Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho đường thẳng \Delta có phương trình 4x + 5y - 8 = 0. Xác định vectơ chỉ phương của \Delta?

    Đường thẳng \Delta:4x + 5y - 8 =
0 có vectơ pháp tuyến là \overrightarrow{n} = (4;5) nên có vectơ chỉ phương là \overrightarrow{u} = (5; -
4).

  • Câu 2: Thông hiểu

    Trong các phương trình sau, phương trình nào không phải là phương trình của đường tròn?

    Xét đáp án x^{2} + y^{2} - x + y + 4 = 0
ightarrow a = \frac{1}{2},\ b = - \frac{1}{2},\ c = 4

    ightarrow a^{2} + b^{2} - c < 0
ightarrowChọn đáp án này.

    Các đáp án còn lại các hệ số a,\ \ b,\ \
c thỏa mãn a^{2} + b^{2} - c >
0.

  • Câu 3: Thông hiểu

    Với giá trị nào của tham số m thì đường thẳng \left( d_{1} ight):x + 2y + 1 - m = 0 vuông góc với đường thẳng \left( d_{2}
ight):(m + 4)x + 2y + 5 = 0?

    Ta có tọa độ vectơ pháp tuyến của \left(
d_{1} ight):x + 2y + 1 - m = 0 là: \overrightarrow{n_{1}} = (1;2)

    Tọa độ vectơ pháp tuyến của \left( d_{2}
ight):(m + 4)x + 2y + 5 = 0 là: \overrightarrow{n_{2}} = (m + 4;2)

    Để \left( d_{1} ight)\bot\left( d_{2}
ight) thì \overrightarrow{n_{1}}.\overrightarrow{n_{1}} = 0
\Leftrightarrow 1(m + 4) + 2.2 = 0 \Leftrightarrow m = - 8

    Vậy m = -8 thì hai đường thẳng đã cho vuông góc với nhau.

  • Câu 4: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, đường thẳng đi qua điểm C(1;2) và song song với đường thẳng d:4x + 2y + 1 = 0 có phương trình tổng quát là:

    Đường thẳng đi qua điểm C(1;2) và song song với đường thẳng d:4x + 2y + 1 =
0 có nhận vectơ \overrightarrow{n}(4;2) làm vectơ pháp tuyến có phương trình tổng quát:

    4(x - 1) + 2(y - 2) = 0

    \Leftrightarrow 2x + y - 4 =
0

    Vậy phương trình tổng quát của đường thẳng là: 2x + y - 4 =
0.

  • Câu 5: Vận dụng

    Trong mặt phẳng Oxy, cho điểm C(3;0) và elip (E):\frac{x^{2}}{9} + \frac{y^{2}}{1} =
1. A,B2 điểm thuộc (E) sao cho \bigtriangleup ABC đều, biết tọa độ của A\left( \frac{a}{2};\frac{c\sqrt{3}}{2}
ight)A có tung độ âm. Tính tổng a + c.

    Nhận xét: Điểm C(3;0)là đỉnh của elip (E) \Rightarrow điều kiện cần để \bigtriangleup ABC đều đó là A,B đối xứng

    Nhau qua Ox.Suy ra A,B là giao điểm của đường thẳng \Delta:x = x_{0} và elip (E).

    +) Ta có elip (E):\frac{x^{2}}{9} +
\frac{y^{2}}{1} = 1 \Rightarrow
\left\lbrack \begin{matrix}
y = - \frac{1}{3}\sqrt{9 - x^{2}} \\
y = \frac{1}{3}\sqrt{9 - x^{2}} \\
\end{matrix} ight..

    +) Theo giả thiết A có tung độ âm nên tọa độ của A\left( x_{0}; -
\frac{1}{3}\sqrt{9 - x_{0}^{2}} ight) (điều kiện x_{0} < 3 do A eq C)

    +) Ta có AC = \sqrt{(3 - x_{0})^{2} +
\frac{1}{9}(9 - x_{0}^{2})}d_{(C;\Delta)} = |3 - x_{0}|

    +) \bigtriangleup ABC đều \Leftrightarrow d_{(C;\Delta)} =
\frac{\sqrt{3}}{2}AC \Leftrightarrow |3 - x_{0}| =
\frac{\sqrt{3}}{2}\sqrt{(3 - x_{0})^{2} + \frac{1}{9}\left( 9 -
x_{0}^{2} ight)}

    \Leftrightarrow (3 - x_{0})^{2} =
\frac{3}{4}\left\lbrack (3 - x_{0})^{2} + \frac{1}{9}(9 - x_{0}^{2})
ightbrack

    \Leftrightarrow \frac{1}{3}x_{0}^{2} -
\frac{3}{2}x_{0} + \frac{3}{2} = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = \frac{3}{2}(t/m) \\
x_{0} = 3(L) \\
\end{matrix} ight.

    \Rightarrow A\left( \frac{3}{2}; -
\frac{\sqrt{3}}{2} ight) \Rightarrow \left\{ \begin{matrix}
a = 3 \\
c = - 1 \\
\end{matrix} ight.\  \Rightarrow a + c = 2.

  • Câu 6: Thông hiểu

    Phương trình tham số của đường thẳng đi qua hai điểm M( - 1;2),N(2;3) là:

    Vectơ chỉ phương: \overrightarrow{u} =
\overrightarrow{MN} = (3;1)

    Đường thẳng đi qua điểm N(2;3) và có vectơ chỉ phương \overrightarrow{u} =
(3;1) nên có phương trình tham số là: \Delta:\left\{ \begin{matrix}
x = 2 + 3t \\
y = 3 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 7: Nhận biết

    Đường tròn có tâm trùng với gốc tọa độ, bán kính R = 1 có phương trình là:

    (C):\left\{ \begin{matrix}
I(0;0) \\
R = 1 \\
\end{matrix} ight.\  ightarrow (C):x^{2} + y^{2} = 1.

  • Câu 9: Nhận biết

    Một đường thẳng có bao nhiêu vectơ chỉ phương?

     Một đường thẳng có vô số vectơ chỉ phương.

  • Câu 10: Thông hiểu

    Tìm tọa độ tâm I của đường tròn đi qua ba điểm A(0;4), B(2;4), C(4;0).

    A,\ B,\ C \in (C):x^{2} + y^{2} + 2ax +
2by + c = 0

    \Leftrightarrow \left\{ \begin{matrix}
16 + 8b + c = 0 \\
20 + 4a + 8b + c = 0 \\
16 + 8a + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = - 1 \\
c = - 8 \\
\end{matrix} ight.\  ightarrow I(1;1).

  • Câu 11: Thông hiểu

    Cho bốn điểm A(4;
- 3), B(5;1), C(2;3)D(
- 2;\ 2). Xác định vị trí tương đối của hai đường thẳng ABCD.

    \left\{ \begin{matrix}{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = (1;4) \\{\overrightarrow{u}}_{CD} = \overrightarrow{CD} = ( - 4; - 1) \\\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}\frac{1}{- 4}eq \frac{4}{- 1} \\{\overrightarrow{u}}_{AB} \cdot {\overrightarrow{u}}_{CD}eq 0 \\\end{matrix} ight.

    ightarrow AB,\ \ CD cắt nhau nhưng không vuông góc.

  • Câu 12: Vận dụng

    Trong mặt phẳng tọa độ Oxy cho đường tròn (C):x^{2} + y^{2} - 2x - 2my + m^{2} - 24 =
0 có tâm I và đường thẳng \Delta:mx + 4y = 0 (với m là tham số). Biết đường thẳng \Delta cắt đường tròn (C) tại hai điểm A;B phân biệt sao cho diện tích tam giác IAB bằng 12. Có bao nhiêu giá trị của tham số m thỏa mãn yêu cầu đề bài?

    Hình vẽ minh họa

    Đường tròn (C) có tâm I(1; m) và bán kính R = 5.

    Gọi H là trung điểm của dây cung AB. Ta có IH là đường cao của tam giác IAB và

    IH = d(I;\Delta) \Leftrightarrow
\frac{|m + 4m|}{\sqrt{m^{2} + 16}} = \frac{|5m|}{\sqrt{m^{2} +
16}}

    AH = \sqrt{IA^{2} - IH^{2}} = \sqrt{25 -
\frac{(5m)^{2}}{m^{2} + 16}} = \frac{20}{\sqrt{m^{2} + 16}}

    Theo bài ra ta có:

    S_{IAB} = 12 \Leftrightarrow 2S_{IAH} =
12

    \Leftrightarrow d(I;\Delta).AH =
12

    \Leftrightarrow 25|m| = 3\left( m^{2} +
16 ight)

    \Leftrightarrow \left\lbrack\begin{matrix}m = \pm 3 \\m = \pm \dfrac{16}{3} \\\end{matrix} ight.

    Vậy có 4 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 13: Nhận biết

    Nhận xét nào đúng về vị trí tương đối của hai đường thẳng (d):2x + 3y + 15 =
0(\Delta):x - 2y - 3 =
0?

    Ta có:

    Vectơ pháp tuyến của đường thẳng (d):2x +
3y + 15 = 0 là: \overrightarrow{n_{d}} = (2;3)

    Vectơ pháp tuyến của đường thẳng (\Delta):x - 2y + 3 = 0 là: \overrightarrow{n_{\Delta}} = (1; -
2)

    Suy ra \overrightarrow{n_{d}}\overrightarrow{n_{d}} không cùng phương và \overrightarrow{n_{d}}.\overrightarrow{n_{d}} = 2
- 6 = - 4 eq 0

    Suy ra hai đường thẳng cắt nhau và không vuông góc.

  • Câu 14: Vận dụng

    Xác định a để hai đường thẳng d_{1}:ax + 3y–4 = 0d_{2}:\left\{ \begin{matrix}
x = - 1 + t \\
y = 3 + 3t \\
\end{matrix} ight. cắt nhau tại một điểm nằm trên trục hoành.

    Ox \cap d_{2} \leftrightarrow \left\{
\begin{matrix}
x = - 1 + t \\
y = 3 + 3t = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 2 \\
y = 0 \\
\end{matrix} ight.

    ightarrow Ox \cap d_{2} = A( - 2;0)
\in d_{1}

    ightarrow - 2a - 4 = 0 \Leftrightarrow
a = - 2.

  • Câu 15: Nhận biết

    Hypebol có nửa trục thực là 4, tiêu cự bằng 10 có phương trình chính tắc là:

    Ta có : \left\{ \begin{matrix}
a = 4 \\
2c = 10 \\
b^{2} = c^{2} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 4 \\
c = 5 \\
b = 3 \\
\end{matrix} ight.\ .

    Phương trình chính tắc của Hyperbol là \frac{x^{2}}{16} - \frac{y^{2}}{9} =
1.

  • Câu 16: Thông hiểu

    Đường Hyperbol \frac{x^{2}}{20} - \frac{y^{2}}{16} = 1 có tiêu cự bằng:

    Ta có : \left\{ \begin{matrix}
a^{2} = 20 \\
b^{2} = 16 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 2\sqrt{5} \\
b = 4 \\
c = 6 \\
\end{matrix} ight.. Tiêu cự 2c
= 12.

  • Câu 17: Nhận biết

    Dạng chính tắc của hypebol là

    Dạng chính tắc của hypebol là \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1.

  • Câu 18: Thông hiểu

    Lập phương trình chính tắc của Elip đi qua điểm B và có tâm sai e = \frac{\sqrt{5}}{3}.

    Phương trình chính tắc của Elip có dạng: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1,(a
> b > 0).

    Elip đi qua điểm B nên \frac{0^{2}}{a^{2}} + \frac{2^{2}}{b^{2}} = 1
\Leftrightarrow b^{2} = 4.

    Tâm sai e = \frac{\sqrt{5}}{3}
\Leftrightarrow \frac{c}{a} = \frac{\sqrt{5}}{3} \Leftrightarrow c =
\frac{\sqrt{5}}{3}a.

    a^{2} = b^{2} + c^{2} \Leftrightarrow
a^{2} = 4 + \left( \frac{\sqrt{5}}{3}a ight)^{2} \Leftrightarrow a^{2}
= 9.

    Vậy phương trình chính tắc của Elip cần tìm là \frac{x^{2}}{9} + \frac{y^{2}}{4} =
1.

  • Câu 19: Nhận biết

    Trong mặt phẳng Oxy, phương trình nào sau đây là phương trình chính tắc của một elip?

    Phương trình chính tắc của elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1,(a
> b > 0) nên chọn phương án D.

  • Câu 20: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):(x-1)^{2}+(y+3)^{2}=25 là:

     Tâm I(1;-3), bán kính R=5.

  • Câu 21: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho ba đường thẳng lần lượt có phương trình tổng quát d_{1}:3x - 4y + 15 =
0, d_{2}:5x + 2y - 1 = 0d_{3}:mx - (2m - 1)y + 9m - 13 =
0. Tìm m để ba đường thẳng đã cho cùng đi qua một điểm.

    Ta có: \left\{ \begin{matrix}
d_{1}:3x - 4y + 15 = 0 \\
d_{2}:5x + 2y - 1 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 3 \\
\end{matrix} ight. ightarrow
d_{1} \cap d_{2} = A( - 1;3) \in d_{3}

    ightarrow - m - 6m + 3 + 9m - 13 = 0
\Leftrightarrow m = 5.

  • Câu 22: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 3 + 4t \\
y = 2 - 6t \\
\end{matrix} ight.d_{2}:\left\{ \begin{matrix}
x = 2 - 2t' \\
y = - 8 + 4t' \\
\end{matrix} ight..

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = - 3 + 4t \\
y = 2 - 6t \\
\end{matrix} ight.\  ightarrow A( - 3;2) \in d_{1},\ \
{\overrightarrow{u}}_{1} = (2; - 3) \\
d_{2}:\left\{ \begin{matrix}
x = 1 - 2t' \\
y = 4 + 3t' \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = ( -
2;3) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{2}{- 2} = \frac{- 3}{3} \\
A\boxed{\in}d_{2} \\
\end{matrix} ight.\  ightarrow d_{1}||d_{2}.

  • Câu 23: Vận dụng

    Cho đường tròn \left( C_{m} ight):x^{2} + y^{2} + 2(m - 1)x -
2my - 4 = 0. Biết rằng khi giá trị m thay đổi, đường tròn \left( C_{m} ight) luôn đi qua điểm I cố định có hoành độ dương. Xác định giá trị của tham số m sao cho tiếp tuyến của đường tròn \left( C_{m} ight) tại I song song với (d):x - 2y - 1 = 0?

    Gỉa sử đường tròn luôn đi qua điểm I\left( x_{0};y_{0} ight) cố định khi m thay đổi. Khi đó:

    {x_{0}}^{2} + {y_{0}}^{2} + 2(m - 1)x_{0}
- 2my_{0} - 4 = 0 với mọi m

    \Leftrightarrow m\left( 2x_{0} - 2y_{0}
ight) + {x_{0}}^{2} + {y_{0}}^{2} - 2x_{0} - 4 = 0 với mọi m

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x_{0} - 2y_{0} = 0 \\
{x_{0}}^{2} + {y_{0}}^{2} - 2x_{0} - 4 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = y_{0} \\
2{x_{0}}^{2} - 2x_{0} - 4 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = y_{0} = - 1 \\
x_{0} = y_{0} = 2 \\
\end{matrix} ight.

    Vậy ta có điểm I(2;2)

    Đường tròn có tâm J(1 - m;m). VTPT của tiếp tuyến của đường tròn tại I là \overrightarrow{IJ} = ( - m - 1;m -
2)

    Để tiếp tuyến tại I song song với đường thẳng (d) nên tồn tại giá trị k sao cho:

    \overrightarrow{IJ} = k(1; - 2)
\Leftrightarrow \left\{ \begin{matrix}
- m - 1 = k \\
m - 2 = - 2k \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m = - 4 \\
k = 3 \\
\end{matrix} ight.

    Vậy giá trị m cần tìm là m = -
4.

  • Câu 24: Nhận biết

    Tìm phương trình chính tắc của parabol (P) biết (P) có tiêu điểm là F(0\ ;\ 5).

    Gọi phương trình chính tắc của (P) là: y^{2}= 2px.

    Do tọa độ tiêu điểm F(0\ ;\ 5) nên \frac{p}{2} = 5 \Leftrightarrow p =10.

    Vậy phương trình của (P) là: y^{2} = 20x.

  • Câu 25: Nhận biết

    Cho đường thẳng d_{1} có vectơ pháp tuyến là \overrightarrow{n_{1}} và đường thẳng d_{2} có vectơ pháp tuyến là \overrightarrow{n_{2}}. Gọi \beta là góc tạo bởi hai đường thẳng d_{1};d_{2}. Kết luận nào sau đây đúng?

    Góc tạo bởi hai đường thẳng đã cho được xác định bởi công thức \cos\beta = \frac{\left|
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} ight|}{\left|
\overrightarrow{n_{1}} ight|.\left| \overrightarrow{n_{2}}
ight|}.

  • Câu 26: Vận dụng

    Viết phương trình tổng quát của đường thẳng (d). Biết rằng (d) đi qua điểm N(2;3) cắt đường thẳng (\Delta):3x - y + 1 = 0 tại điểm Bx_{B}
> 0 sao cho BN =
2\sqrt{2}?

    Gọi B(b;3b + 1);(b > 0) là giao điểm của d\Delta:3x - y + 1 = 0.

    Suy ra \overrightarrow{NB} = (b - 2;3b - 2)

    Theo giả thiết ta có:

    BN = 2\sqrt{2} \Leftrightarrow (b -
2)^{2} + (3b - 2)^{2} = 8

    \Leftrightarrow 10b^{2} - 16b = 0\Leftrightarrow \left\lbrack \begin{matrix}b = 0(ktm) \\b = \dfrac{8}{5}(tm) \\\end{matrix} ight.

    Khi đó \overrightarrow{NB} = \left( -
\frac{2}{5};\frac{14}{5} ight) \Rightarrow \overrightarrow{n_{d}} =
(7;1)

    Phương trình tổng quát của đường thẳng d là: 7(x - 2) + 1(y - 3) = 0 \Leftrightarrow 7x + y -
17 = 0

  • Câu 27: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA(1;2),B(2; - 1),C(0;1). Phương trình đường thẳng chứa trung tuyến kẻ từ đỉnh B của tam giác ABC là:

    Gọi I là trung điểm của AC. Ta có: I\left( \frac{1}{2};\frac{3}{2}
ight)

    Đường trung tuyến BI đi qua điểm B và nhận \overrightarrow{BI} = \left( -
\frac{3}{2};\frac{5}{2} ight) làm vectơ chỉ phương nên có vectơ pháp tuyến \overrightarrow{n} =
(5;3).

    Phương trình tổng quát của đường thẳng BI là:

    5(x - 2) + 3(y + 1) = 0

    \Leftrightarrow 5x + 3y - 7 =
0

    Vậy phương trình tổng quát của đường thẳng cần tìm là 5x + 3y - 7 =
0.

  • Câu 28: Nhận biết

    Cho đường tròn (C) có phương trình (x + 5)^{2} + (y – 2)^{2} = 25. Đường tròn (C) còn được viết dưới dạng nào trong các dạng dưới đây:

     Ta có: (x + 5)^{2} + (y – 2)^{2} = 25  \Leftrightarrow x^{2} + y^{2} + 10x – 4y + 4 = 0.

  • Câu 29: Nhận biết

    Một đường thẳng có bao nhiêu vectơ chỉ phương?

    Một đường thẳng có vô số vectơ chỉ phương.

  • Câu 30: Thông hiểu

    Cho tọa độ hai điểm M\left( - 2\sqrt{3};\frac{3}{2} ight),N\left(
2;\frac{3\sqrt{3}}{2} ight). Viết phương trình chính tắc của elip có tâm là gốc tọa độ và đi qua hai điểm M;N?

    Gọi phương trình chính tắc của elip là: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1;(a;b
> 0)

    Do elip đi qua hai điểm M\left( -
2\sqrt{3};\frac{3}{2} ight),N\left( 2;\frac{3\sqrt{3}}{2}
ight) nên ta có hệ phương trình:

    \left\{ \begin{matrix}\dfrac{12}{a^{2}} + \dfrac{9}{b^{2}} = 1 \\\dfrac{4}{a^{2}} + \dfrac{27}{b^{2}} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a^{2} = 16 \\b^{2} = 9 \\\end{matrix} ight.

    Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là: \frac{x^{2}}{16} + \frac{y^{2}}{9} =
1

  • Câu 31: Thông hiểu

    Tâm sai của Hyperbol \frac{x^{2}}{5} - \frac{y^{2}}{4} = 1 bằng:

    Ta có : \left\{ \begin{matrix}
a^{2} = 5 \\
b^{2} = 4 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = \sqrt{5} \\
b = 2 \\
c = 3 \\
\end{matrix} ight.\  \Rightarrow e = \frac{c}{a} =
\frac{3}{\sqrt{5}}.

  • Câu 32: Vận dụng

    Đường thẳng \Delta tạo với đường thẳng d:x + 2y - 6 = 0 một góc 45^{0}. Tìm hệ số góc k của đường thẳng \Delta.

    d:x + 2y - 6 = 0 ightarrow
{\overrightarrow{n}}_{d} = (1;2), gọi {\overrightarrow{n}}_{\Delta} = (a;b) ightarrow
k_{\Delta} = - \frac{a}{b}. Ta có:

    \frac{1}{\sqrt{2}} = cos45^{\circ} =
\frac{|a + 2b|}{\sqrt{a^{2} + b^{2}}.\sqrt{5}} \Leftrightarrow 5\left(
a^{2} + b^{2} ight) = 2a^{2} + 8ab + 8b^{2}

    \Leftrightarrow 3a^{2} - 8ab - 3b^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = - \frac{1}{3}b ightarrow k_{\Delta} = \frac{1}{3} \\
a = 3b ightarrow k_{\Delta} = - 3 \\
\end{matrix} ight.\ .

  • Câu 33: Nhận biết

    Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?

    Xét phương trình dạng : x^{2} + y^{2} -
2ax - 2by + c = 0, lần lượt tính các hệ số a,\ b,\ c và kiểm tra điều kiện a^{2} + b^{2} - c > 0.

    x^{2} + y^{2} - 4x + 6y - 12 = 0
ightarrow a = 2,\ b = - 3,\ c = - 12 ightarrow a^{2} + b^{2} - c
> 0.

    Các phương trình 4x^{2} + y^{2} - 10x -
6y - 2 = 0,\ \ x^{2} + 2y^{2} - 4x - 8y + 1 = 0 không có dạng đã nêu loại các đáp án 4x^{2} + y^{2} - 10x
- 6y - 2 = 0x^{2} + 2y^{2} - 4x
- 8y + 1 = 0.

    Đáp án x^{2} + y^{2} - 2x - 8y + 20 =
0 không thỏa mãn điều kiện a^{2} +
b^{2} - c > 0.

  • Câu 34: Nhận biết

    Cho đường thẳng (\Delta):3x + 4y - 4 = 0 và tọa độ điểm C(1; - 1). Tính d(C;\Delta)?

    Ta có khoảng cách từ điểm C đến đường thẳng (\Delta):3x + 4y - 4 = 0 là:

    d(C;\Delta) = \frac{\left| 3.1 + 4.( -
1) - 4 ight|}{\sqrt{3^{2} + 4^{2}}} = \frac{5}{5} = 1

    Vậy khoảng cách cần tìm bằng 1.

  • Câu 35: Thông hiểu

    Gọi E là tọa độ giao điểm hai đường thẳng \left(
d_{1} ight):x - 3y + 4 = 0\left( d_{2} ight):2x + 3y - 1 = 0. Tính khoảng cách từ E đến đường thẳng (\Delta):3x + y + 4 = 0

    Vì E là giao điểm hai đường thẳng \left(
d_{1} ight):x - 3y + 4 = 0\left( d_{2} ight):2x + 3y - 1 = 0 nên tọa độ điểm E là nghiệm của hệ phương trình: \left\{ \begin{matrix}
x - 3y + 4 = 0 \\
2x + 3y - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 1 \\
\end{matrix} ight.

    Khi đó khoảng cách từ điểm E đến đường thẳng (\Delta):3x + y + 4 = 0 là:

    d(E;\Delta) = \frac{\left| 3.( - 1) + 1
+ 4 ight|}{\sqrt{3^{2} + 1^{2}}} = \frac{\sqrt{10}}{5}

    Vậy khoảng cách cần tìm bằng \frac{\sqrt{10}}{5}.

  • Câu 36: Nhận biết

    Phương trình nào dưới đây đi qua hai điểm A(2;0),B(0; - 3) là:

    Phương trình đường thẳng đi qua hai điểm A(2;0),B(0; - 3) là: \frac{x}{2} + \frac{y}{- 3} = 1 hay \frac{x}{2} - \frac{y}{3} = 1.

  • Câu 37: Nhận biết

    Cho hai đường thẳng ∆_1: 11x – 12y + 1 = 0∆_2: 12x + 11y + 9 = 0. Khi đó hai đường thẳng này:

     Ta có:

    \begin{matrix}  \overrightarrow {{n_{{\Delta _1}}}}  = \left( {11; - 12} ight) \hfill \\  \overrightarrow {{n_{{\Delta _2}}}}  = \left( {12;11} ight) \hfill \\  \overrightarrow {{n_{{\Delta _1}}}} .\overrightarrow {{n_{{\Delta _2}}}}  = 0 \Rightarrow \overrightarrow {{n_{{\Delta _1}}}}  \bot \overrightarrow {{n_{{\Delta _2}}}}  \hfill \\   \Rightarrow {\Delta _1} \bot {\Delta _2} \hfill \\ \end{matrix}

  • Câu 38: Vận dụng

    Cho hypebol (H): \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 và đường thẳng \Delta: x+y=3. Tích các khoảng cách từ hai tiêu điểm của (H) đến \Delta bằng giá trị nào sau đây?

     Ta có: a=4,b=3 \Rightarrow c=\sqrt{a^2+b^2}=5. Suy ra 2 tiêu điểm F_1(-5;0),F_2(5;0).

    Khoảng cách từ F_2F_1 đến đường thẳng \Delta :x+y-3=0:

    d({F_2},\Delta ) = \frac{{\left| {5 + 0 - 3} ight|}}{{\sqrt {{1^2} + {1^2}} }} = \sqrt 2

    d({F_1},\Delta ) = \frac{{\left| { - 5 + 0 - 3} ight|}}{{\sqrt {{1^2} + {1^2}} }} = 4\sqrt 2

    Do đó \sqrt2 . 4\sqrt2=8.

  • Câu 39: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng (\Delta):ax + by + c = 0;\left( a^{2} + b^{2} >
0 ight) và tọa độ một điểm A\left( x_{0};y_{0} ight). Ta kí hiệu khoảng cách từ điểm A đến đường thẳng (\Delta)d(A;\Delta). Kết luận nào sau đây đúng?

    Khoảng cách từ điểm A đến đường thẳng (\Delta) được tính bởi công thức:

    d(A;\Delta) = \frac{\left| ax_{0} +
by_{0} + c ight|}{\sqrt{a^{2} + b^{2}}}

    Vậy kết luận đúng là: “d(A;\Delta) =
\frac{\left| ax_{0} + by_{0} + c ight|}{\sqrt{a^{2} +
b^{2}}}”.

  • Câu 40: Thông hiểu

    Cho phương trình {x^2} + {y^2} - 2mx - 4(m - 2)y + 6 - m = 0. Điều kiện của m để phương trình đã cho là một phương trình đường tròn là:

    Từ phương trình đường tròn ta có:

    I\left( {m;2m - 4} ight)

    Điều kiện để phương trình đã cho là phương trình đường tròn là:

    \begin{matrix}  {m^2} + 4{\left( {m - 2} ight)^2} - 6 + m > 0 \hfill \\   \Leftrightarrow {m^2} + 4{m^2} - 16m + 16 - 6 + m > 0 \hfill \\   \Leftrightarrow 5{m^2} - 15m + 10 > 0 \hfill \\   \Leftrightarrow m \in ( - \infty ;1) \cup (2; + \infty ) \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo