Khi điều tra về số dân của tỉnh A, người ta thu được kết quả là
. Tìm số quy tròn của
.
Số quy tròn của số là:
Khi điều tra về số dân của tỉnh A, người ta thu được kết quả là
. Tìm số quy tròn của
.
Số quy tròn của số là:
Bảng sau đây cho ta biết số cuốn sách mà học sinh của một lớp ở trường Trung học phổ thông đã đọc:
Số sách | 1 | 2 | 3 | 4 | 5 | 6 | |
Số học sinh đọc | 10 | m | 8 | 6 | n | 3 | n = 40 |
Tìm m và n, biết phương sai của mẫu số liệu trên xấp xỉ 2,52.
Số trung bình là:
Phương sai là:
Theo bài ra ta có:
Kiểm tra được: m = 8 và n = 5 thỏa mãn.
Xác định mốt của mẫu số liệu: ![]()
Ta có: số 17 có tần số xuất hiện nhiều nhất
Suy ra mốt của mẫu số liệu là 17.
Cho giá trị gần đúng của
là 0,429. Sai số tuyệt đối của số 0,429 là:
Ta có: nên sai số tuyệt đối của 0,429 là
Hãy xác định sai số tuyệt đối của số
biết sai số tương đối
.
Ta có: .
Cho mẫu số liệu:
. Xác định phương sai của mẫu số liệu đã cho?
Ta có:
Số trung bình của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Vậy phương sai của mẫu số liệu bằng 4.
Giả sử
là các tứ phân vị của mẫu số liệu. Khoảng tứ phân vị của mẫu số liệu là:
Khoảng tứ phân vị của mẫu số liệu là: .
Tìm phát biểu đúng về phương sai của một mẫu số liệu.
Ý nghĩa của phương sai: Phương sai được sử dụng để đánh giá mức độ phân tán của các số liệu thống kê (so với số trung bình).
Cho
là số gần đúng của số đúng
. Sai số tuyệt đối của số gần đúng
là:
Sai số tuyệt đối của số gần đúng a là:
Kết quả kiểm tra của 40 học sinh lớp 10A được thống kê trong bảng sau:
|
Điểm |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
Số học sinh |
2 |
3 |
7 |
18 |
3 |
2 |
4 |
1 |
Tìm mốt của mẫu số liệu đã cho?
Mốt của mẫu số liệu là: (vì có nhiều học sinh đạt điểm 6 nhất trong 40 học sinh).
Xác định số trung vị của dãy số liệu
?
Dãy số đã cho được sắp xếp theo thứ tự không giảm.
Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.
Do đó số trung vị của dãy trên là 7.
Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.

Chọn kết luận đúng.
Giá trị trung bình của hai mẫu:
Vậy hai mẫu có giá trị trung bình bằng nhau.
Quy tròn số 73,316 đến hàng phần trăm.
Quy tròn số 73,316 đến hàng phần trăm ta được số 73,32.
Kết quả kiểm tra Toán của một số học sinh như sau:
. Khoảng biến thiên của mẫu số liệu là:
Quan sát mẫu số liệu ta thấy:
Giá trị lớn nhất là 10
Giá trị nhỏ nhất là 7
Suy ra khoảng biến thiên của mẫu số liệu là: 10 – 7 = 3
Cho biết kết quả đo chiều cao của một số học sinh lớp 10E như sau:
. Xác định khoảng biến thiên của mẫu số liệu?
Quan sát dãy số liệu ta thấy:
Giá trị lớn nhất là 169
Giá trị nhỏ nhất là 150
Vậy khoảng biến thiên của mẫu số liệu bằng 169 – 150 = 19.
Tiền lương hàng tháng của 7 nhân viên trong một công ty du lịch lần lượt là: 6,5; 8,4; 6,9; 7,2; 2,5; 6,7; 3,0. (đơn vị: triệu đồng). Khoảng biến thiên của dãy số liệu thống kê trên bằng:
Khoảng biến thiên: R = 8,4 - 2,5 = 5,9.
Điểm kiểm tra giữa học kì 2 môn Toán của một nhóm học sinh được ghi lại như sau:
. Số trung vị của mẫu số liệu đã cho là:
Sắp xếp dãy số liệu theo thứ tự không giảm như sau:
Ta có: là số lẻ suy ra trung vị của mẫu số liệu đứng ở vị trí số
Hay trung vị của mẫu số liệu là .
Tìm số gần đúng của
với độ chính xác
?
Độ chính xác nên ta quy tròn số gần đúng
đến hàng phần trăm và ta được số gần đúng là
.
Bảng dưới đây là sản lượng lúa gạo của nước ta giai đoạn 2007 – 2017 (đơn vị: triệu tấn).

Khoảng biến thiên của mẫu số liệu là:
Khoảng biến thiên là .
Liệt kê sĩ số của từng lớp trong khối 10 ta được bảng số liệu như sau:
|
Lớp |
10A |
10B |
10C |
10D |
10E |
|
Sĩ số |
40 |
43 |
45 |
41 |
46 |
Xác định giá trị gần nhất với độ lệch chuẩn của mẫu số liệu?
Ta có:
Số trung bình của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Suy ra độ lệch chuẩn của mẫu số liệu là:
Vậy độ lệch chuẩn của mẫu số liệu là 2,28.
Bảng dưới đây thống kê điểm Văn của lớp 10H.

Biết
. Tìm mốt của bảng số liệu.
Vì tổng số học sinh bằng 40 nên ta có: .
Thống kê lại bảng:
Vậy mốt là giá trị 6 (xuất hiện 14 lần, nhiều nhất).
Một bác sĩ ghi lại độ tuổi của một số người đến khám trong bảng:

Tìm trung vị của mẫu số liệu trên.
Cỡ mẫu số liệu trên là .
Thống kê lại:
Hai giá trị chính giữa của mẫu là giá trị ở vị trí thứ 15 và thứ 16. Đó là số 17 và số 17.
Suy ra trung vị
.
Cho bảng số liệu ghi lại điểm của 40 học sinh trong bài kiểm tra 1 tiết môn toán như sau:
Điểm | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Cộng |
Số học sinh | 2 | 3 | 7 | 18 | 3 | 2 | 4 | 1 | 40 |
Số trung bình cộng
của mẫu số liệu trên là:
Số trung bình cộng của mẫu số liệu trên là:
.
Tìm khoảng tứ phân vị mẫu số liệu điểm của một nhóm học sinh lớp 10:

Sắp xếp mẫu số liệu theo thứ tự không giảm: 4 5 5 6 7 7 7 8 8 9 9 10.
Hai số liệu chính giữa là 7 và 7 nên .
Trung vị của mẫu số liệu 4 5 5 6 7 7 chính là .
Trung vị của mẫu số liệu 7 8 8 9 9 10 chính là .
Khoảng tứ phân vị
.
Có 100 học sinh tham dự kì thi học sinh giỏi Toán (thang điểm 20). Kết quả sau kì thi được thống kê như sau:
Điểm | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
Tần số | 1 | 1 | 3 | 5 | 8 | 13 | 19 | 24 | 14 | 10 | 2 |
Giá trị của phương sai gần bằng:
Kết quả trung bình là:
Giá trị của phương sai là:
Chọn khẳng định sai?
Khẳng định sai: “Giá trị bất thường trong mẫu số liệu thuộc ”
Sửa lại: “Giá trị bất thường trong mẫu số liệu nằm ngoài đoạn ”.
Số quy tròn của số
đến hàng chục bằng:
Số quy tròn của số đến hàng chục bằng
.
Cho mẫu số liệu có
. Khi đó độ lệch chuẩn của mẫu số liệu bằng:
Độ lệch chuẩn
Dùng máy tính cầm tay để viết quy tròn số gần đúng
đến hàng phần trăm là:
Ta có: .
Chữ số hàng phần nghìn bằng 0 < 5 nên chọn .
Cho bảng số liệu thống kê kết quả thi chạy 100m của một nhóm học sinh (đơn vị: giây) như sau:
|
Thời gian |
12 |
13 |
14 |
15 |
16 |
|
Số học sinh |
6 |
4 |
5 |
3 |
2 |
Tính thời gian chạy trung bình của nhóm học sinh đó?
Số học sinh tham gia chạy là 20 (học sinh)
Thi gian chạy trung bình của nhóm 20 học sinh là:
(giây)
Vậy thời gian chạy trung bình của nhóm học sinh bằng 13,55 giây.
Cho số gần đúng
. Hãy viết số quy tròn của
?
Ta có số quy tròn của là:
.
Độ dài các cạnh của đám vườn hình chữ nhật là
và
. Cách viết chuẩn của diện tích là:
.
Diện tích mảnh ruộng là , khi đó:
.
Cách viết chuẩn của diện tích là .
Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của
chính xác đến hàng phần trăm.
Sử dụng máy tính bỏ túi ta có = 1,732050808. Do đó: Giá trị gần đúng của
chính xác đến hàng phần trăm là 1,73.
Làm tròn số
đến hàng phần trăm ta được kết quả là:
Làm tròn số đến hàng phần trăm ta được kết quả là
.
Nhà sản xuất công bố chiều dài và chiều rộng của 1 tấm ván hình chữ nhật lần lượt là
và
(đơn vị: cm). Tính diện tích của tấm thép.
Gọi và
lần lượt là chiều dài và chiều rộng thực của tấm thép.
Ta có: và
.
Suy ra: .
Do đó:
Vậy diện tích tấm thép là .
Phương sai của dãy số 2; 3; 4; 5; 6; 7 là:
Số trung bình: .
Phương sai: .
Kết quả điểm kiểm tra 45 phút môn Hóa Học của 100 em học sinh được trình bày ở bảng sau:
|
Điểm |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Cộng |
|
Tần số |
3 |
5 |
14 |
14 |
30 |
22 |
7 |
5 |
100 |
Số trung bình cộng của bảng phân bố tần số nói trên là:
Số trung bình cộng của bảng phân bố tần số nói trên là
Điểm kiểm tra môn Hóa của một nhóm gồm 9 bạn như sau: 1; 1; 3; 6; 7; 8; 8; 9; 10. Tính trung bình cộng của mẫu số liệu trên. (làm tròn đến hàng phần chục)
Số trung bình của mẫu số liệu trên là: .
Quy tròn số 3,1234567 đến hàng phần nghìn. Số gần đúng nhận được là:
Quy tròn số 3,1234567 đến hàng phần nghìn ta được số: 3,123.
Tìm các giá trị bất thường của mẫu số liệu:
5 6 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 48 49
Mẫu số liệu đã được sắp xếp theo thứ tự không giảm.
Giá trị chính giữa là 27 nên .
Giá trị chính giữa của mẫu 5 6 19 21 22 23 24 25 26 là 22 nên .
Giá trị chính giữa của mẫu 28 29 30 31 32 33 34 48 49 là 32 nên .
Khoảng tứ phân vị .
Ta có:
.
Ta co:
.
Ta thấy có giá trị 5 và 6 nhỏ hơn 7 nên đây là 2 giá trị bất thường.
Ta thấy có 48 và 49 là hai giá trị lớn hơn 47 nên đây là 2 giá trị bất thường.