Đề kiểm tra 45 phút Chương 6 Xác suất có điều kiện CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 6. Xác suất có điều kiện được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Trong học kỳ I năm học 2024 - 2025, sinh viên phải thi 4 học phần. Xác suất để sinh viên thi đạt một học phần trong mỗi lần thi đều là 0,8. Nếu thi không đạt học phần nào phải thi lại học phần đó. Tính xác suất để một sinh viên thi đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần.

    Gọi A_{i} là "đạt i học phần ở lần thi đầu".

    Khi đó, A_{0},A_{1},A_{2},A_{3},A_{4} tạo thành hệ đầy đủ và P\left( A_{i} ight) =
C_{4}^{i}.0,8^{i}.0,2^{4 - i}

    Gọi A là "đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần".

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = \sum_{i = 0}^{4}P\left( A_{i}
ight)P\left( A \mid A_{i} ight)

    = C_{4}^{0}.0,8^{0}.0,2^{4}.\left(
0,8^{4} ight) + C_{4}^{2}.0,8^{1}.0,2^{3}.\left( 0,8^{3} ight) +
C_{4}^{2}.0,8^{2}.0,2^{2}.\left( 0,8^{2} ight)

    + C_{4}^{3}.0,8^{3}.0,2^{1}.(0,8) +
C_{4}^{4}.0,8^{4}.0,2^{0}.\left( 0,8^{0} ight)

    \approx 0,8493 = 84,93\%

  • Câu 2: Nhận biết

    Cho hai biến cố A;B với P(A + B) = \frac{3}{4}. Tính P\left( \overline{A}.\overline{B}
ight)?

    Ta có: P\left( \overline{A}.\overline{B}
ight) = P\left( \overline{A + B} ight) = 1 - P(A + B) =
\frac{1}{4}

  • Câu 3: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,8;P(B) = 0,65;P\left( A \cap \overline{B} ight) = 0,55. Tính P\left( \overline{A} \cap B
ight)?

    Ta có:

    P\left( \overline{A} \cap B ight) +
P(A \cap B) = P(B)

    \Rightarrow P\left( \overline{A} \cap B
ight) = P(B) - P(A \cap B) = 0,65 - 0,25 = 0,4.

  • Câu 4: Vận dụng cao

    Có 3 cửa hàng I, II, III cùng kinh doanh sản phẩm Y, trong đó thị phần của cửa hàng I, III như nhau và gấp đôi thị phần của cửa hàng II. Tỉ lệ sản phẩm loại A trong 3 cửa hàng lần lượt là 70\%; 75\% ; 50\%. Một khách hàng chọn ngẫu nhiên 1 cửa hàng và tử đó mua một sản phẩm. Giả sử khách hàng đã mua được sản phẩm loại A, hỏi khả năng người ấy đã mua được ở cửa hàng nào là nhiều nhất?

    Gọi T: "Khách hàng mua được sản phẩm loại A"

    Ai: "Mua ở cửa hàng i"

    Ta có {A1, A2, A3} là một hệ đầy đủ các biến cố và xác định được:P\left( A_{1}
ight) = \frac{2}{5} = 0,4;P\left( A_{2} ight) = \frac{1}{5} =
0,2;P\left( A_{3} ight) = \frac{2}{5} = 0,4

    P\left( T|A_{1} ight) = 0,7;P\left(
A|A_{2} ight) = 0,75;P\left( T|A_{3} ight) = 0,5

    Áp dụng công thức xác suất toàn phần ta có xác suất để khách hàng mua được sản phẩm loại A là:

    P(T) = P\left( A_{1} ight)P\left(
T|A_{1} ight) + P\left( A_{2} ight)P\left( A|A_{2} ight) + P\left(
A_{3} ight)P\left( T|A_{3} ight)

    \Rightarrow P(T) = 0,4.0,7 + 0,2.0,75 +
0,4.0,5 = 0,63

    Áp dụng công thức Bayes, ta có:

    P\left( A_{1}|T ight) = \frac{P\left(
A_{1} ight)P\left( T|A_{1} ight)}{P(T)} = \frac{0,4.0,7}{0,63} =
0,4444

    P\left( A_{21}|T ight) = \frac{P\left(
A_{2} ight)P\left( T|A_{2} ight)}{P(T)} = \frac{0,2.0,75}{0,63} =
0,2381

    P\left( A_{3}|T ight) = \frac{P\left(
A_{3} ight)P\left( T|A_{3} ight)}{P(T)} = \frac{0,4.0,5}{0,63} =
0,3175

    Ta thấy rằng P(A1|T) là lớn nhất tức là khả năng người ấy đã mua ở cửa hàng I là nhiều nhất.

  • Câu 5: Thông hiểu

    Cho ba biến cố A;B;C độc lập từng đôi thỏa mãn P(A) = P(B) = P(C) =
pP(ABC) = 0. Xác định P\left( AB\overline{C} ight)?

    Ta có:

    P\left( AB\overline{C} ight) = P(AB) -
P(ABC) = p^{2}.

  • Câu 6: Thông hiểu

    Trong một cửa hàng có 18 bóng đèn loại I và 2 bóng đèn loại II, các bóng đèn có hình dạng và kích thước như nhau. Một một người mua hàng lấy ngẫu nhiên lần lượt 2 bóng đèn (lấy không hoàn lại) trong cửa hàng.

    a) Xác suất để lần thứ nhất lấy được bóng đèn loại II là \frac{9}{10}. Sai||Đúng

    b) Xác suất để lần thứ hai lấy được bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II là \frac{1}{19}. Đúng||Sai

    c) Xác suất để cả hai lần đều lấy được bóng đèn loại II là \frac{9}{190}. Sai||Đúng

    d) Xác suất để ít nhất 1 lần lấy được bóng đèn loại I là \frac{189}{190}. Đúng||Sai

    Đáp án là:

    Trong một cửa hàng có 18 bóng đèn loại I và 2 bóng đèn loại II, các bóng đèn có hình dạng và kích thước như nhau. Một một người mua hàng lấy ngẫu nhiên lần lượt 2 bóng đèn (lấy không hoàn lại) trong cửa hàng.

    a) Xác suất để lần thứ nhất lấy được bóng đèn loại II là \frac{9}{10}. Sai||Đúng

    b) Xác suất để lần thứ hai lấy được bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II là \frac{1}{19}. Đúng||Sai

    c) Xác suất để cả hai lần đều lấy được bóng đèn loại II là \frac{9}{190}. Sai||Đúng

    d) Xác suất để ít nhất 1 lần lấy được bóng đèn loại I là \frac{189}{190}. Đúng||Sai

    Xét các biến cố: A: "Lần thứ nhất lấy được bóng đèn loại II"; B: "Lần thứ hai lấy được bóng đèn loại II".

    a) Xác suất đề lần thứ nhất lấy được bóng đèn loại II là: P(A) = \frac{2}{20} = \frac{1}{10}.

    b) Sau khi lấy 1 bóng đèn loại II thì chỉ còn 1 bóng đèn loại II trong hộp. Suy ra xác suất để lần thứ hai lấy được quá bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II là: P\left( B|A ight) = \frac{1}{19}.

    c) Khi đó, xác suất để cả hai lần đều lấy được bóng đèn loại II là:

    P(C) = P(A \cap B) = P(A).P\left( B|A
ight) = \frac{1}{10}.\frac{1}{19} = \frac{1}{190}.

    d) Để ít nhất 1 lần lấy được bóng đèn loại I là:

    P\left( \overline{C} ight) = 1 - P(C) =
1 - \frac{1}{190} = \frac{189}{190}.

  • Câu 7: Nhận biết

    Cho hai biến cố AB với 0 <
P(A) < 1. Biết P(A) =0,1;P\left( \overline{A} ight) = 0,9;P\left( B|A ight) = 0,3;P\left(B|\overline{A} ight) = 0,6. Tính P(B)?

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,1.0,3 + 0,9.0,6 =
0,57

  • Câu 8: Nhận biết

    Cho AB là các biến cố của phép thử T. Biết rằng P(A) > 0;0 < P(B) <
1. Xác suất của biến cố B với điều kiện biến cố A đã xảy ra được tính theo công thức nào sau đây?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

  • Câu 9: Vận dụng

    Tung một con xúc sắc hai lần độc lập nhau. Biết rằng lần tung thứ nhất được số chấm chẵn. Tính xác suất tổng số chấm hai lần tung bằng 4?

    Gọi Ti: "Tổng số nốt hai lần tung bằng i" (i = 1, 6)

    Nj,k: "Số nốt trên lần tung thứ j bằng k" (j = 1, 2; k = 1, 6)

    Ta tìm

    P\left( T_{i}|N_{1,2} \cup N_{1,4} \cup N_{1,6} ight) = \frac{P\left( N_{1,2} \cup N_{2;2} ight)}{P\left(N_{1,2} \cup N_{1,4} \cup N_{1,6} ight)}= \dfrac{\left( \dfrac{1}{6}ight)^{2}}{\dfrac{1}{2}} = \dfrac{1}{18}

  • Câu 10: Nhận biết

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó công thức xác suất toàn phần tính P(A) là:

    Ta có công thức xác suất toàn phần tính P(A) là:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)

  • Câu 11: Thông hiểu

    Dây chuyền lắp ráp nhận được các chi tiết do hai máy sản xuất. Trung bình máy thứ nhất cung cấp 60\% chi tiết, máy thứ hai cung cấp 40\% chi tiết. Biết 90\% chi tiết do máy thứ nhất sản xuất đều đạt tiêu chuẩn và 85\% chi tiết do máy thứ hai sản xuất là đạt tiêu chuẩn. Lấy ngẫu nhiên từ dây chuyển một sản phẩm, thấy nó đạt tiêu chuẩn. Tìm xác suất để sản phẩm đó do máy thứ nhất sản xuất.

    Gọi A là biến cố chi tiết lấy từ dây chuyển đạt tiêu chuẩn.

    Biến cố A có thể xảy ra đồng thời với một trong hai biến cố sau đây tạo nên một nhóm đầy đủ các biến cố.

    H1 chi tiết máy do máy một sản xuất.

    H2 chi tiết máy do máy hai sản xuất.

    Như vậy xác suất để chi tiết máy dó máy một sản xuất bằng:

    P\left( H_{1}|A ight) = \frac{P\left(
H_{1} ight).P\left( A|H_{1} ight)}{P\left( H_{1} ight).P\left(
A|H_{1} ight) + P\left( H_{2} ight).P\left( A|H_{2}
ight)}

    Theo dữ kiện đề bài cho ta có:\left\{
\begin{matrix}
P\left( H_{1} ight) = 0,6;P\left( H_{2} ight) = 0,4 \\
P\left( A|H_{1} ight) = 0,9;P\left( A|H_{2} ight) = 0,85 \\
\end{matrix} ight.

    Do đó:

    P\left( H_{1}|A ight) =
\frac{0,6.0,9}{0,6.0,9 + 0,4.0,85} = 0,614

  • Câu 12: Vận dụng cao

    Có 3 hộp đựng bi: hộp thứ nhất có 3 bi đỏ, 2 bi trắng; hộp thứ hai có 2 bi đỏ, 2 bi trắng; hộp thứ ba không có viên nào. Lấy ngẫu nhiên 1 viên bi từ hộp thứ nhất và 1 viên bi từ hộp thứ hai bỏ vào hộp thứ ba. Sau đó từ hộp thứ ba lấy ngẫu nhiên ra 1 viên bi. Biết rằng viên bi lấy ra từ hộp thứ ba màu đỏ, tính xác suất để lúc đầu ta lấy được viên bi đỏ từ hộp thứ nhất bỏ vào hộp thứ ba?

    Gọi A1, A2 lần lượt là "lấy bi đỏ từ hợp thứ 1 (thứ 2) bỏ vào hộp thứ ba" thì A_{1}A_{2};\overline{A_{1}}A_{2};A_{1}\overline{A_{2}};\overline{A_{1}}\overline{A_{2}} tạo thành một hệ đầy đủ.

    Ta có: \left\{ \begin{matrix}
P\left( A_{1}A_{2} ight) = 0,3;P\left( \overline{A_{1}}A_{2} ight) =
0,2 \\
P\left( A_{1}\overline{A_{2}} ight) = 0,3;P\left(
\overline{A_{1}}\overline{A_{2}} ight) = 0,2 \\
\end{matrix} ight.

    Gọi A "lấy ra từ hộp 3 một viên bi màu đỏ". Ta có:

    P\left( A|A_{1}A_{2} ight) = 1;P\left(
A|\overline{A_{1}}A_{2} ight) = 0,5

    P\left( A|A_{1}\overline{A_{2}} ight)
= 0,5;P\left( A|\overline{A_{1}}\overline{A_{2}} ight) =
0

    Áp dụng công thức xác suất đầy đủ ta có:

    P(A) = P\left( A_{1}A_{2} ight)P\left(
A|A_{1}A_{2} ight) + P\left( \overline{A_{1}}A_{2} ight)P\left(
A|\overline{A_{1}}A_{2} ight)

    + P\left(
\overline{A_{1}}\overline{A_{2}} ight)P\left(
A|\overline{A_{1}}\overline{A_{2}} ight) + P\left(
A_{1}\overline{A_{2}} ight)P\left( A_{1}\overline{A_{2}}
ight)

    = 0,3.1 + 0,3.0,5 + 0,2.0,5 + 0,2.0 =
0,55

    Gọi B là sự kiện cần tính xác suất.

    Dễ thấy B = \left( A_{1}A_{2} +
\overline{A_{1}}A_{2} ight)|A. Theo công thức Bayes ta có:

    P(B) = \frac{P\left\lbrack \left(
A_{1}A_{2} + \overline{A_{1}}A_{2} ight)A
ightbrack}{P(A)}

    = \frac{P\left\lbrack \left( A_{1}A_{2}
ight)A ightbrack + P\left\lbrack \left( \overline{A_{1}}A_{2}
ight)A ightbrack}{P(A)}

    = \frac{P\left( A_{1}A_{2}
ight).P\left( A|A_{1}A_{2} ight) + P\left( \overline{A_{1}}A_{2}
ight).P\left( A|\overline{A_{1}}A_{2} ight)}{P(A)}

    = \frac{0,3.1 + 0,2.0,5}{0,55} =
\frac{9}{11}

  • Câu 13: Nhận biết

    Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. Hùng lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa.

    Xét các biến cố:

    A: "Quả bóng lấy ra lần đầu có số chẵn"

    B: "Quả bóng lấy ra lần hai có số lẻ".

    Xác định biến cố E = B|A: "biến cố B với điều kiện biết A đã xảy ra".

    Ta có:

    A = \left\{
(2;1),(2;3),(2;4),(4;1),(4;2),(4;3) ight\}

    B = \left\{
(1;1),(1;3),(2;1),(2;3),(3;1),(3;3),(4;1),(4;3) ight\}

    Khi biến cố B xảy ra, thì không gian mẫu mới là B.

    Khi đó, biến cố E = B|A = A \cap B =
\left\{ (2;1),(2;3),(4;1),(4;3) ight\}

  • Câu 14: Nhận biết

    Cho hai biến cố AB với P(B) =
0,8;P\left( A|B ight) = 0,7,P\left( A|\overline{B} ight) =
0,45. Tính P(A)?

    Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,8.0,7 + 0,2.0,45 =
0,65

  • Câu 15: Thông hiểu

    Cho ba biến cố A;B;C độc lập từng đôi thỏa mãn P(A) = P(B) = P(C) =
pP(ABC) = 0. Xác định P\left( \overline{A}\overline{B}\overline{C}
ight)?

    Ta có:

    P\left( A\overline{B}\overline{C}
ight) = P\left( A\overline{B} ight) - P\left( A\overline{B}C
ight)

    = p(1 - p) - p^{2} = p -
2p^{2}

    Vì A, B, C có vai trò như nhau nên P\left( A\overline{B}C ight) = P\left(
AB\overline{C} ight)

    \Rightarrow P\left(
\overline{A}\overline{B}\overline{C} ight) = P\left(
\overline{B}\overline{C} ight) - P\left( A\overline{B}\overline{C}
ight)

    = (1 - p)^{2} - p - 2p^{2} = 3p^{2} - 3p
+ 1

  • Câu 16: Nhận biết

    Hộp thứ nhất chứa 3 viên bi đen và 2 viên bi trắng. Hộp thứ hai chứa 4 viên bi đen và 5 viên bi trắng. Các viên bi có cùng kích thước và khối lượng. Bạn Mai lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.

    Gọi A: "Viên bi lấy ra lần thứ nhất là bi đen"

    Và B: "Viên bi lấy ra lần thứ hai là bi trắng".

    Biết rằng biến cố A xảy ra, tính xác suất của biến cố B?

    Nếu biến cố A xảy ra thì bạn Mai lấy viên bi đen từ hộp thứ nhất bỏ vào hộp thứ hai.

    Khi đó hộp thứ hai có 5 viên bi đen và 5 viên bi trắng.

    Do đó, xác suất của biến cố B là: P(B) =
\frac{1}{2}.

  • Câu 17: Nhận biết

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,3;P(B) = 0,6;P\left( A|B ight) =
0,4 thì P\left( B|A
ight) bằng bao nhiêu?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,6.0,4}{0,3} = \frac{4}{5}

  • Câu 18: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( \overline{B}|A ight)?

    Ta có:

    P\left( \overline{B}|A ight) = 1 -
P\left( B|A ight)

    = 1 - \frac{P(A \cap B)}{P(A)} = 1 -
\frac{0,3}{0,6} = \frac{1}{2}.

  • Câu 19: Thông hiểu

    Một cuộc khảo sát 1000 người về hoạt động thể dục thấy có 80\% số người thích đi bộ và 60\% thích đạp xe vào buổi sáng và tất cả mọi người đều tham gia ít nhất một trong hai hoạt động trên. Chọn ngẫu nhiên một người hoạt động thể dục. Nếu gặp được người thích đi xe đạp thì xác suất mà người đó không thích đi bộ là bao nhiêu?

    Gọi A là "người thích đi bộ", B là "người thích đi xe đạp"

    Theo giả thiết: P(A) = 0,8' P(B) = 0,6; P(A + B) = 1.

    Ta có:

    P\left( \bar{A}\mid B ight) =
\frac{P\left( \bar{A}B ight)}{P(B)} = \frac{P(B) -
P(AB)}{P(B)}

    = \frac{P(B) + \lbrack P(A + B) - P(A) -
P(B)brack}{P(B)}

    = \frac{P(A + B) - P(A)}{P(B)} = \frac{1
- 0,8}{0,6} \simeq 0,3333

  • Câu 20: Thông hiểu

    Điều trị phương pháp I, phương pháp II, phương pháp III tương ứng cho 5000,3000,2000 bệnh nhân. Xác suất khỏi của các phương pháp tương ứng là 0,85;0,9;0,95. Tìm xác suất khỏi của 3 phương pháp khi điều trị cho bệnh nhân

    Tổng số bệnh nhân điều trị là 10000 người

    Gọi A1 là biến cố bệnh nhân điều trị bởi phương pháp thứ I.

    A2 là biến cố bệnh nhân điều trị bởi phương pháp thứ II.

    A3 là biến cố bệnh nhân điều trị bởi phương pháp thứ III.

    Khi đó: P\left( A_{1} ight) =
0,5;P\left( A_{2} ight) = 0,3;P\left( A_{3} ight) = 0,2

    Gọi B là biến cố điều trị khỏi bệnh.

    Khi đó P\left( B|A_{1} ight) =
0,85;P\left( B|A_{2} ight) = 0,9;P\left( B|A_{3} ight) =
0,95

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P\left( A_{1} ight).P\left(
B|A_{1} ight) + P\left( A_{2} ight).P\left( B|A_{2} ight) +
P\left( A_{3} ight).P\left( B|A_{3} ight)

    \Rightarrow P(A) = 0,5.0,85 + 0,3.0,9 +
0,2.0,95 = 0,885

  • Câu 21: Thông hiểu

    Cho 2 lô sản phẩm. Lô I có 20 sản phẩm, trong đó có 15 sản phẩm tốt và 5 sản phẩm lỗi. Lô II có 20 sản phẩm, trong đó có 10 sản phẩm tốt và 10 sản phẩm lỗi. Lấy ngẫu nhiên 1 lô và từ lô này lấy ngầu nhiên ra 1 sản phẩm. Các khẳng định sau đúng hay sai?

    a) Xác suất để sản phẩm lấy ra là sản phẩm tốt bằng \frac{5}{8}.Đúng||Sai

    b) Xác suất để sản phẩm lấy ra là sản phẩm lỗi bằng \frac{3}{8}. Đúng||Sai

    c) Giả sử sản phẩm lấy ra là sản phẩm tốt. Xác suất đế sản phẩm đó của lô thứ II bằng \frac{2}{5}. Đúng||Sai

    d) Giả sử sản phẩm lấy ra là phế phẩm. Xác suất đế sản phẩm đó của lô thứ I bằng \frac{1}{2}. Sai||Đúng

    Đáp án là:

    Cho 2 lô sản phẩm. Lô I có 20 sản phẩm, trong đó có 15 sản phẩm tốt và 5 sản phẩm lỗi. Lô II có 20 sản phẩm, trong đó có 10 sản phẩm tốt và 10 sản phẩm lỗi. Lấy ngẫu nhiên 1 lô và từ lô này lấy ngầu nhiên ra 1 sản phẩm. Các khẳng định sau đúng hay sai?

    a) Xác suất để sản phẩm lấy ra là sản phẩm tốt bằng \frac{5}{8}.Đúng||Sai

    b) Xác suất để sản phẩm lấy ra là sản phẩm lỗi bằng \frac{3}{8}. Đúng||Sai

    c) Giả sử sản phẩm lấy ra là sản phẩm tốt. Xác suất đế sản phẩm đó của lô thứ II bằng \frac{2}{5}. Đúng||Sai

    d) Giả sử sản phẩm lấy ra là phế phẩm. Xác suất đế sản phẩm đó của lô thứ I bằng \frac{1}{2}. Sai||Đúng

    Gọi B_{1} là biến cố: “Lô lấy ra là lô I”

    Gọi B_{2} là biến cố: “Lô lấy ra là lô II”

    a) Gọi A là biến cố: “Sản phẩm lấy ra là sản phẩm tốt”

    Ta có: P(A) = P\left( B_{1}
ight).P\left( A|B_{1} ight) + P\left( B_{2} ight).P\left( A|B_{2}
ight)

    \left\{ \begin{matrix}P\left( B_{1} ight) = \dfrac{1}{2};P\left( B_{2} ight) = \dfrac{1}{2}\\P\left( A|B_{1} ight) = \dfrac{15}{20} = \dfrac{3}{4} \\P\left( A|B_{2} ight) = \dfrac{10}{20} = \dfrac{1}{2} \\\end{matrix} ight.

    Vậy P(A) = \frac{1}{2}.\frac{3}{4} +
\frac{1}{2}.\frac{1}{2} = \frac{5}{8}

    b) Ta có: P(A) = \frac{5}{8} \Rightarrow
P\left( \overline{A} ight) = 1 - P(A) = 1 - \frac{5}{8} =
\frac{3}{8}

    c) Ta có: \left\{ \begin{matrix}P\left( B_{2} ight) = \dfrac{1}{2};P\left( A|B_{2} ight) =\dfrac{1}{2} \\P(A) = \dfrac{5}{8} \\\end{matrix} ight.

    P\left( B_{2}|A ight) = \frac{P\left(
B_{2} ight).P\left( A|B_{2} ight)}{P(A)} =
\frac{0,5.0,5}{\frac{5}{8}} = \frac{2}{5}

    d) Ta có: \left\{ \begin{matrix}P(A) = \dfrac{5}{8};P\left( \overline{A} ight) = \dfrac{3}{8} \\P\left( B_{1} ight) = \dfrac{1}{2};P\left( \overline{A}|B_{1} ight) =\dfrac{1}{4} \\\end{matrix} ight.

    P\left( B_{1}|A ight) = \frac{P\left(B_{1} ight).P\left( \overline{A}|B_{1} ight)}{P\left( \overline{A}ight)} = \frac{0,5.0,25}{\dfrac{3}{8}} = \dfrac{1}{3}.

  • Câu 22: Vận dụng

    Ba máy tự động sản xuất cùng một loại chi tiết, trong đó máy I sản xuất 25\%, máy II sản xuất 30\% và máy III sản xuất 45\% tổng sản lượng. Tỷ lệ phế phẩm của các máy lần lượt là 0,1\%;0,2\%;0,4\%. Tìm xác suất để khi chọn ngẫu nhiên ra 1 sản phẩm từ kho thì chi tiết phế phẩm đó do máy II sản xuất?

    Gọi Ai: “Sản phẩm do máy i sản xuất”

    A: “Sản phẩm là phế phẩm”

    Ta có: A1, A2, A3 là một hệ đầy đủ các biến cố và

    P\left( A_{1} ight) = 0,25;P\left(
A_{2} ight) = 0,3;P\left( A_{3} ight) = 0,45

    P\left( A|A_{1} ight) = 0,001;P\left(
A|A_{2} ight) = 0,002;P\left( A|A_{3} ight) = 0,004

    Theo công thức xác suất toàn phần ta có:

    P(A) = P\left( A_{1} ight)P\left(
A|A_{1} ight) + P\left( A_{2} ight)P\left( A|A_{3} ight) + P\left(
A_{3} ight)P\left( A|A_{3} ight) = 0,00265

    Theo công thức Bayes ta có:

    P\left( A_{2}|A ight) = \frac{P\left(
A|A_{2} ight).P\left( A_{2} ight)}{P(A)} = 0,226

  • Câu 23: Vận dụng

    Một học sinh làm 2 bài tập kế tiếp. Xác suất làm đúng bài thứ nhất là 0,7. Nếu làm đúng bài thứ nhất thì khả năng làm đúng bài thứ hai là 0,8. Nhưng nếu làm sai bài thứ nhất thì khả năng làm đúng bài thứ hai là 0,2. Tính xác suất học sinh đó làm đúng cả hai bài?

    Gọi A: “Làm đúng bài thứ nhất”.

    Và B: “Làm đúng bài thứ hai”

    Khi đó biến cố: “làm đúng cả hai bài” là AB

    Theo bài ta có: P(A) = 0,7;P\left( B|A
ight) = 0,8;P\left( B|\overline{A} ight) = 0,2

    Do đó:

    P\left( \overline{A} ight) = 1 - P(A)
= 0,3

    P\left( \overline{B}|A ight) = 1 -
P\left( B|A ight) = 1 - 0,8 = 0,2

    P\left( \overline{B}|\overline{A}
ight) = 1 - P\left( B|\overline{A} ight) = 1 - 0,2 =
0,8

    Ta có sơ đồ hình cây như sau:

    Vậy P(AB) = 0,8.0,7 = 0,56

  • Câu 24: Thông hiểu

    Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng 0,840,16. do có nhiễu trên đường truyền nên \frac{1}{6} tín hiệu A bị méo và thu được như tín hiệu B còn \frac{1}{8} tín hiệu B bị méo và thu được như A. Tìm xác suất thu được tín hiệu A?

    Gọi A, B lần lượt là "phát ra tín hiệu A, B".

    Khi đó A, B tạo thành hệ đầy đủ.

    P(A) = 0,84;P(B) = 0,16

    Gọi C là "thu được tín hiệu A".

    Khi đó: P\left( C|A ight) = \frac{5}{6};P\left( C|B
ight) = \frac{1}{8}

    Áp dụng công thức xác suất toàn phần ta có:

    P(C) = P(A).P\left( C|A ight) +
P(B).P\left( C|B ight)

    \Rightarrow P(C) = 0,84.\frac{5}{6} +
0,16.\frac{1}{8} = 0,72.

  • Câu 25: Vận dụng

    Trong một đợt kiểm tra sức khoẻ, có một loại bệnh X mà tỉ lệ người mắc bệnh là 0,2\% và một loại xét nghiệm Y mà ai mắc bệnh X khi xét nghiệm Y cũng có phản ứng dương tính. Tuy nhiên, có 6\% những người không bị bệnh X lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Giả uử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh X là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?

    Đáp án : 0,03

    Đáp án là:

    Trong một đợt kiểm tra sức khoẻ, có một loại bệnh X mà tỉ lệ người mắc bệnh là 0,2\% và một loại xét nghiệm Y mà ai mắc bệnh X khi xét nghiệm Y cũng có phản ứng dương tính. Tuy nhiên, có 6\% những người không bị bệnh X lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Giả uử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh X là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?

    Đáp án : 0,03

    Xét các biến cố:

    A : "Người được chọn mắc bệnh X ";

    B : "Người được chọn có phản ứng dương tính với xét nghiệm Y".

    Theo giả thiết ta có:

    P(A) = 0,002;P\left( \overline{A} ight)
= 1 - 0,002 = 0,998;

    P(B \mid A) = 1;P\left( B \mid
\overline{A} ight) = 0,06

    Theo công thức Bayes, ta có:

    P(A \mid B) = \frac{P(A) \cdot P(B \mid
A)}{P(A) \cdot P(B \mid A) + P\left( \overline{A} ight).P\left( B \mid
\overline{A} ight)}

    = \frac{0,002 \cdot 1}{0,002 \cdot 1 +
0,998 \cdot 0,06} \approx 0,03

    Vậy nếu người được chọn có phản ứng dương tính với xét nghiệm Y thì xác suất bị mắc bệnh X của người đó là khoảng 0,03.

  • Câu 26: Nhận biết

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P\left(
\overline{A}B ight)?

    Ta có:

    P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

    \Rightarrow P\left( \overline{A}B
ight) = P(B) - P(AB) = \frac{5}{12}

  • Câu 27: Nhận biết

    Cho hai biến cố AB với 0 <
P(A) < 1. Khi đó công thức xác suất toàn phần tính P(B) là:

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

  • Câu 28: Thông hiểu

    Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng 0,840,16. do có nhiễu trên đường truyền nên \frac{1}{6} tín hiệu A bị méo và thu được như tín hiệu B còn \frac{1}{8} tín hiệu B bị méo và thu được như A. Tìm xác suất thu được tín hiệu A?

    Gọi A, B lần lượt là "phát ra tín hiệu A, B".

    Khi đó A, B tạo thành hệ đầy đủ.

    P(A) = 0,84;P(B) = 0,16

    Gọi C là "thu được tín hiệu A". Khi đó: P\left( C|A ight) = \frac{5}{6};P\left( C|B
ight) = \frac{1}{8}

    Áp dụng công thức xác suất toàn phần ta có:

    P(C) = P(A).P\left( C|A ight) +
P(B).P\left( C|B ight)

    \Rightarrow P(C) = 0,84.\frac{5}{6} +
0,16.\frac{1}{8} = 0,72.

    Ta cần tính P(A|C). Áp dụng công thức Bayes ta có:

    P\left( A|C ight) = \frac{P(A)P\left(C|A ight)}{P(C)} = \dfrac{0,84.\dfrac{5}{6}}{0,72} =\dfrac{35}{36}

  • Câu 29: Thông hiểu

    Một nhóm học sinh có 30 học sinh, trong đó có 16 em học khá môn Toán, 25 em học khá môn Hóa học, 12 em học khá cả hai môn Toán và Hóa học. Chọn ngẫu nhiên một học sinh trong số đó. Tính xác suất để học sinh đó học khá môn Toán biết rằng học sinh đó học khá môn Hóa học?

    Gọi A: “Học sinh đó học khá môn Toán”

    Và B: “Học sinh đó học khá môn Hóa học”

    Theo bài ra ta có:

    P(A) = \frac{16}{30};P(B) =
\frac{25}{30};P(AB) = \frac{12}{30}

    \Rightarrow P\left( A|B ight) =
\frac{P(AB)}{P(B)} = \frac{12}{25} = 0,48

  • Câu 30: Vận dụng

    Phòng thi đánh giá năng lực có 10 học sinh trong đó có 2 học sinh giỏi (trả lời 100% các câu hỏi), 3 học sinh khá (trả lời 80% các câu hỏi), 5 học sinh trung bình (trả lời 50% các câu hỏi). Gọi ngẫu nhiên một học sinh vào thi và phát đề có 4 câu hỏi (được lấy ngẫu nhiên từ 20 câu). Thấy học sinh này trả lời được cả 4 câu, tính xác suất để học sinh đó là học sinh khá? Xác suất gần bằng số nào sau đây?

    Gọi A_{1};A_{2};A_{3} lần lượt là các biến cố gọi một học sinh Giỏi, Khá, Trung Bình

    Nên A_{1};A_{2};A_{3} là hệ biến cố đầy đủ.

    Gọi B “học sinh đó trả lời được 4 câu hỏi”

    Ta có: \left\{ \begin{matrix}
P\left( A_{1} ight) = \frac{C_{2}^{1}}{C_{10}^{1}} = \frac{1}{5} \\
P\left( A_{2} ight) = \frac{C_{3}^{1}}{C_{10}^{1}} = \frac{3}{10} \\
P\left( A_{3} ight) = \frac{C_{5}^{1}}{C_{10}^{1}} = \frac{1}{2} \\
\end{matrix} ight.

    Ta lại có:

    2 học sinh Giỏi (trả lời 100% các câu hỏi) ⇒ Trả lời 20 câu hỏi

    3 học sinh Khá (trả lời 80% các câu hỏi) ⇒ Trả lời 20.80\% = 16 câu hỏi.

    5 học sinh Trung Bình (trả lời 50% các câu hỏi) ⇒ Trả lời 20.50\% = 10 câu hỏi.

    Từ đó: \left\{ \begin{matrix}P\left( B|A_{1} ight) = \dfrac{C_{20}^{4}}{C_{20}^{4}} = 1 \\P\left( B|A_{2} ight) = \dfrac{C_{16}^{4}}{C_{20}^{4}} =\dfrac{364}{969} \\P\left( B|A_{3} ight) = \dfrac{C_{10}^{4}}{C_{20}^{4}} = \dfrac{14}{323}\\\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần:

    P(B) = P\left( B|A_{1} ight).P\left(
A_{1} ight) + P\left( B|A_{2} ight).P\left( A_{2} ight) + P\left(
B|A_{3} ight).P\left( A_{3} ight)

    \Rightarrow P(B) = 1.\frac{1}{5} +
\frac{364}{969}.\frac{3}{10} + \frac{14}{323}.\frac{1}{2} =
\frac{108}{323}

    Xác suất để sinh viên đó là sinh viên khá là P\left( A_{2}|B ight)

    Áp dụng công thức Bayes ta có:

    P\left( A_{2}|B ight) = \frac{P\left(
B|A_{2} ight).P\left( A_{2} ight)}{P(B)}

    \Rightarrow P\left( A_{2}|B ight) =\dfrac{\dfrac{364}{969}.\dfrac{3}{10}}{\dfrac{108}{323}} = \dfrac{91}{270}\approx 0,337

  • Câu 31: Thông hiểu

    Trong một trường học, tỉ lệ học sinh nữ là 53\%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia câu lạc bộ M lần lượt là 21\%17\%. Chọn ngẫu nhiên 1 học sinh của trường. Tính xác suất học sinh đó có tham gia câu lạc bộ M.

    Gọi A: “Học sinh được chọn là nữ” ⇒\overline{A} : “Học sinh được chọn là nam”

    B: “học sinh được chọn có tham gia câu lạc bộ M”.

    Từ giả thiết ta có:

    \left\{ \begin{matrix}
P(A) = 0,53 \Rightarrow P\left( \overline{A} ight) = 1 - 0,53 = 0,47
\\
P\left( B|A ight) = 0,21 \\
P\left( B|\overline{A} ight) = 0,17 \\
\end{matrix} ight.

    Theo công thức xác suất toàn phần, ta có xác suất học sinh được chọn có tham gia câu lạc bộ M là:

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,53.0,21 + 0,47.0,17
= \frac{239}{1250}.

  • Câu 32: Thông hiểu

    Tan giờ học buổi chiều một sinh viên có 60\% về nhà ngay, nhưng do giờ cao điểm nên có 30% ngày bị tắc đường nên bị về nhà muộn (từ 30 phút trở lên) còn 20\% số ngày sinh viên đó vào quán Internet cạnh trường để chơi Games, những ngày này xác suất về nhà muộn là 80\%. Còn lại những ngày khác sinh viên đó đi chơi với bạn bè có xác suất về muộn là 90\%. Tính xác suất để trong một ngày nào đó sinh viên không về muộn.

    Gọi B là biến cố sinh viên đó đi học về muộn

    \overline{B} là biến cố sinh viên đó đi học không về muộn

    E1 là biến cố tan học về nhà ngay = > P\left( E_{1} ight) = 0,6,P\left( B|E_{1}
ight) = 0,3

    E2 là biến cố tan học đi chơi game = > P\left( E_{2} ight) = 0,2,P\left( B|E_{2}
ight) = 0,8

    E3 là biến cố tan học về đi chơi với bạn = > P\left( E_{3} ight) = 0,2,P\left( B|E_{3}
ight) = 0,9

    B có thể xảy ra một trong 3 biến cố

    P(B) = P\left( E_{1} ight).P\left(
B|E_{1} ight) + P\left( E_{2} ight).P\left( B|E_{2} ight) +
P\left( E_{3} ight).P\left( B|E_{3} ight)

    = > P(B) = 0,52

    = > P\left( \overline{B} ight) = 1
- 0,52 = 0,48

  • Câu 33: Vận dụng

    Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 0,82

    Đáp án là:

    Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 0,82

    Gọi A là biến cố: "Chị Hoa bị nhiễm bệnh khi tiếp xúc người bệnh mà không đeo khẩu trang" và B : "Chị Hoa bị nhiễm bệnh khi tiếp xúc với người bệnh dù có đeo khẩu trang”.

    Dễ thấy \overline{A},\overline{B} là hai biến cố độc lập.

    Xác suất để chị Hoa không nhiễm bệnh trong cả hai lần tiếp xúc với người bệnh là

    P(\overline{A}\overline{B}) =
P(\overline{A}) \cdot P(\overline{B}) = 0,2 \cdot 0,9 =
0,18.

    Gọi P là xác suất để chị Hoa bị lây bệnh khi tiếp xúc người bệnh, ta có:

    P = 1 - P(\overline{A}\overline{B}) = 1
- 0,18 = 0,82.

  • Câu 34: Nhận biết

    Cho hai biến cố ABcủa một phép thử T. Xác suất của biến cố A với điều kiện biến cố B đã xảy ra được gọi là xác suất của A với điều kiện B, ký hiệu là P\left( \left. \ A ight|B ight). Phát biểu nào sau đây đúng?

    Nếu P(B) > 0 thì P\left( \left. \ A ight|B ight) =
\frac{P(A).P\left( \left. \ B ight|A ight)}{P(B)}.

  • Câu 35: Vận dụng cao

    Một tổ có 15 sinh viên trong đó có 5 sinh viên học giỏi môn Toán. Cần chia làm 5 nhóm, mỗi nhóm 3 sinh viên. Tính xác suất để nhóm nào cũng có một sinh viên học giỏi môn Toán?

    Gọi A_{i} là biến cố 'nhóm thứ i có 1 người giỏi Toán' và A là sự kiện nhóm nào cũng có người giỏi Toán, thì dễ dàng nhận thấy:

    A =
A_{1}A_{2}A_{3}A_{4}A_{5}

    Ta có:

    P\left( A_{1} ight) =
\frac{C_{5}^{1}C_{10}^{2}}{C_{15}^{3}} = \frac{45}{91}

    P\left( A_{2} \mid A_{1} ight) =
\frac{C_{4}^{1}C_{8}^{2}}{C_{12}^{3}} = \frac{28}{55}

    P\left( A_{3} \mid A_{1}A_{2} ight) =
\frac{C_{3}^{1}C_{6}^{2}}{C_{9}^{3}} = \frac{15}{28}

    P\left( A_{4} \mid A_{1}A_{2}A_{3}
ight) = \frac{C_{2}^{1}C_{4}^{2}}{C_{6}^{3}} =
\frac{3}{5}

    P\left( A_{5} \mid A_{1}A_{2}A_{3}A_{4}
ight) = \frac{C_{1}^{1}C_{2}^{2}}{C_{3}^{3}} = 1

    Áp dụng công thức xác suất của tích ta có:

    P(A) = P\left( A_{1} ight)P\left(
A_{2} \mid A_{1} ight)P\left( A_{3} \mid A_{1}A_{2} ight)P\left(
A_{4} \mid A_{1}A_{2}A_{3} ight)P\left( A_{5} \mid
A_{1}A_{2}A_{3}A_{4} ight)

    = \frac{C_{5}^{1}}{C_{15}^{3}} \cdot
\frac{C_{4}^{2}}{C_{12}^{3}} \cdot \frac{C_{3}^{1}}{C_{9}^{3}} \cdot
\frac{C_{2}^{1}}{C_{6}^{3}} \cdot
\frac{C_{1}^{2}}{C_{3}^{3}} \simeq 0,0809

  • Câu 36: Vận dụng

    Một người có 3 chỗ ưa thích như nhau để câu cá. Xác suất câu được cá ở mỗi chỗ lần lượt là 0,7;0,8;0,9. Biết rằng mỗi chỗ người đó thả câu 3 lần thì chỉ có một lần câu được cá. Người đó đã câu được một con cá. Tính xác suất để con cá câu được đó ở chỗ thứ nhất.

    Gọi A là sự kiện câu được cá ở chỗ thứ 1, B là sự kiện câu được 1 con cá.

    Theo đề bài, ta biết rằng người đó chọn ngẫu nhiên 1 chỗ rồi thả câu 3 lần và chỉ câu được 1 con cá.

    Ta cần tìm xác suất P(A|B), tức là xác suất câu được cá ở chỗ thứ 1 khi biết đã câu được 1 con cá.

    Theo công thức Bayes, ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    P(B|A) là xác suất câu được 1 con cá khi đã biết câu ở chỗ thứ 1 là A.

    Vì xác suất câu được cá ở chỗ thứ 1 là 0,8, nên P\left( B|A ight) = 0,8

    P(A) là xác suất câu được cá ở chỗ thứ 1.

    Vì có 3 chỗ ưa thích như nhau, nên xác suất câu được cá ở chỗ thứ 1 là \frac{1}{3}.

    P(B) là xác suất câu được 1 con cá. Ta có thể tính xác suất này bằng cách sử dụng định lý xác suất toàn phần:

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    Trong đó:

    P\left( B|\overline{A} ight) là xác suất câu được 1 con cá khi không câu ở chỗ thứ 1 là A. Vì xác suất câu được cá ở chỗ thứ 2 và chỗ thứ 3 lần lượt là 0,90,7 nên P\left( B|\overline{A} ight) =
0,9.0,7

    P\left( \overline{A} ight) là xác suất không câu được cá ở chỗ thứ 1. Vì có 3 chỗ ưa thích như nhau, nên xác suất không câu được cá ở chỗ thứ 1 là \frac{2}{3}.

    Thay các giá trị vào công thức Bayes, ta có:

    0,8 = \dfrac{{\dfrac{{103}}{{150}}.P\left( {A|B} ight)}}{{\dfrac{1}{3}}} \Rightarrow P\left( {A|B} ight) \approx 0,388

    Vậy Xác suất con cá câu được ở chỗ thứ 1 là: 0,388

  • Câu 37: Thông hiểu

    Hộp I: 5 bi trắng và 5 bi đen. Hộp II: 6 bi trắng và 4 bi đen. Bỏ hai viên bi từ hộp I sang hộp II. Sau đó lấy ra 1 viên bi. Giả sử lấy được bị trắng, tính xác suất để lấy được bi trắng của hộp I?

    Gọi A là biến cố lấy được bi trắng

    Gọi K1 là biến cố lấy bi ra từ hộp II của hộp I

    Gọi K2 là biến cố lấy bi ra từ hộp II của hộp II

    Ta xác định được:

    \left\{ \begin{gathered}
  P\left( {{K_1}} ight) = \frac{{C_2^1}}{{C_{12}^1}};P\left( {{K_2}} ight) = \frac{{C_{10}^1}}{{C_{12}^1}} \hfill \\
  P\left( {A|{E_1}} ight) = \frac{{C_5^1}}{{C_{10}^1}};P\left( {A|{E_2}} ight) = \frac{{C_6^1}}{{C_{10}^1}} \hfill \\ 
\end{gathered}  ight.

    Khi đó: P(A) = P\left( K_{1}
ight).P\left( A|K_{1} ight) + P\left( K_{2} ight).P\left( A|K_{2}
ight) = \frac{7}{12}

    Vậy xác suất để lấy được bi trắng của hộp I là:

    \Rightarrow P\left( K_{1}|A ight) =
\frac{P\left( K_{1} ight).P\left( A|K_{1} ight)}{P(A)} =
\frac{1}{7}

  • Câu 38: Nhận biết

    Một đợt xổ số phát hành N vé, trong đó có M vé có thưởng. Một người mua t(r < N - M). Tính xác suất để người đó có ít nhất một vé trúng thưởng

    Gọi A: “Người đó có ít nhất một vé trúng thưởng”.

    \overline{A}: “người đó không có vé trúng thưởng”

    Ta có: P\left( \overline{A} ight) =
\frac{C_{N - M}^{t}}{C_{N}^{t}} khi đó P(A) = 1 - P\left( \overline{A} ight) = 1 -
\frac{C_{N - M}^{t}}{C_{N}^{t}}

  • Câu 39: Thông hiểu

    Một cửa hàng sách ước lượng rằng: trong tổng số các khách hàng đến cửa hàng có 30\% khách cần hỏi nhân viên bán hàng, 20\% khách mua sách và 15\% khách thực hiện cả hai điều trên. Gặp ngẫu nhiên một khách trong nhà sách. Tính xác suất để người này không mua sách, biết rằng người này đã hỏi nhân viên bán hàng?

    Gọi A là "khách hỏi nhân viên bán hàng" và B là "khách mua sách".

    Ta có: \left\{ \begin{matrix}
P(A) = 0,3;P(B) = 0,2 \\
P(AB) = 0,15 \\
\end{matrix} ight.

    P\left( \overline{B}|A ight) =
\frac{P\left( \overline{B}|A ight)}{P(A)} = \frac{P(A) - P(AB)}{P(A)}
= 0,5.

  • Câu 40: Nhận biết

    Cho hai biến cố A;B với P(B) = 0,6;P\left( A|B ight) = 0,7;P\left(
A|\overline{B} ight) = 0,4. Giá trị P(A) bằng:

    Ta có: P\left( \overline{B} ight) = 1 -
P(B) = 1 - 0,6 = 0,4

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,6.0,7 + 0,4.0,4 =
0,58

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Xác suất có điều kiện CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo