Đề kiểm tra 45 phút Chương 6 Xác suất có điều kiện CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 6. Xác suất có điều kiện được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hai biến cố AB với 0 <
P(A) < 1. Khi đó công thức xác suất toàn phần tính P(B) là:

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

  • Câu 2: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( A|B ight)?

    Ta có: P\left( A|B ight) = \frac{P(A
\cap B)}{P(B)} = \frac{0,3}{0,7} = \frac{3}{7}.

  • Câu 3: Vận dụng

    Trong một kho rượu, số lượng rượu loại M và loại N bằng nhau. Người ta chọn ngẫu nhiên một chai và đưa cho 5 người nếm thử. Biết xác suất đoán đúng của mỗi người là 0,8. Có 3 người kết luận rượu loại M, 2 người kết luận rượu loại N. Hỏi khi đó xác suất chai rượu đó thuộc loại M là bao nhiêu?

    Gọi A là chai rượu thuộc loại M thì A;\overline{A} tạo thành hệ đầy đủ và P(A) = P\left( \overline{A} ight) =
\frac{1}{2}

    Gọi H là "có 3 người kết luận rượu loại M và 2 người kết luận rượu loại N".

    Theo công thức toàn phần ta có:

    P(H) = P(A).P\left( H|A ight) +
P\left( \overline{A} ight).P\left( H|\overline{A} ight)

    \Rightarrow P(H) =
0,5.C_{5}^{3}.0,8^{3}.0,2^{2} + 0,5.C_{5}^{2}.0,8^{2}.0,2^{3} =
0,128

    Vậy xác suất cần tính là:

    P\left( A|H ight) = \frac{P(A).P\left(
H|A ight)}{P(H)} = \frac{0,5.C_{5}^{3}.0,8^{3}.0,2^{2}}{0,128} =
0,8

  • Câu 4: Vận dụng

    Một người có 3 chỗ ưa thích như nhau để câu cá. Xác suất câu được cá ở mỗi chỗ lần lượt là 0,7;0,8;0,9. Biết rằng mỗi chỗ người đó thả câu 3 lần thì chỉ có một lần câu được cá. Người đó đã câu được một con cá. Tính xác suất để con cá câu được đó ở chỗ thứ nhất.

    Gọi A là sự kiện câu được cá ở chỗ thứ 1, B là sự kiện câu được 1 con cá.

    Theo đề bài, ta biết rằng người đó chọn ngẫu nhiên 1 chỗ rồi thả câu 3 lần và chỉ câu được 1 con cá.

    Ta cần tìm xác suất P(A|B), tức là xác suất câu được cá ở chỗ thứ 1 khi biết đã câu được 1 con cá.

    Theo công thức Bayes, ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    P(B|A) là xác suất câu được 1 con cá khi đã biết câu ở chỗ thứ 1 là A.

    Vì xác suất câu được cá ở chỗ thứ 1 là 0,8, nên P\left( B|A ight) = 0,8

    P(A) là xác suất câu được cá ở chỗ thứ 1.

    Vì có 3 chỗ ưa thích như nhau, nên xác suất câu được cá ở chỗ thứ 1 là \frac{1}{3}.

    P(B) là xác suất câu được 1 con cá. Ta có thể tính xác suất này bằng cách sử dụng định lý xác suất toàn phần:

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    Trong đó:

    P\left( B|\overline{A} ight) là xác suất câu được 1 con cá khi không câu ở chỗ thứ 1 là A. Vì xác suất câu được cá ở chỗ thứ 2 và chỗ thứ 3 lần lượt là 0,90,7 nên P\left( B|\overline{A} ight) =
0,9.0,7

    P\left( \overline{A} ight) là xác suất không câu được cá ở chỗ thứ 1. Vì có 3 chỗ ưa thích như nhau, nên xác suất không câu được cá ở chỗ thứ 1 là \frac{2}{3}.

    Thay các giá trị vào công thức Bayes, ta có:

    0,8 = \dfrac{{\dfrac{{103}}{{150}}.P\left( {A|B} ight)}}{{\dfrac{1}{3}}} \Rightarrow P\left( {A|B} ight) \approx 0,388

    Vậy Xác suất con cá câu được ở chỗ thứ 1 là: 0,388

  • Câu 5: Nhận biết

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,3;P(B) = 0,6;P\left( A|B ight) =
0,4 thì P\left( B|A
ight) bằng bao nhiêu?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,6.0,4}{0,3} = \frac{4}{5}

  • Câu 6: Vận dụng

    Trong một đợt kiểm tra sức khoẻ, có một loại bệnh X mà tỉ lệ người mắc bệnh là 0,2\% và một loại xét nghiệm Y mà ai mắc bệnh X khi xét nghiệm Y cũng có phản ứng dương tính. Tuy nhiên, có 6\% những người không bị bệnh X lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Giả uử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh X là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?

    Đáp án : 0,03

    Đáp án là:

    Trong một đợt kiểm tra sức khoẻ, có một loại bệnh X mà tỉ lệ người mắc bệnh là 0,2\% và một loại xét nghiệm Y mà ai mắc bệnh X khi xét nghiệm Y cũng có phản ứng dương tính. Tuy nhiên, có 6\% những người không bị bệnh X lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Giả uử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh X là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?

    Đáp án : 0,03

    Xét các biến cố:

    A : "Người được chọn mắc bệnh X ";

    B : "Người được chọn có phản ứng dương tính với xét nghiệm Y".

    Theo giả thiết ta có:

    P(A) = 0,002;P\left( \overline{A} ight)
= 1 - 0,002 = 0,998;

    P(B \mid A) = 1;P\left( B \mid
\overline{A} ight) = 0,06

    Theo công thức Bayes, ta có:

    P(A \mid B) = \frac{P(A) \cdot P(B \mid
A)}{P(A) \cdot P(B \mid A) + P\left( \overline{A} ight).P\left( B \mid
\overline{A} ight)}

    = \frac{0,002 \cdot 1}{0,002 \cdot 1 +
0,998 \cdot 0,06} \approx 0,03

    Vậy nếu người được chọn có phản ứng dương tính với xét nghiệm Y thì xác suất bị mắc bệnh X của người đó là khoảng 0,03.

  • Câu 7: Thông hiểu

    Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng 0,840,16. do có nhiễu trên đường truyền nên \frac{1}{6} tín hiệu A bị méo và thu được như tín hiệu B còn \frac{1}{8} tín hiệu B bị méo và thu được như A. Tìm xác suất thu được tín hiệu A?

    Gọi A, B lần lượt là "phát ra tín hiệu A, B".

    Khi đó A, B tạo thành hệ đầy đủ.

    P(A) = 0,84;P(B) = 0,16

    Gọi C là "thu được tín hiệu A".

    Khi đó: P\left( C|A ight) = \frac{5}{6};P\left( C|B
ight) = \frac{1}{8}

    Áp dụng công thức xác suất toàn phần ta có:

    P(C) = P(A).P\left( C|A ight) +
P(B).P\left( C|B ight)

    \Rightarrow P(C) = 0,84.\frac{5}{6} +
0,16.\frac{1}{8} = 0,72.

  • Câu 8: Thông hiểu

    Một cửa hàng có hai loại bóng đèn Led, trong đó có 65\% bóng đèn Led là màu trắng và 35\% bóng đèn Led là màu xanh, các bóng đèn có kích thước như nhau. Các bóng đèn Led màu trắng có tỉ lệ hỏng là 2\% và các bóng đèn Led màu xanh có tỉ lệ hỏng là 3\%. Một khách hàng chọn mua ngẫu nhiên một bóng đèn Led từ cửa hàng. Xác suất để khách hàng chọn được bóng đèn Led không hỏng bằng bao nhiêu?

    Xét các biến cố:

    A: "Khách hàng chọn được bóng đèn Led màu trắng"

    B: "Khách hàng chọn được bóng đèn Led không hỏng".

    Ta có:

    P(A) = 0,65 \Rightarrow P\left(
\overline{A} ight) = 1 - 0,65 = 0,35

    P\left( B|A ight) = 1 - P\left(
\overline{B}|A ight) = 1 - 0,02 = 0,98

    P\left( B|\overline{A} ight) = 1 -
P\left( \overline{B}|\overline{A} ight) = 1 - 0,03 = 0,97

    Theo công thức xác suất toàn phần, ta có:

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,65.0,98 + 0,35.0,97
= 0,9765

  • Câu 9: Nhận biết

    Hộp thứ nhất chứa 3 viên bi đen và 2 viên bi trắng. Hộp thứ hai chứa 4 viên bi đen và 5 viên bi trắng. Các viên bi có cùng kích thước và khối lượng. Bạn Mai lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.

    Gọi A: "Viên bi lấy ra lần thứ nhất là bi đen"

    Và B: "Viên bi lấy ra lần thứ hai là bi trắng".

    Biết rằng biến cố A xảy ra, tính xác suất của biến cố B?

    Nếu biến cố A xảy ra thì bạn Mai lấy viên bi đen từ hộp thứ nhất bỏ vào hộp thứ hai.

    Khi đó hộp thứ hai có 5 viên bi đen và 5 viên bi trắng.

    Do đó, xác suất của biến cố B là: P(B) =
\frac{1}{2}.

  • Câu 10: Vận dụng cao

    Để thành lập đội tuyển quốc gia về một môn học, người ta tổ chức một cuộc thi tuyển gồm 3 vòng. Vòng thứ nhất lấy 80\% thí sinh; vòng thứ hai lấy 70\% thí sinh đã qua vòng thứ nhất và vòng thứ ba lấy 45\% thí sinh đã qua vòng thứ hai. Để vào được đội tuyển, thí sinh phải vượt qua được cả 3 vòng thi. Tính xác suất để một thí sinh bất kỳ bị loại ở vòng thứ hai, biết rằng thí sinh này bị loại?

    Gọi A_{i} là "thí sinh vượt qua vòng thứ i ' thì ta có P\left( A_{1} ight) = 0,8,P\left( A_{2} \mid
A_{1} ight) = 0,7P\left(
A_{3} \mid A_{1}A_{2} ight) = 0,45

    Gọi A là biến cố thí sinh được vào đội tuyển thì A xảy ra nếu thí sinh vượt qua cả 3 vòng, nghĩa là A =
A_{1}A_{2}A_{3}

    P(A) = P\left( A_{1}A_{2}A_{3} ight) =
P\left( A_{1} ight)P\left( A_{2} \mid A_{1} ight)P\left( A_{3} \mid
A_{1}A_{2} ight)= 0,8.0,7.0,45 = 0,252

    Gọi C là biến cố "thí sinh bị loại ở vòng 2, biết thí sinh này bị loại'.

    Ta biểu diễn C = A_{1}\overline{A_{2}}
\mid \bar{A}.

    P(C) = \frac{P\left\lbrack \left(A_{1}\overline{A_{2}} ight)\bar{A} ightbrack}{P(\bar{A})} =\frac{P\left( A_{1}\overline{A_{2}} ight)}{P(\bar{A})}A_{1}\overline{A_{2}} \subset \bar{A}

    = \frac{P\left( A_{1} ight)P\left(
\overline{A_{2}} \mid A_{1} ight)}{P(\bar{A})}= \frac{0,8.(1 - 0,7)}{1 - 0,252} \simeq
0,3208

  • Câu 11: Nhận biết

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P(A.B)?

    Ta có: P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

  • Câu 12: Thông hiểu

    Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10, nếu biết rằng có ít nhất một con đã ra mặt 5 chấm?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10, nếu biết rằng có ít nhất một con đã ra mặt 5 chấm?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Thông hiểu

    Một công ty du lịch bố trí chỗ cho đoàn khách tại ba khách sạn A;B;C theo tỉ lệ 20\%;50\%;30\%. Tỉ lệ hỏng điều hòa ở ba khách sạn lần lượt là 5\%;4\%;8\%. Tính xác suất để một khách nghỉ ở phòng điều hòa bị hỏng.

    Gọi H ” Để một khách ở phòng điều hòa bị hỏng”

    Gọi A;B;C lần lượt là các biến cố Khách nghỉ tại ba khách sạn A;B;C.

    Ta có: \left\{ \begin{matrix}
P(A) = 20\% = 0,2;P\left( H|A ight) = 5\% = 0,05 \\
P(B) = 50\% = 0,5;P\left( H|B ight) = 4\% = 0,04 \\
P(C) = 30\% = 0,3;P\left( H|C ight) = 8\% = 0,08 \\
\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần ta có:

    P(H) = P\left( H|A ight)P(A) + P\left(
H|B ight)P(B) + P\left( H|C ight)P(C)

    P(H) = 0,05.0,2 + 0,04.0,5 + 0,08.0,3 =
\frac{27}{500}.

  • Câu 14: Vận dụng cao

    Có hai lô sản phẩm: lô I có 7 chính phẩm, 3 phế phẩm; lô II có 8 chính phẩm, 2 phế phẩm. Từ lô I lấy ngẫu nhiên ra 2 sản phẩm, từ lô II lấy ngẫu nhiên ra 3 sản phẩm. Sau đó từ số sản phẩm này lại lấy ngẫu nhiên 2 sản phẩm. Tính xác suất để trong 2 sản phẩm lấy ra sau cùng có ít nhất 1 chính phẩm.

    Gọi A_{i} là "trong 5 sản phẩm cuối có i chính phẩm".

    Khi đó hệ A_{0},A_{1},A_{2},A_{3},A_{4},A_{5} tạo thành hệ đầy đủ

    A_{0} xảy ra thì phải lấy 3 phế phẩm từ lô II, điều này là không thể.

    Suy ra P\left( A_{0} ight) =
0

    A_{1} xảy ra nếu lấy 2 phế từ lô I và 1 chính, 1 phế từ lô II.

    P\left( A_{1} ight) =
\frac{C_{3}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{1}C_{2}^{2}}{C_{10}^{3}}
= \frac{1}{225}

    A_{2} xảy ra nếu lấy 1 chính, 1 phế từ lô I,1 chính, 2 phế từ lô II hoặc 2 phế từ lô I,2 chính, 1 phế từ lô II

    P\left( A_{2} ight) =
\frac{C_{7}^{1}C_{3}^{1}}{C_{10}^{2}} \cdot
\frac{C_{8}^{1}C_{2}^{2}}{C_{10}^{3}} + \frac{C_{3}^{2}}{C_{10}^{2}}
\cdot \frac{C_{8}^{2}C_{2}^{1}}{C_{10}^{3}} =
\frac{14}{225}

    A_{3} xảy ra nếu lấy 2 chính từ lô I,1 chính, 2 phế từ lô II hoặc 1 chính, 1 phế từ lô I,2 chính, 1 phế từ lô II hoặc 2 phế từ lô I,3 chính từ lô II

    P\left( A_{3} ight) =
\frac{C_{7}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{1}C_{2}^{2}}{C_{10}^{3}}
+ \frac{C_{7}^{1}C_{3}^{1}}{C_{10}^{2}} \cdot
\frac{C_{8}^{2}C_{2}^{1}}{C_{10}^{3}} + \frac{C_{3}^{2}}{C_{10}^{2}}
\cdot \frac{C_{8}^{3}}{C_{10}^{3}} = \frac{7}{25}

    A_{4} xảy ra nếu lấy 2 chính từ lô I,2 chính, 2 phế từ lô II hoặc 1 chính, 1 phế từ lô I,3 chính từ lô II

    P\left( A_{4} ight) =
\frac{C_{7}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{2}C_{2}^{1}}{C_{10}^{3}}
+ \frac{C_{7}^{1}C_{3}^{1}}{C_{10}^{2}} \cdot
\frac{C_{8}^{3}}{C_{10}^{3}} = \frac{98}{225}

    A_{5} xảy ra nếu lấy 2 chính từ lô I,3 chính từ lô II

    P\left( A_{5} ight) =
\frac{C_{7}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{3}}{C_{10}^{3}} =
\frac{49}{225}

    Gọi A là "trong 2 sản phẩm lấy ra có ít nhất 1 chính phẩm", áp dụng công thức xác suất đầy đủ

    P(\bar{A}) = \sum_{i =
0}^{5}\mspace{2mu}\mspace{2mu} P\left( A_{i} ight)P\left( \bar{A} \mid
A_{i} ight)

    = \frac{C_{5}^{2}}{C_{5}^{2}} \cdot 0 +
\frac{C_{4}^{2}}{C_{5}^{2}} \cdot \frac{1}{225} +
\frac{C_{3}^{2}}{C_{5}^{2}} \cdot \frac{14}{225} +
\frac{C_{2}^{2}}{C_{5}^{2}} \cdot \frac{7}{25} + 0 \cdot \frac{98}{225}
+ 0 \cdot \frac{49}{225}

    \simeq 0.4933

    Suy ra P(A) = 1 - P(\bar{A}) \simeq
0,6507.

  • Câu 15: Vận dụng cao

    Trong học kỳ I năm học 2024 - 2025, sinh viên phải thi 4 học phần. Xác suất để sinh viên thi đạt một học phần trong mỗi lần thi đều là 0,8. Nếu thi không đạt học phần nào phải thi lại học phần đó. Tính xác suất để một sinh viên thi đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần.

    Gọi A_{i} là "đạt i học phần ở lần thi đầu".

    Khi đó, A_{0},A_{1},A_{2},A_{3},A_{4} tạo thành hệ đầy đủ và P\left( A_{i} ight) =
C_{4}^{i}.0,8^{i}.0,2^{4 - i}

    Gọi A là "đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần".

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = \sum_{i = 0}^{4}P\left( A_{i}
ight)P\left( A \mid A_{i} ight)

    = C_{4}^{0}.0,8^{0}.0,2^{4}.\left(
0,8^{4} ight) + C_{4}^{2}.0,8^{1}.0,2^{3}.\left( 0,8^{3} ight) +
C_{4}^{2}.0,8^{2}.0,2^{2}.\left( 0,8^{2} ight)

    + C_{4}^{3}.0,8^{3}.0,2^{1}.(0,8) +
C_{4}^{4}.0,8^{4}.0,2^{0}.\left( 0,8^{0} ight)

    \approx 0,8493 = 84,93\%

  • Câu 16: Vận dụng

    Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu? (kết quả làm tròn đến hàng phần trăm)

    Đáp án : 0,93

    Đáp án là:

    Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu? (kết quả làm tròn đến hàng phần trăm)

    Đáp án : 0,93

    Gọi A là biến cố “qua được lần kiểm tra đầu tiên” \Rightarrow P(A) = 0,98

    Gọi B là biến cố “qua được lần kiểm tra thứ 2” \Rightarrow P\left( B|A ight) =
0,95

    Chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện trên, hay ta đi tính P(A \cap
B).

    Ta có

    P\left( B|A ight) = \frac{P(A \cap
B)}{P(A)}

    \Rightarrow P(A \cap B) = P\left( B|A
ight).P(A) = 0,95.0,98 = \frac{931}{1000} \approx 0,93

  • Câu 17: Nhận biết

    Cho AB là các biến cố của phép thử T. Biết rằng P(A) > 0;0 < P(B) <
1. Xác suất của biến cố B với điều kiện biến cố A đã xảy ra được tính theo công thức nào sau đây?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

  • Câu 18: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,8;P(B) = 0,65;P\left( A \cap \overline{B} ight) = 0,55. Tính P\left( \overline{A} \cap B
ight)?

    Ta có:

    P\left( \overline{A} \cap B ight) +
P(A \cap B) = P(B)

    \Rightarrow P\left( \overline{A} \cap B
ight) = P(B) - P(A \cap B) = 0,65 - 0,25 = 0,4.

  • Câu 19: Thông hiểu

    Một bình đựng 9 viên bi xanh và 7 viên bi đỏ. Lần lượt lấy ngẫu nhiên ra 2 bi, mỗi lần lấy 1 bi không hoàn lại. Tính xác suất để bi thứ 2 màu xanh nếu biết bi thứ nhất màu đỏ?

    Gọi A là biến cố “lần thứ nhất lấy được bi màu đỏ”.

    Gọi B là biến cố “lần thứ hai lấy được bi màu xanh”.

    Ta cần tìm P\left( B|A
ight)

    Không gian mẫu n(\Omega) = 16.15 cách chọn

    Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi rong 15 bi còn lại có 15 cách chọn, do đó: P(A) = \frac{7.15}{16.15} =
\frac{7}{16}

    Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi màu xanh có 9 cách chọn, do đó: P(A
\cap B) = \frac{7.9}{16.15} = \frac{21}{80}

    Vậy xác suất để viên bi lấy lần thứ hai là màu xanh nếu biết rằng viên bi lấy lần thứ nhất là màu đỏ là: P\left( B|A ight) = \dfrac{P(A \cap B)}{P(A)} =\dfrac{\dfrac{21}{80}}{\dfrac{7}{16}} = \dfrac{3}{5}.

  • Câu 20: Thông hiểu

    Hộp I: 5 bi trắng và 5 bi đen. Hộp II: 6 bi trắng và 4 bi đen. Bỏ hai viên bi từ hộp I sang hộp II. Sau đó lấy ra 1 viên bi. Tính xác suất để lấy được bi trắng.

    Gọi A là biến cố lấy được bi trắng

    Cách 1: Ta có sơ đồ cây mô tả như sau:

    P(A) = P\left( H_{0} ight).P\left(
A|H_{0} ight) + P\left( H_{1} ight).P\left( A|H_{1} ight) +
P\left( H_{2} ight).P\left( A|H_{2} ight) =
\frac{7}{12}.

    Cách 2: Gọi K1 là biến cố lấy bi ra từ hộp II của hộp I

    Gọi K2 là biến cố lấy bi ra từ hộp II của hộp II

    Ta xác định được:

    \left\{ \begin{gathered}
  P\left( {{K_1}} ight) = \frac{{C_2^1}}{{C_{12}^1}};P\left( {{K_2}} ight) = \frac{{C_{10}^1}}{{C_{12}^1}} \hfill \\
  P\left( {A|{E_1}} ight) = \frac{{C_5^1}}{{C_{10}^1}};P\left( {A|{E_2}} ight) = \frac{{C_6^1}}{{C_{10}^1}} \hfill \\ 
\end{gathered}  ight.

    Khi đó: P(A) = P\left( K_{1}
ight).P\left( A|K_{1} ight) + P\left( K_{2} ight).P\left( A|K_{2}
ight) = \frac{7}{12}

  • Câu 21: Nhận biết

    Cho hai biến cố AB với 0 <
P(A) < 1. Biết P(A) =0,1;P\left( \overline{A} ight) = 0,9;P\left( B|A ight) = 0,3;P\left(B|\overline{A} ight) = 0,6. Tính P(B)?

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,1.0,3 + 0,9.0,6 =
0,57

  • Câu 22: Thông hiểu

    Cho 2 lô sản phẩm. Lô I có 20 sản phẩm, trong đó có 15 sản phẩm tốt và 5 sản phẩm lỗi. Lô II có 20 sản phẩm, trong đó có 10 sản phẩm tốt và 10 sản phẩm lỗi. Lấy ngẫu nhiên 1 lô và từ lô này lấy ngầu nhiên ra 1 sản phẩm. Các khẳng định sau đúng hay sai?

    a) Xác suất để sản phẩm lấy ra là sản phẩm tốt bằng \frac{5}{8}.Đúng||Sai

    b) Xác suất để sản phẩm lấy ra là sản phẩm lỗi bằng \frac{3}{8}. Đúng||Sai

    c) Giả sử sản phẩm lấy ra là sản phẩm tốt. Xác suất đế sản phẩm đó của lô thứ II bằng \frac{2}{5}. Đúng||Sai

    d) Giả sử sản phẩm lấy ra là phế phẩm. Xác suất đế sản phẩm đó của lô thứ I bằng \frac{1}{2}. Sai||Đúng

    Đáp án là:

    Cho 2 lô sản phẩm. Lô I có 20 sản phẩm, trong đó có 15 sản phẩm tốt và 5 sản phẩm lỗi. Lô II có 20 sản phẩm, trong đó có 10 sản phẩm tốt và 10 sản phẩm lỗi. Lấy ngẫu nhiên 1 lô và từ lô này lấy ngầu nhiên ra 1 sản phẩm. Các khẳng định sau đúng hay sai?

    a) Xác suất để sản phẩm lấy ra là sản phẩm tốt bằng \frac{5}{8}.Đúng||Sai

    b) Xác suất để sản phẩm lấy ra là sản phẩm lỗi bằng \frac{3}{8}. Đúng||Sai

    c) Giả sử sản phẩm lấy ra là sản phẩm tốt. Xác suất đế sản phẩm đó của lô thứ II bằng \frac{2}{5}. Đúng||Sai

    d) Giả sử sản phẩm lấy ra là phế phẩm. Xác suất đế sản phẩm đó của lô thứ I bằng \frac{1}{2}. Sai||Đúng

    Gọi B_{1} là biến cố: “Lô lấy ra là lô I”

    Gọi B_{2} là biến cố: “Lô lấy ra là lô II”

    a) Gọi A là biến cố: “Sản phẩm lấy ra là sản phẩm tốt”

    Ta có: P(A) = P\left( B_{1}
ight).P\left( A|B_{1} ight) + P\left( B_{2} ight).P\left( A|B_{2}
ight)

    \left\{ \begin{matrix}P\left( B_{1} ight) = \dfrac{1}{2};P\left( B_{2} ight) = \dfrac{1}{2}\\P\left( A|B_{1} ight) = \dfrac{15}{20} = \dfrac{3}{4} \\P\left( A|B_{2} ight) = \dfrac{10}{20} = \dfrac{1}{2} \\\end{matrix} ight.

    Vậy P(A) = \frac{1}{2}.\frac{3}{4} +
\frac{1}{2}.\frac{1}{2} = \frac{5}{8}

    b) Ta có: P(A) = \frac{5}{8} \Rightarrow
P\left( \overline{A} ight) = 1 - P(A) = 1 - \frac{5}{8} =
\frac{3}{8}

    c) Ta có: \left\{ \begin{matrix}P\left( B_{2} ight) = \dfrac{1}{2};P\left( A|B_{2} ight) =\dfrac{1}{2} \\P(A) = \dfrac{5}{8} \\\end{matrix} ight.

    P\left( B_{2}|A ight) = \frac{P\left(
B_{2} ight).P\left( A|B_{2} ight)}{P(A)} =
\frac{0,5.0,5}{\frac{5}{8}} = \frac{2}{5}

    d) Ta có: \left\{ \begin{matrix}P(A) = \dfrac{5}{8};P\left( \overline{A} ight) = \dfrac{3}{8} \\P\left( B_{1} ight) = \dfrac{1}{2};P\left( \overline{A}|B_{1} ight) =\dfrac{1}{4} \\\end{matrix} ight.

    P\left( B_{1}|A ight) = \frac{P\left(B_{1} ight).P\left( \overline{A}|B_{1} ight)}{P\left( \overline{A}ight)} = \frac{0,5.0,25}{\dfrac{3}{8}} = \dfrac{1}{3}.

  • Câu 23: Nhận biết

    Cho hai biến cố AB với P(B) =
0,2;P\left( A|B ight) = 0,5;P\left( A|\overline{B} ight) =
0,4. Tính P\left( B|A
ight)?

    Ta có: P(B) = 0,2 \Rightarrow P\left(
\overline{B} ight) = 1 - P(B) = 1 - 0,2 = 0,8

    Áp dụng công thức Bayes:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

    \Rightarrow P\left( B|A ight) =
\frac{0,2.0,5}{0,2.0,5 + 0,8.0,4} = \frac{5}{21} \approx 0,238 .

  • Câu 24: Thông hiểu

    Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng 0,840,16. do có nhiễu trên đường truyền nên \frac{1}{6} tín hiệu A bị méo và thu được như tín hiệu B còn \frac{1}{8} tín hiệu B bị méo và thu được như A. Tìm xác suất thu được tín hiệu A?

    Gọi A, B lần lượt là "phát ra tín hiệu A, B".

    Khi đó A, B tạo thành hệ đầy đủ.

    P(A) = 0,84;P(B) = 0,16

    Gọi C là "thu được tín hiệu A". Khi đó: P\left( C|A ight) = \frac{5}{6};P\left( C|B
ight) = \frac{1}{8}

    Áp dụng công thức xác suất toàn phần ta có:

    P(C) = P(A).P\left( C|A ight) +
P(B).P\left( C|B ight)

    \Rightarrow P(C) = 0,84.\frac{5}{6} +
0,16.\frac{1}{8} = 0,72.

    Ta cần tính P(A|C). Áp dụng công thức Bayes ta có:

    P\left( A|C ight) = \frac{P(A)P\left(C|A ight)}{P(C)} = \dfrac{0,84.\dfrac{5}{6}}{0,72} =\dfrac{35}{36}

  • Câu 25: Nhận biết

    Cho hai biến cố AB với P(B) =
0,8;P\left( A|B ight) = 0,7,P\left( A|\overline{B} ight) =
0,45. Tính P(A)?

    Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,8.0,7 + 0,2.0,45 =
0,65

  • Câu 26: Nhận biết

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó công thức xác suất toàn phần tính P(A) là:

    Ta có công thức xác suất toàn phần tính P(A) là:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)

  • Câu 27: Vận dụng

    Có 3 hộp đựng bi: hộp thứ nhất có 3 bi đỏ, 2 bi trắng; hộp thứ hai có 2 bi đỏ, 2 bi trắng; hộp thứ ba không có viên nào. Lấy ngẫu nhiên 1 viên bi từ hộp thứ nhất và 1 viên bi từ hộp thứ hai bỏ vào hộp thứ ba. Sau đó từ hộp thứ ba lấy ngẫu nhiên ra 1 viên bi. Tính xác suất để viên bi đó màu đỏ?

    Gọi A1, A2 lần lượt là "lấy bi đỏ từ hợp thứ 1 (thứ 2) bỏ vào hộp thứ ba" thì A_{1}A_{2};\overline{A_{1}}A_{2};A_{1}\overline{A_{2}};\overline{A_{1}}\overline{A_{2}} tạo thành một hệ đầy đủ.

    Ta có: \left\{ \begin{matrix}
P\left( A_{1}A_{2} ight) = 0,3;P\left( \overline{A_{1}}A_{2} ight) =
0,2 \\
P\left( A_{1}\overline{A_{2}} ight) = 0,3;P\left(
\overline{A_{1}}\overline{A_{2}} ight) = 0,2 \\
\end{matrix} ight.

    Gọi A "lấy ra từ hộp 3 một viên bi màu đỏ". Ta có:

    P\left( A|A_{1}A_{2} ight) = 1;P\left(
A|\overline{A_{1}}A_{2} ight) = 0,5

    P\left( A|A_{1}\overline{A_{2}} ight)
= 0,5;P\left( A|\overline{A_{1}}\overline{A_{2}} ight) =
0

    Áp dụng công thức xác suất đầy đủ ta có:

    P(A) = P\left( A_{1}A_{2} ight)P\left(
A|A_{1}A_{2} ight) + P\left( \overline{A_{1}}A_{2} ight)P\left(
A|\overline{A_{1}}A_{2} ight)

    + P\left(
\overline{A_{1}}\overline{A_{2}} ight)P\left(
A|\overline{A_{1}}\overline{A_{2}} ight) + P\left(
A_{1}\overline{A_{2}} ight)P\left( A_{1}\overline{A_{2}}
ight)

    = 0,3.1 + 0,3.0,5 + 0,2.0,5 + 0,2.0 =
0,55

  • Câu 28: Thông hiểu

    Có 40 phiếu kiểm tra, mỗi phiếu có một câu hỏi, biết rằng có 13 câu hỏi lý thuyết (gồm 5 câu mức độ khó và 8 câu mức độ dễ) và 27 câu hỏi bài tập (gồm 12 câu mức độ khó và 15 câu mức độ dễ). Lấy ngẫu nhiên ra một phiếu. Tìm xác suất rút được câu hỏi lý thuyết mức độ khó.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có 40 phiếu kiểm tra, mỗi phiếu có một câu hỏi, biết rằng có 13 câu hỏi lý thuyết (gồm 5 câu mức độ khó và 8 câu mức độ dễ) và 27 câu hỏi bài tập (gồm 12 câu mức độ khó và 15 câu mức độ dễ). Lấy ngẫu nhiên ra một phiếu. Tìm xác suất rút được câu hỏi lý thuyết mức độ khó.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 29: Vận dụng

    Một học sinh làm 2 bài tập kế tiếp. Xác suất làm đúng bài thứ nhất là 0,7. Nếu làm đúng bài thứ nhất thì khả năng làm đúng bài thứ hai là 0,8. Nhưng nếu làm sai bài thứ nhất thì khả năng làm đúng bài thứ hai là 0,2. Tính xác suất học sinh đó làm đúng cả hai bài?

    Gọi A: “Làm đúng bài thứ nhất”.

    Và B: “Làm đúng bài thứ hai”

    Khi đó biến cố: “làm đúng cả hai bài” là AB

    Theo bài ta có: P(A) = 0,7;P\left( B|A
ight) = 0,8;P\left( B|\overline{A} ight) = 0,2

    Do đó:

    P\left( \overline{A} ight) = 1 - P(A)
= 0,3

    P\left( \overline{B}|A ight) = 1 -
P\left( B|A ight) = 1 - 0,8 = 0,2

    P\left( \overline{B}|\overline{A}
ight) = 1 - P\left( B|\overline{A} ight) = 1 - 0,2 =
0,8

    Ta có sơ đồ hình cây như sau:

    Vậy P(AB) = 0,8.0,7 = 0,56

  • Câu 30: Thông hiểu

    Một bình đựng 5 viên bi (cùng kích cỡ và đồng chất) khác nhau về màu sắc. Trong đó có 3 viên bi xanh và 2 viên bi đỏ. Lấy ngẫu nhiên từ bình ra một viên bi ta được viên bi màu xanh, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Xác suất để lấy được viên bi đỏ ở lần thứ hai bằng bao nhiêu?

    Cách 1:

    Gọi A là biến cố “lấy viên bi thứ nhất là màu xanh”

    Gọi B là biến cố “lấy viên bi thứ hai là màu đỏ”

    Ta đi tính P\left( B|A ight). Ta có: P(A) = \frac{3.4}{5.4} =
\frac{3}{5};P(A \cap B) = \frac{3.2}{5.4} = \frac{3}{10}

    Do đó: P\left( B|A ight) = \dfrac{P(A\cap B)}{P(A)} = \dfrac{\dfrac{3}{10}}{\dfrac{3}{5}} =\dfrac{1}{2}

    Cách 2:

    Gọi C là biến cố: “Lấy được một viên bi đỏ ở lần thứ hai”.

    Vì một viên bi xanh đã được lấy ra ở lần thứ nhất nên còn lại trong bình 4 viên bi trong đó số viên bi đỏ là 2 và số viên bi xanh cũng là 2.

    Do đó, xác suất cần tìm là P(C) =
\frac{2}{4} = \frac{1}{2}

  • Câu 31: Vận dụng cao

    Ba người thợ cùng may một loại áo với xác suất may được sản phẩm chất lượng cao tương ứng là 0,9; 0,9 ; 0,8. Biết một người khi may 8 áo thì có 6 sản phẩm chất lượng cao. Tìm xác suất để người đó may 8 áo nữa thì có 6 áo chất lượng cao?

    Áp dụng công thức xác suất đầy đủ

    P(A) = P\left( A_{1} ight)P\left( A
\mid A_{1} ight) + P\left( A_{2} ight)P\left( A \mid A_{2} ight) +
P\left( A_{3} ight)P\left( A \mid A_{3} ight)

    =
\frac{1}{3}.C_{8}^{6}{.0,9}^{6}.{0,1}^{2} +
\frac{1}{3}.C_{8}^{6}.{0,9}^{6}.{0,1}^{2} +
\frac{1}{3}.C_{8}^{6}.{0,8}^{6}.{0,2}^{2}\simeq 0,1971

    Gọi B là "trong 8 áo sau có 6 áo chất lượng cao". Vì trong không gian điều kiện A, hệ A_{i} vẫn là hệ đầy đủ.

    Áp dụng công thức xác suất toàn phần có

    P(B) = P\left( A_{1} \mid A
ight)P\left( B \mid A_{1}A ight) + P\left( A_{2} \mid A
ight)P\left( B \mid A_{2}A ight) + P\left( A_{3} \mid A
ight)P\left( B \mid A_{3}A ight)

    Ở đó:

    P\left( A_{1} \mid A ight) =\frac{P\left( A_{1} ight)P\left( A \mid A_{1} ight)}{P(A)} \simeq\dfrac{\dfrac{1}{3}.C_{8}^{6}.{0,9}^{6}.{0,1}^{2}}{0.1971} \simeq0,2516

    P\left( A_{2} \mid A ight) \simeq
0,2516,\ P\left( A_{3} \mid A ight) \simeq 0,4965

    Thay vào ta tính được

    P(A) \simeq
0,2516.C_{8}^{6}.{0,9}^{6}.{0.1}^{2} +
0.2516.C_{8}^{6}.{0,9}^{6}.{0,1}^{2}

    +
0,4965.C_{8}^{6}.{0,8}^{6}.{0,2}^{2}\simeq 0,2206

  • Câu 32: Vận dụng

    Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi A;B lần lượt là biến cố thắng thầu dự án 1 và dự án 2.

    a) A;B là hai biến độc lập. Đúng||Sai

    b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3. Đúng||Sai

    c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là 0,4. Sai|| Đúng

    d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án 0,8. Sai|| Đúng

    Đáp án là:

    Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi A;B lần lượt là biến cố thắng thầu dự án 1 và dự án 2.

    a) A;B là hai biến độc lập. Đúng||Sai

    b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3. Đúng||Sai

    c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là 0,4. Sai|| Đúng

    d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án 0,8. Sai|| Đúng

    Ta có:\left\{ \begin{matrix}
P(A) = 0,5 \Rightarrow P\left( \overline{A} ight) = 1 - 0,5 = 0,5 \\
P(B) = 0,6 \Rightarrow P\left( \overline{B} ight) = 1 - 0,6 = 0,4 \\
P(A \cap B) = 0,4 \\
\end{matrix} ight.

    a) A;B là hai biến cố độc lập khi và chỉ khi P(A \cap B) =
P(A).P(B)

    0,4 eq 0,5.0,6 nên A;B không độc lập.

    b) Gọi C là biến cố thắng thầu đúng 1 dự án

    P(C) = P\left( A \cap \overline{B}
ight) + P\left( \overline{A} \cap B ight)

    = P(A) - P(A \cap B) + P(B) - P(A \cap
B)

    = P(A) + P(B) - 2P(A \cap
B)

    = 0,5 + 0.6 - 2.0,4 = 0,3.

    c) Gọi D là biến cố thắng dự 2 biết thắng dự án 1

    P(D) = P\left( B|A ight) = \frac{P(B
\cap A)}{P(A)} = \frac{0,4}{0,5} = 0,8.

    d) Gọi E là biến cố “thắng dự án 2 biết không thắng dự án 1”

    P(E) = P\left( B|\overline{A} ight) =
\frac{P(B) - P(A \cap B)}{P\left( \overline{A} ight)} = \frac{0,6 -
0,4}{0,5} = 0,4.

  • Câu 33: Thông hiểu

    Người ta khảo sát khả năng chơi nhạc cụ của một nhóm học sinh nam nữ tại một trường phổ thông T. Xét phép thử chọn ngẫu nhiên 1 học sinh trong nhóm đó. Gọi A là biến cố “học sinh được chọn biết chơi ít nhất một nhạc cụ”, và B là biến cố “học sinh được chọn là nam”. Biết xác xuất học sinh được chọn là nam bằng 0,6; xác suất học sinh được chọn là nam và biết chơi ít nhất một nhạc cụ là 0,3; xác suất học sinh được chọn là nữ và biết chơi ít nhất một nhạc cụ là 0,15. Tính P(A)?

    Theo bài ra ta có: \left\{ \begin{matrix}
P(B) = 0,6 \Rightarrow P\left( \overline{B} ight) = 1 - 0,6 = 0,4 \\
P\left( A|B ight) = 0,3 \\
P\left( A|\overline{B} ight) = 0,15 \\
\end{matrix} ight.

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,6.0,3 + 0,4.0,15 =
0,24.

  • Câu 34: Thông hiểu

    Một công ty xây dựng đấu thầu 2 dự án độc lập. Khả năng thắng thầu của các dự án 1 là 0,6 và dự án 2 là 0,7. Biết công ty thắng thầu dự án 1, tìm xác suất công ty thắng thầu dự án 2?

    Gọi A là biến cố ”Thắng thầu dự án 1″

    Gọi B là biến cố “Thắng thầu dự án 2″

    Theo đề bài ta có: \left\{ \begin{matrix}
P(A) = 0,6 \Rightarrow P\left( \overline{A} ight) = 0,4 \\
P(B) = 0,3 \Rightarrow P\left( \overline{B} ight) = 0,7 \\
\end{matrix} ight. với 2 biến cố A; B độc lập.

    Gọi D là biến cố “thắng thầu dự án thứ 2 biết thắng thầu dự án 1” do A; B là hai biến cố độc lập nên:

    P(D) = P\left( B|A ight) = P(B) =
0,7

  • Câu 35: Nhận biết

    Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.

    Gọi A là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”.

    Gọi B là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.

    Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì P\left( B|A ight) = \frac{1}{6}.

  • Câu 36: Nhận biết

    Cho hai biến cố A, B với 0 <
P(B) < 1. Phát biểu nào sau đây đúng?

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight).

  • Câu 37: Thông hiểu

    Một nhóm học sinh có 30 học sinh, trong đó có 16 em học khá môn Toán, 25 em học khá môn Hóa học, 12 em học khá cả hai môn Toán và Hóa học. Chọn ngẫu nhiên một học sinh trong số đó. Tính xác suất để học sinh đó học khá môn Toán biết rằng học sinh đó học khá môn Hóa học?

    Gọi A: “Học sinh đó học khá môn Toán”

    Và B: “Học sinh đó học khá môn Hóa học”

    Theo bài ra ta có:

    P(A) = \frac{16}{30};P(B) =
\frac{25}{30};P(AB) = \frac{12}{30}

    \Rightarrow P\left( A|B ight) =
\frac{P(AB)}{P(B)} = \frac{12}{25} = 0,48

  • Câu 38: Nhận biết

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2024;P(B) = 0,2025. Tính P\left( A|B ight)?

    Hai biến cố AB là hai biến cố độc lập nên P\left( A|B ight) = P(A) = 0,2024.

  • Câu 39: Thông hiểu

    Một phân xưởng có 3 máy tự động: máy I sản xuất 25%, máy II sản xuất 30%, máy III sản xuất 45% số sản phẩm. Tỷ lệ phế phẩm tương ứng của các máy lần lượt là 0,1%, 0,2% và 0,3%. Chọn ngẫu nhiên ra một sản phẩm của phân xưởng. 1. Biết nó là phế phẩm. Tính xác suất để sản phẩm đó do máy I sản xuất.

    Gọi Ai là "lấy ra sản phẩm từ lô i" thì A1, A2, A3 tạo thành hệ đầy đủ.

    Gọi A là "lấy ra sản phẩm là phế phẩm".

    Áp dụng công thức xác suất đầy đủ, ta có

    P(A) = P\left( A_{1} ight)P\left(
A|A_{1} ight) + P\left( A_{2} ight)P\left( A|A_{2} ight) + P\left(
A_{3} ight)P\left( A|A_{3} ight)

    \Rightarrow P(A) = 0,25.0,1\% +
0,3.0,2\% + 0,45.0,3\% = 0,22\%

    Gọi B là "sản phẩm do máy I sản xuất". Khi đó ta cần tính P(B|A)

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)} = \frac{0,25.0,1\%}{0,22\%} \approx
0,1136

  • Câu 40: Nhận biết

    Một túi đựng 6 bi xanh và 4 bi đỏ. Lấy ngẫu nhiên 2 bi. Xác suất để cả hai bi đều đỏ là:

    Ta có số phần từ của không gian mẫu là n(\Omega) = C_{10}^{2} = 45.

    Gọi A: "Hai bi lấy ra đều là bi đỏ".

    Khi đó n(A) = C_{4}^{2} = 6.

    Vậy xác suất cần tính là P(A) =
\frac{n(A)}{n(\Omega)} = \frac{2}{15}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Xác suất có điều kiện CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 25 lượt xem
Sắp xếp theo