Tính khoảng cách từ điểm
đường thẳng
?
Ta có khoảng cách từ điểm M đến đường thẳng là:
Vậy khoảng cách cần tìm bằng 5.
Tính khoảng cách từ điểm
đường thẳng
?
Ta có khoảng cách từ điểm M đến đường thẳng là:
Vậy khoảng cách cần tìm bằng 5.
Phương trình tổng quát của đường thẳng
đi qua điểm
và có vectơ pháp tuyến
là:
Đường thẳng đi qua điểm
và nhận
là vectơ pháp tuyến có phương trình tổng quát là:
Vậy phương trình tổng quát của đường thẳng là .
Tìm phương trình chính tắc của Hyperbol
mà hình chữ nhật cơ sở có một đỉnh là ![]()
Gọi . Tọa độ đỉnh của hình chữ nhật cơ sở là
,
,
,
.
Hình chữ nhật cơ sở của có một đỉnh là
, suy ra
. Phương trình chính tắc của
là
Trong mặt phẳng
cho các điểm
. Phương trình đường tròn nội tiếp tam giác
là:
Có , tam giác
cân tại
.
Gọi là trung điểm của
. Phương trình
là:
.
Phương trình , phương trình
:
Gọi là tâm đường tròn nội tiếp tam giác
. Ta có:
Thay tọa độ của và
vào phương trình
và xét tích của chúng, ta được:
nên phương trình
là
.
Tọa độ của là nghiệm của hệ
.
Vậy
.
Phương trình đường tròn nội tiếp tam giác là
.
Dạng chính tắc của parabol là?
Dạng chính tắc của Parabol: .
Tìm phương trình chính tắc của parabol
biết
có tiêu điểm là
.
Gọi phương trình chính tắc của là:
.
Do tọa độ tiêu điểm nên
.
Vậy phương trình của là:
.
Đường tròn (C):
có đường kính bằng bao nhiêu?
Tâm . Do đó
.
Do đó đường kính bằng .
Trong hệ trục tọa độ
, tọa độ của vectơ
là:
Tọa độ vectơ .
Đường tròn (C):
có tâm I, bán kính R lần lượt là:
Ta có: .
Đường thẳng nào là đường chuẩn của parabol
.
Ta có: .
Đường chuẩn: .
Trong mặt phẳng với hệ tọa độ
, cho đường thẳng
và hai điểm
,
. Tìm tất cả các giá trị của tham số
để
và
nằm cùng phía đối với
.
Khi đó điều kiện bài toán trở thành
Xác định vị trí tương đối của hai đường thẳng
và ![]()
cắt nhau nhưng không vuông góc.
Phương trình chính tắc của hypebol có
gấp đôi
và đi qua điểm
là:
Ta có: .
Phương trình chính tắc: .
Vì thuộc hypebol nên:
.
Do đó, phương trình chính tắc: .
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Hai cạnh của hình chữ nhật nằm trên hai đường thẳng
và
. Hình chữ nhật có đỉnh
. Tính diện tích của hình chữ nhật.
Đáp án: 2
Hai cạnh của hình chữ nhật nằm trên hai đường thẳng và
. Hình chữ nhật có đỉnh
. Tính diện tích của hình chữ nhật.
Đáp án: 2
Ta có: .
Do không thuộc hai đường thẳng
và
nên độ dài hai cạnh kề nhau của hình chữ nhật bằng khoảng cách từ
đến hai đường thẳng
.
Ta có:
Biết parabol
có phương trình đường chuẩn là
. Phương trình chính tắc của
là:
Gọi phương trình chính tắc của Parabol là:
Parabol có phương trình đường chuẩn là: nên
Suy ra phương trình chính tắc của parabol là: .
Trong mặt phẳng tọa độ
,cho tam giác
có tọa độ các điểm
. Đường thẳng
đi qua
và song song với
có phương trình tổng quát là:
Ta có:
Phương trình tổng quát AC là:
Đường thẳng song song với
nên d có dạng
Do điểm
Vậy .
Trong các phương trình sau, phương trình nào là phương trình đường tròn?
Phương trình có dạng
với
Ta có:
Vậy phương trình không là phương trình đường tròn.
Phương trình có dạng
với
Ta có:
Vậy phương trình không là phương trình đường tròn.
Ta có:
Vậy đường tròn có bán kính và bán kính
Phương trình không phải là phương trình đường tròn vì hệ số của
khác nhau.
Đường tròn
có tâm là gốc tọa độ
và tiếp xúc với đường thẳng
. Bán kính
của đường tròn
bằng:
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Ta có:
Nếu đường thẳng
đi qua gốc tọa độ và song song với đường thẳng
thì
có phương trình tổng quát là:
Một vectơ pháp tuyến của là:
Mặt khác đi qua gốc tọa độ hay đi qua điểm
Vậy phương trình đường thẳng là:
Vậy đáp án đúng là: .
Viết phương trình tiếp tuyến của đường tròn
, biết tiếp tuyến vuông góc với trục hoành.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có
Cho ba đường thẳng
,
và
. Phương trình nào dưới đây là phương trình đường thẳng đi qua giao điểm của hai đường thẳng
và song song với
?
Đường thẳng có
Gọi M là giao điểm của hai đường thẳng , tọa độ điểm M là nghiệm của hệ phương trình:
Đường thẳng d đi qua giao điểm M có vecto pháp tuyến
Vậy phương trình tổng quát của đường thẳng cần tìm là: hay
.
Đường thẳng nào sau đây vuông góc với đường thẳng
?
Kí hiệu
(i) Xét đáp án nên chọn đáp án này.
(ii) Tương tự kiểm tra và loại các đáp án còn lại.
Hyperbol
có tâm sai là:
Ta có :
.
Trong mặt phẳng với hệ tọa độ
, cho ba đường thẳng lần lượt có phương trình tổng quát
,
và
. Tìm
để ba đường thẳng đã cho cùng đi qua một điểm.
Ta có:
Viết phương trình tham số của đường thẳng
đi qua điểm
và song song với đường phân giác của góc phần tư thứ nhất.
Góc phần tư (I) :
Elip
có độ dài trục lớn bằng
, các đỉnh trên trục nhỏ và các tiêu điểm của elip cùng nằm trên một đường tròn. Hãy tính độ dài trục nhỏ của
.
Ta có
Và bốn điểm cùng nằm trên một đường tròn
Vậy độ dài trục nhỏ của là
Cho elip
. Diện tích hình chữ nhật cơ sở của
là
Độ dài trục lớn: .
Độ dài trục bé: .
Diện tích hình chữ nhật cơ sở của là:
.
Trong mặt phẳng tọa độ
, cho đường thẳng
có phương trình
. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng đã cho?
Một vectơ pháp tuyến của đường thẳng là:
.
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
,
và
. Phương trình đường phân giác ngoài của góc
là:
Suy ra các đường phân giác góc là:
Suy ra đường phân giác trong góc là
Tính góc giữa hai đường thẳng
và ![]()
Ta có:
Vectơ pháp tuyến của hai đường thẳng lần lượt là
Suy ra
Suy ra
Xét vị trí tương đối của hai đường thẳng
và
.
Đường thẳng
không đi qua điểm nào sau đây ?
Gọi .
Đặt Chọn
.
Trong mặt phẳng
, hãy tìm phương trình chính tắc của elip
. Biết rằng
đi qua
. Mặt khác,
nhìn hai tiêu điểm
dưới một góc 90 độ.
Gọi .
Ta có: đi qua
nên:
.
Vì nhìn hai tiêu điểm
dưới một góc vuông nên:
.
thế vào
ta được:
nên
.
Vậy: .
Trong mặt phẳng Oxy, điểm
nằm trên đường tròn
sao cho độ dài đoạn thẳng OM là ngắn nhất. Hoành độ điểm
là:
Đường tròn có tâm
và bán kính
.
Phương trình đường thẳng OI đi qua và nhận
làm VTCP là:
.
Ta có:
Để OM ngắn nhất
Dấu bằng xảy ra .
Cho đường tròn (C):
. Gọi
lần lượt là tiếp tuyến của đường tròn
tại điểm
. Tọa độ giao điểm của
và
là:
Ta có:
Phương trình tiếp tuyến của đường tròn tại M(3; 2) là:
Phương trình tiếp tuyến của đường tròn tại N(1; 0) là:
=> Giao điểm của hai tiếp tuyến là H(3; 0)
Tìm điều kiện của tham số m để hai đường thẳng
và
cắt nhau?
Hai đường thẳng cắt nhau khi và chỉ khi:
Vậy hai đường thẳng cắt nhau khi và chỉ khi .
Một vectơ chỉ phương của đường thẳng
là:
Đường thẳng có một vectơ chỉ phương là:
Tọa độ tâm
và bán kính
của đường tròn
là: