Tìm chu kì T của hàm số ![]()
Ta có:
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
T là chu kì của hàm số là bội chung nhỏ nhất của T1 và T2
Suy ra hàm số tuần hoàn với chu kì
Tìm chu kì T của hàm số ![]()
Ta có:
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
T là chu kì của hàm số là bội chung nhỏ nhất của T1 và T2
Suy ra hàm số tuần hoàn với chu kì
Hàm số đồng biến trên khoảng
là:
Với thuộc góc phần tư thứ IV và thứ nhất nên hàm số
đồng biến trên khoảng
Hàm số
không xác định trong khoảng nào trong các khoảng sau đây?
Hàm số xác định khi và chỉ khi:
Chọn k = 3 =>
Nhưng điểm thuộc khoảng
Vậy hàm số không xác định trên
Tập nghiệm của phương trình
là:
Ta có:
=> Phương trình vô nghiêm.
Phương trình nào sau đây vô nghiệm?
+ Phương trình
Vậy phương trình vô nghiệm.
+ Phương trình
Vậy phương trình có nghiệm.
+ Phương trình
Vậy phương trình có nghiệm.
+ Phương trình
mà
nên phương trình
có nghiệm.
Phương trình
có nghiệm là:
Giải phương trình:
Giải phương trình
?
Ta có:
PT
Vậy phương trình có nghiệm
Một bánh xe của người đi xe ô tô quay được
vòng trong
giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).
Đáp án: 6,28
Một bánh xe của người đi xe ô tô quay được vòng trong
giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).
Đáp án: 6,28
Số đo góc quay của vòng là
.
Tìm tất các các giá trị thực của tham số m để phương trình
vô nghiệm?
Áp dụng điều kiện có nghiệm của phương trình cos x = a.
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Phương trình
Do đó, phương trình vô nghiệm
.
Nếu
và
là hai nghiệm của phương trình
và
và
là hai nghiệm của phương trình
thì tích
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Số vị trí biểu diễn các nghiệm của phương trình
trên đường tròn lượng giác là?
Ta có

Ta xét có 4 vị trí biểu diễn các nghiệm của phương trình đã cho trên đường tròn lượng giác là A, B, C, D.
Tính giá trị biểu thức ![]()
Ta có:
Trong các hàm số sau, hàm số nào là hàm số tuần hoàn?
Hàm số là hàm số không tuần hoàn
Tập xác định
Giả sử
Cho x = 0 và x = π ta được
Điều này trái với định nghĩa T > 0
Vậy hàm số y = x + sinx không phải là hàm số tuần hoàn
Tương tự chứng minh cho các hàm số và
không tuần hoàn.
Vậy hàm số là hàm số tuần hoàn
Tìm tất cả các giá trị của tham số
để phương trình
vô nghiệm?
Ta có:
Phương trình vô nghiệm
Với x thuộc (0;1), hỏi phương trình
có bao nhiêu nghiệm?
Phương trình
- Với .
có 6 nghiệm.
- Với .
có 6 nghiệm.
Vậy phương trình đã cho có 12 nghiệm.
Gọi S là tập nghiệm của phương trình
. Khẳng định nào sau đây là đúng?
Ta có
Nhận thấy với nghiệm .
Một đồng hồ treo tường, kim giờ dài 10,57cm và kim phút dài 13,34cm. Trong 30 phút mũi kim giờ vạch lên cung tròn có độ dài là
Ta có: 6 giờ thì kim giờ vạch lên 1 cung có số đo
=> 30 phút kim giờ vạch lên 1 cung có số đo là
=> Độ dài cung tròn mà nó vạch lên là
Tập giá trị của hàm số
có bao nhiêu số nguyên?
Ta có:
Điều kiện có nghiệm của phương trình là:
Mà nên
.
Vậy tập giá trị của có 11 số nguyên.
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn
để phương trình
vô nghiệm?
Phương trình vô nghiệm
có 18 giá trị.
Mệnh đề nào sau đây đúng?
Đáp án đúng là:
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi
Vậy tập xác định
Phương trình
có nghiệm là:
Ta có:
Vậy phương trình có nghiệm là
Với
, mệnh đề nào sau đây là đúng?
Ta có thuộc góc phần tư thứ I. Do đó
đồng biến
nghịch biến.
nghịch biến
nghịch biến.
Tìm tập các định D của hàm số 
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Tổng giá trị lớn nhất và nhỏ nhất của hàm số
là
Do nên
.
Nên đạt được khi
.
đạt được khi
.
Suy ra .
Cho góc
thỏa mãn
và
. Tính giá trị của biểu thức
.
Ta có:
Mặt khác
Mà
Hàm số
không xác định trong khoảng nào trong các khoảng sau đây?
Hàm số xác định khi
Ta chọn nhưng điểm
thuộc khoảng
Vậy hàm số không xác định trong khoảng
Biết
, khẳng định nào sau đây đúng?
Với thì
.
Cho
như hình vẽ dưới đây. Nghiệm của phương trình
được biểu diễn trên đường tròn lượng giác là những điểm nào?

Ta có:
.
Các cung lượng giác ,
lần lượt được biểu diễn trên đường tròn lượng giác bởi các điểm F và E.
Tìm tập giá trị của hàm số ![]()
Ta có:
Trên đường tròn lượng giác có điểm gốc là điểm A, điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo bằng 750. Điểm N đối xứng với điểm M qua gốc tọa độ, số đo cung AN là:
Điểm N đối xứng với điểm M qua gốc tọa độ nên
Cung lượng giác ngược chiều dương nên số đo lượng giác cung
Cho
. Xác định k để
.
Ta có:
Rút gọn biểu thức
.
Ta có:
Tính giá trị lớn nhất của hàm số ![]()
Ta có:
Áp dụng bất đẳng thức
Do đó
Dấu bằng xảy ra khi
Tổng các nghiệm thuộc khoảng
của phương trình: ![]()
Giải phương trình:
Tổng nghiệm của phương trình bằng 0.
Cho hàm số
và
. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Hàm số
là hàm số chẵn. Sai||Đúng
b) Trong khoảng
đồ thị hai hàm số
và
cắt nhau tại hai điểm. Đúng||Sai
c) Giá trị lớn nhất của hàm số
bằng
. Sai||Đúng
d) Hàm số
đạt giá trị nhỏ nhất khi
. Đúng||Sai
Cho hàm số và
. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Hàm số là hàm số chẵn. Sai||Đúng
b) Trong khoảng đồ thị hai hàm số
và
cắt nhau tại hai điểm. Đúng||Sai
c) Giá trị lớn nhất của hàm số bằng
. Sai||Đúng
d) Hàm số đạt giá trị nhỏ nhất khi
. Đúng||Sai
a) Sai
TXĐ: . Do đó
Ta có là hàm số lẻ.
b) Đúng
Phương trình trong khoảng
có hai nghiệm
và
c) Sai
Ta có: , mà
.
Vậy giá trị lớn nhất của hàm số bằng
, khi
.
d) Đúng
Giá trị nhỏ nhất của hàm số bằng
, khi
Cho
cho
. Tính giá trị của
?
Ta có:
Vì nên
Cho vòng tròn lượng giác được kí hiệu như sau:

Điểm nào biểu diễn nghiệm của phương trình
?
Ta có:
Vậy chỉ có hai điểm C và điểm D thỏa mãn yêu cầu bài toán.
Tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Cho góc
thỏa mãn
. Tính giá trị biểu thức
.
Ta có: