Cho hai biến cố
và
là hai biến cố độc lập, với
. Tính
?
Hai biến cố và
là hai biến cố độc lập nên
.
Cho hai biến cố
và
là hai biến cố độc lập, với
. Tính
?
Hai biến cố và
là hai biến cố độc lập nên
.
Một sinh viên làm 2 bài tập kế tiếp. Xác suất làm đúng bài thứ nhất là
. Nếu làm đúng bài thứ nhất thì khả năng làm đúng bài thứ 2 là
, nhưng nếu làm sai bài thứ 1 thì khả năng làm đúng bài thứ 2 là
. Tính xác suất để sinh viên làm đúng ít nhất một bài?
Gọi A1 là biến cố làm đúng bài 1
Gọi A2 là biến cố làm đúng bài 2
Làm đúng ít nhất 1 bài
Có 3 cửa hàng I, II, III cùng kinh doanh sản phẩm Y, trong đó thị phần của cửa hàng I, III như nhau và gấp đôi thị phần của cửa hàng II. Tỉ lệ sản phẩm loại A trong 3 cửa hàng lần lượt là
. Một khách hàng chọn ngẫu nhiên 1 cửa hàng và tử đó mua một sản phẩm. Giả sử khách hàng đã mua được sản phẩm loại A, hỏi khả năng người ấy đã mua được ở cửa hàng nào là nhiều nhất?
Gọi T: "Khách hàng mua được sản phẩm loại A"
Ai: "Mua ở cửa hàng i"
Ta có {A1, A2, A3} là một hệ đầy đủ các biến cố và xác định được:
Áp dụng công thức xác suất toàn phần ta có xác suất để khách hàng mua được sản phẩm loại A là:
Áp dụng công thức Bayes, ta có:
Ta thấy rằng P(A1|T) là lớn nhất tức là khả năng người ấy đã mua ở cửa hàng I là nhiều nhất.
Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. Hùng lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa.
Xét các biến cố:
: "Quả bóng lấy ra lần đầu có số chẵn"
: "Quả bóng lấy ra lần hai có số lẻ".
Xác định biến cố
: "biến cố
với điều kiện biết
đã xảy ra".
Ta có:
Khi biến cố xảy ra, thì không gian mẫu mới là
.
Khi đó, biến cố
Một tổ có 15 sinh viên trong đó có 5 sinh viên học giỏi môn Toán. Cần chia làm 5 nhóm, mỗi nhóm 3 sinh viên. Tính xác suất để nhóm nào cũng có một sinh viên học giỏi môn Toán?
Gọi là biến cố 'nhóm thứ
có 1 người giỏi Toán' và
là sự kiện nhóm nào cũng có người giỏi Toán, thì dễ dàng nhận thấy:
Ta có:
Áp dụng công thức xác suất của tích ta có:
Một nhóm học sinh có 30 học sinh, trong đó có 16 em học khá môn Toán, 25 em học khá môn Hóa học, 12 em học khá cả hai môn Toán và Hóa học. Chọn ngẫu nhiên một học sinh trong số đó. Tính xác suất để học sinh đó học khá môn Toán biết rằng học sinh đó học khá môn Hóa học?
Gọi A: “Học sinh đó học khá môn Toán”
Và B: “Học sinh đó học khá môn Hóa học”
Theo bài ra ta có:
Cho hai biến cố
và
là hai biến cố độc lập, với
. Tính
?
Hai biến cố và
là hai biến cố độc lập nên
.
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức Bayes:
.
Cho hai biến cố
và
, với
. Tính
?
Ta có:
.
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Giả sử tỉ lệ người dân của tỉnh T nghiện thuốc lá là
; tỉ lệ người bị bệnh phổi trong số người nghiện thuốc lá là
, trong số người không nghiện thuốc lá là
. Hỏi khi ta gặp ngẫu nhiên một người dân của tỉnh T thì khả năng mà đó bị bệnh phổi là bao nhiêu
?
Gọi A là biến cố “người nghiện thuốc lá”, suy ra A là biến cố “người không nghiện thuốc lá”
Gọi B là biến cố “người bị bệnh phổi”
Để người mà ta gặp bị bệnh phổi thì người đó nghiện thuốc lá hoặc không nghiện thuốc lá.
Ta cần tính
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Một hộp chứa 8 bi trắng, 2 bi đỏ. Lần lượt lấy từng bi. Giả sử lần đầu tiên lấy được bi trắng. Xác định xác suất lần thứ hai lấy được bi đỏ.
Gọi A là biến cố lần một lấy được bi trắng.
Gọi B là biến cố lần hai lấy được bi đỏ.
Xác suất lần 2 lấy được bi đỏ khi lần 1 đã lấy được bi trắng là.
Ta có: khi đó:
.
Trong một trường học, tỉ lệ học sinh nữ là
. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia lớp học bổ trợ kiến thức lần lượt là
và
. Gặp ngẫu nhiên một học sinh của trường. Biết rằng học sinh có tham gia lớp học bổ trợ kiến thức. Tính xác suất học sinh đó là nam?
Gọi lần lượt là các biến cố gặp được một học sinh nữ, một học sinh nam
Nên 1 2 A A, là hệ biến cố đầy đủ.
Gọi B “Học sinh đó tham gia lớp học bổ trợ kiến thức”
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Xác suất để học sinh đó là nam, biết rằng học sinh đó tham gia câu lạc bộ nghệ thuật, ta áp dụng công thức Bayes:
Cho hai biến cố
và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Cho
và
là các biến cố của phép thử T. Biết rằng
. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được tính theo công thức nào sau đây?
Theo công thức Bayes ta có:
Để phát hiện ra người nhiễm bệnh, người ta tiến hành xét nghiệm tất cả mọi người của nhóm người (trong đó
người không nhiễm bệnh). Biết rằng đối với người nhiễm bệnh thì xác suất xét nghiệm có kết quả dương tính là
, nhưng đối với người không nhiễm bệnh thì xác suất xét nghiệm có phản ứng dương tính là
. Tính xác suất để người được chọn ra không nhiễm bệnh và không có phản ứng dương tính.
Gọi A: “Người được chọn ra không nhiễm bệnh”.
Và B: “Người được chọn ra có phản ứng dương tính”
Theo bài ta có:
Ta có sơ đồ hình cây như sau:
Vậy
Một phân xưởng có 3 máy tự động: máy I sản xuất 25%, máy II sản xuất 30%, máy III sản xuất 45% số sản phẩm. Tỷ lệ phế phẩm tương ứng của các máy lần lượt là 0,1%, 0,2% và 0,3%. Chọn ngẫu nhiên ra một sản phẩm của phân xưởng. 1. Tìm xác suất nó là phế phẩm.
Gọi Ai là "lấy ra sản phẩm từ lô i" thì A1, A2, A3 tạo thành hệ đầy đủ.
Gọi A là "lấy ra sản phẩm là phế phẩm".
Áp dụng công thức xác suất toàn phần, ta có
Tan giờ học buổi chiều một sinh viên có
về nhà ngay, nhưng do giờ cao điểm nên có 30% ngày bị tắc đường nên bị về nhà muộn (từ 30 phút trở lên) còn
số ngày sinh viên đó vào quán Internet cạnh trường để chơi Games, những ngày này xác suất về nhà muộn là
. Còn lại những ngày khác sinh viên đó đi chơi với bạn bè có xác suất về muộn là
. Tính xác suất để trong một ngày nào đó sinh viên không về muộn.
Gọi B là biến cố sinh viên đó đi học về muộn
là biến cố sinh viên đó đi học không về muộn
E1 là biến cố tan học về nhà ngay
E2 là biến cố tan học đi chơi game
E3 là biến cố tan học về đi chơi với bạn
B có thể xảy ra một trong 3 biến cố
Cho hai biến cố
với
. Tính
?
Ta có:
Chọn ngẫu nhiên lần lượt các số a, b phân biệt thuộc tập hợp
. Tính xác suất để
là một số nguyên dương.
Phép thử: "Chọn ngẫu nhiên lần lượt các số a, b phân biệt thuộc tập hợp
Biến cố : "
là một số nguyên dương".
+ Giả sử là một số nguyên dương
|
10 |
9 |
8 |
7 |
6 |
5 |
4 |
3 |
2 |
|
|
1 |
1 |
|
1 |
1 |
Cho hai biến cố
và
với
. Biết ![]()
. Tính
?
Ta có công thức xác suất toàn phần tính là:
Có 3 hộp bi:
Hộp 1: Có 3 xanh, 4 đỏ, 5 vàng.
Hộp 2: Có 4 xanh, 5 đỏ, 6 vàng.
Hộp 3: Có 5 xanh, 6 đỏ, 7 vàng
Chọn ngẫu nhiên 1 hộp và từ hộp đó lấy ngẫu nhiên 3 bi. Tính xác suất để 3 bi lấy ra có 3 màu khác nhau. Trong trường hợp đó tính xác suất để 3 bi được lấy từ hộp thứ 3?
Gọi lần lượt là các biến cố “Chọn được hộp thứ 1, 2, 3” ta có hệ
là hệ biến cố xung khắc và đầy đủ:
Gọi C là biến cố” 3 bi lấy ra có ba màu khác nhau”
Ta có:
Một công ty xây dựng đấu thầu 2 dự án độc lập. Khả năng thắng thầu của các dự án 1 là
và dự án 2 là
. Xác suất công ty thắng thầu đúng 1 dự án là:
Gọi A là biến cố ”Thắng thầu dự án 1″
Gọi B là biến cố “Thắng thầu dự án 2″
Theo đề bài ta có: với 2 biến cố
độc lập.
Gọi C là biến cố “Thắng thầu đúng 1 dự án” khi đó ta có:
Cho hai biến cố
với
. Xét tính đúng sai của các khẳng định sau:
a)
Đúng||Sai
b)
Đúng||Sai
c)
Đúng||Sai
d)
Đúng||Sai
e) Biết
khi đó
.Sai||Đúng
Cho hai biến cố với
. Xét tính đúng sai của các khẳng định sau:
a) Đúng||Sai
b) Đúng||Sai
c) Đúng||Sai
d) Đúng||Sai
e) Biết khi đó
.Sai||Đúng
Các khẳng định đúng là:
a)
b)
c)
d)
e) Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Cho hai biến cố
và
. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được gọi là xác suất của
với điều kiện
, ký hiệu là
. Phát biểu nào sau đây đúng?
Công thức tính xác suất của biến cố khi biết biến cố
đã xảy ra
là:
.
Theo thống kê xác suất để hai ngày liên tiếp có mưa ở một thành phố vào mùa hè là
; còn không mưa là
. Biết các sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng. Tính xác suất để ngày thứ hai có mưa, biết ngày đầu không mưa?
Gọi A là "ngày đầu mưa" và B là "ngày thứ hai mưa" thì ta có:
Vì các sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng nên
Xác suất cần tính là có:
Một cuộc thi năng lực có
bộ câu hỏi, trơng đó có
bộ câu hỏi về chủ đề tự nhiên và
bộ câu hỏi về chủ đề xã hội. Bạn An lấy ngẫu nhiên một bộ câu hỏi (lấy không hoàn lại), sau đó bạn Bình lấy ngẫu nhiên một bộ câu hỏi. Xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội bằng:
Xét các biến cố:
A: "Bạn An lấy được bộ câu hỏi về chủ đề tự nhiên"
B: "Bạn Bình lấy được bộ câu hỏi về chủ đề xã hội".
Khi đó
Nếu bạn An chọn được một bộ câu hỏi về chủ đề tự nhiên thì sau đó còn 35 bộ câu hỏi, trong đó có 16 bộ câu hỏi về chủ đề xã hội
Nếu bạn An chọn được một bộ câu hỏi về chủ đề xã hội thì sau đó còn 35 bộ câu hỏi, trong đó có 15 bộ câu hỏi về chủ đề xã hội
Theo công thức xác suất toàn phần, xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội là:
Một chiếc hộp có
viên bi, trong đó có
viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có
số viên bi màu đỏ đánh số và
số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số.
a) Số viên bi màu đỏ có đánh số là
. Đúng||Sai
b) Số viên bi màu vàng không đánh số là
. Đúng||Sai
c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là:
Sai|| Đúng
d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số là:
. Đúng||Sai
Một chiếc hộp có viên bi, trong đó có
viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có
số viên bi màu đỏ đánh số và
số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số.
a) Số viên bi màu đỏ có đánh số là . Đúng||Sai
b) Số viên bi màu vàng không đánh số là . Đúng||Sai
c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là: Sai|| Đúng
d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số là: . Đúng||Sai
a) Số viên bi màu đỏ có đánh số là
b) Số viên bi màu vàng không đánh số là
c) Gọi A là biến cố “viên bi được lấy ra có đánh số”
Gọi B là biến cố “viên bi được lấy ra có màu đỏ”, suy ra B là biến cố “viên bi được lấy ra có màu vàng”
Lúc này ta đi tính theo công thức:
Ta có:
.
d) A là biến cố “viên bi được lấy ra có đánh số” suy ra A là biến cố “viên bi được lấy ra không có đánh số”. Khi đó ta có:
Cho hai biến cố
và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Cho
và
là hai biến cố độc lập thoả mãn
và
. Khi đó,
bằng:
A và B là hai biến cố độc lập nên
Một người có 3 chỗ ưa thích như nhau để câu cua. Xác suất câu được cua ở mỗi chỗ lần lượt là
. Biết rằng đến một chỗ người đó thả câu 3 lần và chỉ câu được một con cua. Tính xác suất để cá câu được ở chỗ thứ nhất?
Gọi A1, A2, A3 lần lượt là "cá câu được ở chỗ thứ i" thì hệ A1, A2, A3 tạo thành hệ đầy đủ.
Dễ thấy
Gọi H là "thả câu 3 lần và chỉ câu được 1 con cua".
Theo công thức toàn phần, ta có:
Ở đó
Theo công thức Bayes suy ra:
Một cửa hàng có hai loại bóng đèn Led, trong đó có
bóng đèn Led là màu trắng và
bóng đèn Led là màu xanh, các bóng đèn có kích thước như nhau. Các bóng đèn Led màu trắng có tỉ lệ hỏng là
và các bóng đèn Led màu xanh có tỉ lệ hỏng là
. Một khách hàng chọn mua ngẫu nhiên một bóng đèn Led từ cửa hàng. Xác suất để khách hàng chọn được bóng đèn Led không hỏng bằng bao nhiêu?
Xét các biến cố:
A: "Khách hàng chọn được bóng đèn Led màu trắng"
B: "Khách hàng chọn được bóng đèn Led không hỏng".
Ta có:
Theo công thức xác suất toàn phần, ta có:
Tại một phòng khám chuyên khoa tỷ lệ người đến khám có bệnh là
. Người ta áp dụng phương pháp chẩn đoán mới thì thấy nếu khẳng định có bệnh thì đúng 9 trên 10 trường hợp; còn nếu khẳng định không bệnh thì đúng 5 trên 10 trường hợp. Tính xác suất để chẩn đoán đúng?
Gọi A là "người đến khám có bệnh" thì A, tạo thành hệ đầy đủ
Gọi B là "Chẩn đoán có bệnh".
Ta có P(A | B) = 0.9, P(A|B) = 0.5.
Tìm P(B) từ:
Gọi C là "chẩn đoán đúng", thì C xảy ra khi người bị bệnh được chẩn đoán có bệnh hoặc người không bị bệnh được chẩn đoán không bị bệnh. Như vậy
Hiển nhiên 2 biến cố xung khắc, nên ta có:
Cho hai biến cố
và
, với
. Tính
?
Ta có: .
Cho một hộp kín có 6 thẻ ngân hàng của BIDV và 4 thẻ ngân hàng của Techcombank. Lấy ngẫu nhiên lần lượt 2 thẻ (lấy không hoàn lại). Tìm xác suất để lần thứ hai lấy được thẻ ngân hàng của Techcombank nếu biết lần thứ nhất đã lấy được thẻ ngân hàng của BIDV
Gọi A là biến cố “lần thứ hai lấy được thẻ ngân hàng Techcombank“, B là biến cố “lần thứ nhất lấy được thẻ ngân hàng của BIDV “.
Ta cần tìm Sau khi lấy lần thứ nhất (biến cố B đã xảy ra) trong hộp còn lại 9 thẻ (trong đó 4 thẻ Techcombank) nên
.
Có 3 hộp đựng bi: hộp thứ nhất có 3 bi đỏ, 2 bi trắng; hộp thứ hai có 2 bi đỏ, 2 bi trắng; hộp thứ ba không có viên nào. Lấy ngẫu nhiên 1 viên bi từ hộp thứ nhất và 1 viên bi từ hộp thứ hai bỏ vào hộp thứ ba. Sau đó từ hộp thứ ba lấy ngẫu nhiên ra 1 viên bi. Biết rằng viên bi lấy ra từ hộp thứ ba màu đỏ, tính xác suất để lúc đầu ta lấy được viên bi đỏ từ hộp thứ nhất bỏ vào hộp thứ ba?
Gọi A1, A2 lần lượt là "lấy bi đỏ từ hợp thứ 1 (thứ 2) bỏ vào hộp thứ ba" thì tạo thành một hệ đầy đủ.
Ta có:
Gọi A "lấy ra từ hộp 3 một viên bi màu đỏ". Ta có:
Áp dụng công thức xác suất đầy đủ ta có:
Gọi B là sự kiện cần tính xác suất.
Dễ thấy . Theo công thức Bayes ta có:
Có 3 hộp đựng bi: hộp thứ nhất có 3 bi đỏ, 2 bi trắng; hộp thứ hai có 2 bi đỏ, 2 bi trắng; hộp thứ ba không có viên nào. Lấy ngẫu nhiên 1 viên bi từ hộp thứ nhất và 1 viên bi từ hộp thứ hai bỏ vào hộp thứ ba. Sau đó từ hộp thứ ba lấy ngẫu nhiên ra 1 viên bi. Tính xác suất để viên bi đó màu đỏ?
Gọi A1, A2 lần lượt là "lấy bi đỏ từ hợp thứ 1 (thứ 2) bỏ vào hộp thứ ba" thì tạo thành một hệ đầy đủ.
Ta có:
Gọi A "lấy ra từ hộp 3 một viên bi màu đỏ". Ta có:
Áp dụng công thức xác suất đầy đủ ta có:
Có hai lô sản phẩm: lô I có 7 chính phẩm, 3 phế phẩm; lô II có 8 chính phẩm, 2 phế phẩm. Từ lô I lấy ngẫu nhiên ra 2 sản phẩm, từ lô II lấy ngẫu nhiên ra 3 sản phẩm. Sau đó từ số sản phẩm này lại lấy ngẫu nhiên 2 sản phẩm. Tính xác suất để trong 2 sản phẩm lấy ra sau cùng có ít nhất 1 chính phẩm.
Gọi là "trong 5 sản phẩm cuối có
chính phẩm".
Khi đó hệ tạo thành hệ đầy đủ
xảy ra thì phải lấy 3 phế phẩm từ lô II, điều này là không thể.
Suy ra
xảy ra nếu lấy 2 phế từ lô I và 1 chính, 1 phế từ lô II.
xảy ra nếu lấy 1 chính, 1 phế từ lô
chính, 2 phế từ lô II hoặc 2 phế từ lô
chính, 1 phế từ lô II
xảy ra nếu lấy 2 chính từ lô
chính, 2 phế từ lô
hoặc 1 chính, 1 phế từ lô
chính, 1 phế từ lô II hoặc 2 phế từ lô
chính từ lô II
xảy ra nếu lấy 2 chính từ lô
chính, 2 phế từ lô II hoặc 1 chính, 1 phế từ lô
chính từ lô II
xảy ra nếu lấy 2 chính từ lô
chính từ lô II
Gọi là "trong 2 sản phẩm lấy ra có ít nhất 1 chính phẩm", áp dụng công thức xác suất đầy đủ
Suy ra .
Cho hai biến cố
với
. Tính
?
Ta có: