Cho
và biểu thức
. Mệnh đề nào sau đây đúng?
Ta có: nên
=>
Cho
và biểu thức
. Mệnh đề nào sau đây đúng?
Ta có: nên
=>
Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình
.
Hình vẽ minh họa
Điều kiện
Ta có:
Với ta được nghiệm
Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.
Với ta được
Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.
Tính diện tích hình chữ nhật ABCD.
Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách.
Ta có:
=> Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách tịnh tiến C qua phải một đoạn có độ dài là
Góc có số đo
đổi sang độ là:
Cách 1:
Cách 2: Bấm máy tính:
Bước 1: Bấm tổ hợp phím SHIFT MODE 3 chuyển về chế độ "độ".
Bước 2: Bấm SHIFT Ans 2 =
Với
, mệnh đề nào sau đây là đúng?
Ta có thuộc góc phần tư thứ I và II.
Cho công thức
biểu thị số giờ có ánh sáng mặt trời tại thành phố A, với
là số ngày trong năm. Ngày nào sau đây của năm thì số giờ có ánh sáng mặt trời của thành phố A đạt giá trị lớn nhất.
Để số giờ có ánh sáng mặt trời lớn nhất thì hàm số đạt giá trị lớn nhất.
Khi đó .
Vì nên ta có
.
Do đó (tháng đầu tiên của năm)
Đổi số đo của góc
sang đơn vị radian?
Cách 1: Áp dụng công thức với
ta được:
Cách 2: Bấm máy tính:
Bước 1: Bấm tổ hợp phím SHIFT MODE 4 chuyển về chế độ rad.
Bước 2: Bấm 50 SHIFT Ans 1 =
Đồ thị hàm số
đi qua điểm nào sau đây?
Xét điểm (0; 2) => x = 0; y = 2
Thay vào hàm số ta có:
cos0 + 1 = 1 + 1 = 2 (thỏa mãn)
Vậy đồ thị hàm số y = cosx + 1 đi qua điểm (0; 2)
Tìm tất cả các giá trị
để phương trình
có nghiệm?
Ta có:
Phương trình có nghiêm
.
Giải phương trình
thu được kết quả là:
Điều kiện
.
Với điều kiện xác định của các giá trị lượng giác, mệnh đề nào sau đây đúng?
Mệnh đề đúng là:
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu
(mét) của mực nước trong kênh tính theo thời gian
(giờ) trong một ngày
cho bởi hàm số
có đồ thị như hình bên dưới (
là các số thực dương). Gọi
là tập hợp tất cả các thời điểm
trong ngày để chiều cao của mực nước biển là
mét. Tổng tất cả phần tử của
bằng.

Đáp án: 36
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu (mét) của mực nước trong kênh tính theo thời gian
(giờ) trong một ngày
cho bởi hàm số
có đồ thị như hình bên dưới (
là các số thực dương). Gọi
là tập hợp tất cả các thời điểm
trong ngày để chiều cao của mực nước biển là
mét. Tổng tất cả phần tử của
bằng.
Đáp án: 36
Theo đồ thị ta có:
Suy ra: .
Theo đề bài yêu cầu:
Vì: nên
Suy ra:
Tìm nghiệm dương nhỏ nhất của phương trình ![]()
Ta có
TH1. Với
TH2. Với
So sánh hai nghiệm ta được là nghiệm dương nhỏ nhất.
Trên đường tròn bán kính 20cm. Tính độ dài của cung có số đo
.
Độ dài cung tròn là:
Cho hàm số y = sinx. Mệnh đề nào sau đây đúng?
Ta có thể hiểu như sau:
“ Hàm số y = sinx đồng biến khi góc x thuộc góc phần tư thứ IV và thứ I; nghịch biến khi góc x thuộc góc phần tư thứ II và III”.
Giải phương trình: ![]()
Giải phương trình:
Trong các hàm số sau, hàm số nào là hàm số lẻ?
Kiểm tra được ;
;
là các hàm số chẵn.
là hàm số lẻ.
Khẳng định nào sau đây là đúng khi nói về ''đường tròn lượng giác'' ?
Mỗi đường tròn định hướng có bán kính , tâm trùng với gốc tọa độ là một đường tròn lượng giác.
Khẳng định nào sau đây sai?
Trên khoảng thì hàm số
đồng biến.
Nghiệm của phương trình
là
Ta có:
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình đã cho có nghiệm .
Gọi
là nghiệm dương nhỏ nhất của phương trình
. Mệnh đề nào sau đây là đúng?
Điều kiện:
Phương trình
Cho .
Do đó nghiệm dương nhỏ nhất ứng với .
Cho góc
thỏa mãn
. Tính giá trị biểu thức
.
Ta có:
Cho hàm số
có giá trị nhỏ nhất và giá trị lớn nhất lần lượt là
,
. Tính giá trị của biểu thức
.
Ta có:
Nên .
Suy ra .
Biết
là các góc của tam giác
, mệnh đề nào sau đây đúng?
Vì là các góc của tam giác
nên
.
Khi đó .
.
Phương trình
có nghiệm là:
Giải phương trình:
Cho góc
thỏa mãn
và
. Tính giá trị
.
Ta có:
Ta có:
Ta lại có:
Mà
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Nghiệm của phương trình
là
Có bao nhiêu đẳng thức dưới đây là đồng nhất thức?
![]()
![]()
![]()
![]()
Ta có:
Vậy có hai đồng nhất thức.
Giải phương trình
?
Ta có và .
Do đó phương trình
Xét nghiệm .
Vậy phương trình có nghiệm .
Nếu
và
là hai nghiệm của phương trình
và
và
là hai nghiệm của phương trình
thì tích
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Tìm số nghiệm của phương trình
trên đoạn
.
Ta có:
Vì nên
. Do đó phương trình
Vì nên
.
Cung tròn có số đo là
. Hãy chọn số đo độ của cung tròn đó trong các cung tròn sau đây:
Ta có:
Cho tam giác ABC có:
và
. Xác định
.
Ta có:
Mà khi đó:
Trong các hàm sau hàm nào là hàm số chẵn?
Xét hàm số y = -cosx
Lấy ta có:
=> Hàm số y = -cosx là hàm số chẵn.
Hàm số nào dưới đây đồng biến trên khoảng
?
Ta có:
Nên hàm số đồng biến trên khoảng
.
Trong các hàm số sau, hàm số nào có đồ thị tương ứng với hình vẽ?

Ta có:
=> Loại đáp án và
Tại x = 0 => y = 1 ta thấy thỏa mãn
Giá trị lớn nhất của hàm số: ![]()
Ta có:
Ta có:
Phương trình có nghiệm:
Phương trình
có nghiệm là:
Giải phương trình: