Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho  có C(–1; 2), đường cao BH: x – y + 2 = 0, đường phân giác trong AN: 2x – y + 5 = 0. Tọa độ điểm A là:

    Ta có: BH \bot AC \Rightarrow \left( {AC} ight):x + y + c = 0

    C\left( { - 1;2} ight) \in \left( {AC} ight)

    \begin{matrix}    \Rightarrow  - 1 + 2 + c = 0 \hfill \\   \Rightarrow c =  - 1 \hfill \\ \end{matrix}

    Vậy (AC):x+y−1=0

    A=AN∩AC => A là nghiệm của hệ phương trình

    \left\{ {\begin{array}{*{20}{l}}  {x + y - 1 = 0} \\   {2x - y + 5 = 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{l}}  {x = \dfrac{{ - 4}}{3}} \\   {y = \dfrac{7}{3}} \end{array}} ight. \Rightarrow A\left( {\dfrac{{ - 4}}{3};\dfrac{7}{3}} ight)

  • Câu 2: Thông hiểu

    Tính góc tạo bởi giữa hai đường thẳng d_{1}:6x - 5y + 15 = 0d_{2}:\left\{ \begin{matrix}
x = 10 - 6t \\
y = 1 + 5t \\
\end{matrix} ight.\ .

    \left\{ \begin{matrix}
d_{1}:6x - 5y + 15 = 0 ightarrow {\overrightarrow{n}}_{1} = (6; - 5)
\\
d_{2}:\left\{ \begin{matrix}
x = 10 - 6t \\
y = 1 + 5t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (5;6) \\
\end{matrix} ight.

    ightarrow {\overrightarrow{n}}_{1}
\cdot {\overrightarrow{n}}_{2} = 0\overset{\varphi = \left( d_{1};d_{2}
ight)}{ightarrow}\varphi = 90^{\circ}.

  • Câu 3: Nhận biết

    Elip (E):\frac{x^{2}}{16}+y^{2}=4 có tổng độ dài trục lớn và trục bé bằng:

     Ta có: a^2=16,b^2=1 \Rightarrow a=4,b=1.

    Tổng độ dài trục lớn và bé là: 2a+2b=10.

  • Câu 4: Nhận biết

    Xét vị trí tương đối của hai đường thẳng \left( d_{1} ight):2x - 3y + 1 =
0\left( d_{2} ight): - 4x +
6y - 1 = 0?

    Ta có: \frac{2}{- 4} = \frac{- 3}{6} eq
\frac{1}{- 1}

    Vậy hai đường thẳng đã cho song song với nhau.

  • Câu 5: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:3x - 2y - 6 = 0d_{2}:6x - 2y - 8 = 0.

    \left\{ \begin{matrix}
d_{1}:3x - 2y - 6 = 0 ightarrow {\overrightarrow{n}}_{1} = (3; - 2) \\
d_{2}:6x - 2y - 8 = 0 ightarrow {\overrightarrow{n}}_{2} = (6; - 2) \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
\frac{3}{6}\boxed{=}\frac{- 2}{- 2} \\
{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2}\boxed{=}0 \\
\end{matrix} ight.\ \overset{ightarrow}{}d_{1},\ \ d_{2} cắt nhau nhưng không vuông góc.

  • Câu 6: Nhận biết

    Tính góc tạo bởi giữa hai đường thẳng: d_1:2x+2\sqrt{3}y+4=0d_2: y – 4 =0

     Ta có: \cos ({d_1},{d_2}) = \frac{{\left| {2.0 + 2\sqrt 3 .1} ight|}}{{\sqrt {{2^2} + {{(2\sqrt 3 )}^2}} .\sqrt {{0^2} + {1^2}} }} = \frac{{\sqrt 3 }}{2}. Suy ra góc giữa hai đường thẳng bằng 30^{\circ}.

  • Câu 7: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2} = 9 là:

    (C):x^{2} + y^{2} =
9\overset{}{ightarrow}I(0;0),\ \ R = \sqrt{9} = 3.

  • Câu 8: Nhận biết

    Cho hai đường thẳng \Delta_1\Delta_2 có phương trình lần lượt là ax + by + c = 0dx + ey + f = 0. Xét hệ \left\{\begin{matrix}ax+by+c=0\\ dx+ey+f=0\end{matrix}ight.. Khi đó hai đường cắt nhau khi và chỉ khi:

     Hai đường thẳng cắt nhau khi hệ có nghiệm duy nhất.

  • Câu 9: Nhận biết

    Một đường thẳng có bao nhiêu vectơ pháp tuyến?

     Một đường thẳng có vô số vectơ pháp tuyến.

  • Câu 10: Nhận biết

    Phương trình chính tắc của đường elip với a = 4, b = 3

    Phương trình chính tắc (E):\frac{x^{2}}{16} + \frac{y^{2}}{9} =
1.

  • Câu 11: Thông hiểu

    Khoảng cách từ giao điểm của hai đường thẳng x - 3y + 4 = 02x + 3y - 1 = 0 đến đường thẳng \Delta:3x + y + 4 = 0 bằng:

    \left\{ \begin{matrix}
x - 3y + 4 = 0 \\
2x + 3y - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 1 \\
\end{matrix} ight.\  ightarrow A( - 1;1)

    ightarrow d(A;\Delta) = \frac{| - 3 +
1 + 4|}{\sqrt{9 + 1}} = \frac{2}{\sqrt{10}}.

  • Câu 12: Thông hiểu

    Trong mặt phẳng tọa độ Oxy,cho tam giác ABC có tọa độ các điểm A(2;0),B(0;3),C( - 3;1). Đường thẳng d đi qua B và song song với AC có phương trình tổng quát là:

    Ta có: \overrightarrow{AC} = ( - 5;1)
\Rightarrow \overrightarrow{n_{AC}} = (1;5)

    Phương trình tổng quát AC là: x + 5y - 2
= 0

    Đường thẳng d song song với AC nên d có dạng x + 5y + m = 0

    Do điểm B \in d \Rightarrow 0 + 15 + m =
0 \Rightarrow m = - 15

    Vậy d:x + 5y - 15 = 0.

  • Câu 13: Thông hiểu

    Cho tọa độ hai điểm A(8;0),B(0;6). Phương trình đường tròn ngoại tiếp tam giác OAB là:

    Ta có tam giác OAB vuông tại O nên tâm I của đường tròn ngoại tiếp tam giác là trung điểm của cạnh huyền AB suy ra I(4; 3) và bán kính R = IA = \sqrt{(8 - 4)^{2} + (0 - 3)^{2}} =
5

    Vậy phương trình đường tròn ngoại tiếp tam giác OAB là: (x - 4)^{2} + (y - 3)^{2} = 25

  • Câu 14: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2} - 4x + 2y - 3 = 0 là:

    \begin{matrix}
(C):x^{2} + y^{2} - 4x + 2y - 3 = 0 ightarrow a = 2,\ b = - 1,\ c = -
3 \\
ightarrow I(2; - 1),\ R = \sqrt{4 + 1 + 3} = 2\sqrt{2}. \\
\end{matrix}

  • Câu 15: Vận dụng

    Trong mặt phẳng Oxy, cho tam giác ABC có tọa độ các điểm A(1;3),B( - 1; - 1),C(1;1). Gọi I(a;b) là tâm đường tròn ngoại tiếp tam giác ABC. Xác định giá trị biểu thức P = a + b?

    Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên IA = IB = IC \Rightarrow \left\{ \begin{matrix}
IA^{2} = IB^{2} \\
IA^{2} = IC^{2} \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
IA = \sqrt{(1 - a)^{2} + (3 - b)^{2}} \\
IB = \sqrt{( - 1 - a)^{2} + ( - 1 - b)^{2}} \\
IC = \sqrt{(1 - a)^{2} + (1 - b)^{2}} \\
\end{matrix} ight.

    Từ đó ta suy ra hệ phương trình:

    \left\{ \begin{matrix}
(1 - a)^{2} + (3 - b)^{2} = ( - 1 - a)^{2} + ( - 1 - b)^{2} \\
(1 - a)^{2} + (3 - b)^{2} = (1 - a)^{2} + (1 - b)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 4a - 8b = - 8 \\
- 4b = - 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 2 \\
b = 2 \\
\end{matrix} ight.

    \Leftrightarrow P = a + b =
0

  • Câu 16: Vận dụng

    Cho hai đường thẳng \left( d_{1} ight):x + my + 2m - 1 = 0\left( d_{2} ight):\left\{
\begin{matrix}
x = m + 2y \\
y = - 5 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) với m là tham số. Tìm giá trị của tham số m để hai đường thẳng tạo với nhau một góc bằng nửa góc vuông?

    VTPT của hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) lần lượt là \overrightarrow{n_{1}} =
(1;m);\overrightarrow{n_{2}} = (1; - 2)

    Để hai đường thẳng tạo với nhau một góc bằng 45^{0} thì

    \cos\left( \left( d_{1} ight);\left(
d_{2} ight) ight) = cos45^{0} = \frac{\sqrt{2}}{2}

    \Leftrightarrow \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight) =
\frac{\sqrt{2}}{2} \Leftrightarrow \frac{\left| 1.1 + m.( - 2)
ight|}{\sqrt{m^{2} + 1}.\sqrt{1^{2} + ( - 2)^{2}}} =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{|2m -
1|}{\sqrt{m^{2} + 1}.\sqrt{5}} = \frac{\sqrt{2}}{2} \Leftrightarrow
\frac{(2m - 1)^{2}}{5\left( m^{2} + 1 ight)} =
\frac{1}{2}

    \Leftrightarrow 2(2m - 1)^{2} = 5\left(
m^{2} + 1 ight) \Leftrightarrow 3m^{2} - 8m - 3 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}m = 3 \\m = - \dfrac{1}{3} \\\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}m = 3 \\m = - \dfrac{1}{3} \\\end{matrix} ight..

  • Câu 17: Nhận biết

    Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm O(0;0)A(1; - 3)?

    Kiểm tra đường thẳng nào không chứa O(0;0)\overset{ightarrow}{} loại.

    (Có thể kiểm tra đường thẳng nào không đi qua điểm A(1; - 3)).

  • Câu 18: Nhận biết

    Đường thẳng 12x
- 7y + 5 = 0 không đi qua điểm nào sau đây ?

    Gọi 12x - 7y + 5 = 0.

    Đặt f(x;y) = 12x - 7y +
5\overset{}{ightarrow}\left\{ \begin{matrix}
f\left( M(1;1) ight) = 10\boxed{=}0 ightarrow M\boxed{\in}d \\
f\left( N( - 1; - 1) ight) = 0 ightarrow N \in d \\
f(P) = 0,\ \ f(Q) = 0 \\
\end{matrix} ight.\ . Chọn M(1;1).

  • Câu 19: Vận dụng

    Cho hai đường thẳng d_{1}:3x + 4y + 12 = 0d_{2}:\left\{ \begin{matrix}
x = 2 + at \\
y = 1 - 2t \\
\end{matrix} ight.. Tìm các giá trị của tham số a để d_{1}d_{2} hợp với nhau một góc bằng 45^{0}.

    Ta có:

    \left\{ \begin{matrix}
d_{1}:3x + 4y + 12 = 0 ightarrow {\overrightarrow{n}}_{1} = (3;4) \\
d_{2}:\left\{ \begin{matrix}
x = 2 + at \\
y = 1 - 2t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (2;a) \\
\end{matrix} ight.

    \overset{\varphi = \left( d_{1};d_{2}
ight) = 45^{\circ}}{ightarrow}\frac{1}{\sqrt{2}} = cos45^{\circ} =
\cos\varphi = \frac{|6 + 4a|}{\sqrt{25}.\sqrt{a^{2} + 4}}

    \Leftrightarrow 25\left( a^{2} + 4
ight) = 8\left( 4a^{2} + 12a + 9 ight)

    \Leftrightarrow 7a^{2} + 96a - 28 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = - 14 \\
a = \frac{2}{7} \\
\end{matrix} ight.\ .

  • Câu 20: Thông hiểu

    Cho đường tròn (C):x^{2} + y^{2} - 4x - 6y - 12 = 0 và đường thẳng d:3x + 4y - 6 = 0. Tìm phương trình tiếp tuyến của (C) song song với đường thẳng d?

    Ta có: Phương trình đường tròn (C) có tâm I(2; 3) bán kính R = 5

    Phương trình đường thẳng \Delta_{1} song song với d có dạng 3x + 4y + c_{1} = 0

    \Delta_{1} tiếp xúc với (C) nên d\left( I;\Delta_{1} ight) = R

    Hay \frac{\left| 3.2 + 4.3 + c_{1}
ight|}{\sqrt{3^{2} + 4^{2}}} = 5 \Leftrightarrow \left| 18 + c_{1}
ight| = 25

    \Leftrightarrow \left\lbrack
\begin{matrix}
18 + c_{1} = 25 \\
18 + c_{1} = - 25 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
c_{1} = 7 \\
c_{1} = - 43 \\
\end{matrix} ight.

    Vậy phương trình tiếp tuyến của (C) song song với (d) là: 3x +
4y + 7 = 0 hoặc 3x + 4y - 43 =
0.

  • Câu 21: Nhận biết

    Trong các phương trình sau, phương trình nào là phương trình đường tròn?

    Phương trình x^{2} + y^{2} + 2x - 4y + 9
= 0 có dạng x^{2} + y^{2} - 2ax -
2by + c = 0 với a = - 1;b = 2;c =
9

    Ta có: a^{2} + b^{2} - c = 1 + 4 - 9 <
0

    Vậy phương trình x^{2} + y^{2} + 2x - 4y
+ 9 = 0 không là phương trình đường tròn.

    Phương trình x^{2} + y^{2} + 6x + 4y + 13
= 0 có dạng x^{2} + y^{2} - 2ax -
2by + c = 0 với a = 3;b = 2;c = -
13

    Ta có: a^{2} + b^{2} - c = 0

    Vậy phương trình x^{2} + y^{2} + 6x + 4y
+ 13 = 0 không là phương trình đường tròn.

    Ta có:

    2x^{2} + 2y^{2} - 6x - 4y - 1 =
0

    \Leftrightarrow x^{2} + y^{2} - 3x - 2y
- \frac{1}{2} = 0

    \Leftrightarrow \left( x - \frac{3}{2}
ight)^{2} + (y - 1)^{2} = \frac{5}{2}

    Vậy đường tròn có bán kính I\left(
\frac{3}{2};1 ight) và bán kính R
= \frac{\sqrt{10}}{2}

    Phương trình 2x^{2} + y^{2} + 2x - 3y + 9
= 0 không phải là phương trình đường tròn vì hệ số của x^{2};y^{2} khác nhau.

  • Câu 22: Thông hiểu

    Tìm phương trình chính tắc của elip nếu trục lớn gấp đôi trục bé và có tiêu cự bằng 4\sqrt{3}.

    Elip (E) có trục lớn gấp đôi trục bé \Rightarrow A_{1}A_{2} = 2B_{1}B_{2}
\Leftrightarrow 2a = 2.2b \Leftrightarrow a = 2b.

    Elip (E) có tiêu cự bằng 4\sqrt{3}\overset{}{ightarrow}2c = 4\sqrt{3}
\Rightarrow c = 2\sqrt{3}.

    Ta có a^{2} = b^{2} + c^{2}
\Leftrightarrow (2b)^{2} = b^{2} + \left( 2\sqrt{3} ight)^{2}
\Rightarrow b = 2. Khi đó, a = 2b =
4.

    Phương trình chính tắc của Elip là (E):\frac{x^{2}}{16} + \frac{y^{2}}{4} =
1.

  • Câu 23: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng \Delta:\left\{ \begin{matrix}
x = 5 + t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Hệ số góc k của đường thẳng \Delta là:

    Ta có:

    Đường thẳng \Delta:\left\{ \begin{matrix}
x = 5 + t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có vectơ chỉ phương \overrightarrow{u}(1;3) nên có hệ số góc k = \frac{3}{1} =
3.

    Vậy hệ số góc của đường thẳng là k=3.

  • Câu 24: Vận dụng

    Viết phương trình tổng quát của đường thẳng \Delta đi qua giao điểm của hai đường thẳng d_{1}:x + 3y - 1 = 0, d_{2}:x - 3y - 5 = 0 và vuông góc với đường thẳng d_{3}:2x - y + 7 =
0.

    \left\{ \begin{matrix}
d_{1}:x + 3y - 1 = 0 \\
d_{2}:x - 3y - 5 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = - \frac{2}{3} \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A\left( 3; -
\frac{2}{3} ight). Ta có

    \left\{ \begin{matrix}
A \in d \\
d\bot d_{3}:2x - y + 7 = 0 \\
\end{matrix} ight. ightarrow
\left\{ \begin{matrix}
A \in d \\
d:x + 2y + c = 0 \\
\end{matrix} ight. ightarrow
3 + 2.\left( - \frac{2}{3} ight) + c = 0 \Leftrightarrow c = -
\frac{5}{3}.

    Vậy d:x + 2y - \frac{5}{3} = 0
\Leftrightarrow d:3x + 6y - 5 = 0.

  • Câu 25: Thông hiểu

    Phương trình tổng quát của đường thẳng \Delta đi qua điểm A(5;4) và có vectơ pháp tuyến \overrightarrow{n}(11; - 12) là:

    Đường thẳng \Delta đi qua điểm A(5;4) và nhận \overrightarrow{n}(11; - 12) là vectơ pháp tuyến có phương trình tổng quát là:

    11(x - 5) - 12(y - 4) = 0

    \Leftrightarrow 11x - 12y - 7 =
0

    Vậy phương trình tổng quát của đường thẳng là 11x - 12y - 7 =
0.

  • Câu 26: Nhận biết

    Cho phương trình ax + by + c = 0\ \ \ (*) với a^{2} + b^{2} > 0. Mệnh đề nào sau đây là mệnh đề sai?

    Mệnh đề sai là: “Điểm M\left( x_{0};y_{0}
ight) thuộc đường thẳng (*) khi và chỉ khi ax_{0} + by_{0} + c eq 0.”

  • Câu 27: Nhận biết

    Cho parabol (P):y = 2x^{2} + x - 3. Giao điểm của (P) với trục hoành tại hai điểm A\left( x_{1};y_{1} ight),B\left(
x_{2};y_{2} ight). Khẳng định nào sau đây đúng?

    Phương trình hoành độ giao điểm là nghiệm của phương trình:

    2x^{2} + x - 3 = 0

    Áp dụng định lí Vi – et ta có:

    x_{1} + x_{2} = - \frac{b}{a} = -
\frac{1}{2}

  • Câu 28: Vận dụng

    Đường tròn (C) đi qua điểm A(1; - 2) và tiếp xúc với đường thẳng \Delta:x - y + 1 = 0 tại M(1;2). Phương trình của đường tròn (C) là:

    Tâm I của đường tròn nằm trên đường thẳng qua M vuông góc với \Delta là:

    \Delta':x + y - 3 = 0 ightarrow
I(a;3 - a).

    Ta có: R^{2} = IA^{2} = IM^{2} = (a -
1)^{2} + (a - 5)^{2} = (a - 1)^{2} + (a - 1)^{2}

    \Leftrightarrow a = 3 ightarrow \left\{
\begin{matrix}
I(3;0) \\
R^{2} = 8 \\
\end{matrix} ight.\  ightarrow (C):(x - 3)^{2} + y^{2} =
8.

  • Câu 29: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A(m - 1;1),B(2;2 - 2m),C(m + 3;3) với m là tham số. Tìm giá trị của tham số m để ba điểm A,B,C thẳng hàng?

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = (3 - m;3 - 2m) \\
\overrightarrow{AC} = (4;4) \\
\end{matrix} ight.

    Ba điểm A, B, C thẳng hàng khi và chỉ khi \overrightarrow{AB};\overrightarrow{AC} cùng phương với nhau.

    Điều đó xảy ra khi và chỉ khi \frac{3 -
m}{4} = \frac{3 - 2m}{4} \Leftrightarrow m = 0

    Vậy m = 0 thì ba điểm A, B, C thẳng hàng.

  • Câu 30: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Elip?

    Phương trình Elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1;c^{2} = a^{2} - b^{2}

    Vậy phương trình cần tìm là \frac{x^{2}}{9} + \frac{y^{2}}{4} = 1

  • Câu 31: Thông hiểu

    Đường chuẩn của Parabol y^{2} = 14x là:

    Từ phương trình Parabol y^{2} = 14x ta có 2p = 14 => p = 7

    Do đó phương trình đường chuẩn của Parabol là x + \frac{7}{2} = 0

  • Câu 32: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E):\frac{x^{2}}{25} + \frac{y^{2}}{9} =
1. Biết điểm M \in (E) sao cho \widehat{F_{1}MF_{2}} = 90^{0}. Hãy tính bán kính đường tròn nội tiếp tam giác MF_{1}F_{2}.

    Gọi M(x;y)\widehat{F_{1}MF_{2}} = 90^{0} \Rightarrow M{F_{1}}^{2} + M{F_{2}}^{2} =
F_{1}{F_{2}}^{2} \Leftrightarrow x^{2} + y^{2} = c^{2} = 16 (1)

    Do M \in (E) \Rightarrow \frac{x^{2}}{25}
+ \frac{y^{2}}{9} = 1(2)

    Giải hệ gồm hai phuơng trình (1) và (2) ta đuợc x^{2} = \frac{175}{16};y^{2} = \frac{81}{16}
\Leftrightarrow x = \pm \frac{5\sqrt{7}}{4};y = \frac{9}{4}

    Ta có: nửa chu vi p = \frac{MF_{1} +
MF_{2} + F_{1}F_{2}}{2} = \frac{2a + 2c}{2} = a + c = 9

    Khoảng các từ M đến trục Ox:d(M;Ox) =
\left| y_{M} ight| = \frac{9}{4}

    S_{\Delta MF_{1}F_{2}} =
\frac{1}{2}d(M;Ox).F_{1}F_{2} = 9

    Bán kính đuờng tròn nội tiếp: r =
\frac{S}{p} = 1.

  • Câu 33: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm A(2; - 1)B(2;5).

    \left\{ \begin{matrix}A(2; - 1) \in AB \\{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = (0;6) \\\end{matrix} ight.\ \overset{ightarrow}{}AB:\left\{ \begin{matrix}x = 2 \\y = - 1 + 6t \\\end{matrix} ight.\ \ \ \left( t\mathbb{\in R} ight).

  • Câu 34: Thông hiểu

    Trong mặt phẳng Oxy cho các điểm A(6;5),B(0; - 3),C(3; - 4). Phương trình đường tròn ngoại tiếp tam giác ABC là:

    Gọi phương trình đường tròn là: (C):x^{2}
+ y^{2} - 2ax - 2by + c = 0 với a^{2} + b^{2} - c > 0

    Vì đường tròn đi qua ba điểm A(6;5),B(0;
- 3),C(3; - 4) nên ta có hệ phương trình:

    \left\{ \begin{matrix}
6^{2} + 5^{2} + 2.6.a + 2.5.b + c = 0 \\
0^{2} + ( - 3)^{2} + 2.0a + 2.( - 3).b + c = 0 \\
3^{2} + ( - 4)^{2} + 2.3a + 2.( - 4).b + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
12a + 10b + c = - 61 \\
- 6a + c = - 9 \\
6a - 8b + c = - 25 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 3 \\
b = - 1 \\
c = - 15 \\
\end{matrix} ight.

    Vậy phương trình đường tròn cần tìm là: (C):(x - 3)^{2} + (y - 1)^{2} = 25.

  • Câu 35: Thông hiểu

    Cho hypebol (H): \frac{x^{2}}{36}+\frac{y^{2}}{9}=1. Tỉ số giữa độ dài trục ảo và độ dài trục thực bằng:

    Ta có: \frac{x^{2}}{36}+\frac{y^{2}}{9}=1

    Ta có: a = 6; b =3

    => Độ dài trục ảo là 6, độ dài trục thực là 12

    => Tỉ số giữa độ dài trục ảo và độ dài trục thực là: 

    \frac{{2b}}{{2a}} = \frac{6}{{12}} = \frac{1}{2}

  • Câu 36: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:3mx + 2y - 6 = 0d_{2}:\left( m^{2} + 2 ight)x + 2my - 3 =
0 song song?

    Ta có: \ \left\{ \begin{matrix}
d_{1}:3mx + 2y - 6 = 0 ightarrow {\overrightarrow{n}}_{1} = (3m;2) \\
d_{2}:\left( m^{2} + 2 ight)x + 2my - 3 = 0 ightarrow
{\overrightarrow{n}}_{2} = \left( m^{2} + 2;2m ight) \\
\end{matrix} ight.

    \begin{matrix}\\ightarrow \left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}d_{1}:y - 3 = 0 \\d_{2}:2x + 2y - 3 = 0 \\\end{matrix} ight.\  ightarrow m = 0\ (không\ TM) \\meq0\overset{d_{1}||d_{2}}{ightarrow}\frac{m^{2} + 2}{3m} =\frac{2m}{2}eq\frac{- 3}{- 6} \Leftrightarrow m = \pm 1 \\\end{matrix} ight.\ .\ \  \\\end{matrix}

    Chọn m = 1;\ \ m = - 1.

  • Câu 37: Vận dụng

    Ông Hoàng có một mảnh vườn hình Elip có chiều dài trục lớn và trục nhỏ lần lượt là 60m30m. Ông chia mảnh vườn ra làm hai nửa bằng một đường tròn tiếp xúc trong với Elip để làm mục đích sử dụng khác nhau (xem hình vẽ). Nửa bên trong đường tròn ông trồng cây lâu năm, nửa bên ngoài đường tròn ông trồng hoa màu. Tính tỉ số diện tích T giữa phần trồng cây lâu năm so với diện tích trồng hoa màu. Biết diện tích hình Elip được tính theo công thức S = \pi
ab, với a, b lần lượt là nửa độ dài trục lớn và nửa độ dài trục nhỏ. Biết độ rộng của đường Elip là không đáng kể.

    Theo đề ta có: Diện tích (E)là: S_{(E)} = \pi.a.b = 30.15.\pi = 450\pi,\
\left( m^{2} ight)

    Vì đường tròn tiếp xúc trong, nên sẽ tiếp xúc tại đỉnh của trục nhỏ, suy ra bán kính đường tròn: R =
15m. Diện tích hình tròn (C)phần trồng cây lâu năm là: S_{(C)} = \pi.R^{2} = 15^{2}.\pi = 225\pi,\ \left(
m^{2} ight)

    Suy ra diện tích phần trồng hoa màu là: S
= S_{(E)} - S_{(C)} = 225\pi,\ \left( m^{2} ight) \Rightarrow T =
1.

  • Câu 38: Vận dụng

    Trong mặt phẳng tọa độ Oxy cho đường tròn (C):x^{2} + y^{2} - 2x - 2my + m^{2} - 24 =
0 có tâm I và đường thẳng \Delta:mx + 4y = 0 (với m là tham số). Biết đường thẳng \Delta cắt đường tròn (C) tại hai điểm A;B phân biệt sao cho diện tích tam giác IAB bằng 12. Có bao nhiêu giá trị của tham số m thỏa mãn yêu cầu đề bài?

    Hình vẽ minh họa

    Đường tròn (C) có tâm I(1; m) và bán kính R = 5.

    Gọi H là trung điểm của dây cung AB. Ta có IH là đường cao của tam giác IAB và

    IH = d(I;\Delta) \Leftrightarrow
\frac{|m + 4m|}{\sqrt{m^{2} + 16}} = \frac{|5m|}{\sqrt{m^{2} +
16}}

    AH = \sqrt{IA^{2} - IH^{2}} = \sqrt{25 -
\frac{(5m)^{2}}{m^{2} + 16}} = \frac{20}{\sqrt{m^{2} + 16}}

    Theo bài ra ta có:

    S_{IAB} = 12 \Leftrightarrow 2S_{IAH} =
12

    \Leftrightarrow d(I;\Delta).AH =
12

    \Leftrightarrow 25|m| = 3\left( m^{2} +
16 ight)

    \Leftrightarrow \left\lbrack\begin{matrix}m = \pm 3 \\m = \pm \dfrac{16}{3} \\\end{matrix} ight.

    Vậy có 4 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 39: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn có phương trình: {(x - 1)^2} + {(y - 10)^2} = 81 lần lượt là:

    Tâm và bán kính đường tròn lần lượt là: I(1; 10) và R = 9

  • Câu 40: Thông hiểu

    Cho phương trình Hypebol \frac{x^{2}}{16}-\frac{y^{2}}{9}=1. Độ dài trục thực của Hypebol đó là

    Ta có: \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 ta có: a = 4; b = 3

    => Độ dài trục thực của Hypebol đó là 2a = 8

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo