Xác định tâm và bán kính đường tròn
.
Ta có:
Suy ra
Vậy đường tròn có tâm và bán kính lần lượt là: .
Xác định tâm và bán kính đường tròn
.
Ta có:
Suy ra
Vậy đường tròn có tâm và bán kính lần lượt là: .
Viết phương trình tiếp tuyến
của đường tròn
, biết tiếp tuyến đi qua điểm
.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có:
Đường thẳng
đi qua điểm
và có vectơ pháp tuyến
có phương trình tham số là:
Khoảng cách từ giao điểm của hai đường thẳng
và
đến đường thẳng
bằng:
Cho đường tròn
và đường thẳng
. Tìm giá trị của tham số m để
cắt
?
Đường tròn (C) có tâm I(m; -2) và R = 3
Để cắt
thì
Vậy thỏa mãn yêu cầu bài toán.
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây đúng?
Khẳng định đúng là: Nếu thì
có các tiêu điểm là
,
.
Trong mặt phẳng tọa độ
cho đường thẳng
có phương trình tổng quát
. Hãy xác định phương trình tham số của
?
Đường thẳng đi qua điểm
và có vectơ pháp tuyến
Suy ra một vectơ chỉ phương của đường thẳng là
Vậy phương trình tham số là: .
Biết rằng có đúng hai giá trị của tham số
để đường thẳng
tạo với đường thẳng
một góc
. Tổng hai giá trị của
bằng:
Phương trình nào dưới đây là phương trình tổng quát của đường thẳng?
Phương trình tổng quát của đường thẳng là: .
Tìm
để ba đường thẳng
,
và
đồng quy?
Cho tọa độ hai điểm
. Viết phương trình chính tắc của elip có tâm là gốc tọa độ và đi qua hai điểm
?
Gọi phương trình chính tắc của elip là:
Do elip đi qua hai điểm nên ta có hệ phương trình:
Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là:
Lập phương trình chính tắc của elip biết độ dài trục lớn hơn độ dài trục nhỏ 4 đơn vị, độ dài trục nhỏ hơn độ dài tiêu cự 4 đơn vị.
Elip có độ dài trục lớn hơn độ dài trục nhỏ 4 đơn vị
.
Elip có độ dài trục nhỏ hơn độ dài tiêu cự 4 đơn vị
.
Ta có
Phương trình chính tắc của Elip là .
Đường tròn
đi qua điểm
và tiếp xúc với đường thẳng
tại
. Phương trình của đường tròn
là:
Tâm I của đường tròn nằm trên đường thẳng qua M vuông góc với là:
Ta có:
Xét vị trí tương đối của hai đường thẳng
và
.
Xét vị trí tương đối của hai đường thẳng
và
.
cắt nhau nhưng không vuông góc.
Với giá trị nào của
thì hai đường thẳng
và
trùng nhau?
Đường tròn (C):
có đường kính bằng bao nhiêu?
Tâm . Do đó
.
Do đó đường kính bằng .
Cho elip
. Diện tích hình chữ nhật cơ sở của
là
Độ dài trục lớn: .
Độ dài trục bé: .
Diện tích hình chữ nhật cơ sở của là:
.
Trong mặt phẳng tọa độ Oxy, cho ba điểm
với m là tham số. Tìm giá trị của tham số m để ba điểm
thẳng hàng?
Ta có:
Ba điểm A, B, C thẳng hàng khi và chỉ khi cùng phương với nhau.
Điều đó xảy ra khi và chỉ khi
Vậy m = 0 thì ba điểm A, B, C thẳng hàng.
Cho hình elip có độ dài trục lớn và độ dài trục bé lần lượt là
. Vẽ một hình chữ nhật nội tiếp elip đã cho. Diện tích lớn nhất của hình chữ nhật là:
Hình vẽ minh họa
Phương trình chính tắc của elip có dạng .
Ta có:
Chọn là đỉnh hình chữ nhật và
. Ta có:
Diện tích hình chữ nhật là:
Phương trình chính tắc của Elip có độ dài trục lớn bằng
, độ dài trục nhỏ bằng
là:
+ Phương trình Elip dạng:
+ Do có độ dài trục lớn bằng .
+ Do có độ dài trục nhỏ bằng .
+ Suy ra phương trình là .
Cho hình elip có phương trình
. Hình elip có tiêu cự trục lớn bằng:
Ta có:
Độ dài trục lớn là:
Đường thẳng nào song song với đường thẳng
?
Đường thẳng song song với đường thẳng là:
.
Viết phương trình tham số của đường thẳng
đi qua điểm
và vuông góc với trục
.
Đường tròn đường kính
với
có phương trình là:
Với giá trị nào của
thì hai đường thẳng
và
vuông góc?
Nhận xét nào đúng về vị trí tương đối của hai đường thẳng
và
?
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Suy ra và
không cùng phương và
Suy ra hai đường thẳng cắt nhau và không vuông góc.
Trong mặt phẳng với hệ tọa độ
, cho hai đường thẳng
và
. Phương trình đường phân giác góc nhọn tạo bởi hai đường thẳng
và
là:
Các đường phân giác của các góc tạo bởi và
là:
Gọi
Gọi là hình chiếu của
lên
Ta có: suy ra
Suy ra là đường phân giác góc tù, suy ra đường phân giác góc nhọn là
.
Chọn mệnh đề sai? Đường thẳng
được xác định khi biết
Mệnh đề sai là: “một vectơ pháp tuyến hoặc một vectơ chỉ phương.”
Elip có một tiêu điểm
và tích độ dài trục lớn với trục bé bằng
. Phương trình chính tắc của elip là:
Gọi (E) có dạng .
Theo giả thiết ta có: .
Vậy (E) cần tìm là
Trong mặt phẳng tọa độ
, cho đường thẳng
có phương trình
. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng đã cho?
Một vectơ pháp tuyến của đường thẳng là:
.
Tìm
để hai đường thẳng
và
vuông góc với nhau?
Ta có:
Đường tròn ngoại tiếp hình chữ nhật cơ sở của hypebol
có có phương trình là:
Ta có: . Tọa độ các đỉnh hình chữ nhật cở sở là
,
,
,
Dường tròn ngoại tiếp hình chữ nhật cơ sở có tâm
bán kính
.
Phương trình đường tròn là
Elip
có độ dài trục lớn bằng:
Ta có: .
Tọa độ tâm I và bán kính R của đường tròn có phương trình:
lần lượt là:
Tâm , bán kính
.
Công thức nào dưới đây là công thức tính khoảng cách từ một điểm
đến đường thẳng
?
Công thức tính khoảng cách từ một điểm đến đường thẳng
là:
Đường tròn
đi qua hai điểm
,
và có tâm
thuộc trục hoành có phương trình là:
.
Vậy đường tròn cần tìm là:
Tọa độ tâm
và bán kính
của đường tròn
là:
Ta có:
Một vectơ pháp tuyến của đường thẳng
là:
Một vectơ pháp tuyến của đường thẳng là
.
Đường thẳng
đi qua điểm
và song song với đường thẳng
có phương trình tổng quát là:
Vậy