Tìm
để hai đường thẳng
và
vuông góc với nhau?
Ta có:
Tìm
để hai đường thẳng
và
vuông góc với nhau?
Ta có:
Cho ba đường thẳng
,
,
. Phương trình đường thẳng
đi qua giao điểm của
và
, và song song với
là:
Ta có:
Vậy
Trong mặt phẳng tọa độ
, cho tọa độ hai điểm
. Khi đó đường tròn
đường kính
có phương trình là:
Ta có: là trung điểm của đoạn thẳng
.
Khi đó đường tròn có tâm
và bán kính
Suy ra phương trình đường tròn đường tròn có phương trình là:
Trong mặt phẳng tọa độ
, cho đường thẳng
. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng
?
Ta có: Vectơ pháp tuyến của đường thẳng là:
.
Đường tròn
có tâm
và bán kính
lần lượt là:
Ta có:
Cho tọa độ hai điểm
. Viết phương trình chính tắc của elip có tâm là gốc tọa độ và đi qua hai điểm
?
Gọi phương trình chính tắc của elip là:
Do elip đi qua hai điểm nên ta có hệ phương trình:
Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là:
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng
?
Vectơ chỉ phương của đường thẳng trên là: .
Trong mặt phẳng Oxy, điểm
nằm trên đường tròn
sao cho độ dài đoạn thẳng OM là ngắn nhất. Hoành độ điểm
là:
Đường tròn có tâm
và bán kính
.
Phương trình đường thẳng OI đi qua và nhận
làm VTCP là:
.
Ta có:
Để OM ngắn nhất
Dấu bằng xảy ra .
Phương trình tham số của đường thẳng nào sau đây có vectơ chỉ phương ![]()
Đường thẳng có phương trình tham số có vectơ chỉ phương là
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Elip có một tiêu điểm
và tích độ dài trục lớn với trục bé bằng
. Phương trình chính tắc của elip là:
Gọi (E) có dạng .
Theo giả thiết ta có: .
Vậy (E) cần tìm là
Trong mặt phẳng
cho hai điểm
. Viết phương trình đường tròn
đi qua hai điểm
, biết rằng tâm đường tròn thuộc trục hoành?
Gọi I là tâm đường tròn
Tâm đường tròn thuộc trục hoành nên
Đường tròn đi qua hai điểm nên ta có:
Vậy đường tròn có tâm
và bán kính
Vậy phương trình đường tròn là:
Phương trình tham số của đường thẳng
đi qua hai điểm
và
là:
Phương trình tham số của đường thẳng AB đi qua điểm và nhận
làm vectơ chỉ phương.
Vậy phương trình cần tìm là: .
Viết phương trình tiếp tuyến
của đường tròn
, biết tiếp tuyến đi qua điểm
.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có:
Nếu ba đường thẳng
,
và
đồng quy thì
nhận giá trị nào trong các giá trị sau?
Khoảng cách từ giao điểm của hai đường thẳng
và
đến đường thẳng
bằng:
Tìm phương trình chính tắc của hyperbol nếu nó có tiêu cự bằng
và độ dài trục thực bằng
.
Ta có : .
Phương trình chính tắc
Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Hypebol?
Phương trình Hypebol có dạng
Vậy phương trình cần tìm là .
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Loại đáp án vì không có dạng
Xét đáp án
loại.
Xét đáp án
loại.
Xét đáp án
Chọn đáp án này.
Dạng chính tắc của hypebol là
Dạng chính tắc của hypebol là .
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây đúng?
Khẳng định đúng là: Nếu thì
có các tiêu điểm là
,
.
Phương trình đường tròn
có tâm
và bán kinh
là:
Ta có:
Phương trình tổng quát của đường thẳng đi qua hai điểm A(3 ; – 1) và B(1 ; 5) là:
Ta có: .
Phương trình tổng quát của :
.
Cho đường thẳng
và đường thẳng
. Tính góc hợp bởi hai đường thẳng?
Vectơ chỉ phương của là:
Vectơ chỉ phương của là:
Ta có:
Vậy góc hợp bởi hai đường thẳng đã cho bằng .
Cho phương trình
. Với giá trị nào của
để
là phương trình đường tròn có bán kính nhỏ nhất?
Ta có:
Phương trình chính tắc của đường tròn tâm
và bán kính
là:
Phương trình đường tròn có dạng
Vì phương trình đường tròn cần tìm có tâm và bán kính
nên phương trình cần tìm là:
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
với
. Giả sử
là góc hợp hai đường thẳng đã cho. Chọn kết luận đúng?
Góc giữa hai đường thẳng và
xác định bởi công thức:
Cho hyperbol
có hai tiêu điểm là
. Tìm trên một nhánh của
tọa độ hai điểm
. Biết rằng
là tam giác đều.
Ta có :
Gọi (Do
đối xứng với nhau qua
)
đều
. Thay vào
ta có:
Vậy ,
.
Trong mặt phẳng
, cho điểm
và elip
.
là
điểm thuộc
sao cho
đều, biết tọa độ của
và
có tung độ âm. Tính tổng
.

Nhận xét: Điểm là đỉnh của elip
điều kiện cần để
đều đó là
đối xứng
Nhau qua .Suy ra
là giao điểm của đường thẳng
và elip
.
+) Ta có elip
.
+) Theo giả thiết có tung độ âm nên tọa độ của
(điều kiện
do
)
+) Ta có và
+) đều
.
Đường elip
có tiêu cự bằng
Ta có: ,
nên
.
Tiêu cự của elip là .
Công thức nào dưới đây là công thức tính khoảng cách từ một điểm
đến đường thẳng
?
Công thức tính khoảng cách từ một điểm đến đường thẳng
là:
Trong mặt phẳng tọa độ
, cho tọa độ điểm
và hai đường thẳng
;
. Một đường tròn
có tâm
thuộc đường thẳng
, đi qua điểm
và tiếp xúc với
. Kết luận nào sau đây đúng?
Ta có:
Lại có đường tròn tâm I đi qua P và tiếp xúc với đường thẳng nên
Vậy khẳng định đúng là: .
Cho phương trình Elip
. Tọa độ đỉnh
và
của Elip đó là:
Ta có: => a = 4; b = 2
=> Tọa độ các đỉnh của elip là:
Phương trình tổng quát của đường thẳng
đi qua điểm
và có vectơ pháp tuyến
là:
Đường thẳng đi qua điểm
và nhận
là vectơ pháp tuyến có phương trình tổng quát là:
Vậy phương trình tổng quát của đường thẳng là .
Trong các phương trình sau đây, phương trình nào là phương trình tham số của đường thẳng?
Phương trình tham số của đường thẳng là:
Gọi
là tọa độ giao điểm hai đường thẳng
và
. Tính khoảng cách từ
đến đường thẳng ![]()
Vì E là giao điểm hai đường thẳng và
nên tọa độ điểm E là nghiệm của hệ phương trình:
Khi đó khoảng cách từ điểm E đến đường thẳng là:
Vậy khoảng cách cần tìm bằng .
Cho hai đường thẳng
và
.
Khẳng định nào sau đây là đúng:
Ta có:
Chọn
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x + 3y + 5 = 0 và A(1; –3). Khoảng cách từ điểm A đến đường thẳng d là:
Ta có: .
Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm
và
?
Kiểm tra đường thẳng nào không chứa loại.
(Có thể kiểm tra đường thẳng nào không đi qua điểm ).
Trong mặt phẳng tọa độ
, cho đường thẳng
và tọa độ một điểm
. Ta kí hiệu khoảng cách từ điểm
đến đường thẳng
là
. Kết luận nào sau đây đúng?
Khoảng cách từ điểm A đến đường thẳng được tính bởi công thức:
Vậy kết luận đúng là: “”.