Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Biến đổi thành tích biểu thức \frac{sin7\alpha - sin5\alpha}{sin7\alpha +
sin5\alpha} ta được

    Ta có \frac{sin7\alpha -
sin5\alpha}{sin7\alpha + sin5\alpha} = \frac{2cos6\alpha \cdot
sin\alpha}{2sin6\alpha \cdot cos\alpha} =
\cot{6\alpha}.tan\alpha

  • Câu 2: Vận dụng

    Giá trị lớn nhất của hàm số y = \frac{\sin x + 2\cos x + 1}{\sin x + \cos x +2} tại điểm là nghiệm của phương trình nào dưới đây?

    Theo bài ra ta có:

    y = \frac{\sin x + 2\cos x + 1}{\sin x + \cos x +2}

    \Leftrightarrow y.\left( \sin x + \cos x+ 2 ight) = \sin x + 2\cos x + 1

    \Leftrightarrow (y - 1).\sin x + (y -2)\cos x = 1 - 2y(*)

    Phương trình (*) có nghiệm

    \Leftrightarrow (y - 1)^{2} + (y -
2)^{2} \geq 1 - 2y

    \Leftrightarrow y^{2} + y - 2 \leq
0

    \Leftrightarrow - 2 \leq y \leq
1

    Vậy giá trị lớn nhất của hàm số bằng 1 lúc đó - \cos x = - 1

  • Câu 3: Nhận biết

    Quy ước chọn chiều dương của một đường tròn định hướng là

    Quy ước chọn chiều dương của một đường tròn định hướng là luôn ngược chiều quay kim đồng hồ

  • Câu 4: Thông hiểu

    Cho các hàm số y
= \cos x;y = \sin x;y = \tan x;y = \cot x. Trong các hàm số trên, có bao nhiêu hàm số lẻ?

    Ta có:

    y = \cos x là hàm số chẵn vì:

    Tập xác định của hàm số D\mathbb{=
R}

    Với \forall x \in D \Rightarrow - x \in
D

    f( - x) = \cos( - x) = \cos x =
f(x)

    y = \sin x là hàm số lẻ vì:

    Tập xác định của hàm số D\mathbb{=
R}

    Với \forall x \in D \Rightarrow - x \in
D

    f( - x) = \sin( - x) = - \sin x = -
f(x)

    y = \tan x là hàm số lẻ vì

    Tập xác định của hàm số D\mathbb{=
R}\backslash\left\{ \frac{\pi}{2} + k\pi|k\mathbb{\in Z}
ight\}

    Với \forall x \in D \Rightarrow - x \in
D

    f( - x) = \tan( - x) = - \tan x = -
f(x)

    y = \cot x là hàm số lẻ vì

    Tập xác định của hàm số D\mathbb{=
R}\backslash\left\{ k\pi|k\mathbb{\in Z} ight\}

    Với \forall x \in D \Rightarrow - x \in
D

    f( - x) = \cot( - x) = \cot( - x) = -
f(x)

  • Câu 5: Thông hiểu

    Nghiệm của phương trình 2\sin^{2}x+5 \sin x + 3=0 là

      \begin{matrix}  2{\sin ^2}x + 5\sin x + 3 = 0 \hfill \\   \Leftrightarrow \left( {\sin x + 1} ight).\left( {2\sin x + 3} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sin x + 1 = 0} \\   {2\sin x + 3 = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sin x =  - 1} \\   {\sin x =  - \dfrac{3}{2}\left( L ight)} \end{array}} ight. \hfill \\   \Rightarrow \sin x =  - 1 \hfill \\   \Rightarrow x =  - \dfrac{\pi }{2} + k2\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 6: Nhận biết

    Cho hàm số y = sinx. Mệnh đề nào sau đây đúng?

    Ta có thể hiểu như sau:

    “ Hàm số y = sinx đồng biến khi góc x thuộc góc phần tư thứ IV và thứ I; nghịch biến khi góc x thuộc góc phần tư thứ II và III”.

  • Câu 7: Nhận biết

    Tìm tất cả các nghiệm của phương trình \sin\left( x + \frac{\pi}{6} ight) =
1.

    Ta có \sin\left( x + \frac{\pi}{6}
ight) = 1

    \Leftrightarrow x + \frac{\pi}{6} =
\frac{\pi}{2} + k2\pi

    \Leftrightarrow x = \frac{\pi}{3} +
k2\pi\left( k\mathbb{\in Z} ight).

  • Câu 8: Thông hiểu

    Cho góc lượng giác (Ox,Oy) = 22^{0}30' + k.360^{0}. Với giá trị k bằng bao nhiêu thì góc (Ox,Oy) =
1822^{0}30'?

    Theo bài ra ta có:

    \begin{matrix}(Ox,Oy) = 1822^{0}30\prime  \hfill \\\Rightarrow 22^{0}30\prime  + k.360^{0} = 1822^{0}30\prime  \hfill \\\Rightarrow k = 5 \hfill  \\\end{matrix}

  • Câu 9: Vận dụng cao

    Gọi M,\ m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y =sin^{2}x - 4sinx + 5. Tính P = M -2m^{2}.

    Ta có: 

    y = sin^{2}x - 4sinx + 5 = \left(\sin x - 2 ight)^{2} + 1.

    Do - 1 \leq \sin x \leq 1

    \begin{matrix}\Leftrightarrow - 3 \leq \sin x - 2 \leq - 1 \\\Leftrightarrow 1 \leq \left( \sin x - 2 ight)^{2} \leq 9 \\\end{matrix}

    \begin{matrix}\Leftrightarrow 2 \leq \left( \sin x - 2 ight)^{2} + 1 \leq 10 \hfill\\\Leftrightarrow \left\{ \begin{matrix}M = 10 \\m = 2 \hfill\\\end{matrix} ight.\  \hfill \\\Leftrightarrow P = M - 2m^{2} = 2.\hfill \\\end{matrix}

  • Câu 10: Vận dụng cao

    Biết rằng phương trình \frac{1}{\sin x} + \frac{1}{sin2x} + ... +
\frac{1}{\sin 2^{2018}x} = 0 có nghiệm dạng x = \frac{k2\pi}{2^{a} - b} với k\mathbb{\in Z}a,b \in \mathbb{Z}^{+};b < 2018. Tính S = a - b.

    Điều kiện xác định \sin 2^{2018}x eq
0

    Ta có:

    \cot a - \cot2a = \frac{\cos a}{\sin a} -\frac{\cos2a}{\sin2a}

    = \frac{2\cos^{2}a - \cos2a}{\sin2a} =\frac{1}{\sin2a}

    => Phương trình tương đương

    \Leftrightarrow \left( \cot\frac{x}{2} -\cot x ight) + \left( \cot x - \cot2x ight) + ... + \left( \cot2^{2017}x - \cot 2^{2018}x ight) = 0

    \Leftrightarrow \cot\frac{x}{2} - \cot
2^{2018}x = 0

    \Leftrightarrow \cot\frac{x}{2} = \cot
2^{2018}x

    \Leftrightarrow 2^{2018}x = \frac{x}{2}
+ k\pi

    \Leftrightarrow x =
\frac{k2\pi}{2^{2019} - 1};\left( k\mathbb{\in Z} ight)

    => \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
\end{matrix} ight.\  \Rightarrow S = a - b = 2018

  • Câu 11: Nhận biết

    Hỏi x = \frac{{7\pi }}{3} là một nghiệm của phương trình nào sau đây?

     Với x = \frac{{7\pi }}{3}, suy ra \left\{ \begin{gathered}  \sin x = \sin \frac{{7\pi }}{3} = \frac{{\sqrt 3 }}{2} \hfill \\  \cos x = \cos \frac{{7\pi }}{3} = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  2\sin x - \sqrt 3  = 0 \hfill \\  2\cos x - 1 = 0 \hfill \\ \end{gathered}  ight.

  • Câu 12: Thông hiểu

    Hàm số nào sau đây nhận giá trị âm nếu 0 < x < \frac{\pi }{2}

     Ta có:  y = \cos \left( {x + \pi } ight)  = -\cos x

    0 < x < \frac{\pi }{2} 

    => y = \cos \left( {x + \pi } ight) mang giá trị âm

  • Câu 13: Thông hiểu

    Rút gọn biểu thức C = \cos\left( x + \frac{\pi}{4} ight) -\cos\left( x - \frac{\pi}{4} ight).

    Ta có:

    C = \cos\left( x + \frac{\pi}{4} ight)
- \cos\left( x - \frac{\pi}{4} ight)

    C = - 2\sin\left( \dfrac{x + \dfrac{\pi}{4}+ x - \dfrac{\pi}{4}}{2} ight).\sin\left( \dfrac{x + \dfrac{\pi}{4} - x +\dfrac{\pi}{4}}{2} ight)

    C = - 2\sin x.\sin\frac{\pi}{4} = -\sqrt{2}\sin x

  • Câu 14: Nhận biết

    Công thức nào sau đây sai?

    Ta có:

    \sin a\cos b - \cos a\sin b = \sin(a -
b)

    \cos a\cos b + \sin a\sin b = \cos(a -
b)

    \sin(a + b) = \sin a\cos b + \cos a\sin
b

    \cos(a + b) = \cos a\cos b - \sin a\sin
b

  • Câu 15: Nhận biết

    Gọi S là tập nghiệm của phương trình 2\cos x - \sqrt 3  = 0. Khẳng định nào sau đây là đúng?

    Ta có 2\cos x - \sqrt 3  = 0 \Leftrightarrow \cos x = \cos \frac{\pi }{6}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x =  - \,\frac{\pi }{6} + k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Nhận thấy với nghiệm x =  - \,\frac{\pi }{6} + k2\pi \xrightarrow{{k = 1}}x = \frac{{11\pi }}{6} \in S.

  • Câu 16: Thông hiểu

    Phương trình \sin \left( {\frac{\pi }{6} + x} ight) = \cos 2x có nghiệm là

     Giải phương trình:

    \begin{matrix}  \sin \left( {\dfrac{\pi }{6} + x} ight) = \cos 2x \hfill \\   \Leftrightarrow \sin \left( {\dfrac{\pi }{6} + x} ight) = \sin \left( {\dfrac{\pi }{2} - 2x} ight) \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\dfrac{\pi }{6} + x = \dfrac{\pi }{2} - 2x + k2\pi } \\   {\dfrac{\pi }{6} + x = \pi  - \left( {\dfrac{\pi }{2} - 2x} ight) + k2\pi } \end{array}} ight. \hfill  \\ \end{matrix}

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {3x = \dfrac{\pi }{3} + k2\pi } \\   { - x = \dfrac{\pi }{3} + k2\pi } \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{9} + \dfrac{{k2\pi }}{3}} \\   {x =  - \dfrac{\pi }{3} + k'2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight)

  • Câu 17: Thông hiểu

    Giải phương trình \cot(3x - 1) = -
\sqrt{3}.

    Ta có

    \cot(3x - 1) = - \sqrt{3}

    \Leftrightarrow \cot(3x - 1) =
\cot\left( - \frac{\pi}{6} ight) = \cot\left( \frac{5\pi}{6}
ight)

    \Leftrightarrow 3x - 1 = \frac{5\pi}{6}
+ k\pi

    \Leftrightarrow x = \frac{1}{3} +
\frac{5\pi}{18} + k\frac{\pi}{3},k\mathbb{\in Z}

  • Câu 18: Thông hiểu

    Hàm số đồng biến trên khoảng \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)là:

    Với x \in \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)  \to 2x \in \left( { - \frac{{2\pi }}{3};\frac{\pi }{3}} ight) \to 2x + \frac{\pi }{6} \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) thuộc góc phần tư thứ IV và thứ nhất nên hàm số y = \sin \left( {2x + \frac{\pi }{6}} ight) đồng biến trên khoảng \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)

  • Câu 19: Nhận biết

    Chọn công thức đúng trong các công thức cho sau đây? (Biết các biểu thức đều xác định).

    Công thức đúng là:

    \sin^{2}x + \cos^{2}x = 1

  • Câu 20: Nhận biết

    Tập nghiệm của phương trình \cos x = \frac{{\sqrt 2 }}{2} là?

    \cos x = \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos x = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k2\pi  \hfill \\  x =  - \frac{\pi }{4} + k2\pi  \hfill \\ \end{gathered}  ight.,k \in \mathbb{Z}

  • Câu 21: Vận dụng

    Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu h (m) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày (0 \leq t < 24) cho bởi công thức h = 3cos\left( \frac{\pi t}{6} + 1 ight) +
12. Có bao nhiêu giá trị của t thỏa mãn để độ sâu của mực nước là 15\ m?

    Độ sâu của mực nước là 15\ m thì h = 15.

    Khi đó

    15 = 3cos\left( \frac{\pi t}{6} + 1
ight) + 12n \Leftrightarrow \cos\left( \frac{\pi t}{6} + 1 ight) =
1

    \Leftrightarrow \cos\left( \frac{\pi
t}{6} + 1 ight) = cos0 \Leftrightarrow \frac{\pi t}{6} + 1 =
k2\pi

    \Leftrightarrow t = \frac{6(k2\pi -
1)}{\pi};k \in Z

    0 \leq t < 24 nên

    0 \leq \frac{6(k2\pi - 1)}{\pi} \leq 24
\Leftrightarrow 0 < k \leq 2

    Lại do k \in Z \Rightarrow k \in \{ 1;2\}
\Rightarrow t \in \left\{ \frac{6(2\pi - 1)}{\pi};\frac{6(4\pi -
1)}{\pi} ight\}

  • Câu 22: Vận dụng

    Cho phương trình lượng giác \sin\left\lbrack \frac{\pi}{4}\left( 3x -
\sqrt{9x^{2} - 16x - 80} ight) ightbrack = 0, vậy:

    a) Phương trình đã cho tương đương với phương trình \frac{\pi}{4}\left( 3x - \sqrt{9x^{2} - 16x - 80}
ight) = k\pi,\ k\mathbb{\in Z}. Đúng||Sai

    b) Phương trình có 3 nghiệm nguyên dương. Sai||Đúng

    c) Phương trình có 2 nghiệm nguyên dương. Đúng||Sai

    d) Tổng các nghiệm nguyên dương của phương trình bằng 14. Sai||Đúng

    Đáp án là:

    Cho phương trình lượng giác \sin\left\lbrack \frac{\pi}{4}\left( 3x -
\sqrt{9x^{2} - 16x - 80} ight) ightbrack = 0, vậy:

    a) Phương trình đã cho tương đương với phương trình \frac{\pi}{4}\left( 3x - \sqrt{9x^{2} - 16x - 80}
ight) = k\pi,\ k\mathbb{\in Z}. Đúng||Sai

    b) Phương trình có 3 nghiệm nguyên dương. Sai||Đúng

    c) Phương trình có 2 nghiệm nguyên dương. Đúng||Sai

    d) Tổng các nghiệm nguyên dương của phương trình bằng 14. Sai||Đúng

    Điều kiện: 9x^{2} - 16x - 80 \geq 0
\Leftrightarrow x \geq 4.

    Phương trình \Leftrightarrow
\frac{\pi}{4}\left( 3x - \sqrt{9x^{2} - 16x - 80} ight) = k\pi,\
k\mathbb{\in Z}

    \Leftrightarrow 3x - \sqrt{9x^{2} - 16x
- 80} = 4k

    \Leftrightarrow \sqrt{9x^{2} - 16x - 80}
= 3x - 4k

    \Leftrightarrow \left\{ \begin{matrix}x \geq \dfrac{4k}{3} \\9x^{2} - 16x - 80 = (3x - 4k)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq \dfrac{4k}{3} \\x = \dfrac{2k^{2} + 10}{3k - 2} \\\end{matrix} ight..

    Yêu cầu bài toán \Leftrightarrow \left\{\begin{matrix}\dfrac{2k^{2} + 10}{3k - 2} \geq \dfrac{4k}{3} \\x = \dfrac{2k^{2} + 10}{3k - 2} \geq 4 \\\dfrac{2k^{2} + 10}{3k - 2}\mathbb{\in Z} \\\end{matrix} ight..

    Ta có: \left\{ \begin{gathered}
  \frac{{2{k^2} + 10}}{{3k - 2}} \geqslant \frac{{4k}}{3} \hfill \\
  x = \frac{{2{k^2} + 10}}{{3k - 2}} \geqslant 4 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  \frac{{ - 6{k^2} + 8k + 30}}{{3k - 2}} \geqslant 0 \hfill \\
  \frac{{2{k^2} - 12k + 18}}{{3k - 2}} \geqslant 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \frac{2}{3} < k \leqslant 3

    k\mathbb{\in Z \Rightarrow}k =
1,2,3.

    k = 1 \Rightarrow \frac{2k^{2} + 10}{3k
- 2} = 12\mathbb{\in Z}

    k = 2 \Rightarrow \frac{2k^{2} + 10}{3k
- 2} = \frac{9}{2}\mathbb{otin Z}

    k = 3 \Rightarrow \frac{2k^{2} + 10}{3k
- 2} = 4\mathbb{\in Z}

    Kết hợp điều kiện, ta có x=4, x= 12 là những giá trị cần tìm.

    Kết luận:

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

  • Câu 23: Vận dụng

    Trong tam giác ABC nếu \frac{\tan\widehat{A}}{\tan\widehat{C}} =\frac{sin^{2}\widehat{A}}{sin^{2}\widehat{C}} thì tam giác ABC là tam giác gì?

    Ta có:

    \dfrac{\tan\widehat{A}}{\tan\widehat{C}}= \dfrac{\sin^{2}\widehat{A}}{\sin^{2}\widehat{C}}

    \Leftrightarrow\dfrac{\sin\widehat{A}.\cos\widehat{C}}{\cos\widehat{A}.\sin\widehat{C}} =\dfrac{\sin^{2}\widehat{A}}{\sin^{2}\widehat{C}}

    \Leftrightarrow \sin2\widehat{C} =\sin2\widehat{A}

    \Leftrightarrow \left\lbrack\begin{matrix}2\widehat{C} = 2\widehat{A} \\2\widehat{C} = \pi - 2\widehat{A} \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}\widehat{C} = \widehat{A} \\\widehat{C} + \widehat{A} = \dfrac{\pi}{2} \\\end{matrix} ight.

    Vậy tam giác ABC có thể là tam giác cân hoặc tam giác vuông.

  • Câu 24: Thông hiểu

    Cho góc \alpha thỏa mãn \cot\left( \frac{5\pi}{2} - \alpha ight) =
2. Tính giá trị biểu thưc P =
\tan\left( \alpha + \frac{\pi}{4} ight).

    Theo bài ra ta có:

    \cot\left( \frac{5\pi}{2} - \alpha
ight) = 2

    \Leftrightarrow \cot\left( \pi +
\frac{\pi}{2} - \alpha ight) = 2

    \Leftrightarrow \cot\left( \frac{\pi}{2}
- \alpha ight) = 2

    \Leftrightarrow \tan\alpha =
2

    P = \tan\left( \alpha + \dfrac{\pi}{4}ight) = \dfrac{\tan\alpha + \tan\dfrac{\pi}{4}}{1 -\tan\alpha.\tan\dfrac{\pi}{4}} = \dfrac{2 + 1}{1 - 2} = - 3

  • Câu 25: Vận dụng cao

    Cho bất đẳng thức \cos2A + \frac{1}{64\cos^{4}A} - (2\cos2B + 4\sin B) +\frac{13}{4} \leq 0, với A;B;C là ba góc của tam giác ABC. Khẳng định đúng là

    Ta có:

    \begin{matrix}  \cos 2A + \dfrac{1}{{64{{\cos }^4}A}} - (2\cos 2B + 4\sin B) + \dfrac{{13}}{4} \leqslant 0 \hfill \\   \Leftrightarrow {\cos ^2}A + {\cos ^2}A + \dfrac{1}{{64{{\cos }^4}A}} + 4{\sin ^2}B - 4\sin B + 1 \leqslant \dfrac{3}{4}\left( * ight) \hfill \\ \end{matrix}

    Áp dụng bất đẳng thức Cauchy ta có:

    {\cos ^2}A + {\cos ^2}A + \frac{1}{{64{{\cos }^4}A}} \geqslant \frac{3}{4}\left( 1 ight)

    4{\sin ^2}B - 4\sin B + 1 \geqslant 0 \text{    }(2)

    Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:

    \left\{ \begin{gathered}  {\cos ^2}A = \frac{1}{{64{{\cos }^4}A}} \hfill \\  \sin B = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \cos A = \frac{1}{2} \hfill \\  \sin B = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  A = {60^0} \hfill \\  B = {30^0} \hfill \\  C = {90^0} \hfill \\ \end{gathered}  ight.

    Vậy \widehat{B} + \widehat{C} =120^{0}

  • Câu 26: Nhận biết

    Tập xác định D của hàm số y =
\frac{1}{\sin x - \cos x} là:

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\sin x - \cos x eq 0 \hfill \\\Rightarrow \tan x eq 1 \hfill \\\Rightarrow x eq \dfrac{\pi}{4} + k\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Vậy tập xác định D=\mathbb{R}\backslash\left\{ \frac{\pi}{4} + k\pi,k\mathbb{\in Z}ight\}

  • Câu 27: Thông hiểu

    Tổng giá trị lớn nhất và nhỏ nhất của hàm số y = 3cosx + 4

    Do - 1 \leq cosx \leq 1\forall x \in
\mathbb{R} nên 1 \leq 3cosx + 4
\leq 7,\forall x \in \mathbb{R}.

    Nên \max_{\mathbb{R}}\mspace{2mu} y =
7 đạt được khi cosx = 1
\Leftrightarrow x = k2\pi\ (k \in \mathbb{Z}).

    \min_{\mathbb{R}}\mspace{2mu} y =
1 đạt được khi cosx = - 1
\Leftrightarrow x = \pi + k2\pi(k \in \mathbb{Z}).

    Suy ra \max_{\mathbb{R}}\mspace{2mu} y +
\min_{\mathbb{R}}\mspace{2mu} y = 8.

  • Câu 28: Nhận biết

    Với x \in \left(
\frac{31\pi}{4};\frac{33\pi}{4} ight), mệnh đề nào sau đây đúng?

    Ta có: x \in \left(
\frac{31\pi}{4};\frac{33\pi}{4} ight) = \left( - \frac{\pi}{4} +
8\pi;\frac{\pi}{4} + 8\pi ight) thuộc góc phần tư thứ I và thứ II.

  • Câu 29: Thông hiểu

    Số nghiệm của phương trình \cot (x+ \frac{\pi}{4})+1=0 trên khoảng ( -\pi ;3\pi ) là?

     Ta có:\cot (x+\frac{\pi}{4})+1=0 \Leftrightarrow \cot (x+\frac{\pi}{4})=-1

    \Leftrightarrow x+\frac{\pi}{4}=-\frac{\pi}{4}+k \pi  \Leftrightarrow x= -\frac{\pi}{2} +k\pi, k \in \mathbb{Z}

    ycbt\Leftrightarrow -\pi< -\frac{\pi}{2} +k \pi  <3\pi\Leftrightarrow  -\frac{1}{2} < k < \frac{7}{2}, k \in \mathbb{Z}

    nên k \in \{0;1;2;3\}.

  • Câu 30: Thông hiểu

    Cho \sin a =
\frac{3}{5};cosa < 0;cosb = \frac{3}{5};sinb > 0. Giá trị sin(a - b) bằng:

    Ta có:

    \left\{ \begin{matrix}
\sin a = \frac{3}{5} \\
\cos a < 0 \\
\end{matrix} \Rightarrow cosa = - \sqrt{1 - \sin^{2}a} = - \frac{4}{5}
ight.

    \left\{ \begin{matrix}
\cos b = \frac{3}{5} \\
\sin b > 0 \\
\end{matrix} \Rightarrow sinb = \sqrt{1 - \cos^{2}b} = \frac{4}{5}
ight.

    sin(a - b) = sina\cos b - cosa\sin b =
\frac{3}{5} \cdot \frac{3}{5} - \left( - \frac{4}{5} ight) \cdot
\frac{4}{5} = 1

  • Câu 31: Thông hiểu

    Cho tam giác ABC có các góc \widehat{A};\widehat{B};\widehat{C} bất kì. Biểu thức T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A} không thể nhận giá trị nào sau đây?

    Ta có:

    T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A}

    = 2\left( \sin\widehat{A}.\frac{1}{2} +
\cos\widehat{A}.\frac{\sqrt{3}}{2} ight)

    = 2\left(
\sin\widehat{A}\cos\frac{\pi}{3} + \cos\widehat{A}.sin\frac{\pi}{3}
ight)

    = 2sin\left( \widehat{A} + \frac{\pi}{3}
ight)

    Với tam giác ABC bất kì ta luôn có:

    0 < \widehat{A} < \pi \Rightarrow
\frac{\pi}{3} < \widehat{A} + \frac{\pi}{3} <
\frac{4\pi}{3}

    \Rightarrow - \sqrt{3} < T \leq
2

    Vậy biểu thức T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A} không thể nhận giá trị 2\sqrt{3}.

  • Câu 32: Vận dụng

    Số nghiệm của phương trình \cos2x + \sin^{2}x+2 \cos x + 1 = 0 thuộc \left [ 0;4\pi  ight ] là

     Giải phương trình:

    \begin{matrix}  \cos 2x + {\sin ^2}x + 2\cos x + 1 = 0 \hfill \\   \Leftrightarrow 2{\cos ^2}x + {\sin ^2}x + 2\cos x = 0 \hfill \\   \Leftrightarrow 2{\cos ^2}x + 1 - {\cos ^2}x + 2\cos x = 0 \hfill \\   \Leftrightarrow {\cos ^2}x + 2\cos x + 1 = 0 \hfill \\   \Leftrightarrow {\left( {\cos x + 1} ight)^2} = 0 \hfill \\   \Leftrightarrow \cos x + 1 = 0 \Rightarrow \cos x =  - 1 \hfill \\   \Rightarrow x = \pi  + k2\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Do x \in \left[ {0;4\pi} ight]

    \Rightarrow 0 \leqslant \pi  + k2\pi  \leqslant 4\pi

    \Rightarrow  - \frac{1}{2} \leqslant k \leqslant \frac{3}{2} \Rightarrow k = \left\{ {0;1} ight\}

  • Câu 33: Thông hiểu

    Rút gọn biểu thức C = \cos(7\pi - x) + 3\sin\left( \frac{3\pi}{2} + xight) - \cos\left( \frac{\pi}{2} - x ight) + \sin x ta được:

    Ta có:

    C = \cos(7\pi - x) + 3\sin\left(\frac{3\pi}{2} + x ight) - \cos\left( \frac{\pi}{2} - x ight) + \sin x

    C = \cos(\pi - x) - 3\sin\left(\frac{\pi}{2} + x ight) - \sin x + \sin x

    C = - \cos x - 3cosx = -
4cosx

  • Câu 34: Nhận biết

    Hỏi trên đoạn [0; 2023 \pi], phương trình \sqrt 3 \cot x - 3 = 0 có bao nhiêu nghiệm? 

     Ta có \cot x = \sqrt 3  \Leftrightarrow \cot x = \cot \frac{\pi }{6}

    \Leftrightarrow x = \frac{\pi }{6} + k\pi {\text{ }}\left( {k \in \mathbb{Z}} ight)

    Theo giả thiết, ta có

    0 \leqslant \frac{\pi }{6} + k\pi  \leqslant 2023\pi \xrightarrow{{{\text{xap xi}}}} - \frac{1}{6} \leqslant k \leqslant 2022,833

    \xrightarrow{{k \in \mathbb{Z}}}k \in \left\{ {0;1;...;2022} ight\}.

    Vậy có tất cả 2023 giá trị nguyên của k tương ứng với có 2023 nghiệm thỏa mãn yêu cầu bài toán.

  • Câu 35: Nhận biết

    Hàm số y =  1-2\sin x+\tan x + \cot x không xác định trong khoảng nào trong các khoảng sau đây?

    Hàm số xác định khi 

    \begin{matrix}   \Leftrightarrow \left\{ \begin{gathered}  \sin x e 0 \hfill \\  \cos x e 0 \hfill \\ \end{gathered}  ight. \hfill \\   \Leftrightarrow \sin 2x e 0 \hfill \\   \Leftrightarrow 2x e k\pi  \hfill \\   \Leftrightarrow x e \dfrac{{k\pi }}{2},k \in \mathbb{Z}. \hfill \\ \end{matrix}

    Ta chọn k = 3 \to x e \frac{{3\pi }}{2} nhưng điểm \frac{{3\pi }}{2} thuộc khoảng \left( {\pi  + k2\pi ;2\pi  + k2\pi } ight)

    Vậy hàm số không xác định trong khoảng \left( {\pi  + k2\pi ;2\pi  + k2\pi } ight)

  • Câu 36: Thông hiểu

    Cho x= \frac{\pi}{2} +k\pi (k \in \mathbb{Z}) là nghiệm của phương trình nào sau đây?

     Ta có:

    \cos 2x =  - 1 \Leftrightarrow 2x = \pi  + k2\pi  \Rightarrow x = \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} ight)

  • Câu 37: Nhận biết

    Với x \in \left( {\frac{{31\pi }}{4};\frac{{33\pi }}{4}} ight), mệnh đề nào sau đây là đúng?

    Ta có \left( {\frac{{31\pi }}{4};\frac{{33\pi }}{4}} ight) = \left( { - \frac{\pi }{4} + 8\pi ;\frac{\pi }{4} + 8\pi } ight) thuộc góc phần tư thứ I và II.

  • Câu 38: Vận dụng

    Tìm giá trị lớn nhất M của biểu thức P = 4\sin^{2}x + \sqrt{2}\sin\left( 2x +\frac{\pi}{4} ight) xác định

    Ta có:

    P = 4\sin^{2}x + \sqrt{2}\sin\left( 2x +\frac{\pi}{4} ight)

    \Rightarrow P = 4\left( \frac{1 -\cos2x}{2} ight) + \sin2x + \cos2x

    \Rightarrow P = \sin2x - \cos2x +2

    \Rightarrow P = \sqrt{2}\sin\left( 2x -\frac{\pi}{4} ight) + 2

    Mặt khác - 1 \leq \sin\left( 2x +\frac{\pi}{4} ight) \leq 1

    \Rightarrow - \sqrt{2} + 2 \leq\sqrt{2}\sin\left( 2x + \frac{\pi}{4} ight) + 2 \leq \sqrt{2} +2

    Vậy giá trị lớn nhất của biểu thức là P =\sqrt{2} + 2.

  • Câu 39: Vận dụng

    Cho đồ thị hàm số như hình vẽ:

    Hỏi hàm số tương ứng là hàm số nào trong các hàm số dưới đây

    Ta thấy hàm số có GTLN bằng 1 và GTNN bằng -1 => Loại đáp án

    y = \sqrt{2}\sin\left( x + \frac{\pi}{4}
ight)

    Tại x = 0 thì y = -
\frac{\sqrt{2}}{2} => Loại đáp án y = \cos\left( x - \frac{\pi}{4}
ight)

    Tại x = \frac{3\pi}{4} \Rightarrow y =
1 ta thấy chỉ có y = \sin\left( x -
\frac{\pi}{4} ight) thỏa mãn

  • Câu 40: Thông hiểu

    Cho \cos a =
\frac{3}{5} cho 0^{0} < a <
90^{0}. Tính giá trị của \sin
a?

    Ta có:

    \sin^{2}a + \cos^{2}a = 1

    \Leftrightarrow \sin^{2}a = 1 -\cos^{2}a

    \Leftrightarrow \sin^{2}a = 1 - \left(\frac{3}{5} ight)^{2}

    \Leftrightarrow \sin^{2}a =\frac{16}{25}

    \Leftrightarrow \sin a = \pm
\frac{4}{5}

    0^{0} < a < 90^{0} nên \sin a > 0 \Rightarrow \sin a =
\frac{4}{5}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 22 lượt xem
Sắp xếp theo