Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số
là:
Ta có:
=> M = 12; m = 4
Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số
là:
Ta có:
=> M = 12; m = 4
Phương án nào sau đây sai với mọi
?
Ta có:
Vậy đáp án sai là:
Phương trình
có nghiệm khi:
Xét phương trình:
Trường hợp 1:
Phương trình (*) trở thành:
3 + 3.m - 4.0 = 0 (Vô lí)
Trường hợp 2:
Chia cả hai vế của phương trình (*) cho cos2x
Phương trình (*) trờ thành: (**)
Đặt tanx = t, phương trình trở thành:
Phương trình đã cho có nghiệm => (***) có nghiệm
=> (luôn đúng với mọi m)
=> Phương trình đã cho có nghiệm với mọi
Tìm tất các các giá trị thực của tham số m để phương trình
vô nghiệm?
Áp dụng điều kiện có nghiệm của phương trình cos x = a.
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Phương trình
Do đó, phương trình vô nghiệm
.
Cung tròn bán kính bằng 8,43cm có số đo 3,85 rad có độ dài là?
Độ dài cung tròn là
Nếu
và
là hai nghiệm của phương trình
thì
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Tập nghiệm của phương trình
là:
Ta có:
Tính giá trị biểu thức
. Biết
?.
Ta có:
Tìm tập các định D của hàm số 
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Phương trình ![]()
Hỏi trên đoạn [-2023; 2023], phương trình
có tất cả bao nhiêu nghiệm?
Ta xét phương trình
Theo giả thiết
Vậy có tất cả 644 giá trị nguyên của k tương úng có 644 nghiệm thỏa mãn yêu cầu bài toán.
Hàm số
đạt giá trị nhỏ nhất tại
. Mệnh đề nào sau đây là đúng?
Ta có
Mà
Do đó giá trị nhỏ nhất của hàm số là .
Đẳng thức xảy ra
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu
(m) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày
cho bởi công thức
. Có bao nhiêu giá trị của t thỏa mãn để độ sâu của mực nước là
?
Độ sâu của mực nước là thì h = 15.
Khi đó
Vì nên
Lại do
Nghiệm của phương trình tan (2x) -1 = 0 là?
Ta có:
.
Cho phương trình
. Đặt
, ta được phương trình nào sau đây?
Ta có: trở thành
.
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Đơn giản biểu thức
, ta có
Ta có:
Cho
là nghiệm của phương trình nào sau đây?
Giải PT, ta có:
Cho góc lượng giác
. Với giá trị k bằng bao nhiêu thì góc
?
Theo bài ra ta có:
Gọi
là nghiệm dương nhỏ nhất của phương trình
. Mệnh đề nào sau đây là đúng?
Điều kiện:
Phương trình
Cho .
Do đó nghiệm dương nhỏ nhất ứng với .
Chọn công thức đúng trong các công thức dưới đây.
Công thức đúng là
Cho hình vẽ:

Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?
Ta thấy hàm số có giá trị lớn nhất là và giá trị nhỏ nhất là
=> loại hàm số
và
Tại ta thấy chỉ có
thỏa mãn
Hàm số
không xác định trong khoảng nào trong các khoảng sau đây?
Hàm số xác định khi và chỉ khi:
Chọn k = 3 =>
Nhưng điểm thuộc khoảng
Vậy hàm số không xác định trên
Tìm chu kì T của hàm số ![]()
Hàm số y = sin(ax + b) tuần hoàn với chu kì
=> tuần hoàn với chu kì
Cho phương trình
, nghiệm của phương trình là:
Ta có:
Tìm tập các định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Với
, mệnh đề nào sau đây là đúng?
Ta có thuộc góc phần tư thứ I. Do đó
đồng biến
nghịch biến.
nghịch biến
nghịch biến.
Chọn công thức đúng trong các công thức cho sau đây?
Công thức đúng là:
Trên đường tròn lượng giác có điểm gốc là A. Điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo
. Gọi N là điểm đối xứng với M qua trục Ox, số đo cung lượng giác AN bằng:
Vì số đo cung AM bằng
=>
N là điểm đối xứng với M qua trục Ox =>
=> Số đo cung AN bằng
=> Số đo cung lượng giác AN có số đo là:
Cho hai hàm số
. Mệnh đề nào sau đây đúng?
Xét hàm số có tập xác định
Với mọi x thuộc D => -x thuộc D ta có:
Vậy f(x) là hàm số chẵn
Tương tự xét hàm số
Với mọi x thuộc D => -x thuộc D ta có:
Vậy g(x) là hàm số chẵn.
Điều kiện để biểu thức
xác định
Biểu thức xác định khi
Cho
cho
. Tính giá trị của
?
Ta có:
Vì nên
Có bao nhiêu đẳng thức dưới đây là đồng nhất thức?
![]()
![]()
![]()
![]()
Ta có:
Vậy có hai đồng nhất thức.
Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách.
Ta có:
=> Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách tịnh tiến C qua phải một đoạn có độ dài là
Cho hàm số
có giá trị nhỏ nhất và giá trị lớn nhất lần lượt là
,
. Tính giá trị của biểu thức
.
Ta có:
Nên .
Suy ra .
Cho hai đồ thị hàm số
và
, khi đó:
a) Phương trình hoành độ giao điểm của hai đồ thị hàm số:
Đúng||Sai
b) Hoành độ giao điểm của hai đồ thị là
Đúng||Sai
c) Khi
thì hai đồ thị hàm số cắt nhau tại ba điểm Sai||Đúng
d) Khi
thì toạ độ giao điểm của hai đồ thị hàm số là:
. Sai||Đúng
Cho hai đồ thị hàm số và
, khi đó:
a) Phương trình hoành độ giao điểm của hai đồ thị hàm số: Đúng||Sai
b) Hoành độ giao điểm của hai đồ thị là Đúng||Sai
c) Khi thì hai đồ thị hàm số cắt nhau tại ba điểm Sai||Đúng
d) Khi thì toạ độ giao điểm của hai đồ thị hàm số là:
. Sai||Đúng
Phương trình hoành độ giao điểm của hai đồ thị hàm số:
Vì .
Với với
.
Vậy toạ độ giao điểm của hai đồ thị hàm số là: .
Kết luận:
|
a) Đúng |
b) Đúng |
c) Sai |
d) Sai |
Tổng các nghiệm thuộc khoảng
của phương trình: ![]()
Giải phương trình:
Tổng nghiệm của phương trình bằng 0.
Mệnh đề nào sau đây là đúng?
Từ công thức nên ta có
và
tỉ lệ với nhau.
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Mà nên
Vậy tập xác định
Nếu một cung tròn có số đo
thì số đo radian của nó là:
Áp dụng công thức tương ứng với
ta được: