Cặp đường thẳng nào dưới đây là phân giác của các góc hợp bởi đường thẳng
và trục hoành.
Điểm thuộc đường phân giác của các góc tạo bởi
khi và chỉ khi
Cặp đường thẳng nào dưới đây là phân giác của các góc hợp bởi đường thẳng
và trục hoành.
Điểm thuộc đường phân giác của các góc tạo bởi
khi và chỉ khi
Tìm phương trình chính tắc của Parabol
biết khoảng cách từ tiêu điểm
đến đường thẳng
là
.
Ta có tọa độ tiêu điểm .
Khoảng cách từ đến đường thẳng
là
nên:
.
Vậy phương trình của là:
hoặc
.
Cho phương trình
. Tìm điều kiện của tham số m để phương trình đã cho là phương trình đường tròn?
Để phương trình đã cho là phương trình đường tròn thì:
Vậy đáp án chính xác là: .
Viết phương trình đường tròn nội tiếp tam giác
, biết tọa độ
?
Ta có:
Mặt khác (vì cùng bằng diện tích tam giác ABO)
Suy ra
Dễ thấy đường tròn cần tìm có tâm thuộc góc phần tư thứ nhất và tiếp xúc với hai trục tọa độ nên tâm của đường tròn có tọa độ
Vậy phương trình đường tròn nội tiếp tam giác OAB là:
Cho hai đường thẳng
và
. Khẳng định nào sau đây đúng?
Ta có: suy ra
cắt
.
Vậy khẳng định đúng là: “ cắt
”.
Đường Hyperbol
có tiêu cự bằng:
Ta có : . Tiêu cự
Trong mặt phẳng với hệ tọa độ
, cho ba điểm
¸
và
. Đường thẳng đi qua điểm
và song song với
có phương trình tham số là:
Gọi d là đường thẳng qua A và song song với PQ.
Ta có:
Tính góc tạo bởi giữa hai đường thẳng:
và
.
Ta có: . Suy ra góc giữa hai đường thẳng bằng
.
Trong mặt phẳng tọa độ
, mỗi đường thẳng có bao nhiêu vectơ pháp tuyến?
Một đường thẳng có vô số vectơ pháp tuyến và chúng có cùng phương với nhau.
Dạng chính tắc của hypebol là
Dạng chính tắc của hypebol là .
Trong mặt phẳng với hệ tọa độ
, cho đường thẳng
và hai điểm
,
không thuộc
. Chọn khẳng định đúng trong các khẳng định sau:
cùng phía so với
thì
và
luôn cùng dấu.
Chọn cùng phía so với
khi
Trong mặt phẳng hệ trục tọa độ
, cho đường thẳng
cắt hai trục
lần lượt tại điểm
với
. Khi đó phương trình đường thẳng
là:
Phương trình đường thẳng d là: .
Tính khoảng cách từ điểm
đến đường thẳng ![]()
Khoảng cách từ điểm C đến đường thẳng là:
Vậy khoảng cách cần tìm bằng 1.
Xác định tâm và bán kính đường tròn
.
Ta có:
Suy ra
Vậy đường tròn có tâm và bán kính lần lượt là: .
Cho đường thẳng
có phương trình
. Xác định vectơ chỉ phương của
?
Đường thẳng có vectơ pháp tuyến là
nên có vectơ chỉ phương là
.
Tìm
để hai đường thẳng
và
vuông góc với nhau?
Ta có:
Cho đường thẳng
và đường thẳng
. Tính góc hợp bởi hai đường thẳng?
Vectơ chỉ phương của là:
Vectơ chỉ phương của là:
Ta có:
Vậy góc hợp bởi hai đường thẳng đã cho bằng .
Trong mặt phẳng với hệ tọa độ
, cho elip
. Biết điểm
sao cho
Hãy tính bán kính đường tròn nội tiếp tam giác ![]()
Gọi vì
(1)
Do (2)
Giải hệ gồm hai phuơng trình (1) và (2) ta đuợc
Ta có: nửa chu vi
Khoảng các từ M đến trục Ox:
Bán kính đuờng tròn nội tiếp: .
Điểm nào sau đây không thuộc đường thẳng
?
Gọi
Chọn .
Trong các phương trình sau, phương trình nào không phải là phương trình của đường tròn?
Xét đáp án
Chọn đáp án này.
Các đáp án còn lại các hệ số thỏa mãn
Biết điểm
. Giả sử
thì khoảng cách từ điểm
đến các tiêu điểm của
bằng bao nhiêu?
Ta có: và
Có hai điểm M thỏa mãn là:
Tiêu điểm của là:
Vậy đáp án cần tìm là: và
.
Một đường thẳng có bao nhiêu vectơ chỉ phương?
Một đường thẳng có vô số vectơ chỉ phương.
Xác định phương trình tham số của đường thẳng
. Biết rằng
đi qua điểm
và có một vectơ chỉ phương là
?
Đường thẳng đi qua điểm và nhận
làm vectơ chỉ phương sẽ có phương trình tham số là:
.
Áp dụng với dữ kiện bài toan trên ta được:
Tọa độ tâm I và bán kính R của đường tròn có phương trình:
lần lượt là:
Tâm , bán kính
.
Cho parabol (P) có đường chuẩn là đường thẳng
. Điểm M thuộc (P) sao cho khoảng cách từ M đến tiêu điểm của parabol (P) bằng 6. Tọa độ điểm M là:
Phương trình đường chuẩn
=>
=>
Từ đó ta thu được phương trình parabol
Tiêu điểm F của (P) là
Giả sử điểm là điểm thuộc (P).
=>
Với và
ta có:
Với
Vậy tọa độ điểm M là:
Elip
có độ dài tiêu cự bằng:
Ta có: .
Do đó độ dài tiêu cự .
Elip có một tiêu điểm
và tích độ dài trục lớn với trục bé bằng
. Phương trình chính tắc của elip là:
Gọi (E) có dạng .
Theo giả thiết ta có: .
Vậy (E) cần tìm là
Phương trình tham số của đường thẳng đi qua hai điểm
là:
Vectơ chỉ phương:
Đường thẳng đi qua điểm và có vectơ chỉ phương
nên có phương trình tham số là:
Với giá trị nào của
thì hai đường thẳng
và
cắt nhau?
Ta có:
Cho phương trình
. Tìm điều kiện của
để
là phương trình đường tròn.
Ta có:
Phương trình đường tròn
có tâm và bán kính lần lượt là:
Ta có:
Vậy phương trình đã cho tâm và bán kính lần lượt là: .
Xét vị trí tương đối của hai đường thẳng
và
?
Ta có:
Vậy hai đường thẳng đã cho song song với nhau.
Trong mặt phẳng
cho hai điểm
. Viết phương trình đường tròn
đi qua hai điểm
, biết rằng tâm đường tròn thuộc trục hoành?
Gọi I là tâm đường tròn
Tâm đường tròn thuộc trục hoành nên
Đường tròn đi qua hai điểm nên ta có:
Vậy đường tròn có tâm
và bán kính
Vậy phương trình đường tròn là:
Trong mặt phẳng tọa độ Oxy, đường thẳng đi qua điểm
và song song với đường thẳng
có phương trình tổng quát là:
Đường thẳng đi qua điểm và song song với đường thẳng
có nhận vectơ
làm vectơ pháp tuyến có phương trình tổng quát:
Vậy phương trình tổng quát của đường thẳng là: .
Phương trình tổng quát của đường thẳng
đi qua
và song song với đường thẳng
là:
Vậy
Khái niệm nào sau đây định nghĩa về hypebol?
Cho cố định với
. Hypebol
là tập hợp điểm
sao cho
với
là một số không đổi và
.
Viết phương trình tiếp tuyến của đường tròn
, biết tiếp tuyến vuông góc với trục hoành.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có
Cho ba đường thẳng
,
,
. Phương trình đường thẳng
đi qua giao điểm của
và
, và song song với
là:
Ta có:
Vậy
Trong mặt phẳng với hệ tọa độ
, có tất cả bao nhiêu đường thẳng đi qua điểm
đồng thời tạo với trục hoành một góc ![]()
Cho đường thẳng và một điểm
Khi đó.
(i) Có duy nhất một đường thẳng đi qua song song hoặc trùng hoặc vuông góc với
(ii) Có đúng hai đường thẳng đi qua và tạo với
một góc
Chọn phương án .
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây đúng?
Khẳng định đúng là: Nếu thì
có các tiêu điểm là
,
.