Số nghiệm của phương trình là:
.
Vậy phương trình có 1 nghiệm.
Số nghiệm của phương trình là:
.
Vậy phương trình có 1 nghiệm.
Số nghiệm của phương trình là:
Đặt (t≥0).Phương trình trở thành:
Với t = 1 ta được .
Vậy phương trình có hai nghiệm.
Cho bất phương trình (1). Tìm tất cả các giá trị thực của tham số m để bất phương trình (1) vô nghiệm.
Để thì
nghiệm đúng với
.
Nghĩa là:
Tổng các nghiệm của phương trình bằng:
.
Vậy, tổng các nghiệm của phương trình là .
Bất phương trình nào sau đây là bất phương trình bậc hai một ẩn?
Bất phương trình bậc hai một ẩn là:
Cho các tam thức f(x) = 2x2 − 3x + 4; g(x) = − x2 + 3x − 4; h(x) = 4 − 3x2. Số tam thức đổi dấu trên ℝ là:
Tam thức đổi dấu khi tam thức có 2 nghiệm phân biệt hay Δ > 0.Vậy chỉ có h(x) = 4 − 3x2 có 2 nghiệm.
Cặp bất phương trình nào sau đây là tương đương?
Ta có: .
Ta có: (Vì
với mọi giá trị
). Do đó
.
Nghiệm của bất phương trình có
Bảng xét dấu
Suy ra
.
Vậy nghiệm của bất phương trình có 3 khoảng.
Tìm các giá trị của m để biểu thức sau luôn âm: f(x) = mx2 − x − 1.
Với m = 0 thì f(x) = − x − 1 lấy cả giá trị dương (chẳng hạn f(−2) = 1) nên m = 0 không thỏa mãn yêu cầu bài toán
Với m ≠ 0 thì f(x) = mx2 − x − 1 là tam thức bậc hai do đó
Vậy với thì biểu thức f(x) luôn âm.
Tất cả các giá trị của tham số m để các nghiệm của phương trình cũng là nghiệm của phương trình x2 − 2mx − m2 − 2 = 0 (2) là:
Do đó, để mọi nghiệm của (1) cũng là nghiệm của (2) điều kiện là x = 3 cũng là nghiệm của (2), tức là: .
Tam thức bậc hai f(x) = 2x2 + 2x + 5 nhận giá trị dương khi và chỉ khi
f(x) = 2x2 + 2x + 5 = 0 có: nên f(x) > 0∀x ∈ ℝ.
Tất cả các giá trị của tham số m để phương trình có nghiệm là:
ĐKXĐ: x > − 1
pt ⇔ 3mx + 1 + x + 1 = 2x + 5m + 3 ⇔ (3m−1)x = 5m + 1.
Phương trình đã cho có nghiệm .
Nghiệm của phương trình là:
Điều kiện: .
Ta có: .
Loại . Do đó
.
Tập nghiệm của phương trình ?
Ta có:
Vậy tập nghiệm phương trình là:
Cho phương trình (
là tham số). Tìm
để phương trình vô nghiệm.
Đặt . Khi đó ta có phương trình:
. (1)
Với thì
(Loại)
Với để phương trình ban đầu vô nghiệm thì:
TH1: (1) vô nghiệm .
TH2: (1) có 2 nghiệm âm
Kết hợp 2 trường hợp, ta được .
Với giá trị nào của tham số a thì phương trình: có đúng hai nghiệm phân biệt.
.
Phương trình có hai nghiệm phân biệt ⇔ 1 ≤ a < 4.
Cho tam thức bậc hai . Tìm tất cả các giá trị thực của tham số m để bất phương trình
vô nghiệm?
Bất phương trình: vô nghiệm khi và chỉ khi
Xét
Với thì (*)
loại giá trị
.
Với thì bất phương trình (*)
bất phương trình vô nghiệm, nhận giá trị
.
Xét
Vậy thì bất phương trình (*) vô nghiệm.
Tìm khẳng định đúng trong các khẳng định sau?
Tam thức bậc 2 là biểu thức f(x) có dạng ax2+ bx + c (a≠0).
f(x) = 3x2 − 5 là tam thức bậc 2 với a = 3, b = 0, c = − 5.
Phương trình có mấy nghiệm nguyên ?
Đặt . Phương trình đã cho trở thành:
Vậy phương trình có 0 nghiệm nguyên.
Giải bất phương trình
Ta có bảng xét dấu như sau:
Vậy tập nghiệm của bất phương trình là:
Tính tổng bình phương các nghiệm của phương trình: là:
ĐK x ∈ [ − 2; 5] Đặt ,t ≥ 0.
Phương trình trở thành
⇒ x12 + x22 = 11.
Nghiệm của phương trình: là bao nhiêu?
Điều kiện: .
Thay vào phương trình ta được
hay
là nghiệm của phương trình.
Phương trình có nghiệm là bao nhiêu?
.
Vậy phương trình vô nghiệm.
Số nghiệm của phương trình là bao nhiêu?
Xét phương trình:
Điều kiện: .
Vậy phương trình vô nghiệm.
Tập nghiệm của bất phương trình: là:
Ta có: .
Vậy .
Phương trình: có bao nhiêu nghiệm?
Điều kiện:
Kết hợp với điều kiện ta được thỏa mãn
Vậy nghiệm của phương trình là
Số nghiệm của phương trình là bao nhiêu?
.
Vậy phương trình có hai nghiệm.
Cho hàm số . Giá trị của m để f(x) < 0, ∀x ∈ ℝ.
Để với
Cho hàm số . Tìm tất cả các giá trị thực của tham số m để hàm số đã cho có tập xác định
?
Hàm số có tập xác định khi và chỉ khi
Xét thì
, loại giá trị
Xét ta có:
Vậy
Tập nghiệm S của bất phương trình là:
Ta có: .
Suy ra .
Cho tam thức . Tìm m để f(x) ≥ 0 với mọi x ∈ ℝ.
Để f(x) ≥ 0 với mọi x ∈ ℝ
Cho f(x) = x2 − 4x + 3. Trong các mệnh đề sau, mệnh đề đúng là:
Dựa vào bảng xét dấu thì f(x) ≤ 0, ∀x ∈ [ 1; 3 ].
Biết phương trình có hai nghiệm x1, x2 (x1<x2) . Khẳng định nào sau đây là đúng?
Đặt t = x2 − 3x + 3, ta có: .
Do đó điều kiện cho ẩn phụ t là .
Khi đó phương trình trở thành:
⇔
⇔
⇔ t = 1(thỏa mãn)
⇒ x2 − 3x + 3 = 1⇔ .
Tam thức bậc hai f(x) = − x2 − 1 nhận giá trị âm khi và chỉ khi
f(x) = − x2 − 1 = 0 vô nghiệm
Dựa vào bảng xét dấu, ta chọn đáp án x ∈ ℝ.
Phương trình có bao nhiêu nghiệm?
Điều kiện xác định của phương trình là x ≥ − 3.
Phương trình tương đương với .
Vậy phương trình có hai nghiệm.
Số giá trị nguyên của x để tam thức f(x) = 2x2 − 7x − 9 nhận giá trị âm là
Dựa vào bảng xét dấu, .
Mà x ∈ ℤ⇒ x ∈ {0;1;2;3;4} (5 giá trị).
Tam thức bậc hai
Dựa vào bảng xét dấu, ta chọn đáp án Dương với mọi .
Cho tam thức bậc hai . Kết luận nào sau đây đúng?
Ta có:
Vậy khẳng định đúng là .
Biết phương trình có nghiệm duy nhất là
. Hãy chọn khẳng định đúng.
ĐK
.
Cho tam thức bậc hai f(x) = x2 − 4x + 4. Hỏi khẳng định nào sau đây là đúng?
Ta có: f(x) = x2 − 4x + 4 = 0 ⇔ x = 2
Dựa vào bảng xét dấu, chọn đáp án f(x) > 0, ∀x ∈ ℝ.