Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho phương trình {x^2} + {y^2} - 2ax - 2by + c = 0 (1). Điều kiện để (1) là phương trình đường tròn là:

    Điều kiện để phương trình {x^2} + {y^2} - 2ax - 2by + c = 0 là phương trình đường tròn là:

    {a^2} + {b^2} - c > 0

  • Câu 2: Thông hiểu

    Phương trình tiếp tuyến của đường tròn (C):(x - 2)^{2} + (y + 3)^{2} = 5 tại điểm N( - 3;1) là:

    Đường tròn (C) có tâm I(2; -
3)

    Phương trình tiếp tuyến của (C) tại điểm N( - 3;1) là:

    (3 - 2)(x - 3) + ( - 1 + 3)(y + 1) =
0

    \Leftrightarrow x + 2y - 1 =
0

    Vậy phương trình tiếp tuyến của đường tròn tại N( - 3;1) là: x + 2y - 1 = 0

  • Câu 3: Nhận biết

    Cho parabol (P) có phương trình chính tắc là y^{2}=2px, với p > 0. Khi đó khẳng định nào sau đây sai?

    Đáp án sai: Trục đối xứng của parabol là trục Oy. Đáp án đúng là trục Ox mới là trục đối xứng.

  • Câu 4: Nhận biết

    Cho elip (E):4x^{2} + 5y^{2} = 20. Diện tích hình chữ nhật cơ sở của (E)

    (E):4x^{2} + 5y^{2} = 20 \Leftrightarrow
\frac{x^{2}}{5} + \frac{y^{2}}{4} = 1

    Độ dài trục lớn: 2a =
2\sqrt{5}.

    Độ dài trục bé: 2b = 2.2 =
4.

    Diện tích hình chữ nhật cơ sở của (E) là: 2\sqrt{5}.4 = 8\sqrt{5}.

  • Câu 5: Vận dụng

    Viết phương trình tiếp tuyến của đường tròn (C):(x - 2)^{2} + (y - 1)^{2} = 25, biết tiếp tuyến song song với đường thẳng d:4x + 3y + 14 = 0.

    Đường tròn (C) có tâm I(2;1),\ R =
5 và tiếp tuyến có dạng

    \Delta:4x + 3y + c = 0\ \ \left(ceq14 ight).

    Ta có R = d\lbrack I;\Deltabrack
\Leftrightarrow \frac{|c + 11|}{5} = 5 \Leftrightarrow \left\lbrack
\begin{matrix}
c = 14\ (l) \\
c = - 36 \\
\end{matrix} ight.\ .

  • Câu 6: Thông hiểu

    Phương trình chính tắc của Elip có độ dài trục lớn bằng 8, độ dài trục nhỏ bằng 6 là:

    + Phương trình Elip dạng: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1,a
> b > 0.

    + Do có độ dài trục lớn bằng 8 = 2a
\Rightarrow a = 4.

    + Do có độ dài trục nhỏ bằng 6 = 2b
\Rightarrow b = 3.

    + Suy ra phương trình là \frac{x^{2}}{16}
+ \frac{y^{2}}{9} = 1.

  • Câu 7: Vận dụng

    Tìm tất cả các giá trị của tham số m để hai đường thẳng d_{1}:4x + 3my–m^{2} = 0d_{2}:\left\{ \begin{matrix}
x = 2 + t \\
y = 6 + 2t \\
\end{matrix} ight. cắt nhau tại một điểm thuộc trục tung.

    Oy \cap d_{2} \leftrightarrow \left\{
\begin{matrix}
x = 2 + t = 0 \\
y = 6 + 2t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 2 \\
\end{matrix} ight.\  ightarrow Oy \cap d_{2} = A(0;2) \in
d_{1}

    \Leftrightarrow
6m - m^{2} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
m = 0 \\
m = 6 \\
\end{matrix} ight.\ .

  • Câu 8: Nhận biết

    Cho hình elip có độ dài trục lớn và độ dài trục nhỏ lần lượt bằng 6 và 0. Viết phương trình elip.

    Ta có: \left\{ \begin{matrix}
2a = 6 \Rightarrow a = 3 \\
2b = 4 \Rightarrow b = 2 \\
\end{matrix} ight.

    Phương trình elip là: \frac{x^{2}}{9} +
\frac{y^{2}}{4} = 1

  • Câu 9: Nhận biết

    Cho đường thẳng 2x + y - 3 = 0. Điểm nào dưới đây thuộc đường thẳng đã cho?

    Thay x = 0 vào đường thẳng 2x + y - 3 = 0 suy ra y = 3

    Vậy điểm N(0;3) thuộc đường thẳng 2x + y - 3 = 0.

  • Câu 10: Nhận biết

    Cho hai đường thẳng \Delta_1\Delta_2 có phương trình lần lượt là ax + by + c = 0dx + ey + f = 0. Xét hệ \left\{\begin{matrix}ax+by+c=0\\ dx+ey+f=0\end{matrix}ight.. Khi đó hai đường cắt nhau khi và chỉ khi:

     Hai đường thẳng cắt nhau khi hệ có nghiệm duy nhất.

  • Câu 11: Thông hiểu

    Cho phương trình Elip \frac{x^{2}}{16}+\frac{y^{2}}{4}=1. Tọa độ đỉnh A_1B_1 của Elip đó là:

    Ta có: \frac{x^{2}}{16}+\frac{y^{2}}{4}=1 => a = 4; b = 2

    => Tọa độ các đỉnh của elip là: {A_1}\left( { - 4;0} ight);{B_1}\left( {0; - 2} ight)

  • Câu 12: Vận dụng

    Đường thẳng \Delta tạo với đường thẳng d:x + 2y - 6 = 0 một góc 45^{0}. Tìm hệ số góc k của đường thẳng \Delta.

    d:x + 2y - 6 = 0 ightarrow
{\overrightarrow{n}}_{d} = (1;2), gọi {\overrightarrow{n}}_{\Delta} = (a;b) ightarrow
k_{\Delta} = - \frac{a}{b}. Ta có:

    \frac{1}{\sqrt{2}} = cos45^{\circ} =
\frac{|a + 2b|}{\sqrt{a^{2} + b^{2}}.\sqrt{5}} \Leftrightarrow 5\left(
a^{2} + b^{2} ight) = 2a^{2} + 8ab + 8b^{2}

    \Leftrightarrow 3a^{2} - 8ab - 3b^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = - \frac{1}{3}b ightarrow k_{\Delta} = \frac{1}{3} \\
a = 3b ightarrow k_{\Delta} = - 3 \\
\end{matrix} ight.\ .

  • Câu 13: Thông hiểu

    Cho đường tròn (C):x^{2} + y^{2} - 4x - 6y - 12 = 0 và đường thẳng d:3x + 4y - 6 = 0. Tìm phương trình tiếp tuyến của (C) song song với đường thẳng d?

    Ta có: Phương trình đường tròn (C) có tâm I(2; 3) bán kính R = 5

    Phương trình đường thẳng \Delta_{1} song song với d có dạng 3x + 4y + c_{1} = 0

    \Delta_{1} tiếp xúc với (C) nên d\left( I;\Delta_{1} ight) = R

    Hay \frac{\left| 3.2 + 4.3 + c_{1}
ight|}{\sqrt{3^{2} + 4^{2}}} = 5 \Leftrightarrow \left| 18 + c_{1}
ight| = 25

    \Leftrightarrow \left\lbrack
\begin{matrix}
18 + c_{1} = 25 \\
18 + c_{1} = - 25 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
c_{1} = 7 \\
c_{1} = - 43 \\
\end{matrix} ight.

    Vậy phương trình tiếp tuyến của (C) song song với (d) là: 3x +
4y + 7 = 0 hoặc 3x + 4y - 43 =
0.

  • Câu 14: Thông hiểu

    Phương trình tham số của đường thẳng đi qua hai điểm C(1; - 1),D(2;5) là:

    Gọi d là đường thẳng qua C và nhận \overrightarrow{u} = \overrightarrow{CD} =
(0;6) làm vectơ chỉ phương.

    Khi đó phương trình tham số của đường thẳng d là: \left\{ \begin{matrix}
x = 2 \\
y = - 1 + 6t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 15: Vận dụng

    Cho Hyperbol (H):\frac{x^{2}}{4} - y^{2} = 1. Tìm điểm M trên (H) sao cho khoảng cách từ M đến đường thẳng \Delta:y = x + 1 đạt giá trị nhỏ nhất.

    Gọi M\left( x_{0};y_{0} ight) \in
(H). Phương trình tiếp tuyến của (H) tại Md:\frac{x.x_{0}}{4} - y.y_{0} = 1.

    \Delta//d khi \frac{\frac{x_{0}}{4}}{1} = \frac{- y_{0}}{- 1}
\Rightarrow y_{0} = \frac{x_{0}}{4} thay vào (H) ta có:

    \frac{x_{0}^{2}}{4} - \left(
\frac{x_{0}}{4} ight)^{2} = 1 \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = \frac{4}{\sqrt{3}} ightarrow y_{0} = \frac{1}{\sqrt{3}} \\
x_{0} = - \frac{4}{\sqrt{3}} ightarrow y_{0} = - \frac{1}{\sqrt{3}} \\
\end{matrix} ight..

    Với M\left(
\frac{4}{\sqrt{3}};\frac{1}{\sqrt{3}} ight) ta có : d(M, \bigtriangleup ) = \frac{1 +
\sqrt{3}}{\sqrt{2}}.

    Với M\left( - \frac{4}{\sqrt{3}}; -
\frac{1}{\sqrt{3}} ight) ta có : d(M, \bigtriangleup ) = \frac{\sqrt{3} -
1}{\sqrt{2}}.

  • Câu 16: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:2x + y + 4 - m = 0d_{2}:(m + 3)x + y + 2m - 1 = 0 song song?

    Với m = 4\overset{}{ightarrow}\left\{\begin{matrix}d_{1}:2x + y = 0 \\d_{2}:7x + y + 7 = 0 \\\end{matrix} ight.\ \overset{}{ightarrow}d_{1} \cap d_{2}eq \varnothing\overset{}{ightarrow} loại m = 4.

    Với meq 4 thì

    \left\{ \begin{matrix}d_{1}:2x + y + 4 - m = 0 \\d_{2}:(m + 3)x + y - 2m - 1 = 0 \\\end{matrix} ight.\ \overset{d_{1}||d_{2}}{ightarrow}\frac{m + 3}{2}= \frac{1}{1}eq \frac{- 2m - 1}{4 - m}

    \Leftrightarrow \left\{ \begin{matrix}m = - 1 \\meq  - 5 \\\end{matrix} ight.\  \Leftrightarrow m = - 1.

  • Câu 17: Nhận biết

    Một đường thẳng có bao nhiêu vectơ chỉ phương?

    Một đường thẳng có vô số vectơ chỉ phương.

  • Câu 18: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho ba đường thẳng lần lượt có phương trình tổng quát d_{1}:3x - 4y + 15 =
0, d_{2}:5x + 2y - 1 = 0d_{3}:mx - (2m - 1)y + 9m - 13 =
0. Tìm m để ba đường thẳng đã cho cùng đi qua một điểm.

    Ta có: \left\{ \begin{matrix}
d_{1}:3x - 4y + 15 = 0 \\
d_{2}:5x + 2y - 1 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 3 \\
\end{matrix} ight. ightarrow
d_{1} \cap d_{2} = A( - 1;3) \in d_{3}

    ightarrow - m - 6m + 3 + 9m - 13 = 0
\Leftrightarrow m = 5.

  • Câu 19: Thông hiểu

    Cho hypebol (H): 4x^{2} – y^{2} = 1. Khẳng định nào sau đây đúng?

    Ta có:

    \begin{matrix}  4{x^2} - {y^2} = 1 \hfill \\   \Leftrightarrow \dfrac{{{x^2}}}{{\dfrac{1}{4}}} - \dfrac{{{y^2}}}{1} = 1 \hfill \\   \Leftrightarrow \dfrac{{{x^2}}}{{{{\left( {\dfrac{1}{2}} ight)}^2}}} - \dfrac{{{y^2}}}{1} = 1 \hfill \\   \Rightarrow a = \dfrac{1}{2};b = 1 \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \dfrac{{\sqrt 5 }}{2} \hfill \\ \end{matrix}

    Vậy Hypebol (H) có tiêu cự 2c = \sqrt 5  e \frac{{\sqrt 5 }}{2}

    => Hai tiêu điểm của (H) là: {F_1} = \left( { - \frac{{\sqrt 5 }}{2};0} ight);{F_2} = \left( {\frac{{\sqrt 5 }}{2};0} ight)

    Ta có trục thực là: {A_1}{A_2} = 2a = 2.\frac{1}{2} = 1

    Trục ảo là: 2b = 2.1 = 2 e \frac{1}{2}

    Vậy khẳng định đúng là:" Hypebol có trục thực bằng 1".

  • Câu 20: Thông hiểu

    Trong mặt phẳng Oxy, cho Parabol (P): y^{2} =
8x có tiêu điểm F. Tìm trên (P) điểm M cách F một khoảng là 3.

    Giả sử M\left( x_{M}\ ;\ y_{M} ight)
\in (P). Suy ra {y_{M}}^{2} =
8x_{M}. (1)

    Từ phương trình y^{2} = 8x suy ra p = 4 nên F(2\ ;\ 0).

    Ta có: FM = \frac{p}{2} + x_{M}. Suy ra x_{M} = 1. Kết hợp (1) ta có: y_{M} = \pm 2\sqrt{2}.

    Vậy có hai điểm M\left( 1\ ;\ 2\sqrt{2}
ight) hoặc M\left( 1\ ;\  -
2\sqrt{2} ight)thỏa mãn.

  • Câu 22: Vận dụng

    Đường tròn (C) đi qua hai điểm 4x^{2} + y^{2} - 10x - 6y - 2 = 0. và tiếp xúc với đường thẳng \Delta:3x + y - 3 =
0. Viết phương trình đường tròn (C), biết tâm của (C) có tọa độ là những số nguyên.

    AB:x - y + 1 = 0, đoạn AB có trung điểm M(2;3) ightarrowtrung trực của đoạn AB là d:x + y - 5 = 0
ightarrow I(a;5 - a),\ \ a\mathbb{\in Z}.

    Ta có: R = IA = d\lbrack I;\Deltabrack
= \sqrt{(a - 1)^{2} + (a - 3)^{2}} = \frac{|2a +
2|}{\sqrt{10}}

    \Leftrightarrow a = 4 ightarrow
I(4;1),\ R = \sqrt{10}.

    Vậy phương trình đường tròn là: (x -
4)^{2} + (y - 1)^{2} = 10 \Leftrightarrow x^{2} + y^{2} - 8x - 2y + 7 =
0.

  • Câu 23: Nhận biết

    Hypebol có nửa trục thực là 4, tiêu cự bằng 10 có phương trình chính tắc là:

    Ta có : \left\{ \begin{matrix}
a = 4 \\
2c = 10 \\
b^{2} = c^{2} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 4 \\
c = 5 \\
b = 3 \\
\end{matrix} ight.\ .

    Phương trình chính tắc của Hyperbol là \frac{x^{2}}{16} - \frac{y^{2}}{9} =
1.

  • Câu 24: Nhận biết

    Viết phương trình tiếp tuyến của đường tròn (C):(x – 2)^{2} + (y + 3)^{2} = 5 tại điểm M(3;-1).

     Tâm I(2;-3).

    Phương trình tiếp tuyến tại M(3;-1) là:

    (3 - 2)(x - 3) + ( - 1 + 3)(y + 1) = 0 \Leftrightarrow x + 2y - 1 = 0.

  • Câu 25: Nhận biết

    Cho đường thẳng (\Delta):3x + 4y - 4 = 0 và tọa độ điểm C(1; - 1). Tính d(C;\Delta)?

    Ta có khoảng cách từ điểm C đến đường thẳng (\Delta):3x + 4y - 4 = 0 là:

    d(C;\Delta) = \frac{\left| 3.1 + 4.( -
1) - 4 ight|}{\sqrt{3^{2} + 4^{2}}} = \frac{5}{5} = 1

    Vậy khoảng cách cần tìm bằng 1.

  • Câu 26: Vận dụng

    Ông Hoàng có một mảnh vườn hình Elip có chiều dài trục lớn và trục nhỏ lần lượt là 60m30m. Ông chia mảnh vườn ra làm hai nửa bằng một đường tròn tiếp xúc trong với Elip để làm mục đích sử dụng khác nhau (xem hình vẽ). Nửa bên trong đường tròn ông trồng cây lâu năm, nửa bên ngoài đường tròn ông trồng hoa màu. Tính tỉ số diện tích T giữa phần trồng cây lâu năm so với diện tích trồng hoa màu. Biết diện tích hình Elip được tính theo công thức S = \pi
ab, với a, b lần lượt là nửa độ dài trục lớn và nửa độ dài trục nhỏ. Biết độ rộng của đường Elip là không đáng kể.

    Theo đề ta có: Diện tích (E)là: S_{(E)} = \pi.a.b = 30.15.\pi = 450\pi,\
\left( m^{2} ight)

    Vì đường tròn tiếp xúc trong, nên sẽ tiếp xúc tại đỉnh của trục nhỏ, suy ra bán kính đường tròn: R =
15m. Diện tích hình tròn (C)phần trồng cây lâu năm là: S_{(C)} = \pi.R^{2} = 15^{2}.\pi = 225\pi,\ \left(
m^{2} ight)

    Suy ra diện tích phần trồng hoa màu là: S
= S_{(E)} - S_{(C)} = 225\pi,\ \left( m^{2} ight) \Rightarrow T =
1.

  • Câu 27: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh ABx - y -
2 = 0, phương trình cạnh ACx + 2y
- 5 = 0. Biết trọng tâm của tam giác là điểm G(3;2) và phương trình đường thẳng BC có dạng x
+ my + n = 0. Tính giá trị biểu thức S = m + n.

    Tọa độ điểm A là nghiệm của hệ phương trình \left\{ \begin{matrix}
x - y - 2 = 0 \\
x + 2y - 5 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = 1 \\
\end{matrix} ight.\  \Leftrightarrow A(3;1)

    Ta có B\left( x_{B};x_{B} - 2
ight);C\left( x_{C};\frac{- x_{C} + 5}{2} ight)

    Gọi M\left( x_{0};y_{0} ight) là trung điểm của BC thì 2\overrightarrow{GM} =
\overrightarrow{AG} nên

    \left\{ \begin{matrix}
2\left( x_{0} - 3 ight) = 0 \\
2\left( y_{0} - 2 ight) = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{0} = 3 \\
y_{0} = \frac{5}{2} \\
\end{matrix} ight.

    Mặt khác \left\{ \begin{matrix}x_{B} + x_{C} = 2x_{0} \\x_{B} - 2 + \dfrac{- x_{C} + 5}{2} = 2y_{0} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{B} + x_{C} = 6 \\2x_{B} - x_{C} = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{B} = 5 \\
x_{C} = 1 \\
\end{matrix} ight.\  \Rightarrow B(5;3),C(1;2)

    \Rightarrow \overrightarrow{BC} = ( - 4;
- 1)

    Suy ra một vectơ pháp tuyến của BC là \overrightarrow{n} = (1; - 4)

    Suy ra phương trình đường thẳng BC là

    1(x - 5) - 4(y - 3) = 0

    \Leftrightarrow x - 4y + 7 =
0

    Suy ra m = - 4;n = 7 \Rightarrow S =
3

  • Câu 28: Thông hiểu

    Cho đường tròn (C):x^{2} + y^{2} + 5x + 7y - 3 = 0. Tính khoảng cách từ tâm của (C) đến trục Ox.

    (C):x^{2} + y^{2} + 5x + 7y - 3 = 0
ightarrow I\left( - \frac{5}{2}; - \frac{7}{2} ight)

    ightarrow d\lbrack I;Oxbrack = \left|
- \frac{7}{2} ight| = \frac{7}{2}.

  • Câu 29: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:3x - 2y - 6 = 0d_{2}:6x - 2y - 8 = 0.

    \left\{ \begin{matrix}
d_{1}:3x - 2y - 6 = 0 ightarrow {\overrightarrow{n}}_{1} = (3; - 2) \\
d_{2}:6x - 2y - 8 = 0 ightarrow {\overrightarrow{n}}_{2} = (6; - 2) \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
\frac{3}{6}\boxed{=}\frac{- 2}{- 2} \\
{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2}\boxed{=}0 \\
\end{matrix} ight.\ \overset{ightarrow}{}d_{1},\ \ d_{2} cắt nhau nhưng không vuông góc.

  • Câu 30: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):(x + 1)^{2} + y^{2} = 8 là:

    (C):(x + 1)^{2} + y^{2} =
8\overset{}{ightarrow}I( - 1;0),\ R = \sqrt{8} =
2\sqrt{2}.

  • Câu 31: Nhận biết

    Đường tròn có tâm trùng với gốc tọa độ, bán kính R = 1 có phương trình là:

    (C):\left\{ \begin{matrix}
I(0;0) \\
R = 1 \\
\end{matrix} ight.\  ightarrow (C):x^{2} + y^{2} = 1.

  • Câu 32: Thông hiểu

    Cho hai điểm A(4; 0), B(0; 5). Phương trình nào sau đây không phải là phương trình của đường thẳng AB?

    Với A(4; 0), B(0; 5) ta có: \overrightarrow {AB}  = \left( { - 4;5} ight)

    Đường thẳng AB là đường thẳng đi qua hai điểm A và B, do đó nhận \overrightarrow {AB}  = \left( { - 4;5} ight) làm vectơ chỉ phương.

    Khi đó đường thẳng AB nhận \overrightarrow n  = \left( {5;4} ight) làm vectơ pháp tuyến.

    Đường thẳng AB đi qua điểm A(4; 0), có vectơ pháp tuyến \overrightarrow n  = \left( {5;4} ight) nên có phương trình tổng quát là: 5\left( {x-4} ight) + 4\left( {y-0} ight) = 0

    \begin{matrix}   \Leftrightarrow 5x + 4y-20 = 0 \hfill \\   \Leftrightarrow 4y = -5x + 20 \hfill \\   \Leftrightarrow y = \dfrac{{ - 5}}{4}x + 5 \hfill \\ \end{matrix}

    Do đó phương trình ở phương án y=\frac{-5}{4}x+15 không phải phương trình AB.

    Đường thẳng AB đi qua hai điểm A(4; 0), B(0; 5) nên có phương trình đoạn chắn của là: \frac{x}{4}+\frac{y}{5}=1

    Do đó phương án \frac{x}{4}+\frac{y}{5}=1 đúng.

    Phương trình đường thẳng AB đi qua hai điểm A(4; 0), B(0; 5) là: 

    \frac{{x - 4}}{{0 - 4}} = \frac{{y - 0}}{{5 - 0}} \Leftrightarrow \frac{{x - 5}}{{ - 4}} = \frac{y}{5}

    Do đó phương án \frac{x-4}{-4}=\frac{y}{5} đúng.

    Đường thẳng AB đi qua điểm A(4; 0), có vectơ chỉ phương \overrightarrow {AB}  = \left( { - 4;5} ight) nên có phương trình tham số là: \left\{\begin{matrix}x=4-4t\\ y=5t\end{matrix}ight. (t ∈ R)

    Do đó phương án \left\{\begin{matrix}x=4-4t\\ y=5t\end{matrix}ight.(t ∈ R) đúng.

  • Câu 33: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d:x - 2y + 3 = 0. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng d?

    Ta có: Vectơ pháp tuyến của đường thẳng \Delta là: \overrightarrow{n}(1; - 2).

  • Câu 34: Thông hiểu

    Phương trình tổng quát của đường thẳng \Delta đi qua điểm A(5;4) và có vectơ pháp tuyến \overrightarrow{n}(11; - 12) là:

    Đường thẳng \Delta đi qua điểm A(5;4) và nhận \overrightarrow{n}(11; - 12) là vectơ pháp tuyến có phương trình tổng quát là:

    11(x - 5) - 12(y - 4) = 0

    \Leftrightarrow 11x - 12y - 7 =
0

    Vậy phương trình tổng quát của đường thẳng là 11x - 12y - 7 =
0.

  • Câu 35: Nhận biết

    Tìm giá trị tham số m để đường thẳng \left( d_{1} ight):2x + y + 4 = 0 song song với đường thẳng \left( d_{2} ight):(m
- 3)x + y - 1 = 0?

    Để hai đường thẳng đã cho song song với nhau thì

    \frac{m + 3}{2} = \frac{1}{1}
\Leftrightarrow m = - 1

    Vậy m = -1 thì hai đường thẳng song song với nhau.

  • Câu 36: Thông hiểu

    Hai cạnh của hình chữ nhật nằm trên hai đường thẳng d_{1}:4x - 3y + 5 = 0d_{2}:3x + 4y - 5 = 0. Hình chữ nhật có đỉnh A(2;1). Tính diện tích của hình chữ nhật.

    Đáp án: 2

    Đáp án là:

    Hai cạnh của hình chữ nhật nằm trên hai đường thẳng d_{1}:4x - 3y + 5 = 0d_{2}:3x + 4y - 5 = 0. Hình chữ nhật có đỉnh A(2;1). Tính diện tích của hình chữ nhật.

    Đáp án: 2

    Ta có: \overrightarrow{n_{d_{1}}} = (4; -
3);\overrightarrow{n_{d_{2}}} = (3;4).

    Do A không thuộc hai đường thẳng d_{1};d_{2}d_{1}\bot d_{2} nên độ dài hai cạnh kề nhau của hình chữ nhật bằng khoảng cách từ A đến hai đường thẳng d_{1};d_{2}.

    Ta có:

    d\left( A;d_{1} ight) = \frac{|4.2 -
3.1 + 5|}{\sqrt{4^{2} + 3^{2}}} = 2.

    d\left( A;d_{2} ight) = \frac{|3.2 +
4.1 - 5|}{\sqrt{3^{2} + 4^{2}}} = 1.

    \Rightarrow S = d\left( A;d_{1}
ight).d\left( A;d_{2} ight) = 2.1 = 2

  • Câu 37: Thông hiểu

    Tìm tất cả các giá trị của m để hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 2 + 2t \\
y = 1 + mt \\
\end{matrix} ight.d_{2}:4x
- 3y + m = 0 trùng nhau.

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 2 + 2t \\
y = 1 + mt \\
\end{matrix} ight.\  ightarrow A(2;1) \in d_{1},\
{\overrightarrow{u}}_{1} = (2;m) \\
d_{2}:4x - 3y + m = 0 ightarrow {\overrightarrow{u}}_{2} = (3;4) \\
\end{matrix} ight\}

    \overset{d_{1} \equiv
d_{2}}{ightarrow}\left\{ \begin{matrix}
A \in d_{2} \\
\frac{2}{3} = \frac{m}{4} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
5 + m = 0 \\
m = \frac{8}{3} \\
\end{matrix} ight.\  \Leftrightarrow m \in \varnothing.

  • Câu 38: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm C(2; - 1)D(2;5).

    Ta có:

    \left\{ \begin{matrix}C(2; - 1) \in CD \\{\overrightarrow{u}}_{CD} = \overrightarrow{CD} = (0;6) \\\end{matrix} ight.\ \overset{ightarrow}{}CD:\left\{ \begin{matrix}x = 2 \\y = - 1 + 6t \\\end{matrix} ight.\ \ \ \left( t\mathbb{\in R} ight).

  • Câu 39: Nhận biết

    Tính góc tạo bởi giữa hai đường thẳng: d_1:x+\sqrt{3}y+6=0d_2: x+1 = 0.

     Ta có: \cos ({d_1},{d_2}) = \frac{{\left| {1.1 + \sqrt 3 .0} ight|}}{{\sqrt {{1^2} + {{\sqrt 3 }^2}} .\sqrt {{1^2} + {0^2}} }} = \frac 12. Suy ra góc giữa hai đường thẳng bằng 60^{\circ}.

  • Câu 40: Nhận biết

    Phương trình nào dưới đây đi qua hai điểm A(2;0),B(0; - 3) là:

    Phương trình đường thẳng đi qua hai điểm A(2;0),B(0; - 3) là: \frac{x}{2} + \frac{y}{- 3} = 1 hay \frac{x}{2} - \frac{y}{3} = 1.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo