Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Thống kê gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Ba nhóm học sinh gồm 5 người, 10 người và 15 người. Khối lượng trung bình của mỗi nhóm lần lượt là 48 kg, 45kg và 40 kg. Khối lượng trung bình của 3 nhóm học sinh là:

    Khối lượng trung bình của 3 nhóm học sinh là:

    \overline x  = \frac{{48.5 + 45.10 + 40.15}}{{5 + 10 + 15}} = 43

  • Câu 2: Nhận biết

    Khoảng biến thiên của mẫu số liệu: 2;5;16;8;7;9;10;12;14;11;6 là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 16

    Giá trị nhỏ nhất là 2

    Suy ra khoảng biến thiên của mẫu số liệu là: 16 – 2 = 14.

  • Câu 3: Nhận biết

    Sản lượng lúa (đơn vị là tạ) của 11 thửa ruộng thí nghiệm có cùng diện tích lần lượt là: 20; 19; 17; 21; 24; 22; 23; 16; 11; 25; 23. Tìm mốt của mẫu số liệu trên.

     Số 23 xuất hiện nhiều nhất nên nó là mốt.

  • Câu 4: Nhận biết

    Tìm mốt của mẫu số liệu: 10 9 7 9 8 1 3 7 8 11 8.

    Giá trị 8 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 8.

  • Câu 5: Thông hiểu

    Liệt kê sĩ số của từng lớp trong khối 10 ta được bảng số liệu như sau:

    Lớp

    10A

    10B

    10C

    10D

    10E

    Sĩ số

    40

    43

    45

    41

    46

    Xác định giá trị gần nhất với độ lệch chuẩn của mẫu số liệu?

    Ta có: N = 5

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{40 + 43 + 45 + 42 +
46}{5} = 43

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{(40 - 43)^{2} + (43 -
43)^{2} + (45 - 43)^{2} + (41 - 43)^{2} + (46 - 43)^{2}}{5} =
5,2

    Suy ra độ lệch chuẩn của mẫu số liệu là:

    s = \sqrt{s^{2}} = 2,28

    Vậy độ lệch chuẩn của mẫu số liệu là 2,28.

  • Câu 6: Nhận biết

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được \sqrt{7} =
2,645751311. Giá trị gần đúng của \sqrt{7} chính xác đến hàng phần trăm là:

    Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 4 ở hàng phần trăm là số 5 nên theo nguyên lý làm tròn ra được kết quả là: 2,65

  • Câu 7: Thông hiểu

    Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của \pi^{2}chính xác đến hàng phần trăm.

    Sử dụng máy tính bỏ túi ta có giá trị của \pi^{2} là 9,8696044. Do đó, giá trị gần đúng của \pi^{2} chính xác đến hàng phần trăm là 9,9.

  • Câu 8: Nhận biết

    Quy tròn số 0,1352 đến hàng phần mười.

    Vì số 0,1352 có chữ số hàng phần trăm là 3 < 5 nên khi làm tròn số 0,1352 đến hàng phần mười, ta được 0,1352 ≈ 0,1

  • Câu 9: Nhận biết

    Cho một mẫu dữ liệu đã được sắp xếp theo thứ tự không giảm x_1 ≤ x_2 ≤ x_3 ≤ ... ≤ x_n. Khi đó khoảng biến thiên R của mẫu số liệu bằng:

    Khoảng biến thiên của mẫu số liệu bằng: R = x_n – x_1

  • Câu 10: Nhận biết

    Xác định mốt của mẫu số liệu: 11;17;13;14;15;14;15;16;17;17

    Ta có: số 17 có tần số xuất hiện nhiều nhất

    Suy ra mốt của mẫu số liệu là 17.

  • Câu 11: Thông hiểu

    Bảng dưới đây ghi lại thời gian chạy trong 1 cuộc thi của các bạn lớp 10B. (đơn vị: giây)

    Hãy tính thời gian chạy trung bình của các bạn. (kết quả làm tròn đến hàng phần nghìn)

    Lớp 10B có: 5 + 7 + 10 + 8 + 6 =
36 (bạn).

    Thời gian chạy trung bình của các bạn là:

    \overline{x} =\frac{5.12 + 7.13 + 10.14 + 8.15 +6.16}{36}\approx 14,083 (giây).

  • Câu 12: Thông hiểu

    Khi điều tra về số dân của tỉnh A, người ta thu được kết quả là \overline{a} = 1.234.872
\pm 30. Tìm số quy tròn của a.

    Số quy tròn của số a là: 1.234.900

  • Câu 13: Vận dụng

    Bảng dưới đây thống kê tuổi thọ của một số bóng đèn (đơn vị: giờ):

    Tìm mốt của bảng trên.

    Ta thấy giá trị 1170 xuất hiện nhiều nhất. Suy ra mốt của bảng trên là 1170.

  • Câu 14: Vận dụng

    Một người cần đo chiều cao của một cái cây. Anh ta thực hiện ba phép đo, kết quả được ghi lại như sau: h_{1} = 10,23 \pm 0,43(m), h_{2} = 10,58 \pm 0,2(m), h_{3} = 9,92 \pm 0,63(m). Trong ba số liệu trên, người thợ nên chọn số liệu nào làm chiều cao của cái cây?

    Phép đo lần 1 có sai số tương đối \delta_{1} \leq \frac{0,43}{10,23} \approx 0,042 =
4,2\%.

    Phép đo lần 2 có sai số tương đối \delta_{2} \leq \frac{0,2}{10,58} \approx 0,0189 =
1,89\%.

    Phép đo lần 3 có sai số tương đối \delta_{3} \leq \frac{0,63}{9,92} \approx 0,0635 =
6,35\%.

    Vì phép đo lần 2 có sai số nhỏ nhất nên người thợ nên chọn h_{2} làm chiều cao của ngôi nhà.

  • Câu 15: Thông hiểu

    Cho kết quả đo chiều cao của 5 học sinh bất kì trong lớp như sau: 168;155;164;158;163. Tính độ lệch chuẩn của mẫu số liệu? (Kết quả làm tròn đến chữ số thập phân thứ hai)

    Chiều cao trung bình của 5 bạn là:

    \overline{x} = \frac{168 + 155 + 164 +
158 + 163}{5} = \frac{808}{5}

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{5}\lbrack\left( 168 -
\frac{808}{5} ight)^{2} + \left( 155 - \frac{808}{5} ight)^{2} +
\left( 164 - \frac{808}{5} ight)^{2}

    + \left( 158 - \frac{808}{5} ight)^{2}
+ \left( 163 - \frac{808}{5} ight)^{2}brack =
\frac{526}{25}

    Độ lệch chuẩn của mẫu số liệu là: s =
\sqrt{s^{2}} = \sqrt{\frac{526}{25}} \approx 4,59.

  • Câu 16: Nhận biết

    Cho mẫu số liệu có s^{2} = 9. Khi đó độ lệch chuẩn của mẫu số liệu bằng:

    Độ lệch chuẩn s = \sqrt{s^{2}} = \sqrt{9}
= 3

  • Câu 17: Thông hiểu

    Xác định khoảng tứ phân vị của mẫu số liệu: 8 6 5 1 9 10 15.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 5 6 8 9 10 15

    Trung vị Q_{2} là giá trị chính giữa của mẫu số liệu, suy ra Q_{2} =
8.

    Trung vị Q_{1} của mẫu 1 5 6 là Q_{1} = 5.

    Trung vị Q_{3} của mẫu 9 10 15 là Q_{3} = 10.

    Vậy khoảng tứ phân vị \Delta_{Q} = Q_{3}
- Q_{1} = 10 - 5 = 5.

  • Câu 18: Thông hiểu

    Bảng dưới đây thống kê thời gian nảy mầm của một giống cây trong các điều kiện khác nhau.

    Tính thời gian trung bình thời gian nảy mầm của loại giống cây trên.

    Thời gian trung bình thời gian nảy mầm của loại giống cây trên là:

    \overline{x} = \frac{8.420 + 17.440 + 18.450 + 16.480 + 11.500 +
10.540}{8 + 17 + 18 + 16 + 11 + 10} = 469.

  • Câu 19: Nhận biết

    Điểm kiểm tra môn Văn của bạn Lan là: 7; 9; 8; 9. Tính số trung bình cộng \overline{x} của mẫu số liệu trên.

    Số trung bình cộng của mẫu số liệu trên là: \overline{x} = \frac{7 + 9 + 8 + 9}{4} =
8,25.

  • Câu 20: Nhận biết

    Chiều cao của một số học sinh nữ lớp 9 (đơn vị cm) được cho trong bảng.

    Tìm khoảng tứ phân vị của mẫu số liệu này.

    Nhận thấy mẫu đã được sắp xếp theo thứ tự không giảm.

    Số liệu chính giữa là 162 nên Q_{2} =
162.

    Số liệu chính giữa của mẫu 151 152 153 154 155 160 160 là 154 nên Q_{1} = 154.

    Số liệu chính giữa của mẫu 163 165 165 165 166 167 167 là 165 nên Q_{3} = 165.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1} = 165 - 154 =
11.

  • Câu 21: Nhận biết

    Số quy tròn của a = 15,31828 \pm 0,001 với độ chính xác đã cho là:

    Số quy tròn của số a = 15,31828 \pm
0,001 là: 15,32.

  • Câu 22: Vận dụng

    Khi tính diện tích hình tròn bán kính R = 3cm, nếu lấy \pi = 3,14 thì độ chính xác là bao nhiêu?

    Ta có diện tích hình tròn S = 3,14. 32\overline{S} = \pi. 32 = 9\pi

    Ta có: 3,14 < \pi < 3,15 \Rightarrow 3,14.9 < 9\pi <
3,15.9 \Rightarrow 28,26 <
\overline{S} < 28,35

    Do đó: \overline{S} - S = \overline{S} -
28,26 < 28,35 - 28,26 =
0,09 \Rightarrow \Delta(S) = \left|
\overline{S} - S ight| < 0,09

    Vậy nếu ta lấy \pi = 3,14 thì diện tích hình tròn là S = 28,26cm2 với độ chính xác d = 0,09.

  • Câu 23: Nhận biết

    Để điều tra các con trong mỗi gia đình của một chung cư gồm 100 gia đình. Người ta chọn ra 20 gia đình ở tầng 4 và thu được mẫu số liệu sau đây:

    2  4  2  1  3  5  1  1  2  3  1  2  2  3  4  1  1  2  3  4.

    Số trung bình cộng \bar{x} của mẫu số liệu trên là:

    Số trung bình cộng của mẫu số liệu trên là:

    \overline x  = \frac{{1.6 + 2.6 + 3.4 + 4.3 + 5}}{{20}} = 2,35

  • Câu 24: Thông hiểu

    Cho mẫu số liệu: 10 7 8 5 4. Tính độ lệch chuẩn của mẫu số liệu đó.

     Số trung bình: \overline x  = \frac{{10 + 7 + 8 + 5 + 4}}{5} = 6,8.

    Phương sai: {s^2} =\frac{{{{(10 - 6,8)}^2} + {{(7 - 6,8)}^2} + ... + {{(4 - 6,8)}^2}}}{2}= 4,56.

    Độ lệch chuẩn: \sqrt {{s^2}}  \approx 2,14.

  • Câu 25: Nhận biết

    Cho biểu đồ lượng mưa trung bình các tháng năm 2019 tại Thành phố Hồ Chí Minh như sau:

    Mẫu số liệu nhận được từ biểu đồ trên có khoảng biến thiên là:

    Quan sát biểu đồ ta thấy:

    Giá trị lớn nhất là 342

    Giá trị nhỏ nhất là: 4

    Vậy khoảng biến thiên của mẫu số liệu là: 342 – 4 = 338.

  • Câu 26: Nhận biết

    Điều tra tiền lương một tháng của 100 người lao động trên địa bàn một xã ta có bàng phân bố tần số sau:

    Tiền lương (VND)

    5.000.000

    6.000.000

    7.000.000

    8.000.000

    9.000.000

    9.500.000

    Tần số

    26

    34

    20

    10

    5

    5

    Tìm mốt của bảng phân bổ tần số trên.

    Ta có giá trị 6.000.000 có tần số lớn nhất nên là mốt của bảng phân bố tần số trên.

  • Câu 27: Thông hiểu

    Quy tròn số 54 739 đến hàng trăm và ước lượng sai số tương đối.

    Quy tròn số 54 739 đến hàng trăm ta được số gần đúng là a = 54{\text{ 700}}

    Ta có:

    {\Delta _a} = \left| {\overline a  - a} ight| = \left| {54739 - 54{\text{ 700}}} ight| = 39 < 40

    => {\delta _a} = \frac{{{\Delta _a}}}{{\left| a ight|}} = \frac{{40}}{{54700}} \approx 0,073\%

  • Câu 28: Vận dụng

    Cho dãy số liệu về chiều cao của một nhóm học sinh như sau: 160;178;150;164;168;176;156;172. Các tứ phân vị của mẫu số liệu là:

    Dãy số liệu sắp xếp theo thứ tự không giảm là: 150;156;160;164;168;172;176;178

    Trung vị là Q_{2} = \frac{164 + 168}{2} =
166

    Nửa dữ liệu bên trái Q_{2} là: 150;156;160;164

    Do đó Q_{1} = \frac{156 + 160}{2} =
158

    Nửa dữ liệu bên phải Q_{2} là: 168;172;176;178

    Do đó Q_{3} = \frac{172 + 176}{2} =
174

  • Câu 29: Nhận biết

    Xác định số trung vị của dãy số liệu 1;2;5;7;8;9;10?

    Dãy số đã cho được sắp xếp theo thứ tự không giảm.

    Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.

    Do đó số trung vị của dãy trên là 7.

  • Câu 30: Thông hiểu

    Xác định khoảng tứ phân vị của mẫu số liệu 1 6 4 7 8 20 15 10.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 4 6 7 8 10 15 20.

    Hai giá trị chính giữa là 7 và 8. Suy ra trung vị Q_{2} = \frac{7 + 8}{2} = 7,5.

    Trung vị Q_{1} của mẫu 1 4 6 7 là Q_{1} = \frac{4 + 6}{2} = 5.

    Trung vị Q_{3} của mẫu 8 20 15 10 là Q_{3} = \frac{10 + 15}{2} =
12,5.

    Vậy khoảng tứ phân vị \Delta_{Q} = Q_{3}
- Q_{1} = 12,5 - 5 = 7,5.

  • Câu 31: Thông hiểu

    Một miếng đất hình chữ nhật có chiều rộng x = 43m ± 0,5m và chiều dài y = 63m ± 0,5m. Tính chu vi P của miếng đất đã cho.

     Giả sử x = 43 + a, y = 63 + b.

    Chu vi miếng đất: P = 2x + 2y = 212 + 2(a + b).

    Theo giả thiết -0,5 ≤ a ≤ 0,5 và -0,5 ≤ b ≤ 0,5 nên -2 ≤ 2(a +b) ≤ 2.

    Do đó P = 212m ± 2m.

  • Câu 32: Nhận biết

    Biết \sqrt[3]{5}=1.709975947....  Viết gần đúng \sqrt[3]{5} theo nguyên tắc làm tròn với hai chữ số thập phân và ước lượng sai số tuyệt đối.

    Làm tròn với hai chữ số thập phân: \sqrt[3]{5} = 1,71

    Sai số tuyệt đối: \left| {1,71-\sqrt[3]{5}} ight| < \left| {1,71-1,7099} ight| = 0,0001

    Vậy sai số tuyệt đối không vượt quá 0,0001.

    Làm tròn với ba chữ số thập phân: \sqrt[3]{5} = 1,710

    Sai số tuyệt đối: \left| {1,71 - \sqrt[3]{5}} ight| < \left| {1,71 - 1,7099} ight| = 0,0001

    Vậy sai số tuyệt đối không vượt quá 0,0001.

    Làm tròn với bốn chữ số thập phân: \sqrt[3]{5} = 1,7100

    \left| {1,71 - \sqrt[3]{5}} ight| < \left| {1,71 - 1,7099} ight| = 0,0001

    Vậy sai số tuyệt đối không vượt quá 0,0001.

  • Câu 33: Vận dụng

    Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

    Chọn kết luận đúng.

    Khoảng biến thiên của mẫu A và mẫu B đều là R = 9 - 3 = 6.

    Vậy hai mẫu số liệu có khoảng biến thiên như nhau.

  • Câu 34: Nhận biết

    Điểm kiểm tra môn Hóa của một nhóm gồm 9 bạn như sau: 1; 1; 3; 6; 7; 8; 8; 9; 10. Tính trung bình cộng của mẫu số liệu trên. (làm tròn đến hàng phần chục)

    Số trung bình của mẫu số liệu trên là: \overline{x} = \frac{1 + 1 + 3 + 6 + 7 + 8 + 8 + 9
+ 10}{9} \approx 5,9.

  • Câu 35: Thông hiểu

    Cho số gần đúng \overline{a} = 37464689 \pm 350. Hãy viết số quy tròn của 37464689?

    Với \overline{a} = 37464689 \pm
350. Số quy tròn của số 37464689 là: 37464700.

  • Câu 36: Vận dụng

    Người ta phân tích thuế mặt hàng A tại 30 tỉnh một quốc gia và tính được: Q_{1} =
26,Q_{2} = 60,Q_{3} = 100. Giá trị nhỏ nhất bằng 20, giá trị lớn nhất bằng 120. Chọn kết luận đúng.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1} = 100 - 26 = 74.

    Khoảng biến thiên R = 120 - 20 =
100.

    Ý nghĩa của khoảng tứ phân vị được thể hiện ở hình ảnh bên dưới:

    Như vậy có khoảng 75% số tỉnh có thuế mặt hàng A lớn hơn 26.

  • Câu 37: Nhận biết

    Cho \overline{a}
= 12,2474487. Số gần đúng của \overline{a} với độ chính xác d = 0,003 là:

    Vì độ chính xác d = 0,003 nên số gần đúng được quy tròn đến hàng phần chục.

    Vậy đáp án đúng là 12,25.

  • Câu 38: Thông hiểu

    Trong một bài kiểm tra chạy của 20 học sinh, thầy giáo đã ghi lại kết quả trong bảng sau:

    Thời gian (giây)

    8,3

    8,4

    8,5

    8,7

    8,8

    Số học sinh

    2

    3

    9

    5

    1

    Số trung bình cộng thời gian chạy của học sinh là:

    Số trung bình cộng thời gian chạy của học sinh là:

    \overline{x} = \frac{2.8,3 + 3.8,4 +
9.8,5 + 5.8,7 + 1.8,8}{20} = 8,53

    Vậy thời gian chạy trung bình của 20 học sinh là 8,53.

  • Câu 39: Nhận biết

    Số quy tròn của số gần đúng a với \overline{a} = 18658 \pm 25 là:

    Quy tròn a đến hàng trăm nên số quy tròn của số gần đúng a là: 18700.

  • Câu 40: Nhận biết

    Khẳng định nào sau đây là đúng?

     Khẳng định đúng là: "Nếu sai số tương đối của phép đo càng nhỏ thì chất lượng phép đo càng cao."

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 21 lượt xem
Sắp xếp theo