Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d:x - 2y + 3 = 0. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng d?

    Ta có: Vectơ pháp tuyến của đường thẳng \Delta là: \overrightarrow{n}(1; - 2).

  • Câu 2: Vận dụng

    Cho đường tròn (C):(x + 1)^{2} + (y - 1)^{2} = 25 và điểm M(9; - 4). Gọi \Delta là tiếp tuyến của (C), biết \Delta đi qua M và không song song với các trục tọa độ. Khi đó khoảng cách từ điểm P(6;5) đến \Delta bằng:

    Đường tròn (C) có tâm I( - 1;1),\ R =
5 và tiếp tuyến có dạng

    \Delta:ax + by - 9a + 4b = 0\ \ \left(abeq0 ight).

    Ta có: d\lbrack I;\Deltabrack = R
\Leftrightarrow \frac{|10a - 5b|}{\sqrt{a^{2} + b^{2}}} = 5
\Leftrightarrow a(3a - 4b) = 0

    \Leftrightarrow 3a = 4b ightarrow a =
4,\ b = 3 ightarrow \Delta:4x + 3y - 24 = 0.

    d\lbrack P;\Deltabrack = \frac{|24 + 15
- 24|}{5} = 3.

  • Câu 3: Thông hiểu

    Đường thẳng d đi qua điểm A( - 2;1) và vuông góc với đường thẳng \Delta:\left\{ \begin{matrix}x = 1 - 3t \\y = - 2 + 5t \\\end{matrix} ight. có phương trình tham số là:

    Ta có:

    \left\{ \begin{matrix}A( - 2;1) \in d \\{\overrightarrow{u}}_{\Delta} = ( - 3;5) \\d\bot\Delta \\\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}A( - 2;1) \in d \\{\overrightarrow{n}}_{d} = ( - 3;5) ightarrow {\overrightarrow{u}}_{d}= (5;3) \\\end{matrix} ight.\  ightarrow d:\left\{ \begin{matrix}x = - 2 + 5t \\y = 1 + 3t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 4: Nhận biết

    Hypebol có nửa trục thực là 4, tiêu cự bằng 10 có phương trình chính tắc là:

    Ta có : \left\{ \begin{matrix}
a = 4 \\
2c = 10 \\
b^{2} = c^{2} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 4 \\
c = 5 \\
b = 3 \\
\end{matrix} ight.\ .

    Phương trình chính tắc của Hyperbol là \frac{x^{2}}{16} - \frac{y^{2}}{9} =
1.

  • Câu 5: Vận dụng

    Ông Hoàng có một mảnh vườn hình Elip có chiều dài trục lớn và trục nhỏ lần lượt là 60m30m. Ông chia mảnh vườn ra làm hai nửa bằng một đường tròn tiếp xúc trong với Elip để làm mục đích sử dụng khác nhau (xem hình vẽ). Nửa bên trong đường tròn ông trồng cây lâu năm, nửa bên ngoài đường tròn ông trồng hoa màu. Tính tỉ số diện tích T giữa phần trồng cây lâu năm so với diện tích trồng hoa màu. Biết diện tích hình Elip được tính theo công thức S = \pi
ab, với a, b lần lượt là nửa độ dài trục lớn và nửa độ dài trục nhỏ. Biết độ rộng của đường Elip là không đáng kể.

    Theo đề ta có: Diện tích (E)là: S_{(E)} = \pi.a.b = 30.15.\pi = 450\pi,\
\left( m^{2} ight)

    Vì đường tròn tiếp xúc trong, nên sẽ tiếp xúc tại đỉnh của trục nhỏ, suy ra bán kính đường tròn: R =
15m. Diện tích hình tròn (C)phần trồng cây lâu năm là: S_{(C)} = \pi.R^{2} = 15^{2}.\pi = 225\pi,\ \left(
m^{2} ight)

    Suy ra diện tích phần trồng hoa màu là: S
= S_{(E)} - S_{(C)} = 225\pi,\ \left( m^{2} ight) \Rightarrow T =
1.

  • Câu 6: Nhận biết

    Tìm tọa độ giao điểm của đường thẳng d:\left\{ \begin{matrix}
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight. và trục tung.

    Oy \cap d:\left\{ \begin{matrix}
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight.\ \overset{}{ightarrow}\left\{ \begin{matrix}
y = 0 \\
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = \frac{1}{3} \\
x = \frac{2}{3},\ \ y = 0 \\
\end{matrix} ight.\ .Chọn \left(
\frac{2}{3};0 ight).

  • Câu 7: Vận dụng

    Biết rằng có đúng hai giá trị của tham số k để đường thẳng d:y = kx tạo với đường thẳng \Delta:y = x một góc 60^{0}. Tổng hai giá trị của k bằng:

    \begin{matrix}
\left\{ \begin{matrix}
d:y = kx ightarrow {\overrightarrow{n}}_{d} = (k; - 1) \\
\Delta:y = x ightarrow {\overrightarrow{n}}_{\Delta} = (1; - 1) \\
\end{matrix} ight.\ \overset{}{ightarrow}\frac{1}{2} = cos60^{\circ}
= \frac{|k + 1|}{\sqrt{k^{2} + 1}.\sqrt{2}} \\
\\
\end{matrix}

    \Leftrightarrow k^{2} + 1 = 2k^{2} + 4k
+ 2

    \Leftrightarrow k^{2} + 4k + 1 =
0\overset{sol:\ k = k_{1},\ \ k = k_{2}}{ightarrow}k_{1} + k_{2} = -
4.

  • Câu 8: Thông hiểu

    Viết phương trình tham số của đường thẳng \Delta có phương trình x - 3y + 2 = 0?

    Đường thẳng \Delta:x - 3y + 2 =
0 đi qua điểm A( - 2;0) và có vectơ pháp tuyến là \overrightarrow{n} =
(1; - 3) nên có vectơ chỉ phương là: \overrightarrow{u} = (3;1).

    Vậy phương trình tham số của \Delta là: \left\{ \begin{matrix}
x = - 2 + 3t \\
y = t \\
\end{matrix} ight..

  • Câu 9: Thông hiểu

    Đường chuẩn của Parabol y^{2} = 14x là:

    Từ phương trình Parabol y^{2} = 14x ta có 2p = 14 => p = 7

    Do đó phương trình đường chuẩn của Parabol là x + \frac{7}{2} = 0

  • Câu 10: Nhận biết

    Cho phương trình {x^2} + {y^2} - 2ax - 2by + c = 0 (1). Điều kiện để (1) là phương trình đường tròn là:

    Điều kiện để phương trình {x^2} + {y^2} - 2ax - 2by + c = 0 là phương trình đường tròn là:

    {a^2} + {b^2} - c > 0

  • Câu 11: Thông hiểu

    Tìm phương trình chính tắc của Elip có độ dài trục lớn bằng 4\sqrt{10} và đi qua điểm A(0;\ 6):

    Ta có phương trình chính tắc Elip (E) có dạng \frac{x^{2)}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1(a
> b > 0).

    Theo giả thiết ta có 2a =
4\sqrt{10} \Rightarrow a =
2\sqrt{10}.

    Mặt khác (E) đi qua A(0;\ 6) nên ta có \frac{6^{2}}{b^{2}} = 1 \Rightarrow b = 6.

    Vậy phương trình chính tắc của (E) là: \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{40}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{36}}\mathbf{=}\mathbf{1}.

  • Câu 12: Thông hiểu

    Phương trình tiếp tuyến của đường tròn (C):(x - 2)^{2} + (y + 3)^{2} = 5 tại điểm N( - 3;1) là:

    Đường tròn (C) có tâm I(2; -
3)

    Phương trình tiếp tuyến của (C) tại điểm N( - 3;1) là:

    (3 - 2)(x - 3) + ( - 1 + 3)(y + 1) =
0

    \Leftrightarrow x + 2y - 1 =
0

    Vậy phương trình tiếp tuyến của đường tròn tại N( - 3;1) là: x + 2y - 1 = 0

  • Câu 13: Vận dụng

    Cho ba đường thẳng \left( d_{1} ight):3x - 2y + 5 = 0, \left( d_{2} ight):2x + 4y - 7 =
0\left( d_{3} ight):3x + 4y -
1 = 0. Phương trình nào dưới đây là phương trình đường thẳng đi qua giao điểm của hai đường thẳng \left(
d_{1} ight);\left( d_{2} ight) và song song với \left( d_{3} ight)?

    Đường thẳng \left( d_{3} ight):3x + 4y
- 1 = 0\overrightarrow{n_{3}} =
(3;4)

    Gọi M là giao điểm của hai đường thẳng \left( d_{1} ight);\left( d_{2}
ight), tọa độ điểm M là nghiệm của hệ phương trình: \left\{ \begin{matrix}
3x - 2y + 5 = 0 \\
2x + 4y - 7 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - \frac{3}{8} \\
y = \frac{31}{16} \\
\end{matrix} ight.\  \Rightarrow M\left( - \frac{3}{8};\frac{31}{16}
ight)

    Đường thẳng d đi qua giao điểm M có vecto pháp tuyến \overrightarrow{n_{3}} = (3;4)

    Vậy phương trình tổng quát của đường thẳng cần tìm là: 3x + 4y - \frac{53}{8} = 0 hay 24x + 32y - 53 = 0.

  • Câu 14: Thông hiểu

    Trong mặt phẳng Oxy cho các điểm A( - 1;1),B(3;1),C(1;3). Phương trình đường tròn đi qua ba điểm đã cho là:

    Gọi phương trình đường tròn là: (C):x^{2}
+ y^{2} - 2ax - 2by + c = 0 với a^{2} + b^{2} - c > 0

    Vì đường tròn đi qua ba điểm A( -
1;1),B(3;1),C(1;3) nên ta có hệ phương trình:

    \left\{ \begin{matrix}
1 + 1 + 2a - 2b + c = 0 \\
9 + 1 - 6a - 2b + c = 0 \\
1 + 9 - 2a - 6b + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2a - 2b + c = - 2 \\
- 6a - 2b + c = - 10 \\
- 2a - 6b + c = - 10 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
c = - 2 \\
\end{matrix} ight.

    Vậy phương trình đường tròn cần tìm là: (C):x^{2} + y^{2} - 2x - 2y - 2 = 0.

  • Câu 15: Thông hiểu

    Gọi \alpha là góc tạo bởi hai đường thẳng (\Delta):x + 3y - 2 = 0(\Delta'):x - 2y + 5 = 0. Khi đó độ lớn của \alpha bằng:

    Ta có:

    \cos\alpha = \frac{\left| 1.1 + 3.( - 2)
ight|}{\sqrt{1^{2} + 3^{2}}.\sqrt{1^{2} + ( - 2)^{2}}} =
\frac{\sqrt{2}}{2}

    \Rightarrow \alpha = 45^{0}

    Vậy góc tạo bởi hai đường thẳng bằng 45^0.

  • Câu 16: Nhận biết

    Cho Parabol (P) có phương trình y^{2} = 4x. Tìm đường chuẩn của (P).

    Từ phương trình của (P), ta có: 2p = 4 nên p = 2.

    Suy ra (P) có tiêu điểm là F(1\ ;\ 0) và đường chuẩn là x + 1 = 0.

  • Câu 17: Nhận biết

    Tính khoảng cách từ điểm C( - 1;2) đến đường thẳng (\Delta):4x - 3y + 5 = 0

    Khoảng cách từ điểm C đến đường thẳng (\Delta):4x - 3y + 5 = 0 là:

    d(C;\Delta) = \frac{\left| 4.( - 1) -
3.2 + 5 ight|}{\sqrt{4^{2} + ( - 3)^{2}}} = 1

    Vậy khoảng cách cần tìm bằng 1.

  • Câu 18: Nhận biết

    Điểm nào dưới đây thuộc đường thẳng 2x - y + 1 = 0?

    Thay tọa độ các điểm vào đường thẳng 2x -
y + 1 = 0 ta thấy điểm thuộc đường thẳng đã cho là D(0;1).

  • Câu 19: Vận dụng

    Cho hai đường tròn (C):x^{2} + y^{2} = 1(C'):x^{2} + y^{2} - 2(m + 1)x + 4my - 5 =
0. Tìm giá trị tham số m để hai đường tròn tiếp xúc nhau?

    Dễ thấy đường tròn (C) có tâm O(0; 0) và bán kính R = 1

    Đường tròn (C’) có tâm I(m + 1; -2m) và bán kính R' = \sqrt{(m + 1)^{2} + 4m^{2} +
5}

    Ta thấy:

    OI = \sqrt{(m + 1)^{2} + 4m^{2}} <
R' điểm O nằm trong đường tròn tâm I suy ra (C) và (C’) chỉ có thể tiếp xúc trong với nhau.

    Điều kiện để hai đường tròn tiếp xúc trong là:

    R' - R = OI

    \Leftrightarrow \sqrt{(m + 1)^{2} +
4m^{2} + 5} - 1 = \sqrt{(m + 1)^{2} + 4m^{2}}

    \Leftrightarrow \left\lbrack
\begin{matrix}
m = - 1 \\
m = \frac{3}{5} \\
\end{matrix} ight.

    Vậy có hai giá trị m thỏa mãn điều kiện là: m = - 1 hoặc m = \frac{3}{5}.

    VD

     

    1

  • Câu 20: Thông hiểu

    Lập phương trình chính tắc của elip biết độ dài trục lớn hơn độ dài trục nhỏ 4 đơn vị, độ dài trục nhỏ hơn độ dài tiêu cự 4 đơn vị.

    Elip (E) có độ dài trục lớn hơn độ dài trục nhỏ 4 đơn vị \overset{}{ightarrow}2a - 2b = 4.

    Elip (E) có độ dài trục nhỏ hơn độ dài tiêu cự 4 đơn vị \overset{}{ightarrow}2b - 2c = 4.

    Ta có

    \left\{ \begin{matrix}
a - b = 2 \\
b - c = 2 \\
a^{2} = b^{2} + c^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a - b = 2 \\
a^{2} = b^{2} + (b - 2)^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = b + 2 \\
(b + 2)^{2} = 2b^{2} - 4b + 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = b + 2 \\
b^{2} - 8b = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 10 \\
b = 8 \\
\end{matrix} ight.

    Phương trình chính tắc của Elip là (E):\frac{x^{2}}{100} + \frac{y^{2}}{64} =
1.

  • Câu 21: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 4 + 2t \\
y = 1 - 5t \\
\end{matrix} ight.d_{2}:5x
+ 2y - 14 = 0.

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 4 + 2t \\
y = 1 - 5t \\
\end{matrix} ight.\  ightarrow A(4;1) \in d_{1},\ \
{\overrightarrow{u}}_{1} = (2; - 5) \\
d_{2}:5x + 2y - 14 = 0 ightarrow \ \ {\overrightarrow{n}}_{2} = (5;2)
ightarrow {\overrightarrow{u}}_{2} = (2; - 5) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
{\overrightarrow{u}}_{1} = {\overrightarrow{u}}_{2} \\
A\boxed{\in}d_{2} \\
\end{matrix} ight.\  ightarrow d_{1}||d_{2}.Chọn

  • Câu 22: Nhận biết

    Đường tròn (C): x^{2} + y^{2} – 3x – y = 0 có đường kính bằng bao nhiêu?

     Tâm I(\frac32;\frac12). Do đó R = \sqrt {{{\left( {\frac{3}{2}} ight)}^2} + {{\left( {\frac{1}{2}} ight)}^2} - 0}  = \frac{{\sqrt {10} }}{2}.

    Do đó đường kính bằng 2R=\sqrt{10}.

  • Câu 23: Nhận biết

    Tính góc tạo bởi giữa hai đường thẳng: d_1:x+\sqrt{3}y+6=0d_2: x+1 = 0.

     Ta có: \cos ({d_1},{d_2}) = \frac{{\left| {1.1 + \sqrt 3 .0} ight|}}{{\sqrt {{1^2} + {{\sqrt 3 }^2}} .\sqrt {{1^2} + {0^2}} }} = \frac 12. Suy ra góc giữa hai đường thẳng bằng 60^{\circ}.

  • Câu 24: Nhận biết

    Đường tròn (C):x^{2} + y^{2} + 12x - 14y + 4 = 0 có dạng tổng quát là:

    (C):x^{2} + y^{2} + 12x - 14y + 4 = 0ightarrow \left\{ \begin{matrix}I( - 6;7) \\R = \sqrt{36 + 49 - 4} = 9 \\\end{matrix} ight.

    ightarrow (C):(x + 6)^{2} + (y - 7)^{2} =81.

  • Câu 25: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm C(–1\ ;\ 3)D(3\ ;\ 1).

    Ta có:

    \left\{ \begin{matrix}C( - 1;3) \in CD \\{\overrightarrow{u}}_{CD} = \overrightarrow{CD} = (4; - 2) = - 2( - 2;1)\\\end{matrix} ight.\ \overset{ightarrow}{}CD:\left\{ \begin{matrix}x = - 1 - 2t \\y = 3 + t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 26: Nhận biết

    Elip (E):\frac{x^{2}}{36}+\frac{y^{2}}{9}=1 có độ dài trục lớn bằng:

     Ta có: a^2=36 \Rightarrow a=6 \Rightarrow 2a=12.

  • Câu 27: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + (y + 4)^{2} = 5 là:

    (C):x^{2} + (y + 4)^{2} =
5\overset{}{ightarrow}I(0; - 4),\ R = \sqrt{5}.

  • Câu 28: Thông hiểu

    Đường thẳng d đi qua điểm M(1;2) và song song với đường thẳng \Delta:2x + 3y - 12 = 0 có phương trình tổng quát là:

    \left\{ \begin{matrix}
M(1;2) \in d \\
d||\Delta:2x + 3y - 12 = 0 \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
M(1;2) \in d \\
d:2x + 3y + c = 0\ \left( c\boxed{=} - 12 ight) \\
\end{matrix} ight.

    ightarrow 2.1 + 3.2 + c = 0
\Leftrightarrow c = - 8. Vậy d:2x +
3y - 8 = 0.

  • Câu 29: Nhận biết

    Tìm tọa độ giao điểm của đường thẳng \Delta:5x + 2y - 10 = 0 và trục hoành.

    Ox \cap \Delta:5x + 2y - 10 =
0\overset{}{ightarrow}\left\{ \begin{matrix}
y = 0 \\
5x + 2y - 10 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
\end{matrix} ight.\ .Chọn (2;0).

  • Câu 30: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng \left\{\begin{matrix}x=2\\ y=-1+6t\end{matrix}ight.?

     Vectơ chỉ phương của đường thẳng trên là: (0;6) \Rightarrow \overrightarrow u  = (0;1).

  • Câu 31: Thông hiểu

    Cho elip (E): \frac{x^{2}}{25}+\frac{y^{2}}{9}=1. Trong các khẳng định sau, khẳng định nào sai?

    Phương trình elip (E) có dạng \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1;\left( {a = 5;b = 3} ight)

    Ta có: b = \sqrt {{a^2} - {c^2}}  = 4

    Khi đó: {F_1}\left( { - 4;0} ight);{F_2}\left( {4;0} ight) đúng

    Ta có: \frac{c}{a}=\frac{4}{5} đúng

    Đỉnh A1(–a; 0) => A1(–5; 0) đúng

    Độ dài trục nhỏ là 2b = 2.3 = 6 ≠ 3 

    Vậy khẳng định sai là: (E) có độ dài trục nhỏ bằng 3.

  • Câu 32: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(3;0)B(0; - 4). Tìm điểm M thuộc trục tung sao cho diện tích tam giác MAB bằng 6.

    Ta có

    \left\{ \begin{matrix}
AB:4x - 3y - 12 = 0 \\
AB = 5 \\
M(0;y) ightarrow h_{M} = d(M;AB) = \frac{|3y + 12|}{5} \\
\end{matrix} ight.

    ightarrow 6 = S_{\Delta MAB} =
\frac{1}{2}.5.\frac{|3y + 12|}{5}

    \Leftrightarrow \left\lbrack
\begin{matrix}
y = 0 ightarrow M(0;0) \\
y = - 8 ightarrow M(0; - 8) \\
\end{matrix} ight.\ .

  • Câu 33: Vận dụng

    Viết phương trình tổng quát của đường thẳng \Delta đi qua giao điểm của hai đường thẳng d_{1}:x + 3y - 1 = 0, d_{2}:x - 3y - 5 = 0 và vuông góc với đường thẳng d_{3}:2x - y + 7 =
0.

    \left\{ \begin{matrix}
d_{1}:x + 3y - 1 = 0 \\
d_{2}:x - 3y - 5 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = - \frac{2}{3} \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A\left( 3; -
\frac{2}{3} ight). Ta có

    \left\{ \begin{matrix}
A \in d \\
d\bot d_{3}:2x - y + 7 = 0 \\
\end{matrix} ight. ightarrow
\left\{ \begin{matrix}
A \in d \\
d:x + 2y + c = 0 \\
\end{matrix} ight. ightarrow
3 + 2.\left( - \frac{2}{3} ight) + c = 0 \Leftrightarrow c = -
\frac{5}{3}.

    Vậy d:x + 2y - \frac{5}{3} = 0
\Leftrightarrow d:3x + 6y - 5 = 0.

  • Câu 34: Vận dụng

    Tìm phương trình chính tắc của Hyperbol (H). Cho biết (H) đi qua điểm (2;1) và có một đường chuẩn là x + \frac{2}{\sqrt{3}} =
0.

    Gọi (H):\frac{x^{2}}{a^{2}} -
\frac{y^{2}}{b^{2}} = 1.

    Ta có : \left\{ \begin{matrix}
\frac{2^{2}}{a^{2}} - \frac{1^{2}}{b^{2}} = 1 \\
\frac{a^{2}}{c} = \frac{2}{\sqrt{3}} \\
b^{2} = c^{2} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b^{2} = \frac{a^{2}}{4 - a^{2}} \\
c^{2} = \frac{3}{4}a^{4} \\
\frac{a^{2}}{4 - a^{2}} = \frac{3}{4}a^{4} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a^{2} = 2,\ b^{2} = 1 \\
a^{2} = \frac{10}{3},\ b^{2} = 5 \\
\end{matrix} ight.\ . Suy ra phương trình chính tắc của (H) là \frac{x^{2}}{2} - y^{2} = 1.

  • Câu 35: Thông hiểu

    Cho đường tròn (C):(x - 1)^{2} + (y - 2)^{2} = 4 và đường thẳng \Delta:x - 2y + m = 0. Tìm giá trị của tham số m để \Delta không cắt (C)?

    Đường tròn (C) có tâm I(1; 2) và R =
\sqrt{5}

    Để \Delta không cắt (C) thì d(I;\Delta) > R

    \Leftrightarrow \frac{|1 - 2.2 +
m|}{\sqrt{1 + 4}} > \sqrt{5}

    \Leftrightarrow |m - 3| > 5
\Leftrightarrow \left\lbrack \begin{matrix}
m - 3 > 5 \\
m - 3 < - 5 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m < - 2 \\
m > 8 \\
\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
m < - 2 \\
m > 8 \\
\end{matrix} ight. thỏa mãn yêu cầu bài toán.

  • Câu 36: Thông hiểu

    Tính góc tạo bởi hai đường thẳng (\Delta):\sqrt{3}x - y + 7 = 0(\Delta'):x - \sqrt{3}y - 1 = 0?

    Ta có:

    Vectơ pháp tuyến của đường thẳng (\Delta):\sqrt{3}x - y + 7 = 0 là: \overrightarrow{n_{\Delta}} = \left( \sqrt{3}; - 1
ight)

    Vectơ pháp tuyến của đường thẳng (\Delta'):x - \sqrt{3}y - 1 = 0 là: \overrightarrow{n_{\Delta'}} = \left( 1;
- \sqrt{3} ight)

    Ta thấy

    \cos(\Delta;\Delta') = \frac{\left|
\overrightarrow{n_{\Delta}}.\overrightarrow{n_{\Delta'}}
ight|}{\left| \overrightarrow{n_{\Delta}} ight|.\left|
\overrightarrow{n_{\Delta'}} ight|}

    = \frac{\left| \sqrt{3}.1 + ( -
1).\left( - \sqrt{3} ight) ight|}{\sqrt{\left( \sqrt{3} ight)^{2}
+ ( - 1)^{2}}.\sqrt{1^{2} + \left( - \sqrt{3} ight)^{2}}} =
\frac{\sqrt{3}}{2}

    \Rightarrow
\widehat{(\Delta;\Delta')} = 30^{0}

    Vậy góc tạo bởi hai đường thẳng đã cho bằng 30^{0}.

  • Câu 37: Nhận biết

    Một vectơ pháp tuyến của đường thẳng d:2x - y - 1 = 0 là:

    Một vectơ pháp tuyến của đường thẳng d:2x
- y - 1 = 0\overrightarrow{n}(2; - 1).

  • Câu 39: Thông hiểu

    Tìm tất cả các giá trị của m để hai đường thẳng \Delta_{1}:2x - 3my + 10 = 0\Delta_{2}:mx + 4y + 1 = 0 cắt nhau.

    \left\{ \begin{matrix}
\Delta_{1}:2x - 3my + 10 = 0 \\
\Delta_{2}:mx + 4y + 1 = 0 \\
\end{matrix} ight.

    ightarrow \left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}\Delta_{1}:x + 5 = 0 \\\Delta_{2}:4y + 1 = 0 \\\end{matrix} ight.\  ightarrow m = 0\ \ (TM) \\meq\overset{\Delta_{1} \cap \Delta_{2} =M}{ightarrow}\frac{2}{m}eq\frac{- 3m}{4} \Leftrightarrow\forall meq 0 \\\end{matrix} ight.\ .Chọn đáp án này với mọi m.

  • Câu 40: Nhận biết

    Đường elip \frac{x^{2}}{16} + \frac{y^{2}}{7} = 1 có tiêu cự bằng

    Ta có: a^{2} = 16, b^{2} = 7 nên c^{2} = a^{2} - b^{2} = 9 \Rightarrow c =
3.

    Tiêu cự của elip là 2c = 6.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo