Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tính khoảng cách từ điểm M(2;4) đường thẳng (\Delta):3x + 4y + 3 = 0?

    Ta có khoảng cách từ điểm M đến đường thẳng (\Delta):3x + 4y + 3 = 0 là:

    d(M;\Delta) = \frac{|3.2 + 4.4 +
3|}{\sqrt{3^{2} + 4^{2}}} = 5

    Vậy khoảng cách cần tìm bằng 5.

  • Câu 2: Thông hiểu

    Phương trình tổng quát của đường thẳng \Delta đi qua điểm A(5;4) và có vectơ pháp tuyến \overrightarrow{n}(11; - 12) là:

    Đường thẳng \Delta đi qua điểm A(5;4) và nhận \overrightarrow{n}(11; - 12) là vectơ pháp tuyến có phương trình tổng quát là:

    11(x - 5) - 12(y - 4) = 0

    \Leftrightarrow 11x - 12y - 7 =
0

    Vậy phương trình tổng quát của đường thẳng là 11x - 12y - 7 =
0.

  • Câu 3: Thông hiểu

    Tìm phương trình chính tắc của Hyperbol (H) mà hình chữ nhật cơ sở có một đỉnh là (2; - 3).

    Gọi (H):\frac{x^{2}}{a^{2}} -
\frac{y^{2}}{b^{2}} = 1. Tọa độ đỉnh của hình chữ nhật cơ sở là A_{1}( - a; - b), A_{2}(a; - b), A_{3}(a;b), A_{4}( - a;b).

    Hình chữ nhật cơ sở của (H) có một đỉnh là (2; - 3), suy ra \left\{ \begin{matrix}
a = 2 \\
b = 3 \\
\end{matrix} ight.. Phương trình chính tắc của (H)\frac{x^{2}}{4} - \frac{y^{2}}{9} =
1.

  • Câu 4: Vận dụng

    Trong mặt phẳng Oxy cho các điểm A(6;2),B( - 2;8),C( - 2; - 4). Phương trình đường tròn nội tiếp tam giác ABC là:

    AB = \sqrt{(6 + 2)^{2} + (2 - 8)^{2}}
= 10,AC = \sqrt{(6 + 2)^{2} + (2 + 4)^{2}} = 10, tam giác ABC cân tại A.

    Gọi M = ( - 2;2) là trung điểm của BC. Phương trình AM là: y =
2.

    Phương trình BC:x = - 2, phương trình AB :

    \frac{x - 6}{6 + 2} = \frac{y - 2}{2 -
8} \Leftrightarrow 3x + 4y - 26 = 0

    Gọi I = (x,y) là tâm đường tròn nội tiếp tam giác ABC. Ta có:

    \left. \ d(I,BC) = d(I,AB)\Leftrightarrow \frac{|x + 2|}{\sqrt{1^{2} + 0^{2}}} = \frac{|3x + 4y -26|}{\sqrt{3^{2} + 4^{2}}}  ight.

    \Leftrightarrow |3x + 4y - 26| = 5|x + 2|

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {4x + 2y - 8 = 0} \\ 
  {x - 2y + 18 = 0} 
\end{array}} ight.

    Thay tọa độ của AC vào phương trình 4x + 2y - 8 = 0 và xét tích của chúng, ta được:

    (4.6 + 2.2 - 8)(4.( - 2) + 2.( - 4) - 8)
< 0 nên phương trình BI4x + 2y - 8 = 0.
    Tọa độ của I là nghiệm của hệ \left\{ \begin{matrix}
y = 2 \\
4x + 2y - 8 = 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 2 \\
\end{matrix} ight.\  ight..

    Vậy I = (1;2)

    \Rightarrow IM = \sqrt{(1 + 2)^{2} + (2 - 2)^{2}} =3.

    Phương trình đường tròn nội tiếp tam giác ABC(x -
1)^{2} + (y - 2)^{2} = 9.

     

  • Câu 5: Nhận biết

    Dạng chính tắc của parabol là?

     Dạng chính tắc của Parabol: y^{2}=2px.

  • Câu 6: Nhận biết

    Tìm phương trình chính tắc của parabol (P) biết (P) có tiêu điểm là F(0\ ;\ 5).

    Gọi phương trình chính tắc của (P) là: y^{2}= 2px.

    Do tọa độ tiêu điểm F(0\ ;\ 5) nên \frac{p}{2} = 5 \Leftrightarrow p =10.

    Vậy phương trình của (P) là: y^{2} = 20x.

  • Câu 7: Nhận biết

    Đường tròn (C): x^{2} + y^{2} – 3x – y = 0 có đường kính bằng bao nhiêu?

     Tâm I(\frac32;\frac12). Do đó R = \sqrt {{{\left( {\frac{3}{2}} ight)}^2} + {{\left( {\frac{1}{2}} ight)}^2} - 0}  = \frac{{\sqrt {10} }}{2}.

    Do đó đường kính bằng 2R=\sqrt{10}.

  • Câu 8: Nhận biết

    Trong hệ trục tọa độ \left( O;\overrightarrow{i};\overrightarrow{j}
ight), tọa độ của vectơ \overrightarrow{a} = 2\overrightarrow{i} +
3\overrightarrow{j} là:

    Tọa độ vectơ \overrightarrow{a} =
(2;3).

  • Câu 9: Nhận biết

    Đường tròn (C): x^{2} + y^{2} – 8x + 2y + 6 = 0 có tâm I, bán kính R lần lượt là:

     Ta có: I(4;-1) ,R=\sqrt{11}.

  • Câu 10: Nhận biết

    Đường thẳng nào là đường chuẩn của parabol y^{2}=2x.

     Ta có: 2p=2 \Leftrightarrow p=1.

    Đường chuẩn: x=-\frac p2=-\frac12.

  • Câu 11: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} ight. và hai điểm A(1;2), B( -
2;m). Tìm tất cả các giá trị của tham số m để AB nằm cùng phía đối với d.

    d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} ight.\ \overset{}{ightarrow}d:3x + y - 7 = 0. Khi đó điều kiện bài toán trở thành

    \left( 3x_{A} + y_{A} - 7 ight)\left(
3x_{B} + y_{B} - 7 ight) > 0 \Leftrightarrow - 2(m - 13) > 0
\Leftrightarrow m < 13.

  • Câu 12: Nhận biết

    Xác định vị trí tương đối của hai đường thẳng \Delta_{1}:7x + 2y - 1 = 0\Delta_{2}:\left\{ \begin{matrix}
x = 4 + t \\
y = 1 - 5t \\
\end{matrix} ight.\ .

    \left. \ \begin{matrix}
\Delta_{1}:7x + 2y - 1 = 0 ightarrow {\overrightarrow{n}}_{1} = (7;2)
\\
\Delta_{2}:\left\{ \begin{matrix}
x = 4 + t \\
y = 1 - 5t \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = (1; -
5) ightarrow {\overrightarrow{n}}_{2} = (5;1) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{7}{5}\boxed{=}\frac{2}{1} \\
{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2}\boxed{=}0 \\
\end{matrix} ight.\  ightarrow \Delta_{1},\ \ \Delta_{2} cắt nhau nhưng không vuông góc.

  • Câu 13: Thông hiểu

    Phương trình chính tắc của hypebol có 2a gấp đôi 2b và đi qua điểm M(4; 1) là:

     Ta có: a=2b.

    Phương trình chính tắc: \frac{{{x^2}}}{{{{(2b)}^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1.

    M(4;1) thuộc hypebol nên: 

    \frac{{{4^2}}}{{{{(2b)}^2}}} - \frac{{{1^2}}}{{{b^2}}} = 1 \Leftrightarrow \frac{{16}}{{4{b^2}}} - \frac{1}{{{b^2}}} = 1\Leftrightarrow \frac{{12}}{{4{b^2}}} = 1 \Leftrightarrow b =  \pm \sqrt 3  \Rightarrow a =  \pm 2\sqrt 3.

    Do đó, phương trình chính tắc: \frac{x^{2}}{12}-\frac{y^{2}}{3}=1.

  • Câu 14: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm A(–1\ ;\ 3)B(3\ ;\ 1).

    \left\{ \begin{matrix}A( - 1;3) \in AB \\{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = (4; - 2) = - 2( - 2;1)\\\end{matrix} ight.\ \overset{ightarrow}{}AB:\left\{ \begin{matrix}x = - 1 - 2t \\y = 3 + t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 15: Thông hiểu

    Hai cạnh của hình chữ nhật nằm trên hai đường thẳng d_{1}:4x - 3y + 5 = 0d_{2}:3x + 4y - 5 = 0. Hình chữ nhật có đỉnh A(2;1). Tính diện tích của hình chữ nhật.

    Đáp án: 2

    Đáp án là:

    Hai cạnh của hình chữ nhật nằm trên hai đường thẳng d_{1}:4x - 3y + 5 = 0d_{2}:3x + 4y - 5 = 0. Hình chữ nhật có đỉnh A(2;1). Tính diện tích của hình chữ nhật.

    Đáp án: 2

    Ta có: \overrightarrow{n_{d_{1}}} = (4; -
3);\overrightarrow{n_{d_{2}}} = (3;4).

    Do A không thuộc hai đường thẳng d_{1};d_{2}d_{1}\bot d_{2} nên độ dài hai cạnh kề nhau của hình chữ nhật bằng khoảng cách từ A đến hai đường thẳng d_{1};d_{2}.

    Ta có:

    d\left( A;d_{1} ight) = \frac{|4.2 -
3.1 + 5|}{\sqrt{4^{2} + 3^{2}}} = 2.

    d\left( A;d_{2} ight) = \frac{|3.2 +
4.1 - 5|}{\sqrt{3^{2} + 4^{2}}} = 1.

    \Rightarrow S = d\left( A;d_{1}
ight).d\left( A;d_{2} ight) = 2.1 = 2

  • Câu 16: Thông hiểu

    Biết parabol (P) có phương trình đường chuẩn là \Delta:x + 2 = 0. Phương trình chính tắc của (P) là:

    Gọi phương trình chính tắc của Parabol là: (P):y^{2} = 2px

    Parabol có phương trình đường chuẩn là: \Delta:x + 2 = 0 nên \frac{p}{2} = 2 \Rightarrow p = 4

    Suy ra phương trình chính tắc của parabol là: y^{2} = 8x.

  • Câu 17: Thông hiểu

    Trong mặt phẳng tọa độ Oxy,cho tam giác ABC có tọa độ các điểm A(2;0),B(0;3),C( - 3;1). Đường thẳng d đi qua B và song song với AC có phương trình tổng quát là:

    Ta có: \overrightarrow{AC} = ( - 5;1)
\Rightarrow \overrightarrow{n_{AC}} = (1;5)

    Phương trình tổng quát AC là: x + 5y - 2
= 0

    Đường thẳng d song song với AC nên d có dạng x + 5y + m = 0

    Do điểm B \in d \Rightarrow 0 + 15 + m =
0 \Rightarrow m = - 15

    Vậy d:x + 5y - 15 = 0.

  • Câu 18: Nhận biết

    Trong các phương trình sau, phương trình nào là phương trình đường tròn?

    Phương trình x^{2} + y^{2} + 2x - 4y + 9
= 0 có dạng x^{2} + y^{2} - 2ax -
2by + c = 0 với a = - 1;b = 2;c =
9

    Ta có: a^{2} + b^{2} - c = 1 + 4 - 9 <
0

    Vậy phương trình x^{2} + y^{2} + 2x - 4y
+ 9 = 0 không là phương trình đường tròn.

    Phương trình x^{2} + y^{2} + 6x + 4y + 13
= 0 có dạng x^{2} + y^{2} - 2ax -
2by + c = 0 với a = 3;b = 2;c = -
13

    Ta có: a^{2} + b^{2} - c = 0

    Vậy phương trình x^{2} + y^{2} + 6x + 4y
+ 13 = 0 không là phương trình đường tròn.

    Ta có:

    2x^{2} + 2y^{2} - 6x - 4y - 1 =
0

    \Leftrightarrow x^{2} + y^{2} - 3x - 2y
- \frac{1}{2} = 0

    \Leftrightarrow \left( x - \frac{3}{2}
ight)^{2} + (y - 1)^{2} = \frac{5}{2}

    Vậy đường tròn có bán kính I\left(
\frac{3}{2};1 ight) và bán kính R
= \frac{\sqrt{10}}{2}

    Phương trình 2x^{2} + y^{2} + 2x - 3y + 9
= 0 không phải là phương trình đường tròn vì hệ số của x^{2};y^{2} khác nhau.

  • Câu 19: Thông hiểu

    Đường tròn (C) có tâm là gốc tọa độ O(0;0) và tiếp xúc với đường thẳng \Delta:8x + 6y + 100 = 0. Bán kính R của đường tròn (C) bằng:

    R = d(O;\Delta) = \frac{|100|}{\sqrt{64 +36}} = 10.

  • Câu 20: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm C(2; - 1)D(2;5).

    Ta có:

    \left\{ \begin{matrix}C(2; - 1) \in CD \\{\overrightarrow{u}}_{CD} = \overrightarrow{CD} = (0;6) \\\end{matrix} ight.\ \overset{ightarrow}{}CD:\left\{ \begin{matrix}x = 2 \\y = - 1 + 6t \\\end{matrix} ight.\ \ \ \left( t\mathbb{\in R} ight).

  • Câu 21: Thông hiểu

    Nếu đường thẳng (\Delta) đi qua gốc tọa độ và song song với đường thẳng (d):4x - 3y + 5 = 0 thì (\Delta) có phương trình tổng quát là:

    Một vectơ pháp tuyến của (\Delta) là: \overrightarrow{n}(4; - 3)

    Mặt khác (\Delta) đi qua gốc tọa độ hay đi qua điểm O(0;0)

    Vậy phương trình đường thẳng (\Delta) là:

    4(x - 0) - 3(y - 0) = 0

    \Leftrightarrow 4x - 3y = 0

    Vậy đáp án đúng là: 4x - 3y = 0.

  • Câu 22: Vận dụng

    Viết phương trình tiếp tuyến của đường tròn (C):x^{2} + y^{2} - 4x - 4y + 4 =
0, biết tiếp tuyến vuông góc với trục hoành.

    Đường tròn (C) có tâm I(2;2),\ R =
2 và tiếp tuyến có dạng \Delta:x +
c = 0\ .

    Ta có R = d\lbrack I;\Deltabrack
\Leftrightarrow |c + 2| = 2 \Leftrightarrow \left\lbrack \begin{matrix}
c = 0 \\
c = - 4 \\
\end{matrix} ight.\ .

  • Câu 23: Vận dụng

    Cho ba đường thẳng \left( d_{1} ight):3x - 2y + 5 = 0, \left( d_{2} ight):2x + 4y - 7 =
0\left( d_{3} ight):3x + 4y -
1 = 0. Phương trình nào dưới đây là phương trình đường thẳng đi qua giao điểm của hai đường thẳng \left(
d_{1} ight);\left( d_{2} ight) và song song với \left( d_{3} ight)?

    Đường thẳng \left( d_{3} ight):3x + 4y
- 1 = 0\overrightarrow{n_{3}} =
(3;4)

    Gọi M là giao điểm của hai đường thẳng \left( d_{1} ight);\left( d_{2}
ight), tọa độ điểm M là nghiệm của hệ phương trình: \left\{ \begin{matrix}
3x - 2y + 5 = 0 \\
2x + 4y - 7 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - \frac{3}{8} \\
y = \frac{31}{16} \\
\end{matrix} ight.\  \Rightarrow M\left( - \frac{3}{8};\frac{31}{16}
ight)

    Đường thẳng d đi qua giao điểm M có vecto pháp tuyến \overrightarrow{n_{3}} = (3;4)

    Vậy phương trình tổng quát của đường thẳng cần tìm là: 3x + 4y - \frac{53}{8} = 0 hay 24x + 32y - 53 = 0.

  • Câu 24: Nhận biết

    Đường thẳng nào sau đây vuông góc với đường thẳng 4x - 3y + 1 = 0 ?

    Kí hiệu d:4x - 3y + 1 = 0 ightarrow
{\overrightarrow{n}}_{d} = (4; - 3).

    (i) Xét đáp án d_{1}:\left\{
\begin{matrix}
x = 4t \\
y = - 3 - 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{1} = (3;4)
ightarrow {\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{d} =
0 nên chọn đáp án này.

    (ii) Tương tự kiểm tra và loại các đáp án còn lại.

  • Câu 25: Thông hiểu

    Hyperbol 3x^{2}y^{2} = 12 có tâm sai là:

    Ta có : 3x^{2}y^{2} = 12 \Leftrightarrow
\frac{x^{2}}{4} - \frac{y^{2}}{12} = 1.

    \left\{ \begin{matrix}
a^{2} = 4 \\
b^{2} = 12 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = 2\sqrt{3} \\
c = 4 \\
\end{matrix} ight.\  \Rightarrow e = \frac{c}{a} = 2.

  • Câu 26: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho ba đường thẳng lần lượt có phương trình tổng quát d_{1}:3x - 4y + 15 =
0, d_{2}:5x + 2y - 1 = 0d_{3}:mx - (2m - 1)y + 9m - 13 =
0. Tìm m để ba đường thẳng đã cho cùng đi qua một điểm.

    Ta có: \left\{ \begin{matrix}
d_{1}:3x - 4y + 15 = 0 \\
d_{2}:5x + 2y - 1 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 3 \\
\end{matrix} ight. ightarrow
d_{1} \cap d_{2} = A( - 1;3) \in d_{3}

    ightarrow - m - 6m + 3 + 9m - 13 = 0
\Leftrightarrow m = 5.

  • Câu 27: Thông hiểu

    Viết phương trình tham số của đường thẳng d đi qua điểm M( - 3;5) và song song với đường phân giác của góc phần tư thứ nhất.

    Góc phần tư (I) : x - y =
0\overset{ightarrow}{}VTCP:\overrightarrow{u}(1;1) =
{\overrightarrow{u}}_{d}\overset{ightarrow}{}d:\left\{ \begin{matrix}
x = - 3 + t \\
y = 5 + t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 28: Vận dụng

    Elip (E) có độ dài trục lớn bằng 4\sqrt{2}, các đỉnh trên trục nhỏ và các tiêu điểm của elip cùng nằm trên một đường tròn. Hãy tính độ dài trục nhỏ của (E).

    Ta có A_{1}A_{2} = 4\sqrt{2}\overset{}{ightarrow}a =
2\sqrt{2}

    Và bốn điểm F_{1},B_{1},F_{2},B_{2} cùng nằm trên một đường tròn

    \overset{}{ightarrow}b =
c\overset{}{ightarrow}b^{2} = c^{2}

    \overset{}{ightarrow}b^{2} = a^{2} -
b^{2}\overset{}{ightarrow}b = \frac{a}{\sqrt{2}} = 2.

    Vậy độ dài trục nhỏ của (E)4.

  • Câu 29: Nhận biết

    Cho elip (E):4x^{2} + 5y^{2} = 20. Diện tích hình chữ nhật cơ sở của (E)

    (E):4x^{2} + 5y^{2} = 20 \Leftrightarrow
\frac{x^{2}}{5} + \frac{y^{2}}{4} = 1

    Độ dài trục lớn: 2a =
2\sqrt{5}.

    Độ dài trục bé: 2b = 2.2 =
4.

    Diện tích hình chữ nhật cơ sở của (E) là: 2\sqrt{5}.4 = 8\sqrt{5}.

  • Câu 30: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình 2x + 3y - 2 = 0. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng đã cho?

    Một vectơ pháp tuyến của đường thẳng 2x +
3y - 2 = 0 là: (2;3).

  • Câu 31: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;5), B( -
4; - 5)C(4; - 1). Phương trình đường phân giác ngoài của góc A là:

    \left\{ \begin{matrix}
A(1;5),\ B( - 4; - 5) ightarrow AB:2x - y + 3 = 0 \\
A(1;5),\ C(4; - 1) ightarrow AC:2x + y - 7 = 0 \\
\end{matrix} ight.\ .

    Suy ra các đường phân giác góc A là:

    \frac{|2x - y + 3|}{\sqrt{5}} =
\frac{|2x + y - 7|}{\sqrt{5}} \Leftrightarrow \left\lbrack
\begin{matrix}
x - 1 = 0 ightarrow f(x;y) = x - 1 \\
y - 5 = 0 \\
\end{matrix} ight.

    ightarrow \left\{ \begin{matrix}
f\left( B( - 4; - 5) ight) = - 5 < 0 \\
f\left( C(4; - 1) ight) = 3 > 0 \\
\end{matrix} ight.\ .

    Suy ra đường phân giác trong góc Ay - 5 =
0.

  • Câu 32: Thông hiểu

    Tính góc giữa hai đường thẳng \left( d_{1} ight):2x - y - 10 = 0\left( d_{2} ight):x - 3y + 9 =
0

    Ta có:

    Vectơ pháp tuyến của hai đường thẳng lần lượt là \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (2; - 1) \\
\overrightarrow{n_{2}} = (1; - 3) \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 2.1 + ( - 1).( - 3) = 5
\\
\left| \overrightarrow{n_{1}} ight| = \sqrt{2^{2} + ( - 1)^{2}} =
\sqrt{5} \\
\left| \overrightarrow{n_{2}} ight| = \sqrt{1^{2} + ( - 3)^{2}} =
\sqrt{10} \\
\end{matrix} ight.

    Suy ra \cos\left( d_{1};d_{2} ight) =
\frac{\left| \overrightarrow{n_{1}}.\overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight|.\left|
\overrightarrow{n_{2}} ight|} = \frac{\sqrt{2}}{2}

    \Rightarrow \widehat{\left( d_{1};d_{2}
ight)} = 45^{0}

  • Câu 33: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 1 + t \\
y = - 2 - 2t \\
\end{matrix} ight.d_{2}:\left\{ \begin{matrix}
x = 2 - 2t' \\
y = - 8 + 4t' \\
\end{matrix} ight..

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = - 1 + t \\
y = - 2 - 2t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{u}}_{1} = (1; - 2)
\\
d_{2}:\left\{ \begin{matrix}
x = 2 - 2t' \\
y = - 8 + 4t' \\
\end{matrix} ight.\  ightarrow B(2; - 8) \in d_{2},\ \
{\overrightarrow{u}}_{2} = ( - 2;4) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{1}{- 2} = \frac{- 2}{4} \\
B \in d_{1} \leftrightarrow t = 3 \\
\end{matrix} ight.\  ightarrow d_{1} \equiv d_{2}.

  • Câu 34: Nhận biết

    Đường thẳng 12x
- 7y + 5 = 0 không đi qua điểm nào sau đây ?

    Gọi 12x - 7y + 5 = 0.

    Đặt f(x;y) = 12x - 7y +
5\overset{}{ightarrow}\left\{ \begin{matrix}
f\left( M(1;1) ight) = 10\boxed{=}0 ightarrow M\boxed{\in}d \\
f\left( N( - 1; - 1) ight) = 0 ightarrow N \in d \\
f(P) = 0,\ \ f(Q) = 0 \\
\end{matrix} ight.\ . Chọn M(1;1).

  • Câu 35: Vận dụng

    Trong mặt phẳng Oxy, hãy tìm phương trình chính tắc của elip (E). Biết rằng (E) đi qua M\left( \frac{3}{\sqrt{5}};\frac{4}{\sqrt{5}}
ight). Mặt khác, M nhìn hai tiêu điểm F_{1},\ F_{2} dưới một góc 90 độ.

    Gọi (E):\ \ \frac{x^{2}}{a^{2}} +
\frac{y^{2}}{b^{2}} = 1.

    Ta có: (E) đi qua M\left( \frac{3}{\sqrt{5}};\frac{4}{\sqrt{5}}
ight) nên: \frac{9}{5a^{2}} +
\frac{16}{5b^{2}} = 1 \Leftrightarrow \ \ 16a^{2} + 9b^{2} =
5a^{2}b^{2}. (1)

    M nhìn hai tiêu điểm F_{1},\ F_{2} dưới một góc vuông nên: OM = \frac{F_{1}F_{2}}{2} = c.

    \Leftrightarrow \ \ OM^{2} =
c^{2} \Leftrightarrow \ \
\frac{9}{5} + \frac{16}{5} = c^{2} \Leftrightarrow \ \ a^{2} - b^{2} = c^{2} =
5 \Leftrightarrow \ \ a^{2} = 5 +
b^{2} thế vào (1) ta được:

    16\left( 5 + b^{2} ight) + 9b^{2} =
5\left( 5 + b^{2} ight)b^{2} \Leftrightarrow \ \ b^{4} = 16 \Rightarrow \ \ b^{2} = 4 nên a^{2} = 9.

    Vậy: (E):\ \ \frac{x^{2}}{9} +
\frac{y^{2}}{4} = 1.

  • Câu 36: Thông hiểu

    Trong mặt phẳng Oxy, điểm M nằm trên đường tròn (x + 3)^{2} + (y - 4)^{2} =
4 sao cho độ dài đoạn thẳng OM là ngắn nhất. Hoành độ điểm M là:

    Đường tròn (x + 3)^{2} + (y - 4)^{2} =
4 có tâm I( - 3;4) và bán kính R = 2.

    Phương trình đường thẳng OI đi qua O(0;0) và nhận \overrightarrow{OI} = ( - 3;4) làm VTCP là: \left\{ \begin{matrix}
x = - 3t \\
y = 4t \\
\end{matrix}\ \ \ \ (t\mathbb{\in R}) ight..

    Ta có: OM \leq |OI - R| = 3

    Để OM ngắn nhất \Leftrightarrow OM =
3

    Dấu bằng xảy ra \Leftrightarrow
\overrightarrow{OM} = \frac{3}{5}\overrightarrow{OI} \Leftrightarrow
M\left( - \frac{9}{5};\frac{12}{5} ight).

  • Câu 37: Thông hiểu

    Cho đường tròn (C): {x^2} + {y^2} - 2x - 4y + 1 = 0. Gọi d_1, d_2 lần lượt là tiếp tuyến của đường tròn (C) tại điểm M(3; 2), N(1; 0). Tọa độ giao điểm của d_1d_2 là:

    Ta có: I\left( {1;2} ight);R = 2

    Phương trình tiếp tuyến của đường tròn tại M(3; 2) là:

    \begin{matrix}  \left( {1 - 3} ight)\left( {x - 3} ight) + \left( {2 - 2} ight)\left( {y - 2} ight) = 0 \hfill \\   \Rightarrow x - 3 = 0 \hfill \\ \end{matrix}

    Phương trình tiếp tuyến của đường tròn tại N(1; 0) là:

    \begin{matrix}  \left( {1 - 1} ight)\left( {x - 1} ight) + \left( {0 - 1} ight)\left( {y - 1} ight) = 0 \hfill \\   \Rightarrow y - 1 = 0 \hfill \\ \end{matrix}

    => Giao điểm của hai tiếp tuyến là H(3; 0)

  • Câu 38: Thông hiểu

    Tìm điều kiện của tham số m để hai đường thẳng \left( d_{1} ight):mx + y - m - 1 =
0\left( d_{2} ight):x + my =
2 cắt nhau?

    Hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) cắt nhau khi và chỉ khi:

    \frac{m}{1} eq \frac{1}{m}
\Leftrightarrow m^{2} eq 1 \Leftrightarrow m eq \pm 1

    Vậy hai đường thẳng cắt nhau khi và chỉ khi m eq \pm 1.

  • Câu 39: Nhận biết

    Một vectơ chỉ phương của đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) là:

    Đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là: \overrightarrow{u_{\Delta}} = (2; -
3)

  • Câu 40: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):16x^{2} + 16y^{2} + 16x - 8y - 11 = 0 là:

    (C):16x^{2} + 16y^{2} + 16x - 8y - 11 =
0 \Leftrightarrow x^{2} + y^{2} + x - \frac{1}{2}y - \frac{11}{16} =
0.

    ightarrow \left\{ \begin{matrix}
I\left( - \frac{1}{2};\frac{1}{4} ight) \\
R = \sqrt{\frac{1}{4} + \frac{1}{16} + \frac{11}{16}} = 1. \\
\end{matrix} ight.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo