Giải phương trình
được nghiệm là:
Ta có
Vậy phương trình đã cho có nghiệm là
Giải phương trình
được nghiệm là:
Ta có
Vậy phương trình đã cho có nghiệm là
Tìm nghiệm dương nhỏ nhất
của
?
Phương trình
So sánh hai nghiệm ta được nghiệm dương nhỏ nhất là .
Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách.
Ta có:
=> Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách tịnh tiến C qua phải một đoạn có độ dài là
Cho
. Giá trị lượng giác nào sau đây luôn dương?
Ta có:
Theo bài ra
=>
Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của biểu thức
.
Ta có:
Ta lại có:
Giá trị của biểu thức
là:
Ta có:
Khi đó:
Cho tam giác
có các góc
bất kì. Biểu thức
không thể nhận giá trị nào sau đây?
Ta có:
Với tam giác ABC bất kì ta luôn có:
Vậy biểu thức không thể nhận giá trị
.
Giải phương trình ![]()
Ta có:
Điều kiện xác định của hàm số:
là:
Điều kiện xác định của hàm số:
Mệnh đề nào sau đây là đúng?
Từ công thức nên ta có
và
tỉ lệ với nhau.
Cho
. Xác định k để
.
Ta có:
Cho góc
thỏa mãn
và
. Tính ![]()
Ta có:
Mặt khác
Do
Khi đó giá trị biểu thức H là:
Tính độ dài của cung trên đường tròn có số đo 1,5 và bán kính bằng 20 cm.
Ta có:
Biết rằng phương trình
có nghiệm dạng
với
và
. Tính ![]()
Điều kiện
Ta có:
Thiết lập các đẳng thức tương tự như trên thì phương trình đã cho trở thành
Vậy nên
.
Biến đổi thành tích biểu thức
ta được
Ta có
Số nghiệm của phương trình
với
là?
4 || Bốn || bốn || 4 nghiệm
Số nghiệm của phương trình với
là?
4 || Bốn || bốn || 4 nghiệm
Phương trình
Vì
Vì
Vậy có tất cả 4 nghiệm thỏa mãn bài toán.
Cho đường tròn đường kính
. Tìm số đo
của cung có độ dài
?
mà
vậy số đo
cần tìm là
.
Cho hàm số
. Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số
?
Ta có:
Đặt . Xét hàm số
trên đoạn
Ta có bảng biến thiên
Từ bảng biến thiên ta có:
Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho là 10.
Cho góc
thỏa mãn
. Tính giá trị biểu thức ![]()
Ta có:
Theo bài ra ta có:
Khi đó giá trị biểu thức T là:
Đồ thị hàm số
đi qua điểm nào sau đây?
Thay giá trị vào hàm số ta có:
Vậy điểm thuộc đồ thị hàm số là:
Hàm số nào tương ứng với đồ thị trong hình vẽ sau:

Ta thấy hàm số có giá trị lớn nhất bằng và giá trị nhỏ nhất bằng
nên loại các đáp án
và
.
Tại chỉ có hàm số
thỏa mãn.
Trong các phương trình sau có bao nhiêu phương trình có nghiệm?
![]()
Do y = sin (x) có tập giá trị là [-1;1] nên các phương trình có nghiệm;
phương trình vô nghiệm do
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm?
Ta có .
Phương trình có nghiệm
Vậy có tất cả 3 giá trị nguyên của tham số m.
Tìm tất cả các nghiệm của phương trình
.
Ta có
.
Hàm số nào sau đây là hàm số chẵn:
Hàm số sinx là hàm số lẻ
=> Hàm số y = sin5x, y = 3sin2x, y = 4sinx là hàm số lẻ
Xét hàm số y = |sinx| ta có:
Hàm số có tập xác định D = R; ∀x ∈ D thì -x ∈ D
Ta có: f(-x) = |sin( -x)| = |- sinx| = |sinx|
=> f(x)= f(-x) nên hàm số y= |sinx| là hàm số chẵn
Vậy hàm số y = |sinx| là hàm số chẵn
Cho hình vẽ:

Trên đường tròn lượng giác, số đo của góc lượng giác
là:
Từ hình vẽ ta có:
Hàm số
đạt giá trị nhỏ nhất tại
. Mệnh đề nào sau đây là đúng?
Ta có
Mà
Do đó giá trị nhỏ nhất của hàm số là .
Đẳng thức xảy ra
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn
để phương trình
có nghiệm?
Ta có
Phương trình có nghiệm
.
Vậy có tất cả 2023 giá trị nguyên của tham số m.
Tất cả các nghiệm của phương trình
là:
Ta có:
Vậy suy ra ,
Nghiệm của phương trình đã cho là: ,
.
Tập nghiệm của phương trình
là?
Ta có:
Trong các hàm số sau, hàm số nào là hàm số chẵn?
Tất các các hàm số đều có TXĐ: .
Do đó
Bây giờ ta kiểm tra hoặc
Với . Ta có
Suy ra hàm số là hàm số lẻ.
Với . Ta có
Suy ra hàm số không chẵn không lẻ.
Với . Ta có
Suy ra hàm số là hàm số chẵn.
Với Ta có
Suy ra hàm số là hàm số lẻ.
Tìm chu kì của hàm số
?
Hàm số tuần hoàn với chu kì
Áp dụng công thức trên ta suy ra hàm số tuần hoàn với chu kì
.
Điều kiện để phương trình
có nghiệm là:
Điều kiện để phương trình có nghiệm là
Vậy thì phương trình đã cho có nghiệm.
Nghiệm của phương trình
là:
Ta có
Tính giá trị biểu thức ![]()
Ta có:
Nên các cung lượng giác tương ứng đôi một phụ nhau ta có công thức
Khi đó ta có:
Tập giá trị của hàm số
có bao nhiêu số nguyên?
Ta có:
Điều kiện có nghiệm của phương trình là:
Mà nên
.
Vậy tập giá trị của có 11 số nguyên.
Cho tam giác ABC có:
và
. Xác định
.
Ta có:
Mà khi đó:
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với phương trình
. Đúng||Sai
b) Trên khoảng
phương trình có 2 nghiệm. Sai||Đúng
c) Trên khoảng
phương trình có 3 nghiệm. Đúng||Sai
d) Tổng các nghiệm của phương trình trên khoảng
bằng
. Đúng||Sai
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với phương trình . Đúng||Sai
b) Trên khoảng phương trình có 2 nghiệm. Sai||Đúng
c) Trên khoảng phương trình có 3 nghiệm. Đúng||Sai
d) Tổng các nghiệm của phương trình trên khoảng bằng
. Đúng||Sai
Ta có phương trình đã cho tương đương với
.
Vì nên suy ra
.
Kết luận:
|
a) Đúng |
b) Sai |
c) Đúng |
d) Đúng |
Đơn giản biểu thức
, ta có
Ta có:
Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số
là:
Ta có:
=> M = 12; m = 4