Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho tam giác ABC có các góc \widehat{A};\widehat{B};\widehat{C} thỏa mãn biểu thức 2\cos\widehat{A} +\cos\widehat{B} + \cos\widehat{C} = \frac{9}{4}. Biết rằng \sin\frac{\widehat{A}}{2} =
\frac{x}{y} với x,y\in\mathbb{ N};yeq 0;(x;y) = 1. Tính giá trị biểu thức Q = x + y?

    Ta có:

    2cos\widehat{A} + \cos\widehat{B} +
\cos\widehat{C}

    = 2 - 4\sin^{2}\frac{\widehat{A}}{2} +2\sin\frac{\widehat{A}}{2}.\cos\left( \frac{\widehat{B} - \widehat{C}}{2}ight)

    = - 4.\left\lbrack \sin^{2}\frac{\widehat{A}}{2} -\frac{1}{2}\sin\frac{\widehat{A}}{2}.\cos\left( \frac{\widehat{B} -\widehat{C}}{2} ight) + \frac{1}{16}\cos^{2}\left( \frac{\widehat{B} -\widehat{C}}{2} ight) ightbrack

    + \frac{1}{4}\cos^{2}\left(\frac{\widehat{B} - \widehat{C}}{2} ight) + 2

    = - 4.\left\lbrack\sin\frac{\widehat{A}}{2} - \frac{1}{4}\cos\left( \frac{\widehat{B} -\widehat{C}}{2} ight) ightbrack^{2} + \frac{1}{4}\cos^{2}\left(\frac{\widehat{B} - \widehat{C}}{2} ight) + 2

    \leq \frac{1}{4}cos^{2}\left(
\frac{\widehat{B} - \widehat{C}}{2} ight) + 2 \leq
\frac{9}{4}\forall\Delta ABC

    Dấy “=” xảy ra khi \left\{ \begin{matrix}\widehat{B} = \widehat{C} \\\sin\dfrac{\widehat{A}}{2} = \dfrac{1}{4} \\\end{matrix} ight.\  \Rightarrow x = 1;y = 4 \Rightarrow Q =5

  • Câu 2: Thông hiểu

    Hàm số nào tương ứng với đồ thị trong hình vẽ sau:

    Ta thấy hàm số có giá trị lớn nhất bằng \sqrt{2} và giá trị nhỏ nhất bằng - \sqrt{2} nên loại các đáp án y = \sin\left( x - \frac{\pi}{4} ight)y = \cos\left( x - \frac{\pi}{4}
ight).

    Tại x = \frac{3\pi}{4};y = -
\sqrt{2} chỉ có hàm số y =
\sqrt{2}\cos\left( x + \frac{\pi}{4} ight) thỏa mãn.

  • Câu 3: Vận dụng cao

    Nếu \alpha +\beta + \gamma = \frac{\pi}{2}\cot\alpha + \cot\gamma = 2\cot\beta thì \cot\alpha.\cot\gamma bằng bao nhiêu?

    Từ giả thiết ta có:

    \alpha + \beta + \gamma = \frac{\pi}{2}\Rightarrow \beta = \frac{\pi}{2} - (\alpha + \gamma)

    Ta có:

    \cot\alpha + \cot\gamma =2\cot\beta

    = 2\cot\left\lbrack \frac{\pi}{2} -(\alpha + \gamma) ightbrack = 2\tan(\alpha + \gamma)

    = 2.\frac{\tan\alpha + \tan\gamma}{1 -\tan\alpha.\tan\gamma}

    Mặt khác

    \dfrac{\tan\alpha + \tan\gamma}{1 -\tan\alpha.\tan\gamma} = \dfrac{\dfrac{1}{\cot\alpha} +\dfrac{1}{\cot\gamma}}{1 - \dfrac{1}{\cot\alpha}.\dfrac{1}{\cot\gamma}} =\dfrac{\cot\alpha + \cot\gamma}{\cot\alpha.\cot\gamma - 1}

    \Rightarrow \cot\alpha + \cot\gamma =2.\frac{\cot\alpha + \cot\gamma}{\cot\alpha.\cot\gamma - 1}

    \Leftrightarrow \cot\alpha.\cot\gamma - 1= 2

    \Leftrightarrow \cot\alpha.\cot\gamma =3

  • Câu 4: Nhận biết

    Quy ước chọn chiều dương của một đường tròn định hướng là

    Quy ước chọn chiều dương của một đường tròn định hướng là luôn ngược chiều quay kim đồng hồ

  • Câu 5: Nhận biết

    Trong các hàm số sau hàm số nào là hàm số lẻ?

    Xét hàm số y = sinx:

    Lấy x \in D \Rightarrow  - x \in D ta có:

    \sin \left( { - x} ight) =  - \sin x \Rightarrow f\left( { - x} ight) =  - x

    Vậy hàm số y = sinx là hàm số lẻ.

  • Câu 6: Nhận biết

    Nghiệm của phương trình \sin x = -
1

    Ta có: \sin x = - 1 \Leftrightarrow x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight).

  • Câu 7: Nhận biết

    Cho hàm số y = sinx. Mệnh đề nào sau đây đúng?

    Ta có thể hiểu như sau:

    “ Hàm số y = sinx đồng biến khi góc x thuộc góc phần tư thứ IV và thứ I; nghịch biến khi góc x thuộc góc phần tư thứ II và III”.

  • Câu 8: Thông hiểu

    Đổi số đo của góc 40^{0}35' sang đơn vị radian với độ chính xác đến hàng phần trăm.

    Áp dụng công thức \mu =
\frac{m.\pi}{180} với \mu tính bằng rad và m tính bằng độ.

    Ta có: 40^{0}35' = \left( 40 +
\frac{25}{60} ight)^{0} khi đó:

    \mu = \dfrac{\left( 40 + \dfrac{25}{60}ight).\pi}{180} = \dfrac{97.\pi}{432} \approx 0,71

  • Câu 9: Nhận biết

    Hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) có tập xác định là gì?

    Hàm số y = \tan\left( 2x - \frac{\pi}{4}
ight) xác định khi

    2x - \frac{\pi}{4} eq \frac{\pi}{2} +
k\pi

    \Rightarrow x eq \frac{3\pi}{8} +
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    Vậy tập xác định của hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) là: D\mathbb{= R}\backslash\left\{ \frac{3\pi}{8} +
\frac{k\pi}{2},k\mathbb{\in Z} ight\}.

  • Câu 10: Thông hiểu

    Phương trình \sin x =  - \frac{1}{2} có nghiệm thỏa mãn x nằm trong khoảng \left( {\pi ;\frac{{3\pi }}{2}} ight) là:

     Giải phương trình:

    \begin{matrix}  \sin x =  - \dfrac{1}{2} \Leftrightarrow \sin x = \sin \left( {\dfrac{{ - \pi }}{6}} ight) \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{{ - \pi }}{6} + k2\pi } \\   {x = \pi  + \dfrac{\pi }{6} + k2\pi } \end{array}} ight. \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{{ - \pi }}{6} + k2\pi } \\   {x = \dfrac{{7\pi }}{6} + k2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Do x \in \left( {\pi ;\frac{{3\pi }}{2}} ight) => {x = \frac{{7\pi }}{6} + k2\pi } thỏa mãn

  • Câu 11: Vận dụng

    Giá trị lớn nhất, giá trị nhỏ nhất của hàm số: y=\sqrt{4\sin x+5} lần lượt là:

     Ta có: 

    \begin{matrix}   - 1 \leqslant \sin x \leqslant 1 \hfill \\   \Rightarrow  - 4 \leqslant 4\sin x \leqslant 4 \hfill \\   \Rightarrow  - 4 + 5 \leqslant 4\sin x + 5 \leqslant 4 + 5 \hfill \\   \Rightarrow 1 \leqslant 4\sin x + 5 \leqslant 9 \hfill \\   \Rightarrow 1 \leqslant \sqrt {4\sin x + 5}  \leqslant 3 \hfill \\ \end{matrix}

  • Câu 12: Thông hiểu

    Cho \frac{\pi}{2}
< x < \pi. Mệnh đề nào sau đây đúng?

    Ta có:

    \frac{\pi}{2} < x < \pi
\Leftrightarrow - \pi < - x < - \frac{\pi}{2}

    \Leftrightarrow \frac{\pi}{2} <
\frac{3\pi}{2} - x < \pi

    Do đó điểm cuối của cung có số đo \frac{3\pi}{2} - x thuộc góc phần tư thứ II

    Vậy \sin\left( \frac{3\pi}{2} - x ight)
> 0

  • Câu 13: Thông hiểu

    Kết luận nào đúng về tập nghiệm của phương trình \cos\left( \frac{\pi}{3} + \pi x
ight) = \sin(\pi x)?

    Ta có:

    \cos\left( \frac{\pi}{3} + \pi x ight)
= \sin(\pi x)

    \Leftrightarrow \sin\left( \frac{\pi}{2}
- \frac{\pi}{3} - \pi x ight) = \sin(\pi x)

    \Leftrightarrow \sin\left( \frac{\pi}{6}
- \pi x ight) = \sin(\pi x)

    \Leftrightarrow \left\lbrack\begin{matrix}\pi x = \dfrac{\pi}{6} - \pi x + k2\pi \\\pi x = \pi - \dfrac{\pi}{6} + \pi x + k2\pi(L) \\\end{matrix} ight.

    \Leftrightarrow x = \frac{1}{12} +
k;\left( k\mathbb{\in Z} ight)

    Vậy tập nghiệm của phương trình đã cho là \pi x = \frac{\pi}{6} - \pi x +
k2\pi.

  • Câu 14: Thông hiểu

    Với góc \alpha bất kì. Khẳng định nào sau đây đúng?

    Ta có:

    \cos\left( 180^{0} - \alpha ight) = -
\cos\alpha

    => \cos^{2}\left( 180^{0} - \alphaight) = \cos^{2}\alpha

    => \sin^{2}\alpha + \cos^{2}\left(180^{0} - \alpha ight) = \sin^{2}\alpha + \cos^{2}\alpha =1

  • Câu 15: Thông hiểu

    Trong các hàm số sau, hàm số nào là hàm số lẻ?

    Ta kiểm tra được y = \cos x +
sin^{2}xy = - \cos x là hàm số chẵn

    Hàm số y = \sin x + \cos x không chẵn không lẻ

    => Hàm số y = \sin x.cos3x là hàm số lẻ.

  • Câu 16: Vận dụng cao

    Xét đường tròn lượng giác như hình vẽ. Biết \widehat {AOC} = \widehat {AOF} = 30^\circ, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình 2 \sin x -1 = 0 được biểu diễn trên đường tròn lượng giác là những điểm nào?

     

    Ta có: 2\sin x - 1 = 0 \Leftrightarrow \sin x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\,,\,k \in \mathbb{Z}

    Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.

  • Câu 17: Vận dụng

    Tập các giá trị của tham số m để phương trình 2sin\left( {x + \frac{{2017\pi }}{2}} ight) + 3m = 0 có nghiệm là?

    • Ta có: 2 \sin\left( {x + \frac{{2017\pi }}{2}} ight) + 3m = 0

    \Leftrightarrow \sin\left( {x + \frac{{2017\pi }}{2}} ight) =  - \frac{{3m}}{2}(*)

    • Xét (*) có nghiệm khi và chỉ khi: - 1 \leqslant  - \frac{{3m}}{2} \leqslant 1 \Leftrightarrow  - \frac{2}{3} \leqslant m \leqslant \frac{2}{3}.
  • Câu 18: Thông hiểu

    Xác định nghiệm của phương trình - \cos2x = \cos\left( x - 30^{0}ight)?

    Ta có:

    - \cos2x = \cos\left( x - 30^{0}ight)

    \Leftrightarrow \cos\left( 180^{0} - 2x
ight) = \cos\left( x - 30^{0} ight)

    \Leftrightarrow \left\lbrack
\begin{matrix}
x - 30^{0} = 180^{0} - 2x + k360^{0} \\
x - 30^{0} = - 180^{0} + 2x + k360^{0} \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 70^{0} + k120^{0} \\
x = 150^{0} - k360^{0} \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Vậy phương trình đã cho có nghiệm \left\lbrack \begin{matrix}
x = 70^{0} + k120^{0} \\
x = 150^{0} + k360^{0} \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight).

  • Câu 19: Nhận biết

    Giải phương trình \cot x = - 1 thu được kết quả là:

    Điều kiện x eq k\pi\left( k\mathbb{\in
Z} ight)

    \cot x = - 1 \Leftrightarrow x = -
\frac{\pi}{4} + k\pi\ \left( k\mathbb{\in Z} ight).

  • Câu 20: Thông hiểu

    Đổi số đo của góc 120^{0}sang đơn vị radian?

    Cách 1: Áp dụng công thức \mu = \frac{m.\pi}{180} với m = 120^{0} ta được:

    \mu = \frac{m.\pi}{180} =
\frac{120.\pi}{180} = \frac{2.\pi}{3}

    Cách 2: Bấm máy tính:

    Bước 1: Bấm tổ hợp phím SHIFT MODE 4 chuyển về chế độ rad.

    Bước 2: Bấm 120 SHIFT Ans 1 =

  • Câu 21: Thông hiểu

    Với điều kiện xác định của các giá trị lượng giác, cho P = \dfrac{\sin2a + \sin5a - \sin3a}{1+ \cos a - 2\sin^{2}2a}. Đơn giản biểu thức P ta được:

    Ta có:

    P = \dfrac{\sin2a + \sin5a - \sin3a}{1 +\cos a - 2\sin^{2}2a}

    P = \frac{\sin2a + 2\cos4a.\sin a}{\cos4a +\cos a}

    P = \frac{2\sin a\cos a +2\cos4a.\sin a}{\cos4a + \cos a}

    P = \frac{2\sin a\left( \cos a + \cos4aight)}{\cos a + \cos4a}

    P = 2\sin a

  • Câu 22: Vận dụng

    Tìm tập xác định D của hàm số y = \sqrt{5
+ 2cot^{2}x - \sin x} + \cot\left( \frac{\pi}{2} + x
ight)

    Hàm số xác định khi và chỉ khi

    5 + 2cot^{2}x - \sin x \geq 0\cot\left( \frac{\pi}{2} + x
ight) xác định và \cot x xác định

    Ta có: \cot\left( \frac{\pi}{2} + x
ight) xác định khi và chỉ khi

    \begin{matrix}\sin\left( \dfrac{\pi}{2} + x ight) eq 0 \hfill \\\Rightarrow \dfrac{\pi}{2} + x eq k\pi\hfill \\\Rightarrow x eq - \dfrac{\pi}{2} + k\pi,k\mathbb{\in Z} \hfill\\\end{matrix}

    Mà cot x xác định khi

    \begin{matrix}\sin x eq 0 \hfill \\\Rightarrow x eq k\pi \hfill \\\Rightarrow x eq + k\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Do đó hàm số xác định khi và chỉ khi \left\{ \begin{matrix}x eq - \dfrac{\pi}{2} + k\pi \\x eq k\pi \\\end{matrix} ight.\  \Rightarrow x eq \dfrac{k\pi}{2},k \in\mathbb{Z}

    Vậy tập xác định của hàm số là D\mathbb{=R}\backslash\left\{ \frac{k\pi}{2},k \in\mathbb{ Z} ight\}

  • Câu 23: Nhận biết

    Tập nghiệm của phương trình \sin x=0 là?

     Ta có: \sin x =0 \Leftrightarrow x = k\pi \, , \, k \in \mathbb{Z}.

  • Câu 24: Nhận biết

    Hỏi x = \frac{{7\pi }}{3} là một nghiệm của phương trình nào sau đây?

     Với x = \frac{{7\pi }}{3}, suy ra \left\{ \begin{gathered}  \sin x = \sin \frac{{7\pi }}{3} = \frac{{\sqrt 3 }}{2} \hfill \\  \cos x = \cos \frac{{7\pi }}{3} = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  2\sin x - \sqrt 3  = 0 \hfill \\  2\cos x - 1 = 0 \hfill \\ \end{gathered}  ight.

  • Câu 25: Nhận biết

    Hàm số y = \cos x đồng biến trên khoảng nào sau đây?

    Hàm số y = cosx đồng biến trên mỗi khoảng (-π + k2π; k2π) và nghịch biến trên mỗi khoảng (k2π; π + k2π) với k ∈ Z.

  • Câu 26: Thông hiểu

    Phương trình 2\cos^{2}x - 3\sqrt{3}\sin2x - 4\sin^{2}x = -4 có họ nghiệm là

    Ta có:

    \cos x = 0 \Leftrightarrow x =
\frac{\pi}{2} + k\pi

    \Rightarrow \sin^{2}x = 1 là nghiệm của phương trình.

    \cos x eq 0 : Chia 2 vế phương trình cho \cos^{2}x ta được:

    2 - 6\sqrt{3}\tan x - 4\tan^{2}x = -4\left( 1 + \tan^{2}x ight)

    \Leftrightarrow tanx = \frac{1}{\sqrt{3}}
\Leftrightarrow x = \frac{\pi}{6} + k\pi.

  • Câu 27: Thông hiểu

    Cho phương trình lượng giác 2cos(x -
\frac{\pi}{3}) = 1, vậy:

    a) Phương trình đã cho tương đương với phương trình \cos\left( x - \frac{\pi}{3} ight) = \cos\left(
- \frac{\pi}{3} ight). Sai||Đúng

    b) Trong khoảng ( - \pi;\pi) phương trình có 3 nghiệm. Sai||Đúng

    c) Trong khoảng ( - \pi;\pi) phương trình có 1 nghiệm nguyên. Đúng||Sai

    d) Tổng các nghiệm của phương trình trên ( - \pi;\pi) bằng \frac{2\pi}{3}. Đúng||Sai

    Đáp án là:

    Cho phương trình lượng giác 2cos(x -
\frac{\pi}{3}) = 1, vậy:

    a) Phương trình đã cho tương đương với phương trình \cos\left( x - \frac{\pi}{3} ight) = \cos\left(
- \frac{\pi}{3} ight). Sai||Đúng

    b) Trong khoảng ( - \pi;\pi) phương trình có 3 nghiệm. Sai||Đúng

    c) Trong khoảng ( - \pi;\pi) phương trình có 1 nghiệm nguyên. Đúng||Sai

    d) Tổng các nghiệm của phương trình trên ( - \pi;\pi) bằng \frac{2\pi}{3}. Đúng||Sai

    Phương trình  \Leftrightarrow cos(x -\dfrac{\pi}{3}) = \dfrac{1}{2} = \cos\dfrac{\pi}{3}

    \Leftrightarrow\left\lbrack \begin{matrix}x = k2\pi \\x = \dfrac{2\pi}{3} + k2\pi \\\end{matrix} ight.

    x \in ( - \pi;\pi) nên:

    Với x = k2\pi ta chỉ chọn được k = 0 \Rightarrow x = 0.

    Với x = \frac{2\pi}{3} + k2\pi ta chỉ chọn được k = 0 \Rightarrow x =
\frac{2\pi}{3}.

    Vậy tổng các nghiệm bằng \frac{2\pi}{3}.

    Kết luận:

    a) Sai

    b) Sai

    c) Đúng

    d) Đúng

  • Câu 28: Thông hiểu

    Cho đồ thị hàm số lượng giác như hình vẽ:

    Đường thẳng y = \frac{1}{2} cắt đồ thị hàm số y = 2sin^{2}x tại 4 điểm A, B, C, D như hình vẽ. Giá trị của x_{B} + x_{D}\frac{a}{b}\pi. Biết \frac{a}{b} là phân số tối giản. Giá trị của 2a + b là:

    Đáp án: 19

    Đáp án là:

    Cho đồ thị hàm số lượng giác như hình vẽ:

    Đường thẳng y = \frac{1}{2} cắt đồ thị hàm số y = 2sin^{2}x tại 4 điểm A, B, C, D như hình vẽ. Giá trị của x_{B} + x_{D}\frac{a}{b}\pi. Biết \frac{a}{b} là phân số tối giản. Giá trị của 2a + b là:

    Đáp án: 19

    Phương trình hoành độ giao điểm là:

    2\sin^{2}x = \frac{1}{2} \Leftrightarrow1 - \cos2x = \frac{1}{2} \Leftrightarrow \cos2x = \frac{1}{2}

    \Leftrightarrow 2x = \pm \frac{\pi}{3} +
k2\pi \Leftrightarrow x = \pm \frac{\pi}{6} + k\pi

    Ta thấy x_{A},x_{B},x_{C},x_{D} là bốn nghiệm dương nhỏ nhất của phương trình trên.

    Do đó: x_{A} = \frac{\pi}{6};x_{B} =
\frac{5\pi}{6};x_{C} = \frac{7\pi}{6};x_{D} = \frac{11\pi}{6}
\Rightarrow x_{B} + x_{D} = \frac{8}{3}\pi.

    Vậy 2a + b = 8.2 +3=1 9.

  • Câu 29: Thông hiểu

    Biết \sin\alpha =
- \frac{4}{5};\left( 3\pi < \alpha < \frac{7\pi}{2}
ight). Tính \tan\alpha?

    Ta có: 3\pi < \alpha <
\frac{7\pi}{2} \Rightarrow \left\{ \begin{matrix}
\cos\alpha < 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight.

    Lại có \sin^{2}\alpha + \cos^{2}\alpha =1

    \Rightarrow \cos^{2}\alpha = 1 -\sin^{2}\alpha = \frac{9}{25}

    \Rightarrow \cos\alpha = \pm
\frac{3}{5}

    \cos\alpha < 0 \Rightarrow
\cos\alpha = - \frac{3}{5}

    \Rightarrow \tan\alpha =
\frac{\sin\alpha}{\cos\alpha} = \frac{4}{3}

  • Câu 30: Nhận biết

    Khẳng định nào sai trong các khẳng định sau?

    Ta có:

    \cos6a = \cos^{2}3a -\sin^{2}3a

    = 2\cos^{2}3a - 1 = 1 -2\sin^{2}3a

  • Câu 31: Vận dụng

    Phương trình 3\sin^{2}x + m \sin 2 x -4\cos^{2}x=0 có nghiệm khi:

     Xét phương trình:

    \begin{matrix}  3{\sin ^2}x + m.\sin 2x - 4{\cos ^2}x = 0 \hfill \\   \Rightarrow 3{\sin ^2}x + 2m.\sin x.\cos x - 4{\cos ^2}x = 0\left( * ight) \hfill \\ \end{matrix}

    Trường hợp 1: \cos x = 0 \Rightarrow \sin x =  \pm 1

    Phương trình (*) trở thành:

    3 + 3.m - 4.0 = 0 (Vô lí)

    Trường hợp 2: \cos x e 0

    Chia cả hai vế của phương trình (*) cho cos2x

    Phương trình (*) trờ thành: 3{\tan ^2}x + 2m\tan x - 4 = 0 (**)

    Đặt tanx = t, phương trình trở thành: 3{t^2} + 2mt - 4 = 0\left( {***} ight)

    Phương trình đã cho có nghiệm => (***) có nghiệm

    => \Delta ' \geqslant 0 \Rightarrow {m^2} + 12 \geqslant 0 (luôn đúng với mọi m)

    => Phương trình đã cho có nghiệm với mọi 

    • m\in \mathbb{R}
  • Câu 32: Thông hiểu

    Thu gọn biểu thức A = \sin(\pi + x) + \cos\left( x + \frac{3\pi}{2}
ight) + \sin(\pi - x) + \cos\left( \frac{\pi}{2} + x ight) thu được kết quả là:

    Áp dụng công thức về cung liên kết ta có:

    \cos\left( \frac{\pi}{2} + x ight) =
\cos\left\lbrack \frac{\pi}{2} - ( - x) ightbrack = \sin( - x) = -
\sin x

    \sin(\pi - x) = \sin x

    \cos\left( x + \frac{3\pi}{2} ight) =
\cos\left( x + \pi + \frac{\pi}{2} ight) = \cos\left( x +
\frac{\pi}{2} ight)

    = - \cos\left\lbrack \frac{\pi}{2} - ( -
x) ightbrack = - \sin( - x) = \sin x

    \sin(\pi + x) = - \sin x

    Suy ra:

    A = \sin(\pi + x) + \cos\left( x +
\frac{3\pi}{2} ight) + \sin(\pi - x) + \cos\left( \frac{\pi}{2} + x
ight)

    A = - \sin x + \sin x + \sin x - \sin x
= 0

  • Câu 33: Vận dụng cao

    Hàm số y = cos^{2}x - \cos x có tất cả bao nhiêu giá trị nguyên?

    Ta có:

    y = cos^{2}x - \cos x = \left( \cosx - \frac{1}{2} ight)^{2} - \frac{1}{4}.

    - 1 \leq \cos x \leq 1

    \begin{matrix}\Leftrightarrow - \dfrac{3}{2} \leq \cos x - \dfrac{1}{2} \leq \dfrac{1}{2}\\\Leftrightarrow 0 \leq \left( \cos x - \dfrac{1}{2} ight)^{2} \leq\dfrac{9}{4} \\\end{matrix}

    \begin{matrix}\Leftrightarrow - \dfrac{1}{4} \leq \left( \cos x - \dfrac{1}{2}ight)^{2} - \dfrac{1}{4} \leq 2 \hfill \\\Leftrightarrow - \dfrac{1}{4} \leq y \leq 2\overset{y\in\mathbb{Z}}{\Rightarrow}y \in \left\{ 0;1 ight\} \hfill\\\end{matrix}

    Nên có 3 giá trị thỏa mãn.

  • Câu 34: Nhận biết

    Tìm tập các định D của hàm số y = \frac{1
- \sin x}{\cos x - 1}

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\cos x - 1 eq 0 \hfill \\\Rightarrow \cos x eq 1 \hfill \\\Rightarrow x eq k2\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ k2\pi,k\mathbb{\in Z} ight\}

  • Câu 35: Nhận biết

    Trên đường tròn bán kính 20cm. Tính độ dài của cung có số đo \frac{3\pi}{4}.

    Độ dài cung tròn là: l =
20.\frac{3\pi}{4} = 15\pi(cm)

  • Câu 36: Nhận biết

    Nghiệm của phương trình \cos x =
\cos\frac{\pi}{4} là:

    Ta có \cos x = \cos\frac{\pi}{4}
\Leftrightarrow x = \pm \frac{\pi}{4} + k2\pi,k\mathbb{\in
Z}.

  • Câu 37: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-10;10] để phương trình \sin \left( {x - \frac{\pi }{3}} ight) - \sqrt 3 \cos \left( {x - \frac{\pi }{3}} ight) = 2m vô nghiệm?

     Phương trình vô nghiệm

    \Leftrightarrow {1^2} + {\left( { - \sqrt 3 } ight)^2} < {\left( {2m} ight)^2} \Leftrightarrow 4{m^2} - 4 > 0 \Leftrightarrow \left[ \begin{gathered}  m <  - 1 \hfill \\  m > 1 \hfill \\ \end{gathered}  ight.

    \xrightarrow[{m \in \left[ { - 10;10} ight]}]{{m \in \mathbb{Z}}}m \in \left\{ { - 10; - 9; - 8;...; - 2;2;...;8;9;10} ight\}

    \xrightarrow{{}} có 18 giá trị.

  • Câu 38: Thông hiểu

    Cho hàm số y = -2\sin\left( x + \frac{\pi}{3} ight) + 2. Mệnh đề nào sau đây đúng?

    Ta có:

    - 1 \leq \sin\left( x + \frac{\pi}{3}ight) \leq 1

    \Rightarrow 2 \geq - 2\sin\left( x +\frac{\pi}{3} ight) \geq - 2

    \Rightarrow 4 \geq - 2\sin\left( x +\frac{\pi}{3} ight) + 2 \geq 0

    \Rightarrow 4 \geq y \geq 0

    Vậy y \geq 0;\forall x\mathbb{\inR} là mệnh đề đúng.

  • Câu 39: Vận dụng

    Tính giá trị biểu thức H =
tan10^{0}.tan20^{0}.tan30^{0}....tan80^{0}

    Ta có: \tan x.\tan\left( 90^{0} - xight) = \tan x.\cot x = 1

    H = \left( \tan10^{0}.\tan80^{0}ight).\left( \tan20^{0}.\tan70^{0} ight).\left( \tan30^{0}.\tan60^{0}ight).\left( \tan40^{0}.\tan50^{0} ight)

    H = 1.1.1.1 = 1

  • Câu 40: Thông hiểu

    Tìm tập xác định D của hàm số y = tan2x:

    Hàm số xác định khi cos2x eq 0
\Leftrightarrow 2x eq \frac{\pi}{2} + k\pi \Leftrightarrow x eq
\frac{\pi}{4} + k\frac{\pi}{2}\ (k \in \mathbb{Z}).

    Tập xác định của hàm số là: D =\mathbb{R} \setminus  \left\{ \frac{\pi}{4} + k\frac{\pi}{2} \mid k\in \mathbb{Z} ight\}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo