Đề kiểm tra 45 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Đại số tổ hợp gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hai dãy ghế được xếp như sau.

    Xếp 4 bạn nam và 4 bạn nữ vào hai dãy ghế trên. Hai người được gọi là ngồi đối diện nhau nếu ngồi ở hai dãy và có cùng vị trí ghế (số ở ghế). Số cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ bằng bao nhiêu?

    Xếp 4 bạn nam vào một dãy có 4! (cách xếp).

    Xếp 4 bạn nữ vào một dãy có 4! (cách xếp).

    Với mỗi một số ghế có 2 cách đổi vị trí cho bạn nam và bạn nữ ngồi đối diện nhau.

    Số cách xếp theo yêu cầu là. 4!.4!.2^{4} (cách xếp).

  • Câu 2: Vận dụng

    Với số nguyên dương n, gọi a_{3n - 3} là hệ số của x^{3n - 3} trong khai triển thành đa thức của \left( x^{2} + 1 ight)^{n}(x +
2)^{n}. Tìm n để a_{3n - 3} = 26n.

    Ta có:

    \left( x^{2} + 1 ight)^{n} =
C_{n}^{0}x^{2n} + C_{n}^{1}x^{2n - 2} + C_{n}^{2}x^{2n - 4} + \ldots +
C_{n}^{n}

    (x + 2)^{n} = C_{n}^{0}x^{n} +
2C_{n}^{1}x^{n - 1} + 2^{2}C_{n}^{2}x^{n - 2} + \ldots +
2^{n}C_{n}^{n}

    Ta thấy n = 1,n = 2 không thoả mãn điều kiện bài toán.

    Với n \geq 3 ta có: x^{3n - 3} = x^{2n}.x^{n - 3} = x^{2n - 2}.x^{n -
1}

    Do đó hệ số của x^{3n - 3} trong khai triển thành đa thức của \left( x^{2} +
1 ight)^{n}(x + 2)^{n}.

    a_{3n - 3} = 2^{3}.C_{n}^{0}.C_{n}^{3} +
2.C_{n}^{1}.C_{n}^{1}.

    \Rightarrow a_{3n - 3} = 26n
\Leftrightarrow \frac{2n\left( 2n^{2} - 3n + 4 ight)}{3} =
26n

    \Leftrightarrow \left\lbrack\begin{matrix}n = 0\ \ (L) \ = - \dfrac{7}{2}\ \ (L). \ = 5\ \ (t/m) \\\end{matrix} ight.

    Vậy n = 5 là giá trị cần tìm.

  • Câu 3: Nhận biết

    Sắp xếp 5 bạn học sinh An, Bình, Chi, Dũng, Lệ vào một chiếc ghế dài có 5 chỗ ngồi. Đếm số cách sắp xếp thỏa mãn bạn An và bạn Dũng không ngồi cạnh nhau?

    +) Xếp 5 bạn vào 5 chỗ ngồi có 5! cách.

    +) Xếp An và Dũng ngồi cạnh nhau có 2 cách. Xem An và Dũng là 1 phần tử cùng với 3 bạn còn lại là 4 phần tử xếp vào 4 chỗ. Suy ra số cách xếp 5 bạn sao cho An và Dũng luôn ngồi cạnh nhau là. 2.4! cách.

    Vậy số cách xếp 5 bạn vào 5 ghế sao cho An và Dũng không ngồi cạnh nhau là.

    5!–2.4! = 72.

  • Câu 4: Thông hiểu

    Tìm hệ số của x^{6} trong khai triển \left( \frac{1}{x} + x^{3} ight)^{3n +
1}với x eq 0, biết n là số nguyên dương thỏa mãn 3C_{n + 1}^{2} + nP_{2} = 4A_{n}^{2}.

    Đk:n \geq 2,\ \ n \in
\mathbb{N.}

    \ \ \ \ \ \ \ 3C_{n + 1}^{2} + nP_{2} =
4A_{n}^{2}

    \Leftrightarrow 3\frac{(n + 1)!}{(n -
1)!2!} + 2!n = 4\frac{n!}{(n - 2)!}

    \Leftrightarrow \frac{3}{2}n(n + 1) + 2n
= 4n(n - 1)

    \Leftrightarrow \frac{5}{2}n^{2} -
\frac{15}{2}n = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 0\ \ \ \ (L) \\
n = 3 \\
\end{matrix} ight.

    Với n = 3, nhị thức trở thành \left( \frac{1}{x} + x^{3}
ight)^{10}.

    Số hạng tổng quát là C_{10}^{k}.\left(
\frac{1}{x} ight)^{10 - k}.\left( x^{3} ight)^{k} = C_{10}^{k}.x^{4k
- 10}

    Từ yêu cầu bài toán ta cần có: 4k - 10 =
6 \Leftrightarrow k = 4.

    Vậy hệ số của số hạng chứa x^{6}C_{10}^{4} = 210..

  • Câu 5: Thông hiểu

    Có bao nhiêu cách xếp 40 học sinh gồm 20 học sinh trường A và 20 học sinh trường B thành 4 hàng dọc, mỗi hàng 10 người (tức 10 hàng ngang, mỗi hàng 4 người) trong đó không có học sinh cùng trường đứng kề nhau trong mỗi hàng dọc và tất cả các học sinh trong mỗi hàng ngang đều cùng trường?

    Giả sử 4 hàng dọc được kí hiệu là D_{1};D_{2};D_{3};D_{4}

    Mỗi hàng các vị trí lại được kí hiệu từ 1 đến 10

    Theo yêu cầu bài toán thì:

    Các bạn trường A được xếp ở D1 ghi số chẵn, D2 ghi số chẵn, D3 ghi số chẵn, D4 ghi số chẵn.

    Các bạn trường B ở các vị trí còn lại hoặc ngược lại.

    Nên số cách xếp là 2.20!.20! cách

  • Câu 6: Nhận biết

    Số hạng chứa x^{34} trong khai triển \left( x + \frac{1}{x} ight)^{40} là:

    Số hạng thứ k + 1 trong khai triển \left( x + \frac{1}{x}
ight)^{40} là:

    a_{k + 1} = C_{40}^{k}x^{40 - k}.\left(
\frac{1}{x} ight)^{k} = C_{40}^{k}x^{40 - k}x^{- k} = C_{40}^{k}x^{40
- 2k}.

    Số hạng chứa x^{34} trong khai triển \left( x + \frac{1}{x}
ight)^{40} tương ứng với: 40 - 2k
= 34 \Leftrightarrow k = 3.

    Vậy số hạng chứa x^{34} trong khai triển \left( x + \frac{1}{x}
ight)^{40} là: C_{40}^{3}x^{34}.

  • Câu 7: Nhận biết

    Khai triển biểu thức \left( x^{2} - 5y ight)^{5} ta được:

    Ta có:

    \left( x^{2} - 5y
ight)^{5}

    = C_{5}^{0}.\left( x^{2} ight)^{5} +
C_{5}^{1}\left( x^{2} ight)^{4}.( - 5y) + C_{5}^{2}.\left( x^{2}
ight)^{3}.( - 5y)^{2}

    + C_{5}^{3}.\left( x^{2} ight)^{2}.( -
5y)^{3} + C_{5}^{4}.\left( x^{2} ight)^{1}.( - 5y)^{4} +
C_{5}^{5}.\left( x^{2} ight)^{0}.( - 5y)^{5}

    =x^{10} - 25x^{8}y + 250x^{6}y^{2} -1250x^{4}y^{3} + 3125x^{2}y^{4} - 3125y^{5}

  • Câu 8: Vận dụng

    Cho biểu thức P
= \left( \frac{x + 1}{\sqrt[3]{x^{2}} - \sqrt[3]{x} + 1} - \frac{x -
1}{x - \sqrt{x}} ight)^{10} với x
> 0, x eq 1. Số hạng không chứa x trong khai triển Niu-tơn của P là:

    Ta có \frac{x + 1}{\sqrt[3]{x^{2}} -
\sqrt[3]{x} + 1} - \frac{x - 1}{x - \sqrt{x}} = \sqrt[3]{x} + 1 -
\frac{\sqrt{x} + 1}{\sqrt{x}} = \sqrt[3]{x} -
\frac{1}{\sqrt{x}}.

    Nên P = \left( \frac{x +
1}{\sqrt[3]{x^{2}} - \sqrt[3]{x} + 1} - \frac{x - 1}{x - \sqrt{x}}
ight)^{10} = \left( \sqrt[3]{x} - \frac{1}{\sqrt{x}}
ight)^{10}.

    Số hạng tổng quát của khai triển là: C_{10}^{k}x^{\frac{10 - k}{3}}.\left( \frac{-
1}{\sqrt{x}} ight)^{k} = ( - 1)^{k}C_{10}^{k}x^{\frac{20 -
5k}{6}}.

    Khi k = 4 thì số hạng không chứa x(
- 1)^{4}C_{10}^{4} = 210.

  • Câu 9: Vận dụng

    Một cửa hàng có 3 gói bim bim và 5 cốc mì ăn liền cần xếp vào giá. Hỏi có bao nhiêu cách xếp sao cho đầu hàng và cuối hàng cùng một loại?

    Đối với bài toán ta xét 2 trường hợp.

    +) Đầu hàng và cuối hàng đều là gói bim bim. Số cách chọn 2 gói bim bim xếp ở vị trí đầu hàng và cuối hàng là. A_{3}^{2} (ở đây ta xem cách xếp 1 gói bim bim A ở đầu hàng, gói bim bim B ở cuối hàng với cách xếp gói bim bim A ở cuối hàng còn gói bim bim B ở đầu hàng là khác nhau). Lúc này, ta còn lại 1 gói bim bim và 5 cốc mì ăn liền, số cách xếp 6 món đồ này vào 1 hàng là. 6!. Vậy số cách xếp thỏa yêu cầu đề là. A_{3}^{2}.6!

    +) Đầu hàng và cuối hàng đều là cốc mì ăn liền. Số cách chọn 2 cốc mì ăn liền xếp ở vị trí đầu hàng và cuối hàng là. A_{5}^{2}. Lúc này, còn lại 3 cốc mì ăn liền và 3 gói bim bim, số cách xếp 6 món đồ này vào 1 hàng là. 6!. Vậy số cách xếp thỏa yêu cầu đề là. A_{6}^{2}.6!

    \Rightarrow Số cách xếp tất cả là. 6!\left( A_{3}^{2} + A_{5}^{2} ight) =
18720.

  • Câu 10: Thông hiểu

    Biến đổi biểu thức \left( 2 + \sqrt{3} ight)^{5} - \left( 2 -
\sqrt{3} ight)^{4} dưới dạng a +
b\sqrt{3};\left( a,b\mathbb{\in Z} ight). Tính giá trị biểu thức M = a - 2b + 500?

    Ta có:

    \left( 2 + \sqrt{3} ight)^{5} - \left(
2 - \sqrt{3} ight)^{4} = 265 - 265\sqrt{3}

    \Rightarrow \left\{ \begin{matrix}
a = 265 \\
b = 265 \\
\end{matrix} ight.\  \Rightarrow M = 235

  • Câu 11: Nhận biết

    Cho các số 1, 2, 4, 5, 7. Có bao nhiêu cách chọn ra một số chẵn gồm ba chữ số khác nhau từ 5 chữ số đã cho?

    Gọi số cần tìm là \overline{abc}.

    + Chọn c: có 2 cách.

    + Chọn a: có 4 cách.

    + Chọn b: có 3 cách.

    Áp dụng quy tắc nhân ta có 2.4.3 = 24 số.

  • Câu 12: Thông hiểu

    Biết hệ số của x^{2} trong khai triển của (1 - 3x)^{n}90. Tìm n.

    Số hạng thứ k + 1 trong khai triển của (1 - 3x)^{n} là: T_{k + 1} = C_{n}^{k}( - 3)^{k}x^{k}.

    Số hạng chứa x^{2} ứng với k = 2.

    Ta có: C_{n}^{2}( - 3)^{2} = 90
\Leftrightarrow C_{n}^{2} = 10 (với n \geq 2; n
\in \mathbb{N})

    \Leftrightarrow \frac{n!}{2!(n - 2)!} =
10 \Leftrightarrow n(n - 1) = 20 \Leftrightarrow \left\lbrack
\begin{matrix}
n = 5 \\
n = - 4(L) \\
\end{matrix} ight.. Vậy n =
5.

  • Câu 13: Nhận biết

    Tìm hệ số của số hạng chứa x^{10} trong khai triển của biểu thức \left( 3x^{3} - \frac{2}{x^{2}}
ight)^{5}.

    Ta có \left( 3x^{3} - \frac{2}{x^{2}}
ight)^{5} = \sum_{k = 0}^{5}{( - 1)^{k}.C_{5}^{k}.\left( 3x^{3}
ight)^{5 - k}.\left( \frac{2}{x^{2}} ight)^{k}} = \sum_{k = 0}^{5}{(
- 1)^{k}.C_{5}^{k}.3^{5 - k}.2^{k}}x^{15 - 5k}.

    Số hạng chứa x^{10} ứng với 15 - 5k = 10 \Leftrightarrow k =
1.

    Hệ số của số hạng chứa x^{10}( - 1)^{1}C_{5}^{1}.3^{4}.2^{1} = -
810.

  • Câu 14: Thông hiểu

    Biết hệ số của x^{2} trong khai triển nhị thức Newton của (1 - 3x)^{n};\left( n\mathbb{\in N}
ight)135. Xác định giá trị n?

    Số hạng thứ k + 1 trong khai triển (1 - 3x)^{n} là:

    T_{k + 1} = C_{n}^{k}.( -
3)^{k}.x^{k} với 1 \leq k \leq
nn,k \in
\mathbb{N}^{*}

    Số hạng chứa x^{2} ứng với k = 2

    Ta có:

    C_{n}^{2}.( - 3)^{2} = 135
\Leftrightarrow C_{n}^{2} = 15

    \Leftrightarrow \frac{n!}{2!(n - 2)!} =
15 \Leftrightarrow n(n - 1) = 30

    \Leftrightarrow \left\lbrack
\begin{matrix}
n = 6(TM) \\
n = - 5(L) \\
\end{matrix} ight.

    Vậy n = 6.

  • Câu 15: Nhận biết

    Cho A = \left\{
1,\ 2,\ 3,\ 4 ight\}. Từ tập hợp này lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau?

    Mỗi số tự nhiên tự nhiên có 4 chữ số khác nhau được lập từ tập A là hoán vị của 4 phần tử.

    Vậy có 4! = 24 số cần tìm.

  • Câu 16: Vận dụng

    Cho 6 chữ số 2,3,4,5,6,7 số các số tự nhiên chẵn có 3 chữ số lập thành từ 6 chữ số đó:

    Gọi số tự nhiên có 3 chữ số cần tìm là: \overline{abc},\ a eq 0, khi đó:

    c3 cách chọn

    a6 cách chọn

    b6 cách chọn

    Vậy có: 3.6.6 = 108 số.

  • Câu 17: Nhận biết

    Một lớp học có 40 học sinh gồm 25 nam và 15 nữ. Người ta muốn chọn một ban điều hành gồm 3 học sinh. Có bao nhiêu cách chọn ban điều hành có 1 nam và 2 nữ?

    Chọn ban điều hành gồm 3 học sinh gồm 1 nam và 2 nữ có C_{25}^{1}.C_{15}^{2} = 2625 cách.

  • Câu 18: Thông hiểu

    Một hội nghị bàn tròn có phái đoàn của các nước: Việt Nam có 3 người; Nhật có 5 người; Hàn Quốc có 2 người; Ấn Độ có 3 người; Thái Lan có 4 người. Hỏi có bao nhiêu cách xếp chỗ ngồi cho mọi thành viên sao cho người cùng quốc tịch thì ngồi cạnh nhau?

    Ta thấy tổng số nước tham dự hội nghị là 5 nước.

    Để xếp chỗ ngồi cho mọi thành viên sao cho người cùng quốc tịch thì ngồi cạnh nhau ̀ta thực hiện như sau:

    Xếp cờ của 5 nước vào 5 vị trí xung quanh bàn tròn: có 4! cách xếp.

    Ở vị trí cờ của Việt Nam xếp 3 người vào ba vị trí: có 3! cách xếp.

    Ở vị trí cờ của Nhật xếp 5 người vào năm vị trí: có 5! cách xếp.

    Ở vị trí cờ của Hàn Quốc xếp 2 người vào hai vị trí: có 2! cách xếp.

    Ở vị trí cờ của Ấn Độ xếp 3 người vào ba vị trí: có 3! cách xếp.

    Ở vị trí cờ của Thái Lan xếp 4 người vào bốn vị trí: có 4! cách xếp.

    Áp dụng quy tắc nhân, có tất cả: 4!.3!.5!.2!.3!.4! = 4976640 cách

  • Câu 19: Nhận biết

    Có bao nhiêu cách chọn ngẫu nhiên 3 viên bi từ một hộp có 20 viên bi.

     Chọn 3 viên bi từ 20 viên bi: C_{20}^3 cách.

  • Câu 20: Thông hiểu

    Có thể lập được bao nhiêu số tự nhiên có bốn chữ số đôi một khác nhau từ tập hợp F =
\left\{ 0,1,2,3,4,5,6,7 ight\} và nhỏ hơn 2021?

    Gọi số tự nhiên có bốn chữ số \overline{abcd};(a eq 0)

    Do \overline{abcd} < 2021a eq 0 nên a \in \left\{ 1;2 ight\}

    TH1: a = 1

    Chọn ba số trong dãy 0,2,3,4,5,6,7 xếp vào ba vị trí a,b,c ta có: A_{7}^{3} cách.

    => Trong trường hợp này có 1.A_{7}^{3}
= 210 số được tạo thành.

    TH2: a = 2 \Rightarrow b = 0,c = 1;d \in
\left\{ 3;4;5;6;7 ight\}

    => Trong trường hợp này có 1.1.1.5 =
5 số được tạo thành.

    Vậy có tất cả 210 + 5 = 215 số được tạo thành thỏa mãn yêu cầu đề bài.

  • Câu 21: Nhận biết

    Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn văn nghệ, mỗi đội chỉ được trình diễn một vở kịch, một điệu múa và một bài hát. Hỏi đội văn nghệ trên có bao nhiêu cách hương trình diễn, biết chất lượng các vở kịch, điệu múa, bài hát là như nhau?

    Đội văn nghệ trên có 2 cách chọn trình diễn một vở kịch, có 3 cách chọn trình diễn một điệu múa, có 6 cách chọn trình diễn một bài hát. Theo quy tắc nhân, đội văn nghệ trên có 2.3.6 = 36cách hương trình diễn.

  • Câu 22: Vận dụng

    Cho các số 1,2,3,4,5,6,7. Số các số tự nhiên gồm 5 chữ số lấy từ 7 chữ số trên sao cho chữ số đầu tiên bằng 3 là:

    Gọi số cần tìm có dạng: \overline{abcde}.

    Chọn a: có 1 cách (a = 3)

    Chọn \overline{bcde}: có 7^{4} cách

    Theo quy tắc nhân, có 1.7^{4} =
2401(số).

  • Câu 23: Nhận biết

    Một tổ có 10 học sinh. Hỏi có bao nhiêu cách chọn ra 2 học sinh từ tổ đó để giữ hai chức vụ tổ trưởng và tổ phó.

    Số cách chọn hai học sinh từ 10 học sinh là chỉnh hợp chập 2 của 10 phần tử 

    => Số cách chọn là: A_{10}^2 = 90 (cách)

  • Câu 24: Nhận biết

    Cho kiểu gen AaBb. Giả sử quá trình giảm phân tạo giao tử bình thường và không xảy ra đột biến. Sơ đồ hình cây biểu thị sự hình thành giao tử được biểu diễn như hình bên.

    Số loại giao tử của kiểu gen AaBb

    Từ sơ đồ cây, số loại giao tử của kiểu gen AaBb là:

    Từ sơ đồ cây, ta thấy có 4 kết quả có thể xảy ra.

    => Số loại giao tử của kiểu gen AaBb là 4.

  • Câu 25: Nhận biết

    An muốn qua nhà Bình để cùng Bình đến chơi nhà Cường. Từ nhà An đến nhà Bình có 4 con đường đi, từ nhà Bình đến nhà Cường có 6 con đường đi. Hỏi An có bao nhiêu cách chọn đường đi đến nhà Cường?

    Từ nhà An đến nhà Bình có 4 cách chọn đường.

    Từ nhà Bình đến nhà Cường có 6 cách chọn đường.

    Áp dụng quy tắc nhân ta có số cách chọn đường đi từ nhà An đến nhà Cường là: 4.6 = 24 (cách).

  • Câu 26: Nhận biết

    Một tổ gồm n học sinh, biết rằng có 210 cách chọn 3 học sinh trong tổ để làm ba việc khác nhau. Số n thỏa mãn hệ thức nào dưới đây?

    Chọn một học sinh để làm việc thứ nhất, có n cách chọn.

    Chọn một học sinh để làm việc thứ hai có n − 1 cách chọn.

    Chọn một học sinh để làm việc thứ ba có n − 2 cách chọn.

    Do đó có n(n−1)(n−2) = 210 cách chọn.

  • Câu 27: Thông hiểu

    Mỗi khi thực hiện giao dịch qua app thanh toán tiền, ngân hàng sẽ gửi một mã xác thực (OTP – One Time Password) gồm 6 chữ số từ 0 đến 9. Hỏi có thể có bao nhiêu mã OTP?

    Mỗi mã xác thực gồm 6 chữ số được tạo thành từ các số từ 0 đến 9

    => Với mỗi chữ số trong mã xác thực sẽ có 10 cách chọn

    => Số mã xác thực có thể tạo thành là: 10^{6} = 1000000 mã.

  • Câu 28: Nhận biết

    Có 10 cái bút khác nhau và 8 quyển sách giáo khoa khác nhau. Một bạn học sinh cần chọn 1 cái bút và 1 quyển sách. Hỏi bạn học sinh đó có bao nhiêu cách chọn?

    Số cách chọn một quyển sách là 8 cách.

    Số cách chọn một cái bút là 10 cách. 

    => Bạn học sinh có số cách chọn 1 quyển sách và 1 chiếc bút là 8 . 10 = 80 cách. 

  • Câu 29: Vận dụng

    Với n là số nguyên dương thỏa mãn C_{n}^{1}+C_{n}^{2}=10 , hệ số của x^{5} trong khai triển của biểu thức bằng (x^{3}+\frac{2}{x})^{n}.

     Giải phương trình C_{n}^{1}+C_{n}^{2}=10

    Điều kiện n \ge2.

    Ta có: C_n^1 + C_n^2 = 10 \Leftrightarrow \frac{{n!}}{{1!(n - 1)!}} + \frac{{n!}}{{2!(n - 2)!}} = 10\Leftrightarrow n + \frac{1}{2}n(n - 1) = 10 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{n = 4}\\{n =  - 5}\end{array}} ight..

    Vậy n=4.

    Ta có: (x^{3}+\frac{2}{x})^{4} =\frac{{{x^{16}} + 8{x^{12}} + 24{x^8} + 32{x^4} + 16}}{{{x^4}}}= {x^{12}} + 8{x^8} + 24{x^4} + 32 + \frac{{16}}{{{x^4}}}.

    Hệ số của x^5 trong khai triển bằng 0.

  • Câu 30: Nhận biết

    Hệ số của x^{2} trong khai triển (x + 1)^{5} là:

     Ta có: {(x + 1)^5} ={x^5} + 5{x^4} + 10{x^3} + 10{x^2} + 5x + 1.

    Hệ số của x^2 là 10.

  • Câu 31: Thông hiểu

    Cho số tự nhiên n thỏa mãn 3C_{n+1}^{3}-3A_{n}^{2}=42(n-1). Giá trị của biểu thức 3C_{n}^{4}-A_{n}^{2}

    Ta có: 

    \begin{matrix}  3C_{n + 1}^3 - 3A_n^2 = 42(n - 1) \hfill \\  DK:n > 2,n \in \mathbb{Z} \hfill \\   \Leftrightarrow 3\dfrac{{\left( {n + 1} ight)!}}{{3!\left( {n + 1 - 3} ight)!}} - 3\dfrac{{n!}}{{\left( {n - 2} ight)!}} = 42(n - 1) \hfill \\   \Leftrightarrow 3\dfrac{{\left( {n + 1} ight)n.\left( {n - 1} ight).\left( {n - 2} ight)!}}{{3!\left( {n - 2} ight)!}} - 3\dfrac{{n\left( {n - 1} ight)\left( {n - 2} ight)!}}{{\left( {n - 2} ight)!}} = 42(n - 1) \hfill \\   \Leftrightarrow \dfrac{{\left( {n + 1} ight)n.\left( {n - 1} ight)}}{2} - 3.n\left( {n - 1} ight) = 42(n - 1) \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n - 1 = 0} \\   {{n^2} + n - 6n = 84} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 1\left( {ktm} ight)} \\   \begin{gathered}  n = 12\left( {tm} ight) \hfill \\  n =  - 7\left( {ktm} ight) \hfill \\ \end{gathered}  \end{array}} ight. \hfill \\ \end{matrix}

    Thay n = 12 vào biểu thức ta được: 3C_{12}^4 - A_{12}^2 = 1353

     

  • Câu 32: Thông hiểu

    Cho đa giác n cạnh. Tìm n để đa giác có số đường chéo gấp đôi số cạnh.

    Đa giác n cạnh có n đỉnh.

    Mỗi đỉnh nối với n - 3 đỉnh khác để tạo ra đường chéo

    Do đó n đỉnh sẽ có n(n -
3)đường

    Mà 1 đường chéo được nối bởi 2 đỉnh nên số đường chéo thực là: \frac{n(n - 3)}{2}

    Theo bài ra ta có: \frac{n(n - 3)}{2} =
2n \Leftrightarrow n^{2} - 7n = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
n = 0(ktm) \\
n = 7(tm) \\
\end{matrix} ight.

    Vậy n = 7.

  • Câu 33: Nhận biết

    Một nhóm học sinh gồm 5 bạn nam và 6 bạn nữ. Hỏi số cách chọn một học sinh bất kì trong nhóm?

    Số cách chọn một học sinh bất kì trong nhóm là: 5 + 6 = 11 cách chọn.

  • Câu 34: Thông hiểu

    Có thể lập được bao nhiêu chữ số có hai chữ số trong đó cả hai chữ số trong số đó đều là số lẻ?

    Gọi số có hai chữ số là: \overline{ab};(a
eq 0)

    Vì hai chữ số đều là chữ số lẻ nên a,b
\in \left\{ 1;3;5;7;9 ight\}.

    Áp dụng quy tắc nhân ta có: 5.5 =
25 cách.

  • Câu 35: Vận dụng

    Có bao nhiêu số tự nhiên có 3 chữ số lập từ các số 0,2,4,6,8 với điều các chữ số đó không lặp lại?

    Gọi số tự nhiên có 3 chữ số cần tìm là: \overline{abc},\ a eq 0, khi đó:

    a4 cách chọn

    b4 cách chọn

    c3 cách chọn

    Vậy có: 4.4.3 = 48 số.

  • Câu 36: Nhận biết

    Khai triển biểu thức (a + 2b)^{5} ta thu được kết quả là:

     Ta có: (a + 2b)^{5} =a^{5}+10a^{4}b+40a^{3}b^{2}+80a^{2}b^{3}+80ab^{4}+32b^{5}.

  • Câu 37: Vận dụng

    Từ 20 người cần chọn ra một đoàn đại biểu gồm 1 trưởng đoàn, 1 phó đoàn, 1 thư kí và 3 ủy viên. Số cách chọn thỏa mãn là:

    Số cách chọn 1 người trong 20 người làm trưởng đoàn là. C_{20}^{1} cách.

    Số cách chọn 1 người trong 19 người còn lại làm phó đoàn là. C_{19}^{1} cách.

    Số cách chọn 1 người trong 18 người còn lại làm thư kí là. C_{18}^{1} cách.

    Số cách chọn 3 người trong 17 người còn lại làm ủy viên là. C_{17}^{3} cách.

    Vậy số cách chọn đoàn đại biểu là C_{20}^{1} \times C_{19}^{1} \times C_{18}^{1}
\times C_{17}^{3} = 4651200.

  • Câu 38: Nhận biết

    Tìm hệ số của số hạng chứa x^{31} trong khai triển \left( x + \frac{1}{x^{2}}
ight)^{40}.

    Ta có: \left( x + \frac{1}{x^{2}}
ight)^{40} = \sum_{k = 0}^{40}{C_{40}^{k}.x^{40 - k}}.\left(
\frac{1}{x^{2}} ight)^{k} = \sum_{k = 0}^{40}{C_{40}^{k}.x^{40 -
3k}}.

    Số hạng tổng quát của khai triển là: T_{k
+ 1} = C_{40}^{k}.x^{40 - 3k}.

    Số hạng chứa x^{31} trong khai triển tương ứng với 40 - 3k = 31
\Leftrightarrow k = 3.

    Vậy hệ số cần tìm là: C_{40}^{3} =
C_{40}^{37} (theo tính chất của tổ hợp: C_{n}^{k} = C_{n}^{n - k}).

  • Câu 39: Nhận biết

    Có tất cả bao nhiêu cách xếp 6 quyển sách khác nhau vào một hàng ngang trên giá sách?

    Mỗi cách sắp xếp 6 quyển sách khác nhau vào một hàng ngang trên giá sách là một hoán vị của 6 phần tử. Vậy số cách sáp xếp là 6!.

  • Câu 40: Thông hiểu

    Từ các chữ số 1;4;5;8;9 có thể lập được bao nhiêu số nguyên dương n > 800 và gồm các chữ số đôi một khác nhau.

    Trường hợp 1: n gồm ba chữ số.

    Gọi n = \overline{abc}.

    Để n > 800 và gồm các chữ số đôi một khác nhau thì

    a có 2 lựa chọn là \left\{ 8;9
ight\}

    b có 4 lựa chọn vì phải khác a

    c có 3 lựa chọn vì phải khác a; b

    Vậy có 2.4.3 = 24 số.

    Trường hợp 2: n gồm bốn chữ số. Thỏa mãn n > 800.

    Để n gồm các chữ số đôi một khác nhau thì có A_{5}^{4} = 120 thỏa mãn.

    Trường hợp 3: n gồm năm chữ số. Thỏa mãn n > 800.

    Để n gồm các chữ số đôi một khác nhau thì có A_{5}^{4} = 120 thỏa mãn.

    Vậy có 120 + 120 + 24 = 264 số n thỏa mãn yêu cầu bài toán.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 8 Đại số tổ hợp Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 4 lượt xem
Sắp xếp theo