Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng \left\{\begin{matrix}x=2\\ y=-1+6t\end{matrix}ight.?

     Vectơ chỉ phương của đường thẳng trên là: (0;6) \Rightarrow \overrightarrow u  = (0;1).

  • Câu 2: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Hypebol?

    Phương trình Hypebol có dạng \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1;c^{2} = a^{2} + b^{2}

    Vậy phương trình cần tìm là \frac{x^{2}}{9} - \frac{y^{2}}{4} =
1.

  • Câu 3: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng (\Delta):x + y - 1 = 0(\Delta'):\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Khẳng định nào sau đây đúng?

    Ta có:

    (\Delta):x + y - 1 = 0 có vectơ pháp tuyến là \overrightarrow{n_{\Delta}} =
(1;1)

    (\Delta'):\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có vectơ chỉ phương là \overrightarrow{u_{\Delta'}} = (2; -
1) nên (\Delta') có vectơ pháp tuyến là \overrightarrow{n_{\Delta'}} =
(1;2)

    \frac{1}{1} eq \frac{1}{2} nên (\Delta) cắt (\Delta').

  • Câu 4: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:3x - 2y - 6 = 0d_{2}:6x - 2y - 8 = 0.

    \left\{ \begin{matrix}
d_{1}:3x - 2y - 6 = 0 ightarrow {\overrightarrow{n}}_{1} = (3; - 2) \\
d_{2}:6x - 2y - 8 = 0 ightarrow {\overrightarrow{n}}_{2} = (6; - 2) \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
\frac{3}{6}\boxed{=}\frac{- 2}{- 2} \\
{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2}\boxed{=}0 \\
\end{matrix} ight.\ \overset{ightarrow}{}d_{1},\ \ d_{2} cắt nhau nhưng không vuông góc.

  • Câu 5: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A( - 1;2),B(2; - 2),C(3;1). Biết rằng \overrightarrow{AD} =
\overrightarrow{BC}, khi đó tọa độ điểm D là:

    Giả sử tọa độ điểm D = (x;y)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AD} = (x + 1;y - 2) \\
\overrightarrow{BC} = (1;3) \\
\end{matrix} ight.

    \overrightarrow{AD} =
\overrightarrow{BC} nên \left\{
\begin{matrix}
x + 1 = 1 \\
y - 2 = 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 5 \\
\end{matrix} ight.\  \Leftrightarrow D(0;5)

  • Câu 7: Nhận biết

    Cho hai đường thẳng \left( d_{1} ight):2x + y + 15 = 0\left( d_{2} ight): - 4x - 2y + 3 =
0. Khẳng định nào sau đây đúng?

    Ta có: \frac{2}{- 4} = \frac{1}{- 2} eq
\frac{15}{3} suy ra \left( d_{1}
ight)\left( d_{2}
ight) song song với nhau.

  • Câu 8: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 1 + t \\
y = - 2 - 2t \\
\end{matrix} ight.d_{2}:\left\{ \begin{matrix}
x = 2 - 2t' \\
y = - 8 + 4t' \\
\end{matrix} ight..

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = - 1 + t \\
y = - 2 - 2t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{u}}_{1} = (1; - 2)
\\
d_{2}:\left\{ \begin{matrix}
x = 2 - 2t' \\
y = - 8 + 4t' \\
\end{matrix} ight.\  ightarrow B(2; - 8) \in d_{2},\ \
{\overrightarrow{u}}_{2} = ( - 2;4) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{1}{- 2} = \frac{- 2}{4} \\
B \in d_{1} \leftrightarrow t = 3 \\
\end{matrix} ight.\  ightarrow d_{1} \equiv d_{2}.

  • Câu 9: Nhận biết

    Xác định tâm và bán kính đường tròn (C):x^{2} + y^{2} - 6x + 2y + 6 = 0.

    Ta có: \left\{ \begin{matrix}
- 2a = - 6 \\
- 2b = 2 \\
c = 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = - 1 \\
c = 6 \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
I(3; - 1) \\
R = \sqrt{a^{2} + b^{2} - c^{2}} = 2 \\
\end{matrix} ight.

    Vậy đường tròn có tâm và bán kính lần lượt là: I(3; - 1),R = 2.

  • Câu 10: Nhận biết

    Cho parabol (P):y = 2x^{2} + x - 3. Giao điểm của (P) với trục hoành tại hai điểm A\left( x_{1};y_{1} ight),B\left(
x_{2};y_{2} ight). Khẳng định nào sau đây đúng?

    Phương trình hoành độ giao điểm là nghiệm của phương trình:

    2x^{2} + x - 3 = 0

    Áp dụng định lí Vi – et ta có:

    x_{1} + x_{2} = - \frac{b}{a} = -
\frac{1}{2}

  • Câu 11: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng \Delta:\left\{ \begin{matrix}
x = 5 + t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Hệ số góc k của đường thẳng \Delta là:

    Ta có:

    Đường thẳng \Delta:\left\{ \begin{matrix}
x = 5 + t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có vectơ chỉ phương \overrightarrow{u}(1;3) nên có hệ số góc k = \frac{3}{1} =
3.

    Vậy hệ số góc của đường thẳng là k=3.

  • Câu 12: Nhận biết

    Đường elip \frac{x^{2}}{16} + \frac{y^{2}}{7} = 1 có tiêu cự bằng

    Ta có: a^{2} = 16, b^{2} = 7 nên c^{2} = a^{2} - b^{2} = 9 \Rightarrow c =
3.

    Tiêu cự của elip là 2c = 6.

  • Câu 13: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A(m - 1;1),B(2;2 - 2m),C(m + 3;3) với m là tham số. Tìm giá trị của tham số m để ba điểm A,B,C thẳng hàng?

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = (3 - m;3 - 2m) \\
\overrightarrow{AC} = (4;4) \\
\end{matrix} ight.

    Ba điểm A, B, C thẳng hàng khi và chỉ khi \overrightarrow{AB};\overrightarrow{AC} cùng phương với nhau.

    Điều đó xảy ra khi và chỉ khi \frac{3 -
m}{4} = \frac{3 - 2m}{4} \Leftrightarrow m = 0

    Vậy m = 0 thì ba điểm A, B, C thẳng hàng.

  • Câu 14: Nhận biết

    Đường tròn (C): x^{2} + y^{2} – 3x – y = 0 có đường kính bằng bao nhiêu?

     Tâm I(\frac32;\frac12). Do đó R = \sqrt {{{\left( {\frac{3}{2}} ight)}^2} + {{\left( {\frac{1}{2}} ight)}^2} - 0}  = \frac{{\sqrt {10} }}{2}.

    Do đó đường kính bằng 2R=\sqrt{10}.

  • Câu 15: Nhận biết

    Cho đường thẳng (d):\left\{ \begin{matrix}
x = t \\
y = 1 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm nào dưới đây không nằm trên đường thẳng đã cho?

    Thay tọa độ các điểm đã cho vào phương trình tham số của đường thẳng d ta thấy điểm không thuộc đường thẳng d là: T(1;1).

  • Câu 16: Thông hiểu

    Tìm điều kiện của tham số m để hai đường thẳng \left( d_{1} ight):mx + y - m - 1 =
0\left( d_{2} ight):x + my =
2 cắt nhau?

    Hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) cắt nhau khi và chỉ khi:

    \frac{m}{1} eq \frac{1}{m}
\Leftrightarrow m^{2} eq 1 \Leftrightarrow m eq \pm 1

    Vậy hai đường thẳng cắt nhau khi và chỉ khi m eq \pm 1.

  • Câu 17: Vận dụng

    Tìm tất cả các giá trị của tham số m để hai đường thẳng d_{1}:4x + 3my–m^{2} = 0d_{2}:\left\{ \begin{matrix}
x = 2 + t \\
y = 6 + 2t \\
\end{matrix} ight. cắt nhau tại một điểm thuộc trục tung.

    Oy \cap d_{2} \leftrightarrow \left\{
\begin{matrix}
x = 2 + t = 0 \\
y = 6 + 2t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 2 \\
\end{matrix} ight.\  ightarrow Oy \cap d_{2} = A(0;2) \in
d_{1}

    \Leftrightarrow
6m - m^{2} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
m = 0 \\
m = 6 \\
\end{matrix} ight.\ .

  • Câu 18: Thông hiểu

    Cho Elip (E) đi qua điểm A( - 3;0) và có tâm sai e = \frac{5}{6}. Tiêu cự của (E)

    Gọi phương trình chính tắc của (E)\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1 với a > b > 0.

    (E) đi qua điểm A( - 3;0) nên \frac{9}{a^{2}} = 1 \Rightarrow a^{2} = 9
\Rightarrow a = 3.

    Lại có e = \frac{c}{a} = \frac{5}{6}
\Rightarrow c = \frac{5a}{6} = \frac{5}{2} \Rightarrow 2c =
5.

  • Câu 19: Thông hiểu

    Tính góc tạo bởi giữa hai đường thẳng d_{1}:2x + 2\sqrt{3}y + 5 = 0d_{2}:y - 6 = 0.

    Ta có

    \left\{ \begin{matrix}
d_{1}:2x + 2\sqrt{3}y + 5 = 0 ightarrow {\overrightarrow{n}}_{1} =
\left( 1;\sqrt{3} ight) \\
d_{2}:y - 6 = 0. ightarrow {\overrightarrow{n}}_{2} = (0;1) \\
\end{matrix} ight.

    \overset{\varphi = \left( d_{1};d_{2}
ight)}{ightarrow}\cos\varphi = \frac{\left| \sqrt{3}
ight|}{\sqrt{1 + 3}.\sqrt{0 + 1}} = \frac{\sqrt{3}}{2} ightarrow
\varphi = 30^{\circ}.

  • Câu 20: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 2 + 3t \\
y = - 2t \\
\end{matrix} ight.d_{2}:\left\{ \begin{matrix}
x = 2t' \\
y = - 2 + 3t' \\
\end{matrix} ight..

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 2 + 3t \\
y = - 2t \\
\end{matrix} ight.\  ightarrow \ {\overrightarrow{u}}_{1} = (3; - 2)
\\
d_{2}:\left\{ \begin{matrix}
x = 2t' \\
y = - 2 + 3t' \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = (2;3)
\\
\end{matrix} ight\} ightarrow {\overrightarrow{u}}_{1} \cdot
{\overrightarrow{u}}_{2} = 0 ightarrow d_{1}\bot\ \ d_{2}. Chọn

  • Câu 21: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} ight. và hai điểm A(1;2),B( - 2;m). Tìm tất cả các giá trị của tham số m để AB nằm cùng phía đối với d.

    Ta có: d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} \Rightarrow d:3x + y - 7 = 0 ight..

    Để A, B nằm cùng phía đối với d thì:

    \left( 3x_{A} + y_{A} - 7 ight)\left(
3x_{A} + y_{A} - 7 ight) > 0 \Leftrightarrow - 2(m - 13) >
0

    \Leftrightarrow m - 13 < 0
\Leftrightarrow m < 13.

  • Câu 22: Vận dụng

    Tìm phương trình chính tắc của Hyperbol (H). Cho biết (H) đi qua điểm (2;1) và có một đường chuẩn là x + \frac{2}{\sqrt{3}} =
0.

    Gọi (H):\frac{x^{2}}{a^{2}} -
\frac{y^{2}}{b^{2}} = 1.

    Ta có : \left\{ \begin{matrix}
\frac{2^{2}}{a^{2}} - \frac{1^{2}}{b^{2}} = 1 \\
\frac{a^{2}}{c} = \frac{2}{\sqrt{3}} \\
b^{2} = c^{2} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b^{2} = \frac{a^{2}}{4 - a^{2}} \\
c^{2} = \frac{3}{4}a^{4} \\
\frac{a^{2}}{4 - a^{2}} = \frac{3}{4}a^{4} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a^{2} = 2,\ b^{2} = 1 \\
a^{2} = \frac{10}{3},\ b^{2} = 5 \\
\end{matrix} ight.\ . Suy ra phương trình chính tắc của (H) là \frac{x^{2}}{2} - y^{2} = 1.

  • Câu 23: Nhận biết

    Cho hai đường thẳng (\Delta):x - 2y + 1 = 0(\Delta'):x - 3y + 8 = 0. Khẳng định nào sau đây đúng?

    Ta có: \frac{1}{1} eq \frac{- 2}{-
3} suy ra (\Delta) cắt (\Delta').

    Vậy khẳng định đúng là: “(\Delta) cắt (\Delta')”.

  • Câu 24: Vận dụng

    Cho đường thẳng d_{1}:2x + 3y + m^{2} - 1 = 0d_{2}:\left\{ \begin{matrix}
x = 2m - 1 + t \\
y = m^{4} - 1 + 3t \\
\end{matrix} ight.. Tính cosin góc tạo bởi giữa hai đường thẳng trên.

    . \left\{ \begin{matrix}
d_{1}:2x + 3y + m^{2} - 1 = 0 ightarrow {\overrightarrow{n}}_{1} =
(2;3) \\
d_{2}:\left\{ \begin{matrix}
x = 2m - 1 + t \\
y = m^{4} - 1 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (3; - 1)
\\
\end{matrix} ight. \overset{\varphi = \left( d_{1};d_{2}
ight)}{ightarrow}\cos\varphi = \frac{|6 - 3|}{\sqrt{4 + 9}.\sqrt{9 +
1}} = \frac{3}{\sqrt{130}}.

  • Câu 25: Nhận biết

    Cho hai đường thẳng ∆_1: 11x – 12y + 1 = 0∆_2: 12x + 11y + 9 = 0. Khi đó hai đường thẳng này:

     Ta có:

    \begin{matrix}  \overrightarrow {{n_{{\Delta _1}}}}  = \left( {11; - 12} ight) \hfill \\  \overrightarrow {{n_{{\Delta _2}}}}  = \left( {12;11} ight) \hfill \\  \overrightarrow {{n_{{\Delta _1}}}} .\overrightarrow {{n_{{\Delta _2}}}}  = 0 \Rightarrow \overrightarrow {{n_{{\Delta _1}}}}  \bot \overrightarrow {{n_{{\Delta _2}}}}  \hfill \\   \Rightarrow {\Delta _1} \bot {\Delta _2} \hfill \\ \end{matrix}

  • Câu 26: Thông hiểu

    Một elip có diện tích hình chữ nhật cơ sở là 80, độ dài tiêu cự là 6. Tâm sai của elip đó là

    Diện tích hình chữ nhật cơ sở là 2a.2b =
80, suy ra a.b = 20\ \ \
(1).

    Lại có 2c = 6 \Rightarrow c = 3
\Rightarrow a^{2} - b^{2} = c^{2} = 9\ \ \ \ (2).

    Từ (1) \Rightarrow b =
\frac{20}{a}, thay vào (2) ta được:

    a^{2} - \frac{400}{a^{2}} = 9 \Rightarrow
a^{4} - 9a^{2} - 400 = 0 \Leftrightarrow a^{2} = 25 \Rightarrow a =
5.

    Do đó tâm sai e =
\frac{3}{5}.

  • Câu 27: Thông hiểu

    Phương trình chính tắc của hypebol có 2a gấp đôi 2b và đi qua điểm M(4; 1) là:

     Ta có: a=2b.

    Phương trình chính tắc: \frac{{{x^2}}}{{{{(2b)}^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1.

    M(4;1) thuộc hypebol nên: 

    \frac{{{4^2}}}{{{{(2b)}^2}}} - \frac{{{1^2}}}{{{b^2}}} = 1 \Leftrightarrow \frac{{16}}{{4{b^2}}} - \frac{1}{{{b^2}}} = 1\Leftrightarrow \frac{{12}}{{4{b^2}}} = 1 \Leftrightarrow b =  \pm \sqrt 3  \Rightarrow a =  \pm 2\sqrt 3.

    Do đó, phương trình chính tắc: \frac{x^{2}}{12}-\frac{y^{2}}{3}=1.

  • Câu 28: Nhận biết

    Cho phương trình x^{2} + y^{2} - 2ax - 2by + c = 0(1). Điều kiện để (1) là phương trình đường tròn là:

    Điều kiện để x^{2} + y^{2} - 2ax - 2by +
c = 0(1) là phương trình đường tròn là a^{2} + b^{2}\  > \ c.

  • Câu 29: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, có tất cả bao nhiêu đường thẳng đi qua điểm M(2\ ;\ 0) đồng thời tạo với trục hoành một góc 45{^\circ}?

    Cho đường thẳng d và một điểm M. Khi đó.

    (i) Có duy nhất một đường thẳng đi qua M song song hoặc trùng hoặc vuông góc với d.

    (ii) Có đúng hai đường thẳng đi qua M và tạo với d một góc 0^{\circ} < \alpha <
90^{\circ}.

    Chọn phương án 2.

  • Câu 30: Thông hiểu

    Cho đường tròn (C):(x - 1)^{2} + (y - 2)^{2} = 8. Viết phương trình tiếp tuyến của đường tròn (C) biết tiếp tuyến đi qua điểm M(3; - 2)?

    Đường tròn (C) có tâm I(2; -
3)

    Phương trình tiếp tuyến của (C) tại điểm N( - 3;1) là:

    (3 - 2)(x - 3) + ( - 1 + 3)(y + 1) =
0

    \Leftrightarrow x + 2y - 1 =
0

    Vậy phương trình tiếp tuyến của đường tròn tại N( - 3;1) là: x + 2y - 1 = 0

  • Câu 31: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):(x - 1)^{2} + (y + 3)^{2} = 16 là:

    (C):(x - 1)^{2} + (y + 3)^{2} =
16\overset{}{ightarrow}I(1; - 3),\ \ R = \sqrt{16} = 4.

  • Câu 32: Vận dụng

    Đường tròn (C) đi qua hai điểm A(–1;1)\ ,B(3;3) và tiếp xúc với đường thẳng d:3x–4y + 8 = 0. Viết phương trình đường tròn (C), biết tâm của (C) có hoành độ nhỏ hơn 5.

    AB:x - 2y + 5 = 0, đoạn AB có trung điểm M(1;2) ightarrowtrung trực của đoạn AB là d:2x + y
- 4 = 0 ightarrow I(a;4 - 2a),\ \ a < 5.

    Ta có

    R = IA = d\lbrack I;\Deltabrack =
\sqrt{(a + 1)^{2} + (2a - 3)^{2}} = \frac{|11a - 8|}{5}

    \Leftrightarrow a = 3 ightarrow I(3; -
2),\ R = 5.

    Vậy phương trình đường tròn là: (x -
3)^{2} + (y + 2)^{2} = 25.

  • Câu 33: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA\left( \frac{7}{4};3 ight), B(1;2)C(
- 4;3). Phương trình đường phân giác trong của góc A là:

    \left\{ \begin{matrix}
A\left( \frac{7}{4};3 ight),\ B(1;2) ightarrow AB:4x - 3y + 2 = 0 \\
A\left( \frac{7}{4};3 ight),\ C( - 4;3) ightarrow AC:y - 3 = 0 \\
\end{matrix} ight.\ .

    Suy ra các đường phân giác góc A là:

    \begin{matrix}
\frac{|4x - 3y + 2|}{5} = \frac{|y - 3|}{1} \Leftrightarrow \left\lbrack
\begin{matrix}
4x + 2y - 13 = 0 ightarrow f(x;y) = 4x + 2y - 13 \\
4x - 8y + 17 = 0 \\
\end{matrix} ight.\  \\
\\
\end{matrix}

    ightarrow \left\{ \begin{matrix}
f\left( B(1;2) ight) = - 5 < 0 \\
f\left( C( - 4;3) ight) = - 23 < 0 \\
\end{matrix} ight.\ .

    Suy ra đường phân giác trong góc A4x - 8y
+ 17 = 0.

  • Câu 34: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Ox?

     Vectơ chỉ phương của trục Ox là (1; 0).

  • Câu 35: Vận dụng

    Trong mặt phẳng với hệ trục tọa độOxy, cho hai đường tròn \left( \mathbf{C}_{\mathbf{1}}
ight)\mathbf{,}\left( \mathbf{C}_{\mathbf{2}} ight) có phương trình lần lượt là (x + 1)^{2} + (y +
2)^{2} = 9,\ (x - 2)^{2} + (y - 2)^{2} = 4 và elip (E) có phương trình 16x^{2} + 49y^{2} = 1. Có bao nhiêu đường tròn (C) có bán kính gấp đôi độ dài trục lớn của elip (E)(C) tiếp xúc với hai đường tròn \left( C_{1} ight), \left( C_{2} ight)?

    Ta có 16x^{2} + 49y^{2} = 1
\Leftrightarrow \frac{x^{2}}{\left( \frac{1}{4} ight)^{2}} +
\frac{y^{2}}{\left( \frac{1}{7} ight)^{2}} = 1 \Rightarrow
(E) có độ dài trục lớn là 2a =
2.\frac{1}{4} = \frac{1}{2}.

    Khi đó đường tròn (C) có bán kính là R = 1. Gọi I(a;b) là tâm của đường tròn (C).

    Xét \Delta II_{1}I_{2}\left\{ \begin{matrix}
II_{1} = R + R_{1} = 1 + 3 = 4 \\
II_{2} = R + R_{2} = 1 + 2 = 3 \\
I_{1}I_{2} = R_{1} + R_{2} = 5 \\
\end{matrix} ight.\  \Rightarrow \Delta II_{1}I_{2} vuông tại I.

    Ta có \overrightarrow{II_{1}} = ( - 1 -
a; - 2 - b), \overrightarrow{II_{2}} = (2 - a;2 - b). Khi đó điểm I thỏa mãn:

    \left\{ \begin{matrix}\overrightarrow{II_{1}}.\overrightarrow{II_{2}} = 0 \\\overrightarrow{II_{2}} = 3 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}( - 1 - a)(2 - a) + ( - 2 - b)(2 - b) = 0 \\(2 - a)^{2} + (2 - b)^{2} = 9 \\\end{matrix} ight.

    \  \Leftrightarrow \left\{ \begin{matrix}a^{2} + b^{2} - a - 6 = 0 \\a^{2} + b^{2} - 4a - 4b - 1 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}a^{2} + b^{2} = 6 + a \\6 + a - 4a - 4b - 1 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a^{2} + b^{2} = 6 + a \\a = \frac{5 - 4b}{3} \\\end{matrix} ight.

    \  \Leftrightarrow \left\{ \begin{matrix}\left( \frac{5 - 4b}{3} ight)^{2} + b^{2} - 6 - \frac{5 - 4b}{3} = 0\\a = \frac{5 - 4b}{3} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
25b^{2} - 28b - 44 = 0 \\
a = \frac{5 - 4b}{3} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
b = 2 \\
b = - \frac{22}{25} \\
\end{matrix} ight.\  \\
a = \frac{5 - 4b}{3} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
a = - 1 \\
b = 2 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
a = \frac{71}{25} \\
b = - \frac{22}{25} \\
\end{matrix} ight.\  \\
\end{matrix} ight..

    Vậy có hai phương trình đường tròn (C) thỏa mãn yêu cầu bài toán là

    (C):(x + 1)^{2} + (y - 2)^{2} =
1 hoặc (C):\left( x - \frac{71}{25}
ight)^{2} + \left( y + \frac{22}{25} ight)^{2} = 1.

  • Câu 36: Thông hiểu

    Tìm phương trình chính tắc của Hyperbol (H) mà hình chữ nhật cơ sở có một đỉnh là (2; - 3).

    Gọi (H):\frac{x^{2}}{a^{2}} -
\frac{y^{2}}{b^{2}} = 1. Tọa độ đỉnh của hình chữ nhật cơ sở là A_{1}( - a; - b), A_{2}(a; - b), A_{3}(a;b), A_{4}( - a;b).

    Hình chữ nhật cơ sở của (H) có một đỉnh là (2; - 3), suy ra \left\{ \begin{matrix}
a = 2 \\
b = 3 \\
\end{matrix} ight.. Phương trình chính tắc của (H)\frac{x^{2}}{4} - \frac{y^{2}}{9} =
1.

  • Câu 37: Nhận biết

    Cho elip có phương trình chính tắc \frac{x^{2}}{4} + \frac{y^{2}}{1} = 1. Tính tâm sai của elip.

    Ta có a^{2} = 4 \Rightarrow a = 2;b^{2} =
1 \Rightarrow b = 1;c^{2} = a^{2} - b^{2} = 3 \Rightarrow c =
\sqrt{3}

    Tâm sai của elip là e = \frac{c}{a} =
\frac{\sqrt{3}}{2}.

  • Câu 38: Thông hiểu

    Cho phương trình x^{2} + y^{2} - 2mx - 4(m - 2)y + 6 - m =
0(1). Tìm điều kiện của m để (1) là phương trình đường tròn.

    Ta có: x^{2} + y^{2} - 2mx - 4(m - 2)y +
6 - m = 0

    ightarrow \left\{ \begin{matrix}
a = m \\
b = 2(m - 2) \\
c = 6 - m \\
\end{matrix} ight.\  ightarrow a^{2} + b^{2} - c > 0

    \Leftrightarrow 5m^{2} - 15m + 10 > 0
\Leftrightarrow \left\lbrack \begin{matrix}
m < 1 \\
m > 2 \\
\end{matrix} ight.\ .

  • Câu 39: Vận dụng

    Trong mặt phẳng tọa độ Oxy cho đường tròn (C):x^{2} + y^{2} - 2x - 2my + m^{2} - 24 =
0 có tâm I và đường thẳng \Delta:mx + 4y = 0 (với m là tham số). Biết đường thẳng \Delta cắt đường tròn (C) tại hai điểm A;B phân biệt sao cho diện tích tam giác IAB bằng 12. Có bao nhiêu giá trị của tham số m thỏa mãn yêu cầu đề bài?

    Hình vẽ minh họa

    Đường tròn (C) có tâm I(1; m) và bán kính R = 5.

    Gọi H là trung điểm của dây cung AB. Ta có IH là đường cao của tam giác IAB và

    IH = d(I;\Delta) \Leftrightarrow
\frac{|m + 4m|}{\sqrt{m^{2} + 16}} = \frac{|5m|}{\sqrt{m^{2} +
16}}

    AH = \sqrt{IA^{2} - IH^{2}} = \sqrt{25 -
\frac{(5m)^{2}}{m^{2} + 16}} = \frac{20}{\sqrt{m^{2} + 16}}

    Theo bài ra ta có:

    S_{IAB} = 12 \Leftrightarrow 2S_{IAH} =
12

    \Leftrightarrow d(I;\Delta).AH =
12

    \Leftrightarrow 25|m| = 3\left( m^{2} +
16 ight)

    \Leftrightarrow \left\lbrack\begin{matrix}m = \pm 3 \\m = \pm \dfrac{16}{3} \\\end{matrix} ight.

    Vậy có 4 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 40: Thông hiểu

    Cho đường tròn (C):(x - 1)^{2} + (y - 2)^{2} = 4 và đường thẳng \Delta:x - 2y + m = 0. Tìm giá trị của tham số m để \Delta không cắt (C)?

    Đường tròn (C) có tâm I(1; 2) và R =
\sqrt{5}

    Để \Delta không cắt (C) thì d(I;\Delta) > R

    \Leftrightarrow \frac{|1 - 2.2 +
m|}{\sqrt{1 + 4}} > \sqrt{5}

    \Leftrightarrow |m - 3| > 5
\Leftrightarrow \left\lbrack \begin{matrix}
m - 3 > 5 \\
m - 3 < - 5 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m < - 2 \\
m > 8 \\
\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
m < - 2 \\
m > 8 \\
\end{matrix} ight. thỏa mãn yêu cầu bài toán.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo