Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Thống kê gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là:

    Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.

  • Câu 2: Vận dụng

    Một người sử dụng cùng lúc ba thiết bị khác nhau để đo thành tích chạy của vận động viên A. Người ta ghi lại ba kết quả như sau: 9,592 \pm 0,004, 9,593 \pm 0,005, 9,589 \pm 0,006 (đơn vị: giây). Hỏi thiết bị nào đo chính xác nhất theo sai số tương đối?

    Sai số tương đối của thiết bị 1: \delta_{1} \leq \frac{0,004}{9,592} \approx
0,04\%.

    Sai số tương đối của thiết bị 2: \delta_{2} \leq \frac{0,005}{9,593} \approx
0,05\%.

    Sai số tương đối của thiết bị 3: \delta_{3} \leq \frac{0,006}{9,589} \approx
0,06\%.

    Vậy thiết bị 1 đo chính xác nhất.

  • Câu 3: Nhận biết

    Xác định số trung vị của dãy số liệu 1;3;4;5;7;8;9?

    Dãy số đã cho được sắp xếp theo thứ tự không giảm.

    Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.

    Do đó số trung vị của dãy trên là 5.

  • Câu 4: Nhận biết

    Kết quả làm tròn số b = 500\sqrt{7} đến chữ số thập phân thứ hai là:

    Ta có: b \approx 1322,88

  • Câu 5: Nhận biết

    Thống kê số cuốn sách mỗi bạn trong lớp đã đọc trong năm 2023, lớp trưởng thu được kết quả như sau:

    Số cuốn sách

    3

    4

    5

    6

    7

    Số học sinh

    6

    15

    3

    8

    8

    Tìm mốt của mẫu số liệu đã cho?

    Mốt của mẫu số liệu là 4 (vì có tần số lớn nhất).

  • Câu 6: Nhận biết

    Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây: \overline{a} = 17658 ± 16.

    Vì độ chính xác đến hàng chục nên ta phải quy tròn số 17638 đến hàng trăm. Vậy số quy tròn là 17700 (hay viết \overline{a} ≈ 17700).

  • Câu 7: Nhận biết

    Bảng dưới đây là sản lượng lúa gạo của nước ta giai đoạn 2007 – 2017 (đơn vị: triệu tấn).

    Khoảng biến thiên của mẫu số liệu là:

    Khoảng biến thiên là R = 7,72 - 4,53 =
3,19.

  • Câu 8: Thông hiểu

    Cửa hàng thống kê cỡ giày trong một đơn hàng ngẫu nhiên của một vị khách như sau: 35;37;39;41;38;40;40;37;40. Xác định trung vị của mẫu số liệu?

    Sắp xếp mẫu số liệu theo thứ tự không giảm như sau:

    35;37;37;38;39;40;40;40;41

    Trung vị của mẫu số liệu là 39.

  • Câu 9: Thông hiểu

    Có 100 học sinh tham dự kì thi học sinh giỏi Toán (thang điểm 20). Kết quả sau kì thi được thống kê như sau:

    Điểm

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    Tần số

    1

    1

    3

    5

    8

    13

    19

    24

    14

    10

    2

    Giá trị của phương sai gần bằng:

    Kết quả trung bình là:

    \overline x  = \frac{{9.1 + 10.1 + 11.3 + 12.5 + 13.8 + 14.13 + 15.19 + 16.24 + 17.14 + 18.10 + 19.2}}{{100}} = 15,23

    Giá trị của phương sai là:

     \begin{matrix}  {S^2} = \dfrac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + {n_3}{x_4}^2 + ... + {n_k}{x_k}^2} ight) - {\left( {\overline x } ight)^2} \hfill \\   \Rightarrow {S^2} = \dfrac{1}{{100}}({1.9^2} + {1.10^2} + {3.11^2} + {5.12^2} + {8.13^2} + {13.14^2} \hfill \\   + {19.15^2} + {24.16^2} + {14.17^2} + {10.18^2} + {2.19^2}) - {\left( {15,23} ight)^2} \hfill \\   \Rightarrow {S^2} \approx 3,96 \hfill \\ \end{matrix}

  • Câu 10: Thông hiểu

    Dân số một tỉnh B năm 2024 là a = 561742 người, với độ chính xác d = 200. Số quy tròn của a là:

    Quy tròn số a = 561742 với độ chính xác d = 200 ta biết \overline{a} = 561742 \pm 200

    => Ta cần quy tròn đến hàng nghìn, số đã được quy tròn là a_{0} = 562000.

  • Câu 11: Nhận biết

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được \sqrt{7} =
2,645751311. Giá trị gần đúng của \sqrt{7} chính xác đến hàng phần trăm là:

    Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 4 ở hàng phần trăm là số 5 nên theo nguyên lý làm tròn ra được kết quả là: 2,65

  • Câu 12: Vận dụng

    Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện cộng 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.

    Giả sử các số liệu trong mẫu là: a_{1};a_{2};...;a_{10} đã sắp xếp theo thứ tự không giảm.

    Khoảng biến thiên: R_{1} = a_{10} -
a_{1}.

    Cộng hai với tất cả các số liệu: a_{1} +
2;a_{2} + 2;...;a_{10} + 2.

    Khoảng biến thiên: R_{2} = (a_{10} + 2) -
(a_{1} + 2 ) = a_{10} -
a_{1}.

    Suy ra R_{2} = R_{1}.

  • Câu 13: Nhận biết

    Điểm thi học kì của một học sinh như sau: 4  6  7  2  10  9  3  5  8  7  3  8.

    Tính số trung bình cộng của mẫu số liệu trên.

    Số trung bình cộng của mẫu số liệu trên là:

    \overline x  = \frac{{4 + 6 + 7.2 + 2 + 10 + 9 + 3.2 + 5 + 8.2}}{{12}} = 6.

  • Câu 14: Nhận biết

    Câu lạc bộ Liverpool đạt được điểm số tại giải Ngoại hạng Anh từ mùa giải 2010-2011 đến mùa 2018-2019 như sau: 75 82 87 50 93 70 72 66 67.

    Khoảng biến thiên điểm số là:

    Khoảng biến thiên là R = 93 - 50 =
43.

  • Câu 15: Nhận biết

    Tính độ lệch chuẩn của mẫu số liệu: 10; 8; 6; 2; 4.

    Số trung bình là \overline{x} = \frac{10 + 8 + 6 + 2 + 4}{5} = 6.

    Phương sai là s^{2} = \frac{(10 - 6)^{2} + (8 - 6)^{2} + (6 - 6)^{2} +
(2 - 6)^{2} + (4 - 6)^{2}}{5} =
8.

    Độ lệch chuẩn là \sqrt{s^{2}} = \sqrt{8}
= 2\sqrt{2}.

  • Câu 16: Thông hiểu

    Tính sản lượng lúa trung bình trong bảng thống kê dưới đây:

    Sản lượng (tạ)

    20

    21

    22

    23

    24

    Tần số

    5

    8

    11

    10

    6

    Sản lượng lúa trung bình là:

    \overline{x} = \frac{5.20 + 8.21 + 11.22
+ 10.23 + 6.24}{40} = 22,1

    Vậy sản lượng lúa trung bình là 22,1 tạ.

  • Câu 17: Nhận biết

    Làm tròn số 5,2463 đến hàng phần trăm ta được kết quả là:

    Làm tròn số 5,2463 đến hàng phần trăm ta được kết quả là 5,25.

  • Câu 18: Thông hiểu

    Hãy chọn kết quả lần lượt là số trung bình và phương sai của mẫu số liệu 3;5;5;6;7;7;8;9;10?

    Ta có:

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{3 + 5 + 5 + 6 + 7 +
7 + 8 + 9 + 10}{9} \approx 6,7

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{9}.\lbrack(3 - 6,7)^{2}
+ 2.(5 - 6,7)^{2} + (6 - 6,7)^{2} + 2.(7 - 6,7)^{2}

    + (8 - 6,7)^{2} + (9 - 6,7)^{2} + (10 -
6,7)^{2}brack \approx 4,2

    Vậy số trung bình và phương sai của mẫu số liệu lần lượt là: 6,7;\ 4,2.

  • Câu 19: Nhận biết

    Khẳng định nào sau đây là đúng?

     Khẳng định đúng là: "Nếu sai số tương đối của phép đo càng nhỏ thì chất lượng phép đo càng cao."

  • Câu 20: Nhận biết

    Tìm số gần đúng của a = 5,2463 với độ chính xác d = 0,001.

    Vì độ chính xác đến hàng phần nghìn nên ta quy tròn a đến hàng phần trăm, vậy số quy tròn của a là 5,25.

  • Câu 21: Thông hiểu

    Bảng dưới đây thống kê điểm của An và Bình:

    Dựa vào khoảng biến thiên thì bạn nào học đều hơn?

    Khoảng biến thiên điểm của bạn An là R_{1} = 9,5 - 6,5 = 3.

    Khoảng biến thiên điểm của bạn Bình là R_{2} = 8,3 - 7,6 = 0,7.

    R_{2} < R_{1} nên Bình học đều hơn.

  • Câu 22: Nhận biết

    Sản lượng lúa (đơn vị là tạ) của 11 thửa ruộng thí nghiệm có cùng diện tích lần lượt là: 20; 19; 17; 21; 24; 22; 23; 16; 11; 25; 23. Tìm mốt của mẫu số liệu trên.

     Số 23 xuất hiện nhiều nhất nên nó là mốt.

  • Câu 23: Vận dụng

    Một học sinh đo đường kính của một hình tròn là 24 \pm 0,2 (cm). Bạn đó tính được chu vi hình tròn là p = 75,36 (cm). Biết 3,141 < \pi <
3,142. Hãy ước lượng sai số tuyệt đối của p.

    Gọi \overline{a}\overline{p} lần lượt là đường kính và chu vi của hình tròn.

    Ta có: 23,8 \leq \overline{a} \leq
24,2.

    Ta có: 3,141.23,8 = 74,7558 \leq\overline{p} = \pi\overline{a}\leq 3,142.24,2 = 76,0364.

    Do đó 74,7558 - 75,36 = - 0,6042 \leq\overline{p} - 75,36\leq 76,0364 - 75,36 = 0,6764.

    Vậy sai số tuyệt đối của p\Delta_{p} = \left| \overline{p} - 75,36
ight| \leq 0,6764.

  • Câu 24: Vận dụng

    Bảng sau thống kê điểm kiểm tra của học sinh lớp 10C.

    Tìm trung vị của dãy số liệu trên.

    Cỡ mẫu số liệu này là: 3 + 7 + 4 + 4 + 6
+ 7 + 3 + 3 + 2 + 2 =
41.

    Suy ra giá trị chính giữa là giá trị ở vị trí thứ 20. Đó là số 17.

    Vậy trung vị M_{e} = 17.

  • Câu 25: Thông hiểu

    Dự báo thời tiết trong 10 ngày tại tỉnh A được ghi lại trong bảng sau:

    Ngày

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    Nhiệt độ (0C)

    24

    25

    26

    27

    27

    26

    27

    21

    19

    18

    Tìm phương sai của mẫu số liệu đã cho?

    Ta có: N = 10

    Nhiệt độ trung bình của 10 ngày là:

    \overline{x} = \frac{24 + 25 + 26 + 27 +
28 + 26 + 27 + 21 + 19 + 18}{10} = 24

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{10}\lbrack(24 - 24)^{2}
+ (25 - 24)^{2} + (26 - 24)^{2}

    + (27 - 24)^{2} + (28 - 24)^{2} + (26 -
24)^{2} + (27 - 24)^{2}

    + (21 - 24)^{2} + (19 - 24)^{2} + (18 -
24)^{2}brack = 10,6

    Vậy phương sai cần tìm là 10,6.

  • Câu 26: Nhận biết

    Làm tròn số gần đúng 3,14159 với độ chính xác 0,001?

    Số gần đúng 3,14159 làm tròn với độ chính xác 0,001 là: 3,14.

  • Câu 27: Vận dụng

    Bảng dưới đây thống kê điểm của bạn Dũng và Huy:

    Hãy tính phương sai của mẫu số liệu về điểm của hai bạn, từ đó so sánh và chọn kết luận đúng.

    Số trung bình của mẫu số liệu (1) và (2) là:

    \overline{x_{1}} = \frac{8 + 6 + 7 + 5 + 9}{5} = 7

    \overline{x_{2}} = \frac{6 + 7 + 7 + 8 + 7}{5} = 7

    Phương sai của (1) là: {s_{1}}^{2}
= \frac{(8 - 7)^{2} + (6 - 7)^{2} +
(7 - 7)^{2} + (5 - 7)^{2} + (9 - 7)^{2}}{5} = 2

    Phương sai của (2) là: {s_{2}}^{2}
= \frac{(6 - 7)^{2} + (7 - 7)^{2} +
(7 - 7)^{2} + (8 - 7)^{2} + (7 - 7)^{2}}{5} = 0,4

    {s_{2}}^{2} < {s_{1}}^{2} nên bạn Huy học đều hơn bạn Dũng.

  • Câu 28: Thông hiểu

    Viết số quy tròn của số gần đúng 123,4167 có độ chính xác d = 0,005.

    d = 0,005 nhỏ hơn một đơn vị ở hàng phần trăm nên ta làm tròn số đến hàng phần trăm. Số quy tròn là: 123,42.

  • Câu 29: Thông hiểu

    Cho \overline{a}
= \frac{16}{7} = 2,285714... Hãy xác định số gần đúng a của \overline{a} với độ chính xác d = 0,03.

    Ta có hàng của chữ số 0 đầu tiên bên trái của d là hàng phần trăm. Ta cần quy tròn đến hàng phần trăm được số gần đúng là a = 2,29.

  • Câu 30: Nhận biết

    Số cam có trong các giỏ được ghi lại như sau: 2;8;12;16. Số trung vị của mẫu số liệu là:

    Vì cỡ mẫu N = 4 là số chẵn nên trung vị bằng trung bình cộng của số liệu ở vị trí thứ hai và thứ ba.

    => Số trung vị của mẫu số liệu: \frac{8 + 12}{2} = 10

  • Câu 31: Thông hiểu

    Cho bảng thống kê điểm thi của 100 học sinh (thang điểm 20) trong kì thi khảo sát chất lượng đầu năm như sau:

    Điểm

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    Số học sinh

    1

    1

    3

    5

    8

    13

    19

    24

    14

    10

    2

    Giá trị của phương sai gần nhất với giá trị nào sau đây?

    Ta có: N = 100

    Điểm số trung bình của 100 học sinh là:

    \overline{x} = \frac{1}{10}(9.1 + 10.1 +
11.3 + 12.5 + 13.8 + 14.13

    + 15.19 + 16.24 + 17.14 + 18.10 + 19.2)
= 15,23

    Giá trị phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{10}\lbrack(9 -
15,23)^{2}.1 + (10 - 15,23)^{2}.1 + (11 - 15,23)^{2}.3

    + (12 - 15,23)^{2}.5 + (13 -
15,23)^{2}.8 + (14 - 15,23)^{2}.13

    + (15 - 15,23)^{2}.19 + (16 -
15,23)^{2}.24 + (17 - 15,23)^{2}.14

    + (18 - 15,23)^{2}.10 + (19 -
15,23)^{2}.2) = 3,96

    Vậy phương sai cần tìm là 3,96

  • Câu 32: Nhận biết

    Kết quả kiểm tra của 40 học sinh lớp 10A được thống kê trong bảng sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Số học sinh

    2

    3

    7

    18

    3

    2

    4

    1

    Tìm mốt của mẫu số liệu đã cho?

    Mốt của mẫu số liệu là: 6 (vì có nhiều học sinh đạt điểm 6 nhất trong 40 học sinh).

  • Câu 33: Nhận biết

    Cho biểu đồ lượng mưa trung bình các tháng năm 2019 tại Thành phố Hồ Chí Minh như sau:

    Mẫu số liệu nhận được từ biểu đồ trên có khoảng biến thiên là:

    Quan sát biểu đồ ta thấy:

    Giá trị lớn nhất là 342

    Giá trị nhỏ nhất là: 4

    Vậy khoảng biến thiên của mẫu số liệu là: 342 – 4 = 338.

  • Câu 34: Nhận biết

    Cho mẫu số liệu như sau:

    Khoảng biến thiên của mẫu số liệu trên là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 29.

    Giá trị nhỏ nhất là 23

    Suy ra khoảng biến thiên của mẫu số liệu là: 29 – 23 = 6.

    Vậy đáp án là 6.

  • Câu 35: Vận dụng

    Dưới đây là bảng thống kê số lần làm bài tập Toán của học sinh lớp 10A.

    Tìm trung vị của mẫu số liệu này.

    Cỡ mẫu số liệu này là: 2 + 4 + 6 + 12 + 8
+ 3 = 35.

    Suy ra giá trị chính giữa là giá trị ở vị trí thứ 18. Đó là số 3.

    Vậy trung vị M_{e} = 3.

  • Câu 36: Thông hiểu

    Cho số a =
367653964 \pm 213. Số quy tròn của số gần đúng 367653964 bằng:

    Hàng lớn nhất có độ chính xác d =
213 là hàng trăm nên ta quy tròn số a đến hàng nghìn.

    Vậy số quy tròn của a là: 367654000.

  • Câu 37: Thông hiểu

    Bảng dưới đây ghi lại thời gian chạy trong 1 cuộc thi của các bạn lớp 10B. (đơn vị: giây)

    Hãy tính thời gian chạy trung bình của các bạn. (kết quả làm tròn đến hàng phần nghìn)

    Lớp 10B có: 5 + 7 + 10 + 8 + 6 =
36 (bạn).

    Thời gian chạy trung bình của các bạn là:

    \overline{x} =\frac{5.12 + 7.13 + 10.14 + 8.15 +6.16}{36}\approx 14,083 (giây).

  • Câu 38: Thông hiểu

    Cho dãy số liệu thống kê 11,13,x + 10,x^{2} - 1,11,10. Tìm số nguyên dương x, biết số trung bình cộng của dãy số liệu thống kê đó bằng 12,5.

    Điểm trung bình cộng của dãy số trên là

    \frac{11 + 13 + (x + 10) + \left( x^{2}
- 1 ight) + 12 + 10}{6} = 12,5

    \Leftrightarrow x^{2} + x - 20 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 4(tm) \\
x = - 5(ktm) \\
\end{matrix} ight.

    Vậy x = 4 thỏa mãn yêu cầu bài toán.

  • Câu 39: Nhận biết

    Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là:

    Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.

  • Câu 40: Thông hiểu

    Cho \overline{m}=2 +\sqrt{3}= 3,7320508...  Hãy xác định số gần đúng của \overline{m} với độ chính xác d = 0,0001.

    Hàng của chữ số khác 0 đầu tiên bên trái của d = 0,0001 là hàng phần chục nghìn.

    Quy tròn \overline{m} đến hàng phần chục nghỉn ra được số gần đúng của \overline{m}m=3,7321

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 18 lượt xem
Sắp xếp theo