Đề kiểm tra 45 phút Chương 6 Xác suất có điều kiện CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 6. Xác suất có điều kiện được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hai biến cố AB với 0 <
P(A) < 1. Biết P(A) =0,1;P\left( \overline{A} ight) = 0,9;P\left( B|A ight) = 0,3;P\left(B|\overline{A} ight) = 0,6. Tính P(B)?

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,1.0,3 + 0,9.0,6 =
0,57

  • Câu 2: Vận dụng cao

    Ba khẩu pháo cùng bắn vào một mục tiêu với xác suất trúng đích của mỗi khẩu là 0,4;0,7;0,8. Biết rằng xác suất để mục tiêu bị tiêu diệt khi trúng một phát đạn là 30\%, khi trúng 2 phát đạn là 70\%, còn trúng 3 phát đạn thì chắc chắn mục tiêu bị tiêu diệt. Giả sử mỗi khẩu pháo bắn 1 phát. Tính xác suất để khẩu thứ 3 có đóng góp vào thành công đó?

    Gọi \ A_{i} : "Khẫu pháo thứ i bắn trúng" (i = 1,2,3)

    B_{k} : "Mục tiêu trúng k phát đạn" (k = 0,1,2,3)

    B : "Mục tiêu bị tiêu diệt".

    Ta có: \left\{ B_{k},k = 0,1,2,3
ight\} là một hệ đầy đủ các biến cố và

    B_{0} =
\overline{A_{1}}\overline{A_{2}}\overline{A_{3}},\ B_{1} =
A_{1}\overline{A_{2}}\overline{A_{3}} +
\overline{A_{1}}A_{2}\overline{A_{3}} +
\overline{A_{1}}\overline{A_{2}}A_{3}

    B_{2} = A_{1}A_{2}\overline{A_{3}} +
A_{1}\overline{A_{2}}A_{3} + \overline{A_{1}}A_{2}A_{3},\ B_{3} =
A_{1}A_{2}A_{3}

    Ta có các giả thiết sau:

    P\left( A_{1} ight) = 0,4;P\left(
A_{2} ight) = 0,7;P\left( A_{3} ight) = 0,8

    P\left( B \mid B_{0} ight) = 0,P\left(
B \mid B_{1} ight) = 0,3;P\left( B \mid B_{2} ight) = 0,7;P\left( B
\mid B_{3} ight) = 1

    Từ đó, ta tính được:

    P\left( B_{0} ight) = P\left(
\overline{A_{1}} ight)P\left( \overline{A_{2}} ight)P\left(
\overline{A_{3}} ight)

    = (0,6)(0,3)(0,2)

    = 0,036

    P\left( B_{1} ight) = P\left( A_{1}
ight)P\left( \overline{A_{2}} ight)P\left( \overline{A_{3}} ight)
+ P\left( \overline{A_{1}} ight)P\left( A_{2} ight)P\left(
\overline{A_{3}} ight) + P\left( \overline{A_{1}} ight)P\left(
\overline{A_{2}} ight)P\left( A_{3} ight)

    = (0,4)(0,3)(0,2) + (0,6)(0,7)(0,2) +
(0,6)(0,3)(0,8)

    = 0,252

    P\left( B_{2} ight) = P\left( A_{1}
ight)P\left( A_{2} ight)P\left( \overline{A_{3}} ight) + P\left(
A_{1} ight)P\left( \overline{A_{2}} ight)P\left( A_{3} ight) +
P\left( \overline{A_{1}} ight)P\left( A_{2} ight)P\left( A_{3}
ight)

    = (0,4)(0,7)(0,2) + (0,4)(0,3)(0,8) +
(0,6)(0,7)(0,8)

    = 0,488

    P\left( B_{3} ight) = P\left( A_{1}
ight)P\left( A_{2} ight)P\left( A_{3} ight)

    = (0,4)(0,7)(0,8)

    = 0,224

    Theo công thức xác suất đầy đủ ta có:

    P(B) = P\left( B \mid B_{0}
ight)P\left( B_{0} ight) + P\left( B \mid B_{1} ight)P\left( B_{1}
ight) + P\left( B \mid B_{2} ight)P\left( B_{2} ight) + P\left( B
\mid B_{3} ight)P\left( B_{3} ight)

    = 0.(0,036) + (0,3)(0,252) +
(0,7)(0,488) + 1.(0,224)

    = 0,6412

    Khi đó ta có:

    P\left( BA_{3} ight) = P\left\lbrack
BA_{3}\left( A_{1}A_{2} + \overline{A_{1}}A_{2} + A_{1}\overline{A_{2}}
+ \overline{A_{1}}\overline{A_{2}} ight) ightbrack

    = P\left( A_{1}A_{2}A_{3}B ight) +
P\left( \overline{A_{1}}A_{2}A_{3}B ight) + P\left(
A_{1}\overline{A_{2}}A_{3}B ight) + P\left(
\overline{A_{1}}\overline{A_{2}}A_{3}B ight)

    = P\left( B \mid A_{1}A_{2}A_{3}
ight)P\left( A_{1}A_{2}A_{3} ight) + P\left( B \mid
\overline{A_{1}}A_{2}A_{3} ight)P\left( \overline{A_{1}}A_{2}A_{3}
ight)

    + P\left( B \mid
A_{1}\overline{A_{2}}A_{3} ight)P\left( A_{1}\overline{A_{2}}A_{3}
ight) + P\left( B \mid \overline{A_{1}}\overline{A_{2}}A_{3}
ight)P\left( \overline{A_{1}}\overline{A_{2}}A_{3}
ight)

    = 1.(0,224) +
(0,7)\lbrack(0,6)(0,7)(0,8)brack +
(0,7)\lbrack(0,4)(0,3)(0,8)brack

    +
(0,3)\lbrack(0,6)(0,3)(0,8)brack

    = 0,5696

    Do đó

    P\left( A_{3} \mid B ight) =
\frac{P\left( BA_{3} ight)}{P(B)} = \frac{0,5696}{0,6412} =
0,8883

  • Câu 3: Thông hiểu

    Có hai hộp đựng phiếu thi, mỗi phiếu ghi một câu hỏi. Hộp thứ nhất có 15 phiếu và hộp thứ hai có 9 phiếu. Học sinh A đi thi chỉ thuộc 10 câu ở hộp thứ nhất và 8 câu ở hộp thứ hai. Giáo viên rút ngẫu nhiên từ mỗi hộp ra một phiếu thi, sau đó cho học sinh A rút ngẫu nhiên ra 1 phiếu từ 2 phiếu mà giáo viên đã rút. Tính xác suất để học sinh A trả lời được câu hỏi trong phiếu.

    Gọi E1 là biến cố sinh viên rút ra từ hộp 1

    E2 là biến cố sinh viên rút ra từ hộp 2

    E1, E2 tạo thành một nhóm biến cố đầy đủ

    Gọi B là biến cố rút ra 1 câu thuộc B=(E_1∩B)∪(E_2∩B)

    => P(B) = P(E_1).P(B|E_1) + P(E_2).P(B|E_2)

    Ta có: \left\{ \begin{gathered}
  P\left( {{E_1}} ight) = \frac{{C_1^1}}{{C_2^1}} = \frac{1}{2};P\left( {{E_2}} ight) = \frac{{C_1^1}}{{C_2^1}} = \frac{1}{2} \hfill \\
  P\left( {B|{E_1}} ight) = \frac{{C_{10}^1}}{{C_{15}^1}} = \frac{2}{3} \hfill \\
  P\left( {B|{E_2}} ight) = \frac{{C_8^1}}{{C_9^1}} = \frac{8}{9} \hfill \\ 
\end{gathered}  ight.

    Thay vào công thức ta tính được P(B) =
\frac{7}{9}.

  • Câu 4: Thông hiểu

    Có 40 phiếu kiểm tra, mỗi phiếu có một câu hỏi, biết rằng có 13 câu hỏi lý thuyết (gồm 5 câu mức độ khó và 8 câu mức độ dễ) và 27 câu hỏi bài tập (gồm 12 câu mức độ khó và 15 câu mức độ dễ). Lấy ngẫu nhiên ra một phiếu. Tìm xác suất rút được câu hỏi lý thuyết mức độ khó.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có 40 phiếu kiểm tra, mỗi phiếu có một câu hỏi, biết rằng có 13 câu hỏi lý thuyết (gồm 5 câu mức độ khó và 8 câu mức độ dễ) và 27 câu hỏi bài tập (gồm 12 câu mức độ khó và 15 câu mức độ dễ). Lấy ngẫu nhiên ra một phiếu. Tìm xác suất rút được câu hỏi lý thuyết mức độ khó.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Thông hiểu

    Hộp I: 5 bi trắng và 5 bi đen. Hộp II: 6 bi trắng và 4 bi đen. Bỏ hai viên bi từ hộp I sang hộp II. Sau đó lấy ra 1 viên bi. Giả sử lấy được bị trắng, tính xác suất để lấy được bi trắng của hộp I?

    Gọi A là biến cố lấy được bi trắng

    Gọi K1 là biến cố lấy bi ra từ hộp II của hộp I

    Gọi K2 là biến cố lấy bi ra từ hộp II của hộp II

    Ta xác định được:

    \left\{ \begin{gathered}
  P\left( {{K_1}} ight) = \frac{{C_2^1}}{{C_{12}^1}};P\left( {{K_2}} ight) = \frac{{C_{10}^1}}{{C_{12}^1}} \hfill \\
  P\left( {A|{E_1}} ight) = \frac{{C_5^1}}{{C_{10}^1}};P\left( {A|{E_2}} ight) = \frac{{C_6^1}}{{C_{10}^1}} \hfill \\ 
\end{gathered}  ight.

    Khi đó: P(A) = P\left( K_{1}
ight).P\left( A|K_{1} ight) + P\left( K_{2} ight).P\left( A|K_{2}
ight) = \frac{7}{12}

    Vậy xác suất để lấy được bi trắng của hộp I là:

    \Rightarrow P\left( K_{1}|A ight) =
\frac{P\left( K_{1} ight).P\left( A|K_{1} ight)}{P(A)} =
\frac{1}{7}

  • Câu 6: Nhận biết

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P(A.B)?

    Ta có: P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

  • Câu 7: Vận dụng

    Câu lạc bộ thể thao của trường Việt Anh có 40 bạn đều biết chơi biết chơi ít nhất một trong hai môn là bóng đá và cầu lông, trong đó có 27 bạn biết chơi bóng đá và 25 bạn biết chơi cầu lông. Chọn ngẫu nhiên 1 bạn. Xác suất chọn được bạn biết chơi bóng đá biết bạn đó chơi được cầu lông là bao nhiều?

    Đáp án: 0,48

    Đáp án là:

    Câu lạc bộ thể thao của trường Việt Anh có 40 bạn đều biết chơi biết chơi ít nhất một trong hai môn là bóng đá và cầu lông, trong đó có 27 bạn biết chơi bóng đá và 25 bạn biết chơi cầu lông. Chọn ngẫu nhiên 1 bạn. Xác suất chọn được bạn biết chơi bóng đá biết bạn đó chơi được cầu lông là bao nhiều?

    Đáp án: 0,48

    Xét các biến cố: A: “Chọn được bạn biết chơi bóng đá”

    B: “Chọn được bạn biết chơi cầu lông”

    Khi đó P(A) = \frac{27}{40} =
0,675; P(B) = \frac{25}{40} =
0,625; P(A \cup B) =
1.

    Suy ra P(A \cap B) = P(A) + P(B) - P(A
\cup B) = 0,675 + 0,625 - 1 = 0,3.

    Vậy xác suất chọn được bạn biết chơi bóng đá, bạn đó biết chơi cầu lông là P\left( A|B ight) = \frac{P(A \cap
B)}{P(B)} = \frac{0,3}{0,625} = 0,48.

    Đáp số: 0,48.

  • Câu 8: Thông hiểu

    Cửa hàng nhận trứng của ba cơ sở nuôi gà theo tỉ lệ 25\%;35\%;40\%. Nếu tỉ lệ trứng hỏng của ba cơ sở là 5\%;4\%;2\% thì xác suất để một quả trứng mua tại cửa hàng bị hỏng là bao nhiêu?

    Khi mua một quả trứng của cửa hàng thì có một và chỉ một trong 3 biến cố xảy ra:

    A1 lấy trứng của cơ sở I.

    A2 lấy trứng của cơ sở II.

    A3 lấy trứng của cơ sở III.

    Xác suất của ba biến cố trên lần lượt là:

    P\left( A_{1} ight) = 0,25;P\left(
A_{2} ight) = 0,35;P\left( A_{3} ight) = 0,40

    Gọi B là biến cố trứng mua tại cửa hàng bị hỏng.

    Xác suất trứng hỏng tại ba cơ sở lần lượt là:

    P\left( B|A_{1} ight) = 0,05;P\left(
B|A_{2} ight) = 0,04;P\left( B|A_{3} ight) = 0,02

    Do đó:

    P(B) = P\left( A_{1} ight).P\left(
B|A_{1} ight) + P\left( A_{2} ight).P\left( B|A_{2} ight) +
P\left( A_{3} ight).P\left( B|A_{3} ight)

    \Rightarrow P(B) = 0,25.0,05 + 0,35.0,04
+ 0,4.0,02 = 0,0345.

  • Câu 9: Nhận biết

    Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. Hùng lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa.

    Xét các biến cố:

    A: "Quả bóng lấy ra lần đầu có số chẵn"

    B: "Quả bóng lấy ra lần hai có số lẻ".

    Xác định biến cố E = B|A: "biến cố B với điều kiện biết A đã xảy ra".

    Ta có:

    A = \left\{
(2;1),(2;3),(2;4),(4;1),(4;2),(4;3) ight\}

    B = \left\{
(1;1),(1;3),(2;1),(2;3),(3;1),(3;3),(4;1),(4;3) ight\}

    Khi biến cố B xảy ra, thì không gian mẫu mới là B.

    Khi đó, biến cố E = B|A = A \cap B =
\left\{ (2;1),(2;3),(4;1),(4;3) ight\}

  • Câu 10: Nhận biết

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,4;P(B) = 0,3;P\left( A|B ight) =
0,25 thì P\left( B|A
ight) bằng bao nhiêu?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,3.0,25}{0,4} = \frac{3}{16}

  • Câu 11: Vận dụng

    Một hộp đựng 10 phiếu trong đó có 2 phiếu trúng thưởng. Có 10 người lần lượt rút thăm. Tính xác suất nhận được phần thưởng của mỗi người?

    Gọi Ai: “người thứ i nhận được phiếu trúng thưởng” (i = 1, . . . , 10)

    Ta có:

    P\left( A_{1} ight) = \frac{2}{10} =
0,2

    P\left( A_{2} ight) = P\left(
A_{2}|A_{1} ight)P\left( A_{1} ight) + P\left(
A_{2}|\overline{A_{1}} ight)P\left( \overline{A_{1}}
ight)

    \Rightarrow P\left( A_{2} ight) =
\frac{1}{9}.\frac{2}{10} + \frac{2}{9}.\frac{8}{10}

    ...

    P\left( A_{10} ight) =
0,2

  • Câu 12: Nhận biết

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,3;P(B) = 0,6;P\left( A|B ight) =
0,4 thì P\left( B|A
ight) bằng bao nhiêu?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,6.0,4}{0,3} = \frac{4}{5}

  • Câu 13: Vận dụng

    Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 0,82

    Đáp án là:

    Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 0,82

    Gọi A là biến cố: "Chị Hoa bị nhiễm bệnh khi tiếp xúc người bệnh mà không đeo khẩu trang" và B : "Chị Hoa bị nhiễm bệnh khi tiếp xúc với người bệnh dù có đeo khẩu trang”.

    Dễ thấy \overline{A},\overline{B} là hai biến cố độc lập.

    Xác suất để chị Hoa không nhiễm bệnh trong cả hai lần tiếp xúc với người bệnh là

    P(\overline{A}\overline{B}) =
P(\overline{A}) \cdot P(\overline{B}) = 0,2 \cdot 0,9 =
0,18.

    Gọi P là xác suất để chị Hoa bị lây bệnh khi tiếp xúc người bệnh, ta có:

    P = 1 - P(\overline{A}\overline{B}) = 1
- 0,18 = 0,82.

  • Câu 14: Thông hiểu

    Một đoàn tàu gồm 3 toa đỗ ở sân ga. Có 5 hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên 1 toa. Tính xác suất để mỗi toa có ít nhất 1 hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,62

    Đáp án là:

    Một đoàn tàu gồm 3 toa đỗ ở sân ga. Có 5 hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên 1 toa. Tính xác suất để mỗi toa có ít nhất 1 hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).

    Đáp án: 0,62

    Không gian mẫu là số cách sắp xếp 5 hành khách lên 3 toa tàu. Vì mỗi hành khách có 3 cách chọn toa nên có 3^{5} cách xếp.

    Suy ra số phần tử của không gian mẫu là n(\Omega) = 3^{5} = 243.

    Gọi A là biến cố ''5 hành khách bước lên tàu mà mỗi toa có ít nhất 1 hành khách''. Để tìm số phần tử của biến cố A ta đi tìm số phần tử của biến cố \overline{A}, tức có toa không có hành khách nào bước lên tàu, có 2 khả năng sau:

    Trường hợp thứ nhất: Có 2 toa không có hành khách bước lên.

    +) Chọn 2 trong 3 toa để không có khách bước lên, có C_{3}^{2} cách.

    +) Sau đó cả 5 hành khách lên toa còn lại, có 1 cách.

    Do đó trường hợp này có C_{3}^{2}.1 =
3 cách.

    Trường hợp thứ hai: Có 1 toa không có hành khách bước lên.

    +) Chọn 1 trong 3 toa để không có khách bước lên, có C_{3}^{1} cách.

    +) Hai toa còn lại ta cần xếp 5 hành khách lên và mỗi toa có ít nhất 1 hành khách, có 2^{5} - C_{2}^{1}.1 = 30.

    Do đó trường hợp này có C_{3}^{1}.30 =
90 cách.

    Suy ra số phần tử của biến cố \overline{A}n\left( \overline{A} ight) = 3 + 90 =
93.

    Suy ra số phần tử của biến cố An(A) = n(\Omega) - n\left( \overline{A}
ight) = 243 - 93 = 150.

    Vậy xác suất cần tính P(A) =
\frac{n(A)}{n(\Omega)} = \frac{150}{243} = \frac{50}{81} \approx
0,62.

  • Câu 15: Nhận biết

    Cho hai biến cố A;B với P(A + B) = \frac{3}{4}. Tính P\left( \overline{A}.\overline{B}
ight)?

    Ta có: P\left( \overline{A}.\overline{B}
ight) = P\left( \overline{A + B} ight) = 1 - P(A + B) =
\frac{1}{4}

  • Câu 16: Vận dụng

    Tại một phòng khám chuyên khoa tỷ lệ người đến khám có bệnh là 0,8. Người ta áp dụng phương pháp chẩn đoán mới thì thấy nếu khẳng định có bệnh thì đúng 9 trên 10 trường hợp; còn nếu khẳng định không bệnh thì đúng 5 trên 10 trường hợp. Tính xác suất để chẩn đoán đúng?

    Gọi A là "người đến khám có bệnh" thì A, \overline{A} tạo thành hệ đầy đủ

    Gọi B là "Chẩn đoán có bệnh".

    Ta có P(A | B) = 0.9, P(A|B) = 0.5.

    Tìm P(B) từ:

    P\left( A|B ight) = \frac{P(AB)}{P(B)}
= \frac{P(A) - P\left( A|\overline{B} ight).P\left( \overline{B}
ight)}{P(B)}

    \Rightarrow P\left( A|B ight) =
\frac{P(A) - P\left( A|\overline{B} ight).\left\lbrack 1 - P(B)
ightbrack}{P(B)}

    \Rightarrow 0,9 = \frac{0,8 -
0,5\left\lbrack 1 - P(B) ightbrack}{P(B)}

    \Leftrightarrow P(B) = 0,75

    Gọi C là "chẩn đoán đúng", thì C xảy ra khi người bị bệnh được chẩn đoán có bệnh hoặc người không bị bệnh được chẩn đoán không bị bệnh. Như vậy

    C = AB +
\overline{A}\overline{B}

    Hiển nhiên 2 biến cố AB;\overline{A}\overline{B}xung khắc, nên ta có:

    P(C) = P\left( AB +
\overline{A}\overline{B} ight)

    = P(B)P\left( A|B ight) + P\left(
\overline{B} ight)P\left( \overline{A}|\overline{B}
ight)

    = 0,75.0,9 + 0,25.0,5 = 0,8

  • Câu 17: Vận dụng

    Trước khi đưa sản phẩm ra thị trường người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phẩm đó và thấy có 34 người tả lời “sẽ mua”, 97 người trả lời “có thể sẽ mua” và 69 người trả lời “không mua”. Kinh nghiệm cho thấy tỷ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời trên tương ứng là 70%, 30% và 1%. Trong số khách hàng thực sự mua sản phẩm thì có bao nhiêu phần trăm trả lời “sẽ mua”?

    Gọi H1, H2, H3 lần lượt là 3 biến cố tương ứng với 3 cách trả lời của khách hàng được phỏng vấn:

    H1 – người đó trả lời “sẽ mua”

    H2 – người đó trả lời “có thể mua”

    H3 – người đó trả lời “không mua”

    H1, H2, H3 là một hệ đầy đủ các biến cố với xác suất tương ứng \frac{34}{200};\frac{97}{200};\frac{69}{200}

    Ta xác định được: P\left( A|H_{1} ight)
= 0,7;P\left( A|H_{2} ight) = 0,3;P\left( A|H_{3} ight) =
0,01

    Theo công thức xác suất đầy đủ ta có:

    P(A) = \frac{34}{200}.0,7 +
\frac{97}{200}.0,3 + \frac{69}{200}.0,01 = 0,268.

    Theo công thức Bayes:

    P\left( H_{1}|A ight) = \frac{P\left(
H_{1} ight).P\left( A|H_{1} ight)}{P(A)} = \frac{0,17.0,7}{0,268} =
0,444 = 44,4\%.

  • Câu 18: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,8;P(B) = 0,65;P\left( A \cap \overline{B} ight) = 0,55. Tính P\left( \overline{A} \cap B
ight)?

    Ta có:

    P\left( \overline{A} \cap B ight) +
P(A \cap B) = P(B)

    \Rightarrow P\left( \overline{A} \cap B
ight) = P(B) - P(A \cap B) = 0,65 - 0,25 = 0,4.

  • Câu 19: Thông hiểu

    Trong hộp có 3 viên bi màu trắng và 7 viên bi màu đỏ. Lấy lần lượt mỗi lần một viên theo cách lấy không trả lại. Tính xác suất để viên bi lấy lần thứ hai là màu đỏ nếu biết rằng viên bi lấy lần thứ nhất là màu trắng?

    Gọi C là biến cố “viên bi lấy lần thứ nhất là màu trắng”.

    Gọi D là biến cố “viên bi lấy lần thứ hai là màu đỏ”.

    Lần thứ nhất lấy 1 viên bi màu trắng có 3 cách chọn, lần thứ hai lấy 1 viên bi trong 9 viên còn lại có 9 cách chọn, do đó: P(C) = \frac{3.9}{10.9} =
\frac{3}{10}

    Lần thứ nhất lấy 1 viên bi màu trắng có 3 cách chọn, lần thứ hai lấy 1 viên bi màu đỏ có 7 cách chọn, do đó: P(C
\cap D) = \frac{3.7}{10.9} = \frac{7}{30}

    Vậy xác suất để viên bi lấy lần thứ hai là màu trắng nếu biết rằng viên bị lấy lần thứ nhất cũng là màu đỏ là: P\left( D|C ight) = \dfrac{P(C \cap D)}{P(C)} =\dfrac{\dfrac{7}{30}}{\dfrac{3}{10}} = \dfrac{7}{9}.

  • Câu 20: Nhận biết

    Cho AB là các biến cố của phép thử T. Biết rằng P(A) > 0;0 < P(B) <
1. Xác suất của biến cố B với điều kiện biến cố A đã xảy ra được tính theo công thức nào sau đây?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

  • Câu 21: Vận dụng

    Tan giờ học buổi chiều một sinh viên có 60\% về nhà ngay, nhưng do giờ cao điểm nên có 30% ngày bị tắc đường nên bị về nhà muộn (từ 30 phút trở lên) còn 20\% số ngày sinh viên đó vào quán Internet cạnh trường để chơi Games, những ngày này xác suất về nhà muộn là 80\%. Còn lại những ngày khác sinh viên đó đi chơi với bạn bè có xác suất về muộn là 90\%. Hôm nay sinh viên đó về muộn. Tính xác suất để để sinh viên đó đi chơi với bạn bè.

    Gọi B là biến cố sinh viên đó đi học về muộn

    E1 là biến cố tan học về nhà ngay = > P\left( E_{1} ight) = 0,6,P\left( B|E_{1}
ight) = 0,3

    E2 là biến cố tan học đi chơi game = > P\left( E_{2} ight) = 0,2,P\left( B|E_{2}
ight) = 0,8

    E3 là biến cố tan học về đi chơi với bạn = > P\left( E_{3} ight) = 0,2,P\left( B|E_{3}
ight) = 0,9

    B có thể xảy ra một trong 3 biến cố

    P(B) = P\left( E_{1} ight).P\left(
B|E_{1} ight) + P\left( E_{2} ight).P\left( B|E_{2} ight) +
P\left( E_{3} ight).P\left( B|E_{3} ight)

    = > P(B) = 0,52

    Xác suất để sinh viên đó đi chơi với bạn là:

    P\left( E_{3}|B ight) = \frac{P\left(
E_{3} ight).P\left( B|E_{3} ight)}{P(B)} = 0,375 =
37,5\%

  • Câu 22: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( A|B ight)?

    Ta có: P\left( A|B ight) = \frac{P(A
\cap B)}{P(B)} = \frac{0,3}{0,7} = \frac{3}{7}.

  • Câu 23: Vận dụng

    Chọn ngẫu nhiên lần lượt các số a, b phân biệt thuộc tập hợp \left\{ 3^{k} \mid k \in N,1 \leq k \leq 10
ight\}. Tính xác suất để \log_{a}b là một số nguyên dương.

    Phép thử: "Chọn ngẫu nhiên lần lượt các số a, b phân biệt thuộc tập hợp \left\{ 3^{k} \mid k \in N,1
\leq k \leq 10 ight\}

    Biến cố A: "\log_{a}b là một số nguyên dương".

    \Rightarrow n_{\Omega} = 10.9 =
90

    + Giả sử a = 3^{k_{1}},b =
3^{k_{2}}\left( k_{1} eq k_{2} ight) \Rightarrow log_{a}b =
log_{3^{k_{1}}}\left( 3^{k_{2}} ight) = \frac{k_{2}}{k_{1}} là một số nguyên dương

    k_{2}

    10

    9

    8

    7

    6

    5

    4

    3

    2

    k_{1} 1;2;5 1;3 1;2;4

    1

    1;2;3

    1

    1;2

    1

    1

    \Rightarrow n_{A} = 17 \Rightarrow P(A)
= \frac{n_{A}}{n_{\Omega}} = \frac{17}{90}.

  • Câu 24: Thông hiểu

    Cho hai biến cố AB với P(B) =
0,8;P\left( A|B ight) = 0,7,P\left( A|\overline{B} ight) =
0,45. Tính P\left( B|A
ight)?

    Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    Áp dụng công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)} = \frac{0,8.0,7}{0,65} = \frac{56}{65} \approx
0,86

  • Câu 25: Thông hiểu

    Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi A,B lần lượt là biến cố thắng thầu dự án 1 và dự án 2.

    a) AB là hai biến độc lập. Đúng||Sai

    b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3. Đúng||Sai

    c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là 0,4. Sai||Đúng

    d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án 0,8. Sai||Đúng

    Đáp án là:

    Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi A,B lần lượt là biến cố thắng thầu dự án 1 và dự án 2.

    a) AB là hai biến độc lập. Đúng||Sai

    b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3. Đúng||Sai

    c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là 0,4. Sai||Đúng

    d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án 0,8. Sai||Đúng

    Đề bài: P(A) = 0,5 \Rightarrow P\left(
\overline{A} ight) = 0,5;P(B) = 0,6 \Rightarrow P\left( \overline{B}
ight) = 0,4

    P(A \cap B) = 0,4

    a) A,B độc lập \Leftrightarrow P(A \cap B) =
P(A).P(B)

    0,4 eq 0,5.0,6 nên A,B không độc lập

    b) Gọi C là biến cố thắng thầu đúng 1 dự án

    P(C) = P\left( A \cap \overline{B}
ight) + P\left( \overline{A} \cap B ight) = P(A) - P(A \cap B) +
P(B) - P(A \cap B) = P(A) + P(B) -
2P(A \cap B) = 0,5 + 0,6 - 2.0,4 = 0,3

    c) Gọi D là biến cố thắng dự 2 biết thắng dự án 1

    P(D) = P\left( B|A ight) = \frac{P(B
\cap A)}{P(A)} = \frac{0,4}{0,5} = 0,8

    d) Gọi E là biến cố “thắng dự án 2 biết không thắng dự án 1”

    P(E) = P\left( B|\overline{A} ight) =
\frac{P\left( B \cap \overline{A} ight)}{P\left( \overline{A}
ight)}

    = \frac{P(B) - P(A \cap B)}{P\left(
\overline{A} ight)} = \frac{0,6 - 0,4}{0,5} = 0,4

  • Câu 26: Nhận biết

    Hộp thứ nhất chứa 3 viên bi đen và 2 viên bi trắng. Hộp thứ hai chứa 4 viên bi đen và 5 viên bi trắng. Các viên bi có cùng kích thước và khối lượng. Bạn Mai lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.

    Gọi A: "Viên bi lấy ra lần thứ nhất là bi đen"

    Và B: "Viên bi lấy ra lần thứ hai là bi trắng".

    Biết rằng biến cố A xảy ra, tính xác suất của biến cố B?

    Nếu biến cố A xảy ra thì bạn Mai lấy viên bi đen từ hộp thứ nhất bỏ vào hộp thứ hai.

    Khi đó hộp thứ hai có 5 viên bi đen và 5 viên bi trắng.

    Do đó, xác suất của biến cố B là: P(B) =
\frac{1}{2}.

  • Câu 27: Thông hiểu

    Trong một trường học, tỉ lệ học sinh nữ là 52\%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia lớp học bổ trợ kiến thức lần lượt là 18\%15\%. Gặp ngẫu nhiên một học sinh của trường. Biết rằng học sinh có tham gia lớp học bổ trợ kiến thức. Tính xác suất học sinh đó là nam?

    Gọi A_{1};A_{2} lần lượt là các biến cố gặp được một học sinh nữ, một học sinh nam

    Nên 1 2 A A, là hệ biến cố đầy đủ.

    Gọi B “Học sinh đó tham gia lớp học bổ trợ kiến thức”

    Ta có: \left\{ \begin{matrix}
P\left( A_{1} ight) = 52\% = 0,52 \\
P\left( A_{2} ight) = 1 - 0,52 = 0,48 \\
P\left( B|A_{1} ight) = 18\% = 0,18 \\
P\left( B|A_{2} ight) = 15\% = 0,15 \\
\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P\left( B|A_{1} ight).P\left(
A_{1} ight) + P\left( B|A_{2} ight).P\left( A_{2}
ight)

    \Rightarrow P(B) = 0,18.0,52 + 0,15.0,48
= \frac{207}{1250} = 0,1656

    Xác suất để học sinh đó là nam, biết rằng học sinh đó tham gia câu lạc bộ nghệ thuật, ta áp dụng công thức Bayes:

    P\left( A_{2}|B ight) = \frac{P\left(
B|A_{2} ight).P\left( A_{2} ight)}{P(B)} = \frac{0,15.0,48}{0,1656}
= \frac{10}{23}

  • Câu 28: Nhận biết

    Cho hai biến cố AB với P(B) =
0,2;P\left( A|B ight) = 0,5;P\left( A|\overline{B} ight) =
0,4. Tính P\left( B|A
ight)?

    Ta có: P(B) = 0,2 \Rightarrow P\left(
\overline{B} ight) = 1 - P(B) = 1 - 0,2 = 0,8

    Áp dụng công thức Bayes:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

    \Rightarrow P\left( B|A ight) =
\frac{0,2.0,5}{0,2.0,5 + 0,8.0,4} = \frac{5}{21} \approx 0,238 .

  • Câu 29: Vận dụng cao

    Hộp I có 4 viên bi đỏ, 2 viên bi xanh; hộp II có 3 viên bi đỏ, 3 viên bi xanh. Bỏ ngẫu nhiên một viên bi từ hộp I sang hộp II, sau đó lại bỏ ngẫu nhiên một viên bi từ hộp II sang hộp I. Cuối cùng rút ngẫu nhiên từ hộp I ra một viên bi. 1. Nếu viên rút ra sau cùng màu đỏ, tìm xác suất lúc ban đầu rút được viên bi đỏ ở hộp I cho vào hộp II?

    Gọi D1, X1 tương ứng là "lấy được viên bi đỏ, xanh từ hộp I sang hộp II",

    D2, X2 tương ứng là "lấy được viên bi đỏ, xanh từ hộp II sang hộp I".

    Khi đó hệ D1D2, D1X2, X1D2, X1X2 tạo thành hệ đầy đủ.

    Ta có: \left\{ \begin{gathered}
  P\left( {{D_1}{D_2}} ight) = \frac{4}{6}.\frac{4}{7};P\left( {{D_1}{X_2}} ight) = \frac{4}{6}.\frac{3}{7} \hfill \\
  P\left( {{X_1}{D_2}} ight) = \frac{2}{6}.\frac{3}{7};P\left( {{X_1}{X_2}} ight) = \frac{2}{6}.\frac{4}{7} \hfill \\ 
\end{gathered}  ight.

    Gọi A là "viên bi rút ra sau cùng là màu đỏ".

    Ta xác định được: \left\{ \begin{gathered}
  P\left( {A|{D_1}{D_2}} ight) = \frac{4}{6};P\left( {A|{D_1}{X_2}} ight) = \frac{3}{6} \hfill \\
  P\left( {A|{X_1}{D_2}} ight) = \frac{5}{6};P\left( {A|{X_1}{X_2}} ight) = \frac{4}{6} \hfill \\ 
\end{gathered}  ight.

    Áp dụng công thức xác suất đầy đủ:

    P(A) = P\left( D_{1}D_{2} ight)P\left(
A|D_{1}D_{2} ight) + P\left( D_{1}X_{2} ight)P\left( A|D_{1}X_{2}
ight)

    + P\left( X_{1}D_{2} ight)P\left(
A|X_{1}D_{2} ight) + P\left( X_{1}X_{2} ight)P\left( A|X_{1}X_{2}
ight)

    = \frac{4}{6}.\frac{4}{7}.\frac{4}{6} +
\frac{4}{6}.\frac{3}{7}.\frac{3}{6} +
\frac{2}{6}.\frac{3}{7}.\frac{5}{6} +
\frac{2}{6}.\frac{4}{7}.\frac{4}{6} = \frac{9}{14}

    Ta cần tính xác suất B = \left(
D_{1}D_{2} + D_{1}X_{2} ight)|A

    \Rightarrow P(B) = \frac{P\left\lbrack
\left( D_{1}D_{2} + D_{1}X_{2} ight)A
ightbrack}{P(A)}

    = \frac{P\left\lbrack \left( D_{1}D_{2}
ight)A ightbrack + P\left\lbrack \left( D_{1}X_{2} ight)A
ightbrack}{P(A)}

    = \frac{P\left( D_{1}D_{2}
ight)P\left( A|D_{1}D_{2} ight) + P\left( D_{1}X_{2} ight)P\left(
A|D_{1}X_{2} ight)}{P(A)}

    = \dfrac{{\dfrac{4}{7}.\dfrac{4}{7}.\dfrac{4}{6} + \dfrac{4}{6}.\dfrac{3}{7}.\dfrac{3}{6}}}{{\dfrac{9}{{11}}}} = \dfrac{{50}}{{81}} \approx 61,73\%

  • Câu 30: Nhận biết

    Cho hai biến cố A;B với P(B) = 0,6;P\left( A|B ight) = 0,7;P\left(
A|\overline{B} ight) = 0,4. Giá trị P(A) bằng:

    Ta có: P\left( \overline{B} ight) = 1 -
P(B) = 1 - 0,6 = 0,4

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,6.0,7 + 0,4.0,4 =
0,58

  • Câu 31: Thông hiểu

    Một phân xưởng có 3 máy tự động: máy I sản xuất 25%, máy II sản xuất 30%, máy III sản xuất 45% số sản phẩm. Tỷ lệ phế phẩm tương ứng của các máy lần lượt là 0,1%, 0,2% và 0,3%. Chọn ngẫu nhiên ra một sản phẩm của phân xưởng. 1. Tìm xác suất nó là phế phẩm.

    Gọi Ai là "lấy ra sản phẩm từ lô i" thì A1, A2, A3 tạo thành hệ đầy đủ.

    Gọi A là "lấy ra sản phẩm là phế phẩm".

    Áp dụng công thức xác suất toàn phần, ta có

    P(A) = P\left( A_{1} ight)P\left(
A|A_{1} ight) + P\left( A_{2} ight)P\left( A|A_{2} ight) + P\left(
A_{3} ight)P\left( A|A_{3} ight)

    \Rightarrow P(A) = 0,25.0,1\% +
0,3.0,2\% + 0,45.0,3\% = 0,22\%

  • Câu 32: Thông hiểu

    Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10, nếu biết rằng có ít nhất một con đã ra mặt 5 chấm?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10, nếu biết rằng có ít nhất một con đã ra mặt 5 chấm?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 33: Thông hiểu

    Trong một kì thi tốt nghiệp trung học phổ thông, một tỉnh X có 80\% học sinh lựa chọn tổ hợp A00 (gồm các môn Toán, Vật lí, Hoá học). Biết rằng, nếu một học sinh chọn tổ hợp A00 thì xác suất để học sinh đó đỗ đại học là 0,6; còn nếu một học sinh không chọn tổ hợp A00 thì xác suất để học sinh đó đỗ đại học là 0,7. Chọn ngẫu nhiên một học sinh của tỉnh X đã tốt nghiệp trung học phổ thông trong kì thi trên. Biết rằng học sinh này đã đỗ đại học. Tính xác suất để học sinh đó chọn tổ hợp A00. (Kết quả làm tròn đến chữ số thập phân thứ 2).

    Gọi A: “Học sinh đó chọn tổ hợp A00”

    Và B: “Học sinh đó đỗ đại học”.

    Ta cần tính P\left( A|B
ight)

    Ta có: P(A) = 0,8 \Rightarrow P\left(
\overline{A} ight) = 1 - P(A) = 0,2

    P\left( B|A ight) là xác suất để một học sinh đỗ đại học với điều kiện học sinh đó chọn tổ hợp A00

    \Rightarrow P\left( B|A ight) =
0,6

    P\left( B|\overline{A} ight)là xác suất để một học sinh đỗ đại học với điều kiện học sinh đó không chọn tổ hợp A00

    \Rightarrow P\left( B|\overline{A}
ight) = 0,7

    Thay vào công thức Bayes ta được:

    P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight).P\left( B|\overline{A} ight)}

    \Rightarrow P\left( A|B ight) =
\frac{0,8.0,6}{0,8.0,6 + 0,2.0,7} \approx 0,77

  • Câu 34: Vận dụng cao

    Một hãng hàng không cho biết rằng 5\% số khách đặt trước vé cho các chuyến đã định sẽ hoãn không đi chuyến bay đó. Do đó hãng đã đưa ra một chính sách là sẽ bán 52 ghế cho một chuyến bay mà trong đó mỗi chuyến chỉ trở được 50 khách hàng. Tìm xác suất để tất cả các khách đặt chỗ trước và không hoãn chuyến bay đều có ghế. Biết rằng xác suất bán được 51 vé hoặc 52 vé là như nhau và bằng 10\%?

    Gọi A là "bán được 52 vé", B là "bán được 51 vé" và C là "bán được nhiều nhất 50 vé".

    Khi đó A, B, C tạo thành hệ đầy đủ.

    Ta có P(A) = 0,1; P(B) = 0,1; P(C) = 0,8

    Gọi H là "khách đặt chỗ trước và không hoãn chuyến đều có ghế".

    Biến cố H|A xảy ra nếu có ít nhất 2 khách hủy chuyến, H|B xảy ra nếu có ít nhất 1 khách hủy chuyến. Tính trực tiếp xác suất của các sự kiện này đều khá phức tạp.

    Do đó để cho đơn giản ta tìm P\left(\overline{H} ight).

    Ta có: \left\{ \begin{matrix}P\left( \overline{H}|A ight) = 0,95^{52}.0,05^{0} +52.0,95^{51}.0,05^{1} \\P\left( \overline{H}|B ight) = 0,95^{51}.0,05^{0} \\P\left( \overline{H}|C ight) = 0 \\\end{matrix} ight.

    Do đó:

    P\left( \overline{H} ight) =P(A).P\left( \overline{H}|A ight) + P(B).P\left( \overline{H}|Bight) + P(C).P\left( \overline{H}|C ight)

    \Rightarrow P\left( \overline{H} ight)= 0,1\left( 0,95^{52}.0,05^{0} + 52.0,95^{51}.0,05^{1} ight)+0,1.0,95^{51}.0,05^{0} + 0,8.0 \approx 0,033

    \Rightarrow P(H) = 1 - P\left(\overline{H} ight) \approx 0,9667 = 96,67\%

  • Câu 35: Thông hiểu

    Một hộp bút bi Thiên Long có 15 chiếc bút trong đó có 9 chiếc bút mới. Người ta lấy ngẫu nhiên 1 chiếc bút để sử dụng sau đó trả lại vào hộp. Lần thứ hai lấy ngẫu nhiên 2 chiếc bút, tính xác suất cả hai chiếc bút lấy ra đều là chiếc mới.

    Gọi A ”Hai chiếc bút lấy ra đều là chiếc mới”; B0 ” Lấy ra một chiếc bút cũ” và B1 ”Lấy ra một chiếc bút mới”

    Nên B0; B0 là hệ biến cố đầy đủ.

    Từ 15 chiếc bút có 9 chiếc bút mới và 6 chiếc bút cũ

    Ta có:

    P\left( B_{0} ight) =
\frac{C_{6}^{1}}{C_{15}^{1}} = \frac{2}{5};P\left( B_{1} ight) =
\frac{C_{9}^{1}}{C_{15}^{1}} = \frac{3}{5}

    P\left( A|B_{0} ight) =
\frac{C_{9}^{2}}{C_{15}^{2}} = \frac{12}{35};P\left( A|B_{1} ight) =
\frac{C_{8}^{2}}{C_{15}^{2}} = \frac{4}{15}

    Áp dụng công thức xác suất toàn phần

    P(A) = P\left( A|B_{0} ight).P\left(
B_{0} ight) + P\left( A|B_{1} ight)P\left( B_{1}
ight)

    \Rightarrow P(A) =
\frac{12}{35}.\frac{2}{5} + \frac{4}{15}.\frac{3}{5} =
\frac{52}{175}.

  • Câu 36: Nhận biết

    Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.

    Gọi A là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”.

    Gọi B là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.

    Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì P\left( B|A ight) = \frac{1}{6}.

  • Câu 37: Nhận biết

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó công thức xác suất toàn phần tính P(A) là:

    Ta có công thức xác suất toàn phần tính P(A) là:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)

  • Câu 38: Vận dụng cao

    Một xí nghiệp mỗi ngày sản xuất ra 1000 sản phẩm trong đó có 15 sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).

    Đáp án: 0,02

    Đáp án là:

    Một xí nghiệp mỗi ngày sản xuất ra 1000 sản phẩm trong đó có 15 sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).

    Đáp án: 0,02

    Xét các biến cố:

    A_{1}: Sản phẩm lấy ra lần thứ nhất bị lỗi.

    Khi đó, ta có: P\left( A_{1} ight) =
\frac{15}{1000}; P\left(
\overline{A_{1}} ight) = \frac{197}{200}.

    A_{2}: Sản phẩm lấy ra lần thứ hai bị lỗi.

    Khi sản phẩm lấy ra lần thứ nhất bị lỗi thì còn 999 sản phẩm và trong đó có 14 sản phẩm lỗi nên ta có: P\left( A_{2}\left| A_{1} ight.\  ight) =
\frac{14}{999}, suy ra P\left(
\overline{A_{2}}\left| A_{1} ight.\  ight) =
\frac{985}{999}.

    Khi sản phẩm lấy ra lần thứ nhất không bị lỗi thì còn 999 sản phẩm trong đó có 15sản phẩm lỗi nên ta có: P\left( A_{2}\left| \overline{A_{1}}
ight.\  ight) = \frac{15}{999}, suy ra P\left( \overline{A_{2}}\left| \overline{A_{1}}
ight.\  ight) = \frac{328}{333}.

    Khi đó, xác suất để sản phẩm lấy ra lần thứ hai bị lỗi là:

    P\left( A_{2} ight) = P\left(
A_{2}\left| A_{1} ight.\  ight).P\left( A_{1} ight) + P\left(
A_{2}\left| \overline{A_{1}} ight.\  ight).P\left( \overline{A_{1}}
ight)

    = \frac{14}{999}.\frac{15}{1000} +
\frac{15}{999}.\frac{197}{200} \approx 0,02.

    Đáp số: 0,02.

  • Câu 39: Thông hiểu

    Một tập gồm 10 chứng từ, trong đó có 2 chứng từ không hợp lệ. Một cán bộ kế toán rút ngẫu nhiên 1 chứng từ và tiếp đó rút ngẫu nhiên 1 chứng từ khác để kiểm tra. Tính xác suất để cả 2 chứng từ rút ra đều hợp lệ?

    Gọi A là biến cố cả 2 chứng từ rút ra đều hợp lệ

    Theo yêu cầu của đầu bài ta phải tính xác xác suất P(A)

    Nếu gọi Ai là biến cố chứng từ rút ra lần thứ i là hợp lệ} (i = 1,3).

    Khi đó ta có: A = A_1 . A_2

    Vì vậy các xác suất cần tìm là:

    P(A) = P\left( A_{1}.\ A_{2} ight) =
P\left( A_{1} ight).P\left( A_{2}|A_{1} ight) =
\frac{8}{10}.\frac{7}{9} = \frac{28}{45}

  • Câu 40: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,8;P(B) = 0,65;P\left( A \cap \overline{B} ight) = 0,55. Tính P(A \cap B)?

    Ta có:

    P\left( A \cap \overline{B} ight) +
P(A \cap B) = P(A)

    \Rightarrow P(A \cap B) = P(A) - P\left(
A \cap \overline{B} ight) = 0,8 - 0,55 = 0,25.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Xác suất có điều kiện CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 25 lượt xem
Sắp xếp theo