Giải phương trình
?
Ta có:
PT
Vậy phương trình có nghiệm
Giải phương trình
?
Ta có:
PT
Vậy phương trình có nghiệm
Tập xác định của hàm số
là:
Ta có: xác định khi và chỉ khi
Vậy tập xác định của hàm số là:
Cho
là các góc của tam giác ABC. Khi đó:
![]()
Ta có:
Số nghiệm của phương trình
trên khoảng
là?
Ta có:
nên .
Hàm số
có chu kì bằng bao nhiêu?
Chu kì của hàm số là:
Hàm số
nghịch biến trên khoảng nào sau đây?
Hàm số tuần hoàn với chu kì
Do hàm số nghịch biến trên
=> Hàm số nghịch biến khi
Vậy đáp án đúng là
Cho
cho
. Tính giá trị của
?
Ta có:
Vì nên
Giải phương trình
.
Ta có .
Với
Với
Nhận thấy chưa có đáp án nào phù hợp. Ta biểu diễn các nghiệm trên đường tròn lượng giác (hình vẽ).

Nếu tính luôn hai điểm A, B thì có tất cả 6 điểm cách đều nhau nên ta gộp được 6 điểm này thành một họ nghiệm, đó là .
Suy ra nghiệm của phương trình
Hàm số nào tương ứng với đồ thị trong hình vẽ sau:

Ta thấy hàm số có giá trị lớn nhất bằng và giá trị nhỏ nhất bằng
nên loại các đáp án
và
.
Tại chỉ có hàm số
thỏa mãn.
Tập nghiệm của phương trình
là:
Ta có:
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu
(m) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày
cho bởi công thức
. Có bao nhiêu giá trị của t thỏa mãn để độ sâu của mực nước là
?
Độ sâu của mực nước là thì h = 15.
Khi đó
Vì nên
Lại do
Điều kiện xác định của hàm số:
là:
Điều kiện xác định của hàm số:
Một chiếc đồng hồ, có kim chỉ giờ OG chỉ số 9 và kim phút OP chỉ số 12. Số đo của góc lượng giác
là:
Góc lượng giác chiếm
đường tròn
=> Số đo là: .
Phương án nào sau đây sai với mọi
?
Ta có:
Vậy đáp án sai là:
Cho góc
thỏa mãn
. Tính giá trị biểu thức
.
Ta có:
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với phương trình
. Đúng||Sai
b) Phương trình có 3 nghiệm nguyên dương. Sai||Đúng
c) Phương trình có 2 nghiệm nguyên dương. Đúng||Sai
d) Tổng các nghiệm nguyên dương của phương trình bằng
. Sai||Đúng
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với phương trình . Đúng||Sai
b) Phương trình có 3 nghiệm nguyên dương. Sai||Đúng
c) Phương trình có 2 nghiệm nguyên dương. Đúng||Sai
d) Tổng các nghiệm nguyên dương của phương trình bằng . Sai||Đúng
Điều kiện: .
Phương trình
.
Yêu cầu bài toán .
Ta có:
Vì .
Kết hợp điều kiện, ta có là những giá trị cần tìm.
Kết luận:
|
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
Đổi số đo của góc
sang radian được kết quả là:
Ta có:
Tính ![]()
Ta có:
Tính tổng các nghiệm trong đoạn [0;30] của phương trình: ![]()
Điều kiện để phương trình có nghĩa:
Khi đó, phương trình so sánh với đk
Vậy, tổng các nghiệm trong đoạn [0;30] của phương trình là: .
Hỏi
là một nghiệm của phương trình nào sau đây?
Với , suy ra
Một đường tròn có đường kính bằng 20cm. Tính độ dài của cung trên đường tròn có số đo
(lấy 2 chữ số thập phân).
Cung có số đo thì có số đó radian là
Bán kính đường tròn
=>
Trong các hàm số sau hàm số nào là hàm số lẻ?
Xét hàm số y = sinx:
Lấy ta có:
Vậy hàm số y = sinx là hàm số lẻ.
Tập giá trị của hàm số
là:
Ta có:
Mà
=>
Cho hàm số
. Mệnh đề nào sau đây đúng?
Ta có:
Vậy là mệnh đề đúng.
Cho góc lượng giác
. Với giá trị k bằng bao nhiêu thì góc
?
Theo bài ra ta có:
Cho
. Khẳng định nào sau đây đúng?
Ta có:
Tập nghiệm của phương trình
là?
Ta có: .
Tính giá trị biểu thức ![]()
Ta có:
Nên các cung lượng giác tương ứng đôi một phụ nhau ta có công thức
Khi đó ta có:
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Điều kiện để phương trình
có nghiệm là:
Điều kiện để phương trình có nghiệm là
Vậy thì phương trình đã cho có nghiệm.
Tìm tất cả các giá trị
để phương trình
có nghiệm?
Ta có:
Phương trình có nghiêm
.
Gọi
là nghiệm trong khoảng
của phương trình
, nếu biểu diễn
với a, b là hai số nguyên và
là phân số tối giản thì a.b bằng bao nhiêu?
Phương trình .
Với .
Suy ra a =11 và b = 6 .
Vậy a.b=66.
Tìm tập các định D của hàm số 
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Biết
là các góc của tam giác
, mệnh đề nào sau đây đúng?
Vì là các góc của tam giác
nên
.
Khi đó .
.
Tính giá trị của biểu thức
là:
Ta có:
Tập nghiệm của phương trình
là?
Ta có:
Hàm số
đạt giá trị nhỏ nhất tại
. Mệnh đề nào sau đây là đúng?
Ta có
Mà
Do đó giá trị nhỏ nhất của hàm số là .
Đẳng thức xảy ra
Giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
lần lượt là:
Ta có:
Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của biểu thức
.
Ta có:
Ta lại có:
Mệnh đề nào sau đây là sai?
Hàm số tuần hoàn với chu kì