Biết phương trình
có hai nghiệm x1, x2 (x1<x2) . Khẳng định nào sau đây là đúng?
Đặt t = x2 − 3x + 3, ta có: .
Do đó điều kiện cho ẩn phụ t là .
Khi đó phương trình trở thành:
⇔
⇔
⇔ t = 1(thỏa mãn)
⇒ x2 − 3x + 3 = 1⇔ .
Biết phương trình
có hai nghiệm x1, x2 (x1<x2) . Khẳng định nào sau đây là đúng?
Đặt t = x2 − 3x + 3, ta có: .
Do đó điều kiện cho ẩn phụ t là .
Khi đó phương trình trở thành:
⇔
⇔
⇔ t = 1(thỏa mãn)
⇒ x2 − 3x + 3 = 1⇔ .
Cho bất phương trình
. Trong các tập hợp sau đây, tập nào có chứa phần tử không phải là nghiệm của bất phương trình.
Ta có: . Suy ra
.
Nhận xét: không thuộc
.
Tam thức bậc hai f(x) = 4x2 − 12x + 9 nhận giá trị âm khi và chỉ khi
Chọn Ta có:

Dựa vào bảng xét dấu thì ta thấy không có giá trị x nào để f(x) < 0.
Nghiệm của phương trình
là:
Điều kiện: .
Ta có: .
Loại . Do đó
.
Tam thức bậc hai
nhận giá trị dương khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp án
Tất cả các giá trị của tham số m để các nghiệm của phương trình
cũng là nghiệm của phương trình x2 − 2mx − m2 − 2 = 0 (2) là:
Do đó, để mọi nghiệm của (1) cũng là nghiệm của (2) điều kiện là x = 3 cũng là nghiệm của (2), tức là: .
Cho f(x) = − 2x2 + (m+2)x + m − 4. Tìm m để f(x) âm với mọi a, b, c > 0.
Ta có
.
Tìm tập xác định D của hàm số ![]()
Điều kiện .
Vậy tập xác định của hàm số là .
Tìm m để f(x) = x2 − 2(2m−3)x + 4m − 3 > 0, ∀x ∈ ℝ?
f(x) = x2 − 2(2m−3)x + 4m − 3 > 0, ∀x ∈ ℝ⇔Δ < 0 ⇔ 4m2 − 16m + 12 < 0 ⇔ 1 < m < 3.
Tìm các giá trị của m để biểu thức sau luôn âm: f(x) = mx2 − x − 1.
Với m = 0 thì f(x) = − x − 1 lấy cả giá trị dương (chẳng hạn f(−2) = 1) nên m = 0 không thỏa mãn yêu cầu bài toán
Với m ≠ 0 thì f(x) = mx2 − x − 1 là tam thức bậc hai do đó
Vậy với thì biểu thức f(x) luôn âm.
Tìm tất cả các giá trị thực của tham số m để bất phương trình (2m2−3m−2)x2 + 2(m−2)x − 1 ≤ 0 có tập nghiệm là ℝ.
Xét hoặc m = 2
• Khi thì bất phương trình trở thành
nên không có nghiệm đúng với mọi x.
• Khi m = 2 thì bất phương trình trở thành − 1 ≤ 0 nên có nghiệm đúng với mọi x.
• Khi thì yêu cầu bài toán
⇔ (2m2−3m−2)x2 + 2(m−2)x − 1 ≤ 0 ∀x ∈ ℝ
Kết hợp hai trường hợp ta được là giá trị cần tìm.
Nghiệm của phương trình
là:
Ta có: .
Thử lại thấy không thỏa mãn. Do đó
.
Tập tất cả các giá trị của tham số m để phương trình
có nghiệm thực là
* Với m < 2 ⇒ phương trình vô nghiệm
* Với m ≥ 2,
.
Phương trình có nghiệm Δ′ = 2(m−1)2 + 1 > 0 đúng mọi m.
Vậy m ≥ 2 là những giá trị cần tìm hay m thuộc [2; + ∞).
Số nghiệm nguyên dương của phương trình
là
.
Vậy phương trình có một nghiệm nguyên dương.
Cho tam thức bậc hai
. Kết luận nào sau đây đúng?
Ta có:
Vậy khẳng định đúng là .
Tìm tất cả các giá trị của tham số m để phương trình
có hai nghiệm phân biệt lớn hơn
?
Phương trình
Phương trình (*) có hai nghiệm phân biệt lớn hơn 1 có hai nghiệm phân biệt lớn hơn 1.
Phương trình
có tất cả bao nhiêu nghiệm?
Điều kiện: .
Ta có: .
Loại . Do đó phương trình có 1 nghiệm.
Giải bất phương trình ![]()
Ta có: .
Phương trình
có bao nhiêu nghiệm?
ĐKXĐ: .
Thay x = 1 vào , ta được:
.
Vậy phương trình vô nghiệm.
Tổng các nghiệm của phương trình
là:
Đặt . Phương trình trở thành:
t3 − 2t + 4 = 0 ⇔ (t+2)(t2−2t+2) = 0 ⇔ t = − 2
Ta được
.
Tổng các nghiệm của phương trình là − 5.
Số giá trị nguyên của
để tam thức
nhận giá trị âm là:
Ta có: và
.
Phương trình có hai nghiệm
.
Do đó (5 giá trị).
Phương trình
có nghiệm là:
Điều kiện:
Phương trình tương đương:
Kết hợp với điều kiện ra được: thỏa mãn điều kiện
Vậy phương trình có nghiệm
Tập nghiệm của phương trình:
là:
Điều kiện: =>
Phương trình tương đương
Ta có:
Vậy tập nghiệm của phương trình là:
Số nghiệm của phương trình
là:
Ta thấy không là nghiệm của phương trình
Xét , phương trình đã cho
Đến đây, chú ý
Nên phương trình có nghiệm phải thỏa mãn
Do đó phương trình đã cho
Nhưng x = − 1 không thoả mãn nên phương trình có nghiệm x = 1
* TH2:
(thỏa mãn)
Vậy phương trình có nghiệm duy nhất x = 1.
Tam thức f(x) = − 2x2 + (m−2)x − m + 4 không dương với mọi x khi:
.
Tổng các nghiệm của phương trình
là :
Ta có
Phương trình có nghiệm là và
.
Vậy tổng các nghiệm của phương trình là .
Tam thức f(x) = x2 − 2x − 3 nhận giá trị dương khi và chỉ khi
Ta có:

Dựa vào bảng xét dấu, chọn đáp án x ∈ (−∞;−1) ∪ (3;+∞).
Tam thức bậc hai
.
Ta có .
Bảng xét dấu

Dựa vào bảng xét dấu .
Số nghiệm của phương trình
là bao nhiêu?
.
Vậy phương trình có hai nghiệm.
Số nghiệm của phương trình
là:
.
Vậy phương trình có 1 nghiệm.
Số nghiệm của phương trình
là:
Xét phương trình:
Điều kiện:
Vậy phương trình vô nghiệm.
Cho f(x) = x2 − 4x + 3. Trong các mệnh đề sau, mệnh đề đúng là:

Dựa vào bảng xét dấu thì f(x) ≤ 0, ∀x ∈ [ 1; 3 ].
Tam thức bậc hai f(x) = − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp ánx ∈ [1; 2] .
Cho tam thức bậc hai f(x) = 5x − x2 − 6. Tìm x để f(x) ≥ 0.

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ [2; 3].
Tìm tập nghiệm của phương trình ![]()
Nhận xét: .
Do đó vô lí.
Vậy .
Tìm m để g(x) = (2m2+m−6)x2 + (2m−3)x − 1 không dương.
Xét
+) (không thỏa mãn yêu cầu bài toán)
+) (không thỏa mãn)
Xét
Tổng các bình phương của các nghiệm của phương trình
bằng bao nhiêu?
Ta có
.
Tổng các bình phương của các nghiệm của phương trình là .
Phương trình
có mấy nghiệm nguyên ?
Đặt . Ta có hệ phương trình:
Với t = − x ta được
Với t = x − 1 ta được
Vậy phương trình có 2 nghiệm x = − 2 và .
Tam thức bậc hai f(x) = − x2 + 5x − 6 nhận giá trị dương khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp án x ∈ (2;3).
Tìm khẳng định đúng trong các khẳng định sau?
Tam thức bậc 2 là biểu thức f(x) có dạng ax2+ bx + c (a≠0).
f(x) = 3x2 − 5 là tam thức bậc 2 với a = 3, b = 0, c = − 5.