Viết phương trình tổng quát của đường thẳng
. Biết rằng
đi qua điểm
cắt đường thẳng
tại điểm
có
sao cho
?
Gọi là giao điểm của
và
.
Suy ra
Theo giả thiết ta có:
Khi đó
Phương trình tổng quát của đường thẳng d là:
Viết phương trình tổng quát của đường thẳng
. Biết rằng
đi qua điểm
cắt đường thẳng
tại điểm
có
sao cho
?
Gọi là giao điểm của
và
.
Suy ra
Theo giả thiết ta có:
Khi đó
Phương trình tổng quát của đường thẳng d là:
Trong mặt phẳng
, phương trình nào sau đây là phương trình chính tắc của một elip?
Phương trình chính tắc của elip có dạng nên chọn phương án
.
Cho phương trình
. Điều kiện để
là phương trình đường tròn là:
Điều kiện để là phương trình đường tròn là
.
Hai cạnh của hình chữ nhật nằm trên hai đường thẳng
và
. Hình chữ nhật có đỉnh
. Tính diện tích của hình chữ nhật.
Đáp án: 2
Hai cạnh của hình chữ nhật nằm trên hai đường thẳng và
. Hình chữ nhật có đỉnh
. Tính diện tích của hình chữ nhật.
Đáp án: 2
Ta có: .
Do không thuộc hai đường thẳng
và
nên độ dài hai cạnh kề nhau của hình chữ nhật bằng khoảng cách từ
đến hai đường thẳng
.
Ta có:
Cho đường thẳng
. Điểm nào dưới đây thuộc đường thẳng đã cho?
Thay vào đường thẳng
suy ra
Vậy điểm thuộc đường thẳng
.
Phương trình nào sau đây là phương trình tổng quát của đường thẳng
?
Ta có:
Phương trình chính tắc của hypebol có
gấp đôi
và đi qua điểm
là:
Ta có: .
Phương trình chính tắc: .
Vì thuộc hypebol nên:
.
Do đó, phương trình chính tắc: .
Hãy xác định phương trình chính tắc của parabol
. Biết rằng
cắt đường thẳng
tại hai điểm
và
?
Phương trình chính tắc của (P) có dạng
Ta có đường thẳng d cắt (P) tại hai điểm
Ta có:
Với
Với
Vậy phương trình chính tắc của parabol cần tìm là: .
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
. Khi đó vị trí tương đối của hai đường thẳng là:
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Ta thấy
Suy ra hai đường thẳng vuông góc với nhau.
Tính góc tạo bởi giữa hai đường thẳng:
và
.
Ta có: . Suy ra góc giữa hai đường thẳng bằng
.
Cho elip
có phương trình
. Khẳng định nào sai trong các khẳng định sau?
:
.
Elip có
,
,
.
Tiêu cự của elip là
nên khẳng định “
có tiêu cự bằng 3” là khẳng định sai.
Một đường thẳng có bao nhiêu vectơ chỉ phương?
Một đường thẳng có vô số vectơ chỉ phương.
Phương trình chính tắc của đường elip với
,
là
Phương trình chính tắc .
Cho elip
có hai đỉnh trên trục nhỏ cùng với hai tiêu điểm tạo thành một hình vuông. Tỉ số
của tiêu cự với độ dài trục lớn của
là bao nhiêu?
Ta có
Vậy
Cho đường tròn
. Viết phương trình tiếp tuyến của đường tròn
biết tiếp tuyến đi qua điểm
?
Đường tròn (C) có tâm
Phương trình tiếp tuyến của tại điểm
là:
Vậy phương trình tiếp tuyến của đường tròn tại là:
Trong mặt phẳng tọa độ Oxy, cho hai điểm
. Viết phương trình đường trung trực của đoạn thẳng
?
Gọi I là trung điểm của PQ, khi đó I(-2;4)
Đường trung trực của PQ đi qua điểm I và nhận làm vectơ pháp tuyến.
Phương trình đường trung trực của PQ là:
Vậy đường thẳng cần tìm là: .
Cho hình elip có phương trình
. Hình elip có độ dài tiêu cự bằng:
Ta có:
Độ dài tiêu cự là:
Đường thẳng nào song song với đường thẳng
?
Đường thẳng song song với đường thẳng là:
.
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Xác định góc giữa hai đường thẳng
và
?
Ta có:
Đường tròn
đi qua điểm
và tiếp xúc với hai trục tọa độ
có phương trình là:
Vì thuộc góc phần tư (IV) nên
Khi đó:
Đường tròn ngoại tiếp hình chữ nhật cơ sở của hypebol
có có phương trình là:
Ta có: . Tọa độ các đỉnh hình chữ nhật cở sở là
,
,
,
Dường tròn ngoại tiếp hình chữ nhật cơ sở có tâm
bán kính
.
Phương trình đường tròn là
Viết phương trình tiếp tuyến
của đường tròn
, biết tiếp tuyến đi qua điểm
.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có:
Khoảng cách nhỏ nhất từ điểm
đến một điểm bất kì thuộc đường thẳng
bằng:
Một Elip đi qua điểm
và có độ dài trục lớn là
. Hãy xác định phương trình chính tắc của elip đó?
Phương trình chính tắc của elip có dạng
Do (E) có độ dài trục lớn là nên
Do (E) đi qua điểm nên
Vậy phương trình chính tắc của elip là: .
Đường thẳng nào dưới đây là đường chuẩn của Hypebol
?
Ta có : .
Tâm sai . Đường chuẩn :
và
Cho đường tròn
và đường thẳng
. Tìm giá trị của tham số m để
cắt
?
Đường tròn (C) có tâm I(m; -2) và R = 3
Để cắt
thì
Vậy thỏa mãn yêu cầu bài toán.
Xét vị trí tương đối của hai đường thẳng
và
.
Cho phương trình
. Điều kiện của
để phương trình đã cho là phương trình đường tròn là
Điều kiện: .
Cho đường thẳng
và đường tròn
. Khẳng định nào sau đây đúng khi nói về vị trí tương đối của đường thẳng
và đường tròn
?
Ta có:
Lại có khoảng cách từ tâm I đến đường thẳng d là:
Vậy đường thẳng cắt đường tròn
là khẳng định đúng.
Tọa độ tâm I và bán kính R của đường tròn có phương trình:
lần lượt là:
Tâm , bán kính
.
Cho hai đường thẳng
và
với m là tham số. Tìm giá trị của tham số m để hai đường thẳng tạo với nhau một góc bằng nửa góc vuông?
VTPT của hai đường thẳng lần lượt là
Để hai đường thẳng tạo với nhau một góc bằng thì
Vậy .
Một đường thẳng có vectơ chỉ phương là
. Vectơ nào sau đây là vectơ pháp tuyến của
?
Ta có:
Đường thẳng có vectơ chỉ phương
thì sẽ có một vectơ pháp tuyến là:
Áp dụng vào bài toán ta được:
Vectơ pháp tuyến của là:
.
Trong mặt phẳng với hệ tọa độ
, cho đường thẳng
và hai điểm
,
. Tìm tất cả các giá trị của tham số
để
và đoạn thẳng
có điểm chung.
Đoạn thẳng và
có điểm chung khi và chỉ khi hai điểm
nằm khác phía so với đường thẳng
. Ta có:
Đường tròn
có tâm
và bán kính
lần lượt là:
Ta có:
Khoảng cách từ điểm
đến đường thẳng
bằng:
Áp dụng công thức tính khoảng cách từ một điểm đến một đường thẳng ta có:
Vậy khoảng cách từ điểm A đến đường thẳng đã cho bằng 1.
Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng
và hai điểm
. Tìm tất cả các giá trị của tham số
để
và
nằm cùng phía đối với
.
Ta có: .
Để A, B nằm cùng phía đối với thì:
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A(– 3; 2) và B(1; 4).
Vectơ chỉ phương của đường thẳng AB là (2; 1).
Tìm
để hai đường thẳng
và
vuông góc với nhau?
Ta có: