Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Nếu \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(q eq 0) thì P = cos^{2}(\alpha + \beta) + p\sin(\alpha +
\beta).cos(\alpha + \beta) + qsin^{2}(\alpha + \beta) bằng:

    Ta có: \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(q eq 0)nên theo định lí Vi – ét ta có: \left\{ \begin{matrix}
\tan\alpha + \tan\beta = p \\
\tan\alpha.tan\beta = q \\
\end{matrix} ight.

    \Rightarrow \tan(\alpha + \beta) =
\frac{\tan\alpha + \tan\beta}{1 - \tan\alpha.tan\beta} = \frac{p}{1 -
q}

    Khi đó:

    P = \cos^{2}(\alpha + \beta) +p\sin(\alpha + \beta).\cos(\alpha + \beta) + q\sin^{2}(\alpha +\beta)

    P = \cos^{2}(\alpha + \beta).\left\lbrack1 + p\tan(\alpha + \beta) + q\tan^{2}(\alpha + \beta)ightbrack

    P = \frac{1 + p\tan(\alpha + \beta) +q\tan^{2}(\alpha + \beta)}{1 + \tan^{2}(\alpha + \beta)}

    P = \dfrac{1 + p.\dfrac{p}{1 - q} +q.\left( \dfrac{p}{1 - q} ight)^{2}}{1 + \left( \dfrac{p}{1 - q}ight)^{2}}

    P = \dfrac{(1 - q)^{2} + p^{2}(1 - q) +q.p^{2}}{(1 - q)^{2} + p^{2}}

    P = \dfrac{(1 - q)^{2} + p^{2} - p^{2}.q+ q.p^{2}}{(1 - q)^{2} + p^{2}}

    P = 1

  • Câu 2: Vận dụng

    Nếu \sin\alpha.\cos(\alpha + \beta) =\sin\beta với \alpha + \beta eq\frac{\pi}{2} + k\pi\alpha eq\frac{\pi}{2} + l\pi;\left( k;l\mathbb{\in Z} ight) thì

    Ta có:

    \begin{matrix}  \sin \alpha \cos (\alpha  + \beta ) = \sin \beta  \hfill \\   \Leftrightarrow \dfrac{1}{2}\sin (2\alpha  + \beta ) - \dfrac{1}{2}\sin \beta  = \sin \beta  \hfill \\   \Leftrightarrow \sin (2\alpha  + \beta ) = 3\sin \beta  \hfill \\   \Leftrightarrow \sin (2\alpha  + \beta ) - \sin \beta  = \dfrac{1}{2}[\sin (2\alpha  + \beta ) + \sin \beta ] \hfill \\   \Leftrightarrow 2\cos (\alpha  + \beta ).\sin \beta  = \sin (\alpha  + \beta ).\cos \beta  \hfill \\   \Leftrightarrow \dfrac{{\sin (\alpha  + \beta )}}{{\cos (\alpha  + \beta )}} = 2.\dfrac{{\sin \beta }}{{\cos \beta }} \hfill \\   \Rightarrow \sin \alpha .\cos (\alpha  + \beta ) = \sin \beta  \hfill \\   \Leftrightarrow \tan (\alpha  + \beta ) = 2\tan \beta  \hfill \\ \end{matrix}

  • Câu 3: Nhận biết

    Rút gọn biểu thức A = \cos^{4}15^{0} - \sin^{4}15^{0}

    Ta có:

    A = \cos^{4}15^{0} -\sin^{4}15^{0}

    A = \left( \cos^{2}15^{0} + \sin^{2}15^{0}ight)\left( \cos^{2}15^{0} - \sin^{2}15^{0} ight)

    A = \cos^{2}15^{0} -\sin^{2}15^{0}

    A = \cos\left( 2.15^{0} ight) =\cos30^{0} = \frac{\sqrt{3}}{2}

  • Câu 4: Nhận biết

    Phương trình lượng giác \cot\ x =
\frac{\sqrt{3}}{3} có nghiệm là:

    Ta có

    \cot x = \frac{\sqrt{3}}{3}

    \Leftrightarrow \cot x = \cot\left(
\frac{\pi}{3} ight)

    \Leftrightarrow x = \frac{\pi}{3} +
k\pi,\left( k\mathbb{\in Z} ight)

  • Câu 5: Thông hiểu

    Chọn công thức đúng trong các công thức dưới đây.

    Công thức đúng là \sin a - \sin b =2\sin\frac{a + b}{2}.\cos\frac{a - b}{2}

  • Câu 6: Vận dụng cao

    Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

    Hỏi hàm số đó là hàm số nào?

    Ta có y = 1 + \left| \cos x ight| \geq1y = 1 + \left| \sin x ight|\geq 1 nên loại C và D.

    Ta thấy tại x = \pi thì y = 0. Thay vào hai đáp án A và B thì chỉ có B thỏa mãn.

  • Câu 7: Thông hiểu

    Biết \sin\alpha =
- \frac{4}{5};\left( 3\pi < \alpha < \frac{7\pi}{2}
ight). Tính \tan\alpha?

    Ta có: 3\pi < \alpha <
\frac{7\pi}{2} \Rightarrow \left\{ \begin{matrix}
\cos\alpha < 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight.

    Lại có \sin^{2}\alpha + \cos^{2}\alpha =1

    \Rightarrow \cos^{2}\alpha = 1 -\sin^{2}\alpha = \frac{9}{25}

    \Rightarrow \cos\alpha = \pm
\frac{3}{5}

    \cos\alpha < 0 \Rightarrow
\cos\alpha = - \frac{3}{5}

    \Rightarrow \tan\alpha =
\frac{\sin\alpha}{\cos\alpha} = \frac{4}{3}

  • Câu 8: Vận dụng

    Điều kiện để biểu thức P = \tan\left( \alpha + \frac{\pi}{3} ight) +
\cot\left( \alpha - \frac{\pi}{6} ight) xác định

    Biểu thức P = \tan\left( \alpha +
\frac{\pi}{3} ight) + \cot\left( \alpha - \frac{\pi}{6}
ight) xác định khi

    \left\{ \begin{matrix}\cos\left( \alpha + \dfrac{\pi}{3} ight) eq 0 \\\sin\left( \alpha - \dfrac{\pi}{6} ight) eq 0 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}\alpha + \dfrac{\pi}{3} eq \dfrac{\pi}{2} + k\pi \\\alpha - \dfrac{\pi}{6} eq k\pi \\\end{matrix} ight.

    \Rightarrow \alpha eq \frac{\pi}{6} +
k\pi;\left( k\mathbb{\in Z} ight)

  • Câu 9: Thông hiểu

    Phương trình nào sau đây luôn vô nghiệm.

    Ta có:

    2019\sin x = 2020

    \Rightarrow \sin x = \frac{2020}{2019}
> 1

    => Phương trình vô nghiệm.

  • Câu 10: Vận dụng

    Tổng các nghiệm của phương trình \cos 2x - \sin 2x = 1 trong khoảng \left ( 0;2\pi  ight ) là:

     Giải phương trình:

    \begin{matrix}  \cos 2x - \sin 2x = 1 \hfill \\   \Leftrightarrow \sqrt 2 \cos \left( {2x + \dfrac{\pi }{4}} ight) = 1 \hfill \\   \Leftrightarrow \cos \left( {2x + \dfrac{\pi }{4}} ight) = \dfrac{1}{{\sqrt 2 }} \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {2x + \dfrac{\pi }{4} = \dfrac{\pi }{4} + k2\pi } \\   {2x + \dfrac{\pi }{4} =  - \dfrac{\pi }{4} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = k\pi } \\   {x =  - \dfrac{\pi }{4} + k\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Xét nghiệm x = k\pi

    Do x \in \left ( 0;2\pi  ight ) => 0 < k\pi  < 2\pi  \Rightarrow k = 1

    => x = \pi

    Xét nghiệm {x =  - \frac{\pi }{4} + k\pi }

    Do x \in \left ( 0;2\pi  ight )

    \begin{matrix}  0 <  - \dfrac{\pi }{4} + k\pi  < 2\pi  \Rightarrow k \in \left\{ {1;2} ight\} \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {k = 1 \Rightarrow x = \dfrac{{3\pi }}{4}} \\   {k = 2 \Rightarrow x = \dfrac{{7\pi }}{4}} \end{array}} ight. \hfill \\ \end{matrix}

    vậy tổng tất cả các nghiệm của phương trình là: \frac{14\pi}{4}

  • Câu 11: Vận dụng

    Giá trị lớn nhất của hàm số y = \frac{\sin x + 2\cos x + 1}{\sin x + \cos x +2} tại điểm là nghiệm của phương trình nào dưới đây?

    Theo bài ra ta có:

    y = \frac{\sin x + 2\cos x + 1}{\sin x + \cos x +2}

    \Leftrightarrow y.\left( \sin x + \cos x+ 2 ight) = \sin x + 2\cos x + 1

    \Leftrightarrow (y - 1).\sin x + (y -2)\cos x = 1 - 2y(*)

    Phương trình (*) có nghiệm

    \Leftrightarrow (y - 1)^{2} + (y -
2)^{2} \geq 1 - 2y

    \Leftrightarrow y^{2} + y - 2 \leq
0

    \Leftrightarrow - 2 \leq y \leq
1

    Vậy giá trị lớn nhất của hàm số bằng 1 lúc đó - \cos x = - 1

  • Câu 12: Thông hiểu

    Trên đường tròn định hướng, mỗi cung lượng giác \mathop {AB}^{\displaystyle\frown} xác định:

    Trên đường tròn định hướng, mỗi cung lượng giác \mathop {AB}^{\displaystyle\frown} xác định vô số góc lượng giác tia đầu OA, tia cuối OB.

  • Câu 13: Nhận biết

    Tìm tập các định D của hàm số y = \frac{1
- \sin x}{\cos x - 1}

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\cos x - 1 eq 0 \hfill \\\Rightarrow \cos x eq 1 \hfill \\\Rightarrow x eq k2\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ k2\pi,k\mathbb{\in Z} ight\}

  • Câu 14: Vận dụng cao

    Có bao nhiêu giá trị nguyên của tham số m để phương trình \sin x. \cos x - \sin x - \cos x + m = 0 có nghiệm:

     Đặt t = \sin x + \cos x;\left( {t \in \left[ { - \sqrt 2 ;\sqrt 2 } ight]} ight)

    => \sin x.\cos x = \frac{{{t^2} - 1}}{2}

    Phương trình trở thành:

    \begin{matrix}  \dfrac{{{t^2} - 1}}{2} - t + m = 0 \hfill \\   \Rightarrow  - 2m = {t^2} - 2t - 1 \hfill \\   \Rightarrow {\left( {t - 1} ight)^2} =  - 2m + 2 \hfill \\ \end{matrix}

    Do  {t \in \left[ { - \sqrt 2 ;\sqrt 2 } ight]}

    \begin{matrix}   \Leftrightarrow  - \sqrt 2  - 1 \leqslant t - 1 \leqslant \sqrt 2  - 1 \hfill \\   \Leftrightarrow 0 \leqslant {\left( {t - 1} ight)^2} \leqslant 3 + 2\sqrt 2  \hfill \\ \end{matrix}

    Vậy để phương trình có nghiệm

    \begin{matrix}   \Leftrightarrow 0 \leqslant  - 2m + 2 \leqslant 3 + 2\sqrt 2  \hfill \\   \Leftrightarrow  - \dfrac{{1 + 2\sqrt 2 }}{2} \leqslant m \leqslant 1 \hfill \\  m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 1;0;1} ight\} \hfill \\ \end{matrix}

  • Câu 15: Vận dụng

    Tổng các nghiệm của phương trình \cos\left( \sin x ight) = 1 trên đoạn (0;2\pibrack bằng:

    Phương trình tương đương với \sin x =
k2\pi;k\mathbb{\in Z}

    - 1 \leq \sin x \leq 1 nên k = 0

    Khi đó phương trình trở thành \sin x = 0
\Rightarrow x = l\pi;\left( l\mathbb{\in Z} ight)

    x \in (0;2\pibrack nên x \in \left\{ 0;\pi ight\}

    => Tổng các nghiệm của phương trình là: 0 + \pi = \pi

  • Câu 16: Vận dụng

    Với x thuộc \left ( 0;1  ight ) hỏi phương trình cos^{2}\left ( 6\pi x ight )=\frac{3}{4} có bao nhiêu nghiệm:

     Giải phương trình:

    \begin{matrix}  {\cos ^2}\left( {6\pi x} ight) = \dfrac{3}{4} \hfill \\   \Leftrightarrow \dfrac{{\cos \left( {12\pi x} ight) + 1}}{2} = \dfrac{3}{4} \hfill \\   \Leftrightarrow 2\cos \left( {12\pi x} ight) + 2 = 3 \hfill \\   \Leftrightarrow \cos \left( {12\pi x} ight) = \dfrac{1}{2} \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {12\pi x = \dfrac{\pi }{3} + k2\pi } \\   {12\pi x =  - \dfrac{\pi }{3} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{1}{{36}} + \dfrac{k}{6}} \\   {x =  - \dfrac{1}{{36}} + \dfrac{k}{6}} \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Xét nghiệm {x = \frac{1}{{36}} + \frac{k}{6}}

    Do x \in \left( {0;1} ight) => 0 < \frac{1}{{36}} + \frac{k}{6} < 1 \Rightarrow k \in \left\{ {0;1;2;3;4;5} ight\}

    Xét nghiệm {x = -\frac{1}{{36}} + \frac{k}{6}}

    Do x \in \left( {0;1} ight) =>0 < -\frac{1}{{36}} + \frac{k}{6} < 1 \Rightarrow k \in \left\{ {1;2;3;4;5;6} ight\}

    Vậy có tất cả 12 giá trị x thỏa mãn

  • Câu 17: Thông hiểu

    Cho hai đồ thị hàm số y = \sin\left( x +
\frac{\pi}{4} ight)y = \sin
x, khi đó:

    a) Phương trình hoành độ giao điểm của hai đồ thị hàm số:\sin \left( {x + \frac{\pi }{4}} ight) = \sin x Đúng||Sai

    b) Hoành độ giao điểm của hai đồ thị là x
= \frac{3\pi}{8} + k\pi(k\mathbb{\in Z}) Đúng||Sai

    c) Khi x \in \lbrack
0;2\pibrack thì hai đồ thị hàm số cắt nhau tại ba điểm Sai||Đúng

    d) Khi x \in \lbrack
0;2\pibrack thì toạ độ giao điểm của hai đồ thị hàm số là: \left( \frac{5\pi}{8};sin\frac{5\pi}{8}
ight),\left( \frac{7\pi}{8};sin\frac{7\pi}{8} ight). Sai||Đúng

    Đáp án là:

    Cho hai đồ thị hàm số y = \sin\left( x +
\frac{\pi}{4} ight)y = \sin
x, khi đó:

    a) Phương trình hoành độ giao điểm của hai đồ thị hàm số:\sin \left( {x + \frac{\pi }{4}} ight) = \sin x Đúng||Sai

    b) Hoành độ giao điểm của hai đồ thị là x
= \frac{3\pi}{8} + k\pi(k\mathbb{\in Z}) Đúng||Sai

    c) Khi x \in \lbrack
0;2\pibrack thì hai đồ thị hàm số cắt nhau tại ba điểm Sai||Đúng

    d) Khi x \in \lbrack
0;2\pibrack thì toạ độ giao điểm của hai đồ thị hàm số là: \left( \frac{5\pi}{8};sin\frac{5\pi}{8}
ight),\left( \frac{7\pi}{8};sin\frac{7\pi}{8} ight). Sai||Đúng

    Phương trình hoành độ giao điểm của hai đồ thị hàm số:

    \sin\left( x + \frac{\pi}{4} ight) =\sin x

    \Leftrightarrow \left\lbrack\begin{matrix}x + \dfrac{\pi}{4} = x + k2\pi \\x + \dfrac{\pi}{4} = \pi - x + k2\pi \\\end{matrix}(k\mathbb{\in Z}) ight.

    \Leftrightarrow x = \frac{3\pi}{8} +
k\pi(k\mathbb{\in Z})

    x \in \lbrack 0;2\pibrack
\Rightarrow x \in \left\{ \frac{3\pi}{8};\frac{11\pi}{8}
ight\}.

    Với x = \frac{3\pi}{8} \Rightarrow y =
\sin\frac{3\pi}{8} \approx 0,92 với x = \frac{11\pi}{8} \Rightarrow y =
\sin\frac{11\pi}{8} \approx - 0,92.

    Vậy toạ độ giao điểm của hai đồ thị hàm số là: \left( \frac{3\pi}{8};sin\frac{3\pi}{8}
ight),\left( \frac{11\pi}{8};sin\frac{11\pi}{8} ight).

    Kết luận:

    a) Đúng

    b) Đúng

    c) Sai

    d) Sai

  • Câu 18: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    a) Điều kiện xác định của hàm số y =
cot2xlà:

    2x eq k\pi \Rightarrow x eq
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    b) Ta có:

    \sin x + \cos x = 0 \Leftrightarrow
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) = 0

    \Leftrightarrow \sin\left( x +
\frac{\pi}{4} ight) = 0 \Leftrightarrow x = - \frac{\pi}{4} +
k\pi;\left( k\mathbb{\in Z} ight)

    x \in (0;\pi) \Rightarrow 0 < -
\frac{\pi}{4} + k\pi < \pi

    \Rightarrow \frac{1}{4} < k <
\frac{5}{4}k\mathbb{\in
Z} suy ra k = 1

    Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng (0;\pi).

    c) Ta có: \sqrt{3}\cos x + m = 1 \Leftrightarrow
\cos x = \frac{1 - m}{\sqrt{3}}

    Phương trình đã cho có nghiệm khi và chỉ khi

    - 1 \leq \frac{1 - m}{\sqrt{3}} \leq 1
\Leftrightarrow - \sqrt{3} \leq 1 - m \leq \sqrt{3}

    \Leftrightarrow 1 - \sqrt{3} \leq m \leq
1 + \sqrt{3}

    m\mathbb{\in Z \Rightarrow}m = \left\{
- 2; - 1;0;1;2 ight\}

    Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.

    d) Ta có:

    \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} \Leftrightarrow \sin\left( x - \frac{2\pi}{3} ight) =
\sin\left( \frac{\pi}{6} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x - \dfrac{2\pi}{3} = \dfrac{\pi}{6} + k2\pi \\x - \dfrac{2\pi}{3} = \pi - \dfrac{\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{5\pi}{6} + k2\pi \\x = \dfrac{3\pi}{2} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình \sin\left( x - \frac{2\pi}{3}
ight) = \frac{1}{2} trên đường tròn lượng giác là 2.

  • Câu 19: Nhận biết

    Phương trình \tan x = \tan 3x có nghiệm là:

     Giải phương trình:

    \begin{matrix}  \tan x = \tan 3x \hfill \\   \Leftrightarrow \tan 3x = \tan x \hfill \\   \Leftrightarrow 3x = x + k\pi  \hfill \\   \Leftrightarrow 2x = k\pi  \hfill \\   \Leftrightarrow x = \dfrac{{k\pi }}{2};\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Giải phương trình \sin\left( \frac{2x}{3}
- \frac{\pi}{3} ight) = 0.

    Phương trình

    \sin\left( \frac{2x}{3} - \frac{\pi}{3}
ight) = 0 \Leftrightarrow \frac{2x}{3} - \frac{\pi}{3} =
k\pi

    \Leftrightarrow \frac{2x}{3} =
\frac{\pi}{3} + k\pi \Leftrightarrow x = \frac{\pi}{2} +
\frac{k3\pi}{2}\ \left( k\mathbb{\in Z} ight).

    Vậy đáp án cần tìm là: x = \frac{\pi}{2}
+ \frac{k3\pi}{2}\ \left( k\mathbb{\in Z} ight).

  • Câu 21: Nhận biết

    Tìm chu kì của hàm số y = \sin\left( 5x - \frac{\pi}{4}
ight)?

    Hàm số y = \sin(ax + b) tuần hoàn với chu kì T =
\frac{2\pi}{|a|}

    Áp dụng công thức trên ta suy ra hàm số y
= \sin\left( 5x - \frac{\pi}{4} ight) tuần hoàn với chu kì T = \frac{2\pi}{5}.

  • Câu 22: Nhận biết

    Với x \in \left( {\frac{{31\pi }}{4};\frac{{33\pi }}{4}} ight), mệnh đề nào sau đây là đúng?

    Ta có \left( {\frac{{31\pi }}{4};\frac{{33\pi }}{4}} ight) = \left( { - \frac{\pi }{4} + 8\pi ;\frac{\pi }{4} + 8\pi } ight) thuộc góc phần tư thứ I và II.

  • Câu 23: Thông hiểu

    Với điều kiện xác định của các giá trị lượng giác, mệnh đề nào sau đây đúng?

    Mệnh đề đúng là: \sin^{2}a + \cos^{2}a =1

  • Câu 24: Thông hiểu

    Xác định hàm số chẵn trong các hàm số dưới đây?

    Ta có:

    Hàm số y = \sin x.cos3x có tập xác định D\mathbb{= R} nên \forall x\mathbb{\in R \Rightarrow -}x\mathbb{\in
R}

    y( - x) = \sin( - x).\cos( -3x) = - \sin x.\cos3x = - y(x)

    Suy ra hàm số y = \sin x.\cos3x là hàm số lẻ.

    Hàm số y = \cos2x là hàm số chẵn vì tập xác định D\mathbb{= R} nên \forall x\mathbb{\in R \Rightarrow
-}x\mathbb{\in R}

    y( - x) = \cos( - 2x) = cos2x =
y(x)

    Tương tự ta có hàm số y = \sin x là hàm số lẻ, hàm số y = \sin x + \cos
x không chẵn cũng không lẻ.

  • Câu 25: Thông hiểu

    Rút gọn biểu thức C = \cos\left( x + \frac{\pi}{4} ight) -\cos\left( x - \frac{\pi}{4} ight).

    Ta có:

    C = \cos\left( x + \frac{\pi}{4} ight)
- \cos\left( x - \frac{\pi}{4} ight)

    C = - 2\sin\left( \dfrac{x + \dfrac{\pi}{4}+ x - \dfrac{\pi}{4}}{2} ight).\sin\left( \dfrac{x + \dfrac{\pi}{4} - x +\dfrac{\pi}{4}}{2} ight)

    C = - 2\sin x.\sin\frac{\pi}{4} = -\sqrt{2}\sin x

  • Câu 26: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Tất các các hàm số đều có TXĐ: {\text{D}} = \mathbb{R}.

    Do đó \forall x \in {\text{D}} \Rightarrow  - x \in {\text{D}}{\text{.}}

    Bây giờ ta kiểm tra f\left( { - x} ight) = f\left( x ight) hoặc f\left( { - x} ight) =  - f\left( x ight).

     Với y = f\left( x ight) =  - \,\,\sin x. Ta có

    f\left( { - x} ight) =  - \,\,\sin \left( { - x} ight) = \sin x =  - \left( { - \sin x} ight)

    \Rightarrow f\left( { - x} ight) =  - f\left( x ight)

    Suy ra hàm số là hàm số lẻ.

    Với y = f\left( x ight) = \cos x - \sin x. . Ta có

    f\left( { - x} ight) = \cos \left( { - x} ight) - \sin \left( { - x} ight) = \cos x + \sin x

    \Rightarrow f\left( { - x} ight) e \left\{ { - f\left( x ight),f\left( x ight)} ight\}

    Suy ra hàm số không chẵn không lẻ.

    Với y = f\left( x ight) = \cos x + {\sin ^2}x. Ta có

    f\left( { - \,x} ight) = \cos \left( { - \,x} ight) + {\sin ^2}\left( { - \,x} ight)

    = \cos \left( { - \,x} ight) + {\left[ {\sin \left( { - \,x} ight)} ight]^2}

    = \cos x + {\left[ { - \sin x} ight]^2} = \cos x + {\sin ^2}x

    \Rightarrow f\left( { - x} ight) = f\left( x ight)

    Suy ra hàm số là hàm số chẵn.

    Với y = f\left( x ight) = \cos x\sin x. Ta có

    f\left( { - \,x} ight) = \cos \left( { - \,x} ight).\sin \left( { - \,x} ight) =  - \cos x\sin x

    \Rightarrow f\left( { - x} ight) =  - f\left( x ight)

     Suy ra hàm số là hàm số lẻ.

  • Câu 27: Vận dụng

    Trong các hàm số sau, hàm số nào có đồ thị tương ứng với hình vẽ?

    Ta có: y = 1 + \left| \cos x ight| \geq1;y = 1 + \left| \sin x ight| \geq 1

    => Loại đáp án y = 1 + \left| \cos xight|y = 1 + \left| \sin xight|

    Tại x = 0 => y = 1 ta thấy y = 1 +\sin|x| thỏa mãn

  • Câu 28: Nhận biết

    Với những giá trị nào của x thì giá trị của các hàm số y = \sin 3xy = \sin x bằng nhau?

     Xét phương trình hoành độ giao điểm: sin 3x = sin x

    \Leftrightarrow \left[ \begin{gathered}  3x = x + k2\pi  \hfill \\  3x = \pi  - x + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = k\pi  \hfill \\  x = \frac{\pi }{4} + k\frac{\pi }{2} \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

  • Câu 29: Thông hiểu

    Một đường tròn có đường kính bằng 20cm. Tính độ dài của cung trên đường tròn có số đo 35^{0} (lấy 2 chữ số thập phân).

    Cung có số đo 35^{0} thì có số đó radian là \alpha = \frac{35\pi}{180} =
\frac{7\pi}{36}

    Bán kính đường tròn R = \frac{20}{2} =
10cm

    => l = R.\alpha = 10.\frac{7\pi}{36}
\approx 6,11cm

  • Câu 30: Thông hiểu

    Biết A,B,C là các góc của tam giác ABC, mệnh đề nào sau đây đúng?

    A,B,C là các góc của tam giác ABC nên A + B + C = \pi \Rightarrow A + C = \pi -
B.

    Khi đó sin(A + C) = sin(\pi - B) =
sinB;cos(A + C) = cos(\pi - B) = - cosB.

    tan(A + C) = tan(\pi - B) = - tanB;cot(A
+ C) = cot(\pi - B) = - cotB.

  • Câu 31: Nhận biết

    Tính \cos\alpha biết 0 < \alpha < \frac{\pi}{2}\sin\alpha = \frac{1}{4}.

    Ta có sin^{2}\alpha + cos^{2}\alpha =
1

    \Rightarrow cos^{2}\alpha = 1 -
sin^{2}\alpha = 1 - \left( \frac{1}{4} ight)^{2} =
\frac{15}{16}.

    0 < \alpha <
\frac{\pi}{2} nên \cos\alpha >
0.

    Vậy \cos\alpha =
\frac{\sqrt{15}}{4}.

  • Câu 32: Nhận biết

    Với điều kiện xác định của các giá trị lượng giác, mệnh đề nào sau đây sai?

    Ta có:

    \sin( - a) = - \sin a

    \cos(a - \pi) = - \cos a

    \cot(a - \pi) = - \cot a

    \tan(\pi + a) = \tan a

  • Câu 33: Nhận biết

    Tìm tập xác định của hàm số y =
\cot\left( 2x - \frac{\pi}{4} ight) + sin2x

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\sin\left( 2x - \dfrac{\pi}{4} ight) eq 0 \hfill \\\Leftrightarrow 2x - \dfrac{\pi}{4} eq k\pi \hfill \\\Rightarrow x eq \dfrac{\pi}{8} + k\dfrac{\pi}{2};\left( k\mathbb{\in Z}ight) \hfill \\\end{matrix}

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ \frac{\pi}{8} + k\frac{\pi}{2},k\mathbb{\in Z}
ight\}

  • Câu 34: Thông hiểu

    Cho các hàm số y
= \cos x;y = \sin x;y = \tan x;y = \cot x. Trong các hàm số trên, có bao nhiêu hàm số lẻ?

    Ta có:

    y = \cos x là hàm số chẵn vì:

    Tập xác định của hàm số D\mathbb{=
R}

    Với \forall x \in D \Rightarrow - x \in
D

    f( - x) = \cos( - x) = \cos x =
f(x)

    y = \sin x là hàm số lẻ vì:

    Tập xác định của hàm số D\mathbb{=
R}

    Với \forall x \in D \Rightarrow - x \in
D

    f( - x) = \sin( - x) = - \sin x = -
f(x)

    y = \tan x là hàm số lẻ vì

    Tập xác định của hàm số D\mathbb{=
R}\backslash\left\{ \frac{\pi}{2} + k\pi|k\mathbb{\in Z}
ight\}

    Với \forall x \in D \Rightarrow - x \in
D

    f( - x) = \tan( - x) = - \tan x = -
f(x)

    y = \cot x là hàm số lẻ vì

    Tập xác định của hàm số D\mathbb{=
R}\backslash\left\{ k\pi|k\mathbb{\in Z} ight\}

    Với \forall x \in D \Rightarrow - x \in
D

    f( - x) = \cot( - x) = \cot( - x) = -
f(x)

  • Câu 35: Thông hiểu

    Hàm số y = \sin \frac{x}{5} có chu kì bằng bao nhiêu?

     Chu kì của hàm số y = \sin \frac{x}{5} là: T = \dfrac{{2\pi }}{{\left| {\dfrac{1}{5}} ight|}} = 10\pi

  • Câu 36: Nhận biết

    Nghiệm của phương trình \cos x = \cos 3x là

     \begin{matrix}  \cos x = \cos 3x \hfill \\   \Leftrightarrow \cos 3x = \cos x \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {3x = x + k2\pi } \\   {3x =  - x + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = k\pi } \\   {x = \dfrac{{k\pi }}{2}} \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 37: Nhận biết

    Trong các phương trình sau, phương trình nào tương đương với phương trình 3{\sin ^2}x = {\cos ^2}x ?

     Ta có 3{\sin ^2}x = {\cos ^2}x. Chi hai vế phương trình cho {\sin ^2}x, ta được {\cot ^2}x = 3.

  • Câu 38: Thông hiểu

    Tất cả các nghiệm của phương trình tan (x) = cot (x) là?

     Điều kiện \left\{ \begin{gathered}  \sin x e 0 \hfill \\  \cos x e 0 \hfill \\ \end{gathered}  ight.\, \Leftrightarrow \sin 2x e 0\, \Leftrightarrow x e m\frac{\pi }{2}\,{\text{ , }}m \in \mathbb{Z}

    \tan x = \cot x \Leftrightarrow \tan x = \tan \left( {\frac{\pi }{2} - x} ight)

    \Leftrightarrow x = \frac{\pi }{2} - x + k\pi

    \Leftrightarrow x = \frac{\pi }{4} + k\frac{\pi }{2}\,\,\,\left( {\,k \in \mathbb{Z}} ight) thỏa mãn điều kiện.

  • Câu 39: Thông hiểu

    Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = 8 - 4\cos \left( {\frac{\pi }{4} - 3x} ight) là:

     Ta có: 

    \begin{matrix}   - 1 \leqslant \cos \left( {\dfrac{\pi }{4} - 3x} ight) \leqslant 1 \hfill \\   \Rightarrow 4 \geqslant  - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant  - 4 \hfill \\   \Rightarrow 8 + 4 \geqslant 8 - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant 8 - 4 \hfill \\   \Rightarrow 12 \geqslant y \geqslant 4 \hfill \\ \end{matrix}

    => M = 12; m = 4

  • Câu 40: Thông hiểu

    Hàm số nào dưới đây đồng biến trên khoảng \left( 0;\frac{5\pi}{6}
ight)?

    Ta có:

    x \in \left( 0;\frac{5\pi}{6} ight)
\Rightarrow x - \frac{\pi}{3} \in \left( \frac{\pi}{3};\frac{\pi}{2}
ight) \subset \left( - \frac{\pi}{2};\frac{\pi}{2}
ight)

    Nên hàm số y = \sin\left( x -
\frac{\pi}{3} ight) đồng biến trên khoảng \left( 0;\frac{5\pi}{6}
ight) .

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo