Đề kiểm tra 45 phút Chương 9 Phương pháp tọa độ trong mặt phẳng

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Elip có một tiêu điểm F( - 2;0) và tích độ dài trục lớn với trục bé bằng 12\sqrt{5}. Phương trình chính tắc của elip là:

    Gọi (E) có dạng \frac{x^{2}}{a^{2}} +
\frac{y^{2}}{b^{2}} = 1.

    Theo giả thiết ta có: \left\{
\begin{matrix}
ab = 3\sqrt{5} \\
a^{2} - b^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 9 \\
b^{2} = 5 \\
\end{matrix} ight..

    Vậy (E) cần tìm là \frac{x^{2}}{9} +
\frac{y^{2}}{5} = 1.

  • Câu 2: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng \Delta:\left\{ \begin{matrix}
x = 5 + t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Hệ số góc k của đường thẳng \Delta là:

    Ta có:

    Đường thẳng \Delta:\left\{ \begin{matrix}
x = 5 + t \\
y = - 2 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có vectơ chỉ phương \overrightarrow{u}(1;3) nên có hệ số góc k = \frac{3}{1} =
3.

    Vậy hệ số góc của đường thẳng là k=3.

  • Câu 3: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1 (với a > b > 0). Biết F_{1},F_{2} là hai tiêu điểm. Cho điểm M di động trên (E). Chọn khẳng định đúng?

    Ta có:

    MF_{1} = a + \frac{cx}{a};\ MF_{2} = a -
\frac{cx}{a} \Rightarrow MF_{1}.MF_{2} = a^{2} -
\frac{c^{2}x^{2}}{a^{2}}.

    \begin{matrix}
M(x;y) \in (E) \Rightarrow \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1
\\
\Rightarrow y^{2} = b^{2}\left( 1 - \frac{x^{2}}{a^{2}} ight)
\Rightarrow OM^{2} = x^{2} + y^{2} = x^{2} + b^{2}\left( 1 -
\frac{x^{2}}{a^{2}} ight) = x^{2} + b^{2} - \frac{b^{2}x^{2}}{a^{2}}
\\
\end{matrix} \begin{matrix}
MF_{1}.MF_{2} + OM^{2} = a^{2} - \frac{c^{2}x^{2}}{a^{2}} + x^{2} +
b^{2} - \frac{b^{2}x^{2}}{a^{2}} = a^{2} + b^{2} + x^{2} - \left(
\frac{c^{2}x^{2}}{a^{2}} + \frac{b^{2}x^{2}}{a^{2}} ight) \\
= a^{2} + b^{2} + x^{2} - \frac{\left( b^{2} + c^{2}
ight)x^{2}}{a^{2}} \\
\end{matrix}

    a^{2} = b^{2} + c^{2} nên MF_{1}.MF_{2} + OM^{2} = a^{2} + b^{2} +
x^{2} - \frac{\left( b^{2} + c^{2} ight)x^{2}}{a^{2}} = a^{2} + b^{2}
+ x^{2} - \frac{a^{2}x^{2}}{a^{2}} = a^{2} + b^{2}.

  • Câu 4: Vận dụng cao

    Trong hệ tọa độ Oxy, cho ba điểm A(1;0),\ B(0;3)C( - 3; - 5). Tìm điểm M thuộc trục hoành sao cho biểu thức P = \left| 2\overrightarrow{MA} -
3\overrightarrow{MB} + 2\overrightarrow{MC} ight| đạt giá trị nhỏ nhất.

    Ta có

    2\overrightarrow{MA} -3\overrightarrow{MB} + 2\overrightarrow{MC} =2\left(\overrightarrow{MI} + \overrightarrow{IA} ight) - 3\left(\overrightarrow{MI} + \overrightarrow{IB} ight) + 2\left(\overrightarrow{MI} + \overrightarrow{IC} ight),\ \forall I

    = \overrightarrow{MI} + 2\left(
\overrightarrow{IA} - 3\overrightarrow{IB} + 2\overrightarrow{IC}
ight),\ \forall I.

    Chọn điểm I sao cho 2\overrightarrow{IA} - 3\overrightarrow{IB} +
2\overrightarrow{IC} = \overrightarrow{0}. (*)

    Gọi I(x;y), từ (*) ta có

    \left\{ \begin{matrix}2(1 - x) - 3(0 - x) + 2( - 3 - x) = 0 \\2(0 - y) - 3(2 - y) + 2( - 5 - y) = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = - 4 \\y = - 16 \\\end{matrix} ight.\  ight.\  \Rightarrow I( - 4; - 16).

    Khi đó P = \left| 2\overrightarrow{MA} -3\overrightarrow{MB} + 2\overrightarrow{MC} ight|= \left|\overrightarrow{MI} ight| = MI.

    Để P nhỏ nhất \Leftrightarrow MI nhỏ nhất. Mà M thuộc trục hoành nên MI nhỏ nhất khi M là hình chiếu vuông góc của I lên trục hoành \overset{}{ightarrow}M( - 4;0).

  • Câu 5: Vận dụng cao

    Cho hình bình hành ABCD. Lấy hai điểm M,N sao cho \overrightarrow{CM} =
\frac{1}{2}\overrightarrow{CB};\overrightarrow{CN} =
\frac{1}{3}\overrightarrow{CD}, lấy tiếp hai điểm I,J sao cho \overrightarrow{CI} =
x\overrightarrow{CD};\overrightarrow{BJ} =
y\overrightarrow{BI}. Để J là trọng tâm tam giác AMN thì x,y thỏa mãn điều kiện nào sau đây:

    Hình vẽ minh họa

    Tìm điều kiện của x và y

    \overrightarrow{JA} +
\overrightarrow{JM} + \overrightarrow{JN} = \overrightarrow{BA} -
\overrightarrow{BJ} + \overrightarrow{JB} + \overrightarrow{BM} +
\overrightarrow{JI} + \overrightarrow{IN}

    = \overrightarrow{BA} -
2\overrightarrow{BJ} + \frac{\overrightarrow{BC}}{2} +
\overrightarrow{BI} - \overrightarrow{BJ} + \overrightarrow{CN} -
\overrightarrow{CI}

    = \overrightarrow{BA} +
\frac{\overrightarrow{BC}}{2} + ( - 3y + 1).\overrightarrow{BI} +
\overrightarrow{CN} - \overrightarrow{CI}

    = \overrightarrow{BA} +
\frac{\overrightarrow{BC}}{2} + ( - 3y + 1).\left( \overrightarrow{BC} +
\overrightarrow{CI} ight) + \overrightarrow{CN} -
\overrightarrow{CI}

    = \overrightarrow{BA} + \left(
\frac{3}{2} - 3y ight)\left( \overrightarrow{AC} - \overrightarrow{AB}
ight) + \overrightarrow{CN} - 3y.\overrightarrow{CI}

    = \overrightarrow{BA} + \left(
\frac{3}{2} - 3y ight)\left( \overrightarrow{AC} - \overrightarrow{AB}
ight) + \frac{1}{3}\overrightarrow{CD} -
3xy.\overrightarrow{CD}

    = \overrightarrow{BA} + \left(
\frac{3}{2} - 3y ight)\left( \overrightarrow{AC} - \overrightarrow{AB}
ight) + \left( \frac{1}{3} - 3xy
ight).\overrightarrow{BA}

    = \left( - \frac{17}{6} + 3y + 3xy
ight).\overrightarrow{AB} + \left( \frac{3}{2} - 3y
ight).\overrightarrow{AC}

    Để J là trọng tâm tam giác AMN thì

    \overrightarrow{JA} +
\overrightarrow{JM} + \overrightarrow{JN} =
\overrightarrow{0}

    \Leftrightarrow \left( - \frac{17}{6} +
3y + 3xy ight).\overrightarrow{AB} + \left( \frac{3}{2} - 3y
ight).\overrightarrow{AC} = \overrightarrow{0}

    Mặt khác do \overrightarrow{AB};\overrightarrow{AC} không cùng phương nên ta suy ra:

    \left\{ \begin{matrix}- \dfrac{17}{6} + 3y + 3xy = 0 \\\dfrac{3}{2} - 3y = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = \dfrac{8}{9} \\y = \dfrac{1}{2} \\\end{matrix} ight.

    Vậy với x = \frac{8}{9};y =
\frac{1}{2} thì điểm J là trọng tâm tam giác AMN.

  • Câu 6: Thông hiểu

    Đường tròn (C) có tâm I thuộc đường thẳng d:x + 3y + 8 = 0, đi qua điểm A( - 2;1) và tiếp xúc với đường thẳng \Delta:\ 3x - 4y + 10 = 0. Phương trình của đường tròn (C) là:

    Dễ thấy A \in \Delta nên tâm I của đường tròn nằm trên đường thẳng qua A vuông góc với \Delta

    \Delta^{'}:4x + 3y + 5 = 0
ightarrow I = \Delta^{'} \cap d:\left\{ \begin{matrix}
4x + 3y + 5 = 0 \\
x + 3y + 8 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = - 3 \\
\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}
I(1; - 3) \\
R = IA = 5 \\
\end{matrix} ight.\ .

    Vậy phương trình đường tròn là: (x -
1)^{2} + (y + 3)^{2} = 25.

  • Câu 7: Nhận biết

    Tìm tọa độ giao điểm của đường thẳng d:\left\{ \begin{matrix}
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight. và trục tung.

    Oy \cap d:\left\{ \begin{matrix}
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight.\ \overset{}{ightarrow}\left\{ \begin{matrix}
y = 0 \\
x = 2t \\
y = - 5 + 15t \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = \frac{1}{3} \\
x = \frac{2}{3},\ \ y = 0 \\
\end{matrix} ight.\ .Chọn \left(
\frac{2}{3};0 ight).

  • Câu 8: Thông hiểu

    Trong mặt phẳng tọa độ Oxy cho đường thẳng \Delta có phương trình tổng quát x - 2y - 5 = 0. Hãy xác định phương trình tham số của \Delta?

    Đường thẳng x - 2y - 5 = 0 đi qua điểm (5;0) và có vectơ pháp tuyến \overrightarrow{n} = (1; -
2)

    Suy ra một vectơ chỉ phương của đường thẳng là \overrightarrow{u} = (2;1)

    Vậy phương trình tham số là: \left\{
\begin{matrix}
x = 5 + 2t \\
y = t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 9: Thông hiểu

    Với giá trị nào của tham số m thì đường thẳng \left( d_{1} ight):x + 2y + 1 - m = 0 vuông góc với đường thẳng \left( d_{2}
ight):(m + 4)x + 2y + 5 = 0?

    Ta có tọa độ vectơ pháp tuyến của \left(
d_{1} ight):x + 2y + 1 - m = 0 là: \overrightarrow{n_{1}} = (1;2)

    Tọa độ vectơ pháp tuyến của \left( d_{2}
ight):(m + 4)x + 2y + 5 = 0 là: \overrightarrow{n_{2}} = (m + 4;2)

    Để \left( d_{1} ight)\bot\left( d_{2}
ight) thì \overrightarrow{n_{1}}.\overrightarrow{n_{1}} = 0
\Leftrightarrow 1(m + 4) + 2.2 = 0 \Leftrightarrow m = - 8

    Vậy m = -8 thì hai đường thẳng đã cho vuông góc với nhau.

  • Câu 10: Nhận biết

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2}–10x - 11 = 0 là:

    (C):x^{2} + y^{2}–10x - 11 = 0
ightarrow I( - 5;0),\ R = \sqrt{25 + 0 + 11} = 6.

  • Câu 11: Vận dụng

    Cho hình bình hành ABCD. Tập hợp tất cả các điểm M thỏa mãn đẳng thức \overrightarrow{MA} + \overrightarrow{MB} -
\overrightarrow{MC} = \overrightarrow{MD}

    \overrightarrow{MA} + \overrightarrow{MB}
- \overrightarrow{MC} = \overrightarrow{MD} \Leftrightarrow
\overrightarrow{MB} - \overrightarrow{MC} = \overrightarrow{MD} -
\overrightarrow{MA} \Leftrightarrow \overrightarrow{CB} =
\overrightarrow{AD}: vô lí

    \Rightarrow Không có điểm Mthỏa mãn.

  • Câu 12: Vận dụng cao

    Cho hình vuông ABCD, dựng các hình vuông A_{1}A_{2}A_{3}A_{4};B_{1}B_{2}B_{3}B_{4};C_{1}C_{2}C_{3}C_{4};D_{1}D_{2}D_{3}D_{4} với A,B,C,D là tâm các hình vuông biểu diễn như hình vẽ dưới đây:

    Biết các hình vuông nhỏ có kích thước 1cm
\times 1cm. Tính độ dài vectơ:

    \overrightarrow{A_{1}B_{1}} +
\overrightarrow{B_{2}C_{2}} + \overrightarrow{C_{3}D_{3}} +
\overrightarrow{D_{4}A_{4}}

    + \overrightarrow{A_{2}B_{2}} +
\overrightarrow{B_{3}C_{3}} + \overrightarrow{C_{4}D_{4}} +
\overrightarrow{D_{1}A_{1}}

    + \overrightarrow{A_{3}B_{3}} +
\overrightarrow{B_{4}C_{4}} + \overrightarrow{C_{1}D_{1}} +
\overrightarrow{D_{2}A_{2}}

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{A_{1}B_{1}} +
\overrightarrow{B_{2}C_{2}} + \overrightarrow{C_{3}D_{3}} +
\overrightarrow{D_{4}A_{4}}

    = \overrightarrow{B_{2}B_{1}} +
\overrightarrow{C_{3}C_{2}} + \overrightarrow{D_{2}D_{3}} +
\overrightarrow{A_{1}E} + \overrightarrow{EA_{4}} =
\overrightarrow{X_{1}Z_{1}}

    \overrightarrow{A_{2}B_{2}} +
\overrightarrow{B_{3}C_{3}} + \overrightarrow{C_{4}D_{4}} +
\overrightarrow{D_{1}A_{1}}

    = \overrightarrow{B_{3}B_{2}} +
\overrightarrow{C_{4}C_{3}} + \overrightarrow{D_{1}D_{4}} +
\overrightarrow{A_{2}F} + \overrightarrow{FA_{1}} =
\overrightarrow{X_{2}Z_{2}}

    \overrightarrow{A_{3}B_{3}} +
\overrightarrow{B_{4}C_{4}} + \overrightarrow{C_{1}D_{1}} +
\overrightarrow{D_{2}A_{2}}

    = \overrightarrow{B_{4}B_{3}} +
\overrightarrow{C_{1}C_{4}} + \overrightarrow{D_{2}D_{1}} +
\overrightarrow{A_{3}K} + \overrightarrow{KA_{2}} =
\overrightarrow{X_{3}Z_{3}}

    Khi đó tổng vecto cần tính có kết quả là:

    |\overrightarrow{A_{1}B_{1}} +
\overrightarrow{B_{2}C_{2}} + \overrightarrow{C_{3}D_{3}} +
\overrightarrow{D_{4}A_{4}}

    + \overrightarrow{A_{2}B_{2}} +
\overrightarrow{B_{3}C_{3}} + \overrightarrow{C_{4}D_{4}} +
\overrightarrow{D_{1}A_{1}}

    + \overrightarrow{A_{3}B_{3}} +
\overrightarrow{B_{4}C_{4}} + \overrightarrow{C_{1}D_{1}} +
\overrightarrow{D_{2}A_{2}}|

    = \left| \overrightarrow{X_{1}Z_{1}} +
\overrightarrow{X_{2}Z_{2}} + \overrightarrow{X_{3}Z_{3}} ight| =
\left| \overrightarrow{MN} + \overrightarrow{MQ} ight| = \left|
\overrightarrow{MP} ight| = \sqrt{34}

  • Câu 13: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng \Delta_{1}:\left\{ \begin{matrix}
x = m + 2t \\
y = 1 + \left( m^{2} + 1 ight)t \\
\end{matrix} ight.\Delta_{2}:\left\{ \begin{matrix}
x = 1 + mt \\
y = m + t \\
\end{matrix} ight. trùng nhau?

    \begin{matrix}
\left\{ \begin{matrix}
\Delta_{1}:\left\{ \begin{matrix}
x = m + 2t \\
y = 1 + \left( m^{2} + 1 ight)t \\
\end{matrix} ight.\  ightarrow A(m;1) \in d_{1},\ \
{\overrightarrow{u}}_{1} = \left( 2;m^{2} + 1 ight) \\
\Delta_{2}:\left\{ \begin{matrix}
x = 1 + mt \\
y = m + t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{u}}_{2} = (m;1) \\
\end{matrix} ight.\  \\
\\
\end{matrix} .

    \overset{d_{1} \equiv
d_{2}}{ightarrow}\left\{ \begin{matrix}
A \in d_{2} \\
\frac{m}{2} = \frac{1}{m^{2} + 1} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m = 1 + mt \\
1 = m + t \\
m^{3} + m - 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = 1 + m(1 - m) \\
(m - 1)\left( m^{2} + m + 2 ight) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 1 = 0 \\
m - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow m = 1

  • Câu 14: Thông hiểu

    Cho hình bình hành ABCD tâm O. Khẳng định nào sau đây sai?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AO} +
\overrightarrow{BO} + \overrightarrow{CO} + \overrightarrow{DO} =
\overrightarrow{AO} + \overrightarrow{CO} + \overrightarrow{BO} +
\overrightarrow{DO} = \overrightarrow{0}.

    Suy ra \overrightarrow{AO} +
\overrightarrow{BO} + \overrightarrow{CO} + \overrightarrow{DO} =
\overrightarrow{0} đúng.

    Ta có: \overrightarrow{AO} +
\overrightarrow{DA} = \overrightarrow{OC} + \overrightarrow{CB} =
\overrightarrow{OB}. Suy ra \overrightarrow{AO} + \overrightarrow{DA} =
\overrightarrow{OB} đúng.

    Ta có: \overrightarrow{OA} -
\overrightarrow{BO} = \overrightarrow{OA} + \overrightarrow{OB} eq
\overrightarrow{AB}. Suy ra \overrightarrow{OA} - \overrightarrow{BO} =
\overrightarrow{AB} sai.

    Ta có: \overrightarrow{AB} =
\overrightarrow{DC} đúng.

  • Câu 15: Nhận biết

    Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?

     

    Ta có: \overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}+\overrightarrow{OD} \Leftrightarrow \overrightarrow{OA}-\overrightarrow{OC}=\overrightarrow{OD}-\overrightarrow{OB}\Leftrightarrow \overrightarrow{CA}= \overrightarrow{BD} (Sai).

  • Câu 16: Nhận biết

    Viết phương trình tham số của đường thẳng đi qua hai điểm C(–1\ ;\ 3)D(3\ ;\ 1).

    Ta có:

    \left\{ \begin{matrix}C( - 1;3) \in CD \\{\overrightarrow{u}}_{CD} = \overrightarrow{CD} = (4; - 2) = - 2( - 2;1)\\\end{matrix} ight.\ \overset{ightarrow}{}CD:\left\{ \begin{matrix}x = - 1 - 2t \\y = 3 + t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 17: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(2;5),B(0;2),C(2;1). Tính độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC?

    Gọi M là trung điểm của BC

    Khi đó tọa độ của M là: \left\{\begin{matrix}x_{M} = \dfrac{2 + 0}{2} = 1 \\y_{M} = \dfrac{1 + 2}{2} = \dfrac{3}{2} \\\end{matrix} ight.\  \Rightarrow M\left( 1;\dfrac{3}{2}ight)

    Suy ra độ dài đường trung tuyến kẻ từ đỉnh A hay độ dài đoạn AM là:

    AM = \sqrt{(1 - 2)^{2} + \left(
\frac{3}{2} - 5 ight)^{2}} = \frac{\sqrt{53}}{2}

    Vậy độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC là \frac{\sqrt{53}}{2}.

  • Câu 18: Nhận biết

    Trong hệ tọa độ Oxy cho tọa độ hai điểm A(2; - 3),B(4;7). Tìm tọa độ trung điểm I của đoạn thẳng AB?

    Tọa độ trung điểm của AB là: \left\{\begin{matrix}x_{I} = \dfrac{2 + 4}{2} = 3 \\y_{I} = \dfrac{- 3 + 7}{2} = 2 \\\end{matrix} ight.\  \Rightarrow I(3;2)

  • Câu 19: Vận dụng

    Cho tứ giác ABCD. Trên cạnh AB,\ \ CD lấy lần lượt các điểm M,\ \ N sao cho 3\ \overrightarrow{AM} = 2\
\overrightarrow{AB}3\
\overrightarrow{DN} = 2\ \overrightarrow{DC}. Tính vectơ \overrightarrow{MN} theo hai vectơ \overrightarrow{AD},\ \
\overrightarrow{BC}.

    Ta có \overrightarrow{MN} =
\overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DN}\overrightarrow{MN} = \overrightarrow{MB}
+ \overrightarrow{BC} + \overrightarrow{CN}.

    Suy ra 3\ \overrightarrow{MN} =\overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DN} +2\left( \overrightarrow{MB} + \overrightarrow{BC} + \overrightarrow{CN}ight)

    = \left( \overrightarrow{MA} +
2\overrightarrow{MB} ight) + \overrightarrow{AD} +
2\overrightarrow{BC} + \left( \overrightarrow{DN} + 2\overrightarrow{CN}
ight).

    Theo bài ra, ta có \overrightarrow{MA} +
2\ \overrightarrow{MB} = \overrightarrow{0}\overrightarrow{DN} + 2\ \overrightarrow{CN} =
\overrightarrow{0}.

    Vậy 3\ \overrightarrow{MN} =\overrightarrow{AD} + 2\ \overrightarrow{BC}\Leftrightarrow\overrightarrow{MN} = \frac{1}{3}\overrightarrow{AD} +\frac{2}{3}\overrightarrow{BC}.

  • Câu 20: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(2;4), B(5;0)C(2;1). Trung tuyến BM của tam giác đi qua điểm N có hoành độ bằng 20 thì tung độ của điểm N bằng bao nhiêu?

    \left\{ \begin{matrix}
A(2;4) \\
C(2;1) \\
\end{matrix} ight.\ \overset{ightarrow}{}M\left( 2;\frac{5}{2}
ight) ightarrow \overrightarrow{MB} = \left( 3; - \frac{5}{2}
ight) = \frac{1}{2}(6; - 5)

    \overset{ightarrow}{}MB:\left\{
\begin{matrix}
x = 5 + 6t \\
y = - 5t \\
\end{matrix} ight.\ .

    Ta có: N\left( 20;y_{N} ight) \in
BM\overset{ightarrow}{}\left\{ \begin{matrix}
20 = 5 + 6t \\
y_{N} = - 5t \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
t = \frac{5}{2} \\
y_{N} = - \frac{25}{2} \\
\end{matrix} ight.\ \overset{ightarrow}{}

    Chọn - \frac{25}{2}.

  • Câu 21: Nhận biết

    Cho tam giác ABC có tọa độ ba đỉnh A(1;2),B(3; - 2),C(2;3). Trọng tâm G của tam giác ABC là:

    Vì G là trọng tâm tam giác ABC nên tọa độ G là nghiệm hệ phương trình:

    \left\{ \begin{matrix}\dfrac{x_{A} + x_{B} + x_{C}}{2} = x_{G} \\\dfrac{y_{A} + y_{B} + y_{C}}{2} = y_{G} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{G} = 2 \\y_{G} = 1 \\\end{matrix} ight.\  \Rightarrow G(2;1)

  • Câu 22: Vận dụng

    Cho đường tròn \left( C_{m} ight):x^{2} + y^{2} + 2(m - 1)x -
2my - 4 = 0. Biết rằng khi giá trị m thay đổi, đường tròn \left( C_{m} ight) luôn đi qua điểm I cố định có hoành độ dương. Xác định giá trị của tham số m sao cho tiếp tuyến của đường tròn \left( C_{m} ight) tại I song song với (d):x - 2y - 1 = 0?

    Gỉa sử đường tròn luôn đi qua điểm I\left( x_{0};y_{0} ight) cố định khi m thay đổi. Khi đó:

    {x_{0}}^{2} + {y_{0}}^{2} + 2(m - 1)x_{0}
- 2my_{0} - 4 = 0 với mọi m

    \Leftrightarrow m\left( 2x_{0} - 2y_{0}
ight) + {x_{0}}^{2} + {y_{0}}^{2} - 2x_{0} - 4 = 0 với mọi m

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x_{0} - 2y_{0} = 0 \\
{x_{0}}^{2} + {y_{0}}^{2} - 2x_{0} - 4 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = y_{0} \\
2{x_{0}}^{2} - 2x_{0} - 4 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = y_{0} = - 1 \\
x_{0} = y_{0} = 2 \\
\end{matrix} ight.

    Vậy ta có điểm I(2;2)

    Đường tròn có tâm J(1 - m;m). VTPT của tiếp tuyến của đường tròn tại I là \overrightarrow{IJ} = ( - m - 1;m -
2)

    Để tiếp tuyến tại I song song với đường thẳng (d) nên tồn tại giá trị k sao cho:

    \overrightarrow{IJ} = k(1; - 2)
\Leftrightarrow \left\{ \begin{matrix}
- m - 1 = k \\
m - 2 = - 2k \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m = - 4 \\
k = 3 \\
\end{matrix} ight.

    Vậy giá trị m cần tìm là m = -
4.

  • Câu 23: Thông hiểu

    Trong hệ trục tọa độ Oxy cho đường thẳng (d):2x - y - 4 = 0. Một đường tròn (C) tiếp xúc với các trục tọa độ và có tâm nằm trên đường thẳng (d). Kết quả nào dưới đây đúng?

    Ta có tâm đường tròn thuộc đường thẳng d nên I(m;2m - 4) \in (d). Theo giả thiết để bài ta có:

    d(I;Ox) = d(I;Oy)

    \Leftrightarrow |2m - 4| = |m|
\Leftrightarrow \left\lbrack \begin{matrix}
m = 4 \\
m = \frac{4}{3} \\
\end{matrix} ight.

    Với m = \frac{4}{3} \Rightarrow I\left(
\frac{4}{3}; - \frac{4}{3} ight)

    \Rightarrow R = d(I;Oy) = |m| =
\frac{4}{3}

    Vậy phương trình đường tròn là: \left( x
- \frac{4}{3} ight)^{2} + \left( x + \frac{4}{3} ight)^{2} =
\frac{16}{9}

    Với m = 4 \Rightarrow I(4;4)

    \Rightarrow R = d(I;Oy) = |m| =
4

    Vậy phương trình đường tròn là: (x -
4)^{2} + (y + 4)^{2} = 16.

  • Câu 24: Thông hiểu

    Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:

    Gọi O là giao điểm của AC và BD

    => OA  OC, OB = OD

    Ta có:

    \begin{matrix}   \Rightarrow \overrightarrow {OA}  earrow  \swarrow \overrightarrow {OC} ;\overrightarrow {OB}  earrow  \swarrow \overrightarrow {OD}  \hfill \\   \Rightarrow \overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow 0 ;\overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow 0  \hfill \\  \overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MO}  + \overrightarrow {OA}  + \overrightarrow {MO}  + \overrightarrow {OC}  = 2\overrightarrow {MO}  \hfill \\  \overrightarrow {MB}  + \overrightarrow {MD}  = \overrightarrow {MO}  + \overrightarrow {OB}  + \overrightarrow {MO}  + \overrightarrow {OD}  = 2\overrightarrow {MO}  \hfill \\ \end{matrix}

  • Câu 25: Thông hiểu

    Cho \overrightarrow{a} = (x;2),\ \overrightarrow{b} =
( - 5;1),\ \overrightarrow{c} = (x;7). Tìm x biết \overrightarrow{c} = 2\overrightarrow{a} +
3\overrightarrow{b}.

    Ta có \left\{ \begin{matrix}2\overrightarrow{a} = (2x;4) \\3\overrightarrow{b} = ( - 15;3) \\\end{matrix} ight.\ \overset{}{ightarrow}2\overrightarrow{a} +3\overrightarrow{b} = (2x - 15;7).

    Để \overrightarrow{c} =
2\overrightarrow{a} +
3\overrightarrow{b}\overset{}{\leftrightarrow}\left\{ \begin{matrix}
x = 2x - 15 \\
7 = 7 \\
\end{matrix} ight.\ \overset{}{ightarrow}x = 15.

  • Câu 26: Thông hiểu

    Cho tam giác ABCG là trọng tâm và M là trung điểm BC. Khẳng định nào sau đây sai?

    M là trung điểm của BC suy ra \overrightarrow{MB} + \overrightarrow{MC} =
\overrightarrow{0}. Ta có \left\{
\begin{matrix}
\overrightarrow{GB} = \overrightarrow{GM} + \overrightarrow{MB} \\
\overrightarrow{GC} = \overrightarrow{GM} + \overrightarrow{MC} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{GB} +
\overrightarrow{GC} =
\underset{\overrightarrow{0}}{\overset{\overrightarrow{MB} +
\overrightarrow{MC}}{︸}} + 2\ \overrightarrow{GM} = 2\
\overrightarrow{GM}.

  • Câu 27: Nhận biết

    Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?

    Xét phương trình dạng : x^{2} + y^{2} -
2ax - 2by + c = 0, lần lượt tính các hệ số a,\ b,\ c và kiểm tra điều kiện a^{2} + b^{2} - c > 0.

    x^{2} + y^{2} - 4x + 6y - 12 = 0
ightarrow a = 2,\ b = - 3,\ c = - 12 ightarrow a^{2} + b^{2} - c
> 0.

    Các phương trình 4x^{2} + y^{2} - 10x -
6y - 2 = 0,\ \ x^{2} + 2y^{2} - 4x - 8y + 1 = 0 không có dạng đã nêu loại các đáp án 4x^{2} + y^{2} - 10x
- 6y - 2 = 0x^{2} + 2y^{2} - 4x
- 8y + 1 = 0.

    Đáp án x^{2} + y^{2} - 2x - 8y + 20 =
0 không thỏa mãn điều kiện a^{2} +
b^{2} - c > 0.

  • Câu 28: Nhận biết

    Cho Hypebol (H) có phương trình chính tắc là \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =
1, với a,b > 0. Khi đó khẳng định nào sau đây đúng?

    Khẳng định đúng là: Với c^{2} = a^{2} +
b^{2} (c > 0), tâm sai của hypebol là e = \frac{c}{a}.

  • Câu 30: Nhận biết

    Cho tam giác ABC đều cạnh a. Mệnh đề nào sau đây đúng?

    Độ dài các cạnh của tam giác là a thì độ dài các vectơ \left| \overrightarrow{AB} ight| = \left|
\overrightarrow{BC} ight| = \left| \overrightarrow{CA} ight| =
a.

  • Câu 31: Thông hiểu

    Cho elip (E): \frac{x^{2}}{25}+\frac{y^{2}}{9}=1. Trong các khẳng định sau, khẳng định nào sai?

    Phương trình elip (E) có dạng \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1;\left( {a = 5;b = 3} ight)

    Ta có: b = \sqrt {{a^2} - {c^2}}  = 4

    Khi đó: {F_1}\left( { - 4;0} ight);{F_2}\left( {4;0} ight) đúng

    Ta có: \frac{c}{a}=\frac{4}{5} đúng

    Đỉnh A1(–a; 0) => A1(–5; 0) đúng

    Độ dài trục nhỏ là 2b = 2.3 = 6 ≠ 3 

    Vậy khẳng định sai là: (E) có độ dài trục nhỏ bằng 3.

  • Câu 32: Nhận biết

    Nhận xét nào đúng về vị trí tương đối của hai đường thẳng (d):2x + 3y + 15 =
0(\Delta):x - 2y - 3 =
0?

    Ta có:

    Vectơ pháp tuyến của đường thẳng (d):2x +
3y + 15 = 0 là: \overrightarrow{n_{d}} = (2;3)

    Vectơ pháp tuyến của đường thẳng (\Delta):x - 2y + 3 = 0 là: \overrightarrow{n_{\Delta}} = (1; -
2)

    Suy ra \overrightarrow{n_{d}}\overrightarrow{n_{d}} không cùng phương và \overrightarrow{n_{d}}.\overrightarrow{n_{d}} = 2
- 6 = - 4 eq 0

    Suy ra hai đường thẳng cắt nhau và không vuông góc.

  • Câu 33: Thông hiểu

    Cho tam giác ABC, gọi M là trung điểm của BCG là trọng tâm của tam giác ABC. Đẳng thức vectơ nào sau đây đúng?

    Ta có AM = \frac{3}{2}AG

    Mặt khác \overrightarrow{AM}\overrightarrow{AG} cùng hướng \mathbf{\Rightarrow}\overrightarrow{AM} =
\frac{3}{2}\overrightarrow{AG} hay 2\overrightarrow{AM} =
3\overrightarrow{AG}.

  • Câu 34: Nhận biết

    Phương trình tham số của đường thẳng nào sau đây có vectơ chỉ phương \overrightarrow{u}=(1;3)

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 1 \hfill \\  y = 3t + 2 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;3} ight)

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 1 \hfill \\  y = 2t + 3 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;2} ight).

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 2 \hfill \\  y = t + 3 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;1} ight).

    Đường thẳng có phương trình tham số \left\{ \begin{gathered}  x = t + 3 \hfill \\  y = 2t + 1 \hfill \\ \end{gathered}  ight. có vectơ chỉ phương là \overrightarrow u  = \left( {1;2} ight).

  • Câu 35: Vận dụng

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} ight. và hai điểm A(1;2), B( -
2;m). Tìm tất cả các giá trị của tham số m để AB nằm cùng phía đối với d.

    d:\left\{ \begin{matrix}
x = 2 + t \\
y = 1 - 3t \\
\end{matrix} ight.\ \overset{}{ightarrow}d:3x + y - 7 = 0. Khi đó điều kiện bài toán trở thành

    \left( 3x_{A} + y_{A} - 7 ight)\left(
3x_{B} + y_{B} - 7 ight) > 0 \Leftrightarrow - 2(m - 13) > 0
\Leftrightarrow m < 13.

  • Câu 36: Nhận biết

    Trong mặt phẳng tọa độ Oxy, mỗi đường thẳng có bao nhiêu vectơ pháp tuyến?

    Một đường thẳng có vô số vectơ pháp tuyến và chúng có cùng phương với nhau.

  • Câu 37: Nhận biết

    Đường Elip \frac{x^{2}}{16} + \frac{y^{2}}{7} = 1 có tiêu cự bằng

    Elip \frac{x^{2}}{16} + \frac{y^{2}}{7} =
1a^{2} = 16, b^{2} = 7 suy ra c^{2} = a^{2} - b^{2} = 16 - 7 = 9 \Leftrightarrow
c = 3.

    Vậy tiêu cự 2c = 2.3 = 6.

  • Câu 38: Nhận biết

    Cho tam giác ABCAM là một đường trung tuyến. Biểu diễn vectơ \overrightarrow {AM} theo hai vectơ \overrightarrow {AB}\overrightarrow {AC}.

     Vì M là trung điểm BC nên \overrightarrow {AB}  + \overrightarrow {AC}  = 2\overrightarrow {AM}  \Leftrightarrow \overrightarrow {AM}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC}.

  • Câu 39: Nhận biết

    Cho tam giác ABC và đặt \overrightarrow{a} = \overrightarrow{BC},\ \
\overrightarrow{b} = \overrightarrow{AC}. Cặp vectơ nào sau đây cùng phương?

    Dễ thấy - 10\ \overrightarrow{a} -
2\overrightarrow{b} = - \ 2\ \left( 5\overrightarrow{a} +
\overrightarrow{b} ight)\overset{}{ightarrow} hai vectơ 5\overrightarrow{a} + \overrightarrow{b},\
\  - 10\overrightarrow{a} - 2\overrightarrow{b} cùng phương.

  • Câu 40: Nhận biết

    Cho \overrightarrow{a}\overrightarrow{b} là các vectơ khác \overrightarrow{0} với \overrightarrow{a} là vectơ đối của \overrightarrow{b}. Khẳng định nào sau đây sai?

    Ta có \overrightarrow{a} = -
\overrightarrow{b}. Do đó, \overrightarrow{a}\overrightarrow{b} cùng phương, cùng độ dài và ngược hướng nhau.

    Chọn đáp án sai là: Hai vectơ \overrightarrow{a},\ \ \overrightarrow{b} chung điểm đầu.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 9 Phương pháp tọa độ trong mặt phẳng Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 4 lượt xem
Sắp xếp theo