Hàm số
đồng biến trên khoảng nào sau đây?
Hàm số y = cosx đồng biến trên mỗi khoảng (-π + k2π; k2π) và nghịch biến trên mỗi khoảng (k2π; π + k2π) với k ∈ Z.
Hàm số
đồng biến trên khoảng nào sau đây?
Hàm số y = cosx đồng biến trên mỗi khoảng (-π + k2π; k2π) và nghịch biến trên mỗi khoảng (k2π; π + k2π) với k ∈ Z.
Nghiệm của phương trình
là:
Ta có
Nếu
và
thì
bằng bao nhiêu?
Từ giả thiết ta có:
Ta có:
Mặt khác
Tập nghiệm của phương trình
là:
Ta có:
Tìm chu kì T của hàm số ![]()
Ta có:
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
T là chu kì của hàm số là bội chung nhỏ nhất của T1 và T2
Suy ra hàm số tuần hoàn với chu kì
Biết số đo một góc
. Giá trị tổng quát của góc
là
Ta có:
Phương trình ![]()
Chọn đẳng thức đúng.
Ta có:
Ta lại có:
Chu kì của hàm số
là
Hàm số tuần hoàn với chu kỳ
.
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Áp dụng: Hàm số tuần hoàn với chu kì
Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách.
Ta có:
=> Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách tịnh tiến C qua phải một đoạn có độ dài là
Cung nào sau đây có mút trùng với B hoặc B’?

Quan sát hình vẽ ta thấy vị trí điểm B và B’ ứng với các góc .
Tương ứng với đó ta được góc trùng với các vị trí B và B’ là: .
Với
, mệnh đề nào sau đây là đúng?
Ta có thuộc góc phần tư thứ I. Do đó
đồng biến
nghịch biến.
nghịch biến
nghịch biến.
Trên đường tròn lượng giác có bao nhiêu vị trí biểu diện nghiệm của phương trình
?
Điều kiện xác định:
Ta có:
Kết hợp với điều kiện xác định suy ra phương trình có nghiệm nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.
Với
là các số nguyên dương và
là phân số tối giản. Biết rằng
khi
và
. Tính
.
Ta có:
Vì nên
Khi đó =>
Giá trị lớn nhất của hàm số
tại điểm là nghiệm của phương trình nào dưới đây?
Theo bài ra ta có:
Phương trình (*) có nghiệm
Vậy giá trị lớn nhất của hàm số bằng 1 lúc đó
Hàm số
xác định khi và chỉ khi:
Điều kiện các định:
Tập nghiệm của phương trình
là?
Ta có:
Giá trị của
là:
Ta có:
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình đã cho có nghiệm .
Rút gọn biểu thức
.
Ta có:
Tìm tập giá trị của hàm số
?
Ta có:
(với
)
Lại có:
Vậy tập giá trị của hàm số là
Mệnh đề nào sau đây đúng?
Mệnh đề đúng là:
Xét tính đúng, sai của các phát biểu sau?
Tập
là tập xác định của hàm số
. Đúng||Sai
Số nghiệm của phương trình
trên khoảng
là 3 nghiệm.Sai||Đúng
Có 5 giá trị nguyên của tham số m để phương trình
có nghiệm. Đúng||Sai
Số vị trí biểu diễn của phương trình
trên đường tròn lượng giác là 3.Sai||Đúng
Xét tính đúng, sai của các phát biểu sau?
Tập là tập xác định của hàm số
. Đúng||Sai
Số nghiệm của phương trình trên khoảng
là 3 nghiệm.Sai||Đúng
Có 5 giá trị nguyên của tham số m để phương trình có nghiệm. Đúng||Sai
Số vị trí biểu diễn của phương trình trên đường tròn lượng giác là 3.Sai||Đúng
a) Điều kiện xác định của hàm số là:
b) Ta có:
Vì
mà
suy ra
Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng .
c) Ta có:
Phương trình đã cho có nghiệm khi và chỉ khi
Mà
Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.
d) Ta có:
Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác là 2.
Trong tam giác ABC nếu
thì tam giác ABC là tam giác gì?
Ta có:
Vậy tam giác ABC có thể là tam giác cân hoặc tam giác vuông.
Nghiệm của phương trình
là
Ta có
.
Mệnh đề nào sau đây đúng?
Đáp án đúng là:
Nghiệm của phương trình tan (2x) -1 = 0 là?
Ta có:
.
Phương trình
có tổng các nghiệm trên
bằng:
Điều kiện xác định:
Do nên phương trình đã cho tương đương với
Vì
Biết rằng
. Mệnh đề nào sau đây đúng?
Ta có:
Xét trên đường tròn lượng giác ta thấy thuộc góc phần tư thứ II nên ta có:
Huyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu gọi là huyết áp tâm thu và tâm trương, tương ứng. Chỉ số huyết áp của chúng ta được viết là tâm thu/tâm trương. Chỉ số huyết áp
là bình thường. Giả sử một người nào đó có nhịp tim là
lần trên phút và huyết áp của người đó được mô hình hoá bởi hàm số
ở đó
là huyết áp tính theo đơn vị
( milimét thuỷ ngân) và thời gian
tính theo giây. Trong khoảng từ 0 đến 1 giây, hãy xác định số lần huyết áp là 120
?
Đáp án: 1
Huyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu gọi là huyết áp tâm thu và tâm trương, tương ứng. Chỉ số huyết áp của chúng ta được viết là tâm thu/tâm trương. Chỉ số huyết áp là bình thường. Giả sử một người nào đó có nhịp tim là
lần trên phút và huyết áp của người đó được mô hình hoá bởi hàm số
ở đó
là huyết áp tính theo đơn vị
( milimét thuỷ ngân) và thời gian
tính theo giây. Trong khoảng từ 0 đến 1 giây, hãy xác định số lần huyết áp là 120
?
Đáp án: 1
Huyết áp là 120 khi
Xét
vì .
Vậy trong khoảng từ 0 đến 1 giây, có 1 lần huyết áp là 120 .
Gọi S là tập nghiệm của phương trình
. Khẳng định nào sau đây là đúng?
Phương trình
Xét nghiệm , với k = 1 ta được
.
Biết
, khẳng định nào sau đây đúng?
Với thì
.
Tìm tập xác định
của hàm số
?
Hàm số xác định khi:
Vậy
Tổng các nghiệm thuộc khoảng
của phương trình: ![]()
Giải phương trình:
Tổng nghiệm của phương trình bằng 0.
Hàm số
đạt giá trị nhỏ nhất tại
. Mệnh đề nào sau đây là đúng?
Ta có
Mà
Do đó giá trị nhỏ nhất của hàm số là .
Đẳng thức xảy ra
Cho hàm số
, số nghiệm thuộc
của phương trình
là?
Ta có:
Do đó
+) Trường hợp 1. Với
Do nên
Suy ra k = 0 ta được .
+) Trường hợp 2. Với
Do nên
Suy ra k = 0 ta được ta được
.
Vậy có 3 nghiệm thuộc của phương trình
là
;
;
.
Hàm số
đồng biến trên khoảng nào trong các khoảng sau?
Ta có thuộc gốc phần tư thứ I
=> Hàm số đồng biến trên khoảng
Đổi số đo của góc
sang đơn vị radian?
Cách 1: Áp dụng công thức với
ta được:
Cách 2: Bấm máy tính:
Bước 1: Bấm tổ hợp phím SHIFT MODE 4 chuyển về chế độ rad.
Bước 2: Bấm 50 SHIFT Ans 1 =
Đổi số đo của góc
sang đơn vị độ, phút, giây
Cách 1: Từ công thức khi đó:
Cách 2: Bấm máy tính:
Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.
Bước 2. Bấm (shift π ÷12) shift DRG 2 =