Tìm m để góc tạo bởi hai đường thẳng và
một góc bằng 30°.
Ta có:
Tìm m để góc tạo bởi hai đường thẳng và
một góc bằng 30°.
Ta có:
Cho phương trình Hypebol . Độ dài trục thực của Hypebol đó là
Ta có: ta có: a = 4; b = 3
=> Độ dài trục thực của Hypebol đó là 2a = 8
Cho tọa độ hai điểm và
. Khẳng định nào sau đây đúng?
Ta có:
Trên hệ trục tọa độ cho đường tròn . Trong các điểm sau điểm nào nằm trên đường tròn đã cho?
Thay tọa độ điểm vào phương trình đường tròn
ta được:
Vậy điểm thuộc đường tròn là .
Một vectơ pháp tuyến của đường thẳng là:
Một vectơ pháp tuyến của đường thẳng là
.
Hypebol có hai tiêu điểm là:
Ta có : Các tiêu điểm là
,
Trong hệ tọa độ cho ba điểm
và
Tìm điểm
thuộc trục hoành sao cho biểu thức
đạt giá trị nhỏ nhất.
Ta có
Chọn điểm sao cho
Gọi , từ
ta có
Khi đó
Để nhỏ nhất
nhỏ nhất. Mà
thuộc trục hoành nên
nhỏ nhất khi
là hình chiếu vuông góc của
lên trục hoành
Trong mặt phẳng tọa độ Oxy cho đường thẳng tiếp xúc với đường tròn
, cắt các trục
lần lượt tại các điểm
. Tam giác
có diện tích nhỏ nhất là:
Hình vẽ minh họa
Gọi là giao điểm của đường thẳng
và
là giao điểm của đường thẳng
và
Khi đó:
Xét tam giác OAB vuông tại O ta có:
Từ (*)
Vậy giá trị nhỏ nhất của diện tích tam giác OAB bằng 1.
Cho tam giác vuông tại
là trung điểm của
Khẳng định nào sau đây đúng?
Vì là trung điểm của
nên
Cho tam giác có
thỏa mãn điều kiện
. Xác định vị trí điểm
Gọi là trọng tâm tam giác
.
Ta có .
Cho Khẳng định nào sau đây là đúng?
Ta có và
Xét tỉ số và
không cùng phương. Loại đáp án
và
ngược hướng.
Xét tỉ số không cùng phương. Loại đáp án Hai vectơ
đối nhau.
Xét tỉ số và
cùng hướng.
Chọn đáp án và
cùng hướng.
Tìm m để đường thẳng và
tạo với nhau một góc
?
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Hai đường thẳng vuông góc với nhau khi và chỉ khi:
Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi .
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Loại đáp án vì không có dạng
Xét đáp án
loại.
Xét đáp án
loại.
Xét đáp án
Chọn đáp án này.
Cho 4 điểm phân biệt. Khi đó
bằng
.
Xác định phương trình tham số của đường thẳng . Biết rằng
đi qua điểm
và có một vectơ chỉ phương là
?
Đường thẳng đi qua điểm và nhận
làm vectơ chỉ phương sẽ có phương trình tham số là:
.
Áp dụng với dữ kiện bài toan trên ta được:
Điều kiện nào dưới đây là điều kiện cần và đủ để điểm là trung điểm của đoạn
.
Điểm là trung điểm của đoạn
khi và chỉ khi
và ngược hướng.
Vậy .
Cho đường thẳng và đường thẳng
. Tính góc hợp bởi hai đường thẳng?
Vectơ chỉ phương của là:
Vectơ chỉ phương của là:
Ta có:
Vậy góc hợp bởi hai đường thẳng đã cho bằng .
Cho tam giác vuông cân tại
cạnh
Khẳng định nào sau đây sai?
Dựa vào các đáp án, ta có nhận xét sau:
• đúng, gọi
nằm trên tia đối của tia
sao cho
Và
nằm trên tia đối của tia
sao cho
Dựng hình chữ nhật
suy ra
(quy tắc hình bình hành).
Ta có
• đúng, vì
• sai, xử lý tương tự như ở trên. Chọn đáp án này.
• đúng, vì
Xét vị trí tương đối của hai đường thẳng và
.
Tìm phương trình chính tắc của Elip có độ dài trục lớn bằng và đi qua điểm
:
Ta có phương trình chính tắc Elip (E) có dạng .
Theo giả thiết ta có
.
Mặt khác (E) đi qua nên ta có
.
Vậy phương trình chính tắc của (E) là: .
Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác biết rằng
?
Gọi M, N lần lượt là trung điểm của AB và BC.
I(x; y) là tâm đường tròn ngoại tiếp tam giác ABC khi và chỉ khi:
Gọi là tâm hình bình hành
. Đẳng thức nào sau đây sai?
Xét các đáp án:
Đáp án . Ta có
. Vậy đáp án này đúng.
Đáp án . Ta có
. Vậy đáp án này sai.
Đáp án . Ta có
Vậy đáp án này đúng.
Đáp án . Ta có
. Vậy đáp án này đúng.
Cho tam giác có
là trọng tâm và
là trung điểm của
Đẳng thức nào sau đây đúng?
Vì là trung điểm của
suy ra
Ta có
Cho hai lực và
cùng tác động vào một vật đứng tại điểm O, biết hai lực
và
đều có cường độ là 50 (N) và chúng hợp với nhau một góc 60°. Hỏi vật đó phải chịu một lực tổng hợp có cường độ bằng bao nhiêu?
Hình vẽ minh họa
Theo quy tắc hình bình hành ta có:
Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?
Ta có: (Sai).
Trong mặt phẳng tọa độ , cho hai đường thẳng
và
. Khi đó vị trí tương đối của hai đường thẳng là:
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Ta thấy
Suy ra hai đường thẳng vuông góc với nhau.
Đường trung trực của đoạn thẳng với
,
có một vectơ pháp tuyến là:
Gọi là trung trực đoạn AB, ta có:
Đường tròn đường kính với
có phương trình là:
Cho tam giác đều cạnh
trọng tâm
Tập hợp các điểm
thỏa mãn
là
Gọi lần lượt là trung điểm của
Khi đó
Theo bài ra, ta có
Vậy tập hợp các điểm thỏa mãn
là đường trung trực của đoạn thẳng
cũng chính là đường trung trực của đoạn thẳng
vì
là đường trung bình của tam giác
Hypebol có nửa trục thực là , tiêu cự bằng
có phương trình chính tắc là:
Ta có :
Phương trình chính tắc của Hyperbol là
Cho hình vuông , dựng các hình vuông
với
là tâm các hình vuông biểu diễn như hình vẽ dưới đây:
Biết các hình vuông nhỏ có kích thước . Tính độ dài vectơ:
Hình vẽ minh họa
Ta có:
Khi đó tổng vecto cần tính có kết quả là:
Trong mặt phẳng tọa độ , cho tọa độ điểm
và hai đường thẳng
;
. Một đường tròn
có tâm
thuộc đường thẳng
, đi qua điểm
và tiếp xúc với
. Kết luận nào sau đây đúng?
Ta có:
Lại có đường tròn tâm I đi qua P và tiếp xúc với đường thẳng nên
Vậy khẳng định đúng là: .
Cho tam giác đều cạnh
. Tính độ dài
.
Gọi là trung điểm
. Suy ra
.
Áp dụng định lí Pytago trong tam giác vuông . Suy ra
.
Cho hai điểm . Tọa độ trung điểm của đoạn AB là:
Gọi M là trung điểm của đoạn thẳng AB. Khi đó tọa độ điểm M là:
Trong mặt phẳng , hãy tìm phương trình chính tắc của elip
. Biết rằng
đi qua
. Mặt khác,
nhìn hai tiêu điểm
dưới một góc 90 độ.
Gọi .
Ta có: đi qua
nên:
.
Vì nhìn hai tiêu điểm
dưới một góc vuông nên:
.
thế vào
ta được:
nên
.
Vậy: .
Đường tròn có tâm
và tiếp xúc với trục
có phương trình là:
Phương trình nào dưới đây là phương trình tổng quát của đường thẳng?
Phương trình tổng quát của đường thẳng là: .
Cho tam giác đều cạnh
Mệnh đề nào sau đây đúng?
Độ dài các cạnh của tam giác là thì độ dài các vectơ
.
Cho tam giác có phương trình các cạnh
lần lượt là
và trực tâm
. Phương trình tổng quát của cạnh
là:
Ta có: nên tọa độ điểm A là nghiệm hệ phương trình:
Ta có
Điểm
Ta có: nên tọa độ điểm B là nghiệm hệ phương trình:
Đường thẳng BC đi qua điểm B nhận làm vecto pháp tuyến có phương trình là: