Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Viết phương trình tiếp tuyến của đường tròn (C):(x - 2)^{2} + (y - 1)^{2} = 25, biết tiếp tuyến song song với đường thẳng d:4x + 3y + 14 = 0.

    Đường tròn (C) có tâm I(2;1),\ R =
5 và tiếp tuyến có dạng

    \Delta:4x + 3y + c = 0\ \ \left(ceq14 ight).

    Ta có R = d\lbrack I;\Deltabrack
\Leftrightarrow \frac{|c + 11|}{5} = 5 \Leftrightarrow \left\lbrack
\begin{matrix}
c = 14\ (l) \\
c = - 36 \\
\end{matrix} ight.\ .

  • Câu 2: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, đường tròn tâm I(2; - 5) và tiếp xúc với đường thẳng \Delta: - 3x + 4y + 11 = 0 có phương trình là:

    Đường tròn tâm I tiếp xúc với đường thẳng \Delta có bán kính R bằng khoảng cách từ điểm I đến đường thẳng \Delta.

    Suy ra R = d(I;\Delta) = \frac{\left| -
3.2 + 4.( - 5) + 11 ight|}{5} = 3

    Vậy phương trình đường tròn tâm I(2; -
5) và tiếp xúc với đường thẳng \Delta: - 3x + 4y + 11 = 0 có phương trình là: (x - 2)^{2} + (y + 5)^{2} =
9.

  • Câu 3: Nhận biết

    Cho Hypebol (H) có phương trình chính tắc là \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1, với a,b > 0. Khi đó khẳng định nào sau đây đúng?

    Khẳng định đúng là: Với c^{2} = a^{2} +
b^{2} (c > 0), tâm sai của hypebol là e = \frac{c}{a}.

  • Câu 4: Thông hiểu

    Trong hệ trục Oxy, cho Elip (E) có các tiêu điểm F_{1}( - 4;0),F_{2}(4;0) và một điểm M nằm trên (E). Biết rằng chu vi của tam giác MF_{1}F_{2} bằng 18. Xác định tâm sai e của (E).

    Ta có F_{1}( - 4;0) \Rightarrow c =
4.

    \begin{matrix}
P_{\Delta MF_{1}F_{2}} = \underset{2a}{\overset{MF_{1} + MF_{2}}{︸}} +
F_{1}F_{2} \\
\Leftrightarrow \ \ \ 18 = 2a + 2c \Leftrightarrow 18 = 2a + 8
\Leftrightarrow a = 5. \\
\end{matrix}

    Tâm sai e = \frac{c}{a} =
\frac{4}{5}.

  • Câu 5: Vận dụng

    Cho elip (E) có hai đỉnh trên trục nhỏ cùng với hai tiêu điểm tạo thành một hình vuông. Tỉ số e của tiêu cự với độ dài trục lớn của (E) là bao nhiêu?

    Ta có \widehat{F_{1}B_{1}F_{2}} =
90^{0}\overset{}{ightarrow}OB_{1} =
\frac{F_{1}F_{2}}{2}\overset{ightarrow}{}b = c

    \overset{}{ightarrow}b^{2} =
c^{2}\overset{}{ightarrow}\left( a^{2} - c^{2} ight) =
c^{2}

    \overset{}{ightarrow}\frac{c^{2}}{a^{2}} =
\frac{1}{2}\overset{}{ightarrow}\frac{c}{a} =
\frac{1}{\sqrt{2}}.

    Vậy e = \frac{1}{\sqrt{2}}.

  • Câu 6: Nhận biết

    Cho đường thẳng (\Delta):3x + 4y - 4 = 0 và tọa độ điểm C(1; - 1). Tính d(C;\Delta)?

    Ta có khoảng cách từ điểm C đến đường thẳng (\Delta):3x + 4y - 4 = 0 là:

    d(C;\Delta) = \frac{\left| 3.1 + 4.( -
1) - 4 ight|}{\sqrt{3^{2} + 4^{2}}} = \frac{5}{5} = 1

    Vậy khoảng cách cần tìm bằng 1.

  • Câu 8: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 2 + 2t \\
y = - 3t \\
\end{matrix} ight.\
d_{2}:\left\{ \begin{matrix}
x = 2 + mt \\
y = - 6 + (1 - 2m)t \\
\end{matrix} ight. trùng nhau?

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = - 2 + 2t \\
y = - 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{u}}_{1} = (2; - 3)
\\
d_{2}:\left\{ \begin{matrix}
x = 2 + mt \\
y = - 6 + (1 - 2m)t \\
\end{matrix} ight.\  ightarrow A(2; - 6) \in d_{2},\ \
{\overrightarrow{u}}_{2} = (m;1 - 2m) \\
\end{matrix} ight\}

    \overset{d_{1} \equiv
d_{2}}{ightarrow}\left\{ \begin{matrix}
A \in d_{1} \\
\frac{m}{2} = \frac{1 - 2m}{- 3} \\
\end{matrix} ight.\  \Leftrightarrow m = 2.

  • Câu 9: Nhận biết

    Trên mặt phẳng tọa độ Oxy cho tọa độ hai điểm M(1;0),N(7;4). Tọa độ trung điểm I của MN là:

    Tọa độ trung điểm I của MN là:

    \left\{ \begin{matrix}x_{I} = \dfrac{x_{M} + x_{N}}{2} \\y_{I} = \dfrac{y_{M} + y_{N}}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{I} = \dfrac{1 + 7}{2} = 4 \\y_{I} = \dfrac{0 + 4}{2} = 2 \\\end{matrix} ight.

    Vậy tọa độ trung điểm của MN là: I(4;2).

  • Câu 10: Thông hiểu

    Cho ba đường thẳng \left( d_{1} ight):3x + 2y - 5 = 0, \left( d_{2} ight): - 2x + 3y - 1 =
0\left( d_{3} ight):(m - 1)x
+ (2m - 3)y - 2 = 0 với m là tham số. Xác định giá trị của tham số m để ba đường thẳng \left( d_{1}
ight);\left( d_{2} ight);\left( d_{3} ight) đồng quy?

    Gọi A = d_{1} \cap d_{2}. Khi đó tọa độ điểm A là nghiệm của hệ phương trình:

    \left\{ \begin{matrix}
3x + 2y - 5 = 0 \\
- 2x + 3y - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
\end{matrix} ight.\  \Rightarrow A(1;1)

    Để ba đường thẳng đồng quy thì A \in
\left( d_{3} ight) hay

    (m - 1).1 + (2m - 3).1 - 2 =
0

    \Leftrightarrow m = 2

    Vậy m = 2 thì ba đường thẳng đã cho đồng quy.

  • Câu 11: Nhận biết

    Điền vào chỗ trống: Vectơ có giá song song hoặc trùng với đường thẳng thì vectơ được gọi là … của đường thẳng đó.

    Vectơ \overrightarrow u có giá song song hoặc trùng với đường thẳng thì \overrightarrow u được gọi là vectơ chỉ phương của đường thẳng đó.

  • Câu 12: Vận dụng

    Ông Hoàng có một mảnh vườn hình Elip có chiều dài trục lớn và trục nhỏ lần lượt là 60m30m. Ông chia mảnh vườn ra làm hai nửa bằng một đường tròn tiếp xúc trong với Elip để làm mục đích sử dụng khác nhau (xem hình vẽ). Nửa bên trong đường tròn ông trồng cây lâu năm, nửa bên ngoài đường tròn ông trồng hoa màu. Tính tỉ số diện tích T giữa phần trồng cây lâu năm so với diện tích trồng hoa màu. Biết diện tích hình Elip được tính theo công thức S = \pi
ab, với a, b lần lượt là nửa độ dài trục lớn và nửa độ dài trục nhỏ. Biết độ rộng của đường Elip là không đáng kể.

    Theo đề ta có: Diện tích (E)là: S_{(E)} = \pi.a.b = 30.15.\pi = 450\pi,\
\left( m^{2} ight)

    Vì đường tròn tiếp xúc trong, nên sẽ tiếp xúc tại đỉnh của trục nhỏ, suy ra bán kính đường tròn: R =
15m. Diện tích hình tròn (C)phần trồng cây lâu năm là: S_{(C)} = \pi.R^{2} = 15^{2}.\pi = 225\pi,\ \left(
m^{2} ight)

    Suy ra diện tích phần trồng hoa màu là: S
= S_{(E)} - S_{(C)} = 225\pi,\ \left( m^{2} ight) \Rightarrow T =
1.

  • Câu 13: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = m + 2t \\
y = 1 - t \\
\end{matrix} ight. và hai điểm A(1;2), B( -
3;4). Tìm m để d cắt đoạn thẳngAB.

    d:\left\{ \begin{matrix}
x = m + 2t \\
y = 1 - t \\
\end{matrix} ight.\  ightarrow d:x + 2y - m - 2 = 0. Đoạn thẳng AB cắt d khi và chỉ khi

    \left( x_{A} + 2y_{A} - m - 2
ight)\left( x_{B} + 2y_{B} - m - 2 ight) \leq 0

    \Leftrightarrow (3 - m)^{2} \leq 0
\Leftrightarrow m = 3.

  • Câu 14: Vận dụng

    Cho ba đường thẳng \left( d_{1} ight):3x - 2y + 5 = 0, \left( d_{2} ight):2x + 4y - 7 =
0\left( d_{3} ight):3x + 4y -
1 = 0. Phương trình nào dưới đây là phương trình đường thẳng đi qua giao điểm của hai đường thẳng \left(
d_{1} ight);\left( d_{2} ight) và song song với \left( d_{3} ight)?

    Đường thẳng \left( d_{3} ight):3x + 4y
- 1 = 0\overrightarrow{n_{3}} =
(3;4)

    Gọi M là giao điểm của hai đường thẳng \left( d_{1} ight);\left( d_{2}
ight), tọa độ điểm M là nghiệm của hệ phương trình: \left\{ \begin{matrix}
3x - 2y + 5 = 0 \\
2x + 4y - 7 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - \frac{3}{8} \\
y = \frac{31}{16} \\
\end{matrix} ight.\  \Rightarrow M\left( - \frac{3}{8};\frac{31}{16}
ight)

    Đường thẳng d đi qua giao điểm M có vecto pháp tuyến \overrightarrow{n_{3}} = (3;4)

    Vậy phương trình tổng quát của đường thẳng cần tìm là: 3x + 4y - \frac{53}{8} = 0 hay 24x + 32y - 53 = 0.

  • Câu 15: Thông hiểu

    Viết phương trình tham số của đường thẳng d đi qua điểm M(4; - 7) và song song với trục Ox.

    {\overrightarrow{u}}_{Ox} =
(1;0)\overset{ightarrow}{}{\overrightarrow{u}}_{d} =
(1;0)\overset{ightarrow}{}d:\left\{ \begin{matrix}
x = 4 + t \\
y = - 7 \\
\end{matrix} ight.\ \overset{t = - 4}{ightarrow}A(0; - 7) \in d
ightarrow d:\left\{ \begin{matrix}
x = t \\
y = - 7 \\
\end{matrix} ight.\ .

  • Câu 16: Nhận biết

    Cho Hypebol (H) có phương trình chính tắc là \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1, với a,b > 0. Khi đó khẳng định nào sau đây đúng?

    Khẳng định đúng là: Nếu c^{2} = a^{2} +
b^{2} thì (H) có các tiêu điểm là F_{1}(c;0), F_{2}( - c;0).

  • Câu 17: Vận dụng

    Đâu là đường thẳng không có điểm chung với đường thẳng x - 3y + 4 = 0?

    Kí hiệu d:x - 3y + 4 = 0 ightarrow
{\overrightarrow{n}}_{d} = (1; - 3).

    (i) Xét đáp án: d_{1}:\left\{
\begin{matrix}
x = 1 + t \\
y = 2 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{1} = (1;3)
ightarrow {\overrightarrow{n}}_{1},\ \ \overrightarrow{n} không cùng phương nên loại.

    (ii) Xét đáp án: d_{2}:\left\{
\begin{matrix}
x = 1 - t \\
y = 2 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (3;1)
ightarrow {\overrightarrow{n}}_{2},\ \ \overrightarrow{n} không cùng phương nên loại.

    (iii) Xét đáp án: d_{3}:\left\{
\begin{matrix}
x = 1 - 3t \\
y = 2 + t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{3} = (1;3)
ightarrow {\overrightarrow{n}}_{3},\ \ \overrightarrow{n} không cùng phương nên loại.

    (iv) Xét đáp án: d_{4}:\left\{
\begin{matrix}
x = 1 - 3t \\
y = 2 - t \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
M(1;2) \in d_{4} \\
{\overrightarrow{n}}_{4} = (1; - 3) \\
\end{matrix} ight. ightarrow
\left\{ \begin{matrix}
{\overrightarrow{n}}_{4} = \overrightarrow{n} \\
M\boxed{\in}d \\
\end{matrix} ight.\  ightarrow d||d_{4}. (Chọn)

  • Câu 18: Nhận biết

    Cho phương trình x^{2} + y^{2} - 2ax - 2by + c = 0(1). Điều kiện để (1) là phương trình đường tròn là:

    Điều kiện để x^{2} + y^{2} - 2ax - 2by +
c = 0(1) là phương trình đường tròn là a^{2} + b^{2}\  > \ c.

  • Câu 19: Nhận biết

    Phương trình nào dưới đây là phương trình tổng quát của đường thẳng?

    Phương trình tổng quát của đường thẳng là: x = 2y.

  • Câu 20: Nhận biết

    Phương trình tham số của đường thẳng nào sau đây có vectơ chỉ phương \overrightarrow{u}=(1;3)

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 1 \hfill \\  y = 3t + 2 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;3} ight)

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 1 \hfill \\  y = 2t + 3 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;2} ight).

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 2 \hfill \\  y = t + 3 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;1} ight).

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 3 \hfill \\  y = 2t + 1 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;2} ight).

  • Câu 21: Thông hiểu

    Cho elip (E) có độ dài trục lớn gấp hai lần độ dài trục nhỏ và tiêu cự bằng 6. Viết phương

    trình của (E)?

    Ta có: a = 2b,2c = 6 \Rightarrow c =
3.

    a^{2} - b^{2} = c^{2} \Rightarrow
4b^{2} - b^{2} = 9 \Rightarrow \left\{ \begin{matrix}
b^{2} = 3 \\
a^{2} = 12 \\
\end{matrix} ight..

    Vậy phương trình (E): \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{12}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{3}}\mathbf{=}\mathbf{1}.

  • Câu 22: Nhận biết

    Trong mặt phẳng Oxy cho điểm A(4; - 5) và đường thẳng (d):3.x - 4y + 8 = 0. Tính khoảng cách từ điểm A đến đường thẳng (d).

    Khoảng cách từ điểm A đến đường thẳng (d) là:

    d\left( A;(d) ight) = \frac{\left| 3.4
- 4.( - 5) + 8 ight|}{\sqrt{3^{2} + 4^{2}}} = 8

    Vậy khoảng cách cần tìm bằng 8.

  • Câu 23: Thông hiểu

    Cho Elip (E) đi qua điểm A( - 3;0) và có tâm sai e = \frac{5}{6}. Tiêu cự của (E)

    Gọi phương trình chính tắc của (E)\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1 với a > b > 0.

    (E) đi qua điểm A( - 3;0) nên \frac{9}{a^{2}} = 1 \Rightarrow a^{2} = 9
\Rightarrow a = 3.

    Lại có e = \frac{c}{a} = \frac{5}{6}
\Rightarrow c = \frac{5a}{6} = \frac{5}{2} \Rightarrow 2c =
5.

  • Câu 24: Nhận biết

    Đường tròn (C):x^{2} + y^{2} - 6x + 2y + 6 = 0 có tâm I và bán kính R lần lượt là:

    Ta có:\begin{matrix}
(C):x^{2} + y^{2} - 6x + 2y + 6 = 0 ightarrow a = \frac{- 6}{- 2} =
3,\ \ b = \frac{2}{- 2} = - 1,\ \ c = 6 \\
ightarrow I(3; - 1),\ R = \sqrt{3^{2} + ( - 1)^{2} - 6} = 2.\  \\
\end{matrix}

  • Câu 25: Nhận biết

    Điểm nào dưới đây thuộc đường thẳng 2x - y + 1 = 0?

    Thay tọa độ các điểm vào đường thẳng 2x -
y + 1 = 0 ta thấy điểm thuộc đường thẳng đã cho là D(0;1).

  • Câu 26: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 4 + 2t \\
y = 1 - 5t \\
\end{matrix} ight.d_{2}:5x
+ 2y - 14 = 0.

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 4 + 2t \\
y = 1 - 5t \\
\end{matrix} ight.\  ightarrow A(4;1) \in d_{1},\ \
{\overrightarrow{u}}_{1} = (2; - 5) \\
d_{2}:5x + 2y - 14 = 0 ightarrow \ \ {\overrightarrow{n}}_{2} = (5;2)
ightarrow {\overrightarrow{u}}_{2} = (2; - 5) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
{\overrightarrow{u}}_{1} = {\overrightarrow{u}}_{2} \\
A\boxed{\in}d_{2} \\
\end{matrix} ight.\  ightarrow d_{1}||d_{2}.Chọn

  • Câu 27: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d_{1}:3x - 4y - 3 = 0d_{2}:12x + 5y - 12 = 0. Phương trình đường phân giác góc nhọn tạo bởi hai đường thẳng d_{1}d_{2} là:

    Các đường phân giác của các góc tạo bởi d_{1}:3x - 4y - 3 = 0d_{2}:12x + 5y - 12 = 0 là:

    \frac{|3x - 4y - 3|}{5} = \frac{|12x +
5y - 12|}{13} \Leftrightarrow \left\lbrack \begin{matrix}
3x + 11y - 3 = 0 \\
11x - 3y - 11 = 0 \\
\end{matrix} ight.\ .

    Gọi I = d_{1} \cap d_{2} ightarrow
I(1;0);\ \ d:3x + 11y - 3 = 0 ightarrow M( - 10;3) \in d,

    Gọi H là hình chiếu của M lên d_{1}.

    Ta có: IM = \sqrt{130},\ \ MH = \frac{| -
30 - 12 - 3|}{5} = 9, suy ra

    \sin\widehat{MIH} = \frac{MH}{IM} =
\frac{9}{\sqrt{130}} ightarrow \widehat{MIH} > 52^{\circ}
ightarrow 2\widehat{MIH} > 90^{\circ}.

    Suy ra d:3x + 11y - 3 = 0 là đường phân giác góc tù, suy ra đường phân giác góc nhọn là 11x - 3y - 11 = 0.

  • Câu 28: Thông hiểu

    Trong mặt phẳng tọa độ Oxy,cho tam giác ABC có tọa độ các điểm A(2;0),B(0;3),C( - 3;1). Đường thẳng d đi qua B và song song với AC có phương trình tổng quát là:

    Ta có: \overrightarrow{AC} = ( - 5;1)
\Rightarrow \overrightarrow{n_{AC}} = (1;5)

    Phương trình tổng quát AC là: x + 5y - 2
= 0

    Đường thẳng d song song với AC nên d có dạng x + 5y + m = 0

    Do điểm B \in d \Rightarrow 0 + 15 + m =
0 \Rightarrow m = - 15

    Vậy d:x + 5y - 15 = 0.

  • Câu 29: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai điểm P( - 3;3),Q( - 1;5). Viết phương trình đường trung trực của đoạn thẳng PQ?

    Gọi I là trung điểm của PQ, khi đó I(-2;4)

    Đường trung trực của PQ đi qua điểm I và nhận \overrightarrow{v} = (2;2) làm vectơ pháp tuyến.

    Phương trình đường trung trực của PQ là:

    2(x + 2) + 2(y - 4) = 0

    \Leftrightarrow x + y - 2 =
0

    Vậy đường thẳng cần tìm là: x + y - 2 = 0.

  • Câu 30: Thông hiểu

    Đường chuẩn của Parabol y^{2} = 14x là:

    Từ phương trình Parabol y^{2} = 14x ta có 2p = 14 => p = 7

    Do đó phương trình đường chuẩn của Parabol là x + \frac{7}{2} = 0

  • Câu 31: Nhận biết

    Xác định vị trí tương đối của hai đường thẳng \Delta_{1}:7x + 2y - 1 = 0\Delta_{2}:\left\{ \begin{matrix}
x = 4 + t \\
y = 1 - 5t \\
\end{matrix} ight.\ .

    \left. \ \begin{matrix}
\Delta_{1}:7x + 2y - 1 = 0 ightarrow {\overrightarrow{n}}_{1} = (7;2)
\\
\Delta_{2}:\left\{ \begin{matrix}
x = 4 + t \\
y = 1 - 5t \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = (1; -
5) ightarrow {\overrightarrow{n}}_{2} = (5;1) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{7}{5}\boxed{=}\frac{2}{1} \\
{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2}\boxed{=}0 \\
\end{matrix} ight.\  ightarrow \Delta_{1},\ \ \Delta_{2} cắt nhau nhưng không vuông góc.

  • Câu 32: Vận dụng

    Đường tròn (C) đi qua hai điểm 4x^{2} + y^{2} - 10x - 6y - 2 = 0. và tiếp xúc với đường thẳng \Delta:3x + y - 3 =
0. Viết phương trình đường tròn (C), biết tâm của (C) có tọa độ là những số nguyên.

    AB:x - y + 1 = 0, đoạn AB có trung điểm M(2;3) ightarrowtrung trực của đoạn AB là d:x + y - 5 = 0
ightarrow I(a;5 - a),\ \ a\mathbb{\in Z}.

    Ta có: R = IA = d\lbrack I;\Deltabrack
= \sqrt{(a - 1)^{2} + (a - 3)^{2}} = \frac{|2a +
2|}{\sqrt{10}}

    \Leftrightarrow a = 4 ightarrow
I(4;1),\ R = \sqrt{10}.

    Vậy phương trình đường tròn là: (x -
4)^{2} + (y - 1)^{2} = 10 \Leftrightarrow x^{2} + y^{2} - 8x - 2y + 7 =
0.

  • Câu 33: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(–2\ ;\ 0),\ B(1\ ;\ 4) và đường thẳng d:\left\{ \begin{matrix}
x = - t \\
y = 2 - t \\
\end{matrix} ight.. Tìm tọa độ giao điểm của đường thẳng ABd.

    \left\{ \begin{matrix}
A(–2\ ;\ 0),\ B(1\ ;\ 4) ightarrow AB:4x - 3y + 8 = 0 \\
d:\left\{ \begin{matrix}
x = - t \\
y = 2 - t \\
\end{matrix} ight.\  ightarrow d:x - y + 2 = 0 \\
\end{matrix} ight.

    \overset{AB \cap d}{ightarrow}\left\{
\begin{matrix}
4x - 3y + 8 = 0 \\
x - y + 2 = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
\end{matrix} ight.\ .

  • Câu 34: Nhận biết

    Cho phương trình {x^2} + {y^2} - 2ax - 2by + c = 0 (1). Điều kiện để (1) là phương trình đường tròn là:

    Điều kiện để phương trình {x^2} + {y^2} - 2ax - 2by + c = 0 là phương trình đường tròn là:

    {a^2} + {b^2} - c > 0

  • Câu 35: Nhận biết

    Tìm phương trình chính tắc của parabol (P) biết (P) có tiêu điểm là F(0\ ;\ 5).

    Gọi phương trình chính tắc của (P) là: y^{2}= 2px.

    Do tọa độ tiêu điểm F(0\ ;\ 5) nên \frac{p}{2} = 5 \Leftrightarrow p =10.

    Vậy phương trình của (P) là: y^{2} = 20x.

  • Câu 36: Nhận biết

    Đường thẳng nào dưới đây là đường chuẩn của Hypebol \frac{x^{2}}{16} - \frac{y^{2}}{12}
= 1?

    Ta có : \left\{ \begin{matrix}
a^{2} = 16 \\
b^{2} = 12 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 4 \\
b = 2\sqrt{3} \\
c = 2 \\
\end{matrix} ight..

    Tâm sai e = \frac{c}{a} = 2. Đường chuẩn : x + 2 = 0x - 2 = 0.

  • Câu 37: Nhận biết

    Cho đường tròn (C) có phương trình (x + 5)^{2} + (y – 2)^{2} = 25. Đường tròn (C) còn được viết dưới dạng nào trong các dạng dưới đây:

    Viết lại phương trình đường tròn như sau:

    \begin{matrix}  {(x + 5)^2} + {(y - 2)^2} = 25 \hfill \\   \Leftrightarrow {x^2} + 10x + 25 + {y^2} - 4y + 4 = 25 \hfill \\   \Leftrightarrow {x^2} + {y^2} + 10x - 4y + 4 = 0 \hfill \\ \end{matrix}

  • Câu 38: Thông hiểu

    Cho phương trình x^{2} + y^{2} - 2mx - 4(m - 2)y + 6 - m =
0(1). Tìm điều kiện của m để (1) là phương trình đường tròn.

    Ta có: x^{2} + y^{2} - 2mx - 4(m - 2)y +
6 - m = 0

    ightarrow \left\{ \begin{matrix}
a = m \\
b = 2(m - 2) \\
c = 6 - m \\
\end{matrix} ight.\  ightarrow a^{2} + b^{2} - c > 0

    \Leftrightarrow 5m^{2} - 15m + 10 > 0
\Leftrightarrow \left\lbrack \begin{matrix}
m < 1 \\
m > 2 \\
\end{matrix} ight.\ .

  • Câu 39: Thông hiểu

    Đường tròn (C) có tâm I(
- 2;3) và đi qua M(2; - 3) có phương trình là:

    (C):\left\{ \begin{matrix}
I( - 2;3) \\
R = IM = \sqrt{(2 + 2)^{2} + ( - 3 - 3)^{2}} = \sqrt{52} \\
\end{matrix} ight.

    ightarrow (C):(x + 2)^{2} + (y - 3)^{2}
= 52.

    Hay (C):x^{2} + y^{2} + 4x - 6y - 39 =
0.

  • Câu 40: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x + 3y + 5 = 0 và A(1; –3). Khoảng cách từ điểm A đến đường thẳng d là:

     Ta có: {d_{(A,d)}} = \frac{{\left| {2.1 + 3. - 3 + 5} ight|}}{{\sqrt {{2^2} + {3^2}} }} = \frac{{2\sqrt {13} }}{{13}}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo