Tìm mệnh đề chứa biến.
“” là mệnh đề chứa biến.
Tìm mệnh đề chứa biến.
“” là mệnh đề chứa biến.
Mệnh đề: " " khẳng định là
Mệnh đề: " " khẳng định là có ít nhất một số thực mà bình phương của nó lớn hơn 33.
Các kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là một số tự nhiên”:
Ta có:
Nếu A và B là tập hợp hữu hạn thì công thức nào sau đây đúng?
Nếu A và B là tập hợp hữu hạn thì
Trong các mệnh đề sau, mệnh đề nào đúng?
Xét: ∃x ∈ R, x > x2. Với thì
.
Xét: ∀x ∈ R, . Sai. Tồn tại
thì
là mệnh đề sai.
Xét: ∀n ∈ N, n2 + 1 chia hết cho 3. . Sai. Vì tồn tại không chia hết cho 3.
Xét: ∃ a∈ Q, a2 = 2. . Sai. Vì không là số hữu tỉ.
Cho các mệnh đề sau đây:
(I). Nếu tam giác đều thì tam giác
có
.
(II). Nếu đều là các số chẵn thì
là một số chẵn.
(III). Nếu tam giác có tổng hai góc bằng
thì tam giác
là tam giác vuông.
Trong các mệnh đề đảo của (I), (II) và (III), có bao nhiêu mệnh đề đúng?
Mệnh đề đảo của
(I). Nếu tam giác có
thì tam giác
đều
Mệnh đề sai.
(II). Nếu là một số chẵn thì
đều là các số chẵn
Mệnh đề sai.
(III). Nếu tam giác là tam giác vuông thì tam giác
có tổng hai góc bằng
Mệnh đề đúng.
Có 1 mệnh đề đảo là đúng.
Cách viết tập hợp nào đúng trong các cách viết sau để xác định tập hợp A các ước dương của 12:
Các ước dương của 12 là: 1; 2; 3; 4; 6; 12
=> Cách viết tập hợp đúng là:
Trong các tập hợp sau đây, tập hợp nào bằng tập hợp :
Ta có:
Tập hợp là tập hợp
.
Vậy tập hợp
Hai mệnh đề sau là mệnh đề gì: “x chia hết cho 9” và “x chia hết cho 3”.
Nếu x chia hết cho 9 thì x chia hết cho 3.
Nếu x chia hết cho 3 thì x có thể không chia hết cho 9.
=> Hai mệnh đề “x chia hết cho 9” và “x chia hết cho 3” là mệnh đề kéo theo.
Kí hiệu có nghĩa là gì?
Cho hai tập hợp và
. Nếu
là tập con của
thì hiệu
gọi là phần bù của
trong
, kí hiệu
.
Trong các mệnh đề sau, mệnh đề nào sai?
Mệnh đề: "Số 23 là hợp số" sai vì => 23 là số nguyên tố.
Cho . Tập A có bao nhiêu tập con có 2 phần tử?
Tập con có phần tử của
là:
có
tập con có
phần tử.
Cho là số thực mệnh đề nào sau đây đúng?
Với nhưng
là mệnh đề sai
mệnh đề
sai.
Với nhưng
là mệnh đề sai
mệnh đề
sai.
Với nhưng
là mệnh đề sai
mệnh đề
sai.
Chọn đáp án
Tìm mệnh đề trong các câu sau.
Các câu “Hôm nay, trời đẹp quá!”, “Bạn ăn cơm chưa?”, “Mấy giờ rồi?” là các câu cảm thán hoặc nghi vấn nên không phải là mệnh đề.
Chọn đáp án Paris là thủ đô của Đức.
Có bao nhiêu mệnh đề trong các câu sau?
Số nguyên dương là số tự nhiên khác 0.
Bạn hãy cố gắng, nhất định bạn sẽ thành công.
Tổng các góc của một tam giác là
Cố lên, sắp đến nơi rồi!
Câu “Số nguyên dương là số tự nhiên khác 0.” và “Tổng các góc của một tam giác là ” là mệnh đề.
Viết mệnh đề sau bằng cách sử dụng kí hiệu hoặc
: “Mọi số nhân với 1 đều bằng chính nó”.
Mệnh đề được viết lại bằng kí hiệu: .
Cho hai tập hợp và
Tìm tất cả các số tự nhiên thuộc cả hai tập
và
Có hai số tự nhiên thuộc cả hai tập
và
là
và
Xác định tập hợp bằng cách liệt kê các phần tử.
Ta có: .
Tập bằng tập nào sau đây?
Ta có:
Cho hai mệnh đề A: “∀ x ∈ R: ” và B: “∃ n ∈ Z:
”. Xét tính đúng, sai của hai mệnh đề A và B.
Với mệnh đề A, thay nên A sai.
Với mệnh đề B, thay nên B đúng.
Mệnh đề nào sau đây là mệnh đề tương đương?
Mệnh đề tương đương là: “Hình thang nội tiếp đường tròn khi và chỉ khi nó là hình thang cân”.
Tập bằng tập nào sau đây?
Ta có:
Tập hợp bằng tập hợp nào sau đây?
Xác định kết quả tập hợp bằng hình vẽ như sau:
Vậy
Cho tập hợp A biểu thị trên trục số như hình dưới. Chọn khẳng định đúng:
Tập hợp A biểu thị trên trục số là nửa khoảng
Phát biểu lại mệnh đề "Nếu n = 2 thì là một hợp số".
Phát biểu lại mệnh đề trên: "n = 2 là điều kiện đủ để là một hợp số".
Khi x là số lẻ, mệnh đề nào sau đây là mệnh đề sai:
Khi x là số lẻ => “x không chia hết cho 4” là mệnh đề đúng.
Khi x là số lẻ “x không chia hết cho 3” và “x chia hết cho 3” là một khẳng định nhưng không xác định được tính hoặc đúng hoặc sai tùy theo giá trị của x => Không phải mệnh đề.
Khi x là số lẻ “x chia hết cho 2” là mệnh đề sai.
Cho tập hợp khác rỗng và
. Tập hợp các giá trị thực của tham số m để
Để thì điều kiện là:
Vậy thỏa mãn điều kiện.
Phủ định của mệnh đề “Phương trình có 2 nghiệm phân biệt” là mệnh đề nào?
Phủ định của mệnh đề P là mệnh đề "không phải P".
Chọn đáp án Phương trình không phải có 2 nghiệm phân biệt.
Tìm mệnh đề phủ định của mệnh đề: “Vịt là một loài chim”.
Phủ định của mệnh đề P là mệnh đề “không phải P"
Chọn đáp án Vịt không phải là một loài chim.
Trong các tập hợp sau đây, tập hợp nào không phải là con của tập hợp A với {
,
và
}
Ta liệt kê các phần tử của tập A: .
Như vậy chỉ có phương án là tập hợp có các phần tử 1, 2, 3 không thuộc tập A nên không là tập con của A.
Có bao nhiêu mệnh đề trong các câu sau?
Hôm nay trời đẹp quá!
Trung Quốc là nước đông dân nhất thế giới.
Năm 2018 là năm nhuận.
Câu “Hôm nay trời đẹp quá!” không phải là mệnh đề. Các câu còn lại đều là mệnh đề.
Cho Tập nào sau đây bằng tập
Tập hợp gồm những phần tử vừa thuộc
vừa thuộc
Tìm mệnh đề đúng.
Tổng của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: là số chẵn nhưng
là số lẻ.
Tích của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: là số chẵn nhưng
là số lẻ.
Tổng của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ. là mệnh đề sai: Ví dụ: là số chẵn nhưng
là số lẻ.
Chọn Tích của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ.
Xác định trong trường hợp
{
,
và
}, B là tập hợp các số tự nhiên chia hết cho 3 và nhỏ hơn 12.
Liệt kê các phần tử ta có:
Vậy .
Khẳng định nào đúng trong các khẳng định sau:
Khẳng định đúng: "Nếu và
thì
"
Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo ĐÚNG?
Nếu a chia hết cho 3 thì a chia hết cho 9 có mệnh đề đảo là Nếu a chia hết cho 9 thì a chia hết cho 3. Đây là mệnh đề đảo đúng.
Cho định lí “Nếu thì
”. Giả thiết của định lí này là gì?
Khi mệnh đề là định lí, ta nói:
là giả thiết,
là kết luận của định lí
Từ đó ta suy ra: Giả thiết của định lí là
Cho biết là một phần tử của tập hợp
xét các mệnh đề sau:
(I)
(II) .
(III)
(IV)
Trong các mệnh đề sau, mệnh đề nào là đúng:
I đúng.
II sai vì không có khái niệm tập hợp này thuộc tập hợp kia.
III sai vì phần tử thì không thể là con của
tập hợp.
IV đúng.
Cho tập Tập
có bao nhiêu tập hợp con?
Tập có
phần tử
số tập con của
bằng:
.
Cho ,
. Tìm
để
.
Ta có:
Do đó thì
; nếu
thì
Ta có:
Do đó
Ta có:
TH1:
TH2: Nếu thì
Tóm lại thì thỏa mãn yêu cầu bài toán.
TH3: Nếu thì
Kết hợp ba trường hợp, vậy thì thỏa mãn yêu cầu bài toán.