Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Viết phương trình tổng quát của đường thẳng (d). Biết rằng (d) đi qua điểm N(2;3) cắt đường thẳng (\Delta):3x - y + 1 = 0 tại điểm Bx_{B}
> 0 sao cho BN =
2\sqrt{2}?

    Gọi B(b;3b + 1);(b > 0) là giao điểm của d\Delta:3x - y + 1 = 0.

    Suy ra \overrightarrow{NB} = (b - 2;3b - 2)

    Theo giả thiết ta có:

    BN = 2\sqrt{2} \Leftrightarrow (b -
2)^{2} + (3b - 2)^{2} = 8

    \Leftrightarrow 10b^{2} - 16b = 0\Leftrightarrow \left\lbrack \begin{matrix}b = 0(ktm) \\b = \dfrac{8}{5}(tm) \\\end{matrix} ight.

    Khi đó \overrightarrow{NB} = \left( -
\frac{2}{5};\frac{14}{5} ight) \Rightarrow \overrightarrow{n_{d}} =
(7;1)

    Phương trình tổng quát của đường thẳng d là: 7(x - 2) + 1(y - 3) = 0 \Leftrightarrow 7x + y -
17 = 0

  • Câu 2: Nhận biết

    Trong mặt phẳng Oxy, phương trình nào sau đây là phương trình chính tắc của một elip?

    Phương trình chính tắc của elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1,(a
> b > 0) nên chọn phương án D.

  • Câu 3: Nhận biết

    Cho phương trình x^{2} + y^{2} - 2ax - 2by + c = 0(1). Điều kiện để (1) là phương trình đường tròn là:

    Điều kiện để x^{2} + y^{2} - 2ax - 2by +
c = 0(1) là phương trình đường tròn là a^{2} + b^{2}\  > \ c.

  • Câu 4: Thông hiểu

    Hai cạnh của hình chữ nhật nằm trên hai đường thẳng d_{1}:4x - 3y + 5 = 0d_{2}:3x + 4y - 5 = 0. Hình chữ nhật có đỉnh A(2;1). Tính diện tích của hình chữ nhật.

    Đáp án: 2

    Đáp án là:

    Hai cạnh của hình chữ nhật nằm trên hai đường thẳng d_{1}:4x - 3y + 5 = 0d_{2}:3x + 4y - 5 = 0. Hình chữ nhật có đỉnh A(2;1). Tính diện tích của hình chữ nhật.

    Đáp án: 2

    Ta có: \overrightarrow{n_{d_{1}}} = (4; -
3);\overrightarrow{n_{d_{2}}} = (3;4).

    Do A không thuộc hai đường thẳng d_{1};d_{2}d_{1}\bot d_{2} nên độ dài hai cạnh kề nhau của hình chữ nhật bằng khoảng cách từ A đến hai đường thẳng d_{1};d_{2}.

    Ta có:

    d\left( A;d_{1} ight) = \frac{|4.2 -
3.1 + 5|}{\sqrt{4^{2} + 3^{2}}} = 2.

    d\left( A;d_{2} ight) = \frac{|3.2 +
4.1 - 5|}{\sqrt{3^{2} + 4^{2}}} = 1.

    \Rightarrow S = d\left( A;d_{1}
ight).d\left( A;d_{2} ight) = 2.1 = 2

  • Câu 5: Nhận biết

    Cho đường thẳng 2x + y - 3 = 0. Điểm nào dưới đây thuộc đường thẳng đã cho?

    Thay x = 0 vào đường thẳng 2x + y - 3 = 0 suy ra y = 3

    Vậy điểm N(0;3) thuộc đường thẳng 2x + y - 3 = 0.

  • Câu 6: Thông hiểu

    Phương trình nào sau đây là phương trình tổng quát của đường thẳng d:\left\{
\begin{matrix}
x = 3 - 5t \\
y = 1 + 4t \\
\end{matrix} ight.?

    Ta có: d:\left\{ \begin{matrix}
x = 3 - 5t \\
y = 1 + 4t \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
A(3;1) \in d \\
{\overrightarrow{u}}_{d} = ( - 5;4) ightarrow {\overrightarrow{n}}_{d}
= (4;5) \\
\end{matrix} ight.\ \overset{ightarrow}{}d:4(x - 3) + 5(y - 1) =
0

    \Leftrightarrow d:4x + 5y - 17 =
0.

  • Câu 7: Thông hiểu

    Phương trình chính tắc của hypebol có 2a gấp đôi 2b và đi qua điểm M(4; 1) là:

     Ta có: a=2b.

    Phương trình chính tắc: \frac{{{x^2}}}{{{{(2b)}^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1.

    M(4;1) thuộc hypebol nên: 

    \frac{{{4^2}}}{{{{(2b)}^2}}} - \frac{{{1^2}}}{{{b^2}}} = 1 \Leftrightarrow \frac{{16}}{{4{b^2}}} - \frac{1}{{{b^2}}} = 1\Leftrightarrow \frac{{12}}{{4{b^2}}} = 1 \Leftrightarrow b =  \pm \sqrt 3  \Rightarrow a =  \pm 2\sqrt 3.

    Do đó, phương trình chính tắc: \frac{x^{2}}{12}-\frac{y^{2}}{3}=1.

  • Câu 8: Thông hiểu

    Hãy xác định phương trình chính tắc của parabol (P). Biết rằng (P) cắt đường thẳng d:x + 2y = 0 tại hai điểm A,BAB =
4\sqrt{5}?

    Phương trình chính tắc của (P) có dạng y^{2} = 2px;(p > 0)

    Ta có đường thẳng d cắt (P) tại hai điểm \left\{ \begin{matrix}
A \equiv O \\
B = ( - 2m;m) \\
\end{matrix} ight.

    Ta có:

    AB = 4\sqrt{5} \Leftrightarrow AB^{2} =
5m^{2} = \left( 4\sqrt{5} ight)^{2}

    \Leftrightarrow m^{2} = 16
\Leftrightarrow m = \pm 4

    Với m = 4 \Rightarrow B( - 8;4) \Rightarrow 16 = 2p.( - 8)
\Rightarrow p = - 1 < 0(ktm)

    Với m = - 4 \Rightarrow B(8; - 4) \Rightarrow 16 = 2p.8
\Rightarrow p = 1(tm)

    Vậy phương trình chính tắc của parabol cần tìm là: y^{2} = 2x.

  • Câu 9: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng \left( d_{1} ight):11x - 12y + 1 = 0\left( d_{2} ight):12x + 11y + 9 =
0. Khi đó vị trí tương đối của hai đường thẳng là:

    Ta có:

    Vectơ pháp tuyến của đường thẳng \left(
d_{1} ight):11x - 12y + 1 = 0 là: \overrightarrow{n_{d_{1}}} = (11; -
12)

    Vectơ pháp tuyến của đường thẳng \left(
d_{2} ight):12x + 11y + 9 = 0 là: \overrightarrow{n_{d_{2}}} = (12;11)

    Ta thấy \overrightarrow{n_{d}}.\overrightarrow{n_{d}} =
0

    Suy ra hai đường thẳng vuông góc với nhau.

  • Câu 10: Nhận biết

    Tính góc tạo bởi giữa hai đường thẳng: d_1:2x+2\sqrt{3}y+4=0d_2: y – 4 =0

     Ta có: \cos ({d_1},{d_2}) = \frac{{\left| {2.0 + 2\sqrt 3 .1} ight|}}{{\sqrt {{2^2} + {{(2\sqrt 3 )}^2}} .\sqrt {{0^2} + {1^2}} }} = \frac{{\sqrt 3 }}{2}. Suy ra góc giữa hai đường thẳng bằng 30^{\circ}.

  • Câu 11: Nhận biết

    Cho elip (E) có phương trình 16x^{2} + 25y^{2} = 400. Khẳng định nào sai trong các khẳng định sau?

    (E): 16x^{2} + 25y^{2} = 400 \Leftrightarrow
\frac{x^{2}}{25} + \frac{y^{2}}{16} = 1.

    Elip (E)a = 5, b =
4, c = \sqrt{a^{2} - b^{2}} =
\sqrt{5^{2} - 4^{2}} = 3.

    Tiêu cự của elip (E)2c = 6 nên khẳng định “(E) có tiêu cự bằng 3” là khẳng định sai.

  • Câu 12: Nhận biết

    Một đường thẳng có bao nhiêu vectơ chỉ phương?

    Một đường thẳng có vô số vectơ chỉ phương.

  • Câu 13: Nhận biết

    Phương trình chính tắc của đường elip với a = 4, b = 3

    Phương trình chính tắc (E):\frac{x^{2}}{16} + \frac{y^{2}}{9} =
1.

  • Câu 14: Vận dụng

    Cho elip (E) có hai đỉnh trên trục nhỏ cùng với hai tiêu điểm tạo thành một hình vuông. Tỉ số e của tiêu cự với độ dài trục lớn của (E) là bao nhiêu?

    Ta có \widehat{F_{1}B_{1}F_{2}} =
90^{0}\overset{}{ightarrow}OB_{1} =
\frac{F_{1}F_{2}}{2}\overset{ightarrow}{}b = c

    \overset{}{ightarrow}b^{2} =
c^{2}\overset{}{ightarrow}\left( a^{2} - c^{2} ight) =
c^{2}

    \overset{}{ightarrow}\frac{c^{2}}{a^{2}} =
\frac{1}{2}\overset{}{ightarrow}\frac{c}{a} =
\frac{1}{\sqrt{2}}.

    Vậy e = \frac{1}{\sqrt{2}}.

  • Câu 15: Thông hiểu

    Cho đường tròn (C):(x - 1)^{2} + (y - 2)^{2} = 8. Viết phương trình tiếp tuyến của đường tròn (C) biết tiếp tuyến đi qua điểm M(3; - 2)?

    Đường tròn (C) có tâm I(2; -
3)

    Phương trình tiếp tuyến của (C) tại điểm N( - 3;1) là:

    (3 - 2)(x - 3) + ( - 1 + 3)(y + 1) =
0

    \Leftrightarrow x + 2y - 1 =
0

    Vậy phương trình tiếp tuyến của đường tròn tại N( - 3;1) là: x + 2y - 1 = 0

  • Câu 16: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai điểm P( - 3;3),Q( - 1;5). Viết phương trình đường trung trực của đoạn thẳng PQ?

    Gọi I là trung điểm của PQ, khi đó I(-2;4)

    Đường trung trực của PQ đi qua điểm I và nhận \overrightarrow{v} = (2;2) làm vectơ pháp tuyến.

    Phương trình đường trung trực của PQ là:

    2(x + 2) + 2(y - 4) = 0

    \Leftrightarrow x + y - 2 =
0

    Vậy đường thẳng cần tìm là: x + y - 2 = 0.

  • Câu 17: Thông hiểu

    Cho hình elip có phương trình \frac{x^{2}}{25} + \frac{y^{2}}{16} = 1. Hình elip có độ dài tiêu cự bằng:

    Ta có: \frac{x^{2}}{25} +
\frac{y^{2}}{16} = 1 \Rightarrow \left\{ \begin{matrix}
a = 5 \\
b = 4 \\
\end{matrix} ight.

    Độ dài tiêu cự là: 2c = 2\sqrt{a^{2} -
b^{2}} = 6

  • Câu 18: Nhận biết

    Đường thẳng nào song song với đường thẳng \Delta:2x - y - 1 = 0?

    Đường thẳng song song với đường thẳng \Delta:2x - y - 1 = 0 là: 4x - 2y - 1 = 0.

  • Câu 19: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm A(2; - 1)B(2;5).

    \left\{ \begin{matrix}A(2; - 1) \in AB \\{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = (0;6) \\\end{matrix} ight.\ \overset{ightarrow}{}AB:\left\{ \begin{matrix}x = 2 \\y = - 1 + 6t \\\end{matrix} ight.\ \ \ \left( t\mathbb{\in R} ight).

  • Câu 20: Thông hiểu

    Xác định góc giữa hai đường thẳng (a):\sqrt{3}x - y + 7 = 0(b):x - \sqrt{3}y - 1 = 0?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{a}} = \left( \sqrt{3};1 ight) \\
\overrightarrow{n_{b}} = \left( 1; - \sqrt{3} ight) \\
\end{matrix} ight.

    \cos(a;b) = \frac{\left|
\overrightarrow{n_{a}}.\overrightarrow{n_{b}} ight|}{\left|
\overrightarrow{n_{a}} ight|.\left| \overrightarrow{n_{b}} ight|} =
\frac{\sqrt{3}}{2}

    \Rightarrow (a;b) = 30^{0}

  • Câu 21: Vận dụng

    Đường tròn (C) đi qua điểm M(2; - 1) và tiếp xúc với hai trục tọa độ Ox,\ Oy có phương trình là:

    M(2; - 1) thuộc góc phần tư (IV) nên A(a; - a),\ \ a >
0.

    Khi đó: R = a^{2} = IM^{2} = (a - 2)^{2}
+ (a - 1)^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = 1 ightarrow I(1; - 1),R = 1 ightarrow (C):(x - 1)^{2} + (y +
1)^{2} = 1 \\
a = 5 ightarrow I(5; - 5),\ R = 5 ightarrow (C):(x - 5)^{2} + (y +
5)^{2} = 25 \\
\end{matrix} ight.\ .

  • Câu 22: Vận dụng

    Đường tròn ngoại tiếp hình chữ nhật cơ sở của hypebol \frac{x^{2}}{4} - y^{2} =
1 có có phương trình là:

    Ta có: \left\{ \begin{matrix}
a^{2} = 4 \\
b^{2} = 1 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = 1 \\
\end{matrix} ight.. Tọa độ các đỉnh hình chữ nhật cở sở là (2;1), (2; - 1), ( -
2;1), ( - 2; - 1). Dường tròn ngoại tiếp hình chữ nhật cơ sở có tâm O(0;0) bán kính R = \sqrt{5}.

    Phương trình đường tròn là x^{2} + y^{2}
= 5.

  • Câu 23: Vận dụng

    Viết phương trình tiếp tuyến \Delta của đường tròn (C):(x - 1)^{2} + (y + 2)^{2} = 8, biết tiếp tuyến đi qua điểm A(5; -
2).

    Đường tròn (C) có tâm I(1; - 2),\ R =
2\sqrt{2} và tiếp tuyến có dạng

    \Delta:ax + by - 5a + 2b = 0\ \ \left(a^{2} + b^{2}eq0 ight).

    Ta có: d\lbrack I;\Deltabrack = R
\Leftrightarrow \frac{|4a|}{\sqrt{a^{2} + b^{2}}} = 2\sqrt{2}
\Leftrightarrow a^{2} - b^{2} = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = b ightarrow a = b = 1 \\
a = - b ightarrow a = 1,\ b = - 1 \\
\end{matrix} ight.\ .

  • Câu 24: Thông hiểu

    Khoảng cách nhỏ nhất từ điểm M(15;1) đến một điểm bất kì thuộc đường thẳng \Delta:\left\{ \begin{matrix}
x = 2 + 3t \\
y = t \\
\end{matrix} ight. bằng:

    \Delta:\left\{ \begin{matrix}
x = 2 + 3t \\
y = t \\
\end{matrix} ight.\  ightarrow \Delta:x - 3y - 2 = 0

    \overset{\forall N \in
\Delta}{ightarrow}MN_{\min} = d(M;\Delta) = \frac{|15 - 3 -
2|}{\sqrt{1 + 9}} = \sqrt{10}.

  • Câu 25: Thông hiểu

    Một Elip đi qua điểm B(0;6) và có độ dài trục lớn là 4\sqrt{10}. Hãy xác định phương trình chính tắc của elip đó?

    Phương trình chính tắc của elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1;(a,b
> 0)

    Do (E) có độ dài trục lớn là 4\sqrt{10} nên 2a = 4\sqrt{10} \Rightarrow a = 2\sqrt{10}
\Rightarrow a^{2} = 40

    Do (E) đi qua điểm B(0;6) nên \frac{0^{2}}{a^{2}} + \frac{6^{2}}{b^{2}} =
1 \Rightarrow b^{2} = 36

    Vậy phương trình chính tắc của elip là: \frac{x^{2}}{40} + \frac{y^{2}}{36} =
1.

  • Câu 26: Nhận biết

    Đường thẳng nào dưới đây là đường chuẩn của Hypebol \frac{x^{2}}{16} - \frac{y^{2}}{12}
= 1?

    Ta có : \left\{ \begin{matrix}
a^{2} = 16 \\
b^{2} = 12 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 4 \\
b = 2\sqrt{3} \\
c = 2 \\
\end{matrix} ight..

    Tâm sai e = \frac{c}{a} = 2. Đường chuẩn : x + 2 = 0x - 2 = 0.

  • Câu 27: Thông hiểu

    Cho đường tròn (C):x^{2} + y^{2} - 2mx + 4y + m^{2} - 5 =
0 và đường thẳng \Delta:6x + 8y - 1
= 0. Tìm giá trị của tham số m để \Delta cắt (C)?

    Đường tròn (C) có tâm I(m; -2) và R = 3

    Để \Delta cắt (C) thì d(I;\Delta) < R

    \Leftrightarrow \frac{\left| 6m + 8.( -
2) - 1 ight|}{\sqrt{6^{2} + 8^{2}}} < 3

    \Leftrightarrow |6m - 17| < 30
\Leftrightarrow - 30 < 6m - 17 < 30

    \Leftrightarrow m \in \left( -
\frac{13}{6};\frac{47}{6} ight)

    Vậy m \in \left( -
\frac{13}{6};\frac{47}{6} ight) thỏa mãn yêu cầu bài toán.

  • Câu 28: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 1 + t \\
y = - 2 - 2t \\
\end{matrix} ight.d_{2}:\left\{ \begin{matrix}
x = 2 - 2t' \\
y = - 8 + 4t' \\
\end{matrix} ight..

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = - 1 + t \\
y = - 2 - 2t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{u}}_{1} = (1; - 2)
\\
d_{2}:\left\{ \begin{matrix}
x = 2 - 2t' \\
y = - 8 + 4t' \\
\end{matrix} ight.\  ightarrow B(2; - 8) \in d_{2},\ \
{\overrightarrow{u}}_{2} = ( - 2;4) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{1}{- 2} = \frac{- 2}{4} \\
B \in d_{1} \leftrightarrow t = 3 \\
\end{matrix} ight.\  ightarrow d_{1} \equiv d_{2}.

  • Câu 29: Nhận biết

    Cho phương trình x^{2} + y^{2} – 2ax – 2by + c = 0. Điều kiện của a, b, c để phương trình đã cho là phương trình đường tròn là

     Điều kiện: a^{2} + b^{2} > c.

  • Câu 30: Thông hiểu

    Cho đường thẳng (d):3x - 4y + 2 = 0 và đường tròn (C):x^{2} + (y + 4)^{2} = 25. Khẳng định nào sau đây đúng khi nói về vị trí tương đối của đường thẳng (d) và đường tròn (C)?

    Ta có: (C):x^{2} + (y + 4)^{2} = 25
\Rightarrow \left\{ \begin{matrix}
I(0; - 4) \\
R = 5 \\
\end{matrix} ight.

    Lại có khoảng cách từ tâm I đến đường thẳng d là:

    d\left( I;(d) ight) = \frac{\left| 3.0
- 4.( - 4) + 2 ight|}{\sqrt{3^{2} + 4^{2}}} = \frac{18}{5} <
R

    Vậy đường thẳng (d) cắt đường tròn (C) là khẳng định đúng.

  • Câu 31: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn có phương trình: (x – 1)^{2} + (y – 10)^{2} = 81 lần lượt là:

     Tâm I(1;10), bán kính R=9.

  • Câu 32: Vận dụng

    Cho hai đường thẳng \left( d_{1} ight):x + my + 2m - 1 = 0\left( d_{2} ight):\left\{
\begin{matrix}
x = m + 2y \\
y = - 5 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) với m là tham số. Tìm giá trị của tham số m để hai đường thẳng tạo với nhau một góc bằng nửa góc vuông?

    VTPT của hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) lần lượt là \overrightarrow{n_{1}} =
(1;m);\overrightarrow{n_{2}} = (1; - 2)

    Để hai đường thẳng tạo với nhau một góc bằng 45^{0} thì

    \cos\left( \left( d_{1} ight);\left(
d_{2} ight) ight) = cos45^{0} = \frac{\sqrt{2}}{2}

    \Leftrightarrow \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight) =
\frac{\sqrt{2}}{2} \Leftrightarrow \frac{\left| 1.1 + m.( - 2)
ight|}{\sqrt{m^{2} + 1}.\sqrt{1^{2} + ( - 2)^{2}}} =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{|2m -
1|}{\sqrt{m^{2} + 1}.\sqrt{5}} = \frac{\sqrt{2}}{2} \Leftrightarrow
\frac{(2m - 1)^{2}}{5\left( m^{2} + 1 ight)} =
\frac{1}{2}

    \Leftrightarrow 2(2m - 1)^{2} = 5\left(
m^{2} + 1 ight) \Leftrightarrow 3m^{2} - 8m - 3 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}m = 3 \\m = - \dfrac{1}{3} \\\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}m = 3 \\m = - \dfrac{1}{3} \\\end{matrix} ight..

  • Câu 33: Nhận biết

    Một đường thẳng có vectơ chỉ phương là \overrightarrow{u_{\Delta}} = (12; - 13). Vectơ nào sau đây là vectơ pháp tuyến của \Delta?

    Ta có:

    Đường thẳng \Delta có vectơ chỉ phương \overrightarrow{u} = (a;b) thì sẽ có một vectơ pháp tuyến là: \overrightarrow{n} = ( - b;a)

    Áp dụng vào bài toán ta được:

    Vectơ pháp tuyến của \Delta là: \overrightarrow{n_{\Delta}} =
(13;12).

  • Câu 35: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:4x - 7y + m = 0 và hai điểm A(1;2), B( -
3;4). Tìm tất cả các giá trị của tham số m để d và đoạn thẳng AB có điểm chung.

    Đoạn thẳng ABd:4x - 7y + m = 0 có điểm chung khi và chỉ khi hai điểm A\ ;\ B nằm khác phía so với đường thẳng d. Ta có:

    \left( 4x_{A} - 7y_{A} + m ight)\left(
4x_{B} - 7y_{B} + m ight) \leq 0

    \Leftrightarrow (m - 10)(m - 40) \leq 0
\Leftrightarrow 10 \leq m \leq 40.

  • Câu 36: Nhận biết

    Đường tròn (C):x^{2} + y^{2} - 6x + 2y + 6 = 0 có tâm I và bán kính R lần lượt là:

    Ta có:\begin{matrix}
(C):x^{2} + y^{2} - 6x + 2y + 6 = 0 ightarrow a = \frac{- 6}{- 2} =
3,\ \ b = \frac{2}{- 2} = - 1,\ \ c = 6 \\
ightarrow I(3; - 1),\ R = \sqrt{3^{2} + ( - 1)^{2} - 6} = 2.\  \\
\end{matrix}

  • Câu 37: Nhận biết

    Khoảng cách từ điểm A(0;1) đến đường thẳng (\Delta):5x - 12y - 1 = 0 bằng:

    Áp dụng công thức tính khoảng cách từ một điểm đến một đường thẳng ta có:

    d(A;\Delta) = \frac{|5.1 - 12.1 -
1|}{\sqrt{5^{2} + ( - 12)^{2}}} = 1

    Vậy khoảng cách từ điểm A đến đường thẳng đã cho bằng 1.

  • Câu 38: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} ight. và hai điểm A(1;2),B( - 2;m). Tìm tất cả các giá trị của tham số m để AB nằm cùng phía đối với d.

    Ta có: d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} \Rightarrow d:3x + y - 7 = 0 ight..

    Để A, B nằm cùng phía đối với d thì:

    \left( 3x_{A} + y_{A} - 7 ight)\left(
3x_{A} + y_{A} - 7 ight) > 0 \Leftrightarrow - 2(m - 13) >
0

    \Leftrightarrow m - 13 < 0
\Leftrightarrow m < 13.

  • Câu 39: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A(– 3; 2) và B(1; 4).

     Vectơ chỉ phương của đường thẳng AB là (2; 1).

  • Câu 40: Vận dụng

    Tìm a để hai đường thẳng d_{1}:2x–4y + 1 = 0d_{2}:\left\{ \begin{matrix}
x = - 1 + at \\
y = 3 - (a + 1)t \\
\end{matrix} ight. vuông góc với nhau?

    Ta có:

    \left\{ \begin{matrix}
d_{1}:2x–4y + 1 = 0 \\
d_{2}:\left\{ \begin{matrix}
x = - 1 + at \\
y = 3 - (a + 1)t \\
\end{matrix} ight.\  \\
\end{matrix} ight. \overset{}{ightarrow}\left\{ \begin{matrix}
{\overrightarrow{n}}_{1} = (1; - 2) \\
{\overrightarrow{n}}_{2} = (a + 1;a) \\
\end{matrix} ight.\ \overset{d_{1}\bot
d_{2}}{ightarrow}{\overrightarrow{n}}_{1} \cdot
{\overrightarrow{n}}_{2} = 0 \Leftrightarrow a + 1 - 2a = 0 \Leftrightarrow a =
1.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo