Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hai điểm A(4;7),B( - 4; - 1) thuộc đường tròn (C). Biết tâm I(a;b) của đường tròn (C) nằm trên đường thẳng \Delta:x - 4y = 0. Tính giá trị biểu thức Q = a + 2b?

    Tâm I của đường tròn (C) nằm trên đường thẳng \Delta:x - 4y = 0 nên ta có: a - 4b = 0\ \ \ (*)

    Hai điểm A(4;7),B( - 4; - 1) thuộc đường tròn (C) nên ta suy ra đường trung trực của đoạn thẳng AB cũng đi qua tâm I.

    Gọi M là trung điểm của đoạn thẳng AB => M(0; 3)

    Đường trung trực AB đi qua điểm M(0; 3) và nhận \overrightarrow{AB} = ( - 8; - 8) là vecto pháp tuyến có phương trình x + y - 3 =
0

    Vì trung trực AB cũng đi qua tâm I nên ta có: a + b - 3 = 0\ \ \ (**)

    Từ (*) và (**) suy ra a = \frac{12}{5};b
= \frac{3}{5}

    \Rightarrow Q = a + 2b =
\frac{18}{5}

  • Câu 2: Thông hiểu

    Viết phương trình đường tròn (C) có tâm I(
- 1;2) và tiếp xúc với đường thẳng \Delta:x - 2y + 7 = 0?

    Bán kính đường tròn là khoảng cách từ tâm I đến đường thẳng \Delta:x - 2y + 7 = 0 nên

    R = d(I;\Delta) = \frac{| - 1 - 4 -
7|}{\sqrt{1 + 4}} = \frac{2}{\sqrt{5}}

    Vậy phương trình đường tròn cần tìm là: (x + 1)^{2} + (y - 2)^{2} =
\frac{4}{5}.

  • Câu 3: Nhận biết

    Cho hình elip có phương trình \frac{x^{2}}{64} + \frac{y^{2}}{36} = 1. Hình elip có tiêu cự trục lớn bằng:

    Ta có: \frac{x^{2}}{64} +
\frac{y^{2}}{36} = 1 \Rightarrow \left\{ \begin{matrix}
a = 8 \\
b = 6 \\
\end{matrix} ight.

    Độ dài trục lớn là: 2a = 2.8 =
16

  • Câu 4: Thông hiểu

    Tính góc tạo bởi giữa hai đường thẳng d_{1}:2x + 2\sqrt{3}y + 5 = 0d_{2}:y - 6 = 0.

    Ta có

    \left\{ \begin{matrix}
d_{1}:2x + 2\sqrt{3}y + 5 = 0 ightarrow {\overrightarrow{n}}_{1} =
\left( 1;\sqrt{3} ight) \\
d_{2}:y - 6 = 0. ightarrow {\overrightarrow{n}}_{2} = (0;1) \\
\end{matrix} ight.

    \overset{\varphi = \left( d_{1};d_{2}
ight)}{ightarrow}\cos\varphi = \frac{\left| \sqrt{3}
ight|}{\sqrt{1 + 3}.\sqrt{0 + 1}} = \frac{\sqrt{3}}{2} ightarrow
\varphi = 30^{\circ}.

  • Câu 5: Vận dụng

    Với giá trị nào của m thì hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 8 - (m + 1)t \\
y = 10 + t \\
\end{matrix} ight.d_{2}:mx
+ 2y - 14 = 0 song song?

    Ta có:

    \left\{ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 8 - (m + 1)t \\
y = 10 + t \\
\end{matrix} ight.\  ightarrow A(8;10) \in d_{1},\ \
{\overrightarrow{n}}_{1} = (1;m + 1) \\
d_{2}:mx + 2y - 14 = 0 ightarrow {\overrightarrow{n}}_{2} = (m;2) \\
\end{matrix} ight.

    \overset{d_{1}//d_{2}}{ightarrow}\left\{\begin{matrix}A\in d_{2} \\\left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}{\overrightarrow{n}}_{1} = (1;1) \\{\overrightarrow{n}}_{2} = (0;2) \\\end{matrix} ight.\  ightarrow (KTM) \\meq0 ightarrow \dfrac{1}{m} = \dfrac{m + 1}{2} \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}8m + 6eq0 \\meq0 \\m = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}m = 1 \\m = - 2 \\\end{matrix} ight.\ .

  • Câu 6: Thông hiểu

    Trong hệ trục tọa độ Oxy cho đường thẳng (d):2x - y - 4 = 0. Một đường tròn (C) tiếp xúc với các trục tọa độ và có tâm nằm trên đường thẳng (d). Kết quả nào dưới đây đúng?

    Ta có tâm đường tròn thuộc đường thẳng d nên I(m;2m - 4) \in (d). Theo giả thiết để bài ta có:

    d(I;Ox) = d(I;Oy)

    \Leftrightarrow |2m - 4| = |m|
\Leftrightarrow \left\lbrack \begin{matrix}
m = 4 \\
m = \frac{4}{3} \\
\end{matrix} ight.

    Với m = \frac{4}{3} \Rightarrow I\left(
\frac{4}{3}; - \frac{4}{3} ight)

    \Rightarrow R = d(I;Oy) = |m| =
\frac{4}{3}

    Vậy phương trình đường tròn là: \left( x
- \frac{4}{3} ight)^{2} + \left( x + \frac{4}{3} ight)^{2} =
\frac{16}{9}

    Với m = 4 \Rightarrow I(4;4)

    \Rightarrow R = d(I;Oy) = |m| =
4

    Vậy phương trình đường tròn là: (x -
4)^{2} + (y + 4)^{2} = 16.

  • Câu 7: Nhận biết

    Đường trung trực của đoạn thẳng AB với A = (- 3;2), B = ( - 3;3) có một vectơ pháp tuyến là:

    Gọi d là trung trực đoạn AB, ta có: \left\{ \begin{matrix}\overrightarrow{AB} = (0;1) \\d\bot AB \\\end{matrix} ight.\ \overset{ightarrow}{}{\overrightarrow{n}}_{d} =\overrightarrow{AB} = (0;1).

  • Câu 8: Vận dụng

    Trong mặt phẳng tọa độ Oxy cho đường tròn (C):x^{2} + y^{2} - 2x - 2my + m^{2} - 24 =
0 có tâm I và đường thẳng \Delta:mx + 4y = 0 (với m là tham số). Biết đường thẳng \Delta cắt đường tròn (C) tại hai điểm A;B phân biệt sao cho diện tích tam giác IAB bằng 12. Có bao nhiêu giá trị của tham số m thỏa mãn yêu cầu đề bài?

    Hình vẽ minh họa

    Đường tròn (C) có tâm I(1; m) và bán kính R = 5.

    Gọi H là trung điểm của dây cung AB. Ta có IH là đường cao của tam giác IAB và

    IH = d(I;\Delta) \Leftrightarrow
\frac{|m + 4m|}{\sqrt{m^{2} + 16}} = \frac{|5m|}{\sqrt{m^{2} +
16}}

    AH = \sqrt{IA^{2} - IH^{2}} = \sqrt{25 -
\frac{(5m)^{2}}{m^{2} + 16}} = \frac{20}{\sqrt{m^{2} + 16}}

    Theo bài ra ta có:

    S_{IAB} = 12 \Leftrightarrow 2S_{IAH} =
12

    \Leftrightarrow d(I;\Delta).AH =
12

    \Leftrightarrow 25|m| = 3\left( m^{2} +
16 ight)

    \Leftrightarrow \left\lbrack\begin{matrix}m = \pm 3 \\m = \pm \dfrac{16}{3} \\\end{matrix} ight.

    Vậy có 4 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 10: Nhận biết

    Cho parabol (P):y = 2x^{2} + x - 3. Giao điểm của (P) với trục hoành tại hai điểm A\left( x_{1};y_{1} ight),B\left(
x_{2};y_{2} ight). Khẳng định nào sau đây đúng?

    Phương trình hoành độ giao điểm là nghiệm của phương trình:

    2x^{2} + x - 3 = 0

    Áp dụng định lí Vi – et ta có:

    x_{1} + x_{2} = - \frac{b}{a} = -
\frac{1}{2}

  • Câu 11: Nhận biết

    Đường tròn (C):x^{2} + y^{2} - 6x + 2y + 6 = 0 có tâm I và bán kính R lần lượt là:

    Ta có:\begin{matrix}
(C):x^{2} + y^{2} - 6x + 2y + 6 = 0 ightarrow a = \frac{- 6}{- 2} =
3,\ \ b = \frac{2}{- 2} = - 1,\ \ c = 6 \\
ightarrow I(3; - 1),\ R = \sqrt{3^{2} + ( - 1)^{2} - 6} = 2.\  \\
\end{matrix}

  • Câu 12: Thông hiểu

    Biết parabol (P) có phương trình đường chuẩn là \Delta:x + 2 = 0. Phương trình chính tắc của (P) là:

    Gọi phương trình chính tắc của Parabol là: (P):y^{2} = 2px

    Parabol có phương trình đường chuẩn là: \Delta:x + 2 = 0 nên \frac{p}{2} = 2 \Rightarrow p = 4

    Suy ra phương trình chính tắc của parabol là: y^{2} = 8x.

  • Câu 13: Nhận biết

    Trong mặt phẳng Oxy, phương trình nào sau đây là phương trình chính tắc của một elip?

    Phương trình chính tắc của elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1,(a
> b > 0) nên chọn phương án D.

  • Câu 14: Nhận biết

    Phương trình tiếp tuyến d của đường tròn (C): (x + 2)^{2} + (y + 2)^{2} = 9 tại điểm M(2; 1) là:

     Tâm I(-2;-2).

    Phương trình tiếp tuyến tại điểm M(2; 1) là:

    ( - 2 - 2)(x - 2) + ( - 2 - 1)(y - 1) = 0 \Leftrightarrow 4x + 3y - 11 = 0.

     

  • Câu 15: Thông hiểu

    Tìm phương trình chính tắc của elip nếu trục lớn gấp đôi trục bé và có tiêu cự bằng 4\sqrt{3}.

    Elip (E) có trục lớn gấp đôi trục bé \Rightarrow A_{1}A_{2} = 2B_{1}B_{2}
\Leftrightarrow 2a = 2.2b \Leftrightarrow a = 2b.

    Elip (E) có tiêu cự bằng 4\sqrt{3}\overset{}{ightarrow}2c = 4\sqrt{3}
\Rightarrow c = 2\sqrt{3}.

    Ta có a^{2} = b^{2} + c^{2}
\Leftrightarrow (2b)^{2} = b^{2} + \left( 2\sqrt{3} ight)^{2}
\Rightarrow b = 2. Khi đó, a = 2b =
4.

    Phương trình chính tắc của Elip là (E):\frac{x^{2}}{16} + \frac{y^{2}}{4} =
1.

  • Câu 16: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:3x - 2y - 6 = 0d_{2}:6x - 2y - 8 = 0.

    \left\{ \begin{matrix}
d_{1}:3x - 2y - 6 = 0 ightarrow {\overrightarrow{n}}_{1} = (3; - 2) \\
d_{2}:6x - 2y - 8 = 0 ightarrow {\overrightarrow{n}}_{2} = (6; - 2) \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
\frac{3}{6}\boxed{=}\frac{- 2}{- 2} \\
{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2}\boxed{=}0 \\
\end{matrix} ight.\ \overset{ightarrow}{}d_{1},\ \ d_{2} cắt nhau nhưng không vuông góc.

  • Câu 17: Vận dụng

    Ông Hoàng có một mảnh vườn hình Elip có chiều dài trục lớn và trục nhỏ lần lượt là 60m30m. Ông chia mảnh vườn ra làm hai nửa bằng một đường tròn tiếp xúc trong với Elip để làm mục đích sử dụng khác nhau (xem hình vẽ). Nửa bên trong đường tròn ông trồng cây lâu năm, nửa bên ngoài đường tròn ông trồng hoa màu. Tính tỉ số diện tích T giữa phần trồng cây lâu năm so với diện tích trồng hoa màu. Biết diện tích hình Elip được tính theo công thức S = \pi
ab, với a, b lần lượt là nửa độ dài trục lớn và nửa độ dài trục nhỏ. Biết độ rộng của đường Elip là không đáng kể.

    Theo đề ta có: Diện tích (E)là: S_{(E)} = \pi.a.b = 30.15.\pi = 450\pi,\
\left( m^{2} ight)

    Vì đường tròn tiếp xúc trong, nên sẽ tiếp xúc tại đỉnh của trục nhỏ, suy ra bán kính đường tròn: R =
15m. Diện tích hình tròn (C)phần trồng cây lâu năm là: S_{(C)} = \pi.R^{2} = 15^{2}.\pi = 225\pi,\ \left(
m^{2} ight)

    Suy ra diện tích phần trồng hoa màu là: S
= S_{(E)} - S_{(C)} = 225\pi,\ \left( m^{2} ight) \Rightarrow T =
1.

  • Câu 18: Vận dụng

    Tìm phương trình chính tắc của Hyperbol (H). Cho biết (H) đi qua điểm (2;1) và có một đường chuẩn là x + \frac{2}{\sqrt{3}} =
0.

    Gọi (H):\frac{x^{2}}{a^{2}} -
\frac{y^{2}}{b^{2}} = 1.

    Ta có : \left\{ \begin{matrix}
\frac{2^{2}}{a^{2}} - \frac{1^{2}}{b^{2}} = 1 \\
\frac{a^{2}}{c} = \frac{2}{\sqrt{3}} \\
b^{2} = c^{2} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b^{2} = \frac{a^{2}}{4 - a^{2}} \\
c^{2} = \frac{3}{4}a^{4} \\
\frac{a^{2}}{4 - a^{2}} = \frac{3}{4}a^{4} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a^{2} = 2,\ b^{2} = 1 \\
a^{2} = \frac{10}{3},\ b^{2} = 5 \\
\end{matrix} ight.\ . Suy ra phương trình chính tắc của (H) là \frac{x^{2}}{2} - y^{2} = 1.

  • Câu 19: Nhận biết

    Xác định vị trí tương đối của hai đường thẳng \Delta_{1}:7x + 2y - 1 = 0\Delta_{2}:\left\{ \begin{matrix}
x = 4 + t \\
y = 1 - 5t \\
\end{matrix} ight.\ .

    \left. \ \begin{matrix}
\Delta_{1}:7x + 2y - 1 = 0 ightarrow {\overrightarrow{n}}_{1} = (7;2)
\\
\Delta_{2}:\left\{ \begin{matrix}
x = 4 + t \\
y = 1 - 5t \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = (1; -
5) ightarrow {\overrightarrow{n}}_{2} = (5;1) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{7}{5}\boxed{=}\frac{2}{1} \\
{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2}\boxed{=}0 \\
\end{matrix} ight.\  ightarrow \Delta_{1},\ \ \Delta_{2} cắt nhau nhưng không vuông góc.

  • Câu 20: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):(x + 1)^{2} + y^{2} = 8 là:

    (C):(x + 1)^{2} + y^{2} =
8\overset{}{ightarrow}I( - 1;0),\ R = \sqrt{8} =
2\sqrt{2}.

  • Câu 21: Thông hiểu

    Tính góc giữa hai đường thẳng \left( d_{1} ight):2x - y - 10 = 0\left( d_{2} ight):x - 3y + 9 =
0

    Ta có:

    Vectơ pháp tuyến của hai đường thẳng lần lượt là \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (2; - 1) \\
\overrightarrow{n_{2}} = (1; - 3) \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 2.1 + ( - 1).( - 3) = 5
\\
\left| \overrightarrow{n_{1}} ight| = \sqrt{2^{2} + ( - 1)^{2}} =
\sqrt{5} \\
\left| \overrightarrow{n_{2}} ight| = \sqrt{1^{2} + ( - 3)^{2}} =
\sqrt{10} \\
\end{matrix} ight.

    Suy ra \cos\left( d_{1};d_{2} ight) =
\frac{\left| \overrightarrow{n_{1}}.\overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight|.\left|
\overrightarrow{n_{2}} ight|} = \frac{\sqrt{2}}{2}

    \Rightarrow \widehat{\left( d_{1};d_{2}
ight)} = 45^{0}

  • Câu 22: Thông hiểu

    Cho phương trình x^{2} + y^{2}–8x + 10y + m = 0(1). Tìm điều kiện của m để (1) là phương trình đường tròn có bán kính bằng 7.

    x^{2} + y^{2}–8x + 10y + m = 0
ightarrow \left\{ \begin{matrix}
a = 4 \\
b = - 5 \\
c = m \\
\end{matrix} ight.

    ightarrow a^{2} + b^{2} - c = R^{2} =
49 \Leftrightarrow m = - 8.

  • Câu 23: Vận dụng

    Cho tam giác ABC có phương trình các cạnh AB;AC lần lượt là 5x - 2y + 6 = 0,4x + 7y - 21 = 0 và trực tâm H(1;1). Phương trình tổng quát của cạnh BC là:

    Ta có: A = AB \cap AC nên tọa độ điểm A là nghiệm hệ phương trình:

    \left\{ \begin{matrix}
5x - 2y + 6 = 0 \\
4x + 7y - 21 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 3 \\
\end{matrix} ight.

    \Rightarrow A(0;3) \Rightarrow
\overrightarrow{AH} = (1; - 2)

    Ta có BH\bot AC \Rightarrow BH:7x - 4y +
a = 0

    Điểm H \in BH \Leftrightarrow 7 - 4 + a =
0 \Leftrightarrow a = - 3

    \Rightarrow BH:7x - 4y - 3 =
0

    Ta có: B = AB \cap BH nên tọa độ điểm B là nghiệm hệ phương trình:

    \left\{ \begin{matrix}5x - 2y + 6 = 0 \\7x - 4y - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - 5 \\y = - \dfrac{19}{2} \\\end{matrix} ight.

    \Rightarrow B\left( - 5; - \frac{19}{2}
ight)

    Đường thẳng BC đi qua điểm B nhận \overrightarrow{AH} làm vecto pháp tuyến có phương trình là:

    x + 5 - 2\left( x + \frac{19}{2} ight)
= 0 \Leftrightarrow x - 2y - 14 = 0

  • Câu 24: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho tọa độ điểm P( - 2;1) và hai đường thẳng \left( d_{1} ight):x + 3y + 8 = 0; \left( d_{2} ight):3x - 4y + 10 =
0. Một đường tròn (C) có tâm I(a;b) thuộc đường thẳng \left( d_{1} ight), đi qua điểm P và tiếp xúc với \left( d_{2} ight). Kết luận nào sau đây đúng?

    Ta có:

    I(a;b) \in \left( d_{1} ight)
\Rightarrow I( - 3b - 8;b)

    Lại có đường tròn tâm I đi qua P và tiếp xúc với đường thẳng \left( d_{2} ight) nên

    IP = d(I;\Delta')

    \Leftrightarrow \sqrt{( - 2 + 3b +
8)^{2} + (1 - b)^{2}} = \frac{\left| 3( - 3b - 8) - 4b + 10
ight|}{\sqrt{3^{2} + ( - 4)^{2}}}

    \Leftrightarrow 25\left( 10b^{2} + 34b +
37 ight) = | - 13b - 14|^{2}

    \Leftrightarrow (9b + 27)^{2} = 0
\Leftrightarrow b = - 3 \Rightarrow a = 1

    \Rightarrow a - b = 4

    Vậy khẳng định đúng là: a - b =
4.

  • Câu 25: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A(– 3; 2) và B(1; 4).

     Vectơ chỉ phương của đường thẳng AB là (2; 1).

  • Câu 26: Nhận biết

    Phương trình đường tròn (C):x^{2} + y^{2} + 2x - 6y - 15 = 0 có tâm và bán kính lần lượt là:

    Ta có: (C):x^{2} + y^{2} + 2x - 6y - 15 =
0

    \left\{ \begin{matrix}
- 2a = 2 \\
- 2b = - 6 \\
c = - 15 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 3 \\
c = - 15 \\
\end{matrix} ight.\  \Rightarrow a^{2} + b^{2} - c = 25 >
0

    Vậy phương trình đường tròn đã cho có tâm và bán kính lần lượt là: I( - 1;3),R = 5

  • Câu 27: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A( - 1;2),B(2; - 2),C(3;1). Biết rằng \overrightarrow{AD} =
\overrightarrow{BC}, khi đó tọa độ điểm D là:

    Giả sử tọa độ điểm D = (x;y)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AD} = (x + 1;y - 2) \\
\overrightarrow{BC} = (1;3) \\
\end{matrix} ight.

    \overrightarrow{AD} =
\overrightarrow{BC} nên \left\{
\begin{matrix}
x + 1 = 1 \\
y - 2 = 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 5 \\
\end{matrix} ight.\  \Leftrightarrow D(0;5)

  • Câu 28: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm C(2; - 1)D(2;5).

    Ta có:

    \left\{ \begin{matrix}C(2; - 1) \in CD \\{\overrightarrow{u}}_{CD} = \overrightarrow{CD} = (0;6) \\\end{matrix} ight.\ \overset{ightarrow}{}CD:\left\{ \begin{matrix}x = 2 \\y = - 1 + 6t \\\end{matrix} ight.\ \ \ \left( t\mathbb{\in R} ight).

  • Câu 29: Thông hiểu

    Cho hypebol (H): \frac{x^{2}}{36}+\frac{y^{2}}{9}=1. Tỉ số giữa độ dài trục ảo và độ dài trục thực bằng:

    Ta có: \frac{x^{2}}{36}+\frac{y^{2}}{9}=1

    Ta có: a = 6; b =3

    => Độ dài trục ảo là 6, độ dài trục thực là 12

    => Tỉ số giữa độ dài trục ảo và độ dài trục thực là: 

    \frac{{2b}}{{2a}} = \frac{6}{{12}} = \frac{1}{2}

  • Câu 30: Thông hiểu

    Phương trình tổng quát của đường thẳng đi qua hai điểm A(3; - 1)B(1;5) là:

    \begin{matrix}
\left\{ \begin{matrix}
A(3; - 1) \in AB \\
{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = ( - 2;6) ightarrow
{\overrightarrow{n}}_{AB} = (3;1) \\
\end{matrix} ight.\  \\
ightarrow AB:3(x - 3) + 1(y + 1) = 0 \Leftrightarrow AB:3x + y - 8 =
0. \\
\end{matrix}

  • Câu 31: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh ABx - y -
2 = 0, phương trình cạnh ACx + 2y
- 5 = 0. Biết trọng tâm của tam giác là điểm G(3;2) và phương trình đường thẳng BC có dạng x
+ my + n = 0. Tính giá trị biểu thức S = m + n.

    Tọa độ điểm A là nghiệm của hệ phương trình \left\{ \begin{matrix}
x - y - 2 = 0 \\
x + 2y - 5 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = 1 \\
\end{matrix} ight.\  \Leftrightarrow A(3;1)

    Ta có B\left( x_{B};x_{B} - 2
ight);C\left( x_{C};\frac{- x_{C} + 5}{2} ight)

    Gọi M\left( x_{0};y_{0} ight) là trung điểm của BC thì 2\overrightarrow{GM} =
\overrightarrow{AG} nên

    \left\{ \begin{matrix}
2\left( x_{0} - 3 ight) = 0 \\
2\left( y_{0} - 2 ight) = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{0} = 3 \\
y_{0} = \frac{5}{2} \\
\end{matrix} ight.

    Mặt khác \left\{ \begin{matrix}x_{B} + x_{C} = 2x_{0} \\x_{B} - 2 + \dfrac{- x_{C} + 5}{2} = 2y_{0} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{B} + x_{C} = 6 \\2x_{B} - x_{C} = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{B} = 5 \\
x_{C} = 1 \\
\end{matrix} ight.\  \Rightarrow B(5;3),C(1;2)

    \Rightarrow \overrightarrow{BC} = ( - 4;
- 1)

    Suy ra một vectơ pháp tuyến của BC là \overrightarrow{n} = (1; - 4)

    Suy ra phương trình đường thẳng BC là

    1(x - 5) - 4(y - 3) = 0

    \Leftrightarrow x - 4y + 7 =
0

    Suy ra m = - 4;n = 7 \Rightarrow S =
3

  • Câu 32: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):2x^{2} + 2y^{2} - 8x + 4y - 1 = 0 là:

    Ta có: \begin{matrix}
(C):2x^{2} + 2y^{2} - 8x + 4y - 1 = 0 \Leftrightarrow x^{2} + y^{2} - 4x
+ 2y - \frac{1}{2} = 0 \\
ightarrow \left\{ \begin{matrix}
a = 2,\ b = - 1 \\
c = - \frac{1}{2} \\
\end{matrix} ight.\  ightarrow I(2; - 1),\ R = \sqrt{4 + 1 +
\frac{1}{2}} = \frac{\sqrt{22}}{2}. \\
\end{matrix}

  • Câu 33: Thông hiểu

    Cho đường tròn (C):(x - 1)^{2} + (y - 2)^{2} = 8. Viết phương trình tiếp tuyến của đường tròn (C) biết tiếp tuyến đi qua điểm M(3; - 2)?

    Đường tròn (C) có tâm I(2; -
3)

    Phương trình tiếp tuyến của (C) tại điểm N( - 3;1) là:

    (3 - 2)(x - 3) + ( - 1 + 3)(y + 1) =
0

    \Leftrightarrow x + 2y - 1 =
0

    Vậy phương trình tiếp tuyến của đường tròn tại N( - 3;1) là: x + 2y - 1 = 0

  • Câu 34: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Ox?

     Vectơ chỉ phương của trục Ox là (1; 0).

  • Câu 35: Thông hiểu

    Phương trình chính tắc của hypebol có 2a gấp đôi 2b và đi qua điểm M(4; 1) là:

     Ta có: a=2b.

    Phương trình chính tắc: \frac{{{x^2}}}{{{{(2b)}^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1.

    M(4;1) thuộc hypebol nên: 

    \frac{{{4^2}}}{{{{(2b)}^2}}} - \frac{{{1^2}}}{{{b^2}}} = 1 \Leftrightarrow \frac{{16}}{{4{b^2}}} - \frac{1}{{{b^2}}} = 1\Leftrightarrow \frac{{12}}{{4{b^2}}} = 1 \Leftrightarrow b =  \pm \sqrt 3  \Rightarrow a =  \pm 2\sqrt 3.

    Do đó, phương trình chính tắc: \frac{x^{2}}{12}-\frac{y^{2}}{3}=1.

  • Câu 36: Nhận biết

    Elip (E):4x^{2}+16y^{2}=1 có độ dài trục bé bằng:

     Ta có: (E):4x^{2}+16y^{2}=1  \Leftrightarrow\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{1}{{16}}}} = 1 \Rightarrow {b^2} = \frac{1}{{16}} \Rightarrow b = \frac{1}{4}.

    Độ dài trục bé 2b=\frac12.

  • Câu 37: Thông hiểu

    Cho đường thẳng \left( d_{1} ight):\left\{ \begin{matrix}
x = 1 - 6t \\
y = - 2 + 5t \\
\end{matrix} ight. và đường thẳng \left( d_{2} ight):\left\{ \begin{matrix}
x = 10 + 5t \\
y = 1 + 6t \\
\end{matrix} ight.. Tính góc hợp bởi hai đường thẳng?

    Vectơ chỉ phương của \left( d_{1}
ight):\left\{ \begin{matrix}
x = 1 - 6t \\
y = - 2 + 5t \\
\end{matrix} ight. là: \overrightarrow{u_{d_{1}}} = ( - 6;5)

    Vectơ chỉ phương của \left( d_{2}
ight):\left\{ \begin{matrix}
x = 10 + 5t \\
y = 1 + 6t \\
\end{matrix} ight. là: \overrightarrow{u_{d_{2}}} = (5;6)

    Ta có: \overrightarrow{u_{d_{1}}}.\overrightarrow{u_{d_{2}}}
= 0 \Rightarrow d_{1}\bot d_{2}

    Vậy góc hợp bởi hai đường thẳng đã cho bằng 90^{0}.

  • Câu 38: Thông hiểu

    Đường thẳng d đi qua điểm M( - 2;1) và vuông góc với đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 - 3t \\
y = - 2 + 5t \\
\end{matrix} ight. có phương trình tham số là:

    \left\{ \begin{matrix}
M( - 2;1) \in d \\
{\overrightarrow{u}}_{\Delta} = ( - 3;5) \\
d\bot\Delta \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
M( - 2;1) \in d \\
{\overrightarrow{n}}_{d} = ( - 3;5) ightarrow {\overrightarrow{u}}_{d}
= (5;3) \\
\end{matrix} ight.\  ightarrow d:\left\{ \begin{matrix}
x = - 2 + 5t \\
y = 1 + 3t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 39: Nhận biết

    Tính khoảng cách từ điểm M(2;4) đường thẳng (\Delta):3x + 4y + 3 = 0?

    Ta có khoảng cách từ điểm M đến đường thẳng (\Delta):3x + 4y + 3 = 0 là:

    d(M;\Delta) = \frac{|3.2 + 4.4 +
3|}{\sqrt{3^{2} + 4^{2}}} = 5

    Vậy khoảng cách cần tìm bằng 5.

  • Câu 40: Nhận biết

    Khoảng cách từ điểm A(0;1) đến đường thẳng (\Delta):5x - 12y - 1 = 0 bằng:

    Áp dụng công thức tính khoảng cách từ một điểm đến một đường thẳng ta có:

    d(A;\Delta) = \frac{|5.1 - 12.1 -
1|}{\sqrt{5^{2} + ( - 12)^{2}}} = 1

    Vậy khoảng cách từ điểm A đến đường thẳng đã cho bằng 1.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo