Cho phương trình
(1). Điều kiện để (1) là phương trình đường tròn là:
Điều kiện để phương trình là phương trình đường tròn là:
Cho phương trình
(1). Điều kiện để (1) là phương trình đường tròn là:
Điều kiện để phương trình là phương trình đường tròn là:
Phương trình tiếp tuyến của đường tròn
tại điểm
là:
Đường tròn (C) có tâm
Phương trình tiếp tuyến của tại điểm
là:
Vậy phương trình tiếp tuyến của đường tròn tại là:
Cho parabol (P) có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây sai?
Đáp án sai: Trục đối xứng của parabol là trục . Đáp án đúng là trục
mới là trục đối xứng.
Cho elip
. Diện tích hình chữ nhật cơ sở của
là
Độ dài trục lớn: .
Độ dài trục bé: .
Diện tích hình chữ nhật cơ sở của là:
.
Viết phương trình tiếp tuyến của đường tròn
, biết tiếp tuyến song song với đường thẳng
.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có
Phương trình chính tắc của Elip có độ dài trục lớn bằng
, độ dài trục nhỏ bằng
là:
+ Phương trình Elip dạng:
+ Do có độ dài trục lớn bằng .
+ Do có độ dài trục nhỏ bằng .
+ Suy ra phương trình là .
Tìm tất cả các giá trị của tham số
để hai đường thẳng
và
cắt nhau tại một điểm thuộc trục tung.
Cho hình elip có độ dài trục lớn và độ dài trục nhỏ lần lượt bằng
và 0. Viết phương trình elip.
Ta có:
Phương trình elip là:
Cho đường thẳng
. Điểm nào dưới đây thuộc đường thẳng đã cho?
Thay vào đường thẳng
suy ra
Vậy điểm thuộc đường thẳng
.
Cho hai đường thẳng
và
có phương trình lần lượt là
và
. Xét hệ
. Khi đó hai đường cắt nhau khi và chỉ khi:
Hai đường thẳng cắt nhau khi hệ có nghiệm duy nhất.
Cho phương trình Elip
. Tọa độ đỉnh
và
của Elip đó là:
Ta có: => a = 4; b = 2
=> Tọa độ các đỉnh của elip là:
Đường thẳng
tạo với đường thẳng
một góc
. Tìm hệ số góc
của đường thẳng
.
gọi
Ta có:
Cho đường tròn
và đường thẳng
. Tìm phương trình tiếp tuyến của
song song với đường thẳng
?
Ta có: Phương trình đường tròn (C) có tâm I(2; 3) bán kính R = 5
Phương trình đường thẳng song song với d có dạng
tiếp xúc với
nên
Hay
Vậy phương trình tiếp tuyến của song song với
là:
hoặc
.
Phương trình tham số của đường thẳng đi qua hai điểm
là:
Gọi d là đường thẳng qua C và nhận làm vectơ chỉ phương.
Khi đó phương trình tham số của đường thẳng d là: .
Cho Hyperbol
. Tìm điểm
trên
sao cho khoảng cách từ
đến đường thẳng
đạt giá trị nhỏ nhất.
Gọi . Phương trình tiếp tuyến của
tại
là
.
khi
thay vào
ta có:
.
Với ta có :
Với ta có :
Với giá trị nào của
thì hai đường thẳng
và
song song?
Với loại
Với thì
Một đường thẳng có bao nhiêu vectơ chỉ phương?
Một đường thẳng có vô số vectơ chỉ phương.
Trong mặt phẳng với hệ tọa độ
, cho ba đường thẳng lần lượt có phương trình tổng quát
,
và
. Tìm
để ba đường thẳng đã cho cùng đi qua một điểm.
Ta có:
Cho hypebol (H):
. Khẳng định nào sau đây đúng?
Ta có:
Vậy Hypebol (H) có tiêu cự
=> Hai tiêu điểm của (H) là:
Ta có trục thực là:
Trục ảo là:
Vậy khẳng định đúng là:" Hypebol có trục thực bằng 1".
Trong mặt phẳng
, cho Parabol
:
có tiêu điểm
. Tìm trên
điểm
cách
một khoảng là
.
Giả sử . Suy ra
. (1)
Từ phương trình suy ra
nên
.
Ta có: . Suy ra
. Kết hợp (1) ta có:
.
Vậy có hai điểm hoặc
thỏa mãn.
Đường tròn
đi qua hai điểm
và tiếp xúc với đường thẳng
. Viết phương trình đường tròn
, biết tâm của
có tọa độ là những số nguyên.
đoạn AB có trung điểm
trung trực của đoạn AB là
Ta có:
Vậy phương trình đường tròn là:
Hypebol có nửa trục thực là
, tiêu cự bằng
có phương trình chính tắc là:
Ta có :
Phương trình chính tắc của Hyperbol là
Viết phương trình tiếp tuyến của đường tròn
tại điểm
.
Tâm .
Phương trình tiếp tuyến tại là:
.
Cho đường thẳng
và tọa độ điểm
. Tính
?
Ta có khoảng cách từ điểm C đến đường thẳng là:
Vậy khoảng cách cần tìm bằng 1.
Ông Hoàng có một mảnh vườn hình Elip có chiều dài trục lớn và trục nhỏ lần lượt là
và
. Ông chia mảnh vườn ra làm hai nửa bằng một đường tròn tiếp xúc trong với Elip để làm mục đích sử dụng khác nhau (xem hình vẽ). Nửa bên trong đường tròn ông trồng cây lâu năm, nửa bên ngoài đường tròn ông trồng hoa màu. Tính tỉ số diện tích T giữa phần trồng cây lâu năm so với diện tích trồng hoa màu. Biết diện tích hình Elip được tính theo công thức
, với a, b lần lượt là nửa độ dài trục lớn và nửa độ dài trục nhỏ. Biết độ rộng của đường Elip là không đáng kể.

Theo đề ta có: Diện tích là:
Vì đường tròn tiếp xúc trong, nên sẽ tiếp xúc tại đỉnh của trục nhỏ, suy ra bán kính đường tròn: . Diện tích hình tròn
phần trồng cây lâu năm là:
Suy ra diện tích phần trồng hoa màu là: .
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có phương trình cạnh
là
, phương trình cạnh
là
. Biết trọng tâm của tam giác là điểm
và phương trình đường thẳng
có dạng
. Tính giá trị biểu thức
.
Tọa độ điểm A là nghiệm của hệ phương trình
Ta có
Gọi là trung điểm của BC thì
nên
Mặt khác
Suy ra một vectơ pháp tuyến của BC là
Suy ra phương trình đường thẳng BC là
Suy ra
Cho đường tròn
. Tính khoảng cách từ tâm của
đến trục
.
Xét vị trí tương đối của hai đường thẳng
và
.
cắt nhau nhưng không vuông góc.
Tọa độ tâm
và bán kính
của đường tròn
là:
Đường tròn có tâm trùng với gốc tọa độ, bán kính
có phương trình là:
Cho hai điểm A(4; 0), B(0; 5). Phương trình nào sau đây không phải là phương trình của đường thẳng AB?
Với A(4; 0), B(0; 5) ta có:
Đường thẳng AB là đường thẳng đi qua hai điểm A và B, do đó nhận làm vectơ chỉ phương.
Khi đó đường thẳng AB nhận làm vectơ pháp tuyến.
Đường thẳng AB đi qua điểm A(4; 0), có vectơ pháp tuyến nên có phương trình tổng quát là:
Do đó phương trình ở phương án không phải phương trình AB.
Đường thẳng AB đi qua hai điểm A(4; 0), B(0; 5) nên có phương trình đoạn chắn của là:
Do đó phương án đúng.
Phương trình đường thẳng AB đi qua hai điểm A(4; 0), B(0; 5) là:
Do đó phương án đúng.
Đường thẳng AB đi qua điểm A(4; 0), có vectơ chỉ phương nên có phương trình tham số là:
(t ∈ R)
Do đó phương án (t ∈ R) đúng.
Trong mặt phẳng tọa độ
, cho đường thẳng
. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng
?
Ta có: Vectơ pháp tuyến của đường thẳng là:
.
Phương trình tổng quát của đường thẳng
đi qua điểm
và có vectơ pháp tuyến
là:
Đường thẳng đi qua điểm
và nhận
là vectơ pháp tuyến có phương trình tổng quát là:
Vậy phương trình tổng quát của đường thẳng là .
Tìm giá trị tham số m để đường thẳng
song song với đường thẳng
?
Để hai đường thẳng đã cho song song với nhau thì
Vậy m = -1 thì hai đường thẳng song song với nhau.
Hai cạnh của hình chữ nhật nằm trên hai đường thẳng
và
. Hình chữ nhật có đỉnh
. Tính diện tích của hình chữ nhật.
Đáp án: 2
Hai cạnh của hình chữ nhật nằm trên hai đường thẳng và
. Hình chữ nhật có đỉnh
. Tính diện tích của hình chữ nhật.
Đáp án: 2
Ta có: .
Do không thuộc hai đường thẳng
và
nên độ dài hai cạnh kề nhau của hình chữ nhật bằng khoảng cách từ
đến hai đường thẳng
.
Ta có:
Tìm tất cả các giá trị của
để hai đường thẳng
và
trùng nhau.
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Ta có:
Tính góc tạo bởi giữa hai đường thẳng:
và
.
Ta có: . Suy ra góc giữa hai đường thẳng bằng
.
Phương trình nào dưới đây đi qua hai điểm
là:
Phương trình đường thẳng đi qua hai điểm là:
hay
.