Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Giải phương trình 2\cos x = - 1 được nghiệm là:

    Ta có

    2cosx = - 1 \Leftrightarrow \cos x = -
\frac{1}{2}

    \Leftrightarrow x = \pm \frac{2\pi}{3} +
k2\pi,\left( k\mathbb{\in Z} ight)

    Vậy phương trình đã cho có nghiệm là x =
\pm \frac{2\pi}{3} + k2\pi,k\mathbb{\in Z}

  • Câu 2: Vận dụng

    Tìm nghiệm dương nhỏ nhất x_0 của 3\sin 3x - \sqrt 3 \cos 9x = 1 + 4{\sin ^3}3x?

    Phương trình \Leftrightarrow 3\sin 3x - 4{\sin ^3}3x - \sqrt 3 \cos 9x = 1

    \Leftrightarrow \sin 9x - \sqrt 3 \cos 9x = 1

    \Leftrightarrow \frac{1}{2}\sin 9x - \frac{{\sqrt 3 }}{2}\cos 9x = \frac{1}{2}

    \Leftrightarrow \sin \left( {9x - \frac{\pi }{3}} ight) = \frac{1}{2}

    \Leftrightarrow \sin \left( {9x - \frac{\pi }{3}} ight) = \sin \frac{\pi }{6}

    \Leftrightarrow \left[ \begin{gathered}  9x - \frac{\pi }{3} = \frac{\pi }{6} + k2\pi  \hfill \\  9x - \frac{\pi }{3} = \pi  - \frac{\pi }{6} + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{{18}} + \frac{{k2\pi }}{9} \hfill \\  x = \frac{{7\pi }}{{54}} + \frac{{k2\pi }}{9} \hfill \\ \end{gathered}  ight.

    \xrightarrow{{{\text{Cho}} > 0}}\left[ \begin{gathered}  \frac{\pi }{{18}} + \frac{{k2\pi }}{9} > 0 \Leftrightarrow k >  - \frac{1}{4}\xrightarrow{{k \in \mathbb{Z}}}{k_{\min }} = 0 \to x = \frac{\pi }{{18}} \hfill \\  \frac{{7\pi }}{{54}} + \frac{{k2\pi }}{9} > 0 \Leftrightarrow k >  - \frac{7}{{12}}\xrightarrow{{k \in \mathbb{Z}}}{k_{\min }} = 0 \to x = \frac{{7\pi }}{{54}} \hfill \\ \end{gathered}  ight.

    So sánh hai nghiệm ta được nghiệm dương nhỏ nhất là \frac {\pi}{18}.

  • Câu 3: Thông hiểu

    Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách.

    Ta có: y = \sin x = \cos\left(
\frac{\pi}{2} - x ight) = \cos\left( x - \frac{\pi}{2}
ight)

    => Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách tịnh tiến C qua phải một đoạn có độ dài là \frac{\pi}{2}

  • Câu 4: Thông hiểu

    Cho \frac{\pi}{2}
< \alpha < \pi. Giá trị lượng giác nào sau đây luôn dương?

    Ta có:

    \sin(\pi + \alpha) = -
\sin\alpha

    \cos\left( \frac{\pi}{2} - \alpha
ight) = \sin\alpha

    \cos( - \alpha) =
\cos\alpha

    \tan(\alpha + \pi) =
\tan\alpha

    Theo bài ra \frac{\pi}{2} < \alpha
< \pi

    => \left\{ \begin{matrix}
\sin\alpha > 0 \\
\cos\alpha < 0 \\
\tan\alpha < 0 \\
\end{matrix} ight.

  • Câu 5: Vận dụng cao

    Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của biểu thức A = \sin^{6}x +\cos^{6}x.

    Ta có:

    A = \sin^{6}x + \cos^{6}x

    A = \left( \sin^{2}x ight)^{3} + \left(\cos^{2}x ight)^{3}

    A = \left( \sin^{2}x + \cos^{2}x ight)\left( \sin^{4}x - \sin^{2}x.\cos^{2}x + \cos^{4}x ight)

    A = \sin^{4}x - \dfrac{1}{4}\sin^{2}2x +\cos^{4}x

    A = 1 - \dfrac{1}{4}\sin^{2}2x -\dfrac{1}{2}\sin^{2}2x

    A = 1 -\frac{3}{4}\sin^{2}2x

    \Rightarrow \sin^{2}2x = \frac{4 -4A}{3}

    Ta lại có: \sin^{2}2x \in \lbrack0;1brack

    \Rightarrow 0 \leq \frac{4 - 4A}{3} \leq1

    \Rightarrow \frac{1}{4} \leq A \leq1

    \Rightarrow M = 1;m =\frac{1}{4}

  • Câu 6: Thông hiểu

    Giá trị của biểu thức C =\sin\frac{\pi}{24}.\sin\frac{5\pi}{24}.\sin\frac{7\pi}{24}.\sin\frac{11\pi}{24} là:

    Ta có:\left\{ \begin{matrix}\sin\dfrac{7\pi}{24} = \cos\dfrac{5\pi}{24} \\\sin\dfrac{11\pi}{24} = \cos\dfrac{\pi}{24} \\\end{matrix} ight.

    Khi đó:

    C =\sin\frac{\pi}{24}.\sin\frac{5\pi}{24}.\sin\frac{7\pi}{24}.\sin\frac{11\pi}{24}

    C =\sin\frac{\pi}{24}.\sin\frac{5\pi}{24}.\cos\frac{5\pi}{24}.\cos\frac{\pi}{24}

    C = \dfrac{1}{4}.\left(2\sin\frac{\pi}{24}.\cos\frac{\pi}{24} ight).\left(2.\sin\frac{5\pi}{24}.\cos\frac{5\pi}{24} ight)

    C =\frac{1}{4}.\sin\frac{\pi}{12}.\sin\frac{5\pi}{12}

    C = \frac{1}{4}.\frac{1}{2}.\left(\cos\frac{6\pi}{12} + \cos\frac{\pi}{3} ight)

    C = \frac{1}{4}.\frac{1}{2}.\left( 0 +
\frac{1}{2} ight) = \frac{1}{16}

  • Câu 7: Thông hiểu

    Cho tam giác ABC có các góc \widehat{A};\widehat{B};\widehat{C} bất kì. Biểu thức T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A} không thể nhận giá trị nào sau đây?

    Ta có:

    T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A}

    = 2\left( \sin\widehat{A}.\frac{1}{2} +
\cos\widehat{A}.\frac{\sqrt{3}}{2} ight)

    = 2\left(
\sin\widehat{A}\cos\frac{\pi}{3} + \cos\widehat{A}.sin\frac{\pi}{3}
ight)

    = 2sin\left( \widehat{A} + \frac{\pi}{3}
ight)

    Với tam giác ABC bất kì ta luôn có:

    0 < \widehat{A} < \pi \Rightarrow
\frac{\pi}{3} < \widehat{A} + \frac{\pi}{3} <
\frac{4\pi}{3}

    \Rightarrow - \sqrt{3} < T \leq
2

    Vậy biểu thức T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A} không thể nhận giá trị 2\sqrt{3}.

  • Câu 8: Vận dụng

    Giải phương trình {\sin ^2}x - \left( {\sqrt 3  + 1} ight)\sin x\cos x + \sqrt 3 {\cos ^2}x = 0

     Ta có: {\sin ^2}x - \left( {\sqrt 3  + 1} ight)\sin x\cos x + \sqrt 3 {\cos ^2}x = 0

       \Leftrightarrow \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - \frac{{\left( {\sqrt 3  + 1} ight)\sin x\cos x}}{{{{\cos }^2}x}} + \frac{{\sqrt 3 {{\cos }^2}x}}{{{{\cos }^2}x}} = 0

    \Leftrightarrow {\tan ^2}x - \left( {\sqrt 3  + 1} ight)\tan x + \sqrt 3 \; = 0

             \Leftrightarrow \left[ \begin{gathered}  \tan x = 1 \hfill \\  \tan x = \sqrt 3  \hfill \\ \end{gathered}  ight.

              \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k\pi  \hfill \\  x = \frac{\pi }{3} + k\pi  \hfill \\ \end{gathered}  ight.\left( {k \in \mathbb{Z}} ight).

  • Câu 9: Nhận biết

    Điều kiện xác định của hàm số: y = \cos \sqrt {x - 1} là:

     Điều kiện xác định của hàm số:

    x - 1 \geqslant 0 \Leftrightarrow x \geqslant 1

  • Câu 10: Nhận biết

    Mệnh đề nào sau đây là đúng?

    Từ công thức l = R.\alpha nên ta có l\alpha tỉ lệ với nhau.

  • Câu 11: Thông hiểu

    Cho \alpha =
\frac{\pi}{2} + k2\pi. Xác định k để 10\pi < \alpha < 11\pi.

    Ta có:

    10\pi < \alpha < 11\pi

    \Rightarrow 10\pi < \frac{\pi}{2} +
k2\pi < 11\pi

    \Rightarrow \frac{19\pi}{2} < k2\pi
< \frac{21\pi}{2}

    \Rightarrow k = 5

  • Câu 12: Thông hiểu

    Cho góc \alpha thỏa mãn \cos\alpha = - \frac{4}{5}\pi < \alpha < \frac{3\pi}{2}. Tính H =\sin\frac{\alpha}{2}\cos\frac{3\alpha}{2}

    Ta có:

    H =
\sin\frac{\alpha}{2}\cos\frac{3\alpha}{2}

    H = \frac{1}{2}\left( \sin2\alpha -\sin\alpha ight)

    H = \frac{1}{2}\sin\alpha.(2\cos\alpha -1)

    Mặt khác \sin^{2}\alpha + \cos^{2}\alpha =1

    \Rightarrow \sin\alpha = \pm \sqrt{1 -\cos^{2}\alpha} = \pm \frac{3}{5}

    Do \pi < \alpha < \frac{3\pi}{2}
\Rightarrow \sin\alpha = - \frac{3}{5}

    Khi đó giá trị biểu thức H là: H =
\frac{39}{50}

  • Câu 13: Thông hiểu

    Tính độ dài của cung trên đường tròn có số đo 1,5 và bán kính bằng 20 cm.

    Ta có: l = R.\alpha = 1,5.20 =
30(cm)

  • Câu 14: Vận dụng cao

    Biết rằng phương trình \dfrac{1}{\sin x} + \dfrac{1}{\sin2x} + \dfrac{1}{\sin4x}+ \cdots + \dfrac{1}{\sin\left( 2^{2018}x ight)} = 0 có nghiệm dạng x = \frac{2k\pi}{2^{a} - b} với k \in \mathbb{Z}a,b \in \mathbb{N}^{*}. Tính S = a + b

    Điều kiện \left\{ \begin{matrix}\sin x eq 0 \\\sin2x eq 0 \\\sin4x eq 0 \\\cdots \\\sin\left( 2^{2018}x ight) eq 0 \\\end{matrix} ight.

    \Leftrightarrow sin\left( 2^{2018}x
ight) eq 0

    \Leftrightarrow 2^{2018}x eq k\pi
\Leftrightarrow x eq \frac{k\pi}{2^{2018}},k \in
\mathbb{Z}

    Ta có:

    \frac{1}{\sin x} = \frac{1 + \cos x -\cos x}{\sin x}

    =\dfrac{2\cos^{2}\dfrac{x}{2}}{2\sin\dfrac{x}{2}cos\dfrac{x}{2}} -cotx

    = cot\frac{x}{2} - cotx

    Thiết lập các đẳng thức tương tự như trên thì phương trình đã cho trở thành

    \cot\frac{x}{2} - \cot x + \cot x -\cot2x

    {+ \cdots \cot\left( 2^{2017}x ight) -\cot\left( 2^{2018}x ight) = 0}{\Leftrightarrow \cot\frac{x}{2} - \cot\left( 2^{2018}x ight) =0}

    {\Leftrightarrow \cot\frac{x}{2} =\cot\left( 2^{2018}x ight)}{\Leftrightarrow \frac{x}{2} = 2^{2018}x + k\pi,k \in\mathbb{Z}}

    {\Leftrightarrow x = \frac{2k\pi}{1 -
2^{2019}},k \in \mathbb{Z}
}{\Leftrightarrow x = \frac{2k\pi}{2^{2019} - 1},k \in
\mathbb{Z}}

    Vậy a = 2019,b = 1 nên a + b = 2020.

  • Câu 15: Thông hiểu

    Biến đổi thành tích biểu thức \frac{sin7\alpha - sin5\alpha}{sin7\alpha +
sin5\alpha} ta được

    Ta có \frac{sin7\alpha -
sin5\alpha}{sin7\alpha + sin5\alpha} = \frac{2cos6\alpha \cdot
sin\alpha}{2sin6\alpha \cdot cos\alpha} =
\cot{6\alpha}.tan\alpha

  • Câu 16: Thông hiểu

    Số nghiệm của phương trình \sin \left( {2x - {{40}^0}} ight) = \frac{{\sqrt 3 }}{2} với - {180^0} \leqslant x \leqslant {180^0} là?

    4 || Bốn || bốn || 4 nghiệm

    Đáp án là:

    Số nghiệm của phương trình \sin \left( {2x - {{40}^0}} ight) = \frac{{\sqrt 3 }}{2} với - {180^0} \leqslant x \leqslant {180^0} là?

    4 || Bốn || bốn || 4 nghiệm

     Phương trình \sin \left( {2x - {{40}^0}} ight) = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {2x - {{40}^0}} ight) = \sin {60^0}

    \Leftrightarrow \left[ \begin{gathered}  2x - {40^0} = {60^0} + k{360^0} \hfill \\  2x - {40^0} = {180^0} - {60^0} + k{360^0} \hfill \\ \end{gathered}  ight.\,

    \Leftrightarrow \left[ \begin{gathered}  2x = {100^0} + k{360^0} \hfill \\  2x = {160^0} + k{360^0} \hfill \\ \end{gathered}  ight.\,

    \Leftrightarrow \left[ \begin{gathered}  x = {50^0} + k{180^0} \hfill \\  x = {80^0} + k{180^0} \hfill \\ \end{gathered}  ight.

    • TH1: Xét nghiệm x = {50^0} + k{180^0}:

    - {180^0} \leqslant x \leqslant {180^0}\xrightarrow{{}} - {180^0} \leqslant {50^0} + k{180^0} \leqslant {180^0}

    \Leftrightarrow  - \frac{{23}}{{18}} \leqslant k \leqslant \frac{{13}}{{18}}\xrightarrow{{k \in \mathbb{Z}}}\left[ \begin{gathered}  k =  - 1 \to x =  - {130^0} \hfill \\  k = 0 \to x = {50^0} \hfill \\ \end{gathered}  ight..

    • TH2: Xét nghiệm x = {80^0} + k{180^0}:

    - {180^0} \leqslant x \leqslant {180^0}\xrightarrow{{}} - {180^0} \leqslant {80^0} + k{180^0} \leqslant {180^0}

    \Leftrightarrow  - \frac{{13}}{9} \leqslant k \leqslant \frac{5}{9}\xrightarrow{{k \in \mathbb{Z}}}\left[ \begin{gathered}  k =  - 1 \to x =  - {100^0} \hfill \\  k = 0 \to x = {80^0} \hfill \\ \end{gathered}  ight..

    Vậy có tất cả 4 nghiệm thỏa mãn bài toán.

     

  • Câu 17: Nhận biết

    Cho đường tròn đường kính 12cm. Tìm số đo (rad) của cung có độ dài 3cm ?

    d = 12 \Rightarrow R = 6\alpha = \frac{l}{R} vậy số đo (rad) cần tìm là \frac{1}{2}.

  • Câu 18: Vận dụng

    Cho hàm số y =f(x) = \cos2x - 4\cos x + 4. Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x)?

    Ta có:

    y =f(x) = \cos2x - 4\cos x + 4

    = 2\cos^{2}x - 4\cos x + 3

    Đặt \cos x = t,t \in \lbrack -
1;1brack. Xét hàm số f(t) =
2t^{2} - 4t + 3 trên đoạn \lbrack -
1;1brack

    Ta có bảng biến thiên

    Từ bảng biến thiên ta có: \left\{
\begin{matrix}
\max y = \max\underset{t \in \lbrack - 1;1brack}{f(t)} = 9 \\
\min y = \min\underset{t \in \lbrack - 1;1brack}{f(t)} = 1 \\
\end{matrix} ight.

    Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho là 10.

  • Câu 19: Thông hiểu

    Cho góc \alpha thỏa mãn \cot\left( \frac{5\pi}{2} - \alpha ight) =
2. Tính giá trị biểu thức T =
\tan\left( \alpha + \frac{\pi}{4} ight)

    Ta có:

    T = \tan\left( \alpha + \frac{\pi}{4}
ight)

    \Rightarrow T = \dfrac{\tan\alpha +\tan\dfrac{\pi}{4}}{1 - \tan\alpha.\tan\dfrac{\pi}{4}}

    \Rightarrow T = \frac{\tan\alpha + 1}{1- \tan\alpha}

    Theo bài ra ta có:

    \cot\left( \frac{5\pi}{2} - \alpha
ight) = 2

    \Leftrightarrow \cot\left( 2\pi +
\frac{\pi}{2} - \alpha ight) = 2

    \Leftrightarrow \cot\left( \frac{\pi}{2}
- \alpha ight) = 2

    \Leftrightarrow \tan\alpha =
2

    Khi đó giá trị biểu thức T là: T = \frac{2 + 1}{1 - 2} = -
3

  • Câu 20: Nhận biết

    Đồ thị hàm số y = \cos x - \frac{\pi }{4} đi qua điểm nào sau đây?

     Thay giá trị x =  - \frac{\pi }{2};y = \frac{\pi }{4} vào hàm số ta có:

    \cos \left( { - \frac{\pi }{2}} ight) - \frac{\pi }{4} =- \frac{\pi }{4}

    Vậy điểm thuộc đồ thị hàm số là: y = \cos x - \frac{\pi }{4}

  • Câu 21: Thông hiểu

    Hàm số nào tương ứng với đồ thị trong hình vẽ sau:

    Ta thấy hàm số có giá trị lớn nhất bằng \sqrt{2} và giá trị nhỏ nhất bằng - \sqrt{2} nên loại các đáp án y = \sin\left( x - \frac{\pi}{4} ight)y = \cos\left( x - \frac{\pi}{4}
ight).

    Tại x = \frac{3\pi}{4};y = -
\sqrt{2} chỉ có hàm số y =
\sqrt{2}\cos\left( x + \frac{\pi}{4} ight) thỏa mãn.

  • Câu 22: Thông hiểu

    Trong các phương trình sau có bao nhiêu phương trình có nghiệm?

    \sin x = \frac{1}{2};{\text{ }}\sin x = \frac{{ - \sqrt 2 }}{2};{\text{ }}\sin x = \frac{{1 + \sqrt 3 }}{2}

      Do y = sin (x) có tập giá trị là [-1;1] nên các phương trình \sin x = \frac{1}{2};{\text{ }}\sin x = \frac{{ - \sqrt 2 }}{2} có nghiệm;

    phương trình {\text{ }}\sin x = \frac{{1 + \sqrt 3 }}{2} vô nghiệm do  \frac{{1 + \sqrt 3 }}{2} > 1

  • Câu 23: Nhận biết

    Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình \sqrt 3 \cos x + m - 1 = 0 có nghiệm?

     Ta có \sqrt 3 \cos x + m - 1 = 0 \Leftrightarrow \cos x = \frac{{1 - m}}{{\sqrt 3 }}.

    Phương trình có nghiệm \Leftrightarrow  - 1 \leqslant \frac{{1 - m}}{{\sqrt 3 }} \leqslant 1

    \Leftrightarrow 1 - \sqrt 3  \leqslant m \leqslant 1 + \sqrt 3 \xrightarrow{{m \in \mathbb{Z}}}m \in \left\{ {0;1;2} ight\}

    Vậy có tất cả 3 giá trị nguyên của tham số m.

  • Câu 24: Nhận biết

    Tìm tất cả các nghiệm của phương trình \sin\left( x + \frac{\pi}{6} ight) =
1.

    Ta có \sin\left( x + \frac{\pi}{6}
ight) = 1

    \Leftrightarrow x + \frac{\pi}{6} =
\frac{\pi}{2} + k2\pi

    \Leftrightarrow x = \frac{\pi}{3} +
k2\pi\left( k\mathbb{\in Z} ight).

  • Câu 25: Nhận biết

    Hàm số nào sau đây là hàm số chẵn:

     Hàm số sinx là hàm số lẻ

    => Hàm số y = sin5x, y = 3sin2x, y = 4sinx là hàm số lẻ

    Xét hàm số y = |sinx| ta có:

    Hàm số có tập xác định D = R; ∀x ∈ D thì -x ∈ D

    Ta có: f(-x) = |sin⁡( -x)| = |- sinx| = |sinx|

    => f(x)= f(-x) nên hàm số y= |sinx| là hàm số chẵn

    Vậy hàm số y = |sinx| là hàm số chẵn

  • Câu 26: Nhận biết

    Cho hình vẽ:

    Trên đường tròn lượng giác, số đo của góc lượng giác (OA;OB') là:

    Từ hình vẽ ta có: (OA;OB') = -
\frac{\pi}{2}

  • Câu 27: Vận dụng cao

    Hàm số y = sin^{4}x - cos^{4}x đạt giá trị nhỏ nhất tại x = x_{0}. Mệnh đề nào sau đây là đúng?

    Ta có y = sin^{4}x - cos^{4}x

    = \left(sin^{2}x + cos^{2}x ight)\left( sin^{2}x - cos^{2}x ight) = -cos2x.

    - 1 \leq cos2x \leq 1 \Rightarrow - 1\geq - cos2x \geq 1

    \Rightarrow - 1 \geq y \geq 1

    Do đó giá trị nhỏ nhất của hàm số là -1.

    Đẳng thức xảy ra \Leftrightarrow cos2x =1 \Leftrightarrow 2x = k2\pi \Leftrightarrow x = k\pi\ \left(k\mathbb{\in Z} ight).

  • Câu 28: Nhận biết

    Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \left[ { - 2023;\,\,\,2023} ight] để phương trình m\cos x + 1 = 0 có nghiệm?

    Ta có m\cos x + 1 = 0 \Leftrightarrow \cos x =  - \frac{1}{m}

    Phương trình có nghiệm \Leftrightarrow  - 1 \leqslant  - \frac{1}{m} \leqslant 1

    \Leftrightarrow m \geqslant 1\xrightarrow[{m \in \left[ { - 2023;\,2023} ight]}]{{m \in \mathbb{Z}}}m \in \left\{ {1;2;3;...;2023} ight\}.

    Vậy có tất cả 2023 giá trị nguyên của tham số m.

  • Câu 29: Thông hiểu

    Tất cả các nghiệm của phương trình \cot \left( {x - {{15}^{\text{o}}}} ight) - \sqrt 3  = 0 là:

    Ta có: \cot \left( {x - {{15}^{\text{o}}}} ight) - \sqrt 3  = 0 \Leftrightarrow \cot \left( {x - {{15}^{\text{o}}}} ight) = \sqrt 3

    \Leftrightarrow x - {15^{\text{o}}} = {30^{\text{o}}} + k{180^{\text{o}}}

    Vậy suy ra x = {45^{\text{o}}} + k{180^{\text{o}}}, k \in \mathbb Z

    Nghiệm của phương trình đã cho là: x = {45^{\text{o}}} + k{180^{\text{o}}}, k \in \mathbb Z.

  • Câu 30: Nhận biết

    Tập nghiệm của phương trình \sin \left( {x + \frac{\pi }{4}} ight) = \frac{{\sqrt 3 }}{2}là?

     Ta có:   \sin \left( {x + \frac{\pi }{4}} ight) = \frac{{\sqrt 3 }}{2} \Leftrightarrow \left[ \begin{gathered}  x + \frac{\pi }{4} = \frac{\pi }{3} + k2\pi  \hfill \\  x + \frac{\pi }{4} = \pi  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{{12}} + k2\pi  \hfill \\  x = \frac{{5\pi }}{{12}} + k2\pi  \hfill \\ \end{gathered}  ight.\left( {k \in \mathbb{Z}} ight)

     

  • Câu 31: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Tất các các hàm số đều có TXĐ: {\text{D}} = \mathbb{R}.

    Do đó \forall x \in {\text{D}} \Rightarrow  - x \in {\text{D}}{\text{.}}

    Bây giờ ta kiểm tra f\left( { - x} ight) = f\left( x ight) hoặc f\left( { - x} ight) =  - f\left( x ight).

     Với y = f\left( x ight) =  - \,\,\sin x. Ta có

    f\left( { - x} ight) =  - \,\,\sin \left( { - x} ight) = \sin x =  - \left( { - \sin x} ight)

    \Rightarrow f\left( { - x} ight) =  - f\left( x ight)

    Suy ra hàm số là hàm số lẻ.

    Với y = f\left( x ight) = \cos x - \sin x. . Ta có

    f\left( { - x} ight) = \cos \left( { - x} ight) - \sin \left( { - x} ight) = \cos x + \sin x

    \Rightarrow f\left( { - x} ight) e \left\{ { - f\left( x ight),f\left( x ight)} ight\}

    Suy ra hàm số không chẵn không lẻ.

    Với y = f\left( x ight) = \cos x + {\sin ^2}x. Ta có

    f\left( { - \,x} ight) = \cos \left( { - \,x} ight) + {\sin ^2}\left( { - \,x} ight)

    = \cos \left( { - \,x} ight) + {\left[ {\sin \left( { - \,x} ight)} ight]^2}

    = \cos x + {\left[ { - \sin x} ight]^2} = \cos x + {\sin ^2}x

    \Rightarrow f\left( { - x} ight) = f\left( x ight)

    Suy ra hàm số là hàm số chẵn.

    Với y = f\left( x ight) = \cos x\sin x. Ta có

    f\left( { - \,x} ight) = \cos \left( { - \,x} ight).\sin \left( { - \,x} ight) =  - \cos x\sin x

    \Rightarrow f\left( { - x} ight) =  - f\left( x ight)

     Suy ra hàm số là hàm số lẻ.

  • Câu 32: Nhận biết

    Tìm chu kì của hàm số y = \sin\left( 5x - \frac{\pi}{4}
ight)?

    Hàm số y = \sin(ax + b) tuần hoàn với chu kì T =
\frac{2\pi}{|a|}

    Áp dụng công thức trên ta suy ra hàm số y
= \sin\left( 5x - \frac{\pi}{4} ight) tuần hoàn với chu kì T = \frac{2\pi}{5}.

  • Câu 33: Thông hiểu

    Điều kiện để phương trình 3.sinx + m.cosx = 5 có nghiệm là:

     Điều kiện để phương trình 3.sinx + m.cosx = 5 có nghiệm là

    \begin{matrix}  {3^2} + {m^2} < {5^2} \hfill \\   \Leftrightarrow {m^2} < 16 \Leftrightarrow  - 4 < m < 4 \hfill \\ \end{matrix}

    Vậy −4 < m < 4 thì phương trình đã cho có nghiệm.

  • Câu 34: Nhận biết

    Nghiệm của phương trình \cos x =
\cos\frac{\pi}{4} là:

    Ta có \cos x = \cos\frac{\pi}{4}
\Leftrightarrow x = \pm \frac{\pi}{4} + k2\pi,k\mathbb{\in
Z}.

  • Câu 35: Vận dụng

    Tính giá trị biểu thức T = \sin^{2}10^{0} + \sin^{2}20^{0} + ... +\sin^{2}80^{0}

    Ta có: 10^{0} + 80^{0} = 20^{0} + 70^{0}
= ... = 90^{0}

    Nên các cung lượng giác tương ứng đôi một phụ nhau ta có công thức \sin\left( 90^{0} - x ight) = \cos
x

    Khi đó ta có:

    T = \sin^{2}10^{0} + \sin^{2}20^{0} + ...+ \sin^{2}80^{0}

    T = \left( \sin^{2}10^{0} + \cos^{2}10^{0}ight) + \left( \sin^{2}20^{0} + \cos^{2}20^{0} ight)

    + \left(\sin^{2}30^{0} + \cos^{2}0^{0} ight) + \left( \sin^{2}40^{0} +\cos^{2}40^{0} ight)

    T = 1 + 1 + 1 + 1 = 4

  • Câu 36: Vận dụng

    Tập giá trị của hàm số y = \frac{\sin3x -2\cos3x + 10}{6\cos x\cos2x - 4\cos^{3}x + 3} có bao nhiêu số nguyên?

    Ta có:

    y = \frac{sin3x - 2cos3x +
10}{6cosxcos2x - 4cos^{3}x + 3}

    = \frac{sin3x - 2cos3x + 10}{3(cos3x +
\cos x) - (cos3x + 3cosx) + 3}

    = \frac{sin3x - 2cos3x + 10}{2cos3x +
3}

    \Leftrightarrow (2\cos3x + 3)y = \sin3x -2\cos3x + 10

    \Leftrightarrow (2y + 2)cos3x - sin3x =
10 - 3y

    Điều kiện có nghiệm của phương trình là:

    (2y + 2)^{2} + ( - 1)^{2} \geq (10 -
3y)^{2}

    \Leftrightarrow 4y^{2} + 8y + 4 + 1 \geq
100 - 60y + 9y^{2}

    \Leftrightarrow 5y^{2} - 68y + 95 \leq
0

    \Leftrightarrow \frac{34 -
\sqrt{681}}{5} \leq y \leq \frac{34 + \sqrt{681}}{5}.

    y\mathbb{\in Z} nên y = \{ 2;3;4;\ldots;12\}.

    Vậy tập giá trị của y có 11 số nguyên.

  • Câu 37: Vận dụng

    Cho tam giác ABC có: \cos\widehat{A} = \frac{4}{5}\cos\widehat{B} = \frac{5}{13}. Xác định \cos\widehat{C}.

    Ta có: \left\{ \begin{matrix}\cos\widehat{A} = \dfrac{4}{5} \\\cos\widehat{B} = \dfrac{5}{13} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}\sin\widehat{A} = \dfrac{3}{5} \\\sin\widehat{B} = \dfrac{12}{13} \\\end{matrix} ight.

    \widehat{A} + \widehat{B} +
\widehat{C} = 180^{0} khi đó:

    \cos\widehat{C} = \cos\left\lbrack180^{0} - \left( \widehat{A} + \widehat{B} ight)ightbrack

    = - \cos\left( \widehat{A} + \widehat{B}
ight)

    = - \left(\cos\widehat{A}\cos\widehat{B} - \sin\widehat{A}\sin\widehat{B}ight)

    = - \left( \frac{4}{5}.\frac{5}{13} -
\frac{3}{5}.\frac{12}{13} ight) = \frac{16}{65}

  • Câu 38: Vận dụng

    Cho phương trình lượng giác 2(\sin x +1)(\sin^{2}2x - 3\sin x + 1) = \sin4x.\cos x, vậy:

    a) Phương trình đã cho tương đương với phương trình \cos\left( \frac{x}{2} - \frac{\pi}{4}
ight).cos^{3}\left( \frac{3x}{2} + \frac{\pi}{4} ight) = 0. Đúng||Sai

    b) Trên khoảng ( - \pi;\pi) phương trình có 2 nghiệm. Sai||Đúng

    c) Trên khoảng ( - \pi;\pi) phương trình có 3 nghiệm. Đúng||Sai

    d) Tổng các nghiệm của phương trình trên khoảng ( - \pi;\pi) bằng \frac{7\pi}{6}. Đúng||Sai

    Đáp án là:

    Cho phương trình lượng giác 2(\sin x +1)(\sin^{2}2x - 3\sin x + 1) = \sin4x.\cos x, vậy:

    a) Phương trình đã cho tương đương với phương trình \cos\left( \frac{x}{2} - \frac{\pi}{4}
ight).cos^{3}\left( \frac{3x}{2} + \frac{\pi}{4} ight) = 0. Đúng||Sai

    b) Trên khoảng ( - \pi;\pi) phương trình có 2 nghiệm. Sai||Đúng

    c) Trên khoảng ( - \pi;\pi) phương trình có 3 nghiệm. Đúng||Sai

    d) Tổng các nghiệm của phương trình trên khoảng ( - \pi;\pi) bằng \frac{7\pi}{6}. Đúng||Sai

    Ta có phương trình đã cho tương đương với

    2\left( \sin x + 1 ight)\left( \frac{1
- cos4x}{2} - 3sinx + 1 ight) = sin4x.cosx

    \Leftrightarrow \left( \sin x + 1
ight)(3 - 6sinx - cos4x) = sin4x.cosx

    \Leftrightarrow (sinx + 1)(3 - 6sinx) -
sinx.cos4x - cos4x = sin4x.cosx

    \Leftrightarrow 3(1 - 2sin^{2}x) - 3sinx
= sin5x + cos4x

    \Leftrightarrow 3cos2x + 3cos\left( x +
\frac{\pi}{2} ight) = \cos\left( 5x - \frac{\pi}{2} ight) +
cos4x

    \Leftrightarrow 3.2.cos\left(
\frac{3x}{2} + \frac{\pi}{4} ight).cos\left( \frac{x}{2} -
\frac{\pi}{4} ight) = 2.cos\left( \frac{9x}{2} - \frac{\pi}{4}
ight).cos\left( \frac{x}{2} - \frac{\pi}{4} ight)

    \Leftrightarrow \cos\left( \frac{x}{2} -
\frac{\pi}{4} ight)\left\lbrack 3cos\left( \frac{3x}{2} +
\frac{\pi}{4} ight) + \cos\left( \frac{9x}{2} + \frac{3\pi}{4} ight)
ightbrack = 0

    \Leftrightarrow \cos\left( \frac{x}{2} -
\frac{\pi}{4} ight).cos^{3}\left( \frac{3x}{2} + \frac{\pi}{4} ight)
= 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\cos\left( \frac{x}{2} - \frac{\pi}{4} ight) = 0 \\
\cos\left( \frac{3x}{2} + \frac{\pi}{4} ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \frac{3\pi}{2} + k2\pi \\
x = \frac{\pi}{6} + k2\pi \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight).

    x \in ( - \pi;\pi) nên suy ra x = - \frac{\pi}{2},x = \frac{\pi}{6},x =
\frac{3\pi}{2}.

    Kết luận:

    a) Đúng

    b) Sai

    c) Đúng

    d) Đúng

  • Câu 39: Thông hiểu

    Đơn giản biểu thức A = cos\left( \alpha - \frac{\pi}{2} ight) +
sin(\alpha + \pi), ta có

    Ta có:

    A = cos\left( \alpha - \frac{\pi}{2}
ight) + sin(\alpha + \pi)

    = cos\left( \frac{\pi}{2} - \alpha
ight) - sin\alpha = sin\alpha - sin\alpha = 0

  • Câu 40: Thông hiểu

    Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = 8 - 4\cos \left( {\frac{\pi }{4} - 3x} ight) là:

     Ta có: 

    \begin{matrix}   - 1 \leqslant \cos \left( {\dfrac{\pi }{4} - 3x} ight) \leqslant 1 \hfill \\   \Rightarrow 4 \geqslant  - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant  - 4 \hfill \\   \Rightarrow 8 + 4 \geqslant 8 - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant 8 - 4 \hfill \\   \Rightarrow 12 \geqslant y \geqslant 4 \hfill \\ \end{matrix}

    => M = 12; m = 4

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 29 lượt xem
Sắp xếp theo