Xác định vị trí tương đối của hai đường thẳng
và
.
Xác định vị trí tương đối của hai đường thẳng
và
.
Với giá trị nào của
thì hai đường thẳng
và
cắt nhau?
Ta có:
Tìm giá trị của tham số m sao cho đường thẳng
là tiếp tuyến của đường tròn
.
Đường tròn (C) có tâm I(3; 0) và bán kính R = 2
Để là tiếp tuyến của đường tròn
thì ta phải có:
Hãy viết phương trình chính tắc của elip nếu nó đi qua điểm
và tỉ số của tiêu cự với độ dài trục lớn bằng
.
Gọi phương trình chính tắc của Elip là với
Elip đi qua điểm
suy ra
Tỉ số của tiêu cực với độ dài trục lớn bằng
suy ra
Kết hợp với điều kiện ta được
Từ suy ra
Vậy phương trình cần tìm là
Lập phương trình chính tắc của elip biết độ dài trục lớn hơn độ dài trục nhỏ 4 đơn vị, độ dài trục nhỏ hơn độ dài tiêu cự 4 đơn vị.
Elip có độ dài trục lớn hơn độ dài trục nhỏ 4 đơn vị
.
Elip có độ dài trục nhỏ hơn độ dài tiêu cự 4 đơn vị
.
Ta có
Phương trình chính tắc của Elip là .
Cho phương trình Hypebol
. Độ dài trục thực của Hypebol đó là
Ta có: ta có: a = 4; b = 3
=> Độ dài trục thực của Hypebol đó là 2a = 8
Trong mặt phẳng với hệ tọa độ
, cho hai đường thẳng
và
song song nhau. Đường thẳng vừa song song và cách đều với
là:
Phương tròn đường tròn đi qua ba điểm
là:
Gọi và R lần lượt là tâm và bán kính đường tròn cần tìm. Ta suy ra:
nên ta có hệ phương trình:
Vậy phương trình cầm tìm là:
Hay
Một đường thẳng có bao nhiêu vectơ chỉ phương?
Một đường thẳng có vô số vectơ chỉ phương.
Biết parabol
có phương trình đường chuẩn là
. Phương trình chính tắc của
là:
Gọi phương trình chính tắc của Parabol là:
Parabol có phương trình đường chuẩn là: nên
Suy ra phương trình chính tắc của parabol là: .
Khoảng cách từ điểm M( –1; 1) đến đường thẳng ∆: 3x – 4y – 3 = 0 bằng:
Ta có: .
Phương trình chính tắc của đường elip với
,
là
Phương trình chính tắc .
Phương trình chính tắc của Elip có độ dài trục lớn bằng
, độ dài trục nhỏ bằng
là:
+ Phương trình Elip dạng:
+ Do có độ dài trục lớn bằng .
+ Do có độ dài trục nhỏ bằng .
+ Suy ra phương trình là .
Đường tròn
có tâm
và bán kính
lần lượt là:
Ta có:
Cho đường thẳng
. Tìm mệnh đề sai trong các mệnh đề sau:
Chọn
có hệ số góc
là mệnh đề sai.
Điểm nào sau đây không thuộc đường thẳng
?
Gọi
Chọn .
Đường Elip
có tiêu cự bằng
Elip có
,
suy ra
.
Vậy tiêu cự .
Biết rằng có đúng hai giá trị của tham số
để đường thẳng
tạo với đường thẳng
một góc
. Tổng hai giá trị của
bằng:
Viết phương trình tiếp tuyến của đường tròn
, biết tiếp tuyến vuông góc với đường thẳng
.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có
Với giá trị nào của
thì hai đường thẳng
và
trùng nhau?
.
Trong mặt phẳng tọa độ
, cho đường thẳng
và đường thẳng
. Xác định số đo góc giữa hai đường thẳng đã cho?
Vectơ pháp tuyến của đường thẳng d và lần lượt là
.
Khi đó góc giữa hai đường thẳng là:
Vậy góc giữa hai đường thẳng là .
Tìm phương trình chính tắc của parabol
biết
có tiêu điểm là
.
Gọi phương trình chính tắc của là:
.
Do tọa độ tiêu điểm nên
.
Vậy phương trình của là:
.
Đường thẳng nào dưới đây là đường chuẩn của Hypebol
?
Ta có : .
Tâm sai . Đường chuẩn :
và
Cho phương trình đường thẳng
và tọa độ điểm
. Xác định tọa độ điểm
đối xứng với điểm
qua đường thẳng
?
Gọi H là chân đường cao kẻ từ điểm A đến đường thẳng (d) suy ra H(h; 5-2h)
Ta có:
Vì
A’ là điểm đối xứng của A qua đường thẳng (d).
Suy ra H là trung điểm của AA’.
Suy ra tọa độ điểm A’ là:
Vậy tọa độ điểm
Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm
và
?
Kiểm tra đường thẳng nào không chứa loại.
Có thể kiểm tra đường thẳng nào không đi qua điểm
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Cho Elip
và một điểm
nằm trên
Giải sử điểm
có hoành độ bằng 1. Hãy tính khoảng cách từ M đến hai tiêu điểm của (E).
Giả sử phương trình Ta có :
Gọi lần lượt là hai tiêu điểm của Elip
,
, ta có :
.
Viết phương trình tham số của đường thẳng
đi qua điểm
và song song với trục
.
Một vectơ pháp tuyến của đường thẳng
là:
Một vectơ pháp tuyến của đường thẳng là
.
Phương trình đường tròn
có tâm và bán kính lần lượt là:
Ta có:
Vậy phương trình đường tròn đã cho có tâm và bán kính lần lượt là:
Đường thẳng nào sau đây có đúng một điểm chung với đường thẳng
?
Ta cần tìm đường thẳng cắt
loại
loại
và
. Chọn
Trong mặt phẳng tọa độ
, cho ba điểm
. Biết rằng
, khi đó tọa độ điểm
là:
Giả sử tọa độ điểm
Ta có:
Vì nên
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có phương trình cạnh
là
, phương trình cạnh
là
. Biết trọng tâm của tam giác là điểm
và phương trình đường thẳng
có dạng
. Tính giá trị biểu thức
.
Tọa độ điểm A là nghiệm của hệ phương trình
Ta có
Gọi là trung điểm của BC thì
nên
Mặt khác
Suy ra một vectơ pháp tuyến của BC là
Suy ra phương trình đường thẳng BC là
Suy ra
Cho đường tròn
. Biết rằng khi giá trị
thay đổi, đường tròn
luôn đi qua điểm
cố định có hoành độ dương. Xác định giá trị của tham số m sao cho tiếp tuyến của đường tròn
tại
song song với
?
Gỉa sử đường tròn luôn đi qua điểm cố định khi m thay đổi. Khi đó:
với mọi m
với mọi m
Vậy ta có điểm
Đường tròn có tâm . VTPT của tiếp tuyến của đường tròn tại I là
Để tiếp tuyến tại I song song với đường thẳng nên tồn tại giá trị k sao cho:
Vậy giá trị m cần tìm là .
Phương trình chính tắc của đường tròn tâm
và bán kính
là:
Phương trình đường tròn có dạng
Vì phương trình đường tròn cần tìm có tâm và bán kính
nên phương trình cần tìm là:
Cho phương trình
. Điều kiện để
là phương trình đường tròn là:
Điều kiện để là phương trình đường tròn là
.
Cho đường tròn (C):
. Gọi
lần lượt là tiếp tuyến của đường tròn
tại điểm
. Tọa độ giao điểm của
và
là:
Ta có:
Phương trình tiếp tuyến của đường tròn tại M(3; 2) là:
Phương trình tiếp tuyến của đường tròn tại N(1; 0) là:
=> Giao điểm của hai tiếp tuyến là H(3; 0)
Tính góc tạo bởi giữa hai đường thẳng:
và
.
Ta có: . Suy ra góc giữa hai đường thẳng bằng
.
Một đường thẳng có bao nhiêu vectơ pháp tuyến?
Một đường thẳng có vô số vectơ pháp tuyến.