Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Nghiệm của phương trình \sin x = -
1

    Ta có: \sin x = - 1 \Leftrightarrow x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight).

  • Câu 2: Nhận biết

    Tính giá trị của \cot135^{0}

    Ta có: \cot135^{0} = - \tan45^{0} = -1

  • Câu 3: Nhận biết

    Nghiệm của phương trình \sin x. \cos x = \frac{1}{2} là?

     Ta có: \sin x.cosx = \frac{1}{2} \Leftrightarrow \sin 2x = 1

    \Leftrightarrow 2x = \frac{\pi }{2} + k2\pi  \Leftrightarrow x = \frac{\pi }{4} + k\pi.

  • Câu 4: Nhận biết

    Điều kiện xác định của hàm số: y = \cos \sqrt {x - 1} là:

     Điều kiện xác định của hàm số:

    x - 1 \geqslant 0 \Leftrightarrow x \geqslant 1

  • Câu 5: Nhận biết

    Tập nghiệm của phương trình \cos x = \frac{{\sqrt 2 }}{2} là?

    \cos x = \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos x = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k2\pi  \hfill \\  x =  - \frac{\pi }{4} + k2\pi  \hfill \\ \end{gathered}  ight.,k \in \mathbb{Z}

  • Câu 6: Nhận biết

    Điều kiện xác định của hàm số y = \cot \left( {x - \frac{{2\pi }}{5}} ight) là:

     Ta có: y = \cot \left( {x - \dfrac{{2\pi }}{5}} ight) = \dfrac{{\cos \left( {x - \dfrac{{2\pi }}{5}} ight)}}{{\sin \left( {x - \dfrac{{2\pi }}{5}} ight)}}

    Điều kiện xác định của hàm số

    \begin{matrix}  \sin \left( {x - \dfrac{{2\pi }}{5}} ight) e 0 \hfill \\   \Leftrightarrow x - \dfrac{{2\pi }}{5} e k\pi  \hfill \\   \Leftrightarrow x e \dfrac{{2\pi }}{5} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 7: Thông hiểu

    Nếu \cos(a + b) =
0 thì khẳng định nào sau đây đúng?

    Ta có:

    \cos(a + b) = 0

    \Leftrightarrow a + b = \frac{\pi}{2} +
k\pi

    \Leftrightarrow a = - b + \frac{\pi}{2}
+ k\pi

    \Rightarrow \left| \sin(a + 2b) ight|
= \left| \sin\left( - b + 2b + \frac{\pi}{2} + k\pi ight) ight| =
\left| \cos(b + k\pi) ight| = \left| \cos b ight|

  • Câu 8: Nhận biết

    Hỏi trên đoạn [0; 2023 \pi], phương trình \sqrt 3 \cot x - 3 = 0 có bao nhiêu nghiệm? 

     Ta có \cot x = \sqrt 3  \Leftrightarrow \cot x = \cot \frac{\pi }{6}

    \Leftrightarrow x = \frac{\pi }{6} + k\pi {\text{ }}\left( {k \in \mathbb{Z}} ight)

    Theo giả thiết, ta có

    0 \leqslant \frac{\pi }{6} + k\pi  \leqslant 2023\pi \xrightarrow{{{\text{xap xi}}}} - \frac{1}{6} \leqslant k \leqslant 2022,833

    \xrightarrow{{k \in \mathbb{Z}}}k \in \left\{ {0;1;...;2022} ight\}.

    Vậy có tất cả 2023 giá trị nguyên của k tương ứng với có 2023 nghiệm thỏa mãn yêu cầu bài toán.

  • Câu 9: Thông hiểu

    Điều kiện để phương trình 3.sinx + m.cosx = 5 có nghiệm là:

     Điều kiện để phương trình 3.sinx + m.cosx = 5 có nghiệm là

    \begin{matrix}  {3^2} + {m^2} < {5^2} \hfill \\   \Leftrightarrow {m^2} < 16 \Leftrightarrow  - 4 < m < 4 \hfill \\ \end{matrix}

    Vậy −4 < m < 4 thì phương trình đã cho có nghiệm.

  • Câu 10: Thông hiểu

    Góc có số đo \frac{2.\pi}{5}đổi sang độ là:

    Cách 1: \frac{2.\pi}{5}
ightarrow \frac{2.180^{0}}{5} = 72^{0}

    Cách 2: Bấm máy tính:

    Bước 1: Bấm tổ hợp phím SHIFT MODE 3 chuyển về chế độ "độ".

    Bước 2: Bấm \frac{2.\pi}{5} SHIFT Ans 2 =

  • Câu 11: Thông hiểu

    Trong các hàm số sau, hàm số nào là hàm số tuần hoàn?

    Hàm số y = x + \sin x là hàm số không tuần hoàn

    Tập xác định D=\mathbb{ R}

    Giả sử

    \begin{matrix}f(x + T) = f(x),\forall x \in D \hfill \\\Rightarrow (x + T) + \sin(x + T) = x + \sin x;\forall x \in D \hfill \\\Rightarrow T + \sin(x + T) = \sin x,\forall x \in D \hfill \\\end{matrix}

    Cho x = 0 và x = π ta được

    \begin{matrix}\left\{ \begin{matrix}T + \sin x = sin0 = 0 \\T + \sin(T + \pi) = \sin\pi = 0 \hfill\\\end{matrix} ight.\ \hfill \\\Rightarrow 2T + \sin T + \sin(T + \pi) = 0 \Rightarrow T = 0 \hfill\\\end{matrix}

    Điều này trái với định nghĩa T > 0

    Vậy hàm số y = x + sinx không phải là hàm số tuần hoàn

    Tương tự chứng minh cho các hàm số y =
x\cos xy = \frac{\sin
x}{x} không tuần hoàn.

    Vậy hàm số y = \sin x là hàm số tuần hoàn

  • Câu 12: Vận dụng

    Huyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu gọi là huyết áp tâm thu và tâm trương, tương ứng. Chỉ số huyết áp của chúng ta được viết là tâm thu/tâm trương. Chỉ số huyết áp 120/80 là bình thường. Giả sử một người nào đó có nhịp tim là 70lần trên phút và huyết áp của người đó được mô hình hoá bởi hàm số P(t) = 100 + 20\sin\left( \frac{7\pi}{3}tight)ở đó P(t)là huyết áp tính theo đơn vị mmHg( milimét thuỷ ngân) và thời gian ttính theo giây. Trong khoảng từ 0 đến 1 giây, hãy xác định số lần huyết áp là 120 mmHg?

    Đáp án: 1

    Đáp án là:

    Huyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu gọi là huyết áp tâm thu và tâm trương, tương ứng. Chỉ số huyết áp của chúng ta được viết là tâm thu/tâm trương. Chỉ số huyết áp 120/80 là bình thường. Giả sử một người nào đó có nhịp tim là 70lần trên phút và huyết áp của người đó được mô hình hoá bởi hàm số P(t) = 100 + 20\sin\left( \frac{7\pi}{3}tight)ở đó P(t)là huyết áp tính theo đơn vị mmHg( milimét thuỷ ngân) và thời gian ttính theo giây. Trong khoảng từ 0 đến 1 giây, hãy xác định số lần huyết áp là 120 mmHg?

    Đáp án: 1

    Huyết áp là 120 mmHgkhi

    P(t) = 120 \Leftrightarrow 100 +20sin\left( \frac{7\pi}{3}t ight) = 120

    \Leftrightarrow \sin\left(
\frac{7\pi}{3}t ight) = 1

    \Leftrightarrow \frac{7\pi}{3}t =\frac{\pi}{2} + k2\pi

    \Leftrightarrow t = \frac{3}{14} +
\frac{6k}{7}\left( k\mathbb{\in Z} ight)

    Xét 0 < t < 1

    \Leftrightarrow 0 < \frac{3}{14} +
\frac{6k}{7} < 1\Leftrightarrow  - \frac{1}{4} < k < \frac{{11}}{{12}} \Leftrightarrow k = 0

     k\mathbb{\in Z}.

    Vậy trong khoảng từ 0 đến 1 giây, có 1 lần huyết áp là 120 mmHg.

  • Câu 13: Thông hiểu

    Trên đường tròn lượng giác có điểm gốc là điểm A, điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo bằng 750. Điểm N đối xứng với điểm M qua gốc tọa độ, số đo cung AN là:

    Điểm N đối xứng với điểm M qua gốc tọa độ nên \widehat{AON} = 180^{0} - 75^{0} =
105^{0}

    Cung lượng giác (OA;ON) ngược chiều dương nên số đo lượng giác cung (OA;ON) = - 105^{0} + k.360^{0},\left(
k\mathbb{\in Z} ight)

  • Câu 14: Nhận biết

    Khẳng định nào sau đây sai?

    Trên khoảng \left( 0;\frac{\pi}{2}
ight) thì hàm số y =
tanx đồng biến.

  • Câu 15: Vận dụng cao

    Tính tổng các nghiệm trong đoạn [0;30] của phương trình: \tan x = \tan 3x

    Điều kiện để phương trình có nghĩa:

    \left\{ {\begin{array}{*{20}{c}}  {\cos {\text{x}} e 0} \\   {\cos 3{\text{x}} e 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x e \dfrac{\pi }{2} + k\pi } \\   {x e \dfrac{\pi }{6} + \dfrac{{k\pi }}{3}} \end{array}} ight.\left( * ight)

    Khi đó, phương trình 3{\text{x}} = x + k\pi  \Leftrightarrow x = \frac{{k\pi }}{2} so sánh với đk

    \left[ \begin{gathered}  x = k2\pi  \hfill \\  x = \pi  + k2\pi  \hfill \\ \end{gathered}  ight.\,,\,x =  \in \left[ {0;30} ight]

    \Rightarrow k = \left\{ {0;...;4} ight\} \Rightarrow x \in \left\{ {0;\pi ;2\pi ;....;9\pi } ight\}

    Vậy, tổng các nghiệm trong đoạn  [0;30]  của phương trình là: 45\pi.

  • Câu 16: Vận dụng cao

    Gọi T là tập giá trị của hàm số y =\frac{1}{2}sin^{2}x - \frac{3}{4}cos2x + 3. Tìm tổng các giá trị nguyên của T.

    Ta có:

    y = \frac{1 - cos2x}{2} -\frac{3}{4}cos2x + 3 = \frac{7}{2} - \frac{5}{4}cos2x = \frac{14 -5cos2x}{4}

    - 1 \leq cos2x \leq 1

    \begin{matrix}\Rightarrow \dfrac{9}{4} \leq \dfrac{14 - 5cos2x}{4} \leq\dfrac{19}{4};y\mathbb{\in Z} \hfill\\\Rightarrow y = \left\{ 3;4 ight\} \hfill\\\end{matrix}

    Do đó tổng các giá trị nguyên của T là 7.

  • Câu 17: Vận dụng

    Một đồng hồ treo tường, kim giờ dài 10,57cm và kim phút dài 13,34cm. Trong 30 phút mũi kim giờ vạch lên cung tròn có độ dài là

    Ta có: 6 giờ thì kim giờ vạch lên 1 cung có số đo

    => 30 phút kim giờ vạch lên 1 cung có số đo là \frac{\pi}{12}

    => Độ dài cung tròn mà nó vạch lên là l = R.\alpha = 10,57.\frac{3,14}{12} \approx
2,77(cm)

  • Câu 18: Thông hiểu

    Gọi S là tập nghiệm của phương trình \cos 2x - \sin 2x = 1. Khẳng định nào sau đây là đúng?

     Phương trình \Leftrightarrow \sqrt 2 \cos \left( {2x + \frac{\pi }{4}} ight) = 1 \Leftrightarrow \cos \left( {2x + \frac{\pi }{4}} ight) = \frac{1}{{\sqrt 2 }}

    \Leftrightarrow \cos \left( {2x + \frac{\pi }{4}} ight) = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{gathered}  2x + \frac{\pi }{4} = \frac{\pi }{4} + k2\pi  \hfill \\  2x + \frac{\pi }{4} =  - \frac{\pi }{4} + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = k\pi  \hfill \\  x =  - \frac{\pi }{4} + k\pi  \hfill \\ \end{gathered}  ight.,k \in \mathbb{Z}.

    Xét nghiệm x =  - \frac{\pi }{4} + k\pi, với k = 1 ta được x = \frac{{3\pi }}{4}.

  • Câu 19: Vận dụng

    Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình \sqrt{3} \cos x + m - 1 = 0 có nghiệm:

     Ta có:

    \sqrt 3 \cos x + m - 1 = 0 \Rightarrow \cos x = \frac{{1 - m}}{{\sqrt 3 }}

    Mặt khác \cos x \in \left[ { - 1;1} ight]

    Vậy để phương trình lượng giác có nghiệm thì

     \begin{matrix}   \Rightarrow 1 - \sqrt 3  \leqslant m \leqslant 1 + \sqrt 3  \hfill \\  m \in \mathbb{Z} \Rightarrow m \in \left\{ {0;1;2} ight\} \hfill \\ \end{matrix}

    Vậy có 3 giá trị nguyên của tham số m thỏa mãn điều kiện đề bài.

  • Câu 20: Nhận biết

    Từ thời điểm đồng hồ chỉ đúng 12 giờ đến khi kim giờ chỉ 1 giờ đúng thì kim phút quay được góc bao nhiêu độ?

    Khi kim giờ chỉ đúng 1 giờ thì kim phút đã quay được 1 vòng ứng với góc lượng giác là: - 360^{0}

  • Câu 21: Thông hiểu

    Với giá trị nào của m thì phương trình \cos x + m - 2 = 0 có nghiệm:

     Ta có:

    \begin{matrix}  \cos x + m - 2 = 0 \hfill \\   \Rightarrow \cos x = 2 - m \hfill \\ \end{matrix}

    Do \cos x \in \left[ { - 1;1} ight]

    \begin{matrix}  \Rightarrow  - 1 \leqslant 2 - m \leqslant 1 \hfill \\   \Rightarrow 1 \leqslant m \leqslant 3 \hfill \\ \end{matrix}

    Vậy m \in \left[ {1;3} ight]

  • Câu 22: Vận dụng

    Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?

    Kiểm tra được y = \cot4x là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ

    y = \frac{\sin x + 1}{\cos x} là hàm số không chẵn không lẻ

    y = \tan^{2}x,y = \left| \cot xight| là các hàm số chẵn nên đồ thị hàm số đối xứng nhau qua trục tung.

  • Câu 23: Thông hiểu

    Giải phương trình \tan x - \sqrt{3} = 0 ta được nghiệm âm lớn nhất và nghiệm dương nhỏ nhất lần lượt là:

    Ta có:

    \tan x - \sqrt{3} = 0

    \Leftrightarrow x = \frac{\pi}{3} +
k\pi;\left( k\mathbb{\in Z} ight)

    Suy ra:

    Nghiệm âm lớn nhất của phương trình là: x
= \frac{- 2\pi}{3} ứng với k = -
1

    Nghiệm dương nhỏ nhất của phương trình là: x = \frac{\pi}{3} ứng với k = 0

  • Câu 24: Thông hiểu

    Cho góc \alpha thỏa mãn \cot\alpha = - 3\sqrt{2}\alpha \in \left( \frac{\pi}{2};\pi
ight). Tính giá trị của biểu thức P = \tan\frac{\alpha}{2} +
\cot\frac{\alpha}{2}.

    Ta có:

    P = \tan\frac{\alpha}{2} +
\cot\frac{\alpha}{2}

    P =\dfrac{\sin\dfrac{\alpha}{2}}{\cos\dfrac{\alpha}{2}} +\dfrac{\cos\dfrac{\alpha}{2}}{\sin\dfrac{\alpha}{2}}

    P = \dfrac{\sin^{2}\dfrac{\alpha}{2} +\cos^{2}\dfrac{\alpha}{2}}{\cos\dfrac{\alpha}{2}.\sin\dfrac{\alpha}{2}}

    P = \dfrac{1}{\dfrac{\sin\alpha}{2}} =\dfrac{2}{\sin\alpha}

    Mặt khác \alpha \in \left(\frac{\pi}{2};\pi ight) \Rightarrow \sin\alpha > 0

    1 + \cot^{2}\alpha =\dfrac{1}{\sin^{2}\alpha}

    \Rightarrow \sin^{2}\alpha =\dfrac{1}{19}

    \Rightarrow \sin\alpha =
\sqrt{\frac{1}{19}}

    \Rightarrow P = 2\sqrt{19}

  • Câu 25: Vận dụng cao

    Nếu \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(q eq 0) thì P = cos^{2}(\alpha + \beta) + p\sin(\alpha +
\beta).cos(\alpha + \beta) + qsin^{2}(\alpha + \beta) bằng:

    Ta có: \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(q eq 0)nên theo định lí Vi – ét ta có: \left\{ \begin{matrix}
\tan\alpha + \tan\beta = p \\
\tan\alpha.tan\beta = q \\
\end{matrix} ight.

    \Rightarrow \tan(\alpha + \beta) =
\frac{\tan\alpha + \tan\beta}{1 - \tan\alpha.tan\beta} = \frac{p}{1 -
q}

    Khi đó:

    P = \cos^{2}(\alpha + \beta) +p\sin(\alpha + \beta).\cos(\alpha + \beta) + q\sin^{2}(\alpha +\beta)

    P = \cos^{2}(\alpha + \beta).\left\lbrack1 + p\tan(\alpha + \beta) + q\tan^{2}(\alpha + \beta)ightbrack

    P = \frac{1 + p\tan(\alpha + \beta) +q\tan^{2}(\alpha + \beta)}{1 + \tan^{2}(\alpha + \beta)}

    P = \dfrac{1 + p.\dfrac{p}{1 - q} +q.\left( \dfrac{p}{1 - q} ight)^{2}}{1 + \left( \dfrac{p}{1 - q}ight)^{2}}

    P = \dfrac{(1 - q)^{2} + p^{2}(1 - q) +q.p^{2}}{(1 - q)^{2} + p^{2}}

    P = \dfrac{(1 - q)^{2} + p^{2} - p^{2}.q+ q.p^{2}}{(1 - q)^{2} + p^{2}}

    P = 1

  • Câu 26: Thông hiểu

    Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = 8 - 4\cos \left( {\frac{\pi }{4} - 3x} ight) là:

     Ta có: 

    \begin{matrix}   - 1 \leqslant \cos \left( {\dfrac{\pi }{4} - 3x} ight) \leqslant 1 \hfill \\   \Rightarrow 4 \geqslant  - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant  - 4 \hfill \\   \Rightarrow 8 + 4 \geqslant 8 - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant 8 - 4 \hfill \\   \Rightarrow 12 \geqslant y \geqslant 4 \hfill \\ \end{matrix}

    => M = 12; m = 4

  • Câu 27: Thông hiểu

    Hàm số nào dưới đây đồng biến trên khoảng \left( 0;\frac{5\pi}{6}
ight)?

    Ta có:

    x \in \left( 0;\frac{5\pi}{6} ight)
\Rightarrow x - \frac{\pi}{3} \in \left( \frac{\pi}{3};\frac{\pi}{2}
ight) \subset \left( - \frac{\pi}{2};\frac{\pi}{2}
ight)

    Nên hàm số y = \sin\left( x -
\frac{\pi}{3} ight) đồng biến trên khoảng \left( 0;\frac{5\pi}{6}
ight) .

  • Câu 28: Nhận biết

    Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \left[ { - 2023;\,\,\,2023} ight] để phương trình m\cos x + 1 = 0 có nghiệm?

    Ta có m\cos x + 1 = 0 \Leftrightarrow \cos x =  - \frac{1}{m}

    Phương trình có nghiệm \Leftrightarrow  - 1 \leqslant  - \frac{1}{m} \leqslant 1

    \Leftrightarrow m \geqslant 1\xrightarrow[{m \in \left[ { - 2023;\,2023} ight]}]{{m \in \mathbb{Z}}}m \in \left\{ {1;2;3;...;2023} ight\}.

    Vậy có tất cả 2023 giá trị nguyên của tham số m.

  • Câu 29: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    a) Điều kiện xác định của hàm số y =
cot2xlà:

    2x eq k\pi \Rightarrow x eq
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    b) Ta có:

    \sin x + \cos x = 0 \Leftrightarrow
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) = 0

    \Leftrightarrow \sin\left( x +
\frac{\pi}{4} ight) = 0 \Leftrightarrow x = - \frac{\pi}{4} +
k\pi;\left( k\mathbb{\in Z} ight)

    x \in (0;\pi) \Rightarrow 0 < -
\frac{\pi}{4} + k\pi < \pi

    \Rightarrow \frac{1}{4} < k <
\frac{5}{4}k\mathbb{\in
Z} suy ra k = 1

    Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng (0;\pi).

    c) Ta có: \sqrt{3}\cos x + m = 1 \Leftrightarrow
\cos x = \frac{1 - m}{\sqrt{3}}

    Phương trình đã cho có nghiệm khi và chỉ khi

    - 1 \leq \frac{1 - m}{\sqrt{3}} \leq 1
\Leftrightarrow - \sqrt{3} \leq 1 - m \leq \sqrt{3}

    \Leftrightarrow 1 - \sqrt{3} \leq m \leq
1 + \sqrt{3}

    m\mathbb{\in Z \Rightarrow}m = \left\{
- 2; - 1;0;1;2 ight\}

    Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.

    d) Ta có:

    \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} \Leftrightarrow \sin\left( x - \frac{2\pi}{3} ight) =
\sin\left( \frac{\pi}{6} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x - \dfrac{2\pi}{3} = \dfrac{\pi}{6} + k2\pi \\x - \dfrac{2\pi}{3} = \pi - \dfrac{\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{5\pi}{6} + k2\pi \\x = \dfrac{3\pi}{2} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình \sin\left( x - \frac{2\pi}{3}
ight) = \frac{1}{2} trên đường tròn lượng giác là 2.

  • Câu 30: Nhận biết

    Một chất điểm chuyển động trên một đường tròn đường kính 80cm. Biết chất điểm chạy được 5 vòng. Tính quãng đường chuyển động của chất điểm?

    Ta có: r = 40cm \Rightarrow l = 40.2\pi.5
= 400\pi(cm)

  • Câu 31: Thông hiểu

    Biết rằng \frac{\pi}{2} < \alpha <
\frac{3\pi}{4}. Mệnh đề nào sau đây đúng?

    Ta có:

    \frac{\pi}{2} < \alpha <
\frac{3\pi}{4} \Rightarrow \pi < 2\alpha <
\frac{3\pi}{2}

    \Rightarrow \frac{9\pi}{2} < 2\alpha
+ \frac{7\pi}{2} < 5\pi

    Xét trên đường tròn lượng giác ta thấy 2\alpha + \frac{7\pi}{2} thuộc góc phần tư thứ II nên ta có:

    \sin\left( 2\alpha + \frac{7\pi}{2}
ight) > 0

    \cos\left( 2\alpha + \frac{7\pi}{2}
ight) < 0

    \tan\left( 2\alpha + \frac{7\pi}{2}
ight) < 0

    \cot\left( 2\alpha + \frac{7\pi}{2}
ight) < 0

  • Câu 32: Thông hiểu

    Tìm đẳng thức sai trong các đẳng thức sau (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa).

    Ta có: sina + sinb = 2sin\frac{a +
b}{2}cos\frac{a - b}{2}, do đó đẳng thức sina + sinb = 2sin\frac{a + b}{2} \cdot sin\frac{a
- b}{2} sai.

  • Câu 33: Nhận biết

    Một bánh xe của người đi xe ô tô quay được 1 vòng trong 0,1giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).

    Đáp án: 6,28

    Đáp án là:

    Một bánh xe của người đi xe ô tô quay được 1 vòng trong 0,1giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).

    Đáp án: 6,28

    Số đo góc quay của 1 vòng là 2\pi.

  • Câu 34: Vận dụng

    Tính tổng T các nghiệm của phương trình {\cos ^2}x - \sin 2x = \sqrt 2  + {\sin ^2}x trên khoảng \left( {0;2\pi } ight)?

     Phương trình \Leftrightarrow {\cos ^2}x - {\sin ^2}x - \sin 2x = \sqrt 2

    \Leftrightarrow \cos 2x - \sin 2x = \sqrt 2

    \Leftrightarrow \cos \left( {2x + \frac{\pi }{4}} ight) = 1

    \Leftrightarrow 2x + \frac{\pi }{4} = k2\pi  \Leftrightarrow x =  - \frac{\pi }{8} + k\pi {\text{ }}\left( {k \in \mathbb{Z}} ight)

    Do 0 < x < 2\pi \xrightarrow{{}}0 <  - \frac{\pi }{8} + k\pi  < 2\pi

    \Leftrightarrow \frac{1}{8} < k < \frac{{17}}{8}\xrightarrow{{k \in \mathbb{Z}}}\left[ \begin{gathered}  k = 1 \to x = \frac{{7\pi }}{8} \hfill \\  k = 2 \to x = \frac{{15\pi }}{8} \hfill \\ \end{gathered}  ight.

    Suy ra T = \frac{{7\pi }}{8} + \frac{{15\pi }}{8} = \frac{{11}}{4}\pi.

  • Câu 35: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    a) Điều kiện xác định của hàm số y =
cot2xlà:

    2x eq k\pi \Rightarrow x eq
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    b) Ta có:

    \sin x + \cos x = 0 \Leftrightarrow
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) = 0

    \Leftrightarrow \sin\left( x +
\frac{\pi}{4} ight) = 0 \Leftrightarrow x = - \frac{\pi}{4} +
k\pi;\left( k\mathbb{\in Z} ight)

    x \in (0;\pi) \Rightarrow 0 < -
\frac{\pi}{4} + k\pi < \pi

    \Rightarrow \frac{1}{4} < k <
\frac{5}{4}k\mathbb{\in
Z} suy ra k = 1

    Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng (0;\pi).

    c) Ta có: \sqrt{3}\cos x + m = 1 \Leftrightarrow
\cos x = \frac{1 - m}{\sqrt{3}}

    Phương trình đã cho có nghiệm khi và chỉ khi

    - 1 \leq \frac{1 - m}{\sqrt{3}} \leq 1
\Leftrightarrow - \sqrt{3} \leq 1 - m \leq \sqrt{3}

    \Leftrightarrow 1 - \sqrt{3} \leq m \leq
1 + \sqrt{3}

    m\mathbb{\in Z \Rightarrow}m = \left\{
- 2; - 1;0;1;2 ight\}

    Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.

    d) Ta có:

    \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} \Leftrightarrow \sin\left( x - \frac{2\pi}{3} ight) =
\sin\left( \frac{\pi}{6} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x - \dfrac{2\pi}{3} = \dfrac{\pi}{6} + k2\pi \\x - \dfrac{2\pi}{3} = \pi - \dfrac{\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{5\pi}{6} + k2\pi \\x = \dfrac{3\pi}{2} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình \sin\left( x - \frac{2\pi}{3}
ight) = \frac{1}{2} trên đường tròn lượng giác là 2.

  • Câu 36: Thông hiểu

    Cho tam giác ABC có các góc \widehat{A};\widehat{B};\widehat{C} bất kì. Biểu thức T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A} không thể nhận giá trị nào sau đây?

    Ta có:

    T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A}

    = 2\left( \sin\widehat{A}.\frac{1}{2} +
\cos\widehat{A}.\frac{\sqrt{3}}{2} ight)

    = 2\left(
\sin\widehat{A}\cos\frac{\pi}{3} + \cos\widehat{A}.sin\frac{\pi}{3}
ight)

    = 2sin\left( \widehat{A} + \frac{\pi}{3}
ight)

    Với tam giác ABC bất kì ta luôn có:

    0 < \widehat{A} < \pi \Rightarrow
\frac{\pi}{3} < \widehat{A} + \frac{\pi}{3} <
\frac{4\pi}{3}

    \Rightarrow - \sqrt{3} < T \leq
2

    Vậy biểu thức T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A} không thể nhận giá trị 2\sqrt{3}.

  • Câu 37: Thông hiểu

    Tính độ dài của cung trên đường tròn có số đo 1,5 và bán kính bằng 20 cm.

    Ta có: l = R.\alpha = 1,5.20 =
30(cm)

  • Câu 38: Vận dụng

    Cung nào sau đây có mút trùng với B hoặc B’?

    Quan sát hình vẽ ta thấy vị trí điểm B và B’ ứng với các góc \pm \frac{\pi}{2}.

    Tương ứng với đó ta được góc trùng với các vị trí B và B’ là: \alpha = \frac{\pi}{2} + k.\pi.

  • Câu 39: Nhận biết

    Tập xác định D của hàm số y =
\frac{1}{\sin x - \cos x} là:

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\sin x - \cos x eq 0 \hfill \\\Rightarrow \tan x eq 1 \hfill \\\Rightarrow x eq \dfrac{\pi}{4} + k\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Vậy tập xác định D=\mathbb{R}\backslash\left\{ \frac{\pi}{4} + k\pi,k\mathbb{\in Z}ight\}

  • Câu 40: Vận dụng

    Cho các hàm số sau, hàm số nào là hàm số lẻ?

    Ta có: y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x

    Ta kiểm tra được y = x^{4} + \cos\left( x
- \frac{\pi}{3} ight)y =
tan^{2017}x + sin^{2018}x là hàm số không chẵn không lẻ

    y = 2015 + \cos x + sin^{2018}x là hàm số chẵn

    y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x là hàm số lẻ

    Vậy y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x là hàm số lẻ

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo