Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Thống kê gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tìm phát biểu đúng về phương sai của một mẫu số liệu.

    Ý nghĩa của phương sai: Phương sai được sử dụng để đánh giá mức độ phân tán của các số liệu thống kê (so với số trung bình).

  • Câu 2: Thông hiểu

    Cho số gần đúng a = 23748123 với độ chính xác d = 101. Số quy tròn của số a là:

    Độ chính xác d = 101 nên ta làm tròn số a = 23748123 đến hàng nghìn, ta được kết quả là a =
23748000.

  • Câu 3: Thông hiểu

    Cho bảng điểm kiểm tra môn Toán của học sinh lớp 10B như sau:

    Điểm

    4

    5

    6

    7

    8

    9

    10

    Tổng

    Số học sinh

    2

    8

    7

    10

    8

    3

    2

    N = 40

    Tính số trung bình của mẫu số liệu? (Làm tròn kết quả đến chữ số thập phân thứ nhất).

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{2.4 + 5.8 + 6.7 +
7.10 + 8.8 + 9.3 + 10.2}{40} \approx 6,8

    Vậy số trung bình của mẫu số liệu bằng 6,8.

  • Câu 4: Vận dụng

    Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện cộng 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.

    Giả sử các số liệu trong mẫu là: a_{1};a_{2};...;a_{10} đã sắp xếp theo thứ tự không giảm.

    Khoảng biến thiên: R_{1} = a_{10} -
a_{1}.

    Cộng hai với tất cả các số liệu: a_{1} +
2;a_{2} + 2;...;a_{10} + 2.

    Khoảng biến thiên: R_{2} = (a_{10} + 2) -
(a_{1} + 2 ) = a_{10} -
a_{1}.

    Suy ra R_{2} = R_{1}.

  • Câu 5: Thông hiểu

    Số gần đúng của a
= 2,57656 có ba chữ số đáng tin viết dưới dạng chuẩn là:

    Vì số gần đúng của số a có ba chữ số đáng tin nên ba chữ số đó là 2,5,7.

    Nên cách viết dưới dạng chuẩn là 2,57.

  • Câu 6: Nhận biết

    Giả sử Q_{1},Q_{2},Q_{3} là các tứ phân vị của mẫu số liệu. Khoảng tứ phân vị của mẫu số liệu là:

    Khoảng tứ phân vị của mẫu số liệu là: \Delta Q = Q_{3} - Q_{1}.

  • Câu 7: Thông hiểu

    Kết quả khi đo chiều dài của một cây thước là \overline{a} = 45 \pm 0,2(cm). Khi đó sai số tuyệt đối của phép đo được ước lượng là:

    Ta có độ dài gần đúng của cây thước là a= 45 với độ chính xác d =0,2cm

    Nên sai số tuyệt đối là \Delta_{a} \leq d= 0,2.

  • Câu 8: Thông hiểu

    Tìm phương sai của mẫu số liệu 3;4;5;6;7?

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{3 + 4 + 5 + 6 +
7}{5} = 5

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{(3 - 5)^{2} + (4 - 5)^{2}
+ (5 - 5)^{2} + (6 - 5)^{2} + (7 - 5)^{2}}{4} = 2

    Vậy phương sai cần tìm bằng 2.

  • Câu 9: Vận dụng

    Biểu đồ dưới đây thể hiện tốc độ tăng trưởng GDP của Việt Nam giai đoạn 2014 – 2021. Tính độ lệch chuẩn của mẫu số liệu.

    Số trung bình của mẫu là:

    \overline{x} = \frac{5,98 + 6,68 + 6,21 + 6,81 + 7,08 + 7,02 +
2,91 + 2,58}{8} =
5,65875

    Từ đó tính được phương sai: s^{2} =
2,96.

    Suy ra độ lệch chuẩn: \sqrt{s^{2}} =
1,72.

  • Câu 10: Thông hiểu

    Xác định khoảng tứ phân vị của mẫu số liệu: 8 6 5 1 9 10 15.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 5 6 8 9 10 15

    Trung vị Q_{2} là giá trị chính giữa của mẫu số liệu, suy ra Q_{2} =
8.

    Trung vị Q_{1} của mẫu 1 5 6 là Q_{1} = 5.

    Trung vị Q_{3} của mẫu 9 10 15 là Q_{3} = 10.

    Vậy khoảng tứ phân vị \Delta_{Q} = Q_{3}
- Q_{1} = 10 - 5 = 5.

  • Câu 11: Nhận biết

    Cho bảng số liệu ghi lại điểm của 40 học sinh trong bài kiểm tra 1 tiết môn toán như sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Cộng

    Số học sinh

    2

    3

    7

    18

    3

    2

    4

    1

    40

    Số trung bình cộng \bar{x} của mẫu số liệu trên là:

    Số trung bình cộng của mẫu số liệu trên là:

    \overline x  = \frac{{3.2 + 4.3 + 5.7 + 6.18 + 7.3 + 8.2 + 9.4 + 10.1}}{{40}} = 6,1.

  • Câu 12: Vận dụng

    Một học sinh đo đường kính của một hình tròn là 24 \pm 0,2 (cm). Bạn đó tính được chu vi hình tròn là p = 75,36 (cm). Biết 3,141 < \pi <
3,142. Hãy ước lượng sai số tuyệt đối của p.

    Gọi \overline{a}\overline{p} lần lượt là đường kính và chu vi của hình tròn.

    Ta có: 23,8 \leq \overline{a} \leq
24,2.

    Ta có: 3,141.23,8 = 74,7558 \leq\overline{p} = \pi\overline{a}\leq 3,142.24,2 = 76,0364.

    Do đó 74,7558 - 75,36 = - 0,6042 \leq\overline{p} - 75,36\leq 76,0364 - 75,36 = 0,6764.

    Vậy sai số tuyệt đối của p\Delta_{p} = \left| \overline{p} - 75,36
ight| \leq 0,6764.

  • Câu 13: Nhận biết

    Sản lượng lúa (đơn vị là tạ) của 11 thửa ruộng thí nghiệm có cùng diện tích lần lượt là: 20; 19; 17; 21; 24; 22; 23; 16; 11; 25; 23. Tìm mốt của mẫu số liệu trên.

     Số 23 xuất hiện nhiều nhất nên nó là mốt.

  • Câu 14: Thông hiểu

    Cho mẫu số liệu: 43;45;46;41;40. Giá trị phương sai và độ lệch chuẩn của mẫu số liệu lần lượt là:

    Trung bình cộng của mẫu số liệu là:

    \overline{x} = \frac{43 + 45 + 46 + 41 +
40}{5} = 43

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{43^{2} + 45^{2} + 46^{2} +
41^{2} + 40^{2}}{5} - 43^{2} = 5,2

    Độ lệch chuẩn của mẫu số liệu là:

    s = \sqrt{s^{2}} \approx
2,28.

  • Câu 15: Thông hiểu

    Dân số một tỉnh B năm 2024 là a = 561742 người, với độ chính xác d = 200. Số quy tròn của a là:

    Quy tròn số a = 561742 với độ chính xác d = 200 ta biết \overline{a} = 561742 \pm 200

    => Ta cần quy tròn đến hàng nghìn, số đã được quy tròn là a_{0} = 562000.

  • Câu 16: Thông hiểu

    Quy tròn số 2,473 đến hàng phần chục được số 2,5. Sai số tuyệt đối là:

    Sai số tuyệt đối là: |2,5 - 2,473| =
0,027.

  • Câu 17: Nhận biết

    Kết quả kiểm tra Toán của một số học sinh như sau: 9;\ 9;\ 7;\ 8;\ 9;\ 7;\ 10;\ 8;\
8. Khoảng biến thiên của mẫu số liệu là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 10

    Giá trị nhỏ nhất là 7

    Suy ra khoảng biến thiên của mẫu số liệu là: 10 – 7 = 3

  • Câu 18: Vận dụng

    Tìm tứ phân vị dưới của bảng số liệu sau:

    Cỡ mẫu số liệu trên là: n = 10 + 8 + 4 +
2 + 1 = 25.

    Giá trị chính giữa của mẫu là giá trị ở vị trí thứ 13, đó là số 27. Suy ra M_{e} = Q_{2} = 27.

    Ta đi tìm trung vị của mẫu số liệu gồm 12 giá trị bên trái M_{e}. Hai giá trị chính giữa là giá trị ở vị trí thứ 6 và 7. Đó là số 26 và số 26.

    Suy ra Q_{1} = \frac{26 + 26}{2} =
26. Vậy tứ phân vị dưới là 26.

  • Câu 19: Nhận biết

    Khoảng biến thiên tứ phân vị \Delta Q được xác định bởi:

    Khoảng biến thiên tứ phân vị \Delta
Q được xác định bởi Q_{3} -
Q_{1}.

  • Câu 20: Thông hiểu

    Kết quả điểm kiểm tra 45 phút môn Hóa Học của 100 em học sinh được trình bày ở bảng sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Cộng

    Tần số

    3

    5

    14

    14

    30

    22

    7

    5

    100

    Số trung bình cộng của bảng phân bố tần số nói trên là:

    Số trung bình cộng của bảng phân bố tần số nói trên là

    \bar{x} = \frac{3.3 + 4.5 + 5.14 + 6.14
+ 7.30 + 8.22 + 9.7 + 10.5}{100} = 6,82.

  • Câu 21: Nhận biết

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được: \sqrt{8}= 2,828427125. Giá trị gần đúng của \sqrt{8} chính xác đến hàng phần trăm là:

     Quy tròn \sqrt8 đến hàng phần trăm, ta được: 2,83.

  • Câu 22: Thông hiểu

    Cho bảng kết quả kiểm tra môn Tiếng Anh của học sinh như sau:

    Điểm

    4

    5

    6

    7

    8

    9

    10

    Tổng

    Số học sinh

    1

    2

    3

    4

    5

    4

    1

    N = 20

    Tính số trung vị của mẫu số liệu đã cho?

    Dãy số liệu đã cho có 20 số liệu nên số hạng chính giữa nằm ở số liệu thứ 10 và 11.

    Đó là số 7 và số 8.

    Suy ra M_{e} = \frac{7 + 8}{2} =
7,5.

  • Câu 23: Nhận biết

    Cho dãy số liệu thống kê 21,23,24,25,22,20. Tính số trung bình cộng của dãy số liệu thống kê đã cho?

    Số trung bình cộng của dãy số liệu đã cho là:

    \frac{21 + 23 + 24 + 25 + 22 + 20}{6} =
22,5

    Vậy số trung bình cộng của dãy số liệu thống kê bằng 22,5.

  • Câu 24: Vận dụng

    Dưới đây là bảng thống kê số lần làm bài tập Toán của học sinh lớp 10A.

    Tìm tứ phân vị của mẫu số liệu này.

    Cỡ mẫu số liệu này là: 2 + 4 + 6 + 12 + 8
+ 3 = 35.

    Suy ra giá trị chính giữa là giá trị ở vị trí thứ 18. Đó là số 3. Suy ra trung vị M_{e} = 3 = Q_{2}.

    Trung vị của 17 giá trị bên trái Q_{2} là giá trị ở vị trí thứ 9. Đó là số 2. Suy ra Q_{1} = 2.

    Trung vị của 17 giá trị bên phải Q_{2} là giá trị ở vị trí thứ 27. Đó là số 4. Suy ra Q_{3} = 4.

  • Câu 25: Nhận biết

    Tìm mốt của mẫu số liệu: 1 3 4 2 0 0 5 6.

    Giá trị 0 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 0.

  • Câu 26: Nhận biết

    Tìm số gần đúng của a = 3456782 với độ chính xác d = 100.

    Vì độ chính xác đến hàng trăm nên ta quy tròn a đến hàng nghìn, vậy số quy tròn của a là 3457000.

  • Câu 27: Nhận biết

    Làm tròn số gần đúng 3,14159 với độ chính xác 0,001?

    Số gần đúng 3,14159 làm tròn với độ chính xác 0,001 là: 3,14.

  • Câu 28: Thông hiểu

    Tìm phương sai của dãy số liệu: 43 45 46 41 40.

    Số trung bình của mẫu số liệu là: \overline{x} = \frac{43 + 45 + 46 + 41 + 40}{5} = 43.

    Ta có phương sai: s^{2} = \frac{(43 - 43)^{2} + (45 - 43)^{2} + (46 -
43)^{2} + (41 - 43)^{2} + (40 - 43)^{2}}{5} = 5,2.

    Độ lệch chuẩn: \sqrt{s^{2}} = \sqrt{5,2}
= \frac{\sqrt{130}}{5}.

  • Câu 29: Nhận biết

    Độ lệch chuẩn là gì?

     Độ lệch chuẩn là căn bậc hai của phương sai.

  • Câu 30: Nhận biết

    Cho số gần đúng của \pi3,142. Sai số tuyệt đối của số gần đúng này là:

    Sai số tuyệt đối là: |\pi - 3,142| =
0,0004

  • Câu 31: Nhận biết

    Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng nào sau đây?

    Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng phương sai.

  • Câu 32: Nhận biết

    Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?

    Số đặc trưng đo độ đo phân tán của mẫu số liệu là phương sai.

  • Câu 33: Nhận biết

    Điểm kiểm tra môn Hóa của một nhóm gồm 9 bạn như sau: 1; 1; 3; 6; 7; 8; 8; 9; 10. Tính trung bình cộng của mẫu số liệu trên. (làm tròn đến hàng phần chục)

    Số trung bình của mẫu số liệu trên là: \overline{x} = \frac{1 + 1 + 3 + 6 + 7 + 8 + 8 + 9
+ 10}{9} \approx 5,9.

  • Câu 34: Nhận biết

    Cho số gần đúng a = 32567 với độ chính xác d = 300. Số quy tròn của số a là:

    Độ chính xác đến hàng trăm nên ta quy tròn đến hàng nghìn, ta được số quy tròn là 33000.

  • Câu 35: Vận dụng

    Độ dài các cạnh của đám vườn hình chữ nhật là x = 7,8\ m \pm 2\ cmy = 25,6\ m \pm 4\ cm. Cách viết chuẩn của diện tích là:

    x = 7,8m \pm 2cm = 7,8m \pm
0,02m \Rightarrow 7,78 \leq x \leq
7,82

    y = 25,6m \pm 4cm = 25,6m \pm 0,04m
\Rightarrow 25,56 \leq y \leq 25,64.

    Diện tích mảnh ruộng là S, khi đó:

    198,8568 \leq S \leq 200,5048 \Rightarrow S = 199,6808\ m^{2} \pm 0,824\
m^{2}.

    Cách viết chuẩn của diện tích là 199m^{2}
\pm 0,8m^{2}.

  • Câu 36: Nhận biết

    Xác định số trung vị của dãy số liệu 1;2;5;7;8;9;10?

    Dãy số đã cho được sắp xếp theo thứ tự không giảm.

    Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.

    Do đó số trung vị của dãy trên là 7.

  • Câu 37: Nhận biết

    Cho \overline{a}
= 12,2474487. Số gần đúng của \overline{a} với độ chính xác d = 0,003 là:

    Vì độ chính xác d = 0,003 nên số gần đúng được quy tròn đến hàng phần chục.

    Vậy đáp án đúng là 12,25.

  • Câu 38: Nhận biết

    Quy tròn số 21569 đến hàng chục nghìn ta được:

    Quy tròn số 21569 đến hàng nghìn ta được số quy tròn là 22000.

  • Câu 39: Nhận biết

    Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là:

     Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là: kg

  • Câu 40: Thông hiểu

    Kết quả thi Toán của một số học sinh trong lớp là: 3;6;7;8;8. Trung vị là:

    Dãy số liệu gồm 5 số liệu đã được sắp xếp theo thứ tự không giảm.

    Vì 5 là số lẻ nên trung vị nằm ở vị trí \frac{5 + 1}{2} = 3. Có nghĩa là trung vị bằng 7.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo