Đề kiểm tra 45 phút Chương 8 Đại số tổ hợp

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Đại số tổ hợp gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    6 học sinh và 2 thầy giáo được xếp thành hàng ngang. Đếm số cách xếp sao cho hai thầy giáo không đứng cạnh nhau?

    Xếp 8 người thành hàng ngang có P_{8} cách.

    Xếp 8 người thành hàng ngang sao cho 2 thầy giáo đứng cạnh nhau có 7.2!.6! cách.

    Vậy số cách xếp cần tìm là. P_{8} -
7.2!.6! = 30240 cách.

  • Câu 2: Nhận biết

    Trong khai triển (x + 2y)^{5} số hạng chứa x^{2}y^{3} là:

     Ta có: (x+2y)^5={x^5} + 10{x^4}y + 40{x^3}{y^2} + 80{x^2}{y^3} + 80x{y^4} + 32{y^5}.

    Vậy số hạng cần tìm là: 80x^{2}y^{3}.

  • Câu 3: Vận dụng

    Cho tập A =
\left\{ 1,2,3,4,5,6,7,8 ight\}. Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5.

    x lẻ và không chia hết cho 5 nên d \in \left\{ 1,3,7 ight\} \Rightarrow
d có 3 cách chọn

    Số các chọn các chữ số còn lại là: 7.6.5.4.3.2.1

    Vậy 15120 số thỏa yêu cầu bài toán.

  • Câu 4: Nhận biết

    Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 2 và 3.

    Số các số tự nhiên lớn nhất nhỏ hơn 100 chia hết cho 2 và 3 là 96.

    Số các số tự nhiên nhỏ nhất nhỏ hơn 100 chia hết cho 2 và 3 là 0.

    Số các số tự nhiên nhỏ hơn 100 chia hết cho 2 và 3 là \frac{96 - 0}{6} + 1 = 17.

  • Câu 5: Nhận biết

    Trong một trường THPT, khối 11 có 280 học sinh nam và 325 học sinh nữ. Nhà trường cần chọn một học sinh ở khối 11 đi dự dạ hội của học sinh thành phố. Hỏi nhà trường có bao nhiêu cách chọn?

    Học sinh nam có 280 cách chọn

    Học sinh nữ có 325 cách chọn

    Chọn một học sinh khối 11 đi dự dạ hội của học sinh thành phố thì có 280 + 325 = 605 cách.

  • Câu 6: Vận dụng

    Một cửa hàng có 3 gói bim bim và 5 cốc mì ăn liền cần xếp vào giá. Hỏi có bao nhiêu cách xếp sao cho đầu hàng và cuối hàng cùng một loại?

    Đối với bài toán ta xét 2 trường hợp.

    +) Đầu hàng và cuối hàng đều là gói bim bim. Số cách chọn 2 gói bim bim xếp ở vị trí đầu hàng và cuối hàng là. A_{3}^{2} (ở đây ta xem cách xếp 1 gói bim bim A ở đầu hàng, gói bim bim B ở cuối hàng với cách xếp gói bim bim A ở cuối hàng còn gói bim bim B ở đầu hàng là khác nhau). Lúc này, ta còn lại 1 gói bim bim và 5 cốc mì ăn liền, số cách xếp 6 món đồ này vào 1 hàng là. 6!. Vậy số cách xếp thỏa yêu cầu đề là. A_{3}^{2}.6!

    +) Đầu hàng và cuối hàng đều là cốc mì ăn liền. Số cách chọn 2 cốc mì ăn liền xếp ở vị trí đầu hàng và cuối hàng là. A_{5}^{2}. Lúc này, còn lại 3 cốc mì ăn liền và 3 gói bim bim, số cách xếp 6 món đồ này vào 1 hàng là. 6!. Vậy số cách xếp thỏa yêu cầu đề là. A_{6}^{2}.6!

    \Rightarrow Số cách xếp tất cả là. 6!\left( A_{3}^{2} + A_{5}^{2} ight) =
18720.

  • Câu 7: Nhận biết

    Một lớp học có 33 sinh viên. Hỏi có bao nhiêu cách giao 3 chức danh lớp trưởng, lớp phó, bí thư cho 3 sinh viên biết rằng mỗi sinh viên chỉ có thể nhận nhiều nhất 1 chức danh và sinh viên nào cũng có thể đảm nhận chức danh?

    Đáp án: 32736

    Đáp án là:

    Một lớp học có 33 sinh viên. Hỏi có bao nhiêu cách giao 3 chức danh lớp trưởng, lớp phó, bí thư cho 3 sinh viên biết rằng mỗi sinh viên chỉ có thể nhận nhiều nhất 1 chức danh và sinh viên nào cũng có thể đảm nhận chức danh?

    Đáp án: 32736

    Chọn 1 sinh viên làm lớp trưởng có 33 cách

    Chọn 1 sinh viên làm lớp phó có 32 cách

    Chọn 1 sinh viên làm bí thư có 31 cách

    33.32.31 = 32736 cách

  • Câu 8: Vận dụng

    Có bao nhiêu số tự nhiên có 3 chữ số?

    Cách 1: Số có 3 chữ số là từ 100 đến 999 nên có 999 - 100 + 1 = 900số.

    Cách 2:

    Gọi số tự nhiên có 3 chữ số cần tìm là: \overline{abc},\ a eq 0, khi đó:

    a9 cách chọn

    b10 cách chọn

    c10 cách chọn

    Vậy có: 9.10.10 = 900 số.

  • Câu 9: Vận dụng

    Tìm số hạng chứa x^{26} trong khai triển \left( \frac{1}{x^{4}} + x^{7}
ight)^{n}. Cho biết n là số nguyên dương thỏa mãn hệ thức C_{2n +
1}^{1} + C_{2n + 1}^{2} + ... + C_{2n + 1}^{n} = 2^{20} -
1.

    Từ giả thiết ta suy ra C_{2n + 1}^{0} +
C_{2n + 1}^{1} + C_{2n + 1}^{2} + ... + C_{2n + 1}^{n} =
2^{20}.

    Mặt khác: C_{2n + 1}^{k} = C_{2n + 1}^{2n
+ 1 - k}\ \ ,\ \forall k\mathbb{\in N},\ 0 \leq k \leq 2n + 1 nên ta có:

    C_{2n + 1}^{0} + C_{2n + 1}^{1} + C_{2n +1}^{2} + ... + C_{2n + 1}^{n}

    = \frac{1}{2}\left( C_{2n + 1}^{0} + C_{2n+ 1}^{1} + C_{2n + 1}^{2} + ... + C_{2n + 1}^{2n + 1} ight) =\frac{1}{2}(1 + 1)^{2n + 1} = 2^{2n}

    Suy ra: 2^{2n} = 2^{20} \Leftrightarrow n
= 10.

    Số hạng tổng quát trong khai triển \left(
\frac{1}{x^{4}} + x^{7} ight)^{10}là: T_{k + 1} = C_{10}^{k}\left( \frac{1}{x^{4}}
ight)^{10 - k}\left( x^{7} ight)^{k} = C_{10}^{k}x^{11k -
40}.

    Hệ số của x^{26}C_{10}^{k} với k thỏa mãn: 11k - 40 = 26 \Leftrightarrow k = 6.

    Vậy hệ số của x^{26}C_{10}^{6} = 210.

  • Câu 10: Nhận biết

    Hệ số của x^{2} trong khai triển (2x + 3)^{5} là:

    Ta có số hạng tổng quát: T_{k + 1} =C_{5}^{k}.(2x)^{5 - k}.3^{k} = C_{5}^{k}.2^{5 - k}.x^{5 -k}.3^{k}

    Số hạng chứa x^{2} nên 5 - k = 2 \Rightarrow k = 3

    Vậy hệ số của x^{2} trong khai triển đã cho là: C_{5}^{3}.2^{2}.3^{3}.

  • Câu 11: Nhận biết

    Ban chấp hành chi đoàn của một lớp có bạn An, Bình, Công. Hỏi có bao nhiêu cách phân công các bạn này vào các chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm?

    Mỗi cách phân công \mathbf{3} bạn An, Bình, Công vào 3 chức vụ Bí thư, phó Bí thư và Ủy viên mà không bạn nào kiêm nhiệm là một hoán vị của 3 phần tử. Vậy có 3!\ \  = \ \ 6 cách.

  • Câu 12: Thông hiểu

    Có bao nhiêu số tự nhiên gồm 3 chữ số?

    Gọi số thỏa mãn đề bài có dạng \overline{ABC}.

    Vị trí A: có 9 cách chọn từ 1 đến 9 (bỏ số 0).

    Vị trí B: có 10 cách chọn từ 0 đến 9.

    Vị trí C: có 10 cách chọn từ 0 đến 9.

    Áp dụng quy tắc nhân, có 9.10.10 = 900 (số).

  • Câu 13: Nhận biết

    Trong kỳ thi THPT Quốc gia năm 2023 tại một điểm thi có 5 sinh viên tình nguyện được phân công trục hướng dẫn thí sinh ở 5 vị trí khác nhau. Yêu cầu mỗi vị trí có đúng 1 sinh viên. Hỏi có bao nhiêu cách phân công vị trí trực cho 5 người đó?

    Mỗi cách xếp 5 sinh viên vào 5 vị trí thỏa đề là một hoán vị của 5 phần tử.

    Suy ra số cách xếp là 5! = 120 cách.

  • Câu 14: Thông hiểu

    Cho đa giác đều có 2020 đỉnh. Số hình chữ nhật có 4 đỉnh là 4 trong số 2020 điểm là đỉnh của đa giác đã cho là bao nhiều?

    Đa giác đều có 2020 đỉnh có 1010 đường chéo qua tâm, cứ hai đường chéo qua tâm cho ta một hình chữ nhật. Vậy số cách chọn ra 4 đỉnh tạo thành hình chữ nhật là C_{1010}^{2}.

  • Câu 15: Thông hiểu

    Có 5 nhà toán học nam, 3 nhà toán học nữ và 4 nhà vật lý nam. Lập một đoàn công tác có 3 người, cần có cả nam và nữ, cần có cả nhà toán học và nhà vật lý. Hỏi có bao nhiêu cách?

    Trường hợp 1: 2 nhà toán học nữ và 1 nhà vật lý nam có C_{3}^{2}.C_{4}^{1} = 12 cách

    Trường hợp 2: 1 nhà toán học nữ và 2 nhà vật lý nam có C_{3}^{1}.C_{4}^{2} = 18 cách

    Trường hợp 3: 1 nhà toán học nữ, 1 nhà toán học nam và 1 nhà vật lý nam có C_{3}^{1}.C_{5}^{1}.C_{4}^{1} =
60 cách

    Theo quy tắc cộng có: 12 + 18 + 60 =
90 cách lập.

  • Câu 16: Nhận biết

    Giả sử từ tỉnh A đến tỉnh B có thể đi bằng các phương tiện: ô tô, tàu hỏa hoặc máy bay. Mỗi ngày có 10 chuyến ô tô, 5 chuyến tàu hỏa và 3 chuyến máy bay. Hỏi một ngày có bao nhiêu cách lựa chọn đi từ tỉnh A đến tỉnh B?

    Trường hợp 1: Số cách chọn đi từ tỉnh A đến tỉnh B bằng ô tô: có 10 cách.

    Trường hợp 2: Số cách chọn đi từ tỉnh A đến tỉnh B bằng tàu hỏa: có 5 cách.

    Trường hợp 3: Số cách chọn đi từ tỉnh A đến tỉnh B bằng máy bay: có 3 cách.

    Vậy số cách lựa chọn đi từ tỉnh A đến tỉnh B là: 10 + 5 + 3 = 18 cách

  • Câu 17: Vận dụng

    Cho 6 chữ số 2,3,4,5,6,7 số các số tự nhiên chẵn có 3 chữ số lập thành từ 6 chữ số đó:

    Gọi số tự nhiên có 3 chữ số cần tìm là: \overline{abc},\ a eq 0, khi đó:

    c3 cách chọn

    a6 cách chọn

    b6 cách chọn

    Vậy có: 3.6.6 = 108 số.

  • Câu 18: Nhận biết

    3 viên bi đen khác nhau, 4 viên bi đỏ khác nhau, 5 viên bi xanh khác nhau. Hỏi có bao nhiêu cách xếp các viên bi trên thành dãy sao cho các viên bi cùng màu ở cạnh nhau?

    Số cách xếp 3 viên bi đen khác nhau thành một dãy bằng. 3!.

    Số cách xếp 4 viên bi đỏ khác nhau thành một dãy bằng. 4!.

    Số cách xếp 5 viên bi đen khác nhau thành một dãy bằng. 5!.

    Số cách xếp 3 nhóm bi thành một dãy bằng. 3!.

    Vậy số cách xếp thỏa yêu cầu đề bài bằng 3!.4!.5!.3! = 103680 cách.

  • Câu 19: Vận dụng

    Một rổ có 10 loại quả khác nhau trong đó có 1 mít và 1 bưởi. Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?

    Xếp cố định 8 quả khác mít và bưởi vào hàng, có 8! cách xếp. Lúc này trên hàng có 9 khoảng trống, gồm khoảng trống giữa 2 quả khác bất kì và vị trí đầu, cuối hàng. Trong đó ta có 7 cặp khoảng trống mà khoảng cách giữa khoảng có đúng 2 quả khá

    C. Mỗi cặp khoảng trống đó ta sẽ cho vào đó quả mít và quả bưởi, có cách xếp mít và bưởi tương ứng là. 7.2! .

    Vậy số cách xếp cần tìm. 8!.7.2! = 564480.

  • Câu 20: Thông hiểu

    Từ khai triển biểu thức (x + 1)^{10} thành đa thức. Tổng các hệ số của đa thức là:

    Xét khai triển f(x) = (x + 1)^{10} =
\sum_{k = 0}^{10}C_{10}^{k}.x^{k}.

    Gọi S là tổng các hệ số trong khai triển thì ta có S = f(1) = (1 + 1)^{10}
= 2^{10} = 1024.

  • Câu 21: Nhận biết

    Viết khai triển theo công thức nhị thức Niu-tơn (x - y)^{5}.

    Ta có:

    (x - y)^{5} = \left\lbrack x + ( - y)
ightbrack^{5}

    = C_5^0{x^5} + C_5^1{x^4}{\left( { - y} ight)^1} + C_5^2{x^3}{\left( { - y} ight)^2} + C_5^3{x^2}{\left( { - y} ight)^3} + C_5^4{x^1}{\left( { - y} ight)^4} + C_5^5{\left( { - y} ight)^5}

    Hay (x - y)^{5} = x^{5} - 5x^{4}y +
10x^{3}y^{2} - 10x^{2}y^{3} + 5xy^{4} - y^{5}.

  • Câu 22: Nhận biết

    3 cây bút đỏ, 4 cây bút xanh trong một hộp bút. Hỏi có bao nhiêu cách lấy ra một cây bút từ hộp bút?

    Số cách lấy ra 1 cây bút là màu đỏ có 3 cách.

    Số cách lấy ra 1 cây bút là màu xanh có 4 cách.

    Theo quy tắc cộng, số cách lấy ra 1 cây bút từ hộp bút là: 3 + 4 = 7 cách.

    Vậy có 7 cách lấy 1 cây bút từ hộp bút.

  • Câu 23: Thông hiểu

    Biểu thức Q =
x^{5} - 5x^{4}y + 10x^{3}y^{2} - 10x^{2}y^{3} + 5xy^{4} - y^{5} là khai triển của nhị thức nào dưới đây?

    Ta có:

    Q = x^{5} - 5x^{4}y + 10x^{3}y^{2} -
10x^{2}y^{3} + 5xy^{4} - y^{5}

    Q = C_{5}^{0}x^{5} + C_{5}^{1}x^{4}( -
y)^{1} + C_{5}^{2}.x^{3}( - y)^{2}

    + C_{5}^{3}x^{2}( - y)^{3} +
C_{5}^{4}.x.( - y)^{4} + C_{5}^{5}( - y)^{5}

    Q = (x - y)^{5}

  • Câu 24: Vận dụng

    Với số nguyên dương n, gọi a_{3n - 3} là hệ số của x^{3n - 3} trong khai triển thành đa thức của \left( x^{2} + 1 ight)^{n}(x +
2)^{n}. Tìm n để a_{3n - 3} = 26n.

    Ta có:

    \left( x^{2} + 1 ight)^{n} =
C_{n}^{0}x^{2n} + C_{n}^{1}x^{2n - 2} + C_{n}^{2}x^{2n - 4} + \ldots +
C_{n}^{n}

    (x + 2)^{n} = C_{n}^{0}x^{n} +
2C_{n}^{1}x^{n - 1} + 2^{2}C_{n}^{2}x^{n - 2} + \ldots +
2^{n}C_{n}^{n}

    Ta thấy n = 1,n = 2 không thoả mãn điều kiện bài toán.

    Với n \geq 3 ta có: x^{3n - 3} = x^{2n}.x^{n - 3} = x^{2n - 2}.x^{n -
1}

    Do đó hệ số của x^{3n - 3} trong khai triển thành đa thức của \left( x^{2} +
1 ight)^{n}(x + 2)^{n}.

    a_{3n - 3} = 2^{3}.C_{n}^{0}.C_{n}^{3} +
2.C_{n}^{1}.C_{n}^{1}.

    \Rightarrow a_{3n - 3} = 26n
\Leftrightarrow \frac{2n\left( 2n^{2} - 3n + 4 ight)}{3} =
26n

    \Leftrightarrow \left\lbrack\begin{matrix}n = 0\ \ (L) \ = - \dfrac{7}{2}\ \ (L). \ = 5\ \ (t/m) \\\end{matrix} ight.

    Vậy n = 5 là giá trị cần tìm.

  • Câu 25: Nhận biết

    Cho tập hợp M =
\left\{ 0;1;2;3;4;5;6;7;8;9 ight\}. Số tập con gồm 3 phần tử của M sao cho không có số 0 là:

    Mỗi tập con gồm 3 phần tử của M không có số 0 là tổ hợp chập 3 của 9 phần tử.

    Số tập con gồm 3 phần tử của M không có số 0 là. C_{9}^{3}.

  • Câu 26: Vận dụng

    Đội văn nghệ của nhà trường gồm 4 học sinh lớp 12A, 3 học sinh lớp 12B và 2 học sinh lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?

    Tổng số học sinh trong đội văn nghệ của nhà trường là 9 học sinh.

    Số cách chọn 5 học sinh bất kì trong 9 học sinh là. C_{9}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12A là. C_{5}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12B là. C_{6}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12C là. C_{7}^{5} cách.

    Vậy có C_{9}^{5} - \left( C_{5}^{5} +
C_{6}^{5} + C_{7}^{5} ight) = 98 cách thỏa mãn yêu cầu bài toán.

  • Câu 27: Nhận biết

    Một tổ gồm n học sinh, biết rằng có 210 cách chọn 3 học sinh trong tổ để làm ba việc khác nhau. Số n thỏa mãn hệ thức nào dưới đây?

    Chọn một học sinh để làm việc thứ nhất, có n cách chọn.

    Chọn một học sinh để làm việc thứ hai có n − 1 cách chọn.

    Chọn một học sinh để làm việc thứ ba có n − 2 cách chọn.

    Do đó có n(n−1)(n−2) = 210 cách chọn.

  • Câu 28: Thông hiểu

    Có bao nhiêu cách lập các nhóm gồm 2, 3, 5 học sinh từ một tổ có 10 học sinh?

     Số cách lập nhóm có hai học sinh là: C_{10}^2 cách

    Số học sinh còn lại 8 học sinh (vì 2 học sinh lập nhóm đầu tiên)

    => Số cách lập nhóm có 3 học sinh là: C_8^3 cách

    Số học sinh còn lại còn 5 học sinh để lập nhóm 5 học sinh 

    => Số cách lập nhóm 5 học sinh là: C_5^5 cách

    Mà các cách lập nhóm liên quan đến nhau

    => Số cách lập các nhóm gồm 2, 3, 5 học sinh từ một tổ có 10 học sinh là

    C_{10}^{2}\times C_{8}^{3}\times C_{5}^{5} cách.

  • Câu 29: Thông hiểu

    Từ tập hợp các chữ số 1,2,8,6,7,5 có thể lập được bao nhiêu số tự nhiên có hai chữ số khác nhau?

    Gọi số tự nhiên có hai chữ số \overline{ab};(a eq 0)

    Số cách chọn a là 6 cách

    Số cách chọn b là 5 cách

    Vậy số các số tự nhiên có thể tạo thành từ tập hợp các chữ số đã cho là 6.5 = 30 số.

  • Câu 30: Thông hiểu

    Có bao nhiêu vectơ khác vectơ được tạo thành từ 10 điểm phân biệt khác nhau?

    Ta có vecto tạo thành từ hai điểm A, B ta được vecto \overrightarrow {AB}\overrightarrow {BA}.

    Chọn hai điểm bất kì trong 10 điểm phân biệt là tổ hợp chập 2 của 10 phần tử.

    => Số vectơ khác vectơ được tạo thành từ 10 điểm phân biệt khác nhau là: 2C_{10}^2 = 90 vecto.

     

  • Câu 31: Nhận biết

    Khai triển biểu thức (x + 1)^{4} ta thu được kết quả là:

     Ta có: (x + 1)^{4} =x^{4}+4x^{3}+6x^{2}+4x+1.

  • Câu 32: Thông hiểu

    Cho tập hợp C =
\left\{ 1;3;5;7 ight\} có thể lập được bao nhiêu số tự nhiên có 4 chữ số?

    Gọi số tự nhiên có 4 chữ số cần tìm là \overline{abcd},(a eq 0).

    Số cách chọn a là 4 cách

    Số cách chọn b là 4 cách

    Số cách chọn c là 4 cách

    Số cách chọn d là 4 cách

    Vậy số các số tự nhiên có 4 chữ số có thể lập được là 4^{4} = 256.

  • Câu 33: Thông hiểu

    Tìm số hạng chứa x^{4} trong khai triển (x^{2}-\frac{1}{x})^{n} biết A_{n}^{2}-C_{n}^{2}=10.

    Ta có:

    \begin{matrix}  A_n^2 - C_n^2 = 10 \hfill \\   \Leftrightarrow A_n^2 - \dfrac{{A_n^2}}{{2!}} = 10 \hfill \\   \Leftrightarrow \dfrac{1}{2}A_n^2 = 10 \hfill \\   \Leftrightarrow A_n^2 = 20 \Leftrightarrow n = 5 \hfill \\ \end{matrix}

    Khai triển biểu thức như sau:

    \begin{matrix}  {\left( {{x^2} - \dfrac{1}{x}} ight)^5} = \sumolimits_{k = 0}^5 {C_5^k.{{\left( {{x^2}} ight)}^{5 - k}}.{{\left( { - \dfrac{1}{x}} ight)}^k}}  \hfill \\   = \sumolimits_{k = 0}^5 {C_5^k.{{\left( { - 1} ight)}^k}.{x^{10 - 3k}}}  \hfill \\ \end{matrix}

    Số hạng chứa x^{4} nghĩa là: 10 - 3k = 4 \Rightarrow k = 2

    => Số hạng cần tìm là C_5^2 = 10

  • Câu 34: Thông hiểu

    Có 100000 vé được đánh số từ 00000 đến 99999. Hỏi số vé gồm 5 chữ số khác nhau?

    Gọi số in trên vé có dạng \overline{a_{1}a_{2}a_{3}a_{4}a_{5}}

    Số cách chọn a_{1} là 10 (a_{1} có thể là 0).

    Số cách chọn a_{2} là 9.

    Số cách chọn a_{3} là 8.

    Số cách chọn a_{4} là 7.

    Số cách chọn a_{5} là 6.

    Vậy có 10.9.8.7.6 = 30240 cách

  • Câu 35: Thông hiểu

    Tìm số hạng chứa x^{3} trong khai triển P(x) = (x + 2)^{5} - (x - 3)^{4} thành đa thức?

    Số hạng chứa x^{3} trong khai triển (x + 2)^{5}C_{5}^{2}.2^{2}.x^{3} = 40x^{3}

    Số hạng chứa x^{3} trong khai triển (x - 3)^{4}C_{4}^{1}.( - 3)^{1}.x^{3} = -
12x^{3}

    Do đó số hạng chứa x^{3} trong khai triển P(x) = (x + 2)^{5} - (x -
3)^{4} đã cho là: 40x^{3} - ( -
12)x^{3} = 52x^{3}

    Vậy số hạng cần tìm là 52x^{3}.

  • Câu 36: Nhận biết

    Số cách xếp 5 học sinh A;B;C;D;E vào một ghế dài sao cho bạn C ngồi chính giữa là:

    Vì C ngồi chính giữa nên ta có 4! = 24 cách sắp xếp A;B;C;D;E

  • Câu 37: Nhận biết

    Tìm số hạng chứa x^{7} trong khai triển \left( x - \frac{1}{x} ight)^{13}.

    Ta có công thức của số hạng tổng quát:

    T_{k + 1} = C_{13}^{k}x^{13 - k}.\left(
- \frac{1}{x} ight)^{k} = C_{13}^{k}x^{13 - k}( - 1)^{k}x^{- k} =
C_{13}^{k}.( - 1)^{k}x^{13 - 2k}

    Số hạng chứa x^{7}khi và chỉ khi 13 - 2k = 7 \Leftrightarrow k =
3.

    Vậy số hạng chứa x^{7} trong khai triển là -
C_{13}^{3}x^{7}.

  • Câu 38: Thông hiểu

    Có 5 cuốn sách Toán, 2 cuốn sách Lý và 1 cuốn sách Hóa đôi một khác nhau. Xếp ngẫu nhiên tám cuốn sách nằm ngang trên một cái kệ. Số cách sắp xếp sao cho cuốn sách Hóa không nằm giữa liền kề hai cuốn sách Lý là:

    Xếp ngẫu nhiên 8 cuốn sách khác nhau nằm ngang vào 8 vị trí có 8! Cách.

    Ta xem 2 cuốn sách Lý và 1 cuốn sách Hóa là một đối tượng, 5 cuốn sách Toán là năm đối tượng.

    Vì vậy số hoán vị 6 đối tượng là 6!.

    Số cách xếp 2 cuốn sách Lý và 1 cuốn sách Hóa sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 2!.

    Số cách sắp xếp 8 cuốn sách sao cho cuốn sách Hóa nằm giữa liền kề hai cuốn sách Lý là 6!.2!

    Số cách sắp xếp 8 cuốn sách thỏa mãn yêu cầu bài toán là: 8! – 6!.2! = 38880 cách.

  • Câu 39: Nhận biết

    Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?

     Công thức sai là: A_{n}^{k}=\frac{n!}{k!}.

  • Câu 40: Nhận biết

    Số hạng chứa x^{4} trong khai triển biểu thức (2x + 3)^{5} là:

     Ta có: (2x+3)^5=32{x^5} + 240{x^4} + 720{x^3} + 1080{x^2} + 810x + 243.

    Số hạng cần tìm là: 240x^{4}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 8 Đại số tổ hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 1 lượt xem
Sắp xếp theo