Đường tròn
có tâm
thuộc đường thẳng
, đi qua điểm
và tiếp xúc với đường thẳng
. Phương trình của đường tròn
là:
Dễ thấy nên tâm I của đường tròn nằm trên đường thẳng qua A vuông góc với
là
Vậy phương trình đường tròn là:
Đường tròn
có tâm
thuộc đường thẳng
, đi qua điểm
và tiếp xúc với đường thẳng
. Phương trình của đường tròn
là:
Dễ thấy nên tâm I của đường tròn nằm trên đường thẳng qua A vuông góc với
là
Vậy phương trình đường tròn là:
Đường thẳng nào sau đây vuông góc với đường thẳng
?
Kí hiệu
(i) Xét đáp án nên chọn đáp án này.
(ii) Tương tự kiểm tra và loại các đáp án còn lại.
Đường thẳng nào sau đây song song với đường thẳng
?
Xét đáp án: Chọn đáp án này.
Để ý rằng một đường thẳng song song với sẽ có dạng
Do đó kiểm tra chỉ thấy có đáp án
thỏa mãn, các đáp án còn lại không thỏa mãn.
Cho đường tròn
và đường thẳng
. Tìm phương trình tiếp tuyến của
vuông góc với đường thẳng
?
Ta có:
Phương trình đường tròn (C) có tâm I(2; 3) bán kính R = 5
Phương trình đường thẳng vuông góc với d có dạng
tiếp xúc với
nên
Hay
Vậy phương trình tiếp tuyến của vuông góc với
là:
hoặc
.
Cho đường thẳng
và điểm
. Viết phương trình đường thẳng qua điểm
và vuông góc với
?
Một vectơ chỉ phương của là:
Vậy phương trình đường thẳng đi qua và vuông góc với
là:
Vậy phương trình cần tìm là .
Biết rằng có đúng hai giá trị của tham số
để đường thẳng
tạo với đường thẳng
một góc
. Tổng hai giá trị của
bằng:
Tìm phương trình chính tắc của Hyperbol
mà hình chữ nhật cơ sở có một đỉnh là ![]()
Gọi . Tọa độ đỉnh của hình chữ nhật cơ sở là
,
,
,
.
Hình chữ nhật cơ sở của có một đỉnh là
, suy ra
. Phương trình chính tắc của
là
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
. Tìm giá trị của tham số
để hai đường thẳng hợp với nhau một góc bằng một góc vuông?
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Hai đường thẳng vuông góc với nhau khi và chỉ khi:
Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi .
Đường thẳng
cắt elip
tại hai điểm phân biệt
và
. Hãy tính độ dài đoạn thẳng
.
Tọa độ giao điểm của đường thẳng và
là nghiệm của hệ
Vậy tọa độ giao điểm là
Với giá trị nào của
thì hai đường thẳng
và
cắt nhau?
Ta có:
Đường thẳng nào dưới đây là đường chuẩn của Hypebol
?
Ta có : .
Tâm sai . Đường chuẩn :
và
Cho hai đường tròn
và
. Tìm giá trị tham số m để hai đường tròn tiếp xúc nhau?
Dễ thấy đường tròn (C) có tâm O(0; 0) và bán kính R = 1
Đường tròn (C’) có tâm I(m + 1; -2m) và bán kính
Ta thấy:
điểm O nằm trong đường tròn tâm I suy ra (C) và (C’) chỉ có thể tiếp xúc trong với nhau.
Điều kiện để hai đường tròn tiếp xúc trong là:
Vậy có hai giá trị m thỏa mãn điều kiện là: hoặc
.
VD
1
Cho phương trình
. Tìm điều kiện của
để
là phương trình đường tròn.
Ta có:
Phương trình đường tròn
có tâm và bán kính lần lượt là:
Ta có:
Vậy phương trình đã cho tâm và bán kính lần lượt là: .
Đường thẳng nào song song với đường thẳng
?
Đường thẳng song song với đường thẳng là:
.
Xác định phương trình chính tắc của Elip, biết rằng elip có một tiêu điểm
và đi qua điểm
?
Gọi phương trình chính tắc của elip là:
Ta có:
Khi đó ta có:
Do elip đi qua điểm
Từ (*) và (**) ta có hệ phương trình:
Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là: .
Elip
có tổng độ dài trục lớn và trục bé bằng:
Ta có: .
Tổng độ dài trục lớn và bé là: .
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng
?
Vectơ chỉ phương của đường thẳng trên là: .
Cho đường thẳng
có phương trình
. Xác định vectơ chỉ phương của
?
Đường thẳng có vectơ pháp tuyến là
nên có vectơ chỉ phương là
.
Với giá trị nào của
thì hai đường thẳng
và
cắt nhau?
Chọn .
Phương trình tổng quát của đường thẳng
đi qua điểm
và có vectơ pháp tuyến
là:
Đường thẳng đi qua điểm
và nhận
là vectơ pháp tuyến có phương trình tổng quát là:
Vậy phương trình tổng quát của đường thẳng là .
Phương trình nào sau đây là phương trình tổng quát của đường thẳng
?
Ta có:
Cho đường tròn
có tâm
thuộc đường thẳng
có bán kính
và cắt đường thẳng
tại hai điểm
sao cho
. Phương trình đường tròn (C) cần tìm là:
Gọi tâm I thuộc đường thẳng nên suy ra
Do đó:
Với nên phương trình đường tròn là
.
Với nên phương trình đường tròn là
.
Cho elip (E):
. Nếu điểm M nằm trên (E) có hoành độ bằng –13 thì độ dài
và
lần lượt là:
Phương trình elip (E) có dạng
Ta có:
Khi đó:
Với ta có:
Tương tự ta có:
Theo bài ra ta có:
Xét vị trí tương đối của hai đường thẳng:
và
.
Vì nên hai đường thẳng cắt nhau.
Tọa độ tâm
và bán kính
của đường tròn
là:
Khoảng cách từ điểm M( –1; 1) đến đường thẳng ∆: 3x – 4y – 3 = 0 bằng:
Ta có: .
Cho hai đường thẳng
và
. Tìm các giá trị của tham số
để
và
hợp với nhau một góc bằng ![]()
Ta có:
Trong mặt phẳng
, cho tam giác
có tọa độ các điểm
. Gọi
là tâm đường tròn ngoại tiếp tam giác
. Xác định giá trị biểu thức
?
Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên IA = IB = IC
Ta có:
Từ đó ta suy ra hệ phương trình:
Cho phương trình
. Điều kiện của
để phương trình đã cho là phương trình đường tròn là
Điều kiện: .
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây đúng?
Khẳng định đúng là: Nếu thì
có các tiêu điểm là
,
.
Cho Hypebol có độ dài trục thực và tiêu cự lần lượt là
và
. Phương trình chính tắc của Hypebol là:
Phương trình chính tắc của Hypebol có dạng
Ta có:
Vậy phương trình chính tắc của Hypebol là: .
Phương trình nào dưới đây đi qua hai điểm
là:
Phương trình đường thẳng đi qua hai điểm là:
hay
.
Tìm
để ba đường thẳng
,
và
đồng quy?
Trong hệ trục tọa độ Oxy, cho đường thẳng
. Một vectơ chỉ phương của
là:
Một vectơ chỉ phương của là
hay
.
Một elip có diện tích hình chữ nhật cơ sở là
, độ dài tiêu cự là
. Tâm sai của elip đó là
Diện tích hình chữ nhật cơ sở là , suy ra
.
Lại có .
Từ , thay vào
ta được:
.
Do đó tâm sai .
Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Parabol?
Phương trình Parabol có dạng
Vậy phương trình cần tìm là .
Viết phương trình tiếp tuyến của đường tròn
, biết tiếp tuyến vuông góc với đường thẳng
.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có
Cho phương trình
với
. Mệnh đề nào sau đây là mệnh đề sai?
Mệnh đề sai là: “Điểm thuộc đường thẳng
khi và chỉ khi
.”