Cho hai biến cố
và
, với
. Tính
?
Cách 1:
Mà
Do đó:
Cách 2: Ta có:
.
Cho hai biến cố
và
, với
. Tính
?
Cách 1:
Mà
Do đó:
Cách 2: Ta có:
.
Bạn T quên mất số cuối cùng trong số điện thoại cần gọi (số điện thoại gồm 6 chữ số) và T chọn số cuối cùng này một cách ngẫu nhiên. Tính xác suất để T gọi đúng số điện thoại này mà không phải thử quá 3 lần. Nếu biết số cuối cùng là số lẻ thì xác suất này là bao nhiêu?
Gọi Ai: “gọi đúng ở lần thứ i” (i = 1, 2, 3)
Khi đó, biến cố “gọi đúng khi không phải thử quá ba lần” là:
Ta có:
Khi đã biết số cuối cùng là số lẻ thì khi đó các số để chọn quay chỉ còn giới hạn lại trong 5 trường hợp (số lẻ) nên:
Một loại linh kiện do 3 nhà máy số I, số II, số III cùng sản xuất. Tỷ lệ phế phẩm của các nhà máy lần lượt là: I; 0,04; II: 0,03 và III: 0,05. Trong 1 lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I, 120 của nhà máy số II và 100 của nhà máy số III. Khách hàng lấy phải một linh kiện loại phế phẩm từ lô hàng đó. Khả năng linh kiện đó do nhà máy nào sản xuất là cao nhất?
Gọi E1 là biến cố phế phẩm máy số I
E2 là biến cố phế phẩm máy số II
E3 là biến cố phế phẩm máy số III
Gọi B là biến cố khách hàng lấy được 1 linh kiện tốt
Xác suất để khách hàng lấy được linh kiện tốt là:
Gọi là biến cố khách hàng lấy 1 linh kiện loại không tốt
Ta xác định được:
Vậy linh kiện đó do máy III là cao nhất.
Để thành lập đội tuyển quốc gia về một môn học, người ta tổ chức một cuộc thi tuyển gồm 3 vòng. Vòng thứ nhất lấy
thí sinh; vòng thứ hai lấy
thí sinh đã qua vòng thứ nhất và vòng thứ ba lấy
thí sinh đã qua vòng thứ hai. Để vào được đội tuyển, thí sinh phải vượt qua được cả 3 vòng thi. Tính xác suất để một thí sinh bất kỳ bị loại ở vòng thứ hai, biết rằng thí sinh này bị loại?
Gọi là "thí sinh vượt qua vòng thứ
' thì ta có
và
Gọi là biến cố thí sinh được vào đội tuyển thì
xảy ra nếu thí sinh vượt qua cả 3 vòng, nghĩa là
Gọi là biến cố "thí sinh bị loại ở vòng 2, biết thí sinh này bị loại'.
Ta biểu diễn .
vì
Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu? (kết quả làm tròn đến hàng phần trăm)
Đáp án : 0,93
Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu? (kết quả làm tròn đến hàng phần trăm)
Đáp án : 0,93
Gọi A là biến cố “qua được lần kiểm tra đầu tiên”
Gọi B là biến cố “qua được lần kiểm tra thứ 2”
Chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện trên, hay ta đi tính .
Ta có
Lớp 10A có 35 học sinh, mỗi học sinh đều giỏi ít nhất một trong hai môn Toán hoặc Văn. Biết rằng có 23 học sinh giỏi môn Toán và 20 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh của lớp 10A.
a) Xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn bằng
.Đúng||Sai
b) Xác suất để học sinh được chọn "giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán" bằng
. Đúng||Sai
c) Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" bằng
. Sai||Đúng
d) Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" bằng
.Sai||Đúng
Lớp 10A có 35 học sinh, mỗi học sinh đều giỏi ít nhất một trong hai môn Toán hoặc Văn. Biết rằng có 23 học sinh giỏi môn Toán và 20 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh của lớp 10A.
a) Xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn bằng .Đúng||Sai
b) Xác suất để học sinh được chọn "giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán" bằng . Đúng||Sai
c) Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" bằng . Sai||Đúng
d) Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" bằng .Sai||Đúng
Gọi A : “Học sinh được chọn giỏi môn Toán”
B: “Học sinh được chọn giỏi môn Văn”
Gọi C : “Học sinh được chọn không giỏi môn Toán”
D: “Học sinh được chọn không giỏi môn Văn”
Số học sinh giỏi cả 2 môn là:
a) Trong số 23 học sinh giỏi Toán, chỉ có đúng 8 học sinh giỏi Văn nên xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn là:
b) Trong số 20 học sinh giỏi Văn, chỉ có đúng 8 học sinh giỏi Toán nên xác suất để học sinh được chọn giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán là:
c) Trong số 20 học sinh giỏi Văn, có đúng 8 học sinh giỏi cả Văn và Toán, nên số học sinh giỏi Văn mà không giỏi Toán là 12.
Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" là:
d) Trong số 23 học sinh giỏi Toán, có đúng 8 học sinh giỏi cả Toán và Văn nên số học sinh không giỏi Văn mà giỏi Toán là
Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" là:
Có 2 xạ thủ loại I và 8 xạ thủ loại II, xác suất bắn trúng đích của các loại xạ thủ loại I là 0,9 và loại II là 0,7. Chọn ngẫu nhiên ra hai xạ thủ và mỗi người bắn một viên đạn. Tìm xác suất để cả hai viên đạn đó trúng đích.
Gọi B là biến cố "Cả 2 viên đạn trúng đích".
là biến cố "Chọn được i xạ thủ loại I".
Ta có tạo thành họ đầy đủ các biến cố.
Áp dụng công thức, ta có
Một hãng hàng không cho biết rằng
số khách đặt trước vé cho các chuyến đã định sẽ hoãn không đi chuyến bay đó. Do đó hãng đã đưa ra một chính sách là sẽ bán
ghế cho một chuyến bay mà trong đó mỗi chuyến chỉ trở được
khách hàng. Tìm xác suất để tất cả các khách đặt chỗ trước và không hoãn chuyến bay đều có ghế. Biết rằng xác suất bán được
vé hoặc 52 vé là như nhau và bằng
?
Gọi A là "bán được 52 vé", B là "bán được 51 vé" và C là "bán được nhiều nhất 50 vé".
Khi đó A, B, C tạo thành hệ đầy đủ.
Ta có
Gọi H là "khách đặt chỗ trước và không hoãn chuyến đều có ghế".
Biến cố xảy ra nếu có ít nhất 2 khách hủy chuyến, H|B xảy ra nếu có ít nhất 1 khách hủy chuyến. Tính trực tiếp xác suất của các sự kiện này đều khá phức tạp.
Do đó để cho đơn giản ta tìm .
Ta có:
Do đó:
Một căn bệnh có
dân số mắc phải. Một phương pháp chuẩn đoán được phát triển có tỷ lệ chính xác là
. Với những người bị bệnh, phương pháp này sẽ đưa ra kết quả dương tính
số trường hợp. Với người không mắc bệnh, phương pháp này cũng chuẩn đoán đúng
trong
trường hợp. Nếu một người kiểm tra và kết quả là dương tính (bị bệnh), xác suất để người đó thực sự bị bệnh là bao nhiêu?
Gọi A là biến cố “người đó mắc bệnh”
Gọi B là biến cố “kết quả kiểm tra người đó là dương tính (bị bệnh)”
Ta cần tính với
.
Ta có:
Xác suất để người đó mắc bệnh khi chưa kiểm tra:
Do đó xác suất để người đó không mắc bệnh khi chưa kiểm tra:
Xác suất kết quả dương tính nếu người đó mắc bệnh là:
Xác suất kết quả dương tính nếu người đó không mắc bệnh là:
Khi đó:
Xác suất kết để người đó mắc bệnh nếu kết quả kiểm tra người đó là dương tính là .
Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. Hùng lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa.
Xét các biến cố:
: "Quả bóng lấy ra lần đầu có số chẵn"
: "Quả bóng lấy ra lần hai có số lẻ".
Xác định biến cố
: "biến cố
với điều kiện biết
đã xảy ra".
Ta có:
Khi biến cố xảy ra, thì không gian mẫu mới là
.
Khi đó, biến cố
Trong hộp có 3 viên bi màu trắng và 7 viên bi màu đỏ. Lấy lần lượt mỗi lần một viên theo cách lấy không trả lại. Tính xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bi lấy lần thứ nhất là màu trắng?
Gọi C là biến cố “viên bi lấy lần thứ nhất là màu trắng”.
Gọi D là biến cố “viên bi lấy lần thứ hai là màu đỏ”.
Lần thứ nhất lấy 1 viên bi màu trắng có 3 cách chọn, lần thứ hai lấy 1 viên bi trong 9 viên còn lại có 9 cách chọn, do đó:
Lần thứ nhất lấy 1 viên bi màu trắng có 3 cách chọn, lần thứ hai lấy 1 viên bi màu đỏ có 7 cách chọn, do đó:
Vậy xác suất để viên bi lấy lần thứ hai là màu trắng nếu biết rằng viên bị lấy lần thứ nhất cũng là màu đỏ là: .
Cho hai biến cố
với
. Tính
?
Ta có:
Hộp I có 4 viên bi đỏ, 2 viên bi xanh; hộp II có 3 viên bi đỏ, 3 viên bi xanh. Bỏ ngẫu nhiên một viên bi từ hộp I sang hộp II, sau đó lại bỏ ngẫu nhiên một viên bi từ hộp II sang hộp I. Cuối cùng rút ngẫu nhiên từ hộp I ra một viên bi. 1. Nếu viên rút ra sau cùng màu đỏ, tìm xác suất lúc ban đầu rút được viên bi đỏ ở hộp I cho vào hộp II?
Gọi D1, X1 tương ứng là "lấy được viên bi đỏ, xanh từ hộp I sang hộp II",
D2, X2 tương ứng là "lấy được viên bi đỏ, xanh từ hộp II sang hộp I".
Khi đó hệ D1D2, D1X2, X1D2, X1X2 tạo thành hệ đầy đủ.
Ta có:
Gọi A là "viên bi rút ra sau cùng là màu đỏ".
Ta xác định được:
Áp dụng công thức xác suất đầy đủ:
Ta cần tính xác suất
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Cho hai biến cố
và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Trong danh sách sĩ số hai lớp 12 có 95 học sinh, trong đó có 40 nam và 55 nữ. Trong kỳ thi kiểm tra chất lượng có 23 học sinh đạt điểm giỏi (trong đó có 12 nam và 11 nữ). Gọi tên ngẫu nhiên một học sinh trong danh sách. Tìm xác suất gọi được học sinh đạt điểm giỏi, biết rằng học sinh đó là nữ?
Gọi A là biến cố “gọi được học sinh nữ”
Gọi B là biến cố “gọi được học sinh đạt điểm giỏi”
Ta đi tính . Ta có:
Khi đó: .
Cho hai biến cố
và
là hai biến cố độc lập, với
. Tính
?
Hai biến cố và
là hai biến cố độc lập nên
.
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Có 3 hộp đựng bi: hộp thứ nhất có 3 bi đỏ, 2 bi trắng; hộp thứ hai có 2 bi đỏ, 2 bi trắng; hộp thứ ba không có viên nào. Lấy ngẫu nhiên 1 viên bi từ hộp thứ nhất và 1 viên bi từ hộp thứ hai bỏ vào hộp thứ ba. Sau đó từ hộp thứ ba lấy ngẫu nhiên ra 1 viên bi. Tính xác suất để viên bi đó màu đỏ?
Gọi A1, A2 lần lượt là "lấy bi đỏ từ hợp thứ 1 (thứ 2) bỏ vào hộp thứ ba" thì tạo thành một hệ đầy đủ.
Ta có:
Gọi A "lấy ra từ hộp 3 một viên bi màu đỏ". Ta có:
Áp dụng công thức xác suất đầy đủ ta có:
Trước khi đưa sản phẩm ra thị trường người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phẩm đó và thấy có 34 người tả lời “sẽ mua”, 97 người trả lời “có thể sẽ mua” và 69 người trả lời “không mua”. Kinh nghiệm cho thấy tỷ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời trên tương ứng là 70%, 30% và 1%. Trong số khách hàng thực sự mua sản phẩm thì có bao nhiêu phần trăm trả lời “sẽ mua”?
Gọi H1, H2, H3 lần lượt là 3 biến cố tương ứng với 3 cách trả lời của khách hàng được phỏng vấn:
H1 – người đó trả lời “sẽ mua”
H2 – người đó trả lời “có thể mua”
H3 – người đó trả lời “không mua”
H1, H2, H3 là một hệ đầy đủ các biến cố với xác suất tương ứng
Ta xác định được:
Theo công thức xác suất đầy đủ ta có:
.
Theo công thức Bayes:
.
Một phân xưởng có 3 máy tự động: máy I sản xuất 25%, máy II sản xuất 30%, máy III sản xuất 45% số sản phẩm. Tỷ lệ phế phẩm tương ứng của các máy lần lượt là 0,1%, 0,2% và 0,3%. Chọn ngẫu nhiên ra một sản phẩm của phân xưởng. 1. Tìm xác suất nó là phế phẩm.
Gọi Ai là "lấy ra sản phẩm từ lô i" thì A1, A2, A3 tạo thành hệ đầy đủ.
Gọi A là "lấy ra sản phẩm là phế phẩm".
Áp dụng công thức xác suất toàn phần, ta có
Cho hai biến cố
và
, với
.
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai|| Đúng
d)
Sai|| Đúng
Cho hai biến cố và
, với
.
a) Đúng||Sai
b) Đúng||Sai
c) Sai|| Đúng
d) Sai|| Đúng
a) Ta có:
b)
c)
d)
Trước khi đưa sản phẩm ra thị trường người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phẩm đó và thấy có 34 người tả lời “sẽ mua”, 97 người trả lời “có thể sẽ mua” và 69 người trả lời “không mua”. Kinh nghiệm cho thấy tỷ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời trên tương ứng là 70%, 30% và 1%. Tính xác suất người được phỏng vấn sẽ mua sản phẩm?
Gọi H1, H2, H3 lần lượt là 3 biến cố tương ứng với 3 cách trả lời của khách hàng được phỏng vấn:
H1 – người đó trả lời “sẽ mua”
H2 – người đó trả lời “có thể mua”
H3 – người đó trả lời “không mua”
H1, H2, H3 là một hệ đầy đủ các biến cố với xác suất tương ứng
Ta xác định được:
Theo công thức xác suất đầy đủ ta có:
.
Một công ty may mặc có hai hệ thống máy chạy độc lập với nhau. Xác suất để hệ thống máy thứ nhất hoạt động tốt là 95%, xác suất để hệ thống máy thứ hai hoạt động tốt là 85%. Công ty chỉ có thể hoàn thành đơn hàng đúng hạn nếu ít nhất một trong hai hệ thống máy hoạt động tốt. Xác suất để công ty hoàn thành đúng hạn là
Gọi A là biến cố: "Hệ thống máy thứ nhất hoạt động tốt".
B là biến cố: "Hệ thống máy thứ hai hoạt động tốt".
C là biến cố: "Công ty hoàn thành đúng hạn".
Ta có là biến cố: "Hệ thống máy thứ nhất hoạt động không tốt".
là biến cố: "Hệ thống máy thứ hai hoạt động không tốt".
là biến cố: "Công ty hoàn thành không đúng hạn".
Vì và
là hai biến cố độc lập nên
và
là hai biến cố độc lập
Mà
.
Một công nhân đi làm ở thành phố khi trở về nhà có 2 cách: hoặc đi theo đường ngầm hoặc đi qua cầu. Biết rằng ông ta đi lối đường ngầm trong
các trường hợp, còn lại đi lối cầu. Nếu đi lối đường ngầm
trường hợp ông ta về đến nhà trước 6 giờ tối; còn nếu đi lối cầu chỉ có
trường hợp ông ta về đến nhà sau 6 giờ tối. Tìm xác suất để công nhân đó đã đi lối cầu biết rằng ông ta về đến nhà sau 6 giờ tối.
Gọi A là biến cố đi đường ngầm suy ra là biến cố đi đường cầu
Ta xác định được
Gọi B là "về nhà sau 6 giờ tối", ta cần tính .
Sử dụng công thức Bayes:
Cho
và
là các biến cố của phép thử T. Biết rằng
. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được tính theo công thức nào sau đây?
Theo công thức Bayes ta có:
Hộp thứ nhất chứa 3 viên bi đen và 2 viên bi trắng. Hộp thứ hai chứa 4 viên bi đen và 5 viên bi trắng. Các viên bi có cùng kích thước và khối lượng. Bạn Mai lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.
Gọi A: "Viên bi lấy ra lần thứ nhất là bi đen"
Và B: "Viên bi lấy ra lần thứ hai là bi trắng".
Biết rằng biến cố A xảy ra, tính xác suất của biến cố B?
Nếu biến cố A xảy ra thì bạn Mai lấy viên bi đen từ hộp thứ nhất bỏ vào hộp thứ hai.
Khi đó hộp thứ hai có 5 viên bi đen và 5 viên bi trắng.
Do đó, xác suất của biến cố B là: .
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức Bayes:
.
Cho hai biến cố
và
với
. Biết ![]()
. Tính
?
Ta có công thức xác suất toàn phần tính là:
Có hai hộp đựng phiếu thi, mỗi phiếu ghi một câu hỏi. Hộp thứ nhất có 15 phiếu và hộp thứ hai có 9 phiếu. Học sinh A đi thi chỉ thuộc 10 câu ở hộp thứ nhất và 8 câu ở hộp thứ hai. Giáo viên rút ngẫu nhiên từ mỗi hộp ra một phiếu thi, sau đó cho học sinh A rút ngẫu nhiên ra 1 phiếu từ 2 phiếu mà giáo viên đã rút. Tính xác suất để học sinh A trả lời được câu hỏi trong phiếu.
Gọi E1 là biến cố sinh viên rút ra từ hộp 1
E2 là biến cố sinh viên rút ra từ hộp 2
E1, E2 tạo thành một nhóm biến cố đầy đủ
Gọi B là biến cố rút ra 1 câu thuộc
Ta có:
Thay vào công thức ta tính được .
Một túi đựng
bi xanh và
bi đỏ. Lấy ngẫu nhiên
bi. Xác suất để cả hai bi đều đỏ là:
Ta có số phần từ của không gian mẫu là .
Gọi : "Hai bi lấy ra đều là bi đỏ".
Khi đó .
Vậy xác suất cần tính là .
Trong một trường học, tỉ lệ học sinh nữ là
. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia câu lạc bộ M lần lượt là
và
. Chọn ngẫu nhiên 1 học sinh của trường. Tính xác suất học sinh đó có tham gia câu lạc bộ M.
Gọi A: “Học sinh được chọn là nữ” ⇒ : “Học sinh được chọn là nam”
B: “học sinh được chọn có tham gia câu lạc bộ M”.
Từ giả thiết ta có:
Theo công thức xác suất toàn phần, ta có xác suất học sinh được chọn có tham gia câu lạc bộ M là:
.
Một bình đựng hạt giống có 7 hạt loại A và 6 hạt loại B. Lấy ngẫu nhiên lần thứ nhất ra 2 hạt, lần thứ hai ra một hạt. Tính xác suất để hạt giống lấy ra lần 2 là hạt loại A.
Gọi F là biến cố hạt lấy ra lần hai là loại A. H0, H1, H2 lần lượt là biến cố hai hạt lấy ra lần thứ nhất có 0,1, 2 hạt loại B.
{H0, H1, H2} là một hệ đầy đủ.
Áp dụng công thức xác suất đầy đủ ta có
.
Cho hai biến cố
và
. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được gọi là xác suất của
với điều kiện
, ký hiệu là
. Phát biểu nào sau đây đúng?
Công thức tính xác suất của biến cố khi biết biến cố
đã xảy ra
là:
.
Để gây đột biến cho một tính trạng người ta tìm cách tác động lên hai gen
bằng phóng xạ. Xác suất đột biến của tính trạng do gen
là
; do gen B là
và do cả hai gen là
. Tính xác suất để có đột biến ở tính trạng đó biết rằng phóng xạ có thể tác động lên gen
với xác suất
và lên gen
với xác suất
?
Gọi C là biến cố có đột biến ở tính trạng đang xét
A là biến cố phóng xạ tác dụng lên gen A
B là biến cố phóng xạ tác dụng lên gen B
C1 là biến cố phóng xạ chỉ tác động lên gen A
C2 là biến cố phóng xạ chỉ tác dụng lên gen B
C3 là biến cố phóng xạ tác dụng lên cả 2 gen
là biến cố phóng xạ không tác dụng lên gen nào
Khi đó hệ là một hệ đầy đủ
Mặt khác độc lập nên
Mặt khác và
Theo công thức xác suất toàn phần ta có:
Tại một phòng khám chuyên khoa tỷ lệ người đến khám có bệnh là
. Người ta áp dụng phương pháp chẩn đoán mới thì thấy nếu khẳng định có bệnh thì đúng 9 trên 10 trường hợp; còn nếu khẳng định không bệnh thì đúng 5 trên 10 trường hợp. Tính xác suất để chẩn đoán đúng?
Gọi A là "người đến khám có bệnh" thì A, tạo thành hệ đầy đủ
Gọi B là "Chẩn đoán có bệnh".
Ta có P(A | B) = 0.9, P(A|B) = 0.5.
Tìm P(B) từ:
Gọi C là "chẩn đoán đúng", thì C xảy ra khi người bị bệnh được chẩn đoán có bệnh hoặc người không bị bệnh được chẩn đoán không bị bệnh. Như vậy
Hiển nhiên 2 biến cố xung khắc, nên ta có:
Một hộp chứa 5 quả bóng gồm 2 quả màu đỏ (đánh số 1 và 2), 2 quả màu xanh (đánh số 3 và 4) và 1 quả màu vàng (đánh số 5). Lấy ngẫu nhiên hai quả bóng liên tiếp không hoàn lại.
Xét các biến cố
: "Quả bóng lấy ra đầu tiên có màu đỏ"
: "Tổng số của hai quả bóng lấy ra là số lẻ"
Xác định
là biến cố
khi biết
đã xảy ra?
Khi A đã xảy ra, nghĩa là quả bóng đầu tiên lấy ra có màu đỏ (số 1 hoặc 2).
Do đó, không gian mẫu mới là
Biến cố khi biết
đã xảy ra là:
Bạn An đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để An hoàn thành câu dễ là
; hoàn thành câu trung bình là
và hoàn thành câu khó là
. Làm đúng mỗi một câu dễ An được
điểm, làm đúng mỗi câu trung bình An được
điểm và làm đúng mỗi câu khó An được
điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?
a) Xác suất để An làm ba câu thuộc ba loại và đúng cả ba câu là
. Sai||Đúng
b) Khi An làm 3 câu thuộc 3 loại khác nhau. Xác suất để An làm đúng 2 trong số 3 câu là
. Sai||Đúng
c) Khi An làm 3 câu thì xác suất để An làm đúng 3 câu đủ ba loại cao hơn xác suất An làm sai 3 câu ở mức độ trung bình. Đúng||Sai
d) Xác suất để An làm 5 câu và đạt đúng 2 điểm lớn hơn
. Sai||Đúng
Bạn An đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để An hoàn thành câu dễ là ; hoàn thành câu trung bình là
và hoàn thành câu khó là
. Làm đúng mỗi một câu dễ An được
điểm, làm đúng mỗi câu trung bình An được
điểm và làm đúng mỗi câu khó An được
điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?
a) Xác suất để An làm ba câu thuộc ba loại và đúng cả ba câu là . Sai||Đúng
b) Khi An làm 3 câu thuộc 3 loại khác nhau. Xác suất để An làm đúng 2 trong số 3 câu là . Sai||Đúng
c) Khi An làm 3 câu thì xác suất để An làm đúng 3 câu đủ ba loại cao hơn xác suất An làm sai 3 câu ở mức độ trung bình. Đúng||Sai
d) Xác suất để An làm 5 câu và đạt đúng 2 điểm lớn hơn . Sai||Đúng
Gọi A là biến cố An làm đúng câu dễ
B là biến cố An làm đúng câu trung bình
C là biến cố An làm đúng câu khó.
Khi đó A, B, C độc lập với nhau.
a) Xác suất để An làm ba câu thuộc ba loại trên và đúng cả ba câu là:
. Khẳng định Sai.
b) Xác suất để An làm đúng 2 trong số 3 câu là:
Khẳng định Sai.
c) Xác suất để An làm đúng 3 câu đủ ba loại là:
Xác suất An làm sai 3 câu mức độ trung bình. .
Khẳng định Đúng.
d) Để An làm 5 câu và đạt đúng 2 điểm có các trường hợp sau:
TH1: Đúng 4 câu khó và câu còn lại sai
TH2: Đúng 3 câu khó và đúng 2 câu trung bình
Vậy xác suất cần tìm là
Khẳng định Sai.
Cho hai biến cố
và
, với
. Tính
?
Ta có: .