Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm tập các định D của hàm số y =
\frac{2020}{\sin x}

    Hàm số xác định khi và chỉ khi \sin x
eq 0 \Rightarrow x eq k\pi,k\mathbb{\in Z}

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ k\pi,k\mathbb{\in Z} ight\}

  • Câu 2: Vận dụng

    Số nghiệm của phương trình 2 \sin^{2}x-5 \sin x+3=0 thuộc \left [ 0;2\pi  ight ] là:

     Giải phương trình:

    \begin{matrix}  2{\sin ^2}x - 5\sin x + 3 = 0 \hfill \\   \Leftrightarrow \left( {\sin x - 1} ight)\left( {2\sin x - 3} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sin x - 1 = 0} \\   {2\sin x - 3 = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sin x = 1} \\   {\sin x = \dfrac{3}{2}\left( L ight)} \end{array}} ight. \hfill \\  \sin x = 1 \Rightarrow x = \dfrac{\pi }{2} + k2\pi ,\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Ta có: x \in \left[ {0;2\pi } ight]

    \begin{matrix}   \Rightarrow 0 \leqslant \dfrac{\pi }{2} + k2\pi  \leqslant 2\pi  \hfill \\   \Rightarrow  - \dfrac{1}{4} \leqslant k \leqslant \dfrac{3}{4} \Rightarrow k = 0 \hfill \\ \end{matrix}

  • Câu 3: Nhận biết

    Tập nghiệm của phương trình \cot x = -
\frac{\sqrt{3}}{3}

    Ta có

    \cot x = -
\frac{\sqrt{3}}{3}

    \Leftrightarrow \cot x = \cot\left( -
\frac{\pi}{3} ight)

    \Leftrightarrow x = - \frac{\pi}{3} +
k\pi,\left( k\mathbb{\in Z} ight).

  • Câu 4: Nhận biết

    Khẳng định nào sai trong các khẳng định sau?

    Ta có:

    \cos6a = \cos^{2}3a -\sin^{2}3a

    = 2\cos^{2}3a - 1 = 1 -2\sin^{2}3a

  • Câu 5: Nhận biết

    Nghiệm của phương trình \cos x = \cos 3x là

     \begin{matrix}  \cos x = \cos 3x \hfill \\   \Leftrightarrow \cos 3x = \cos x \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {3x = x + k2\pi } \\   {3x =  - x + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = k\pi } \\   {x = \dfrac{{k\pi }}{2}} \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 6: Nhận biết

    Tìm chu kì của hàm số y = \sin\left( 5x - \frac{\pi}{4}
ight)?

    Hàm số y = \sin(ax + b) tuần hoàn với chu kì T =
\frac{2\pi}{|a|}

    Áp dụng công thức trên ta suy ra hàm số y
= \sin\left( 5x - \frac{\pi}{4} ight) tuần hoàn với chu kì T = \frac{2\pi}{5}.

  • Câu 7: Thông hiểu

    Tính giá trị đúng của biểu thức D = \dfrac{\tan225^{0} -\cot81^{0}.\cot69^{0}}{\cot261^{0} + \tan201^{0}}

    Ta có:

    D = \dfrac{\tan225^{0} -\cot81^{0}.\cot69^{0}}{\cot261^{0} + \tan201^{0}}

    D = \dfrac{\tan\left( 180^{0} + 45^{0}ight) - \tan 9^{0}.\cot69^{0}}{\cot\left( 180^{0} + 81^{0} ight) +\tan\left( 180^{0} + 21^{0} ight)}

    D = \dfrac{1 - \tan 9^{0}.\tan21^{0}}{\tan9^{0} + \tan21^{0}}

    D = \dfrac{1}{\tan\left( 9^{0} + 21^{0}ight)} = \frac{1}{\tan30^{0}} = \sqrt{3}

  • Câu 8: Thông hiểu

    Cho cung lượng giác \mathop {AM}^{\displaystyle\frown} trên đường tròn lượng giác như hình vẽ. Số đo của cung \mathop {AM}^{\displaystyle\frown} bằng bao nhiêu?

    Ta có: \widehat{MOB} = \frac{\pi}{4}\Rightarrow \widehat{AOM} = \frac{3\pi}{2} - \frac{\pi}{4} =\frac{5\pi}{4}

    Cung lượng giác \mathop {AM}^{\displaystyle\frown} có điểm đầu là A, điểm cuối là M và có hướng theo chiều dương.

    Vậy số đo cung AM là \frac{5\pi}{4} +k2\pi,\left( k\mathbb{\in Z} ight)

  • Câu 9: Thông hiểu

    Giải phương trình \sin\left( \frac{2x}{3}
- \frac{\pi}{3} ight) = 0.

    Phương trình

    \sin\left( \frac{2x}{3} - \frac{\pi}{3}
ight) = 0 \Leftrightarrow \frac{2x}{3} - \frac{\pi}{3} =
k\pi

    \Leftrightarrow \frac{2x}{3} =
\frac{\pi}{3} + k\pi \Leftrightarrow x = \frac{\pi}{2} +
\frac{k3\pi}{2}\ \left( k\mathbb{\in Z} ight).

    Vậy đáp án cần tìm là: x = \frac{\pi}{2}
+ \frac{k3\pi}{2}\ \left( k\mathbb{\in Z} ight).

  • Câu 10: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau:

    Theo công thức cộng

    \cos(a + b) = \cos a.cosb - \sin
a.sinb.

  • Câu 11: Thông hiểu

    Hàm số  y = \sin 2x đồng biến trên khoảng nào trong các khoảng sau?

    Ta có x \in \left( {0;\frac{\pi }{4}} ight) \to 2x \in \left( {0;\frac{\pi }{2}} ight) thuộc gốc phần tư thứ I

    => Hàm số y = \sin 2x đồng biến trên khoảng \left( {0;\frac{\pi }{4}} ight)

  • Câu 12: Thông hiểu

    Tìm tập xác định D của hàm số y = tan2x:

    Hàm số xác định khi cos2x eq 0
\Leftrightarrow 2x eq \frac{\pi}{2} + k\pi \Leftrightarrow x eq
\frac{\pi}{4} + k\frac{\pi}{2}\ (k \in \mathbb{Z}).

    Tập xác định của hàm số là: D =\mathbb{R} \setminus  \left\{ \frac{\pi}{4} + k\frac{\pi}{2} \mid k\in \mathbb{Z} ight\}.

  • Câu 13: Thông hiểu

    Nghiệm của phương trình \sin \left( {\frac{{2x}}{3} + \frac{\pi }{3}} ight) = 0

     Ta có \sin \left( {\frac{{2x}}{3} + \frac{\pi }{3}} ight) = 0

    \Leftrightarrow \frac{{2x}}{3} + \frac{\pi }{3} = k\pi

    \Leftrightarrow \frac{{2x}}{3} =  - \frac{\pi }{3} + k\pi

    \Leftrightarrow x =  - \frac{\pi }{2} + \frac{{k3\pi }}{2}\left( {k \in \mathbb{Z}} ight).

  • Câu 14: Vận dụng cao

    Biết rằng phương trình \dfrac{1}{\sin x} + \dfrac{1}{\sin2x} + \dfrac{1}{\sin4x}+ \cdots + \dfrac{1}{\sin\left( 2^{2018}x ight)} = 0 có nghiệm dạng x = \frac{2k\pi}{2^{a} - b} với k \in \mathbb{Z}a,b \in \mathbb{N}^{*}. Tính S = a + b

    Điều kiện \left\{ \begin{matrix}\sin x eq 0 \\\sin2x eq 0 \\\sin4x eq 0 \\\cdots \\\sin\left( 2^{2018}x ight) eq 0 \\\end{matrix} ight.

    \Leftrightarrow sin\left( 2^{2018}x
ight) eq 0

    \Leftrightarrow 2^{2018}x eq k\pi
\Leftrightarrow x eq \frac{k\pi}{2^{2018}},k \in
\mathbb{Z}

    Ta có:

    \frac{1}{\sin x} = \frac{1 + \cos x -\cos x}{\sin x}

    =\dfrac{2\cos^{2}\dfrac{x}{2}}{2\sin\dfrac{x}{2}cos\dfrac{x}{2}} -cotx

    = cot\frac{x}{2} - cotx

    Thiết lập các đẳng thức tương tự như trên thì phương trình đã cho trở thành

    \cot\frac{x}{2} - \cot x + \cot x -\cot2x

    {+ \cdots \cot\left( 2^{2017}x ight) -\cot\left( 2^{2018}x ight) = 0}{\Leftrightarrow \cot\frac{x}{2} - \cot\left( 2^{2018}x ight) =0}

    {\Leftrightarrow \cot\frac{x}{2} =\cot\left( 2^{2018}x ight)}{\Leftrightarrow \frac{x}{2} = 2^{2018}x + k\pi,k \in\mathbb{Z}}

    {\Leftrightarrow x = \frac{2k\pi}{1 -
2^{2019}},k \in \mathbb{Z}
}{\Leftrightarrow x = \frac{2k\pi}{2^{2019} - 1},k \in
\mathbb{Z}}

    Vậy a = 2019,b = 1 nên a + b = 2020.

  • Câu 15: Vận dụng

    Giá trị lớn nhất, giá trị nhỏ nhất của hàm số: y=\sqrt{4\sin x+5} lần lượt là:

     Ta có: 

    \begin{matrix}   - 1 \leqslant \sin x \leqslant 1 \hfill \\   \Rightarrow  - 4 \leqslant 4\sin x \leqslant 4 \hfill \\   \Rightarrow  - 4 + 5 \leqslant 4\sin x + 5 \leqslant 4 + 5 \hfill \\   \Rightarrow 1 \leqslant 4\sin x + 5 \leqslant 9 \hfill \\   \Rightarrow 1 \leqslant \sqrt {4\sin x + 5}  \leqslant 3 \hfill \\ \end{matrix}

  • Câu 16: Nhận biết

    Có bao nhiêu đẳng thức luôn đúng trong các đẳng thức sau đây (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa)?

    i) \cos^{2}\alpha =
\frac{1}{\tan^{2}\alpha + 1}.

    iii) \sqrt{2}\cos\left( \alpha +
\frac{\pi}{4} ight) = \cos\alpha + \sin\alpha.

    ii) sin\left( \alpha - \frac{\pi}{2}
ight) = - cos\alpha.

    iv) cot2\alpha = 2\cot^{2}\alpha -
1.

    i) Ta có: \frac{1}{\cos^{2}\alpha} = 1 +
\tan^{2}\alpha \Leftrightarrow \cos^{2}\alpha = \frac{1}{1 +
\tan^{2}\alpha}

    Vậy i) đúng.

    ii) sin\left( \alpha - \frac{\pi}{2}
ight) = - sin\left( \frac{\pi}{2} - \alpha ight) = -
cos\alpha.

    Vậy ii) đúng.

    iii) \sqrt{2}cos\left( \alpha +
\frac{\pi}{4} ight) = \sqrt{2}\left( cos\alpha cos\frac{\pi}{4} -
sin\alpha sin\frac{\pi}{4} ight) = cos\alpha - sin\alpha.

    Vậy iii) sai.

    iv) Ta lấy \alpha =
\frac{\pi}{3}. Ta có VP =
cot2\alpha = cot2 \cdot \frac{\pi}{3} = - \frac{\sqrt{3}}{3},VT =
2\cot^{2}\left( \frac{\pi}{3} ight) - 1 = - \frac{1}{3}.

    Ta có VP eq VT.

    Do đó iv) sai.

    Vậy có 2 đẳng thức đúng.

  • Câu 17: Thông hiểu

    Giải phương trình \cos\left( 2x -
\frac{\pi}{3} ight) = - \frac{\sqrt{3}}{2}?

    Ta có:

    PT\Leftrightarrow \cos\left( 2x -
\frac{\pi}{3} ight) = \cos\frac{5\pi}{6}

    \Leftrightarrow \left\{ \begin{matrix}
2x - \frac{\pi}{3} = \frac{5\pi}{6} + k2\pi \\
2x - \frac{\pi}{3} = - \frac{5\pi}{6} + k2\pi \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = \frac{7\pi}{12} + k\pi \\
x = - \frac{\pi}{4} + k\pi \\
\end{matrix} ight.\ \ \left( k\mathbb{\in Z} ight)

    Vậy phương trình có nghiệm \left\lbrack
\begin{matrix}
x = \frac{7\pi}{12} + k\pi \\
x = - \frac{\pi}{4} + k\pi \\
\end{matrix} ight.\ \ \left( k\mathbb{\in Z} ight)

  • Câu 18: Vận dụng

    Phương trình \sin 2x = \frac{1}{2} có bao nhiêu nghiệm trên khoảng \left( {0;\frac{{15\pi }}{2}} ight)?

     Ta có: \sin 2x = \frac{1}{2} \Leftrightarrow \sin 2x = \sin \frac{\pi }{6}

    \Leftrightarrow \left[ \begin{gathered}  2x = \frac{\pi }{6} + k2\pi  \hfill \\  2x = \pi  - \frac{\pi }{6} + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{{12}} + k\pi  \hfill \\  x = \frac{{5\pi }}{{12}} + k\pi  \hfill \\ \end{gathered}  ight.    \left( {k \in \mathbb{Z}} ight)

    * Trường hợp 1: x = \frac{\pi }{{12}} + k\pi, \left( {k \in \mathbb{Z}} ight)

    0 < x < \frac{{15\pi }}{2} \Leftrightarrow 0 < \frac{\pi }{{12}} + k\pi  < \frac{{15\pi }}{2}

    \Leftrightarrow  - \frac{1}{{12}} < k < \frac{{89}}{{12}}\mathop  \Rightarrow \limits^{k \in \mathbb{Z}} k = \left\{ {0;1;2;3;4;5;6;7} ight\}.

    Vậy có tất cả 8 giá trị k tương ứng với trường hợp 1 có 8 nghiệm là:

    x = \frac{\pi }{{12}}; x = \frac{13\pi }{{12}}; x = \frac{25\pi }{{12}}; x = \frac{37\pi }{{12}}; x = \frac{49\pi }{{12}}; x = \frac{61\pi }{{12}}; x = \frac{73\pi }{{12}}; x = \frac{85\pi }{{12}}.

    * Trường hợp 2:  x = \frac{5\pi }{{12}} + k\pi, \left( {k \in \mathbb{Z}} ight) 

    0 < x < \frac{{15\pi }}{2} \Leftrightarrow 0 < \frac{{5\pi }}{{12}} + k\pi  < \frac{{15\pi }}{2}

    \Leftrightarrow  - \frac{5}{{12}} < k < \frac{{85}}{{12}}\mathop  \Rightarrow \limits^{k \in \mathbb{Z}} k = \left\{ {0;1;2;3;4;5;6;7} ight\}.

    Vậy có tất cả 8 giá trị k tương ứng với trường hợp 2 có 8 nghiệm là:

    x = \frac{5\pi }{{12}}; x = \frac{17\pi }{{12}}; x = \frac{29\pi }{{12}}; x = \frac{41\pi }{{12}}; x = \frac{53\pi }{{12}}; x = \frac{65\pi }{{12}}; x = \frac{77\pi }{{12}}; x = \frac{89\pi }{{12}}.

    Vậy trên khoảng \left( {0;\frac{{15\pi }}{2}} ight) phương trình đã cho có tất cả là 16 nghiệm.

  • Câu 19: Nhận biết

    Trong các hàm sau hàm nào là hàm số chẵn?

    Xét hàm số y = -cosx

    Lấy x \in D \Rightarrow  - x \in D ta có:

    - \cos \left( { - x} ight) =  - \cos x \Rightarrow f\left( { - x} ight) = f\left( x ight)

    => Hàm số y = -cosx là hàm số chẵn.

  • Câu 20: Nhận biết

    Nghiệm của phương trình tan (2x) -1 = 0 là?

     Ta có: \tan 2x - 1 = 0 \Leftrightarrow \tan 2x = 1

    \Leftrightarrow 2x = \frac{\pi }{4} + k\pi  \Leftrightarrow x = \frac{\pi }{8} + k\frac{\pi }{2}.

  • Câu 21: Nhận biết

    Xác định chu kì T của hàm số lượng giác y
= \cos\left( \frac{x}{2} + 2016 ight)?

    Hàm số y = cos(ax + b) tuần hoàn với chu kì T = \frac{2\pi}{|a|}

    => y = \cos\left( \frac{x}{2} + 2016
ight) tuần hoàn với chu kì T =
4\pi

  • Câu 22: Vận dụng cao

    Nếu \alpha +\beta + \gamma = \frac{\pi}{2}\cot\alpha + \cot\gamma = 2\cot\beta thì \cot\alpha.\cot\gamma bằng bao nhiêu?

    Từ giả thiết ta có:

    \alpha + \beta + \gamma = \frac{\pi}{2}\Rightarrow \beta = \frac{\pi}{2} - (\alpha + \gamma)

    Ta có:

    \cot\alpha + \cot\gamma =2\cot\beta

    = 2\cot\left\lbrack \frac{\pi}{2} -(\alpha + \gamma) ightbrack = 2\tan(\alpha + \gamma)

    = 2.\frac{\tan\alpha + \tan\gamma}{1 -\tan\alpha.\tan\gamma}

    Mặt khác

    \dfrac{\tan\alpha + \tan\gamma}{1 -\tan\alpha.\tan\gamma} = \dfrac{\dfrac{1}{\cot\alpha} +\dfrac{1}{\cot\gamma}}{1 - \dfrac{1}{\cot\alpha}.\dfrac{1}{\cot\gamma}} =\dfrac{\cot\alpha + \cot\gamma}{\cot\alpha.\cot\gamma - 1}

    \Rightarrow \cot\alpha + \cot\gamma =2.\frac{\cot\alpha + \cot\gamma}{\cot\alpha.\cot\gamma - 1}

    \Leftrightarrow \cot\alpha.\cot\gamma - 1= 2

    \Leftrightarrow \cot\alpha.\cot\gamma =3

  • Câu 23: Vận dụng

    Giá trị lớn nhất của hàm số y = \frac{\sin x + 2\cos x + 1}{\sin x + \cos x +2} tại điểm là nghiệm của phương trình nào dưới đây?

    Theo bài ra ta có:

    y = \frac{\sin x + 2\cos x + 1}{\sin x + \cos x +2}

    \Leftrightarrow y.\left( \sin x + \cos x+ 2 ight) = \sin x + 2\cos x + 1

    \Leftrightarrow (y - 1).\sin x + (y -2)\cos x = 1 - 2y(*)

    Phương trình (*) có nghiệm

    \Leftrightarrow (y - 1)^{2} + (y -
2)^{2} \geq 1 - 2y

    \Leftrightarrow y^{2} + y - 2 \leq
0

    \Leftrightarrow - 2 \leq y \leq
1

    Vậy giá trị lớn nhất của hàm số bằng 1 lúc đó - \cos x = - 1

  • Câu 24: Nhận biết

    Hỏi x = \frac{{7\pi }}{3} là một nghiệm của phương trình nào sau đây?

     Với x = \frac{{7\pi }}{3}, suy ra \left\{ \begin{gathered}  \sin x = \sin \frac{{7\pi }}{3} = \frac{{\sqrt 3 }}{2} \hfill \\  \cos x = \cos \frac{{7\pi }}{3} = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  2\sin x - \sqrt 3  = 0 \hfill \\  2\cos x - 1 = 0 \hfill \\ \end{gathered}  ight.

  • Câu 25: Nhận biết

    Tập nghiệm của phương trình \sin x = 0 là: 

     Ta có:

    \begin{matrix}  \sin x = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = k2\pi } \\   {x = \pi  + k2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\   \Leftrightarrow x = k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 26: Thông hiểu

    Rút gọn biểu thức C = \cos(7\pi - x) + 3\sin\left( \frac{3\pi}{2} + xight) - \cos\left( \frac{\pi}{2} - x ight) + \sin x ta được:

    Ta có:

    C = \cos(7\pi - x) + 3\sin\left(\frac{3\pi}{2} + x ight) - \cos\left( \frac{\pi}{2} - x ight) + \sin x

    C = \cos(\pi - x) - 3\sin\left(\frac{\pi}{2} + x ight) - \sin x + \sin x

    C = - \cos x - 3cosx = -
4cosx

  • Câu 27: Thông hiểu

    Cho 2\pi < a
< \frac{5\pi}{2} . Chọn khẳng định đúng.

    Đặt a = b + 2\pi

    2\pi < a < \frac{5\pi}{2}
\Leftrightarrow 2\pi < b + 2\pi < \frac{5\pi}{2} \Leftrightarrow 0
< b < \frac{\pi}{2}

    tana = tan(b + 2\pi) = tanb >
0

    cota = \frac{1}{tana} >
0.

    Vậy \tan a > 0,\cot a > 0.

  • Câu 28: Vận dụng

    Điều kiện để biểu thức P = \tan\left( \alpha + \frac{\pi}{3} ight) +
\cot\left( \alpha - \frac{\pi}{6} ight) xác định

    Biểu thức P = \tan\left( \alpha +
\frac{\pi}{3} ight) + \cot\left( \alpha - \frac{\pi}{6}
ight) xác định khi

    \left\{ \begin{matrix}\cos\left( \alpha + \dfrac{\pi}{3} ight) eq 0 \\\sin\left( \alpha - \dfrac{\pi}{6} ight) eq 0 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}\alpha + \dfrac{\pi}{3} eq \dfrac{\pi}{2} + k\pi \\\alpha - \dfrac{\pi}{6} eq k\pi \\\end{matrix} ight.

    \Rightarrow \alpha eq \frac{\pi}{6} +
k\pi;\left( k\mathbb{\in Z} ight)

  • Câu 29: Vận dụng cao

    Tập giá trị của hàm số y = \frac{\cos x +1}{\sin x + 1} trên \left\lbrack0;\frac{\pi}{2} ightbrack

    Ta có:

    \left\{ \begin{matrix}0 \leq \cos x \leq 1 \\0 \leq \sin x \leq 1 \\\end{matrix} ight.\ ;\left( x \in \left\lbrack 0;\frac{\pi}{2}ightbrack ight)

    Nên \frac{0 + 1}{1 + 1} \leq \frac{\cos x+ 1}{1 + 1} \leq \frac{1 + 1}{0 + 1} \Rightarrow \frac{1}{2} \leq y \leq2

  • Câu 30: Thông hiểu

    Tìm nghiệm dương nhỏ nhất của phương trình 2\sin \left( {4x - \frac{\pi }{3}} ight) - 1 = 0.

     Ta có 2\sin \left( {4x - \frac{\pi }{3}} ight) - 1 = 0 \Leftrightarrow \sin \left( {4x - \frac{\pi }{3}} ight) = \frac{1}{2}

    \Leftrightarrow \sin \left( {4x - \frac{\pi }{3}} ight) = \sin \frac{\pi }{6}

    \Leftrightarrow \left[ \begin{gathered}  4x - \frac{\pi }{3} = \frac{\pi }{6} + k2\pi  \hfill \\  4x - \frac{\pi }{3} = \pi  - \frac{\pi }{6} + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  4x = \frac{\pi }{2} + k2\pi  \hfill \\  4x = \frac{{7\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{8} + \frac{{k\pi }}{2} \hfill \\  x = \frac{{7\pi }}{{24}} + \frac{{k\pi }}{2} \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight).

    TH1. Với x = \frac{\pi }{8} + \frac{{k\pi }}{2}\xrightarrow{{{\text{Cho}} > 0}}\frac{\pi }{8} + \frac{{k\pi }}{2} > 0

    \Leftrightarrow k >  - \frac{1}{4} \to {k_{\min }} = 0 \Rightarrow x = \frac{\pi }{8}

    TH2. Với x = \frac{{7\pi }}{{24}} + \frac{{k\pi }}{2}\xrightarrow{{{\text{Cho}} > 0}}\frac{{7\pi }}{{24}} + \frac{{k\pi }}{2} > 0

    \Leftrightarrow k >  - \frac{7}{{12}} \to {k_{\min }} = 0 \Rightarrow x = \frac{{7\pi }}{{24}}

    So sánh hai nghiệm ta được x = \frac{\pi }{8} là nghiệm dương nhỏ nhất.

  • Câu 31: Thông hiểu

    Chọn đẳng thức đúng.

    Ta có:

    \cos^{2}\left( \frac{\pi}{2} +\frac{a}{2} ight) = \frac{1 + \cos\left( \dfrac{\pi}{2} + aight)}{2}

    = \frac{1 + \sin( - a)}{2} = \frac{1 -
\sin a}{2}

  • Câu 32: Vận dụng

    Gọi x_0 là nghiệm âm lớn nhất của phương trình \cos \left( {5x - {{45}^0}} ight) = \frac{{\sqrt 3 }}{2}. Mệnh đề nào sau đây là đúng?

     Ta có:

    \Leftrightarrow \left[ \begin{gathered}  5x = {75^0} + k{360^0} \hfill \\  5x = {15^0} + k{360^0} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = {15^0} + k{72^0} \hfill \\  x = {3^0} + k{72^0} \hfill \\ \end{gathered}  ight.{\text{ }}\,\left( {k \in \mathbb{Z}} ight)

    TH1. Với x = {15^0} + k{72^0} < 0 \Leftrightarrow k <  - \frac{5}{{24}}

    \Rightarrow {k_{\max }} =  - \,1 \to x =  - \,{57^0}

    TH2. Với x = {3^0} + k{72^0} < 0 \Leftrightarrow k <  - \,\frac{1}{{24}}

    \Rightarrow {k_{\max }} =  - \,1 \Rightarrow x =  - \,{69^0}

    So sánh hai nghiệm ta được nghiệm âm lớn nhất của phương trình là x=-57^0

  • Câu 33: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Tất các các hàm số đều có TXĐ: {\text{D}} = \mathbb{R}.

    Do đó \forall x \in {\text{D}} \Rightarrow  - x \in {\text{D}}{\text{.}}

    Bây giờ ta kiểm tra f\left( { - x} ight) = f\left( x ight) hoặc f\left( { - x} ight) =  - f\left( x ight).

     Với y = f\left( x ight) =  - \,\,\sin x. Ta có

    f\left( { - x} ight) =  - \,\,\sin \left( { - x} ight) = \sin x =  - \left( { - \sin x} ight)

    \Rightarrow f\left( { - x} ight) =  - f\left( x ight)

    Suy ra hàm số là hàm số lẻ.

    Với y = f\left( x ight) = \cos x - \sin x. . Ta có

    f\left( { - x} ight) = \cos \left( { - x} ight) - \sin \left( { - x} ight) = \cos x + \sin x

    \Rightarrow f\left( { - x} ight) e \left\{ { - f\left( x ight),f\left( x ight)} ight\}

    Suy ra hàm số không chẵn không lẻ.

    Với y = f\left( x ight) = \cos x + {\sin ^2}x. Ta có

    f\left( { - \,x} ight) = \cos \left( { - \,x} ight) + {\sin ^2}\left( { - \,x} ight)

    = \cos \left( { - \,x} ight) + {\left[ {\sin \left( { - \,x} ight)} ight]^2}

    = \cos x + {\left[ { - \sin x} ight]^2} = \cos x + {\sin ^2}x

    \Rightarrow f\left( { - x} ight) = f\left( x ight)

    Suy ra hàm số là hàm số chẵn.

    Với y = f\left( x ight) = \cos x\sin x. Ta có

    f\left( { - \,x} ight) = \cos \left( { - \,x} ight).\sin \left( { - \,x} ight) =  - \cos x\sin x

    \Rightarrow f\left( { - x} ight) =  - f\left( x ight)

     Suy ra hàm số là hàm số lẻ.

  • Câu 34: Thông hiểu

    Tìm tập giá trị của hàm số y = 3\cos2x + 5

    Ta có:

    - 1 \leq \cos2x \leq 1

    \Rightarrow - 3 \leq 3\cos2x \leq3

    \Rightarrow 2 \leq 3\cos2x + 5 \leq8

    \Rightarrow 2 \leq y \leq 8

    \Rightarrow T = \lbrack
2;8brack

  • Câu 35: Thông hiểu

    Trên đường tròn lượng giác có điểm gốc là điểm A, điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo bằng 750. Điểm N đối xứng với điểm M qua gốc tọa độ, số đo cung AN là:

    Điểm N đối xứng với điểm M qua gốc tọa độ nên \widehat{AON} = 180^{0} - 75^{0} =
105^{0}

    Cung lượng giác (OA;ON) ngược chiều dương nên số đo lượng giác cung (OA;ON) = - 105^{0} + k.360^{0},\left(
k\mathbb{\in Z} ight)

  • Câu 36: Thông hiểu

    Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?

    Hàm số y = x + \sin x không tuần hoàn. Thật vậy:

    Tập xác định {\text{D}} = \mathbb{R}.

    Giả sử f\left( {x + T} ight) = f\left( x ight),{\text{ }}\forall x \in {\text{D}}

    \Leftrightarrow \left( {x + T} ight) + \sin \left( {x + T} ight) = x + \sin x,{\text{ }}\forall x \in {\text{D}}

    .\Leftrightarrow T + \sin \left( {x + T} ight) = \sin x,{\text{ }}\forall x \in {\text{D}} (*)

    Cho x = 0 và x = π, ta được

    \left\{ \begin{gathered}  T + \sin x = \sin 0 = 0 \hfill \\  T + \sin \left( {\pi  + T} ight) = \sin \pi  = 0 \hfill \\ \end{gathered}  ight.

    \xrightarrow{{}}2T + \sin T + \sin \left( {\pi  + T} ight) = 0 \Leftrightarrow T = 0

    Điều này trái với định nghĩa là T > 0

    Vậy hàm số y = x + \sin x không phải là hàm số tuần hoàn.

    Tương tự chứng minh cho các hàm số y = x\cos xy = \frac{{\sin x}}{x} không tuần hoàn.

  • Câu 37: Vận dụng

    Cho tam giác ABC có các góc \widehat{A};\widehat{B};\widehat{C} thỏa mãn biểu thức 2\cos\widehat{A} +\cos\widehat{B} + \cos\widehat{C} = \frac{9}{4}. Biết rằng \sin\frac{\widehat{A}}{2} =
\frac{x}{y} với x,y\in\mathbb{ N};yeq 0;(x;y) = 1. Tính giá trị biểu thức Q = x + y?

    Ta có:

    2cos\widehat{A} + \cos\widehat{B} +
\cos\widehat{C}

    = 2 - 4\sin^{2}\frac{\widehat{A}}{2} +2\sin\frac{\widehat{A}}{2}.\cos\left( \frac{\widehat{B} - \widehat{C}}{2}ight)

    = - 4.\left\lbrack \sin^{2}\frac{\widehat{A}}{2} -\frac{1}{2}\sin\frac{\widehat{A}}{2}.\cos\left( \frac{\widehat{B} -\widehat{C}}{2} ight) + \frac{1}{16}\cos^{2}\left( \frac{\widehat{B} -\widehat{C}}{2} ight) ightbrack

    + \frac{1}{4}\cos^{2}\left(\frac{\widehat{B} - \widehat{C}}{2} ight) + 2

    = - 4.\left\lbrack\sin\frac{\widehat{A}}{2} - \frac{1}{4}\cos\left( \frac{\widehat{B} -\widehat{C}}{2} ight) ightbrack^{2} + \frac{1}{4}\cos^{2}\left(\frac{\widehat{B} - \widehat{C}}{2} ight) + 2

    \leq \frac{1}{4}cos^{2}\left(
\frac{\widehat{B} - \widehat{C}}{2} ight) + 2 \leq
\frac{9}{4}\forall\Delta ABC

    Dấy “=” xảy ra khi \left\{ \begin{matrix}\widehat{B} = \widehat{C} \\\sin\dfrac{\widehat{A}}{2} = \dfrac{1}{4} \\\end{matrix} ight.\  \Rightarrow x = 1;y = 4 \Rightarrow Q =5

  • Câu 38: Thông hiểu

    Trong các hàm số sau, hàm số nào là hàm số lẻ?

    Ta kiểm tra được y = \cos x +
sin^{2}xy = - \cos x là hàm số chẵn

    Hàm số y = \sin x + \cos x không chẵn không lẻ

    => Hàm số y = \sin x.cos3x là hàm số lẻ.

  • Câu 39: Thông hiểu

    Tìm chu kì T của hàm số y = \tan 3\pi x.

    Hàm số y = \tan \left( {ax + b} ight) tuần hoàn với chu kì T\,\, = \,\,\frac{\pi }{{\left| a ight|}}

    Áp dụng: Hàm số y = \tan 3\pi x tuần hoàn với chu kì T = \frac{1}{3}

  • Câu 40: Thông hiểu

    Trên đường tròn lượng giác có bao nhiêu vị trí biểu diện nghiệm của phương trình \tan3x= \tan x?

    Điều kiện xác định:

    \left\{ \begin{matrix}\cos3x eq 0 \\\cos x eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{6} + \dfrac{k\pi}{3} \\x eq \dfrac{\pi}{2} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Ta có:

    \tan3x = \tan x

    \Leftrightarrow 3x = x +
k\pi

    \Leftrightarrow x =
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    Kết hợp với điều kiện xác định suy ra phương trình có nghiệm x = k\pi;\left( k\mathbb{\in Z} ight) nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo