Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Thống kê gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Lớp trưởng lớp 10A thống kê số học sinh và số cây trồng được theo từng tổ trong buổi ngoại khóa như sau:

    Tổ

    1

    2

    3

    4

    Số học sinh

    11

    10

    12

    10

    Số cây

    30

    30

    38

    29

    Bạn lớp trưởng cho biết số cây mỗi bạn trong lớp trồng được đều không vượt quá 3 cây. Biết rằng bảng trên có một tổ bị thống kê sai. Tổ mà bạn lớp trưởng đã thống kê sai là:

    Xét đáp án Tổ 1

    Số cây tối đa tổ 1 trồng được là: 11.3 = 33 (cây)

    Vì 30 (cây) < 33 (cây) nên thống kê số cây tổ 1 trồng được không sai.

    Xét đáp án Tổ 2

    Số cây tối đa tổ 2 trồng được là: 10.3 = 30 (cây)

    Vì 30 (cây) = 30 (cây) nên thống kê số cây tổ 1 trồng được không sai.

    Xét đáp án Tổ 3

    Số cây tối đa tổ 3 trồng được là: 12.3 = 36 (cây)

    Vì 38 (cây) > 36 (cây) nên thống kê số cây tổ 3 trồng được là sai.

    Xét đáp án Tổ 4

    Số cây tối đa tổ 3 trồng được là: 10.3 = 30 (cây)

    Vì 29 (cây) < 30 (cây) nên thống kê số cây tổ 4 trồng được không sai.

  • Câu 2: Thông hiểu

    Một túi gạo có ghi thông tin khối lượng là 5 \pm 0,2kg. Khi đó khối lượng thực của bao gạo nằm trong đoạn nào sau đây?

    Khi một túi gạo có ghi thông tin khối lượng là 5 \pm 0,2kg thì khối lượng thực của bao gạo nằm trong đoạn \lbrack
4,8;5,2brack.

  • Câu 3: Nhận biết

    Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng nào sau đây?

    Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng phương sai.

  • Câu 4: Nhận biết

    Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của \sqrt{3} chính xác đến hàng phần trăm.

    Sử dụng máy tính bỏ túi ta có \sqrt{3} = 1,732050808. Do đó: Giá trị gần đúng của \sqrt{3}chính xác đến hàng phần trăm là 1,73.

  • Câu 5: Nhận biết

    Làm tròn số gần đúng 3,14159 với độ chính xác 0,001?

    Số gần đúng 3,14159 làm tròn với độ chính xác 0,001 là: 3,14.

  • Câu 6: Thông hiểu

    Tìm chỉ số IQ trung bình của nhóm học sinh. Biết kết quả đo IQ là 60;72;63;63;68;72;90;86;72;80.

    Chỉ số IQ trung bình cần tìm là:

    \overline{x} = \frac{60 + 2.63 + 68 +
3.72 + 80 + 86 + 90}{10} = s72,6

    Vậy chỉ số IQ trung bình của nhóm học sinh là 72,6.

  • Câu 7: Nhận biết

    Xác định số trung vị của dãy số liệu 1;3;4;5;7;8;9?

    Dãy số đã cho được sắp xếp theo thứ tự không giảm.

    Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.

    Do đó số trung vị của dãy trên là 5.

  • Câu 8: Thông hiểu

    Cho bảng số liệu thống kê kết quả thi chạy 100m của một nhóm học sinh (đơn vị: giây) như sau:

    Thời gian

    12

    13

    14

    15

    16

    Số học sinh

    6

    4

    5

    3

    2

    Tính thời gian chạy trung bình của nhóm học sinh đó?

    Số học sinh tham gia chạy là 20 (học sinh)

    Thi gian chạy trung bình của nhóm 20 học sinh là:

    \overline{x} = \frac{6.12 + 4.13 + 5.14 +
3.15 + 2.16}{20} = 13,55(giây)

    Vậy thời gian chạy trung bình của nhóm học sinh bằng 13,55 giây.

  • Câu 9: Thông hiểu

    Khối lượng 30 gói hàng được cho bởi bảng:

    Tính số trung bình của bảng trên. (làm tròn đến hàng phần trăm).

    Số trung bình cộng của mẫu số liệu trên là:

    \overline{x} =\frac{4.250 + 4.300 + 5.350 + 6.400+ 4.450 + 7.500}{30}\approx 388,33.

  • Câu 10: Nhận biết

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được \sqrt{7} =
2,645751311. Giá trị gần đúng của \sqrt{7} chính xác đến hàng phần trăm là:

    Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 4 ở hàng phần trăm là số 5 nên theo nguyên lý làm tròn ra được kết quả là: 2,65

  • Câu 11: Nhận biết

    Một shop bán giày thống kê số lượng giày bán trong vài ngày trong bảng sau:

    Cỡ giày

    37

    38

    39

    40

    41

    42

    Số lượng

    35

    42

    50

    38

    32

    48

    Mốt của bảng số liệu trên là:

    Mốt là giá trị có tần số lớn nhất trong bảng số liệu

    Quan sát bảng số liệu đã cho suy ra mốt của bảng số liệu là 39.

  • Câu 12: Nhận biết

    Trong một bài kiểm tra chạy của 20 học sinh, thầy giáo đã ghi lại kết quả trong bảng sau:

    Thời gian (giây)

    8,3

    8,4

    8,5

    8,7

    8,8

    Số học sinh

    2

    3

    9

    5

    1

    Mốt của bảng số liệu trên là:

    Quan sát bảng số liệu ta thấy:

    Số học sinh đạt kết quả 8,5 giây là lớn nhất bằng 9 học sinh.

    => Mốt của bảng số liệu là 8,5.

  • Câu 13: Thông hiểu

    Một xưởng may gồm 20 người thợ chia đều thành 5 tổ. Mỗi ngày một người thợ làm được 4 hoặc 5 sản phẩm. Cuối ngày, quản tổ thống kê lại kết quả làm việc của từng tổ như sau:

    Tổ

    1

    2

    3

    4

    5

    Số sản phẩm

    17

    19

    19

    21

    20

    Kết quả thống kê của tổ nào là không hợp lí?

    Vì 20 người thợ chia đều thành 5 tổ nên mỗi tổ gồm 4 thợ.

    Trong một ngày mỗi người thợ làm được 4 hoặc 5 sản phẩm nên số sản phẩm tối đa mỗi tổ làm được trong một ngày là 20 sản phẩm.

    Do đó kết quả thống kê không hợp lí nằm ở vị trí tổ 4.

  • Câu 14: Thông hiểu

    Kết quả đo chiều dài của một cây cầu được ghi là 152m \pm 0,2m, điều đó có nghĩa là gì?

    Kết quả đo chiều dài của một cây cầu được ghi là 152m \pm 0,2m có nghĩa là chiều dài đúng của cây cầu là một số nằm trong khoảng từ 151,8m đến 152,2m.

  • Câu 15: Nhận biết

    Viết số quy tròn của số 3546790 đến hàng trăm.

    Quy tròn số đến hàng trăm nên chữ số quy tròn là chữ số, mà chữ số sau chữ số 7 là 9 > 5 nên số quy tròn của số 3546790 đến hàng trăm là 3546800.

  • Câu 16: Nhận biết

    Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?

    Đáp án: Độ lệch chuẩn.

  • Câu 17: Thông hiểu

    Tìm phát biểu đúng về phương sai của một mẫu số liệu.

    Ý nghĩa của phương sai: Phương sai được sử dụng để đánh giá mức độ phân tán của các số liệu thống kê (so với số trung bình).

  • Câu 18: Vận dụng

    Nhà sản xuất công bố chiều dài và chiều rộng của 1 tấm ván hình chữ nhật lần lượt là 100
\pm 0,570 \pm 0,5 (đơn vị: cm). Tính diện tích của tấm thép.

    Gọi \overline{a}\overline{b} lần lượt là chiều dài và chiều rộng thực của tấm thép.

    Ta có: 99,5 \leq \overline{a} \leq
100,569,5 \leq \overline{b}
\leq 70,5.

    Suy ra: 99,5.69,5 = 6915,25 \leq
\overline{a}.\overline{b} \leq 100,5.70,5 = 7085,25.

    Do đó: 6915,25 - 7000 = - 84,75 \leq
\overline{a}.\overline{b} - 7000 \leq 7085,25 - 7000 =
85,25

    Vậy diện tích tấm thép là 7000 \pm
85,25.

  • Câu 19: Vận dụng

    Các bạn sinh viên đi đo chỉ số EQ thu được kết quả: 60 72 63 83 68 74 90 86 74 80.

    Ta nên chọn giá trị đại diện cho mẫu số liệu trên thế nào?

    Sắp xếp lại mẫu số liệu theo thứ tự không giảm: 60 63 68 72 74 74 80 83 86 90.

    Các giá trị của mẫu số liệu có độ lớn không chênh lệch quá nhiều. Do đó ta nên chọn số trung bình cộng làm giá trị đại diện.

    Ta có: \overline{x} = \frac{60 + 63 + 68 + 72 + 74 + 74 + 80 + 83 + 86 +
90}{10} = 75.

  • Câu 20: Nhận biết

    Cho mẫu số liệu: 6; 7; 8; 9; 10. Tính phương sai của mẫu.

    Số trung bình là \overline{x} = \frac{6 + 7 + 8 + 9 + 10}{5} = 8.

    Phương sai là s^{2} = \frac{(6 - 8)^{2} + (7 - 8)^{2} + (8 - 8)^{2} + (9
- 8)^{2} + (10 - 8)^{2}}{5} =
2.

  • Câu 21: Nhận biết

    Tiến hành đo huyết áp của 8 người ta thu được kết quả sau: 77 105 117 84 96 72 105 124.

    Hãy tìm khoảng tứ phân vị của mẫu số liệu trên.

     Sắp xếp mẫu theo thứ tự không giảm: 72 77 84 96 105 105 117 124.

    Hai giá trị chính giữa là 96 105. Do đó Q_2=\frac{96+105}2=100,5.

    Tứ phân vị Q_1 của mẫu số liệu: 72 77 84 96 là Q_1=\frac{77+84}2=80,5.

    Tứ phân vị Q_3 của mẫu số liệu 105 105 117 124 là: Q_3=\frac{105+117}2=111.

    Khoảng tứ phân vị \Delta_Q=111-80,5=30,5.

  • Câu 22: Vận dụng

    Nhiệt độ (đơn vị: 0C) tại Mộc Châu trong một ngày sau một vài lần đo như sau:

    21^{0}C;23^{0}C;25^{0}C;28^{0}C;30^{0}C;

    32^{0}C;34^{0}C;31^{0}C;29^{0}C;26^{0}C.

    Kết quả nào dưới đây gần nhất với độ lệch chuẩn của mẫu số liệu đã cho?

    Ta có: N = 10

    Nhiệt độ trung bình trong ngày là:

    \overline{x} = \frac{21 + 23 + 25 + 28 +
30 + 32 + 34 + 31 + 29 + 26}{10} = 27,9

    Ta có bảng sau:

    Giá trị

    Độ lệch

    Bình phương độ lệch

    21

    21 - 27,9 = - 6,9

    47,61

    23

    23 - 27,9 = - 4,9

    24,01

    25

    25 - 27,9 = - 2,9

    8,41

    28

    28 - 27,9 = 0,1

    0,01

    30

    30 - 27,9 = 2,1

    4,41

    32

    32 - 27,9 = 4,1

    16,81

    34

    34 - 27,9 = 6,1

    37,21

    31

    31 - 27,9 = 3,1

    9,61

    29

    29 - 27,9 = 1,1

    1,21

    26

    26 - 27,9 = - 1,9

    3,61

    Tổng

    152,9

    Suy ra phương sai của mẫu số liệu là: s^{2} = \frac{152,9}{10} =
15,29

    Suy ra độ lệch chuẩn của mẫu số liệu là: s = \sqrt{s^{2}} \approx
3,91

  • Câu 23: Nhận biết

    Kết quả kiểm tra cân nặng của 10 học sinh lớp 10C được liệt kê như sau: 45;46;42;50;38;42;44;42;40;60. Khoảng biến thiên của mẫu số liệu này bằng:

    Quan sát dãy số liệu ta có:

    Giá trị lớn nhất bằng 60

    Giá trị nhỏ nhất bằng 38

    Suy ra khoảng biến thiên của mẫu số liệu là 60 – 38 = 22.

  • Câu 24: Nhận biết

    Biểu đồ sau biểu diễn tốc độ tăng trưởng GDP của Nhật Bản trong giai đoạn 1990 đến 2005. Hãy tìm khoảng biến thiên của mẫu số liệu đó.

     Khoảng biến thiên R = 5,1 - 0,4 = 4,7.

  • Câu 25: Thông hiểu

    Xác định khoảng tứ phân vị của mẫu số liệu: 8 6 5 1 9 10 15.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 5 6 8 9 10 15

    Trung vị Q_{2} là giá trị chính giữa của mẫu số liệu, suy ra Q_{2} =
8.

    Trung vị Q_{1} của mẫu 1 5 6 là Q_{1} = 5.

    Trung vị Q_{3} của mẫu 9 10 15 là Q_{3} = 10.

    Vậy khoảng tứ phân vị \Delta_{Q} = Q_{3}
- Q_{1} = 10 - 5 = 5.

  • Câu 26: Vận dụng

    Chọn khẳng định đúng.

    Khẳng định đúng là:

    Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất, bỏ qua thông tin các giá trị còn lại.

  • Câu 27: Vận dụng

    Cho kết quả ném phi tiêu của Hùng như sau: 9;9;10;8;9;10;10;7;8;8;10;9;8. Hãy các tứ phân vị của mẫu số liệu đã cho?

    Sắp xếp điểm ném phi tiêu theo thứ tự không giảm như sau:

    7;8;8;8;8;9;9;9;9;10;10;10;10

    Ta có: Q_{2} = 9 là số đứng thứ 7.

    Q_{1} = 8 là trung bình cộng 2 số đứng thứ 3;4.

    Q_{3} = 10 là trung bình cộng 2 số đứng thứ 10;11.

  • Câu 28: Thông hiểu

    Phát biểu nào sau đây sai?

    Phát biểu sai là: "Khoảng tứ phân vị bị ảnh hưởng bởi các giá trị rất lớn hoặc rất bé trong mẫu."

  • Câu 29: Nhận biết

    Điều tra tiền lương một tháng của 100 người lao động trên địa bàn một xã ta có bàng phân bố tần số sau:

    Tiền lương (VND)

    5.000.000

    6.000.000

    7.000.000

    8.000.000

    9.000.000

    9.500.000

    Tần số

    26

    34

    20

    10

    5

    5

    Tìm mốt của bảng phân bổ tần số trên.

    Ta có giá trị 6.000.000 có tần số lớn nhất nên là mốt của bảng phân bố tần số trên.

  • Câu 30: Vận dụng

    Độ dài các cạnh của đám vườn hình chữ nhật là x = 7,8\ m \pm 2\ cmy = 25,6\ m \pm 4\ cm. Cách viết chuẩn của diện tích là:

    x = 7,8m \pm 2cm = 7,8m \pm
0,02m \Rightarrow 7,78 \leq x \leq
7,82

    y = 25,6m \pm 4cm = 25,6m \pm 0,04m
\Rightarrow 25,56 \leq y \leq 25,64.

    Diện tích mảnh ruộng là S, khi đó:

    198,8568 \leq S \leq 200,5048 \Rightarrow S = 199,6808\ m^{2} \pm 0,824\
m^{2}.

    Cách viết chuẩn của diện tích là 199m^{2}
\pm 0,8m^{2}.

  • Câu 31: Nhận biết

    Kết quả đo chiều cao của một học sinh được ghi là 175cm \pm 0,2cm. Điều đó có nghĩa là gì?

    Kết quả đo chiều cao của một học sinh được ghi là 175cm \pm 0,2cm có nghĩa là: “Chiều cao đúng của học sinh là một số nằm trong khoảng từ 174,8cm đến 175,2cm.”

  • Câu 32: Thông hiểu

    Số điểm của một vận động viên trong 5 hiệp được ghi lại như sau: 9 8 15 8 20. Tính tứ phân vị của mẫu số liệu trên.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 8 8 9 15 20.

    Số liệu chính giữa là 9 nên trung vị của mẫu số liệu trên là 9.

    Trung vị của mẫu số liệu 8 8 là \frac{8 +
8}{2} = 8.

    Trung vị của mẫu số liệu 15 20 là \frac{15 + 20}{2} = 17,5.

    Vậy Q_{1} = 8;\ Q_{2} = 9;\ Q_{3} =
17,5.

  • Câu 33: Nhận biết

    Số quy tròn của số gần đúng a với \overline{a} = 18658 \pm 25 là:

    Quy tròn a đến hàng trăm nên số quy tròn của số gần đúng a là: 18700.

  • Câu 34: Thông hiểu

    Cho số a =
367653964 \pm 213. Số quy tròn của số gần đúng 367653964 là:

    Với a = 367653964 \pm 213 suy ra độ chính xác d = 213

    Vì độ chính xác đến hàng trăm nên số quy trình của số a được làm tròn đến hàng nghìn.

    Vì chữ số hàng năm là 9 > 5

    => Chữ số hàng nghìn được tăng thêm 1 đơn vị từ 3 đến 4 và các chữ số đằng sau thay bởi chữ số 0.

    => Số quy tròn của số gần đúng 367653964 là: .367654000.

  • Câu 35: Nhận biết

    Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là:

     Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là: kg

  • Câu 36: Nhận biết

    Xác định khoảng biến thiên R của mẫu số liệu: 6 5 3 7 8 10 15.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 3 5 6 7 8 10 15.

    Suy ra khoảng biến thiên R = 15 - 3 =
12.

  • Câu 37: Thông hiểu

    Tìm phương sai của dãy số liệu: 8 15 14 18.

    Số trung bình của mẫu số liệu là: \overline{x} = \frac{8 + 15 + 14 + 18}{4} = 13.

    Ta có phương sai: s^{2} = \frac{(8 - 13)^{2} + (15 - 13)^{2} + (14 - 13)^{2}
+ (18 - 13)^{2}}{4} =
13,75.

  • Câu 38: Nhận biết

    Biểu đồ dưới đây thể hiện tỉ lệ lạm phát cơ bản bình quân năm trong giai đoạn 2018 – 2022:

    (Nguồn: Niêm giám thống kê 2022)

    Trong giai đoạn từ 2018 – 2021, năm có tỉ lệ lạm phát cơ bản bình quân năm cao nhất là?

    Trong giai đoạn từ 2018 – 2021, năm 2020 có tỉ lệ lạm phát cơ bản bình quân năm cao nhất.

  • Câu 39: Nhận biết

    Quy tròn số 0,1352 đến hàng phần mười.

    Vì số 0,1352 có chữ số hàng phần trăm là 3 < 5 nên khi làm tròn số 0,1352 đến hàng phần mười, ta được 0,1352 ≈ 0,1

  • Câu 40: Thông hiểu

    Khi điều tra về số dân của tỉnh A, người ta thu được kết quả là \overline{a} = 1.234.872
\pm 30. Tìm số quy tròn của a.

    Số quy tròn của số a là: 1.234.900

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 18 lượt xem
Sắp xếp theo