Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hypebol (H): 4x^{2} – y^{2} = 1. Khẳng định nào sau đây đúng?

    Ta có:

    \begin{matrix}  4{x^2} - {y^2} = 1 \hfill \\   \Leftrightarrow \dfrac{{{x^2}}}{{\dfrac{1}{4}}} - \dfrac{{{y^2}}}{1} = 1 \hfill \\   \Leftrightarrow \dfrac{{{x^2}}}{{{{\left( {\dfrac{1}{2}} ight)}^2}}} - \dfrac{{{y^2}}}{1} = 1 \hfill \\   \Rightarrow a = \dfrac{1}{2};b = 1 \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \dfrac{{\sqrt 5 }}{2} \hfill \\ \end{matrix}

    Vậy Hypebol (H) có tiêu cự 2c = \sqrt 5  e \frac{{\sqrt 5 }}{2}

    => Hai tiêu điểm của (H) là: {F_1} = \left( { - \frac{{\sqrt 5 }}{2};0} ight);{F_2} = \left( {\frac{{\sqrt 5 }}{2};0} ight)

    Ta có trục thực là: {A_1}{A_2} = 2a = 2.\frac{1}{2} = 1

    Trục ảo là: 2b = 2.1 = 2 e \frac{1}{2}

    Vậy khẳng định đúng là:" Hypebol có trục thực bằng 1".

  • Câu 2: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + (y + 4)^{2} = 5 là:

    (C):x^{2} + (y + 4)^{2} =
5\overset{}{ightarrow}I(0; - 4),\ R = \sqrt{5}.

  • Câu 3: Nhận biết

    Tìm giá trị tham số m để đường thẳng \left( d_{1} ight):2x + y + 4 = 0 song song với đường thẳng \left( d_{2} ight):(m
- 3)x + y - 1 = 0?

    Để hai đường thẳng đã cho song song với nhau thì

    \frac{m + 3}{2} = \frac{1}{1}
\Leftrightarrow m = - 1

    Vậy m = -1 thì hai đường thẳng song song với nhau.

  • Câu 4: Vận dụng

    Elip (E) có độ dài trục lớn bằng 4\sqrt{2}, các đỉnh trên trục nhỏ và các tiêu điểm của elip cùng nằm trên một đường tròn. Hãy tính độ dài trục nhỏ của (E).

    Ta có A_{1}A_{2} = 4\sqrt{2}\overset{}{ightarrow}a =
2\sqrt{2}

    Và bốn điểm F_{1},B_{1},F_{2},B_{2} cùng nằm trên một đường tròn

    \overset{}{ightarrow}b =
c\overset{}{ightarrow}b^{2} = c^{2}

    \overset{}{ightarrow}b^{2} = a^{2} -
b^{2}\overset{}{ightarrow}b = \frac{a}{\sqrt{2}} = 2.

    Vậy độ dài trục nhỏ của (E)4.

  • Câu 5: Nhận biết

    Xét vị trí tương đối của hai đường thẳng \left( d_{1} ight):2x - 3y + 1 =
0\left( d_{2} ight): - 4x +
6y - 1 = 0?

    Ta có: \frac{2}{- 4} = \frac{- 3}{6} eq
\frac{1}{- 1}

    Vậy hai đường thẳng đã cho song song với nhau.

  • Câu 6: Thông hiểu

    Đường tròn (C) có tâm I(
- 2;1) và tiếp xúc với đường thẳng \Delta:3x–4y + 5 = 0 có phương trình là:

    (C):\left\{ \begin{matrix}
I( - 2;1) \\
R = d\lbrack I;\Deltabrack = \frac{| - 6 - 4 + 5|}{\sqrt{9 + 16}} = 1
\\
\end{matrix} ight.

    ightarrow (C):(x + 2)^{2} + (y - 1)^{2}
= 1.

  • Câu 7: Thông hiểu

    Viết phương trình tổng quát của đường thẳng d đi qua điểm M( - 1;2) và song song với trục Ox.

    \left\{ \begin{matrix}
M( - 1;2) \in d \\
d||Ox:y = 0 \\
\end{matrix} ight.\ \overset{ightarrow}{}d:y = 2.

  • Câu 8: Thông hiểu

    Đường thẳng d đi qua điểm M(1;2) và song song với đường thẳng \Delta:2x + 3y - 12 = 0 có phương trình tổng quát là:

    \left\{ \begin{matrix}
M(1;2) \in d \\
d||\Delta:2x + 3y - 12 = 0 \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
M(1;2) \in d \\
d:2x + 3y + c = 0\ \left( c\boxed{=} - 12 ight) \\
\end{matrix} ight.

    ightarrow 2.1 + 3.2 + c = 0
\Leftrightarrow c = - 8. Vậy d:2x +
3y - 8 = 0.

  • Câu 9: Thông hiểu

    Elip có một tiêu điểm F( - 2;0) và tích độ dài trục lớn với trục bé bằng 12\sqrt{5}. Phương trình chính tắc của elip là:

    Gọi (E) có dạng \frac{x^{2}}{a^{2}} +
\frac{y^{2}}{b^{2}} = 1.

    Theo giả thiết ta có: \left\{
\begin{matrix}
ab = 3\sqrt{5} \\
a^{2} - b^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 9 \\
b^{2} = 5 \\
\end{matrix} ight..

    Vậy (E) cần tìm là \frac{x^{2}}{9} +
\frac{y^{2}}{5} = 1.

  • Câu 10: Vận dụng

    Tập hợp các điểm cách đường thẳng \Delta:3x - 4y + 2 = 0 một khoảng bằng 2 là hai đường thẳng có phương trình nào sau đây?

    d\left( M(x;y);\Delta ight) = 2
\Leftrightarrow \frac{|3x - 4y + 2|}{5} = 2 \Leftrightarrow \left\lbrack
\begin{matrix}
3x - 4y + 12 = 0 \\
3x - 4y - 8 = 0 \\
\end{matrix} ight.\ .

  • Câu 11: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} ight. và hai điểm A(1;2), B( -
2;m). Tìm tất cả các giá trị của tham số m để AB nằm cùng phía đối với d.

    d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} ight.\ \overset{}{ightarrow}d:3x + y - 7 = 0. Khi đó điều kiện bài toán trở thành

    \left( 3x_{A} + y_{A} - 7 ight)\left(
3x_{B} + y_{B} - 7 ight) > 0 \Leftrightarrow - 2(m - 13) > 0
\Leftrightarrow m < 13.

  • Câu 12: Thông hiểu

    Tìm m để hai đường thẳng d_1d_2 vuông góc với nhau: d_1:\left\{\begin{matrix}x=-1+mt\\ y=-2-2t\end{matrix}ight.d_2:\left\{\begin{matrix}x=2-2t'\\ y=-8+(4+m)t'\end{matrix}ight.

     Ta có: {\overrightarrow u _1}(m; - 2);\overrightarrow {{u_2}} ( - 2;(m + 4)).

    Để hai đường thẳng vuông góc thì: {\overrightarrow u _1}.\overrightarrow {{u_2}}  = 0 \Leftrightarrow m( - 2) +  - 2(m + 4) = 0. Phương tình này vô nghiệm nên không tồn tại m

  • Câu 13: Nhận biết

    Xét vị trí tương đối của hai đường thẳng: d_1: 3x – 2y – 3 = 0d_2: 6x – 2y – 8 = 0.

     Vì \frac{3}{6} e \frac{{ - 2}}{{ - 2}} nên hai đường thẳng cắt nhau.

  • Câu 14: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2}–10x - 11 = 0 là:

    (C):x^{2} + y^{2}–10x - 11 = 0
ightarrow I( - 5;0),\ R = \sqrt{25 + 0 + 11} = 6.

  • Câu 15: Thông hiểu

    Viết phương trình tham số của đường thẳng d đi qua điểm M(6; - 10) và vuông góc với trục Oy.

    \begin{matrix}
\left\{ \begin{matrix}
M(6; - 10) \in d \\
d\bot Oy:x = 0 ightarrow {\overrightarrow{u}}_{d} = (1;0) \\
\end{matrix} ight.\ \overset{ightarrow}{}d:\left\{ \begin{matrix}
x = 6 + t \\
y = - 10 \\
\end{matrix} ight.\ \overset{t = - 4}{ightarrow}A(2; - 10) \in d \\
ightarrow d:\left\{ \begin{matrix}
x = 2 + t \\
y = - 10 \\
\end{matrix} ight.\ . \\
\end{matrix}

  • Câu 16: Vận dụng

    Trong mặt phẳng với hệ trục tọa độOxy, cho hai đường tròn \left( \mathbf{C}_{\mathbf{1}}
ight)\mathbf{,}\left( \mathbf{C}_{\mathbf{2}} ight) có phương trình lần lượt là (x + 1)^{2} + (y +
2)^{2} = 9,\ (x - 2)^{2} + (y - 2)^{2} = 4 và elip (E) có phương trình 16x^{2} + 49y^{2} = 1. Có bao nhiêu đường tròn (C) có bán kính gấp đôi độ dài trục lớn của elip (E)(C) tiếp xúc với hai đường tròn \left( C_{1} ight), \left( C_{2} ight)?

    Ta có 16x^{2} + 49y^{2} = 1
\Leftrightarrow \frac{x^{2}}{\left( \frac{1}{4} ight)^{2}} +
\frac{y^{2}}{\left( \frac{1}{7} ight)^{2}} = 1 \Rightarrow
(E) có độ dài trục lớn là 2a =
2.\frac{1}{4} = \frac{1}{2}.

    Khi đó đường tròn (C) có bán kính là R = 1. Gọi I(a;b) là tâm của đường tròn (C).

    Xét \Delta II_{1}I_{2}\left\{ \begin{matrix}
II_{1} = R + R_{1} = 1 + 3 = 4 \\
II_{2} = R + R_{2} = 1 + 2 = 3 \\
I_{1}I_{2} = R_{1} + R_{2} = 5 \\
\end{matrix} ight.\  \Rightarrow \Delta II_{1}I_{2} vuông tại I.

    Ta có \overrightarrow{II_{1}} = ( - 1 -
a; - 2 - b), \overrightarrow{II_{2}} = (2 - a;2 - b). Khi đó điểm I thỏa mãn:

    \left\{ \begin{matrix}\overrightarrow{II_{1}}.\overrightarrow{II_{2}} = 0 \\\overrightarrow{II_{2}} = 3 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}( - 1 - a)(2 - a) + ( - 2 - b)(2 - b) = 0 \\(2 - a)^{2} + (2 - b)^{2} = 9 \\\end{matrix} ight.

    \  \Leftrightarrow \left\{ \begin{matrix}a^{2} + b^{2} - a - 6 = 0 \\a^{2} + b^{2} - 4a - 4b - 1 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}a^{2} + b^{2} = 6 + a \\6 + a - 4a - 4b - 1 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a^{2} + b^{2} = 6 + a \\a = \frac{5 - 4b}{3} \\\end{matrix} ight.

    \  \Leftrightarrow \left\{ \begin{matrix}\left( \frac{5 - 4b}{3} ight)^{2} + b^{2} - 6 - \frac{5 - 4b}{3} = 0\\a = \frac{5 - 4b}{3} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
25b^{2} - 28b - 44 = 0 \\
a = \frac{5 - 4b}{3} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
b = 2 \\
b = - \frac{22}{25} \\
\end{matrix} ight.\  \\
a = \frac{5 - 4b}{3} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
a = - 1 \\
b = 2 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
a = \frac{71}{25} \\
b = - \frac{22}{25} \\
\end{matrix} ight.\  \\
\end{matrix} ight..

    Vậy có hai phương trình đường tròn (C) thỏa mãn yêu cầu bài toán là

    (C):(x + 1)^{2} + (y - 2)^{2} =
1 hoặc (C):\left( x - \frac{71}{25}
ight)^{2} + \left( y + \frac{22}{25} ight)^{2} = 1.

  • Câu 17: Vận dụng

    Cho đường thẳng d_{1}:2x + 3y + m^{2} - 1 = 0d_{2}:\left\{ \begin{matrix}
x = 2m - 1 + t \\
y = m^{4} - 1 + 3t \\
\end{matrix} ight.. Tính cosin góc tạo bởi giữa hai đường thẳng trên.

    . \left\{ \begin{matrix}
d_{1}:2x + 3y + m^{2} - 1 = 0 ightarrow {\overrightarrow{n}}_{1} =
(2;3) \\
d_{2}:\left\{ \begin{matrix}
x = 2m - 1 + t \\
y = m^{4} - 1 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (3; - 1)
\\
\end{matrix} ight. \overset{\varphi = \left( d_{1};d_{2}
ight)}{ightarrow}\cos\varphi = \frac{|6 - 3|}{\sqrt{4 + 9}.\sqrt{9 +
1}} = \frac{3}{\sqrt{130}}.

  • Câu 18: Thông hiểu

    Cho Elip (E) đi qua điểm A( - 3;0) và có tâm sai e = \frac{5}{6}. Tiêu cự của (E)

    Gọi phương trình chính tắc của (E)\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1 với a > b > 0.

    (E) đi qua điểm A( - 3;0) nên \frac{9}{a^{2}} = 1 \Rightarrow a^{2} = 9
\Rightarrow a = 3.

    Lại có e = \frac{c}{a} = \frac{5}{6}
\Rightarrow c = \frac{5a}{6} = \frac{5}{2} \Rightarrow 2c =
5.

  • Câu 19: Nhận biết

    Một vectơ chỉ phương của đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) là:

    Đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là: \overrightarrow{u_{\Delta}} = (2; -
3)

  • Câu 20: Nhận biết

    Một đường thẳng có bao nhiêu vectơ pháp tuyến?

     Một đường thẳng có vô số vecto pháp tuyến. Các vecto đó cùng phương với nhau.

  • Câu 21: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C): {(x - 1)^2} + {(y + 3)^2} = 16 là:

     Tâm và bán kính đường tròn (C) là: I\left( {1; - 3} ight),R = \sqrt {16}  = 4

  • Câu 22: Thông hiểu

    Xác định phương trình chính tắc của Elip, biết rằng elip có một tiêu điểm F_{1}\left(
- \sqrt{3};0 ight) và đi qua điểm D\left( 1;\frac{\sqrt{3}}{2} ight)?

    Gọi phương trình chính tắc của elip là: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1;\left( a > b > 0,c^{2} = a^{2} - b^{2} ight)

    Ta có:

    c^{2} = a^{2} - b^{2} \Rightarrow c =
\sqrt{a^{2} - b^{2}} = \sqrt{3}

    Khi đó ta có: a^{2} - b^{2} = 3\ \
(*)

    Do elip đi qua điểm D\left(
1;\frac{\sqrt{3}}{2} ight)

    \Rightarrow \frac{1}{a^{2}} +
\frac{3}{4b^{2}} = 1 \Rightarrow 4b^{2} + 3a^{2} = 4a^{2}b^{2}\ \
(**)

    Từ (*) và (**) ta có hệ phương trình:

    \left\{ \begin{matrix}
a^{2} - b^{2} = 3 \\
4b^{2} + 3a^{2} = 4a^{2}b^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 3 + b^{2} \\
4b^{2} + 3.\left( 3 + b^{2} ight) = 4.\left( 3 + b^{2} ight).b^{2}
\\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 3 + b^{2} \\
4b^{2} + 5b^{2} = 9 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 4 \\
b^{2} = 1 \\
\end{matrix} ight.

    Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là: \frac{x^{2}}{4} + \frac{y^{2}}{1} =
1.

  • Câu 24: Nhận biết

    Cho hình elip có phương trình \frac{x^{2}}{64} + \frac{y^{2}}{36} = 1. Hình elip có tiêu cự trục lớn bằng:

    Ta có: \frac{x^{2}}{64} +
\frac{y^{2}}{36} = 1 \Rightarrow \left\{ \begin{matrix}
a = 8 \\
b = 6 \\
\end{matrix} ight.

    Độ dài trục lớn là: 2a = 2.8 =
16

  • Câu 25: Nhận biết

    Đường trung trực của đoạn thẳng AB với A = (- 3;2), B = ( - 3;3) có một vectơ pháp tuyến là:

    Gọi d là trung trực đoạn AB, ta có: \left\{ \begin{matrix}\overrightarrow{AB} = (0;1) \\d\bot AB \\\end{matrix} ight.\ \overset{ightarrow}{}{\overrightarrow{n}}_{d} =\overrightarrow{AB} = (0;1).

  • Câu 26: Vận dụng

    Viết phương trình tổng quát của đường thẳng (d). Biết rằng (d) đi qua điểm N(2;3) cắt đường thẳng (\Delta):3x - y + 1 = 0 tại điểm Bx_{B}
> 0 sao cho BN =
2\sqrt{2}?

    Gọi B(b;3b + 1);(b > 0) là giao điểm của d\Delta:3x - y + 1 = 0.

    Suy ra \overrightarrow{NB} = (b - 2;3b - 2)

    Theo giả thiết ta có:

    BN = 2\sqrt{2} \Leftrightarrow (b -
2)^{2} + (3b - 2)^{2} = 8

    \Leftrightarrow 10b^{2} - 16b = 0\Leftrightarrow \left\lbrack \begin{matrix}b = 0(ktm) \\b = \dfrac{8}{5}(tm) \\\end{matrix} ight.

    Khi đó \overrightarrow{NB} = \left( -
\frac{2}{5};\frac{14}{5} ight) \Rightarrow \overrightarrow{n_{d}} =
(7;1)

    Phương trình tổng quát của đường thẳng d là: 7(x - 2) + 1(y - 3) = 0 \Leftrightarrow 7x + y -
17 = 0

  • Câu 27: Nhận biết

    Elip (E):4x^{2}+16y^{2}=1 có độ dài trục bé bằng:

     Ta có: (E):4x^{2}+16y^{2}=1  \Leftrightarrow\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{1}{{16}}}} = 1 \Rightarrow {b^2} = \frac{1}{{16}} \Rightarrow b = \frac{1}{4}.

    Độ dài trục bé 2b=\frac12.

  • Câu 28: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 2 + 3t \\
y = - 2t \\
\end{matrix} ight.d_{2}:\left\{ \begin{matrix}
x = 2t' \\
y = - 2 + 3t' \\
\end{matrix} ight..

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 2 + 3t \\
y = - 2t \\
\end{matrix} ight.\  ightarrow \ {\overrightarrow{u}}_{1} = (3; - 2)
\\
d_{2}:\left\{ \begin{matrix}
x = 2t' \\
y = - 2 + 3t' \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = (2;3)
\\
\end{matrix} ight\} ightarrow {\overrightarrow{u}}_{1} \cdot
{\overrightarrow{u}}_{2} = 0 ightarrow d_{1}\bot\ \ d_{2}. Chọn

  • Câu 29: Nhận biết

    Trong mặt phẳng Oxy, cho điểm P(2; - 3) và đường thẳng (d):2x + y - 5 = 0. Khoảng cách từ điểm P đến đường thẳng (d) bằng:

    Khoảng cách từ điểm P đến đường thẳng (d) là:

    d(P;d) = \frac{|4 - 3 - 5|}{\sqrt{2^{2} +
1^{2}}} = \frac{4\sqrt{5}}{5}.

  • Câu 30: Nhận biết

    Trong hệ trục tọa độ \left( O;\overrightarrow{i};\overrightarrow{j}
ight), tọa độ của vectơ \overrightarrow{a} = 2\overrightarrow{i} +
3\overrightarrow{j} là:

    Tọa độ vectơ \overrightarrow{a} =
(2;3).

  • Câu 31: Nhận biết

    Đường Elip \frac{x^{2}}{16} + \frac{y^{2}}{7} = 1 có tiêu cự bằng

    Elip \frac{x^{2}}{16} + \frac{y^{2}}{7} =
1a^{2} = 16, b^{2} = 7 suy ra c^{2} = a^{2} - b^{2} = 16 - 7 = 9 \Leftrightarrow
c = 3.

    Vậy tiêu cự 2c = 2.3 = 6.

  • Câu 32: Thông hiểu

    Tìm tất cả các giá trị của m để hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 2 + 2t \\
y = 1 + mt \\
\end{matrix} ight.d_{2}:4x
- 3y + m = 0 trùng nhau.

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 2 + 2t \\
y = 1 + mt \\
\end{matrix} ight.\  ightarrow A(2;1) \in d_{1},\
{\overrightarrow{u}}_{1} = (2;m) \\
d_{2}:4x - 3y + m = 0 ightarrow {\overrightarrow{u}}_{2} = (3;4) \\
\end{matrix} ight\}

    \overset{d_{1} \equiv
d_{2}}{ightarrow}\left\{ \begin{matrix}
A \in d_{2} \\
\frac{2}{3} = \frac{m}{4} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
5 + m = 0 \\
m = \frac{8}{3} \\
\end{matrix} ight.\  \Leftrightarrow m \in \varnothing.

  • Câu 33: Thông hiểu

    Cho đường tròn (C):x^{2} + y^{2} + 5x + 7y - 3 = 0. Tính khoảng cách từ tâm của (C) đến trục Ox.

    (C):x^{2} + y^{2} + 5x + 7y - 3 = 0
ightarrow I\left( - \frac{5}{2}; - \frac{7}{2} ight)

    ightarrow d\lbrack I;Oxbrack = \left|
- \frac{7}{2} ight| = \frac{7}{2}.

  • Câu 34: Nhận biết

    Cho phương trình x^{2} + y^{2} + 2mx + 2(m–1)y + 2m^{2} =
0(1). Tìm điều kiện của m để (1) là phương trình đường tròn.

    Ta có: x^{2} + y^{2} + 2mx + 2(m–1)y +
2m^{2} = 0

    ightarrow \left\{ \begin{matrix}
a = - m \\
b = 1 - m \\
c = 2m^{2} \\
\end{matrix} ight.\  ightarrow a^{2} + b^{2} - c > 0
\Leftrightarrow - 2m + 1 > 0 \Leftrightarrow m <
\frac{1}{2}.

  • Câu 35: Thông hiểu

    Với giá trị nào của tham số m thì đường thẳng \left( d_{1} ight):x + 2y + 1 - m = 0 vuông góc với đường thẳng \left( d_{2}
ight):(m + 4)x + 2y + 5 = 0?

    Ta có tọa độ vectơ pháp tuyến của \left(
d_{1} ight):x + 2y + 1 - m = 0 là: \overrightarrow{n_{1}} = (1;2)

    Tọa độ vectơ pháp tuyến của \left( d_{2}
ight):(m + 4)x + 2y + 5 = 0 là: \overrightarrow{n_{2}} = (m + 4;2)

    Để \left( d_{1} ight)\bot\left( d_{2}
ight) thì \overrightarrow{n_{1}}.\overrightarrow{n_{1}} = 0
\Leftrightarrow 1(m + 4) + 2.2 = 0 \Leftrightarrow m = - 8

    Vậy m = -8 thì hai đường thẳng đã cho vuông góc với nhau.

  • Câu 36: Thông hiểu

    Tính góc giữa hai đường thẳng \left( d_{1} ight):2x - y - 10 = 0\left( d_{2} ight):x - 3y + 9 =
0

    Ta có:

    Vectơ pháp tuyến của hai đường thẳng lần lượt là \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (2; - 1) \\
\overrightarrow{n_{2}} = (1; - 3) \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 2.1 + ( - 1).( - 3) = 5
\\
\left| \overrightarrow{n_{1}} ight| = \sqrt{2^{2} + ( - 1)^{2}} =
\sqrt{5} \\
\left| \overrightarrow{n_{2}} ight| = \sqrt{1^{2} + ( - 3)^{2}} =
\sqrt{10} \\
\end{matrix} ight.

    Suy ra \cos\left( d_{1};d_{2} ight) =
\frac{\left| \overrightarrow{n_{1}}.\overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight|.\left|
\overrightarrow{n_{2}} ight|} = \frac{\sqrt{2}}{2}

    \Rightarrow \widehat{\left( d_{1};d_{2}
ight)} = 45^{0}

  • Câu 37: Vận dụng

    Đường tròn (C) đi qua hai điểm A(–1;1)\ ,B(3;3) và tiếp xúc với đường thẳng d:3x–4y + 8 = 0. Viết phương trình đường tròn (C), biết tâm của (C) có hoành độ nhỏ hơn 5.

    AB:x - 2y + 5 = 0, đoạn AB có trung điểm M(1;2) ightarrowtrung trực của đoạn AB là d:2x + y
- 4 = 0 ightarrow I(a;4 - 2a),\ \ a < 5.

    Ta có

    R = IA = d\lbrack I;\Deltabrack =
\sqrt{(a + 1)^{2} + (2a - 3)^{2}} = \frac{|11a - 8|}{5}

    \Leftrightarrow a = 3 ightarrow I(3; -
2),\ R = 5.

    Vậy phương trình đường tròn là: (x -
3)^{2} + (y + 2)^{2} = 25.

  • Câu 38: Nhận biết

    Một vectơ pháp tuyến của đường thẳng d:2x - y - 1 = 0 là:

    Một vectơ pháp tuyến của đường thẳng d:2x
- y - 1 = 0\overrightarrow{n}(2; - 1).

  • Câu 39: Nhận biết

    Cho Hypebol (H) có phương trình chính tắc là \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1, với a,b > 0. Khi đó khẳng định nào sau đây sai?

    Với c^{2} = a^{2} + b^{2} (c > 0), tâm sai của hypebol là e = \frac{a}{c}.

  • Câu 40: Vận dụng

    Xác định phương trình đường tròn (C) có tâm nằm trên đường thẳng (d):x - 6y - 10 = 0 và tiếp xúc với hai đường thẳng có phương trình \left( d_{1}
ight):3x + 4y + 5 = 0\left(
d_{2} ight):4x - 3y - 5 = 0?

    Vì đường tròn cần tìm có tâm K nằm trên đường thẳng d nên gọi K(6a + 10;a). Mặt khác đường tròn tiếp xúc với hai đường thẳng \left( d_{1}
ight):3x + 4y + 5 = 0\left(
d_{2} ight):4x - 3y - 5 = 0 nên khoảng cách từ tâm I đến hai đường thẳng bằng bán kính.

    \frac{\left| 3(6a + 10) + 4a + 5
ight|}{5} = \frac{\left| 4(6a + 10) - 3a - 5 ight|}{5}

    \Leftrightarrow |22a + 35| = |21a +
35|

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = 0 \\
a = \frac{- 70}{43} \\
\end{matrix} ight.

    Với a = 0 thì K(10;0);R = 7 khi đó phương trình đường tròn là: (x - 10)^{2} + y^{2} =
49

    Với a = \frac{- 70}{43} thì K\left( \frac{10}{43};\frac{- 70}{43}
ight);R = \frac{7}{43} khi đó phương trình đường tròn là: \left( x - \frac{10}{3} ight)^{2} + \left(
y + \frac{70}{43} ight)^{2} = \left( \frac{7}{43}
ight)^{2}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
Sắp xếp theo