Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Đường tròn (C) đi qua hai điểm A(1;1), B(5;3) và có tâm I thuộc trục hoành có phương trình là:

    I(a;0) ightarrow IA = IB = R
\Leftrightarrow R^{2} = (a - 1)^{2} + 1^{2} = (a - 5)^{2} +
3^{2}

    ightarrow \left\{ \begin{matrix}
a = 4 \\
I(4;0) \\
R^{2} = 10 \\
\end{matrix} ight..

    Vậy đường tròn cần tìm là: (x - 4)^{2} +
y^{2} = 10.

  • Câu 2: Nhận biết

    Đường tròn (C): x^{2} + y^{2} – 3x – y = 0 có đường kính bằng bao nhiêu?

     Tâm I(\frac32;\frac12). Do đó R = \sqrt {{{\left( {\frac{3}{2}} ight)}^2} + {{\left( {\frac{1}{2}} ight)}^2} - 0}  = \frac{{\sqrt {10} }}{2}.

    Do đó đường kính bằng 2R=\sqrt{10}.

  • Câu 3: Thông hiểu

    Cho hypebol (H): \frac{x^{2}}{36}+\frac{y^{2}}{9}=1. Tỉ số giữa độ dài trục ảo và độ dài trục thực bằng:

    Ta có: \frac{x^{2}}{36}+\frac{y^{2}}{9}=1

    Ta có: a = 6; b =3

    => Độ dài trục ảo là 6, độ dài trục thực là 12

    => Tỉ số giữa độ dài trục ảo và độ dài trục thực là: 

    \frac{{2b}}{{2a}} = \frac{6}{{12}} = \frac{1}{2}

  • Câu 4: Vận dụng

    Dây cung của elip (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1 (0 < b < a) vuông góc với trục lớn tại tiêu điểm có độ dài bằng:

    Hai tiêu điểm có tọa độ lần lượt là F_{1}( - \ c;\ 0),\ \ F_{2}(c;\ 0).

    Đường thẳng chứa dây cung vuông góc với trục lớn (trục hoành ) tại tiêu điểm F có phương trình là \Delta:x = c.

    Suy ra \Delta \cap (E) \Leftrightarrow
\left\{ \begin{matrix}
\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 \\
x = c \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = c \\
\frac{c^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = c \\
y^{2} = \frac{b^{2}\left( a^{2} - c^{2} ight)}{a^{2}} =
\frac{b^{4}}{a^{2}} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = c \\
y = \pm \frac{b^{2}}{a} \\
\end{matrix} ight.

    Vậy tọa độ giao điểm của \Delta(E)M\left( c;\ \frac{b^{2}}{a} ight),\ \ N\left(
c;\  - \frac{b^{2}}{a} ight) \Rightarrow MN =
\frac{2b^{2}}{a}.

  • Câu 5: Nhận biết

    Elip (E):\frac{x^{2}}{16}+\frac{y^{2}}{4}=1 có độ dài tiêu cự bằng:

     Ta có: a=4;b=2 \Rightarrow c=\sqrt{a^2-b^2}=2\sqrt3.

    Do đó độ dài tiêu cự 2c=4\sqrt3.

  • Câu 6: Thông hiểu

    Hãy xác định phương trình chính tắc của parabol (P). Biết rằng (P) cắt đường thẳng d:x + 2y = 0 tại hai điểm A,BAB =
4\sqrt{5}?

    Phương trình chính tắc của (P) có dạng y^{2} = 2px;(p > 0)

    Ta có đường thẳng d cắt (P) tại hai điểm \left\{ \begin{matrix}
A \equiv O \\
B = ( - 2m;m) \\
\end{matrix} ight.

    Ta có:

    AB = 4\sqrt{5} \Leftrightarrow AB^{2} =
5m^{2} = \left( 4\sqrt{5} ight)^{2}

    \Leftrightarrow m^{2} = 16
\Leftrightarrow m = \pm 4

    Với m = 4 \Rightarrow B( - 8;4) \Rightarrow 16 = 2p.( - 8)
\Rightarrow p = - 1 < 0(ktm)

    Với m = - 4 \Rightarrow B(8; - 4) \Rightarrow 16 = 2p.8
\Rightarrow p = 1(tm)

    Vậy phương trình chính tắc của parabol cần tìm là: y^{2} = 2x.

  • Câu 7: Vận dụng

    Tập hợp các điểm cách đường thẳng \Delta:3x - 4y + 2 = 0 một khoảng bằng 2 là hai đường thẳng có phương trình nào sau đây?

    d\left( M(x;y);\Delta ight) = 2
\Leftrightarrow \frac{|3x - 4y + 2|}{5} = 2 \Leftrightarrow \left\lbrack
\begin{matrix}
3x - 4y + 12 = 0 \\
3x - 4y - 8 = 0 \\
\end{matrix} ight.\ .

  • Câu 8: Nhận biết

    Trong mặt phẳng Oxy, phương trình nào sau đây là phương trình chính tắc của một elip?

    Phương trình chính tắc của elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1,(a
> b > 0) nên chọn phương án D.

  • Câu 10: Thông hiểu

    Cho phương trình {x^2} + {y^2} - 2mx - 4(m - 2)y + 6 - m = 0. Điều kiện của m để phương trình đã cho là một phương trình đường tròn là:

    Từ phương trình đường tròn ta có:

    I\left( {m;2m - 4} ight)

    Điều kiện để phương trình đã cho là phương trình đường tròn là:

    \begin{matrix}  {m^2} + 4{\left( {m - 2} ight)^2} - 6 + m > 0 \hfill \\   \Leftrightarrow {m^2} + 4{m^2} - 16m + 16 - 6 + m > 0 \hfill \\   \Leftrightarrow 5{m^2} - 15m + 10 > 0 \hfill \\   \Leftrightarrow m \in ( - \infty ;1) \cup (2; + \infty ) \hfill \\ \end{matrix}

  • Câu 11: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Elip?

    Phương trình Elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1;c^{2} = a^{2} - b^{2}

    Vậy phương trình cần tìm là \frac{x^{2}}{9} + \frac{y^{2}}{4} = 1

  • Câu 12: Vận dụng

    Trong mặt phẳng Oxy cho các điểm A(6;2),B( - 2;8),C( - 2; - 4). Phương trình đường tròn nội tiếp tam giác ABC là:

    AB = \sqrt{(6 + 2)^{2} + (2 - 8)^{2}}
= 10,AC = \sqrt{(6 + 2)^{2} + (2 + 4)^{2}} = 10, tam giác ABC cân tại A.

    Gọi M = ( - 2;2) là trung điểm của BC. Phương trình AM là: y =
2.

    Phương trình BC:x = - 2, phương trình AB :

    \frac{x - 6}{6 + 2} = \frac{y - 2}{2 -
8} \Leftrightarrow 3x + 4y - 26 = 0

    Gọi I = (x,y) là tâm đường tròn nội tiếp tam giác ABC. Ta có:

    \left. \ d(I,BC) = d(I,AB)\Leftrightarrow \frac{|x + 2|}{\sqrt{1^{2} + 0^{2}}} = \frac{|3x + 4y -26|}{\sqrt{3^{2} + 4^{2}}}  ight.

    \Leftrightarrow |3x + 4y - 26| = 5|x + 2|

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {4x + 2y - 8 = 0} \\ 
  {x - 2y + 18 = 0} 
\end{array}} ight.

    Thay tọa độ của AC vào phương trình 4x + 2y - 8 = 0 và xét tích của chúng, ta được:

    (4.6 + 2.2 - 8)(4.( - 2) + 2.( - 4) - 8)
< 0 nên phương trình BI4x + 2y - 8 = 0.
    Tọa độ của I là nghiệm của hệ \left\{ \begin{matrix}
y = 2 \\
4x + 2y - 8 = 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 2 \\
\end{matrix} ight.\  ight..

    Vậy I = (1;2)

    \Rightarrow IM = \sqrt{(1 + 2)^{2} + (2 - 2)^{2}} =3.

    Phương trình đường tròn nội tiếp tam giác ABC(x -
1)^{2} + (y - 2)^{2} = 9.

     

  • Câu 13: Thông hiểu

    Đường thẳng d đi qua điểm M( - 2;1) và vuông góc với đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 - 3t \\
y = - 2 + 5t \\
\end{matrix} ight. có phương trình tham số là:

    \left\{ \begin{matrix}
M( - 2;1) \in d \\
{\overrightarrow{u}}_{\Delta} = ( - 3;5) \\
d\bot\Delta \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
M( - 2;1) \in d \\
{\overrightarrow{n}}_{d} = ( - 3;5) ightarrow {\overrightarrow{u}}_{d}
= (5;3) \\
\end{matrix} ight.\  ightarrow d:\left\{ \begin{matrix}
x = - 2 + 5t \\
y = 1 + 3t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 14: Thông hiểu

    Cho phương trình x^{2} + y^{2} - 2mx - 4(m - 2)y + 6 - m =
0. Tìm điều kiện của tham số m để phương trình đã cho là phương trình đường tròn?

    Để phương trình đã cho là phương trình đường tròn thì:

    m^{2} + 4(m - 2)^{2} - 6 + m >
0

    \Leftrightarrow 5m^{2} - 15m + 10 > 0
\Leftrightarrow \left\lbrack \begin{matrix}
m > 2 \\
m < 1 \\
\end{matrix} ight.

    Vậy đáp án chính xác là: \left\lbrack
\begin{matrix}
m > 2 \\
m < 1 \\
\end{matrix} ight..

  • Câu 15: Nhận biết

    Tìm tọa độ giao điểm của hai đường thẳng 7x - 3y + 16 = 0x + 10 = 0.

    \left\{ \begin{matrix}
d_{1}:7x - 3y + 16 = 0 \\
d_{2}:x + 10 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 10 \\
y = - 18 \\
\end{matrix} ight.\ . Chọn ( -
10; - 18).

  • Câu 16: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 2 + 3t \\
y = - 2t \\
\end{matrix} ight.d_{2}:\left\{ \begin{matrix}
x = 2t' \\
y = - 2 + 3t' \\
\end{matrix} ight..

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 2 + 3t \\
y = - 2t \\
\end{matrix} ight.\  ightarrow \ {\overrightarrow{u}}_{1} = (3; - 2)
\\
d_{2}:\left\{ \begin{matrix}
x = 2t' \\
y = - 2 + 3t' \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = (2;3)
\\
\end{matrix} ight\} ightarrow {\overrightarrow{u}}_{1} \cdot
{\overrightarrow{u}}_{2} = 0 ightarrow d_{1}\bot\ \ d_{2}. Chọn

  • Câu 17: Nhận biết

    Trong mặt phẳng tọa độ Oxy, mỗi đường thẳng có bao nhiêu vectơ pháp tuyến?

    Một đường thẳng có vô số vectơ pháp tuyến và chúng có cùng phương với nhau.

  • Câu 18: Thông hiểu

    Khoảng cách từ giao điểm của hai đường thẳng x - 3y + 4 = 02x + 3y - 1 = 0 đến đường thẳng \Delta:3x + y + 4 = 0 bằng:

    \left\{ \begin{matrix}
x - 3y + 4 = 0 \\
2x + 3y - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 1 \\
\end{matrix} ight.\  ightarrow A( - 1;1)

    ightarrow d(A;\Delta) = \frac{| - 3 +
1 + 4|}{\sqrt{9 + 1}} = \frac{2}{\sqrt{10}}.

  • Câu 19: Nhận biết

    Phương trình đường tròn (C) có tâm I(
- 1;2) và bán kinh R = 6 là:

    Ta có: (C):\left\{ \begin{matrix}
I( - 1;2) \\
R = 6 \\
\end{matrix} ight.\  \Rightarrow (C):(x + 1)^{2} + (y - 2)^{2} =
36

  • Câu 20: Nhận biết

    Điểm nào sau đây không thuộc đường thẳng \left\{ \begin{matrix}
x = - 1 + 2t \\
y = 3 - 5t \\
\end{matrix} ight. ?

    Gọi d:\left\{ \begin{matrix}
x = - 1 + 2t \\
y = 3 - 5t \\
\end{matrix} ight.\ .M( - 1;3)\overset{x = - 1,\ y = 3 ightarrow
d}{ightarrow}\left\{ \begin{matrix}
- 1 = - 1 + 2t \\
3 = 3 - 5t \\
\end{matrix} ight.\  \Leftrightarrow t = 0 ightarrow M \in
d.

    N(1; - 2)\overset{x = 1,\ y = - 2
ightarrow d}{ightarrow}\left\{ \begin{matrix}
1 = - 1 + 2t \\
- 2 = 3 - 5t \\
\end{matrix} ight.\  \Leftrightarrow t = 1 ightarrow N \in
d.

    P(3;1)\overset{x = 3,\ y = 1 ightarrow d}{ightarrow}\left\{ \begin{matrix}3 = - 1 + 2t \\1 = 3 - 5t \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}t = 2 \\t = \dfrac{2}{5} \\\end{matrix} ight.\  ightarrow P\in d.

    Chọn P(3;1).

    Q( - 3;8)\overset{x = - 3,\ y = 8
ightarrow d}{ightarrow}\left\{ \begin{matrix}
- 3 = - 1 + 2t \\
8 = 3 - 5t \\
\end{matrix} ight.\  \Leftrightarrow t = - 1 ightarrow Q \in
d.

  • Câu 21: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm A(3;2)¸ P(4;0)Q(0; - 2). Đường thẳng đi qua điểm A và song song với PQ có phương trình tham số là:

    Gọi d là đường thẳng qua A và song song với PQ.

    Ta có: \left\{ \begin{matrix}
A(3;2) \in d \\
{\overrightarrow{u}}_{d} = \overrightarrow{PQ} = ( - 4; - 2) = - 2(2;1)
\\
\end{matrix} ight.\  ightarrow d:\left\{ \begin{matrix}
x = 3 + 2t \\
y = 2 + t \\
\end{matrix} ight.

    \overset{t = - 2}{ightarrow}M( - 1;0)
\in d ightarrow d:\left\{ \begin{matrix}
x = - 1 + 2t \\
y = t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 22: Nhận biết

    Cho hai đường thẳng ∆_1: 11x – 12y + 1 = 0∆_2: 12x + 11y + 9 = 0. Khi đó hai đường thẳng này:

     Ta có:

    \begin{matrix}  \overrightarrow {{n_{{\Delta _1}}}}  = \left( {11; - 12} ight) \hfill \\  \overrightarrow {{n_{{\Delta _2}}}}  = \left( {12;11} ight) \hfill \\  \overrightarrow {{n_{{\Delta _1}}}} .\overrightarrow {{n_{{\Delta _2}}}}  = 0 \Rightarrow \overrightarrow {{n_{{\Delta _1}}}}  \bot \overrightarrow {{n_{{\Delta _2}}}}  \hfill \\   \Rightarrow {\Delta _1} \bot {\Delta _2} \hfill \\ \end{matrix}

  • Câu 23: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - 4t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Hãy chỉ ra vectơ chỉ phương của đường thẳng d?

    Vectơ chỉ phương của đường thẳng dlà: \overrightarrow{u_{d}} = ( - 4;3).

  • Câu 24: Thông hiểu

    Tìm phương trình chính tắc của elip có tiêu cự bằng 6 và trục lớn bằng 10.

    Phương trình chính tắc của elip: \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{a}^{\mathbf{2}}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{b}^{\mathbf{2}}}\mathbf{=}\mathbf{1.}

    Độ dài trục lớn 2a = 10 \Leftrightarrow a
= 5.

    Tiêu cự 2c = 6 \Leftrightarrow c =
3.

    Ta có: a^{2} = b^{2} + c^{2}
\Leftrightarrow b^{2} = a^{2} - c^{2} = 16

    Vậy phương trình chính tắc của elip là \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{25}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{16}}\mathbf{=}\mathbf{1.}.

  • Câu 25: Vận dụng

    Tìm m để hai đường thẳng d_{1}:2x - 3y + 4 =
0d_{2}:\left\{ \begin{matrix}
x = 2 - 3t \\
y = 1 - 4mt \\
\end{matrix} ight. cắt nhau.

    \left\{ \begin{matrix}
d_{1}:2x - 3y + 4 = 0 \\
d_{2}:\left\{ \begin{matrix}
x = 2 - 3t \\
y = 1 - 4mt \\
\end{matrix} ight.\  \\
\end{matrix} ight. \overset{}{ightarrow}\left\{ \begin{matrix}
{\overrightarrow{n}}_{1} = (2; - 3) \\
{\overrightarrow{n}}_{2} = (4m; - 3) \\
\end{matrix} ight. \overset{d_{1} \cap d_{2} =
M}{ightarrow}\frac{4m}{2}\boxed{=}\frac{- 3}{- 3} \Leftrightarrow
m\boxed{=}\frac{1}{2}.

  • Câu 26: Nhận biết

    Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm O(0;0)A(1; - 3)?

    Kiểm tra đường thẳng nào không chứa O(0;0)\overset{ightarrow}{} loại.

    (Có thể kiểm tra đường thẳng nào không đi qua điểm A(1; - 3)).

  • Câu 27: Nhận biết

    Cho đường thẳng (\Delta):3x + 4y - 4 = 0 và tọa độ điểm C(1; - 1). Tính d(C;\Delta)?

    Ta có khoảng cách từ điểm C đến đường thẳng (\Delta):3x + 4y - 4 = 0 là:

    d(C;\Delta) = \frac{\left| 3.1 + 4.( -
1) - 4 ight|}{\sqrt{3^{2} + 4^{2}}} = \frac{5}{5} = 1

    Vậy khoảng cách cần tìm bằng 1.

  • Câu 28: Nhận biết

    Cho phương trình {x^2} + {y^2} - 2ax - 2by + c = 0 (1). Điều kiện để (1) là phương trình đường tròn là:

    Điều kiện để phương trình {x^2} + {y^2} - 2ax - 2by + c = 0 là phương trình đường tròn là:

    {a^2} + {b^2} - c > 0

  • Câu 29: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(2;4), B(5;0)C(2;1). Trung tuyến BM của tam giác đi qua điểm N có hoành độ bằng 20 thì tung độ của điểm N bằng bao nhiêu?

    \left\{ \begin{matrix}
A(2;4) \\
C(2;1) \\
\end{matrix} ight.\ \overset{ightarrow}{}M\left( 2;\frac{5}{2}
ight) ightarrow \overrightarrow{MB} = \left( 3; - \frac{5}{2}
ight) = \frac{1}{2}(6; - 5)

    \overset{ightarrow}{}MB:\left\{
\begin{matrix}
x = 5 + 6t \\
y = - 5t \\
\end{matrix} ight.\ .

    Ta có: N\left( 20;y_{N} ight) \in
BM\overset{ightarrow}{}\left\{ \begin{matrix}
20 = 5 + 6t \\
y_{N} = - 5t \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
t = \frac{5}{2} \\
y_{N} = - \frac{25}{2} \\
\end{matrix} ight.\ \overset{ightarrow}{}

    Chọn - \frac{25}{2}.

  • Câu 30: Thông hiểu

    Trong mặt phẳng Oxy có đường thẳng \Delta đi qua điểm A(1;1) và tạo với đường thẳng d:2x + 3y + 1 = 0 một góc bằng 45^{0}. Biết rằng \Delta có dạng ax - 5y + 4 = 0a'x + y - 6 = 0. Tính tổng hai giá trị aa'?

    Gọi \overrightarrow{n} = (a;b) là vectơ pháp tuyến của đường thẳng \Delta.

    Phương trình tổng quát của đường thẳng \Delta là: ax
+ by - a - b = 0

    Ta có:

    \cos(d;\Delta) = \frac{|2a +
3b|}{\sqrt{13}.\sqrt{a^{2} + b^{2}}}

    \Leftrightarrow cos45^{0} = \frac{|2a +
3b|}{\sqrt{13}.\sqrt{a^{2} + b^{2}}}

    \Leftrightarrow \frac{\sqrt{2}}{2} =
\frac{|2a + 3b|}{\sqrt{13}.\sqrt{a^{2} + b^{2}}}

    \Leftrightarrow
\sqrt{2}.\sqrt{13}.\sqrt{a^{2} + b^{2}} = 2|2a + 3b|

    \Leftrightarrow 10a^{2} - 48ab - 10b^{2}
= 0

    \Leftrightarrow \left\lbrack\begin{matrix}a = 5b \\a = - \dfrac{1}{5}b \\\end{matrix} ight.

    Vậy ta có phương trình của \Delta là: x
- 5y + 4 = 05x + y - 6 =
0

    Vậy a = 1;a' = 5 \Rightarrow a +
a' = 1 + 5 = 6

  • Câu 31: Nhận biết

    Cho hai đường thẳng (\Delta):a_{1}x + b_{1}y + c = 0(\Delta'):a_{2}x + b_{2}y + c = 0 với {a_{1}}^{2} + {b_{1}}^{2} > 0;{a_{2}}^{2}
+ {b_{2}}^{2} > 0. Nếu \left\{
\begin{matrix}
a_{1}x + b_{1}y + c = 0 \\
a_{2}x + b_{2}y + c = 0 \\
\end{matrix} ight. vô nghiệm thì vị trí tương đối của hai đường thẳng là:

    Số giao điểm của hai đường thẳng đã cho là nghiệm của hệ phương trình \left\{ \begin{matrix}
a_{1}x + b_{1}y + c = 0 \\
a_{2}x + b_{2}y + c = 0 \\
\end{matrix} ight..

    Nếu hệ phương trình trên vô nghiệm thì hai đường thẳng không có điểm chung, nghĩa là hai đường thẳng song song với nhau.

  • Câu 32: Nhận biết

    Phương trình chính tắc của đường tròn tâm I(0; - 1) và bán kính R = 5 là:

    Phương trình đường tròn có dạng (x -
a)^{2} + (y - b)^{2} = R^{2}

    Vì phương trình đường tròn cần tìm có tâm I(0; - 1) và bán kính R = 5 nên phương trình cần tìm là: x^{2} + (y + 1)^{2} = 25

  • Câu 33: Nhận biết

    Xác định phương trình tham số của đường thẳng d. Biết rằng d đi qua điểm A(1;2) và có một vectơ chỉ phương là \overrightarrow{u} =
(2022;2023)?

    Đường thẳng đi qua điểm M\left(
x_{0};y_{0} ight) và nhận \overrightarrow{u} = \left( u_{1};u_{2}
ight) làm vectơ chỉ phương sẽ có phương trình tham số là: \left\{ \begin{matrix}
x = x_{0} + u_{1}t \\
y = y_{0} + u_{2}t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

    Áp dụng với dữ kiện bài toan trên ta được: \left\{ \begin{matrix}
x = 1 + 2022t \\
y = 2 + 2023t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 34: Thông hiểu

    Cho elip đi qua điểm A(2; - 2) và có độ dài trục lớn gấp đôi độ dài trục bé. Phương trình chính tắc của elip là:

    Phương trình chính tắc của elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1;(a,b
> 0)

    Theo bài ra ta có hệ phương trình:

    \left\{ \begin{matrix}
a = 2b \\
\frac{2^{2}}{a^{2}} + \frac{( - 2)^{2}}{b^{2}} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 4b^{2} \\
\frac{4}{a^{2}} + \frac{4}{b^{2}} = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 4b^{2} \\
\frac{5}{b^{2}} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 20 \\
b^{2} = 5 \\
\end{matrix} ight.

    Vậy phương trình chính tắc của elip là: \frac{x^{2}}{20} + \frac{y^{2}}{5} =
1.

  • Câu 35: Vận dụng

    Xác định giá trị của tham số m để hai đường thẳng \left( \Delta_{1} ight):mx - y + 1 =
0\left( \Delta_{2} ight):(m -
4)x + (2m - 3)y + m = 0 song song với nhau?

    Điều kiện để \left( \Delta_{1}
ight)//\left( \Delta_{2} ight) là: \frac{m}{m - 4} = \frac{- 1}{2m - 3} eq
\frac{1}{m}(*)

    Với m eq 0,m eq 4,m eq
\frac{3}{2}

    Ta có:

    \frac{m}{m - 4} = \frac{- 1}{2m -
3}

    \Leftrightarrow 2m^{2} - 2m - 4 =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
m = - 1 \\
m = 2 \\
\end{matrix} ight.

    Với m = - 1 ta có: (*) \Leftrightarrow \frac{- 1}{- 5} = \frac{- 1}{-
5} eq \frac{1}{- 1}(đúng)

    Với m = 2 ta có: (*) \Leftrightarrow \frac{2}{- 2} = \frac{- 1}{1}
eq \frac{1}{2}(đúng)

    Vậy \left\lbrack \begin{matrix}
m = - 1 \\
m = 2 \\
\end{matrix} ight. thỏa mãn yêu cầu đề bài.

  • Câu 36: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Parabol?

    Phương trình Parabol có dạng y^{2} =
2px

    Vậy phương trình cần tìm là y^{2} =
2x.

  • Câu 37: Thông hiểu

    Trong hệ trục tọa độ Oxy, viết phương trình đường trung trực của đoạn thẳng MN biết M(1;0),N(3;6)?

    Đường thẳng trung trực của MN là đường thẳng đi qua trung điểm I(2;3) của MN và nhận \overrightarrow{MN} = (2;6) =
2(1;3) làm vectơ pháp tuyến. Khi đó:

    1(x - 2) + 3(y - 3) = 0

    \Leftrightarrow x + 3y - 11 =
0

    Vậy phương trình đường trung trực của MN là x + 3y - 11 = 0.

  • Câu 38: Thông hiểu

    Với giá trị nào của tham số m thì đường thẳng \left( d_{1} ight):x + 2y + 1 - m = 0 vuông góc với đường thẳng \left( d_{2}
ight):(m + 4)x + 2y + 5 = 0?

    Ta có tọa độ vectơ pháp tuyến của \left(
d_{1} ight):x + 2y + 1 - m = 0 là: \overrightarrow{n_{1}} = (1;2)

    Tọa độ vectơ pháp tuyến của \left( d_{2}
ight):(m + 4)x + 2y + 5 = 0 là: \overrightarrow{n_{2}} = (m + 4;2)

    Để \left( d_{1} ight)\bot\left( d_{2}
ight) thì \overrightarrow{n_{1}}.\overrightarrow{n_{1}} = 0
\Leftrightarrow 1(m + 4) + 2.2 = 0 \Leftrightarrow m = - 8

    Vậy m = -8 thì hai đường thẳng đã cho vuông góc với nhau.

  • Câu 39: Vận dụng

    Cho Hyperbol (H):\frac{x^{2}}{4} - y^{2} = 1. Tìm điểm M trên (H) sao cho khoảng cách từ M đến đường thẳng \Delta:y = x + 1 đạt giá trị nhỏ nhất.

    Gọi M\left( x_{0};y_{0} ight) \in
(H). Phương trình tiếp tuyến của (H) tại Md:\frac{x.x_{0}}{4} - y.y_{0} = 1.

    \Delta//d khi \frac{\frac{x_{0}}{4}}{1} = \frac{- y_{0}}{- 1}
\Rightarrow y_{0} = \frac{x_{0}}{4} thay vào (H) ta có:

    \frac{x_{0}^{2}}{4} - \left(
\frac{x_{0}}{4} ight)^{2} = 1 \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = \frac{4}{\sqrt{3}} ightarrow y_{0} = \frac{1}{\sqrt{3}} \\
x_{0} = - \frac{4}{\sqrt{3}} ightarrow y_{0} = - \frac{1}{\sqrt{3}} \\
\end{matrix} ight..

    Với M\left(
\frac{4}{\sqrt{3}};\frac{1}{\sqrt{3}} ight) ta có : d(M, \bigtriangleup ) = \frac{1 +
\sqrt{3}}{\sqrt{2}}.

    Với M\left( - \frac{4}{\sqrt{3}}; -
\frac{1}{\sqrt{3}} ight) ta có : d(M, \bigtriangleup ) = \frac{\sqrt{3} -
1}{\sqrt{2}}.

  • Câu 40: Vận dụng

    Viết phương trình tiếp tuyến của đường tròn (C):(x - 2)^{2} + (y + 4)^{2} = 25, biết tiếp tuyến vuông góc với đường thẳng d:3x - 4y + 5 = 0.

    Đường tròn (C) có tâm I(2; - 4),\ R =
5 và tiếp tuyến có dạng

    \Delta:4x + 3y + c = 0\ .

    Ta có R = d\lbrack I;\Deltabrack
\Leftrightarrow \frac{|c - 4|}{5} = 5 \Leftrightarrow \left\lbrack
\begin{matrix}
c = 29 \\
c = - 21 \\
\end{matrix} ight.\ .

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo