Giải phương trình: ![]()
Giải phương trình:
Giải phương trình: ![]()
Giải phương trình:
Cho góc
thỏa mãn
. Tính giá trị biểu thức
.
Ta có:
Phương trình
có nghiệm là:
Giải phương trình:
Nếu
và
là hai nghiệm của phương trình
thì
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Tập xác định của hàm số: ![]()
Ta có:
Hàm số
không xác định trong khoảng nào trong các khoảng sau đây?
Hàm số xác định khi
Ta chọn nhưng điểm
thuộc khoảng
Vậy hàm số không xác định trong khoảng
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Mệnh đề nào sau đây đúng?
Ta có:
Vậy đúng.
Đổi số đo của góc
sang đơn vị radian?
Cách 1: Áp dụng công thức với
ta được:
Cách 2: Bấm máy tính:
Bước 1: Bấm tổ hợp phím SHIFT MODE 4 chuyển về chế độ rad.
Bước 2: Bấm 120 SHIFT Ans 1 =
Có bao nhiêu giá trị nguyên của m để phương trình
có nghiệm?
Ta có:
Kết hợp với m thuộc tập số nguyên
Suy ra 4 – (-2) + 1 = 7 giá trị nguyên của m
Tìm tập xác định
của hàm số
?
Ta có:
Hàm số được xác định khi
Vậy tập xác định của hàm số là
Cho hàm số
, số nghiệm thuộc
của phương trình
là?
Ta có:
Do đó
+) Trường hợp 1. Với
Do nên
Suy ra k = 0 ta được .
+) Trường hợp 2. Với
Do nên
Suy ra k = 0 ta được ta được
.
Vậy có 3 nghiệm thuộc của phương trình
là
;
;
.
Cường độ dòng điện trong một đoạn mạch là
(A). Tại thời điểm
thì cường độ trong mạch có giá trị bằng.
Thay vào biểu thức cường độ dòng điện ta được:
.
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Hàm số nào tương ứng với đồ thị trong hình vẽ sau:

Ta thấy hàm số có giá trị lớn nhất bằng và giá trị nhỏ nhất bằng
nên loại các đáp án
và
.
Tại chỉ có hàm số
thỏa mãn.
Hỏi trên
, phương trình
có bao nhiêu nghiệm?
Phương trình
Theo giả thiết
Vậy phương trình có duy nhất một nghiệm trên .
Nếu
và
là hai nghiệm của phương trình
thì
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Phương trình lượng giác
có nghiệm là:
Vậy nghiệm phương trình là:
Trong các hàm số sau, hàm số nào là hàm số chẵn?
Tất các các hàm số đều có TXĐ: .
Do đó
Bây giờ ta kiểm tra hoặc
Với . Ta có
Suy ra hàm số là hàm số lẻ.
Với . Ta có
Suy ra hàm số không chẵn không lẻ.
Với . Ta có
Suy ra hàm số là hàm số chẵn.
Với Ta có
Suy ra hàm số là hàm số lẻ.
Giá trị lớn nhất của hàm số
tại điểm là nghiệm của phương trình nào dưới đây?
Theo bài ra ta có:
Phương trình (*) có nghiệm
Vậy giá trị lớn nhất của hàm số bằng 1 lúc đó
Trên đường tròn định hướng, mỗi cung lượng giác
xác định:
Trên đường tròn định hướng, mỗi cung lượng giác xác định vô số góc lượng giác tia đầu
, tia cuối
.
Tổng giá trị lớn nhất và nhỏ nhất của hàm số
là
Do nên
.
Nên đạt được khi
.
đạt được khi
.
Suy ra .
Tìm tất cả các nghiệm của phương trình
.
Ta có
.
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức
với
tính bằng
và
là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ cao nhất trong ngày là:
Do nên
Do đó nhiệt độ cao nhất trong ngày là .
Dấu bằng xảy ra
Do .
Mà nên
.
Khi đó .
Vậy lúc 15h là thời gian nhiệt độ cao nhất trong ngày.
Tính ![]()
Ta có:
Giải phương trình ![]()
Ta có
Nếu một cung tròn có số đo
thì số đo radian của nó là:
Áp dụng công thức tương ứng với
ta được:
Gọi
là nghiệm dương nhỏ nhất của phương trình
. Mệnh đề nào sau đây là đúng?
Điều kiện:
Phương trình
Cho .
Do đó nghiệm dương nhỏ nhất ứng với .
Một bánh xe của người đi xe ô tô quay được
vòng trong
giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).
Đáp án: 6,28
Một bánh xe của người đi xe ô tô quay được vòng trong
giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).
Đáp án: 6,28
Số đo góc quay của vòng là
.
Giải phương trình
?
Ta có và .
Do đó phương trình
Xét nghiệm .
Vậy phương trình có nghiệm .
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm?
Ta có .
Phương trình có nghiệm
Vậy có tất cả 3 giá trị nguyên của tham số m.
Chu kì của hàm số
là
. Giá trị của k là:
Đáp án: 5/2 (Ghi đáp án dưới dạng phân số tối giản a/b).
Chu kì của hàm số là
. Giá trị của k là:
Đáp án: 5/2 (Ghi đáp án dưới dạng phân số tối giản a/b).
Ta có:
Hàm số trên có chu kì là
Vậy .
Cho hai hàm số
. Mệnh đề nào sau đây đúng?
Xét hàm số có tập xác định
Với mọi x thuộc D => -x thuộc D ta có:
Vậy f(x) là hàm số chẵn
Tương tự xét hàm số
Với mọi x thuộc D => -x thuộc D ta có:
Vậy g(x) là hàm số chẵn.
Chọn khẳng định đúng trong các khẳng định sau:
Theo công thức cộng
.
Tổng các nghiệm thuộc khoảng
của phương trình: ![]()
Giải phương trình:
Tổng nghiệm của phương trình bằng 0.
Tìm tập giá trị của hàm số
?
Ta có:
(với
)
Lại có:
Vậy tập giá trị của hàm số là
Tìm tập giá trị của hàm số ![]()
Ta có:
Phương trình
có bao nhiêu nghiệm thuộc
?
Ta có:
, mà
.
.
Suy ra ,
.
Vậy có 4044 nghiệm thuộc
.
Cho phương trình
. Đặt
, ta được phương trình nào sau đây?
Ta có: trở thành
.
Cho ba góc nhọn thỏa mãn
. Tính tổng số đo ba góc nhọn.
Ta có: