Viết số quy tròn của
đến hàng phần nghìn?
Ta có số quy tròn của đến hàng phần nghìn là
.
Viết số quy tròn của
đến hàng phần nghìn?
Ta có số quy tròn của đến hàng phần nghìn là
.
Nhà sản xuất công bố chiều dài và chiều rộng của 1 tấm ván hình chữ nhật lần lượt là
và
(đơn vị: cm). Tính diện tích của tấm thép.
Gọi và
lần lượt là chiều dài và chiều rộng thực của tấm thép.
Ta có: và
.
Suy ra: .
Do đó:
Vậy diện tích tấm thép là .
Số quy tròn số
với độ chính xác
là:
Theo bài ra ta có: Độ chính xác nên ta quy tròn số đến số thập phân thứ nhất.
Vậy số quy tròn là .
Hãy viết số quy tròn của số gần đúng sau: ![]()
Ta có:hàng lớn nhất có độ chinh xác d = 0,001 là hàng phần nghìn
=> Ta quy tròn số đến hàng phần trăm
Vậy số quy tròn là 4,14.
Cho
Hãy xác định số gần đúng của
với độ chính xác d = 0,0001.
Hàng của chữ số khác 0 đầu tiên bên trái của d = 0,0001 là hàng phần chục nghìn.
Quy tròn đến hàng phần chục nghỉn ra được số gần đúng của
là
Cho dãy số liệu thống kê
. Tính số trung bình cộng của dãy số liệu thống kê đã cho?
Số trung bình cộng của dãy số liệu đã cho là:
Vậy số trung bình cộng của dãy số liệu thống kê bằng 22,5.
Tìm trung vị của dãy số liệu 4 3 5 1 6 8 6.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 3 4 5 6 6 8.
Dãy trên có giá trị chính giữa bằng 5.
Vậy trung vị của mẫu số liệu bằng 5.
Bảng sau thống kê điểm kiểm tra của học sinh lớp 10C.

Tìm trung vị của dãy số liệu trên.
Cỡ mẫu số liệu này là:
.
Suy ra giá trị chính giữa là giá trị ở vị trí thứ 20. Đó là số 17.
Vậy trung vị .
Sản lượng lúa (đơn vị: tạ) của 40 thửa ruộng thí nghiệm có cùng diện tích được trình bày trong bảng số liệu sau:
| Sản lượng | 20 | 21 | 22 | 23 | 24 | |
Tần số | 5 | 8 | 11 | 10 | 6 | n = 40 |
Phương sai là:
Sản lượng lúa trung bình là:
Phương sai là:
Tìm giá trị bất thường của dãy số liệu: 3 6 8 14 19 28.
Hai giá trị chính giữa là 8 và 14. Suy ra trung vị .
Trung vị của mẫu 3 6 8 là
.
Trung vị của mẫu 14 19 28 là
.
Suy ra .
Xét: .
Xét: .
Ta thấy không có giá trị nào nhỏ hơn và lớn hơn
nên dãy không có giá trị bất thường.
Tìm phát biểu đúng về phương sai của một mẫu số liệu.
Ý nghĩa của phương sai: Phương sai được sử dụng để đánh giá mức độ phân tán của các số liệu thống kê (so với số trung bình).
Tìm chỉ số IQ trung bình của nhóm học sinh. Biết kết quả đo IQ là
.
Chỉ số IQ trung bình cần tìm là:
Vậy chỉ số IQ trung bình của nhóm học sinh là 72,6.
Cho bảng số liệu thống kê kết quả thi chạy 100m của một nhóm học sinh (đơn vị: giây) như sau:
|
Thời gian |
12 |
13 |
14 |
15 |
16 |
|
Số học sinh |
6 |
4 |
5 |
3 |
2 |
Tính thời gian chạy trung bình của nhóm học sinh đó?
Số học sinh tham gia chạy là 20 (học sinh)
Thi gian chạy trung bình của nhóm 20 học sinh là:
(giây)
Vậy thời gian chạy trung bình của nhóm học sinh bằng 13,55 giây.
Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

Chọn kết luận đúng.
Giá trị trung bình của hai mẫu:
Vậy hai mẫu có giá trị trung bình bằng nhau.
Chọn khẳng định sai?
Khẳng định sai: “Giá trị bất thường trong mẫu số liệu thuộc ”
Sửa lại: “Giá trị bất thường trong mẫu số liệu nằm ngoài đoạn ”.
Tính độ lệch chuẩn của mẫu số liệu: 10; 8; 6; 2; 4.
Số trung bình là
.
Phương sai là
.
Độ lệch chuẩn là .
Kết quả kiểm tra của 40 học sinh lớp 10A được thống kê trong bảng sau:
|
Điểm |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
Số học sinh |
2 |
3 |
7 |
18 |
3 |
2 |
4 |
1 |
Tìm mốt của mẫu số liệu đã cho?
Mốt của mẫu số liệu là: (vì có nhiều học sinh đạt điểm 6 nhất trong 40 học sinh).
Cho mẫu số liệu:
. Xác định khoảng tứ phân vị của mẫu số liệu?
Ta có N = 10
Suy ra
Vậy khoảng tứ phân vị bằng 2.
Quy tròn số 0,1352 đến hàng phần mười.
Vì số 0,1352 có chữ số hàng phần trăm là 3 < 5 nên khi làm tròn số 0,1352 đến hàng phần mười, ta được 0,1352 ≈ 0,1
Dùng máy tính cầm tay để viết quy tròn số gần đúng
đến hàng phần trăm là:
Ta có: .
Chữ số hàng phần nghìn bằng 0 < 5 nên chọn .
Một nhà nghiên cứu ghi lại tuổi của 30 bệnh nhân mắc bệnh đau mắt hột như sau:
21 | 17 | 22 | 18 | 20 | 17 | 15 | 13 | 15 | 20 | 15 | 12 | 18 | 17 | 25 |
17 | 21 | 15 | 12 | 18 | 16 | 23 | 14 | 18 | 19 | 13 | 16 | 19 | 18 | 17 |
Khoảng biến thiên
của mẫu số liệu trên là:
Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột cao nhất là 25 tuổi.
Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột thấp nhất là 12 tuổi.
Khoảng biến thiên của mẫu số liệu trên là:
Chọn phát biểu đúng trong các phát biểu sau:
Phát biểu đúng là: "Độ chính xác của số quy tròn bằng một đơn vị của hàng quy tròn."
Một người sử dụng cùng lúc ba thiết bị khác nhau để đo thành tích chạy của vận động viên A. Người ta ghi lại ba kết quả như sau:
,
,
(đơn vị: giây). Hỏi thiết bị nào đo chính xác nhất theo sai số tương đối?
Sai số tương đối của thiết bị 1: .
Sai số tương đối của thiết bị 2: .
Sai số tương đối của thiết bị 3: .
Vậy thiết bị 1 đo chính xác nhất.
Cho mẫu số liệu: 10; 8; 6; 2; 4. Tính phương sai của mẫu.
Số trung bình là
.
Phương sai là
.
Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

Không tính toán, hãy chọn kết luận đúng.
Quan sát hai mẫu số liệu, ta thấy mẫu A có độ phân tán lớn hơn mẫu B. Suy ra mẫu A có phương sai lớn hơn. (Các số liệu ở mẫu B tập trung ở trung tâm)
Cho số
, trong đó chỉ có chữ số hàng trăm trở lên là đáng tin. Hãy viết chuẩn số gần đúng của
.
Do là số nguyên và hàng thấp nhất có chữ số đáng tin là
nên dạng viết chuẩn của
là
.
Tìm mốt của mẫu số liệu: 1 3 4 2 0 0 5 6.
Giá trị 0 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 0.
Cho dãy số liệu về chiều cao của một nhóm học sinh như sau:
. Các tứ phân vị của mẫu số liệu là:
Dãy số liệu sắp xếp theo thứ tự không giảm là:
Trung vị là
Nửa dữ liệu bên trái là:
Do đó
Nửa dữ liệu bên phải là:
Do đó
Kết quả điều tra về điện năng tiêu thụ (đơn vị: kw/h) của một số hộ dân trong khu vực được thống kê như sau:
. Tính trung vị của dãy số liệu đã cho?
Sắp xếp mẫu số liệu theo thứ tự không giảm như sau:
Vì cỡ mẫu (số lẻ) nên số trung vị của dãy số liệu trên là số liệu thứ 6.
Suy ra .
Cho mẫu số liệu như sau:

Khoảng biến thiên của mẫu số liệu trên là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 29.
Giá trị nhỏ nhất là 23
Suy ra khoảng biến thiên của mẫu số liệu là: 29 – 23 = 6.
Vậy đáp án là 6.
Số 2,457 là số quy tròn của 2,4571 với sai số tuyệt đối là:
Sai số tuyệt đối: .
Điểm kiểm tra môn Hóa của một nhóm gồm 9 bạn như sau: 1; 1; 3; 6; 7; 8; 8; 9; 10. Tính trung bình cộng của mẫu số liệu trên. (làm tròn đến hàng phần chục)
Số trung bình của mẫu số liệu trên là: .
Kết quả điều tra dân số của tỉnh A năm 2024 là
người. Số quy tròn dân số trên là:
Hàng lớn nhất của độ chính xác là hàng năm nên ta quy tròn
đến hàng nghìn.
Vậy số quy tròn của là
.
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được
. Giá trị gần đúng của
chính xác đến hàng phần nghìn là:
Cần lấy chính xác đến hàng phần trăm nên ta phải lấy ba chữ số thập phân. Vì đứng sau số 8 ở hàng phần trăm là số 4 < 5 nên theo nguyên lý làm tròn ra được kết quả là: .
Tiền lương hàng tháng của 7 nhân viên trong một công ty du lịch lần lượt là: 6,5; 8,4; 6,9; 7,2; 2,5; 6,7; 3,0. (đơn vị: triệu đồng). Khoảng biến thiên của dãy số liệu thống kê trên bằng:
Khoảng biến thiên: R = 8,4 - 2,5 = 5,9.
Số tiền nước phải nộp (đơn vị: nghìn đồng) của 5 hộ gia đình là: 56; 45; 103; 239; 125. Độ lệch chuẩn gần bằng:
Số tiền nước trung bình là:
Phương sai là:
Độ lệch chuẩn là:
Hãy xác định sai số tuyệt đối của số
biết sai số tương đối
.
Ta có: .
Trong 9 ngày liên tiếp, số sản phẩm mà tổ sản xuất hoàn thành mỗi ngày được ghi lại như sau:
. Giá trị khoảng biến thiên của mẫu số liệu là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 30
Giá trị nhỏ nhất là 21
Suy ra khoảng biến thiên của mẫu số liệu là: 30 – 21 = 9.
Xác định mốt của mẫu số liệu: ![]()
Ta có: số 17 có tần số xuất hiện nhiều nhất
Suy ra mốt của mẫu số liệu là 17.
Cho bảng số liệu điểm kiểm tra môn Toán của 20 học sinh
Điểm | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Số học sinh | 1 | 2 | 3 | 4 | 5 | 4 | 1 |
Tìm trung vị của bảng số liệu trên.
Bảng số liệu có 20 giá trị => .
=> .