Cho đường thẳng
. Điểm nào dưới đây không nằm trên đường thẳng đã cho?
Thay tọa độ các điểm đã cho vào phương trình tham số của đường thẳng d ta thấy điểm không thuộc đường thẳng d là: .
Cho đường thẳng
. Điểm nào dưới đây không nằm trên đường thẳng đã cho?
Thay tọa độ các điểm đã cho vào phương trình tham số của đường thẳng d ta thấy điểm không thuộc đường thẳng d là: .
Cho hai điểm
thuộc đường tròn
. Biết tâm
của đường tròn
nằm trên đường thẳng
. Tính giá trị biểu thức
?
Tâm I của đường tròn (C) nằm trên đường thẳng nên ta có:
Hai điểm thuộc đường tròn (C) nên ta suy ra đường trung trực của đoạn thẳng AB cũng đi qua tâm I.
Gọi M là trung điểm của đoạn thẳng AB => M(0; 3)
Đường trung trực AB đi qua điểm M(0; 3) và nhận là vecto pháp tuyến có phương trình
Vì trung trực AB cũng đi qua tâm I nên ta có:
Từ (*) và (**) suy ra
Cho hai đường thẳng
và
. Tìm các giá trị của tham số
để
và
hợp với nhau một góc bằng ![]()
Ta có:
Cho đường tròn
và đường thẳng
. Tìm giá trị của tham số m để
cắt
?
Đường tròn (C) có tâm I(m; -2) và R = 3
Để cắt
thì
Vậy thỏa mãn yêu cầu bài toán.
Tính góc tạo bởi giữa hai đường thẳng
và ![]()
Ta có
Trong mặt phẳng với hệ tọa độ
, cho ba đường thẳng lần lượt có phương trình tổng quát
,
và
. Tìm
để ba đường thẳng đã cho cùng đi qua một điểm.
Ta có:
Phương trình tổng quát của đường thẳng
đi qua điểm
và có vectơ pháp tuyến
là:
Đường thẳng đi qua điểm
và nhận
là vectơ pháp tuyến có phương trình tổng quát là:
Vậy phương trình tổng quát của đường thẳng là .
Trong hệ trục tọa độ
cho hai điểm
. Chọn đáp án không phải là phương trình tham số của đường thẳng
.
Đường thẳng AB có một vectơ chỉ phương là suy ra vectơ chỉ phương
Phương trình không thỏa mãn vì có vectơ chỉ phương
không cùng phương với
.
Dạng chính tắc của hypebol là
Dạng chính tắc của hypebol là .
Biết rằng có đúng hai giá trị của tham số
để đường thẳng
tạo với đường thẳng
một góc
. Tổng hai giá trị của
bằng:
Xét vị trí tương đối của hai đường thẳng
và
.
Chọn
Tọa độ tâm I và bán kính R của đường tròn có phương trình:
lần lượt là:
Tâm và bán kính đường tròn lần lượt là: I(1; 10) và R = 9
Cho phương trình
với
. Mệnh đề nào sau đây là mệnh đề sai?
Mệnh đề sai là: “Điểm thuộc đường thẳng
khi và chỉ khi
.”
Tìm
để hai đường thẳng
và
vuông góc với nhau?
Ta có:
Đường tròn ngoại tiếp hình chữ nhật cơ sở của hypebol
có có phương trình là:
Ta có: . Tọa độ các đỉnh hình chữ nhật cở sở là
,
,
,
Dường tròn ngoại tiếp hình chữ nhật cơ sở có tâm
bán kính
.
Phương trình đường tròn là
Trong mặt phẳng
, cho điểm
và đường thẳng
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Khoảng cách từ điểm P đến đường thẳng (d) là:
.
Cho hai đường thẳng
;
và điểm
. Phương trình đường tròn có tâm
, đi qua điểm
và tiếp xúc với
là:
Hình vẽ minh họa
Ta có I là tâm đường tròn và nên
Theo giả thiết bài toán ta có:
Suy ra và bán kính
Vậy phương trình đường tròn cần tìm là: .
Tọa độ tâm
và bán kính
của đường tròn
là:
Ta có:
Hypebol
có hai tiêu điểm là:
Ta có : Các tiêu điểm là
,
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây sai?
Với
, tâm sai của hypebol là
.
Trong mặt phẳng với hệ tọa độ
, cho đường thẳng
và hai điểm
,
không thuộc
. Chọn khẳng định đúng trong các khẳng định sau:
cùng phía so với
thì
và
luôn cùng dấu.
Chọn cùng phía so với
khi
Cho đường thẳng
có phương trình
. Xác định vectơ chỉ phương của
?
Đường thẳng có vectơ pháp tuyến là
nên có vectơ chỉ phương là
.
Cho hình elip có độ dài trục lớn và độ dài trục nhỏ lần lượt bằng
và 0. Viết phương trình elip.
Ta có:
Phương trình elip là:
Chọn mệnh đề sai? Đường thẳng
được xác định khi biết
Mệnh đề sai là: “một vectơ pháp tuyến hoặc một vectơ chỉ phương.”
Cho Elip
và một điểm
nằm trên
Giải sử điểm
có hoành độ bằng 1. Hãy tính khoảng cách từ M đến hai tiêu điểm của (E).
Giả sử phương trình Ta có :
Gọi lần lượt là hai tiêu điểm của Elip
,
, ta có :
.
Tìm phương trình chính tắc của Elip có độ dài trục lớn bằng
và đi qua điểm
:
Ta có phương trình chính tắc Elip (E) có dạng .
Theo giả thiết ta có
.
Mặt khác (E) đi qua nên ta có
.
Vậy phương trình chính tắc của (E) là: .
Tính khoảng cách từ điểm
đường thẳng
?
Ta có khoảng cách từ điểm M đến đường thẳng là:
Vậy khoảng cách cần tìm bằng 5.
Đường tròn
có tâm
thuộc đường thẳng
và tiếp xúc với hai đường thẳng
có phương trình là:
Ta có:
Vậy phương trình các đường tròn:
hoặc
Phương trình tiếp tuyến d của đường tròn (C): (
tại điểm M(2; 1) là:
Tâm .
Phương trình tiếp tuyến tại điểm là:
.
Đường thẳng
đi qua điểm nào sau đây?
Đặt
Chọn
Một Elip đi qua điểm
và có độ dài trục lớn là
. Hãy xác định phương trình chính tắc của elip đó?
Phương trình chính tắc của elip có dạng
Do (E) có độ dài trục lớn là nên
Do (E) đi qua điểm nên
Vậy phương trình chính tắc của elip là: .
Đường thẳng
không đi qua điểm nào sau đây ?
Gọi .
Đặt Chọn
.
Cho Hypebol có độ dài trục thực và tiêu cự lần lượt là
và
. Phương trình chính tắc của Hypebol là:
Phương trình chính tắc của Hypebol có dạng
Ta có:
Vậy phương trình chính tắc của Hypebol là: .
Trong mặt phẳng tọa độ
, cho đường thẳng
. Hệ số góc
của đường thẳng
là:
Ta có:
Đường thẳng có vectơ chỉ phương
nên có hệ số góc
.
Vậy hệ số góc của đường thẳng là .
Đường tròn
có dạng tổng quát là:
Cho đường tròn (C):
. Gọi
lần lượt là tiếp tuyến của đường tròn
tại điểm
. Tọa độ giao điểm của
và
là:
Ta có:
Phương trình tiếp tuyến của đường tròn tại M(3; 2) là:
Phương trình tiếp tuyến của đường tròn tại N(1; 0) là:
=> Giao điểm của hai tiếp tuyến là H(3; 0)
Trong mặt phẳng tọa độ
, cho đường thẳng
và đường thẳng
. Xác định số đo góc giữa hai đường thẳng đã cho?
Vectơ pháp tuyến của đường thẳng d và lần lượt là
.
Khi đó góc giữa hai đường thẳng là:
Vậy góc giữa hai đường thẳng là .
Cho hypebol (H):
. Tỉ số giữa độ dài trục ảo và độ dài trục thực bằng:
Ta có:
Ta có: a = 6; b =3
=> Độ dài trục ảo là 6, độ dài trục thực là 12
=> Tỉ số giữa độ dài trục ảo và độ dài trục thực là: