Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho elip (E): \frac{x^{2}}{169}+\frac{y^{2}}{144}=1. Nếu điểm M nằm trên (E) có hoành độ bằng –13 thì độ dài MF_1MF_2 lần lượt là:

    Phương trình elip (E) có dạng \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1;\left( {a = 13;b = 12} ight)

    Ta có: c = \sqrt {{a^2} - {b^2}}  = 5

    Khi đó: {F_1}\left( { - 5;0} ight);{F_2}\left( {5;0} ight)

    Với M\left( {{x_M};{y_M}} ight) ta có:

    \begin{matrix}  \overrightarrow {{F_1}M}  = \left( {{x_M} + 5;{y_M}} ight) \hfill \\   \Rightarrow {F_1}M = \sqrt {{{\left( {{x_M} + 5} ight)}^2} + {y_M}^2}  \hfill \\   \Rightarrow {F_1}M = \sqrt {{{\left( {{x_M} + 5} ight)}^2} + 144.\left( {1 - \frac{{{x_M}^2}}{{169}}} ight)}  \hfill \\   \Rightarrow {F_1}M = \sqrt {169 + 10{x_M} + \dfrac{{25{x_M}^2}}{{169}}}  \hfill \\   \Rightarrow {F_1}M = \sqrt {{{\left( {13 + \dfrac{{5{x_M}}}{{13}}} ight)}^2}}  \hfill \\   \Rightarrow {F_1}M = 13 + \dfrac{{5{x_M}}}{{13}},\left( {{F_1}M > 0} ight) \hfill \\ \end{matrix}

    Tương tự ta có: {F_2}M = 13 - \frac{{5{x_M}}}{{13}},\left( {{F_2}M > 0} ight)

    Theo bài ra ta có: {x_M} =  - 13

    \begin{matrix}  {F_1}M = 13 + \dfrac{{5{x_M}}}{{13}} = 8 \hfill \\  {F_2}M = 13 - \dfrac{{5{x_M}}}{{13}} = 18 \hfill \\ \end{matrix}

  • Câu 2: Vận dụng

    Cho hai điểm A(4;7),B( - 4; - 1) thuộc đường tròn (C). Biết tâm I(a;b) của đường tròn (C) nằm trên đường thẳng \Delta:x - 4y = 0. Tính giá trị biểu thức Q = a + 2b?

    Tâm I của đường tròn (C) nằm trên đường thẳng \Delta:x - 4y = 0 nên ta có: a - 4b = 0\ \ \ (*)

    Hai điểm A(4;7),B( - 4; - 1) thuộc đường tròn (C) nên ta suy ra đường trung trực của đoạn thẳng AB cũng đi qua tâm I.

    Gọi M là trung điểm của đoạn thẳng AB => M(0; 3)

    Đường trung trực AB đi qua điểm M(0; 3) và nhận \overrightarrow{AB} = ( - 8; - 8) là vecto pháp tuyến có phương trình x + y - 3 =
0

    Vì trung trực AB cũng đi qua tâm I nên ta có: a + b - 3 = 0\ \ \ (**)

    Từ (*) và (**) suy ra a = \frac{12}{5};b
= \frac{3}{5}

    \Rightarrow Q = a + 2b =
\frac{18}{5}

  • Câu 3: Thông hiểu

    Đường chuẩn của Parabol y^{2} = 14x là:

    Từ phương trình Parabol y^{2} = 14x ta có 2p = 14 => p = 7

    Do đó phương trình đường chuẩn của Parabol là x + \frac{7}{2} = 0

  • Câu 4: Nhận biết

    Khoảng cách từ điểm A(0;1) đến đường thẳng (\Delta):5x - 12y - 1 = 0 bằng:

    Áp dụng công thức tính khoảng cách từ một điểm đến một đường thẳng ta có:

    d(A;\Delta) = \frac{|5.1 - 12.1 -
1|}{\sqrt{5^{2} + ( - 12)^{2}}} = 1

    Vậy khoảng cách từ điểm A đến đường thẳng đã cho bằng 1.

  • Câu 5: Thông hiểu

    Tìm tất cả các giá trị của m để hai đường thẳng \Delta_{1}:2x - 3my + 10 = 0\Delta_{2}:mx + 4y + 1 = 0 cắt nhau.

    \left\{ \begin{matrix}
\Delta_{1}:2x - 3my + 10 = 0 \\
\Delta_{2}:mx + 4y + 1 = 0 \\
\end{matrix} ight.

    ightarrow \left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}\Delta_{1}:x + 5 = 0 \\\Delta_{2}:4y + 1 = 0 \\\end{matrix} ight.\  ightarrow m = 0\ \ (TM) \\meq\overset{\Delta_{1} \cap \Delta_{2} =M}{ightarrow}\frac{2}{m}eq\frac{- 3m}{4} \Leftrightarrow\forall meq 0 \\\end{matrix} ight.\ .Chọn đáp án này với mọi m.

  • Câu 6: Vận dụng

    Tìm m để ba đường thẳng d_{1}:2x + y–1 =
0, d_{2}:x + 2y + 1 = 0d_{3}:mx–y–7 = 0 đồng quy?

    \left\{ \begin{matrix}
d_{1}:2x + y–1 = 0 \\
d_{2}:x + 2y + 1 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = - 1 \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A(1; - 1) \in
d_{3} \Leftrightarrow m + 1 - 7 = 0
\Leftrightarrow m = 6.

  • Câu 7: Thông hiểu

    Cho Hypebol có độ dài trục thực và tiêu cự lần lượt là 1420. Phương trình chính tắc của Hypebol là:

    Phương trình chính tắc của Hypebol có dạng \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1

    Ta có: \left\{ \begin{matrix}
2a = 14 \\
2c = 20 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 7 \\
c = 10 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a^{2} = 49 \\
c^{2} = 100 \\
\end{matrix} ight.

    \Rightarrow b^{2} = c^{2} - a^{2} =
51

    Vậy phương trình chính tắc của Hypebol là: \frac{x^{2}}{49} - \frac{y^{2}}{51} =
1.

  • Câu 8: Nhận biết

    Cho phương trình x^{2} + y^{2} + 2mx + 2(m–1)y + 2m^{2} =
0(1). Tìm điều kiện của m để (1) là phương trình đường tròn.

    Ta có: x^{2} + y^{2} + 2mx + 2(m–1)y +
2m^{2} = 0

    ightarrow \left\{ \begin{matrix}
a = - m \\
b = 1 - m \\
c = 2m^{2} \\
\end{matrix} ight.\  ightarrow a^{2} + b^{2} - c > 0
\Leftrightarrow - 2m + 1 > 0 \Leftrightarrow m <
\frac{1}{2}.

  • Câu 9: Thông hiểu

    Tìm phương trình chính tắc của elip có tiêu cự bằng 6 và trục lớn bằng 10.

    Phương trình chính tắc của elip: \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{a}^{\mathbf{2}}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{b}^{\mathbf{2}}}\mathbf{=}\mathbf{1.}

    Độ dài trục lớn 2a = 10 \Leftrightarrow a
= 5.

    Tiêu cự 2c = 6 \Leftrightarrow c =
3.

    Ta có: a^{2} = b^{2} + c^{2}
\Leftrightarrow b^{2} = a^{2} - c^{2} = 16

    Vậy phương trình chính tắc của elip là \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{25}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{16}}\mathbf{=}\mathbf{1.}.

  • Câu 10: Thông hiểu

    Cho đường thẳng (d): x – 2y + 5 = 0. Mệnh đề nào sau đây đúng?

    Giả sử: A\left( {1; - 2} ight) \in \left( d ight):x - 2y + 5 = 0

    \Rightarrow 1 - 2.\left( { - 2} ight) + 5 = 0\left( L ight)

    \Rightarrow 1 - 2.\left( { - 2} ight) + 5 = 0 loại đáp án (d) đi qua A(1; –2).

    Ta có (d):x−2y+5=0

    ⇒VTPT \overrightarrow n  = \left( {1; - 2} ight)

    ⇒VTCP \overrightarrow u  = \left( {2;1} ight) loại đáp án (d) có phương trình tham số: \left\{\begin{matrix}x=t\\ y=-2t\end{matrix}ight.

    Ta có (d):x−2y+5=0

    \Rightarrow y = \frac{1}{2}x + \frac{5}{2} hệ số góc k = \frac{1}{2}.

  • Câu 11: Nhận biết

    Elip (E):4x^{2}+16y^{2}=1 có độ dài trục bé bằng:

     Ta có: (E):4x^{2}+16y^{2}=1  \Leftrightarrow\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{1}{{16}}}} = 1 \Rightarrow {b^2} = \frac{1}{{16}} \Rightarrow b = \frac{1}{4}.

    Độ dài trục bé 2b=\frac12.

  • Câu 12: Vận dụng

    Nếu ba đường thẳng \ d_{1}:\ 2x + y–4 = 0, d_{2}:5x–2y + 3 = 0d_{3}:mx + 3y–2 = 0 đồng quy thì m nhận giá trị nào trong các giá trị sau?

    \left\{ \begin{matrix}
\ d_{1}:\ 2x + y–4 = 0 \\
d_{2}:5x–2y + 3 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = \frac{5}{9} \\
y = \frac{26}{9} \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A\left(
\frac{5}{9};\frac{26}{9} ight) \in d_{3} ightarrow \frac{5m}{9} + \frac{26}{3} - 2 = 0
\Leftrightarrow m = - 12.

  • Câu 13: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA\left( \frac{7}{4};3 ight), B(1;2)C(
- 4;3). Phương trình đường phân giác trong của góc A là:

    \left\{ \begin{matrix}
A\left( \frac{7}{4};3 ight),\ B(1;2) ightarrow AB:4x - 3y + 2 = 0 \\
A\left( \frac{7}{4};3 ight),\ C( - 4;3) ightarrow AC:y - 3 = 0 \\
\end{matrix} ight.\ .

    Suy ra các đường phân giác góc A là:

    \begin{matrix}
\frac{|4x - 3y + 2|}{5} = \frac{|y - 3|}{1} \Leftrightarrow \left\lbrack
\begin{matrix}
4x + 2y - 13 = 0 ightarrow f(x;y) = 4x + 2y - 13 \\
4x - 8y + 17 = 0 \\
\end{matrix} ight.\  \\
\\
\end{matrix}

    ightarrow \left\{ \begin{matrix}
f\left( B(1;2) ight) = - 5 < 0 \\
f\left( C( - 4;3) ight) = - 23 < 0 \\
\end{matrix} ight.\ .

    Suy ra đường phân giác trong góc A4x - 8y
+ 17 = 0.

  • Câu 14: Nhận biết

    Đường Elip \frac{x^{2}}{16} + \frac{y^{2}}{7} = 1 có tiêu cự bằng

    Elip \frac{x^{2}}{16} + \frac{y^{2}}{7} =
1a^{2} = 16, b^{2} = 7 suy ra c^{2} = a^{2} - b^{2} = 16 - 7 = 9 \Leftrightarrow
c = 3.

    Vậy tiêu cự 2c = 2.3 = 6.

  • Câu 15: Vận dụng

    Trong mặt phẳng hệ tọa độ Oxy, cho đường tròn (C):x^{2} + y^{2} + 2x - 6y + 5 = 0. Viết phương trình tiếp tuyến của đường tròn (C), biết rằng tiếp tuyến đó song song với đường thẳng \Delta:x + 2y - 15 =
0?

    Ta có: Phương trình đường tròn có tâm I(
- 1;3) và bán kính R = \sqrt{1 + 9
- 5} = \sqrt{5}

    Gọi d là đường thẳng song song với đường thẳng \Delta:x + 2y - 15 = 0 khi đó:

    d:x + 2y - m = 0;(m eq
15)

    Đường thẳng d là tiếp tuyến của đường tròn khi và chỉ khi

    d(I;d) = R \Leftrightarrow \frac{| - 1 +
6 - m|}{\sqrt{1 + 4}} = \sqrt{5}

    \Leftrightarrow |m - 5| = 5
\Leftrightarrow \left\lbrack \begin{matrix}
m - 5 = 5 \\
m - 5 = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 10 \\
m = 0 \\
\end{matrix} ight.

    Vậy có hai tiếp tuyến của đường tròn thỏa mãn yêu cầu bài toán là: x + 2y = 0;x + 2y - 10 = 0

  • Câu 16: Nhận biết

    Trên mặt phẳng tọa độ Oxy cho tọa độ hai điểm M(1;0),N(7;4). Tọa độ trung điểm I của MN là:

    Tọa độ trung điểm I của MN là:

    \left\{ \begin{matrix}x_{I} = \dfrac{x_{M} + x_{N}}{2} \\y_{I} = \dfrac{y_{M} + y_{N}}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{I} = \dfrac{1 + 7}{2} = 4 \\y_{I} = \dfrac{0 + 4}{2} = 2 \\\end{matrix} ight.

    Vậy tọa độ trung điểm của MN là: I(4;2).

  • Câu 17: Vận dụng

    Trong mặt phẳng Oxy, cho điểm C(3;0) và elip (E):\frac{x^{2}}{9} + \frac{y^{2}}{1} =
1. A,B2 điểm thuộc (E) sao cho \bigtriangleup ABC đều, biết tọa độ của A\left( \frac{a}{2};\frac{c\sqrt{3}}{2}
ight)A có tung độ âm. Tính tổng a + c.

    Nhận xét: Điểm C(3;0)là đỉnh của elip (E) \Rightarrow điều kiện cần để \bigtriangleup ABC đều đó là A,B đối xứng

    Nhau qua Ox.Suy ra A,B là giao điểm của đường thẳng \Delta:x = x_{0} và elip (E).

    +) Ta có elip (E):\frac{x^{2}}{9} +
\frac{y^{2}}{1} = 1 \Rightarrow
\left\lbrack \begin{matrix}
y = - \frac{1}{3}\sqrt{9 - x^{2}} \\
y = \frac{1}{3}\sqrt{9 - x^{2}} \\
\end{matrix} ight..

    +) Theo giả thiết A có tung độ âm nên tọa độ của A\left( x_{0}; -
\frac{1}{3}\sqrt{9 - x_{0}^{2}} ight) (điều kiện x_{0} < 3 do A eq C)

    +) Ta có AC = \sqrt{(3 - x_{0})^{2} +
\frac{1}{9}(9 - x_{0}^{2})}d_{(C;\Delta)} = |3 - x_{0}|

    +) \bigtriangleup ABC đều \Leftrightarrow d_{(C;\Delta)} =
\frac{\sqrt{3}}{2}AC \Leftrightarrow |3 - x_{0}| =
\frac{\sqrt{3}}{2}\sqrt{(3 - x_{0})^{2} + \frac{1}{9}\left( 9 -
x_{0}^{2} ight)}

    \Leftrightarrow (3 - x_{0})^{2} =
\frac{3}{4}\left\lbrack (3 - x_{0})^{2} + \frac{1}{9}(9 - x_{0}^{2})
ightbrack

    \Leftrightarrow \frac{1}{3}x_{0}^{2} -
\frac{3}{2}x_{0} + \frac{3}{2} = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = \frac{3}{2}(t/m) \\
x_{0} = 3(L) \\
\end{matrix} ight.

    \Rightarrow A\left( \frac{3}{2}; -
\frac{\sqrt{3}}{2} ight) \Rightarrow \left\{ \begin{matrix}
a = 3 \\
c = - 1 \\
\end{matrix} ight.\  \Rightarrow a + c = 2.

  • Câu 18: Nhận biết

    Cho đường thẳng (\Delta):3x + 4y - 4 = 0 và tọa độ điểm C(1; - 1). Tính d(C;\Delta)?

    Ta có khoảng cách từ điểm C đến đường thẳng (\Delta):3x + 4y - 4 = 0 là:

    d(C;\Delta) = \frac{\left| 3.1 + 4.( -
1) - 4 ight|}{\sqrt{3^{2} + 4^{2}}} = \frac{5}{5} = 1

    Vậy khoảng cách cần tìm bằng 1.

  • Câu 19: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C): {(x - 1)^2} + {(y + 3)^2} = 16 là:

     Tâm và bán kính đường tròn (C) là: I\left( {1; - 3} ight),R = \sqrt {16}  = 4

  • Câu 20: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình tham số của đường thẳng?

    Phương trình tham số của đường thẳng là: \left\{ \begin{matrix}
x = 1 + 2t \\
y = 4 - 3t \\
\end{matrix} ight.

  • Câu 21: Nhận biết

    Cho đường thẳng (d):\left\{ \begin{matrix}
x = t \\
y = 1 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm nào dưới đây không nằm trên đường thẳng đã cho?

    Thay tọa độ các điểm đã cho vào phương trình tham số của đường thẳng d ta thấy điểm không thuộc đường thẳng d là: T(1;1).

  • Câu 22: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;4), B(3;2)C(7;3). Viết phương trình tham số của đường trung tuyến CM của tam giác

    \left\{ \begin{matrix}
\mathbf{A}\left( \mathbf{1;4} ight) \\
\mathbf{B}\left( \mathbf{3;2} ight) \\
\end{matrix} ight.\ \mathbf{ightarrow M}\left( \mathbf{2;3}
ight)\mathbf{ightarrow}\overrightarrow{\mathbf{MC}}\mathbf{=}\left(
\mathbf{5;0} ight)\mathbf{=}\mathbf{5}\left( \mathbf{1;0}
ight)\mathbf{ightarrow CM}\mathbf{:}\left\{ \begin{matrix}
\mathbf{x =}\mathbf{7}\mathbf{+ t} \\
\mathbf{y =}\mathbf{3} \\
\end{matrix} ight.\ \left( \mathbf{t}\mathbb{\in R}
ight)\mathbf{.}

  • Câu 23: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho đường tròn (C):(x + 3)^{2} + (y - 5)^{2} = 10. Viết phương trình tiếp tuyến của đường tròn đã cho, biết hệ số góc của tiếp tuyền bằng - \frac{1}{3}.

    Đường tròn (C) có tâm I( - 3;5) và bán kính R = \sqrt{10}

    Tiếp tuyến d có hệ số góc k = -
\frac{1}{3} nên có dạng y = -
\frac{1}{3}x + b

    \Leftrightarrow x + 3y - 3b =
0

    Vì d là tiếp tuyến của (C) nên d(I;d) = R

    \Leftrightarrow \frac{| - 3 + 3.5 -
3b|}{\sqrt{1^{2} + 3^{2}}} = \sqrt{10}

    \Leftrightarrow |12 - 3b| = 10\Leftrightarrow \left\lbrack \begin{matrix}b = \dfrac{2}{3} \\b = \dfrac{22}{3} \\\end{matrix} ight.

    Với b = \frac{2}{3} thì phương trình d là: y = - \frac{1}{3}x + \frac{2}{3}
\Rightarrow x + 3y - 2 = 0

    Với b = \frac{22}{3} thì phương trình d là: y = - \frac{1}{3}x +
\frac{22}{3} \Rightarrow x + 3y - 22 = 0

    Vậy các phương trình tiếp tuyến cần tìm là: x + 3y - 2 = 0;x + 3y - 22 = 0.

  • Câu 24: Nhận biết

    Cho một hypebol (E):\frac{x^{2}}{144} - \frac{y^{2}}{25} =
1 có hai tiêu điểm là:

    Ta có: \left\{ \begin{matrix}
a^{2} = 144 \\
b^{2} = 25 \\
c^{2} = a^{2} + b^{2} = 169 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 12 \\
b = 5 \\
c = 13 \\
\end{matrix} ight.

    Vậy hai tiêu điểm cần tìm là: F_{1}( -
13;0),F_{2}(13;0).

  • Câu 25: Nhận biết

    Cho phương trình x^{2} + y^{2} - 2ax - 2by + c = 0(1). Điều kiện để (1) là phương trình đường tròn là:

    Điều kiện để x^{2} + y^{2} - 2ax - 2by +
c = 0(1) là phương trình đường tròn là a^{2} + b^{2}\  > \ c.

  • Câu 26: Thông hiểu

    Cho phương trình x^{2} + y^{2}–8x + 10y + m = 0(1). Tìm điều kiện của m để (1) là phương trình đường tròn có bán kính bằng 7.

    x^{2} + y^{2}–8x + 10y + m = 0
ightarrow \left\{ \begin{matrix}
a = 4 \\
b = - 5 \\
c = m \\
\end{matrix} ight.

    ightarrow a^{2} + b^{2} - c = R^{2} =
49 \Leftrightarrow m = - 8.

  • Câu 27: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 2 + 3t \\
y = - 2t \\
\end{matrix} ight.d_{2}:\left\{ \begin{matrix}
x = 2t' \\
y = - 2 + 3t' \\
\end{matrix} ight..

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 2 + 3t \\
y = - 2t \\
\end{matrix} ight.\  ightarrow \ {\overrightarrow{u}}_{1} = (3; - 2)
\\
d_{2}:\left\{ \begin{matrix}
x = 2t' \\
y = - 2 + 3t' \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = (2;3)
\\
\end{matrix} ight\} ightarrow {\overrightarrow{u}}_{1} \cdot
{\overrightarrow{u}}_{2} = 0 ightarrow d_{1}\bot\ \ d_{2}. Chọn

  • Câu 28: Nhận biết

    Cho elip (E):4x^{2} + 5y^{2} = 20. Diện tích hình chữ nhật cơ sở của (E)

    (E):4x^{2} + 5y^{2} = 20 \Leftrightarrow
\frac{x^{2}}{5} + \frac{y^{2}}{4} = 1

    Độ dài trục lớn: 2a =
2\sqrt{5}.

    Độ dài trục bé: 2b = 2.2 =
4.

    Diện tích hình chữ nhật cơ sở của (E) là: 2\sqrt{5}.4 = 8\sqrt{5}.

  • Câu 29: Nhận biết

    Đường thẳng d đi qua điểm M( - 4;5) và có vectơ pháp tuyến \overrightarrow{n} = (3;2) có phương trình tham số là:

    Ta có:

    \left\{ \begin{matrix}M( - 4;5) \in d \\{\overrightarrow{n}}_{d} = (3;2) ightarrow {\overrightarrow{u}}_{d} =( - 2;3) \\\end{matrix} ight.\ \overset{ightarrow}{}d:\left\{ \begin{matrix}x = - 4 - 2t \\y = 5 + 3t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 30: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng (\Delta):x + y - 1 = 0(\Delta'):\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Khẳng định nào sau đây đúng?

    Ta có:

    (\Delta):x + y - 1 = 0 có vectơ pháp tuyến là \overrightarrow{n_{\Delta}} =
(1;1)

    (\Delta'):\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có vectơ chỉ phương là \overrightarrow{u_{\Delta'}} = (2; -
1) nên (\Delta') có vectơ pháp tuyến là \overrightarrow{n_{\Delta'}} =
(1;2)

    \frac{1}{1} eq \frac{1}{2} nên (\Delta) cắt (\Delta').

  • Câu 31: Nhận biết

    Cho đường tròn (C) có phương trình (x + 5)^{2} + (y – 2)^{2} = 25. Đường tròn (C) còn được viết dưới dạng nào trong các dạng dưới đây:

    Viết lại phương trình đường tròn như sau:

    \begin{matrix}  {(x + 5)^2} + {(y - 2)^2} = 25 \hfill \\   \Leftrightarrow {x^2} + 10x + 25 + {y^2} - 4y + 4 = 25 \hfill \\   \Leftrightarrow {x^2} + {y^2} + 10x - 4y + 4 = 0 \hfill \\ \end{matrix}

  • Câu 33: Nhận biết

    Trong mặt phẳng tọa độ Oxy, mỗi đường thẳng có bao nhiêu vectơ pháp tuyến?

    Một đường thẳng có vô số vectơ pháp tuyến và chúng có cùng phương với nhau.

  • Câu 34: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA( -
3;1),B(2;1),C( - 1;5). Phương trình tổng quát của đường trung tuyến kẻ từ đỉnh B của tam giác ABC là:

    Gọi I là trung điểm của AC. Ta có: I( -
2;3)

    Đường trung tuyến BI đi qua điểm B và nhận \overrightarrow{BI} = ( - 4;4) làm vectơ chỉ phương nên có vectơ pháp tuyến \overrightarrow{u} = (1;1).

    Phương trình tổng quát của đường thẳng BI là:

    1(x - 2) + 1(y + 1) = 0

    \Leftrightarrow x + y - 1 =
0

  • Câu 35: Thông hiểu

    Phương trình chính tắc của hypebol có 2a gấp đôi 2b và đi qua điểm M(4; 1) là:

     Ta có: a=2b.

    Phương trình chính tắc: \frac{{{x^2}}}{{{{(2b)}^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1.

    M(4;1) thuộc hypebol nên: 

    \frac{{{4^2}}}{{{{(2b)}^2}}} - \frac{{{1^2}}}{{{b^2}}} = 1 \Leftrightarrow \frac{{16}}{{4{b^2}}} - \frac{1}{{{b^2}}} = 1\Leftrightarrow \frac{{12}}{{4{b^2}}} = 1 \Leftrightarrow b =  \pm \sqrt 3  \Rightarrow a =  \pm 2\sqrt 3.

    Do đó, phương trình chính tắc: \frac{x^{2}}{12}-\frac{y^{2}}{3}=1.

  • Câu 36: Nhận biết

    Tìm tọa độ giao điểm của đường thẳng d:\left\{ \begin{matrix}
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight. và trục tung.

    Oy \cap d:\left\{ \begin{matrix}
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight.\ \overset{}{ightarrow}\left\{ \begin{matrix}
y = 0 \\
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = \frac{1}{3} \\
x = \frac{2}{3},\ \ y = 0 \\
\end{matrix} ight.\ .Chọn \left(
\frac{2}{3};0 ight).

  • Câu 37: Nhận biết

    Tính góc tạo bởi giữa hai đường thẳng: d_1:2x+2\sqrt{3}y+4=0d_2: y – 4 =0

     Ta có: \cos ({d_1},{d_2}) = \frac{{\left| {2.0 + 2\sqrt 3 .1} ight|}}{{\sqrt {{2^2} + {{(2\sqrt 3 )}^2}} .\sqrt {{0^2} + {1^2}} }} = \frac{{\sqrt 3 }}{2}. Suy ra góc giữa hai đường thẳng bằng 30^{\circ}.

  • Câu 38: Thông hiểu

    Cho đường thẳng (d):3x - 4y + 2 = 0 và đường tròn (C):x^{2} + (y + 4)^{2} = 25. Khẳng định nào sau đây đúng khi nói về vị trí tương đối của đường thẳng (d) và đường tròn (C)?

    Ta có: (C):x^{2} + (y + 4)^{2} = 25
\Rightarrow \left\{ \begin{matrix}
I(0; - 4) \\
R = 5 \\
\end{matrix} ight.

    Lại có khoảng cách từ tâm I đến đường thẳng d là:

    d\left( I;(d) ight) = \frac{\left| 3.0
- 4.( - 4) + 2 ight|}{\sqrt{3^{2} + 4^{2}}} = \frac{18}{5} <
R

    Vậy đường thẳng (d) cắt đường tròn (C) là khẳng định đúng.

  • Câu 39: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(3;0)B(0; - 4). Tìm điểm M thuộc trục tung sao cho diện tích tam giác MAB bằng 6.

    Ta có

    \left\{ \begin{matrix}
AB:4x - 3y - 12 = 0 \\
AB = 5 \\
M(0;y) ightarrow h_{M} = d(M;AB) = \frac{|3y + 12|}{5} \\
\end{matrix} ight.

    ightarrow 6 = S_{\Delta MAB} =
\frac{1}{2}.5.\frac{|3y + 12|}{5}

    \Leftrightarrow \left\lbrack
\begin{matrix}
y = 0 ightarrow M(0;0) \\
y = - 8 ightarrow M(0; - 8) \\
\end{matrix} ight.\ .

  • Câu 40: Thông hiểu

    Tìm m để đường thẳng \left( d_{1} ight):x - my + 5 = 0\left( d_{2} ight): - 3x + y - 1 =
0 tạo với nhau một góc 90^{0}?

    Ta có:

    Vectơ pháp tuyến của đường thẳng \left(
d_{1} ight):x - my + 5 = 0 là: \overrightarrow{n_{1}} = (1; - m)

    Vectơ pháp tuyến của đường thẳng \left(
d_{2} ight): - 3x + y - 1 = 0 là: \overrightarrow{n_{2}} = ( - 3;1)

    Hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) vuông góc với nhau khi và chỉ khi:

    \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 0
\Leftrightarrow - 3 - m = 0

    \Leftrightarrow m = - 3

    Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi m = - 3.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo