Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của biểu thức A = \sin^{6}x +\cos^{6}x.

    Ta có:

    A = \sin^{6}x + \cos^{6}x

    A = \left( \sin^{2}x ight)^{3} + \left(\cos^{2}x ight)^{3}

    A = \left( \sin^{2}x + \cos^{2}x ight)\left( \sin^{4}x - \sin^{2}x.\cos^{2}x + \cos^{4}x ight)

    A = \sin^{4}x - \dfrac{1}{4}\sin^{2}2x +\cos^{4}x

    A = 1 - \dfrac{1}{4}\sin^{2}2x -\dfrac{1}{2}\sin^{2}2x

    A = 1 -\frac{3}{4}\sin^{2}2x

    \Rightarrow \sin^{2}2x = \frac{4 -4A}{3}

    Ta lại có: \sin^{2}2x \in \lbrack0;1brack

    \Rightarrow 0 \leq \frac{4 - 4A}{3} \leq1

    \Rightarrow \frac{1}{4} \leq A \leq1

    \Rightarrow M = 1;m =\frac{1}{4}

  • Câu 2: Thông hiểu

    Biết rằng \frac{\sin\dfrac{\pi}{9} +\sin\dfrac{5\pi}{9}}{\cos\dfrac{\pi}{9} + \cos\dfrac{5\pi}{9}} = \tan\left(\dfrac{m\pi}{n} ight) với m,n\in\mathbb{ N} và \frac{m}{n} tối giản. Khi đó kết quả nào sau đây đúng?

    Ta có:

    \frac{\sin\dfrac{\pi}{9} +\sin\dfrac{5\pi}{9}}{\cos\dfrac{\pi}{9} + \cos\dfrac{5\pi}{9}} =\frac{2\sin\dfrac{\pi}{3}\cos\left( - \dfrac{2\pi}{9}ight)}{2\cos\dfrac{\pi}{3}\cos\left( - \dfrac{2\pi}{9} ight)} =\tan\left( \dfrac{\pi}{3} ight)

    \Rightarrow \left\{ \begin{matrix}
m = 1 \\
n = 3 \\
\end{matrix} ight.\  \Rightarrow n - m = 2

  • Câu 3: Thông hiểu

    Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?

    1 || 1 vị trí || một || một vị trí || Một vị trí

    Đáp án là:

    Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?

    1 || 1 vị trí || một || một vị trí || Một vị trí

    Phương trình \Leftrightarrow 2{\cos ^2}x + 5\cos x + 3 = 0 \Leftrightarrow \left[ \begin{gathered}  \cos x =  - 1 \hfill \\  \cos x =  - \frac{3}{2}\,\,\,\,\,(VL) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \cos x =  - 1 \Leftrightarrow x = \pi  + k2\pi \left( {k \in \mathbb{Z}} ight)

    Suy ra có duy nhất 1 vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác.

  • Câu 4: Vận dụng

    Biến đổi phương trình \cos 3x - \sin x = \sqrt 3 \left( {\cos x - \sin 3x} ight) về dạng \sin \left( {ax + b} ight) = \sin \left( {cx + d} ight) với b, d thuộc khoảng \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight). Tính b+d?

     Phương trình \Leftrightarrow \sqrt 3 \sin 3x + \cos 3x = \sin x + \sqrt 3 \cos x

    \Leftrightarrow \frac{{\sqrt 3 }}{2}\sin 3x + \frac{1}{2}\cos 3x = \frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x

    \Leftrightarrow \sin \left( {3x + \frac{\pi }{6}} ight) = \sin \left( {x + \frac{\pi }{3}} ight)

    Suy ra b + d = \frac{\pi }{6} + \frac{\pi }{3} = \frac{\pi }{2}.

  • Câu 5: Vận dụng cao

    Tính giá trị lớn nhất của hàm số y =\sqrt{1 + \frac{1}{2}cos^{2}x} + \frac{1}{2}\sqrt{5 +2sin^{2}x}

    Ta có:

    \begin{matrix}y = \sqrt{1 + \dfrac{1}{2}cos^{2}x} + \dfrac{1}{2}\sqrt{5 + 2sin^{2}x}\hfill \\= \sqrt{1 + \dfrac{1}{2}cos^{2}x} + \sqrt{\dfrac{5}{4} +\dfrac{1}{2}sin^{2}x}\hfill \\\end{matrix}

    Áp dụng bất đẳng thức 2\left( a^{2} +b^{2} ight) \geq (a + b)^{2}

    Do đó

    \begin{matrix}  2\left[ {\left( {1 + \dfrac{1}{2}{{\cos }^2}x} ight) + \left( {\dfrac{5}{4} + \dfrac{1}{2}{{\sin }^2}x} ight)} ight] \geqslant {y^2} \hfill \\  {y^2} \leqslant 2\left( {\dfrac{9}{4} + \dfrac{1}{2}} ight) = \dfrac{{11}}{2} \hfill \\   \Rightarrow y \leqslant \dfrac{{\sqrt {22} }}{2} \hfill \\ \end{matrix}

    Dấu bằng xảy ra khi

    \begin{matrix}  1 + \dfrac{1}{2}{\cos ^2}x = \dfrac{5}{4} + \dfrac{1}{2}{\sin ^2}x \hfill \\   \Leftrightarrow \dfrac{1}{2}\cos 2x = \dfrac{1}{4} \Rightarrow \cos 2x = \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu

    Tìm tập xác định D của hàm số y = tan2x:

    Hàm số xác định khi cos2x eq 0
\Leftrightarrow 2x eq \frac{\pi}{2} + k\pi \Leftrightarrow x eq
\frac{\pi}{4} + k\frac{\pi}{2}\ (k \in \mathbb{Z}).

    Tập xác định của hàm số là: D =\mathbb{R} \setminus  \left\{ \frac{\pi}{4} + k\frac{\pi}{2} \mid k\in \mathbb{Z} ight\}.

  • Câu 7: Nhận biết

    Tìm tập xác định của hàm số y = \frac{2x-1}{{\sin x - \cos x}}

    Hàm số xác định khi

    \begin{matrix}   \Leftrightarrow \sin x - \cos x e 0 \hfill \\   \Leftrightarrow \tan x e 1 \hfill \\   \Leftrightarrow x e \dfrac{\pi }{4} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Vậy tập xác định {\text{D}} = \mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\pi ,k \in \mathbb{Z}} ight\}

  • Câu 8: Vận dụng

    Tìm tập xác định D của hàm số y =
\tan\left( \frac{\pi}{2}.cosx ight)

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\dfrac{\pi}{2}.cosx eq \dfrac{\pi}{2} + k\pi \\\cos x eq 1 + 2k(*) \\\end{matrix}

    Do k là số nguyên => \cos x eq \pm 1\Rightarrow \sin x eq 0 \Rightarrow x eq k\pi,k \in\mathbb{Z}

    Vậy tập xác định D\mathbb{=R}\backslash\left\{ k\pi,k\in\mathbb{ Z} ight\}

  • Câu 9: Thông hiểu

    Cho phương trình \sin\left( 2x -
\frac{\pi}{4} ight) = \sin\left( x + \frac{3\pi}{4} ight) (*), vậy:

    a) Phương trình có nghiệm \left\lbrack
\begin{matrix}
x = \pi + k2\pi \\
x = \frac{\pi}{6} + k\frac{2\pi}{3} \\
\end{matrix}(k\mathbb{\in Z}). ight. Đúng||Sai

    b) Trong khoảng (0;\pi) phương trình có 2 nghiệm. Đúng||Sai

    c) Tổng các nghiệm của phương trình trong khoảng (0;\pi) bằng \frac{7\pi}{6}. Sai||Đúng

    d) Trong khoảng (0;\pi) phương trình có nghiệm lớn nhất bằng \frac{5\pi}{6}. Đúng||Sai

    Đáp án là:

    Cho phương trình \sin\left( 2x -
\frac{\pi}{4} ight) = \sin\left( x + \frac{3\pi}{4} ight) (*), vậy:

    a) Phương trình có nghiệm \left\lbrack
\begin{matrix}
x = \pi + k2\pi \\
x = \frac{\pi}{6} + k\frac{2\pi}{3} \\
\end{matrix}(k\mathbb{\in Z}). ight. Đúng||Sai

    b) Trong khoảng (0;\pi) phương trình có 2 nghiệm. Đúng||Sai

    c) Tổng các nghiệm của phương trình trong khoảng (0;\pi) bằng \frac{7\pi}{6}. Sai||Đúng

    d) Trong khoảng (0;\pi) phương trình có nghiệm lớn nhất bằng \frac{5\pi}{6}. Đúng||Sai

    Ta có:

    \sin\left( 2x - \frac{\pi}{4} ight) =
\sin\left( x + \frac{3\pi}{4} ight)

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {2x - \dfrac{\pi }{4} = x + \dfrac{{3\pi }}{4} + k2\pi } \\ 
  {2x - \dfrac{\pi }{4} = \dfrac{\pi }{4} - x + k2\pi } 
\end{array}(k \in \mathbb{Z})} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = \pi + k2\pi \\
x = \frac{\pi}{6} + k\frac{2\pi}{3} \\
\end{matrix}(k\mathbb{\in Z})\  ight.\

    x \in (0;\pi)\ nên\ x \in \left\{
\frac{\pi}{6};\frac{5\pi}{6} ight\}

    Vậy phương trình có hai nghiệm thuộc khoảng (0;\pi)x
= \frac{\pi}{6};x = \frac{5\pi}{6}.

    Kết luận:

    a) Đúng

    b) Đúng

    c) Sai

    d) Đúng

  • Câu 10: Nhận biết

    Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn \left[ { - 2023;\,\,\,2023} ight] để phương trình m\cos x + 1 = 0 có nghiệm?

    Ta có m\cos x + 1 = 0 \Leftrightarrow \cos x =  - \frac{1}{m}

    Phương trình có nghiệm \Leftrightarrow  - 1 \leqslant  - \frac{1}{m} \leqslant 1

    \Leftrightarrow m \geqslant 1\xrightarrow[{m \in \left[ { - 2023;\,2023} ight]}]{{m \in \mathbb{Z}}}m \in \left\{ {1;2;3;...;2023} ight\}.

    Vậy có tất cả 2023 giá trị nguyên của tham số m.

  • Câu 11: Nhận biết

    Điều kiện xác định của hàm số y = \cot \left( {x - \frac{{2\pi }}{5}} ight) là:

     Ta có: y = \cot \left( {x - \dfrac{{2\pi }}{5}} ight) = \dfrac{{\cos \left( {x - \dfrac{{2\pi }}{5}} ight)}}{{\sin \left( {x - \dfrac{{2\pi }}{5}} ight)}}

    Điều kiện xác định của hàm số

    \begin{matrix}  \sin \left( {x - \dfrac{{2\pi }}{5}} ight) e 0 \hfill \\   \Leftrightarrow x - \dfrac{{2\pi }}{5} e k\pi  \hfill \\   \Leftrightarrow x e \dfrac{{2\pi }}{5} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 12: Thông hiểu

    Trên đoạn \left\lbrack - 2\pi;\frac{5\pi}{2}
ightbrack, đồ thị hai hàm số y
= \tan xy = 1 cắt nhau tại bao nhiêu điểm?

    Phương trình hoành độ giao điểm của hai đồ thị hàm số là

    \tan x = 1 \Rightarrow x = \frac{\pi}{4}
+ k\pi;\left( k\mathbb{\in Z} ight)

    Theo bài ra ta có: x \in \left\lbrack -
2\pi;\frac{5\pi}{2} ightbrack

    \Rightarrow - 2\pi \leq \frac{\pi}{4} +
k\pi \leq \frac{5\pi}{2}

    \Rightarrow - \frac{9}{4} \leq k \leq
\frac{9}{4}

    \Rightarrow k \in \left\{ - 2; - 1;0;1;2
ight\}

    Vậy đồ thị hai hàm số đã cho cắt nhau tại 5 điểm trên đoạn \left\lbrack - 2\pi;\frac{5\pi}{2}
ightbrack.

  • Câu 13: Thông hiểu

    Một chiếc đồng hồ, có kim chỉ giờ OG chỉ số 9 và kim phút OP chỉ số 12. Số đo của góc lượng giác (OG;OP) là:

    Góc lượng giác (OG;OP) chiếm \frac{1}{4} đường tròn

    => Số đo là: \frac{1}{4}.2\pi + k2\pi= \frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight).

  • Câu 14: Nhận biết

    Mệnh đề nào sau đây đúng?

     Mệnh đề đúng là: \sin x = 0 \Rightarrow x = k\pi

  • Câu 15: Vận dụng

    Cho \widehat{A};\widehat{B};\widehat{C} là các góc của tam giác ABC. Khi đó:

    P =\tan\frac{\widehat{A}}{2}\tan\frac{\widehat{B}}{2} +\tan\frac{\widehat{B}}{2}.\tan\frac{\widehat{C}}{2} +\tan\frac{\widehat{C}}{2}.\tan\frac{\widehat{A}}{2}

    Ta có: \widehat{A} + \widehat{B} +\widehat{C} = \pi

    \Rightarrow \frac{\widehat{B} +\widehat{C}}{2} = \frac{\pi}{2} - \frac{\widehat{A}}{2}

    \Rightarrow \tan\left( \frac{\widehat{B}+ \widehat{C}}{2} ight) = \tan\left( \frac{\pi}{2} -\frac{\widehat{A}}{2} ight)

    \Rightarrow\dfrac{\tan\dfrac{\widehat{C}}{2} + \tan\dfrac{\widehat{B}}{2}}{1 -\tan\dfrac{\widehat{C}}{2}.\tan\dfrac{\widehat{B}}{2}} =\cot\frac{\widehat{A}}{2} =\dfrac{1}{\tan\dfrac{\widehat{A}}{2}}

    \Rightarrow\tan\frac{\widehat{A}}{2}.\left( \tan\frac{\widehat{C}}{2} +\tan\frac{\widehat{B}}{2} ight) +\tan\frac{\widehat{C}}{2}.\tan\dfrac{\widehat{B}}{2} = 1

    \Rightarrow\tan\dfrac{\widehat{A}}{2}.\tan\dfrac{\widehat{B}}{2} +\tan\dfrac{\widehat{B}}{2}.\tan\dfrac{\widehat{C}}{2} +\tan\dfrac{\widehat{C}}{2}.\tan\dfrac{\widehat{A}}{2} = 1

  • Câu 16: Vận dụng cao

    Xét đường tròn lượng giác như hình vẽ. Biết \widehat {AOC} = \widehat {AOF} = 30^\circ, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình 2 \sin x -1 = 0 được biểu diễn trên đường tròn lượng giác là những điểm nào?

     

    Ta có: 2\sin x - 1 = 0 \Leftrightarrow \sin x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\,,\,k \in \mathbb{Z}

    Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.

  • Câu 17: Thông hiểu

    Rút gọn biểu thức: B = \cos(a + b)\cos(a - b) + \sin(a + b)\sin(a -b)

    Ta có:

    B = \cos(a + b)\cos(a - b) + \sin(a +
b)\sin(a - b)

    B = \cos\left\lbrack a + b - (a - b)
ightbrack

    B = \cos2b = 1 - 2\sin^{2}b

  • Câu 18: Nhận biết

    Trong các phương trình sau, phương trình nào tương đương với phương trình 3{\sin ^2}x = {\cos ^2}x ?

     Ta có 3{\sin ^2}x = {\cos ^2}x. Chi hai vế phương trình cho {\sin ^2}x, ta được {\cot ^2}x = 3.

  • Câu 19: Thông hiểu

    Đồ thị hàm số y = \sin x được suy từ đồ thị (C) của hàm số bằng cách:

    Ta có

    y = \sin x = \cos \left( {\frac{\pi }{2} - x} ight) = \cos \left( {x - \frac{\pi }{2}} ight)

    =>Đồ thị hàm số y = \sin x được suy từ đồ thị (C) của hàm số bằng cách tịnh tiến (C) qua phải một đoạn có độ dài là \frac{\pi }{2}

  • Câu 20: Nhận biết

    Chọn đáp án sai

    Trong khoảng \left( {0;\frac{\pi }{2}} ight), hàm số y = \sin x - \cos x là hàm số:

    Ta thấy:

    Trên khoảng \left( {0;\frac{\pi }{2}} ight) hàm y =f(x)= \sin x đồng biến và hàm y= g(x)= - \cos x đồng biến

    => Trên \left( {0;\frac{\pi }{2}} ight) hàm số y = \sin x - \cos x đồng biến.

  • Câu 21: Thông hiểu

    Rút gọn biểu thức E = \cos(a + b)\cos(a - b) - \sin(a + b)\sin(a -b)

    Ta có:

    E = \cos(a + b)\cos(a - b) - \sin(a +
b)\sin(a - b)

    E = \cos(a + b + a - b) = \cos2a = 1 -2\sin^{2}a

  • Câu 22: Thông hiểu

    Tìm đẳng thức sai trong các đẳng thức sau (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa).

    Ta có: sina + sinb = 2sin\frac{a +
b}{2}cos\frac{a - b}{2}, do đó đẳng thức sina + sinb = 2sin\frac{a + b}{2} \cdot sin\frac{a
- b}{2} sai.

  • Câu 23: Nhận biết

    Tập nghiệm của phương trình \cot x = -
\frac{\sqrt{3}}{3}

    Ta có

    \cot x = -
\frac{\sqrt{3}}{3}

    \Leftrightarrow \cot x = \cot\left( -
\frac{\pi}{3} ight)

    \Leftrightarrow x = - \frac{\pi}{3} +
k\pi,\left( k\mathbb{\in Z} ight).

  • Câu 24: Vận dụng

    Biểu diễn hai nghiệm của phương trình \sqrt{3}\cos x - \sin x = - 1 được biểu diễn trên đường tròn lượng giác như sau:

    Tính AB - OI với I là hình chiếu vuông góc của B trên OA bằng:

    \sqrt{3}\cos x - \sin x = -
1

    \Rightarrow \sin\left( x - \frac{\pi}{3}
ight) = \frac{1}{2}

    \Rightarrow \left\lbrack \begin{matrix}x = \dfrac{\pi}{2} + k2\pi \\x = \dfrac{7\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    => AB = \sqrt{\frac{9}{4} +
\frac{3}{4}} = 3

    \Rightarrow AB - OI =
\frac{3}{2}

  • Câu 25: Thông hiểu

    Cho đồ thị hàm số lượng giác như hình vẽ:

    Đường thẳng y = \frac{1}{2} cắt đồ thị hàm số y = 2sin^{2}x tại 4 điểm A, B, C, D như hình vẽ. Giá trị của x_{B} + x_{D}\frac{a}{b}\pi. Biết \frac{a}{b} là phân số tối giản. Giá trị của 2a + b là:

    Đáp án: 19

    Đáp án là:

    Cho đồ thị hàm số lượng giác như hình vẽ:

    Đường thẳng y = \frac{1}{2} cắt đồ thị hàm số y = 2sin^{2}x tại 4 điểm A, B, C, D như hình vẽ. Giá trị của x_{B} + x_{D}\frac{a}{b}\pi. Biết \frac{a}{b} là phân số tối giản. Giá trị của 2a + b là:

    Đáp án: 19

    Phương trình hoành độ giao điểm là:

    2\sin^{2}x = \frac{1}{2} \Leftrightarrow1 - \cos2x = \frac{1}{2} \Leftrightarrow \cos2x = \frac{1}{2}

    \Leftrightarrow 2x = \pm \frac{\pi}{3} +
k2\pi \Leftrightarrow x = \pm \frac{\pi}{6} + k\pi

    Ta thấy x_{A},x_{B},x_{C},x_{D} là bốn nghiệm dương nhỏ nhất của phương trình trên.

    Do đó: x_{A} = \frac{\pi}{6};x_{B} =
\frac{5\pi}{6};x_{C} = \frac{7\pi}{6};x_{D} = \frac{11\pi}{6}
\Rightarrow x_{B} + x_{D} = \frac{8}{3}\pi.

    Vậy 2a + b = 8.2 +3=1 9.

  • Câu 26: Thông hiểu

    Cho góc \alpha thỏa mãn \sin\alpha = \frac{3}{5}. Giá trị của biểu thức G = \sin\left( \alpha +\frac{\pi}{6} ight).\sin\left( \alpha - \frac{\pi}{6}ight)

    Ta có:

    G = \sin\left( \alpha + \frac{\pi}{6}ight).\sin\left( \alpha - \frac{\pi}{6} ight)

    G = \frac{1}{2}\left( \cos\frac{\pi}{3}- \cos2\alpha ight)

    Ta có:

    \cos2\alpha = 1 - 2\sin^{2}\alpha = 1 -2.\left( \frac{3}{5} ight)^{2} = \frac{7}{25}

    Khi đó giá trị biểu thức G là:

    G = \frac{1}{2}\left( \cos\frac{\pi}{3}
- \frac{7}{25} ight) = \frac{1}{2}\left( \frac{1}{2} - \frac{7}{25}
ight) = \frac{11}{100}

  • Câu 27: Thông hiểu

    Trong các hàm số sau, hàm số nào là hàm số tuần hoàn?

    Hàm số y = x + \sin x là hàm số không tuần hoàn

    Tập xác định D=\mathbb{ R}

    Giả sử

    \begin{matrix}f(x + T) = f(x),\forall x \in D \hfill \\\Rightarrow (x + T) + \sin(x + T) = x + \sin x;\forall x \in D \hfill \\\Rightarrow T + \sin(x + T) = \sin x,\forall x \in D \hfill \\\end{matrix}

    Cho x = 0 và x = π ta được

    \begin{matrix}\left\{ \begin{matrix}T + \sin x = sin0 = 0 \\T + \sin(T + \pi) = \sin\pi = 0 \hfill\\\end{matrix} ight.\ \hfill \\\Rightarrow 2T + \sin T + \sin(T + \pi) = 0 \Rightarrow T = 0 \hfill\\\end{matrix}

    Điều này trái với định nghĩa T > 0

    Vậy hàm số y = x + sinx không phải là hàm số tuần hoàn

    Tương tự chứng minh cho các hàm số y =
x\cos xy = \frac{\sin
x}{x} không tuần hoàn.

    Vậy hàm số y = \sin x là hàm số tuần hoàn

  • Câu 28: Thông hiểu

    Tìm tất cả các giá trị của tham số m để phương trình \left( {m - 2} ight)\sin 2x = m + 1 vô nghiệm.

    TH1. Với m = 2, phương trình \left( {m - 2} ight)\sin 2x = m + 1 \Leftrightarrow 0 = 3: vô lý.

    Suy ra m=2 thì phương trình đã cho vô nghiệm.

    TH2. Với m eq 2, phương trình \left( {m - 2} ight)\sin 2x = m + 1 \Leftrightarrow \sin 2x = \frac{{m + 1}}{{m - 2}}

    Để phương trình vô nghiệm

    \Leftrightarrow \frac{{m + 1}}{{m - 2}} otin \left[ { - \,1;1} ight] \Leftrightarrow \left[ \begin{gathered}  \frac{{m + 1}}{{m - 2}} > 1 \hfill \\  \frac{{m + 1}}{{m - 2}} <  - \,1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  m > 2 \hfill \\  \frac{1}{2} < m < 2 \hfill \\ \end{gathered}  ight.

    Kết hợp hai trường hợp, ta được m \in \left( {\frac{1}{2}; + \infty } ight) là giá trị cần tìm.

  • Câu 29: Vận dụng

    Xác định chu kì T của hàm số y = 3\cos(2x+ 1) - 2\sin\left( \dfrac{x}{2} - 3 ight)

    Hàm số y = 3\cos(2x + 1) tuần hoàn với chu kì T_{1} = \pi

    Hàm số y = - 2\sin\left( \frac{x}{2} - 3ight) tuần hoàn với chu kì T_{2}
= 4\pi

    Suy ra hàm số y = 3\cos(2x + 1) -2\sin\left( \frac{x}{2} - 3 ight) tuần hoàn với chu kì T = 4\pi

  • Câu 30: Nhận biết

    Đồ thị hàm số y = \cos x - \frac{\pi }{4} đi qua điểm nào sau đây?

     Thay giá trị x =  - \frac{\pi }{2};y = \frac{\pi }{4} vào hàm số ta có:

    \cos \left( { - \frac{\pi }{2}} ight) - \frac{\pi }{4} =- \frac{\pi }{4}

    Vậy điểm thuộc đồ thị hàm số là: y = \cos x - \frac{\pi }{4}

  • Câu 31: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau:

    Theo công thức cộng

    \cos(a + b) = \cos a.cosb - \sin
a.sinb.

  • Câu 32: Thông hiểu

    Biết \sin\alpha +
\cos\alpha = \frac{5}{4}. Khi đó \sin\alpha.\cos\alpha có giá trị bằng:

    Ta có:

    \sin\alpha.cos\alpha

    = \frac{1}{2}\left\lbrack \left(\sin\alpha + \cos\alpha ight)^{2} - \left( \sin^{2}\alpha +\cos^{2}\alpha ight) ightbrack

    = \frac{1}{2}\left\lbrack \left(
\frac{5}{4} ight)^{2} - 1 ightbrack = \frac{9}{32}

  • Câu 33: Vận dụng

    Trên đường tròn lượng giác có điểm gốc là A. Điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo 45^{0}. Gọi N là điểm đối xứng với M qua trục Ox, số đo cung lượng giác AN bằng:

    Vì số đo cung AM bằng 45^{0}

    => \widehat{AOM} = 45^{0}

    N là điểm đối xứng với M qua trục Ox => \widehat{AON} = 45^{0}

    => Số đo cung AN bằng 45^{0}

    => Số đo cung lượng giác AN có số đo là: - 45^{0} + k.360^{0};\left( k\mathbb{\in Z}
ight)

  • Câu 34: Nhận biết

    Nghiệm của phương trình \cos x =
\cos\frac{\pi}{4} là:

    Ta có \cos x = \cos\frac{\pi}{4}
\Leftrightarrow x = \pm \frac{\pi}{4} + k2\pi,k\mathbb{\in
Z}.

  • Câu 35: Nhận biết

    Phương trình lượng giác \cot\ x =
\frac{\sqrt{3}}{3} có nghiệm là:

    Ta có

    \cot x = \frac{\sqrt{3}}{3}

    \Leftrightarrow \cot x = \cot\left(
\frac{\pi}{3} ight)

    \Leftrightarrow x = \frac{\pi}{3} +
k\pi,\left( k\mathbb{\in Z} ight)

  • Câu 36: Vận dụng

    Phương trình \cot x=\sqrt 3 có bao nhiêu nghiệm thuộc \left[ { - 2022\pi \,,\,2022\pi } ight]?

     Ta có: \cot x=\sqrt 3

    \Leftrightarrow x = \frac{\pi }{6} + k\pi \,,\,k \in \mathbb{Z}, mà - 2022\pi  \leqslant x \leqslant 2022\pi.

    \Rightarrow  - 2022\pi  \leqslant \frac{\pi }{6} + k\pi  \leqslant 2022\pi

    \Leftrightarrow  - 2022 \leqslant \frac{1}{6} + k \leqslant 2022

    \Leftrightarrow  - 2022 - \frac{1}{6} \leqslant k \leqslant 2022 - \frac{1}{6}.

    Suy ra - 2022\pi  \leqslant x \leqslant 2022\pi, k \in Z.

    Vậy \cot x=\sqrt 3 có 4044 nghiệm thuộc \left[ { - 2022\pi \,,\,2022\pi } ight].

  • Câu 37: Nhận biết

    Trên đường tròn bán kính 15dm, cho cung tròn có độ dài l = 25\pi(dm). Số đo của cung tròn đó là:

    Độ dài cung tròn là: l =
R.\alpha

    => \alpha = \frac{l}{R} =
\frac{25\pi}{15} = \frac{5\pi}{3}

  • Câu 38: Nhận biết

    Trong các khẳng định sau, khẳng định nào sai?

    Ta có \cos(a + b) = \cos a.cosb - \sin
a.sinb.

  • Câu 39: Thông hiểu

    Hàm số y = \sin 2x nghịch biến trên khoảng nào sau đây?

     Hàm số y = \sin 2x tuần hoàn với chu kì T = \frac{{2\pi }}{2} = \pi

    Do hàm số y=\sin x nghịch biến trên \left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } ight)

    => Hàm số y = \sin{2x} nghịch biến khi 

    \begin{matrix}  \dfrac{\pi }{2} + k2\pi  < 2x < \dfrac{{3\pi }}{2} + k2\pi  \hfill \\   \Rightarrow \dfrac{\pi }{4} + k\pi  < x < \dfrac{{3\pi }}{4} + k\pi  \hfill \\ \end{matrix}

    Vậy đáp án đúng là \left( {\frac{\pi }{2};\pi } ight)

  • Câu 40: Thông hiểu

    Tổng giá trị lớn nhất và nhỏ nhất của hàm số y = 3cosx + 4

    Do - 1 \leq cosx \leq 1\forall x \in
\mathbb{R} nên 1 \leq 3cosx + 4
\leq 7,\forall x \in \mathbb{R}.

    Nên \max_{\mathbb{R}}\mspace{2mu} y =
7 đạt được khi cosx = 1
\Leftrightarrow x = k2\pi\ (k \in \mathbb{Z}).

    \min_{\mathbb{R}}\mspace{2mu} y =
1 đạt được khi cosx = - 1
\Leftrightarrow x = \pi + k2\pi(k \in \mathbb{Z}).

    Suy ra \max_{\mathbb{R}}\mspace{2mu} y +
\min_{\mathbb{R}}\mspace{2mu} y = 8.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo