Tập nghiệm của phương trình
là?
Ta có:
Tập nghiệm của phương trình
là?
Ta có:
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Xét tính đúng, sai của các phát biểu sau?
Tập
là tập xác định của hàm số
. Đúng||Sai
Số nghiệm của phương trình
trên khoảng
là 3 nghiệm.Sai||Đúng
Có 5 giá trị nguyên của tham số m để phương trình
có nghiệm. Đúng||Sai
Số vị trí biểu diễn của phương trình
trên đường tròn lượng giác là 3.Sai||Đúng
Xét tính đúng, sai của các phát biểu sau?
Tập là tập xác định của hàm số
. Đúng||Sai
Số nghiệm của phương trình trên khoảng
là 3 nghiệm.Sai||Đúng
Có 5 giá trị nguyên của tham số m để phương trình có nghiệm. Đúng||Sai
Số vị trí biểu diễn của phương trình trên đường tròn lượng giác là 3.Sai||Đúng
a) Điều kiện xác định của hàm số là:
b) Ta có:
Vì
mà
suy ra
Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng .
c) Ta có:
Phương trình đã cho có nghiệm khi và chỉ khi
Mà
Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.
d) Ta có:
Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác là 2.
Hàm số nào sau đây là hàm số chẵn:
Hàm số sinx là hàm số lẻ
=> Hàm số y = sin5x, y = 3sin2x, y = 4sinx là hàm số lẻ
Xét hàm số y = |sinx| ta có:
Hàm số có tập xác định D = R; ∀x ∈ D thì -x ∈ D
Ta có: f(-x) = |sin( -x)| = |- sinx| = |sinx|
=> f(x)= f(-x) nên hàm số y= |sinx| là hàm số chẵn
Vậy hàm số y = |sinx| là hàm số chẵn
Với x thuộc (0;1), hỏi phương trình
có bao nhiêu nghiệm?
Phương trình
- Với .
có 6 nghiệm.
- Với .
có 6 nghiệm.
Vậy phương trình đã cho có 12 nghiệm.
Nếu
và
là hai nghiệm của phương trình
và
và
là hai nghiệm của phương trình
thì tích
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Phương trình
có nghiệm là:
Ta có:
Gọi
là nghiệm âm lớn nhất của phương trình
. Mệnh đề nào sau đây là đúng?
Ta có:
TH1. Với
TH2. Với
So sánh hai nghiệm ta được nghiệm âm lớn nhất của phương trình là
Hàm số
nghịch biến trên khoảng nào sau đây?
Hàm số tuần hoàn với chu kì
Do hàm số nghịch biến trên
=> Hàm số nghịch biến khi
Vậy đáp án đúng là
Giá trị nào sau đây của x thỏa mãn
?
Ta có:
Số vị trí biểu diễn các nghiệm của phương trình
trên đường tròn lượng giác là?
ĐK:
Ta có .
Kết hợp điều kiện (*) suy ra nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.
Cho bốn cung (trên một đường tròn định hướng)
các cung nào có điểm cuối trùng nhau?
Ta có:
=> và
có điểm cuối trùng nhau
=> và
có điểm cuối trùng nhau.
Rút gọn biểu thức ![]()
Ta có:
Trong các hàm số sau, hàm số nào là hàm số tuần hoàn?
Hàm số là hàm số không tuần hoàn
Tập xác định
Giả sử
Cho x = 0 và x = π ta được
Điều này trái với định nghĩa T > 0
Vậy hàm số y = x + sinx không phải là hàm số tuần hoàn
Tương tự chứng minh cho các hàm số và
không tuần hoàn.
Vậy hàm số là hàm số tuần hoàn
Biến đổi phương trình
về dạng
với b, d thuộc khoảng
. Tính b+d?
Phương trình
Suy ra .
Hàm số
có tất cả bao nhiêu giá trị nguyên?
Áp dụng công thức
Ta có
Ta có
Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình
.
Hình vẽ minh họa
Điều kiện
Ta có:
Với ta được nghiệm
Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.
Với ta được
Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.
Tính diện tích hình chữ nhật ABCD.
Phương trình
có nghiệm là:
Điều kiện xác định:
Kiểm tra điều kiện ta thấy thỏa mãn
Vậy nghiệm của phương trình là:
Tập giá trị của hàm số
có bao nhiêu số nguyên?
Ta có:
Điều kiện có nghiệm của phương trình là:
Mà nên
.
Vậy tập giá trị của có 11 số nguyên.
Tìm tất cả các giá trị
để phương trình
có nghiệm?
Ta có:
Phương trình có nghiêm
.
Cho ba góc nhọn thỏa mãn
. Tính tổng số đo ba góc nhọn.
Ta có:
Tập xác định của hàm số: ![]()
Ta có:
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình đã cho có nghiệm .
Hai hàm số nào sau đây có chu kì khác nhau?
Hai hàm số có cùng chu kì 2π
Hai hàm số có cùng chu kì 4π
Hai hàm số có cùng chu kì
Hàm số y = sinx có chu kì 2π, hàm số y = tanx có chu kì
Mệnh đề nào sau đây là sai?
Hàm số tuần hoàn với chu kì
Trong các hàm số sau, hàm số nào là hàm số lẻ?
Ta kiểm tra được và
là hàm số chẵn
Hàm số không chẵn không lẻ
=> Hàm số là hàm số lẻ.
Trên đường tròn bán kính 20cm. Tính độ dài của cung có số đo
.
Độ dài cung tròn là:
Cho góc
thỏa mãn
. Tính giá trị của biểu thức
.
Ta có:
Phương trình nào dưới đây có tập nghiệm trùng với tập nghiệm của phương trình
?
Ta có
Vậy .
Trên đoạn
, đồ thị hai hàm số
và
cắt nhau tại bao nhiêu điểm?
Phương trình hoành độ giao điểm của hai đồ thị hàm số là
Theo bài ra ta có:
Vậy đồ thị hai hàm số đã cho cắt nhau tại 5 điểm trên đoạn .
Biết số đo một góc
. Giá trị tổng quát của góc
là
Ta có:
Hàm số
tuần hoàn có chu kì
khi
Hàm số có nghĩa
.
Chu kì của hàm số .
Khẳng định nào sai trong các khẳng định sau?
Ta có:
Tìm tất cả các giá trị của tham số m để phương trình
có nghiệm?
Phương trình
Để phương trình có nghiệm
là giá trị cần tìm.
Tập nghiệm của phương trình
là:
Ta có:
Hàm số
có chu kì bằng bao nhiêu?
Chu kì của hàm số là:
Điều kiện xác định của hàm số: 
Điều kiện xác định của hàm số:
Trên đường tròn lượng giác có điểm gốc là điểm A, điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo bằng 750. Điểm N đối xứng với điểm M qua gốc tọa độ, số đo cung AN là:
Điểm N đối xứng với điểm M qua gốc tọa độ nên
Cung lượng giác ngược chiều dương nên số đo lượng giác cung
Cho tam giác
có các góc
thỏa mãn biểu thức
. Biết rằng
với
. Tính giá trị biểu thức
?
Ta có:
Dấy “=” xảy ra khi
Mệnh đề nào sau đây đúng?
Ta có:
Vậy đúng.