Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - 4t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Hãy chỉ ra vectơ chỉ phương của đường thẳng d?

    Vectơ chỉ phương của đường thẳng dlà: \overrightarrow{u_{d}} = ( - 4;3).

  • Câu 2: Vận dụng

    Cho elip (E) có hai đỉnh trên trục nhỏ cùng với hai tiêu điểm tạo thành một hình vuông. Tỉ số e của tiêu cự với độ dài trục lớn của (E) là bao nhiêu?

    Ta có \widehat{F_{1}B_{1}F_{2}} =
90^{0}\overset{}{ightarrow}OB_{1} =
\frac{F_{1}F_{2}}{2}\overset{ightarrow}{}b = c

    \overset{}{ightarrow}b^{2} =
c^{2}\overset{}{ightarrow}\left( a^{2} - c^{2} ight) =
c^{2}

    \overset{}{ightarrow}\frac{c^{2}}{a^{2}} =
\frac{1}{2}\overset{}{ightarrow}\frac{c}{a} =
\frac{1}{\sqrt{2}}.

    Vậy e = \frac{1}{\sqrt{2}}.

  • Câu 3: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng \left\{\begin{matrix}x=2\\ y=-1+6t\end{matrix}ight.?

     Vectơ chỉ phương của đường thẳng trên là: (0;6) \Rightarrow \overrightarrow u  = (0;1).

  • Câu 4: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Elip?

    Phương trình Elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1;c^{2} = a^{2} - b^{2}

    Vậy phương trình cần tìm là \frac{x^{2}}{9} + \frac{y^{2}}{4} = 1

  • Câu 5: Thông hiểu

    Cho hình elip có phương trình \frac{x^{2}}{25} + \frac{y^{2}}{16} = 1. Hình elip có độ dài tiêu cự bằng:

    Ta có: \frac{x^{2}}{25} +
\frac{y^{2}}{16} = 1 \Rightarrow \left\{ \begin{matrix}
a = 5 \\
b = 4 \\
\end{matrix} ight.

    Độ dài tiêu cự là: 2c = 2\sqrt{a^{2} -
b^{2}} = 6

  • Câu 6: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng (\Delta):a_{1}x + b_{1}y + c = 0(\Delta'):a_{2}x + b_{2}y + c = 0 với {a_{1}}^{2} + {b_{1}}^{2} > 0;{a_{2}}^{2}
+ {b_{2}}^{2} > 0. Giả sử \alpha là góc hợp hai đường thẳng đã cho. Chọn kết luận đúng?

    Góc giữa hai đường thẳng (\Delta):a_{1}x
+ b_{1}y + c = 0(\Delta'):a_{2}x + b_{2}y + c = 0 xác định bởi công thức:

    \cos\alpha = \frac{\left| a_{1}a_{2} +
b_{1}b_{2} ight|}{\sqrt{{a_{1}}^{2} + {b_{1}}^{2}}.\sqrt{{a_{2}}^{2} +
{b_{2}}^{2}}}

  • Câu 7: Thông hiểu

    Cho Hypebol có độ dài trục thực và tiêu cự lần lượt là 1420. Phương trình chính tắc của Hypebol là:

    Phương trình chính tắc của Hypebol có dạng \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1

    Ta có: \left\{ \begin{matrix}
2a = 14 \\
2c = 20 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 7 \\
c = 10 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a^{2} = 49 \\
c^{2} = 100 \\
\end{matrix} ight.

    \Rightarrow b^{2} = c^{2} - a^{2} =
51

    Vậy phương trình chính tắc của Hypebol là: \frac{x^{2}}{49} - \frac{y^{2}}{51} =
1.

  • Câu 8: Nhận biết

    Cho hai đường thẳng (\Delta):x - 2y + 1 = 0(\Delta'):x - 3y + 8 = 0. Khẳng định nào sau đây đúng?

    Ta có: \frac{1}{1} eq \frac{- 2}{-
3} suy ra (\Delta) cắt (\Delta').

    Vậy khẳng định đúng là: “(\Delta) cắt (\Delta')”.

  • Câu 9: Vận dụng

    Tìm m để hai đường thẳng d_{1}:2x - 3y + 4 =
0d_{2}:\left\{ \begin{matrix}
x = 2 - 3t \\
y = 1 - 4mt \\
\end{matrix} ight. cắt nhau.

    \left\{ \begin{matrix}
d_{1}:2x - 3y + 4 = 0 \\
d_{2}:\left\{ \begin{matrix}
x = 2 - 3t \\
y = 1 - 4mt \\
\end{matrix} ight.\  \\
\end{matrix} ight. \overset{}{ightarrow}\left\{ \begin{matrix}
{\overrightarrow{n}}_{1} = (2; - 3) \\
{\overrightarrow{n}}_{2} = (4m; - 3) \\
\end{matrix} ight. \overset{d_{1} \cap d_{2} =
M}{ightarrow}\frac{4m}{2}\boxed{=}\frac{- 3}{- 3} \Leftrightarrow
m\boxed{=}\frac{1}{2}.

  • Câu 10: Thông hiểu

    Bác An dự định xây một cái ao hình elip ở giữa khu vườn. Biết trục lớn có độ dài bằng 4 m, độ dài trục nhỏ bằng 2 m. Gọi F_1, F_2 là các tiêu điểm của elip. Khi đó độ dài F_1F_2 bằng:

    Ta có độ dài trục lớn bằng 4 m. 

    => 2a = 4 => a = 2.

    Lại có độ dài trục nhỏ bằng 2m. 

    => 2b = 2=> b = 1

    Ta có c = \sqrt {{a^2} - {b^2}}  = \sqrt 3

    => {F_1}{F_2} = 2c = 2\sqrt 3

  • Câu 11: Thông hiểu

    Cho bốn điểm A(4;
- 3), B(5;1), C(2;3)D(
- 2;\ 2). Xác định vị trí tương đối của hai đường thẳng ABCD.

    \left\{ \begin{matrix}{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = (1;4) \\{\overrightarrow{u}}_{CD} = \overrightarrow{CD} = ( - 4; - 1) \\\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}\frac{1}{- 4}eq \frac{4}{- 1} \\{\overrightarrow{u}}_{AB} \cdot {\overrightarrow{u}}_{CD}eq 0 \\\end{matrix} ight.

    ightarrow AB,\ \ CD cắt nhau nhưng không vuông góc.

  • Câu 12: Nhận biết

    Trong mặt phẳng hệ trục tọa độ Oxy, cho đường thẳng d cắt hai trục Ox,Oy lần lượt tại điểm A(a;0),B(0;b) với a eq 0;b eq 0. Khi đó phương trình đường thẳng d là:

    Phương trình đường thẳng d là: \frac{x}{a} + \frac{y}{b} = 1.

  • Câu 13: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh ABx - y -
2 = 0, phương trình cạnh ACx + 2y
- 5 = 0. Biết trọng tâm của tam giác là điểm G(3;2) và phương trình đường thẳng BC có dạng x
+ my + n = 0. Tính giá trị biểu thức S = m + n.

    Tọa độ điểm A là nghiệm của hệ phương trình \left\{ \begin{matrix}
x - y - 2 = 0 \\
x + 2y - 5 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = 1 \\
\end{matrix} ight.\  \Leftrightarrow A(3;1)

    Ta có B\left( x_{B};x_{B} - 2
ight);C\left( x_{C};\frac{- x_{C} + 5}{2} ight)

    Gọi M\left( x_{0};y_{0} ight) là trung điểm của BC thì 2\overrightarrow{GM} =
\overrightarrow{AG} nên

    \left\{ \begin{matrix}
2\left( x_{0} - 3 ight) = 0 \\
2\left( y_{0} - 2 ight) = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{0} = 3 \\
y_{0} = \frac{5}{2} \\
\end{matrix} ight.

    Mặt khác \left\{ \begin{matrix}x_{B} + x_{C} = 2x_{0} \\x_{B} - 2 + \dfrac{- x_{C} + 5}{2} = 2y_{0} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{B} + x_{C} = 6 \\2x_{B} - x_{C} = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{B} = 5 \\
x_{C} = 1 \\
\end{matrix} ight.\  \Rightarrow B(5;3),C(1;2)

    \Rightarrow \overrightarrow{BC} = ( - 4;
- 1)

    Suy ra một vectơ pháp tuyến của BC là \overrightarrow{n} = (1; - 4)

    Suy ra phương trình đường thẳng BC là

    1(x - 5) - 4(y - 3) = 0

    \Leftrightarrow x - 4y + 7 =
0

    Suy ra m = - 4;n = 7 \Rightarrow S =
3

  • Câu 14: Nhận biết

    Đường trung trực của đoạn thẳng AB với A = (- 3;2), B = ( - 3;3) có một vectơ pháp tuyến là:

    Gọi d là trung trực đoạn AB, ta có: \left\{ \begin{matrix}\overrightarrow{AB} = (0;1) \\d\bot AB \\\end{matrix} ight.\ \overset{ightarrow}{}{\overrightarrow{n}}_{d} =\overrightarrow{AB} = (0;1).

  • Câu 15: Nhận biết

    Xác định vị trí tương đối của hai đường thẳng (d):2x + y - 4 = 0(d'):2x + y + 7 = 0?

    Ta có: \frac{a}{a'} =
\frac{b}{b'} eq \frac{c}{c'} suy ra hai đường thẳng (d) và (d’) song song với nhau.

  • Câu 16: Nhận biết

    Cho parabol (P):y = 2x^{2} + x - 3. Giao điểm của (P) với trục hoành tại hai điểm A\left( x_{1};y_{1} ight),B\left(
x_{2};y_{2} ight). Khẳng định nào sau đây đúng?

    Phương trình hoành độ giao điểm là nghiệm của phương trình:

    2x^{2} + x - 3 = 0

    Áp dụng định lí Vi – et ta có:

    x_{1} + x_{2} = - \frac{b}{a} = -
\frac{1}{2}

  • Câu 18: Nhận biết

    Elip (E):\frac{x^{2}}{16}+\frac{y^{2}}{4}=1 có độ dài tiêu cự bằng:

     Ta có: a=4;b=2 \Rightarrow c=\sqrt{a^2-b^2}=2\sqrt3.

    Do đó độ dài tiêu cự 2c=4\sqrt3.

  • Câu 19: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):2x^{2} + 2y^{2} - 8x + 4y - 1 = 0 là:

    Ta có: \begin{matrix}
(C):2x^{2} + 2y^{2} - 8x + 4y - 1 = 0 \Leftrightarrow x^{2} + y^{2} - 4x
+ 2y - \frac{1}{2} = 0 \\
ightarrow \left\{ \begin{matrix}
a = 2,\ b = - 1 \\
c = - \frac{1}{2} \\
\end{matrix} ight.\  ightarrow I(2; - 1),\ R = \sqrt{4 + 1 +
\frac{1}{2}} = \frac{\sqrt{22}}{2}. \\
\end{matrix}

  • Câu 20: Thông hiểu

    Tìm phương trình chính tắc của Hyperbol (H) mà hình chữ nhật cơ sở có một đỉnh là (2; - 3).

    Gọi (H):\frac{x^{2}}{a^{2}} -
\frac{y^{2}}{b^{2}} = 1. Tọa độ đỉnh của hình chữ nhật cơ sở là A_{1}( - a; - b), A_{2}(a; - b), A_{3}(a;b), A_{4}( - a;b).

    Hình chữ nhật cơ sở của (H) có một đỉnh là (2; - 3), suy ra \left\{ \begin{matrix}
a = 2 \\
b = 3 \\
\end{matrix} ight.. Phương trình chính tắc của (H)\frac{x^{2}}{4} - \frac{y^{2}}{9} =
1.

  • Câu 21: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(3;0)B(0; - 4). Tìm điểm M thuộc trục tung sao cho diện tích tam giác MAB bằng 6.

    Ta có

    \left\{ \begin{matrix}
AB:4x - 3y - 12 = 0 \\
AB = 5 \\
M(0;y) ightarrow h_{M} = d(M;AB) = \frac{|3y + 12|}{5} \\
\end{matrix} ight.

    ightarrow 6 = S_{\Delta MAB} =
\frac{1}{2}.5.\frac{|3y + 12|}{5}

    \Leftrightarrow \left\lbrack
\begin{matrix}
y = 0 ightarrow M(0;0) \\
y = - 8 ightarrow M(0; - 8) \\
\end{matrix} ight.\ .

  • Câu 22: Nhận biết

    Đường tròn (C):x^{2} + y^{2} + 12x - 14y + 4 = 0 có dạng tổng quát là:

    (C):x^{2} + y^{2} + 12x - 14y + 4 = 0ightarrow \left\{ \begin{matrix}I( - 6;7) \\R = \sqrt{36 + 49 - 4} = 9 \\\end{matrix} ight.

    ightarrow (C):(x + 6)^{2} + (y - 7)^{2} =81.

  • Câu 23: Thông hiểu

    Phương tròn đường tròn đi qua ba điểm M( - 2;4),N(5;5),P(6; - 2) là:

    Gọi I(x;y) và R lần lượt là tâm và bán kính đường tròn cần tìm. Ta suy ra:

    IM = IN = IP \Leftrightarrow \left\{
\begin{matrix}
IM^{2} = IN^{2} \\
IM^{2} = IP^{2} \\
\end{matrix} ight. nên ta có hệ phương trình:

    \left\{ \begin{matrix}
(x + 2)^{2} + (y - 4)^{2} = (x - 5)^{2} + (y - 5)^{2} \\
(x + 2)^{2} + (y - 4)^{2} = (x - 6)^{2} + (y + 2)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 1 \\
\end{matrix} ight.\  \Leftrightarrow I(2;1) \Rightarrow R =
5

    Vậy phương trình cầm tìm là: (x - 2)^{2}
+ (y - 1)^{2} = 25

    Hay x^{2} + y^{2} - 4x - 2y - 20 =
0

  • Câu 24: Thông hiểu

    Tìm tất cả các giá trị của m để hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 2 + 2t \\
y = 1 + mt \\
\end{matrix} ight.d_{2}:4x
- 3y + m = 0 trùng nhau.

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 2 + 2t \\
y = 1 + mt \\
\end{matrix} ight.\  ightarrow A(2;1) \in d_{1},\
{\overrightarrow{u}}_{1} = (2;m) \\
d_{2}:4x - 3y + m = 0 ightarrow {\overrightarrow{u}}_{2} = (3;4) \\
\end{matrix} ight\}

    \overset{d_{1} \equiv
d_{2}}{ightarrow}\left\{ \begin{matrix}
A \in d_{2} \\
\frac{2}{3} = \frac{m}{4} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
5 + m = 0 \\
m = \frac{8}{3} \\
\end{matrix} ight.\  \Leftrightarrow m \in \varnothing.

  • Câu 25: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):16x^{2} + 16y^{2} + 16x - 8y - 11 = 0 là:

    (C):16x^{2} + 16y^{2} + 16x - 8y - 11 =
0 \Leftrightarrow x^{2} + y^{2} + x - \frac{1}{2}y - \frac{11}{16} =
0.

    ightarrow \left\{ \begin{matrix}
I\left( - \frac{1}{2};\frac{1}{4} ight) \\
R = \sqrt{\frac{1}{4} + \frac{1}{16} + \frac{11}{16}} = 1. \\
\end{matrix} ight.

  • Câu 26: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA\left( \frac{7}{4};3 ight), B(1;2)C(
- 4;3). Phương trình đường phân giác trong của góc A là:

    \left\{ \begin{matrix}
A\left( \frac{7}{4};3 ight),\ B(1;2) ightarrow AB:4x - 3y + 2 = 0 \\
A\left( \frac{7}{4};3 ight),\ C( - 4;3) ightarrow AC:y - 3 = 0 \\
\end{matrix} ight.\ .

    Suy ra các đường phân giác góc A là:

    \begin{matrix}
\frac{|4x - 3y + 2|}{5} = \frac{|y - 3|}{1} \Leftrightarrow \left\lbrack
\begin{matrix}
4x + 2y - 13 = 0 ightarrow f(x;y) = 4x + 2y - 13 \\
4x - 8y + 17 = 0 \\
\end{matrix} ight.\  \\
\\
\end{matrix}

    ightarrow \left\{ \begin{matrix}
f\left( B(1;2) ight) = - 5 < 0 \\
f\left( C( - 4;3) ight) = - 23 < 0 \\
\end{matrix} ight.\ .

    Suy ra đường phân giác trong góc A4x - 8y
+ 17 = 0.

  • Câu 27: Thông hiểu

    Đường tròn (C) có tâm I (– 2; 3) và đi qua M (2; – 3) có phương trình là:

     Ta có: R = IM = \sqrt {{{(2 + 2)}^2} + {{( - 3 - 3)}^2}}  = 2\sqrt {13}.

    Phương trình đường tròn: {(x + 2)^2} + {(y - 3)^2} = 52 \Leftrightarrowx^{2}+y^{2}+4x-6y-39=0.

  • Câu 28: Thông hiểu

    Cho hai điểm P(5;4),Q(1;2). Vectơ pháp tuyến của đường thẳng PQ là:

    Một vectơ chỉ phương của PQ là: \overrightarrow{PQ} = ( - 4; - 2) = -
2(2;1)

    Vậy vectơ pháp tuyến của PQ là: \overrightarrow{n}( - 1;2).

  • Câu 29: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:3x - 2y - 6 = 0d_{2}:6x - 2y - 8 = 0.

    \left\{ \begin{matrix}
d_{1}:3x - 2y - 6 = 0 ightarrow {\overrightarrow{n}}_{1} = (3; - 2) \\
d_{2}:6x - 2y - 8 = 0 ightarrow {\overrightarrow{n}}_{2} = (6; - 2) \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
\frac{3}{6}\boxed{=}\frac{- 2}{- 2} \\
{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2}\boxed{=}0 \\
\end{matrix} ight.\ \overset{ightarrow}{}d_{1},\ \ d_{2} cắt nhau nhưng không vuông góc.

  • Câu 30: Nhận biết

    Biết đường tròn (C) có tâm I(3; - 2) tiếp xúc với đường thẳng (d'):x - 5y + 1 = 0. Tính bán kính đường tròn (C)?

    Bán kính đường tròn là khoảng cách từ tâm I đến đường thẳng (d):

    Suy ra R = d\left( I,(d') ight) =\frac{\left| 3 - 5.( - 2) + 1 ight|}{\sqrt{1^{2} + ( - 5)^{2}}} =\frac{14}{\sqrt{26}}.

  • Câu 31: Nhận biết

    Hypebol có nửa trục thực là 4, tiêu cự bằng 10 có phương trình chính tắc là:

    Ta có : \left\{ \begin{matrix}
a = 4 \\
2c = 10 \\
b^{2} = c^{2} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 4 \\
c = 5 \\
b = 3 \\
\end{matrix} ight.\ .

    Phương trình chính tắc của Hyperbol là \frac{x^{2}}{16} - \frac{y^{2}}{9} =
1.

  • Câu 32: Vận dụng

    Trong mặt phẳng với hệ trục tọa độOxy, cho hai đường tròn \left( \mathbf{C}_{\mathbf{1}}
ight)\mathbf{,}\left( \mathbf{C}_{\mathbf{2}} ight) có phương trình lần lượt là (x + 1)^{2} + (y +
2)^{2} = 9,\ (x - 2)^{2} + (y - 2)^{2} = 4 và elip (E) có phương trình 16x^{2} + 49y^{2} = 1. Có bao nhiêu đường tròn (C) có bán kính gấp đôi độ dài trục lớn của elip (E)(C) tiếp xúc với hai đường tròn \left( C_{1} ight), \left( C_{2} ight)?

    Ta có 16x^{2} + 49y^{2} = 1
\Leftrightarrow \frac{x^{2}}{\left( \frac{1}{4} ight)^{2}} +
\frac{y^{2}}{\left( \frac{1}{7} ight)^{2}} = 1 \Rightarrow
(E) có độ dài trục lớn là 2a =
2.\frac{1}{4} = \frac{1}{2}.

    Khi đó đường tròn (C) có bán kính là R = 1. Gọi I(a;b) là tâm của đường tròn (C).

    Xét \Delta II_{1}I_{2}\left\{ \begin{matrix}
II_{1} = R + R_{1} = 1 + 3 = 4 \\
II_{2} = R + R_{2} = 1 + 2 = 3 \\
I_{1}I_{2} = R_{1} + R_{2} = 5 \\
\end{matrix} ight.\  \Rightarrow \Delta II_{1}I_{2} vuông tại I.

    Ta có \overrightarrow{II_{1}} = ( - 1 -
a; - 2 - b), \overrightarrow{II_{2}} = (2 - a;2 - b). Khi đó điểm I thỏa mãn:

    \left\{ \begin{matrix}\overrightarrow{II_{1}}.\overrightarrow{II_{2}} = 0 \\\overrightarrow{II_{2}} = 3 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}( - 1 - a)(2 - a) + ( - 2 - b)(2 - b) = 0 \\(2 - a)^{2} + (2 - b)^{2} = 9 \\\end{matrix} ight.

    \  \Leftrightarrow \left\{ \begin{matrix}a^{2} + b^{2} - a - 6 = 0 \\a^{2} + b^{2} - 4a - 4b - 1 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}a^{2} + b^{2} = 6 + a \\6 + a - 4a - 4b - 1 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a^{2} + b^{2} = 6 + a \\a = \frac{5 - 4b}{3} \\\end{matrix} ight.

    \  \Leftrightarrow \left\{ \begin{matrix}\left( \frac{5 - 4b}{3} ight)^{2} + b^{2} - 6 - \frac{5 - 4b}{3} = 0\\a = \frac{5 - 4b}{3} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
25b^{2} - 28b - 44 = 0 \\
a = \frac{5 - 4b}{3} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
b = 2 \\
b = - \frac{22}{25} \\
\end{matrix} ight.\  \\
a = \frac{5 - 4b}{3} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
a = - 1 \\
b = 2 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
a = \frac{71}{25} \\
b = - \frac{22}{25} \\
\end{matrix} ight.\  \\
\end{matrix} ight..

    Vậy có hai phương trình đường tròn (C) thỏa mãn yêu cầu bài toán là

    (C):(x + 1)^{2} + (y - 2)^{2} =
1 hoặc (C):\left( x - \frac{71}{25}
ight)^{2} + \left( y + \frac{22}{25} ight)^{2} = 1.

  • Câu 33: Nhận biết

    Tính góc tạo bởi giữa hai đường thẳng: d_1:x+\sqrt{3}y+6=0d_2: x+1 = 0.

     Ta có: \cos ({d_1},{d_2}) = \frac{{\left| {1.1 + \sqrt 3 .0} ight|}}{{\sqrt {{1^2} + {{\sqrt 3 }^2}} .\sqrt {{1^2} + {0^2}} }} = \frac 12. Suy ra góc giữa hai đường thẳng bằng 60^{\circ}.

  • Câu 34: Vận dụng

    Có bao nhiêu đường thẳng đi qua gốc tọa độ O và tiếp xúc với đường tròn (C):x^{2} + y^{2} - 2x + 4y - 11 = 0?

    Đường tròn (C) có tâm I(1; - 2),\ R = 4
ightarrow OI = \sqrt{5} < R ightarrowkhông có tiếp tuyến nào của đường tròn kẻ từ O.

  • Câu 35: Vận dụng

    Cho phương trình x^{2} + y^{2} - 2(m + 1)x + 4y - 1 =
0(1). Với giá trị nào của m để (1) là phương trình đường tròn có bán kính nhỏ nhất?

    Ta có: x^{2} + y^{2} - 2(m + 1)x + 4y - 1
= 0 ightarrow \left\{ \begin{matrix}
a = m + 1 \\
b = - 2 \\
c = - 1 \\
\end{matrix} ight.

    ightarrow R^{2} = a^{2} + b^{2} - c =
(m + 1)^{2} + 5 ightarrow R_{\min} = 5 \Leftrightarrow m = -
1.

  • Câu 36: Thông hiểu

    Đường tròn (C) có tâm I(
- 2;1) và tiếp xúc với đường thẳng \Delta:3x–4y + 5 = 0 có phương trình là:

    (C):\left\{ \begin{matrix}
I( - 2;1) \\
R = d\lbrack I;\Deltabrack = \frac{| - 6 - 4 + 5|}{\sqrt{9 + 16}} = 1
\\
\end{matrix} ight.

    ightarrow (C):(x + 2)^{2} + (y - 1)^{2}
= 1.

  • Câu 37: Nhận biết

    Xác định phương trình tham số của đường thẳng d. Biết rằng d đi qua điểm A(1;2) và có một vectơ chỉ phương là \overrightarrow{u} =
(2022;2023)?

    Đường thẳng đi qua điểm M\left(
x_{0};y_{0} ight) và nhận \overrightarrow{u} = \left( u_{1};u_{2}
ight) làm vectơ chỉ phương sẽ có phương trình tham số là: \left\{ \begin{matrix}
x = x_{0} + u_{1}t \\
y = y_{0} + u_{2}t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

    Áp dụng với dữ kiện bài toan trên ta được: \left\{ \begin{matrix}
x = 1 + 2022t \\
y = 2 + 2023t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 38: Thông hiểu

    Viết phương trình tổng quát của đường thẳng d đi qua điểm M(–1; 2) và song song với trục Ox ?

     Đường thẳng song song với trục Ox \Rightarrow \overrightarrow n=(0;1).

    Phương trình đường thẳng có vectơ pháp tuyến \overrightarrow n và đi qua M(-1;2) là:

    1(y-2)=0 \Leftrightarrow y-2=0.

  • Câu 39: Thông hiểu

    Cho đường thẳng (d): x – 2y + 5 = 0. Mệnh đề nào sau đây đúng?

    Giả sử: A\left( {1; - 2} ight) \in \left( d ight):x - 2y + 5 = 0

    \Rightarrow 1 - 2.\left( { - 2} ight) + 5 = 0\left( L ight)

    \Rightarrow 1 - 2.\left( { - 2} ight) + 5 = 0 loại đáp án (d) đi qua A(1; –2).

    Ta có (d):x−2y+5=0

    ⇒VTPT \overrightarrow n  = \left( {1; - 2} ight)

    ⇒VTCP \overrightarrow u  = \left( {2;1} ight) loại đáp án (d) có phương trình tham số: \left\{\begin{matrix}x=t\\ y=-2t\end{matrix}ight.

    Ta có (d):x−2y+5=0

    \Rightarrow y = \frac{1}{2}x + \frac{5}{2} hệ số góc k = \frac{1}{2}.

  • Câu 40: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:2x + y + 4 - m = 0d_{2}:(m + 3)x + y + 2m - 1 = 0 song song?

    Với m = 4\overset{}{ightarrow}\left\{\begin{matrix}d_{1}:2x + y = 0 \\d_{2}:7x + y + 7 = 0 \\\end{matrix} ight.\ \overset{}{ightarrow}d_{1} \cap d_{2}eq \varnothing\overset{}{ightarrow} loại m = 4.

    Với meq 4 thì

    \left\{ \begin{matrix}d_{1}:2x + y + 4 - m = 0 \\d_{2}:(m + 3)x + y - 2m - 1 = 0 \\\end{matrix} ight.\ \overset{d_{1}||d_{2}}{ightarrow}\frac{m + 3}{2}= \frac{1}{1}eq \frac{- 2m - 1}{4 - m}

    \Leftrightarrow \left\{ \begin{matrix}m = - 1 \\meq  - 5 \\\end{matrix} ight.\  \Leftrightarrow m = - 1.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
Sắp xếp theo