Cho hai biến cố
với
. Tính
?
Ta có:
Cho hai biến cố
với
. Tính
?
Ta có:
Cho hai biến cố
và
, với
. Tính
?
Ta có:
.
Có ba hộp giống nhau:
Hộp thứ nhất đựng 10 sản phẩm trong đó có 6 chính phẩm.
Hộp thứ hai đựng 15 sản phẩm trong đó có 10 chính phẩm.
Hộp thứ ba đựng 20 sản phẩm trong đó có 15 chính phẩm.
Lấy ngẫu nhiên một hộp và từ đó lấy ngẫu nhiên một sản phẩm. Tìm xác suất để lấy được chính phẩm?
Gọi A là biến cố: “Lấy được chính phẩm”. Biến cố A có thể xảy ra đồng thời với ba biến cố sau đây tạo nên một nhóm đầy đủ các biến cố:
- Sản phẩm lấy ra thuốc hộp I.
- Sản phẩm lấy ra thuốc hộp II.
- Sản phẩm lấy ra thuốc hộp III.
Vì theo giả thiết của bài toán, các biến cố ;
;
là đồng khả năng, do đó:
Xác suất có điều kiện của biến cố A khi các biến cố ;
;
xảy ra bằng:
Do đó:
Có 3 cửa hàng I, II, III cùng kinh doanh sản phẩm Y, trong đó thị phần của cửa hàng I, III như nhau và gấp đôi thị phần của cửa hàng II. Tỉ lệ sản phẩm loại A trong 3 cửa hàng lần lượt là
. Một khách hàng chọn ngẫu nhiên 1 cửa hàng và tử đó mua một sản phẩm. Giả sử khách hàng đã mua được sản phẩm loại A, hỏi khả năng người ấy đã mua được ở cửa hàng nào là nhiều nhất?
Gọi T: "Khách hàng mua được sản phẩm loại A"
Ai: "Mua ở cửa hàng i"
Ta có {A1, A2, A3} là một hệ đầy đủ các biến cố và xác định được:
Áp dụng công thức xác suất toàn phần ta có xác suất để khách hàng mua được sản phẩm loại A là:
Áp dụng công thức Bayes, ta có:
Ta thấy rằng P(A1|T) là lớn nhất tức là khả năng người ấy đã mua ở cửa hàng I là nhiều nhất.
Một xí nghiệp mỗi ngày sản xuất ra
sản phẩm trong đó có
sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).
Đáp án: 0,02
Một xí nghiệp mỗi ngày sản xuất ra sản phẩm trong đó có
sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).
Đáp án: 0,02
Xét các biến cố:
: Sản phẩm lấy ra lần thứ nhất bị lỗi.
Khi đó, ta có: ;
.
: Sản phẩm lấy ra lần thứ hai bị lỗi.
Khi sản phẩm lấy ra lần thứ nhất bị lỗi thì còn sản phẩm và trong đó có
sản phẩm lỗi nên ta có:
, suy ra
.
Khi sản phẩm lấy ra lần thứ nhất không bị lỗi thì còn sản phẩm trong đó có
sản phẩm lỗi nên ta có:
, suy ra
.
Khi đó, xác suất để sản phẩm lấy ra lần thứ hai bị lỗi là:
.
Đáp số: .
Cho hai biến cố
và
của một phép thử T. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được gọi là xác suất của
với điều kiện
, ký hiệu là
. Phát biểu nào sau đây đúng?
Nếu thì
.
Có hai hộp thuốc:
Hộp I có 2 vỉ thuốc ngoại và 5 vỉ thuốc nội.
Hộp II có 3 vỉ thuốc ngoại và 6 vỉ thuốc nội.
Từ hộp I và hộp II lần lượt lấy ra 2 vỉ thuốc và 1 vỉ thuốc. Từ 3 vỉ thuốc đó lại lấy ra một vỉ. Tính xác suất để vỉ lấy ra sau cùng là thuốc ngoại?
Gọi A1 là biến cố “vỉ thuốc lấy ra sau cùng là của hộp I”
A1 là biến cố “vỉ thuốc lấy ra sau cùng là của hộp II”
Ta có A1, A2 lập thành hệ đầy đủ các biến cố khi đó ta xác định được:
Gọi B là biến cố “vỉ thuốc lấy ra sau cùng là thuốc ngoại”.
Theo công thức xác suất toàn phần ta có:
.
Một hãng hàng không cho biết rằng
số khách đặt trước vé cho các chuyến đã định sẽ hoãn không đi chuyến bay đó. Do đó hãng đã đưa ra một chính sách là sẽ bán
ghế cho một chuyến bay mà trong đó mỗi chuyến chỉ trở được
khách hàng. Tìm xác suất để tất cả các khách đặt chỗ trước và không hoãn chuyến bay đều có ghế. Biết rằng xác suất bán được
vé hoặc 52 vé là như nhau và bằng
?
Gọi A là "bán được 52 vé", B là "bán được 51 vé" và C là "bán được nhiều nhất 50 vé".
Khi đó A, B, C tạo thành hệ đầy đủ.
Ta có
Gọi H là "khách đặt chỗ trước và không hoãn chuyến đều có ghế".
Biến cố xảy ra nếu có ít nhất 2 khách hủy chuyến, H|B xảy ra nếu có ít nhất 1 khách hủy chuyến. Tính trực tiếp xác suất của các sự kiện này đều khá phức tạp.
Do đó để cho đơn giản ta tìm .
Ta có:
Do đó:
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Có 2 xạ thủ loại I và 8 xạ thủ loại II, xác suất bắn trúng đích của các loại xạ thủ loại I là 0,9 và loại II là 0,7. Chọn ngẫu nhiên ra một xạ thủ và xạ thủ đó bắn một viên đạn. Tìm xác suất để viên đạn đó trúng đích.
Gọi A là biến cố "Viên đạn trúng đích".
là biến cố "Chọn xạ thủ loại I bắn".
là biến cố "Chọn xạ thủ loại II bắn".
Ta có tạo thành họ đầy đủ các biến cố.
Áp dụng công thức ta có:
Có hai hộp đựng phiếu thi, mỗi phiếu ghi một câu hỏi. Hộp thứ nhất có 15 phiếu và hộp thứ hai có 9 phiếu. Học sinh A đi thi chỉ thuộc 10 câu ở hộp thứ nhất và 8 câu ở hộp thứ hai. Giáo viên rút ngẫu nhiên ra 2 phiếu từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó cho học sinh A rút ngẫu nhiên ra 2 phiếu từ hộp thứ hai.
Gọi E1 là biến cố thầy giáo rút 2 câu thuộc từ hộp 1 bỏ sang hộp 2
Gọi E2 là biến cố thầy giáo rút 1 câu thuộc và 1 câu không thuộc từ hộp 1 bỏ sang hộp 2
Gọi E3 là biến cố thầy giáo rút 2 câu không thuộc từ hộp 1 bỏ sang hộp 2
Gọi C là biến cố sinh viên rút ra 2 câu thuộc từ hộp 2
Ta xác định được:
Thay vào công thức ta suy ra kết quả
Cửa hàng nhận trứng của ba cơ sở nuôi gà theo tỉ lệ
. Nếu tỉ lệ trứng hỏng của ba cơ sở là
thì xác suất để một quả trứng mua tại cửa hàng bị hỏng là bao nhiêu?
Khi mua một quả trứng của cửa hàng thì có một và chỉ một trong 3 biến cố xảy ra:
A1 lấy trứng của cơ sở I.
A2 lấy trứng của cơ sở II.
A3 lấy trứng của cơ sở III.
Xác suất của ba biến cố trên lần lượt là:
Gọi B là biến cố trứng mua tại cửa hàng bị hỏng.
Xác suất trứng hỏng tại ba cơ sở lần lượt là:
Do đó:
.
Hộp I: 5 bi trắng và 5 bi đen. Hộp II: 6 bi trắng và 4 bi đen. Bỏ hai viên bi từ hộp I sang hộp II. Sau đó lấy ra 1 viên bi. Giả sử lấy được bị trắng, tính xác suất để lấy được bi trắng của hộp I?
Gọi A là biến cố lấy được bi trắng
Gọi K1 là biến cố lấy bi ra từ hộp II của hộp I
Gọi K2 là biến cố lấy bi ra từ hộp II của hộp II
Ta xác định được:
Khi đó:
Vậy xác suất để lấy được bi trắng của hộp I là:
Hộp I có 4 viên bi đỏ, 2 viên bi xanh; hộp II có 3 viên bi đỏ, 3 viên bi xanh. Bỏ ngẫu nhiên một viên bi từ hộp I sang hộp II, sau đó lại bỏ ngẫu nhiên một viên bi từ hộp II sang hộp I. Cuối cùng rút ngẫu nhiên từ hộp I ra một viên bi. 1. Nếu viên rút ra sau cùng màu đỏ, tìm xác suất lúc ban đầu rút được viên bi đỏ ở hộp I cho vào hộp II?
Gọi D1, X1 tương ứng là "lấy được viên bi đỏ, xanh từ hộp I sang hộp II",
D2, X2 tương ứng là "lấy được viên bi đỏ, xanh từ hộp II sang hộp I".
Khi đó hệ D1D2, D1X2, X1D2, X1X2 tạo thành hệ đầy đủ.
Ta có:
Gọi A là "viên bi rút ra sau cùng là màu đỏ".
Ta xác định được:
Áp dụng công thức xác suất đầy đủ:
Ta cần tính xác suất
Cho hai biến cố
với
. Tính
?
Ta có:
Một cửa hàng sách ước lượng rằng: trong tổng số các khách hàng đến cửa hàng có
khách cần hỏi nhân viên bán hàng,
khách mua sách và
khách thực hiện cả hai điều trên. Gặp ngẫu nhiên một khách trong nhà sách. Tính xác suất để người này không mua sách, biết rằng người này đã hỏi nhân viên bán hàng?
Gọi A là "khách hỏi nhân viên bán hàng" và B là "khách mua sách".
Ta có:
.
Cho hai biến cố
và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Một nhóm học sinh có 30 học sinh, trong đó có 16 em học khá môn Toán, 25 em học khá môn Hóa học, 12 em học khá cả hai môn Toán và Hóa học. Chọn ngẫu nhiên một học sinh trong số đó. Tính xác suất để học sinh đó học khá môn Toán biết rằng học sinh đó học khá môn Hóa học?
Gọi A: “Học sinh đó học khá môn Toán”
Và B: “Học sinh đó học khá môn Hóa học”
Theo bài ra ta có:
Hộp I có 4 viên bi đỏ, 2 viên bi xanh; hộp II có 3 viên bi đỏ, 3 viên bi xanh. Bỏ ngẫu nhiên một viên bi từ hộp I sang hộp II, sau đó lại bỏ ngẫu nhiên một viên bi từ hộp II sang hộp I. Cuối cùng rút ngẫu nhiên từ hộp I ra một viên bi. 1. Tính xác suất để viên bi rút ra sau cùng màu đỏ?
Gọi D1, X1 tương ứng là "lấy được viên bi đỏ, xanh từ hộp I sang hộp II",
D2, X2 tương ứng là "lấy được viên bi đỏ, xanh từ hộp II sang hộp I".
Khi đó hệ D1D2, D1X2, X1D2, X1X2 tạo thành hệ đầy đủ.
Ta có:
Gọi A là "viên bi rút ra sau cùng là màu đỏ".
Ta xác định được:
Áp dụng công thức xác suất toàn phần:
Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,91
Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,91
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
3 cuốn sách lấy ra không cùng một loại
.
Để tìm số phần tử của , ta đi tìm số phần tử của biến cố
, với biến cố
là 3 cuốn sách lấy ra cùng một loại.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Dây chuyền lắp ráp nhận được các chi tiết do hai máy sản xuất. Trung bình máy thứ nhất cung cấp
chi tiết, máy thứ hai cung cấp
chi tiết. Biết
chi tiết do máy thứ nhất sản xuất đều đạt tiêu chuẩn và
chi tiết do máy thứ hai sản xuất là đạt tiêu chuẩn. Lấy ngẫu nhiên từ dây chuyển một sản phẩm, thấy nó đạt tiêu chuẩn. Tìm xác suất để sản phẩm đó do máy thứ nhất sản xuất.
Gọi A là biến cố chi tiết lấy từ dây chuyển đạt tiêu chuẩn.
Biến cố A có thể xảy ra đồng thời với một trong hai biến cố sau đây tạo nên một nhóm đầy đủ các biến cố.
H1 chi tiết máy do máy một sản xuất.
H2 chi tiết máy do máy hai sản xuất.
Như vậy xác suất để chi tiết máy dó máy một sản xuất bằng:
Theo dữ kiện đề bài cho ta có:
Do đó:
Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu? (kết quả làm tròn đến hàng phần trăm)
Đáp án : 0,93
Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu? (kết quả làm tròn đến hàng phần trăm)
Đáp án : 0,93
Gọi A là biến cố “qua được lần kiểm tra đầu tiên”
Gọi B là biến cố “qua được lần kiểm tra thứ 2”
Chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện trên, hay ta đi tính .
Ta có
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Một công ty may mặc có hai hệ thống máy chạy độc lập với nhau. Xác suất để hệ thống máy thứ nhất hoạt động tốt là 95%, xác suất để hệ thống máy thứ hai hoạt động tốt là 85%. Công ty chỉ có thể hoàn thành đơn hàng đúng hạn nếu ít nhất một trong hai hệ thống máy hoạt động tốt. Xác suất để công ty hoàn thành đúng hạn là
Gọi A là biến cố: "Hệ thống máy thứ nhất hoạt động tốt".
B là biến cố: "Hệ thống máy thứ hai hoạt động tốt".
C là biến cố: "Công ty hoàn thành đúng hạn".
Ta có là biến cố: "Hệ thống máy thứ nhất hoạt động không tốt".
là biến cố: "Hệ thống máy thứ hai hoạt động không tốt".
là biến cố: "Công ty hoàn thành không đúng hạn".
Vì và
là hai biến cố độc lập nên
và
là hai biến cố độc lập
Mà
.
Cho hai biến cố
và
với
. Biết ![]()
. Tính
?
Ta có công thức xác suất toàn phần tính là:
Trong một cửa hàng có 18 bóng đèn loại I và 2 bóng đèn loại II, các bóng đèn có hình dạng và kích thước như nhau. Một một người mua hàng lấy ngẫu nhiên lần lượt 2 bóng đèn (lấy không hoàn lại) trong cửa hàng.
a) Xác suất để lần thứ nhất lấy được bóng đèn loại II là
. Sai||Đúng
b) Xác suất để lần thứ hai lấy được bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II là
. Đúng||Sai
c) Xác suất để cả hai lần đều lấy được bóng đèn loại II là
. Sai||Đúng
d) Xác suất để ít nhất 1 lần lấy được bóng đèn loại I là
. Đúng||Sai
Trong một cửa hàng có 18 bóng đèn loại I và 2 bóng đèn loại II, các bóng đèn có hình dạng và kích thước như nhau. Một một người mua hàng lấy ngẫu nhiên lần lượt 2 bóng đèn (lấy không hoàn lại) trong cửa hàng.
a) Xác suất để lần thứ nhất lấy được bóng đèn loại II là . Sai||Đúng
b) Xác suất để lần thứ hai lấy được bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II là . Đúng||Sai
c) Xác suất để cả hai lần đều lấy được bóng đèn loại II là . Sai||Đúng
d) Xác suất để ít nhất 1 lần lấy được bóng đèn loại I là . Đúng||Sai
Xét các biến cố: A: "Lần thứ nhất lấy được bóng đèn loại II"; B: "Lần thứ hai lấy được bóng đèn loại II".
a) Xác suất đề lần thứ nhất lấy được bóng đèn loại II là: .
b) Sau khi lấy 1 bóng đèn loại II thì chỉ còn 1 bóng đèn loại II trong hộp. Suy ra xác suất để lần thứ hai lấy được quá bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II là: .
c) Khi đó, xác suất để cả hai lần đều lấy được bóng đèn loại II là:
.
d) Để ít nhất 1 lần lấy được bóng đèn loại I là:
.
Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 0,82
Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 0,82
Gọi là biến cố: "Chị Hoa bị nhiễm bệnh khi tiếp xúc người bệnh mà không đeo khẩu trang" và
: "Chị Hoa bị nhiễm bệnh khi tiếp xúc với người bệnh dù có đeo khẩu trang”.
Dễ thấy là hai biến cố độc lập.
Xác suất để chị Hoa không nhiễm bệnh trong cả hai lần tiếp xúc với người bệnh là
.
Gọi là xác suất để chị Hoa bị lây bệnh khi tiếp xúc người bệnh, ta có:
Cho hai biến cố
với
. Tính
?
Ta có:
Cho hai biến cố
,
với
. Phát biểu nào sau đây đúng?
Theo công thức xác suất toàn phần, ta có:
.
Một thùng hàng có 30 sản phẩm, trong đó có 4 chất lượng thấp. Lấy liên tiếp hai sản phẩm trong thùng sản phẩm trên, trong đó sản phẩm lấy ra ở lần thứ nhất không được bỏ lại vào thùng. Tính xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp?
Gọi A: “Sản phẩm lấy ra ở lần thứ nhất có chất lượng thấp”
Và B: “Sản phẩm lấy ra ở lần thứ hai có chất lượng thấp”.
Khi đó, xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp chính là:
Từ bài ra ta có:
Tan giờ học buổi chiều một sinh viên có
về nhà ngay, nhưng do giờ cao điểm nên có 30% ngày bị tắc đường nên bị về nhà muộn (từ 30 phút trở lên) còn
số ngày sinh viên đó vào quán Internet cạnh trường để chơi Games, những ngày này xác suất về nhà muộn là
. Còn lại những ngày khác sinh viên đó đi chơi với bạn bè có xác suất về muộn là
. Tính xác suất để trong một ngày nào đó sinh viên không về muộn.
Gọi B là biến cố sinh viên đó đi học về muộn
là biến cố sinh viên đó đi học không về muộn
E1 là biến cố tan học về nhà ngay
E2 là biến cố tan học đi chơi game
E3 là biến cố tan học về đi chơi với bạn
B có thể xảy ra một trong 3 biến cố
Cho hai biến cố
và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Một nhà máy sản xuất bóng đèn gồm 3 phân xưởng, phân xưởng 1 sản xuất 50% tổng số bóng đèn, phân xưởng 2 sản xuất 20% tổng số bóng đèn, phân xưởng 3 sản xuất 30% tổng số bóng đèn. Tỷ lệ phế phẩm tương ứng của các phân xưởng là 2%, 3%, 4%. Tính tỷ lệ phế phẩm chung của toàn nhà máy?
Để xác định tỷ lệ phế phẩm chung của toàn nhà máy, ta lấy ngẫu nhiên 1 sản phẩm từ lô hàng của nhà máy.
Tính xác suất để sản phẩm này là phế phẩm
Gọi lần lượt là các biến cố " Chọn được sản phẩm của phân xưởng 1,2,3".
Ta có là hệ biến cố xung khắc và đầy đủ.
Gọi B là biến cố "Lấy được phế phẩm" ta có:
Vậy tỷ lệ phế phẩm của nhà máy là
Một tổ có 15 sinh viên trong đó có 5 sinh viên học giỏi môn Toán. Cần chia làm 5 nhóm, mỗi nhóm 3 sinh viên. Tính xác suất để nhóm nào cũng có một sinh viên học giỏi môn Toán?
Gọi là biến cố 'nhóm thứ
có 1 người giỏi Toán' và
là sự kiện nhóm nào cũng có người giỏi Toán, thì dễ dàng nhận thấy:
Ta có:
Áp dụng công thức xác suất của tích ta có:
Một tập gồm 10 chứng từ, trong đó có 2 chứng từ không hợp lệ. Một cán bộ kế toán rút ngẫu nhiên 1 chứng từ và tiếp đó rút ngẫu nhiên 1 chứng từ khác để kiểm tra. Tính xác suất để cả 2 chứng từ rút ra đều hợp lệ?
Gọi A là biến cố cả 2 chứng từ rút ra đều hợp lệ
Theo yêu cầu của đầu bài ta phải tính xác xác suất P(A)
Nếu gọi Ai là biến cố chứng từ rút ra lần thứ i là hợp lệ} (i = 1,3).
Khi đó ta có:
Vì vậy các xác suất cần tìm là:
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Cho hai biến cố
và
, với
. Tính
?
Ta có:
.
Giả sử tỉ lệ người dân của tỉnh T nghiện thuốc lá là
; tỉ lệ người bị bệnh phổi trong số người nghiện thuốc lá là
, trong số người không nghiện thuốc lá là
. Tính xác suất mà người đó là nghiện thuốc lá khi biết bị bệnh phổi?
Gọi A là biến cố “người nghiện thuốc lá”, suy ra A là biến cố “người không nghiện thuốc lá”
Gọi B là biến cố “người bị bệnh phổi”
Để người mà ta gặp bị bệnh phổi thì người đó nghiện thuốc lá hoặc không nghiện thuốc lá.
Ta cần tính
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Xác suất mà người đó là nghiện thuốc lá khi biết bị bệnh phổi là
Theo công thức Bayes, ta có:
.
Như vậy trong số người bị bệnh phổi của tỉnh T có khoảng số người nghiện thuốc lá.
Cho hai biến cố
với
. Giá trị
bằng:
Ta có:
Theo công thức xác suất toàn phần, ta có:
Cho
và
là hai biến cố độc lập thoả mãn
và
. Khi đó,
bằng:
A và B là hai biến cố độc lập nên