Cho đường thẳng
có phương trình
. Xác định vectơ chỉ phương của
?
Đường thẳng có vectơ pháp tuyến là
nên có vectơ chỉ phương là
.
Cho đường thẳng
có phương trình
. Xác định vectơ chỉ phương của
?
Đường thẳng có vectơ pháp tuyến là
nên có vectơ chỉ phương là
.
Trong các phương trình sau, phương trình nào không phải là phương trình của đường tròn?
Xét đáp án
Chọn đáp án này.
Các đáp án còn lại các hệ số thỏa mãn
Với giá trị nào của tham số
thì đường thẳng
vuông góc với đường thẳng
?
Ta có tọa độ vectơ pháp tuyến của là:
Tọa độ vectơ pháp tuyến của là:
Để thì
Vậy m = -8 thì hai đường thẳng đã cho vuông góc với nhau.
Trong mặt phẳng tọa độ Oxy, đường thẳng đi qua điểm
và song song với đường thẳng
có phương trình tổng quát là:
Đường thẳng đi qua điểm và song song với đường thẳng
có nhận vectơ
làm vectơ pháp tuyến có phương trình tổng quát:
Vậy phương trình tổng quát của đường thẳng là: .
Trong mặt phẳng
, cho điểm
và elip
.
là
điểm thuộc
sao cho
đều, biết tọa độ của
và
có tung độ âm. Tính tổng
.

Nhận xét: Điểm là đỉnh của elip
điều kiện cần để
đều đó là
đối xứng
Nhau qua .Suy ra
là giao điểm của đường thẳng
và elip
.
+) Ta có elip
.
+) Theo giả thiết có tung độ âm nên tọa độ của
(điều kiện
do
)
+) Ta có và
+) đều
.
Phương trình tham số của đường thẳng đi qua hai điểm
là:
Vectơ chỉ phương:
Đường thẳng đi qua điểm và có vectơ chỉ phương
nên có phương trình tham số là:
Đường tròn có tâm trùng với gốc tọa độ, bán kính
có phương trình là:
Một đường thẳng có bao nhiêu vectơ chỉ phương?
Một đường thẳng có vô số vectơ chỉ phương.
Tìm tọa độ tâm
của đường tròn đi qua ba điểm
,
,
.
Cho bốn điểm
,
,
và
. Xác định vị trí tương đối của hai đường thẳng
và
.
cắt nhau nhưng không vuông góc.
Trong mặt phẳng tọa độ Oxy cho đường tròn
có tâm
và đường thẳng
(với m là tham số). Biết đường thẳng
cắt đường tròn
tại hai điểm
phân biệt sao cho diện tích tam giác
bằng
. Có bao nhiêu giá trị của tham số m thỏa mãn yêu cầu đề bài?
Hình vẽ minh họa
Đường tròn (C) có tâm I(1; m) và bán kính R = 5.
Gọi H là trung điểm của dây cung AB. Ta có IH là đường cao của tam giác IAB và
Theo bài ra ta có:
Vậy có 4 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Nhận xét nào đúng về vị trí tương đối của hai đường thẳng
và
?
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Suy ra và
không cùng phương và
Suy ra hai đường thẳng cắt nhau và không vuông góc.
Xác định
để hai đường thẳng
và
cắt nhau tại một điểm nằm trên trục hoành.
Hypebol có nửa trục thực là
, tiêu cự bằng
có phương trình chính tắc là:
Ta có :
Phương trình chính tắc của Hyperbol là
Đường Hyperbol
có tiêu cự bằng:
Ta có : . Tiêu cự
Dạng chính tắc của hypebol là
Dạng chính tắc của hypebol là .
Lập phương trình chính tắc của Elip đi qua điểm
và có tâm sai
.
Phương trình chính tắc của Elip có dạng: .
Elip đi qua điểm nên
.
Tâm sai .
.
Vậy phương trình chính tắc của Elip cần tìm là .
Trong mặt phẳng
, phương trình nào sau đây là phương trình chính tắc của một elip?
Phương trình chính tắc của elip có dạng nên chọn phương án
.
Tọa độ tâm I và bán kính R của đường tròn
là:
Tâm , bán kính
.
Trong mặt phẳng với hệ tọa độ
, cho ba đường thẳng lần lượt có phương trình tổng quát
,
và
. Tìm
để ba đường thẳng đã cho cùng đi qua một điểm.
Ta có:
Xét vị trí tương đối của hai đường thẳng
và
.
Cho đường tròn
. Biết rằng khi giá trị
thay đổi, đường tròn
luôn đi qua điểm
cố định có hoành độ dương. Xác định giá trị của tham số m sao cho tiếp tuyến của đường tròn
tại
song song với
?
Gỉa sử đường tròn luôn đi qua điểm cố định khi m thay đổi. Khi đó:
với mọi m
với mọi m
Vậy ta có điểm
Đường tròn có tâm . VTPT của tiếp tuyến của đường tròn tại I là
Để tiếp tuyến tại I song song với đường thẳng nên tồn tại giá trị k sao cho:
Vậy giá trị m cần tìm là .
Tìm phương trình chính tắc của parabol
biết
có tiêu điểm là
.
Gọi phương trình chính tắc của là:
.
Do tọa độ tiêu điểm nên
.
Vậy phương trình của là:
.
Cho đường thẳng
có vectơ pháp tuyến là
và đường thẳng
có vectơ pháp tuyến là
. Gọi
là góc tạo bởi hai đường thẳng
. Kết luận nào sau đây đúng?
Góc tạo bởi hai đường thẳng đã cho được xác định bởi công thức .
Viết phương trình tổng quát của đường thẳng
. Biết rằng
đi qua điểm
cắt đường thẳng
tại điểm
có
sao cho
?
Gọi là giao điểm của
và
.
Suy ra
Theo giả thiết ta có:
Khi đó
Phương trình tổng quát của đường thẳng d là:
Trong mặt phẳng tọa độ
, cho tam giác
có
. Phương trình đường thẳng chứa trung tuyến kẻ từ đỉnh
của tam giác
là:
Gọi I là trung điểm của AC. Ta có:
Đường trung tuyến BI đi qua điểm B và nhận làm vectơ chỉ phương nên có vectơ pháp tuyến
.
Phương trình tổng quát của đường thẳng là:
Vậy phương trình tổng quát của đường thẳng cần tìm là .
Cho đường tròn (C) có phương trình
. Đường tròn (C) còn được viết dưới dạng nào trong các dạng dưới đây:
Ta có:
.
Một đường thẳng có bao nhiêu vectơ chỉ phương?
Một đường thẳng có vô số vectơ chỉ phương.
Cho tọa độ hai điểm
. Viết phương trình chính tắc của elip có tâm là gốc tọa độ và đi qua hai điểm
?
Gọi phương trình chính tắc của elip là:
Do elip đi qua hai điểm nên ta có hệ phương trình:
Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là:
Tâm sai của Hyperbol
bằng:
Ta có :
Đường thẳng
tạo với đường thẳng
một góc
. Tìm hệ số góc
của đường thẳng
.
gọi
Ta có:
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Xét phương trình dạng : lần lượt tính các hệ số
và kiểm tra điều kiện
Các phương trình không có dạng đã nêu loại các đáp án
và
.
Đáp án không thỏa mãn điều kiện
Cho đường thẳng
và tọa độ điểm
. Tính
?
Ta có khoảng cách từ điểm C đến đường thẳng là:
Vậy khoảng cách cần tìm bằng 1.
Gọi
là tọa độ giao điểm hai đường thẳng
và
. Tính khoảng cách từ
đến đường thẳng ![]()
Vì E là giao điểm hai đường thẳng và
nên tọa độ điểm E là nghiệm của hệ phương trình:
Khi đó khoảng cách từ điểm E đến đường thẳng là:
Vậy khoảng cách cần tìm bằng .
Phương trình nào dưới đây đi qua hai điểm
là:
Phương trình đường thẳng đi qua hai điểm là:
hay
.
Cho hai đường thẳng
và
. Khi đó hai đường thẳng này:
Ta có:
Cho hypebol
và đường thẳng
. Tích các khoảng cách từ hai tiêu điểm của
đến
bằng giá trị nào sau đây?
Ta có: . Suy ra 2 tiêu điểm
.
Khoảng cách từ và
đến đường thẳng
:
Do đó .
Trong mặt phẳng tọa độ
, cho đường thẳng
và tọa độ một điểm
. Ta kí hiệu khoảng cách từ điểm
đến đường thẳng
là
. Kết luận nào sau đây đúng?
Khoảng cách từ điểm A đến đường thẳng được tính bởi công thức:
Vậy kết luận đúng là: “”.
Cho phương trình
. Điều kiện của m để phương trình đã cho là một phương trình đường tròn là:
Từ phương trình đường tròn ta có:
Điều kiện để phương trình đã cho là phương trình đường tròn là: