Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong các phương trình sau, phương trình nào là phương trình đường tròn?

    Phương trình x^{2} + y^{2} + 2x - 4y + 9
= 0 có dạng x^{2} + y^{2} - 2ax -
2by + c = 0 với a = - 1;b = 2;c =
9

    Ta có: a^{2} + b^{2} - c = 1 + 4 - 9 <
0

    Vậy phương trình x^{2} + y^{2} + 2x - 4y
+ 9 = 0 không là phương trình đường tròn.

    Phương trình x^{2} + y^{2} + 6x + 4y + 13
= 0 có dạng x^{2} + y^{2} - 2ax -
2by + c = 0 với a = 3;b = 2;c = -
13

    Ta có: a^{2} + b^{2} - c = 0

    Vậy phương trình x^{2} + y^{2} + 6x + 4y
+ 13 = 0 không là phương trình đường tròn.

    Ta có:

    2x^{2} + 2y^{2} - 6x - 4y - 1 =
0

    \Leftrightarrow x^{2} + y^{2} - 3x - 2y
- \frac{1}{2} = 0

    \Leftrightarrow \left( x - \frac{3}{2}
ight)^{2} + (y - 1)^{2} = \frac{5}{2}

    Vậy đường tròn có bán kính I\left(
\frac{3}{2};1 ight) và bán kính R
= \frac{\sqrt{10}}{2}

    Phương trình 2x^{2} + y^{2} + 2x - 3y + 9
= 0 không phải là phương trình đường tròn vì hệ số của x^{2};y^{2} khác nhau.

  • Câu 2: Vận dụng

    Tìm m để hai đường thẳng d_{1}:3x + 4y + 10 =
0d_{2}:(2m - 1)x + m^{2}y + 10
= 0 trùng nhau?

    \left\{ \begin{matrix}
d_{2}:(2m - 1)x + m^{2}y + 10 = 0 \\
d_{1}:3x + 4y + 10 = 0 \\
\end{matrix} ight.

    \overset{d_{1} \equiv
d_{2}}{ightarrow}\frac{2m - 1}{3} = \frac{m^{2}}{4} =
\frac{10}{10}

    \Leftrightarrow \left\{ \begin{matrix}
2m - 1 = 3 \\
m^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow m = 2.

  • Câu 3: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 1 + t \\
y = - 2 - 2t \\
\end{matrix} ight.d_{2}:\left\{ \begin{matrix}
x = 2 - 2t' \\
y = - 8 + 4t' \\
\end{matrix} ight..

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = - 1 + t \\
y = - 2 - 2t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{u}}_{1} = (1; - 2)
\\
d_{2}:\left\{ \begin{matrix}
x = 2 - 2t' \\
y = - 8 + 4t' \\
\end{matrix} ight.\  ightarrow B(2; - 8) \in d_{2},\ \
{\overrightarrow{u}}_{2} = ( - 2;4) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{1}{- 2} = \frac{- 2}{4} \\
B \in d_{1} \leftrightarrow t = 3 \\
\end{matrix} ight.\  ightarrow d_{1} \equiv d_{2}.

  • Câu 4: Thông hiểu

    Trong mặt phẳng Oxy cho các điểm A( - 1;1),B(3;1),C(1;3). Phương trình đường tròn đi qua ba điểm đã cho là:

    Gọi phương trình đường tròn là: (C):x^{2}
+ y^{2} - 2ax - 2by + c = 0 với a^{2} + b^{2} - c > 0

    Vì đường tròn đi qua ba điểm A( -
1;1),B(3;1),C(1;3) nên ta có hệ phương trình:

    \left\{ \begin{matrix}
1 + 1 + 2a - 2b + c = 0 \\
9 + 1 - 6a - 2b + c = 0 \\
1 + 9 - 2a - 6b + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2a - 2b + c = - 2 \\
- 6a - 2b + c = - 10 \\
- 2a - 6b + c = - 10 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
c = - 2 \\
\end{matrix} ight.

    Vậy phương trình đường tròn cần tìm là: (C):x^{2} + y^{2} - 2x - 2y - 2 = 0.

  • Câu 5: Nhận biết

    Dạng chính tắc của hypebol là

    Dạng chính tắc của hypebol là \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1.

  • Câu 6: Thông hiểu

    Cho elip (E): \frac{x^{2}}{25}+\frac{y^{2}}{9}=1. Trong các khẳng định sau, khẳng định nào sai?

    Phương trình elip (E) có dạng \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1;\left( {a = 5;b = 3} ight)

    Ta có: b = \sqrt {{a^2} - {c^2}}  = 4

    Khi đó: {F_1}\left( { - 4;0} ight);{F_2}\left( {4;0} ight) đúng

    Ta có: \frac{c}{a}=\frac{4}{5} đúng

    Đỉnh A1(–a; 0) => A1(–5; 0) đúng

    Độ dài trục nhỏ là 2b = 2.3 = 6 ≠ 3 

    Vậy khẳng định sai là: (E) có độ dài trục nhỏ bằng 3.

  • Câu 7: Thông hiểu

    Phương trình chính tắc của hypebol có 2a gấp đôi 2b và đi qua điểm M(4; 1) là:

     Ta có: a=2b.

    Phương trình chính tắc: \frac{{{x^2}}}{{{{(2b)}^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1.

    M(4;1) thuộc hypebol nên: 

    \frac{{{4^2}}}{{{{(2b)}^2}}} - \frac{{{1^2}}}{{{b^2}}} = 1 \Leftrightarrow \frac{{16}}{{4{b^2}}} - \frac{1}{{{b^2}}} = 1\Leftrightarrow \frac{{12}}{{4{b^2}}} = 1 \Leftrightarrow b =  \pm \sqrt 3  \Rightarrow a =  \pm 2\sqrt 3.

    Do đó, phương trình chính tắc: \frac{x^{2}}{12}-\frac{y^{2}}{3}=1.

  • Câu 8: Thông hiểu

    Cho đường thẳng (d):3x - 4y + 2 = 0 và đường tròn (C):x^{2} + (y + 4)^{2} = 25. Khẳng định nào sau đây đúng khi nói về vị trí tương đối của đường thẳng (d) và đường tròn (C)?

    Ta có: (C):x^{2} + (y + 4)^{2} = 25
\Rightarrow \left\{ \begin{matrix}
I(0; - 4) \\
R = 5 \\
\end{matrix} ight.

    Lại có khoảng cách từ tâm I đến đường thẳng d là:

    d\left( I;(d) ight) = \frac{\left| 3.0
- 4.( - 4) + 2 ight|}{\sqrt{3^{2} + 4^{2}}} = \frac{18}{5} <
R

    Vậy đường thẳng (d) cắt đường tròn (C) là khẳng định đúng.

  • Câu 9: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:3mx + 2y + 6 = 0d_{2}:\left( m^{2} + 2 ight)x + 2my + 6 =
0 cắt nhau?

    Ta có: \left\{ \begin{matrix}
d_{1}:3mx + 2y + 6 = 0 ightarrow {\overrightarrow{n}}_{1} = (3m;2) \\
d_{2}:\left( m^{2} + 2 ight)x + 2my + 6 = 0 ightarrow
{\overrightarrow{n}}_{2} = \left( m^{2} + 2;2m ight) \\
\end{matrix} ight.

    ightarrow \left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}d_{1}:y + 3 = 0 \\d_{2}:x + y + 3 = 0 \\\end{matrix} ight.\  ightarrow m = 0\ (TM) \\meq 0\overset{d_{1} \cap d_{2} = M}{ightarrow}\frac{m^{2} +2}{3m}\frac{2m}{2} \Leftrightarrow m \pm 1 \\\end{matrix} ight.\ .

  • Câu 10: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} ight. và hai điểm A(1;2),B( - 2;m). Tìm tất cả các giá trị của tham số m để AB nằm cùng phía đối với d.

    Ta có: d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} \Rightarrow d:3x + y - 7 = 0 ight..

    Để A, B nằm cùng phía đối với d thì:

    \left( 3x_{A} + y_{A} - 7 ight)\left(
3x_{A} + y_{A} - 7 ight) > 0 \Leftrightarrow - 2(m - 13) >
0

    \Leftrightarrow m - 13 < 0
\Leftrightarrow m < 13.

  • Câu 11: Thông hiểu

    Đường tròn (C) có tâm I (– 2; 3) và đi qua M (2; – 3) có phương trình là:

     Ta có: R = IM = \sqrt {{{(2 + 2)}^2} + {{( - 3 - 3)}^2}}  = 2\sqrt {13}.

    Phương trình đường tròn: {(x + 2)^2} + {(y - 3)^2} = 52 \Leftrightarrowx^{2}+y^{2}+4x-6y-39=0.

  • Câu 12: Nhận biết

    Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm O(0;0)A(1; - 3)?

    Kiểm tra đường thẳng nào không chứa O(0;0)\overset{ightarrow}{} loại.

    (Có thể kiểm tra đường thẳng nào không đi qua điểm A(1; - 3)).

  • Câu 13: Vận dụng

    Cặp đường thẳng nào dưới đây là phân giác của các góc hợp bởi đường thẳng \Delta:x + y
= 0 và trục hoành.

    Điểm M(x;y) thuộc đường phân giác của các góc tạo bởi \Delta;\ \ Ox:y =
0 khi và chỉ khi

    d(M;\Delta) = d(M;Ox) \Leftrightarrow
\frac{|x + y|}{\sqrt{2}} = \frac{|y|}{\sqrt{1}}

    \Leftrightarrow \left\lbrack
\begin{matrix}
x + \left( 1 + \sqrt{2} ight)y = 0 \\
x + \left( 1 - \sqrt{2} ight)y = 0 \\
\end{matrix} ight.\ .

  • Câu 14: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2}–10x - 11 = 0 là:

    (C):x^{2} + y^{2}–10x - 11 = 0
ightarrow I( - 5;0),\ R = \sqrt{25 + 0 + 11} = 6.

  • Câu 15: Nhận biết

    Đường thẳng 12x
- 7y + 5 = 0 không đi qua điểm nào sau đây ?

    Gọi 12x - 7y + 5 = 0.

    Đặt f(x;y) = 12x - 7y +
5\overset{}{ightarrow}\left\{ \begin{matrix}
f\left( M(1;1) ight) = 10\boxed{=}0 ightarrow M\boxed{\in}d \\
f\left( N( - 1; - 1) ight) = 0 ightarrow N \in d \\
f(P) = 0,\ \ f(Q) = 0 \\
\end{matrix} ight.\ . Chọn M(1;1).

  • Câu 16: Thông hiểu

    Phương trình chính tắc của Elip có đỉnh ( - 3;\ 0) và một tiêu điểm là (1;\ 0)

    Elip có đỉnh ( - 3;\ 0) \Rightarrow a =
3 và một tiêu điểm (1;\ 0)
\Rightarrow c = 1.

    Ta có c^{2} = a^{2} - b^{2}
\Leftrightarrow b^{2} = a^{2} - c^{2} = 9 - 1 = 8.

    Vậy phương trình (E):\frac{x^{2}}{9} +
\frac{y^{2}}{8} = 1.

  • Câu 17: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 2 + 3t \\
y = - 2t \\
\end{matrix} ight.d_{2}:\left\{ \begin{matrix}
x = 2t' \\
y = - 2 + 3t' \\
\end{matrix} ight..

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 2 + 3t \\
y = - 2t \\
\end{matrix} ight.\  ightarrow \ {\overrightarrow{u}}_{1} = (3; - 2)
\\
d_{2}:\left\{ \begin{matrix}
x = 2t' \\
y = - 2 + 3t' \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = (2;3)
\\
\end{matrix} ight\} ightarrow {\overrightarrow{u}}_{1} \cdot
{\overrightarrow{u}}_{2} = 0 ightarrow d_{1}\bot\ \ d_{2}. Chọn

  • Câu 18: Thông hiểu

    Cho phương trình Hypebol \frac{x^{2}}{16}-\frac{y^{2}}{9}=1. Độ dài trục thực của Hypebol đó là

    Ta có: \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 ta có: a = 4; b = 3

    => Độ dài trục thực của Hypebol đó là 2a = 8

  • Câu 19: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 4 + 2t \\
y = 1 - 5t \\
\end{matrix} ight.d_{2}:5x
+ 2y - 14 = 0.

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 4 + 2t \\
y = 1 - 5t \\
\end{matrix} ight.\  ightarrow A(4;1) \in d_{1},\ \
{\overrightarrow{u}}_{1} = (2; - 5) \\
d_{2}:5x + 2y - 14 = 0 ightarrow \ \ {\overrightarrow{n}}_{2} = (5;2)
ightarrow {\overrightarrow{u}}_{2} = (2; - 5) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
{\overrightarrow{u}}_{1} = {\overrightarrow{u}}_{2} \\
A\boxed{\in}d_{2} \\
\end{matrix} ight.\  ightarrow d_{1}||d_{2}.Chọn

  • Câu 20: Thông hiểu

    Xét vị trí tương đối giữa hai đường thẳng d_1:-2x+y+1=0d_2:4x - 2y - 2 = 0.

     Ta có: \frac{{ - 2}}{4} = \frac{1}{{ - 2}} = \frac{1}{{ - 2}} nên hai đường thẳng trùng nhau.

  • Câu 21: Nhận biết

    Điểm nào dưới đây thuộc đường thẳng 2x - y + 1 = 0?

    Thay tọa độ các điểm vào đường thẳng 2x -
y + 1 = 0 ta thấy điểm thuộc đường thẳng đã cho là D(0;1).

  • Câu 22: Nhận biết

    Cho elip (E):4x^{2} + 5y^{2} = 20. Diện tích hình chữ nhật cơ sở của (E)

    (E):4x^{2} + 5y^{2} = 20 \Leftrightarrow
\frac{x^{2}}{5} + \frac{y^{2}}{4} = 1

    Độ dài trục lớn: 2a =
2\sqrt{5}.

    Độ dài trục bé: 2b = 2.2 =
4.

    Diện tích hình chữ nhật cơ sở của (E) là: 2\sqrt{5}.4 = 8\sqrt{5}.

  • Câu 23: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1 (với a > b > 0). Biết F_{1},F_{2} là hai tiêu điểm. Cho điểm M di động trên (E). Chọn khẳng định đúng?

    Ta có:

    MF_{1} = a + \frac{cx}{a};\ MF_{2} = a -
\frac{cx}{a} \Rightarrow MF_{1}.MF_{2} = a^{2} -
\frac{c^{2}x^{2}}{a^{2}}.

    \begin{matrix}
M(x;y) \in (E) \Rightarrow \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1
\\
\Rightarrow y^{2} = b^{2}\left( 1 - \frac{x^{2}}{a^{2}} ight)
\Rightarrow OM^{2} = x^{2} + y^{2} = x^{2} + b^{2}\left( 1 -
\frac{x^{2}}{a^{2}} ight) = x^{2} + b^{2} - \frac{b^{2}x^{2}}{a^{2}}
\\
\end{matrix} \begin{matrix}
MF_{1}.MF_{2} + OM^{2} = a^{2} - \frac{c^{2}x^{2}}{a^{2}} + x^{2} +
b^{2} - \frac{b^{2}x^{2}}{a^{2}} = a^{2} + b^{2} + x^{2} - \left(
\frac{c^{2}x^{2}}{a^{2}} + \frac{b^{2}x^{2}}{a^{2}} ight) \\
= a^{2} + b^{2} + x^{2} - \frac{\left( b^{2} + c^{2}
ight)x^{2}}{a^{2}} \\
\end{matrix}

    a^{2} = b^{2} + c^{2} nên MF_{1}.MF_{2} + OM^{2} = a^{2} + b^{2} +
x^{2} - \frac{\left( b^{2} + c^{2} ight)x^{2}}{a^{2}} = a^{2} + b^{2}
+ x^{2} - \frac{a^{2}x^{2}}{a^{2}} = a^{2} + b^{2}.

  • Câu 24: Vận dụng

    Cho elip (E): \frac{x^{2}}{169}+\frac{y^{2}}{144}=1. Nếu điểm M nằm trên (E) có hoành độ bằng –13 thì độ dài MF_1MF_2 lần lượt là:

    Phương trình elip (E) có dạng \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1;\left( {a = 13;b = 12} ight)

    Ta có: c = \sqrt {{a^2} - {b^2}}  = 5

    Khi đó: {F_1}\left( { - 5;0} ight);{F_2}\left( {5;0} ight)

    Với M\left( {{x_M};{y_M}} ight) ta có:

    \begin{matrix}  \overrightarrow {{F_1}M}  = \left( {{x_M} + 5;{y_M}} ight) \hfill \\   \Rightarrow {F_1}M = \sqrt {{{\left( {{x_M} + 5} ight)}^2} + {y_M}^2}  \hfill \\   \Rightarrow {F_1}M = \sqrt {{{\left( {{x_M} + 5} ight)}^2} + 144.\left( {1 - \frac{{{x_M}^2}}{{169}}} ight)}  \hfill \\   \Rightarrow {F_1}M = \sqrt {169 + 10{x_M} + \dfrac{{25{x_M}^2}}{{169}}}  \hfill \\   \Rightarrow {F_1}M = \sqrt {{{\left( {13 + \dfrac{{5{x_M}}}{{13}}} ight)}^2}}  \hfill \\   \Rightarrow {F_1}M = 13 + \dfrac{{5{x_M}}}{{13}},\left( {{F_1}M > 0} ight) \hfill \\ \end{matrix}

    Tương tự ta có: {F_2}M = 13 - \frac{{5{x_M}}}{{13}},\left( {{F_2}M > 0} ight)

    Theo bài ra ta có: {x_M} =  - 13

    \begin{matrix}  {F_1}M = 13 + \dfrac{{5{x_M}}}{{13}} = 8 \hfill \\  {F_2}M = 13 - \dfrac{{5{x_M}}}{{13}} = 18 \hfill \\ \end{matrix}

  • Câu 25: Nhận biết

    Trên mặt phẳng tọa độ Oxy cho tọa độ hai điểm M(1;0),N(7;4). Tọa độ trung điểm I của MN là:

    Tọa độ trung điểm I của MN là:

    \left\{ \begin{matrix}x_{I} = \dfrac{x_{M} + x_{N}}{2} \\y_{I} = \dfrac{y_{M} + y_{N}}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{I} = \dfrac{1 + 7}{2} = 4 \\y_{I} = \dfrac{0 + 4}{2} = 2 \\\end{matrix} ight.

    Vậy tọa độ trung điểm của MN là: I(4;2).

  • Câu 26: Thông hiểu

    Khoảng cách từ điểm M(2;0) đến đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 3t \\
y = 2 + 4t \\
\end{matrix} ight. bằng:

    \Delta:\left\{ \begin{matrix}
x = 1 + 3t \\
y = 2 + 4t \\
\end{matrix} ight.\  ightarrow \Delta:4x - 3y + 2 = 0 ightarrow
d(M;\Delta) = \frac{|8 + 0 + 2|}{\sqrt{16 + 9}} = 2.

  • Câu 27: Vận dụng

    Đường tròn (C) có tâm I thuộc đường thẳng d:x + 3y - 5 = 0, bán kính R = 2\sqrt{2} và tiếp xúc với đường thẳng \Delta:\ x - y - 1 = 0. Phương trình của đường tròn (C) là:

    I \in d ightarrow I(5 - 3a;a)
ightarrow d\lbrack I;\Deltabrack = R = 2\sqrt{2} \Leftrightarrow
\frac{|4 - 4a|}{\sqrt{2}} = 2\sqrt{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = 0 \\
a = 2 \\
\end{matrix} ight.\  ightarrow \left\lbrack \begin{matrix}
I(5;0) \\
I( - 1;2) \\
\end{matrix} ight.\ .

    Vậy các phương trình đường tròn là: (x -
5)^{2} + y^{2} = 8 hoặc (x + 1)^{2}
+ (y - 2)^{2} = 8.

  • Câu 28: Nhận biết

    Tính góc tạo bởi giữa hai đường thẳng: d_1:x+\sqrt{3}y+6=0d_2: x+1 = 0.

     Ta có: \cos ({d_1},{d_2}) = \frac{{\left| {1.1 + \sqrt 3 .0} ight|}}{{\sqrt {{1^2} + {{\sqrt 3 }^2}} .\sqrt {{1^2} + {0^2}} }} = \frac 12. Suy ra góc giữa hai đường thẳng bằng 60^{\circ}.

  • Câu 29: Nhận biết

    Phương trình chính tắc của đường tròn tâm I(0; - 1) và bán kính R = 5 là:

    Phương trình đường tròn có dạng (x -
a)^{2} + (y - b)^{2} = R^{2}

    Vì phương trình đường tròn cần tìm có tâm I(0; - 1) và bán kính R = 5 nên phương trình cần tìm là: x^{2} + (y + 1)^{2} = 25

  • Câu 30: Nhận biết

    Đường trung trực của đoạn thẳng AB với A = (- 3;2), B = ( - 3;3) có một vectơ pháp tuyến là:

    Gọi d là trung trực đoạn AB, ta có: \left\{ \begin{matrix}\overrightarrow{AB} = (0;1) \\d\bot AB \\\end{matrix} ight.\ \overset{ightarrow}{}{\overrightarrow{n}}_{d} =\overrightarrow{AB} = (0;1).

  • Câu 31: Thông hiểu

    Viết phương trình tổng quát của đường thẳng d đi qua điểm M( - 1;2) và song song với trục Ox.

    \left\{ \begin{matrix}
M( - 1;2) \in d \\
d||Ox:y = 0 \\
\end{matrix} ight.\ \overset{ightarrow}{}d:y = 2.

  • Câu 32: Nhận biết

    Đường elip \frac{x^{2}}{16} + \frac{y^{2}}{7} = 1 có tiêu cự bằng

    Ta có: a^{2} = 16, b^{2} = 7 nên c^{2} = a^{2} - b^{2} = 9 \Rightarrow c =
3.

    Tiêu cự của elip là 2c = 6.

  • Câu 33: Vận dụng

    Viết phương trình tiếp tuyến của đường tròn (C):x^{2} + y^{2} + 4x - 2y - 8 =
0, biết tiếp tuyến vuông góc với đường thẳng d:2x - 3y + 2018 = 0.

    Đường tròn (C) có tâm I( - 2;1),\ R =
\sqrt{13} và tiếp tuyến có dạng

    \Delta:3x + 2y + c = 0.

    Ta có R = d\lbrack I;\Deltabrack
\Leftrightarrow \frac{|c - 4|}{\sqrt{13}} = \sqrt{13} \Leftrightarrow
\left\lbrack \begin{matrix}
c = 17 \\
c = - 9 \\
\end{matrix} ight.\ .

  • Câu 34: Thông hiểu

    Viết phương trình tham số của đường thẳng d đi qua điểm M(6; - 10) và vuông góc với trục Oy.

    \begin{matrix}
\left\{ \begin{matrix}
M(6; - 10) \in d \\
d\bot Oy:x = 0 ightarrow {\overrightarrow{u}}_{d} = (1;0) \\
\end{matrix} ight.\ \overset{ightarrow}{}d:\left\{ \begin{matrix}
x = 6 + t \\
y = - 10 \\
\end{matrix} ight.\ \overset{t = - 4}{ightarrow}A(2; - 10) \in d \\
ightarrow d:\left\{ \begin{matrix}
x = 2 + t \\
y = - 10 \\
\end{matrix} ight.\ . \\
\end{matrix}

  • Câu 35: Nhận biết

    Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm O(0;0)M(1; - 3)?

    Kiểm tra đường thẳng nào không chứa O(0;0)\overset{ightarrow}{} loại.

    Có thể kiểm tra đường thẳng nào không đi qua điểm M(1; - 3).

  • Câu 36: Vận dụng

    Cho hai đường thẳng \left( d_{1} ight):x + my + 2m - 1 = 0\left( d_{2} ight):\left\{
\begin{matrix}
x = m + 2y \\
y = - 5 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) với m là tham số. Tìm giá trị của tham số m để hai đường thẳng tạo với nhau một góc bằng nửa góc vuông?

    VTPT của hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) lần lượt là \overrightarrow{n_{1}} =
(1;m);\overrightarrow{n_{2}} = (1; - 2)

    Để hai đường thẳng tạo với nhau một góc bằng 45^{0} thì

    \cos\left( \left( d_{1} ight);\left(
d_{2} ight) ight) = cos45^{0} = \frac{\sqrt{2}}{2}

    \Leftrightarrow \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight) =
\frac{\sqrt{2}}{2} \Leftrightarrow \frac{\left| 1.1 + m.( - 2)
ight|}{\sqrt{m^{2} + 1}.\sqrt{1^{2} + ( - 2)^{2}}} =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{|2m -
1|}{\sqrt{m^{2} + 1}.\sqrt{5}} = \frac{\sqrt{2}}{2} \Leftrightarrow
\frac{(2m - 1)^{2}}{5\left( m^{2} + 1 ight)} =
\frac{1}{2}

    \Leftrightarrow 2(2m - 1)^{2} = 5\left(
m^{2} + 1 ight) \Leftrightarrow 3m^{2} - 8m - 3 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}m = 3 \\m = - \dfrac{1}{3} \\\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}m = 3 \\m = - \dfrac{1}{3} \\\end{matrix} ight..

  • Câu 37: Nhận biết

    Cho phương trình đường tròn (C):x^{2} + y^{2} - 6x + 8y - 1 = 0. Xác định tâm và bán kính đường tròn đó?

    Ta có phương trình đường tròn: (C):x^{2}
+ y^{2} - 6x + 8y - 1 = 0 có: a =
3;b = - 4,c = - 1 nên đường tròn (C) có tâm I(3; - 4) và bán kính R = \sqrt{a^{2} + b^{2} - c} =
\sqrt{26}.

  • Câu 38: Thông hiểu

    Viết phương trình tổng quát của đường thẳng d đi qua điểm M( - 1;0) và vuông góc với đường thẳng \Delta:\left\{ \begin{matrix}
x = t \\
y = - 2t \\
\end{matrix} ight.\ .

    \left\{ \begin{matrix}
M( - 1;0) \in d \\
{\overrightarrow{u}}_{\Delta} = (1; - 2) \\
d\bot\Delta \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
M( - 1;0) \in d \\
{\overrightarrow{n}}_{d} = (1; - 2) \\
\end{matrix} ight.\  ightarrow d:1(x + 1) - 2(y - 0) = 0
\Leftrightarrow d:x - 2y + 1 = 0.

  • Câu 39: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh ABx - y -
2 = 0, phương trình cạnh ACx + 2y
- 5 = 0. Biết trọng tâm của tam giác là điểm G(3;2) và phương trình đường thẳng BC có dạng x
+ my + n = 0. Tính giá trị biểu thức S = m + n.

    Tọa độ điểm A là nghiệm của hệ phương trình \left\{ \begin{matrix}
x - y - 2 = 0 \\
x + 2y - 5 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = 1 \\
\end{matrix} ight.\  \Leftrightarrow A(3;1)

    Ta có B\left( x_{B};x_{B} - 2
ight);C\left( x_{C};\frac{- x_{C} + 5}{2} ight)

    Gọi M\left( x_{0};y_{0} ight) là trung điểm của BC thì 2\overrightarrow{GM} =
\overrightarrow{AG} nên

    \left\{ \begin{matrix}
2\left( x_{0} - 3 ight) = 0 \\
2\left( y_{0} - 2 ight) = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{0} = 3 \\
y_{0} = \frac{5}{2} \\
\end{matrix} ight.

    Mặt khác \left\{ \begin{matrix}x_{B} + x_{C} = 2x_{0} \\x_{B} - 2 + \dfrac{- x_{C} + 5}{2} = 2y_{0} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{B} + x_{C} = 6 \\2x_{B} - x_{C} = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{B} = 5 \\
x_{C} = 1 \\
\end{matrix} ight.\  \Rightarrow B(5;3),C(1;2)

    \Rightarrow \overrightarrow{BC} = ( - 4;
- 1)

    Suy ra một vectơ pháp tuyến của BC là \overrightarrow{n} = (1; - 4)

    Suy ra phương trình đường thẳng BC là

    1(x - 5) - 4(y - 3) = 0

    \Leftrightarrow x - 4y + 7 =
0

    Suy ra m = - 4;n = 7 \Rightarrow S =
3

  • Câu 40: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Parabol?

    Phương trình Parabol có dạng y^{2} =
2px

    Vậy phương trình cần tìm là y^{2} =
2x.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo