Cho phương trình
. Tìm điều kiện của
để
là phương trình đường tròn.
Ta có:
Cho phương trình
. Tìm điều kiện của
để
là phương trình đường tròn.
Ta có:
Cho elip có phương trình chính tắc
. Tính tâm sai của elip.
Ta có
Tâm sai của elip là .
Cho đường tròn
và điểm
. Gọi
là tiếp tuyến của
, biết
đi qua
và không song song với các trục tọa độ. Khi đó khoảng cách từ điểm
đến
bằng:
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có:
Đường thẳng
đi qua điểm
và song song với đường thẳng
có phương trình tổng quát là:
Vậy
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Elip
có độ dài trục bé bằng:
Ta có: .
Độ dài trục bé .
Cho elip đi qua điểm
và có độ dài trục lớn gấp đôi độ dài trục bé. Phương trình chính tắc của elip là:
Phương trình chính tắc của elip có dạng
Theo bài ra ta có hệ phương trình:
Vậy phương trình chính tắc của elip là: .
Đường thẳng nào dưới đây là đường chuẩn của Hypebol
?
Ta có : .
Tâm sai . Đường chuẩn :
và
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Ta có:
Phương trình đường tròn
có tâm
và bán kinh
là:
Ta có:
Xét vị trí tương đối của hai đường thẳng
và
.
Cho hai điểm A(–2; 3) và B(4; –1). Phương trình đường trung trực của đoạn thẳng AB là:
Gọi d là đường trung trực của đoạn thẳng AB.
Gọi M là trung điểm của AB với A(–2; 3) và B(4; –1).
Ta suy ra
Khi đó ta có M(1; 1).
Với A(–2; 3) và B(4; –1) ta có:
Đường thẳng d là đường trung trực của AB nên đường thẳng d đi qua trung điểm M(1; 1) của AB và nhận làm vectơ pháp tuyến.
Suy ra phương trình tổng quát của d là:
Đường tròn có tâm trùng với gốc tọa độ, bán kính
có phương trình là:
Cho hình elip có độ dài trục lớn và độ dài trục bé lần lượt là
. Vẽ một hình chữ nhật nội tiếp elip đã cho. Diện tích lớn nhất của hình chữ nhật là:
Hình vẽ minh họa
Phương trình chính tắc của elip có dạng .
Ta có:
Chọn là đỉnh hình chữ nhật và
. Ta có:
Diện tích hình chữ nhật là:
Trong mặt phẳng tọa độ
, cho đường thẳng
. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng
?
Ta có: Vectơ pháp tuyến của đường thẳng là:
.
Điểm nào sau đây thuộc đường thẳng
?
Chọn
.
Đường tròn đường kính
với
có phương trình là:
Trong mặt phẳng
có đường thẳng
đi qua điểm
và tạo với đường thẳng
một góc bằng
. Biết rằng
có dạng
và
. Tính tổng hai giá trị
và
?
Gọi là vectơ pháp tuyến của đường thẳng
.
Phương trình tổng quát của đường thẳng là:
Ta có:
Vậy ta có phương trình của là:
và
Vậy
Phương trình đường tròn
có tâm và bán kính lần lượt là:
Ta có:
Vậy phương trình đã cho tâm và bán kính lần lượt là: .
Gọi
là góc tạo bởi hai đường thẳng
và
. Khi đó độ lớn của
bằng:
Ta có:
Vậy góc tạo bởi hai đường thẳng bằng .
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
,
và
. Phương trình đường phân giác ngoài của góc
là:
Suy ra các đường phân giác góc là:
Suy ra đường phân giác trong góc là
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Loại đáp án vì không có dạng
Xét đáp án
loại.
Xét đáp án
loại.
Xét đáp án
Chọn đáp án này.
Trong mặt phẳng với hệ tọa độ
, cho đường thẳng
và hai điểm
,
. Tìm tất cả các giá trị của tham số
để
và đoạn thẳng
có điểm chung.
Đoạn thẳng và
có điểm chung khi và chỉ khi hai điểm
nằm khác phía so với đường thẳng
. Ta có:
Tìm giá trị tham số m để đường thẳng
song song với đường thẳng
?
Để hai đường thẳng đã cho song song với nhau thì
Vậy m = -1 thì hai đường thẳng song song với nhau.
Cho tọa độ hai điểm
. Viết phương trình chính tắc của elip có tâm là gốc tọa độ và đi qua hai điểm
?
Gọi phương trình chính tắc của elip là:
Do elip đi qua hai điểm nên ta có hệ phương trình:
Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là:
Bác An dự định xây một cái ao hình elip ở giữa khu vườn. Biết trục lớn có độ dài bằng 4 m, độ dài trục nhỏ bằng 2 m. Gọi
là các tiêu điểm của elip. Khi đó độ dài
bằng:
Ta có độ dài trục lớn bằng 4 m.
=> 2a = 4 => a = 2.
Lại có độ dài trục nhỏ bằng 2m.
=> 2b = 2=> b = 1
Ta có
=>
Nếu ba đường thẳng
,
và
đồng quy thì
nhận giá trị nào trong các giá trị sau?
Cho hai điểm
. Đường thẳng nào sau đây cách đều hai điểm
?
Gọi đường thẳng cần tìm là đường thẳng d.
Khi đó đường thẳng d cách đều hai điểm C và D khi:
TH1: Đường thẳng đó song song hoặc trùng với đường thẳng CD,
Ta có: nên một vectơ pháp tuyến của CD là
Vậy trong các đường thẳng đã cho chỉ có đường thẳng .
TH2: d là đường trung trực của CD.
Khi đó d đi qua trung điểm của CD và nhận
làm VTPT.
Suy ra phương trình đường thẳng d là:
Vậy đáp án là
Trong mặt phẳng tọa độ có đường thẳng
có phương trình
và đường tròn
. Tìm tất cả các giá trị của tham số m để đường thẳng
tiếp xúc với đường tròn
?
Phương trình đường tròn (C) là:
Suy ra tâm đường tròn: và bán kính
Đường thẳng tiếp xúc với đường tròn
khi và chỉ khi
Cho đường thẳng
. Điểm nào dưới đây không nằm trên đường thẳng đã cho?
Thay tọa độ các điểm đã cho vào phương trình tham số của đường thẳng d ta thấy điểm không thuộc đường thẳng d là: .
Cho hai đường thẳng
và
.
Khẳng định nào sau đây là đúng:
Ta có:
Chọn
Trong mặt phẳng tọa độ
, cho hình chữ nhật
có điểm
. Gọi
đối xứng với điểm
qua
, điểm
là hình chiếu vuông góc của
lên đường thẳng
. Biết rằng tọa độ điểm
thuộc đường thẳng
. Khi đó:
Ta có: ADB’C là hình bình hành
Mà
Tam giác vuông cân tại I
là hình thang cân =>
đi qua điểm
và có vecto pháp tuyến
Phương trình CI:
Trong mặt phẳng Oxy, điểm
nằm trên đường tròn
sao cho độ dài đoạn thẳng OM là ngắn nhất. Hoành độ điểm
là:
Đường tròn có tâm
và bán kính
.
Phương trình đường thẳng OI đi qua và nhận
làm VTCP là:
.
Ta có:
Để OM ngắn nhất
Dấu bằng xảy ra .
Cho ba đường thẳng
,
và
với m là tham số. Xác định giá trị của tham số m để ba đường thẳng
đồng quy?
Gọi . Khi đó tọa độ điểm A là nghiệm của hệ phương trình:
Để ba đường thẳng đồng quy thì hay
Vậy m = 2 thì ba đường thẳng đã cho đồng quy.
Điểm nào sau đây không thuộc đường thẳng
?
Gọi
Chọn .
Phương trình nào sau đây là phương trình tổng quát của đường thẳng
?
Ta có:
Một Elip đi qua điểm
và có độ dài trục lớn là
. Hãy xác định phương trình chính tắc của elip đó?
Phương trình chính tắc của elip có dạng
Do (E) có độ dài trục lớn là nên
Do (E) đi qua điểm nên
Vậy phương trình chính tắc của elip là: .
Điểm nào dưới đây thuộc đường thẳng
?
Thay tọa độ các điểm vào đường thẳng ta thấy điểm thuộc đường thẳng đã cho là
.
Cho parabol (P) có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây sai?
Đáp án sai: Trục đối xứng của parabol là trục . Đáp án đúng là trục
mới là trục đối xứng.
Đường tròn ngoại tiếp hình chữ nhật cơ sở của hypebol
có có phương trình là:
Ta có: . Tọa độ các đỉnh hình chữ nhật cở sở là
,
,
,
Dường tròn ngoại tiếp hình chữ nhật cơ sở có tâm
bán kính
.
Phương trình đường tròn là