Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Khoảng cách nhỏ nhất từ điểm M(15;1) đến một điểm bất kì thuộc đường thẳng \Delta:\left\{ \begin{matrix}
x = 2 + 3t \\
y = t \\
\end{matrix} ight. bằng:

    \Delta:\left\{ \begin{matrix}
x = 2 + 3t \\
y = t \\
\end{matrix} ight.\  ightarrow \Delta:x - 3y - 2 = 0

    \overset{\forall N \in
\Delta}{ightarrow}MN_{\min} = d(M;\Delta) = \frac{|15 - 3 -
2|}{\sqrt{1 + 9}} = \sqrt{10}.

  • Câu 2: Vận dụng

    Tìm m để ba đường thẳng d_{1}:2x + y–1 =
0, d_{2}:x + 2y + 1 = 0d_{3}:mx–y–7 = 0 đồng quy?

    \left\{ \begin{matrix}
d_{1}:2x + y–1 = 0 \\
d_{2}:x + 2y + 1 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = - 1 \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A(1; - 1) \in
d_{3} \Leftrightarrow m + 1 - 7 = 0
\Leftrightarrow m = 6.

  • Câu 3: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} ight. và hai điểm A(1;2), B( -
2;m). Tìm tất cả các giá trị của tham số m để AB nằm cùng phía đối với d.

    d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} ight.\ \overset{}{ightarrow}d:3x + y - 7 = 0. Khi đó điều kiện bài toán trở thành

    \left( 3x_{A} + y_{A} - 7 ight)\left(
3x_{B} + y_{B} - 7 ight) > 0 \Leftrightarrow - 2(m - 13) > 0
\Leftrightarrow m < 13.

  • Câu 4: Vận dụng

    Đường tròn (C) có tâm I thuộc đường thẳng d:x + 2y - 2 = 0, bán kính R = 5 và tiếp xúc với đường thẳng \Delta:\ 3x - 4y - 11 = 0. Biết tâm I có hoành độ dương. Phương trình của đường tròn (C) là:

    \begin{matrix}
I \in d ightarrow I(2 - 2a;a),\ \ a < 1 ightarrow d\lbrack
I;\Deltabrack = R = 5 \\
\Leftrightarrow \frac{|10a + 5|}{5} = 5 \Leftrightarrow \left\lbrack
\begin{matrix}
a = 2\ \ (l) \\
a = - 3 \\
\end{matrix} ight.\  ightarrow I(8; - 3) \\
\end{matrix}.

    Vậy phương trình đường tròn là: (x -
8)^{2} + (y + 3)^{2} = 25.

  • Câu 5: Nhận biết

    Đường thẳng nào là đường chuẩn của parabol y^{2}=2x.

     Ta có: 2p=2 \Leftrightarrow p=1.

    Đường chuẩn: x=-\frac p2=-\frac12.

  • Câu 6: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:2x + y + 4 - m = 0d_{2}:(m + 3)x + y + 2m - 1 = 0 song song?

    Với m = 4\overset{}{ightarrow}\left\{\begin{matrix}d_{1}:2x + y = 0 \\d_{2}:7x + y + 7 = 0 \\\end{matrix} ight.\ \overset{}{ightarrow}d_{1} \cap d_{2}eq \varnothing\overset{}{ightarrow} loại m = 4.

    Với meq 4 thì

    \left\{ \begin{matrix}d_{1}:2x + y + 4 - m = 0 \\d_{2}:(m + 3)x + y - 2m - 1 = 0 \\\end{matrix} ight.\ \overset{d_{1}||d_{2}}{ightarrow}\frac{m + 3}{2}= \frac{1}{1}eq \frac{- 2m - 1}{4 - m}

    \Leftrightarrow \left\{ \begin{matrix}m = - 1 \\meq  - 5 \\\end{matrix} ight.\  \Leftrightarrow m = - 1.

  • Câu 7: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d:x - 2y + 3 = 0. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng d?

    Ta có: Vectơ pháp tuyến của đường thẳng \Delta là: \overrightarrow{n}(1; - 2).

  • Câu 8: Thông hiểu

    Trong hệ trục tọa độ Oxy cho đường thẳng (d):2x - y - 4 = 0. Một đường tròn (C) tiếp xúc với các trục tọa độ và có tâm nằm trên đường thẳng (d). Kết quả nào dưới đây đúng?

    Ta có tâm đường tròn thuộc đường thẳng d nên I(m;2m - 4) \in (d). Theo giả thiết để bài ta có:

    d(I;Ox) = d(I;Oy)

    \Leftrightarrow |2m - 4| = |m|
\Leftrightarrow \left\lbrack \begin{matrix}
m = 4 \\
m = \frac{4}{3} \\
\end{matrix} ight.

    Với m = \frac{4}{3} \Rightarrow I\left(
\frac{4}{3}; - \frac{4}{3} ight)

    \Rightarrow R = d(I;Oy) = |m| =
\frac{4}{3}

    Vậy phương trình đường tròn là: \left( x
- \frac{4}{3} ight)^{2} + \left( x + \frac{4}{3} ight)^{2} =
\frac{16}{9}

    Với m = 4 \Rightarrow I(4;4)

    \Rightarrow R = d(I;Oy) = |m| =
4

    Vậy phương trình đường tròn là: (x -
4)^{2} + (y + 4)^{2} = 16.

  • Câu 9: Vận dụng

    Cho hai đường thẳng d_{1}:3x + 4y + 12 = 0d_{2}:\left\{ \begin{matrix}
x = 2 + at \\
y = 1 - 2t \\
\end{matrix} ight.. Tìm các giá trị của tham số a để d_{1}d_{2} hợp với nhau một góc bằng 45^{0}.

    Ta có:

    \left\{ \begin{matrix}
d_{1}:3x + 4y + 12 = 0 ightarrow {\overrightarrow{n}}_{1} = (3;4) \\
d_{2}:\left\{ \begin{matrix}
x = 2 + at \\
y = 1 - 2t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (2;a) \\
\end{matrix} ight.

    \overset{\varphi = \left( d_{1};d_{2}
ight) = 45^{\circ}}{ightarrow}\frac{1}{\sqrt{2}} = cos45^{\circ} =
\cos\varphi = \frac{|6 + 4a|}{\sqrt{25}.\sqrt{a^{2} + 4}}

    \Leftrightarrow 25\left( a^{2} + 4
ight) = 8\left( 4a^{2} + 12a + 9 ight)

    \Leftrightarrow 7a^{2} + 96a - 28 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = - 14 \\
a = \frac{2}{7} \\
\end{matrix} ight.\ .

  • Câu 10: Nhận biết

    Tính khoảng cách từ điểm C( - 1;2) đến đường thẳng (\Delta):4x - 3y + 5 = 0

    Khoảng cách từ điểm C đến đường thẳng (\Delta):4x - 3y + 5 = 0 là:

    d(C;\Delta) = \frac{\left| 4.( - 1) -
3.2 + 5 ight|}{\sqrt{4^{2} + ( - 3)^{2}}} = 1

    Vậy khoảng cách cần tìm bằng 1.

  • Câu 11: Nhận biết

    Đường trung trực của đoạn thẳng AB với A = (- 3;2), B = ( - 3;3) có một vectơ pháp tuyến là:

    Gọi d là trung trực đoạn AB, ta có: \left\{ \begin{matrix}\overrightarrow{AB} = (0;1) \\d\bot AB \\\end{matrix} ight.\ \overset{ightarrow}{}{\overrightarrow{n}}_{d} =\overrightarrow{AB} = (0;1).

  • Câu 12: Nhận biết

    Đường thẳng nào sau đây vuông góc với đường thẳng 4x - 3y + 1 = 0 ?

    Kí hiệu d:4x - 3y + 1 = 0 ightarrow
{\overrightarrow{n}}_{d} = (4; - 3).

    (i) Xét đáp án d_{1}:\left\{
\begin{matrix}
x = 4t \\
y = - 3 - 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{1} = (3;4)
ightarrow {\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{d} =
0 nên chọn đáp án này.

    (ii) Tương tự kiểm tra và loại các đáp án còn lại.

  • Câu 13: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A(m - 1;1),B(2;2 - 2m),C(m + 3;3) với m là tham số. Tìm giá trị của tham số m để ba điểm A,B,C thẳng hàng?

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = (3 - m;3 - 2m) \\
\overrightarrow{AC} = (4;4) \\
\end{matrix} ight.

    Ba điểm A, B, C thẳng hàng khi và chỉ khi \overrightarrow{AB};\overrightarrow{AC} cùng phương với nhau.

    Điều đó xảy ra khi và chỉ khi \frac{3 -
m}{4} = \frac{3 - 2m}{4} \Leftrightarrow m = 0

    Vậy m = 0 thì ba điểm A, B, C thẳng hàng.

  • Câu 14: Vận dụng

    Cho elip (E) có hai đỉnh trên trục nhỏ cùng với hai tiêu điểm tạo thành một hình vuông. Tỉ số e của tiêu cự với độ dài trục lớn của (E) là bao nhiêu?

    Ta có \widehat{F_{1}B_{1}F_{2}} =
90^{0}\overset{}{ightarrow}OB_{1} =
\frac{F_{1}F_{2}}{2}\overset{ightarrow}{}b = c

    \overset{}{ightarrow}b^{2} =
c^{2}\overset{}{ightarrow}\left( a^{2} - c^{2} ight) =
c^{2}

    \overset{}{ightarrow}\frac{c^{2}}{a^{2}} =
\frac{1}{2}\overset{}{ightarrow}\frac{c}{a} =
\frac{1}{\sqrt{2}}.

    Vậy e = \frac{1}{\sqrt{2}}.

  • Câu 15: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm A(2; - 1)B(2;5).

    \left\{ \begin{matrix}A(2; - 1) \in AB \\{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = (0;6) \\\end{matrix} ight.\ \overset{ightarrow}{}AB:\left\{ \begin{matrix}x = 2 \\y = - 1 + 6t \\\end{matrix} ight.\ \ \ \left( t\mathbb{\in R} ight).

  • Câu 16: Nhận biết

    Viết phương trình tiếp tuyến của đường tròn (C):(x – 2)^{2} + (y + 3)^{2} = 5 tại điểm M(3;-1).

     Tâm I(2;-3).

    Phương trình tiếp tuyến tại M(3;-1) là:

    (3 - 2)(x - 3) + ( - 1 + 3)(y + 1) = 0 \Leftrightarrow x + 2y - 1 = 0.

  • Câu 17: Thông hiểu

    Tâm sai của Hyperbol \frac{x^{2}}{5} - \frac{y^{2}}{4} = 1 bằng:

    Ta có : \left\{ \begin{matrix}
a^{2} = 5 \\
b^{2} = 4 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = \sqrt{5} \\
b = 2 \\
c = 3 \\
\end{matrix} ight.\  \Rightarrow e = \frac{c}{a} =
\frac{3}{\sqrt{5}}.

  • Câu 18: Nhận biết

    Phương trình nào dưới đây đi qua hai điểm A(2;0),B(0; - 3) là:

    Phương trình đường thẳng đi qua hai điểm A(2;0),B(0; - 3) là: \frac{x}{2} + \frac{y}{- 3} = 1 hay \frac{x}{2} - \frac{y}{3} = 1.

  • Câu 19: Nhận biết

    Khoảng cách từ điểm A(0;1) đến đường thẳng (\Delta):5x - 12y - 1 = 0 bằng:

    Áp dụng công thức tính khoảng cách từ một điểm đến một đường thẳng ta có:

    d(A;\Delta) = \frac{|5.1 - 12.1 -
1|}{\sqrt{5^{2} + ( - 12)^{2}}} = 1

    Vậy khoảng cách từ điểm A đến đường thẳng đã cho bằng 1.

  • Câu 20: Nhận biết

    Phương trình đường tròn (C) có tâm I(
- 1;2) và bán kinh R = 6 là:

    Ta có: (C):\left\{ \begin{matrix}
I( - 1;2) \\
R = 6 \\
\end{matrix} ight.\  \Rightarrow (C):(x + 1)^{2} + (y - 2)^{2} =
36

  • Câu 22: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tọa độ hai điểm A(1;2),B(4;1) và đường thẳng (d):2x - y - 5 = 0. Khi đó, phương trình đường tròn (C) có tâm I \in (d) và đi qua hai điểm A;B là:

    Hình vẽ minh họa

    Ta có: Gọi I là tâm của đường tròn (C). Vì I \in (d) nên I(t;2t - 5)

    Hai điểm A, B cùng thuộc đường tròn (C) nên

    IA = IB

    \Leftrightarrow (1 - t)^{2} + (7 -
2t)^{2} = (4 - t)^{2} + (6 - 2t)^{2}

    \Leftrightarrow t = 1

    Suy ra I(1; - 3);R = IA = 5

    Vậy phương trình đường tròn cần tìm là: (x - 1)^{2} + (y + 3)^{2} = 25

  • Câu 23: Thông hiểu

    Hãy xác định phương trình chính tắc của parabol (P). Biết rằng (P) cắt đường thẳng d:x + 2y = 0 tại hai điểm A,BAB =
4\sqrt{5}?

    Phương trình chính tắc của (P) có dạng y^{2} = 2px;(p > 0)

    Ta có đường thẳng d cắt (P) tại hai điểm \left\{ \begin{matrix}
A \equiv O \\
B = ( - 2m;m) \\
\end{matrix} ight.

    Ta có:

    AB = 4\sqrt{5} \Leftrightarrow AB^{2} =
5m^{2} = \left( 4\sqrt{5} ight)^{2}

    \Leftrightarrow m^{2} = 16
\Leftrightarrow m = \pm 4

    Với m = 4 \Rightarrow B( - 8;4) \Rightarrow 16 = 2p.( - 8)
\Rightarrow p = - 1 < 0(ktm)

    Với m = - 4 \Rightarrow B(8; - 4) \Rightarrow 16 = 2p.8
\Rightarrow p = 1(tm)

    Vậy phương trình chính tắc của parabol cần tìm là: y^{2} = 2x.

  • Câu 24: Nhận biết

    Dạng chính tắc của parabol là?

     Dạng chính tắc của Parabol: y^{2}=2px.

  • Câu 25: Nhận biết

    Đường thẳng d:51x - 30y + 11 = 0 đi qua điểm nào sau đây?

    Đặt f(x;y) = 51x - 30y +
11\overset{}{ightarrow}\left\{ \begin{matrix}
f(M) = f\left( - 1; - \frac{4}{3} ight) = 0 ightarrow M \in d \\
f(N) = f\left( - 1;\frac{4}{3} ight) = - 80\boxed{=}0 ightarrow
N\boxed{\in}d \\
f(P)\boxed{=}0 \\
f(Q)\boxed{=}0 \\
\end{matrix} ight.\ .

    Chọn M\left( - 1; - \frac{4}{3}
ight).

  • Câu 26: Nhận biết

    Tìm tọa độ giao điểm của đường thẳng \Delta:5x + 2y - 10 = 0 và trục hoành.

    Ox \cap \Delta:5x + 2y - 10 =
0\overset{}{ightarrow}\left\{ \begin{matrix}
y = 0 \\
5x + 2y - 10 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
\end{matrix} ight.\ .Chọn (2;0).

  • Câu 27: Vận dụng

    Trong mặt phẳng tọa độ, người ta xác định chuyển động của một vật thể trong thời gian 60 giờ. Người ta xác định được vật thể nằm ở vị trí có tọa độ \left( 8
+ 5sint^{0};6 + 5cost^{0} ight) tại thời điểm t;(0 \leq t \leq 360). Tìm tọa độ chất điểm khi ở gần gốc tọa độ nhất?

    Từ cách xác định tọa độ của chất điểm ta có:

    \left\{ \begin{matrix}
x = 8 + 5sint^{0} \\
y = 6 + 5cost^{0} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x - 8 = 5sint^{0} \\
y - 6 = 5cost^{0} \\
\end{matrix} ight.

    \Leftrightarrow (x - 8)^{2} + (y -
6)^{2} = 25\ \ (*)

    Vậy chất điểm luôn thuộc đường tròn (C) tâm I(8;6) và có bán kính R = 5

    Gọi chất điểm là A. Khi đó A gần gốc tọa độ nhất khi A là giao điểm của OI và đường tròn. Tức là:

    \overrightarrow{OA} =
k.\overrightarrow{OI};(0 < k < 1)

    Hay \left\{ \begin{matrix}
x_{A} = 8k \\
y_{A} = 6k \\
\end{matrix} ight. thay vào (*) ta được:

    (8k - 8)^{2} + (6k - 6)^{2} =
25

    \Leftrightarrow (k - 1)^{2} =\dfrac{1}{4} \Leftrightarrow \left\lbrack \begin{matrix}k = \dfrac{3}{2} \\k = \dfrac{1}{2} \\\end{matrix} ight.

    0 < k < 1 nên lấy k = \frac{1}{2}. Khi đó tọa độ điểm A là \left\{ \begin{matrix}
x_{A} = 4 \\
y_{A} = 3 \\
\end{matrix} ight.

  • Câu 28: Thông hiểu

    Đường tròn (C) có tâm I (– 2; 3) và đi qua M (2; – 3) có phương trình là:

     Ta có: R = IM = \sqrt {{{(2 + 2)}^2} + {{( - 3 - 3)}^2}}  = 2\sqrt {13}.

    Phương trình đường tròn: {(x + 2)^2} + {(y - 3)^2} = 52 \Leftrightarrowx^{2}+y^{2}+4x-6y-39=0.

  • Câu 29: Vận dụng

    Cho phương trình đường thẳng (d):\left\{ \begin{matrix}
x = t \\
y = 5 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) và tọa độ điểm A(1;2). Xác định tọa độ điểm A' đối xứng với điểm A qua đường thẳng (d)?

    Gọi H là chân đường cao kẻ từ điểm A đến đường thẳng (d) suy ra H(h; 5-2h)

    Ta có: \overrightarrow{u_{d}} = (1; -
2);\overrightarrow{AH} = (h - 1;3 - 2h)

    AH\bot(d) \Leftrightarrow
\overrightarrow{u_{d}}.\overrightarrow{AH} = 0

    \Leftrightarrow (h - 1) - 2(3 - 2h) = 0
\Leftrightarrow h = \frac{7}{5} \Rightarrow H\left(
\frac{7}{5};\frac{11}{5} ight)

    A’ là điểm đối xứng của A qua đường thẳng (d).

    Suy ra H là trung điểm của AA’.

    Suy ra tọa độ điểm A’ là: \left\{\begin{matrix}x_{A'} = 2x_{H} - x_{A} = 2.\dfrac{7}{5} - 1 = \dfrac{9}{5} \\y_{A'} = 2y_{H} - y_{A} = 2.\dfrac{11}{5} - 2 = \dfrac{12}{5} \\\end{matrix} ight.

    Vậy tọa độ điểm A'\left(
\frac{9}{5};\frac{12}{5} ight)

  • Câu 30: Nhận biết

    Một đường thẳng có bao nhiêu vectơ pháp tuyến?

     Một đường thẳng có vô số vecto pháp tuyến. Các vecto đó cùng phương với nhau.

  • Câu 31: Thông hiểu

    Cho phương trình Elip \frac{x^{2}}{16}+\frac{y^{2}}{4}=1. Tọa độ đỉnh A_1B_1 của Elip đó là:

    Ta có: \frac{x^{2}}{16}+\frac{y^{2}}{4}=1 => a = 4; b = 2

    => Tọa độ các đỉnh của elip là: {A_1}\left( { - 4;0} ight);{B_1}\left( {0; - 2} ight)

  • Câu 32: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 2 + 2t \\
y = - 3t \\
\end{matrix} ight.\
d_{2}:\left\{ \begin{matrix}
x = 2 + mt \\
y = - 6 + (1 - 2m)t \\
\end{matrix} ight. trùng nhau?

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = - 2 + 2t \\
y = - 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{u}}_{1} = (2; - 3)
\\
d_{2}:\left\{ \begin{matrix}
x = 2 + mt \\
y = - 6 + (1 - 2m)t \\
\end{matrix} ight.\  ightarrow A(2; - 6) \in d_{2},\ \
{\overrightarrow{u}}_{2} = (m;1 - 2m) \\
\end{matrix} ight\}

    \overset{d_{1} \equiv
d_{2}}{ightarrow}\left\{ \begin{matrix}
A \in d_{1} \\
\frac{m}{2} = \frac{1 - 2m}{- 3} \\
\end{matrix} ight.\  \Leftrightarrow m = 2.

  • Câu 33: Nhận biết

    Cho elip (E):4x^{2} + 5y^{2} = 20. Diện tích hình chữ nhật cơ sở của (E)

    (E):4x^{2} + 5y^{2} = 20 \Leftrightarrow
\frac{x^{2}}{5} + \frac{y^{2}}{4} = 1

    Độ dài trục lớn: 2a =
2\sqrt{5}.

    Độ dài trục bé: 2b = 2.2 =
4.

    Diện tích hình chữ nhật cơ sở của (E) là: 2\sqrt{5}.4 = 8\sqrt{5}.

  • Câu 34: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):(x + 1)^{2} + y^{2} = 8 là:

    (C):(x + 1)^{2} + y^{2} =
8\overset{}{ightarrow}I( - 1;0),\ R = \sqrt{8} =
2\sqrt{2}.

  • Câu 35: Vận dụng

    Hãy viết phương trình chính tắc của elip nếu nó đi qua điểm N\left( 2; - \frac{5}{3}
ight) và tỉ số của tiêu cự với độ dài trục lớn bằng \frac{2}{3}.

    Gọi phương trình chính tắc của Elip là (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1, với a > b >
0.

    \bullet Elip đi qua điểm N\left( 2; - \frac{5}{3} ight) suy ra \frac{2^{2}}{a^{2}} + \frac{\left( -
\frac{5}{3} ight)^{2}}{b^{2}} = 1 \Leftrightarrow \frac{4}{a^{2}} +
\frac{25}{9b^{2}} = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (1).

    \bullet Tỉ số của tiêu cực với độ dài trục lớn bằng \frac{2}{3} suy ra \frac{2c}{2a} = \frac{2}{3}
\Leftrightarrow \frac{c}{a} = \frac{2}{3} \Leftrightarrow c^{2} =
\frac{4}{9}a^{2}.

    Kết hợp với điều kiện b^{2} = a^{2} -
c^{2}, ta được b^{2} = a^{2} -
\frac{4}{9}a^{2} = \frac{5}{9}a^{2} \Leftrightarrow 9b^{2} = 5a^{2}\ \ \
\ \ \ \ \ \ \ (2).

    Từ (1),\ \ (2) suy ra \left\{ \begin{matrix}
\frac{4}{a^{2}} + \frac{25}{9b^{2}} = 1 \\
9b^{2} = 5a^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\frac{4}{a^{2}} + \frac{25}{5a^{2}} = 1 \\
9b^{2} = 5a^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\frac{9}{a^{2}} = 1 \\
9b^{2} = 5a^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 9 \\
b^{2} = 5 \\
\end{matrix} ight.\ .

    Vậy phương trình cần tìm là (E):\frac{x^{2}}{9} + \frac{y^{2}}{5} =
1.

  • Câu 36: Nhận biết

    Phương trình chính tắc của đường elip với a = 4, b = 3

    Phương trình chính tắc (E):\frac{x^{2}}{16} + \frac{y^{2}}{9} =
1.

  • Câu 37: Thông hiểu

    Cho Elip (E) đi qua điểm A( - 3;0) và có tâm sai e = \frac{5}{6}. Tiêu cự của (E)

    Gọi phương trình chính tắc của (E)\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1 với a > b > 0.

    (E) đi qua điểm A( - 3;0) nên \frac{9}{a^{2}} = 1 \Rightarrow a^{2} = 9
\Rightarrow a = 3.

    Lại có e = \frac{c}{a} = \frac{5}{6}
\Rightarrow c = \frac{5a}{6} = \frac{5}{2} \Rightarrow 2c =
5.

  • Câu 38: Thông hiểu

    Trong mặt phẳng tọa độ Oxy cho đường thẳng \Delta có phương trình tổng quát x - 2y - 5 = 0. Hãy xác định phương trình tham số của \Delta?

    Đường thẳng x - 2y - 5 = 0 đi qua điểm (5;0) và có vectơ pháp tuyến \overrightarrow{n} = (1; -
2)

    Suy ra một vectơ chỉ phương của đường thẳng là \overrightarrow{u} = (2;1)

    Vậy phương trình tham số là: \left\{
\begin{matrix}
x = 5 + 2t \\
y = t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 39: Thông hiểu

    Viết phương trình tham số của đường thẳng d đi qua điểm M(4; - 7) và song song với trục Ox.

    {\overrightarrow{u}}_{Ox} =
(1;0)\overset{ightarrow}{}{\overrightarrow{u}}_{d} =
(1;0)\overset{ightarrow}{}d:\left\{ \begin{matrix}
x = 4 + t \\
y = - 7 \\
\end{matrix} ight.\ \overset{t = - 4}{ightarrow}A(0; - 7) \in d
ightarrow d:\left\{ \begin{matrix}
x = t \\
y = - 7 \\
\end{matrix} ight.\ .

  • Câu 40: Nhận biết

    Cho đường tròn (C):x^{2}+y^{2}+4x+4y-17=0 , hỏi độ dài đường kính bằng bao nhiêu?

     Ta có tâm I( - 2; - 2). Suy ra bán kính R = \sqrt {{{( - 2)}^2} + {{( - 2)}^2} + 17}  = 5.

    Do đó đường kính bằng 10.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
Sắp xếp theo