Elip
có độ dài tiêu cự bằng:
Ta có: .
Do đó độ dài tiêu cự .
Elip
có độ dài tiêu cự bằng:
Ta có: .
Do đó độ dài tiêu cự .
Tìm
để hai đường thẳng
và
trùng nhau?
Một elip có diện tích hình chữ nhật cơ sở là
, độ dài tiêu cự là
. Tâm sai của elip đó là
Diện tích hình chữ nhật cơ sở là , suy ra
.
Lại có .
Từ , thay vào
ta được:
.
Do đó tâm sai .
Cho đường thẳng
có phương trình
. Xác định vectơ chỉ phương của
?
Đường thẳng có vectơ pháp tuyến là
nên có vectơ chỉ phương là
.
Cho đường thẳng
. Điểm nào dưới đây thuộc đường thẳng đã cho?
Thay vào đường thẳng
suy ra
Vậy điểm thuộc đường thẳng
.
Đường tròn (C):
viết được dưới dạng:
Từ phương trình đường tròn ta suy ra:
Vậy phương trình tổng quát
Cho đường tròn
có tâm
thuộc đường thẳng
có bán kính
và cắt đường thẳng
tại hai điểm
sao cho
. Phương trình đường tròn (C) cần tìm là:
Gọi tâm I thuộc đường thẳng nên suy ra
Do đó:
Với nên phương trình đường tròn là
.
Với nên phương trình đường tròn là
.
Một đường thẳng có bao nhiêu vectơ pháp tuyến?
Một đường thẳng có vô số vectơ pháp tuyến.
Cho đường thẳng
và đường thẳng
. Tính góc hợp bởi hai đường thẳng?
Vectơ chỉ phương của là:
Vectơ chỉ phương của là:
Ta có:
Vậy góc hợp bởi hai đường thẳng đã cho bằng .
Cho hai đường thẳng
và
có phương trình lần lượt là
và
. Xét hệ
. Khi đó hai đường cắt nhau khi và chỉ khi:
Hai đường thẳng cắt nhau khi hệ có nghiệm duy nhất.
Đường thẳng nào sau đây vuông góc với đường thẳng
?
Kí hiệu
(i) Xét đáp án nên chọn đáp án này.
(ii) Tương tự kiểm tra và loại các đáp án còn lại.
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây đúng?
Khẳng định đúng là: Với
, tâm sai của hypebol là
.
Viết phương trình tiếp tuyến
của đường tròn
, biết tiếp tuyến đi qua điểm
.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có:
Phương trình đường tròn
có tâm
và bán kinh
là:
Ta có:
Cho hai điểm
thuộc đường tròn
. Biết tâm
của đường tròn
nằm trên đường thẳng
. Tính giá trị biểu thức
?
Tâm I của đường tròn (C) nằm trên đường thẳng nên ta có:
Hai điểm thuộc đường tròn (C) nên ta suy ra đường trung trực của đoạn thẳng AB cũng đi qua tâm I.
Gọi M là trung điểm của đoạn thẳng AB => M(0; 3)
Đường trung trực AB đi qua điểm M(0; 3) và nhận là vecto pháp tuyến có phương trình
Vì trung trực AB cũng đi qua tâm I nên ta có:
Từ (*) và (**) suy ra
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Ta có:
Vậy phương trình đường tròn cần tìm là: .
Xét vị trí tương đối của hai đường thẳng
và
.
Chọn
Cho Hypebol có độ dài trục thực và tiêu cự lần lượt là
và
. Phương trình chính tắc của Hypebol là:
Phương trình chính tắc của Hypebol có dạng
Ta có:
Vậy phương trình chính tắc của Hypebol là: .
Phương trình tiếp tuyến
của đường tròn
tại điểm
là:
Đường tròn (C) có tâm nên tiếp tuyến tại M có VTPT là
nên có phương trình là:
Cho elip (E):
. Trong các khẳng định sau, khẳng định nào sai?
Phương trình elip (E) có dạng
Ta có:
Khi đó: đúng
Ta có: đúng
Đỉnh A1(–a; 0) => A1(–5; 0) đúng
Độ dài trục nhỏ là 2b = 2.3 = 6 ≠ 3
Vậy khẳng định sai là: (E) có độ dài trục nhỏ bằng 3.
Gọi
là góc tạo bởi hai đường thẳng
và
. Khi đó độ lớn của
bằng:
Ta có:
Vậy góc tạo bởi hai đường thẳng bằng .
Cho hai đường thẳng
và
. Khẳng định nào sau đây đúng?
Ta có: suy ra
cắt
.
Vậy khẳng định đúng là: “ cắt
”.
Xác định
để hai đường thẳng
và
cắt nhau tại một điểm nằm trên trục hoành.
Cho hai điểm A(–2; 3) và B(4; –1). Phương trình đường trung trực của đoạn thẳng AB là:
Gọi d là đường trung trực của đoạn thẳng AB.
Gọi M là trung điểm của AB với A(–2; 3) và B(4; –1).
Ta suy ra
Khi đó ta có M(1; 1).
Với A(–2; 3) và B(4; –1) ta có:
Đường thẳng d là đường trung trực của AB nên đường thẳng d đi qua trung điểm M(1; 1) của AB và nhận làm vectơ pháp tuyến.
Suy ra phương trình tổng quát của d là:
Phương trình tham số của đường thẳng nào sau đây có vectơ chỉ phương ![]()
Đường thẳng có phương trình tham số có vectơ chỉ phương là
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Trong mặt phẳng tọa độ
, viết phương trình chính tắc của elip biết một đỉnh là
và một tiêu điểm là
.
Ta có
Vậy .
Hypebol
có hai tiêu điểm là:
Ta có : Các tiêu điểm là
,
Trong mặt phẳng với hệ trục tọa độ
, cho hai đường tròn
có phương trình lần lượt là
và elip
có phương trình
. Có bao nhiêu đường tròn
có bán kính gấp đôi độ dài trục lớn của elip
và
tiếp xúc với hai đường tròn
,
?
Ta có có độ dài trục lớn là
.
Khi đó đường tròn có bán kính là
. Gọi
là tâm của đường tròn
.
Xét có
vuông tại
.
Ta có ,
. Khi đó điểm
thỏa mãn:
.
Vậy có hai phương trình đường tròn thỏa mãn yêu cầu bài toán là
hoặc
.
Tọa độ tâm I và bán kính R của đường tròn có phương trình:
lần lượt là:
Tâm và bán kính đường tròn lần lượt là: I(1; 10) và R = 9
Viết phương trình tổng quát của đường thẳng
. Biết rằng
đi qua điểm
cắt đường thẳng
tại điểm
có
sao cho
?
Gọi là giao điểm của
và
.
Suy ra
Theo giả thiết ta có:
Khi đó
Phương trình tổng quát của đường thẳng d là:
Tìm m để góc tạo bởi hai đường thẳng
và
một góc bằng 30°.
Ta có:
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Khoảng cách từ điểm M( –1; 1) đến đường thẳng ∆: 3x – 4y – 3 = 0 bằng:
Ta có: .
Đường tròn ngoại tiếp hình chữ nhật cơ sở của hypebol
có có phương trình là:
Ta có: . Tọa độ các đỉnh hình chữ nhật cở sở là
,
,
,
Dường tròn ngoại tiếp hình chữ nhật cơ sở có tâm
bán kính
.
Phương trình đường tròn là
Cặp đường thẳng nào dưới đây là phân giác của các góc hợp bởi hai đường thẳng
và
.
Điểm thuộc đường phân giác của các góc tạo bởi
khi và chỉ khi
Tìm phương trình chính tắc của elip có tiêu cự bằng
và trục lớn bằng
.
Phương trình chính tắc của elip:
Độ dài trục lớn .
Tiêu cự .
Ta có:
Vậy phương trình chính tắc của elip là .
Trong mặt phẳng tọa độ
, cho tam giác
có
. Phương trình tổng quát của đường trung tuyến kẻ từ đỉnh
của tam giác
là:
Gọi I là trung điểm của AC. Ta có:
Đường trung tuyến BI đi qua điểm B và nhận làm vectơ chỉ phương nên có vectơ pháp tuyến
.
Phương trình tổng quát của đường thẳng là:
Cho ba đường thẳng
,
và
với m là tham số. Xác định giá trị của tham số m để ba đường thẳng
đồng quy?
Gọi . Khi đó tọa độ điểm A là nghiệm của hệ phương trình:
Để ba đường thẳng đồng quy thì hay
Vậy m = 2 thì ba đường thẳng đã cho đồng quy.
Trong mặt phẳng
cho hai điểm
. Viết phương trình đường tròn
đi qua hai điểm
, biết rằng tâm đường tròn thuộc trục hoành?
Gọi I là tâm đường tròn
Tâm đường tròn thuộc trục hoành nên
Đường tròn đi qua hai điểm nên ta có:
Vậy đường tròn có tâm
và bán kính
Vậy phương trình đường tròn là: