Cho
. Giá trị
bằng:
Ta có:
Cho
. Giá trị
bằng:
Ta có:
Phương trình
có họ nghiệm là
Ta có:
là nghiệm của phương trình.
: Chia 2 vế phương trình cho
ta được:
.
Nghiệm của phương trình: ![]()
Ta có:
Hàm số nào sau đây là hàm số chẵn:
Hàm số sinx là hàm số lẻ
=> Hàm số y = sin5x, y = 3sin2x, y = 4sinx là hàm số lẻ
Xét hàm số y = |sinx| ta có:
Hàm số có tập xác định D = R; ∀x ∈ D thì -x ∈ D
Ta có: f(-x) = |sin( -x)| = |- sinx| = |sinx|
=> f(x)= f(-x) nên hàm số y= |sinx| là hàm số chẵn
Vậy hàm số y = |sinx| là hàm số chẵn
Với
, mệnh đề nào sau đây đúng?
Ta có: thuộc góc phần tư thứ I và thứ II.
Gọi
là nghiệm dương nhỏ nhất của phương trình
. Mệnh đề nào sau đây là đúng?
Điều kiện:
Phương trình
Cho .
Do đó nghiệm dương nhỏ nhất ứng với .
Phương trình
có nghiệm là:
Ta có:
Vậy phương trình có nghiệm là
Hàm số
có chu kì bằng bao nhiêu?
Chu kì của hàm số là:
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm?
Áp dụng điều kiện có nghiệm của phương trình .
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Do đó, phương trình có nghiệm khi và chỉ khi
.
Tính giá trị ![]()
Ta có:
Chu kì của hàm số
là số nào sau đây?
Chu kì của hàm số là
Tập nghiệm của phương trình
là:
Ta có:
=> Phương trình vô nghiêm.
Có bao nhiêu đẳng thức luôn đúng trong các đẳng thức sau đây (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa)?
i)
.
iii) ![]()
ii)
.
iv)
.
i) Ta có:
Vậy i) đúng.
ii) .
Vậy ii) đúng.
iii) .
Vậy iii) sai.
iv) Ta lấy . Ta có
.
Ta có VP VT.
Do đó iv) sai.
Vậy có 2 đẳng thức đúng.
Cho hàm số
và
. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Hàm số
là hàm số chẵn. Sai||Đúng
b) Trong khoảng
đồ thị hai hàm số
và
cắt nhau tại hai điểm. Đúng||Sai
c) Giá trị lớn nhất của hàm số
bằng
. Sai||Đúng
d) Hàm số
đạt giá trị nhỏ nhất khi
. Đúng||Sai
Cho hàm số và
. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Hàm số là hàm số chẵn. Sai||Đúng
b) Trong khoảng đồ thị hai hàm số
và
cắt nhau tại hai điểm. Đúng||Sai
c) Giá trị lớn nhất của hàm số bằng
. Sai||Đúng
d) Hàm số đạt giá trị nhỏ nhất khi
. Đúng||Sai
a) Sai
TXĐ: . Do đó
Ta có là hàm số lẻ.
b) Đúng
Phương trình trong khoảng
có hai nghiệm
và
c) Sai
Ta có: , mà
.
Vậy giá trị lớn nhất của hàm số bằng
, khi
.
d) Đúng
Giá trị nhỏ nhất của hàm số bằng
, khi
Mệnh đề nào sau đây đúng?
Đáp án đúng là:
Tìm chu kì của hàm số
?
Hàm số tuần hoàn với chu kì
Áp dụng công thức trên ta suy ra hàm số tuần hoàn với chu kì
.
Biết
. Tính
?
Ta có:
Lại có
Vì
Nghiệm của phương trình
là:
Ta có
Cho
như hình vẽ dưới đây. Nghiệm của phương trình
được biểu diễn trên đường tròn lượng giác là những điểm nào?

Ta có:
.
Các cung lượng giác ,
lần lượt được biểu diễn trên đường tròn lượng giác bởi các điểm F và E.
Trong các phương trình sau, phương trình nào tương đương với phương trình
?
Ta có . Mà
.
Do đó . Vậy
.
Với x thuộc
hỏi phương trình
có bao nhiêu nghiệm:
Giải phương trình:
Xét nghiệm
Do =>
Xét nghiệm
Do =>
Vậy có tất cả 12 giá trị x thỏa mãn
Biết số đo một góc
. Giá trị tổng quát của góc
là
Ta có:
Tập xác định của hàm số
là:
Ta có: xác định khi và chỉ khi
Vậy tập xác định của hàm số là:
Thu gọn biểu thức
thu được kết quả là:
Áp dụng công thức về cung liên kết ta có:
Suy ra:
Rút gọn biểu thức:
ta được:
Ta có:
Trong các hàm số sau, hàm số nào là hàm số lẻ?
Kiểm tra được ;
;
là các hàm số chẵn.
là hàm số lẻ.
Xác định hàm số chẵn trong các hàm số dưới đây?
Ta có:
Hàm số có tập xác định
nên
và
Suy ra hàm số là hàm số lẻ.
Hàm số là hàm số chẵn vì tập xác định
nên
và
Tương tự ta có hàm số là hàm số lẻ, hàm số
không chẵn cũng không lẻ.
Tính ![]()
Ta có:
Đồ thị hàm số
được suy từ đồ thị (C) của hàm số bằng cách:
Nhắc lại lý thuyết:
Cho (C) là đồ thị của hàm số và
, ta có:
+ Tịnh tiến (C) lên p trên đơn vị thì được đồ thị của hàm số .
+ Tịnh tiến (C) xuống dưới p đơn vị thì được đồ thị của hàm số
+ Tịnh tiến (C) sang trái p đơn vị thì được đồ thị của hàm số
+ Tịnh tiến (C) sang phải p đơn vị thì được đồ thị của hàm số
Vậy đồ thị hàm số được suy từ đồ thị hàm số
bằng cách tịnh tiến sang phải
đơn vị.
Cung tròn có số đo là
. Hãy chọn số đo độ của cung tròn đó trong các cung tròn sau đây:
Ta có:
Cho đồ thị hàm số như hình vẽ:

Hỏi hàm số tương ứng là hàm số nào trong các hàm số dưới đây
Ta thấy hàm số có GTLN bằng 1 và GTNN bằng -1 => Loại đáp án
Tại x = 0 thì => Loại đáp án
Tại ta thấy chỉ có
thỏa mãn
Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ
của năm 2022 được cho bởi một hàm số
với
và
. Vào ngày nào trong năm thì thành phố A có nhiều giờ có ánh sáng mặt trời nhất?
Vì
Ngày có ánh sáng mặt trời nhiều nhất
Do
Với rơi vào ngày 29 tháng 5 (vì ta đã biết tháng 1 và 3 có 31 ngày, tháng 4 có 30 ngày, riêng đối với năm 2022 thì không phải năm nhuận nên tháng 2 có 28 ngày hoặc dựa vào dữ kiện
thì ta biết năm này tháng 2 chỉ có 28 ngày).
Phương án nào sau đây sai với mọi
?
Ta có:
Vậy đáp án sai là:
Điều kiện để phương trình
có nghiệm là:
Điều kiện để phương trình có nghiệm là
Vậy thì phương trình đã cho có nghiệm.
Số vị trí biểu diễn các nghiệm của phương trình
trên đường tròn lượng giác là?
ĐK:
Ta có .
Kết hợp điều kiện (*) suy ra nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.
Nếu
và
là hai nghiệm của phương trình
và
và
là hai nghiệm của phương trình
thì tích
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Huyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu gọi là huyết áp tâm thu và tâm trương, tương ứng. Chỉ số huyết áp của chúng ta được viết là tâm thu/tâm trương. Chỉ số huyết áp
là bình thường. Giả sử một người nào đó có nhịp tim là
lần trên phút và huyết áp của người đó được mô hình hoá bởi hàm số
ở đó
là huyết áp tính theo đơn vị
( milimét thuỷ ngân) và thời gian
tính theo giây. Trong khoảng từ 0 đến 1 giây, hãy xác định số lần huyết áp là 120
?
Đáp án: 1
Huyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu gọi là huyết áp tâm thu và tâm trương, tương ứng. Chỉ số huyết áp của chúng ta được viết là tâm thu/tâm trương. Chỉ số huyết áp là bình thường. Giả sử một người nào đó có nhịp tim là
lần trên phút và huyết áp của người đó được mô hình hoá bởi hàm số
ở đó
là huyết áp tính theo đơn vị
( milimét thuỷ ngân) và thời gian
tính theo giây. Trong khoảng từ 0 đến 1 giây, hãy xác định số lần huyết áp là 120
?
Đáp án: 1
Huyết áp là 120 khi
Xét
vì .
Vậy trong khoảng từ 0 đến 1 giây, có 1 lần huyết áp là 120 .
Tìm giá trị lớn nhất M của biểu thức
xác định
Ta có:
Mặt khác
Vậy giá trị lớn nhất của biểu thức là .
Tìm tập xác định
của hàm số
:
Hàm số xác định khi .
Tập xác định của hàm số là: .
Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số
là:
Ta có:
=> M = 12; m = 4