Đề kiểm tra 45 phút Chương 9 Phương pháp tọa độ trong mặt phẳng

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Phương pháp tọa độ trong mặt phẳng gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tìm m để góc tạo bởi hai đường thẳng ∆1:\sqrt{3}x -y+7=0∆_2: mx + y + 1 = 0 một góc bằng 30°.

    Ta có:

    \begin{matrix}  \cos \left( {{\Delta _1},{\Delta _2}} ight) = \dfrac{{\left| {m\sqrt 3  - 1} ight|}}{{\sqrt {3 + 1} .\sqrt {{m^2} + 1} }} = \dfrac{{\left| {m\sqrt 3  - 1} ight|}}{{2\sqrt {{m^2} + 1} }} \hfill \\  \cos \left( {{\Delta _1},{\Delta _2}} ight) = \cos {30^0} \hfill \\   \Leftrightarrow \dfrac{{\sqrt 3 }}{2} = \dfrac{{\left| {m\sqrt 3  - 1} ight|}}{{2\sqrt {{m^2} + 1} }} \hfill \\   \Leftrightarrow \sqrt 3 \sqrt {{m^2} + 1}  = \left| {m\sqrt 3  - 1} ight| \hfill \\   \Leftrightarrow 3\left( {{m^2} + 1} ight) = {\left( {m\sqrt 3  - 1} ight)^2} \hfill \\   \Leftrightarrow 3\left( {{m^2} + 1} ight) = 3{m^2} - 2m\sqrt 3  + 1 \hfill \\   \Leftrightarrow 2m\sqrt 3  + 2 = 0 \hfill \\   \Leftrightarrow m =  - \dfrac{1}{{\sqrt 3 }} \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu

    Cho phương trình Hypebol \frac{x^{2}}{16}-\frac{y^{2}}{9}=1. Độ dài trục thực của Hypebol đó là

    Ta có: \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 ta có: a = 4; b = 3

    => Độ dài trục thực của Hypebol đó là 2a = 8

  • Câu 3: Nhận biết

    Cho tọa độ hai điểm P(1;2)Q(3; - 4). Khẳng định nào sau đây đúng?

    Ta có: \overrightarrow{PQ} = (3 - 1; - 4
- 2) = (2; - 6)

  • Câu 4: Nhận biết

    Trên hệ trục tọa độ cho đường tròn (C):(x - 1)^{2} + (y + 1)^{2} = 4. Trong các điểm sau điểm nào nằm trên đường tròn đã cho?

    Thay tọa độ điểm Q(3; - 1) vào phương trình đường tròn (C):(x - 1)^{2} + (y
+ 1)^{2} = 4 ta được:

    (3 - 1)^{2} + ( - 1 + 1)^{2} =
4

    Vậy điểm thuộc đường tròn là Q(3; -
1).

  • Câu 5: Nhận biết

    Một vectơ pháp tuyến của đường thẳng d:2x - y - 1 = 0 là:

    Một vectơ pháp tuyến của đường thẳng d:2x
- y - 1 = 0\overrightarrow{n}(2; - 1).

  • Câu 6: Nhận biết

    Hypebol \frac{x^{2}}{16} - \frac{y^{2}}{9} = 1 có hai tiêu điểm là:

    Ta có : \left\{ \begin{matrix}
a^{2} = 16 \\
b^{2} = 9 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 5 \\
b = 3 \\
c = 5 \\
\end{matrix} ight.\ . Các tiêu điểm là F_{1}( - 5;0), F_{2}(5;0).

  • Câu 7: Vận dụng cao

    Trong hệ tọa độ Oxy, cho ba điểm A(1;0),\ B(0;3)C( - 3; - 5). Tìm điểm M thuộc trục hoành sao cho biểu thức P = \left| 2\overrightarrow{MA} -
3\overrightarrow{MB} + 2\overrightarrow{MC} ight| đạt giá trị nhỏ nhất.

    Ta có

    2\overrightarrow{MA} -3\overrightarrow{MB} + 2\overrightarrow{MC} =2\left(\overrightarrow{MI} + \overrightarrow{IA} ight) - 3\left(\overrightarrow{MI} + \overrightarrow{IB} ight) + 2\left(\overrightarrow{MI} + \overrightarrow{IC} ight),\ \forall I

    = \overrightarrow{MI} + 2\left(
\overrightarrow{IA} - 3\overrightarrow{IB} + 2\overrightarrow{IC}
ight),\ \forall I.

    Chọn điểm I sao cho 2\overrightarrow{IA} - 3\overrightarrow{IB} +
2\overrightarrow{IC} = \overrightarrow{0}. (*)

    Gọi I(x;y), từ (*) ta có

    \left\{ \begin{matrix}2(1 - x) - 3(0 - x) + 2( - 3 - x) = 0 \\2(0 - y) - 3(2 - y) + 2( - 5 - y) = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = - 4 \\y = - 16 \\\end{matrix} ight.\  ight.\  \Rightarrow I( - 4; - 16).

    Khi đó P = \left| 2\overrightarrow{MA} -3\overrightarrow{MB} + 2\overrightarrow{MC} ight|= \left|\overrightarrow{MI} ight| = MI.

    Để P nhỏ nhất \Leftrightarrow MI nhỏ nhất. Mà M thuộc trục hoành nên MI nhỏ nhất khi M là hình chiếu vuông góc của I lên trục hoành \overset{}{ightarrow}M( - 4;0).

  • Câu 8: Vận dụng

    Trong mặt phẳng tọa độ Oxy cho đường thẳng (d) tiếp xúc với đường tròn (O;1), cắt các trục Ox,Oy lần lượt tại các điểm A;B. Tam giác OAB có diện tích nhỏ nhất là:

    Hình vẽ minh họa

    Gọi A(a;0);(a eq 0) là giao điểm của đường thẳng (d)Ox

    B(0;b);(b eq 0) là giao điểm của đường thẳng (d)Oy

    Khi đó:

    OA = |a|;OB = |b|

    \Rightarrow S_{OAB} = \frac{1}{2}OA.OB =
\frac{1}{2}|ab|\ \ (*)

    Xét tam giác OAB vuông tại O ta có:

    \frac{1}{OA^{2}} + \frac{1}{OB^{2}} =
\frac{1}{OH^{2}}

    \Leftrightarrow \frac{1}{a^{2}} +
\frac{1}{b^{2}} = 1 \Leftrightarrow a^{2} + b^{2} =
a^{2}b^{2}

    \Rightarrow a^{2}b^{2} = a^{2} + b^{2}
\geq 2|a|.|b|

    \Leftrightarrow |ab| \geq 2

    Từ (*) \Rightarrow S_{OAB} \geq
1

    Vậy giá trị nhỏ nhất của diện tích tam giác OAB bằng 1.

  • Câu 9: Nhận biết

    Cho tam giác ABC vuông tại A, M là trung điểm của BC. Khẳng định nào sau đây đúng?

    M là trung điểm của BC nên \overrightarrow{MB} + \overrightarrow{MC} =
\overrightarrow{0} \Leftrightarrow \overrightarrow{MB} = - \
\overrightarrow{MC}.

  • Câu 10: Thông hiểu

    Cho tam giác ABCM thỏa mãn điều kiện \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} = \overrightarrow{0}. Xác định vị trí điểm M.

    Gọi G là trọng tâm tam giác ABC.

    Ta có \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}
\Rightarrow M \equiv G.

  • Câu 11: Thông hiểu

    Cho \overrightarrow{u} = (3; - 2),\ \overrightarrow{v}= (1;6). Khẳng định nào sau đây là đúng?

    Ta có \overrightarrow{u} +\overrightarrow{v} = (4;4)\overrightarrow{u} - \overrightarrow{v} = (2; -8).

    Xét tỉ số \frac{4}{- 4} eq\frac{4}{4}\overset{}{ightarrow}\overrightarrow{u} +\overrightarrow{v}\overrightarrow{a} = ( - 4;4) không cùng phương. Loại đáp án \overrightarrow{u} +\overrightarrow{v}\overrightarrow{a} = ( - 4;4) ngược hướng.

    Xét tỉ số \frac{3}{1} eq \frac{-2}{6}\overset{}{ightarrow}\overrightarrow{u},\\overrightarrow{v} không cùng phương. Loại đáp án Hai vectơ \overrightarrow{u} = (2; - 1)\ và\\overrightarrow{v} = ( - 2; - 1) đối nhau.

    Xét tỉ số \frac{2}{6} = \frac{- 8}{- 24}= \frac{1}{3} > 0\overset{}{ightarrow}\overrightarrow{u} -\overrightarrow{v}\overrightarrow{b} = (6; - 24) cùng hướng.

    Chọn đáp án \overrightarrow{\mathbf{u}}\mathbf{-}\overrightarrow{\mathbf{v}}\overrightarrow{b} = (6; - 24) cùng hướng.

  • Câu 12: Thông hiểu

    Tìm m để đường thẳng \left( d_{1} ight):x - my + 5 = 0\left( d_{2} ight): - 3x + y - 1 =
0 tạo với nhau một góc 90^{0}?

    Ta có:

    Vectơ pháp tuyến của đường thẳng \left(
d_{1} ight):x - my + 5 = 0 là: \overrightarrow{n_{1}} = (1; - m)

    Vectơ pháp tuyến của đường thẳng \left(
d_{2} ight): - 3x + y - 1 = 0 là: \overrightarrow{n_{2}} = ( - 3;1)

    Hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) vuông góc với nhau khi và chỉ khi:

    \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 0
\Leftrightarrow - 3 - m = 0

    \Leftrightarrow m = - 3

    Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi m = - 3.

  • Câu 13: Nhận biết

    Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?

    Loại đáp án 5x^{2} + 4y^{2} + x - 4y + 1
= 0. vì không có dạng x^{2} + y^{2}
- 2ax - 2by + c = 0.

    Xét đáp án

    x^{2} + y^{2} + 2x - 4y + 9 = \ 0
ightarrow a = - 1,\ b = 2,\ c = - 9 ightarrow a^{2} + b^{2} - c <
0 ightarrowloại.

    Xét đáp án

    x^{2} + y^{2} - 6x + 4y + 13 = 0
ightarrow a = 3,\ b = - 2,\ c = 13 ightarrow a^{2} + b^{2} - c <
0 ightarrowloại.

    Xét đáp án

    2x^{2} + 2y^{2} - 8x - 4y - 6 = 0
\Leftrightarrow x^{2} + y^{2} - 4x - 2y - 3 = 0 ightarrow \left\{
\begin{matrix}
a = 2 \\
b = 1 \\
c = - 3 \\
\end{matrix} ight.\  ightarrow a^{2} + b^{2} - c >
0.

    Chọn đáp án này.

  • Câu 14: Nhận biết

    Cho 4 điểm A, B, C, D phân biệt. Khi đó \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} bằng

     \overrightarrow{AB}-\overrightarrow{DC}+\overrightarrow{BC}-\overrightarrow{AD} =\overrightarrow{AB}+\overrightarrow{BC}-(\overrightarrow{AD}+\overrightarrow{DC})=\overrightarrow{AC}-\overrightarrow{AC}=\overrightarrow{0}.

  • Câu 15: Nhận biết

    Xác định phương trình tham số của đường thẳng d. Biết rằng d đi qua điểm A(1;2) và có một vectơ chỉ phương là \overrightarrow{u} =
(2022;2023)?

    Đường thẳng đi qua điểm M\left(
x_{0};y_{0} ight) và nhận \overrightarrow{u} = \left( u_{1};u_{2}
ight) làm vectơ chỉ phương sẽ có phương trình tham số là: \left\{ \begin{matrix}
x = x_{0} + u_{1}t \\
y = y_{0} + u_{2}t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

    Áp dụng với dữ kiện bài toan trên ta được: \left\{ \begin{matrix}
x = 1 + 2022t \\
y = 2 + 2023t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 16: Nhận biết

    Điều kiện nào dưới đây là điều kiện cần và đủ để điểm O là trung điểm của đoạn AB.

    Điểm O là trung điểm của đoạn AB khi và chỉ khi OA = OB;\ \ \ \overrightarrow{OA} và ngược hướng.

    Vậy \overrightarrow{OA} +
\overrightarrow{OB} = \overrightarrow{0}.

  • Câu 17: Thông hiểu

    Cho đường thẳng \left( d_{1} ight):\left\{ \begin{matrix}
x = 1 - 6t \\
y = - 2 + 5t \\
\end{matrix} ight. và đường thẳng \left( d_{2} ight):\left\{ \begin{matrix}
x = 10 + 5t \\
y = 1 + 6t \\
\end{matrix} ight.. Tính góc hợp bởi hai đường thẳng?

    Vectơ chỉ phương của \left( d_{1}
ight):\left\{ \begin{matrix}
x = 1 - 6t \\
y = - 2 + 5t \\
\end{matrix} ight. là: \overrightarrow{u_{d_{1}}} = ( - 6;5)

    Vectơ chỉ phương của \left( d_{2}
ight):\left\{ \begin{matrix}
x = 10 + 5t \\
y = 1 + 6t \\
\end{matrix} ight. là: \overrightarrow{u_{d_{2}}} = (5;6)

    Ta có: \overrightarrow{u_{d_{1}}}.\overrightarrow{u_{d_{2}}}
= 0 \Rightarrow d_{1}\bot d_{2}

    Vậy góc hợp bởi hai đường thẳng đã cho bằng 90^{0}.

  • Câu 18: Vận dụng

    Cho tam giác OAB vuông cân tại O, cạnh OA =
a. Khẳng định nào sau đây sai?

    Dựa vào các đáp án, ta có nhận xét sau:

    \left| 3\ \overrightarrow{OA} + 4\
\overrightarrow{OB} ight| = 5a đúng, gọi C nằm trên tia đối của tia AO sao cho OC
= 3\ OA \Rightarrow 3\ \overrightarrow{OA} =
\overrightarrow{OC}.D nằm trên tia đối của tia BO sao cho OD = 4\ OB \Rightarrow 4\
\overrightarrow{OB} = \overrightarrow{OD}.Dựng hình chữ nhật OCED suy ra \overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{OE} (quy tắc hình bình hành).

    Ta có \left| 3\overrightarrow{OA} +
4\overrightarrow{OB} ight| = \left| \overrightarrow{OC} +
\overrightarrow{OD} ight| = \left| \overrightarrow{OE} ight| = OE =
CD = \sqrt{OC^{2} + OD^{2}} = 5a.

    \left| 2\ \overrightarrow{OA} ight| +
\left| 3\ \overrightarrow{OB} ight| = 5a đúng, vì \left| 2\ \overrightarrow{OA} ight| + \left| 3\
\overrightarrow{OB} ight| = 2\left| \overrightarrow{OA} ight| +
3\left| \overrightarrow{OB} ight| = 2a + 3a = 5a.

    \left| 7\ \overrightarrow{OA} - 2\
\overrightarrow{OB} ight| = 5a sai, xử lý tương tự như ở trên. Chọn đáp án này.

    \left| 11\ \overrightarrow{OA} ight| -
\left| 6\ \overrightarrow{OB} ight| = 5a đúng, vì \left| 11\ \overrightarrow{OA} ight| - \left| 6\
\overrightarrow{OB} ight| = 11\left| \overrightarrow{OA} ight| -
6\left| \overrightarrow{OB} ight| = 11a - 6a = 5a.

  • Câu 19: Nhận biết

    Xét vị trí tương đối của hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = - 3 + 4t \\
y = 2 - 6t \\
\end{matrix} ight.d_{2}:\left\{ \begin{matrix}
x = 2 - 2t' \\
y = - 8 + 4t' \\
\end{matrix} ight..

    \left. \ \begin{matrix}
d_{1}:\left\{ \begin{matrix}
x = - 3 + 4t \\
y = 2 - 6t \\
\end{matrix} ight.\  ightarrow A( - 3;2) \in d_{1},\ \
{\overrightarrow{u}}_{1} = (2; - 3) \\
d_{2}:\left\{ \begin{matrix}
x = 1 - 2t' \\
y = 4 + 3t' \\
\end{matrix} ight.\  ightarrow \ \ {\overrightarrow{u}}_{2} = ( -
2;3) \\
\end{matrix} ight\} ightarrow \left\{ \begin{matrix}
\frac{2}{- 2} = \frac{- 3}{3} \\
A\boxed{\in}d_{2} \\
\end{matrix} ight.\  ightarrow d_{1}||d_{2}.

  • Câu 20: Thông hiểu

    Tìm phương trình chính tắc của Elip có độ dài trục lớn bằng 4\sqrt{10} và đi qua điểm A(0;\ 6):

    Ta có phương trình chính tắc Elip (E) có dạng \frac{x^{2)}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1(a
> b > 0).

    Theo giả thiết ta có 2a =
4\sqrt{10} \Rightarrow a =
2\sqrt{10}.

    Mặt khác (E) đi qua A(0;\ 6) nên ta có \frac{6^{2}}{b^{2}} = 1 \Rightarrow b = 6.

    Vậy phương trình chính tắc của (E) là: \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{40}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{36}}\mathbf{=}\mathbf{1}.

  • Câu 21: Thông hiểu

    Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC biết rằng A(6;3),B( - 3;6),C(1; - 2)?

    Gọi M, N lần lượt là trung điểm của AB và BC.

    I(x; y) là tâm đường tròn ngoại tiếp tam giác ABC khi và chỉ khi:

    \left\{ \begin{matrix}
\overrightarrow{MI}.\overrightarrow{AB} = 0 \\
\overrightarrow{MI}.\overrightarrow{BC} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3x + y = 0 \\
x - 2y + 5 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 3 \\
\end{matrix} ight.\  \Leftrightarrow I(1;3)

  • Câu 22: Thông hiểu

    Gọi O là tâm hình bình hành ABCD. Đẳng thức nào sau đây sai?

    Xét các đáp án:

    Đáp án \overrightarrow{OA} -
\overrightarrow{OB} = \overrightarrow{CD}.. Ta có \overrightarrow{OA} - \overrightarrow{OB} =
\overrightarrow{BA} = \overrightarrow{CD}. Vậy đáp án này đúng.

    Đáp án \overrightarrow{OB} -
\overrightarrow{OC} = \overrightarrow{OD} -
\overrightarrow{OA}.. Ta có \left\{
\begin{matrix}
\overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{CB} = -
\overrightarrow{AD} \\
\overrightarrow{OD} - \overrightarrow{OA} = \overrightarrow{AD} \\
\end{matrix} ight.. Vậy đáp án này sai.

    Đáp án \overrightarrow{AB} -
\overrightarrow{AD} = \overrightarrow{DB}.. Ta có \overrightarrow{AB} - \overrightarrow{AD} =
\overrightarrow{DB}. Vậy đáp án này đúng.

    Đáp án \overrightarrow{BC} -
\overrightarrow{BA} = \overrightarrow{DC} -
\overrightarrow{DA}.. Ta có \left\{
\begin{matrix}
\overrightarrow{BC} - \overrightarrow{BA} = \overrightarrow{AC} \\
\overrightarrow{DC} - \overrightarrow{DA} = \overrightarrow{AC} \\
\end{matrix} ight.. Vậy đáp án này đúng.

  • Câu 23: Thông hiểu

    Cho tam giác ABCG là trọng tâm và I là trung điểm của BC. Đẳng thức nào sau đây đúng?

    I là trung điểm của BC suy ra \overrightarrow{IB} + \overrightarrow{IC} =
\overrightarrow{0}.

    Ta có \left\{ \begin{matrix}
\overrightarrow{GB} = \overrightarrow{GI} + \overrightarrow{IB} \\
\overrightarrow{GC} = \overrightarrow{GI} + \overrightarrow{IC} \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{GB} +
\overrightarrow{GC} =
\underset{\overrightarrow{0}}{\overset{\overrightarrow{IB} +
\overrightarrow{IC}}{︸}} + 2\ \overrightarrow{GI} = 2\
\overrightarrow{GI}.

  • Câu 24: Vận dụng

    Cho hai lực \overrightarrow{F1}\overrightarrow{F2} cùng tác động vào một vật đứng tại điểm O, biết hai lực \overrightarrow{F1}\overrightarrow{F2} đều có cường độ là 50 (N) và chúng hợp với nhau một góc 60°. Hỏi vật đó phải chịu một lực tổng hợp có cường độ bằng bao nhiêu?

    Hình vẽ minh họa

    Tính tổng hợp lực

    Theo quy tắc hình bình hành ta có:

    \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  = \overrightarrow {{F_{hl}}}

    \begin{matrix}   \Rightarrow {\left| {\overrightarrow {{F_{hl}}} } ight|^2} = {\left| {\overrightarrow {{F_1}} } ight|^2} + {\left| {\overrightarrow {{F_2}} } ight|^2} + 2\left| {\overrightarrow {{F_1}} } ight|.\left| {\overrightarrow {{F_2}} } ight|.\cos {60^0} \hfill \\   \Rightarrow {\left| {\overrightarrow {{F_{hl}}} } ight|^2} = {50^2} + {50^2} + 2.50.50.\dfrac{1}{2} = 7500 \hfill \\   \Rightarrow \left| {\overrightarrow {{F_{hl}}} } ight| = 50\sqrt 3  \hfill \\ \end{matrix}

  • Câu 25: Nhận biết

    Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?

     

    Ta có: \overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}+\overrightarrow{OD} \Leftrightarrow \overrightarrow{OA}-\overrightarrow{OC}=\overrightarrow{OD}-\overrightarrow{OB}\Leftrightarrow \overrightarrow{CA}= \overrightarrow{BD} (Sai).

  • Câu 26: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng \left( d_{1} ight):11x - 12y + 1 = 0\left( d_{2} ight):12x + 11y + 9 =
0. Khi đó vị trí tương đối của hai đường thẳng là:

    Ta có:

    Vectơ pháp tuyến của đường thẳng \left(
d_{1} ight):11x - 12y + 1 = 0 là: \overrightarrow{n_{d_{1}}} = (11; -
12)

    Vectơ pháp tuyến của đường thẳng \left(
d_{2} ight):12x + 11y + 9 = 0 là: \overrightarrow{n_{d_{2}}} = (12;11)

    Ta thấy \overrightarrow{n_{d}}.\overrightarrow{n_{d}} =
0

    Suy ra hai đường thẳng vuông góc với nhau.

  • Câu 27: Nhận biết

    Đường trung trực của đoạn thẳng AB với A = (- 3;2), B = ( - 3;3) có một vectơ pháp tuyến là:

    Gọi d là trung trực đoạn AB, ta có: \left\{ \begin{matrix}\overrightarrow{AB} = (0;1) \\d\bot AB \\\end{matrix} ight.\ \overset{ightarrow}{}{\overrightarrow{n}}_{d} =\overrightarrow{AB} = (0;1).

  • Câu 28: Thông hiểu

    Đường tròn đường kính AB với A(3; -
1),B(1; - 5) có phương trình là:

    (C):\left\{ \begin{matrix}
I(2; - 3) \\
R = \frac{1}{2}AB = \frac{1}{2}\sqrt{(1 - 3)^{2} + ( - 5 + 1)^{2}} =
\sqrt{5} \\
\end{matrix} ight.

    ightarrow (C):(x - 2)^{2} + (y + 3)^{2}
= 5.

  • Câu 29: Vận dụng cao

    Cho tam giác đều ABC cạnh a, trọng tâm G. Tập hợp các điểm M thỏa mãn \left| \overrightarrow{MA} + \overrightarrow{MB}
ight| = \left| \overrightarrow{MA} + \overrightarrow{MC}
ight|

    Gọi I,\ \ J lần lượt là trung điểm của AB,\ \ AC. Khi đó \left\{ \begin{matrix}
\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI} \\
\overrightarrow{MA} + \overrightarrow{MC} = 2\overrightarrow{MJ} \\
\end{matrix} ight.\ .

    Theo bài ra, ta có \left|\overrightarrow{MA} + \overrightarrow{MB} ight| = \left|\overrightarrow{MA} + \overrightarrow{MC} ight|\Leftrightarrow \left|2\ \overrightarrow{MI} ight| = \left| 2\ \overrightarrow{MJ} ight|\Leftrightarrow MI = MJ.

    Vậy tập hợp các điểm M thỏa mãn \left| \overrightarrow{MA} +
\overrightarrow{MB} ight| = \left| \overrightarrow{MA} +
\overrightarrow{MC} ight| là đường trung trực của đoạn thẳng IJ, cũng chính là đường trung trực của đoạn thẳng BCIJ là đường trung bình của tam giác ABC.

  • Câu 30: Nhận biết

    Hypebol có nửa trục thực là 4, tiêu cự bằng 10 có phương trình chính tắc là:

    Ta có : \left\{ \begin{matrix}
a = 4 \\
2c = 10 \\
b^{2} = c^{2} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 4 \\
c = 5 \\
b = 3 \\
\end{matrix} ight.\ .

    Phương trình chính tắc của Hyperbol là \frac{x^{2}}{16} - \frac{y^{2}}{9} =
1.

  • Câu 31: Vận dụng cao

    Cho hình vuông ABCD, dựng các hình vuông A_{1}A_{2}A_{3}A_{4};B_{1}B_{2}B_{3}B_{4};C_{1}C_{2}C_{3}C_{4};D_{1}D_{2}D_{3}D_{4} với A,B,C,D là tâm các hình vuông biểu diễn như hình vẽ dưới đây:

    Biết các hình vuông nhỏ có kích thước 1cm
\times 1cm. Tính độ dài vectơ:

    \overrightarrow{A_{1}B_{1}} +
\overrightarrow{B_{2}C_{2}} + \overrightarrow{C_{3}D_{3}} +
\overrightarrow{D_{4}A_{4}}

    + \overrightarrow{A_{2}B_{2}} +
\overrightarrow{B_{3}C_{3}} + \overrightarrow{C_{4}D_{4}} +
\overrightarrow{D_{1}A_{1}}

    + \overrightarrow{A_{3}B_{3}} +
\overrightarrow{B_{4}C_{4}} + \overrightarrow{C_{1}D_{1}} +
\overrightarrow{D_{2}A_{2}}

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{A_{1}B_{1}} +
\overrightarrow{B_{2}C_{2}} + \overrightarrow{C_{3}D_{3}} +
\overrightarrow{D_{4}A_{4}}

    = \overrightarrow{B_{2}B_{1}} +
\overrightarrow{C_{3}C_{2}} + \overrightarrow{D_{2}D_{3}} +
\overrightarrow{A_{1}E} + \overrightarrow{EA_{4}} =
\overrightarrow{X_{1}Z_{1}}

    \overrightarrow{A_{2}B_{2}} +
\overrightarrow{B_{3}C_{3}} + \overrightarrow{C_{4}D_{4}} +
\overrightarrow{D_{1}A_{1}}

    = \overrightarrow{B_{3}B_{2}} +
\overrightarrow{C_{4}C_{3}} + \overrightarrow{D_{1}D_{4}} +
\overrightarrow{A_{2}F} + \overrightarrow{FA_{1}} =
\overrightarrow{X_{2}Z_{2}}

    \overrightarrow{A_{3}B_{3}} +
\overrightarrow{B_{4}C_{4}} + \overrightarrow{C_{1}D_{1}} +
\overrightarrow{D_{2}A_{2}}

    = \overrightarrow{B_{4}B_{3}} +
\overrightarrow{C_{1}C_{4}} + \overrightarrow{D_{2}D_{1}} +
\overrightarrow{A_{3}K} + \overrightarrow{KA_{2}} =
\overrightarrow{X_{3}Z_{3}}

    Khi đó tổng vecto cần tính có kết quả là:

    |\overrightarrow{A_{1}B_{1}} +
\overrightarrow{B_{2}C_{2}} + \overrightarrow{C_{3}D_{3}} +
\overrightarrow{D_{4}A_{4}}

    + \overrightarrow{A_{2}B_{2}} +
\overrightarrow{B_{3}C_{3}} + \overrightarrow{C_{4}D_{4}} +
\overrightarrow{D_{1}A_{1}}

    + \overrightarrow{A_{3}B_{3}} +
\overrightarrow{B_{4}C_{4}} + \overrightarrow{C_{1}D_{1}} +
\overrightarrow{D_{2}A_{2}}|

    = \left| \overrightarrow{X_{1}Z_{1}} +
\overrightarrow{X_{2}Z_{2}} + \overrightarrow{X_{3}Z_{3}} ight| =
\left| \overrightarrow{MN} + \overrightarrow{MQ} ight| = \left|
\overrightarrow{MP} ight| = \sqrt{34}

  • Câu 32: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho tọa độ điểm P( - 2;1) và hai đường thẳng \left( d_{1} ight):x + 3y + 8 = 0; \left( d_{2} ight):3x - 4y + 10 =
0. Một đường tròn (C) có tâm I(a;b) thuộc đường thẳng \left( d_{1} ight), đi qua điểm P và tiếp xúc với \left( d_{2} ight). Kết luận nào sau đây đúng?

    Ta có:

    I(a;b) \in \left( d_{1} ight)
\Rightarrow I( - 3b - 8;b)

    Lại có đường tròn tâm I đi qua P và tiếp xúc với đường thẳng \left( d_{2} ight) nên

    IP = d(I;\Delta')

    \Leftrightarrow \sqrt{( - 2 + 3b +
8)^{2} + (1 - b)^{2}} = \frac{\left| 3( - 3b - 8) - 4b + 10
ight|}{\sqrt{3^{2} + ( - 4)^{2}}}

    \Leftrightarrow 25\left( 10b^{2} + 34b +
37 ight) = | - 13b - 14|^{2}

    \Leftrightarrow (9b + 27)^{2} = 0
\Leftrightarrow b = - 3 \Rightarrow a = 1

    \Rightarrow a - b = 4

    Vậy khẳng định đúng là: a - b =
4.

  • Câu 33: Thông hiểu

    Cho tam giác đều ABC cạnh a. Tính độ dài \overrightarrow{AB}+\overrightarrow{AC}.

     

    Gọi M là trung điểm BC. Suy ra \left|\overrightarrow {AB}+\overrightarrow {AC}ight|=\left|2\overrightarrow {AM}ight|=2AM.

    Áp dụng định lí Pytago trong tam giác vuông AMB. Suy ra AM=\frac{a\sqrt3}2 \Rightarrow 2AM=a\sqrt3.

  • Câu 34: Nhận biết

    Cho hai điểm A(4; - 1),B( - 2;5). Tọa độ trung điểm của đoạn AB là:

    Gọi M là trung điểm của đoạn thẳng AB. Khi đó tọa độ điểm M là:

    \left\{ \begin{matrix}x_{M} = \dfrac{4 + ( - 2)}{2} = 1 \\y_{M} = \dfrac{- 1 + 5}{2} = 2 \\\end{matrix} ight.\  \Rightarrow M(1;2)

  • Câu 35: Vận dụng

    Trong mặt phẳng Oxy, hãy tìm phương trình chính tắc của elip (E). Biết rằng (E) đi qua M\left( \frac{3}{\sqrt{5}};\frac{4}{\sqrt{5}}
ight). Mặt khác, M nhìn hai tiêu điểm F_{1},\ F_{2} dưới một góc 90 độ.

    Gọi (E):\ \ \frac{x^{2}}{a^{2}} +
\frac{y^{2}}{b^{2}} = 1.

    Ta có: (E) đi qua M\left( \frac{3}{\sqrt{5}};\frac{4}{\sqrt{5}}
ight) nên: \frac{9}{5a^{2}} +
\frac{16}{5b^{2}} = 1 \Leftrightarrow \ \ 16a^{2} + 9b^{2} =
5a^{2}b^{2}. (1)

    M nhìn hai tiêu điểm F_{1},\ F_{2} dưới một góc vuông nên: OM = \frac{F_{1}F_{2}}{2} = c.

    \Leftrightarrow \ \ OM^{2} =
c^{2} \Leftrightarrow \ \
\frac{9}{5} + \frac{16}{5} = c^{2} \Leftrightarrow \ \ a^{2} - b^{2} = c^{2} =
5 \Leftrightarrow \ \ a^{2} = 5 +
b^{2} thế vào (1) ta được:

    16\left( 5 + b^{2} ight) + 9b^{2} =
5\left( 5 + b^{2} ight)b^{2} \Leftrightarrow \ \ b^{4} = 16 \Rightarrow \ \ b^{2} = 4 nên a^{2} = 9.

    Vậy: (E):\ \ \frac{x^{2}}{9} +
\frac{y^{2}}{4} = 1.

  • Câu 37: Thông hiểu

    Đường tròn (C) có tâm I(2;3) và tiếp xúc với trục Ox có phương trình là:

    (C):\left\{ \begin{matrix}
I(2;3) \\
R = d\lbrack I;Oxbrack = 3 \\
\end{matrix} ight.\  ightarrow (C):(x - 2)^{2} + (y - 3)^{2} =
9.

  • Câu 38: Nhận biết

    Phương trình nào dưới đây là phương trình tổng quát của đường thẳng?

    Phương trình tổng quát của đường thẳng là: x = 2y.

  • Câu 39: Nhận biết

    Cho tam giác ABC đều cạnh a. Mệnh đề nào sau đây đúng?

    Độ dài các cạnh của tam giác là a thì độ dài các vectơ \left| \overrightarrow{AB} ight| = \left|
\overrightarrow{BC} ight| = \left| \overrightarrow{CA} ight| =
a.

  • Câu 40: Vận dụng

    Cho tam giác ABC có phương trình các cạnh AB;AC lần lượt là 5x - 2y + 6 = 0,4x + 7y - 21 = 0 và trực tâm H(1;1). Phương trình tổng quát của cạnh BC là:

    Ta có: A = AB \cap AC nên tọa độ điểm A là nghiệm hệ phương trình:

    \left\{ \begin{matrix}
5x - 2y + 6 = 0 \\
4x + 7y - 21 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 3 \\
\end{matrix} ight.

    \Rightarrow A(0;3) \Rightarrow
\overrightarrow{AH} = (1; - 2)

    Ta có BH\bot AC \Rightarrow BH:7x - 4y +
a = 0

    Điểm H \in BH \Leftrightarrow 7 - 4 + a =
0 \Leftrightarrow a = - 3

    \Rightarrow BH:7x - 4y - 3 =
0

    Ta có: B = AB \cap BH nên tọa độ điểm B là nghiệm hệ phương trình:

    \left\{ \begin{matrix}5x - 2y + 6 = 0 \\7x - 4y - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - 5 \\y = - \dfrac{19}{2} \\\end{matrix} ight.

    \Rightarrow B\left( - 5; - \frac{19}{2}
ight)

    Đường thẳng BC đi qua điểm B nhận \overrightarrow{AH} làm vecto pháp tuyến có phương trình là:

    x + 5 - 2\left( x + \frac{19}{2} ight)
= 0 \Leftrightarrow x - 2y - 14 = 0

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 9 Phương pháp tọa độ trong mặt phẳng Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 1 lượt xem
Sắp xếp theo