Cho đường thẳng
. Đường thẳng nào sau đây vuông góc với đường thẳng
?
Đường thẳng vuông góc với đường thẳng
vì
.
Cho đường thẳng
. Đường thẳng nào sau đây vuông góc với đường thẳng
?
Đường thẳng vuông góc với đường thẳng
vì
.
Trong mặt phẳng tọa độ
, mỗi đường thẳng có bao nhiêu vectơ pháp tuyến?
Một đường thẳng có vô số vectơ pháp tuyến và chúng có cùng phương với nhau.
Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Elip?
Phương trình Elip có dạng
Vậy phương trình cần tìm là
Tính góc tạo bởi giữa hai đường thẳng
và ![]()
Xét vị trí tương đối của hai đường thẳng
và
?
Ta có:
Vậy hai đường thẳng đã cho song song với nhau.
Cho phương trình Hypebol
. Độ dài trục thực của Hypebol đó là
Ta có: ta có: a = 4; b = 3
=> Độ dài trục thực của Hypebol đó là 2a = 8
Cho đường tròn (C) có phương trình
. Đường tròn (C) còn được viết dưới dạng nào trong các dạng dưới đây:
Viết lại phương trình đường tròn như sau:
Với giá trị nào của
thì hai đường thẳng
và
cắt nhau?
Chọn .
Trong mặt phẳng với hệ tọa độ
, có tất cả bao nhiêu đường thẳng đi qua điểm
đồng thời tạo với trục hoành một góc ![]()
Cho đường thẳng và một điểm
Khi đó.
(i) Có duy nhất một đường thẳng đi qua song song hoặc trùng hoặc vuông góc với
(ii) Có đúng hai đường thẳng đi qua và tạo với
một góc
Chọn phương án .
Trong hệ trục
cho Elip
có các tiêu điểm
và một điểm
nằm trên
. Biết rằng chu vi của tam giác
bằng 18. Xác định tâm sai e của ![]()
Ta có .
Tâm sai .
Trong mặt phẳng tọa độ
, cho tọa độ hai điểm
. Khi đó đường tròn
đường kính
có phương trình là:
Ta có: là trung điểm của đoạn thẳng
.
Khi đó đường tròn có tâm
và bán kính
Suy ra phương trình đường tròn đường tròn có phương trình là:
Nếu đường thẳng
đi qua gốc tọa độ và song song với đường thẳng
thì
có phương trình tổng quát là:
Một vectơ pháp tuyến của là:
Mặt khác đi qua gốc tọa độ hay đi qua điểm
Vậy phương trình đường thẳng là:
Vậy đáp án đúng là: .
Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm
và
?
Kiểm tra đường thẳng nào không chứa loại.
Có thể kiểm tra đường thẳng nào không đi qua điểm
Tìm
để hai đường thẳng
và
trùng nhau?
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Loại các đáp án và
vì không có dạng
Xét đáp án: loại.
Xét đáp án : Chọn đáp án này.
Tìm tọa độ giao điểm của đường thẳng
và trục tung.
Chọn
.
Trong mặt phẳng tọa độ
, cho đường tròn
. Viết phương trình tiếp tuyến của đường tròn đã cho, biết hệ số góc của tiếp tuyền bằng
.
Đường tròn (C) có tâm và bán kính
Tiếp tuyến d có hệ số góc nên có dạng
Vì d là tiếp tuyến của nên
Với thì phương trình d là:
Với thì phương trình d là:
Vậy các phương trình tiếp tuyến cần tìm là: .
Phương trình đường tròn
có tâm và bán kính lần lượt là:
Ta có:
Vậy phương trình đường tròn đã cho có tâm và bán kính lần lượt là:
Cho Hyperbol
. Tìm điểm
trên
sao cho khoảng cách từ
đến đường thẳng
đạt giá trị nhỏ nhất.
Gọi . Phương trình tiếp tuyến của
tại
là
.
khi
thay vào
ta có:
.
Với ta có :
Với ta có :
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
,
và
. Phương trình đường phân giác ngoài của góc
là:
Suy ra các đường phân giác góc là:
Suy ra đường phân giác trong góc là
Đường Hyperbol
có một tiêu điểm là điểm nào dưới đây?
Ta có : . Các tiêu điểm của
là
và
Trong mặt phẳng với hệ trục tọa độ
, cho hai đường thẳng
và
. Gọi điểm
sao cho
và
. Tính giá trị biểu thức
?
Gọi
Khi đó:
Với
Với
Đường elip
có tiêu cự bằng
Ta có: ,
nên
.
Tiêu cự của elip là .
Viết phương trình tổng quát của đường thẳng
đi qua điểm
và song song với trục
.
Viết phương trình tham số của đường thẳng
có phương trình
?
Đường thẳng đi qua điểm
và có vectơ pháp tuyến là
nên có vectơ chỉ phương là:
.
Vậy phương trình tham số của là:
.
Đường tròn
đi qua hai điểm
và tiếp xúc với đường thẳng
. Viết phương trình đường tròn
, biết tâm của
có hoành độ nhỏ hơn ![]()
đoạn AB có trung điểm
trung trực của đoạn AB là
Ta có
Vậy phương trình đường tròn là:
Cho đường tròn
. Viết phương trình tiếp tuyến của đường tròn
biết tiếp tuyến đi qua điểm
?
Đường tròn (C) có tâm
Phương trình tiếp tuyến của tại điểm
là:
Vậy phương trình tiếp tuyến của đường tròn tại là:
Một đường thẳng có bao nhiêu vectơ chỉ phương?
Một đường thẳng có vô số vectơ chỉ phương.
Hyperbol
có tâm sai là:
Ta có :
.
Tìm phương trình chính tắc của Elip có độ dài trục lớn bằng
và đi qua điểm
:
Ta có phương trình chính tắc Elip (E) có dạng .
Theo giả thiết ta có
.
Mặt khác (E) đi qua nên ta có
.
Vậy phương trình chính tắc của (E) là: .
Tìm phương trình chính tắc của Hyperbol (H). Cho biết (H) đi qua điểm
và có một đường chuẩn là
.
Gọi .
Ta có : Suy ra phương trình chính tắc của (H) là
Xác định vị trí tương đối của hai đường thẳng
và
.
Cho đường tròn
. Qua điểm
có thể kẻ được bao nhiêu đường thẳng tiếp xúc với đường tròn
?
Thay tọa độ vào phương trình đường tròn
.
Suy ra nên có đúng 1 tiếp tuyến của đường tròn kẻ từ M.
Trong mặt phẳng tọa độ
, cho đường thẳng
. Hệ số góc
của đường thẳng
là:
Ta có:
Đường thẳng có vectơ chỉ phương
nên có hệ số góc
.
Vậy hệ số góc của đường thẳng là .
Phương trình nào dưới đây là phương trình tổng quát của đường thẳng?
Phương trình tổng quát của đường thẳng là: .
Gọi
là tọa độ giao điểm hai đường thẳng
và
. Tính khoảng cách từ
đến đường thẳng ![]()
Vì E là giao điểm hai đường thẳng và
nên tọa độ điểm E là nghiệm của hệ phương trình:
Khi đó khoảng cách từ điểm E đến đường thẳng là:
Vậy khoảng cách cần tìm bằng .
Đường thẳng nào là đường chuẩn của parabol
.
Ta có: .
Đường chuẩn: .
Xét vị trí tương đối của hai đường thẳng:
và
.
Vì nên hai đường thẳng cắt nhau.
Tọa độ tâm
và bán kính
của đường tròn
là: