Biến đổi thành tích biểu thức
ta được
Ta có
Biến đổi thành tích biểu thức
ta được
Ta có
Cho hai điểm A, B thuộc đồ thị hàm số y = sinx trên đoạn
. Các điểm C, D thuộc trục Ox thỏa mãn ABCD là hình chữ nhật và
. Tính độ dài cạnh BC.

Gọi
Mặt khác
Do đó
Cho các hàm số sau, hàm số nào là hàm số lẻ?
Ta có:
Ta kiểm tra được và
là hàm số không chẵn không lẻ
là hàm số chẵn
là hàm số lẻ
Vậy là hàm số lẻ
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Rút gọn biểu thức
ta được:
Ta có:
Trên đoạn
, đồ thị hai hàm số
và
cắt nhau tại bao nhiêu điểm?
Phương trình hoành độ giao điểm của hai đồ thị hàm số là
Theo bài ra ta có:
Vậy đồ thị hai hàm số đã cho cắt nhau tại 5 điểm trên đoạn .
Cho góc
thỏa mãn
và
. Tính giá trị
.
Ta có:
Ta có:
Ta lại có:
Mà
Đổi số đo của góc
sang đơn vị độ, phút, giây
Cách 1: Từ công thức khi đó:
Cách 2: Bấm máy tính:
Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.
Bước 2. Bấm (shift -3π ÷16) shift DRG 2 =
Cho
. Giá trị lượng giác nào sau đây luôn dương?
Ta có:
Theo bài ra
=>
Cho phương trình
. Đặt
, ta được phương trình nào sau đây?
Ta có: trở thành
.
Khẳng định nào sau đây là đúng khi nói về
đường tròn lượng giác
?
Mỗi đường tròn định hướng có bán kính , tâm trùng với gốc tọa độ là một đường tròn lượng giác.
Với
, mệnh đề nào sau đây là đúng?
Ta có thuộc góc phần tư thứ I. Do đó
đồng biến
nghịch biến.
nghịch biến
nghịch biến.
Gọi
là nghiệm dương nhỏ nhất của phương trình
. Mệnh đề nào sau đây là đúng?
Điều kiện:
Phương trình
Cho .
Do đó nghiệm dương nhỏ nhất ứng với .
Cho
. Tính giá trị biểu thức ![]()
Do nên bình phương hai vế ta được:
Vậy
Tìm tất các các giá trị thực của tham số m để phương trình
vô nghiệm?
Áp dụng điều kiện có nghiệm của phương trình cos x = a.
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Phương trình
Do đó, phương trình vô nghiệm
.
Mệnh đề nào sau đây đúng?
Mệnh đề đúng là:
Hỏi
là một nghiệm của phương trình nào sau đây?
Với , suy ra
Hàm số
xác định khi và chỉ khi:
Điều kiện các định:
Xét tính đúng, sai của các phát biểu sau?
Tập
là tập xác định của hàm số
. Đúng||Sai
Số nghiệm của phương trình
trên khoảng
là 3 nghiệm.Sai||Đúng
Có 5 giá trị nguyên của tham số m để phương trình
có nghiệm. Đúng||Sai
Số vị trí biểu diễn của phương trình
trên đường tròn lượng giác là 3.Sai||Đúng
Xét tính đúng, sai của các phát biểu sau?
Tập là tập xác định của hàm số
. Đúng||Sai
Số nghiệm của phương trình trên khoảng
là 3 nghiệm.Sai||Đúng
Có 5 giá trị nguyên của tham số m để phương trình có nghiệm. Đúng||Sai
Số vị trí biểu diễn của phương trình trên đường tròn lượng giác là 3.Sai||Đúng
a) Điều kiện xác định của hàm số là:
b) Ta có:
Vì
mà
suy ra
Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng .
c) Ta có:
Phương trình đã cho có nghiệm khi và chỉ khi
Mà
Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.
d) Ta có:
Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác là 2.
Cho hàm số
. Chọn kết luận đúng trong các kết luận sau khi xét sự biến thiên của hàm số đã cho trên một chu kì tuần hoàn?
Tập xác định:
Hàm số tuần hoàn với chu kì
, dựa vào các đáp án đã cho ta xét tính đơn điệu của hàm số trên
Dựa vào kết quả khảo sát sự biến thiên của hàm số phần lí thuyết ta có thể suy ra với hàm số
đồng biến trên khoảng
và
.
Cho
. Mệnh đề nào sau đây đúng?
Ta có:
Do đó điểm cuối của cung có số đo thuộc góc phần tư thứ
Vậy
Tìm tất cả các giá trị của tham số m để phương trình
có nghiệm?
Phương trình
Để phương trình có nghiệm
là giá trị cần tìm.
Chu kì của hàm số
là
Hàm số tuần hoàn với chu kỳ
.
Phương trình
có bao nhiêu nghiệm trên khoảng
?
Ta có:
* Trường hợp 1: ,
Vì
.
Vậy có tất cả 8 giá trị k tương ứng với trường hợp 1 có 8 nghiệm là:
;
;
;
;
;
;
;
.
* Trường hợp 2: ,
Vì
.
Vậy có tất cả 8 giá trị k tương ứng với trường hợp 2 có 8 nghiệm là:
;
;
;
;
;
;
;
.
Vậy trên khoảng phương trình đã cho có tất cả là 16 nghiệm.
Hàm số nào sau đây nhận giá trị âm nếu ![]()
Ta có:
Mà
=> mang giá trị âm
Hàm số
nghịch biến trên khoảng nào sau đây?
Hàm số tuần hoàn với chu kì
Do hàm số nghịch biến trên
=> Hàm số nghịch biến khi
Vậy đáp án đúng là
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
Kiểm tra được là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ
là hàm số không chẵn không lẻ
là các hàm số chẵn nên đồ thị hàm số đối xứng nhau qua trục tung.
Đổi số đo
sang số đo theo đơn vị là radian.
Ta có:
Phương trình
có hai họ nghiệm có dạng
và
,
. Khi đó, tính
?
Ta có .
.
Phương trình nào dưới đây có tập nghiệm trùng với tập nghiệm của phương trình
?
Ta có
Vậy .
Tính giá trị của biểu thức
là:
Ta có:
Vậy
Tính tổng T tất cả các nghiệm của phương trình
trên đoạn
.
Phương trình
Tìm giá trị lớn nhất M của biểu thức
xác định
Ta có:
Mặt khác
Vậy giá trị lớn nhất của biểu thức là .
Tìm nghiệm dương nhỏ nhất
của
?
Phương trình
So sánh hai nghiệm ta được nghiệm dương nhỏ nhất là .
Tính giá trị của biểu thức
là:
Ta có:
Cho góc
thỏa mãn
. Tính giá trị của biểu thức
.
Ta có:
Nếu
và
là hai nghiệm của phương trình
thì
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Phương trình
có nghiệm là:
Tập nghiệm của phương trình
là?
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì