Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Có bao nhiêu đường thẳng đi qua gốc tọa độ O và tiếp xúc với đường tròn (C):x^{2} + y^{2} - 2x + 4y - 11 = 0?

    Đường tròn (C) có tâm I(1; - 2),\ R = 4
ightarrow OI = \sqrt{5} < R ightarrowkhông có tiếp tuyến nào của đường tròn kẻ từ O.

  • Câu 2: Nhận biết

    Elip (E):4x^{2}+16y^{2}=1 có độ dài trục bé bằng:

     Ta có: (E):4x^{2}+16y^{2}=1  \Leftrightarrow\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{1}{{16}}}} = 1 \Rightarrow {b^2} = \frac{1}{{16}} \Rightarrow b = \frac{1}{4}.

    Độ dài trục bé 2b=\frac12.

  • Câu 3: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + (y + 4)^{2} = 5 là:

    (C):x^{2} + (y + 4)^{2} =
5\overset{}{ightarrow}I(0; - 4),\ R = \sqrt{5}.

  • Câu 4: Nhận biết

    Điểm nào dưới đây thuộc đường thẳng 2x - y + 1 = 0?

    Thay tọa độ các điểm vào đường thẳng 2x -
y + 1 = 0 ta thấy điểm thuộc đường thẳng đã cho là D(0;1).

  • Câu 5: Nhận biết

    Đường tròn (C): x^{2} + y^{2} – 3x – y = 0 có đường kính bằng bao nhiêu?

     Tâm I(\frac32;\frac12). Do đó R = \sqrt {{{\left( {\frac{3}{2}} ight)}^2} + {{\left( {\frac{1}{2}} ight)}^2} - 0}  = \frac{{\sqrt {10} }}{2}.

    Do đó đường kính bằng 2R=\sqrt{10}.

  • Câu 6: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm A(2; - 1)B(2;5).

    \left\{ \begin{matrix}A(2; - 1) \in AB \\{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = (0;6) \\\end{matrix} ight.\ \overset{ightarrow}{}AB:\left\{ \begin{matrix}x = 2 \\y = - 1 + 6t \\\end{matrix} ight.\ \ \ \left( t\mathbb{\in R} ight).

  • Câu 7: Thông hiểu

    Cho đường thẳng \left( d_{1} ight):\left\{ \begin{matrix}
x = 1 - 6t \\
y = - 2 + 5t \\
\end{matrix} ight. và đường thẳng \left( d_{2} ight):\left\{ \begin{matrix}
x = 10 + 5t \\
y = 1 + 6t \\
\end{matrix} ight.. Tính góc hợp bởi hai đường thẳng?

    Vectơ chỉ phương của \left( d_{1}
ight):\left\{ \begin{matrix}
x = 1 - 6t \\
y = - 2 + 5t \\
\end{matrix} ight. là: \overrightarrow{u_{d_{1}}} = ( - 6;5)

    Vectơ chỉ phương của \left( d_{2}
ight):\left\{ \begin{matrix}
x = 10 + 5t \\
y = 1 + 6t \\
\end{matrix} ight. là: \overrightarrow{u_{d_{2}}} = (5;6)

    Ta có: \overrightarrow{u_{d_{1}}}.\overrightarrow{u_{d_{2}}}
= 0 \Rightarrow d_{1}\bot d_{2}

    Vậy góc hợp bởi hai đường thẳng đã cho bằng 90^{0}.

  • Câu 8: Thông hiểu

    Trong mặt phẳng Oxy cho các điểm A(6;5),B(0; - 3),C(3; - 4). Phương trình đường tròn ngoại tiếp tam giác ABC là:

    Gọi phương trình đường tròn là: (C):x^{2}
+ y^{2} - 2ax - 2by + c = 0 với a^{2} + b^{2} - c > 0

    Vì đường tròn đi qua ba điểm A(6;5),B(0;
- 3),C(3; - 4) nên ta có hệ phương trình:

    \left\{ \begin{matrix}
6^{2} + 5^{2} + 2.6.a + 2.5.b + c = 0 \\
0^{2} + ( - 3)^{2} + 2.0a + 2.( - 3).b + c = 0 \\
3^{2} + ( - 4)^{2} + 2.3a + 2.( - 4).b + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
12a + 10b + c = - 61 \\
- 6a + c = - 9 \\
6a - 8b + c = - 25 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 3 \\
b = - 1 \\
c = - 15 \\
\end{matrix} ight.

    Vậy phương trình đường tròn cần tìm là: (C):(x - 3)^{2} + (y - 1)^{2} = 25.

  • Câu 9: Thông hiểu

    Một elip có diện tích hình chữ nhật cơ sở là 80, độ dài tiêu cự là 6. Tâm sai của elip đó là

    Diện tích hình chữ nhật cơ sở là 2a.2b =
80, suy ra a.b = 20\ \ \
(1).

    Lại có 2c = 6 \Rightarrow c = 3
\Rightarrow a^{2} - b^{2} = c^{2} = 9\ \ \ \ (2).

    Từ (1) \Rightarrow b =
\frac{20}{a}, thay vào (2) ta được:

    a^{2} - \frac{400}{a^{2}} = 9 \Rightarrow
a^{4} - 9a^{2} - 400 = 0 \Leftrightarrow a^{2} = 25 \Rightarrow a =
5.

    Do đó tâm sai e =
\frac{3}{5}.

  • Câu 10: Nhận biết

    Đường thẳng nào là đường chuẩn của parabol y^{2}=2x.

     Ta có: 2p=2 \Leftrightarrow p=1.

    Đường chuẩn: x=-\frac p2=-\frac12.

  • Câu 11: Nhận biết

    Đường thẳng nào sau đây có đúng một điểm chung với đường thẳng \left\{ \begin{matrix}
x = - 2 + 3t \\
y = 5 - 7t \\
\end{matrix} ight.?

    Ta cần tìm đường thẳng cắt d:\left\{
\begin{matrix}
x = - 2 + 3t \\
y = 5 - 7t \\
\end{matrix} ight.\ \overset{}{ightarrow}d:7x + 3y - 1 =
0.

    d_{1}:7x + 3y - 1 =
0\overset{}{ightarrow}d_{1} \equiv
d\overset{}{ightarrow}loại 7x +
3y - 1 = 0.

    d_{2}:7x + 3y + 1 = 0\ \ \&\ \
d_{3}:7x + 3y + 2018 = 0\overset{}{ightarrow}d_{2},\ \
d_{3}||d\overset{}{ightarrow}loại 7x + 3y + 1 = 07x + 3y + 2018 = 0. Chọn 3x - 7y + 2018 = 0.

  • Câu 12: Thông hiểu

    Cho hypebol (H): 4x^{2} – y^{2} = 1. Khẳng định nào sau đây đúng?

    Ta có:

    \begin{matrix}  4{x^2} - {y^2} = 1 \hfill \\   \Leftrightarrow \dfrac{{{x^2}}}{{\dfrac{1}{4}}} - \dfrac{{{y^2}}}{1} = 1 \hfill \\   \Leftrightarrow \dfrac{{{x^2}}}{{{{\left( {\dfrac{1}{2}} ight)}^2}}} - \dfrac{{{y^2}}}{1} = 1 \hfill \\   \Rightarrow a = \dfrac{1}{2};b = 1 \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \dfrac{{\sqrt 5 }}{2} \hfill \\ \end{matrix}

    Vậy Hypebol (H) có tiêu cự 2c = \sqrt 5  e \frac{{\sqrt 5 }}{2}

    => Hai tiêu điểm của (H) là: {F_1} = \left( { - \frac{{\sqrt 5 }}{2};0} ight);{F_2} = \left( {\frac{{\sqrt 5 }}{2};0} ight)

    Ta có trục thực là: {A_1}{A_2} = 2a = 2.\frac{1}{2} = 1

    Trục ảo là: 2b = 2.1 = 2 e \frac{1}{2}

    Vậy khẳng định đúng là:" Hypebol có trục thực bằng 1".

  • Câu 13: Vận dụng

    Tìm m để hai đường thẳng d_{1}:4x - 3y + 3m =
0d_{2}:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 4 + mt \\
\end{matrix} ight. trùng nhau?

    \left\{ \begin{matrix}
d_{1}:4x - 3y + 3m = 0 ightarrow {\overrightarrow{n}}_{1} = (4; - 3)
\\
d_{2}:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 4 + mt \\
\end{matrix} ightarrow A(1;4) \in d_{2},\ \ {\overrightarrow{n}}_{2} =
(m; - 2) ight.\  \\
\end{matrix} ight. \overset{d_{1} \equiv d_{2}}{ightarrow}\left\{
\begin{matrix}
A \in d_{1} \\
\frac{m}{4} = \frac{- 2}{- 3} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
3m - 8 = 0 \\
m = \frac{8}{3} \\
\end{matrix} ight. \Leftrightarrow m = \frac{8}{3}.

  • Câu 14: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho ba đường thẳng lần lượt có phương trình tổng quát d_{1}:3x - 4y + 15 =
0, d_{2}:5x + 2y - 1 = 0d_{3}:mx - (2m - 1)y + 9m - 13 =
0. Tìm m để ba đường thẳng đã cho cùng đi qua một điểm.

    Ta có: \left\{ \begin{matrix}
d_{1}:3x - 4y + 15 = 0 \\
d_{2}:5x + 2y - 1 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 3 \\
\end{matrix} ight. ightarrow
d_{1} \cap d_{2} = A( - 1;3) \in d_{3}

    ightarrow - m - 6m + 3 + 9m - 13 = 0
\Leftrightarrow m = 5.

  • Câu 15: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A(– 3; 2) và B(1; 4).

     Vectơ chỉ phương của đường thẳng AB là (2; 1).

  • Câu 16: Thông hiểu

    Cho hình elip có phương trình \frac{x^{2}}{25} + \frac{y^{2}}{16} = 1. Hình elip có độ dài tiêu cự bằng:

    Ta có: \frac{x^{2}}{25} +
\frac{y^{2}}{16} = 1 \Rightarrow \left\{ \begin{matrix}
a = 5 \\
b = 4 \\
\end{matrix} ight.

    Độ dài tiêu cự là: 2c = 2\sqrt{a^{2} -
b^{2}} = 6

  • Câu 17: Vận dụng

    Cho hình elip có độ dài trục lớn và độ dài trục bé lần lượt là 120cm;90cm. Vẽ một hình chữ nhật nội tiếp elip đã cho. Diện tích lớn nhất của hình chữ nhật là:

    Hình vẽ minh họa

    Phương trình chính tắc của elip có dạng (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1.

    Ta có: \left\{ \begin{matrix}
2a = 120 \Rightarrow a = 60 \\
2b = 90 \Rightarrow b = 45 \\
\end{matrix} ight.

    \Rightarrow (E):\frac{x^{2}}{3600} +
\frac{y^{2}}{2025} = 1

    Chọn D\left( x_{0};y_{0} ight) là đỉnh hình chữ nhật và x_{0} > 0;y_{0}
> 0. Ta có:

    \frac{{x_{0}}^{2}}{3600} +
\frac{{y_{0}}^{2}}{2025} = 1

    Diện tích hình chữ nhật là:

    S = 4x_{0}y_{0} =
1350.\frac{x_{0}}{60}.\frac{y_{0}}{45} \leq 1350.\left( \frac{x^{2}}{3600} +
\frac{y^{2}}{2025} ight) = 1350\left( cm^{2} ight)

  • Câu 18: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho đường tròn (C):(x + 3)^{2} + (y - 5)^{2} = 10. Viết phương trình tiếp tuyến của đường tròn đã cho, biết hệ số góc của tiếp tuyền bằng - \frac{1}{3}.

    Đường tròn (C) có tâm I( - 3;5) và bán kính R = \sqrt{10}

    Tiếp tuyến d có hệ số góc k = -
\frac{1}{3} nên có dạng y = -
\frac{1}{3}x + b

    \Leftrightarrow x + 3y - 3b =
0

    Vì d là tiếp tuyến của (C) nên d(I;d) = R

    \Leftrightarrow \frac{| - 3 + 3.5 -
3b|}{\sqrt{1^{2} + 3^{2}}} = \sqrt{10}

    \Leftrightarrow |12 - 3b| = 10\Leftrightarrow \left\lbrack \begin{matrix}b = \dfrac{2}{3} \\b = \dfrac{22}{3} \\\end{matrix} ight.

    Với b = \frac{2}{3} thì phương trình d là: y = - \frac{1}{3}x + \frac{2}{3}
\Rightarrow x + 3y - 2 = 0

    Với b = \frac{22}{3} thì phương trình d là: y = - \frac{1}{3}x +
\frac{22}{3} \Rightarrow x + 3y - 22 = 0

    Vậy các phương trình tiếp tuyến cần tìm là: x + 3y - 2 = 0;x + 3y - 22 = 0.

  • Câu 19: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;5), B( -
4; - 5)C(4; - 1). Phương trình đường phân giác ngoài của góc A là:

    \left\{ \begin{matrix}
A(1;5),\ B( - 4; - 5) ightarrow AB:2x - y + 3 = 0 \\
A(1;5),\ C(4; - 1) ightarrow AC:2x + y - 7 = 0 \\
\end{matrix} ight.\ .

    Suy ra các đường phân giác góc A là:

    \frac{|2x - y + 3|}{\sqrt{5}} =
\frac{|2x + y - 7|}{\sqrt{5}} \Leftrightarrow \left\lbrack
\begin{matrix}
x - 1 = 0 ightarrow f(x;y) = x - 1 \\
y - 5 = 0 \\
\end{matrix} ight.

    ightarrow \left\{ \begin{matrix}
f\left( B( - 4; - 5) ight) = - 5 < 0 \\
f\left( C(4; - 1) ight) = 3 > 0 \\
\end{matrix} ight.\ .

    Suy ra đường phân giác trong góc Ay - 5 =
0.

  • Câu 20: Nhận biết

    Cho đường thẳng \Delta:x - 2y - 1 = 0. Đường thẳng nào sau đây vuông góc với đường thẳng \Delta?

    Đường thẳng d:4x + 2y + 3 = 0 vuông góc với đường thẳng \Delta\overrightarrow{n_{d}}.\overrightarrow{n_{\Delta}}
= 4.1 + 2( - 2) = 0.

  • Câu 21: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2} = 9 là:

    (C):x^{2} + y^{2} =
9\overset{}{ightarrow}I(0;0),\ \ R = \sqrt{9} = 3.

  • Câu 22: Vận dụng

    Viết phương trình đường thẳng (\Delta) đi qua giao điểm hai đường thẳng \left( d_{1} ight):2x + y - 3 = 0;\left(
d_{2} ight):x - 2y + 1 = 0 và cosin góc giữa (\Delta)với đường thẳng \left( d_{3} ight):y = 1 một góc bằng \frac{\sqrt{2}}{2}?

    Gọi A là giao điểm hai đường thẳng \left(
d_{1} ight):2x + y - 3 = 0;\left( d_{2} ight):x - 2y + 1 =
0, khi đó tọa độ điểm A là nghiệm của hệ phương trình:

    \left\{ \begin{matrix}
2x + y - 3 = 0 \\
x - 2y + 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
\end{matrix} ight.\  \Leftrightarrow A(1;1)

    Phương trình đường thẳng \Delta có dạng y = k\left( x - x_{0} ight) +
y_{0}

    A \in \Delta \Rightarrow y = k(x - 1)
+ 1 \Rightarrow kx - y - k + 1 = 0

    Mặt khác

    \cos\left( \Delta;d_{3} ight) =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{\left| k.0 + ( -
1).1 ight|}{\sqrt{k^{2} + ( - 1)^{2}}.\sqrt{0^{2} + 1^{2}}} =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{| -
1|}{\sqrt{k^{2} + 1}} = \frac{\sqrt{2}}{2} \Leftrightarrow \sqrt{k^{2} +
1} = \sqrt{2}.| - 1|

    \Leftrightarrow \sqrt{k^{2} + 1} =
\sqrt{2}

    \Leftrightarrow k^{2} + 1 = 2
\Leftrightarrow k^{2} = 1 \Leftrightarrow k = \pm 1

    Với k = 1 \Rightarrow x - y =
0

    Với k = - 1 \Rightarrow - x - y + 2 = 0
\Rightarrow x + y - 2 = 0

    Vậy phương trình đường thẳng là: \left\lbrack \begin{matrix}
x + y - 2 = 0 \\
x - y = 0 \\
\end{matrix} ight..

  • Câu 23: Nhận biết

    Tìm tọa độ giao điểm của đường thẳng d:\left\{ \begin{matrix}
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight. và trục tung.

    Oy \cap d:\left\{ \begin{matrix}
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight.\ \overset{}{ightarrow}\left\{ \begin{matrix}
y = 0 \\
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = \frac{1}{3} \\
x = \frac{2}{3},\ \ y = 0 \\
\end{matrix} ight.\ .Chọn \left(
\frac{2}{3};0 ight).

  • Câu 24: Nhận biết

    Cho hai đường thẳng ∆_1: 11x – 12y + 1 = 0∆_2: 12x + 11y + 9 = 0. Khi đó hai đường thẳng này:

     Ta có:

    \begin{matrix}  \overrightarrow {{n_{{\Delta _1}}}}  = \left( {11; - 12} ight) \hfill \\  \overrightarrow {{n_{{\Delta _2}}}}  = \left( {12;11} ight) \hfill \\  \overrightarrow {{n_{{\Delta _1}}}} .\overrightarrow {{n_{{\Delta _2}}}}  = 0 \Rightarrow \overrightarrow {{n_{{\Delta _1}}}}  \bot \overrightarrow {{n_{{\Delta _2}}}}  \hfill \\   \Rightarrow {\Delta _1} \bot {\Delta _2} \hfill \\ \end{matrix}

  • Câu 25: Nhận biết

    Cho phương trình x^{2} + y^{2} + 2mx + 2(m–1)y + 2m^{2} =
0(1). Tìm điều kiện của m để (1) là phương trình đường tròn.

    Ta có: x^{2} + y^{2} + 2mx + 2(m–1)y +
2m^{2} = 0

    ightarrow \left\{ \begin{matrix}
a = - m \\
b = 1 - m \\
c = 2m^{2} \\
\end{matrix} ight.\  ightarrow a^{2} + b^{2} - c > 0
\Leftrightarrow - 2m + 1 > 0 \Leftrightarrow m <
\frac{1}{2}.

  • Câu 26: Vận dụng

    Ông Hoàng có một mảnh vườn hình Elip có chiều dài trục lớn và trục nhỏ lần lượt là 60m30m. Ông chia mảnh vườn ra làm hai nửa bằng một đường tròn tiếp xúc trong với Elip để làm mục đích sử dụng khác nhau (xem hình vẽ). Nửa bên trong đường tròn ông trồng cây lâu năm, nửa bên ngoài đường tròn ông trồng hoa màu. Tính tỉ số diện tích T giữa phần trồng cây lâu năm so với diện tích trồng hoa màu. Biết diện tích hình Elip được tính theo công thức S = \pi
ab, với a, b lần lượt là nửa độ dài trục lớn và nửa độ dài trục nhỏ. Biết độ rộng của đường Elip là không đáng kể.

    Theo đề ta có: Diện tích (E)là: S_{(E)} = \pi.a.b = 30.15.\pi = 450\pi,\
\left( m^{2} ight)

    Vì đường tròn tiếp xúc trong, nên sẽ tiếp xúc tại đỉnh của trục nhỏ, suy ra bán kính đường tròn: R =
15m. Diện tích hình tròn (C)phần trồng cây lâu năm là: S_{(C)} = \pi.R^{2} = 15^{2}.\pi = 225\pi,\ \left(
m^{2} ight)

    Suy ra diện tích phần trồng hoa màu là: S
= S_{(E)} - S_{(C)} = 225\pi,\ \left( m^{2} ight) \Rightarrow T =
1.

  • Câu 27: Thông hiểu

    Phương trình nào sau đây là phương trình tổng quát của đường thẳng d:\left\{
\begin{matrix}
x = 15 \\
y = 6 + 7t \\
\end{matrix} ight.?

    d:\left\{ \begin{matrix}
x = 15 \\
y = 6 + 7t \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
A(15;6) \in d \\
{\overrightarrow{u}}_{d} = (0;7) = 7(0;1) ightarrow
{\overrightarrow{n}}_{d} = (1;0) \\
\end{matrix} ight.\ \overset{ightarrow}{}d:x - 15 = 0.

  • Câu 28: Thông hiểu

    Đường tròn (C) có tâm I(2;3) và tiếp xúc với trục Ox có phương trình là:

    (C):\left\{ \begin{matrix}
I(2;3) \\
R = d\lbrack I;Oxbrack = 3 \\
\end{matrix} ight.\  ightarrow (C):(x - 2)^{2} + (y - 3)^{2} =
9.

  • Câu 29: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng \left( d_{1} ight):11x - 12y + 1 = 0\left( d_{2} ight):12x + 11y + 9 =
0. Khi đó vị trí tương đối của hai đường thẳng là:

    Ta có:

    Vectơ pháp tuyến của đường thẳng \left(
d_{1} ight):11x - 12y + 1 = 0 là: \overrightarrow{n_{d_{1}}} = (11; -
12)

    Vectơ pháp tuyến của đường thẳng \left(
d_{2} ight):12x + 11y + 9 = 0 là: \overrightarrow{n_{d_{2}}} = (12;11)

    Ta thấy \overrightarrow{n_{d}}.\overrightarrow{n_{d}} =
0

    Suy ra hai đường thẳng vuông góc với nhau.

  • Câu 30: Nhận biết

    Xác định vị trí tương đối của hai đường thẳng \Delta_{1}:7x + 2y - 1 = 0\Delta_{2}:\left\{ \begin{matrix}
x = 4 + t \\
y = 1 - 5t \\
\end{matrix} ight.\ .

    \left. \ \begin{matrix}
\Delta_{1}:7x + 2y - 1 = 0 ightarrow {\overrightarrow{n}}_{1} = (7;2)
\\
\Delta_{2}:\left\{ \begin{matrix}
x = 4 + t \\
y = 1 - 5t \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = (1; -
5) ightarrow {\overrightarrow{n}}_{2} = (5;1) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{7}{5}\boxed{=}\frac{2}{1} \\
{\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{2}\boxed{=}0 \\
\end{matrix} ight.\  ightarrow \Delta_{1},\ \ \Delta_{2} cắt nhau nhưng không vuông góc.

  • Câu 31: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A( - 1;2),B(2; - 2),C(3;1). Biết rằng \overrightarrow{AD} =
\overrightarrow{BC}, khi đó tọa độ điểm D là:

    Giả sử tọa độ điểm D = (x;y)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AD} = (x + 1;y - 2) \\
\overrightarrow{BC} = (1;3) \\
\end{matrix} ight.

    \overrightarrow{AD} =
\overrightarrow{BC} nên \left\{
\begin{matrix}
x + 1 = 1 \\
y - 2 = 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 5 \\
\end{matrix} ight.\  \Leftrightarrow D(0;5)

  • Câu 32: Nhận biết

    Elip (E):\frac{x^{2}}{16}+y^{2}=4 có tổng độ dài trục lớn và trục bé bằng:

     Ta có: a^2=16,b^2=1 \Rightarrow a=4,b=1.

    Tổng độ dài trục lớn và bé là: 2a+2b=10.

  • Câu 33: Vận dụng

    Trong mặt phẳng tọa độ Oxy cho đường tròn (C):x^{2} + y^{2} - 2x - 2my + m^{2} - 24 =
0 có tâm I và đường thẳng \Delta:mx + 4y = 0 (với m là tham số). Biết đường thẳng \Delta cắt đường tròn (C) tại hai điểm A;B phân biệt sao cho diện tích tam giác IAB bằng 12. Có bao nhiêu giá trị của tham số m thỏa mãn yêu cầu đề bài?

    Hình vẽ minh họa

    Đường tròn (C) có tâm I(1; m) và bán kính R = 5.

    Gọi H là trung điểm của dây cung AB. Ta có IH là đường cao của tam giác IAB và

    IH = d(I;\Delta) \Leftrightarrow
\frac{|m + 4m|}{\sqrt{m^{2} + 16}} = \frac{|5m|}{\sqrt{m^{2} +
16}}

    AH = \sqrt{IA^{2} - IH^{2}} = \sqrt{25 -
\frac{(5m)^{2}}{m^{2} + 16}} = \frac{20}{\sqrt{m^{2} + 16}}

    Theo bài ra ta có:

    S_{IAB} = 12 \Leftrightarrow 2S_{IAH} =
12

    \Leftrightarrow d(I;\Delta).AH =
12

    \Leftrightarrow 25|m| = 3\left( m^{2} +
16 ight)

    \Leftrightarrow \left\lbrack\begin{matrix}m = \pm 3 \\m = \pm \dfrac{16}{3} \\\end{matrix} ight.

    Vậy có 4 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 34: Thông hiểu

    Tìm phương trình chính tắc của Hyperbol (H) mà hình chữ nhật cơ sở có một đỉnh là (2; - 3).

    Gọi (H):\frac{x^{2}}{a^{2}} -
\frac{y^{2}}{b^{2}} = 1. Tọa độ đỉnh của hình chữ nhật cơ sở là A_{1}( - a; - b), A_{2}(a; - b), A_{3}(a;b), A_{4}( - a;b).

    Hình chữ nhật cơ sở của (H) có một đỉnh là (2; - 3), suy ra \left\{ \begin{matrix}
a = 2 \\
b = 3 \\
\end{matrix} ight.. Phương trình chính tắc của (H)\frac{x^{2}}{4} - \frac{y^{2}}{9} =
1.

  • Câu 35: Thông hiểu

    Viết phương trình tham số của đường thẳng d đi qua điểm M(6; - 10) và vuông góc với trục Oy.

    \begin{matrix}
\left\{ \begin{matrix}
M(6; - 10) \in d \\
d\bot Oy:x = 0 ightarrow {\overrightarrow{u}}_{d} = (1;0) \\
\end{matrix} ight.\ \overset{ightarrow}{}d:\left\{ \begin{matrix}
x = 6 + t \\
y = - 10 \\
\end{matrix} ight.\ \overset{t = - 4}{ightarrow}A(2; - 10) \in d \\
ightarrow d:\left\{ \begin{matrix}
x = 2 + t \\
y = - 10 \\
\end{matrix} ight.\ . \\
\end{matrix}

  • Câu 36: Thông hiểu

    Tìm m để góc tạo bởi hai đường thẳng ∆1:\sqrt{3}x -y+7=0∆_2: mx + y + 1 = 0 một góc bằng 30°.

    Ta có:

    \begin{matrix}  \cos \left( {{\Delta _1},{\Delta _2}} ight) = \dfrac{{\left| {m\sqrt 3  - 1} ight|}}{{\sqrt {3 + 1} .\sqrt {{m^2} + 1} }} = \dfrac{{\left| {m\sqrt 3  - 1} ight|}}{{2\sqrt {{m^2} + 1} }} \hfill \\  \cos \left( {{\Delta _1},{\Delta _2}} ight) = \cos {30^0} \hfill \\   \Leftrightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{{\left| {m\sqrt 3  - 1} ight|}}{{2\sqrt {{m^2} + 1} }} \hfill \\   \Leftrightarrow \sqrt 3 \sqrt {{m^2} + 1}  = \left| {m\sqrt 3  - 1} ight| \hfill \\   \Leftrightarrow 3\left( {{m^2} + 1} ight) = {\left( {m\sqrt 3  - 1} ight)^2} \hfill \\   \Leftrightarrow 3\left( {{m^2} + 1} ight) = 3{m^2} - 2m\sqrt 3  + 1 \hfill \\   \Leftrightarrow 2m\sqrt 3  + 2 = 0 \hfill \\   \Leftrightarrow m =  - \dfrac{1}{{\sqrt 3 }} \hfill \\ \end{matrix}

  • Câu 37: Nhận biết

    Elip (E):\frac{x^{2}}{36}+\frac{y^{2}}{9}=1 có độ dài trục lớn bằng:

     Ta có: a^2=36 \Rightarrow a=6 \Rightarrow 2a=12.

  • Câu 38: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d):3x + y - 6 = 0 và đường thẳng \Delta:\left\{ \begin{matrix}
x = - t \\
y = 5 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Xác định số đo góc giữa hai đường thẳng đã cho?

    Vectơ pháp tuyến của đường thẳng d và \Delta lần lượt là \overrightarrow{n_{d}} =
(3;1);\overrightarrow{n_{\Delta}} = (2; - 1).

    Khi đó góc giữa hai đường thẳng là:

    \cos(d;\Delta) = \frac{\left|
\overrightarrow{n_{d}}.\overrightarrow{n_{\Delta}} ight|}{\left|
\overrightarrow{n_{d}} ight|.\left| \overrightarrow{n_{\Delta}}
ight|} = \frac{|3.2 - 1.1|}{\sqrt{3^{2} + 1^{2}}.\sqrt{2^{2} + ( -
1)^{2}}} = \frac{\sqrt{2}}{2}

    \Rightarrow (d;\Delta) =
45^{0}

    Vậy góc giữa hai đường thẳng là 45^{0}.

  • Câu 39: Thông hiểu

    Khoảng cách nhỏ nhất từ điểm M(15;1) đến một điểm bất kì thuộc đường thẳng \Delta:\left\{ \begin{matrix}
x = 2 + 3t \\
y = t \\
\end{matrix} ight. bằng:

    \Delta:\left\{ \begin{matrix}
x = 2 + 3t \\
y = t \\
\end{matrix} ight.\  ightarrow \Delta:x - 3y - 2 = 0

    \overset{\forall N \in
\Delta}{ightarrow}MN_{\min} = d(M;\Delta) = \frac{|15 - 3 -
2|}{\sqrt{1 + 9}} = \sqrt{10}.

  • Câu 40: Nhận biết

    Cho đường thẳng 2x + y - 3 = 0. Điểm nào dưới đây thuộc đường thẳng đã cho?

    Thay x = 0 vào đường thẳng 2x + y - 3 = 0 suy ra y = 3

    Vậy điểm N(0;3) thuộc đường thẳng 2x + y - 3 = 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 4 lượt xem
Sắp xếp theo