Đề kiểm tra 45 phút Chương 6 Xác suất có điều kiện

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 6. Xác suất có điều kiện được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 KNTT
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Có 3 hộp đựng bi: hộp thứ nhất có 3 bi đỏ, 2 bi trắng; hộp thứ hai có 2 bi đỏ, 2 bi trắng; hộp thứ ba không có viên nào. Lấy ngẫu nhiên 1 viên bi từ hộp thứ nhất và 1 viên bi từ hộp thứ hai bỏ vào hộp thứ ba. Sau đó từ hộp thứ ba lấy ngẫu nhiên ra 1 viên bi. Biết rằng viên bi lấy ra từ hộp thứ ba màu đỏ, tính xác suất để lúc đầu ta lấy được viên bi đỏ từ hộp thứ nhất bỏ vào hộp thứ ba?

    Gọi A1, A2 lần lượt là "lấy bi đỏ từ hợp thứ 1 (thứ 2) bỏ vào hộp thứ ba" thì A_{1}A_{2};\overline{A_{1}}A_{2};A_{1}\overline{A_{2}};\overline{A_{1}}\overline{A_{2}} tạo thành một hệ đầy đủ.

    Ta có: \left\{ \begin{matrix}
P\left( A_{1}A_{2} ight) = 0,3;P\left( \overline{A_{1}}A_{2} ight) =
0,2 \\
P\left( A_{1}\overline{A_{2}} ight) = 0,3;P\left(
\overline{A_{1}}\overline{A_{2}} ight) = 0,2 \\
\end{matrix} ight.

    Gọi A "lấy ra từ hộp 3 một viên bi màu đỏ". Ta có:

    P\left( A|A_{1}A_{2} ight) = 1;P\left(
A|\overline{A_{1}}A_{2} ight) = 0,5

    P\left( A|A_{1}\overline{A_{2}} ight)
= 0,5;P\left( A|\overline{A_{1}}\overline{A_{2}} ight) =
0

    Áp dụng công thức xác suất đầy đủ ta có:

    P(A) = P\left( A_{1}A_{2} ight)P\left(
A|A_{1}A_{2} ight) + P\left( \overline{A_{1}}A_{2} ight)P\left(
A|\overline{A_{1}}A_{2} ight)

    + P\left(
\overline{A_{1}}\overline{A_{2}} ight)P\left(
A|\overline{A_{1}}\overline{A_{2}} ight) + P\left(
A_{1}\overline{A_{2}} ight)P\left( A_{1}\overline{A_{2}}
ight)

    = 0,3.1 + 0,3.0,5 + 0,2.0,5 + 0,2.0 =
0,55

    Gọi B là sự kiện cần tính xác suất.

    Dễ thấy B = \left( A_{1}A_{2} +
\overline{A_{1}}A_{2} ight)|A. Theo công thức Bayes ta có:

    P(B) = \frac{P\left\lbrack \left(
A_{1}A_{2} + \overline{A_{1}}A_{2} ight)A
ightbrack}{P(A)}

    = \frac{P\left\lbrack \left( A_{1}A_{2}
ight)A ightbrack + P\left\lbrack \left( \overline{A_{1}}A_{2}
ight)A ightbrack}{P(A)}

    = \frac{P\left( A_{1}A_{2}
ight).P\left( A|A_{1}A_{2} ight) + P\left( \overline{A_{1}}A_{2}
ight).P\left( A|\overline{A_{1}}A_{2} ight)}{P(A)}

    = \frac{0,3.1 + 0,2.0,5}{0,55} =
\frac{9}{11}

  • Câu 2: Nhận biết

    Cho hai biến cố AB với P(B) =
0,8;P\left( A|B ight) = 0,7,P\left( A|\overline{B} ight) =
0,45. Tính P(A)?

    Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,8.0,7 + 0,2.0,45 =
0,65

  • Câu 3: Thông hiểu

    Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,91

    Đáp án là:

    Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,91

    Suy ra số phần tử của không gian mẫu là n(\Omega) = C_{16}^{3} = 560.

    Gọi A là biến cố ''3 cuốn sách lấy ra không cùng một loại''.

    Để tìm số phần tử của A, ta đi tìm số phần tử của biến cố \overline{A}, với biến cố \overline{A} là 3 cuốn sách lấy ra cùng một loại.

    Suy ra số phần tử của biến cố \overline{A}n\left( \overline{A} ight) = C_{5}^{3} +
C_{7}^{3} + C_{4}^{3} = 49.

    Suy ra số phần tử của biến cố An(A) = n(\Omega) - n\left( \overline{A}
ight) = 511.

    Vậy xác suất cần tính P(A) =
\frac{n(A)}{n(\Omega)} = \frac{511}{560} = \frac{73}{80} \approx
0,91.

  • Câu 4: Nhận biết

    Cho hai biến cố A, B với 0 <
P(B) < 1. Phát biểu nào sau đây đúng?

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight).

  • Câu 5: Nhận biết

    Cho AB là các biến cố của phép thử T. Biết rằng P(A) > 0;0 < P(B) <
1. Xác suất của biến cố B với điều kiện biến cố A đã xảy ra được tính theo công thức nào sau đây?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

  • Câu 6: Thông hiểu

    Trong một kỳ thi, có 60\% học sinh đã làm đúng bài toán đầu tiên và 40\% học sinh đã làm đúng bài toán thứ hai. Biết rằng có 20\% học sinh làm đúng cả hai bài toán. Xác suất để một học sinh làm đúng bài toán thứ hai biết rằng học sinh đó đã làm đúng bài toán đầu tiên là bao nhiêu?

    Gọi biến cố A: "học sinh đã làm đúng bài toán đầu tiên"

    \Rightarrow P(A) =
60\% = 0,6

    Biến cố B: "học sinh đã làm đúng bài toán thứ hai”

    \Rightarrow P(B) = 40\% =
0,4

    Biến cố A \cap B: "học sinh làm đúng cả hai bài toán"

    \Rightarrow P(A \cap
B) = 20\% = 0,2

    Xác suất để một học sinh làm đúng bài toán thứ hai biết rằng học sinh đó đã làm đúng bài toán đầu tiên là:

    P\left( B|A ight) = \frac{P(A \cap
B)}{P(A)} = \frac{0,2}{0,6} = \frac{1}{3} \approx 0,333

  • Câu 7: Nhận biết

    Cho một hộp kín có 6 thẻ ngân hàng của BIDV và 4 thẻ ngân hàng của Techcombank. Lấy ngẫu nhiên lần lượt 2 thẻ (lấy không hoàn lại). Tìm xác suất để lần thứ hai lấy được thẻ ngân hàng của Techcombank nếu biết lần thứ nhất đã lấy được thẻ ngân hàng của BIDV

    Gọi A là biến cố “lần thứ hai lấy được thẻ ngân hàng Techcombank“, B là biến cố “lần thứ nhất lấy được thẻ ngân hàng của BIDV “.

    Ta cần tìm P\left( A|B ight) Sau khi lấy lần thứ nhất (biến cố B đã xảy ra) trong hộp còn lại 9 thẻ (trong đó 4 thẻ Techcombank) nên P\left( A|B
ight) = \frac{4}{9}.

  • Câu 8: Thông hiểu

    Trong một vùng dân cư, cứ 100 người thì có 30 người hút thuốc lá. Biết tỷ lệ người bị viêm họng trong số người hút thuốc lá là 60\%, trong số người không hút thuốc lá là 30\%. Khám ngẫu nhiên một người và thấy người đó bị viêm họng. Nếu người đó không bị viêm họng thì xác suất để người đó hút thuốc lá là bao nhiêu?

    Gọi A: "Người này hút thuốc"

    B: "Người này bị viêm họng"

    Theo giả thiết ta có: P(A) = 0,3;P\left(
B|A ight) = 0,6;P\left( B|\overline{A} ight) = 0,3

    Ta thấy rằng A;\overline{A} là một hệ đầy đủ các biến cố.

    Theo công thức xác suất toàn phần ta tính được:

    P(B) = P\left( B|A ight)P(A) + P\left(
B|\overline{A} ight)P\left( \overline{A} ight)

    = 0,6.0,3 + 0,3.0,7 = 0,39

    \Rightarrow P\left( \overline{B} ight)
= 1 - P(B) = 0,61

    Theo công thức Bayes, xác suất để người đó hút thuốc lá khi biết người đó không bị viêm họng là:

    P\left( A|\overline{B} ight) =
\frac{P\left( \overline{B}|A ight)P(A)}{P\left( \overline{B} ight)}
= \frac{0,4.0,3}{0,61} = 0,197

  • Câu 9: Vận dụng

    Theo thống kê xác suất để hai ngày liên tiếp có mưa ở một thành phố vào mùa hè là 0,5; còn không mưa là 0,3. Biết các sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng. Tính xác suất để ngày thứ hai có mưa, biết ngày đầu không mưa?

    Gọi A là "ngày đầu mưa" và B là "ngày thứ hai mưa" thì ta có:

    P(AB) = 0,5;P\left(
\overline{A}\overline{B} ight) = 0,3

    Vì các sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng nên

    P\left( A\overline{B} ight) = P\left(
\overline{A}B ight) = \frac{1 - 0,5 - 0,3}{2} = 0,1

    Xác suất cần tính là P\left(
\overline{B}|A ight) có:

    P\left( \overline{B}|A ight) =
\frac{P\left( B\overline{A} ight)}{P\left( \overline{A} ight)} =
\frac{P\left( B\overline{A} ight)}{P\left( \overline{A}\overline{B}
ight) + P\left( \overline{A}B ight)}

    = \frac{0,1}{0,1 + 0,3} = 0,25 =
25\%

  • Câu 10: Nhận biết

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,4;P(B) = 0,3;P\left( A|B ight) =
0,25 thì P\left( B|A
ight) bằng bao nhiêu?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,3.0,25}{0,4} = \frac{3}{16}

  • Câu 11: Vận dụng cao

    Có hai lô sản phẩm: lô I có 7 chính phẩm, 3 phế phẩm; lô II có 8 chính phẩm, 2 phế phẩm. Từ lô I lấy ngẫu nhiên ra 2 sản phẩm, từ lô II lấy ngẫu nhiên ra 3 sản phẩm. Sau đó từ số sản phẩm này lại lấy ngẫu nhiên 2 sản phẩm. Tính xác suất để trong 2 sản phẩm lấy ra sau cùng có ít nhất 1 chính phẩm.

    Gọi A_{i} là "trong 5 sản phẩm cuối có i chính phẩm".

    Khi đó hệ A_{0},A_{1},A_{2},A_{3},A_{4},A_{5} tạo thành hệ đầy đủ

    A_{0} xảy ra thì phải lấy 3 phế phẩm từ lô II, điều này là không thể.

    Suy ra P\left( A_{0} ight) =
0

    A_{1} xảy ra nếu lấy 2 phế từ lô I và 1 chính, 1 phế từ lô II.

    P\left( A_{1} ight) =
\frac{C_{3}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{1}C_{2}^{2}}{C_{10}^{3}}
= \frac{1}{225}

    A_{2} xảy ra nếu lấy 1 chính, 1 phế từ lô I,1 chính, 2 phế từ lô II hoặc 2 phế từ lô I,2 chính, 1 phế từ lô II

    P\left( A_{2} ight) =
\frac{C_{7}^{1}C_{3}^{1}}{C_{10}^{2}} \cdot
\frac{C_{8}^{1}C_{2}^{2}}{C_{10}^{3}} + \frac{C_{3}^{2}}{C_{10}^{2}}
\cdot \frac{C_{8}^{2}C_{2}^{1}}{C_{10}^{3}} =
\frac{14}{225}

    A_{3} xảy ra nếu lấy 2 chính từ lô I,1 chính, 2 phế từ lô II hoặc 1 chính, 1 phế từ lô I,2 chính, 1 phế từ lô II hoặc 2 phế từ lô I,3 chính từ lô II

    P\left( A_{3} ight) =
\frac{C_{7}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{1}C_{2}^{2}}{C_{10}^{3}}
+ \frac{C_{7}^{1}C_{3}^{1}}{C_{10}^{2}} \cdot
\frac{C_{8}^{2}C_{2}^{1}}{C_{10}^{3}} + \frac{C_{3}^{2}}{C_{10}^{2}}
\cdot \frac{C_{8}^{3}}{C_{10}^{3}} = \frac{7}{25}

    A_{4} xảy ra nếu lấy 2 chính từ lô I,2 chính, 2 phế từ lô II hoặc 1 chính, 1 phế từ lô I,3 chính từ lô II

    P\left( A_{4} ight) =
\frac{C_{7}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{2}C_{2}^{1}}{C_{10}^{3}}
+ \frac{C_{7}^{1}C_{3}^{1}}{C_{10}^{2}} \cdot
\frac{C_{8}^{3}}{C_{10}^{3}} = \frac{98}{225}

    A_{5} xảy ra nếu lấy 2 chính từ lô I,3 chính từ lô II

    P\left( A_{5} ight) =
\frac{C_{7}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{3}}{C_{10}^{3}} =
\frac{49}{225}

    Gọi A là "trong 2 sản phẩm lấy ra có ít nhất 1 chính phẩm", áp dụng công thức xác suất đầy đủ

    P(\bar{A}) = \sum_{i =
0}^{5}\mspace{2mu}\mspace{2mu} P\left( A_{i} ight)P\left( \bar{A} \mid
A_{i} ight)

    = \frac{C_{5}^{2}}{C_{5}^{2}} \cdot 0 +
\frac{C_{4}^{2}}{C_{5}^{2}} \cdot \frac{1}{225} +
\frac{C_{3}^{2}}{C_{5}^{2}} \cdot \frac{14}{225} +
\frac{C_{2}^{2}}{C_{5}^{2}} \cdot \frac{7}{25} + 0 \cdot \frac{98}{225}
+ 0 \cdot \frac{49}{225}

    \simeq 0.4933

    Suy ra P(A) = 1 - P(\bar{A}) \simeq
0,6507.

  • Câu 12: Nhận biết

    Cho hai biến cố AB với 0 <
P(A) < 1. Biết P(A) =0,1;P\left( \overline{A} ight) = 0,9;P\left( B|A ight) = 0,3;P\left(B|\overline{A} ight) = 0,6. Tính P(B)?

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,1.0,3 + 0,9.0,6 =
0,57

  • Câu 13: Thông hiểu

    Một công ty xây dựng đấu thầu 2 dự án độc lập. Khả năng thắng thầu của các dự án 1 là 0,6 và dự án 2 là 0,7. Biết công ty thắng thầu dự án 1, tìm xác suất công ty thắng thầu dự án 2?

    Gọi A là biến cố ”Thắng thầu dự án 1″

    Gọi B là biến cố “Thắng thầu dự án 2″

    Theo đề bài ta có: \left\{ \begin{matrix}
P(A) = 0,6 \Rightarrow P\left( \overline{A} ight) = 0,4 \\
P(B) = 0,3 \Rightarrow P\left( \overline{B} ight) = 0,7 \\
\end{matrix} ight. với 2 biến cố A; B độc lập.

    Gọi D là biến cố “thắng thầu dự án thứ 2 biết thắng thầu dự án 1” do A; B là hai biến cố độc lập nên:

    P(D) = P\left( B|A ight) = P(B) =
0,7

  • Câu 14: Vận dụng

    Hộp I có 4 viên bi đỏ, 2 viên bi xanh; hộp II có 3 viên bi đỏ, 3 viên bi xanh. Bỏ ngẫu nhiên một viên bi từ hộp I sang hộp II, sau đó lại bỏ ngẫu nhiên một viên bi từ hộp II sang hộp I. Cuối cùng rút ngẫu nhiên từ hộp I ra một viên bi. 1. Tính xác suất để viên bi rút ra sau cùng màu đỏ?

    Gọi D1, X1 tương ứng là "lấy được viên bi đỏ, xanh từ hộp I sang hộp II",

    D2, X2 tương ứng là "lấy được viên bi đỏ, xanh từ hộp II sang hộp I".

    Khi đó hệ D1D2, D1X2, X1D2, X1X2 tạo thành hệ đầy đủ.

    Ta có: \left\{ \begin{gathered}
  P\left( {{D_1}{D_2}} ight) = \frac{4}{6}.\frac{4}{7};P\left( {{D_1}{X_2}} ight) = \frac{4}{6}.\frac{3}{7} \hfill \\
  P\left( {{X_1}{D_2}} ight) = \frac{2}{6}.\frac{3}{7};P\left( {{X_1}{X_2}} ight) = \frac{2}{6}.\frac{4}{7} \hfill \\ 
\end{gathered}  ight.

    Gọi A là "viên bi rút ra sau cùng là màu đỏ".

    Ta xác định được: \left\{ \begin{gathered}
  P\left( {A|{D_1}{D_2}} ight) = \frac{4}{6};P\left( {A|{D_1}{X_2}} ight) = \frac{3}{6} \hfill \\
  P\left( {A|{X_1}{D_2}} ight) = \frac{5}{6};P\left( {A|{X_1}{X_2}} ight) = \frac{4}{6} \hfill \\ 
\end{gathered}  ight.

    Áp dụng công thức xác suất toàn phần:

    P(A) = P\left( D_{1}D_{2} ight)P\left(
A|D_{1}D_{2} ight) + P\left( D_{1}X_{2} ight)P\left( A|D_{1}X_{2}
ight)

    + P\left( X_{1}D_{2} ight)P\left(
A|X_{1}D_{2} ight) + P\left( X_{1}X_{2} ight)P\left( A|X_{1}X_{2}
ight)

    = \frac{4}{6}.\frac{4}{7}.\frac{4}{6} +
\frac{4}{6}.\frac{3}{7}.\frac{3}{6} +
\frac{2}{6}.\frac{3}{7}.\frac{5}{6} +
\frac{2}{6}.\frac{4}{7}.\frac{4}{6} = \frac{9}{14}

  • Câu 15: Vận dụng

    Một nhà máy sản xuất bóng đèn gồm 3 phân xưởng, phân xưởng 1 sản xuất 50% tổng số bóng đèn, phân xưởng 2 sản xuất 20% tổng số bóng đèn, phân xưởng 3 sản xuất 30% tổng số bóng đèn. Tỷ lệ phế phẩm tương ứng của các phân xưởng là 2%, 3%, 4%. Tính tỷ lệ phế phẩm chung của toàn nhà máy?

    Để xác định tỷ lệ phế phẩm chung của toàn nhà máy, ta lấy ngẫu nhiên 1 sản phẩm từ lô hàng của nhà máy.

    Tính xác suất để sản phẩm này là phế phẩm

    Gọi A_{1},A_{2},A_{3} lần lượt là các biến cố " Chọn được sản phẩm của phân xưởng 1,2,3".

    Ta có A_{1},A_{2},A_{3} là hệ biến cố xung khắc và đầy đủ.

    P\left( A_{1} ight) = 0.5,P\left(
A_{2} ight) = 0.2,P\left( A_{3} ight) = 0.3

    Gọi B là biến cố "Lấy được phế phẩm" ta có:

    P(B) = P\left( A_{1} ight)P\left(
B|A_{1} ight) + P\left( A_{2} ight)P\left( B|A_{2} ight) + P\left(
A_{3} ight)P\left( B|A_{3} ight)

    = 0.5 \times 0.02 + 0.2 \times 0.03 +
0.3 \times 0.04 = 2.8\%

    Vậy tỷ lệ phế phẩm của nhà máy là 2.8\%

  • Câu 16: Vận dụng cao

    Một bài trắc nghiệm có 10 câu hỏi, mỗi câu hỏi có 4 phương án lựa chọn trong đó có 1 đáp án đúng được 5 điểm và mỗi câu trả lời sai bị trừ đi 2 điểm. Một học sinh không học bài nên đánh hàng loạt một câu trả lời. Tìm xác suất để học sinh này nhận điểm dưới 1.

    Xác suất để học sinh trả lời đúng 1 câu là \frac{1}{4} và trả lời sai 1 câu là \frac{3}{4}.

    Gọi x là số câu trả lời đúng \Rightarrow 10 - x là số câu trả lời sai.

    Số điểm học sinh đạt được là: 5x - 2.(10
- x) = 7x - 20

    Học sinh nhận được điểm dưới 1 khi 7x -
20 < 1 \Leftrightarrow x < 3

    x\mathbb{\in Z \Rightarrow}x \in \{
0;1;2\}

    Gọi A_{i}(i = 0,1,2) là biến cố: "Học sinh trả lời đúng i câu"

    A là biến cố "Học sinh nhận điểm dưới 1"

    Suy ra A = A_{0} \cup A_{1} \cup
A_{2}P(A) = P\left( A_{0}ight) + P\left( A_{1} ight) + P\left( A_{2} ight)

    P\left( A_{i} ight) =
C_{10}^{i}.\left( \frac{1}{4} ight)^{i}.\left( \frac{3}{4} ight)^{10
- i} nên P(A) = \sum_{i =
0,}^{2}C_{10}^{i}.\left( \frac{1}{4} ight)^{i}.\left( \frac{3}{4}
ight)^{10 - i} = 0,5256

  • Câu 17: Thông hiểu

    Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng 0,850,15. do có nhiễu trên đường truyền nên \frac{1}{7} tín hiệu A bị méo và thu được như tín hiệu B còn \frac{1}{8} tín hiệu B bị méo cà thu được như A. Xác suất thu được tín hiệu A là:

    Gọi A là biến cố “Phát tín hiệu A ”

    Gọi B là biến cố “Phát tín hiệu A ”

    Gọi TA là biến cố “Phát được tín hiệu A ”

    Gọi TB là biến cố “Phát được tín hiệu B”.

    Ta cần tính P\left( T_{A}
ight) ta có: \left\{\begin{matrix}P(A) = 0,85 \\P\left( T_{B}|A ight) = \dfrac{1}{7} \Rightarrow P\left( T_{A}|Aight) = 1 - \dfrac{1}{7} = \dfrac{6}{7} \\P(B) = 0,15 \\P\left( T_{A}|B ight) = \dfrac{1}{8} \\\end{matrix} ight. khi đó:

    P\left( T_{A} ight) = P(A).P\left(
T_{A}|A ight) + P(B).P\left( T_{A}|B ight)

    \Rightarrow P\left( T_{A} ight) =
0,85.\frac{6}{7} + 0,15.\frac{1}{8} = \frac{837}{1120}

    Theo công thức Bayes, ta có:

    \Rightarrow P\left( A|T_{A} ight) =\dfrac{P(A).P\left( T_{A}|A ight)}{P\left( T_{A} ight)} =\dfrac{0,85.\dfrac{6}{7}}{\dfrac{837}{1120}} = \dfrac{272}{279}

  • Câu 18: Nhận biết

    Một đợt xổ số phát hành N vé, trong đó có M vé có thưởng. Một người mua t(r < N - M). Tính xác suất để người đó có ít nhất một vé trúng thưởng

    Gọi A: “Người đó có ít nhất một vé trúng thưởng”.

    \overline{A}: “người đó không có vé trúng thưởng”

    Ta có: P\left( \overline{A} ight) =
\frac{C_{N - M}^{t}}{C_{N}^{t}} khi đó P(A) = 1 - P\left( \overline{A} ight) = 1 -
\frac{C_{N - M}^{t}}{C_{N}^{t}}

  • Câu 19: Nhận biết

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P(A.B)?

    Ta có: P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

  • Câu 20: Nhận biết

    Cho hai biến cố A;B với P(A + B) = \frac{3}{4}. Tính P\left( \overline{A}.\overline{B}
ight)?

    Ta có: P\left( \overline{A}.\overline{B}
ight) = P\left( \overline{A + B} ight) = 1 - P(A + B) =
\frac{1}{4}

  • Câu 21: Nhận biết

    Cho hai biến cố A;B với P(B) = 0,6;P\left( A|B ight) = 0,7;P\left(
A|\overline{B} ight) = 0,4. Giá trị P(A) bằng:

    Ta có: P\left( \overline{B} ight) = 1 -
P(B) = 1 - 0,6 = 0,4

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,6.0,7 + 0,4.0,4 =
0,58

  • Câu 22: Thông hiểu

    Một hộp chứa 8 bi trắng, 2 bi đỏ. Lần lượt lấy từng bi. Giả sử lần đầu tiên lấy được bi trắng. Xác định xác suất lần thứ hai lấy được bi đỏ.

    Gọi A là biến cố lần một lấy được bi trắng.

    Gọi B là biến cố lần hai lấy được bi đỏ.

    Xác suất lần 2 lấy được bi đỏ khi lần 1 đã lấy được bi trắng làP\left( B|A ight).

    Ta có: \left\{ \begin{matrix}P(A) = \dfrac{8.9}{10.9} = \dfrac{4}{5} \\P(A \cap B) = \dfrac{8.2}{10.9} = \dfrac{8}{45} \\\end{matrix} ight. khi đó:

    P\left( B|A ight) = \dfrac{P(A \cap B)}{P(A)} = \dfrac{\dfrac{8}{45}}{\dfrac{4}{5}} = \dfrac{2}{9}.

  • Câu 23: Nhận biết

    Cho hai biến cố AB với P(B) =
0,2;P\left( A|B ight) = 0,5;P\left( A|\overline{B} ight) =
0,4. Tính P\left( B|A
ight)?

    Ta có: P(B) = 0,2 \Rightarrow P\left(
\overline{B} ight) = 1 - P(B) = 1 - 0,2 = 0,8

    Áp dụng công thức Bayes:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

    \Rightarrow P\left( B|A ight) =
\frac{0,2.0,5}{0,2.0,5 + 0,8.0,4} = \frac{5}{21} \approx 0,238 .

  • Câu 24: Vận dụng

    Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu? (kết quả làm tròn đến hàng phần trăm)

    Đáp án : 0,93

    Đáp án là:

    Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu? (kết quả làm tròn đến hàng phần trăm)

    Đáp án : 0,93

    Gọi A là biến cố “qua được lần kiểm tra đầu tiên” \Rightarrow P(A) = 0,98

    Gọi B là biến cố “qua được lần kiểm tra thứ 2” \Rightarrow P\left( B|A ight) =
0,95

    Chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện trên, hay ta đi tính P(A \cap
B).

    Ta có

    P\left( B|A ight) = \frac{P(A \cap
B)}{P(A)}

    \Rightarrow P(A \cap B) = P\left( B|A
ight).P(A) = 0,95.0,98 = \frac{931}{1000} \approx 0,93

  • Câu 25: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( A|B ight)?

    Ta có: P\left( A|B ight) = \frac{P(A
\cap B)}{P(B)} = \frac{0,3}{0,7} = \frac{3}{7}.

  • Câu 26: Nhận biết

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó công thức xác suất toàn phần tính P(A) là:

    Ta có công thức xác suất toàn phần tính P(A) là:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)

  • Câu 27: Thông hiểu

    Một hộp bút bi Thiên Long có 15 chiếc bút trong đó có 9 chiếc bút mới. Người ta lấy ngẫu nhiên 1 chiếc bút để sử dụng sau đó trả lại vào hộp. Lần thứ hai lấy ngẫu nhiên 2 chiếc bút, tính xác suất cả hai chiếc bút lấy ra đều là chiếc mới.

    Gọi A ”Hai chiếc bút lấy ra đều là chiếc mới”; B0 ” Lấy ra một chiếc bút cũ” và B1 ”Lấy ra một chiếc bút mới”

    Nên B0; B0 là hệ biến cố đầy đủ.

    Từ 15 chiếc bút có 9 chiếc bút mới và 6 chiếc bút cũ

    Ta có:

    P\left( B_{0} ight) =
\frac{C_{6}^{1}}{C_{15}^{1}} = \frac{2}{5};P\left( B_{1} ight) =
\frac{C_{9}^{1}}{C_{15}^{1}} = \frac{3}{5}

    P\left( A|B_{0} ight) =
\frac{C_{9}^{2}}{C_{15}^{2}} = \frac{12}{35};P\left( A|B_{1} ight) =
\frac{C_{8}^{2}}{C_{15}^{2}} = \frac{4}{15}

    Áp dụng công thức xác suất toàn phần

    P(A) = P\left( A|B_{0} ight).P\left(
B_{0} ight) + P\left( A|B_{1} ight)P\left( B_{1}
ight)

    \Rightarrow P(A) =
\frac{12}{35}.\frac{2}{5} + \frac{4}{15}.\frac{3}{5} =
\frac{52}{175}.

  • Câu 28: Vận dụng

    Theo thống kê ở các gia đình có hai con thì xác suất để con thứ nhất và con thứ hai là đều con trai là 0,27 và hai con đều là gái là 0,23, còn xác suất con thứ nhất và con thứ hai có một trai và một gái là đồng khả năng. Biết khi xét một gia đình được chọn ngẫu nhiên có con thứ nhất là con gái, tìm xác suất để con thứ hai là trai.

    Gọi A là 'con thứ nhất là con trai' và B là 'con thứ hai là con trai' thì theo đề bài ta có:

    P(AB) = 0,27, P(\bar{A}\bar{B}) = 0,23P(A\bar{B}) = P(\bar{A}B) = 0,25

    Ta cần tìm B \mid \bar{A}.

    Ta có

    P\left( B\mid\bar{A} ight) =
\frac{P\left( B\bar{A} ight)}{P\left( \bar{A} ight)} = \frac{P\left(
B\bar{A} ight)}{P\left( \bar{A}B ight) + P\left( \bar{A}\bar{B}
ight)}= \frac{0,25}{0,25 + 0,23} \simeq
0,5208

  • Câu 29: Thông hiểu

    Một bình đựng 50 viên bi kích thước, chất liệu như nhau, trong đó có 30 viên bi xanh và 20 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một bình đựng 50 viên bi kích thước, chất liệu như nhau, trong đó có 30 viên bi xanh và 20 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 30: Thông hiểu

    Một phân xưởng có 3 máy tự động: máy I sản xuất 25%, máy II sản xuất 30%, máy III sản xuất 45% số sản phẩm. Tỷ lệ phế phẩm tương ứng của các máy lần lượt là 0,1%, 0,2% và 0,3%. Chọn ngẫu nhiên ra một sản phẩm của phân xưởng. 1. Biết nó là phế phẩm. Tính xác suất để sản phẩm đó do máy I sản xuất.

    Gọi Ai là "lấy ra sản phẩm từ lô i" thì A1, A2, A3 tạo thành hệ đầy đủ.

    Gọi A là "lấy ra sản phẩm là phế phẩm".

    Áp dụng công thức xác suất đầy đủ, ta có

    P(A) = P\left( A_{1} ight)P\left(
A|A_{1} ight) + P\left( A_{2} ight)P\left( A|A_{2} ight) + P\left(
A_{3} ight)P\left( A|A_{3} ight)

    \Rightarrow P(A) = 0,25.0,1\% +
0,3.0,2\% + 0,45.0,3\% = 0,22\%

    Gọi B là "sản phẩm do máy I sản xuất". Khi đó ta cần tính P(B|A)

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)} = \frac{0,25.0,1\%}{0,22\%} \approx
0,1136

  • Câu 31: Thông hiểu

    Một bình đựng 9 viên bi xanh và 7 viên bi đỏ. Lần lượt lấy ngẫu nhiên ra 2 bi, mỗi lần lấy 1 bi không hoàn lại. Tính xác suất để bi thứ 2 màu xanh nếu biết bi thứ nhất màu đỏ?

    Gọi A là biến cố “lần thứ nhất lấy được bi màu đỏ”.

    Gọi B là biến cố “lần thứ hai lấy được bi màu xanh”.

    Ta cần tìm P\left( B|A
ight)

    Không gian mẫu n(\Omega) = 16.15 cách chọn

    Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi rong 15 bi còn lại có 15 cách chọn, do đó: P(A) = \frac{7.15}{16.15} =
\frac{7}{16}

    Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi màu xanh có 9 cách chọn, do đó: P(A
\cap B) = \frac{7.9}{16.15} = \frac{21}{80}

    Vậy xác suất để viên bi lấy lần thứ hai là màu xanh nếu biết rằng viên bi lấy lần thứ nhất là màu đỏ là: P\left( B|A ight) = \dfrac{P(A \cap B)}{P(A)} =\dfrac{\dfrac{21}{80}}{\dfrac{7}{16}} = \dfrac{3}{5}.

  • Câu 32: Thông hiểu

    Có hai hộp đựng phiếu thi, mỗi phiếu ghi một câu hỏi. Hộp thứ nhất có 15 phiếu và hộp thứ hai có 9 phiếu. Học sinh A đi thi chỉ thuộc 10 câu ở hộp thứ nhất và 8 câu ở hộp thứ hai. Giáo viên rút ngẫu nhiên từ mỗi hộp ra một phiếu thi, sau đó cho học sinh A rút ngẫu nhiên ra 1 phiếu từ 2 phiếu mà giáo viên đã rút. Tính xác suất để học sinh A trả lời được câu hỏi trong phiếu.

    Gọi E1 là biến cố sinh viên rút ra từ hộp 1

    E2 là biến cố sinh viên rút ra từ hộp 2

    E1, E2 tạo thành một nhóm biến cố đầy đủ

    Gọi B là biến cố rút ra 1 câu thuộc B=(E_1∩B)∪(E_2∩B)

    => P(B) = P(E_1).P(B|E_1) + P(E_2).P(B|E_2)

    Ta có: \left\{ \begin{gathered}
  P\left( {{E_1}} ight) = \frac{{C_1^1}}{{C_2^1}} = \frac{1}{2};P\left( {{E_2}} ight) = \frac{{C_1^1}}{{C_2^1}} = \frac{1}{2} \hfill \\
  P\left( {B|{E_1}} ight) = \frac{{C_{10}^1}}{{C_{15}^1}} = \frac{2}{3} \hfill \\
  P\left( {B|{E_2}} ight) = \frac{{C_8^1}}{{C_9^1}} = \frac{8}{9} \hfill \\ 
\end{gathered}  ight.

    Thay vào công thức ta tính được P(B) =
\frac{7}{9}.

  • Câu 33: Thông hiểu

    Trong hộp có 20 nắp chai Cocacola trong đó có 2 nắp ghi “Chúc mừng bạn đã trúng thưởng”. Bạn A được chọn lên rút thăm lần lượt hai nắp chai, xác suất để cả hai nắp đều trúng thưởng là:

    Gọi A là biến cố “nắp đầu trúng thưởng”

    Gọi B là biến cố “nắp thứ hai trúng thưởng”

    Ta đi tìm giá trị P(A \cap
B)

    Khi bạn rút thăm lần đầu thì trong hộp có 20 nắp trong đó có 2 nắp trúng do đó: P(A) = \frac{2}{20} =
\frac{1}{10}

    Khi biến cố A đã xảy ra thì còn lại 19 nắp trong đó có 1 nắp trúng thưởng, do đó: P\left( B|A ight) =
\frac{1}{19}

    Ta có:

    P\left( B|A ight) = \frac{P(A \cap
B)}{P(A)}

    \Rightarrow P(A \cap B) = P\left( B|A
ight).P(A) = \frac{1}{19}.\frac{1}{10} = \frac{1}{190}.

  • Câu 34: Thông hiểu

    Có hai hộp đựng bóng giống nhau (khác màu sắc):

    Hộp thứ chứa 10 quả bóng trong đó có 9 quả màu đen.

    Hộp thứ hai chứa 20 quả bóng trng đó có 18 quả màu đen,

    Từ hộp thứ nhất lấy ngẫu nhiên một quả bóng bỏ sang hộp thứ hai. Tìm xác suất để lấy ngẫu nhiên một quả bóng từ hộp thứ hai được quả màu đen?

    Gọi A là biến cố lấy được quả bóng màu đen từ hộp thứ hai.

    Biến cố A có thể xảy ra đòng thời với một trong hai biến cố sau đây tạo nên một nhóm đầy đủ các biến cố:

    H1 là biến cố quả bóng bỏ từ hộp thứ nhất sang hộp thứ hai là màu đen.

    H2 là biến cố quả bóng bỏ từ hộp thứ nhất sang hộp thứ hai không phải màu đen.

    Xác suất để từ hộp thứ nhất bỏ sang hộp thứ hai là quả bóng màu đen bằng: P\left( H_{1} ight) =
\frac{9}{10}

    Xác suất để từ hộp thứ nhất bỏ sang hộp thứ hai không phải quả bóng màu đen bằng: P\left( H_{2} ight) =
\frac{1}{10}

    Xác suất có điều kiện để từ hộp thứ hai lấy được quả bóng màu đen khi các giả thuyết H_{1};H_{2} xảy ra là:

    P\left( A|H_{1} ight) =
\frac{19}{21};P\left( A|H_{2} ight) = \frac{18}{21} =
\frac{6}{7}

    Do đó:

    P(A) = P\left( H_{1} ight).\left(
A|H_{1} ight) + P\left( H_{2} ight)P\left( A|H_{2}
ight)

    \Rightarrow P(A) =
\frac{9}{10}.\frac{19}{21} + \frac{1}{10}.\frac{6}{7} = 0,9

  • Câu 35: Thông hiểu

    Một bình đựng hạt giống có 7 hạt loại A và 6 hạt loại B. Lấy ngẫu nhiên lần thứ nhất ra 2 hạt, lần thứ hai ra một hạt. Tính xác suất để hạt giống lấy ra lần 2 là hạt loại A.

    Gọi F là biến cố hạt lấy ra lần hai là loại A. H0, H1, H2 lần lượt là biến cố hai hạt lấy ra lần thứ nhất có 0,1, 2 hạt loại B.

    {H0, H1, H2} là một hệ đầy đủ.

    Áp dụng công thức xác suất đầy đủ ta có

    P(F) = P\left( H_{0} ight).P\left(
F|H_{0} ight) + P\left( H_{1} ight).P\left( F|H_{1} ight) +
P\left( H_{2} ight).P\left( F|H_{2} ight)

    \Rightarrow P(F) =
\frac{C_{7}^{2}}{C_{13}^{2}}.\frac{5}{11} +
\frac{C_{7}^{1}.C_{6}^{1}}{C_{13}^{2}}.\frac{6}{11} +
\frac{C_{6}^{2}}{C_{13}^{2}}.\frac{7}{11} = 0,538.

  • Câu 36: Vận dụng

    Ba máy tự động sản xuất cùng một loại chi tiết, trong đó máy I sản xuất 25\%, máy II sản xuất 30\% và máy III sản xuất 45\% tổng sản lượng. Tỷ lệ phế phẩm của các máy lần lượt là 0,1\%;0,2\%;0,4\%. Tìm xác suất để khi chọn ngẫu nhiên ra 1 sản phẩm từ kho thì chi tiết phế phẩm đó do máy II sản xuất?

    Gọi Ai: “Sản phẩm do máy i sản xuất”

    A: “Sản phẩm là phế phẩm”

    Ta có: A1, A2, A3 là một hệ đầy đủ các biến cố và

    P\left( A_{1} ight) = 0,25;P\left(
A_{2} ight) = 0,3;P\left( A_{3} ight) = 0,45

    P\left( A|A_{1} ight) = 0,001;P\left(
A|A_{2} ight) = 0,002;P\left( A|A_{3} ight) = 0,004

    Theo công thức xác suất toàn phần ta có:

    P(A) = P\left( A_{1} ight)P\left(
A|A_{1} ight) + P\left( A_{2} ight)P\left( A|A_{3} ight) + P\left(
A_{3} ight)P\left( A|A_{3} ight) = 0,00265

    Theo công thức Bayes ta có:

    P\left( A_{2}|A ight) = \frac{P\left(
A|A_{2} ight).P\left( A_{2} ight)}{P(A)} = 0,226

  • Câu 37: Thông hiểu

    Hộp I: 5 bi trắng và 5 bi đen. Hộp II: 6 bi trắng và 4 bi đen. Bỏ hai viên bi từ hộp I sang hộp II. Sau đó lấy ra 1 viên bi. Giả sử lấy được bị trắng, tính xác suất để lấy được bi trắng của hộp I?

    Gọi A là biến cố lấy được bi trắng

    Gọi K1 là biến cố lấy bi ra từ hộp II của hộp I

    Gọi K2 là biến cố lấy bi ra từ hộp II của hộp II

    Ta xác định được:

    \left\{ \begin{gathered}
  P\left( {{K_1}} ight) = \frac{{C_2^1}}{{C_{12}^1}};P\left( {{K_2}} ight) = \frac{{C_{10}^1}}{{C_{12}^1}} \hfill \\
  P\left( {A|{E_1}} ight) = \frac{{C_5^1}}{{C_{10}^1}};P\left( {A|{E_2}} ight) = \frac{{C_6^1}}{{C_{10}^1}} \hfill \\ 
\end{gathered}  ight.

    Khi đó: P(A) = P\left( K_{1}
ight).P\left( A|K_{1} ight) + P\left( K_{2} ight).P\left( A|K_{2}
ight) = \frac{7}{12}

    Vậy xác suất để lấy được bi trắng của hộp I là:

    \Rightarrow P\left( K_{1}|A ight) =
\frac{P\left( K_{1} ight).P\left( A|K_{1} ight)}{P(A)} =
\frac{1}{7}

  • Câu 38: Vận dụng

    Một công ty may mặc có hai hệ thống máy chạy độc lập với nhau. Xác suất để hệ thống máy thứ nhất hoạt động tốt là 95%, xác suất để hệ thống máy thứ hai hoạt động tốt là 85%. Công ty chỉ có thể hoàn thành đơn hàng đúng hạn nếu ít nhất một trong hai hệ thống máy hoạt động tốt. Xác suất để công ty hoàn thành đúng hạn là

    Gọi A là biến cố: "Hệ thống máy thứ nhất hoạt động tốt".

    B là biến cố: "Hệ thống máy thứ hai hoạt động tốt".

    C là biến cố: "Công ty hoàn thành đúng hạn".

    Ta có \overline{A} là biến cố: "Hệ thống máy thứ nhất hoạt động không tốt".

    \overline{B} là biến cố: "Hệ thống máy thứ hai hoạt động không tốt".

    \overline{C} là biến cố: "Công ty hoàn thành không đúng hạn".

    P(A) = 0,95;P(B) = 0,85;P(\overline{A})
= 0,05;P(\overline{B}) = 0,15

    AB là hai biến cố độc lập nên \overline{A}\overline{B} là hai biến cố độc lập

    \overline{C} =
\overline{A.B}

    P(\overline{C}) =
P(\overline{A}.\overline{B}) = P(\overline{A}).P(\overline{B}) =
0,0075.

    \Rightarrow P(C) = 1 - P(\overline{C}) =
0,9925.

  • Câu 39: Vận dụng cao

    Ba khẩu pháo cùng bắn vào một mục tiêu với xác suất trúng đích của mỗi khẩu là 0,4;0,7;0,8. Biết rằng xác suất để mục tiêu bị tiêu diệt khi trúng một phát đạn là 30\%, khi trúng 2 phát đạn là 70\%, còn trúng 3 phát đạn thì chắc chắn mục tiêu bị tiêu diệt. Giả sử mỗi khẩu pháo bắn 1 phát. Tính xác suất để khẩu thứ 3 có đóng góp vào thành công đó?

    Gọi \ A_{i} : "Khẫu pháo thứ i bắn trúng" (i = 1,2,3)

    B_{k} : "Mục tiêu trúng k phát đạn" (k = 0,1,2,3)

    B : "Mục tiêu bị tiêu diệt".

    Ta có: \left\{ B_{k},k = 0,1,2,3
ight\} là một hệ đầy đủ các biến cố và

    B_{0} =
\overline{A_{1}}\overline{A_{2}}\overline{A_{3}},\ B_{1} =
A_{1}\overline{A_{2}}\overline{A_{3}} +
\overline{A_{1}}A_{2}\overline{A_{3}} +
\overline{A_{1}}\overline{A_{2}}A_{3}

    B_{2} = A_{1}A_{2}\overline{A_{3}} +
A_{1}\overline{A_{2}}A_{3} + \overline{A_{1}}A_{2}A_{3},\ B_{3} =
A_{1}A_{2}A_{3}

    Ta có các giả thiết sau:

    P\left( A_{1} ight) = 0,4;P\left(
A_{2} ight) = 0,7;P\left( A_{3} ight) = 0,8

    P\left( B \mid B_{0} ight) = 0,P\left(
B \mid B_{1} ight) = 0,3;P\left( B \mid B_{2} ight) = 0,7;P\left( B
\mid B_{3} ight) = 1

    Từ đó, ta tính được:

    P\left( B_{0} ight) = P\left(
\overline{A_{1}} ight)P\left( \overline{A_{2}} ight)P\left(
\overline{A_{3}} ight)

    = (0,6)(0,3)(0,2)

    = 0,036

    P\left( B_{1} ight) = P\left( A_{1}
ight)P\left( \overline{A_{2}} ight)P\left( \overline{A_{3}} ight)
+ P\left( \overline{A_{1}} ight)P\left( A_{2} ight)P\left(
\overline{A_{3}} ight) + P\left( \overline{A_{1}} ight)P\left(
\overline{A_{2}} ight)P\left( A_{3} ight)

    = (0,4)(0,3)(0,2) + (0,6)(0,7)(0,2) +
(0,6)(0,3)(0,8)

    = 0,252

    P\left( B_{2} ight) = P\left( A_{1}
ight)P\left( A_{2} ight)P\left( \overline{A_{3}} ight) + P\left(
A_{1} ight)P\left( \overline{A_{2}} ight)P\left( A_{3} ight) +
P\left( \overline{A_{1}} ight)P\left( A_{2} ight)P\left( A_{3}
ight)

    = (0,4)(0,7)(0,2) + (0,4)(0,3)(0,8) +
(0,6)(0,7)(0,8)

    = 0,488

    P\left( B_{3} ight) = P\left( A_{1}
ight)P\left( A_{2} ight)P\left( A_{3} ight)

    = (0,4)(0,7)(0,8)

    = 0,224

    Theo công thức xác suất đầy đủ ta có:

    P(B) = P\left( B \mid B_{0}
ight)P\left( B_{0} ight) + P\left( B \mid B_{1} ight)P\left( B_{1}
ight) + P\left( B \mid B_{2} ight)P\left( B_{2} ight) + P\left( B
\mid B_{3} ight)P\left( B_{3} ight)

    = 0.(0,036) + (0,3)(0,252) +
(0,7)(0,488) + 1.(0,224)

    = 0,6412

    Khi đó ta có:

    P\left( BA_{3} ight) = P\left\lbrack
BA_{3}\left( A_{1}A_{2} + \overline{A_{1}}A_{2} + A_{1}\overline{A_{2}}
+ \overline{A_{1}}\overline{A_{2}} ight) ightbrack

    = P\left( A_{1}A_{2}A_{3}B ight) +
P\left( \overline{A_{1}}A_{2}A_{3}B ight) + P\left(
A_{1}\overline{A_{2}}A_{3}B ight) + P\left(
\overline{A_{1}}\overline{A_{2}}A_{3}B ight)

    = P\left( B \mid A_{1}A_{2}A_{3}
ight)P\left( A_{1}A_{2}A_{3} ight) + P\left( B \mid
\overline{A_{1}}A_{2}A_{3} ight)P\left( \overline{A_{1}}A_{2}A_{3}
ight)

    + P\left( B \mid
A_{1}\overline{A_{2}}A_{3} ight)P\left( A_{1}\overline{A_{2}}A_{3}
ight) + P\left( B \mid \overline{A_{1}}\overline{A_{2}}A_{3}
ight)P\left( \overline{A_{1}}\overline{A_{2}}A_{3}
ight)

    = 1.(0,224) +
(0,7)\lbrack(0,6)(0,7)(0,8)brack +
(0,7)\lbrack(0,4)(0,3)(0,8)brack

    +
(0,3)\lbrack(0,6)(0,3)(0,8)brack

    = 0,5696

    Do đó

    P\left( A_{3} \mid B ight) =
\frac{P\left( BA_{3} ight)}{P(B)} = \frac{0,5696}{0,6412} =
0,8883

  • Câu 40: Nhận biết

    Hộp thứ nhất chứa 3 viên bi đen và 2 viên bi trắng. Hộp thứ hai chứa 4 viên bi đen và 5 viên bi trắng. Các viên bi có cùng kích thước và khối lượng. Bạn Mai lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.

    Gọi A: "Viên bi lấy ra lần thứ nhất là bi đen"

    Và B: "Viên bi lấy ra lần thứ hai là bi trắng".

    Biết rằng biến cố A xảy ra, tính xác suất của biến cố B?

    Nếu biến cố A xảy ra thì bạn Mai lấy viên bi đen từ hộp thứ nhất bỏ vào hộp thứ hai.

    Khi đó hộp thứ hai có 5 viên bi đen và 5 viên bi trắng.

    Do đó, xác suất của biến cố B là: P(B) =
\frac{1}{2}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Xác suất có điều kiện Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 14 lượt xem
Sắp xếp theo