Tìm
để hai đường thẳng
và
cắt nhau.
Tìm
để hai đường thẳng
và
cắt nhau.
Tọa độ tâm
và bán kính
của đường tròn
là:
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Điều kiện để phương trình là phương trình của một đường tròn là:
Kiểm tra các đáp án ta được kết quả đúng là:
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Ox?
Vectơ chỉ phương của trục Ox là (1; 0).
Đường thẳng
đi qua giao điểm của hai đường thẳng
và
đồng thời tạo với đường thẳng
một góc
có phương trình:
Ta có gọi
. Khi đó
Trong mặt phẳng tọa độ Oxy, đường thẳng đi qua điểm
và song song với đường thẳng
có phương trình tổng quát là:
Đường thẳng đi qua điểm và song song với đường thẳng
có nhận vectơ
làm vectơ pháp tuyến có phương trình tổng quát:
Vậy phương trình tổng quát của đường thẳng là: .
Cho phương trình đường tròn
. Xác định tâm và bán kính đường tròn đó?
Ta có phương trình đường tròn: có:
nên đường tròn (C) có tâm
và bán kính
.
Trong mặt phẳng tọa độ
, cho đường thẳng
. Hãy chỉ ra vectơ chỉ phương của đường thẳng
?
Vectơ chỉ phương của đường thẳng là:
.
Gọi
là góc tạo bởi hai đường thẳng
và
. Khi đó độ lớn của
bằng:
Ta có:
Vậy góc tạo bởi hai đường thẳng bằng .
Hãy viết phương trình chính tắc của elip nếu nó đi qua điểm
và tỉ số của tiêu cự với độ dài trục lớn bằng
.
Gọi phương trình chính tắc của Elip là với
Elip đi qua điểm
suy ra
Tỉ số của tiêu cực với độ dài trục lớn bằng
suy ra
Kết hợp với điều kiện ta được
Từ suy ra
Vậy phương trình cần tìm là
Trong mặt phẳng
cho điểm
. Gọi
là hình chiếu của
lên
. Phương trình tổng quát của đường thẳng
là:
Ta có: A, B là hình chiếu của M lên Ox, Oy suy ra
Khi đó phương trình đường thẳng AB là: .
Vậy phương trình tổng quát của AB là: .
Tìm
để hai đường thẳng
và
trùng nhau?
Khoảng cách từ điểm
đến đường thẳng
bằng:
Cho hai đường thẳng
và
. Khẳng định nào sau đây đúng?
Ta có: suy ra
và
song song với nhau.
Đường tròn
có tâm là gốc tọa độ
và tiếp xúc với đường thẳng
. Bán kính
của đường tròn
bằng:
Tìm điều kiện của tham số m để hai đường thẳng
và
cắt nhau?
Hai đường thẳng cắt nhau khi và chỉ khi:
Vậy hai đường thẳng cắt nhau khi và chỉ khi .
Cho hai đường thẳng
và
với
. Nếu
vô nghiệm thì vị trí tương đối của hai đường thẳng là:
Số giao điểm của hai đường thẳng đã cho là nghiệm của hệ phương trình .
Nếu hệ phương trình trên vô nghiệm thì hai đường thẳng không có điểm chung, nghĩa là hai đường thẳng song song với nhau.
Đường thẳng
đi qua điểm
và có vectơ pháp tuyến
có phương trình tham số là:
Ta có:
Cho elip
. Diện tích hình chữ nhật cơ sở của
là
Độ dài trục lớn: .
Độ dài trục bé: .
Diện tích hình chữ nhật cơ sở của là:
.
Viết phương trình tiếp tuyến
của đường tròn
, biết tiếp tuyến đi qua điểm
.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có:
Xác định vị trí tương đối của hai đường thẳng
và ![]()
cắt nhau nhưng không vuông góc.
Phương trình đường tròn
có tâm và bán kính lần lượt là:
Ta có:
Vậy phương trình đường tròn đã cho có tâm và bán kính lần lượt là:
Cho đường tròn
và điểm
. Gọi
là tiếp tuyến của
, biết
đi qua
và không song song với các trục tọa độ. Khi đó khoảng cách từ điểm
đến
bằng:
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có:
Đường thẳng nào là đường chuẩn của parabol
.
Ta có: .
Đường chuẩn: .
Trong mặt phẳng
cho điểm
và đường thẳng
. Tính khoảng cách từ điểm A đến đường thẳng (d).
Khoảng cách từ điểm A đến đường thẳng (d) là:
Vậy khoảng cách cần tìm bằng 8.
Cho đường thẳng
. Điểm nào dưới đây không nằm trên đường thẳng đã cho?
Thay tọa độ các điểm đã cho vào phương trình tham số của đường thẳng d ta thấy điểm không thuộc đường thẳng d là: .
Phương trình chính tắc của Elip có độ dài trục lớn bằng
, độ dài trục nhỏ bằng
là:
+ Phương trình Elip dạng:
+ Do có độ dài trục lớn bằng .
+ Do có độ dài trục nhỏ bằng .
+ Suy ra phương trình là .
Cho elip có phương trình chính tắc
. Tính tâm sai của elip.
Ta có
Tâm sai của elip là .
Một Elip đi qua điểm
và có độ dài trục lớn là
. Hãy xác định phương trình chính tắc của elip đó?
Phương trình chính tắc của elip có dạng
Do (E) có độ dài trục lớn là nên
Do (E) đi qua điểm nên
Vậy phương trình chính tắc của elip là: .
Cho hai đường thẳng
và
. Tìm các giá trị của tham số
để
và
hợp với nhau một góc bằng ![]()
Ta có:
Khái niệm nào sau đây định nghĩa về hypebol?
Cho cố định với
. Hypebol
là tập hợp điểm
sao cho
với
là một số không đổi và
.
Đường tròn đường kính
với
có phương trình là:
Trong mặt phẳng với hệ tọa độ
, cho elip
. Biết điểm
sao cho
Hãy tính bán kính đường tròn nội tiếp tam giác ![]()
Gọi vì
(1)
Do (2)
Giải hệ gồm hai phuơng trình (1) và (2) ta đuợc
Ta có: nửa chu vi
Khoảng các từ M đến trục Ox:
Bán kính đuờng tròn nội tiếp: .
Đường thẳng
không đi qua điểm nào sau đây ?
Gọi .
Đặt Chọn
.
Cho elip (E):
. Trong các khẳng định sau, khẳng định nào sai?
Phương trình elip (E) có dạng
Ta có:
Khi đó: đúng
Ta có: đúng
Đỉnh A1(–a; 0) => A1(–5; 0) đúng
Độ dài trục nhỏ là 2b = 2.3 = 6 ≠ 3
Vậy khẳng định sai là: (E) có độ dài trục nhỏ bằng 3.
Hyperbol
có tâm sai là:
Ta có :
.
Trong mặt phẳng tọa độ
, cho tam giác
có
. Phương trình tổng quát của đường trung tuyến kẻ từ đỉnh
của tam giác
là:
Gọi I là trung điểm của AC. Ta có:
Đường trung tuyến BI đi qua điểm B và nhận làm vectơ chỉ phương nên có vectơ pháp tuyến
.
Phương trình tổng quát của đường thẳng là:
Cho phương trình đường tròn
. Viết phương trình tiếp tuyến của đường tròn
biết rằng tiếp tuyến vuông góc với đường thẳng
?
Đường tròn (C) có tâm
Vì vuông góc với đường thẳng
nên phương trình
có dạng
Vì là tiếp tuyến của (C) nên ta có:
Với thì phương trình
là
Với thì phương trình
là
Phương trình nào dưới đây đi qua hai điểm
là:
Phương trình đường thẳng đi qua hai điểm là:
hay
.