Tính góc tạo bởi giữa hai đường thẳng
và ![]()
Tính góc tạo bởi giữa hai đường thẳng
và ![]()
Viết phương trình tham số của đường thẳng
đi qua điểm
và song song với trục
.
Đường tròn
có tâm
và đi qua
có phương trình là:
Hay
Xác định tâm và bán kính đường tròn
?
Ta có:
Vậy đường tròn có bán kính và bán kính
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây sai?
Đáp án sai là đáp án chứa độ dài trục lớn là .
Trong mặt phẳng
, cho điểm
và elip
.
là
điểm thuộc
sao cho
đều, biết tọa độ của
và
có tung độ âm. Tính tổng
.

Nhận xét: Điểm là đỉnh của elip
điều kiện cần để
đều đó là
đối xứng
Nhau qua .Suy ra
là giao điểm của đường thẳng
và elip
.
+) Ta có elip
.
+) Theo giả thiết có tung độ âm nên tọa độ của
(điều kiện
do
)
+) Ta có và
+) đều
.
Đâu là đường thẳng không có điểm chung với đường thẳng
?
Kí hiệu
(i) Xét đáp án: không cùng phương nên loại.
(ii) Xét đáp án: không cùng phương nên loại.
(iii) Xét đáp án: không cùng phương nên loại.
(iv) Xét đáp án:
(Chọn)
Tọa độ tâm
và bán kính
của đường tròn
là:
Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm
và
?
Kiểm tra đường thẳng nào không chứa loại.
(Có thể kiểm tra đường thẳng nào không đi qua điểm ).
Cho hai đường thẳng
;
và điểm
. Phương trình đường tròn có tâm
, đi qua điểm
và tiếp xúc với
là:
Hình vẽ minh họa
Ta có I là tâm đường tròn và nên
Theo giả thiết bài toán ta có:
Suy ra và bán kính
Vậy phương trình đường tròn cần tìm là: .
Cho đường thẳng
. Đường thẳng nào sau đây vuông góc với đường thẳng
?
Đường thẳng vuông góc với đường thẳng
vì
.
Cho elip
có độ dài trục lớn gấp hai lần độ dài trục nhỏ và tiêu cự bằng
. Viết phương
trình của
?
Ta có:
Mà .
Vậy phương trình :
.
Với giá trị nào của
thì hai đường thẳng
và
trùng nhau?
Cho đường thẳng
và điểm
. Viết phương trình đường thẳng qua điểm
và vuông góc với
?
Một vectơ chỉ phương của là:
Vậy phương trình đường thẳng đi qua và vuông góc với
là:
Vậy phương trình cần tìm là .
Trong mặt phẳng với hệ tọa độ
, cho elip
. Biết điểm
sao cho
Hãy tính bán kính đường tròn nội tiếp tam giác ![]()
Gọi vì
(1)
Do (2)
Giải hệ gồm hai phuơng trình (1) và (2) ta đuợc
Ta có: nửa chu vi
Khoảng các từ M đến trục Ox:
Bán kính đuờng tròn nội tiếp: .
Trong mặt phẳng tọa độ
, cho đường thẳng
. Hệ số góc
của đường thẳng
là:
Ta có:
Đường thẳng có vectơ chỉ phương
nên có hệ số góc
.
Vậy hệ số góc của đường thẳng là .
Hypebol
có hai tiêu điểm là:
Ta có : Các tiêu điểm là
,
Đường tròn
đi qua hai điểm
và tiếp xúc với đường thẳng
. Viết phương trình đường tròn
, biết tâm của
có hoành độ nhỏ hơn ![]()
đoạn AB có trung điểm
trung trực của đoạn AB là
Ta có
Vậy phương trình đường tròn là:
Xác định vị trí tương đối của hai đường thẳng
và
?
Ta có: suy ra hai đường thẳng (d) và (d’) song song với nhau.
Phương trình đường tròn
có tâm và bán kính lần lượt là:
Ta có:
Vậy phương trình đã cho tâm và bán kính lần lượt là: .
Cho elip có phương trình chính tắc
. Tính tâm sai của elip.
Ta có
Tâm sai của elip là .
Đường tròn
có tâm
thuộc đường thẳng
, bán kính
và tiếp xúc với đường thẳng
. Phương trình của đường tròn
là:
Vậy các phương trình đường tròn là: hoặc
Viết phương trình tham số của đường thẳng
đi qua điểm
và song song với đường phân giác của góc phần tư thứ nhất.
Góc phần tư (I) :
Cặp đường thẳng nào dưới đây là phân giác của các góc hợp bởi đường thẳng
và trục hoành.
Điểm thuộc đường phân giác của các góc tạo bởi
khi và chỉ khi
Với giá trị nào của
thì hai đường thẳng
và
trùng nhau?
.
Cho đường thẳng
và đường tròn
. Khẳng định nào sau đây đúng khi nói về vị trí tương đối của đường thẳng
và đường tròn
?
Ta có:
Lại có khoảng cách từ tâm I đến đường thẳng d là:
Vậy đường thẳng cắt đường tròn
là khẳng định đúng.
Cho phương trình Hypebol
. Độ dài trục thực của Hypebol đó là
Ta có: ta có: a = 4; b = 3
=> Độ dài trục thực của Hypebol đó là 2a = 8
Đường thẳng nào sau đây song song với đường thẳng
?
Đường thẳng song song với đường thẳng
vì
.
Phương trình chính tắc của đường elip với
,
là
Phương trình chính tắc .
Tìm phương trình chính tắc của elip có tiêu cự bằng
và trục lớn bằng
.
Phương trình chính tắc của elip:
Độ dài trục lớn .
Tiêu cự .
Ta có:
Vậy phương trình chính tắc của elip là .
Biết điểm
. Giả sử
thì khoảng cách từ điểm
đến các tiêu điểm của
bằng bao nhiêu?
Ta có: và
Có hai điểm M thỏa mãn là:
Tiêu điểm của là:
Vậy đáp án cần tìm là: và
.
Phương trình đường tròn
có tâm
và bán kinh
là:
Ta có:
Tính góc tạo bởi giữa hai đường thẳng:
và
.
Ta có: . Suy ra góc giữa hai đường thẳng bằng
.
Trong mặt phẳng tọa độ
, mỗi đường thẳng có bao nhiêu vectơ pháp tuyến?
Một đường thẳng có vô số vectơ pháp tuyến và chúng có cùng phương với nhau.
Cho điểm M nằm trên ∆: x + y – 1 = 0 và cách N(–1; 3) một khoảng bằng 5. Khi đó tọa độ điểm M là:
Gọi .
Vì .
Do đó .
Ta có: .
Đường thẳng
đi qua điểm
và có vectơ pháp tuyến
có phương trình tham số là:
Ta có:
Phương trình nào dưới đây đi qua hai điểm
là:
Phương trình đường thẳng đi qua hai điểm là:
hay
.
Với giá trị nào của
thì hai đường thẳng
và
song song?
Ta có:
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
với
. Giả sử
là góc hợp hai đường thẳng đã cho. Chọn kết luận đúng?
Góc giữa hai đường thẳng và
xác định bởi công thức: