Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình elip có phương trình \frac{x^{2}}{25} + \frac{y^{2}}{16} = 1. Hình elip có độ dài tiêu cự bằng:

    Ta có: \frac{x^{2}}{25} +
\frac{y^{2}}{16} = 1 \Rightarrow \left\{ \begin{matrix}
a = 5 \\
b = 4 \\
\end{matrix} ight.

    Độ dài tiêu cự là: 2c = 2\sqrt{a^{2} -
b^{2}} = 6

  • Câu 2: Thông hiểu

    Đường tròn (C) có tâm I (– 2; 3) và đi qua M (2; – 3) có phương trình là:

     Ta có: R = IM = \sqrt {{{(2 + 2)}^2} + {{( - 3 - 3)}^2}}  = 2\sqrt {13}.

    Phương trình đường tròn: {(x + 2)^2} + {(y - 3)^2} = 52 \Leftrightarrowx^{2}+y^{2}+4x-6y-39=0.

  • Câu 3: Thông hiểu

    Cho hai điểm A(–2; 3) và B(4; –1). Phương trình đường trung trực của đoạn thẳng AB là:

    Gọi d là đường trung trực của đoạn thẳng AB.

    Gọi M là trung điểm của AB với A(–2; 3) và B(4; –1).

    Ta suy ra

    \left\{ {\begin{array}{*{20}{l}}  {{x_M} = \dfrac{{{x_A} + {x_B}}}{2} = \dfrac{{ - 2 + 4}}{2} = 1} \\   {{y_M} = \dfrac{{{y_A} + {y_B}}}{2} = \dfrac{{3 - 1}}{2} = 1} \end{array}} ight.

    Khi đó ta có M(1; 1).

    Với A(–2; 3) và B(4; –1) ta có: \overrightarrow {AB}  = \left( {6; - 4} ight)

    Đường thẳng d là đường trung trực của AB nên đường thẳng d đi qua trung điểm M(1; 1) của AB và nhận \overrightarrow {AB}  = \left( {6; - 4} ight) làm vectơ pháp tuyến.

    Suy ra phương trình tổng quát của d là:

    \begin{array}{*{20}{l}}  {6\left( {x-1} ight)--4\left( {y-1} ight) = 0} \\   \begin{gathered}   \Leftrightarrow 6x-4y-2 = 0 \hfill \\   \Leftrightarrow 3x-2y-1 = 0 \hfill \\ \end{gathered}  \end{array}

  • Câu 4: Nhận biết

    Cho parabol (P):y = 2x^{2} + x - 3. Giao điểm của (P) với trục hoành tại hai điểm A\left( x_{1};y_{1} ight),B\left(
x_{2};y_{2} ight). Khẳng định nào sau đây đúng?

    Phương trình hoành độ giao điểm là nghiệm của phương trình:

    2x^{2} + x - 3 = 0

    Áp dụng định lí Vi – et ta có:

    x_{1} + x_{2} = - \frac{b}{a} = -
\frac{1}{2}

  • Câu 5: Thông hiểu

    Đường tròn đường kính AB với A(1;1),B(7;5) có phương trình là:

    (C):\left\{ \begin{matrix}
I(4;3) \\
R = IA = \sqrt{(4 - 1)^{2} + (3 - 1)^{2}} = \sqrt{13} \\
\end{matrix} ight.

    ightarrow (C):(x - 4)^{2} + (y - 3)^{2}
= 13

    \Leftrightarrow x^{2} + y^{2} - 8x - 6y
+ 12 = 0.

  • Câu 6: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho tọa độ điểm P( - 2;1) và hai đường thẳng \left( d_{1} ight):x + 3y + 8 = 0; \left( d_{2} ight):3x - 4y + 10 =
0. Một đường tròn (C) có tâm I(a;b) thuộc đường thẳng \left( d_{1} ight), đi qua điểm P và tiếp xúc với \left( d_{2} ight). Kết luận nào sau đây đúng?

    Ta có:

    I(a;b) \in \left( d_{1} ight)
\Rightarrow I( - 3b - 8;b)

    Lại có đường tròn tâm I đi qua P và tiếp xúc với đường thẳng \left( d_{2} ight) nên

    IP = d(I;\Delta')

    \Leftrightarrow \sqrt{( - 2 + 3b +
8)^{2} + (1 - b)^{2}} = \frac{\left| 3( - 3b - 8) - 4b + 10
ight|}{\sqrt{3^{2} + ( - 4)^{2}}}

    \Leftrightarrow 25\left( 10b^{2} + 34b +
37 ight) = | - 13b - 14|^{2}

    \Leftrightarrow (9b + 27)^{2} = 0
\Leftrightarrow b = - 3 \Rightarrow a = 1

    \Rightarrow a - b = 4

    Vậy khẳng định đúng là: a - b =
4.

  • Câu 7: Nhận biết

    Phương trình nào dưới đây đi qua hai điểm A(2;0),B(0; - 3) là:

    Phương trình đường thẳng đi qua hai điểm A(2;0),B(0; - 3) là: \frac{x}{2} + \frac{y}{- 3} = 1 hay \frac{x}{2} - \frac{y}{3} = 1.

  • Câu 8: Thông hiểu

    Cho hypebol (H): 4x^{2} – y^{2} = 1. Khẳng định nào sau đây đúng?

    Ta có:

    \begin{matrix}  4{x^2} - {y^2} = 1 \hfill \\   \Leftrightarrow \dfrac{{{x^2}}}{{\dfrac{1}{4}}} - \dfrac{{{y^2}}}{1} = 1 \hfill \\   \Leftrightarrow \dfrac{{{x^2}}}{{{{\left( {\dfrac{1}{2}} ight)}^2}}} - \dfrac{{{y^2}}}{1} = 1 \hfill \\   \Rightarrow a = \dfrac{1}{2};b = 1 \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \dfrac{{\sqrt 5 }}{2} \hfill \\ \end{matrix}

    Vậy Hypebol (H) có tiêu cự 2c = \sqrt 5  e \frac{{\sqrt 5 }}{2}

    => Hai tiêu điểm của (H) là: {F_1} = \left( { - \frac{{\sqrt 5 }}{2};0} ight);{F_2} = \left( {\frac{{\sqrt 5 }}{2};0} ight)

    Ta có trục thực là: {A_1}{A_2} = 2a = 2.\frac{1}{2} = 1

    Trục ảo là: 2b = 2.1 = 2 e \frac{1}{2}

    Vậy khẳng định đúng là:" Hypebol có trục thực bằng 1".

  • Câu 9: Nhận biết

    Đường thẳng nào dưới đây là đường chuẩn của Hypebol \frac{x^{2}}{16} - \frac{y^{2}}{12}
= 1?

    Ta có : \left\{ \begin{matrix}
a^{2} = 16 \\
b^{2} = 12 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 4 \\
b = 2\sqrt{3} \\
c = 2 \\
\end{matrix} ight..

    Tâm sai e = \frac{c}{a} = 2. Đường chuẩn : x + 2 = 0x - 2 = 0.

  • Câu 10: Vận dụng

    Cho đường thẳng (\Delta):x + (a - 1)y - a = 0 và đường tròn (C):x^{2} + y^{2} - 2x + 4y + 2 =
0. Tìm điều kiện của tham số a để (d) tiếp xúc với (C)?

    Đường tròn (C) có tâm I(1; - 2) và bán kính R = \sqrt{1^{2} + 2^{2} - 2} =
\sqrt{3}

    Để đường thẳng (\Delta)là tiếp tuyến của đường tròn (C) thì

    d(I;\Delta) = R \Leftrightarrow
\frac{\left| 1 - 2(a - 1) - a ight|}{\sqrt{1 + (a - 1)^{2}}} =
\sqrt{3}

    \Leftrightarrow \frac{|3 -
3a|}{\sqrt{a^{2} - 2a + 2}} = \sqrt{3}

    \Leftrightarrow |3 - 3a| =
\sqrt{3}.\sqrt{a^{2} - 2a + 2}

    \Leftrightarrow (3 - 3a)^{2} = 3a^{2} -
6a + 6

    \Leftrightarrow 2a^{2} - 4a + 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}a = 1 + \dfrac{1}{\sqrt{2}} \\a = 1 - \dfrac{1}{\sqrt{2}} \\\end{matrix} ight.

    Vậy a = 1 \pm \frac{1}{\sqrt{2}} thỏa mãn yêu cầu bài toán.

  • Câu 11: Nhận biết

    Tìm phương trình chính tắc của parabol (P) biết (P) có tiêu điểm là F(0\ ;\ 5).

    Gọi phương trình chính tắc của (P) là: y^{2}= 2px.

    Do tọa độ tiêu điểm F(0\ ;\ 5) nên \frac{p}{2} = 5 \Leftrightarrow p =10.

    Vậy phương trình của (P) là: y^{2} = 20x.

  • Câu 13: Vận dụng

    Viết phương trình tổng quát của đường thẳng \Delta đi qua giao điểm của hai đường thẳng d_{1}:x + 3y - 1 = 0, d_{2}:x - 3y - 5 = 0 và vuông góc với đường thẳng d_{3}:2x - y + 7 =
0.

    \left\{ \begin{matrix}
d_{1}:x + 3y - 1 = 0 \\
d_{2}:x - 3y - 5 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = - \frac{2}{3} \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A\left( 3; -
\frac{2}{3} ight). Ta có

    \left\{ \begin{matrix}
A \in d \\
d\bot d_{3}:2x - y + 7 = 0 \\
\end{matrix} ight. ightarrow
\left\{ \begin{matrix}
A \in d \\
d:x + 2y + c = 0 \\
\end{matrix} ight. ightarrow
3 + 2.\left( - \frac{2}{3} ight) + c = 0 \Leftrightarrow c = -
\frac{5}{3}.

    Vậy d:x + 2y - \frac{5}{3} = 0
\Leftrightarrow d:3x + 6y - 5 = 0.

  • Câu 14: Vận dụng

    Tập hợp các điểm cách đường thẳng \Delta:3x - 4y + 2 = 0 một khoảng bằng 2 là hai đường thẳng có phương trình nào sau đây?

    d\left( M(x;y);\Delta ight) = 2
\Leftrightarrow \frac{|3x - 4y + 2|}{5} = 2 \Leftrightarrow \left\lbrack
\begin{matrix}
3x - 4y + 12 = 0 \\
3x - 4y - 8 = 0 \\
\end{matrix} ight.\ .

  • Câu 15: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm A(2; - 1)B(2;5).

    \left\{ \begin{matrix}A(2; - 1) \in AB \\{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = (0;6) \\\end{matrix} ight.\ \overset{ightarrow}{}AB:\left\{ \begin{matrix}x = 2 \\y = - 1 + 6t \\\end{matrix} ight.\ \ \ \left( t\mathbb{\in R} ight).

  • Câu 16: Nhận biết

    Điền vào chỗ trống: Vectơ có giá song song hoặc trùng với đường thẳng thì vectơ được gọi là … của đường thẳng đó.

    Vectơ \overrightarrow u có giá song song hoặc trùng với đường thẳng thì \overrightarrow u được gọi là vectơ chỉ phương của đường thẳng đó.

  • Câu 17: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng \left\{\begin{matrix}x=2\\ y=-1+6t\end{matrix}ight.?

     Vectơ chỉ phương của đường thẳng trên là: (0;6) \Rightarrow \overrightarrow u  = (0;1).

  • Câu 18: Vận dụng

    Cho phương trình x^{2} + y^{2} - 2(m + 1)x + 4y - 1 =
0(1). Với giá trị nào của m để (1) là phương trình đường tròn có bán kính nhỏ nhất?

    Ta có: x^{2} + y^{2} - 2(m + 1)x + 4y - 1
= 0 ightarrow \left\{ \begin{matrix}
a = m + 1 \\
b = - 2 \\
c = - 1 \\
\end{matrix} ight.

    ightarrow R^{2} = a^{2} + b^{2} - c =
(m + 1)^{2} + 5 ightarrow R_{\min} = 5 \Leftrightarrow m = -
1.

  • Câu 19: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d:x - 2y + 3 = 0. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng d?

    Ta có: Vectơ pháp tuyến của đường thẳng \Delta là: \overrightarrow{n}(1; - 2).

  • Câu 20: Nhận biết

    Tính khoảng cách từ điểm M(2;4) đường thẳng (\Delta):3x + 4y + 3 = 0?

    Ta có khoảng cách từ điểm M đến đường thẳng (\Delta):3x + 4y + 3 = 0 là:

    d(M;\Delta) = \frac{|3.2 + 4.4 +
3|}{\sqrt{3^{2} + 4^{2}}} = 5

    Vậy khoảng cách cần tìm bằng 5.

  • Câu 21: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng (\Delta):x + y - 1 = 0(\Delta'):\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Khẳng định nào sau đây đúng?

    Ta có:

    (\Delta):x + y - 1 = 0 có vectơ pháp tuyến là \overrightarrow{n_{\Delta}} =
(1;1)

    (\Delta'):\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có vectơ chỉ phương là \overrightarrow{u_{\Delta'}} = (2; -
1) nên (\Delta') có vectơ pháp tuyến là \overrightarrow{n_{\Delta'}} =
(1;2)

    \frac{1}{1} eq \frac{1}{2} nên (\Delta) cắt (\Delta').

  • Câu 22: Nhận biết

    Đường thẳng nào sau đây song song với đường thẳng (d):2x + 3y - 1 = 0?

    Đường thẳng (d):2x + 3y - 1 = 0 song song với đường thẳng 2x + 3y + 5 =
0\frac{2}{2} = \frac{3}{3} eq
\frac{- 1}{5}.

  • Câu 24: Nhận biết

    Tính góc tạo bởi giữa hai đường thẳng: d_1:2x+2\sqrt{3}y+4=0d_2: y – 4 =0

     Ta có: \cos ({d_1},{d_2}) = \frac{{\left| {2.0 + 2\sqrt 3 .1} ight|}}{{\sqrt {{2^2} + {{(2\sqrt 3 )}^2}} .\sqrt {{0^2} + {1^2}} }} = \frac{{\sqrt 3 }}{2}. Suy ra góc giữa hai đường thẳng bằng 30^{\circ}.

  • Câu 25: Nhận biết

    Biết đường tròn (C) có tâm I(3; - 2) tiếp xúc với đường thẳng (d'):x - 5y + 1 = 0. Tính bán kính đường tròn (C)?

    Bán kính đường tròn là khoảng cách từ tâm I đến đường thẳng (d):

    Suy ra R = d\left( I,(d') ight) =\frac{\left| 3 - 5.( - 2) + 1 ight|}{\sqrt{1^{2} + ( - 5)^{2}}} =\frac{14}{\sqrt{26}}.

  • Câu 26: Vận dụng

    Tìm m để ba đường thẳng d_{1}:2x + y–1 =
0, d_{2}:x + 2y + 1 = 0d_{3}:mx–y–7 = 0 đồng quy?

    \left\{ \begin{matrix}
d_{1}:2x + y–1 = 0 \\
d_{2}:x + 2y + 1 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = - 1 \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A(1; - 1) \in
d_{3} \Leftrightarrow m + 1 - 7 = 0
\Leftrightarrow m = 6.

  • Câu 27: Thông hiểu

    Góc tạo bởi hai đường thẳng nào dưới đây bằng 90°.

     Xét hai đường thẳng d_1: 6x – 5y + 4 = 0d_2:\left\{\begin{matrix}x=10-6t\\ y=1+5t\end{matrix}ight..

    Ta có: \overrightarrow {{n_1}}  = (6; - 5);\overrightarrow {{n_2}}  = (5;6)

    \overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 6.5 - 5.6 = 0 nên suy ra hai đường thẳng vuông góc với nhau.

  • Câu 28: Nhận biết

    Xét vị trí tương đối của hai đường thẳng: d_1: 3x – 2y – 3 = 0d_2: 6x – 2y – 8 = 0.

     Vì \frac{3}{6} e \frac{{ - 2}}{{ - 2}} nên hai đường thẳng cắt nhau.

  • Câu 29: Vận dụng

    Đường thẳng d:3x
+ 4y - 12 = 0 cắt elip (E):\frac{x^{2}}{16} + \frac{y^{2}}{9} =
1 tại hai điểm phân biệt MN. Hãy tính độ dài đoạn thẳng MN.

    Tọa độ giao điểm của đường thẳng d(E) là nghiệm của hệ

    \left\{ \begin{matrix}
3x + 4y - 12 = 0 \\
\frac{x^{2}}{16} + \frac{y^{2}}{9} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 3 - \frac{3x}{4} \\
\frac{x^{2}}{16} + \frac{\left( 3 - \frac{3x}{4} ight)^{2}}{9} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 3 - \frac{3x}{4} \\
x^{2} - 4x = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 3 - \frac{3x}{4} \\
\left\lbrack \begin{matrix}
x = 0 \\
x = 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\ .

    Vậy tọa độ giao điểm là \left\{
\begin{matrix}
M(0;\ 3) \\
N(4;\ 0) \\
\end{matrix} ight.\  \Rightarrow MN = 5.

  • Câu 30: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + (y + 4)^{2} = 5 là:

    (C):x^{2} + (y + 4)^{2} =
5\overset{}{ightarrow}I(0; - 4),\ R = \sqrt{5}.

  • Câu 31: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):(x - 1)^{2} + (y + 3)^{2} = 16 là:

    (C):(x - 1)^{2} + (y + 3)^{2} =
16\overset{}{ightarrow}I(1; - 3),\ \ R = \sqrt{16} = 4.

  • Câu 32: Thông hiểu

    Cho phương trình Hypebol \frac{x^{2}}{16}-\frac{y^{2}}{9}=1. Độ dài trục thực của Hypebol đó là

    Ta có: \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 ta có: a = 4; b = 3

    => Độ dài trục thực của Hypebol đó là 2a = 8

  • Câu 33: Nhận biết

    Cho hai đường thẳng (\Delta):a_{1}x + b_{1}y + c = 0(\Delta'):a_{2}x + b_{2}y + c = 0 với {a_{1}}^{2} + {b_{1}}^{2} > 0;{a_{2}}^{2}
+ {b_{2}}^{2} > 0. Nếu \left\{
\begin{matrix}
a_{1}x + b_{1}y + c = 0 \\
a_{2}x + b_{2}y + c = 0 \\
\end{matrix} ight. vô nghiệm thì vị trí tương đối của hai đường thẳng là:

    Số giao điểm của hai đường thẳng đã cho là nghiệm của hệ phương trình \left\{ \begin{matrix}
a_{1}x + b_{1}y + c = 0 \\
a_{2}x + b_{2}y + c = 0 \\
\end{matrix} ight..

    Nếu hệ phương trình trên vô nghiệm thì hai đường thẳng không có điểm chung, nghĩa là hai đường thẳng song song với nhau.

  • Câu 34: Thông hiểu

    Một elip có diện tích hình chữ nhật cơ sở là 80, độ dài tiêu cự là 6. Tâm sai của elip đó là

    Diện tích hình chữ nhật cơ sở là 2a.2b =
80, suy ra a.b = 20\ \ \
(1).

    Lại có 2c = 6 \Rightarrow c = 3
\Rightarrow a^{2} - b^{2} = c^{2} = 9\ \ \ \ (2).

    Từ (1) \Rightarrow b =
\frac{20}{a}, thay vào (2) ta được:

    a^{2} - \frac{400}{a^{2}} = 9 \Rightarrow
a^{4} - 9a^{2} - 400 = 0 \Leftrightarrow a^{2} = 25 \Rightarrow a =
5.

    Do đó tâm sai e =
\frac{3}{5}.

  • Câu 35: Thông hiểu

    Phương trình nào sau đây là phương trình tổng quát của đường thẳng d:\left\{
\begin{matrix}
x = 3 - 5t \\
y = 1 + 4t \\
\end{matrix} ight.?

    Ta có: d:\left\{ \begin{matrix}
x = 3 - 5t \\
y = 1 + 4t \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
A(3;1) \in d \\
{\overrightarrow{u}}_{d} = ( - 5;4) ightarrow {\overrightarrow{n}}_{d}
= (4;5) \\
\end{matrix} ight.\ \overset{ightarrow}{}d:4(x - 3) + 5(y - 1) =
0

    \Leftrightarrow d:4x + 5y - 17 =
0.

  • Câu 36: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:2x + y + 4 - m = 0d_{2}:(m + 3)x + y + 2m - 1 = 0 song song?

    Với m = 4\overset{}{ightarrow}\left\{\begin{matrix}d_{1}:2x + y = 0 \\d_{2}:7x + y + 7 = 0 \\\end{matrix} ight.\ \overset{}{ightarrow}d_{1} \cap d_{2}eq \varnothing\overset{}{ightarrow} loại m = 4.

    Với meq 4 thì

    \left\{ \begin{matrix}d_{1}:2x + y + 4 - m = 0 \\d_{2}:(m + 3)x + y - 2m - 1 = 0 \\\end{matrix} ight.\ \overset{d_{1}||d_{2}}{ightarrow}\frac{m + 3}{2}= \frac{1}{1}eq \frac{- 2m - 1}{4 - m}

    \Leftrightarrow \left\{ \begin{matrix}m = - 1 \\meq  - 5 \\\end{matrix} ight.\  \Leftrightarrow m = - 1.

  • Câu 37: Thông hiểu

    Cho đường thẳng (d):3x - 4y + 2 = 0 và đường tròn (C):x^{2} + (y + 4)^{2} = 25. Khẳng định nào sau đây đúng khi nói về vị trí tương đối của đường thẳng (d) và đường tròn (C)?

    Ta có: (C):x^{2} + (y + 4)^{2} = 25
\Rightarrow \left\{ \begin{matrix}
I(0; - 4) \\
R = 5 \\
\end{matrix} ight.

    Lại có khoảng cách từ tâm I đến đường thẳng d là:

    d\left( I;(d) ight) = \frac{\left| 3.0
- 4.( - 4) + 2 ight|}{\sqrt{3^{2} + 4^{2}}} = \frac{18}{5} <
R

    Vậy đường thẳng (d) cắt đường tròn (C) là khẳng định đúng.

  • Câu 38: Nhận biết

    Cho phương trình x^{2} + y^{2} + 2mx + 2(m–1)y + 2m^{2} =
0(1). Tìm điều kiện của m để (1) là phương trình đường tròn.

    Ta có: x^{2} + y^{2} + 2mx + 2(m–1)y +
2m^{2} = 0

    ightarrow \left\{ \begin{matrix}
a = - m \\
b = 1 - m \\
c = 2m^{2} \\
\end{matrix} ight.\  ightarrow a^{2} + b^{2} - c > 0
\Leftrightarrow - 2m + 1 > 0 \Leftrightarrow m <
\frac{1}{2}.

  • Câu 39: Vận dụng

    Ông Hoàng có một mảnh vườn hình Elip có chiều dài trục lớn và trục nhỏ lần lượt là 60m30m. Ông chia mảnh vườn ra làm hai nửa bằng một đường tròn tiếp xúc trong với Elip để làm mục đích sử dụng khác nhau (xem hình vẽ). Nửa bên trong đường tròn ông trồng cây lâu năm, nửa bên ngoài đường tròn ông trồng hoa màu. Tính tỉ số diện tích T giữa phần trồng cây lâu năm so với diện tích trồng hoa màu. Biết diện tích hình Elip được tính theo công thức S = \pi
ab, với a, b lần lượt là nửa độ dài trục lớn và nửa độ dài trục nhỏ. Biết độ rộng của đường Elip là không đáng kể.

    Theo đề ta có: Diện tích (E)là: S_{(E)} = \pi.a.b = 30.15.\pi = 450\pi,\
\left( m^{2} ight)

    Vì đường tròn tiếp xúc trong, nên sẽ tiếp xúc tại đỉnh của trục nhỏ, suy ra bán kính đường tròn: R =
15m. Diện tích hình tròn (C)phần trồng cây lâu năm là: S_{(C)} = \pi.R^{2} = 15^{2}.\pi = 225\pi,\ \left(
m^{2} ight)

    Suy ra diện tích phần trồng hoa màu là: S
= S_{(E)} - S_{(C)} = 225\pi,\ \left( m^{2} ight) \Rightarrow T =
1.

  • Câu 40: Nhận biết

    Cho elip có phương trình chính tắc \frac{x^{2}}{9} + \frac{y^{2}}{4} = 1. Khi đó độ dài trục lớn và trục nhỏ của elip lần lượt là:

    Ta có: \left\{ \begin{matrix}
a^{2} = 9 \\
b^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 2 \\
\end{matrix} ight.

    Độ dài trục lớn AA_{1} = 2a =
6

    Độ dài trục bé BB_{1} = 2b =
4

    Vậy độ dài trục lớn và trục nhỏ của elip lần lượt là: 6;4

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo