Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O(0; 0) và điểm M(a; b)?
Vectơ chỉ phương của OM là .
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O(0; 0) và điểm M(a; b)?
Vectơ chỉ phương của OM là .
Đường trung trực của đoạn thẳng
với
,
có một vectơ pháp tuyến là:
Gọi là trung trực đoạn AB, ta có:
Đường tròn
có tâm
và tiếp xúc với đường thẳng
có phương trình là:
Đường tròn
đi qua điểm
và tiếp xúc với đường thẳng
tại
. Phương trình của đường tròn
là:
Tâm I của đường tròn nằm trên đường thẳng qua M vuông góc với là:
Ta có:
Cho đường tròn (C) có phương trình
. Đường tròn (C) còn được viết dưới dạng nào trong các dạng dưới đây:
Ta có:
.
Phương trình chính tắc của Elip có độ dài trục lớn bằng
, độ dài trục nhỏ bằng
là:
+ Phương trình Elip dạng:
+ Do có độ dài trục lớn bằng .
+ Do có độ dài trục nhỏ bằng .
+ Suy ra phương trình là .
Điểm nào dưới đây thuộc đường thẳng
?
Thay tọa độ các điểm vào đường thẳng ta thấy điểm thuộc đường thẳng đã cho là
.
Với giá trị nào của
thì hai đường thẳng
và
song song?
Ta có:
Tìm tất cả các giá trị của
để hai đường thẳng
và
cắt nhau.
Chọn đáp án này với mọi
.
Trong các phương trình sau đây, phương trình nào là phương trình chính tắc của Parabol?
Phương trình Parabol có dạng
Vậy phương trình cần tìm là .
Trong mặt phẳng tọa độ
, cho hình chữ nhật
có điểm
. Gọi
đối xứng với điểm
qua
, điểm
là hình chiếu vuông góc của
lên đường thẳng
. Biết rằng tọa độ điểm
thuộc đường thẳng
. Khi đó:
Ta có: ADB’C là hình bình hành
Mà
Tam giác vuông cân tại I
là hình thang cân =>
đi qua điểm
và có vecto pháp tuyến
Phương trình CI:
Viết phương trình đường thẳng
đi qua giao điểm hai đường thẳng
và cosin góc giữa
với đường thẳng
một góc bằng
?
Gọi A là giao điểm hai đường thẳng , khi đó tọa độ điểm A là nghiệm của hệ phương trình:
Phương trình đường thẳng có dạng
Vì
Mặt khác
Với
Với
Vậy phương trình đường thẳng là: .
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Ox?
Vectơ chỉ phương của trục Ox là (1; 0).
Cho tọa độ hai điểm
. Viết phương trình chính tắc của elip có tâm là gốc tọa độ và đi qua hai điểm
?
Gọi phương trình chính tắc của elip là:
Do elip đi qua hai điểm nên ta có hệ phương trình:
Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là:
Trong mặt phẳng tọa độ
, viết phương trình chính tắc của elip biết một đỉnh là
và một tiêu điểm là
.
Ta có
Vậy .
Cho hai điểm
thuộc đường tròn
. Biết tâm
của đường tròn
nằm trên đường thẳng
. Tính giá trị biểu thức
?
Tâm I của đường tròn (C) nằm trên đường thẳng nên ta có:
Hai điểm thuộc đường tròn (C) nên ta suy ra đường trung trực của đoạn thẳng AB cũng đi qua tâm I.
Gọi M là trung điểm của đoạn thẳng AB => M(0; 3)
Đường trung trực AB đi qua điểm M(0; 3) và nhận là vecto pháp tuyến có phương trình
Vì trung trực AB cũng đi qua tâm I nên ta có:
Từ (*) và (**) suy ra
Trong mặt phẳng
cho các điểm
. Phương trình đường tròn ngoại tiếp tam giác
là:
Gọi phương trình đường tròn là: với
Vì đường tròn đi qua ba điểm nên ta có hệ phương trình:
Vậy phương trình đường tròn cần tìm là: .
Đường chuẩn của Parabol
là:
Từ phương trình Parabol ta có
Do đó phương trình đường chuẩn của Parabol là
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
với
. Giả sử
là góc hợp hai đường thẳng đã cho. Chọn kết luận đúng?
Góc giữa hai đường thẳng và
xác định bởi công thức:
Phương trình của đường thẳng (d) song song với (d’): 6x + 8y – 1 = 0 và cách (d’) một đoạn bằng 2 là:
(d’) có vectơ pháp tuyến là
Vì (d) // (d’) nên (d) cũng nhận làm vectơ pháp tuyến.
Do đó phương trình (d) có dạng:
Chọn
Vì nên khoảng cách giữa (d) và (d’) chính là
.
Do đó
hoặc
(nhận vì 19 ≠ –1) hoặc c = –21 (nhận vì –21 ≠ –1).
Vậy có hai đường thẳng (d) thỏa mãn yêu cầu bài toán có phương trình là:
và
.
Góc tạo bởi hai đường thẳng nào dưới đây bằng 90°.
Xét hai đường thẳng và
.
Ta có: .
Mà nên suy ra hai đường thẳng vuông góc với nhau.
Elip
có độ dài trục bé bằng:
Ta có: .
Độ dài trục bé .
Xác định tâm và bán kính đường tròn
?
Ta có:
Vậy đường tròn có bán kính và bán kính
Cho đường thẳng
có vectơ pháp tuyến là
và đường thẳng
có vectơ pháp tuyến là
. Gọi
là góc tạo bởi hai đường thẳng
. Kết luận nào sau đây đúng?
Góc tạo bởi hai đường thẳng đã cho được xác định bởi công thức .
Trong các phương trình sau, phương trình nào là phương trình đường tròn?
Phương trình có dạng
với
Ta có:
Vậy phương trình không là phương trình đường tròn.
Phương trình có dạng
với
Ta có:
Vậy phương trình không là phương trình đường tròn.
Ta có:
Vậy đường tròn có bán kính và bán kính
Phương trình không phải là phương trình đường tròn vì hệ số của
khác nhau.
Tìm phương trình chính tắc của parabol
biết
có tiêu điểm là
.
Gọi phương trình chính tắc của là:
.
Do tọa độ tiêu điểm nên
.
Vậy phương trình của là:
.
Xác định vị trí tương đối của hai đường thẳng
và
.
Đường tròn ngoại tiếp hình chữ nhật cơ sở của hypebol
có có phương trình là:
Ta có: . Tọa độ các đỉnh hình chữ nhật cở sở là
,
,
,
Dường tròn ngoại tiếp hình chữ nhật cơ sở có tâm
bán kính
.
Phương trình đường tròn là
Hãy viết phương trình chính tắc của elip nếu nó đi qua điểm
và tỉ số của tiêu cự với độ dài trục lớn bằng
.
Gọi phương trình chính tắc của Elip là với
Elip đi qua điểm
suy ra
Tỉ số của tiêu cực với độ dài trục lớn bằng
suy ra
Kết hợp với điều kiện ta được
Từ suy ra
Vậy phương trình cần tìm là
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
. Tìm giá trị của tham số
để hai đường thẳng hợp với nhau một góc bằng một góc vuông?
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Hai đường thẳng vuông góc với nhau khi và chỉ khi:
Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi .
Một đường thẳng có bao nhiêu vectơ pháp tuyến?
Một đường thẳng có vô số vecto pháp tuyến. Các vecto đó cùng phương với nhau.
Đường tròn
đi qua hai điểm
,
và có tâm
thuộc trục tung có phương trình là:
.
Vậy đường tròn cần tìm là:
Tìm
để hai đường thẳng
và
trùng nhau?
Elip có một tiêu điểm
và tích độ dài trục lớn với trục bé bằng
. Phương trình chính tắc của elip là:
Gọi (E) có dạng .
Theo giả thiết ta có: .
Vậy (E) cần tìm là
Xét vị trí tương đối của hai đường thẳng:
và
.
Vì nên hai đường thẳng cắt nhau.
Phương trình đường tròn
có tâm
và bán kinh
là:
Ta có:
Đường thẳng nào sau đây song song với đường thẳng
?
Xét đáp án: Chọn đáp án này.
Để ý rằng một đường thẳng song song với sẽ có dạng
Do đó kiểm tra chỉ thấy có đáp án
thỏa mãn, các đáp án còn lại không thỏa mãn.
Trong mặt phẳng với hệ tọa độ
, cho hình bình hành
có đỉnh
và phương trình đường thẳng chứa cạnh
là
. Viết phương trình tham số của đường thẳng chứa cạnh
.
Góc phần tư (I) :
Trong mặt phẳng hệ trục tọa độ
cho các tọa độ các điểm
và
. Xác định tọa độ điểm
sao cho
là trọng tâm tam giác
?
Xét tam giác ABD có G là trọng tâm khi đó ta có:
Vậy tọa độ điểm .