Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Thống kê gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một cửa hàng bán ra một loại áo với các cỡ được thống kê trong bảng sau:

    Tìm mốt của mẫu số liệu này.

    Vì cỡ áo 40 bán được 81 cái (nhiều nhất) nên mốt của mẫu số liệu là 40.

  • Câu 2: Thông hiểu

    Trong một bài kiểm tra chạy của 20 học sinh, thầy giáo đã ghi lại kết quả trong bảng sau:

    Thời gian (giây)

    8,3

    8,4

    8,5

    8,7

    8,8

    Số học sinh

    2

    3

    9

    5

    1

    Số trung bình cộng thời gian chạy của học sinh là:

    Số trung bình cộng thời gian chạy của học sinh là:

    \overline{x} = \frac{2.8,3 + 3.8,4 +
9.8,5 + 5.8,7 + 1.8,8}{20} = 8,53

    Vậy thời gian chạy trung bình của 20 học sinh là 8,53.

  • Câu 3: Nhận biết

    Điều tra về số học sinh của một trường THPT như sau:

    Khối lớp

    10

    11

    12

    Số học sinh

    1120

    1075

    900

    Khoảng biến thiên của mẫu số liệu trên là.

     Khoảng biến thiên R = 1120 - 900 = 220.

  • Câu 4: Nhận biết

    Kết quả làm tròn số b = 500\sqrt{7} đến chữ số thập phân thứ hai là:

    Ta có: b \approx 1322,88

  • Câu 5: Nhận biết

    Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là:

    Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.

  • Câu 6: Thông hiểu

    Tìm phương sai của dãy số liệu: 43 45 46 41 40.

    Số trung bình của mẫu số liệu là: \overline{x} = \frac{43 + 45 + 46 + 41 + 40}{5} = 43.

    Ta có phương sai: s^{2} = \frac{(43 - 43)^{2} + (45 - 43)^{2} + (46 -
43)^{2} + (41 - 43)^{2} + (40 - 43)^{2}}{5} = 5,2.

  • Câu 7: Thông hiểu

    Cho bảng thống kê điểm thi của 100 học sinh (thang điểm 20) trong kì thi khảo sát chất lượng đầu năm như sau:

    Điểm

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    Số học sinh

    1

    1

    3

    5

    8

    13

    19

    24

    14

    10

    2

    Giá trị của phương sai gần nhất với giá trị nào sau đây?

    Ta có: N = 100

    Điểm số trung bình của 100 học sinh là:

    \overline{x} = \frac{1}{10}(9.1 + 10.1 +
11.3 + 12.5 + 13.8 + 14.13

    + 15.19 + 16.24 + 17.14 + 18.10 + 19.2)
= 15,23

    Giá trị phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{10}\lbrack(9 -
15,23)^{2}.1 + (10 - 15,23)^{2}.1 + (11 - 15,23)^{2}.3

    + (12 - 15,23)^{2}.5 + (13 -
15,23)^{2}.8 + (14 - 15,23)^{2}.13

    + (15 - 15,23)^{2}.19 + (16 -
15,23)^{2}.24 + (17 - 15,23)^{2}.14

    + (18 - 15,23)^{2}.10 + (19 -
15,23)^{2}.2) = 3,96

    Vậy phương sai cần tìm là 3,96

  • Câu 8: Nhận biết

    Quy tròn số 14869 đến hàng trăm. Số gần đúng nhận được là:

     Quy tròn 14869 đến hàng trăm, ta được: 14900.

  • Câu 9: Thông hiểu

    Viết số quy tròn của số gần đúng 123,4167 có độ chính xác d = 0,005.

    d = 0,005 nhỏ hơn một đơn vị ở hàng phần trăm nên ta làm tròn số đến hàng phần trăm. Số quy tròn là: 123,42.

  • Câu 10: Nhận biết

    Tìm mốt của mẫu số liệu: 1 3 4 2 0 0 5 6.

    Giá trị 0 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 0.

  • Câu 11: Nhận biết

    Cho bảng số liệu số máy tính bán được trong quý I đầu năm 2022 của một cửa hàng:

    Hãng

    HP

    Lenovo

    Asus

    Apple

    Dell

    Razer

    Số máy tính bán được

    55

    45

    42

    36

    60

    15

    Mốt của bảng số liệu trên là hãng máy tính nào?

    Số máy tính bán được nhiều nhất là 60 máy thuộc hãng Dell

    => Mốt của bảng số liệu trên là hãng Dell.

  • Câu 12: Nhận biết

    Làm tròn số 1234,567 đến hàng đơn vị?

    Số 1234,567 làm tròn đến hàng đơn vị là 1235.

  • Câu 13: Nhận biết

    Kết quả kiểm tra Toán của một số học sinh như sau: 9;\ 9;\ 7;\ 8;\ 9;\ 7;\ 10;\ 8;\
8. Khoảng biến thiên của mẫu số liệu là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 10

    Giá trị nhỏ nhất là 7

    Suy ra khoảng biến thiên của mẫu số liệu là: 10 – 7 = 3

  • Câu 14: Vận dụng

    Bạn An đo chiều dài của một sân bóng ghi được 250 \pm 0,2m. Bạn Bằng đo chiều cao của một cột cờ được 15 \pm 0,1m. Trong 2 bạn An và Bằng, bạn nào có phép đo chính xác hơn và sai số tương đối trong phép đo của bạn đó là bao nhiêu?

    Phép đo của bạn A có sai số tương đối \delta_{1} \leq \frac{0,2}{250} = 0,0008 =
0,08\%

    Phép đo của bạn B có sai số tương đối \delta_{2} \leq \frac{0,1}{15} = 0,0066 =
0,66\%

    Như vậy phép đo của bạn A có độ chính xác cao hơn.

  • Câu 15: Nhận biết

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được \sqrt{8} =2,828427125. Giá trị gần đúng của \sqrt{8} chính xác đến hàng phần nghìn là:

    Cần lấy chính xác đến hàng phần trăm nên ta phải lấy ba chữ số thập phân. Vì đứng sau số 8 ở hàng phần trăm là số 4 < 5 nên theo nguyên lý làm tròn ra được kết quả là: 2,828.

  • Câu 16: Nhận biết

    Kết quả kiểm tra cân nặng của 10 học sinh lớp 10C được liệt kê như sau: 45;46;42;50;38;42;44;42;40;60. Khoảng biến thiên của mẫu số liệu này bằng:

    Quan sát dãy số liệu ta có:

    Giá trị lớn nhất bằng 60

    Giá trị nhỏ nhất bằng 38

    Suy ra khoảng biến thiên của mẫu số liệu là 60 – 38 = 22.

  • Câu 17: Vận dụng

    Một người cần đo chiều cao của một cái cây. Anh ta thực hiện ba phép đo, kết quả được ghi lại như sau: h_{1} = 10,23 \pm 0,43(m), h_{2} = 10,58 \pm 0,2(m), h_{3} = 9,92 \pm 0,63(m). Trong ba số liệu trên, người thợ nên chọn số liệu nào làm chiều cao của cái cây?

    Phép đo lần 1 có sai số tương đối \delta_{1} \leq \frac{0,43}{10,23} \approx 0,042 =
4,2\%.

    Phép đo lần 2 có sai số tương đối \delta_{2} \leq \frac{0,2}{10,58} \approx 0,0189 =
1,89\%.

    Phép đo lần 3 có sai số tương đối \delta_{3} \leq \frac{0,63}{9,92} \approx 0,0635 =
6,35\%.

    Vì phép đo lần 2 có sai số nhỏ nhất nên người thợ nên chọn h_{2} làm chiều cao của ngôi nhà.

  • Câu 18: Thông hiểu

    Xác định khoảng tứ phân vị của mẫu số liệu: 2;3;4;5;6?

    Ta có: N = 5 là số lẻ

    Suy ra Q_{2} = 4

    \Rightarrow \left\{ \begin{matrix}Q_{1} = \dfrac{2 + 3}{2} = 2,5 \\Q_{3} = \dfrac{5 + 6}{2} = 5,5 \\\end{matrix} ight.\  \Rightarrow \Delta Q = 5,5 - 2,5 = 3

    Vậy khoảng tứ phân vị của mẫu số liệu bằng 3.

  • Câu 19: Thông hiểu

    Hãy xác định sai số tuyệt đối của số a = 123456 biết sai số tương đối \delta_{a} = 0,2\%.

    Ta có: \delta_{a} =
\frac{\Delta_{a}}{|a|} \Rightarrow \Delta_{a} = \delta_{a}|a| =
146,912.

  • Câu 20: Nhận biết

    Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây: \overline{a} = 17658 ± 16.

    Vì độ chính xác đến hàng chục nên ta phải quy tròn số 17638 đến hàng trăm. Vậy số quy tròn là 17700 (hay viết \overline{a} ≈ 17700).

  • Câu 21: Thông hiểu

    Bảng dưới đây ghi lại thời gian chạy trong 1 cuộc thi của các bạn lớp 10B. (đơn vị: giây)

    Hãy tính thời gian chạy trung bình của các bạn. (kết quả làm tròn đến hàng phần nghìn)

    Lớp 10B có: 5 + 7 + 10 + 8 + 6 =
36 (bạn).

    Thời gian chạy trung bình của các bạn là:

    \overline{x} =\frac{5.12 + 7.13 + 10.14 + 8.15 +6.16}{36}\approx 14,083 (giây).

  • Câu 22: Nhận biết

    Tìm số gần đúng của a = 2851275 với độ chính xác d = 300.

    Vì độ chính xác đến hàng trăm nên ta quy tròn a đến hàng nghìn, vậy số quy tròn của a là 2851000.

  • Câu 23: Nhận biết

    Điểm kiểm tra môn Hóa của một nhóm gồm 9 bạn như sau: 1; 1; 3; 6; 7; 8; 8; 9; 10. Tính trung bình cộng của mẫu số liệu trên. (làm tròn đến hàng phần chục)

    Số trung bình của mẫu số liệu trên là: \overline{x} = \frac{1 + 1 + 3 + 6 + 7 + 8 + 8 + 9
+ 10}{9} \approx 5,9.

  • Câu 24: Nhận biết

    Bảng dưới đây là sản lượng lúa gạo của nước ta giai đoạn 2007 – 2017 (đơn vị: triệu tấn).

    Khoảng biến thiên của mẫu số liệu là:

    Khoảng biến thiên là R = 7,72 - 4,53 =
3,19.

  • Câu 25: Vận dụng

    Bảng dưới đây thống kê tuổi thọ của một số bóng đèn (đơn vị: giờ):

    Tìm mốt của bảng trên.

    Ta thấy giá trị 1170 xuất hiện nhiều nhất. Suy ra mốt của bảng trên là 1170.

  • Câu 26: Nhận biết

    Khoảng biến thiên của mẫu số liệu: 2;5;16;8;7;9;10;12;14;11;6 là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 16

    Giá trị nhỏ nhất là 2

    Suy ra khoảng biến thiên của mẫu số liệu là: 16 – 2 = 14.

  • Câu 27: Nhận biết

    Cho a là số gần đúng của số đúng \overline{a}. Sai số tuyệt đối của số gần đúng a là:

    Sai số tuyệt đối của số gần đúng a là: \Delta_{a} = \left| \overline{a} - a
ight|

  • Câu 28: Vận dụng

    Cho ba nhóm học sinh:

    Nhóm 1 gồm 6 học sinh có cân nặng trung bình là 45kg.

    Nhóm 2 gồm 11 học sinh có cân nặng trung bình là 50kg.

    Nhóm 3 gồm 8 học sinh có cân nặng trung bình là 42kg.

    Hãy tính khối lượng trung bình của cả ba nhóm học sinh trên?

    Tổng khối lượng của mỗi nhóm lần lượt là: \left\{ \begin{matrix}
N_{1} = 6.45kg \\
N_{2} = 11.50kg \\
N_{3} = 8.42kg \\
\end{matrix} ight.

    Khối lượng trung bình của cả ba nhóm là:

    \overline{x} = \frac{N_{1} + N_{2} +
N_{3}}{6 + 8 + 11}

    \Rightarrow \overline{x} = \frac{6.45 +
11.50 + 8.42}{25} = 46,24kg

    Vậy khối lượng trung bình của cả ba nhóm học sinh là \overline{x} = 46,24kg.

  • Câu 29: Thông hiểu

    Cho giá trị gần đúng của \frac{3}{7} là 0,429. Sai số tuyệt đối của số 0,429 là:

    Ta có: \frac{3}{7} =0,428571… nên sai số tuyệt đối của 0,429 là

    \Delta = \left| 0,429 - \frac{3}{7}
ight| < |0,429 - 4,4285| = 0,0005

  • Câu 30: Nhận biết

    Thống kê số cuốn sách mỗi bạn trong lớp đã đọc trong năm 2023, lớp trưởng thu được kết quả như sau:

    Số cuốn sách

    3

    4

    5

    6

    7

    Số học sinh

    6

    15

    3

    8

    8

    Tìm mốt của mẫu số liệu đã cho?

    Mốt của mẫu số liệu là 4 (vì có tần số lớn nhất).

  • Câu 31: Nhận biết

    Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?

    Đáp án: Độ lệch chuẩn.

  • Câu 32: Nhận biết

    Xác định số trung vị của dãy số liệu 1;3;4;5;7;8;9?

    Dãy số đã cho được sắp xếp theo thứ tự không giảm.

    Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.

    Do đó số trung vị của dãy trên là 5.

  • Câu 33: Vận dụng

    Nhiệt độ (đơn vị: 0C) tại Mộc Châu trong một ngày sau một vài lần đo như sau:

    21^{0}C;23^{0}C;25^{0}C;28^{0}C;30^{0}C;

    32^{0}C;34^{0}C;31^{0}C;29^{0}C;26^{0}C.

    Kết quả nào dưới đây gần nhất với độ lệch chuẩn của mẫu số liệu đã cho?

    Ta có: N = 10

    Nhiệt độ trung bình trong ngày là:

    \overline{x} = \frac{21 + 23 + 25 + 28 +
30 + 32 + 34 + 31 + 29 + 26}{10} = 27,9

    Ta có bảng sau:

    Giá trị

    Độ lệch

    Bình phương độ lệch

    21

    21 - 27,9 = - 6,9

    47,61

    23

    23 - 27,9 = - 4,9

    24,01

    25

    25 - 27,9 = - 2,9

    8,41

    28

    28 - 27,9 = 0,1

    0,01

    30

    30 - 27,9 = 2,1

    4,41

    32

    32 - 27,9 = 4,1

    16,81

    34

    34 - 27,9 = 6,1

    37,21

    31

    31 - 27,9 = 3,1

    9,61

    29

    29 - 27,9 = 1,1

    1,21

    26

    26 - 27,9 = - 1,9

    3,61

    Tổng

    152,9

    Suy ra phương sai của mẫu số liệu là: s^{2} = \frac{152,9}{10} =
15,29

    Suy ra độ lệch chuẩn của mẫu số liệu là: s = \sqrt{s^{2}} \approx
3,91

  • Câu 34: Thông hiểu

    Cho dãy số liệu 9;10;15;18;19;27;30;40;46;100;200. Tứ phân vị thứ nhất của mẫu số liệu là:

    Vì cỡ mẫu của mẫu số liệu bằng 11 là số lẻ

    => Số trung vị của mẫu số liệu trên là 27 \Rightarrow Q_{2} = 27

    Nửa dữ liệu bên trái Q_{2} là: 9;10;15;18;19

    Do đó Q_{1} = 15

    Suy ra tứ phân vị thứ nhất của mẫu số liệu là Q_{1} = 15.

  • Câu 35: Thông hiểu

    Phát biểu nào sau đây sai?

    Phát biểu sai là: "Khoảng tứ phân vị bị ảnh hưởng bởi các giá trị rất lớn hoặc rất bé trong mẫu."

  • Câu 36: Thông hiểu

    Tìm số gần đúng của a = 5,2463 với độ chính xác d = 0,001?

    Độ chính xác d = 0,001 nên ta quy tròn số gần đúng a = 5,2463 đến hàng phần trăm và ta được số gần đúng là a
\approx 5,25.

  • Câu 37: Nhận biết

    Xác định khoảng biến thiên R của mẫu số liệu: 6 5 3 7 8 10 15.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 3 5 6 7 8 10 15.

    Suy ra khoảng biến thiên R = 15 - 3 =
12.

  • Câu 38: Thông hiểu

    Kết quả đo chiều dài của một cây cầu được ghi là 152m \pm 0,2m, điều đó có nghĩa là gì?

    Kết quả đo chiều dài của một cây cầu được ghi là 152m \pm 0,2m có nghĩa là chiều dài đúng của cây cầu là một số nằm trong khoảng từ 151,8m đến 152,2m.

  • Câu 39: Thông hiểu

    Một xưởng may gồm 20 người thợ chia đều thành 5 tổ. Mỗi ngày một người thợ làm được 4 hoặc 5 sản phẩm. Cuối ngày, quản tổ thống kê lại kết quả làm việc của từng tổ như sau:

    Tổ

    1

    2

    3

    4

    5

    Số sản phẩm

    17

    19

    19

    21

    20

    Kết quả thống kê của tổ nào là không hợp lí?

    Vì 20 người thợ chia đều thành 5 tổ nên mỗi tổ gồm 4 thợ.

    Trong một ngày mỗi người thợ làm được 4 hoặc 5 sản phẩm nên số sản phẩm tối đa mỗi tổ làm được trong một ngày là 20 sản phẩm.

    Do đó kết quả thống kê không hợp lí nằm ở vị trí tổ 4.

  • Câu 40: Vận dụng

    Người ta phân tích thuế mặt hàng A tại 30 tỉnh một quốc gia và tính được: Q_{1} =
26,Q_{2} = 60,Q_{3} = 100. Giá trị nhỏ nhất bằng 20, giá trị lớn nhất bằng 120. Chọn kết luận đúng.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1} = 100 - 26 = 74.

    Khoảng biến thiên R = 120 - 20 =
100.

    Ý nghĩa của khoảng tứ phân vị được thể hiện ở hình ảnh bên dưới:

    Như vậy có khoảng 75% số tỉnh có thuế mặt hàng A lớn hơn 26.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo