Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hypebol (H): 4x^{2} – y^{2} = 1. Khẳng định nào sau đây đúng?

    Ta có:

    \begin{matrix}  4{x^2} - {y^2} = 1 \hfill \\   \Leftrightarrow \dfrac{{{x^2}}}{{\dfrac{1}{4}}} - \dfrac{{{y^2}}}{1} = 1 \hfill \\   \Leftrightarrow \dfrac{{{x^2}}}{{{{\left( {\dfrac{1}{2}} ight)}^2}}} - \dfrac{{{y^2}}}{1} = 1 \hfill \\   \Rightarrow a = \dfrac{1}{2};b = 1 \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \dfrac{{\sqrt 5 }}{2} \hfill \\ \end{matrix}

    Vậy Hypebol (H) có tiêu cự 2c = \sqrt 5  e \frac{{\sqrt 5 }}{2}

    => Hai tiêu điểm của (H) là: {F_1} = \left( { - \frac{{\sqrt 5 }}{2};0} ight);{F_2} = \left( {\frac{{\sqrt 5 }}{2};0} ight)

    Ta có trục thực là: {A_1}{A_2} = 2a = 2.\frac{1}{2} = 1

    Trục ảo là: 2b = 2.1 = 2 e \frac{1}{2}

    Vậy khẳng định đúng là:" Hypebol có trục thực bằng 1".

  • Câu 2: Thông hiểu

    Phương trình chính tắc của Elip có độ dài trục lớn bằng 8, độ dài trục nhỏ bằng 6 là:

    + Phương trình Elip dạng: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1,a
> b > 0.

    + Do có độ dài trục lớn bằng 8 = 2a
\Rightarrow a = 4.

    + Do có độ dài trục nhỏ bằng 6 = 2b
\Rightarrow b = 3.

    + Suy ra phương trình là \frac{x^{2}}{16}
+ \frac{y^{2}}{9} = 1.

  • Câu 3: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):16x^{2} + 16y^{2} + 16x - 8y - 11 = 0 là:

    (C):16x^{2} + 16y^{2} + 16x - 8y - 11 =
0 \Leftrightarrow x^{2} + y^{2} + x - \frac{1}{2}y - \frac{11}{16} =
0.

    ightarrow \left\{ \begin{matrix}
I\left( - \frac{1}{2};\frac{1}{4} ight) \\
R = \sqrt{\frac{1}{4} + \frac{1}{16} + \frac{11}{16}} = 1. \\
\end{matrix} ight.

  • Câu 4: Thông hiểu

    Trong hệ trục Oxy, cho Elip (E) có các tiêu điểm F_{1}( - 4;0),F_{2}(4;0) và một điểm M nằm trên (E). Biết rằng chu vi của tam giác MF_{1}F_{2} bằng 18. Xác định tâm sai e của (E).

    Ta có F_{1}( - 4;0) \Rightarrow c =
4.

    \begin{matrix}
P_{\Delta MF_{1}F_{2}} = \underset{2a}{\overset{MF_{1} + MF_{2}}{︸}} +
F_{1}F_{2} \\
\Leftrightarrow \ \ \ 18 = 2a + 2c \Leftrightarrow 18 = 2a + 8
\Leftrightarrow a = 5. \\
\end{matrix}

    Tâm sai e = \frac{c}{a} =
\frac{4}{5}.

  • Câu 5: Nhận biết

    Elip (E):\frac{x^{2}}{16}+y^{2}=4 có tổng độ dài trục lớn và trục bé bằng:

     Ta có: a^2=16,b^2=1 \Rightarrow a=4,b=1.

    Tổng độ dài trục lớn và bé là: 2a+2b=10.

  • Câu 6: Nhận biết

    Đường tròn (C): x^{2} + y^{2} – 8x + 2y + 6 = 0 có tâm I, bán kính R lần lượt là:

     Ta có: I(4;-1) ,R=\sqrt{11}.

  • Câu 7: Thông hiểu

    Cho elip (E) có độ dài trục lớn gấp hai lần độ dài trục nhỏ và tiêu cự bằng 6. Viết phương

    trình của (E)?

    Ta có: a = 2b,2c = 6 \Rightarrow c =
3.

    a^{2} - b^{2} = c^{2} \Rightarrow
4b^{2} - b^{2} = 9 \Rightarrow \left\{ \begin{matrix}
b^{2} = 3 \\
a^{2} = 12 \\
\end{matrix} ight..

    Vậy phương trình (E): \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{12}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{3}}\mathbf{=}\mathbf{1}.

  • Câu 8: Nhận biết

    Nhận xét nào đúng về vị trí tương đối của hai đường thẳng (d):2x + 3y + 15 =
0(\Delta):x - 2y - 3 =
0?

    Ta có:

    Vectơ pháp tuyến của đường thẳng (d):2x +
3y + 15 = 0 là: \overrightarrow{n_{d}} = (2;3)

    Vectơ pháp tuyến của đường thẳng (\Delta):x - 2y + 3 = 0 là: \overrightarrow{n_{\Delta}} = (1; -
2)

    Suy ra \overrightarrow{n_{d}}\overrightarrow{n_{d}} không cùng phương và \overrightarrow{n_{d}}.\overrightarrow{n_{d}} = 2
- 6 = - 4 eq 0

    Suy ra hai đường thẳng cắt nhau và không vuông góc.

  • Câu 9: Nhận biết

    Trong mặt phẳng Oxy cho điểm A(4; - 5) và đường thẳng (d):3.x - 4y + 8 = 0. Tính khoảng cách từ điểm A đến đường thẳng (d).

    Khoảng cách từ điểm A đến đường thẳng (d) là:

    d\left( A;(d) ight) = \frac{\left| 3.4
- 4.( - 5) + 8 ight|}{\sqrt{3^{2} + 4^{2}}} = 8

    Vậy khoảng cách cần tìm bằng 8.

  • Câu 10: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm A(–1\ ;\ 3)B(3\ ;\ 1).

    \left\{ \begin{matrix}A( - 1;3) \in AB \\{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = (4; - 2) = - 2( - 2;1)\\\end{matrix} ight.\ \overset{ightarrow}{}AB:\left\{ \begin{matrix}x = - 1 - 2t \\y = 3 + t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 11: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm C(2; - 1)D(2;5).

    Ta có:

    \left\{ \begin{matrix}C(2; - 1) \in CD \\{\overrightarrow{u}}_{CD} = \overrightarrow{CD} = (0;6) \\\end{matrix} ight.\ \overset{ightarrow}{}CD:\left\{ \begin{matrix}x = 2 \\y = - 1 + 6t \\\end{matrix} ight.\ \ \ \left( t\mathbb{\in R} ight).

  • Câu 12: Nhận biết

    Điểm nào sau đây không thuộc đường thẳng \left\{ \begin{matrix}
x = - 1 + 2t \\
y = 3 - 5t \\
\end{matrix} ight. ?

    Gọi d:\left\{ \begin{matrix}
x = - 1 + 2t \\
y = 3 - 5t \\
\end{matrix} ight.\ .M( - 1;3)\overset{x = - 1,\ y = 3 ightarrow
d}{ightarrow}\left\{ \begin{matrix}
- 1 = - 1 + 2t \\
3 = 3 - 5t \\
\end{matrix} ight.\  \Leftrightarrow t = 0 ightarrow M \in
d.

    N(1; - 2)\overset{x = 1,\ y = - 2
ightarrow d}{ightarrow}\left\{ \begin{matrix}
1 = - 1 + 2t \\
- 2 = 3 - 5t \\
\end{matrix} ight.\  \Leftrightarrow t = 1 ightarrow N \in
d.

    P(3;1)\overset{x = 3,\ y = 1 ightarrow d}{ightarrow}\left\{ \begin{matrix}3 = - 1 + 2t \\1 = 3 - 5t \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}t = 2 \\t = \dfrac{2}{5} \\\end{matrix} ight.\  ightarrow P\in d.

    Chọn P(3;1).

    Q( - 3;8)\overset{x = - 3,\ y = 8
ightarrow d}{ightarrow}\left\{ \begin{matrix}
- 3 = - 1 + 2t \\
8 = 3 - 5t \\
\end{matrix} ight.\  \Leftrightarrow t = - 1 ightarrow Q \in
d.

  • Câu 13: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình 2x + 3y - 2 = 0. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng đã cho?

    Một vectơ pháp tuyến của đường thẳng 2x +
3y - 2 = 0 là: (2;3).

  • Câu 14: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;3), B( -
2;4)C( - 1;5). Đường thẳng d:2x - 3y + 6 = 0 cắt cạnh nào của tam giác đã cho?

    Đặt f(x;y) = 2x - 3y +
6\overset{}{ightarrow}\left\{ \begin{matrix}
f\left( A(1;3) ight) = - 1 < 0 \\
f\left( B( - 2;4) ight) = - 10 < 0 \\
f\left( C( - 1;5) ight) = - 11 < 0 \\
\end{matrix} ight.\ \ \ \ \overset{}{ightarrow} d không cắt cạnh nào của tam giác ABC.

  • Câu 15: Thông hiểu

    Cho đường tròn (C): {x^2} + {y^2} - 2x - 4y + 1 = 0. Gọi d_1, d_2 lần lượt là tiếp tuyến của đường tròn (C) tại điểm M(3; 2), N(1; 0). Tọa độ giao điểm của d_1d_2 là:

    Ta có: I\left( {1;2} ight);R = 2

    Phương trình tiếp tuyến của đường tròn tại M(3; 2) là:

    \begin{matrix}  \left( {1 - 3} ight)\left( {x - 3} ight) + \left( {2 - 2} ight)\left( {y - 2} ight) = 0 \hfill \\   \Rightarrow x - 3 = 0 \hfill \\ \end{matrix}

    Phương trình tiếp tuyến của đường tròn tại N(1; 0) là:

    \begin{matrix}  \left( {1 - 1} ight)\left( {x - 1} ight) + \left( {0 - 1} ight)\left( {y - 1} ight) = 0 \hfill \\   \Rightarrow y - 1 = 0 \hfill \\ \end{matrix}

    => Giao điểm của hai tiếp tuyến là H(3; 0)

  • Câu 16: Nhận biết

    Cho một hypebol (E):\frac{x^{2}}{144} - \frac{y^{2}}{25} =
1 có hai tiêu điểm là:

    Ta có: \left\{ \begin{matrix}
a^{2} = 144 \\
b^{2} = 25 \\
c^{2} = a^{2} + b^{2} = 169 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 12 \\
b = 5 \\
c = 13 \\
\end{matrix} ight.

    Vậy hai tiêu điểm cần tìm là: F_{1}( -
13;0),F_{2}(13;0).

  • Câu 17: Thông hiểu

    Trong mặt phẳng Oxy, điểm M nằm trên đường tròn (x + 3)^{2} + (y - 4)^{2} =
4 sao cho độ dài đoạn thẳng OM là ngắn nhất. Hoành độ điểm M là:

    Đường tròn (x + 3)^{2} + (y - 4)^{2} =
4 có tâm I( - 3;4) và bán kính R = 2.

    Phương trình đường thẳng OI đi qua O(0;0) và nhận \overrightarrow{OI} = ( - 3;4) làm VTCP là: \left\{ \begin{matrix}
x = - 3t \\
y = 4t \\
\end{matrix}\ \ \ \ (t\mathbb{\in R}) ight..

    Ta có: OM \leq |OI - R| = 3

    Để OM ngắn nhất \Leftrightarrow OM =
3

    Dấu bằng xảy ra \Leftrightarrow
\overrightarrow{OM} = \frac{3}{5}\overrightarrow{OI} \Leftrightarrow
M\left( - \frac{9}{5};\frac{12}{5} ight).

  • Câu 18: Nhận biết

    Cho elip có phương trình chính tắc \frac{x^{2}}{4} + \frac{y^{2}}{1} = 1. Tính tâm sai của elip.

    Ta có a^{2} = 4 \Rightarrow a = 2;b^{2} =
1 \Rightarrow b = 1;c^{2} = a^{2} - b^{2} = 3 \Rightarrow c =
\sqrt{3}

    Tâm sai của elip là e = \frac{c}{a} =
\frac{\sqrt{3}}{2}.

  • Câu 19: Nhận biết

    Elip (E):4x^{2}+16y^{2}=1 có độ dài trục bé bằng:

     Ta có: (E):4x^{2}+16y^{2}=1  \Leftrightarrow\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{1}{{16}}}} = 1 \Rightarrow {b^2} = \frac{1}{{16}} \Rightarrow b = \frac{1}{4}.

    Độ dài trục bé 2b=\frac12.

  • Câu 20: Vận dụng

    Đường thẳng d:3x
+ 4y - 12 = 0 cắt elip (E):\frac{x^{2}}{16} + \frac{y^{2}}{9} =
1 tại hai điểm phân biệt MN. Hãy tính độ dài đoạn thẳng MN.

    Tọa độ giao điểm của đường thẳng d(E) là nghiệm của hệ

    \left\{ \begin{matrix}
3x + 4y - 12 = 0 \\
\frac{x^{2}}{16} + \frac{y^{2}}{9} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 3 - \frac{3x}{4} \\
\frac{x^{2}}{16} + \frac{\left( 3 - \frac{3x}{4} ight)^{2}}{9} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 3 - \frac{3x}{4} \\
x^{2} - 4x = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 3 - \frac{3x}{4} \\
\left\lbrack \begin{matrix}
x = 0 \\
x = 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\ .

    Vậy tọa độ giao điểm là \left\{
\begin{matrix}
M(0;\ 3) \\
N(4;\ 0) \\
\end{matrix} ight.\  \Rightarrow MN = 5.

  • Câu 21: Vận dụng

    Viết phương trình tiếp tuyến của đường tròn (C):x^{2} + y^{2} - 4x - 4y + 4 =
0, biết tiếp tuyến vuông góc với trục hoành.

    Đường tròn (C) có tâm I(2;2),\ R =
2 và tiếp tuyến có dạng \Delta:x +
c = 0\ .

    Ta có R = d\lbrack I;\Deltabrack
\Leftrightarrow |c + 2| = 2 \Leftrightarrow \left\lbrack \begin{matrix}
c = 0 \\
c = - 4 \\
\end{matrix} ight.\ .

  • Câu 22: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình tham số của đường thẳng?

    Phương trình tham số của đường thẳng là: \left\{ \begin{matrix}
x = 1 + 2t \\
y = 4 - 3t \\
\end{matrix} ight.

  • Câu 23: Vận dụng

    Tìm m để hai đường thẳng d_{1}:2x - 3y + 4 =
0d_{2}:\left\{ \begin{matrix}
x = 2 - 3t \\
y = 1 - 4mt \\
\end{matrix} ight. cắt nhau.

    \left\{ \begin{matrix}
d_{1}:2x - 3y + 4 = 0 \\
d_{2}:\left\{ \begin{matrix}
x = 2 - 3t \\
y = 1 - 4mt \\
\end{matrix} ight.\  \\
\end{matrix} ight. \overset{}{ightarrow}\left\{ \begin{matrix}
{\overrightarrow{n}}_{1} = (2; - 3) \\
{\overrightarrow{n}}_{2} = (4m; - 3) \\
\end{matrix} ight. \overset{d_{1} \cap d_{2} =
M}{ightarrow}\frac{4m}{2}\boxed{=}\frac{- 3}{- 3} \Leftrightarrow
m\boxed{=}\frac{1}{2}.

  • Câu 24: Vận dụng

    Cặp đường thẳng nào dưới đây là phân giác của các góc hợp bởi hai đường thẳng \Delta_{1}:x + 2y - 3 = 0\Delta_{2}:2x - y + 3 = 0.

    Điểm M(x;y) thuộc đường phân giác của các góc tạo bởi \Delta_{1};\ \
\Delta_{2} khi và chỉ khi

    d\left( M;\Delta_{1} ight) = d\left(
M;\Delta_{2} ight) \Leftrightarrow \frac{|x + 2y - 3|}{\sqrt{5}} =
\frac{|2x - y + 3|}{\sqrt{5}}

    \Leftrightarrow \left\lbrack
\begin{matrix}
3x + y = 0 \\
x - 3y + 6 = 0 \\
\end{matrix} ight.\ .

  • Câu 25: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A(m - 1;1),B(2;2 - 2m),C(m + 3;3) với m là tham số. Tìm giá trị của tham số m để ba điểm A,B,C thẳng hàng?

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = (3 - m;3 - 2m) \\
\overrightarrow{AC} = (4;4) \\
\end{matrix} ight.

    Ba điểm A, B, C thẳng hàng khi và chỉ khi \overrightarrow{AB};\overrightarrow{AC} cùng phương với nhau.

    Điều đó xảy ra khi và chỉ khi \frac{3 -
m}{4} = \frac{3 - 2m}{4} \Leftrightarrow m = 0

    Vậy m = 0 thì ba điểm A, B, C thẳng hàng.

  • Câu 26: Thông hiểu

    Đường tròn (C) có tâm I(2; - 3) và tiếp xúc với trục Oy có phương trình là:

    (C):\left\{ \begin{matrix}
I(2; - 3) \\
R = d\lbrack I;Oybrack = 2 \\
\end{matrix} ight.\  ightarrow (C):(x - 2)^{2} + (y + 3)^{2} =
4.

  • Câu 27: Nhận biết

    Cho phương trình x^{2} + y^{2} + 2mx + 2(m–1)y + 2m^{2} =
0(1). Tìm điều kiện của m để (1) là phương trình đường tròn.

    Ta có: x^{2} + y^{2} + 2mx + 2(m–1)y +
2m^{2} = 0

    ightarrow \left\{ \begin{matrix}
a = - m \\
b = 1 - m \\
c = 2m^{2} \\
\end{matrix} ight.\  ightarrow a^{2} + b^{2} - c > 0
\Leftrightarrow - 2m + 1 > 0 \Leftrightarrow m <
\frac{1}{2}.

  • Câu 28: Nhận biết

    Trên hệ trục tọa độ cho đường tròn (C):(x - 1)^{2} + (y + 1)^{2} = 4. Trong các điểm sau điểm nào nằm trên đường tròn đã cho?

    Thay tọa độ điểm Q(3; - 1) vào phương trình đường tròn (C):(x - 1)^{2} + (y
+ 1)^{2} = 4 ta được:

    (3 - 1)^{2} + ( - 1 + 1)^{2} =
4

    Vậy điểm thuộc đường tròn là Q(3; -
1).

  • Câu 29: Vận dụng

    Viết phương trình tiếp tuyến của đường tròn (C):(x - 2)^{2} + (y - 1)^{2} = 25, biết tiếp tuyến song song với đường thẳng d:4x + 3y + 14 = 0.

    Đường tròn (C) có tâm I(2;1),\ R =
5 và tiếp tuyến có dạng

    \Delta:4x + 3y + c = 0\ \ \left(ceq14 ight).

    Ta có R = d\lbrack I;\Deltabrack
\Leftrightarrow \frac{|c + 11|}{5} = 5 \Leftrightarrow \left\lbrack
\begin{matrix}
c = 14\ (l) \\
c = - 36 \\
\end{matrix} ight.\ .

  • Câu 30: Thông hiểu

    Tính góc tạo bởi hai đường thẳng (\Delta):\sqrt{3}x - y + 7 = 0(\Delta'):x - \sqrt{3}y - 1 = 0?

    Ta có:

    Vectơ pháp tuyến của đường thẳng (\Delta):\sqrt{3}x - y + 7 = 0 là: \overrightarrow{n_{\Delta}} = \left( \sqrt{3}; - 1
ight)

    Vectơ pháp tuyến của đường thẳng (\Delta'):x - \sqrt{3}y - 1 = 0 là: \overrightarrow{n_{\Delta'}} = \left( 1;
- \sqrt{3} ight)

    Ta thấy

    \cos(\Delta;\Delta') = \frac{\left|
\overrightarrow{n_{\Delta}}.\overrightarrow{n_{\Delta'}}
ight|}{\left| \overrightarrow{n_{\Delta}} ight|.\left|
\overrightarrow{n_{\Delta'}} ight|}

    = \frac{\left| \sqrt{3}.1 + ( -
1).\left( - \sqrt{3} ight) ight|}{\sqrt{\left( \sqrt{3} ight)^{2}
+ ( - 1)^{2}}.\sqrt{1^{2} + \left( - \sqrt{3} ight)^{2}}} =
\frac{\sqrt{3}}{2}

    \Rightarrow
\widehat{(\Delta;\Delta')} = 30^{0}

    Vậy góc tạo bởi hai đường thẳng đã cho bằng 30^{0}.

  • Câu 31: Nhận biết

    Tính góc tạo bởi giữa hai đường thẳng: d_1:x+\sqrt{3}y+6=0d_2: x+1 = 0.

     Ta có: \cos ({d_1},{d_2}) = \frac{{\left| {1.1 + \sqrt 3 .0} ight|}}{{\sqrt {{1^2} + {{\sqrt 3 }^2}} .\sqrt {{1^2} + {0^2}} }} = \frac 12. Suy ra góc giữa hai đường thẳng bằng 60^{\circ}.

  • Câu 32: Thông hiểu

    Phương trình nào sau đây là phương trình tổng quát của đường thẳng d:\left\{
\begin{matrix}
x = 15 \\
y = 6 + 7t \\
\end{matrix} ight.?

    d:\left\{ \begin{matrix}
x = 15 \\
y = 6 + 7t \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
A(15;6) \in d \\
{\overrightarrow{u}}_{d} = (0;7) = 7(0;1) ightarrow
{\overrightarrow{n}}_{d} = (1;0) \\
\end{matrix} ight.\ \overset{ightarrow}{}d:x - 15 = 0.

  • Câu 33: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;4), B(3;2)C(7;3). Viết phương trình tham số của đường trung tuyến CM của tam giác

    \left\{ \begin{matrix}
\mathbf{A}\left( \mathbf{1;4} ight) \\
\mathbf{B}\left( \mathbf{3;2} ight) \\
\end{matrix} ight.\ \mathbf{ightarrow M}\left( \mathbf{2;3}
ight)\mathbf{ightarrow}\overrightarrow{\mathbf{MC}}\mathbf{=}\left(
\mathbf{5;0} ight)\mathbf{=}\mathbf{5}\left( \mathbf{1;0}
ight)\mathbf{ightarrow CM}\mathbf{:}\left\{ \begin{matrix}
\mathbf{x =}\mathbf{7}\mathbf{+ t} \\
\mathbf{y =}\mathbf{3} \\
\end{matrix} ight.\ \left( \mathbf{t}\mathbb{\in R}
ight)\mathbf{.}

  • Câu 34: Nhận biết

    Trong hệ trục tọa độ \left( O;\overrightarrow{i};\overrightarrow{j}
ight), tọa độ của vectơ \overrightarrow{a} = 2\overrightarrow{i} +
3\overrightarrow{j} là:

    Tọa độ vectơ \overrightarrow{a} =
(2;3).

  • Câu 35: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, đường thẳng d đi qua điểm P(1; - 3) và có vectơ pháp tuyến \overrightarrow{n}(2; - 1) có phương trình tổng quát là:

    Ta có: đường thẳng d nhận \overrightarrow{n}(2; - 1) làm vectơ pháp tuyến, mặt khác d đi qua điểm P(1; - 3) nên d có phương trình tổng quát là:

    2(x - 1) - 1(y + 3) = 0

    \Leftrightarrow 2x - y - 5 =
0

  • Câu 36: Nhận biết

    Đường thẳng nào sau đây vuông góc với đường thẳng 4x - 3y + 1 = 0 ?

    Kí hiệu d:4x - 3y + 1 = 0 ightarrow
{\overrightarrow{n}}_{d} = (4; - 3).

    (i) Xét đáp án d_{1}:\left\{
\begin{matrix}
x = 4t \\
y = - 3 - 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{1} = (3;4)
ightarrow {\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{d} =
0 nên chọn đáp án này.

    (ii) Tương tự kiểm tra và loại các đáp án còn lại.

  • Câu 37: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh ABx - y -
2 = 0, phương trình cạnh ACx + 2y
- 5 = 0. Biết trọng tâm của tam giác là điểm G(3;2) và phương trình đường thẳng BC có dạng x
+ my + n = 0. Tính giá trị biểu thức S = m + n.

    Tọa độ điểm A là nghiệm của hệ phương trình \left\{ \begin{matrix}
x - y - 2 = 0 \\
x + 2y - 5 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = 1 \\
\end{matrix} ight.\  \Leftrightarrow A(3;1)

    Ta có B\left( x_{B};x_{B} - 2
ight);C\left( x_{C};\frac{- x_{C} + 5}{2} ight)

    Gọi M\left( x_{0};y_{0} ight) là trung điểm của BC thì 2\overrightarrow{GM} =
\overrightarrow{AG} nên

    \left\{ \begin{matrix}
2\left( x_{0} - 3 ight) = 0 \\
2\left( y_{0} - 2 ight) = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{0} = 3 \\
y_{0} = \frac{5}{2} \\
\end{matrix} ight.

    Mặt khác \left\{ \begin{matrix}x_{B} + x_{C} = 2x_{0} \\x_{B} - 2 + \dfrac{- x_{C} + 5}{2} = 2y_{0} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{B} + x_{C} = 6 \\2x_{B} - x_{C} = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{B} = 5 \\
x_{C} = 1 \\
\end{matrix} ight.\  \Rightarrow B(5;3),C(1;2)

    \Rightarrow \overrightarrow{BC} = ( - 4;
- 1)

    Suy ra một vectơ pháp tuyến của BC là \overrightarrow{n} = (1; - 4)

    Suy ra phương trình đường thẳng BC là

    1(x - 5) - 4(y - 3) = 0

    \Leftrightarrow x - 4y + 7 =
0

    Suy ra m = - 4;n = 7 \Rightarrow S =
3

  • Câu 38: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:2x - 3y - 10 = 0d_{2}:\left\{ \begin{matrix}
x = 2 - 3t \\
y = 1 - 4mt \\
\end{matrix} ight. vuông góc?

    \left\{ \begin{matrix}
d_{1}:2x - 3y - 10 = 0 ightarrow {\overrightarrow{n}}_{1} = (2; - 3)
\\
d_{2}:\left\{ \begin{matrix}
x = 2 - 3t \\
y = 1 - 4mt \\
\end{matrix} ightarrow {\overrightarrow{n}}_{2} = (4m; - 3)
ight.\  \\
\end{matrix} ight.

    \overset{d_{1}\bot
d_{2}}{ightarrow}2.4m + ( - 3).( - 3) = 0 \Leftrightarrow m = -
\frac{9}{8}.

  • Câu 39: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E):\frac{x^{2}}{25} + \frac{y^{2}}{9} =
1. Biết điểm M \in (E) sao cho \widehat{F_{1}MF_{2}} = 90^{0}. Hãy tính bán kính đường tròn nội tiếp tam giác MF_{1}F_{2}.

    Gọi M(x;y)\widehat{F_{1}MF_{2}} = 90^{0} \Rightarrow M{F_{1}}^{2} + M{F_{2}}^{2} =
F_{1}{F_{2}}^{2} \Leftrightarrow x^{2} + y^{2} = c^{2} = 16 (1)

    Do M \in (E) \Rightarrow \frac{x^{2}}{25}
+ \frac{y^{2}}{9} = 1(2)

    Giải hệ gồm hai phuơng trình (1) và (2) ta đuợc x^{2} = \frac{175}{16};y^{2} = \frac{81}{16}
\Leftrightarrow x = \pm \frac{5\sqrt{7}}{4};y = \frac{9}{4}

    Ta có: nửa chu vi p = \frac{MF_{1} +
MF_{2} + F_{1}F_{2}}{2} = \frac{2a + 2c}{2} = a + c = 9

    Khoảng các từ M đến trục Ox:d(M;Ox) =
\left| y_{M} ight| = \frac{9}{4}

    S_{\Delta MF_{1}F_{2}} =
\frac{1}{2}d(M;Ox).F_{1}F_{2} = 9

    Bán kính đuờng tròn nội tiếp: r =
\frac{S}{p} = 1.

  • Câu 40: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;2), B(0;3)C(4;0). Chiều cao của tam giác kẻ từ đỉnh A bằng:

    \left\{ \begin{matrix}
A(1;2) \\
B(0;3),\ \ C(4;0) ightarrow BC:3x + 4y - 12 = 0 \\
\end{matrix} ight.

    ightarrow h_{A} = d(A;BC) = \frac{|3 +
8 - 12|}{\sqrt{9 + 16}} = \frac{1}{5}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo