Tìm phương trình chính tắc của Hyperbol (H). Cho biết (H) đi qua điểm
và có một đường chuẩn là
.
Gọi .
Ta có : Suy ra phương trình chính tắc của (H) là
Tìm phương trình chính tắc của Hyperbol (H). Cho biết (H) đi qua điểm
và có một đường chuẩn là
.
Gọi .
Ta có : Suy ra phương trình chính tắc của (H) là
Phương trình đường tròn
có tâm và bán kính lần lượt là:
Ta có:
Vậy phương trình đã cho tâm và bán kính lần lượt là: .
Cho hai đường thẳng
và
với
. Nếu
vô nghiệm thì vị trí tương đối của hai đường thẳng là:
Số giao điểm của hai đường thẳng đã cho là nghiệm của hệ phương trình .
Nếu hệ phương trình trên vô nghiệm thì hai đường thẳng không có điểm chung, nghĩa là hai đường thẳng song song với nhau.
Tọa độ tâm
và bán kính
của đường tròn
là:
Ta có:
Cho phương trình Hypebol
. Độ dài trục thực của Hypebol đó là
Ta có: ta có: a = 4; b = 3
=> Độ dài trục thực của Hypebol đó là 2a = 8
Trong mặt phẳng
cho điểm
và đường thẳng
. Tính khoảng cách từ điểm A đến đường thẳng (d).
Khoảng cách từ điểm A đến đường thẳng (d) là:
Vậy khoảng cách cần tìm bằng 8.
Đường thẳng
đi qua điểm nào sau đây?
Đặt
Chọn
Cho đường thẳng
và
. Tính cosin góc tạo bởi giữa hai đường thẳng trên.
.
Tọa độ tâm
và bán kính
của đường tròn
là:
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng
?
Vectơ chỉ phương của đường thẳng trên là: .
Tìm tất cả các giá trị của
để hai đường thẳng
và
cắt nhau.
Chọn đáp án này với mọi
.
Trong mặt phẳng tọa độ Oxy, cho tam giác
có tọa độ các đỉnh
. Viết phương trình đường cao
của tam giác
?
Ta có: nên đường cao AH là một vectơ pháp tuyến là
Phương trình đường cao là:
.
Vậy đường thẳng cần tìm có phương trình .
Phương trình tham số của đường thẳng
đi qua hai điểm
và
là:
Phương trình tham số của đường thẳng AB đi qua điểm và nhận
làm vectơ chỉ phương.
Vậy phương trình cần tìm là: .
Cho phương trình
. Điều kiện để
là phương trình đường tròn là:
Điều kiện để là phương trình đường tròn là
.
Cho elip (E):
. Nếu điểm M nằm trên (E) có hoành độ bằng –13 thì độ dài
và
lần lượt là:
Phương trình elip (E) có dạng
Ta có:
Khi đó:
Với ta có:
Tương tự ta có:
Theo bài ra ta có:
Trong mặt phẳng với hệ trục tọa độ
, cho hai đường thẳng
và
. Gọi điểm
sao cho
và
. Tính giá trị biểu thức
?
Gọi
Khi đó:
Với
Với
Dạng chính tắc của hypebol là
Dạng chính tắc của hypebol là .
Góc tạo bởi hai đường thẳng nào dưới đây bằng 90°.
Xét hai đường thẳng và
.
Ta có: .
Mà nên suy ra hai đường thẳng vuông góc với nhau.
Trong mặt phẳng hệ tọa độ
, cho đường tròn
. Viết phương trình tiếp tuyến của đường tròn
, biết rằng tiếp tuyến đó song song với đường thẳng
?
Ta có: Phương trình đường tròn có tâm và bán kính
Gọi d là đường thẳng song song với đường thẳng khi đó:
Đường thẳng d là tiếp tuyến của đường tròn khi và chỉ khi
Vậy có hai tiếp tuyến của đường tròn thỏa mãn yêu cầu bài toán là:
Cho đường thẳng
. Đường thẳng nào sau đây vuông góc với đường thẳng
?
Đường thẳng vuông góc với đường thẳng
vì
.
Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng
và hai điểm
. Tìm tất cả các giá trị của tham số
để
và
nằm cùng phía đối với
.
Ta có: .
Để A, B nằm cùng phía đối với thì:
Trong mặt phẳng Oxy, điểm
nằm trên đường tròn
sao cho độ dài đoạn thẳng OM là ngắn nhất. Hoành độ điểm
là:
Đường tròn có tâm
và bán kính
.
Phương trình đường thẳng OI đi qua và nhận
làm VTCP là:
.
Ta có:
Để OM ngắn nhất
Dấu bằng xảy ra .
Cho tọa độ hai điểm
. Viết phương trình chính tắc của elip có tâm là gốc tọa độ và đi qua hai điểm
?
Gọi phương trình chính tắc của elip là:
Do elip đi qua hai điểm nên ta có hệ phương trình:
Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là:
Trong mặt phẳng với hệ tọa độ
, cho đường thẳng
và hai điểm
,
. Tìm
để
cắt đoạn thẳng
.
Đoạn thẳng
cắt
khi và chỉ khi
Cho đường tròn
và đường thẳng
. Tìm phương trình tiếp tuyến của
song song với đường thẳng
?
Ta có: Phương trình đường tròn (C) có tâm I(2; 3) bán kính R = 5
Phương trình đường thẳng song song với d có dạng
tiếp xúc với
nên
Hay
Vậy phương trình tiếp tuyến của song song với
là:
hoặc
.
Tìm phương trình chính tắc của elip có tiêu cự bằng
và trục lớn bằng
.
Phương trình chính tắc của elip:
Độ dài trục lớn .
Tiêu cự .
Ta có:
Vậy phương trình chính tắc của elip là .
Đường trung trực của đoạn thẳng
với
,
có một vectơ pháp tuyến là:
Gọi là trung trực đoạn AB, ta có:
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây đúng?
Khẳng định đúng là: Với
, tâm sai của hypebol là
.
Phương trình tổng quát của đường thẳng đi qua hai điểm A(2; –1) và B(2; 5) là:
.
Quan sát các đáp án. Suy ra phương trình tổng quát của AB là: .
Trong các phương trình sau, phương trình nào không phải là phương trình của đường tròn?
Xét đáp án
Chọn đáp án này.
Các đáp án còn lại các hệ số thỏa mãn
Nếu ba đường thẳng
,
và
đồng quy thì
nhận giá trị nào trong các giá trị sau?
Trong mặt phẳng tọa độ
, cho đường thẳng
có phương trình
. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng đã cho?
Một vectơ pháp tuyến của đường thẳng là:
.
Đường tròn
đi qua điểm
và tiếp xúc với đường thẳng
tại
. Phương trình của đường tròn
là:
Tâm I của đường tròn nằm trên đường thẳng qua M vuông góc với là:
Ta có:
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Điều kiện để phương trình là phương trình của một đường tròn là:
Kiểm tra các đáp án ta được kết quả đúng là:
Cho Parabol
có phương trình
. Tìm đường chuẩn của
.
Từ phương trình của , ta có:
nên
.
Suy ra có tiêu điểm là
và đường chuẩn là
.
Biết điểm
. Giả sử
thì khoảng cách từ điểm
đến các tiêu điểm của
bằng bao nhiêu?
Ta có: và
Có hai điểm M thỏa mãn là:
Tiêu điểm của là:
Vậy đáp án cần tìm là: và
.
Trong mặt phẳng với hệ tọa độ
, cho đường thẳng
và hai điểm
,
không thuộc
. Chọn khẳng định đúng trong các khẳng định sau:
cùng phía so với
thì
và
luôn cùng dấu.
Chọn cùng phía so với
khi
Dạng chính tắc của parabol là?
Dạng chính tắc của Parabol: .
Phương trình tham số của đường thẳng nào sau đây có vectơ chỉ phương ![]()
Đường thẳng có phương trình tham số có vectơ chỉ phương là
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Đường tròn
đi qua hai điểm
và có tâm
thuộc đường thẳng
Phương trình của đường tròn
là:
Ta có:
Vậy đường tròn cần tìm là: