Có bao nhiêu số tự nhiên có 3 chữ số, mà tất cả các chữ số đều chẵn?
Gọi số cần lập có dạng .
A: có 4 cách chọn (2,4,6,8)
B: có 5 cách chọn (0,2,4,6,8)
C: có 5 cách chọn (0,2,4,6,8)
Vậy có 4.5.5 = 100 (số) có 3 chữ số và cả 3 chữ số đều chẵn.
Có bao nhiêu số tự nhiên có 3 chữ số, mà tất cả các chữ số đều chẵn?
Gọi số cần lập có dạng .
A: có 4 cách chọn (2,4,6,8)
B: có 5 cách chọn (0,2,4,6,8)
C: có 5 cách chọn (0,2,4,6,8)
Vậy có 4.5.5 = 100 (số) có 3 chữ số và cả 3 chữ số đều chẵn.
Giá trị của bằng:
Ta có:
Tìm số hạng không chứa trong khai triển nhị thức Newton của
. Cho biết
(
là số tổ hợp chập
của
phần tử).
Xét khai triển
Đạo hàm hai vế của ta được:
Trong công thức ta cho
ta được:
.
Khi đó, .
Do đó số hạng không chứa trong khai triển
nếu
hay
.
Suy ra số hạng cần tìm là .
Trong khai triển nhị thức Newton của , số hạng thứ hai theo số mũ tăng dần của biến
là:
Ta có:
Có bao nhiêu cách sắp xếp học sinh thành một hàng dọc?
Số cách sắp xếp học sinh thành một hàng dọc là
.
Từ 6 chữ số có thể lập được bao nhiêu số tự nhiên mà mỗi số có 6 chữ số khác nhau sao cho chữ số 2 vs 3 đứng cạnh nhau.
Gọi số cần tìm có dạng với
.
Vì 2 và 3 đứng cạnh nhau ta gộp 2 và 3 thành 1 số hoặc
thành 1 vị trí
Do đó ta còn lại 5 vị trí
Từ 5 chữ số trên ta lập được 5! số khác nhau có dạng
Cho ta lập được 4! các số dạng
Nên sẽ có 5! – 4! = 96 số có 5 chữ số khác nhau.
Mặt khác ta gộp 2 và 3 thành 1 số hoặc
thành 1 vị trí nên ta sẽ có số các số cần tìm là: 96.2 = 192 số thỏa mãn đề bài.
Cho chữ số
số các số tự nhiên chẵn có
chữ số lập thành từ
chữ số đó:
Gọi số tự nhiên có chữ số cần tìm là:
, khi đó:
có
cách chọn
có
cách chọn
có
cách chọn
Vậy có: số.
Có bao nhiêu số hạng là số nguyên trong khai triển của biểu thức ?
Ta có .
Để trong khai triển có số hạng là số nguyên thì
.
Ta có mà
. Suy ra có
số hạng là số nguyên trong khai triển của biểu thức.
Cho kiểu gen AaBb. Giả sử quá trình giảm phân tạo giao tử bình thường và không xảy ra đột biến. Sơ đồ hình cây biểu thị sự hình thành giao tử được biểu diễn như hình bên.
Từ sơ đồ cây, số loại giao tử của kiểu gen AaBb là:
Từ sơ đồ cây, ta thấy có 4 kết quả có thể xảy ra.
=> Số loại giao tử của kiểu gen AaBb là 4.
Thầy giáo chủ nhiệm có 10 quyển sách khác nhau và 8 quyển vở khác nhau. Thầy chọn ra một quyển sách hoặc một quyển vở để tặng cho học sinh giỏi. Hỏi có bao nhiêu cách chọn khác nhau?
Chọn một quyển sách có 10 cách chọn.
Chọn một quyển vở có 8 cách chọn.
Áp dụng quy tắc cộng có 18 cách chọn ra một quyển sách hoặc một quyển vở để tặng cho học sinh giỏi.
Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?
Nếu chữ số hàng chục là thì số có chữ số hàng đơn vị là
thì số các chữ số nhỏ hơn
năm ở hàng đơn vị cũng bằng
. Do chữ số hang chục lớn hơn bằng
còn chữ số hang đơn vị thi
.
Vậy số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là:
.
Cho tập hợp gồm
phần tử. Số các hoán vị của
phần tử của tập hợp
là bao nhiêu?
Số các hoán vị của phần tử:
.
Từ khai triển biểu thức thành đa thức. Tổng các hệ số của đa thức là:
Xét khai triển .
Gọi là tổng các hệ số trong khai triển thì ta có
.
Số hạng thứ trong khai triển
bằng?
Ta có
Số hạng thứ trong khai triển tương ứng với
.
.
Tìm tất cả các số tự nhiên có đúng 5 chữ số sao cho trong mỗi số đó chữ số đứng sau lớn hơn chữ số đứng liền trước?
Gọi số có 5 chữ cố có dạng là . Điều kiện
Ta chuyển bài toán về tìm số các số tự nhiên có 5 chữ số khác nhau lập từ các chữ số để lập số thoả yêu cầu của bài toán.
Do đó sẽ có số các số có 5 chữ số khác nhau lập từ là
số
Đếm số tập con gồm phần tử được lấy ra từ tập
?
Mỗi tập con tập gồm phần tử được lấy ra từ tập
có
phần tử là một tổ hợp chập
của
phần tử.
Vậy số tập con gồm phần tử của
là
tập con.
Có thể lập được bao nhiêu số tự nhiên có bốn chữ số đôi một khác nhau từ tập hợp và không vượt quá
?
TH1: Số cần tìm có dạng
Chữ số d có 7 cách chọn là một trong các chữ số .
Suy ra có 7 số thỏa mãn.
TH2: Số cần tìm có dạng
3 vị trí còn lại có cách chọn
Suy ra có 504 số thỏa mãn
Kết hợp cả hai trường hợp ta có: 504 + 7 = 511 số được tạo thành thỏa mãn yêu cầu đề bài.
Khai triển nhị thức newton của thành đa thức thì có tất cả bao nhiêu số hạng có hệ số nguyên dương?
Để hệ số nguyên dương thì ,do
nên ta có
vậy t=0,1,2….672 nên có 673 giá trị.
Đội văn nghệ của nhà trường gồm học sinh lớp 12A,
học sinh lớp 12B và
học sinh lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?
Tổng số học sinh trong đội văn nghệ của nhà trường là học sinh.
Số cách chọn học sinh bất kì trong
học sinh là.
cách.
Số cách chọn học sinh mà trong đó không có học sinh lớp 12A là.
cách.
Số cách chọn học sinh mà trong đó không có học sinh lớp 12B là.
cách.
Số cách chọn học sinh mà trong đó không có học sinh lớp 12C là.
cách.
Vậy có cách thỏa mãn yêu cầu bài toán.
Có 3 bạn nam và 4 bạn nữ. Hỏi có bao nhiêu cách xếp 7 bạn vào 1 dãy ghế hàng ngang liền nhau gồm 7 chỗ ngồi?
Xếp 7 bạn vào dãy 7 ghế: có 7! (cách).
Tính số chỉnh hợp chập 2 của 5 là:
Số chỉnh hợp chập 2 của 5 là: .
Một đội văn nghệ chuẩn bị được 2 vở kịch, 3 điệu múa và 6 bài hát. Tại hội diễn văn nghệ, mỗi đội chỉ được trình diễn một vở kịch, một điệu múa và một bài hát. Hỏi đội văn nghệ trên có bao nhiêu cách hương trình diễn, biết chất lượng các vở kịch, điệu múa, bài hát là như nhau?
Đội văn nghệ trên có 2 cách chọn trình diễn một vở kịch, có 3 cách chọn trình diễn một điệu múa, có 6 cách chọn trình diễn một bài hát. Theo quy tắc nhân, đội văn nghệ trên có 2.3.6 = 36cách hương trình diễn.
Cho các số 1, 2, 4, 5, 7. Có bao nhiêu cách chọn ra một số chẵn gồm ba chữ số khác nhau từ 5 chữ số đã cho?
Gọi số cần tìm là .
+ Chọn c: có 2 cách.
+ Chọn a: có 4 cách.
+ Chọn b: có 3 cách.
Áp dụng quy tắc nhân ta có 2.4.3 = 24 số.
Có bao nhiêu số hạng trong khai triển ?
Trong khai triển nhị thức có
nên có 5 số hạng.
Cho tập hợp , lấy ngẫu nhiên 1 chữ số. Các kết quả thuận lợi cho C “biến cố lấy được chữ số lẻ” là:
Các kết quả thuận lợi cho biến cố lấy được chữ số lẻ là:
Tìm số hạng chứa trong khai triển
.
Số hạng thứ trong khai triển là:
.
Số hạng chứa có giá trị
thỏa mãn:
.
Vậy số hạng chứa trong khai triển là:
.
Trong khai triển nhị thức (n ∈ ℕ). Có tất cả 6 số hạng. Vậy n bằng:
Khai triển bậc (n-5) có 6 số hạng. Suy ra (n-5) = 5. Vậy n = 10.
Cho hai đường thẳng gồm
điểm phân biệt và
gồm
điểm phân biệt. Biết rằng
. Số tam giác có ba đỉnh được tạo thành từ các điểm trên hai đường thẳng đã cho?
Một tam giác được hình thành bởi ba điểm không thẳng hàng.
TH1: 1 đỉnh thuộc đường thẳng (d) và 2 đỉnh thuộc đường thẳng (d’)
Số tam giác được tạo thành là: (tam giác)
TH2: 2 đỉnh thuộc đường thẳng (d) và 1 đỉnh thuộc đường thẳng (d’)
Số tam giác được tạo thành là: (tam giác)
Vậy số tam giác được tạo thành là .
Cho tập . Hỏi lập được tất cả bao nhiêu số có 5 chữ số đôi một khác nhau và chia hết cho 2 từ tập A.
Gọi số cần tìm có dạng . Vì
chia hết cho 2 suy ra
.
TH1. Với , khi đó
số.
TH2. Với , khi đó có 4 cách chọn a, 4 cách chọn b, 3 cách chọn c, 2 cách chọn
.
Suy ra có số. Vậy có tất cả
số cần tìm.
Có viên bi đen khác nhau,
viên bi đỏ khác nhau,
viên bi xanh khác nhau. Hỏi có bao nhiêu cách xếp các viên bi trên thành dãy sao cho các viên bi cùng màu ở cạnh nhau?
Số cách xếp viên bi đen khác nhau thành một dãy bằng.
.
Số cách xếp viên bi đỏ khác nhau thành một dãy bằng.
.
Số cách xếp viên bi đen khác nhau thành một dãy bằng.
.
Số cách xếp nhóm bi thành một dãy bằng.
.
Vậy số cách xếp thỏa yêu cầu đề bài bằng cách.
Tính tổng các hệ số các đơn thức trong khai triển nhị thức Newton ?
Để có tổng các hệ số ta thay ta được:
Có bao nhiêu cách lập các nhóm gồm 2, 3, 5 học sinh từ một tổ có 10 học sinh?
Số cách lập nhóm có hai học sinh là: cách
Số học sinh còn lại 8 học sinh (vì 2 học sinh lập nhóm đầu tiên)
=> Số cách lập nhóm có 3 học sinh là: cách
Số học sinh còn lại còn 5 học sinh để lập nhóm 5 học sinh
=> Số cách lập nhóm 5 học sinh là: cách
Mà các cách lập nhóm liên quan đến nhau
=> Số cách lập các nhóm gồm 2, 3, 5 học sinh từ một tổ có 10 học sinh là
cách.
Cho tập . Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số và chia hết cho 5.
Gọi là số cần lập,
có 1 cách chọn, cách chọn
Trường hợp này có 360 số
có một cách chọn, số cách chọn
Trường hợp này có 300 số.
Vậy có số thỏa yêu cầu bài toán.
Biết hệ số của trong khai triển nhị thức Newton của
là
. Xác định giá trị
?
Số hạng thứ trong khai triển
là:
với
và
Số hạng chứa ứng với
Ta có:
Vậy .
Tìm hệ số của trong khai triển
.
Số hạng tổng quát là: .
Số hạng chứa trong khai triển
là:
nên hệ số là 45.
Cho . Từ tập hợp này lập được bao nhiêu số tự nhiên có
chữ số đôi một khác nhau?
Mỗi số tự nhiên tự nhiên có chữ số khác nhau được lập từ tập
là hoán vị của
phần tử.
Vậy có số cần tìm.
Cho là số thực dương, số hạng không chứa
trong khai triển nhị thức
là:
Ta có
Số hạng tổng quát thứ trong khai triển là
.
Số hạng này không chứa tương ứng với trường hợp
.
Vậy số hạng không chứa trong khai triển là
.
Giải phương trình . Kết luận nào sau đây đúng?
Điều kiện:
Ta có:
Vậy kết luận đúng là: n là số nguyên tố.
Một người vào cửa hàng ăn, người đó chọn thực đơn. Trong đó gồm món ăn trong
món ăn,
loại quả tráng miệng trong
loại quả tráng miệng và
loại nước uống trong
loại nước uống. Hỏi có bao nhiêu cách chọn thực đơn?
Chọn một món ăn có 5 cách.
Chọn một loại quả tráng miệng có 4 cách.
Chọn một loại nước uống có 3 cách.
Áp dụng quy tắc nhân, có 5.4.3 = 60 cách chọn thực đơn.
Lớp 11A có 20 học sinh nam và 15 học sinh nữ. Giáo viên chủ nhiệm muốn chọn một nhóm học sinh đại diện gồm 3 học sinh nam và 2 học sinh nữ. Hỏi có bao nhiêu cách chọn nhóm học sinh đại diện?
Số cách chọn 3 học sinh nam là cách.
Số cách chọn 2 học sinh nữ là: cách.
Vậy số cách chọn nhóm học sinh đại diện là: cách.