Tính giá trị của biểu thức ![]()
Ta có:
Tính giá trị của biểu thức ![]()
Ta có:
Nghiệm của phương trình
là:
Ta có
Tìm chu kì T của hàm số ![]()
Hàm số y = sin(ax + b) tuần hoàn với chu kì
=> tuần hoàn với chu kì
Tổng các nghiệm thuộc khoảng
của phương trình: ![]()
Giải phương trình:
Tổng nghiệm của phương trình bằng 0.
Cung nào sau đây có mút trùng với B hoặc B’?

Quan sát hình vẽ ta thấy vị trí điểm B và B’ ứng với các góc .
Tương ứng với đó ta được góc trùng với các vị trí B và B’ là: .
Hàm số nào dưới đây đồng biến trên khoảng
?
Ta có:
Nên hàm số đồng biến trên khoảng
.
Tìm tất cả các nghiệm của phương trình
.
Ta có
.
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với
. Đúng||Sai
b) Trên khoảng
phương trình có 4 nghiệm. Đúng||Sai
c) Trên khoảng
thì
là nghiệm nhỏ nhất. Sai||Đúng
d) Tổng các nghiệm nằm trong khoảng
của phương trình bằng
. Đúng||Sai
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với . Đúng||Sai
b) Trên khoảng phương trình có 4 nghiệm. Đúng||Sai
c) Trên khoảng thì
là nghiệm nhỏ nhất. Sai||Đúng
d) Tổng các nghiệm nằm trong khoảng của phương trình bằng
. Đúng||Sai
Phương trình
.
Do nên phương trình có các nghiệm là:
.
Vậy tổng các nghiệm cần tính là: .
Kết luận:
|
a) Đúng |
b) Đúng |
c) Sai |
d) Đúng |
Trên đường tròn lượng giác, cung có số đo
được biểu diễn bởi bao nhiêu điểm?
Xét theo chiều dương với ta thấy cung có số đo
được biểu diễn bởi ba điểm trên đường tròn lượng giác như sau:
Phương trình
có bao nhiêu nghiệm trong khoảng
?
Ta có:
Theo bài ra ta có:
Vậy phương trình có 642 nghiệm.
Cho
. Xác định dấu của biểu thức ![]()
Ta có:
=>
Trong các phương trình sau, phương trình nào tương đương với phương trình
?
Ta có . Chi hai vế phương trình cho
, ta được
.
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức
với
tính bằng
và
là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ thấp nhất trong ngày là:
Do nên
Do đó nhiệt độ thấp nhất trong ngày là .
Dấu bằng xảy ra
Do .
Mà nên
.
Khi đó .
Vậy lúc 3h là thời gian nhiệt độ thấp nhất trong ngày.
Cho
là nghiệm của phương trình nào sau đây?
Ta có:
Trên đường tròn lượng giác có bao nhiêu vị trí biểu diện nghiệm của phương trình
?
Điều kiện xác định:
Ta có:
Kết hợp với điều kiện xác định suy ra phương trình có nghiệm nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.
Đồ thị hàm số
được suy từ đồ thị (C) của hàm số bằng cách:
Nhắc lại lý thuyết:
Cho (C) là đồ thị của hàm số và
, ta có:
+ Tịnh tiến (C) lên p trên đơn vị thì được đồ thị của hàm số .
+ Tịnh tiến (C) xuống dưới p đơn vị thì được đồ thị của hàm số
+ Tịnh tiến (C) sang trái p đơn vị thì được đồ thị của hàm số
+ Tịnh tiến (C) sang phải p đơn vị thì được đồ thị của hàm số
Vậy đồ thị hàm số được suy từ đồ thị hàm số
bằng cách tịnh tiến sang phải
đơn vị.
Tìm tập giá trị của hàm số ![]()
Ta có:
Tất cả các nghiệm của phương trình
là:
Ta có:
Vậy suy ra ,
Nghiệm của phương trình đã cho là: ,
.
Cho góc lượng giác
. Với giá trị k bằng bao nhiêu thì góc
?
Theo bài ra ta có:
Với điều kiện xác định của các giá trị lượng giác, cho
. Đơn giản biểu thức P ta được:
Ta có:
Cho hàm số
, số nghiệm thuộc
của phương trình
là?
Ta có:
Do đó
+) Trường hợp 1. Với
Do nên
Suy ra k = 0 ta được .
+) Trường hợp 2. Với
Do nên
Suy ra k = 0 ta được ta được
.
Vậy có 3 nghiệm thuộc của phương trình
là
;
;
.
Tập xác định D của hàm số
là:
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Đổi số đo của góc
sang đơn vị độ, phút, giây
Cách 1: Từ công thức khi đó:
Cách 2: Bấm máy tính:
Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.
Bước 2. Bấm (shift π ÷12) shift DRG 2 =
Một bánh xe đạp trong 5 giây quay được 2 vòng. Hỏi bánh xe quay được 1 góc bao nhiêu độ trong 2 giây?
Trong 1 giây bánh xe quay được vòng
Suy ra trong 2 giây bánh xe quay được vòng
Vậy góc bánh xe quay được là:
Biết
. Khi đó
có giá trị bằng:
Ta có:
Tìm tập các định D của hàm số 
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Phương trình
có nghiệm là
Giải phương trình:
Tìm chu kì của hàm số
?
Hàm số tuần hoàn với chu kì
Áp dụng công thức trên ta suy ra hàm số tuần hoàn với chu kì
.
Cung tròn có số đo là
. Hãy chọn số đo độ của cung tròn đó trong các cung tròn sau đây:
Ta có:
Điều kiện xác định của hàm số:
là:
Điều kiện xác định của hàm số:
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua trục tung?
Ta dễ dàng kiểm tra được các hàm số
là các hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ O
Xét hàm số ta có:
Kiểm tra được đây là hàm số chẵn nên có đồ thị đối xứng qua trục tung.
Tổng giá trị lớn nhất và nhỏ nhất của hàm số
là
Do nên
.
Nên đạt được khi
.
đạt được khi
.
Suy ra .
Điều kiện để phương trình
có nghiệm là:
Điều kiện để phương trình có nghiệm là
Vậy thì phương trình đã cho có nghiệm.
Hàm số
có tất cả bao nhiêu giá trị nguyên?
Ta có:
Mà
Nên có giá trị thỏa mãn.
Tập nghiệm của phương trình
là?
Ta có: .
Phương trình
có nghiệm là:
Điều kiện xác định:
Kiểm tra điều kiện ta thấy thỏa mãn
Vậy nghiệm của phương trình là:
Nếu
và
là hai nghiệm của phương trình
thì
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Nếu
thì khẳng định nào sau đây đúng?
Ta có:
Trên đường tròn cung có số đo 1 rad là?
Cung có độ dài bằng bán kính (nửa đường kính) thì có số đó bằng 1 rad.