    1075

    900

    Khoảng biến thiên của mẫu số liệu trên là.

     Khoảng biến thiên R = 1120 - 900 = 220.

  • Câu 7: Vận dụng

    Biểu đồ dưới đây thể hiện tốc độ tăng trưởng GDP của Việt Nam giai đoạn 2014 – 2021. Tính độ lệch chuẩn của mẫu số liệu.

    Số trung bình của mẫu là:

    \overline{x} = \frac{5,98 + 6,68 + 6,21 + 6,81 + 7,08 + 7,02 +
2,91 + 2,58}{8} =
5,65875

    Từ đó tính được phương sai: s^{2} =
2,96.

    Suy ra độ lệch chuẩn: \sqrt{s^{2}} =
1,72.

  • Câu 8: Vận dụng

    Một học sinh đo đường kính của một hình tròn là 24 \pm 0,2 (cm). Bạn đó tính được chu vi hình tròn là p = 75,36 (cm). Biết 3,141 < \pi <
3,142. Hãy ước lượng sai số tuyệt đối của p.

    Gọi \overline{a}\overline{p} lần lượt là đường kính và chu vi của hình tròn.

    Ta có: 23,8 \leq \overline{a} \leq
24,2.

    Ta có: 3,141.23,8 = 74,7558 \leq\overline{p} = \pi\overline{a}\leq 3,142.24,2 = 76,0364.

    Do đó 74,7558 - 75,36 = - 0,6042 \leq\overline{p} - 75,36\leq 76,0364 - 75,36 = 0,6764.

    Vậy sai số tuyệt đối của p\Delta_{p} = \left| \overline{p} - 75,36
ight| \leq 0,6764.

  • Câu 9: Nhận biết

    Cho mẫu số liệu có s^{2} = 9. Khi đó độ lệch chuẩn của mẫu số liệu bằng:

    Độ lệch chuẩn s = \sqrt{s^{2}} = \sqrt{9}
= 3

  • Câu 10: Thông hiểu

    Khi điều tra về số dân của tỉnh A, người ta thu được kết quả là \overline{a} = 1.234.872
\pm 30. Tìm số quy tròn của a.

    Số quy tròn của số a là: 1.234.900

  • Câu 11: Nhận biết

    Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng nào sau đây?

    Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng phương sai.

  • Câu 12: Nhận biết

    Cho dãy số liệu 1;1;2;3;4;4;5;5;5;6. Xác định mốt của mẫu số liệu?

    Mốt số liệu đã cho có số 5 xuất hiện nhiều lần nhất

    Suy ra mốt của mẫu số liệu là 5.

  • Câu 13: Thông hiểu

    Kết quả điểm kiểm tra 45 phút môn Hóa Học của 100 em học sinh được trình bày ở bảng sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Cộng

    Tần số

    3

    5

    14

    14

    30

    22

    7

    5

    100

    Số trung bình cộng của bảng phân bố tần số nói trên là:

    Số trung bình cộng của bảng phân bố tần số nói trên là

    \bar{x} = \frac{3.3 + 4.5 + 5.14 + 6.14
+ 7.30 + 8.22 + 9.7 + 10.5}{100} = 6,82.

  • Câu 14: Nhận biết

    Tiến hành đo huyết áp của 8 người ta thu được kết quả sau: 77 105 117 84 96 72 105 124.

    Hãy tìm khoảng tứ phân vị của mẫu số liệu trên.

     Sắp xếp mẫu theo thứ tự không giảm: 72 77 84 96 105 105 117 124.

    Hai giá trị chính giữa là 96 105. Do đó Q_2=\frac{96+105}2=100,5.

    Tứ phân vị Q_1 của mẫu số liệu: 72 77 84 96 là Q_1=\frac{77+84}2=80,5.

    Tứ phân vị Q_3 của mẫu số liệu 105 105 117 124 là: Q_3=\frac{105+117}2=111.

    Khoảng tứ phân vị \Delta_Q=111-80,5=30,5.

  • Câu 15: Vận dụng

    Bảng dưới đây thống kê tuổi thọ của một số bóng đèn (đơn vị: giờ):

    Tìm mốt của bảng trên.

    Ta thấy giá trị 1170 xuất hiện nhiều nhất. Suy ra mốt của bảng trên là 1170.

  • Câu 16: Thông hiểu

    Kết quả điều tra về điện năng tiêu thụ (đơn vị: kw/h) của một số hộ dân trong khu vực được thống kê như sau: 45;100;50;85;70;65;80;70;65;100;45. Tính trung vị của dãy số liệu đã cho?

    Sắp xếp mẫu số liệu theo thứ tự không giảm như sau:

    45;45;50;65;65;70;70;80;85;100;100

    Vì cỡ mẫu N = 11 (số lẻ) nên số trung vị của dãy số liệu trên là số liệu thứ 6.

    Suy ra M_{e} = 70.

  • Câu 17: Thông hiểu

    Bảng dưới đây là nhiệt độ của một thành phố (đơn vị: độ C).

    Tính độ lệch chuẩn của mẫu số liệu về nhiệt độ.

    Số trung bình là: \overline{x} = \frac{18 + 19 + 20 + 23 + 25 + 26 + 22 +
20}{8} = 21,625.

    Tính được phương sai là: s^{2} =
\frac{463}{64}.

    Độ lệch chuẩn là \sqrt{s^{2}} =
\sqrt{\frac{463}{63}} = \frac{\sqrt{463}}{8}.

  • Câu 18: Thông hiểu

    Quy tròn số 2,473 đến hàng phần chục được số 2,5. Sai số tuyệt đối là:

    Sai số tuyệt đối là: |2,5 - 2,473| =
0,027.

  • Câu 19: Nhận biết

    Kết quả kiểm tra cân nặng của 10 học sinh lớp 10C được liệt kê như sau: 45;46;42;50;38;42;44;42;40;60. Khoảng biến thiên của mẫu số liệu này bằng:

    Quan sát dãy số liệu ta có:

    Giá trị lớn nhất bằng 60

    Giá trị nhỏ nhất bằng 38

    Suy ra khoảng biến thiên của mẫu số liệu là 60 – 38 = 22.

  • Câu 20: Vận dụng

    Một người thống kê lại số giày bán được trong tháng của một công ty.

    Hỏi công ty nên nhập nhiều hơn loại cỡ giày nào để bán trong tháng tới?

    Tháng vừa rồi, công ty bán được 70 đôi giày cỡ 40 (nhiều nhất). Đây chính là mốt.

    Vậy suy ra tháng tới, công ty nên nhập thêm giày cỡ 40 để bán.

  • Câu 21: Nhận biết

    Cho a là số gần đúng của số đúng \overline{a}. Khi đó \Delta_{a} = \left| \overline{a} - a
ight| gọi là:

    Ta có: \Delta_{a} = \left| \overline{a} -
a ight| gọi là sai số tuyệt đối của số gần đúng a.

  • Câu 22: Nhận biết

    Viết số quy tròn của số 3546790 đến hàng trăm.

    Quy tròn số đến hàng trăm nên chữ số quy tròn là chữ số, mà chữ số sau chữ số 7 là 9 > 5 nên số quy tròn của số 3546790 đến hàng trăm là 3546800.

  • Câu 23: Nhận biết

    Biểu đồ sau biểu diễn tốc độ tăng trưởng GDP của Nhật Bản trong giai đoạn 1990 đến 2005. Hãy tìm khoảng biến thiên của mẫu số liệu đó.

     Khoảng biến thiên R = 5,1 - 0,4 = 4,7.

  • Câu 24: Thông hiểu

    Tính chiều cao trung bình của học sinh biết chiều cao của từng học sinh được ghi lại như sau:

    Chiều cao (cm)

    150

    155

    160

    165

    170

    175

    Số học sinh

    4

    6

    7

    6

    5

    3

    Chiều cao trung bình của các học sinh là:

    \overline{x} = \frac{150.4 + 155.6 +
160.7 + 165.6 + 170.5 + 175.3}{4 + 6 + 7 + 6 + 5 + 3}

    \Rightarrow \overline{x} \approx
161,8(cm)

  • Câu 25: Thông hiểu

    Bạn Bình ghi lại bảng thống kê số sách mà mà mỗi bạn học sinh lớp 10A đã đọc trong năm 2023. Hỏi trung bình mỗi bạn trong lớp đọc bao nhiêu cuốn sách?

    Số học sinh lớp 10A là: 3 + 5 + 15 + 10 +
7 = 40 (bạn).

    Trung bình mỗi bạn đọc: \overline{x} =\frac{3.1 + 5.2 + 15.3 + 4.10 + 7.5}{40}= 3,325 (cuốn sách).

  • Câu 26: Nhận biết

    Khẳng định nào sau đây là đúng?

     Khẳng định đúng là: "Nếu sai số tương đối của phép đo càng nhỏ thì chất lượng phép đo càng cao."

  • Câu 27: Thông hiểu

    Cho dãy số liệu: 5;1;3;8;6;9;10;20;18. Tìm khoảng tứ phân vị của mẫu số liệu đã cho?

    Sắp xếp dãy số liệu theo thứ tự không giảm ta được:

    1;3;5;6;8;9;10;18;20

    Dãy số liệu có số chính giữa là 8 nên tứ phân vị thứ hai là Q_{2} = 8

    Tứ phân vị thứ nhất là trung vị của dãy số liệu: 1;3;5;6. Khi đó Q_{1} = \frac{3 + 5}{2} = 4.

    Tứ phân vị thứ ba là trung vị của dãy số liệu: 9;10;18;20. Khi đó Q_{3} = \frac{10 + 18}{2} = 14

    Vậy khoảng tứ phân vị của mẫu số liệu là

    \Delta Q = Q_{3} - Q_{1} = 14 - 4 =
10

  • Câu 28: Thông hiểu

    Một thửa ruộng hình chữ nhật có chiều dài là x = 23m ± 0,01m và chiều rộng là y = 15m ± 0,01m. Tính diện tích S của thửa ruộng đã cho.

    Diện tích của thửa ruộng là: S = x.y = (23 ± 0,01).(15 ± 0,01)= 23.15 ± (23.0,01 + 15.0,01 + 0,01.0,01)= 345 ± 0,3801 (m^2).

  • Câu 29: Nhận biết

    Tìm số gần đúng của a = 5,2463 với độ chính xác d = 0,001.

    Vì độ chính xác đến hàng phần nghìn nên ta quy tròn a đến hàng phần trăm, vậy số quy tròn của a là 5,25.

  • Câu 30: Nhận biết

    Điểm kiểm tra môn Văn của bạn Lan là: 7; 9; 8; 9. Tính số trung bình cộng \overline{x} của mẫu số liệu trên.

    Số trung bình cộng của mẫu số liệu trên là: \overline{x} = \frac{7 + 9 + 8 + 9}{4} =
8,25.

  • Câu 31: Nhận biết

    Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là:

    Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.

  • Câu 32: Thông hiểu

    Một xưởng may gồm 20 người thợ chia đều thành 5 tổ. Mỗi ngày một người thợ làm được 4 hoặc 5 sản phẩm. Cuối ngày, quản tổ thống kê lại kết quả làm việc của từng tổ như sau:

    Tổ

    1

    2

    3

    4

    5

    Số sản phẩm

    17

    19

    19

    21

    20

    Kết quả thống kê của tổ nào là không hợp lí?

    Vì 20 người thợ chia đều thành 5 tổ nên mỗi tổ gồm 4 thợ.

    Trong một ngày mỗi người thợ làm được 4 hoặc 5 sản phẩm nên số sản phẩm tối đa mỗi tổ làm được trong một ngày là 20 sản phẩm.

    Do đó kết quả thống kê không hợp lí nằm ở vị trí tổ 4.

  • Câu 33: Nhận biết

    Cho giá trị gần đúng của \frac{8}{17} là 0,47. Sai số tuyệt đối của 0,47 là:

    Ta có \left| 0,47 - \frac{8}{17} ight|
< 0,00059 suy ra sai số tuyệt đối của 0,47 là 0,001.

  • Câu 34: Vận dụng

    Bảng dưới đây thống kê điểm của bạn Dũng và Huy:

    Hãy tính phương sai của mẫu số liệu về điểm của hai bạn, từ đó so sánh và chọn kết luận đúng.

    Số trung bình của mẫu số liệu (1) và (2) là:

    \overline{x_{1}} = \frac{8 + 6 + 7 + 5 + 9}{5} = 7

    \overline{x_{2}} = \frac{6 + 7 + 7 + 8 + 7}{5} = 7

    Phương sai của (1) là: {s_{1}}^{2}
= \frac{(8 - 7)^{2} + (6 - 7)^{2} +
(7 - 7)^{2} + (5 - 7)^{2} + (9 - 7)^{2}}{5} = 2

    Phương sai của (2) là: {s_{2}}^{2}
= \frac{(6 - 7)^{2} + (7 - 7)^{2} +
(7 - 7)^{2} + (8 - 7)^{2} + (7 - 7)^{2}}{5} = 0,4

    {s_{2}}^{2} < {s_{1}}^{2} nên bạn Huy học đều hơn bạn Dũng.

  • Câu 35: Thông hiểu

    Cho mẫu số liệu: 10;8;6;2;4. Tính độ lệch chuẩn của mẫu số liệu đó?

    Ta có: N = 5

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{10 + 8 + 6 + 2 +
4}{5} = 6

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{(10 - 6)^{2} + (8 - 6)^{2}
+ (6 - 6)^{2} + (2 - 6)^{2} + (4 - 6)^{2}}{5} = 8

    Suy ra độ lệch chuẩn của mẫu số liệu là:

    s = \sqrt{s^{2}} =
2\sqrt{2}

    Vậy độ lệch chuẩn bằng 2\sqrt{2}.

  • Câu 36: Nhận biết

    Viết số quy tròn của \pi đến hàng phần nghìn?

    Ta có số quy tròn của \pi đến hàng phần nghìn là 3,142.

  • Câu 37: Thông hiểu

    Cho giá trị gần đúng của \frac{3}{7} là 0,429. Sai số tuyệt đối của số 0,429 là:

    Ta có: \frac{3}{7} =0,428571… nên sai số tuyệt đối của 0,429 là

    \Delta = \left| 0,429 - \frac{3}{7}
ight| < |0,429 - 4,4285| = 0,0005

  • Câu 38: Nhận biết

    Cho mẫu số liệu: 6; 7; 8; 9; 10. Tính phương sai của mẫu.

    Số trung bình là \overline{x} = \frac{6 + 7 + 8 + 9 + 10}{5} = 8.

    Phương sai là s^{2} = \frac{(6 - 8)^{2} + (7 - 8)^{2} + (8 - 8)^{2} + (9
- 8)^{2} + (10 - 8)^{2}}{5} =
2.

  • Câu 39: Thông hiểu

    Tìm các giá trị bất thường của mẫu số liệu:

    5 6 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 48 49

    Mẫu số liệu đã được sắp xếp theo thứ tự không giảm.

    Giá trị chính giữa là 27 nên Q_{2} =
27.

    Giá trị chính giữa của mẫu 5 6 19 21 22 23 24 25 26 là 22 nên Q_{1} = 22.

    Giá trị chính giữa của mẫu 28 29 30 31 32 33 34 48 49 là 32 nên Q_{3} = 32.

    Khoảng tứ phân vị \Delta_{Q} = 32 - 22 =
10.

    Ta có: Q_{1} - 1,5\Delta_{Q} = 22 - 1,5.10 = 7.

    Ta co: Q_{3} - 1,5\Delta_{Q} = 32 + 1,5.10 = 47.

    Ta thấy có giá trị 5 và 6 nhỏ hơn 7 nên đây là 2 giá trị bất thường.

    Ta thấy có 48 và 49 là hai giá trị lớn hơn 47 nên đây là 2 giá trị bất thường.

  • Câu 40: Nhận biết

    Cho bảng số liệu số máy tính bán được trong quý I đầu năm 2022 của một cửa hàng:

    Hãng

    HP

    Lenovo

    Asus

    Apple

    Dell

    Razer

    Số máy tính bán được

    55

    45

    42

    36

    60

    15

    Mốt của bảng số liệu trên là hãng máy tính nào?

    Số máy tính bán được nhiều nhất là 60 máy thuộc hãng Dell

    => Mốt của bảng số liệu trên là hãng Dell.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo