Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Đường tròn (C) có tâm là gốc tọa độ O(0;0) và tiếp xúc với đường thẳng \Delta:8x + 6y + 100 = 0. Bán kính R của đường tròn (C) bằng:

    R = d(O;\Delta) = \frac{|100|}{\sqrt{64 +36}} = 10.

  • Câu 2: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:2x + y + 4 - m = 0d_{2}:(m + 3)x + y + 2m - 1 = 0 song song?

    Với m = 4\overset{}{ightarrow}\left\{\begin{matrix}d_{1}:2x + y = 0 \\d_{2}:7x + y + 7 = 0 \\\end{matrix} ight.\ \overset{}{ightarrow}d_{1} \cap d_{2}eq \varnothing\overset{}{ightarrow} loại m = 4.

    Với meq 4 thì

    \left\{ \begin{matrix}d_{1}:2x + y + 4 - m = 0 \\d_{2}:(m + 3)x + y - 2m - 1 = 0 \\\end{matrix} ight.\ \overset{d_{1}||d_{2}}{ightarrow}\frac{m + 3}{2}= \frac{1}{1}eq \frac{- 2m - 1}{4 - m}

    \Leftrightarrow \left\{ \begin{matrix}m = - 1 \\meq  - 5 \\\end{matrix} ight.\  \Leftrightarrow m = - 1.

  • Câu 3: Thông hiểu

    Tìm m để hai đường thẳng d_1d_2 vuông góc với nhau: d_1:\left\{\begin{matrix}x=-1+mt\\ y=-2-2t\end{matrix}ight.d_2:\left\{\begin{matrix}x=2-2t'\\ y=-8+(4+m)t'\end{matrix}ight.

     Ta có: {\overrightarrow u _1}(m; - 2);\overrightarrow {{u_2}} ( - 2;(m + 4)).

    Để hai đường thẳng vuông góc thì: {\overrightarrow u _1}.\overrightarrow {{u_2}}  = 0 \Leftrightarrow m( - 2) +  - 2(m + 4) = 0. Phương tình này vô nghiệm nên không tồn tại m

  • Câu 4: Vận dụng

    Viết phương trình chính tắc của elip biết nó đi qua điểm A\left( 2;\sqrt{3} ight) và tỉ số của độ dài trục lớn với tiêu cự bằng \frac{2}{\sqrt{3}}.

    Gọi phương trình chính tắc của Elip là (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1, với a > b >
0.

    \bullet Elip đi qua điểm A\left( 2;\sqrt{3} ight) suy ra \frac{2^{2}}{a^{2}} + \frac{\left( \sqrt{3}
ight)^{2}}{b^{2}} = 1 \Leftrightarrow \frac{4}{a^{2}} +
\frac{3}{b^{2}} = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (1).

    \bullet Tỉ số của độ dài trục lớn với tiêu cự bằng \frac{2}{\sqrt{3}} suy ra \frac{2a}{2c} = \frac{2}{\sqrt{3}} \Leftrightarrow
c^{2} = \frac{3}{4}a^{2}.

    Kết hợp với điều kiện b^{2} = a^{2} -
c^{2}, ta được b^{2} = a^{2} -
\frac{3}{4}a^{2} = \frac{a^{2}}{4} \Leftrightarrow a^{2} = 4b^{2}\ \ \ \
\ \ \ \ \ \ (2).

    Từ (1),\ \ (2) suy ra \left\{ \begin{matrix}
\frac{4}{a^{2}} + \frac{3}{b^{2}} = 1 \\
a^{2} = 4b^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\frac{4}{4b^{2}} + \frac{3}{b^{2}} = 1 \\
a^{2} = 4b^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\frac{4}{b^{2}} = 1 \\
a^{2} = 4b^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 16 \\
b^{2} = 4 \\
\end{matrix} ight.\ .

    Vậy phương trình cần tìm là (E):\frac{x^{2}}{16} + \frac{y^{2}}{4} =
1.

  • Câu 5: Nhận biết

    Đường thẳng nào là đường chuẩn của parabol y^{2}=2x.

     Ta có: 2p=2 \Leftrightarrow p=1.

    Đường chuẩn: x=-\frac p2=-\frac12.

  • Câu 6: Nhận biết

    Điền vào chỗ trống: Vectơ có giá song song hoặc trùng với đường thẳng thì vectơ được gọi là … của đường thẳng đó.

    Vectơ \overrightarrow u có giá song song hoặc trùng với đường thẳng thì \overrightarrow u được gọi là vectơ chỉ phương của đường thẳng đó.

  • Câu 7: Thông hiểu

    Cho  có C(–1; 2), đường cao BH: x – y + 2 = 0, đường phân giác trong AN: 2x – y + 5 = 0. Tọa độ điểm A là:

    Ta có: BH \bot AC \Rightarrow \left( {AC} ight):x + y + c = 0

    C\left( { - 1;2} ight) \in \left( {AC} ight)

    \begin{matrix}    \Rightarrow  - 1 + 2 + c = 0 \hfill \\   \Rightarrow c =  - 1 \hfill \\ \end{matrix}

    Vậy (AC):x+y−1=0

    A=AN∩AC => A là nghiệm của hệ phương trình

    \left\{ {\begin{array}{*{20}{l}}  {x + y - 1 = 0} \\   {2x - y + 5 = 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{l}}  {x = \dfrac{{ - 4}}{3}} \\   {y = \dfrac{7}{3}} \end{array}} ight. \Rightarrow A\left( {\dfrac{{ - 4}}{3};\dfrac{7}{3}} ight)

  • Câu 8: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Ox?

     Vectơ chỉ phương của trục Ox là (1; 0).

  • Câu 9: Nhận biết

    Đường tròn (C): {x^2} + {y^2} + 12x - 14y + 4 = 0 viết được dưới dạng:

    Từ phương trình đường tròn {x^2} + {y^2} + 12x - 14y + 4 = 0 ta suy ra:

    I\left( { - 6;7} ight);R = \sqrt {{6^2} + {7^2} - 4}  = 9

    Vậy phương trình tổng quát {(x + 6)^2} + {(y - 7)^2} = 81

  • Câu 10: Thông hiểu

    Phương trình tổng quát của đường thẳng đi qua hai điểm A(3 ; – 1) và B(1 ; 5) là:

     Ta có: {\overrightarrow u _{AB}} = ( - 2;6) \Rightarrow {\overrightarrow u _{AB}} ( - 1;3) \Rightarrow {\overrightarrow n _{AB}} = (3;1).

    Phương trình tổng quát của AB

    3(x - 3) + 1(y + 1) = 0 \Leftrightarrow 3x + y - 8 = 0.

     

  • Câu 11: Nhận biết

    Phương trình đường tròn (C) có tâm I(
- 1;2) và bán kinh R = 6 là:

    Ta có: (C):\left\{ \begin{matrix}
I( - 1;2) \\
R = 6 \\
\end{matrix} ight.\  \Rightarrow (C):(x + 1)^{2} + (y - 2)^{2} =
36

  • Câu 12: Thông hiểu

    Các cặp đường thẳng nào sau đây vuông góc với nhau?

    (i) \left\{ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = t \\
y = - 1 - 2t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{u}}_{1} = (1; - 2)
\\
d_{2}:2x + y–1 = 0 ightarrow {\overrightarrow{n}}_{2} = (2;1)
ightarrow {\overrightarrow{u}}_{2} = (1; - 2) \\
\end{matrix} ight.

    ightarrow {\overrightarrow{u}}_{1}
\cdot {\overrightarrow{u}}_{2}\boxed{=}0 ightarrow loại.

    (ii) \left\{ \begin{matrix}
d_{1}:x - 2 = 0 ightarrow {\overrightarrow{n}}_{1} = (1;0) \\
d_{2}:d_{2}:\left\{ \begin{matrix}
x = t \\
y = 0 \\
\end{matrix} ight.\ . ightarrow {\overrightarrow{u}}_{2} = (1;0)
ightarrow {\overrightarrow{n}}_{2} = (0;1) \\
\end{matrix} ight.

    ightarrow {\overrightarrow{n}}_{1}
\cdot {\overrightarrow{n}}_{2} = 0 ightarrow d_{1}\bot d_{2}. Chọn đáp án này.

    Tương tự, kiểm tra và loại các đáp án còn lại.

  • Câu 13: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn có phương trình: {(x - 1)^2} + {(y - 10)^2} = 81 lần lượt là:

    Tâm và bán kính đường tròn lần lượt là: I(1; 10) và R = 9

  • Câu 14: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d:x - 2y + 3 = 0. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng d?

    Ta có: Vectơ pháp tuyến của đường thẳng \Delta là: \overrightarrow{n}(1; - 2).

  • Câu 15: Nhận biết

    Đường thẳng 12x
- 7y + 5 = 0 không đi qua điểm nào sau đây ?

    Gọi 12x - 7y + 5 = 0.

    Đặt f(x;y) = 12x - 7y +
5\overset{}{ightarrow}\left\{ \begin{matrix}
f\left( M(1;1) ight) = 10\boxed{=}0 ightarrow M\boxed{\in}d \\
f\left( N( - 1; - 1) ight) = 0 ightarrow N \in d \\
f(P) = 0,\ \ f(Q) = 0 \\
\end{matrix} ight.\ . Chọn M(1;1).

  • Câu 16: Vận dụng

    Trong mặt phẳng Oxy, cho tam giác ABC có tọa độ các điểm A(1;3),B( - 1; - 1),C(1;1). Gọi I(a;b) là tâm đường tròn ngoại tiếp tam giác ABC. Xác định giá trị biểu thức P = a + b?

    Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên IA = IB = IC \Rightarrow \left\{ \begin{matrix}
IA^{2} = IB^{2} \\
IA^{2} = IC^{2} \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
IA = \sqrt{(1 - a)^{2} + (3 - b)^{2}} \\
IB = \sqrt{( - 1 - a)^{2} + ( - 1 - b)^{2}} \\
IC = \sqrt{(1 - a)^{2} + (1 - b)^{2}} \\
\end{matrix} ight.

    Từ đó ta suy ra hệ phương trình:

    \left\{ \begin{matrix}
(1 - a)^{2} + (3 - b)^{2} = ( - 1 - a)^{2} + ( - 1 - b)^{2} \\
(1 - a)^{2} + (3 - b)^{2} = (1 - a)^{2} + (1 - b)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 4a - 8b = - 8 \\
- 4b = - 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 2 \\
b = 2 \\
\end{matrix} ight.

    \Leftrightarrow P = a + b =
0

  • Câu 17: Vận dụng

    Có bao nhiêu đường thẳng đi qua gốc tọa độ O và tiếp xúc với đường tròn (C):x^{2} + y^{2} - 2x + 4y - 11 = 0?

    Đường tròn (C) có tâm I(1; - 2),\ R = 4
ightarrow OI = \sqrt{5} < R ightarrowkhông có tiếp tuyến nào của đường tròn kẻ từ O.

  • Câu 18: Thông hiểu

    Phương trình chính tắc của Elip có độ dài trục lớn bằng 8, độ dài trục nhỏ bằng 6 là:

    + Phương trình Elip dạng: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1,a
> b > 0.

    + Do có độ dài trục lớn bằng 8 = 2a
\Rightarrow a = 4.

    + Do có độ dài trục nhỏ bằng 6 = 2b
\Rightarrow b = 3.

    + Suy ra phương trình là \frac{x^{2}}{16}
+ \frac{y^{2}}{9} = 1.

  • Câu 19: Thông hiểu

    Trong hệ trục Oxy, cho Elip (E) có các tiêu điểm F_{1}( - 4;0),F_{2}(4;0) và một điểm M nằm trên (E). Biết rằng chu vi của tam giác MF_{1}F_{2} bằng 18. Xác định tâm sai e của (E).

    Ta có F_{1}( - 4;0) \Rightarrow c =
4.

    \begin{matrix}
P_{\Delta MF_{1}F_{2}} = \underset{2a}{\overset{MF_{1} + MF_{2}}{︸}} +
F_{1}F_{2} \\
\Leftrightarrow \ \ \ 18 = 2a + 2c \Leftrightarrow 18 = 2a + 8
\Leftrightarrow a = 5. \\
\end{matrix}

    Tâm sai e = \frac{c}{a} =
\frac{4}{5}.

  • Câu 20: Vận dụng

    Cho đường thẳng d_{1}:2x + 3y + m^{2} - 1 = 0d_{2}:\left\{ \begin{matrix}
x = 2m - 1 + t \\
y = m^{4} - 1 + 3t \\
\end{matrix} ight.. Tính cosin góc tạo bởi giữa hai đường thẳng trên.

    . \left\{ \begin{matrix}
d_{1}:2x + 3y + m^{2} - 1 = 0 ightarrow {\overrightarrow{n}}_{1} =
(2;3) \\
d_{2}:\left\{ \begin{matrix}
x = 2m - 1 + t \\
y = m^{4} - 1 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (3; - 1)
\\
\end{matrix} ight. \overset{\varphi = \left( d_{1};d_{2}
ight)}{ightarrow}\cos\varphi = \frac{|6 - 3|}{\sqrt{4 + 9}.\sqrt{9 +
1}} = \frac{3}{\sqrt{130}}.

  • Câu 21: Vận dụng

    Có bao nhiêu đường thẳng đi qua điểm N\ ( - 2\ ;\ 0) tiếp xúc với đường tròn (C):\ (x - 2)^{2} + (y\  + 3)^{2} =
4?

    Đường tròn (C) có tâm I(2; - 3),\ R = 2
ightarrow IN = \sqrt{16 + 9} = 5 > R ightarrowcó đúng 2 tiếp tuyến của đường tròn kẻ từ N.

  • Câu 22: Nhận biết

    Đường thẳng nào sau đây vuông góc với đường thẳng 4x - 3y + 1 = 0 ?

    Kí hiệu d:4x - 3y + 1 = 0 ightarrow
{\overrightarrow{n}}_{d} = (4; - 3).

    (i) Xét đáp án d_{1}:\left\{
\begin{matrix}
x = 4t \\
y = - 3 - 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{1} = (3;4)
ightarrow {\overrightarrow{n}}_{1} \cdot {\overrightarrow{n}}_{d} =
0 nên chọn đáp án này.

    (ii) Tương tự kiểm tra và loại các đáp án còn lại.

  • Câu 23: Nhận biết

    Đường trung trực của đoạn thẳng AB với A = (- 3;2), B = ( - 3;3) có một vectơ pháp tuyến là:

    Gọi d là trung trực đoạn AB, ta có: \left\{ \begin{matrix}\overrightarrow{AB} = (0;1) \\d\bot AB \\\end{matrix} ight.\ \overset{ightarrow}{}{\overrightarrow{n}}_{d} =\overrightarrow{AB} = (0;1).

  • Câu 24: Nhận biết

    Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E):\frac{x^{2}}{25} +
\frac{y^{2}}{9} = 1. Tiêu cự của (E) bằng

    Phương trình chính tắc của elip có dạng: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1\ (a
> 0,b > 0).

    Do đó elip (E) có \left\{
\begin{matrix}
a = 5 \\
b = 3 \\
\end{matrix} ight.\  \Rightarrow c = \sqrt{a^{2} - b^{2}} =
4.

    Tiêu cự của elip (E) bằng 2c =
8.

  • Câu 25: Nhận biết

    Cho hai đường thẳng (\Delta):x - 2y + 1 = 0(\Delta'):x - 3y + 8 = 0. Khẳng định nào sau đây đúng?

    Ta có: \frac{1}{1} eq \frac{- 2}{-
3} suy ra (\Delta) cắt (\Delta').

    Vậy khẳng định đúng là: “(\Delta) cắt (\Delta')”.

  • Câu 26: Nhận biết

    Trong mặt phẳng tọa độ Oxy, viết phương trình chính tắc của elip biết một đỉnh là A_{1}( - 5;0) và một tiêu điểm là F_{2}(2;0).

    Ta có a = 5;\ c = 2 \Rightarrow b^{2} =
25 - 4 = 21

    Vậy \frac{x^{2}}{25} + \frac{y^{2}}{21} =
1.

  • Câu 27: Thông hiểu

    Phương trình tổng quát của đường thẳng đi qua hai điểm A(2; –1) và B(2; 5) là:

     \overrightarrow u  = (0;6) \Rightarrow \overrightarrow n  = (6;0) \Rightarrow \overrightarrow n  = (1;0).

    Quan sát các đáp án. Suy ra phương trình tổng quát của AB là: x-2=0.

  • Câu 28: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 4 + 2t \\
y = 1 - 5t \\
\end{matrix} ight.d_{2}:5x
+ 2y - 14 = 0.

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = 4 + 2t \\
y = 1 - 5t \\
\end{matrix} ight.\  ightarrow A(4;1) \in d_{1},\ \
{\overrightarrow{u}}_{1} = (2; - 5) \\
d_{2}:5x + 2y - 14 = 0 ightarrow \ \ {\overrightarrow{n}}_{2} = (5;2)
ightarrow {\overrightarrow{u}}_{2} = (2; - 5) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
{\overrightarrow{u}}_{1} = {\overrightarrow{u}}_{2} \\
A\boxed{\in}d_{2} \\
\end{matrix} ight.\  ightarrow d_{1}||d_{2}.Chọn

  • Câu 29: Thông hiểu

    Hãy xác định phương trình chính tắc của parabol (P). Biết rằng (P) cắt đường thẳng d:x + 2y = 0 tại hai điểm A,BAB =
4\sqrt{5}?

    Phương trình chính tắc của (P) có dạng y^{2} = 2px;(p > 0)

    Ta có đường thẳng d cắt (P) tại hai điểm \left\{ \begin{matrix}
A \equiv O \\
B = ( - 2m;m) \\
\end{matrix} ight.

    Ta có:

    AB = 4\sqrt{5} \Leftrightarrow AB^{2} =
5m^{2} = \left( 4\sqrt{5} ight)^{2}

    \Leftrightarrow m^{2} = 16
\Leftrightarrow m = \pm 4

    Với m = 4 \Rightarrow B( - 8;4) \Rightarrow 16 = 2p.( - 8)
\Rightarrow p = - 1 < 0(ktm)

    Với m = - 4 \Rightarrow B(8; - 4) \Rightarrow 16 = 2p.8
\Rightarrow p = 1(tm)

    Vậy phương trình chính tắc của parabol cần tìm là: y^{2} = 2x.

  • Câu 30: Thông hiểu

    Viết phương trình tổng quát của đường thẳng d đi qua điểm M( - 1;0) và vuông góc với đường thẳng \Delta:\left\{ \begin{matrix}
x = t \\
y = - 2t \\
\end{matrix} ight.\ .

    \left\{ \begin{matrix}
M( - 1;0) \in d \\
{\overrightarrow{u}}_{\Delta} = (1; - 2) \\
d\bot\Delta \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
M( - 1;0) \in d \\
{\overrightarrow{n}}_{d} = (1; - 2) \\
\end{matrix} ight.\  ightarrow d:1(x + 1) - 2(y - 0) = 0
\Leftrightarrow d:x - 2y + 1 = 0.

  • Câu 31: Nhận biết

    Đường Hyperbol \frac{x^{2}}{16} - \frac{y^{2}}{9} = 1 có một tiêu điểm là điểm nào dưới đây?

    Ta có : \left\{ \begin{matrix}
a^{2} = 16 \\
b^{2} = 9 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow c = 5. Các tiêu điểm của (H)( - 5;0)(5;0).

  • Câu 32: Nhận biết

    Xác định vị trí tương đối của hai đường thẳng \Delta_{1}:\left\{ \begin{matrix}
x = 3 + \frac{3}{2}t \\
y = - 1 + \frac{4}{3}t \\
\end{matrix} ight.\Delta_{2}:\left\{ \begin{matrix}
x = \frac{9}{2} + 9t' \\
y = \frac{1}{3} + 8t' \\
\end{matrix} ight..

    \left. \ \begin{matrix}
\Delta_{1}:\left\{ \begin{matrix}
x = 3 + \frac{3}{2}t \\
y = - 1 + \frac{4}{3}t \\
\end{matrix} ight.\  ightarrow A(3; - 1) \in \Delta_{1},\ \
{\overrightarrow{u}}_{1} = \left( \frac{3}{2};\frac{4}{3} ight) \\
\Delta_{2}:\left\{ \begin{matrix}
x = \frac{9}{2} + 9t' \\
y = \frac{1}{3} + 8t' \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = (9;8)
\\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{\frac{3}{2}}{9} = \frac{\frac{4}{3}}{8} \\
A \in \Delta_{2} \leftrightarrow t' = - \frac{1}{6} \\
\end{matrix} ight.\  ightarrow \Delta_{1} \equiv
\Delta_{2}.

  • Câu 33: Nhận biết

    Một đường thẳng có bao nhiêu vectơ chỉ phương?

     Một đường thẳng có vô số vectơ chỉ phương.

  • Câu 34: Thông hiểu

    Phương trình chính tắc của Elip có đỉnh ( - 3;\ 0) và một tiêu điểm là (1;\ 0)

    Elip có đỉnh ( - 3;\ 0) \Rightarrow a =
3 và một tiêu điểm (1;\ 0)
\Rightarrow c = 1.

    Ta có c^{2} = a^{2} - b^{2}
\Leftrightarrow b^{2} = a^{2} - c^{2} = 9 - 1 = 8.

    Vậy phương trình (E):\frac{x^{2}}{9} +
\frac{y^{2}}{8} = 1.

  • Câu 35: Vận dụng

    Đường thẳng \Delta tạo với đường thẳng d:x + 2y - 6 = 0 một góc 45^{0}. Tìm hệ số góc k của đường thẳng \Delta.

    d:x + 2y - 6 = 0 ightarrow
{\overrightarrow{n}}_{d} = (1;2), gọi {\overrightarrow{n}}_{\Delta} = (a;b) ightarrow
k_{\Delta} = - \frac{a}{b}. Ta có:

    \frac{1}{\sqrt{2}} = cos45^{\circ} =
\frac{|a + 2b|}{\sqrt{a^{2} + b^{2}}.\sqrt{5}} \Leftrightarrow 5\left(
a^{2} + b^{2} ight) = 2a^{2} + 8ab + 8b^{2}

    \Leftrightarrow 3a^{2} - 8ab - 3b^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = - \frac{1}{3}b ightarrow k_{\Delta} = \frac{1}{3} \\
a = 3b ightarrow k_{\Delta} = - 3 \\
\end{matrix} ight.\ .

  • Câu 36: Vận dụng

    Cho hai đường thẳng d_{1}:3x + 4y + 12 = 0d_{2}:\left\{ \begin{matrix}
x = 2 + at \\
y = 1 - 2t \\
\end{matrix} ight.. Tìm các giá trị của tham số a để d_{1}d_{2} hợp với nhau một góc bằng 45^{0}.

    Ta có:

    \left\{ \begin{matrix}
d_{1}:3x + 4y + 12 = 0 ightarrow {\overrightarrow{n}}_{1} = (3;4) \\
d_{2}:\left\{ \begin{matrix}
x = 2 + at \\
y = 1 - 2t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (2;a) \\
\end{matrix} ight.

    \overset{\varphi = \left( d_{1};d_{2}
ight) = 45^{\circ}}{ightarrow}\frac{1}{\sqrt{2}} = cos45^{\circ} =
\cos\varphi = \frac{|6 + 4a|}{\sqrt{25}.\sqrt{a^{2} + 4}}

    \Leftrightarrow 25\left( a^{2} + 4
ight) = 8\left( 4a^{2} + 12a + 9 ight)

    \Leftrightarrow 7a^{2} + 96a - 28 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = - 14 \\
a = \frac{2}{7} \\
\end{matrix} ight.\ .

  • Câu 37: Thông hiểu

    Hai cạnh của hình chữ nhật nằm trên hai đường thẳng d_{1}:4x - 3y + 5 = 0d_{2}:3x + 4y - 5 = 0. Hình chữ nhật có đỉnh A(2;1). Tính diện tích của hình chữ nhật.

    Đáp án: 2

    Đáp án là:

    Hai cạnh của hình chữ nhật nằm trên hai đường thẳng d_{1}:4x - 3y + 5 = 0d_{2}:3x + 4y - 5 = 0. Hình chữ nhật có đỉnh A(2;1). Tính diện tích của hình chữ nhật.

    Đáp án: 2

    Ta có: \overrightarrow{n_{d_{1}}} = (4; -
3);\overrightarrow{n_{d_{2}}} = (3;4).

    Do A không thuộc hai đường thẳng d_{1};d_{2}d_{1}\bot d_{2} nên độ dài hai cạnh kề nhau của hình chữ nhật bằng khoảng cách từ A đến hai đường thẳng d_{1};d_{2}.

    Ta có:

    d\left( A;d_{1} ight) = \frac{|4.2 -
3.1 + 5|}{\sqrt{4^{2} + 3^{2}}} = 2.

    d\left( A;d_{2} ight) = \frac{|3.2 +
4.1 - 5|}{\sqrt{3^{2} + 4^{2}}} = 1.

    \Rightarrow S = d\left( A;d_{1}
ight).d\left( A;d_{2} ight) = 2.1 = 2

  • Câu 38: Vận dụng

    Trong mặt phẳng với hệ trục tọa độOxy, cho hai đường tròn \left( \mathbf{C}_{\mathbf{1}}
ight)\mathbf{,}\left( \mathbf{C}_{\mathbf{2}} ight) có phương trình lần lượt là (x + 1)^{2} + (y +
2)^{2} = 9,\ (x - 2)^{2} + (y - 2)^{2} = 4 và elip (E) có phương trình 16x^{2} + 49y^{2} = 1. Có bao nhiêu đường tròn (C) có bán kính gấp đôi độ dài trục lớn của elip (E)(C) tiếp xúc với hai đường tròn \left( C_{1} ight), \left( C_{2} ight)?

    Ta có 16x^{2} + 49y^{2} = 1
\Leftrightarrow \frac{x^{2}}{\left( \frac{1}{4} ight)^{2}} +
\frac{y^{2}}{\left( \frac{1}{7} ight)^{2}} = 1 \Rightarrow
(E) có độ dài trục lớn là 2a =
2.\frac{1}{4} = \frac{1}{2}.

    Khi đó đường tròn (C) có bán kính là R = 1. Gọi I(a;b) là tâm của đường tròn (C).

    Xét \Delta II_{1}I_{2}\left\{ \begin{matrix}
II_{1} = R + R_{1} = 1 + 3 = 4 \\
II_{2} = R + R_{2} = 1 + 2 = 3 \\
I_{1}I_{2} = R_{1} + R_{2} = 5 \\
\end{matrix} ight.\  \Rightarrow \Delta II_{1}I_{2} vuông tại I.

    Ta có \overrightarrow{II_{1}} = ( - 1 -
a; - 2 - b), \overrightarrow{II_{2}} = (2 - a;2 - b). Khi đó điểm I thỏa mãn:

    \left\{ \begin{matrix}\overrightarrow{II_{1}}.\overrightarrow{II_{2}} = 0 \\\overrightarrow{II_{2}} = 3 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}( - 1 - a)(2 - a) + ( - 2 - b)(2 - b) = 0 \\(2 - a)^{2} + (2 - b)^{2} = 9 \\\end{matrix} ight.

    \  \Leftrightarrow \left\{ \begin{matrix}a^{2} + b^{2} - a - 6 = 0 \\a^{2} + b^{2} - 4a - 4b - 1 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}a^{2} + b^{2} = 6 + a \\6 + a - 4a - 4b - 1 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a^{2} + b^{2} = 6 + a \\a = \frac{5 - 4b}{3} \\\end{matrix} ight.

    \  \Leftrightarrow \left\{ \begin{matrix}\left( \frac{5 - 4b}{3} ight)^{2} + b^{2} - 6 - \frac{5 - 4b}{3} = 0\\a = \frac{5 - 4b}{3} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
25b^{2} - 28b - 44 = 0 \\
a = \frac{5 - 4b}{3} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
b = 2 \\
b = - \frac{22}{25} \\
\end{matrix} ight.\  \\
a = \frac{5 - 4b}{3} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
a = - 1 \\
b = 2 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
a = \frac{71}{25} \\
b = - \frac{22}{25} \\
\end{matrix} ight.\  \\
\end{matrix} ight..

    Vậy có hai phương trình đường tròn (C) thỏa mãn yêu cầu bài toán là

    (C):(x + 1)^{2} + (y - 2)^{2} =
1 hoặc (C):\left( x - \frac{71}{25}
ight)^{2} + \left( y + \frac{22}{25} ight)^{2} = 1.

  • Câu 39: Nhận biết

    Phương trình đường tròn (C):x^{2} + y^{2} + 2x - 6y - 15 = 0 có tâm và bán kính lần lượt là:

    Ta có: (C):x^{2} + y^{2} + 2x - 6y - 15 =
0

    \left\{ \begin{matrix}
- 2a = 2 \\
- 2b = - 6 \\
c = - 15 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 3 \\
c = - 15 \\
\end{matrix} ight.\  \Rightarrow a^{2} + b^{2} - c = 25 >
0

    Vậy phương trình đường tròn đã cho có tâm và bán kính lần lượt là: I( - 1;3),R = 5

  • Câu 40: Thông hiểu

    Đường tròn (C) đi qua hai điểm A( - 1;2),B( - 2;3) và có tâm I thuộc đường thẳng \Delta:3x - y + 10 = 0. Phương trình của đường tròn (C) là:

    Ta có: I \in \Delta ightarrow I(a;3a +
10) ightarrow IA = IB = R

    \Leftrightarrow R^{2} = (a + 1)^{2} +
(3a + 8)^{2} = (a + 2)^{2} + (3a + 7)^{2}

    \Leftrightarrow \left\{ \begin{matrix}
a = - 3 \\
I( - 3;1) \\
R^{2} = 5 \\
\end{matrix} ight.\ .

    Vậy đường tròn cần tìm là: (x + 3)^{2} +
(y - 1)^{2} = 5.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 7 Phương pháp tọa độ trong mặt phẳng Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 4 lượt xem
Sắp xếp theo