Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm A(2; - 1)B(2;5).

    \left\{ \begin{matrix}A(2; - 1) \in AB \\{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = (0;6) \\\end{matrix} ight.\ \overset{ightarrow}{}AB:\left\{ \begin{matrix}x = 2 \\y = - 1 + 6t \\\end{matrix} ight.\ \ \ \left( t\mathbb{\in R} ight).

  • Câu 2: Vận dụng

    Đường tròn (C) đi qua điểm M(2; - 1) và tiếp xúc với hai trục tọa độ Ox,\ Oy có phương trình là:

    M(2; - 1) thuộc góc phần tư (IV) nên A(a; - a),\ \ a >
0.

    Khi đó: R = a^{2} = IM^{2} = (a - 2)^{2}
+ (a - 1)^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = 1 ightarrow I(1; - 1),R = 1 ightarrow (C):(x - 1)^{2} + (y +
1)^{2} = 1 \\
a = 5 ightarrow I(5; - 5),\ R = 5 ightarrow (C):(x - 5)^{2} + (y +
5)^{2} = 25 \\
\end{matrix} ight.\ .

  • Câu 3: Thông hiểu

    Trong các phương trình sau, phương trình nào không phải là phương trình của đường tròn?

    Xét đáp án x^{2} + y^{2} - x + y + 4 = 0
ightarrow a = \frac{1}{2},\ b = - \frac{1}{2},\ c = 4

    ightarrow a^{2} + b^{2} - c < 0
ightarrowChọn đáp án này.

    Các đáp án còn lại các hệ số a,\ \ b,\ \
c thỏa mãn a^{2} + b^{2} - c >
0.

  • Câu 4: Nhận biết

    Đường thẳng nào sau đây song song với đường thẳng (d):2x + 3y - 1 = 0?

    Đường thẳng (d):2x + 3y - 1 = 0 song song với đường thẳng 2x + 3y + 5 =
0\frac{2}{2} = \frac{3}{3} eq
\frac{- 1}{5}.

  • Câu 5: Nhận biết

    Cho hai đường thẳng ∆_1: 11x – 12y + 1 = 0∆_2: 12x + 11y + 9 = 0. Khi đó hai đường thẳng này:

     Ta có:

    \begin{matrix}  \overrightarrow {{n_{{\Delta _1}}}}  = \left( {11; - 12} ight) \hfill \\  \overrightarrow {{n_{{\Delta _2}}}}  = \left( {12;11} ight) \hfill \\  \overrightarrow {{n_{{\Delta _1}}}} .\overrightarrow {{n_{{\Delta _2}}}}  = 0 \Rightarrow \overrightarrow {{n_{{\Delta _1}}}}  \bot \overrightarrow {{n_{{\Delta _2}}}}  \hfill \\   \Rightarrow {\Delta _1} \bot {\Delta _2} \hfill \\ \end{matrix}

  • Câu 6: Nhận biết

    Cho đường tròn (C) có phương trình (x + 5)^{2} + (y – 2)^{2} = 25. Đường tròn (C) còn được viết dưới dạng nào trong các dạng dưới đây:

    Viết lại phương trình đường tròn như sau:

    \begin{matrix}  {(x + 5)^2} + {(y - 2)^2} = 25 \hfill \\   \Leftrightarrow {x^2} + 10x + 25 + {y^2} - 4y + 4 = 25 \hfill \\   \Leftrightarrow {x^2} + {y^2} + 10x - 4y + 4 = 0 \hfill \\ \end{matrix}

  • Câu 7: Nhận biết

    Cho phương trình x^{2} + y^{2} - 2ax - 2by + c = 0(1). Điều kiện để (1) là phương trình đường tròn là:

    Điều kiện để x^{2} + y^{2} - 2ax - 2by +
c = 0(1) là phương trình đường tròn là a^{2} + b^{2}\  > \ c.

  • Câu 8: Nhận biết

    Cho hình elip có phương trình \frac{x^{2}}{64} + \frac{y^{2}}{36} = 1. Hình elip có tiêu cự trục lớn bằng:

    Ta có: \frac{x^{2}}{64} +
\frac{y^{2}}{36} = 1 \Rightarrow \left\{ \begin{matrix}
a = 8 \\
b = 6 \\
\end{matrix} ight.

    Độ dài trục lớn là: 2a = 2.8 =
16

  • Câu 9: Vận dụng

    Cho hai đường thẳng \left( d_{1} ight):x + my + 2m - 1 = 0\left( d_{2} ight):\left\{
\begin{matrix}
x = m + 2y \\
y = - 5 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) với m là tham số. Tìm giá trị của tham số m để hai đường thẳng tạo với nhau một góc bằng nửa góc vuông?

    VTPT của hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) lần lượt là \overrightarrow{n_{1}} =
(1;m);\overrightarrow{n_{2}} = (1; - 2)

    Để hai đường thẳng tạo với nhau một góc bằng 45^{0} thì

    \cos\left( \left( d_{1} ight);\left(
d_{2} ight) ight) = cos45^{0} = \frac{\sqrt{2}}{2}

    \Leftrightarrow \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight) =
\frac{\sqrt{2}}{2} \Leftrightarrow \frac{\left| 1.1 + m.( - 2)
ight|}{\sqrt{m^{2} + 1}.\sqrt{1^{2} + ( - 2)^{2}}} =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{|2m -
1|}{\sqrt{m^{2} + 1}.\sqrt{5}} = \frac{\sqrt{2}}{2} \Leftrightarrow
\frac{(2m - 1)^{2}}{5\left( m^{2} + 1 ight)} =
\frac{1}{2}

    \Leftrightarrow 2(2m - 1)^{2} = 5\left(
m^{2} + 1 ight) \Leftrightarrow 3m^{2} - 8m - 3 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}m = 3 \\m = - \dfrac{1}{3} \\\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}m = 3 \\m = - \dfrac{1}{3} \\\end{matrix} ight..

  • Câu 10: Thông hiểu

    Trong mặt phẳng Oxy có đường thẳng \Delta đi qua điểm A(1;1) và tạo với đường thẳng d:2x + 3y + 1 = 0 một góc bằng 45^{0}. Biết rằng \Delta có dạng ax - 5y + 4 = 0a'x + y - 6 = 0. Tính tổng hai giá trị aa'?

    Gọi \overrightarrow{n} = (a;b) là vectơ pháp tuyến của đường thẳng \Delta.

    Phương trình tổng quát của đường thẳng \Delta là: ax
+ by - a - b = 0

    Ta có:

    \cos(d;\Delta) = \frac{|2a +
3b|}{\sqrt{13}.\sqrt{a^{2} + b^{2}}}

    \Leftrightarrow cos45^{0} = \frac{|2a +
3b|}{\sqrt{13}.\sqrt{a^{2} + b^{2}}}

    \Leftrightarrow \frac{\sqrt{2}}{2} =
\frac{|2a + 3b|}{\sqrt{13}.\sqrt{a^{2} + b^{2}}}

    \Leftrightarrow
\sqrt{2}.\sqrt{13}.\sqrt{a^{2} + b^{2}} = 2|2a + 3b|

    \Leftrightarrow 10a^{2} - 48ab - 10b^{2}
= 0

    \Leftrightarrow \left\lbrack\begin{matrix}a = 5b \\a = - \dfrac{1}{5}b \\\end{matrix} ight.

    Vậy ta có phương trình của \Delta là: x
- 5y + 4 = 05x + y - 6 =
0

    Vậy a = 1;a' = 5 \Rightarrow a +
a' = 1 + 5 = 6

  • Câu 11: Thông hiểu

    Trong mặt phẳng tọa độ Oxy,cho tam giác ABC có tọa độ các điểm A(2;0),B(0;3),C( - 3;1). Đường thẳng d đi qua B và song song với AC có phương trình tổng quát là:

    Ta có: \overrightarrow{AC} = ( - 5;1)
\Rightarrow \overrightarrow{n_{AC}} = (1;5)

    Phương trình tổng quát AC là: x + 5y - 2
= 0

    Đường thẳng d song song với AC nên d có dạng x + 5y + m = 0

    Do điểm B \in d \Rightarrow 0 + 15 + m =
0 \Rightarrow m = - 15

    Vậy d:x + 5y - 15 = 0.

  • Câu 12: Nhận biết

    Đường tròn có tâm I(1;2), bán kính R = 3 có phương trình là:

    (C):\left\{ \begin{matrix}
I(1;2) \\
R = 3 \\
\end{matrix} ight.\  ightarrow (C):(x - 1)^{2} + (y - 2)^{2} = 9
\Leftrightarrow x^{2} + y^{2} - 2x - 4y - 4 = 0.

  • Câu 13: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1 (với a > b > 0). Biết F_{1},F_{2} là hai tiêu điểm. Cho điểm M di động trên (E). Chọn khẳng định đúng?

    Ta có:

    MF_{1} = a + \frac{cx}{a};\ MF_{2} = a -
\frac{cx}{a} \Rightarrow MF_{1}.MF_{2} = a^{2} -
\frac{c^{2}x^{2}}{a^{2}}.

    \begin{matrix}
M(x;y) \in (E) \Rightarrow \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1
\\
\Rightarrow y^{2} = b^{2}\left( 1 - \frac{x^{2}}{a^{2}} ight)
\Rightarrow OM^{2} = x^{2} + y^{2} = x^{2} + b^{2}\left( 1 -
\frac{x^{2}}{a^{2}} ight) = x^{2} + b^{2} - \frac{b^{2}x^{2}}{a^{2}}
\\
\end{matrix} \begin{matrix}
MF_{1}.MF_{2} + OM^{2} = a^{2} - \frac{c^{2}x^{2}}{a^{2}} + x^{2} +
b^{2} - \frac{b^{2}x^{2}}{a^{2}} = a^{2} + b^{2} + x^{2} - \left(
\frac{c^{2}x^{2}}{a^{2}} + \frac{b^{2}x^{2}}{a^{2}} ight) \\
= a^{2} + b^{2} + x^{2} - \frac{\left( b^{2} + c^{2}
ight)x^{2}}{a^{2}} \\
\end{matrix}

    a^{2} = b^{2} + c^{2} nên MF_{1}.MF_{2} + OM^{2} = a^{2} + b^{2} +
x^{2} - \frac{\left( b^{2} + c^{2} ight)x^{2}}{a^{2}} = a^{2} + b^{2}
+ x^{2} - \frac{a^{2}x^{2}}{a^{2}} = a^{2} + b^{2}.

  • Câu 14: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng (\Delta):x + y - 1 = 0(\Delta'):\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Khẳng định nào sau đây đúng?

    Ta có:

    (\Delta):x + y - 1 = 0 có vectơ pháp tuyến là \overrightarrow{n_{\Delta}} =
(1;1)

    (\Delta'):\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có vectơ chỉ phương là \overrightarrow{u_{\Delta'}} = (2; -
1) nên (\Delta') có vectơ pháp tuyến là \overrightarrow{n_{\Delta'}} =
(1;2)

    \frac{1}{1} eq \frac{1}{2} nên (\Delta) cắt (\Delta').

  • Câu 15: Thông hiểu

    Phương trình tổng quát của đường thẳng đi qua hai điểm A(3 ; – 1) và B(1 ; 5) là:

     Ta có: {\overrightarrow u _{AB}} = ( - 2;6) \Rightarrow {\overrightarrow u _{AB}} ( - 1;3) \Rightarrow {\overrightarrow n _{AB}} = (3;1).

    Phương trình tổng quát của AB

    3(x - 3) + 1(y + 1) = 0 \Leftrightarrow 3x + y - 8 = 0.

     

  • Câu 16: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có điểm A( - 4;8). Gọi B' đối xứng với điểm B qua C, điểm I(5;
- 4) là hình chiếu vuông góc của B lên đường thẳng B'D. Biết rằng tọa độ điểm C(a;b) thuộc đường thẳng (d):2x + y + 5 = 0. Khi đó:

    Ta có: ADB’C là hình bình hành => AC // B’D

    BI\bot B'D \Rightarrow AC\bot
BI

    Tam giác BB’I vuông cân tại I => BC = CI

    => ACID là hình thang cân => \Delta
ADC = \Delta CIA \Rightarrow AI\bot CI

    => CI đi qua điểm I(5; - 4) và có vecto pháp tuyến \frac{1}{3}\overrightarrow{AI} = \frac{1}{3}(9; -
12) = (3; - 4)

    Phương trình CI: 3x - 4y - 31 =
0

    \Rightarrow C = d \cap CI \Rightarrow
C(1; - 7) \Rightarrow a - b = 8

  • Câu 17: Vận dụng

    Tìm a để hai đường thẳng d_{1}:2x–4y + 1 = 0d_{2}:\left\{ \begin{matrix}
x = - 1 + at \\
y = 3 - (a + 1)t \\
\end{matrix} ight. vuông góc với nhau?

    Ta có:

    \left\{ \begin{matrix}
d_{1}:2x–4y + 1 = 0 \\
d_{2}:\left\{ \begin{matrix}
x = - 1 + at \\
y = 3 - (a + 1)t \\
\end{matrix} ight.\  \\
\end{matrix} ight. \overset{}{ightarrow}\left\{ \begin{matrix}
{\overrightarrow{n}}_{1} = (1; - 2) \\
{\overrightarrow{n}}_{2} = (a + 1;a) \\
\end{matrix} ight.\ \overset{d_{1}\bot
d_{2}}{ightarrow}{\overrightarrow{n}}_{1} \cdot
{\overrightarrow{n}}_{2} = 0 \Leftrightarrow a + 1 - 2a = 0 \Leftrightarrow a =
1.

  • Câu 18: Nhận biết

    Elip (E):\frac{x^{2}}{16}+\frac{y^{2}}{4}=1 có độ dài tiêu cự bằng:

     Ta có: a=4;b=2 \Rightarrow c=\sqrt{a^2-b^2}=2\sqrt3.

    Do đó độ dài tiêu cự 2c=4\sqrt3.

  • Câu 19: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng \left\{\begin{matrix}x=2\\ y=-1+6t\end{matrix}ight.?

     Vectơ chỉ phương của đường thẳng trên là: (0;6) \Rightarrow \overrightarrow u  = (0;1).

  • Câu 20: Vận dụng

    Cho hyperbol (H):3x^{2} - 4y^{2} = 12 có hai tiêu điểm là F_{1},\ F_{2}. Tìm trên một nhánh của (H) tọa độ hai điểm P,\ Q . Biết rằng \Delta OPQ là tam giác đều.

    Ta có : (H):3x^{2} - 4y^{2} = 12
\Leftrightarrow \frac{x^{2}}{4} - \frac{y^{2}}{3} = 1.

    Gọi P\left( x_{0};y_{0} ight) \in (H)
\Rightarrow Q\left( x_{0}; - y_{0} ight) (Do (H) đối xứng với nhau qua Ox)

    \Delta OPQ đều \Leftrightarrow OP = PQ

    \Leftrightarrow 4y_{0}^{2} = x_{0}^{2} +
y_{0}^{2} \Leftrightarrow x_{0}^{2} = 3y_{0}^{2}. Thay vào (H) ta có:

    9x_{0}^{2} - 4y_{0}^{2} = 12
\Leftrightarrow \left\lbrack \begin{matrix}
y_{0} = \frac{2\sqrt{15}}{5} \\
y_{0} = - \frac{2\sqrt{15}}{5} \\
\end{matrix} ight. \Rightarrow
x_{0} = \pm \frac{6\sqrt{5}}{5}.

    Vậy P\left(
\frac{6\sqrt{5}}{5};\frac{2\sqrt{15}}{5} ight), Q\left( \frac{6\sqrt{5}}{5}; -
\frac{2\sqrt{15}}{5} ight).

  • Câu 21: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):16x^{2} + 16y^{2} + 16x - 8y - 11 = 0 là:

    (C):16x^{2} + 16y^{2} + 16x - 8y - 11 =
0 \Leftrightarrow x^{2} + y^{2} + x - \frac{1}{2}y - \frac{11}{16} =
0.

    ightarrow \left\{ \begin{matrix}
I\left( - \frac{1}{2};\frac{1}{4} ight) \\
R = \sqrt{\frac{1}{4} + \frac{1}{16} + \frac{11}{16}} = 1. \\
\end{matrix} ight.

  • Câu 22: Nhận biết

    Cho đường thẳng \Delta:x - 2y - 1 = 0. Đường thẳng nào sau đây vuông góc với đường thẳng \Delta?

    Đường thẳng d:4x + 2y + 3 = 0 vuông góc với đường thẳng \Delta\overrightarrow{n_{d}}.\overrightarrow{n_{\Delta}}
= 4.1 + 2( - 2) = 0.

  • Câu 23: Vận dụng

    Cho đường tròn \left( C_{m} ight):x^{2} + y^{2} + 2(m - 1)x -
2my - 4 = 0. Biết rằng khi giá trị m thay đổi, đường tròn \left( C_{m} ight) luôn đi qua điểm I cố định có hoành độ dương. Xác định giá trị của tham số m sao cho tiếp tuyến của đường tròn \left( C_{m} ight) tại I song song với (d):x - 2y - 1 = 0?

    Gỉa sử đường tròn luôn đi qua điểm I\left( x_{0};y_{0} ight) cố định khi m thay đổi. Khi đó:

    {x_{0}}^{2} + {y_{0}}^{2} + 2(m - 1)x_{0}
- 2my_{0} - 4 = 0 với mọi m

    \Leftrightarrow m\left( 2x_{0} - 2y_{0}
ight) + {x_{0}}^{2} + {y_{0}}^{2} - 2x_{0} - 4 = 0 với mọi m

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x_{0} - 2y_{0} = 0 \\
{x_{0}}^{2} + {y_{0}}^{2} - 2x_{0} - 4 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = y_{0} \\
2{x_{0}}^{2} - 2x_{0} - 4 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = y_{0} = - 1 \\
x_{0} = y_{0} = 2 \\
\end{matrix} ight.

    Vậy ta có điểm I(2;2)

    Đường tròn có tâm J(1 - m;m). VTPT của tiếp tuyến của đường tròn tại I là \overrightarrow{IJ} = ( - m - 1;m -
2)

    Để tiếp tuyến tại I song song với đường thẳng (d) nên tồn tại giá trị k sao cho:

    \overrightarrow{IJ} = k(1; - 2)
\Leftrightarrow \left\{ \begin{matrix}
- m - 1 = k \\
m - 2 = - 2k \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m = - 4 \\
k = 3 \\
\end{matrix} ight.

    Vậy giá trị m cần tìm là m = -
4.

  • Câu 24: Thông hiểu

    Cho elip (E): \frac{x^{2}}{25}+\frac{y^{2}}{9}=1. Trong các khẳng định sau, khẳng định nào sai?

    Phương trình elip (E) có dạng \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1;\left( {a = 5;b = 3} ight)

    Ta có: b = \sqrt {{a^2} - {c^2}}  = 4

    Khi đó: {F_1}\left( { - 4;0} ight);{F_2}\left( {4;0} ight) đúng

    Ta có: \frac{c}{a}=\frac{4}{5} đúng

    Đỉnh A1(–a; 0) => A1(–5; 0) đúng

    Độ dài trục nhỏ là 2b = 2.3 = 6 ≠ 3 

    Vậy khẳng định sai là: (E) có độ dài trục nhỏ bằng 3.

  • Câu 25: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A( - 1;2),B(2; - 2),C(3;1). Biết rằng \overrightarrow{AD} =
\overrightarrow{BC}, khi đó tọa độ điểm D là:

    Giả sử tọa độ điểm D = (x;y)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AD} = (x + 1;y - 2) \\
\overrightarrow{BC} = (1;3) \\
\end{matrix} ight.

    \overrightarrow{AD} =
\overrightarrow{BC} nên \left\{
\begin{matrix}
x + 1 = 1 \\
y - 2 = 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 5 \\
\end{matrix} ight.\  \Leftrightarrow D(0;5)

  • Câu 26: Nhận biết

    Cho elip có phương trình chính tắc \frac{x^{2}}{4} + \frac{y^{2}}{1} = 1. Tính tâm sai của elip.

    Ta có a^{2} = 4 \Rightarrow a = 2;b^{2} =
1 \Rightarrow b = 1;c^{2} = a^{2} - b^{2} = 3 \Rightarrow c =
\sqrt{3}

    Tâm sai của elip là e = \frac{c}{a} =
\frac{\sqrt{3}}{2}.

  • Câu 27: Nhận biết

    Cho đường thẳng \Delta có phương trình 4x + 5y - 8 = 0. Xác định vectơ chỉ phương của \Delta?

    Đường thẳng \Delta:4x + 5y - 8 =
0 có vectơ pháp tuyến là \overrightarrow{n} = (4;5) nên có vectơ chỉ phương là \overrightarrow{u} = (5; -
4).

  • Câu 28: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 2 + 3t \\
y = - 2t \\
\end{matrix} ight.d_{2}:\left\{ \begin{matrix}
x = 2t' \\
y = - 2 + 3t' \\
\end{matrix} ight..

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 2 + 3t \\
y = - 2t \\
\end{matrix} ight.\  ightarrow \ {\overrightarrow{u}}_{1} = (3; - 2)
\\
d_{2}:\left\{ \begin{matrix}
x = 2t' \\
y = - 2 + 3t' \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = (2;3)
\\
\end{matrix} ight\} ightarrow {\overrightarrow{u}}_{1} \cdot
{\overrightarrow{u}}_{2} = 0 ightarrow d_{1}\bot\ \ d_{2}. Chọn

  • Câu 29: Nhận biết

    Trong hệ trục tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = - 4t + 1 \\
y = - 2 + 3t \\
\end{matrix} ight.. Một vectơ chỉ phương của d là:

    Một vectơ chỉ phương của d( - 4;3) hay (4; - 3).

  • Câu 30: Thông hiểu

    Đường tròn (C) có tâm I(
- 2;1) và tiếp xúc với đường thẳng \Delta:3x–4y + 5 = 0 có phương trình là:

    (C):\left\{ \begin{matrix}
I( - 2;1) \\
R = d\lbrack I;\Deltabrack = \frac{| - 6 - 4 + 5|}{\sqrt{9 + 16}} = 1
\\
\end{matrix} ight.

    ightarrow (C):(x + 2)^{2} + (y - 1)^{2}
= 1.

  • Câu 31: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:3mx + 2y + 6 = 0d_{2}:\left( m^{2} + 2 ight)x + 2my + 6 =
0 cắt nhau?

    Ta có: \left\{ \begin{matrix}
d_{1}:3mx + 2y + 6 = 0 ightarrow {\overrightarrow{n}}_{1} = (3m;2) \\
d_{2}:\left( m^{2} + 2 ight)x + 2my + 6 = 0 ightarrow
{\overrightarrow{n}}_{2} = \left( m^{2} + 2;2m ight) \\
\end{matrix} ight.

    ightarrow \left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}d_{1}:y + 3 = 0 \\d_{2}:x + y + 3 = 0 \\\end{matrix} ight.\  ightarrow m = 0\ (TM) \\meq 0\overset{d_{1} \cap d_{2} = M}{ightarrow}\frac{m^{2} +2}{3m}\frac{2m}{2} \Leftrightarrow m \pm 1 \\\end{matrix} ight.\ .

  • Câu 32: Thông hiểu

    Lập phương trình chính tắc của elip biết độ dài trục lớn hơn độ dài trục nhỏ 4 đơn vị, độ dài trục nhỏ hơn độ dài tiêu cự 4 đơn vị.

    Elip (E) có độ dài trục lớn hơn độ dài trục nhỏ 4 đơn vị \overset{}{ightarrow}2a - 2b = 4.

    Elip (E) có độ dài trục nhỏ hơn độ dài tiêu cự 4 đơn vị \overset{}{ightarrow}2b - 2c = 4.

    Ta có

    \left\{ \begin{matrix}
a - b = 2 \\
b - c = 2 \\
a^{2} = b^{2} + c^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a - b = 2 \\
a^{2} = b^{2} + (b - 2)^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = b + 2 \\
(b + 2)^{2} = 2b^{2} - 4b + 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = b + 2 \\
b^{2} - 8b = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 10 \\
b = 8 \\
\end{matrix} ight.

    Phương trình chính tắc của Elip là (E):\frac{x^{2}}{100} + \frac{y^{2}}{64} =
1.

  • Câu 33: Nhận biết

    Tìm tọa độ giao điểm của đường thẳng \Delta:5x + 2y - 10 = 0 và trục hoành.

    Ox \cap \Delta:5x + 2y - 10 =
0\overset{}{ightarrow}\left\{ \begin{matrix}
y = 0 \\
5x + 2y - 10 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
\end{matrix} ight.\ .Chọn (2;0).

  • Câu 34: Thông hiểu

    Viết phương trình tham số của đường thẳng \Delta đi qua điểm B(5;4) và vuông góc với đường thẳng d:x - 2y + 5 = 0?

    d\bot\Delta nên vectơ chỉ phương của đường thẳng d là vectơ pháp tuyến của \Delta

    \overrightarrow{u_{d}} =
\overrightarrow{n_{\Delta}} = (2;1)

    Đường thẳng \Delta có vectơ pháp tuyến là: \overrightarrow{n} =
(2;1) và đi qua điểm B(5;4) là:

    2(x - 5) + 1(y - 4) = 0

    \Leftrightarrow 2x + y - 14 =
0.

  • Câu 35: Thông hiểu

    Đường tròn (C) đi qua hai điểm A(1;1), B(3;5) và có tâm I thuộc trục tung có phương trình là:

    I(0;a) ightarrow IA = IB = R
\Leftrightarrow R^{2} = 1^{2} + (a - 1)^{2} = 3^{2} + (a -
5)^{2}

    ightarrow \left\{ \begin{matrix}
a = 4 \\
I(0;4) \\
R^{2} = 10 \\
\end{matrix} ight..

    Vậy đường tròn cần tìm là: x^{2} + (y -
4)^{2} = 10.

  • Câu 36: Thông hiểu

    Phương trình chính tắc của Elip có độ dài trục lớn bằng 8, độ dài trục nhỏ bằng 6 là:

    + Phương trình Elip dạng: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1,a
> b > 0.

    + Do có độ dài trục lớn bằng 8 = 2a
\Rightarrow a = 4.

    + Do có độ dài trục nhỏ bằng 6 = 2b
\Rightarrow b = 3.

    + Suy ra phương trình là \frac{x^{2}}{16}
+ \frac{y^{2}}{9} = 1.

  • Câu 37: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:4x - 7y + m = 0 và hai điểm A(1;2), B( -
3;4). Tìm tất cả các giá trị của tham số m để d và đoạn thẳng AB có điểm chung.

    Đoạn thẳng ABd:4x - 7y + m = 0 có điểm chung khi và chỉ khi hai điểm A\ ;\ B nằm khác phía so với đường thẳng d. Ta có:

    \left( 4x_{A} - 7y_{A} + m ight)\left(
4x_{B} - 7y_{B} + m ight) \leq 0

    \Leftrightarrow (m - 10)(m - 40) \leq 0
\Leftrightarrow 10 \leq m \leq 40.

  • Câu 38: Thông hiểu

    Elip có một tiêu điểm F( - 2;0) và tích độ dài trục lớn với trục bé bằng 12\sqrt{5}. Phương trình chính tắc của elip là:

    Gọi (E) có dạng \frac{x^{2}}{a^{2}} +
\frac{y^{2}}{b^{2}} = 1.

    Theo giả thiết ta có: \left\{
\begin{matrix}
ab = 3\sqrt{5} \\
a^{2} - b^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 9 \\
b^{2} = 5 \\
\end{matrix} ight..

    Vậy (E) cần tìm là \frac{x^{2}}{9} +
\frac{y^{2}}{5} = 1.

  • Câu 39: Nhận biết

    Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E):\frac{x^{2}}{25} +
\frac{y^{2}}{9} = 1. Tiêu cự của (E) bằng

    Phương trình chính tắc của elip có dạng: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1\ (a
> 0,b > 0).

    Do đó elip (E) có \left\{
\begin{matrix}
a = 5 \\
b = 3 \\
\end{matrix} ight.\  \Rightarrow c = \sqrt{a^{2} - b^{2}} =
4.

    Tiêu cự của elip (E) bằng 2c =
8.

  • Câu 40: Nhận biết

    Trong mặt phẳng Oxy cho điểm A(4; - 5) và đường thẳng (d):3.x - 4y + 8 = 0. Tính khoảng cách từ điểm A đến đường thẳng (d).

    Khoảng cách từ điểm A đến đường thẳng (d) là:

    d\left( A;(d) ight) = \frac{\left| 3.4
- 4.( - 5) + 8 ight|}{\sqrt{3^{2} + 4^{2}}} = 8

    Vậy khoảng cách cần tìm bằng 8.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo