Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Khẳng định nào dưới đây đúng?

    Ta có: \pi rad tương ứng với 180^{0}

    => 1rad ightarrow x^{0}

    \Rightarrow x^{0} = \frac{180.1}{\pi} =\frac{180}{\pi}

  • Câu 2: Thông hiểu

    Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = 8 - 4\cos \left( {\frac{\pi }{4} - 3x} ight) là:

     Ta có: 

    \begin{matrix}   - 1 \leqslant \cos \left( {\dfrac{\pi }{4} - 3x} ight) \leqslant 1 \hfill \\   \Rightarrow 4 \geqslant  - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant  - 4 \hfill \\   \Rightarrow 8 + 4 \geqslant 8 - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant 8 - 4 \hfill \\   \Rightarrow 12 \geqslant y \geqslant 4 \hfill \\ \end{matrix}

    => M = 12; m = 4

  • Câu 3: Vận dụng

    Tìm tập xác định D của hàm số y =
\tan\left( \frac{\pi}{2}.cosx ight)

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\dfrac{\pi}{2}.cosx eq \dfrac{\pi}{2} + k\pi \\\cos x eq 1 + 2k(*) \\\end{matrix}

    Do k là số nguyên => \cos x eq \pm 1\Rightarrow \sin x eq 0 \Rightarrow x eq k\pi,k \in\mathbb{Z}

    Vậy tập xác định D\mathbb{=R}\backslash\left\{ k\pi,k\in\mathbb{ Z} ight\}

  • Câu 4: Vận dụng

    Điều kiện để biểu thức P = \tan\left( \alpha + \frac{\pi}{3} ight) +
\cot\left( \alpha - \frac{\pi}{6} ight) xác định

    Biểu thức P = \tan\left( \alpha +
\frac{\pi}{3} ight) + \cot\left( \alpha - \frac{\pi}{6}
ight) xác định khi

    \left\{ \begin{matrix}\cos\left( \alpha + \dfrac{\pi}{3} ight) eq 0 \\\sin\left( \alpha - \dfrac{\pi}{6} ight) eq 0 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}\alpha + \dfrac{\pi}{3} eq \dfrac{\pi}{2} + k\pi \\\alpha - \dfrac{\pi}{6} eq k\pi \\\end{matrix} ight.

    \Rightarrow \alpha eq \frac{\pi}{6} +
k\pi;\left( k\mathbb{\in Z} ight)

  • Câu 5: Thông hiểu

    Nghiệm của phương trình \sqrt 3 \tan x =  - 3 là:

     Giải phương trình ta có:

    \begin{matrix}  \sqrt 3 \tan x =  - 3 \Rightarrow \tan x =  - \sqrt 3  \hfill \\   \Rightarrow x =  - \dfrac{\pi }{3} + k\pi ,\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Vậy phương trình có nghiệm x =  - \frac{{\pi }}{3} + k\pi

  • Câu 6: Nhận biết

    Tổng các nghiệm thuộc khoảng \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) của phương trình: \cos x = \frac{1}{2}

     Giải phương trình:

    \begin{matrix}  \cos x = \dfrac{1}{2} \hfill \\   \Leftrightarrow \cos x = \cos \left( {\dfrac{\pi }{3}} ight) \hfill \\   \Leftrightarrow x =  \pm \dfrac{\pi }{3} + k2\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Tổng nghiệm của phương trình bằng 0.

  • Câu 7: Thông hiểu

    Giải phương trình \frac{2\sin x}{\cot x} -\frac{\tan x}{\sin x} = 2\left( \sin x - \cos x ight) ta được họ nghiệm x = \frac{\pi}{a} +
\frac{k\pi}{b},k,a,b \in Z. Tính P = 2a + 3b?

    Đáp án: 11

    Đáp án là:

    Giải phương trình \frac{2\sin x}{\cot x} -\frac{\tan x}{\sin x} = 2\left( \sin x - \cos x ight) ta được họ nghiệm x = \frac{\pi}{a} +
\frac{k\pi}{b},k,a,b \in Z. Tính P = 2a + 3b?

    Đáp án: 11

    ĐKXĐ: \left\{ \begin{matrix}
\sin x eq 0 \\
\cos x eq 0 \\
\end{matrix} ight..

    \frac{2\sin x}{\cot x} - \frac{\tan x}{\sin x} = 2\left( \sin x - \cos x ight)

    \Leftrightarrow 2\sin^{2}x - \tan x\cot x= 2\left( \sin x - \cos x ight)\sin x\cot x

    \Leftrightarrow 2sin^{2}x - 1 = 2\left(
\sin x - \cos x ight)\cos x

    \Leftrightarrow 2\sin^{2}x - 1 =2\sin x.\cos x - 2\cos^{2}x

    \Leftrightarrow 2\sin^{2}x + 2\cos^{2}x -1 = \sin2x \Leftrightarrow \sin2x = 1

    \Leftrightarrow 2x = \frac{\pi}{2} +
k2\pi \Leftrightarrow x = \frac{\pi}{4} + k\pi\left( k\mathbb{\in Z}
ight)

    Đối chiếu điều kiện, nghiệm phương trình là x = \frac{\pi}{4} + k\pi,k\mathbb{\in
Z}

    \Rightarrow \left\{ \begin{matrix}
a = 4 \\
b = 1 \\
\end{matrix} ight.\  \Rightarrow P = 2a + 3b = 2.4 + 3.1 =
11.

  • Câu 8: Thông hiểu

    Trong các hàm số sau, hàm số nào là hàm số lẻ?

    Ta kiểm tra được y = \cos x +
sin^{2}xy = - \cos x là hàm số chẵn

    Hàm số y = \sin x + \cos x không chẵn không lẻ

    => Hàm số y = \sin x.cos3x là hàm số lẻ.

  • Câu 9: Nhận biết

    Cho góc lượng giác \alpha. Trong các khẳng định sau, khẳng định nào sai?

    Ta có:

    \cos2\alpha = 2\cos^{2}\alpha - 1 = 1 -2\sin^{2}\alpha = \cos^{2}\alpha - \sin^{2}\alpha

  • Câu 10: Thông hiểu

    Nghiệm của phương trình: \sin \left( {x + \frac{\pi }{8}} ight) =  - \frac{1}{2}

     Ta có:

    \begin{matrix}  \sin \left( {x + \dfrac{\pi }{8}} ight) =  - \dfrac{1}{2} \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x + \dfrac{\pi }{8} =  - \dfrac{\pi }{6} + k2\pi } \\   {x + \dfrac{\pi }{8} = \pi  + \dfrac{\pi }{6} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - \dfrac{{7\pi }}{{24}} + k2\pi } \\   {x = \dfrac{{25\pi }}{{24}} + k2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Tìm tập giá trị của hàm số y = 3\cos2x + 5

    Ta có:

    - 1 \leq \cos2x \leq 1

    \Rightarrow - 3 \leq 3\cos2x \leq3

    \Rightarrow 2 \leq 3\cos2x + 5 \leq8

    \Rightarrow 2 \leq y \leq 8

    \Rightarrow T = \lbrack
2;8brack

  • Câu 12: Vận dụng

    Cho phương trình 3\cos x + \cos2x - \cos3x + 1 = 2\sin x.\sin2x. Gọi \alpha là nghiệm nhỏ nhất thuộc khoảng (0;2\pi) của phương trình. Tính \sin\left( \alpha - \frac{\pi}{4}
ight).

    Phương trình tương đương:

    3\cos x + \cos2x - \cos3x + 1 =2\sin x.\sin2x

    \Leftrightarrow 2\cos x + \cos2x + 1 =0

    \Leftrightarrow \cos^{2}x + \cos x =0

    \Leftrightarrow \left\lbrack\begin{matrix}\cos x = 0 \\\cos x = - 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{\pi}{2} + k\pi \\x = \pi + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    (0;2\pi) nên x \in \left\{ \frac{\pi}{2};\pi;\frac{3\pi}{2}
ight\}. Nghiệm lớn nhất của phương trình là \alpha = \frac{\pi}{2}

    Vậy \sin\left( \alpha - \frac{\pi}{4}
ight) = \sin\left( \frac{\pi}{2} - \frac{\pi}{4} ight) =
\sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}

  • Câu 13: Thông hiểu

    Đổi số đo của góc 50^{0}sang đơn vị radian?

    Cách 1: Áp dụng công thức \mu = \frac{m.\pi}{180} với m = 50^{0} ta được:

    \mu = \frac{m.\pi}{180} =
\frac{50.\pi}{180} = \frac{5.\pi}{18}

    Cách 2: Bấm máy tính:

    Bước 1: Bấm tổ hợp phím SHIFT MODE 4 chuyển về chế độ rad.

    Bước 2: Bấm 50 SHIFT Ans 1 =

  • Câu 14: Thông hiểu

    Cho \cos a =
\frac{3}{5} cho 0^{0} < a <
90^{0}. Tính giá trị của \sin
a?

    Ta có:

    \sin^{2}a + \cos^{2}a = 1

    \Leftrightarrow \sin^{2}a = 1 -\cos^{2}a

    \Leftrightarrow \sin^{2}a = 1 - \left(\frac{3}{5} ight)^{2}

    \Leftrightarrow \sin^{2}a =\frac{16}{25}

    \Leftrightarrow \sin a = \pm
\frac{4}{5}

    0^{0} < a < 90^{0} nên \sin a > 0 \Rightarrow \sin a =
\frac{4}{5}

  • Câu 15: Nhận biết

    Phương trình \sin x + 1 = 0 có nghiệm là:

    Ta có:

    \sin x = - 1 \Leftrightarrow x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

    Vậy phương trình có nghiệm là x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

  • Câu 16: Thông hiểu

    Rút gọn biểu thức C = \cos(7\pi - x) + 3\sin\left( \frac{3\pi}{2} + xight) - \cos\left( \frac{\pi}{2} - x ight) + \sin x ta được:

    Ta có:

    C = \cos(7\pi - x) + 3\sin\left(\frac{3\pi}{2} + x ight) - \cos\left( \frac{\pi}{2} - x ight) + \sin x

    C = \cos(\pi - x) - 3\sin\left(\frac{\pi}{2} + x ight) - \sin x + \sin x

    C = - \cos x - 3cosx = -
4cosx

  • Câu 17: Thông hiểu

    Biết số đo một góc (Ox;Oy) = \frac{3\pi}{2} + 2001\pi. Giá trị tổng quát của góc (Ox;Oy)

    Ta có:

    (Ox;Oy) = \frac{3\pi}{2} + 2001\pi =\frac{\pi}{2} + 2002\pi

    \Rightarrow (Ox;Oy) = \frac{\pi}{2} +k\pi;\left( k\mathbb{\in Z} ight)

  • Câu 18: Nhận biết

    Đồ thị hàm số y=\cos x+1 đi qua điểm nào sau đây?

     Xét điểm (0; 2) => x = 0; y = 2

    Thay vào hàm số ta có:

    cos0 + 1 = 1 + 1 = 2 (thỏa mãn)

    Vậy đồ thị hàm số y = cosx + 1 đi qua điểm (0; 2)

  • Câu 19: Nhận biết

    Hàm số y = \frac{{1 - \sin x}}{{1 + \sin x}} xác định khi và chỉ khi:

     Điều kiện các định:

    \begin{matrix}  1 + \sin x e 0 \hfill \\   \Leftrightarrow \sin x e  - 1 \hfill \\   \Leftrightarrow x e  - \dfrac{\pi }{2} + k2\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Đơn giản biểu thức A = cos\left( \alpha - \frac{\pi}{2} ight) +
sin(\alpha + \pi), ta có

    Ta có:

    A = cos\left( \alpha - \frac{\pi}{2}
ight) + sin(\alpha + \pi)

    = cos\left( \frac{\pi}{2} - \alpha
ight) - sin\alpha = sin\alpha - sin\alpha = 0

  • Câu 21: Thông hiểu

    Phương trình nào cùng tập nghiệm với phương trình \tan x = 1

     Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {\cot x.\tan x = 1} \\   {\tan x = 1} \end{array}} ight. \Rightarrow \cot x = \dfrac{1}{{\tan x}} = 1

    Vậy phương trình \tan x = 1 có cùng tập nghiệm với phương trình \cot x = 1

  • Câu 22: Nhận biết

    Hàm số y =  1-2\sin x+\tan x + \cot x không xác định trong khoảng nào trong các khoảng sau đây?

    Hàm số xác định khi 

    \begin{matrix}   \Leftrightarrow \left\{ \begin{gathered}  \sin x e 0 \hfill \\  \cos x e 0 \hfill \\ \end{gathered}  ight. \hfill \\   \Leftrightarrow \sin 2x e 0 \hfill \\   \Leftrightarrow 2x e k\pi  \hfill \\   \Leftrightarrow x e \dfrac{{k\pi }}{2},k \in \mathbb{Z}. \hfill \\ \end{matrix}

    Ta chọn k = 3 \to x e \frac{{3\pi }}{2} nhưng điểm \frac{{3\pi }}{2} thuộc khoảng \left( {\pi  + k2\pi ;2\pi  + k2\pi } ight)

    Vậy hàm số không xác định trong khoảng \left( {\pi  + k2\pi ;2\pi  + k2\pi } ight)

  • Câu 23: Nhận biết

    Hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) có tập xác định là gì?

    Hàm số y = \tan\left( 2x - \frac{\pi}{4}
ight) xác định khi

    2x - \frac{\pi}{4} eq \frac{\pi}{2} +
k\pi

    \Rightarrow x eq \frac{3\pi}{8} +
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    Vậy tập xác định của hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) là: D\mathbb{= R}\backslash\left\{ \frac{3\pi}{8} +
\frac{k\pi}{2},k\mathbb{\in Z} ight\}.

  • Câu 24: Vận dụng

    Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình \sqrt{3} \cos x + m - 1 = 0 có nghiệm:

     Ta có:

    \sqrt 3 \cos x + m - 1 = 0 \Rightarrow \cos x = \frac{{1 - m}}{{\sqrt 3 }}

    Mặt khác \cos x \in \left[ { - 1;1} ight]

    Vậy để phương trình lượng giác có nghiệm thì

     \begin{matrix}   \Rightarrow 1 - \sqrt 3  \leqslant m \leqslant 1 + \sqrt 3  \hfill \\  m \in \mathbb{Z} \Rightarrow m \in \left\{ {0;1;2} ight\} \hfill \\ \end{matrix}

    Vậy có 3 giá trị nguyên của tham số m thỏa mãn điều kiện đề bài.

  • Câu 25: Thông hiểu

    Có bao nhiêu đẳng thức dưới đây là đồng nhất thức?

    \cos x - \sin x = \sqrt{2}\sin\left( x +
\frac{\pi}{4} ight)

    \cos x - \sin x = \sqrt{2}\cos\left( x +
\frac{\pi}{4} ight)

    \cos x - \sin x = \sqrt{2}\sin\left( x -
\frac{\pi}{4} ight)

    \cos x - \sin x = \sqrt{2}\sin\left(
\frac{\pi}{4} - x ight)

    Ta có:

    \cos x - \sin x = \sqrt{2}\cos\left( x +
\frac{\pi}{4} ight)

    = \sqrt{2}\cos\left\lbrack \frac{\pi}{2}
- \left( \frac{\pi}{4} - x ight) ightbrack

    = \sqrt{2}\sin\left( \frac{\pi}{4} - x
ight)

    Vậy có hai đồng nhất thức.

  • Câu 26: Nhận biết

    Tìm tập xác định của hàm số y = \frac{\cos x -1}{{\sin \left( {x - \dfrac{\pi }{2}} ight)}}

    Hàm số xác định \sin \left( {x - \frac{\pi }{2}} ight) e 0

    \Leftrightarrow x - \frac{\pi }{2} e k\pi  \Leftrightarrow x e \frac{\pi }{2} + k\pi ,{\text{ }}k \in \mathbb{Z}.

    Vậy tập xác định {\text{D}} = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} ight\}

  • Câu 27: Thông hiểu

    Tìm giá trị thực của tham số m để phương trình (m-2).\sin{2x} = m + 1 nhận x= \frac{\pi }{12} làm nghiệm

     Phương trình nhận x= \frac{\pi }{12} làm nghiệm

    \begin{matrix}  \Rightarrow(m - 2).\sin \left( {2.\dfrac{\pi }{{12}}} ight) = m + 1 \hfill \\   \Leftrightarrow (m - 2).\sin \dfrac{\pi }{6} = m + 1 \hfill \\   \Leftrightarrow (m - 2).\dfrac{1}{2} = m + 1 \hfill \\   \Leftrightarrow m - 2 = 2m + 2 \hfill \\   \Leftrightarrow m =  - 4 \hfill \\ \end{matrix}

    vậy m = -4

  • Câu 28: Vận dụng

    Rút gọn biểu thức: S = \cos\left( \frac{\pi}{2} - x ight).sin(\pi -x) - \sin\left( \frac{\pi}{2} - x ight).cos(\pi - x) ta được:

    Ta có:

    S = \cos\left( \frac{\pi}{2} - xight).\sin(\pi - x) - \sin\left( \frac{\pi}{2} - x ight).\cos(\pi -x)

    S = \sin x.\sin x - \cos x.\cos( -x)

    S = \sin^{2}x + \cos^{2}x = 1

  • Câu 29: Vận dụng cao

    Cho bất đẳng thức \cos2A + \frac{1}{64\cos^{4}A} - (2\cos2B + 4\sin B) +\frac{13}{4} \leq 0, với A;B;C là ba góc của tam giác ABC. Khẳng định đúng là

    Ta có:

    \begin{matrix}  \cos 2A + \dfrac{1}{{64{{\cos }^4}A}} - (2\cos 2B + 4\sin B) + \dfrac{{13}}{4} \leqslant 0 \hfill \\   \Leftrightarrow {\cos ^2}A + {\cos ^2}A + \dfrac{1}{{64{{\cos }^4}A}} + 4{\sin ^2}B - 4\sin B + 1 \leqslant \dfrac{3}{4}\left( * ight) \hfill \\ \end{matrix}

    Áp dụng bất đẳng thức Cauchy ta có:

    {\cos ^2}A + {\cos ^2}A + \frac{1}{{64{{\cos }^4}A}} \geqslant \frac{3}{4}\left( 1 ight)

    4{\sin ^2}B - 4\sin B + 1 \geqslant 0 \text{    }(2)

    Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:

    \left\{ \begin{gathered}  {\cos ^2}A = \frac{1}{{64{{\cos }^4}A}} \hfill \\  \sin B = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \cos A = \frac{1}{2} \hfill \\  \sin B = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  A = {60^0} \hfill \\  B = {30^0} \hfill \\  C = {90^0} \hfill \\ \end{gathered}  ight.

    Vậy \widehat{B} + \widehat{C} =120^{0}

  • Câu 30: Vận dụng cao

    Gọi M,\ m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y =sin^{2}x - 4sinx + 5. Tính P = M -2m^{2}.

    Ta có: 

    y = sin^{2}x - 4sinx + 5 = \left(\sin x - 2 ight)^{2} + 1.

    Do - 1 \leq \sin x \leq 1

    \begin{matrix}\Leftrightarrow - 3 \leq \sin x - 2 \leq - 1 \\\Leftrightarrow 1 \leq \left( \sin x - 2 ight)^{2} \leq 9 \\\end{matrix}

    \begin{matrix}\Leftrightarrow 2 \leq \left( \sin x - 2 ight)^{2} + 1 \leq 10 \hfill\\\Leftrightarrow \left\{ \begin{matrix}M = 10 \\m = 2 \hfill\\\end{matrix} ight.\  \hfill \\\Leftrightarrow P = M - 2m^{2} = 2.\hfill \\\end{matrix}

  • Câu 31: Thông hiểu

    Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?

    Hàm số y = x + \sin x không tuần hoàn. Thật vậy:

    Tập xác định {\text{D}} = \mathbb{R}.

    Giả sử f\left( {x + T} ight) = f\left( x ight),{\text{ }}\forall x \in {\text{D}}

    \Leftrightarrow \left( {x + T} ight) + \sin \left( {x + T} ight) = x + \sin x,{\text{ }}\forall x \in {\text{D}}

    .\Leftrightarrow T + \sin \left( {x + T} ight) = \sin x,{\text{ }}\forall x \in {\text{D}} (*)

    Cho x = 0 và x = π, ta được

    \left\{ \begin{gathered}  T + \sin x = \sin 0 = 0 \hfill \\  T + \sin \left( {\pi  + T} ight) = \sin \pi  = 0 \hfill \\ \end{gathered}  ight.

    \xrightarrow{{}}2T + \sin T + \sin \left( {\pi  + T} ight) = 0 \Leftrightarrow T = 0

    Điều này trái với định nghĩa là T > 0

    Vậy hàm số y = x + \sin x không phải là hàm số tuần hoàn.

    Tương tự chứng minh cho các hàm số y = x\cos xy = \frac{{\sin x}}{x} không tuần hoàn.

  • Câu 32: Vận dụng

    Cho công thức y
= 3sin\left( \frac{\pi}{180}(x + 60) ight) + 13 biểu thị số giờ có ánh sáng mặt trời tại thành phố A, với 1 \leq x \leq 365 là số ngày trong năm. Ngày nào sau đây của năm thì số giờ có ánh sáng mặt trời của thành phố A đạt giá trị lớn nhất.

    Để số giờ có ánh sáng mặt trời lớn nhất thì hàm số y = 3sin\left( \frac{\pi}{180}(x + 60) ight) +
13 đạt giá trị lớn nhất.

    Khi đó sin\left( \frac{\pi}{180}(x + 60)
ight) = 1 \Leftrightarrow x = 30 + k360,k \in Z.

    1 \leq x \leq 365 nên ta có 1 \leq 30 + k360 \leq 365 \Leftrightarrow -
0,08 \leq k \leq 0,93 \Rightarrow k = 0.

    Do đó x = 30 (tháng đầu tiên của năm)

  • Câu 33: Nhận biết

    Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \left[ { - 2023;\,\,\,2023} ight] để phương trình m\cos x + 1 = 0 có nghiệm?

    Ta có m\cos x + 1 = 0 \Leftrightarrow \cos x =  - \frac{1}{m}

    Phương trình có nghiệm \Leftrightarrow  - 1 \leqslant  - \frac{1}{m} \leqslant 1

    \Leftrightarrow m \geqslant 1\xrightarrow[{m \in \left[ { - 2023;\,2023} ight]}]{{m \in \mathbb{Z}}}m \in \left\{ {1;2;3;...;2023} ight\}.

    Vậy có tất cả 2023 giá trị nguyên của tham số m.

  • Câu 34: Thông hiểu

    Tìm tập xác định D của hàm số y = \frac{1}{{\sqrt {1 - \sin \,x} }}.

    Hàm số xác định khi và chỉ khi 

    1 - \sin x > 0 \Leftrightarrow \sin x < 1 \,\,(*)

    - 1 \leqslant \sin x \leqslant 1 nên \left( * ight) \Leftrightarrow \sin x e 1 \Leftrightarrow x e \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}

    Vậy tập xác định {\text{D}} = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} ight\}

  • Câu 35: Vận dụng

    Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua trục tung?

    Ta dễ dàng kiểm tra được các hàm số

    y = \sin x.\cos2x

    y = \frac{\tan x}{\tan^{2}x +1}

    y = \cos x.\sin^{3}x

    là các hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ O

    Xét hàm số y = \sin^{3}x.\cos\left( x -\frac{\pi}{2} ight) ta có:

    f(x) = y = \sin^{3}x.\cos\left( x -\frac{\pi}{2} ight) = \sin^{3}x.\sin{x} = \sin^{4}x

    Kiểm tra được đây là hàm số chẵn nên có đồ thị đối xứng qua trục tung.

  • Câu 36: Nhận biết

    Tính giá trị của \cot135^{0}

    Ta có: \cot135^{0} = - \tan45^{0} = -1

  • Câu 37: Nhận biết

    Nghiệm của phương trình tan (2x) -1 = 0 là?

     Ta có: \tan 2x - 1 = 0 \Leftrightarrow \tan 2x = 1

    \Leftrightarrow 2x = \frac{\pi }{4} + k\pi  \Leftrightarrow x = \frac{\pi }{8} + k\frac{\pi }{2}.

  • Câu 38: Vận dụng cao

    Có bao nhiêu giá trị nguyên của tham số m để phương trình \sin x. \cos x - \sin x - \cos x + m = 0 có nghiệm:

     Đặt t = \sin x + \cos x;\left( {t \in \left[ { - \sqrt 2 ;\sqrt 2 } ight]} ight)

    => \sin x.\cos x = \frac{{{t^2} - 1}}{2}

    Phương trình trở thành:

    \begin{matrix}  \dfrac{{{t^2} - 1}}{2} - t + m = 0 \hfill \\   \Rightarrow  - 2m = {t^2} - 2t - 1 \hfill \\   \Rightarrow {\left( {t - 1} ight)^2} =  - 2m + 2 \hfill \\ \end{matrix}

    Do  {t \in \left[ { - \sqrt 2 ;\sqrt 2 } ight]}

    \begin{matrix}   \Leftrightarrow  - \sqrt 2  - 1 \leqslant t - 1 \leqslant \sqrt 2  - 1 \hfill \\   \Leftrightarrow 0 \leqslant {\left( {t - 1} ight)^2} \leqslant 3 + 2\sqrt 2  \hfill \\ \end{matrix}

    Vậy để phương trình có nghiệm

    \begin{matrix}   \Leftrightarrow 0 \leqslant  - 2m + 2 \leqslant 3 + 2\sqrt 2  \hfill \\   \Leftrightarrow  - \dfrac{{1 + 2\sqrt 2 }}{2} \leqslant m \leqslant 1 \hfill \\  m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 1;0;1} ight\} \hfill \\ \end{matrix}

  • Câu 39: Thông hiểu

    Tính giá trị \cos\left\lbrack \frac{\pi}{4} + \pi(2k + 1)
ightbrack

    Ta có:

    \cos\left\lbrack \frac{\pi}{4} + \pi(2k
+ 1) ightbrack

    = \cos\left\lbrack \frac{\pi}{4} + \pi +
k2\pi ightbrack

    = \cos\left\lbrack \frac{\pi}{4} + \pi
ightbrack

    = - \cos\left( \frac{\pi}{4} ight) = -
\frac{\sqrt{2}}{2}

  • Câu 40: Nhận biết

    Nghiệm của phương trình \cos x =
\cos\frac{\pi}{4} là:

    Ta có \cos x = \cos\frac{\pi}{4}
\Leftrightarrow x = \pm \frac{\pi}{4} + k2\pi,k\mathbb{\in
Z}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 29 lượt xem
Sắp xếp theo