Cho số đúng
. Giá trị của
thuộc đoạn nào sau đây?
Ta có:
Cho số đúng
. Giá trị của
thuộc đoạn nào sau đây?
Ta có:
Cho
là số gần đúng của số đúng
. Khi đó
gọi là:
Ta có: gọi là sai số tuyệt đối của số gần đúng
.
Dự báo thời tiết trong 10 ngày tại tỉnh A được ghi lại trong bảng sau:
|
Ngày |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
|
Nhiệt độ (0C) |
24 |
25 |
26 |
27 |
27 |
26 |
27 |
21 |
19 |
18 |
Tìm phương sai của mẫu số liệu đã cho?
Ta có:
Nhiệt độ trung bình của 10 ngày là:
Phương sai của mẫu số liệu là:
Vậy phương sai cần tìm là .
Quy tròn số 73,316 đến hàng phần trăm.
Quy tròn số 73,316 đến hàng phần trăm ta được số 73,32.
Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là:
Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.
Bảng dưới đây thống kê điểm Văn của lớp 11C.

Biết
. Tìm trung vị của bảng số liệu.
Vì tổng số học sinh bằng 40 nên ta có: .
Thống kê lại bảng:
Hai giá trị chính giữa của mẫu số liệu là giá trị ở vị trí thứ 20 và 21. Đó là số 6 và số 6.
Suy ra trung vị .
Khoảng biến thiên tứ phân vị
được xác định bởi:
Khoảng biến thiên tứ phân vị được xác định bởi
.
Kết quả đo chiều dài của một cây cầu được ghi là
, điều đó có nghĩa là gì?
Kết quả đo chiều dài của một cây cầu được ghi là có nghĩa là chiều dài đúng của cây cầu là một số nằm trong khoảng từ
đến
.
Một cửa hàng bán ra một loại áo với các cỡ được thống kê trong bảng sau:

Tìm mốt của mẫu số liệu này.
Vì cỡ áo 40 bán được 81 cái (nhiều nhất) nên mốt của mẫu số liệu là 40.
Cho số gần đúng của
là
. Sai số tuyệt đối của số gần đúng này là:
Sai số tuyệt đối là:
Cho bảng số liệu như sau:
|
Đại diện |
35 |
36 |
37 |
38 |
39 |
40 |
|
Tần số |
7 |
11 |
x |
y |
8 |
5 |
Biết rằng trung vị và cỡ mẫu của mẫu số liệu lần lượt là
và
. Tính giá trị
?
Vì cỡ mẫu bằng 50 nên trung vị của mẫu số liệu là trung bình cộng của 2 số ở chính giữa (vị trí 25 và 26).
Mà trung vị của mẫu số liệu trên là
Hay
Từ đó ta có số liệu đứng thứ 25 là 37 và thứ 26 là 38.
Suy ra
Mà cỡ mẫu bằng 50 suy ra
Điểm kiểm tra môn Toán của Hoa thời gian gần đây được liệt kê như sau:
. Khoảng biến thiên của mẫu số liệu trên là:
Quan sát mẫu số liệu đã cho ta thấy:
Giá trị lớn nhất là 9
Giá trị nhỏ nhất là 3
Suy ra khoảng biến thiên của mẫu số liệu là: 9 – 3 = 6.
Xác định mốt của mẫu số liệu: ![]()
Ta có: số 17 có tần số xuất hiện nhiều nhất
Suy ra mốt của mẫu số liệu là 17.
Một công ty sử dụng dây chuyền X để đóng xi măng với khối lượng mong muốn là 5 kg. Trên bao bì ghi khối lượng là
(kg). Bên cạnh đó, công ty cũng sử dụng dây chuyền Y để đóng gói xi măng với khối lượng chính xác là 20 kg. Trên bao bì ghi thông tin khối lượng là
kg. Chọn kết luận đúng.
Sai số tương đối của dây chuyền X: .
Sai số tương đối của dây chuyền Y: .
Như vậy dây chuyền Y đóng gói tốt hơn do có sai số tương đối nhỏ hơn.
Lớp trưởng lớp 10A thống kê số học sinh và số cây trồng được theo từng tổ trong buổi ngoại khóa như sau:
Tổ | 1 | 2 | 3 | 4 |
Số học sinh | 11 | 10 | 12 | 10 |
Số cây | 30 | 30 | 38 | 29 |
Bạn lớp trưởng cho biết số cây mỗi bạn trong lớp trồng được đều không vượt quá 3 cây. Biết rằng bảng trên có một tổ bị thống kê sai. Tổ mà bạn lớp trưởng đã thống kê sai là:
Xét đáp án Tổ 1
Số cây tối đa tổ 1 trồng được là: 11.3 = 33 (cây)
Vì 30 (cây) < 33 (cây) nên thống kê số cây tổ 1 trồng được không sai.
Xét đáp án Tổ 2
Số cây tối đa tổ 2 trồng được là: 10.3 = 30 (cây)
Vì 30 (cây) = 30 (cây) nên thống kê số cây tổ 1 trồng được không sai.
Xét đáp án Tổ 3
Số cây tối đa tổ 3 trồng được là: 12.3 = 36 (cây)
Vì 38 (cây) > 36 (cây) nên thống kê số cây tổ 3 trồng được là sai.
Xét đáp án Tổ 4
Số cây tối đa tổ 3 trồng được là: 10.3 = 30 (cây)
Vì 29 (cây) < 30 (cây) nên thống kê số cây tổ 4 trồng được không sai.
Kết quả đo chiều cao của một tòa nhà được ghi là
. Tìm độ chính xác của phép đo trên.
Độ chính xác của phép đo trên là: .
Khoảng biến thiên của mẫu số liệu:
là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 16
Giá trị nhỏ nhất là 2
Suy ra khoảng biến thiên của mẫu số liệu là: 16 – 2 = 14.
Điều tra về số học sinh của một trường THPT như sau:
Khối lớp | 10 | 11 | 12 |
Số học sinh | 1120 | 1075 | 900 |
Khoảng biến thiên của mẫu số liệu trên là.
Khoảng biến thiên R = 1120 - 900 = 220.
Nhiệt độ (đơn vị: 0C) tại Mộc Châu trong một ngày sau một vài lần đo như sau:
![]()
![]()
Kết quả nào dưới đây gần nhất với độ lệch chuẩn của mẫu số liệu đã cho?
Ta có:
Nhiệt độ trung bình trong ngày là:
Ta có bảng sau:
|
Giá trị |
Độ lệch |
Bình phương độ lệch |
|
21 |
47,61 |
|
|
23 |
24,01 |
|
|
25 |
8,41 |
|
|
28 |
0,01 |
|
|
30 |
4,41 |
|
|
32 |
16,81 |
|
|
34 |
37,21 |
|
|
31 |
9,61 |
|
|
29 |
1,21 |
|
|
26 |
3,61 |
|
|
Tổng |
152,9 |
|
Suy ra phương sai của mẫu số liệu là:
Suy ra độ lệch chuẩn của mẫu số liệu là:
Kết quả khi đo chiều dài của một cây thước là
. Khi đó sai số tuyệt đối của phép đo được ước lượng là:
Ta có độ dài gần đúng của cây thước là với độ chính xác
Nên sai số tuyệt đối là .
Tìm khoảng tứ phân vị của mẫu số liệu sau: 200 240 220 210 225 235 225 270 250 280.
Sắp xếp mẫu theo thứ tự không giảm: 200 210 220 225 225 235 240 250 270 280
Mẫu 200 210 220 225 225 235 240 250 270 280 có 2 số chính giữa là 225 và 235. Suy ra .
Mẫu 200 210 220 225 225 có số chính giữa là 220. Suy ra .
Mẫu 235 240 250 270 280 có số chính giữa là 270. Suy ra .
Khoảng tứ phân vị: .
Một người sử dụng cùng lúc ba thiết bị khác nhau để đo thành tích chạy của vận động viên A. Người ta ghi lại ba kết quả như sau:
,
,
(đơn vị: giây). Hỏi thiết bị nào đo chính xác nhất theo sai số tương đối?
Sai số tương đối của thiết bị 1: .
Sai số tương đối của thiết bị 2: .
Sai số tương đối của thiết bị 3: .
Vậy thiết bị 1 đo chính xác nhất.
Giả sử
là các tứ phân vị của mẫu số liệu. Khoảng tứ phân vị của mẫu số liệu là:
Khoảng tứ phân vị của mẫu số liệu là: .
Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

Chọn kết luận đúng.
Khoảng biến thiên của mẫu A và mẫu B đều là .
Vậy hai mẫu số liệu có khoảng biến thiên như nhau.
Cho mẫu số liệu:
. Tìm phương sai của mẫu số liệu?
Ta có:
Số trung bình của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Vậy phương sai cần tìm là:
Biết
Viết gần đúng
theo nguyên tắc làm tròn với ba chữ số thập phân và ước lượng sai số tuyệt đối.
Làm tròn với ba chữ số thập phân:
Sai số tuyệt đối:
Vậy sai số tuyệt đối không vượt quá 0,0001.
Khối lượng 30 gói hàng được cho bởi bảng:

Tính số trung bình của bảng trên. (làm tròn đến hàng phần trăm).
Số trung bình cộng của mẫu số liệu trên là:
.
Cho mẫu số liệu như sau:

Khoảng biến thiên của mẫu số liệu trên là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 29.
Giá trị nhỏ nhất là 23
Suy ra khoảng biến thiên của mẫu số liệu là: 29 – 23 = 6.
Vậy đáp án là 6.
Kết quả thi Toán của một số học sinh trong lớp là:
. Trung vị là:
Dãy số liệu gồm 5 số liệu đã được sắp xếp theo thứ tự không giảm.
Vì 5 là số lẻ nên trung vị nằm ở vị trí . Có nghĩa là trung vị bằng 7.
Tìm trung vị của dãy số liệu 4 3 5 1 6 8 6.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 3 4 5 6 6 8.
Dãy trên có giá trị chính giữa bằng 5.
Vậy trung vị của mẫu số liệu bằng 5.
Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là:
Nếu đơn vị đo của số liệu là thì đơn vị của độ lệch chuẩn là:
Khẳng định nào sau đây là đúng?
Khẳng định đúng là: "Nếu sai số tương đối của phép đo càng nhỏ thì chất lượng phép đo càng cao."
Chiều cao của một ngọn đồi là
. Tính độ cao chính xác
của phép đo trên?
Độ chính xác của phép đo
Thời gian chạy 50 m của 20 học sinh được ghi lại trong bảng sau đây:
Thời gian (giây) | 8,3 | 8,4 | 8,5 | 8,7 | 8,8 |
Tần số | 2 | 3 | 9 | 5 | 1 |
Hãy tìm khoảng biến thiên của mẫu số liệu đã cho.
Khoảng biến thiên: .
Xác định khoảng biến thiên
của mẫu số liệu: 6 5 3 7 8 10 15.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 3 5 6 7 8 10 15.
Suy ra khoảng biến thiên .
Cho một mẫu dữ liệu đã được sắp xếp theo thứ tự không giảm
. Khi đó khoảng biến thiên
của mẫu số liệu bằng:
Khoảng biến thiên của mẫu số liệu bằng:
Cho bảng thống kê điểm thi của 100 học sinh (thang điểm 20) trong kì thi khảo sát chất lượng đầu năm như sau:
|
Điểm |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
|
Số học sinh |
1 |
1 |
3 |
5 |
8 |
13 |
19 |
24 |
14 |
10 |
2 |
Giá trị của phương sai gần nhất với giá trị nào sau đây?
Ta có:
Điểm số trung bình của 100 học sinh là:
Giá trị phương sai của mẫu số liệu là:
Vậy phương sai cần tìm là
Tìm mốt của mẫu số liệu: 10 9 7 9 8 1 3 7 8 11 8.
Giá trị 8 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 8.
Cho mẫu số liệu:
. Xác định phương sai của mẫu số liệu đã cho?
Ta có:
Số trung bình của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Vậy phương sai của mẫu số liệu bằng 4.
Số quy tròn của
với độ chính xác
là:
Xét ta thấy chữ số khác
đầu tiên bên trái của d nằm ở hàng phần trăm.
Nên suy ra hàng lớn nhất có độ chính xác là hàng phần trăm nên ta quy tròn số
ở hàng gấp 10 lần hàng vừa tìm được, tức là hàng phần mười.
Xét chữ số ở hàng phần trăm của là 5 nên ta suy ra được số quy tròn của
đến hàng phần mười là
.