Tiền lương hàng tháng của 7 nhân viên trong một công ty du lịch lần lượt là: 6,5; 8,4; 6,9; 7,2; 2,5; 6,7; 3,0. (đơn vị: triệu đồng). Khoảng biến thiên của dãy số liệu thống kê trên bằng:
Khoảng biến thiên: R = 8,4 - 2,5 = 5,9.
Tiền lương hàng tháng của 7 nhân viên trong một công ty du lịch lần lượt là: 6,5; 8,4; 6,9; 7,2; 2,5; 6,7; 3,0. (đơn vị: triệu đồng). Khoảng biến thiên của dãy số liệu thống kê trên bằng:
Khoảng biến thiên: R = 8,4 - 2,5 = 5,9.
Kết quả thống kê số tiền điện của một hộ gia đình trong 6 tháng liên tiếp (đơn vị: nghìn đồng) như sau:
. Khoảng biến thiên của mẫu số liệu bằng:
Giá trị lớn nhất bằng 350
Giá trị nhỏ nhất bằng 270
=> Khoảng biến thiên của mẫu số liệu là: 350 – 270 = 80.
Vậy khoảng biến thiên của mẫu số liệu bằng 80.
Số đặc trưng nào sau đây đo độ phân tán của mẫu số liệu?
Đáp án: Độ lệch chuẩn.
Sản lượng lúa (đơn vị là tạ) của 11 thửa ruộng thí nghiệm có cùng diện tích lần lượt là: 20; 19; 17; 21; 24; 22; 23; 16; 11; 25; 23. Tìm mốt của mẫu số liệu trên.
Số 23 xuất hiện nhiều nhất nên nó là mốt.
Cho số gần đúng
. Hãy viết số quy tròn của
?
Ta có số quy tròn của là:
.
Bảng dưới đây thống kê tuổi thọ của một số bóng đèn (đơn vị: giờ):

Tìm mốt của bảng trên.
Ta thấy giá trị 1170 xuất hiện nhiều nhất. Suy ra mốt của bảng trên là 1170.
Cho số gần đúng
với độ chính xác
. Số quy tròn của số
là:
Độ chính xác nên ta làm tròn số
đến hàng nghìn, ta được kết quả là
.
Tìm các giá trị bất thường của mẫu số liệu:
5 6 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 48 49
Mẫu số liệu đã được sắp xếp theo thứ tự không giảm.
Giá trị chính giữa là 27 nên .
Giá trị chính giữa của mẫu 5 6 19 21 22 23 24 25 26 là 22 nên .
Giá trị chính giữa của mẫu 28 29 30 31 32 33 34 48 49 là 32 nên .
Khoảng tứ phân vị .
Ta có:
.
Ta co:
.
Ta thấy có giá trị 5 và 6 nhỏ hơn 7 nên đây là 2 giá trị bất thường.
Ta thấy có 48 và 49 là hai giá trị lớn hơn 47 nên đây là 2 giá trị bất thường.
Chiều cao của một số học sinh nữ lớp 9 (đơn vị cm) được cho trong bảng.

Tìm khoảng tứ phân vị của mẫu số liệu này.
Nhận thấy mẫu đã được sắp xếp theo thứ tự không giảm.
Số liệu chính giữa là 162 nên .
Số liệu chính giữa của mẫu 151 152 153 154 155 160 160 là 154 nên .
Số liệu chính giữa của mẫu 163 165 165 165 166 167 167 là 165 nên .
Khoảng tứ phân vị
.
Cho mẫu số liệu: 10; 8; 6; 2; 4. Tính phương sai của mẫu.
Số trung bình là
.
Phương sai là
.
Phương sai của một mẫu số liệu
bằng
Phương sai của một mẫu số liệu bằng bình phương của độ lệch chuẩn.
Nhà sản xuất công bố chiều dài và chiều rộng của 1 tấm ván hình chữ nhật lần lượt là
và
(đơn vị: cm). Tính diện tích của tấm thép.
Gọi và
lần lượt là chiều dài và chiều rộng thực của tấm thép.
Ta có: và
.
Suy ra: .
Do đó:
Vậy diện tích tấm thép là .
Trong kết quả thống kê điểm môn Tiếng Anh của một lớp có 40 học sinh, điểm thấp nhất là 2 điểm và cao nhất là 10 điểm. Khẳng định nào sau đây đúng?
Khi thực hiện tính điểm trung bình hay trung vị còn phụ thuộc vào tần số của mỗi điểm.
Nếu chỉ có khoảng điểm thì không thể kết luận về điểm trung bình môn Tiếng Anh của lớp đó và trung vị.
Cho dãy số liệu:
. Tìm khoảng tứ phân vị của mẫu số liệu đã cho?
Sắp xếp dãy số liệu theo thứ tự không giảm ta được:
Dãy số liệu có số chính giữa là 8 nên tứ phân vị thứ hai là
Tứ phân vị thứ nhất là trung vị của dãy số liệu: . Khi đó
.
Tứ phân vị thứ ba là trung vị của dãy số liệu: . Khi đó
Vậy khoảng tứ phân vị của mẫu số liệu là
Tính chiều cao trung bình của học sinh biết chiều cao của từng học sinh được ghi lại như sau:
|
Chiều cao (cm) |
150 |
155 |
160 |
165 |
170 |
175 |
|
Số học sinh |
4 |
6 |
7 |
6 |
5 |
3 |
Chiều cao trung bình của các học sinh là:
Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là:
Các giá trị xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt.
Cho dãy số liệu
. Xác định mốt của mẫu số liệu?
Mốt số liệu đã cho có số 5 xuất hiện nhiều lần nhất
Suy ra mốt của mẫu số liệu là 5.
Khi tính diện tích hình tròn bán kính R = 3cm, nếu lấy
thì độ chính xác là bao nhiêu?
Ta có diện tích hình tròn S = 3,14. 32 và . 32 =
Ta có:
Do đó:
Vậy nếu ta lấy thì diện tích hình tròn là S = 28,26cm2 với độ chính xác
.
Chọn khẳng định đúng.
Khẳng định đúng là:
Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất, bỏ qua thông tin các giá trị còn lại.
Một nhà nghiên cứu ghi lại tuổi của 30 bệnh nhân mắc bệnh đau mắt hột như sau:
21 | 17 | 22 | 18 | 20 | 17 | 15 | 13 | 15 | 20 | 15 | 12 | 18 | 17 | 25 |
17 | 21 | 15 | 12 | 18 | 16 | 23 | 14 | 18 | 19 | 13 | 16 | 19 | 18 | 17 |
Khoảng biến thiên
của mẫu số liệu trên là:
Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột cao nhất là 25 tuổi.
Tuổi của 30 bệnh nhân mắc bệnh đau mắt hột thấp nhất là 12 tuổi.
Khoảng biến thiên của mẫu số liệu trên là:
Bạn Linh đo quãng đường đi học từ nhà đến trường là
với độ chính xác
. Sai số tương đối trong phép đo là:
Sai số tương đối trong phép đo là .
Sử dụng mãy tính bỏ túi, hãy viết giá trị gần đúng của
chính xác đến hàng phần trăm.
Sử dụng máy tính bỏ túi ta có = 1,732050808. Do đó: Giá trị gần đúng của
chính xác đến hàng phần trăm là 1,73.
Cửa hàng thống kê cỡ giày trong một đơn hàng ngẫu nhiên của một vị khách như sau:
. Xác định trung vị của mẫu số liệu?
Sắp xếp mẫu số liệu theo thứ tự không giảm như sau:
Trung vị của mẫu số liệu là .
Hãy viết số quy tròn số gần đúng
với độ chính xác
.
Ta có: nên làm tròn đến hàng nghìn
Vậy đáp án là: .
Quy tròn số 3,1234567 đến hàng phần nghìn. Số gần đúng nhận được là:
Quy tròn số 3,1234567 đến hàng phần nghìn ta được số: 3,123.
Biểu đồ sau biểu diễn tốc độ tăng trưởng GDP của Nhật Bản trong giai đoạn 1990 đến 2005. Hãy tìm khoảng biến thiên của mẫu số liệu đó.

Khoảng biến thiên R = 5,1 - 0,4 = 4,7.
Cho số gần đúng
. Hãy viết số quy tròn của
?
Với . Số quy tròn của số
là:
.
Viết số quy tròn của số gần đúng
có độ chính xác
.
Vì nhỏ hơn một đơn vị ở hàng phần trăm nên ta làm tròn số đến hàng phần trăm. Số quy tròn là:
.
Tìm trung vị của dãy số liệu 4 3 5 1 6 8 6.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 3 4 5 6 6 8.
Dãy trên có giá trị chính giữa bằng 5.
Vậy trung vị của mẫu số liệu bằng 5.
Viết số quy tròn của
đến hàng phần nghìn?
Ta có số quy tròn của đến hàng phần nghìn là
.
Dưới đây là bảng thống kê số lần làm bài tập Toán của học sinh lớp 10A.

Tìm tứ phân vị của mẫu số liệu này.
Cỡ mẫu số liệu này là: .
Suy ra giá trị chính giữa là giá trị ở vị trí thứ 18. Đó là số 3. Suy ra trung vị .
Trung vị của 17 giá trị bên trái là giá trị ở vị trí thứ 9. Đó là số 2. Suy ra
.
Trung vị của 17 giá trị bên phải là giá trị ở vị trí thứ 27. Đó là số 4. Suy ra
.
Một thửa ruộng hình chữ nhật có chiều dài là x = 23m ± 0,01m và chiều rộng là y = 15m ± 0,01m. Tính diện tích S của thửa ruộng đã cho.
Diện tích của thửa ruộng là: .
Cho
. Số quy tròn của số gần đúng
là:
Số quy tròn của số gần đúng là:
.
Cho số
, trong đó chỉ có chữ số hàng trăm trở lên là đáng tin. Hãy viết chuẩn số gần đúng của
.
Do là số nguyên và hàng thấp nhất có chữ số đáng tin là
nên dạng viết chuẩn của
là
.
Cho kết quả đo chiều cao của 5 học sinh bất kì trong lớp như sau:
. Tính độ lệch chuẩn của mẫu số liệu? (Kết quả làm tròn đến chữ số thập phân thứ hai)
Chiều cao trung bình của 5 bạn là:
Phương sai của mẫu số liệu là:
Độ lệch chuẩn của mẫu số liệu là: .
Nhiệt độ (đơn vị: 0C) tại Mộc Châu trong một ngày sau một vài lần đo như sau:
![]()
![]()
Kết quả nào dưới đây gần nhất với độ lệch chuẩn của mẫu số liệu đã cho?
Ta có:
Nhiệt độ trung bình trong ngày là:
Ta có bảng sau:
|
Giá trị |
Độ lệch |
Bình phương độ lệch |
|
21 |
47,61 |
|
|
23 |
24,01 |
|
|
25 |
8,41 |
|
|
28 |
0,01 |
|
|
30 |
4,41 |
|
|
32 |
16,81 |
|
|
34 |
37,21 |
|
|
31 |
9,61 |
|
|
29 |
1,21 |
|
|
26 |
3,61 |
|
|
Tổng |
152,9 |
|
Suy ra phương sai của mẫu số liệu là:
Suy ra độ lệch chuẩn của mẫu số liệu là:
Cho số
Số quy tròn của số gần đúng
là:
Vì độ chính xác đến hàng trăm nên ta quy tròn đến hàng nghìn và theo quy tắc làm tròn nên số quy tròn là: .
Số trung bình của mẫu số liệu
là:
Số trung bình của mẫu số liệu là:
Vậy số trung bình là 46,25.
Xác định khoảng tứ phân vị của mẫu số liệu:
?
Ta có: là số lẻ
Suy ra
Vậy khoảng tứ phân vị của mẫu số liệu bằng 3.
Tìm mốt của mẫu số liệu: 1 3 4 2 0 0 5 6.
Giá trị 0 xuất hiện nhiều nhất nên mốt của mẫu số liệu trên là 0.