Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Thống kê gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Xác định khoảng tứ phân vị của mẫu số liệu: 2;3;4;5;6?

    Ta có: N = 5 là số lẻ

    Suy ra Q_{2} = 4

    \Rightarrow \left\{ \begin{matrix}Q_{1} = \dfrac{2 + 3}{2} = 2,5 \\Q_{3} = \dfrac{5 + 6}{2} = 5,5 \\\end{matrix} ight.\  \Rightarrow \Delta Q = 5,5 - 2,5 = 3

    Vậy khoảng tứ phân vị của mẫu số liệu bằng 3.

  • Câu 2: Vận dụng

    Một người sử dụng cùng lúc ba thiết bị khác nhau để đo thành tích chạy của vận động viên A. Người ta ghi lại ba kết quả như sau: 9,592 \pm 0,004, 9,593 \pm 0,005, 9,589 \pm 0,006 (đơn vị: giây). Hỏi thiết bị nào đo chính xác nhất theo sai số tương đối?

    Sai số tương đối của thiết bị 1: \delta_{1} \leq \frac{0,004}{9,592} \approx
0,04\%.

    Sai số tương đối của thiết bị 2: \delta_{2} \leq \frac{0,005}{9,593} \approx
0,05\%.

    Sai số tương đối của thiết bị 3: \delta_{3} \leq \frac{0,006}{9,589} \approx
0,06\%.

    Vậy thiết bị 1 đo chính xác nhất.

  • Câu 3: Nhận biết

    Cho bảng số liệu ghi lại điểm của 40 học sinh trong bài kiểm tra 1 tiết môn toán như sau:

    Điểm

    3

    4

    5

    6

    7

    8

    9

    10

    Cộng

    Số học sinh

    2

    3

    7

    18

    3

    2

    4

    1

    40

    Số trung bình cộng \bar{x} của mẫu số liệu trên là:

    Số trung bình cộng của mẫu số liệu trên là:

    \overline x  = \frac{{3.2 + 4.3 + 5.7 + 6.18 + 7.3 + 8.2 + 9.4 + 10.1}}{{40}} = 6,1.

  • Câu 4: Nhận biết

    Cho số gần đúng a = 32567 với độ chính xác d = 300. Số quy tròn của số a là:

    Độ chính xác đến hàng trăm nên ta quy tròn đến hàng nghìn, ta được số quy tròn là 33000.

  • Câu 5: Nhận biết

    Điểm kiểm tra môn Hóa của một nhóm gồm 9 bạn như sau: 1; 1; 3; 6; 7; 8; 8; 9; 10. Tính trung bình cộng của mẫu số liệu trên. (làm tròn đến hàng phần chục)

    Số trung bình của mẫu số liệu trên là: \overline{x} = \frac{1 + 1 + 3 + 6 + 7 + 8 + 8 + 9
+ 10}{9} \approx 5,9.

  • Câu 6: Vận dụng

    Khi tính diện tích hình tròn bán kính R = 3cm, nếu lấy \pi = 3,14 thì độ chính xác là bao nhiêu?

    Ta có diện tích hình tròn S = 3,14. 32\overline{S} = \pi. 32 = 9\pi

    Ta có: 3,14 < \pi < 3,15 \Rightarrow 3,14.9 < 9\pi <
3,15.9 \Rightarrow 28,26 <
\overline{S} < 28,35

    Do đó: \overline{S} - S = \overline{S} -
28,26 < 28,35 - 28,26 =
0,09 \Rightarrow \Delta(S) = \left|
\overline{S} - S ight| < 0,09

    Vậy nếu ta lấy \pi = 3,14 thì diện tích hình tròn là S = 28,26cm2 với độ chính xác d = 0,09.

  • Câu 7: Nhận biết

    Cho mẫu số liệu có s^{2} = 9. Khi đó độ lệch chuẩn của mẫu số liệu bằng:

    Độ lệch chuẩn s = \sqrt{s^{2}} = \sqrt{9}
= 3

  • Câu 8: Thông hiểu

    Cho mẫu số liệu: 8;4;7;6;5;10;9. Xác định phương sai của mẫu số liệu đã cho?

    Ta có: N = 7

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{8 + 4 + 7 + 6 + 5 +
10 + 9}{7} = 7

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{7}\lbrack(8 - 7)^{2} +
(4 - 7)^{2} + (7 - 7)^{2}

    + (6 - 7)^{2} + (5 - 7)^{2} + (10 -
7)^{2} + (9 - 7)^{2}brack = 4

    Vậy phương sai của mẫu số liệu bằng 4.

  • Câu 9: Nhận biết

    Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được \sqrt{8} =2,828427125. Giá trị gần đúng của \sqrt{8} chính xác đến hàng phần nghìn là:

    Cần lấy chính xác đến hàng phần trăm nên ta phải lấy ba chữ số thập phân. Vì đứng sau số 8 ở hàng phần trăm là số 4 < 5 nên theo nguyên lý làm tròn ra được kết quả là: 2,828.

  • Câu 10: Nhận biết

    Viết số quy tròn của \pi đến hàng phần nghìn?

    Ta có số quy tròn của \pi đến hàng phần nghìn là 3,142.

  • Câu 11: Thông hiểu

    Ba nhóm học sinh gồm 5 người, 10 người và 15 người. Khối lượng trung bình của mỗi nhóm lần lượt là 48 kg, 45kg và 40 kg. Khối lượng trung bình của 3 nhóm học sinh là:

    Khối lượng trung bình của 3 nhóm học sinh là:

    \overline x  = \frac{{48.5 + 45.10 + 40.15}}{{5 + 10 + 15}} = 43

  • Câu 12: Nhận biết

    Kết quả làm tròn số b = 500\sqrt{7} đến chữ số thập phân thứ hai là:

    Ta có: b \approx 1322,88

  • Câu 13: Vận dụng

    Bảng sau thống kê điểm kiểm tra của học sinh lớp 10C.

    Tìm trung vị của dãy số liệu trên.

    Cỡ mẫu số liệu này là: 3 + 7 + 4 + 4 + 6
+ 7 + 3 + 3 + 2 + 2 =
41.

    Suy ra giá trị chính giữa là giá trị ở vị trí thứ 20. Đó là số 17.

    Vậy trung vị M_{e} = 17.

  • Câu 14: Nhận biết

    Chọn khẳng định sai?

    Khẳng định sai: “Giá trị bất thường trong mẫu số liệu thuộc \left\lbrack Q_{1} - \frac{3}{2}\Delta Q;Q_{3} +
\frac{1}{2}\Delta Q ightbrack

    Sửa lại: “Giá trị bất thường trong mẫu số liệu nằm ngoài đoạn \left\lbrack Q_{1} - \frac{3}{2}\Delta Q;Q_{3} +
\frac{1}{2}\Delta Q ightbrack”.

  • Câu 15: Thông hiểu

    Bảng dưới đây thống kê thời gian nảy mầm của một giống cây trong các điều kiện khác nhau.

    Tính thời gian trung bình thời gian nảy mầm của loại giống cây trên.

    Thời gian trung bình thời gian nảy mầm của loại giống cây trên là:

    \overline{x} = \frac{8.420 + 17.440 + 18.450 + 16.480 + 11.500 +
10.540}{8 + 17 + 18 + 16 + 11 + 10} = 469.

  • Câu 16: Nhận biết

    Khẳng định nào sau đây là đúng?

     Trong đo đạc và tính toán, ta thường chỉ nhận được số gần đúng.

  • Câu 17: Thông hiểu

    Tìm phương sai của mẫu số liệu: 8;\ 6;\ 7;\ 5;\ 9?

    Ta có: N = 5

    Số trung bình là:

    \overline{x} = \frac{8 + 6 + 7 + 5 +
9}{5} = 7

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{(8 - 7)^{2} + (6 - 7)^{2}
+ (7 - 7)^{2} + (5 - 7)^{2} + (9 - 7)^{2}}{5} = 2

    Vậy đáp án là 2.

  • Câu 18: Thông hiểu

    Viết số quy tròn của số gần đúng 123,4167 có độ chính xác d = 0,005.

    d = 0,005 nhỏ hơn một đơn vị ở hàng phần trăm nên ta làm tròn số đến hàng phần trăm. Số quy tròn là: 123,42.

  • Câu 19: Thông hiểu

    Kết quả thi Toán của một số học sinh trong lớp là: 3;6;7;8;8. Trung vị là:

    Dãy số liệu gồm 5 số liệu đã được sắp xếp theo thứ tự không giảm.

    Vì 5 là số lẻ nên trung vị nằm ở vị trí \frac{5 + 1}{2} = 3. Có nghĩa là trung vị bằng 7.

  • Câu 20: Thông hiểu

    Một thửa ruộng hình chữ nhật có chiều dài là x = 23m ± 0,01m và chiều rộng là y = 15m ± 0,01m. Tính diện tích S của thửa ruộng đã cho.

    Diện tích của thửa ruộng là: S = x.y = (23 ± 0,01).(15 ± 0,01)= 23.15 ± (23.0,01 + 15.0,01 + 0,01.0,01)= 345 ± 0,3801 (m^2).

  • Câu 21: Nhận biết

    Quy tròn số 2,654 đến hàng chục, được số 2,7. Khi đó sai số tuyệt đối là:

    Sai số tuyệt đối là:

    \Delta_{a} = \left| a - \overline{a}
ight| = |2,7 - 2,654| = 0,046

  • Câu 22: Thông hiểu

    Kết quả đo chiều dài của một cây cầu được ghi là 152m \pm 0,2m, điều đó có nghĩa là gì?

    Kết quả đo chiều dài của một cây cầu được ghi là 152m \pm 0,2m có nghĩa là chiều dài đúng của cây cầu là một số nằm trong khoảng từ 151,8m đến 152,2m.

  • Câu 23: Nhận biết

    Trong kết quả thống kê điểm môn Tiếng Anh của một lớp có 40 học sinh, điểm thấp nhất là 2 điểm và cao nhất là 10 điểm. Khẳng định nào sau đây đúng?

    Khi thực hiện tính điểm trung bình hay trung vị còn phụ thuộc vào tần số của mỗi điểm.

    Nếu chỉ có khoảng điểm thì không thể kết luận về điểm trung bình môn Tiếng Anh của lớp đó và trung vị.

  • Câu 24: Nhận biết

    Tìm khoảng tứ phân vị mẫu số liệu điểm của một nhóm học sinh lớp 10:

    Sắp xếp mẫu số liệu theo thứ tự không giảm: 4 5 5 6 7 7 7 8 8 9 9 10.

    Hai số liệu chính giữa là 7 và 7 nên Q_{2} = \frac{7 + 7}{2} = 7.

    Trung vị của mẫu số liệu 4 5 5 6 7 7 chính là Q_{1} = \frac{5 + 6}{2} = 5,5.

    Trung vị của mẫu số liệu 7 8 8 9 9 10 chính là Q_{3} = \frac{8 + 9}{2} = 8,5.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1} = 8,5 - 5,5 = 3.

  • Câu 25: Thông hiểu

    Cho kết quả đo chiều cao của 5 học sinh bất kì trong lớp như sau: 168;155;164;158;163. Tính độ lệch chuẩn của mẫu số liệu? (Kết quả làm tròn đến chữ số thập phân thứ hai)

    Chiều cao trung bình của 5 bạn là:

    \overline{x} = \frac{168 + 155 + 164 +
158 + 163}{5} = \frac{808}{5}

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{5}\lbrack\left( 168 -
\frac{808}{5} ight)^{2} + \left( 155 - \frac{808}{5} ight)^{2} +
\left( 164 - \frac{808}{5} ight)^{2}

    + \left( 158 - \frac{808}{5} ight)^{2}
+ \left( 163 - \frac{808}{5} ight)^{2}brack =
\frac{526}{25}

    Độ lệch chuẩn của mẫu số liệu là: s =
\sqrt{s^{2}} = \sqrt{\frac{526}{25}} \approx 4,59.

  • Câu 26: Nhận biết

    Trong 9 ngày liên tiếp, số sản phẩm mà tổ sản xuất hoàn thành mỗi ngày được ghi lại như sau: 27;26;21;28;25;30;26;23;26. Giá trị khoảng biến thiên của mẫu số liệu là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 30

    Giá trị nhỏ nhất là 21

    Suy ra khoảng biến thiên của mẫu số liệu là: 30 – 21 = 9.

  • Câu 27: Nhận biết

    Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là:

     Nếu đơn vị đo của số liệu là kg thì đơn vị của độ lệch chuẩn là: kg

  • Câu 28: Nhận biết

    Tìm mốt của mẫu số liệu: 10 9 7 9 8 1 3 7 8 11 8.

    Giá trị 8 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 8.

  • Câu 29: Nhận biết

    Điều tra tiền lương một tháng của 100 người lao động trên địa bàn một xã ta có bàng phân bố tần số sau:

    Tiền lương (VND)

    5.000.000

    6.000.000

    7.000.000

    8.000.000

    9.000.000

    9.500.000

    Tần số

    26

    34

    20

    10

    5

    5

    Tìm mốt của bảng phân bổ tần số trên.

    Ta có giá trị 6.000.000 có tần số lớn nhất nên là mốt của bảng phân bố tần số trên.

  • Câu 30: Thông hiểu

    Cho số a =
367653964 \pm 213. Số quy tròn của số gần đúng 367653964 bằng:

    Hàng lớn nhất có độ chính xác d =
213 là hàng trăm nên ta quy tròn số a đến hàng nghìn.

    Vậy số quy tròn của a là: 367654000.

  • Câu 31: Thông hiểu

    Kết quả đi chiều dài của một cây thước là l = 50 \pm 0,2(cm) thì sai số tương đối của phép đo là:

    Ta có:

    \delta_{l} \leq \frac{d_{l}}{|l|} =
\frac{0,2}{50} = \frac{1}{250}

  • Câu 32: Thông hiểu

    Số trung bình của mẫu số liệu 23;41;71;29;48;45;72;41 là:

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{23 + 29 + 2.41 + 45
+ 48 + 71 + 72}{8} = 46,25

    Vậy số trung bình là 46,25.

  • Câu 33: Vận dụng

    Người ta phân tích thuế mặt hàng A tại 30 tỉnh một quốc gia và tính được: Q_{1} =
26,Q_{2} = 60,Q_{3} = 100. Giá trị nhỏ nhất bằng 20, giá trị lớn nhất bằng 120. Chọn kết luận đúng.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1} = 100 - 26 = 74.

    Khoảng biến thiên R = 120 - 20 =
100.

    Ý nghĩa của khoảng tứ phân vị được thể hiện ở hình ảnh bên dưới:

    Như vậy có khoảng 75% số tỉnh có thuế mặt hàng A lớn hơn 26.

  • Câu 34: Vận dụng

    Bảng dưới đây thống kê lại tốc độ phát triển của 1 loại vi khuẩn (đơn vị: nghìn con).

    Ta nên lấy giá trị nào là giá trị đại diện của bảng trên?

    Sắp xếp lại số liệu theo thứ tự không giảm:

    20 20 20 30 60 100 150 270 440 980

    Do mẫu số liệu chứa các giá trị chênh lệch rất lớn nên không thể lấy số trung bình hoặc mốt làm giá trị đại diện.

    Tứ phân vị không được coi là giá trị đại diện.

    Do đó ta lấy trung vị làm giá trị đại diện. Ta có:M_{e} = \frac{60 + 100}{2} = 80.

    Chọn đáp án: Trung vị, giá trị đại diện là 80.

  • Câu 35: Vận dụng

    Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện nhân 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.

    Giả sử các số liệu trong mẫu là: a_{1};a_{2};...;a_{10} đã sắp xếp theo thứ tự không giảm.

    Khoảng biến thiên: R_{1} = a_{10} -
a_{1}.

    Nhân hai với tất cả các số liệu: 2a_{1};2a_{2};...;2a_{10}.

    Khoảng biến thiên: R_{2} = 2a_{10} -
2a_{1} = 2(a_{10} - a_{1}).

    Suy ra R_{2} = 2R_{1}.

  • Câu 36: Nhận biết

    Tiền lương hàng tháng của 7 nhân viên trong một công ty du lịch lần lượt là: 6,5; 8,4; 6,9; 7,2; 2,5; 6,7; 3,0. (đơn vị: triệu đồng). Khoảng biến thiên của dãy số liệu thống kê trên bằng:

     Khoảng biến thiên: R = 8,4 - 2,5 = 5,9.

  • Câu 37: Thông hiểu

    Số tiền nước phải nộp (đơn vị: nghìn đồng) của 5 hộ gia đình là: 56; 45; 103; 239; 125. Độ lệch chuẩn gần bằng:

    Số tiền nước trung bình là:

    \overline x  = \frac{{56 + 45 + 103 + 239 + 125}}{5} = 113,6

    Phương sai là:

    \begin{matrix}  {S^2} = \dfrac{1}{5}\left( {{{56}^2} + {{45}^2} + {{103}^2} + {{239}^2} + {{125}^2}} ight) - {\left( {113,6} ight)^2} \hfill \\   \Rightarrow {S^2} = 4798,24 \hfill \\ \end{matrix}

    Độ lệch chuẩn là: 

    \Rightarrow S = \sqrt {{S^2}}  = \sqrt {4798,24}  \approx 69,27

  • Câu 38: Nhận biết

    Quy tròn số 73,316 đến hàng phần trăm.

    Quy tròn số 73,316 đến hàng phần trăm ta được số 73,32.

  • Câu 39: Nhận biết

    Khoảng biến thiên của mẫu số liệu: 2;5;16;8;7;9;10;12;14;11;6 là:

    Quan sát mẫu số liệu ta thấy:

    Giá trị lớn nhất là 16

    Giá trị nhỏ nhất là 2

    Suy ra khoảng biến thiên của mẫu số liệu là: 16 – 2 = 14.

  • Câu 40: Nhận biết

    Điểm kiểm tra môn Toán của Hoa thời gian gần đây được liệt kê như sau: 3;\ 4;\ 7;\ 7;\
9. Khoảng biến thiên của mẫu số liệu trên là:

    Quan sát mẫu số liệu đã cho ta thấy:

    Giá trị lớn nhất là 9

    Giá trị nhỏ nhất là 3

    Suy ra khoảng biến thiên của mẫu số liệu là: 9 – 3 = 6.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Thống kê Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo