Đường tròn
có tâm là gốc tọa độ
và tiếp xúc với đường thẳng
. Bán kính
của đường tròn
bằng:
Đường tròn
có tâm là gốc tọa độ
và tiếp xúc với đường thẳng
. Bán kính
của đường tròn
bằng:
Với giá trị nào của
thì hai đường thẳng
và
song song?
Với loại
Với thì
Tìm m để hai đường thẳng
và
vuông góc với nhau:
và ![]()
Ta có: .
Để hai đường thẳng vuông góc thì: . Phương tình này vô nghiệm nên không tồn tại
Viết phương trình chính tắc của elip biết nó đi qua điểm
và tỉ số của độ dài trục lớn với tiêu cự bằng
.
Gọi phương trình chính tắc của Elip là với
Elip đi qua điểm
suy ra
Tỉ số của độ dài trục lớn với tiêu cự bằng
suy ra
Kết hợp với điều kiện ta được
Từ suy ra
Vậy phương trình cần tìm là
Đường thẳng nào là đường chuẩn của parabol
.
Ta có: .
Đường chuẩn: .
Điền vào chỗ trống: Vectơ có giá song song hoặc trùng với đường thẳng thì vectơ được gọi là … của đường thẳng đó.
Vectơ có giá song song hoặc trùng với đường thẳng thì
được gọi là vectơ chỉ phương của đường thẳng đó.
Cho có
, đường cao
, đường phân giác trong
. Tọa độ điểm A là:
Ta có:
Mà
Vậy
Có => A là nghiệm của hệ phương trình
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Ox?
Vectơ chỉ phương của trục Ox là (1; 0).
Đường tròn (C):
viết được dưới dạng:
Từ phương trình đường tròn ta suy ra:
Vậy phương trình tổng quát
Phương trình tổng quát của đường thẳng đi qua hai điểm A(3 ; – 1) và B(1 ; 5) là:
Ta có: .
Phương trình tổng quát của :
.
Phương trình đường tròn
có tâm
và bán kinh
là:
Ta có:
Các cặp đường thẳng nào sau đây vuông góc với nhau?
(i)
loại.
(ii)
Chọn đáp án này.
Tương tự, kiểm tra và loại các đáp án còn lại.
Tọa độ tâm I và bán kính R của đường tròn có phương trình:
lần lượt là:
Tâm và bán kính đường tròn lần lượt là: I(1; 10) và R = 9
Trong mặt phẳng tọa độ
, cho đường thẳng
. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng
?
Ta có: Vectơ pháp tuyến của đường thẳng là:
.
Đường thẳng
không đi qua điểm nào sau đây ?
Gọi .
Đặt Chọn
.
Trong mặt phẳng
, cho tam giác
có tọa độ các điểm
. Gọi
là tâm đường tròn ngoại tiếp tam giác
. Xác định giá trị biểu thức
?
Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên IA = IB = IC
Ta có:
Từ đó ta suy ra hệ phương trình:
Có bao nhiêu đường thẳng đi qua gốc tọa độ
và tiếp xúc với đường tròn
?
Đường tròn (C) có tâm không có tiếp tuyến nào của đường tròn kẻ từ O.
Phương trình chính tắc của Elip có độ dài trục lớn bằng
, độ dài trục nhỏ bằng
là:
+ Phương trình Elip dạng:
+ Do có độ dài trục lớn bằng .
+ Do có độ dài trục nhỏ bằng .
+ Suy ra phương trình là .
Trong hệ trục
cho Elip
có các tiêu điểm
và một điểm
nằm trên
. Biết rằng chu vi của tam giác
bằng 18. Xác định tâm sai e của ![]()
Ta có .
Tâm sai .
Cho đường thẳng
và
. Tính cosin góc tạo bởi giữa hai đường thẳng trên.
.
Có bao nhiêu đường thẳng đi qua điểm
tiếp xúc với đường tròn
?
Đường tròn (C) có tâm có đúng 2 tiếp tuyến của đường tròn kẻ từ N.
Đường thẳng nào sau đây vuông góc với đường thẳng
?
Kí hiệu
(i) Xét đáp án nên chọn đáp án này.
(ii) Tương tự kiểm tra và loại các đáp án còn lại.
Đường trung trực của đoạn thẳng
với
,
có một vectơ pháp tuyến là:
Gọi là trung trực đoạn AB, ta có:
Trong mặt phẳng với hệ tọa độ Oxy, cho elip
. Tiêu cự của (E) bằng
Phương trình chính tắc của elip có dạng: .
Do đó elip (E) có .
Tiêu cự của elip (E) bằng .
Cho hai đường thẳng
và
. Khẳng định nào sau đây đúng?
Ta có: suy ra
cắt
.
Vậy khẳng định đúng là: “ cắt
”.
Trong mặt phẳng tọa độ
, viết phương trình chính tắc của elip biết một đỉnh là
và một tiêu điểm là
.
Ta có
Vậy .
Phương trình tổng quát của đường thẳng đi qua hai điểm A(2; –1) và B(2; 5) là:
.
Quan sát các đáp án. Suy ra phương trình tổng quát của AB là: .
Xét vị trí tương đối của hai đường thẳng
và
.
Chọn
Hãy xác định phương trình chính tắc của parabol
. Biết rằng
cắt đường thẳng
tại hai điểm
và
?
Phương trình chính tắc của (P) có dạng
Ta có đường thẳng d cắt (P) tại hai điểm
Ta có:
Với
Với
Vậy phương trình chính tắc của parabol cần tìm là: .
Viết phương trình tổng quát của đường thẳng
đi qua điểm
và vuông góc với đường thẳng ![]()
Đường Hyperbol
có một tiêu điểm là điểm nào dưới đây?
Ta có : . Các tiêu điểm của
là
và
Xác định vị trí tương đối của hai đường thẳng
và
.
Một đường thẳng có bao nhiêu vectơ chỉ phương?
Một đường thẳng có vô số vectơ chỉ phương.
Phương trình chính tắc của Elip có đỉnh
và một tiêu điểm là
là
Elip có đỉnh và một tiêu điểm
.
Ta có .
Vậy phương trình .
Đường thẳng
tạo với đường thẳng
một góc
. Tìm hệ số góc
của đường thẳng
.
gọi
Ta có:
Cho hai đường thẳng
và
. Tìm các giá trị của tham số
để
và
hợp với nhau một góc bằng ![]()
Ta có:
Hai cạnh của hình chữ nhật nằm trên hai đường thẳng
và
. Hình chữ nhật có đỉnh
. Tính diện tích của hình chữ nhật.
Đáp án: 2
Hai cạnh của hình chữ nhật nằm trên hai đường thẳng và
. Hình chữ nhật có đỉnh
. Tính diện tích của hình chữ nhật.
Đáp án: 2
Ta có: .
Do không thuộc hai đường thẳng
và
nên độ dài hai cạnh kề nhau của hình chữ nhật bằng khoảng cách từ
đến hai đường thẳng
.
Ta có:
Trong mặt phẳng với hệ trục tọa độ
, cho hai đường tròn
có phương trình lần lượt là
và elip
có phương trình
. Có bao nhiêu đường tròn
có bán kính gấp đôi độ dài trục lớn của elip
và
tiếp xúc với hai đường tròn
,
?
Ta có có độ dài trục lớn là
.
Khi đó đường tròn có bán kính là
. Gọi
là tâm của đường tròn
.
Xét có
vuông tại
.
Ta có ,
. Khi đó điểm
thỏa mãn:
.
Vậy có hai phương trình đường tròn thỏa mãn yêu cầu bài toán là
hoặc
.
Phương trình đường tròn
có tâm và bán kính lần lượt là:
Ta có:
Vậy phương trình đường tròn đã cho có tâm và bán kính lần lượt là:
Đường tròn
đi qua hai điểm
và có tâm
thuộc đường thẳng
Phương trình của đường tròn
là:
Ta có:
Vậy đường tròn cần tìm là: