Cho hai biến cố
với
. Tính
?
Ta có:
Cho hai biến cố
với
. Tính
?
Ta có:
Trong hộp có 3 viên bi màu trắng và 7 viên bi màu đỏ. Lấy lần lượt mỗi lần một viên theo cách lấy không trả lại. Tính xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bi lấy lần thứ nhất là màu trắng?
Gọi C là biến cố “viên bi lấy lần thứ nhất là màu trắng”.
Gọi D là biến cố “viên bi lấy lần thứ hai là màu đỏ”.
Lần thứ nhất lấy 1 viên bi màu trắng có 3 cách chọn, lần thứ hai lấy 1 viên bi trong 9 viên còn lại có 9 cách chọn, do đó:
Lần thứ nhất lấy 1 viên bi màu trắng có 3 cách chọn, lần thứ hai lấy 1 viên bi màu đỏ có 7 cách chọn, do đó:
Vậy xác suất để viên bi lấy lần thứ hai là màu trắng nếu biết rằng viên bị lấy lần thứ nhất cũng là màu đỏ là: .
Một hộp chứa 5 quả bóng gồm 2 quả màu đỏ (đánh số 1 và 2), 2 quả màu xanh (đánh số 3 và 4) và 1 quả màu vàng (đánh số 5). Lấy ngẫu nhiên hai quả bóng liên tiếp không hoàn lại.
Xét các biến cố
: "Quả bóng lấy ra đầu tiên có màu đỏ"
: "Tổng số của hai quả bóng lấy ra là số lẻ"
Xác định
là biến cố
khi biết
đã xảy ra?
Khi A đã xảy ra, nghĩa là quả bóng đầu tiên lấy ra có màu đỏ (số 1 hoặc 2).
Do đó, không gian mẫu mới là
Biến cố khi biết
đã xảy ra là:
Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 0,82
Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 0,82
Gọi là biến cố: "Chị Hoa bị nhiễm bệnh khi tiếp xúc người bệnh mà không đeo khẩu trang" và
: "Chị Hoa bị nhiễm bệnh khi tiếp xúc với người bệnh dù có đeo khẩu trang”.
Dễ thấy là hai biến cố độc lập.
Xác suất để chị Hoa không nhiễm bệnh trong cả hai lần tiếp xúc với người bệnh là
.
Gọi là xác suất để chị Hoa bị lây bệnh khi tiếp xúc người bệnh, ta có:
Cho hai biến cố
với
. Giá trị
bằng:
Ta có:
Theo công thức xác suất toàn phần, ta có:
Một đợt xổ số phát hành
vé, trong đó có
vé có thưởng. Một người mua
vé
. Tính xác suất để người đó có ít nhất một vé trúng thưởng
Gọi A: “Người đó có ít nhất một vé trúng thưởng”.
: “người đó không có vé trúng thưởng”
Ta có: khi đó
Một xí nghiệp mỗi ngày sản xuất ra
sản phẩm trong đó có
sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).
Đáp án: 0,02
Một xí nghiệp mỗi ngày sản xuất ra sản phẩm trong đó có
sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).
Đáp án: 0,02
Xét các biến cố:
: Sản phẩm lấy ra lần thứ nhất bị lỗi.
Khi đó, ta có: ;
.
: Sản phẩm lấy ra lần thứ hai bị lỗi.
Khi sản phẩm lấy ra lần thứ nhất bị lỗi thì còn sản phẩm và trong đó có
sản phẩm lỗi nên ta có:
, suy ra
.
Khi sản phẩm lấy ra lần thứ nhất không bị lỗi thì còn sản phẩm trong đó có
sản phẩm lỗi nên ta có:
, suy ra
.
Khi đó, xác suất để sản phẩm lấy ra lần thứ hai bị lỗi là:
.
Đáp số: .
Một lớp có 60 học sinh, trong đó 40 học sinh mặc áo có màu xanh, 10 học sinh mặc áo có cả xanh lẫn trắng. Chọn ngẫu nhiên 1 học sinh. Tính xác suất để học sinh đó áo có màu trắng với điều kiện áo em đó đã có màu xanh?
Minh họa bài toán
Gọi A là biến cố “học sinh được chọn mặc áo trắng”
Gọi B là biến cố “học sinh được chọn mặc áo xanh”
A.B là biến cố “học sinh được chọn mặc áo trắng lẫn xanh” Xác suất để học sinh đó áo có màu trắng với điều kiện áo em đó đã có màu xanh:
Có 2 xạ thủ loại I và 8 xạ thủ loại II, xác suất bắn trúng đích của các loại xạ thủ loại I là 0,9 và loại II là 0,7. Chọn ngẫu nhiên ra một xạ thủ và xạ thủ đó bắn một viên đạn. Tìm xác suất để viên đạn đó trúng đích.
Gọi A là biến cố "Viên đạn trúng đích".
là biến cố "Chọn xạ thủ loại I bắn".
là biến cố "Chọn xạ thủ loại II bắn".
Ta có tạo thành họ đầy đủ các biến cố.
Áp dụng công thức ta có:
Cho hai biến cố
và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Một loài sinh vật có các kiểu gen AA, Aa, aa theo tỉ lệ:
. Nếu cá thể bố (mẹ) có kiểu gen AA lai với các thể mẹ (bố) có kiểu gen AA thì các cá thể con đều có kiểu gen AA. Nếu cá thể bố (mẹ) có kiểu gen AA lai với các thể mẹ (bố) có kiểu gen Aa thì cá thể con có kiểu gen AA, Aa theo tỉ lệ
. Nếu cá thể bố (mẹ) có kiểu gen AA lai với các thể mẹ (bố) có kiểu gen aa thì cá thể con chỉ có các kiểu Aa. Chọn một cá thể con từ cá thể mẹ có kiểu gen AA. Tính xác suất ñể cá thể con có kiểu gen Aa.
Gọi B là biến cố cá thể con có kiểu gen Aa
A1 là biến cố cá thể bố có kiểu gen AA
A2 là biến cố cá thể bố có kiểu gen Aa
A3 là biến cố cá thể bố có kiểu gen aa
Hệ: A1, A2, A3 là hệ đầy đủ
Ta xác định được:
Do đó:
Một loại linh kiện do 3 nhà máy số I, số II, số III cùng sản xuất. Tỷ lệ phế phẩm của các nhà máy lần lượt là: I; 0,04; II: 0,03 và III: 0,05. Trong 1 lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I, 120 của nhà máy số II và 100 của nhà máy số III. Khách hàng lấy phải một linh kiện loại phế phẩm từ lô hàng đó. Khả năng linh kiện đó do nhà máy nào sản xuất là cao nhất?
Gọi E1 là biến cố phế phẩm máy số I
E2 là biến cố phế phẩm máy số II
E3 là biến cố phế phẩm máy số III
Gọi B là biến cố khách hàng lấy được 1 linh kiện tốt
Xác suất để khách hàng lấy được linh kiện tốt là:
Gọi là biến cố khách hàng lấy 1 linh kiện loại không tốt
Ta xác định được:
Vậy linh kiện đó do máy III là cao nhất.
Ba khẩu pháo cùng bắn vào một mục tiêu với xác suất trúng đích của mỗi khẩu là
. Biết rằng xác suất để mục tiêu bị tiêu diệt khi trúng một phát đạn là
, khi trúng 2 phát đạn là
, còn trúng 3 phát đạn thì chắc chắn mục tiêu bị tiêu diệt. Giả sử mỗi khẩu pháo bắn 1 phát. Tính xác suất để khẩu thứ 3 có đóng góp vào thành công đó?
Gọi : "Khẫu pháo thứ
bắn trúng"
)
: "Mục tiêu trúng
phát đạn"
: "Mục tiêu bị tiêu diệt".
Ta có: là một hệ đầy đủ các biến cố và
Ta có các giả thiết sau:
Từ đó, ta tính được:
Theo công thức xác suất đầy đủ ta có:
Khi đó ta có:
Do đó
Có hai lô sản phẩm: lô I có 7 chính phẩm, 3 phế phẩm; lô II có 8 chính phẩm, 2 phế phẩm. Từ lô I lấy ngẫu nhiên ra 2 sản phẩm, từ lô II lấy ngẫu nhiên ra 3 sản phẩm. Sau đó từ số sản phẩm này lại lấy ngẫu nhiên 2 sản phẩm. Tính xác suất để trong 2 sản phẩm lấy ra sau cùng có ít nhất 1 chính phẩm.
Gọi là "trong 5 sản phẩm cuối có
chính phẩm".
Khi đó hệ tạo thành hệ đầy đủ
xảy ra thì phải lấy 3 phế phẩm từ lô II, điều này là không thể.
Suy ra
xảy ra nếu lấy 2 phế từ lô I và 1 chính, 1 phế từ lô II.
xảy ra nếu lấy 1 chính, 1 phế từ lô
chính, 2 phế từ lô II hoặc 2 phế từ lô
chính, 1 phế từ lô II
xảy ra nếu lấy 2 chính từ lô
chính, 2 phế từ lô
hoặc 1 chính, 1 phế từ lô
chính, 1 phế từ lô II hoặc 2 phế từ lô
chính từ lô II
xảy ra nếu lấy 2 chính từ lô
chính, 2 phế từ lô II hoặc 1 chính, 1 phế từ lô
chính từ lô II
xảy ra nếu lấy 2 chính từ lô
chính từ lô II
Gọi là "trong 2 sản phẩm lấy ra có ít nhất 1 chính phẩm", áp dụng công thức xác suất đầy đủ
Suy ra .
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Một hệ thống được cấu tạo bởi 3 bộ phận độc lập nhau. Hệ thống sẽ hoạt động nếu ít nhất 2 trong 3 bộ phận còn hoạt động. Nếu độ tin cậy của mỗi bộ phận là 0.95 thì độ tin cậy của hệ thống là bao nhiêu?
Gọi Bi: "Bộ phận thứ i hoạt động tốt" (i = 1, 2, 3)
H: "Hệ thống hoạt động tốt"
Theo giả thiết, ta thấy rằng P(Bi) = 0.95 với i = 1, 2, 3 và
Do tính độc lập, xung khắc và đối xứng nên:
.
Trong một trường học, tỉ lệ học sinh nữ là
. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia lớp học bổ trợ kiến thức lần lượt là
và
. Gặp ngẫu nhiên một học sinh của trường. Biết rằng học sinh có tham gia lớp học bổ trợ kiến thức. Tính xác suất học sinh đó là nam?
Gọi lần lượt là các biến cố gặp được một học sinh nữ, một học sinh nam
Nên 1 2 A A, là hệ biến cố đầy đủ.
Gọi B “Học sinh đó tham gia lớp học bổ trợ kiến thức”
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Xác suất để học sinh đó là nam, biết rằng học sinh đó tham gia câu lạc bộ nghệ thuật, ta áp dụng công thức Bayes:
Cho hai biến cố
và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Cho hai biến cố
và
, với
. Tính
?
Ta có:
.
Có 3 hộp bi:
Hộp 1: Có 3 xanh, 4 đỏ, 5 vàng.
Hộp 2: Có 4 xanh, 5 đỏ, 6 vàng.
Hộp 3: Có 5 xanh, 6 đỏ, 7 vàng
Chọn ngẫu nhiên 1 hộp và từ hộp đó lấy ngẫu nhiên 1 bi. Tính xác suất để bi lấy ra là bi xanh. Nếu bi lấy ra không là bi xanh, tính xác suất để bi đó được lấy từ hộp 2?
Gọi lần lượt là các biến cố “Chọn được hộp thứ 1, 2, 3” ta có hệ
là hệ biến cố xung khắc và đầy đủ:
Gọi B là biến cố “Lấy được bi xanh”
Ta có:
là biến cố bi lấy ra không phải là bi xanh, ta cần tính:
Cho 2 lô sản phẩm. Lô I có 20 sản phẩm, trong đó có 15 sản phẩm tốt và 5 sản phẩm lỗi. Lô II có 20 sản phẩm, trong đó có 10 sản phẩm tốt và 10 sản phẩm lỗi. Lấy ngẫu nhiên 1 lô và từ lô này lấy ngầu nhiên ra 1 sản phẩm. Các khẳng định sau đúng hay sai?
a) Xác suất để sản phẩm lấy ra là sản phẩm tốt bằng
.Đúng||Sai
b) Xác suất để sản phẩm lấy ra là sản phẩm lỗi bằng
. Đúng||Sai
c) Giả sử sản phẩm lấy ra là sản phẩm tốt. Xác suất đế sản phẩm đó của lô thứ II bằng
. Đúng||Sai
d) Giả sử sản phẩm lấy ra là phế phẩm. Xác suất đế sản phẩm đó của lô thứ I bằng
. Sai||Đúng
Cho 2 lô sản phẩm. Lô I có 20 sản phẩm, trong đó có 15 sản phẩm tốt và 5 sản phẩm lỗi. Lô II có 20 sản phẩm, trong đó có 10 sản phẩm tốt và 10 sản phẩm lỗi. Lấy ngẫu nhiên 1 lô và từ lô này lấy ngầu nhiên ra 1 sản phẩm. Các khẳng định sau đúng hay sai?
a) Xác suất để sản phẩm lấy ra là sản phẩm tốt bằng .Đúng||Sai
b) Xác suất để sản phẩm lấy ra là sản phẩm lỗi bằng . Đúng||Sai
c) Giả sử sản phẩm lấy ra là sản phẩm tốt. Xác suất đế sản phẩm đó của lô thứ II bằng . Đúng||Sai
d) Giả sử sản phẩm lấy ra là phế phẩm. Xác suất đế sản phẩm đó của lô thứ I bằng . Sai||Đúng
Gọi là biến cố: “Lô lấy ra là lô I”
Gọi là biến cố: “Lô lấy ra là lô II”
a) Gọi A là biến cố: “Sản phẩm lấy ra là sản phẩm tốt”
Ta có:
Mà
Vậy
b) Ta có:
c) Ta có:
d) Ta có:
.
Một túi đựng
bi xanh và
bi đỏ. Lấy ngẫu nhiên
bi. Xác suất để cả hai bi đều đỏ là:
Ta có số phần từ của không gian mẫu là .
Gọi : "Hai bi lấy ra đều là bi đỏ".
Khi đó .
Vậy xác suất cần tính là .
Một cặp trẻ sinh đôi có thể do cùng một trứng (sinh đôi thật) hay do hai trứng khác nhau sinh ra (sinh đôi giả). Các cặp sinh đôi thật luôn luôn có cùng giới tính. Các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập với nhau và có xác suất là
. Thống kê cho thấy
cặp sinh đôi là trai;
cặp sinh đôi là gái và
cặp sinh đôi có giới tính khác nhau. Tỉ lệ cặp sinh đôi thật trong số các cặp sinh đôi có cùng giới tính.
Gọi A: “Nhận được cặp sinh đôi thật”
B: “Nhận được cặp sinh đôi có cùng giới tính”
Do các cặp sinh đôi thật luôn luôn có cùng giới tính nên
Với các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập nhau và có xác suất là 0,5 nên
Do thống kê trên các cặp sinh đôi nhận được thì:
Áp dụng công thức xác suất toàn phần ta có:
Thay số ta xác định được .
Do công thức Bayes:
Cho
và
là hai biến cố độc lập thoả mãn
và
. Khi đó,
bằng:
A và B là hai biến cố độc lập nên
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức Bayes:
.
Có 2 xạ thủ loại I và 8 xạ thủ loại II, xác suất bắn trúng đích của các loại xạ thủ loại I là 0,9 và loại II là 0,7. Chọn ngẫu nhiên ra hai xạ thủ và mỗi người bắn một viên đạn. Tìm xác suất để cả hai viên đạn đó trúng đích.
Gọi B là biến cố "Cả 2 viên đạn trúng đích".
là biến cố "Chọn được i xạ thủ loại I".
Ta có tạo thành họ đầy đủ các biến cố.
Áp dụng công thức, ta có
Giả sử
email của bạn nhận được là email rác. Bạn sử dụng một hệ thống lọc email rác mà khả năng lọc đúng email rác của hệ thống này là
và có
những email không phải là email rác nhưng vẫn bị lọc. Các khẳng định sau đúng hay sai?
a) Gọi A: “Email nhận được là email rác”.
Và B: “Email bị lọc đúng email rác của hệ thống lọc email rác”.
Vì 5% email nhận được là rác nên xác suất nhận được một email rác là
b) Xác suất email bị lọc của email rác là .
c) Xác suất email nhận được không phải rác là
Xác suất email bị lọc của email không phải rác là
Vậy xác suất chọn một email bị lọc bất kể là rác hay không là
d) Xác suất chọn một email trong số những email bị lọc thực sự là email rác là
.
Một sinh viên làm 2 bài tập kế tiếp. Xác suất làm đúng bài thứ nhất là
. Nếu làm đúng bài thứ nhất thì khả năng làm đúng bài thứ 2 là
, nhưng nếu làm sai bài thứ 1 thì khả năng làm đúng bài thứ 2 là
. Tính xác suất để sinh viên làm đúng ít nhất một bài?
Gọi A1 là biến cố làm đúng bài 1
Gọi A2 là biến cố làm đúng bài 2
Làm đúng ít nhất 1 bài
Một nhóm học sinh có 30 học sinh, trong đó có 16 em học khá môn Toán, 25 em học khá môn Hóa học, 12 em học khá cả hai môn Toán và Hóa học. Chọn ngẫu nhiên một học sinh trong số đó. Tính xác suất để học sinh đó học khá môn Toán biết rằng học sinh đó học khá môn Hóa học?
Gọi A: “Học sinh đó học khá môn Toán”
Và B: “Học sinh đó học khá môn Hóa học”
Theo bài ra ta có:
Có hai hộp đựng các viên bi cùng kích thước và khối lượng. Hộp thứ nhất chứa 5 viên bi đỏ và 5 viên bi xanh, hộp thứ hai chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy ngẫu nhiên một viên bi từ hộp thứ nhất chuyển sang hộp thứ hai, sau đó lấy ra ngẫu nhiên một viên bi từ hộp thứ hai. Gọi A là biến cố “Viên bị được lấy ra từ hộp thứ hai là bi đỏ”, B là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ”. Các khẳng định sau đúng hay sai?
a) Xác suất của biến cố B là
.Đúng||Sai
b) Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bị đỏ thì khi đó
. Đúng||Sai
c) Gọi
: “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh” thì
. Sai||Đúng
d) Xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là
. Đúng||Sai
Có hai hộp đựng các viên bi cùng kích thước và khối lượng. Hộp thứ nhất chứa 5 viên bi đỏ và 5 viên bi xanh, hộp thứ hai chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy ngẫu nhiên một viên bi từ hộp thứ nhất chuyển sang hộp thứ hai, sau đó lấy ra ngẫu nhiên một viên bi từ hộp thứ hai. Gọi A là biến cố “Viên bị được lấy ra từ hộp thứ hai là bi đỏ”, B là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ”. Các khẳng định sau đúng hay sai?
a) Xác suất của biến cố B là .Đúng||Sai
b) Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bị đỏ thì khi đó . Đúng||Sai
c) Gọi : “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh” thì
. Sai||Đúng
d) Xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là . Đúng||Sai
a) Ta có: B là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ” nên .
b) Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bị đỏ thì sau khi chuyển, hộp thứ hai có 7 bi đỏ và 4 bi xanh nên .
c) Gọi : “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh” Nếu viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh thì sau khi chuyển, hộp thứ hai có 6 bi đỏ và 5 bi xanh.
Khi đó .
d) Ta có:
Xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là:
Áp dụng công thức xác suất toàn phần, ta có:
.
Cho hai biến cố
và
, với
. Tính
?
Cách 1:
Mà
Do đó:
Cách 2: Ta có:
.
Cho hai biến cố
có
. Xác định
?
Theo công thức tính xác suất có điều kiện ta có:
Vì và
là hai biến cố xung khắc và
nên theo tính chất của xác suất ta có:
Cho hai biến cố
với
. Tính
?
Ta có:
Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là
và dự án 2 là
. Khả năng thắng thầu của 2 dự án là 0,4. Gọi
lần lượt là biến cố thắng thầu dự án 1 và dự án 2.
a)
là hai biến độc lập. Đúng||Sai
b) Xác suất công ty thắng thầu đúng 1 dự án là
. Đúng||Sai
c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là
. Sai|| Đúng
d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án
. Sai|| Đúng
Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là và dự án 2 là
. Khả năng thắng thầu của 2 dự án là 0,4. Gọi
lần lượt là biến cố thắng thầu dự án 1 và dự án 2.
a) là hai biến độc lập. Đúng||Sai
b) Xác suất công ty thắng thầu đúng 1 dự án là . Đúng||Sai
c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là . Sai|| Đúng
d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án . Sai|| Đúng
Ta có:
a) là hai biến cố độc lập khi và chỉ khi
Mà nên
không độc lập.
b) Gọi C là biến cố thắng thầu đúng 1 dự án
.
c) Gọi D là biến cố thắng dự 2 biết thắng dự án 1
.
d) Gọi E là biến cố “thắng dự án 2 biết không thắng dự án 1”
.
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Có ba kiện hàng (mỗi kiện hàng có
sản phẩm) với số sản phẩm tốt tương ứng của mỗi kiện là
. Lấy ngẫu nhiên một kiện hàng, rồi từ đó lấy ngẫu nhiên một sản phẩm thì được sản phẩm tốt. Trả sản phẩm này lại kiện hàng vừa lấy, sau đó lại lấy ngẫu nhiên một sản phẩm thì được sản phẩm tốt. Tính xác suất để các sản phẩm tốt đó được lấy từ kiện hàng thứ nhất?
Gọi Ai là "sản phẩm lấy từ kiện thứ i" thì A1, A2, A3 tạo thành hệ đầy đủ.
Gọi A là các sản phẩm lấy ra đều tốt.
Áp dụng công thức xác suất toàn phần ta có:
Từ đó ta có:
Có 3 hộp bi:
Hộp 1: Có 3 xanh, 4 đỏ, 5 vàng.
Hộp 2: Có 4 xanh, 5 đỏ, 6 vàng.
Hộp 3: Có 5 xanh, 6 đỏ, 7 vàng
Chọn ngẫu nhiên 1 hộp và từ hộp đó lấy ngẫu nhiên 3 bi. Tính xác suất để 3 bi lấy ra có 3 màu khác nhau. Trong trường hợp đó tính xác suất để 3 bi được lấy từ hộp thứ 3?
Gọi lần lượt là các biến cố “Chọn được hộp thứ 1, 2, 3” ta có hệ
là hệ biến cố xung khắc và đầy đủ:
Gọi C là biến cố” 3 bi lấy ra có ba màu khác nhau”
Ta có:
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Năm 2012, Cộng đồng Châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Người ta tiến hành một loại xét nghiệm và cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để ra phản ứng dương tính trong xét nghiệm là
; còn khi con bò không bị bệnh thì xác suất để xảy ra phản ứng dương tính trong xét nghiệm đó là
. Biết rằng ti lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100000 con. Gọi
là biến cố một con bò bị bệnh bò điên,
là biến cố một con bò phản ứng dương tính với xét nghiệm.
a)
. Đúng||Sai
b)
. Sai||Đúng
c)
. Đúng||Sai
d)
. Sai||Đúng
Năm 2012, Cộng đồng Châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Người ta tiến hành một loại xét nghiệm và cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để ra phản ứng dương tính trong xét nghiệm là ; còn khi con bò không bị bệnh thì xác suất để xảy ra phản ứng dương tính trong xét nghiệm đó là
. Biết rằng ti lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100000 con. Gọi
là biến cố một con bò bị bệnh bò điên,
là biến cố một con bò phản ứng dương tính với xét nghiệm.
a) . Đúng||Sai
b) . Sai||Đúng
c) . Đúng||Sai
d) . Sai||Đúng
Tỉ lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên con nghĩa là
.
Khi con bò bị bệnh bò điên, thì xác suất để ra phản ứng dương tính trong xét nghiệm là 60%, nghĩa là:
Khi con bò không bị bệnh, thì xác xuất để xả ra phản ứng dương tính trong xét nghiệm đó là 20%, nghĩa là . Khi đó, ta có:
Một thùng có các hộp loại I và loại II, trong đó có 2 hộp loại I, mỗi hộp có 13 sản phẩm tốt và 2 phế phẩm và có 3 hộp loại II, mỗi hộp có 6 sản phẩm tốt và 4 phế phẩm. Các khẳng định sau đúng hay sai?
a) Số cách chọn được 2 sản phẩm tốt trong hộp loại I là
.Đúng||Sai
b) Xác suất chọn được 2 phế phẩm trong hộp loại II là
Sai||Đúng
c) Chọn ngẫu nhiên trong thùng một hộp và từ hộp đó lấy ra hai sản phẩm để kiểm tra, xác suất để hai sản phẩm này đều tốt là
. Đúng||Sai
d) Chọn ngẫu nhiên trong thùng một hộp và từ hộp đó lấy ra hai sản phẩm để kiểm tra, giả sử hai sản phẩm đó đều tốt thì xác suất để hai sản phẩm đó thuộc hộp loại I là
. Đúng||Sai
Một thùng có các hộp loại I và loại II, trong đó có 2 hộp loại I, mỗi hộp có 13 sản phẩm tốt và 2 phế phẩm và có 3 hộp loại II, mỗi hộp có 6 sản phẩm tốt và 4 phế phẩm. Các khẳng định sau đúng hay sai?
a) Số cách chọn được 2 sản phẩm tốt trong hộp loại I là .Đúng||Sai
b) Xác suất chọn được 2 phế phẩm trong hộp loại II là Sai||Đúng
c) Chọn ngẫu nhiên trong thùng một hộp và từ hộp đó lấy ra hai sản phẩm để kiểm tra, xác suất để hai sản phẩm này đều tốt là . Đúng||Sai
d) Chọn ngẫu nhiên trong thùng một hộp và từ hộp đó lấy ra hai sản phẩm để kiểm tra, giả sử hai sản phẩm đó đều tốt thì xác suất để hai sản phẩm đó thuộc hộp loại I là . Đúng||Sai
a) Chọn 2 sản phẩm tốt từ 13 sản phẩm tốt trong hộp loại I là cách.
b) Số cách chọn 2 phế phẩm từ 4 phế phẩm trong hộp loại II là cách.
Tổng số cách chọn 2 sản phẩm từ 10 sản phẩm (6 tốt và 4 phế phẩm) trong hộp II là cách
Vậy xác suất chọn được hai phế phẩm là: .
c) Gọi A: “Chọn được trong thùng một hộp loại I”.
Và B: “Chọn được trong thùng một hộp loại II”.
Xác suất chọn hộp loại I là và xác suất chọn hộp loại II là
Gọi C là biến cố “Cả 2 sản phẩm lấy ra đều tốt”.
Xác suất lấy được 2 sản phẩm tốt từ hộp loại I là
Xác suất lấy được 2 sản phẩm tốt từ hộp II là
Vậy xác suất hai sản phẩm lấy ra từ một hộp trong thùng đều tốt là:
d) Xác suất lấy ra hai sản phẩm đều tốt thuộc hộp loại I là