Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Thống kê gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Biểu đồ sau biểu diễn tốc độ tăng trưởng GDP của Nhật Bản trong giai đoạn 1990 đến 2005. Hãy tìm khoảng biến thiên của mẫu số liệu đó.

     Khoảng biến thiên R = 5,1 - 0,4 = 4,7.

  • Câu 2: Nhận biết

    Điểm kiểm tra môn Hóa của một nhóm gồm 9 bạn như sau: 1; 1; 3; 6; 7; 8; 8; 9; 10. Tính trung bình cộng của mẫu số liệu trên. (làm tròn đến hàng phần chục)

    Số trung bình của mẫu số liệu trên là: \overline{x} = \frac{1 + 1 + 3 + 6 + 7 + 8 + 8 + 9
+ 10}{9} \approx 5,9.

  • Câu 3: Nhận biết

    Để điều tra các con trong mỗi gia đình của một chung cư gồm 100 gia đình. Người ta chọn ra 20 gia đình ở tầng 4 và thu được mẫu số liệu sau đây:

    2  4  2  1  3  5  1  1  2  3  1  2  2  3  4  1  1  2  3  4.

    Số trung bình cộng \bar{x} của mẫu số liệu trên là:

    Số trung bình cộng của mẫu số liệu trên là:

    \overline x  = \frac{{1.6 + 2.6 + 3.4 + 4.3 + 5}}{{20}} = 2,35

  • Câu 4: Thông hiểu

    Tìm số trung vị của dãy số liệu 1;1;2;3;4;4;5;5;5;6?

    Dãy số liệu được sắp xếp theo thứ tự không giảm

    Suy ra số trung vị của dãy số liệu đã cho là \frac{4 + 4}{2} = 4.

  • Câu 5: Nhận biết

    Kết quả thống kê số tiền điện của một hộ gia đình trong 6 tháng liên tiếp (đơn vị: nghìn đồng) như sau: 270;\ 300;\ 350;\ 320;\ 310;\ 280. Khoảng biến thiên của mẫu số liệu bằng:

    Giá trị lớn nhất bằng 350

    Giá trị nhỏ nhất bằng 270

    => Khoảng biến thiên của mẫu số liệu là: 350 – 270 = 80.

    Vậy khoảng biến thiên của mẫu số liệu bằng 80.

  • Câu 6: Thông hiểu

    Cho \overline{a}
= \frac{16}{7} = 2,285714... Hãy xác định số gần đúng a của \overline{a} với độ chính xác d = 0,03.

    Ta có hàng của chữ số 0 đầu tiên bên trái của d là hàng phần trăm. Ta cần quy tròn đến hàng phần trăm được số gần đúng là a = 2,29.

  • Câu 7: Nhận biết

    Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là:

    Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.

  • Câu 8: Nhận biết

    Câu lạc bộ Liverpool đạt được điểm số tại giải Ngoại hạng Anh từ mùa giải 2010-2011 đến mùa 2018-2019 như sau: 75 82 87 50 93 70 72 66 67.

    Khoảng biến thiên điểm số là:

    Khoảng biến thiên là R = 93 - 50 =
43.

  • Câu 9: Thông hiểu

    Kết quả đo chiều dài của một cây cầu được ghi là 152m \pm 0,2m. Tìm sai số tương đối của phép đo chiều dài cây cầu.

    Phép đo cây cầu có sai số tương đối thỏa mãn \delta < \frac{0,2}{152} \approx
0,1316\%.

  • Câu 10: Thông hiểu

    Tìm phát biểu đúng về phương sai của một mẫu số liệu.

    Ý nghĩa của phương sai: Phương sai được sử dụng để đánh giá mức độ phân tán của các số liệu thống kê (so với số trung bình).

  • Câu 11: Vận dụng

    Bảng dưới đây thống kê lại tốc độ phát triển của 1 loại vi khuẩn (đơn vị: nghìn con).

    Ta nên lấy giá trị nào là giá trị đại diện của bảng trên?

    Sắp xếp lại số liệu theo thứ tự không giảm:

    20 20 20 30 60 100 150 270 440 980

    Do mẫu số liệu chứa các giá trị chênh lệch rất lớn nên không thể lấy số trung bình hoặc mốt làm giá trị đại diện.

    Tứ phân vị không được coi là giá trị đại diện.

    Do đó ta lấy trung vị làm giá trị đại diện. Ta có:M_{e} = \frac{60 + 100}{2} = 80.

    Chọn đáp án: Trung vị, giá trị đại diện là 80.

  • Câu 12: Thông hiểu

    Viết số quy tròn của số gần đúng 123,4167 có độ chính xác d = 0,005.

    d = 0,005 nhỏ hơn một đơn vị ở hàng phần trăm nên ta làm tròn số đến hàng phần trăm. Số quy tròn là: 123,42.

  • Câu 13: Vận dụng

    Cho dữ liệu thống kê số vốn (đơn vị: triệu đồng) mua phân bón vụ mùa của 10 hộ nông dân ở thôn B như sau:

    2,9;\ 1,2;\ 1,1;\ 0,8;\ 3,5;\ 1,6;\
1,8;\ 1,2;\ 1,3;\ 0,7

    Tìm các giá trị bất thường của mẫu số liệu đã cho?

    Sắp xếp dãy số liệu theo thứ tự không giảm ta được:

    \ 0,7;\ 0,8;1,1;\ 1,2;\ 1,2;\ 1,3;\
1,6;\ 1,8;\ 2,9;\ 3,5

    Ta xác định được các tứ phân vị:\left\{
\begin{matrix}
Q_{2} = 1,25 \\
Q_{1} = 1,1 \\
Q_{3} = 1,8 \\
\end{matrix} ight.

    \Rightarrow \Delta Q = Q_{3} - Q_{1} =
1,8 - 1,1 = 0,7

    \Rightarrow \left\{ \begin{matrix}Q_{1} - \dfrac{3}{2}\Delta Q = 0,05 \\Q_{3} + \dfrac{1}{2}\Delta Q = 2,85 \\\end{matrix} ight.

    Suy ra có hai giá trị bất thường là 2,9;\
3,5.

  • Câu 14: Nhận biết

    Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của \sqrt{3} chính xác đến hàng phần trăm.

    Sử dụng máy tính bỏ túi ta có \sqrt{3} = 1,732050808. Do đó: Giá trị gần đúng của \sqrt{3}chính xác đến hàng phần trăm là 1,73.

  • Câu 15: Nhận biết

    Xác định mốt của mẫu số liệu: 11;17;13;14;15;14;15;16;17;17

    Ta có: số 17 có tần số xuất hiện nhiều nhất

    Suy ra mốt của mẫu số liệu là 17.

  • Câu 16: Thông hiểu

    Tìm phương sai của mẫu số liệu 3;4;5;6;7?

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{3 + 4 + 5 + 6 +
7}{5} = 5

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{(3 - 5)^{2} + (4 - 5)^{2}
+ (5 - 5)^{2} + (6 - 5)^{2} + (7 - 5)^{2}}{4} = 2

    Vậy phương sai cần tìm bằng 2.

  • Câu 17: Vận dụng

    Tìm tứ phân vị trên của bảng số liệu sau:

    Cỡ mẫu số liệu trên là: n = 10 + 8 + 4 +
2 + 1 = 25.

    Giá trị chính giữa của mẫu là giá trị ở vị trí thứ 13, đó là số 27. Suy ra M_{e} = Q_{2} = 27.

    Ta đi tìm trung vị của mẫu số liệu gồm 12 giá trị bên phải M_{e}. Hai giá trị chính giữa là giá trị ở vị trí thứ 19 và 20. Đó là số 28 và số 28.

    Suy ra Q_{3} = \frac{28 + 28}{2} =
28. Vậy tứ phân vị trên là 28.

  • Câu 18: Nhận biết

    Tìm số gần đúng của a = 5,2463 với độ chính xác d = 0,001.

    Vì độ chính xác đến hàng phần nghìn nên ta quy tròn a đến hàng phần trăm, vậy số quy tròn của a là 5,25.

  • Câu 19: Vận dụng

    Bảng dưới đây thống kê điểm của bạn Dũng và Huy:

    Hãy tính phương sai của mẫu số liệu về điểm của hai bạn, từ đó so sánh và chọn kết luận đúng.

    Số trung bình của mẫu số liệu (1) và (2) là:

    \overline{x_{1}} = \frac{8 + 6 + 7 + 5 + 9}{5} = 7

    \overline{x_{2}} = \frac{6 + 7 + 7 + 8 + 7}{5} = 7

    Phương sai của (1) là: {s_{1}}^{2}
= \frac{(8 - 7)^{2} + (6 - 7)^{2} +
(7 - 7)^{2} + (5 - 7)^{2} + (9 - 7)^{2}}{5} = 2

    Phương sai của (2) là: {s_{2}}^{2}
= \frac{(6 - 7)^{2} + (7 - 7)^{2} +
(7 - 7)^{2} + (8 - 7)^{2} + (7 - 7)^{2}}{5} = 0,4

    {s_{2}}^{2} < {s_{1}}^{2} nên bạn Huy học đều hơn bạn Dũng.

  • Câu 20: Nhận biết

    Cho mẫu số liệu: 10; 8; 6; 2; 4. Tính phương sai của mẫu.

    Số trung bình là \overline{x} = \frac{10 + 8 + 6 + 2 + 4}{5} = 6.

    Phương sai là s^{2} = \frac{(10 - 6)^{2} + (8 - 6)^{2} + (6 - 6)^{2} +
(2 - 6)^{2} + (4 - 6)^{2}}{5} =
8.

  • Câu 21: Nhận biết

    Cho mẫu số liệu có s^{2} = 9. Khi đó độ lệch chuẩn của mẫu số liệu bằng:

    Độ lệch chuẩn s = \sqrt{s^{2}} = \sqrt{9}
= 3

  • Câu 22: Vận dụng

    Khi tính diện tích hình tròn bán kính R = 3cm, nếu lấy \pi = 3,14 thì độ chính xác là bao nhiêu?

    Ta có diện tích hình tròn S = 3,14. 32\overline{S} = \pi. 32 = 9\pi

    Ta có: 3,14 < \pi < 3,15 \Rightarrow 3,14.9 < 9\pi <
3,15.9 \Rightarrow 28,26 <
\overline{S} < 28,35

    Do đó: \overline{S} - S = \overline{S} -
28,26 < 28,35 - 28,26 =
0,09 \Rightarrow \Delta(S) = \left|
\overline{S} - S ight| < 0,09

    Vậy nếu ta lấy \pi = 3,14 thì diện tích hình tròn là S = 28,26cm2 với độ chính xác d = 0,09.

  • Câu 23: Nhận biết

    Tìm mốt của mẫu số liệu: 10 9 7 9 8 1 3 7 8 11 8.

    Giá trị 8 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 8.

  • Câu 24: Nhận biết

    Tiền lương hàng tháng của 7 nhân viên trong một công ty du lịch lần lượt là: 6,5; 8,4; 6,9; 7,2; 2,5; 6,7; 3,0. (đơn vị: triệu đồng). Khoảng biến thiên của dãy số liệu thống kê trên bằng:

     Khoảng biến thiên: R = 8,4 - 2,5 = 5,9.

  • Câu 25: Thông hiểu

    Khối lượng 30 gói hàng được cho bởi bảng:

    Tính số trung bình của bảng trên. (làm tròn đến hàng phần trăm).

    Số trung bình cộng của mẫu số liệu trên là:

    \overline{x} =\frac{4.250 + 4.300 + 5.350 + 6.400+ 4.450 + 7.500}{30}\approx 388,33.

  • Câu 26: Nhận biết

    Số quy tròn của số gần đúng a với \overline{a} = 18658 \pm 25 là:

    Quy tròn a đến hàng trăm nên số quy tròn của số gần đúng a là: 18700.

  • Câu 27: Nhận biết

    Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng nào sau đây?

    Để đánh giá mức độ phân tán của các số liệu thống kê so với số trung bình, ta dùng đại lượng phương sai.

  • Câu 28: Nhận biết

    Làm tròn số 5,2463 đến hàng phần trăm ta được kết quả là:

    Làm tròn số 5,2463 đến hàng phần trăm ta được kết quả là 5,25.

  • Câu 29: Thông hiểu

    Số gần đúng của a
= 2,57656 có ba chữ số đáng tin viết dưới dạng chuẩn là:

    Vì số gần đúng của số a có ba chữ số đáng tin nên ba chữ số đó là 2,5,7.

    Nên cách viết dưới dạng chuẩn là 2,57.

  • Câu 30: Thông hiểu

    Nhiệt độ của thành phố Hà Nội ghi nhận trong 10 ngày lần lượt là: 24;\ 21;\ 30;\ 34;\
28;\ 35;\ 33;\ 36;\ 25;\ 27. Khoảng tứ phân vị của mẫu số liệu là:

    Sắp xếp dãy dữ liệu theo thứ tự không giảm là:

    21;24;25;27;28;30;33;34;35;36

    Suy ra Q_{2} = 29;Q_{1} = 25;Q_{3} =
34

    Khoảng tứ phân vị của mẫu số liệu là:

    \Delta Q = Q_{3} - Q_{1} =
9

  • Câu 31: Thông hiểu

    Biết \sqrt[3]{5}=1.709975947.... Viết gần đúng \sqrt[3]{5} theo nguyên tắc làm tròn với ba chữ số thập phân và ước lượng sai số tuyệt đối.

    Làm tròn với ba chữ số thập phân: \sqrt[3]{5} = 1,710

    Sai số tuyệt đối: \left| {1,71 - \sqrt[3]{5}} ight| < \left| {1,71 - 1,7099} ight| = 0,0001

    Vậy sai số tuyệt đối không vượt quá 0,0001.

  • Câu 32: Thông hiểu

    Cho kết quả đo chiều cao của 5 học sinh bất kì trong lớp như sau: 168;155;164;158;163. Tính độ lệch chuẩn của mẫu số liệu? (Kết quả làm tròn đến chữ số thập phân thứ hai)

    Chiều cao trung bình của 5 bạn là:

    \overline{x} = \frac{168 + 155 + 164 +
158 + 163}{5} = \frac{808}{5}

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{5}\lbrack\left( 168 -
\frac{808}{5} ight)^{2} + \left( 155 - \frac{808}{5} ight)^{2} +
\left( 164 - \frac{808}{5} ight)^{2}

    + \left( 158 - \frac{808}{5} ight)^{2}
+ \left( 163 - \frac{808}{5} ight)^{2}brack =
\frac{526}{25}

    Độ lệch chuẩn của mẫu số liệu là: s =
\sqrt{s^{2}} = \sqrt{\frac{526}{25}} \approx 4,59.

  • Câu 33: Thông hiểu

    Phương sai của dãy số 2; 3; 4; 5; 6; 7 là:

     Số trung bình: \overline x  = \frac{{2 + 3 + 4 + 5 + 6 + 7}}{6} = 4,5.

    Phương sai: {s^2} =\frac{{{{(2 - 4,5)}^2} + {{(3 - 4,5)}^2} + ... + {{(7 - 4,5)}^2}}}{6}\approx 2,92.

  • Câu 34: Thông hiểu

    Bảng dưới đây thống kê thời gian nảy mầm của một giống cây trong các điều kiện khác nhau.

    Tính thời gian trung bình thời gian nảy mầm của loại giống cây trên.

    Thời gian trung bình thời gian nảy mầm của loại giống cây trên là:

    \overline{x} = \frac{8.420 + 17.440 + 18.450 + 16.480 + 11.500 +
10.540}{8 + 17 + 18 + 16 + 11 + 10} = 469.

  • Câu 35: Thông hiểu

    Cho mẫu số liệu: 0;5;5;5;6;6;6;7;8;10. Xác định khoảng tứ phân vị của mẫu số liệu?

    Ta có N = 10

    Suy ra Q_{2} = \frac{6 + 6}{2} =
6

    \Rightarrow \left\{ \begin{matrix}
Q_{1} = 5 \\
Q_{3} = 7 \\
\end{matrix} ight.\  \Rightarrow \Delta Q = 7 - 5 = 2

    Vậy khoảng tứ phân vị bằng 2.

  • Câu 36: Nhận biết

    Biết \sqrt[3]{5}=1.709975947....  Viết gần đúng \sqrt[3]{5} theo nguyên tắc làm tròn với hai chữ số thập phân và ước lượng sai số tuyệt đối.

    Làm tròn với hai chữ số thập phân: \sqrt[3]{5} = 1,71

    Sai số tuyệt đối: \left| {1,71-\sqrt[3]{5}} ight| < \left| {1,71-1,7099} ight| = 0,0001

    Vậy sai số tuyệt đối không vượt quá 0,0001.

    Làm tròn với ba chữ số thập phân: \sqrt[3]{5} = 1,710

    Sai số tuyệt đối: \left| {1,71 - \sqrt[3]{5}} ight| < \left| {1,71 - 1,7099} ight| = 0,0001

    Vậy sai số tuyệt đối không vượt quá 0,0001.

    Làm tròn với bốn chữ số thập phân: \sqrt[3]{5} = 1,7100

    \left| {1,71 - \sqrt[3]{5}} ight| < \left| {1,71 - 1,7099} ight| = 0,0001

    Vậy sai số tuyệt đối không vượt quá 0,0001.

  • Câu 37: Nhận biết

    Kết quả đo chiều cao của một tòa nhà được ghi là 120m \pm 0,5m. Tìm độ chính xác của phép đo trên.

    Độ chính xác của phép đo trên là: 0,5m.

  • Câu 38: Nhận biết

    Điểm kiểm tra môn Toán của Hoa thời gian gần đây được liệt kê như sau: 3;\ 4;\ 7;\ 7;\
9. Khoảng biến thiên của mẫu số liệu trên là:

    Quan sát mẫu số liệu đã cho ta thấy:

    Giá trị lớn nhất là 9

    Giá trị nhỏ nhất là 3

    Suy ra khoảng biến thiên của mẫu số liệu là: 9 – 3 = 6.

  • Câu 39: Nhận biết

    Trong các thí nghiệm hằng số C được xác định là 5,73675 với cận trên sai số tuyệt đối là d = 0,00421. Viết chuẩn giá trị gần đúng của C là:

     Vì độ chính xác d = 0,00421 (hàng phần trăm nghìn) nên ta quy tròn số gần đúng đến hàng phần chục nghìn. Ta được: 5,7368.

  • Câu 40: Vận dụng

    Bạn An đo chiều dài của một sân bóng ghi được 250 \pm 0,2m. Bạn Bằng đo chiều cao của một cột cờ được 15 \pm 0,1m. Trong 2 bạn An và Bằng, bạn nào có phép đo chính xác hơn và sai số tương đối trong phép đo của bạn đó là bao nhiêu?

    Phép đo của bạn A có sai số tương đối \delta_{1} \leq \frac{0,2}{250} = 0,0008 =
0,08\%

    Phép đo của bạn B có sai số tương đối \delta_{2} \leq \frac{0,1}{15} = 0,0066 =
0,66\%

    Như vậy phép đo của bạn A có độ chính xác cao hơn.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo