Cho góc
thỏa mãn
và
. Tính ![]()
Ta có:
=> cùng dấu
Mà
Ta có:
Khi đó:
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có:
=> cùng dấu
Mà
Ta có:
Khi đó:
Phương trình
có tổng các nghiệm trên
bằng:
Điều kiện xác định:
Do nên phương trình đã cho tương đương với
Vì
Hàm số đồng biến trên khoảng
là:
Với thuộc góc phần tư thứ IV và thứ nhất nên hàm số
đồng biến trên khoảng
Khẳng định nào sau đây sai?
Trên khoảng thì hàm số
đồng biến.
Rút gọn biểu thức ![]()
Vì hai góc và
phụ nhau nên
Với x thuộc (0;1), hỏi phương trình
có bao nhiêu nghiệm?
Phương trình
- Với .
có 6 nghiệm.
- Với .
có 6 nghiệm.
Vậy phương trình đã cho có 12 nghiệm.
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
Thực hiện kiểm tra đáp án ta thấy:
Hàm số là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ
Hàm số không chẵn không lẻ
Hàm số và hàm số
là hàm số chẵn.
Phương trình
có nghiệm thỏa mãn x nằm trong khoảng
là:
Giải phương trình:
Do =>
thỏa mãn
Cho góc lượng giác
thỏa mãn
và
. Tính ![]()
Ta có:
Từ hệ thức
Do nên
Thay vào biểu thức ta được:
Một đồng hồ treo tường, kim giờ dài 10,57cm và kim phút dài 13,34cm. Trong 30 phút mũi kim giờ vạch lên cung tròn có độ dài là
Ta có: 6 giờ thì kim giờ vạch lên 1 cung có số đo
=> 30 phút kim giờ vạch lên 1 cung có số đo là
=> Độ dài cung tròn mà nó vạch lên là
Tìm số nghiệm của phương trình
trên đoạn
.
Ta có:
Vì nên
. Do đó phương trình
Vì nên
.
Giá trị lớn nhất của hàm số
tại điểm là nghiệm của phương trình nào dưới đây?
Theo bài ra ta có:
Phương trình (*) có nghiệm
Vậy giá trị lớn nhất của hàm số bằng 1 lúc đó
Khẳng định nào sau đây đúng?
Ta có:
Trong các mệnh đề sau, mệnh đề nào sai?
Vì hàm số y = tan x tuần hoàn với chu kì π
Nên đáp án: “Hàm số y = tanx tuần hoàn với chu kì 2π” là đáp án sai.
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua trục tung?
Ta dễ dàng kiểm tra được các hàm số
là các hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ O
Xét hàm số ta có:
Kiểm tra được đây là hàm số chẵn nên có đồ thị đối xứng qua trục tung.
Nghiệm của phương trình
là
Cho góc
thỏa mãn
. Giá trị của biểu thức ![]()
Ta có:
Ta có:
Khi đó giá trị biểu thức G là:
Trên đường tròn lượng giác, cung có số đo
được biểu diễn bởi bao nhiêu điểm?
Xét theo chiều dương với ta thấy cung có số đo
được biểu diễn bởi ba điểm trên đường tròn lượng giác như sau:
Tìm tập giá trị của hàm số
?
Ta có:
(với
)
Lại có:
Vậy tập giá trị của hàm số là
Nếu
và
là hai nghiệm của phương trình
thì
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Tìm giá trị nhỏ nhất
của hàm số
.
Ta có
Mà
Do đó giá trị nhỏ nhất của hàm số là
Đổi số đo của góc
sang đơn vị radian:
Áp dụng công thức với
tính bằng rad và
tính bằng độ.
Ta có: khi đó:
Tập xác định của hàm số
là:
Ta có: xác định khi và chỉ khi
Vậy tập xác định của hàm số là:
Xét đường tròn lượng giác như hình vẽ. Biết
, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình
được biểu diễn trên đường tròn lượng giác là những điểm nào?


Ta có:
Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.
Cho công thức
biểu thị số giờ có ánh sáng mặt trời tại thành phố A, với
là số ngày trong năm. Ngày nào sau đây của năm thì số giờ có ánh sáng mặt trời của thành phố A đạt giá trị lớn nhất.
Để số giờ có ánh sáng mặt trời lớn nhất thì hàm số đạt giá trị lớn nhất.
Khi đó .
Vì nên ta có
.
Do đó (tháng đầu tiên của năm)
Rút gọn biểu thức ![]()
Ta có:
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Tập nghiệm của phương trình
là
Ta có
.
Tổng các nghiệm của phương trình
trong khoảng
là:
Giải phương trình:
Xét nghiệm
Do =>
=>
Xét nghiệm
Do
vậy tổng tất cả các nghiệm của phương trình là:
Nghiệm của phương trình
là:
Giải phương trình ta có:
Vậy phương trình có nghiệm
Gọi S là tập nghiệm của phương trình
. Khẳng định nào sau đây là đúng?
Phương trình
Xét nghiệm , với k = 1 ta được
.
Phương trình
có nghiệm là:
Chọn đáp án sai
Trong khoảng
, hàm số
là hàm số:
Ta thấy:
Trên khoảng hàm
đồng biến và hàm
đồng biến
=> Trên hàm số
đồng biến.
Thu gọn biểu thức
thu được kết quả là:
Áp dụng công thức về cung liên kết ta có:
Suy ra:
Cung tròn bán kính bằng 8,43cm có số đo 3,85 rad có độ dài là?
Độ dài cung tròn là
Hàm số nào sau đây nhận giá trị âm nếu ![]()
Ta có:
Mà
=> mang giá trị âm
Cường độ dòng điện trong một đoạn mạch là
(A). Tại thời điểm
thì cường độ trong mạch có giá trị bằng.
Thay vào biểu thức cường độ dòng điện ta được:
.
Nghiệm của phương trình
là
Ta có: .
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Mà nên
Vậy tập xác định
Tập nghiệm của phương trình
là?
Ta có: .