Mệnh đề nào sau đây đúng?
Mệnh đề đúng là:
Mệnh đề nào sau đây đúng?
Mệnh đề đúng là:
Giải phương trình
?
Ta có:
PT
Vậy phương trình có nghiệm
Cho góc lượng giác
. Với giá trị k bằng bao nhiêu thì góc
?
Theo bài ra ta có:
Tìm tập giá trị của hàm số ![]()
Ta có:
Biết
. Khi đó
có giá trị bằng:
Ta có:
Trong các mệnh đề sau, mệnh đề nào sai?
Vì hàm số y = tan x tuần hoàn với chu kì π
Nên đáp án: “Hàm số y = tanx tuần hoàn với chu kì 2π” là đáp án sai.
Trên đường tròn bán kính 20cm. Tính độ dài của cung có số đo
.
Độ dài cung tròn là:
Tìm giá trị nhỏ nhất
của hàm số
.
Ta có
Mà
Do đó giá trị nhỏ nhất của hàm số là
Trong các hàm số sau hàm số nào là hàm số lẻ?
Xét hàm số y = sinx:
Lấy ta có:
Vậy hàm số y = sinx là hàm số lẻ.
Cho
. Khẳng định nào sau đây đúng?
Ta có:
=>
=>
Điểm cuối cung thuộc góc phần tư thứ ba
=>
Hỏi trên đoạn [-2023; 2023], phương trình
có tất cả bao nhiêu nghiệm?
Ta xét phương trình
Theo giả thiết
Vậy có tất cả 644 giá trị nguyên của k tương úng có 644 nghiệm thỏa mãn yêu cầu bài toán.
Điều kiện xác định của hàm số:
là:
Điều kiện xác định của hàm số:
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức
với
tính bằng
và
là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ cao nhất trong ngày là:
Do nên
Do đó nhiệt độ cao nhất trong ngày là .
Dấu bằng xảy ra
Do .
Mà nên
.
Khi đó .
Vậy lúc 15h là thời gian nhiệt độ cao nhất trong ngày.
Cho góc
thỏa mãn
. Tính giá trị biểu thức ![]()
Ta có:
Theo bài ra ta có:
Khi đó giá trị biểu thức T là:
Cho tam giác
. Khẳng định nào sau đây sai?
Ta có:
Do đó
Vậy khẳng định sai là:
Phương trình
có họ nghiệm là
Ta có:
là nghiệm của phương trình.
: Chia 2 vế phương trình cho
ta được:
.
Số nghiệm của phương trình
với
là?
4 || Bốn || bốn || 4 nghiệm
Số nghiệm của phương trình với
là?
4 || Bốn || bốn || 4 nghiệm
Phương trình
Vì
Vì
Vậy có tất cả 4 nghiệm thỏa mãn bài toán.
Xét tính đúng, sai của các phát biểu sau?
Tập
là tập xác định của hàm số
. Đúng||Sai
Số nghiệm của phương trình
trên khoảng
là 3 nghiệm.Sai||Đúng
Có 5 giá trị nguyên của tham số m để phương trình
có nghiệm. Đúng||Sai
Số vị trí biểu diễn của phương trình
trên đường tròn lượng giác là 3.Sai||Đúng
Xét tính đúng, sai của các phát biểu sau?
Tập là tập xác định của hàm số
. Đúng||Sai
Số nghiệm của phương trình trên khoảng
là 3 nghiệm.Sai||Đúng
Có 5 giá trị nguyên của tham số m để phương trình có nghiệm. Đúng||Sai
Số vị trí biểu diễn của phương trình trên đường tròn lượng giác là 3.Sai||Đúng
a) Điều kiện xác định của hàm số là:
b) Ta có:
Vì
mà
suy ra
Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng .
c) Ta có:
Phương trình đã cho có nghiệm khi và chỉ khi
Mà
Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.
d) Ta có:
Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác là 2.
Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách.
Ta có:
=> Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách tịnh tiến C qua phải một đoạn có độ dài là
Cho hàm số
. Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số
?
Ta có:
Đặt . Xét hàm số
trên đoạn
Ta có bảng biến thiên
Từ bảng biến thiên ta có:
Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho là 10.
Tìm chu kì T của hàm số ![]()
Ta có:
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
T là chu kì của hàm số là bội chung nhỏ nhất của T1 và T2
Suy ra hàm số tuần hoàn với chu kì
Cho tam giác
có các góc
thỏa mãn biểu thức
. Khẳng định nào sau đây đúng?
Ta có:
Vậy tam giác cân.
Cung nào sau đây có mút trùng với B hoặc B’?

Quan sát hình vẽ ta thấy vị trí điểm B và B’ ứng với các góc .
Tương ứng với đó ta được góc trùng với các vị trí B và B’ là: .
Rút gọn biểu thức:
ta được:
Ta có:
Nếu
và
thì
bằng bao nhiêu?
Từ giả thiết ta có:
Ta có:
Mặt khác
Nghiệm của phương trình
là
Ta có
.
Tính giá trị của biểu thức ![]()
Ta có:
Tìm tập xác định của hàm số 
Hàm số xác định
Vậy tập xác định
Trong các phương trình sau, phương trình nào tương đương với phương trình
?
Ta có . Mà
.
Do đó . Vậy
.
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Mà nên
Vậy tập xác định
Tính giá trị ![]()
Ta có:
Hàm số
không xác định trong khoảng nào trong các khoảng sau đây?
Hàm số xác định khi và chỉ khi:
Chọn k = 3 =>
Nhưng điểm thuộc khoảng
Vậy hàm số không xác định trên
Biết rằng phương trình
có nghiệm dạng
với
và
. Tính
.
Điều kiện xác định
Ta có:
=> Phương trình tương đương
=>
Hỏi trên đoạn
, phương trình
có bao nhiêu nghiệm?
Ta có
Theo giả thiết, ta có
.
Vậy có tất cả 2023 giá trị nguyên của k tương ứng với có 2023 nghiệm thỏa mãn yêu cầu bài toán.
Khẳng định nào sai trong các khẳng định sau?
Ta có:
Trong các hàm số sau, hàm số nào là hàm số tuần hoàn?
Hàm số là hàm số không tuần hoàn
Tập xác định
Giả sử
Cho x = 0 và x = π ta được
Điều này trái với định nghĩa T > 0
Vậy hàm số y = x + sinx không phải là hàm số tuần hoàn
Tương tự chứng minh cho các hàm số và
không tuần hoàn.
Vậy hàm số là hàm số tuần hoàn
Tìm tất cả các giá trị của tham số m để phương trình
có nghiệm?
Phương trình
Để phương trình có nghiệm
là giá trị cần tìm.
Tìm giá trị thực của tham số m để phương trình
nhận
làm nghiệm
Phương trình nhận làm nghiệm
vậy m = -4
Nghiệm của phương trình
là
Phương trình lượng giác
có nghiệm là:
Ta có