Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Thống kê gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm số gần đúng của a = 5,2463 với độ chính xác d = 0,001.

    Vì độ chính xác đến hàng phần nghìn nên ta quy tròn a đến hàng phần trăm, vậy số quy tròn của a là 5,25.

  • Câu 2: Nhận biết

    Tiền lương hàng tháng của 7 nhân viên trong một công ty du lịch lần lượt là: 6,5; 8,4; 6,9; 7,2; 2,5; 6,7; 3,0. (đơn vị: triệu đồng). Khoảng biến thiên của dãy số liệu thống kê trên bằng:

     Khoảng biến thiên: R = 8,4 - 2,5 = 5,9.

  • Câu 3: Thông hiểu

    Một xưởng may gồm 20 người thợ chia đều thành 5 tổ. Mỗi ngày một người thợ làm được 4 hoặc 5 sản phẩm. Cuối ngày, quản tổ thống kê lại kết quả làm việc của từng tổ như sau:

    Tổ

    1

    2

    3

    4

    5

    Số sản phẩm

    17

    19

    19

    21

    20

    Kết quả thống kê của tổ nào là không hợp lí?

    Vì 20 người thợ chia đều thành 5 tổ nên mỗi tổ gồm 4 thợ.

    Trong một ngày mỗi người thợ làm được 4 hoặc 5 sản phẩm nên số sản phẩm tối đa mỗi tổ làm được trong một ngày là 20 sản phẩm.

    Do đó kết quả thống kê không hợp lí nằm ở vị trí tổ 4.

  • Câu 4: Nhận biết

    Cho số gần đúng a = 3942156 \pm 300. Hãy viết số quy tròn của a?

    Ta có số quy tròn của a = 3942156 \pm
300 là: 3942000.

  • Câu 5: Thông hiểu

    Kết quả điều tra về điện năng tiêu thụ (đơn vị: kw/h) của một số hộ dân trong khu vực được thống kê như sau: 45;100;50;85;70;65;80;70;65;100;45. Tính trung vị của dãy số liệu đã cho?

    Sắp xếp mẫu số liệu theo thứ tự không giảm như sau:

    45;45;50;65;65;70;70;80;85;100;100

    Vì cỡ mẫu N = 11 (số lẻ) nên số trung vị của dãy số liệu trên là số liệu thứ 6.

    Suy ra M_{e} = 70.

  • Câu 6: Thông hiểu

    Xác định các tứ phân vị của mẫu số liệu: 60;78;80;64;70;76;80;74;86;90?

    Sắp xếp mẫu dữ liệu theo thứ tự không giảm như sau:

    60;64;70;74;76;78;80;80;86;90

    Ta có: N = 10 suy ra trung vị bằng trung bình cộng của dữ liệu nằm ở vị trí thứ 5 và thứ 6

    Q_{2} = \frac{76 + 78}{2} =
77

    Vậy đáp án đúng là: Q_{1} = 70,Q_{2} =
77,Q_{3} = 80.

  • Câu 7: Nhận biết

    Biểu đồ dưới đây thể hiện tỉ lệ lạm phát cơ bản bình quân năm trong giai đoạn 2018 – 2022:

    (Nguồn: Niêm giám thống kê 2022)

    Trong giai đoạn từ 2018 – 2021, năm có tỉ lệ lạm phát cơ bản bình quân năm cao nhất là?

    Trong giai đoạn từ 2018 – 2021, năm 2020 có tỉ lệ lạm phát cơ bản bình quân năm cao nhất.

  • Câu 8: Vận dụng

    Cho ba nhóm học sinh:

    Nhóm 1 gồm 6 học sinh có cân nặng trung bình là 45kg.

    Nhóm 2 gồm 11 học sinh có cân nặng trung bình là 50kg.

    Nhóm 3 gồm 8 học sinh có cân nặng trung bình là 42kg.

    Hãy tính khối lượng trung bình của cả ba nhóm học sinh trên?

    Tổng khối lượng của mỗi nhóm lần lượt là: \left\{ \begin{matrix}
N_{1} = 6.45kg \\
N_{2} = 11.50kg \\
N_{3} = 8.42kg \\
\end{matrix} ight.

    Khối lượng trung bình của cả ba nhóm là:

    \overline{x} = \frac{N_{1} + N_{2} +
N_{3}}{6 + 8 + 11}

    \Rightarrow \overline{x} = \frac{6.45 +
11.50 + 8.42}{25} = 46,24kg

    Vậy khối lượng trung bình của cả ba nhóm học sinh là \overline{x} = 46,24kg.

  • Câu 9: Nhận biết

    Giả sử Q_{1},Q_{2},Q_{3} là các tứ phân vị của mẫu số liệu. Khoảng tứ phân vị của mẫu số liệu là:

    Khoảng tứ phân vị của mẫu số liệu là: \Delta Q = Q_{3} - Q_{1}.

  • Câu 10: Nhận biết

    Số cam có trong các giỏ được ghi lại như sau: 2;8;12;16. Số trung vị của mẫu số liệu là:

    Vì cỡ mẫu N = 4 là số chẵn nên trung vị bằng trung bình cộng của số liệu ở vị trí thứ hai và thứ ba.

    => Số trung vị của mẫu số liệu: \frac{8 + 12}{2} = 10

  • Câu 11: Nhận biết

    Chọn khẳng định sai?

    Khẳng định sai: “Giá trị bất thường trong mẫu số liệu thuộc \left\lbrack Q_{1} - \frac{3}{2}\Delta Q;Q_{3} +
\frac{1}{2}\Delta Q ightbrack

    Sửa lại: “Giá trị bất thường trong mẫu số liệu nằm ngoài đoạn \left\lbrack Q_{1} - \frac{3}{2}\Delta Q;Q_{3} +
\frac{1}{2}\Delta Q ightbrack”.

  • Câu 12: Thông hiểu

    Số quy tròn của 45,6534 với độ chính xác d = 0,01 là:

    Xét d = 0,01 ta thấy chữ số khác 0 đầu tiên bên trái của d nằm ở hàng phần trăm.

    Nên suy ra hàng lớn nhất có độ chính xác d = 0,01 là hàng phần trăm nên ta quy tròn số 45,6534 ở hàng gấp 10 lần hàng vừa tìm được, tức là hàng phần mười.

    Xét chữ số ở hàng phần trăm của 45,6534 là 5 nên ta suy ra được số quy tròn của 45,6534 đến hàng phần mười là 45,7.

  • Câu 13: Vận dụng

    Hình dưới thống kê tỉ lệ phần trăm thất nghiệp ở một số quốc gia:

    Hãy tìm giá trị bất thường (nếu có) của mẫu số liệu.

    Sắp xếp các giá trị theo thứ tự không giảm:

    3,2 3,6 4,4 4,5 5,0 5,4 6,0 6,7 7,0 7,2 7,7 7,8 8,4 8,6 8,7

    Từ mẫu số liệu ta tính được: Q_{2} =
6,7Q_{1} = 4,5, Q_{3} = 7,8.

    Suy ra \Delta_{Q} = Q_{3} - Q_{1} = 7,8 -
4,5 = 3,3.

    Ta có: Q_{1} - 1,5\Delta_{Q} = 4,5 -
1,5.3,3 = - 0,45.

    Ta có: Q_{3} + 1,5\Delta_{Q} = 7,8 +
1,5.3,3 = 12,75.

    Ta thấy không có số liệu nào nhỏ hơn -
0,45 và lớn hơn 12,75 nên mẫu không có giá trị bất thường.

  • Câu 14: Vận dụng

    Bảng dưới đây thể hiện sản lượng lúa (đơn vị: tạ) của một số thửa ruộng:

    Tính phương sai của mẫu số liệu.

    Số trung bình của mẫu là:

    \overline{x} =\frac{1.4 + 3.4,5 +
4.5 + 1.5,5 + 1.6}{1 + 3 + 4 + 1 + 1} = 4,9.

    Phương sai:

    s^{2} = \frac{(4 - 4,9)^{2} + 3.(4,5 - 4,9)^{2} + 4(5 -
4,9)^{2} + (5,5 - 4,9)^{2} + (6 - 4,9)^{2}}{10} = 0,29.

  • Câu 15: Nhận biết

    Độ lệch chuẩn là gì?

     Độ lệch chuẩn là căn bậc hai của phương sai.

  • Câu 16: Nhận biết

    Điều tra về số học sinh của một trường THPT như sau:

    Khối lớp

    10

    11

    12

    Số học sinh

    1120

    1075

    900

    Khoảng biến thiên của mẫu số liệu trên là.

     Khoảng biến thiên R = 1120 - 900 = 220.

  • Câu 17: Thông hiểu

    Nhiệt độ của thành phố Hà Nội ghi nhận trong 10 ngày lần lượt là: 24;\ 21;\ 30;\ 34;\
28;\ 35;\ 33;\ 36;\ 25;\ 27. Khoảng tứ phân vị của mẫu số liệu là:

    Sắp xếp dãy dữ liệu theo thứ tự không giảm là:

    21;24;25;27;28;30;33;34;35;36

    Suy ra Q_{2} = 29;Q_{1} = 25;Q_{3} =
34

    Khoảng tứ phân vị của mẫu số liệu là:

    \Delta Q = Q_{3} - Q_{1} =
9

  • Câu 18: Nhận biết

    Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây: \overline{a} = 28658 ± 100.

    Vì độ chính xác đến hàng trăm nên ta phải quy tròn số 17638 đến hàng nghìn. Vậy số quy tròn là 29000 (hay viết \overline{a} ≈ 29000).

  • Câu 19: Vận dụng

    Bạn An đo chiều dài của một sân bóng ghi được 250 \pm 0,2m. Bạn Bằng đo chiều cao của một cột cờ được 15 \pm 0,1m. Trong 2 bạn An và Bằng, bạn nào có phép đo chính xác hơn và sai số tương đối trong phép đo của bạn đó là bao nhiêu?

    Phép đo của bạn A có sai số tương đối \delta_{1} \leq \frac{0,2}{250} = 0,0008 =
0,08\%

    Phép đo của bạn B có sai số tương đối \delta_{2} \leq \frac{0,1}{15} = 0,0066 =
0,66\%

    Như vậy phép đo của bạn A có độ chính xác cao hơn.

  • Câu 20: Nhận biết

    Biết \sqrt[3]{5}=1.709975947....  Viết gần đúng \sqrt[3]{5} theo nguyên tắc làm tròn với hai chữ số thập phân và ước lượng sai số tuyệt đối.

    Làm tròn với hai chữ số thập phân: \sqrt[3]{5} = 1,71

    Sai số tuyệt đối: \left| {1,71-\sqrt[3]{5}} ight| < \left| {1,71-1,7099} ight| = 0,0001

    Vậy sai số tuyệt đối không vượt quá 0,0001.

    Làm tròn với ba chữ số thập phân: \sqrt[3]{5} = 1,710

    Sai số tuyệt đối: \left| {1,71 - \sqrt[3]{5}} ight| < \left| {1,71 - 1,7099} ight| = 0,0001

    Vậy sai số tuyệt đối không vượt quá 0,0001.

    Làm tròn với bốn chữ số thập phân: \sqrt[3]{5} = 1,7100

    \left| {1,71 - \sqrt[3]{5}} ight| < \left| {1,71 - 1,7099} ight| = 0,0001

    Vậy sai số tuyệt đối không vượt quá 0,0001.

  • Câu 21: Nhận biết

    Khoảng biến thiên của mẫu số liệu: 2;5;16;8;7;9;10;12;14;11;6 là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 16

    Giá trị nhỏ nhất là 2

    Suy ra khoảng biến thiên của mẫu số liệu là: 16 – 2 = 14.

  • Câu 22: Nhận biết

    Cho giá trị gần đúng của \frac{8}{17} là 0,47. Sai số tuyệt đối của 0,47 là:

    Ta có \left| 0,47 - \frac{8}{17} ight|
< 0,00059 suy ra sai số tuyệt đối của 0,47 là 0,001.

  • Câu 23: Nhận biết

    Trong 9 ngày liên tiếp, số sản phẩm mà tổ sản xuất hoàn thành mỗi ngày được ghi lại như sau: 27;26;21;28;25;30;26;23;26. Giá trị khoảng biến thiên của mẫu số liệu là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 30

    Giá trị nhỏ nhất là 21

    Suy ra khoảng biến thiên của mẫu số liệu là: 30 – 21 = 9.

  • Câu 24: Thông hiểu

    Hãy xác định sai số tuyệt đối của số a = 123456 biết sai số tương đối \delta_{a} = 0,2\%.

    Ta có: \delta_{a} =
\frac{\Delta_{a}}{|a|} \Rightarrow \Delta_{a} = \delta_{a}|a| =
146,912.

  • Câu 25: Thông hiểu

    Cho bảng thống kê điểm thi của 100 học sinh (thang điểm 20) trong kì thi khảo sát chất lượng đầu năm như sau:

    Điểm

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    Số học sinh

    1

    1

    3

    5

    8

    13

    19

    24

    14

    10

    2

    Giá trị của phương sai gần nhất với giá trị nào sau đây?

    Ta có: N = 100

    Điểm số trung bình của 100 học sinh là:

    \overline{x} = \frac{1}{10}(9.1 + 10.1 +
11.3 + 12.5 + 13.8 + 14.13

    + 15.19 + 16.24 + 17.14 + 18.10 + 19.2)
= 15,23

    Giá trị phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{10}\lbrack(9 -
15,23)^{2}.1 + (10 - 15,23)^{2}.1 + (11 - 15,23)^{2}.3

    + (12 - 15,23)^{2}.5 + (13 -
15,23)^{2}.8 + (14 - 15,23)^{2}.13

    + (15 - 15,23)^{2}.19 + (16 -
15,23)^{2}.24 + (17 - 15,23)^{2}.14

    + (18 - 15,23)^{2}.10 + (19 -
15,23)^{2}.2) = 3,96

    Vậy phương sai cần tìm là 3,96

  • Câu 26: Nhận biết

    Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là:

     Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là: kg

  • Câu 27: Thông hiểu

    Một miếng đất hình chữ nhật có chiều rộng x = 43m ± 0,5m và chiều dài y = 63m ± 0,5m. Tính chu vi P của miếng đất đã cho.

     Giả sử x = 43 + a, y = 63 + b.

    Chu vi miếng đất: P = 2x + 2y = 212 + 2(a + b).

    Theo giả thiết -0,5 ≤ a ≤ 0,5 và -0,5 ≤ b ≤ 0,5 nên -2 ≤ 2(a +b) ≤ 2.

    Do đó P = 212m ± 2m.

  • Câu 28: Thông hiểu

    Cho bảng số liệu thống kê điểm kiểm tra môn Hóa học của lớp 10A như sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Số học sinh

    2

    2

    4

    6

    15

    9

    3

    1

    Độ lệch chuẩn của mẫu số liệu trên là:

    Ta có: N = 42

    Điểm trung bình của học sinh lớp 10A là:

    \overline{x} = \frac{2.3 + 2.4 + 4.5 +
6.6 + 15.7 + 9.8 + 3.9 + 1.10}{42} \approx 6,76

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{42}\lbrack 2.(3 -
6,67)^{2} + 2.(4 - 6,76)^{2} + ... + 1(10 - 6,67)^{2}brack \approx
2,37

    Độ lệch chuẩn của mẫu số liệu đã cho là:

    s = \sqrt{s^{2}} \approx
1,54

    Vậy độ lệch chuẩn cần tìm là: 1,54.

  • Câu 29: Nhận biết

    Cho một mẫu dữ liệu đã được sắp xếp theo thứ tự không giảm x_1 ≤ x_2 ≤ x_3 ≤ ... ≤ x_n. Khi đó khoảng biến thiên R của mẫu số liệu bằng:

    Khoảng biến thiên của mẫu số liệu bằng: R = x_n – x_1

  • Câu 30: Thông hiểu

    Liệt kê sĩ số của từng lớp trong khối 10 ta được bảng số liệu như sau:

    Lớp

    10A

    10B

    10C

    10D

    10E

    Sĩ số

    40

    43

    45

    41

    46

    Xác định giá trị gần nhất với độ lệch chuẩn của mẫu số liệu?

    Ta có: N = 5

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{40 + 43 + 45 + 42 +
46}{5} = 43

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{(40 - 43)^{2} + (43 -
43)^{2} + (45 - 43)^{2} + (41 - 43)^{2} + (46 - 43)^{2}}{5} =
5,2

    Suy ra độ lệch chuẩn của mẫu số liệu là:

    s = \sqrt{s^{2}} = 2,28

    Vậy độ lệch chuẩn của mẫu số liệu là 2,28.

  • Câu 31: Vận dụng

    Độ dài các cạnh của đám vườn hình chữ nhật là x = 7,8\ m \pm 2\ cmy = 25,6\ m \pm 4\ cm. Cách viết chuẩn của diện tích là:

    x = 7,8m \pm 2cm = 7,8m \pm
0,02m \Rightarrow 7,78 \leq x \leq
7,82

    y = 25,6m \pm 4cm = 25,6m \pm 0,04m
\Rightarrow 25,56 \leq y \leq 25,64.

    Diện tích mảnh ruộng là S, khi đó:

    198,8568 \leq S \leq 200,5048 \Rightarrow S = 199,6808\ m^{2} \pm 0,824\
m^{2}.

    Cách viết chuẩn của diện tích là 199m^{2}
\pm 0,8m^{2}.

  • Câu 32: Thông hiểu

    Cho mẫu số liệu: 17 21 35 43 8 59 72 119. Tìm tứ phân vị.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 8 17 21 35 43 59 72 119.

    Trung vị của mẫu số liệu trên là: \frac{35 + 43}{2} = 39.

    Trung vị của dãy 8 17 21 35 là: \frac{17
+ 21}{2} = 19.

    Trung vị của dãy 43 59 72 119 là: \frac{59 + 72}{2} = 65,5.

    Vậy Q_{1} = 19;\ Q_{2} = 39;\ Q_{3} =
65,5.

  • Câu 33: Nhận biết

    Kết quả đo chiều cao của một học sinh được ghi là 175cm \pm 0,2cm. Điều đó có nghĩa là gì?

    Kết quả đo chiều cao của một học sinh được ghi là 175cm \pm 0,2cm có nghĩa là: “Chiều cao đúng của học sinh là một số nằm trong khoảng từ 174,8cm đến 175,2cm.”

  • Câu 34: Thông hiểu

    Bạn Linh đo quãng đường đi học từ nhà đến trường là a = 568m với độ chính xác d = 0,3m. Sai số tương đối trong phép đo là:

    Sai số tương đối trong phép đo là \delta
= \frac{d}{|a|} = \frac{0,3}{568} \approx 0,05\%.

  • Câu 35: Thông hiểu

    Cho giá trị gần đúng của \frac{8}{17} là 0,47. Sai số tuyệt đối của số 0,47 là:

    Ta có \frac{8}{17} =
0,470588235294\ldots nên sai số tuyệt đối của 0,47 là

    \Delta = \left| 0,47 - \frac{8}{17}
ight| < |0,47 - 4,471| = 0,001.

  • Câu 36: Nhận biết

    Điểm kiểm tra môn Hóa của một nhóm gồm 9 bạn như sau: 1; 1; 3; 6; 7; 8; 8; 9; 10. Tính trung bình cộng của mẫu số liệu trên. (làm tròn đến hàng phần chục)

    Số trung bình của mẫu số liệu trên là: \overline{x} = \frac{1 + 1 + 3 + 6 + 7 + 8 + 8 + 9
+ 10}{9} \approx 5,9.

  • Câu 37: Thông hiểu

    Số điểm của một vận động viên trong 5 hiệp được ghi lại như sau: 9 8 15 8 20. Tính tứ phân vị của mẫu số liệu trên.

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 8 8 9 15 20.

    Số liệu chính giữa là 9 nên trung vị của mẫu số liệu trên là 9.

    Trung vị của mẫu số liệu 8 8 là \frac{8 +
8}{2} = 8.

    Trung vị của mẫu số liệu 15 20 là \frac{15 + 20}{2} = 17,5.

    Vậy Q_{1} = 8;\ Q_{2} = 9;\ Q_{3} =
17,5.

  • Câu 38: Nhận biết

    Điểm kiểm tra môn Toán của Hoa thời gian gần đây được liệt kê như sau: 3;\ 4;\ 7;\ 7;\
9. Khoảng biến thiên của mẫu số liệu trên là:

    Quan sát mẫu số liệu đã cho ta thấy:

    Giá trị lớn nhất là 9

    Giá trị nhỏ nhất là 3

    Suy ra khoảng biến thiên của mẫu số liệu là: 9 – 3 = 6.

  • Câu 39: Nhận biết

    Số 2,457 là số quy tròn của 2,4571 với sai số tuyệt đối là:

     Sai số tuyệt đối: {\Delta _a} = \left| {2,4571 - 2,457} ight| = 0,0001.

  • Câu 40: Vận dụng

    Điểm kiểm tra môn Lịch Sử của một học sinh qua 8 lần thi được ghi lại như sau:

    5,5;\ 6;\ 6;\ x;\ 7;\ 7,5;\ 8;\
9

    Biết số trung vị của mẫu số liệu trên bằng 6,5. Kết quả nào dưới đây đúng?

    N = 8 là số chẵn nên trung vị của mẫu số liệu là trung bình cộng của số liện ở vị trí thứ 4 và thứ 5.

    Suy ra 6,5 = \frac{x + 7}{2}
\Leftrightarrow x = 6

    Vậy x = 6.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo