Nghiệm của phương trình tan (2x) -1 = 0 là?
Ta có:
.
Nghiệm của phương trình tan (2x) -1 = 0 là?
Ta có:
.
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu
(mét) của mực nước trong kênh tính theo thời gian
(giờ) trong một ngày
cho bởi hàm số
có đồ thị như hình bên dưới (
là các số thực dương). Gọi
là tập hợp tất cả các thời điểm
trong ngày để chiều cao của mực nước biển là
mét. Tổng tất cả phần tử của
bằng.

Đáp án: 36
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu (mét) của mực nước trong kênh tính theo thời gian
(giờ) trong một ngày
cho bởi hàm số
có đồ thị như hình bên dưới (
là các số thực dương). Gọi
là tập hợp tất cả các thời điểm
trong ngày để chiều cao của mực nước biển là
mét. Tổng tất cả phần tử của
bằng.
Đáp án: 36
Theo đồ thị ta có:
Suy ra: .
Theo đề bài yêu cầu:
Vì: nên
Suy ra:
Thu gọn biểu thức
thu được kết quả là:
Áp dụng công thức về cung liên kết ta có:
Suy ra:
Hàm số
xác định khi và chỉ khi:
Điều kiện các định:
Trong các hàm số sau, hàm số nào là hàm số lẻ?
Kiểm tra được ;
;
là các hàm số chẵn.
là hàm số lẻ.
Cho hàm số y = sinx. Mệnh đề nào sau đây đúng?
Ta có thể hiểu như sau:
“ Hàm số y = sinx đồng biến khi góc x thuộc góc phần tư thứ IV và thứ I; nghịch biến khi góc x thuộc góc phần tư thứ II và III”.
Phương trình
có họ nghiệm là
Ta có:
là nghiệm của phương trình.
: Chia 2 vế phương trình cho
ta được:
.
Gọi
là nghiệm âm lớn nhất của
. Mệnh đề nào sau đây là đúng?
Phương trình
So sánh hai nghiệm ta được nghiệm âm lớn nhất của phương trình là
Cho A, B, C là các góc của tam giác ABC. Khi đó
tương đương với:
Ta có:
Khi đó:
Tìm đẳng thức sai trong các đẳng thức sau (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa).
Ta có: , do đó đẳng thức
sai.
Trong các phương trình sau, phương trình nào tương đương với phương trình
?
Ta có . Mà
.
Do đó . Vậy
.
Tính giá trị của biểu thức
là:
Ta có:
Phương trình
có bao nhiêu nghiệm thuộc khoảng
?
Điều kiện xác định:
Do
Vậy có tất cả 38 nghiệm
Số nghiệm của phương trình
trên khoảng
là?
Phương trình
- Với không có giá trị thỏa mãn.
- Với
Phương trình nào sau đây vô nghiệm?
+ Phương trình
Vậy phương trình vô nghiệm.
+ Phương trình
Vậy phương trình có nghiệm.
+ Phương trình
Vậy phương trình có nghiệm.
+ Phương trình
mà
nên phương trình
có nghiệm.
Hàm số nào tương ứng với đồ thị trong hình vẽ sau:

Ta thấy hàm số có giá trị lớn nhất bằng và giá trị nhỏ nhất bằng
nên loại các đáp án
và
.
Tại chỉ có hàm số
thỏa mãn.
Với x thuộc (0;1), hỏi phương trình
có bao nhiêu nghiệm?
Phương trình
- Với .
có 6 nghiệm.
- Với .
có 6 nghiệm.
Vậy phương trình đã cho có 12 nghiệm.
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Do k là số nguyên =>
Vậy tập xác định
Điều kiện xác định của hàm số: 
Điều kiện xác định của hàm số:
Với góc
bất kì. Khẳng định nào sau đây đúng?
Ta có:
=>
=>
Rút gọn biểu thức: ![]()
Ta có:
Hàm số
có tập xác định là gì?
Hàm số xác định khi
Vậy tập xác định của hàm số là:
.
Tập nghiệm của phương trình
là?
Ta có: .
Phương trình
có hai họ nghiệm có dạng
và
,
. Khi đó, tính
?
Ta có .
.
Cho góc
thỏa mãn
. Tính giá trị biểu thưc
.
Theo bài ra ta có:
Đồ thị hàm số
đi qua điểm nào sau đây?
Xét điểm (0; 2) => x = 0; y = 2
Thay vào hàm số ta có:
cos0 + 1 = 1 + 1 = 2 (thỏa mãn)
Vậy đồ thị hàm số y = cosx + 1 đi qua điểm (0; 2)
Đơn giản biểu thức
, ta có
Ta có:
Nếu
và
thì
bằng bao nhiêu?
Từ giả thiết ta có:
Ta có:
Mặt khác
Cho góc lượng giác
. Với giá trị k bằng bao nhiêu thì góc
?
Theo bài ra ta có:
Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách.
Ta có:
=> Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách tịnh tiến C qua phải một đoạn có độ dài là
Xét đường tròn lượng giác như hình vẽ. Biết
, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình
được biểu diễn trên đường tròn lượng giác là những điểm nào?


Ta có:
Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Trong tam giác ABC nếu
thì tam giác ABC là tam giác gì?
Ta có:
Vậy tam giác ABC có thể là tam giác cân hoặc tam giác vuông.
Khẳng định nào sai trong các khẳng định sau?
Ta có:
Phương trình nào sau đây luôn vô nghiệm.
Ta có:
=> Phương trình vô nghiệm.
Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

Hỏi hàm số đó là hàm số nào?
Ta có và
nên loại C và D.
Ta thấy tại thì
. Thay vào hai đáp án A và B thì chỉ có B thỏa mãn.
Tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Chọn công thức đúng trong các công thức dưới đây.
Công thức đúng là
Phương trình lượng giác
có nghiệm là ?
Ta có:
Cho
. Khẳng định nào sau đây đúng?
Ta có:
=>
=>
Điểm cuối cung thuộc góc phần tư thứ ba
=>