Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Phương trình đường tròn (C):x^{2} + y^{2} + 2x - 6y - 15 = 0 có tâm và bán kính lần lượt là:

    Ta có: (C):x^{2} + y^{2} + 2x - 6y - 15 =
0

    \left\{ \begin{matrix}
- 2a = 2 \\
- 2b = - 6 \\
c = - 15 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 3 \\
c = - 15 \\
\end{matrix} ight.\  \Rightarrow a^{2} + b^{2} - c = 25 >
0

    Vậy phương trình đường tròn đã cho có tâm và bán kính lần lượt là: I( - 1;3),R = 5

  • Câu 2: Nhận biết

    Phương trình tham số của đường thẳng nào sau đây có vectơ chỉ phương \overrightarrow{u}=(1;3)

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 1 \hfill \\  y = 3t + 2 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;3} ight)

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 1 \hfill \\  y = 2t + 3 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;2} ight).

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 2 \hfill \\  y = t + 3 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;1} ight).

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 3 \hfill \\  y = 2t + 1 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;2} ight).

  • Câu 3: Thông hiểu

    Viết phương trình tham số của đường thẳng \Delta đi qua điểm B(5;4) và vuông góc với đường thẳng d:x - 2y + 5 = 0?

    d\bot\Delta nên vectơ chỉ phương của đường thẳng d là vectơ pháp tuyến của \Delta

    \overrightarrow{u_{d}} =
\overrightarrow{n_{\Delta}} = (2;1)

    Đường thẳng \Delta có vectơ pháp tuyến là: \overrightarrow{n} =
(2;1) và đi qua điểm B(5;4) là:

    2(x - 5) + 1(y - 4) = 0

    \Leftrightarrow 2x + y - 14 =
0.

  • Câu 4: Nhận biết

    Cho Hypebol (H) có phương trình chính tắc là \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1, với a,b > 0. Khi đó khẳng định nào sau đây đúng?

    Khẳng định đúng là: Nếu c^{2} = a^{2} +
b^{2} thì (H) có các tiêu điểm là F_{1}(c;0), F_{2}( - c;0).

  • Câu 5: Nhận biết

    Elip (E):\frac{x^{2}}{16}+y^{2}=4 có tổng độ dài trục lớn và trục bé bằng:

     Ta có: a^2=16,b^2=1 \Rightarrow a=4,b=1.

    Tổng độ dài trục lớn và bé là: 2a+2b=10.

  • Câu 6: Thông hiểu

    Cho đường tròn (C):(x - 1)^{2} + (y - 2)^{2} = 4 và đường thẳng \Delta:x - 2y + m = 0. Tìm giá trị của tham số m để \Delta không cắt (C)?

    Đường tròn (C) có tâm I(1; 2) và R =
\sqrt{5}

    Để \Delta không cắt (C) thì d(I;\Delta) > R

    \Leftrightarrow \frac{|1 - 2.2 +
m|}{\sqrt{1 + 4}} > \sqrt{5}

    \Leftrightarrow |m - 3| > 5
\Leftrightarrow \left\lbrack \begin{matrix}
m - 3 > 5 \\
m - 3 < - 5 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m < - 2 \\
m > 8 \\
\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
m < - 2 \\
m > 8 \\
\end{matrix} ight. thỏa mãn yêu cầu bài toán.

  • Câu 7: Nhận biết

    Một vectơ chỉ phương của đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) là:

    Đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là: \overrightarrow{u_{\Delta}} = (2; -
3)

  • Câu 8: Vận dụng

    Cho hypebol (H): \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 và đường thẳng \Delta: x+y=3. Tích các khoảng cách từ hai tiêu điểm của (H) đến \Delta bằng giá trị nào sau đây?

     Ta có: a=4,b=3 \Rightarrow c=\sqrt{a^2+b^2}=5. Suy ra 2 tiêu điểm F_1(-5;0),F_2(5;0).

    Khoảng cách từ F_2F_1 đến đường thẳng \Delta :x+y-3=0:

    d({F_2},\Delta ) = \frac{{\left| {5 + 0 - 3} ight|}}{{\sqrt {{1^2} + {1^2}} }} = \sqrt 2

    d({F_1},\Delta ) = \frac{{\left| { - 5 + 0 - 3} ight|}}{{\sqrt {{1^2} + {1^2}} }} = 4\sqrt 2

    Do đó \sqrt2 . 4\sqrt2=8.

  • Câu 9: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} ight. và hai điểm A(1;2), B( -
2;m). Tìm tất cả các giá trị của tham số m để AB nằm cùng phía đối với d.

    d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} ight.\ \overset{}{ightarrow}d:3x + y - 7 = 0. Khi đó điều kiện bài toán trở thành

    \left( 3x_{A} + y_{A} - 7 ight)\left(
3x_{B} + y_{B} - 7 ight) > 0 \Leftrightarrow - 2(m - 13) > 0
\Leftrightarrow m < 13.

  • Câu 10: Thông hiểu

    Viết phương trình tham số của đường thẳng d đi qua điểm M( - 3;5) và song song với đường phân giác của góc phần tư thứ nhất.

    Góc phần tư (I) : x - y =
0\overset{ightarrow}{}VTCP:\overrightarrow{u}(1;1) =
{\overrightarrow{u}}_{d}\overset{ightarrow}{}d:\left\{ \begin{matrix}
x = - 3 + t \\
y = 5 + t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 11: Vận dụng

    Nếu ba đường thẳng \ d_{1}:\ 2x + y–4 = 0, d_{2}:5x–2y + 3 = 0d_{3}:mx + 3y–2 = 0 đồng quy thì m nhận giá trị nào trong các giá trị sau?

    \left\{ \begin{matrix}
\ d_{1}:\ 2x + y–4 = 0 \\
d_{2}:5x–2y + 3 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = \frac{5}{9} \\
y = \frac{26}{9} \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A\left(
\frac{5}{9};\frac{26}{9} ight) \in d_{3} ightarrow \frac{5m}{9} + \frac{26}{3} - 2 = 0
\Leftrightarrow m = - 12.

  • Câu 12: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA\left( \frac{7}{4};3 ight), B(1;2)C(
- 4;3). Phương trình đường phân giác trong của góc A là:

    \left\{ \begin{matrix}
A\left( \frac{7}{4};3 ight),\ B(1;2) ightarrow AB:4x - 3y + 2 = 0 \\
A\left( \frac{7}{4};3 ight),\ C( - 4;3) ightarrow AC:y - 3 = 0 \\
\end{matrix} ight.\ .

    Suy ra các đường phân giác góc A là:

    \begin{matrix}
\frac{|4x - 3y + 2|}{5} = \frac{|y - 3|}{1} \Leftrightarrow \left\lbrack
\begin{matrix}
4x + 2y - 13 = 0 ightarrow f(x;y) = 4x + 2y - 13 \\
4x - 8y + 17 = 0 \\
\end{matrix} ight.\  \\
\\
\end{matrix}

    ightarrow \left\{ \begin{matrix}
f\left( B(1;2) ight) = - 5 < 0 \\
f\left( C( - 4;3) ight) = - 23 < 0 \\
\end{matrix} ight.\ .

    Suy ra đường phân giác trong góc A4x - 8y
+ 17 = 0.

  • Câu 13: Nhận biết

    Điểm nào sau đây thuộc đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
\end{matrix} ight. ?

    M(2;–1)\overset{x = 2,\ y = - 1
ightarrow d}{ightarrow}\left\{ \begin{matrix}
2 = 1 + 2t \\
- 1 = 3 - t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = \frac{1}{2} \\
t = 4 \\
\end{matrix} ight.\ \ \ (VN) ightarrow M\boxed{\in}d.

    N(–7;0)\overset{x = - 7,\ y = 0
ightarrow d}{ightarrow}\left\{ \begin{matrix}
- 7 = 1 + 2t \\
0 = 3 - t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = - 4 \\
t = 3 \\
\end{matrix} ight.\ \ (VN) ightarrow N\boxed{\in}d.

    P(3;5)\overset{x = 3,\ y = 5 ightarrow
d}{ightarrow}\left\{ \begin{matrix}
3 = 1 + 2t \\
5 = 3 - t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = 1 \\
t = - 2 \\
\end{matrix} ight.\ \ (VN) ightarrow P\boxed{\in}d.

    Q(3;\ 2)\overset{x = 3,\ y = 2 \in
d}{ightarrow}\left\{ \begin{matrix}
3 = 1 + 2t \\
2 = 3 - t \\
\end{matrix} ight.\  \Leftrightarrow t = 1 ightarrow Q \in
d.Chọn Q(3;\ 2).

  • Câu 14: Thông hiểu

    Cho phương trình {x^2} + {y^2} - 2mx - 4(m - 2)y + 6 - m = 0. Điều kiện của m để phương trình đã cho là một phương trình đường tròn là:

    Từ phương trình đường tròn ta có:

    I\left( {m;2m - 4} ight)

    Điều kiện để phương trình đã cho là phương trình đường tròn là:

    \begin{matrix}  {m^2} + 4{\left( {m - 2} ight)^2} - 6 + m > 0 \hfill \\   \Leftrightarrow {m^2} + 4{m^2} - 16m + 16 - 6 + m > 0 \hfill \\   \Leftrightarrow 5{m^2} - 15m + 10 > 0 \hfill \\   \Leftrightarrow m \in ( - \infty ;1) \cup (2; + \infty ) \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu

    Tìm m để hai đường thẳng d_1d_2 vuông góc với nhau: d_1:\left\{\begin{matrix}x=-1+mt\\ y=-2-2t\end{matrix}ight.d_2:\left\{\begin{matrix}x=2-2t'\\ y=-8+(4+m)t'\end{matrix}ight.

     Ta có: {\overrightarrow u _1}(m; - 2);\overrightarrow {{u_2}} ( - 2;(m + 4)).

    Để hai đường thẳng vuông góc thì: {\overrightarrow u _1}.\overrightarrow {{u_2}}  = 0 \Leftrightarrow m( - 2) +  - 2(m + 4) = 0. Phương tình này vô nghiệm nên không tồn tại m

  • Câu 16: Thông hiểu

    Tính góc giữa hai đường thẳng \left( d_{1} ight):2x - y - 10 = 0\left( d_{2} ight):x - 3y + 9 =
0

    Ta có:

    Vectơ pháp tuyến của hai đường thẳng lần lượt là \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (2; - 1) \\
\overrightarrow{n_{2}} = (1; - 3) \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 2.1 + ( - 1).( - 3) = 5
\\
\left| \overrightarrow{n_{1}} ight| = \sqrt{2^{2} + ( - 1)^{2}} =
\sqrt{5} \\
\left| \overrightarrow{n_{2}} ight| = \sqrt{1^{2} + ( - 3)^{2}} =
\sqrt{10} \\
\end{matrix} ight.

    Suy ra \cos\left( d_{1};d_{2} ight) =
\frac{\left| \overrightarrow{n_{1}}.\overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight|.\left|
\overrightarrow{n_{2}} ight|} = \frac{\sqrt{2}}{2}

    \Rightarrow \widehat{\left( d_{1};d_{2}
ight)} = 45^{0}

  • Câu 17: Vận dụng

    Dây cung của elip (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1 (0 < b < a) vuông góc với trục lớn tại tiêu điểm có độ dài bằng:

    Hai tiêu điểm có tọa độ lần lượt là F_{1}( - \ c;\ 0),\ \ F_{2}(c;\ 0).

    Đường thẳng chứa dây cung vuông góc với trục lớn (trục hoành ) tại tiêu điểm F có phương trình là \Delta:x = c.

    Suy ra \Delta \cap (E) \Leftrightarrow
\left\{ \begin{matrix}
\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 \\
x = c \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = c \\
\frac{c^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = c \\
y^{2} = \frac{b^{2}\left( a^{2} - c^{2} ight)}{a^{2}} =
\frac{b^{4}}{a^{2}} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = c \\
y = \pm \frac{b^{2}}{a} \\
\end{matrix} ight.

    Vậy tọa độ giao điểm của \Delta(E)M\left( c;\ \frac{b^{2}}{a} ight),\ \ N\left(
c;\  - \frac{b^{2}}{a} ight) \Rightarrow MN =
\frac{2b^{2}}{a}.

  • Câu 18: Nhận biết

    Khoảng cách từ điểm M( –1; 1) đến đường thẳng ∆: 3x – 4y – 3 = 0 bằng:

     Ta có: {d_{(M,\Delta )}} = \frac{{\left| {3. - 1 - 4.1 - 3} ight|}}{{\sqrt {{3^2} + {{( - 4)}^2}} }} = 2.

  • Câu 19: Nhận biết

    Đường thẳng nào sau đây song song với đường thẳng (d):2x + 3y - 1 = 0?

    Đường thẳng (d):2x + 3y - 1 = 0 song song với đường thẳng 2x + 3y + 5 =
0\frac{2}{2} = \frac{3}{3} eq
\frac{- 1}{5}.

  • Câu 20: Vận dụng

    Cho đường tròn (C):(x + 1)^{2} + (y - 1)^{2} = 25 và điểm M(9; - 4). Gọi \Delta là tiếp tuyến của (C), biết \Delta đi qua M và không song song với các trục tọa độ. Khi đó khoảng cách từ điểm P(6;5) đến \Delta bằng:

    Đường tròn (C) có tâm I( - 1;1),\ R =
5 và tiếp tuyến có dạng

    \Delta:ax + by - 9a + 4b = 0\ \ \left(abeq0 ight).

    Ta có: d\lbrack I;\Deltabrack = R
\Leftrightarrow \frac{|10a - 5b|}{\sqrt{a^{2} + b^{2}}} = 5
\Leftrightarrow a(3a - 4b) = 0

    \Leftrightarrow 3a = 4b ightarrow a =
4,\ b = 3 ightarrow \Delta:4x + 3y - 24 = 0.

    d\lbrack P;\Deltabrack = \frac{|24 + 15
- 24|}{5} = 3.

  • Câu 21: Vận dụng

    Viết phương trình tổng quát của đường thẳng \Delta đi qua giao điểm của hai đường thẳng d_{1}:x + 3y - 1 = 0, d_{2}:x - 3y - 5 = 0 và vuông góc với đường thẳng d_{3}:2x - y + 7 =
0.

    \left\{ \begin{matrix}
d_{1}:x + 3y - 1 = 0 \\
d_{2}:x - 3y - 5 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = - \frac{2}{3} \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A\left( 3; -
\frac{2}{3} ight). Ta có

    \left\{ \begin{matrix}
A \in d \\
d\bot d_{3}:2x - y + 7 = 0 \\
\end{matrix} ight. ightarrow
\left\{ \begin{matrix}
A \in d \\
d:x + 2y + c = 0 \\
\end{matrix} ight. ightarrow
3 + 2.\left( - \frac{2}{3} ight) + c = 0 \Leftrightarrow c = -
\frac{5}{3}.

    Vậy d:x + 2y - \frac{5}{3} = 0
\Leftrightarrow d:3x + 6y - 5 = 0.

  • Câu 22: Thông hiểu

    Cho elip (E) có độ dài trục lớn gấp hai lần độ dài trục nhỏ và tiêu cự bằng 6. Viết phương

    trình của (E)?

    Ta có: a = 2b,2c = 6 \Rightarrow c =
3.

    a^{2} - b^{2} = c^{2} \Rightarrow
4b^{2} - b^{2} = 9 \Rightarrow \left\{ \begin{matrix}
b^{2} = 3 \\
a^{2} = 12 \\
\end{matrix} ight..

    Vậy phương trình (E): \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{12}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{3}}\mathbf{=}\mathbf{1}.

  • Câu 23: Thông hiểu

    Cho phương trình Hypebol \frac{x^{2}}{16}-\frac{y^{2}}{9}=1. Độ dài trục thực của Hypebol đó là

    Ta có: \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 ta có: a = 4; b = 3

    => Độ dài trục thực của Hypebol đó là 2a = 8

  • Câu 24: Thông hiểu

    Biết parabol (P) có phương trình đường chuẩn là \Delta:x + 2 = 0. Phương trình chính tắc của (P) là:

    Gọi phương trình chính tắc của Parabol là: (P):y^{2} = 2px

    Parabol có phương trình đường chuẩn là: \Delta:x + 2 = 0 nên \frac{p}{2} = 2 \Rightarrow p = 4

    Suy ra phương trình chính tắc của parabol là: y^{2} = 8x.

  • Câu 25: Vận dụng

    Cho đường thẳng (\Delta):x + (a - 1)y - a = 0 và đường tròn (C):x^{2} + y^{2} - 2x + 4y + 2 =
0. Tìm điều kiện của tham số a để (d) tiếp xúc với (C)?

    Đường tròn (C) có tâm I(1; - 2) và bán kính R = \sqrt{1^{2} + 2^{2} - 2} =
\sqrt{3}

    Để đường thẳng (\Delta)là tiếp tuyến của đường tròn (C) thì

    d(I;\Delta) = R \Leftrightarrow
\frac{\left| 1 - 2(a - 1) - a ight|}{\sqrt{1 + (a - 1)^{2}}} =
\sqrt{3}

    \Leftrightarrow \frac{|3 -
3a|}{\sqrt{a^{2} - 2a + 2}} = \sqrt{3}

    \Leftrightarrow |3 - 3a| =
\sqrt{3}.\sqrt{a^{2} - 2a + 2}

    \Leftrightarrow (3 - 3a)^{2} = 3a^{2} -
6a + 6

    \Leftrightarrow 2a^{2} - 4a + 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}a = 1 + \dfrac{1}{\sqrt{2}} \\a = 1 - \dfrac{1}{\sqrt{2}} \\\end{matrix} ight.

    Vậy a = 1 \pm \frac{1}{\sqrt{2}} thỏa mãn yêu cầu bài toán.

  • Câu 26: Nhận biết

    Phương trình chính tắc của đường tròn tâm I(0; - 1) và bán kính R = 5 là:

    Phương trình đường tròn có dạng (x -
a)^{2} + (y - b)^{2} = R^{2}

    Vì phương trình đường tròn cần tìm có tâm I(0; - 1) và bán kính R = 5 nên phương trình cần tìm là: x^{2} + (y + 1)^{2} = 25

  • Câu 27: Nhận biết

    Đường tròn (C):x^{2} + y^{2} - 4x + 6y - 12 = 0 có tâm I và bán kính R lần lượt là:

    \begin{matrix}
(C):x^{2} + y^{2} - 4x + 6y - 12 = 0 ightarrow a = 2,\ b = - 3,\ c = -
12 ightarrow I(2; - 3). \\
R = \sqrt{4 + 9 + 12} = 5.\  \\
\end{matrix}

  • Câu 28: Thông hiểu

    Tìm m để đường thẳng \left( d_{1} ight):x - my + 5 = 0\left( d_{2} ight): - 3x + y - 1 =
0 tạo với nhau một góc 90^{0}?

    Ta có:

    Vectơ pháp tuyến của đường thẳng \left(
d_{1} ight):x - my + 5 = 0 là: \overrightarrow{n_{1}} = (1; - m)

    Vectơ pháp tuyến của đường thẳng \left(
d_{2} ight): - 3x + y - 1 = 0 là: \overrightarrow{n_{2}} = ( - 3;1)

    Hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) vuông góc với nhau khi và chỉ khi:

    \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 0
\Leftrightarrow - 3 - m = 0

    \Leftrightarrow m = - 3

    Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi m = - 3.

  • Câu 29: Nhận biết

    Khoảng cách từ điểm A(0;1) đến đường thẳng (\Delta):5x - 12y - 1 = 0 bằng:

    Áp dụng công thức tính khoảng cách từ một điểm đến một đường thẳng ta có:

    d(A;\Delta) = \frac{|5.1 - 12.1 -
1|}{\sqrt{5^{2} + ( - 12)^{2}}} = 1

    Vậy khoảng cách từ điểm A đến đường thẳng đã cho bằng 1.

  • Câu 30: Nhận biết

    Cho Hypebol (H) có phương trình chính tắc là \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 , với a, b > 0. Khi đó khẳng định nào sau đây sai?

     Đáp án sai là đáp án chứa độ dài trục lớn là 2b

  • Câu 31: Nhận biết

    Một đường thẳng có bao nhiêu vectơ pháp tuyến?

     Một đường thẳng có vô số vecto pháp tuyến. Các vecto đó cùng phương với nhau.

  • Câu 33: Nhận biết

    Xét vị trí tương đối của hai đường thẳng: d_1: x – 2y + 2 = 0d_2: – 3x + 6y – 10 = 0.

     Vì \frac{1}{{ - 3}} = \frac{{ - 2}}{6} eq\frac2{-10} nên hai đường thẳng song song.

  • Câu 34: Thông hiểu

    Tìm phương trình chính tắc của hyperbol nếu nó có tiêu cự bằng 12 và độ dài trục thực bằng 10.

    Ta có : \left\{ \begin{matrix}
2c = 12 \\
2a = 10 \\
b^{2} = c^{2} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
c = 6 \\
a = 5 \\
b^{2} = 11 \\
\end{matrix} ight..

    Phương trình chính tắc (H):\frac{x^{2}}{25} - \frac{y^{2}}{11} =
1.

  • Câu 35: Nhận biết

    Cho đường thẳng 2x + y - 3 = 0. Điểm nào dưới đây thuộc đường thẳng đã cho?

    Thay x = 0 vào đường thẳng 2x + y - 3 = 0 suy ra y = 3

    Vậy điểm N(0;3) thuộc đường thẳng 2x + y - 3 = 0.

  • Câu 36: Nhận biết

    Khái niệm nào sau đây định nghĩa về hypebol?

    Cho F_{1},\ F_{2} cố định với F_{1}F_{2} = 2c,\ (c > 0). Hypebol (H) là tập hợp điểm M sao cho \left| MF_{1} - MF_{2} ight| = 2a với a là một số không đổi và a < c.

  • Câu 37: Thông hiểu

    Tìm tất cả các giá trị của m để hai đường thẳng \Delta_{1}:2x - 3my + 10 = 0\Delta_{2}:mx + 4y + 1 = 0 cắt nhau.

    \left\{ \begin{matrix}
\Delta_{1}:2x - 3my + 10 = 0 \\
\Delta_{2}:mx + 4y + 1 = 0 \\
\end{matrix} ight.

    ightarrow \left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}\Delta_{1}:x + 5 = 0 \\\Delta_{2}:4y + 1 = 0 \\\end{matrix} ight.\  ightarrow m = 0\ \ (TM) \\meq\overset{\Delta_{1} \cap \Delta_{2} =M}{ightarrow}\frac{2}{m}eq\frac{- 3m}{4} \Leftrightarrow\forall meq 0 \\\end{matrix} ight.\ .Chọn đáp án này với mọi m.

  • Câu 38: Nhận biết

    Xác định phương trình tham số của đường thẳng d. Biết rằng d đi qua điểm A(1;2) và có một vectơ chỉ phương là \overrightarrow{u} =
(2022;2023)?

    Đường thẳng đi qua điểm M\left(
x_{0};y_{0} ight) và nhận \overrightarrow{u} = \left( u_{1};u_{2}
ight) làm vectơ chỉ phương sẽ có phương trình tham số là: \left\{ \begin{matrix}
x = x_{0} + u_{1}t \\
y = y_{0} + u_{2}t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

    Áp dụng với dữ kiện bài toan trên ta được: \left\{ \begin{matrix}
x = 1 + 2022t \\
y = 2 + 2023t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 39: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;4), B(3;2)C(7;3). Viết phương trình tham số của đường trung tuyến CM của tam giác

    \left\{ \begin{matrix}
\mathbf{A}\left( \mathbf{1;4} ight) \\
\mathbf{B}\left( \mathbf{3;2} ight) \\
\end{matrix} ight.\ \mathbf{ightarrow M}\left( \mathbf{2;3}
ight)\mathbf{ightarrow}\overrightarrow{\mathbf{MC}}\mathbf{=}\left(
\mathbf{5;0} ight)\mathbf{=}\mathbf{5}\left( \mathbf{1;0}
ight)\mathbf{ightarrow CM}\mathbf{:}\left\{ \begin{matrix}
\mathbf{x =}\mathbf{7}\mathbf{+ t} \\
\mathbf{y =}\mathbf{3} \\
\end{matrix} ight.\ \left( \mathbf{t}\mathbb{\in R}
ight)\mathbf{.}

  • Câu 40: Nhận biết

    Phương trình đường tròn (C) có tâm I(
- 1;2) và bán kinh R = 6 là:

    Ta có: (C):\left\{ \begin{matrix}
I( - 1;2) \\
R = 6 \\
\end{matrix} ight.\  \Rightarrow (C):(x + 1)^{2} + (y - 2)^{2} =
36

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 4 lượt xem
Sắp xếp theo