Xét vị trí tương đối của hai đường thẳng
và
.
Xét vị trí tương đối của hai đường thẳng
và
.
Cho đường thẳng
. Điểm nào dưới đây thuộc đường thẳng đã cho?
Thay vào đường thẳng
suy ra
Vậy điểm thuộc đường thẳng
.
Đường tròn
có dạng tổng quát là:
Xét vị trí tương đối của hai đường thẳng:
và
.
Vì nên hai đường thẳng song song.
Viết phương trình tổng quát của đường thẳng
đi qua giao điểm của hai đường thẳng
,
và vuông góc với đường thẳng
.
Ta có
Vậy
Chọn mệnh đề sai? Đường thẳng
được xác định khi biết
Mệnh đề sai là: “một vectơ pháp tuyến hoặc một vectơ chỉ phương.”
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
,
và
Viết phương trình tham số của đường trung tuyến
của tam giác
Cho phương trình
. Điều kiện của m để phương trình đã cho là một phương trình đường tròn là:
Từ phương trình đường tròn ta có:
Điều kiện để phương trình đã cho là phương trình đường tròn là:
Cho parabol (P) có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây sai?
Đáp án sai: Trục đối xứng của parabol là trục . Đáp án đúng là trục
mới là trục đối xứng.
Đường tròn có tâm
, bán kính
có phương trình là:
Tâm sai của Hyperbol
bằng:
Ta có :
Đường thẳng
tạo với đường thẳng
một góc
. Tìm hệ số góc
của đường thẳng
.
gọi
Ta có:
Trong mặt phẳng với hệ tọa độ
, cho ba điểm
¸
và
. Đường thẳng đi qua điểm
và song song với
có phương trình tham số là:
Gọi d là đường thẳng qua A và song song với PQ.
Ta có:
Xét vị trí tương đối của hai đường thẳng
và
.
Đường tròn ngoại tiếp hình chữ nhật cơ sở của hypebol
có có phương trình là:
Ta có: . Tọa độ các đỉnh hình chữ nhật cở sở là
,
,
,
Dường tròn ngoại tiếp hình chữ nhật cơ sở có tâm
bán kính
.
Phương trình đường tròn là
Tính góc tạo bởi giữa hai đường thẳng
và ![]()
Ta có
Đường tròn
có tâm
và đi qua
có phương trình là:
Hay
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Loại đáp án vì không có dạng
Xét đáp án
loại.
Xét đáp án
loại.
Xét đáp án
Chọn đáp án này.
Một đường thẳng có bao nhiêu vectơ pháp tuyến?
Một đường thẳng có vô số vectơ pháp tuyến.
Lập phương trình chính tắc của elip biết độ dài trục lớn hơn độ dài trục nhỏ 4 đơn vị, độ dài trục nhỏ hơn độ dài tiêu cự 4 đơn vị.
Elip có độ dài trục lớn hơn độ dài trục nhỏ 4 đơn vị
.
Elip có độ dài trục nhỏ hơn độ dài tiêu cự 4 đơn vị
.
Ta có
Phương trình chính tắc của Elip là .
Trong mặt phẳng
cho các điểm
. Phương trình đường tròn đi qua ba điểm đã cho là:
Gọi phương trình đường tròn là: với
Vì đường tròn đi qua ba điểm nên ta có hệ phương trình:
Vậy phương trình đường tròn cần tìm là: .
Đường thẳng
cắt elip
tại hai điểm phân biệt
và
. Hãy tính độ dài đoạn thẳng
.
Tọa độ giao điểm của đường thẳng và
là nghiệm của hệ
Vậy tọa độ giao điểm là
Cho đường tròn
và điểm
. Gọi
là tiếp tuyến của
, biết
đi qua
và không song song với các trục tọa độ. Khi đó khoảng cách từ điểm
đến
bằng:
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có:
Cho ba đường thẳng
,
,
. Phương trình đường thẳng
đi qua giao điểm của
và
, và song song với
là:
Ta có:
Vậy
Elip
có độ dài tiêu cự bằng:
Ta có: .
Do đó độ dài tiêu cự .
Đường elip
có tiêu cự bằng
Ta có: ,
nên
.
Tiêu cự của elip là .
Đường thẳng nào sau đây có đúng một điểm chung với đường thẳng
?
Ta cần tìm đường thẳng cắt
loại
loại
và
. Chọn
Trong mặt phẳng tọa độ
, cho đường thẳng
. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng
?
Ta có: Vectơ pháp tuyến của đường thẳng là:
.
Xác định tâm và bán kính đường tròn
.
Ta có:
Suy ra
Vậy đường tròn có tâm và bán kính lần lượt là: .
Cho Elip
đi qua điểm
và có tâm sai
. Tiêu cự của
là
Gọi phương trình chính tắc của là
với
.
Vì đi qua điểm
nên
.
Lại có .
Với giá trị nào của tham số
thì đường thẳng
vuông góc với đường thẳng
?
Ta có tọa độ vectơ pháp tuyến của là:
Tọa độ vectơ pháp tuyến của là:
Để thì
Vậy m = -8 thì hai đường thẳng đã cho vuông góc với nhau.
Xét vị trí tương đối giữa hai đường thẳng
và
.
Ta có: nên hai đường thẳng trùng nhau.
Trong mặt phẳng tọa độ
, cho đường thẳng
. Hệ số góc
của đường thẳng
là:
Ta có:
Đường thẳng có vectơ chỉ phương
nên có hệ số góc
.
Vậy hệ số góc của đường thẳng là .
Đường tròn
đi qua điểm
và tiếp xúc với đường thẳng
tại
. Phương trình của đường tròn
là:
Tâm I của đường tròn nằm trên đường thẳng qua M vuông góc với là:
Ta có:
Trong mặt phẳng
, cho Parabol
:
có tiêu điểm
. Tìm trên
điểm
cách
một khoảng là
.
Giả sử . Suy ra
. (1)
Từ phương trình suy ra
nên
.
Ta có: . Suy ra
. Kết hợp (1) ta có:
.
Vậy có hai điểm hoặc
thỏa mãn.
Trong mặt phẳng với hệ tọa độ
, cho ba đường thẳng lần lượt có phương trình tổng quát
,
và
. Tìm
để ba đường thẳng đã cho cùng đi qua một điểm.
Ta có:
Trong mặt phẳng
, cho điểm
và đường thẳng
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Khoảng cách từ điểm P đến đường thẳng (d) là:
.
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây đúng?
Khẳng định đúng là: Với
, tâm sai của hypebol là
.