Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Thống kê gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm số gần đúng của a = 2851275 với độ chính xác d = 300.

    Vì độ chính xác đến hàng trăm nên ta quy tròn a đến hàng nghìn, vậy số quy tròn của a là 2851000.

  • Câu 2: Thông hiểu

    Một mẫu số liệu có giá trị tứ phân vị thứ nhất và tứ phân vị thứ ba lần lượt là: 135;205. Hãy chỉ ra giá trị bất thường trong các đáp án dưới đây?

    Ta có: \left\{ \begin{matrix}Q_{3} = 205 \\Q_{1} = 135 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}Q_{1} - \dfrac{3}{2}\Delta Q = 30 \\Q_{3} + \dfrac{1}{2}\Delta Q = 310 \\\end{matrix} ight.

    Vậy giá trị bất thường là 312.

  • Câu 3: Nhận biết

    Hãy viết số quy tròn số gần đúng \overline{a} = 56782349 với độ chính xác d = 100.

    Ta có: d = 100 nên làm tròn đến hàng nghìn

    Vậy đáp án là: 56782000.

  • Câu 4: Thông hiểu

    Cho số a =
367653964 \pm 213. Số quy tròn của số gần đúng 367653964 bằng:

    Hàng lớn nhất có độ chính xác d =
213 là hàng trăm nên ta quy tròn số a đến hàng nghìn.

    Vậy số quy tròn của a là: 367654000.

  • Câu 5: Vận dụng

    Một học sinh đo đường kính của một hình tròn là 24 \pm 0,2 (cm). Bạn đó tính được chu vi hình tròn là p = 75,36 (cm). Biết 3,141 < \pi <
3,142. Hãy ước lượng sai số tuyệt đối của p.

    Gọi \overline{a}\overline{p} lần lượt là đường kính và chu vi của hình tròn.

    Ta có: 23,8 \leq \overline{a} \leq
24,2.

    Ta có: 3,141.23,8 = 74,7558 \leq\overline{p} = \pi\overline{a}\leq 3,142.24,2 = 76,0364.

    Do đó 74,7558 - 75,36 = - 0,6042 \leq\overline{p} - 75,36\leq 76,0364 - 75,36 = 0,6764.

    Vậy sai số tuyệt đối của p\Delta_{p} = \left| \overline{p} - 75,36
ight| \leq 0,6764.

  • Câu 6: Nhận biết

    Kết quả kiểm tra của 40 học sinh lớp 10A được thống kê trong bảng sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Số học sinh

    2

    3

    7

    18

    3

    2

    4

    1

    Tìm mốt của mẫu số liệu đã cho?

    Mốt của mẫu số liệu là: 6 (vì có nhiều học sinh đạt điểm 6 nhất trong 40 học sinh).

  • Câu 7: Vận dụng

    Bảng dưới đây thống kê lại tốc độ phát triển của 1 loại vi khuẩn (đơn vị: nghìn con).

    Ta nên lấy giá trị nào là giá trị đại diện của bảng trên?

    Sắp xếp lại số liệu theo thứ tự không giảm:

    20 20 20 30 60 100 150 270 440 980

    Do mẫu số liệu chứa các giá trị chênh lệch rất lớn nên không thể lấy số trung bình hoặc mốt làm giá trị đại diện.

    Tứ phân vị không được coi là giá trị đại diện.

    Do đó ta lấy trung vị làm giá trị đại diện. Ta có:M_{e} = \frac{60 + 100}{2} = 80.

    Chọn đáp án: Trung vị, giá trị đại diện là 80.

  • Câu 8: Thông hiểu

    Kết quả điểm kiểm tra 45 phút môn Hóa Học của 100 em học sinh được trình bày ở bảng sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Cộng

    Tần số

    3

    5

    14

    14

    30

    22

    7

    5

    100

    Số trung bình cộng của bảng phân bố tần số nói trên là:

    Số trung bình cộng của bảng phân bố tần số nói trên là

    \bar{x} = \frac{3.3 + 4.5 + 5.14 + 6.14
+ 7.30 + 8.22 + 9.7 + 10.5}{100} = 6,82.

  • Câu 9: Nhận biết

    Làm tròn số 5,2463 đến hàng phần trăm ta được kết quả là:

    Làm tròn số 5,2463 đến hàng phần trăm ta được kết quả là 5,25.

  • Câu 10: Thông hiểu

    Một xưởng may gồm 20 người thợ chia đều thành 5 tổ. Mỗi ngày một người thợ làm được 4 hoặc 5 sản phẩm. Cuối ngày, quản tổ thống kê lại kết quả làm việc của từng tổ như sau:

    Tổ

    1

    2

    3

    4

    5

    Số sản phẩm

    17

    19

    19

    21

    20

    Kết quả thống kê của tổ nào là không hợp lí?

    Vì 20 người thợ chia đều thành 5 tổ nên mỗi tổ gồm 4 thợ.

    Trong một ngày mỗi người thợ làm được 4 hoặc 5 sản phẩm nên số sản phẩm tối đa mỗi tổ làm được trong một ngày là 20 sản phẩm.

    Do đó kết quả thống kê không hợp lí nằm ở vị trí tổ 4.

  • Câu 11: Thông hiểu

    Viết số quy tròn của số gần đúng 123,4167 có độ chính xác d = 0,005.

    d = 0,005 nhỏ hơn một đơn vị ở hàng phần trăm nên ta làm tròn số đến hàng phần trăm. Số quy tròn là: 123,42.

  • Câu 12: Nhận biết

    Tìm mốt của mẫu số liệu: 1 3 4 2 0 0 5 6.

    Giá trị 0 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 0.

  • Câu 13: Nhận biết

    Tìm khoảng tứ phân vị mẫu số liệu điểm của một nhóm học sinh lớp 10:

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 4 5 5 6 7 7 7 8 8 9 9 10.

    Hai số liệu chính giữa là 7 và 7 nên Q_{2} = \frac{7 + 7}{2} = 7.

    Trung vị của mẫu số liệu 4 5 5 6 7 7 chính là Q_{1} = \frac{5 + 6}{2} = 5,5.

    Trung vị của mẫu số liệu 7 8 8 9 9 10 chính là Q_{3} = \frac{8 + 9}{2} = 8,5.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1} = 8,5 - 5,5 = 3.

  • Câu 14: Nhận biết

    Xác định khoảng biến thiên R của mẫu số liệu: 6 5 3 7 8 10 15.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 3 5 6 7 8 10 15.

    Suy ra khoảng biến thiên R = 15 - 3 =
12.

  • Câu 15: Thông hiểu

    Phường A thống kê số con của mỗi hộ gia đình trong khu dân cư như sau:

    Số con

    0

    1

    2

    3

    4

    Số hộ gia đình

    2

    7

    5

    1

    1

    Phương sai của mẫu số liệu bằng:

    Số con trung bình là:

    \overline{x} = \frac{0.2 + 1.7 + 2.5 +
3.1 + 4.1}{16} = 1,5

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{16}\lbrack 2.\left( 0 -
\frac{3}{2} ight)^{2} + 7.\left( 1 - \frac{3}{2} ight)^{2} +
5.\left( 2 - \frac{3}{2} ight)^{2}+ 1.\left( 3 - \frac{3}{2} ight)^{2} +
1.\left( 4 - \frac{3}{2} ight)^{2}brack = 1

    Vậy phương sai cần tìm là s^{2} =
1.

  • Câu 16: Nhận biết

    Kết quả kiểm tra cân nặng của 10 học sinh lớp 10C được liệt kê như sau: 45;46;42;50;38;42;44;42;40;60. Khoảng biến thiên của mẫu số liệu này bằng:

    Quan sát dãy số liệu ta có:

    Giá trị lớn nhất bằng 60

    Giá trị nhỏ nhất bằng 38

    Suy ra khoảng biến thiên của mẫu số liệu là 60 – 38 = 22.

  • Câu 17: Nhận biết

    Chọn khẳng định sai?

    Khẳng định sai: “Giá trị bất thường trong mẫu số liệu thuộc \left\lbrack Q_{1} - \frac{3}{2}\Delta Q;Q_{3} +
\frac{1}{2}\Delta Q ightbrack

    Sửa lại: “Giá trị bất thường trong mẫu số liệu nằm ngoài đoạn \left\lbrack Q_{1} - \frac{3}{2}\Delta Q;Q_{3} +
\frac{1}{2}\Delta Q ightbrack”.

  • Câu 18: Nhận biết

    Cho biết kết quả đo chiều cao của một số học sinh lớp 10E như sau: 163;165;169;167;164;168;150;161. Xác định khoảng biến thiên của mẫu số liệu?

    Quan sát dãy số liệu ta thấy:

    Giá trị lớn nhất là 169

    Giá trị nhỏ nhất là 150

    Vậy khoảng biến thiên của mẫu số liệu bằng 169 – 150 = 19.

  • Câu 19: Thông hiểu

    Tìm độ lệch chuẩn của dãy số liệu: 18 14 15 8.

    Số trung bình của mẫu số liệu là: \overline{x} = \frac{8 + 15 + 14 + 18}{4} = 13.

    Ta có phương sai: s^{2} = \frac{(8 - 13)^{2} + (15 - 13)^{2} + (14 - 13)^{2}
+ (18 - 13)^{2}}{4} =
13,75.

    Độ lệch chuẩn: \sqrt{s^{2}} =
\sqrt{13,75} = \frac{\sqrt{55}}{2}.

  • Câu 20: Thông hiểu

    Cho số a =
367653964 \pm 213. Số quy tròn của số gần đúng 367653964 là:

    Với a = 367653964 \pm 213 suy ra độ chính xác d = 213

    Vì độ chính xác đến hàng trăm nên số quy trình của số a được làm tròn đến hàng nghìn.

    Vì chữ số hàng năm là 9 > 5

    => Chữ số hàng nghìn được tăng thêm 1 đơn vị từ 3 đến 4 và các chữ số đằng sau thay bởi chữ số 0.

    => Số quy tròn của số gần đúng 367653964 là: .367654000.

  • Câu 21: Thông hiểu

    Số trung bình của mẫu số liệu 23;41;71;29;48;45;72;41 là:

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{23 + 29 + 2.41 + 45
+ 48 + 71 + 72}{8} = 46,25

    Vậy số trung bình là 46,25.

  • Câu 22: Nhận biết

    Biểu đồ sau biểu diễn tốc độ tăng trưởng GDP của Nhật Bản trong giai đoạn 1990 đến 2005. Hãy tìm khoảng biến thiên của mẫu số liệu đó.

     Khoảng biến thiên R = 5,1 - 0,4 = 4,7.

  • Câu 23: Nhận biết

    Số cam có trong các giỏ được ghi lại như sau: 2;8;12;16. Số trung vị của mẫu số liệu là:

    Vì cỡ mẫu N = 4 là số chẵn nên trung vị bằng trung bình cộng của số liệu ở vị trí thứ hai và thứ ba.

    => Số trung vị của mẫu số liệu: \frac{8 + 12}{2} = 10

  • Câu 24: Nhận biết

    Tìm trung vị của dãy số liệu 4 3 5 1 6 8 6.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 3 4 5 6 6 8.

    Dãy trên có giá trị chính giữa bằng 5.

    Vậy trung vị của mẫu số liệu bằng 5.

  • Câu 25: Thông hiểu

    Kết quả đi chiều dài của một cây thước là l = 50 \pm 0,2(cm) thì sai số tương đối của phép đo là:

    Ta có:

    \delta_{l} \leq \frac{d_{l}}{|l|} =
\frac{0,2}{50} = \frac{1}{250}

  • Câu 26: Vận dụng

    Độ dài các cạnh của đám vườn hình chữ nhật là x = 7,8\ m \pm 2\ cmy = 25,6\ m \pm 4\ cm. Cách viết chuẩn của diện tích là:

    x = 7,8m \pm 2cm = 7,8m \pm
0,02m \Rightarrow 7,78 \leq x \leq
7,82

    y = 25,6m \pm 4cm = 25,6m \pm 0,04m
\Rightarrow 25,56 \leq y \leq 25,64.

    Diện tích mảnh ruộng là S, khi đó:

    198,8568 \leq S \leq 200,5048 \Rightarrow S = 199,6808\ m^{2} \pm 0,824\
m^{2}.

    Cách viết chuẩn của diện tích là 199m^{2}
\pm 0,8m^{2}.

  • Câu 27: Thông hiểu

    Cho dãy số liệu thống kê 11,13,x + 10,x^{2} - 1,11,10. Tìm số nguyên dương x, biết số trung bình cộng của dãy số liệu thống kê đó bằng 12,5.

    Điểm trung bình cộng của dãy số trên là

    \frac{11 + 13 + (x + 10) + \left( x^{2}
- 1 ight) + 12 + 10}{6} = 12,5

    \Leftrightarrow x^{2} + x - 20 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 4(tm) \\
x = - 5(ktm) \\
\end{matrix} ight.

    Vậy x = 4 thỏa mãn yêu cầu bài toán.

  • Câu 28: Thông hiểu

    Tính sản lượng lúa trung bình trong bảng thống kê dưới đây:

    Sản lượng (tạ)

    20

    21

    22

    23

    24

    Tần số

    5

    8

    11

    10

    6

    Sản lượng lúa trung bình là:

    \overline{x} = \frac{5.20 + 8.21 + 11.22
+ 10.23 + 6.24}{40} = 22,1

    Vậy sản lượng lúa trung bình là 22,1 tạ.

  • Câu 29: Thông hiểu

    Kết quả khi đo chiều dài của một cây thước là \overline{a} = 45 \pm 0,2(cm). Khi đó sai số tuyệt đối của phép đo được ước lượng là:

    Ta có độ dài gần đúng của cây thước là a= 45 với độ chính xác d =0,2cm

    Nên sai số tuyệt đối là \Delta_{a} \leq d= 0,2.

  • Câu 30: Vận dụng

    Dưới đây là bảng thống kê số lần làm bài tập Toán của học sinh lớp 10A.

    Tìm tứ phân vị của mẫu số liệu này.

    Cỡ mẫu số liệu này là: 2 + 4 + 6 + 12 + 8
+ 3 = 35.

    Suy ra giá trị chính giữa là giá trị ở vị trí thứ 18. Đó là số 3. Suy ra trung vị M_{e} = 3 = Q_{2}.

    Trung vị của 17 giá trị bên trái Q_{2} là giá trị ở vị trí thứ 9. Đó là số 2. Suy ra Q_{1} = 2.

    Trung vị của 17 giá trị bên phải Q_{2} là giá trị ở vị trí thứ 27. Đó là số 4. Suy ra Q_{3} = 4.

  • Câu 31: Vận dụng

    Biểu đồ dưới đây thể hiện tốc độ tăng trưởng GDP của Việt Nam giai đoạn 2014 – 2021. Tính độ lệch chuẩn của mẫu số liệu.

    Số trung bình của mẫu là:

    \overline{x} = \frac{5,98 + 6,68 + 6,21 + 6,81 + 7,08 + 7,02 +
2,91 + 2,58}{8} =
5,65875

    Từ đó tính được phương sai: s^{2} =
2,96.

    Suy ra độ lệch chuẩn: \sqrt{s^{2}} =
1,72.

  • Câu 32: Nhận biết

    Khi sử dụng máy tính bỏ túi ta được \sqrt{5} = 2,236067977. Giá trị gần đúng của \sqrt{5} quy tròn đến hàng phần trăm là:

    Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 3 ở hàng phần trăm là số 6 > 5 nên theo nguyên lý làm tròn ra được kết quả là: 2,24.

  • Câu 33: Nhận biết

    Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là:

     Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là: kg

  • Câu 34: Thông hiểu

    Tìm các giá trị bất thường của mẫu số liệu:

    5 6 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 48 49

    Mẫu số liệu đã được sắp xếp theo thứ tự không giảm.

    Giá trị chính giữa là 27 nên Q_{2} =
27.

    Giá trị chính giữa của mẫu 5 6 19 21 22 23 24 25 26 là 22 nên Q_{1} = 22.

    Giá trị chính giữa của mẫu 28 29 30 31 32 33 34 48 49 là 32 nên Q_{3} = 32.

    Khoảng tứ phân vị \Delta_{Q} = 32 - 22 =
10.

    Ta có: Q_{1} - 1,5\Delta_{Q} = 22 - 1,5.10 = 7.

    Ta co: Q_{3} - 1,5\Delta_{Q} = 32 + 1,5.10 = 47.

    Ta thấy có giá trị 5 và 6 nhỏ hơn 7 nên đây là 2 giá trị bất thường.

    Ta thấy có 48 và 49 là hai giá trị lớn hơn 47 nên đây là 2 giá trị bất thường.

  • Câu 35: Nhận biết

    Cho mẫu số liệu như sau:

    Khoảng biến thiên của mẫu số liệu trên là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 29.

    Giá trị nhỏ nhất là 23

    Suy ra khoảng biến thiên của mẫu số liệu là: 29 – 23 = 6.

    Vậy đáp án là 6.

  • Câu 36: Nhận biết

    Thống kê số cuốn sách mỗi bạn trong lớp đã đọc trong năm 2023, lớp trưởng thu được kết quả như sau:

    Số cuốn sách

    3

    4

    5

    6

    7

    Số học sinh

    6

    15

    3

    8

    8

    Tìm mốt của mẫu số liệu đã cho?

    Mốt của mẫu số liệu là 4 (vì có tần số lớn nhất).

  • Câu 37: Nhận biết

    Làm tròn số gần đúng 3,14159 với độ chính xác 0,001?

    Số gần đúng 3,14159 làm tròn với độ chính xác 0,001 là: 3,14.

  • Câu 38: Nhận biết

    Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của \sqrt{3} chính xác đến hàng phần trăm.

    Sử dụng máy tính bỏ túi ta có \sqrt{3} = 1,732050808. Do đó: Giá trị gần đúng của \sqrt{3}chính xác đến hàng phần trăm là 1,73.

  • Câu 39: Nhận biết

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được: \sqrt{8}= 2,828427125. Giá trị gần đúng của \sqrt{8} chính xác đến hàng phần trăm là:

     Quy tròn \sqrt8 đến hàng phần trăm, ta được: 2,83.

  • Câu 40: Vận dụng

    Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

    Chọn kết luận đúng.

    Khoảng biến thiên của mẫu A và mẫu B đều là R = 9 - 3 = 6.

    Vậy hai mẫu số liệu có khoảng biến thiên như nhau.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 7 lượt xem
Sắp xếp theo