Tâm sai của Hyperbol
bằng:
Ta có :
Tâm sai của Hyperbol
bằng:
Ta có :
Điểm nào sau đây thuộc đường thẳng
?
Chọn
.
Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Elip?
Phương trình Elip có dạng
Vậy phương trình cần tìm là
Hãy xác định phương trình chính tắc của parabol
. Biết rằng
cắt đường thẳng
tại hai điểm
và
?
Phương trình chính tắc của (P) có dạng
Ta có đường thẳng d cắt (P) tại hai điểm
Ta có:
Với
Với
Vậy phương trình chính tắc của parabol cần tìm là: .
Viết phương trình tổng quát của đường thẳng
. Biết rằng
đi qua điểm
cắt đường thẳng
tại điểm
có
sao cho
?
Gọi là giao điểm của
và
.
Suy ra
Theo giả thiết ta có:
Khi đó
Phương trình tổng quát của đường thẳng d là:
Cho elip
có độ dài trục lớn gấp hai lần độ dài trục nhỏ và tiêu cự bằng
. Viết phương
trình của
?
Ta có:
Mà .
Vậy phương trình :
.
Trong mặt phẳng với hệ tọa độ Oxy, cho elip
. Tiêu cự của (E) bằng
Phương trình chính tắc của elip có dạng: .
Do đó elip (E) có .
Tiêu cự của elip (E) bằng .
Tọa độ tâm I và bán kính R của đường tròn có phương trình:
lần lượt là:
Tâm , bán kính
.
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
với
. Giả sử
là góc hợp hai đường thẳng đã cho. Chọn kết luận đúng?
Góc giữa hai đường thẳng và
xác định bởi công thức:
Một Elip đi qua điểm
và có độ dài trục lớn là
. Hãy xác định phương trình chính tắc của elip đó?
Phương trình chính tắc của elip có dạng
Do (E) có độ dài trục lớn là nên
Do (E) đi qua điểm nên
Vậy phương trình chính tắc của elip là: .
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
,
và
. Phương trình đường phân giác trong của góc
là:
Suy ra các đường phân giác góc là:
Suy ra đường phân giác trong góc là
Trong mặt phẳng
, hãy tìm phương trình chính tắc của elip
. Biết rằng
đi qua
. Mặt khác,
nhìn hai tiêu điểm
dưới một góc 90 độ.
Gọi .
Ta có: đi qua
nên:
.
Vì nhìn hai tiêu điểm
dưới một góc vuông nên:
.
thế vào
ta được:
nên
.
Vậy: .
Điền vào chỗ trống: Vectơ có giá song song hoặc trùng với đường thẳng thì vectơ được gọi là … của đường thẳng đó.
Vectơ có giá song song hoặc trùng với đường thẳng thì
được gọi là vectơ chỉ phương của đường thẳng đó.
Trên hệ trục tọa độ cho đường tròn
. Trong các điểm sau điểm nào nằm trên đường tròn đã cho?
Thay tọa độ điểm vào phương trình đường tròn
ta được:
Vậy điểm thuộc đường tròn là .
Trong mặt phẳng với hệ trục tọa độ
, cho hai đường thẳng
và
. Gọi điểm
sao cho
và
. Tính giá trị biểu thức
?
Gọi
Khi đó:
Với
Với
Tọa độ tâm
và bán kính
của đường tròn
là:
Ta có:
Với giá trị nào của
thì hai đường thẳng
và
song song?
Với loại
Với thì
Xét vị trí tương đối của hai đường thẳng
và
.
Trong mặt phẳng tọa độ
, cho đường thẳng
. Hệ số góc
của đường thẳng
là:
Ta có:
Đường thẳng có vectơ chỉ phương
nên có hệ số góc
.
Vậy hệ số góc của đường thẳng là .
Viết phương trình tiếp tuyến của đường tròn
, biết tiếp tuyến vuông góc với đường thẳng
.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có
Trong mặt phẳng tọa độ
, cho tam giác
có
. Phương trình đường thẳng chứa trung tuyến kẻ từ đỉnh
của tam giác
là:
Gọi I là trung điểm của AC. Ta có:
Đường trung tuyến BI đi qua điểm B và nhận làm vectơ chỉ phương nên có vectơ pháp tuyến
.
Phương trình tổng quát của đường thẳng là:
Vậy phương trình tổng quát của đường thẳng cần tìm là .
Với giá trị nào của tham số
thì đường thẳng
vuông góc với đường thẳng
?
Ta có tọa độ vectơ pháp tuyến của là:
Tọa độ vectơ pháp tuyến của là:
Để thì
Vậy m = -8 thì hai đường thẳng đã cho vuông góc với nhau.
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
,
và
Trung tuyến
của tam giác đi qua điểm
có hoành độ bằng
thì tung độ của điểm
bằng bao nhiêu?
Ta có:
Chọn
Trong hệ trục tọa độ
cho đường thẳng
. Một đường tròn
tiếp xúc với các trục tọa độ và có tâm nằm trên đường thẳng
. Kết quả nào dưới đây đúng?
Ta có tâm đường tròn thuộc đường thẳng d nên . Theo giả thiết để bài ta có:
Với
Vậy phương trình đường tròn là:
Với
Vậy phương trình đường tròn là: .
Trong hệ trục tọa độ
, viết phương trình đường trung trực của đoạn thẳng
biết
?
Đường thẳng trung trực của là đường thẳng đi qua trung điểm
của
và nhận
làm vectơ pháp tuyến. Khi đó:
Vậy phương trình đường trung trực của MN là .
Trong mặt phẳng với hệ tọa độ
, cho đường thẳng
và hai điểm
,
không thuộc
. Chọn khẳng định đúng trong các khẳng định sau:
cùng phía so với
thì
và
luôn cùng dấu.
Chọn cùng phía so với
khi
Elip
có độ dài tiêu cự bằng:
Ta có: .
Do đó độ dài tiêu cự .
Trong mặt phẳng tọa độ
, cho đường thẳng
có phương trình
. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng đã cho?
Một vectơ pháp tuyến của đường thẳng là:
.
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Ta có:
Viết phương trình đường tròn nội tiếp tam giác
, biết tọa độ
?
Ta có:
Mặt khác (vì cùng bằng diện tích tam giác ABO)
Suy ra
Dễ thấy đường tròn cần tìm có tâm thuộc góc phần tư thứ nhất và tiếp xúc với hai trục tọa độ nên tâm của đường tròn có tọa độ
Vậy phương trình đường tròn nội tiếp tam giác OAB là:
Phương trình tham số của đường thẳng đi qua hai điểm
là:
Vectơ chỉ phương:
Đường thẳng đi qua điểm và có vectơ chỉ phương
nên có phương trình tham số là:
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Đường thẳng nào song song với đường thẳng
?
Đường thẳng song song với đường thẳng là:
.
Viết phương trình tham số của đường thẳng
đi qua điểm
và song song với trục
.
Cho đường tròn
và đường thẳng
. Tìm phương trình tiếp tuyến của
song song với đường thẳng
?
Ta có: Phương trình đường tròn (C) có tâm I(2; 3) bán kính R = 5
Phương trình đường thẳng song song với d có dạng
tiếp xúc với
nên
Hay
Vậy phương trình tiếp tuyến của song song với
là:
hoặc
.
Cho phương trình
. Tìm điều kiện của
để
là phương trình đường tròn.
Ta có:
Cho đường tròn (C) có phương trình
. Đường tròn (C) còn được viết dưới dạng nào trong các dạng dưới đây:
Ta có:
.
Cho parabol
. Giao điểm của
với trục hoành tại hai điểm
. Khẳng định nào sau đây đúng?
Phương trình hoành độ giao điểm là nghiệm của phương trình:
Áp dụng định lí Vi – et ta có:
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
. Khi đó vị trí tương đối của hai đường thẳng là:
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Ta thấy
Suy ra hai đường thẳng vuông góc với nhau.
Cho elip
có hai đỉnh trên trục nhỏ cùng với hai tiêu điểm tạo thành một hình vuông. Tỉ số
của tiêu cự với độ dài trục lớn của
là bao nhiêu?
Ta có
Vậy