Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Phương trình \cot x=\sqrt 3 có bao nhiêu nghiệm thuộc \left[ { - 2022\pi \,,\,2022\pi } ight]?

     Ta có: \cot x=\sqrt 3

    \Leftrightarrow x = \frac{\pi }{6} + k\pi \,,\,k \in \mathbb{Z}, mà - 2022\pi  \leqslant x \leqslant 2022\pi.

    \Rightarrow  - 2022\pi  \leqslant \frac{\pi }{6} + k\pi  \leqslant 2022\pi

    \Leftrightarrow  - 2022 \leqslant \frac{1}{6} + k \leqslant 2022

    \Leftrightarrow  - 2022 - \frac{1}{6} \leqslant k \leqslant 2022 - \frac{1}{6}.

    Suy ra - 2022\pi  \leqslant x \leqslant 2022\pi, k \in Z.

    Vậy \cot x=\sqrt 3 có 4044 nghiệm thuộc \left[ { - 2022\pi \,,\,2022\pi } ight].

  • Câu 2: Vận dụng cao

    Nếu \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(p.q eq 0)\cot\alpha\cot\beta là hai nghiệm của phương trình x^{2} - rx + s = 0 thì tích P = r.s bằng:

    Ta có: \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(p.q eq 0)nên theo định lí Vi – ét ta có:\left\{\begin{matrix}\tan\alpha + \tan\beta = p \\\tan\alpha.\tan\beta = q \\\end{matrix} ight.

    \cot\alpha\cot\beta là hai nghiệm của phương trình x^{2} - rx + s = 0 nên theo định lí Vi – ét ta có: \left\{ \begin{matrix}\cot\alpha + \cot\beta = r \\\cot\alpha\cot\beta = s \\\end{matrix} ight.

    Khi đó:

    P = r.s

    P = \left( \cot\alpha + \cot\betaight).\cot\alpha.\cot\beta

    P = \left( \frac{1}{\tan\alpha} +
\frac{1}{\tan\beta}
ight).\frac{1}{\tan\alpha}.\frac{1}{\tan\beta}

    P = \frac{\tan\alpha +\tan\beta}{\tan\alpha.\tan\beta} = \frac{p}{q^{2}}

  • Câu 3: Thông hiểu

    Cho phương trình lượng giác \sin\left( 3x
+ \frac{\pi}{3} ight) = - \frac{\sqrt{3}}{2}

    a) Phương trình có nghiệm \left\lbrack\begin{matrix}x = - \dfrac{\pi}{9} + k\dfrac{2\pi}{3} \\x = \dfrac{\pi}{3} + k\dfrac{2\pi}{3} \\\end{matrix}(k\mathbb{\in Z}) ight. Sai||Đúng

    b) Phương trình có nghiệm âm lớn nhất bằng - \frac{2\pi}{9} Đúng||Sai

    c) Trên khoảng \left( 0;\frac{\pi}{2}
ight) phương trình đã cho có 3 nghiệm Sai||Đúng

    d) Tổng các nghiệm của phương trình trong khoảng \left( 0;\frac{\pi}{2} ight) bằng \frac{7\pi}{9} Đúng||Sai

    Đáp án là:

    Cho phương trình lượng giác \sin\left( 3x
+ \frac{\pi}{3} ight) = - \frac{\sqrt{3}}{2}

    a) Phương trình có nghiệm \left\lbrack\begin{matrix}x = - \dfrac{\pi}{9} + k\dfrac{2\pi}{3} \\x = \dfrac{\pi}{3} + k\dfrac{2\pi}{3} \\\end{matrix}(k\mathbb{\in Z}) ight. Sai||Đúng

    b) Phương trình có nghiệm âm lớn nhất bằng - \frac{2\pi}{9} Đúng||Sai

    c) Trên khoảng \left( 0;\frac{\pi}{2}
ight) phương trình đã cho có 3 nghiệm Sai||Đúng

    d) Tổng các nghiệm của phương trình trong khoảng \left( 0;\frac{\pi}{2} ight) bằng \frac{7\pi}{9} Đúng||Sai

    Ta có:

    \sin\left( 3x + \frac{\pi}{3} ight) = -\frac{\sqrt{3}}{2}

    \Leftrightarrow \left\lbrack\begin{matrix}3x + \dfrac{\pi}{3} = - \dfrac{\pi}{3} + k2\pi \\3x + \dfrac{\pi}{3} = \dfrac{4\pi}{3} + k2\pi \\\end{matrix}(k\mathbb{\in Z}) ight. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
  {3x =  - \dfrac{{2\pi }}{3} + k2\pi } \\ 
  {3x = \pi  + k2\pi } 
\end{array}(k \in \mathbb{Z}) } ight.

    \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
  {x =  - \dfrac{{2\pi }}{9} + k\dfrac{{2\pi }}{3}} \\ 
  {x = \dfrac{\pi }{3} + k\dfrac{{2\pi }}{3}} 
\end{array}(k \in \mathbb{Z})} ight.

     

    x \in \left( 0;\frac{\pi}{2}
ight) nên x = \frac{\pi}{3},x =
\frac{4\pi}{9}.

    Kết luận:

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

  • Câu 4: Nhận biết

    Hai hàm số nào sau đây có chu kì khác nhau?

    Hai hàm số \left\{ \begin{matrix}y = \cos x \\y = \cot\dfrac{x}{2} \\\end{matrix} ight. có cùng chu kì 2π

    Hai hàm số \left\{ \begin{matrix}y = \sin\dfrac{x}{2} \\y = \cos\dfrac{x}{2} \\\end{matrix} ight. có cùng chu kì 4π

    Hai hàm số \left\{ \begin{matrix}y = tan2x \\y = cot2x \\\end{matrix} ight. có cùng chu kì \frac{\pi}{2}

    Hàm số y = sinx có chu kì 2π, hàm số y = tanx có chu kì \frac{\pi}{2}

  • Câu 5: Thông hiểu

    Cho \alpha =
\frac{\pi}{2} + k2\pi. Xác định k để 10\pi < \alpha < 11\pi.

    Ta có:

    10\pi < \alpha < 11\pi

    \Rightarrow 10\pi < \frac{\pi}{2} +
k2\pi < 11\pi

    \Rightarrow \frac{19\pi}{2} < k2\pi
< \frac{21\pi}{2}

    \Rightarrow k = 5

  • Câu 6: Thông hiểu

    Tìm nghiệm dương nhỏ nhất của phương trình 2\sin \left( {4x - \frac{\pi }{3}} ight) - 1 = 0.

     Ta có 2\sin \left( {4x - \frac{\pi }{3}} ight) - 1 = 0 \Leftrightarrow \sin \left( {4x - \frac{\pi }{3}} ight) = \frac{1}{2}

    \Leftrightarrow \sin \left( {4x - \frac{\pi }{3}} ight) = \sin \frac{\pi }{6}

    \Leftrightarrow \left[ \begin{gathered}  4x - \frac{\pi }{3} = \frac{\pi }{6} + k2\pi  \hfill \\  4x - \frac{\pi }{3} = \pi  - \frac{\pi }{6} + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  4x = \frac{\pi }{2} + k2\pi  \hfill \\  4x = \frac{{7\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{8} + \frac{{k\pi }}{2} \hfill \\  x = \frac{{7\pi }}{{24}} + \frac{{k\pi }}{2} \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight).

    TH1. Với x = \frac{\pi }{8} + \frac{{k\pi }}{2}\xrightarrow{{{\text{Cho}} > 0}}\frac{\pi }{8} + \frac{{k\pi }}{2} > 0

    \Leftrightarrow k >  - \frac{1}{4} \to {k_{\min }} = 0 \Rightarrow x = \frac{\pi }{8}

    TH2. Với x = \frac{{7\pi }}{{24}} + \frac{{k\pi }}{2}\xrightarrow{{{\text{Cho}} > 0}}\frac{{7\pi }}{{24}} + \frac{{k\pi }}{2} > 0

    \Leftrightarrow k >  - \frac{7}{{12}} \to {k_{\min }} = 0 \Rightarrow x = \frac{{7\pi }}{{24}}

    So sánh hai nghiệm ta được x = \frac{\pi }{8} là nghiệm dương nhỏ nhất.

  • Câu 7: Nhận biết

    Giải phương trình: \sqrt 3 \tan 2x - 3 = 0

     Giải phương trình:

    \begin{matrix}  \sqrt 3 \tan 2x - 3 = 0 \hfill \\   \Leftrightarrow \tan 2x = \sqrt 3  \hfill \\   \Leftrightarrow 2x = \dfrac{\pi }{3} + k\pi  \hfill \\   \Leftrightarrow x = \dfrac{\pi }{6} + \dfrac{{k\pi }}{2};\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 8: Thông hiểu

    Trên đường tròn lượng giác có điểm gốc là điểm A, điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo bằng 750. Điểm N đối xứng với điểm M qua gốc tọa độ, số đo cung AN là:

    Điểm N đối xứng với điểm M qua gốc tọa độ nên \widehat{AON} = 180^{0} - 75^{0} =
105^{0}

    Cung lượng giác (OA;ON) ngược chiều dương nên số đo lượng giác cung (OA;ON) = - 105^{0} + k.360^{0},\left(
k\mathbb{\in Z} ight)

  • Câu 9: Nhận biết

    Tập nghiệm của phương trình \cos x = \frac{{\sqrt 2 }}{2} là?

    \cos x = \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos x = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k2\pi  \hfill \\  x =  - \frac{\pi }{4} + k2\pi  \hfill \\ \end{gathered}  ight.,k \in \mathbb{Z}

  • Câu 10: Nhận biết

    Tập nghiệm của phương trình \sin x = 0 là: 

     Ta có:

    \begin{matrix}  \sin x = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = k2\pi } \\   {x = \pi  + k2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\   \Leftrightarrow x = k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Cho tam giác ABC có các góc \widehat{A};\widehat{B};\widehat{C} bất kì. Biểu thức T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A} không thể nhận giá trị nào sau đây?

    Ta có:

    T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A}

    = 2\left( \sin\widehat{A}.\frac{1}{2} +
\cos\widehat{A}.\frac{\sqrt{3}}{2} ight)

    = 2\left(
\sin\widehat{A}\cos\frac{\pi}{3} + \cos\widehat{A}.sin\frac{\pi}{3}
ight)

    = 2sin\left( \widehat{A} + \frac{\pi}{3}
ight)

    Với tam giác ABC bất kì ta luôn có:

    0 < \widehat{A} < \pi \Rightarrow
\frac{\pi}{3} < \widehat{A} + \frac{\pi}{3} <
\frac{4\pi}{3}

    \Rightarrow - \sqrt{3} < T \leq
2

    Vậy biểu thức T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A} không thể nhận giá trị 2\sqrt{3}.

  • Câu 12: Nhận biết

    Công thức nào sau đây đúng?

    Công thức đúng là: \cos3a = 4\cos^{3}a -3\cos a

  • Câu 13: Thông hiểu

    Cho \frac{\pi}{4} < x \leq \frac{3\pi}{4} và biểu thức P = \tan\left( x +
\frac{\pi}{4} ight). Mệnh đề nào sau đây đúng?

    Ta có: \frac{\pi}{4} < x \leq
\frac{3\pi}{4} nên \frac{\pi}{4}
< x + \frac{\pi}{4} \leq \pi

    => P = \tan\left( x + \frac{\pi}{4}
ight) \leq 0

  • Câu 14: Vận dụng

    Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức h(t)= 29 + 3.\sin\frac{\pi}{12}(t - 9) với h tính bằng \
^{0}Ct là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ thấp nhất trong ngày là:

    Do - 1 \leq \sin\frac{\pi}{12}(t - 9)
\leq 1,\forall t nên

    \begin{matrix}
   - 3 \leqslant 3\sin \dfrac{\pi }{{12}}(t - 9) \leqslant 3 \hfill \\
   \Leftrightarrow 26 \leqslant 29 + 3\sin \dfrac{\pi }{{12}}(t - 9) \leqslant 32 \hfill \\
   \Leftrightarrow 26 \leqslant h(t) \leqslant 32 \hfill \\ 
\end{matrix}

    Do đó nhiệt độ thấp nhất trong ngày là 26^{0}C.

    Dấu bằng xảy ra\Leftrightarrow \sin\frac{\pi}{12}(t -9) = - 1

    \Leftrightarrow \frac{\pi}{12}(t - 9) = - \frac{\pi}{2} + k2\pi

    \Leftrightarrow t = 3 + 24k(k\mathbb{\in Z})

    Do 0 \leq t \leq 24 \Leftrightarrow 0
\leq 3 + 24k \leq 24 \Leftrightarrow \frac{- 3}{24} \leq k \leq
\frac{21}{24}.

    k\mathbb{\in Z} nên k = 0.

    Khi đó t = 3.

    Vậy lúc 3h là thời gian nhiệt độ thấp nhất trong ngày.

  • Câu 15: Nhận biết

    Nghiệm của phương trình \sin x = -
1

    Ta có: \sin x = - 1 \Leftrightarrow x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight).

  • Câu 16: Vận dụng

    Xác định chu kì T của hàm số y = 3\cos(2x+ 1) - 2\sin\left( \dfrac{x}{2} - 3 ight)

    Hàm số y = 3\cos(2x + 1) tuần hoàn với chu kì T_{1} = \pi

    Hàm số y = - 2\sin\left( \frac{x}{2} - 3ight) tuần hoàn với chu kì T_{2}
= 4\pi

    Suy ra hàm số y = 3\cos(2x + 1) -2\sin\left( \frac{x}{2} - 3 ight) tuần hoàn với chu kì T = 4\pi

  • Câu 17: Thông hiểu

    Trong các hàm số sau, hàm số nào là hàm số tuần hoàn?

    Hàm số y = x + \sin x là hàm số không tuần hoàn

    Tập xác định D=\mathbb{ R}

    Giả sử

    \begin{matrix}f(x + T) = f(x),\forall x \in D \hfill \\\Rightarrow (x + T) + \sin(x + T) = x + \sin x;\forall x \in D \hfill \\\Rightarrow T + \sin(x + T) = \sin x,\forall x \in D \hfill \\\end{matrix}

    Cho x = 0 và x = π ta được

    \begin{matrix}\left\{ \begin{matrix}T + \sin x = sin0 = 0 \\T + \sin(T + \pi) = \sin\pi = 0 \hfill\\\end{matrix} ight.\ \hfill \\\Rightarrow 2T + \sin T + \sin(T + \pi) = 0 \Rightarrow T = 0 \hfill\\\end{matrix}

    Điều này trái với định nghĩa T > 0

    Vậy hàm số y = x + sinx không phải là hàm số tuần hoàn

    Tương tự chứng minh cho các hàm số y =
x\cos xy = \frac{\sin
x}{x} không tuần hoàn.

    Vậy hàm số y = \sin x là hàm số tuần hoàn

  • Câu 18: Thông hiểu

    Phương trình \sin \left( {\frac{\pi }{6} + x} ight) = \cos 2x có nghiệm là

     Giải phương trình:

    \begin{matrix}  \sin \left( {\dfrac{\pi }{6} + x} ight) = \cos 2x \hfill \\   \Leftrightarrow \sin \left( {\dfrac{\pi }{6} + x} ight) = \sin \left( {\dfrac{\pi }{2} - 2x} ight) \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\dfrac{\pi }{6} + x = \dfrac{\pi }{2} - 2x + k2\pi } \\   {\dfrac{\pi }{6} + x = \pi  - \left( {\dfrac{\pi }{2} - 2x} ight) + k2\pi } \end{array}} ight. \hfill  \\ \end{matrix}

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {3x = \dfrac{\pi }{3} + k2\pi } \\   { - x = \dfrac{\pi }{3} + k2\pi } \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{9} + \dfrac{{k2\pi }}{3}} \\   {x =  - \dfrac{\pi }{3} + k'2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight)

  • Câu 19: Thông hiểu

    Cho \sin x +
\cos x = \sqrt{2}. Tính giá trị \sin2x bằng

    Ta có:

    \sin x + \cos x = \sqrt{2}

    \Rightarrow \left( \sin x + \cos x
ight)^{2} = 2

    \Rightarrow 1 + 2\sin x.\cos x =2

    \Rightarrow \sin2x = 1

  • Câu 20: Thông hiểu

    Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?

    Hàm số y = x + \sin x không tuần hoàn. Thật vậy:

    Tập xác định {\text{D}} = \mathbb{R}.

    Giả sử f\left( {x + T} ight) = f\left( x ight),{\text{ }}\forall x \in {\text{D}}

    \Leftrightarrow \left( {x + T} ight) + \sin \left( {x + T} ight) = x + \sin x,{\text{ }}\forall x \in {\text{D}}

    .\Leftrightarrow T + \sin \left( {x + T} ight) = \sin x,{\text{ }}\forall x \in {\text{D}} (*)

    Cho x = 0 và x = π, ta được

    \left\{ \begin{gathered}  T + \sin x = \sin 0 = 0 \hfill \\  T + \sin \left( {\pi  + T} ight) = \sin \pi  = 0 \hfill \\ \end{gathered}  ight.

    \xrightarrow{{}}2T + \sin T + \sin \left( {\pi  + T} ight) = 0 \Leftrightarrow T = 0

    Điều này trái với định nghĩa là T > 0

    Vậy hàm số y = x + \sin x không phải là hàm số tuần hoàn.

    Tương tự chứng minh cho các hàm số y = x\cos xy = \frac{{\sin x}}{x} không tuần hoàn.

  • Câu 21: Nhận biết

    Tìm tập xác định của hàm số y = \frac{\cos x -1}{{\sin \left( {x - \dfrac{\pi }{2}} ight)}}

    Hàm số xác định \sin \left( {x - \frac{\pi }{2}} ight) e 0

    \Leftrightarrow x - \frac{\pi }{2} e k\pi  \Leftrightarrow x e \frac{\pi }{2} + k\pi ,{\text{ }}k \in \mathbb{Z}.

    Vậy tập xác định {\text{D}} = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} ight\}

  • Câu 22: Thông hiểu

    Trong các hàm số sau, hàm số nào đồng biến trên khoảng \left( - \frac{\pi}{3};\frac{\pi}{6}
ight)?

    Với x \in \left( -
\frac{\pi}{3};\frac{\pi}{6} ight)

    \begin{matrix}ightarrow 2x \in \left( - \dfrac{2\pi}{3};\dfrac{\pi}{3} ight) \hfill\\ightarrow 2x + \dfrac{\pi}{6} \in \left( - \dfrac{\pi}{2};\dfrac{\pi}{2}ight) \hfill\\\end{matrix}

    Thuộc góc phần tư thứ IV và thứ nhất nên hàm số y = \sin\left( 2x + \frac{\pi}{6} ight) đồng biến trên khoảng \left( -
\frac{\pi}{3};\frac{\pi}{6} ight)

  • Câu 23: Vận dụng

    Cho \widehat {AOC} = \widehat {AOF} = \frac{\pi }{6}như hình vẽ dưới đây. Nghiệm của phương trình 2 \sin x +1 =0 được biểu diễn trên đường tròn lượng giác là những điểm nào?

     Ta có: 2\sin x + 1 = 0 \Leftrightarrow \sin x = \frac{{ - 1}}{2}

    \Leftrightarrow \left[ \begin{gathered}  x =  - \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{7\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight.\,\left( {k \in \mathbb{Z}} ight).

    Các cung lượng giác x =  - \frac{\pi }{6} + k2\pi, x = \frac{{7\pi }}{6} + k2\pi lần lượt được biểu diễn trên đường tròn lượng giác bởi các điểm F và E.

  • Câu 24: Thông hiểu

    Trong các phương trình sau có bao nhiêu phương trình có nghiệm?

    \sin x = \frac{1}{2};{\text{ }}\sin x = \frac{{ - \sqrt 2 }}{2};{\text{ }}\sin x = \frac{{1 + \sqrt 3 }}{2}

      Do y = sin (x) có tập giá trị là [-1;1] nên các phương trình \sin x = \frac{1}{2};{\text{ }}\sin x = \frac{{ - \sqrt 2 }}{2} có nghiệm;

    phương trình {\text{ }}\sin x = \frac{{1 + \sqrt 3 }}{2} vô nghiệm do  \frac{{1 + \sqrt 3 }}{2} > 1

  • Câu 25: Thông hiểu

    Cho phương trình {\cot ^2}3x - 3\cot 3x + 2 = 0. Đặt t = \cot 3x, ta được phương trình nào sau đây? 

     Ta có: {\cot ^2}3x - 3\cot 3x + 2 = 0  trở thành {t^2} - 3t + 2 = 0.

  • Câu 26: Thông hiểu

    Xác định nghiệm của phương trình - \cos2x = \cos\left( x - 30^{0}ight)?

    Ta có:

    - \cos2x = \cos\left( x - 30^{0}ight)

    \Leftrightarrow \cos\left( 180^{0} - 2x
ight) = \cos\left( x - 30^{0} ight)

    \Leftrightarrow \left\lbrack
\begin{matrix}
x - 30^{0} = 180^{0} - 2x + k360^{0} \\
x - 30^{0} = - 180^{0} + 2x + k360^{0} \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 70^{0} + k120^{0} \\
x = 150^{0} - k360^{0} \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Vậy phương trình đã cho có nghiệm \left\lbrack \begin{matrix}
x = 70^{0} + k120^{0} \\
x = 150^{0} + k360^{0} \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight).

  • Câu 27: Thông hiểu

    Hàm số y = \tan x + \cot x +
\frac{1}{\sin x} + \frac{1}{\cos x}không xác định trong khoảng nào trong các khoảng sau đây?

    Hàm số xác định khi và chỉ khi:

    \begin{matrix}\left\{ \begin{matrix}\sin x eq 0 \hfill \\\cos x eq 0 \hfill \\\end{matrix} ight.\  \Rightarrow sin2x eq 0 \\\Rightarrow x eq \dfrac{k\pi}{2};k\mathbb{\in Z}\hfill \\\end{matrix}

    Chọn k = 3 => x eq
\frac{3\pi}{2}

    Nhưng điểm \frac{3\pi}{2} thuộc khoảng (\pi + k2\pi;2\pi +
k2\pi)

    Vậy hàm số không xác định trên (\pi +
k2\pi;2\pi + k2\pi);k\mathbb{\in Z}

  • Câu 28: Thông hiểu

    Cho góc \alpha thỏa mãn \sin2\alpha = - \frac{4}{5} và \frac{3\pi}{4} < \alpha < \pi. Tính giá trị của biểu thức P = \sin a -
\cos\alpha?

    Do \frac{3\pi}{4} < \alpha <
\pi => \left\{ \begin{matrix}
\sin\alpha > 0 \\
\cos\alpha < 0 \\
\end{matrix} ight.\  \Rightarrow P > 0

    Ta lại có:

    P^{2} = \left( \sin\alpha - \cos\alpha
ight)^{2}

    = 1 - 2\sin\alpha\cos\alpha

    = 1 - \sin2\alpha =\frac{9}{5}

    \Rightarrow P =
\frac{3}{\sqrt{5}}

  • Câu 29: Vận dụng cao

    Tính tổng các nghiệm trong đoạn [0;30] của phương trình: \tan x = \tan 3x

    Điều kiện để phương trình có nghĩa:

    \left\{ {\begin{array}{*{20}{c}}  {\cos {\text{x}} e 0} \\   {\cos 3{\text{x}} e 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x e \dfrac{\pi }{2} + k\pi } \\   {x e \dfrac{\pi }{6} + \dfrac{{k\pi }}{3}} \end{array}} ight.\left( * ight)

    Khi đó, phương trình 3{\text{x}} = x + k\pi  \Leftrightarrow x = \frac{{k\pi }}{2} so sánh với đk

    \left[ \begin{gathered}  x = k2\pi  \hfill \\  x = \pi  + k2\pi  \hfill \\ \end{gathered}  ight.\,,\,x =  \in \left[ {0;30} ight]

    \Rightarrow k = \left\{ {0;...;4} ight\} \Rightarrow x \in \left\{ {0;\pi ;2\pi ;....;9\pi } ight\}

    Vậy, tổng các nghiệm trong đoạn  [0;30]  của phương trình là: 45\pi.

  • Câu 30: Nhận biết

    Tập xác định của hàm số: y = \frac{1}{{\sin x}} + 3\tan x

     Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\sin x e 0} \\   {\cos x e 0} \end{array}} ight. \Rightarrow \sin x.\cos x e 0 \hfill \\   \Rightarrow \sin 2x e 0 \Rightarrow x e \dfrac{{k\pi }}{2};\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 31: Vận dụng cao

    Cho hai điểm A, B thuộc đồ thị hàm số y = sinx trên đoạn \lbrack0;\pibrack. Các điểm C, D thuộc trục Ox thỏa mãn ABCD là hình chữ nhật và CD = \frac{2\pi}{3}. Tính độ dài cạnh BC.

    Gọi A\left( {a;\sin a} ight) \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_B} = a + \dfrac{{2\pi }}{3}} \\   {{y_B} = \sin \left( {a + \dfrac{{2\pi }}{3}} ight)} \end{array}} ight.

    Mặt khác

    \begin{matrix}  {y_A} = {y_B} \Rightarrow \sin a = \sin \left( {a + \dfrac{{2\pi }}{3}} ight) \hfill \\   \Rightarrow a = \pi  - a - \dfrac{{2\pi }}{3} \hfill \\   \Rightarrow a = \dfrac{\pi }{6} \hfill \\ \end{matrix}

    Do đó BC = AD = \sin\frac{\pi}{6} =\frac{1}{2}

  • Câu 32: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về "góc lượng giác"?

    Trên đường tròn định hướng, góc hình học AOB có phân biệt điểm đầu A và điểm cuối B là góc lượng giác.

  • Câu 33: Nhận biết

    Biết \frac{\pi}{2} < \alpha <
\frac{3\pi}{2}, khẳng định nào sau đây đúng?

    Với \frac{\pi}{2} < \alpha <
\frac{3\pi}{2} thì \cos\alpha <
0.

  • Câu 34: Vận dụng

    Cung nào sau đây có mút trùng với B hoặc B’?

    Quan sát hình vẽ ta thấy vị trí điểm B và B’ ứng với các góc \pm \frac{\pi}{2}.

    Tương ứng với đó ta được góc trùng với các vị trí B và B’ là: \alpha = \frac{\pi}{2} + k.\pi.

  • Câu 35: Nhận biết

    Tìm tập xác định của hàm số y =
\cot\left( 2x - \frac{\pi}{4} ight) + sin2x

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\sin\left( 2x - \dfrac{\pi}{4} ight) eq 0 \hfill \\\Leftrightarrow 2x - \dfrac{\pi}{4} eq k\pi \hfill \\\Rightarrow x eq \dfrac{\pi}{8} + k\dfrac{\pi}{2};\left( k\mathbb{\in Z}ight) \hfill \\\end{matrix}

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ \frac{\pi}{8} + k\frac{\pi}{2},k\mathbb{\in Z}
ight\}

  • Câu 36: Vận dụng

    Số nghiệm của phương trình \sin 5x + \sqrt 3 \cos 5x = 2\sin 7x trên khoảng \left( {0;\frac{\pi }{2}} ight) là? 

     Phương trình \Leftrightarrow \frac{1}{2}\sin 5x + \frac{{\sqrt 3 }}{2}\cos 5x = \sin 7x

    \Leftrightarrow \sin \left( {5x + \frac{\pi }{3}} ight) = \sin 7x

    \Leftrightarrow \sin 7x = \sin \left( {5x + \frac{\pi }{3}} ight)

    \Leftrightarrow \left[ \begin{gathered}  7x = 5x + \frac{\pi }{3} + k2\pi  \hfill \\  7x = \pi  - \left( {5x + \frac{\pi }{3}} ight) + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k\pi  \hfill \\  x = \frac{\pi }{{18}} + \frac{{k\pi }}{6} \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight).

    Với  0 < \frac{\pi }{6} + k\pi  < \frac{\pi }{2}

    \Leftrightarrow  - \frac{1}{6} < k < \frac{1}{3}\xrightarrow{{k \in \mathbb{Z}}}k = 0 \to x = \frac{\pi }{6}

    Với 0 < \frac{\pi }{{18}} + k\frac{\pi }{6} < \frac{\pi }{2}

    \Leftrightarrow  - \frac{1}{3} < k < \frac{8}{3}\xrightarrow{{k \in \mathbb{Z}}}\left[ \begin{gathered}  k = 0 \to x = \frac{\pi }{{18}} \hfill \\  k = 1 \to x = \frac{{2\pi }}{9} \hfill \\  k = 2 \to x = \frac{{7\pi }}{{18}} \hfill \\ \end{gathered}  ight.

    Vậy có 4 nghiệm thỏa mãn.

  • Câu 37: Nhận biết

    Xác định chu kì T của hàm số lượng giác y
= \cos\left( \frac{x}{2} + 2016 ight)?

    Hàm số y = cos(ax + b) tuần hoàn với chu kì T = \frac{2\pi}{|a|}

    => y = \cos\left( \frac{x}{2} + 2016
ight) tuần hoàn với chu kì T =
4\pi

  • Câu 38: Nhận biết

    Nghiệm của phương trình \cos x = -
\frac{1}{2}

    Ta có:

    \cos x = - \frac{1}{2} \Leftrightarrow
\cos x = \cos\left( \frac{2\pi}{3} ight)

    \Leftrightarrow x = \pm \frac{2\pi}{3} +
k2\pi\ \ \ \ (k \in Ζ)

  • Câu 39: Thông hiểu

    Cho \sin a =
\frac{3}{5};cosa < 0;cosb = \frac{3}{5};sinb > 0. Giá trị sin(a - b) bằng:

    Ta có:

    \left\{ \begin{matrix}
\sin a = \frac{3}{5} \\
\cos a < 0 \\
\end{matrix} \Rightarrow cosa = - \sqrt{1 - \sin^{2}a} = - \frac{4}{5}
ight.

    \left\{ \begin{matrix}
\cos b = \frac{3}{5} \\
\sin b > 0 \\
\end{matrix} \Rightarrow sinb = \sqrt{1 - \cos^{2}b} = \frac{4}{5}
ight.

    sin(a - b) = sina\cos b - cosa\sin b =
\frac{3}{5} \cdot \frac{3}{5} - \left( - \frac{4}{5} ight) \cdot
\frac{4}{5} = 1

  • Câu 40: Vận dụng

    Tính giá trị biểu thức E = \cos\dfrac{2\pi}{7} + \cos\dfrac{4\pi}{7} +\cos\dfrac{6\pi}{7}

    Ta có:

    2\sin\frac{\pi}{7}.E =2\sin\frac{\pi}{7}.\left( \cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} +\cos\frac{6\pi}{7} ight)

    \Leftrightarrow 2\sin\frac{\pi}{7}.E =2sin\frac{\pi}{7}.\cos\frac{2\pi}{7} +2\sin\frac{\pi}{7}\cos\frac{4\pi}{7} +2\sin\frac{\pi}{7}\cos\frac{6\pi}{7}

    \Leftrightarrow 2\sin\frac{\pi}{7}.E =\sin\frac{3\pi}{7} - \sin\frac{\pi}{7} + \sin\frac{5\pi}{7} -\sin\frac{3\pi}{7} + \sin\frac{7\pi}{7} -\sin\frac{5\pi}{7}

    \Leftrightarrow 2\sin\frac{\pi}{7}.E = -\sin\frac{\pi}{7} + \sin\pi

    \Leftrightarrow 2\sin\frac{\pi}{7}.E = -\sin\frac{\pi}{7}

    \Leftrightarrow E = -
\frac{1}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 29 lượt xem
Sắp xếp theo