Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Hàm số y = \cos x đồng biến trên khoảng nào sau đây?

    Hàm số y = cosx đồng biến trên mỗi khoảng (-π + k2π; k2π) và nghịch biến trên mỗi khoảng (k2π; π + k2π) với k ∈ Z.

  • Câu 2: Vận dụng cao

    Nếu \alpha +\beta + \gamma = \frac{\pi}{2}\cot\alpha + \cot\gamma = 2\cot\beta thì \cot\alpha.\cot\gamma bằng bao nhiêu?

    Từ giả thiết ta có:

    \alpha + \beta + \gamma = \frac{\pi}{2}\Rightarrow \beta = \frac{\pi}{2} - (\alpha + \gamma)

    Ta có:

    \cot\alpha + \cot\gamma =2\cot\beta

    = 2\cot\left\lbrack \frac{\pi}{2} -(\alpha + \gamma) ightbrack = 2\tan(\alpha + \gamma)

    = 2.\frac{\tan\alpha + \tan\gamma}{1 -\tan\alpha.\tan\gamma}

    Mặt khác

    \dfrac{\tan\alpha + \tan\gamma}{1 -\tan\alpha.\tan\gamma} = \dfrac{\dfrac{1}{\cot\alpha} +\dfrac{1}{\cot\gamma}}{1 - \dfrac{1}{\cot\alpha}.\dfrac{1}{\cot\gamma}} =\dfrac{\cot\alpha + \cot\gamma}{\cot\alpha.\cot\gamma - 1}

    \Rightarrow \cot\alpha + \cot\gamma =2.\frac{\cot\alpha + \cot\gamma}{\cot\alpha.\cot\gamma - 1}

    \Leftrightarrow \cot\alpha.\cot\gamma - 1= 2

    \Leftrightarrow \cot\alpha.\cot\gamma =3

  • Câu 3: Thông hiểu

    Tìm tập giá trị của hàm số y = 3\cos2x + 5

    Ta có:

    - 1 \leq \cos2x \leq 1

    \Rightarrow - 3 \leq 3\cos2x \leq3

    \Rightarrow 2 \leq 3\cos2x + 5 \leq8

    \Rightarrow 2 \leq y \leq 8

    \Rightarrow T = \lbrack
2;8brack

  • Câu 4: Thông hiểu

    Xét đường tròn bán kính 20cm. Cung tròn có số đo 37^{0} có độ dài tương ứng là:

    Độ dài cung tròn góc \alpha (với \alpha có đơn vị là độ):

    l = \frac{R\pi\alpha}{180^{0}} =
\frac{20.\pi.37^{0}}{180^{0}} = \frac{37\pi}{9}(cm)

  • Câu 5: Nhận biết

    Điều kiện xác định của hàm số: y = \cos \sqrt {x - 1} là:

     Điều kiện xác định của hàm số:

    x - 1 \geqslant 0 \Leftrightarrow x \geqslant 1

  • Câu 6: Thông hiểu

    Cho \sin a =
\frac{3}{5};cosa < 0;cosb = \frac{3}{5};sinb > 0. Giá trị sin(a - b) bằng:

    Ta có:

    \left\{ \begin{matrix}
\sin a = \frac{3}{5} \\
\cos a < 0 \\
\end{matrix} \Rightarrow cosa = - \sqrt{1 - \sin^{2}a} = - \frac{4}{5}
ight.

    \left\{ \begin{matrix}
\cos b = \frac{3}{5} \\
\sin b > 0 \\
\end{matrix} \Rightarrow sinb = \sqrt{1 - \cos^{2}b} = \frac{4}{5}
ight.

    sin(a - b) = sina\cos b - cosa\sin b =
\frac{3}{5} \cdot \frac{3}{5} - \left( - \frac{4}{5} ight) \cdot
\frac{4}{5} = 1

  • Câu 7: Vận dụng

    Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua trục tung?

    Ta dễ dàng kiểm tra được các hàm số

    y = \sin x.\cos2x

    y = \frac{\tan x}{\tan^{2}x +1}

    y = \cos x.\sin^{3}x

    là các hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ O

    Xét hàm số y = \sin^{3}x.\cos\left( x -\frac{\pi}{2} ight) ta có:

    f(x) = y = \sin^{3}x.\cos\left( x -\frac{\pi}{2} ight) = \sin^{3}x.\sin{x} = \sin^{4}x

    Kiểm tra được đây là hàm số chẵn nên có đồ thị đối xứng qua trục tung.

  • Câu 8: Nhận biết

    Phương trình \tan x = \tan 3x có nghiệm là:

     Giải phương trình:

    \begin{matrix}  \tan x = \tan 3x \hfill \\   \Leftrightarrow \tan 3x = \tan x \hfill \\   \Leftrightarrow 3x = x + k\pi  \hfill \\   \Leftrightarrow 2x = k\pi  \hfill \\   \Leftrightarrow x = \dfrac{{k\pi }}{2};\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 9: Nhận biết

    Cung tròn có số đo là π. Hãy chọn số đo độ của cung tròn đó trong các cung tròn sau đây:

    Ta có: m = \frac{\alpha.180^{0}}{\pi} =
\frac{\pi.180^{0}}{\pi} = 180^{0}

  • Câu 10: Vận dụng cao

    Tính tổng các nghiệm trong đoạn [0;30] của phương trình: \tan x = \tan 3x

    Điều kiện để phương trình có nghĩa:

    \left\{ {\begin{array}{*{20}{c}}  {\cos {\text{x}} e 0} \\   {\cos 3{\text{x}} e 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x e \dfrac{\pi }{2} + k\pi } \\   {x e \dfrac{\pi }{6} + \dfrac{{k\pi }}{3}} \end{array}} ight.\left( * ight)

    Khi đó, phương trình 3{\text{x}} = x + k\pi  \Leftrightarrow x = \frac{{k\pi }}{2} so sánh với đk

    \left[ \begin{gathered}  x = k2\pi  \hfill \\  x = \pi  + k2\pi  \hfill \\ \end{gathered}  ight.\,,\,x =  \in \left[ {0;30} ight]

    \Rightarrow k = \left\{ {0;...;4} ight\} \Rightarrow x \in \left\{ {0;\pi ;2\pi ;....;9\pi } ight\}

    Vậy, tổng các nghiệm trong đoạn  [0;30]  của phương trình là: 45\pi.

  • Câu 11: Nhận biết

    Công thức nào sau đây sai?

    Ta có:

    \sin a\cos b - \cos a\sin b = \sin(a -
b)

    \cos a\cos b + \sin a\sin b = \cos(a -
b)

    \sin(a + b) = \sin a\cos b + \cos a\sin
b

    \cos(a + b) = \cos a\cos b - \sin a\sin
b

  • Câu 12: Vận dụng

    Trong tam giác ABC nếu \frac{\tan\widehat{A}}{\tan\widehat{C}} =\frac{sin^{2}\widehat{A}}{sin^{2}\widehat{C}} thì tam giác ABC là tam giác gì?

    Ta có:

    \dfrac{\tan\widehat{A}}{\tan\widehat{C}}= \dfrac{\sin^{2}\widehat{A}}{\sin^{2}\widehat{C}}

    \Leftrightarrow\dfrac{\sin\widehat{A}.\cos\widehat{C}}{\cos\widehat{A}.\sin\widehat{C}} =\dfrac{\sin^{2}\widehat{A}}{\sin^{2}\widehat{C}}

    \Leftrightarrow \sin2\widehat{C} =\sin2\widehat{A}

    \Leftrightarrow \left\lbrack\begin{matrix}2\widehat{C} = 2\widehat{A} \\2\widehat{C} = \pi - 2\widehat{A} \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}\widehat{C} = \widehat{A} \\\widehat{C} + \widehat{A} = \dfrac{\pi}{2} \\\end{matrix} ight.

    Vậy tam giác ABC có thể là tam giác cân hoặc tam giác vuông.

  • Câu 13: Thông hiểu

    Tìm giá trị thực của tham số m để phương trình (m-2).\sin{2x} = m + 1 nhận x= \frac{\pi }{12} làm nghiệm

     Phương trình nhận x= \frac{\pi }{12} làm nghiệm

    \begin{matrix}  \Rightarrow(m - 2).\sin \left( {2.\dfrac{\pi }{{12}}} ight) = m + 1 \hfill \\   \Leftrightarrow (m - 2).\sin \dfrac{\pi }{6} = m + 1 \hfill \\   \Leftrightarrow (m - 2).\dfrac{1}{2} = m + 1 \hfill \\   \Leftrightarrow m - 2 = 2m + 2 \hfill \\   \Leftrightarrow m =  - 4 \hfill \\ \end{matrix}

    vậy m = -4

  • Câu 14: Vận dụng cao

    Có bao nhiêu giá trị nguyên của m để phương trình 3sinx + m - 1 = 0 có nghiệm?

    Ta có:

    \begin{matrix}  \sin x = \dfrac{{1 - m}}{3} \in \left[ { - 1;1} ight] \hfill \\   \Rightarrow  - 3 \leqslant  - m \leqslant  \Leftrightarrow  - 2 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với m thuộc tập số nguyên

    Suy ra 4 – (-2) + 1 = 7 giá trị nguyên của m

  • Câu 15: Thông hiểu

    Kết luận nào đúng về tập nghiệm của phương trình \cos\left( \frac{\pi}{3} + \pi x
ight) = \sin(\pi x)?

    Ta có:

    \cos\left( \frac{\pi}{3} + \pi x ight)
= \sin(\pi x)

    \Leftrightarrow \sin\left( \frac{\pi}{2}
- \frac{\pi}{3} - \pi x ight) = \sin(\pi x)

    \Leftrightarrow \sin\left( \frac{\pi}{6}
- \pi x ight) = \sin(\pi x)

    \Leftrightarrow \left\lbrack\begin{matrix}\pi x = \dfrac{\pi}{6} - \pi x + k2\pi \\\pi x = \pi - \dfrac{\pi}{6} + \pi x + k2\pi(L) \\\end{matrix} ight.

    \Leftrightarrow x = \frac{1}{12} +
k;\left( k\mathbb{\in Z} ight)

    Vậy tập nghiệm của phương trình đã cho là \pi x = \frac{\pi}{6} - \pi x +
k2\pi.

  • Câu 16: Thông hiểu

    Nếu \sin(a + b) =
0 thì khẳng định nào sau đây đúng?

    Ta có:

    \sin(a + b) = 0 \Rightarrow a + b =
k\pi

    \Rightarrow a = - b + k\pi;\left(
k\mathbb{\in Z} ight)

    Ta lại có:

    \Rightarrow \left| \cos(a + 2b) ight|
= \left| \cos( - b + 2b + k\pi) ight|

    = \left| \cos(b + k\pi) ight| = \left|
\cos b ight|

  • Câu 17: Nhận biết

    Phương trình \sin x + 1 = 0 có nghiệm là:

    Ta có:

    \sin x = - 1 \Leftrightarrow x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

    Vậy phương trình có nghiệm là x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

  • Câu 18: Vận dụng

    Tính giá trị biểu thức:

    C = \left\lbrack \sin\left(\frac{\pi}{2} - x ight) + \sin(10\pi + x) ightbrack^{2} +\left\lbrack \cos\left( \frac{3\pi}{2} - x ight) + \sin(8\pi - x)ightbrack^{2}

    Ta có:

    \sin\left( \frac{\pi}{2} - x ight) =
\cos x

    \sin(10\pi + x) = \sin x

    \cos\left( \frac{3\pi}{2} - x ight) =
\cos\left( 2\pi - \frac{\pi}{2} - x ight) = \cos\left( \frac{\pi}{2} +
x ight) = - \sin x

    \sin(8\pi - x) = \cos x

    Khi đó:

    C = \left\lbrack \sin\left(
\frac{\pi}{2} - x ight) + \sin(10\pi + x) ightbrack^{2} +
\left\lbrack \cos\left( \frac{3\pi}{2} - x ight) + \sin(8\pi - x)
ightbrack^{2}

    C = \left( \cos x + \sin x ight)^{2} +
\left\lbrack \cos x - \sin x ightbrack^{2}

    C = cos^{2}x + 2sinx\cos x + sin^{2}x +
cos^{2}x - 2sinx\cos x + sin^{2}x

    C = 2cos^{2}x + 2sin^{2}x =
2

  • Câu 19: Thông hiểu

    Tính giá trị của biểu thức B = \cos^{4}15^{0} - \sin^{4}15^{0} + \cos^{2}15^{0}- \sin^{2}15^{0}

    Ta có:

    B = \cos^{4}15^{0} - \sin^{4}15^{0} +\cos^{2}15^{0} - \sin^{2}15^{0}

    B = \left( \cos^{2}15^{0} - \sin^{2}15^{0}ight)\left( \cos^{2}15^{0} + \sin^{2}15^{0} ight) + \left(\cos^{2}15^{0} - \sin^{2}15^{0} ight)

    B = \left( \cos^{2}15^{0} - \sin^{2}15^{0}ight) + \left( \cos^{2}15^{0} - \sin^{2}15^{0} ight)

    B = 2\left( \cos^{2}15^{0} -\sin^{2}15^{0} ight)

    B =2 \cos30^{0}  =\sqrt{3}

  • Câu 20: Vận dụng

    Cho công thức y
= 3sin\left( \frac{\pi}{180}(x + 60) ight) + 13 biểu thị số giờ có ánh sáng mặt trời tại thành phố A, với 1 \leq x \leq 365 là số ngày trong năm. Ngày nào sau đây của năm thì số giờ có ánh sáng mặt trời của thành phố A đạt giá trị lớn nhất.

    Để số giờ có ánh sáng mặt trời lớn nhất thì hàm số y = 3sin\left( \frac{\pi}{180}(x + 60) ight) +
13 đạt giá trị lớn nhất.

    Khi đó sin\left( \frac{\pi}{180}(x + 60)
ight) = 1 \Leftrightarrow x = 30 + k360,k \in Z.

    1 \leq x \leq 365 nên ta có 1 \leq 30 + k360 \leq 365 \Leftrightarrow -
0,08 \leq k \leq 0,93 \Rightarrow k = 0.

    Do đó x = 30 (tháng đầu tiên của năm)

  • Câu 21: Nhận biết

    Nghiệm của phương trình tan (2x) -1 = 0 là?

     Ta có: \tan 2x - 1 = 0 \Leftrightarrow \tan 2x = 1

    \Leftrightarrow 2x = \frac{\pi }{4} + k\pi  \Leftrightarrow x = \frac{\pi }{8} + k\frac{\pi }{2}.

  • Câu 22: Nhận biết

    Gọi S là tập nghiệm của phương trình 2\cos x - \sqrt 3  = 0. Khẳng định nào sau đây là đúng?

    Ta có 2\cos x - \sqrt 3  = 0 \Leftrightarrow \cos x = \cos \frac{\pi }{6}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x =  - \,\frac{\pi }{6} + k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Nhận thấy với nghiệm x =  - \,\frac{\pi }{6} + k2\pi \xrightarrow{{k = 1}}x = \frac{{11\pi }}{6} \in S.

  • Câu 23: Nhận biết

    Nghiệm của phương trình \cos x =
\cos\frac{\pi}{4} là:

    Ta có \cos x = \cos\frac{\pi}{4}
\Leftrightarrow x = \pm \frac{\pi}{4} + k2\pi,k\mathbb{\in
Z}.

  • Câu 24: Thông hiểu

    Rút gọn biểu thức E = \cos(a + b)\cos(a - b) - \sin(a + b)\sin(a -b)

    Ta có:

    E = \cos(a + b)\cos(a - b) - \sin(a +
b)\sin(a - b)

    E = \cos(a + b + a - b) = \cos2a = 1 -2\sin^{2}a

  • Câu 25: Thông hiểu

    Cho góc \alpha thỏa mãn \cot\left( \frac{5\pi}{2} - \alpha ight) =
2. Tính giá trị biểu thức T =
\tan\left( \alpha + \frac{\pi}{4} ight)

    Ta có:

    T = \tan\left( \alpha + \frac{\pi}{4}
ight)

    \Rightarrow T = \dfrac{\tan\alpha +\tan\dfrac{\pi}{4}}{1 - \tan\alpha.\tan\dfrac{\pi}{4}}

    \Rightarrow T = \frac{\tan\alpha + 1}{1- \tan\alpha}

    Theo bài ra ta có:

    \cot\left( \frac{5\pi}{2} - \alpha
ight) = 2

    \Leftrightarrow \cot\left( 2\pi +
\frac{\pi}{2} - \alpha ight) = 2

    \Leftrightarrow \cot\left( \frac{\pi}{2}
- \alpha ight) = 2

    \Leftrightarrow \tan\alpha =
2

    Khi đó giá trị biểu thức T là: T = \frac{2 + 1}{1 - 2} = -
3

  • Câu 26: Thông hiểu

    Tìm tất cả các giá trị của tham số m để phương trình \left( {m - 2} ight)\sin 2x = m + 1 vô nghiệm.

    TH1. Với m = 2, phương trình \left( {m - 2} ight)\sin 2x = m + 1 \Leftrightarrow 0 = 3: vô lý.

    Suy ra m=2 thì phương trình đã cho vô nghiệm.

    TH2. Với m eq 2, phương trình \left( {m - 2} ight)\sin 2x = m + 1 \Leftrightarrow \sin 2x = \frac{{m + 1}}{{m - 2}}

    Để phương trình vô nghiệm

    \Leftrightarrow \frac{{m + 1}}{{m - 2}} otin \left[ { - \,1;1} ight] \Leftrightarrow \left[ \begin{gathered}  \frac{{m + 1}}{{m - 2}} > 1 \hfill \\  \frac{{m + 1}}{{m - 2}} <  - \,1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  m > 2 \hfill \\  \frac{1}{2} < m < 2 \hfill \\ \end{gathered}  ight.

    Kết hợp hai trường hợp, ta được m \in \left( {\frac{1}{2}; + \infty } ight) là giá trị cần tìm.

  • Câu 27: Thông hiểu

    Cho x= \frac{\pi}{2} +k\pi (k \in \mathbb{Z}) là nghiệm của phương trình nào sau đây?

     Ta có:

    \cos 2x =  - 1 \Leftrightarrow 2x = \pi  + k2\pi  \Rightarrow x = \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} ight)

  • Câu 28: Vận dụng

    Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu h (mét) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày (0 \leq t \leq 24) cho bởi hàm số h(t) = a\cos\left( \frac{\pi}{6}t
ight) + b có đồ thị như hình bên dưới (a,b là các số thực dương). Gọi S là tập hợp tất cả các thời điểm t trong ngày để chiều cao của mực nước biển là 15 mét. Tổng tất cả phần tử của S bằng.

    Đáp án: 36

    Đáp án là:

    Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu h (mét) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày (0 \leq t \leq 24) cho bởi hàm số h(t) = a\cos\left( \frac{\pi}{6}t
ight) + b có đồ thị như hình bên dưới (a,b là các số thực dương). Gọi S là tập hợp tất cả các thời điểm t trong ngày để chiều cao của mực nước biển là 15 mét. Tổng tất cả phần tử của S bằng.

    Đáp án: 36

    Theo đồ thị ta có: \left\{ \begin{matrix}
h(6) = 9 \\
h(24) = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- a + b = 9 \\
a + b = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 12 \\
\end{matrix} ight.

    Suy ra: h(t) = 3cos\left( \frac{\pi}{6}t
ight) + 12.

    Theo đề bài yêu cầu:

    h(t) = 15

    \Leftrightarrow 3cos\left(
\frac{\pi}{6}t ight) + 12 = 15

    \Leftrightarrow \cos\left(
\frac{\pi}{6}t ight) = 1

    \Leftrightarrow \frac{\pi}{6}t = k2\pi
\Leftrightarrow t = 12k\left( k\mathbb{\in Z} ight)

    Vì: 0 \leq t \leq 24 nên t = 0,t = 12,t = 24

    Suy ra: S = \left\{ 0;12;24
ight\}

  • Câu 29: Nhận biết

    Khẳng định nào sau đây đúng?

    Ta có:

    \sin(2018a) =2\sin(1009a).\cos(1009a)

  • Câu 30: Thông hiểu

    Xác định hàm số chẵn trong các hàm số dưới đây?

    Ta có:

    Hàm số y = \sin x.cos3x có tập xác định D\mathbb{= R} nên \forall x\mathbb{\in R \Rightarrow -}x\mathbb{\in
R}

    y( - x) = \sin( - x).\cos( -3x) = - \sin x.\cos3x = - y(x)

    Suy ra hàm số y = \sin x.\cos3x là hàm số lẻ.

    Hàm số y = \cos2x là hàm số chẵn vì tập xác định D\mathbb{= R} nên \forall x\mathbb{\in R \Rightarrow
-}x\mathbb{\in R}

    y( - x) = \cos( - 2x) = cos2x =
y(x)

    Tương tự ta có hàm số y = \sin x là hàm số lẻ, hàm số y = \sin x + \cos
x không chẵn cũng không lẻ.

  • Câu 31: Vận dụng

    Với a,b là các số nguyên dương và \frac{a}{b} là phân số tối giản. Biết rằng \cos x = - \frac{a}{b} khi \tan x = - \frac{3}{4}x \in \left( \frac{\pi}{2};\pi ight). Tính S = a + b.

    Ta có:

    1 + \tan^{2}x =\frac{1}{\cos^{2}x}

    \Leftrightarrow \cos^{2}x = \frac{1}{1 +\tan^{2}x}

    \Leftrightarrow \cos^{2}x =\frac{16}{25}

    \Leftrightarrow \cos x = \pm
\frac{4}{5}

    x \in \left( \frac{\pi}{2};\pi
ight) nên \cos x < 0
\Rightarrow \cos x = - \frac{4}{5}

    Khi đó a = 4;b = 5 => S = 4 + 5 = 9

  • Câu 32: Vận dụng

    Đồ thị hàm số y = \sin x được suy ra từ đồ thị C của hàm số y = cosx + 1 bằng cách:

    Ta có: y = \sin x = \cos\left(
\frac{\pi}{2} - x ight) = \cos\left( x - \frac{\pi}{2}
ight)

    Tịnh tiến đồ thị y = cosx + 1 sang phải \frac{\pi}{2} ta được đồ thị hàm số y = \cos\left( x - \frac{\pi}{2} ight) +
1

    Tiếp theo tịnh tiến đồ thị y = \cos\left(
x - \frac{\pi}{2} ight) + 1 xuống dưới một đơn vị ta được đồ thị hàm số y = \cos\left( x - \frac{\pi}{2}
ight)

    VD

     

    0

  • Câu 33: Thông hiểu

    Giải phương trình \sin\left( \frac{2x}{3}
- \frac{\pi}{3} ight) = 0.

    Phương trình

    \sin\left( \frac{2x}{3} - \frac{\pi}{3}
ight) = 0 \Leftrightarrow \frac{2x}{3} - \frac{\pi}{3} =
k\pi

    \Leftrightarrow \frac{2x}{3} =
\frac{\pi}{3} + k\pi \Leftrightarrow x = \frac{\pi}{2} +
\frac{k3\pi}{2}\ \left( k\mathbb{\in Z} ight).

    Vậy đáp án cần tìm là: x = \frac{\pi}{2}
+ \frac{k3\pi}{2}\ \left( k\mathbb{\in Z} ight).

  • Câu 34: Thông hiểu

    Tìm chu kì T của hàm số y =  - \frac{1}{2}\sin \left( {100\pi x + 50\pi } ight)

    Hàm số y =  - \frac{1}{2}\sin \left( {100\pi x + 50\pi } ight) tuần hoàn với chu kì T = \frac{{2\pi }}{{100\pi }} = \frac{1}{{50}}.

  • Câu 35: Nhận biết

    Điều kiện xác định của hàm số y = \cot \left( {x - \frac{{2\pi }}{5}} ight) là:

     Ta có: y = \cot \left( {x - \dfrac{{2\pi }}{5}} ight) = \dfrac{{\cos \left( {x - \dfrac{{2\pi }}{5}} ight)}}{{\sin \left( {x - \dfrac{{2\pi }}{5}} ight)}}

    Điều kiện xác định của hàm số

    \begin{matrix}  \sin \left( {x - \dfrac{{2\pi }}{5}} ight) e 0 \hfill \\   \Leftrightarrow x - \dfrac{{2\pi }}{5} e k\pi  \hfill \\   \Leftrightarrow x e \dfrac{{2\pi }}{5} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 36: Nhận biết

    Cho hàm số y = sinx. Mệnh đề nào sau đây đúng?

    Ta có thể hiểu như sau:

    “ Hàm số y = sinx đồng biến khi góc x thuộc góc phần tư thứ IV và thứ I; nghịch biến khi góc x thuộc góc phần tư thứ II và III”.

  • Câu 37: Thông hiểu

    Cho hàm số y = 2cos\left( x +
\frac{\pi}{3} ight) + 3 có giá trị nhỏ nhất và giá trị lớn nhất lần lượt là M, m. Tính giá trị của biểu thức S = 20M - 12m.

    Ta có: - 1 \leq \cos\left( x +
\frac{\pi}{3} ight) \leq 1

    Nên 1 \leq 2cos\left( x + \frac{\pi}{3}
ight) + 3 \leq 5.

    Suy ra S = 20M - 12m = 20.5 - 12.1 =
88.

  • Câu 38: Thông hiểu

    Tìm tập xác định D của hàm số y = tan2x:

    Hàm số xác định khi cos2x eq 0
\Leftrightarrow 2x eq \frac{\pi}{2} + k\pi \Leftrightarrow x eq
\frac{\pi}{4} + k\frac{\pi}{2}\ (k \in \mathbb{Z}).

    Tập xác định của hàm số là: D =\mathbb{R} \setminus  \left\{ \frac{\pi}{4} + k\frac{\pi}{2} \mid k\in \mathbb{Z} ight\}.

  • Câu 39: Nhận biết

    Chu kì của hàm số y = 3\sin2x là số nào sau đây?

    Chu kì của hàm số là T = \frac{2\pi}{2} =\pi

  • Câu 40: Thông hiểu

    Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = 8 - 4\cos \left( {\frac{\pi }{4} - 3x} ight) là:

     Ta có: 

    \begin{matrix}   - 1 \leqslant \cos \left( {\dfrac{\pi }{4} - 3x} ight) \leqslant 1 \hfill \\   \Rightarrow 4 \geqslant  - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant  - 4 \hfill \\   \Rightarrow 8 + 4 \geqslant 8 - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant 8 - 4 \hfill \\   \Rightarrow 12 \geqslant y \geqslant 4 \hfill \\ \end{matrix}

    => M = 12; m = 4

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 29 lượt xem
Sắp xếp theo