Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Thống kê gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được \sqrt{8} =
2,828427125. Giá trị gần đúng của \sqrt{8} chính xác đến hàng phần trăm là:

    Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 2 ở hàng phần trăm là số 8 > 5 nên theo nguyên lý làm tròn ra được kết quả là: 2,83

  • Câu 2: Thông hiểu

    Tính chiều cao trung bình của học sinh biết chiều cao của từng học sinh được ghi lại như sau:

    Chiều cao (cm)

    150

    155

    160

    165

    170

    175

    Số học sinh

    4

    6

    7

    6

    5

    3

    Chiều cao trung bình của các học sinh là:

    \overline{x} = \frac{150.4 + 155.6 +
160.7 + 165.6 + 170.5 + 175.3}{4 + 6 + 7 + 6 + 5 + 3}

    \Rightarrow \overline{x} \approx
161,8(cm)

  • Câu 3: Vận dụng

    Độ dài các cạnh của đám vườn hình chữ nhật là x = 7,8\ m \pm 2\ cmy = 25,6\ m \pm 4\ cm. Cách viết chuẩn của diện tích là:

    x = 7,8m \pm 2cm = 7,8m \pm
0,02m \Rightarrow 7,78 \leq x \leq
7,82

    y = 25,6m \pm 4cm = 25,6m \pm 0,04m
\Rightarrow 25,56 \leq y \leq 25,64.

    Diện tích mảnh ruộng là S, khi đó:

    198,8568 \leq S \leq 200,5048 \Rightarrow S = 199,6808\ m^{2} \pm 0,824\
m^{2}.

    Cách viết chuẩn của diện tích là 199m^{2}
\pm 0,8m^{2}.

  • Câu 4: Thông hiểu

    Cho bảng số liệu thống kê kết quả thi của một số học sinh như sau:

    Học sinh

    An

    Hoa

    Tuấn

    Hùng

    Quân

    Linh

    Điểm

    9

    8

    7

    10

    8

    6

    Tìm phương sai của mẫu số liệu?

    Ta có: N = 6

    Điểm trung bình của các học sinh trong bảng số liệu là:

    \overline{x} = \frac{9 + 8 + 7 + 10 + 8
+ 6}{6} = 8

    Ta có bảng sau:

    Giá trị

    Độ lệch

    Bình phương độ lệch

    9

    9 – 8 = 1

    1

    8

    8 – 8 = 0

    0

    7

    7 – 8 = -1

    1

    10

    10 – 8 = 2

    4

    8

    8 – 8 = 0

    0

    6

    6 – 8 = -2

    4

    Tổng

    10

    Suy ra phương sai của mẫu số liệu là: s^{2} = \frac{10}{6} =
\frac{5}{3}

    Vậy phương sai cần tìm là \frac{5}{3}.

  • Câu 5: Thông hiểu

    Số trung bình của mẫu số liệu 23;41;71;29;48;45;72;41 là:

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{23 + 29 + 2.41 + 45
+ 48 + 71 + 72}{8} = 46,25

    Vậy số trung bình là 46,25.

  • Câu 6: Thông hiểu

    Tìm phương sai của dãy số liệu: 43 45 46 41 40.

    Số trung bình của mẫu số liệu là: \overline{x} = \frac{43 + 45 + 46 + 41 + 40}{5} = 43.

    Ta có phương sai: s^{2} = \frac{(43 - 43)^{2} + (45 - 43)^{2} + (46 -
43)^{2} + (41 - 43)^{2} + (40 - 43)^{2}}{5} = 5,2.

    Độ lệch chuẩn: \sqrt{s^{2}} = \sqrt{5,2}
= \frac{\sqrt{130}}{5}.

  • Câu 7: Vận dụng

    Nhà sản xuất công bố chiều dài và chiều rộng của 1 tấm ván hình chữ nhật lần lượt là 100
\pm 0,570 \pm 0,5 (đơn vị: cm). Tính diện tích của tấm thép.

    Gọi \overline{a}\overline{b} lần lượt là chiều dài và chiều rộng thực của tấm thép.

    Ta có: 99,5 \leq \overline{a} \leq
100,569,5 \leq \overline{b}
\leq 70,5.

    Suy ra: 99,5.69,5 = 6915,25 \leq
\overline{a}.\overline{b} \leq 100,5.70,5 = 7085,25.

    Do đó: 6915,25 - 7000 = - 84,75 \leq
\overline{a}.\overline{b} - 7000 \leq 7085,25 - 7000 =
85,25

    Vậy diện tích tấm thép là 7000 \pm
85,25.

  • Câu 8: Thông hiểu

    Bảng dưới đây thống kê điểm của An và Bình:

    Dựa vào khoảng biến thiên thì bạn nào học đều hơn?

    Khoảng biến thiên điểm của bạn An là R_{1} = 9,5 - 6,5 = 3.

    Khoảng biến thiên điểm của bạn Bình là R_{2} = 8,3 - 7,6 = 0,7.

    R_{2} < R_{1} nên Bình học đều hơn.

  • Câu 9: Nhận biết

    Kết quả thống kê số tiền điện của một hộ gia đình trong 6 tháng liên tiếp (đơn vị: nghìn đồng) như sau: 270;\ 300;\ 350;\ 320;\ 310;\ 280. Khoảng biến thiên của mẫu số liệu bằng:

    Giá trị lớn nhất bằng 350

    Giá trị nhỏ nhất bằng 270

    => Khoảng biến thiên của mẫu số liệu là: 350 – 270 = 80.

    Vậy khoảng biến thiên của mẫu số liệu bằng 80.

  • Câu 10: Thông hiểu

    Cho số gần đúng a = 23748123 với độ chính xác d = 101. Số quy tròn của số a là:

    Độ chính xác d = 101 nên ta làm tròn số a = 23748123 đến hàng nghìn, ta được kết quả là a =
23748000.

  • Câu 11: Nhận biết

    Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là:

    Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.

  • Câu 12: Nhận biết

    Cho bảng số liệu ghi lại điểm của 40 học sinh trong bài kiểm tra 1 tiết môn toán như sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Cộng

    Số học sinh

    2

    3

    7

    18

    3

    2

    4

    1

    40

    Số trung bình cộng \bar{x} của mẫu số liệu trên là:

    Số trung bình cộng của mẫu số liệu trên là:

    \overline x  = \frac{{3.2 + 4.3 + 5.7 + 6.18 + 7.3 + 8.2 + 9.4 + 10.1}}{{40}} = 6,1.

  • Câu 13: Vận dụng

    Dưới đây là bảng thống kê số lần làm bài tập Toán của học sinh lớp 10A.

    Tìm tứ phân vị của mẫu số liệu này.

    Cỡ mẫu số liệu này là: 2 + 4 + 6 + 12 + 8
+ 3 = 35.

    Suy ra giá trị chính giữa là giá trị ở vị trí thứ 18. Đó là số 3. Suy ra trung vị M_{e} = 3 = Q_{2}.

    Trung vị của 17 giá trị bên trái Q_{2} là giá trị ở vị trí thứ 9. Đó là số 2. Suy ra Q_{1} = 2.

    Trung vị của 17 giá trị bên phải Q_{2} là giá trị ở vị trí thứ 27. Đó là số 4. Suy ra Q_{3} = 4.

  • Câu 14: Vận dụng

    Dưới đây là bảng thống kê số lần làm bài tập Toán của học sinh lớp 10A.

    Tìm trung vị của mẫu số liệu này.

    Cỡ mẫu số liệu này là: 2 + 4 + 6 + 12 + 8
+ 3 = 35.

    Suy ra giá trị chính giữa là giá trị ở vị trí thứ 18. Đó là số 3.

    Vậy trung vị M_{e} = 3.

  • Câu 15: Thông hiểu

    Cho bảng số liệu thống kê điểm kiểm tra môn Hóa học của lớp 10A như sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Số học sinh

    2

    2

    4

    6

    15

    9

    3

    1

    Độ lệch chuẩn của mẫu số liệu trên là:

    Ta có: N = 42

    Điểm trung bình của học sinh lớp 10A là:

    \overline{x} = \frac{2.3 + 2.4 + 4.5 +
6.6 + 15.7 + 9.8 + 3.9 + 1.10}{42} \approx 6,76

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{42}\lbrack 2.(3 -
6,67)^{2} + 2.(4 - 6,76)^{2} + ... + 1(10 - 6,67)^{2}brack \approx
2,37

    Độ lệch chuẩn của mẫu số liệu đã cho là:

    s = \sqrt{s^{2}} \approx
1,54

    Vậy độ lệch chuẩn cần tìm là: 1,54.

  • Câu 16: Nhận biết

    Kết quả đo chiều cao của một tòa nhà được ghi là 120m \pm 0,5m. Tìm độ chính xác của phép đo trên.

    Độ chính xác của phép đo trên là: 0,5m.

  • Câu 17: Thông hiểu

    Biết \sqrt[3]{5}=1.709975947.... Viết gần đúng \sqrt[3]{5} theo nguyên tắc làm tròn với ba chữ số thập phân và ước lượng sai số tuyệt đối.

    Làm tròn với ba chữ số thập phân: \sqrt[3]{5} = 1,710

    Sai số tuyệt đối: \left| {1,71 - \sqrt[3]{5}} ight| < \left| {1,71 - 1,7099} ight| = 0,0001

    Vậy sai số tuyệt đối không vượt quá 0,0001.

  • Câu 18: Thông hiểu

    Ba nhóm học sinh gồm 5 người, 10 người và 15 người. Khối lượng trung bình của mỗi nhóm lần lượt là 48 kg, 45kg và 40 kg. Khối lượng trung bình của 3 nhóm học sinh là:

    Khối lượng trung bình của 3 nhóm học sinh là:

    \overline x  = \frac{{48.5 + 45.10 + 40.15}}{{5 + 10 + 15}} = 43

  • Câu 19: Nhận biết

    Cho mẫu số liệu: 6; 7; 8; 9; 10. Tính phương sai của mẫu.

    Số trung bình là \overline{x} = \frac{6 + 7 + 8 + 9 + 10}{5} = 8.

    Phương sai là s^{2} = \frac{(6 - 8)^{2} + (7 - 8)^{2} + (8 - 8)^{2} + (9
- 8)^{2} + (10 - 8)^{2}}{5} =
2.

  • Câu 20: Thông hiểu

    Cho số gần đúng \overline{a} = 37464689 \pm 350. Hãy viết số quy tròn của 37464689?

    Với \overline{a} = 37464689 \pm
350. Số quy tròn của số 37464689 là: 37464700.

  • Câu 21: Nhận biết

    Cho dãy số liệu 1;1;2;3;4;4;5;5;5;6. Xác định mốt của mẫu số liệu?

    Mốt số liệu đã cho có số 5 xuất hiện nhiều lần nhất

    Suy ra mốt của mẫu số liệu là 5.

  • Câu 22: Nhận biết

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được: \sqrt{8}= 2,828427125. Giá trị gần đúng của \sqrt{8} chính xác đến hàng phần trăm là:

     Quy tròn \sqrt8 đến hàng phần trăm, ta được: 2,83.

  • Câu 23: Thông hiểu

    Cho số a =
367653964 \pm 213. Số quy tròn của số gần đúng 367653964 bằng:

    Hàng lớn nhất có độ chính xác d =
213 là hàng trăm nên ta quy tròn số a đến hàng nghìn.

    Vậy số quy tròn của a là: 367654000.

  • Câu 24: Nhận biết

    Làm tròn số 5,2463 đến hàng phần trăm ta được kết quả là:

    Làm tròn số 5,2463 đến hàng phần trăm ta được kết quả là 5,25.

  • Câu 25: Nhận biết

    Điểm kiểm tra môn Văn của bạn Lan là: 7; 9; 8; 9. Tính số trung bình cộng \overline{x} của mẫu số liệu trên.

    Số trung bình cộng của mẫu số liệu trên là: \overline{x} = \frac{7 + 9 + 8 + 9}{4} =
8,25.

  • Câu 26: Nhận biết

    Cho số gần đúng a = 3942156 \pm 300. Hãy viết số quy tròn của a?

    Ta có số quy tròn của a = 3942156 \pm
300 là: 3942000.

  • Câu 27: Nhận biết

    Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?

    Đáp án: Độ lệch chuẩn.

  • Câu 28: Vận dụng

    Bảng dưới đây thể hiện sản lượng lúa (đơn vị: tạ) của một số thửa ruộng:

    Tính phương sai của mẫu số liệu.

    Số trung bình của mẫu là:

    \overline{x} =\frac{1.4 + 3.4,5 +
4.5 + 1.5,5 + 1.6}{1 + 3 + 4 + 1 + 1} = 4,9.

    Phương sai:

    s^{2} = \frac{(4 - 4,9)^{2} + 3.(4,5 - 4,9)^{2} + 4(5 -
4,9)^{2} + (5,5 - 4,9)^{2} + (6 - 4,9)^{2}}{10} = 0,29.

  • Câu 29: Nhận biết

    Điểm kiểm tra môn Toán của Hoa thời gian gần đây được liệt kê như sau: 3;\ 4;\ 7;\ 7;\
9. Khoảng biến thiên của mẫu số liệu trên là:

    Quan sát mẫu số liệu đã cho ta thấy:

    Giá trị lớn nhất là 9

    Giá trị nhỏ nhất là 3

    Suy ra khoảng biến thiên của mẫu số liệu là: 9 – 3 = 6.

  • Câu 30: Vận dụng

    Bảng sau đây cho ta biết số cuốn sách mà học sinh của một lớp ở trường Trung học phổ thông đã đọc:

    Số sách

    1

    2

    3

    4

    5

    6

     

    Số học sinh đọc

    10

    m

    8

    6

    n

    3

    n = 40

    Tìm m và n, biết phương sai của mẫu số liệu trên xấp xỉ 2,52.

     Số trung bình là: 

    \overline x  = \frac{{10.1 + 2.m + 8.3 + 4.6 + 5.n + 6.3}}{{40}} = \frac{{76 + 2m + 5n}}{{40}}

    Phương sai là:

    \begin{matrix}  {S^2} = \dfrac{1}{{40}}\left( {{{10.1}^2} + m{{.2}^2} + {{8.3}^2} + {{6.4}^2} + n{{.5}^2} + {{3.6}^2}} ight) - {\left( {\dfrac{{76 + 2m + 5n}}{{40}}} ight)^2} \hfill \\   \Rightarrow {S^2} = \dfrac{1}{{40}}\left( {286 + 4m + 25n} ight) - {\left( {\dfrac{{76 + 2m + 5n}}{{40}}} ight)^2} \hfill \\ \end{matrix}

    Theo bài ra ta có:

    Kiểm tra được: m = 8 và n = 5 thỏa mãn.

  • Câu 31: Nhận biết

    Quy tròn số 0,1352 đến hàng phần mười.

    Vì số 0,1352 có chữ số hàng phần trăm là 3 < 5 nên khi làm tròn số 0,1352 đến hàng phần mười, ta được 0,1352 ≈ 0,1

  • Câu 32: Nhận biết

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được \sqrt{8} =2,828427125. Giá trị gần đúng của \sqrt{8} chính xác đến hàng phần nghìn là:

    Cần lấy chính xác đến hàng phần trăm nên ta phải lấy ba chữ số thập phân. Vì đứng sau số 8 ở hàng phần trăm là số 4 < 5 nên theo nguyên lý làm tròn ra được kết quả là: 2,828.

  • Câu 33: Thông hiểu

    Sản lượng lúa (đơn vị: tạ) của 40 thửa ruộng thí nghiệm có cùng diện tích được trình bày trong bảng số liệu sau:

    Sản lượng

    20

    21

    22

    23

    24

     

    Tần số

    5

    8

    11

    10

    6

    n = 40

    Phương sai là:

    Sản lượng lúa trung bình là:

    \overline x  = \frac{{5.20 + 8.21 + 11.22 + 10.23 + 6.24}}{{40}} = 22,1

    Phương sai là:

    \begin{matrix}  {S^2} = \dfrac{1}{{40}}\left( {{{5.20}^2} + {{8.21}^2} + {{11.22}^2} + {{10.23}^2} + {{6.24}^2}} ight) - {\left( {22,1} ight)^2} \hfill \\   \Rightarrow {S^2} = 1,54 \hfill \\ \end{matrix}

  • Câu 34: Nhận biết

    Tìm mốt của mẫu số liệu: 1 3 4 2 0 0 5 6.

    Giá trị 0 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 0.

  • Câu 35: Nhận biết

    Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là:

     Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là: kg

  • Câu 36: Nhận biết

    Điều tra tiền lương một tháng của 100 người lao động trên địa bàn một xã ta có bàng phân bố tần số sau:

    Tiền lương (VND)

    5.000.000

    6.000.000

    7.000.000

    8.000.000

    9.000.000

    9.500.000

    Tần số

    26

    34

    20

    10

    5

    5

    Tìm mốt của bảng phân bổ tần số trên.

    Ta có giá trị 6.000.000 có tần số lớn nhất nên là mốt của bảng phân bố tần số trên.

  • Câu 37: Thông hiểu

    Người ta thống kê cân nặng của 10 học sinh theo thứ tự tăng dần. Số trung vị của mẫu số liệu trên là:

    Ta có: n=10 là một số chẵn

    => Số trung vị là: {M_e} = \frac{{{x_5} + {x_6}}}{2}

    Hay số trung vị của mẫu số liệu trên bằng trung bình cộng của khối lượng của học sinh thứ 5 và thứ 6.

  • Câu 38: Nhận biết

    Cho mẫu số liệu như sau:

    Khoảng biến thiên của mẫu số liệu trên là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 29.

    Giá trị nhỏ nhất là 23

    Suy ra khoảng biến thiên của mẫu số liệu là: 29 – 23 = 6.

    Vậy đáp án là 6.

  • Câu 39: Thông hiểu

    Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của \pi^{2}chính xác đến hàng phần trăm.

    Sử dụng máy tính bỏ túi ta có giá trị của \pi^{2} là 9,8696044. Do đó, giá trị gần đúng của \pi^{2} chính xác đến hàng phần trăm là 9,9.

  • Câu 40: Nhận biết

    Phương sai của một mẫu số liệu \left \{ x_1;x_2;...;x_N ight \} bằng

     Phương sai của một mẫu số liệu \left \{ x_1;x_2;...;x_N ight \} bằng bình phương của độ lệch chuẩn.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo