Đường thẳng
tạo với đường thẳng
một góc
. Tìm hệ số góc
của đường thẳng
.
gọi
Ta có:
Đường thẳng
tạo với đường thẳng
một góc
. Tìm hệ số góc
của đường thẳng
.
gọi
Ta có:
Tìm phương trình chính tắc của Parabol
biết khoảng cách từ tiêu điểm
đến đường thẳng
là
.
Ta có tọa độ tiêu điểm .
Khoảng cách từ đến đường thẳng
là
nên:
.
Vậy phương trình của là:
hoặc
.
Phương trình tham số của đường thẳng nào sau đây có vectơ chỉ phương ![]()
Đường thẳng có phương trình tham số có vectơ chỉ phương là
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
. Khẳng định nào sau đây đúng?
Ta có:
có vectơ pháp tuyến là
có vectơ chỉ phương là
nên
có vectơ pháp tuyến là
Mà nên
cắt
.
Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Parabol?
Phương trình Parabol có dạng
Vậy phương trình cần tìm là .
Phương trình tổng quát của đường thẳng
đi qua điểm
và có vectơ pháp tuyến
là:
Đường thẳng đi qua điểm
và nhận
là vectơ pháp tuyến có phương trình tổng quát là:
Vậy phương trình tổng quát của đường thẳng là .
Trong mặt phẳng tọa độ Oxy, đường thẳng đi qua điểm
và song song với đường thẳng
có phương trình tổng quát là:
Đường thẳng đi qua điểm và song song với đường thẳng
có nhận vectơ
làm vectơ pháp tuyến có phương trình tổng quát:
Vậy phương trình tổng quát của đường thẳng là: .
Dây cung của elip
vuông góc với trục lớn tại tiêu điểm có độ dài bằng:
Hai tiêu điểm có tọa độ lần lượt là
Đường thẳng chứa dây cung vuông góc với trục lớn (trục hoành ) tại tiêu điểm có phương trình là
Suy ra
Vậy tọa độ giao điểm của và
là
Đường tròn
có tâm là gốc tọa độ
và tiếp xúc với đường thẳng
. Bán kính
của đường tròn
bằng:
Tìm phương trình chính tắc của Hyperbol
mà hình chữ nhật cơ sở có một đỉnh là ![]()
Gọi . Tọa độ đỉnh của hình chữ nhật cơ sở là
,
,
,
.
Hình chữ nhật cơ sở của có một đỉnh là
, suy ra
. Phương trình chính tắc của
là
Trong mặt phẳng
cho điểm
và đường thẳng
. Tính khoảng cách từ điểm A đến đường thẳng (d).
Khoảng cách từ điểm A đến đường thẳng (d) là:
Vậy khoảng cách cần tìm bằng 8.
Điểm nào sau đây không thuộc đường thẳng
?
Gọi
Chọn .
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng
?
Vectơ chỉ phương của đường thẳng trên là: .
Cho parabol (P) có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây sai?
Đáp án sai: Trục đối xứng của parabol là trục . Đáp án đúng là trục
mới là trục đối xứng.
Trong mặt phẳng với hệ tọa độ
, cho elip
(với
). Biết
là hai tiêu điểm. Cho điểm M di động trên
. Chọn khẳng định đúng?
Ta có:
.
Vì nên
.
Đường tròn
có tâm
thuộc đường thẳng
, bán kính
và tiếp xúc với đường thẳng
. Phương trình của đường tròn
là:
Vậy các phương trình đường tròn là: hoặc
Tìm tất cả các giá trị của
để hai đường thẳng
và
cắt nhau.
Chọn đáp án này với mọi
.
Trong mặt phẳng tọa độ có đường thẳng
có phương trình
và đường tròn
. Tìm tất cả các giá trị của tham số m để đường thẳng
tiếp xúc với đường tròn
?
Phương trình đường tròn (C) là:
Suy ra tâm đường tròn: và bán kính
Đường thẳng tiếp xúc với đường tròn
khi và chỉ khi
Elip
có tổng độ dài trục lớn và trục bé bằng:
Ta có: .
Tổng độ dài trục lớn và bé là: .
Trên mặt phẳng tọa độ
cho tọa độ hai điểm
. Tọa độ trung điểm
của
là:
Tọa độ trung điểm I của MN là:
Vậy tọa độ trung điểm của MN là: .
Tính góc tạo bởi giữa hai đường thẳng:
và
.
Ta có: . Suy ra góc giữa hai đường thẳng bằng
.
Tìm giá trị của x để hai vectơ
và
có giá vuông góc với nhau?
Vì hai vectơ và
có giá vuông góc với nhau nên ta có:
Vậy hai vectơ đã cho có giá vuông góc với nhau khi .
Đường thẳng nào dưới đây là đường chuẩn của Hypebol
?
Ta có : .
Tâm sai . Đường chuẩn :
và
Phương trình tiếp tuyến của đường tròn
tại điểm
là:
Đường tròn (C) có tâm
Phương trình tiếp tuyến của tại điểm
là:
Vậy phương trình tiếp tuyến của đường tròn tại là:
Khoảng cách từ điểm M( –1; 1) đến đường thẳng ∆: 3x – 4y – 3 = 0 bằng:
Ta có: .
Tìm
để hai đường thẳng
và
trùng nhau?
Một elip có diện tích hình chữ nhật cơ sở là
, độ dài tiêu cự là
. Tâm sai của elip đó là
Diện tích hình chữ nhật cơ sở là , suy ra
.
Lại có .
Từ , thay vào
ta được:
.
Do đó tâm sai .
Tìm tất cả các giá trị của tham số
để hai đường thẳng
và
cắt nhau tại một điểm thuộc trục tung.
Một đường thẳng có bao nhiêu vectơ chỉ phương?
Một đường thẳng có vô số vectơ chỉ phương.
Phương trình đường tròn
có tâm và bán kính lần lượt là:
Ta có:
Vậy phương trình đã cho tâm và bán kính lần lượt là: .
Cho đường thẳng (d): x – 2y + 5 = 0. Mệnh đề nào sau đây đúng?
Giả sử:
loại đáp án (d) đi qua
.
Ta có
⇒VTPT
⇒VTCP loại đáp án (d) có phương trình tham số:
Ta có
hệ số góc
.
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Loại đáp án vì không có dạng
Xét đáp án
loại.
Xét đáp án
loại.
Xét đáp án
Chọn đáp án này.
Đường tròn có tâm trùng với gốc tọa độ, bán kính
có phương trình là:
Điền vào chỗ trống: Vectơ có giá song song hoặc trùng với đường thẳng thì vectơ được gọi là … của đường thẳng đó.
Vectơ có giá song song hoặc trùng với đường thẳng thì
được gọi là vectơ chỉ phương của đường thẳng đó.
Đường Hyperbol
có tiêu cự bằng:
Ta có : . Tiêu cự
Tọa độ tâm
và bán kính
của đường tròn
là:
Ta có:
Tìm tất cả các giá trị của
để hai đường thẳng
và
trùng nhau.
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
,
và
Trung tuyến
của tam giác đi qua điểm
có hoành độ bằng
thì tung độ của điểm
bằng bao nhiêu?
Ta có:
Chọn
Cho tọa độ hai điểm
. Phương trình đường tròn ngoại tiếp tam giác
là:
Ta có tam giác OAB vuông tại O nên tâm I của đường tròn ngoại tiếp tam giác là trung điểm của cạnh huyền AB suy ra I(4; 3) và bán kính
Vậy phương trình đường tròn ngoại tiếp tam giác OAB là:
Xét vị trí tương đối của hai đường thẳng
và
?
Ta có:
Vậy hai đường thẳng đã cho song song với nhau.