Số các hoán vị của n phần tử là:
Số các hoán vị của n phần tử là: n!.
Số các hoán vị của n phần tử là:
Số các hoán vị của n phần tử là: n!.
Trong một trường THPT, khối 11 có 280 học sinh nam và 325 học sinh nữ. Nhà trường cần chọn hai học sinh trong đó có một nam và một nữ đi dự trại hè của học sinh thành phố. Hỏi nhà trường có bao nhiêu cách chọn?
Học sinh nam có 280 cách chọn
Học sinh nữ có 325 cách chọn
Chọn hai học sinh trong đó có một nam và một nữ đi dự trại hè là:
Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn mỗi đội chỉ được trình diễn 1 vở kịch, 1 điệu múa và 1 bài hát. Hỏi đội văn nghệ có bao nhiêu cách chọn chương trình biểu diễn biết rằng chất lượng các vở kịch, điệu múa, bài hát là như nhau?
Chọn 1 vở kịch có 2 cách
Chọn 1 điệu múa có 3 cách
Chọn 1 bài hát có 6 cách
Có 2.3.6 = 36 cách.
Biểu thức
là khai triển của nhị thức nào dưới đây?
Ta có:
Có bao nhiêu số chẵn gồm bốn chữ số được lập từ các số 0; 1; 2; 4; 5; 6; 8.
Gọi số tự nhiên có 4 chữ số có dạng:
Do số tự nhiên được tạo thành là chữ số chẵn nên
Trường hợp 1: d = 0 ta có: d có 1 cách chọn
a có 6 cách chọn
b có 7 cách chọn
c có 7 cách chọn
=> Số các số được tạo thành là: 6.7.7.1 = 294 số
Trướng hợp 2: => d có 4 cách chọn
a có 6 cách chọn
b có 7 cách chọn
c có 7 cách chọn
=> Số các số tạo thành là: 4.6.7.7=1176 số
=> Có tất cả 294 + 1176 = 1470 số tự nhiên chẵn có 4 chữ số được tạo thành.
Có bao nhiêu cách chọn ngẫu nhiên 3 viên bi từ một hộp có 20 viên bi.
Chọn 3 viên bi từ 20 viên bi: cách.
Cho 6 chữ số 2, 3, 4, 5, 6, 7. Có bao nhiêu số có 3 chữ số được lập từ 6 chữ số đó?
Trong 6 chữ số đã cho không có chữ số 0, số có 3 chữ số không yêu cầu khác nhau nên mỗi chữ số đều có 6 cách chọn, do đó số các số thỏa mãn 63 = 216.
Tính giá trị biểu thức ![]()
Áp dụng công thức cho
ta có:
Số các số tự nhiên gồm
chữ số chia hết cho
là:
Gọi số cần tìm có dạng: .
Chọn : có 1 cách
Chọn : có 9 cách
Chọn : có
cách
Theo quy tắc nhân, có (số).
An muốn qua nhà Bình để cùng Bình đến chơi nhà Cường. Từ nhà An đến nhà Bình có 4 con đường đi, từ nhà Bình đến nhà Cường có 6 con đường đi. Hỏi An có bao nhiêu cách chọn đường đi đến nhà Cường?
Từ nhà An đến nhà Bình có 4 cách chọn đường.
Từ nhà Bình đến nhà Cường có 6 cách chọn đường.
Áp dụng quy tắc nhân ta có số cách chọn đường đi từ nhà An đến nhà Cường là: 4.6 = 24 (cách).
Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Người ta muốn chọn một ban điều hành gồm 3 học sinh. Có bao nhiêu cách chọn ban điều hành có 1 nam và 2 nữ?
Chọn ban điều hành gồm 3 học sinh gồm 1 nam và 2 nữ có cách.
Có thể lập được bao nhiêu số tự nhiên có 4 chữ số từ tập hợp các chữ số
?
Gọi số tự nhiên có 4 chữ số là: .
Mỗi chữ số có 6 cách chọn.
Mà số cần lập gồm 4 chữ số nên theo quy tắc nhân có thể lập được số.
Tìm hệ số của
trong khai triển
với
biết
là số nguyên dương thỏa mãn ![]()
Đk:
Với , nhị thức trở thành
Số hạng tổng quát là
Từ yêu cầu bài toán ta cần có:
Vậy hệ số của số hạng chứa là
.
Tìm số hạng chứa
trong khai triển
.
Ta có công thức của số hạng tổng quát:
Số hạng chứa khi và chỉ khi
.
Vậy số hạng chứa trong khai triển là
.
Cho tập hợp
có 10 phần tử. Hỏi có bao nhiêu tập con có 8 phần tử của tập hợp
?
Mỗi tập con có 8 phần tử của tập hợp là một tổ hợp chập 8 của 10. Vậy số tập con có 8 phần tử của tập hợp
là.
.
Cho tập hợp
. Số tập con gồm 3 phần tử của
sao cho không có số
là:
Mỗi tập con gồm 3 phần tử của không có số
là tổ hợp chập 3 của 9 phần tử.
Số tập con gồm 3 phần tử của không có số
là.
.
Bộ bài tây có 52 lá, trong đó có 4 con át. Rút ra 5 con. Hỏi có bao nhiêu cách để rút được 2 con át?
Số cách lấy 5 con trong đó có 2 con át là: .
Từ các chữ số
, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 4 chữ số đôi một khác nhau và bắt đầu bằng 56 hoặc 65.
Gọi là số thỏa yêu cầu bài toán.
Chọn có: 2 cách.
Chọn có: 7 cách.
Chọn có: 6 cách.
Theo quy tắc nhân có: số.
Có bao nhiêu cách xếp 8 người vào một bàn tròn?
Vì xếp vào bàn tròn nên vị trí xếp đầu tiên là như nhau nên có 1 cách xếp, ta xếp 7 người còn lại vào 7 vị trí nên có 7! cách xếp.
Vậy có 1.7! = 5040 cách xếp
Cho đa giác đều
nội tiếp đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong
của đa giác gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong
đỉnh của đa giác. Tìm
.
Số tam giác có 3 đỉnh là 3 trong 2n điểm là
Ứng với 2 đường chéo đi qua tâm của đa giác đều cho tương ứng một hình chữ nhật có 4 đỉnh và là 4 điểm trong 2n điểm
Và ngược lại mỗi hình chữ nhật như vậy sẽ cho ra 2 đường chéo đi qua tâm của đa giác đều đó.
Số đường chéo đi qua tâm của đa giác đều 2n đỉnh là n nên số hình chữ nhật có 4 đỉnh trong 2n đỉnh là
Theo giả thiết ta có:
Vậy .
Cho tập
. Hỏi có thể lập được bao nhiêu số tự nhiên chẵn có 5 chữ số đôi một khác nhau sao cho số đó không bắt đầu bởi 125?
Gọi là số bắt đầu bởi 125 và có 5 chữ số đôi một khác nhau.
Suy ra có 3 cách chọn, a có 5 cách chọn
có
số.
Số các số chẵn có 5 chữ số đôi một khác nhau được lập từ tập A là số.
Suy ra có tất cả số cần tìm.
Hệ số của số hạng chứa
trong khai triển Newton
là:
Số hạng tổng quát của khái triển
Số của số hạng chứa :
. Hệ số của số hạng chứa
.
Tìm tất cả các số tự nhiên có đúng 5 chữ số sao cho trong mỗi số đó chữ số đứng sau lớn hơn chữ số đứng liền trước?
Gọi số có 5 chữ cố có dạng là . Điều kiện
Ta chuyển bài toán về tìm số các số tự nhiên có 5 chữ số khác nhau lập từ các chữ số để lập số thoả yêu cầu của bài toán.
Do đó sẽ có số các số có 5 chữ số khác nhau lập từ là
số
Hai tổ sản xuất của một phân xưởng có 9 công nhân nam và 13 công nhân nữ trong đó có 2 cặp vợ chồng. Hỏi có bao nhiêu cách chọn ra 7 người trong số 22 người nhưng không có cặp vợ chồng?
TH1: Chọn 7 người 18 người không là cặp vợ chồng:
TH2: Chọn 1 trong 2 cặp vợ chồng và 6 người trong 18 người không là cặp vợ chồng:
TH3: Chọn 2 trong 2 cặp vợ chồng nhưng không phải 1 cặp và 5 người trong 1 người không là cặp vợ chồng:
Vậy số cách chọn thỏa mãn là: cách
Cho tập hợp số:
.Hỏi có thể thành lập bao nhiêu số có 4 chữ số khác nhau và chia hết cho 3.
Ta có một số chia hết cho 3 khi và chỉ khi tổng các chữ số chia hết cho 3. Trong tập A có các tập con các chữ số chia hết cho 3 là
,
,
,
,
,
.
Vậy số các số cần lập là: số.
Từ các số
có thể lập được bao nhiêu số tự nhiên có ba chữ số khác nhau?
Mỗi số tự nhiên có ba chữ số khác nhau được lập từ các số là một chỉnh hợp chập 3 của 6 phần tử.
Vậy từ các số có thể lập được:
số tự nhiên có ba chữ số khác nhau.
Giả sử một công việc phải hoàn thành qua 2 giai đoạn:
Giai đoạn 1 có a cách thực hiện.
Với mỗi cách thực hiện của giai đoạn 1 ta có b cách thực hiện cho giai đoạn 2.
Khi đó số cách thực hiện công việc là:
Áp dụng quy tắc nhân ta có số cách thực hiện công việc là cách.
Cho khai triển
. Giá trị của
bằng:
.
Thay vào
ta có:
.
Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?
Nếu chữ số hàng chục là thì số có chữ số hàng đơn vị là
thì số các chữ số nhỏ hơn
năm ở hàng đơn vị cũng bằng
. Do chữ số hang chục lớn hơn bằng
còn chữ số hang đơn vị thi
.
Vậy số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là:
.
Một chiếc hộp chứ 5 quả cầu trắng và 6 quả cầu đỏ. Lấy ngẫu nhiên đồng thời ba quả trong hộp, biết rằng các quả cầu có kích thước và khối lượng như nhau. Hỏi có bao nhiêu cách lấy được đồng thời 3 quả cầu sao cho 3 quả cầu lấy ra có ít nhất một quả cầu trắng?
Trường hợp 1: 1 quả trắng và 2 quả đỏ.
Số cách lấy là
Trường hợp 2: 2 quả trắng và 1 quả đỏ.
Số cách lấy là
Trường hợp 3: 3 quả trắng.
Số cách lấy là
Do vậy số cách lấy ngẫu nhiên 3 quả cầy trong hộp sao cho trong 3 quả cầu lấy ra có ít nhất 1 quả cầu trắng là: 75 + 60 + 10 = 145 (cách)
Xác định số hạng không chứa x trong khai triển nhị thức Newton
. Biết rằng
.
Ta có:
Xét khai triển
Số hạng tổng quát
Số hạng không chứa x ứng với
Suy ra số hạng không chứa x là .
Tìm hệ số của số hạng chứa
trong khai triển của biểu thức
.
Ta có .
Số hạng chứa ứng với
.
Hệ số của số hạng chứa là
.
Có bao nhiêu cách xếp 40 học sinh gồm 20 học sinh trường A và 20 học sinh trường B thành 4 hàng dọc, mỗi hàng 10 người (tức 10 hàng ngang, mỗi hàng 4 người) trong đó không có học sinh cùng trường đứng kề nhau trong mỗi hàng dọc và tất cả các học sinh trong mỗi hàng ngang đều cùng trường?
Giả sử 4 hàng dọc được kí hiệu là
Mỗi hàng các vị trí lại được kí hiệu từ 1 đến 10
Theo yêu cầu bài toán thì:
Các bạn trường A được xếp ở D1 ghi số chẵn, D2 ghi số chẵn, D3 ghi số chẵn, D4 ghi số chẵn.
Các bạn trường B ở các vị trí còn lại hoặc ngược lại.
Nên số cách xếp là cách
Có bao nhiêu cách sắp xếp chỗ ngồi cho năm người gồm 3 nam và 2 nữ vào năm cái ghế xếp thành một dãy nếu hai nữ luôn luôn ngồi kề nhau?
Coi 2 nữ là một phần tử A
Xếp phần tử A và 3 nam vào dãy có 4! cách.
Hoán đổi vị trí 2 nữ trong phần tử A có 2! cách.
Do đó có cách.
Tổng số nguyên dương n thỏa mãn
là:
Điều kiện. .
hoặc
.
Vậy tổng số nguyên dương n bằng 11.
Khai triển biểu thức
ta thu được kết quả:
Ta có:
Mỗi bảng số xe gắn máy ở thành phố X có cấu tạo như sau. Phần đầu gồm hai chữ cái trong bảng chữ cái, phần sau gồm 4 chữ số trong các chữ số:
. Ví dụ:
... Hỏi có bao nhiêu cách tạo bảng số xe theo cấu tạo trên? (Giả sử bảng chữ cái có tất cả 26 chữ cái)
Chọn hai chữ cái cho phần đầu có (mỗi chữ số có 26 cách chọn)
Còn 4 chữ số cho phần đuôi có (mỗi chữ số có 10 cách chọn)
Vậy có thể tạo được
Một tập hợp M gồm 20 phần tử. Hỏi M có bao nhiêu tập con khác rỗng mà có số phần tử chẵn?
Tổng số các tập con của tập M là:
Trong đó số tập con khác rỗng và có số phần tử chẵn là:
Lại có:
Và
Do đó:
Có bao nhiêu số hạng là số nguyên trong khai triển của biểu thức
?
Ta có .
Để trong khai triển có số hạng là số nguyên thì
.
Ta có mà
. Suy ra có
số hạng là số nguyên trong khai triển của biểu thức.
Hệ số của
trong khai triển
là:
Ta có: .
Hệ số của là 10.