Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:3x - 2y - 6 = 0d_{2}:6x - 2y - 8 = 0.

    \left\{ \begin{matrix}
d_{1}:3x - 2y - 6 = 0 ightarrow {\overrightarrow{n}}_{1} = (3; - 2) \\
d_{2}:6x - 2y - 8 = 0 ightarrow {\overrightarrow{n}}_{2} = (6; - 2) \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
\frac{3}{6}\boxed{=}\frac{- 2}{- 2} \\
{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2}\boxed{=}0 \\
\end{matrix} ight.\ \overset{ightarrow}{}d_{1},\ \ d_{2} cắt nhau nhưng không vuông góc.

  • Câu 2: Thông hiểu

    Cho phương trình x^{2} + y^{2} - 2mx - 4(m - 2)y + 6 - m =
0(1). Tìm điều kiện của m để (1) là phương trình đường tròn.

    Ta có: x^{2} + y^{2} - 2mx - 4(m - 2)y +
6 - m = 0

    ightarrow \left\{ \begin{matrix}
a = m \\
b = 2(m - 2) \\
c = 6 - m \\
\end{matrix} ight.\  ightarrow a^{2} + b^{2} - c > 0

    \Leftrightarrow 5m^{2} - 15m + 10 > 0
\Leftrightarrow \left\lbrack \begin{matrix}
m < 1 \\
m > 2 \\
\end{matrix} ight.\ .

  • Câu 4: Vận dụng

    Viết phương trình đường tròn nội tiếp tam giác OAB, biết tọa độ A(8;0),B(0;6)?

    Ta có: OA = 8;OB = 6;AB = \sqrt{8^{2} +
6^{2}} = 10

    Mặt khác \frac{1}{2}OA.OB = p.r (vì cùng bằng diện tích tam giác ABO)

    Suy ra r = \frac{OA.OB}{OA + OB + AB} =
2

    Dễ thấy đường tròn cần tìm có tâm thuộc góc phần tư thứ nhất và tiếp xúc với hai trục tọa độ nên tâm của đường tròn có tọa độ (2;2)

    Vậy phương trình đường tròn nội tiếp tam giác OAB là: (x - 2)^{2} + (y - 2)^{2} = 4

  • Câu 5: Nhận biết

    Đường thẳng d:51x - 30y + 11 = 0 đi qua điểm nào sau đây?

    Đặt f(x;y) = 51x - 30y +
11\overset{}{ightarrow}\left\{ \begin{matrix}
f(M) = f\left( - 1; - \frac{4}{3} ight) = 0 ightarrow M \in d \\
f(N) = f\left( - 1;\frac{4}{3} ight) = - 80\boxed{=}0 ightarrow
N\boxed{\in}d \\
f(P)\boxed{=}0 \\
f(Q)\boxed{=}0 \\
\end{matrix} ight.\ .

    Chọn M\left( - 1; - \frac{4}{3}
ight).

  • Câu 6: Thông hiểu

    Cho hypebol (H): \frac{x^{2}}{36}+\frac{y^{2}}{9}=1. Tỉ số giữa độ dài trục ảo và độ dài trục thực bằng:

    Ta có: \frac{x^{2}}{36}+\frac{y^{2}}{9}=1

    Ta có: a = 6; b =3

    => Độ dài trục ảo là 6, độ dài trục thực là 12

    => Tỉ số giữa độ dài trục ảo và độ dài trục thực là: 

    \frac{{2b}}{{2a}} = \frac{6}{{12}} = \frac{1}{2}

  • Câu 7: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 1 + t \\
y = - 2 - 2t \\
\end{matrix} ight.d_{2}:\left\{ \begin{matrix}
x = 2 - 2t' \\
y = - 8 + 4t' \\
\end{matrix} ight..

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = - 1 + t \\
y = - 2 - 2t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{u}}_{1} = (1; - 2)
\\
d_{2}:\left\{ \begin{matrix}
x = 2 - 2t' \\
y = - 8 + 4t' \\
\end{matrix} ight.\  ightarrow B(2; - 8) \in d_{2},\ \
{\overrightarrow{u}}_{2} = ( - 2;4) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{1}{- 2} = \frac{- 2}{4} \\
B \in d_{1} \leftrightarrow t = 3 \\
\end{matrix} ight.\  ightarrow d_{1} \equiv d_{2}.

  • Câu 8: Nhận biết

    Phương trình chính tắc của đường elip với a = 4, b = 3

    Phương trình chính tắc (E):\frac{x^{2}}{16} + \frac{y^{2}}{9} =
1.

  • Câu 9: Thông hiểu

    Trong mặt phẳng Oxy cho hai điểm A(1;1),B(5;3). Viết phương trình đường tròn (C) đi qua hai điểm A;B, biết rằng tâm đường tròn thuộc trục hoành?

    Gọi I là tâm đường tròn (C)

    Tâm đường tròn thuộc trục hoành nên I(x;0)

    Đường tròn đi qua hai điểm A;B nên ta có:

    IA = IB \Leftrightarrow IA^{2} =
IB^{2}

    \Leftrightarrow (1 - x)^{2} + 1^{2} = (5
- x)^{2} + 3^{2}

    \Leftrightarrow x^{2} - 2x + 1 + 1 =
x^{2} - 10x + 25 + 9

    \Leftrightarrow x = 4

    Vậy đường tròn (C) có tâm I(4;0) và bán kính R = IA = \sqrt{(1 - 4)^{2} + 1^{2}} =
\sqrt{10}

    Vậy phương trình đường tròn là: (x -
4)^{2} + y^{2} = 10

  • Câu 10: Thông hiểu

    Hai cạnh của hình chữ nhật nằm trên hai đường thẳng d_{1}:4x - 3y + 5 = 0d_{2}:3x + 4y - 5 = 0. Hình chữ nhật có đỉnh A(2;1). Tính diện tích của hình chữ nhật.

    Đáp án: 2

    Đáp án là:

    Hai cạnh của hình chữ nhật nằm trên hai đường thẳng d_{1}:4x - 3y + 5 = 0d_{2}:3x + 4y - 5 = 0. Hình chữ nhật có đỉnh A(2;1). Tính diện tích của hình chữ nhật.

    Đáp án: 2

    Ta có: \overrightarrow{n_{d_{1}}} = (4; -
3);\overrightarrow{n_{d_{2}}} = (3;4).

    Do A không thuộc hai đường thẳng d_{1};d_{2}d_{1}\bot d_{2} nên độ dài hai cạnh kề nhau của hình chữ nhật bằng khoảng cách từ A đến hai đường thẳng d_{1};d_{2}.

    Ta có:

    d\left( A;d_{1} ight) = \frac{|4.2 -
3.1 + 5|}{\sqrt{4^{2} + 3^{2}}} = 2.

    d\left( A;d_{2} ight) = \frac{|3.2 +
4.1 - 5|}{\sqrt{3^{2} + 4^{2}}} = 1.

    \Rightarrow S = d\left( A;d_{1}
ight).d\left( A;d_{2} ight) = 2.1 = 2

  • Câu 11: Thông hiểu

    Viết phương trình tổng quát của đường thẳng d đi qua điểm M( - 1;0) và vuông góc với đường thẳng \Delta:\left\{ \begin{matrix}
x = t \\
y = - 2t \\
\end{matrix} ight.\ .

    \left\{ \begin{matrix}
M( - 1;0) \in d \\
{\overrightarrow{u}}_{\Delta} = (1; - 2) \\
d\bot\Delta \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
M( - 1;0) \in d \\
{\overrightarrow{n}}_{d} = (1; - 2) \\
\end{matrix} ight.\  ightarrow d:1(x + 1) - 2(y - 0) = 0
\Leftrightarrow d:x - 2y + 1 = 0.

  • Câu 12: Nhận biết

    Xác định tâm và bán kính đường tròn (C):(x - 4)^{2} + (y + 5)^{2} = 12?

    Ta có: (C):(x - 4)^{2} + (y + 5)^{2} =
12

    Vậy đường tròn có bán kính I(4; -
5) và bán kính R =
2\sqrt{3}

  • Câu 13: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(–2\ ;\ 0),\ B(1\ ;\ 4) và đường thẳng d:\left\{ \begin{matrix}
x = - t \\
y = 2 - t \\
\end{matrix} ight.. Tìm tọa độ giao điểm của đường thẳng ABd.

    \left\{ \begin{matrix}
A(–2\ ;\ 0),\ B(1\ ;\ 4) ightarrow AB:4x - 3y + 8 = 0 \\
d:\left\{ \begin{matrix}
x = - t \\
y = 2 - t \\
\end{matrix} ight.\  ightarrow d:x - y + 2 = 0 \\
\end{matrix} ight.

    \overset{AB \cap d}{ightarrow}\left\{
\begin{matrix}
4x - 3y + 8 = 0 \\
x - y + 2 = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
\end{matrix} ight.\ .

  • Câu 14: Vận dụng

    Cho Hyperbol (H):\frac{x^{2}}{4} - y^{2} = 1. Tìm điểm M trên (H) sao cho khoảng cách từ M đến đường thẳng \Delta:y = x + 1 đạt giá trị nhỏ nhất.

    Gọi M\left( x_{0};y_{0} ight) \in
(H). Phương trình tiếp tuyến của (H) tại Md:\frac{x.x_{0}}{4} - y.y_{0} = 1.

    \Delta//d khi \frac{\frac{x_{0}}{4}}{1} = \frac{- y_{0}}{- 1}
\Rightarrow y_{0} = \frac{x_{0}}{4} thay vào (H) ta có:

    \frac{x_{0}^{2}}{4} - \left(
\frac{x_{0}}{4} ight)^{2} = 1 \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = \frac{4}{\sqrt{3}} ightarrow y_{0} = \frac{1}{\sqrt{3}} \\
x_{0} = - \frac{4}{\sqrt{3}} ightarrow y_{0} = - \frac{1}{\sqrt{3}} \\
\end{matrix} ight..

    Với M\left(
\frac{4}{\sqrt{3}};\frac{1}{\sqrt{3}} ight) ta có : d(M, \bigtriangleup ) = \frac{1 +
\sqrt{3}}{\sqrt{2}}.

    Với M\left( - \frac{4}{\sqrt{3}}; -
\frac{1}{\sqrt{3}} ight) ta có : d(M, \bigtriangleup ) = \frac{\sqrt{3} -
1}{\sqrt{2}}.

  • Câu 15: Vận dụng

    Cho tam giác ABC có phương trình các cạnh AB;AC lần lượt là 5x - 2y + 6 = 0,4x + 7y - 21 = 0 và trực tâm H(1;1). Phương trình tổng quát của cạnh BC là:

    Ta có: A = AB \cap AC nên tọa độ điểm A là nghiệm hệ phương trình:

    \left\{ \begin{matrix}
5x - 2y + 6 = 0 \\
4x + 7y - 21 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 3 \\
\end{matrix} ight.

    \Rightarrow A(0;3) \Rightarrow
\overrightarrow{AH} = (1; - 2)

    Ta có BH\bot AC \Rightarrow BH:7x - 4y +
a = 0

    Điểm H \in BH \Leftrightarrow 7 - 4 + a =
0 \Leftrightarrow a = - 3

    \Rightarrow BH:7x - 4y - 3 =
0

    Ta có: B = AB \cap BH nên tọa độ điểm B là nghiệm hệ phương trình:

    \left\{ \begin{matrix}5x - 2y + 6 = 0 \\7x - 4y - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - 5 \\y = - \dfrac{19}{2} \\\end{matrix} ight.

    \Rightarrow B\left( - 5; - \frac{19}{2}
ight)

    Đường thẳng BC đi qua điểm B nhận \overrightarrow{AH} làm vecto pháp tuyến có phương trình là:

    x + 5 - 2\left( x + \frac{19}{2} ight)
= 0 \Leftrightarrow x - 2y - 14 = 0

  • Câu 16: Vận dụng

    Đường tròn ngoại tiếp hình chữ nhật cơ sở của hypebol \frac{x^{2}}{4} - y^{2} =
1 có có phương trình là:

    Ta có: \left\{ \begin{matrix}
a^{2} = 4 \\
b^{2} = 1 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = 1 \\
\end{matrix} ight.. Tọa độ các đỉnh hình chữ nhật cở sở là (2;1), (2; - 1), ( -
2;1), ( - 2; - 1). Dường tròn ngoại tiếp hình chữ nhật cơ sở có tâm O(0;0) bán kính R = \sqrt{5}.

    Phương trình đường tròn là x^{2} + y^{2}
= 5.

  • Câu 17: Thông hiểu

    Nếu đường thẳng (\Delta) đi qua gốc tọa độ và song song với đường thẳng (d):4x - 3y + 5 = 0 thì (\Delta) có phương trình tổng quát là:

    Một vectơ pháp tuyến của (\Delta) là: \overrightarrow{n}(4; - 3)

    Mặt khác (\Delta) đi qua gốc tọa độ hay đi qua điểm O(0;0)

    Vậy phương trình đường thẳng (\Delta) là:

    4(x - 0) - 3(y - 0) = 0

    \Leftrightarrow 4x - 3y = 0

    Vậy đáp án đúng là: 4x - 3y = 0.

  • Câu 18: Thông hiểu

    Phương trình tham số của đường thẳng đi qua hai điểm C(1; - 1),D(2;5) là:

    Gọi d là đường thẳng qua C và nhận \overrightarrow{u} = \overrightarrow{CD} =
(0;6) làm vectơ chỉ phương.

    Khi đó phương trình tham số của đường thẳng d là: \left\{ \begin{matrix}
x = 2 \\
y = - 1 + 6t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 19: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng \Delta_{1}:\left\{ \begin{matrix}
x = m + 2t \\
y = 1 + \left( m^{2} + 1 ight)t \\
\end{matrix} ight.\Delta_{2}:\left\{ \begin{matrix}
x = 1 + mt \\
y = m + t \\
\end{matrix} ight. trùng nhau?

    \begin{matrix}
\left\{ \begin{matrix}
\Delta_{1}:\left\{ \begin{matrix}
x = m + 2t \\
y = 1 + \left( m^{2} + 1 ight)t \\
\end{matrix} ight.\  ightarrow A(m;1) \in d_{1},\ \
{\overrightarrow{u}}_{1} = \left( 2;m^{2} + 1 ight) \\
\Delta_{2}:\left\{ \begin{matrix}
x = 1 + mt \\
y = m + t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{u}}_{2} = (m;1) \\
\end{matrix} ight.\  \\
\\
\end{matrix} .

    \overset{d_{1} \equiv
d_{2}}{ightarrow}\left\{ \begin{matrix}
A \in d_{2} \\
\frac{m}{2} = \frac{1}{m^{2} + 1} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m = 1 + mt \\
1 = m + t \\
m^{3} + m - 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = 1 + m(1 - m) \\
(m - 1)\left( m^{2} + m + 2 ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 1 = 0 \\
m - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow m = 1

  • Câu 20: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d_{1}:5x + 3y - 3 = 0d_{2}:5x + 3y + 7 = 0 song song nhau. Đường thẳng vừa song song và cách đều với d_{1},\ d_{2} là:

    d\left( M(x;y);d_{1} ight) = d\left(M(x;y);d_{2} ight)

    \Leftrightarrow \frac{|5x + 3y - 3|}{\sqrt{34}} =\frac{|5x + 3y + 7|}{\sqrt{34}} \Leftrightarrow 5x + 3y + 2 =0.

  • Câu 21: Thông hiểu

    Cho Hypebol có độ dài trục thực và tiêu cự lần lượt là 1420. Phương trình chính tắc của Hypebol là:

    Phương trình chính tắc của Hypebol có dạng \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1

    Ta có: \left\{ \begin{matrix}
2a = 14 \\
2c = 20 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 7 \\
c = 10 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a^{2} = 49 \\
c^{2} = 100 \\
\end{matrix} ight.

    \Rightarrow b^{2} = c^{2} - a^{2} =
51

    Vậy phương trình chính tắc của Hypebol là: \frac{x^{2}}{49} - \frac{y^{2}}{51} =
1.

  • Câu 22: Nhận biết

    Phương trình chính tắc của đường tròn tâm I(0; - 1) và bán kính R = 5 là:

    Phương trình đường tròn có dạng (x -
a)^{2} + (y - b)^{2} = R^{2}

    Vì phương trình đường tròn cần tìm có tâm I(0; - 1) và bán kính R = 5 nên phương trình cần tìm là: x^{2} + (y + 1)^{2} = 25

  • Câu 23: Vận dụng

    Cho đường thẳng d_{1}:2x + 3y + m^{2} - 1 = 0d_{2}:\left\{ \begin{matrix}
x = 2m - 1 + t \\
y = m^{4} - 1 + 3t \\
\end{matrix} ight.. Tính cosin góc tạo bởi giữa hai đường thẳng trên.

    . \left\{ \begin{matrix}
d_{1}:2x + 3y + m^{2} - 1 = 0 ightarrow {\overrightarrow{n}}_{1} =
(2;3) \\
d_{2}:\left\{ \begin{matrix}
x = 2m - 1 + t \\
y = m^{4} - 1 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (3; - 1)
\\
\end{matrix} ight. \overset{\varphi = \left( d_{1};d_{2}
ight)}{ightarrow}\cos\varphi = \frac{|6 - 3|}{\sqrt{4 + 9}.\sqrt{9 +
1}} = \frac{3}{\sqrt{130}}.

  • Câu 24: Vận dụng

    Trong mặt phẳng tọa độ Oxy cho đường tròn (C):x^{2} + y^{2} - 2x - 2my + m^{2} - 24 =
0 có tâm I và đường thẳng \Delta:mx + 4y = 0 (với m là tham số). Biết đường thẳng \Delta cắt đường tròn (C) tại hai điểm A;B phân biệt sao cho diện tích tam giác IAB bằng 12. Có bao nhiêu giá trị của tham số m thỏa mãn yêu cầu đề bài?

    Hình vẽ minh họa

    Đường tròn (C) có tâm I(1; m) và bán kính R = 5.

    Gọi H là trung điểm của dây cung AB. Ta có IH là đường cao của tam giác IAB và

    IH = d(I;\Delta) \Leftrightarrow
\frac{|m + 4m|}{\sqrt{m^{2} + 16}} = \frac{|5m|}{\sqrt{m^{2} +
16}}

    AH = \sqrt{IA^{2} - IH^{2}} = \sqrt{25 -
\frac{(5m)^{2}}{m^{2} + 16}} = \frac{20}{\sqrt{m^{2} + 16}}

    Theo bài ra ta có:

    S_{IAB} = 12 \Leftrightarrow 2S_{IAH} =
12

    \Leftrightarrow d(I;\Delta).AH =
12

    \Leftrightarrow 25|m| = 3\left( m^{2} +
16 ight)

    \Leftrightarrow \left\lbrack\begin{matrix}m = \pm 3 \\m = \pm \dfrac{16}{3} \\\end{matrix} ight.

    Vậy có 4 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 25: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 2 + 3t \\
y = - 2t \\
\end{matrix} ight.d_{2}:\left\{ \begin{matrix}
x = 2t' \\
y = - 2 + 3t' \\
\end{matrix} ight..

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 2 + 3t \\
y = - 2t \\
\end{matrix} ight.\  ightarrow \ {\overrightarrow{u}}_{1} = (3; - 2)
\\
d_{2}:\left\{ \begin{matrix}
x = 2t' \\
y = - 2 + 3t' \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = (2;3)
\\
\end{matrix} ight\} ightarrow {\overrightarrow{u}}_{1} \cdot
{\overrightarrow{u}}_{2} = 0 ightarrow d_{1}\bot\ \ d_{2}. Chọn

  • Câu 26: Nhận biết

    Một đường thẳng có vectơ chỉ phương là \overrightarrow{u_{\Delta}} = (12; - 13). Vectơ nào sau đây là vectơ pháp tuyến của \Delta?

    Ta có:

    Đường thẳng \Delta có vectơ chỉ phương \overrightarrow{u} = (a;b) thì sẽ có một vectơ pháp tuyến là: \overrightarrow{n} = ( - b;a)

    Áp dụng vào bài toán ta được:

    Vectơ pháp tuyến của \Delta là: \overrightarrow{n_{\Delta}} =
(13;12).

  • Câu 27: Nhận biết

    Xét vị trí tương đối của hai đường thẳng: d_1: x – 2y + 2 = 0d_2: – 3x + 6y – 10 = 0.

     Vì \frac{1}{{ - 3}} = \frac{{ - 2}}{6} eq\frac2{-10} nên hai đường thẳng song song.

  • Câu 28: Nhận biết

    Phương trình tham số của đường thẳng nào sau đây có vectơ chỉ phương \overrightarrow{u}=(1;3)

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 1 \hfill \\  y = 3t + 2 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;3} ight)

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 1 \hfill \\  y = 2t + 3 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;2} ight).

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 2 \hfill \\  y = t + 3 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;1} ight).

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 3 \hfill \\  y = 2t + 1 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;2} ight).

  • Câu 29: Nhận biết

    Trên hệ trục tọa độ cho đường tròn (C):(x - 1)^{2} + (y + 1)^{2} = 4. Trong các điểm sau điểm nào nằm trên đường tròn đã cho?

    Thay tọa độ điểm Q(3; - 1) vào phương trình đường tròn (C):(x - 1)^{2} + (y
+ 1)^{2} = 4 ta được:

    (3 - 1)^{2} + ( - 1 + 1)^{2} =
4

    Vậy điểm thuộc đường tròn là Q(3; -
1).

  • Câu 30: Nhận biết

    Hypebol \frac{x^{2}}{16} - \frac{y^{2}}{9} = 1 có hai tiêu điểm là:

    Ta có : \left\{ \begin{matrix}
a^{2} = 16 \\
b^{2} = 9 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 5 \\
b = 3 \\
c = 5 \\
\end{matrix} ight.\ . Các tiêu điểm là F_{1}( - 5;0), F_{2}(5;0).

  • Câu 31: Nhận biết

    Cho Hypebol (H) có phương trình chính tắc là \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 , với a, b > 0. Khi đó khẳng định nào sau đây sai?

     Đáp án sai là đáp án chứa độ dài trục lớn là 2b

  • Câu 32: Thông hiểu

    Cho tọa độ hai điểm M\left( - 2\sqrt{3};\frac{3}{2} ight),N\left(
2;\frac{3\sqrt{3}}{2} ight). Viết phương trình chính tắc của elip có tâm là gốc tọa độ và đi qua hai điểm M;N?

    Gọi phương trình chính tắc của elip là: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1;(a;b
> 0)

    Do elip đi qua hai điểm M\left( -
2\sqrt{3};\frac{3}{2} ight),N\left( 2;\frac{3\sqrt{3}}{2}
ight) nên ta có hệ phương trình:

    \left\{ \begin{matrix}\dfrac{12}{a^{2}} + \dfrac{9}{b^{2}} = 1 \\\dfrac{4}{a^{2}} + \dfrac{27}{b^{2}} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a^{2} = 16 \\b^{2} = 9 \\\end{matrix} ight.

    Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là: \frac{x^{2}}{16} + \frac{y^{2}}{9} =
1

  • Câu 33: Nhận biết

    Một đường thẳng có bao nhiêu vectơ chỉ phương?

    Một đường thẳng có vô số vectơ chỉ phương.

  • Câu 34: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A(– 3; 2) và B(1; 4).

     Vectơ chỉ phương của đường thẳng AB là (2; 1).

  • Câu 35: Thông hiểu

    Đường tròn (C) có tâm I(2;3) và tiếp xúc với trục Ox có phương trình là:

    (C):\left\{ \begin{matrix}
I(2;3) \\
R = d\lbrack I;Oxbrack = 3 \\
\end{matrix} ight.\  ightarrow (C):(x - 2)^{2} + (y - 3)^{2} =
9.

  • Câu 36: Nhận biết

    Viết phương trình tiếp tuyến của đường tròn (C):(x – 2)^{2} + (y + 3)^{2} = 5 tại điểm M(3;-1).

     Tâm I(2;-3).

    Phương trình tiếp tuyến tại M(3;-1) là:

    (3 - 2)(x - 3) + ( - 1 + 3)(y + 1) = 0 \Leftrightarrow x + 2y - 1 = 0.

  • Câu 37: Vận dụng

    Đường thẳng \Delta đi qua giao điểm của hai đường thẳng d_{1}:2x + y - 3 = 0d_{2}:x - 2y + 1 = 0 đồng thời tạo với đường thẳng d_{3}:y - 1 = 0 một góc 45^{0} có phương trình:

    \left\{ \begin{matrix}
d_{1}:2x + y - 3 = 0 \\
d_{2}:x - 2y + 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
\end{matrix} ight.

    ightarrow d_{1} \cap d_{2} = A(1;1) \in
\Delta.

    Ta có d_{3}:y - 1 = 0 ightarrow
{\overrightarrow{n}}_{3} = (0;1),gọi {\overrightarrow{n}}_{\Delta} = (a;b),\ \ \varphi
= \left( \Delta;d_{3} ight). Khi đó

    \frac{1}{\sqrt{2}} = \cos\varphi =
\frac{|b|}{\sqrt{a^{2} + b^{2}}.\sqrt{0 + 1}} \Leftrightarrow a^{2} +
b^{2} = 2b^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = b ightarrow a = b = 1 ightarrow \Delta:x + y - 2 = 0 \\
a = - b ightarrow a = 1,\ b = - 1 ightarrow \Delta:x - y = 0 \\
\end{matrix} ight.\ .

  • Câu 38: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm C(–1\ ;\ 3)D(3\ ;\ 1).

    Ta có:

    \left\{ \begin{matrix}C( - 1;3) \in CD \\{\overrightarrow{u}}_{CD} = \overrightarrow{CD} = (4; - 2) = - 2( - 2;1)\\\end{matrix} ight.\ \overset{ightarrow}{}CD:\left\{ \begin{matrix}x = - 1 - 2t \\y = 3 + t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 39: Nhận biết

    Cho parabol (P) có phương trình chính tắc là y^{2}=2px, với p > 0. Khi đó khẳng định nào sau đây sai?

    Đáp án sai: Trục đối xứng của parabol là trục Oy. Đáp án đúng là trục Ox mới là trục đối xứng.

  • Câu 40: Thông hiểu

    Trong hệ trục Oxy, cho Elip (E) có các tiêu điểm F_{1}( - 4;0),F_{2}(4;0) và một điểm M nằm trên (E). Biết rằng chu vi của tam giác MF_{1}F_{2} bằng 18. Xác định tâm sai e của (E).

    Ta có F_{1}( - 4;0) \Rightarrow c =
4.

    \begin{matrix}
P_{\Delta MF_{1}F_{2}} = \underset{2a}{\overset{MF_{1} + MF_{2}}{︸}} +
F_{1}F_{2} \\
\Leftrightarrow \ \ \ 18 = 2a + 2c \Leftrightarrow 18 = 2a + 8
\Leftrightarrow a = 5. \\
\end{matrix}

    Tâm sai e = \frac{c}{a} =
\frac{4}{5}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo