Đề kiểm tra 45 phút Toán 11 Chương 1 Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tìm giá trị thực của tham số m để phương trình \left( {m - 2} ight)\sin 2x = m + 1 nhận x = \frac{\pi }{{12}} làm nghiệm. 

     Vì x = \frac{\pi }{{12}}là một nghiệm của phương trình \left( {m - 2} ight)\sin 2x = m + 1nên ta có:

    \left( {m - 2} ight).\sin \frac{{2\pi }}{{12}} = m + 1

    \Leftrightarrow \frac{{m - 2}}{2} = m + 1 \Leftrightarrow m - 2 = 2m + 2 \Leftrightarrow m =  - \,4.

    Vậy m = - 4 là giá trị cần tìm.

  • Câu 2: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Xét hàm số y = f(x) = sin2x có:

    Tập xác định D=\mathbb{ R}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = \sin( - 2x) = - sin2x = - f(x) \hfill \\\Rightarrow f( - x) = - f(x) 
 \hfill\\\end{matrix}

    Vậy hàm số y = sinx là hàm số lẻ

    Xét hàm số y = f(x) = x\cos x có:

    Tập xác định D=\mathbb{ R}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = ( - x).cos( - x) = - x\cos x = - f(x) \hfill \\\Rightarrow f( - x) = - f(x) \hfill \\\end{matrix}

    Vậy hàm số y = x.cosx là hàm số lẻ

    Xét hàm số y = f(x) = \cos
x.cotx có:

    Tập xác định D=\mathbb{ R}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = \cos( - x).cot( - x) = - \cos x.cotx = - f(x) \hfill \\\Rightarrow f( - x) = - f(x) \hfill \\\end{matrix}

    Vậy hàm số y = \cos x.cotx là hàm số lẻ

    Xét hàm số y = f(x) = \frac{\tan x}{\sin
x} có:

    Tập xác định D\mathbb{=
R}\backslash\left\{ k\frac{\pi}{2};k\mathbb{\in Z} ight\}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = \dfrac{\tan( - x)}{\sin( - x)} = \dfrac{- \tan x}{- \sin x} =f(x) \hfill\\\Rightarrow f( - x) = f(x) \hfill \\\end{matrix}

    Vậy hàm số y = \frac{\tan x}{\sin
x}là hàm số chẵn

  • Câu 3: Nhận biết

    Với x thuộc (0;1), hỏi phương trình {\cos ^2}\left( {6\pi x} ight) = \frac{3}{4} có bao nhiêu nghiệm?

     Phương trình {\cos ^2}\left( {6\pi x} ight) = \frac{3}{4} \Leftrightarrow \cos \left( {6\pi x} ight) =  \pm \frac{{\sqrt 3 }}{2}

    - Với \cos 6\pi x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \cos 6\pi x = \cos \frac{\pi }{6} \Leftrightarrow 6\pi x =  \pm \,\frac{\pi }{6} + k2\pi.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{1}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\  x =  - \frac{1}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}   - \frac{1}{{12}} < k < \frac{{35}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {0;1;2} ight\} \hfill \\  \frac{1}{{12}} < k < \frac{{37}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {1;2;3} ight\} \hfill \\ \end{gathered}  ight. \to có 6 nghiệm.

    - Với \cos 6\pi x =  - \frac{{\sqrt 3 }}{2} \Leftrightarrow \cos 6\pi x = \cos \frac{{5\pi }}{6} \Leftrightarrow 6\pi x =  \pm \,\frac{{5\pi }}{6} + k2\pi.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{5}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\  x =  - \frac{5}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}   - \frac{5}{{12}} < k < \frac{{31}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {0;1;2} ight\} \hfill \\  \frac{5}{{12}} < k < \frac{{41}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {1;2;3} ight\} \hfill \\ \end{gathered}  ight. \tocó 6 nghiệm.

    Vậy phương trình đã cho có 12 nghiệm.

  • Câu 4: Nhận biết

    Trên đường tròn bán kính 20cm. Tính độ dài của cung có số đo \frac{3\pi}{4}.

    Độ dài cung tròn là: l =
20.\frac{3\pi}{4} = 15\pi(cm)

  • Câu 5: Thông hiểu

    Số nghiệm của phương trình \sin 2x + \sqrt 3 \cos 2x = \sqrt 3 trên khoảng \left( {0;\frac{\pi }{2}} ight) là?

     Phương trình \Leftrightarrow \frac{1}{2}\sin 2x + \frac{{\sqrt 3 }}{2}\cos 2x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {2x + \frac{\pi }{3}} ight) = \frac{{\sqrt 3 }}{2}\Leftrightarrow \sin \left( {2x + \frac{\pi }{3}} ight) = \sin \frac{\pi }{3} \Leftrightarrow \left[ \begin{gathered}  2x + \frac{\pi }{3} = \frac{\pi }{3} + k2\pi  \hfill \\  2x + \frac{\pi }{3} = \pi  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = k\pi  \hfill \\  x = \frac{\pi }{6} + k\pi  \hfill \\ \end{gathered}  ight.,{\text{ }}k \in \mathbb{Z}.

    - Với 0 < k\pi  < \frac{\pi }{2} \Leftrightarrow 0 < k < \frac{1}{2}\xrightarrow{{k \in \mathbb{Z}}} không có giá trị thỏa mãn.

    - Với 0 < \frac{\pi }{6} + k\pi  < \frac{\pi }{2} \Leftrightarrow  - \frac{1}{6} < k < \frac{1}{3}\xrightarrow{{k \in \mathbb{Z}}}k = 0 \to x = \frac{\pi }{6}

  • Câu 6: Vận dụng

    Giải phương trình {\sin ^2}x - \left( {\sqrt 3  + 1} ight)\sin x\cos x + \sqrt 3 {\cos ^2}x = 0

     Ta có: {\sin ^2}x - \left( {\sqrt 3  + 1} ight)\sin x\cos x + \sqrt 3 {\cos ^2}x = 0

       \Leftrightarrow \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - \frac{{\left( {\sqrt 3  + 1} ight)\sin x\cos x}}{{{{\cos }^2}x}} + \frac{{\sqrt 3 {{\cos }^2}x}}{{{{\cos }^2}x}} = 0

    \Leftrightarrow {\tan ^2}x - \left( {\sqrt 3  + 1} ight)\tan x + \sqrt 3 \; = 0

             \Leftrightarrow \left[ \begin{gathered}  \tan x = 1 \hfill \\  \tan x = \sqrt 3  \hfill \\ \end{gathered}  ight.

              \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k\pi  \hfill \\  x = \frac{\pi }{3} + k\pi  \hfill \\ \end{gathered}  ight.\left( {k \in \mathbb{Z}} ight).

  • Câu 7: Vận dụng cao

    Tìm tất các các giá trị thực của tham số m để phương trình \cos x -m =0 vô nghiệm?

     Áp dụng điều kiện có nghiệm của phương trình cos x = a.

    - Phương trình có nghiệm khi |a| \leq 1.

    - Phương trình vô nghiệm khi |a|>1.

    Phương trình \cos x - m = 0 \Leftrightarrow \cos x = m

    Do đó, phương trình \cos x -m =0 vô nghiệm \Leftrightarrow \left| m ight| > 1 \Leftrightarrow \left[ \begin{gathered}  m <  - 1 \hfill \\  m > 1 \hfill \\ \end{gathered}  ight..

  • Câu 8: Vận dụng cao

    Nếu \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(p.q eq 0)\cot\alpha\cot\beta là hai nghiệm của phương trình x^{2} - rx + s = 0 thì tích P = r.s bằng:

    Ta có: \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(p.q eq 0)nên theo định lí Vi – ét ta có:\left\{\begin{matrix}\tan\alpha + \tan\beta = p \\\tan\alpha.\tan\beta = q \\\end{matrix} ight.

    \cot\alpha\cot\beta là hai nghiệm của phương trình x^{2} - rx + s = 0 nên theo định lí Vi – ét ta có: \left\{ \begin{matrix}\cot\alpha + \cot\beta = r \\\cot\alpha\cot\beta = s \\\end{matrix} ight.

    Khi đó:

    P = r.s

    P = \left( \cot\alpha + \cot\betaight).\cot\alpha.\cot\beta

    P = \left( \frac{1}{\tan\alpha} +
\frac{1}{\tan\beta}
ight).\frac{1}{\tan\alpha}.\frac{1}{\tan\beta}

    P = \frac{\tan\alpha +\tan\beta}{\tan\alpha.\tan\beta} = \frac{p}{q^{2}}

  • Câu 9: Thông hiểu

    Tìm chu kì T của hàm số lượng giác y =cos3x + cos5x

    Hàm số y = cos3x tuần hoàn với chu kì T =\frac{2\pi}{3}

    Hàm số y = cos5x tuần hoàn với chu kì T =\frac{2\pi}{5}

    => Hàm số y = cos3x + cos5x tuần hoàn với chu kì là T =2\pi

  • Câu 10: Thông hiểu

    Đổi số đo của góc 120^{0}sang đơn vị radian?

    Cách 1: Áp dụng công thức \mu = \frac{m.\pi}{180} với m = 120^{0} ta được:

    \mu = \frac{m.\pi}{180} =
\frac{120.\pi}{180} = \frac{2.\pi}{3}

    Cách 2: Bấm máy tính:

    Bước 1: Bấm tổ hợp phím SHIFT MODE 4 chuyển về chế độ rad.

    Bước 2: Bấm 120 SHIFT Ans 1 =

  • Câu 11: Thông hiểu

    Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?

    Thực hiện kiểm tra đáp án ta thấy:

    Hàm số y = \cot x là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ

    Hàm số y = \frac{\sin x + 1}{\cosx} không chẵn không lẻ

    Hàm số y = tan^{2}x và hàm số y = \left| \cot x ight| là hàm số chẵn.

  • Câu 12: Vận dụng

    Cung nào sau đây có mút trùng với B hoặc B’?

    Quan sát hình vẽ ta thấy vị trí điểm B và B’ ứng với các góc \pm \frac{\pi}{2}.

    Tương ứng với đó ta được góc trùng với các vị trí B và B’ là: \alpha = \frac{\pi}{2} + k.\pi.

  • Câu 13: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    a) Điều kiện xác định của hàm số y =
cot2xlà:

    2x eq k\pi \Rightarrow x eq
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    b) Ta có:

    \sin x + \cos x = 0 \Leftrightarrow
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) = 0

    \Leftrightarrow \sin\left( x +
\frac{\pi}{4} ight) = 0 \Leftrightarrow x = - \frac{\pi}{4} +
k\pi;\left( k\mathbb{\in Z} ight)

    x \in (0;\pi) \Rightarrow 0 < -
\frac{\pi}{4} + k\pi < \pi

    \Rightarrow \frac{1}{4} < k <
\frac{5}{4}k\mathbb{\in
Z} suy ra k = 1

    Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng (0;\pi).

    c) Ta có: \sqrt{3}\cos x + m = 1 \Leftrightarrow
\cos x = \frac{1 - m}{\sqrt{3}}

    Phương trình đã cho có nghiệm khi và chỉ khi

    - 1 \leq \frac{1 - m}{\sqrt{3}} \leq 1
\Leftrightarrow - \sqrt{3} \leq 1 - m \leq \sqrt{3}

    \Leftrightarrow 1 - \sqrt{3} \leq m \leq
1 + \sqrt{3}

    m\mathbb{\in Z \Rightarrow}m = \left\{
- 2; - 1;0;1;2 ight\}

    Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.

    d) Ta có:

    \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} \Leftrightarrow \sin\left( x - \frac{2\pi}{3} ight) =
\sin\left( \frac{\pi}{6} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x - \dfrac{2\pi}{3} = \dfrac{\pi}{6} + k2\pi \\x - \dfrac{2\pi}{3} = \pi - \dfrac{\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{5\pi}{6} + k2\pi \\x = \dfrac{3\pi}{2} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình \sin\left( x - \frac{2\pi}{3}
ight) = \frac{1}{2} trên đường tròn lượng giác là 2.

  • Câu 14: Thông hiểu

    Hàm số y = \sin \frac{x}{5} có chu kì bằng bao nhiêu?

     Chu kì của hàm số y = \sin \frac{x}{5} là: T = \dfrac{{2\pi }}{{\left| {\dfrac{1}{5}} ight|}} = 10\pi

  • Câu 15: Vận dụng

    Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?

    Kiểm tra được y = \cot4x là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ

    y = \frac{\sin x + 1}{\cos x} là hàm số không chẵn không lẻ

    y = \tan^{2}x,y = \left| \cot xight| là các hàm số chẵn nên đồ thị hàm số đối xứng nhau qua trục tung.

  • Câu 16: Thông hiểu

    Phương trình 1 + 2\cos 2x = 0 có nghiệm là:

     Giải phương trình:

    \begin{matrix}  1 + 2\cos 2x = 0 \hfill \\   \Leftrightarrow \cos 2x =  - \dfrac{1}{2} \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {2x = \dfrac{{2\pi }}{3} + k2\pi } \\   {2x =  - \dfrac{{2\pi }}{3} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{3} + k\pi } \\   {x =  - \dfrac{\pi }{3} + k\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 17: Nhận biết

    Điều kiện xác định của hàm số: y = \cos \sqrt {x - 1} là:

     Điều kiện xác định của hàm số:

    x - 1 \geqslant 0 \Leftrightarrow x \geqslant 1

  • Câu 18: Nhận biết

    Trong các khẳng định sau, khẳng định nào sai?

    Ta có \cos(a + b) = \cos a.cosb - \sin
a.sinb.

  • Câu 19: Nhận biết

    Tìm chu kì T của hàm số y = \sin\left( 5x- \frac{\pi}{4} ight)

    Hàm số y = sin(ax + b) tuần hoàn với chu kì T = \frac{2\pi}{|a|}

    => y = \sin\left( 5x- \frac{\pi}{4} ight) tuần hoàn với chu kì T =\frac{2\pi}{5}

  • Câu 20: Thông hiểu

    Tìm chu kì T của hàm số y = \tan 3\pi x.

    Hàm số y = \tan \left( {ax + b} ight) tuần hoàn với chu kì T\,\, = \,\,\frac{\pi }{{\left| a ight|}}

    Áp dụng: Hàm số y = \tan 3\pi x tuần hoàn với chu kì T = \frac{1}{3}

  • Câu 21: Thông hiểu

    Giải phương trình \tan x - \sqrt{3} = 0 ta được nghiệm âm lớn nhất và nghiệm dương nhỏ nhất lần lượt là:

    Ta có:

    \tan x - \sqrt{3} = 0

    \Leftrightarrow x = \frac{\pi}{3} +
k\pi;\left( k\mathbb{\in Z} ight)

    Suy ra:

    Nghiệm âm lớn nhất của phương trình là: x
= \frac{- 2\pi}{3} ứng với k = -
1

    Nghiệm dương nhỏ nhất của phương trình là: x = \frac{\pi}{3} ứng với k = 0

  • Câu 22: Thông hiểu

    Thu gọn biểu thức A = \sin(\pi + x) + \cos\left( x + \frac{3\pi}{2}
ight) + \sin(\pi - x) + \cos\left( \frac{\pi}{2} + x ight) thu được kết quả là:

    Áp dụng công thức về cung liên kết ta có:

    \cos\left( \frac{\pi}{2} + x ight) =
\cos\left\lbrack \frac{\pi}{2} - ( - x) ightbrack = \sin( - x) = -
\sin x

    \sin(\pi - x) = \sin x

    \cos\left( x + \frac{3\pi}{2} ight) =
\cos\left( x + \pi + \frac{\pi}{2} ight) = \cos\left( x +
\frac{\pi}{2} ight)

    = - \cos\left\lbrack \frac{\pi}{2} - ( -
x) ightbrack = - \sin( - x) = \sin x

    \sin(\pi + x) = - \sin x

    Suy ra:

    A = \sin(\pi + x) + \cos\left( x +
\frac{3\pi}{2} ight) + \sin(\pi - x) + \cos\left( \frac{\pi}{2} + x
ight)

    A = - \sin x + \sin x + \sin x - \sin x
= 0

  • Câu 23: Nhận biết

    Phương trình nào dưới đây có tập nghiệm trùng với tập nghiệm của phương trình {\tan ^2}x = 3?

     Ta có {\tan ^2}x = 3 \Leftrightarrow \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} = 3 \Leftrightarrow {\sin ^2}x = 3{\cos ^2}x

    \Leftrightarrow 1 - {\cos ^2}x = 3{\cos ^2}x \Leftrightarrow 4{\cos ^2}x = 1

    Vậy {\tan ^2}x = 3 \Leftrightarrow 4{\cos ^2}x = 1.

  • Câu 24: Vận dụng cao

    Hãy nêu tất cả các hàm số trong các hàm số y = sin;y = \cos x;y = \tan x;y = \cot x thỏa mãn điều kiện đồng biến và nhận giá trị âm trong khoảng \left( - \frac{\pi}{2};0 ight)?

    Ta có:

    Hàm số y = tan x đồng biến và nhận giá trị âm trên khoảng \left( - \frac{\pi}{2};0 ight)

    => y = \cos x;y = \cot x sai

    Trên khoảng \left( - \frac{\pi}{2};0ight) hàm số y = sin x đồng biến và nhận giá trị âm.

  • Câu 25: Nhận biết

    Đổi số đo của góc - 5rad sang đơn vị độ, phút, giây

    Cách 1: Từ công thức \alpha =
\frac{m\pi}{180} \Rightarrow m = \left( \frac{\alpha.180}{\pi}
ight)^{0}khi đó:

    m = \left( \frac{- 5.180}{\pi}
ight)^{0} = - 286^{0}28'44''

    Cách 2: Bấm máy tính:

    Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.

    Bước 2. Bấm -5 shift DRG 2 =

  • Câu 26: Nhận biết

    Khẳng định nào sau đây sai?

    Trên khoảng \left( 0;\frac{\pi}{2}
ight) thì hàm số y =
tanx đồng biến.

  • Câu 27: Vận dụng

    Trong các hàm số sau, hàm số nào là hàm số lẻ?

    Kiểm tra được y = 1 - sin^{2}x; y = \left| \cot x ight|.sin^{2}x; y = 1 + \left| \cot x + \tan x
ight| là các hàm số chẵn.

    y = x^{2}tan2x - \cot x là hàm số lẻ.

  • Câu 28: Thông hiểu

    Cho góc \alpha thỏa mãn \cos\alpha = - \frac{4}{5}\pi < \alpha < \frac{3\pi}{2}. Tính H =\sin\frac{\alpha}{2}\cos\frac{3\alpha}{2}

    Ta có:

    H =
\sin\frac{\alpha}{2}\cos\frac{3\alpha}{2}

    H = \frac{1}{2}\left( \sin2\alpha -\sin\alpha ight)

    H = \frac{1}{2}\sin\alpha.(2\cos\alpha -1)

    Mặt khác \sin^{2}\alpha + \cos^{2}\alpha =1

    \Rightarrow \sin\alpha = \pm \sqrt{1 -\cos^{2}\alpha} = \pm \frac{3}{5}

    Do \pi < \alpha < \frac{3\pi}{2}
\Rightarrow \sin\alpha = - \frac{3}{5}

    Khi đó giá trị biểu thức H là: H =
\frac{39}{50}

  • Câu 29: Nhận biết

    Đổi số đo của góc 72^{0} sang radian được kết quả là:

    Ta có: 1^{0} = \frac{\pi}{180}rad
\Rightarrow 72^{0} = 72.\frac{\pi}{180} = \frac{2\pi}{5}rad

  • Câu 30: Nhận biết

    Nghiệm của phương trình \sin x = -
1

    Ta có: \sin x = - 1 \Leftrightarrow x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight).

  • Câu 31: Thông hiểu

    Biết rằng \frac{\sin\dfrac{\pi}{9} +\sin\dfrac{5\pi}{9}}{\cos\dfrac{\pi}{9} + \cos\dfrac{5\pi}{9}} = \tan\left(\dfrac{m\pi}{n} ight) với m,n\in\mathbb{ N} và \frac{m}{n} tối giản. Khi đó kết quả nào sau đây đúng?

    Ta có:

    \frac{\sin\dfrac{\pi}{9} +\sin\dfrac{5\pi}{9}}{\cos\dfrac{\pi}{9} + \cos\dfrac{5\pi}{9}} =\frac{2\sin\dfrac{\pi}{3}\cos\left( - \dfrac{2\pi}{9}ight)}{2\cos\dfrac{\pi}{3}\cos\left( - \dfrac{2\pi}{9} ight)} =\tan\left( \dfrac{\pi}{3} ight)

    \Rightarrow \left\{ \begin{matrix}
m = 1 \\
n = 3 \\
\end{matrix} ight.\  \Rightarrow n - m = 2

  • Câu 32: Vận dụng

    Điều kiện để biểu thức P = \tan\left( \alpha + \frac{\pi}{3} ight) +
\cot\left( \alpha - \frac{\pi}{6} ight) xác định

    Biểu thức P = \tan\left( \alpha +
\frac{\pi}{3} ight) + \cot\left( \alpha - \frac{\pi}{6}
ight) xác định khi

    \left\{ \begin{matrix}\cos\left( \alpha + \dfrac{\pi}{3} ight) eq 0 \\\sin\left( \alpha - \dfrac{\pi}{6} ight) eq 0 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}\alpha + \dfrac{\pi}{3} eq \dfrac{\pi}{2} + k\pi \\\alpha - \dfrac{\pi}{6} eq k\pi \\\end{matrix} ight.

    \Rightarrow \alpha eq \frac{\pi}{6} +
k\pi;\left( k\mathbb{\in Z} ight)

  • Câu 33: Thông hiểu

    Tổng giá trị lớn nhất và nhỏ nhất của hàm số y = 3cosx + 4

    Do - 1 \leq cosx \leq 1\forall x \in
\mathbb{R} nên 1 \leq 3cosx + 4
\leq 7,\forall x \in \mathbb{R}.

    Nên \max_{\mathbb{R}}\mspace{2mu} y =
7 đạt được khi cosx = 1
\Leftrightarrow x = k2\pi\ (k \in \mathbb{Z}).

    \min_{\mathbb{R}}\mspace{2mu} y =
1 đạt được khi cosx = - 1
\Leftrightarrow x = \pi + k2\pi(k \in \mathbb{Z}).

    Suy ra \max_{\mathbb{R}}\mspace{2mu} y +
\min_{\mathbb{R}}\mspace{2mu} y = 8.

  • Câu 34: Vận dụng

    Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu h (mét) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày (0 \leq t \leq 24) cho bởi hàm số h(t) = a\cos\left( \frac{\pi}{6}t
ight) + b có đồ thị như hình bên dưới (a,b là các số thực dương). Gọi S là tập hợp tất cả các thời điểm t trong ngày để chiều cao của mực nước biển là 15 mét. Tổng tất cả phần tử của S bằng.

    Đáp án: 36

    Đáp án là:

    Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu h (mét) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày (0 \leq t \leq 24) cho bởi hàm số h(t) = a\cos\left( \frac{\pi}{6}t
ight) + b có đồ thị như hình bên dưới (a,b là các số thực dương). Gọi S là tập hợp tất cả các thời điểm t trong ngày để chiều cao của mực nước biển là 15 mét. Tổng tất cả phần tử của S bằng.

    Đáp án: 36

    Theo đồ thị ta có: \left\{ \begin{matrix}
h(6) = 9 \\
h(24) = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- a + b = 9 \\
a + b = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 12 \\
\end{matrix} ight.

    Suy ra: h(t) = 3cos\left( \frac{\pi}{6}t
ight) + 12.

    Theo đề bài yêu cầu:

    h(t) = 15

    \Leftrightarrow 3cos\left(
\frac{\pi}{6}t ight) + 12 = 15

    \Leftrightarrow \cos\left(
\frac{\pi}{6}t ight) = 1

    \Leftrightarrow \frac{\pi}{6}t = k2\pi
\Leftrightarrow t = 12k\left( k\mathbb{\in Z} ight)

    Vì: 0 \leq t \leq 24 nên t = 0,t = 12,t = 24

    Suy ra: S = \left\{ 0;12;24
ight\}

  • Câu 35: Nhận biết

    Tập xác định của hàm số y =
3tan^{2}\left( \frac{x}{2} - \frac{\pi}{4} ight)

    Hàm số xác định khi và chỉ khi

    \begin{matrix}cos^{2}\left( \dfrac{x}{2} - \dfrac{\pi}{4} ight) eq 0 \hfill \\\Rightarrow \dfrac{x}{2} - \dfrac{\pi}{4} eq \dfrac{\pi}{2} + k\pi \hfill \\\Rightarrow x eq \dfrac{3\pi}{2} + k2\pi;k\mathbb{\in Z} \hfill \\\end{matrix}

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ \frac{3\pi}{2} + k2\pi,k\mathbb{\in Z}
ight\}

  • Câu 36: Nhận biết

    Mệnh đề nào sau đây đúng?

    Ta có:

    \sin150^{0} = \sin30^{0}

    \Rightarrow \sin60^{0} >\sin150^{0}

    \cos30^{0} > \cos60^{0}

    \cot60^{0} =\cot240^{0}

    Vậy \tan45^{0} < \tan60^{0} đúng.

  • Câu 37: Thông hiểu

    Đổi số đo của góc 50^{0}sang đơn vị radian?

    Cách 1: Áp dụng công thức \mu = \frac{m.\pi}{180} với m = 50^{0} ta được:

    \mu = \frac{m.\pi}{180} =
\frac{50.\pi}{180} = \frac{5.\pi}{18}

    Cách 2: Bấm máy tính:

    Bước 1: Bấm tổ hợp phím SHIFT MODE 4 chuyển về chế độ rad.

    Bước 2: Bấm 50 SHIFT Ans 1 =

  • Câu 38: Thông hiểu

    Tìm tập giá trị của hàm số y = 5\sin x - 12\cos x?

    Ta có:

    y = 5\sin x - 12\cos x

    =>y = 13\left( \frac{5\sin x - 12\cos x}{13}ight)

    => y = 13\left( \sin\alpha.\sin x -\cos\alpha.\cos x ight)

    y = 13cos(x + \alpha) (với \sin\alpha = \frac{5}{13};\cos\alpha =\frac{12}{13})

    Lại có:

    - 1 \leq \cos(x + \alpha) \leq
1

    \Leftrightarrow - 13 \leq 13cos(x +
\alpha) \leq 13

    \Leftrightarrow - 13 \leq y \leq
13

    Vậy tập giá trị của hàm số là \lbrack -
13;13brack

  • Câu 39: Thông hiểu

    Cho phương trình \cos^{2}2x = m + 1 với m là tham số. Tìm tất cả các giá trị của tham số m để phương trình đã cho có nghiệm?

    Ta có:

    0 \leq \cos^{2}2x \leq 1 \Leftrightarrow0 \leq m + 1 \leq 1

    \Leftrightarrow - 1 \leq m \leq
0 thì phương trình có nghiệm.

  • Câu 40: Nhận biết

    Gọi x_0 là nghiệm dương nhỏ nhất của phương trình \frac{{2\cos 2x}}{{1 - \sin 2x}} = 0. Mệnh đề nào sau đây là đúng?

    Điều kiện: 1 - \sin 2x e 0 \Leftrightarrow \sin 2x e 1

    Phương trình \frac{{2\cos 2x}}{{1 - \sin 2x}} = 0

    \Leftrightarrow \cos 2x = 0\xrightarrow{{{{\sin }^2}2x + {{\cos }^2}2x = 1}}\left[ \begin{gathered}  \sin 2x = 1\,\,\,\,\,\,\,\,\,\,(L) \hfill \\  \sin 2x =  - 1\,\,\,\,\,(TM) \hfill \\ \end{gathered}  ight.

    Cho - \frac{\pi }{4} + k\pi  > 0\xrightarrow{{}}k > \frac{1}{4}.

    Do đó nghiệm dương nhỏ nhất ứng với  k = 1 \to x = \frac{{3\pi }}{4} \in \left[ {\frac{{3\pi }}{4};\pi } ight].

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo