Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hai đường thẳng \left( d_{1} ight):2x + y + 15 = 0\left( d_{2} ight): - 4x - 2y + 3 =
0. Khẳng định nào sau đây đúng?

    Ta có: \frac{2}{- 4} = \frac{1}{- 2} eq
\frac{15}{3} suy ra \left( d_{1}
ight)\left( d_{2}
ight) song song với nhau.

  • Câu 2: Nhận biết

    Cho đường thẳng 2x + y - 3 = 0. Điểm nào dưới đây thuộc đường thẳng đã cho?

    Thay x = 0 vào đường thẳng 2x + y - 3 = 0 suy ra y = 3

    Vậy điểm N(0;3) thuộc đường thẳng 2x + y - 3 = 0.

  • Câu 3: Thông hiểu

    Cho hai đường thẳng \left( d_{1} ight):x + 3y + 8 = 0; \left( d_{2} ight):3x - 4y + 10 =
0 và điểm A( - 2;1). Phương trình đường tròn có tâm I \in \left(
d_{1} ight), đi qua điểm A và tiếp xúc với \left( d_{2} ight) là:

    Hình vẽ minh họa

    Ta có I là tâm đường tròn và I \in \left(
d_{1} ight) nên I( - 3t -
8;t)

    Theo giả thiết bài toán ta có:

    d\left( I;\left( d_{2} ight) ight) =
IA

    \Leftrightarrow \frac{\left| 3( - 3t -
8) - 4t + 10 ight|}{\sqrt{3^{2} + 4^{2}}} = \sqrt{( - 3t - 8 + 2)^{2}
+ (t - 1)^{2}}

    \Leftrightarrow t = - 3

    Suy ra I(1; - 3) và bán kính R = IA = 5

    Vậy phương trình đường tròn cần tìm là: (C):(x - 1)^{2} + (y + 3)^{2} = 25.

  • Câu 4: Nhận biết

    Phương trình nào dưới đây là phương trình tổng quát của đường thẳng?

    Phương trình tổng quát của đường thẳng là: x = 2y.

  • Câu 5: Nhận biết

    Hypebol có nửa trục thực là 4, tiêu cự bằng 10 có phương trình chính tắc là:

    Ta có : \left\{ \begin{matrix}
a = 4 \\
2c = 10 \\
b^{2} = c^{2} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 4 \\
c = 5 \\
b = 3 \\
\end{matrix} ight.\ .

    Phương trình chính tắc của Hyperbol là \frac{x^{2}}{16} - \frac{y^{2}}{9} =
1.

  • Câu 6: Thông hiểu

    Trong mặt phẳng Oxy cho các điểm A(2;6),B(3;5),C( - 1; - 3). Phương trình đường tròn đi qua ba điểm là:

    Gọi phương trình đường tròn là: (C):x^{2}
+ y^{2} - 2ax - 2by + c = 0 với a^{2} + b^{2} - c > 0

    Vì đường tròn đi qua ba điểm A(2;6),B(3;5),C( - 1; - 3) nên ta có hệ phương trình:

    \left\{ \begin{matrix}2^{2} + 6^{2} - 2.2.a - 2.6.b + c = 0 \\3^{2} + 5^{2} - 2.3.a - 2.5.b + c = 0 \\( - 1)^{2} + ( - 3)^{2} - 2.( - 1).a - 2.( - 3).b + c = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}4a + 12b - c = 40 \\6a + 10b - c = 34 \\2a + 6b + c = - 10 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = - 1 \\b = 2 \\c = - 20 \\\end{matrix} ight.

    Vậy phương trình đường tròn cần tìm là: (C):x^{2} + y^{2} + 2x - 4y - 20 = 0.

  • Câu 7: Thông hiểu

    Trong hệ trục tọa độ Oxy cho đường thẳng (d):2x - y - 4 = 0. Một đường tròn (C) tiếp xúc với các trục tọa độ và có tâm nằm trên đường thẳng (d). Kết quả nào dưới đây đúng?

    Ta có tâm đường tròn thuộc đường thẳng d nên I(m;2m - 4) \in (d). Theo giả thiết để bài ta có:

    d(I;Ox) = d(I;Oy)

    \Leftrightarrow |2m - 4| = |m|
\Leftrightarrow \left\lbrack \begin{matrix}
m = 4 \\
m = \frac{4}{3} \\
\end{matrix} ight.

    Với m = \frac{4}{3} \Rightarrow I\left(
\frac{4}{3}; - \frac{4}{3} ight)

    \Rightarrow R = d(I;Oy) = |m| =
\frac{4}{3}

    Vậy phương trình đường tròn là: \left( x
- \frac{4}{3} ight)^{2} + \left( x + \frac{4}{3} ight)^{2} =
\frac{16}{9}

    Với m = 4 \Rightarrow I(4;4)

    \Rightarrow R = d(I;Oy) = |m| =
4

    Vậy phương trình đường tròn là: (x -
4)^{2} + (y + 4)^{2} = 16.

  • Câu 8: Thông hiểu

    Tìm tất cả các giá trị của m để hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 2 + 2t \\
y = 1 + mt \\
\end{matrix} ight.d_{2}:4x
- 3y + m = 0 trùng nhau.

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 2 + 2t \\
y = 1 + mt \\
\end{matrix} ight.\  ightarrow A(2;1) \in d_{1},\
{\overrightarrow{u}}_{1} = (2;m) \\
d_{2}:4x - 3y + m = 0 ightarrow {\overrightarrow{u}}_{2} = (3;4) \\
\end{matrix} ight\}

    \overset{d_{1} \equiv
d_{2}}{ightarrow}\left\{ \begin{matrix}
A \in d_{2} \\
\frac{2}{3} = \frac{m}{4} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
5 + m = 0 \\
m = \frac{8}{3} \\
\end{matrix} ight.\  \Leftrightarrow m \in \varnothing.

  • Câu 9: Nhận biết

    Xác định vị trí tương đối của hai đường thẳng \Delta_{1}:7x + 2y - 1 = 0\Delta_{2}:\left\{ \begin{matrix}
x = 4 + t \\
y = 1 - 5t \\
\end{matrix} ight.\ .

    \left. \ \begin{matrix}
\Delta_{1}:7x + 2y - 1 = 0 ightarrow {\overrightarrow{n}}_{1} = (7;2)
\\
\Delta_{2}:\left\{ \begin{matrix}
x = 4 + t \\
y = 1 - 5t \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = (1; -
5) ightarrow {\overrightarrow{n}}_{2} = (5;1) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{7}{5}\boxed{=}\frac{2}{1} \\
{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2}\boxed{=}0 \\
\end{matrix} ight.\  ightarrow \Delta_{1},\ \ \Delta_{2} cắt nhau nhưng không vuông góc.

  • Câu 10: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng \Delta_{1}:\left\{ \begin{matrix}
x = m + 2t \\
y = 1 + \left( m^{2} + 1 ight)t \\
\end{matrix} ight.\Delta_{2}:\left\{ \begin{matrix}
x = 1 + mt \\
y = m + t \\
\end{matrix} ight. trùng nhau?

    \begin{matrix}
\left\{ \begin{matrix}
\Delta_{1}:\left\{ \begin{matrix}
x = m + 2t \\
y = 1 + \left( m^{2} + 1 ight)t \\
\end{matrix} ight.\  ightarrow A(m;1) \in d_{1},\ \
{\overrightarrow{u}}_{1} = \left( 2;m^{2} + 1 ight) \\
\Delta_{2}:\left\{ \begin{matrix}
x = 1 + mt \\
y = m + t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{u}}_{2} = (m;1) \\
\end{matrix} ight.\  \\
\\
\end{matrix} .

    \overset{d_{1} \equiv
d_{2}}{ightarrow}\left\{ \begin{matrix}
A \in d_{2} \\
\frac{m}{2} = \frac{1}{m^{2} + 1} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m = 1 + mt \\
1 = m + t \\
m^{3} + m - 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = 1 + m(1 - m) \\
(m - 1)\left( m^{2} + m + 2 ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 1 = 0 \\
m - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow m = 1

  • Câu 11: Thông hiểu

    Cho phương trình Hypebol \frac{x^{2}}{16}-\frac{y^{2}}{9}=1. Độ dài trục thực của Hypebol đó là

    Ta có: \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 ta có: a = 4; b = 3

    => Độ dài trục thực của Hypebol đó là 2a = 8

  • Câu 12: Thông hiểu

    Đường chuẩn của Parabol y^{2} = 14x là:

    Từ phương trình Parabol y^{2} = 14x ta có 2p = 14 => p = 7

    Do đó phương trình đường chuẩn của Parabol là x + \frac{7}{2} = 0

  • Câu 13: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 1 - 4t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Hãy chỉ ra vectơ chỉ phương của đường thẳng d?

    Vectơ chỉ phương của đường thẳng dlà: \overrightarrow{u_{d}} = ( - 4;3).

  • Câu 14: Nhận biết

    Trong mặt phẳng hệ trục tọa độ Oxy, cho đường thẳng d cắt hai trục Ox,Oy lần lượt tại điểm A(a;0),B(0;b) với a eq 0;b eq 0. Khi đó phương trình đường thẳng d là:

    Phương trình đường thẳng d là: \frac{x}{a} + \frac{y}{b} = 1.

  • Câu 15: Vận dụng

    Đường thẳng \Delta đi qua giao điểm của hai đường thẳng d_{1}:2x + y - 3 = 0d_{2}:x - 2y + 1 = 0 đồng thời tạo với đường thẳng d_{3}:y - 1 = 0 một góc 45^{0} có phương trình:

    \left\{ \begin{matrix}
d_{1}:2x + y - 3 = 0 \\
d_{2}:x - 2y + 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
\end{matrix} ight.

    ightarrow d_{1} \cap d_{2} = A(1;1) \in
\Delta.

    Ta có d_{3}:y - 1 = 0 ightarrow
{\overrightarrow{n}}_{3} = (0;1),gọi {\overrightarrow{n}}_{\Delta} = (a;b),\ \ \varphi
= \left( \Delta;d_{3} ight). Khi đó

    \frac{1}{\sqrt{2}} = \cos\varphi =
\frac{|b|}{\sqrt{a^{2} + b^{2}}.\sqrt{0 + 1}} \Leftrightarrow a^{2} +
b^{2} = 2b^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = b ightarrow a = b = 1 ightarrow \Delta:x + y - 2 = 0 \\
a = - b ightarrow a = 1,\ b = - 1 ightarrow \Delta:x - y = 0 \\
\end{matrix} ight.\ .

  • Câu 16: Nhận biết

    Đường thẳng nào sau đây có đúng một điểm chung với đường thẳng \left\{ \begin{matrix}
x = - 2 + 3t \\
y = 5 - 7t \\
\end{matrix} ight.?

    Ta cần tìm đường thẳng cắt d:\left\{
\begin{matrix}
x = - 2 + 3t \\
y = 5 - 7t \\
\end{matrix} ight.\ \overset{}{ightarrow}d:7x + 3y - 1 =
0.

    d_{1}:7x + 3y - 1 =
0\overset{}{ightarrow}d_{1} \equiv
d\overset{}{ightarrow}loại 7x +
3y - 1 = 0.

    d_{2}:7x + 3y + 1 = 0\ \ \&\ \
d_{3}:7x + 3y + 2018 = 0\overset{}{ightarrow}d_{2},\ \
d_{3}||d\overset{}{ightarrow}loại 7x + 3y + 1 = 07x + 3y + 2018 = 0. Chọn 3x - 7y + 2018 = 0.

  • Câu 18: Vận dụng

    Cho tam giác ABC có phương trình các cạnh AB;AC lần lượt là 5x - 2y + 6 = 0,4x + 7y - 21 = 0 và trực tâm H(1;1). Phương trình tổng quát của cạnh BC là:

    Ta có: A = AB \cap AC nên tọa độ điểm A là nghiệm hệ phương trình:

    \left\{ \begin{matrix}
5x - 2y + 6 = 0 \\
4x + 7y - 21 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 3 \\
\end{matrix} ight.

    \Rightarrow A(0;3) \Rightarrow
\overrightarrow{AH} = (1; - 2)

    Ta có BH\bot AC \Rightarrow BH:7x - 4y +
a = 0

    Điểm H \in BH \Leftrightarrow 7 - 4 + a =
0 \Leftrightarrow a = - 3

    \Rightarrow BH:7x - 4y - 3 =
0

    Ta có: B = AB \cap BH nên tọa độ điểm B là nghiệm hệ phương trình:

    \left\{ \begin{matrix}5x - 2y + 6 = 0 \\7x - 4y - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - 5 \\y = - \dfrac{19}{2} \\\end{matrix} ight.

    \Rightarrow B\left( - 5; - \frac{19}{2}
ight)

    Đường thẳng BC đi qua điểm B nhận \overrightarrow{AH} làm vecto pháp tuyến có phương trình là:

    x + 5 - 2\left( x + \frac{19}{2} ight)
= 0 \Leftrightarrow x - 2y - 14 = 0

  • Câu 19: Nhận biết

    Cho hai đường thẳng \Delta_1\Delta_2 có phương trình lần lượt là ax + by + c = 0dx + ey + f = 0. Xét hệ \left\{\begin{matrix}ax+by+c=0\\ dx+ey+f=0\end{matrix}ight.. Khi đó hai đường cắt nhau khi và chỉ khi:

     Hai đường thẳng cắt nhau khi hệ có nghiệm duy nhất.

  • Câu 20: Nhận biết

    Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Hypebol?

    Phương trình Hypebol có dạng \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1;c^{2} = a^{2} + b^{2}

    Vậy phương trình cần tìm là \frac{x^{2}}{9} - \frac{y^{2}}{4} =
1.

  • Câu 21: Nhận biết

    Tìm giá trị tham số m để đường thẳng \left( d_{1} ight):2x + y + 4 = 0 song song với đường thẳng \left( d_{2} ight):(m
- 3)x + y - 1 = 0?

    Để hai đường thẳng đã cho song song với nhau thì

    \frac{m + 3}{2} = \frac{1}{1}
\Leftrightarrow m = - 1

    Vậy m = -1 thì hai đường thẳng song song với nhau.

  • Câu 22: Vận dụng

    Trong mặt phẳng tọa độ Oxy cho đường tròn (C):x^{2} + y^{2} - 2x - 2my + m^{2} - 24 =
0 có tâm I và đường thẳng \Delta:mx + 4y = 0 (với m là tham số). Biết đường thẳng \Delta cắt đường tròn (C) tại hai điểm A;B phân biệt sao cho diện tích tam giác IAB bằng 12. Có bao nhiêu giá trị của tham số m thỏa mãn yêu cầu đề bài?

    Hình vẽ minh họa

    Đường tròn (C) có tâm I(1; m) và bán kính R = 5.

    Gọi H là trung điểm của dây cung AB. Ta có IH là đường cao của tam giác IAB và

    IH = d(I;\Delta) \Leftrightarrow
\frac{|m + 4m|}{\sqrt{m^{2} + 16}} = \frac{|5m|}{\sqrt{m^{2} +
16}}

    AH = \sqrt{IA^{2} - IH^{2}} = \sqrt{25 -
\frac{(5m)^{2}}{m^{2} + 16}} = \frac{20}{\sqrt{m^{2} + 16}}

    Theo bài ra ta có:

    S_{IAB} = 12 \Leftrightarrow 2S_{IAH} =
12

    \Leftrightarrow d(I;\Delta).AH =
12

    \Leftrightarrow 25|m| = 3\left( m^{2} +
16 ight)

    \Leftrightarrow \left\lbrack\begin{matrix}m = \pm 3 \\m = \pm \dfrac{16}{3} \\\end{matrix} ight.

    Vậy có 4 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 23: Vận dụng

    Cho điểm M nằm trên ∆: x + y – 1 = 0 và cách N(–1; 3) một khoảng bằng 5. Khi đó tọa độ điểm M là:

     Gọi M(a;b)

    M \in \Delta \Rightarrow a+b-1=0 \Rightarrow a=1-b

    Do đó M(1-b;b).

    Ta có: MN=5 \Leftrightarrow\sqrt {{{( - 1 - 1 + b)}^2} + {{(3 - b)}^2}}  = 5\Rightarrow b =  - 1 \Rightarrow a = 2.

  • Câu 24: Thông hiểu

    Tìm phương trình chính tắc của Parabol (P) biết khoảng cách từ tiêu điểm F đến đường thẳng \Delta:x + y - 12 = 02\sqrt{2}.

    Ta có tọa độ tiêu điểm F\left(
\frac{p}{2}\ ;\ 0 ight).

    Khoảng cách từ F đến đường thẳng \Delta:x + y - 12 = 02\sqrt{2} nên:

    d_{(F;\Delta)} = \frac{\left| \frac{p}{2}
- 12 ight|}{\sqrt{2}} = 2\sqrt{2} \Leftrightarrow \left\lbrack
\begin{matrix}
p = 32 \\
p = 64 \\
\end{matrix} ight..

    Vậy phương trình của (P) là: y^{2} = 32x hoặc y^{2} = 64x.

  • Câu 25: Thông hiểu

    Phương trình tổng quát của đường thẳng đi qua hai điểm A(3 ; – 1) và B(1 ; 5) là:

     Ta có: {\overrightarrow u _{AB}} = ( - 2;6) \Rightarrow {\overrightarrow u _{AB}} ( - 1;3) \Rightarrow {\overrightarrow n _{AB}} = (3;1).

    Phương trình tổng quát của AB

    3(x - 3) + 1(y + 1) = 0 \Leftrightarrow 3x + y - 8 = 0.

     

  • Câu 26: Thông hiểu

    Cho tọa độ hai điểm M\left( - 2\sqrt{3};\frac{3}{2} ight),N\left(
2;\frac{3\sqrt{3}}{2} ight). Viết phương trình chính tắc của elip có tâm là gốc tọa độ và đi qua hai điểm M;N?

    Gọi phương trình chính tắc của elip là: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1;(a;b
> 0)

    Do elip đi qua hai điểm M\left( -
2\sqrt{3};\frac{3}{2} ight),N\left( 2;\frac{3\sqrt{3}}{2}
ight) nên ta có hệ phương trình:

    \left\{ \begin{matrix}\dfrac{12}{a^{2}} + \dfrac{9}{b^{2}} = 1 \\\dfrac{4}{a^{2}} + \dfrac{27}{b^{2}} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a^{2} = 16 \\b^{2} = 9 \\\end{matrix} ight.

    Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là: \frac{x^{2}}{16} + \frac{y^{2}}{9} =
1

  • Câu 27: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho hai điểm A(–2\ ;\ 0),\ B(1\ ;\ 4) và đường thẳng d:\left\{ \begin{matrix}
x = - t \\
y = 2 - t \\
\end{matrix} ight.. Tìm tọa độ giao điểm của đường thẳng ABd.

    \left\{ \begin{matrix}
A(–2\ ;\ 0),\ B(1\ ;\ 4) ightarrow AB:4x - 3y + 8 = 0 \\
d:\left\{ \begin{matrix}
x = - t \\
y = 2 - t \\
\end{matrix} ight.\  ightarrow d:x - y + 2 = 0 \\
\end{matrix} ight.

    \overset{AB \cap d}{ightarrow}\left\{
\begin{matrix}
4x - 3y + 8 = 0 \\
x - y + 2 = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
\end{matrix} ight.\ .

  • Câu 28: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2}–5y = 0 là:

    (C):x^{2} + y^{2}–5y = 0 ightarrow
I\left( 0;\frac{5}{2} ight),\ R = \sqrt{0 + \frac{25}{4} - 0} =
\frac{5}{2}.

  • Câu 29: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} ight. và hai điểm A(1;2),B( - 2;m). Tìm tất cả các giá trị của tham số m để AB nằm cùng phía đối với d.

    Ta có: d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} \Rightarrow d:3x + y - 7 = 0 ight..

    Để A, B nằm cùng phía đối với d thì:

    \left( 3x_{A} + y_{A} - 7 ight)\left(
3x_{A} + y_{A} - 7 ight) > 0 \Leftrightarrow - 2(m - 13) >
0

    \Leftrightarrow m - 13 < 0
\Leftrightarrow m < 13.

  • Câu 30: Nhận biết

    Đường tròn (C): {x^2} + {y^2} + 12x - 14y + 4 = 0 viết được dưới dạng:

    Từ phương trình đường tròn {x^2} + {y^2} + 12x - 14y + 4 = 0 ta suy ra:

    I\left( { - 6;7} ight);R = \sqrt {{6^2} + {7^2} - 4}  = 9

    Vậy phương trình tổng quát {(x + 6)^2} + {(y - 7)^2} = 81

  • Câu 31: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):(x + 1)^{2} + y^{2} = 8 là:

    (C):(x + 1)^{2} + y^{2} =
8\overset{}{ightarrow}I( - 1;0),\ R = \sqrt{8} =
2\sqrt{2}.

  • Câu 32: Vận dụng

    Xác định giá trị của tham số m để hai đường thẳng \left( \Delta_{1} ight):mx - y + 1 =
0\left( \Delta_{2} ight):(m -
4)x + (2m - 3)y + m = 0 song song với nhau?

    Điều kiện để \left( \Delta_{1}
ight)//\left( \Delta_{2} ight) là: \frac{m}{m - 4} = \frac{- 1}{2m - 3} eq
\frac{1}{m}(*)

    Với m eq 0,m eq 4,m eq
\frac{3}{2}

    Ta có:

    \frac{m}{m - 4} = \frac{- 1}{2m -
3}

    \Leftrightarrow 2m^{2} - 2m - 4 =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
m = - 1 \\
m = 2 \\
\end{matrix} ight.

    Với m = - 1 ta có: (*) \Leftrightarrow \frac{- 1}{- 5} = \frac{- 1}{-
5} eq \frac{1}{- 1}(đúng)

    Với m = 2 ta có: (*) \Leftrightarrow \frac{2}{- 2} = \frac{- 1}{1}
eq \frac{1}{2}(đúng)

    Vậy \left\lbrack \begin{matrix}
m = - 1 \\
m = 2 \\
\end{matrix} ight. thỏa mãn yêu cầu đề bài.

  • Câu 33: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A(m - 1;1),B(2;2 - 2m),C(m + 3;3) với m là tham số. Tìm giá trị của tham số m để ba điểm A,B,C thẳng hàng?

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = (3 - m;3 - 2m) \\
\overrightarrow{AC} = (4;4) \\
\end{matrix} ight.

    Ba điểm A, B, C thẳng hàng khi và chỉ khi \overrightarrow{AB};\overrightarrow{AC} cùng phương với nhau.

    Điều đó xảy ra khi và chỉ khi \frac{3 -
m}{4} = \frac{3 - 2m}{4} \Leftrightarrow m = 0

    Vậy m = 0 thì ba điểm A, B, C thẳng hàng.

  • Câu 34: Vận dụng

    Đường tròn (C) đi qua hai điểm 4x^{2} + y^{2} - 10x - 6y - 2 = 0. và tiếp xúc với đường thẳng \Delta:3x + y - 3 =
0. Viết phương trình đường tròn (C), biết tâm của (C) có tọa độ là những số nguyên.

    AB:x - y + 1 = 0, đoạn AB có trung điểm M(2;3) ightarrowtrung trực của đoạn AB là d:x + y - 5 = 0
ightarrow I(a;5 - a),\ \ a\mathbb{\in Z}.

    Ta có: R = IA = d\lbrack I;\Deltabrack
= \sqrt{(a - 1)^{2} + (a - 3)^{2}} = \frac{|2a +
2|}{\sqrt{10}}

    \Leftrightarrow a = 4 ightarrow
I(4;1),\ R = \sqrt{10}.

    Vậy phương trình đường tròn là: (x -
4)^{2} + (y - 1)^{2} = 10 \Leftrightarrow x^{2} + y^{2} - 8x - 2y + 7 =
0.

  • Câu 35: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):(x - 1)^{2} + (y + 3)^{2} = 16 là:

    (C):(x - 1)^{2} + (y + 3)^{2} =
16\overset{}{ightarrow}I(1; - 3),\ \ R = \sqrt{16} = 4.

  • Câu 36: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Ox?

     Vectơ chỉ phương của trục Ox là (1; 0).

  • Câu 37: Vận dụng

    Trong mặt phẳng Oxy, hãy tìm phương trình chính tắc của elip (E). Biết rằng (E) đi qua M\left( \frac{3}{\sqrt{5}};\frac{4}{\sqrt{5}}
ight). Mặt khác, M nhìn hai tiêu điểm F_{1},\ F_{2} dưới một góc 90 độ.

    Gọi (E):\ \ \frac{x^{2}}{a^{2}} +
\frac{y^{2}}{b^{2}} = 1.

    Ta có: (E) đi qua M\left( \frac{3}{\sqrt{5}};\frac{4}{\sqrt{5}}
ight) nên: \frac{9}{5a^{2}} +
\frac{16}{5b^{2}} = 1 \Leftrightarrow \ \ 16a^{2} + 9b^{2} =
5a^{2}b^{2}. (1)

    M nhìn hai tiêu điểm F_{1},\ F_{2} dưới một góc vuông nên: OM = \frac{F_{1}F_{2}}{2} = c.

    \Leftrightarrow \ \ OM^{2} =
c^{2} \Leftrightarrow \ \
\frac{9}{5} + \frac{16}{5} = c^{2} \Leftrightarrow \ \ a^{2} - b^{2} = c^{2} =
5 \Leftrightarrow \ \ a^{2} = 5 +
b^{2} thế vào (1) ta được:

    16\left( 5 + b^{2} ight) + 9b^{2} =
5\left( 5 + b^{2} ight)b^{2} \Leftrightarrow \ \ b^{4} = 16 \Rightarrow \ \ b^{2} = 4 nên a^{2} = 9.

    Vậy: (E):\ \ \frac{x^{2}}{9} +
\frac{y^{2}}{4} = 1.

  • Câu 38: Vận dụng

    Hãy viết phương trình chính tắc của elip nếu nó đi qua điểm N\left( 2; - \frac{5}{3}
ight) và tỉ số của tiêu cự với độ dài trục lớn bằng \frac{2}{3}.

    Gọi phương trình chính tắc của Elip là (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1, với a > b >
0.

    \bullet Elip đi qua điểm N\left( 2; - \frac{5}{3} ight) suy ra \frac{2^{2}}{a^{2}} + \frac{\left( -
\frac{5}{3} ight)^{2}}{b^{2}} = 1 \Leftrightarrow \frac{4}{a^{2}} +
\frac{25}{9b^{2}} = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (1).

    \bullet Tỉ số của tiêu cực với độ dài trục lớn bằng \frac{2}{3} suy ra \frac{2c}{2a} = \frac{2}{3}
\Leftrightarrow \frac{c}{a} = \frac{2}{3} \Leftrightarrow c^{2} =
\frac{4}{9}a^{2}.

    Kết hợp với điều kiện b^{2} = a^{2} -
c^{2}, ta được b^{2} = a^{2} -
\frac{4}{9}a^{2} = \frac{5}{9}a^{2} \Leftrightarrow 9b^{2} = 5a^{2}\ \ \
\ \ \ \ \ \ \ (2).

    Từ (1),\ \ (2) suy ra \left\{ \begin{matrix}
\frac{4}{a^{2}} + \frac{25}{9b^{2}} = 1 \\
9b^{2} = 5a^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\frac{4}{a^{2}} + \frac{25}{5a^{2}} = 1 \\
9b^{2} = 5a^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\frac{9}{a^{2}} = 1 \\
9b^{2} = 5a^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 9 \\
b^{2} = 5 \\
\end{matrix} ight.\ .

    Vậy phương trình cần tìm là (E):\frac{x^{2}}{9} + \frac{y^{2}}{5} =
1.

  • Câu 39: Nhận biết

    Đường thẳng nào là đường chuẩn của parabol y^{2}=2x.

     Ta có: 2p=2 \Leftrightarrow p=1.

    Đường chuẩn: x=-\frac p2=-\frac12.

  • Câu 40: Nhận biết

    Hypebol \frac{x^{2}}{16} - \frac{y^{2}}{9} = 1 có hai tiêu điểm là:

    Ta có : \left\{ \begin{matrix}
a^{2} = 16 \\
b^{2} = 9 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 5 \\
b = 3 \\
c = 5 \\
\end{matrix} ight.\ . Các tiêu điểm là F_{1}( - 5;0), F_{2}(5;0).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo