Cho tam thức bậc hai . Kết luận nào sau đây đúng?
Ta có:
Vậy khẳng định đúng là .
Cho tam thức bậc hai . Kết luận nào sau đây đúng?
Ta có:
Vậy khẳng định đúng là .
Cho tam thức f(x) = (a ≠ 0), có ∆ =
. Ta có f(x) ≤ 0, ∀x ∈ ℝ khi và chỉ khi:
Biểu thức f(x) ≤ 0, ∀x ∈ ℝ khi và chỉ khi:
Số nghiệm của phương trình là:
Đặt (t≥0).Phương trình trở thành:
Với t = 1 ta được .
Vậy phương trình có hai nghiệm.
Phương trình sau có bao nhiêu nghiệm ?
Điều kiện xác định: .
Với thay vào phương trình thỏa mãn. Vậy phương trình có một nghiệm.
Cho phương trình . Số nghiệm của phương trình này là:
ĐKXĐ: x > 2 khi đó phương trình trở thành .
Đối chiếu điều kiện suy ra phương trình có một nghiệm x = 4.
Tìm tập nghiệm của phương trình
Nhận xét: .
Do đó vô lí.
Vậy .
Phương trình: có bao nhiêu nghiệm?
Điều kiện:
Kết hợp với điều kiện ta được thỏa mãn
Vậy nghiệm của phương trình là
Với giá trị nào của m thì bất phương trình x2 − x + m ≤ 0 vô nghiệm?
Bất phương trình x2 − x + m ≤ 0 vô nghiệm khi và chỉ khi bất phương trình .
Tìm tất cả các giá trị của m để bất phương trình với mọi x ∈ ℝ
Để bất phương trình với mọi x ∈ ℝ thì:
Tìm tất cả các giá trị của tham số m để phương trình có hai nghiệm phân biệt lớn hơn
?
Phương trình
Phương trình (*) có hai nghiệm phân biệt lớn hơn 1 có hai nghiệm phân biệt lớn hơn 1.
Tam thức f(x) = x2 − 2x − 3 nhận giá trị dương khi và chỉ khi
Ta có:
Dựa vào bảng xét dấu, chọn đáp án x ∈ (−∞;−1) ∪ (3;+∞).
Cho các tam thức f(x) = 2x2 − 3x + 4; g(x) = − x2 + 3x − 4; h(x) = 4 − 3x2. Số tam thức đổi dấu trên ℝ là:
Tam thức đổi dấu khi tam thức có 2 nghiệm phân biệt hay Δ > 0.Vậy chỉ có h(x) = 4 − 3x2 có 2 nghiệm.
Biết phương trình có nghiệm duy nhất là
. Hãy chọn khẳng định đúng.
ĐK
.
Tập nghiệm của phương trình là:
Xét phương trình: (1)
Điều kiện :
Thay x = 8 ta thấy (1) thoả mãn. Vậy, phương trình (1) có tập nghiệm là S = {8}.
Các giá trị m để tam thức f(x) = x2– (m + 2)x + 8m + 1 đổi dấu 2 lần là
Tam thức đổi dấu 2 lần khi tam thức có 2 nghiệm pb
⇔ Δ > 0 ⇔ m2 − 28m > 0 ⇔ m < 0 ∨ m > 28.
Tổng tất cả các nghiệm của phương trình bằng:
.
Phương trình chỉ có nghiệm nên tổng các nghiệm bằng
.
Tam thức bậc hai f(x) = − x2 + 5x − 6 nhận giá trị dương khi và chỉ khi
Dựa vào bảng xét dấu, ta chọn đáp án x ∈ (2;3).
Tam thức nào sau đây nhận giá trị không âm với mọi x ∈ ℝ?
*x2 − x − 5 = 0 có 2 nghiệm phân biệt
* − x2 − x − 1 = 0vô nghiệm, a = − 1 < 0 nên − x2 − x − 1 < 0, ∀x ∈ ℝ
*2x2 + x = 0 có 2 nghiệm phân biệt
*x2 + x + 1 = 0 vô nghiệm, a = 1 > 0 nên x2 + x + 1 > 0, ∀x ∈ ℝ thỏa ycbt.
Tam thức nào sau đây nhận giá trị âm với x < 2
Bảng xét dấu của − x2 + 5x − 6
Cho tam thức bậc hai f(x) = x2 − 4x + 4. Hỏi khẳng định nào sau đây là đúng?
Ta có: f(x) = x2 − 4x + 4 = 0 ⇔ x = 2
Dựa vào bảng xét dấu, chọn đáp án f(x) > 0, ∀x ∈ ℝ.
Phương trình có mấy nghiệm nguyên dương ?
Đặt . Ta có hệ phương trình:
Vậy phương trình có 2 nghiệm x = 2 và x = 3.
Đâu là tập nghiệm của phương trình ?
.
Vậy tập nghiệm của phương trình là .
Số nghiệm của phương trình
Điều kiện
Phương trình tương đương:
Do
Vậy phương trình vô nghiệm.
Cho f(x) = x2 − 4x + 3. Trong các mệnh đề sau, mệnh đề đúng là:
Dựa vào bảng xét dấu thì f(x) ≤ 0, ∀x ∈ [ 1; 3 ].
Bất phương trình nào sau đây là bất phương trình bậc hai một ẩn?
Bất phương trình bậc hai một ẩn là:
Tất cả các giá trị của tham số m để các nghiệm của phương trình cũng là nghiệm của phương trình x2 − 2mx − m2 − 2 = 0 (2) là:
Do đó, để mọi nghiệm của (1) cũng là nghiệm của (2) điều kiện là x = 3 cũng là nghiệm của (2), tức là: .
Tất cả các giá trị của tham số m để phương trình có nghiệm là:
ĐKXĐ: x ≥ 1 .
Chia cả hai vế cho ta có
Đặt
Phương trình trở thành − 3t2 + 2t = m (*)
Xét hàm số y = − 3t2 + 2t trên [0; 1) , ta có ,
Bảng biến thiên
Phương trình ban đầu có nghiệm ⇔ phương trình (*) có nghiệm t∈ [0; 1)
⇔ đồ thị hàm số y = − 3t2 + 2t trên [0; 1) cắt đường thẳng
Vậy phương trình ban đầu có nghiệm khi và chỉ khi .
Số nghiệm của phương trình là bao nhiêu?
Điều kiện: .
.
Đặt ,
.
.
Vậy phương trình đã cho có hai nghiệm.
Tập nghiệm của phương trình
là:
Ta có: .
Thử lại thấy không thỏa mãn.
Vậy .
Tìm tất cả các giá trị thực của tham số m để bất phương trình (2m2−3m−2)x2 + 2(m−2)x − 1 ≤ 0 có tập nghiệm là ℝ.
Xét hoặc m = 2
• Khi thì bất phương trình trở thành
nên không có nghiệm đúng với mọi x.
• Khi m = 2 thì bất phương trình trở thành − 1 ≤ 0 nên có nghiệm đúng với mọi x.
• Khi thì yêu cầu bài toán
⇔ (2m2−3m−2)x2 + 2(m−2)x − 1 ≤ 0 ∀x ∈ ℝ
Kết hợp hai trường hợp ta được là giá trị cần tìm.
Số nghiệm của phương trình là:
ĐK: x ∈ [5; 7]
Đặt t = x − 6 , t ∈ [ − 1; 1].
Phương trình trở thành .
Ta có VT(*) ≤ 4, VP(*) ≥ 4 nên (*) ⇔ VT(*) = VP(*) = 4 ⇔ t = 0 ⇒ x = 6(TM).
Vậy phương trình có một nghiệm.
Biết phương trình có một nghiệm có dạng
, trong đó a, b, c là các số nguyên tố. Tính S = a + b + c.
Điều kiện:
Với điều kiện trên, phương trình tương đương
⇔ x2 − 3x + 1 = 0
hoặc
Theo yêu cầu đề bài ta chọn nghiệm .
Vậy a = 3, b = 5, c = 2 nên S = a + b + c = 10.
Số nghiệm thực của phương trình là
ĐK: ,
.
Tam thức bậc hai f(x) = − x2 − 1 nhận giá trị âm khi và chỉ khi
f(x) = − x2 − 1 = 0 vô nghiệm
Dựa vào bảng xét dấu, ta chọn đáp án x ∈ ℝ.
Phương trình (m−1)x2 − 2x + m + 1 = 0 có hai nghiệm phân biệt khi
Yêu cầu bài toán
Vậy phương trình có hai nghiệm phân biệt
Tìm tất cả các giá trị thực của tham số m sao cho phương trình (m−2)x2 − 2mx + m + 3 = 0 có hai nghiệm dương phân biệt.
Yêu cầu bài toán
.
Tính tổng tất cả các nghiệm của phương trình ?
Ta có:
Vậy tổng các nghiệm của phương trình bằng .
Phương trình có bao nhiêu nghiệm
Đkxđ: .
.
Vậy phương trình có hai nghiệm.
Số nghiệm của phương trình là:
.
Vậy phương trình vô nghiệm.
Tam thức bậc hai .
Ta có .
Bảng xét dấu
Dựa vào bảng xét dấu .