Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:3x - 2y - 6 = 0d_{2}:6x - 2y - 8 = 0.

    \left\{ \begin{matrix}
d_{1}:3x - 2y - 6 = 0 ightarrow {\overrightarrow{n}}_{1} = (3; - 2) \\
d_{2}:6x - 2y - 8 = 0 ightarrow {\overrightarrow{n}}_{2} = (6; - 2) \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
\frac{3}{6}\boxed{=}\frac{- 2}{- 2} \\
{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2}\boxed{=}0 \\
\end{matrix} ight.\ \overset{ightarrow}{}d_{1},\ \ d_{2} cắt nhau nhưng không vuông góc.

  • Câu 2: Vận dụng

    Cho phương trình x^{2} + y^{2} - 2(m + 1)x + 4y - 1 =
0(1). Với giá trị nào của m để (1) là phương trình đường tròn có bán kính nhỏ nhất?

    Ta có: x^{2} + y^{2} - 2(m + 1)x + 4y - 1
= 0 ightarrow \left\{ \begin{matrix}
a = m + 1 \\
b = - 2 \\
c = - 1 \\
\end{matrix} ight.

    ightarrow R^{2} = a^{2} + b^{2} - c =
(m + 1)^{2} + 5 ightarrow R_{\min} = 5 \Leftrightarrow m = -
1.

  • Câu 3: Nhận biết

    Xét vị trí tương đối của hai đường thẳng: d_1: 3x – 2y – 3 = 0d_2: 6x – 2y – 8 = 0.

     Vì \frac{3}{6} e \frac{{ - 2}}{{ - 2}} nên hai đường thẳng cắt nhau.

  • Câu 4: Nhận biết

    Cho elip (E) có phương trình 16x^{2} + 25y^{2} = 400. Khẳng định nào sai trong các khẳng định sau?

    (E): 16x^{2} + 25y^{2} = 400 \Leftrightarrow
\frac{x^{2}}{25} + \frac{y^{2}}{16} = 1.

    Elip (E)a = 5, b =
4, c = \sqrt{a^{2} - b^{2}} =
\sqrt{5^{2} - 4^{2}} = 3.

    Tiêu cự của elip (E)2c = 6 nên khẳng định “(E) có tiêu cự bằng 3” là khẳng định sai.

  • Câu 5: Thông hiểu

    Cho đường thẳng \left( d_{1} ight):\left\{ \begin{matrix}
x = 1 - 6t \\
y = - 2 + 5t \\
\end{matrix} ight. và đường thẳng \left( d_{2} ight):\left\{ \begin{matrix}
x = 10 + 5t \\
y = 1 + 6t \\
\end{matrix} ight.. Tính góc hợp bởi hai đường thẳng?

    Vectơ chỉ phương của \left( d_{1}
ight):\left\{ \begin{matrix}
x = 1 - 6t \\
y = - 2 + 5t \\
\end{matrix} ight. là: \overrightarrow{u_{d_{1}}} = ( - 6;5)

    Vectơ chỉ phương của \left( d_{2}
ight):\left\{ \begin{matrix}
x = 10 + 5t \\
y = 1 + 6t \\
\end{matrix} ight. là: \overrightarrow{u_{d_{2}}} = (5;6)

    Ta có: \overrightarrow{u_{d_{1}}}.\overrightarrow{u_{d_{2}}}
= 0 \Rightarrow d_{1}\bot d_{2}

    Vậy góc hợp bởi hai đường thẳng đã cho bằng 90^{0}.

  • Câu 6: Nhận biết

    Cho elip có phương trình chính tắc \frac{x^{2}}{4} + \frac{y^{2}}{1} = 1. Tính tâm sai của elip.

    Ta có a^{2} = 4 \Rightarrow a = 2;b^{2} =
1 \Rightarrow b = 1;c^{2} = a^{2} - b^{2} = 3 \Rightarrow c =
\sqrt{3}

    Tâm sai của elip là e = \frac{c}{a} =
\frac{\sqrt{3}}{2}.

  • Câu 7: Vận dụng

    Tìm tất cả các giá trị của tham số m để hai đường thẳng d_{1}:4x + 3my–m^{2} = 0d_{2}:\left\{ \begin{matrix}
x = 2 + t \\
y = 6 + 2t \\
\end{matrix} ight. cắt nhau tại một điểm thuộc trục tung.

    Oy \cap d_{2} \leftrightarrow \left\{
\begin{matrix}
x = 2 + t = 0 \\
y = 6 + 2t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 2 \\
\end{matrix} ight.\  ightarrow Oy \cap d_{2} = A(0;2) \in
d_{1}

    \Leftrightarrow
6m - m^{2} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
m = 0 \\
m = 6 \\
\end{matrix} ight.\ .

  • Câu 8: Nhận biết

    Cho hai đường thẳng \Delta_1\Delta_2 có phương trình lần lượt là ax + by + c = 0dx + ey + f = 0. Xét hệ \left\{\begin{matrix}ax+by+c=0\\ dx+ey+f=0\end{matrix}ight.. Khi đó hai đường cắt nhau khi và chỉ khi:

     Hai đường thẳng cắt nhau khi hệ có nghiệm duy nhất.

  • Câu 9: Vận dụng

    Elip (E) có độ dài trục lớn bằng 4\sqrt{2}, các đỉnh trên trục nhỏ và các tiêu điểm của elip cùng nằm trên một đường tròn. Hãy tính độ dài trục nhỏ của (E).

    Ta có A_{1}A_{2} = 4\sqrt{2}\overset{}{ightarrow}a =
2\sqrt{2}

    Và bốn điểm F_{1},B_{1},F_{2},B_{2} cùng nằm trên một đường tròn

    \overset{}{ightarrow}b =
c\overset{}{ightarrow}b^{2} = c^{2}

    \overset{}{ightarrow}b^{2} = a^{2} -
b^{2}\overset{}{ightarrow}b = \frac{a}{\sqrt{2}} = 2.

    Vậy độ dài trục nhỏ của (E)4.

  • Câu 10: Thông hiểu

    Phương trình tổng quát của đường thẳng đi qua hai điểm A(3 ; – 1) và B(1 ; 5) là:

     Ta có: {\overrightarrow u _{AB}} = ( - 2;6) \Rightarrow {\overrightarrow u _{AB}} ( - 1;3) \Rightarrow {\overrightarrow n _{AB}} = (3;1).

    Phương trình tổng quát của AB

    3(x - 3) + 1(y + 1) = 0 \Leftrightarrow 3x + y - 8 = 0.

     

  • Câu 11: Nhận biết

    Elip (E):\frac{x^{2}}{16}+y^{2}=4 có tổng độ dài trục lớn và trục bé bằng:

     Ta có: a^2=16,b^2=1 \Rightarrow a=4,b=1.

    Tổng độ dài trục lớn và bé là: 2a+2b=10.

  • Câu 12: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA(1;2),B(2; - 1),C(0;1). Phương trình đường thẳng chứa trung tuyến kẻ từ đỉnh B của tam giác ABC là:

    Gọi I là trung điểm của AC. Ta có: I\left( \frac{1}{2};\frac{3}{2}
ight)

    Đường trung tuyến BI đi qua điểm B và nhận \overrightarrow{BI} = \left( -
\frac{3}{2};\frac{5}{2} ight) làm vectơ chỉ phương nên có vectơ pháp tuyến \overrightarrow{n} =
(5;3).

    Phương trình tổng quát của đường thẳng BI là:

    5(x - 2) + 3(y + 1) = 0

    \Leftrightarrow 5x + 3y - 7 =
0

    Vậy phương trình tổng quát của đường thẳng cần tìm là 5x + 3y - 7 =
0.

  • Câu 13: Nhận biết

    Đường thẳng nào sau đây vuông góc với đường thẳng 4x - 3y + 1 = 0 ?

    Kí hiệu d:4x - 3y + 1 = 0 ightarrow
{\overrightarrow{n}}_{d} = (4; - 3).

    (i) Xét đáp án d_{1}:\left\{
\begin{matrix}
x = 4t \\
y = - 3 - 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{1} = (3;4)
ightarrow {\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{d} =
0 nên chọn đáp án này.

    (ii) Tương tự kiểm tra và loại các đáp án còn lại.

  • Câu 14: Vận dụng

    Trong mặt phẳng Oxy, cho điểm C(3;0) và elip (E):\frac{x^{2}}{9} + \frac{y^{2}}{1} =
1. A,B2 điểm thuộc (E) sao cho \bigtriangleup ABC đều, biết tọa độ của A\left( \frac{a}{2};\frac{c\sqrt{3}}{2}
ight)A có tung độ âm. Tính tổng a + c.

    Nhận xét: Điểm C(3;0)là đỉnh của elip (E) \Rightarrow điều kiện cần để \bigtriangleup ABC đều đó là A,B đối xứng

    Nhau qua Ox.Suy ra A,B là giao điểm của đường thẳng \Delta:x = x_{0} và elip (E).

    +) Ta có elip (E):\frac{x^{2}}{9} +
\frac{y^{2}}{1} = 1 \Rightarrow
\left\lbrack \begin{matrix}
y = - \frac{1}{3}\sqrt{9 - x^{2}} \\
y = \frac{1}{3}\sqrt{9 - x^{2}} \\
\end{matrix} ight..

    +) Theo giả thiết A có tung độ âm nên tọa độ của A\left( x_{0}; -
\frac{1}{3}\sqrt{9 - x_{0}^{2}} ight) (điều kiện x_{0} < 3 do A eq C)

    +) Ta có AC = \sqrt{(3 - x_{0})^{2} +
\frac{1}{9}(9 - x_{0}^{2})}d_{(C;\Delta)} = |3 - x_{0}|

    +) \bigtriangleup ABC đều \Leftrightarrow d_{(C;\Delta)} =
\frac{\sqrt{3}}{2}AC \Leftrightarrow |3 - x_{0}| =
\frac{\sqrt{3}}{2}\sqrt{(3 - x_{0})^{2} + \frac{1}{9}\left( 9 -
x_{0}^{2} ight)}

    \Leftrightarrow (3 - x_{0})^{2} =
\frac{3}{4}\left\lbrack (3 - x_{0})^{2} + \frac{1}{9}(9 - x_{0}^{2})
ightbrack

    \Leftrightarrow \frac{1}{3}x_{0}^{2} -
\frac{3}{2}x_{0} + \frac{3}{2} = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = \frac{3}{2}(t/m) \\
x_{0} = 3(L) \\
\end{matrix} ight.

    \Rightarrow A\left( \frac{3}{2}; -
\frac{\sqrt{3}}{2} ight) \Rightarrow \left\{ \begin{matrix}
a = 3 \\
c = - 1 \\
\end{matrix} ight.\  \Rightarrow a + c = 2.

  • Câu 15: Thông hiểu

    Tìm phương trình chính tắc của Hyperbol (H) mà hình chữ nhật cơ sở có một đỉnh là (2; - 3).

    Gọi (H):\frac{x^{2}}{a^{2}} -
\frac{y^{2}}{b^{2}} = 1. Tọa độ đỉnh của hình chữ nhật cơ sở là A_{1}( - a; - b), A_{2}(a; - b), A_{3}(a;b), A_{4}( - a;b).

    Hình chữ nhật cơ sở của (H) có một đỉnh là (2; - 3), suy ra \left\{ \begin{matrix}
a = 2 \\
b = 3 \\
\end{matrix} ight.. Phương trình chính tắc của (H)\frac{x^{2}}{4} - \frac{y^{2}}{9} =
1.

  • Câu 16: Thông hiểu

    Cho đường thẳng (d):3x - 4y + 2 = 0 và đường tròn (C):x^{2} + (y + 4)^{2} = 25. Khẳng định nào sau đây đúng khi nói về vị trí tương đối của đường thẳng (d) và đường tròn (C)?

    Ta có: (C):x^{2} + (y + 4)^{2} = 25
\Rightarrow \left\{ \begin{matrix}
I(0; - 4) \\
R = 5 \\
\end{matrix} ight.

    Lại có khoảng cách từ tâm I đến đường thẳng d là:

    d\left( I;(d) ight) = \frac{\left| 3.0
- 4.( - 4) + 2 ight|}{\sqrt{3^{2} + 4^{2}}} = \frac{18}{5} <
R

    Vậy đường thẳng (d) cắt đường tròn (C) là khẳng định đúng.

  • Câu 17: Thông hiểu

    Bác An dự định xây một cái ao hình elip ở giữa khu vườn. Biết trục lớn có độ dài bằng 4 m, độ dài trục nhỏ bằng 2 m. Gọi F_1, F_2 là các tiêu điểm của elip. Khi đó độ dài F_1F_2 bằng:

    Ta có độ dài trục lớn bằng 4 m. 

    => 2a = 4 => a = 2.

    Lại có độ dài trục nhỏ bằng 2m. 

    => 2b = 2=> b = 1

    Ta có c = \sqrt {{a^2} - {b^2}}  = \sqrt 3

    => {F_1}{F_2} = 2c = 2\sqrt 3

  • Câu 18: Nhận biết

    Một vectơ pháp tuyến của đường thẳng d:2x - y - 1 = 0 là:

    Một vectơ pháp tuyến của đường thẳng d:2x
- y - 1 = 0\overrightarrow{n}(2; - 1).

  • Câu 19: Thông hiểu

    Cho Hypebol có độ dài trục thực và tiêu cự lần lượt là 1420. Phương trình chính tắc của Hypebol là:

    Phương trình chính tắc của Hypebol có dạng \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1

    Ta có: \left\{ \begin{matrix}
2a = 14 \\
2c = 20 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 7 \\
c = 10 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a^{2} = 49 \\
c^{2} = 100 \\
\end{matrix} ight.

    \Rightarrow b^{2} = c^{2} - a^{2} =
51

    Vậy phương trình chính tắc của Hypebol là: \frac{x^{2}}{49} - \frac{y^{2}}{51} =
1.

  • Câu 20: Thông hiểu

    Tìm m để đường thẳng \left( d_{1} ight):x - my + 5 = 0\left( d_{2} ight): - 3x + y - 1 =
0 tạo với nhau một góc 90^{0}?

    Ta có:

    Vectơ pháp tuyến của đường thẳng \left(
d_{1} ight):x - my + 5 = 0 là: \overrightarrow{n_{1}} = (1; - m)

    Vectơ pháp tuyến của đường thẳng \left(
d_{2} ight): - 3x + y - 1 = 0 là: \overrightarrow{n_{2}} = ( - 3;1)

    Hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) vuông góc với nhau khi và chỉ khi:

    \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 0
\Leftrightarrow - 3 - m = 0

    \Leftrightarrow m = - 3

    Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi m = - 3.

  • Câu 21: Nhận biết

    Điền vào chỗ trống: Vectơ có giá song song hoặc trùng với đường thẳng thì vectơ được gọi là … của đường thẳng đó.

    Vectơ \overrightarrow u có giá song song hoặc trùng với đường thẳng thì \overrightarrow u được gọi là vectơ chỉ phương của đường thẳng đó.

  • Câu 22: Nhận biết

    Phương trình chính tắc của đường elip với a = 4, b = 3

    Phương trình chính tắc (E):\frac{x^{2}}{16} + \frac{y^{2}}{9} =
1.

  • Câu 23: Nhận biết

    Đường tròn (C):x^{2} + y^{2} + 12x - 14y + 4 = 0 có dạng tổng quát là:

    (C):x^{2} + y^{2} + 12x - 14y + 4 = 0ightarrow \left\{ \begin{matrix}I( - 6;7) \\R = \sqrt{36 + 49 - 4} = 9 \\\end{matrix} ight.

    ightarrow (C):(x + 6)^{2} + (y - 7)^{2} =81.

  • Câu 24: Nhận biết

    Một đường thẳng có bao nhiêu vectơ chỉ phương?

    Một đường thẳng có vô số vectơ chỉ phương.

  • Câu 25: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tọa độ hai điểm A(1;2),B(4;1) và đường thẳng (d):2x - y - 5 = 0. Khi đó, phương trình đường tròn (C) có tâm I \in (d) và đi qua hai điểm A;B là:

    Hình vẽ minh họa

    Ta có: Gọi I là tâm của đường tròn (C). Vì I \in (d) nên I(t;2t - 5)

    Hai điểm A, B cùng thuộc đường tròn (C) nên

    IA = IB

    \Leftrightarrow (1 - t)^{2} + (7 -
2t)^{2} = (4 - t)^{2} + (6 - 2t)^{2}

    \Leftrightarrow t = 1

    Suy ra I(1; - 3);R = IA = 5

    Vậy phương trình đường tròn cần tìm là: (x - 1)^{2} + (y + 3)^{2} = 25

  • Câu 26: Thông hiểu

    Phương trình tiếp tuyến của đường tròn (C):(x - 2)^{2} + (y + 3)^{2} = 5 tại điểm N( - 3;1) là:

    Đường tròn (C) có tâm I(2; -
3)

    Phương trình tiếp tuyến của (C) tại điểm N( - 3;1) là:

    (3 - 2)(x - 3) + ( - 1 + 3)(y + 1) =
0

    \Leftrightarrow x + 2y - 1 =
0

    Vậy phương trình tiếp tuyến của đường tròn tại N( - 3;1) là: x + 2y - 1 = 0

  • Câu 28: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):(x-1)^{2}+(y+3)^{2}=25 là:

     Tâm I(1;-3), bán kính R=5.

  • Câu 29: Thông hiểu

    Xác định góc giữa hai đường thẳng (a):\sqrt{3}x - y + 7 = 0(b):x - \sqrt{3}y - 1 = 0?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{a}} = \left( \sqrt{3};1 ight) \\
\overrightarrow{n_{b}} = \left( 1; - \sqrt{3} ight) \\
\end{matrix} ight.

    \cos(a;b) = \frac{\left|
\overrightarrow{n_{a}}.\overrightarrow{n_{b}} ight|}{\left|
\overrightarrow{n_{a}} ight|.\left| \overrightarrow{n_{b}} ight|} =
\frac{\sqrt{3}}{2}

    \Rightarrow (a;b) = 30^{0}

  • Câu 30: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2}–10x - 11 = 0 là:

    (C):x^{2} + y^{2}–10x - 11 = 0
ightarrow I( - 5;0),\ R = \sqrt{25 + 0 + 11} = 6.

  • Câu 31: Vận dụng

    Đường tròn (C) đi qua điểm A(1; - 2) và tiếp xúc với đường thẳng \Delta:x - y + 1 = 0 tại M(1;2). Phương trình của đường tròn (C) là:

    Tâm I của đường tròn nằm trên đường thẳng qua M vuông góc với \Delta là:

    \Delta':x + y - 3 = 0 ightarrow
I(a;3 - a).

    Ta có: R^{2} = IA^{2} = IM^{2} = (a -
1)^{2} + (a - 5)^{2} = (a - 1)^{2} + (a - 1)^{2}

    \Leftrightarrow a = 3 ightarrow \left\{
\begin{matrix}
I(3;0) \\
R^{2} = 8 \\
\end{matrix} ight.\  ightarrow (C):(x - 3)^{2} + y^{2} =
8.

  • Câu 32: Vận dụng

    Cho ba đường thẳng \left( d_{1} ight):3x - 2y + 5 = 0, \left( d_{2} ight):2x + 4y - 7 =
0\left( d_{3} ight):3x + 4y -
1 = 0. Phương trình nào dưới đây là phương trình đường thẳng đi qua giao điểm của hai đường thẳng \left(
d_{1} ight);\left( d_{2} ight) và song song với \left( d_{3} ight)?

    Đường thẳng \left( d_{3} ight):3x + 4y
- 1 = 0\overrightarrow{n_{3}} =
(3;4)

    Gọi M là giao điểm của hai đường thẳng \left( d_{1} ight);\left( d_{2}
ight), tọa độ điểm M là nghiệm của hệ phương trình: \left\{ \begin{matrix}
3x - 2y + 5 = 0 \\
2x + 4y - 7 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - \frac{3}{8} \\
y = \frac{31}{16} \\
\end{matrix} ight.\  \Rightarrow M\left( - \frac{3}{8};\frac{31}{16}
ight)

    Đường thẳng d đi qua giao điểm M có vecto pháp tuyến \overrightarrow{n_{3}} = (3;4)

    Vậy phương trình tổng quát của đường thẳng cần tìm là: 3x + 4y - \frac{53}{8} = 0 hay 24x + 32y - 53 = 0.

  • Câu 34: Thông hiểu

    Xác định phương trình chính tắc của Elip, biết rằng elip có một tiêu điểm F_{1}\left(
- \sqrt{3};0 ight) và đi qua điểm D\left( 1;\frac{\sqrt{3}}{2} ight)?

    Gọi phương trình chính tắc của elip là: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1;\left( a > b > 0,c^{2} = a^{2} - b^{2} ight)

    Ta có:

    c^{2} = a^{2} - b^{2} \Rightarrow c =
\sqrt{a^{2} - b^{2}} = \sqrt{3}

    Khi đó ta có: a^{2} - b^{2} = 3\ \
(*)

    Do elip đi qua điểm D\left(
1;\frac{\sqrt{3}}{2} ight)

    \Rightarrow \frac{1}{a^{2}} +
\frac{3}{4b^{2}} = 1 \Rightarrow 4b^{2} + 3a^{2} = 4a^{2}b^{2}\ \
(**)

    Từ (*) và (**) ta có hệ phương trình:

    \left\{ \begin{matrix}
a^{2} - b^{2} = 3 \\
4b^{2} + 3a^{2} = 4a^{2}b^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 3 + b^{2} \\
4b^{2} + 3.\left( 3 + b^{2} ight) = 4.\left( 3 + b^{2} ight).b^{2}
\\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 3 + b^{2} \\
4b^{2} + 5b^{2} = 9 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 4 \\
b^{2} = 1 \\
\end{matrix} ight.

    Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là: \frac{x^{2}}{4} + \frac{y^{2}}{1} =
1.

  • Câu 35: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - 4t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Hãy chỉ ra vectơ chỉ phương của đường thẳng d?

    Vectơ chỉ phương của đường thẳng dlà: \overrightarrow{u_{d}} = ( - 4;3).

  • Câu 36: Nhận biết

    Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm O(0;0)A(1; - 3)?

    Kiểm tra đường thẳng nào không chứa O(0;0)\overset{ightarrow}{} loại.

    (Có thể kiểm tra đường thẳng nào không đi qua điểm A(1; - 3)).

  • Câu 37: Vận dụng

    Cặp đường thẳng nào dưới đây là phân giác của các góc hợp bởi đường thẳng \Delta:x + y
= 0 và trục hoành.

    Điểm M(x;y) thuộc đường phân giác của các góc tạo bởi \Delta;\ \ Ox:y =
0 khi và chỉ khi

    d(M;\Delta) = d(M;Ox) \Leftrightarrow
\frac{|x + y|}{\sqrt{2}} = \frac{|y|}{\sqrt{1}}

    \Leftrightarrow \left\lbrack
\begin{matrix}
x + \left( 1 + \sqrt{2} ight)y = 0 \\
x + \left( 1 - \sqrt{2} ight)y = 0 \\
\end{matrix} ight.\ .

  • Câu 38: Nhận biết

    Đường thẳng nào sau đây song song với đường thẳng 2x + 3y - 1 = 0 ?

    Xét đáp án: \left\{ \begin{matrix}d:2x + 3y - 1 = 0 \\d_{A}:2x + 3y + 1 = 0 \\\end{matrix} ight.\  ightarrow \frac{2}{2} =\frac{3}{3}eq \frac{- 1}{- 1} ightarrow d//d_{A}.Chọn đáp án này.

    Để ý rằng một đường thẳng song song với 2x + 3y - 1 = 0 sẽ có dạng 2x+3y+c=0{(c=-1)}. Do đó kiểm tra chỉ thấy có đáp án 2x + 3y + 1 = 0 thỏa mãn, các đáp án còn lại không thỏa mãn.

  • Câu 39: Nhận biết

    Đường tròn (C): {x^2} + {y^2} + 12x - 14y + 4 = 0 viết được dưới dạng:

    Từ phương trình đường tròn {x^2} + {y^2} + 12x - 14y + 4 = 0 ta suy ra:

    I\left( { - 6;7} ight);R = \sqrt {{6^2} + {7^2} - 4}  = 9

    Vậy phương trình tổng quát {(x + 6)^2} + {(y - 7)^2} = 81

  • Câu 40: Vận dụng

    Viết phương trình tổng quát của đường thẳng \Delta đi qua giao điểm của hai đường thẳng d_{1}:x + 3y - 1 = 0, d_{2}:x - 3y - 5 = 0 và vuông góc với đường thẳng d_{3}:2x - y + 7 =
0.

    \left\{ \begin{matrix}
d_{1}:x + 3y - 1 = 0 \\
d_{2}:x - 3y - 5 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = - \frac{2}{3} \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A\left( 3; -
\frac{2}{3} ight). Ta có

    \left\{ \begin{matrix}
A \in d \\
d\bot d_{3}:2x - y + 7 = 0 \\
\end{matrix} ight. ightarrow
\left\{ \begin{matrix}
A \in d \\
d:x + 2y + c = 0 \\
\end{matrix} ight. ightarrow
3 + 2.\left( - \frac{2}{3} ight) + c = 0 \Leftrightarrow c = -
\frac{5}{3}.

    Vậy d:x + 2y - \frac{5}{3} = 0
\Leftrightarrow d:3x + 6y - 5 = 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo