Khoảng cách từ giao điểm của hai đường thẳng
và
đến đường thẳng
bằng:
Khoảng cách từ giao điểm của hai đường thẳng
và
đến đường thẳng
bằng:
Tính góc tạo bởi giữa hai đường thẳng
và ![]()
Tâm sai của Hyperbol
bằng:
Ta có :
Tọa độ tâm I và bán kính R của đường tròn (C):
là:
Tâm và bán kính đường tròn (C) là:
Cho đường tròn
. Qua điểm
có thể kẻ được bao nhiêu đường thẳng tiếp xúc với đường tròn
?
Thay tọa độ vào phương trình đường tròn
.
Suy ra nên có đúng 1 tiếp tuyến của đường tròn kẻ từ M.
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây đúng?
Khẳng định đúng là: Nếu thì
có các tiêu điểm là
,
.
Tính khoảng cách từ điểm
đường thẳng
?
Ta có khoảng cách từ điểm M đến đường thẳng là:
Vậy khoảng cách cần tìm bằng 5.
Đường tròn
có tâm
và tiếp xúc với trục
có phương trình là:
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Loại đáp án vì không có dạng
Xét đáp án
loại.
Xét đáp án
loại.
Xét đáp án
Chọn đáp án này.
Phương trình đường tròn có tâm thuộc đường thẳng
, tiếp xúc với đường thẳng
đồng thời đường tròn đi qua điểm
là:
Gọi tâm của đường tròn cần tìm là
Theo giả thiết, ta có:
Với thì đường tròn cần tìm có tâm
, bán kính
, và có phương trình là:
Với thì đường tròn cần tìm có tâm
, bán kính
, và có phương trình là:
Vậy có hai đường tròn thỏa mãn yêu cầu bài toán là:
Cho đường thẳng
và
. Tính cosin góc tạo bởi giữa hai đường thẳng trên.
.
Cho parabol
. Giao điểm của
với trục hoành tại hai điểm
. Khẳng định nào sau đây đúng?
Phương trình hoành độ giao điểm là nghiệm của phương trình:
Áp dụng định lí Vi – et ta có:
Chọn mệnh đề sai? Đường thẳng
được xác định khi biết
Mệnh đề sai là: “một vectơ pháp tuyến hoặc một vectơ chỉ phương.”
Xét vị trí tương đối của hai đường thẳng:
và
.
Vì nên hai đường thẳng song song.
Cho hai điểm
. Vectơ pháp tuyến của đường thẳng
là:
Một vectơ chỉ phương của PQ là:
Vậy vectơ pháp tuyến của PQ là: .
Cho phương trình đường tròn
. Viết phương trình tiếp tuyến của đường tròn
biết rằng tiếp tuyến vuông góc với đường thẳng
?
Đường tròn (C) có tâm
Vì vuông góc với đường thẳng
nên phương trình
có dạng
Vì là tiếp tuyến của (C) nên ta có:
Với thì phương trình
là
Với thì phương trình
là
Trong mặt phẳng tọa độ Oxy, cho hai điểm
. Viết phương trình đường trung trực của đoạn thẳng
?
Gọi I là trung điểm của PQ, khi đó I(-2;4)
Đường trung trực của PQ đi qua điểm I và nhận làm vectơ pháp tuyến.
Phương trình đường trung trực của PQ là:
Vậy đường thẳng cần tìm là: .
Cho Parabol
có phương trình
. Tìm đường chuẩn của
.
Từ phương trình của , ta có:
nên
.
Suy ra có tiêu điểm là
và đường chuẩn là
.
Cho elip
. Qua một tiêu điểm của
dựng đường thẳng song song với trục
và cắt
tại hai điểm
và
. Độ dài
bằng bao nhiêu?
Xét
Khi đó, Elip có tiêu điểm là đường thẳng
//
và đi qua
là
Giao điểm của và
là nghiệm của hệ phương trình
Vậy tọa độ hai điểm .
Một đường thẳng có vectơ chỉ phương là
. Vectơ nào sau đây là vectơ pháp tuyến của
?
Ta có:
Đường thẳng có vectơ chỉ phương
thì sẽ có một vectơ pháp tuyến là:
Áp dụng vào bài toán ta được:
Vectơ pháp tuyến của là:
.
Cho Elip
và một điểm
nằm trên
Giải sử điểm
có hoành độ bằng 1. Hãy tính khoảng cách từ M đến hai tiêu điểm của (E).
Giả sử phương trình Ta có :
Gọi lần lượt là hai tiêu điểm của Elip
,
, ta có :
.
Tìm tất cả các giá trị của tham số
để hai đường thẳng
và
cắt nhau tại một điểm thuộc trục tung.
Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm
và
?
Kiểm tra đường thẳng nào không chứa loại.
(Có thể kiểm tra đường thẳng nào không đi qua điểm ).
Tính góc tạo bởi giữa hai đường thẳng
và ![]()
Ta có
Viết phương trình tổng quát của đường thẳng
. Biết rằng
đi qua điểm
cắt đường thẳng
tại điểm
có
sao cho
?
Gọi là giao điểm của
và
.
Suy ra
Theo giả thiết ta có:
Khi đó
Phương trình tổng quát của đường thẳng d là:
Đường thẳng
đi qua điểm nào sau đây?
Đặt
Chọn
Cho hai đường tròn
và
. Tìm giá trị tham số m để hai đường tròn tiếp xúc nhau?
Dễ thấy đường tròn (C) có tâm O(0; 0) và bán kính R = 1
Đường tròn (C’) có tâm I(m + 1; -2m) và bán kính
Ta thấy:
điểm O nằm trong đường tròn tâm I suy ra (C) và (C’) chỉ có thể tiếp xúc trong với nhau.
Điều kiện để hai đường tròn tiếp xúc trong là:
Vậy có hai giá trị m thỏa mãn điều kiện là: hoặc
.
VD
1
Cho hình elip có phương trình
. Hình elip có độ dài tiêu cự bằng:
Ta có:
Độ dài tiêu cự là:
Đường thẳng nào sau đây vuông góc với đường thẳng
?
Kí hiệu
(i) Xét đáp án nên chọn đáp án này.
(ii) Tương tự kiểm tra và loại các đáp án còn lại.
Trong mặt phẳng tọa độ
, viết phương trình chính tắc của elip biết một đỉnh là
và một tiêu điểm là
.
Ta có
Vậy .
Công thức nào dưới đây là công thức tính khoảng cách từ một điểm
đến đường thẳng
?
Công thức tính khoảng cách từ một điểm đến đường thẳng
là:
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Loại các đáp án và
vì không có dạng
Xét đáp án: loại.
Xét đáp án : Chọn đáp án này.
Cặp đường thẳng nào dưới đây là phân giác của các góc hợp bởi đường thẳng
và trục hoành.
Điểm thuộc đường phân giác của các góc tạo bởi
khi và chỉ khi
Cho phương trình đường tròn
. Xác định tâm và bán kính đường tròn đó?
Ta có phương trình đường tròn: có:
nên đường tròn (C) có tâm
và bán kính
.
Một Elip đi qua điểm
và có độ dài trục lớn là
. Hãy xác định phương trình chính tắc của elip đó?
Phương trình chính tắc của elip có dạng
Do (E) có độ dài trục lớn là nên
Do (E) đi qua điểm nên
Vậy phương trình chính tắc của elip là: .
Trong mặt phẳng tọa độ
, cho đường thẳng
. Hãy chỉ ra vectơ chỉ phương của đường thẳng
?
Vectơ chỉ phương của đường thẳng là:
.
Cho Elip
đi qua điểm
và có tâm sai
. Tiêu cự của
là
Gọi phương trình chính tắc của là
với
.
Vì đi qua điểm
nên
.
Lại có .
Xác định phương trình tham số của đường thẳng
. Biết rằng
đi qua điểm
và có một vectơ chỉ phương là
?
Đường thẳng đi qua điểm và nhận
làm vectơ chỉ phương sẽ có phương trình tham số là:
.
Áp dụng với dữ kiện bài toan trên ta được: