Cho hai biến cố
và
, với
. Tính
?
Cách 1:
Mà
Do đó:
Cách 2: Ta có:
.
Cho hai biến cố
và
, với
. Tính
?
Cách 1:
Mà
Do đó:
Cách 2: Ta có:
.
Cho hai biến cố
và
, với
. Tính
?
Ta có:
.
Cho hai biến cố
và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Cho
và
là các biến cố của phép thử T. Biết rằng
. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được tính theo công thức nào sau đây?
Theo công thức Bayes ta có:
Có 3 hộp đựng bi: hộp thứ nhất có 3 bi đỏ, 2 bi trắng; hộp thứ hai có 2 bi đỏ, 2 bi trắng; hộp thứ ba không có viên nào. Lấy ngẫu nhiên 1 viên bi từ hộp thứ nhất và 1 viên bi từ hộp thứ hai bỏ vào hộp thứ ba. Sau đó từ hộp thứ ba lấy ngẫu nhiên ra 1 viên bi. Biết rằng viên bi lấy ra từ hộp thứ ba màu đỏ, tính xác suất để lúc đầu ta lấy được viên bi đỏ từ hộp thứ nhất bỏ vào hộp thứ ba?
Gọi A1, A2 lần lượt là "lấy bi đỏ từ hợp thứ 1 (thứ 2) bỏ vào hộp thứ ba" thì tạo thành một hệ đầy đủ.
Ta có:
Gọi A "lấy ra từ hộp 3 một viên bi màu đỏ". Ta có:
Áp dụng công thức xác suất đầy đủ ta có:
Gọi B là sự kiện cần tính xác suất.
Dễ thấy . Theo công thức Bayes ta có:
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Một xí nghiệp mỗi ngày sản xuất ra
sản phẩm trong đó có
sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).
Đáp án: 0,02
Một xí nghiệp mỗi ngày sản xuất ra sản phẩm trong đó có
sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).
Đáp án: 0,02
Xét các biến cố:
: Sản phẩm lấy ra lần thứ nhất bị lỗi.
Khi đó, ta có: ;
.
: Sản phẩm lấy ra lần thứ hai bị lỗi.
Khi sản phẩm lấy ra lần thứ nhất bị lỗi thì còn sản phẩm và trong đó có
sản phẩm lỗi nên ta có:
, suy ra
.
Khi sản phẩm lấy ra lần thứ nhất không bị lỗi thì còn sản phẩm trong đó có
sản phẩm lỗi nên ta có:
, suy ra
.
Khi đó, xác suất để sản phẩm lấy ra lần thứ hai bị lỗi là:
.
Đáp số: .
Có 3 hộp đựng bi: hộp thứ nhất có 3 bi đỏ, 2 bi trắng; hộp thứ hai có 2 bi đỏ, 2 bi trắng; hộp thứ ba không có viên nào. Lấy ngẫu nhiên 1 viên bi từ hộp thứ nhất và 1 viên bi từ hộp thứ hai bỏ vào hộp thứ ba. Sau đó từ hộp thứ ba lấy ngẫu nhiên ra 1 viên bi. Tính xác suất để viên bi đó màu đỏ?
Gọi A1, A2 lần lượt là "lấy bi đỏ từ hợp thứ 1 (thứ 2) bỏ vào hộp thứ ba" thì tạo thành một hệ đầy đủ.
Ta có:
Gọi A "lấy ra từ hộp 3 một viên bi màu đỏ". Ta có:
Áp dụng công thức xác suất đầy đủ ta có:
Một hộp đựng 10 phiếu trong đó có 2 phiếu trúng thưởng. Có 10 người lần lượt rút thăm. Tính xác suất nhận được phần thưởng của mỗi người?
Gọi Ai: “người thứ i nhận được phiếu trúng thưởng” (i = 1, . . . , 10)
Ta có:
Có hai lô sản phẩm: lô I có 7 chính phẩm, 3 phế phẩm; lô II có 8 chính phẩm, 2 phế phẩm. Từ lô I lấy ngẫu nhiên ra 2 sản phẩm, từ lô II lấy ngẫu nhiên ra 3 sản phẩm. Sau đó từ số sản phẩm này lại lấy ngẫu nhiên 2 sản phẩm. Tính xác suất để trong 2 sản phẩm lấy ra sau cùng có ít nhất 1 chính phẩm.
Gọi là "trong 5 sản phẩm cuối có
chính phẩm".
Khi đó hệ tạo thành hệ đầy đủ
xảy ra thì phải lấy 3 phế phẩm từ lô II, điều này là không thể.
Suy ra
xảy ra nếu lấy 2 phế từ lô I và 1 chính, 1 phế từ lô II.
xảy ra nếu lấy 1 chính, 1 phế từ lô
chính, 2 phế từ lô II hoặc 2 phế từ lô
chính, 1 phế từ lô II
xảy ra nếu lấy 2 chính từ lô
chính, 2 phế từ lô
hoặc 1 chính, 1 phế từ lô
chính, 1 phế từ lô II hoặc 2 phế từ lô
chính từ lô II
xảy ra nếu lấy 2 chính từ lô
chính, 2 phế từ lô II hoặc 1 chính, 1 phế từ lô
chính từ lô II
xảy ra nếu lấy 2 chính từ lô
chính từ lô II
Gọi là "trong 2 sản phẩm lấy ra có ít nhất 1 chính phẩm", áp dụng công thức xác suất đầy đủ
Suy ra .
Một hộp chứa 8 bi trắng, 2 bi đỏ. Lần lượt lấy từng bi. Giả sử lần đầu tiên lấy được bi trắng. Xác định xác suất lần thứ hai lấy được bi đỏ.
Gọi A là biến cố lần một lấy được bi trắng.
Gọi B là biến cố lần hai lấy được bi đỏ.
Xác suất lần 2 lấy được bi đỏ khi lần 1 đã lấy được bi trắng là.
Ta có: khi đó:
.
Cho hai biến cố
và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Trước khi đưa sản phẩm ra thị trường người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phẩm đó và thấy có 34 người tả lời “sẽ mua”, 97 người trả lời “có thể sẽ mua” và 69 người trả lời “không mua”. Kinh nghiệm cho thấy tỷ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời trên tương ứng là 70%, 30% và 1%. Trong số khách hàng thực sự mua sản phẩm thì có bao nhiêu phần trăm trả lời “sẽ mua”?
Gọi H1, H2, H3 lần lượt là 3 biến cố tương ứng với 3 cách trả lời của khách hàng được phỏng vấn:
H1 – người đó trả lời “sẽ mua”
H2 – người đó trả lời “có thể mua”
H3 – người đó trả lời “không mua”
H1, H2, H3 là một hệ đầy đủ các biến cố với xác suất tương ứng
Ta xác định được:
Theo công thức xác suất đầy đủ ta có:
.
Theo công thức Bayes:
.
Một chiếc hộp có
viên bi, trong đó có
viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có
số viên bi màu đỏ đánh số và
số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số.
a) Số viên bi màu đỏ có đánh số là
. Đúng||Sai
b) Số viên bi màu vàng không đánh số là
. Đúng||Sai
c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là:
Sai|| Đúng
d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số là:
. Đúng||Sai
Một chiếc hộp có viên bi, trong đó có
viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có
số viên bi màu đỏ đánh số và
số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số.
a) Số viên bi màu đỏ có đánh số là . Đúng||Sai
b) Số viên bi màu vàng không đánh số là . Đúng||Sai
c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là: Sai|| Đúng
d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số là: . Đúng||Sai
a) Số viên bi màu đỏ có đánh số là
b) Số viên bi màu vàng không đánh số là
c) Gọi A là biến cố “viên bi được lấy ra có đánh số”
Gọi B là biến cố “viên bi được lấy ra có màu đỏ”, suy ra B là biến cố “viên bi được lấy ra có màu vàng”
Lúc này ta đi tính theo công thức:
Ta có:
.
d) A là biến cố “viên bi được lấy ra có đánh số” suy ra A là biến cố “viên bi được lấy ra không có đánh số”. Khi đó ta có:
Giả sử
email của bạn nhận được là email rác. Bạn sử dụng một hệ thống lọc email rác mà khả năng lọc đúng email rác của hệ thống này là
và có
những email không phải là email rác nhưng vẫn bị lọc. Các khẳng định sau đúng hay sai?
a) Gọi A: “Email nhận được là email rác”.
Và B: “Email bị lọc đúng email rác của hệ thống lọc email rác”.
Vì 5% email nhận được là rác nên xác suất nhận được một email rác là
b) Xác suất email bị lọc của email rác là .
c) Xác suất email nhận được không phải rác là
Xác suất email bị lọc của email không phải rác là
Vậy xác suất chọn một email bị lọc bất kể là rác hay không là
d) Xác suất chọn một email trong số những email bị lọc thực sự là email rác là
.
Trong hộp có 3 viên bi màu trắng và 7 viên bi màu đỏ. Lấy lần lượt mỗi lần một viên theo cách lấy không trả lại. Xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bị lấy lần thứ nhất cũng là màu đỏ là:
Gọi A là biến cố “viên bi lấy lần thứ nhất là màu đỏ”.
Gọi B là biến cố “viên bi lấy lần thứ hai là màu đỏ”.
Không gian mẫu cách chọn
Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi trong 9 viên còn lại có cách 9 chọn, do đó:
Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi màu đỏ trong 6 viên bi còn lại có 6 cách chọn, do đó:
Vậy xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bị lấy lần thứ nhất cũng là màu đỏ: .
Cho hai biến cố
với
. Tính
?
Ta có:
Khi kiểm tra sức khỏe tổng quát của bệnh nhân ở một bệnh viện, người ta thu được kết quả như sau:
- Có 40% bệnh nhân bị đau dạ dày
- Có 30% bệnh nhân thường xuyên bị stress
- Trong số các bệnh nhân bị stress có 80% bệnh nhân bị đau dạ dày.
Chọn ngẫu nhiên 1 bệnh nhân
a) Xác suất chọn được bệnh nhân thường xuyên bị stress là 0,3. Đúng||Sai
b) Xác suất chọn được bệnh nhân bị đau dạ dày, biết bệnh nhân đó thường xuyên bị stress là 0,8. Đúng||Sai
c) Xác suất chọn được bệnh nhân vừa thường xuyên bị stress vừa bị đau dạ dày là 0,24. Đúng||Sai
d) Xác suất chọn được bệnh nhân thường xuyên bị stress, biết bệnh nhân đó bị đau dạ dày là 0,6. Đúng||Sai
Khi kiểm tra sức khỏe tổng quát của bệnh nhân ở một bệnh viện, người ta thu được kết quả như sau:
- Có 40% bệnh nhân bị đau dạ dày
- Có 30% bệnh nhân thường xuyên bị stress
- Trong số các bệnh nhân bị stress có 80% bệnh nhân bị đau dạ dày.
Chọn ngẫu nhiên 1 bệnh nhân
a) Xác suất chọn được bệnh nhân thường xuyên bị stress là 0,3. Đúng||Sai
b) Xác suất chọn được bệnh nhân bị đau dạ dày, biết bệnh nhân đó thường xuyên bị stress là 0,8. Đúng||Sai
c) Xác suất chọn được bệnh nhân vừa thường xuyên bị stress vừa bị đau dạ dày là 0,24. Đúng||Sai
d) Xác suất chọn được bệnh nhân thường xuyên bị stress, biết bệnh nhân đó bị đau dạ dày là 0,6. Đúng||Sai
Xét các biến cố: A:“Chọn được bệnh nhân thường xuyên bị stress”
B:“Chọn được bệnh nhân bị đau dạ dày”
Khi đó:
Xác suất chọn được bệnh nhân vừa thường xuyên bị stress, vừa bị đau dạ dày là:
Xác suất chọn được bệnh nhân vừa thường xuyên bị stress, biết bệnh nhân đó bị đau dạ dày là:
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Một cuộc thi năng lực có
bộ câu hỏi, trơng đó có
bộ câu hỏi về chủ đề tự nhiên và
bộ câu hỏi về chủ đề xã hội. Bạn An lấy ngẫu nhiên một bộ câu hỏi (lấy không hoàn lại), sau đó bạn Bình lấy ngẫu nhiên một bộ câu hỏi. Xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội bằng:
Xét các biến cố:
A: "Bạn An lấy được bộ câu hỏi về chủ đề tự nhiên"
B: "Bạn Bình lấy được bộ câu hỏi về chủ đề xã hội".
Khi đó
Nếu bạn An chọn được một bộ câu hỏi về chủ đề tự nhiên thì sau đó còn 35 bộ câu hỏi, trong đó có 16 bộ câu hỏi về chủ đề xã hội
Nếu bạn An chọn được một bộ câu hỏi về chủ đề xã hội thì sau đó còn 35 bộ câu hỏi, trong đó có 15 bộ câu hỏi về chủ đề xã hội
Theo công thức xác suất toàn phần, xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội là:
Hộp thứ nhất chứa 3 viên bi đen và 2 viên bi trắng. Hộp thứ hai chứa 4 viên bi đen và 5 viên bi trắng. Các viên bi có cùng kích thước và khối lượng. Bạn Mai lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.
Gọi A: "Viên bi lấy ra lần thứ nhất là bi đen"
Và B: "Viên bi lấy ra lần thứ hai là bi trắng".
Biết rằng biến cố A xảy ra, tính xác suất của biến cố B?
Nếu biến cố A xảy ra thì bạn Mai lấy viên bi đen từ hộp thứ nhất bỏ vào hộp thứ hai.
Khi đó hộp thứ hai có 5 viên bi đen và 5 viên bi trắng.
Do đó, xác suất của biến cố B là: .
Cho hai biến cố
với
. Tính
?
Ta có:
Một túi đựng
bi xanh và
bi đỏ. Lấy ngẫu nhiên
bi. Xác suất để cả hai bi đều đỏ là:
Ta có số phần từ của không gian mẫu là .
Gọi : "Hai bi lấy ra đều là bi đỏ".
Khi đó .
Vậy xác suất cần tính là .
Cho hai biến cố
và
với
. Biết ![]()
. Tính
?
Ta có công thức xác suất toàn phần tính là:
Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,91
Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,91
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
3 cuốn sách lấy ra không cùng một loại
.
Để tìm số phần tử của , ta đi tìm số phần tử của biến cố
, với biến cố
là 3 cuốn sách lấy ra cùng một loại.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Cho hai biến cố
và
là hai biến cố độc lập, với
. Tính
?
Hai biến cố và
là hai biến cố độc lập nên
.
Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là
và dự án 2 là
. Khả năng thắng thầu của 2 dự án là 0,4. Gọi
lần lượt là biến cố thắng thầu dự án 1 và dự án 2.
a)
là hai biến độc lập. Đúng||Sai
b) Xác suất công ty thắng thầu đúng 1 dự án là
. Đúng||Sai
c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là
. Sai|| Đúng
d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án
. Sai|| Đúng
Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là và dự án 2 là
. Khả năng thắng thầu của 2 dự án là 0,4. Gọi
lần lượt là biến cố thắng thầu dự án 1 và dự án 2.
a) là hai biến độc lập. Đúng||Sai
b) Xác suất công ty thắng thầu đúng 1 dự án là . Đúng||Sai
c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là . Sai|| Đúng
d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án . Sai|| Đúng
Ta có:
a) là hai biến cố độc lập khi và chỉ khi
Mà nên
không độc lập.
b) Gọi C là biến cố thắng thầu đúng 1 dự án
.
c) Gọi D là biến cố thắng dự 2 biết thắng dự án 1
.
d) Gọi E là biến cố “thắng dự án 2 biết không thắng dự án 1”
.
Một xí nghiệp mỗi ngày sản xuất ra
sản phẩm trong đó có
sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).
Đáp án: 0,02
Một xí nghiệp mỗi ngày sản xuất ra sản phẩm trong đó có
sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).
Đáp án: 0,02
Xét các biến cố:
: Sản phẩm lấy ra lần thứ nhất bị lỗi.
Khi đó, ta có: ;
.
: Sản phẩm lấy ra lần thứ hai bị lỗi.
Khi sản phẩm lấy ra lần thứ nhất bị lỗi thì còn sản phẩm và trong đó có
sản phẩm lỗi nên ta có:
, suy ra
.
Khi sản phẩm lấy ra lần thứ nhất không bị lỗi thì còn sản phẩm trong đó có
sản phẩm lỗi nên ta có:
, suy ra
.
Khi đó, xác suất để sản phẩm lấy ra lần thứ hai bị lỗi là:
.
Đáp số: .
Có 2 xạ thủ loại I và 8 xạ thủ loại II, xác suất bắn trúng đích của các loại xạ thủ loại I là 0,9 và loại II là 0,7. Chọn ngẫu nhiên ra một xạ thủ và xạ thủ đó bắn một viên đạn. Tìm xác suất để viên đạn đó trúng đích.
Gọi A là biến cố "Viên đạn trúng đích".
là biến cố "Chọn xạ thủ loại I bắn".
là biến cố "Chọn xạ thủ loại II bắn".
Ta có tạo thành họ đầy đủ các biến cố.
Áp dụng công thức ta có:
Áo sơ mi May10 trước khi xuất khẩu sang phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân
sản phẩm làm ra qua được lần kiểm tra thứ nhất và
sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để 1 chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu?
Gọi A là biến cố ”Qua được lần kiểm tra đầu tiên”
Gọi B là biên cố “Qua được lần kiểm tra thứ 2”
Chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện trên hay ta đi tính
Ta có:
.
Tung một con xúc sắc hai lần độc lập nhau. Biết rằng lần tung thứ nhất được số chấm chẵn. Tính xác suất tổng số chấm hai lần tung bằng
?
Gọi Ti: "Tổng số nốt hai lần tung bằng i"
Nj,k: "Số nốt trên lần tung thứ j bằng k"
Ta tìm
Ba người thợ cùng may một loại áo với xác suất may được sản phẩm chất lượng cao tương ứng là
. Biết một người khi may 8 áo thì có 6 sản phẩm chất lượng cao. Tìm xác suất để người đó may 8 áo nữa thì có 6 áo chất lượng cao?
Áp dụng công thức xác suất đầy đủ
Gọi là "trong 8 áo sau có 6 áo chất lượng cao". Vì trong không gian điều kiện
, hệ
vẫn là hệ đầy đủ.
Áp dụng công thức xác suất toàn phần có
Ở đó:
Thay vào ta tính được
Trong một kì thi tốt nghiệp trung học phổ thông, một tỉnh X có
học sinh lựa chọn tổ hợp A00 (gồm các môn Toán, Vật lí, Hoá học). Biết rằng, nếu một học sinh chọn tổ hợp A00 thì xác suất để học sinh đó đỗ đại học là
; còn nếu một học sinh không chọn tổ hợp A00 thì xác suất để học sinh đó đỗ đại học là
. Chọn ngẫu nhiên một học sinh của tỉnh X đã tốt nghiệp trung học phổ thông trong kì thi trên. Biết rằng học sinh này đã đỗ đại học. Tính xác suất để học sinh đó chọn tổ hợp A00. (Kết quả làm tròn đến chữ số thập phân thứ 2).
Gọi A: “Học sinh đó chọn tổ hợp A00”
Và B: “Học sinh đó đỗ đại học”.
Ta cần tính
Ta có:
là xác suất để một học sinh đỗ đại học với điều kiện học sinh đó chọn tổ hợp A00
là xác suất để một học sinh đỗ đại học với điều kiện học sinh đó không chọn tổ hợp A00
Thay vào công thức Bayes ta được:
Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 0,82
Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 0,82
Gọi là biến cố: "Chị Hoa bị nhiễm bệnh khi tiếp xúc người bệnh mà không đeo khẩu trang" và
: "Chị Hoa bị nhiễm bệnh khi tiếp xúc với người bệnh dù có đeo khẩu trang”.
Dễ thấy là hai biến cố độc lập.
Xác suất để chị Hoa không nhiễm bệnh trong cả hai lần tiếp xúc với người bệnh là
.
Gọi là xác suất để chị Hoa bị lây bệnh khi tiếp xúc người bệnh, ta có:
Cho hai biến cố
và
, với
. Tính
?
Ta có:
.
Có hai chuồng thỏ. Chuồng I có 5 con thỏ đen và 10 con thỏ trắng. Chuồng II có 7 con thỏ đen và 3 con thỏ trắng. Trước tiên, từ chuồng II lấy ra ngẫu nhiên 1 con thỏ rồi cho vào chuồng I. Sau đó, từ chuồng I lấy ra ngẫu nhiên 1 con thỏ. Tính xác suất để con thỏ được lấy ra là con thỏ trắng. (Kết quả làm tròn đến chữ số thập phân thứ 2).
Xét A:“Con thỏ được lấy ra từ chuồng II để cho vào chuồng I là con thỏ trắng”.
Và B: “Con thỏ được lấy ra từ chuồng I là con thỏ trắng”.
Tính P(A): Đây là xác suất để lấy ra ngẫu nhiên 1 con thỏ trắng từ chuồng II rồi cho vào chuồng I:
Tính : Đây là xác suất để lấy ra ngẫu nhiên 1 con thỏ trắng từ chuồng I với điều kiện đã chọn ra 1 con thỏ trắng từ chuồng II rồi cho vào chuồng I.
Tức là có 5 con thỏ đen và 11 con thỏ trắng ở trong chuồng I
Tương tự ta có:
Tính : Đây là để lấy ra ngẫu nhiên 1 con thỏ trắng từ chuồng I với điều kiện đã chọn ra 1 con thỏ đen từ chuồng II rồi cho vào chuồng I
Tức là có 6 con thỏ đen và 10 con thỏ trắng ở trong chuồng I. Tương tự như trên ta có: .
Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.
Gọi A là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”.
Gọi B là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.
Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì .
Dây chuyền lắp ráp nhận được các chi tiết do hai máy sản xuất. Trung bình máy thứ nhất cung cấp
chi tiết, máy thứ hai cung cấp
chi tiết. Biết
chi tiết do máy thứ nhất sản xuất đều đạt tiêu chuẩn và
chi tiết do máy thứ hai sản xuất là đạt tiêu chuẩn. Lấy ngẫu nhiên từ dây chuyển một sản phẩm, thấy nó đạt tiêu chuẩn. Tìm xác suất để sản phẩm đó do máy thứ nhất sản xuất.
Gọi A là biến cố chi tiết lấy từ dây chuyển đạt tiêu chuẩn.
Biến cố A có thể xảy ra đồng thời với một trong hai biến cố sau đây tạo nên một nhóm đầy đủ các biến cố.
H1 chi tiết máy do máy một sản xuất.
H2 chi tiết máy do máy hai sản xuất.
Như vậy xác suất để chi tiết máy dó máy một sản xuất bằng:
Theo dữ kiện đề bài cho ta có:
Do đó:
Tỉ lệ chính phẩm của máy thứ nhất là
, của máy thứ hai là
. Một lô sản phẩm gồm
sản phẩm của máy thứ nhất và
sản phẩm của máy thứ hai. Người ta lấy ngẫu nhiên ra một sản phẩm để kiếm tra thấy là sản phẩm tốt. Tìm xác suất để sản phẩm đó do máy thứ nhất sản xuất?
Gọi A là biến cố “Sản phẩm kiểm tra là sản phẩm tốt”
B1 là biến cố “Sản phẩm do máy thứ nhất sản xuất”.
B2 là biến cố “Sản phẩm do máy thứ hai sản xuất”
Do là họ đầy đủ các biến cố.
Ta có:
Áp dụng công thức Bayes ta có:
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức Bayes:
.