Hỏi
là một nghiệm của phương trình nào sau đây?
Với , suy ra
Hỏi
là một nghiệm của phương trình nào sau đây?
Với , suy ra
Chọn đẳng thức đúng.
Ta có:
Tìm tập nghiệm của phương trình
?
Ta có:
Vậy phương trình có tập nghiệm là:
Phương trình lượng giác
có nghiệm là
với
;
. Giá trị của biểu thức
là bao nhiêu?
Đáp án: 25
Phương trình lượng giác có nghiệm là
với
;
. Giá trị của biểu thức
là bao nhiêu?
Đáp án: 25
Ta có:
Vậy phương trình có họ nghiệm là:.
Do đó
.
Xác định chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Hàm số
xác định khi và chỉ khi:
Điều kiện các định:
Tìm tất cả các nghiệm của phương trình
.
Ta có
.
Trong các hàm số sau, hàm số nào đồng biến trên khoảng
?
Với
Thuộc góc phần tư thứ IV và thứ nhất nên hàm số đồng biến trên khoảng
Điều kiện xác định của hàm số ![]()
Điều kiện xác định của hàm số:
Hàm số nào sau đây là hàm số chẵn:
Hàm số sinx là hàm số lẻ
=> Hàm số y = sin5x, y = 3sin2x, y = 4sinx là hàm số lẻ
Xét hàm số y = |sinx| ta có:
Hàm số có tập xác định D = R; ∀x ∈ D thì -x ∈ D
Ta có: f(-x) = |sin( -x)| = |- sinx| = |sinx|
=> f(x)= f(-x) nên hàm số y= |sinx| là hàm số chẵn
Vậy hàm số y = |sinx| là hàm số chẵn
Rút gọn biểu thức ![]()
Ta có:
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình đã cho có nghiệm .
Với những giá trị nào của x thì giá trị của các hàm số
và
bằng nhau?
Xét phương trình hoành độ giao điểm: sin 3x = sin x
Tìm tập xác định
của hàm số
?
Ta có:
Hàm số được xác định khi
Vậy tập xác định của hàm số là
Tập giá trị của hàm số
có bao nhiêu số nguyên?
Ta có:
Điều kiện có nghiệm của phương trình là:
Mà nên
.
Vậy tập giá trị của có 11 số nguyên.
Hỏi trên đoạn [-2023; 2023], phương trình
có tất cả bao nhiêu nghiệm?
Ta xét phương trình
Theo giả thiết
Vậy có tất cả 644 giá trị nguyên của k tương úng có 644 nghiệm thỏa mãn yêu cầu bài toán.
Phương trình
có bao nhiêu nghiệm thuộc khoảng
?
Điều kiện xác định:
Do
Vậy có tất cả 38 nghiệm
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm:
Đặt
=>
Phương trình trở thành:
Do
Vậy để phương trình có nghiệm
Nghiệm dương bé nhất của phương trình
là
Giải phương trình
Với k = 0 => (Thỏa mãn)
Vậy nghiệm nguyên dương nhỏ nhất của phương trình là
Mệnh đề nào sau đây đúng?
Đáp án đúng là:
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Phương trình
Suy ra có duy nhất 1 vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác.
Xác định hàm số chẵn trong các hàm số dưới đây?
Ta có:
Hàm số có tập xác định
nên
và
Suy ra hàm số là hàm số lẻ.
Hàm số là hàm số chẵn vì tập xác định
nên
và
Tương tự ta có hàm số là hàm số lẻ, hàm số
không chẵn cũng không lẻ.
Nếu
và
thì
bằng bao nhiêu?
Từ giả thiết ta có:
Ta có:
Mặt khác
Nghiệm của phương trình
là?
Ta có:
.
Gọi S là tập nghiệm của phương trình
. Khẳng định nào sau đây là đúng?
Ta có
Nhận thấy với nghiệm .
Khẳng định nào sau đây đúng?
Ta có:
Cho hàm số
có giá trị nhỏ nhất và giá trị lớn nhất lần lượt là
,
. Tính giá trị của biểu thức
.
Ta có:
Nên .
Suy ra .
Nếu một cung tròn có số đo
thì số đo radian của nó là:
Áp dụng công thức tương ứng với
ta được:
Cho góc
được biểu diễn trên đường tròn lượng giác như hình vẽ. Mệnh đề nào dưới đây đúng?

Góc được biểu diễn như hình vẽ, khi đó
.
Tung độ của điểm là
suy ra
Mệnh đề đúng là .
Hai hàm số nào sau đây có chu kì khác nhau?
Hai hàm số có cùng chu kì 2π
Hai hàm số có cùng chu kì 4π
Hai hàm số có cùng chu kì
Hàm số y = sinx có chu kì 2π, hàm số y = tanx có chu kì
Tính độ dài của cung trên đường tròn có số đo 1,5 và bán kính bằng 20 cm.
Ta có:
Cho góc
thỏa mãn
và
. Tính giá trị của biểu thức
?
Do =>
Ta lại có:
Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số
là:
Ta có:
=> M = 12; m = 4
Hãy nêu tất cả các hàm số trong các hàm số
thỏa mãn điều kiện đồng biến và nhận giá trị âm trong khoảng
?
Ta có:
Hàm số y = tan x đồng biến và nhận giá trị âm trên khoảng
=> sai
Trên khoảng hàm số y = sin x đồng biến và nhận giá trị âm.
Phương trình
có nghiệm là:
Giải phương trình:
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Nếu
với
và
thì
Ta có:
Cho A, B, C là các góc của tam giác ABC. Khi đó
tương đương với:
Ta có:
Khi đó:
Với giá trị nào của m thì phương trình
có nghiệm:
Ta có:
Do
Vậy
Rút gọn biểu thức: ![]()
Ta có: