Cho hai biến cố
và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Cho hai biến cố
và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Câu lạc bộ thể thao của trường Việt Anh có 40 bạn đều biết chơi biết chơi ít nhất một trong hai môn là bóng đá và cầu lông, trong đó có 27 bạn biết chơi bóng đá và 25 bạn biết chơi cầu lông. Chọn ngẫu nhiên 1 bạn. Xác suất chọn được bạn biết chơi bóng đá biết bạn đó chơi được cầu lông là bao nhiều?
Đáp án: 0,48
Câu lạc bộ thể thao của trường Việt Anh có 40 bạn đều biết chơi biết chơi ít nhất một trong hai môn là bóng đá và cầu lông, trong đó có 27 bạn biết chơi bóng đá và 25 bạn biết chơi cầu lông. Chọn ngẫu nhiên 1 bạn. Xác suất chọn được bạn biết chơi bóng đá biết bạn đó chơi được cầu lông là bao nhiều?
Đáp án: 0,48
Xét các biến cố: : “Chọn được bạn biết chơi bóng đá”
: “Chọn được bạn biết chơi cầu lông”
Khi đó ;
;
.
Suy ra .
Vậy xác suất chọn được bạn biết chơi bóng đá, bạn đó biết chơi cầu lông là .
Đáp số: .
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Một hệ thống được cấu tạo bởi 3 bộ phận độc lập nhau. Hệ thống sẽ hoạt động nếu ít nhất 2 trong 3 bộ phận còn hoạt động. Nếu độ tin cậy của mỗi bộ phận là 0.95 thì độ tin cậy của hệ thống là bao nhiêu?
Gọi Bi: "Bộ phận thứ i hoạt động tốt" (i = 1, 2, 3)
H: "Hệ thống hoạt động tốt"
Theo giả thiết, ta thấy rằng P(Bi) = 0.95 với i = 1, 2, 3 và
Do tính độc lập, xung khắc và đối xứng nên:
.
Cho hai biến cố
và
của một phép thử T. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được gọi là xác suất của
với điều kiện
, ký hiệu là
. Phát biểu nào sau đây đúng?
Nếu thì
.
Một công ty xây dựng đấu thầu 2 dự án độc lập. Khả năng thắng thầu của các dự án 1 là
và dự án 2 là
. Biết công ty thắng thầu dự án 1, tìm xác suất công ty thắng thầu dự án 2?
Gọi A là biến cố ”Thắng thầu dự án 1″
Gọi B là biến cố “Thắng thầu dự án 2″
Theo đề bài ta có: với 2 biến cố A; B độc lập.
Gọi E là biến cố “thắng thầu dự án 2 biết không thắng thầu dự án 1” do A; B là hai biến cố độc lập nên:
.
Một xí nghiệp mỗi ngày sản xuất ra
sản phẩm trong đó có
sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).
Đáp án: 0,02
Một xí nghiệp mỗi ngày sản xuất ra sản phẩm trong đó có
sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).
Đáp án: 0,02
Xét các biến cố:
: Sản phẩm lấy ra lần thứ nhất bị lỗi.
Khi đó, ta có: ;
.
: Sản phẩm lấy ra lần thứ hai bị lỗi.
Khi sản phẩm lấy ra lần thứ nhất bị lỗi thì còn sản phẩm và trong đó có
sản phẩm lỗi nên ta có:
, suy ra
.
Khi sản phẩm lấy ra lần thứ nhất không bị lỗi thì còn sản phẩm trong đó có
sản phẩm lỗi nên ta có:
, suy ra
.
Khi đó, xác suất để sản phẩm lấy ra lần thứ hai bị lỗi là:
.
Đáp số: .
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức Bayes:
.
Cho
và
là hai biến cố độc lập thoả mãn
và
. Khi đó,
bằng:
A và B là hai biến cố độc lập nên
Trước khi đưa sản phẩm ra thị trường người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phẩm đó và thấy có 34 người tả lời “sẽ mua”, 97 người trả lời “có thể sẽ mua” và 69 người trả lời “không mua”. Kinh nghiệm cho thấy tỷ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời trên tương ứng là 70%, 30% và 1%. Trong số khách hàng thực sự mua sản phẩm thì có bao nhiêu phần trăm trả lời “sẽ mua”?
Gọi H1, H2, H3 lần lượt là 3 biến cố tương ứng với 3 cách trả lời của khách hàng được phỏng vấn:
H1 – người đó trả lời “sẽ mua”
H2 – người đó trả lời “có thể mua”
H3 – người đó trả lời “không mua”
H1, H2, H3 là một hệ đầy đủ các biến cố với xác suất tương ứng
Ta xác định được:
Theo công thức xác suất đầy đủ ta có:
.
Theo công thức Bayes:
.
Tỷ lệ người nghiện thuốc là ở một vùng là
. Biết rằng tỷ lệ người bị viêm họng trong số những người nghiện thuốc là
, còn tỷ lệ người bị viêm họng trong số những người không nghiện là
. Lấy ngẫu nhiên một người thấy người ấy bị viêm họng. Nếu người đó không bị viêm họng, tính xác suất người đó nghiện thuốc lá.
Gọi A là "người nghiện thuốc" và B là "người viêm họng" thì từ đề bài ta có:
Cần tính xác suất là C = A|B.
Sử dụng công thức Baye ta có:
Gọi ta có:
Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10, nếu biết rằng có ít nhất một con đã ra mặt 5 chấm?
Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10, nếu biết rằng có ít nhất một con đã ra mặt 5 chấm?
Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng
và
. do có nhiễu trên đường truyền nên
tín hiệu A bị méo và thu được như tín hiệu B còn
tín hiệu B bị méo cà thu được như A. Xác suất thu được tín hiệu A là:
Gọi A là biến cố “Phát tín hiệu A ”
Gọi B là biến cố “Phát tín hiệu A ”
Gọi TA là biến cố “Phát được tín hiệu A ”
Gọi TB là biến cố “Phát được tín hiệu B”.
Ta cần tính ta có:
khi đó:
Trong một trường học, tỉ lệ học sinh nữ là
. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia câu lạc bộ M lần lượt là
và
. Chọn ngẫu nhiên 1 học sinh của trường. Tính xác suất học sinh đó có tham gia câu lạc bộ M.
Gọi A: “Học sinh được chọn là nữ” ⇒ : “Học sinh được chọn là nam”
B: “học sinh được chọn có tham gia câu lạc bộ M”.
Từ giả thiết ta có:
Theo công thức xác suất toàn phần, ta có xác suất học sinh được chọn có tham gia câu lạc bộ M là:
.
Tỷ lệ người nghiện thuốc là ở một vùng là
. Biết rằng tỷ lệ người bị viêm họng trong số những người nghiện thuốc là
, còn tỷ lệ người bị viêm họng trong số những người không nghiện là
. Lấy ngẫu nhiên một người thấy người ấy bị viêm họng. Tính xác suất người đó nghiện thuốc lá.
Gọi A là "người nghiện thuốc" và B là "người viêm họng" thì từ đề bài ta có:
Cần tính xác suất là C = A|B.
Sử dụng công thức Baye ta có:
Một cửa hàng sách ước lượng rằng: trong tổng số các khách hàng đến cửa hàng có
khách cần hỏi nhân viên bán hàng,
khách mua sách và
khách thực hiện cả hai điều trên. Gặp ngẫu nhiên một khách trong nhà sách. Tính xác suất để người này không mua sách, biết rằng người này đã hỏi nhân viên bán hàng?
Gọi A là "khách hỏi nhân viên bán hàng" và B là "khách mua sách".
Ta có:
.
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Cho hai biến cố
và
với
. Biết ![]()
. Tính
?
Ta có công thức xác suất toàn phần tính là:
Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu? (kết quả làm tròn đến hàng phần trăm)
Đáp án : 0,93
Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu? (kết quả làm tròn đến hàng phần trăm)
Đáp án : 0,93
Gọi A là biến cố “qua được lần kiểm tra đầu tiên”
Gọi B là biến cố “qua được lần kiểm tra thứ 2”
Chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện trên, hay ta đi tính .
Ta có
Trong học kỳ I năm học 2024 - 2025, sinh viên phải thi 4 học phần. Xác suất để sinh viên thi đạt một học phần trong mỗi lần thi đều là 0,8. Nếu thi không đạt học phần nào phải thi lại học phần đó. Tính xác suất để một sinh viên thi đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần.
Gọi là "đạt
học phần ở lần thi đầu".
Khi đó, tạo thành hệ đầy đủ và
Gọi là "đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần".
Áp dụng công thức xác suất toàn phần ta có:
Một bình đựng hạt giống có 7 hạt loại A và 6 hạt loại B. Lấy ngẫu nhiên lần thứ nhất ra 2 hạt, lần thứ hai ra một hạt. Tính xác suất để hạt giống lấy ra lần 2 là hạt loại A.
Gọi F là biến cố hạt lấy ra lần hai là loại A. H0, H1, H2 lần lượt là biến cố hai hạt lấy ra lần thứ nhất có 0,1, 2 hạt loại B.
{H0, H1, H2} là một hệ đầy đủ.
Áp dụng công thức xác suất đầy đủ ta có
.
Cho
và
là các biến cố của phép thử T. Biết rằng
. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được tính theo công thức nào sau đây?
Theo công thức Bayes ta có:
Cho hai biến cố
với
. Tính
?
Ta có:
Ba khẩu pháo cùng bắn vào một mục tiêu với xác suất trúng đích của mỗi khẩu là
. Biết rằng xác suất để mục tiêu bị tiêu diệt khi trúng một phát đạn là
, khi trúng 2 phát đạn là
, còn trúng 3 phát đạn thì chắc chắn mục tiêu bị tiêu diệt. Giả sử mỗi khẩu pháo bắn 1 phát. Tính xác suất để khẩu thứ 3 có đóng góp vào thành công đó?
Gọi : "Khẫu pháo thứ
bắn trúng"
)
: "Mục tiêu trúng
phát đạn"
: "Mục tiêu bị tiêu diệt".
Ta có: là một hệ đầy đủ các biến cố và
Ta có các giả thiết sau:
Từ đó, ta tính được:
Theo công thức xác suất đầy đủ ta có:
Khi đó ta có:
Do đó
Cho hai biến cố
và
là hai biến cố độc lập, với
. Tính
?
Hai biến cố và
là hai biến cố độc lập nên
.
Một tổ có 15 sinh viên trong đó có 5 sinh viên học giỏi môn Toán. Cần chia làm 5 nhóm, mỗi nhóm 3 sinh viên. Tính xác suất để nhóm nào cũng có một sinh viên học giỏi môn Toán?
Gọi là biến cố 'nhóm thứ
có 1 người giỏi Toán' và
là sự kiện nhóm nào cũng có người giỏi Toán, thì dễ dàng nhận thấy:
Ta có:
Áp dụng công thức xác suất của tích ta có:
Một chiếc hộp có
viên bi, trong đó có
viên bi có tô màu và
viên bi không tô màu; các viên bi có kích thước và khối lượng như nhau. Bạn Nam lấy ra viên bi đầu tiên, sau đó bạn Việt lấy ra viên bi thứ hai.
a) Xác suất để bạn Nam lấy ra viên bi có tô màu là
. Đúng||Sai
b) Sơ đồ cây biểu thị tình huống trên là.
Đúng||Sai
c) Xác suất để bạn Việt lấy ra viên bi có tô màu là:
Đúng||Sai
d) Xác suất để bạn Việt lấy ra viên bi không có tô màu là:
. Đúng||Sai
Một chiếc hộp có viên bi, trong đó có
viên bi có tô màu và
viên bi không tô màu; các viên bi có kích thước và khối lượng như nhau. Bạn Nam lấy ra viên bi đầu tiên, sau đó bạn Việt lấy ra viên bi thứ hai.
a) Xác suất để bạn Nam lấy ra viên bi có tô màu là . Đúng||Sai
b) Sơ đồ cây biểu thị tình huống trên là. Đúng||Sai
c) Xác suất để bạn Việt lấy ra viên bi có tô màu là: Đúng||Sai
d) Xác suất để bạn Việt lấy ra viên bi không có tô màu là: . Đúng||Sai
Gọi A là biến cố “bạn Việt lấy ra viên bi có tô màu”
Gọi B là biến cố “bạn Nam lấy ra viên bi có tô màu”, suy ra B là biến cố “bạn Việt lấy ra viên bi không có tô màu”.
a) Xác suất để bạn Nam lấy ra viên bi có tô màu là .
b) Ta có:
Sơ đồ cây cần tìm là:
c) Xác suất để bạn Việt lấy ra viên bi có tô màu là:
d) A là biến cố “bạn Việt lấy ra viên bi có tô màu” suy ra A là biến cố “bạn Việt lấy ra viên bi không có tô màu”
Một tập gồm 10 chứng từ, trong đó có 2 chứng từ không hợp lệ. Một cán bộ kế toán rút ngẫu nhiên 1 chứng từ và tiếp đó rút ngẫu nhiên 1 chứng từ khác để kiểm tra. Tính xác suất để cả 2 chứng từ rút ra đều hợp lệ?
Gọi A là biến cố cả 2 chứng từ rút ra đều hợp lệ
Theo yêu cầu của đầu bài ta phải tính xác xác suất P(A)
Nếu gọi Ai là biến cố chứng từ rút ra lần thứ i là hợp lệ} (i = 1,3).
Khi đó ta có:
Vì vậy các xác suất cần tìm là:
Có hai lô sản phẩm: lô I có 7 chính phẩm, 3 phế phẩm; lô II có 8 chính phẩm, 2 phế phẩm. Từ lô I lấy ngẫu nhiên ra 2 sản phẩm, từ lô II lấy ngẫu nhiên ra 3 sản phẩm. Sau đó từ số sản phẩm này lại lấy ngẫu nhiên 2 sản phẩm. Tính xác suất để trong 2 sản phẩm lấy ra sau cùng có ít nhất 1 chính phẩm.
Gọi là "trong 5 sản phẩm cuối có
chính phẩm".
Khi đó hệ tạo thành hệ đầy đủ
xảy ra thì phải lấy 3 phế phẩm từ lô II, điều này là không thể.
Suy ra
xảy ra nếu lấy 2 phế từ lô I và 1 chính, 1 phế từ lô II.
xảy ra nếu lấy 1 chính, 1 phế từ lô
chính, 2 phế từ lô II hoặc 2 phế từ lô
chính, 1 phế từ lô II
xảy ra nếu lấy 2 chính từ lô
chính, 2 phế từ lô
hoặc 1 chính, 1 phế từ lô
chính, 1 phế từ lô II hoặc 2 phế từ lô
chính từ lô II
xảy ra nếu lấy 2 chính từ lô
chính, 2 phế từ lô II hoặc 1 chính, 1 phế từ lô
chính từ lô II
xảy ra nếu lấy 2 chính từ lô
chính từ lô II
Gọi là "trong 2 sản phẩm lấy ra có ít nhất 1 chính phẩm", áp dụng công thức xác suất đầy đủ
Suy ra .
Cho hai biến cố
và
, với
. Tính
?
Cách 1:
Mà
Do đó:
Cách 2: Ta có:
.
Cho hai biến cố
với
. Tính
?
Ta có:
Tan giờ học buổi chiều một sinh viên có
về nhà ngay, nhưng do giờ cao điểm nên có 30% ngày bị tắc đường nên bị về nhà muộn (từ 30 phút trở lên) còn
số ngày sinh viên đó vào quán Internet cạnh trường để chơi Games, những ngày này xác suất về nhà muộn là
. Còn lại những ngày khác sinh viên đó đi chơi với bạn bè có xác suất về muộn là
. Hôm nay sinh viên đó về muộn. Tính xác suất để để sinh viên đó đi chơi với bạn bè.
Gọi B là biến cố sinh viên đó đi học về muộn
E1 là biến cố tan học về nhà ngay
E2 là biến cố tan học đi chơi game
E3 là biến cố tan học về đi chơi với bạn
B có thể xảy ra một trong 3 biến cố
Xác suất để sinh viên đó đi chơi với bạn là:
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Áp dụng công thức Bayes ta có:
Hộp thứ nhất chứa 3 viên bi đen và 2 viên bi trắng. Hộp thứ hai chứa 4 viên bi đen và 5 viên bi trắng. Các viên bi có cùng kích thước và khối lượng. Bạn Mai lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.
Gọi A: "Viên bi lấy ra lần thứ nhất là bi đen"
Và B: "Viên bi lấy ra lần thứ hai là bi trắng".
Biết rằng biến cố A xảy ra, tính xác suất của biến cố B?
Nếu biến cố A xảy ra thì bạn Mai lấy viên bi đen từ hộp thứ nhất bỏ vào hộp thứ hai.
Khi đó hộp thứ hai có 5 viên bi đen và 5 viên bi trắng.
Do đó, xác suất của biến cố B là: .
Cho hai biến cố
và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Trong một kì thi tốt nghiệp trung học phổ thông, một tỉnh X có
học sinh lựa chọn tổ hợp A00 (gồm các môn Toán, Vật lí, Hoá học). Biết rằng, nếu một học sinh chọn tổ hợp A00 thì xác suất để học sinh đó đỗ đại học là
; còn nếu một học sinh không chọn tổ hợp A00 thì xác suất để học sinh đó đỗ đại học là
. Chọn ngẫu nhiên một học sinh của tỉnh X đã tốt nghiệp trung học phổ thông trong kì thi trên. Biết rằng học sinh này đã đỗ đại học. Tính xác suất để học sinh đó chọn tổ hợp A00. (Kết quả làm tròn đến chữ số thập phân thứ 2).
Gọi A: “Học sinh đó chọn tổ hợp A00”
Và B: “Học sinh đó đỗ đại học”.
Ta cần tính
Ta có:
là xác suất để một học sinh đỗ đại học với điều kiện học sinh đó chọn tổ hợp A00
là xác suất để một học sinh đỗ đại học với điều kiện học sinh đó không chọn tổ hợp A00
Thay vào công thức Bayes ta được:
Năm 2012, Cộng đồng Châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Người ta tiến hành một loại xét nghiệm và cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để ra phản ứng dương tính trong xét nghiệm là
; còn khi con bò không bị bệnh thì xác suất để xảy ra phản ứng dương tính trong xét nghiệm đó là
. Biết rằng ti lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100000 con. Gọi
là biến cố một con bò bị bệnh bò điên,
là biến cố một con bò phản ứng dương tính với xét nghiệm.
a)
. Đúng||Sai
b)
. Sai||Đúng
c)
. Đúng||Sai
d)
. Sai||Đúng
Năm 2012, Cộng đồng Châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Người ta tiến hành một loại xét nghiệm và cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để ra phản ứng dương tính trong xét nghiệm là ; còn khi con bò không bị bệnh thì xác suất để xảy ra phản ứng dương tính trong xét nghiệm đó là
. Biết rằng ti lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100000 con. Gọi
là biến cố một con bò bị bệnh bò điên,
là biến cố một con bò phản ứng dương tính với xét nghiệm.
a) . Đúng||Sai
b) . Sai||Đúng
c) . Đúng||Sai
d) . Sai||Đúng
Tỉ lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên con nghĩa là
.
Khi con bò bị bệnh bò điên, thì xác suất để ra phản ứng dương tính trong xét nghiệm là 60%, nghĩa là:
Khi con bò không bị bệnh, thì xác xuất để xả ra phản ứng dương tính trong xét nghiệm đó là 20%, nghĩa là . Khi đó, ta có:
Một thùng hàng có 30 sản phẩm, trong đó có 4 chất lượng thấp. Lấy liên tiếp hai sản phẩm trong thùng sản phẩm trên, trong đó sản phẩm lấy ra ở lần thứ nhất không được bỏ lại vào thùng. Tính xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp?
Gọi A: “Sản phẩm lấy ra ở lần thứ nhất có chất lượng thấp”
Và B: “Sản phẩm lấy ra ở lần thứ hai có chất lượng thấp”.
Khi đó, xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp chính là:
Từ bài ra ta có:
Có 2 xạ thủ loại I và 8 xạ thủ loại II, xác suất bắn trúng đích của các loại xạ thủ loại I là 0,9 và loại II là 0,7. Chọn ngẫu nhiên ra hai xạ thủ và mỗi người bắn một viên đạn. Tìm xác suất để cả hai viên đạn đó trúng đích.
Gọi B là biến cố "Cả 2 viên đạn trúng đích".
là biến cố "Chọn được i xạ thủ loại I".
Ta có tạo thành họ đầy đủ các biến cố.
Áp dụng công thức, ta có
Cho hai biến cố
và
, với
. Tính
?
Ta có:
.