Phương trình lượng giác
có nghiệm là:
Ta có
Phương trình lượng giác
có nghiệm là:
Ta có
Nghiệm của phương trình
là?
Ta có:
.
Hỏi trên đoạn [-2023; 2023], phương trình
có tất cả bao nhiêu nghiệm?
Ta xét phương trình
Theo giả thiết
Vậy có tất cả 644 giá trị nguyên của k tương úng có 644 nghiệm thỏa mãn yêu cầu bài toán.
Với điều kiện xác định của các giá trị lượng giác, mệnh đề nào sau đây đúng?
Mệnh đề đúng là:
Cho đồ thị hàm số lượng giác như hình vẽ:

Đường thẳng
cắt đồ thị hàm số
tại 4 điểm A, B, C, D như hình vẽ. Giá trị của
là
. Biết
là phân số tối giản. Giá trị của
là:
Đáp án: 19
Cho đồ thị hàm số lượng giác như hình vẽ:
Đường thẳng cắt đồ thị hàm số
tại 4 điểm A, B, C, D như hình vẽ. Giá trị của
là
. Biết
là phân số tối giản. Giá trị của
là:
Đáp án: 19
Phương trình hoành độ giao điểm là:
Ta thấy là bốn nghiệm dương nhỏ nhất của phương trình trên.
Do đó: .
Vậy .
Khẳng định nào sau đây đúng?
Trong khoảng thì hàm số
đồng biến.
Rút gọn biểu thức
.
Ta có:
Đổi số đo của góc
sang đơn vị độ, phút, giây
Cách 1: Từ công thức khi đó:
Cách 2: Bấm máy tính:
Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.
Bước 2. Bấm (shift -3π ÷16) shift DRG 2 =
Cho góc
thỏa mãn
. Tính giá trị biểu thức ![]()
Ta có:
Theo bài ra ta có:
Khi đó giá trị biểu thức T là:
Cung nào sau đây có mút trùng với B hoặc B’?

Quan sát hình vẽ ta thấy vị trí điểm B và B’ ứng với các góc .
Tương ứng với đó ta được góc trùng với các vị trí B và B’ là: .
Trong tam giác ABC nếu
thì tam giác ABC là tam giác gì?
Ta có:
Vậy tam giác ABC có thể là tam giác cân hoặc tam giác vuông.
Với những giá trị nào của x thì giá trị của các hàm số
và
bằng nhau?
Xét phương trình hoành độ giao điểm: sin 3x = sin x
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Phương trình
Suy ra có duy nhất 1 vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác.
Tính giá trị của ![]()
Ta có:
Tổng giá trị lớn nhất và nhỏ nhất của hàm số
là
Do nên
.
Nên đạt được khi
.
đạt được khi
.
Suy ra .
Khẳng định nào sau đây đúng?
Ta có:
Hàm số đồng biến trên khoảng
là:
Với thuộc góc phần tư thứ IV và thứ nhất nên hàm số
đồng biến trên khoảng
Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của biểu thức
.
Ta có:
Ta lại có:
Tập xác định của hàm số
là:
Ta có: xác định khi và chỉ khi
Vậy tập xác định của hàm số là:
Trong các hàm số sau, hàm số nào là hàm số lẻ?
Ta kiểm tra được và
là hàm số chẵn
Hàm số không chẵn không lẻ
=> Hàm số là hàm số lẻ.
Biết
là các góc của tam giác
, mệnh đề nào sau đây đúng?
Vì là các góc của tam giác
nên
.
Khi đó .
.
Với x thuộc (0;1), hỏi phương trình
có bao nhiêu nghiệm?
Phương trình
- Với .
có 6 nghiệm.
- Với .
có 6 nghiệm.
Vậy phương trình đã cho có 12 nghiệm.
Trong các phương trình sau có bao nhiêu phương trình có nghiệm?
![]()
Do y = sin (x) có tập giá trị là [-1;1] nên các phương trình có nghiệm;
phương trình vô nghiệm do
Huyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu gọi là huyết áp tâm thu và tâm trương, tương ứng. Chỉ số huyết áp của chúng ta được viết là tâm thu/tâm trương. Chỉ số huyết áp
là bình thường. Giả sử một người nào đó có nhịp tim là
lần trên phút và huyết áp của người đó được mô hình hoá bởi hàm số
ở đó
là huyết áp tính theo đơn vị
( milimét thuỷ ngân) và thời gian
tính theo giây. Trong khoảng từ 0 đến 1 giây, hãy xác định số lần huyết áp là 120
?
Đáp án: 1
Huyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu gọi là huyết áp tâm thu và tâm trương, tương ứng. Chỉ số huyết áp của chúng ta được viết là tâm thu/tâm trương. Chỉ số huyết áp là bình thường. Giả sử một người nào đó có nhịp tim là
lần trên phút và huyết áp của người đó được mô hình hoá bởi hàm số
ở đó
là huyết áp tính theo đơn vị
( milimét thuỷ ngân) và thời gian
tính theo giây. Trong khoảng từ 0 đến 1 giây, hãy xác định số lần huyết áp là 120
?
Đáp án: 1
Huyết áp là 120 khi
Xét
vì .
Vậy trong khoảng từ 0 đến 1 giây, có 1 lần huyết áp là 120 .
Hàm số
nghịch biến trên khoảng nào sau đây?
Hàm số tuần hoàn với chu kì
Do hàm số nghịch biến trên
=> Hàm số nghịch biến khi
Vậy đáp án đúng là
Giải phương trình
?
Ta có:
PT
Vậy phương trình có nghiệm
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu
(mét) của mực nước trong kênh tính theo thời gian
(giờ) trong một ngày
cho bởi hàm số
có đồ thị như hình bên dưới (
là các số thực dương). Gọi
là tập hợp tất cả các thời điểm
trong ngày để chiều cao của mực nước biển là
mét. Tổng tất cả phần tử của
bằng.

Đáp án: 36
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu (mét) của mực nước trong kênh tính theo thời gian
(giờ) trong một ngày
cho bởi hàm số
có đồ thị như hình bên dưới (
là các số thực dương). Gọi
là tập hợp tất cả các thời điểm
trong ngày để chiều cao của mực nước biển là
mét. Tổng tất cả phần tử của
bằng.
Đáp án: 36
Theo đồ thị ta có:
Suy ra: .
Theo đề bài yêu cầu:
Vì: nên
Suy ra:
Biết
, khẳng định nào sau đây đúng?
Với thì
.
Hàm số
đồng biến trên khoảng nào sau đây?
Hàm số y = cosx đồng biến trên mỗi khoảng (-π + k2π; k2π) và nghịch biến trên mỗi khoảng (k2π; π + k2π) với k ∈ Z.
Nếu
thì khẳng định nào sau đây đúng?
Ta có:
Nghiệm của phương trình
là:
Ta có
Biết rằng phương trình
có nghiệm dạng
với
và
. Tính
.
Điều kiện xác định
Ta có:
=> Phương trình tương đương
=>
Đồ thị hàm số
được suy ra từ đồ thị C của hàm số y = cosx + 1 bằng cách:
Ta có:
Tịnh tiến đồ thị y = cosx + 1 sang phải ta được đồ thị hàm số
Tiếp theo tịnh tiến đồ thị xuống dưới một đơn vị ta được đồ thị hàm số
VD
0
Hình chữ nhật ABCD có hai đỉnh A, B thuộc trục Ox, hai đỉnh C, D thuộc đồ thị hàm số y = cos x (như hình vẽ). Biết rằng
. Diện tích hình chữ nhật ABCD bằng bao nhiêu?

Gọi
Do ABCD là hình chữ nhật nên AB // CD
=>
=>
Diện tích hình chữ nhật ABCD bằng
Cho góc
thỏa mãn
. Tính giá trị biểu thưc
.
Theo bài ra ta có:
Tìm tập các định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Điều kiện xác định của hàm số
là:
Ta có:
Điều kiện xác định của hàm số
Đồ thị hàm số
được suy từ đồ thị (C) của hàm số bằng cách:
Nhắc lại lý thuyết:
Cho (C) là đồ thị của hàm số và
, ta có:
+ Tịnh tiến (C) lên p trên đơn vị thì được đồ thị của hàm số .
+ Tịnh tiến (C) xuống dưới p đơn vị thì được đồ thị của hàm số
+ Tịnh tiến (C) sang trái p đơn vị thì được đồ thị của hàm số
+ Tịnh tiến (C) sang phải p đơn vị thì được đồ thị của hàm số
Vậy đồ thị hàm số được suy từ đồ thị hàm số
bằng cách tịnh tiến sang phải
đơn vị.
Tất cả các nghiệm của phương trình
là:
Ta có:
Vậy suy ra ,
Nghiệm của phương trình đã cho là: ,
.