Cho hai biến cố
,
với
. Phát biểu nào sau đây đúng?
Theo công thức xác suất toàn phần, ta có:
.
Cho hai biến cố
,
với
. Phát biểu nào sau đây đúng?
Theo công thức xác suất toàn phần, ta có:
.
Cho hai biến cố
và
, với
. Tính
?
Ta có: .
Trong học kỳ I năm học 2024 - 2025, sinh viên phải thi 4 học phần. Xác suất để sinh viên thi đạt một học phần trong mỗi lần thi đều là 0,8. Nếu thi không đạt học phần nào phải thi lại học phần đó. Tính xác suất để một sinh viên thi đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần.
Gọi là "đạt
học phần ở lần thi đầu".
Khi đó, tạo thành hệ đầy đủ và
Gọi là "đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần".
Áp dụng công thức xác suất toàn phần ta có:
Cho hai biến cố
với
. Tính
?
Ta có:
Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng
và
. do có nhiễu trên đường truyền nên
tín hiệu A bị méo và thu được như tín hiệu B còn
tín hiệu B bị méo cà thu được như A. Xác suất thu được tín hiệu A là:
Gọi A là biến cố “Phát tín hiệu A ”
Gọi B là biến cố “Phát tín hiệu A ”
Gọi TA là biến cố “Phát được tín hiệu A ”
Gọi TB là biến cố “Phát được tín hiệu B”.
Ta cần tính ta có:
khi đó:
Theo công thức Bayes, ta có:
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Một bài trắc nghiệm có 10 câu hỏi, mỗi câu hỏi có 4 phương án lựa chọn trong đó có 1 đáp án đúng được 5 điểm và mỗi câu trả lời sai bị trừ đi 2 điểm. Một học sinh không học bài nên đánh hàng loạt một câu trả lời. Tìm xác suất để học sinh này nhận điểm dưới 1.
Xác suất để học sinh trả lời đúng 1 câu là và trả lời sai 1 câu là
.
Gọi là số câu trả lời đúng
là số câu trả lời sai.
Số điểm học sinh đạt được là:
Học sinh nhận được điểm dưới 1 khi
Mà
Gọi là biến cố: "Học sinh trả lời đúng
câu"
là biến cố "Học sinh nhận điểm dưới 1"
Suy ra và
Mà nên
Bạn Bình đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để Bình hoàn thành câu dễ là
; hoàn thành câu trung bình là
và hoàn thành câu khó là
. Làm đúng mỗi một câu dễ bạn được
điểm, làm đúng mỗi câu trung bình bạn được
điểm và làm đúng mỗi câu khó bạn được
điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?
a) Xác suất để Bình làm ba câu thuộc ba loại và đúng cả ba câu là
. Sai||Đúng
b) Khi Bình làm 3 câu thuộc 3 loại khác nhau. Xác suất để bạn làm đúng 2 trong số 3 câu là
. Sai||Đúng
c) Khi Bình làm 3 câu thì xác suất để bạn làm đúng 3 câu đủ ba loại cao hơn xác suất Bình làm sai 3 câu ở mức độ trung bình. Đúng||Sai
d) Xác suất để Bình làm 5 câu và đạt đúng 2 điểm lớn hơn
. Sai||Đúng
Bạn Bình đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để Bình hoàn thành câu dễ là ; hoàn thành câu trung bình là
và hoàn thành câu khó là
. Làm đúng mỗi một câu dễ bạn được
điểm, làm đúng mỗi câu trung bình bạn được
điểm và làm đúng mỗi câu khó bạn được
điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?
a) Xác suất để Bình làm ba câu thuộc ba loại và đúng cả ba câu là . Sai||Đúng
b) Khi Bình làm 3 câu thuộc 3 loại khác nhau. Xác suất để bạn làm đúng 2 trong số 3 câu là . Sai||Đúng
c) Khi Bình làm 3 câu thì xác suất để bạn làm đúng 3 câu đủ ba loại cao hơn xác suất Bình làm sai 3 câu ở mức độ trung bình. Đúng||Sai
d) Xác suất để Bình làm 5 câu và đạt đúng 2 điểm lớn hơn . Sai||Đúng
Gọi A là biến cố Bình làm đúng câu dễ
B là biến cố Bình làm đúng câu trung bình
C là biến cố Bình làm đúng câu khó.
Khi đó A, B, C độc lập với nhau.
a) Xác suất để Bình làm ba câu thuộc ba loại trên và đúng cả ba câu là
.
Khẳng định sai.
b) Xác suất để Bình làm đúng 2 trong số 3 câu là
= 0,2.0,6.0,15 + 0,8.0,4.0,15 + 0,8.0,6.0,85 = 0,474
Khẳng định sai.
c) Xác suất để Bình làm đúng 3 câu đủ ba loại là:
Xác suất Bình làm sai 3 câu mức độ trung bình. .
Khẳng định đúng.
d) Để Bình làm 5 câu và đạt đúng 2 điểm có các trường hợp sau:
TH1: Đúng 4 câu khó và câu còn lại sai
TH2: Đúng 3 câu khó và đúng 2 câu trung bình
Vậy xác suất cần tìm là
Khẳng định sai.
Cho
và
là hai biến cố độc lập thoả mãn
và
. Khi đó,
bằng:
A và B là hai biến cố độc lập nên
Trước khi đưa sản phẩm ra thị trường người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phẩm đó và thấy có 34 người tả lời “sẽ mua”, 97 người trả lời “có thể sẽ mua” và 69 người trả lời “không mua”. Kinh nghiệm cho thấy tỷ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời trên tương ứng là 70%, 30% và 1%. Trong số khách hàng thực sự mua sản phẩm thì có bao nhiêu phần trăm trả lời “sẽ mua”?
Gọi H1, H2, H3 lần lượt là 3 biến cố tương ứng với 3 cách trả lời của khách hàng được phỏng vấn:
H1 – người đó trả lời “sẽ mua”
H2 – người đó trả lời “có thể mua”
H3 – người đó trả lời “không mua”
H1, H2, H3 là một hệ đầy đủ các biến cố với xác suất tương ứng
Ta xác định được:
Theo công thức xác suất đầy đủ ta có:
.
Theo công thức Bayes:
.
Một cặp trẻ sinh đôi có thể do cùng một trứng (sinh đôi thật) hay do hai trứng khác nhau sinh ra (sinh đôi giả). Các cặp sinh đôi thật luôn luôn có cùng giới tính. Các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập với nhau và có xác suất là
. Thống kê cho thấy
cặp sinh đôi là trai;
cặp sinh đôi là gái và
cặp sinh đôi có giới tính khác nhau. Tỉ lệ cặp sinh đôi thật trong số các cặp sinh đôi có cùng giới tính.
Gọi A: “Nhận được cặp sinh đôi thật”
B: “Nhận được cặp sinh đôi có cùng giới tính”
Do các cặp sinh đôi thật luôn luôn có cùng giới tính nên
Với các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập nhau và có xác suất là 0,5 nên
Do thống kê trên các cặp sinh đôi nhận được thì:
Áp dụng công thức xác suất toàn phần ta có:
Thay số ta xác định được .
Do công thức Bayes:
Trong một vùng dân cư, cứ
người thì có
người hút thuốc lá. Biết tỷ lệ người bị viêm họng trong số người hút thuốc lá là
, trong số người không hút thuốc lá là
. Khám ngẫu nhiên một người và thấy người đó bị viêm họng. Nếu người đó không bị viêm họng thì xác suất để người đó hút thuốc lá là bao nhiêu?
Gọi A: "Người này hút thuốc"
B: "Người này bị viêm họng"
Theo giả thiết ta có:
Ta thấy rằng là một hệ đầy đủ các biến cố.
Theo công thức xác suất toàn phần ta tính được:
Theo công thức Bayes, xác suất để người đó hút thuốc lá khi biết người đó không bị viêm họng là:
Cho hai biến cố
với
. Tính
?
Ta có:
Một hộp bút bi Thiên Long có 15 chiếc bút trong đó có 9 chiếc bút mới. Người ta lấy ngẫu nhiên 1 chiếc bút để sử dụng sau đó trả lại vào hộp. Lần thứ hai lấy ngẫu nhiên 2 chiếc bút, tính xác suất cả hai chiếc bút lấy ra đều là chiếc mới.
Gọi A ”Hai chiếc bút lấy ra đều là chiếc mới”; B0 ” Lấy ra một chiếc bút cũ” và B1 ”Lấy ra một chiếc bút mới”
Nên B0; B0 là hệ biến cố đầy đủ.
Từ 15 chiếc bút có 9 chiếc bút mới và 6 chiếc bút cũ
Ta có:
Áp dụng công thức xác suất toàn phần
.
Cho hai biến cố
và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Hộp I có 4 viên bi đỏ, 2 viên bi xanh; hộp II có 3 viên bi đỏ, 3 viên bi xanh. Bỏ ngẫu nhiên một viên bi từ hộp I sang hộp II, sau đó lại bỏ ngẫu nhiên một viên bi từ hộp II sang hộp I. Cuối cùng rút ngẫu nhiên từ hộp I ra một viên bi. 1. Nếu viên rút ra sau cùng màu đỏ, tìm xác suất lúc ban đầu rút được viên bi đỏ ở hộp I cho vào hộp II?
Gọi D1, X1 tương ứng là "lấy được viên bi đỏ, xanh từ hộp I sang hộp II",
D2, X2 tương ứng là "lấy được viên bi đỏ, xanh từ hộp II sang hộp I".
Khi đó hệ D1D2, D1X2, X1D2, X1X2 tạo thành hệ đầy đủ.
Ta có:
Gọi A là "viên bi rút ra sau cùng là màu đỏ".
Ta xác định được:
Áp dụng công thức xác suất đầy đủ:
Ta cần tính xác suất
Cho hai biến cố
và
với
. Biết ![]()
. Tính
?
Ta có công thức xác suất toàn phần tính là:
Cho hai biến cố
và
là hai biến cố độc lập, với
. Tính
?
Hai biến cố và
là hai biến cố độc lập nên
.
Để gây đột biến cho một tính trạng người ta tìm cách tác động lên hai gen
bằng phóng xạ. Xác suất đột biến của tính trạng do gen
là
; do gen B là
và do cả hai gen là
. Tính xác suất để có đột biến ở tính trạng đó biết rằng phóng xạ có thể tác động lên gen
với xác suất
và lên gen
với xác suất
?
Gọi C là biến cố có đột biến ở tính trạng đang xét
A là biến cố phóng xạ tác dụng lên gen A
B là biến cố phóng xạ tác dụng lên gen B
C1 là biến cố phóng xạ chỉ tác động lên gen A
C2 là biến cố phóng xạ chỉ tác dụng lên gen B
C3 là biến cố phóng xạ tác dụng lên cả 2 gen
là biến cố phóng xạ không tác dụng lên gen nào
Khi đó hệ là một hệ đầy đủ
Mặt khác độc lập nên
Mặt khác và
Theo công thức xác suất toàn phần ta có:
Áo sơ mi May10 trước khi xuất khẩu sang phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân
sản phẩm làm ra qua được lần kiểm tra thứ nhất và
sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để 1 chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu?
Gọi A là biến cố ”Qua được lần kiểm tra đầu tiên”
Gọi B là biên cố “Qua được lần kiểm tra thứ 2”
Chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện trên hay ta đi tính
Ta có:
.
Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,91
Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,91
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
3 cuốn sách lấy ra không cùng một loại
.
Để tìm số phần tử của , ta đi tìm số phần tử của biến cố
, với biến cố
là 3 cuốn sách lấy ra cùng một loại.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Trong một kì thi tốt nghiệp trung học phổ thông, một tỉnh X có
học sinh lựa chọn tổ hợp A00 (gồm các môn Toán, Vật lí, Hoá học). Biết rằng, nếu một học sinh chọn tổ hợp A00 thì xác suất để học sinh đó đỗ đại học là
; còn nếu một học sinh không chọn tổ hợp A00 thì xác suất để học sinh đó đỗ đại học là
. Chọn ngẫu nhiên một học sinh của tỉnh X đã tốt nghiệp trung học phổ thông trong kì thi trên. Biết rằng học sinh này đã đỗ đại học. Tính xác suất để học sinh đó chọn tổ hợp A00. (Kết quả làm tròn đến chữ số thập phân thứ 2).
Gọi A: “Học sinh đó chọn tổ hợp A00”
Và B: “Học sinh đó đỗ đại học”.
Ta cần tính
Ta có:
là xác suất để một học sinh đỗ đại học với điều kiện học sinh đó chọn tổ hợp A00
là xác suất để một học sinh đỗ đại học với điều kiện học sinh đó không chọn tổ hợp A00
Thay vào công thức Bayes ta được:
Cho hai biến cố
với
. Tính
?
Ta có:
Trong hộp có 3 viên bi màu trắng và 7 viên bi màu đỏ. Lấy lần lượt mỗi lần một viên theo cách lấy không trả lại. Tính xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bi lấy lần thứ nhất là màu trắng?
Gọi C là biến cố “viên bi lấy lần thứ nhất là màu trắng”.
Gọi D là biến cố “viên bi lấy lần thứ hai là màu đỏ”.
Lần thứ nhất lấy 1 viên bi màu trắng có 3 cách chọn, lần thứ hai lấy 1 viên bi trong 9 viên còn lại có 9 cách chọn, do đó:
Lần thứ nhất lấy 1 viên bi màu trắng có 3 cách chọn, lần thứ hai lấy 1 viên bi màu đỏ có 7 cách chọn, do đó:
Vậy xác suất để viên bi lấy lần thứ hai là màu trắng nếu biết rằng viên bị lấy lần thứ nhất cũng là màu đỏ là: .
Cho
và
là các biến cố của phép thử T. Biết rằng
. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được tính theo công thức nào sau đây?
Theo công thức Bayes ta có:
Có 2 xạ thủ loại I và 8 xạ thủ loại II, xác suất bắn trúng đích của các loại xạ thủ loại I là 0,9 và loại II là 0,7. Chọn ngẫu nhiên ra hai xạ thủ và mỗi người bắn một viên đạn. Tìm xác suất để cả hai viên đạn đó trúng đích.
Gọi B là biến cố "Cả 2 viên đạn trúng đích".
là biến cố "Chọn được i xạ thủ loại I".
Ta có tạo thành họ đầy đủ các biến cố.
Áp dụng công thức, ta có
Một cửa hàng có hai loại bóng đèn Led, trong đó có
bóng đèn Led là màu trắng và
bóng đèn Led là màu xanh, các bóng đèn có kích thước như nhau. Các bóng đèn Led màu trắng có tỉ lệ hỏng là
và các bóng đèn Led màu xanh có tỉ lệ hỏng là
. Một khách hàng chọn mua ngẫu nhiên một bóng đèn Led từ cửa hàng. Xác suất để khách hàng chọn được bóng đèn Led không hỏng bằng bao nhiêu?
Xét các biến cố:
A: "Khách hàng chọn được bóng đèn Led màu trắng"
B: "Khách hàng chọn được bóng đèn Led không hỏng".
Ta có:
Theo công thức xác suất toàn phần, ta có:
Một cặp trẻ sinh đôi có thể do cùng một trứng (sinh đôi thật) hay do hai trứng khác nhau sinh ra (sinh đôi giả). Các cặp sinh đôi thật luôn luôn có cùng giới tính. Các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập với nhau và có xác suất là
. Thống kê cho thấy
cặp sinh đôi là trai;
cặp sinh đôi là gái và
cặp sinh đôi có giới tính khác nhau. Tính tỷ lệ cặp sinh đôi thật.
Gọi A: “Nhận được cặp sinh đôi thật”
B: “Nhận được cặp sinh đôi có cùng giới tính”
Do các cặp sinh đôi thật luôn luôn có cùng giới tính nên
Với các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập nhau và có xác suất là 0,5 nên
Do thống kê trên các cặp sinh đôi nhận được thì:
Áp dụng công thức xác suất toàn phần ta có:
Thay số ta xác định được .
Trong một cửa hàng có 18 bóng đèn loại I và 2 bóng đèn loại II, các bóng đèn có hình dạng và kích thước như nhau. Một một người mua hàng lấy ngẫu nhiên lần lượt 2 bóng đèn (lấy không hoàn lại) trong cửa hàng.
a) Xác suất để lần thứ nhất lấy được bóng đèn loại II là
. Sai||Đúng
b) Xác suất để lần thứ hai lấy được bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II là
. Đúng||Sai
c) Xác suất để cả hai lần đều lấy được bóng đèn loại II là
. Sai||Đúng
d) Xác suất để ít nhất 1 lần lấy được bóng đèn loại I là
. Đúng||Sai
Trong một cửa hàng có 18 bóng đèn loại I và 2 bóng đèn loại II, các bóng đèn có hình dạng và kích thước như nhau. Một một người mua hàng lấy ngẫu nhiên lần lượt 2 bóng đèn (lấy không hoàn lại) trong cửa hàng.
a) Xác suất để lần thứ nhất lấy được bóng đèn loại II là . Sai||Đúng
b) Xác suất để lần thứ hai lấy được bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II là . Đúng||Sai
c) Xác suất để cả hai lần đều lấy được bóng đèn loại II là . Sai||Đúng
d) Xác suất để ít nhất 1 lần lấy được bóng đèn loại I là . Đúng||Sai
Xét các biến cố: A: "Lần thứ nhất lấy được bóng đèn loại II"; B: "Lần thứ hai lấy được bóng đèn loại II".
a) Xác suất đề lần thứ nhất lấy được bóng đèn loại II là: .
b) Sau khi lấy 1 bóng đèn loại II thì chỉ còn 1 bóng đèn loại II trong hộp. Suy ra xác suất để lần thứ hai lấy được quá bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II là: .
c) Khi đó, xác suất để cả hai lần đều lấy được bóng đèn loại II là:
.
d) Để ít nhất 1 lần lấy được bóng đèn loại I là:
.
Có ba hộp giống nhau:
Hộp thứ nhất đựng 10 sản phẩm trong đó có 6 chính phẩm.
Hộp thứ hai đựng 15 sản phẩm trong đó có 10 chính phẩm.
Hộp thứ ba đựng 20 sản phẩm trong đó có 15 chính phẩm.
Lấy ngẫu nhiên một hộp và từ đó lấy ngẫu nhiên một sản phẩm. Tìm xác suất để lấy được chính phẩm?
Gọi A là biến cố: “Lấy được chính phẩm”. Biến cố A có thể xảy ra đồng thời với ba biến cố sau đây tạo nên một nhóm đầy đủ các biến cố:
- Sản phẩm lấy ra thuốc hộp I.
- Sản phẩm lấy ra thuốc hộp II.
- Sản phẩm lấy ra thuốc hộp III.
Vì theo giả thiết của bài toán, các biến cố ;
;
là đồng khả năng, do đó:
Xác suất có điều kiện của biến cố A khi các biến cố ;
;
xảy ra bằng:
Do đó:
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức Bayes:
.
Có hai lô sản phẩm: lô I có 7 chính phẩm, 3 phế phẩm; lô II có 8 chính phẩm, 2 phế phẩm. Từ lô I lấy ngẫu nhiên ra 2 sản phẩm, từ lô II lấy ngẫu nhiên ra 3 sản phẩm. Sau đó từ số sản phẩm này lại lấy ngẫu nhiên 2 sản phẩm. Tính xác suất để trong 2 sản phẩm lấy ra sau cùng có ít nhất 1 chính phẩm.
Gọi là "trong 5 sản phẩm cuối có
chính phẩm".
Khi đó hệ tạo thành hệ đầy đủ
xảy ra thì phải lấy 3 phế phẩm từ lô II, điều này là không thể.
Suy ra
xảy ra nếu lấy 2 phế từ lô I và 1 chính, 1 phế từ lô II.
xảy ra nếu lấy 1 chính, 1 phế từ lô
chính, 2 phế từ lô II hoặc 2 phế từ lô
chính, 1 phế từ lô II
xảy ra nếu lấy 2 chính từ lô
chính, 2 phế từ lô
hoặc 1 chính, 1 phế từ lô
chính, 1 phế từ lô II hoặc 2 phế từ lô
chính từ lô II
xảy ra nếu lấy 2 chính từ lô
chính, 2 phế từ lô II hoặc 1 chính, 1 phế từ lô
chính từ lô II
xảy ra nếu lấy 2 chính từ lô
chính từ lô II
Gọi là "trong 2 sản phẩm lấy ra có ít nhất 1 chính phẩm", áp dụng công thức xác suất đầy đủ
Suy ra .
Cho hai biến cố
có
. Xác định
?
Theo công thức tính xác suất có điều kiện ta có:
Vì và
là hai biến cố xung khắc và
nên theo tính chất của xác suất ta có:
Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. Hùng lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa.
Xét các biến cố:
: "Quả bóng lấy ra lần đầu có số chẵn"
: "Quả bóng lấy ra lần hai có số lẻ".
Xác định biến cố
: "biến cố
với điều kiện biết
đã xảy ra".
Ta có:
Khi biến cố xảy ra, thì không gian mẫu mới là
.
Khi đó, biến cố
Có hai hộp đựng phiếu thi, mỗi phiếu ghi một câu hỏi. Hộp thứ nhất có 15 phiếu và hộp thứ hai có 9 phiếu. Học sinh A đi thi chỉ thuộc 10 câu ở hộp thứ nhất và 8 câu ở hộp thứ hai. Giáo viên rút ngẫu nhiên từ mỗi hộp ra một phiếu thi, sau đó cho học sinh A rút ngẫu nhiên ra 1 phiếu từ 2 phiếu mà giáo viên đã rút. Tính xác suất để học sinh A trả lời được câu hỏi trong phiếu.
Gọi E1 là biến cố sinh viên rút ra từ hộp 1
E2 là biến cố sinh viên rút ra từ hộp 2
E1, E2 tạo thành một nhóm biến cố đầy đủ
Gọi B là biến cố rút ra 1 câu thuộc
Ta có:
Thay vào công thức ta tính được .
Một tập gồm 10 chứng từ, trong đó có 2 chứng từ không hợp lệ. Một cán bộ kế toán rút ngẫu nhiên 1 chứng từ và tiếp đó rút ngẫu nhiên 1 chứng từ khác để kiểm tra. Tính xác suất để cả 2 chứng từ rút ra đều hợp lệ?
Gọi A là biến cố cả 2 chứng từ rút ra đều hợp lệ
B là biến cố trong 3 chứng từ rút ra, chỉ có chứng từ thứ 3 không hợp lệ.
Theo yêu cầu của đầu bài ta phải tính xác xác suất
Nếu gọi Ai là biến cố chứng từ rút ra lần thứ i là hợp lệ} (i = 1,3).
Khi đó ta có: và
Vì vậy các xác suất cần tìm là:
Cho hai biến cố
và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Trong danh sách sĩ số hai lớp 12 có 95 học sinh, trong đó có 40 nam và 55 nữ. Trong kỳ thi kiểm tra chất lượng có 23 học sinh đạt điểm giỏi (trong đó có 12 nam và 11 nữ). Gọi tên ngẫu nhiên một học sinh trong danh sách. Tìm xác suất gọi được học sinh đạt điểm giỏi, biết rằng học sinh đó là nữ?
Gọi A là biến cố “gọi được học sinh nữ”
Gọi B là biến cố “gọi được học sinh đạt điểm giỏi”
Ta đi tính . Ta có:
Khi đó: .
Một hệ thống được cấu tạo bởi 3 bộ phận độc lập nhau. Hệ thống sẽ hoạt động nếu ít nhất 2 trong 3 bộ phận còn hoạt động. Nếu độ tin cậy của mỗi bộ phận là 0.95 thì độ tin cậy của hệ thống là bao nhiêu?
Gọi Bi: "Bộ phận thứ i hoạt động tốt" (i = 1, 2, 3)
H: "Hệ thống hoạt động tốt"
Theo giả thiết, ta thấy rằng P(Bi) = 0.95 với i = 1, 2, 3 và
Do tính độc lập, xung khắc và đối xứng nên:
.