Chọn đẳng thức đúng.
Ta có:
Chọn đẳng thức đúng.
Ta có:
Cho
là nghiệm của phương trình nào sau đây?
Giải PT, ta có:
Cho
. Giá trị lượng giác nào sau đây luôn dương?
Ta có:
Theo bài ra
=>
Tìm tất cả các nghiệm của phương trình
.
Ta có
.
Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?
Hàm số không tuần hoàn. Thật vậy:
Tập xác định .
Giả sử
.
Cho x = 0 và x = π, ta được
Điều này trái với định nghĩa là T > 0
Vậy hàm số không phải là hàm số tuần hoàn.
Tương tự chứng minh cho các hàm số và
không tuần hoàn.
Phương trình nào dưới đây có tập nghiệm trùng với tập nghiệm của phương trình
?
Ta có
Vậy .
Giá trị của biểu thức
là:
Ta có:
Khi đó:
Biết
, khẳng định nào sau đây đúng?
Với thì
.
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm:
Ta có:
Mặt khác
Vậy để phương trình lượng giác có nghiệm thì
Vậy có 3 giá trị nguyên của tham số m thỏa mãn điều kiện đề bài.
Cho phương trình
. Đặt
, ta được phương trình nào sau đây?
Ta có: trở thành
.
Biết rằng phương trình
có nghiệm dạng
với
và
. Tính ![]()
Điều kiện
Ta có:
Thiết lập các đẳng thức tương tự như trên thì phương trình đã cho trở thành
Vậy nên
.
Hàm số
đồng biến trên khoảng nào sau đây?
Hàm số y = cosx đồng biến trên mỗi khoảng (-π + k2π; k2π) và nghịch biến trên mỗi khoảng (k2π; π + k2π) với k ∈ Z.
Rút gọn biểu thức:
ta được:
Ta có:
Đơn giản biểu thức
, ta có
Ta có:
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Mà nên
Vậy tập xác định
Cho hàm số
và
. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Hàm số
là hàm số chẵn. Sai||Đúng
b) Trong khoảng
đồ thị hai hàm số
và
cắt nhau tại hai điểm. Đúng||Sai
c) Giá trị lớn nhất của hàm số
bằng
. Sai||Đúng
d) Hàm số
đạt giá trị nhỏ nhất khi
. Đúng||Sai
Cho hàm số và
. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Hàm số là hàm số chẵn. Sai||Đúng
b) Trong khoảng đồ thị hai hàm số
và
cắt nhau tại hai điểm. Đúng||Sai
c) Giá trị lớn nhất của hàm số bằng
. Sai||Đúng
d) Hàm số đạt giá trị nhỏ nhất khi
. Đúng||Sai
a) Sai
TXĐ: . Do đó
Ta có là hàm số lẻ.
b) Đúng
Phương trình trong khoảng
có hai nghiệm
và
c) Sai
Ta có: , mà
.
Vậy giá trị lớn nhất của hàm số bằng
, khi
.
d) Đúng
Giá trị nhỏ nhất của hàm số bằng
, khi
Từ thời điểm đồng hồ chỉ đúng 12 giờ đến khi kim giờ chỉ 1 giờ đúng thì kim phút quay được góc bao nhiêu độ?
Khi kim giờ chỉ đúng 1 giờ thì kim phút đã quay được 1 vòng ứng với góc lượng giác là:
Tìm tất cả các giá trị của tham số
để phương trình
vô nghiệm?
Ta có:
Phương trình vô nghiệm
Nếu
và
là hai nghiệm của phương trình
và
và
là hai nghiệm của phương trình
thì tích
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Đồ thị hàm số
được suy từ đồ thị (C) của hàm số bằng cách:
Ta có
=>Đồ thị hàm số được suy từ đồ thị (C) của hàm số bằng cách tịnh tiến (C) qua phải một đoạn có độ dài là
Với
, mệnh đề nào sau đây đúng?
Ta có: thuộc góc phần tư thứ I và thứ II.
Cho phương trình lượng giác ![]()
a) Với
, phương trình (*) có nghiệm là
Đúng||Sai
b) Với
, phương trình (*) có một nghiệm là
Đúng||Sai
c) Với
thì số nghiệm của phương trình (*) trên đoạn
là 3. Sai||Đúng
d) Số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 8. Sai||Đúng
Cho phương trình lượng giác
a) Với , phương trình (*) có nghiệm là
Đúng||Sai
b) Với , phương trình (*) có một nghiệm là
Đúng||Sai
c) Với thì số nghiệm của phương trình (*) trên đoạn
là 3. Sai||Đúng
d) Số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 8. Sai||Đúng
Thay vào (*) ta được:
Thay vào (*) ta được:
Với thì phương trình có nghiệm
.
Thay vào (*) ta được:
Vì xét nghiệm trên đoạn nên ta có:
Mà
Vậy với thì số nghiệm của phương trình (*) trên đoạn
là 2.
d) Ta có:
Để phương trình có nghiệm thì
mà
Vậy số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 10.
Khẳng định nào sau đây là đúng khi nói về
đường tròn lượng giác
?
Mỗi đường tròn định hướng có bán kính , tâm trùng với gốc tọa độ là một đường tròn lượng giác.
Tìm tất cả các giá trị của tham số m để phương trình
có nghiệm?
Phương trình
Để phương trình có nghiệm
là giá trị cần tìm.
Trên đoạn
, đồ thị hai hàm số
và
cắt nhau tại bao nhiêu điểm?
Phương trình hoành độ giao điểm của hai đồ thị hàm số là
Theo bài ra ta có:
Vậy đồ thị hai hàm số đã cho cắt nhau tại 5 điểm trên đoạn .
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức
với
tính bằng
và
là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ cao nhất trong ngày là:
Do nên
Do đó nhiệt độ cao nhất trong ngày là .
Dấu bằng xảy ra
Do .
Mà nên
.
Khi đó .
Vậy lúc 15h là thời gian nhiệt độ cao nhất trong ngày.
Nếu một cung tròn có số đo
thì số đo radian của nó là:
Áp dụng công thức tương ứng với
ta được:
Hàm số
có tất cả bao nhiêu giá trị nguyên?
Áp dụng công thức
Ta có
Ta có
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua trục tung?
Ta dễ dàng kiểm tra được các hàm số
là các hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ O
Xét hàm số ta có:
Kiểm tra được đây là hàm số chẵn nên có đồ thị đối xứng qua trục tung.
Biết số đo một góc
. Giá trị tổng quát của góc
là
Ta có:
Biết
. Tính
?
Ta có:
Lại có
Vì
Tính giá trị của ![]()
Ta có:
Giải phương trình ![]()
Ta có
Cho hai hàm số
. Mệnh đề nào sau đây đúng?
Xét hàm số có tập xác định
Với mọi x thuộc D => -x thuộc D ta có:
Vậy f(x) là hàm số chẵn
Tương tự xét hàm số
Với mọi x thuộc D => -x thuộc D ta có:
Vậy g(x) là hàm số chẵn.
Nghiệm của phương trình
là?
Ta có:
.
Cho
. Giá trị của biểu thức ![]()
Ta có:
Điều kiện xác định của hàm số
là:
Ta có:
Điều kiện xác định của hàm số
Tìm tập các định D của hàm số 
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Tập nghiệm của phương trình
là
Ta có
.
Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số
là:
Ta có:
=> M = 12; m = 4