Khái niệm nào sau đây định nghĩa về hypebol?
Cho cố định với
. Hypebol
là tập hợp điểm
sao cho
với
là một số không đổi và
.
Khái niệm nào sau đây định nghĩa về hypebol?
Cho cố định với
. Hypebol
là tập hợp điểm
sao cho
với
là một số không đổi và
.
Cho hình elip có độ dài trục lớn và độ dài trục nhỏ lần lượt bằng
và 0. Viết phương trình elip.
Ta có:
Phương trình elip là:
Với giá trị nào của
thì hai đường thẳng
và
song song?
Ta có:
Trong mặt phẳng tọa độ
, cho hình chữ nhật
có điểm
. Gọi
đối xứng với điểm
qua
, điểm
là hình chiếu vuông góc của
lên đường thẳng
. Biết rằng tọa độ điểm
thuộc đường thẳng
. Khi đó:
Ta có: ADB’C là hình bình hành
Mà
Tam giác vuông cân tại I
là hình thang cân =>
đi qua điểm
và có vecto pháp tuyến
Phương trình CI:
Xét vị trí tương đối của hai đường thẳng:
và
.
Vì nên hai đường thẳng song song.
Một đường thẳng có vectơ chỉ phương là
. Vectơ nào sau đây là vectơ pháp tuyến của
?
Ta có:
Đường thẳng có vectơ chỉ phương
thì sẽ có một vectơ pháp tuyến là:
Áp dụng vào bài toán ta được:
Vectơ pháp tuyến của là:
.
Đường thẳng nào sau đây vuông góc với đường thẳng
?
Kí hiệu
(i) Xét đáp án nên chọn đáp án này.
(ii) Tương tự kiểm tra và loại các đáp án còn lại.
Trong mặt phẳng với hệ trục tọa độ
, cho hai đường tròn
có phương trình lần lượt là
và elip
có phương trình
. Có bao nhiêu đường tròn
có bán kính gấp đôi độ dài trục lớn của elip
và
tiếp xúc với hai đường tròn
,
?
Ta có có độ dài trục lớn là
.
Khi đó đường tròn có bán kính là
. Gọi
là tâm của đường tròn
.
Xét có
vuông tại
.
Ta có ,
. Khi đó điểm
thỏa mãn:
.
Vậy có hai phương trình đường tròn thỏa mãn yêu cầu bài toán là
hoặc
.
Đường Elip
có tiêu cự bằng
Elip có
,
suy ra
.
Vậy tiêu cự .
Hyperbol
có tâm sai là:
Ta có :
.
Trong mặt phẳng tọa độ
, cho đường thẳng
có phương trình
. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng đã cho?
Một vectơ pháp tuyến của đường thẳng là:
.
Cho đường tròn
. Qua điểm
có thể kẻ được bao nhiêu đường thẳng tiếp xúc với đường tròn
?
Thay tọa độ vào phương trình đường tròn
.
Suy ra nên có đúng 1 tiếp tuyến của đường tròn kẻ từ M.
Đường thẳng
đi qua điểm
và vuông góc với đường thẳng
có phương trình tham số là:
Lập phương trình chính tắc của Elip đi qua điểm
và có tâm sai
.
Phương trình chính tắc của Elip có dạng: .
Elip đi qua điểm nên
.
Tâm sai .
.
Vậy phương trình chính tắc của Elip cần tìm là .
Cho phương trình
. Với giá trị nào của
để
là phương trình đường tròn có bán kính nhỏ nhất?
Ta có:
Trong mặt phẳng tọa độ
, cho tọa độ điểm
và hai đường thẳng
;
. Một đường tròn
có tâm
thuộc đường thẳng
, đi qua điểm
và tiếp xúc với
. Kết luận nào sau đây đúng?
Ta có:
Lại có đường tròn tâm I đi qua P và tiếp xúc với đường thẳng nên
Vậy khẳng định đúng là: .
Phương trình nào dưới đây đi qua hai điểm
là:
Phương trình đường thẳng đi qua hai điểm là:
hay
.
Một Elip đi qua điểm
và có độ dài trục lớn là
. Hãy xác định phương trình chính tắc của elip đó?
Phương trình chính tắc của elip có dạng
Do (E) có độ dài trục lớn là nên
Do (E) đi qua điểm nên
Vậy phương trình chính tắc của elip là: .
Đường tròn (C):
có tâm I, bán kính R lần lượt là:
Ta có: .
Xét vị trí tương đối của hai đường thẳng
và
.
Đường tròn
có tâm
và bán kính
lần lượt là:
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Loại các đáp án và
vì không có dạng
Xét đáp án: loại.
Xét đáp án : Chọn đáp án này.
Trong mặt phẳng tọa độ
, cho đường thẳng
và đường thẳng
. Xác định số đo góc giữa hai đường thẳng đã cho?
Vectơ pháp tuyến của đường thẳng d và lần lượt là
.
Khi đó góc giữa hai đường thẳng là:
Vậy góc giữa hai đường thẳng là .
Với giá trị nào của
thì hai đường thẳng
và
trùng nhau?
Cho elip
có độ dài trục lớn gấp hai lần độ dài trục nhỏ và tiêu cự bằng
. Viết phương
trình của
?
Ta có:
Mà .
Vậy phương trình :
.
Cho đường tròn
. Tính khoảng cách từ tâm của
đến trục
.
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Ta có:
Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm
và
?
Kiểm tra đường thẳng nào không chứa loại.
Có thể kiểm tra đường thẳng nào không đi qua điểm
Dây cung của elip
vuông góc với trục lớn tại tiêu điểm có độ dài bằng:
Hai tiêu điểm có tọa độ lần lượt là
Đường thẳng chứa dây cung vuông góc với trục lớn (trục hoành ) tại tiêu điểm có phương trình là
Suy ra
Vậy tọa độ giao điểm của và
là
Với giá trị nào của
thì hai đường thẳng
và
vuông góc?
Tọa độ tâm
và bán kính
của đường tròn
là:
Tìm
để hai đường thẳng
và
trùng nhau?
Nếu đường thẳng
đi qua gốc tọa độ và song song với đường thẳng
thì
có phương trình tổng quát là:
Một vectơ pháp tuyến của là:
Mặt khác đi qua gốc tọa độ hay đi qua điểm
Vậy phương trình đường thẳng là:
Vậy đáp án đúng là: .
Cho parabol
. Giao điểm của
với trục hoành tại hai điểm
. Khẳng định nào sau đây đúng?
Phương trình hoành độ giao điểm là nghiệm của phương trình:
Áp dụng định lí Vi – et ta có:
Phương trình tiếp tuyến
của đường tròn
tại điểm
là:
Đường tròn (C) có tâm nên tiếp tuyến tại M có VTPT là
nên có phương trình là:
Xác định vị trí tương đối của hai đường thẳng
và ![]()
cắt nhau nhưng không vuông góc.
Đường thẳng nào sau đây song song với đường thẳng
?
Đường thẳng song song với đường thẳng
vì
.
Đường tròn
có tâm
và tiếp xúc với đường thẳng
có phương trình là:
Trong mặt phẳng tọa độ
, cho tam giác
có
. Phương trình tổng quát của đường trung tuyến kẻ từ đỉnh
của tam giác
là:
Gọi I là trung điểm của AC. Ta có:
Đường trung tuyến BI đi qua điểm B và nhận làm vectơ chỉ phương nên có vectơ pháp tuyến
.
Phương trình tổng quát của đường thẳng là: