Tọa độ tâm
và bán kính
của đường tròn
là:
Ta có:
Tọa độ tâm
và bán kính
của đường tròn
là:
Ta có:
Tính khoảng cách từ điểm
đến đường thẳng ![]()
Khoảng cách từ điểm C đến đường thẳng là:
Vậy khoảng cách cần tìm bằng 1.
Trong mặt phẳng với hệ tọa độ
, cho hình bình hành
có đỉnh
và phương trình đường thẳng chứa cạnh
là
. Viết phương trình tham số của đường thẳng chứa cạnh
.
Góc phần tư (I) :
Viết phương trình tham số của đường thẳng
đi qua điểm
và vuông góc với trục
.
Cho Parabol
có phương trình
. Tìm đường chuẩn của
.
Từ phương trình của , ta có:
nên
.
Suy ra có tiêu điểm là
và đường chuẩn là
.
Gọi
là góc tạo bởi hai đường thẳng
và
. Khi đó độ lớn của
bằng:
Ta có:
Vậy góc tạo bởi hai đường thẳng bằng .
Một tòa tháp có mặt cắt hình hypebol có phương trình
. Biết khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp. Tòa tháp có chiều cao 50 m. Bán kính đáy của tháp bằng:
Gọi r là bán kính đáy của tháp
Do khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp và do tính đối xứng của hypebol nên ta có hai bán kính của nóc và đáy tháp đều bằng nhau.
Chọn điểm nằm trên hypebol nên ta có:
Vậy Bán kính đáy của tháp khoảng 22,25m.
Tính góc tạo bởi giữa hai đường thẳng:
và
.
Ta có: . Suy ra góc giữa hai đường thẳng bằng
.
Với giá trị nào của
thì hai đường thẳng
và
song song?
Ta có:
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Ta có:
Vậy phương trình đường tròn cần tìm là: .
Xét vị trí tương đối của hai đường thẳng
và
.
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây sai?
Đáp án sai là đáp án chứa độ dài trục lớn là .
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Ta có:
Cho hai đường thẳng
và
. Khẳng định nào sau đây đúng?
Ta có: suy ra
cắt
.
Vậy khẳng định đúng là: “ cắt
”.
Dạng chính tắc của parabol là?
Dạng chính tắc của Parabol: .
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Nếu ba đường thẳng
,
và
đồng quy thì
nhận giá trị nào trong các giá trị sau?
Cho phương trình Hypebol
. Độ dài trục thực của Hypebol đó là
Ta có: ta có: a = 4; b = 3
=> Độ dài trục thực của Hypebol đó là 2a = 8
Phương trình tổng quát của đường thẳng đi qua hai điểm A(2; –1) và B(2; 5) là:
.
Quan sát các đáp án. Suy ra phương trình tổng quát của AB là: .
Cho hai đường thẳng
và
. Khi đó hai đường thẳng này:
Ta có:
Phương trình tham số của đường thẳng nào sau đây có vectơ chỉ phương ![]()
Đường thẳng có phương trình tham số có vectơ chỉ phương là
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Đường thẳng có phương trình tham số có vectơ chỉ phương là
.
Trong mặt phẳng
, cho điểm
và elip
.
là
điểm thuộc
sao cho
đều, biết tọa độ của
và
có tung độ âm. Tính tổng
.

Nhận xét: Điểm là đỉnh của elip
điều kiện cần để
đều đó là
đối xứng
Nhau qua .Suy ra
là giao điểm của đường thẳng
và elip
.
+) Ta có elip
.
+) Theo giả thiết có tung độ âm nên tọa độ của
(điều kiện
do
)
+) Ta có và
+) đều
.
Cho elip
có độ dài trục lớn gấp hai lần độ dài trục nhỏ và tiêu cự bằng
. Viết phương
trình của
?
Ta có:
Mà .
Vậy phương trình :
.
Trong mặt phẳng với hệ tọa độ
, cho tam giác
có
và
. Chiều cao của tam giác kẻ từ đỉnh
bằng:
Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng
và hai điểm
. Tìm tất cả các giá trị của tham số
để
và
nằm cùng phía đối với
.
Ta có: .
Để A, B nằm cùng phía đối với thì:
Cho Hypebol
có phương trình chính tắc là
, với
. Khi đó khẳng định nào sau đây đúng?
Khẳng định đúng là: Với
, tâm sai của hypebol là
.
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
. Khẳng định nào sau đây đúng?
Ta có:
có vectơ pháp tuyến là
có vectơ chỉ phương là
nên
có vectơ pháp tuyến là
Mà nên
cắt
.
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Ta có:
Tâm của đường tròn
cách trục
một khoảng bằng:
Cho phương trình
. Tìm điều kiện của tham số m để phương trình đã cho là phương trình đường tròn?
Để phương trình đã cho là phương trình đường tròn thì:
Vậy đáp án chính xác là: .
Tìm m để hai đường thẳng
và
vuông góc với nhau:
và ![]()
Ta có: .
Để hai đường thẳng vuông góc thì: . Phương tình này vô nghiệm nên không tồn tại
Viết phương trình tiếp tuyến của đường tròn
, biết tiếp tuyến vuông góc với đường thẳng
.
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có
Đường tròn
đi qua điểm
và tiếp xúc với hai trục tọa độ
có phương trình là:
Vì thuộc góc phần tư (I) nên
Khi đó:
Trên hệ trục tọa độ cho đường tròn
. Trong các điểm sau điểm nào nằm trên đường tròn đã cho?
Thay tọa độ điểm vào phương trình đường tròn
ta được:
Vậy điểm thuộc đường tròn là .
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Điều kiện để phương trình là phương trình của một đường tròn là:
Kiểm tra các đáp án ta được kết quả đúng là:
Cho tọa độ hai điểm
. Viết phương trình chính tắc của elip có tâm là gốc tọa độ và đi qua hai điểm
?
Gọi phương trình chính tắc của elip là:
Do elip đi qua hai điểm nên ta có hệ phương trình:
Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là:
Trong mặt phẳng
, cho tam giác
có tọa độ các điểm
. Gọi
là tâm đường tròn ngoại tiếp tam giác
. Xác định giá trị biểu thức
?
Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên IA = IB = IC
Ta có:
Từ đó ta suy ra hệ phương trình:
Trong mặt phẳng tọa độ
, cho tọa độ điểm
và hai đường thẳng
;
. Một đường tròn
có tâm
thuộc đường thẳng
, đi qua điểm
và tiếp xúc với
. Kết luận nào sau đây đúng?
Ta có:
Lại có đường tròn tâm I đi qua P và tiếp xúc với đường thẳng nên
Vậy khẳng định đúng là: .
Xét vị trí tương đối của hai đường thẳng
và
.
Chọn
Cho elip đi qua điểm
và có độ dài trục lớn gấp đôi độ dài trục bé. Phương trình chính tắc của elip là:
Phương trình chính tắc của elip có dạng
Theo bài ra ta có hệ phương trình:
Vậy phương trình chính tắc của elip là: .