Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Loại các đáp án và
vì không có dạng
Xét đáp án: loại.
Xét đáp án : Chọn đáp án này.
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Loại các đáp án và
vì không có dạng
Xét đáp án: loại.
Xét đáp án : Chọn đáp án này.
Đường tròn
có tâm
và tiếp xúc với đường thẳng
có phương trình là:
Tìm
để hai đường thẳng
và
vuông góc với nhau?
Ta có:
Trong mặt phẳng tọa độ Oxy, cho đường tròn
. Phương trình tiếp tuyến d của đường tròn
tại điểm
là:
Đường tròn (C) có tâm I(1; -2) và bán kính R = 5
Điểm
Vì d là tiếp tuyến của đường tròn (C) nên d nhận là vecto pháp tuyến.
Vậy d có phương trình hay
.
Gọi
là góc tạo bởi hai đường thẳng
và
. Khi đó độ lớn của
bằng:
Ta có:
Vậy góc tạo bởi hai đường thẳng bằng .
Trong mặt phẳng
cho điểm
. Gọi
là hình chiếu của
lên
. Phương trình tổng quát của đường thẳng
là:
Ta có: A, B là hình chiếu của M lên Ox, Oy suy ra
Khi đó phương trình đường thẳng AB là: .
Vậy phương trình tổng quát của AB là: .
Tính góc tạo bởi giữa hai đường thẳng:
và
.
Ta có: . Suy ra góc giữa hai đường thẳng bằng
.
Nhận xét nào đúng về vị trí tương đối của hai đường thẳng
và
?
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Suy ra và
không cùng phương và
Suy ra hai đường thẳng cắt nhau và không vuông góc.
Cho hai đường tròn
và
. Tìm giá trị tham số m để hai đường tròn tiếp xúc nhau?
Dễ thấy đường tròn (C) có tâm O(0; 0) và bán kính R = 1
Đường tròn (C’) có tâm I(m + 1; -2m) và bán kính
Ta thấy:
điểm O nằm trong đường tròn tâm I suy ra (C) và (C’) chỉ có thể tiếp xúc trong với nhau.
Điều kiện để hai đường tròn tiếp xúc trong là:
Vậy có hai giá trị m thỏa mãn điều kiện là: hoặc
.
VD
1
Trong hệ trục
cho Elip
có các tiêu điểm
và một điểm
nằm trên
. Biết rằng chu vi của tam giác
bằng 18. Xác định tâm sai e của ![]()
Ta có .
Tâm sai .
Trong mặt phẳng với hệ tọa độ Oxy, cho elip
. Tiêu cự của (E) bằng
Phương trình chính tắc của elip có dạng: .
Do đó elip (E) có .
Tiêu cự của elip (E) bằng .
Khái niệm nào sau đây định nghĩa về hypebol?
Cho cố định với
. Hypebol
là tập hợp điểm
sao cho
với
là một số không đổi và
.
Cho Hypebol có độ dài trục thực và tiêu cự lần lượt là
và
. Phương trình chính tắc của Hypebol là:
Phương trình chính tắc của Hypebol có dạng
Ta có:
Vậy phương trình chính tắc của Hypebol là: .
Tìm phương trình chính tắc của hyperbol nếu nó có tiêu cự bằng
và độ dài trục thực bằng
.
Ta có : .
Phương trình chính tắc
Trong mặt phẳng tọa độ
, cho đường thẳng
. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng
?
Ta có: Vectơ pháp tuyến của đường thẳng là:
.
Đường tròn
có tâm
và bán kính
lần lượt là:
Xác định phương trình đường tròn
tâm
. Biết
cắt đường thẳng
tại hai điểm
sao cho
.
Gọi h là khoảng cách từ điểm I đến đường thẳng . Ta có:
Gọi R là bán kính đường tròn, từ giả thiết suy ra:
Vậy phương trình đường tròn cần tìm là: .
Đường tròn
có dạng tổng quát là:
Đường thẳng nào sau đây có đúng một điểm chung với đường thẳng
?
Ta cần tìm đường thẳng cắt
loại
loại
và
. Chọn
Xét vị trí tương đối của hai đường thẳng
và
.
Viết phương trình tham số của đường thẳng
đi qua điểm
và song song với đường phân giác của góc phần tư thứ nhất.
Góc phần tư (I) :
Điểm nào dưới đây thuộc đường thẳng
?
Thay tọa độ các điểm vào đường thẳng ta thấy điểm thuộc đường thẳng đã cho là
.
Dạng chính tắc của hypebol là
Dạng chính tắc của hypebol là .
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có phương trình cạnh
là
, phương trình cạnh
là
. Biết trọng tâm của tam giác là điểm
và phương trình đường thẳng
có dạng
. Tính giá trị biểu thức
.
Tọa độ điểm A là nghiệm của hệ phương trình
Ta có
Gọi là trung điểm của BC thì
nên
Mặt khác
Suy ra một vectơ pháp tuyến của BC là
Suy ra phương trình đường thẳng BC là
Suy ra
Cho hình elip có độ dài trục lớn và độ dài trục nhỏ lần lượt bằng
và 0. Viết phương trình elip.
Ta có:
Phương trình elip là:
Tìm tất cả các giá trị của tham số
để hai đường thẳng
và
cắt nhau tại một điểm thuộc trục tung.
Hyperbol
có tâm sai là:
Ta có :
.
Phương trình nào sau đây là phương trình tổng quát của đường thẳng
?
Ta có:
Cho
. Một đường thẳng đi qua điểm
và song song với trục hoành cắt
tại hai điểm phân biệt
và
. Độ dài
bằng bao nhiêu?
Phương trình đường thẳng đi qua điểm
và song song trục hoành có phương trình là
Ta có
Vậy độ dài đoạn thẳng
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Đường thẳng
không đi qua điểm nào sau đây ?
Gọi .
Đặt Chọn
.
Cho hai đường thẳng
và
. Tìm các giá trị của tham số
để
và
hợp với nhau một góc bằng ![]()
Ta có:
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Xét phương trình dạng : lần lượt tính các hệ số
và kiểm tra điều kiện
Các phương trình không có dạng đã nêu loại các đáp án
và
.
Đáp án không thỏa mãn điều kiện
Với giá trị nào của
thì hai đường thẳng
và
trùng nhau?
Một vectơ pháp tuyến của đường thẳng
là:
Một vectơ pháp tuyến của đường thẳng là
.
Gọi
là tọa độ giao điểm hai đường thẳng
và
. Tính khoảng cách từ
đến đường thẳng ![]()
Vì E là giao điểm hai đường thẳng và
nên tọa độ điểm E là nghiệm của hệ phương trình:
Khi đó khoảng cách từ điểm E đến đường thẳng là:
Vậy khoảng cách cần tìm bằng .
Cho đường thẳng
và đường tròn
. Tìm điều kiện của tham số a để
tiếp xúc với
?
Đường tròn (C) có tâm và bán kính
Để đường thẳng là tiếp tuyến của đường tròn
thì
Vậy thỏa mãn yêu cầu bài toán.
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A(– 3; 2) và B(1; 4).
Vectơ chỉ phương của đường thẳng AB là (2; 1).
Trong mặt phẳng với hệ tọa độ
, cho elip
. Biết điểm
sao cho
Hãy tính bán kính đường tròn nội tiếp tam giác ![]()
Gọi vì
(1)
Do (2)
Giải hệ gồm hai phuơng trình (1) và (2) ta đuợc
Ta có: nửa chu vi
Khoảng các từ M đến trục Ox:
Bán kính đuờng tròn nội tiếp: .