Đề kiểm tra 45 phút Chương 6 Xác suất có điều kiện CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 6. Xác suất có điều kiện được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Một cửa hàng có hai loại bóng đèn Led, trong đó có 65\% bóng đèn Led là màu trắng và 35\% bóng đèn Led là màu xanh, các bóng đèn có kích thước như nhau. Các bóng đèn Led màu trắng có tỉ lệ hỏng là 2\% và các bóng đèn Led màu xanh có tỉ lệ hỏng là 3\%. Một khách hàng chọn mua ngẫu nhiên một bóng đèn Led từ cửa hàng. Xác suất để khách hàng chọn được bóng đèn Led không hỏng bằng bao nhiêu?

    Xét các biến cố:

    A: "Khách hàng chọn được bóng đèn Led màu trắng"

    B: "Khách hàng chọn được bóng đèn Led không hỏng".

    Ta có:

    P(A) = 0,65 \Rightarrow P\left(
\overline{A} ight) = 1 - 0,65 = 0,35

    P\left( B|A ight) = 1 - P\left(
\overline{B}|A ight) = 1 - 0,02 = 0,98

    P\left( B|\overline{A} ight) = 1 -
P\left( \overline{B}|\overline{A} ight) = 1 - 0,03 = 0,97

    Theo công thức xác suất toàn phần, ta có:

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,65.0,98 + 0,35.0,97
= 0,9765

  • Câu 2: Nhận biết

    Một hộp chứa 5 quả bóng gồm 2 quả màu đỏ (đánh số 1 và 2), 2 quả màu xanh (đánh số 3 và 4) và 1 quả màu vàng (đánh số 5). Lấy ngẫu nhiên hai quả bóng liên tiếp không hoàn lại.

    Xét các biến cố A: "Quả bóng lấy ra đầu tiên có màu đỏ"

    B: "Tổng số của hai quả bóng lấy ra là số lẻ"

    Xác định B|A là biến cố B khi biết A đã xảy ra?

    Khi A đã xảy ra, nghĩa là quả bóng đầu tiên lấy ra có màu đỏ (số 1 hoặc 2).

    Do đó, không gian mẫu mới là

    \Omega' = A = \left\{
(1;2),(1;3),(1;4),(1;5),(2;1),(2;3),(2;4),(2;5) ight\}

    Biến cố B khi biết A đã xảy ra là:

    B|A = A \cap B = \left\{
(1;2),(1;4),(2;1),(2;3),(2;5) ight\}

  • Câu 3: Nhận biết

    Một túi đựng 6 bi xanh và 4 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất để cả hai bi đều đỏ là:

    Ta có số phần từ của không gian mẫu là n(\Omega) = C_{10}^{2} = 45.

    Gọi A: "Hai bi lấy ra đều là bi đỏ".

    Khi đó n(A) = C_{4}^{2} = 6.

    Vậy xác suất cần tính là P(A) =
\frac{n(A)}{n(\Omega)} = \frac{2}{15}.

  • Câu 4: Nhận biết

    Cho hai biến cố A;B với P(B) = 0,6;P\left( A|B ight) = 0,7;P\left(
A|\overline{B} ight) = 0,4. Giá trị P(A) bằng:

    Ta có: P\left( \overline{B} ight) = 1 -
P(B) = 1 - 0,6 = 0,4

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,6.0,7 + 0,4.0,4 =
0,58

  • Câu 5: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( \overline{A} \cap B ight)?

    Cách 1: P\left( \overline{A} \cap B
ight) = P\left( \overline{A}|B ight).P(B)

    P\left( \overline{A}|B ight) = 1 -
P\left( A|B ight) = 1 - \frac{P(A \cap B)}{P(B)} = 1 - \frac{0,3}{0,7}
= \frac{4}{7}

    Do đó: P\left( \overline{A} \cap B
ight) = P\left( \overline{A}|B ight).P(B) = \frac{4}{7}.0,7 = 0,4 =
\frac{2}{5}

    Cách 2: Ta có:

    P\left( \overline{A} \cap B ight) +
P(A \cap B) = P(B)

    \Rightarrow P\left( \overline{A} \cap B
ight) = P(B) - P(A \cap B) = 0,7 - 0,3 = 0,4.

  • Câu 6: Nhận biết

    Hộp thứ nhất chứa 3 viên bi đen và 2 viên bi trắng. Hộp thứ hai chứa 4 viên bi đen và 5 viên bi trắng. Các viên bi có cùng kích thước và khối lượng. Bạn Mai lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.

    Gọi A: "Viên bi lấy ra lần thứ nhất là bi đen"

    Và B: "Viên bi lấy ra lần thứ hai là bi trắng".

    Biết rằng biến cố A xảy ra, tính xác suất của biến cố B?

    Nếu biến cố A xảy ra thì bạn Mai lấy viên bi đen từ hộp thứ nhất bỏ vào hộp thứ hai.

    Khi đó hộp thứ hai có 5 viên bi đen và 5 viên bi trắng.

    Do đó, xác suất của biến cố B là: P(B) =
\frac{1}{2}.

  • Câu 7: Vận dụng cao

    Cuối tuần M đến sân chơi để bắn cung, biết khoảng cách bắn tên thay đổi liên tục và khả năng bạn M bắn trúng bia tỉ lệ nghịch với khoảng cách bắn. M bắn lần đầu ở khoảng cách 20m với xác suất trúng bia là 0,5, nếu bị trượt M bắn tiếp mũi tên thứ hai ở khoảng cách 30m, nếu lại trượt M bắn mũi tên thứ ba ở khoảng cách 40m. Tính xác suất để M bắn trúng bia?

    Gọi A là biến cố “M bắn trúng bia ở lần thứ nhất”

    Gọi B là biến cố “M bắn trúng bia ở lần thứ hai”

    Gọi C là biến cố “M bắn trúng bia ở lần thứ ba”

    Ta có: P(A) = 0,5

    Vì xác suất bắn trúng bia trong mỗi lần bắn tỷ lệ nghịch với khoảng cách bắn nên ta có:

    \left\{ \begin{matrix}P\left( B|\overline{A} ight) = \dfrac{20.0,5}{30} = \dfrac{1}{3} \\P\left( C|\overline{A}.\overline{B} ight) = \dfrac{20.0,5}{40} =\dfrac{1}{4} \\\end{matrix} ight.

    Ta có sơ đồ cây như sau:

    Xác suất để M bắn trúng bia là:

    P(A) + P\left( \overline{A}B ight) +
P\left( \overline{A}\overline{B}C ight) = 0,5 + 0,5.\frac{1}{3} +
0,5.\frac{2}{3}.\frac{1}{4} = 0,75

  • Câu 8: Thông hiểu

    Giả sử 5\% email của bạn nhận được là email rác. Bạn sử dụng một hệ thống lọc email rác mà khả năng lọc đúng email rác của hệ thống này là 95\% và có 10\% những email không phải là email rác nhưng vẫn bị lọc. Các khẳng định sau đúng hay sai?

    a) Gọi A: “Email nhận được là email rác”.

    Và B: “Email bị lọc đúng email rác của hệ thống lọc email rác”.

    Vì 5% email nhận được là rác nên xác suất nhận được một email rác là

    P(A) = 5\% = 0,05

    b) Xác suất email bị lọc của email rác là P\left( B|A ight) = 95\% = 0,95.

    c) Xác suất email nhận được không phải rác là P\left( \overline{A} ight) = 1 - P(A) = 1 - 0,05
= 0,95

    Xác suất email bị lọc của email không phải rác là P\left( B|\overline{A} ight) = 0,1

    Vậy xác suất chọn một email bị lọc bất kể là rác hay không là

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight)P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,95.0,05 + 0,1.0,95
= 0,1425

    d) Xác suất chọn một email trong số những email bị lọc thực sự là email rác là

    P\left( A|B ight) = \frac{P\left( B|A
ight).P(A)}{P(B)} = \frac{0,95.0,05}{0,1425} =
\frac{1}{3}.

  • Câu 9: Nhận biết

    Cho hai biến cố AB với 0 <
P(A) < 1. Khi đó công thức xác suất toàn phần tính P(B) là:

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

  • Câu 10: Thông hiểu

    Để nghiên cứu sự phát triển của một loại cây, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm M,N khác nhau. Xác suất phát triển bình thường của cây đó trên các lô đất MN lần lượt là 0,56 và 0,62. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng. Xét các biến cố:

    A : "Cây phát triển bình thường trên lô đất M ";

    B : "Cây phát triển bình thường trên lô đất N".

    a) Các cặp biến cố \overline{A}B,A\overline{B} là độc lập. Đúng||Sai

    b) Hai biến cố C = \overline{A} \cap
BD = A \cap
\overline{B} không là hai biến cố xung khắc.Sai||Đúng
    c) P\left( \overline{A} ight) =
0,56;P\left( \overline{B} ight) = 0,62. Sai||Đúng

    d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là 0,4856. Đúng||Sai

    Đáp án là:

    Để nghiên cứu sự phát triển của một loại cây, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm M,N khác nhau. Xác suất phát triển bình thường của cây đó trên các lô đất MN lần lượt là 0,56 và 0,62. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng. Xét các biến cố:

    A : "Cây phát triển bình thường trên lô đất M ";

    B : "Cây phát triển bình thường trên lô đất N".

    a) Các cặp biến cố \overline{A}B,A\overline{B} là độc lập. Đúng||Sai

    b) Hai biến cố C = \overline{A} \cap
BD = A \cap
\overline{B} không là hai biến cố xung khắc.Sai||Đúng
    c) P\left( \overline{A} ight) =
0,56;P\left( \overline{B} ight) = 0,62. Sai||Đúng

    d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là 0,4856. Đúng||Sai

    Các cặp biến cố \overline{A}B,A\overline{B} là độc lập vì hai lô đất khác nhau.

    Hai biến cố C = \overline{A} \cap
BD = A \cap\overline{B} là hai biến cố xung khắc.

    Ta có: \left\{ \begin{matrix}
P\left( \overline{A} ight) = 1 - P(A) = 1 - 0,56 = 0,44 \\
P\left( \overline{B} ight) = 1 - P(B) = 1 - 0,62 = 0,38 \\
\end{matrix} ight..

    Xác suất để cây chi phát triển bình thường trên một lô đất là:

    P(C \cup D)

    \  = P(C) + P(D) = P\left( \overline{A}
ight) \cdot P(B) + P(A) \cdot P\left( \overline{B}
ight)

    \  = 0,44.0,62 + 0,56.0,38 =
0,4856

  • Câu 11: Nhận biết

    Cho hai biến cố A, B với 0 <
P(B) < 1. Phát biểu nào sau đây đúng?

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight).

  • Câu 12: Vận dụng

    Để phát hiện ra người nhiễm bệnh, người ta tiến hành xét nghiệm tất cả mọi người của nhóm người (trong đó 91\% người không nhiễm bệnh). Biết rằng đối với người nhiễm bệnh thì xác suất xét nghiệm có kết quả dương tính là 85\%, nhưng đối với người không nhiễm bệnh thì xác suất xét nghiệm có phản ứng dương tính là 7\%. Tính xác suất để người được chọn ra không nhiễm bệnh và không có phản ứng dương tính.

    Gọi A: “Người được chọn ra không nhiễm bệnh”.

    Và B: “Người được chọn ra có phản ứng dương tính”

    Theo bài ta có: P(A) = 0,91;P\left( B|A
ight) = 0,07;P\left( B|\overline{A} ight) = 0,85

    P\left( \overline{A} ight) = 1 - P(A)
= 0,09

     

    P\left( \overline{B}|\overline{A}
ight) = 1 - P\left( B|\overline{A} ight) = 1 - 0,85 =
0,15

    Ta có sơ đồ hình cây như sau:

    Vậy P\left( A\overline{B} ight) =
0,91.0,93 = 0,8463

  • Câu 13: Thông hiểu

    Cho ba biến cố A;B;C độc lập từng đôi thỏa mãn P(A) = P(B) = P(C) =
pP(ABC) = 0. Xác định P\left( \overline{A}\overline{B}\overline{C}
ight)?

    Ta có:

    P\left( A\overline{B}\overline{C}
ight) = P\left( A\overline{B} ight) - P\left( A\overline{B}C
ight)

    = p(1 - p) - p^{2} = p -
2p^{2}

    Vì A, B, C có vai trò như nhau nên P\left( A\overline{B}C ight) = P\left(
AB\overline{C} ight)

    \Rightarrow P\left(
\overline{A}\overline{B}\overline{C} ight) = P\left(
\overline{B}\overline{C} ight) - P\left( A\overline{B}\overline{C}
ight)

    = (1 - p)^{2} - p - 2p^{2} = 3p^{2} - 3p
+ 1

  • Câu 14: Thông hiểu

    Gieo một con xúc xắc cân đối đồng chất 2 lần. Tính xác suất để tổng số chấm xuất hiện trên hai mặt bằng 8

    Số phần tử của không gian mẫu là n(\Omega) = 6.6 = 36

    Gọi A là biến cố “Số chấm trên mặt hai lần gieo có tổng bằng 8”.

    Theo bài ra, ta có A = \left\{
(2;6),(3;5),(4;4),(5;3),(6;2) ight\}

    Khi đó số kết quả thuận lợi của biến cố là n(A) = 5

    Vậy xác suất cần tính P(A) =
\frac{5}{36} .

  • Câu 15: Thông hiểu

    Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng 0,850,15. do có nhiễu trên đường truyền nên \frac{1}{7} tín hiệu A bị méo và thu được như tín hiệu B còn \frac{1}{8} tín hiệu B bị méo cà thu được như A. Xác suất thu được tín hiệu A là:

    Gọi A là biến cố “Phát tín hiệu A ”

    Gọi B là biến cố “Phát tín hiệu A ”

    Gọi TA là biến cố “Phát được tín hiệu A ”

    Gọi TB là biến cố “Phát được tín hiệu B”.

    Ta cần tính P\left( T_{A}
ight) ta có: \left\{\begin{matrix}P(A) = 0,85 \\P\left( T_{B}|A ight) = \dfrac{1}{7} \Rightarrow P\left( T_{A}|Aight) = 1 - \dfrac{1}{7} = \dfrac{6}{7} \\P(B) = 0,15 \\P\left( T_{A}|B ight) = \dfrac{1}{8} \\\end{matrix} ight. khi đó:

    P\left( T_{A} ight) = P(A).P\left(
T_{A}|A ight) + P(B).P\left( T_{A}|B ight)

    \Rightarrow P\left( T_{A} ight) =
0,85.\frac{6}{7} + 0,15.\frac{1}{8} = \frac{837}{1120}

    Theo công thức Bayes, ta có:

    \Rightarrow P\left( A|T_{A} ight) =\dfrac{P(A).P\left( T_{A}|A ight)}{P\left( T_{A} ight)} =\dfrac{0,85.\dfrac{6}{7}}{\dfrac{837}{1120}} = \dfrac{272}{279}

  • Câu 16: Vận dụng cao

    Ba người thợ cùng may một loại áo với xác suất may được sản phẩm chất lượng cao tương ứng là 0,9; 0,9 ; 0,8. Biết một người khi may 8 áo thì có 6 sản phẩm chất lượng cao. Tìm xác suất để người đó may 8 áo nữa thì có 6 áo chất lượng cao?

    Áp dụng công thức xác suất đầy đủ

    P(A) = P\left( A_{1} ight)P\left( A
\mid A_{1} ight) + P\left( A_{2} ight)P\left( A \mid A_{2} ight) +
P\left( A_{3} ight)P\left( A \mid A_{3} ight)

    =
\frac{1}{3}.C_{8}^{6}{.0,9}^{6}.{0,1}^{2} +
\frac{1}{3}.C_{8}^{6}.{0,9}^{6}.{0,1}^{2} +
\frac{1}{3}.C_{8}^{6}.{0,8}^{6}.{0,2}^{2}\simeq 0,1971

    Gọi B là "trong 8 áo sau có 6 áo chất lượng cao". Vì trong không gian điều kiện A, hệ A_{i} vẫn là hệ đầy đủ.

    Áp dụng công thức xác suất toàn phần có

    P(B) = P\left( A_{1} \mid A
ight)P\left( B \mid A_{1}A ight) + P\left( A_{2} \mid A
ight)P\left( B \mid A_{2}A ight) + P\left( A_{3} \mid A
ight)P\left( B \mid A_{3}A ight)

    Ở đó:

    P\left( A_{1} \mid A ight) =\frac{P\left( A_{1} ight)P\left( A \mid A_{1} ight)}{P(A)} \simeq\dfrac{\dfrac{1}{3}.C_{8}^{6}.{0,9}^{6}.{0,1}^{2}}{0.1971} \simeq0,2516

    P\left( A_{2} \mid A ight) \simeq
0,2516,\ P\left( A_{3} \mid A ight) \simeq 0,4965

    Thay vào ta tính được

    P(A) \simeq
0,2516.C_{8}^{6}.{0,9}^{6}.{0.1}^{2} +
0.2516.C_{8}^{6}.{0,9}^{6}.{0,1}^{2}

    +
0,4965.C_{8}^{6}.{0,8}^{6}.{0,2}^{2}\simeq 0,2206

  • Câu 17: Thông hiểu

    Một cuộc thi năng lực có 36 bộ câu hỏi, trơng đó có 20 bộ câu hỏi về chủ đề tự nhiên và 16 bộ câu hỏi về chủ đề xã hội. Bạn An lấy ngẫu nhiên một bộ câu hỏi (lấy không hoàn lại), sau đó bạn Bình lấy ngẫu nhiên một bộ câu hỏi. Xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội bằng:

    Xét các biến cố:

    A: "Bạn An lấy được bộ câu hỏi về chủ đề tự nhiên"

    B: "Bạn Bình lấy được bộ câu hỏi về chủ đề xã hội".

    Khi đó P(A) = \frac{20}{36} = \frac{5}{9}
\Rightarrow P\left( \overline{A} ight) = 1 - \frac{5}{9} =
\frac{4}{9}

    Nếu bạn An chọn được một bộ câu hỏi về chủ đề tự nhiên thì sau đó còn 35 bộ câu hỏi, trong đó có 16 bộ câu hỏi về chủ đề xã hội

    \Rightarrow P\left( B|A ight) =
\frac{16}{35}

    Nếu bạn An chọn được một bộ câu hỏi về chủ đề xã hội thì sau đó còn 35 bộ câu hỏi, trong đó có 15 bộ câu hỏi về chủ đề xã hội

    \Rightarrow P\left( B|\overline{A}
ight) = \frac{15}{35}

    Theo công thức xác suất toàn phần, xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội là:

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) =
\frac{5}{9}.\frac{16}{35} + \frac{4}{9}.\frac{15}{35} =
\frac{4}{9}

  • Câu 18: Thông hiểu

    Một bình đựng hạt giống có 7 hạt loại A và 6 hạt loại B. Lấy ngẫu nhiên lần thứ nhất ra 2 hạt, lần thứ hai ra một hạt. Tính xác suất để hạt giống lấy ra lần 2 là hạt loại A.

    Gọi F là biến cố hạt lấy ra lần hai là loại A. H0, H1, H2 lần lượt là biến cố hai hạt lấy ra lần thứ nhất có 0,1, 2 hạt loại B.

    {H0, H1, H2} là một hệ đầy đủ.

    Áp dụng công thức xác suất đầy đủ ta có

    P(F) = P\left( H_{0} ight).P\left(
F|H_{0} ight) + P\left( H_{1} ight).P\left( F|H_{1} ight) +
P\left( H_{2} ight).P\left( F|H_{2} ight)

    \Rightarrow P(F) =
\frac{C_{7}^{2}}{C_{13}^{2}}.\frac{5}{11} +
\frac{C_{7}^{1}.C_{6}^{1}}{C_{13}^{2}}.\frac{6}{11} +
\frac{C_{6}^{2}}{C_{13}^{2}}.\frac{7}{11} = 0,538.

  • Câu 19: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( \overline{B}|A ight)?

    Ta có:

    P\left( \overline{B}|A ight) = 1 -
P\left( B|A ight)

    = 1 - \frac{P(A \cap B)}{P(A)} = 1 -
\frac{0,3}{0,6} = \frac{1}{2}.

  • Câu 20: Nhận biết

    Cho AB là hai biến cố độc lập thoả mãn P(A) = 0,5P(B) = 0,4. Khi đó, P(A \cap B) bằng:

    A và B là hai biến cố độc lập nên

    P(A
\cap B) = P(A).P(B) = 0,4.0,5 = 0,2

  • Câu 21: Nhận biết

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó công thức xác suất toàn phần tính P(A) là:

    Ta có công thức xác suất toàn phần tính P(A) là:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)

  • Câu 22: Thông hiểu

    Một chiếc hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60\% số viên bi màu đỏ đánh số và 50\% số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số.

    a) Số viên bi màu đỏ có đánh số là 30. Đúng||Sai

    b) Số viên bi màu vàng không đánh số là 15. Đúng||Sai

    c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là: \frac{3}{5} Sai|| Đúng

    d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số là: \frac{7}{16}. Đúng||Sai

    Đáp án là:

    Một chiếc hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60\% số viên bi màu đỏ đánh số và 50\% số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số.

    a) Số viên bi màu đỏ có đánh số là 30. Đúng||Sai

    b) Số viên bi màu vàng không đánh số là 15. Đúng||Sai

    c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là: \frac{3}{5} Sai|| Đúng

    d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số là: \frac{7}{16}. Đúng||Sai

    a) Số viên bi màu đỏ có đánh số là 60\%.50 = 30

    b) Số viên bi màu vàng không đánh số là 50\%.30 = 15

    c) Gọi A là biến cố “viên bi được lấy ra có đánh số”

    Gọi B là biến cố “viên bi được lấy ra có màu đỏ”, suy ra B là biến cố “viên bi được lấy ra có màu vàng”

    Lúc này ta đi tính P(A) theo công thức: P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    Ta có: \left\{ \begin{matrix}
  P\left( B ight) = \dfrac{{50}}{{80}} = \dfrac{5}{8} \Rightarrow P\left( {\overline B } ight) = 1 - \dfrac{5}{8} = \dfrac{3}{8} \hfill \\
  P\left( {A|B} ight) = 60\%  = \dfrac{3}{5} \hfill \\
  P\left( {A|\overline B } ight) = 100\%  - 50\%  = \dfrac{1}{2} \hfill \\ 
\end{matrix}  ight.

    \Rightarrow P(A) =
\frac{5}{8}.\frac{3}{5} + \frac{3}{8}.\frac{1}{2} =
\frac{9}{16}.

    d) A là biến cố “viên bi được lấy ra có đánh số” suy ra A là biến cố “viên bi được lấy ra không có đánh số”. Khi đó ta có:

    \Rightarrow P\left( \overline{A} ight)
= 1 - P(A) = 1 - \frac{9}{16} = \frac{7}{16}

  • Câu 23: Vận dụng

    Theo thống kê xác suất để hai ngày liên tiếp có mưa ở một thành phố vào mùa hè là 0,5; còn không mưa là 0,3. Biết các sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng. Tính xác suất để ngày thứ hai có mưa, biết ngày đầu không mưa?

    Gọi A là "ngày đầu mưa" và B là "ngày thứ hai mưa" thì ta có:

    P(AB) = 0,5;P\left(
\overline{A}\overline{B} ight) = 0,3

    Vì các sự kiện có một ngày mưa, một ngày không mưa là đồng khả năng nên

    P\left( A\overline{B} ight) = P\left(
\overline{A}B ight) = \frac{1 - 0,5 - 0,3}{2} = 0,1

    Xác suất cần tính là P\left(
\overline{B}|A ight) có:

    P\left( \overline{B}|A ight) =
\frac{P\left( B\overline{A} ight)}{P\left( \overline{A} ight)} =
\frac{P\left( B\overline{A} ight)}{P\left( \overline{A}\overline{B}
ight) + P\left( \overline{A}B ight)}

    = \frac{0,1}{0,1 + 0,3} = 0,25 =
25\%

  • Câu 24: Vận dụng

    Một cặp trẻ sinh đôi có thể do cùng một trứng (sinh đôi thật) hay do hai trứng khác nhau sinh ra (sinh đôi giả). Các cặp sinh đôi thật luôn luôn có cùng giới tính. Các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập với nhau và có xác suất là 0,5. Thống kê cho thấy 34\% cặp sinh đôi là trai; 30\% cặp sinh đôi là gái và 36\% cặp sinh đôi có giới tính khác nhau. Tỉ lệ cặp sinh đôi thật trong số các cặp sinh đôi có cùng giới tính.

    Gọi A: “Nhận được cặp sinh đôi thật”

    B: “Nhận được cặp sinh đôi có cùng giới tính”

    Do các cặp sinh đôi thật luôn luôn có cùng giới tính nên P\left( B|A ight) = 1

    Với các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập nhau và có xác suất là 0,5 nên P\left( B|\overline{A}
ight) = P\left( \overline{B}|\overline{A} ight) =
\frac{1}{2}

    Do thống kê trên các cặp sinh đôi nhận được thì:

    P(B) = 0,3 + 0,34 = 0,64

    \Rightarrow P\left( \overline{B} ight)
= 1 - P(B) = 0,36

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P\left( B|A ight).P(A) +
P\left( B|\overline{A} ight).P\left( \overline{A} ight)

    = P\left( B|A ight).P(A) + P\left(
B|\overline{A} ight).\left\lbrack 1 - P(A) ightbrack

    Thay số ta xác định được P(A) =
0,28.

    Do công thức Bayes:

    P\left( A|B ight) = \frac{P\left( B|A
ight).P(A)}{P(B)} = \frac{0,28}{0,64} = 0,4375

  • Câu 25: Nhận biết

    Cho hai biến cố A;B với P(A + B) = \frac{3}{4}. Tính P\left( \overline{A}.\overline{B}
ight)?

    Ta có: P\left( \overline{A}.\overline{B}
ight) = P\left( \overline{A + B} ight) = 1 - P(A + B) =
\frac{1}{4}

  • Câu 26: Vận dụng

    Có 3 hộp đựng bi: hộp thứ nhất có 3 bi đỏ, 2 bi trắng; hộp thứ hai có 2 bi đỏ, 2 bi trắng; hộp thứ ba không có viên nào. Lấy ngẫu nhiên 1 viên bi từ hộp thứ nhất và 1 viên bi từ hộp thứ hai bỏ vào hộp thứ ba. Sau đó từ hộp thứ ba lấy ngẫu nhiên ra 1 viên bi. Tính xác suất để viên bi đó màu đỏ?

    Gọi A1, A2 lần lượt là "lấy bi đỏ từ hợp thứ 1 (thứ 2) bỏ vào hộp thứ ba" thì A_{1}A_{2};\overline{A_{1}}A_{2};A_{1}\overline{A_{2}};\overline{A_{1}}\overline{A_{2}} tạo thành một hệ đầy đủ.

    Ta có: \left\{ \begin{matrix}
P\left( A_{1}A_{2} ight) = 0,3;P\left( \overline{A_{1}}A_{2} ight) =
0,2 \\
P\left( A_{1}\overline{A_{2}} ight) = 0,3;P\left(
\overline{A_{1}}\overline{A_{2}} ight) = 0,2 \\
\end{matrix} ight.

    Gọi A "lấy ra từ hộp 3 một viên bi màu đỏ". Ta có:

    P\left( A|A_{1}A_{2} ight) = 1;P\left(
A|\overline{A_{1}}A_{2} ight) = 0,5

    P\left( A|A_{1}\overline{A_{2}} ight)
= 0,5;P\left( A|\overline{A_{1}}\overline{A_{2}} ight) =
0

    Áp dụng công thức xác suất đầy đủ ta có:

    P(A) = P\left( A_{1}A_{2} ight)P\left(
A|A_{1}A_{2} ight) + P\left( \overline{A_{1}}A_{2} ight)P\left(
A|\overline{A_{1}}A_{2} ight)

    + P\left(
\overline{A_{1}}\overline{A_{2}} ight)P\left(
A|\overline{A_{1}}\overline{A_{2}} ight) + P\left(
A_{1}\overline{A_{2}} ight)P\left( A_{1}\overline{A_{2}}
ight)

    = 0,3.1 + 0,3.0,5 + 0,2.0,5 + 0,2.0 =
0,55

  • Câu 27: Nhận biết

    Cho hai biến cố AB với P(B) =
0,2;P\left( A|B ight) = 0,5;P\left( A|\overline{B} ight) =
0,4. Tính P\left( B|A
ight)?

    Ta có: P(B) = 0,2 \Rightarrow P\left(
\overline{B} ight) = 1 - P(B) = 1 - 0,2 = 0,8

    Áp dụng công thức Bayes:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

    \Rightarrow P\left( B|A ight) =
\frac{0,2.0,5}{0,2.0,5 + 0,8.0,4} = \frac{5}{21} \approx 0,238 .

  • Câu 28: Nhận biết

    Cho hai biến cố AB với 0 <
P(A) < 1. Biết P(A) =0,1;P\left( \overline{A} ight) = 0,9;P\left( B|A ight) = 0,3;P\left(B|\overline{A} ight) = 0,6. Tính P(B)?

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,1.0,3 + 0,9.0,6 =
0,57

  • Câu 29: Nhận biết

    Cho hai biến cố AB với P(B) =
0,8;P\left( A|B ight) = 0,7,P\left( A|\overline{B} ight) =
0,45. Tính P(A)?

    Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,8.0,7 + 0,2.0,45 =
0,65

  • Câu 30: Vận dụng

    Một người có 3 chỗ ưa thích như nhau để câu cua. Xác suất câu được cua ở mỗi chỗ lần lượt là 0,6;0,7;0,8. Biết rằng đến một chỗ người đó thả câu 3 lần và chỉ câu được một con cua. Tính xác suất để cá câu được ở chỗ thứ nhất?

    Gọi A1, A2, A3 lần lượt là "cá câu được ở chỗ thứ i" thì hệ A1, A2, A3 tạo thành hệ đầy đủ.

    Dễ thấy P\left( A_{1} ight) = P\left(
A_{2} ight) = P\left( A_{3} ight) = \frac{1}{3}

    Gọi H là "thả câu 3 lần và chỉ câu được 1 con cua".

    Theo công thức toàn phần, ta có:

    P(H) = P\left( A_{1} ight)P\left(
H|A_{1} ight) + P\left( A_{2} ight)P\left( H|A_{2} ight) + P\left(
A_{3} ight)P\left( H|A_{3} ight)

    Ở đó \left\{ \begin{matrix}
P\left( H|A_{1} ight) = 3.0,6^{1}.0,4^{2} \\
P\left( H|A_{2} ight) = 3.0,7^{1}.0,3^{2} \\
P\left( H|A_{3} ight) = 3.0,8^{1}.0,2^{2} \\
\end{matrix} ight.\  \Rightarrow P(H) = 0,191

    Theo công thức Bayes suy ra:

    P\left( A_{1}|H ight) = \frac{P\left(
A_{1} ight).P\left( H|A_{1} ight)}{P(H)} \approx 0,5026

  • Câu 31: Nhận biết

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,4;P(B) = 0,3;P\left( A|B ight) =
0,25 thì P\left( B|A
ight) bằng bao nhiêu?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,3.0,25}{0,4} = \frac{3}{16}

  • Câu 32: Thông hiểu

    Cho ba biến cố A;B;C độc lập từng đôi thỏa mãn P(A) = P(B) = P(C) =
pP(ABC) = 0. Xác định P\left( AB\overline{C} ight)?

    Ta có:

    P\left( AB\overline{C} ight) = P(AB) -
P(ABC) = p^{2}.

  • Câu 33: Thông hiểu

    Ông Bình hằng ngày đi làm bằng xe máy hoặc xe buýt. Nếu hôm nay ông đi làm bằng xe buýt thì xác suất để hôm sau ông đi làm bằng xe máy là 0,4. Nếu hôm nay ông đi làm bằng xe máy thì xác suất để hôm sau ông đi làm bằng xe buýt là 0,7. Xét một tuần mà thứ Hai ông Bình đi làm bằng xe buýt.

    Gọi A là biến cố: “Thứ Ba, ông Bình đi làm bằng xe máy” và B là biến cố: “Thứ Tư, ông Bình đi làm bằng xe máy”.

    a) Xác suất để thứ Ba, ông Bình đi làm bằng xe buýt là \frac{7}{10}. Sai||Đúng

    b) Xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba, ông An đi làm bằng xe máy là \frac{3}{10}. Đúng||Sai

    c) Xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba ông Bình đi làm bằng xe buýt là \frac{4}{10}. Đúng||Sai

    d) Xác suất để thứ Tư trong tuần đó, ông Bình đi làm bằng xe máy nếu thứ Hai ông Bình đi làm bằng xe buýt là \frac{9}{25}. Đúng||Sai

    Đáp án là:

    Ông Bình hằng ngày đi làm bằng xe máy hoặc xe buýt. Nếu hôm nay ông đi làm bằng xe buýt thì xác suất để hôm sau ông đi làm bằng xe máy là 0,4. Nếu hôm nay ông đi làm bằng xe máy thì xác suất để hôm sau ông đi làm bằng xe buýt là 0,7. Xét một tuần mà thứ Hai ông Bình đi làm bằng xe buýt.

    Gọi A là biến cố: “Thứ Ba, ông Bình đi làm bằng xe máy” và B là biến cố: “Thứ Tư, ông Bình đi làm bằng xe máy”.

    a) Xác suất để thứ Ba, ông Bình đi làm bằng xe buýt là \frac{7}{10}. Sai||Đúng

    b) Xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba, ông An đi làm bằng xe máy là \frac{3}{10}. Đúng||Sai

    c) Xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba ông Bình đi làm bằng xe buýt là \frac{4}{10}. Đúng||Sai

    d) Xác suất để thứ Tư trong tuần đó, ông Bình đi làm bằng xe máy nếu thứ Hai ông Bình đi làm bằng xe buýt là \frac{9}{25}. Đúng||Sai

    Từ giả thiết của bài toán ta có sơ đồ hình cây như sau:

    a) Dựa vào sơ đồ cây ta có xác suất để thứ Ba, ông Bình đi làm bằng xe buýt là 0,6 (nhánh O\overline{A}).

    b) Dựa vào sơ đồ cây ta có xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba, ông Bình đi làm bằng xe máy là 0,3 = \frac{3}{10} (nhánh \overline{A}B).

    c) Dựa vào sơ đồ cây ta có xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba ông Bình đi làm bằng xe buýt 0,4 = \frac{4}{10} (nhánh AB)

    d) Xác suất để thứ Tư trong tuần đó, ông Bình đi làm bằng xe máy nếu thứ Hai ông Bình đi làm bằng xe buýt là:

    P(B) = 0,4.0,3 + 0,6.0,4 =
0,36(nhánh OAB và nhánh O\overline{A}B).

  • Câu 34: Vận dụng

    Tại một phòng khám chuyên khoa tỷ lệ người đến khám có bệnh là 0,8. Người ta áp dụng phương pháp chẩn đoán mới thì thấy nếu khẳng định có bệnh thì đúng 9 trên 10 trường hợp; còn nếu khẳng định không bệnh thì đúng 5 trên 10 trường hợp. Tính xác suất để chẩn đoán đúng?

    Gọi A là "người đến khám có bệnh" thì A, \overline{A} tạo thành hệ đầy đủ

    Gọi B là "Chẩn đoán có bệnh".

    Ta có P(A | B) = 0.9, P(A|B) = 0.5.

    Tìm P(B) từ:

    P\left( A|B ight) = \frac{P(AB)}{P(B)}
= \frac{P(A) - P\left( A|\overline{B} ight).P\left( \overline{B}
ight)}{P(B)}

    \Rightarrow P\left( A|B ight) =
\frac{P(A) - P\left( A|\overline{B} ight).\left\lbrack 1 - P(B)
ightbrack}{P(B)}

    \Rightarrow 0,9 = \frac{0,8 -
0,5\left\lbrack 1 - P(B) ightbrack}{P(B)}

    \Leftrightarrow P(B) = 0,75

    Gọi C là "chẩn đoán đúng", thì C xảy ra khi người bị bệnh được chẩn đoán có bệnh hoặc người không bị bệnh được chẩn đoán không bị bệnh. Như vậy

    C = AB +
\overline{A}\overline{B}

    Hiển nhiên 2 biến cố AB;\overline{A}\overline{B}xung khắc, nên ta có:

    P(C) = P\left( AB +
\overline{A}\overline{B} ight)

    = P(B)P\left( A|B ight) + P\left(
\overline{B} ight)P\left( \overline{A}|\overline{B}
ight)

    = 0,75.0,9 + 0,25.0,5 = 0,8

  • Câu 35: Thông hiểu

    Bạn An đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để An hoàn thành câu dễ là 0,8; hoàn thành câu trung bình là 0,6và hoàn thành câu khó là 0,15. Làm đúng mỗi một câu dễ An được 0,1 điểm, làm đúng mỗi câu trung bình An được 0,25 điểm và làm đúng mỗi câu khó An được 0,5điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?

    a) Xác suất để An làm ba câu thuộc ba loại và đúng cả ba câu là 72\%. Sai||Đúng

    b) Khi An làm 3 câu thuộc 3 loại khác nhau. Xác suất để An làm đúng 2 trong số 3 câu là 0,45. Sai||Đúng

    c) Khi An làm 3 câu thì xác suất để An làm đúng 3 câu đủ ba loại cao hơn xác suất An làm sai 3 câu ở mức độ trung bình. Đúng||Sai

    d) Xác suất để An làm 5 câu và đạt đúng 2 điểm lớn hơn 0,2\%. Sai||Đúng

    Đáp án là:

    Bạn An đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để An hoàn thành câu dễ là 0,8; hoàn thành câu trung bình là 0,6và hoàn thành câu khó là 0,15. Làm đúng mỗi một câu dễ An được 0,1 điểm, làm đúng mỗi câu trung bình An được 0,25 điểm và làm đúng mỗi câu khó An được 0,5điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?

    a) Xác suất để An làm ba câu thuộc ba loại và đúng cả ba câu là 72\%. Sai||Đúng

    b) Khi An làm 3 câu thuộc 3 loại khác nhau. Xác suất để An làm đúng 2 trong số 3 câu là 0,45. Sai||Đúng

    c) Khi An làm 3 câu thì xác suất để An làm đúng 3 câu đủ ba loại cao hơn xác suất An làm sai 3 câu ở mức độ trung bình. Đúng||Sai

    d) Xác suất để An làm 5 câu và đạt đúng 2 điểm lớn hơn 0,2\%. Sai||Đúng

    Gọi A là biến cố An làm đúng câu dễ

    B là biến cố An làm đúng câu trung bình

    C là biến cố An làm đúng câu khó.

    Khi đó A, B, C độc lập với nhau.

    a) Xác suất để An làm ba câu thuộc ba loại trên và đúng cả ba câu là:

    P = P(A).P(B).P(C) = 0,072 = 7,2\%. Khẳng định Sai.

    b) Xác suất để An làm đúng 2 trong số 3 câu là:

    P\left( \overline{A} ight).P(B).P(C) +
P(A).P\left( \overline{B} ight).P(C). + P(A).P(B).P\left( \overline{C}
ight)

    = 0,2.0,6.0,15 + 0,8.0,4.0,15 +
0,8.0,6.0,85 = 0,474

    Khẳng định Sai.

    c) Xác suất để An làm đúng 3 câu đủ ba loại là:

    P = P(A).P(B).P(C) = 0,072 = 7,2\%

    Xác suất An làm sai 3 câu mức độ trung bình. (0,4)^{3} = 0,064.

    Khẳng định Đúng.

    d) Để An làm 5 câu và đạt đúng 2 điểm có các trường hợp sau:

    TH1: Đúng 4 câu khó và câu còn lại sai

    (0,15)^{4}(0,2 + 0,4 + 0,85) =
7,34.10^{- 4}

    TH2: Đúng 3 câu khó và đúng 2 câu trung bình

    (0,15)^{3}.(0,6)^{2} = 1,215.10^{-
4}

    Vậy xác suất cần tìm là 0,1949\%

    Khẳng định Sai.

  • Câu 36: Vận dụng cao

    Có 3 hộp đựng bi: hộp thứ nhất có 3 bi đỏ, 2 bi trắng; hộp thứ hai có 2 bi đỏ, 2 bi trắng; hộp thứ ba không có viên nào. Lấy ngẫu nhiên 1 viên bi từ hộp thứ nhất và 1 viên bi từ hộp thứ hai bỏ vào hộp thứ ba. Sau đó từ hộp thứ ba lấy ngẫu nhiên ra 1 viên bi. Biết rằng viên bi lấy ra từ hộp thứ ba màu đỏ, tính xác suất để lúc đầu ta lấy được viên bi đỏ từ hộp thứ nhất bỏ vào hộp thứ ba?

    Gọi A1, A2 lần lượt là "lấy bi đỏ từ hợp thứ 1 (thứ 2) bỏ vào hộp thứ ba" thì A_{1}A_{2};\overline{A_{1}}A_{2};A_{1}\overline{A_{2}};\overline{A_{1}}\overline{A_{2}} tạo thành một hệ đầy đủ.

    Ta có: \left\{ \begin{matrix}
P\left( A_{1}A_{2} ight) = 0,3;P\left( \overline{A_{1}}A_{2} ight) =
0,2 \\
P\left( A_{1}\overline{A_{2}} ight) = 0,3;P\left(
\overline{A_{1}}\overline{A_{2}} ight) = 0,2 \\
\end{matrix} ight.

    Gọi A "lấy ra từ hộp 3 một viên bi màu đỏ". Ta có:

    P\left( A|A_{1}A_{2} ight) = 1;P\left(
A|\overline{A_{1}}A_{2} ight) = 0,5

    P\left( A|A_{1}\overline{A_{2}} ight)
= 0,5;P\left( A|\overline{A_{1}}\overline{A_{2}} ight) =
0

    Áp dụng công thức xác suất đầy đủ ta có:

    P(A) = P\left( A_{1}A_{2} ight)P\left(
A|A_{1}A_{2} ight) + P\left( \overline{A_{1}}A_{2} ight)P\left(
A|\overline{A_{1}}A_{2} ight)

    + P\left(
\overline{A_{1}}\overline{A_{2}} ight)P\left(
A|\overline{A_{1}}\overline{A_{2}} ight) + P\left(
A_{1}\overline{A_{2}} ight)P\left( A_{1}\overline{A_{2}}
ight)

    = 0,3.1 + 0,3.0,5 + 0,2.0,5 + 0,2.0 =
0,55

    Gọi B là sự kiện cần tính xác suất.

    Dễ thấy B = \left( A_{1}A_{2} +
\overline{A_{1}}A_{2} ight)|A. Theo công thức Bayes ta có:

    P(B) = \frac{P\left\lbrack \left(
A_{1}A_{2} + \overline{A_{1}}A_{2} ight)A
ightbrack}{P(A)}

    = \frac{P\left\lbrack \left( A_{1}A_{2}
ight)A ightbrack + P\left\lbrack \left( \overline{A_{1}}A_{2}
ight)A ightbrack}{P(A)}

    = \frac{P\left( A_{1}A_{2}
ight).P\left( A|A_{1}A_{2} ight) + P\left( \overline{A_{1}}A_{2}
ight).P\left( A|\overline{A_{1}}A_{2} ight)}{P(A)}

    = \frac{0,3.1 + 0,2.0,5}{0,55} =
\frac{9}{11}

  • Câu 37: Thông hiểu

    Một căn bệnh có 1\% dân số mắc phải. Một phương pháp chuẩn đoán được phát triển có tỷ lệ chính xác là 99\%. Với những người bị bệnh, phương pháp này sẽ đưa ra kết quả dương tính 99\% số trường hợp. Với người không mắc bệnh, phương pháp này cũng chuẩn đoán đúng 99 trong 100 trường hợp. Nếu một người kiểm tra và kết quả là dương tính (bị bệnh), xác suất để người đó thực sự bị bệnh là bao nhiêu?

    Gọi A là biến cố “người đó mắc bệnh”

    Gọi B là biến cố “kết quả kiểm tra người đó là dương tính (bị bệnh)”

    Ta cần tính P\left( A|B ight) với P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight).P\left( B|\overline{A} ight)}.

    Ta có:

    Xác suất để người đó mắc bệnh khi chưa kiểm tra: P(A) = 1\% = 0,01

    Do đó xác suất để người đó không mắc bệnh khi chưa kiểm tra: P\left( \overline{A} ight) = 1 - 0,01 =
0,99

    Xác suất kết quả dương tính nếu người đó mắc bệnh là: P\left( B|A ight) = 99\% = 0,99

    Xác suất kết quả dương tính nếu người đó không mắc bệnh là: P\left( B|\overline{A} ight) = 1 - 0,99 =
0,01

    Khi đó:

    P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight).P\left( B|\overline{A} ight)}

    \Rightarrow P\left( A|B ight) =
\frac{0,01.0,99}{0,01.0,99 + 0,99.0,01} = 0,5

    Xác suất kết để người đó mắc bệnh nếu kết quả kiểm tra người đó là dương tính là 0,5.

  • Câu 38: Vận dụng cao

    Một loại linh kiện do 3 nhà máy số I, số II, số III cùng sản xuất. Tỷ lệ phế phẩm của các nhà máy lần lượt là: I; 0,04; II: 0,03 và III: 0,05. Trong 1 lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I, 120 của nhà máy số II và 100 của nhà máy số III. Khách hàng lấy phải một linh kiện loại phế phẩm từ lô hàng đó. Khả năng linh kiện đó do nhà máy nào sản xuất là cao nhất?

    Gọi E1 là biến cố phế phẩm máy số I

    \Rightarrow P\left( E_{1} ight) = 0,04
\Rightarrow P\left( \overline{E_{1}} ight) = 1 - 0,04 =
0,96

    E2 là biến cố phế phẩm máy số II

    \Rightarrow P\left( E_{2} ight) = 0,03
\Rightarrow P\left( \overline{E_{2}} ight) = 1 - 0,03 =
0,97

    E3 là biến cố phế phẩm máy số III

    \Rightarrow P\left( E_{3} ight) = 0,05
\Rightarrow P\left( \overline{E_{3}} ight) = 1 - 0,05 =
0,95

    Gọi B là biến cố khách hàng lấy được 1 linh kiện tốt

    Xác suất để khách hàng lấy được linh kiện tốt là:

    P(B) =
\frac{C_{80}^{1}}{C_{300}^{1}}.0,96 +
\frac{C_{120}^{1}}{C_{300}^{1}}.0,97 +
\frac{C_{100}^{1}}{C_{300}^{1}}.0,95 = 0,96

    Gọi \overline{B} là biến cố khách hàng lấy 1 linh kiện loại không tốt

    Ta xác định được:

    P\left( \overline{B} ight) = 1 - P(B)
= 0,04

    P\left( E_{1}|\overline{B} ight) =
\frac{P\left( E_{1} ight).P\left( \overline{B}|E_{1} ight)}{P\left(
\overline{B} ight)} = \frac{C_{80}^{1}.0,04}{0,04} = 0,26

    P\left( E_{2}|\overline{B} ight) =
\frac{P\left( E_{2} ight).P\left( \overline{B}|E_{2} ight)}{P\left(
\overline{B} ight)} = \frac{C_{120}^{1}.0,03}{0,04} = 0,3

    P\left( E_{3}|\overline{B} ight) =
\frac{P\left( E_{3} ight).P\left( \overline{B}|E_{3} ight)}{P\left(
\overline{B} ight)} = \frac{C_{100}^{1}.0,05}{0,04} =
0,41

    Vậy linh kiện đó do máy III là cao nhất.

  • Câu 39: Thông hiểu

    Tỷ lệ người nghiện thuốc là ở một vùng là 30\%. Biết rằng tỷ lệ người bị viêm họng trong số những người nghiện thuốc là 60\%, còn tỷ lệ người bị viêm họng trong số những người không nghiện là 40\%. Lấy ngẫu nhiên một người thấy người ấy bị viêm họng. Tính xác suất người đó nghiện thuốc lá.

    Gọi A là "người nghiện thuốc" và B là "người viêm họng" thì từ đề bài ta có:

    P(A) = 0,3;P\left( B|A ight) =
0,6;P\left( B|\overline{A} ight) = 0,4

    Cần tính xác suất là C = A|B.

    Sử dụng công thức Baye ta có:

    P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight)P\left( B|\overline{A} ight)}

    \Rightarrow P\left( A|B ight) =
\frac{0,3.0,6}{0,3.0,6 + 0,7.0,4} = \frac{9}{23}

  • Câu 40: Vận dụng

    Câu lạc bộ thể thao của trường Việt Anh có 40 bạn đều biết chơi biết chơi ít nhất một trong hai môn là bóng đá và cầu lông, trong đó có 27 bạn biết chơi bóng đá và 25 bạn biết chơi cầu lông. Chọn ngẫu nhiên 1 bạn. Xác suất chọn được bạn biết chơi bóng đá biết bạn đó chơi được cầu lông là bao nhiều?

    Đáp án: 0,48

    Đáp án là:

    Câu lạc bộ thể thao của trường Việt Anh có 40 bạn đều biết chơi biết chơi ít nhất một trong hai môn là bóng đá và cầu lông, trong đó có 27 bạn biết chơi bóng đá và 25 bạn biết chơi cầu lông. Chọn ngẫu nhiên 1 bạn. Xác suất chọn được bạn biết chơi bóng đá biết bạn đó chơi được cầu lông là bao nhiều?

    Đáp án: 0,48

    Xét các biến cố: A: “Chọn được bạn biết chơi bóng đá”

    B: “Chọn được bạn biết chơi cầu lông”

    Khi đó P(A) = \frac{27}{40} =
0,675; P(B) = \frac{25}{40} =
0,625; P(A \cup B) =
1.

    Suy ra P(A \cap B) = P(A) + P(B) - P(A
\cup B) = 0,675 + 0,625 - 1 = 0,3.

    Vậy xác suất chọn được bạn biết chơi bóng đá, bạn đó biết chơi cầu lông là P\left( A|B ight) = \frac{P(A \cap
B)}{P(B)} = \frac{0,3}{0,625} = 0,48.

    Đáp số: 0,48.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Xác suất có điều kiện CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 29 lượt xem
Sắp xếp theo