Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Xác định phương trình đường tròn (C) tâm I( -
2;1). Biết (C) cắt đường thẳng \Delta:x - 2y + 3 = 0 tại hai điểm AB sao cho AB = 2.

    Gọi h là khoảng cách từ điểm I đến đường thẳng \Delta:x - 2y + 3 = 0. Ta có:

    h = d(I;\Delta) = \frac{| - 2 - 2 +
3|}{\sqrt{1^{2} + ( - 2)^{2}}} = \frac{1}{\sqrt{5}}

    Gọi R là bán kính đường tròn, từ giả thiết suy ra:

    R = \sqrt{h^{2} + \frac{AB^{2}}{4}} =
\sqrt{\frac{1}{5} + \frac{2^{2}}{4}} = \sqrt{\frac{6}{5}}

    Vậy phương trình đường tròn cần tìm là: (x + 2)^{2} + (y - 1)^{2} =
\frac{6}{5}.

  • Câu 2: Nhận biết

    Xác định vị trí tương đối của hai đường thẳng \Delta_{1}:\left\{ \begin{matrix}
x = 3 + \frac{3}{2}t \\
y = - 1 + \frac{4}{3}t \\
\end{matrix} ight.\Delta_{2}:\left\{ \begin{matrix}
x = \frac{9}{2} + 9t' \\
y = \frac{1}{3} + 8t' \\
\end{matrix} ight..

    \left. \ \begin{matrix}
\Delta_{1}:\left\{ \begin{matrix}
x = 3 + \frac{3}{2}t \\
y = - 1 + \frac{4}{3}t \\
\end{matrix} ight.\  ightarrow A(3; - 1) \in \Delta_{1},\ \
{\overrightarrow{u}}_{1} = \left( \frac{3}{2};\frac{4}{3} ight) \\
\Delta_{2}:\left\{ \begin{matrix}
x = \frac{9}{2} + 9t' \\
y = \frac{1}{3} + 8t' \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = (9;8)
\\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{\frac{3}{2}}{9} = \frac{\frac{4}{3}}{8} \\
A \in \Delta_{2} \leftrightarrow t' = - \frac{1}{6} \\
\end{matrix} ight.\  ightarrow \Delta_{1} \equiv
\Delta_{2}.

  • Câu 3: Nhận biết

    Đường trung trực của đoạn thẳng AB với A = (- 3;2), B = ( - 3;3) có một vectơ pháp tuyến là:

    Gọi d là trung trực đoạn AB, ta có: \left\{ \begin{matrix}\overrightarrow{AB} = (0;1) \\d\bot AB \\\end{matrix} ight.\ \overset{ightarrow}{}{\overrightarrow{n}}_{d} =\overrightarrow{AB} = (0;1).

  • Câu 4: Thông hiểu

    Tính góc tạo bởi giữa hai đường thẳng d_{1}:6x - 5y + 15 = 0d_{2}:\left\{ \begin{matrix}
x = 10 - 6t \\
y = 1 + 5t \\
\end{matrix} ight.\ .

    \left\{ \begin{matrix}
d_{1}:6x - 5y + 15 = 0 ightarrow {\overrightarrow{n}}_{1} = (6; - 5)
\\
d_{2}:\left\{ \begin{matrix}
x = 10 - 6t \\
y = 1 + 5t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (5;6) \\
\end{matrix} ight.

    ightarrow {\overrightarrow{n}}_{1}
\cdot {\overrightarrow{n}}_{2} = 0\overset{\varphi = \left( d_{1};d_{2}
ight)}{ightarrow}\varphi = 90^{\circ}.

  • Câu 5: Thông hiểu

    Phương trình tổng quát của đường thẳng đi qua hai điểm A(3 ; – 1) và B(1 ; 5) là:

     Ta có: {\overrightarrow u _{AB}} = ( - 2;6) \Rightarrow {\overrightarrow u _{AB}} ( - 1;3) \Rightarrow {\overrightarrow n _{AB}} = (3;1).

    Phương trình tổng quát của AB

    3(x - 3) + 1(y + 1) = 0 \Leftrightarrow 3x + y - 8 = 0.

     

  • Câu 6: Vận dụng

    Trong mặt phẳng hệ tọa độ Oxy, cho đường tròn (C):x^{2} + y^{2} + 2x - 6y + 5 = 0. Viết phương trình tiếp tuyến của đường tròn (C), biết rằng tiếp tuyến đó song song với đường thẳng \Delta:x + 2y - 15 =
0?

    Ta có: Phương trình đường tròn có tâm I(
- 1;3) và bán kính R = \sqrt{1 + 9
- 5} = \sqrt{5}

    Gọi d là đường thẳng song song với đường thẳng \Delta:x + 2y - 15 = 0 khi đó:

    d:x + 2y - m = 0;(m eq
15)

    Đường thẳng d là tiếp tuyến của đường tròn khi và chỉ khi

    d(I;d) = R \Leftrightarrow \frac{| - 1 +
6 - m|}{\sqrt{1 + 4}} = \sqrt{5}

    \Leftrightarrow |m - 5| = 5
\Leftrightarrow \left\lbrack \begin{matrix}
m - 5 = 5 \\
m - 5 = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 10 \\
m = 0 \\
\end{matrix} ight.

    Vậy có hai tiếp tuyến của đường tròn thỏa mãn yêu cầu bài toán là: x + 2y = 0;x + 2y - 10 = 0

  • Câu 7: Thông hiểu

    Tâm của đường tròn (C):x^{2} + y^{2} - 10x + 1 = 0 cách trục Oy một khoảng bằng:

    (C):x^{2} + y^{2} - 10x + 1 = 0
ightarrow I(5;0) ightarrow d\lbrack I;Oybrack = 5.

  • Câu 8: Nhận biết

    Hypebol có nửa trục thực là 4, tiêu cự bằng 10 có phương trình chính tắc là:

    Ta có : \left\{ \begin{matrix}
a = 4 \\
2c = 10 \\
b^{2} = c^{2} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 4 \\
c = 5 \\
b = 3 \\
\end{matrix} ight.\ .

    Phương trình chính tắc của Hyperbol là \frac{x^{2}}{16} - \frac{y^{2}}{9} =
1.

  • Câu 9: Nhận biết

    Tính góc tạo bởi giữa hai đường thẳng: d_1:2x+2\sqrt{3}y+4=0d_2: y – 4 =0

     Ta có: \cos ({d_1},{d_2}) = \frac{{\left| {2.0 + 2\sqrt 3 .1} ight|}}{{\sqrt {{2^2} + {{(2\sqrt 3 )}^2}} .\sqrt {{0^2} + {1^2}} }} = \frac{{\sqrt 3 }}{2}. Suy ra góc giữa hai đường thẳng bằng 30^{\circ}.

  • Câu 10: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C): {(x - 1)^2} + {(y + 3)^2} = 16 là:

     Tâm và bán kính đường tròn (C) là: I\left( {1; - 3} ight),R = \sqrt {16}  = 4

  • Câu 11: Nhận biết

    Một vectơ pháp tuyến của đường thẳng d:2x - y - 1 = 0 là:

    Một vectơ pháp tuyến của đường thẳng d:2x
- y - 1 = 0\overrightarrow{n}(2; - 1).

  • Câu 12: Vận dụng

    Cho hyperbol (H):3x^{2} - 4y^{2} = 12 có hai tiêu điểm là F_{1},\ F_{2}. Tìm trên một nhánh của (H) tọa độ hai điểm P,\ Q . Biết rằng \Delta OPQ là tam giác đều.

    Ta có : (H):3x^{2} - 4y^{2} = 12
\Leftrightarrow \frac{x^{2}}{4} - \frac{y^{2}}{3} = 1.

    Gọi P\left( x_{0};y_{0} ight) \in (H)
\Rightarrow Q\left( x_{0}; - y_{0} ight) (Do (H) đối xứng với nhau qua Ox)

    \Delta OPQ đều \Leftrightarrow OP = PQ

    \Leftrightarrow 4y_{0}^{2} = x_{0}^{2} +
y_{0}^{2} \Leftrightarrow x_{0}^{2} = 3y_{0}^{2}. Thay vào (H) ta có:

    9x_{0}^{2} - 4y_{0}^{2} = 12
\Leftrightarrow \left\lbrack \begin{matrix}
y_{0} = \frac{2\sqrt{15}}{5} \\
y_{0} = - \frac{2\sqrt{15}}{5} \\
\end{matrix} ight. \Rightarrow
x_{0} = \pm \frac{6\sqrt{5}}{5}.

    Vậy P\left(
\frac{6\sqrt{5}}{5};\frac{2\sqrt{15}}{5} ight), Q\left( \frac{6\sqrt{5}}{5}; -
\frac{2\sqrt{15}}{5} ight).

  • Câu 13: Thông hiểu

    Cho hypebol (H): \frac{x^{2}}{36}+\frac{y^{2}}{9}=1. Tỉ số giữa độ dài trục ảo và độ dài trục thực bằng:

    Ta có: \frac{x^{2}}{36}+\frac{y^{2}}{9}=1

    Ta có: a = 6; b =3

    => Độ dài trục ảo là 6, độ dài trục thực là 12

    => Tỉ số giữa độ dài trục ảo và độ dài trục thực là: 

    \frac{{2b}}{{2a}} = \frac{6}{{12}} = \frac{1}{2}

  • Câu 14: Nhận biết

    Elip (E):\frac{x^{2}}{36}+\frac{y^{2}}{9}=1 có độ dài trục lớn bằng:

     Ta có: a^2=36 \Rightarrow a=6 \Rightarrow 2a=12.

  • Câu 16: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + (y + 4)^{2} = 5 là:

    (C):x^{2} + (y + 4)^{2} =
5\overset{}{ightarrow}I(0; - 4),\ R = \sqrt{5}.

  • Câu 17: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O(0; 0) và điểm M(a; b)?

     Vectơ chỉ phương của OM là \overrightarrow {OM}=(a;b).

  • Câu 18: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:3x - 2y - 6 = 0d_{2}:6x - 2y - 8 = 0.

    \left\{ \begin{matrix}
d_{1}:3x - 2y - 6 = 0 ightarrow {\overrightarrow{n}}_{1} = (3; - 2) \\
d_{2}:6x - 2y - 8 = 0 ightarrow {\overrightarrow{n}}_{2} = (6; - 2) \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
\frac{3}{6}\boxed{=}\frac{- 2}{- 2} \\
{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2}\boxed{=}0 \\
\end{matrix} ight.\ \overset{ightarrow}{}d_{1},\ \ d_{2} cắt nhau nhưng không vuông góc.

  • Câu 19: Thông hiểu

    Trong mặt phẳng tọa độ Oxy cho đường thẳng \Delta có phương trình tổng quát x - 2y - 5 = 0. Hãy xác định phương trình tham số của \Delta?

    Đường thẳng x - 2y - 5 = 0 đi qua điểm (5;0) và có vectơ pháp tuyến \overrightarrow{n} = (1; -
2)

    Suy ra một vectơ chỉ phương của đường thẳng là \overrightarrow{u} = (2;1)

    Vậy phương trình tham số là: \left\{
\begin{matrix}
x = 5 + 2t \\
y = t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 20: Thông hiểu

    Biết điểm M \in
(H):\frac{x^{2}}{16} - \frac{y^{2}}{9} = 1. Giả sử x_{M} = 8 thì khoảng cách từ điểm M đến các tiêu điểm của (H) bằng bao nhiêu?

    Ta có: M \in (H)x_{M} = 8

    \Rightarrow \frac{8^{2}}{16} -
\frac{{y_{M}}^{2}}{9} = 1 \Rightarrow y_{M} = \pm 3\sqrt{3}

    Có hai điểm M thỏa mãn là: M_{1}\left(
8;3\sqrt{3} ight),M_{2}\left( 8; - 3\sqrt{3} ight)

    Tiêu điểm của (H) là: F_{1}( - 5;0),F_{2}(0;5)

    \Rightarrow \left\{ \begin{matrix}
M_{1}F_{1} = M_{2}F_{1} = 14 \\
M_{1}F_{2} = M_{2}F_{2} = 6 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: 614.

  • Câu 21: Nhận biết

    Phương trình nào dưới đây là phương trình tổng quát của đường thẳng?

    Phương trình tổng quát của đường thẳng là: x = 2y.

  • Câu 22: Vận dụng

    Cho tam giác ABC có phương trình các cạnh AB;AC lần lượt là 5x - 2y + 6 = 0,4x + 7y - 21 = 0 và trực tâm H(1;1). Phương trình tổng quát của cạnh BC là:

    Ta có: A = AB \cap AC nên tọa độ điểm A là nghiệm hệ phương trình:

    \left\{ \begin{matrix}
5x - 2y + 6 = 0 \\
4x + 7y - 21 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 3 \\
\end{matrix} ight.

    \Rightarrow A(0;3) \Rightarrow
\overrightarrow{AH} = (1; - 2)

    Ta có BH\bot AC \Rightarrow BH:7x - 4y +
a = 0

    Điểm H \in BH \Leftrightarrow 7 - 4 + a =
0 \Leftrightarrow a = - 3

    \Rightarrow BH:7x - 4y - 3 =
0

    Ta có: B = AB \cap BH nên tọa độ điểm B là nghiệm hệ phương trình:

    \left\{ \begin{matrix}5x - 2y + 6 = 0 \\7x - 4y - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - 5 \\y = - \dfrac{19}{2} \\\end{matrix} ight.

    \Rightarrow B\left( - 5; - \frac{19}{2}
ight)

    Đường thẳng BC đi qua điểm B nhận \overrightarrow{AH} làm vecto pháp tuyến có phương trình là:

    x + 5 - 2\left( x + \frac{19}{2} ight)
= 0 \Leftrightarrow x - 2y - 14 = 0

  • Câu 23: Nhận biết

    Đường tròn (C):x^{2} + y^{2} - 6x + 2y + 6 = 0 có tâm I và bán kính R lần lượt là:

    Ta có:\begin{matrix}
(C):x^{2} + y^{2} - 6x + 2y + 6 = 0 ightarrow a = \frac{- 6}{- 2} =
3,\ \ b = \frac{2}{- 2} = - 1,\ \ c = 6 \\
ightarrow I(3; - 1),\ R = \sqrt{3^{2} + ( - 1)^{2} - 6} = 2.\  \\
\end{matrix}

  • Câu 24: Vận dụng

    Đường tròn (C) có tâm (1) thuộc đường thẳng \Delta:x = 5 và tiếp xúc với hai đường thẳng d_{1}:3x–y + 3 = 0,d_{2}:x–3y + 9 =
0 có phương trình là:

    Ta có:

    \begin{matrix}
I \in \Delta ightarrow I(5;a) ightarrow R = d\left\lbrack I;d_{1}
ightbrack = d\left\lbrack I;d_{2} ightbrack = \frac{|18 -
a|}{\sqrt{10}} = \frac{|14 - 3a|}{\sqrt{10}} \\
\Leftrightarrow \left\lbrack \begin{matrix}
a = 8 ightarrow I(5;8),\ R = \sqrt{10} \\
a = - 2 ightarrow I(5; - 2),\ R = 2\sqrt{10} \\
\end{matrix} ight.\ . \\
\end{matrix}

    Vậy phương trình các đường tròn:

    (x - 5)^{2} + (y - 8)^{2} = 10 hoặc (x - 5)^{2} + (y + 2)^{2} =
40.

  • Câu 25: Nhận biết

    Nhận xét nào đúng về vị trí tương đối của hai đường thẳng (d):2x + 3y + 15 =
0(\Delta):x - 2y - 3 =
0?

    Ta có:

    Vectơ pháp tuyến của đường thẳng (d):2x +
3y + 15 = 0 là: \overrightarrow{n_{d}} = (2;3)

    Vectơ pháp tuyến của đường thẳng (\Delta):x - 2y + 3 = 0 là: \overrightarrow{n_{\Delta}} = (1; -
2)

    Suy ra \overrightarrow{n_{d}}\overrightarrow{n_{d}} không cùng phương và \overrightarrow{n_{d}}.\overrightarrow{n_{d}} = 2
- 6 = - 4 eq 0

    Suy ra hai đường thẳng cắt nhau và không vuông góc.

  • Câu 26: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;5), B( -
4; - 5)C(4; - 1). Phương trình đường phân giác ngoài của góc A là:

    \left\{ \begin{matrix}
A(1;5),\ B( - 4; - 5) ightarrow AB:2x - y + 3 = 0 \\
A(1;5),\ C(4; - 1) ightarrow AC:2x + y - 7 = 0 \\
\end{matrix} ight.\ .

    Suy ra các đường phân giác góc A là:

    \frac{|2x - y + 3|}{\sqrt{5}} =
\frac{|2x + y - 7|}{\sqrt{5}} \Leftrightarrow \left\lbrack
\begin{matrix}
x - 1 = 0 ightarrow f(x;y) = x - 1 \\
y - 5 = 0 \\
\end{matrix} ight.

    ightarrow \left\{ \begin{matrix}
f\left( B( - 4; - 5) ight) = - 5 < 0 \\
f\left( C(4; - 1) ight) = 3 > 0 \\
\end{matrix} ight.\ .

    Suy ra đường phân giác trong góc Ay - 5 =
0.

  • Câu 27: Nhận biết

    Một đường thẳng có bao nhiêu vectơ pháp tuyến?

     Một đường thẳng có vô số vecto pháp tuyến. Các vecto đó cùng phương với nhau.

  • Câu 28: Thông hiểu

    Tìm tất cả các giá trị của m để hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 2 + 2t \\
y = 1 + mt \\
\end{matrix} ight.d_{2}:4x
- 3y + m = 0 trùng nhau.

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 2 + 2t \\
y = 1 + mt \\
\end{matrix} ight.\  ightarrow A(2;1) \in d_{1},\
{\overrightarrow{u}}_{1} = (2;m) \\
d_{2}:4x - 3y + m = 0 ightarrow {\overrightarrow{u}}_{2} = (3;4) \\
\end{matrix} ight\}

    \overset{d_{1} \equiv
d_{2}}{ightarrow}\left\{ \begin{matrix}
A \in d_{2} \\
\frac{2}{3} = \frac{m}{4} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
5 + m = 0 \\
m = \frac{8}{3} \\
\end{matrix} ight.\  \Leftrightarrow m \in \varnothing.

  • Câu 29: Nhận biết

    Cho hai đường thẳng \left( d_{1} ight):2x + y + 15 = 0\left( d_{2} ight): - 4x - 2y + 3 =
0. Khẳng định nào sau đây đúng?

    Ta có: \frac{2}{- 4} = \frac{1}{- 2} eq
\frac{15}{3} suy ra \left( d_{1}
ight)\left( d_{2}
ight) song song với nhau.

  • Câu 30: Thông hiểu

    Gọi E là tọa độ giao điểm hai đường thẳng \left(
d_{1} ight):x - 3y + 4 = 0\left( d_{2} ight):2x + 3y - 1 = 0. Tính khoảng cách từ E đến đường thẳng (\Delta):3x + y + 4 = 0

    Vì E là giao điểm hai đường thẳng \left(
d_{1} ight):x - 3y + 4 = 0\left( d_{2} ight):2x + 3y - 1 = 0 nên tọa độ điểm E là nghiệm của hệ phương trình: \left\{ \begin{matrix}
x - 3y + 4 = 0 \\
2x + 3y - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 1 \\
\end{matrix} ight.

    Khi đó khoảng cách từ điểm E đến đường thẳng (\Delta):3x + y + 4 = 0 là:

    d(E;\Delta) = \frac{\left| 3.( - 1) + 1
+ 4 ight|}{\sqrt{3^{2} + 1^{2}}} = \frac{\sqrt{10}}{5}

    Vậy khoảng cách cần tìm bằng \frac{\sqrt{10}}{5}.

  • Câu 31: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, đường tròn tâm I(2; - 5) và tiếp xúc với đường thẳng \Delta: - 3x + 4y + 11 = 0 có phương trình là:

    Đường tròn tâm I tiếp xúc với đường thẳng \Delta có bán kính R bằng khoảng cách từ điểm I đến đường thẳng \Delta.

    Suy ra R = d(I;\Delta) = \frac{\left| -
3.2 + 4.( - 5) + 11 ight|}{5} = 3

    Vậy phương trình đường tròn tâm I(2; -
5) và tiếp xúc với đường thẳng \Delta: - 3x + 4y + 11 = 0 có phương trình là: (x - 2)^{2} + (y + 5)^{2} =
9.

  • Câu 32: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có phương trình cạnh ABx - y -
2 = 0, phương trình cạnh ACx + 2y
- 5 = 0. Biết trọng tâm của tam giác là điểm G(3;2) và phương trình đường thẳng BC có dạng x
+ my + n = 0. Tính giá trị biểu thức S = m + n.

    Tọa độ điểm A là nghiệm của hệ phương trình \left\{ \begin{matrix}
x - y - 2 = 0 \\
x + 2y - 5 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = 1 \\
\end{matrix} ight.\  \Leftrightarrow A(3;1)

    Ta có B\left( x_{B};x_{B} - 2
ight);C\left( x_{C};\frac{- x_{C} + 5}{2} ight)

    Gọi M\left( x_{0};y_{0} ight) là trung điểm của BC thì 2\overrightarrow{GM} =
\overrightarrow{AG} nên

    \left\{ \begin{matrix}
2\left( x_{0} - 3 ight) = 0 \\
2\left( y_{0} - 2 ight) = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{0} = 3 \\
y_{0} = \frac{5}{2} \\
\end{matrix} ight.

    Mặt khác \left\{ \begin{matrix}x_{B} + x_{C} = 2x_{0} \\x_{B} - 2 + \dfrac{- x_{C} + 5}{2} = 2y_{0} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{B} + x_{C} = 6 \\2x_{B} - x_{C} = 9 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{B} = 5 \\
x_{C} = 1 \\
\end{matrix} ight.\  \Rightarrow B(5;3),C(1;2)

    \Rightarrow \overrightarrow{BC} = ( - 4;
- 1)

    Suy ra một vectơ pháp tuyến của BC là \overrightarrow{n} = (1; - 4)

    Suy ra phương trình đường thẳng BC là

    1(x - 5) - 4(y - 3) = 0

    \Leftrightarrow x - 4y + 7 =
0

    Suy ra m = - 4;n = 7 \Rightarrow S =
3

  • Câu 33: Thông hiểu

    Cho elip (E) có độ dài trục lớn gấp hai lần độ dài trục nhỏ và tiêu cự bằng 6. Viết phương

    trình của (E)?

    Ta có: a = 2b,2c = 6 \Rightarrow c =
3.

    a^{2} - b^{2} = c^{2} \Rightarrow
4b^{2} - b^{2} = 9 \Rightarrow \left\{ \begin{matrix}
b^{2} = 3 \\
a^{2} = 12 \\
\end{matrix} ight..

    Vậy phương trình (E): \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{12}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{3}}\mathbf{=}\mathbf{1}.

  • Câu 34: Vận dụng

    Tập hợp các điểm cách đường thẳng \Delta:3x - 4y + 2 = 0 một khoảng bằng 2 là hai đường thẳng có phương trình nào sau đây?

    d\left( M(x;y);\Delta ight) = 2
\Leftrightarrow \frac{|3x - 4y + 2|}{5} = 2 \Leftrightarrow \left\lbrack
\begin{matrix}
3x - 4y + 12 = 0 \\
3x - 4y - 8 = 0 \\
\end{matrix} ight.\ .

  • Câu 35: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;4), B(3;2)C(7;3). Viết phương trình tham số của đường trung tuyến CM của tam giác

    \left\{ \begin{matrix}
\mathbf{A}\left( \mathbf{1;4} ight) \\
\mathbf{B}\left( \mathbf{3;2} ight) \\
\end{matrix} ight.\ \mathbf{ightarrow M}\left( \mathbf{2;3}
ight)\mathbf{ightarrow}\overrightarrow{\mathbf{MC}}\mathbf{=}\left(
\mathbf{5;0} ight)\mathbf{=}\mathbf{5}\left( \mathbf{1;0}
ight)\mathbf{ightarrow CM}\mathbf{:}\left\{ \begin{matrix}
\mathbf{x =}\mathbf{7}\mathbf{+ t} \\
\mathbf{y =}\mathbf{3} \\
\end{matrix} ight.\ \left( \mathbf{t}\mathbb{\in R}
ight)\mathbf{.}

  • Câu 36: Nhận biết

    Khái niệm nào sau đây định nghĩa về hypebol?

    Cho F_{1},\ F_{2} cố định với F_{1}F_{2} = 2c,\ (c > 0). Hypebol (H) là tập hợp điểm M sao cho \left| MF_{1} - MF_{2} ight| = 2a với a là một số không đổi và a < c.

  • Câu 37: Thông hiểu

    Một Elip đi qua điểm B(0;6) và có độ dài trục lớn là 4\sqrt{10}. Hãy xác định phương trình chính tắc của elip đó?

    Phương trình chính tắc của elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1;(a,b
> 0)

    Do (E) có độ dài trục lớn là 4\sqrt{10} nên 2a = 4\sqrt{10} \Rightarrow a = 2\sqrt{10}
\Rightarrow a^{2} = 40

    Do (E) đi qua điểm B(0;6) nên \frac{0^{2}}{a^{2}} + \frac{6^{2}}{b^{2}} =
1 \Rightarrow b^{2} = 36

    Vậy phương trình chính tắc của elip là: \frac{x^{2}}{40} + \frac{y^{2}}{36} =
1.

  • Câu 38: Vận dụng

    Cho elip (E) có hai đỉnh trên trục nhỏ cùng với hai tiêu điểm tạo thành một hình vuông. Tỉ số e của tiêu cự với độ dài trục lớn của (E) là bao nhiêu?

    Ta có \widehat{F_{1}B_{1}F_{2}} =
90^{0}\overset{}{ightarrow}OB_{1} =
\frac{F_{1}F_{2}}{2}\overset{ightarrow}{}b = c

    \overset{}{ightarrow}b^{2} =
c^{2}\overset{}{ightarrow}\left( a^{2} - c^{2} ight) =
c^{2}

    \overset{}{ightarrow}\frac{c^{2}}{a^{2}} =
\frac{1}{2}\overset{}{ightarrow}\frac{c}{a} =
\frac{1}{\sqrt{2}}.

    Vậy e = \frac{1}{\sqrt{2}}.

  • Câu 39: Nhận biết

    Elip (E):\frac{x^{2}}{16}+y^{2}=4 có tổng độ dài trục lớn và trục bé bằng:

     Ta có: a^2=16,b^2=1 \Rightarrow a=4,b=1.

    Tổng độ dài trục lớn và bé là: 2a+2b=10.

  • Câu 40: Nhận biết

    Cho đường tròn (C) có phương trình (x + 5)^{2} + (y – 2)^{2} = 25. Đường tròn (C) còn được viết dưới dạng nào trong các dạng dưới đây:

     Ta có: (x + 5)^{2} + (y – 2)^{2} = 25  \Leftrightarrow x^{2} + y^{2} + 10x – 4y + 4 = 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo