Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm O(0;0)A(1; - 3)?

    Kiểm tra đường thẳng nào không chứa O(0;0)\overset{ightarrow}{} loại.

    (Có thể kiểm tra đường thẳng nào không đi qua điểm A(1; - 3)).

  • Câu 2: Vận dụng

    Viết phương trình tiếp tuyến của đường tròn (C):(x - 2)^{2} + (y + 4)^{2} = 25, biết tiếp tuyến vuông góc với đường thẳng d:3x - 4y + 5 = 0.

    Đường tròn (C) có tâm I(2; - 4),\ R =
5 và tiếp tuyến có dạng

    \Delta:4x + 3y + c = 0\ .

    Ta có R = d\lbrack I;\Deltabrack
\Leftrightarrow \frac{|c - 4|}{5} = 5 \Leftrightarrow \left\lbrack
\begin{matrix}
c = 29 \\
c = - 21 \\
\end{matrix} ight.\ .

  • Câu 3: Nhận biết

    Cho parabol (P):y = 2x^{2} + x - 3. Giao điểm của (P) với trục hoành tại hai điểm A\left( x_{1};y_{1} ight),B\left(
x_{2};y_{2} ight). Khẳng định nào sau đây đúng?

    Phương trình hoành độ giao điểm là nghiệm của phương trình:

    2x^{2} + x - 3 = 0

    Áp dụng định lí Vi – et ta có:

    x_{1} + x_{2} = - \frac{b}{a} = -
\frac{1}{2}

  • Câu 4: Thông hiểu

    Tìm tất cả các giá trị của m để hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 2 + 2t \\
y = 1 + mt \\
\end{matrix} ight.d_{2}:4x
- 3y + m = 0 trùng nhau.

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 2 + 2t \\
y = 1 + mt \\
\end{matrix} ight.\  ightarrow A(2;1) \in d_{1},\
{\overrightarrow{u}}_{1} = (2;m) \\
d_{2}:4x - 3y + m = 0 ightarrow {\overrightarrow{u}}_{2} = (3;4) \\
\end{matrix} ight\}

    \overset{d_{1} \equiv
d_{2}}{ightarrow}\left\{ \begin{matrix}
A \in d_{2} \\
\frac{2}{3} = \frac{m}{4} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
5 + m = 0 \\
m = \frac{8}{3} \\
\end{matrix} ight.\  \Leftrightarrow m \in \varnothing.

  • Câu 5: Nhận biết

    Cho một hypebol (E):\frac{x^{2}}{144} - \frac{y^{2}}{25} =
1 có hai tiêu điểm là:

    Ta có: \left\{ \begin{matrix}
a^{2} = 144 \\
b^{2} = 25 \\
c^{2} = a^{2} + b^{2} = 169 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 12 \\
b = 5 \\
c = 13 \\
\end{matrix} ight.

    Vậy hai tiêu điểm cần tìm là: F_{1}( -
13;0),F_{2}(13;0).

  • Câu 6: Thông hiểu

    Tìm phương trình chính tắc của elip có tiêu cự bằng 6 và trục lớn bằng 10.

    Phương trình chính tắc của elip: \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{a}^{\mathbf{2}}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{b}^{\mathbf{2}}}\mathbf{=}\mathbf{1.}

    Độ dài trục lớn 2a = 10 \Leftrightarrow a
= 5.

    Tiêu cự 2c = 6 \Leftrightarrow c =
3.

    Ta có: a^{2} = b^{2} + c^{2}
\Leftrightarrow b^{2} = a^{2} - c^{2} = 16

    Vậy phương trình chính tắc của elip là \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{25}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{16}}\mathbf{=}\mathbf{1.}.

  • Câu 7: Nhận biết

    Cho Hypebol (H) có phương trình chính tắc là \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1, với a,b > 0. Khi đó khẳng định nào sau đây đúng?

    Khẳng định đúng là: Nếu c^{2} = a^{2} +
b^{2} thì (H) có các tiêu điểm là F_{1}(c;0), F_{2}( - c;0).

  • Câu 8: Nhận biết

    Elip (E):\frac{x^{2}}{16}+\frac{y^{2}}{4}=1 có độ dài tiêu cự bằng:

     Ta có: a=4;b=2 \Rightarrow c=\sqrt{a^2-b^2}=2\sqrt3.

    Do đó độ dài tiêu cự 2c=4\sqrt3.

  • Câu 9: Thông hiểu

    Cho elip (E): \frac{x^{2}}{25}+\frac{y^{2}}{9}=1. Trong các khẳng định sau, khẳng định nào sai?

    Phương trình elip (E) có dạng \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1;\left( {a = 5;b = 3} ight)

    Ta có: b = \sqrt {{a^2} - {c^2}}  = 4

    Khi đó: {F_1}\left( { - 4;0} ight);{F_2}\left( {4;0} ight) đúng

    Ta có: \frac{c}{a}=\frac{4}{5} đúng

    Đỉnh A1(–a; 0) => A1(–5; 0) đúng

    Độ dài trục nhỏ là 2b = 2.3 = 6 ≠ 3 

    Vậy khẳng định sai là: (E) có độ dài trục nhỏ bằng 3.

  • Câu 10: Thông hiểu

    Cho hai đường thẳng \left( d_{1} ight):x + 3y + 8 = 0; \left( d_{2} ight):3x - 4y + 10 =
0 và điểm A( - 2;1). Phương trình đường tròn có tâm I \in \left(
d_{1} ight), đi qua điểm A và tiếp xúc với \left( d_{2} ight) là:

    Hình vẽ minh họa

    Ta có I là tâm đường tròn và I \in \left(
d_{1} ight) nên I( - 3t -
8;t)

    Theo giả thiết bài toán ta có:

    d\left( I;\left( d_{2} ight) ight) =
IA

    \Leftrightarrow \frac{\left| 3( - 3t -
8) - 4t + 10 ight|}{\sqrt{3^{2} + 4^{2}}} = \sqrt{( - 3t - 8 + 2)^{2}
+ (t - 1)^{2}}

    \Leftrightarrow t = - 3

    Suy ra I(1; - 3) và bán kính R = IA = 5

    Vậy phương trình đường tròn cần tìm là: (C):(x - 1)^{2} + (y + 3)^{2} = 25.

  • Câu 12: Thông hiểu

    Cho đường tròn (C):x^{2} + y^{2} + 5x + 7y - 3 = 0. Tính khoảng cách từ tâm của (C) đến trục Ox.

    (C):x^{2} + y^{2} + 5x + 7y - 3 = 0
ightarrow I\left( - \frac{5}{2}; - \frac{7}{2} ight)

    ightarrow d\lbrack I;Oxbrack = \left|
- \frac{7}{2} ight| = \frac{7}{2}.

  • Câu 13: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn có phương trình: (x – 1)^{2} + (y – 10)^{2} = 81 lần lượt là:

     Tâm I(1;10), bán kính R=9.

  • Câu 14: Thông hiểu

    Viết phương trình tổng quát của đường thẳng d đi qua điểm M(–1; 2) và song song với trục Ox ?

     Đường thẳng song song với trục Ox \Rightarrow \overrightarrow n=(0;1).

    Phương trình đường thẳng có vectơ pháp tuyến \overrightarrow n và đi qua M(-1;2) là:

    1(y-2)=0 \Leftrightarrow y-2=0.

  • Câu 15: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng \Delta_{1}:\left\{ \begin{matrix}
x = m + 2t \\
y = 1 + \left( m^{2} + 1 ight)t \\
\end{matrix} ight.\Delta_{2}:\left\{ \begin{matrix}
x = 1 + mt \\
y = m + t \\
\end{matrix} ight. trùng nhau?

    \begin{matrix}
\left\{ \begin{matrix}
\Delta_{1}:\left\{ \begin{matrix}
x = m + 2t \\
y = 1 + \left( m^{2} + 1 ight)t \\
\end{matrix} ight.\  ightarrow A(m;1) \in d_{1},\ \
{\overrightarrow{u}}_{1} = \left( 2;m^{2} + 1 ight) \\
\Delta_{2}:\left\{ \begin{matrix}
x = 1 + mt \\
y = m + t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{u}}_{2} = (m;1) \\
\end{matrix} ight.\  \\
\\
\end{matrix} .

    \overset{d_{1} \equiv
d_{2}}{ightarrow}\left\{ \begin{matrix}
A \in d_{2} \\
\frac{m}{2} = \frac{1}{m^{2} + 1} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m = 1 + mt \\
1 = m + t \\
m^{3} + m - 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = 1 + m(1 - m) \\
(m - 1)\left( m^{2} + m + 2 ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 1 = 0 \\
m - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow m = 1

  • Câu 16: Nhận biết

    Tính khoảng cách từ điểm M(2;4) đường thẳng (\Delta):3x + 4y + 3 = 0?

    Ta có khoảng cách từ điểm M đến đường thẳng (\Delta):3x + 4y + 3 = 0 là:

    d(M;\Delta) = \frac{|3.2 + 4.4 +
3|}{\sqrt{3^{2} + 4^{2}}} = 5

    Vậy khoảng cách cần tìm bằng 5.

  • Câu 18: Nhận biết

    Điểm nào sau đây không thuộc đường thẳng \left\{ \begin{matrix}
x = - 1 + 2t \\
y = 3 - 5t \\
\end{matrix} ight. ?

    Gọi d:\left\{ \begin{matrix}
x = - 1 + 2t \\
y = 3 - 5t \\
\end{matrix} ight.\ .M( - 1;3)\overset{x = - 1,\ y = 3 ightarrow
d}{ightarrow}\left\{ \begin{matrix}
- 1 = - 1 + 2t \\
3 = 3 - 5t \\
\end{matrix} ight.\  \Leftrightarrow t = 0 ightarrow M \in
d.

    N(1; - 2)\overset{x = 1,\ y = - 2
ightarrow d}{ightarrow}\left\{ \begin{matrix}
1 = - 1 + 2t \\
- 2 = 3 - 5t \\
\end{matrix} ight.\  \Leftrightarrow t = 1 ightarrow N \in
d.

    P(3;1)\overset{x = 3,\ y = 1 ightarrow d}{ightarrow}\left\{ \begin{matrix}3 = - 1 + 2t \\1 = 3 - 5t \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}t = 2 \\t = \dfrac{2}{5} \\\end{matrix} ight.\  ightarrow P\in d.

    Chọn P(3;1).

    Q( - 3;8)\overset{x = - 3,\ y = 8
ightarrow d}{ightarrow}\left\{ \begin{matrix}
- 3 = - 1 + 2t \\
8 = 3 - 5t \\
\end{matrix} ight.\  \Leftrightarrow t = - 1 ightarrow Q \in
d.

  • Câu 19: Vận dụng

    Tìm phương trình chính tắc của Hyperbol (H). Cho biết (H) đi qua điểm (2;1) và có một đường chuẩn là x + \frac{2}{\sqrt{3}} =
0.

    Gọi (H):\frac{x^{2}}{a^{2}} -
\frac{y^{2}}{b^{2}} = 1.

    Ta có : \left\{ \begin{matrix}
\frac{2^{2}}{a^{2}} - \frac{1^{2}}{b^{2}} = 1 \\
\frac{a^{2}}{c} = \frac{2}{\sqrt{3}} \\
b^{2} = c^{2} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b^{2} = \frac{a^{2}}{4 - a^{2}} \\
c^{2} = \frac{3}{4}a^{4} \\
\frac{a^{2}}{4 - a^{2}} = \frac{3}{4}a^{4} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a^{2} = 2,\ b^{2} = 1 \\
a^{2} = \frac{10}{3},\ b^{2} = 5 \\
\end{matrix} ight.\ . Suy ra phương trình chính tắc của (H) là \frac{x^{2}}{2} - y^{2} = 1.

  • Câu 20: Thông hiểu

    Viết phương trình đường tròn (C) có tâm I(
- 1;2) và tiếp xúc với đường thẳng \Delta:x - 2y + 7 = 0?

    Bán kính đường tròn là khoảng cách từ tâm I đến đường thẳng \Delta:x - 2y + 7 = 0 nên

    R = d(I;\Delta) = \frac{| - 1 - 4 -
7|}{\sqrt{1 + 4}} = \frac{2}{\sqrt{5}}

    Vậy phương trình đường tròn cần tìm là: (x + 1)^{2} + (y - 2)^{2} =
\frac{4}{5}.

  • Câu 21: Nhận biết

    Đường tròn (C): {x^2} + {y^2} + 12x - 14y + 4 = 0 viết được dưới dạng:

    Từ phương trình đường tròn {x^2} + {y^2} + 12x - 14y + 4 = 0 ta suy ra:

    I\left( { - 6;7} ight);R = \sqrt {{6^2} + {7^2} - 4}  = 9

    Vậy phương trình tổng quát {(x + 6)^2} + {(y - 7)^2} = 81

  • Câu 22: Thông hiểu

    Một elip có diện tích hình chữ nhật cơ sở là 80, độ dài tiêu cự là 6. Tâm sai của elip đó là

    Diện tích hình chữ nhật cơ sở là 2a.2b =
80, suy ra a.b = 20\ \ \
(1).

    Lại có 2c = 6 \Rightarrow c = 3
\Rightarrow a^{2} - b^{2} = c^{2} = 9\ \ \ \ (2).

    Từ (1) \Rightarrow b =
\frac{20}{a}, thay vào (2) ta được:

    a^{2} - \frac{400}{a^{2}} = 9 \Rightarrow
a^{4} - 9a^{2} - 400 = 0 \Leftrightarrow a^{2} = 25 \Rightarrow a =
5.

    Do đó tâm sai e =
\frac{3}{5}.

  • Câu 23: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;5), B( -
4; - 5)C(4; - 1). Phương trình đường phân giác ngoài của góc A là:

    \left\{ \begin{matrix}
A(1;5),\ B( - 4; - 5) ightarrow AB:2x - y + 3 = 0 \\
A(1;5),\ C(4; - 1) ightarrow AC:2x + y - 7 = 0 \\
\end{matrix} ight.\ .

    Suy ra các đường phân giác góc A là:

    \frac{|2x - y + 3|}{\sqrt{5}} =
\frac{|2x + y - 7|}{\sqrt{5}} \Leftrightarrow \left\lbrack
\begin{matrix}
x - 1 = 0 ightarrow f(x;y) = x - 1 \\
y - 5 = 0 \\
\end{matrix} ight.

    ightarrow \left\{ \begin{matrix}
f\left( B( - 4; - 5) ight) = - 5 < 0 \\
f\left( C(4; - 1) ight) = 3 > 0 \\
\end{matrix} ight.\ .

    Suy ra đường phân giác trong góc Ay - 5 =
0.

  • Câu 24: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x + 3y + 5 = 0 và A(1; –3). Khoảng cách từ điểm A đến đường thẳng d là:

     Ta có: {d_{(A,d)}} = \frac{{\left| {2.1 + 3. - 3 + 5} ight|}}{{\sqrt {{2^2} + {3^2}} }} = \frac{{2\sqrt {13} }}{{13}}.

  • Câu 25: Nhận biết

    Đường tròn (C):x^{2} + y^{2} + 12x - 14y + 4 = 0 có dạng tổng quát là:

    (C):x^{2} + y^{2} + 12x - 14y + 4 = 0ightarrow \left\{ \begin{matrix}I( - 6;7) \\R = \sqrt{36 + 49 - 4} = 9 \\\end{matrix} ight.

    ightarrow (C):(x + 6)^{2} + (y - 7)^{2} =81.

  • Câu 26: Nhận biết

    Điểm nào sau đây thuộc đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
\end{matrix} ight. ?

    M(2;–1)\overset{x = 2,\ y = - 1
ightarrow d}{ightarrow}\left\{ \begin{matrix}
2 = 1 + 2t \\
- 1 = 3 - t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = \frac{1}{2} \\
t = 4 \\
\end{matrix} ight.\ \ \ (VN) ightarrow M\boxed{\in}d.

    N(–7;0)\overset{x = - 7,\ y = 0
ightarrow d}{ightarrow}\left\{ \begin{matrix}
- 7 = 1 + 2t \\
0 = 3 - t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = - 4 \\
t = 3 \\
\end{matrix} ight.\ \ (VN) ightarrow N\boxed{\in}d.

    P(3;5)\overset{x = 3,\ y = 5 ightarrow
d}{ightarrow}\left\{ \begin{matrix}
3 = 1 + 2t \\
5 = 3 - t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = 1 \\
t = - 2 \\
\end{matrix} ight.\ \ (VN) ightarrow P\boxed{\in}d.

    Q(3;\ 2)\overset{x = 3,\ y = 2 \in
d}{ightarrow}\left\{ \begin{matrix}
3 = 1 + 2t \\
2 = 3 - t \\
\end{matrix} ight.\  \Leftrightarrow t = 1 ightarrow Q \in
d.Chọn Q(3;\ 2).

  • Câu 27: Vận dụng

    Đường thẳng \Delta tạo với đường thẳng d:x + 2y - 6 = 0 một góc 45^{0}. Tìm hệ số góc k của đường thẳng \Delta.

    d:x + 2y - 6 = 0 ightarrow
{\overrightarrow{n}}_{d} = (1;2), gọi {\overrightarrow{n}}_{\Delta} = (a;b) ightarrow
k_{\Delta} = - \frac{a}{b}. Ta có:

    \frac{1}{\sqrt{2}} = cos45^{\circ} =
\frac{|a + 2b|}{\sqrt{a^{2} + b^{2}}.\sqrt{5}} \Leftrightarrow 5\left(
a^{2} + b^{2} ight) = 2a^{2} + 8ab + 8b^{2}

    \Leftrightarrow 3a^{2} - 8ab - 3b^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = - \frac{1}{3}b ightarrow k_{\Delta} = \frac{1}{3} \\
a = 3b ightarrow k_{\Delta} = - 3 \\
\end{matrix} ight.\ .

  • Câu 28: Vận dụng

    Một tòa tháp có mặt cắt hình hypebol có phương trình \frac{x^{2}}{36}-\frac{y^{2}}{49}=1. Biết khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp. Tòa tháp có chiều cao 50 m. Bán kính đáy của tháp bằng:

    Gọi r là bán kính đáy của tháp (r > 0)

    Do khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp và do tính đối xứng của hypebol nên ta có hai bán kính của nóc và đáy tháp đều bằng nhau.

    Chọn điểm M(r; –25) nằm trên hypebol nên ta có:

    \begin{matrix}  \dfrac{{{r^2}}}{{36}} - \dfrac{{{{\left( { - 25} ight)}^2}}}{{49}} = 1 \hfill \\   \Leftrightarrow \dfrac{{{r^2}}}{{36}} = 1 + \dfrac{{{{\left( { - 25} ight)}^2}}}{{49}} = \dfrac{{674}}{{49}} \hfill \\   \Leftrightarrow {r^2} = \dfrac{{674}}{{49}}.36 = \dfrac{{24264}}{{49}} \hfill \\   \Rightarrow r \approx 22,25\left( m ight) \hfill \\ \end{matrix}

    Vậy Bán kính đáy của tháp khoảng 22,25m.

  • Câu 29: Vận dụng

    Trong mặt phẳng Oxy cho các điểm A(6;2),B( - 2;8),C( - 2; - 4). Phương trình đường tròn nội tiếp tam giác ABC là:

    AB = \sqrt{(6 + 2)^{2} + (2 - 8)^{2}}
= 10,AC = \sqrt{(6 + 2)^{2} + (2 + 4)^{2}} = 10, tam giác ABC cân tại A.

    Gọi M = ( - 2;2) là trung điểm của BC. Phương trình AM là: y =
2.

    Phương trình BC:x = - 2, phương trình AB :

    \frac{x - 6}{6 + 2} = \frac{y - 2}{2 -
8} \Leftrightarrow 3x + 4y - 26 = 0

    Gọi I = (x,y) là tâm đường tròn nội tiếp tam giác ABC. Ta có:

    \left. \ d(I,BC) = d(I,AB)\Leftrightarrow \frac{|x + 2|}{\sqrt{1^{2} + 0^{2}}} = \frac{|3x + 4y -26|}{\sqrt{3^{2} + 4^{2}}}  ight.

    \Leftrightarrow |3x + 4y - 26| = 5|x + 2|

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {4x + 2y - 8 = 0} \\ 
  {x - 2y + 18 = 0} 
\end{array}} ight.

    Thay tọa độ của AC vào phương trình 4x + 2y - 8 = 0 và xét tích của chúng, ta được:

    (4.6 + 2.2 - 8)(4.( - 2) + 2.( - 4) - 8)
< 0 nên phương trình BI4x + 2y - 8 = 0.
    Tọa độ của I là nghiệm của hệ \left\{ \begin{matrix}
y = 2 \\
4x + 2y - 8 = 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 2 \\
\end{matrix} ight.\  ight..

    Vậy I = (1;2)

    \Rightarrow IM = \sqrt{(1 + 2)^{2} + (2 - 2)^{2}} =3.

    Phương trình đường tròn nội tiếp tam giác ABC(x -
1)^{2} + (y - 2)^{2} = 9.

     

  • Câu 30: Vận dụng

    Cho điểm M nằm trên ∆: x + y – 1 = 0 và cách N(–1; 3) một khoảng bằng 5. Khi đó tọa độ điểm M là:

     Gọi M(a;b)

    M \in \Delta \Rightarrow a+b-1=0 \Rightarrow a=1-b

    Do đó M(1-b;b).

    Ta có: MN=5 \Leftrightarrow\sqrt {{{( - 1 - 1 + b)}^2} + {{(3 - b)}^2}}  = 5\Rightarrow b =  - 1 \Rightarrow a = 2.

  • Câu 31: Thông hiểu

    Lập phương trình chính tắc của Elip đi qua điểm B và có tâm sai e = \frac{\sqrt{5}}{3}.

    Phương trình chính tắc của Elip có dạng: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1,(a
> b > 0).

    Elip đi qua điểm B nên \frac{0^{2}}{a^{2}} + \frac{2^{2}}{b^{2}} = 1
\Leftrightarrow b^{2} = 4.

    Tâm sai e = \frac{\sqrt{5}}{3}
\Leftrightarrow \frac{c}{a} = \frac{\sqrt{5}}{3} \Leftrightarrow c =
\frac{\sqrt{5}}{3}a.

    a^{2} = b^{2} + c^{2} \Leftrightarrow
a^{2} = 4 + \left( \frac{\sqrt{5}}{3}a ight)^{2} \Leftrightarrow a^{2}
= 9.

    Vậy phương trình chính tắc của Elip cần tìm là \frac{x^{2}}{9} + \frac{y^{2}}{4} =
1.

  • Câu 32: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm C(2; - 1)D(2;5).

    Ta có:

    \left\{ \begin{matrix}C(2; - 1) \in CD \\{\overrightarrow{u}}_{CD} = \overrightarrow{CD} = (0;6) \\\end{matrix} ight.\ \overset{ightarrow}{}CD:\left\{ \begin{matrix}x = 2 \\y = - 1 + 6t \\\end{matrix} ight.\ \ \ \left( t\mathbb{\in R} ight).

  • Câu 33: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(2;4), B(5;0)C(2;1). Trung tuyến BM của tam giác đi qua điểm N có hoành độ bằng 20 thì tung độ của điểm N bằng bao nhiêu?

    \left\{ \begin{matrix}
A(2;4) \\
C(2;1) \\
\end{matrix} ight.\ \overset{ightarrow}{}M\left( 2;\frac{5}{2}
ight) ightarrow \overrightarrow{MB} = \left( 3; - \frac{5}{2}
ight) = \frac{1}{2}(6; - 5)

    \overset{ightarrow}{}MB:\left\{
\begin{matrix}
x = 5 + 6t \\
y = - 5t \\
\end{matrix} ight.\ .

    Ta có: N\left( 20;y_{N} ight) \in
BM\overset{ightarrow}{}\left\{ \begin{matrix}
20 = 5 + 6t \\
y_{N} = - 5t \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
t = \frac{5}{2} \\
y_{N} = - \frac{25}{2} \\
\end{matrix} ight.\ \overset{ightarrow}{}

    Chọn - \frac{25}{2}.

  • Câu 34: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} ight. và hai điểm A(1;2),B( - 2;m). Tìm tất cả các giá trị của tham số m để AB nằm cùng phía đối với d.

    Ta có: d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} \Rightarrow d:3x + y - 7 = 0 ight..

    Để A, B nằm cùng phía đối với d thì:

    \left( 3x_{A} + y_{A} - 7 ight)\left(
3x_{A} + y_{A} - 7 ight) > 0 \Leftrightarrow - 2(m - 13) >
0

    \Leftrightarrow m - 13 < 0
\Leftrightarrow m < 13.

  • Câu 35: Nhận biết

    Cho đường thẳng 2x + y - 3 = 0. Điểm nào dưới đây thuộc đường thẳng đã cho?

    Thay x = 0 vào đường thẳng 2x + y - 3 = 0 suy ra y = 3

    Vậy điểm N(0;3) thuộc đường thẳng 2x + y - 3 = 0.

  • Câu 36: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm A(–1\ ;\ 3)B(3\ ;\ 1).

    \left\{ \begin{matrix}A( - 1;3) \in AB \\{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = (4; - 2) = - 2( - 2;1)\\\end{matrix} ight.\ \overset{ightarrow}{}AB:\left\{ \begin{matrix}x = - 1 - 2t \\y = 3 + t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 37: Nhận biết

    Tính khoảng cách từ điểm C( - 1;2) đến đường thẳng (\Delta):4x - 3y + 5 = 0

    Khoảng cách từ điểm C đến đường thẳng (\Delta):4x - 3y + 5 = 0 là:

    d(C;\Delta) = \frac{\left| 4.( - 1) -
3.2 + 5 ight|}{\sqrt{4^{2} + ( - 3)^{2}}} = 1

    Vậy khoảng cách cần tìm bằng 1.

  • Câu 38: Thông hiểu

    Khoảng cách từ giao điểm của hai đường thẳng x - 3y + 4 = 02x + 3y - 1 = 0 đến đường thẳng \Delta:3x + y + 4 = 0 bằng:

    \left\{ \begin{matrix}
x - 3y + 4 = 0 \\
2x + 3y - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 1 \\
\end{matrix} ight.\  ightarrow A( - 1;1)

    ightarrow d(A;\Delta) = \frac{| - 3 +
1 + 4|}{\sqrt{9 + 1}} = \frac{2}{\sqrt{10}}.

  • Câu 39: Nhận biết

    Trên hệ trục tọa độ cho đường tròn (C):(x - 1)^{2} + (y + 1)^{2} = 4. Trong các điểm sau điểm nào nằm trên đường tròn đã cho?

    Thay tọa độ điểm Q(3; - 1) vào phương trình đường tròn (C):(x - 1)^{2} + (y
+ 1)^{2} = 4 ta được:

    (3 - 1)^{2} + ( - 1 + 1)^{2} =
4

    Vậy điểm thuộc đường tròn là Q(3; -
1).

  • Câu 40: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình 2x + 3y - 2 = 0. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng đã cho?

    Một vectơ pháp tuyến của đường thẳng 2x +
3y - 2 = 0 là: (2;3).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo