Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Ta có:
Vậy phương trình đường tròn cần tìm là: .
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Ta có:
Vậy phương trình đường tròn cần tìm là: .
Tìm
để ba đường thẳng
,
và
đồng quy?
Cho hai đường thẳng
và
với
. Nếu
vô nghiệm thì vị trí tương đối của hai đường thẳng là:
Số giao điểm của hai đường thẳng đã cho là nghiệm của hệ phương trình .
Nếu hệ phương trình trên vô nghiệm thì hai đường thẳng không có điểm chung, nghĩa là hai đường thẳng song song với nhau.
Tọa độ tâm
và bán kính
của đường tròn
là:
Xét vị trí tương đối của hai đường thẳng
và
.
cắt nhau nhưng không vuông góc.
Viết phương trình tổng quát của đường thẳng d đi qua điểm M(–1; 2) và song song với trục Ox ?
Đường thẳng song song với trục .
Phương trình đường thẳng có vectơ pháp tuyến và đi qua
là:
.
Với giá trị nào của
thì hai đường thẳng
và
trùng nhau?
.
Bác An dự định xây một cái ao hình elip ở giữa khu vườn. Biết trục lớn có độ dài bằng 4 m, độ dài trục nhỏ bằng 2 m. Gọi
là các tiêu điểm của elip. Khi đó độ dài
bằng:
Ta có độ dài trục lớn bằng 4 m.
=> 2a = 4 => a = 2.
Lại có độ dài trục nhỏ bằng 2m.
=> 2b = 2=> b = 1
Ta có
=>
Đường tròn
đi qua hai điểm
và tiếp xúc với đường thẳng
. Viết phương trình đường tròn
, biết tâm của
có tọa độ là những số nguyên.
đoạn AB có trung điểm
trung trực của đoạn AB là
Ta có:
Vậy phương trình đường tròn là:
Đường tròn
có tâm
và tiếp xúc với đường thẳng
có phương trình là:
Tọa độ tâm I và bán kính R của đường tròn có phương trình:
lần lượt là:
Tâm và bán kính đường tròn lần lượt là: I(1; 10) và R = 9
Đường chuẩn của Parabol
là:
Từ phương trình Parabol ta có
Do đó phương trình đường chuẩn của Parabol là
Đường Hyperbol
có tiêu cự bằng:
Ta có : . Tiêu cự
Dây cung của elip
vuông góc với trục lớn tại tiêu điểm có độ dài bằng:
Hai tiêu điểm có tọa độ lần lượt là
Đường thẳng chứa dây cung vuông góc với trục lớn (trục hoành ) tại tiêu điểm có phương trình là
Suy ra
Vậy tọa độ giao điểm của và
là
Cho phương trình
. Điều kiện của m để phương trình đã cho là một phương trình đường tròn là:
Từ phương trình đường tròn ta có:
Điều kiện để phương trình đã cho là phương trình đường tròn là:
Xác định
để hai đường thẳng
và
cắt nhau tại một điểm nằm trên trục hoành.
Đường thẳng
đi qua điểm
và có vectơ pháp tuyến
có phương trình tham số là:
Ta có:
Đường thẳng
đi qua giao điểm của hai đường thẳng
và
đồng thời tạo với đường thẳng
một góc
có phương trình:
Ta có gọi
. Khi đó
Biết parabol
có phương trình đường chuẩn là
. Phương trình chính tắc của
là:
Gọi phương trình chính tắc của Parabol là:
Parabol có phương trình đường chuẩn là: nên
Suy ra phương trình chính tắc của parabol là: .
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây sai?
Với
, tâm sai của hypebol là
.
Trên mặt phẳng tọa độ
cho tọa độ hai điểm
. Tọa độ trung điểm
của
là:
Tọa độ trung điểm I của MN là:
Vậy tọa độ trung điểm của MN là: .
Cho elip (E):
. Nếu điểm M nằm trên (E) có hoành độ bằng –13 thì độ dài
và
lần lượt là:
Phương trình elip (E) có dạng
Ta có:
Khi đó:
Với ta có:
Tương tự ta có:
Theo bài ra ta có:
Trong mặt phẳng tọa độ Oxy, đường thẳng đi qua điểm
và song song với đường thẳng
có phương trình tổng quát là:
Đường thẳng đi qua điểm và song song với đường thẳng
có nhận vectơ
làm vectơ pháp tuyến có phương trình tổng quát:
Vậy phương trình tổng quát của đường thẳng là: .
Tìm tọa độ giao điểm của đường thẳng
và trục hoành.
Chọn
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
. Khẳng định nào sau đây đúng?
Ta có:
có vectơ pháp tuyến là
có vectơ chỉ phương là
nên
có vectơ pháp tuyến là
Mà nên
cắt
.
Xét vị trí tương đối của hai đường thẳng
và
.
Chọn
Cho hai điểm
thuộc đường tròn
. Biết tâm
của đường tròn
nằm trên đường thẳng
. Tính giá trị biểu thức
?
Tâm I của đường tròn (C) nằm trên đường thẳng nên ta có:
Hai điểm thuộc đường tròn (C) nên ta suy ra đường trung trực của đoạn thẳng AB cũng đi qua tâm I.
Gọi M là trung điểm của đoạn thẳng AB => M(0; 3)
Đường trung trực AB đi qua điểm M(0; 3) và nhận là vecto pháp tuyến có phương trình
Vì trung trực AB cũng đi qua tâm I nên ta có:
Từ (*) và (**) suy ra
Dạng chính tắc của parabol là?
Dạng chính tắc của Parabol: .
Cho đường tròn
và đường thẳng
. Tìm phương trình tiếp tuyến của
vuông góc với đường thẳng
?
Ta có:
Phương trình đường tròn (C) có tâm I(2; 3) bán kính R = 5
Phương trình đường thẳng vuông góc với d có dạng
tiếp xúc với
nên
Hay
Vậy phương trình tiếp tuyến của vuông góc với
là:
hoặc
.
Trong mặt phẳng với hệ tọa độ
, cho ba đường thẳng lần lượt có phương trình tổng quát
,
và
. Tìm
để ba đường thẳng đã cho cùng đi qua một điểm.
Ta có:
Tính góc tạo bởi giữa hai đường thẳng
và ![]()
Ta có
Cho hình elip có độ dài trục lớn và độ dài trục nhỏ lần lượt bằng
và 0. Viết phương trình elip.
Ta có:
Phương trình elip là:
Tọa độ tâm
và bán kính
của đường tròn
là:
Tính khoảng cách từ điểm
đến đường thẳng ![]()
Khoảng cách từ điểm C đến đường thẳng là:
Vậy khoảng cách cần tìm bằng 1.
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A(– 3; 2) và B(1; 4).
Vectơ chỉ phương của đường thẳng AB là (2; 1).
Đường thẳng
đi qua điểm
và có vectơ pháp tuyến
có phương trình tham số là:
Hypebol
có hai tiêu điểm là:
Ta có : Các tiêu điểm là
,
Chọn mệnh đề sai? Đường thẳng
được xác định khi biết
Mệnh đề sai là: “một vectơ pháp tuyến hoặc một vectơ chỉ phương.”