Dưới đây là bảng thống kê số lần làm bài tập Toán của học sinh lớp 10A.

Tìm trung vị của mẫu số liệu này.
Cỡ mẫu số liệu này là: .
Suy ra giá trị chính giữa là giá trị ở vị trí thứ 18. Đó là số 3.
Vậy trung vị .
Dưới đây là bảng thống kê số lần làm bài tập Toán của học sinh lớp 10A.

Tìm trung vị của mẫu số liệu này.
Cỡ mẫu số liệu này là: .
Suy ra giá trị chính giữa là giá trị ở vị trí thứ 18. Đó là số 3.
Vậy trung vị .
Một xưởng may gồm 20 người thợ chia đều thành 5 tổ. Mỗi ngày một người thợ làm được 4 hoặc 5 sản phẩm. Cuối ngày, quản tổ thống kê lại kết quả làm việc của từng tổ như sau:
|
Tổ |
1 |
2 |
3 |
4 |
5 |
|
Số sản phẩm |
17 |
19 |
19 |
21 |
20 |
Kết quả thống kê của tổ nào là không hợp lí?
Vì 20 người thợ chia đều thành 5 tổ nên mỗi tổ gồm 4 thợ.
Trong một ngày mỗi người thợ làm được 4 hoặc 5 sản phẩm nên số sản phẩm tối đa mỗi tổ làm được trong một ngày là 20 sản phẩm.
Do đó kết quả thống kê không hợp lí nằm ở vị trí tổ 4.
Thời gian chạy 50 m của 20 học sinh được ghi lại trong bảng sau đây:
Thời gian (giây) | 8,3 | 8,4 | 8,5 | 8,7 | 8,8 |
Tần số | 2 | 3 | 9 | 5 | 1 |
Hãy tìm khoảng biến thiên của mẫu số liệu đã cho.
Khoảng biến thiên: .
Giá của một số bó hoa (đơn vị: nghìn đồng) trong cửa hàng được thống kê như sau:
. Mốt của mẫu số liệu này là:
Bó hoa có giá 300 nghìn đồng có tần số lớn nhất nên suy ra .
Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là:
Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.
Khi điều tra về số dân của tỉnh A, người ta thu được kết quả là
. Tìm số quy tròn của
.
Số quy tròn của số là:
Số gần đúng của
có ba chữ số đáng tin viết dưới dạng chuẩn là:
Vì số gần đúng của số có ba chữ số đáng tin nên ba chữ số đó là
,
,
.
Nên cách viết dưới dạng chuẩn là
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được
. Giá trị gần đúng của
chính xác đến hàng phần nghìn là:
Cần lấy chính xác đến hàng phần trăm nên ta phải lấy ba chữ số thập phân. Vì đứng sau số 8 ở hàng phần trăm là số 4 < 5 nên theo nguyên lý làm tròn ra được kết quả là: .
Xác định khoảng biến thiên
của mẫu số liệu: 6 5 3 7 8 10 15.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 3 5 6 7 8 10 15.
Suy ra khoảng biến thiên .
Để điều tra các con trong mỗi gia đình của một chung cư gồm 100 gia đình. Người ta chọn ra 20 gia đình ở tầng 4 và thu được mẫu số liệu sau đây:
2 4 2 1 3 5 1 1 2 3 1 2 2 3 4 1 1 2 3 4.
Số trung bình cộng
của mẫu số liệu trên là:
Số trung bình cộng của mẫu số liệu trên là:
Số tiền nước phải nộp (đơn vị: nghìn đồng) của 5 hộ gia đình là: 56; 45; 103; 239; 125. Độ lệch chuẩn gần bằng:
Số tiền nước trung bình là:
Phương sai là:
Độ lệch chuẩn là:
Điều tra về số học sinh của một trường THPT như sau:
Khối lớp | 10 | 11 | 12 |
Số học sinh | 1120 | 1075 | 900 |
Khoảng biến thiên của mẫu số liệu trên là.
Khoảng biến thiên R = 1120 - 900 = 220.
Phát biểu nào sau đây sai?
Phát biểu sai là: "Khoảng tứ phân vị bị ảnh hưởng bởi các giá trị rất lớn hoặc rất bé trong mẫu."
Khoảng biến thiên tứ phân vị
được xác định bởi:
Khoảng biến thiên tứ phân vị được xác định bởi
.
Chọn khẳng định sai?
Khẳng định sai: “Giá trị bất thường trong mẫu số liệu thuộc ”
Sửa lại: “Giá trị bất thường trong mẫu số liệu nằm ngoài đoạn ”.
Viết số quy tròn của
đến hàng phần nghìn?
Ta có số quy tròn của đến hàng phần nghìn là
.
Tiền lương hàng tháng của 7 nhân viên trong một công ty du lịch lần lượt là: 6,5; 8,4; 6,9; 7,2; 2,5; 6,7; 3,0. (đơn vị: triệu đồng). Khoảng biến thiên của dãy số liệu thống kê trên bằng:
Khoảng biến thiên: R = 8,4 - 2,5 = 5,9.
Tìm phát biểu đúng về phương sai của một mẫu số liệu.
Ý nghĩa của phương sai: Phương sai được sử dụng để đánh giá mức độ phân tán của các số liệu thống kê (so với số trung bình).
Cho biết kết quả đo chiều cao của một số học sinh lớp 10E như sau:
. Xác định khoảng biến thiên của mẫu số liệu?
Quan sát dãy số liệu ta thấy:
Giá trị lớn nhất là 169
Giá trị nhỏ nhất là 150
Vậy khoảng biến thiên của mẫu số liệu bằng 169 – 150 = 19.
Xác định số trung vị của dãy số liệu
?
Dãy số đã cho được sắp xếp theo thứ tự không giảm.
Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.
Do đó số trung vị của dãy trên là 5.
Cho số gần đúng
. Hãy viết số quy tròn của
?
Ta có số quy tròn của là:
.
Kết quả kiểm tra Toán của một số học sinh như sau:
. Khoảng biến thiên của mẫu số liệu là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 10
Giá trị nhỏ nhất là 7
Suy ra khoảng biến thiên của mẫu số liệu là: 10 – 7 = 3
Một học sinh đo đường kính của một hình tròn là
(cm). Bạn đó tính được chu vi hình tròn là
(cm). Biết
. Hãy ước lượng sai số tuyệt đối của
.
Gọi và
lần lượt là đường kính và chu vi của hình tròn.
Ta có: .
Ta có: .
Do đó .
Vậy sai số tuyệt đối của là
.
Cho bảng điểm kiểm tra môn Toán của học sinh lớp 10B như sau:
|
Điểm |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Tổng |
|
Số học sinh |
2 |
8 |
7 |
10 |
8 |
3 |
2 |
N = 40 |
Tính số trung bình của mẫu số liệu? (Làm tròn kết quả đến chữ số thập phân thứ nhất).
Số trung bình của mẫu số liệu là:
Vậy số trung bình của mẫu số liệu bằng 6,8.
Tìm tứ phân vị dưới của bảng số liệu sau:

Cỡ mẫu số liệu trên là: .
Giá trị chính giữa của mẫu là giá trị ở vị trí thứ 13, đó là số 27. Suy ra .
Ta đi tìm trung vị của mẫu số liệu gồm 12 giá trị bên trái . Hai giá trị chính giữa là giá trị ở vị trí thứ 6 và 7. Đó là số 26 và số 26.
Suy ra . Vậy tứ phân vị dưới là 26.
Cho giá trị gần đúng của
là
. Sai số tuyệt đối của số
không vượt quá giá trị nào sau đây?
Sai số tuyệt đối của số là:
Suy ra sai số tuyệt đối của số không vượt quá
.
Cho giá trị gần đúng của
là 0,47. Sai số tuyệt đối của 0,47 là:
Ta có suy ra sai số tuyệt đối của 0,47 là 0,001.
Cho dãy số liệu
. Tứ phân vị thứ nhất của mẫu số liệu là:
Vì cỡ mẫu của mẫu số liệu bằng 11 là số lẻ
=> Số trung vị của mẫu số liệu trên là
Nửa dữ liệu bên trái là:
Do đó
Suy ra tứ phân vị thứ nhất của mẫu số liệu là .
Một người đo kích thước mảnh vườn hình chữ nhật rồi ghi lại chiều dài là
(m) và chiều rộng là
(m). Xác định sai số tương đối của phép đo diện tích mảnh vườn.
Gọi là chiều dài và chiều rộng của mảnh vườn.
Vì
Gọi diện tích mảnh vườn là . Khi đó
. Suy ra
(m2).
Sai số tương đối trong phép đo là .
Tính sản lượng lúa trung bình trong bảng thống kê dưới đây:
|
Sản lượng (tạ) |
20 |
21 |
22 |
23 |
24 |
|
Tần số |
5 |
8 |
11 |
10 |
6 |
Sản lượng lúa trung bình là:
Vậy sản lượng lúa trung bình là 22,1 tạ.
Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện nhân 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.
Giả sử các số liệu trong mẫu là: đã sắp xếp theo thứ tự không giảm.
Khoảng biến thiên: .
Nhân hai với tất cả các số liệu: .
Khoảng biến thiên: .
Suy ra .
Điểm kiểm tra môn Văn của bạn Lan là: 7; 9; 8; 9. Tính số trung bình cộng
của mẫu số liệu trên.
Số trung bình cộng của mẫu số liệu trên là: .
Một cửa hàng bán ra một loại áo với các cỡ được thống kê trong bảng sau:

Tìm mốt của mẫu số liệu này.
Vì cỡ áo 40 bán được 81 cái (nhiều nhất) nên mốt của mẫu số liệu là 40.
Quy tròn số 3,1234567 đến hàng phần nghìn. Số gần đúng nhận được là:
Quy tròn số 3,1234567 đến hàng phần nghìn ta được số: 3,123.
Số quy tròn của
với độ chính xác
là:
Xét ta thấy chữ số khác
đầu tiên bên trái của d nằm ở hàng phần trăm.
Nên suy ra hàng lớn nhất có độ chính xác là hàng phần trăm nên ta quy tròn số
ở hàng gấp 10 lần hàng vừa tìm được, tức là hàng phần mười.
Xét chữ số ở hàng phần trăm của là 5 nên ta suy ra được số quy tròn của
đến hàng phần mười là
.
Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?
Đáp án: Độ lệch chuẩn.
Cho số
. Số quy tròn của số gần đúng
bằng:
Hàng lớn nhất có độ chính xác là hàng trăm nên ta quy tròn số a đến hàng nghìn.
Vậy số quy tròn của a là: .
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được:
. Giá trị gần đúng của
chính xác đến hàng phần trăm là:
Quy tròn đến hàng phần trăm, ta được:
.
Số quy tròn của số gần đúng
với
là:
Quy tròn đến hàng trăm nên số quy tròn của số gần đúng
là:
.
Số cuộn phim mà 20 nhà nhiếp ảnh nghiệp dư sử dụng trong một tháng được cho trong bảng sau:
0 | 5 | 7 | 6 | 2 | 5 | 9 | 7 | 6 | 9 |
20 | 6 | 10 | 7 | 5 | 8 | 9 | 7 | 8 | 5 |
Giá trị ngoại lệ trong mẫu số liệu trên là:
Ta có bảng tần số sau:
Số cuộn phim | 0 | 2 | 5 | 6 | 7 | 8 | 9 | 10 | 20 |
|
Số nhiếp ảnh gia | 1 | 1 | 4 | 3 | 4 | 2 | 3 | 1 | 1 | n = 20 |
Vì cỡ mẫu n = 20 = 2.10 là số chẵn. Nên giá trị tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 10 và số liệu thứ 11.
Khi sắp xếp mẫu số liệu đã cho theo thứ tự không giảm, ta được số liệu thứ 10 và số liệu thứ 11 cùng bằng 7.
=> Q2 = 7.
- Ta tìm tứ phân vị thứ nhất là trung vị của nửa mẫu số liệu bên trái Q2.
Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ nhất là trung bình cộng của số liệu thứ 5 và số liệu thứ 6.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 5 và số liệu thứ 6 cùng bằng 5.
=> Q1 = 5.
Ta tìm tứ phân vị thứ ba là trung vị của nửa mẫu số liệu bên phải Q2.
Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 5 và số liệu thứ 6 (tính từ số liệu thứ 11 trở đi). Tức là giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 15 và số liệu thứ 16.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 15 và số liệu thứ 16 lần lượt là 8 và 9.
=> Q3 = (8 + 9) : 2 = 8,5.
Ta suy ra khoảng tứ phân vị ∆Q = Q3 – Q1 = 8,5 – 5 = 3,5.
Ta có Q3 + 1,5.∆Q = 13,75 và Q1 – 1,5.∆Q = – 0,25.
Số liệu x trong mẫu là giá trị ngoại lệ nếu x > Q3 + 1,5.∆Q (1) hoặc x < Q1 – 1,5.∆Q (2)
Quan sát bảng số liệu ta thấy có số liệu x = 20 thoả mãn điều kiện (1) : 20 > 13,75.
Vậy mẫu số liệu có giá trị ngoại lệ là 20.