Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm tập xác định của hàm số y =
\cot\left( 2x - \frac{\pi}{4} ight) + sin2x

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\sin\left( 2x - \dfrac{\pi}{4} ight) eq 0 \hfill \\\Leftrightarrow 2x - \dfrac{\pi}{4} eq k\pi \hfill \\\Rightarrow x eq \dfrac{\pi}{8} + k\dfrac{\pi}{2};\left( k\mathbb{\in Z}ight) \hfill \\\end{matrix}

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ \frac{\pi}{8} + k\frac{\pi}{2},k\mathbb{\in Z}
ight\}

  • Câu 2: Thông hiểu

    Tìm chu kì T của hàm số lượng giác y =cos3x + cos5x

    Hàm số y = cos3x tuần hoàn với chu kì T =\frac{2\pi}{3}

    Hàm số y = cos5x tuần hoàn với chu kì T =\frac{2\pi}{5}

    => Hàm số y = cos3x + cos5x tuần hoàn với chu kì là T =2\pi

  • Câu 3: Nhận biết

    Khẳng định nào sau đây đúng?

    Trong khoảng \left( 0;\frac{\pi}{2}
ight) thì hàm số y = \sin
x đồng biến.

  • Câu 4: Thông hiểu

    Tìm tập xác định D của hàm số y = \frac{1}{{\sqrt {1 - \sin \,x} }}.

    Hàm số xác định khi và chỉ khi 

    1 - \sin x > 0 \Leftrightarrow \sin x < 1 \,\,(*)

    - 1 \leqslant \sin x \leqslant 1 nên \left( * ight) \Leftrightarrow \sin x e 1 \Leftrightarrow x e \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}

    Vậy tập xác định {\text{D}} = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} ight\}

  • Câu 5: Vận dụng

    Tìm tất cả các giá trị của tham số m để phương trình 2m\sin^{2}x + 4\sin x\cos x - 4\cos^{2}x = 0 vô nghiệm?

    Ta có:

    2m\sin^{2}x + 4\sin x\cos x -4\cos^{2}x = 0

    \Leftrightarrow m(1 - \cos2x) + 2\sin2x -2(1 + \cos2x) = 0

    \Leftrightarrow 2\sin2x - (m + 2)\cos2x = 2- m
    Phương trình vô nghiệm \Leftrightarrow 4 +(m + 2)^{2} < (2 - m)^{2}

    \Leftrightarrow 4 + m^{2} + 4m + 4 <4 - 4m + m^{2}

    \Leftrightarrow 8m + 4 < 0\Leftrightarrow m < - \frac{1}{2}

  • Câu 6: Vận dụng

    Giải phương trình \sqrt 3 \cos \left( {x + \frac{\pi }{2}} ight) + \sin \left( {x - \frac{\pi }{2}} ight) = 2\sin 2x?

     

    Ta có \cos \left( {x + \frac{\pi }{2}} ight) =  - \sin x và .\sin \left( {x - \frac{\pi }{2}} ight) =  - \cos x

    Do đó phương trình \Leftrightarrow  - \sqrt 3 \sin x - \cos x = 2\sin 2x

    \Leftrightarrow \sqrt 3 \sin x + \cos x =  - 2\sin 2x

    \Leftrightarrow \frac{{\sqrt 3 }}{2}\sin x + \frac{1}{2}\cos x =  - \sin 2x

    \Leftrightarrow \sin \left( {x + \frac{\pi }{6}} ight) =  - \sin 2x

    \Leftrightarrow \sin \left( {x + \frac{\pi }{6}} ight) = \sin \left( { - 2x} ight)

    \Leftrightarrow \left[ \begin{gathered}  x + \frac{\pi }{6} =  - 2x + k2\pi  \hfill \\  x + \frac{\pi }{6} = \pi  + 2x + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x =  - \frac{\pi }{{18}} + k\frac{{2\pi }}{3} \hfill \\  x =  - \frac{{5\pi }}{6} - k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Xét nghiệm x =  - \frac{{5\pi }}{6} - k2\pi \xrightarrow[{k \in \mathbb{Z},{\text{ }}k' \in \mathbb{Z}}]{{k =  - 1 - k'}}x = \frac{{7\pi }}{6} + k'2\pi.

    Vậy phương trình có nghiệm x =  - \frac{\pi }{{18}} + k\frac{{2\pi }}{3},{\text{ }}x = \frac{{7\pi }}{6} + k'2\pi {\text{ }}\left( {k,k' \in \mathbb{Z}} ight).

  • Câu 7: Thông hiểu

    Đổi số đo của góc 120^{0}sang đơn vị radian?

    Cách 1: Áp dụng công thức \mu = \frac{m.\pi}{180} với m = 120^{0} ta được:

    \mu = \frac{m.\pi}{180} =
\frac{120.\pi}{180} = \frac{2.\pi}{3}

    Cách 2: Bấm máy tính:

    Bước 1: Bấm tổ hợp phím SHIFT MODE 4 chuyển về chế độ rad.

    Bước 2: Bấm 120 SHIFT Ans 1 =

  • Câu 8: Nhận biết

    Với x thuộc (0;1), hỏi phương trình {\cos ^2}\left( {6\pi x} ight) = \frac{3}{4} có bao nhiêu nghiệm?

     Phương trình {\cos ^2}\left( {6\pi x} ight) = \frac{3}{4} \Leftrightarrow \cos \left( {6\pi x} ight) =  \pm \frac{{\sqrt 3 }}{2}

    - Với \cos 6\pi x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \cos 6\pi x = \cos \frac{\pi }{6} \Leftrightarrow 6\pi x =  \pm \,\frac{\pi }{6} + k2\pi.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{1}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\  x =  - \frac{1}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}   - \frac{1}{{12}} < k < \frac{{35}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {0;1;2} ight\} \hfill \\  \frac{1}{{12}} < k < \frac{{37}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {1;2;3} ight\} \hfill \\ \end{gathered}  ight. \to có 6 nghiệm.

    - Với \cos 6\pi x =  - \frac{{\sqrt 3 }}{2} \Leftrightarrow \cos 6\pi x = \cos \frac{{5\pi }}{6} \Leftrightarrow 6\pi x =  \pm \,\frac{{5\pi }}{6} + k2\pi.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{5}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\  x =  - \frac{5}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}   - \frac{5}{{12}} < k < \frac{{31}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {0;1;2} ight\} \hfill \\  \frac{5}{{12}} < k < \frac{{41}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {1;2;3} ight\} \hfill \\ \end{gathered}  ight. \tocó 6 nghiệm.

    Vậy phương trình đã cho có 12 nghiệm.

  • Câu 9: Thông hiểu

    Tất cả các nghiệm của phương trình \cot \left( {x - {{15}^{\text{o}}}} ight) - \sqrt 3  = 0 là:

    Ta có: \cot \left( {x - {{15}^{\text{o}}}} ight) - \sqrt 3  = 0 \Leftrightarrow \cot \left( {x - {{15}^{\text{o}}}} ight) = \sqrt 3

    \Leftrightarrow x - {15^{\text{o}}} = {30^{\text{o}}} + k{180^{\text{o}}}

    Vậy suy ra x = {45^{\text{o}}} + k{180^{\text{o}}}, k \in \mathbb Z

    Nghiệm của phương trình đã cho là: x = {45^{\text{o}}} + k{180^{\text{o}}}, k \in \mathbb Z.

  • Câu 10: Vận dụng

    Hỏi trên đoạn [-2023; 2023], phương trình (\sin x+1)(\sin x-\sqrt2)=0 có tất cả bao nhiêu nghiệm?

     Ta xét phương trình \Leftrightarrow \left[ \begin{gathered}  \sin x =  - 1 \hfill \\  \sin x = \sqrt 2 \left( {{\text{VN}}} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \sin x =  - 1 \Leftrightarrow x =  - \frac{\pi }{2} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} ight).

    Theo giả thiết - 2023 \leqslant  - \frac{\pi }{2} + k2\pi  \leqslant 2023 \Leftrightarrow \dfrac{{ - 2023 + \dfrac{\pi }{2}}}{{2\pi }} \leqslant k \leqslant \dfrac{{2023 + \dfrac{\pi }{2}}}{{2\pi }}

    \xrightarrow{{{\text{xấp xỉ}}}} - 321,720 \leqslant k \leqslant 322,220\xrightarrow{{k \in \mathbb{Z}}}k \in \left\{ { - 321; - 320;...;321;322} ight\}

    Vậy có tất cả 644 giá trị nguyên của k tương úng có 644 nghiệm thỏa mãn yêu cầu bài toán.

  • Câu 11: Vận dụng cao

    Nếu \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(p.q eq 0)\cot\alpha\cot\beta là hai nghiệm của phương trình x^{2} - rx + s = 0 thì tích P = r.s bằng:

    Ta có: \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(p.q eq 0)nên theo định lí Vi – ét ta có:\left\{\begin{matrix}\tan\alpha + \tan\beta = p \\\tan\alpha.\tan\beta = q \\\end{matrix} ight.

    \cot\alpha\cot\beta là hai nghiệm của phương trình x^{2} - rx + s = 0 nên theo định lí Vi – ét ta có: \left\{ \begin{matrix}\cot\alpha + \cot\beta = r \\\cot\alpha\cot\beta = s \\\end{matrix} ight.

    Khi đó:

    P = r.s

    P = \left( \cot\alpha + \cot\betaight).\cot\alpha.\cot\beta

    P = \left( \frac{1}{\tan\alpha} +
\frac{1}{\tan\beta}
ight).\frac{1}{\tan\alpha}.\frac{1}{\tan\beta}

    P = \frac{\tan\alpha +\tan\beta}{\tan\alpha.\tan\beta} = \frac{p}{q^{2}}

  • Câu 12: Thông hiểu

    Một bánh xe đạp trong 5 giây quay được 2 vòng. Hỏi bánh xe quay được 1 góc bao nhiêu độ trong 2 giây?

    Trong 1 giây bánh xe quay được \frac{2}{5} vòng

    Suy ra trong 2 giây bánh xe quay được \frac{4}{5} vòng

    Vậy góc bánh xe quay được là: \frac{4}{5}.360^{0} = 288^{0}

  • Câu 13: Nhận biết

    Tập nghiệm của phương trình \sin x=0 là?

     Ta có: \sin x =0 \Leftrightarrow x = k\pi \, , \, k \in \mathbb{Z}.

  • Câu 14: Nhận biết

    Điểm cuối của góc lượng giác a ở góc phần tư thứ mấy nếu \sin\alpha;cos\alpha cùng dấu?

    Điểm cuối của góc lượng giác a ở góc phần tư thứ I hoặc thứ III thì \sin\alpha;cos\alpha cùng dấu

  • Câu 15: Vận dụng cao

    Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

    Hỏi hàm số đó là hàm số nào?

    Ta có y = 1 + \left| \cos x ight| \geq1y = 1 + \left| \sin x ight|\geq 1 nên loại C và D.

    Ta thấy tại x = \pi thì y = 0. Thay vào hai đáp án A và B thì chỉ có B thỏa mãn.

  • Câu 16: Thông hiểu

    Phương trình cos2x = 1 có một nghiệm thuộc khoảng (\pi;3\pi)

    Ta có cos2x = 1 \Leftrightarrow x =
k\pi(k \in \mathbb{Z}).

    Do đó x = 2\pi là một nghiệm của phương trình cos2x = 1 thuộc khoảng (\pi;3\pi).

  • Câu 17: Nhận biết

    Tập xác định D của hàm số y =
\frac{1}{\sin x - \cos x} là:

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\sin x - \cos x eq 0 \hfill \\\Rightarrow \tan x eq 1 \hfill \\\Rightarrow x eq \dfrac{\pi}{4} + k\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Vậy tập xác định D=\mathbb{R}\backslash\left\{ \frac{\pi}{4} + k\pi,k\mathbb{\in Z}ight\}

  • Câu 18: Nhận biết

    Khẳng định nào sai trong các khẳng định sau?

    Ta có:

    \cos6a = \cos^{2}3a -\sin^{2}3a

    = 2\cos^{2}3a - 1 = 1 -2\sin^{2}3a

  • Câu 19: Nhận biết

    Hàm số y = 3\cos\left( \dfrac{\pi}{4} - mxight) tuần hoàn có chu kì T =
3\pi khi

    Hàm số y = 3\cos\left( \dfrac{\pi}{4} - mxight) có nghĩa \forall
x\mathbb{\in R \Leftrightarrow}D\mathbb{= R}.

    Chu kì của hàm số T = \frac{2\pi}{| - m|}
= 3\pi \Leftrightarrow m = \pm \frac{2}{3}.

  • Câu 20: Vận dụng cao

    Cho hàm số y = x \sin x, số nghiệm thuộc \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1 là?

     Ta có: y' = \operatorname{s} {\text{inx}} + x\cos x

    y'' = \cos x + \cos x - x\sin x = 2\cos x - x\sin x

    Do đó

    y'' + y = 1 \Leftrightarrow 2\cos x = 1 \Leftrightarrow \cos x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{3} + k2\pi  \hfill \\  x =  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\left( {k \in Z} ight)

    +) Trường hợp 1. Với x = \frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant \frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{5}{{12}} \leqslant k \leqslant \frac{5}{6}

    Suy ra k = 0 ta được x = \frac{\pi }{3}.

    +) Trường hợp 2. Với x = -\frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant -\frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{1}{{12}} \leqslant k \leqslant \frac{7}{6}

    Suy ra k = 0 ta được x =  - \frac{\pi }{3};\,\,\,\,k = 1 ta được x = \frac{{5\pi }}{3}.

    Vậy có 3 nghiệm thuộc x \in \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1

    x = \frac{\pi }{3}; x = -\frac{\pi }{3}; x = \frac{{5\pi }}{3}.

  • Câu 21: Nhận biết

    Cho góc \alpha được biểu diễn trên đường tròn lượng giác như hình vẽ. Mệnh đề nào dưới đây đúng?

    Góc \alpha được biểu diễn như hình vẽ, khi đó \sin\alpha > 0,cos\alpha
< 0,tan\alpha < 0,cot\alpha < 0.

    Tung độ của điểm M\sin\alpha suy ra \sin\alpha > \frac{1}{2}

    Mệnh đề đúng là \sin\alpha - \frac{1}{2}
> 0.

  • Câu 22: Vận dụng

    Cho tam giác ABC có: \cos\widehat{A} = \frac{4}{5}\cos\widehat{B} = \frac{5}{13}. Xác định \cos\widehat{C}.

    Ta có: \left\{ \begin{matrix}\cos\widehat{A} = \dfrac{4}{5} \\\cos\widehat{B} = \dfrac{5}{13} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}\sin\widehat{A} = \dfrac{3}{5} \\\sin\widehat{B} = \dfrac{12}{13} \\\end{matrix} ight.

    \widehat{A} + \widehat{B} +
\widehat{C} = 180^{0} khi đó:

    \cos\widehat{C} = \cos\left\lbrack180^{0} - \left( \widehat{A} + \widehat{B} ight)ightbrack

    = - \cos\left( \widehat{A} + \widehat{B}
ight)

    = - \left(\cos\widehat{A}\cos\widehat{B} - \sin\widehat{A}\sin\widehat{B}ight)

    = - \left( \frac{4}{5}.\frac{5}{13} -
\frac{3}{5}.\frac{12}{13} ight) = \frac{16}{65}

  • Câu 23: Thông hiểu

    Nghiệm của phương trình sinx + cosx = 1 là:

     \begin{matrix}  \sin x + \cos x = 1 \hfill \\   \Leftrightarrow \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} ight) = 1 \hfill \\   \Leftrightarrow \sin \left( {x + \dfrac{\pi }{4}} ight) = \dfrac{1}{{\sqrt 2 }} \hfill \\   \Leftrightarrow \sin \left( {x + \dfrac{\pi }{4}} ight) = \sin \left( {\dfrac{\pi }{4}} ight) \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x + \dfrac{\pi }{4} = \dfrac{\pi }{4} + k2\pi } \\   {x + \dfrac{\pi }{4} = \pi  - \dfrac{\pi }{4} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{4} - \dfrac{\pi }{4} + k2\pi } \\   {x = \pi  - \dfrac{\pi }{4} - \dfrac{\pi }{4} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = k2\pi } \\   {x = \dfrac{\pi }{2} + k2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 24: Thông hiểu

    Tìm số nghiệm của phương trình \sin(\cos x) = 0 trên đoạn x \in \lbrack 0;2\pibrack.

    Ta có: sin(cosx) = 0 \Leftrightarrow cosx
= k\pi\ (k \in \mathbb{Z})

    |cosx| \leq 1 nên k = 0. Do đó phương trình \Leftrightarrow cosx = 0 \Leftrightarrow x =
\frac{\pi}{2} + m\pi(m \in \mathbb{Z})

    x \in \lbrack 0;2\pibrack nên x = \frac{\pi}{2},x =
\frac{3\pi}{2}.

  • Câu 25: Thông hiểu

    Phương trình lượng giác \cos \left( {2x + \frac{\pi }{3}} ight) = \cos \left( {x + \frac{\pi }{6}} ight) có nghiệm là:

     \begin{matrix}  \cos \left( {2x + \dfrac{\pi }{3}} ight) = \cos \left( {x + \dfrac{\pi }{6}} ight) \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {2x + \dfrac{\pi }{3} = x + \dfrac{\pi }{6} + k2\pi } \\   {2x + \dfrac{\pi }{3} =  - x - \dfrac{\pi }{6} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - \dfrac{\pi }{6} + k2\pi } \\   {x =  - \dfrac{\pi }{6} + \dfrac{{k2\pi }}{3}} \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Vậy nghiệm phương trình là: \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{{ - \pi }}{6} + k2\pi } \\   {x = \dfrac{{ - \pi }}{6} + \dfrac{{k2\pi }}{3}} \end{array}} ight.

  • Câu 26: Thông hiểu

    Cho \cos a =
\frac{3}{5} cho 0^{0} < a <
90^{0}. Tính giá trị của \sin
a?

    Ta có:

    \sin^{2}a + \cos^{2}a = 1

    \Leftrightarrow \sin^{2}a = 1 -\cos^{2}a

    \Leftrightarrow \sin^{2}a = 1 - \left(\frac{3}{5} ight)^{2}

    \Leftrightarrow \sin^{2}a =\frac{16}{25}

    \Leftrightarrow \sin a = \pm
\frac{4}{5}

    0^{0} < a < 90^{0} nên \sin a > 0 \Rightarrow \sin a =
\frac{4}{5}

  • Câu 27: Thông hiểu

    Hàm số y = \sin \frac{x}{5} có chu kì bằng bao nhiêu?

     Chu kì của hàm số y = \sin \frac{x}{5} là: T = \dfrac{{2\pi }}{{\left| {\dfrac{1}{5}} ight|}} = 10\pi

  • Câu 28: Vận dụng

    Đồ thị hàm số y = \sin x được suy ra từ đồ thị C của hàm số y = cosx + 1 bằng cách:

    Ta có: y = \sin x = \cos\left(
\frac{\pi}{2} - x ight) = \cos\left( x - \frac{\pi}{2}
ight)

    Tịnh tiến đồ thị y = cosx + 1 sang phải \frac{\pi}{2} ta được đồ thị hàm số y = \cos\left( x - \frac{\pi}{2} ight) +
1

    Tiếp theo tịnh tiến đồ thị y = \cos\left(
x - \frac{\pi}{2} ight) + 1 xuống dưới một đơn vị ta được đồ thị hàm số y = \cos\left( x - \frac{\pi}{2}
ight)

    VD

     

    0

  • Câu 29: Vận dụng

    Nếu \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} + px + q = 0;(q eq 1) thì \tan(\alpha + \beta) bằng:

    Ta có: \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} + px + q = 0;(q eq 1)nên theo định lí Vi – ét ta có:

    \left\{ \begin{matrix}
\tan\alpha + \tan\beta = - p \\
\tan\alpha.tan\beta = q \\
\end{matrix} ight.

    Khi đó:

    \tan(\alpha + \beta) = \frac{\tan\alpha
+ \tan\beta}{1 - \tan\alpha.tan\beta} = \frac{p}{q - 1}

  • Câu 30: Vận dụng

    Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức h(t)= 29 + 3.\sin\frac{\pi}{12}(t - 9) với h tính bằng \
^{0}Ct là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ thấp nhất trong ngày là:

    Do - 1 \leq \sin\frac{\pi}{12}(t - 9)
\leq 1,\forall t nên

    \begin{matrix}
   - 3 \leqslant 3\sin \dfrac{\pi }{{12}}(t - 9) \leqslant 3 \hfill \\
   \Leftrightarrow 26 \leqslant 29 + 3\sin \dfrac{\pi }{{12}}(t - 9) \leqslant 32 \hfill \\
   \Leftrightarrow 26 \leqslant h(t) \leqslant 32 \hfill \\ 
\end{matrix}

    Do đó nhiệt độ thấp nhất trong ngày là 26^{0}C.

    Dấu bằng xảy ra\Leftrightarrow \sin\frac{\pi}{12}(t -9) = - 1

    \Leftrightarrow \frac{\pi}{12}(t - 9) = - \frac{\pi}{2} + k2\pi

    \Leftrightarrow t = 3 + 24k(k\mathbb{\in Z})

    Do 0 \leq t \leq 24 \Leftrightarrow 0
\leq 3 + 24k \leq 24 \Leftrightarrow \frac{- 3}{24} \leq k \leq
\frac{21}{24}.

    k\mathbb{\in Z} nên k = 0.

    Khi đó t = 3.

    Vậy lúc 3h là thời gian nhiệt độ thấp nhất trong ngày.

  • Câu 31: Thông hiểu

    Đổi số đo của góc 40^{0}35' sang đơn vị radian với độ chính xác đến hàng phần trăm.

    Áp dụng công thức \mu =
\frac{m.\pi}{180} với \mu tính bằng rad và m tính bằng độ.

    Ta có: 40^{0}35' = \left( 40 +
\frac{25}{60} ight)^{0} khi đó:

    \mu = \dfrac{\left( 40 + \dfrac{25}{60}ight).\pi}{180} = \dfrac{97.\pi}{432} \approx 0,71

  • Câu 32: Nhận biết

    Tổng các nghiệm thuộc khoảng \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) của phương trình: \cos x = \frac{1}{2}

     Giải phương trình:

    \begin{matrix}  \cos x = \dfrac{1}{2} \hfill \\   \Leftrightarrow \cos x = \cos \left( {\dfrac{\pi }{3}} ight) \hfill \\   \Leftrightarrow x =  \pm \dfrac{\pi }{3} + k2\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Tổng nghiệm của phương trình bằng 0.

  • Câu 33: Nhận biết

    Giải phương trình: \sqrt 3 \tan 2x - 3 = 0

     Giải phương trình:

    \begin{matrix}  \sqrt 3 \tan 2x - 3 = 0 \hfill \\   \Leftrightarrow \tan 2x = \sqrt 3  \hfill \\   \Leftrightarrow 2x = \dfrac{\pi }{3} + k\pi  \hfill \\   \Leftrightarrow x = \dfrac{\pi }{6} + \dfrac{{k\pi }}{2};\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 34: Nhận biết

    Phương trình \tan x = \tan 3x có nghiệm là:

     Giải phương trình:

    \begin{matrix}  \tan x = \tan 3x \hfill \\   \Leftrightarrow \tan 3x = \tan x \hfill \\   \Leftrightarrow 3x = x + k\pi  \hfill \\   \Leftrightarrow 2x = k\pi  \hfill \\   \Leftrightarrow x = \dfrac{{k\pi }}{2};\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 35: Thông hiểu

    Đồ thị hàm số y = \cos \left( {x - \frac{\pi }{2}} ight) được suy từ đồ thị (C) của hàm số bằng cách:

    Nhắc lại lý thuyết:

    Cho (C) là đồ thị của hàm số y = f\left( x ight)p > 0, ta có:

    + Tịnh tiến (C) lên p trên đơn vị thì được đồ thị của hàm số y = f\left( x ight) + p.

    + Tịnh tiến (C) xuống dưới p đơn vị thì được đồ thị của hàm số y = f\left( x ight) - p

    + Tịnh tiến (C) sang trái p đơn vị thì được đồ thị của hàm số y = f\left( {x + p} ight)

    + Tịnh tiến (C) sang phải p đơn vị thì được đồ thị của hàm số y = f\left( {x - p} ight)

    Vậy đồ thị hàm số y = \cos \left( {x - \frac{\pi }{2}} ight) được suy từ đồ thị hàm số y = \cos x bằng cách tịnh tiến sang phải \frac{\pi }{2} đơn vị.

  • Câu 36: Nhận biết

    Đồ thị hàm số y = \cos x - \frac{\pi }{4} đi qua điểm nào sau đây?

     Thay giá trị x =  - \frac{\pi }{2};y = \frac{\pi }{4} vào hàm số ta có:

    \cos \left( { - \frac{\pi }{2}} ight) - \frac{\pi }{4} =- \frac{\pi }{4}

    Vậy điểm thuộc đồ thị hàm số là: y = \cos x - \frac{\pi }{4}

  • Câu 37: Thông hiểu

    Giá trị nào sau đây của x thỏa mãn \sin2x.\sin3x = \cos2x.\cos3x?

    Ta có:

    \begin{matrix}\sin2x.\sin3x = \cos2x.\cos3x \hfill \\\Leftrightarrow \cos2x.\cos3x - \sin2x.\sin3x = 0 \hfill\\\Leftrightarrow \cos5x = 0 \hfill\\\Leftrightarrow 5x = 45 + k.180^{0}\hfill \\\Leftrightarrow x = 18^{0} + 36^{.}.k;\left( k\mathbb{\in Z} ight)\hfill \\\end{matrix}

  • Câu 38: Thông hiểu

    Tìm tập giá trị của hàm số y = 3\cos2x + 5

    Ta có:

    - 1 \leq \cos2x \leq 1

    \Rightarrow - 3 \leq 3\cos2x \leq3

    \Rightarrow 2 \leq 3\cos2x + 5 \leq8

    \Rightarrow 2 \leq y \leq 8

    \Rightarrow T = \lbrack
2;8brack

  • Câu 39: Thông hiểu

    Biết A,B,C là các góc của tam giác ABC, mệnh đề nào sau đây đúng?

    A,B,C là các góc của tam giác ABC nên A + B + C = \pi \Rightarrow A + C = \pi -
B.

    Khi đó sin(A + C) = sin(\pi - B) =
sinB;cos(A + C) = cos(\pi - B) = - cosB.

    tan(A + C) = tan(\pi - B) = - tanB;cot(A
+ C) = cot(\pi - B) = - cotB.

  • Câu 40: Thông hiểu

    Cho \frac{\pi}{4} < x \leq \frac{3\pi}{4} và biểu thức P = \tan\left( x +
\frac{\pi}{4} ight). Mệnh đề nào sau đây đúng?

    Ta có: \frac{\pi}{4} < x \leq
\frac{3\pi}{4} nên \frac{\pi}{4}
< x + \frac{\pi}{4} \leq \pi

    => P = \tan\left( x + \frac{\pi}{4}
ight) \leq 0

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 23 lượt xem
Sắp xếp theo