Trong hệ trục tọa độ Oxy, cho đường thẳng
. Một vectơ chỉ phương của
là:
Một vectơ chỉ phương của là
hay
.
Trong hệ trục tọa độ Oxy, cho đường thẳng
. Một vectơ chỉ phương của
là:
Một vectơ chỉ phương của là
hay
.
Trong mặt phẳng Oxy, điểm
nằm trên đường tròn
sao cho độ dài đoạn thẳng OM là ngắn nhất. Hoành độ điểm
là:
Đường tròn có tâm
và bán kính
.
Phương trình đường thẳng OI đi qua và nhận
làm VTCP là:
.
Ta có:
Để OM ngắn nhất
Dấu bằng xảy ra .
Cho đường thẳng
. Điểm nào dưới đây không nằm trên đường thẳng đã cho?
Thay tọa độ các điểm đã cho vào phương trình tham số của đường thẳng d ta thấy điểm không thuộc đường thẳng d là: .
Tìm
để hai đường thẳng
và
trùng nhau?
Cho đường tròn
và điểm
. Gọi
là tiếp tuyến của
, biết
đi qua
và không song song với các trục tọa độ. Khi đó khoảng cách từ điểm
đến
bằng:
Đường tròn (C) có tâm và tiếp tuyến có dạng
Ta có:
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O(0; 0) và điểm M(a; b)?
Vectơ chỉ phương của OM là .
Khái niệm nào sau đây định nghĩa về hypebol?
Cho cố định với
. Hypebol
là tập hợp điểm
sao cho
với
là một số không đổi và
.
Cho ba đường thẳng
,
và
với m là tham số. Xác định giá trị của tham số m để ba đường thẳng
đồng quy?
Gọi . Khi đó tọa độ điểm A là nghiệm của hệ phương trình:
Để ba đường thẳng đồng quy thì hay
Vậy m = 2 thì ba đường thẳng đã cho đồng quy.
Elip
có độ dài trục lớn bằng
, các đỉnh trên trục nhỏ và các tiêu điểm của elip cùng nằm trên một đường tròn. Hãy tính độ dài trục nhỏ của
.
Ta có
Và bốn điểm cùng nằm trên một đường tròn
Vậy độ dài trục nhỏ của là
Biết parabol
có phương trình đường chuẩn là
. Phương trình chính tắc của
là:
Gọi phương trình chính tắc của Parabol là:
Parabol có phương trình đường chuẩn là: nên
Suy ra phương trình chính tắc của parabol là: .
Cho elip
có phương trình
. Khẳng định nào sai trong các khẳng định sau?
:
.
Elip có
,
,
.
Tiêu cự của elip là
nên khẳng định “
có tiêu cự bằng 3” là khẳng định sai.
Cho
. Một đường thẳng đi qua điểm
và song song với trục hoành cắt
tại hai điểm phân biệt
và
. Độ dài
bằng bao nhiêu?
Phương trình đường thẳng đi qua điểm
và song song trục hoành có phương trình là
Ta có
Vậy độ dài đoạn thẳng
Cho hai đường thẳng
và
. Khẳng định nào sau đây đúng?
Ta có: suy ra
cắt
.
Vậy khẳng định đúng là: “ cắt
”.
Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm
và
?
Kiểm tra đường thẳng nào không chứa loại.
(Có thể kiểm tra đường thẳng nào không đi qua điểm ).
Đường trung trực của đoạn thẳng
với
,
có một vectơ pháp tuyến là:
Gọi là trung trực đoạn AB, ta có:
Cho elip (E):
. Trong các khẳng định sau, khẳng định nào sai?
Phương trình elip (E) có dạng
Ta có:
Khi đó: đúng
Ta có: đúng
Đỉnh A1(–a; 0) => A1(–5; 0) đúng
Độ dài trục nhỏ là 2b = 2.3 = 6 ≠ 3
Vậy khẳng định sai là: (E) có độ dài trục nhỏ bằng 3.
Với giá trị nào của
thì hai đường thẳng
và
song song?
Ta có:
Tìm điều kiện của tham số m để hai đường thẳng
và
cắt nhau?
Hai đường thẳng cắt nhau khi và chỉ khi:
Vậy hai đường thẳng cắt nhau khi và chỉ khi .
Cho Parabol
có phương trình
. Tìm đường chuẩn của
.
Từ phương trình của , ta có:
nên
.
Suy ra có tiêu điểm là
và đường chuẩn là
.
Đường thẳng nào sau đây có đúng một điểm chung với đường thẳng
?
Ta cần tìm đường thẳng cắt
loại
loại
và
. Chọn
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
. Tìm giá trị của tham số
để hai đường thẳng hợp với nhau một góc bằng một góc vuông?
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Hai đường thẳng vuông góc với nhau khi và chỉ khi:
Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi .
Xác định tâm và bán kính đường tròn
?
Ta có:
Vậy đường tròn có bán kính và bán kính
Đường tròn
có tâm
và bán kính
lần lượt là:
Ta có:
Viết phương trình đường thẳng
đi qua giao điểm hai đường thẳng
và cosin góc giữa
với đường thẳng
một góc bằng
?
Gọi A là giao điểm hai đường thẳng , khi đó tọa độ điểm A là nghiệm của hệ phương trình:
Phương trình đường thẳng có dạng
Vì
Mặt khác
Với
Với
Vậy phương trình đường thẳng là: .
Một Elip đi qua điểm
và có độ dài trục lớn là
. Hãy xác định phương trình chính tắc của elip đó?
Phương trình chính tắc của elip có dạng
Do (E) có độ dài trục lớn là nên
Do (E) đi qua điểm nên
Vậy phương trình chính tắc của elip là: .
Cho hai đường thẳng
;
và điểm
. Phương trình đường tròn có tâm
, đi qua điểm
và tiếp xúc với
là:
Hình vẽ minh họa
Ta có I là tâm đường tròn và nên
Theo giả thiết bài toán ta có:
Suy ra và bán kính
Vậy phương trình đường tròn cần tìm là: .
Trong mặt phẳng tọa độ Oxy, cho tam giác
có tọa độ các đỉnh
. Viết phương trình đường cao
của tam giác
?
Ta có: nên đường cao AH là một vectơ pháp tuyến là
Phương trình đường cao là:
.
Vậy đường thẳng cần tìm có phương trình .
Trong hệ trục
cho Elip
có các tiêu điểm
và một điểm
nằm trên
. Biết rằng chu vi của tam giác
bằng 18. Xác định tâm sai e của ![]()
Ta có .
Tâm sai .
Cho tam giác
có phương trình các cạnh
lần lượt là
và trực tâm
. Phương trình tổng quát của cạnh
là:
Ta có: nên tọa độ điểm A là nghiệm hệ phương trình:
Ta có
Điểm
Ta có: nên tọa độ điểm B là nghiệm hệ phương trình:
Đường thẳng BC đi qua điểm B nhận làm vecto pháp tuyến có phương trình là:
Cho một hypebol
có hai tiêu điểm là:
Ta có:
Vậy hai tiêu điểm cần tìm là: .
Trong mặt phẳng tọa độ
, cho hai đường thẳng
và
. Khi đó vị trí tương đối của hai đường thẳng là:
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Ta thấy
Suy ra hai đường thẳng vuông góc với nhau.
Công thức nào dưới đây là công thức tính khoảng cách từ một điểm
đến đường thẳng
?
Công thức tính khoảng cách từ một điểm đến đường thẳng
là:
Có bao nhiêu đường thẳng đi qua điểm
tiếp xúc với đường tròn
?
Đường tròn (C) có tâm có đúng 2 tiếp tuyến của đường tròn kẻ từ N.
Trong hệ trục tọa độ
cho hai điểm
. Chọn đáp án không phải là phương trình tham số của đường thẳng
.
Đường thẳng AB có một vectơ chỉ phương là suy ra vectơ chỉ phương
Phương trình không thỏa mãn vì có vectơ chỉ phương
không cùng phương với
.
Xét vị trí tương đối của hai đường thẳng
và
.
Trong mặt phẳng
cho các điểm
. Phương trình đường tròn ngoại tiếp tam giác
là:
Gọi phương trình đường tròn là: với
Vì đường tròn đi qua ba điểm nên ta có hệ phương trình:
Vậy phương trình đường tròn cần tìm là: .
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Xét phương trình dạng : lần lượt tính các hệ số
và kiểm tra điều kiện
Các phương trình không có dạng đã nêu loại các đáp án
và
.
Đáp án không thỏa mãn điều kiện
Tọa độ tâm
và bán kính
của đường tròn
là:
Trong mặt phẳng tọa độ Oxy, đường thẳng đi qua điểm
và song song với đường thẳng
có phương trình tổng quát là:
Đường thẳng đi qua điểm và song song với đường thẳng
có nhận vectơ
làm vectơ pháp tuyến có phương trình tổng quát:
Vậy phương trình tổng quát của đường thẳng là: .