Trong mặt phẳng với hệ tọa độ
, cho ba đường thẳng lần lượt có phương trình tổng quát
,
và
. Tìm
để ba đường thẳng đã cho cùng đi qua một điểm.
Ta có:
Trong mặt phẳng với hệ tọa độ
, cho ba đường thẳng lần lượt có phương trình tổng quát
,
và
. Tìm
để ba đường thẳng đã cho cùng đi qua một điểm.
Ta có:
Viết phương trình tiếp tuyến của đường tròn
tại điểm
.
Tâm .
Phương trình tiếp tuyến tại là:
.
Cho phương trình Elip
. Tọa độ đỉnh
và
của Elip đó là:
Ta có: => a = 4; b = 2
=> Tọa độ các đỉnh của elip là:
Viết phương trình tiếp tuyến của đường tròn
, biết tiếp tuyến song song với đường thẳng
.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có
Xét vị trí tương đối của hai đường thẳng:
và
.
Vì nên hai đường thẳng cắt nhau.
Đường thẳng
đi qua điểm nào sau đây?
Đặt
Chọn
Cho đường tròn
. Tính khoảng cách từ tâm của
đến trục
.
Cho hai đường thẳng
và
. Tìm các giá trị của tham số
để
và
hợp với nhau một góc bằng ![]()
Ta có:
Đường tròn
có tâm
thuộc đường thẳng
và tiếp xúc với hai đường thẳng
có phương trình là:
Ta có:
Vậy phương trình các đường tròn:
hoặc
Xác định góc giữa hai đường thẳng
và
?
Ta có:
Trong mặt phẳng tọa độ
, cho đường tròn
. Viết phương trình tiếp tuyến của đường tròn đã cho, biết hệ số góc của tiếp tuyền bằng
.
Đường tròn (C) có tâm và bán kính
Tiếp tuyến d có hệ số góc nên có dạng
Vì d là tiếp tuyến của nên
Với thì phương trình d là:
Với thì phương trình d là:
Vậy các phương trình tiếp tuyến cần tìm là: .
Cho ba đường thẳng
,
và
với m là tham số. Xác định giá trị của tham số m để ba đường thẳng
đồng quy?
Gọi . Khi đó tọa độ điểm A là nghiệm của hệ phương trình:
Để ba đường thẳng đồng quy thì hay
Vậy m = 2 thì ba đường thẳng đã cho đồng quy.
Cho Hyperbol
. Tìm điểm
trên
sao cho khoảng cách từ
đến đường thẳng
đạt giá trị nhỏ nhất.
Gọi . Phương trình tiếp tuyến của
tại
là
.
khi
thay vào
ta có:
.
Với ta có :
Với ta có :
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Ta có:
Vậy phương trình đường tròn cần tìm là: .
Hãy viết phương trình chính tắc của elip nếu nó đi qua điểm
và tỉ số của tiêu cự với độ dài trục lớn bằng
.
Gọi phương trình chính tắc của Elip là với
Elip đi qua điểm
suy ra
Tỉ số của tiêu cực với độ dài trục lớn bằng
suy ra
Kết hợp với điều kiện ta được
Từ suy ra
Vậy phương trình cần tìm là
Hypebol
có hai tiêu điểm là:
Ta có : Các tiêu điểm là
,
Phương trình chính tắc của hypebol có
gấp đôi
và đi qua điểm
là:
Ta có: .
Phương trình chính tắc: .
Vì thuộc hypebol nên:
.
Do đó, phương trình chính tắc: .
Biết rằng có đúng hai giá trị của tham số
để đường thẳng
tạo với đường thẳng
một góc
. Tổng hai giá trị của
bằng:
Trên hệ trục tọa độ cho đường tròn
. Trong các điểm sau điểm nào nằm trên đường tròn đã cho?
Thay tọa độ điểm vào phương trình đường tròn
ta được:
Vậy điểm thuộc đường tròn là .
Xét vị trí tương đối của hai đường thẳng
và
.
Trong hệ trục tọa độ
cho hai điểm
. Chọn đáp án không phải là phương trình tham số của đường thẳng
.
Đường thẳng AB có một vectơ chỉ phương là suy ra vectơ chỉ phương
Phương trình không thỏa mãn vì có vectơ chỉ phương
không cùng phương với
.
Công thức nào dưới đây là công thức tính khoảng cách từ một điểm
đến đường thẳng
?
Công thức tính khoảng cách từ một điểm đến đường thẳng
là:
Đường thẳng nào dưới đây là đường chuẩn của Hypebol
?
Ta có : .
Tâm sai . Đường chuẩn :
và
Trong hệ trục tọa độ Oxy, cho đường thẳng
. Một vectơ chỉ phương của
là:
Một vectơ chỉ phương của là
hay
.
Điền vào chỗ trống: Vectơ có giá song song hoặc trùng với đường thẳng thì vectơ được gọi là … của đường thẳng đó.
Vectơ có giá song song hoặc trùng với đường thẳng thì
được gọi là vectơ chỉ phương của đường thẳng đó.
Tìm
để ba đường thẳng
,
và
đồng quy?
Đường tròn đường kính
với
có phương trình là:
Trong các phương trình sau đây, phương trình nào là phương trình tham số của đường thẳng?
Phương trình tham số của đường thẳng là:
Điểm nào dưới đây thuộc đường thẳng
?
Thay tọa độ các điểm vào đường thẳng ta thấy điểm thuộc đường thẳng đã cho là
.
Trong mặt phẳng với hệ tọa độ
, cho hình bình hành
có đỉnh
và phương trình đường thẳng chứa cạnh
là
. Viết phương trình tham số của đường thẳng chứa cạnh
.
Góc phần tư (I) :
Cho một hypebol
có hai tiêu điểm là:
Ta có:
Vậy hai tiêu điểm cần tìm là: .
Phương trình đường tròn
có tâm và bán kính lần lượt là:
Ta có:
Vậy phương trình đường tròn đã cho có tâm và bán kính lần lượt là:
Cho đường thẳng
và đường thẳng
. Tính góc hợp bởi hai đường thẳng?
Vectơ chỉ phương của là:
Vectơ chỉ phương của là:
Ta có:
Vậy góc hợp bởi hai đường thẳng đã cho bằng .
Xác định phương trình tham số của đường thẳng
. Biết rằng
đi qua điểm
và có một vectơ chỉ phương là
?
Đường thẳng đi qua điểm và nhận
làm vectơ chỉ phương sẽ có phương trình tham số là:
.
Áp dụng với dữ kiện bài toan trên ta được:
Trong mặt phẳng
, phương trình nào sau đây là phương trình chính tắc của một elip?
Phương trình chính tắc của elip có dạng nên chọn phương án
.
Hyperbol
có tâm sai là:
Ta có :
.
Một Elip đi qua điểm
và có độ dài trục lớn là
. Hãy xác định phương trình chính tắc của elip đó?
Phương trình chính tắc của elip có dạng
Do (E) có độ dài trục lớn là nên
Do (E) đi qua điểm nên
Vậy phương trình chính tắc của elip là: .
Xét vị trí tương đối của hai đường thẳng
và
.