Cho phương trình
. Có bao nhiêu giá trị
nguyên dương không vượt quá 10 để
là phương trình của đường tròn?
Ta có:
Có 7 giá trị
.
Cho phương trình
. Có bao nhiêu giá trị
nguyên dương không vượt quá 10 để
là phương trình của đường tròn?
Ta có:
Có 7 giá trị
.
Tìm m để đường thẳng
và
tạo với nhau một góc
?
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Hai đường thẳng vuông góc với nhau khi và chỉ khi:
Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi .
Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm
và
?
Kiểm tra đường thẳng nào không chứa loại.
Có thể kiểm tra đường thẳng nào không đi qua điểm
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Ox?
Vectơ chỉ phương của trục Ox là (1; 0).
Trong mặt phẳng với hệ tọa độ
, cho hình bình hành
có đỉnh
và phương trình đường thẳng chứa cạnh
là
. Viết phương trình tham số của đường thẳng chứa cạnh
.
Góc phần tư (I) :
Biết parabol
có phương trình đường chuẩn là
. Phương trình chính tắc của
là:
Gọi phương trình chính tắc của Parabol là:
Parabol có phương trình đường chuẩn là: nên
Suy ra phương trình chính tắc của parabol là: .
Đường thẳng
đi qua điểm
và có vectơ pháp tuyến
có phương trình tham số là:
Tọa độ tâm I và bán kính R của đường tròn có phương trình:
lần lượt là:
Tâm , bán kính
.
Xét vị trí tương đối của hai đường thẳng
và
.
Chọn
Cho đường thẳng
. Đường thẳng nào sau đây vuông góc với đường thẳng
?
Đường thẳng vuông góc với đường thẳng
vì
.
Cho hypebol (H):
. Tỉ số giữa độ dài trục ảo và độ dài trục thực bằng:
Ta có:
Ta có: a = 6; b =3
=> Độ dài trục ảo là 6, độ dài trục thực là 12
=> Tỉ số giữa độ dài trục ảo và độ dài trục thực là:
Cho hình elip có độ dài trục lớn và độ dài trục nhỏ lần lượt bằng
và 0. Viết phương trình elip.
Ta có:
Phương trình elip là:
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Điều kiện để phương trình là phương trình của một đường tròn là:
Kiểm tra các đáp án ta được kết quả đúng là:
Đường thẳng
không đi qua điểm nào sau đây ?
Gọi .
Đặt Chọn
.
Xét vị trí tương đối của hai đường thẳng
và
?
Ta có:
Vậy hai đường thẳng đã cho song song với nhau.
Cho đường thẳng
. Điểm nào dưới đây không nằm trên đường thẳng đã cho?
Thay tọa độ các điểm đã cho vào phương trình tham số của đường thẳng d ta thấy điểm không thuộc đường thẳng d là: .
Phương trình tiếp tuyến của đường tròn
tại điểm
là:
Đường tròn (C) có tâm
Phương trình tiếp tuyến của tại điểm
là:
Vậy phương trình tiếp tuyến của đường tròn tại là:
Trong mặt phẳng
, cho tam giác
có tọa độ các điểm
. Gọi
là tâm đường tròn ngoại tiếp tam giác
. Xác định giá trị biểu thức
?
Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên IA = IB = IC
Ta có:
Từ đó ta suy ra hệ phương trình:
Ông Hoàng có một mảnh vườn hình Elip có chiều dài trục lớn và trục nhỏ lần lượt là
và
. Ông chia mảnh vườn ra làm hai nửa bằng một đường tròn tiếp xúc trong với Elip để làm mục đích sử dụng khác nhau (xem hình vẽ). Nửa bên trong đường tròn ông trồng cây lâu năm, nửa bên ngoài đường tròn ông trồng hoa màu. Tính tỉ số diện tích T giữa phần trồng cây lâu năm so với diện tích trồng hoa màu. Biết diện tích hình Elip được tính theo công thức
, với a, b lần lượt là nửa độ dài trục lớn và nửa độ dài trục nhỏ. Biết độ rộng của đường Elip là không đáng kể.

Theo đề ta có: Diện tích là:
Vì đường tròn tiếp xúc trong, nên sẽ tiếp xúc tại đỉnh của trục nhỏ, suy ra bán kính đường tròn: . Diện tích hình tròn
phần trồng cây lâu năm là:
Suy ra diện tích phần trồng hoa màu là: .
Xác định phương trình đường tròn
tâm
. Biết
cắt đường thẳng
tại hai điểm
sao cho
.
Gọi h là khoảng cách từ điểm I đến đường thẳng . Ta có:
Gọi R là bán kính đường tròn, từ giả thiết suy ra:
Vậy phương trình đường tròn cần tìm là: .
Một tòa tháp có mặt cắt hình hypebol có phương trình
. Biết khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp. Tòa tháp có chiều cao 50 m. Bán kính đáy của tháp bằng:
Gọi r là bán kính đáy của tháp
Do khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp và do tính đối xứng của hypebol nên ta có hai bán kính của nóc và đáy tháp đều bằng nhau.
Chọn điểm nằm trên hypebol nên ta có:
Vậy Bán kính đáy của tháp khoảng 22,25m.
Trong mặt phẳng với hệ trục tọa độ
, cho hai đường thẳng
và
. Gọi điểm
sao cho
và
. Tính giá trị biểu thức
?
Gọi
Khi đó:
Với
Với
Đường tròn
có dạng tổng quát là:
Cho phương trình
. Tìm điều kiện của
để
là phương trình đường tròn.
Ta có:
Cho đường thẳng
có vectơ pháp tuyến là
và đường thẳng
có vectơ pháp tuyến là
. Gọi
là góc tạo bởi hai đường thẳng
. Kết luận nào sau đây đúng?
Góc tạo bởi hai đường thẳng đã cho được xác định bởi công thức .
Hypebol
có hai tiêu điểm là:
Ta có : Các tiêu điểm là
,
Cho ba đường thẳng
,
và
với m là tham số. Xác định giá trị của tham số m để ba đường thẳng
đồng quy?
Gọi . Khi đó tọa độ điểm A là nghiệm của hệ phương trình:
Để ba đường thẳng đồng quy thì hay
Vậy m = 2 thì ba đường thẳng đã cho đồng quy.
Hyperbol
có tâm sai là:
Ta có :
.
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây đúng?
Khẳng định đúng là: Với
, tâm sai của hypebol là
.
Trong mặt phẳng hệ tọa độ
, cho đường tròn
. Viết phương trình tiếp tuyến của đường tròn
, biết rằng tiếp tuyến đó song song với đường thẳng
?
Ta có: Phương trình đường tròn có tâm và bán kính
Gọi d là đường thẳng song song với đường thẳng khi đó:
Đường thẳng d là tiếp tuyến của đường tròn khi và chỉ khi
Vậy có hai tiếp tuyến của đường tròn thỏa mãn yêu cầu bài toán là:
Trong mặt phẳng với hệ tọa độ
, cho hai đường thẳng
và
song song nhau. Đường thẳng vừa song song và cách đều với
là:
Cho hình elip có phương trình
. Hình elip có độ dài tiêu cự bằng:
Ta có:
Độ dài tiêu cự là:
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây sai?
Đáp án sai là đáp án chứa độ dài trục lớn là .
Góc tạo bởi hai đường thẳng nào dưới đây bằng 90°.
Xét hai đường thẳng và
.
Ta có: .
Mà nên suy ra hai đường thẳng vuông góc với nhau.
Tìm
để hai đường thẳng
và
trùng nhau?
Viết phương trình tiếp tuyến của đường tròn
, biết tiếp tuyến vuông góc với đường thẳng
.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có
Trong mặt phẳng với hệ tọa độ
, cho ba điểm
¸
và
. Đường thẳng đi qua điểm
và song song với
có phương trình tham số là:
Gọi d là đường thẳng qua A và song song với PQ.
Ta có: