Đề kiểm tra 45 phút Chương 6 Xác suất có điều kiện CTST

Mô tả thêm: Đề kiểm tra 45 phút bao gồm các kiến thức Chương 6. Xác suất có điều kiện được thay đổi liên tục giúp học sinh ôn tập kiến thức và kĩ năng giải bài tập Toán 12 CTST
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho AB là các biến cố của phép thử T. Biết rằng P(A) > 0;0 < P(B) <
1. Xác suất của biến cố B với điều kiện biến cố A đã xảy ra được tính theo công thức nào sau đây?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

  • Câu 2: Nhận biết

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( \overline{A} \cap B ight)?

    Cách 1: P\left( \overline{A} \cap B
ight) = P\left( \overline{A}|B ight).P(B)

    P\left( \overline{A}|B ight) = 1 -
P\left( A|B ight) = 1 - \frac{P(A \cap B)}{P(B)} = 1 - \frac{0,3}{0,7}
= \frac{4}{7}

    Do đó: P\left( \overline{A} \cap B
ight) = P\left( \overline{A}|B ight).P(B) = \frac{4}{7}.0,7 = 0,4 =
\frac{2}{5}

    Cách 2: Ta có:

    P\left( \overline{A} \cap B ight) +
P(A \cap B) = P(B)

    \Rightarrow P\left( \overline{A} \cap B
ight) = P(B) - P(A \cap B) = 0,7 - 0,3 = 0,4.

  • Câu 3: Thông hiểu

    Một công nhân đứng hai máy hoạt động độc lập nhau. Xác suất để máy thứ nhất, máy thứ 2 không bị hỏng trong một ca làm việc lần lượt là 0,90,8. Tính xác suất để cả 2 máy đều không bị hỏng trong một ca làm việc?

    Gọi A là biến cố cả 2 máy đều không bị hỏng trong một ca làm việc

    Theo yêu cầu của đầu bài, ta phải tính P(A)

    Nếu gọi Ai là biến cố máy thứ i không bị hỏng trong một ca làm việc với (i = 1, 2)

    Khi đó ta có: A = A_1.A_2

    Vì vậy xác suất cần tìm là: P(A) = P(A_1.A_2)

    Theo giả thiết A1, A2 là 2 biến cố độc lập với nhau nên ta có:

    P(A) = P(A_1.A_2) = P(A_1).P(A_2) = 0,72

  • Câu 4: Nhận biết

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P(A.B)?

    Ta có: P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

  • Câu 5: Nhận biết

    Hộp thứ nhất chứa 3 viên bi đen và 2 viên bi trắng. Hộp thứ hai chứa 4 viên bi đen và 5 viên bi trắng. Các viên bi có cùng kích thước và khối lượng. Bạn Mai lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.

    Gọi A: "Viên bi lấy ra lần thứ nhất là bi đen"

    Và B: "Viên bi lấy ra lần thứ hai là bi trắng".

    Biết rằng biến cố A xảy ra, tính xác suất của biến cố B?

    Nếu biến cố A xảy ra thì bạn Mai lấy viên bi đen từ hộp thứ nhất bỏ vào hộp thứ hai.

    Khi đó hộp thứ hai có 5 viên bi đen và 5 viên bi trắng.

    Do đó, xác suất của biến cố B là: P(B) =
\frac{1}{2}.

  • Câu 6: Nhận biết

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2024;P(B) = 0,2025. Tính P\left( A|B ight)?

    Hai biến cố AB là hai biến cố độc lập nên P\left( A|B ight) = P(A) = 0,2024.

  • Câu 7: Nhận biết

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,4;P(B) = 0,3;P\left( A|B ight) =
0,25 thì P\left( B|A
ight) bằng bao nhiêu?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,3.0,25}{0,4} = \frac{3}{16}

  • Câu 8: Nhận biết

    Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. Hùng lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa.

    Xét các biến cố:

    A: "Quả bóng lấy ra lần đầu có số chẵn"

    B: "Quả bóng lấy ra lần hai có số lẻ".

    Xác định biến cố E = B|A: "biến cố B với điều kiện biết A đã xảy ra".

    Ta có:

    A = \left\{
(2;1),(2;3),(2;4),(4;1),(4;2),(4;3) ight\}

    B = \left\{
(1;1),(1;3),(2;1),(2;3),(3;1),(3;3),(4;1),(4;3) ight\}

    Khi biến cố B xảy ra, thì không gian mẫu mới là B.

    Khi đó, biến cố E = B|A = A \cap B =
\left\{ (2;1),(2;3),(4;1),(4;3) ight\}

  • Câu 9: Thông hiểu

    Một công ty du lịch bố trí chỗ cho đoàn khách tại ba khách sạn A;B;C theo tỉ lệ 20\%;50\%;30\%. Tỉ lệ hỏng điều hòa ở ba khách sạn lần lượt là 5\%;4\%;8\%. Tính xác suất để một khách nghỉ ở phòng điều hòa bị hỏng.

    Gọi H ” Để một khách ở phòng điều hòa bị hỏng”

    Gọi A;B;C lần lượt là các biến cố Khách nghỉ tại ba khách sạn A;B;C.

    Ta có: \left\{ \begin{matrix}
P(A) = 20\% = 0,2;P\left( H|A ight) = 5\% = 0,05 \\
P(B) = 50\% = 0,5;P\left( H|B ight) = 4\% = 0,04 \\
P(C) = 30\% = 0,3;P\left( H|C ight) = 8\% = 0,08 \\
\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần ta có:

    P(H) = P\left( H|A ight)P(A) + P\left(
H|B ight)P(B) + P\left( H|C ight)P(C)

    P(H) = 0,05.0,2 + 0,04.0,5 + 0,08.0,3 =
\frac{27}{500}.

  • Câu 10: Vận dụng

    Cho hai hộp đựng phiếu bốc thăm trúng thưởng giống nhau:

    Hộp thứ nhất có tỉ lệ trúng thưởng bằng \frac{3}{4}.

    Hộp thứ hai có tỉ lệ trúng thưởng bằng \frac{2}{3}.

    Chọn ngẫu nhiên một thùng và lấy ngẫu nhiên một phiếu trong thùng đó thấy phiếu đó trúng thưởng. Bỏ lại phiếu trở lại thùng, từ thùng đó lấy tiếp một phiếu. Tìm xác suất để lần thứ hai cũng lấy được phiếu trúng thưởng.

    Gọi A là biến cố phiếu đầu tiên lấy là phiếu trúng thưởng.

    Biến cố A có thể xảy ra cùng với một trong các biến cố sau:

    H1 phiếu bốc thăm lấy ra từ thùng I.

    H2 phiếu bốc thăm lấy ra từ thùng II.

    Theo công thức xác xuất toàn phần ta có:

    P(A) = P\left( H_{1} ight).P\left(
A|H_{1} ight) + P\left( H_{2} ight).P\left( A|H_{2}
ight)

    Theo dữ kiện đề bài ta có: \left\{
\begin{matrix}
P\left( H_{1} ight) = P\left( H_{2} ight) = \frac{1}{2} \\
P\left( A|H_{1} ight) = \frac{3}{4};P\left( A|H_{2} ight) =
\frac{2}{3} \\
\end{matrix} ight.

    Do đó: P(A) = \frac{1}{2}.\frac{3}{4} +
\frac{1}{2}.\frac{2}{3} = \frac{17}{24}

    Sau khi biến cố A đã xảy ra, xác suất của các biến cố H_{1};H_{2} thay đổi theo công thức Bayes như sau:

    P\left( H_{1}|A ight) = \frac{P\left(
H_{1} ight).P\left( A|H_{1} ight)}{P(A)} = \frac{3}{8}:\frac{17}{24}
= \frac{9}{17}

    P\left( H_{2}|A ight) = \frac{P\left(
H_{2} ight).P\left( A|H_{2} ight)}{P(A)} = \frac{1}{3}:\frac{17}{24}
= \frac{8}{17}

    Gọi B là biến cố lấy phiếu lần thứ hai là trúng thưởng.

    B vẫn có thể xảy ra với một trong hai giả thiết H_{1};H_{2} do đó theo công thức xác suất toàn phần ta có:

    P(B) = P\left( H_{1}|A ight).P\left(
B|H_{1}A ight) + P\left( H_{2}|A ight).P\left( B|H_{2}A
ight)

    Vì phiếu lấy lần thứ nhất bỏ trở lại thùng, do đó tỉ lệ trúng thưởng ở các thùng đó vẫn không thay đổi.

    Vì thế

    P\left( B|H_{1}A ight) =
\frac{3}{4};P\left( B|H_{2}A ight) = \frac{2}{3}

    \Rightarrow P(B) =
\frac{9}{17}.\frac{3}{4} + \frac{8}{17}.\frac{2}{3} = \frac{145}{204} =
0,71

  • Câu 11: Thông hiểu

    Trong một đợt kiểm tra sức khoẻ, có một loại bệnh X mà tỉ lệ người mắc bệnh là 0,2\% và một loại xét nghiệm Y mà ai mắc bệnh X khi xét nghiệm Y cũng có phản ứng dương tính. Tuy nhiên, có 6\% những người không bị bệnh X lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên một người trong đợt kiểm tra sức khoẻ đó. Giả sử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh X là bao nhiêu (làm tròn kết quả đến hàng phần trăm)

    Xét các biến cố:

    A: "Người được chọn mắc bệnh X"

    B: "Người được chọn có phản ứng dương tính với xét nghiệm Y".

    Theo giả thiết ta có:

    P(A) = 0,002 \Rightarrow P\left(
\overline{A} ight) = 1 - 0,002 = 0,998

    P\left( B|A ight) = 1;P\left(
B|\overline{A} ight) = 0,06

    Theo công thức Bayes, ta có:

    P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight).P\left( B|\overline{A} ight)}

    \Rightarrow P\left( A|B ight) =
\frac{0,002.1}{0,002.1 + 0,998.0,06} \approx 0,03

  • Câu 12: Vận dụng

    Một cặp trẻ sinh đôi có thể do cùng một trứng (sinh đôi thật) hay do hai trứng khác nhau sinh ra (sinh đôi giả). Các cặp sinh đôi thật luôn luôn có cùng giới tính. Các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập với nhau và có xác suất là 0,5. Thống kê cho thấy 34\% cặp sinh đôi là trai; 30\% cặp sinh đôi là gái và 36\% cặp sinh đôi có giới tính khác nhau. Tỉ lệ cặp sinh đôi thật trong số các cặp sinh đôi có cùng giới tính.

    Gọi A: “Nhận được cặp sinh đôi thật”

    B: “Nhận được cặp sinh đôi có cùng giới tính”

    Do các cặp sinh đôi thật luôn luôn có cùng giới tính nên P\left( B|A ight) = 1

    Với các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập nhau và có xác suất là 0,5 nên P\left( B|\overline{A}
ight) = P\left( \overline{B}|\overline{A} ight) =
\frac{1}{2}

    Do thống kê trên các cặp sinh đôi nhận được thì:

    P(B) = 0,3 + 0,34 = 0,64

    \Rightarrow P\left( \overline{B} ight)
= 1 - P(B) = 0,36

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P\left( B|A ight).P(A) +
P\left( B|\overline{A} ight).P\left( \overline{A} ight)

    = P\left( B|A ight).P(A) + P\left(
B|\overline{A} ight).\left\lbrack 1 - P(A) ightbrack

    Thay số ta xác định được P(A) =
0,28.

    Do công thức Bayes:

    P\left( A|B ight) = \frac{P\left( B|A
ight).P(A)}{P(B)} = \frac{0,28}{0,64} = 0,4375

  • Câu 13: Thông hiểu

    Năm 2012, Cộng đồng Châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Người ta tiến hành một loại xét nghiệm và cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để ra phản ứng dương tính trong xét nghiệm là 60\%; còn khi con bò không bị bệnh thì xác suất để xảy ra phản ứng dương tính trong xét nghiệm đó là 20\%. Biết rằng ti lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100000 con. Gọi X là biến cố một con bò bị bệnh bò điên, Y là biến cố một con bò phản ứng dương tính với xét nghiệm.

    a) P(X) = 15.10^{- 6}. Đúng||Sai

    b) P(Y \mid X) = 0,06. Sai||Đúng

    c) P\left( Y \mid \overline{X} ight) =
0,2. Đúng||Sai

    d) P(Y \cap X) = 9.10^{- 7}. Sai||Đúng

    Đáp án là:

    Năm 2012, Cộng đồng Châu Âu có làm một đợt kiểm tra rất rộng rãi các con bò để phát hiện những con bị bệnh bò điên. Người ta tiến hành một loại xét nghiệm và cho kết quả như sau: Khi con bò bị bệnh bò điên thì xác suất để ra phản ứng dương tính trong xét nghiệm là 60\%; còn khi con bò không bị bệnh thì xác suất để xảy ra phản ứng dương tính trong xét nghiệm đó là 20\%. Biết rằng ti lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100000 con. Gọi X là biến cố một con bò bị bệnh bò điên, Y là biến cố một con bò phản ứng dương tính với xét nghiệm.

    a) P(X) = 15.10^{- 6}. Đúng||Sai

    b) P(Y \mid X) = 0,06. Sai||Đúng

    c) P\left( Y \mid \overline{X} ight) =
0,2. Đúng||Sai

    d) P(Y \cap X) = 9.10^{- 7}. Sai||Đúng

    Tỉ lệ bò bị mắc bệnh bò điên ở Hà Lan là 1,5 con trên 100\ 000 con nghĩa là P(X) = 15.10^{- 6}.

    Khi con bò bị bệnh bò điên, thì xác suất để ra phản ứng dương tính trong xét nghiệm là 60%, nghĩa là: P\left(
Y|X ight) = 0,6.

    Khi con bò không bị bệnh, thì xác xuất để xả ra phản ứng dương tính trong xét nghiệm đó là 20%, nghĩa là P\left(
Y|\overline{X} ight) = 0,2. Khi đó, ta có:

    P(Y \cap X) = P\left( Y|X ight).P(X) =
0,6\ .\ 15\ .\ 10^{- 6} = 9.10^{- 6}.

  • Câu 14: Vận dụng

    Một xí nghiệp mỗi ngày sản xuất ra 2000 sản phẩm trong đó có 39 sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).

    Đáp án: 0,02

    Đáp án là:

    Một xí nghiệp mỗi ngày sản xuất ra 2000 sản phẩm trong đó có 39 sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).

    Đáp án: 0,02

    Xét các biến cố:

    A_{1}: Sản phẩm lấy ra lần thứ nhất bị lỗi.

    Khi đó, ta có: P\left( A_{1}
ight) = \frac{39}{2000}; P\left(
\overline{A_{1}} ight) = \frac{1961}{2000}.

    A_{2}: Sản phẩm lấy ra lần thứ hai bị lỗi.

    Khi sản phẩm lấy ra lần thứ nhất bị lỗi thì còn 1999 sản phẩm và trong đó có 38 sản phẩm lỗi nên ta có:

    P\left( {{A_2}\left| {{A_1}} ight.} ight) = \frac{{38}}{{1999}}, suy ra P\left(
\overline{A_{2}}\left| A_{1} ight.\  ight) =
\frac{1961}{1999}.

    Khi sản phẩm lấy ra lần thứ nhất không bị lỗi thì còn 1999 sản phẩm trong đó có 39sản phẩm lỗi nên ta có:

    P\left( A_{2}\left| \overline{A_{1}}
ight.\  ight) = \frac{39}{1999}, suy ra P\left( \overline{A_{2}}\left| \overline{A_{1}}
ight.\  ight) = \frac{1960}{1999}.

    Khi đó, xác suất để sản phẩm lấy ra lần thứ hai bị lỗi là:

    P\left( A_{2} ight) = P\left(
A_{2}\left| A_{1} ight.\  ight).P\left( A_{1} ight) + P\left(
A_{2}\left| \overline{A_{1}} ight.\  ight).P\left( \overline{A_{1}}
ight)

    = \frac{38}{1999}.\frac{39}{2000} +
\frac{39}{1999}.\frac{1961}{2000} \approx 0,02.

    Đáp số: 0,02.

  • Câu 15: Thông hiểu

    Một gia đình có 2 đứa trẻ. Biết rằng có ít nhất 1 đứa trẻ là con gái. Xác suất để một đứa trẻ là trai hoặc gái là bằng nhau. Hỏi xác suất hai đứa trẻ đều là con gái là bao nhiêu?

    Giới tính cả 2 đứa trẻ là ngẫu nhiên và không liên quan đến nhau.

    Do gia đình có 2 đứa trẻ nên sẽ có thể xảy ra 4 khả năng: (trai, trai), (gái, gái), (gái, trai), (trai, gái).

    Gọi A là biến cố “Cả hai đứa trẻ đều là con gái” Gọi B là biến cố “Có ít nhất một đứa trẻ là con gái”

    Ta có: P(A) = \frac{1}{4};P(B) =
\frac{3}{4}

    Do nếu xảy ra A thì đương nhiên sẽ xảy ra B nên ta có:

    P(A \cap B) = P(A) =
\frac{1}{4}

    Suy ra, xác suất để cả hai đứa trẻ đều là con gái khi biết ít nhất có một đứa trẻ là gái là: P\left( A|B ight) =\dfrac{P(A \cap B)}{P(B)} = \dfrac{\dfrac{1}{4}}{\dfrac{3}{4}} =\dfrac{1}{3}.

  • Câu 16: Thông hiểu

    Một phân xưởng có 3 máy tự động: máy I sản xuất 25%, máy II sản xuất 30%, máy III sản xuất 45% số sản phẩm. Tỷ lệ phế phẩm tương ứng của các máy lần lượt là 0,1%, 0,2% và 0,3%. Chọn ngẫu nhiên ra một sản phẩm của phân xưởng. 1. Tìm xác suất nó là phế phẩm.

    Gọi Ai là "lấy ra sản phẩm từ lô i" thì A1, A2, A3 tạo thành hệ đầy đủ.

    Gọi A là "lấy ra sản phẩm là phế phẩm".

    Áp dụng công thức xác suất toàn phần, ta có

    P(A) = P\left( A_{1} ight)P\left(
A|A_{1} ight) + P\left( A_{2} ight)P\left( A|A_{2} ight) + P\left(
A_{3} ight)P\left( A|A_{3} ight)

    \Rightarrow P(A) = 0,25.0,1\% +
0,3.0,2\% + 0,45.0,3\% = 0,22\%

  • Câu 17: Nhận biết

    Cho hai biến cố AB với 0 <
P(A) < 1. Biết P(A) =0,1;P\left( \overline{A} ight) = 0,9;P\left( B|A ight) = 0,3;P\left(B|\overline{A} ight) = 0,6. Tính P(B)?

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,1.0,3 + 0,9.0,6 =
0,57

  • Câu 18: Vận dụng cao

    Một tổ có 15 sinh viên trong đó có 5 sinh viên học giỏi môn Toán. Cần chia làm 5 nhóm, mỗi nhóm 3 sinh viên. Tính xác suất để nhóm nào cũng có một sinh viên học giỏi môn Toán?

    Gọi A_{i} là biến cố 'nhóm thứ i có 1 người giỏi Toán' và A là sự kiện nhóm nào cũng có người giỏi Toán, thì dễ dàng nhận thấy:

    A =
A_{1}A_{2}A_{3}A_{4}A_{5}

    Ta có:

    P\left( A_{1} ight) =
\frac{C_{5}^{1}C_{10}^{2}}{C_{15}^{3}} = \frac{45}{91}

    P\left( A_{2} \mid A_{1} ight) =
\frac{C_{4}^{1}C_{8}^{2}}{C_{12}^{3}} = \frac{28}{55}

    P\left( A_{3} \mid A_{1}A_{2} ight) =
\frac{C_{3}^{1}C_{6}^{2}}{C_{9}^{3}} = \frac{15}{28}

    P\left( A_{4} \mid A_{1}A_{2}A_{3}
ight) = \frac{C_{2}^{1}C_{4}^{2}}{C_{6}^{3}} =
\frac{3}{5}

    P\left( A_{5} \mid A_{1}A_{2}A_{3}A_{4}
ight) = \frac{C_{1}^{1}C_{2}^{2}}{C_{3}^{3}} = 1

    Áp dụng công thức xác suất của tích ta có:

    P(A) = P\left( A_{1} ight)P\left(
A_{2} \mid A_{1} ight)P\left( A_{3} \mid A_{1}A_{2} ight)P\left(
A_{4} \mid A_{1}A_{2}A_{3} ight)P\left( A_{5} \mid
A_{1}A_{2}A_{3}A_{4} ight)

    = \frac{C_{5}^{1}}{C_{15}^{3}} \cdot
\frac{C_{4}^{2}}{C_{12}^{3}} \cdot \frac{C_{3}^{1}}{C_{9}^{3}} \cdot
\frac{C_{2}^{1}}{C_{6}^{3}} \cdot
\frac{C_{1}^{2}}{C_{3}^{3}} \simeq 0,0809

  • Câu 19: Nhận biết

    Cho hai biến cố AB với 0 <
P(A) < 1. Khi đó công thức xác suất toàn phần tính P(B) là:

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

  • Câu 20: Thông hiểu

    Người ta khảo sát khả năng chơi nhạc cụ của một nhóm học sinh nam nữ tại một trường phổ thông T. Xét phép thử chọn ngẫu nhiên 1 học sinh trong nhóm đó. Gọi A là biến cố “học sinh được chọn biết chơi ít nhất một nhạc cụ”, và B là biến cố “học sinh được chọn là nam”. Biết xác xuất học sinh được chọn là nam bằng 0,6; xác suất học sinh được chọn là nam và biết chơi ít nhất một nhạc cụ là 0,3; xác suất học sinh được chọn là nữ và biết chơi ít nhất một nhạc cụ là 0,15. Tính P(A)?

    Theo bài ra ta có: \left\{ \begin{matrix}
P(B) = 0,6 \Rightarrow P\left( \overline{B} ight) = 1 - 0,6 = 0,4 \\
P\left( A|B ight) = 0,3 \\
P\left( A|\overline{B} ight) = 0,15 \\
\end{matrix} ight.

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,6.0,3 + 0,4.0,15 =
0,24.

  • Câu 21: Thông hiểu

    Tan giờ học buổi chiều một sinh viên có 60\% về nhà ngay, nhưng do giờ cao điểm nên có 30% ngày bị tắc đường nên bị về nhà muộn (từ 30 phút trở lên) còn 20\% số ngày sinh viên đó vào quán Internet cạnh trường để chơi Games, những ngày này xác suất về nhà muộn là 80\%. Còn lại những ngày khác sinh viên đó đi chơi với bạn bè có xác suất về muộn là 90\%. Tính xác suất để trong một ngày nào đó sinh viên không về muộn.

    Gọi B là biến cố sinh viên đó đi học về muộn

    \overline{B} là biến cố sinh viên đó đi học không về muộn

    E1 là biến cố tan học về nhà ngay = > P\left( E_{1} ight) = 0,6,P\left( B|E_{1}
ight) = 0,3

    E2 là biến cố tan học đi chơi game = > P\left( E_{2} ight) = 0,2,P\left( B|E_{2}
ight) = 0,8

    E3 là biến cố tan học về đi chơi với bạn = > P\left( E_{3} ight) = 0,2,P\left( B|E_{3}
ight) = 0,9

    B có thể xảy ra một trong 3 biến cố

    P(B) = P\left( E_{1} ight).P\left(
B|E_{1} ight) + P\left( E_{2} ight).P\left( B|E_{2} ight) +
P\left( E_{3} ight).P\left( B|E_{3} ight)

    = > P(B) = 0,52

    = > P\left( \overline{B} ight) = 1
- 0,52 = 0,48

  • Câu 22: Thông hiểu

    Trong hộp có 20 nắp chai Cocacola trong đó có 2 nắp ghi “Chúc mừng bạn đã trúng thưởng”. Bạn A được chọn lên rút thăm lần lượt hai nắp chai, xác suất để cả hai nắp đều trúng thưởng là:

    Gọi A là biến cố “nắp đầu trúng thưởng”

    Gọi B là biến cố “nắp thứ hai trúng thưởng”

    Ta đi tìm giá trị P(A \cap
B)

    Khi bạn rút thăm lần đầu thì trong hộp có 20 nắp trong đó có 2 nắp trúng do đó: P(A) = \frac{2}{20} =
\frac{1}{10}

    Khi biến cố A đã xảy ra thì còn lại 19 nắp trong đó có 1 nắp trúng thưởng, do đó: P\left( B|A ight) =
\frac{1}{19}

    Ta có:

    P\left( B|A ight) = \frac{P(A \cap
B)}{P(A)}

    \Rightarrow P(A \cap B) = P\left( B|A
ight).P(A) = \frac{1}{19}.\frac{1}{10} = \frac{1}{190}.

  • Câu 23: Nhận biết

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P\left(
\overline{A}B ight)?

    Ta có:

    P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

    \Rightarrow P\left( \overline{A}B
ight) = P(B) - P(AB) = \frac{5}{12}

  • Câu 24: Vận dụng

    Để phát hiện ra người nhiễm bệnh, người ta tiến hành xét nghiệm tất cả mọi người của nhóm người (trong đó 91\% người không nhiễm bệnh). Biết rằng đối với người nhiễm bệnh thì xác suất xét nghiệm có kết quả dương tính là 85\%, nhưng đối với người không nhiễm bệnh thì xác suất xét nghiệm có phản ứng dương tính là 7\%. Tính xác suất để người được chọn ra không nhiễm bệnh và không có phản ứng dương tính.

    Gọi A: “Người được chọn ra không nhiễm bệnh”.

    Và B: “Người được chọn ra có phản ứng dương tính”

    Theo bài ta có: P(A) = 0,91;P\left( B|A
ight) = 0,07;P\left( B|\overline{A} ight) = 0,85

    P\left( \overline{A} ight) = 1 - P(A)
= 0,09

     

    P\left( \overline{B}|\overline{A}
ight) = 1 - P\left( B|\overline{A} ight) = 1 - 0,85 =
0,15

    Ta có sơ đồ hình cây như sau:

    Vậy P\left( A\overline{B} ight) =
0,91.0,93 = 0,8463

  • Câu 25: Nhận biết

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P\left(
A\overline{B} ight)?

    Ta có:

    P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

    \Rightarrow P\left( A\overline{B}
ight) = P(A) - P(AB) = \frac{1}{4}

  • Câu 26: Vận dụng

    Bạn Bình đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để Bình hoàn thành câu dễ là 0,8; hoàn thành câu trung bình là 0,6 và hoàn thành câu khó là 0,15. Làm đúng mỗi một câu dễ bạn được 0,1 điểm, làm đúng mỗi câu trung bình bạn được 0,25 điểm và làm đúng mỗi câu khó bạn được 0,5điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?

    a) Xác suất để Bình làm ba câu thuộc ba loại và đúng cả ba câu là 72\%. Sai||Đúng

    b) Khi Bình làm 3 câu thuộc 3 loại khác nhau. Xác suất để bạn làm đúng 2 trong số 3 câu là 0,45. Sai||Đúng

    c) Khi Bình làm 3 câu thì xác suất để bạn làm đúng 3 câu đủ ba loại cao hơn xác suất Bình làm sai 3 câu ở mức độ trung bình. Đúng||Sai

    d) Xác suất để Bình làm 5 câu và đạt đúng 2 điểm lớn hơn 0,2\%. Sai||Đúng

    Đáp án là:

    Bạn Bình đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để Bình hoàn thành câu dễ là 0,8; hoàn thành câu trung bình là 0,6 và hoàn thành câu khó là 0,15. Làm đúng mỗi một câu dễ bạn được 0,1 điểm, làm đúng mỗi câu trung bình bạn được 0,25 điểm và làm đúng mỗi câu khó bạn được 0,5điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?

    a) Xác suất để Bình làm ba câu thuộc ba loại và đúng cả ba câu là 72\%. Sai||Đúng

    b) Khi Bình làm 3 câu thuộc 3 loại khác nhau. Xác suất để bạn làm đúng 2 trong số 3 câu là 0,45. Sai||Đúng

    c) Khi Bình làm 3 câu thì xác suất để bạn làm đúng 3 câu đủ ba loại cao hơn xác suất Bình làm sai 3 câu ở mức độ trung bình. Đúng||Sai

    d) Xác suất để Bình làm 5 câu và đạt đúng 2 điểm lớn hơn 0,2\%. Sai||Đúng

    Gọi A là biến cố Bình làm đúng câu dễ

    B là biến cố Bình làm đúng câu trung bình

    C là biến cố Bình làm đúng câu khó.

    Khi đó A, B, C độc lập với nhau.

    a) Xác suất để Bình làm ba câu thuộc ba loại trên và đúng cả ba câu là

    P = P(A).P(B).P(C) = 0,072 =
7,2\%.

    Khẳng định sai.

    b) Xác suất để Bình làm đúng 2 trong số 3 câu là

    P\left( \overline{A} ight).P(B).P(C) +
P(A).P\left( \overline{B} ight).P(C) + P(A).P(B).P\left( \overline{C}
ight)

    = 0,2.0,6.0,15 + 0,8.0,4.0,15 + 0,8.0,6.0,85 = 0,474

    Khẳng định sai.

    c) Xác suất để Bình làm đúng 3 câu đủ ba loại là:

    P = P(A).P(B).P(C) = 0,072 =
7,2\%

    Xác suất Bình làm sai 3 câu mức độ trung bình. (0,4)^{3} = 0,064.

    Khẳng định đúng.

    d) Để Bình làm 5 câu và đạt đúng 2 điểm có các trường hợp sau:

    TH1: Đúng 4 câu khó và câu còn lại sai

    (0,15)^{4}(0,2 + 0,4 + 0,85) =
7,34.10^{- 4}

    TH2: Đúng 3 câu khó và đúng 2 câu trung bình

    (0,15)^{3}.(0,6)^{2} = 1,215.10^{-
3}

    Vậy xác suất cần tìm là 0,1949\%

    Khẳng định sai.

  • Câu 27: Vận dụng cao

    Ba người thợ cùng may một loại áo với xác suất may được sản phẩm chất lượng cao tương ứng là 0,9; 0,9 ; 0,8. Biết một người khi may 8 áo thì có 6 sản phẩm chất lượng cao. Tìm xác suất để người đó may 8 áo nữa thì có 6 áo chất lượng cao?

    Áp dụng công thức xác suất đầy đủ

    P(A) = P\left( A_{1} ight)P\left( A
\mid A_{1} ight) + P\left( A_{2} ight)P\left( A \mid A_{2} ight) +
P\left( A_{3} ight)P\left( A \mid A_{3} ight)

    =
\frac{1}{3}.C_{8}^{6}{.0,9}^{6}.{0,1}^{2} +
\frac{1}{3}.C_{8}^{6}.{0,9}^{6}.{0,1}^{2} +
\frac{1}{3}.C_{8}^{6}.{0,8}^{6}.{0,2}^{2}\simeq 0,1971

    Gọi B là "trong 8 áo sau có 6 áo chất lượng cao". Vì trong không gian điều kiện A, hệ A_{i} vẫn là hệ đầy đủ.

    Áp dụng công thức xác suất toàn phần có

    P(B) = P\left( A_{1} \mid A
ight)P\left( B \mid A_{1}A ight) + P\left( A_{2} \mid A
ight)P\left( B \mid A_{2}A ight) + P\left( A_{3} \mid A
ight)P\left( B \mid A_{3}A ight)

    Ở đó:

    P\left( A_{1} \mid A ight) =\frac{P\left( A_{1} ight)P\left( A \mid A_{1} ight)}{P(A)} \simeq\dfrac{\dfrac{1}{3}.C_{8}^{6}.{0,9}^{6}.{0,1}^{2}}{0.1971} \simeq0,2516

    P\left( A_{2} \mid A ight) \simeq
0,2516,\ P\left( A_{3} \mid A ight) \simeq 0,4965

    Thay vào ta tính được

    P(A) \simeq
0,2516.C_{8}^{6}.{0,9}^{6}.{0.1}^{2} +
0.2516.C_{8}^{6}.{0,9}^{6}.{0,1}^{2}

    +
0,4965.C_{8}^{6}.{0,8}^{6}.{0,2}^{2}\simeq 0,2206

  • Câu 28: Thông hiểu

    Trong một kì thi tốt nghiệp trung học phổ thông, một tỉnh X có 80\% học sinh lựa chọn tổ hợp A00 (gồm các môn Toán, Vật lí, Hoá học). Biết rằng, nếu một học sinh chọn tổ hợp A00 thì xác suất để học sinh đó đỗ đại học là 0,6; còn nếu một học sinh không chọn tổ hợp A00 thì xác suất để học sinh đó đỗ đại học là 0,7. Chọn ngẫu nhiên một học sinh của tỉnh X đã tốt nghiệp trung học phổ thông trong kì thi trên. Biết rằng học sinh này đã đỗ đại học. Tính xác suất để học sinh đó chọn tổ hợp A00. (Kết quả làm tròn đến chữ số thập phân thứ 2).

    Gọi A: “Học sinh đó chọn tổ hợp A00”

    Và B: “Học sinh đó đỗ đại học”.

    Ta cần tính P\left( A|B
ight)

    Ta có: P(A) = 0,8 \Rightarrow P\left(
\overline{A} ight) = 1 - P(A) = 0,2

    P\left( B|A ight) là xác suất để một học sinh đỗ đại học với điều kiện học sinh đó chọn tổ hợp A00

    \Rightarrow P\left( B|A ight) =
0,6

    P\left( B|\overline{A} ight)là xác suất để một học sinh đỗ đại học với điều kiện học sinh đó không chọn tổ hợp A00

    \Rightarrow P\left( B|\overline{A}
ight) = 0,7

    Thay vào công thức Bayes ta được:

    P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight).P\left( B|\overline{A} ight)}

    \Rightarrow P\left( A|B ight) =
\frac{0,8.0,6}{0,8.0,6 + 0,2.0,7} \approx 0,77

  • Câu 29: Thông hiểu

    Tỉ lệ chính phẩm của máy thứ nhất là 99\%, của máy thứ hai là 98\%. Một lô sản phẩm gồm 40\% sản phẩm của máy thứ nhất và 60\% sản phẩm của máy thứ hai. Người ta lấy ngẫu nhiên ra một sản phẩm để kiếm tra thấy là sản phẩm tốt. Tìm xác suất để sản phẩm đó do máy thứ nhất sản xuất?

    Gọi A là biến cố “Sản phẩm kiểm tra là sản phẩm tốt”

    B1 là biến cố “Sản phẩm do máy thứ nhất sản xuất”.

    B2 là biến cố “Sản phẩm do máy thứ hai sản xuất”

    Do B_{1};B_{2} là họ đầy đủ các biến cố.

    Ta có: \left\{ \begin{matrix}
P\left( B_{1} ight) = 40\% = 0,4;P\left( B_{2} ight) = 60\% = 0,6 \\
P\left( A|B_{1} ight) = 99\% = 0,99;P\left( A|B_{2} ight) = 98\% =
0,98 \\
\end{matrix} ight.

    Áp dụng công thức Bayes ta có:

    P\left( B_{1}|A ight) = \frac{P\left(
B_{1} ight).P\left( A|B_{1} ight)}{P\left( B_{1} ight).P\left(
A|B_{1} ight) + P\left( B_{2} ight).P\left( A|B_{2}
ight)}

    \Rightarrow P\left( B_{1}|A ight) =
\frac{0,4.0,99}{0,4.0,99 + 0,6.0,98} = 0,4

  • Câu 30: Nhận biết

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,3;P(B) = 0,6;P\left( A|B ight) =
0,4 thì P\left( B|A
ight) bằng bao nhiêu?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,6.0,4}{0,3} = \frac{4}{5}

  • Câu 31: Nhận biết

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó công thức xác suất toàn phần tính P(A) là:

    Ta có công thức xác suất toàn phần tính P(A) là:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)

  • Câu 32: Thông hiểu

    Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10, nếu biết rằng có ít nhất một con đã ra mặt 5 chấm?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10, nếu biết rằng có ít nhất một con đã ra mặt 5 chấm?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 33: Nhận biết

    Cho hai biến cố A;B với P(B) = 0,6;P\left( A|B ight) = 0,7;P\left(
A|\overline{B} ight) = 0,4. Giá trị P(A) bằng:

    Ta có: P\left( \overline{B} ight) = 1 -
P(B) = 1 - 0,6 = 0,4

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,6.0,7 + 0,4.0,4 =
0,58

  • Câu 34: Vận dụng cao

    Ba khẩu pháo cùng bắn vào một mục tiêu với xác suất trúng đích của mỗi khẩu là 0,4;0,7;0,8. Biết rằng xác suất để mục tiêu bị tiêu diệt khi trúng một phát đạn là 30\%, khi trúng 2 phát đạn là 70\%, còn trúng 3 phát đạn thì chắc chắn mục tiêu bị tiêu diệt. Giả sử mỗi khẩu pháo bắn 1 phát. Tính xác suất để khẩu thứ 3 có đóng góp vào thành công đó?

    Gọi \ A_{i} : "Khẫu pháo thứ i bắn trúng" (i = 1,2,3)

    B_{k} : "Mục tiêu trúng k phát đạn" (k = 0,1,2,3)

    B : "Mục tiêu bị tiêu diệt".

    Ta có: \left\{ B_{k},k = 0,1,2,3
ight\} là một hệ đầy đủ các biến cố và

    B_{0} =
\overline{A_{1}}\overline{A_{2}}\overline{A_{3}},\ B_{1} =
A_{1}\overline{A_{2}}\overline{A_{3}} +
\overline{A_{1}}A_{2}\overline{A_{3}} +
\overline{A_{1}}\overline{A_{2}}A_{3}

    B_{2} = A_{1}A_{2}\overline{A_{3}} +
A_{1}\overline{A_{2}}A_{3} + \overline{A_{1}}A_{2}A_{3},\ B_{3} =
A_{1}A_{2}A_{3}

    Ta có các giả thiết sau:

    P\left( A_{1} ight) = 0,4;P\left(
A_{2} ight) = 0,7;P\left( A_{3} ight) = 0,8

    P\left( B \mid B_{0} ight) = 0,P\left(
B \mid B_{1} ight) = 0,3;P\left( B \mid B_{2} ight) = 0,7;P\left( B
\mid B_{3} ight) = 1

    Từ đó, ta tính được:

    P\left( B_{0} ight) = P\left(
\overline{A_{1}} ight)P\left( \overline{A_{2}} ight)P\left(
\overline{A_{3}} ight)

    = (0,6)(0,3)(0,2)

    = 0,036

    P\left( B_{1} ight) = P\left( A_{1}
ight)P\left( \overline{A_{2}} ight)P\left( \overline{A_{3}} ight)
+ P\left( \overline{A_{1}} ight)P\left( A_{2} ight)P\left(
\overline{A_{3}} ight) + P\left( \overline{A_{1}} ight)P\left(
\overline{A_{2}} ight)P\left( A_{3} ight)

    = (0,4)(0,3)(0,2) + (0,6)(0,7)(0,2) +
(0,6)(0,3)(0,8)

    = 0,252

    P\left( B_{2} ight) = P\left( A_{1}
ight)P\left( A_{2} ight)P\left( \overline{A_{3}} ight) + P\left(
A_{1} ight)P\left( \overline{A_{2}} ight)P\left( A_{3} ight) +
P\left( \overline{A_{1}} ight)P\left( A_{2} ight)P\left( A_{3}
ight)

    = (0,4)(0,7)(0,2) + (0,4)(0,3)(0,8) +
(0,6)(0,7)(0,8)

    = 0,488

    P\left( B_{3} ight) = P\left( A_{1}
ight)P\left( A_{2} ight)P\left( A_{3} ight)

    = (0,4)(0,7)(0,8)

    = 0,224

    Theo công thức xác suất đầy đủ ta có:

    P(B) = P\left( B \mid B_{0}
ight)P\left( B_{0} ight) + P\left( B \mid B_{1} ight)P\left( B_{1}
ight) + P\left( B \mid B_{2} ight)P\left( B_{2} ight) + P\left( B
\mid B_{3} ight)P\left( B_{3} ight)

    = 0.(0,036) + (0,3)(0,252) +
(0,7)(0,488) + 1.(0,224)

    = 0,6412

    Khi đó ta có:

    P\left( BA_{3} ight) = P\left\lbrack
BA_{3}\left( A_{1}A_{2} + \overline{A_{1}}A_{2} + A_{1}\overline{A_{2}}
+ \overline{A_{1}}\overline{A_{2}} ight) ightbrack

    = P\left( A_{1}A_{2}A_{3}B ight) +
P\left( \overline{A_{1}}A_{2}A_{3}B ight) + P\left(
A_{1}\overline{A_{2}}A_{3}B ight) + P\left(
\overline{A_{1}}\overline{A_{2}}A_{3}B ight)

    = P\left( B \mid A_{1}A_{2}A_{3}
ight)P\left( A_{1}A_{2}A_{3} ight) + P\left( B \mid
\overline{A_{1}}A_{2}A_{3} ight)P\left( \overline{A_{1}}A_{2}A_{3}
ight)

    + P\left( B \mid
A_{1}\overline{A_{2}}A_{3} ight)P\left( A_{1}\overline{A_{2}}A_{3}
ight) + P\left( B \mid \overline{A_{1}}\overline{A_{2}}A_{3}
ight)P\left( \overline{A_{1}}\overline{A_{2}}A_{3}
ight)

    = 1.(0,224) +
(0,7)\lbrack(0,6)(0,7)(0,8)brack +
(0,7)\lbrack(0,4)(0,3)(0,8)brack

    +
(0,3)\lbrack(0,6)(0,3)(0,8)brack

    = 0,5696

    Do đó

    P\left( A_{3} \mid B ight) =
\frac{P\left( BA_{3} ight)}{P(B)} = \frac{0,5696}{0,6412} =
0,8883

  • Câu 35: Thông hiểu

    Trong một kỳ thi, có 60\% học sinh đã làm đúng bài toán đầu tiên và 40\% học sinh đã làm đúng bài toán thứ hai. Biết rằng có 20\% học sinh làm đúng cả hai bài toán. Xác suất để một học sinh làm đúng bài toán thứ hai biết rằng học sinh đó đã làm đúng bài toán đầu tiên là bao nhiêu?

    Gọi biến cố A: "học sinh đã làm đúng bài toán đầu tiên"

    \Rightarrow P(A) =
60\% = 0,6

    Biến cố B: "học sinh đã làm đúng bài toán thứ hai”

    \Rightarrow P(B) = 40\% =
0,4

    Biến cố A \cap B: "học sinh làm đúng cả hai bài toán"

    \Rightarrow P(A \cap
B) = 20\% = 0,2

    Xác suất để một học sinh làm đúng bài toán thứ hai biết rằng học sinh đó đã làm đúng bài toán đầu tiên là:

    P\left( B|A ight) = \frac{P(A \cap
B)}{P(A)} = \frac{0,2}{0,6} = \frac{1}{3} \approx 0,333

  • Câu 36: Vận dụng

    Tung một con xúc sắc hai lần độc lập nhau. Biết rằng lần tung thứ nhất được số chấm chẵn. Tính xác suất tổng số chấm hai lần tung bằng 4?

    Gọi Ti: "Tổng số nốt hai lần tung bằng i" (i = 1, 6)

    Nj,k: "Số nốt trên lần tung thứ j bằng k" (j = 1, 2; k = 1, 6)

    Ta tìm

    P\left( T_{i}|N_{1,2} \cup N_{1,4} \cup N_{1,6} ight) = \frac{P\left( N_{1,2} \cup N_{2;2} ight)}{P\left(N_{1,2} \cup N_{1,4} \cup N_{1,6} ight)}= \dfrac{\left( \dfrac{1}{6}ight)^{2}}{\dfrac{1}{2}} = \dfrac{1}{18}

  • Câu 37: Nhận biết

    Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.

    Gọi A là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”.

    Gọi B là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.

    Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì P\left( B|A ight) = \frac{1}{6}.

  • Câu 38: Vận dụng

    Một người có 3 chỗ ưa thích như nhau để câu cua. Xác suất câu được cua ở mỗi chỗ lần lượt là 0,6;0,7;0,8. Biết rằng đến một chỗ người đó thả câu 3 lần và chỉ câu được một con cua. Tính xác suất để cá câu được ở chỗ thứ nhất?

    Gọi A1, A2, A3 lần lượt là "cá câu được ở chỗ thứ i" thì hệ A1, A2, A3 tạo thành hệ đầy đủ.

    Dễ thấy P\left( A_{1} ight) = P\left(
A_{2} ight) = P\left( A_{3} ight) = \frac{1}{3}

    Gọi H là "thả câu 3 lần và chỉ câu được 1 con cua".

    Theo công thức toàn phần, ta có:

    P(H) = P\left( A_{1} ight)P\left(
H|A_{1} ight) + P\left( A_{2} ight)P\left( H|A_{2} ight) + P\left(
A_{3} ight)P\left( H|A_{3} ight)

    Ở đó \left\{ \begin{matrix}
P\left( H|A_{1} ight) = 3.0,6^{1}.0,4^{2} \\
P\left( H|A_{2} ight) = 3.0,7^{1}.0,3^{2} \\
P\left( H|A_{3} ight) = 3.0,8^{1}.0,2^{2} \\
\end{matrix} ight.\  \Rightarrow P(H) = 0,191

    Theo công thức Bayes suy ra:

    P\left( A_{1}|H ight) = \frac{P\left(
A_{1} ight).P\left( H|A_{1} ight)}{P(H)} \approx 0,5026

  • Câu 39: Thông hiểu

    Có hai hộp đựng các viên bi cùng kích thước và khối lượng. Hộp thứ nhất chứa 5 viên bi đỏ và 5 viên bi xanh, hộp thứ hai chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy ngẫu nhiên một viên bi từ hộp thứ nhất chuyển sang hộp thứ hai, sau đó lấy ra ngẫu nhiên một viên bi từ hộp thứ hai. Gọi A là biến cố “Viên bị được lấy ra từ hộp thứ hai là bi đỏ”, B là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ”. Các khẳng định sau đúng hay sai?

    a) Xác suất của biến cố B là P(B) =
\frac{1}{2}.Đúng||Sai

    b) Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bị đỏ thì khi đó P\left( A|B ight) =
\frac{7}{11}. Đúng||Sai

    c) Gọi \overline{B}: “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh” thì P\left( A|\overline{B} ight) =
\frac{7}{11}. Sai||Đúng

    d) Xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là P(A) = \frac{13}{22}. Đúng||Sai

    Đáp án là:

    Có hai hộp đựng các viên bi cùng kích thước và khối lượng. Hộp thứ nhất chứa 5 viên bi đỏ và 5 viên bi xanh, hộp thứ hai chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy ngẫu nhiên một viên bi từ hộp thứ nhất chuyển sang hộp thứ hai, sau đó lấy ra ngẫu nhiên một viên bi từ hộp thứ hai. Gọi A là biến cố “Viên bị được lấy ra từ hộp thứ hai là bi đỏ”, B là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ”. Các khẳng định sau đúng hay sai?

    a) Xác suất của biến cố B là P(B) =
\frac{1}{2}.Đúng||Sai

    b) Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bị đỏ thì khi đó P\left( A|B ight) =
\frac{7}{11}. Đúng||Sai

    c) Gọi \overline{B}: “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh” thì P\left( A|\overline{B} ight) =
\frac{7}{11}. Sai||Đúng

    d) Xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là P(A) = \frac{13}{22}. Đúng||Sai

    a) Ta có: B là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ” nên P(B) =
\frac{5}{10} = \frac{1}{2}.

    b) Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bị đỏ thì sau khi chuyển, hộp thứ hai có 7 bi đỏ và 4 bi xanh nên P\left( A|B ight) = \frac{7}{11}.

    c) Gọi \overline{B}: “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh” Nếu viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh thì sau khi chuyển, hộp thứ hai có 6 bi đỏ và 5 bi xanh.

    Khi đó P\left( A|\overline{B} ight) =
\frac{6}{11}.

    d) Ta có: P\left( \overline{B} ight) =
1 - P(B) = 1 - \frac{1}{2} = 0,5

    Xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là: P(A)

    Áp dụng công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,5.\frac{7}{11} +
0,5.\frac{6}{11} = \frac{13}{22}.

  • Câu 40: Vận dụng cao

    Một hãng hàng không cho biết rằng 5\% số khách đặt trước vé cho các chuyến đã định sẽ hoãn không đi chuyến bay đó. Do đó hãng đã đưa ra một chính sách là sẽ bán 52 ghế cho một chuyến bay mà trong đó mỗi chuyến chỉ trở được 50 khách hàng. Tìm xác suất để tất cả các khách đặt chỗ trước và không hoãn chuyến bay đều có ghế. Biết rằng xác suất bán được 51 vé hoặc 52 vé là như nhau và bằng 10\%?

    Gọi A là "bán được 52 vé", B là "bán được 51 vé" và C là "bán được nhiều nhất 50 vé".

    Khi đó A, B, C tạo thành hệ đầy đủ.

    Ta có P(A) = 0,1; P(B) = 0,1; P(C) = 0,8

    Gọi H là "khách đặt chỗ trước và không hoãn chuyến đều có ghế".

    Biến cố H|A xảy ra nếu có ít nhất 2 khách hủy chuyến, H|B xảy ra nếu có ít nhất 1 khách hủy chuyến. Tính trực tiếp xác suất của các sự kiện này đều khá phức tạp.

    Do đó để cho đơn giản ta tìm P\left(\overline{H} ight).

    Ta có: \left\{ \begin{matrix}P\left( \overline{H}|A ight) = 0,95^{52}.0,05^{0} +52.0,95^{51}.0,05^{1} \\P\left( \overline{H}|B ight) = 0,95^{51}.0,05^{0} \\P\left( \overline{H}|C ight) = 0 \\\end{matrix} ight.

    Do đó:

    P\left( \overline{H} ight) =P(A).P\left( \overline{H}|A ight) + P(B).P\left( \overline{H}|Bight) + P(C).P\left( \overline{H}|C ight)

    \Rightarrow P\left( \overline{H} ight)= 0,1\left( 0,95^{52}.0,05^{0} + 52.0,95^{51}.0,05^{1} ight)+0,1.0,95^{51}.0,05^{0} + 0,8.0 \approx 0,033

    \Rightarrow P(H) = 1 - P\left(\overline{H} ight) \approx 0,9667 = 96,67\%

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Xác suất có điều kiện CTST Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 25 lượt xem
Sắp xếp theo