Xét vị trí tương đối của hai đường thẳng
và
.
cắt nhau nhưng không vuông góc.
Xét vị trí tương đối của hai đường thẳng
và
.
cắt nhau nhưng không vuông góc.
Cho phương trình
. Tìm điều kiện của
để
là phương trình đường tròn.
Ta có:
Viết phương trình đường tròn nội tiếp tam giác
, biết tọa độ
?
Ta có:
Mặt khác (vì cùng bằng diện tích tam giác ABO)
Suy ra
Dễ thấy đường tròn cần tìm có tâm thuộc góc phần tư thứ nhất và tiếp xúc với hai trục tọa độ nên tâm của đường tròn có tọa độ
Vậy phương trình đường tròn nội tiếp tam giác OAB là:
Đường thẳng
đi qua điểm nào sau đây?
Đặt
Chọn
Cho hypebol (H):
. Tỉ số giữa độ dài trục ảo và độ dài trục thực bằng:
Ta có:
Ta có: a = 6; b =3
=> Độ dài trục ảo là 6, độ dài trục thực là 12
=> Tỉ số giữa độ dài trục ảo và độ dài trục thực là:
Xét vị trí tương đối của hai đường thẳng
và
.
Phương trình chính tắc của đường elip với
,
là
Phương trình chính tắc .
Trong mặt phẳng
cho hai điểm
. Viết phương trình đường tròn
đi qua hai điểm
, biết rằng tâm đường tròn thuộc trục hoành?
Gọi I là tâm đường tròn
Tâm đường tròn thuộc trục hoành nên
Đường tròn đi qua hai điểm nên ta có:
Vậy đường tròn có tâm
và bán kính
Vậy phương trình đường tròn là:
Hai cạnh của hình chữ nhật nằm trên hai đường thẳng
và
. Hình chữ nhật có đỉnh
. Tính diện tích của hình chữ nhật.
Đáp án: 2
Hai cạnh của hình chữ nhật nằm trên hai đường thẳng và
. Hình chữ nhật có đỉnh
. Tính diện tích của hình chữ nhật.
Đáp án: 2
Ta có: .
Do không thuộc hai đường thẳng
và
nên độ dài hai cạnh kề nhau của hình chữ nhật bằng khoảng cách từ
đến hai đường thẳng
.
Ta có:
Viết phương trình tổng quát của đường thẳng
đi qua điểm
và vuông góc với đường thẳng ![]()
Xác định tâm và bán kính đường tròn
?
Ta có:
Vậy đường tròn có bán kính và bán kính
Trong mặt phẳng với hệ tọa độ
, cho hai điểm
và đường thẳng
. Tìm tọa độ giao điểm của đường thẳng
và
.
Cho Hyperbol
. Tìm điểm
trên
sao cho khoảng cách từ
đến đường thẳng
đạt giá trị nhỏ nhất.
Gọi . Phương trình tiếp tuyến của
tại
là
.
khi
thay vào
ta có:
.
Với ta có :
Với ta có :
Cho tam giác
có phương trình các cạnh
lần lượt là
và trực tâm
. Phương trình tổng quát của cạnh
là:
Ta có: nên tọa độ điểm A là nghiệm hệ phương trình:
Ta có
Điểm
Ta có: nên tọa độ điểm B là nghiệm hệ phương trình:
Đường thẳng BC đi qua điểm B nhận làm vecto pháp tuyến có phương trình là:
Đường tròn ngoại tiếp hình chữ nhật cơ sở của hypebol
có có phương trình là:
Ta có: . Tọa độ các đỉnh hình chữ nhật cở sở là
,
,
,
Dường tròn ngoại tiếp hình chữ nhật cơ sở có tâm
bán kính
.
Phương trình đường tròn là
Nếu đường thẳng
đi qua gốc tọa độ và song song với đường thẳng
thì
có phương trình tổng quát là:
Một vectơ pháp tuyến của là:
Mặt khác đi qua gốc tọa độ hay đi qua điểm
Vậy phương trình đường thẳng là:
Vậy đáp án đúng là: .
Phương trình tham số của đường thẳng đi qua hai điểm
là:
Gọi d là đường thẳng qua C và nhận làm vectơ chỉ phương.
Khi đó phương trình tham số của đường thẳng d là: .
Với giá trị nào của
thì hai đường thẳng
và
trùng nhau?
.
Trong mặt phẳng với hệ tọa độ
, cho hai đường thẳng
và
song song nhau. Đường thẳng vừa song song và cách đều với
là:
Cho Hypebol có độ dài trục thực và tiêu cự lần lượt là
và
. Phương trình chính tắc của Hypebol là:
Phương trình chính tắc của Hypebol có dạng
Ta có:
Vậy phương trình chính tắc của Hypebol là: .
Phương trình chính tắc của đường tròn tâm
và bán kính
là:
Phương trình đường tròn có dạng
Vì phương trình đường tròn cần tìm có tâm và bán kính
nên phương trình cần tìm là:
Cho đường thẳng
và
. Tính cosin góc tạo bởi giữa hai đường thẳng trên.
.
Trong mặt phẳng tọa độ Oxy cho đường tròn
có tâm
và đường thẳng
(với m là tham số). Biết đường thẳng
cắt đường tròn
tại hai điểm
phân biệt sao cho diện tích tam giác
bằng
. Có bao nhiêu giá trị của tham số m thỏa mãn yêu cầu đề bài?
Hình vẽ minh họa
Đường tròn (C) có tâm I(1; m) và bán kính R = 5.
Gọi H là trung điểm của dây cung AB. Ta có IH là đường cao của tam giác IAB và
Theo bài ra ta có:
Vậy có 4 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Xét vị trí tương đối của hai đường thẳng
và
.
Chọn
Một đường thẳng có vectơ chỉ phương là
. Vectơ nào sau đây là vectơ pháp tuyến của
?
Ta có:
Đường thẳng có vectơ chỉ phương
thì sẽ có một vectơ pháp tuyến là:
Áp dụng vào bài toán ta được:
Vectơ pháp tuyến của là:
.
Xét vị trí tương đối của hai đường thẳng:
và
.
Vì nên hai đường thẳng song song.
Phương trình tham số của đường thẳng nào sau đây có vectơ chỉ phương ![]()
Đường thẳng có phương trình tham số có vectơ chỉ phương là
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Trên hệ trục tọa độ cho đường tròn
. Trong các điểm sau điểm nào nằm trên đường tròn đã cho?
Thay tọa độ điểm vào phương trình đường tròn
ta được:
Vậy điểm thuộc đường tròn là .
Hypebol
có hai tiêu điểm là:
Ta có : Các tiêu điểm là
,
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây sai?
Đáp án sai là đáp án chứa độ dài trục lớn là .
Cho tọa độ hai điểm
. Viết phương trình chính tắc của elip có tâm là gốc tọa độ và đi qua hai điểm
?
Gọi phương trình chính tắc của elip là:
Do elip đi qua hai điểm nên ta có hệ phương trình:
Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là:
Một đường thẳng có bao nhiêu vectơ chỉ phương?
Một đường thẳng có vô số vectơ chỉ phương.
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A(– 3; 2) và B(1; 4).
Vectơ chỉ phương của đường thẳng AB là (2; 1).
Đường tròn
có tâm
và tiếp xúc với trục
có phương trình là:
Viết phương trình tiếp tuyến của đường tròn
tại điểm
.
Tâm .
Phương trình tiếp tuyến tại là:
.
Đường thẳng
đi qua giao điểm của hai đường thẳng
và
đồng thời tạo với đường thẳng
một góc
có phương trình:
Ta có gọi
. Khi đó
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Ta có:
Cho parabol (P) có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây sai?
Đáp án sai: Trục đối xứng của parabol là trục . Đáp án đúng là trục
mới là trục đối xứng.
Trong hệ trục
cho Elip
có các tiêu điểm
và một điểm
nằm trên
. Biết rằng chu vi của tam giác
bằng 18. Xác định tâm sai e của ![]()
Ta có .
Tâm sai .