Đường tròn đi qua hai điểm
và tiếp xúc với đường thẳng
. Viết phương trình đường tròn
, biết tâm của
có hoành độ nhỏ hơn
đoạn AB có trung điểm
trung trực của đoạn AB là
Ta có
Vậy phương trình đường tròn là:
Đường tròn đi qua hai điểm
và tiếp xúc với đường thẳng
. Viết phương trình đường tròn
, biết tâm của
có hoành độ nhỏ hơn
đoạn AB có trung điểm
trung trực của đoạn AB là
Ta có
Vậy phương trình đường tròn là:
Tọa độ tâm và bán kính
của đường tròn
là:
Cho ba đường thẳng ,
,
. Phương trình đường thẳng
đi qua giao điểm của
và
, và song song với
là:
Ta có:
Vậy
Tìm phương trình chính tắc của Parabol biết khoảng cách từ tiêu điểm
đến đường thẳng
là
.
Ta có tọa độ tiêu điểm .
Khoảng cách từ đến đường thẳng
là
nên:
.
Vậy phương trình của là:
hoặc
.
Trong mặt phẳng hệ trục tọa độ cho các tọa độ các điểm
và
. Xác định tọa độ điểm
sao cho
là trọng tâm tam giác
?
Xét tam giác ABD có G là trọng tâm khi đó ta có:
Vậy tọa độ điểm .
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x + 3y + 5 = 0 và A(1; –3). Khoảng cách từ điểm A đến đường thẳng d là:
Ta có: .
Cho phương trình . Tìm điều kiện của
để
là phương trình đường tròn.
Ta có:
Tìm để ba đường thẳng
,
và
đồng quy?
Hyperbol có tâm sai là:
Ta có :
.
Phương trình đường tròn có tâm và bán kính lần lượt là:
Ta có:
Vậy phương trình đường tròn đã cho có tâm và bán kính lần lượt là:
Cho phương trình với
. Mệnh đề nào sau đây là mệnh đề sai?
Mệnh đề sai là: “Điểm thuộc đường thẳng
khi và chỉ khi
.”
Tọa độ tâm I và bán kính R của đường tròn có phương trình: lần lượt là:
Tâm , bán kính
.
Trong các phương trình sau đây, phương trình nào là phương trình tham số của đường thẳng?
Phương trình tham số của đường thẳng là:
Xét vị trí tương đối của hai đường thẳng và
.
Cho elip . Qua một tiêu điểm của
dựng đường thẳng song song với trục
và cắt
tại hai điểm
và
. Độ dài
bằng bao nhiêu?
Xét
Khi đó, Elip có tiêu điểm là đường thẳng
//
và đi qua
là
Giao điểm của và
là nghiệm của hệ phương trình
Vậy tọa độ hai điểm .
Cho Hypebol có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây đúng?
Khẳng định đúng là: Nếu thì
có các tiêu điểm là
,
.
Đường tròn có tâm
thuộc đường thẳng
, đi qua điểm
và tiếp xúc với đường thẳng
. Phương trình của đường tròn
là:
Dễ thấy nên tâm I của đường tròn nằm trên đường thẳng qua A vuông góc với
là
Vậy phương trình đường tròn là:
Cho Elip đi qua điểm
và có tâm sai
. Tiêu cự của
là
Gọi phương trình chính tắc của là
với
.
Vì đi qua điểm
nên
.
Lại có .
Trong mặt phẳng với hệ tọa độ , cho đường thẳng
và hai điểm
,
. Tìm tất cả các giá trị của tham số
để
và
nằm cùng phía đối với
.
Khi đó điều kiện bài toán trở thành
Với giá trị nào của thì hai đường thẳng
và
vuông góc?
Tìm giá trị của tham số m sao cho đường thẳng là tiếp tuyến của đường tròn
.
Đường tròn (C) có tâm I(3; 0) và bán kính R = 2
Để là tiếp tuyến của đường tròn
thì ta phải có:
Khái niệm nào sau đây định nghĩa về hypebol?
Cho cố định với
. Hypebol
là tập hợp điểm
sao cho
với
là một số không đổi và
.
Tìm phương trình chính tắc của elip có tiêu cự bằng và trục lớn bằng
.
Phương trình chính tắc của elip:
Độ dài trục lớn .
Tiêu cự .
Ta có:
Vậy phương trình chính tắc của elip là .
Đường tròn ngoại tiếp hình chữ nhật cơ sở của hypebol có có phương trình là:
Ta có: . Tọa độ các đỉnh hình chữ nhật cở sở là
,
,
,
Dường tròn ngoại tiếp hình chữ nhật cơ sở có tâm
bán kính
.
Phương trình đường tròn là
Xét vị trí tương đối của hai đường thẳng và
.
Chọn
Trong mặt phẳng tọa độ , cho đường thẳng
và đường thẳng
. Xác định số đo góc giữa hai đường thẳng đã cho?
Vectơ pháp tuyến của đường thẳng d và lần lượt là
.
Khi đó góc giữa hai đường thẳng là:
Vậy góc giữa hai đường thẳng là .
Cho Hypebol có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây đúng?
Khẳng định đúng là: Với
, tâm sai của hypebol là
.
Phương trình tổng quát của đường thẳng đi qua điểm
và có vectơ pháp tuyến
là:
Đường thẳng đi qua điểm
và nhận
là vectơ pháp tuyến có phương trình tổng quát là:
Vậy phương trình tổng quát của đường thẳng là .
Trong mặt phẳng tọa độ , mỗi đường thẳng có bao nhiêu vectơ pháp tuyến?
Một đường thẳng có vô số vectơ pháp tuyến và chúng có cùng phương với nhau.
Đâu là đường thẳng không có điểm chung với đường thẳng ?
Kí hiệu
(i) Xét đáp án: không cùng phương nên loại.
(ii) Xét đáp án: không cùng phương nên loại.
(iii) Xét đáp án: không cùng phương nên loại.
(iv) Xét đáp án:
(Chọn)
Viết phương trình tổng quát của đường thẳng đi qua điểm
và song song với trục
.
Trong mặt phẳng tọa độ Oxy cho đường thẳng tiếp xúc với đường tròn
, cắt các trục
lần lượt tại các điểm
. Tam giác
có diện tích nhỏ nhất là:
Hình vẽ minh họa
Gọi là giao điểm của đường thẳng
và
là giao điểm của đường thẳng
và
Khi đó:
Xét tam giác OAB vuông tại O ta có:
Từ (*)
Vậy giá trị nhỏ nhất của diện tích tam giác OAB bằng 1.
Cho đường tròn và đường thẳng
. Tìm giá trị của tham số m để
cắt
?
Đường tròn (C) có tâm I(m; -2) và R = 3
Để cắt
thì
Vậy thỏa mãn yêu cầu bài toán.
Cho Hypebol có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây sai?
Với
, tâm sai của hypebol là
.
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Xét phương trình dạng : lần lượt tính các hệ số
và kiểm tra điều kiện
Các phương trình không có dạng đã nêu loại các đáp án
và
.
Đáp án không thỏa mãn điều kiện
Viết phương trình tham số của đường thẳng đi qua hai điểm và
.
Với giá trị nào của thì hai đường thẳng
và
song song?
Với loại
Với thì
Tọa độ tâm và bán kính
của đường tròn
là:
Đường thẳng nào song song với đường thẳng ?
Đường thẳng song song với đường thẳng là:
.