Cho hai biến cố
và
, với
. Tính
?
Ta có:
.
Cho hai biến cố
và
, với
. Tính
?
Ta có:
.
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Cho hai biến cố
và
, với
. Tính
?
Ta có:
.
Cho hai biến cố
và
, với
. Tính
?
Ta có: .
Cho hai biến cố
và
, với
. Tính
?
Cách 1:
Mà
Do đó:
Cách 2: Ta có:
.
Tỷ lệ người nghiện thuốc là ở một vùng là
. Biết rằng tỷ lệ người bị viêm họng trong số những người nghiện thuốc là
, còn tỷ lệ người bị viêm họng trong số những người không nghiện là
. Lấy ngẫu nhiên một người thấy người ấy bị viêm họng. Nếu người đó không bị viêm họng, tính xác suất người đó nghiện thuốc lá.
Gọi A là "người nghiện thuốc" và B là "người viêm họng" thì từ đề bài ta có:
Cần tính xác suất là C = A|B.
Sử dụng công thức Baye ta có:
Gọi ta có:
Có 2 xạ thủ loại I và 8 xạ thủ loại II, xác suất bắn trúng đích của các loại xạ thủ loại I là 0,9 và loại II là 0,7. Chọn ngẫu nhiên ra hai xạ thủ và mỗi người bắn một viên đạn. Tìm xác suất để cả hai viên đạn đó trúng đích.
Gọi B là biến cố "Cả 2 viên đạn trúng đích".
là biến cố "Chọn được i xạ thủ loại I".
Ta có tạo thành họ đầy đủ các biến cố.
Áp dụng công thức, ta có
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Trong một đợt kiểm tra sức khoẻ, có một loại bệnh
mà tỉ lệ người mắc bệnh là
và một loại xét nghiệm
mà ai mắc bệnh
khi xét nghiệm
cũng có phản ứng dương tính. Tuy nhiên, có
những người không bị bệnh
lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Giả uử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh
là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?
Đáp án : 0,03
Trong một đợt kiểm tra sức khoẻ, có một loại bệnh mà tỉ lệ người mắc bệnh là
và một loại xét nghiệm
mà ai mắc bệnh
khi xét nghiệm
cũng có phản ứng dương tính. Tuy nhiên, có
những người không bị bệnh
lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Giả uử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh
là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?
Đáp án : 0,03
Xét các biến cố:
: "Người được chọn mắc bệnh
";
: "Người được chọn có phản ứng dương tính với xét nghiệm Y".
Theo giả thiết ta có:
;
Theo công thức Bayes, ta có:
Vậy nếu người được chọn có phản ứng dương tính với xét nghiệm thì xác suất bị mắc bệnh
của người đó là khoảng 0,03.
Một đoàn tàu gồm
toa đỗ ở sân ga. Có
hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên
toa. Tính xác suất để mỗi toa có ít nhất
hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,62
Một đoàn tàu gồm toa đỗ ở sân ga. Có
hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên
toa. Tính xác suất để mỗi toa có ít nhất
hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,62
Không gian mẫu là số cách sắp xếp hành khách lên
toa tàu. Vì mỗi hành khách có
cách chọn toa nên có
cách xếp.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
hành khách bước lên tàu mà mỗi toa có ít nhất
hành khách
. Để tìm số phần tử của biến cố
ta đi tìm số phần tử của biến cố
, tức có toa không có hành khách nào bước lên tàu, có
khả năng sau:
Trường hợp thứ nhất: Có toa không có hành khách bước lên.
+) Chọn trong
toa để không có khách bước lên, có
cách.
+) Sau đó cả hành khách lên toa còn lại, có
cách.
Do đó trường hợp này có cách.
Trường hợp thứ hai: Có toa không có hành khách bước lên.
+) Chọn trong
toa để không có khách bước lên, có
cách.
+) Hai toa còn lại ta cần xếp hành khách lên và mỗi toa có ít nhất
hành khách, có
.
Do đó trường hợp này có cách.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. Bạn Hoa lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa.
Xét các biến cố:
: "Quả bóng lấy ra lần đầu có số chẵn"
: "Quả bóng lấy ra lần hai có số lẻ".
Tính xác suất có điều kiện
?
Ta có:
Vậy
Giả sử tỉ lệ người dân của tỉnh T nghiện thuốc lá là
; tỉ lệ người bị bệnh phổi trong số người nghiện thuốc lá là
, trong số người không nghiện thuốc lá là
. Tính xác suất mà người đó là nghiện thuốc lá khi biết bị bệnh phổi?
Gọi A là biến cố “người nghiện thuốc lá”, suy ra A là biến cố “người không nghiện thuốc lá”
Gọi B là biến cố “người bị bệnh phổi”
Để người mà ta gặp bị bệnh phổi thì người đó nghiện thuốc lá hoặc không nghiện thuốc lá.
Ta cần tính
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Xác suất mà người đó là nghiện thuốc lá khi biết bị bệnh phổi là
Theo công thức Bayes, ta có:
.
Như vậy trong số người bị bệnh phổi của tỉnh T có khoảng số người nghiện thuốc lá.
Một tập gồm 10 chứng từ, trong đó có 2 chứng từ không hợp lệ. Một cán bộ kế toán rút ngẫu nhiên 1 chứng từ và tiếp đó rút ngẫu nhiên 1 chứng từ khác để kiểm tra. Tính xác suất để cả 2 chứng từ rút ra đều hợp lệ?
Gọi A là biến cố cả 2 chứng từ rút ra đều hợp lệ
B là biến cố trong 3 chứng từ rút ra, chỉ có chứng từ thứ 3 không hợp lệ.
Theo yêu cầu của đầu bài ta phải tính xác xác suất
Nếu gọi Ai là biến cố chứng từ rút ra lần thứ i là hợp lệ} (i = 1,3).
Khi đó ta có: và
Vì vậy các xác suất cần tìm là:
Một túi đựng
bi xanh và
bi đỏ. Lấy ngẫu nhiên
bi. Xác suất để cả hai bi đều đỏ là:
Ta có số phần từ của không gian mẫu là .
Gọi : "Hai bi lấy ra đều là bi đỏ".
Khi đó .
Vậy xác suất cần tính là .
Cho hai biến cố
với
. Giá trị
bằng:
Ta có:
Theo công thức xác suất toàn phần, ta có:
Một loại linh kiện do 3 nhà máy số I, số II, số III cùng sản xuất. Tỷ lệ phế phẩm của các nhà máy lần lượt là: I; 0,04; II: 0,03 và III: 0,05. Trong 1 lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I, 120 của nhà máy số II và 100 của nhà máy số III. Khách hàng lấy phải một linh kiện loại phế phẩm từ lô hàng đó. Khả năng linh kiện đó do nhà máy nào sản xuất là cao nhất?
Gọi E1 là biến cố phế phẩm máy số I
E2 là biến cố phế phẩm máy số II
E3 là biến cố phế phẩm máy số III
Gọi B là biến cố khách hàng lấy được 1 linh kiện tốt
Xác suất để khách hàng lấy được linh kiện tốt là:
Gọi là biến cố khách hàng lấy 1 linh kiện loại không tốt
Ta xác định được:
Vậy linh kiện đó do máy III là cao nhất.
Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là
và dự án 2 là
. Khả năng thắng thầu của 2 dự án là 0,4. Gọi
lần lượt là biến cố thắng thầu dự án 1 và dự án 2.
a)
là hai biến độc lập. Đúng||Sai
b) Xác suất công ty thắng thầu đúng 1 dự án là
. Đúng||Sai
c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là
. Sai|| Đúng
d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án
. Sai|| Đúng
Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là và dự án 2 là
. Khả năng thắng thầu của 2 dự án là 0,4. Gọi
lần lượt là biến cố thắng thầu dự án 1 và dự án 2.
a) là hai biến độc lập. Đúng||Sai
b) Xác suất công ty thắng thầu đúng 1 dự án là . Đúng||Sai
c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là . Sai|| Đúng
d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án . Sai|| Đúng
Ta có:
a) là hai biến cố độc lập khi và chỉ khi
Mà nên
không độc lập.
b) Gọi C là biến cố thắng thầu đúng 1 dự án
.
c) Gọi D là biến cố thắng dự 2 biết thắng dự án 1
.
d) Gọi E là biến cố “thắng dự án 2 biết không thắng dự án 1”
.
Cho hai biến cố
và
với
. Biết ![]()
. Tính
?
Ta có công thức xác suất toàn phần tính là:
Cho hai biến cố
và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Cho hai biến cố
và
là hai biến cố độc lập, với
. Tính
?
Hai biến cố và
là hai biến cố độc lập nên
.
Có 3 cửa hàng I, II, III cùng kinh doanh sản phẩm Y, trong đó thị phần của cửa hàng I, III như nhau và gấp đôi thị phần của cửa hàng II. Tỉ lệ sản phẩm loại A trong 3 cửa hàng lần lượt là
. Một khách hàng chọn ngẫu nhiên 1 cửa hàng và tử đó mua một sản phẩm. Giả sử khách hàng đã mua được sản phẩm loại A, hỏi khả năng người ấy đã mua được ở cửa hàng nào là nhiều nhất?
Gọi T: "Khách hàng mua được sản phẩm loại A"
Ai: "Mua ở cửa hàng i"
Ta có {A1, A2, A3} là một hệ đầy đủ các biến cố và xác định được:
Áp dụng công thức xác suất toàn phần ta có xác suất để khách hàng mua được sản phẩm loại A là:
Áp dụng công thức Bayes, ta có:
Ta thấy rằng P(A1|T) là lớn nhất tức là khả năng người ấy đã mua ở cửa hàng I là nhiều nhất.
Một bài trắc nghiệm có 10 câu hỏi, mỗi câu hỏi có 4 phương án lựa chọn trong đó có 1 đáp án đúng được 5 điểm và mỗi câu trả lời sai bị trừ đi 2 điểm. Một học sinh không học bài nên đánh hàng loạt một câu trả lời. Tìm xác suất để học sinh này nhận điểm dưới 1.
Xác suất để học sinh trả lời đúng 1 câu là và trả lời sai 1 câu là
.
Gọi là số câu trả lời đúng
là số câu trả lời sai.
Số điểm học sinh đạt được là:
Học sinh nhận được điểm dưới 1 khi
Mà
Gọi là biến cố: "Học sinh trả lời đúng
câu"
là biến cố "Học sinh nhận điểm dưới 1"
Suy ra và
Mà nên
Một công ty xây dựng đấu thầu 2 dự án độc lập. Khả năng thắng thầu của các dự án 1 là
và dự án 2 là
. Biết công ty thắng thầu dự án 1, tìm xác suất công ty thắng thầu dự án 2?
Gọi A là biến cố ”Thắng thầu dự án 1″
Gọi B là biến cố “Thắng thầu dự án 2″
Theo đề bài ta có: với 2 biến cố
độc lập.
Gọi D là biến cố “thắng thầu dự án thứ 2 biết thắng thầu dự án 1” do là hai biến cố độc lập nên:
Một hộp bút bi Thiên Long có 15 chiếc bút trong đó có 9 chiếc bút mới. Người ta lấy ngẫu nhiên 1 chiếc bút để sử dụng sau đó trả lại vào hộp. Lần thứ hai lấy ngẫu nhiên 2 chiếc bút, tính xác suất cả hai chiếc bút lấy ra đều là chiếc mới.
Gọi A ”Hai chiếc bút lấy ra đều là chiếc mới”; B0 ” Lấy ra một chiếc bút cũ” và B1 ”Lấy ra một chiếc bút mới”
Nên B0; B0 là hệ biến cố đầy đủ.
Từ 15 chiếc bút có 9 chiếc bút mới và 6 chiếc bút cũ
Ta có:
Áp dụng công thức xác suất toàn phần
.
Có hai hộp thuốc:
Hộp I có 2 vỉ thuốc ngoại và 5 vỉ thuốc nội.
Hộp II có 3 vỉ thuốc ngoại và 6 vỉ thuốc nội.
Từ hộp I và hộp II lần lượt lấy ra 2 vỉ thuốc và 1 vỉ thuốc. Từ 3 vỉ thuốc đó lại lấy ra một vỉ. Biết vỉ lấy ra sau cùng là thuốc ngoại. Tính xác suất để vỉ thuốc này thuộc hộp số II?
Gọi A1 là biến cố “vỉ thuốc lấy ra sau cùng là của hộp I”
A1 là biến cố “vỉ thuốc lấy ra sau cùng là của hộp II”
Ta có A1, A2 lập thành hệ đầy đủ các biến cố khi đó ta xác định được:
Gọi B là biến cố “vỉ thuốc lấy ra sau cùng là thuốc ngoại”.
Theo công thức xác suất toàn phần ta có:
.
Áp dụng công thức Bayes ta có:
.
Trong một trường học, tỉ lệ học sinh nữ là
. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia câu lạc bộ M lần lượt là
và
. Chọn ngẫu nhiên 1 học sinh của trường. Tính xác suất học sinh đó có tham gia câu lạc bộ M.
Gọi A: “Học sinh được chọn là nữ” ⇒ : “Học sinh được chọn là nam”
B: “học sinh được chọn có tham gia câu lạc bộ M”.
Từ giả thiết ta có:
Theo công thức xác suất toàn phần, ta có xác suất học sinh được chọn có tham gia câu lạc bộ M là:
.
Có hai hộp đựng bóng giống nhau (khác màu sắc):
Hộp thứ chứa 10 quả bóng trong đó có 9 quả màu đen.
Hộp thứ hai chứa 20 quả bóng trng đó có 18 quả màu đen,
Từ hộp thứ nhất lấy ngẫu nhiên một quả bóng bỏ sang hộp thứ hai. Tìm xác suất để lấy ngẫu nhiên một quả bóng từ hộp thứ hai được quả màu đen?
Gọi A là biến cố lấy được quả bóng màu đen từ hộp thứ hai.
Biến cố A có thể xảy ra đòng thời với một trong hai biến cố sau đây tạo nên một nhóm đầy đủ các biến cố:
H1 là biến cố quả bóng bỏ từ hộp thứ nhất sang hộp thứ hai là màu đen.
H2 là biến cố quả bóng bỏ từ hộp thứ nhất sang hộp thứ hai không phải màu đen.
Xác suất để từ hộp thứ nhất bỏ sang hộp thứ hai là quả bóng màu đen bằng:
Xác suất để từ hộp thứ nhất bỏ sang hộp thứ hai không phải quả bóng màu đen bằng:
Xác suất có điều kiện để từ hộp thứ hai lấy được quả bóng màu đen khi các giả thuyết xảy ra là:
Do đó:
Hộp I có 4 viên bi đỏ, 2 viên bi xanh; hộp II có 3 viên bi đỏ, 3 viên bi xanh. Bỏ ngẫu nhiên một viên bi từ hộp I sang hộp II, sau đó lại bỏ ngẫu nhiên một viên bi từ hộp II sang hộp I. Cuối cùng rút ngẫu nhiên từ hộp I ra một viên bi. 1. Nếu viên rút ra sau cùng màu đỏ, tìm xác suất lúc ban đầu rút được viên bi đỏ ở hộp I cho vào hộp II?
Gọi D1, X1 tương ứng là "lấy được viên bi đỏ, xanh từ hộp I sang hộp II",
D2, X2 tương ứng là "lấy được viên bi đỏ, xanh từ hộp II sang hộp I".
Khi đó hệ D1D2, D1X2, X1D2, X1X2 tạo thành hệ đầy đủ.
Ta có:
Gọi A là "viên bi rút ra sau cùng là màu đỏ".
Ta xác định được:
Áp dụng công thức xác suất đầy đủ:
Ta cần tính xác suất
Một gia đình có 2 đứa trẻ. Biết rằng có ít nhất 1 đứa trẻ là con gái. Xác suất để một đứa trẻ là trai hoặc gái là bằng nhau. Hỏi xác suất hai đứa trẻ đều là con gái là bao nhiêu?
Giới tính cả 2 đứa trẻ là ngẫu nhiên và không liên quan đến nhau.
Do gia đình có 2 đứa trẻ nên sẽ có thể xảy ra 4 khả năng: (trai, trai), (gái, gái), (gái, trai), (trai, gái).
Gọi A là biến cố “Cả hai đứa trẻ đều là con gái” Gọi B là biến cố “Có ít nhất một đứa trẻ là con gái”
Ta có:
Do nếu xảy ra A thì đương nhiên sẽ xảy ra B nên ta có:
Suy ra, xác suất để cả hai đứa trẻ đều là con gái khi biết ít nhất có một đứa trẻ là gái là: .
Cho
và
là hai biến cố độc lập thoả mãn
và
. Khi đó,
bằng:
A và B là hai biến cố độc lập nên
Trong một vùng dân cư, cứ
người thì có
người hút thuốc lá. Biết tỷ lệ người bị viêm họng trong số người hút thuốc lá là
, trong số người không hút thuốc lá là
. Khám ngẫu nhiên một người và thấy người đó bị viêm họng. Tìm xác suất để người đó hút thuốc lá?
Gọi A: "Người này hút thuốc"
B: "Người này bị viêm họng"
Theo giả thiết ta có:
Ta thấy rằng là một hệ đầy đủ các biến cố.
Theo công thức xác suất toàn phần ta tính được:
Theo công thức Bayes, xác suất để người đó hút thuốc lá khi biết người đó bị viêm họng là:
Cho hai biến cố
và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Cho hai hộp đựng các viên bi có cùng kích thước và khối lượng như sau:
Hộp thứ nhất có 3 viên bi xanh và 6 viên vi đỏ.
Hộp thứ hai có 3 viên vi xanh và 7 viên bi đỏ.
Lấy ngẫu nhiên ra một viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ngẫu nhiên đồng thời hai viên từ hộp thứ hai, biết rằng hai bi lấy ra từ hộp thứ hai là bi màu đỏ, tính xác suất viên bi lấy ra từ hộp thứ nhất cũng là bi màu đỏ.
Gọi A1: “Lấy ra một bi một màu xanh ở hộp thứ nhất”
Và A2: “Lấy ra một bi một màu đỏ ở hộp thứ nhất”
Nên là hệ biến cố đầy đủ
Gọi B: “Hai bi lấy ra từ hộp thứ hai là màu đỏ”
Ta có:
Áp dụng công thức xác suất toàn phần
Xác suất viên bi lấy ra từ hộp thứ nhất màu đỏ, biết rằng hai bi lấy ra từ hộp thứ hai màu đỏ, ta áp dụng công thức Bayes:
Áo sơ mi May10 trước khi xuất khẩu sang phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân
sản phẩm làm ra qua được lần kiểm tra thứ nhất và
sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để 1 chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu?
Gọi A là biến cố ”Qua được lần kiểm tra đầu tiên”
Gọi B là biên cố “Qua được lần kiểm tra thứ 2”
Chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện trên hay ta đi tính
Ta có:
.
Một cặp trẻ sinh đôi có thể do cùng một trứng (sinh đôi thật) hay do hai trứng khác nhau sinh ra (sinh đôi giả). Các cặp sinh đôi thật luôn luôn có cùng giới tính. Các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập với nhau và có xác suất là
. Thống kê cho thấy
cặp sinh đôi là trai;
cặp sinh đôi là gái và
cặp sinh đôi có giới tính khác nhau. Tính tỷ lệ cặp sinh đôi thật.
Gọi A: “Nhận được cặp sinh đôi thật”
B: “Nhận được cặp sinh đôi có cùng giới tính”
Do các cặp sinh đôi thật luôn luôn có cùng giới tính nên
Với các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập nhau và có xác suất là 0,5 nên
Do thống kê trên các cặp sinh đôi nhận được thì:
Áp dụng công thức xác suất toàn phần ta có:
Thay số ta xác định được .
Trong một vùng dân cư, cứ
người thì có
người hút thuốc lá. Biết tỷ lệ người bị viêm họng trong số người hút thuốc lá là
, trong số người không hút thuốc lá là
. Khám ngẫu nhiên một người và thấy người đó bị viêm họng. Nếu người đó không bị viêm họng thì xác suất để người đó hút thuốc lá là bao nhiêu?
Gọi A: "Người này hút thuốc"
B: "Người này bị viêm họng"
Theo giả thiết ta có:
Ta thấy rằng là một hệ đầy đủ các biến cố.
Theo công thức xác suất toàn phần ta tính được:
Theo công thức Bayes, xác suất để người đó hút thuốc lá khi biết người đó không bị viêm họng là:
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Để phát hiện ra người nhiễm bệnh, người ta tiến hành xét nghiệm tất cả mọi người của nhóm người (trong đó
người không nhiễm bệnh). Biết rằng đối với người nhiễm bệnh thì xác suất xét nghiệm có kết quả dương tính là
, nhưng đối với người không nhiễm bệnh thì xác suất xét nghiệm có phản ứng dương tính là
. Tính xác suất để người được chọn ra không nhiễm bệnh và không có phản ứng dương tính.
Gọi A: “Người được chọn ra không nhiễm bệnh”.
Và B: “Người được chọn ra có phản ứng dương tính”
Theo bài ta có:
Ta có sơ đồ hình cây như sau:
Vậy
Cho hai biến cố
với
. Tính
?
Ta có:
Trong hộp có 3 viên bi màu trắng và 7 viên bi màu đỏ. Lấy lần lượt mỗi lần một viên theo cách lấy không trả lại. Tính xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bi lấy lần thứ nhất là màu trắng?
Gọi C là biến cố “viên bi lấy lần thứ nhất là màu trắng”.
Gọi D là biến cố “viên bi lấy lần thứ hai là màu đỏ”.
Lần thứ nhất lấy 1 viên bi màu trắng có 3 cách chọn, lần thứ hai lấy 1 viên bi trong 9 viên còn lại có 9 cách chọn, do đó:
Lần thứ nhất lấy 1 viên bi màu trắng có 3 cách chọn, lần thứ hai lấy 1 viên bi màu đỏ có 7 cách chọn, do đó:
Vậy xác suất để viên bi lấy lần thứ hai là màu trắng nếu biết rằng viên bị lấy lần thứ nhất cũng là màu đỏ là: .