Đề kiểm tra 45 phút Chương 9 Tính xác suất theo định nghĩa cổ điển

Mô tả thêm: Đề kiểm tra 1 tiết Toán 10 Tính xác suất theo định nghĩa cổ điển gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Gieo 1 con xúc xắc 1 lần. Biến cố A: “Số chấm xuất hiện nhỏ hơn 4”. Mô tả biến cố A.

     Mô tả biến cố A: A = {1;2;3}.

  • Câu 2: Nhận biết

    Một chiếc hộp đựng 5 chiếc thẻ được đánh số từ 1 đến 5. Rút ngẫu nhiên đồng thời 2 thẻ trong hộp. Xét biến cố A: “Số ghi trên hai thẻ đều là số lẻ”. Tính số phần tử của biến cố A?

    Số phần tử của biến cố A là: C_{3}^{2} =
3

  • Câu 4: Vận dụng

    Cho năm đoạn thẳng có độ dài: 1\ cm, 3\
cm, 5\ cm,7\ cm, 9\
cm. Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng đó. Tính xác suất để ba đoạn thẳng lấy ra là ba cạnh của một tam giác.

    * Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng đã cho có C_{5}^{3} = 10 cách.

    Suy ra n(\Omega) = 10.

    * Gọi A là biến cố "lấy được ba đoạn thẳng là ba cạnh của một tam giác".

    Các trường hợp ba đoạn thẳng là ba cạnh của một tam giác là:

    \left\{ 3;5;7 ight\},\ \left\{ 3;7;9
ight\},\ \left\{ 5;7;9 ight\} (thỏa mãn: hiệu hai cạnh bé hơn cạnh còn lại, tổng hai cạnh lớn hơn cạnh còn lại).

    Do đó n(A) = 3. Vậy sác xuất cần tìm là P(A) = \frac{n(A)}{n(\Omega)} =
\frac{3}{10}.

  • Câu 5: Thông hiểu

    Một thùng có 7 sản phẩm, trong đó có 4 sản phẩm loại I3 sản phẩm loại II. Lấy ngẫu nhiên 2 sản phẩm từ thùng đó. Xác suất để lấy được 2 sản phẩm cùng loại là bao nhiêu?

    Lấy ngẫu nhiên 2 sản phẩm trong 7 sản phẩm thì có C_{7}^{2} = 21 (cách).

    2sản phẩm được lấy ra đều là sản phẩm loại IC_{4}^{2} = 6(cách).

    2sản phẩm được lấy ra đều là sản phẩm loại IIC_{3}^{2} = 3(cách).

    Xác suất để lấy được 2sản phẩm cùng loại là P = \frac{6 + 3}{21} =
\frac{3}{7}.

  • Câu 6: Vận dụng

    Cho tập hợp A =
\left\{ 1,2,\ 3,\ ...,\ 10 ight\}. Chọn ngẫu nhiên ba số từ tập đó. Tính xác suất để trong ba số chọn ra không có hai số nào là hai số nguyên liên tiếp.

    Số phần tử không gian mẫu là n(\Omega) =
C_{10}^{3} = 120.

    Gọi B là biến cố “Ba số chọn ra không có hai số nào là hai số nguyên liên tiếp”.

    \Rightarrow \overline{B} là biến cố “Ba số được chọn có ít nhất hai số là các số tự nhiên liên tiếp”.

    + Bộ ba số dạng \left( 1\ ,\ 2\ ,\ a_{1}
ight), với a_{1} \in
A\backslash\left\{ 1\ ,\ 2 ight\}: có 8 bộ ba số.

    + Bộ ba số có dạng \left( 2\ ,\ 3\ ,\
a_{2} ight), với a_{2} \in
A\backslash\left\{ 1\ ,\ 2\ ,\ 3 ight\}: có 7 bộ ba số.

    + Tương tự mỗi bộ ba số dạng \left( 3\ ,\
4\ ,\ a_{3} ight), \left( 4\ ,\
5\ ,\ a_{4} ight), \left( 5\ ,\
6\ ,\ a_{5} ight), \left( 6\ ,\
7\ ,\ a_{6} ight), \left( 7\ ,\
8\ ,\ a_{7} ight), \left( 8\ ,\
9\ ,\ a_{8} ight), \left( 9\ ,\
10\ ,\ a_{9} ight) đều có 7 bộ.

    \Rightarrow n\left( \overline{B} ight)
= 8 + 8.7 = 64.

    \Rightarrow P(B) = 1 - P\left(
\overline{B} ight) = 1 - \frac{64}{120} = \frac{7}{15}.

  • Câu 7: Vận dụng

    Một lớp học có 40 học sinh trong đó có 4 cặp anh em sinh đôi. Trong buổi họp đầu năm thầy giáo chủ nhiệm lớp muốn chọn ra 3 học sinh để làm cán sự lớp gồm lớp trưởng, lớp phó và bí thư. Xác suất để chọn ra 3 học sinh làm cán sự lớp mà không có cặp anh em sinh đôi nào là bao nhiêu?

    Không gian mẫu là số cách chọn ngẫu nhiên 3 học sinh trong 40 học sinh.

    Suy ra số phần tử không gian mẫu là |\Omega| = C_{40}^{3} = 9880.

    Gọi A là biến cố ''3 học sinh được chọn không có cặp anh em sinh đôi nào''. Để tìm số phần tử của A, ta đi tìm số phần tử của biến cố \overline{A}, với biến cố \overline{A}3 học sinh được chọn luôn có 1 cặp anh em sinh đôi.

    + Chọn 1 cặp em sinh đôi trong 4 cặp em sinh đôi, có C_{4}^{1} cách.

    + Chọn thêm 1 học sinh trong 38 học sinh, có C_{38}^{1} cách.

    Suy ra số phần tử của biến cố \overline{A}\left| \Omega_{\overline{A}} ight| =
C_{4}^{1}.C_{38}^{1} = 152.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = 9880 - 152 =
9728.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{9728}{9880} =
\frac{64}{65}.

  • Câu 8: Nhận biết

    Một hộp chứa: bi xanh, bi đỏ và bi vàng. Lấy ngẫu nhiên một viên bi trong hộp. Gọi A là biến cố: “Lấy được viên bi đỏ”. Biến cố đối của biến cố A là:

    Biến cố đối của biến cố A là “Lấy được viên bi xanh hoặc bi vàng”.

  • Câu 9: Nhận biết

    Xác suất của biến cố A, kí hiệu là:

     Xác suất của biến cố A, kí hiệu là: P(A).

  • Câu 10: Thông hiểu

    Lấy ngẫu nhiên 3 quả cầu từ hộp gồm 6 quả cầu trắng và 3 quả cầu đen. Tính xác suất để lấy được ba quả cùng màu?

    Số phần tử của không gian mẫu n(\Omega) =
C_{9}^{3} = 84

    Gọi A là biến cố lấy được 3 quả cùng màu

    TH1: Lấy được 3 quả màu trắng có: C_{6}^{3} = 20 cách

    TH2: Lấy được 3 quả màu đen có: C_{3}^{3}
= 1 cách

    \Rightarrow n(A) = 20 + 1 =
21

    Vậy xác suất của biến cố A cần tìm là: P(A) = \frac{n(A)}{n(\Omega)} = \frac{21}{84} =
\frac{1}{4}

  • Câu 11: Vận dụng

    Cho 8 quả cân có trọng lượng lần lượt là 1; 2; 3; 4; 5; 6; 7; 8 (kg). Chọn ngẫu nhiên 3 quả trong số đó. Xác suất để trọng lượng 3 quả không nhỏ hơn 10 (kg) là:

    Chọn ba quả cân có |\Omega| = C_{8}^{3} =
56cách.

    Chọn ba quả cân có tổng trọng lượng nhỏ hơn hoặc bằng 9 có các trường hợp sau:

    TH1: Trong các quả được lấy ra không có quả cân trọng lượng 1 kg.

    Ta có 2 + 3 + 4 = 9 là tổng trọng lượng nhỏ nhất có thể. Do đó trong trường hợp này có đúng 1 cách chọn.

    TH2: Trong các quả được lấy ra có quả cân trọng lượng 1 kg. Khi đó ta có:

    \mathbf{1}\mathbf{+}\mathbf{2}\mathbf{+}\mathbf{3}\mathbf{=}\mathbf{6;1}\mathbf{+}\mathbf{2}\mathbf{+}\mathbf{4}\mathbf{=}\mathbf{7;1}\mathbf{+}\mathbf{2}\mathbf{+}\mathbf{5}\mathbf{=}\mathbf{8;1}\mathbf{+}\mathbf{2}\mathbf{+}\mathbf{6}\mathbf{=}\mathbf{9;1}\mathbf{+}\mathbf{3}\mathbf{+}\mathbf{4}\mathbf{=}\mathbf{8;1}\mathbf{+}\mathbf{3}\mathbf{+}\mathbf{5}\mathbf{=}\mathbf{9}.

    Trường hợp này ta có 6 cách chọn.

    Vậy số cách chọn thỏa mãn yêu cầu bài toán là 56 - 1 - 6 = 49.

    Xác suất cần tính là: \frac{49}{56} =
\frac{7}{8}.

  • Câu 12: Nhận biết

    Một tổ học sinh lớp 10A có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 4 học sinh trong tổ đó để tham gia đội tình nguyện. Tính xác suất để bốn học sinh được chọn đều là nữ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{12}^{4} = 495

    Gọi A là biến cố: “Bốn học sinh được chọn đều là nữ”

    \Rightarrow n(A) = C_{5}^{4} =
5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{495} = \frac{1}{99}

  • Câu 13: Nhận biết

    Một người chọn ngẫu nhiên đồng thời 4 quân bài từ bộ tú lơ khơ 52 quân bài. Tính xác suất của biến cố: “Cả 4 quân bài đều là Át”?

    Số phần tử không gian mẫu: n(\Omega) =
C_{52}^{4}

    Chỉ có đúng 1 cách để lấy được cả 4 quân bài đều là Át nên xác suất cần tìm là:

    P = \frac{1}{C_{52}^{4}}

  • Câu 14: Vận dụng

    Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập các tam giác có các đỉnh là đỉnh của đa giác trên. Xác suất để chọn được một tam giác từ tập X là tam giác cân nhưng không phải là tam giác đều bằng:

    Số các tam giác bất kỳ là n(\Omega) =
C_{18}^{3}.

    Số các tam giác đều là \frac{18}{3} =
6.

    Có 18 cách chọn một đỉnh của đa giác, mỗi đỉnh có 8 cách chọn 2 đỉnh còn lại để được một tam giác cân.

    Số các tam giác cân là: 18.8 = 144.

    Số các tam giác cân không đều là: 144 -
6.3 = 126 \Rightarrow n(A) = 126.

    Xác suất cần tìm là P(A) =
\frac{126}{C_{18}^{3}} = \frac{21}{136}.

  • Câu 15: Nhận biết

    Gieo hai đồng tiền một lần. Kí hiệu S, N lần lượt để chỉ đồng tiền lật sấp, lật ngửa. Mô tả không gian mẫu nào dưới đây là đúng?

    Gieo hai đồng tiền một lần ta được không gian mẫu là: Ω = \left \{ {SN, NS, SS, NN}  ight \}

  • Câu 16: Nhận biết

    Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố không?

    Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố không là “Mặt xuất hiện của con xúc xắc có số chấm là 8 chấm.”

  • Câu 17: Nhận biết

    Gieo một đồng tiền liên tiếp 2 lần. Số phần tử của không gian mẫu là bao nhiêu?

    n(\Omega) = 2.2 = 4.

    (lần 1 có 2 khả năng xảy ra - lần 2 có 2 khả năng xảy ra).

  • Câu 18: Vận dụng

    Một xạ thủ bán từ khoảng cách 100m có xác suất bắn trúng đích là:

    - Tâm 10 điểm: 0,5.

    - Vòng 9 điểm: 0,25.

    - Vòng 8 điểm: 0,1.

    - Vòng 7 điểm: 0,1.

    - Ngoài vòng 7 điểm: 0,05.

    Tính xác suất để sau 3 lần bắn xạ thủ đó được 27 điểm.

    Ta có 27 = 10 + 10 + 7 = 10 + 9 + 8 = 9 +
9 + 9

    Với bộ (10;10;7) có 3 cách xáo trộn điểm các lần bắn

    Với bộ (10;9;8) có 6 cách xáo trộn điểm các lần bắn

    Với bộ (9;9;9) có 1 cách xáo trộn điểm các lần bắn.

    Do đó xác suất để sau 3 lần bắn xạ thủ được đúng 27 điểm là:

    P = 3.0,5^{2}.0,1 + 6.0,5.0,25.0,1 +
0,25^{3} = 0,165625.

  • Câu 19: Vận dụng

    Cho đa giác đều có 24 đỉnh. Chọn ngẫu nhiên bốn đỉnh. Tính xác suất chọn ra được hình chữ nhật có các đỉnh là 4 trong 24 đỉnh của đa giác đó?

    Số phần tử của không gian mẫu là: n(\Omega) = C_{24}^{4}

    Ta vẽ đường tròn ngoại tiếp đa giác đều 24 đỉnh. Vẽ một đường kính của đường tròn này. Khi đó 2 nửa đường tròn đều chứa 12 đình.

    Với mỗi đỉnh thuộc nửa đường tròn thứ nhất ta đều có 1 đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại.

    Như vậy cứ 2 đỉnh thuộc đường tròn thứ nhất ta xác định được hai đỉnh đối xứng với nó qua đường kính và thuộc nửa đường tròn còn lại, bốn đỉnh này tạo thành hình chữ nhật.

    Vậy số hình chữ nhật tạo thành từ 4 đa giác đã cho là C_{12}^{2}

    Xác suất cần tìm là: P =
\frac{C_{12}^{2}}{C_{24}^{4}} = \frac{1}{161}.

  • Câu 20: Nhận biết

    Gieo ngẫu nhiên một con xúc sắc cân đối đồng chất 2 lần. Xác suất mà số chấm của hai lần gieo là như nhau là bao nhiêu?

    Gọi A là biến cố “Số chấm trong hai lần gieo là bằng nhau”.

    n(\Omega) = 36.

    A = \left\{ (1,1);\ (2,2);...;(6,6)
ight\}, n(A) = 6.

    Vậy P(A) = \frac{6}{36} =
\frac{1}{6}.

  • Câu 21: Thông hiểu

    Giáo viên chủ nhiệm mang đến lớp 6 cuốn sách khoa học và 4 cuốn sách tham khảo (các sách khác nhau từng đôi một). Giáo viên cho bạn C mượn ngẫu nhiên 3 quyển sách để đọc. Tính xác suất của biến cố: “X mượn ít nhất một cuốn sách tham khảo”.

    Số phần tử không gian mẫu là: n(\Omega) =
C_{10}^{3} = 120

    Gọi A là biến cố: “X mượn ít nhất một cuốn sách tham khảo”.

    Khi đó \overline{A} là biến cố X mượn 3 cuốn sách khoa học. Khi đó: n\left(
\overline{A} ight) = C_{6}^{3} = 20

    Vậy xác suất của biến cố A là: P(A) = 1 -
P\left( \overline{A} ight) = 1 - \frac{20}{120} =
\frac{5}{6}

  • Câu 22: Nhận biết

    Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất 5 lần. Số phần tử không gian mẫu là bao nhiêu?

    Mỗi lần gieo có hai khả năng nên gieo 5 lần theo quy tắc nhân ta có 2^{5} = 32.

    Số phần tử không gian mẫu là n(\Omega) =
32.

  • Câu 23: Thông hiểu

    Có 3 bó hoa. Bó thứ nhất có 8 hoa hồng, bó thứ hai có 7 bông hoa ly, bó thứ ba có 6 bông hoa huệ. Chọn ngẫu nhiên 7 hoa từ ba bó hoa trên để cắm vào lọ hoa, tính xác suất để trong 7 hoa được có số hoa hồng bằng số hoa ly.

    Không gian mẫu là số cách chọn ngẫu nhiên 7 hoa từ ba bó hoa gồm 21 hoa.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{21}^{7} = 116280.

    Gọi A là biến cố ''7 hoa được ó số hoa hồng bằng số hoa ly''. Ta có các trường hợp thuận lợi cho biến cố A là:

    TH1: Chọn 1 hoa hồng, 1 hoa ly và 5 hoa huệ nên có C_{8}^{1}.C_{7}^{1}.C_{6}^{5} cách.

    TH2: Chọn 2 hoa hồng, 2 hoa ly và 3 hoa huệ nên có C_{8}^{2}.C_{7}^{2}.C_{6}^{3} cách.

    TH3: Chọn 3 hoa hồng, 3 hoa ly và 1 hoa huệ nên có C_{8}^{3}.C_{7}^{3}.C_{6}^{1} cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| =
C_{8}^{1}.C_{7}^{1}.C_{6}^{5} + C_{8}^{2}.C_{7}^{2}.C_{6}^{3} +
C_{8}^{3}.C_{7}^{3}.C_{6}^{1} = 23856.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{23856}{116280} =
\frac{994}{4845}.

  • Câu 24: Vận dụng

    Một bộ đề thi Olympic Toán lớp 11 của Trường THPT Z mà mỗi đề gồm 5 câu được chọn từ 15 câu mức dễ, 10 câu mức trung bình và 5 câu mức khó. Một đề thi được gọi là “Tốt” nếu trong đề thi phải có cả mức dễ, mức trung bình và khó, đồng thời số câu mức khó không ít hơn 2. Lấy ngẫu nhiên một đề thi trong bộ đề trên. Tìm xác suất để đề thi lấy ra là một đề thi “Tốt”.

    Chọn 5 câu trong tổng số 30 câu nên ta có không gian mẫu n(\Omega) = C_{30}^{5}.

    Gọi A là biến cố “Lấy ra được một đề thi “Tốt””.

    TH1: 5 câu lấy ra có 2 câu khó, 1 câu dễ, 2 câu trung bình C_{5}^{2}.C_{15}^{1}.C_{10}^{2} (cách).

    TH2: 5 câu lấy ra có 2 câu khó, 2 câu dễ, 1 câu trung bình C_{5}^{2}.C_{15}^{2}.C_{10}^{1} (cách).

    TH3: 5 câu lấy ra có 3 câu khó, 1 câu dễ, 1 câu trung bình C_{5}^{3}.C_{15}^{1}.C_{10}^{1} (cách).

    Số kết quả thuận lợi của biến cố A là: n(A) = C_{5}^{2}.C_{15}^{1}.C_{10}^{2} +
C_{5}^{2}.C_{15}^{2}.C_{10}^{1} +
C_{5}^{3}.C_{15}^{1}.C_{10}^{1}.

    Xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{3125}{23751}.

  • Câu 25: Thông hiểu

    Một lô sản phẩm gồm 35 sản phẩm đạt chuẩn và 15 sản phẩm lỗi. Lấy ngẫu nhiên 3 sản phẩm từ trong hộp. Tính xác suất để 3 sản phẩm lấy ra đều là sản phẩm đạt chuẩn?

    Ta có: n(\Omega) =
C_{50}^{3}

    Gọi B là biến cố cả ba sản phẩm lấy ra đều là sản phẩm đạt chuẩn.

    Chọn 3 trong 35 sản phẩm đạt chuẩn ta có: \Rightarrow n(B) = C_{35}^{3}

    Vậy xác suất của biến cố B là: P(B) =
\frac{C_{35}^{3}}{C_{50}^{3}} = \frac{187}{560}.

  • Câu 26: Nhận biết

    Tung một đồng xu hai lần liên tiếp. Không gian mẫu trong trò chơi trên là:

     Ta có: Ω = {SS; SN; NS; NN}

  • Câu 28: Nhận biết

    Một hộp gồm có 4 bi xanh và 5 bi đỏ. Lấy ngẫu nhiên hai viên bi trong hộp. Biến cố đối của biến cố D: “Hai viên bi cùng màu” là:

    Biến cố đối của biến cố D: “Hai viên bi cùng màu” là: \overline{D}: “Hai viên bi khác màu”.

  • Câu 29: Nhận biết

    Lấy ngẫu nhiên đồng thời 3 quả cầu từ trong hộp chứa 10 quả cầu đỏ và 5 quả cầu xanh. Xác suất để ba quả cầu được chọn đều là màu xanh bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
C_{15}^{3} = 455

    Gọi A là biến cố lấy được 3 quả màu xanh

    Số phần tử của biến cố A là: n(A) =
C_{5}^{3} = 10

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{10}{455} = \frac{2}{91}

  • Câu 30: Thông hiểu

    Trong hộp có 3 viên bi xanh và 5 viên bi đỏ. Lấy ngẫu nhiên trong hộp 3 viên bi. Xác suất của biến cố A: “Lấy ra được 3 viên bi màu đỏ” là:

    Chọn ba viên bi ngẫu nhiên trong hộp => n\left( \Omega  ight) = C_8^3

    Biến cố A: “Lấy ra được 3 viên bi màu đỏ” => n\left( A ight) = C_5^3

    => Xác suất của biến cố A là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{C_5^3}}{{C_8^3}} = \frac{5}{{28}}

  • Câu 31: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau:

    Cả 3 phương án trên đều đúng.

  • Câu 32: Nhận biết

    Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố A: "kết quả của 3 lần gieo là như nhau" là bao nhiêu?

    Lần đầu có thể ra tùy ý nên xác suất là 1. Lần 2 và 3 phải giống lần 1 xác suất là \frac{1}{2}.

    Theo quy tắc nhân xác suất: P(A) =1.\frac{1}{2}.\frac{1}{2} = \frac{1}{4}.

  • Câu 33: Nhận biết

    Xét phép thử tung con súc sắc 6 mặt hai lần. Xác định số phần tử của không gian mẫu.

    Không gian mẫu gồm các bộ (i;j), trong đó i,j \in \left\{ 1,2,3,4,5,6
ight\}.

    i nhận 6 giá trị, j cũng nhận 6 giá trị nên có 6.6 = 36 bộ (i;j).

    Vậy \Omega = \left\{ (i,j)|i,j =
1,2,3,4,5,6 ight\}n(\Omega) =
36.

  • Câu 34: Thông hiểu

    Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là:

    Các cặp số thỏa mãn tổng số ba thẻ được chọn không vượt quá 8 là: {1; 2; 3}, {1; 2; 4}, {1; 2; 5}, {1; 3; 4}.

    Vậy số phần tử của A là 4 phần tử.

  • Câu 35: Nhận biết

    Gieo 3 đồng tiền. Phép thử ngẫu nhiên này có không gian mẫu là:

    Liệt kê các phần tử: \left\{ NNN,\ SSS,\
NNS,\ SSN,\ NSN,\ SNS,\ NSS,SNN ight\}.

  • Câu 36: Thông hiểu

    Một hộp chứa 3 bi xanh, 2 bi đỏ, 4 bi vàng. Lấy ngẫu nhiên 3 bi. Xác suất để được đúng một bi đỏ là bao nhiêu?

    Số phần tử của không gian mẫu là |\Omega|
= C_{9}^{3} = 84.

    Gọi A là biến cố lấy được đúng 1 bi đỏ.

    Chọn 1 bi đỏ, 1 bi xanh, 1 bi vàng, có C_{2}^{1}.C_{3}^{1}.C_{4}^{1} =
24(cách).

    Chọn 1 bi đỏ, 2 bi xanh, có C_{2}^{1}.C_{3}^{2} = 6(cách).

    Chọn 1 bi đỏ,2 bi vàng, có C_{2}^{1}.C_{4}^{2} = 12(cách).

    Suy ra \left| \Omega_{A} ight| = 24 + 6
+ 12 = 42.

    Xác suất cần tìm là P(A) = \frac{42}{84}
= \frac{1}{2}.

  • Câu 38: Thông hiểu

    Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của biến cố “Tổng số chấm trong hai lần gieo bằng 6”.

    Số phần tử không gian mẫu là: n(\Omega) =
6^{2} = 36

    Gọi A là biến cố: “Tổng số chấm trong hai lần gieo bằng 6”.

    Tập hợp các kết quả của biến cố A là: A =
\left\{ (2;4),(5;1),(1;5),(4;2),(3;3) ight\}

    Suy ra n(A) = 5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{36}

  • Câu 39: Nhận biết

    Thí nghiệm nào không phải là phép thử ngẫu nhiên?

    Phép thử ngẫu nhiên là phép thử mà ta chưa biết được kết quả là gì.

    Đáp án “Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm xem có tất cả bao nhiêu viên bi.” không phải là phép thử vì ta biết chắc chắn kết quả chỉ có thể là một số cụ thể số bi xanh và số bi đỏ.

  • Câu 40: Thông hiểu

    Một đội văn nghệ có 5 nam và 8 nữ, đội trưởng cần lập một nhóm 4 người để tham gia biểu diễn một tiết mục chính. Xác suất để trong bốn người được chọn có ít nhất 3 nam bằng:

    Số phần tử không gian mẫu là: n(\Omega) =
C_{13}^{4}

    Gọi A là biến cố: “chọn được ít nhất 3 nam”

    n(A) = C_{5}^{3}.C_{8}^{1} +
C_{5}^{4}

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{17}{143}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 9 Tính xác suất theo định nghĩa cổ điển Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo