Đường tròn đi qua hai điểm
,
và có tâm
thuộc trục tung có phương trình là:
.
Vậy đường tròn cần tìm là:
Đường tròn đi qua hai điểm
,
và có tâm
thuộc trục tung có phương trình là:
.
Vậy đường tròn cần tìm là:
Tọa độ tâm I và bán kính R của đường tròn là:
Tâm , bán kính
.
Trong mặt phẳng tọa độ , cho hai đường thẳng
và
với
. Giả sử
là góc hợp hai đường thẳng đã cho. Chọn kết luận đúng?
Góc giữa hai đường thẳng và
xác định bởi công thức:
Cho elip . Diện tích hình chữ nhật cơ sở của
là
Độ dài trục lớn: .
Độ dài trục bé: .
Diện tích hình chữ nhật cơ sở của là:
.
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng ?
Vectơ chỉ phương của đường thẳng trên là: .
Gọi là góc tạo bởi hai đường thẳng
và
. Khi đó độ lớn của
bằng:
Ta có:
Vậy góc tạo bởi hai đường thẳng bằng .
Viết phương trình tiếp tuyến của đường tròn , biết tiếp tuyến vuông góc với đường thẳng
.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có
Cho đường thẳng có vectơ pháp tuyến là
và đường thẳng
có vectơ pháp tuyến là
. Gọi
là góc tạo bởi hai đường thẳng
. Kết luận nào sau đây đúng?
Góc tạo bởi hai đường thẳng đã cho được xác định bởi công thức .
Cặp đường thẳng nào dưới đây là phân giác của các góc hợp bởi đường thẳng và trục hoành.
Điểm thuộc đường phân giác của các góc tạo bởi
khi và chỉ khi
Cho phương trình đường thẳng và tọa độ điểm
. Xác định tọa độ điểm
đối xứng với điểm
qua đường thẳng
?
Gọi H là chân đường cao kẻ từ điểm A đến đường thẳng (d) suy ra H(h; 5-2h)
Ta có:
Vì
A’ là điểm đối xứng của A qua đường thẳng (d).
Suy ra H là trung điểm của AA’.
Suy ra tọa độ điểm A’ là:
Vậy tọa độ điểm
Cho Hyperbol . Hãy tìm tọa độ điểm
trên
thỏa mãn
thuộc nhánh phải và
nhỏ nhất (ngắn nhất).
Ta có:
Gọi .
Ta có: .
thuộc nhánh phải của
nên
.
nhỏ nhất bằng
khi
.
Cho phương trình Hypebol . Độ dài trục thực của Hypebol đó là
Ta có: ta có: a = 4; b = 3
=> Độ dài trục thực của Hypebol đó là 2a = 8
Xác định vị trí tương đối của hai đường thẳng và
.
Viết phương trình tham số của đường thẳng đi qua điểm
và vuông góc với trục
.
Elip có độ dài trục lớn bằng:
Ta có: .
Xác định phương trình tham số của đường thẳng . Biết rằng
đi qua điểm
và có một vectơ chỉ phương là
?
Đường thẳng đi qua điểm và nhận
làm vectơ chỉ phương sẽ có phương trình tham số là:
.
Áp dụng với dữ kiện bài toan trên ta được:
Viết phương trình tiếp tuyến của đường tròn
, biết tiếp tuyến đi qua điểm
.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có:
Xét vị trí tương đối của hai đường thẳng và
.
Chọn
Cho phương trình Elip . Tọa độ đỉnh
và
của Elip đó là:
Ta có: => a = 4; b = 2
=> Tọa độ các đỉnh của elip là:
Điền vào chỗ trống: Vectơ có giá song song hoặc trùng với đường thẳng thì vectơ được gọi là … của đường thẳng đó.
Vectơ có giá song song hoặc trùng với đường thẳng thì
được gọi là vectơ chỉ phương của đường thẳng đó.
Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng và hai điểm
. Tìm tất cả các giá trị của tham số
để
và
nằm cùng phía đối với
.
Ta có: .
Để A, B nằm cùng phía đối với thì:
Cho hai đường thẳng và
với
. Nếu
vô nghiệm thì vị trí tương đối của hai đường thẳng là:
Số giao điểm của hai đường thẳng đã cho là nghiệm của hệ phương trình .
Nếu hệ phương trình trên vô nghiệm thì hai đường thẳng không có điểm chung, nghĩa là hai đường thẳng song song với nhau.
Trong mặt phẳng với hệ tọa độ , cho tam giác
có
,
và
. Phương trình đường phân giác ngoài của góc
là:
Suy ra các đường phân giác góc là:
Suy ra đường phân giác trong góc là
Đâu là đường thẳng không có điểm chung với đường thẳng ?
Kí hiệu
(i) Xét đáp án: không cùng phương nên loại.
(ii) Xét đáp án: không cùng phương nên loại.
(iii) Xét đáp án: không cùng phương nên loại.
(iv) Xét đáp án:
(Chọn)
Viết phương trình tham số của đường thẳng đi qua hai điểm và
.
Tìm m để góc tạo bởi hai đường thẳng và
một góc bằng 30°.
Ta có:
Một tòa tháp có mặt cắt hình hypebol có phương trình . Biết khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp. Tòa tháp có chiều cao 50 m. Bán kính đáy của tháp bằng:
Gọi r là bán kính đáy của tháp
Do khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp và do tính đối xứng của hypebol nên ta có hai bán kính của nóc và đáy tháp đều bằng nhau.
Chọn điểm nằm trên hypebol nên ta có:
Vậy Bán kính đáy của tháp khoảng 22,25m.
Với giá trị nào của thì hai đường thẳng
và
trùng nhau?
Đường tròn có tâm
và tiếp xúc với trục
có phương trình là:
Với giá trị nào của thì hai đường thẳng
và
cắt nhau?
Chọn .
Điểm nào dưới đây thuộc đường thẳng ?
Thay tọa độ các điểm vào đường thẳng ta thấy điểm thuộc đường thẳng đã cho là
.
Đường tròn có dạng tổng quát là:
Cho Hypebol có độ dài trục thực và tiêu cự lần lượt là và
. Phương trình chính tắc của Hypebol là:
Phương trình chính tắc của Hypebol có dạng
Ta có:
Vậy phương trình chính tắc của Hypebol là: .
Cho đường tròn (C) có phương trình . Đường tròn (C) còn được viết dưới dạng nào trong các dạng dưới đây:
Viết lại phương trình đường tròn như sau:
Elip có một tiêu điểm và tích độ dài trục lớn với trục bé bằng
. Phương trình chính tắc của elip là:
Gọi (E) có dạng .
Theo giả thiết ta có: .
Vậy (E) cần tìm là
Tọa độ tâm và bán kính
của đường tròn
là:
Hypebol có nửa trục thực là , tiêu cự bằng
có phương trình chính tắc là:
Ta có :
Phương trình chính tắc của Hyperbol là
Cho parabol (P) có phương trình chính tắc là , với
. Khi đó khẳng định nào sau đây sai?
Đáp án sai: Trục đối xứng của parabol là trục . Đáp án đúng là trục
mới là trục đối xứng.
Trong mặt phẳng tọa độ , cho đường tròn
. Viết phương trình tiếp tuyến của đường tròn đã cho, biết hệ số góc của tiếp tuyền bằng
.
Đường tròn (C) có tâm và bán kính
Tiếp tuyến d có hệ số góc nên có dạng
Vì d là tiếp tuyến của nên
Với thì phương trình d là:
Với thì phương trình d là:
Vậy các phương trình tiếp tuyến cần tìm là: .