Cho đường tròn
và đường thẳng
. Tìm giá trị của tham số m để
không cắt
?
Đường tròn (C) có tâm I(1; 2) và
Để không cắt
thì
Vậy thỏa mãn yêu cầu bài toán.
Cho đường tròn
và đường thẳng
. Tìm giá trị của tham số m để
không cắt
?
Đường tròn (C) có tâm I(1; 2) và
Để không cắt
thì
Vậy thỏa mãn yêu cầu bài toán.
Viết phương trình tổng quát của đường thẳng
đi qua giao điểm của hai đường thẳng
,
và vuông góc với đường thẳng
.
Ta có
Vậy
Với giá trị nào của
thì hai đường thẳng
và
trùng nhau?
.
Xác định vị trí tương đối của hai đường thẳng
và ![]()
cắt nhau nhưng không vuông góc.
Cho đường tròn
và điểm
. Gọi
là tiếp tuyến của
, biết
đi qua
và không song song với các trục tọa độ. Khi đó khoảng cách từ điểm
đến
bằng:
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có:
Trong mặt phẳng
cho các điểm
. Phương trình đường tròn đi qua ba điểm là:
Gọi phương trình đường tròn là: với
Vì đường tròn đi qua ba điểm nên ta có hệ phương trình:
Vậy phương trình đường tròn cần tìm là: .
Với giá trị nào của
thì hai đường thẳng
và
song song?
Ta có:
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây sai?
Đáp án sai là đáp án chứa độ dài trục lớn là .
Phương trình đường tròn
có tâm và bán kính lần lượt là:
Ta có:
Vậy phương trình đã cho tâm và bán kính lần lượt là: .
Tâm của đường tròn
cách trục
một khoảng bằng:
Đường thẳng
không đi qua điểm nào sau đây ?
Gọi .
Đặt Chọn
.
Trong mặt phẳng tọa độ
, cho tam giác
có
. Phương trình tổng quát của đường trung tuyến kẻ từ đỉnh
của tam giác
là:
Gọi I là trung điểm của AC. Ta có:
Đường trung tuyến BI đi qua điểm B và nhận làm vectơ chỉ phương nên có vectơ pháp tuyến
.
Phương trình tổng quát của đường thẳng là:
Phương trình đường tròn
có tâm
và bán kinh
là:
Ta có:
Trong mặt phẳng với hệ tọa độ
, cho elip
(với
). Biết
là hai tiêu điểm. Cho điểm M di động trên
. Chọn khẳng định đúng?
Ta có:
.
Vì nên
.
Trong mặt phẳng với hệ tọa độ Oxy, cho elip
. Tiêu cự của (E) bằng
Phương trình chính tắc của elip có dạng: .
Do đó elip (E) có .
Tiêu cự của elip (E) bằng .
Cho hai điểm
. Vectơ pháp tuyến của đường thẳng
là:
Một vectơ chỉ phương của PQ là:
Vậy vectơ pháp tuyến của PQ là: .
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Ox?
Vectơ chỉ phương của trục Ox là (1; 0).
Cho hai đường thẳng
và
.
Khẳng định nào sau đây là đúng:
Ta có:
Chọn
Cho hai đường thẳng
và
. Khẳng định nào sau đây đúng?
Ta có: suy ra
và
song song với nhau.
Cho hai đường tròn
và
. Tìm giá trị tham số m để hai đường tròn tiếp xúc nhau?
Dễ thấy đường tròn (C) có tâm O(0; 0) và bán kính R = 1
Đường tròn (C’) có tâm I(m + 1; -2m) và bán kính
Ta thấy:
điểm O nằm trong đường tròn tâm I suy ra (C) và (C’) chỉ có thể tiếp xúc trong với nhau.
Điều kiện để hai đường tròn tiếp xúc trong là:
Vậy có hai giá trị m thỏa mãn điều kiện là: hoặc
.
VD
1
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Ta có:
Cho đường thẳng
. Điểm nào dưới đây không nằm trên đường thẳng đã cho?
Thay tọa độ các điểm đã cho vào phương trình tham số của đường thẳng d ta thấy điểm không thuộc đường thẳng d là: .
Cho đường thẳng
. Điểm nào dưới đây thuộc đường thẳng đã cho?
Thay vào đường thẳng
suy ra
Vậy điểm thuộc đường thẳng
.
Cho phương trình đường thẳng
và tọa độ điểm
. Xác định tọa độ điểm
đối xứng với điểm
qua đường thẳng
?
Gọi H là chân đường cao kẻ từ điểm A đến đường thẳng (d) suy ra H(h; 5-2h)
Ta có:
Vì
A’ là điểm đối xứng của A qua đường thẳng (d).
Suy ra H là trung điểm của AA’.
Suy ra tọa độ điểm A’ là:
Vậy tọa độ điểm
Phương trình chính tắc của Elip có độ dài trục lớn bằng
, độ dài trục nhỏ bằng
là:
+ Phương trình Elip dạng:
+ Do có độ dài trục lớn bằng .
+ Do có độ dài trục nhỏ bằng .
+ Suy ra phương trình là .
Với giá trị nào của
thì hai đường thẳng
và
song song?
Ta có:
Chọn
Trong mặt phẳng tọa độ
,cho tam giác
có tọa độ các điểm
. Đường thẳng
đi qua
và song song với
có phương trình tổng quát là:
Ta có:
Phương trình tổng quát AC là:
Đường thẳng song song với
nên d có dạng
Do điểm
Vậy .
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
,
và
. Đường thẳng
cắt cạnh nào của tam giác đã cho?
Đặt
không cắt cạnh nào của tam giác
.
Cho elip có phương trình chính tắc
. Khi đó độ dài trục lớn và trục nhỏ của elip lần lượt là:
Ta có:
Độ dài trục lớn
Độ dài trục bé
Vậy độ dài trục lớn và trục nhỏ của elip lần lượt là:
Cho elip
có hai đỉnh trên trục nhỏ cùng với hai tiêu điểm tạo thành một hình vuông. Tỉ số
của tiêu cự với độ dài trục lớn của
là bao nhiêu?
Ta có
Vậy
Đường tròn (C):
có đường kính bằng bao nhiêu?
Tâm . Do đó
.
Do đó đường kính bằng .
Đường thẳng nào sau đây có đúng một điểm chung với đường thẳng
?
Ta cần tìm đường thẳng cắt
loại
loại
và
. Chọn
Một đường thẳng có bao nhiêu vectơ chỉ phương?
Một đường thẳng có vô số vectơ chỉ phương.
Đường Hyperbol
có tiêu cự bằng:
Ta có : . Tiêu cự
Cho hypebol (H):
. Khẳng định nào sau đây đúng?
Ta có:
Vậy Hypebol (H) có tiêu cự
=> Hai tiêu điểm của (H) là:
Ta có trục thực là:
Trục ảo là:
Vậy khẳng định đúng là:" Hypebol có trục thực bằng 1".
Cho phương trình đường tròn
. Xác định tâm và bán kính đường tròn đó?
Ta có phương trình đường tròn: có:
nên đường tròn (C) có tâm
và bán kính
.
Cho hai điểm
. Đường thẳng nào sau đây cách đều hai điểm
?
Gọi đường thẳng cần tìm là đường thẳng d.
Khi đó đường thẳng d cách đều hai điểm C và D khi:
TH1: Đường thẳng đó song song hoặc trùng với đường thẳng CD,
Ta có: nên một vectơ pháp tuyến của CD là
Vậy trong các đường thẳng đã cho chỉ có đường thẳng .
TH2: d là đường trung trực của CD.
Khi đó d đi qua trung điểm của CD và nhận
làm VTPT.
Suy ra phương trình đường thẳng d là:
Vậy đáp án là
Tìm phương trình chính tắc của elip có tiêu cự bằng
và trục lớn bằng
.
Phương trình chính tắc của elip:
Độ dài trục lớn .
Tiêu cự .
Ta có:
Vậy phương trình chính tắc của elip là .
Với giá trị nào của
thì hai đường thẳng
và
vuông góc?
Đường elip
có tiêu cự bằng
Ta có: ,
nên
.
Tiêu cự của elip là .