Cho
cho
. Tính giá trị của
?
Ta có:
Vì nên
Cho
cho
. Tính giá trị của
?
Ta có:
Vì nên
Cho ba góc nhọn thỏa mãn
. Tính tổng số đo ba góc nhọn.
Ta có:
Cho góc lượng giác
. Trong các khẳng định sau, khẳng định nào sai?
Ta có:
Tập nghiệm của phương trình
là?
Ta có:
Số nghiệm của phương trình
trên khoảng
là?
Ta có:
nên .
Tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Khẳng định nào sau đây đúng?
Trong khoảng thì hàm số
đồng biến.
Tìm tất cả các nghiệm của phương trình
.
Ta có
.
Với
, mệnh đề nào sau đây đúng?
Ta có: thuộc góc phần tư thứ I và thứ II.
Cho
và biểu thức
. Mệnh đề nào sau đây đúng?
Ta có: nên
=>
Hàm số
đồng biến trên khoảng nào trong các khoảng sau?
Ta có thuộc gốc phần tư thứ I
=> Hàm số đồng biến trên khoảng
Trên đường tròn lượng giác có điểm gốc là điểm A, điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo bằng 750. Điểm N đối xứng với điểm M qua gốc tọa độ, số đo cung AN là:
Điểm N đối xứng với điểm M qua gốc tọa độ nên
Cung lượng giác ngược chiều dương nên số đo lượng giác cung
Xác định chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
T là chu kì của hàm số là bội chung nhỏ nhất của T1 và T2
Suy ra hàm số tuần hoàn với chu kì
Cho tam giác
có các góc
thỏa mãn biểu thức
. Biết rằng
với
. Tính giá trị biểu thức
?
Ta có:
Dấy “=” xảy ra khi
Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của biểu thức
.
Ta có:
Ta lại có:
Trong các phương trình sau, phương trình nào tương đương với phương trình
?
Ta có . Mà
.
Do đó . Vậy
.
Đồ thị hàm số
được suy từ đồ thị (C) của hàm số bằng cách:
Ta có
=>Đồ thị hàm số được suy từ đồ thị (C) của hàm số bằng cách tịnh tiến (C) qua phải một đoạn có độ dài là
Cho
. Xác định k để
.
Ta có:
Phương trình
có bao nhiêu nghiệm trong khoảng
?
Ta có:
Theo bài ra ta có:
Vậy phương trình có 642 nghiệm.
Hỏi
là một nghiệm của phương trình nào sau đây?
Với , suy ra
Trong các phương trình sau, phương trình nào tương đương với phương trình
?
Ta có . Chi hai vế phương trình cho
, ta được
.
Một chiếc đồng hồ, có kim chỉ giờ OG chỉ số 9 và kim phút OP chỉ số 12. Số đo của góc lượng giác
là:
Góc lượng giác chiếm
đường tròn
=> Số đo là: .
Chọn khẳng định đúng.
Ta có: tương ứng với
.
Hình chữ nhật ABCD có hai đỉnh A, B thuộc trục Ox, hai đỉnh C, D thuộc đồ thị hàm số y = cos x (như hình vẽ). Biết rằng
. Diện tích hình chữ nhật ABCD bằng bao nhiêu?

Gọi
Do ABCD là hình chữ nhật nên AB // CD
=>
=>
Diện tích hình chữ nhật ABCD bằng
Xác định chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Cho góc
được biểu diễn trên đường tròn lượng giác như hình vẽ. Mệnh đề nào dưới đây đúng?

Góc được biểu diễn như hình vẽ, khi đó
.
Tung độ của điểm là
suy ra
Mệnh đề đúng là .
Điều kiện xác định của hàm số:
là:
Điều kiện xác định của hàm số:
Nếu
thì khẳng định nào sau đây đúng?
Ta có:
Cho phương trình
với
là tham số. Tìm tất cả các giá trị của tham số
để phương trình đã cho có nghiệm?
Ta có:
thì phương trình có nghiệm.
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Tập giá trị của hàm số
là:
Ta có:
Mà
=>
Cho hàm số
, số nghiệm thuộc
của phương trình
là?
Ta có:
Do đó
+) Trường hợp 1. Với
Do nên
Suy ra k = 0 ta được .
+) Trường hợp 2. Với
Do nên
Suy ra k = 0 ta được ta được
.
Vậy có 3 nghiệm thuộc của phương trình
là
;
;
.
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Phương trình
Suy ra có duy nhất 1 vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác.
Với điều kiện xác định của các giá trị lượng giác, cho
. Đơn giản biểu thức P ta được:
Ta có:
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với phương trình
. Đúng||Sai
b) Phương trình có 3 nghiệm nguyên dương. Sai||Đúng
c) Phương trình có 2 nghiệm nguyên dương. Đúng||Sai
d) Tổng các nghiệm nguyên dương của phương trình bằng
. Sai||Đúng
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với phương trình . Đúng||Sai
b) Phương trình có 3 nghiệm nguyên dương. Sai||Đúng
c) Phương trình có 2 nghiệm nguyên dương. Đúng||Sai
d) Tổng các nghiệm nguyên dương của phương trình bằng . Sai||Đúng
Điều kiện: .
Phương trình
.
Yêu cầu bài toán .
Ta có:
Vì .
Kết hợp điều kiện, ta có là những giá trị cần tìm.
Kết luận:
|
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
Chu kì của hàm số
là số nào sau đây?
Chu kì của hàm số là
Số nghiệm thuộc đoạn
của phương trình: ![]()
Điều kiện xác định
Vậy có tất cả 15 nghiệm.
Cho tam giác
có các góc
bất kì. Biểu thức
không thể nhận giá trị nào sau đây?
Ta có:
Với tam giác ABC bất kì ta luôn có:
Vậy biểu thức không thể nhận giá trị
.
Cho phương trình
có nghiệm là:
Giải phương trình như sau:
Vì
vậy phương trình lượng giác đã cho vô nghiệm.
Xét tính đúng, sai của các phát biểu sau?
Tập
là tập xác định của hàm số
. Đúng||Sai
Số nghiệm của phương trình
trên khoảng
là 3 nghiệm.Sai||Đúng
Có 5 giá trị nguyên của tham số m để phương trình
có nghiệm. Đúng||Sai
Số vị trí biểu diễn của phương trình
trên đường tròn lượng giác là 3.Sai||Đúng
Xét tính đúng, sai của các phát biểu sau?
Tập là tập xác định của hàm số
. Đúng||Sai
Số nghiệm của phương trình trên khoảng
là 3 nghiệm.Sai||Đúng
Có 5 giá trị nguyên của tham số m để phương trình có nghiệm. Đúng||Sai
Số vị trí biểu diễn của phương trình trên đường tròn lượng giác là 3.Sai||Đúng
a) Điều kiện xác định của hàm số là:
b) Ta có:
Vì
mà
suy ra
Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng .
c) Ta có:
Phương trình đã cho có nghiệm khi và chỉ khi
Mà
Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.
d) Ta có:
Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác là 2.