Đâu là đường thẳng không có điểm chung với đường thẳng
?
Kí hiệu
(i) Xét đáp án: không cùng phương nên loại.
(ii) Xét đáp án: không cùng phương nên loại.
(iii) Xét đáp án: không cùng phương nên loại.
(iv) Xét đáp án:
(Chọn)
Đâu là đường thẳng không có điểm chung với đường thẳng
?
Kí hiệu
(i) Xét đáp án: không cùng phương nên loại.
(ii) Xét đáp án: không cùng phương nên loại.
(iii) Xét đáp án: không cùng phương nên loại.
(iv) Xét đáp án:
(Chọn)
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
,
và
Viết phương trình tham số của đường trung tuyến
của tam giác
Điểm nào sau đây không thuộc đường thẳng
?
Gọi
Chọn .
Điểm nào sau đây thuộc đường thẳng
?
Chọn
.
Cho đường tròn (C) có phương trình
. Đường tròn (C) còn được viết dưới dạng nào trong các dạng dưới đây:
Ta có:
.
Viết phương trình chính tắc của elip biết nó đi qua điểm
và tỉ số của độ dài trục lớn với tiêu cự bằng
.
Gọi phương trình chính tắc của Elip là với
Elip đi qua điểm
suy ra
Tỉ số của độ dài trục lớn với tiêu cự bằng
suy ra
Kết hợp với điều kiện ta được
Từ suy ra
Vậy phương trình cần tìm là
Đường thẳng
tạo với đường thẳng
một góc
. Tìm hệ số góc
của đường thẳng
.
gọi
Ta có:
Cho hai đường thẳng
và
. Tính góc hợp bởi hai đường thẳng đã cho?
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Ta có:
Vậy góc hợp bởi hai đường thẳng bằng .
Phương tròn đường tròn đi qua ba điểm
là:
Gọi và R lần lượt là tâm và bán kính đường tròn cần tìm. Ta suy ra:
nên ta có hệ phương trình:
Vậy phương trình cầm tìm là:
Hay
Chọn mệnh đề sai? Đường thẳng
được xác định khi biết
Mệnh đề sai là: “một vectơ pháp tuyến hoặc một vectơ chỉ phương.”
Elip
có độ dài trục lớn bằng:
Ta có: .
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O(0; 0) và điểm M(a; b)?
Vectơ chỉ phương của OM là .
Đường tròn
có tâm
và bán kính
lần lượt là:
Ta có:
Cho đường thẳng
và
. Tính cosin góc tạo bởi giữa hai đường thẳng trên.
.
Tìm phương trình chính tắc của hyperbol nếu nó có tiêu cự bằng
và độ dài trục thực bằng
.
Ta có : .
Phương trình chính tắc
Elip có một tiêu điểm
và tích độ dài trục lớn với trục bé bằng
. Phương trình chính tắc của elip là:
Gọi (E) có dạng .
Theo giả thiết ta có: .
Vậy (E) cần tìm là
Đường tròn có tâm trùng với gốc tọa độ, bán kính
có phương trình là:
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Xét phương trình dạng : lần lượt tính các hệ số
và kiểm tra điều kiện
Các phương trình không có dạng đã nêu loại các đáp án
và
.
Đáp án không thỏa mãn điều kiện
Cho phương trình
với
. Mệnh đề nào sau đây là mệnh đề sai?
Mệnh đề sai là: “Điểm thuộc đường thẳng
khi và chỉ khi
.”
Trong mặt phẳng tọa độ
, cho tam giác
có
. Phương trình đường thẳng chứa trung tuyến kẻ từ đỉnh
của tam giác
là:
Gọi I là trung điểm của AC. Ta có:
Đường trung tuyến BI đi qua điểm B và nhận làm vectơ chỉ phương nên có vectơ pháp tuyến
.
Phương trình tổng quát của đường thẳng là:
Vậy phương trình tổng quát của đường thẳng cần tìm là .
Trong mặt phẳng
cho các điểm
. Phương trình đường tròn ngoại tiếp tam giác
là:
Gọi phương trình đường tròn là: với
Vì đường tròn đi qua ba điểm nên ta có hệ phương trình:
Vậy phương trình đường tròn cần tìm là: .
Phương trình chính tắc của hypebol có
gấp đôi
và đi qua điểm
là:
Ta có: .
Phương trình chính tắc: .
Vì thuộc hypebol nên:
.
Do đó, phương trình chính tắc: .
Trong mặt phẳng với hệ tọa độ Oxy, cho elip
. Tiêu cự của (E) bằng
Phương trình chính tắc của elip có dạng: .
Do đó elip (E) có .
Tiêu cự của elip (E) bằng .
Trong mặt phẳng
cho điểm
và đường thẳng
. Tính khoảng cách từ điểm A đến đường thẳng (d).
Khoảng cách từ điểm A đến đường thẳng (d) là:
Vậy khoảng cách cần tìm bằng 8.
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
. Khẳng định nào sau đây đúng?
Ta có:
có vectơ pháp tuyến là
có vectơ chỉ phương là
nên
có vectơ pháp tuyến là
Mà nên
cắt
.
Cho đường thẳng
và điểm
. Viết phương trình đường thẳng qua điểm
và vuông góc với
?
Một vectơ chỉ phương của là:
Vậy phương trình đường thẳng đi qua và vuông góc với
là:
Vậy phương trình cần tìm là .
Công thức nào dưới đây là công thức tính khoảng cách từ một điểm
đến đường thẳng
?
Công thức tính khoảng cách từ một điểm đến đường thẳng
là:
Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Elip?
Phương trình Elip có dạng
Vậy phương trình cần tìm là
Viết phương trình tham số của đường thẳng
đi qua điểm
và song song với trục
.
Trong mặt phẳng tọa độ
, cho đường thẳng
và đường thẳng
. Xác định số đo góc giữa hai đường thẳng đã cho?
Vectơ pháp tuyến của đường thẳng d và lần lượt là
.
Khi đó góc giữa hai đường thẳng là:
Vậy góc giữa hai đường thẳng là .
Trong mặt phẳng với hệ tọa độ
, cho hai điểm
và
. Tìm điểm
thuộc trục tung sao cho diện tích tam giác
bằng ![]()
Ta có
Cho hình elip có độ dài trục lớn và độ dài trục nhỏ lần lượt bằng
và 0. Viết phương trình elip.
Ta có:
Phương trình elip là:
Một vectơ chỉ phương của đường thẳng
là:
Đường thẳng có một vectơ chỉ phương là:
Cho phương trình
. Với giá trị nào của
để
là phương trình đường tròn có bán kính nhỏ nhất?
Ta có:
Cho hình elip có độ dài trục lớn và độ dài trục bé lần lượt là
. Vẽ một hình chữ nhật nội tiếp elip đã cho. Diện tích lớn nhất của hình chữ nhật là:
Hình vẽ minh họa
Phương trình chính tắc của elip có dạng .
Ta có:
Chọn là đỉnh hình chữ nhật và
. Ta có:
Diện tích hình chữ nhật là:
Một Elip đi qua điểm
và có độ dài trục lớn là
. Hãy xác định phương trình chính tắc của elip đó?
Phương trình chính tắc của elip có dạng
Do (E) có độ dài trục lớn là nên
Do (E) đi qua điểm nên
Vậy phương trình chính tắc của elip là: .
Trong mặt phẳng Oxy, điểm
nằm trên đường tròn
sao cho độ dài đoạn thẳng OM là ngắn nhất. Hoành độ điểm
là:
Đường tròn có tâm
và bán kính
.
Phương trình đường thẳng OI đi qua và nhận
làm VTCP là:
.
Ta có:
Để OM ngắn nhất
Dấu bằng xảy ra .
Cho hai đường thẳng
và
. Khẳng định nào sau đây đúng?
Ta có: suy ra
và
song song với nhau.
Viết phương trình tiếp tuyến của đường tròn
, biết tiếp tuyến vuông góc với đường thẳng
.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có
Điểm nào dưới đây thuộc đường thẳng
?
Thay tọa độ các điểm vào đường thẳng ta thấy điểm thuộc đường thẳng đã cho là
.