Trong mặt phẳng tọa độ
, cho đường thẳng
. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng
?
Ta có: Vectơ pháp tuyến của đường thẳng là:
.
Trong mặt phẳng tọa độ
, cho đường thẳng
. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng
?
Ta có: Vectơ pháp tuyến của đường thẳng là:
.
Cho đường tròn
và điểm
. Gọi
là tiếp tuyến của
, biết
đi qua
và không song song với các trục tọa độ. Khi đó khoảng cách từ điểm
đến
bằng:
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có:
Đường thẳng
đi qua điểm
và vuông góc với đường thẳng
có phương trình tham số là:
Ta có:
Hypebol có nửa trục thực là
, tiêu cự bằng
có phương trình chính tắc là:
Ta có :
Phương trình chính tắc của Hyperbol là
Ông Hoàng có một mảnh vườn hình Elip có chiều dài trục lớn và trục nhỏ lần lượt là
và
. Ông chia mảnh vườn ra làm hai nửa bằng một đường tròn tiếp xúc trong với Elip để làm mục đích sử dụng khác nhau (xem hình vẽ). Nửa bên trong đường tròn ông trồng cây lâu năm, nửa bên ngoài đường tròn ông trồng hoa màu. Tính tỉ số diện tích T giữa phần trồng cây lâu năm so với diện tích trồng hoa màu. Biết diện tích hình Elip được tính theo công thức
, với a, b lần lượt là nửa độ dài trục lớn và nửa độ dài trục nhỏ. Biết độ rộng của đường Elip là không đáng kể.

Theo đề ta có: Diện tích là:
Vì đường tròn tiếp xúc trong, nên sẽ tiếp xúc tại đỉnh của trục nhỏ, suy ra bán kính đường tròn: . Diện tích hình tròn
phần trồng cây lâu năm là:
Suy ra diện tích phần trồng hoa màu là: .
Tìm tọa độ giao điểm của đường thẳng
và trục tung.
Chọn
.
Biết rằng có đúng hai giá trị của tham số
để đường thẳng
tạo với đường thẳng
một góc
. Tổng hai giá trị của
bằng:
Viết phương trình tham số của đường thẳng
có phương trình
?
Đường thẳng đi qua điểm
và có vectơ pháp tuyến là
nên có vectơ chỉ phương là:
.
Vậy phương trình tham số của là:
.
Đường chuẩn của Parabol
là:
Từ phương trình Parabol ta có
Do đó phương trình đường chuẩn của Parabol là
Cho phương trình
(1). Điều kiện để (1) là phương trình đường tròn là:
Điều kiện để phương trình là phương trình đường tròn là:
Tìm phương trình chính tắc của Elip có độ dài trục lớn bằng
và đi qua điểm
:
Ta có phương trình chính tắc Elip (E) có dạng .
Theo giả thiết ta có
.
Mặt khác (E) đi qua nên ta có
.
Vậy phương trình chính tắc của (E) là: .
Phương trình tiếp tuyến của đường tròn
tại điểm
là:
Đường tròn (C) có tâm
Phương trình tiếp tuyến của tại điểm
là:
Vậy phương trình tiếp tuyến của đường tròn tại là:
Cho ba đường thẳng
,
và
. Phương trình nào dưới đây là phương trình đường thẳng đi qua giao điểm của hai đường thẳng
và song song với
?
Đường thẳng có
Gọi M là giao điểm của hai đường thẳng , tọa độ điểm M là nghiệm của hệ phương trình:
Đường thẳng d đi qua giao điểm M có vecto pháp tuyến
Vậy phương trình tổng quát của đường thẳng cần tìm là: hay
.
Trong mặt phẳng
cho các điểm
. Phương trình đường tròn đi qua ba điểm đã cho là:
Gọi phương trình đường tròn là: với
Vì đường tròn đi qua ba điểm nên ta có hệ phương trình:
Vậy phương trình đường tròn cần tìm là: .
Gọi
là góc tạo bởi hai đường thẳng
và
. Khi đó độ lớn của
bằng:
Ta có:
Vậy góc tạo bởi hai đường thẳng bằng .
Cho Parabol
có phương trình
. Tìm đường chuẩn của
.
Từ phương trình của , ta có:
nên
.
Suy ra có tiêu điểm là
và đường chuẩn là
.
Tính khoảng cách từ điểm
đến đường thẳng ![]()
Khoảng cách từ điểm C đến đường thẳng là:
Vậy khoảng cách cần tìm bằng 1.
Điểm nào dưới đây thuộc đường thẳng
?
Thay tọa độ các điểm vào đường thẳng ta thấy điểm thuộc đường thẳng đã cho là
.
Cho hai đường tròn
và
. Tìm giá trị tham số m để hai đường tròn tiếp xúc nhau?
Dễ thấy đường tròn (C) có tâm O(0; 0) và bán kính R = 1
Đường tròn (C’) có tâm I(m + 1; -2m) và bán kính
Ta thấy:
điểm O nằm trong đường tròn tâm I suy ra (C) và (C’) chỉ có thể tiếp xúc trong với nhau.
Điều kiện để hai đường tròn tiếp xúc trong là:
Vậy có hai giá trị m thỏa mãn điều kiện là: hoặc
.
VD
1
Lập phương trình chính tắc của elip biết độ dài trục lớn hơn độ dài trục nhỏ 4 đơn vị, độ dài trục nhỏ hơn độ dài tiêu cự 4 đơn vị.
Elip có độ dài trục lớn hơn độ dài trục nhỏ 4 đơn vị
.
Elip có độ dài trục nhỏ hơn độ dài tiêu cự 4 đơn vị
.
Ta có
Phương trình chính tắc của Elip là .
Xét vị trí tương đối của hai đường thẳng
và
.
Chọn
Đường tròn (C):
có đường kính bằng bao nhiêu?
Tâm . Do đó
.
Do đó đường kính bằng .
Tính góc tạo bởi giữa hai đường thẳng:
và
.
Ta có: . Suy ra góc giữa hai đường thẳng bằng
.
Đường tròn
có dạng tổng quát là:
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Ta có:
Elip
có độ dài trục lớn bằng:
Ta có: .
Tọa độ tâm
và bán kính
của đường tròn
là:
Đường thẳng
đi qua điểm
và song song với đường thẳng
có phương trình tổng quát là:
Vậy
Tìm tọa độ giao điểm của đường thẳng
và trục hoành.
Chọn
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng
?
Vectơ chỉ phương của đường thẳng trên là: .
Cho elip (E):
. Trong các khẳng định sau, khẳng định nào sai?
Phương trình elip (E) có dạng
Ta có:
Khi đó: đúng
Ta có: đúng
Đỉnh A1(–a; 0) => A1(–5; 0) đúng
Độ dài trục nhỏ là 2b = 2.3 = 6 ≠ 3
Vậy khẳng định sai là: (E) có độ dài trục nhỏ bằng 3.
Trong mặt phẳng với hệ tọa độ
, cho hai điểm
và
. Tìm điểm
thuộc trục tung sao cho diện tích tam giác
bằng ![]()
Ta có
Viết phương trình tổng quát của đường thẳng
đi qua giao điểm của hai đường thẳng
,
và vuông góc với đường thẳng
.
Ta có
Vậy
Tìm phương trình chính tắc của Hyperbol (H). Cho biết (H) đi qua điểm
và có một đường chuẩn là
.
Gọi .
Ta có : Suy ra phương trình chính tắc của (H) là
Cho đường tròn
và đường thẳng
. Tìm giá trị của tham số m để
không cắt
?
Đường tròn (C) có tâm I(1; 2) và
Để không cắt
thì
Vậy thỏa mãn yêu cầu bài toán.
Tính góc tạo bởi hai đường thẳng
và
?
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Ta thấy
Vậy góc tạo bởi hai đường thẳng đã cho bằng .
Một vectơ pháp tuyến của đường thẳng
là:
Một vectơ pháp tuyến của đường thẳng là
.
Tìm tất cả các giá trị của
để hai đường thẳng
và
cắt nhau.
Chọn đáp án này với mọi
.
Đường elip
có tiêu cự bằng
Ta có: ,
nên
.
Tiêu cự của elip là .