Cho đường thẳng
và đường thẳng
. Tính góc hợp bởi hai đường thẳng?
Vectơ chỉ phương của là:
Vectơ chỉ phương của là:
Ta có:
Vậy góc hợp bởi hai đường thẳng đã cho bằng .
Cho đường thẳng
và đường thẳng
. Tính góc hợp bởi hai đường thẳng?
Vectơ chỉ phương của là:
Vectơ chỉ phương của là:
Ta có:
Vậy góc hợp bởi hai đường thẳng đã cho bằng .
Đường thẳng nào là đường chuẩn của parabol
.
Ta có: .
Đường chuẩn: .
Trong mặt phẳng
cho các điểm
. Phương trình đường tròn nội tiếp tam giác
là:
Có , tam giác
cân tại
.
Gọi là trung điểm của
. Phương trình
là:
.
Phương trình , phương trình
:
Gọi là tâm đường tròn nội tiếp tam giác
. Ta có:
Thay tọa độ của và
vào phương trình
và xét tích của chúng, ta được:
nên phương trình
là
.
Tọa độ của là nghiệm của hệ
.
Vậy
.
Phương trình đường tròn nội tiếp tam giác là
.
Đường thẳng
không đi qua điểm nào sau đây ?
Gọi .
Đặt Chọn
.
Trong mặt phẳng với hệ tọa độ
, cho đường thẳng
và hai điểm
,
. Tìm tất cả các giá trị của tham số
để
và đoạn thẳng
có điểm chung.
Đoạn thẳng và
có điểm chung khi và chỉ khi hai điểm
nằm khác phía so với đường thẳng
. Ta có:
Cho phương trình Elip
. Tọa độ đỉnh
và
của Elip đó là:
Ta có: => a = 4; b = 2
=> Tọa độ các đỉnh của elip là:
Trong mặt phẳng tọa độ
, cho đường thẳng
. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng
?
Ta có: Vectơ pháp tuyến của đường thẳng là:
.
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
với
. Giả sử
là góc hợp hai đường thẳng đã cho. Chọn kết luận đúng?
Góc giữa hai đường thẳng và
xác định bởi công thức:
Cho đường tròn (C) có phương trình
. Đường tròn (C) còn được viết dưới dạng nào trong các dạng dưới đây:
Ta có:
.
Đường tròn
có tâm
thuộc đường thẳng
, bán kính
và tiếp xúc với đường thẳng
. Phương trình của đường tròn
là:
Vậy các phương trình đường tròn là: hoặc
Đường tròn (C):
có tâm và bán kính lần lượt là:
Tâm và bán kính đường tròn (C) là: I(1; 3), R = 5
Trong mặt phẳng
, hãy tìm phương trình chính tắc của elip
. Biết rằng
đi qua
. Mặt khác,
nhìn hai tiêu điểm
dưới một góc 90 độ.
Gọi .
Ta có: đi qua
nên:
.
Vì nhìn hai tiêu điểm
dưới một góc vuông nên:
.
thế vào
ta được:
nên
.
Vậy: .
Tọa độ tâm I và bán kính R của đường tròn
là:
Tâm , bán kính
.
Cho parabol (P) có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây sai?
Đáp án sai: Trục đối xứng của parabol là trục . Đáp án đúng là trục
mới là trục đối xứng.
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây sai?
Đáp án sai là đáp án chứa độ dài trục lớn là .
Đường tròn
có tâm
và bán kính
lần lượt là:
Ta có:
Cho phương trình
. Tìm điều kiện của
để
là phương trình đường tròn có bán kính bằng
.
Cho elip đi qua điểm
và có độ dài trục lớn gấp đôi độ dài trục bé. Phương trình chính tắc của elip là:
Phương trình chính tắc của elip có dạng
Theo bài ra ta có hệ phương trình:
Vậy phương trình chính tắc của elip là: .
Xét vị trí tương đối của hai đường thẳng
và
.
Chọn
Trong mặt phẳng
, cho tam giác
có tọa độ các điểm
. Gọi
là tâm đường tròn ngoại tiếp tam giác
. Xác định giá trị biểu thức
?
Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên IA = IB = IC
Ta có:
Từ đó ta suy ra hệ phương trình:
Trong hệ trục tọa độ
, tọa độ của vectơ
là:
Tọa độ vectơ .
Trong hệ trục tọa độ Oxy, cho đường thẳng
. Một vectơ chỉ phương của
là:
Một vectơ chỉ phương của là
hay
.
Đường tròn
đi qua hai điểm
,
và có tâm
thuộc trục hoành có phương trình là:
.
Vậy đường tròn cần tìm là:
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
. Tìm giá trị của tham số
để hai đường thẳng hợp với nhau một góc bằng một góc vuông?
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Hai đường thẳng vuông góc với nhau khi và chỉ khi:
Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi .
Cho tam giác
có phương trình các cạnh
lần lượt là
và trực tâm
. Phương trình tổng quát của cạnh
là:
Ta có: nên tọa độ điểm A là nghiệm hệ phương trình:
Ta có
Điểm
Ta có: nên tọa độ điểm B là nghiệm hệ phương trình:
Đường thẳng BC đi qua điểm B nhận làm vecto pháp tuyến có phương trình là:
Hyperbol
có tâm sai là:
Ta có :
.
Elip
có độ dài tiêu cự bằng:
Ta có: .
Do đó độ dài tiêu cự .
Tìm tọa độ tâm
của đường tròn đi qua ba điểm
,
,
.
Trong mặt phẳng với hệ tọa độ
, cho ba điểm
¸
và
. Đường thẳng đi qua điểm
và song song với
có phương trình tham số là:
Gọi d là đường thẳng qua A và song song với PQ.
Ta có:
Cho hình elip có phương trình
. Hình elip có độ dài tiêu cự bằng:
Ta có:
Độ dài tiêu cự là:
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
,
và
. Đường thẳng
cắt cạnh nào của tam giác đã cho?
Đặt
không cắt cạnh nào của tam giác
.
Đường thẳng
đi qua điểm
và vuông góc với đường thẳng
có phương trình tham số là:
Ta có:
Cho hai đường thẳng
và
. Khi đó hai đường thẳng này:
Ta có:
Đường thẳng
cắt elip
tại hai điểm phân biệt
và
. Hãy tính độ dài đoạn thẳng
.
Tọa độ giao điểm của đường thẳng và
là nghiệm của hệ
Vậy tọa độ giao điểm là
Nhận xét nào đúng về vị trí tương đối của hai đường thẳng
và
?
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Suy ra và
không cùng phương và
Suy ra hai đường thẳng cắt nhau và không vuông góc.
Tính khoảng cách từ điểm
đường thẳng
?
Ta có khoảng cách từ điểm M đến đường thẳng là:
Vậy khoảng cách cần tìm bằng 5.
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
. Tìm giá trị của tham số
để hai đường thẳng vuông góc với nhau?
Ta có:
Hai đường thẳng vuông góc với nhau khi và chỉ khi:
Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi .
Trong mặt phẳng tọa độ
, cho đường thẳng
. Hệ số góc
của đường thẳng
là:
Ta có:
Đường thẳng có vectơ chỉ phương
nên có hệ số góc
.
Vậy hệ số góc của đường thẳng là .