Có bao nhiêu đường thẳng đi qua điểm
tiếp xúc với đường tròn
?
Đường tròn (C) có tâm có đúng 2 tiếp tuyến của đường tròn kẻ từ N.
Có bao nhiêu đường thẳng đi qua điểm
tiếp xúc với đường tròn
?
Đường tròn (C) có tâm có đúng 2 tiếp tuyến của đường tròn kẻ từ N.
Cho hình elip có phương trình
. Hình elip có độ dài tiêu cự bằng:
Ta có:
Độ dài tiêu cự là:
Đường Elip
có tiêu cự bằng
Elip có
,
suy ra
.
Vậy tiêu cự .
Các cặp đường thẳng nào sau đây vuông góc với nhau?
(i)
loại.
(ii)
Chọn đáp án này.
Tương tự, kiểm tra và loại các đáp án còn lại.
Tọa độ tâm
và bán kính
của đường tròn
là:
Cho phương trình đường thẳng
và tọa độ điểm
. Xác định tọa độ điểm
đối xứng với điểm
qua đường thẳng
?
Gọi H là chân đường cao kẻ từ điểm A đến đường thẳng (d) suy ra H(h; 5-2h)
Ta có:
Vì
A’ là điểm đối xứng của A qua đường thẳng (d).
Suy ra H là trung điểm của AA’.
Suy ra tọa độ điểm A’ là:
Vậy tọa độ điểm
Elip
có tổng độ dài trục lớn và trục bé bằng:
Ta có: .
Tổng độ dài trục lớn và bé là: .
Xác định giá trị của tham số m để hai đường thẳng
và
song song với nhau?
Điều kiện để là:
Với
Ta có:
Với ta có:
(đúng)
Với ta có:
(đúng)
Vậy thỏa mãn yêu cầu đề bài.
Cho đường tròn (C):
. Gọi
lần lượt là tiếp tuyến của đường tròn
tại điểm
. Tọa độ giao điểm của
và
là:
Ta có:
Phương trình tiếp tuyến của đường tròn tại M(3; 2) là:
Phương trình tiếp tuyến của đường tròn tại N(1; 0) là:
=> Giao điểm của hai tiếp tuyến là H(3; 0)
Cho bốn điểm
,
,
và
. Xác định vị trí tương đối của hai đường thẳng
và
.
cắt nhau nhưng không vuông góc.
Trong mặt phẳng tọa độ
, cho hình chữ nhật
có điểm
. Gọi
đối xứng với điểm
qua
, điểm
là hình chiếu vuông góc của
lên đường thẳng
. Biết rằng tọa độ điểm
thuộc đường thẳng
. Khi đó:
Ta có: ADB’C là hình bình hành
Mà
Tam giác vuông cân tại I
là hình thang cân =>
đi qua điểm
và có vecto pháp tuyến
Phương trình CI:
Nếu đường thẳng
đi qua gốc tọa độ và song song với đường thẳng
thì
có phương trình tổng quát là:
Một vectơ pháp tuyến của là:
Mặt khác đi qua gốc tọa độ hay đi qua điểm
Vậy phương trình đường thẳng là:
Vậy đáp án đúng là: .
Một đường thẳng có bao nhiêu vectơ pháp tuyến?
Một đường thẳng có vô số vectơ pháp tuyến.
Tính góc tạo bởi giữa hai đường thẳng:
và
.
Ta có: . Suy ra góc giữa hai đường thẳng bằng
.
Cặp đường thẳng nào dưới đây là phân giác của các góc hợp bởi đường thẳng
và trục hoành.
Điểm thuộc đường phân giác của các góc tạo bởi
khi và chỉ khi
Phương trình nào dưới đây đi qua hai điểm
là:
Phương trình đường thẳng đi qua hai điểm là:
hay
.
Phương trình chính tắc của đường elip với
,
là
Phương trình chính tắc .
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Loại đáp án vì không có dạng
Xét đáp án
loại.
Xét đáp án
loại.
Xét đáp án
Chọn đáp án này.
Hãy viết phương trình chính tắc của elip nếu nó đi qua điểm
và tỉ số của tiêu cự với độ dài trục lớn bằng
.
Gọi phương trình chính tắc của Elip là với
Elip đi qua điểm
suy ra
Tỉ số của tiêu cực với độ dài trục lớn bằng
suy ra
Kết hợp với điều kiện ta được
Từ suy ra
Vậy phương trình cần tìm là
Phương trình chính tắc của hypebol có
gấp đôi
và đi qua điểm
là:
Ta có: .
Phương trình chính tắc: .
Vì thuộc hypebol nên:
.
Do đó, phương trình chính tắc: .
Với giá trị nào của
thì hai đường thẳng
và
song song?
Ta có:
Chọn
Tính khoảng cách từ điểm
đến đường thẳng ![]()
Khoảng cách từ điểm C đến đường thẳng là:
Vậy khoảng cách cần tìm bằng 1.
Xét vị trí tương đối của hai đường thẳng:
và
.
Vì nên hai đường thẳng song song.
Cho elip (E):
. Nếu điểm M nằm trên (E) có hoành độ bằng –13 thì độ dài
và
lần lượt là:
Phương trình elip (E) có dạng
Ta có:
Khi đó:
Với ta có:
Tương tự ta có:
Theo bài ra ta có:
Trên hệ trục tọa độ cho đường tròn
. Trong các điểm sau điểm nào nằm trên đường tròn đã cho?
Thay tọa độ điểm vào phương trình đường tròn
ta được:
Vậy điểm thuộc đường tròn là .
Trong các phương trình sau, phương trình nào không phải là phương trình của đường tròn?
Xét đáp án
Chọn đáp án này.
Các đáp án còn lại các hệ số thỏa mãn
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x + 3y + 5 = 0 và A(1; –3). Khoảng cách từ điểm A đến đường thẳng d là:
Ta có: .
Cho phương trình
với
. Mệnh đề nào sau đây là mệnh đề sai?
Mệnh đề sai là: “Điểm thuộc đường thẳng
khi và chỉ khi
.”
Lập phương trình chính tắc của Elip đi qua điểm
và có tâm sai
.
Phương trình chính tắc của Elip có dạng: .
Elip đi qua điểm nên
.
Tâm sai .
.
Vậy phương trình chính tắc của Elip cần tìm là .
Một đường thẳng có bao nhiêu vectơ chỉ phương?
Một đường thẳng có vô số vectơ chỉ phương.
Cho đường thẳng
và đường tròn
. Khẳng định nào sau đây đúng khi nói về vị trí tương đối của đường thẳng
và đường tròn
?
Ta có:
Lại có khoảng cách từ tâm I đến đường thẳng d là:
Vậy đường thẳng cắt đường tròn
là khẳng định đúng.
Cho đường tròn
. Biết rằng khi giá trị
thay đổi, đường tròn
luôn đi qua điểm
cố định có hoành độ dương. Xác định giá trị của tham số m sao cho tiếp tuyến của đường tròn
tại
song song với
?
Gỉa sử đường tròn luôn đi qua điểm cố định khi m thay đổi. Khi đó:
với mọi m
với mọi m
Vậy ta có điểm
Đường tròn có tâm . VTPT của tiếp tuyến của đường tròn tại I là
Để tiếp tuyến tại I song song với đường thẳng nên tồn tại giá trị k sao cho:
Vậy giá trị m cần tìm là .
Trên mặt phẳng tọa độ
cho tọa độ hai điểm
. Tọa độ trung điểm
của
là:
Tọa độ trung điểm I của MN là:
Vậy tọa độ trung điểm của MN là: .
Cho parabol
. Giao điểm của
với trục hoành tại hai điểm
. Khẳng định nào sau đây đúng?
Phương trình hoành độ giao điểm là nghiệm của phương trình:
Áp dụng định lí Vi – et ta có:
Phương trình chính tắc của Elip có đỉnh
và một tiêu điểm là
là
Elip có đỉnh và một tiêu điểm
.
Ta có .
Vậy phương trình .
Phương trình tiếp tuyến d của đường tròn (C): (
tại điểm M(2; 1) là:
Tâm .
Phương trình tiếp tuyến tại điểm là:
.
Cho đường thẳng
và điểm
. Viết phương trình đường thẳng qua điểm
và vuông góc với
?
Một vectơ chỉ phương của là:
Vậy phương trình đường thẳng đi qua và vuông góc với
là:
Vậy phương trình cần tìm là .
Phương trình tham số của đường thẳng
đi qua hai điểm
và
là:
Phương trình tham số của đường thẳng AB đi qua điểm và nhận
làm vectơ chỉ phương.
Vậy phương trình cần tìm là: .
Trong mặt phẳng tọa độ
, cho đường thẳng
và tọa độ một điểm
. Ta kí hiệu khoảng cách từ điểm
đến đường thẳng
là
. Kết luận nào sau đây đúng?
Khoảng cách từ điểm A đến đường thẳng được tính bởi công thức:
Vậy kết luận đúng là: “”.