Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;5), B( -
4; - 5)C(4; - 1). Phương trình đường phân giác ngoài của góc A là:

    \left\{ \begin{matrix}
A(1;5),\ B( - 4; - 5) ightarrow AB:2x - y + 3 = 0 \\
A(1;5),\ C(4; - 1) ightarrow AC:2x + y - 7 = 0 \\
\end{matrix} ight.\ .

    Suy ra các đường phân giác góc A là:

    \frac{|2x - y + 3|}{\sqrt{5}} =
\frac{|2x + y - 7|}{\sqrt{5}} \Leftrightarrow \left\lbrack
\begin{matrix}
x - 1 = 0 ightarrow f(x;y) = x - 1 \\
y - 5 = 0 \\
\end{matrix} ight.

    ightarrow \left\{ \begin{matrix}
f\left( B( - 4; - 5) ight) = - 5 < 0 \\
f\left( C(4; - 1) ight) = 3 > 0 \\
\end{matrix} ight.\ .

    Suy ra đường phân giác trong góc Ay - 5 =
0.

  • Câu 2: Nhận biết

    Tìm giá trị tham số m để đường thẳng \left( d_{1} ight):2x + y + 4 = 0 song song với đường thẳng \left( d_{2} ight):(m
- 3)x + y - 1 = 0?

    Để hai đường thẳng đã cho song song với nhau thì

    \frac{m + 3}{2} = \frac{1}{1}
\Leftrightarrow m = - 1

    Vậy m = -1 thì hai đường thẳng song song với nhau.

  • Câu 3: Thông hiểu

    Cho đường thẳng (\Delta):\left\{ \begin{matrix}
x = 2 + 3t \\
y = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) và điểm A( - 1;6). Viết phương trình đường thẳng qua điểm A và vuông góc với (\Delta)?

    Một vectơ chỉ phương của (\Delta) là: \overrightarrow{u} = (3;1)

    Vậy phương trình đường thẳng đi qua A( -
1;6) và vuông góc với (\Delta) là:

    3(x + 1) + 1(y - 6) = 0

    \Leftrightarrow 3x + y - 3 =
0

    Vậy phương trình cần tìm là 3x + y - 3 =
0.

  • Câu 4: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} ight. và hai điểm A(1;2),B( - 2;m). Tìm tất cả các giá trị của tham số m để AB nằm cùng phía đối với d.

    Ta có: d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} \Rightarrow d:3x + y - 7 = 0 ight..

    Để A, B nằm cùng phía đối với d thì:

    \left( 3x_{A} + y_{A} - 7 ight)\left(
3x_{A} + y_{A} - 7 ight) > 0 \Leftrightarrow - 2(m - 13) >
0

    \Leftrightarrow m - 13 < 0
\Leftrightarrow m < 13.

  • Câu 5: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 2 + 2t \\
y = - 3t \\
\end{matrix} ight.\
d_{2}:\left\{ \begin{matrix}
x = 2 + mt \\
y = - 6 + (1 - 2m)t \\
\end{matrix} ight. trùng nhau?

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = - 2 + 2t \\
y = - 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{u}}_{1} = (2; - 3)
\\
d_{2}:\left\{ \begin{matrix}
x = 2 + mt \\
y = - 6 + (1 - 2m)t \\
\end{matrix} ight.\  ightarrow A(2; - 6) \in d_{2},\ \
{\overrightarrow{u}}_{2} = (m;1 - 2m) \\
\end{matrix} ight\}

    \overset{d_{1} \equiv
d_{2}}{ightarrow}\left\{ \begin{matrix}
A \in d_{1} \\
\frac{m}{2} = \frac{1 - 2m}{- 3} \\
\end{matrix} ight.\  \Leftrightarrow m = 2.

  • Câu 6: Thông hiểu

    Tính góc tạo bởi giữa hai đường thẳng d_{1}:6x - 5y + 15 = 0d_{2}:\left\{ \begin{matrix}
x = 10 - 6t \\
y = 1 + 5t \\
\end{matrix} ight.\ .

    \left\{ \begin{matrix}
d_{1}:6x - 5y + 15 = 0 ightarrow {\overrightarrow{n}}_{1} = (6; - 5)
\\
d_{2}:\left\{ \begin{matrix}
x = 10 - 6t \\
y = 1 + 5t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (5;6) \\
\end{matrix} ight.

    ightarrow {\overrightarrow{n}}_{1}
\cdot {\overrightarrow{n}}_{2} = 0\overset{\varphi = \left( d_{1};d_{2}
ight)}{ightarrow}\varphi = 90^{\circ}.

  • Câu 7: Vận dụng

    Viết phương trình tiếp tuyến \Delta của đường tròn (C):x^{2} + y^{2} - 4x - 4y + 4 = 0, biết tiếp tuyến đi qua điểm B(4;6).

    Đường tròn (C) có tâm I(2;2),\ R =
2 và tiếp tuyến có dạng

    \Delta:ax + by - 4a - 6b = 0\ \ \left(a^{2} + b^{2}eq0 ight).

    Ta có: d\lbrack I;\Deltabrack = R
\Leftrightarrow \frac{|2a + 4b|}{\sqrt{a^{2} + b^{2}}} = 2
\Leftrightarrow b(3b + 4a) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
b = 0 ightarrow a = 1,\ b = 0 \\
3b = - 4a ightarrow a = 3,\ b = - 4 \\
\end{matrix} ight.\ .

  • Câu 8: Nhận biết

    Viết phương trình tiếp tuyến của đường tròn (C):(x – 2)^{2} + (y + 3)^{2} = 5 tại điểm M(3;-1).

     Tâm I(2;-3).

    Phương trình tiếp tuyến tại M(3;-1) là:

    (3 - 2)(x - 3) + ( - 1 + 3)(y + 1) = 0 \Leftrightarrow x + 2y - 1 = 0.

  • Câu 9: Nhận biết

    Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E):\frac{x^{2}}{25} +
\frac{y^{2}}{9} = 1. Tiêu cự của (E) bằng

    Phương trình chính tắc của elip có dạng: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1\ (a
> 0,b > 0).

    Do đó elip (E) có \left\{
\begin{matrix}
a = 5 \\
b = 3 \\
\end{matrix} ight.\  \Rightarrow c = \sqrt{a^{2} - b^{2}} =
4.

    Tiêu cự của elip (E) bằng 2c =
8.

  • Câu 10: Thông hiểu

    Trong mặt phẳng Oxy, cho Parabol (P): y^{2} =
8x có tiêu điểm F. Tìm trên (P) điểm M cách F một khoảng là 3.

    Giả sử M\left( x_{M}\ ;\ y_{M} ight)
\in (P). Suy ra {y_{M}}^{2} =
8x_{M}. (1)

    Từ phương trình y^{2} = 8x suy ra p = 4 nên F(2\ ;\ 0).

    Ta có: FM = \frac{p}{2} + x_{M}. Suy ra x_{M} = 1. Kết hợp (1) ta có: y_{M} = \pm 2\sqrt{2}.

    Vậy có hai điểm M\left( 1\ ;\ 2\sqrt{2}
ight) hoặc M\left( 1\ ;\  -
2\sqrt{2} ight)thỏa mãn.

  • Câu 11: Nhận biết

    Đường thẳng d đi qua điểm M( - 4;5) và có vectơ pháp tuyến \overrightarrow{n} = (3;2) có phương trình tham số là:

    Ta có:

    \left\{ \begin{matrix}M( - 4;5) \in d \\{\overrightarrow{n}}_{d} = (3;2) ightarrow {\overrightarrow{u}}_{d} =( - 2;3) \\\end{matrix} ight.\ \overset{ightarrow}{}d:\left\{ \begin{matrix}x = - 4 - 2t \\y = 5 + 3t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 12: Nhận biết

    Cho đường thẳng \Delta có phương trình 4x + 5y - 8 = 0. Xác định vectơ chỉ phương của \Delta?

    Đường thẳng \Delta:4x + 5y - 8 =
0 có vectơ pháp tuyến là \overrightarrow{n} = (4;5) nên có vectơ chỉ phương là \overrightarrow{u} = (5; -
4).

  • Câu 13: Vận dụng

    Cho đường thẳng (\Delta):x + (a - 1)y - a = 0 và đường tròn (C):x^{2} + y^{2} - 2x + 4y + 2 =
0. Tìm điều kiện của tham số a để (d) tiếp xúc với (C)?

    Đường tròn (C) có tâm I(1; - 2) và bán kính R = \sqrt{1^{2} + 2^{2} - 2} =
\sqrt{3}

    Để đường thẳng (\Delta)là tiếp tuyến của đường tròn (C) thì

    d(I;\Delta) = R \Leftrightarrow
\frac{\left| 1 - 2(a - 1) - a ight|}{\sqrt{1 + (a - 1)^{2}}} =
\sqrt{3}

    \Leftrightarrow \frac{|3 -
3a|}{\sqrt{a^{2} - 2a + 2}} = \sqrt{3}

    \Leftrightarrow |3 - 3a| =
\sqrt{3}.\sqrt{a^{2} - 2a + 2}

    \Leftrightarrow (3 - 3a)^{2} = 3a^{2} -
6a + 6

    \Leftrightarrow 2a^{2} - 4a + 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}a = 1 + \dfrac{1}{\sqrt{2}} \\a = 1 - \dfrac{1}{\sqrt{2}} \\\end{matrix} ight.

    Vậy a = 1 \pm \frac{1}{\sqrt{2}} thỏa mãn yêu cầu bài toán.

  • Câu 14: Nhận biết

    Trong hệ trục tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = - 4t + 1 \\
y = - 2 + 3t \\
\end{matrix} ight.. Một vectơ chỉ phương của d là:

    Một vectơ chỉ phương của d( - 4;3) hay (4; - 3).

  • Câu 15: Vận dụng

    Cho elip (E): \frac{x^{2}}{169}+\frac{y^{2}}{144}=1. Nếu điểm M nằm trên (E) có hoành độ bằng –13 thì độ dài MF_1MF_2 lần lượt là:

    Phương trình elip (E) có dạng \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1;\left( {a = 13;b = 12} ight)

    Ta có: c = \sqrt {{a^2} - {b^2}}  = 5

    Khi đó: {F_1}\left( { - 5;0} ight);{F_2}\left( {5;0} ight)

    Với M\left( {{x_M};{y_M}} ight) ta có:

    \begin{matrix}  \overrightarrow {{F_1}M}  = \left( {{x_M} + 5;{y_M}} ight) \hfill \\   \Rightarrow {F_1}M = \sqrt {{{\left( {{x_M} + 5} ight)}^2} + {y_M}^2}  \hfill \\   \Rightarrow {F_1}M = \sqrt {{{\left( {{x_M} + 5} ight)}^2} + 144.\left( {1 - \frac{{{x_M}^2}}{{169}}} ight)}  \hfill \\   \Rightarrow {F_1}M = \sqrt {169 + 10{x_M} + \dfrac{{25{x_M}^2}}{{169}}}  \hfill \\   \Rightarrow {F_1}M = \sqrt {{{\left( {13 + \dfrac{{5{x_M}}}{{13}}} ight)}^2}}  \hfill \\   \Rightarrow {F_1}M = 13 + \dfrac{{5{x_M}}}{{13}},\left( {{F_1}M > 0} ight) \hfill \\ \end{matrix}

    Tương tự ta có: {F_2}M = 13 - \frac{{5{x_M}}}{{13}},\left( {{F_2}M > 0} ight)

    Theo bài ra ta có: {x_M} =  - 13

    \begin{matrix}  {F_1}M = 13 + \dfrac{{5{x_M}}}{{13}} = 8 \hfill \\  {F_2}M = 13 - \dfrac{{5{x_M}}}{{13}} = 18 \hfill \\ \end{matrix}

  • Câu 16: Thông hiểu

    Cho đường thẳng (d): x – 2y + 5 = 0. Mệnh đề nào sau đây đúng?

    Giả sử: A\left( {1; - 2} ight) \in \left( d ight):x - 2y + 5 = 0

    \Rightarrow 1 - 2.\left( { - 2} ight) + 5 = 0\left( L ight)

    \Rightarrow 1 - 2.\left( { - 2} ight) + 5 = 0 loại đáp án (d) đi qua A(1; –2).

    Ta có (d):x−2y+5=0

    ⇒VTPT \overrightarrow n  = \left( {1; - 2} ight)

    ⇒VTCP \overrightarrow u  = \left( {2;1} ight) loại đáp án (d) có phương trình tham số: \left\{\begin{matrix}x=t\\ y=-2t\end{matrix}ight.

    Ta có (d):x−2y+5=0

    \Rightarrow y = \frac{1}{2}x + \frac{5}{2} hệ số góc k = \frac{1}{2}.

  • Câu 17: Nhận biết

    Công thức nào dưới đây là công thức tính khoảng cách từ một điểm B\left( x_{0};y_{0}
ight) đến đường thẳng (\Delta):ax
+ by + c = 0?

    Công thức tính khoảng cách từ một điểm B\left( x_{0};y_{0} ight) đến đường thẳng (\Delta):ax + by + c = 0 là:

    d(B;\Delta) = \frac{\left| ax_{0} +
by_{0} + c ight|}{\sqrt{a^{2} + b^{2}}}

  • Câu 18: Thông hiểu

    Cho đường tròn (C):(x - 1)^{2} + (y - 2)^{2} = 4 và đường thẳng \Delta:x - 2y + m = 0. Tìm giá trị của tham số m để \Delta không cắt (C)?

    Đường tròn (C) có tâm I(1; 2) và R =
\sqrt{5}

    Để \Delta không cắt (C) thì d(I;\Delta) > R

    \Leftrightarrow \frac{|1 - 2.2 +
m|}{\sqrt{1 + 4}} > \sqrt{5}

    \Leftrightarrow |m - 3| > 5
\Leftrightarrow \left\lbrack \begin{matrix}
m - 3 > 5 \\
m - 3 < - 5 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m < - 2 \\
m > 8 \\
\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
m < - 2 \\
m > 8 \\
\end{matrix} ight. thỏa mãn yêu cầu bài toán.

  • Câu 19: Nhận biết

    Cho Parabol (P) có phương trình y^{2} = 4x. Tìm đường chuẩn của (P).

    Từ phương trình của (P), ta có: 2p = 4 nên p = 2.

    Suy ra (P) có tiêu điểm là F(1\ ;\ 0) và đường chuẩn là x + 1 = 0.

  • Câu 20: Nhận biết

    Cho hai đường thẳng ∆_1: 11x – 12y + 1 = 0∆_2: 12x + 11y + 9 = 0. Khi đó hai đường thẳng này:

     Ta có:

    \begin{matrix}  \overrightarrow {{n_{{\Delta _1}}}}  = \left( {11; - 12} ight) \hfill \\  \overrightarrow {{n_{{\Delta _2}}}}  = \left( {12;11} ight) \hfill \\  \overrightarrow {{n_{{\Delta _1}}}} .\overrightarrow {{n_{{\Delta _2}}}}  = 0 \Rightarrow \overrightarrow {{n_{{\Delta _1}}}}  \bot \overrightarrow {{n_{{\Delta _2}}}}  \hfill \\   \Rightarrow {\Delta _1} \bot {\Delta _2} \hfill \\ \end{matrix}

  • Câu 21: Nhận biết

    Trong mặt phẳng tọa độ Oxy, mỗi đường thẳng có bao nhiêu vectơ pháp tuyến?

    Một đường thẳng có vô số vectơ pháp tuyến và chúng có cùng phương với nhau.

  • Câu 22: Nhận biết

    Đường tròn (C):(x - 1)^{2} + (y + 2)^{2} = 25 có dạng khai triển là:

    (C):(x - 1)^{2} + (y + 2)^{2} = 25
\Leftrightarrow x^{2} + y^{2} - 2x + 4y - 20 = 0.

  • Câu 23: Thông hiểu

    Trong mặt phẳng Oxy cho các điểm A(2;6),B(3;5),C( - 1; - 3). Phương trình đường tròn đi qua ba điểm là:

    Gọi phương trình đường tròn là: (C):x^{2}
+ y^{2} - 2ax - 2by + c = 0 với a^{2} + b^{2} - c > 0

    Vì đường tròn đi qua ba điểm A(2;6),B(3;5),C( - 1; - 3) nên ta có hệ phương trình:

    \left\{ \begin{matrix}2^{2} + 6^{2} - 2.2.a - 2.6.b + c = 0 \\3^{2} + 5^{2} - 2.3.a - 2.5.b + c = 0 \\( - 1)^{2} + ( - 3)^{2} - 2.( - 1).a - 2.( - 3).b + c = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}4a + 12b - c = 40 \\6a + 10b - c = 34 \\2a + 6b + c = - 10 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = - 1 \\b = 2 \\c = - 20 \\\end{matrix} ight.

    Vậy phương trình đường tròn cần tìm là: (C):x^{2} + y^{2} + 2x - 4y - 20 = 0.

  • Câu 24: Vận dụng

    Xác định a để hai đường thẳng d_{1}:ax + 3y–4 = 0d_{2}:\left\{ \begin{matrix}
x = - 1 + t \\
y = 3 + 3t \\
\end{matrix} ight. cắt nhau tại một điểm nằm trên trục hoành.

    Ox \cap d_{2} \leftrightarrow \left\{
\begin{matrix}
x = - 1 + t \\
y = 3 + 3t = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 2 \\
y = 0 \\
\end{matrix} ight.

    ightarrow Ox \cap d_{2} = A( - 2;0)
\in d_{1}

    ightarrow - 2a - 4 = 0 \Leftrightarrow
a = - 2.

  • Câu 25: Nhận biết

    Đường tròn (C): x^{2} + y^{2} – 3x – y = 0 có đường kính bằng bao nhiêu?

     Tâm I(\frac32;\frac12). Do đó R = \sqrt {{{\left( {\frac{3}{2}} ight)}^2} + {{\left( {\frac{1}{2}} ight)}^2} - 0}  = \frac{{\sqrt {10} }}{2}.

    Do đó đường kính bằng 2R=\sqrt{10}.

  • Câu 26: Nhận biết

    Tính khoảng cách từ điểm M(2;4) đường thẳng (\Delta):3x + 4y + 3 = 0?

    Ta có khoảng cách từ điểm M đến đường thẳng (\Delta):3x + 4y + 3 = 0 là:

    d(M;\Delta) = \frac{|3.2 + 4.4 +
3|}{\sqrt{3^{2} + 4^{2}}} = 5

    Vậy khoảng cách cần tìm bằng 5.

  • Câu 27: Thông hiểu

    Đường chuẩn của Parabol y^{2} = 14x là:

    Từ phương trình Parabol y^{2} = 14x ta có 2p = 14 => p = 7

    Do đó phương trình đường chuẩn của Parabol là x + \frac{7}{2} = 0

  • Câu 28: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng (\Delta):x + y - 1 = 0(\Delta'):\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Khẳng định nào sau đây đúng?

    Ta có:

    (\Delta):x + y - 1 = 0 có vectơ pháp tuyến là \overrightarrow{n_{\Delta}} =
(1;1)

    (\Delta'):\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có vectơ chỉ phương là \overrightarrow{u_{\Delta'}} = (2; -
1) nên (\Delta') có vectơ pháp tuyến là \overrightarrow{n_{\Delta'}} =
(1;2)

    \frac{1}{1} eq \frac{1}{2} nên (\Delta) cắt (\Delta').

  • Câu 29: Nhận biết

    Đường tròn (C):x^{2} + y^{2} + 12x - 14y + 4 = 0 có dạng tổng quát là:

    (C):x^{2} + y^{2} + 12x - 14y + 4 = 0ightarrow \left\{ \begin{matrix}I( - 6;7) \\R = \sqrt{36 + 49 - 4} = 9 \\\end{matrix} ight.

    ightarrow (C):(x + 6)^{2} + (y - 7)^{2} =81.

  • Câu 30: Nhận biết

    Điểm nào sau đây thuộc đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
\end{matrix} ight. ?

    M(2;–1)\overset{x = 2,\ y = - 1
ightarrow d}{ightarrow}\left\{ \begin{matrix}
2 = 1 + 2t \\
- 1 = 3 - t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = \frac{1}{2} \\
t = 4 \\
\end{matrix} ight.\ \ \ (VN) ightarrow M\boxed{\in}d.

    N(–7;0)\overset{x = - 7,\ y = 0
ightarrow d}{ightarrow}\left\{ \begin{matrix}
- 7 = 1 + 2t \\
0 = 3 - t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = - 4 \\
t = 3 \\
\end{matrix} ight.\ \ (VN) ightarrow N\boxed{\in}d.

    P(3;5)\overset{x = 3,\ y = 5 ightarrow
d}{ightarrow}\left\{ \begin{matrix}
3 = 1 + 2t \\
5 = 3 - t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = 1 \\
t = - 2 \\
\end{matrix} ight.\ \ (VN) ightarrow P\boxed{\in}d.

    Q(3;\ 2)\overset{x = 3,\ y = 2 \in
d}{ightarrow}\left\{ \begin{matrix}
3 = 1 + 2t \\
2 = 3 - t \\
\end{matrix} ight.\  \Leftrightarrow t = 1 ightarrow Q \in
d.Chọn Q(3;\ 2).

  • Câu 31: Vận dụng

    Nếu ba đường thẳng \ d_{1}:\ 2x + y–4 = 0, d_{2}:5x–2y + 3 = 0d_{3}:mx + 3y–2 = 0 đồng quy thì m nhận giá trị nào trong các giá trị sau?

    \left\{ \begin{matrix}
\ d_{1}:\ 2x + y–4 = 0 \\
d_{2}:5x–2y + 3 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = \frac{5}{9} \\
y = \frac{26}{9} \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A\left(
\frac{5}{9};\frac{26}{9} ight) \in d_{3} ightarrow \frac{5m}{9} + \frac{26}{3} - 2 = 0
\Leftrightarrow m = - 12.

  • Câu 32: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tọa độ hai điểm A(1;2),B(4;1) và đường thẳng (d):2x - y - 5 = 0. Khi đó, phương trình đường tròn (C) có tâm I \in (d) và đi qua hai điểm A;B là:

    Hình vẽ minh họa

    Ta có: Gọi I là tâm của đường tròn (C). Vì I \in (d) nên I(t;2t - 5)

    Hai điểm A, B cùng thuộc đường tròn (C) nên

    IA = IB

    \Leftrightarrow (1 - t)^{2} + (7 -
2t)^{2} = (4 - t)^{2} + (6 - 2t)^{2}

    \Leftrightarrow t = 1

    Suy ra I(1; - 3);R = IA = 5

    Vậy phương trình đường tròn cần tìm là: (x - 1)^{2} + (y + 3)^{2} = 25

  • Câu 33: Nhận biết

    Đường thẳng nào dưới đây là đường chuẩn của Hypebol \frac{x^{2}}{16} - \frac{y^{2}}{12}
= 1?

    Ta có : \left\{ \begin{matrix}
a^{2} = 16 \\
b^{2} = 12 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 4 \\
b = 2\sqrt{3} \\
c = 2 \\
\end{matrix} ight..

    Tâm sai e = \frac{c}{a} = 2. Đường chuẩn : x + 2 = 0x - 2 = 0.

  • Câu 34: Thông hiểu

    Cho elip (E) có độ dài trục lớn gấp hai lần độ dài trục nhỏ và tiêu cự bằng 6. Viết phương

    trình của (E)?

    Ta có: a = 2b,2c = 6 \Rightarrow c =
3.

    a^{2} - b^{2} = c^{2} \Rightarrow
4b^{2} - b^{2} = 9 \Rightarrow \left\{ \begin{matrix}
b^{2} = 3 \\
a^{2} = 12 \\
\end{matrix} ight..

    Vậy phương trình (E): \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{12}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{3}}\mathbf{=}\mathbf{1}.

  • Câu 35: Nhận biết

    Nhận xét nào đúng về vị trí tương đối của hai đường thẳng (d):2x + 3y + 15 =
0(\Delta):x - 2y - 3 =
0?

    Ta có:

    Vectơ pháp tuyến của đường thẳng (d):2x +
3y + 15 = 0 là: \overrightarrow{n_{d}} = (2;3)

    Vectơ pháp tuyến của đường thẳng (\Delta):x - 2y + 3 = 0 là: \overrightarrow{n_{\Delta}} = (1; -
2)

    Suy ra \overrightarrow{n_{d}}\overrightarrow{n_{d}} không cùng phương và \overrightarrow{n_{d}}.\overrightarrow{n_{d}} = 2
- 6 = - 4 eq 0

    Suy ra hai đường thẳng cắt nhau và không vuông góc.

  • Câu 36: Thông hiểu

    Viết phương trình tham số của đường thẳng \Delta đi qua điểm B(5;4) và vuông góc với đường thẳng d:x - 2y + 5 = 0?

    d\bot\Delta nên vectơ chỉ phương của đường thẳng d là vectơ pháp tuyến của \Delta

    \overrightarrow{u_{d}} =
\overrightarrow{n_{\Delta}} = (2;1)

    Đường thẳng \Delta có vectơ pháp tuyến là: \overrightarrow{n} =
(2;1) và đi qua điểm B(5;4) là:

    2(x - 5) + 1(y - 4) = 0

    \Leftrightarrow 2x + y - 14 =
0.

  • Câu 37: Nhận biết

    Tìm phương trình chính tắc của parabol (P) biết (P) có tiêu điểm là F(0\ ;\ 5).

    Gọi phương trình chính tắc của (P) là: y^{2}= 2px.

    Do tọa độ tiêu điểm F(0\ ;\ 5) nên \frac{p}{2} = 5 \Leftrightarrow p =10.

    Vậy phương trình của (P) là: y^{2} = 20x.

  • Câu 38: Thông hiểu

    Lập phương trình chính tắc của Elip đi qua điểm B và có tâm sai e = \frac{\sqrt{5}}{3}.

    Phương trình chính tắc của Elip có dạng: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1,(a
> b > 0).

    Elip đi qua điểm B nên \frac{0^{2}}{a^{2}} + \frac{2^{2}}{b^{2}} = 1
\Leftrightarrow b^{2} = 4.

    Tâm sai e = \frac{\sqrt{5}}{3}
\Leftrightarrow \frac{c}{a} = \frac{\sqrt{5}}{3} \Leftrightarrow c =
\frac{\sqrt{5}}{3}a.

    a^{2} = b^{2} + c^{2} \Leftrightarrow
a^{2} = 4 + \left( \frac{\sqrt{5}}{3}a ight)^{2} \Leftrightarrow a^{2}
= 9.

    Vậy phương trình chính tắc của Elip cần tìm là \frac{x^{2}}{9} + \frac{y^{2}}{4} =
1.

  • Câu 39: Vận dụng

    Cho ba đường thẳng \left( d_{1} ight):3x - 2y + 5 = 0, \left( d_{2} ight):2x + 4y - 7 =
0\left( d_{3} ight):3x + 4y -
1 = 0. Phương trình nào dưới đây là phương trình đường thẳng đi qua giao điểm của hai đường thẳng \left(
d_{1} ight);\left( d_{2} ight) và song song với \left( d_{3} ight)?

    Đường thẳng \left( d_{3} ight):3x + 4y
- 1 = 0\overrightarrow{n_{3}} =
(3;4)

    Gọi M là giao điểm của hai đường thẳng \left( d_{1} ight);\left( d_{2}
ight), tọa độ điểm M là nghiệm của hệ phương trình: \left\{ \begin{matrix}
3x - 2y + 5 = 0 \\
2x + 4y - 7 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - \frac{3}{8} \\
y = \frac{31}{16} \\
\end{matrix} ight.\  \Rightarrow M\left( - \frac{3}{8};\frac{31}{16}
ight)

    Đường thẳng d đi qua giao điểm M có vecto pháp tuyến \overrightarrow{n_{3}} = (3;4)

    Vậy phương trình tổng quát của đường thẳng cần tìm là: 3x + 4y - \frac{53}{8} = 0 hay 24x + 32y - 53 = 0.

  • Câu 40: Vận dụng

    Cho hypebol (H): \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 và đường thẳng \Delta: x+y=3. Tích các khoảng cách từ hai tiêu điểm của (H) đến \Delta bằng giá trị nào sau đây?

     Ta có: a=4,b=3 \Rightarrow c=\sqrt{a^2+b^2}=5. Suy ra 2 tiêu điểm F_1(-5;0),F_2(5;0).

    Khoảng cách từ F_2F_1 đến đường thẳng \Delta :x+y-3=0:

    d({F_2},\Delta ) = \frac{{\left| {5 + 0 - 3} ight|}}{{\sqrt {{1^2} + {1^2}} }} = \sqrt 2

    d({F_1},\Delta ) = \frac{{\left| { - 5 + 0 - 3} ight|}}{{\sqrt {{1^2} + {1^2}} }} = 4\sqrt 2

    Do đó \sqrt2 . 4\sqrt2=8.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo