Đường thẳng nào là đường chuẩn của parabol
.
Ta có: .
Đường chuẩn: .
Đường thẳng nào là đường chuẩn của parabol
.
Ta có: .
Đường chuẩn: .
Cho elip
. Qua một tiêu điểm của
dựng đường thẳng song song với trục
và cắt
tại hai điểm
và
. Độ dài
bằng bao nhiêu?
Xét
Khi đó, Elip có tiêu điểm là đường thẳng
//
và đi qua
là
Giao điểm của và
là nghiệm của hệ phương trình
Vậy tọa độ hai điểm .
Đường tròn (C):
viết được dưới dạng:
Từ phương trình đường tròn ta suy ra:
Vậy phương trình tổng quát
Hypebol có nửa trục thực là
, tiêu cự bằng
có phương trình chính tắc là:
Ta có :
Phương trình chính tắc của Hyperbol là
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
,
và
. Đường thẳng
cắt cạnh nào của tam giác đã cho?
Đặt
không cắt cạnh nào của tam giác
.
Trong mặt phẳng tọa độ, người ta xác định chuyển động của một vật thể trong thời gian 60 giờ. Người ta xác định được vật thể nằm ở vị trí có tọa độ
tại thời điểm
. Tìm tọa độ chất điểm khi ở gần gốc tọa độ nhất?
Từ cách xác định tọa độ của chất điểm ta có:
Vậy chất điểm luôn thuộc đường tròn tâm
và có bán kính
Gọi chất điểm là A. Khi đó A gần gốc tọa độ nhất khi A là giao điểm của OI và đường tròn. Tức là:
Hay thay vào (*) ta được:
Vì nên lấy
. Khi đó tọa độ điểm A là
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
. Khi đó vị trí tương đối của hai đường thẳng là:
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Ta thấy
Suy ra hai đường thẳng vuông góc với nhau.
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A(– 3; 2) và B(1; 4).
Vectơ chỉ phương của đường thẳng AB là (2; 1).
Cho hình elip có phương trình
. Hình elip có tiêu cự trục lớn bằng:
Ta có:
Độ dài trục lớn là:
Trong mặt phẳng tọa độ
, cho đường thẳng
và tọa độ một điểm
. Ta kí hiệu khoảng cách từ điểm
đến đường thẳng
là
. Kết luận nào sau đây đúng?
Khoảng cách từ điểm A đến đường thẳng được tính bởi công thức:
Vậy kết luận đúng là: “”.
Cho phương trình đường tròn
. Viết phương trình tiếp tuyến của đường tròn
biết rằng tiếp tuyến vuông góc với đường thẳng
?
Đường tròn (C) có tâm
Vì vuông góc với đường thẳng
nên phương trình
có dạng
Vì là tiếp tuyến của (C) nên ta có:
Với thì phương trình
là
Với thì phương trình
là
Một đường thẳng có bao nhiêu vectơ pháp tuyến?
Một đường thẳng có vô số vectơ pháp tuyến.
Elip có một tiêu điểm
và tích độ dài trục lớn với trục bé bằng
. Phương trình chính tắc của elip là:
Gọi (E) có dạng .
Theo giả thiết ta có: .
Vậy (E) cần tìm là
Cho hai đường thẳng
và
có phương trình lần lượt là
và
. Xét hệ
. Khi đó hai đường cắt nhau khi và chỉ khi:
Hai đường thẳng cắt nhau khi hệ có nghiệm duy nhất.
Tọa độ tâm I và bán kính R của đường tròn có phương trình:
lần lượt là:
Tâm và bán kính đường tròn lần lượt là: I(1; 10) và R = 9
Tìm tọa độ tâm
của đường tròn đi qua ba điểm
,
,
.
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Tính khoảng cách từ điểm
đến đường thẳng ![]()
Khoảng cách từ điểm C đến đường thẳng là:
Vậy khoảng cách cần tìm bằng 1.
Với giá trị nào của
thì hai đường thẳng
và
song song?
Ta có:
Chọn
Viết phương trình tổng quát của đường thẳng
đi qua điểm
và vuông góc với đường thẳng ![]()
Trong mặt phẳng tọa độ Oxy, cho tam giác
có tọa độ các đỉnh
. Viết phương trình đường cao
của tam giác
?
Ta có: nên đường cao AH là một vectơ pháp tuyến là
Phương trình đường cao là:
.
Vậy đường thẳng cần tìm có phương trình .
Xác định vị trí tương đối của hai đường thẳng
và
?
Ta có: suy ra hai đường thẳng (d) và (d’) song song với nhau.
Cho Hyperbol
. Hãy tìm tọa độ điểm
trên
thỏa mãn
thuộc nhánh phải và
nhỏ nhất (ngắn nhất).
Ta có:
Gọi .
Ta có: .
thuộc nhánh phải của
nên
.
nhỏ nhất bằng
khi
.
Cho hình elip có phương trình
. Hình elip có độ dài tiêu cự bằng:
Ta có:
Độ dài tiêu cự là:
Đường thẳng
đi qua điểm
và có vectơ pháp tuyến
có phương trình tham số là:
Ta có:
Với giá trị nào của tham số
thì đường thẳng
vuông góc với đường thẳng
?
Ta có tọa độ vectơ pháp tuyến của là:
Tọa độ vectơ pháp tuyến của là:
Để thì
Vậy m = -8 thì hai đường thẳng đã cho vuông góc với nhau.
Tìm tất cả các giá trị của tham số
để hai đường thẳng
và
cắt nhau tại một điểm thuộc trục tung.
Tọa độ tâm
và bán kính
của đường tròn
là:
Trong mặt phẳng tọa độ
, viết phương trình chính tắc của elip biết một đỉnh là
và một tiêu điểm là
.
Ta có
Vậy .
Bác An dự định xây một cái ao hình elip ở giữa khu vườn. Biết trục lớn có độ dài bằng 4 m, độ dài trục nhỏ bằng 2 m. Gọi
là các tiêu điểm của elip. Khi đó độ dài
bằng:
Ta có độ dài trục lớn bằng 4 m.
=> 2a = 4 => a = 2.
Lại có độ dài trục nhỏ bằng 2m.
=> 2b = 2=> b = 1
Ta có
=>
Các cặp đường thẳng nào sau đây vuông góc với nhau?
(i)
loại.
(ii)
Chọn đáp án này.
Tương tự, kiểm tra và loại các đáp án còn lại.
Cho elip
có độ dài trục lớn gấp hai lần độ dài trục nhỏ và tiêu cự bằng
. Viết phương
trình của
?
Ta có:
Mà .
Vậy phương trình :
.
Tìm m để hai đường thẳng
và
vuông góc với nhau:
và ![]()
Ta có: .
Để hai đường thẳng vuông góc thì: . Phương tình này vô nghiệm nên không tồn tại
Trong mặt phẳng với hệ tọa độ
, cho hình bình hành
có đỉnh
và phương trình đường thẳng chứa cạnh
là
. Viết phương trình tham số của đường thẳng chứa cạnh
.
Góc phần tư (I) :
Tìm
để hai đường thẳng
và
trùng nhau?
Một đường thẳng có bao nhiêu vectơ chỉ phương?
Một đường thẳng có vô số vectơ chỉ phương.
Phương trình đường tròn
có tâm
và bán kinh
là:
Ta có:
Viết phương trình tiếp tuyến
của đường tròn
, biết tiếp tuyến đi qua điểm
.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có:
Đâu là đường thẳng không có điểm chung với đường thẳng
?
Kí hiệu
(i) Xét đáp án: không cùng phương nên loại.
(ii) Xét đáp án: không cùng phương nên loại.
(iii) Xét đáp án: không cùng phương nên loại.
(iv) Xét đáp án:
(Chọn)