Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho đường tròn (C):x^{2} + y^{2} - 4x - 6y - 12 = 0 và đường thẳng d:3x + 4y - 6 = 0. Tìm phương trình tiếp tuyến của (C) vuông góc với đường thẳng d?

    Ta có:

    Phương trình đường tròn (C) có tâm I(2; 3) bán kính R = 5

    Phương trình đường thẳng \Delta_{2} vuông góc với d có dạng 4x - 3y + c_{2} = 0

    \Delta_{2} tiếp xúc với (C) nên d\left( I;\Delta_{2} ight) = R

    Hay \frac{\left| 4.2 - 3.3 + c_{2}
ight|}{\sqrt{4^{2} + ( - 3)^{2}}} = 5 \Leftrightarrow \left| c_{2} - 1
ight| = 25

    \Leftrightarrow \left\lbrack
\begin{matrix}
c_{2} - 1 = 25 \\
c_{2} - 1 = - 25 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
c_{2} = 26 \\
c_{2} = - 24 \\
\end{matrix} ight.

    Vậy phương trình tiếp tuyến của (C) vuông góc với (d) là: 4x -
3y + 1 = 0 hoặc 4x - 3y - 15 =
0.

  • Câu 2: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng \left\{\begin{matrix}x=2\\ y=-1+6t\end{matrix}ight.?

     Vectơ chỉ phương của đường thẳng trên là: (0;6) \Rightarrow \overrightarrow u  = (0;1).

  • Câu 3: Nhận biết

    Cho hai đường thẳng \Delta_1\Delta_2 có phương trình lần lượt là ax + by + c = 0dx + ey + f = 0. Xét hệ \left\{\begin{matrix}ax+by+c=0\\ dx+ey+f=0\end{matrix}ight.. Khi đó hai đường cắt nhau khi và chỉ khi:

     Hai đường thẳng cắt nhau khi hệ có nghiệm duy nhất.

  • Câu 4: Thông hiểu

    Cho elip đi qua điểm A(2; - 2) và có độ dài trục lớn gấp đôi độ dài trục bé. Phương trình chính tắc của elip là:

    Phương trình chính tắc của elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1;(a,b
> 0)

    Theo bài ra ta có hệ phương trình:

    \left\{ \begin{matrix}
a = 2b \\
\frac{2^{2}}{a^{2}} + \frac{( - 2)^{2}}{b^{2}} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 4b^{2} \\
\frac{4}{a^{2}} + \frac{4}{b^{2}} = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 4b^{2} \\
\frac{5}{b^{2}} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 20 \\
b^{2} = 5 \\
\end{matrix} ight.

    Vậy phương trình chính tắc của elip là: \frac{x^{2}}{20} + \frac{y^{2}}{5} =
1.

  • Câu 5: Nhận biết

    Phương trình đường tròn (C) có tâm I(
- 1;2) và bán kinh R = 6 là:

    Ta có: (C):\left\{ \begin{matrix}
I( - 1;2) \\
R = 6 \\
\end{matrix} ight.\  \Rightarrow (C):(x + 1)^{2} + (y - 2)^{2} =
36

  • Câu 6: Nhận biết

    Một đường thẳng có bao nhiêu vectơ chỉ phương?

     Một đường thẳng có vô số vectơ chỉ phương.

  • Câu 7: Thông hiểu

    Cho đường thẳng (d):3x - 4y + 2 = 0 và đường tròn (C):x^{2} + (y + 4)^{2} = 25. Khẳng định nào sau đây đúng khi nói về vị trí tương đối của đường thẳng (d) và đường tròn (C)?

    Ta có: (C):x^{2} + (y + 4)^{2} = 25
\Rightarrow \left\{ \begin{matrix}
I(0; - 4) \\
R = 5 \\
\end{matrix} ight.

    Lại có khoảng cách từ tâm I đến đường thẳng d là:

    d\left( I;(d) ight) = \frac{\left| 3.0
- 4.( - 4) + 2 ight|}{\sqrt{3^{2} + 4^{2}}} = \frac{18}{5} <
R

    Vậy đường thẳng (d) cắt đường tròn (C) là khẳng định đúng.

  • Câu 8: Thông hiểu

    Tìm bán kính R của đường tròn đi qua ba điểm A(0;4), B(3;4), C(3;0).

    \left\{ \begin{matrix}
\overrightarrow{BA} = ( - 3;0) \\
\overrightarrow{BC} = (0; - 4) \\
\end{matrix} ight.\  ightarrow BA\bot BC ightarrow R =
\frac{AC}{2} = \frac{\sqrt{(3 - 0)^{2} + (0 - 4)^{2}}}{2} =
\frac{5}{2}.

  • Câu 9: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm A(–1\ ;\ 3)B(3\ ;\ 1).

    \left\{ \begin{matrix}A( - 1;3) \in AB \\{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = (4; - 2) = - 2( - 2;1)\\\end{matrix} ight.\ \overset{ightarrow}{}AB:\left\{ \begin{matrix}x = - 1 - 2t \\y = 3 + t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 10: Nhận biết

    Tính góc tạo bởi giữa hai đường thẳng: d_1:x+\sqrt{3}y+6=0d_2: x+1 = 0.

     Ta có: \cos ({d_1},{d_2}) = \frac{{\left| {1.1 + \sqrt 3 .0} ight|}}{{\sqrt {{1^2} + {{\sqrt 3 }^2}} .\sqrt {{1^2} + {0^2}} }} = \frac 12. Suy ra góc giữa hai đường thẳng bằng 60^{\circ}.

  • Câu 11: Vận dụng

    Hãy viết phương trình chính tắc của elip nếu nó đi qua điểm N\left( 2; - \frac{5}{3}
ight) và tỉ số của tiêu cự với độ dài trục lớn bằng \frac{2}{3}.

    Gọi phương trình chính tắc của Elip là (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1, với a > b >
0.

    \bullet Elip đi qua điểm N\left( 2; - \frac{5}{3} ight) suy ra \frac{2^{2}}{a^{2}} + \frac{\left( -
\frac{5}{3} ight)^{2}}{b^{2}} = 1 \Leftrightarrow \frac{4}{a^{2}} +
\frac{25}{9b^{2}} = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (1).

    \bullet Tỉ số của tiêu cực với độ dài trục lớn bằng \frac{2}{3} suy ra \frac{2c}{2a} = \frac{2}{3}
\Leftrightarrow \frac{c}{a} = \frac{2}{3} \Leftrightarrow c^{2} =
\frac{4}{9}a^{2}.

    Kết hợp với điều kiện b^{2} = a^{2} -
c^{2}, ta được b^{2} = a^{2} -
\frac{4}{9}a^{2} = \frac{5}{9}a^{2} \Leftrightarrow 9b^{2} = 5a^{2}\ \ \
\ \ \ \ \ \ \ (2).

    Từ (1),\ \ (2) suy ra \left\{ \begin{matrix}
\frac{4}{a^{2}} + \frac{25}{9b^{2}} = 1 \\
9b^{2} = 5a^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\frac{4}{a^{2}} + \frac{25}{5a^{2}} = 1 \\
9b^{2} = 5a^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\frac{9}{a^{2}} = 1 \\
9b^{2} = 5a^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 9 \\
b^{2} = 5 \\
\end{matrix} ight.\ .

    Vậy phương trình cần tìm là (E):\frac{x^{2}}{9} + \frac{y^{2}}{5} =
1.

  • Câu 12: Thông hiểu

    Viết phương trình tham số của đường thẳng d đi qua điểm M( - 3;5) và song song với đường phân giác của góc phần tư thứ nhất.

    Góc phần tư (I) : x - y =
0\overset{ightarrow}{}VTCP:\overrightarrow{u}(1;1) =
{\overrightarrow{u}}_{d}\overset{ightarrow}{}d:\left\{ \begin{matrix}
x = - 3 + t \\
y = 5 + t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 13: Vận dụng

    Nếu ba đường thẳng \ d_{1}:\ 2x + y–4 = 0, d_{2}:5x–2y + 3 = 0d_{3}:mx + 3y–2 = 0 đồng quy thì m nhận giá trị nào trong các giá trị sau?

    \left\{ \begin{matrix}
\ d_{1}:\ 2x + y–4 = 0 \\
d_{2}:5x–2y + 3 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = \frac{5}{9} \\
y = \frac{26}{9} \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A\left(
\frac{5}{9};\frac{26}{9} ight) \in d_{3} ightarrow \frac{5m}{9} + \frac{26}{3} - 2 = 0
\Leftrightarrow m = - 12.

  • Câu 14: Nhận biết

    Trong mặt phẳng Oxy, cho điểm P(2; - 3) và đường thẳng (d):2x + y - 5 = 0. Khoảng cách từ điểm P đến đường thẳng (d) bằng:

    Khoảng cách từ điểm P đến đường thẳng (d) là:

    d(P;d) = \frac{|4 - 3 - 5|}{\sqrt{2^{2} +
1^{2}}} = \frac{4\sqrt{5}}{5}.

  • Câu 15: Thông hiểu

    Tìm m để đường thẳng \left( d_{1} ight):x - my + 5 = 0\left( d_{2} ight): - 3x + y - 1 =
0 tạo với nhau một góc 90^{0}?

    Ta có:

    Vectơ pháp tuyến của đường thẳng \left(
d_{1} ight):x - my + 5 = 0 là: \overrightarrow{n_{1}} = (1; - m)

    Vectơ pháp tuyến của đường thẳng \left(
d_{2} ight): - 3x + y - 1 = 0 là: \overrightarrow{n_{2}} = ( - 3;1)

    Hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) vuông góc với nhau khi và chỉ khi:

    \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 0
\Leftrightarrow - 3 - m = 0

    \Leftrightarrow m = - 3

    Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi m = - 3.

  • Câu 16: Nhận biết

    Trong mặt phẳng Oxy, phương trình nào sau đây là phương trình chính tắc của một elip?

    Phương trình chính tắc của elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1,(a
> b > 0) nên chọn phương án D.

  • Câu 17: Thông hiểu

    Cho hai điểm A(–2; 3) và B(4; –1). Phương trình đường trung trực của đoạn thẳng AB là:

    Gọi d là đường trung trực của đoạn thẳng AB.

    Gọi M là trung điểm của AB với A(–2; 3) và B(4; –1).

    Ta suy ra

    \left\{ {\begin{array}{*{20}{l}}  {{x_M} = \dfrac{{{x_A} + {x_B}}}{2} = \dfrac{{ - 2 + 4}}{2} = 1} \\   {{y_M} = \dfrac{{{y_A} + {y_B}}}{2} = \dfrac{{3 - 1}}{2} = 1} \end{array}} ight.

    Khi đó ta có M(1; 1).

    Với A(–2; 3) và B(4; –1) ta có: \overrightarrow {AB}  = \left( {6; - 4} ight)

    Đường thẳng d là đường trung trực của AB nên đường thẳng d đi qua trung điểm M(1; 1) của AB và nhận \overrightarrow {AB}  = \left( {6; - 4} ight) làm vectơ pháp tuyến.

    Suy ra phương trình tổng quát của d là:

    \begin{array}{*{20}{l}}  {6\left( {x-1} ight)--4\left( {y-1} ight) = 0} \\   \begin{gathered}   \Leftrightarrow 6x-4y-2 = 0 \hfill \\   \Leftrightarrow 3x-2y-1 = 0 \hfill \\ \end{gathered}  \end{array}

  • Câu 18: Thông hiểu

    Khoảng cách từ điểm M(2;0) đến đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 3t \\
y = 2 + 4t \\
\end{matrix} ight. bằng:

    \Delta:\left\{ \begin{matrix}
x = 1 + 3t \\
y = 2 + 4t \\
\end{matrix} ight.\  ightarrow \Delta:4x - 3y + 2 = 0 ightarrow
d(M;\Delta) = \frac{|8 + 0 + 2|}{\sqrt{16 + 9}} = 2.

  • Câu 19: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh ABx - y -
2 = 0, phương trình cạnh ACx + 2y
- 5 = 0. Biết trọng tâm của tam giác là điểm G(3;2) và phương trình đường thẳng BC có dạng x
+ my + n = 0. Tính giá trị biểu thức S = m + n.

    Tọa độ điểm A là nghiệm của hệ phương trình \left\{ \begin{matrix}
x - y - 2 = 0 \\
x + 2y - 5 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = 1 \\
\end{matrix} ight.\  \Leftrightarrow A(3;1)

    Ta có B\left( x_{B};x_{B} - 2
ight);C\left( x_{C};\frac{- x_{C} + 5}{2} ight)

    Gọi M\left( x_{0};y_{0} ight) là trung điểm của BC thì 2\overrightarrow{GM} =
\overrightarrow{AG} nên

    \left\{ \begin{matrix}
2\left( x_{0} - 3 ight) = 0 \\
2\left( y_{0} - 2 ight) = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{0} = 3 \\
y_{0} = \frac{5}{2} \\
\end{matrix} ight.

    Mặt khác \left\{ \begin{matrix}x_{B} + x_{C} = 2x_{0} \\x_{B} - 2 + \dfrac{- x_{C} + 5}{2} = 2y_{0} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{B} + x_{C} = 6 \\2x_{B} - x_{C} = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{B} = 5 \\
x_{C} = 1 \\
\end{matrix} ight.\  \Rightarrow B(5;3),C(1;2)

    \Rightarrow \overrightarrow{BC} = ( - 4;
- 1)

    Suy ra một vectơ pháp tuyến của BC là \overrightarrow{n} = (1; - 4)

    Suy ra phương trình đường thẳng BC là

    1(x - 5) - 4(y - 3) = 0

    \Leftrightarrow x - 4y + 7 =
0

    Suy ra m = - 4;n = 7 \Rightarrow S =
3

  • Câu 20: Thông hiểu

    Nếu đường thẳng (\Delta) đi qua gốc tọa độ và song song với đường thẳng (d):4x - 3y + 5 = 0 thì (\Delta) có phương trình tổng quát là:

    Một vectơ pháp tuyến của (\Delta) là: \overrightarrow{n}(4; - 3)

    Mặt khác (\Delta) đi qua gốc tọa độ hay đi qua điểm O(0;0)

    Vậy phương trình đường thẳng (\Delta) là:

    4(x - 0) - 3(y - 0) = 0

    \Leftrightarrow 4x - 3y = 0

    Vậy đáp án đúng là: 4x - 3y = 0.

  • Câu 21: Nhận biết

    Xác định phương trình tham số của đường thẳng d. Biết rằng d đi qua điểm A(1;2) và có một vectơ chỉ phương là \overrightarrow{u} =
(2022;2023)?

    Đường thẳng đi qua điểm M\left(
x_{0};y_{0} ight) và nhận \overrightarrow{u} = \left( u_{1};u_{2}
ight) làm vectơ chỉ phương sẽ có phương trình tham số là: \left\{ \begin{matrix}
x = x_{0} + u_{1}t \\
y = y_{0} + u_{2}t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

    Áp dụng với dữ kiện bài toan trên ta được: \left\{ \begin{matrix}
x = 1 + 2022t \\
y = 2 + 2023t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 22: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):(x + 1)^{2} + y^{2} = 8 là:

    (C):(x + 1)^{2} + y^{2} =
8\overset{}{ightarrow}I( - 1;0),\ R = \sqrt{8} =
2\sqrt{2}.

  • Câu 23: Nhận biết

    Xét vị trí tương đối của hai đường thẳng: d_1: 3x – 2y – 3 = 0d_2: 6x – 2y – 8 = 0.

     Vì \frac{3}{6} e \frac{{ - 2}}{{ - 2}} nên hai đường thẳng cắt nhau.

  • Câu 24: Thông hiểu

    Tìm phương trình chính tắc của Hyperbol (H) mà hình chữ nhật cơ sở có một đỉnh là (2; - 3).

    Gọi (H):\frac{x^{2}}{a^{2}} -
\frac{y^{2}}{b^{2}} = 1. Tọa độ đỉnh của hình chữ nhật cơ sở là A_{1}( - a; - b), A_{2}(a; - b), A_{3}(a;b), A_{4}( - a;b).

    Hình chữ nhật cơ sở của (H) có một đỉnh là (2; - 3), suy ra \left\{ \begin{matrix}
a = 2 \\
b = 3 \\
\end{matrix} ight.. Phương trình chính tắc của (H)\frac{x^{2}}{4} - \frac{y^{2}}{9} =
1.

  • Câu 25: Thông hiểu

    Cho đường thẳng \left( d_{1} ight):\left\{ \begin{matrix}
x = 1 - 6t \\
y = - 2 + 5t \\
\end{matrix} ight. và đường thẳng \left( d_{2} ight):\left\{ \begin{matrix}
x = 10 + 5t \\
y = 1 + 6t \\
\end{matrix} ight.. Tính góc hợp bởi hai đường thẳng?

    Vectơ chỉ phương của \left( d_{1}
ight):\left\{ \begin{matrix}
x = 1 - 6t \\
y = - 2 + 5t \\
\end{matrix} ight. là: \overrightarrow{u_{d_{1}}} = ( - 6;5)

    Vectơ chỉ phương của \left( d_{2}
ight):\left\{ \begin{matrix}
x = 10 + 5t \\
y = 1 + 6t \\
\end{matrix} ight. là: \overrightarrow{u_{d_{2}}} = (5;6)

    Ta có: \overrightarrow{u_{d_{1}}}.\overrightarrow{u_{d_{2}}}
= 0 \Rightarrow d_{1}\bot d_{2}

    Vậy góc hợp bởi hai đường thẳng đã cho bằng 90^{0}.

  • Câu 26: Thông hiểu

    Cho hypebol (H): \frac{x^{2}}{36}+\frac{y^{2}}{9}=1. Tỉ số giữa độ dài trục ảo và độ dài trục thực bằng:

    Ta có: \frac{x^{2}}{36}+\frac{y^{2}}{9}=1

    Ta có: a = 6; b =3

    => Độ dài trục ảo là 6, độ dài trục thực là 12

    => Tỉ số giữa độ dài trục ảo và độ dài trục thực là: 

    \frac{{2b}}{{2a}} = \frac{6}{{12}} = \frac{1}{2}

  • Câu 27: Nhận biết

    Đường Hyperbol \frac{x^{2}}{16} - \frac{y^{2}}{9} = 1 có một tiêu điểm là điểm nào dưới đây?

    Ta có : \left\{ \begin{matrix}
a^{2} = 16 \\
b^{2} = 9 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow c = 5. Các tiêu điểm của (H)( - 5;0)(5;0).

  • Câu 28: Vận dụng

    Cho Elip (E):\frac{x^{2}}{16} + \frac{y^{2}}{12} =
1 và một điểm M nằm trên (E). Giải sử điểm M có hoành độ bằng 1. Hãy tính khoảng cách từ M đến hai tiêu điểm của (E).

    Giả sử phương trình (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1\
(a > b > 0) Ta có : \left\{
\begin{matrix}
a^{2} = 16 \\
b^{2} = 12 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 4 \\
c^{2} = a^{2} - b^{2} = 4 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
a = 4 \\
c = 2 \\
\end{matrix} ight.

    Gọi F_{1},F_{2} lần lượt là hai tiêu điểm của Elip (E),M\left( 1;y_{M} ight) \in (E), ta có :

    \left\{ \begin{matrix}
MF_{1} = a + \frac{c}{a}x_{M} = 4 + \frac{1}{2}.1 = 4,5 \\
MF_{2} = a - \frac{c}{a}x_{M} = 4 - \frac{1}{2}.1 = 3,5 \\
\end{matrix} ight..

  • Câu 29: Vận dụng

    Viết phương trình tiếp tuyến của đường tròn (C):x^{2} + y^{2} - 4x - 4y + 4 =
0, biết tiếp tuyến vuông góc với trục hoành.

    Đường tròn (C) có tâm I(2;2),\ R =
2 và tiếp tuyến có dạng \Delta:x +
c = 0\ .

    Ta có R = d\lbrack I;\Deltabrack
\Leftrightarrow |c + 2| = 2 \Leftrightarrow \left\lbrack \begin{matrix}
c = 0 \\
c = - 4 \\
\end{matrix} ight.\ .

  • Câu 30: Nhận biết

    Dạng chính tắc của hypebol là

    Dạng chính tắc của hypebol là \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1.

  • Câu 31: Nhận biết

    Đường tròn (C): {x^2} + {y^2} + 12x - 14y + 4 = 0 viết được dưới dạng:

    Từ phương trình đường tròn {x^2} + {y^2} + 12x - 14y + 4 = 0 ta suy ra:

    I\left( { - 6;7} ight);R = \sqrt {{6^2} + {7^2} - 4}  = 9

    Vậy phương trình tổng quát {(x + 6)^2} + {(y - 7)^2} = 81

  • Câu 32: Thông hiểu

    Cho  có C(–1; 2), đường cao BH: x – y + 2 = 0, đường phân giác trong AN: 2x – y + 5 = 0. Tọa độ điểm A là:

    Ta có: BH \bot AC \Rightarrow \left( {AC} ight):x + y + c = 0

    C\left( { - 1;2} ight) \in \left( {AC} ight)

    \begin{matrix}    \Rightarrow  - 1 + 2 + c = 0 \hfill \\   \Rightarrow c =  - 1 \hfill \\ \end{matrix}

    Vậy (AC):x+y−1=0

    A=AN∩AC => A là nghiệm của hệ phương trình

    \left\{ {\begin{array}{*{20}{l}}  {x + y - 1 = 0} \\   {2x - y + 5 = 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{l}}  {x = \dfrac{{ - 4}}{3}} \\   {y = \dfrac{7}{3}} \end{array}} ight. \Rightarrow A\left( {\dfrac{{ - 4}}{3};\dfrac{7}{3}} ight)

  • Câu 33: Vận dụng

    Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai đường thẳng (d):\left\{ \begin{matrix}
x = 1 + t \\
y = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)(\Delta):3x + 4y - 2 = 0. Gọi điểm M(a;b) \in (d) sao cho d\left( M;(\Delta) ight) = 2d(M,Ox)b < 0. Tính giá trị biểu thức P = a + b?

    Gọi M(1 + t;2 - t) \in (d)

    Khi đó:

    d\left( M;(\Delta) ight) =
2d(M,Ox)

    \Leftrightarrow \frac{\left| 3(1 + t) +
4(2 - t) - 2 ight|}{5} = 2|2 - t|

    \Leftrightarrow | - t + 9| = |20 - 10t|\Leftrightarrow \left\lbrack \begin{matrix}- t + 9 = 20 - 10t \\- t + 9 = - 20 + 10t \\\end{matrix} ight.

    \  \Leftrightarrow \left\lbrack \begin{matrix}t = \dfrac{11}{9} \\t = \dfrac{29}{11} \\\end{matrix} ight.

    Với t = \dfrac{11}{9} \Rightarrow \left\{\begin{matrix}a = \dfrac{20}{9} \\b = \dfrac{7}{9} \\\end{matrix} ight.\ (ktm)

    Với t = \frac{29}{11} \Rightarrow \left\{\begin{matrix}a = \dfrac{40}{11} \\b = \dfrac{- 7}{11} \\\end{matrix} ight.\ (tm) \Rightarrow P = \dfrac{40}{11} - \dfrac{7}{11}= \dfrac{33}{11}

  • Câu 34: Vận dụng

    Cho hai đường thẳng d_{1}:3x + 4y + 12 = 0d_{2}:\left\{ \begin{matrix}
x = 2 + at \\
y = 1 - 2t \\
\end{matrix} ight.. Tìm các giá trị của tham số a để d_{1}d_{2} hợp với nhau một góc bằng 45^{0}.

    Ta có:

    \left\{ \begin{matrix}
d_{1}:3x + 4y + 12 = 0 ightarrow {\overrightarrow{n}}_{1} = (3;4) \\
d_{2}:\left\{ \begin{matrix}
x = 2 + at \\
y = 1 - 2t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (2;a) \\
\end{matrix} ight.

    \overset{\varphi = \left( d_{1};d_{2}
ight) = 45^{\circ}}{ightarrow}\frac{1}{\sqrt{2}} = cos45^{\circ} =
\cos\varphi = \frac{|6 + 4a|}{\sqrt{25}.\sqrt{a^{2} + 4}}

    \Leftrightarrow 25\left( a^{2} + 4
ight) = 8\left( 4a^{2} + 12a + 9 ight)

    \Leftrightarrow 7a^{2} + 96a - 28 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = - 14 \\
a = \frac{2}{7} \\
\end{matrix} ight.\ .

  • Câu 35: Nhận biết

    Cho phương trình x^{2} + y^{2} – 2ax – 2by + c = 0. Điều kiện của a, b, c để phương trình đã cho là phương trình đường tròn là

     Điều kiện: a^{2} + b^{2} > c.

  • Câu 36: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Elip?

    Phương trình Elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1;c^{2} = a^{2} - b^{2}

    Vậy phương trình cần tìm là \frac{x^{2}}{9} + \frac{y^{2}}{4} = 1

  • Câu 37: Nhận biết

    Xét vị trí tương đối của hai đường thẳng: d_1: x – 2y + 2 = 0d_2: – 3x + 6y – 10 = 0.

     Vì \frac{1}{{ - 3}} = \frac{{ - 2}}{6} eq\frac2{-10} nên hai đường thẳng song song.

  • Câu 38: Thông hiểu

    Tìm phương trình chính tắc của Parabol (P) biết khoảng cách từ tiêu điểm F đến đường thẳng \Delta:x + y - 12 = 02\sqrt{2}.

    Ta có tọa độ tiêu điểm F\left(
\frac{p}{2}\ ;\ 0 ight).

    Khoảng cách từ F đến đường thẳng \Delta:x + y - 12 = 02\sqrt{2} nên:

    d_{(F;\Delta)} = \frac{\left| \frac{p}{2}
- 12 ight|}{\sqrt{2}} = 2\sqrt{2} \Leftrightarrow \left\lbrack
\begin{matrix}
p = 32 \\
p = 64 \\
\end{matrix} ight..

    Vậy phương trình của (P) là: y^{2} = 32x hoặc y^{2} = 64x.

  • Câu 39: Vận dụng

    Đường tròn (C) đi qua hai điểm 4x^{2} + y^{2} - 10x - 6y - 2 = 0. và tiếp xúc với đường thẳng \Delta:3x + y - 3 =
0. Viết phương trình đường tròn (C), biết tâm của (C) có tọa độ là những số nguyên.

    AB:x - y + 1 = 0, đoạn AB có trung điểm M(2;3) ightarrowtrung trực của đoạn AB là d:x + y - 5 = 0
ightarrow I(a;5 - a),\ \ a\mathbb{\in Z}.

    Ta có: R = IA = d\lbrack I;\Deltabrack
= \sqrt{(a - 1)^{2} + (a - 3)^{2}} = \frac{|2a +
2|}{\sqrt{10}}

    \Leftrightarrow a = 4 ightarrow
I(4;1),\ R = \sqrt{10}.

    Vậy phương trình đường tròn là: (x -
4)^{2} + (y - 1)^{2} = 10 \Leftrightarrow x^{2} + y^{2} - 8x - 2y + 7 =
0.

  • Câu 40: Nhận biết

    Điểm nào dưới đây thuộc đường thẳng 2x - y + 1 = 0?

    Thay tọa độ các điểm vào đường thẳng 2x -
y + 1 = 0 ta thấy điểm thuộc đường thẳng đã cho là D(0;1).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo