Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Có hai chuồng thỏ. Chuồng I có 5 con thỏ đen và 10 con thỏ trắng. Chuồng II có 7 con thỏ đen và 3 con thỏ trắng. Trước tiên, từ chuồng II lấy ra ngẫu nhiên 1 con thỏ rồi cho vào chuồng I. Sau đó, từ chuồng I lấy ra ngẫu nhiên 1 con thỏ. Tính xác suất để con thỏ được lấy ra là con thỏ trắng. (Kết quả làm tròn đến chữ số thập phân thứ 2).
Xét A:“Con thỏ được lấy ra từ chuồng II để cho vào chuồng I là con thỏ trắng”.
Và B: “Con thỏ được lấy ra từ chuồng I là con thỏ trắng”.
Tính P(A): Đây là xác suất để lấy ra ngẫu nhiên 1 con thỏ trắng từ chuồng II rồi cho vào chuồng I:
Tính : Đây là xác suất để lấy ra ngẫu nhiên 1 con thỏ trắng từ chuồng I với điều kiện đã chọn ra 1 con thỏ trắng từ chuồng II rồi cho vào chuồng I.
Tức là có 5 con thỏ đen và 11 con thỏ trắng ở trong chuồng I
Tương tự ta có:
Tính : Đây là để lấy ra ngẫu nhiên 1 con thỏ trắng từ chuồng I với điều kiện đã chọn ra 1 con thỏ đen từ chuồng II rồi cho vào chuồng I
Tức là có 6 con thỏ đen và 10 con thỏ trắng ở trong chuồng I. Tương tự như trên ta có: .
Cho hai biến cố
và
, với
.
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai|| Đúng
d)
Sai|| Đúng
Cho hai biến cố và
, với
.
a) Đúng||Sai
b) Đúng||Sai
c) Sai|| Đúng
d) Sai|| Đúng
a) Ta có:
b)
c)
d)
Cho
và
là các biến cố của phép thử T. Biết rằng
. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được tính theo công thức nào sau đây?
Theo công thức Bayes ta có:
Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,91
Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,91
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
3 cuốn sách lấy ra không cùng một loại
.
Để tìm số phần tử của , ta đi tìm số phần tử của biến cố
, với biến cố
là 3 cuốn sách lấy ra cùng một loại.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Trong một đợt kiểm tra sức khoẻ, có một loại bệnh X mà tỉ lệ người mắc bệnh là
và một loại xét nghiệm Y mà ai mắc bệnh X khi xét nghiệm Y cũng có phản ứng dương tính. Tuy nhiên, có
những người không bị bệnh X lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên một người trong đợt kiểm tra sức khoẻ đó. Giả sử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh X là bao nhiêu (làm tròn kết quả đến hàng phần trăm)
Xét các biến cố:
A: "Người được chọn mắc bệnh X"
B: "Người được chọn có phản ứng dương tính với xét nghiệm Y".
Theo giả thiết ta có:
Theo công thức Bayes, ta có:
Cho hai biến cố
và
là hai biến cố độc lập, với
. Tính
?
Hai biến cố và
là hai biến cố độc lập nên
.
Trong học kỳ I năm học 2024 - 2025, sinh viên phải thi 4 học phần. Xác suất để sinh viên thi đạt một học phần trong mỗi lần thi đều là 0,8. Nếu thi không đạt học phần nào phải thi lại học phần đó. Tính xác suất để một sinh viên thi đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần.
Gọi là "đạt
học phần ở lần thi đầu".
Khi đó, tạo thành hệ đầy đủ và
Gọi là "đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần".
Áp dụng công thức xác suất toàn phần ta có:
Có hai lô sản phẩm: lô I có 7 chính phẩm, 3 phế phẩm; lô II có 8 chính phẩm, 2 phế phẩm. Từ lô I lấy ngẫu nhiên ra 2 sản phẩm, từ lô II lấy ngẫu nhiên ra 3 sản phẩm. Sau đó từ số sản phẩm này lại lấy ngẫu nhiên 2 sản phẩm. Tính xác suất để trong 2 sản phẩm lấy ra sau cùng có ít nhất 1 chính phẩm.
Gọi là "trong 5 sản phẩm cuối có
chính phẩm".
Khi đó hệ tạo thành hệ đầy đủ
xảy ra thì phải lấy 3 phế phẩm từ lô II, điều này là không thể.
Suy ra
xảy ra nếu lấy 2 phế từ lô I và 1 chính, 1 phế từ lô II.
xảy ra nếu lấy 1 chính, 1 phế từ lô
chính, 2 phế từ lô II hoặc 2 phế từ lô
chính, 1 phế từ lô II
xảy ra nếu lấy 2 chính từ lô
chính, 2 phế từ lô
hoặc 1 chính, 1 phế từ lô
chính, 1 phế từ lô II hoặc 2 phế từ lô
chính từ lô II
xảy ra nếu lấy 2 chính từ lô
chính, 2 phế từ lô II hoặc 1 chính, 1 phế từ lô
chính từ lô II
xảy ra nếu lấy 2 chính từ lô
chính từ lô II
Gọi là "trong 2 sản phẩm lấy ra có ít nhất 1 chính phẩm", áp dụng công thức xác suất đầy đủ
Suy ra .
Một chiếc máy bay có thể xuất hiện không phận của điểm A với xác suất là
hoặc không phận của điểm B với xác suất là
. Giả sử có 3 phương án bố trí 4 khẩu pháo để hạ máy bay như sau:
Phương án 1: 3 khẩu đặt ở điểm A và 1 khẩu đặt ở điểm B.
Phương án 2: 2 khấu đặt ở điểm A và 2 khẩu đặt ở điểm B.
Phương án 3: 1 khẩu đặt ở điểm A và 3 khẩu đặt ở điểm B.
Biết rằng xác suất bắn trúng (hạ máy bay) của mỗi khẩu bằng
và các khẩu pháo bắn độc lập với nhau. Phương án nào xác suất bắn trúng máy bay cao nhất?
Phương án 1: 3 khẩu đặt tại A và 1 khẩu đặt tại B Nếu có 3 khẩu đặt tại A thì để máy bay rơi cần ít nhất một khẩu bắn trúng.
Xác suất để ít nhất một khẩu tại A bắn trúng máy bay:
(tính theo biến cố đối của biến cố: không có khẩu nào bắn trúng)
=> Xác suất để máy bay rơi trong phương án I:
Phương án 2: 2 khẩu đặt tại 4 và 2 khẩu đặt tại B Nếu có 2 khẩu đặt tại A thì để máy bay rơi cần ít nhất một khẩu bắn trúng.
Xác suất để ít nhất một khẩu tại A bắn trúng máy bay:
Tương tự, xác suất để ít nhất một khẩu tại B bắn trúng máy bay:
=> Xác suất để máy bay rơi trong phương án II:
Phương án 3: 1 khẩu đặt tại A và 3 khẩu đặt tại B com Nếu có 3 khẩu đặt tại B thì để máy bay rơi cần ít nhất một khẩu bắn trúng.
Xác suất để ít nhất một khẩu tại B bắn trúng máy bay:
=> Xác suất để máy bay rơi trong phương án III:
Vậy phương án 2 có xác suất bắn trúng máy bay cao nhất.
Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.
Gọi A là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”.
Gọi B là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.
Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì .
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Một túi đựng
bi xanh và
bi đỏ. Lấy ngẫu nhiên
bi. Xác suất để cả hai bi đều đỏ là:
Ta có số phần từ của không gian mẫu là .
Gọi : "Hai bi lấy ra đều là bi đỏ".
Khi đó .
Vậy xác suất cần tính là .
Một chiếc hộp có
viên bi, trong đó có
viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có
số viên bi màu đỏ đánh số và
số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số.
a) Số viên bi màu đỏ có đánh số là
. Đúng||Sai
b) Số viên bi màu vàng không đánh số là
. Đúng||Sai
c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là:
Sai|| Đúng
d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số là:
. Đúng||Sai
Một chiếc hộp có viên bi, trong đó có
viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có
số viên bi màu đỏ đánh số và
số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số.
a) Số viên bi màu đỏ có đánh số là . Đúng||Sai
b) Số viên bi màu vàng không đánh số là . Đúng||Sai
c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là: Sai|| Đúng
d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số là: . Đúng||Sai
a) Số viên bi màu đỏ có đánh số là
b) Số viên bi màu vàng không đánh số là
c) Gọi A là biến cố “viên bi được lấy ra có đánh số”
Gọi B là biến cố “viên bi được lấy ra có màu đỏ”, suy ra B là biến cố “viên bi được lấy ra có màu vàng”
Lúc này ta đi tính theo công thức:
Ta có:
.
d) A là biến cố “viên bi được lấy ra có đánh số” suy ra A là biến cố “viên bi được lấy ra không có đánh số”. Khi đó ta có:
Áo sơ mi May10 trước khi xuất khẩu sang phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân
sản phẩm làm ra qua được lần kiểm tra thứ nhất và
sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để 1 chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu?
Gọi A là biến cố ”Qua được lần kiểm tra đầu tiên”
Gọi B là biên cố “Qua được lần kiểm tra thứ 2”
Chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện trên hay ta đi tính
Ta có:
.
Cho hai biến cố
với
. Xét tính đúng sai của các khẳng định sau:
a)
Đúng||Sai
b)
Đúng||Sai
c)
Đúng||Sai
d)
Đúng||Sai
e) Biết
khi đó
.Sai||Đúng
Cho hai biến cố với
. Xét tính đúng sai của các khẳng định sau:
a) Đúng||Sai
b) Đúng||Sai
c) Đúng||Sai
d) Đúng||Sai
e) Biết khi đó
.Sai||Đúng
Các khẳng định đúng là:
a)
b)
c)
d)
e) Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Một loài sinh vật có các kiểu gen AA, Aa, aa theo tỉ lệ:
. Nếu cá thể bố (mẹ) có kiểu gen AA lai với các thể mẹ (bố) có kiểu gen AA thì các cá thể con đều có kiểu gen AA. Nếu cá thể bố (mẹ) có kiểu gen AA lai với các thể mẹ (bố) có kiểu gen Aa thì cá thể con có kiểu gen AA, Aa theo tỉ lệ
. Nếu cá thể bố (mẹ) có kiểu gen AA lai với các thể mẹ (bố) có kiểu gen aa thì cá thể con chỉ có các kiểu Aa. Chọn một cá thể con từ cá thể mẹ có kiểu gen AA. Tính xác suất ñể cá thể con có kiểu gen Aa.
Gọi B là biến cố cá thể con có kiểu gen Aa
A1 là biến cố cá thể bố có kiểu gen AA
A2 là biến cố cá thể bố có kiểu gen Aa
A3 là biến cố cá thể bố có kiểu gen aa
Hệ: A1, A2, A3 là hệ đầy đủ
Ta xác định được:
Do đó:
Một hộp chứa 5 quả bóng gồm 2 quả màu đỏ (đánh số 1 và 2), 2 quả màu xanh (đánh số 3 và 4) và 1 quả màu vàng (đánh số 5). Lấy ngẫu nhiên hai quả bóng liên tiếp không hoàn lại.
Xét các biến cố
: "Quả bóng lấy ra đầu tiên có màu đỏ"
: "Tổng số của hai quả bóng lấy ra là số lẻ"
Xác định
là biến cố
khi biết
đã xảy ra?
Khi A đã xảy ra, nghĩa là quả bóng đầu tiên lấy ra có màu đỏ (số 1 hoặc 2).
Do đó, không gian mẫu mới là
Biến cố khi biết
đã xảy ra là:
Có 3 hộp bi:
Hộp 1: Có 3 xanh, 4 đỏ, 5 vàng.
Hộp 2: Có 4 xanh, 5 đỏ, 6 vàng.
Hộp 3: Có 5 xanh, 6 đỏ, 7 vàng
Chọn ngẫu nhiên 1 hộp và từ hộp đó lấy ngẫu nhiên 1 bi. Tính xác suất để bi lấy ra là bi xanh. Nếu bi lấy ra không là bi xanh, tính xác suất để bi đó được lấy từ hộp 2?
Gọi lần lượt là các biến cố “Chọn được hộp thứ 1, 2, 3” ta có hệ
là hệ biến cố xung khắc và đầy đủ:
Gọi B là biến cố “Lấy được bi xanh”
Ta có:
là biến cố bi lấy ra không phải là bi xanh, ta cần tính:
Trong một kỳ thi, có
học sinh đã làm đúng bài toán đầu tiên và
học sinh đã làm đúng bài toán thứ hai. Biết rằng có
học sinh làm đúng cả hai bài toán. Xác suất để một học sinh làm đúng bài toán thứ hai biết rằng học sinh đó đã làm đúng bài toán đầu tiên là bao nhiêu?
Gọi biến cố : "học sinh đã làm đúng bài toán đầu tiên"
Biến cố : "học sinh đã làm đúng bài toán thứ hai”
Biến cố : "học sinh làm đúng cả hai bài toán"
Xác suất để một học sinh làm đúng bài toán thứ hai biết rằng học sinh đó đã làm đúng bài toán đầu tiên là:
Trong một trường học, tỉ lệ học sinh nữ là
. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia câu lạc bộ M lần lượt là
và
. Chọn ngẫu nhiên 1 học sinh của trường. Tính xác suất học sinh đó có tham gia câu lạc bộ M.
Gọi A: “Học sinh được chọn là nữ” ⇒ : “Học sinh được chọn là nam”
B: “học sinh được chọn có tham gia câu lạc bộ M”.
Từ giả thiết ta có:
Theo công thức xác suất toàn phần, ta có xác suất học sinh được chọn có tham gia câu lạc bộ M là:
.
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Áp dụng công thức Bayes ta có:
Trong một kho rượu, số lượng rượu loại M và loại N bằng nhau. Người ta chọn ngẫu nhiên một chai và đưa cho 5 người nếm thử. Biết xác suất đoán đúng của mỗi người là 0,8. Có 3 người kết luận rượu loại M, 2 người kết luận rượu loại N. Hỏi khi đó xác suất chai rượu đó thuộc loại M là bao nhiêu?
Gọi A là chai rượu thuộc loại M thì tạo thành hệ đầy đủ và
Gọi H là "có 3 người kết luận rượu loại M và 2 người kết luận rượu loại N".
Theo công thức toàn phần ta có:
Vậy xác suất cần tính là:
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức Bayes:
.
Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. Hùng lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa.
Xét các biến cố:
: "Quả bóng lấy ra lần đầu có số chẵn"
: "Quả bóng lấy ra lần hai có số lẻ".
Xác định biến cố
: "biến cố
với điều kiện biết
đã xảy ra".
Ta có:
Khi biến cố xảy ra, thì không gian mẫu mới là
.
Khi đó, biến cố
Hộp thứ nhất có 4 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai có 5 viên bi xanh và 4 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai. Tính xác suất của biến cố C: “Hai viên bi lấy ra khác màu”
Gọi A là biến cố “Viên bi lấy ra từ hộp thứ nhất có màu xanh”
Gọi B là biến cố “Viên bi lấy ra từ hộp thứ hai có màu đỏ”.
Ta có:
Ta có sơ đồ cây:
Dựa vào sơ đồ cây, ta có:
Để phát hiện ra người nhiễm bệnh, người ta tiến hành xét nghiệm tất cả mọi người của nhóm người (trong đó
người không nhiễm bệnh). Biết rằng đối với người nhiễm bệnh thì xác suất xét nghiệm có kết quả dương tính là
, nhưng đối với người không nhiễm bệnh thì xác suất xét nghiệm có phản ứng dương tính là
. Tính xác suất để người được chọn ra không nhiễm bệnh và không có phản ứng dương tính.
Gọi A: “Người được chọn ra không nhiễm bệnh”.
Và B: “Người được chọn ra có phản ứng dương tính”
Theo bài ta có:
Ta có sơ đồ hình cây như sau:
Vậy
Có hai hộp đựng phiếu thi, mỗi phiếu ghi một câu hỏi. Hộp thứ nhất có 15 phiếu và hộp thứ hai có 9 phiếu. Học sinh A đi thi chỉ thuộc 10 câu ở hộp thứ nhất và 8 câu ở hộp thứ hai. Giáo viên rút ngẫu nhiên ra 1 phiếu từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó cho học sinh A rút ngẫu nhiên ra 1 phiếu từ hộp thứ hai. Tính xác suất để học sinh trả lời được câu hỏi trong phiếu.
Gọi E1 là biến cố thầy giáo rút 1 câu thuộc từ hộp 1 bỏ vào hộp 2. Khi đó hộp 2 có 9 câu thuộc và 1 câu không thuộc.
Gọi E2 là biến cố thầy giáo rút 1 câu không thuộc từ hộp 1 bỏ vào hộp 2. Khi đó hộp 2 có 8 câu thuộc và 2 câu không thuộc.
E1, E2 tạo thành một nhóm biến cố đầy đủ. B xảy ra với 1 trong 2 biến cố.
Ta có:
Thay vào công thức suy ra
Có hai hộp đựng bóng giống nhau (khác màu sắc):
Hộp thứ chứa 10 quả bóng trong đó có 9 quả màu đen.
Hộp thứ hai chứa 20 quả bóng trng đó có 18 quả màu đen,
Từ hộp thứ nhất lấy ngẫu nhiên một quả bóng bỏ sang hộp thứ hai. Tìm xác suất để lấy ngẫu nhiên một quả bóng từ hộp thứ hai được quả màu đen?
Gọi A là biến cố lấy được quả bóng màu đen từ hộp thứ hai.
Biến cố A có thể xảy ra đòng thời với một trong hai biến cố sau đây tạo nên một nhóm đầy đủ các biến cố:
H1 là biến cố quả bóng bỏ từ hộp thứ nhất sang hộp thứ hai là màu đen.
H2 là biến cố quả bóng bỏ từ hộp thứ nhất sang hộp thứ hai không phải màu đen.
Xác suất để từ hộp thứ nhất bỏ sang hộp thứ hai là quả bóng màu đen bằng:
Xác suất để từ hộp thứ nhất bỏ sang hộp thứ hai không phải quả bóng màu đen bằng:
Xác suất có điều kiện để từ hộp thứ hai lấy được quả bóng màu đen khi các giả thuyết xảy ra là:
Do đó:
Một đợt xổ số phát hành
vé, trong đó có
vé có thưởng. Một người mua
vé
. Tính xác suất để người đó có ít nhất một vé trúng thưởng
Gọi A: “Người đó có ít nhất một vé trúng thưởng”.
: “người đó không có vé trúng thưởng”
Ta có: khi đó
Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 0,82
Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 0,82
Gọi là biến cố: "Chị Hoa bị nhiễm bệnh khi tiếp xúc người bệnh mà không đeo khẩu trang" và
: "Chị Hoa bị nhiễm bệnh khi tiếp xúc với người bệnh dù có đeo khẩu trang”.
Dễ thấy là hai biến cố độc lập.
Xác suất để chị Hoa không nhiễm bệnh trong cả hai lần tiếp xúc với người bệnh là
.
Gọi là xác suất để chị Hoa bị lây bệnh khi tiếp xúc người bệnh, ta có:
Một công nhân đứng hai máy hoạt động độc lập nhau. Xác suất để máy thứ nhất, máy thứ 2 không bị hỏng trong một ca làm việc lần lượt là
và
. Tính xác suất để cả 2 máy đều không bị hỏng trong một ca làm việc?
Gọi A là biến cố cả 2 máy đều không bị hỏng trong một ca làm việc
Theo yêu cầu của đầu bài, ta phải tính P(A)
Nếu gọi Ai là biến cố máy thứ i không bị hỏng trong một ca làm việc với
Khi đó ta có:
Vì vậy xác suất cần tìm là:
Theo giả thiết A1, A2 là 2 biến cố độc lập với nhau nên ta có:
Bạn An đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để An hoàn thành câu dễ là
; hoàn thành câu trung bình là
và hoàn thành câu khó là
. Làm đúng mỗi một câu dễ An được
điểm, làm đúng mỗi câu trung bình An được
điểm và làm đúng mỗi câu khó An được
điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?
a) Xác suất để An làm ba câu thuộc ba loại và đúng cả ba câu là
. Sai||Đúng
b) Khi An làm 3 câu thuộc 3 loại khác nhau. Xác suất để An làm đúng 2 trong số 3 câu là
. Sai||Đúng
c) Khi An làm 3 câu thì xác suất để An làm đúng 3 câu đủ ba loại cao hơn xác suất An làm sai 3 câu ở mức độ trung bình. Đúng||Sai
d) Xác suất để An làm 5 câu và đạt đúng 2 điểm lớn hơn
. Sai||Đúng
Bạn An đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để An hoàn thành câu dễ là ; hoàn thành câu trung bình là
và hoàn thành câu khó là
. Làm đúng mỗi một câu dễ An được
điểm, làm đúng mỗi câu trung bình An được
điểm và làm đúng mỗi câu khó An được
điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?
a) Xác suất để An làm ba câu thuộc ba loại và đúng cả ba câu là . Sai||Đúng
b) Khi An làm 3 câu thuộc 3 loại khác nhau. Xác suất để An làm đúng 2 trong số 3 câu là . Sai||Đúng
c) Khi An làm 3 câu thì xác suất để An làm đúng 3 câu đủ ba loại cao hơn xác suất An làm sai 3 câu ở mức độ trung bình. Đúng||Sai
d) Xác suất để An làm 5 câu và đạt đúng 2 điểm lớn hơn . Sai||Đúng
Gọi A là biến cố An làm đúng câu dễ
B là biến cố An làm đúng câu trung bình
C là biến cố An làm đúng câu khó.
Khi đó A, B, C độc lập với nhau.
a) Xác suất để An làm ba câu thuộc ba loại trên và đúng cả ba câu là:
. Khẳng định Sai.
b) Xác suất để An làm đúng 2 trong số 3 câu là:
Khẳng định Sai.
c) Xác suất để An làm đúng 3 câu đủ ba loại là:
Xác suất An làm sai 3 câu mức độ trung bình. .
Khẳng định Đúng.
d) Để An làm 5 câu và đạt đúng 2 điểm có các trường hợp sau:
TH1: Đúng 4 câu khó và câu còn lại sai
TH2: Đúng 3 câu khó và đúng 2 câu trung bình
Vậy xác suất cần tìm là
Khẳng định Sai.
Cho hai biến cố
và
với
. Biết ![]()
. Tính
?
Ta có công thức xác suất toàn phần tính là:
Cho
và
là hai biến cố độc lập thoả mãn
và
. Khi đó,
bằng:
A và B là hai biến cố độc lập nên
Cho hai biến cố
và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Trong một đợt kiểm tra sức khoẻ, có một loại bệnh
mà tỉ lệ người mắc bệnh là
và một loại xét nghiệm
mà ai mắc bệnh
khi xét nghiệm
cũng có phản ứng dương tính. Tuy nhiên, có
những người không bị bệnh
lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Giả uử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh
là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?
Đáp án : 0,03
Trong một đợt kiểm tra sức khoẻ, có một loại bệnh mà tỉ lệ người mắc bệnh là
và một loại xét nghiệm
mà ai mắc bệnh
khi xét nghiệm
cũng có phản ứng dương tính. Tuy nhiên, có
những người không bị bệnh
lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Giả uử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh
là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?
Đáp án : 0,03
Xét các biến cố:
: "Người được chọn mắc bệnh
";
: "Người được chọn có phản ứng dương tính với xét nghiệm Y".
Theo giả thiết ta có:
;
Theo công thức Bayes, ta có:
Vậy nếu người được chọn có phản ứng dương tính với xét nghiệm thì xác suất bị mắc bệnh
của người đó là khoảng 0,03.
Cho hai biến cố
và
, với
. Tính
?
Ta có:
.
Một xí nghiệp mỗi ngày sản xuất ra
sản phẩm trong đó có
sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).
Đáp án: 0,02
Một xí nghiệp mỗi ngày sản xuất ra sản phẩm trong đó có
sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).
Đáp án: 0,02
Xét các biến cố:
: Sản phẩm lấy ra lần thứ nhất bị lỗi.
Khi đó, ta có: ;
.
: Sản phẩm lấy ra lần thứ hai bị lỗi.
Khi sản phẩm lấy ra lần thứ nhất bị lỗi thì còn sản phẩm và trong đó có
sản phẩm lỗi nên ta có:
, suy ra
.
Khi sản phẩm lấy ra lần thứ nhất không bị lỗi thì còn sản phẩm trong đó có
sản phẩm lỗi nên ta có:
, suy ra
.
Khi đó, xác suất để sản phẩm lấy ra lần thứ hai bị lỗi là:
.
Đáp số: .
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có: