Hyperbol
có tâm sai là:
Ta có :
.
Hyperbol
có tâm sai là:
Ta có :
.
Đường tròn
đi qua hai điểm
và tiếp xúc với đường thẳng
. Viết phương trình đường tròn
, biết tâm của
có tọa độ là những số nguyên.
đoạn AB có trung điểm
trung trực của đoạn AB là
Ta có:
Vậy phương trình đường tròn là:
Lập phương trình chính tắc của Elip đi qua điểm
và có tâm sai
.
Phương trình chính tắc của Elip có dạng: .
Elip đi qua điểm nên
.
Tâm sai .
.
Vậy phương trình chính tắc của Elip cần tìm là .
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Xét phương trình dạng : lần lượt tính các hệ số
và kiểm tra điều kiện
Các phương trình không có dạng đã nêu loại các đáp án
và
.
Đáp án không thỏa mãn điều kiện
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
và
. Chiều cao của tam giác kẻ từ đỉnh
bằng:
Tọa độ tâm
và bán kính
của đường tròn
là:
Cho đường thẳng
và điểm
. Viết phương trình đường thẳng qua điểm
và vuông góc với
?
Một vectơ chỉ phương của là:
Vậy phương trình đường thẳng đi qua và vuông góc với
là:
Vậy phương trình cần tìm là .
Đường tròn
đi qua hai điểm
,
và có tâm
thuộc trục hoành có phương trình là:
.
Vậy đường tròn cần tìm là:
Phương trình tổng quát của đường thẳng đi qua hai điểm A(3 ; – 1) và B(1 ; 5) là:
Ta có: .
Phương trình tổng quát của :
.
Tọa độ tâm
và bán kính
của đường tròn
là:
Điểm nào sau đây thuộc đường thẳng
?
Chọn
.
Đường thẳng
đi qua điểm
và song song với đường thẳng
có phương trình tổng quát là:
Vậy
Trong mặt phẳng với hệ tọa độ
, cho hai đường thẳng
và
. Phương trình đường phân giác góc nhọn tạo bởi hai đường thẳng
và
là:
Các đường phân giác của các góc tạo bởi và
là:
Gọi
Gọi là hình chiếu của
lên
Ta có: suy ra
Suy ra là đường phân giác góc tù, suy ra đường phân giác góc nhọn là
.
Cho Parabol
có phương trình
. Tìm đường chuẩn của
.
Từ phương trình của , ta có:
nên
.
Suy ra có tiêu điểm là
và đường chuẩn là
.
Tìm tất cả các giá trị của tham số
để hai đường thẳng
và
cắt nhau tại một điểm thuộc trục tung.
Cho đường thẳng
. Điểm nào dưới đây thuộc đường thẳng đã cho?
Thay vào đường thẳng
suy ra
Vậy điểm thuộc đường thẳng
.
Cho elip
có độ dài trục lớn gấp hai lần độ dài trục nhỏ và tiêu cự bằng
. Viết phương
trình của
?
Ta có:
Mà .
Vậy phương trình :
.
Góc tạo bởi hai đường thẳng nào dưới đây bằng 90°.
Xét hai đường thẳng và
.
Ta có: .
Mà nên suy ra hai đường thẳng vuông góc với nhau.
Cho đường tròn
, hỏi độ dài đường kính bằng bao nhiêu?
Ta có tâm . Suy ra bán kính
.
Do đó đường kính bằng .
Trong mặt phẳng hệ trục tọa độ
, cho đường thẳng
cắt hai trục
lần lượt tại điểm
với
. Khi đó phương trình đường thẳng
là:
Phương trình đường thẳng d là: .
Trong mặt phẳng
cho các điểm
. Phương trình đường tròn đi qua ba điểm là:
Gọi phương trình đường tròn là: với
Vì đường tròn đi qua ba điểm nên ta có hệ phương trình:
Vậy phương trình đường tròn cần tìm là: .
Hypebol
có hai tiêu điểm là:
Ta có : Các tiêu điểm là
,
Đường tròn
có tâm
thuộc đường thẳng
và tiếp xúc với hai đường thẳng
có phương trình là:
Ta có:
Vậy phương trình các đường tròn:
hoặc
Cho parabol (P) có đường chuẩn là đường thẳng
. Điểm M thuộc (P) sao cho khoảng cách từ M đến tiêu điểm của parabol (P) bằng 6. Tọa độ điểm M là:
Phương trình đường chuẩn
=>
=>
Từ đó ta thu được phương trình parabol
Tiêu điểm F của (P) là
Giả sử điểm là điểm thuộc (P).
=>
Với và
ta có:
Với
Vậy tọa độ điểm M là:
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Ta có:
Viết phương trình tổng quát của đường thẳng
đi qua giao điểm của hai đường thẳng
,
và vuông góc với đường thẳng
.
Ta có
Vậy
Phương trình chính tắc của hypebol có
gấp đôi
và đi qua điểm
là:
Ta có: .
Phương trình chính tắc: .
Vì thuộc hypebol nên:
.
Do đó, phương trình chính tắc: .
Cho Elip
và một điểm
nằm trên
Giải sử điểm
có hoành độ bằng 1. Hãy tính khoảng cách từ M đến hai tiêu điểm của (E).
Giả sử phương trình Ta có :
Gọi lần lượt là hai tiêu điểm của Elip
,
, ta có :
.
Điểm nào dưới đây thuộc đường thẳng
?
Thay tọa độ các điểm vào đường thẳng ta thấy điểm thuộc đường thẳng đã cho là
.
Elip
có độ dài trục bé bằng:
Ta có: .
Độ dài trục bé .
Xác định vị trí tương đối của hai đường thẳng
và
?
Ta có: suy ra hai đường thẳng (d) và (d’) song song với nhau.
Trong mặt phẳng tọa độ
, viết phương trình chính tắc của elip biết một đỉnh là
và một tiêu điểm là
.
Ta có
Vậy .
Cho đường thẳng
và đường thẳng
. Tính góc hợp bởi hai đường thẳng?
Vectơ chỉ phương của là:
Vectơ chỉ phương của là:
Ta có:
Vậy góc hợp bởi hai đường thẳng đã cho bằng .
Cho đường tròn
. Viết phương trình tiếp tuyến của đường tròn
biết tiếp tuyến đi qua điểm
?
Đường tròn (C) có tâm
Phương trình tiếp tuyến của tại điểm
là:
Vậy phương trình tiếp tuyến của đường tròn tại là:
Xác định vị trí tương đối của hai đường thẳng
và ![]()
cắt nhau nhưng không vuông góc.
Đường thẳng
đi qua điểm nào sau đây?
Đặt
Chọn
Tính góc tạo bởi giữa hai đường thẳng:
và
.
Ta có: . Suy ra góc giữa hai đường thẳng bằng
.
Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm
và
?
Kiểm tra đường thẳng nào không chứa loại.
(Có thể kiểm tra đường thẳng nào không đi qua điểm ).
Trong mặt phẳng
, cho tam giác
có tọa độ các điểm
. Gọi
là tâm đường tròn ngoại tiếp tam giác
. Xác định giá trị biểu thức
?
Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên IA = IB = IC
Ta có:
Từ đó ta suy ra hệ phương trình: