Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong mặt phẳng tọa độ Oxy cho đường tròn (C):x^{2} + y^{2} - 2x - 2my + m^{2} - 24 =
0 có tâm I và đường thẳng \Delta:mx + 4y = 0 (với m là tham số). Biết đường thẳng \Delta cắt đường tròn (C) tại hai điểm A;B phân biệt sao cho diện tích tam giác IAB bằng 12. Có bao nhiêu giá trị của tham số m thỏa mãn yêu cầu đề bài?

    Hình vẽ minh họa

    Đường tròn (C) có tâm I(1; m) và bán kính R = 5.

    Gọi H là trung điểm của dây cung AB. Ta có IH là đường cao của tam giác IAB và

    IH = d(I;\Delta) \Leftrightarrow
\frac{|m + 4m|}{\sqrt{m^{2} + 16}} = \frac{|5m|}{\sqrt{m^{2} +
16}}

    AH = \sqrt{IA^{2} - IH^{2}} = \sqrt{25 -
\frac{(5m)^{2}}{m^{2} + 16}} = \frac{20}{\sqrt{m^{2} + 16}}

    Theo bài ra ta có:

    S_{IAB} = 12 \Leftrightarrow 2S_{IAH} =
12

    \Leftrightarrow d(I;\Delta).AH =
12

    \Leftrightarrow 25|m| = 3\left( m^{2} +
16 ight)

    \Leftrightarrow \left\lbrack\begin{matrix}m = \pm 3 \\m = \pm \dfrac{16}{3} \\\end{matrix} ight.

    Vậy có 4 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 2: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, đường thẳng đi qua điểm C(1;2) và song song với đường thẳng d:4x + 2y + 1 = 0 có phương trình tổng quát là:

    Đường thẳng đi qua điểm C(1;2) và song song với đường thẳng d:4x + 2y + 1 =
0 có nhận vectơ \overrightarrow{n}(4;2) làm vectơ pháp tuyến có phương trình tổng quát:

    4(x - 1) + 2(y - 2) = 0

    \Leftrightarrow 2x + y - 4 =
0

    Vậy phương trình tổng quát của đường thẳng là: 2x + y - 4 =
0.

  • Câu 3: Thông hiểu

    Phương trình chính tắc của Elip có đỉnh ( - 3;\ 0) và một tiêu điểm là (1;\ 0)

    Elip có đỉnh ( - 3;\ 0) \Rightarrow a =
3 và một tiêu điểm (1;\ 0)
\Rightarrow c = 1.

    Ta có c^{2} = a^{2} - b^{2}
\Leftrightarrow b^{2} = a^{2} - c^{2} = 9 - 1 = 8.

    Vậy phương trình (E):\frac{x^{2}}{9} +
\frac{y^{2}}{8} = 1.

  • Câu 4: Nhận biết

    Một vectơ pháp tuyến của đường thẳng d:2x - y - 1 = 0 là:

    Một vectơ pháp tuyến của đường thẳng d:2x
- y - 1 = 0\overrightarrow{n}(2; - 1).

  • Câu 5: Nhận biết

    Trong mặt phẳng Oxy, phương trình nào sau đây là phương trình chính tắc của một elip?

    Phương trình chính tắc của elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1,(a
> b > 0) nên chọn phương án D.

  • Câu 6: Nhận biết

    Xác định vị trí tương đối của hai đường thẳng \Delta_{1}:7x + 2y - 1 = 0\Delta_{2}:\left\{ \begin{matrix}
x = 4 + t \\
y = 1 - 5t \\
\end{matrix} ight.\ .

    \left. \ \begin{matrix}
\Delta_{1}:7x + 2y - 1 = 0 ightarrow {\overrightarrow{n}}_{1} = (7;2)
\\
\Delta_{2}:\left\{ \begin{matrix}
x = 4 + t \\
y = 1 - 5t \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = (1; -
5) ightarrow {\overrightarrow{n}}_{2} = (5;1) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{7}{5}\boxed{=}\frac{2}{1} \\
{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2}\boxed{=}0 \\
\end{matrix} ight.\  ightarrow \Delta_{1},\ \ \Delta_{2} cắt nhau nhưng không vuông góc.

  • Câu 7: Vận dụng

    Trong mặt phẳng với hệ trục tọa độOxy, cho hai đường tròn \left( \mathbf{C}_{\mathbf{1}}
ight)\mathbf{,}\left( \mathbf{C}_{\mathbf{2}} ight) có phương trình lần lượt là (x + 1)^{2} + (y +
2)^{2} = 9,\ (x - 2)^{2} + (y - 2)^{2} = 4 và elip (E) có phương trình 16x^{2} + 49y^{2} = 1. Có bao nhiêu đường tròn (C) có bán kính gấp đôi độ dài trục lớn của elip (E)(C) tiếp xúc với hai đường tròn \left( C_{1} ight), \left( C_{2} ight)?

    Ta có 16x^{2} + 49y^{2} = 1
\Leftrightarrow \frac{x^{2}}{\left( \frac{1}{4} ight)^{2}} +
\frac{y^{2}}{\left( \frac{1}{7} ight)^{2}} = 1 \Rightarrow
(E) có độ dài trục lớn là 2a =
2.\frac{1}{4} = \frac{1}{2}.

    Khi đó đường tròn (C) có bán kính là R = 1. Gọi I(a;b) là tâm của đường tròn (C).

    Xét \Delta II_{1}I_{2}\left\{ \begin{matrix}
II_{1} = R + R_{1} = 1 + 3 = 4 \\
II_{2} = R + R_{2} = 1 + 2 = 3 \\
I_{1}I_{2} = R_{1} + R_{2} = 5 \\
\end{matrix} ight.\  \Rightarrow \Delta II_{1}I_{2} vuông tại I.

    Ta có \overrightarrow{II_{1}} = ( - 1 -
a; - 2 - b), \overrightarrow{II_{2}} = (2 - a;2 - b). Khi đó điểm I thỏa mãn:

    \left\{ \begin{matrix}\overrightarrow{II_{1}}.\overrightarrow{II_{2}} = 0 \\\overrightarrow{II_{2}} = 3 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}( - 1 - a)(2 - a) + ( - 2 - b)(2 - b) = 0 \\(2 - a)^{2} + (2 - b)^{2} = 9 \\\end{matrix} ight.

    \  \Leftrightarrow \left\{ \begin{matrix}a^{2} + b^{2} - a - 6 = 0 \\a^{2} + b^{2} - 4a - 4b - 1 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}a^{2} + b^{2} = 6 + a \\6 + a - 4a - 4b - 1 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a^{2} + b^{2} = 6 + a \\a = \frac{5 - 4b}{3} \\\end{matrix} ight.

    \  \Leftrightarrow \left\{ \begin{matrix}\left( \frac{5 - 4b}{3} ight)^{2} + b^{2} - 6 - \frac{5 - 4b}{3} = 0\\a = \frac{5 - 4b}{3} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
25b^{2} - 28b - 44 = 0 \\
a = \frac{5 - 4b}{3} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
b = 2 \\
b = - \frac{22}{25} \\
\end{matrix} ight.\  \\
a = \frac{5 - 4b}{3} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
a = - 1 \\
b = 2 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
a = \frac{71}{25} \\
b = - \frac{22}{25} \\
\end{matrix} ight.\  \\
\end{matrix} ight..

    Vậy có hai phương trình đường tròn (C) thỏa mãn yêu cầu bài toán là

    (C):(x + 1)^{2} + (y - 2)^{2} =
1 hoặc (C):\left( x - \frac{71}{25}
ight)^{2} + \left( y + \frac{22}{25} ight)^{2} = 1.

  • Câu 8: Nhận biết

    Cho phương trình x^{2} + y^{2} – 2ax – 2by + c = 0. Điều kiện của a, b, c để phương trình đã cho là phương trình đường tròn là

     Điều kiện: a^{2} + b^{2} > c.

  • Câu 9: Thông hiểu

    Đường tròn (C) có tâm I thuộc đường thẳng d:x + 3y + 8 = 0, đi qua điểm A( - 2;1) và tiếp xúc với đường thẳng \Delta:\ 3x - 4y + 10 = 0. Phương trình của đường tròn (C) là:

    Dễ thấy A \in \Delta nên tâm I của đường tròn nằm trên đường thẳng qua A vuông góc với \Delta

    \Delta^{'}:4x + 3y + 5 = 0
ightarrow I = \Delta^{'} \cap d:\left\{ \begin{matrix}
4x + 3y + 5 = 0 \\
x + 3y + 8 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = - 3 \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
I(1; - 3) \\
R = IA = 5 \\
\end{matrix} ight.\ .

    Vậy phương trình đường tròn là: (x -
1)^{2} + (y + 3)^{2} = 25.

  • Câu 10: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn có phương trình: (x – 1)^{2} + (y – 10)^{2} = 81 lần lượt là:

     Tâm I(1;10), bán kính R=9.

  • Câu 11: Nhận biết

    Cho hai đường thẳng \left( d_{1} ight):2x + y + 15 = 0\left( d_{2} ight): - 4x - 2y + 3 =
0. Khẳng định nào sau đây đúng?

    Ta có: \frac{2}{- 4} = \frac{1}{- 2} eq
\frac{15}{3} suy ra \left( d_{1}
ight)\left( d_{2}
ight) song song với nhau.

  • Câu 12: Vận dụng

    Tìm m để ba đường thẳng d_{1}:2x + y–1 =
0, d_{2}:x + 2y + 1 = 0d_{3}:mx–y–7 = 0 đồng quy?

    \left\{ \begin{matrix}
d_{1}:2x + y–1 = 0 \\
d_{2}:x + 2y + 1 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = - 1 \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A(1; - 1) \in
d_{3} \Leftrightarrow m + 1 - 7 = 0
\Leftrightarrow m = 6.

  • Câu 13: Nhận biết

    Đường Elip \frac{x^{2}}{16} + \frac{y^{2}}{7} = 1 có tiêu cự bằng

    Elip \frac{x^{2}}{16} + \frac{y^{2}}{7} =
1a^{2} = 16, b^{2} = 7 suy ra c^{2} = a^{2} - b^{2} = 16 - 7 = 9 \Leftrightarrow
c = 3.

    Vậy tiêu cự 2c = 2.3 = 6.

  • Câu 14: Nhận biết

    Cho đường thẳng \Delta:x - 2y - 1 = 0. Đường thẳng nào sau đây vuông góc với đường thẳng \Delta?

    Đường thẳng d:4x + 2y + 3 = 0 vuông góc với đường thẳng \Delta\overrightarrow{n_{d}}.\overrightarrow{n_{\Delta}}
= 4.1 + 2( - 2) = 0.

  • Câu 15: Vận dụng

    Viết phương trình đường thẳng (\Delta) đi qua giao điểm hai đường thẳng \left( d_{1} ight):2x + y - 3 = 0;\left(
d_{2} ight):x - 2y + 1 = 0 và cosin góc giữa (\Delta)với đường thẳng \left( d_{3} ight):y = 1 một góc bằng \frac{\sqrt{2}}{2}?

    Gọi A là giao điểm hai đường thẳng \left(
d_{1} ight):2x + y - 3 = 0;\left( d_{2} ight):x - 2y + 1 =
0, khi đó tọa độ điểm A là nghiệm của hệ phương trình:

    \left\{ \begin{matrix}
2x + y - 3 = 0 \\
x - 2y + 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
\end{matrix} ight.\  \Leftrightarrow A(1;1)

    Phương trình đường thẳng \Delta có dạng y = k\left( x - x_{0} ight) +
y_{0}

    A \in \Delta \Rightarrow y = k(x - 1)
+ 1 \Rightarrow kx - y - k + 1 = 0

    Mặt khác

    \cos\left( \Delta;d_{3} ight) =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{\left| k.0 + ( -
1).1 ight|}{\sqrt{k^{2} + ( - 1)^{2}}.\sqrt{0^{2} + 1^{2}}} =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{| -
1|}{\sqrt{k^{2} + 1}} = \frac{\sqrt{2}}{2} \Leftrightarrow \sqrt{k^{2} +
1} = \sqrt{2}.| - 1|

    \Leftrightarrow \sqrt{k^{2} + 1} =
\sqrt{2}

    \Leftrightarrow k^{2} + 1 = 2
\Leftrightarrow k^{2} = 1 \Leftrightarrow k = \pm 1

    Với k = 1 \Rightarrow x - y =
0

    Với k = - 1 \Rightarrow - x - y + 2 = 0
\Rightarrow x + y - 2 = 0

    Vậy phương trình đường thẳng là: \left\lbrack \begin{matrix}
x + y - 2 = 0 \\
x - y = 0 \\
\end{matrix} ight..

  • Câu 16: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm C(–1\ ;\ 3)D(3\ ;\ 1).

    Ta có:

    \left\{ \begin{matrix}C( - 1;3) \in CD \\{\overrightarrow{u}}_{CD} = \overrightarrow{CD} = (4; - 2) = - 2( - 2;1)\\\end{matrix} ight.\ \overset{ightarrow}{}CD:\left\{ \begin{matrix}x = - 1 - 2t \\y = 3 + t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 17: Nhận biết

    Elip (E):\frac{x^{2}}{36}+\frac{y^{2}}{9}=1 có độ dài trục lớn bằng:

     Ta có: a^2=36 \Rightarrow a=6 \Rightarrow 2a=12.

  • Câu 18: Nhận biết

    Elip (E):4x^{2}+16y^{2}=1 có độ dài trục bé bằng:

     Ta có: (E):4x^{2}+16y^{2}=1  \Leftrightarrow\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{1}{{16}}}} = 1 \Rightarrow {b^2} = \frac{1}{{16}} \Rightarrow b = \frac{1}{4}.

    Độ dài trục bé 2b=\frac12.

  • Câu 19: Vận dụng

    Có bao nhiêu đường thẳng đi qua điểm N\ ( - 2\ ;\ 0) tiếp xúc với đường tròn (C):\ (x - 2)^{2} + (y\  + 3)^{2} =
4?

    Đường tròn (C) có tâm I(2; - 3),\ R = 2
ightarrow IN = \sqrt{16 + 9} = 5 > R ightarrowcó đúng 2 tiếp tuyến của đường tròn kẻ từ N.

  • Câu 20: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh ABx - y -
2 = 0, phương trình cạnh ACx + 2y
- 5 = 0. Biết trọng tâm của tam giác là điểm G(3;2) và phương trình đường thẳng BC có dạng x
+ my + n = 0. Tính giá trị biểu thức S = m + n.

    Tọa độ điểm A là nghiệm của hệ phương trình \left\{ \begin{matrix}
x - y - 2 = 0 \\
x + 2y - 5 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = 1 \\
\end{matrix} ight.\  \Leftrightarrow A(3;1)

    Ta có B\left( x_{B};x_{B} - 2
ight);C\left( x_{C};\frac{- x_{C} + 5}{2} ight)

    Gọi M\left( x_{0};y_{0} ight) là trung điểm của BC thì 2\overrightarrow{GM} =
\overrightarrow{AG} nên

    \left\{ \begin{matrix}
2\left( x_{0} - 3 ight) = 0 \\
2\left( y_{0} - 2 ight) = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{0} = 3 \\
y_{0} = \frac{5}{2} \\
\end{matrix} ight.

    Mặt khác \left\{ \begin{matrix}x_{B} + x_{C} = 2x_{0} \\x_{B} - 2 + \dfrac{- x_{C} + 5}{2} = 2y_{0} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{B} + x_{C} = 6 \\2x_{B} - x_{C} = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{B} = 5 \\
x_{C} = 1 \\
\end{matrix} ight.\  \Rightarrow B(5;3),C(1;2)

    \Rightarrow \overrightarrow{BC} = ( - 4;
- 1)

    Suy ra một vectơ pháp tuyến của BC là \overrightarrow{n} = (1; - 4)

    Suy ra phương trình đường thẳng BC là

    1(x - 5) - 4(y - 3) = 0

    \Leftrightarrow x - 4y + 7 =
0

    Suy ra m = - 4;n = 7 \Rightarrow S =
3

  • Câu 21: Thông hiểu

    Cho đường thẳng (d): x – 2y + 5 = 0. Mệnh đề nào sau đây đúng?

    Giả sử: A\left( {1; - 2} ight) \in \left( d ight):x - 2y + 5 = 0

    \Rightarrow 1 - 2.\left( { - 2} ight) + 5 = 0\left( L ight)

    \Rightarrow 1 - 2.\left( { - 2} ight) + 5 = 0 loại đáp án (d) đi qua A(1; –2).

    Ta có (d):x−2y+5=0

    ⇒VTPT \overrightarrow n  = \left( {1; - 2} ight)

    ⇒VTCP \overrightarrow u  = \left( {2;1} ight) loại đáp án (d) có phương trình tham số: \left\{\begin{matrix}x=t\\ y=-2t\end{matrix}ight.

    Ta có (d):x−2y+5=0

    \Rightarrow y = \frac{1}{2}x + \frac{5}{2} hệ số góc k = \frac{1}{2}.

  • Câu 22: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;2), B(0;3)C(4;0). Chiều cao của tam giác kẻ từ đỉnh A bằng:

    \left\{ \begin{matrix}
A(1;2) \\
B(0;3),\ \ C(4;0) ightarrow BC:3x + 4y - 12 = 0 \\
\end{matrix} ight.

    ightarrow h_{A} = d(A;BC) = \frac{|3 +
8 - 12|}{\sqrt{9 + 16}} = \frac{1}{5}.

  • Câu 23: Thông hiểu

    Đường tròn đường kính AB với A(1;1),B(7;5) có phương trình là:

    (C):\left\{ \begin{matrix}
I(4;3) \\
R = IA = \sqrt{(4 - 1)^{2} + (3 - 1)^{2}} = \sqrt{13} \\
\end{matrix} ight.

    ightarrow (C):(x - 4)^{2} + (y - 3)^{2}
= 13

    \Leftrightarrow x^{2} + y^{2} - 8x - 6y
+ 12 = 0.

  • Câu 24: Thông hiểu

    Trong mặt phẳng Oxy, cho Parabol (P): y^{2} =
8x có tiêu điểm F. Tìm trên (P) điểm M cách F một khoảng là 3.

    Giả sử M\left( x_{M}\ ;\ y_{M} ight)
\in (P). Suy ra {y_{M}}^{2} =
8x_{M}. (1)

    Từ phương trình y^{2} = 8x suy ra p = 4 nên F(2\ ;\ 0).

    Ta có: FM = \frac{p}{2} + x_{M}. Suy ra x_{M} = 1. Kết hợp (1) ta có: y_{M} = \pm 2\sqrt{2}.

    Vậy có hai điểm M\left( 1\ ;\ 2\sqrt{2}
ight) hoặc M\left( 1\ ;\  -
2\sqrt{2} ight)thỏa mãn.

  • Câu 25: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C): {(x - 1)^2} + {(y + 3)^2} = 16 là:

     Tâm và bán kính đường tròn (C) là: I\left( {1; - 3} ight),R = \sqrt {16}  = 4

  • Câu 26: Thông hiểu

    Trong mặt phẳng Oxy cho các điểm A( - 1;1),B(3;1),C(1;3). Phương trình đường tròn đi qua ba điểm đã cho là:

    Gọi phương trình đường tròn là: (C):x^{2}
+ y^{2} - 2ax - 2by + c = 0 với a^{2} + b^{2} - c > 0

    Vì đường tròn đi qua ba điểm A( -
1;1),B(3;1),C(1;3) nên ta có hệ phương trình:

    \left\{ \begin{matrix}
1 + 1 + 2a - 2b + c = 0 \\
9 + 1 - 6a - 2b + c = 0 \\
1 + 9 - 2a - 6b + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2a - 2b + c = - 2 \\
- 6a - 2b + c = - 10 \\
- 2a - 6b + c = - 10 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
c = - 2 \\
\end{matrix} ight.

    Vậy phương trình đường tròn cần tìm là: (C):x^{2} + y^{2} - 2x - 2y - 2 = 0.

  • Câu 27: Nhận biết

    Cho đường thẳng d_{1} có vectơ pháp tuyến là \overrightarrow{n_{1}} và đường thẳng d_{2} có vectơ pháp tuyến là \overrightarrow{n_{2}}. Gọi \beta là góc tạo bởi hai đường thẳng d_{1};d_{2}. Kết luận nào sau đây đúng?

    Góc tạo bởi hai đường thẳng đã cho được xác định bởi công thức \cos\beta = \frac{\left|
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} ight|}{\left|
\overrightarrow{n_{1}} ight|.\left| \overrightarrow{n_{2}}
ight|}.

  • Câu 28: Thông hiểu

    Cho elip (E): \frac{x^{2}}{25}+\frac{y^{2}}{9}=1. Trong các khẳng định sau, khẳng định nào sai?

    Phương trình elip (E) có dạng \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1;\left( {a = 5;b = 3} ight)

    Ta có: b = \sqrt {{a^2} - {c^2}}  = 4

    Khi đó: {F_1}\left( { - 4;0} ight);{F_2}\left( {4;0} ight) đúng

    Ta có: \frac{c}{a}=\frac{4}{5} đúng

    Đỉnh A1(–a; 0) => A1(–5; 0) đúng

    Độ dài trục nhỏ là 2b = 2.3 = 6 ≠ 3 

    Vậy khẳng định sai là: (E) có độ dài trục nhỏ bằng 3.

  • Câu 29: Vận dụng

    Xác định a để hai đường thẳng d_{1}:ax + 3y–4 = 0d_{2}:\left\{ \begin{matrix}
x = - 1 + t \\
y = 3 + 3t \\
\end{matrix} ight. cắt nhau tại một điểm nằm trên trục hoành.

    Ox \cap d_{2} \leftrightarrow \left\{
\begin{matrix}
x = - 1 + t \\
y = 3 + 3t = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 2 \\
y = 0 \\
\end{matrix} ight.

    ightarrow Ox \cap d_{2} = A( - 2;0)
\in d_{1}

    ightarrow - 2a - 4 = 0 \Leftrightarrow
a = - 2.

  • Câu 30: Vận dụng

    Elip (E) có độ dài trục lớn bằng 4\sqrt{2}, các đỉnh trên trục nhỏ và các tiêu điểm của elip cùng nằm trên một đường tròn. Hãy tính độ dài trục nhỏ của (E).

    Ta có A_{1}A_{2} = 4\sqrt{2}\overset{}{ightarrow}a =
2\sqrt{2}

    Và bốn điểm F_{1},B_{1},F_{2},B_{2} cùng nằm trên một đường tròn

    \overset{}{ightarrow}b =
c\overset{}{ightarrow}b^{2} = c^{2}

    \overset{}{ightarrow}b^{2} = a^{2} -
b^{2}\overset{}{ightarrow}b = \frac{a}{\sqrt{2}} = 2.

    Vậy độ dài trục nhỏ của (E)4.

  • Câu 31: Thông hiểu

    Tính góc tạo bởi hai đường thẳng (\Delta):\sqrt{3}x - y + 7 = 0(\Delta'):x - \sqrt{3}y - 1 = 0?

    Ta có:

    Vectơ pháp tuyến của đường thẳng (\Delta):\sqrt{3}x - y + 7 = 0 là: \overrightarrow{n_{\Delta}} = \left( \sqrt{3}; - 1
ight)

    Vectơ pháp tuyến của đường thẳng (\Delta'):x - \sqrt{3}y - 1 = 0 là: \overrightarrow{n_{\Delta'}} = \left( 1;
- \sqrt{3} ight)

    Ta thấy

    \cos(\Delta;\Delta') = \frac{\left|
\overrightarrow{n_{\Delta}}.\overrightarrow{n_{\Delta'}}
ight|}{\left| \overrightarrow{n_{\Delta}} ight|.\left|
\overrightarrow{n_{\Delta'}} ight|}

    = \frac{\left| \sqrt{3}.1 + ( -
1).\left( - \sqrt{3} ight) ight|}{\sqrt{\left( \sqrt{3} ight)^{2}
+ ( - 1)^{2}}.\sqrt{1^{2} + \left( - \sqrt{3} ight)^{2}}} =
\frac{\sqrt{3}}{2}

    \Rightarrow
\widehat{(\Delta;\Delta')} = 30^{0}

    Vậy góc tạo bởi hai đường thẳng đã cho bằng 30^{0}.

  • Câu 32: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình 2x + 3y - 2 = 0. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng đã cho?

    Một vectơ pháp tuyến của đường thẳng 2x +
3y - 2 = 0 là: (2;3).

  • Câu 33: Nhận biết

    Điểm nào sau đây không thuộc đường thẳng \left\{ \begin{matrix}
x = - 1 + 2t \\
y = 3 - 5t \\
\end{matrix} ight. ?

    Gọi d:\left\{ \begin{matrix}
x = - 1 + 2t \\
y = 3 - 5t \\
\end{matrix} ight.\ .M( - 1;3)\overset{x = - 1,\ y = 3 ightarrow
d}{ightarrow}\left\{ \begin{matrix}
- 1 = - 1 + 2t \\
3 = 3 - 5t \\
\end{matrix} ight.\  \Leftrightarrow t = 0 ightarrow M \in
d.

    N(1; - 2)\overset{x = 1,\ y = - 2
ightarrow d}{ightarrow}\left\{ \begin{matrix}
1 = - 1 + 2t \\
- 2 = 3 - 5t \\
\end{matrix} ight.\  \Leftrightarrow t = 1 ightarrow N \in
d.

    P(3;1)\overset{x = 3,\ y = 1 ightarrow d}{ightarrow}\left\{ \begin{matrix}3 = - 1 + 2t \\1 = 3 - 5t \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}t = 2 \\t = \dfrac{2}{5} \\\end{matrix} ight.\  ightarrow P\in d.

    Chọn P(3;1).

    Q( - 3;8)\overset{x = - 3,\ y = 8
ightarrow d}{ightarrow}\left\{ \begin{matrix}
- 3 = - 1 + 2t \\
8 = 3 - 5t \\
\end{matrix} ight.\  \Leftrightarrow t = - 1 ightarrow Q \in
d.

  • Câu 34: Nhận biết

    Trong mặt phẳng tọa độ Oxy, mỗi đường thẳng có bao nhiêu vectơ pháp tuyến?

    Một đường thẳng có vô số vectơ pháp tuyến và chúng có cùng phương với nhau.

  • Câu 35: Thông hiểu

    Cho tọa độ hai điểm M\left( - 2\sqrt{3};\frac{3}{2} ight),N\left(
2;\frac{3\sqrt{3}}{2} ight). Viết phương trình chính tắc của elip có tâm là gốc tọa độ và đi qua hai điểm M;N?

    Gọi phương trình chính tắc của elip là: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1;(a;b
> 0)

    Do elip đi qua hai điểm M\left( -
2\sqrt{3};\frac{3}{2} ight),N\left( 2;\frac{3\sqrt{3}}{2}
ight) nên ta có hệ phương trình:

    \left\{ \begin{matrix}\dfrac{12}{a^{2}} + \dfrac{9}{b^{2}} = 1 \\\dfrac{4}{a^{2}} + \dfrac{27}{b^{2}} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a^{2} = 16 \\b^{2} = 9 \\\end{matrix} ight.

    Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là: \frac{x^{2}}{16} + \frac{y^{2}}{9} =
1

  • Câu 36: Thông hiểu

    Trong mặt phẳng Oxy cho điểm M(1;2). Gọi A,B là hình chiếu của M lên Ox,Oy. Phương trình tổng quát của đường thẳng AB là:

    Ta có: A, B là hình chiếu của M lên Ox, Oy suy ra A(1;0),B(0;2)

    Khi đó phương trình đường thẳng AB là: \frac{x}{1} + \frac{y}{2} = 1 \Leftrightarrow 2x +
y - 2 = 0.

    Vậy phương trình tổng quát của AB là: 2x + y - 2 = 0.

  • Câu 37: Nhận biết

    Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm O(0;0)A(1; - 3)?

    Kiểm tra đường thẳng nào không chứa O(0;0)\overset{ightarrow}{} loại.

    (Có thể kiểm tra đường thẳng nào không đi qua điểm A(1; - 3)).

  • Câu 38: Thông hiểu

    Viết phương trình tổng quát của đường thẳng d đi qua điểm M( - 1;0) và vuông góc với đường thẳng \Delta:\left\{ \begin{matrix}
x = t \\
y = - 2t \\
\end{matrix} ight.\ .

    \left\{ \begin{matrix}
M( - 1;0) \in d \\
{\overrightarrow{u}}_{\Delta} = (1; - 2) \\
d\bot\Delta \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
M( - 1;0) \in d \\
{\overrightarrow{n}}_{d} = (1; - 2) \\
\end{matrix} ight.\  ightarrow d:1(x + 1) - 2(y - 0) = 0
\Leftrightarrow d:x - 2y + 1 = 0.

  • Câu 39: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng \left( d_{1} ight):mx - (m - 1)y + 4 - m^{2} =
0\left( d_{2} ight):(m + 3)x
+ y - 3m - 1 = 0. Tìm giá trị của tham số m để hai đường thẳng hợp với nhau một góc bằng một góc vuông?

    Ta có:

    Vectơ pháp tuyến của đường thẳng \left(
d_{1} ight):mx - (m - 1)y + 4 - m^{2} = 0 là: \overrightarrow{n_{1}} = (m, - m + 1)

    Vectơ pháp tuyến của đường thẳng \left(
d_{2} ight):(m + 3)x + y - 3m - 1 = 0 là: \overrightarrow{n_{2}} = (m + 1;1)

    Hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) vuông góc với nhau khi và chỉ khi:

    \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 0
\Leftrightarrow m(m + 3) - m + 1 = 0

    \Leftrightarrow m = - 1

    Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi m = - 1.

  • Câu 40: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn có phương trình: {(x - 1)^2} + {(y - 10)^2} = 81 lần lượt là:

    Tâm và bán kính đường tròn lần lượt là: I(1; 10) và R = 9

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo