Phương trình
có nghiệm là:
Phương trình
có nghiệm là:
Tìm tập xác định
của hàm số
?
Hàm số xác định khi:
Vậy
Trong các mệnh đề sau, mệnh đề nào sai?
Vì hàm số y = tan x tuần hoàn với chu kì π
Nên đáp án: “Hàm số y = tanx tuần hoàn với chu kì 2π” là đáp án sai.
Tìm tất cả các nghiệm của phương trình
.
Ta có
.
Cho tam giác
có các góc
bất kì. Biểu thức
không thể nhận giá trị nào sau đây?
Ta có:
Với tam giác ABC bất kì ta luôn có:
Vậy biểu thức không thể nhận giá trị
.
Tìm tất cả các giá trị
để phương trình
có nghiệm?
Ta có:
Phương trình có nghiêm
.
Phương án nào sau đây sai với mọi
?
Ta có:
Vậy đáp án sai là:
Hỏi
là một nghiệm của phương trình nào sau đây?
Với , suy ra
Khẳng định nào sau đây là đúng khi nói về ''đường tròn lượng giác'' ?
Mỗi đường tròn định hướng có bán kính , tâm trùng với gốc tọa độ là một đường tròn lượng giác.
Cho
và biểu thức
. Mệnh đề nào sau đây đúng?
Ta có: nên
=>
Trên đường tròn bán kính 15dm, cho cung tròn có độ dài
. Số đo của cung tròn đó là:
Độ dài cung tròn là:
=>
Cho bất đẳng thức
, với
là ba góc của tam giác ABC. Khẳng định đúng là
Ta có:
Áp dụng bất đẳng thức Cauchy ta có:
Mà
Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:
Vậy
Trên đường tròn lượng giác có điểm gốc là điểm A, điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo bằng 750. Điểm N đối xứng với điểm M qua gốc tọa độ, số đo cung AN là:
Điểm N đối xứng với điểm M qua gốc tọa độ nên
Cung lượng giác ngược chiều dương nên số đo lượng giác cung
Giải phương trình
.
Ta có .
Với
Với
Nhận thấy chưa có đáp án nào phù hợp. Ta biểu diễn các nghiệm trên đường tròn lượng giác (hình vẽ).

Nếu tính luôn hai điểm A, B thì có tất cả 6 điểm cách đều nhau nên ta gộp được 6 điểm này thành một họ nghiệm, đó là .
Suy ra nghiệm của phương trình
Tính giá trị ![]()
Ta có:
Gọi
là nghiệm âm lớn nhất của phương trình
. Mệnh đề nào sau đây là đúng?
Ta có:
TH1. Với
TH2. Với
So sánh hai nghiệm ta được nghiệm âm lớn nhất của phương trình là
Khẳng định nào sau đây là đúng khi nói về
đường tròn lượng giác
?
Mỗi đường tròn định hướng có bán kính , tâm trùng với gốc tọa độ là một đường tròn lượng giác.
Tính ![]()
Ta có:
Ta có:
với
. Xác định giá trị của biểu thức
?
Ta có:
Công thức nào sau đây đúng?
Ta có:
Hàm số
có tất cả bao nhiêu giá trị nguyên?
Ta có:
Mà
Nên có giá trị thỏa mãn.
Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình
.
Hình vẽ minh họa
Điều kiện
Ta có:
Với ta được nghiệm
Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.
Với ta được
Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.
Tính diện tích hình chữ nhật ABCD.
Hàm số
đồng biến trên khoảng nào trong các khoảng sau?
Ta có thuộc gốc phần tư thứ I
=> Hàm số đồng biến trên khoảng
Trong các hàm sau hàm nào là hàm số chẵn?
Xét hàm số y = -cosx
Lấy ta có:
=> Hàm số y = -cosx là hàm số chẵn.
Cho tam giác ABC có:
và
. Xác định
.
Ta có:
Mà khi đó:
Hàm số nào sau đây nhận giá trị âm nếu ![]()
Ta có:
Mà
=> mang giá trị âm
Tập xác định D của hàm số
là:
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Đổi số đo của góc
sang đơn vị độ, phút, giây
Cách 1: Từ công thức khi đó:
Cách 2: Bấm máy tính:
Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.
Bước 2. Bấm -5 shift DRG 2 =
Xét tính đúng, sai của các phát biểu sau?
Tập
là tập xác định của hàm số
. Đúng||Sai
Số nghiệm của phương trình
trên khoảng
là 3 nghiệm.Sai||Đúng
Có 5 giá trị nguyên của tham số m để phương trình
có nghiệm. Đúng||Sai
Số vị trí biểu diễn của phương trình
trên đường tròn lượng giác là 3.Sai||Đúng
Xét tính đúng, sai của các phát biểu sau?
Tập là tập xác định của hàm số
. Đúng||Sai
Số nghiệm của phương trình trên khoảng
là 3 nghiệm.Sai||Đúng
Có 5 giá trị nguyên của tham số m để phương trình có nghiệm. Đúng||Sai
Số vị trí biểu diễn của phương trình trên đường tròn lượng giác là 3.Sai||Đúng
a) Điều kiện xác định của hàm số là:
b) Ta có:
Vì
mà
suy ra
Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng .
c) Ta có:
Phương trình đã cho có nghiệm khi và chỉ khi
Mà
Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.
d) Ta có:
Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác là 2.
Nghiệm của phương trình sinx + cosx = 1 là:
Nghiệm dương bé nhất của phương trình
là
Giải phương trình
Với k = 0 => (Thỏa mãn)
Vậy nghiệm nguyên dương nhỏ nhất của phương trình là
Đổi số đo của góc
sang đơn vị radian với độ chính xác đến hàng phần trăm.
Áp dụng công thức với
tính bằng rad và
tính bằng độ.
Ta có: khi đó:
Cường độ dòng điện trong một đoạn mạch là
(A). Tại thời điểm
thì cường độ trong mạch có giá trị bằng.
Thay vào biểu thức cường độ dòng điện ta được:
.
Gọi
là nghiệm dương nhỏ nhất của phương trình
. Mệnh đề nào sau đây là đúng?
Điều kiện:
Phương trình
Cho .
Do đó nghiệm dương nhỏ nhất ứng với .
Hai hàm số nào sau đây có chu kì khác nhau?
Hai hàm số có cùng chu kì 2π
Hai hàm số có cùng chu kì 4π
Hai hàm số có cùng chu kì
Hàm số y = sinx có chu kì 2π, hàm số y = tanx có chu kì
Phương trình
có họ nghiệm là
Ta có:
là nghiệm của phương trình.
: Chia 2 vế phương trình cho
ta được:
.
Cho các hàm số sau, hàm số nào là hàm số lẻ?
Ta có:
Ta kiểm tra được và
là hàm số không chẵn không lẻ
là hàm số chẵn
là hàm số lẻ
Vậy là hàm số lẻ
Cho góc
thỏa mãn
và
. Tính giá trị
.
Ta có:
Ta có:
Ta lại có:
Mà
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
Thực hiện kiểm tra đáp án ta thấy:
Hàm số là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ
Hàm số không chẵn không lẻ
Hàm số và hàm số
là hàm số chẵn.
Tìm chu kì T của hàm số ![]()
Ta có:
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
T là chu kì của hàm số là bội chung nhỏ nhất của T1 và T2
Suy ra hàm số tuần hoàn với chu kì