Hàm số
đạt giá trị nhỏ nhất tại
. Mệnh đề nào sau đây là đúng?
Ta có
Mà
Do đó giá trị nhỏ nhất của hàm số là .
Đẳng thức xảy ra
Hàm số
đạt giá trị nhỏ nhất tại
. Mệnh đề nào sau đây là đúng?
Ta có
Mà
Do đó giá trị nhỏ nhất của hàm số là .
Đẳng thức xảy ra
Xác định chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Cho
là nghiệm của phương trình nào sau đây?
Ta có:
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức
với
tính bằng
và
là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ thấp nhất trong ngày là:
Do nên
Do đó nhiệt độ thấp nhất trong ngày là .
Dấu bằng xảy ra
Do .
Mà nên
.
Khi đó .
Vậy lúc 3h là thời gian nhiệt độ thấp nhất trong ngày.
Tìm tập xác định
của hàm số
:
Hàm số xác định khi .
Tập xác định của hàm số là: .
Tập nghiệm của phương trình
là?
Cho
. Khẳng định nào sau đây đúng?
Ta có:
=>
=>
Điểm cuối cung thuộc góc phần tư thứ ba
=>
Cho góc
thỏa mãn
. Tính giá trị biểu thức ![]()
Ta có:
Theo bài ra ta có:
Khi đó giá trị biểu thức T là:
Tìm tất cả các giá trị của tham số m để phương trình
có nghiệm?
Phương trình
Để phương trình có nghiệm
là giá trị cần tìm.
Chọn đẳng thức đúng.
Ta có:
Tìm giá trị thực của tham số m để phương trình
nhận
làm nghiệm
Phương trình nhận làm nghiệm
vậy m = -4
Hàm số
nghịch biến trên khoảng nào sau đây?
Hàm số tuần hoàn với chu kì
Do hàm số nghịch biến trên
=> Hàm số nghịch biến khi
Vậy đáp án đúng là
Khẳng định nào sau đây đúng?
Trong khoảng thì hàm số
đồng biến.
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
Thực hiện kiểm tra đáp án ta thấy:
Hàm số là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ
Hàm số không chẵn không lẻ
Hàm số và hàm số
là hàm số chẵn.
Tập nghiệm của phương trình
là?
Ta có: .
Phương trình lượng giác
có nghiệm là ?
Ta có:
Giá trị nào sau đây của x thỏa mãn
?
Ta có:
Cho phương trình
với
là tham số. Tìm tất cả các giá trị của tham số
để phương trình đã cho có nghiệm?
Ta có:
thì phương trình có nghiệm.
Nếu
và
thì
bằng bao nhiêu?
Từ giả thiết ta có:
Ta có:
Mặt khác
Mệnh đề nào sau đây đúng?
Mệnh đề đúng là:
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Phương trình
Suy ra có duy nhất 1 vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác.
Cho hàm số
, số nghiệm thuộc
của phương trình
là?
Ta có:
Do đó
+) Trường hợp 1. Với
Do nên
Suy ra k = 0 ta được .
+) Trường hợp 2. Với
Do nên
Suy ra k = 0 ta được ta được
.
Vậy có 3 nghiệm thuộc của phương trình
là
;
;
.
Tính tổng ![]()
Ta có:
Nên
=>
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Áp dụng: Hàm số tuần hoàn với chu kì
Tổng các nghiệm của phương trình
trên đoạn
bằng:
Phương trình tương đương với
Vì nên k = 0
Khi đó phương trình trở thành
Vì nên
=> Tổng các nghiệm của phương trình là:
Trong các hàm sau hàm nào là hàm số chẵn?
Xét hàm số y = -cosx
Lấy ta có:
=> Hàm số y = -cosx là hàm số chẵn.
Rút gọn biểu thức: ![]()
Ta có:
Cho
. Giá trị
bằng:
Ta có:
Với
, mệnh đề nào sau đây đúng?
Ta có: thuộc góc phần tư thứ I và thứ II.
Cho
như hình vẽ dưới đây. Nghiệm của phương trình
được biểu diễn trên đường tròn lượng giác là những điểm nào?

Ta có:
.
Các cung lượng giác ,
lần lượt được biểu diễn trên đường tròn lượng giác bởi các điểm F và E.
Cho các hàm số
. Trong các hàm số trên, có bao nhiêu hàm số lẻ?
Ta có:
là hàm số chẵn vì:
Tập xác định của hàm số
Với
là hàm số lẻ vì:
Tập xác định của hàm số
Với
là hàm số lẻ vì
Tập xác định của hàm số
Với
là hàm số lẻ vì
Tập xác định của hàm số
Với
Với
là góc bất kì và các biểu thức có nghĩa. Đẳng thức nào dưới đây đúng?
Đẳng thức đúng: .
Đổi số đo của góc
sang đơn vị radian với độ chính xác đến hàng phần trăm.
Áp dụng công thức với
tính bằng rad và
tính bằng độ.
Ta có: khi đó:
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi
Vậy tập xác định
Giải phương trình
.
Ta có .
Với
Với
Nhận thấy chưa có đáp án nào phù hợp. Ta biểu diễn các nghiệm trên đường tròn lượng giác (hình vẽ).

Nếu tính luôn hai điểm A, B thì có tất cả 6 điểm cách đều nhau nên ta gộp được 6 điểm này thành một họ nghiệm, đó là .
Suy ra nghiệm của phương trình
Cho ba góc nhọn thỏa mãn
. Tính tổng số đo ba góc nhọn.
Ta có:
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm:
Ta có:
Mặt khác
Vậy để phương trình lượng giác có nghiệm thì
Vậy có 3 giá trị nguyên của tham số m thỏa mãn điều kiện đề bài.
Hàm số đồng biến trên khoảng
là:
Với thuộc góc phần tư thứ IV và thứ nhất nên hàm số
đồng biến trên khoảng
Với
mệnh đề nào sau đây sai?
Ta có:
=>
Tập nghiệm của phương trình
là
Ta có
.