Phương trình nào dưới đây có tập nghiệm trùng với tập nghiệm của phương trình
?
Ta có
Vậy .
Phương trình nào dưới đây có tập nghiệm trùng với tập nghiệm của phương trình
?
Ta có
Vậy .
Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?
Hàm số không tuần hoàn. Thật vậy:
Tập xác định .
Giả sử
.
Cho x = 0 và x = π, ta được
Điều này trái với định nghĩa là T > 0
Vậy hàm số không phải là hàm số tuần hoàn.
Tương tự chứng minh cho các hàm số và
không tuần hoàn.
Rút gọn biểu thức ![]()
Ta có:
Cho
. Giá trị của biểu thức ![]()
Ta có:
Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của phương trình
bằng?
Ta có
TH1. Với
TH2. Với
So sánh bốn nghiệm ta được nghiệm âm lớn nhất là và nghiệm dương nhỏ nhất là
.
Khi đó tổng hai nghiệm này bằng .
Tất cả các nghiệm của phương trình
là:
Ta có:
Vậy suy ra ,
Nghiệm của phương trình đã cho là: ,
.
Hàm số nào sau đây là hàm số chẵn:
Hàm số sinx là hàm số lẻ
=> Hàm số y = sin5x, y = 3sin2x, y = 4sinx là hàm số lẻ
Xét hàm số y = |sinx| ta có:
Hàm số có tập xác định D = R; ∀x ∈ D thì -x ∈ D
Ta có: f(-x) = |sin( -x)| = |- sinx| = |sinx|
=> f(x)= f(-x) nên hàm số y= |sinx| là hàm số chẵn
Vậy hàm số y = |sinx| là hàm số chẵn
Biết
, khẳng định nào sau đây đúng?
Với thì
.
Tính giá trị của biểu thức
là:
Ta có:
Vậy
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm?
Áp dụng điều kiện có nghiệm của phương trình .
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Do đó, phương trình có nghiệm khi và chỉ khi
.
Giải phương trình
thu được kết quả là:
Điều kiện
.
Với
, mệnh đề nào sau đây là đúng?
Ta có thuộc góc phần tư thứ I và II.
Xác định chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Phương trình
có bao nhiêu nghiệm thuộc khoảng
?
Ta có:
Mà
Vậy phương trình có hai nghiệm thuộc khoảng .
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua trục tung?
Ta dễ dàng kiểm tra được các hàm số
là các hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ O
Xét hàm số ta có:
Kiểm tra được đây là hàm số chẵn nên có đồ thị đối xứng qua trục tung.
Tính giá trị ![]()
Ta có:
Tổng giá trị lớn nhất và nhỏ nhất của hàm số
là
Do nên
.
Nên đạt được khi
.
đạt được khi
.
Suy ra .
Cho các hàm số
. Trong các hàm số trên, có bao nhiêu hàm số lẻ?
Ta có:
là hàm số chẵn vì:
Tập xác định của hàm số
Với
là hàm số lẻ vì:
Tập xác định của hàm số
Với
là hàm số lẻ vì
Tập xác định của hàm số
Với
là hàm số lẻ vì
Tập xác định của hàm số
Với
Biểu diễn hai nghiệm của phương trình
được biểu diễn trên đường tròn lượng giác như sau:

Tính
với I là hình chiếu vuông góc của B trên OA bằng:
=>
Trên đoạn
, đồ thị hai hàm số
và
cắt nhau tại bao nhiêu điểm?
Phương trình hoành độ giao điểm của hai đồ thị hàm số là
Theo bài ra ta có:
Vậy đồ thị hai hàm số đã cho cắt nhau tại 5 điểm trên đoạn .
Tìm chu kì T của hàm số ![]()
Hàm số y = sin(ax + b) tuần hoàn với chu kì
=> tuần hoàn với chu kì
Phương trình
có nghiệm là:
Giải phương trình:
Cung tròn có số đo là
. Hãy chọn số đo độ của cung tròn đó trong các cung tròn sau đây:
Ta có:
Trong các hàm sau hàm nào là hàm số chẵn?
Xét hàm số y = -cosx
Lấy ta có:
=> Hàm số y = -cosx là hàm số chẵn.
Hàm số
có tất cả bao nhiêu giá trị nguyên?
Áp dụng công thức
Ta có
Ta có
Nếu
và
thì
bằng bao nhiêu?
Từ giả thiết ta có:
Ta có:
Mặt khác
Đổi số đo của góc
sang radian được kết quả là:
Ta có:
Với x thuộc (0;1), hỏi phương trình
có bao nhiêu nghiệm?
Phương trình
- Với .
có 6 nghiệm.
- Với .
có 6 nghiệm.
Vậy phương trình đã cho có 12 nghiệm.
Tập nghiệm của phương trình
là
Ta có
.
Hàm số
xác định khi và chỉ khi:
Điều kiện các định:
Chu kì của hàm số
là
. Giá trị của k là:
Đáp án: 5/2 (Ghi đáp án dưới dạng phân số tối giản a/b).
Chu kì của hàm số là
. Giá trị của k là:
Đáp án: 5/2 (Ghi đáp án dưới dạng phân số tối giản a/b).
Ta có:
Hàm số trên có chu kì là
Vậy .
Cho hàm số
. Mệnh đề nào sau đây đúng?
Ta có:
Vậy là mệnh đề đúng.
Phương trình nào sau đây vô nghiệm?
+ Phương trình
Vậy phương trình vô nghiệm.
+ Phương trình
Vậy phương trình có nghiệm.
+ Phương trình
Vậy phương trình có nghiệm.
+ Phương trình
mà
nên phương trình
có nghiệm.
Cho góc
thỏa mãn
và
. Tính giá trị của biểu thức
.
Ta có:
Theo bài ra ta có:
=>
Số nghiệm của phương trình: ![]()
Điều kiện xác định:
Với k = 0 => x = 0 (thỏa mãn)
Vậy phương trình có tất cả 3 nghiệm.
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có:
Mặt khác
Do
Khi đó giá trị biểu thức H là:
Trong các hàm số sau, hàm số nào đồng biến trên khoảng
?
Với
Thuộc góc phần tư thứ IV và thứ nhất nên hàm số đồng biến trên khoảng
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm:
Ta có:
Mặt khác
Vậy để phương trình lượng giác có nghiệm thì
Vậy có 3 giá trị nguyên của tham số m thỏa mãn điều kiện đề bài.
Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách.
Ta có:
=> Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách tịnh tiến C qua phải một đoạn có độ dài là
Cho góc
thỏa mãn
và
. Tính giá trị
.
Ta có:
Ta có:
Ta lại có:
Mà