Cho tam giác
có các góc
thỏa mãn biểu thức
. Biết rằng
với
. Tính giá trị biểu thức
?
Ta có:
Dấy “=” xảy ra khi
Cho tam giác
có các góc
thỏa mãn biểu thức
. Biết rằng
với
. Tính giá trị biểu thức
?
Ta có:
Dấy “=” xảy ra khi
Hàm số nào tương ứng với đồ thị trong hình vẽ sau:

Ta thấy hàm số có giá trị lớn nhất bằng và giá trị nhỏ nhất bằng
nên loại các đáp án
và
.
Tại chỉ có hàm số
thỏa mãn.
Nếu
và
thì
bằng bao nhiêu?
Từ giả thiết ta có:
Ta có:
Mặt khác
Quy ước chọn chiều dương của một đường tròn định hướng là
Quy ước chọn chiều dương của một đường tròn định hướng là luôn ngược chiều quay kim đồng hồ
Trong các hàm số sau hàm số nào là hàm số lẻ?
Xét hàm số y = sinx:
Lấy ta có:
Vậy hàm số y = sinx là hàm số lẻ.
Nghiệm của phương trình
là
Ta có: .
Cho hàm số y = sinx. Mệnh đề nào sau đây đúng?
Ta có thể hiểu như sau:
“ Hàm số y = sinx đồng biến khi góc x thuộc góc phần tư thứ IV và thứ I; nghịch biến khi góc x thuộc góc phần tư thứ II và III”.
Đổi số đo của góc
sang đơn vị radian với độ chính xác đến hàng phần trăm.
Áp dụng công thức với
tính bằng rad và
tính bằng độ.
Ta có: khi đó:
Hàm số
có tập xác định là gì?
Hàm số xác định khi
Vậy tập xác định của hàm số là:
.
Phương trình
có nghiệm thỏa mãn x nằm trong khoảng
là:
Giải phương trình:
Do =>
thỏa mãn
Giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
lần lượt là:
Ta có:
Cho
. Mệnh đề nào sau đây đúng?
Ta có:
Do đó điểm cuối của cung có số đo thuộc góc phần tư thứ
Vậy
Kết luận nào đúng về tập nghiệm của phương trình
?
Ta có:
Vậy tập nghiệm của phương trình đã cho là .
Với góc
bất kì. Khẳng định nào sau đây đúng?
Ta có:
=>
=>
Trong các hàm số sau, hàm số nào là hàm số lẻ?
Ta kiểm tra được và
là hàm số chẵn
Hàm số không chẵn không lẻ
=> Hàm số là hàm số lẻ.
Xét đường tròn lượng giác như hình vẽ. Biết
, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình
được biểu diễn trên đường tròn lượng giác là những điểm nào?


Ta có:
Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.
Tập các giá trị của tham số m để phương trình
có nghiệm là?
(*)
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình đã cho có nghiệm .
Giải phương trình
thu được kết quả là:
Điều kiện
.
Đổi số đo của góc
sang đơn vị radian?
Cách 1: Áp dụng công thức với
ta được:
Cách 2: Bấm máy tính:
Bước 1: Bấm tổ hợp phím SHIFT MODE 4 chuyển về chế độ rad.
Bước 2: Bấm 120 SHIFT Ans 1 =
Với điều kiện xác định của các giá trị lượng giác, cho
. Đơn giản biểu thức P ta được:
Ta có:
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
và
xác định và
xác định
Ta có: xác định khi và chỉ khi
Mà cot x xác định khi
Do đó hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Tập nghiệm của phương trình
là?
Ta có: .
Hỏi
là một nghiệm của phương trình nào sau đây?
Với , suy ra
Hàm số
đồng biến trên khoảng nào sau đây?
Hàm số y = cosx đồng biến trên mỗi khoảng (-π + k2π; k2π) và nghịch biến trên mỗi khoảng (k2π; π + k2π) với k ∈ Z.
Phương trình
có họ nghiệm là
Ta có:
là nghiệm của phương trình.
: Chia 2 vế phương trình cho
ta được:
.
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với phương trình
. Sai||Đúng
b) Trong khoảng
phương trình có 3 nghiệm. Sai||Đúng
c) Trong khoảng
phương trình có 1 nghiệm nguyên. Đúng||Sai
d) Tổng các nghiệm của phương trình trên
bằng
. Đúng||Sai
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với phương trình . Sai||Đúng
b) Trong khoảng phương trình có 3 nghiệm. Sai||Đúng
c) Trong khoảng phương trình có 1 nghiệm nguyên. Đúng||Sai
d) Tổng các nghiệm của phương trình trên bằng
. Đúng||Sai
Phương trình
Vì nên:
Với ta chỉ chọn được
.
Với ta chỉ chọn được
.
Vậy tổng các nghiệm bằng .
Kết luận:
|
a) Sai |
b) Sai |
c) Đúng |
d) Đúng |
Cho đồ thị hàm số lượng giác như hình vẽ:

Đường thẳng
cắt đồ thị hàm số
tại 4 điểm A, B, C, D như hình vẽ. Giá trị của
là
. Biết
là phân số tối giản. Giá trị của
là:
Đáp án: 19
Cho đồ thị hàm số lượng giác như hình vẽ:
Đường thẳng cắt đồ thị hàm số
tại 4 điểm A, B, C, D như hình vẽ. Giá trị của
là
. Biết
là phân số tối giản. Giá trị của
là:
Đáp án: 19
Phương trình hoành độ giao điểm là:
Ta thấy là bốn nghiệm dương nhỏ nhất của phương trình trên.
Do đó: .
Vậy .
Biết
. Tính
?
Ta có:
Lại có
Vì
Khẳng định nào sai trong các khẳng định sau?
Ta có:
Phương trình
có nghiệm khi:
Xét phương trình:
Trường hợp 1:
Phương trình (*) trở thành:
3 + 3.m - 4.0 = 0 (Vô lí)
Trường hợp 2:
Chia cả hai vế của phương trình (*) cho cos2x
Phương trình (*) trờ thành: (**)
Đặt tanx = t, phương trình trở thành:
Phương trình đã cho có nghiệm => (***) có nghiệm
=> (luôn đúng với mọi m)
=> Phương trình đã cho có nghiệm với mọi
Thu gọn biểu thức
thu được kết quả là:
Áp dụng công thức về cung liên kết ta có:
Suy ra:
Hàm số
có tất cả bao nhiêu giá trị nguyên?
Ta có:
Mà
Nên có giá trị thỏa mãn.
Tìm tập các định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Trên đường tròn bán kính 20cm. Tính độ dài của cung có số đo
.
Độ dài cung tròn là:
Nghiệm của phương trình
là:
Ta có
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn
để phương trình
vô nghiệm?
Phương trình vô nghiệm
có 18 giá trị.
Cho hàm số
. Mệnh đề nào sau đây đúng?
Ta có:
Vậy là mệnh đề đúng.
Tính giá trị biểu thức ![]()
Ta có:
Tìm tập xác định
của hàm số
:
Hàm số xác định khi .
Tập xác định của hàm số là: .