Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Thống kê gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho mẫu số liệu: 0;5;5;5;6;6;6;7;8;10. Có bao nhiêu giá trị bất thường của mẫu số liệu đã cho?

    Ta có N = 10

    Suy ra Q_{2} = \frac{6 + 6}{2} =
6

    \Rightarrow \left\{ \begin{matrix}Q_{1} = 5 \\Q_{3} = 7 \\\end{matrix} ight.\  \Rightarrow \Rightarrow \left\{ \begin{matrix}Q_{1} - \dfrac{3}{2}\Delta Q = 2 \\Q_{3} + \dfrac{1}{2}\Delta Q = 10 \\\end{matrix} ight.

    Nhận thấy trong mẫu số liệu đã cho không có giá trị nào nhỏ hơn 2 và lớn hơn 10.

    Vậy không có giá trị nào bất thường trong mẫu số liệu.

  • Câu 2: Nhận biết

    Số quy tròn của a = 15,31828 \pm 0,001 với độ chính xác đã cho là:

    Số quy tròn của số a = 15,31828 \pm
0,001 là: 15,32.

  • Câu 3: Thông hiểu

    Cho mẫu số liệu: 27;15;18;30;19;40;100;9;46;10;200. Tứ phân vị thứ ba của mẫu số liệu là:

    Sắp xếp lại mẫu số liệu theo thứ tự không giảm ta được:

    9;10;15;18;19;27;30;40;46;100;200

    Tứ phân vị thứ ba là trung vị của mẫu 30;40;46;100;200

    Do đó Q_{3} = 46.

  • Câu 4: Nhận biết

    Độ lệch chuẩn là gì?

     Độ lệch chuẩn là căn bậc hai của phương sai.

  • Câu 5: Nhận biết

    Điểm kiểm tra của 24 học sinh được ghi lại trong bảng sau:

    Mốt của mẫu số liệu là:

    Điểm 8 có tần số xuất hiện nhiều nhất nên mốt của mẫu số liệu là 8.

  • Câu 6: Nhận biết

    Điểm kiểm tra môn Hóa của một nhóm gồm 9 bạn như sau: 1; 1; 3; 6; 7; 8; 8; 9; 10. Tính trung bình cộng của mẫu số liệu trên. (làm tròn đến hàng phần chục)

    Số trung bình của mẫu số liệu trên là: \overline{x} = \frac{1 + 1 + 3 + 6 + 7 + 8 + 8 + 9
+ 10}{9} \approx 5,9.

  • Câu 7: Thông hiểu

    Dùng máy tính cầm tay để viết quy tròn số gần đúng \sqrt{2} + \sqrt{5} đến hàng phần trăm là:

    Ta có: \sqrt{2} + \sqrt{5} \approx
3,65028154.

    Chữ số hàng phần nghìn bằng 0 < 5 nên chọn 3,65.

  • Câu 8: Thông hiểu

    Tìm giá trị bất thường của dãy số liệu: 3 6 8 14 19 28.

    Hai giá trị chính giữa là 8 và 14. Suy ra trung vị Q_{2} = \frac{8 + 14}{2} = 11.

    Trung vị Q_{1} của mẫu 3 6 8 là Q_{1} = 6.

    Trung vị Q_{3} của mẫu 14 19 28 là Q_{3} = 19.

    Suy ra \Delta_{Q} = Q_{3} - Q_{1} = 19 -
6 = 13.

    Xét: Q_{1} - 1,5\Delta_{Q} = 3 - 1,5.13 =
- 16,5.

    Xét: Q_{3} + 1,5\Delta_{Q} = 28 + 1,5.13
= 47,5.

    Ta thấy không có giá trị nào nhỏ hơn Q_{1} - 1,5\Delta_{Q} = - 16,5 và lớn hơn Q_{3} + 1,5\Delta_{Q} = 47,5 nên dãy không có giá trị bất thường.

  • Câu 9: Vận dụng

    Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện cộng 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.

    Giả sử các số liệu trong mẫu là: a_{1};a_{2};...;a_{10} đã sắp xếp theo thứ tự không giảm.

    Khoảng biến thiên: R_{1} = a_{10} -
a_{1}.

    Cộng hai với tất cả các số liệu: a_{1} +
2;a_{2} + 2;...;a_{10} + 2.

    Khoảng biến thiên: R_{2} = (a_{10} + 2) -
(a_{1} + 2 ) = a_{10} -
a_{1}.

    Suy ra R_{2} = R_{1}.

  • Câu 10: Nhận biết

    Số quy tròn số 2,718282 với độ chính xác d = 0,01 là:

    Theo bài ra ta có: Độ chính xác 0,001
< d = 0,01 nên ta quy tròn số đến số thập phân thứ nhất.

    Vậy số quy tròn là 2,7.

  • Câu 11: Thông hiểu

    Cho giá trị gần đúng của \frac{3}{7} là 0,429. Sai số tuyệt đối của số 0,429 là:

    Ta có: \frac{3}{7} =0,428571… nên sai số tuyệt đối của 0,429 là

    \Delta = \left| 0,429 - \frac{3}{7}
ight| < |0,429 - 4,4285| = 0,0005

  • Câu 12: Thông hiểu

    Kết quả đo chiều dài của một cây cầu được ghi là 152m \pm 0,2m. Tìm sai số tương đối của phép đo chiều dài cây cầu.

    Phép đo cây cầu có sai số tương đối thỏa mãn \delta < \frac{0,2}{152} \approx
0,1316\%.

  • Câu 13: Nhận biết

    Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây: \overline{a} = 17658 ± 16.

    Vì độ chính xác đến hàng chục nên ta phải quy tròn số 17638 đến hàng trăm. Vậy số quy tròn là 17700 (hay viết \overline{a} ≈ 17700).

  • Câu 14: Vận dụng

    Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện nhân 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.

    Giả sử các số liệu trong mẫu là: a_{1};a_{2};...;a_{10} đã sắp xếp theo thứ tự không giảm.

    Khoảng biến thiên: R_{1} = a_{10} -
a_{1}.

    Nhân hai với tất cả các số liệu: 2a_{1};2a_{2};...;2a_{10}.

    Khoảng biến thiên: R_{2} = 2a_{10} -
2a_{1} = 2(a_{10} - a_{1}).

    Suy ra R_{2} = 2R_{1}.

  • Câu 15: Thông hiểu

    Lớp trưởng lớp 10A thống kê số học sinh và số cây trồng được theo từng tổ trong buổi ngoại khóa như sau:

    Tổ

    1

    2

    3

    4

    Số học sinh

    11

    10

    12

    10

    Số cây

    30

    30

    38

    29

    Bạn lớp trưởng cho biết số cây mỗi bạn trong lớp trồng được đều không vượt quá 3 cây. Biết rằng bảng trên có một tổ bị thống kê sai. Tổ mà bạn lớp trưởng đã thống kê sai là:

    Xét đáp án Tổ 1

    Số cây tối đa tổ 1 trồng được là: 11.3 = 33 (cây)

    Vì 30 (cây) < 33 (cây) nên thống kê số cây tổ 1 trồng được không sai.

    Xét đáp án Tổ 2

    Số cây tối đa tổ 2 trồng được là: 10.3 = 30 (cây)

    Vì 30 (cây) = 30 (cây) nên thống kê số cây tổ 1 trồng được không sai.

    Xét đáp án Tổ 3

    Số cây tối đa tổ 3 trồng được là: 12.3 = 36 (cây)

    Vì 38 (cây) > 36 (cây) nên thống kê số cây tổ 3 trồng được là sai.

    Xét đáp án Tổ 4

    Số cây tối đa tổ 3 trồng được là: 10.3 = 30 (cây)

    Vì 29 (cây) < 30 (cây) nên thống kê số cây tổ 4 trồng được không sai.

  • Câu 16: Nhận biết

    Viết số quy tròn của \pi đến hàng phần nghìn?

    Ta có số quy tròn của \pi đến hàng phần nghìn là 3,142.

  • Câu 17: Nhận biết

    Trong một bài kiểm tra chạy của 20 học sinh, thầy giáo đã ghi lại kết quả trong bảng sau:

    Thời gian (giây)

    8,3

    8,4

    8,5

    8,7

    8,8

    Số học sinh

    2

    3

    9

    5

    1

    Mốt của bảng số liệu trên là:

    Quan sát bảng số liệu ta thấy:

    Số học sinh đạt kết quả 8,5 giây là lớn nhất bằng 9 học sinh.

    => Mốt của bảng số liệu là 8,5.

  • Câu 18: Vận dụng

    Một công ty sử dụng dây chuyền X để đóng xi măng với khối lượng mong muốn là 5 kg. Trên bao bì ghi khối lượng là 5 \pm 0,2 (kg). Bên cạnh đó, công ty cũng sử dụng dây chuyền Y để đóng gói xi măng với khối lượng chính xác là 20 kg. Trên bao bì ghi thông tin khối lượng là 20 \pm 0,5 kg. Chọn kết luận đúng.

    Sai số tương đối của dây chuyền X: \delta_{1} \leq \frac{0,2}{5} = 0,04 =
4\%.

    Sai số tương đối của dây chuyền Y: \delta_{2} \leq \frac{0,5}{20} = 0,025 =
2,5\%.

    Như vậy dây chuyền Y đóng gói tốt hơn do có sai số tương đối nhỏ hơn.

  • Câu 19: Nhận biết

    Để điều tra các con trong mỗi gia đình của một chung cư gồm 100 gia đình. Người ta chọn ra 20 gia đình ở tầng 4 và thu được mẫu số liệu sau đây:

    2  4  2  1  3  5  1  1  2  3  1  2  2  3  4  1  1  2  3  4.

    Số trung bình cộng \bar{x} của mẫu số liệu trên là:

    Số trung bình cộng của mẫu số liệu trên là:

    \overline x  = \frac{{1.6 + 2.6 + 3.4 + 4.3 + 5}}{{20}} = 2,35

  • Câu 20: Nhận biết

    Tiến hành đo huyết áp của 8 người ta thu được kết quả sau: 77 105 117 84 96 72 105 124.

    Hãy tìm khoảng tứ phân vị của mẫu số liệu trên.

     Sắp xếp mẫu theo thứ tự không giảm: 72 77 84 96 105 105 117 124.

    Hai giá trị chính giữa là 96 105. Do đó Q_2=\frac{96+105}2=100,5.

    Tứ phân vị Q_1 của mẫu số liệu: 72 77 84 96 là Q_1=\frac{77+84}2=80,5.

    Tứ phân vị Q_3 của mẫu số liệu 105 105 117 124 là: Q_3=\frac{105+117}2=111.

    Khoảng tứ phân vị \Delta_Q=111-80,5=30,5.

  • Câu 21: Nhận biết

    Kết quả thống kê số tiền điện của một hộ gia đình trong 6 tháng liên tiếp (đơn vị: nghìn đồng) như sau: 270;\ 300;\ 350;\ 320;\ 310;\ 280. Khoảng biến thiên của mẫu số liệu bằng:

    Giá trị lớn nhất bằng 350

    Giá trị nhỏ nhất bằng 270

    => Khoảng biến thiên của mẫu số liệu là: 350 – 270 = 80.

    Vậy khoảng biến thiên của mẫu số liệu bằng 80.

  • Câu 22: Nhận biết

    Kết quả đo chiều cao của một học sinh được ghi là 175cm \pm 0,2cm. Điều đó có nghĩa là gì?

    Kết quả đo chiều cao của một học sinh được ghi là 175cm \pm 0,2cm có nghĩa là: “Chiều cao đúng của học sinh là một số nằm trong khoảng từ 174,8cm đến 175,2cm.”

  • Câu 23: Thông hiểu

    Cho dãy số liệu: 5;1;3;8;6;9;10;20;18. Tìm khoảng tứ phân vị của mẫu số liệu đã cho?

    Sắp xếp dãy số liệu theo thứ tự không giảm ta được:

    1;3;5;6;8;9;10;18;20

    Dãy số liệu có số chính giữa là 8 nên tứ phân vị thứ hai là Q_{2} = 8

    Tứ phân vị thứ nhất là trung vị của dãy số liệu: 1;3;5;6. Khi đó Q_{1} = \frac{3 + 5}{2} = 4.

    Tứ phân vị thứ ba là trung vị của dãy số liệu: 9;10;18;20. Khi đó Q_{3} = \frac{10 + 18}{2} = 14

    Vậy khoảng tứ phân vị của mẫu số liệu là

    \Delta Q = Q_{3} - Q_{1} = 14 - 4 =
10

  • Câu 24: Thông hiểu

    Bảng dưới đây là nhiệt độ của một thành phố (đơn vị: độ C).

    Tính độ lệch chuẩn của mẫu số liệu về nhiệt độ.

    Số trung bình là: \overline{x} = \frac{18 + 19 + 20 + 23 + 25 + 26 + 22 +
20}{8} = 21,625.

    Tính được phương sai là: s^{2} =
\frac{463}{64}.

    Độ lệch chuẩn là \sqrt{s^{2}} =
\sqrt{\frac{463}{63}} = \frac{\sqrt{463}}{8}.

  • Câu 25: Nhận biết

    Điểm kiểm tra môn Toán của Hoa thời gian gần đây được liệt kê như sau: 3;\ 4;\ 7;\ 7;\
9. Khoảng biến thiên của mẫu số liệu trên là:

    Quan sát mẫu số liệu đã cho ta thấy:

    Giá trị lớn nhất là 9

    Giá trị nhỏ nhất là 3

    Suy ra khoảng biến thiên của mẫu số liệu là: 9 – 3 = 6.

  • Câu 26: Nhận biết

    Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây: \overline{a} = 28658 ± 100.

    Vì độ chính xác đến hàng trăm nên ta phải quy tròn số 17638 đến hàng nghìn. Vậy số quy tròn là 29000 (hay viết \overline{a} ≈ 29000).

  • Câu 27: Nhận biết

    Cho biết kết quả đo chiều cao của một số học sinh lớp 10E như sau: 163;165;169;167;164;168;150;161. Xác định khoảng biến thiên của mẫu số liệu?

    Quan sát dãy số liệu ta thấy:

    Giá trị lớn nhất là 169

    Giá trị nhỏ nhất là 150

    Vậy khoảng biến thiên của mẫu số liệu bằng 169 – 150 = 19.

  • Câu 28: Thông hiểu

    Cho \overline{a}
= \frac{16}{7} = 2,285714... Hãy xác định số gần đúng a của \overline{a} với độ chính xác d = 0,03.

    Ta có hàng của chữ số 0 đầu tiên bên trái của d là hàng phần trăm. Ta cần quy tròn đến hàng phần trăm được số gần đúng là a = 2,29.

  • Câu 29: Vận dụng

    Bạn An đo chiều dài của một sân bóng ghi được 250 \pm 0,2m. Bạn Bằng đo chiều cao của một cột cờ được 15 \pm 0,1m. Trong 2 bạn An và Bằng, bạn nào có phép đo chính xác hơn và sai số tương đối trong phép đo của bạn đó là bao nhiêu?

    Phép đo của bạn A có sai số tương đối \delta_{1} \leq \frac{0,2}{250} = 0,0008 =
0,08\%

    Phép đo của bạn B có sai số tương đối \delta_{2} \leq \frac{0,1}{15} = 0,0066 =
0,66\%

    Như vậy phép đo của bạn A có độ chính xác cao hơn.

  • Câu 30: Nhận biết

    Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là:

     Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là: kg

  • Câu 31: Thông hiểu

    Số trung bình của mẫu số liệu 23;41;71;29;48;45;72;41 là:

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{23 + 29 + 2.41 + 45
+ 48 + 71 + 72}{8} = 46,25

    Vậy số trung bình là 46,25.

  • Câu 32: Nhận biết

    Trong 9 ngày liên tiếp, số sản phẩm mà tổ sản xuất hoàn thành mỗi ngày được ghi lại như sau: 27;26;21;28;25;30;26;23;26. Giá trị khoảng biến thiên của mẫu số liệu là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 30

    Giá trị nhỏ nhất là 21

    Suy ra khoảng biến thiên của mẫu số liệu là: 30 – 21 = 9.

  • Câu 33: Thông hiểu

    Khối lượng 30 gói hàng được cho bởi bảng:

    Tính số trung bình của bảng trên. (làm tròn đến hàng phần trăm).

    Số trung bình cộng của mẫu số liệu trên là:

    \overline{x} =\frac{4.250 + 4.300 + 5.350 + 6.400+ 4.450 + 7.500}{30}\approx 388,33.

  • Câu 34: Nhận biết

    Điểm kiểm tra môn Văn của bạn Lan là: 7; 9; 8; 9. Tính số trung bình cộng \overline{x} của mẫu số liệu trên.

    Số trung bình cộng của mẫu số liệu trên là: \overline{x} = \frac{7 + 9 + 8 + 9}{4} =
8,25.

  • Câu 35: Nhận biết

    Quy tròn số 21569 đến hàng chục nghìn ta được:

    Quy tròn số 21569 đến hàng nghìn ta được số quy tròn là 22000.

  • Câu 36: Nhận biết

    Điều tra tiền lương một tháng của 100 người lao động trên địa bàn một xã ta có bàng phân bố tần số sau:

    Tiền lương (VND)

    5.000.000

    6.000.000

    7.000.000

    8.000.000

    9.000.000

    9.500.000

    Tần số

    26

    34

    20

    10

    5

    5

    Tìm mốt của bảng phân bổ tần số trên.

    Ta có giá trị 6.000.000 có tần số lớn nhất nên là mốt của bảng phân bố tần số trên.

  • Câu 37: Thông hiểu

    Xác định khoảng tứ phân vị của mẫu số liệu: 2;3;4;5;6?

    Ta có: N = 5 là số lẻ

    Suy ra Q_{2} = 4

    \Rightarrow \left\{ \begin{matrix}Q_{1} = \dfrac{2 + 3}{2} = 2,5 \\Q_{3} = \dfrac{5 + 6}{2} = 5,5 \\\end{matrix} ight.\  \Rightarrow \Delta Q = 5,5 - 2,5 = 3

    Vậy khoảng tứ phân vị của mẫu số liệu bằng 3.

  • Câu 38: Thông hiểu

    Cho bảng số liệu điểm kiểm tra môn Toán của 20 học sinh

    Điểm

    4

    5

    6

    7

    8

    9

    10

    Số học sinh

    1

    2

    3

    4

    5

    4

    1

    Tìm trung vị của bảng số liệu trên.

    Bảng số liệu có 20 giá trị => n = 20.

    => {M_e} = \frac{{{x_{10}} + {x_{11}}}}{2} = \frac{{7 + 8}}{2} = 7,5.

  • Câu 39: Vận dụng

    Cho kết quả ném phi tiêu của Hùng như sau: 9;9;10;8;9;10;10;7;8;8;10;9;8. Hãy các tứ phân vị của mẫu số liệu đã cho?

    Sắp xếp điểm ném phi tiêu theo thứ tự không giảm như sau:

    7;8;8;8;8;9;9;9;9;10;10;10;10

    Ta có: Q_{2} = 9 là số đứng thứ 7.

    Q_{1} = 8 là trung bình cộng 2 số đứng thứ 3;4.

    Q_{3} = 10 là trung bình cộng 2 số đứng thứ 10;11.

  • Câu 40: Vận dụng

    Các bạn sinh viên đi đo chỉ số EQ thu được kết quả: 60 72 63 83 68 74 90 86 74 80.

    Ta nên chọn giá trị đại diện cho mẫu số liệu trên thế nào?

    Sắp xếp lại mẫu số liệu theo thứ tự không giảm: 60 63 68 72 74 74 80 83 86 90.

    Các giá trị của mẫu số liệu có độ lớn không chênh lệch quá nhiều. Do đó ta nên chọn số trung bình cộng làm giá trị đại diện.

    Ta có: \overline{x} = \frac{60 + 63 + 68 + 72 + 74 + 74 + 80 + 83 + 86 +
90}{10} = 75.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo