Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số f(x) = \cos xg(x) = \sin x. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Hàm số g(x) là hàm số chẵn. Sai||Đúng

    b) Trong khoảng (0 ; 2\pi) đồ thị hai hàm số y = f(x)y = g(x) cắt nhau tại hai điểm. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x) +
g(x) bằng 2. Sai||Đúng

    d) Hàm số y = f(x) + g(x) đạt giá trị nhỏ nhất khi x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight). Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) = \cos xg(x) = \sin x. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Hàm số g(x) là hàm số chẵn. Sai||Đúng

    b) Trong khoảng (0 ; 2\pi) đồ thị hai hàm số y = f(x)y = g(x) cắt nhau tại hai điểm. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x) +
g(x) bằng 2. Sai||Đúng

    d) Hàm số y = f(x) + g(x) đạt giá trị nhỏ nhất khi x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight). Đúng||Sai

    a) Sai

    TXĐ: D\mathbb{= R}. Do đó \forall x \in D \Rightarrow - x \in
D.

    Ta có \forall x \in D:g( - x) = \sin( -
x) = - \sin(x) = - g(x) \Rightarrow g(x) là hàm số lẻ.

    b) Đúng

    Phương trình \sin x = \cos x trong khoảng (0 ; 2\pi) có hai nghiệm x = \frac{\pi}{4}x = \frac{5\pi}{4}

    c) Sai

    Ta có: y = \sin x + \cos x =
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) , mà \forall x: - 1 \leq \sin\left( x + \frac{\pi}{4}
ight) \leq 1

    \Leftrightarrow - \sqrt{2} \leq
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) \leq \sqrt{2}.

    Vậy giá trị lớn nhất của hàm số y = \sin
x + \cos x bằng \sqrt{2}, khi \sin\left( x + \frac{\pi}{4} ight) =
1.

    d) Đúng

    Giá trị nhỏ nhất của hàm số y = \sin x +
\cos x bằng - \sqrt{2}, khi \sin\left( x + \frac{\pi}{4} ight) = -
1

    \Leftrightarrow x + \frac{\pi}{4} = -\frac{\pi}{2} + k2\pi\left( k\mathbb{\in Z} ight)

    \Leftrightarrow x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight).

  • Câu 2: Thông hiểu

    Tìm chu kì T của hàm số y = \tan 3\pi x.

    Hàm số y = \tan \left( {ax + b} ight) tuần hoàn với chu kì T\,\, = \,\,\frac{\pi }{{\left| a ight|}}

    Áp dụng: Hàm số y = \tan 3\pi x tuần hoàn với chu kì T = \frac{1}{3}

  • Câu 3: Thông hiểu

    Trên đường tròn định hướng, mỗi cung lượng giác \mathop {AB}^{\displaystyle\frown} xác định:

    Trên đường tròn định hướng, mỗi cung lượng giác \mathop {AB}^{\displaystyle\frown} xác định vô số góc lượng giác tia đầu OA, tia cuối OB.

  • Câu 4: Thông hiểu

    Biết rằng \frac{\sin\dfrac{\pi}{9} +\sin\dfrac{5\pi}{9}}{\cos\dfrac{\pi}{9} + \cos\dfrac{5\pi}{9}} = \tan\left(\dfrac{m\pi}{n} ight) với m,n\in\mathbb{ N} và \frac{m}{n} tối giản. Khi đó kết quả nào sau đây đúng?

    Ta có:

    \frac{\sin\dfrac{\pi}{9} +\sin\dfrac{5\pi}{9}}{\cos\dfrac{\pi}{9} + \cos\dfrac{5\pi}{9}} =\frac{2\sin\dfrac{\pi}{3}\cos\left( - \dfrac{2\pi}{9}ight)}{2\cos\dfrac{\pi}{3}\cos\left( - \dfrac{2\pi}{9} ight)} =\tan\left( \dfrac{\pi}{3} ight)

    \Rightarrow \left\{ \begin{matrix}
m = 1 \\
n = 3 \\
\end{matrix} ight.\  \Rightarrow n - m = 2

  • Câu 5: Thông hiểu

    Cho góc \alpha thỏa mãn \sin2\alpha = \frac{2}{3}. Tính giá trị của biểu thức P = \sin^{4}\alpha +\cos^{4}a.

    Ta có:

    P = \sin^{4}\alpha +\cos^{4}a

    = \left( \sin^{2}\alpha + \cos^{2}\alphaight)^{2} - 2\sin^{2}\alpha \cos^{2}\alpha

    = 1 - \dfrac{1}{2}\left(2\sin\alpha\cos\alpha ight)^{2}

    = 1 -\dfrac{1}{2}\sin^{2}(2\alpha)

    = 1 - \frac{1}{2}.\left( \frac{2}{3}ight)^{2} = \frac{7}{9}

  • Câu 6: Vận dụng cao

    Gọi M,\ m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y =sin^{2}x - 4sinx + 5. Tính P = M -2m^{2}.

    Ta có: 

    y = sin^{2}x - 4sinx + 5 = \left(\sin x - 2 ight)^{2} + 1.

    Do - 1 \leq \sin x \leq 1

    \begin{matrix}\Leftrightarrow - 3 \leq \sin x - 2 \leq - 1 \\\Leftrightarrow 1 \leq \left( \sin x - 2 ight)^{2} \leq 9 \\\end{matrix}

    \begin{matrix}\Leftrightarrow 2 \leq \left( \sin x - 2 ight)^{2} + 1 \leq 10 \hfill\\\Leftrightarrow \left\{ \begin{matrix}M = 10 \\m = 2 \hfill\\\end{matrix} ight.\  \hfill \\\Leftrightarrow P = M - 2m^{2} = 2.\hfill \\\end{matrix}

  • Câu 7: Thông hiểu

    Cho phương trình lượng giác 4cos2x = m - 1\ \ (*)

    a) Với m = 5, phương trình (*) có nghiệm là x = k\pi,\left( k\mathbb{\in Z}
ight) Đúng||Sai

    b) Với m = 3, phương trình (*) có một nghiệm là x = \frac{\pi}{6} Đúng||Sai

    c) Với m = - 3 thì số nghiệm của phương trình (*) trên đoạn \lbrack
0;2\pibrack là 3. Sai||Đúng

    d) Số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 8. Sai||Đúng

    Đáp án là:

    Cho phương trình lượng giác 4cos2x = m - 1\ \ (*)

    a) Với m = 5, phương trình (*) có nghiệm là x = k\pi,\left( k\mathbb{\in Z}
ight) Đúng||Sai

    b) Với m = 3, phương trình (*) có một nghiệm là x = \frac{\pi}{6} Đúng||Sai

    c) Với m = - 3 thì số nghiệm của phương trình (*) trên đoạn \lbrack
0;2\pibrack là 3. Sai||Đúng

    d) Số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 8. Sai||Đúng

    Thay m = 5 vào (*) ta được:

    4cos2x = 4 \Leftrightarrow cos2x =
1

    \Leftrightarrow 2x = k2\pi
\Leftrightarrow x = k\pi;\left( k\mathbb{\in Z} ight)

    Thay m = 3 vào (*) ta được:

    4cos2x = 2 \Leftrightarrow cos2x =
\frac{1}{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x = \frac{\pi}{3} + k2\pi \\
2x = - \frac{\pi}{3} + k2\pi \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \frac{\pi}{6} + k\pi \\
x = - \frac{\pi}{6} + k\pi \\
\end{matrix} ight.\ \left( k\mathbb{\in Z} ight)

    Với k = 0 thì phương trình có nghiệm x = \frac{\pi}{6} .

    Thay m = - 3 vào (*) ta được:

    4cos2x = - 4 \Leftrightarrow cos2x = -
1

    \Leftrightarrow 2x = \pi + k2\pi;\left(
k\mathbb{\in Z} ight)

    \Leftrightarrow x = \frac{\pi}{2} +
k\pi;\left( k\mathbb{\in Z} ight)

    Vì xét nghiệm trên đoạn \lbrack
0;2\pibrack nên ta có:

    0 \leq \frac{\pi}{2} + k\pi \leq 2\pi
\Leftrightarrow - \frac{1}{2} \leq k \leq \frac{3}{2}

    k\mathbb{\in Z \Rightarrow}k = \left\{
0;1 ight\}

    Vậy với m = - 3 thì số nghiệm của phương trình (*) trên đoạn \lbrack
0;2\pibrack là 2.

    d) Ta có: 4cos2x = m - 1 \Leftrightarrow
cos2x = \frac{m - 1}{4}

    Để phương trình có nghiệm thì - 1 \leq
\frac{m - 1}{4} \leq 1 \Leftrightarrow - 4 \leq m - 1 \leq
4

    \Leftrightarrow - 3 \leq m \leq
5m\mathbb{\in Z \Rightarrow}m =
\left\{ - 3; - 2; - 1;0;1;2;3;4;5 ight\}

    Vậy số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 10.

  • Câu 8: Thông hiểu

    Tìm giá trị thực của tham số m để phương trình \left( {m - 2} ight)\sin 2x = m + 1 nhận x = \frac{\pi }{{12}} làm nghiệm. 

     Vì x = \frac{\pi }{{12}}là một nghiệm của phương trình \left( {m - 2} ight)\sin 2x = m + 1nên ta có:

    \left( {m - 2} ight).\sin \frac{{2\pi }}{{12}} = m + 1

    \Leftrightarrow \frac{{m - 2}}{2} = m + 1 \Leftrightarrow m - 2 = 2m + 2 \Leftrightarrow m =  - \,4.

    Vậy m = - 4 là giá trị cần tìm.

  • Câu 9: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Vì hàm số y = tan x tuần hoàn với chu kì π

    Nên đáp án: “Hàm số y = tanx tuần hoàn với chu kì 2π” là đáp án sai.

  • Câu 10: Thông hiểu

    Số nghiệm của phương trình: \sqrt {1 - {x^2}} \sin x = 0

     Điều kiện xác định: x \in \left[ { - 1;1} ight]

    \begin{matrix}  \sqrt {1 - {x^2}} \sin x = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sqrt {1 - {x^2}}  = 0} \\   {\sin x = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {1 - {x^2} = 0} \\   {x = k\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm 1} \\   {x = k\pi ;\left( {k \in \mathbb{Z}} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Với k = 0 => x = 0 (thỏa mãn)

    Vậy phương trình có tất cả 3 nghiệm.

  • Câu 11: Thông hiểu

    Rút gọn biểu thức: F = \sin(x - y).\cos y + \cos(x - y)\sin y

    Áp dụng công thức \sin(a + b) = \sin
a\cos b + \cos a\sin b ta được:

    F = \sin(x - y).cosy + \cos(x - y)\sin
y

    F = \sin\left\lbrack (x - y) + y
ightbrack = \sin x

  • Câu 12: Vận dụng cao

    Tính tổng các nghiệm trong đoạn [0;30] của phương trình: \tan x = \tan 3x

    Điều kiện để phương trình có nghĩa:

    \left\{ {\begin{array}{*{20}{c}}  {\cos {\text{x}} e 0} \\   {\cos 3{\text{x}} e 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x e \dfrac{\pi }{2} + k\pi } \\   {x e \dfrac{\pi }{6} + \dfrac{{k\pi }}{3}} \end{array}} ight.\left( * ight)

    Khi đó, phương trình 3{\text{x}} = x + k\pi  \Leftrightarrow x = \frac{{k\pi }}{2} so sánh với đk

    \left[ \begin{gathered}  x = k2\pi  \hfill \\  x = \pi  + k2\pi  \hfill \\ \end{gathered}  ight.\,,\,x =  \in \left[ {0;30} ight]

    \Rightarrow k = \left\{ {0;...;4} ight\} \Rightarrow x \in \left\{ {0;\pi ;2\pi ;....;9\pi } ight\}

    Vậy, tổng các nghiệm trong đoạn  [0;30]  của phương trình là: 45\pi.

  • Câu 13: Thông hiểu

    Đồ thị hàm số y = \sin x được suy từ đồ thị (C) của hàm số bằng cách:

    Ta có

    y = \sin x = \cos \left( {\frac{\pi }{2} - x} ight) = \cos \left( {x - \frac{\pi }{2}} ight)

    =>Đồ thị hàm số y = \sin x được suy từ đồ thị (C) của hàm số bằng cách tịnh tiến (C) qua phải một đoạn có độ dài là \frac{\pi }{2}

  • Câu 14: Thông hiểu

    Hàm số đồng biến trên khoảng \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)là:

    Với x \in \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)  \to 2x \in \left( { - \frac{{2\pi }}{3};\frac{\pi }{3}} ight) \to 2x + \frac{\pi }{6} \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) thuộc góc phần tư thứ IV và thứ nhất nên hàm số y = \sin \left( {2x + \frac{\pi }{6}} ight) đồng biến trên khoảng \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)

  • Câu 15: Nhận biết

    Trong các phương trình sau, phương trình nào tương đương với phương trình 2{\cos ^2}x = 1?

    Ta có 2{\cos ^2}x = 1 \Leftrightarrow {\cos ^2}x = \frac{1}{2} . Mà {\sin ^2}x + {\cos ^2}x = 1 \to {\sin ^2}x = \frac{1}{2}.

    Do đó {\tan ^2}x = \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} = 1. Vậy 2{\cos ^2}x = 1 \Leftrightarrow {\tan ^2}x = 1.

  • Câu 16: Thông hiểu

    Cho \frac{\pi}{2}
< \alpha < \pi. Giá trị lượng giác nào sau đây luôn dương?

    Ta có:

    \sin(\pi + \alpha) = -
\sin\alpha

    \cos\left( \frac{\pi}{2} - \alpha
ight) = \sin\alpha

    \cos( - \alpha) =
\cos\alpha

    \tan(\alpha + \pi) =
\tan\alpha

    Theo bài ra \frac{\pi}{2} < \alpha
< \pi

    => \left\{ \begin{matrix}
\sin\alpha > 0 \\
\cos\alpha < 0 \\
\tan\alpha < 0 \\
\end{matrix} ight.

  • Câu 17: Vận dụng

    Trên đường tròn với điểm gốc là A. Điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo 60^{0}. Gọi N là điểm đối xứng với điểm M qua trục Oy, số đo cung AN là:

    Hình vẽ minh họa

    Ta có: \widehat{AOM} =
60^{0};\widehat{MON} = 60^{0}

    => \widehat{AON} =
120^{0}

    Khi đó số đo cung AN bằng 120^{0}.

  • Câu 18: Nhận biết

    Phương trình lượng giác \cos 3x = \cos \frac{\pi }{{15}} có nghiệm là ?

     Ta có: \cos 3x = \cos \frac{\pi }{{15}} \Leftrightarrow 3x =  \pm \frac{\pi }{{15}} + k2\pi

    \Leftrightarrow x =  \pm \frac{\pi }{{45}} + \frac{{k2\pi }}{3}

  • Câu 19: Thông hiểu

    Cho \alpha =
\frac{\pi}{2} + k2\pi. Xác định k để 10\pi < \alpha < 11\pi.

    Ta có:

    10\pi < \alpha < 11\pi

    \Rightarrow 10\pi < \frac{\pi}{2} +
k2\pi < 11\pi

    \Rightarrow \frac{19\pi}{2} < k2\pi
< \frac{21\pi}{2}

    \Rightarrow k = 5

  • Câu 20: Vận dụng

    Số nghiệm của phương trình 2 \sin^{2}x-5 \sin x+3=0 thuộc \left [ 0;2\pi  ight ] là:

     Giải phương trình:

    \begin{matrix}  2{\sin ^2}x - 5\sin x + 3 = 0 \hfill \\   \Leftrightarrow \left( {\sin x - 1} ight)\left( {2\sin x - 3} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sin x - 1 = 0} \\   {2\sin x - 3 = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sin x = 1} \\   {\sin x = \dfrac{3}{2}\left( L ight)} \end{array}} ight. \hfill \\  \sin x = 1 \Rightarrow x = \dfrac{\pi }{2} + k2\pi ,\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Ta có: x \in \left[ {0;2\pi } ight]

    \begin{matrix}   \Rightarrow 0 \leqslant \dfrac{\pi }{2} + k2\pi  \leqslant 2\pi  \hfill \\   \Rightarrow  - \dfrac{1}{4} \leqslant k \leqslant \dfrac{3}{4} \Rightarrow k = 0 \hfill \\ \end{matrix}

  • Câu 21: Vận dụng cao

    Nếu \alpha +\beta + \gamma = \frac{\pi}{2}\cot\alpha + \cot\gamma = 2\cot\beta thì \cot\alpha.\cot\gamma bằng bao nhiêu?

    Từ giả thiết ta có:

    \alpha + \beta + \gamma = \frac{\pi}{2}\Rightarrow \beta = \frac{\pi}{2} - (\alpha + \gamma)

    Ta có:

    \cot\alpha + \cot\gamma =2\cot\beta

    = 2\cot\left\lbrack \frac{\pi}{2} -(\alpha + \gamma) ightbrack = 2\tan(\alpha + \gamma)

    = 2.\frac{\tan\alpha + \tan\gamma}{1 -\tan\alpha.\tan\gamma}

    Mặt khác

    \dfrac{\tan\alpha + \tan\gamma}{1 -\tan\alpha.\tan\gamma} = \dfrac{\dfrac{1}{\cot\alpha} +\dfrac{1}{\cot\gamma}}{1 - \dfrac{1}{\cot\alpha}.\dfrac{1}{\cot\gamma}} =\dfrac{\cot\alpha + \cot\gamma}{\cot\alpha.\cot\gamma - 1}

    \Rightarrow \cot\alpha + \cot\gamma =2.\frac{\cot\alpha + \cot\gamma}{\cot\alpha.\cot\gamma - 1}

    \Leftrightarrow \cot\alpha.\cot\gamma - 1= 2

    \Leftrightarrow \cot\alpha.\cot\gamma =3

  • Câu 22: Nhận biết

    Tập nghiệm của phương trình \sin x = 0 là: 

     Ta có:

    \begin{matrix}  \sin x = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = k2\pi } \\   {x = \pi  + k2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\   \Leftrightarrow x = k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 23: Vận dụng

    Giá trị lớn nhất của hàm số y = \frac{\sin x + 2\cos x + 1}{\sin x + \cos x +2} tại điểm là nghiệm của phương trình nào dưới đây?

    Theo bài ra ta có:

    y = \frac{\sin x + 2\cos x + 1}{\sin x + \cos x +2}

    \Leftrightarrow y.\left( \sin x + \cos x+ 2 ight) = \sin x + 2\cos x + 1

    \Leftrightarrow (y - 1).\sin x + (y -2)\cos x = 1 - 2y(*)

    Phương trình (*) có nghiệm

    \Leftrightarrow (y - 1)^{2} + (y -
2)^{2} \geq 1 - 2y

    \Leftrightarrow y^{2} + y - 2 \leq
0

    \Leftrightarrow - 2 \leq y \leq
1

    Vậy giá trị lớn nhất của hàm số bằng 1 lúc đó - \cos x = - 1

  • Câu 24: Vận dụng

    Cho phương trình lượng giác \left(\sqrt{3} - 1 ight)\sin x + \left( \sqrt{3} + 1 ight)\cos x =2\sqrt{2}\sin2x, vậy:

    a) Phương trình đã cho tương đương với \sin(x + \dfrac{7\pi}{12}) = \sin 2x. Đúng||Sai

    b) Trên khoảng (0;2\pi) phương trình có 4 nghiệm. Đúng||Sai

    c) Trên khoảng (0;2\pi) thì x = \frac{5\pi}{36} là nghiệm nhỏ nhất. Sai||Đúng

    d) Tổng các nghiệm nằm trong khoảng (0;2\pi) của phương trình bằng 3\pi. Đúng||Sai

    Đáp án là:

    Cho phương trình lượng giác \left(\sqrt{3} - 1 ight)\sin x + \left( \sqrt{3} + 1 ight)\cos x =2\sqrt{2}\sin2x, vậy:

    a) Phương trình đã cho tương đương với \sin(x + \dfrac{7\pi}{12}) = \sin 2x. Đúng||Sai

    b) Trên khoảng (0;2\pi) phương trình có 4 nghiệm. Đúng||Sai

    c) Trên khoảng (0;2\pi) thì x = \frac{5\pi}{36} là nghiệm nhỏ nhất. Sai||Đúng

    d) Tổng các nghiệm nằm trong khoảng (0;2\pi) của phương trình bằng 3\pi. Đúng||Sai

    Phương trình \Leftrightarrow \sqrt{3}\sin x + \cos x + \sqrt{3}\cos x - \sin x = 2\sqrt{2}\sin2x

    \Leftrightarrow sin(x + \frac{\pi}{6}) +
cos(x + \frac{\pi}{6}) = \sqrt{2}sin2x

    \Leftrightarrow \sin\left( x +
\frac{7\pi}{12} ight) = sin2x

    \Leftrightarrow \left\lbrack\begin{matrix}2x = x + \dfrac{7\pi}{12} + k2\pi \\2x = \pi - x - \dfrac{7\pi}{12} + k2\pi \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{7\pi}{12} + k2\pi \\x = \dfrac{5\pi}{36} + k\dfrac{2\pi}{3} \\\end{matrix} ight..

    Do x \in (0;2\pi) nên phương trình có các nghiệm là: \frac{7\pi}{12};\
\frac{5\pi}{36};\ \frac{29\pi}{36};\ \frac{53\pi}{36}.

    Vậy tổng các nghiệm cần tính là: 3\pi.

    Kết luận:

    a) Đúng

    b) Đúng

    c) Sai

    d) Đúng

  • Câu 25: Vận dụng

    Biến đổi phương trình \cos 3x - \sin x = \sqrt 3 \left( {\cos x - \sin 3x} ight) về dạng \sin \left( {ax + b} ight) = \sin \left( {cx + d} ight) với b, d thuộc khoảng \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight). Tính b+d?

     Phương trình \Leftrightarrow \sqrt 3 \sin 3x + \cos 3x = \sin x + \sqrt 3 \cos x

    \Leftrightarrow \frac{{\sqrt 3 }}{2}\sin 3x + \frac{1}{2}\cos 3x = \frac{1}{2}\sin x + \frac{{\sqrt 3 }}{2}\cos x

    \Leftrightarrow \sin \left( {3x + \frac{\pi }{6}} ight) = \sin \left( {x + \frac{\pi }{3}} ight)

    Suy ra b + d = \frac{\pi }{6} + \frac{\pi }{3} = \frac{\pi }{2}.

  • Câu 26: Nhận biết

    Chọn công thức đúng trong các công thức cho sau đây? (Biết các biểu thức đều xác định).

    Công thức đúng là:

    \sin^{2}x + \cos^{2}x = 1

  • Câu 27: Nhận biết

    Với x \in \left( {\frac{{31\pi }}{4};\frac{{33\pi }}{4}} ight), mệnh đề nào sau đây là đúng?

    Ta có \left( {\frac{{31\pi }}{4};\frac{{33\pi }}{4}} ight) = \left( { - \frac{\pi }{4} + 8\pi ;\frac{\pi }{4} + 8\pi } ight) thuộc góc phần tư thứ I và II.

  • Câu 28: Thông hiểu

    Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = 8 - 4\cos \left( {\frac{\pi }{4} - 3x} ight) là:

     Ta có: 

    \begin{matrix}   - 1 \leqslant \cos \left( {\dfrac{\pi }{4} - 3x} ight) \leqslant 1 \hfill \\   \Rightarrow 4 \geqslant  - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant  - 4 \hfill \\   \Rightarrow 8 + 4 \geqslant 8 - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant 8 - 4 \hfill \\   \Rightarrow 12 \geqslant y \geqslant 4 \hfill \\ \end{matrix}

    => M = 12; m = 4

  • Câu 29: Vận dụng

    Cho \widehat{A};\widehat{B};\widehat{C} là các góc của tam giác ABC. Khi đó:

    P =\tan\frac{\widehat{A}}{2}\tan\frac{\widehat{B}}{2} +\tan\frac{\widehat{B}}{2}.\tan\frac{\widehat{C}}{2} +\tan\frac{\widehat{C}}{2}.\tan\frac{\widehat{A}}{2}

    Ta có: \widehat{A} + \widehat{B} +\widehat{C} = \pi

    \Rightarrow \frac{\widehat{B} +\widehat{C}}{2} = \frac{\pi}{2} - \frac{\widehat{A}}{2}

    \Rightarrow \tan\left( \frac{\widehat{B}+ \widehat{C}}{2} ight) = \tan\left( \frac{\pi}{2} -\frac{\widehat{A}}{2} ight)

    \Rightarrow\dfrac{\tan\dfrac{\widehat{C}}{2} + \tan\dfrac{\widehat{B}}{2}}{1 -\tan\dfrac{\widehat{C}}{2}.\tan\dfrac{\widehat{B}}{2}} =\cot\frac{\widehat{A}}{2} =\dfrac{1}{\tan\dfrac{\widehat{A}}{2}}

    \Rightarrow\tan\frac{\widehat{A}}{2}.\left( \tan\frac{\widehat{C}}{2} +\tan\frac{\widehat{B}}{2} ight) +\tan\frac{\widehat{C}}{2}.\tan\dfrac{\widehat{B}}{2} = 1

    \Rightarrow\tan\dfrac{\widehat{A}}{2}.\tan\dfrac{\widehat{B}}{2} +\tan\dfrac{\widehat{B}}{2}.\tan\dfrac{\widehat{C}}{2} +\tan\dfrac{\widehat{C}}{2}.\tan\dfrac{\widehat{A}}{2} = 1

  • Câu 30: Vận dụng

    Cho các hàm số sau, hàm số nào là hàm số lẻ?

    Ta có: y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x

    Ta kiểm tra được y = x^{4} + \cos\left( x
- \frac{\pi}{3} ight)y =
tan^{2017}x + sin^{2018}x là hàm số không chẵn không lẻ

    y = 2015 + \cos x + sin^{2018}x là hàm số chẵn

    y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x là hàm số lẻ

    Vậy y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x là hàm số lẻ

  • Câu 31: Nhận biết

    Có bao nhiêu đẳng thức luôn đúng trong các đẳng thức sau đây (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa)?

    i) \cos^{2}\alpha =
\frac{1}{\tan^{2}\alpha + 1}.

    iii) \sqrt{2}\cos\left( \alpha +
\frac{\pi}{4} ight) = \cos\alpha + \sin\alpha.

    ii) sin\left( \alpha - \frac{\pi}{2}
ight) = - cos\alpha.

    iv) cot2\alpha = 2\cot^{2}\alpha -
1.

    i) Ta có: \frac{1}{\cos^{2}\alpha} = 1 +
\tan^{2}\alpha \Leftrightarrow \cos^{2}\alpha = \frac{1}{1 +
\tan^{2}\alpha}

    Vậy i) đúng.

    ii) sin\left( \alpha - \frac{\pi}{2}
ight) = - sin\left( \frac{\pi}{2} - \alpha ight) = -
cos\alpha.

    Vậy ii) đúng.

    iii) \sqrt{2}cos\left( \alpha +
\frac{\pi}{4} ight) = \sqrt{2}\left( cos\alpha cos\frac{\pi}{4} -
sin\alpha sin\frac{\pi}{4} ight) = cos\alpha - sin\alpha.

    Vậy iii) sai.

    iv) Ta lấy \alpha =
\frac{\pi}{3}. Ta có VP =
cot2\alpha = cot2 \cdot \frac{\pi}{3} = - \frac{\sqrt{3}}{3},VT =
2\cot^{2}\left( \frac{\pi}{3} ight) - 1 = - \frac{1}{3}.

    Ta có VP eq VT.

    Do đó iv) sai.

    Vậy có 2 đẳng thức đúng.

  • Câu 32: Thông hiểu

    Phương trình \sin x = \sin \frac{\pi }{3} có nghiệm là:

     Giải phương trình:

    \begin{matrix}  \sin x = \sin \dfrac{\pi }{3} \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{3} + k2\pi } \\   {x = \pi  - \dfrac{\pi }{3} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{3} + k2\pi } \\   {x = \dfrac{{2\pi }}{3} + k2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 33: Nhận biết

    Nghiệm của phương trình \sin x. \cos x = \frac{1}{2} là?

     Ta có: \sin x.cosx = \frac{1}{2} \Leftrightarrow \sin 2x = 1

    \Leftrightarrow 2x = \frac{\pi }{2} + k2\pi  \Leftrightarrow x = \frac{\pi }{4} + k\pi.

  • Câu 34: Nhận biết

    Hai hàm số nào sau đây có chu kì khác nhau?

    Hai hàm số \left\{ \begin{matrix}y = \cos x \\y = \cot\dfrac{x}{2} \\\end{matrix} ight. có cùng chu kì 2π

    Hai hàm số \left\{ \begin{matrix}y = \sin\dfrac{x}{2} \\y = \cos\dfrac{x}{2} \\\end{matrix} ight. có cùng chu kì 4π

    Hai hàm số \left\{ \begin{matrix}y = tan2x \\y = cot2x \\\end{matrix} ight. có cùng chu kì \frac{\pi}{2}

    Hàm số y = sinx có chu kì 2π, hàm số y = tanx có chu kì \frac{\pi}{2}

  • Câu 35: Nhận biết

    Khẳng định nào sau đây sai?

    Trên khoảng \left( 0;\frac{\pi}{2}
ight) thì hàm số y =
tanx đồng biến.

  • Câu 36: Nhận biết

    Tập nghiệm của phương trình \cos x = \frac{{\sqrt 2 }}{2} là?

    \cos x = \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos x = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k2\pi  \hfill \\  x =  - \frac{\pi }{4} + k2\pi  \hfill \\ \end{gathered}  ight.,k \in \mathbb{Z}

  • Câu 37: Thông hiểu

    Nghiệm của phương trình 2cos (2x) =-2

    Ta có: 2 \cos 2x = -2 \Leftrightarrow \cos 2x=-1 \Leftrightarrow 2 x= \pi + k2\pi

    \Leftrightarrow x = \frac{\pi}{2} +k \pi , \, k \in \mathbb{Z}.

  • Câu 38: Thông hiểu

    Trong các hàm số sau, hàm số nào là hàm số tuần hoàn?

    Hàm số y = x + \sin x là hàm số không tuần hoàn

    Tập xác định D=\mathbb{ R}

    Giả sử

    \begin{matrix}f(x + T) = f(x),\forall x \in D \hfill \\\Rightarrow (x + T) + \sin(x + T) = x + \sin x;\forall x \in D \hfill \\\Rightarrow T + \sin(x + T) = \sin x,\forall x \in D \hfill \\\end{matrix}

    Cho x = 0 và x = π ta được

    \begin{matrix}\left\{ \begin{matrix}T + \sin x = sin0 = 0 \\T + \sin(T + \pi) = \sin\pi = 0 \hfill\\\end{matrix} ight.\ \hfill \\\Rightarrow 2T + \sin T + \sin(T + \pi) = 0 \Rightarrow T = 0 \hfill\\\end{matrix}

    Điều này trái với định nghĩa T > 0

    Vậy hàm số y = x + sinx không phải là hàm số tuần hoàn

    Tương tự chứng minh cho các hàm số y =
x\cos xy = \frac{\sin
x}{x} không tuần hoàn.

    Vậy hàm số y = \sin x là hàm số tuần hoàn

  • Câu 39: Nhận biết

    Trên đường tròn cung có số đo 1 rad là?

    Cung có độ dài bằng bán kính (nửa đường kính) thì có số đó bằng 1 rad.

  • Câu 40: Nhận biết

    Trong các hàm số sau hàm số nào là hàm số lẻ?

    Xét hàm số y = sinx:

    Lấy x \in D \Rightarrow  - x \in D ta có:

    \sin \left( { - x} ight) =  - \sin x \Rightarrow f\left( { - x} ight) =  - x

    Vậy hàm số y = sinx là hàm số lẻ.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 31 lượt xem
Sắp xếp theo