Đề kiểm tra 45 phút Chương 8 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Đại số tổ hợp gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tìm số hạng chứa x^{26} trong khai triển \left( \frac{1}{x^{4}} + x^{7}
ight)^{n}. Cho biết n là số nguyên dương thỏa mãn hệ thức C_{2n +
1}^{1} + C_{2n + 1}^{2} + ... + C_{2n + 1}^{n} = 2^{20} -
1.

    Từ giả thiết ta suy ra C_{2n + 1}^{0} +
C_{2n + 1}^{1} + C_{2n + 1}^{2} + ... + C_{2n + 1}^{n} =
2^{20}.

    Mặt khác: C_{2n + 1}^{k} = C_{2n + 1}^{2n
+ 1 - k}\ \ ,\ \forall k\mathbb{\in N},\ 0 \leq k \leq 2n + 1 nên ta có:

    C_{2n + 1}^{0} + C_{2n + 1}^{1} + C_{2n +1}^{2} + ... + C_{2n + 1}^{n}

    = \frac{1}{2}\left( C_{2n + 1}^{0} + C_{2n+ 1}^{1} + C_{2n + 1}^{2} + ... + C_{2n + 1}^{2n + 1} ight) =\frac{1}{2}(1 + 1)^{2n + 1} = 2^{2n}

    Suy ra: 2^{2n} = 2^{20} \Leftrightarrow n
= 10.

    Số hạng tổng quát trong khai triển \left(
\frac{1}{x^{4}} + x^{7} ight)^{10}là: T_{k + 1} = C_{10}^{k}\left( \frac{1}{x^{4}}
ight)^{10 - k}\left( x^{7} ight)^{k} = C_{10}^{k}x^{11k -
40}.

    Hệ số của x^{26}C_{10}^{k} với k thỏa mãn: 11k - 40 = 26 \Leftrightarrow k = 6.

    Vậy hệ số của x^{26}C_{10}^{6} = 210.

  • Câu 2: Thông hiểu

    Xác định số hạng không chứa x trong khai triển nhị thức Newton \left( x^{2} +
\frac{1}{x^{2}} ight)^{n},(x > 0). Biết rằng C_{n}^{0} + 3C_{n}^{1} + 9C_{n}^{2} + ... +
3^{n}.C_{n}^{n} = 256.

    Ta có:

    C_{n}^{0} + 3C_{n}^{1} + 9C_{n}^{2} +
... + 3^{n}.C_{n}^{n} = 256

    \Leftrightarrow (1 + 3)^{n} = 256
\Leftrightarrow 4^{n} = 256 \Leftrightarrow n = 4

    Xét khai triển \left( x^{2} +
\frac{1}{x^{2}} ight)^{n},(x > 0)

    Số hạng tổng quát C_{4}^{k}.\left( x^{2}
ight)^{4 - k}.\left( \frac{1}{x^{2}} ight)^{k} = C_{4}^{k}.x^{8 -
4k}

    Số hạng không chứa x ứng với 8 - 4k = 0
\Leftrightarrow k = 2

    Suy ra số hạng không chứa x là C_{4}^{2}
= 6.

  • Câu 3: Thông hiểu

    Có bao nhiêu cách xếp 40 học sinh gồm 20 học sinh trường A và 20 học sinh trường B thành 4 hàng dọc, mỗi hàng 10 người (tức 10 hàng ngang, mỗi hàng 4 người) trong đó không có học sinh cùng trường đứng kề nhau mỗi hàng ngang và tất cả các học sinh trong mỗi hàng đều cùng trường?

    Giả sử 4 hàng dọc được kí hiệu là D_{1};D_{2};D_{3};D_{4}

    Theo yêu cầu thì:

    Các bạn trường A được xếp ở D_{1};D_{3}

    Các bạn trường B được xếp ở D_{2};D_{4} hoặc ngược lại.

    Nên số cách xếp là 2.20!.20! cách.

  • Câu 4: Vận dụng

    Cho tập A =
\left\{ 0;1;2;3;4;5 ight\}. Hỏi lập được tất cả bao nhiêu số có 5 chữ số đôi một khác nhau và chia hết cho 2 từ tập A.

    Gọi số cần tìm có dạng \overline{abcde}. Vì \overline{abcde} chia hết cho 2 suy ra e = \left\{ 0;2;4 ight\}.

    TH1. Với e = 0, khi đó 5 \times 4 \times 3 \times 2 =
120 số.

    TH2. Với e = \left\{ 2;4
ight\}, khi đó có 4 cách chọn a, 4 cách chọn b, 3 cách chọn c, 2 cách chọn

    d.

    Suy ra có 4 \times 4 \times 3 \times 2
\times 2 = 192 số. Vậy có tất cả 120 + 192 = 312 số cần tìm.

  • Câu 5: Thông hiểu

    Biết hệ số của x^{3} trong khai triển của {(1 - 3x)^n} là – 270. Giá trị của n là

    Khai triển biểu thức như sau:

    \begin{matrix}  {(1 - 3x)^n} = \sumolimits_{k = 0}^n {C_n^k.{{\left( 1 ight)}^{n - k}}.{{\left( { - 3x} ight)}^k}}  \hfill \\   = \sumolimits_{k = 0}^n {C_n^k.{{\left( { - 3} ight)}^k}.{x^k}}  \hfill \\ \end{matrix}

    Hệ số của x3 trong khai triển bằng -270

    => C_n^3.{\left( { - 3} ight)^3} =  - 270 \Rightarrow n = 5

  • Câu 6: Thông hiểu

    Cho tập hợp M =
\left\{ 0;1;3;4;5;6;8 ight\}. Có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số khác nhau từ các chữ số thuộc tập hợp M?

    Gọi số tự nhiên có ba chữ số là: \overline{abc};(a eq 0)

    TH1: c = 0

    Chữ số a có 6 cách chọn.

    Với mỗi cách chọn a có 5 cách chọn chữ số b

    => Số các số tạo thành là: 1 . 5 . 6 = 30 (số)

    TH2: c \in \left\{ 4;6;8
ight\} => Chữ số c có 3 cách chọn.

    Chữ số a có 5 cách chọn, với mỗi cách chọn a ta có 5 cách chọn b.

    => Số các số tạo thành là: 3 . 5 . 5 = 75 (số)

    Vậy có tất cả 30 + 75 = 105 (số) thỏa mãn yêu cầu đề bài.

  • Câu 7: Vận dụng

    Quan sát mạch điện như sau:

    Mạch điện có 6 công tắc khác nhau, trong đó mỗi công tắc có 2 trạng thái đóng và mở. Hỏi có bao nhiêu cách đóng mở 6 công tắc để mạch điện thông mạch từ E đến F?

    Cả 3 công tắc của nhánh trên đóng còn 1 trong 3 công tắc của nhánh dưới mở có: C_{3}^{1} = 3

    Cả 3 công tắc của nhánh trên đóng còn 2 trong 3 công tắc của nhánh dưới mở có: C_{3}^{2} = 3

    Cả 3 công tắc của nhánh trên đóng còn 3 công tắc của nhánh dưới mở có: C_{3}^{3} = 1

    Cả 3 công tắc của nhánh dưới đóng còn 1 trong 3 công tắc của nhánh trên mở có: Cả 3 công tắc của nhánh trên đóng còn 2 trong 3 công tắc của nhánh dưới mở có: C_{3}^{1} = 3

    Cả 3 công tắc của nhánh dưới đóng còn 3 công tắc nhánh trên mở có: C_{3}^{3} = 1

    Cả 3 công tắc của nhánh trên đóng và cả 3 công tắc nhánh dưới đóng có: 1

    Vậy có tất cả 15 cách.

  • Câu 8: Thông hiểu

    Có 3 người đàn ông, 2 người đàn bà và 1 đứa trẻ được xếp ngồi vào 6 cái ghế xếp thành hàng ngang. Hỏi có bao nhiêu cách xếp sao cho đứa trẻ ngồi giữa hai người đàn ông?

    Ta đánh số thứ tự cho 6 chiếc ghế từ số 1 đến số 6

    Ta thực hiện việc xếp 6 người vào 6 chiếc ghế sao cho đứa trẻ ngồi giữa hai người đàn ông như sau:

    Xếp đứa trẻ ngồi vào 1 trong các ghế có số thứ tự từ 2 đến 5 có 4 cách.

    Chọn và xếp 2 người đàn ông trong 3 người đàn ông vào 2 ghế bên cạnh đứa trẻ: A_{3}^{2} = 6 cách.

    Xếp 3 người còn lại vào 3 ghế còn lại có 3! Cách.

    Áp dụng quy tắc nhân, có tất cả: 4.6.6 =
144 cách.

  • Câu 9: Thông hiểu

    Cho hai đường thẳng song song d và d’. Trên đường thẳng d lấy 10 điểm phân biệt, trên đường thẳng d’ lấy 15 điểm phân biệt. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó được chọn từ 25 điểm vừa nói trên.

    Trường hợp 1: Lấy 2 điểm trên d và 1 điểm trên d’

    Trường hợp 2: Lấy 1 điểm trên d và 2 điểm trên d’.

    Số tam giác thỏa bài toán là: C_{10}^{2}.C_{15}^{1} + C_{10}^{1}.C_{15}^{2} =
1725 tam giác.

  • Câu 10: Nhận biết

    Tìm hệ số của số hạng chứa x^{7} trong khai triển nhị thức \left( x + \frac{1}{x} ight)^{13}, (biết x eq 0).

    Số hạng tổng quát trong khai triển nhị thức \left( x + \frac{1}{x} ight)^{13}.

    T_{k + 1} = C_{13}^{k}x^{13 - k}\left(
\frac{1}{x} ight)^{k} = C_{13}^{k}x^{13 - 2k}.

    T_{k + 1} chứa x^{7} \Leftrightarrow 13 - 2k = 7 \Leftrightarrow
k = 3.

    Vậy hệ số của số hạng chứa x^{7} trong khai triển nhị thức \left( x +
\frac{1}{x} ight)^{13} bằng: C_{13}^{3} = 286.

  • Câu 11: Vận dụng

    Tìm hệ số của x^{8} trong khai triển \left( \frac{1}{x^{3}} + \sqrt{x^{5}}
ight)^{n};\ (x > 0) biết C_{n
+ 4}^{n + 1} - C_{n + 3}^{n} = 7(n + 3) là :

    Điều kiện: n\mathbb{\in N}

    Ta có :

    C_{n + 4}^{n + 1} - C_{n + 3}^{n} = 7(n
+ 3) \Leftrightarrow \frac{(n + 4)!}{(n + 1)!3!} - \frac{(n + 3)!}{n!3!}
= 7(n + 3)

    \Leftrightarrow \frac{(n + 4)(n + 3)(n +
2)}{6} - \frac{(n + 3)(n + 2)(n + 1)}{6} = 7(n + 3)

    \Leftrightarrow 3n = 36 \Leftrightarrow n
= 12.

    Xét khai triển

    \left( \frac{1}{x^{3}} + \sqrt{x^{5}}
ight)^{12} = \sum_{k = 0}^{12}{C_{12}^{k}\left( \frac{1}{x^{3}}
ight)^{k}\left( \sqrt{x^{5}} ight)^{12 - k}} \left( 0 \leq k \leq 12,\ k\mathbb{\in N}
ight)

    = \sum_{k = 0}^{12}{C_{12}^{k}x^{\frac{60
- 11k}{2}}}.

    Để số hạng chứa x^{8} thì \frac{60 - 11k}{2} = 8 \Leftrightarrow k =
4.

    Vậy hệ số chứa x^{8} trong khai triển trên là C_{12}^{4} = 495.

  • Câu 12: Nhận biết

    Có bao nhiêu số hạng trong khai triển (6x + 4)^{4}?

    Trong khai triển nhị thức (6x +
4)^{4}n = 4 nên có 5 số hạng.

  • Câu 13: Thông hiểu

    Tổng hệ số của x^{3}x^{2} trong khai triển (1 + 2x)^{4} là:

     Ta có: (1+2x)^4=16{x^4} + 32{x^3} + 24{x^2} + 8x + 1.

    Tổng hệ số của x^3x^2 bằng 32+24=56.

  • Câu 14: Nhận biết

    Nam muốn qua nhà Hải để cùng Hải đến chơi nhà Cường. Từ nhà Nam đến nhà Hải có 4 con đường đi, từ nhà Hải đến nhà Cường có 6 con đường đi. Hỏi Nam có bao nhiêu cách chọn đường đi đến nhà Cường cùng Hải?

    Từ nhà Nam đến nhà Hải có 4 con đường.

    Từ nhà Hải đến nhà Cường có 6 con đường.

    Áp dụng quy tắc nhân, có 4.6 = 24 cách đi từ nhà Nam đến nhà Cường (đi qua nhà Hải).

  • Câu 15: Nhận biết

    Số hạng chứa x^{34} trong khai triển \left( x + \frac{1}{x} ight)^{40} là:

    Số hạng thứ k + 1 trong khai triển \left( x + \frac{1}{x}
ight)^{40} là:

    a_{k + 1} = C_{40}^{k}x^{40 - k}.\left(
\frac{1}{x} ight)^{k} = C_{40}^{k}x^{40 - k}x^{- k} = C_{40}^{k}x^{40
- 2k}.

    Số hạng chứa x^{34} trong khai triển \left( x + \frac{1}{x}
ight)^{40} tương ứng với: 40 - 2k
= 34 \Leftrightarrow k = 3.

    Vậy số hạng chứa x^{34} trong khai triển \left( x + \frac{1}{x}
ight)^{40} là: C_{40}^{3}x^{34}.

  • Câu 16: Vận dụng

    Cho tập A =
\left\{ 1,2,3,4,5,6,7,8 ight\}. Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5.

    x lẻ và không chia hết cho 5 nên d \in \left\{ 1,3,7 ight\} \Rightarrow
d có 3 cách chọn

    Số các chọn các chữ số còn lại là: 7.6.5.4.3.2.1

    Vậy 15120 số thỏa yêu cầu bài toán.

  • Câu 17: Nhận biết

    Trên bàn có 5 quyển sách Toán khác nhau và 7 quyển sách Hóa khác nhau. Số cách chọn 2 quyển sách gồm đủ 2 loại Toán và Hóa bằng:

    Áp dụng quy tắc nhân ta có số cách chọn một quyển Toán và một quyển Hóa là: 5 . 7 = 35 cách chọn.

  • Câu 18: Thông hiểu

    Từ các chữ số 1,2,3,4,5,6,7,8,9, có thể lập được bao nhiêu số nguyên dương n trong đó n gồm 4 chữ số đôi một khác nhau và bắt đầu bằng 56 hoặc 65.

    Gọi n =
\overline{a_{1}a_{2}a_{3}a_{4}} là số thỏa yêu cầu bài toán.

    Chọn \overline{a_{1}a_{2}} \in \left\{
56;65 ight\} có: 2 cách.

    Chọn a_{3} \in X\backslash\left\{
a_{1};a_{2} ight\} có: 7 cách.

    Chọn a_{4} \in X\backslash\left\{
a_{1};a_{2};a_{3} ight\} có: 6 cách.

    Theo quy tắc nhân có: 2.7.6 = 84 số.

  • Câu 19: Thông hiểu

    Tổng tất cả các nghiệm của phương trình P_{x}A_{x}^{2} + 72 = 6\left( 2P_{x} +
A_{x}^{2} ight) bằng:

    Điều kiện xác định: x\mathbb{\in N};x
\geq 2

    Ta có:

    P_{x}A_{x}^{2} + 72 = 6\left( 2P_{x} +
A_{x}^{2} ight)

    \Leftrightarrow x!.\frac{x!}{(x - 2)!} +
72 = 6\left\lbrack 2x! + \frac{x!}{(x - 2)!} ightbrack

    \Leftrightarrow x!.x(x - 1) + 72 =
6\left\lbrack 2.x! + 2(x - 1) ightbrack

    \Leftrightarrow x(x - 1)(x! - 6) + 12(6
- x!) = 0

    \Leftrightarrow (x! - 6)\left\lbrack x(x
- 1) - 12 ightbrack = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x! - 6 = 0 \\
x^{2} - x - 12 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 3(tm) \\
\left\lbrack \begin{matrix}
x = - 3(ktm) \\
x = 4(tm) \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Vật tổng các nghiệm phương trình là: T =
3 + 4 = 7

  • Câu 20: Thông hiểu

    Từ các chữ số 0, 2, 3, 5, 6, 8 có thể lập được bao nhiêu số tự nhiên gồm 6 chữ số đôi một khác nhau trong đó hai chữ số 05 không đứng cạnh nhau.

    Số các số có 6 chữ số được lập từ các chữ số 0, 2, 3, 5, 6, 86! - 5!.

    Số các số có chữ số 05 đứng cạnh nhau: 2.5! - 4!.

    Số các số có chữ số 05 không đúng cạnh nhau là: 6! - 5! - (2.5! - 4!) = 384.

  • Câu 21: Nhận biết

    Có bao nhiêu cách xếp 6 người thành một hàng dọc

     Xếp 6 người thành một hàng dọc có: 6! = 720 cách.

  • Câu 22: Nhận biết

    Biểu thức A =
32x^{5} - 80x^{4} + 80x^{3} - 40x^{2} + 10x - 1 là khai triển của nhị thức nào dưới đây?

    Ta có:

    A = (2x + 1)^{5} = 32x^{5} - 80x^{4} +
80x^{3} - 40x^{2} + 10x - 1

  • Câu 23: Thông hiểu

    Từ 6 chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số gồm 4 chữ số khác nhau và chia hết cho 3?

    Gọi số tự nhiên có 4 chữ số là \overline{abcd};(a eq b eq c eq
d)

    Bộ bốn chữ số có tổng chia hết cho 3 là: A = \left\{
(0;1;2;3),(0;2;3;4),(0;3;4;5),(1;2;4;5) ight\}

    Trường hợp 1: \overline{abcd} \in \left\{
(0;1;2;3),(0;2;3;4),(0;3;4;5) ight\}

    Chọn a: 3 cách (vì a ≠ 0).

    Chọn b, c, d: 3! = 6 cách chọn.

    Khi đó: 3.6=18 (cách).

    Trường hợp 2: \overline{abcd} \in \left\{
1;2;4;5 ight\}

    Chọn a,b,c,d: 4! = 24

    Vậy 6 + 24 = 30 (số)

  • Câu 24: Nhận biết

    Bộ bài tây có 52 lá, trong đó có 4 con át. Rút ra 5 con. Hỏi có bao nhiêu cách để rút được các lá bài trong đó có 1 con át và một con vua?

    Số cách lấy 5 con trong đó có 1 con át và 1 con vua là C_{4}^{1}C_{4}^{1}.C_{44}^{3} =
211904.

  • Câu 25: Nhận biết

    Một lớp học có 33 sinh viên. Hỏi có bao nhiêu cách giao 3 chức danh lớp trưởng, lớp phó, bí thư cho 3 sinh viên biết rằng mỗi sinh viên chỉ có thể nhận nhiều nhất 1 chức danh và sinh viên nào cũng có thể đảm nhận chức danh?

    Đáp án: 32736

    Đáp án là:

    Một lớp học có 33 sinh viên. Hỏi có bao nhiêu cách giao 3 chức danh lớp trưởng, lớp phó, bí thư cho 3 sinh viên biết rằng mỗi sinh viên chỉ có thể nhận nhiều nhất 1 chức danh và sinh viên nào cũng có thể đảm nhận chức danh?

    Đáp án: 32736

    Chọn 1 sinh viên làm lớp trưởng có 33 cách

    Chọn 1 sinh viên làm lớp phó có 32 cách

    Chọn 1 sinh viên làm bí thư có 31 cách

    33.32.31 = 32736 cách

  • Câu 26: Nhận biết

    Tìm hệ số của số hạng chứa x^{31} trong khai triển \left( x + \frac{1}{x^{2}}
ight)^{40}.

    Ta có: \left( x + \frac{1}{x^{2}}
ight)^{40} = \sum_{k = 0}^{40}{C_{40}^{k}.x^{40 - k}}.\left(
\frac{1}{x^{2}} ight)^{k} = \sum_{k = 0}^{40}{C_{40}^{k}.x^{40 -
3k}}.

    Số hạng tổng quát của khai triển là: T_{k
+ 1} = C_{40}^{k}.x^{40 - 3k}.

    Số hạng chứa x^{31} trong khai triển tương ứng với 40 - 3k = 31
\Leftrightarrow k = 3.

    Vậy hệ số cần tìm là: C_{40}^{3} =
C_{40}^{37} (theo tính chất của tổ hợp: C_{n}^{k} = C_{n}^{n - k}).

  • Câu 27: Nhận biết

    Khai triển nhị thức (2x + 3)^{4} ta được kết quả là:

     Ta có: (2x + 3)^{4} =16x^{4} + 96x^{3} + 216x^{2} + 216x + 81.

  • Câu 28: Nhận biết

    Cho các số 1,5, 6,7. Hỏi lập được bao nhiêu số tự nhiên có 4 chữ số với các số khác nhau lập từ các số đã cho?

    Số các số tự nhiên có 4 chữ số với các số khác nhau lập từ các số đã cho là: 4! = 24số.

  • Câu 29: Thông hiểu

    Giả sử một công việc có thể được thực hiện theo một trong hai phương án. Phương án thứ nhất có 10 cách thực hiện, phương án thứ hai có 5 cách thực hiện không trùng với bất kì cách nào của phương án thứ nhất. Khi đó, công việc có thể được thực hiện theo bao nhiêu cách?

    Công việc có hai phương án thực hiện:

    Phương án thứ nhất có 10 cách thực hiện

    Phương án thứ hai có 5 cách thực hiện

    Mặt khác, mỗi cách thực hiện của phương án này không trùng với bất kì cách nào của phương án kia. 

    => Công việc có thể được thực hiện là: 10 + 5 = 15 cách

  • Câu 30: Nhận biết

    Có thể lập được bao nhiêu số tự nhiên có 4 chữ số từ tập hợp các chữ số M = \left\{
1;2;3;4;5;6 ight\}?

    Gọi số tự nhiên có 4 chữ số là: \overline{abcd};(a eq 0).

    Mỗi chữ số có 6 cách chọn.

    Mà số cần lập gồm 4 chữ số nên theo quy tắc nhân có thể lập được 6^{4} số.

  • Câu 31: Thông hiểu

    Biết hệ số của x^{2} trong khai triển nhị thức Newton của (1 - 3x)^{n};\left( n\mathbb{\in N}
ight)135. Xác định giá trị n?

    Số hạng thứ k + 1 trong khai triển (1 - 3x)^{n} là:

    T_{k + 1} = C_{n}^{k}.( -
3)^{k}.x^{k} với 1 \leq k \leq
nn,k \in
\mathbb{N}^{*}

    Số hạng chứa x^{2} ứng với k = 2

    Ta có:

    C_{n}^{2}.( - 3)^{2} = 135
\Leftrightarrow C_{n}^{2} = 15

    \Leftrightarrow \frac{n!}{2!(n - 2)!} =
15 \Leftrightarrow n(n - 1) = 30

    \Leftrightarrow \left\lbrack
\begin{matrix}
n = 6(TM) \\
n = - 5(L) \\
\end{matrix} ight.

    Vậy n = 6.

  • Câu 32: Nhận biết

    Trên giá sách có 8 quyển tiểu thuyết khác nhau và 6 quyển truyện tranh khác nhau. Số cách chọn một trong các quyển sách đó là:

    Số cách chọn một trong các quyển sách đó là: 8 + 6 = 14 cách.

  • Câu 33: Nhận biết

    Một tổ gồm n học sinh, biết rằng có 210 cách chọn 3 học sinh trong tổ để làm ba việc khác nhau. Số n thỏa mãn hệ thức nào dưới đây?

    Chọn một học sinh để làm việc thứ nhất, có n cách chọn.

    Chọn một học sinh để làm việc thứ hai có n − 1 cách chọn.

    Chọn một học sinh để làm việc thứ ba có n − 2 cách chọn.

    Do đó có n(n−1)(n−2) = 210 cách chọn.

  • Câu 34: Nhận biết

    Từ các số 1, 2, 3, 4, 5. Hỏi có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau đôi một?

    Mỗi cách lập số tự nhiên có 5 chữ số khác nhau đôi một hoán vị của 5 phần tử.

    Vậy có 5! = 120số cần tìm.

  • Câu 35: Nhận biết

    Sắp xếp 5 bạn học sinh An, Bình, Chi, Dũng, Lệ vào một chiếc ghế dài có 5 chỗ ngồi. Đếm số cách sắp xếp thỏa mãn bạn An và bạn Dũng không ngồi cạnh nhau?

    +) Xếp 5 bạn vào 5 chỗ ngồi có 5! cách.

    +) Xếp An và Dũng ngồi cạnh nhau có 2 cách. Xem An và Dũng là 1 phần tử cùng với 3 bạn còn lại là 4 phần tử xếp vào 4 chỗ. Suy ra số cách xếp 5 bạn sao cho An và Dũng luôn ngồi cạnh nhau là. 2.4! cách.

    Vậy số cách xếp 5 bạn vào 5 ghế sao cho An và Dũng không ngồi cạnh nhau là.

    5!–2.4! = 72.

  • Câu 36: Vận dụng

    Dãy \left(
x_{1};x_{2};...;x_{10} ight) trong đó mỗi kí tự x_{i} chỉ nhận giá trị 0 hoặc 1 được gọi là dãy nhị phân 10 bit. Hỏi có bao nhiêu dãy nhị phân 10 bit trong đó có ít nhất ba kí tự 0 và ít nhất ba kí tự 1?

    Trường hợp 1: dãy nhị phân có ba kí tự 0 và bảy kí tự 1.

    Khi đó có \frac{10!}{3!.7!} =
120 dãy nhị phân 10 bit.

    Trường hợp 2: dãy nhị phân có bốn kí tự 0 và sáu kí tự 1.

    Khi đó có \frac{10!}{4!.6!} =
210 dãy nhị phân 10 bit.

    Trường hợp 3: dãy nhị phân có năm kí tự 0 và năm kí tự 1.

    Khi đó có \frac{10!}{5!.5!} =
252 dãy nhị phân 10 bit.

    Trường hợp 4: dãy nhị phân có sáu kí tự 0 và bốn kí tự 1.

    Khi đó có \frac{10!}{4!.6!} =
210 dãy nhị phân 10 bit.

    Trường hợp 5: dãy nhị phân có bảy kí tự 0 và ba kí tự 1.

    Khi đó có \frac{10!}{3!.7!} =
120 dãy nhị phân 10 bit.

    Vậy có 120 + 210 + 252 + 210 + 120 =
912 dãy nhị phân 10 bit thỏa mãn yêu cầu bài toán.

  • Câu 37: Vận dụng

    Cho 6 chữ số 2,3,4,5,6,7 số các số tự nhiên chẵn có 3 chữ số lập thành từ 6 chữ số đó:

    Gọi số tự nhiên có 3 chữ số cần tìm là: \overline{abc},\ a eq 0, khi đó:

    c3 cách chọn

    a6 cách chọn

    b6 cách chọn

    Vậy có: 3.6.6 = 108 số.

  • Câu 38: Nhận biết

    Một học sinh có 12 quyển sách đôi một khác nhau, trong đó có 2 sách Toán, 4 sách Văn, 6 sách Anh Văn. Hỏi có bao nhiêu cách xếp tất cả các quyển sách lên một kệ sách dài nếu mọi quyển sách cùng môn được xếp kề nhau?

    Có 3! = 6 cách xếp 3 loại sách.

    Có 2! = 2 cách xếp 2 sách Toán.

    Có 4! = 24 cách xếp 4 sách Văn.

    Vậy theo qui tắc nhân có tất cả 6.2.24 = 720 cách xếp thoả mãn yêu cầu đề bài

  • Câu 39: Vận dụng

    Cho các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Từ các chữ số này có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?

    Giả sử số đó là \overline{a_{1}a_{2}a_{3}}

    Trường hợp 1. a_{3} = 0 xếp 2 vào có 2 vị trí, chọn số xếp vào vị trí còn lại có 6 cách nên có 2.6 = 12 số thỏa mãn.

    Trường hợp 2. a_{3} = 5. Với a_{1} = 2 chọn a_{2} có 6 cách nên có 6 số thỏa mãn. Với a_{1} eq 2 chọn a_{1} có 5 cách chọn, và tất nhiên a_{2} = 2 nên có 5 số thỏa mãn. Do đó có 12 + 6 + 5 = 23 số thỏa mãn.

  • Câu 40: Nhận biết

    Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ?

    Đánh số thứ tự các vị trí theo hàng dọc từ 1 đến 6.

    Trường hợp 1. Nam đứng trước, nữ đứng sau.

    Xếp nam (vào các vị trí đánh số 1,3,5). Có 3!
= 6 cách.

    Xếp nữ (vào các vị trí đánh số 2,4,6). Có 3!
= 6 cách.

    Vậy trường hợp này có. 6.6 = 36 cách.

    Trường hợp 2. Nữ đứng trước, nam đứng sau.

    Xếp nữ (vào các vị trí đánh số 1,3,5). Có 3!
= 6 cách.

    Xếp nam (vào các vị trí đánh số 2,4,6). Có 3!
= 6 cách.

    Vậy trường hợp này có. 6.6 = 36 cách.

    Theo quy tắc cộng ta có. 36 + 36 =
72 cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 8 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo