Cho hai hàm số
. Mệnh đề nào sau đây đúng?
Xét hàm số có tập xác định
Với mọi x thuộc D => -x thuộc D ta có:
Vậy f(x) là hàm số chẵn
Tương tự xét hàm số
Với mọi x thuộc D => -x thuộc D ta có:
Vậy g(x) là hàm số chẵn.
Cho hai hàm số
. Mệnh đề nào sau đây đúng?
Xét hàm số có tập xác định
Với mọi x thuộc D => -x thuộc D ta có:
Vậy f(x) là hàm số chẵn
Tương tự xét hàm số
Với mọi x thuộc D => -x thuộc D ta có:
Vậy g(x) là hàm số chẵn.
Cho
. Tính giá trị
bằng
Ta có:
Giải phương trình
?
Ta có:
PT
Vậy phương trình có nghiệm
Hỏi trên đoạn
, phương trình
có bao nhiêu nghiệm?
Ta có
Theo giả thiết, ta có
.
Vậy có tất cả 2023 giá trị nguyên của k tương ứng với có 2023 nghiệm thỏa mãn yêu cầu bài toán.
Cho hàm số
, số nghiệm thuộc
của phương trình
là?
Ta có:
Do đó
+) Trường hợp 1. Với
Do nên
Suy ra k = 0 ta được .
+) Trường hợp 2. Với
Do nên
Suy ra k = 0 ta được ta được
.
Vậy có 3 nghiệm thuộc của phương trình
là
;
;
.
Tập xác định D của hàm số
là:
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Hàm số
đồng biến trên khoảng nào trong các khoảng sau?
Ta có thuộc gốc phần tư thứ I
=> Hàm số đồng biến trên khoảng
Với
, mệnh đề nào sau đây đúng?
Ta có: thuộc góc phần tư thứ I và thứ II.
Phương trình
có nghiệm khi:
Xét phương trình:
Trường hợp 1:
Phương trình (*) trở thành:
3 + 3.m - 4.0 = 0 (Vô lí)
Trường hợp 2:
Chia cả hai vế của phương trình (*) cho cos2x
Phương trình (*) trờ thành: (**)
Đặt tanx = t, phương trình trở thành:
Phương trình đã cho có nghiệm => (***) có nghiệm
=> (luôn đúng với mọi m)
=> Phương trình đã cho có nghiệm với mọi
Với
, mệnh đề nào sau đây là đúng?
Ta có thuộc góc phần tư thứ I. Do đó
đồng biến
nghịch biến.
nghịch biến
nghịch biến.
Nếu
thì khẳng định nào sau đây đúng?
Ta có:
Ta lại có:
Rút gọn biểu thức ![]()
Vì hai góc và
phụ nhau nên
Tập xác định của hàm số: ![]()
Ta có:
Tìm đẳng thức sai trong các đẳng thức sau (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa).
Ta có: , do đó đẳng thức
sai.
Xác định chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
T là chu kì của hàm số là bội chung nhỏ nhất của T1 và T2
Suy ra hàm số tuần hoàn với chu kì
Nghiệm của phương trình
là
Ta có: .
Điểm cuối của góc lượng giác a ở góc phần tư thứ mấy nếu
cùng dấu?
Điểm cuối của góc lượng giác a ở góc phần tư thứ I hoặc thứ III thì cùng dấu
Nếu
và
là hai nghiệm của phương trình
thì
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Cho tam giác
. Khẳng định nào sau đây sai?
Ta có:
Do đó
Vậy khẳng định sai là:
Đơn giản biểu thức
, ta có
Ta có:
Tập nghiệm của phương trình
là:
Ta có:
Tập nghiệm của phương trình
là:
Ta có:
=> Phương trình vô nghiêm.
Hàm số
không xác định trong khoảng nào trong các khoảng sau đây?
Hàm số xác định khi
Ta chọn nhưng điểm
thuộc khoảng
Vậy hàm số không xác định trong khoảng
Hàm số
có tất cả bao nhiêu giá trị nguyên?
Áp dụng công thức
Ta có
Ta có
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình đã cho có nghiệm .
Cho bốn cung (trên một đường tròn định hướng)
các cung nào có điểm cuối trùng nhau?
Ta có:
=> và
có điểm cuối trùng nhau
=> và
có điểm cuối trùng nhau.
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu
(mét) của mực nước trong kênh tính theo thời gian
(giờ) trong một ngày
cho bởi hàm số
có đồ thị như hình bên dưới (
là các số thực dương). Gọi
là tập hợp tất cả các thời điểm
trong ngày để chiều cao của mực nước biển là
mét. Tổng tất cả phần tử của
bằng.

Đáp án: 36
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu (mét) của mực nước trong kênh tính theo thời gian
(giờ) trong một ngày
cho bởi hàm số
có đồ thị như hình bên dưới (
là các số thực dương). Gọi
là tập hợp tất cả các thời điểm
trong ngày để chiều cao của mực nước biển là
mét. Tổng tất cả phần tử của
bằng.
Đáp án: 36
Theo đồ thị ta có:
Suy ra: .
Theo đề bài yêu cầu:
Vì: nên
Suy ra:
Với giá trị nào của m thì phương trình
có nghiệm:
Ta có:
Do
Vậy
Đổi số đo của góc
sang đơn vị độ, phút, giây
Cách 1: Từ công thức khi đó:
Cách 2: Bấm máy tính:
Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.
Bước 2. Bấm -5 shift DRG 2 =
Tìm tập xác định
của hàm số
:
Hàm số xác định khi .
Tập xác định của hàm số là: .
Trên đường tròn lượng giác có điểm gốc là A. Điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo
. Gọi N là điểm đối xứng với M qua trục Ox, số đo cung lượng giác AN bằng:
Vì số đo cung AM bằng
=>
N là điểm đối xứng với M qua trục Ox =>
=> Số đo cung AN bằng
=> Số đo cung lượng giác AN có số đo là:
Đổi số đo của góc
sang đơn vị radian:
Áp dụng công thức với
tính bằng rad và
tính bằng độ.
Ta có: khi đó:
Với
là góc bất kì và các biểu thức có nghĩa. Đẳng thức nào dưới đây đúng?
Đẳng thức đúng: .
Phương trình
có tổng các nghiệm trên
bằng:
Điều kiện xác định:
Do nên phương trình đã cho tương đương với
Vì
Nếu
và
thì
bằng bao nhiêu?
Từ giả thiết ta có:
Ta có:
Mặt khác
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Phương trình
Suy ra có duy nhất 1 vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác.
Hỏi
là một nghiệm của phương trình nào sau đây?
Với , suy ra
Với x thuộc (0;1), hỏi phương trình
có bao nhiêu nghiệm?
Phương trình
- Với .
có 6 nghiệm.
- Với .
có 6 nghiệm.
Vậy phương trình đã cho có 12 nghiệm.
Cho hàm số
. Mệnh đề nào sau đây đúng?
Ta có:
Vậy là mệnh đề đúng.
Giải phương trình
.
Phương trình
Vậy đáp án cần tìm là: