Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong mặt phẳng Oxy, cho điểm C(3;0) và elip (E):\frac{x^{2}}{9} + \frac{y^{2}}{1} =
1. A,B2 điểm thuộc (E) sao cho \bigtriangleup ABC đều, biết tọa độ của A\left( \frac{a}{2};\frac{c\sqrt{3}}{2}
ight)A có tung độ âm. Tính tổng a + c.

    Nhận xét: Điểm C(3;0)là đỉnh của elip (E) \Rightarrow điều kiện cần để \bigtriangleup ABC đều đó là A,B đối xứng

    Nhau qua Ox.Suy ra A,B là giao điểm của đường thẳng \Delta:x = x_{0} và elip (E).

    +) Ta có elip (E):\frac{x^{2}}{9} +
\frac{y^{2}}{1} = 1 \Rightarrow
\left\lbrack \begin{matrix}
y = - \frac{1}{3}\sqrt{9 - x^{2}} \\
y = \frac{1}{3}\sqrt{9 - x^{2}} \\
\end{matrix} ight..

    +) Theo giả thiết A có tung độ âm nên tọa độ của A\left( x_{0}; -
\frac{1}{3}\sqrt{9 - x_{0}^{2}} ight) (điều kiện x_{0} < 3 do A eq C)

    +) Ta có AC = \sqrt{(3 - x_{0})^{2} +
\frac{1}{9}(9 - x_{0}^{2})}d_{(C;\Delta)} = |3 - x_{0}|

    +) \bigtriangleup ABC đều \Leftrightarrow d_{(C;\Delta)} =
\frac{\sqrt{3}}{2}AC \Leftrightarrow |3 - x_{0}| =
\frac{\sqrt{3}}{2}\sqrt{(3 - x_{0})^{2} + \frac{1}{9}\left( 9 -
x_{0}^{2} ight)}

    \Leftrightarrow (3 - x_{0})^{2} =
\frac{3}{4}\left\lbrack (3 - x_{0})^{2} + \frac{1}{9}(9 - x_{0}^{2})
ightbrack

    \Leftrightarrow \frac{1}{3}x_{0}^{2} -
\frac{3}{2}x_{0} + \frac{3}{2} = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = \frac{3}{2}(t/m) \\
x_{0} = 3(L) \\
\end{matrix} ight.

    \Rightarrow A\left( \frac{3}{2}; -
\frac{\sqrt{3}}{2} ight) \Rightarrow \left\{ \begin{matrix}
a = 3 \\
c = - 1 \\
\end{matrix} ight.\  \Rightarrow a + c = 2.

  • Câu 2: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 4 + 2t \\
y = 1 - 5t \\
\end{matrix} ight.d_{2}:5x
+ 2y - 14 = 0.

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 4 + 2t \\
y = 1 - 5t \\
\end{matrix} ight.\  ightarrow A(4;1) \in d_{1},\ \
{\overrightarrow{u}}_{1} = (2; - 5) \\
d_{2}:5x + 2y - 14 = 0 ightarrow \ \ {\overrightarrow{n}}_{2} = (5;2)
ightarrow {\overrightarrow{u}}_{2} = (2; - 5) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
{\overrightarrow{u}}_{1} = {\overrightarrow{u}}_{2} \\
A\boxed{\in}d_{2} \\
\end{matrix} ight.\  ightarrow d_{1}||d_{2}.Chọn

  • Câu 3: Thông hiểu

    Cho elip (E) có độ dài trục lớn gấp hai lần độ dài trục nhỏ và tiêu cự bằng 6. Viết phương

    trình của (E)?

    Ta có: a = 2b,2c = 6 \Rightarrow c =
3.

    a^{2} - b^{2} = c^{2} \Rightarrow
4b^{2} - b^{2} = 9 \Rightarrow \left\{ \begin{matrix}
b^{2} = 3 \\
a^{2} = 12 \\
\end{matrix} ight..

    Vậy phương trình (E): \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{12}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{3}}\mathbf{=}\mathbf{1}.

  • Câu 4: Thông hiểu

    Phương trình tổng quát của đường thẳng đi qua hai điểm A(3 ; – 1) và B(1 ; 5) là:

     Ta có: {\overrightarrow u _{AB}} = ( - 2;6) \Rightarrow {\overrightarrow u _{AB}} ( - 1;3) \Rightarrow {\overrightarrow n _{AB}} = (3;1).

    Phương trình tổng quát của AB

    3(x - 3) + 1(y + 1) = 0 \Leftrightarrow 3x + y - 8 = 0.

     

  • Câu 5: Thông hiểu

    Tính góc giữa hai đường thẳng \left( d_{1} ight):2x - y - 10 = 0\left( d_{2} ight):x - 3y + 9 =
0

    Ta có:

    Vectơ pháp tuyến của hai đường thẳng lần lượt là \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (2; - 1) \\
\overrightarrow{n_{2}} = (1; - 3) \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 2.1 + ( - 1).( - 3) = 5
\\
\left| \overrightarrow{n_{1}} ight| = \sqrt{2^{2} + ( - 1)^{2}} =
\sqrt{5} \\
\left| \overrightarrow{n_{2}} ight| = \sqrt{1^{2} + ( - 3)^{2}} =
\sqrt{10} \\
\end{matrix} ight.

    Suy ra \cos\left( d_{1};d_{2} ight) =
\frac{\left| \overrightarrow{n_{1}}.\overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight|.\left|
\overrightarrow{n_{2}} ight|} = \frac{\sqrt{2}}{2}

    \Rightarrow \widehat{\left( d_{1};d_{2}
ight)} = 45^{0}

  • Câu 6: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C): {(x - 1)^2} + {(y + 3)^2} = 16 là:

     Tâm và bán kính đường tròn (C) là: I\left( {1; - 3} ight),R = \sqrt {16}  = 4

  • Câu 7: Nhận biết

    Phương trình nào dưới đây đi qua hai điểm A(2;0),B(0; - 3) là:

    Phương trình đường thẳng đi qua hai điểm A(2;0),B(0; - 3) là: \frac{x}{2} + \frac{y}{- 3} = 1 hay \frac{x}{2} - \frac{y}{3} = 1.

  • Câu 8: Nhận biết

    Đường elip \frac{x^{2}}{16} + \frac{y^{2}}{7} = 1 có tiêu cự bằng

    Ta có: a^{2} = 16, b^{2} = 7 nên c^{2} = a^{2} - b^{2} = 9 \Rightarrow c =
3.

    Tiêu cự của elip là 2c = 6.

  • Câu 9: Nhận biết

    Đường thẳng d:51x - 30y + 11 = 0 đi qua điểm nào sau đây?

    Đặt f(x;y) = 51x - 30y +
11\overset{}{ightarrow}\left\{ \begin{matrix}
f(M) = f\left( - 1; - \frac{4}{3} ight) = 0 ightarrow M \in d \\
f(N) = f\left( - 1;\frac{4}{3} ight) = - 80\boxed{=}0 ightarrow
N\boxed{\in}d \\
f(P)\boxed{=}0 \\
f(Q)\boxed{=}0 \\
\end{matrix} ight.\ .

    Chọn M\left( - 1; - \frac{4}{3}
ight).

  • Câu 10: Thông hiểu

    Xác định phương trình đường tròn (C) tâm I( -
2;1). Biết (C) cắt đường thẳng \Delta:x - 2y + 3 = 0 tại hai điểm AB sao cho AB = 2.

    Gọi h là khoảng cách từ điểm I đến đường thẳng \Delta:x - 2y + 3 = 0. Ta có:

    h = d(I;\Delta) = \frac{| - 2 - 2 +
3|}{\sqrt{1^{2} + ( - 2)^{2}}} = \frac{1}{\sqrt{5}}

    Gọi R là bán kính đường tròn, từ giả thiết suy ra:

    R = \sqrt{h^{2} + \frac{AB^{2}}{4}} =
\sqrt{\frac{1}{5} + \frac{2^{2}}{4}} = \sqrt{\frac{6}{5}}

    Vậy phương trình đường tròn cần tìm là: (x + 2)^{2} + (y - 1)^{2} =
\frac{6}{5}.

  • Câu 11: Vận dụng

    Trong mặt phẳng tọa độ có đường thẳng \Delta có phương trình x - my = - 1 và đường tròn (C):x^{2} + y^{2} - 2mx + 2y = 0. Tìm tất cả các giá trị của tham số m để đường thẳng \Delta tiếp xúc với đường tròn (C)?

    Phương trình đường tròn (C) là: (C):(x -
m)^{2} + (y + 1)^{2} = m^{2} + 1

    Suy ra tâm đường tròn: I(m; - 1) và bán kính R = \sqrt{m^{2} +
1}

    Đường thẳng \Delta tiếp xúc với đường tròn (C) khi và chỉ khi

    d(I;\Delta) = R \Leftrightarrow
\frac{\left| m - m.( - 1) + 1 ight|}{\sqrt{1 + m^{2}}} = \sqrt{m^{2} +
1}

    \Leftrightarrow |2m - 1| = m^{2} + 1
\Leftrightarrow \left\lbrack \begin{matrix}
m^{2} + 1 = 2m + 1 \\
m^{2} + 1 = - 2m - 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} = 2m \\
m^{2} + 2m + 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 0 \\
m = 2 \\
\end{matrix} ight.

  • Câu 12: Thông hiểu

    Tính góc tạo bởi giữa hai đường thẳng d_{1}:2x + 2\sqrt{3}y + 5 = 0d_{2}:y - 6 = 0.

    Ta có

    \left\{ \begin{matrix}
d_{1}:2x + 2\sqrt{3}y + 5 = 0 ightarrow {\overrightarrow{n}}_{1} =
\left( 1;\sqrt{3} ight) \\
d_{2}:y - 6 = 0. ightarrow {\overrightarrow{n}}_{2} = (0;1) \\
\end{matrix} ight.

    \overset{\varphi = \left( d_{1};d_{2}
ight)}{ightarrow}\cos\varphi = \frac{\left| \sqrt{3}
ight|}{\sqrt{1 + 3}.\sqrt{0 + 1}} = \frac{\sqrt{3}}{2} ightarrow
\varphi = 30^{\circ}.

  • Câu 13: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = m + 2t \\
y = 1 - t \\
\end{matrix} ight. và hai điểm A(1;2), B( -
3;4). Tìm m để d cắt đoạn thẳngAB.

    d:\left\{ \begin{matrix}
x = m + 2t \\
y = 1 - t \\
\end{matrix} ight.\  ightarrow d:x + 2y - m - 2 = 0. Đoạn thẳng AB cắt d khi và chỉ khi

    \left( x_{A} + 2y_{A} - m - 2
ight)\left( x_{B} + 2y_{B} - m - 2 ight) \leq 0

    \Leftrightarrow (3 - m)^{2} \leq 0
\Leftrightarrow m = 3.

  • Câu 14: Nhận biết

    Cho đường tròn (C) có phương trình (x + 5)^{2} + (y – 2)^{2} = 25. Đường tròn (C) còn được viết dưới dạng nào trong các dạng dưới đây:

     Ta có: (x + 5)^{2} + (y – 2)^{2} = 25  \Leftrightarrow x^{2} + y^{2} + 10x – 4y + 4 = 0.

  • Câu 15: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng \Delta:\left\{ \begin{matrix}
x = 5 + t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Hệ số góc k của đường thẳng \Delta là:

    Ta có:

    Đường thẳng \Delta:\left\{ \begin{matrix}
x = 5 + t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có vectơ chỉ phương \overrightarrow{u}(1;3) nên có hệ số góc k = \frac{3}{1} =
3.

    Vậy hệ số góc của đường thẳng là k=3.

  • Câu 16: Nhận biết

    Cho parabol (P) có phương trình chính tắc là y^{2}=2px, với p > 0. Khi đó khẳng định nào sau đây sai?

    Đáp án sai: Trục đối xứng của parabol là trục Oy. Đáp án đúng là trục Ox mới là trục đối xứng.

  • Câu 17: Nhận biết

    Đường tròn có tâm I(1;2), bán kính R = 3 có phương trình là:

    (C):\left\{ \begin{matrix}
I(1;2) \\
R = 3 \\
\end{matrix} ight.\  ightarrow (C):(x - 1)^{2} + (y - 2)^{2} = 9
\Leftrightarrow x^{2} + y^{2} - 2x - 4y - 4 = 0.

  • Câu 18: Nhận biết

    Phương trình tiếp tuyến d của đường tròn (C): (x + 2)^{2} + (y + 2)^{2} = 9 tại điểm M(2; 1) là:

     Tâm I(-2;-2).

    Phương trình tiếp tuyến tại điểm M(2; 1) là:

    ( - 2 - 2)(x - 2) + ( - 2 - 1)(y - 1) = 0 \Leftrightarrow 4x + 3y - 11 = 0.

     

  • Câu 19: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA(1;2),B(2; - 1),C(0;1). Phương trình đường thẳng chứa trung tuyến kẻ từ đỉnh B của tam giác ABC là:

    Gọi I là trung điểm của AC. Ta có: I\left( \frac{1}{2};\frac{3}{2}
ight)

    Đường trung tuyến BI đi qua điểm B và nhận \overrightarrow{BI} = \left( -
\frac{3}{2};\frac{5}{2} ight) làm vectơ chỉ phương nên có vectơ pháp tuyến \overrightarrow{n} =
(5;3).

    Phương trình tổng quát của đường thẳng BI là:

    5(x - 2) + 3(y + 1) = 0

    \Leftrightarrow 5x + 3y - 7 =
0

    Vậy phương trình tổng quát của đường thẳng cần tìm là 5x + 3y - 7 =
0.

  • Câu 20: Thông hiểu

    Lập phương trình chính tắc của Elip đi qua điểm B và có tâm sai e = \frac{\sqrt{5}}{3}.

    Phương trình chính tắc của Elip có dạng: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1,(a
> b > 0).

    Elip đi qua điểm B nên \frac{0^{2}}{a^{2}} + \frac{2^{2}}{b^{2}} = 1
\Leftrightarrow b^{2} = 4.

    Tâm sai e = \frac{\sqrt{5}}{3}
\Leftrightarrow \frac{c}{a} = \frac{\sqrt{5}}{3} \Leftrightarrow c =
\frac{\sqrt{5}}{3}a.

    a^{2} = b^{2} + c^{2} \Leftrightarrow
a^{2} = 4 + \left( \frac{\sqrt{5}}{3}a ight)^{2} \Leftrightarrow a^{2}
= 9.

    Vậy phương trình chính tắc của Elip cần tìm là \frac{x^{2}}{9} + \frac{y^{2}}{4} =
1.

  • Câu 21: Nhận biết

    Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm O(0;0)A(1; - 3)?

    Kiểm tra đường thẳng nào không chứa O(0;0)\overset{ightarrow}{} loại.

    (Có thể kiểm tra đường thẳng nào không đi qua điểm A(1; - 3)).

  • Câu 22: Vận dụng

    Xác định a để hai đường thẳng d_{1}:ax + 3y–4 = 0d_{2}:\left\{ \begin{matrix}
x = - 1 + t \\
y = 3 + 3t \\
\end{matrix} ight. cắt nhau tại một điểm nằm trên trục hoành.

    Ox \cap d_{2} \leftrightarrow \left\{
\begin{matrix}
x = - 1 + t \\
y = 3 + 3t = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 2 \\
y = 0 \\
\end{matrix} ight.

    ightarrow Ox \cap d_{2} = A( - 2;0)
\in d_{1}

    ightarrow - 2a - 4 = 0 \Leftrightarrow
a = - 2.

  • Câu 23: Thông hiểu

    Tìm m để hai đường thẳng d_1d_2 vuông góc với nhau: d_1:\left\{\begin{matrix}x=-1+mt\\ y=-2-2t\end{matrix}ight.d_2:\left\{\begin{matrix}x=2-2t'\\ y=-8+(4+m)t'\end{matrix}ight.

     Ta có: {\overrightarrow u _1}(m; - 2);\overrightarrow {{u_2}} ( - 2;(m + 4)).

    Để hai đường thẳng vuông góc thì: {\overrightarrow u _1}.\overrightarrow {{u_2}}  = 0 \Leftrightarrow m( - 2) +  - 2(m + 4) = 0. Phương tình này vô nghiệm nên không tồn tại m

  • Câu 24: Thông hiểu

    Elip có một tiêu điểm F( - 2;0) và tích độ dài trục lớn với trục bé bằng 12\sqrt{5}. Phương trình chính tắc của elip là:

    Gọi (E) có dạng \frac{x^{2}}{a^{2}} +
\frac{y^{2}}{b^{2}} = 1.

    Theo giả thiết ta có: \left\{
\begin{matrix}
ab = 3\sqrt{5} \\
a^{2} - b^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 9 \\
b^{2} = 5 \\
\end{matrix} ight..

    Vậy (E) cần tìm là \frac{x^{2}}{9} +
\frac{y^{2}}{5} = 1.

  • Câu 25: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - 4t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Hãy chỉ ra vectơ chỉ phương của đường thẳng d?

    Vectơ chỉ phương của đường thẳng dlà: \overrightarrow{u_{d}} = ( - 4;3).

  • Câu 26: Vận dụng

    Tìm a để hai đường thẳng d_{1}:2x–4y + 1 = 0d_{2}:\left\{ \begin{matrix}
x = - 1 + at \\
y = 3 - (a + 1)t \\
\end{matrix} ight. vuông góc với nhau?

    Ta có:

    \left\{ \begin{matrix}
d_{1}:2x–4y + 1 = 0 \\
d_{2}:\left\{ \begin{matrix}
x = - 1 + at \\
y = 3 - (a + 1)t \\
\end{matrix} ight.\  \\
\end{matrix} ight. \overset{}{ightarrow}\left\{ \begin{matrix}
{\overrightarrow{n}}_{1} = (1; - 2) \\
{\overrightarrow{n}}_{2} = (a + 1;a) \\
\end{matrix} ight.\ \overset{d_{1}\bot
d_{2}}{ightarrow}{\overrightarrow{n}}_{1} \cdot
{\overrightarrow{n}}_{2} = 0 \Leftrightarrow a + 1 - 2a = 0 \Leftrightarrow a =
1.

  • Câu 27: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:x - 2y + 1 = 0d_{2}: - 3x + 6y - 10 = 0.

    \left\{ \begin{matrix}
d_{1}:x - 2y + 1 = 0 \\
d_{2}: - 3x + 6y - 10 = 0 \\
\end{matrix} ight.\  ightarrow \frac{1}{- 3} = \frac{-
2}{6}\boxed{=}\frac{1}{-
10}\overset{ightarrow}{}d_{1}||d_{2}.

  • Câu 28: Nhận biết

    Cho Parabol (P) có phương trình y^{2} = 4x. Tìm đường chuẩn của (P).

    Từ phương trình của (P), ta có: 2p = 4 nên p = 2.

    Suy ra (P) có tiêu điểm là F(1\ ;\ 0) và đường chuẩn là x + 1 = 0.

  • Câu 30: Thông hiểu

    Phương trình nào sau đây là phương trình tổng quát của đường thẳng d:\left\{
\begin{matrix}
x = 3 - 5t \\
y = 1 + 4t \\
\end{matrix} ight.?

    Ta có: d:\left\{ \begin{matrix}
x = 3 - 5t \\
y = 1 + 4t \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
A(3;1) \in d \\
{\overrightarrow{u}}_{d} = ( - 5;4) ightarrow {\overrightarrow{n}}_{d}
= (4;5) \\
\end{matrix} ight.\ \overset{ightarrow}{}d:4(x - 3) + 5(y - 1) =
0

    \Leftrightarrow d:4x + 5y - 17 =
0.

  • Câu 31: Vận dụng

    Có bao nhiêu đường thẳng đi qua điểm N\ ( - 2\ ;\ 0) tiếp xúc với đường tròn (C):\ (x - 2)^{2} + (y\  + 3)^{2} =
4?

    Đường tròn (C) có tâm I(2; - 3),\ R = 2
ightarrow IN = \sqrt{16 + 9} = 5 > R ightarrowcó đúng 2 tiếp tuyến của đường tròn kẻ từ N.

  • Câu 32: Nhận biết

    Cho hai đường thẳng \left( d_{1} ight):2x + y + 15 = 0\left( d_{2} ight): - 4x - 2y + 3 =
0. Khẳng định nào sau đây đúng?

    Ta có: \frac{2}{- 4} = \frac{1}{- 2} eq
\frac{15}{3} suy ra \left( d_{1}
ight)\left( d_{2}
ight) song song với nhau.

  • Câu 33: Thông hiểu

    Một Elip đi qua điểm B(0;6) và có độ dài trục lớn là 4\sqrt{10}. Hãy xác định phương trình chính tắc của elip đó?

    Phương trình chính tắc của elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1;(a,b
> 0)

    Do (E) có độ dài trục lớn là 4\sqrt{10} nên 2a = 4\sqrt{10} \Rightarrow a = 2\sqrt{10}
\Rightarrow a^{2} = 40

    Do (E) đi qua điểm B(0;6) nên \frac{0^{2}}{a^{2}} + \frac{6^{2}}{b^{2}} =
1 \Rightarrow b^{2} = 36

    Vậy phương trình chính tắc của elip là: \frac{x^{2}}{40} + \frac{y^{2}}{36} =
1.

  • Câu 34: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình tham số của đường thẳng?

    Phương trình tham số của đường thẳng là: \left\{ \begin{matrix}
x = 1 + 2t \\
y = 4 - 3t \\
\end{matrix} ight.

  • Câu 35: Nhận biết

    Trong mặt phẳng tọa độ Oxy, viết phương trình chính tắc của elip biết một đỉnh là A_{1}( - 5;0) và một tiêu điểm là F_{2}(2;0).

    Ta có a = 5;\ c = 2 \Rightarrow b^{2} =
25 - 4 = 21

    Vậy \frac{x^{2}}{25} + \frac{y^{2}}{21} =
1.

  • Câu 36: Vận dụng

    Trong mặt phẳng Oxy, hãy tìm phương trình chính tắc của elip (E). Biết rằng (E) đi qua M\left( \frac{3}{\sqrt{5}};\frac{4}{\sqrt{5}}
ight). Mặt khác, M nhìn hai tiêu điểm F_{1},\ F_{2} dưới một góc 90 độ.

    Gọi (E):\ \ \frac{x^{2}}{a^{2}} +
\frac{y^{2}}{b^{2}} = 1.

    Ta có: (E) đi qua M\left( \frac{3}{\sqrt{5}};\frac{4}{\sqrt{5}}
ight) nên: \frac{9}{5a^{2}} +
\frac{16}{5b^{2}} = 1 \Leftrightarrow \ \ 16a^{2} + 9b^{2} =
5a^{2}b^{2}. (1)

    M nhìn hai tiêu điểm F_{1},\ F_{2} dưới một góc vuông nên: OM = \frac{F_{1}F_{2}}{2} = c.

    \Leftrightarrow \ \ OM^{2} =
c^{2} \Leftrightarrow \ \
\frac{9}{5} + \frac{16}{5} = c^{2} \Leftrightarrow \ \ a^{2} - b^{2} = c^{2} =
5 \Leftrightarrow \ \ a^{2} = 5 +
b^{2} thế vào (1) ta được:

    16\left( 5 + b^{2} ight) + 9b^{2} =
5\left( 5 + b^{2} ight)b^{2} \Leftrightarrow \ \ b^{4} = 16 \Rightarrow \ \ b^{2} = 4 nên a^{2} = 9.

    Vậy: (E):\ \ \frac{x^{2}}{9} +
\frac{y^{2}}{4} = 1.

  • Câu 37: Vận dụng

    Cho phương trình đường thẳng (d):\left\{ \begin{matrix}
x = t \\
y = 5 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) và tọa độ điểm A(1;2). Xác định tọa độ điểm A' đối xứng với điểm A qua đường thẳng (d)?

    Gọi H là chân đường cao kẻ từ điểm A đến đường thẳng (d) suy ra H(h; 5-2h)

    Ta có: \overrightarrow{u_{d}} = (1; -
2);\overrightarrow{AH} = (h - 1;3 - 2h)

    AH\bot(d) \Leftrightarrow
\overrightarrow{u_{d}}.\overrightarrow{AH} = 0

    \Leftrightarrow (h - 1) - 2(3 - 2h) = 0
\Leftrightarrow h = \frac{7}{5} \Rightarrow H\left(
\frac{7}{5};\frac{11}{5} ight)

    A’ là điểm đối xứng của A qua đường thẳng (d).

    Suy ra H là trung điểm của AA’.

    Suy ra tọa độ điểm A’ là: \left\{\begin{matrix}x_{A'} = 2x_{H} - x_{A} = 2.\dfrac{7}{5} - 1 = \dfrac{9}{5} \\y_{A'} = 2y_{H} - y_{A} = 2.\dfrac{11}{5} - 2 = \dfrac{12}{5} \\\end{matrix} ight.

    Vậy tọa độ điểm A'\left(
\frac{9}{5};\frac{12}{5} ight)

  • Câu 38: Nhận biết

    Cho hai đường thẳng (\Delta):a_{1}x + b_{1}y + c = 0(\Delta'):a_{2}x + b_{2}y + c = 0 với {a_{1}}^{2} + {b_{1}}^{2} > 0;{a_{2}}^{2}
+ {b_{2}}^{2} > 0. Nếu \left\{
\begin{matrix}
a_{1}x + b_{1}y + c = 0 \\
a_{2}x + b_{2}y + c = 0 \\
\end{matrix} ight. vô nghiệm thì vị trí tương đối của hai đường thẳng là:

    Số giao điểm của hai đường thẳng đã cho là nghiệm của hệ phương trình \left\{ \begin{matrix}
a_{1}x + b_{1}y + c = 0 \\
a_{2}x + b_{2}y + c = 0 \\
\end{matrix} ight..

    Nếu hệ phương trình trên vô nghiệm thì hai đường thẳng không có điểm chung, nghĩa là hai đường thẳng song song với nhau.

  • Câu 39: Thông hiểu

    Gọi \alpha là góc tạo bởi hai đường thẳng (\Delta):x + 3y - 2 = 0(\Delta'):x - 2y + 5 = 0. Khi đó độ lớn của \alpha bằng:

    Ta có:

    \cos\alpha = \frac{\left| 1.1 + 3.( - 2)
ight|}{\sqrt{1^{2} + 3^{2}}.\sqrt{1^{2} + ( - 2)^{2}}} =
\frac{\sqrt{2}}{2}

    \Rightarrow \alpha = 45^{0}

    Vậy góc tạo bởi hai đường thẳng bằng 45^0.

  • Câu 40: Thông hiểu

    Cho đường tròn (C): {x^2} + {y^2} - 2x - 4y + 1 = 0. Gọi d_1, d_2 lần lượt là tiếp tuyến của đường tròn (C) tại điểm M(3; 2), N(1; 0). Tọa độ giao điểm của d_1d_2 là:

    Ta có: I\left( {1;2} ight);R = 2

    Phương trình tiếp tuyến của đường tròn tại M(3; 2) là:

    \begin{matrix}  \left( {1 - 3} ight)\left( {x - 3} ight) + \left( {2 - 2} ight)\left( {y - 2} ight) = 0 \hfill \\   \Rightarrow x - 3 = 0 \hfill \\ \end{matrix}

    Phương trình tiếp tuyến của đường tròn tại N(1; 0) là:

    \begin{matrix}  \left( {1 - 1} ight)\left( {x - 1} ight) + \left( {0 - 1} ight)\left( {y - 1} ight) = 0 \hfill \\   \Rightarrow y - 1 = 0 \hfill \\ \end{matrix}

    => Giao điểm của hai tiếp tuyến là H(3; 0)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo