Góc
đổi sang độ bằng bao nhiêu?
Ta có: .
Góc
đổi sang độ bằng bao nhiêu?
Ta có: .
Khẳng định nào sau đây sai?
Trên khoảng thì hàm số
đồng biến.
Cho phương trình
. Gọi
là nghiệm nhỏ nhất thuộc khoảng
của phương trình. Tính
.
Phương trình tương đương:
Vì nên
. Nghiệm lớn nhất của phương trình là
Vậy
Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình
.
Hình vẽ minh họa
Điều kiện
Ta có:
Với ta được nghiệm
Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.
Với ta được
Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.
Tính diện tích hình chữ nhật ABCD.
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Phương trình
Suy ra có duy nhất 1 vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác.
Biết rằng
với
và
tối giản. Khi đó kết quả nào sau đây đúng?
Ta có:
Phương trình
có nghiệm là:
Ta có:
Vậy phương trình có nghiệm là
Nghiệm của phương trình: ![]()
Ta có:
Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách.
Ta có:
=> Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách tịnh tiến C qua phải một đoạn có độ dài là
Cho góc
thỏa mãn
và
. Tính giá trị của biểu thức
?
Do =>
Ta lại có:
Phương trình lượng giác
có nghiệm là
với
;
. Giá trị của biểu thức
là bao nhiêu?
Đáp án: 25
Phương trình lượng giác có nghiệm là
với
;
. Giá trị của biểu thức
là bao nhiêu?
Đáp án: 25
Ta có:
Vậy phương trình có họ nghiệm là:.
Do đó
.
Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của phương trình
bằng?
Ta có
TH1. Với
TH2. Với
So sánh bốn nghiệm ta được nghiệm âm lớn nhất là và nghiệm dương nhỏ nhất là
.
Khi đó tổng hai nghiệm này bằng .
Đổi số đo của góc
sang đơn vị radian?
Cách 1: Áp dụng công thức với
ta được:
Cách 2: Bấm máy tính:
Bước 1: Bấm tổ hợp phím SHIFT MODE 4 chuyển về chế độ rad.
Bước 2: Bấm 120 SHIFT Ans 1 =
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
và
xác định và
xác định
Ta có: xác định khi và chỉ khi
Mà cot x xác định khi
Do đó hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Cho các hàm số
. Trong các hàm số trên, có bao nhiêu hàm số lẻ?
Ta có:
là hàm số chẵn vì:
Tập xác định của hàm số
Với
là hàm số lẻ vì:
Tập xác định của hàm số
Với
là hàm số lẻ vì
Tập xác định của hàm số
Với
là hàm số lẻ vì
Tập xác định của hàm số
Với
Tìm chu kì T của hàm số ![]()
Hàm số y = sin(ax + b) tuần hoàn với chu kì
=> tuần hoàn với chu kì
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm?
Ta có .
Phương trình có nghiệm
Vậy có tất cả 3 giá trị nguyên của tham số m.
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình đã cho có nghiệm .
Cho hàm số
. Có bao nhiêu giá trị của tham số m thuộc đoạn [0; 10] để giá trị nhỏ nhất của hàm số nhỏ hơn -2?
Ta có:
y.(cosx + 2) = 1 – m.sinx
=> m.sinx + y.cosx = 1 – 2y
Phương trình có nghiệm khi
Nghiệm của phương trình là
=>
=>
Theo yêu cầu bài toán ta có:
Mặt khác m thuộc đoạn [0; 10] nên m = {5; 6; 7; 8; 9; 10}
Tổng các nghiệm của phương trình
trong khoảng
là:
Giải phương trình:
Xét nghiệm
Do =>
=>
Xét nghiệm
Do
vậy tổng tất cả các nghiệm của phương trình là:
Phương trình nào dưới đây có tập nghiệm trùng với tập nghiệm của phương trình
?
Ta có
Vậy .
Tính giá trị biểu thức ![]()
Ta có:
Cho tam giác
có các góc
bất kì. Biểu thức
không thể nhận giá trị nào sau đây?
Ta có:
Với tam giác ABC bất kì ta luôn có:
Vậy biểu thức không thể nhận giá trị
.
Nếu
và
thì
bằng bao nhiêu?
Từ giả thiết ta có:
Ta có:
Mặt khác
Chọn đáp án sai
Trong khoảng
, hàm số
là hàm số:
Ta thấy:
Trên khoảng hàm
đồng biến và hàm
đồng biến
=> Trên hàm số
đồng biến.
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Áp dụng: Hàm số tuần hoàn với chu kì
Hàm số nào sau đây nhận giá trị âm nếu ![]()
Ta có:
Mà
=> mang giá trị âm
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có:
Mặt khác
Do
Khi đó giá trị biểu thức H là:
Cho
và biểu thức
. Mệnh đề nào sau đây đúng?
Ta có: nên
=>
Gọi S là tập nghiệm của phương trình
. Khẳng định nào sau đây là đúng?
Ta có
Nhận thấy với nghiệm .
Tập nghiệm của phương trình
là?
Giải phương trình
được nghiệm là:
Ta có
Vậy phương trình đã cho có nghiệm là
Khẳng định nào sau đây là đúng khi nói về "góc lượng giác"?
Trên đường tròn định hướng, góc hình học có phân biệt điểm đầu
và điểm cuối
là góc lượng giác.
Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê dưới đây. Hỏi hàm số đó là hàm số nào?

Ta thấy tại x = 0 thì y = 1 => loại đáp án ,
Tại thì y = 1 thay vào hai đáp án
và
thì chỉ có
thỏa mãn
Vậy đồ thị ở hình vẽ đã cho là đồ thị của hàm số
Cho hình vẽ:

Trên đường tròn lượng giác, số đo của góc lượng giác
là:
Từ hình vẽ ta có:
Tất cả các nghiệm của phương trình tan (x) = cot (x) là?
Điều kiện
thỏa mãn điều kiện.
Rút gọn biểu thức:
ta được:
Ta có:
Hàm số nào sau đây là hàm số chẵn:
Hàm số sinx là hàm số lẻ
=> Hàm số y = sin5x, y = 3sin2x, y = 4sinx là hàm số lẻ
Xét hàm số y = |sinx| ta có:
Hàm số có tập xác định D = R; ∀x ∈ D thì -x ∈ D
Ta có: f(-x) = |sin( -x)| = |- sinx| = |sinx|
=> f(x)= f(-x) nên hàm số y= |sinx| là hàm số chẵn
Vậy hàm số y = |sinx| là hàm số chẵn
Tìm tập các định D của hàm số 
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Tính giá trị của biểu thức ![]()
Ta có: