Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Phương án nào sau đây sai với mọi k\in\mathbb{ Z}?

    Ta có:

    \sin x = 0 \Leftrightarrow x =
k\pi;\left( k\mathbb{\in Z} ight)

    Vậy đáp án sai là: \sin x = 0
\Leftrightarrow x = \frac{\pi}{2} + k\pi

  • Câu 2: Thông hiểu

    Tìm tập xác định D của hàm số y = tan2x:

    Hàm số xác định khi cos2x eq 0
\Leftrightarrow 2x eq \frac{\pi}{2} + k\pi \Leftrightarrow x eq
\frac{\pi}{4} + k\frac{\pi}{2}\ (k \in \mathbb{Z}).

    Tập xác định của hàm số là: D =\mathbb{R} \setminus  \left\{ \frac{\pi}{4} + k\frac{\pi}{2} \mid k\in \mathbb{Z} ight\}.

  • Câu 3: Nhận biết

    Hàm số y = \cos x đồng biến trên khoảng nào sau đây?

    Hàm số y = cosx đồng biến trên mỗi khoảng (-π + k2π; k2π) và nghịch biến trên mỗi khoảng (k2π; π + k2π) với k ∈ Z.

  • Câu 4: Nhận biết

    Nghiệm của phương trình \cos x =
\cos\frac{\pi}{4} là:

    Ta có \cos x = \cos\frac{\pi}{4}
\Leftrightarrow x = \pm \frac{\pi}{4} + k2\pi,k\mathbb{\in
Z}.

  • Câu 5: Vận dụng cao

    Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của biểu thức A = \sin^{6}x +\cos^{6}x.

    Ta có:

    A = \sin^{6}x + \cos^{6}x

    A = \left( \sin^{2}x ight)^{3} + \left(\cos^{2}x ight)^{3}

    A = \left( \sin^{2}x + \cos^{2}x ight)\left( \sin^{4}x - \sin^{2}x.\cos^{2}x + \cos^{4}x ight)

    A = \sin^{4}x - \dfrac{1}{4}\sin^{2}2x +\cos^{4}x

    A = 1 - \dfrac{1}{4}\sin^{2}2x -\dfrac{1}{2}\sin^{2}2x

    A = 1 -\frac{3}{4}\sin^{2}2x

    \Rightarrow \sin^{2}2x = \frac{4 -4A}{3}

    Ta lại có: \sin^{2}2x \in \lbrack0;1brack

    \Rightarrow 0 \leq \frac{4 - 4A}{3} \leq1

    \Rightarrow \frac{1}{4} \leq A \leq1

    \Rightarrow M = 1;m =\frac{1}{4}

  • Câu 6: Nhận biết

    Biết \frac{\pi}{2} < \alpha <
\frac{3\pi}{2}, khẳng định nào sau đây đúng?

    Với \frac{\pi}{2} < \alpha <
\frac{3\pi}{2} thì \cos\alpha <
0.

  • Câu 7: Vận dụng

    Xác định chu kì T của hàm số y = \tan3x +\cot x

    Hàm số y = \tan3x tuần hoàn với chu kì T_{1} = \frac{\pi}{3}

    Hàm số y = \cot x tuần hoàn với chu kì T_{2} = \pi

    T là chu kì của hàm số y = \tan3x + \cot{x} là bội chung nhỏ nhất của T1 và T2

    Suy ra hàm số y = \tan3x + \cot x tuần hoàn với chu kì T = \pi

  • Câu 8: Thông hiểu

    Phương trình nào cùng tập nghiệm với phương trình \tan x = 1

     Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {\cot x.\tan x = 1} \\   {\tan x = 1} \end{array}} ight. \Rightarrow \cot x = \dfrac{1}{{\tan x}} = 1

    Vậy phương trình \tan x = 1 có cùng tập nghiệm với phương trình \cot x = 1

  • Câu 9: Thông hiểu

    Tính giá trị \cos\left\lbrack \frac{\pi}{3} + \pi(2k + 1)ightbrack

    Ta có:

    \cos\left\lbrack \frac{\pi}{3} + \pi(2k+ 1) ightbrack

    = \cos\left\lbrack \frac{\pi}{3} + \pi +k2\pi ightbrack

    = \cos\left\lbrack \frac{\pi}{3} + \piightbrack

    = - \cos\left( \frac{\pi}{3} ight) = -\frac{1}{2}

  • Câu 10: Vận dụng

    Cho hình vẽ:

    Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?

    Ta thấy hàm số có giá trị lớn nhất là \sqrt{2} và giá trị nhỏ nhất là - \sqrt{2} => loại hàm số y = \sin\left( x - \frac{\pi}{4} ight)y = \cos\left( x - \frac{\pi}{4}
ight)

    Tại x = \frac{3\pi}{4} \Rightarrow y = -
\sqrt{2} ta thấy chỉ có y =
\sqrt{2}\cos\left( x + \frac{\pi}{4} ight) thỏa mãn

  • Câu 11: Thông hiểu

    Nếu \cos(a + b) =
0 thì khẳng định nào sau đây đúng?

    Ta có:

    \cos(a + b) = 0

    \Leftrightarrow a + b = \frac{\pi}{2} +
k\pi

    \Leftrightarrow a = - b + \frac{\pi}{2}
+ k\pi

    \Rightarrow \left| \sin(a + 2b) ight|
= \left| \sin\left( - b + 2b + \frac{\pi}{2} + k\pi ight) ight| =
\left| \cos(b + k\pi) ight| = \left| \cos b ight|

  • Câu 12: Vận dụng cao

    Cho hàm số y = \frac{1 - m\sin x}{\cos x+ 2}. Có bao nhiêu giá trị của tham số m thuộc đoạn [0; 10] để giá trị nhỏ nhất của hàm số nhỏ hơn -2?

    Ta có:

    y.(cosx + 2) = 1 – m.sinx

    => m.sinx + y.cosx = 1 – 2y

    Phương trình có nghiệm khi

    \begin{matrix}m^{2} + y^{2} \geq (2y - 1)^{2} \\\Rightarrow 3y^{2} - 4y + 1 - m^{2} \leq 0 \\\end{matrix}

    Nghiệm của phương trình 3y^{2} - 4y + 1 -m^{2} = 0x = \frac{2 \pm\sqrt{3m^{2} + 1}}{3}

    => \frac{2 - \sqrt{3m^{2} + 1}}{3}\leq y \leq \frac{2 + \sqrt{3m^{2} + 1}}{3}

    => \min y = \frac{2 - \sqrt{3m^{2} +1}}{3}

    Theo yêu cầu bài toán ta có:

    \begin{matrix}  \dfrac{{2 - \sqrt {3{m^2} + 1} }}{3} <  - 2 \hfill \\   \Leftrightarrow \sqrt {3{m^2} + 1}  > 8 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m > \sqrt {21} } \\   {m <  - \sqrt {21} } \end{array}} ight. \hfill \\ \end{matrix}

    Mặt khác m thuộc đoạn [0; 10] nên m = {5; 6; 7; 8; 9; 10}

  • Câu 13: Thông hiểu

    Một đường tròn có đường kính bằng 20cm. Tính độ dài của cung trên đường tròn có số đo 35^{0} (lấy 2 chữ số thập phân).

    Cung có số đo 35^{0} thì có số đó radian là \alpha = \frac{35\pi}{180} =
\frac{7\pi}{36}

    Bán kính đường tròn R = \frac{20}{2} =
10cm

    => l = R.\alpha = 10.\frac{7\pi}{36}
\approx 6,11cm

  • Câu 14: Vận dụng cao

    Tìm tất các các giá trị thực của tham số m để phương trình \cos x -m =0 vô nghiệm?

     Áp dụng điều kiện có nghiệm của phương trình cos x = a.

    - Phương trình có nghiệm khi |a| \leq 1.

    - Phương trình vô nghiệm khi |a|>1.

    Phương trình \cos x - m = 0 \Leftrightarrow \cos x = m

    Do đó, phương trình \cos x -m =0 vô nghiệm \Leftrightarrow \left| m ight| > 1 \Leftrightarrow \left[ \begin{gathered}  m <  - 1 \hfill \\  m > 1 \hfill \\ \end{gathered}  ight..

  • Câu 15: Vận dụng

    Nếu \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} + px + q = 0;(q eq 1) thì \tan(\alpha + \beta) bằng:

    Ta có: \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} + px + q = 0;(q eq 1)nên theo định lí Vi – ét ta có:

    \left\{ \begin{matrix}
\tan\alpha + \tan\beta = - p \\
\tan\alpha.tan\beta = q \\
\end{matrix} ight.

    Khi đó:

    \tan(\alpha + \beta) = \frac{\tan\alpha
+ \tan\beta}{1 - \tan\alpha.tan\beta} = \frac{p}{q - 1}

  • Câu 16: Vận dụng

    Cho phương trình lượng giác \sin\left\lbrack \frac{\pi}{4}\left( 3x -
\sqrt{9x^{2} - 16x - 80} ight) ightbrack = 0, vậy:

    a) Phương trình đã cho tương đương với phương trình \frac{\pi}{4}\left( 3x - \sqrt{9x^{2} - 16x - 80}
ight) = k\pi,\ k\mathbb{\in Z}. Đúng||Sai

    b) Phương trình có 3 nghiệm nguyên dương. Sai||Đúng

    c) Phương trình có 2 nghiệm nguyên dương. Đúng||Sai

    d) Tổng các nghiệm nguyên dương của phương trình bằng 14. Sai||Đúng

    Đáp án là:

    Cho phương trình lượng giác \sin\left\lbrack \frac{\pi}{4}\left( 3x -
\sqrt{9x^{2} - 16x - 80} ight) ightbrack = 0, vậy:

    a) Phương trình đã cho tương đương với phương trình \frac{\pi}{4}\left( 3x - \sqrt{9x^{2} - 16x - 80}
ight) = k\pi,\ k\mathbb{\in Z}. Đúng||Sai

    b) Phương trình có 3 nghiệm nguyên dương. Sai||Đúng

    c) Phương trình có 2 nghiệm nguyên dương. Đúng||Sai

    d) Tổng các nghiệm nguyên dương của phương trình bằng 14. Sai||Đúng

    Điều kiện: 9x^{2} - 16x - 80 \geq 0
\Leftrightarrow x \geq 4.

    Phương trình \Leftrightarrow
\frac{\pi}{4}\left( 3x - \sqrt{9x^{2} - 16x - 80} ight) = k\pi,\
k\mathbb{\in Z}

    \Leftrightarrow 3x - \sqrt{9x^{2} - 16x
- 80} = 4k

    \Leftrightarrow \sqrt{9x^{2} - 16x - 80}
= 3x - 4k

    \Leftrightarrow \left\{ \begin{matrix}x \geq \dfrac{4k}{3} \\9x^{2} - 16x - 80 = (3x - 4k)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq \dfrac{4k}{3} \\x = \dfrac{2k^{2} + 10}{3k - 2} \\\end{matrix} ight..

    Yêu cầu bài toán \Leftrightarrow \left\{\begin{matrix}\dfrac{2k^{2} + 10}{3k - 2} \geq \dfrac{4k}{3} \\x = \dfrac{2k^{2} + 10}{3k - 2} \geq 4 \\\dfrac{2k^{2} + 10}{3k - 2}\mathbb{\in Z} \\\end{matrix} ight..

    Ta có: \left\{ \begin{gathered}
  \frac{{2{k^2} + 10}}{{3k - 2}} \geqslant \frac{{4k}}{3} \hfill \\
  x = \frac{{2{k^2} + 10}}{{3k - 2}} \geqslant 4 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  \frac{{ - 6{k^2} + 8k + 30}}{{3k - 2}} \geqslant 0 \hfill \\
  \frac{{2{k^2} - 12k + 18}}{{3k - 2}} \geqslant 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \frac{2}{3} < k \leqslant 3

    k\mathbb{\in Z \Rightarrow}k =
1,2,3.

    k = 1 \Rightarrow \frac{2k^{2} + 10}{3k
- 2} = 12\mathbb{\in Z}

    k = 2 \Rightarrow \frac{2k^{2} + 10}{3k
- 2} = \frac{9}{2}\mathbb{otin Z}

    k = 3 \Rightarrow \frac{2k^{2} + 10}{3k
- 2} = 4\mathbb{\in Z}

    Kết hợp điều kiện, ta có x=4, x= 12 là những giá trị cần tìm.

    Kết luận:

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

  • Câu 17: Thông hiểu

    Tìm tập xác định D của hàm số y = \frac{\tan x - 1}{\sin x} + \cos\left( x +
\frac{\pi}{3} ight)?

    Hàm số y = \frac{\tan x - 1}{\sin x} +
\cos\left( x + \frac{\pi}{3} ight) xác định khi:

    \left\{ \begin{matrix}\sin x eq 0 \\\cos x eq 0 \\\end{matrix} ight.\  \Leftrightarrow \sin2x eq 0

    \Leftrightarrow 2x eq k\pi
\Leftrightarrow x eq \frac{k\pi}{2}\left( k\mathbb{\in Z}
ight)

    Vậy D=\mathbb{ R}\backslash\left\{\frac{k\pi}{2}|k\in\mathbb{ Z} ight\}

  • Câu 18: Vận dụng

    Hỏi trên đoạn [-2023; 2023], phương trình (\sin x+1)(\sin x-\sqrt2)=0 có tất cả bao nhiêu nghiệm?

     Ta xét phương trình \Leftrightarrow \left[ \begin{gathered}  \sin x =  - 1 \hfill \\  \sin x = \sqrt 2 \left( {{\text{VN}}} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \sin x =  - 1 \Leftrightarrow x =  - \frac{\pi }{2} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} ight).

    Theo giả thiết - 2023 \leqslant  - \frac{\pi }{2} + k2\pi  \leqslant 2023 \Leftrightarrow \dfrac{{ - 2023 + \dfrac{\pi }{2}}}{{2\pi }} \leqslant k \leqslant \dfrac{{2023 + \dfrac{\pi }{2}}}{{2\pi }}

    \xrightarrow{{{\text{xấp xỉ}}}} - 321,720 \leqslant k \leqslant 322,220\xrightarrow{{k \in \mathbb{Z}}}k \in \left\{ { - 321; - 320;...;321;322} ight\}

    Vậy có tất cả 644 giá trị nguyên của k tương úng có 644 nghiệm thỏa mãn yêu cầu bài toán.

  • Câu 19: Nhận biết

    Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình \sqrt 3 \cos x + m - 1 = 0 có nghiệm?

     Ta có \sqrt 3 \cos x + m - 1 = 0 \Leftrightarrow \cos x = \frac{{1 - m}}{{\sqrt 3 }}.

    Phương trình có nghiệm \Leftrightarrow  - 1 \leqslant \frac{{1 - m}}{{\sqrt 3 }} \leqslant 1

    \Leftrightarrow 1 - \sqrt 3  \leqslant m \leqslant 1 + \sqrt 3 \xrightarrow{{m \in \mathbb{Z}}}m \in \left\{ {0;1;2} ight\}

    Vậy có tất cả 3 giá trị nguyên của tham số m.

  • Câu 20: Nhận biết

    \tan x có nghĩa khi nào?

    Để \tan x có nghĩa thì \cos x e 0

    => x eq \frac{\pi}{2} +k\pi

  • Câu 21: Nhận biết

    Đổi số đo của góc - 5rad sang đơn vị độ, phút, giây

    Cách 1: Từ công thức \alpha =
\frac{m\pi}{180} \Rightarrow m = \left( \frac{\alpha.180}{\pi}
ight)^{0}khi đó:

    m = \left( \frac{- 5.180}{\pi}
ight)^{0} = - 286^{0}28'44''

    Cách 2: Bấm máy tính:

    Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.

    Bước 2. Bấm -5 shift DRG 2 =

  • Câu 22: Nhận biết

    Phương trình lượng giác \cos 3x = \cos \frac{\pi }{{15}} có nghiệm là ?

     Ta có: \cos 3x = \cos \frac{\pi }{{15}} \Leftrightarrow 3x =  \pm \frac{\pi }{{15}} + k2\pi

    \Leftrightarrow x =  \pm \frac{\pi }{{45}} + \frac{{k2\pi }}{3}

  • Câu 23: Vận dụng

    Gọi \alpha là nghiệm trong khoảng (\pi ; 2 \pi) của phương trình \cos x = \frac{{\sqrt 3 }}{2}, nếu biểu diễn \alpha  = \frac{{a\pi }}{b} với a, b là hai số nguyên và \frac {a}{b} là phân số tối giản thì a.b bằng bao nhiêu?

    Phương trình \cos x = \frac{{\sqrt 3 }}{2} \Leftrightarrow x =  \pm \frac{\pi }{6} + k2\pi \,\left( {k \in \mathbb{Z}} ight).

    Với x \in \left( {\pi ;2\pi } ight) \Rightarrow x = \frac{{11\pi }}{6}.

    Suy ra a =11 và b = 6 .

    Vậy a.b=66.

  • Câu 24: Thông hiểu

    Cho hàm số y = -2\sin\left( x + \frac{\pi}{3} ight) + 2. Mệnh đề nào sau đây đúng?

    Ta có:

    - 1 \leq \sin\left( x + \frac{\pi}{3}ight) \leq 1

    \Rightarrow 2 \geq - 2\sin\left( x +\frac{\pi}{3} ight) \geq - 2

    \Rightarrow 4 \geq - 2\sin\left( x +\frac{\pi}{3} ight) + 2 \geq 0

    \Rightarrow 4 \geq y \geq 0

    Vậy y \geq 0;\forall x\mathbb{\inR} là mệnh đề đúng.

  • Câu 25: Thông hiểu

    Giải phương trình \cot(3x - 1) = - \sqrt{3}

    Ta có:

    \cot(3x - 1) = - \sqrt{3}

    \Leftrightarrow \cot(3x - 1) =
\cot\left( - \frac{\pi}{6} ight)

    \Leftrightarrow 3x - 1 = - \frac{\pi}{6}
+ k\pi

    \Rightarrow x = \frac{1}{3} -
\frac{\pi}{18} + k\frac{\pi}{3}

    \underset{k = 1}{ightarrow}x =
\frac{1}{3} + \frac{5\pi}{18} + k\frac{\pi}{3}

  • Câu 26: Vận dụng

    Cung nào sau đây có mút trùng với B hoặc B’?

    Quan sát hình vẽ ta thấy vị trí điểm B và B’ ứng với các góc \pm \frac{\pi}{2}.

    Tương ứng với đó ta được góc trùng với các vị trí B và B’ là: \alpha = \frac{\pi}{2} + k.\pi.

  • Câu 27: Thông hiểu

    Tìm số nghiệm của phương trình \sin(\cos x) = 0 trên đoạn x \in \lbrack 0;2\pibrack.

    Ta có: sin(cosx) = 0 \Leftrightarrow cosx
= k\pi\ (k \in \mathbb{Z})

    |cosx| \leq 1 nên k = 0. Do đó phương trình \Leftrightarrow cosx = 0 \Leftrightarrow x =
\frac{\pi}{2} + m\pi(m \in \mathbb{Z})

    x \in \lbrack 0;2\pibrack nên x = \frac{\pi}{2},x =
\frac{3\pi}{2}.

  • Câu 28: Thông hiểu

    Phương trình cos2x = 1 có một nghiệm thuộc khoảng (\pi;3\pi)

    Ta có cos2x = 1 \Leftrightarrow x =
k\pi(k \in \mathbb{Z}).

    Do đó x = 2\pi là một nghiệm của phương trình cos2x = 1 thuộc khoảng (\pi;3\pi).

  • Câu 29: Thông hiểu

    Cho hàm số y =\tan2x. Chọn kết luận đúng trong các kết luận sau khi xét sự biến thiên của hàm số đã cho trên một chu kì tuần hoàn?

    Tập xác định: D\mathbb{=
R}\backslash\left\{ \frac{\pi}{4} + \frac{k\pi}{2}|k\mathbb{\in Z}
ight\}

    Hàm số y = \tan2x tuần hoàn với chu kì \frac{\pi}{2}, dựa vào các đáp án đã cho ta xét tính đơn điệu của hàm số trên \left( 0;\frac{\pi}{2} ight)\backslash\left\{
\frac{\pi}{4} ight\}

    Dựa vào kết quả khảo sát sự biến thiên của hàm số y = \tan x phần lí thuyết ta có thể suy ra với hàm số y = tan2x đồng biến trên khoảng \left( 0;\frac{\pi}{4}
ight)\left(
\frac{\pi}{4};\frac{\pi}{2} ight).

  • Câu 30: Thông hiểu

    Trong các hàm số sau, hàm số nào là hàm số tuần hoàn?

    Hàm số y = x + \sin x là hàm số không tuần hoàn

    Tập xác định D=\mathbb{ R}

    Giả sử

    \begin{matrix}f(x + T) = f(x),\forall x \in D \hfill \\\Rightarrow (x + T) + \sin(x + T) = x + \sin x;\forall x \in D \hfill \\\Rightarrow T + \sin(x + T) = \sin x,\forall x \in D \hfill \\\end{matrix}

    Cho x = 0 và x = π ta được

    \begin{matrix}\left\{ \begin{matrix}T + \sin x = sin0 = 0 \\T + \sin(T + \pi) = \sin\pi = 0 \hfill\\\end{matrix} ight.\ \hfill \\\Rightarrow 2T + \sin T + \sin(T + \pi) = 0 \Rightarrow T = 0 \hfill\\\end{matrix}

    Điều này trái với định nghĩa T > 0

    Vậy hàm số y = x + sinx không phải là hàm số tuần hoàn

    Tương tự chứng minh cho các hàm số y =
x\cos xy = \frac{\sin
x}{x} không tuần hoàn.

    Vậy hàm số y = \sin x là hàm số tuần hoàn

  • Câu 31: Thông hiểu

    Nghiệm của phương trình \sin x = \frac{\sqrt{2}}{2} được biểu diễn trên đường tròn lượng giác ở hình bên là những điểm nào?

    Ta có:

    \sin x = \frac{\sqrt{2}}{2}

    \Rightarrow \left\lbrack \begin{matrix}x = \dfrac{\pi}{4} + k2\pi \\x = \dfrac{3\pi}{4} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Vậy điểm biểu diễn nghiệm phương trình là điểm A, điểm B.

  • Câu 32: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Nhắc lại kiến thức cơ bản:

    Hàm số y = \sin x là hàm số lẻ.

    Hàm số y = \cos x là hàm số chẵn.

    Hàm số y = \tan x là hàm số lẻ.

    Hàm số y = \cot x là hàm số lẻ.

  • Câu 33: Nhận biết

    Tìm tập xác định của hàm số y = \frac{2x-1}{{\sin x - \cos x}}

    Hàm số xác định khi

    \begin{matrix}   \Leftrightarrow \sin x - \cos x e 0 \hfill \\   \Leftrightarrow \tan x e 1 \hfill \\   \Leftrightarrow x e \dfrac{\pi }{4} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Vậy tập xác định {\text{D}} = \mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\pi ,k \in \mathbb{Z}} ight\}

  • Câu 34: Nhận biết

    Hàm số y = 3\cos\left( \dfrac{\pi}{4} - mxight) tuần hoàn có chu kì T =
3\pi khi

    Hàm số y = 3\cos\left( \dfrac{\pi}{4} - mxight) có nghĩa \forall
x\mathbb{\in R \Leftrightarrow}D\mathbb{= R}.

    Chu kì của hàm số T = \frac{2\pi}{| - m|}
= 3\pi \Leftrightarrow m = \pm \frac{2}{3}.

  • Câu 35: Thông hiểu

    Tìm chu kì T của hàm số y = \cos 2x + \sin \frac{x}{2}

    Hàm số y = \cos 2x tuần hoàn với chu kì {T_1} = \frac{{2\pi }}{2} = \pi

    Hàm số y = \sin \frac{x}{2} tuần hoàn với chu kì {T_2} = \frac{{2\pi }}{{\dfrac{1}{2}}} = 4\pi

    Suy ra hàm số y = \cos 2x + \sin \frac{x}{2} tuần hoàn với chu kì T = 4\pi

  • Câu 36: Thông hiểu

    Đổi số đo của góc \frac{\pi}{12}rad sang đơn vị độ, phút, giây

    Cách 1: Từ công thức \alpha =
\frac{m\pi}{180} \Rightarrow m = \left( \frac{\alpha.180}{\pi}
ight)^{0}khi đó:

    m = \left( \dfrac{\dfrac{\pi}{12}.180}{\pi}ight)^{0} = 15^{0}

    Cách 2: Bấm máy tính:

    Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.

    Bước 2. Bấm (shift π ÷12) shift DRG 2 =

  • Câu 37: Thông hiểu

    Đổi số đo của góc 40^{0}35' sang đơn vị radian với độ chính xác đến hàng phần trăm.

    Áp dụng công thức \mu =
\frac{m.\pi}{180} với \mu tính bằng rad và m tính bằng độ.

    Ta có: 40^{0}35' = \left( 40 +
\frac{25}{60} ight)^{0} khi đó:

    \mu = \dfrac{\left( 40 + \dfrac{25}{60}ight).\pi}{180} = \dfrac{97.\pi}{432} \approx 0,71

  • Câu 38: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Xét hàm số y = f(x) = sin2x có:

    Tập xác định D=\mathbb{ R}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = \sin( - 2x) = - sin2x = - f(x) \hfill \\\Rightarrow f( - x) = - f(x) 
 \hfill\\\end{matrix}

    Vậy hàm số y = sinx là hàm số lẻ

    Xét hàm số y = f(x) = x\cos x có:

    Tập xác định D=\mathbb{ R}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = ( - x).cos( - x) = - x\cos x = - f(x) \hfill \\\Rightarrow f( - x) = - f(x) \hfill \\\end{matrix}

    Vậy hàm số y = x.cosx là hàm số lẻ

    Xét hàm số y = f(x) = \cos
x.cotx có:

    Tập xác định D=\mathbb{ R}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = \cos( - x).cot( - x) = - \cos x.cotx = - f(x) \hfill \\\Rightarrow f( - x) = - f(x) \hfill \\\end{matrix}

    Vậy hàm số y = \cos x.cotx là hàm số lẻ

    Xét hàm số y = f(x) = \frac{\tan x}{\sin
x} có:

    Tập xác định D\mathbb{=
R}\backslash\left\{ k\frac{\pi}{2};k\mathbb{\in Z} ight\}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = \dfrac{\tan( - x)}{\sin( - x)} = \dfrac{- \tan x}{- \sin x} =f(x) \hfill\\\Rightarrow f( - x) = f(x) \hfill \\\end{matrix}

    Vậy hàm số y = \frac{\tan x}{\sin
x}là hàm số chẵn

  • Câu 39: Thông hiểu

    Cho góc \alpha thỏa mãn \cot\left( \frac{5\pi}{2} - \alpha ight) =
2. Tính giá trị biểu thức T =
\tan\left( \alpha + \frac{\pi}{4} ight)

    Ta có:

    T = \tan\left( \alpha + \frac{\pi}{4}
ight)

    \Rightarrow T = \dfrac{\tan\alpha +\tan\dfrac{\pi}{4}}{1 - \tan\alpha.\tan\dfrac{\pi}{4}}

    \Rightarrow T = \frac{\tan\alpha + 1}{1- \tan\alpha}

    Theo bài ra ta có:

    \cot\left( \frac{5\pi}{2} - \alpha
ight) = 2

    \Leftrightarrow \cot\left( 2\pi +
\frac{\pi}{2} - \alpha ight) = 2

    \Leftrightarrow \cot\left( \frac{\pi}{2}
- \alpha ight) = 2

    \Leftrightarrow \tan\alpha =
2

    Khi đó giá trị biểu thức T là: T = \frac{2 + 1}{1 - 2} = -
3

  • Câu 40: Nhận biết

    Phương trình lượng giác \cot\ x =
\frac{\sqrt{3}}{3} có nghiệm là:

    Ta có

    \cot x = \frac{\sqrt{3}}{3}

    \Leftrightarrow \cot x = \cot\left(
\frac{\pi}{3} ight)

    \Leftrightarrow x = \frac{\pi}{3} +
k\pi,\left( k\mathbb{\in Z} ight)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo