Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Số nghiệm của phương trình \cos 2x +1=0 trên đoạn [0; 1000 \pi] là?

    Ta có: \cos 2x + 1 = 0 \Leftrightarrow \cos 2x =  - 1 \Leftrightarrow 2x = \pi  + k2\pi

    \Leftrightarrow x = \frac{\pi }{2} + k\pi ,\,\,k \in \mathbb{Z}

    Ta có: 0 \leqslant \frac{\pi }{2} + k\pi  \leqslant 1000\pi  \Leftrightarrow  - \frac{1}{2} \leqslant k \leqslant \frac{{1999}}{2}.

    Ta được k \in \left\{ {0;1;2;...999} ight\}.

    Có 1000 giá trị k, ứng với 1000 nghiệm của phương trình trên [0; 1000 \pi].

  • Câu 2: Thông hiểu

    Phương trình  \cos\frac{\pi}{3} = \cos x có nghiệm là:

    Ta có:

    \cos\frac{\pi}{3} = \cos x

    \Leftrightarrow x = \pm \frac{\pi}{3} +k2\pi;\left( k\mathbb{\in Z} ight)

  • Câu 3: Thông hiểu

    Rút gọn biểu thức E = \cos(a + b)\cos(a - b) - \sin(a + b)\sin(a -b)

    Ta có:

    E = \cos(a + b)\cos(a - b) - \sin(a +
b)\sin(a - b)

    E = \cos(a + b + a - b) = \cos2a = 1 -2\sin^{2}a

  • Câu 4: Vận dụng

    Cho \widehat{A};\widehat{B};\widehat{C} là các góc của tam giác ABC. Khi đó:

    P =\tan\frac{\widehat{A}}{2}\tan\frac{\widehat{B}}{2} +\tan\frac{\widehat{B}}{2}.\tan\frac{\widehat{C}}{2} +\tan\frac{\widehat{C}}{2}.\tan\frac{\widehat{A}}{2}

    Ta có: \widehat{A} + \widehat{B} +\widehat{C} = \pi

    \Rightarrow \frac{\widehat{B} +\widehat{C}}{2} = \frac{\pi}{2} - \frac{\widehat{A}}{2}

    \Rightarrow \tan\left( \frac{\widehat{B}+ \widehat{C}}{2} ight) = \tan\left( \frac{\pi}{2} -\frac{\widehat{A}}{2} ight)

    \Rightarrow\dfrac{\tan\dfrac{\widehat{C}}{2} + \tan\dfrac{\widehat{B}}{2}}{1 -\tan\dfrac{\widehat{C}}{2}.\tan\dfrac{\widehat{B}}{2}} =\cot\frac{\widehat{A}}{2} =\dfrac{1}{\tan\dfrac{\widehat{A}}{2}}

    \Rightarrow\tan\frac{\widehat{A}}{2}.\left( \tan\frac{\widehat{C}}{2} +\tan\frac{\widehat{B}}{2} ight) +\tan\frac{\widehat{C}}{2}.\tan\dfrac{\widehat{B}}{2} = 1

    \Rightarrow\tan\dfrac{\widehat{A}}{2}.\tan\dfrac{\widehat{B}}{2} +\tan\dfrac{\widehat{B}}{2}.\tan\dfrac{\widehat{C}}{2} +\tan\dfrac{\widehat{C}}{2}.\tan\dfrac{\widehat{A}}{2} = 1

  • Câu 5: Thông hiểu

    Cho góc \alpha thỏa mãn \cot\alpha = - 3\sqrt{2}\alpha \in \left( \frac{\pi}{2};\pi
ight). Tính giá trị của biểu thức P = \tan\frac{\alpha}{2} +
\cot\frac{\alpha}{2}.

    Ta có:

    P = \tan\frac{\alpha}{2} +
\cot\frac{\alpha}{2}

    P =\dfrac{\sin\dfrac{\alpha}{2}}{\cos\dfrac{\alpha}{2}} +\dfrac{\cos\dfrac{\alpha}{2}}{\sin\dfrac{\alpha}{2}}

    P = \dfrac{\sin^{2}\dfrac{\alpha}{2} +\cos^{2}\dfrac{\alpha}{2}}{\cos\dfrac{\alpha}{2}.\sin\dfrac{\alpha}{2}}

    P = \dfrac{1}{\dfrac{\sin\alpha}{2}} =\dfrac{2}{\sin\alpha}

    Mặt khác \alpha \in \left(\frac{\pi}{2};\pi ight) \Rightarrow \sin\alpha > 0

    1 + \cot^{2}\alpha =\dfrac{1}{\sin^{2}\alpha}

    \Rightarrow \sin^{2}\alpha =\dfrac{1}{19}

    \Rightarrow \sin\alpha =
\sqrt{\frac{1}{19}}

    \Rightarrow P = 2\sqrt{19}

  • Câu 6: Nhận biết

    Trong các hàm số sau hàm số nào là hàm số lẻ?

    Xét hàm số y = sinx:

    Lấy x \in D \Rightarrow  - x \in D ta có:

    \sin \left( { - x} ight) =  - \sin x \Rightarrow f\left( { - x} ight) =  - x

    Vậy hàm số y = sinx là hàm số lẻ.

  • Câu 7: Nhận biết

    Đổi số đo 365^{0} sang số đo theo đơn vị là radian.

    Ta có: 365^{0} = \frac{365\pi}{180}rad =
\frac{73\pi}{36}rad

  • Câu 8: Nhận biết

    Chu kì của hàm số y = \tan x

    Hàm số y = \tan x tuần hoàn với chu kỳ T = \pi.

  • Câu 9: Thông hiểu

    Biến đổi thành tích biểu thức \frac{sin7\alpha - sin5\alpha}{sin7\alpha +
sin5\alpha} ta được

    Ta có \frac{sin7\alpha -
sin5\alpha}{sin7\alpha + sin5\alpha} = \frac{2cos6\alpha \cdot
sin\alpha}{2sin6\alpha \cdot cos\alpha} =
\cot{6\alpha}.tan\alpha

  • Câu 10: Vận dụng

    Hỏi trên đoạn [-2023; 2023], phương trình (\sin x+1)(\sin x-\sqrt2)=0 có tất cả bao nhiêu nghiệm?

     Ta xét phương trình \Leftrightarrow \left[ \begin{gathered}  \sin x =  - 1 \hfill \\  \sin x = \sqrt 2 \left( {{\text{VN}}} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \sin x =  - 1 \Leftrightarrow x =  - \frac{\pi }{2} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} ight).

    Theo giả thiết - 2023 \leqslant  - \frac{\pi }{2} + k2\pi  \leqslant 2023 \Leftrightarrow \dfrac{{ - 2023 + \dfrac{\pi }{2}}}{{2\pi }} \leqslant k \leqslant \dfrac{{2023 + \dfrac{\pi }{2}}}{{2\pi }}

    \xrightarrow{{{\text{xấp xỉ}}}} - 321,720 \leqslant k \leqslant 322,220\xrightarrow{{k \in \mathbb{Z}}}k \in \left\{ { - 321; - 320;...;321;322} ight\}

    Vậy có tất cả 644 giá trị nguyên của k tương úng có 644 nghiệm thỏa mãn yêu cầu bài toán.

  • Câu 11: Nhận biết

    Hàm số y =  1-2\sin x+\tan x + \cot x không xác định trong khoảng nào trong các khoảng sau đây?

    Hàm số xác định khi 

    \begin{matrix}   \Leftrightarrow \left\{ \begin{gathered}  \sin x e 0 \hfill \\  \cos x e 0 \hfill \\ \end{gathered}  ight. \hfill \\   \Leftrightarrow \sin 2x e 0 \hfill \\   \Leftrightarrow 2x e k\pi  \hfill \\   \Leftrightarrow x e \dfrac{{k\pi }}{2},k \in \mathbb{Z}. \hfill \\ \end{matrix}

    Ta chọn k = 3 \to x e \frac{{3\pi }}{2} nhưng điểm \frac{{3\pi }}{2} thuộc khoảng \left( {\pi  + k2\pi ;2\pi  + k2\pi } ight)

    Vậy hàm số không xác định trong khoảng \left( {\pi  + k2\pi ;2\pi  + k2\pi } ight)

  • Câu 12: Thông hiểu

    Cho hàm số y = -2\sin\left( x + \frac{\pi}{3} ight) + 2. Mệnh đề nào sau đây đúng?

    Ta có:

    - 1 \leq \sin\left( x + \frac{\pi}{3}ight) \leq 1

    \Rightarrow 2 \geq - 2\sin\left( x +\frac{\pi}{3} ight) \geq - 2

    \Rightarrow 4 \geq - 2\sin\left( x +\frac{\pi}{3} ight) + 2 \geq 0

    \Rightarrow 4 \geq y \geq 0

    Vậy y \geq 0;\forall x\mathbb{\inR} là mệnh đề đúng.

  • Câu 13: Vận dụng cao

    Biết rằng phương trình \frac{1}{\sin x} + \frac{1}{sin2x} + ... +
\frac{1}{\sin 2^{2018}x} = 0 có nghiệm dạng x = \frac{k2\pi}{2^{a} - b} với k\mathbb{\in Z}a,b \in \mathbb{Z}^{+};b < 2018. Tính S = a - b.

    Điều kiện xác định \sin 2^{2018}x eq
0

    Ta có:

    \cot a - \cot2a = \frac{\cos a}{\sin a} -\frac{\cos2a}{\sin2a}

    = \frac{2\cos^{2}a - \cos2a}{\sin2a} =\frac{1}{\sin2a}

    => Phương trình tương đương

    \Leftrightarrow \left( \cot\frac{x}{2} -\cot x ight) + \left( \cot x - \cot2x ight) + ... + \left( \cot2^{2017}x - \cot 2^{2018}x ight) = 0

    \Leftrightarrow \cot\frac{x}{2} - \cot
2^{2018}x = 0

    \Leftrightarrow \cot\frac{x}{2} = \cot
2^{2018}x

    \Leftrightarrow 2^{2018}x = \frac{x}{2}
+ k\pi

    \Leftrightarrow x =
\frac{k2\pi}{2^{2019} - 1};\left( k\mathbb{\in Z} ight)

    => \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
\end{matrix} ight.\  \Rightarrow S = a - b = 2018

  • Câu 14: Vận dụng

    Cho các hàm số sau, hàm số nào là hàm số lẻ?

    Ta có: y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x

    Ta kiểm tra được y = x^{4} + \cos\left( x
- \frac{\pi}{3} ight)y =
tan^{2017}x + sin^{2018}x là hàm số không chẵn không lẻ

    y = 2015 + \cos x + sin^{2018}x là hàm số chẵn

    y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x là hàm số lẻ

    Vậy y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x là hàm số lẻ

  • Câu 15: Thông hiểu

    Tìm tất cả các giá trị m để phương trình \sin{2x}.cos2x + m - 1 = 0 có nghiệm?

    Ta có:

    \sin{2x}.cos2x + m - 1 = 0

    \Leftrightarrow \frac{1}{2}sin4x + m - 1
\Leftrightarrow sin4x = 2 - 2m\ (*)

    Phương trình (*) có nghiêm \Leftrightarrow - 1 \leq 2 - 2m \leq 1
\Leftrightarrow \frac{1}{2} \leq m \leq \frac{3}{2}.

  • Câu 16: Thông hiểu

    Rút gọn biểu thức C = \cos\left( x + \frac{\pi}{4} ight) -\cos\left( x - \frac{\pi}{4} ight).

    Ta có:

    C = \cos\left( x + \frac{\pi}{4} ight)
- \cos\left( x - \frac{\pi}{4} ight)

    C = - 2\sin\left( \dfrac{x + \dfrac{\pi}{4}+ x - \dfrac{\pi}{4}}{2} ight).\sin\left( \dfrac{x + \dfrac{\pi}{4} - x +\dfrac{\pi}{4}}{2} ight)

    C = - 2\sin x.\sin\frac{\pi}{4} = -\sqrt{2}\sin x

  • Câu 17: Vận dụng

    Gọi \alpha là nghiệm trong khoảng (\pi ; 2 \pi) của phương trình \cos x = \frac{{\sqrt 3 }}{2}, nếu biểu diễn \alpha  = \frac{{a\pi }}{b} với a, b là hai số nguyên và \frac {a}{b} là phân số tối giản thì a.b bằng bao nhiêu?

    Phương trình \cos x = \frac{{\sqrt 3 }}{2} \Leftrightarrow x =  \pm \frac{\pi }{6} + k2\pi \,\left( {k \in \mathbb{Z}} ight).

    Với x \in \left( {\pi ;2\pi } ight) \Rightarrow x = \frac{{11\pi }}{6}.

    Suy ra a =11 và b = 6 .

    Vậy a.b=66.

  • Câu 18: Thông hiểu

    Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = 8 - 4\cos \left( {\frac{\pi }{4} - 3x} ight) là:

     Ta có: 

    \begin{matrix}   - 1 \leqslant \cos \left( {\dfrac{\pi }{4} - 3x} ight) \leqslant 1 \hfill \\   \Rightarrow 4 \geqslant  - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant  - 4 \hfill \\   \Rightarrow 8 + 4 \geqslant 8 - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant 8 - 4 \hfill \\   \Rightarrow 12 \geqslant y \geqslant 4 \hfill \\ \end{matrix}

    => M = 12; m = 4

  • Câu 19: Thông hiểu

    Đổi số đo của góc 50^{0}sang đơn vị radian?

    Cách 1: Áp dụng công thức \mu = \frac{m.\pi}{180} với m = 50^{0} ta được:

    \mu = \frac{m.\pi}{180} =
\frac{50.\pi}{180} = \frac{5.\pi}{18}

    Cách 2: Bấm máy tính:

    Bước 1: Bấm tổ hợp phím SHIFT MODE 4 chuyển về chế độ rad.

    Bước 2: Bấm 50 SHIFT Ans 1 =

  • Câu 20: Nhận biết

    Quy ước chọn chiều dương của một đường tròn định hướng là

    Quy ước chọn chiều dương của một đường tròn định hướng là luôn ngược chiều quay kim đồng hồ

  • Câu 21: Thông hiểu

    Tìm chu kì T của hàm số y = \cos 3x + \cos 5x.

    Hàm số y = \cos 3x tuần hoàn với chu kì {T_1} = \frac{{2\pi }}{3}

    Hàm số y = \cos 5x tuần hoàn với chu kì {T_2} = \frac{{2\pi }}{5}

    Suy ra hàm số y = \cos 3x + \cos 5x tuần hoàn với chu kì T = 2\pi

  • Câu 22: Vận dụng

    Tìm chu kì T của hàm số y = 2\sin^{2}x +3\cos^{2}3x

    Ta có:

    \begin{matrix}y = 2\sin^{2}x + 3\cos^{2}3x \hfill \\= 2.\dfrac{1 - \cos2x}{2} + 3.\dfrac{1 + \cos6x}{2} \hfill\\= \dfrac{1}{2}(3.\cos6x - 2\cos2x + 5)\hfill \\\end{matrix}

    Hàm số y = 3.\cos6x tuần hoàn với chu kì T_{1} = \frac{\pi}{3}

    Hàm số y = - 2\cos2x tuần hoàn với chu kì T_{2} = \pi

    T là chu kì của hàm số y = \tan3x + \cot{x} là bội chung nhỏ nhất của T1 và T2

    Suy ra hàm số y = \dfrac{1}{2}(3.\cos6x -2\cos2x + 5) tuần hoàn với chu kì T
= \pi

  • Câu 23: Thông hiểu

    Trên đường tròn định hướng, mỗi cung lượng giác \mathop {AB}^{\displaystyle\frown} xác định:

    Trên đường tròn định hướng, mỗi cung lượng giác \mathop {AB}^{\displaystyle\frown} xác định vô số góc lượng giác tia đầu OA, tia cuối OB.

  • Câu 24: Nhận biết

    Phương trình lượng giác \cot\ x =
\frac{\sqrt{3}}{3} có nghiệm là:

    Ta có

    \cot x = \frac{\sqrt{3}}{3}

    \Leftrightarrow \cot x = \cot\left(
\frac{\pi}{3} ight)

    \Leftrightarrow x = \frac{\pi}{3} +
k\pi,\left( k\mathbb{\in Z} ight)

  • Câu 25: Vận dụng cao

    Cho bất đẳng thức \cos2A + \frac{1}{64\cos^{4}A} - (2\cos2B + 4\sin B) +\frac{13}{4} \leq 0, với A;B;C là ba góc của tam giác ABC. Khẳng định đúng là

    Ta có:

    \begin{matrix}  \cos 2A + \dfrac{1}{{64{{\cos }^4}A}} - (2\cos 2B + 4\sin B) + \dfrac{{13}}{4} \leqslant 0 \hfill \\   \Leftrightarrow {\cos ^2}A + {\cos ^2}A + \dfrac{1}{{64{{\cos }^4}A}} + 4{\sin ^2}B - 4\sin B + 1 \leqslant \dfrac{3}{4}\left( * ight) \hfill \\ \end{matrix}

    Áp dụng bất đẳng thức Cauchy ta có:

    {\cos ^2}A + {\cos ^2}A + \frac{1}{{64{{\cos }^4}A}} \geqslant \frac{3}{4}\left( 1 ight)

    4{\sin ^2}B - 4\sin B + 1 \geqslant 0 \text{    }(2)

    Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:

    \left\{ \begin{gathered}  {\cos ^2}A = \frac{1}{{64{{\cos }^4}A}} \hfill \\  \sin B = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \cos A = \frac{1}{2} \hfill \\  \sin B = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  A = {60^0} \hfill \\  B = {30^0} \hfill \\  C = {90^0} \hfill \\ \end{gathered}  ight.

    Vậy \widehat{B} + \widehat{C} =120^{0}

  • Câu 26: Nhận biết

    Đồ thị hàm số y=\cos x+1 đi qua điểm nào sau đây?

     Xét điểm (0; 2) => x = 0; y = 2

    Thay vào hàm số ta có:

    cos0 + 1 = 1 + 1 = 2 (thỏa mãn)

    Vậy đồ thị hàm số y = cosx + 1 đi qua điểm (0; 2)

  • Câu 27: Thông hiểu

    Trong các hàm số sau, hàm số nào đồng biến trên khoảng \left( - \frac{\pi}{3};\frac{\pi}{6}
ight)?

    Với x \in \left( -
\frac{\pi}{3};\frac{\pi}{6} ight)

    \begin{matrix}ightarrow 2x \in \left( - \dfrac{2\pi}{3};\dfrac{\pi}{3} ight) \hfill\\ightarrow 2x + \dfrac{\pi}{6} \in \left( - \dfrac{\pi}{2};\dfrac{\pi}{2}ight) \hfill\\\end{matrix}

    Thuộc góc phần tư thứ IV và thứ nhất nên hàm số y = \sin\left( 2x + \frac{\pi}{6} ight) đồng biến trên khoảng \left( -
\frac{\pi}{3};\frac{\pi}{6} ight)

  • Câu 28: Thông hiểu

    Giải phương trình \tan x - \sqrt{3} = 0 ta được nghiệm âm lớn nhất và nghiệm dương nhỏ nhất lần lượt là:

    Ta có:

    \tan x - \sqrt{3} = 0

    \Leftrightarrow x = \frac{\pi}{3} +
k\pi;\left( k\mathbb{\in Z} ight)

    Suy ra:

    Nghiệm âm lớn nhất của phương trình là: x
= \frac{- 2\pi}{3} ứng với k = -
1

    Nghiệm dương nhỏ nhất của phương trình là: x = \frac{\pi}{3} ứng với k = 0

  • Câu 29: Thông hiểu

    Phương trình nào sau đây luôn vô nghiệm.

    Ta có:

    2019\sin x = 2020

    \Rightarrow \sin x = \frac{2020}{2019}
> 1

    => Phương trình vô nghiệm.

  • Câu 30: Nhận biết

    Tập nghiệm của phương trình \sin \left( {x + \frac{\pi }{4}} ight) = \frac{{\sqrt 3 }}{2}là?

     Ta có:   \sin \left( {x + \frac{\pi }{4}} ight) = \frac{{\sqrt 3 }}{2} \Leftrightarrow \left[ \begin{gathered}  x + \frac{\pi }{4} = \frac{\pi }{3} + k2\pi  \hfill \\  x + \frac{\pi }{4} = \pi  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{{12}} + k2\pi  \hfill \\  x = \frac{{5\pi }}{{12}} + k2\pi  \hfill \\ \end{gathered}  ight.\left( {k \in \mathbb{Z}} ight)

     

  • Câu 31: Vận dụng cao

    Gọi T là tập giá trị của hàm số y =\frac{1}{2}sin^{2}x - \frac{3}{4}cos2x + 3. Tìm tổng các giá trị nguyên của T.

    Ta có:

    y = \frac{1 - cos2x}{2} -\frac{3}{4}cos2x + 3 = \frac{7}{2} - \frac{5}{4}cos2x = \frac{14 -5cos2x}{4}

    - 1 \leq cos2x \leq 1

    \begin{matrix}\Rightarrow \dfrac{9}{4} \leq \dfrac{14 - 5cos2x}{4} \leq\dfrac{19}{4};y\mathbb{\in Z} \hfill\\\Rightarrow y = \left\{ 3;4 ight\} \hfill\\\end{matrix}

    Do đó tổng các giá trị nguyên của T là 7.

  • Câu 32: Nhận biết

    Tập nghiệm của phương trình \cos x = \frac{{\sqrt 2 }}{2} là?

    \cos x = \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos x = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k2\pi  \hfill \\  x =  - \frac{\pi }{4} + k2\pi  \hfill \\ \end{gathered}  ight.,k \in \mathbb{Z}

  • Câu 33: Thông hiểu

    Đồ thị hàm số y = \sin x được suy từ đồ thị (C) của hàm số bằng cách:

    Ta có

    y = \sin x = \cos \left( {\frac{\pi }{2} - x} ight) = \cos \left( {x - \frac{\pi }{2}} ight)

    =>Đồ thị hàm số y = \sin x được suy từ đồ thị (C) của hàm số bằng cách tịnh tiến (C) qua phải một đoạn có độ dài là \frac{\pi }{2}

  • Câu 34: Nhận biết

    Khẳng định nào sau đây sai?

    Trên khoảng \left( 0;\frac{\pi}{2}
ight) thì hàm số y =
tanx đồng biến.

  • Câu 35: Thông hiểu

    Số nghiệm của phương trình \sin 2x + \sqrt 3 \cos 2x = \sqrt 3 trên khoảng \left( {0;\frac{\pi }{2}} ight) là?

     Phương trình \Leftrightarrow \frac{1}{2}\sin 2x + \frac{{\sqrt 3 }}{2}\cos 2x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {2x + \frac{\pi }{3}} ight) = \frac{{\sqrt 3 }}{2}\Leftrightarrow \sin \left( {2x + \frac{\pi }{3}} ight) = \sin \frac{\pi }{3} \Leftrightarrow \left[ \begin{gathered}  2x + \frac{\pi }{3} = \frac{\pi }{3} + k2\pi  \hfill \\  2x + \frac{\pi }{3} = \pi  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = k\pi  \hfill \\  x = \frac{\pi }{6} + k\pi  \hfill \\ \end{gathered}  ight.,{\text{ }}k \in \mathbb{Z}.

    - Với 0 < k\pi  < \frac{\pi }{2} \Leftrightarrow 0 < k < \frac{1}{2}\xrightarrow{{k \in \mathbb{Z}}} không có giá trị thỏa mãn.

    - Với 0 < \frac{\pi }{6} + k\pi  < \frac{\pi }{2} \Leftrightarrow  - \frac{1}{6} < k < \frac{1}{3}\xrightarrow{{k \in \mathbb{Z}}}k = 0 \to x = \frac{\pi }{6}

  • Câu 36: Nhận biết

    Tổng các nghiệm thuộc khoảng \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) của phương trình: \cos x = \frac{1}{2}

     Giải phương trình:

    \begin{matrix}  \cos x = \dfrac{1}{2} \hfill \\   \Leftrightarrow \cos x = \cos \left( {\dfrac{\pi }{3}} ight) \hfill \\   \Leftrightarrow x =  \pm \dfrac{\pi }{3} + k2\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Tổng nghiệm của phương trình bằng 0.

  • Câu 37: Thông hiểu

    Một đường tròn có đường kính bằng 20cm. Tính độ dài của cung trên đường tròn có số đo 35^{0} (lấy 2 chữ số thập phân).

    Cung có số đo 35^{0} thì có số đó radian là \alpha = \frac{35\pi}{180} =
\frac{7\pi}{36}

    Bán kính đường tròn R = \frac{20}{2} =
10cm

    => l = R.\alpha = 10.\frac{7\pi}{36}
\approx 6,11cm

  • Câu 38: Vận dụng

    Cho tam giác ABC có các góc \widehat{A};\widehat{B};\widehat{C} thỏa mãn biểu thức 2\cos\widehat{A} +\cos\widehat{B} + \cos\widehat{C} = \frac{9}{4}. Biết rằng \sin\frac{\widehat{A}}{2} =
\frac{x}{y} với x,y\in\mathbb{ N};yeq 0;(x;y) = 1. Tính giá trị biểu thức Q = x + y?

    Ta có:

    2cos\widehat{A} + \cos\widehat{B} +
\cos\widehat{C}

    = 2 - 4\sin^{2}\frac{\widehat{A}}{2} +2\sin\frac{\widehat{A}}{2}.\cos\left( \frac{\widehat{B} - \widehat{C}}{2}ight)

    = - 4.\left\lbrack \sin^{2}\frac{\widehat{A}}{2} -\frac{1}{2}\sin\frac{\widehat{A}}{2}.\cos\left( \frac{\widehat{B} -\widehat{C}}{2} ight) + \frac{1}{16}\cos^{2}\left( \frac{\widehat{B} -\widehat{C}}{2} ight) ightbrack

    + \frac{1}{4}\cos^{2}\left(\frac{\widehat{B} - \widehat{C}}{2} ight) + 2

    = - 4.\left\lbrack\sin\frac{\widehat{A}}{2} - \frac{1}{4}\cos\left( \frac{\widehat{B} -\widehat{C}}{2} ight) ightbrack^{2} + \frac{1}{4}\cos^{2}\left(\frac{\widehat{B} - \widehat{C}}{2} ight) + 2

    \leq \frac{1}{4}cos^{2}\left(
\frac{\widehat{B} - \widehat{C}}{2} ight) + 2 \leq
\frac{9}{4}\forall\Delta ABC

    Dấy “=” xảy ra khi \left\{ \begin{matrix}\widehat{B} = \widehat{C} \\\sin\dfrac{\widehat{A}}{2} = \dfrac{1}{4} \\\end{matrix} ight.\  \Rightarrow x = 1;y = 4 \Rightarrow Q =5

  • Câu 39: Nhận biết

    Với điều kiện xác định của các giá trị lượng giác, mệnh đề nào sau đây sai?

    Ta có:

    \sin( - a) = - \sin a

    \cos(a - \pi) = - \cos a

    \cot(a - \pi) = - \cot a

    \tan(\pi + a) = \tan a

  • Câu 40: Nhận biết

    Phương trình \tan x = \tan 3x có nghiệm là:

     Giải phương trình:

    \begin{matrix}  \tan x = \tan 3x \hfill \\   \Leftrightarrow \tan 3x = \tan x \hfill \\   \Leftrightarrow 3x = x + k\pi  \hfill \\   \Leftrightarrow 2x = k\pi  \hfill \\   \Leftrightarrow x = \dfrac{{k\pi }}{2};\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo