Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tìm phương trình chính tắc của elip có tiêu cự bằng 6 và trục lớn bằng 10.

    Phương trình chính tắc của elip: \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{a}^{\mathbf{2}}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{b}^{\mathbf{2}}}\mathbf{=}\mathbf{1.}

    Độ dài trục lớn 2a = 10 \Leftrightarrow a
= 5.

    Tiêu cự 2c = 6 \Leftrightarrow c =
3.

    Ta có: a^{2} = b^{2} + c^{2}
\Leftrightarrow b^{2} = a^{2} - c^{2} = 16

    Vậy phương trình chính tắc của elip là \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{25}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{16}}\mathbf{=}\mathbf{1.}.

  • Câu 2: Nhận biết

    Đường thẳng nào sau đây có đúng một điểm chung với đường thẳng \left\{ \begin{matrix}
x = - 2 + 3t \\
y = 5 - 7t \\
\end{matrix} ight.?

    Ta cần tìm đường thẳng cắt d:\left\{
\begin{matrix}
x = - 2 + 3t \\
y = 5 - 7t \\
\end{matrix} ight.\ \overset{}{ightarrow}d:7x + 3y - 1 =
0.

    d_{1}:7x + 3y - 1 =
0\overset{}{ightarrow}d_{1} \equiv
d\overset{}{ightarrow}loại 7x +
3y - 1 = 0.

    d_{2}:7x + 3y + 1 = 0\ \ \&\ \
d_{3}:7x + 3y + 2018 = 0\overset{}{ightarrow}d_{2},\ \
d_{3}||d\overset{}{ightarrow}loại 7x + 3y + 1 = 07x + 3y + 2018 = 0. Chọn 3x - 7y + 2018 = 0.

  • Câu 3: Thông hiểu

    Tâm sai của Hyperbol \frac{x^{2}}{5} - \frac{y^{2}}{4} = 1 bằng:

    Ta có : \left\{ \begin{matrix}
a^{2} = 5 \\
b^{2} = 4 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = \sqrt{5} \\
b = 2 \\
c = 3 \\
\end{matrix} ight.\  \Rightarrow e = \frac{c}{a} =
\frac{3}{\sqrt{5}}.

  • Câu 4: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 4 + 2t \\
y = 1 - 5t \\
\end{matrix} ight.d_{2}:5x
+ 2y - 14 = 0.

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 4 + 2t \\
y = 1 - 5t \\
\end{matrix} ight.\  ightarrow A(4;1) \in d_{1},\ \
{\overrightarrow{u}}_{1} = (2; - 5) \\
d_{2}:5x + 2y - 14 = 0 ightarrow \ \ {\overrightarrow{n}}_{2} = (5;2)
ightarrow {\overrightarrow{u}}_{2} = (2; - 5) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
{\overrightarrow{u}}_{1} = {\overrightarrow{u}}_{2} \\
A\boxed{\in}d_{2} \\
\end{matrix} ight.\  ightarrow d_{1}||d_{2}.Chọn

  • Câu 5: Vận dụng

    Elip (E) có độ dài trục lớn bằng 4\sqrt{2}, các đỉnh trên trục nhỏ và các tiêu điểm của elip cùng nằm trên một đường tròn. Hãy tính độ dài trục nhỏ của (E).

    Ta có A_{1}A_{2} = 4\sqrt{2}\overset{}{ightarrow}a =
2\sqrt{2}

    Và bốn điểm F_{1},B_{1},F_{2},B_{2} cùng nằm trên một đường tròn

    \overset{}{ightarrow}b =
c\overset{}{ightarrow}b^{2} = c^{2}

    \overset{}{ightarrow}b^{2} = a^{2} -
b^{2}\overset{}{ightarrow}b = \frac{a}{\sqrt{2}} = 2.

    Vậy độ dài trục nhỏ của (E)4.

  • Câu 6: Thông hiểu

    Xác định góc giữa hai đường thẳng (a):\sqrt{3}x - y + 7 = 0(b):x - \sqrt{3}y - 1 = 0?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{a}} = \left( \sqrt{3};1 ight) \\
\overrightarrow{n_{b}} = \left( 1; - \sqrt{3} ight) \\
\end{matrix} ight.

    \cos(a;b) = \frac{\left|
\overrightarrow{n_{a}}.\overrightarrow{n_{b}} ight|}{\left|
\overrightarrow{n_{a}} ight|.\left| \overrightarrow{n_{b}} ight|} =
\frac{\sqrt{3}}{2}

    \Rightarrow (a;b) = 30^{0}

  • Câu 7: Nhận biết

    Xác định vị trí tương đối của hai đường thẳng (d):2x + y - 4 = 0(d'):2x + y + 7 = 0?

    Ta có: \frac{a}{a'} =
\frac{b}{b'} eq \frac{c}{c'} suy ra hai đường thẳng (d) và (d’) song song với nhau.

  • Câu 8: Thông hiểu

    Cho đường tròn (C):x^{2} + y^{2} - 2mx + 4y + m^{2} - 5 =
0 và đường thẳng \Delta:6x + 8y - 1
= 0. Tìm giá trị của tham số m để \Delta cắt (C)?

    Đường tròn (C) có tâm I(m; -2) và R = 3

    Để \Delta cắt (C) thì d(I;\Delta) < R

    \Leftrightarrow \frac{\left| 6m + 8.( -
2) - 1 ight|}{\sqrt{6^{2} + 8^{2}}} < 3

    \Leftrightarrow |6m - 17| < 30
\Leftrightarrow - 30 < 6m - 17 < 30

    \Leftrightarrow m \in \left( -
\frac{13}{6};\frac{47}{6} ight)

    Vậy m \in \left( -
\frac{13}{6};\frac{47}{6} ight) thỏa mãn yêu cầu bài toán.

  • Câu 9: Thông hiểu

    Tâm của đường tròn (C):x^{2} + y^{2} - 10x + 1 = 0 cách trục Oy một khoảng bằng:

    (C):x^{2} + y^{2} - 10x + 1 = 0
ightarrow I(5;0) ightarrow d\lbrack I;Oybrack = 5.

  • Câu 10: Thông hiểu

    Phương trình nào sau đây là phương trình tổng quát của đường thẳng d:\left\{
\begin{matrix}
x = 3 - 5t \\
y = 1 + 4t \\
\end{matrix} ight.?

    Ta có: d:\left\{ \begin{matrix}
x = 3 - 5t \\
y = 1 + 4t \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
A(3;1) \in d \\
{\overrightarrow{u}}_{d} = ( - 5;4) ightarrow {\overrightarrow{n}}_{d}
= (4;5) \\
\end{matrix} ight.\ \overset{ightarrow}{}d:4(x - 3) + 5(y - 1) =
0

    \Leftrightarrow d:4x + 5y - 17 =
0.

  • Câu 11: Nhận biết

    Cho phương trình x^{2} + y^{2} + 2mx + 2(m–1)y + 2m^{2} =
0(1). Tìm điều kiện của m để (1) là phương trình đường tròn.

    Ta có: x^{2} + y^{2} + 2mx + 2(m–1)y +
2m^{2} = 0

    ightarrow \left\{ \begin{matrix}
a = - m \\
b = 1 - m \\
c = 2m^{2} \\
\end{matrix} ight.\  ightarrow a^{2} + b^{2} - c > 0
\Leftrightarrow - 2m + 1 > 0 \Leftrightarrow m <
\frac{1}{2}.

  • Câu 12: Nhận biết

    Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?

    Ta có:

    x^{2} + y^{2} - 2x + 4y + 1 =
0

    \Leftrightarrow (x - 1)^{2} + (y +
2)^{2} = 4

    Vậy phương trình đường tròn cần tìm là: x^{2} + y^{2} - 2x + 4y + 1 = 0.

  • Câu 13: Thông hiểu

    Trong hệ trục tọa độ Oxy cho hai điểm A(3; - 1),B( - 6;2). Chọn đáp án không phải là phương trình tham số của đường thẳng AB.

    Đường thẳng AB có một vectơ chỉ phương là \overrightarrow{AB} = ( - 9;3) suy ra vectơ chỉ phương \overrightarrow{u} = ( -
3;1)

    Phương trình \left\{ \begin{matrix}
x = 3 + 3t \\
y = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) không thỏa mãn vì có vectơ chỉ phương \overrightarrow{v} = (3;1) không cùng phương với \overrightarrow{u} = ( -
3;1).

  • Câu 14: Thông hiểu

    Hãy xác định phương trình chính tắc của parabol (P). Biết rằng (P) cắt đường thẳng d:x + 2y = 0 tại hai điểm A,BAB =
4\sqrt{5}?

    Phương trình chính tắc của (P) có dạng y^{2} = 2px;(p > 0)

    Ta có đường thẳng d cắt (P) tại hai điểm \left\{ \begin{matrix}
A \equiv O \\
B = ( - 2m;m) \\
\end{matrix} ight.

    Ta có:

    AB = 4\sqrt{5} \Leftrightarrow AB^{2} =
5m^{2} = \left( 4\sqrt{5} ight)^{2}

    \Leftrightarrow m^{2} = 16
\Leftrightarrow m = \pm 4

    Với m = 4 \Rightarrow B( - 8;4) \Rightarrow 16 = 2p.( - 8)
\Rightarrow p = - 1 < 0(ktm)

    Với m = - 4 \Rightarrow B(8; - 4) \Rightarrow 16 = 2p.8
\Rightarrow p = 1(tm)

    Vậy phương trình chính tắc của parabol cần tìm là: y^{2} = 2x.

  • Câu 15: Nhận biết

    Cho Hypebol (H) có phương trình chính tắc là \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1, với a,b > 0. Khi đó khẳng định nào sau đây đúng?

    Khẳng định đúng là: Với c^{2} = a^{2} +
b^{2} (c > 0), tâm sai của hypebol là e = \frac{c}{a}.

  • Câu 17: Vận dụng

    Đường tròn (C) có tâm I thuộc đường thẳng d:x + 2y - 2 = 0, bán kính R = 5 và tiếp xúc với đường thẳng \Delta:\ 3x - 4y - 11 = 0. Biết tâm I có hoành độ dương. Phương trình của đường tròn (C) là:

    \begin{matrix}
I \in d ightarrow I(2 - 2a;a),\ \ a < 1 ightarrow d\lbrack
I;\Deltabrack = R = 5 \\
\Leftrightarrow \frac{|10a + 5|}{5} = 5 \Leftrightarrow \left\lbrack
\begin{matrix}
a = 2\ \ (l) \\
a = - 3 \\
\end{matrix} ight.\  ightarrow I(8; - 3) \\
\end{matrix}.

    Vậy phương trình đường tròn là: (x -
8)^{2} + (y + 3)^{2} = 25.

  • Câu 18: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Parabol?

    Phương trình Parabol có dạng y^{2} =
2px

    Vậy phương trình cần tìm là y^{2} =
2x.

  • Câu 19: Nhận biết

    Cho elip có phương trình chính tắc \frac{x^{2}}{4} + \frac{y^{2}}{1} = 1. Tính tâm sai của elip.

    Ta có a^{2} = 4 \Rightarrow a = 2;b^{2} =
1 \Rightarrow b = 1;c^{2} = a^{2} - b^{2} = 3 \Rightarrow c =
\sqrt{3}

    Tâm sai của elip là e = \frac{c}{a} =
\frac{\sqrt{3}}{2}.

  • Câu 20: Vận dụng

    Đâu là đường thẳng không có điểm chung với đường thẳng x - 3y + 4 = 0?

    Kí hiệu d:x - 3y + 4 = 0 ightarrow
{\overrightarrow{n}}_{d} = (1; - 3).

    (i) Xét đáp án: d_{1}:\left\{
\begin{matrix}
x = 1 + t \\
y = 2 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{1} = (1;3)
ightarrow {\overrightarrow{n}}_{1},\ \ \overrightarrow{n} không cùng phương nên loại.

    (ii) Xét đáp án: d_{2}:\left\{
\begin{matrix}
x = 1 - t \\
y = 2 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (3;1)
ightarrow {\overrightarrow{n}}_{2},\ \ \overrightarrow{n} không cùng phương nên loại.

    (iii) Xét đáp án: d_{3}:\left\{
\begin{matrix}
x = 1 - 3t \\
y = 2 + t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{3} = (1;3)
ightarrow {\overrightarrow{n}}_{3},\ \ \overrightarrow{n} không cùng phương nên loại.

    (iv) Xét đáp án: d_{4}:\left\{
\begin{matrix}
x = 1 - 3t \\
y = 2 - t \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
M(1;2) \in d_{4} \\
{\overrightarrow{n}}_{4} = (1; - 3) \\
\end{matrix} ight. ightarrow
\left\{ \begin{matrix}
{\overrightarrow{n}}_{4} = \overrightarrow{n} \\
M\boxed{\in}d \\
\end{matrix} ight.\  ightarrow d||d_{4}. (Chọn)

  • Câu 21: Nhận biết

    Đường thẳng nào sau đây vuông góc với đường thẳng 4x - 3y + 1 = 0 ?

    Kí hiệu d:4x - 3y + 1 = 0 ightarrow
{\overrightarrow{n}}_{d} = (4; - 3).

    (i) Xét đáp án d_{1}:\left\{
\begin{matrix}
x = 4t \\
y = - 3 - 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{1} = (3;4)
ightarrow {\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{d} =
0 nên chọn đáp án này.

    (ii) Tương tự kiểm tra và loại các đáp án còn lại.

  • Câu 22: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(3;0)B(0; - 4). Tìm điểm M thuộc trục tung sao cho diện tích tam giác MAB bằng 6.

    Ta có

    \left\{ \begin{matrix}
AB:4x - 3y - 12 = 0 \\
AB = 5 \\
M(0;y) ightarrow h_{M} = d(M;AB) = \frac{|3y + 12|}{5} \\
\end{matrix} ight.

    ightarrow 6 = S_{\Delta MAB} =
\frac{1}{2}.5.\frac{|3y + 12|}{5}

    \Leftrightarrow \left\lbrack
\begin{matrix}
y = 0 ightarrow M(0;0) \\
y = - 8 ightarrow M(0; - 8) \\
\end{matrix} ight.\ .

  • Câu 23: Nhận biết

    Một vectơ chỉ phương của đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) là:

    Đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là: \overrightarrow{u_{\Delta}} = (2; -
3)

  • Câu 24: Nhận biết

    Điểm nào dưới đây thuộc đường thẳng 2x - y + 1 = 0?

    Thay tọa độ các điểm vào đường thẳng 2x -
y + 1 = 0 ta thấy điểm thuộc đường thẳng đã cho là D(0;1).

  • Câu 25: Nhận biết

    Một đường thẳng có vectơ chỉ phương là \overrightarrow{u_{\Delta}} = (12; - 13). Vectơ nào sau đây là vectơ pháp tuyến của \Delta?

    Ta có:

    Đường thẳng \Delta có vectơ chỉ phương \overrightarrow{u} = (a;b) thì sẽ có một vectơ pháp tuyến là: \overrightarrow{n} = ( - b;a)

    Áp dụng vào bài toán ta được:

    Vectơ pháp tuyến của \Delta là: \overrightarrow{n_{\Delta}} =
(13;12).

  • Câu 26: Nhận biết

    Cho phương trình đường tròn (C):x^{2} + y^{2} - 6x + 8y - 1 = 0. Xác định tâm và bán kính đường tròn đó?

    Ta có phương trình đường tròn: (C):x^{2}
+ y^{2} - 6x + 8y - 1 = 0 có: a =
3;b = - 4,c = - 1 nên đường tròn (C) có tâm I(3; - 4) và bán kính R = \sqrt{a^{2} + b^{2} - c} =
\sqrt{26}.

  • Câu 27: Thông hiểu

    Đường tròn đường kính AB với A(3; -
1),B(1; - 5) có phương trình là:

    (C):\left\{ \begin{matrix}
I(2; - 3) \\
R = \frac{1}{2}AB = \frac{1}{2}\sqrt{(1 - 3)^{2} + ( - 5 + 1)^{2}} =
\sqrt{5} \\
\end{matrix} ight.

    ightarrow (C):(x - 2)^{2} + (y + 3)^{2}
= 5.

  • Câu 28: Vận dụng

    Cho (E):\frac{x^{2}}{20} + \frac{y^{2}}{16} =
1. Một đường thẳng đi qua điểm A(2;2) và song song với trục hoành cắt (E) tại hai điểm phân biệt MN. Độ dài MN bằng bao nhiêu?

    Phương trình đường thẳng d đi qua điểm A(2;2) và song song trục hoành có phương trình là y = 2.

    Ta có d \cap (E) \Leftrightarrow \left\{
\begin{matrix}
\frac{x^{2}}{20} + \frac{y^{2}}{16} = 1 \\
y = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 2 \\
\frac{x^{2}}{20} + \frac{2^{2}}{16} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 2 \\
x^{2} = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 2 \\
\left\lbrack \begin{matrix}
x = \sqrt{15} \\
x = - \sqrt{15} \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
M\left( \sqrt{15};\ 2 ight) \\
N\left( - \sqrt{15};\ 2 ight) \\
\end{matrix} ight.

    Vậy độ dài đoạn thẳng MN =
2\sqrt{15}.

  • Câu 29: Thông hiểu

    Phương trình của đường thẳng (d) song song với (d’): 6x + 8y – 1 = 0 và cách (d’) một đoạn bằng 2 là:

    (d’) có vectơ pháp tuyến là \overrightarrow {n'}  = \left( {6;8} ight)

    Vì (d) // (d’) nên (d) cũng nhận \overrightarrow {n'}  = \left( {6;8} ight) làm vectơ pháp tuyến.

    Do đó phương trình (d) có dạng: 6x + 8y + c = 0\left( {c e -1} ight)

    Chọn A\left( {\frac{{ - 5}}{2};2} ight) \in \left( {d'} ight)

    (d) // (d’) nên khoảng cách giữa (d) và (d’) chính là d(A, (d)).

    Do đó d(A, (D)) = 2

    ⇔ |c + 1| = 20

    ⇔ c + 1 = 20 hoặc c + 1 = –20

    ⇔ c = 19 (nhận vì 19 ≠ –1) hoặc c = –21 (nhận vì –21 ≠ –1).

    Vậy có hai đường thẳng (d) thỏa mãn yêu cầu bài toán có phương trình là:

    6x + 8y + 19 = 06x + 8y – 21 = 0.

  • Câu 30: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(2;4), B(5;0)C(2;1). Trung tuyến BM của tam giác đi qua điểm N có hoành độ bằng 20 thì tung độ của điểm N bằng bao nhiêu?

    \left\{ \begin{matrix}
A(2;4) \\
C(2;1) \\
\end{matrix} ight.\ \overset{ightarrow}{}M\left( 2;\frac{5}{2}
ight) ightarrow \overrightarrow{MB} = \left( 3; - \frac{5}{2}
ight) = \frac{1}{2}(6; - 5)

    \overset{ightarrow}{}MB:\left\{
\begin{matrix}
x = 5 + 6t \\
y = - 5t \\
\end{matrix} ight.\ .

    Ta có: N\left( 20;y_{N} ight) \in
BM\overset{ightarrow}{}\left\{ \begin{matrix}
20 = 5 + 6t \\
y_{N} = - 5t \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
t = \frac{5}{2} \\
y_{N} = - \frac{25}{2} \\
\end{matrix} ight.\ \overset{ightarrow}{}

    Chọn - \frac{25}{2}.

  • Câu 31: Thông hiểu

    Tính góc tạo bởi giữa hai đường thẳng d_{1}:2x + 2\sqrt{3}y + 5 = 0d_{2}:y - 6 = 0.

    Ta có

    \left\{ \begin{matrix}
d_{1}:2x + 2\sqrt{3}y + 5 = 0 ightarrow {\overrightarrow{n}}_{1} =
\left( 1;\sqrt{3} ight) \\
d_{2}:y - 6 = 0. ightarrow {\overrightarrow{n}}_{2} = (0;1) \\
\end{matrix} ight.

    \overset{\varphi = \left( d_{1};d_{2}
ight)}{ightarrow}\cos\varphi = \frac{\left| \sqrt{3}
ight|}{\sqrt{1 + 3}.\sqrt{0 + 1}} = \frac{\sqrt{3}}{2} ightarrow
\varphi = 30^{\circ}.

  • Câu 32: Nhận biết

    Cho phương trình x^{2} + y^{2} - 2ax - 2by + c = 0(1). Điều kiện để (1) là phương trình đường tròn là:

    Điều kiện để x^{2} + y^{2} - 2ax - 2by +
c = 0(1) là phương trình đường tròn là a^{2} + b^{2}\  > \ c.

  • Câu 33: Thông hiểu

    Tìm phương trình chính tắc của Hyperbol (H) mà hình chữ nhật cơ sở có một đỉnh là (2; - 3).

    Gọi (H):\frac{x^{2}}{a^{2}} -
\frac{y^{2}}{b^{2}} = 1. Tọa độ đỉnh của hình chữ nhật cơ sở là A_{1}( - a; - b), A_{2}(a; - b), A_{3}(a;b), A_{4}( - a;b).

    Hình chữ nhật cơ sở của (H) có một đỉnh là (2; - 3), suy ra \left\{ \begin{matrix}
a = 2 \\
b = 3 \\
\end{matrix} ight.. Phương trình chính tắc của (H)\frac{x^{2}}{4} - \frac{y^{2}}{9} =
1.

  • Câu 34: Nhận biết

    Elip (E):\frac{x^{2}}{36}+\frac{y^{2}}{9}=1 có độ dài trục lớn bằng:

     Ta có: a^2=36 \Rightarrow a=6 \Rightarrow 2a=12.

  • Câu 35: Nhận biết

    Xét vị trí tương đối của hai đường thẳng \left( d_{1} ight):2x - 3y + 1 =
0\left( d_{2} ight): - 4x +
6y - 1 = 0?

    Ta có: \frac{2}{- 4} = \frac{- 3}{6} eq
\frac{1}{- 1}

    Vậy hai đường thẳng đã cho song song với nhau.

  • Câu 36: Nhận biết

    Cho đường thẳng \Delta có phương trình 4x + 5y - 8 = 0. Xác định vectơ chỉ phương của \Delta?

    Đường thẳng \Delta:4x + 5y - 8 =
0 có vectơ pháp tuyến là \overrightarrow{n} = (4;5) nên có vectơ chỉ phương là \overrightarrow{u} = (5; -
4).

  • Câu 37: Thông hiểu

    Tìm điều kiện của tham số m để hai đường thẳng \left( d_{1} ight):mx + y - m - 1 =
0\left( d_{2} ight):x + my =
2 cắt nhau?

    Hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) cắt nhau khi và chỉ khi:

    \frac{m}{1} eq \frac{1}{m}
\Leftrightarrow m^{2} eq 1 \Leftrightarrow m eq \pm 1

    Vậy hai đường thẳng cắt nhau khi và chỉ khi m eq \pm 1.

  • Câu 38: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d_{1}:5x + 3y - 3 = 0d_{2}:5x + 3y + 7 = 0 song song nhau. Đường thẳng vừa song song và cách đều với d_{1},\ d_{2} là:

    d\left( M(x;y);d_{1} ight) = d\left(M(x;y);d_{2} ight)

    \Leftrightarrow \frac{|5x + 3y - 3|}{\sqrt{34}} =\frac{|5x + 3y + 7|}{\sqrt{34}} \Leftrightarrow 5x + 3y + 2 =0.

  • Câu 39: Vận dụng

    Đường tròn (C) đi qua điểm M(2; - 1) và tiếp xúc với hai trục tọa độ Ox,\ Oy có phương trình là:

    M(2; - 1) thuộc góc phần tư (IV) nên A(a; - a),\ \ a >
0.

    Khi đó: R = a^{2} = IM^{2} = (a - 2)^{2}
+ (a - 1)^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = 1 ightarrow I(1; - 1),R = 1 ightarrow (C):(x - 1)^{2} + (y +
1)^{2} = 1 \\
a = 5 ightarrow I(5; - 5),\ R = 5 ightarrow (C):(x - 5)^{2} + (y +
5)^{2} = 25 \\
\end{matrix} ight.\ .

  • Câu 40: Nhận biết

    Một vectơ pháp tuyến của đường thẳng d:2x - y - 1 = 0 là:

    Một vectơ pháp tuyến của đường thẳng d:2x
- y - 1 = 0\overrightarrow{n}(2; - 1).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo