Đề kiểm tra 45 phút Chương 6 Xác suất có điều kiện CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 6. Xác suất có điều kiện được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Một túi đựng 6 bi xanh và 4 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất để cả hai bi đều đỏ là:

    Ta có số phần từ của không gian mẫu là n(\Omega) = C_{10}^{2} = 45.

    Gọi A: "Hai bi lấy ra đều là bi đỏ".

    Khi đó n(A) = C_{4}^{2} = 6.

    Vậy xác suất cần tính là P(A) =
\frac{n(A)}{n(\Omega)} = \frac{2}{15}.

  • Câu 2: Thông hiểu

    Có ba hộp giống nhau:

    Hộp thứ nhất đựng 10 sản phẩm trong đó có 6 chính phẩm.

    Hộp thứ hai đựng 15 sản phẩm trong đó có 10 chính phẩm.

    Hộp thứ ba đựng 20 sản phẩm trong đó có 15 chính phẩm.

    Lấy ngẫu nhiên một hộp và từ đó lấy ngẫu nhiên một sản phẩm. Tìm xác suất để lấy được chính phẩm?

    Gọi A là biến cố: “Lấy được chính phẩm”. Biến cố A có thể xảy ra đồng thời với ba biến cố sau đây tạo nên một nhóm đầy đủ các biến cố:

    H_{1} - Sản phẩm lấy ra thuốc hộp I.

    H_{2} - Sản phẩm lấy ra thuốc hộp II.

    H_{3} - Sản phẩm lấy ra thuốc hộp III.

    Vì theo giả thiết của bài toán, các biến cố H_{1}; H_{2}; H_{3} là đồng khả năng, do đó:

    P\left( H_{1} ight) = P\left( H_{2}
ight) = P\left( H_{3} ight) = \frac{1}{3}

    Xác suất có điều kiện của biến cố A khi các biến cố H_{1}; H_{2}; H_{3} xảy ra bằng:

    P\left( A|H_{1} ight) =
\frac{6}{10};P\left( A|H_{2} ight) = \frac{10}{15};P\left( A|H_{3}
ight) = \frac{15}{20}

    Do đó:

    P(A) = P\left( H_{1} ight).P\left(
A|H_{1} ight) + P\left( H_{2} ight).P\left( A|H_{2} ight) +
P\left( H_{3} ight).P\left( A|H_{3} ight)

    \Rightarrow P(A) =
\frac{1}{3}.\frac{6}{10} + \frac{1}{3}.\frac{10}{15} +
\frac{1}{3}.\frac{15}{20} = \frac{124}{180} = \frac{31}{45}

  • Câu 3: Nhận biết

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó công thức xác suất toàn phần tính P(A) là:

    Ta có công thức xác suất toàn phần tính P(A) là:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)

  • Câu 4: Nhận biết

    Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.

    Gọi A là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”.

    Gọi B là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.

    Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì P\left( B|A ight) = \frac{1}{6}.

  • Câu 5: Thông hiểu

    Một căn bệnh có 1\% dân số mắc phải. Một phương pháp chuẩn đoán được phát triển có tỷ lệ chính xác là 99\%. Với những người bị bệnh, phương pháp này sẽ đưa ra kết quả dương tính 99\% số trường hợp. Với người không mắc bệnh, phương pháp này cũng chuẩn đoán đúng 99 trong 100 trường hợp. Nếu một người kiểm tra và kết quả là dương tính (bị bệnh), xác suất để người đó thực sự bị bệnh là bao nhiêu?

    Gọi A là biến cố “người đó mắc bệnh”

    Gọi B là biến cố “kết quả kiểm tra người đó là dương tính (bị bệnh)”

    Ta cần tính P\left( A|B ight) với P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight).P\left( B|\overline{A} ight)}.

    Ta có:

    Xác suất để người đó mắc bệnh khi chưa kiểm tra: P(A) = 1\% = 0,01

    Do đó xác suất để người đó không mắc bệnh khi chưa kiểm tra: P\left( \overline{A} ight) = 1 - 0,01 =
0,99

    Xác suất kết quả dương tính nếu người đó mắc bệnh là: P\left( B|A ight) = 99\% = 0,99

    Xác suất kết quả dương tính nếu người đó không mắc bệnh là: P\left( B|\overline{A} ight) = 1 - 0,99 =
0,01

    Khi đó:

    P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight).P\left( B|\overline{A} ight)}

    \Rightarrow P\left( A|B ight) =
\frac{0,01.0,99}{0,01.0,99 + 0,99.0,01} = 0,5

    Xác suất kết để người đó mắc bệnh nếu kết quả kiểm tra người đó là dương tính là 0,5.

  • Câu 6: Thông hiểu

    Trong danh sách sĩ số hai lớp 12 có 95 học sinh, trong đó có 40 nam và 55 nữ. Trong kỳ thi kiểm tra chất lượng có 23 học sinh đạt điểm giỏi (trong đó có 12 nam và 11 nữ). Gọi tên ngẫu nhiên một học sinh trong danh sách. Tìm xác suất gọi được học sinh đạt điểm giỏi, biết rằng học sinh đó là nữ?

    Gọi A là biến cố “gọi được học sinh nữ”

    Gọi B là biến cố “gọi được học sinh đạt điểm giỏi”

    Ta đi tính P\left( B|A ight). Ta có: P(A) = \frac{55}{95};P(A \cap B) =
\frac{11}{95}

    Khi đó: P\left( B|A ight) = \frac{P(A
\cap B)}{P(A)} = \frac{11}{95}:\frac{55}{95} = \frac{11}{55} =
\frac{1}{5}.

  • Câu 7: Vận dụng

    Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi A;B lần lượt là biến cố thắng thầu dự án 1 và dự án 2.

    a) A;B là hai biến độc lập. Đúng||Sai

    b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3. Đúng||Sai

    c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là 0,4. Sai|| Đúng

    d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án 0,8. Sai|| Đúng

    Đáp án là:

    Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi A;B lần lượt là biến cố thắng thầu dự án 1 và dự án 2.

    a) A;B là hai biến độc lập. Đúng||Sai

    b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3. Đúng||Sai

    c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là 0,4. Sai|| Đúng

    d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án 0,8. Sai|| Đúng

    Ta có:\left\{ \begin{matrix}
P(A) = 0,5 \Rightarrow P\left( \overline{A} ight) = 1 - 0,5 = 0,5 \\
P(B) = 0,6 \Rightarrow P\left( \overline{B} ight) = 1 - 0,6 = 0,4 \\
P(A \cap B) = 0,4 \\
\end{matrix} ight.

    a) A;B là hai biến cố độc lập khi và chỉ khi P(A \cap B) =
P(A).P(B)

    0,4 eq 0,5.0,6 nên A;B không độc lập.

    b) Gọi C là biến cố thắng thầu đúng 1 dự án

    P(C) = P\left( A \cap \overline{B}
ight) + P\left( \overline{A} \cap B ight)

    = P(A) - P(A \cap B) + P(B) - P(A \cap
B)

    = P(A) + P(B) - 2P(A \cap
B)

    = 0,5 + 0.6 - 2.0,4 = 0,3.

    c) Gọi D là biến cố thắng dự 2 biết thắng dự án 1

    P(D) = P\left( B|A ight) = \frac{P(B
\cap A)}{P(A)} = \frac{0,4}{0,5} = 0,8.

    d) Gọi E là biến cố “thắng dự án 2 biết không thắng dự án 1”

    P(E) = P\left( B|\overline{A} ight) =
\frac{P(B) - P(A \cap B)}{P\left( \overline{A} ight)} = \frac{0,6 -
0,4}{0,5} = 0,4.

  • Câu 8: Vận dụng

    Một công ty may mặc có hai hệ thống máy chạy độc lập với nhau. Xác suất để hệ thống máy thứ nhất hoạt động tốt là 95%, xác suất để hệ thống máy thứ hai hoạt động tốt là 85%. Công ty chỉ có thể hoàn thành đơn hàng đúng hạn nếu ít nhất một trong hai hệ thống máy hoạt động tốt. Xác suất để công ty hoàn thành đúng hạn là

    Gọi A là biến cố: "Hệ thống máy thứ nhất hoạt động tốt".

    B là biến cố: "Hệ thống máy thứ hai hoạt động tốt".

    C là biến cố: "Công ty hoàn thành đúng hạn".

    Ta có \overline{A} là biến cố: "Hệ thống máy thứ nhất hoạt động không tốt".

    \overline{B} là biến cố: "Hệ thống máy thứ hai hoạt động không tốt".

    \overline{C} là biến cố: "Công ty hoàn thành không đúng hạn".

    P(A) = 0,95;P(B) = 0,85;P(\overline{A})
= 0,05;P(\overline{B}) = 0,15

    AB là hai biến cố độc lập nên \overline{A}\overline{B} là hai biến cố độc lập

    \overline{C} =
\overline{A.B}

    P(\overline{C}) =
P(\overline{A}.\overline{B}) = P(\overline{A}).P(\overline{B}) =
0,0075.

    \Rightarrow P(C) = 1 - P(\overline{C}) =
0,9925.

  • Câu 9: Vận dụng

    Điều trị phương pháp I, phương pháp II, phương pháp III tương ứng cho 5000,3000,2000 bệnh nhân. Xác suất khỏi của các phương pháp tương ứng là 0,85;0,9;0,95. Điều trị một trong 3 phương pháp cho bệnh nhân đã khỏi, tìm phương pháp có tỉ lệ chữa khỏi bệnh thấp nhất?

    Tổng số bệnh nhân điều trị là 10000 người

    Gọi A1 là biến cố bệnh nhân điều trị bởi phương pháp thứ I.

    A2 là biến cố bệnh nhân điều trị bởi phương pháp thứ II.

    A3 là biến cố bệnh nhân điều trị bởi phương pháp thứ III.

    Khi đó: P\left( A_{1} ight) =
0,5;P\left( A_{2} ight) = 0,3;P\left( A_{3} ight) = 0,2

    Gọi B là biến cố điều trị khỏi bệnh.

    Khi đó P\left( B|A_{1} ight) =
0,85;P\left( B|A_{2} ight) = 0,9;P\left( B|A_{3} ight) =
0,95

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P\left( A_{1} ight).P\left(
B|A_{1} ight) + P\left( A_{2} ight).P\left( B|A_{2} ight) +
P\left( A_{3} ight).P\left( B|A_{3} ight)

    \Rightarrow P(A) = 0,5.0,85 + 0,3.0,9 +
0,2.0,95 = 0,885

    Ta có:

    P\left( A_{1}|B ight) = \frac{P\left(
A_{1} ight).P\left( B|A_{1} ight)}{P(B)} = 0,48

    P\left( A_{2}|B ight) = \frac{P\left(
A_{2} ight).P\left( B|A_{2} ight)}{P(B)} = 0,305

    P\left( A_{3}|B ight) = \frac{P\left(
A_{3} ight).P\left( B|A_{3} ight)}{P(B)} = 0,215

    Vậy phương pháp có tỉ lệ chữa khỏi bệnh thấp nhất là phương pháp III.

  • Câu 10: Thông hiểu

    Có 2 xạ thủ loại I và 8 xạ thủ loại II, xác suất bắn trúng đích của các loại xạ thủ loại I là 0,9 và loại II là 0,7. Chọn ngẫu nhiên ra một xạ thủ và xạ thủ đó bắn một viên đạn. Tìm xác suất để viên đạn đó trúng đích.

    Gọi A là biến cố "Viên đạn trúng đích".

    B_{1} là biến cố "Chọn xạ thủ loại I bắn".

    B_{2} là biến cố "Chọn xạ thủ loại II bắn".

    P\left( {B}_{2} ight) =\frac{8}{10} = 0,8,P\left( A \mid B_{2} ight) =0,7

    P\left( {B}_{1} ight) =\frac{2}{10} = 0,2,P\left( A \mid B_{1} ight) =0,9

    Ta có B_{1},{B}_{2} tạo thành họ đầy đủ các biến cố.

    Áp dụng công thức ta có:

    P\left( \text{ }A ight) = P\left({\text{ }B}_{1} ight)P\left( \text{ }A \mid B_{1} ight) + P\left({\text{ }B}_{2} ight)P\left( \text{ }A \mid B_{2}ight)

    = 0,2 \cdot 0,9 + 0,8 \cdot 0,7 =
0,74

  • Câu 11: Thông hiểu

    Hộp I: 5 bi trắng và 5 bi đen. Hộp II: 6 bi trắng và 4 bi đen. Bỏ hai viên bi từ hộp I sang hộp II. Sau đó lấy ra 1 viên bi. Tính xác suất để lấy được bi trắng.

    Gọi A là biến cố lấy được bi trắng

    Cách 1: Ta có sơ đồ cây mô tả như sau:

    P(A) = P\left( H_{0} ight).P\left(
A|H_{0} ight) + P\left( H_{1} ight).P\left( A|H_{1} ight) +
P\left( H_{2} ight).P\left( A|H_{2} ight) =
\frac{7}{12}.

    Cách 2: Gọi K1 là biến cố lấy bi ra từ hộp II của hộp I

    Gọi K2 là biến cố lấy bi ra từ hộp II của hộp II

    Ta xác định được:

    \left\{ \begin{gathered}
  P\left( {{K_1}} ight) = \frac{{C_2^1}}{{C_{12}^1}};P\left( {{K_2}} ight) = \frac{{C_{10}^1}}{{C_{12}^1}} \hfill \\
  P\left( {A|{E_1}} ight) = \frac{{C_5^1}}{{C_{10}^1}};P\left( {A|{E_2}} ight) = \frac{{C_6^1}}{{C_{10}^1}} \hfill \\ 
\end{gathered}  ight.

    Khi đó: P(A) = P\left( K_{1}
ight).P\left( A|K_{1} ight) + P\left( K_{2} ight).P\left( A|K_{2}
ight) = \frac{7}{12}

  • Câu 12: Nhận biết

    Cho AB là các biến cố của phép thử T. Biết rằng P(A) > 0;0 < P(B) <
1. Xác suất của biến cố B với điều kiện biến cố A đã xảy ra được tính theo công thức nào sau đây?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

  • Câu 13: Nhận biết

    Cho hai biến cố A, B với 0 <
P(B) < 1. Phát biểu nào sau đây đúng?

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight).

  • Câu 14: Vận dụng cao

    Hộp I có 4 viên bi đỏ, 2 viên bi xanh; hộp II có 3 viên bi đỏ, 3 viên bi xanh. Bỏ ngẫu nhiên một viên bi từ hộp I sang hộp II, sau đó lại bỏ ngẫu nhiên một viên bi từ hộp II sang hộp I. Cuối cùng rút ngẫu nhiên từ hộp I ra một viên bi. 1. Nếu viên rút ra sau cùng màu đỏ, tìm xác suất lúc ban đầu rút được viên bi đỏ ở hộp I cho vào hộp II?

    Gọi D1, X1 tương ứng là "lấy được viên bi đỏ, xanh từ hộp I sang hộp II",

    D2, X2 tương ứng là "lấy được viên bi đỏ, xanh từ hộp II sang hộp I".

    Khi đó hệ D1D2, D1X2, X1D2, X1X2 tạo thành hệ đầy đủ.

    Ta có: \left\{ \begin{gathered}
  P\left( {{D_1}{D_2}} ight) = \frac{4}{6}.\frac{4}{7};P\left( {{D_1}{X_2}} ight) = \frac{4}{6}.\frac{3}{7} \hfill \\
  P\left( {{X_1}{D_2}} ight) = \frac{2}{6}.\frac{3}{7};P\left( {{X_1}{X_2}} ight) = \frac{2}{6}.\frac{4}{7} \hfill \\ 
\end{gathered}  ight.

    Gọi A là "viên bi rút ra sau cùng là màu đỏ".

    Ta xác định được: \left\{ \begin{gathered}
  P\left( {A|{D_1}{D_2}} ight) = \frac{4}{6};P\left( {A|{D_1}{X_2}} ight) = \frac{3}{6} \hfill \\
  P\left( {A|{X_1}{D_2}} ight) = \frac{5}{6};P\left( {A|{X_1}{X_2}} ight) = \frac{4}{6} \hfill \\ 
\end{gathered}  ight.

    Áp dụng công thức xác suất đầy đủ:

    P(A) = P\left( D_{1}D_{2} ight)P\left(
A|D_{1}D_{2} ight) + P\left( D_{1}X_{2} ight)P\left( A|D_{1}X_{2}
ight)

    + P\left( X_{1}D_{2} ight)P\left(
A|X_{1}D_{2} ight) + P\left( X_{1}X_{2} ight)P\left( A|X_{1}X_{2}
ight)

    = \frac{4}{6}.\frac{4}{7}.\frac{4}{6} +
\frac{4}{6}.\frac{3}{7}.\frac{3}{6} +
\frac{2}{6}.\frac{3}{7}.\frac{5}{6} +
\frac{2}{6}.\frac{4}{7}.\frac{4}{6} = \frac{9}{14}

    Ta cần tính xác suất B = \left(
D_{1}D_{2} + D_{1}X_{2} ight)|A

    \Rightarrow P(B) = \frac{P\left\lbrack
\left( D_{1}D_{2} + D_{1}X_{2} ight)A
ightbrack}{P(A)}

    = \frac{P\left\lbrack \left( D_{1}D_{2}
ight)A ightbrack + P\left\lbrack \left( D_{1}X_{2} ight)A
ightbrack}{P(A)}

    = \frac{P\left( D_{1}D_{2}
ight)P\left( A|D_{1}D_{2} ight) + P\left( D_{1}X_{2} ight)P\left(
A|D_{1}X_{2} ight)}{P(A)}

    = \dfrac{{\dfrac{4}{7}.\dfrac{4}{7}.\dfrac{4}{6} + \dfrac{4}{6}.\dfrac{3}{7}.\dfrac{3}{6}}}{{\dfrac{9}{{11}}}} = \dfrac{{50}}{{81}} \approx 61,73\%

  • Câu 15: Nhận biết

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,4;P(B) = 0,3;P\left( A|B ight) =
0,25 thì P\left( B|A
ight) bằng bao nhiêu?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,3.0,25}{0,4} = \frac{3}{16}

  • Câu 16: Vận dụng cao

    Ba khẩu pháo cùng bắn vào một mục tiêu với xác suất trúng đích của mỗi khẩu là 0,4;0,7;0,8. Biết rằng xác suất để mục tiêu bị tiêu diệt khi trúng một phát đạn là 30\%, khi trúng 2 phát đạn là 70\%, còn trúng 3 phát đạn thì chắc chắn mục tiêu bị tiêu diệt. Giả sử mỗi khẩu pháo bắn 1 phát. Tính xác suất để khẩu thứ 3 có đóng góp vào thành công đó?

    Gọi \ A_{i} : "Khẫu pháo thứ i bắn trúng" (i = 1,2,3)

    B_{k} : "Mục tiêu trúng k phát đạn" (k = 0,1,2,3)

    B : "Mục tiêu bị tiêu diệt".

    Ta có: \left\{ B_{k},k = 0,1,2,3
ight\} là một hệ đầy đủ các biến cố và

    B_{0} =
\overline{A_{1}}\overline{A_{2}}\overline{A_{3}},\ B_{1} =
A_{1}\overline{A_{2}}\overline{A_{3}} +
\overline{A_{1}}A_{2}\overline{A_{3}} +
\overline{A_{1}}\overline{A_{2}}A_{3}

    B_{2} = A_{1}A_{2}\overline{A_{3}} +
A_{1}\overline{A_{2}}A_{3} + \overline{A_{1}}A_{2}A_{3},\ B_{3} =
A_{1}A_{2}A_{3}

    Ta có các giả thiết sau:

    P\left( A_{1} ight) = 0,4;P\left(
A_{2} ight) = 0,7;P\left( A_{3} ight) = 0,8

    P\left( B \mid B_{0} ight) = 0,P\left(
B \mid B_{1} ight) = 0,3;P\left( B \mid B_{2} ight) = 0,7;P\left( B
\mid B_{3} ight) = 1

    Từ đó, ta tính được:

    P\left( B_{0} ight) = P\left(
\overline{A_{1}} ight)P\left( \overline{A_{2}} ight)P\left(
\overline{A_{3}} ight)

    = (0,6)(0,3)(0,2)

    = 0,036

    P\left( B_{1} ight) = P\left( A_{1}
ight)P\left( \overline{A_{2}} ight)P\left( \overline{A_{3}} ight)
+ P\left( \overline{A_{1}} ight)P\left( A_{2} ight)P\left(
\overline{A_{3}} ight) + P\left( \overline{A_{1}} ight)P\left(
\overline{A_{2}} ight)P\left( A_{3} ight)

    = (0,4)(0,3)(0,2) + (0,6)(0,7)(0,2) +
(0,6)(0,3)(0,8)

    = 0,252

    P\left( B_{2} ight) = P\left( A_{1}
ight)P\left( A_{2} ight)P\left( \overline{A_{3}} ight) + P\left(
A_{1} ight)P\left( \overline{A_{2}} ight)P\left( A_{3} ight) +
P\left( \overline{A_{1}} ight)P\left( A_{2} ight)P\left( A_{3}
ight)

    = (0,4)(0,7)(0,2) + (0,4)(0,3)(0,8) +
(0,6)(0,7)(0,8)

    = 0,488

    P\left( B_{3} ight) = P\left( A_{1}
ight)P\left( A_{2} ight)P\left( A_{3} ight)

    = (0,4)(0,7)(0,8)

    = 0,224

    Theo công thức xác suất đầy đủ ta có:

    P(B) = P\left( B \mid B_{0}
ight)P\left( B_{0} ight) + P\left( B \mid B_{1} ight)P\left( B_{1}
ight) + P\left( B \mid B_{2} ight)P\left( B_{2} ight) + P\left( B
\mid B_{3} ight)P\left( B_{3} ight)

    = 0.(0,036) + (0,3)(0,252) +
(0,7)(0,488) + 1.(0,224)

    = 0,6412

    Khi đó ta có:

    P\left( BA_{3} ight) = P\left\lbrack
BA_{3}\left( A_{1}A_{2} + \overline{A_{1}}A_{2} + A_{1}\overline{A_{2}}
+ \overline{A_{1}}\overline{A_{2}} ight) ightbrack

    = P\left( A_{1}A_{2}A_{3}B ight) +
P\left( \overline{A_{1}}A_{2}A_{3}B ight) + P\left(
A_{1}\overline{A_{2}}A_{3}B ight) + P\left(
\overline{A_{1}}\overline{A_{2}}A_{3}B ight)

    = P\left( B \mid A_{1}A_{2}A_{3}
ight)P\left( A_{1}A_{2}A_{3} ight) + P\left( B \mid
\overline{A_{1}}A_{2}A_{3} ight)P\left( \overline{A_{1}}A_{2}A_{3}
ight)

    + P\left( B \mid
A_{1}\overline{A_{2}}A_{3} ight)P\left( A_{1}\overline{A_{2}}A_{3}
ight) + P\left( B \mid \overline{A_{1}}\overline{A_{2}}A_{3}
ight)P\left( \overline{A_{1}}\overline{A_{2}}A_{3}
ight)

    = 1.(0,224) +
(0,7)\lbrack(0,6)(0,7)(0,8)brack +
(0,7)\lbrack(0,4)(0,3)(0,8)brack

    +
(0,3)\lbrack(0,6)(0,3)(0,8)brack

    = 0,5696

    Do đó

    P\left( A_{3} \mid B ight) =
\frac{P\left( BA_{3} ight)}{P(B)} = \frac{0,5696}{0,6412} =
0,8883

  • Câu 17: Thông hiểu

    Một chiếc hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60\% số viên bi màu đỏ đánh số và 50\% số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số.

    a) Số viên bi màu đỏ có đánh số là 30. Đúng||Sai

    b) Số viên bi màu vàng không đánh số là 15. Đúng||Sai

    c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là: \frac{3}{5} Sai|| Đúng

    d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số là: \frac{7}{16}. Đúng||Sai

    Đáp án là:

    Một chiếc hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60\% số viên bi màu đỏ đánh số và 50\% số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số.

    a) Số viên bi màu đỏ có đánh số là 30. Đúng||Sai

    b) Số viên bi màu vàng không đánh số là 15. Đúng||Sai

    c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là: \frac{3}{5} Sai|| Đúng

    d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số là: \frac{7}{16}. Đúng||Sai

    a) Số viên bi màu đỏ có đánh số là 60\%.50 = 30

    b) Số viên bi màu vàng không đánh số là 50\%.30 = 15

    c) Gọi A là biến cố “viên bi được lấy ra có đánh số”

    Gọi B là biến cố “viên bi được lấy ra có màu đỏ”, suy ra B là biến cố “viên bi được lấy ra có màu vàng”

    Lúc này ta đi tính P(A) theo công thức: P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    Ta có: \left\{ \begin{matrix}
  P\left( B ight) = \dfrac{{50}}{{80}} = \dfrac{5}{8} \Rightarrow P\left( {\overline B } ight) = 1 - \dfrac{5}{8} = \dfrac{3}{8} \hfill \\
  P\left( {A|B} ight) = 60\%  = \dfrac{3}{5} \hfill \\
  P\left( {A|\overline B } ight) = 100\%  - 50\%  = \dfrac{1}{2} \hfill \\ 
\end{matrix}  ight.

    \Rightarrow P(A) =
\frac{5}{8}.\frac{3}{5} + \frac{3}{8}.\frac{1}{2} =
\frac{9}{16}.

    d) A là biến cố “viên bi được lấy ra có đánh số” suy ra A là biến cố “viên bi được lấy ra không có đánh số”. Khi đó ta có:

    \Rightarrow P\left( \overline{A} ight)
= 1 - P(A) = 1 - \frac{9}{16} = \frac{7}{16}

  • Câu 18: Vận dụng

    Tung một con xúc sắc hai lần độc lập nhau. Biết rằng lần tung thứ nhất được số chấm chẵn. Tính xác suất tổng số chấm hai lần tung bằng 4?

    Gọi Ti: "Tổng số nốt hai lần tung bằng i" (i = 1, 6)

    Nj,k: "Số nốt trên lần tung thứ j bằng k" (j = 1, 2; k = 1, 6)

    Ta tìm

    P\left( T_{i}|N_{1,2} \cup N_{1,4} \cup N_{1,6} ight) = \frac{P\left( N_{1,2} \cup N_{2;2} ight)}{P\left(N_{1,2} \cup N_{1,4} \cup N_{1,6} ight)}= \dfrac{\left( \dfrac{1}{6}ight)^{2}}{\dfrac{1}{2}} = \dfrac{1}{18}

  • Câu 19: Thông hiểu

    Một gia đình có 2 đứa trẻ. Biết rằng có ít nhất 1 đứa trẻ là con gái. Xác suất để một đứa trẻ là trai hoặc gái là bằng nhau. Hỏi xác suất hai đứa trẻ đều là con gái là bao nhiêu?

    Giới tính cả 2 đứa trẻ là ngẫu nhiên và không liên quan đến nhau.

    Do gia đình có 2 đứa trẻ nên sẽ có thể xảy ra 4 khả năng: (trai, trai), (gái, gái), (gái, trai), (trai, gái).

    Gọi A là biến cố “Cả hai đứa trẻ đều là con gái” Gọi B là biến cố “Có ít nhất một đứa trẻ là con gái”

    Ta có: P(A) = \frac{1}{4};P(B) =
\frac{3}{4}

    Do nếu xảy ra A thì đương nhiên sẽ xảy ra B nên ta có:

    P(A \cap B) = P(A) =
\frac{1}{4}

    Suy ra, xác suất để cả hai đứa trẻ đều là con gái khi biết ít nhất có một đứa trẻ là gái là: P\left( A|B ight) =\dfrac{P(A \cap B)}{P(B)} = \dfrac{\dfrac{1}{4}}{\dfrac{3}{4}} =\dfrac{1}{3}.

  • Câu 20: Vận dụng cao

    Một bài trắc nghiệm có 10 câu hỏi, mỗi câu hỏi có 4 phương án lựa chọn trong đó có 1 đáp án đúng được 5 điểm và mỗi câu trả lời sai bị trừ đi 2 điểm. Một học sinh không học bài nên đánh hàng loạt một câu trả lời. Tìm xác suất để học sinh này nhận điểm dưới 1.

    Xác suất để học sinh trả lời đúng 1 câu là \frac{1}{4} và trả lời sai 1 câu là \frac{3}{4}.

    Gọi x là số câu trả lời đúng \Rightarrow 10 - x là số câu trả lời sai.

    Số điểm học sinh đạt được là: 5x - 2.(10
- x) = 7x - 20

    Học sinh nhận được điểm dưới 1 khi 7x -
20 < 1 \Leftrightarrow x < 3

    x\mathbb{\in Z \Rightarrow}x \in \{
0;1;2\}

    Gọi A_{i}(i = 0,1,2) là biến cố: "Học sinh trả lời đúng i câu"

    A là biến cố "Học sinh nhận điểm dưới 1"

    Suy ra A = A_{0} \cup A_{1} \cup
A_{2}P(A) = P\left( A_{0}ight) + P\left( A_{1} ight) + P\left( A_{2} ight)

    P\left( A_{i} ight) =
C_{10}^{i}.\left( \frac{1}{4} ight)^{i}.\left( \frac{3}{4} ight)^{10
- i} nên P(A) = \sum_{i =
0,}^{2}C_{10}^{i}.\left( \frac{1}{4} ight)^{i}.\left( \frac{3}{4}
ight)^{10 - i} = 0,5256

  • Câu 21: Thông hiểu

    Một bình đựng hạt giống có 7 hạt loại A và 6 hạt loại B. Lấy ngẫu nhiên lần thứ nhất ra 2 hạt, lần thứ hai ra một hạt. Tính xác suất để hạt giống lấy ra lần 2 là hạt loại A.

    Gọi F là biến cố hạt lấy ra lần hai là loại A. H0, H1, H2 lần lượt là biến cố hai hạt lấy ra lần thứ nhất có 0,1, 2 hạt loại B.

    {H0, H1, H2} là một hệ đầy đủ.

    Áp dụng công thức xác suất đầy đủ ta có

    P(F) = P\left( H_{0} ight).P\left(
F|H_{0} ight) + P\left( H_{1} ight).P\left( F|H_{1} ight) +
P\left( H_{2} ight).P\left( F|H_{2} ight)

    \Rightarrow P(F) =
\frac{C_{7}^{2}}{C_{13}^{2}}.\frac{5}{11} +
\frac{C_{7}^{1}.C_{6}^{1}}{C_{13}^{2}}.\frac{6}{11} +
\frac{C_{6}^{2}}{C_{13}^{2}}.\frac{7}{11} = 0,538.

  • Câu 22: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,8;P(B) = 0,65;P\left( A \cap \overline{B} ight) = 0,55. Tính P(A \cap B)?

    Ta có:

    P\left( A \cap \overline{B} ight) +
P(A \cap B) = P(A)

    \Rightarrow P(A \cap B) = P(A) - P\left(
A \cap \overline{B} ight) = 0,8 - 0,55 = 0,25.

  • Câu 23: Thông hiểu

    Gieo một con xúc xắc cân đối đồng chất 2 lần. Tính xác suất để tổng số chấm xuất hiện trên hai mặt bằng 8

    Số phần tử của không gian mẫu là n(\Omega) = 6.6 = 36

    Gọi A là biến cố “Số chấm trên mặt hai lần gieo có tổng bằng 8”.

    Theo bài ra, ta có A = \left\{
(2;6),(3;5),(4;4),(5;3),(6;2) ight\}

    Khi đó số kết quả thuận lợi của biến cố là n(A) = 5

    Vậy xác suất cần tính P(A) =
\frac{5}{36} .

  • Câu 24: Vận dụng

    Một người có 3 chỗ ưa thích như nhau để câu cá. Xác suất câu được cá ở mỗi chỗ lần lượt là 0,7;0,8;0,9. Biết rằng mỗi chỗ người đó thả câu 3 lần thì chỉ có một lần câu được cá. Người đó đã câu được một con cá. Tính xác suất để con cá câu được đó ở chỗ thứ nhất.

    Gọi A là sự kiện câu được cá ở chỗ thứ 1, B là sự kiện câu được 1 con cá.

    Theo đề bài, ta biết rằng người đó chọn ngẫu nhiên 1 chỗ rồi thả câu 3 lần và chỉ câu được 1 con cá.

    Ta cần tìm xác suất P(A|B), tức là xác suất câu được cá ở chỗ thứ 1 khi biết đã câu được 1 con cá.

    Theo công thức Bayes, ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    P(B|A) là xác suất câu được 1 con cá khi đã biết câu ở chỗ thứ 1 là A.

    Vì xác suất câu được cá ở chỗ thứ 1 là 0,8, nên P\left( B|A ight) = 0,8

    P(A) là xác suất câu được cá ở chỗ thứ 1.

    Vì có 3 chỗ ưa thích như nhau, nên xác suất câu được cá ở chỗ thứ 1 là \frac{1}{3}.

    P(B) là xác suất câu được 1 con cá. Ta có thể tính xác suất này bằng cách sử dụng định lý xác suất toàn phần:

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    Trong đó:

    P\left( B|\overline{A} ight) là xác suất câu được 1 con cá khi không câu ở chỗ thứ 1 là A. Vì xác suất câu được cá ở chỗ thứ 2 và chỗ thứ 3 lần lượt là 0,90,7 nên P\left( B|\overline{A} ight) =
0,9.0,7

    P\left( \overline{A} ight) là xác suất không câu được cá ở chỗ thứ 1. Vì có 3 chỗ ưa thích như nhau, nên xác suất không câu được cá ở chỗ thứ 1 là \frac{2}{3}.

    Thay các giá trị vào công thức Bayes, ta có:

    0,8 = \dfrac{{\dfrac{{103}}{{150}}.P\left( {A|B} ight)}}{{\dfrac{1}{3}}} \Rightarrow P\left( {A|B} ight) \approx 0,388

    Vậy Xác suất con cá câu được ở chỗ thứ 1 là: 0,388

  • Câu 25: Nhận biết

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,3;P(B) = 0,6;P\left( A|B ight) =
0,4 thì P\left( B|A
ight) bằng bao nhiêu?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,6.0,4}{0,3} = \frac{4}{5}

  • Câu 26: Nhận biết

    Hộp thứ nhất chứa 3 viên bi đen và 2 viên bi trắng. Hộp thứ hai chứa 4 viên bi đen và 5 viên bi trắng. Các viên bi có cùng kích thước và khối lượng. Bạn Mai lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.

    Gọi A: "Viên bi lấy ra lần thứ nhất là bi đen"

    Và B: "Viên bi lấy ra lần thứ hai là bi trắng".

    Biết rằng biến cố A xảy ra, tính xác suất của biến cố B?

    Nếu biến cố A xảy ra thì bạn Mai lấy viên bi đen từ hộp thứ nhất bỏ vào hộp thứ hai.

    Khi đó hộp thứ hai có 5 viên bi đen và 5 viên bi trắng.

    Do đó, xác suất của biến cố B là: P(B) =
\frac{1}{2}.

  • Câu 27: Thông hiểu

    Cho hai biến cố A;B với P(AB) = \frac{1}{4};P\left( A|\overline{B} ight)
= \frac{1}{8};P(B) = \frac{1}{2}. Tính P(A)?

    Ta có:

    P(A) = P\left( \overline{A}\overline{B}
+ AB ight)

    = P\left( A|\overline{B} ight).P\left(
\overline{B} ight) + P(AB)

    = \frac{1}{8}.\frac{1}{2} + \frac{1}{4}
= \frac{5}{16}

  • Câu 28: Thông hiểu

    Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng 0,840,16. do có nhiễu trên đường truyền nên \frac{1}{6} tín hiệu A bị méo và thu được như tín hiệu B còn \frac{1}{8} tín hiệu B bị méo và thu được như A. Tìm xác suất thu được tín hiệu A?

    Gọi A, B lần lượt là "phát ra tín hiệu A, B".

    Khi đó A, B tạo thành hệ đầy đủ.

    P(A) = 0,84;P(B) = 0,16

    Gọi C là "thu được tín hiệu A". Khi đó: P\left( C|A ight) = \frac{5}{6};P\left( C|B
ight) = \frac{1}{8}

    Áp dụng công thức xác suất toàn phần ta có:

    P(C) = P(A).P\left( C|A ight) +
P(B).P\left( C|B ight)

    \Rightarrow P(C) = 0,84.\frac{5}{6} +
0,16.\frac{1}{8} = 0,72.

    Ta cần tính P(A|C). Áp dụng công thức Bayes ta có:

    P\left( A|C ight) = \frac{P(A)P\left(C|A ight)}{P(C)} = \dfrac{0,84.\dfrac{5}{6}}{0,72} =\dfrac{35}{36}

  • Câu 29: Vận dụng

    Trong một kho rượu, số lượng rượu loại M và loại N bằng nhau. Người ta chọn ngẫu nhiên một chai và đưa cho 5 người nếm thử. Biết xác suất đoán đúng của mỗi người là 0,8. Có 3 người kết luận rượu loại M, 2 người kết luận rượu loại N. Hỏi khi đó xác suất chai rượu đó thuộc loại M là bao nhiêu?

    Gọi A là chai rượu thuộc loại M thì A;\overline{A} tạo thành hệ đầy đủ và P(A) = P\left( \overline{A} ight) =
\frac{1}{2}

    Gọi H là "có 3 người kết luận rượu loại M và 2 người kết luận rượu loại N".

    Theo công thức toàn phần ta có:

    P(H) = P(A).P\left( H|A ight) +
P\left( \overline{A} ight).P\left( H|\overline{A} ight)

    \Rightarrow P(H) =
0,5.C_{5}^{3}.0,8^{3}.0,2^{2} + 0,5.C_{5}^{2}.0,8^{2}.0,2^{3} =
0,128

    Vậy xác suất cần tính là:

    P\left( A|H ight) = \frac{P(A).P\left(
H|A ight)}{P(H)} = \frac{0,5.C_{5}^{3}.0,8^{3}.0,2^{2}}{0,128} =
0,8

  • Câu 30: Thông hiểu

    Giả sử 5\% email của bạn nhận được là email rác. Bạn sử dụng một hệ thống lọc email rác mà khả năng lọc đúng email rác của hệ thống này là 95\% và có 10\% những email không phải là email rác nhưng vẫn bị lọc. Các khẳng định sau đúng hay sai?

    a) Gọi A: “Email nhận được là email rác”.

    Và B: “Email bị lọc đúng email rác của hệ thống lọc email rác”.

    Vì 5% email nhận được là rác nên xác suất nhận được một email rác là

    P(A) = 5\% = 0,05

    b) Xác suất email bị lọc của email rác là P\left( B|A ight) = 95\% = 0,95.

    c) Xác suất email nhận được không phải rác là P\left( \overline{A} ight) = 1 - P(A) = 1 - 0,05
= 0,95

    Xác suất email bị lọc của email không phải rác là P\left( B|\overline{A} ight) = 0,1

    Vậy xác suất chọn một email bị lọc bất kể là rác hay không là

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight)P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,95.0,05 + 0,1.0,95
= 0,1425

    d) Xác suất chọn một email trong số những email bị lọc thực sự là email rác là

    P\left( A|B ight) = \frac{P\left( B|A
ight).P(A)}{P(B)} = \frac{0,95.0,05}{0,1425} =
\frac{1}{3}.

  • Câu 31: Vận dụng

    Để gây đột biến cho một tính trạng người ta tìm cách tác động lên hai gen A, B bằng phóng xạ. Xác suất đột biến của tính trạng do gen A0,4; do gen B là 0,5 và do cả hai gen là 0,9. Tính xác suất để có đột biến ở tính trạng đó biết rằng phóng xạ có thể tác động lên gen A với xác suất 0,7 và lên gen B với xác suất 0,6?

    Gọi C là biến cố có đột biến ở tính trạng đang xét

    A là biến cố phóng xạ tác dụng lên gen A

    B là biến cố phóng xạ tác dụng lên gen B

    C1 là biến cố phóng xạ chỉ tác động lên gen A

    C2 là biến cố phóng xạ chỉ tác dụng lên gen B

    C3 là biến cố phóng xạ tác dụng lên cả 2 gen

    C_{4} là biến cố phóng xạ không tác dụng lên gen nào

    Khi đó hệ C_{1},C_{2},C_{3},C_{4} là một hệ đầy đủ

    C_{1} = A\overline{\text{ }B},C_{2} =\overline{A}\text{ }B,C_{3} = AB,C_{4} = \overline{A}\overline{\text{}B}

    Mặt khác A;B độc lập nên 

    P\left( C_{1} ight) = P(\text{}A)P(\overline{\text{ }B}) = 0,28,P\left( C_{2} ight) =P(\overline{\text{ }A})P(\text{ }B) = 0,18

    P\left( C_{3} ight) = P(\text{}A)P(\text{ }B) = 0,42;P\left( C_{4} ight) = P(\overline{\text{}A})P(\overline{\text{ }B}) = 0,12

    Mặt khác P\left( C|C_{1} ight) =0,4;P\left( C|C_{2} ight) = 0,5;P\left( C|C_{3} ight) = 0,9P\left( C/C_{4} ight) = 0

    Theo công thức xác suất toàn phần ta có:

    P(C) = 0,28.0,4 + 0,18.0,5 + 0,42.0,9 +0,12.0 = 0,58

  • Câu 32: Nhận biết

    Cho hai biến cố AB với P(B) =
0,8;P\left( A|B ight) = 0,7,P\left( A|\overline{B} ight) =
0,45. Tính P(A)?

    Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,8.0,7 + 0,2.0,45 =
0,65

  • Câu 33: Vận dụng cao

    Trong học kỳ I năm học 2024 - 2025, sinh viên phải thi 4 học phần. Xác suất để sinh viên thi đạt một học phần trong mỗi lần thi đều là 0,8. Nếu thi không đạt học phần nào phải thi lại học phần đó. Tính xác suất để một sinh viên thi đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần.

    Gọi A_{i} là "đạt i học phần ở lần thi đầu".

    Khi đó, A_{0},A_{1},A_{2},A_{3},A_{4} tạo thành hệ đầy đủ và P\left( A_{i} ight) =
C_{4}^{i}.0,8^{i}.0,2^{4 - i}

    Gọi A là "đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần".

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = \sum_{i = 0}^{4}P\left( A_{i}
ight)P\left( A \mid A_{i} ight)

    = C_{4}^{0}.0,8^{0}.0,2^{4}.\left(
0,8^{4} ight) + C_{4}^{2}.0,8^{1}.0,2^{3}.\left( 0,8^{3} ight) +
C_{4}^{2}.0,8^{2}.0,2^{2}.\left( 0,8^{2} ight)

    + C_{4}^{3}.0,8^{3}.0,2^{1}.(0,8) +
C_{4}^{4}.0,8^{4}.0,2^{0}.\left( 0,8^{0} ight)

    \approx 0,8493 = 84,93\%

  • Câu 34: Nhận biết

    Cho hai biến cố AB với P(B) =
0,2;P\left( A|B ight) = 0,5;P\left( A|\overline{B} ight) =
0,4. Tính P\left( B|A
ight)?

    Ta có: P(B) = 0,2 \Rightarrow P\left(
\overline{B} ight) = 1 - P(B) = 1 - 0,2 = 0,8

    Áp dụng công thức Bayes:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

    \Rightarrow P\left( B|A ight) =
\frac{0,2.0,5}{0,2.0,5 + 0,8.0,4} = \frac{5}{21} \approx 0,238 .

  • Câu 35: Thông hiểu

    Một lớp có 60 học sinh, trong đó 40 học sinh mặc áo có màu xanh, 10 học sinh mặc áo có cả xanh lẫn trắng. Chọn ngẫu nhiên 1 học sinh. Tính xác suất để học sinh đó áo có màu trắng với điều kiện áo em đó đã có màu xanh?

    Minh họa bài toán

    Gọi A là biến cố “học sinh được chọn mặc áo trắng”

    Gọi B là biến cố “học sinh được chọn mặc áo xanh”

    A.B là biến cố “học sinh được chọn mặc áo trắng lẫn xanh” Xác suất để học sinh đó áo có màu trắng với điều kiện áo em đó đã có màu xanh:

    P\left( {A|B} ight) = \dfrac{{P\left( {AB} ight)}}{{P\left( B ight)}} = \dfrac{{\dfrac{{10}}{{60}}}}{{\dfrac{{40}}{{60}}}} = 0,25 = 25\%

  • Câu 36: Nhận biết

    Cho hai biến cố AB với 0 <
P(A) < 1. Biết P(A) =0,1;P\left( \overline{A} ight) = 0,9;P\left( B|A ight) = 0,3;P\left(B|\overline{A} ight) = 0,6. Tính P(B)?

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,1.0,3 + 0,9.0,6 =
0,57

  • Câu 37: Nhận biết

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2024;P(B) = 0,2025. Tính P\left( B|\overline{A} ight)?

    Hai biến cố \overline{A}B là hai biến cố độc lập nên P\left( B|\overline{A} ight) = P(B) =
0,2025.

  • Câu 38: Nhận biết

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P(A.B)?

    Ta có: P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

  • Câu 39: Thông hiểu

    Một công ty xây dựng đấu thầu 2 dự án độc lập. Khả năng thắng thầu của các dự án 1 là 0,6 và dự án 2 là 0,7. Biết công ty thắng thầu dự án 1, tìm xác suất công ty thắng thầu dự án 2?

    Gọi A là biến cố ”Thắng thầu dự án 1″

    Gọi B là biến cố “Thắng thầu dự án 2″

    Theo đề bài ta có: \left\{ \begin{matrix}
P(A) = 0,6 \Rightarrow P\left( \overline{A} ight) = 0,4 \\
P(B) = 0,3 \Rightarrow P\left( \overline{B} ight) = 0,7 \\
\end{matrix} ight. với 2 biến cố A; B độc lập.

    Gọi D là biến cố “thắng thầu dự án thứ 2 biết thắng thầu dự án 1” do A; B là hai biến cố độc lập nên:

    P(D) = P\left( B|A ight) = P(B) =
0,7

  • Câu 40: Nhận biết

    Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. Hùng lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa.

    Xét các biến cố:

    A: "Quả bóng lấy ra lần đầu có số chẵn"

    B: "Quả bóng lấy ra lần hai có số lẻ".

    Xác định biến cố E = B|A: "biến cố B với điều kiện biết A đã xảy ra".

    Ta có:

    A = \left\{
(2;1),(2;3),(2;4),(4;1),(4;2),(4;3) ight\}

    B = \left\{
(1;1),(1;3),(2;1),(2;3),(3;1),(3;3),(4;1),(4;3) ight\}

    Khi biến cố B xảy ra, thì không gian mẫu mới là B.

    Khi đó, biến cố E = B|A = A \cap B =
\left\{ (2;1),(2;3),(4;1),(4;3) ight\}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Xác suất có điều kiện CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 25 lượt xem
Sắp xếp theo