Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hai đồ thị hàm số y = \sin\left( x +
\frac{\pi}{4} ight)y = \sin
x, khi đó:

    a) Phương trình hoành độ giao điểm của hai đồ thị hàm số:\sin \left( {x + \frac{\pi }{4}} ight) = \sin x Đúng||Sai

    b) Hoành độ giao điểm của hai đồ thị là x
= \frac{3\pi}{8} + k\pi(k\mathbb{\in Z}) Đúng||Sai

    c) Khi x \in \lbrack
0;2\pibrack thì hai đồ thị hàm số cắt nhau tại ba điểm Sai||Đúng

    d) Khi x \in \lbrack
0;2\pibrack thì toạ độ giao điểm của hai đồ thị hàm số là: \left( \frac{5\pi}{8};sin\frac{5\pi}{8}
ight),\left( \frac{7\pi}{8};sin\frac{7\pi}{8} ight). Sai||Đúng

    Đáp án là:

    Cho hai đồ thị hàm số y = \sin\left( x +
\frac{\pi}{4} ight)y = \sin
x, khi đó:

    a) Phương trình hoành độ giao điểm của hai đồ thị hàm số:\sin \left( {x + \frac{\pi }{4}} ight) = \sin x Đúng||Sai

    b) Hoành độ giao điểm của hai đồ thị là x
= \frac{3\pi}{8} + k\pi(k\mathbb{\in Z}) Đúng||Sai

    c) Khi x \in \lbrack
0;2\pibrack thì hai đồ thị hàm số cắt nhau tại ba điểm Sai||Đúng

    d) Khi x \in \lbrack
0;2\pibrack thì toạ độ giao điểm của hai đồ thị hàm số là: \left( \frac{5\pi}{8};sin\frac{5\pi}{8}
ight),\left( \frac{7\pi}{8};sin\frac{7\pi}{8} ight). Sai||Đúng

    Phương trình hoành độ giao điểm của hai đồ thị hàm số:

    \sin\left( x + \frac{\pi}{4} ight) =\sin x

    \Leftrightarrow \left\lbrack\begin{matrix}x + \dfrac{\pi}{4} = x + k2\pi \\x + \dfrac{\pi}{4} = \pi - x + k2\pi \\\end{matrix}(k\mathbb{\in Z}) ight.

    \Leftrightarrow x = \frac{3\pi}{8} +
k\pi(k\mathbb{\in Z})

    x \in \lbrack 0;2\pibrack
\Rightarrow x \in \left\{ \frac{3\pi}{8};\frac{11\pi}{8}
ight\}.

    Với x = \frac{3\pi}{8} \Rightarrow y =
\sin\frac{3\pi}{8} \approx 0,92 với x = \frac{11\pi}{8} \Rightarrow y =
\sin\frac{11\pi}{8} \approx - 0,92.

    Vậy toạ độ giao điểm của hai đồ thị hàm số là: \left( \frac{3\pi}{8};sin\frac{3\pi}{8}
ight),\left( \frac{11\pi}{8};sin\frac{11\pi}{8} ight).

    Kết luận:

    a) Đúng

    b) Đúng

    c) Sai

    d) Sai

  • Câu 2: Nhận biết

    Chọn khẳng định đúng.

    Ta có: \pi rad tương ứng với 180^{0}.

  • Câu 3: Thông hiểu

    Tìm chu kì T của hàm số lượng giác y =cos3x + cos5x

    Hàm số y = cos3x tuần hoàn với chu kì T =\frac{2\pi}{3}

    Hàm số y = cos5x tuần hoàn với chu kì T =\frac{2\pi}{5}

    => Hàm số y = cos3x + cos5x tuần hoàn với chu kì là T =2\pi

  • Câu 4: Thông hiểu

    Cho góc \alpha thỏa mãn \sin\alpha = \frac{4}{5}\frac{\pi}{2} < \alpha < \pi. Tính giá trị của biểu thức P = \sin2(\alpha +\pi).

    Ta có:

    P = \sin2(\alpha + \pi) = \sin(2\alpha +2\pi) = \sin2\alpha = 2\sin\alpha.\cos\alpha

    Theo bài ra ta có:

    \frac{\pi}{2} < \alpha < \pi
\Rightarrow \cos\alpha < 0

    \cos^{2}\alpha = 1 - \sin^{2}\alpha =\frac{9}{25}

    \Rightarrow \cos\alpha = -
\frac{3}{5}

    => P = 2.\frac{4}{5}.\left( -
\frac{3}{5} ight) = - \frac{24}{25}

  • Câu 5: Nhận biết

    Phương trình \tan x = \tan 3x có nghiệm là:

     Giải phương trình:

    \begin{matrix}  \tan x = \tan 3x \hfill \\   \Leftrightarrow \tan 3x = \tan x \hfill \\   \Leftrightarrow 3x = x + k\pi  \hfill \\   \Leftrightarrow 2x = k\pi  \hfill \\   \Leftrightarrow x = \dfrac{{k\pi }}{2};\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu

    Rút gọn biểu thức S = \cos^{2}\left( \frac{\pi}{4} + \alpha ight) -\cos^{2}\left( \frac{\pi}{4} - \alpha ight)

    Vì hai góc \left( \frac{\pi}{4} + \alpha
ight)\left( \frac{\pi}{4} -
\alpha ight) phụ nhau nên

    \cos\left( \dfrac{\pi}{4} - \alphaight) = \sin\left( \dfrac{\pi}{4} + \alpha ight)

    S = \cos^{2}\left( \frac{\pi}{4} + \alphaight) - \cos^{2}\left( \frac{\pi}{4} - \alpha ight)

    \Rightarrow S = \cos^{2}\left(\frac{\pi}{4} + \alpha ight) - \sin^{2}\left( \frac{\pi}{4} + \alphaight)

    \Rightarrow S = \cos\left( \frac{\pi}{4}+ 2\alpha ight) = - \sin2\alpha

  • Câu 7: Thông hiểu

    Điều kiện xác định của hàm số: y=\frac{{{\sin}^{2}}x+3\cos x+1}{\sin\frac{x}{2}}

     Điều kiện xác định của hàm số:

    \sin \frac{x}{2} e 0

    \Rightarrow \frac{x}{2} e k\pi

    \Rightarrow x e k2\pi

  • Câu 8: Thông hiểu

    Tìm tập nghiệm của phương trình \frac{2cosx + \sqrt{2}}{\sqrt{2}\sin x + 1} =
0?

    Điều kiện: \sqrt{2}\sin x + 1 eq 0
\Leftrightarrow \sin x eq - \frac{1}{\sqrt{2}}

    \Leftrightarrow \left\{ \begin{matrix}x eq - \dfrac{\pi}{4} + k2\pi \\x eq \dfrac{5\pi}{4} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Ta có:

    \frac{2\cos x + \sqrt{2}}{\sqrt{2}\sin x +1} = 0

    \Leftrightarrow 2cosx + \sqrt{2} = 0
\Leftrightarrow \cos x = - \frac{\sqrt{2}}{2}

    \Leftrightarrow \cos x = -
\frac{\sqrt{2}}{2}

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{3\pi}{4} + k2\pi \\x = - \dfrac{3\pi}{4} + k2\pi \\\end{matrix} ight.\ \left( k\mathbb{\in Z} ight)

    Kết hợp với điều kiện suy ra phương trình có nghiệm x = \frac{3\pi}{4} + k2\pi;k\mathbb{\in
Z}

    Vậy phương trình có tập nghiệm là: S =
\left\{ \frac{3\pi}{4} + k2\pi|k\mathbb{\in Z} ight\}

  • Câu 9: Vận dụng

    Xác định chu kì T của hàm số y = 3\cos(2x+ 1) - 2\sin\left( \dfrac{x}{2} - 3 ight)

    Hàm số y = 3\cos(2x + 1) tuần hoàn với chu kì T_{1} = \pi

    Hàm số y = - 2\sin\left( \frac{x}{2} - 3ight) tuần hoàn với chu kì T_{2}
= 4\pi

    Suy ra hàm số y = 3\cos(2x + 1) -2\sin\left( \frac{x}{2} - 3 ight) tuần hoàn với chu kì T = 4\pi

  • Câu 10: Thông hiểu

    Biết rằng \frac{\sin\dfrac{\pi}{9} +\sin\dfrac{5\pi}{9}}{\cos\dfrac{\pi}{9} + \cos\dfrac{5\pi}{9}} = \tan\left(\dfrac{m\pi}{n} ight) với m,n\in\mathbb{ N} và \frac{m}{n} tối giản. Khi đó kết quả nào sau đây đúng?

    Ta có:

    \frac{\sin\dfrac{\pi}{9} +\sin\dfrac{5\pi}{9}}{\cos\dfrac{\pi}{9} + \cos\dfrac{5\pi}{9}} =\frac{2\sin\dfrac{\pi}{3}\cos\left( - \dfrac{2\pi}{9}ight)}{2\cos\dfrac{\pi}{3}\cos\left( - \dfrac{2\pi}{9} ight)} =\tan\left( \dfrac{\pi}{3} ight)

    \Rightarrow \left\{ \begin{matrix}
m = 1 \\
n = 3 \\
\end{matrix} ight.\  \Rightarrow n - m = 2

  • Câu 11: Vận dụng cao

    Giá trị lớn nhất của hàm số: y = \frac{{\sin x + 2\cos x + 1}}{{\sin x + \cos x + 2}}

     Ta có: 

    \begin{matrix}  \sin x + \cos x = \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} ight) \hfill \\   \Rightarrow  - 1 \leqslant \sin \left( {x + \dfrac{\pi }{4}} ight) \leqslant 1 \hfill \\   \Rightarrow  - \sqrt 2  \leqslant \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} ight) \leqslant \sqrt 2  \hfill \\   \Rightarrow  - \sqrt 2  + 2 \leqslant \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} ight) + 2 \leqslant \sqrt 2  + 2 \hfill \\   \Rightarrow \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} ight) + 2  >  0,\forall x \in \mathbb{R} \hfill \\ \end{matrix}

    Ta có:

    \begin{matrix}  y = \dfrac{{\sin x + 2\cos x + 1}}{{\sin x + \cos x + 2}} \hfill \\   \Leftrightarrow \left( {1 - y} ight)\sin x + \left( {2 - y} ight)\cos x + 1 - 2y = 0 \hfill \\ \end{matrix}

    Phương trình có nghiệm:

    \begin{matrix}   \Leftrightarrow {\left( {1 - y} ight)^2} + {\left( {2 - y} ight)^2} \geqslant {\left( {1 - 2y} ight)^2} \hfill \\   \Leftrightarrow {y^2} + y - 2 \leqslant 0 \Leftrightarrow  - 2 \leqslant y \leqslant 1 \hfill \\   \Rightarrow \max y = 1 \hfill \\ \end{matrix}

  • Câu 12: Nhận biết

    Phương trình nào dưới đây có tập nghiệm trùng với tập nghiệm của phương trình {\tan ^2}x = 3?

     Ta có {\tan ^2}x = 3 \Leftrightarrow \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} = 3 \Leftrightarrow {\sin ^2}x = 3{\cos ^2}x

    \Leftrightarrow 1 - {\cos ^2}x = 3{\cos ^2}x \Leftrightarrow 4{\cos ^2}x = 1

    Vậy {\tan ^2}x = 3 \Leftrightarrow 4{\cos ^2}x = 1.

  • Câu 13: Vận dụng

    Trong tam giác ABC, nếu\frac{\sin B}{\sin C} = 2\cos A thì tam giác ABC có tính chất nào sau đây?

    Ta có: \frac{\sin B}{\sin C} =2\cos A

    \Rightarrow \sin B =2\cos A.\sin C

    \Rightarrow \sin B = \sin(A + C) +
\sin(C - A)

    Mặt khác A + B + C = 180^{0}

    \Rightarrow B = 180^{0} - (A +
C)

    \Rightarrow \sin B = \sin(A +
C)

    Khi đó: \sin(C - A) = 0 \Rightarrow A =
C

    Vậy tam giác ABC cân tại B.

  • Câu 14: Thông hiểu

    Giải phương trình \tan x - \sqrt{3} = 0 ta được nghiệm âm lớn nhất và nghiệm dương nhỏ nhất lần lượt là:

    Ta có:

    \tan x - \sqrt{3} = 0

    \Leftrightarrow x = \frac{\pi}{3} +
k\pi;\left( k\mathbb{\in Z} ight)

    Suy ra:

    Nghiệm âm lớn nhất của phương trình là: x
= \frac{- 2\pi}{3} ứng với k = -
1

    Nghiệm dương nhỏ nhất của phương trình là: x = \frac{\pi}{3} ứng với k = 0

  • Câu 15: Vận dụng

    Cho \cos a = -
\frac{3}{5}0 < a <
\pi. Khi đó giá trị của \cos\frac{a}{2} là:

    Ta có:

    cos^{2}\dfrac{a}{2} = \frac{1 + \cos a}{2} = \dfrac{1 + \left( - \dfrac{3}{5} ight)}{2} =\frac{1}{5}

    \Rightarrow \cos\frac{a}{2} = \pm
\frac{\sqrt{5}}{5}

    Do 0 < a < \pi hay 0 < \frac{a}{2} < \frac{\pi}{2} \Rightarrow
\cos\frac{a}{2} > 0

    Vậy \cos\frac{a}{2} =
\frac{\sqrt{5}}{5}

  • Câu 16: Thông hiểu

    Một chiếc đồng hồ, có kim chỉ giờ OG chỉ số 9 và kim phút OP chỉ số 12. Số đo của góc lượng giác (OG;OP) là:

    Góc lượng giác (OG;OP) chiếm \frac{1}{4} đường tròn

    => Số đo là: \frac{1}{4}.2\pi + k2\pi= \frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight).

  • Câu 17: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Xét hàm số y = f(x) = sin2x có:

    Tập xác định D=\mathbb{ R}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = \sin( - 2x) = - sin2x = - f(x) \hfill \\\Rightarrow f( - x) = - f(x) 
 \hfill\\\end{matrix}

    Vậy hàm số y = sinx là hàm số lẻ

    Xét hàm số y = f(x) = x\cos x có:

    Tập xác định D=\mathbb{ R}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = ( - x).cos( - x) = - x\cos x = - f(x) \hfill \\\Rightarrow f( - x) = - f(x) \hfill \\\end{matrix}

    Vậy hàm số y = x.cosx là hàm số lẻ

    Xét hàm số y = f(x) = \cos
x.cotx có:

    Tập xác định D=\mathbb{ R}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = \cos( - x).cot( - x) = - \cos x.cotx = - f(x) \hfill \\\Rightarrow f( - x) = - f(x) \hfill \\\end{matrix}

    Vậy hàm số y = \cos x.cotx là hàm số lẻ

    Xét hàm số y = f(x) = \frac{\tan x}{\sin
x} có:

    Tập xác định D\mathbb{=
R}\backslash\left\{ k\frac{\pi}{2};k\mathbb{\in Z} ight\}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = \dfrac{\tan( - x)}{\sin( - x)} = \dfrac{- \tan x}{- \sin x} =f(x) \hfill\\\Rightarrow f( - x) = f(x) \hfill \\\end{matrix}

    Vậy hàm số y = \frac{\tan x}{\sin
x}là hàm số chẵn

  • Câu 18: Nhận biết

    Trong các phương trình sau, phương trình nào tương đương với phương trình 3{\sin ^2}x = {\cos ^2}x ?

     Ta có 3{\sin ^2}x = {\cos ^2}x. Chi hai vế phương trình cho {\sin ^2}x, ta được {\cot ^2}x = 3.

  • Câu 19: Thông hiểu

    Trên đường tròn lượng giác có điểm gốc là điểm A, điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo bằng 750. Điểm N đối xứng với điểm M qua gốc tọa độ, số đo cung AN là:

    Điểm N đối xứng với điểm M qua gốc tọa độ nên \widehat{AON} = 180^{0} - 75^{0} =
105^{0}

    Cung lượng giác (OA;ON) ngược chiều dương nên số đo lượng giác cung (OA;ON) = - 105^{0} + k.360^{0},\left(
k\mathbb{\in Z} ight)

  • Câu 20: Thông hiểu

    Cho góc \alpha thỏa mãn \cot\alpha = - 3\sqrt{2}\alpha \in \left( \frac{\pi}{2};\pi
ight). Tính giá trị của biểu thức P = \tan\frac{\alpha}{2} +
\cot\frac{\alpha}{2}.

    Ta có:

    P = \tan\frac{\alpha}{2} +
\cot\frac{\alpha}{2}

    P =\dfrac{\sin\dfrac{\alpha}{2}}{\cos\dfrac{\alpha}{2}} +\dfrac{\cos\dfrac{\alpha}{2}}{\sin\dfrac{\alpha}{2}}

    P = \dfrac{\sin^{2}\dfrac{\alpha}{2} +\cos^{2}\dfrac{\alpha}{2}}{\cos\dfrac{\alpha}{2}.\sin\dfrac{\alpha}{2}}

    P = \dfrac{1}{\dfrac{\sin\alpha}{2}} =\dfrac{2}{\sin\alpha}

    Mặt khác \alpha \in \left(\frac{\pi}{2};\pi ight) \Rightarrow \sin\alpha > 0

    1 + \cot^{2}\alpha =\dfrac{1}{\sin^{2}\alpha}

    \Rightarrow \sin^{2}\alpha =\dfrac{1}{19}

    \Rightarrow \sin\alpha =
\sqrt{\frac{1}{19}}

    \Rightarrow P = 2\sqrt{19}

  • Câu 21: Nhận biết

    Nghiệm của phương trình \cos x =
\cos\frac{\pi}{4} là:

    Ta có \cos x = \cos\frac{\pi}{4}
\Leftrightarrow x = \pm \frac{\pi}{4} + k2\pi,k\mathbb{\in
Z}.

  • Câu 22: Nhận biết

    Hai hàm số nào sau đây có chu kì khác nhau?

    Hai hàm số \left\{ \begin{matrix}y = \cos x \\y = \cot\dfrac{x}{2} \\\end{matrix} ight. có cùng chu kì 2π

    Hai hàm số \left\{ \begin{matrix}y = \sin\dfrac{x}{2} \\y = \cos\dfrac{x}{2} \\\end{matrix} ight. có cùng chu kì 4π

    Hai hàm số \left\{ \begin{matrix}y = tan2x \\y = cot2x \\\end{matrix} ight. có cùng chu kì \frac{\pi}{2}

    Hàm số y = sinx có chu kì 2π, hàm số y = tanx có chu kì \frac{\pi}{2}

  • Câu 23: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về "góc lượng giác"?

    Trên đường tròn định hướng, góc hình học AOB có phân biệt điểm đầu A và điểm cuối B là góc lượng giác.

  • Câu 24: Nhận biết

    Cho \alpha thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây:

    Ta có \alpha thuộc góc phần tư thứ nhất của đường tròn lượng giác

    => \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha > 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight.

  • Câu 25: Vận dụng

    Phương trình \sin 2x = \frac{1}{2} có bao nhiêu nghiệm trên khoảng \left( {0;\frac{{15\pi }}{2}} ight)?

     Ta có: \sin 2x = \frac{1}{2} \Leftrightarrow \sin 2x = \sin \frac{\pi }{6}

    \Leftrightarrow \left[ \begin{gathered}  2x = \frac{\pi }{6} + k2\pi  \hfill \\  2x = \pi  - \frac{\pi }{6} + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{{12}} + k\pi  \hfill \\  x = \frac{{5\pi }}{{12}} + k\pi  \hfill \\ \end{gathered}  ight.    \left( {k \in \mathbb{Z}} ight)

    * Trường hợp 1: x = \frac{\pi }{{12}} + k\pi, \left( {k \in \mathbb{Z}} ight)

    0 < x < \frac{{15\pi }}{2} \Leftrightarrow 0 < \frac{\pi }{{12}} + k\pi  < \frac{{15\pi }}{2}

    \Leftrightarrow  - \frac{1}{{12}} < k < \frac{{89}}{{12}}\mathop  \Rightarrow \limits^{k \in \mathbb{Z}} k = \left\{ {0;1;2;3;4;5;6;7} ight\}.

    Vậy có tất cả 8 giá trị k tương ứng với trường hợp 1 có 8 nghiệm là:

    x = \frac{\pi }{{12}}; x = \frac{13\pi }{{12}}; x = \frac{25\pi }{{12}}; x = \frac{37\pi }{{12}}; x = \frac{49\pi }{{12}}; x = \frac{61\pi }{{12}}; x = \frac{73\pi }{{12}}; x = \frac{85\pi }{{12}}.

    * Trường hợp 2:  x = \frac{5\pi }{{12}} + k\pi, \left( {k \in \mathbb{Z}} ight) 

    0 < x < \frac{{15\pi }}{2} \Leftrightarrow 0 < \frac{{5\pi }}{{12}} + k\pi  < \frac{{15\pi }}{2}

    \Leftrightarrow  - \frac{5}{{12}} < k < \frac{{85}}{{12}}\mathop  \Rightarrow \limits^{k \in \mathbb{Z}} k = \left\{ {0;1;2;3;4;5;6;7} ight\}.

    Vậy có tất cả 8 giá trị k tương ứng với trường hợp 2 có 8 nghiệm là:

    x = \frac{5\pi }{{12}}; x = \frac{17\pi }{{12}}; x = \frac{29\pi }{{12}}; x = \frac{41\pi }{{12}}; x = \frac{53\pi }{{12}}; x = \frac{65\pi }{{12}}; x = \frac{77\pi }{{12}}; x = \frac{89\pi }{{12}}.

    Vậy trên khoảng \left( {0;\frac{{15\pi }}{2}} ight) phương trình đã cho có tất cả là 16 nghiệm.

  • Câu 26: Nhận biết

    Trong các hàm số sau hàm số nào là hàm số lẻ?

    Xét hàm số y = sinx:

    Lấy x \in D \Rightarrow  - x \in D ta có:

    \sin \left( { - x} ight) =  - \sin x \Rightarrow f\left( { - x} ight) =  - x

    Vậy hàm số y = sinx là hàm số lẻ.

  • Câu 27: Nhận biết

    Hàm số y = \cos x đồng biến trên khoảng nào sau đây?

    Hàm số y = cosx đồng biến trên mỗi khoảng (-π + k2π; k2π) và nghịch biến trên mỗi khoảng (k2π; π + k2π) với k ∈ Z.

  • Câu 28: Vận dụng

    Phương trình \sin x = \frac 1 2 có bao nhiêu nghiệm trên đoạn [0; 20 \pi]?

     Cách 1:

    Ta có \sin x = \frac{1}{2} \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight. , với k \in \mathbb {Z}

    +) 0\leqslant \frac{\pi }{6} + k2\pi  \leqslant 20\pi  \Rightarrow  - \frac{1}{{12}} \leqslant k \leqslant \frac{{119}}{{12}}.

    Lại có k \in \mathbb {Z} nên k \in \{0;1;2;3;4;5;6;7;8;9\}

    +)0 \leqslant \frac{{5\pi }}{6} + k2\pi  \leqslant 20\pi  \Rightarrow  - \frac{5}{{12}} \leqslant k \leqslant \frac{{115}}{{12}}.

    Lại có k \in \mathbb {Z} nên k \in \{0;1;2;3;4;5;6;7;8;9\}

    Vậy phương trình có 20 nghiệm trên đoạn [0; 20 \pi]

    Cách 2:

    Dùng đường tròn lượng giác, trên đoạn [0;2\pi] phương trình \sin x = \frac 1 2 có 2 nghiệm, tương tự với \left[ {2\pi ;4\pi } ight],\;\left[ {4\pi ;6\pi } ight],...\left[ {18\pi ;20\pi } ight].

    Có 10 đoạn như vậy, trên mỗi đoạn có 2 nghiệm nên suy ra phương trình đã cho có 2.10=20 trên [0; 20 \pi].

  • Câu 29: Vận dụng

    Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức h(t)= 29 + 3.\sin\frac{\pi}{12}(t - 9) với h tính bằng \
^{0}Ct là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ thấp nhất trong ngày là:

    Do - 1 \leq \sin\frac{\pi}{12}(t - 9)
\leq 1,\forall t nên

    \begin{matrix}
   - 3 \leqslant 3\sin \dfrac{\pi }{{12}}(t - 9) \leqslant 3 \hfill \\
   \Leftrightarrow 26 \leqslant 29 + 3\sin \dfrac{\pi }{{12}}(t - 9) \leqslant 32 \hfill \\
   \Leftrightarrow 26 \leqslant h(t) \leqslant 32 \hfill \\ 
\end{matrix}

    Do đó nhiệt độ thấp nhất trong ngày là 26^{0}C.

    Dấu bằng xảy ra\Leftrightarrow \sin\frac{\pi}{12}(t -9) = - 1

    \Leftrightarrow \frac{\pi}{12}(t - 9) = - \frac{\pi}{2} + k2\pi

    \Leftrightarrow t = 3 + 24k(k\mathbb{\in Z})

    Do 0 \leq t \leq 24 \Leftrightarrow 0
\leq 3 + 24k \leq 24 \Leftrightarrow \frac{- 3}{24} \leq k \leq
\frac{21}{24}.

    k\mathbb{\in Z} nên k = 0.

    Khi đó t = 3.

    Vậy lúc 3h là thời gian nhiệt độ thấp nhất trong ngày.

  • Câu 30: Vận dụng

    Biến đổi phương trình \cos 3x - \sin x = \sqrt 3 \left( {\cos x - \sin 3x} ight) về dạng \sin \left( {ax + b} ight) = \sin \left( {cx + d} ight) với b, d thuộc khoảng \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight). Tính b+d?

     Phương trình \Leftrightarrow \sqrt 3 \sin 3x + \cos 3x = \sin x + \sqrt 3 \cos x

    \Leftrightarrow \frac{{\sqrt 3 }}{2}\sin 3x + \frac{1}{2}\cos 3x = \frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x

    \Leftrightarrow \sin \left( {3x + \frac{\pi }{6}} ight) = \sin \left( {x + \frac{\pi }{3}} ight)

    Suy ra b + d = \frac{\pi }{6} + \frac{\pi }{3} = \frac{\pi }{2}.

  • Câu 31: Thông hiểu

    Hàm số đồng biến trên khoảng \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)là:

    Với x \in \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)  \to 2x \in \left( { - \frac{{2\pi }}{3};\frac{\pi }{3}} ight) \to 2x + \frac{\pi }{6} \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) thuộc góc phần tư thứ IV và thứ nhất nên hàm số y = \sin \left( {2x + \frac{\pi }{6}} ight) đồng biến trên khoảng \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)

  • Câu 32: Nhận biết

    Nghiệm của phương trình \cos x = -
\frac{1}{2}

    Ta có:

    \cos x = - \frac{1}{2} \Leftrightarrow
\cos x = \cos\left( \frac{2\pi}{3} ight)

    \Leftrightarrow x = \pm \frac{2\pi}{3} +
k2\pi\ \ \ \ (k \in Ζ)

  • Câu 33: Thông hiểu

    Phương trình sinx = \frac{\sqrt{3}}{2} có hai họ nghiệm có dạng x = \alpha + k\pix = \beta + k\pi, k \in \mathbb{Z}(0 < \alpha < \beta <
\pi). Khi đó, tính \beta -
\alpha ?

    Ta có \ sinx = \dfrac{\sqrt{3}}{2}\Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{\pi}{3} + k2\pi \\x = \dfrac{2\pi}{3} + k2\pi \\\end{matrix}\ (k \in \mathbb{Z}) ight..

    \Rightarrow \beta = \frac{2\pi}{3},\alpha
= \frac{\pi}{3} \Rightarrow \beta - \alpha = \frac{\pi}{3}.

  • Câu 34: Thông hiểu

    Hỏi trên \left[ {0;\frac{\pi }{2}} ight), phương trình 2{\sin ^2}x - 3\sin x + 1 = 0 có bao nhiêu nghiệm?

     Phương trình 2{\sin ^2}x - 3\sin x + 1 = 0 \Leftrightarrow \left[ \begin{gathered}  \sin x = \frac{1}{2} \hfill \\  \sin x = 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  \sin x = \sin \frac{\pi }{6} \hfill \\  \sin x = 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\  x = \frac{\pi }{2} + k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Theo giả thiết

    0 \leqslant x < \frac{\pi }{2} \Leftrightarrow \left[ \begin{gathered}  0 \leqslant \frac{\pi }{6} + k2\pi  < \frac{\pi }{2} \hfill \\  0 \leqslant \frac{{5\pi }}{6} + k2\pi  < \frac{\pi }{2} \hfill \\  0 \leqslant \frac{\pi }{2} + k2\pi  < \frac{\pi }{2} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}   - \frac{1}{{12}} < k < \frac{1}{6}\xrightarrow{{k \in \mathbb{Z}}}k = 0 \to x = \frac{\pi }{6} \hfill \\   - \frac{5}{{12}} < k <  - \frac{1}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k \in \emptyset  \hfill \\   - \frac{1}{4} < k < 0\xrightarrow{{k \in \mathbb{Z}}}k \in \emptyset  \hfill \\ \end{gathered}  ight.

    Vậy phương trình có duy nhất một nghiệm trên \left[ {0;\frac{\pi }{2}} ight).

  • Câu 35: Thông hiểu

    Biến đổi thành tích biểu thức \frac{sin7\alpha - sin5\alpha}{sin7\alpha +
sin5\alpha} ta được

    Ta có \frac{sin7\alpha -
sin5\alpha}{sin7\alpha + sin5\alpha} = \frac{2cos6\alpha \cdot
sin\alpha}{2sin6\alpha \cdot cos\alpha} =
\cot{6\alpha}.tan\alpha

  • Câu 36: Vận dụng cao

    Tìm tất các các giá trị thực của tham số m để phương trình \cos x -m =0 vô nghiệm?

     Áp dụng điều kiện có nghiệm của phương trình cos x = a.

    - Phương trình có nghiệm khi |a| \leq 1.

    - Phương trình vô nghiệm khi |a|>1.

    Phương trình \cos x - m = 0 \Leftrightarrow \cos x = m

    Do đó, phương trình \cos x -m =0 vô nghiệm \Leftrightarrow \left| m ight| > 1 \Leftrightarrow \left[ \begin{gathered}  m <  - 1 \hfill \\  m > 1 \hfill \\ \end{gathered}  ight..

  • Câu 37: Thông hiểu

    Xác định nghiệm của phương trình - \cos2x = \cos\left( x - 30^{0}ight)?

    Ta có:

    - \cos2x = \cos\left( x - 30^{0}ight)

    \Leftrightarrow \cos\left( 180^{0} - 2x
ight) = \cos\left( x - 30^{0} ight)

    \Leftrightarrow \left\lbrack
\begin{matrix}
x - 30^{0} = 180^{0} - 2x + k360^{0} \\
x - 30^{0} = - 180^{0} + 2x + k360^{0} \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 70^{0} + k120^{0} \\
x = 150^{0} - k360^{0} \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Vậy phương trình đã cho có nghiệm \left\lbrack \begin{matrix}
x = 70^{0} + k120^{0} \\
x = 150^{0} + k360^{0} \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight).

  • Câu 38: Vận dụng cao

    Nếu \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(q eq 0) thì P = cos^{2}(\alpha + \beta) + p\sin(\alpha +
\beta).cos(\alpha + \beta) + qsin^{2}(\alpha + \beta) bằng:

    Ta có: \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(q eq 0)nên theo định lí Vi – ét ta có: \left\{ \begin{matrix}
\tan\alpha + \tan\beta = p \\
\tan\alpha.tan\beta = q \\
\end{matrix} ight.

    \Rightarrow \tan(\alpha + \beta) =
\frac{\tan\alpha + \tan\beta}{1 - \tan\alpha.tan\beta} = \frac{p}{1 -
q}

    Khi đó:

    P = \cos^{2}(\alpha + \beta) +p\sin(\alpha + \beta).\cos(\alpha + \beta) + q\sin^{2}(\alpha +\beta)

    P = \cos^{2}(\alpha + \beta).\left\lbrack1 + p\tan(\alpha + \beta) + q\tan^{2}(\alpha + \beta)ightbrack

    P = \frac{1 + p\tan(\alpha + \beta) +q\tan^{2}(\alpha + \beta)}{1 + \tan^{2}(\alpha + \beta)}

    P = \dfrac{1 + p.\dfrac{p}{1 - q} +q.\left( \dfrac{p}{1 - q} ight)^{2}}{1 + \left( \dfrac{p}{1 - q}ight)^{2}}

    P = \dfrac{(1 - q)^{2} + p^{2}(1 - q) +q.p^{2}}{(1 - q)^{2} + p^{2}}

    P = \dfrac{(1 - q)^{2} + p^{2} - p^{2}.q+ q.p^{2}}{(1 - q)^{2} + p^{2}}

    P = 1

  • Câu 39: Thông hiểu

    Tổng giá trị lớn nhất và nhỏ nhất của hàm số y = 3cosx + 4

    Do - 1 \leq cosx \leq 1\forall x \in
\mathbb{R} nên 1 \leq 3cosx + 4
\leq 7,\forall x \in \mathbb{R}.

    Nên \max_{\mathbb{R}}\mspace{2mu} y =
7 đạt được khi cosx = 1
\Leftrightarrow x = k2\pi\ (k \in \mathbb{Z}).

    \min_{\mathbb{R}}\mspace{2mu} y =
1 đạt được khi cosx = - 1
\Leftrightarrow x = \pi + k2\pi(k \in \mathbb{Z}).

    Suy ra \max_{\mathbb{R}}\mspace{2mu} y +
\min_{\mathbb{R}}\mspace{2mu} y = 8.

  • Câu 40: Nhận biết

    Tìm tập xác định của hàm số y = \frac{{ \sin 2x}}{{\cos x - 1}}

    Hàm số xác định khi và chỉ khi

    \cos x - 1 e 0 \Leftrightarrow \cos x e 1 \Leftrightarrow x e k2\pi ,{\text{ }}k \in \mathbb{Z}

    Vậy tập xác định {\text{D}} = \mathbb{R}\backslash \left\{ {k2\pi ,k \in \mathbb{Z}} ight\}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo