Tìm tập các định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Tìm tập các định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Số nghiệm của phương trình
thuộc
là:
Giải phương trình:
Ta có:
Tập nghiệm của phương trình
là
Ta có
.
Khẳng định nào sai trong các khẳng định sau?
Ta có:
Nghiệm của phương trình
là
Tìm chu kì của hàm số
?
Hàm số tuần hoàn với chu kì
Áp dụng công thức trên ta suy ra hàm số tuần hoàn với chu kì
.
Tính giá trị đúng của biểu thức ![]()
Ta có:
Cho cung lượng giác
trên đường tròn lượng giác như hình vẽ. Số đo của cung
bằng bao nhiêu?

Ta có:
Cung lượng giác có điểm đầu là A, điểm cuối là M và có hướng theo chiều dương.
Vậy số đo cung AM là
Giải phương trình
.
Phương trình
Vậy đáp án cần tìm là:
Chọn khẳng định đúng trong các khẳng định sau:
Theo công thức cộng
.
Hàm số
đồng biến trên khoảng nào trong các khoảng sau?
Ta có thuộc gốc phần tư thứ I
=> Hàm số đồng biến trên khoảng
Tìm tập xác định
của hàm số
:
Hàm số xác định khi .
Tập xác định của hàm số là: .
Nghiệm của phương trình
là
Ta có
.
Biết rằng phương trình
có nghiệm dạng
với
và
. Tính ![]()
Điều kiện
Ta có:
Thiết lập các đẳng thức tương tự như trên thì phương trình đã cho trở thành
Vậy nên
.
Giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
lần lượt là:
Ta có:
Có bao nhiêu đẳng thức luôn đúng trong các đẳng thức sau đây (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa)?
i)
.
iii) ![]()
ii)
.
iv)
.
i) Ta có:
Vậy i) đúng.
ii) .
Vậy ii) đúng.
iii) .
Vậy iii) sai.
iv) Ta lấy . Ta có
.
Ta có VP VT.
Do đó iv) sai.
Vậy có 2 đẳng thức đúng.
Giải phương trình
?
Ta có:
PT
Vậy phương trình có nghiệm
Phương trình
có bao nhiêu nghiệm trên khoảng
?
Ta có:
* Trường hợp 1: ,
Vì
.
Vậy có tất cả 8 giá trị k tương ứng với trường hợp 1 có 8 nghiệm là:
;
;
;
;
;
;
;
.
* Trường hợp 2: ,
Vì
.
Vậy có tất cả 8 giá trị k tương ứng với trường hợp 2 có 8 nghiệm là:
;
;
;
;
;
;
;
.
Vậy trên khoảng phương trình đã cho có tất cả là 16 nghiệm.
Trong các hàm sau hàm nào là hàm số chẵn?
Xét hàm số y = -cosx
Lấy ta có:
=> Hàm số y = -cosx là hàm số chẵn.
Nghiệm của phương trình tan (2x) -1 = 0 là?
Ta có:
.
Xác định chu kì T của hàm số lượng giác
?
Hàm số y = cos(ax + b) tuần hoàn với chu kì
=> tuần hoàn với chu kì
Nếu
và
thì
bằng bao nhiêu?
Từ giả thiết ta có:
Ta có:
Mặt khác
Giá trị lớn nhất của hàm số
tại điểm là nghiệm của phương trình nào dưới đây?
Theo bài ra ta có:
Phương trình (*) có nghiệm
Vậy giá trị lớn nhất của hàm số bằng 1 lúc đó
Hỏi
là một nghiệm của phương trình nào sau đây?
Với , suy ra
Tập nghiệm của phương trình
là:
Ta có:
Rút gọn biểu thức
ta được:
Ta có:
Cho
. Chọn khẳng định đúng.
Đặt
Có
.
Vậy .
Điều kiện để biểu thức
xác định
Biểu thức xác định khi
Tập giá trị của hàm số
trên ![]()
Ta có:
Nên
Tìm nghiệm dương nhỏ nhất của phương trình ![]()
Ta có
TH1. Với
TH2. Với
So sánh hai nghiệm ta được là nghiệm dương nhỏ nhất.
Chọn đẳng thức đúng.
Ta có:
Gọi
là nghiệm âm lớn nhất của phương trình
. Mệnh đề nào sau đây là đúng?
Ta có:
TH1. Với
TH2. Với
So sánh hai nghiệm ta được nghiệm âm lớn nhất của phương trình là
Trong các hàm số sau, hàm số nào là hàm số chẵn?
Tất các các hàm số đều có TXĐ: .
Do đó
Bây giờ ta kiểm tra hoặc
Với . Ta có
Suy ra hàm số là hàm số lẻ.
Với . Ta có
Suy ra hàm số không chẵn không lẻ.
Với . Ta có
Suy ra hàm số là hàm số chẵn.
Với Ta có
Suy ra hàm số là hàm số lẻ.
Tìm tập giá trị của hàm số ![]()
Ta có:
Trên đường tròn lượng giác có điểm gốc là điểm A, điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo bằng 750. Điểm N đối xứng với điểm M qua gốc tọa độ, số đo cung AN là:
Điểm N đối xứng với điểm M qua gốc tọa độ nên
Cung lượng giác ngược chiều dương nên số đo lượng giác cung
Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?
Hàm số không tuần hoàn. Thật vậy:
Tập xác định .
Giả sử
.
Cho x = 0 và x = π, ta được
Điều này trái với định nghĩa là T > 0
Vậy hàm số không phải là hàm số tuần hoàn.
Tương tự chứng minh cho các hàm số và
không tuần hoàn.
Cho tam giác
có các góc
thỏa mãn biểu thức
. Biết rằng
với
. Tính giá trị biểu thức
?
Ta có:
Dấy “=” xảy ra khi
Trong các hàm số sau, hàm số nào là hàm số lẻ?
Ta kiểm tra được và
là hàm số chẵn
Hàm số không chẵn không lẻ
=> Hàm số là hàm số lẻ.
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Áp dụng: Hàm số tuần hoàn với chu kì
Trên đường tròn lượng giác có bao nhiêu vị trí biểu diện nghiệm của phương trình
?
Điều kiện xác định:
Ta có:
Kết hợp với điều kiện xác định suy ra phương trình có nghiệm nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.