Trong mặt phẳng
, cho điểm
và đường thẳng
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Khoảng cách từ điểm P đến đường thẳng (d) là:
.
Trong mặt phẳng
, cho điểm
và đường thẳng
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Khoảng cách từ điểm P đến đường thẳng (d) là:
.
Viết phương trình tổng quát của đường thẳng
đi qua giao điểm của hai đường thẳng
,
và vuông góc với đường thẳng
.
Ta có
Vậy
Cho Hyperbol
. Hãy tìm tọa độ điểm
trên
thỏa mãn
thuộc nhánh phải và
nhỏ nhất (ngắn nhất).
Ta có:
Gọi .
Ta có: .
thuộc nhánh phải của
nên
.
nhỏ nhất bằng
khi
.
Xét vị trí tương đối của hai đường thẳng
và
?
Ta có:
Vậy hai đường thẳng đã cho song song với nhau.
Trong mặt phẳng với hệ tọa độ
, có tất cả bao nhiêu đường thẳng đi qua điểm
đồng thời tạo với trục hoành một góc ![]()
Cho đường thẳng và một điểm
Khi đó.
(i) Có duy nhất một đường thẳng đi qua song song hoặc trùng hoặc vuông góc với
(ii) Có đúng hai đường thẳng đi qua và tạo với
một góc
Chọn phương án .
Đường tròn
đi qua điểm
và tiếp xúc với hai trục tọa độ
có phương trình là:
Vì thuộc góc phần tư (IV) nên
Khi đó:
Cho phương trình Hypebol
. Độ dài trục thực của Hypebol đó là
Ta có: ta có: a = 4; b = 3
=> Độ dài trục thực của Hypebol đó là 2a = 8
Đường trung trực của đoạn thẳng
với
,
có một vectơ pháp tuyến là:
Gọi là trung trực đoạn AB, ta có:
Cho hình elip có độ dài trục lớn và độ dài trục bé lần lượt là
. Vẽ một hình chữ nhật nội tiếp elip đã cho. Diện tích lớn nhất của hình chữ nhật là:
Hình vẽ minh họa
Phương trình chính tắc của elip có dạng .
Ta có:
Chọn là đỉnh hình chữ nhật và
. Ta có:
Diện tích hình chữ nhật là:
Cho đường thẳng (d): x – 2y + 5 = 0. Mệnh đề nào sau đây đúng?
Giả sử:
loại đáp án (d) đi qua
.
Ta có
⇒VTPT
⇒VTCP loại đáp án (d) có phương trình tham số:
Ta có
hệ số góc
.
Một đường thẳng có vectơ chỉ phương là
. Vectơ nào sau đây là vectơ pháp tuyến của
?
Ta có:
Đường thẳng có vectơ chỉ phương
thì sẽ có một vectơ pháp tuyến là:
Áp dụng vào bài toán ta được:
Vectơ pháp tuyến của là:
.
Khoảng cách từ giao điểm của hai đường thẳng
và
đến đường thẳng
bằng:
Phương trình tham số của đường thẳng nào sau đây có vectơ chỉ phương ![]()
Đường thẳng có phương trình tham số có vectơ chỉ phương là
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Xác định phương trình tham số của đường thẳng
. Biết rằng
đi qua điểm
và có một vectơ chỉ phương là
?
Đường thẳng đi qua điểm và nhận
làm vectơ chỉ phương sẽ có phương trình tham số là:
.
Áp dụng với dữ kiện bài toan trên ta được:
Tìm giá trị của tham số m sao cho đường thẳng
là tiếp tuyến của đường tròn
.
Đường tròn (C) có tâm I(3; 0) và bán kính R = 2
Để là tiếp tuyến của đường tròn
thì ta phải có:
Đường tròn
đi qua điểm
và tiếp xúc với hai trục tọa độ
có phương trình là:
Vì thuộc góc phần tư (I) nên
Khi đó:
Cho đường thẳng
có vectơ pháp tuyến là
và đường thẳng
có vectơ pháp tuyến là
. Gọi
là góc tạo bởi hai đường thẳng
. Kết luận nào sau đây đúng?
Góc tạo bởi hai đường thẳng đã cho được xác định bởi công thức .
Đường tròn (C):
viết được dưới dạng:
Từ phương trình đường tròn ta suy ra:
Vậy phương trình tổng quát
Tìm phương trình chính tắc của parabol
biết
có tiêu điểm là
.
Gọi phương trình chính tắc của là:
.
Do tọa độ tiêu điểm nên
.
Vậy phương trình của là:
.
Tìm m để hai đường thẳng
và
vuông góc với nhau:
và ![]()
Ta có: .
Để hai đường thẳng vuông góc thì: . Phương tình này vô nghiệm nên không tồn tại
Phương trình nào sau đây là phương trình tổng quát của đường thẳng
?
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây sai?
Đáp án sai là đáp án chứa độ dài trục lớn là .
Xác định phương trình chính tắc của Elip, biết rằng elip có một tiêu điểm
và đi qua điểm
?
Gọi phương trình chính tắc của elip là:
Ta có:
Khi đó ta có:
Do elip đi qua điểm
Từ (*) và (**) ta có hệ phương trình:
Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là: .
Tính góc tạo bởi hai đường thẳng
và
?
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Ta thấy
Vậy góc tạo bởi hai đường thẳng đã cho bằng .
Cho hình elip có phương trình
. Hình elip có tiêu cự trục lớn bằng:
Ta có:
Độ dài trục lớn là:
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
,
và
. Phương trình đường phân giác ngoài của góc
là:
Suy ra các đường phân giác góc là:
Suy ra đường phân giác trong góc là
Cho hình elip có phương trình
. Hình elip có độ dài tiêu cự bằng:
Ta có:
Độ dài tiêu cự là:
Đường thẳng nào sau đây có đúng một điểm chung với đường thẳng
?
Ta cần tìm đường thẳng cắt
loại
loại
và
. Chọn
Cho hai điểm
. Vectơ pháp tuyến của đường thẳng
là:
Một vectơ chỉ phương của PQ là:
Vậy vectơ pháp tuyến của PQ là: .
Tâm sai của Hyperbol
bằng:
Ta có :
Cho elip có phương trình chính tắc
. Tính tâm sai của elip.
Ta có
Tâm sai của elip là .
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Loại các đáp án và
vì không có dạng
Xét đáp án: loại.
Xét đáp án : Chọn đáp án này.
Tìm m để đường thẳng
và
tạo với nhau một góc
?
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Hai đường thẳng vuông góc với nhau khi và chỉ khi:
Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi .
Phương trình tiếp tuyến của đường tròn
tại điểm
là:
Đường tròn (C) có tâm
Phương trình tiếp tuyến của tại điểm
là:
Vậy phương trình tiếp tuyến của đường tròn tại là:
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Ta có:
Tọa độ tâm I và bán kính R của đường tròn
là:
Tâm , bán kính
.
Đường tròn
có tâm
và bán kính
lần lượt là:
Cho đường thẳng
và tọa độ điểm
. Tính
?
Ta có khoảng cách từ điểm C đến đường thẳng là:
Vậy khoảng cách cần tìm bằng 1.
Cặp đường thẳng nào dưới đây là phân giác của các góc hợp bởi hai đường thẳng
và
.
Điểm thuộc đường phân giác của các góc tạo bởi
khi và chỉ khi