Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Viết phương trình tham số của đường thẳng đi qua hai điểm
và
.
Đường tròn
đi qua điểm
và tiếp xúc với hai trục tọa độ
có phương trình là:
Vì thuộc góc phần tư (IV) nên
Khi đó:
Trong các phương trình sau, phương trình nào không phải là phương trình của đường tròn?
Xét đáp án
Chọn đáp án này.
Các đáp án còn lại các hệ số thỏa mãn
Đường thẳng nào sau đây song song với đường thẳng
?
Đường thẳng song song với đường thẳng
vì
.
Cho hai đường thẳng
và
. Khi đó hai đường thẳng này:
Ta có:
Cho đường tròn (C) có phương trình
. Đường tròn (C) còn được viết dưới dạng nào trong các dạng dưới đây:
Viết lại phương trình đường tròn như sau:
Cho phương trình
. Điều kiện để
là phương trình đường tròn là:
Điều kiện để là phương trình đường tròn là
.
Cho hình elip có phương trình
. Hình elip có tiêu cự trục lớn bằng:
Ta có:
Độ dài trục lớn là:
Cho hai đường thẳng
và
với m là tham số. Tìm giá trị của tham số m để hai đường thẳng tạo với nhau một góc bằng nửa góc vuông?
VTPT của hai đường thẳng lần lượt là
Để hai đường thẳng tạo với nhau một góc bằng thì
Vậy .
Trong mặt phẳng
có đường thẳng
đi qua điểm
và tạo với đường thẳng
một góc bằng
. Biết rằng
có dạng
và
. Tính tổng hai giá trị
và
?
Gọi là vectơ pháp tuyến của đường thẳng
.
Phương trình tổng quát của đường thẳng là:
Ta có:
Vậy ta có phương trình của là:
và
Vậy
Trong mặt phẳng tọa độ
,cho tam giác
có tọa độ các điểm
. Đường thẳng
đi qua
và song song với
có phương trình tổng quát là:
Ta có:
Phương trình tổng quát AC là:
Đường thẳng song song với
nên d có dạng
Do điểm
Vậy .
Đường tròn có tâm
, bán kính
có phương trình là:
Trong mặt phẳng với hệ tọa độ
, cho elip
(với
). Biết
là hai tiêu điểm. Cho điểm M di động trên
. Chọn khẳng định đúng?
Ta có:
.
Vì nên
.
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
. Khẳng định nào sau đây đúng?
Ta có:
có vectơ pháp tuyến là
có vectơ chỉ phương là
nên
có vectơ pháp tuyến là
Mà nên
cắt
.
Phương trình tổng quát của đường thẳng đi qua hai điểm A(3 ; – 1) và B(1 ; 5) là:
Ta có: .
Phương trình tổng quát của :
.
Trong mặt phẳng tọa độ
, cho hình chữ nhật
có điểm
. Gọi
đối xứng với điểm
qua
, điểm
là hình chiếu vuông góc của
lên đường thẳng
. Biết rằng tọa độ điểm
thuộc đường thẳng
. Khi đó:
Ta có: ADB’C là hình bình hành
Mà
Tam giác vuông cân tại I
là hình thang cân =>
đi qua điểm
và có vecto pháp tuyến
Phương trình CI:
Tìm
để hai đường thẳng
và
vuông góc với nhau?
Ta có:
Elip
có độ dài tiêu cự bằng:
Ta có: .
Do đó độ dài tiêu cự .
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng
?
Vectơ chỉ phương của đường thẳng trên là: .
Cho hyperbol
có hai tiêu điểm là
. Tìm trên một nhánh của
tọa độ hai điểm
. Biết rằng
là tam giác đều.
Ta có :
Gọi (Do
đối xứng với nhau qua
)
đều
. Thay vào
ta có:
Vậy ,
.
Tọa độ tâm
và bán kính
của đường tròn
là:
Cho đường thẳng
. Đường thẳng nào sau đây vuông góc với đường thẳng
?
Đường thẳng vuông góc với đường thẳng
vì
.
Cho đường tròn
. Biết rằng khi giá trị
thay đổi, đường tròn
luôn đi qua điểm
cố định có hoành độ dương. Xác định giá trị của tham số m sao cho tiếp tuyến của đường tròn
tại
song song với
?
Gỉa sử đường tròn luôn đi qua điểm cố định khi m thay đổi. Khi đó:
với mọi m
với mọi m
Vậy ta có điểm
Đường tròn có tâm . VTPT của tiếp tuyến của đường tròn tại I là
Để tiếp tuyến tại I song song với đường thẳng nên tồn tại giá trị k sao cho:
Vậy giá trị m cần tìm là .
Cho elip (E):
. Trong các khẳng định sau, khẳng định nào sai?
Phương trình elip (E) có dạng
Ta có:
Khi đó: đúng
Ta có: đúng
Đỉnh A1(–a; 0) => A1(–5; 0) đúng
Độ dài trục nhỏ là 2b = 2.3 = 6 ≠ 3
Vậy khẳng định sai là: (E) có độ dài trục nhỏ bằng 3.
Trong mặt phẳng tọa độ
, cho ba điểm
. Biết rằng
, khi đó tọa độ điểm
là:
Giả sử tọa độ điểm
Ta có:
Vì nên
Cho elip có phương trình chính tắc
. Tính tâm sai của elip.
Ta có
Tâm sai của elip là .
Cho đường thẳng
có phương trình
. Xác định vectơ chỉ phương của
?
Đường thẳng có vectơ pháp tuyến là
nên có vectơ chỉ phương là
.
Xét vị trí tương đối của hai đường thẳng
và
.
Chọn
Trong hệ trục tọa độ Oxy, cho đường thẳng
. Một vectơ chỉ phương của
là:
Một vectơ chỉ phương của là
hay
.
Đường tròn
có tâm
và tiếp xúc với đường thẳng
có phương trình là:
Với giá trị nào của
thì hai đường thẳng
và
cắt nhau?
Ta có:
Lập phương trình chính tắc của elip biết độ dài trục lớn hơn độ dài trục nhỏ 4 đơn vị, độ dài trục nhỏ hơn độ dài tiêu cự 4 đơn vị.
Elip có độ dài trục lớn hơn độ dài trục nhỏ 4 đơn vị
.
Elip có độ dài trục nhỏ hơn độ dài tiêu cự 4 đơn vị
.
Ta có
Phương trình chính tắc của Elip là .
Tìm tọa độ giao điểm của đường thẳng
và trục hoành.
Chọn
Viết phương trình tham số của đường thẳng
đi qua điểm
và vuông góc với đường thẳng
?
Vì nên vectơ chỉ phương của đường thẳng d là vectơ pháp tuyến của
Đường thẳng có vectơ pháp tuyến là:
và đi qua điểm
là:
.
Đường tròn
đi qua hai điểm
,
và có tâm
thuộc trục tung có phương trình là:
.
Vậy đường tròn cần tìm là:
Phương trình chính tắc của Elip có độ dài trục lớn bằng
, độ dài trục nhỏ bằng
là:
+ Phương trình Elip dạng:
+ Do có độ dài trục lớn bằng .
+ Do có độ dài trục nhỏ bằng .
+ Suy ra phương trình là .
Trong mặt phẳng với hệ tọa độ
, cho đường thẳng
và hai điểm
,
. Tìm tất cả các giá trị của tham số
để
và đoạn thẳng
có điểm chung.
Đoạn thẳng và
có điểm chung khi và chỉ khi hai điểm
nằm khác phía so với đường thẳng
. Ta có:
Elip có một tiêu điểm
và tích độ dài trục lớn với trục bé bằng
. Phương trình chính tắc của elip là:
Gọi (E) có dạng .
Theo giả thiết ta có: .
Vậy (E) cần tìm là
Trong mặt phẳng với hệ tọa độ Oxy, cho elip
. Tiêu cự của (E) bằng
Phương trình chính tắc của elip có dạng: .
Do đó elip (E) có .
Tiêu cự của elip (E) bằng .
Trong mặt phẳng
cho điểm
và đường thẳng
. Tính khoảng cách từ điểm A đến đường thẳng (d).
Khoảng cách từ điểm A đến đường thẳng (d) là:
Vậy khoảng cách cần tìm bằng 8.