Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Phương trình tham số của đường thẳng nào sau đây có vectơ chỉ phương \overrightarrow{u}=(1;3)

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 1 \hfill \\  y = 3t + 2 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;3} ight)

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 1 \hfill \\  y = 2t + 3 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;2} ight).

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 2 \hfill \\  y = t + 3 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;1} ight).

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 3 \hfill \\  y = 2t + 1 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;2} ight).

  • Câu 2: Nhận biết

    Cho hai đường thẳng \left( d_{1} ight):2x + y + 15 = 0\left( d_{2} ight): - 4x - 2y + 3 =
0. Khẳng định nào sau đây đúng?

    Ta có: \frac{2}{- 4} = \frac{1}{- 2} eq
\frac{15}{3} suy ra \left( d_{1}
ight)\left( d_{2}
ight) song song với nhau.

  • Câu 3: Thông hiểu

    Trong mặt phẳng Oxy, cho Parabol (P): y^{2} =
8x có tiêu điểm F. Tìm trên (P) điểm M cách F một khoảng là 3.

    Giả sử M\left( x_{M}\ ;\ y_{M} ight)
\in (P). Suy ra {y_{M}}^{2} =
8x_{M}. (1)

    Từ phương trình y^{2} = 8x suy ra p = 4 nên F(2\ ;\ 0).

    Ta có: FM = \frac{p}{2} + x_{M}. Suy ra x_{M} = 1. Kết hợp (1) ta có: y_{M} = \pm 2\sqrt{2}.

    Vậy có hai điểm M\left( 1\ ;\ 2\sqrt{2}
ight) hoặc M\left( 1\ ;\  -
2\sqrt{2} ight)thỏa mãn.

  • Câu 4: Nhận biết

    Xét vị trí tương đối của hai đường thẳng \left( d_{1} ight):2x - 3y + 1 =
0\left( d_{2} ight): - 4x +
6y - 1 = 0?

    Ta có: \frac{2}{- 4} = \frac{- 3}{6} eq
\frac{1}{- 1}

    Vậy hai đường thẳng đã cho song song với nhau.

  • Câu 5: Nhận biết

    Cho Hypebol (H) có phương trình chính tắc là \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1, với a,b > 0. Khi đó khẳng định nào sau đây sai?

    Với c^{2} = a^{2} + b^{2} (c > 0), tâm sai của hypebol là e = \frac{a}{c}.

  • Câu 6: Thông hiểu

    Cho đường tròn (C):x^{2} + y^{2} - 4x - 6y - 12 = 0 và đường thẳng d:3x + 4y - 6 = 0. Tìm phương trình tiếp tuyến của (C) song song với đường thẳng d?

    Ta có: Phương trình đường tròn (C) có tâm I(2; 3) bán kính R = 5

    Phương trình đường thẳng \Delta_{1} song song với d có dạng 3x + 4y + c_{1} = 0

    \Delta_{1} tiếp xúc với (C) nên d\left( I;\Delta_{1} ight) = R

    Hay \frac{\left| 3.2 + 4.3 + c_{1}
ight|}{\sqrt{3^{2} + 4^{2}}} = 5 \Leftrightarrow \left| 18 + c_{1}
ight| = 25

    \Leftrightarrow \left\lbrack
\begin{matrix}
18 + c_{1} = 25 \\
18 + c_{1} = - 25 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
c_{1} = 7 \\
c_{1} = - 43 \\
\end{matrix} ight.

    Vậy phương trình tiếp tuyến của (C) song song với (d) là: 3x +
4y + 7 = 0 hoặc 3x + 4y - 43 =
0.

  • Câu 7: Nhận biết

    Đường tròn (C): x^{2} + y^{2} – 2x – 6y – 15 = 0 có tâm và bán kính lần lượt là:

    Tâm và bán kính đường tròn (C) là: I(1; 3), R = 5

  • Câu 8: Nhận biết

    Một đường thẳng có vectơ chỉ phương là \overrightarrow{u_{\Delta}} = (12; - 13). Vectơ nào sau đây là vectơ pháp tuyến của \Delta?

    Ta có:

    Đường thẳng \Delta có vectơ chỉ phương \overrightarrow{u} = (a;b) thì sẽ có một vectơ pháp tuyến là: \overrightarrow{n} = ( - b;a)

    Áp dụng vào bài toán ta được:

    Vectơ pháp tuyến của \Delta là: \overrightarrow{n_{\Delta}} =
(13;12).

  • Câu 9: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - 4t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Hãy chỉ ra vectơ chỉ phương của đường thẳng d?

    Vectơ chỉ phương của đường thẳng dlà: \overrightarrow{u_{d}} = ( - 4;3).

  • Câu 10: Nhận biết

    Một đường thẳng có bao nhiêu vectơ chỉ phương?

     Một đường thẳng có vô số vectơ chỉ phương.

  • Câu 11: Nhận biết

    Cho phương trình x^{2} + y^{2} + 2mx + 2(m–1)y + 2m^{2} =
0(1). Tìm điều kiện của m để (1) là phương trình đường tròn.

    Ta có: x^{2} + y^{2} + 2mx + 2(m–1)y +
2m^{2} = 0

    ightarrow \left\{ \begin{matrix}
a = - m \\
b = 1 - m \\
c = 2m^{2} \\
\end{matrix} ight.\  ightarrow a^{2} + b^{2} - c > 0
\Leftrightarrow - 2m + 1 > 0 \Leftrightarrow m <
\frac{1}{2}.

  • Câu 12: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD có đỉnh A(–2\ ;\ 1) và phương trình đường thẳng chứa cạnh CD\left\{ \begin{matrix}
x = 1 + 4t \\
y = 3t \\
\end{matrix} ight.. Viết phương trình tham số của đường thẳng chứa cạnh AB.

    \left\{ \begin{matrix}
A( - 2;1) \in AB,\ \ \ {\overrightarrow{u}}_{CD} = (4;3) \\
AB||CD ightarrow {\overrightarrow{u}}_{AB} = -
{\overrightarrow{u}}_{CD} = ( - 4; - 3) \\
\end{matrix} ight.\ \overset{ightarrow}{}AB:\left\{ \begin{matrix}
x = - 2 - 4t \\
y = 1 - 3t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

    Góc phần tư (I) : x - y =
0\overset{ightarrow}{}VTCP:\overrightarrow{u}(1;1) =
{\overrightarrow{u}}_{d}\overset{ightarrow}{}d:\left\{ \begin{matrix}
x = - 3 + t \\
y = 5 + t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 13: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:2x + y + 4 - m = 0d_{2}:(m + 3)x + y + 2m - 1 = 0 song song?

    Với m = 4\overset{}{ightarrow}\left\{\begin{matrix}d_{1}:2x + y = 0 \\d_{2}:7x + y + 7 = 0 \\\end{matrix} ight.\ \overset{}{ightarrow}d_{1} \cap d_{2}eq \varnothing\overset{}{ightarrow} loại m = 4.

    Với meq 4 thì

    \left\{ \begin{matrix}d_{1}:2x + y + 4 - m = 0 \\d_{2}:(m + 3)x + y - 2m - 1 = 0 \\\end{matrix} ight.\ \overset{d_{1}||d_{2}}{ightarrow}\frac{m + 3}{2}= \frac{1}{1}eq \frac{- 2m - 1}{4 - m}

    \Leftrightarrow \left\{ \begin{matrix}m = - 1 \\meq  - 5 \\\end{matrix} ight.\  \Leftrightarrow m = - 1.

  • Câu 14: Thông hiểu

    Tính góc giữa hai đường thẳng \left( d_{1} ight):2x - y - 10 = 0\left( d_{2} ight):x - 3y + 9 =
0

    Ta có:

    Vectơ pháp tuyến của hai đường thẳng lần lượt là \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (2; - 1) \\
\overrightarrow{n_{2}} = (1; - 3) \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 2.1 + ( - 1).( - 3) = 5
\\
\left| \overrightarrow{n_{1}} ight| = \sqrt{2^{2} + ( - 1)^{2}} =
\sqrt{5} \\
\left| \overrightarrow{n_{2}} ight| = \sqrt{1^{2} + ( - 3)^{2}} =
\sqrt{10} \\
\end{matrix} ight.

    Suy ra \cos\left( d_{1};d_{2} ight) =
\frac{\left| \overrightarrow{n_{1}}.\overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight|.\left|
\overrightarrow{n_{2}} ight|} = \frac{\sqrt{2}}{2}

    \Rightarrow \widehat{\left( d_{1};d_{2}
ight)} = 45^{0}

  • Câu 15: Thông hiểu

    Đường tròn (C) có tâm I(2; - 3) và tiếp xúc với trục Oy có phương trình là:

    (C):\left\{ \begin{matrix}
I(2; - 3) \\
R = d\lbrack I;Oybrack = 2 \\
\end{matrix} ight.\  ightarrow (C):(x - 2)^{2} + (y + 3)^{2} =
4.

  • Câu 16: Nhận biết

    Phương trình nào dưới đây đi qua hai điểm A(2;0),B(0; - 3) là:

    Phương trình đường thẳng đi qua hai điểm A(2;0),B(0; - 3) là: \frac{x}{2} + \frac{y}{- 3} = 1 hay \frac{x}{2} - \frac{y}{3} = 1.

  • Câu 17: Thông hiểu

    Cho hai đường thẳng (\Delta):x + \sqrt{3}y - 6 = 0(\Delta)':\sqrt{3}x - y + 7 = 0. Tính góc hợp bởi hai đường thẳng đã cho?

    Ta có:

    Vectơ pháp tuyến của đường thẳng (\Delta):x + \sqrt{3}y - 6 = 0 là: \overrightarrow{n_{\Delta}} = \left( 1;\sqrt{3}
ight)

    Vectơ pháp tuyến của đường thẳng (\Delta)':\sqrt{3}x - y + 7 = 0 là: \overrightarrow{n_{\Delta}} = \left(
1;\sqrt{3} ight)

    Ta có: \overrightarrow{n_{\Delta}}.\overrightarrow{n_{\Delta}}
= 0 \Rightarrow (\Delta)\bot(\Delta')

    Vậy góc hợp bởi hai đường thẳng bằng 90^{0}.

  • Câu 18: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng (\Delta):ax + by + c = 0;\left( a^{2} + b^{2} >
0 ight) và tọa độ một điểm A\left( x_{0};y_{0} ight). Ta kí hiệu khoảng cách từ điểm A đến đường thẳng (\Delta)d(A;\Delta). Kết luận nào sau đây đúng?

    Khoảng cách từ điểm A đến đường thẳng (\Delta) được tính bởi công thức:

    d(A;\Delta) = \frac{\left| ax_{0} +
by_{0} + c ight|}{\sqrt{a^{2} + b^{2}}}

    Vậy kết luận đúng là: “d(A;\Delta) =
\frac{\left| ax_{0} + by_{0} + c ight|}{\sqrt{a^{2} +
b^{2}}}”.

  • Câu 19: Nhận biết

    Xét vị trí tương đối của hai đường thẳng: d_1: 3x – 2y – 3 = 0d_2: 6x – 2y – 8 = 0.

     Vì \frac{3}{6} e \frac{{ - 2}}{{ - 2}} nên hai đường thẳng cắt nhau.

  • Câu 20: Thông hiểu

    Cho elip (E) có độ dài trục lớn gấp hai lần độ dài trục nhỏ và tiêu cự bằng 6. Viết phương

    trình của (E)?

    Ta có: a = 2b,2c = 6 \Rightarrow c =
3.

    a^{2} - b^{2} = c^{2} \Rightarrow
4b^{2} - b^{2} = 9 \Rightarrow \left\{ \begin{matrix}
b^{2} = 3 \\
a^{2} = 12 \\
\end{matrix} ight..

    Vậy phương trình (E): \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{12}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{3}}\mathbf{=}\mathbf{1}.

  • Câu 21: Thông hiểu

    Tìm phương trình chính tắc của elip có tiêu cự bằng 6 và trục lớn bằng 10.

    Phương trình chính tắc của elip: \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{a}^{\mathbf{2}}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{b}^{\mathbf{2}}}\mathbf{=}\mathbf{1.}

    Độ dài trục lớn 2a = 10 \Leftrightarrow a
= 5.

    Tiêu cự 2c = 6 \Leftrightarrow c =
3.

    Ta có: a^{2} = b^{2} + c^{2}
\Leftrightarrow b^{2} = a^{2} - c^{2} = 16

    Vậy phương trình chính tắc của elip là \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{25}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{16}}\mathbf{=}\mathbf{1.}.

  • Câu 22: Thông hiểu

    Đường tròn đường kính AB với A(3; -
1),B(1; - 5) có phương trình là:

    (C):\left\{ \begin{matrix}
I(2; - 3) \\
R = \frac{1}{2}AB = \frac{1}{2}\sqrt{(1 - 3)^{2} + ( - 5 + 1)^{2}} =
\sqrt{5} \\
\end{matrix} ight.

    ightarrow (C):(x - 2)^{2} + (y + 3)^{2}
= 5.

  • Câu 23: Vận dụng

    Cho hyperbol (H):3x^{2} - 4y^{2} = 12 có hai tiêu điểm là F_{1},\ F_{2}. Tìm trên một nhánh của (H) tọa độ hai điểm P,\ Q . Biết rằng \Delta OPQ là tam giác đều.

    Ta có : (H):3x^{2} - 4y^{2} = 12
\Leftrightarrow \frac{x^{2}}{4} - \frac{y^{2}}{3} = 1.

    Gọi P\left( x_{0};y_{0} ight) \in (H)
\Rightarrow Q\left( x_{0}; - y_{0} ight) (Do (H) đối xứng với nhau qua Ox)

    \Delta OPQ đều \Leftrightarrow OP = PQ

    \Leftrightarrow 4y_{0}^{2} = x_{0}^{2} +
y_{0}^{2} \Leftrightarrow x_{0}^{2} = 3y_{0}^{2}. Thay vào (H) ta có:

    9x_{0}^{2} - 4y_{0}^{2} = 12
\Leftrightarrow \left\lbrack \begin{matrix}
y_{0} = \frac{2\sqrt{15}}{5} \\
y_{0} = - \frac{2\sqrt{15}}{5} \\
\end{matrix} ight. \Rightarrow
x_{0} = \pm \frac{6\sqrt{5}}{5}.

    Vậy P\left(
\frac{6\sqrt{5}}{5};\frac{2\sqrt{15}}{5} ight), Q\left( \frac{6\sqrt{5}}{5}; -
\frac{2\sqrt{15}}{5} ight).

  • Câu 24: Vận dụng

    Trong mặt phẳng hệ tọa độ Oxy, cho đường tròn (C):x^{2} + y^{2} + 2x - 6y + 5 = 0. Viết phương trình tiếp tuyến của đường tròn (C), biết rằng tiếp tuyến đó song song với đường thẳng \Delta:x + 2y - 15 =
0?

    Ta có: Phương trình đường tròn có tâm I(
- 1;3) và bán kính R = \sqrt{1 + 9
- 5} = \sqrt{5}

    Gọi d là đường thẳng song song với đường thẳng \Delta:x + 2y - 15 = 0 khi đó:

    d:x + 2y - m = 0;(m eq
15)

    Đường thẳng d là tiếp tuyến của đường tròn khi và chỉ khi

    d(I;d) = R \Leftrightarrow \frac{| - 1 +
6 - m|}{\sqrt{1 + 4}} = \sqrt{5}

    \Leftrightarrow |m - 5| = 5
\Leftrightarrow \left\lbrack \begin{matrix}
m - 5 = 5 \\
m - 5 = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 10 \\
m = 0 \\
\end{matrix} ight.

    Vậy có hai tiếp tuyến của đường tròn thỏa mãn yêu cầu bài toán là: x + 2y = 0;x + 2y - 10 = 0

  • Câu 25: Thông hiểu

    Lập phương trình chính tắc của elip biết độ dài trục lớn hơn độ dài trục nhỏ 4 đơn vị, độ dài trục nhỏ hơn độ dài tiêu cự 4 đơn vị.

    Elip (E) có độ dài trục lớn hơn độ dài trục nhỏ 4 đơn vị \overset{}{ightarrow}2a - 2b = 4.

    Elip (E) có độ dài trục nhỏ hơn độ dài tiêu cự 4 đơn vị \overset{}{ightarrow}2b - 2c = 4.

    Ta có

    \left\{ \begin{matrix}
a - b = 2 \\
b - c = 2 \\
a^{2} = b^{2} + c^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a - b = 2 \\
a^{2} = b^{2} + (b - 2)^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = b + 2 \\
(b + 2)^{2} = 2b^{2} - 4b + 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = b + 2 \\
b^{2} - 8b = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 10 \\
b = 8 \\
\end{matrix} ight.

    Phương trình chính tắc của Elip là (E):\frac{x^{2}}{100} + \frac{y^{2}}{64} =
1.

  • Câu 26: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:4x - 7y + m = 0 và hai điểm A(1;2), B( -
3;4). Tìm tất cả các giá trị của tham số m để d và đoạn thẳng AB có điểm chung.

    Đoạn thẳng ABd:4x - 7y + m = 0 có điểm chung khi và chỉ khi hai điểm A\ ;\ B nằm khác phía so với đường thẳng d. Ta có:

    \left( 4x_{A} - 7y_{A} + m ight)\left(
4x_{B} - 7y_{B} + m ight) \leq 0

    \Leftrightarrow (m - 10)(m - 40) \leq 0
\Leftrightarrow 10 \leq m \leq 40.

  • Câu 27: Nhận biết

    Đường elip \frac{x^{2}}{16} + \frac{y^{2}}{7} = 1 có tiêu cự bằng

    Ta có: a^{2} = 16, b^{2} = 7 nên c^{2} = a^{2} - b^{2} = 9 \Rightarrow c =
3.

    Tiêu cự của elip là 2c = 6.

  • Câu 28: Vận dụng

    Đường tròn ngoại tiếp hình chữ nhật cơ sở của hypebol \frac{x^{2}}{4} - y^{2} =
1 có có phương trình là:

    Ta có: \left\{ \begin{matrix}
a^{2} = 4 \\
b^{2} = 1 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = 1 \\
\end{matrix} ight.. Tọa độ các đỉnh hình chữ nhật cở sở là (2;1), (2; - 1), ( -
2;1), ( - 2; - 1). Dường tròn ngoại tiếp hình chữ nhật cơ sở có tâm O(0;0) bán kính R = \sqrt{5}.

    Phương trình đường tròn là x^{2} + y^{2}
= 5.

  • Câu 29: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có điểm A( - 4;8). Gọi B' đối xứng với điểm B qua C, điểm I(5;
- 4) là hình chiếu vuông góc của B lên đường thẳng B'D. Biết rằng tọa độ điểm C(a;b) thuộc đường thẳng (d):2x + y + 5 = 0. Khi đó:

    Ta có: ADB’C là hình bình hành => AC // B’D

    BI\bot B'D \Rightarrow AC\bot
BI

    Tam giác BB’I vuông cân tại I => BC = CI

    => ACID là hình thang cân => \Delta
ADC = \Delta CIA \Rightarrow AI\bot CI

    => CI đi qua điểm I(5; - 4) và có vecto pháp tuyến \frac{1}{3}\overrightarrow{AI} = \frac{1}{3}(9; -
12) = (3; - 4)

    Phương trình CI: 3x - 4y - 31 =
0

    \Rightarrow C = d \cap CI \Rightarrow
C(1; - 7) \Rightarrow a - b = 8

  • Câu 30: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):16x^{2} + 16y^{2} + 16x - 8y - 11 = 0 là:

    (C):16x^{2} + 16y^{2} + 16x - 8y - 11 =
0 \Leftrightarrow x^{2} + y^{2} + x - \frac{1}{2}y - \frac{11}{16} =
0.

    ightarrow \left\{ \begin{matrix}
I\left( - \frac{1}{2};\frac{1}{4} ight) \\
R = \sqrt{\frac{1}{4} + \frac{1}{16} + \frac{11}{16}} = 1. \\
\end{matrix} ight.

  • Câu 31: Nhận biết

    Cho parabol (P) có phương trình chính tắc là y^{2}=2px, với p > 0. Khi đó khẳng định nào sau đây sai?

    Đáp án sai: Trục đối xứng của parabol là trục Oy. Đáp án đúng là trục Ox mới là trục đối xứng.

  • Câu 33: Thông hiểu

    Viết phương trình tham số của đường thẳng \Delta đi qua điểm B(5;4) và vuông góc với đường thẳng d:x - 2y + 5 = 0?

    d\bot\Delta nên vectơ chỉ phương của đường thẳng d là vectơ pháp tuyến của \Delta

    \overrightarrow{u_{d}} =
\overrightarrow{n_{\Delta}} = (2;1)

    Đường thẳng \Delta có vectơ pháp tuyến là: \overrightarrow{n} =
(2;1) và đi qua điểm B(5;4) là:

    2(x - 5) + 1(y - 4) = 0

    \Leftrightarrow 2x + y - 14 =
0.

  • Câu 34: Vận dụng

    Cho tam giác ABC có phương trình các cạnh AB;AC lần lượt là 5x - 2y + 6 = 0,4x + 7y - 21 = 0 và trực tâm H(1;1). Phương trình tổng quát của cạnh BC là:

    Ta có: A = AB \cap AC nên tọa độ điểm A là nghiệm hệ phương trình:

    \left\{ \begin{matrix}
5x - 2y + 6 = 0 \\
4x + 7y - 21 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 3 \\
\end{matrix} ight.

    \Rightarrow A(0;3) \Rightarrow
\overrightarrow{AH} = (1; - 2)

    Ta có BH\bot AC \Rightarrow BH:7x - 4y +
a = 0

    Điểm H \in BH \Leftrightarrow 7 - 4 + a =
0 \Leftrightarrow a = - 3

    \Rightarrow BH:7x - 4y - 3 =
0

    Ta có: B = AB \cap BH nên tọa độ điểm B là nghiệm hệ phương trình:

    \left\{ \begin{matrix}5x - 2y + 6 = 0 \\7x - 4y - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - 5 \\y = - \dfrac{19}{2} \\\end{matrix} ight.

    \Rightarrow B\left( - 5; - \frac{19}{2}
ight)

    Đường thẳng BC đi qua điểm B nhận \overrightarrow{AH} làm vecto pháp tuyến có phương trình là:

    x + 5 - 2\left( x + \frac{19}{2} ight)
= 0 \Leftrightarrow x - 2y - 14 = 0

  • Câu 35: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d_{1}:5x + 3y - 3 = 0d_{2}:5x + 3y + 7 = 0 song song nhau. Đường thẳng vừa song song và cách đều với d_{1},\ d_{2} là:

    d\left( M(x;y);d_{1} ight) = d\left(M(x;y);d_{2} ight)

    \Leftrightarrow \frac{|5x + 3y - 3|}{\sqrt{34}} =\frac{|5x + 3y + 7|}{\sqrt{34}} \Leftrightarrow 5x + 3y + 2 =0.

  • Câu 36: Vận dụng

    Cho đường thẳng (\Delta):x + (a - 1)y - a = 0 và đường tròn (C):x^{2} + y^{2} - 2x + 4y + 2 =
0. Tìm điều kiện của tham số a để (d) tiếp xúc với (C)?

    Đường tròn (C) có tâm I(1; - 2) và bán kính R = \sqrt{1^{2} + 2^{2} - 2} =
\sqrt{3}

    Để đường thẳng (\Delta)là tiếp tuyến của đường tròn (C) thì

    d(I;\Delta) = R \Leftrightarrow
\frac{\left| 1 - 2(a - 1) - a ight|}{\sqrt{1 + (a - 1)^{2}}} =
\sqrt{3}

    \Leftrightarrow \frac{|3 -
3a|}{\sqrt{a^{2} - 2a + 2}} = \sqrt{3}

    \Leftrightarrow |3 - 3a| =
\sqrt{3}.\sqrt{a^{2} - 2a + 2}

    \Leftrightarrow (3 - 3a)^{2} = 3a^{2} -
6a + 6

    \Leftrightarrow 2a^{2} - 4a + 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}a = 1 + \dfrac{1}{\sqrt{2}} \\a = 1 - \dfrac{1}{\sqrt{2}} \\\end{matrix} ight.

    Vậy a = 1 \pm \frac{1}{\sqrt{2}} thỏa mãn yêu cầu bài toán.

  • Câu 37: Nhận biết

    Đường tròn (C):x^{2} + y^{2} - 6x + 2y + 6 = 0 có tâm I và bán kính R lần lượt là:

    Ta có:\begin{matrix}
(C):x^{2} + y^{2} - 6x + 2y + 6 = 0 ightarrow a = \frac{- 6}{- 2} =
3,\ \ b = \frac{2}{- 2} = - 1,\ \ c = 6 \\
ightarrow I(3; - 1),\ R = \sqrt{3^{2} + ( - 1)^{2} - 6} = 2.\  \\
\end{matrix}

  • Câu 38: Nhận biết

    Elip (E):\frac{x^{2}}{16}+y^{2}=4 có tổng độ dài trục lớn và trục bé bằng:

     Ta có: a^2=16,b^2=1 \Rightarrow a=4,b=1.

    Tổng độ dài trục lớn và bé là: 2a+2b=10.

  • Câu 39: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA(1;2),B(2; - 1),C(0;1). Phương trình đường thẳng chứa trung tuyến kẻ từ đỉnh B của tam giác ABC là:

    Gọi I là trung điểm của AC. Ta có: I\left( \frac{1}{2};\frac{3}{2}
ight)

    Đường trung tuyến BI đi qua điểm B và nhận \overrightarrow{BI} = \left( -
\frac{3}{2};\frac{5}{2} ight) làm vectơ chỉ phương nên có vectơ pháp tuyến \overrightarrow{n} =
(5;3).

    Phương trình tổng quát của đường thẳng BI là:

    5(x - 2) + 3(y + 1) = 0

    \Leftrightarrow 5x + 3y - 7 =
0

    Vậy phương trình tổng quát của đường thẳng cần tìm là 5x + 3y - 7 =
0.

  • Câu 40: Nhận biết

    Đường thẳng nào sau đây vuông góc với đường thẳng 4x - 3y + 1 = 0 ?

    Kí hiệu d:4x - 3y + 1 = 0 ightarrow
{\overrightarrow{n}}_{d} = (4; - 3).

    (i) Xét đáp án d_{1}:\left\{
\begin{matrix}
x = 4t \\
y = - 3 - 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{1} = (3;4)
ightarrow {\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{d} =
0 nên chọn đáp án này.

    (ii) Tương tự kiểm tra và loại các đáp án còn lại.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo