Trong mặt phẳng
, cho Parabol
:
có tiêu điểm
. Tìm trên
điểm
cách
một khoảng là
.
Giả sử . Suy ra
. (1)
Từ phương trình suy ra
nên
.
Ta có: . Suy ra
. Kết hợp (1) ta có:
.
Vậy có hai điểm hoặc
thỏa mãn.
Trong mặt phẳng
, cho Parabol
:
có tiêu điểm
. Tìm trên
điểm
cách
một khoảng là
.
Giả sử . Suy ra
. (1)
Từ phương trình suy ra
nên
.
Ta có: . Suy ra
. Kết hợp (1) ta có:
.
Vậy có hai điểm hoặc
thỏa mãn.
Đường thẳng nào sau đây song song với đường thẳng
?
Đường thẳng song song với đường thẳng
vì
.
Công thức nào dưới đây là công thức tính khoảng cách từ một điểm
đến đường thẳng
?
Công thức tính khoảng cách từ một điểm đến đường thẳng
là:
Trong mặt phẳng tọa độ
, mỗi đường thẳng có bao nhiêu vectơ pháp tuyến?
Một đường thẳng có vô số vectơ pháp tuyến và chúng có cùng phương với nhau.
Đường tròn
có tâm
và bán kính
lần lượt là:
Ta có:
Trong mặt phẳng tọa độ có đường thẳng
có phương trình
và đường tròn
. Tìm tất cả các giá trị của tham số m để đường thẳng
tiếp xúc với đường tròn
?
Phương trình đường tròn (C) là:
Suy ra tâm đường tròn: và bán kính
Đường thẳng tiếp xúc với đường tròn
khi và chỉ khi
Tọa độ tâm
và bán kính
của đường tròn
là:
Xác định vị trí tương đối của hai đường thẳng
và ![]()
cắt nhau nhưng không vuông góc.
Xác định
để hai đường thẳng
và
cắt nhau tại một điểm nằm trên trục hoành.
Cho elip
. Diện tích hình chữ nhật cơ sở của
là
Độ dài trục lớn: .
Độ dài trục bé: .
Diện tích hình chữ nhật cơ sở của là:
.
Khoảng cách từ điểm
đến đường thẳng
bằng:
Cho elip (E):
. Trong các khẳng định sau, khẳng định nào sai?
Phương trình elip (E) có dạng
Ta có:
Khi đó: đúng
Ta có: đúng
Đỉnh A1(–a; 0) => A1(–5; 0) đúng
Độ dài trục nhỏ là 2b = 2.3 = 6 ≠ 3
Vậy khẳng định sai là: (E) có độ dài trục nhỏ bằng 3.
Viết phương trình đường thẳng
đi qua giao điểm hai đường thẳng
và cosin góc giữa
với đường thẳng
một góc bằng
?
Gọi A là giao điểm hai đường thẳng , khi đó tọa độ điểm A là nghiệm của hệ phương trình:
Phương trình đường thẳng có dạng
Vì
Mặt khác
Với
Với
Vậy phương trình đường thẳng là: .
Cho phương trình
. Tìm điều kiện của
để
là phương trình đường tròn.
Ta có:
Phương trình tham số của đường thẳng
đi qua hai điểm
và
là:
Phương trình tham số của đường thẳng AB đi qua điểm và nhận
làm vectơ chỉ phương.
Vậy phương trình cần tìm là: .
Cho parabol
. Giao điểm của
với trục hoành tại hai điểm
. Khẳng định nào sau đây đúng?
Phương trình hoành độ giao điểm là nghiệm của phương trình:
Áp dụng định lí Vi – et ta có:
Đường thẳng
đi qua điểm
và song song với đường thẳng
có phương trình tổng quát là:
Vậy
Đâu là đường thẳng không có điểm chung với đường thẳng
?
Kí hiệu
(i) Xét đáp án: không cùng phương nên loại.
(ii) Xét đáp án: không cùng phương nên loại.
(iii) Xét đáp án: không cùng phương nên loại.
(iv) Xét đáp án:
(Chọn)
Hãy xác định phương trình chính tắc của parabol
. Biết rằng
cắt đường thẳng
tại hai điểm
và
?
Phương trình chính tắc của (P) có dạng
Ta có đường thẳng d cắt (P) tại hai điểm
Ta có:
Với
Với
Vậy phương trình chính tắc của parabol cần tìm là: .
Cho đường tròn
, hỏi độ dài đường kính bằng bao nhiêu?
Ta có tâm . Suy ra bán kính
.
Do đó đường kính bằng .
Phương trình chính tắc của đường elip với
,
là
Phương trình chính tắc .
Một vectơ chỉ phương của đường thẳng
là:
Đường thẳng có một vectơ chỉ phương là:
Trong các phương trình sau đây, phương trình nào là phương trình tham số của đường thẳng?
Phương trình tham số của đường thẳng là:
Cho bốn điểm
,
,
và
. Xác định vị trí tương đối của hai đường thẳng
và
.
cắt nhau nhưng không vuông góc.
Cho hai đường tròn
và
. Tìm giá trị tham số m để hai đường tròn tiếp xúc nhau?
Dễ thấy đường tròn (C) có tâm O(0; 0) và bán kính R = 1
Đường tròn (C’) có tâm I(m + 1; -2m) và bán kính
Ta thấy:
điểm O nằm trong đường tròn tâm I suy ra (C) và (C’) chỉ có thể tiếp xúc trong với nhau.
Điều kiện để hai đường tròn tiếp xúc trong là:
Vậy có hai giá trị m thỏa mãn điều kiện là: hoặc
.
VD
1
Với giá trị nào của
thì hai đường thẳng
và
trùng nhau?
.
Cho hai điểm A(4; 0), B(0; 5). Phương trình nào sau đây không phải là phương trình của đường thẳng AB?
Với A(4; 0), B(0; 5) ta có:
Đường thẳng AB là đường thẳng đi qua hai điểm A và B, do đó nhận làm vectơ chỉ phương.
Khi đó đường thẳng AB nhận làm vectơ pháp tuyến.
Đường thẳng AB đi qua điểm A(4; 0), có vectơ pháp tuyến nên có phương trình tổng quát là:
Do đó phương trình ở phương án không phải phương trình AB.
Đường thẳng AB đi qua hai điểm A(4; 0), B(0; 5) nên có phương trình đoạn chắn của là:
Do đó phương án đúng.
Phương trình đường thẳng AB đi qua hai điểm A(4; 0), B(0; 5) là:
Do đó phương án đúng.
Đường thẳng AB đi qua điểm A(4; 0), có vectơ chỉ phương nên có phương trình tham số là:
(t ∈ R)
Do đó phương án (t ∈ R) đúng.
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng
?
Vectơ chỉ phương của đường thẳng trên là: .
Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Parabol?
Phương trình Parabol có dạng
Vậy phương trình cần tìm là .
Hãy viết phương trình chính tắc của elip nếu nó đi qua điểm
và tỉ số của tiêu cự với độ dài trục lớn bằng
.
Gọi phương trình chính tắc của Elip là với
Elip đi qua điểm
suy ra
Tỉ số của tiêu cực với độ dài trục lớn bằng
suy ra
Kết hợp với điều kiện ta được
Từ suy ra
Vậy phương trình cần tìm là
Một elip có diện tích hình chữ nhật cơ sở là
, độ dài tiêu cự là
. Tâm sai của elip đó là
Diện tích hình chữ nhật cơ sở là , suy ra
.
Lại có .
Từ , thay vào
ta được:
.
Do đó tâm sai .
Tìm giá trị của tham số m sao cho đường thẳng
là tiếp tuyến của đường tròn
.
Đường tròn (C) có tâm I(3; 0) và bán kính R = 2
Để là tiếp tuyến của đường tròn
thì ta phải có:
Đường thẳng
đi qua điểm
và có vectơ pháp tuyến
có phương trình tham số là:
Ta có:
Cho hình elip có độ dài trục lớn và độ dài trục bé lần lượt là
. Vẽ một hình chữ nhật nội tiếp elip đã cho. Diện tích lớn nhất của hình chữ nhật là:
Hình vẽ minh họa
Phương trình chính tắc của elip có dạng .
Ta có:
Chọn là đỉnh hình chữ nhật và
. Ta có:
Diện tích hình chữ nhật là:
Đường thẳng
không đi qua điểm nào sau đây ?
Gọi .
Đặt Chọn
.
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
,
và
Trung tuyến
của tam giác đi qua điểm
có hoành độ bằng
thì tung độ của điểm
bằng bao nhiêu?
Ta có:
Chọn
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Loại các đáp án và
vì không có dạng
Xét đáp án: loại.
Xét đáp án : Chọn đáp án này.
Cho hai đường thẳng
và
với
. Nếu
vô nghiệm thì vị trí tương đối của hai đường thẳng là:
Số giao điểm của hai đường thẳng đã cho là nghiệm của hệ phương trình .
Nếu hệ phương trình trên vô nghiệm thì hai đường thẳng không có điểm chung, nghĩa là hai đường thẳng song song với nhau.
Đường tròn
có tâm
thuộc đường thẳng
, đi qua điểm
và tiếp xúc với đường thẳng
. Phương trình của đường tròn
là:
Dễ thấy nên tâm I của đường tròn nằm trên đường thẳng qua A vuông góc với
là
Vậy phương trình đường tròn là:
Phương trình tổng quát của đường thẳng
đi qua điểm
và có vectơ pháp tuyến
là:
Đường thẳng đi qua điểm
và nhận
là vectơ pháp tuyến có phương trình tổng quát là:
Vậy phương trình tổng quát của đường thẳng là .