Tìm phương trình chính tắc của elip có tiêu cự bằng
và trục lớn bằng
.
Phương trình chính tắc của elip:
Độ dài trục lớn .
Tiêu cự .
Ta có:
Vậy phương trình chính tắc của elip là .
Tìm phương trình chính tắc của elip có tiêu cự bằng
và trục lớn bằng
.
Phương trình chính tắc của elip:
Độ dài trục lớn .
Tiêu cự .
Ta có:
Vậy phương trình chính tắc của elip là .
Đường thẳng nào sau đây có đúng một điểm chung với đường thẳng
?
Ta cần tìm đường thẳng cắt
loại
loại
và
. Chọn
Tâm sai của Hyperbol
bằng:
Ta có :
Xét vị trí tương đối của hai đường thẳng
và
.
Chọn
Elip
có độ dài trục lớn bằng
, các đỉnh trên trục nhỏ và các tiêu điểm của elip cùng nằm trên một đường tròn. Hãy tính độ dài trục nhỏ của
.
Ta có
Và bốn điểm cùng nằm trên một đường tròn
Vậy độ dài trục nhỏ của là
Xác định góc giữa hai đường thẳng
và
?
Ta có:
Xác định vị trí tương đối của hai đường thẳng
và
?
Ta có: suy ra hai đường thẳng (d) và (d’) song song với nhau.
Cho đường tròn
và đường thẳng
. Tìm giá trị của tham số m để
cắt
?
Đường tròn (C) có tâm I(m; -2) và R = 3
Để cắt
thì
Vậy thỏa mãn yêu cầu bài toán.
Tâm của đường tròn
cách trục
một khoảng bằng:
Phương trình nào sau đây là phương trình tổng quát của đường thẳng
?
Ta có:
Cho phương trình
. Tìm điều kiện của
để
là phương trình đường tròn.
Ta có:
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Ta có:
Vậy phương trình đường tròn cần tìm là: .
Trong hệ trục tọa độ
cho hai điểm
. Chọn đáp án không phải là phương trình tham số của đường thẳng
.
Đường thẳng AB có một vectơ chỉ phương là suy ra vectơ chỉ phương
Phương trình không thỏa mãn vì có vectơ chỉ phương
không cùng phương với
.
Hãy xác định phương trình chính tắc của parabol
. Biết rằng
cắt đường thẳng
tại hai điểm
và
?
Phương trình chính tắc của (P) có dạng
Ta có đường thẳng d cắt (P) tại hai điểm
Ta có:
Với
Với
Vậy phương trình chính tắc của parabol cần tìm là: .
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây đúng?
Khẳng định đúng là: Với
, tâm sai của hypebol là
.
Đường tròn
có tâm
thuộc đường thẳng
, bán kính
và tiếp xúc với đường thẳng
. Biết tâm
có hoành độ dương. Phương trình của đường tròn
là:
.
Vậy phương trình đường tròn là:
Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Parabol?
Phương trình Parabol có dạng
Vậy phương trình cần tìm là .
Cho elip có phương trình chính tắc
. Tính tâm sai của elip.
Ta có
Tâm sai của elip là .
Đâu là đường thẳng không có điểm chung với đường thẳng
?
Kí hiệu
(i) Xét đáp án: không cùng phương nên loại.
(ii) Xét đáp án: không cùng phương nên loại.
(iii) Xét đáp án: không cùng phương nên loại.
(iv) Xét đáp án:
(Chọn)
Đường thẳng nào sau đây vuông góc với đường thẳng
?
Kí hiệu
(i) Xét đáp án nên chọn đáp án này.
(ii) Tương tự kiểm tra và loại các đáp án còn lại.
Trong mặt phẳng với hệ tọa độ
, cho hai điểm
và
. Tìm điểm
thuộc trục tung sao cho diện tích tam giác
bằng ![]()
Ta có
Một vectơ chỉ phương của đường thẳng
là:
Đường thẳng có một vectơ chỉ phương là:
Điểm nào dưới đây thuộc đường thẳng
?
Thay tọa độ các điểm vào đường thẳng ta thấy điểm thuộc đường thẳng đã cho là
.
Một đường thẳng có vectơ chỉ phương là
. Vectơ nào sau đây là vectơ pháp tuyến của
?
Ta có:
Đường thẳng có vectơ chỉ phương
thì sẽ có một vectơ pháp tuyến là:
Áp dụng vào bài toán ta được:
Vectơ pháp tuyến của là:
.
Cho phương trình đường tròn
. Xác định tâm và bán kính đường tròn đó?
Ta có phương trình đường tròn: có:
nên đường tròn (C) có tâm
và bán kính
.
Đường tròn đường kính
với
có phương trình là:
Cho
. Một đường thẳng đi qua điểm
và song song với trục hoành cắt
tại hai điểm phân biệt
và
. Độ dài
bằng bao nhiêu?
Phương trình đường thẳng đi qua điểm
và song song trục hoành có phương trình là
Ta có
Vậy độ dài đoạn thẳng
Phương trình của đường thẳng (d) song song với (d’): 6x + 8y – 1 = 0 và cách (d’) một đoạn bằng 2 là:
(d’) có vectơ pháp tuyến là
Vì (d) // (d’) nên (d) cũng nhận làm vectơ pháp tuyến.
Do đó phương trình (d) có dạng:
Chọn
Vì nên khoảng cách giữa (d) và (d’) chính là
.
Do đó
hoặc
(nhận vì 19 ≠ –1) hoặc c = –21 (nhận vì –21 ≠ –1).
Vậy có hai đường thẳng (d) thỏa mãn yêu cầu bài toán có phương trình là:
và
.
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
,
và
Trung tuyến
của tam giác đi qua điểm
có hoành độ bằng
thì tung độ của điểm
bằng bao nhiêu?
Ta có:
Chọn
Tính góc tạo bởi giữa hai đường thẳng
và ![]()
Ta có
Cho phương trình
. Điều kiện để
là phương trình đường tròn là:
Điều kiện để là phương trình đường tròn là
.
Tìm phương trình chính tắc của Hyperbol
mà hình chữ nhật cơ sở có một đỉnh là ![]()
Gọi . Tọa độ đỉnh của hình chữ nhật cơ sở là
,
,
,
.
Hình chữ nhật cơ sở của có một đỉnh là
, suy ra
. Phương trình chính tắc của
là
Elip
có độ dài trục lớn bằng:
Ta có: .
Xét vị trí tương đối của hai đường thẳng
và
?
Ta có:
Vậy hai đường thẳng đã cho song song với nhau.
Cho đường thẳng
có phương trình
. Xác định vectơ chỉ phương của
?
Đường thẳng có vectơ pháp tuyến là
nên có vectơ chỉ phương là
.
Tìm điều kiện của tham số m để hai đường thẳng
và
cắt nhau?
Hai đường thẳng cắt nhau khi và chỉ khi:
Vậy hai đường thẳng cắt nhau khi và chỉ khi .
Trong mặt phẳng với hệ tọa độ
, cho hai đường thẳng
và
song song nhau. Đường thẳng vừa song song và cách đều với
là:
Đường tròn
đi qua điểm
và tiếp xúc với hai trục tọa độ
có phương trình là:
Vì thuộc góc phần tư (IV) nên
Khi đó:
Một vectơ pháp tuyến của đường thẳng
là:
Một vectơ pháp tuyến của đường thẳng là
.