Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong hệ trục tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = - 4t + 1 \\
y = - 2 + 3t \\
\end{matrix} ight.. Một vectơ chỉ phương của d là:

    Một vectơ chỉ phương của d( - 4;3) hay (4; - 3).

  • Câu 2: Thông hiểu

    Trong mặt phẳng Oxy, điểm M nằm trên đường tròn (x + 3)^{2} + (y - 4)^{2} =
4 sao cho độ dài đoạn thẳng OM là ngắn nhất. Hoành độ điểm M là:

    Đường tròn (x + 3)^{2} + (y - 4)^{2} =
4 có tâm I( - 3;4) và bán kính R = 2.

    Phương trình đường thẳng OI đi qua O(0;0) và nhận \overrightarrow{OI} = ( - 3;4) làm VTCP là: \left\{ \begin{matrix}
x = - 3t \\
y = 4t \\
\end{matrix}\ \ \ \ (t\mathbb{\in R}) ight..

    Ta có: OM \leq |OI - R| = 3

    Để OM ngắn nhất \Leftrightarrow OM =
3

    Dấu bằng xảy ra \Leftrightarrow
\overrightarrow{OM} = \frac{3}{5}\overrightarrow{OI} \Leftrightarrow
M\left( - \frac{9}{5};\frac{12}{5} ight).

  • Câu 3: Nhận biết

    Cho đường thẳng (d):\left\{ \begin{matrix}
x = t \\
y = 1 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm nào dưới đây không nằm trên đường thẳng đã cho?

    Thay tọa độ các điểm đã cho vào phương trình tham số của đường thẳng d ta thấy điểm không thuộc đường thẳng d là: T(1;1).

  • Câu 4: Vận dụng

    Tìm m để hai đường thẳng d_{1}:3x + 4y + 10 =
0d_{2}:(2m - 1)x + m^{2}y + 10
= 0 trùng nhau?

    \left\{ \begin{matrix}
d_{2}:(2m - 1)x + m^{2}y + 10 = 0 \\
d_{1}:3x + 4y + 10 = 0 \\
\end{matrix} ight.

    \overset{d_{1} \equiv
d_{2}}{ightarrow}\frac{2m - 1}{3} = \frac{m^{2}}{4} =
\frac{10}{10}

    \Leftrightarrow \left\{ \begin{matrix}
2m - 1 = 3 \\
m^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow m = 2.

  • Câu 5: Vận dụng

    Cho đường tròn (C):(x + 1)^{2} + (y - 1)^{2} = 25 và điểm M(9; - 4). Gọi \Delta là tiếp tuyến của (C), biết \Delta đi qua M và không song song với các trục tọa độ. Khi đó khoảng cách từ điểm P(6;5) đến \Delta bằng:

    Đường tròn (C) có tâm I( - 1;1),\ R =
5 và tiếp tuyến có dạng

    \Delta:ax + by - 9a + 4b = 0\ \ \left(abeq0 ight).

    Ta có: d\lbrack I;\Deltabrack = R
\Leftrightarrow \frac{|10a - 5b|}{\sqrt{a^{2} + b^{2}}} = 5
\Leftrightarrow a(3a - 4b) = 0

    \Leftrightarrow 3a = 4b ightarrow a =
4,\ b = 3 ightarrow \Delta:4x + 3y - 24 = 0.

    d\lbrack P;\Deltabrack = \frac{|24 + 15
- 24|}{5} = 3.

  • Câu 6: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O(0; 0) và điểm M(a; b)?

     Vectơ chỉ phương của OM là \overrightarrow {OM}=(a;b).

  • Câu 7: Nhận biết

    Khái niệm nào sau đây định nghĩa về hypebol?

    Cho F_{1},\ F_{2} cố định với F_{1}F_{2} = 2c,\ (c > 0). Hypebol (H) là tập hợp điểm M sao cho \left| MF_{1} - MF_{2} ight| = 2a với a là một số không đổi và a < c.

  • Câu 8: Thông hiểu

    Cho ba đường thẳng \left( d_{1} ight):3x + 2y - 5 = 0, \left( d_{2} ight): - 2x + 3y - 1 =
0\left( d_{3} ight):(m - 1)x
+ (2m - 3)y - 2 = 0 với m là tham số. Xác định giá trị của tham số m để ba đường thẳng \left( d_{1}
ight);\left( d_{2} ight);\left( d_{3} ight) đồng quy?

    Gọi A = d_{1} \cap d_{2}. Khi đó tọa độ điểm A là nghiệm của hệ phương trình:

    \left\{ \begin{matrix}
3x + 2y - 5 = 0 \\
- 2x + 3y - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
\end{matrix} ight.\  \Rightarrow A(1;1)

    Để ba đường thẳng đồng quy thì A \in
\left( d_{3} ight) hay

    (m - 1).1 + (2m - 3).1 - 2 =
0

    \Leftrightarrow m = 2

    Vậy m = 2 thì ba đường thẳng đã cho đồng quy.

  • Câu 9: Vận dụng

    Elip (E) có độ dài trục lớn bằng 4\sqrt{2}, các đỉnh trên trục nhỏ và các tiêu điểm của elip cùng nằm trên một đường tròn. Hãy tính độ dài trục nhỏ của (E).

    Ta có A_{1}A_{2} = 4\sqrt{2}\overset{}{ightarrow}a =
2\sqrt{2}

    Và bốn điểm F_{1},B_{1},F_{2},B_{2} cùng nằm trên một đường tròn

    \overset{}{ightarrow}b =
c\overset{}{ightarrow}b^{2} = c^{2}

    \overset{}{ightarrow}b^{2} = a^{2} -
b^{2}\overset{}{ightarrow}b = \frac{a}{\sqrt{2}} = 2.

    Vậy độ dài trục nhỏ của (E)4.

  • Câu 10: Thông hiểu

    Biết parabol (P) có phương trình đường chuẩn là \Delta:x + 2 = 0. Phương trình chính tắc của (P) là:

    Gọi phương trình chính tắc của Parabol là: (P):y^{2} = 2px

    Parabol có phương trình đường chuẩn là: \Delta:x + 2 = 0 nên \frac{p}{2} = 2 \Rightarrow p = 4

    Suy ra phương trình chính tắc của parabol là: y^{2} = 8x.

  • Câu 11: Nhận biết

    Cho elip (E) có phương trình 16x^{2} + 25y^{2} = 400. Khẳng định nào sai trong các khẳng định sau?

    (E): 16x^{2} + 25y^{2} = 400 \Leftrightarrow
\frac{x^{2}}{25} + \frac{y^{2}}{16} = 1.

    Elip (E)a = 5, b =
4, c = \sqrt{a^{2} - b^{2}} =
\sqrt{5^{2} - 4^{2}} = 3.

    Tiêu cự của elip (E)2c = 6 nên khẳng định “(E) có tiêu cự bằng 3” là khẳng định sai.

  • Câu 12: Vận dụng

    Cho (E):\frac{x^{2}}{20} + \frac{y^{2}}{16} =
1. Một đường thẳng đi qua điểm A(2;2) và song song với trục hoành cắt (E) tại hai điểm phân biệt MN. Độ dài MN bằng bao nhiêu?

    Phương trình đường thẳng d đi qua điểm A(2;2) và song song trục hoành có phương trình là y = 2.

    Ta có d \cap (E) \Leftrightarrow \left\{
\begin{matrix}
\frac{x^{2}}{20} + \frac{y^{2}}{16} = 1 \\
y = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 2 \\
\frac{x^{2}}{20} + \frac{2^{2}}{16} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 2 \\
x^{2} = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 2 \\
\left\lbrack \begin{matrix}
x = \sqrt{15} \\
x = - \sqrt{15} \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
M\left( \sqrt{15};\ 2 ight) \\
N\left( - \sqrt{15};\ 2 ight) \\
\end{matrix} ight.

    Vậy độ dài đoạn thẳng MN =
2\sqrt{15}.

  • Câu 13: Nhận biết

    Cho hai đường thẳng (\Delta):x - 2y + 1 = 0(\Delta'):x - 3y + 8 = 0. Khẳng định nào sau đây đúng?

    Ta có: \frac{1}{1} eq \frac{- 2}{-
3} suy ra (\Delta) cắt (\Delta').

    Vậy khẳng định đúng là: “(\Delta) cắt (\Delta')”.

  • Câu 14: Nhận biết

    Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm O(0;0)A(1; - 3)?

    Kiểm tra đường thẳng nào không chứa O(0;0)\overset{ightarrow}{} loại.

    (Có thể kiểm tra đường thẳng nào không đi qua điểm A(1; - 3)).

  • Câu 15: Nhận biết

    Đường trung trực của đoạn thẳng AB với A = (- 3;2), B = ( - 3;3) có một vectơ pháp tuyến là:

    Gọi d là trung trực đoạn AB, ta có: \left\{ \begin{matrix}\overrightarrow{AB} = (0;1) \\d\bot AB \\\end{matrix} ight.\ \overset{ightarrow}{}{\overrightarrow{n}}_{d} =\overrightarrow{AB} = (0;1).

  • Câu 16: Thông hiểu

    Cho elip (E): \frac{x^{2}}{25}+\frac{y^{2}}{9}=1. Trong các khẳng định sau, khẳng định nào sai?

    Phương trình elip (E) có dạng \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1;\left( {a = 5;b = 3} ight)

    Ta có: b = \sqrt {{a^2} - {c^2}}  = 4

    Khi đó: {F_1}\left( { - 4;0} ight);{F_2}\left( {4;0} ight) đúng

    Ta có: \frac{c}{a}=\frac{4}{5} đúng

    Đỉnh A1(–a; 0) => A1(–5; 0) đúng

    Độ dài trục nhỏ là 2b = 2.3 = 6 ≠ 3 

    Vậy khẳng định sai là: (E) có độ dài trục nhỏ bằng 3.

  • Câu 17: Vận dụng

    Với giá trị nào của m thì hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 8 - (m + 1)t \\
y = 10 + t \\
\end{matrix} ight.d_{2}:mx
+ 2y - 14 = 0 song song?

    Ta có:

    \left\{ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 8 - (m + 1)t \\
y = 10 + t \\
\end{matrix} ight.\  ightarrow A(8;10) \in d_{1},\ \
{\overrightarrow{n}}_{1} = (1;m + 1) \\
d_{2}:mx + 2y - 14 = 0 ightarrow {\overrightarrow{n}}_{2} = (m;2) \\
\end{matrix} ight.

    \overset{d_{1}//d_{2}}{ightarrow}\left\{\begin{matrix}A\in d_{2} \\\left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}{\overrightarrow{n}}_{1} = (1;1) \\{\overrightarrow{n}}_{2} = (0;2) \\\end{matrix} ight.\  ightarrow (KTM) \\meq0 ightarrow \dfrac{1}{m} = \dfrac{m + 1}{2} \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}8m + 6eq0 \\meq0 \\m = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}m = 1 \\m = - 2 \\\end{matrix} ight.\ .

  • Câu 18: Thông hiểu

    Tìm điều kiện của tham số m để hai đường thẳng \left( d_{1} ight):mx + y - m - 1 =
0\left( d_{2} ight):x + my =
2 cắt nhau?

    Hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) cắt nhau khi và chỉ khi:

    \frac{m}{1} eq \frac{1}{m}
\Leftrightarrow m^{2} eq 1 \Leftrightarrow m eq \pm 1

    Vậy hai đường thẳng cắt nhau khi và chỉ khi m eq \pm 1.

  • Câu 19: Nhận biết

    Cho Parabol (P) có phương trình y^{2} = 4x. Tìm đường chuẩn của (P).

    Từ phương trình của (P), ta có: 2p = 4 nên p = 2.

    Suy ra (P) có tiêu điểm là F(1\ ;\ 0) và đường chuẩn là x + 1 = 0.

  • Câu 20: Nhận biết

    Đường thẳng nào sau đây có đúng một điểm chung với đường thẳng \left\{ \begin{matrix}
x = - 2 + 3t \\
y = 5 - 7t \\
\end{matrix} ight.?

    Ta cần tìm đường thẳng cắt d:\left\{
\begin{matrix}
x = - 2 + 3t \\
y = 5 - 7t \\
\end{matrix} ight.\ \overset{}{ightarrow}d:7x + 3y - 1 =
0.

    d_{1}:7x + 3y - 1 =
0\overset{}{ightarrow}d_{1} \equiv
d\overset{}{ightarrow}loại 7x +
3y - 1 = 0.

    d_{2}:7x + 3y + 1 = 0\ \ \&\ \
d_{3}:7x + 3y + 2018 = 0\overset{}{ightarrow}d_{2},\ \
d_{3}||d\overset{}{ightarrow}loại 7x + 3y + 1 = 07x + 3y + 2018 = 0. Chọn 3x - 7y + 2018 = 0.

  • Câu 21: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng \left( d_{1} ight):mx - (m - 1)y + 4 - m^{2} =
0\left( d_{2} ight):(m + 3)x
+ y - 3m - 1 = 0. Tìm giá trị của tham số m để hai đường thẳng hợp với nhau một góc bằng một góc vuông?

    Ta có:

    Vectơ pháp tuyến của đường thẳng \left(
d_{1} ight):mx - (m - 1)y + 4 - m^{2} = 0 là: \overrightarrow{n_{1}} = (m, - m + 1)

    Vectơ pháp tuyến của đường thẳng \left(
d_{2} ight):(m + 3)x + y - 3m - 1 = 0 là: \overrightarrow{n_{2}} = (m + 1;1)

    Hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) vuông góc với nhau khi và chỉ khi:

    \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 0
\Leftrightarrow m(m + 3) - m + 1 = 0

    \Leftrightarrow m = - 1

    Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi m = - 1.

  • Câu 22: Nhận biết

    Xác định tâm và bán kính đường tròn (C):(x - 4)^{2} + (y + 5)^{2} = 12?

    Ta có: (C):(x - 4)^{2} + (y + 5)^{2} =
12

    Vậy đường tròn có bán kính I(4; -
5) và bán kính R =
2\sqrt{3}

  • Câu 23: Nhận biết

    Đường tròn (C):x^{2} + y^{2} - 6x + 2y + 6 = 0 có tâm I và bán kính R lần lượt là:

    Ta có:\begin{matrix}
(C):x^{2} + y^{2} - 6x + 2y + 6 = 0 ightarrow a = \frac{- 6}{- 2} =
3,\ \ b = \frac{2}{- 2} = - 1,\ \ c = 6 \\
ightarrow I(3; - 1),\ R = \sqrt{3^{2} + ( - 1)^{2} - 6} = 2.\  \\
\end{matrix}

  • Câu 25: Vận dụng

    Viết phương trình đường thẳng (\Delta) đi qua giao điểm hai đường thẳng \left( d_{1} ight):2x + y - 3 = 0;\left(
d_{2} ight):x - 2y + 1 = 0 và cosin góc giữa (\Delta)với đường thẳng \left( d_{3} ight):y = 1 một góc bằng \frac{\sqrt{2}}{2}?

    Gọi A là giao điểm hai đường thẳng \left(
d_{1} ight):2x + y - 3 = 0;\left( d_{2} ight):x - 2y + 1 =
0, khi đó tọa độ điểm A là nghiệm của hệ phương trình:

    \left\{ \begin{matrix}
2x + y - 3 = 0 \\
x - 2y + 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
\end{matrix} ight.\  \Leftrightarrow A(1;1)

    Phương trình đường thẳng \Delta có dạng y = k\left( x - x_{0} ight) +
y_{0}

    A \in \Delta \Rightarrow y = k(x - 1)
+ 1 \Rightarrow kx - y - k + 1 = 0

    Mặt khác

    \cos\left( \Delta;d_{3} ight) =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{\left| k.0 + ( -
1).1 ight|}{\sqrt{k^{2} + ( - 1)^{2}}.\sqrt{0^{2} + 1^{2}}} =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{| -
1|}{\sqrt{k^{2} + 1}} = \frac{\sqrt{2}}{2} \Leftrightarrow \sqrt{k^{2} +
1} = \sqrt{2}.| - 1|

    \Leftrightarrow \sqrt{k^{2} + 1} =
\sqrt{2}

    \Leftrightarrow k^{2} + 1 = 2
\Leftrightarrow k^{2} = 1 \Leftrightarrow k = \pm 1

    Với k = 1 \Rightarrow x - y =
0

    Với k = - 1 \Rightarrow - x - y + 2 = 0
\Rightarrow x + y - 2 = 0

    Vậy phương trình đường thẳng là: \left\lbrack \begin{matrix}
x + y - 2 = 0 \\
x - y = 0 \\
\end{matrix} ight..

  • Câu 26: Thông hiểu

    Một Elip đi qua điểm B(0;6) và có độ dài trục lớn là 4\sqrt{10}. Hãy xác định phương trình chính tắc của elip đó?

    Phương trình chính tắc của elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1;(a,b
> 0)

    Do (E) có độ dài trục lớn là 4\sqrt{10} nên 2a = 4\sqrt{10} \Rightarrow a = 2\sqrt{10}
\Rightarrow a^{2} = 40

    Do (E) đi qua điểm B(0;6) nên \frac{0^{2}}{a^{2}} + \frac{6^{2}}{b^{2}} =
1 \Rightarrow b^{2} = 36

    Vậy phương trình chính tắc của elip là: \frac{x^{2}}{40} + \frac{y^{2}}{36} =
1.

  • Câu 27: Thông hiểu

    Cho hai đường thẳng \left( d_{1} ight):x + 3y + 8 = 0; \left( d_{2} ight):3x - 4y + 10 =
0 và điểm A( - 2;1). Phương trình đường tròn có tâm I \in \left(
d_{1} ight), đi qua điểm A và tiếp xúc với \left( d_{2} ight) là:

    Hình vẽ minh họa

    Ta có I là tâm đường tròn và I \in \left(
d_{1} ight) nên I( - 3t -
8;t)

    Theo giả thiết bài toán ta có:

    d\left( I;\left( d_{2} ight) ight) =
IA

    \Leftrightarrow \frac{\left| 3( - 3t -
8) - 4t + 10 ight|}{\sqrt{3^{2} + 4^{2}}} = \sqrt{( - 3t - 8 + 2)^{2}
+ (t - 1)^{2}}

    \Leftrightarrow t = - 3

    Suy ra I(1; - 3) và bán kính R = IA = 5

    Vậy phương trình đường tròn cần tìm là: (C):(x - 1)^{2} + (y + 3)^{2} = 25.

  • Câu 28: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có tọa độ các đỉnh A(1; - 2),B(3;4),C( - 1;5). Viết phương trình đường cao AH của tam giác ABC?

    Ta có: AH\bot BC nên đường cao AH là một vectơ pháp tuyến là \overrightarrow{BC} = ( - 4;1)

    Phương trình đường cao AH là:

    - 4(x - 1) + 1(y + 2) = 0

    \Leftrightarrow - 4x + y + 6 =
0.

    Vậy đường thẳng cần tìm có phương trình - 4x + y + 6 =
0.

  • Câu 29: Thông hiểu

    Trong hệ trục Oxy, cho Elip (E) có các tiêu điểm F_{1}( - 4;0),F_{2}(4;0) và một điểm M nằm trên (E). Biết rằng chu vi của tam giác MF_{1}F_{2} bằng 18. Xác định tâm sai e của (E).

    Ta có F_{1}( - 4;0) \Rightarrow c =
4.

    \begin{matrix}
P_{\Delta MF_{1}F_{2}} = \underset{2a}{\overset{MF_{1} + MF_{2}}{︸}} +
F_{1}F_{2} \\
\Leftrightarrow \ \ \ 18 = 2a + 2c \Leftrightarrow 18 = 2a + 8
\Leftrightarrow a = 5. \\
\end{matrix}

    Tâm sai e = \frac{c}{a} =
\frac{4}{5}.

  • Câu 30: Vận dụng

    Cho tam giác ABC có phương trình các cạnh AB;AC lần lượt là 5x - 2y + 6 = 0,4x + 7y - 21 = 0 và trực tâm H(1;1). Phương trình tổng quát của cạnh BC là:

    Ta có: A = AB \cap AC nên tọa độ điểm A là nghiệm hệ phương trình:

    \left\{ \begin{matrix}
5x - 2y + 6 = 0 \\
4x + 7y - 21 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 3 \\
\end{matrix} ight.

    \Rightarrow A(0;3) \Rightarrow
\overrightarrow{AH} = (1; - 2)

    Ta có BH\bot AC \Rightarrow BH:7x - 4y +
a = 0

    Điểm H \in BH \Leftrightarrow 7 - 4 + a =
0 \Leftrightarrow a = - 3

    \Rightarrow BH:7x - 4y - 3 =
0

    Ta có: B = AB \cap BH nên tọa độ điểm B là nghiệm hệ phương trình:

    \left\{ \begin{matrix}5x - 2y + 6 = 0 \\7x - 4y - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - 5 \\y = - \dfrac{19}{2} \\\end{matrix} ight.

    \Rightarrow B\left( - 5; - \frac{19}{2}
ight)

    Đường thẳng BC đi qua điểm B nhận \overrightarrow{AH} làm vecto pháp tuyến có phương trình là:

    x + 5 - 2\left( x + \frac{19}{2} ight)
= 0 \Leftrightarrow x - 2y - 14 = 0

  • Câu 31: Nhận biết

    Cho một hypebol (E):\frac{x^{2}}{144} - \frac{y^{2}}{25} =
1 có hai tiêu điểm là:

    Ta có: \left\{ \begin{matrix}
a^{2} = 144 \\
b^{2} = 25 \\
c^{2} = a^{2} + b^{2} = 169 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 12 \\
b = 5 \\
c = 13 \\
\end{matrix} ight.

    Vậy hai tiêu điểm cần tìm là: F_{1}( -
13;0),F_{2}(13;0).

  • Câu 32: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng \left( d_{1} ight):11x - 12y + 1 = 0\left( d_{2} ight):12x + 11y + 9 =
0. Khi đó vị trí tương đối của hai đường thẳng là:

    Ta có:

    Vectơ pháp tuyến của đường thẳng \left(
d_{1} ight):11x - 12y + 1 = 0 là: \overrightarrow{n_{d_{1}}} = (11; -
12)

    Vectơ pháp tuyến của đường thẳng \left(
d_{2} ight):12x + 11y + 9 = 0 là: \overrightarrow{n_{d_{2}}} = (12;11)

    Ta thấy \overrightarrow{n_{d}}.\overrightarrow{n_{d}} =
0

    Suy ra hai đường thẳng vuông góc với nhau.

  • Câu 33: Nhận biết

    Công thức nào dưới đây là công thức tính khoảng cách từ một điểm B\left( x_{0};y_{0}
ight) đến đường thẳng (\Delta):ax
+ by + c = 0?

    Công thức tính khoảng cách từ một điểm B\left( x_{0};y_{0} ight) đến đường thẳng (\Delta):ax + by + c = 0 là:

    d(B;\Delta) = \frac{\left| ax_{0} +
by_{0} + c ight|}{\sqrt{a^{2} + b^{2}}}

  • Câu 34: Vận dụng

    Có bao nhiêu đường thẳng đi qua điểm N\ ( - 2\ ;\ 0) tiếp xúc với đường tròn (C):\ (x - 2)^{2} + (y\  + 3)^{2} =
4?

    Đường tròn (C) có tâm I(2; - 3),\ R = 2
ightarrow IN = \sqrt{16 + 9} = 5 > R ightarrowcó đúng 2 tiếp tuyến của đường tròn kẻ từ N.

  • Câu 35: Thông hiểu

    Trong hệ trục tọa độ Oxy cho hai điểm A(3; - 1),B( - 6;2). Chọn đáp án không phải là phương trình tham số của đường thẳng AB.

    Đường thẳng AB có một vectơ chỉ phương là \overrightarrow{AB} = ( - 9;3) suy ra vectơ chỉ phương \overrightarrow{u} = ( -
3;1)

    Phương trình \left\{ \begin{matrix}
x = 3 + 3t \\
y = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) không thỏa mãn vì có vectơ chỉ phương \overrightarrow{v} = (3;1) không cùng phương với \overrightarrow{u} = ( -
3;1).

  • Câu 36: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 3 + 4t \\
y = 2 - 6t \\
\end{matrix} ight.d_{2}:\left\{ \begin{matrix}
x = 2 - 2t' \\
y = - 8 + 4t' \\
\end{matrix} ight..

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = - 3 + 4t \\
y = 2 - 6t \\
\end{matrix} ight.\  ightarrow A( - 3;2) \in d_{1},\ \
{\overrightarrow{u}}_{1} = (2; - 3) \\
d_{2}:\left\{ \begin{matrix}
x = 1 - 2t' \\
y = 4 + 3t' \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = ( -
2;3) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{2}{- 2} = \frac{- 3}{3} \\
A\boxed{\in}d_{2} \\
\end{matrix} ight.\  ightarrow d_{1}||d_{2}.

  • Câu 37: Thông hiểu

    Trong mặt phẳng Oxy cho các điểm A(6;5),B(0; - 3),C(3; - 4). Phương trình đường tròn ngoại tiếp tam giác ABC là:

    Gọi phương trình đường tròn là: (C):x^{2}
+ y^{2} - 2ax - 2by + c = 0 với a^{2} + b^{2} - c > 0

    Vì đường tròn đi qua ba điểm A(6;5),B(0;
- 3),C(3; - 4) nên ta có hệ phương trình:

    \left\{ \begin{matrix}
6^{2} + 5^{2} + 2.6.a + 2.5.b + c = 0 \\
0^{2} + ( - 3)^{2} + 2.0a + 2.( - 3).b + c = 0 \\
3^{2} + ( - 4)^{2} + 2.3a + 2.( - 4).b + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
12a + 10b + c = - 61 \\
- 6a + c = - 9 \\
6a - 8b + c = - 25 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 3 \\
b = - 1 \\
c = - 15 \\
\end{matrix} ight.

    Vậy phương trình đường tròn cần tìm là: (C):(x - 3)^{2} + (y - 1)^{2} = 25.

  • Câu 38: Nhận biết

    Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?

    Xét phương trình dạng : x^{2} + y^{2} -
2ax - 2by + c = 0, lần lượt tính các hệ số a,\ b,\ c và kiểm tra điều kiện a^{2} + b^{2} - c > 0.

    x^{2} + y^{2} - 4x + 6y - 12 = 0
ightarrow a = 2,\ b = - 3,\ c = - 12 ightarrow a^{2} + b^{2} - c
> 0.

    Các phương trình 4x^{2} + y^{2} - 10x -
6y - 2 = 0,\ \ x^{2} + 2y^{2} - 4x - 8y + 1 = 0 không có dạng đã nêu loại các đáp án 4x^{2} + y^{2} - 10x
- 6y - 2 = 0x^{2} + 2y^{2} - 4x
- 8y + 1 = 0.

    Đáp án x^{2} + y^{2} - 2x - 8y + 20 =
0 không thỏa mãn điều kiện a^{2} +
b^{2} - c > 0.

  • Câu 39: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2}–5y = 0 là:

    (C):x^{2} + y^{2}–5y = 0 ightarrow
I\left( 0;\frac{5}{2} ight),\ R = \sqrt{0 + \frac{25}{4} - 0} =
\frac{5}{2}.

  • Câu 40: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, đường thẳng đi qua điểm C(1;2) và song song với đường thẳng d:4x + 2y + 1 = 0 có phương trình tổng quát là:

    Đường thẳng đi qua điểm C(1;2) và song song với đường thẳng d:4x + 2y + 1 =
0 có nhận vectơ \overrightarrow{n}(4;2) làm vectơ pháp tuyến có phương trình tổng quát:

    4(x - 1) + 2(y - 2) = 0

    \Leftrightarrow 2x + y - 4 =
0

    Vậy phương trình tổng quát của đường thẳng là: 2x + y - 4 =
0.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo