Hypebol có nửa trục thực là
, tiêu cự bằng
có phương trình chính tắc là:
Ta có :
Phương trình chính tắc của Hyperbol là
Hypebol có nửa trục thực là
, tiêu cự bằng
có phương trình chính tắc là:
Ta có :
Phương trình chính tắc của Hyperbol là
Một đường thẳng có bao nhiêu vectơ pháp tuyến?
Một đường thẳng có vô số vecto pháp tuyến. Các vecto đó cùng phương với nhau.
Trong mặt phẳng tọa độ
, cho đường thẳng
và tọa độ một điểm
. Ta kí hiệu khoảng cách từ điểm
đến đường thẳng
là
. Kết luận nào sau đây đúng?
Khoảng cách từ điểm A đến đường thẳng được tính bởi công thức:
Vậy kết luận đúng là: “”.
Trong mặt phẳng với hệ tọa độ
, cho đường thẳng
và hai điểm
,
. Tìm tất cả các giá trị của tham số
để
và đoạn thẳng
có điểm chung.
Đoạn thẳng và
có điểm chung khi và chỉ khi hai điểm
nằm khác phía so với đường thẳng
. Ta có:
Xác định vị trí tương đối của hai đường thẳng
và
?
Ta có: suy ra hai đường thẳng (d) và (d’) song song với nhau.
Xác định phương trình tham số của đường thẳng
. Biết rằng
đi qua điểm
và có một vectơ chỉ phương là
?
Đường thẳng đi qua điểm và nhận
làm vectơ chỉ phương sẽ có phương trình tham số là:
.
Áp dụng với dữ kiện bài toan trên ta được:
Cho đường thẳng
. Đường thẳng nào sau đây vuông góc với đường thẳng
?
Đường thẳng vuông góc với đường thẳng
vì
.
Đường tròn (C) có tâm I (– 2; 3) và đi qua M (2; – 3) có phương trình là:
Ta có: .
Phương trình đường tròn: .
Tọa độ tâm
và bán kính
của đường tròn
là:
Trong mặt phẳng
cho điểm
. Gọi
là hình chiếu của
lên
. Phương trình tổng quát của đường thẳng
là:
Ta có: A, B là hình chiếu của M lên Ox, Oy suy ra
Khi đó phương trình đường thẳng AB là: .
Vậy phương trình tổng quát của AB là: .
Trong các phương trình sau, phương trình nào là phương trình đường tròn?
Phương trình có dạng
với
Ta có:
Vậy phương trình không là phương trình đường tròn.
Phương trình có dạng
với
Ta có:
Vậy phương trình không là phương trình đường tròn.
Ta có:
Vậy đường tròn có bán kính và bán kính
Phương trình không phải là phương trình đường tròn vì hệ số của
khác nhau.
Trong mặt phẳng
cho điểm
và đường thẳng
. Tính khoảng cách từ điểm A đến đường thẳng (d).
Khoảng cách từ điểm A đến đường thẳng (d) là:
Vậy khoảng cách cần tìm bằng 8.
Một đường thẳng có bao nhiêu vectơ chỉ phương?
Một đường thẳng có vô số vectơ chỉ phương.
Trong mặt phẳng với hệ trục tọa độ
, cho hai đường tròn
có phương trình lần lượt là
và elip
có phương trình
. Có bao nhiêu đường tròn
có bán kính gấp đôi độ dài trục lớn của elip
và
tiếp xúc với hai đường tròn
,
?
Ta có có độ dài trục lớn là
.
Khi đó đường tròn có bán kính là
. Gọi
là tâm của đường tròn
.
Xét có
vuông tại
.
Ta có ,
. Khi đó điểm
thỏa mãn:
.
Vậy có hai phương trình đường tròn thỏa mãn yêu cầu bài toán là
hoặc
.
Cho đường tròn (C) có phương trình
. Đường tròn (C) còn được viết dưới dạng nào trong các dạng dưới đây:
Viết lại phương trình đường tròn như sau:
Cho Hyperbol
. Tìm điểm
trên
sao cho khoảng cách từ
đến đường thẳng
đạt giá trị nhỏ nhất.
Gọi . Phương trình tiếp tuyến của
tại
là
.
khi
thay vào
ta có:
.
Với ta có :
Với ta có :
Cho điểm M nằm trên ∆: x + y – 1 = 0 và cách N(–1; 3) một khoảng bằng 5. Khi đó tọa độ điểm M là:
Gọi .
Vì .
Do đó .
Ta có: .
Lập phương trình chính tắc của elip biết độ dài trục lớn hơn độ dài trục nhỏ 4 đơn vị, độ dài trục nhỏ hơn độ dài tiêu cự 4 đơn vị.
Elip có độ dài trục lớn hơn độ dài trục nhỏ 4 đơn vị
.
Elip có độ dài trục nhỏ hơn độ dài tiêu cự 4 đơn vị
.
Ta có
Phương trình chính tắc của Elip là .
Elip
có độ dài trục bé bằng:
Ta có: .
Độ dài trục bé .
Với giá trị nào của
thì hai đường thẳng
và
song song?
Ta có:
Chọn
Một đường thẳng có vectơ chỉ phương là
. Vectơ nào sau đây là vectơ pháp tuyến của
?
Ta có:
Đường thẳng có vectơ chỉ phương
thì sẽ có một vectơ pháp tuyến là:
Áp dụng vào bài toán ta được:
Vectơ pháp tuyến của là:
.
Tính góc tạo bởi giữa hai đường thẳng:
và
.
Ta có: . Suy ra góc giữa hai đường thẳng bằng
.
Trong mặt phẳng với hệ tọa độ
, cho đường thẳng
và hai điểm
,
. Tìm
để
cắt đoạn thẳng
.
Đoạn thẳng
cắt
khi và chỉ khi
Tìm
để hai đường thẳng
và
trùng nhau?
Tìm tất cả các giá trị của
để hai đường thẳng
và
cắt nhau.
Chọn đáp án này với mọi
.
Một đường thẳng có bao nhiêu vectơ chỉ phương?
Một đường thẳng có vô số vectơ chỉ phương.
Trong mặt phẳng hệ tọa độ
, cho đường tròn
. Viết phương trình tiếp tuyến của đường tròn
, biết rằng tiếp tuyến đó song song với đường thẳng
?
Ta có: Phương trình đường tròn có tâm và bán kính
Gọi d là đường thẳng song song với đường thẳng khi đó:
Đường thẳng d là tiếp tuyến của đường tròn khi và chỉ khi
Vậy có hai tiếp tuyến của đường tròn thỏa mãn yêu cầu bài toán là:
Trong mặt phẳng với hệ tọa độ Oxy, cho elip
. Tiêu cự của (E) bằng
Phương trình chính tắc của elip có dạng: .
Do đó elip (E) có .
Tiêu cự của elip (E) bằng .
Cho đường thẳng (d): x – 2y + 5 = 0. Mệnh đề nào sau đây đúng?
Giả sử:
loại đáp án (d) đi qua
.
Ta có
⇒VTPT
⇒VTCP loại đáp án (d) có phương trình tham số:
Ta có
hệ số góc
.
Cho đường thẳng
và đường tròn
. Tìm điều kiện của tham số a để
tiếp xúc với
?
Đường tròn (C) có tâm và bán kính
Để đường thẳng là tiếp tuyến của đường tròn
thì
Vậy thỏa mãn yêu cầu bài toán.
Phương trình đường tròn
có tâm và bán kính lần lượt là:
Ta có:
Vậy phương trình đường tròn đã cho có tâm và bán kính lần lượt là:
Hyperbol
có tâm sai là:
Ta có :
.
Đường tròn đường kính
với
có phương trình là:
Cho có
, đường cao
, đường phân giác trong
. Tọa độ điểm A là:
Ta có:
Mà
Vậy
Có => A là nghiệm của hệ phương trình
Cho phương trình Elip
. Tọa độ đỉnh
và
của Elip đó là:
Ta có: => a = 4; b = 2
=> Tọa độ các đỉnh của elip là:
Cho bốn điểm
,
,
và
. Xác định vị trí tương đối của hai đường thẳng
và
.
cắt nhau nhưng không vuông góc.
Tâm sai của Hyperbol
bằng:
Ta có :
Trong mặt phẳng tọa độ Oxy, cho đường tròn
. Phương trình tiếp tuyến d của đường tròn
tại điểm
là:
Đường tròn (C) có tâm I(1; -2) và bán kính R = 5
Điểm
Vì d là tiếp tuyến của đường tròn (C) nên d nhận là vecto pháp tuyến.
Vậy d có phương trình hay
.
Đường Elip
có tiêu cự bằng
Elip có
,
suy ra
.
Vậy tiêu cự .