Cho hai biến cố
và
, với
. Tính
?
Ta có:
.
Cho hai biến cố
và
, với
. Tính
?
Ta có:
.
Cho
và
là các biến cố của phép thử T. Biết rằng
. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được tính theo công thức nào sau đây?
Theo công thức Bayes ta có:
Một căn bệnh có
dân số mắc phải. Một phương pháp chuẩn đoán được phát triển có tỷ lệ chính xác là
. Với những người bị bệnh, phương pháp này sẽ đưa ra kết quả dương tính
số trường hợp. Với người không mắc bệnh, phương pháp này cũng chuẩn đoán đúng
trong
trường hợp. Nếu một người kiểm tra và kết quả là dương tính (bị bệnh), xác suất để người đó thực sự bị bệnh là bao nhiêu?
Gọi A là biến cố “người đó mắc bệnh”
Gọi B là biến cố “kết quả kiểm tra người đó là dương tính (bị bệnh)”
Ta cần tính với
.
Ta có:
Xác suất để người đó mắc bệnh khi chưa kiểm tra:
Do đó xác suất để người đó không mắc bệnh khi chưa kiểm tra:
Xác suất kết quả dương tính nếu người đó mắc bệnh là:
Xác suất kết quả dương tính nếu người đó không mắc bệnh là:
Khi đó:
Xác suất kết để người đó mắc bệnh nếu kết quả kiểm tra người đó là dương tính là .
Có ba kiện hàng (mỗi kiện hàng có
sản phẩm) với số sản phẩm tốt tương ứng của mỗi kiện là
. Lấy ngẫu nhiên một kiện hàng, rồi từ đó lấy ngẫu nhiên một sản phẩm thì được sản phẩm tốt. Trả sản phẩm này lại kiện hàng vừa lấy, sau đó lại lấy ngẫu nhiên một sản phẩm thì được sản phẩm tốt. Tính xác suất để các sản phẩm tốt đó được lấy từ kiện hàng thứ nhất?
Gọi Ai là "sản phẩm lấy từ kiện thứ i" thì A1, A2, A3 tạo thành hệ đầy đủ.
Gọi A là các sản phẩm lấy ra đều tốt.
Áp dụng công thức xác suất toàn phần ta có:
Từ đó ta có:
Một bình đựng 5 viên bi (cùng kích cỡ và đồng chất) khác nhau về màu sắc. Trong đó có 3 viên bi xanh và 2 viên bi đỏ. Lấy ngẫu nhiên từ bình ra một viên bi ta được viên bi màu xanh, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Xác suất để lấy được viên bi đỏ ở lần thứ hai bằng bao nhiêu?
Cách 1:
Gọi A là biến cố “lấy viên bi thứ nhất là màu xanh”
Gọi B là biến cố “lấy viên bi thứ hai là màu đỏ”
Ta đi tính . Ta có:
Do đó:
Cách 2:
Gọi C là biến cố: “Lấy được một viên bi đỏ ở lần thứ hai”.
Vì một viên bi xanh đã được lấy ra ở lần thứ nhất nên còn lại trong bình 4 viên bi trong đó số viên bi đỏ là 2 và số viên bi xanh cũng là 2.
Do đó, xác suất cần tìm là
Cho hai biến cố
và
là hai biến cố độc lập, với
. Tính
?
Hai biến cố và
là hai biến cố độc lập nên
.
Một học sinh làm 2 bài tập kế tiếp. Xác suất làm đúng bài thứ nhất là
. Nếu làm đúng bài thứ nhất thì khả năng làm đúng bài thứ hai là
. Nhưng nếu làm sai bài thứ nhất thì khả năng làm đúng bài thứ hai là
. Tính xác suất học sinh đó làm đúng cả hai bài?
Gọi A: “Làm đúng bài thứ nhất”.
Và B: “Làm đúng bài thứ hai”
Khi đó biến cố: “làm đúng cả hai bài” là
Theo bài ta có:
Do đó:
Ta có sơ đồ hình cây như sau:
Vậy
Để nghiên cứu sự phát triển của một loại cây, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm
khác nhau. Xác suất phát triển bình thường của cây đó trên các lô đất
và
lần lượt là 0,56 và 0,62. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng. Xét các biến cố:
: "Cây phát triển bình thường trên lô đất
";
: "Cây phát triển bình thường trên lô đất
".
a) Các cặp biến cố
và
và
là độc lập. Đúng||Sai
b) Hai biến cố
và
không là hai biến cố xung khắc.Sai||Đúng
c)
. Sai||Đúng
d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là 0,4856. Đúng||Sai
Để nghiên cứu sự phát triển của một loại cây, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm khác nhau. Xác suất phát triển bình thường của cây đó trên các lô đất
và
lần lượt là 0,56 và 0,62. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng. Xét các biến cố:
: "Cây phát triển bình thường trên lô đất
";
: "Cây phát triển bình thường trên lô đất
".
a) Các cặp biến cố và
và
là độc lập. Đúng||Sai
b) Hai biến cố và
không là hai biến cố xung khắc.Sai||Đúng
c) . Sai||Đúng
d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là 0,4856. Đúng||Sai
Các cặp biến cố và
và
là độc lập vì hai lô đất khác nhau.
Hai biến cố và
là hai biến cố xung khắc.
Ta có: .
Xác suất để cây chi phát triển bình thường trên một lô đất là:
Một chiếc hộp có
viên bi, trong đó có
viên bi có tô màu và
viên bi không tô màu; các viên bi có kích thước và khối lượng như nhau. Bạn Nam lấy ra viên bi đầu tiên, sau đó bạn Việt lấy ra viên bi thứ hai.
a) Xác suất để bạn Nam lấy ra viên bi có tô màu là
. Đúng||Sai
b) Sơ đồ cây biểu thị tình huống trên là.
Đúng||Sai
c) Xác suất để bạn Việt lấy ra viên bi có tô màu là:
Đúng||Sai
d) Xác suất để bạn Việt lấy ra viên bi không có tô màu là:
. Đúng||Sai
Một chiếc hộp có viên bi, trong đó có
viên bi có tô màu và
viên bi không tô màu; các viên bi có kích thước và khối lượng như nhau. Bạn Nam lấy ra viên bi đầu tiên, sau đó bạn Việt lấy ra viên bi thứ hai.
a) Xác suất để bạn Nam lấy ra viên bi có tô màu là . Đúng||Sai
b) Sơ đồ cây biểu thị tình huống trên là. Đúng||Sai
c) Xác suất để bạn Việt lấy ra viên bi có tô màu là: Đúng||Sai
d) Xác suất để bạn Việt lấy ra viên bi không có tô màu là: . Đúng||Sai
Gọi A là biến cố “bạn Việt lấy ra viên bi có tô màu”
Gọi B là biến cố “bạn Nam lấy ra viên bi có tô màu”, suy ra B là biến cố “bạn Việt lấy ra viên bi không có tô màu”.
a) Xác suất để bạn Nam lấy ra viên bi có tô màu là .
b) Ta có:
Sơ đồ cây cần tìm là:
c) Xác suất để bạn Việt lấy ra viên bi có tô màu là:
d) A là biến cố “bạn Việt lấy ra viên bi có tô màu” suy ra A là biến cố “bạn Việt lấy ra viên bi không có tô màu”
Cho hai biến cố
với
. Tính
?
Ta có:
Trong một đợt kiểm tra sức khoẻ, có một loại bệnh
mà tỉ lệ người mắc bệnh là
và một loại xét nghiệm
mà ai mắc bệnh
khi xét nghiệm
cũng có phản ứng dương tính. Tuy nhiên, có
những người không bị bệnh
lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Giả uử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh
là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?
Đáp án : 0,03
Trong một đợt kiểm tra sức khoẻ, có một loại bệnh mà tỉ lệ người mắc bệnh là
và một loại xét nghiệm
mà ai mắc bệnh
khi xét nghiệm
cũng có phản ứng dương tính. Tuy nhiên, có
những người không bị bệnh
lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Giả uử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh
là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?
Đáp án : 0,03
Xét các biến cố:
: "Người được chọn mắc bệnh
";
: "Người được chọn có phản ứng dương tính với xét nghiệm Y".
Theo giả thiết ta có:
;
Theo công thức Bayes, ta có:
Vậy nếu người được chọn có phản ứng dương tính với xét nghiệm thì xác suất bị mắc bệnh
của người đó là khoảng 0,03.
Cho hai biến cố
và
, với
. Tính
?
Ta có: .
Cho hai biến cố
và
là hai biến cố độc lập, với
. Tính
?
Hai biến cố và
là hai biến cố độc lập nên
.
Trước khi đưa sản phẩm ra thị trường người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phẩm đó và thấy có 34 người tả lời “sẽ mua”, 97 người trả lời “có thể sẽ mua” và 69 người trả lời “không mua”. Kinh nghiệm cho thấy tỷ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời trên tương ứng là 70%, 30% và 1%. Trong số khách hàng thực sự mua sản phẩm thì có bao nhiêu phần trăm trả lời “sẽ mua”?
Gọi H1, H2, H3 lần lượt là 3 biến cố tương ứng với 3 cách trả lời của khách hàng được phỏng vấn:
H1 – người đó trả lời “sẽ mua”
H2 – người đó trả lời “có thể mua”
H3 – người đó trả lời “không mua”
H1, H2, H3 là một hệ đầy đủ các biến cố với xác suất tương ứng
Ta xác định được:
Theo công thức xác suất đầy đủ ta có:
.
Theo công thức Bayes:
.
Một cặp trẻ sinh đôi có thể do cùng một trứng (sinh đôi thật) hay do hai trứng khác nhau sinh ra (sinh đôi giả). Các cặp sinh đôi thật luôn luôn có cùng giới tính. Các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập với nhau và có xác suất là
. Thống kê cho thấy
cặp sinh đôi là trai;
cặp sinh đôi là gái và
cặp sinh đôi có giới tính khác nhau. Tính tỷ lệ cặp sinh đôi thật.
Gọi A: “Nhận được cặp sinh đôi thật”
B: “Nhận được cặp sinh đôi có cùng giới tính”
Do các cặp sinh đôi thật luôn luôn có cùng giới tính nên
Với các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập nhau và có xác suất là 0,5 nên
Do thống kê trên các cặp sinh đôi nhận được thì:
Áp dụng công thức xác suất toàn phần ta có:
Thay số ta xác định được .
Cho hai biến cố
và
với
. Biết ![]()
. Tính
?
Ta có công thức xác suất toàn phần tính là:
Một bình đựng 50 viên bi kích thước, chất liệu như nhau, trong đó có 30 viên bi xanh và 20 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai?
Một bình đựng 50 viên bi kích thước, chất liệu như nhau, trong đó có 30 viên bi xanh và 20 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai?
Để gây đột biến cho một tính trạng người ta tìm cách tác động lên hai gen
bằng phóng xạ. Xác suất đột biến của tính trạng do gen
là
; do gen B là
và do cả hai gen là
. Tính xác suất để có đột biến ở tính trạng đó biết rằng phóng xạ có thể tác động lên gen
với xác suất
và lên gen
với xác suất
?
Gọi C là biến cố có đột biến ở tính trạng đang xét
A là biến cố phóng xạ tác dụng lên gen A
B là biến cố phóng xạ tác dụng lên gen B
C1 là biến cố phóng xạ chỉ tác động lên gen A
C2 là biến cố phóng xạ chỉ tác dụng lên gen B
C3 là biến cố phóng xạ tác dụng lên cả 2 gen
là biến cố phóng xạ không tác dụng lên gen nào
Khi đó hệ là một hệ đầy đủ
Mặt khác độc lập nên
Mặt khác và
Theo công thức xác suất toàn phần ta có:
Cuối tuần M đến sân chơi để bắn cung, biết khoảng cách bắn tên thay đổi liên tục và khả năng bạn M bắn trúng bia tỉ lệ nghịch với khoảng cách bắn. M bắn lần đầu ở khoảng cách
với xác suất trúng bia là
, nếu bị trượt M bắn tiếp mũi tên thứ hai ở khoảng cách
, nếu lại trượt M bắn mũi tên thứ ba ở khoảng cách
. Tính xác suất để M bắn trúng bia?
Gọi A là biến cố “M bắn trúng bia ở lần thứ nhất”
Gọi B là biến cố “M bắn trúng bia ở lần thứ hai”
Gọi C là biến cố “M bắn trúng bia ở lần thứ ba”
Ta có:
Vì xác suất bắn trúng bia trong mỗi lần bắn tỷ lệ nghịch với khoảng cách bắn nên ta có:
Ta có sơ đồ cây như sau:
Xác suất để M bắn trúng bia là:
Một hộp có 3 quả bóng màu xanh, 4 quả bóng màu đỏ; các quả bóng có kích thước và khối lượng như nhau. Lấy bóng ngẫu nhiên hai lần liên tiếp, trong đó mỗi lần lấy ngẫu nhiên một quả bóng trong hộp, ghi lại màu của quả bóng lấy ra và bỏ lại quả bóng đó vào hộp.
Xét các biến cố: A: “Quả bóng màu xanh được lấy ra ở lần thứ nhất”; B: “Quả bóng màu đỏ được lấy ra ở lần thứ hai”.
Hỏi hai biến cố A và B có độc lập không?
Một hộp có 3 quả bóng màu xanh, 4 quả bóng màu đỏ; các quả bóng có kích thước và khối lượng như nhau. Lấy bóng ngẫu nhiên hai lần liên tiếp, trong đó mỗi lần lấy ngẫu nhiên một quả bóng trong hộp, ghi lại màu của quả bóng lấy ra và bỏ lại quả bóng đó vào hộp.
Xét các biến cố: A: “Quả bóng màu xanh được lấy ra ở lần thứ nhất”; B: “Quả bóng màu đỏ được lấy ra ở lần thứ hai”.
Hỏi hai biến cố A và B có độc lập không?
Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.
Gọi A là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”.
Gọi B là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.
Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì .
Cho hai biến cố
với
. Tính
?
Ta có:
Có hai hộp đựng bóng giống nhau (khác màu sắc):
Hộp thứ chứa 10 quả bóng trong đó có 9 quả màu đen.
Hộp thứ hai chứa 20 quả bóng trng đó có 18 quả màu đen,
Từ hộp thứ nhất lấy ngẫu nhiên một quả bóng bỏ sang hộp thứ hai. Tìm xác suất để lấy ngẫu nhiên một quả bóng từ hộp thứ hai được quả màu đen?
Gọi A là biến cố lấy được quả bóng màu đen từ hộp thứ hai.
Biến cố A có thể xảy ra đòng thời với một trong hai biến cố sau đây tạo nên một nhóm đầy đủ các biến cố:
H1 là biến cố quả bóng bỏ từ hộp thứ nhất sang hộp thứ hai là màu đen.
H2 là biến cố quả bóng bỏ từ hộp thứ nhất sang hộp thứ hai không phải màu đen.
Xác suất để từ hộp thứ nhất bỏ sang hộp thứ hai là quả bóng màu đen bằng:
Xác suất để từ hộp thứ nhất bỏ sang hộp thứ hai không phải quả bóng màu đen bằng:
Xác suất có điều kiện để từ hộp thứ hai lấy được quả bóng màu đen khi các giả thuyết xảy ra là:
Do đó:
Hộp I có 4 viên bi đỏ, 2 viên bi xanh; hộp II có 3 viên bi đỏ, 3 viên bi xanh. Bỏ ngẫu nhiên một viên bi từ hộp I sang hộp II, sau đó lại bỏ ngẫu nhiên một viên bi từ hộp II sang hộp I. Cuối cùng rút ngẫu nhiên từ hộp I ra một viên bi. 1. Nếu viên rút ra sau cùng màu đỏ, tìm xác suất lúc ban đầu rút được viên bi đỏ ở hộp I cho vào hộp II?
Gọi D1, X1 tương ứng là "lấy được viên bi đỏ, xanh từ hộp I sang hộp II",
D2, X2 tương ứng là "lấy được viên bi đỏ, xanh từ hộp II sang hộp I".
Khi đó hệ D1D2, D1X2, X1D2, X1X2 tạo thành hệ đầy đủ.
Ta có:
Gọi A là "viên bi rút ra sau cùng là màu đỏ".
Ta xác định được:
Áp dụng công thức xác suất đầy đủ:
Ta cần tính xác suất
Cho một hộp kín có 6 thẻ ngân hàng của BIDV và 4 thẻ ngân hàng của Techcombank. Lấy ngẫu nhiên lần lượt 2 thẻ (lấy không hoàn lại). Tìm xác suất để lần thứ hai lấy được thẻ ngân hàng của Techcombank nếu biết lần thứ nhất đã lấy được thẻ ngân hàng của BIDV
Gọi A là biến cố “lần thứ hai lấy được thẻ ngân hàng Techcombank“, B là biến cố “lần thứ nhất lấy được thẻ ngân hàng của BIDV “.
Ta cần tìm Sau khi lấy lần thứ nhất (biến cố B đã xảy ra) trong hộp còn lại 9 thẻ (trong đó 4 thẻ Techcombank) nên
.
Cho hai biến cố
với
. Giá trị
bằng:
Ta có:
Theo công thức xác suất toàn phần, ta có:
Một hệ thống được cấu tạo bởi 3 bộ phận độc lập nhau. Hệ thống sẽ hoạt động nếu ít nhất 2 trong 3 bộ phận còn hoạt động. Nếu độ tin cậy của mỗi bộ phận là 0.95 thì độ tin cậy của hệ thống là bao nhiêu?
Gọi Bi: "Bộ phận thứ i hoạt động tốt" (i = 1, 2, 3)
H: "Hệ thống hoạt động tốt"
Theo giả thiết, ta thấy rằng P(Bi) = 0.95 với i = 1, 2, 3 và
Do tính độc lập, xung khắc và đối xứng nên:
.
Khi kiểm tra sức khỏe tổng quát của bệnh nhân ở một bệnh viện, người ta thu được kết quả như sau:
- Có 40% bệnh nhân bị đau dạ dày
- Có 30% bệnh nhân thường xuyên bị stress
- Trong số các bệnh nhân bị stress có 80% bệnh nhân bị đau dạ dày.
Chọn ngẫu nhiên 1 bệnh nhân
a) Xác suất chọn được bệnh nhân thường xuyên bị stress là 0,3. Đúng||Sai
b) Xác suất chọn được bệnh nhân bị đau dạ dày, biết bệnh nhân đó thường xuyên bị stress là 0,8. Đúng||Sai
c) Xác suất chọn được bệnh nhân vừa thường xuyên bị stress vừa bị đau dạ dày là 0,24. Đúng||Sai
d) Xác suất chọn được bệnh nhân thường xuyên bị stress, biết bệnh nhân đó bị đau dạ dày là 0,6. Đúng||Sai
Khi kiểm tra sức khỏe tổng quát của bệnh nhân ở một bệnh viện, người ta thu được kết quả như sau:
- Có 40% bệnh nhân bị đau dạ dày
- Có 30% bệnh nhân thường xuyên bị stress
- Trong số các bệnh nhân bị stress có 80% bệnh nhân bị đau dạ dày.
Chọn ngẫu nhiên 1 bệnh nhân
a) Xác suất chọn được bệnh nhân thường xuyên bị stress là 0,3. Đúng||Sai
b) Xác suất chọn được bệnh nhân bị đau dạ dày, biết bệnh nhân đó thường xuyên bị stress là 0,8. Đúng||Sai
c) Xác suất chọn được bệnh nhân vừa thường xuyên bị stress vừa bị đau dạ dày là 0,24. Đúng||Sai
d) Xác suất chọn được bệnh nhân thường xuyên bị stress, biết bệnh nhân đó bị đau dạ dày là 0,6. Đúng||Sai
Xét các biến cố: A:“Chọn được bệnh nhân thường xuyên bị stress”
B:“Chọn được bệnh nhân bị đau dạ dày”
Khi đó:
Xác suất chọn được bệnh nhân vừa thường xuyên bị stress, vừa bị đau dạ dày là:
Xác suất chọn được bệnh nhân vừa thường xuyên bị stress, biết bệnh nhân đó bị đau dạ dày là:
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Lớp 12A có 30 học sinh, trong đó có 17 bạn nữ còn lại là nam. Có 3 bạn tên Anh, trong đó có 1 bạn nữ và 2 bạn nam. Giáo viên chủ nhiệm gọi ngẫu nhiên 1 bạn lên bảng, khi đó:
a) Xác suất để có tên Anh là
.Đúng||Sai
b) Xác suất để có tên Anh, nhưng với điều kiện bạn đó nữ là
.Sai||Đúng
c) Xác suất để có tên Anh, nhưng với điều kiện bạn đó nam là
.Đúng||Sai
d) Nếu giáo viên chủ nhiệm gọi 1 bạn có tên là Anh lên bảng thì xác xuất để bạn đó là bạn nữ là
.Sai||Đúng
Lớp 12A có 30 học sinh, trong đó có 17 bạn nữ còn lại là nam. Có 3 bạn tên Anh, trong đó có 1 bạn nữ và 2 bạn nam. Giáo viên chủ nhiệm gọi ngẫu nhiên 1 bạn lên bảng, khi đó:
a) Xác suất để có tên Anh là .Đúng||Sai
b) Xác suất để có tên Anh, nhưng với điều kiện bạn đó nữ là .Sai||Đúng
c) Xác suất để có tên Anh, nhưng với điều kiện bạn đó nam là .Đúng||Sai
d) Nếu giáo viên chủ nhiệm gọi 1 bạn có tên là Anh lên bảng thì xác xuất để bạn đó là bạn nữ là .Sai||Đúng
Gọi A là biến cố “tên là Anh”
Gọi B là biến cố “nữ”.
a) Xác suất để học sinh được gọi có tên là Anh là: .
b) Xác suất để thầy giáo gọi bạn đó lên bảng có tên Anh, nhưng với điều kiện bạn đó nữ là
Ta có:
c) Gọi C là biến cố “nam”.
Xác suất để thầy giáo gọi bạn đó lên bảng có tên Anh, nhưng với điều kiện bạn đó nam là
Ta có:
.
d) Nếu thầy giáo gọi 1 bạn có tên là Anh lên bảng thì xác xuất để bạn đó là bạn nữ là ,
.
Cho hai biến cố
và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng
và
. do có nhiễu trên đường truyền nên
tín hiệu A bị méo và thu được như tín hiệu B còn
tín hiệu B bị méo và thu được như A. Tìm xác suất thu được tín hiệu A?
Gọi A, B lần lượt là "phát ra tín hiệu A, B".
Khi đó A, B tạo thành hệ đầy đủ.
Gọi C là "thu được tín hiệu A". Khi đó:
Áp dụng công thức xác suất toàn phần ta có:
.
Ta cần tính P(A|C). Áp dụng công thức Bayes ta có:
Một loại linh kiện do 3 nhà máy số I, số II, số III cùng sản xuất. Tỷ lệ phế phẩm của các nhà máy lần lượt là: I; 0,04; II: 0,03 và III: 0,05. Trong 1 lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I, 120 của nhà máy số II và 100 của nhà máy số III. Khách hàng lấy phải một linh kiện loại phế phẩm từ lô hàng đó. Khả năng linh kiện đó do nhà máy nào sản xuất là cao nhất?
Gọi E1 là biến cố phế phẩm máy số I
E2 là biến cố phế phẩm máy số II
E3 là biến cố phế phẩm máy số III
Gọi B là biến cố khách hàng lấy được 1 linh kiện tốt
Xác suất để khách hàng lấy được linh kiện tốt là:
Gọi là biến cố khách hàng lấy 1 linh kiện loại không tốt
Ta xác định được:
Vậy linh kiện đó do máy III là cao nhất.
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Áp dụng công thức Bayes ta có:
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Có hai lô sản phẩm: lô I có 7 chính phẩm, 3 phế phẩm; lô II có 8 chính phẩm, 2 phế phẩm. Từ lô I lấy ngẫu nhiên ra 2 sản phẩm, từ lô II lấy ngẫu nhiên ra 3 sản phẩm. Sau đó từ số sản phẩm này lại lấy ngẫu nhiên 2 sản phẩm. Tính xác suất để trong 2 sản phẩm lấy ra sau cùng có ít nhất 1 chính phẩm.
Gọi là "trong 5 sản phẩm cuối có
chính phẩm".
Khi đó hệ tạo thành hệ đầy đủ
xảy ra thì phải lấy 3 phế phẩm từ lô II, điều này là không thể.
Suy ra
xảy ra nếu lấy 2 phế từ lô I và 1 chính, 1 phế từ lô II.
xảy ra nếu lấy 1 chính, 1 phế từ lô
chính, 2 phế từ lô II hoặc 2 phế từ lô
chính, 1 phế từ lô II
xảy ra nếu lấy 2 chính từ lô
chính, 2 phế từ lô
hoặc 1 chính, 1 phế từ lô
chính, 1 phế từ lô II hoặc 2 phế từ lô
chính từ lô II
xảy ra nếu lấy 2 chính từ lô
chính, 2 phế từ lô II hoặc 1 chính, 1 phế từ lô
chính từ lô II
xảy ra nếu lấy 2 chính từ lô
chính từ lô II
Gọi là "trong 2 sản phẩm lấy ra có ít nhất 1 chính phẩm", áp dụng công thức xác suất đầy đủ
Suy ra .
Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là
và dự án 2 là
. Khả năng thắng thầu của 2 dự án là 0,4. Gọi
lần lượt là biến cố thắng thầu dự án 1 và dự án 2.
a)
là hai biến độc lập. Đúng||Sai
b) Xác suất công ty thắng thầu đúng 1 dự án là
. Đúng||Sai
c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là
. Sai|| Đúng
d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án
. Sai|| Đúng
Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là và dự án 2 là
. Khả năng thắng thầu của 2 dự án là 0,4. Gọi
lần lượt là biến cố thắng thầu dự án 1 và dự án 2.
a) là hai biến độc lập. Đúng||Sai
b) Xác suất công ty thắng thầu đúng 1 dự án là . Đúng||Sai
c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là . Sai|| Đúng
d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án . Sai|| Đúng
Ta có:
a) là hai biến cố độc lập khi và chỉ khi
Mà nên
không độc lập.
b) Gọi C là biến cố thắng thầu đúng 1 dự án
.
c) Gọi D là biến cố thắng dự 2 biết thắng dự án 1
.
d) Gọi E là biến cố “thắng dự án 2 biết không thắng dự án 1”
.
Trong một vùng dân cư, cứ
người thì có
người hút thuốc lá. Biết tỷ lệ người bị viêm họng trong số người hút thuốc lá là
, trong số người không hút thuốc lá là
. Khám ngẫu nhiên một người và thấy người đó bị viêm họng. Tìm xác suất để người đó hút thuốc lá?
Gọi A: "Người này hút thuốc"
B: "Người này bị viêm họng"
Theo giả thiết ta có:
Ta thấy rằng là một hệ đầy đủ các biến cố.
Theo công thức xác suất toàn phần ta tính được:
Theo công thức Bayes, xác suất để người đó hút thuốc lá khi biết người đó bị viêm họng là:
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Cho 2 lô sản phẩm. Lô I có 20 sản phẩm, trong đó có 15 sản phẩm tốt và 5 sản phẩm lỗi. Lô II có 20 sản phẩm, trong đó có 10 sản phẩm tốt và 10 sản phẩm lỗi. Lấy ngẫu nhiên 1 lô và từ lô này lấy ngầu nhiên ra 1 sản phẩm. Các khẳng định sau đúng hay sai?
a) Xác suất để sản phẩm lấy ra là sản phẩm tốt bằng
.Đúng||Sai
b) Xác suất để sản phẩm lấy ra là sản phẩm lỗi bằng
. Đúng||Sai
c) Giả sử sản phẩm lấy ra là sản phẩm tốt. Xác suất đế sản phẩm đó của lô thứ II bằng
. Đúng||Sai
d) Giả sử sản phẩm lấy ra là phế phẩm. Xác suất đế sản phẩm đó của lô thứ I bằng
. Sai||Đúng
Cho 2 lô sản phẩm. Lô I có 20 sản phẩm, trong đó có 15 sản phẩm tốt và 5 sản phẩm lỗi. Lô II có 20 sản phẩm, trong đó có 10 sản phẩm tốt và 10 sản phẩm lỗi. Lấy ngẫu nhiên 1 lô và từ lô này lấy ngầu nhiên ra 1 sản phẩm. Các khẳng định sau đúng hay sai?
a) Xác suất để sản phẩm lấy ra là sản phẩm tốt bằng .Đúng||Sai
b) Xác suất để sản phẩm lấy ra là sản phẩm lỗi bằng . Đúng||Sai
c) Giả sử sản phẩm lấy ra là sản phẩm tốt. Xác suất đế sản phẩm đó của lô thứ II bằng . Đúng||Sai
d) Giả sử sản phẩm lấy ra là phế phẩm. Xác suất đế sản phẩm đó của lô thứ I bằng . Sai||Đúng
Gọi là biến cố: “Lô lấy ra là lô I”
Gọi là biến cố: “Lô lấy ra là lô II”
a) Gọi A là biến cố: “Sản phẩm lấy ra là sản phẩm tốt”
Ta có:
Mà
Vậy
b) Ta có:
c) Ta có:
d) Ta có:
.