Một túi đựng
bi xanh và
bi đỏ. Lấy ngẫu nhiên
bi. Xác suất để cả hai bi đều đỏ là:
Ta có số phần từ của không gian mẫu là .
Gọi : "Hai bi lấy ra đều là bi đỏ".
Khi đó .
Vậy xác suất cần tính là .
Một túi đựng
bi xanh và
bi đỏ. Lấy ngẫu nhiên
bi. Xác suất để cả hai bi đều đỏ là:
Ta có số phần từ của không gian mẫu là .
Gọi : "Hai bi lấy ra đều là bi đỏ".
Khi đó .
Vậy xác suất cần tính là .
Cho hai biến cố
và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức Bayes:
.
Một thùng có các hộp loại I và loại II, trong đó có 2 hộp loại I, mỗi hộp có 13 sản phẩm tốt và 2 phế phẩm và có 3 hộp loại II, mỗi hộp có 6 sản phẩm tốt và 4 phế phẩm. Các khẳng định sau đúng hay sai?
a) Số cách chọn được 2 sản phẩm tốt trong hộp loại I là
.Đúng||Sai
b) Xác suất chọn được 2 phế phẩm trong hộp loại II là
Sai||Đúng
c) Chọn ngẫu nhiên trong thùng một hộp và từ hộp đó lấy ra hai sản phẩm để kiểm tra, xác suất để hai sản phẩm này đều tốt là
. Đúng||Sai
d) Chọn ngẫu nhiên trong thùng một hộp và từ hộp đó lấy ra hai sản phẩm để kiểm tra, giả sử hai sản phẩm đó đều tốt thì xác suất để hai sản phẩm đó thuộc hộp loại I là
. Đúng||Sai
Một thùng có các hộp loại I và loại II, trong đó có 2 hộp loại I, mỗi hộp có 13 sản phẩm tốt và 2 phế phẩm và có 3 hộp loại II, mỗi hộp có 6 sản phẩm tốt và 4 phế phẩm. Các khẳng định sau đúng hay sai?
a) Số cách chọn được 2 sản phẩm tốt trong hộp loại I là .Đúng||Sai
b) Xác suất chọn được 2 phế phẩm trong hộp loại II là Sai||Đúng
c) Chọn ngẫu nhiên trong thùng một hộp và từ hộp đó lấy ra hai sản phẩm để kiểm tra, xác suất để hai sản phẩm này đều tốt là . Đúng||Sai
d) Chọn ngẫu nhiên trong thùng một hộp và từ hộp đó lấy ra hai sản phẩm để kiểm tra, giả sử hai sản phẩm đó đều tốt thì xác suất để hai sản phẩm đó thuộc hộp loại I là . Đúng||Sai
a) Chọn 2 sản phẩm tốt từ 13 sản phẩm tốt trong hộp loại I là cách.
b) Số cách chọn 2 phế phẩm từ 4 phế phẩm trong hộp loại II là cách.
Tổng số cách chọn 2 sản phẩm từ 10 sản phẩm (6 tốt và 4 phế phẩm) trong hộp II là cách
Vậy xác suất chọn được hai phế phẩm là: .
c) Gọi A: “Chọn được trong thùng một hộp loại I”.
Và B: “Chọn được trong thùng một hộp loại II”.
Xác suất chọn hộp loại I là và xác suất chọn hộp loại II là
Gọi C là biến cố “Cả 2 sản phẩm lấy ra đều tốt”.
Xác suất lấy được 2 sản phẩm tốt từ hộp loại I là
Xác suất lấy được 2 sản phẩm tốt từ hộp II là
Vậy xác suất hai sản phẩm lấy ra từ một hộp trong thùng đều tốt là:
d) Xác suất lấy ra hai sản phẩm đều tốt thuộc hộp loại I là
Có 3 hộp bi:
Hộp 1: Có 3 xanh, 4 đỏ, 5 vàng.
Hộp 2: Có 4 xanh, 5 đỏ, 6 vàng.
Hộp 3: Có 5 xanh, 6 đỏ, 7 vàng
Chọn ngẫu nhiên 1 hộp và từ hộp đó lấy ngẫu nhiên 1 bi. Tính xác suất để bi lấy ra là bi xanh. Nếu bi lấy ra không là bi xanh, tính xác suất để bi đó được lấy từ hộp 2?
Gọi lần lượt là các biến cố “Chọn được hộp thứ 1, 2, 3” ta có hệ
là hệ biến cố xung khắc và đầy đủ:
Gọi B là biến cố “Lấy được bi xanh”
Ta có:
là biến cố bi lấy ra không phải là bi xanh, ta cần tính:
Một gia đình có 2 đứa trẻ. Biết rằng có ít nhất 1 đứa trẻ là con gái. Xác suất để một đứa trẻ là trai hoặc gái là bằng nhau. Hỏi xác suất hai đứa trẻ đều là con gái là bao nhiêu?
Giới tính cả 2 đứa trẻ là ngẫu nhiên và không liên quan đến nhau.
Do gia đình có 2 đứa trẻ nên sẽ có thể xảy ra 4 khả năng: (trai, trai), (gái, gái), (gái, trai), (trai, gái).
Gọi A là biến cố “Cả hai đứa trẻ đều là con gái” Gọi B là biến cố “Có ít nhất một đứa trẻ là con gái”
Ta có:
Do nếu xảy ra A thì đương nhiên sẽ xảy ra B nên ta có:
Suy ra, xác suất để cả hai đứa trẻ đều là con gái khi biết ít nhất có một đứa trẻ là gái là: .
Một chiếc hộp có
viên bi, trong đó có
viên bi có tô màu và
viên bi không tô màu; các viên bi có kích thước và khối lượng như nhau. Bạn Nam lấy ra viên bi đầu tiên, sau đó bạn Việt lấy ra viên bi thứ hai.
a) Xác suất để bạn Nam lấy ra viên bi có tô màu là
. Đúng||Sai
b) Sơ đồ cây biểu thị tình huống trên là.
Đúng||Sai
c) Xác suất để bạn Việt lấy ra viên bi có tô màu là:
Đúng||Sai
d) Xác suất để bạn Việt lấy ra viên bi không có tô màu là:
. Đúng||Sai
Một chiếc hộp có viên bi, trong đó có
viên bi có tô màu và
viên bi không tô màu; các viên bi có kích thước và khối lượng như nhau. Bạn Nam lấy ra viên bi đầu tiên, sau đó bạn Việt lấy ra viên bi thứ hai.
a) Xác suất để bạn Nam lấy ra viên bi có tô màu là . Đúng||Sai
b) Sơ đồ cây biểu thị tình huống trên là. Đúng||Sai
c) Xác suất để bạn Việt lấy ra viên bi có tô màu là: Đúng||Sai
d) Xác suất để bạn Việt lấy ra viên bi không có tô màu là: . Đúng||Sai
Gọi A là biến cố “bạn Việt lấy ra viên bi có tô màu”
Gọi B là biến cố “bạn Nam lấy ra viên bi có tô màu”, suy ra B là biến cố “bạn Việt lấy ra viên bi không có tô màu”.
a) Xác suất để bạn Nam lấy ra viên bi có tô màu là .
b) Ta có:
Sơ đồ cây cần tìm là:
c) Xác suất để bạn Việt lấy ra viên bi có tô màu là:
d) A là biến cố “bạn Việt lấy ra viên bi có tô màu” suy ra A là biến cố “bạn Việt lấy ra viên bi không có tô màu”
Cho hai biến cố
với
. Giá trị
bằng:
Ta có:
Theo công thức xác suất toàn phần, ta có:
Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,91
Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,91
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
3 cuốn sách lấy ra không cùng một loại
.
Để tìm số phần tử của , ta đi tìm số phần tử của biến cố
, với biến cố
là 3 cuốn sách lấy ra cùng một loại.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Cho hai biến cố
với
. Tính
?
Ta có:
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Hộp I: 5 bi trắng và 5 bi đen. Hộp II: 6 bi trắng và 4 bi đen. Bỏ hai viên bi từ hộp I sang hộp II. Sau đó lấy ra 1 viên bi. Tính xác suất để lấy được bi trắng.
Gọi A là biến cố lấy được bi trắng
Cách 1: Ta có sơ đồ cây mô tả như sau:
.
Cách 2: Gọi K1 là biến cố lấy bi ra từ hộp II của hộp I
Gọi K2 là biến cố lấy bi ra từ hộp II của hộp II
Ta xác định được:
Khi đó:
Cho hai biến cố
và
của một phép thử T. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được gọi là xác suất của
với điều kiện
, ký hiệu là
. Phát biểu nào sau đây đúng?
Nếu thì
.
Cho hai biến cố
với
. Tính
?
Ta có:
Trong một cửa hàng có 18 bóng đèn loại I và 2 bóng đèn loại II, các bóng đèn có hình dạng và kích thước như nhau. Một một người mua hàng lấy ngẫu nhiên lần lượt 2 bóng đèn (lấy không hoàn lại) trong cửa hàng.
a) Xác suất để lần thứ nhất lấy được bóng đèn loại II là
. Sai||Đúng
b) Xác suất để lần thứ hai lấy được bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II là
. Đúng||Sai
c) Xác suất để cả hai lần đều lấy được bóng đèn loại II là
. Sai||Đúng
d) Xác suất để ít nhất 1 lần lấy được bóng đèn loại I là
. Đúng||Sai
Trong một cửa hàng có 18 bóng đèn loại I và 2 bóng đèn loại II, các bóng đèn có hình dạng và kích thước như nhau. Một một người mua hàng lấy ngẫu nhiên lần lượt 2 bóng đèn (lấy không hoàn lại) trong cửa hàng.
a) Xác suất để lần thứ nhất lấy được bóng đèn loại II là . Sai||Đúng
b) Xác suất để lần thứ hai lấy được bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II là . Đúng||Sai
c) Xác suất để cả hai lần đều lấy được bóng đèn loại II là . Sai||Đúng
d) Xác suất để ít nhất 1 lần lấy được bóng đèn loại I là . Đúng||Sai
Xét các biến cố: A: "Lần thứ nhất lấy được bóng đèn loại II"; B: "Lần thứ hai lấy được bóng đèn loại II".
a) Xác suất đề lần thứ nhất lấy được bóng đèn loại II là: .
b) Sau khi lấy 1 bóng đèn loại II thì chỉ còn 1 bóng đèn loại II trong hộp. Suy ra xác suất để lần thứ hai lấy được quá bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II là: .
c) Khi đó, xác suất để cả hai lần đều lấy được bóng đèn loại II là:
.
d) Để ít nhất 1 lần lấy được bóng đèn loại I là:
.
Cho hai biến cố
và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Một chiếc hộp có
viên bi, trong đó có
viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có
số viên bi màu đỏ đánh số và
số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số.
a) Số viên bi màu đỏ có đánh số là
. Đúng||Sai
b) Số viên bi màu vàng không đánh số là
. Đúng||Sai
c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là:
Sai|| Đúng
d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số là:
. Đúng||Sai
Một chiếc hộp có viên bi, trong đó có
viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có
số viên bi màu đỏ đánh số và
số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số.
a) Số viên bi màu đỏ có đánh số là . Đúng||Sai
b) Số viên bi màu vàng không đánh số là . Đúng||Sai
c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là: Sai|| Đúng
d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số là: . Đúng||Sai
a) Số viên bi màu đỏ có đánh số là
b) Số viên bi màu vàng không đánh số là
c) Gọi A là biến cố “viên bi được lấy ra có đánh số”
Gọi B là biến cố “viên bi được lấy ra có màu đỏ”, suy ra B là biến cố “viên bi được lấy ra có màu vàng”
Lúc này ta đi tính theo công thức:
Ta có:
.
d) A là biến cố “viên bi được lấy ra có đánh số” suy ra A là biến cố “viên bi được lấy ra không có đánh số”. Khi đó ta có:
Cho
và
là các biến cố của phép thử T. Biết rằng
. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được tính theo công thức nào sau đây?
Theo công thức Bayes ta có:
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Một hãng hàng không cho biết rằng
số khách đặt trước vé cho các chuyến đã định sẽ hoãn không đi chuyến bay đó. Do đó hãng đã đưa ra một chính sách là sẽ bán
ghế cho một chuyến bay mà trong đó mỗi chuyến chỉ trở được
khách hàng. Tìm xác suất để tất cả các khách đặt chỗ trước và không hoãn chuyến bay đều có ghế. Biết rằng xác suất bán được
vé hoặc 52 vé là như nhau và bằng
?
Gọi A là "bán được 52 vé", B là "bán được 51 vé" và C là "bán được nhiều nhất 50 vé".
Khi đó A, B, C tạo thành hệ đầy đủ.
Ta có
Gọi H là "khách đặt chỗ trước và không hoãn chuyến đều có ghế".
Biến cố xảy ra nếu có ít nhất 2 khách hủy chuyến, H|B xảy ra nếu có ít nhất 1 khách hủy chuyến. Tính trực tiếp xác suất của các sự kiện này đều khá phức tạp.
Do đó để cho đơn giản ta tìm .
Ta có:
Do đó:
Cho hai biến cố
và
là hai biến cố độc lập, với
. Tính
?
Hai biến cố và
là hai biến cố độc lập nên
.
Có 2 xạ thủ loại I và 8 xạ thủ loại II, xác suất bắn trúng đích của các loại xạ thủ loại I là 0,9 và loại II là 0,7. Chọn ngẫu nhiên ra hai xạ thủ và mỗi người bắn một viên đạn. Tìm xác suất để cả hai viên đạn đó trúng đích.
Gọi B là biến cố "Cả 2 viên đạn trúng đích".
là biến cố "Chọn được i xạ thủ loại I".
Ta có tạo thành họ đầy đủ các biến cố.
Áp dụng công thức, ta có
Hộp thứ nhất chứa 3 viên bi đen và 2 viên bi trắng. Hộp thứ hai chứa 4 viên bi đen và 5 viên bi trắng. Các viên bi có cùng kích thước và khối lượng. Bạn Mai lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.
Gọi A: "Viên bi lấy ra lần thứ nhất là bi đen"
Và B: "Viên bi lấy ra lần thứ hai là bi trắng".
Biết rằng biến cố A xảy ra, tính xác suất của biến cố B?
Nếu biến cố A xảy ra thì bạn Mai lấy viên bi đen từ hộp thứ nhất bỏ vào hộp thứ hai.
Khi đó hộp thứ hai có 5 viên bi đen và 5 viên bi trắng.
Do đó, xác suất của biến cố B là: .
Lớp 10A có 35 học sinh, mỗi học sinh đều giỏi ít nhất một trong hai môn Toán hoặc Văn. Biết rằng có 23 học sinh giỏi môn Toán và 20 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh của lớp 10A.
a) Xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn bằng
.Đúng||Sai
b) Xác suất để học sinh được chọn "giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán" bằng
. Đúng||Sai
c) Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" bằng
. Sai||Đúng
d) Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" bằng
.Sai||Đúng
Lớp 10A có 35 học sinh, mỗi học sinh đều giỏi ít nhất một trong hai môn Toán hoặc Văn. Biết rằng có 23 học sinh giỏi môn Toán và 20 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh của lớp 10A.
a) Xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn bằng .Đúng||Sai
b) Xác suất để học sinh được chọn "giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán" bằng . Đúng||Sai
c) Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" bằng . Sai||Đúng
d) Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" bằng .Sai||Đúng
Gọi A : “Học sinh được chọn giỏi môn Toán”
B: “Học sinh được chọn giỏi môn Văn”
Gọi C : “Học sinh được chọn không giỏi môn Toán”
D: “Học sinh được chọn không giỏi môn Văn”
Số học sinh giỏi cả 2 môn là:
a) Trong số 23 học sinh giỏi Toán, chỉ có đúng 8 học sinh giỏi Văn nên xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn là:
b) Trong số 20 học sinh giỏi Văn, chỉ có đúng 8 học sinh giỏi Toán nên xác suất để học sinh được chọn giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán là:
c) Trong số 20 học sinh giỏi Văn, có đúng 8 học sinh giỏi cả Văn và Toán, nên số học sinh giỏi Văn mà không giỏi Toán là 12.
Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" là:
d) Trong số 23 học sinh giỏi Toán, có đúng 8 học sinh giỏi cả Toán và Văn nên số học sinh không giỏi Văn mà giỏi Toán là
Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" là:
Câu lạc bộ thể thao của trường Việt Anh có 40 bạn đều biết chơi biết chơi ít nhất một trong hai môn là bóng đá và cầu lông, trong đó có 27 bạn biết chơi bóng đá và 25 bạn biết chơi cầu lông. Chọn ngẫu nhiên 1 bạn. Xác suất chọn được bạn biết chơi bóng đá biết bạn đó chơi được cầu lông là bao nhiều?
Đáp án: 0,48
Câu lạc bộ thể thao của trường Việt Anh có 40 bạn đều biết chơi biết chơi ít nhất một trong hai môn là bóng đá và cầu lông, trong đó có 27 bạn biết chơi bóng đá và 25 bạn biết chơi cầu lông. Chọn ngẫu nhiên 1 bạn. Xác suất chọn được bạn biết chơi bóng đá biết bạn đó chơi được cầu lông là bao nhiều?
Đáp án: 0,48
Xét các biến cố: : “Chọn được bạn biết chơi bóng đá”
: “Chọn được bạn biết chơi cầu lông”
Khi đó ;
;
.
Suy ra .
Vậy xác suất chọn được bạn biết chơi bóng đá, bạn đó biết chơi cầu lông là .
Đáp số: .
Có hai hộp đựng phiếu thi, mỗi phiếu ghi một câu hỏi. Hộp thứ nhất có 15 phiếu và hộp thứ hai có 9 phiếu. Học sinh A đi thi chỉ thuộc 10 câu ở hộp thứ nhất và 8 câu ở hộp thứ hai. Giáo viên rút ngẫu nhiên từ mỗi hộp ra một phiếu thi, sau đó cho học sinh A rút ngẫu nhiên ra 1 phiếu từ 2 phiếu mà giáo viên đã rút. Tính xác suất để học sinh A trả lời được câu hỏi trong phiếu.
Gọi E1 là biến cố sinh viên rút ra từ hộp 1
E2 là biến cố sinh viên rút ra từ hộp 2
E1, E2 tạo thành một nhóm biến cố đầy đủ
Gọi B là biến cố rút ra 1 câu thuộc
Ta có:
Thay vào công thức ta tính được .
Một loại linh kiện do 3 nhà máy số I, số II, số III cùng sản xuất. Tỷ lệ phế phẩm của các nhà máy lần lượt là: I; 0,04; II: 0,03 và III: 0,05. Trong 1 lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I, 120 của nhà máy số II và 100 của nhà máy số III. Khách hàng lấy phải một linh kiện loại phế phẩm từ lô hàng đó. Khả năng linh kiện đó do nhà máy nào sản xuất là cao nhất?
Gọi E1 là biến cố phế phẩm máy số I
E2 là biến cố phế phẩm máy số II
E3 là biến cố phế phẩm máy số III
Gọi B là biến cố khách hàng lấy được 1 linh kiện tốt
Xác suất để khách hàng lấy được linh kiện tốt là:
Gọi là biến cố khách hàng lấy 1 linh kiện loại không tốt
Ta xác định được:
Vậy linh kiện đó do máy III là cao nhất.
Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. Hùng lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa.
Xét các biến cố:
: "Quả bóng lấy ra lần đầu có số chẵn"
: "Quả bóng lấy ra lần hai có số lẻ".
Xác định biến cố
: "biến cố
với điều kiện biết
đã xảy ra".
Ta có:
Khi biến cố xảy ra, thì không gian mẫu mới là
.
Khi đó, biến cố
Trong một vùng dân cư, cứ
người thì có
người hút thuốc lá. Biết tỷ lệ người bị viêm họng trong số người hút thuốc lá là
, trong số người không hút thuốc lá là
. Khám ngẫu nhiên một người và thấy người đó bị viêm họng. Tìm xác suất để người đó hút thuốc lá?
Gọi A: "Người này hút thuốc"
B: "Người này bị viêm họng"
Theo giả thiết ta có:
Ta thấy rằng là một hệ đầy đủ các biến cố.
Theo công thức xác suất toàn phần ta tính được:
Theo công thức Bayes, xác suất để người đó hút thuốc lá khi biết người đó bị viêm họng là:
Bạn Bình đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để Bình hoàn thành câu dễ là
; hoàn thành câu trung bình là
và hoàn thành câu khó là
. Làm đúng mỗi một câu dễ bạn được
điểm, làm đúng mỗi câu trung bình bạn được
điểm và làm đúng mỗi câu khó bạn được
điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?
a) Xác suất để Bình làm ba câu thuộc ba loại và đúng cả ba câu là
. Sai||Đúng
b) Khi Bình làm 3 câu thuộc 3 loại khác nhau. Xác suất để bạn làm đúng 2 trong số 3 câu là
. Sai||Đúng
c) Khi Bình làm 3 câu thì xác suất để bạn làm đúng 3 câu đủ ba loại cao hơn xác suất Bình làm sai 3 câu ở mức độ trung bình. Đúng||Sai
d) Xác suất để Bình làm 5 câu và đạt đúng 2 điểm lớn hơn
. Sai||Đúng
Bạn Bình đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để Bình hoàn thành câu dễ là ; hoàn thành câu trung bình là
và hoàn thành câu khó là
. Làm đúng mỗi một câu dễ bạn được
điểm, làm đúng mỗi câu trung bình bạn được
điểm và làm đúng mỗi câu khó bạn được
điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?
a) Xác suất để Bình làm ba câu thuộc ba loại và đúng cả ba câu là . Sai||Đúng
b) Khi Bình làm 3 câu thuộc 3 loại khác nhau. Xác suất để bạn làm đúng 2 trong số 3 câu là . Sai||Đúng
c) Khi Bình làm 3 câu thì xác suất để bạn làm đúng 3 câu đủ ba loại cao hơn xác suất Bình làm sai 3 câu ở mức độ trung bình. Đúng||Sai
d) Xác suất để Bình làm 5 câu và đạt đúng 2 điểm lớn hơn . Sai||Đúng
Gọi A là biến cố Bình làm đúng câu dễ
B là biến cố Bình làm đúng câu trung bình
C là biến cố Bình làm đúng câu khó.
Khi đó A, B, C độc lập với nhau.
a) Xác suất để Bình làm ba câu thuộc ba loại trên và đúng cả ba câu là
.
Khẳng định sai.
b) Xác suất để Bình làm đúng 2 trong số 3 câu là
= 0,2.0,6.0,15 + 0,8.0,4.0,15 + 0,8.0,6.0,85 = 0,474
Khẳng định sai.
c) Xác suất để Bình làm đúng 3 câu đủ ba loại là:
Xác suất Bình làm sai 3 câu mức độ trung bình. .
Khẳng định đúng.
d) Để Bình làm 5 câu và đạt đúng 2 điểm có các trường hợp sau:
TH1: Đúng 4 câu khó và câu còn lại sai
TH2: Đúng 3 câu khó và đúng 2 câu trung bình
Vậy xác suất cần tìm là
Khẳng định sai.
Cho hai biến cố
và
, với
. Tính
?
Ta có:
.
Để gây đột biến cho một tính trạng người ta tìm cách tác động lên hai gen
bằng phóng xạ. Xác suất đột biến của tính trạng do gen
là
; do gen B là
và do cả hai gen là
. Tính xác suất để có đột biến ở tính trạng đó biết rằng phóng xạ có thể tác động lên gen
với xác suất
và lên gen
với xác suất
?
Gọi C là biến cố có đột biến ở tính trạng đang xét
A là biến cố phóng xạ tác dụng lên gen A
B là biến cố phóng xạ tác dụng lên gen B
C1 là biến cố phóng xạ chỉ tác động lên gen A
C2 là biến cố phóng xạ chỉ tác dụng lên gen B
C3 là biến cố phóng xạ tác dụng lên cả 2 gen
là biến cố phóng xạ không tác dụng lên gen nào
Khi đó hệ là một hệ đầy đủ
Mặt khác độc lập nên
Mặt khác và
Theo công thức xác suất toàn phần ta có:
Một chiếc máy bay có thể xuất hiện không phận của điểm A với xác suất là
hoặc không phận của điểm B với xác suất là
. Giả sử có 3 phương án bố trí 4 khẩu pháo để hạ máy bay như sau:
Phương án 1: 3 khẩu đặt ở điểm A và 1 khẩu đặt ở điểm B.
Phương án 2: 2 khấu đặt ở điểm A và 2 khẩu đặt ở điểm B.
Phương án 3: 1 khẩu đặt ở điểm A và 3 khẩu đặt ở điểm B.
Biết rằng xác suất bắn trúng (hạ máy bay) của mỗi khẩu bằng
và các khẩu pháo bắn độc lập với nhau. Phương án nào xác suất bắn trúng máy bay cao nhất?
Phương án 1: 3 khẩu đặt tại A và 1 khẩu đặt tại B Nếu có 3 khẩu đặt tại A thì để máy bay rơi cần ít nhất một khẩu bắn trúng.
Xác suất để ít nhất một khẩu tại A bắn trúng máy bay:
(tính theo biến cố đối của biến cố: không có khẩu nào bắn trúng)
=> Xác suất để máy bay rơi trong phương án I:
Phương án 2: 2 khẩu đặt tại 4 và 2 khẩu đặt tại B Nếu có 2 khẩu đặt tại A thì để máy bay rơi cần ít nhất một khẩu bắn trúng.
Xác suất để ít nhất một khẩu tại A bắn trúng máy bay:
Tương tự, xác suất để ít nhất một khẩu tại B bắn trúng máy bay:
=> Xác suất để máy bay rơi trong phương án II:
Phương án 3: 1 khẩu đặt tại A và 3 khẩu đặt tại B com Nếu có 3 khẩu đặt tại B thì để máy bay rơi cần ít nhất một khẩu bắn trúng.
Xác suất để ít nhất một khẩu tại B bắn trúng máy bay:
=> Xác suất để máy bay rơi trong phương án III:
Vậy phương án 2 có xác suất bắn trúng máy bay cao nhất.
Cuối tuần M đến sân chơi để bắn cung, biết khoảng cách bắn tên thay đổi liên tục và khả năng bạn M bắn trúng bia tỉ lệ nghịch với khoảng cách bắn. M bắn lần đầu ở khoảng cách
với xác suất trúng bia là
, nếu bị trượt M bắn tiếp mũi tên thứ hai ở khoảng cách
, nếu lại trượt M bắn mũi tên thứ ba ở khoảng cách
. Tính xác suất để M bắn trúng bia?
Gọi A là biến cố “M bắn trúng bia ở lần thứ nhất”
Gọi B là biến cố “M bắn trúng bia ở lần thứ hai”
Gọi C là biến cố “M bắn trúng bia ở lần thứ ba”
Ta có:
Vì xác suất bắn trúng bia trong mỗi lần bắn tỷ lệ nghịch với khoảng cách bắn nên ta có:
Ta có sơ đồ cây như sau:
Xác suất để M bắn trúng bia là:
Trong một đợt kiểm tra sức khoẻ, có một loại bệnh X mà tỉ lệ người mắc bệnh là
và một loại xét nghiệm Y mà ai mắc bệnh X khi xét nghiệm Y cũng có phản ứng dương tính. Tuy nhiên, có
những người không bị bệnh X lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên một người trong đợt kiểm tra sức khoẻ đó. Giả sử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh X là bao nhiêu (làm tròn kết quả đến hàng phần trăm)
Xét các biến cố:
A: "Người được chọn mắc bệnh X"
B: "Người được chọn có phản ứng dương tính với xét nghiệm Y".
Theo giả thiết ta có:
Theo công thức Bayes, ta có:
Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu? (kết quả làm tròn đến hàng phần trăm)
Đáp án : 0,93
Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu? (kết quả làm tròn đến hàng phần trăm)
Đáp án : 0,93
Gọi A là biến cố “qua được lần kiểm tra đầu tiên”
Gọi B là biến cố “qua được lần kiểm tra thứ 2”
Chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện trên, hay ta đi tính .
Ta có
Một cửa hàng sách ước lượng rằng: trong tổng số các khách hàng đến cửa hàng có
khách cần hỏi nhân viên bán hàng,
khách mua sách và
khách thực hiện cả hai điều trên. Gặp ngẫu nhiên một khách trong nhà sách. Tính xác suất để người này không mua sách, biết rằng người này đã hỏi nhân viên bán hàng?
Gọi A là "khách hỏi nhân viên bán hàng" và B là "khách mua sách".
Ta có:
.
Một loài sinh vật có các kiểu gen AA, Aa, aa theo tỉ lệ:
. Nếu cá thể bố (mẹ) có kiểu gen AA lai với các thể mẹ (bố) có kiểu gen AA thì các cá thể con đều có kiểu gen AA. Nếu cá thể bố (mẹ) có kiểu gen AA lai với các thể mẹ (bố) có kiểu gen Aa thì cá thể con có kiểu gen AA, Aa theo tỉ lệ
. Nếu cá thể bố (mẹ) có kiểu gen AA lai với các thể mẹ (bố) có kiểu gen aa thì cá thể con chỉ có các kiểu Aa. Chọn một cá thể con từ cá thể mẹ có kiểu gen AA. Tính xác suất ñể cá thể con có kiểu gen Aa.
Gọi B là biến cố cá thể con có kiểu gen Aa
A1 là biến cố cá thể bố có kiểu gen AA
A2 là biến cố cá thể bố có kiểu gen Aa
A3 là biến cố cá thể bố có kiểu gen aa
Hệ: A1, A2, A3 là hệ đầy đủ
Ta xác định được:
Do đó:
Tỷ lệ người nghiện thuốc là ở một vùng là
. Biết rằng tỷ lệ người bị viêm họng trong số những người nghiện thuốc là
, còn tỷ lệ người bị viêm họng trong số những người không nghiện là
. Lấy ngẫu nhiên một người thấy người ấy bị viêm họng. Nếu người đó không bị viêm họng, tính xác suất người đó nghiện thuốc lá.
Gọi A là "người nghiện thuốc" và B là "người viêm họng" thì từ đề bài ta có:
Cần tính xác suất là C = A|B.
Sử dụng công thức Baye ta có:
Gọi ta có:
Cho ba biến cố
độc lập từng đôi thỏa mãn
và
. Xác định
?
Ta có:
Vì A, B, C có vai trò như nhau nên