Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Hàm số y = sin^{4}x - cos^{4}x đạt giá trị nhỏ nhất tại x = x_{0}. Mệnh đề nào sau đây là đúng?

    Ta có y = sin^{4}x - cos^{4}x

    = \left(sin^{2}x + cos^{2}x ight)\left( sin^{2}x - cos^{2}x ight) = -cos2x.

    - 1 \leq cos2x \leq 1 \Rightarrow - 1\geq - cos2x \geq 1

    \Rightarrow - 1 \geq y \geq 1

    Do đó giá trị nhỏ nhất của hàm số là -1.

    Đẳng thức xảy ra \Leftrightarrow cos2x =1 \Leftrightarrow 2x = k2\pi \Leftrightarrow x = k\pi\ \left(k\mathbb{\in Z} ight).

  • Câu 2: Thông hiểu

    Kết luận nào đúng về tập nghiệm của phương trình \cos\left( \frac{\pi}{3} + \pi x
ight) = \sin(\pi x)?

    Ta có:

    \cos\left( \frac{\pi}{3} + \pi x ight)
= \sin(\pi x)

    \Leftrightarrow \sin\left( \frac{\pi}{2}
- \frac{\pi}{3} - \pi x ight) = \sin(\pi x)

    \Leftrightarrow \sin\left( \frac{\pi}{6}
- \pi x ight) = \sin(\pi x)

    \Leftrightarrow \left\lbrack\begin{matrix}\pi x = \dfrac{\pi}{6} - \pi x + k2\pi \\\pi x = \pi - \dfrac{\pi}{6} + \pi x + k2\pi(L) \\\end{matrix} ight.

    \Leftrightarrow x = \frac{1}{12} +
k;\left( k\mathbb{\in Z} ight)

    Vậy tập nghiệm của phương trình đã cho là \pi x = \frac{\pi}{6} - \pi x +
k2\pi.

  • Câu 3: Vận dụng cao

    Cho bất đẳng thức \cos2A + \frac{1}{64\cos^{4}A} - (2\cos2B + 4\sin B) +\frac{13}{4} \leq 0, với A;B;C là ba góc của tam giác ABC. Khẳng định đúng là

    Ta có:

    \begin{matrix}  \cos 2A + \dfrac{1}{{64{{\cos }^4}A}} - (2\cos 2B + 4\sin B) + \dfrac{{13}}{4} \leqslant 0 \hfill \\   \Leftrightarrow {\cos ^2}A + {\cos ^2}A + \dfrac{1}{{64{{\cos }^4}A}} + 4{\sin ^2}B - 4\sin B + 1 \leqslant \dfrac{3}{4}\left( * ight) \hfill \\ \end{matrix}

    Áp dụng bất đẳng thức Cauchy ta có:

    {\cos ^2}A + {\cos ^2}A + \frac{1}{{64{{\cos }^4}A}} \geqslant \frac{3}{4}\left( 1 ight)

    4{\sin ^2}B - 4\sin B + 1 \geqslant 0 \text{    }(2)

    Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:

    \left\{ \begin{gathered}  {\cos ^2}A = \frac{1}{{64{{\cos }^4}A}} \hfill \\  \sin B = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \cos A = \frac{1}{2} \hfill \\  \sin B = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  A = {60^0} \hfill \\  B = {30^0} \hfill \\  C = {90^0} \hfill \\ \end{gathered}  ight.

    Vậy \widehat{B} + \widehat{C} =120^{0}

  • Câu 4: Thông hiểu

    Cho góc \alpha thỏa mãn \tan\alpha = 2. Tính giá trị biểu thức P = \frac{sin2\alpha}{cos4\alpha +1}.

    Ta có:

    P = \dfrac{\sin2\alpha}{\cos4\alpha +1}

    P =\dfrac{\sin2\alpha}{2\cos^{2}2\alpha}

    P =\tan2\alpha.\dfrac{1}{\cos2\alpha}

    P = \dfrac{2\tan\alpha}{1 -\tan^{2}\alpha}.\dfrac{\sin^{2}\alpha + \cos^{2}\alpha}{2\left(\cos^{2}\alpha - \sin^{2}\alpha ight)}

    P = \dfrac{2}{1 -4}.\dfrac{\tan^{2}\alpha + 1}{1 - \tan^{2}\alpha} = \dfrac{10}{9}

  • Câu 5: Thông hiểu

    Tất cả các nghiệm của phương trình tan (x) = cot (x) là?

     Điều kiện \left\{ \begin{gathered}  \sin x e 0 \hfill \\  \cos x e 0 \hfill \\ \end{gathered}  ight.\, \Leftrightarrow \sin 2x e 0\, \Leftrightarrow x e m\frac{\pi }{2}\,{\text{ , }}m \in \mathbb{Z}

    \tan x = \cot x \Leftrightarrow \tan x = \tan \left( {\frac{\pi }{2} - x} ight)

    \Leftrightarrow x = \frac{\pi }{2} - x + k\pi

    \Leftrightarrow x = \frac{\pi }{4} + k\frac{\pi }{2}\,\,\,\left( {\,k \in \mathbb{Z}} ight) thỏa mãn điều kiện.

  • Câu 6: Nhận biết

    Mệnh đề nào sau đây là đúng?

    Từ công thức l = R.\alpha nên ta có l\alpha tỉ lệ với nhau.

  • Câu 7: Thông hiểu

    Một đường tròn có đường kính bằng 20cm. Tính độ dài của cung trên đường tròn có số đo 35^{0} (lấy 2 chữ số thập phân).

    Cung có số đo 35^{0} thì có số đó radian là \alpha = \frac{35\pi}{180} =
\frac{7\pi}{36}

    Bán kính đường tròn R = \frac{20}{2} =
10cm

    => l = R.\alpha = 10.\frac{7\pi}{36}
\approx 6,11cm

  • Câu 8: Thông hiểu

    Chọn công thức đúng trong các công thức dưới đây.

    Công thức đúng là \sin a - \sin b =2\sin\frac{a + b}{2}.\cos\frac{a - b}{2}

  • Câu 9: Nhận biết

    Cho 0 <
\alpha < \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có: 0 < \alpha <
\frac{\pi}{2}

    => 0 - \pi < \alpha - \pi <
\frac{\pi}{2} - \pi

    => - \pi < \alpha - \pi < -
\frac{\pi}{2}

    Điểm cuối cung \alpha - \pi thuộc góc phần tư thứ ba

    => \sin(\alpha - \pi) <
0

  • Câu 10: Thông hiểu

    Trên đường tròn lượng giác có bao nhiêu vị trí biểu diện nghiệm của phương trình \tan3x= \tan x?

    Điều kiện xác định:

    \left\{ \begin{matrix}\cos3x eq 0 \\\cos x eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{6} + \dfrac{k\pi}{3} \\x eq \dfrac{\pi}{2} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Ta có:

    \tan3x = \tan x

    \Leftrightarrow 3x = x +
k\pi

    \Leftrightarrow x =
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    Kết hợp với điều kiện xác định suy ra phương trình có nghiệm x = k\pi;\left( k\mathbb{\in Z} ight) nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.

  • Câu 11: Nhận biết

    Với x thuộc (0;1), hỏi phương trình {\cos ^2}\left( {6\pi x} ight) = \frac{3}{4} có bao nhiêu nghiệm?

     Phương trình {\cos ^2}\left( {6\pi x} ight) = \frac{3}{4} \Leftrightarrow \cos \left( {6\pi x} ight) =  \pm \frac{{\sqrt 3 }}{2}

    - Với \cos 6\pi x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \cos 6\pi x = \cos \frac{\pi }{6} \Leftrightarrow 6\pi x =  \pm \,\frac{\pi }{6} + k2\pi.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{1}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\  x =  - \frac{1}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}   - \frac{1}{{12}} < k < \frac{{35}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {0;1;2} ight\} \hfill \\  \frac{1}{{12}} < k < \frac{{37}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {1;2;3} ight\} \hfill \\ \end{gathered}  ight. \to có 6 nghiệm.

    - Với \cos 6\pi x =  - \frac{{\sqrt 3 }}{2} \Leftrightarrow \cos 6\pi x = \cos \frac{{5\pi }}{6} \Leftrightarrow 6\pi x =  \pm \,\frac{{5\pi }}{6} + k2\pi.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{5}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\  x =  - \frac{5}{{36}} + \frac{k}{3} \in \left( {0;1} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}   - \frac{5}{{12}} < k < \frac{{31}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {0;1;2} ight\} \hfill \\  \frac{5}{{12}} < k < \frac{{41}}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k = \left\{ {1;2;3} ight\} \hfill \\ \end{gathered}  ight. \tocó 6 nghiệm.

    Vậy phương trình đã cho có 12 nghiệm.

  • Câu 12: Thông hiểu

    Tìm tập giá trị của hàm số y = 5\sin x - 12\cos x?

    Ta có:

    y = 5\sin x - 12\cos x

    =>y = 13\left( \frac{5\sin x - 12\cos x}{13}ight)

    => y = 13\left( \sin\alpha.\sin x -\cos\alpha.\cos x ight)

    y = 13cos(x + \alpha) (với \sin\alpha = \frac{5}{13};\cos\alpha =\frac{12}{13})

    Lại có:

    - 1 \leq \cos(x + \alpha) \leq
1

    \Leftrightarrow - 13 \leq 13cos(x +
\alpha) \leq 13

    \Leftrightarrow - 13 \leq y \leq
13

    Vậy tập giá trị của hàm số là \lbrack -
13;13brack

  • Câu 13: Vận dụng

    Giá trị lớn nhất, giá trị nhỏ nhất của hàm số: y=\sqrt{4\sin x+5} lần lượt là:

     Ta có: 

    \begin{matrix}   - 1 \leqslant \sin x \leqslant 1 \hfill \\   \Rightarrow  - 4 \leqslant 4\sin x \leqslant 4 \hfill \\   \Rightarrow  - 4 + 5 \leqslant 4\sin x + 5 \leqslant 4 + 5 \hfill \\   \Rightarrow 1 \leqslant 4\sin x + 5 \leqslant 9 \hfill \\   \Rightarrow 1 \leqslant \sqrt {4\sin x + 5}  \leqslant 3 \hfill \\ \end{matrix}

  • Câu 14: Nhận biết

    Giải phương trình \cot x = - 1 thu được kết quả là:

    Điều kiện x eq k\pi\left( k\mathbb{\in
Z} ight)

    \cot x = - 1 \Leftrightarrow x = -
\frac{\pi}{4} + k\pi\ \left( k\mathbb{\in Z} ight).

  • Câu 15: Thông hiểu

    Cho góc \alpha thỏa mãn \sin\alpha = \frac{3}{5}. Giá trị của biểu thức G = \sin\left( \alpha +\frac{\pi}{6} ight).\sin\left( \alpha - \frac{\pi}{6}ight)

    Ta có:

    G = \sin\left( \alpha + \frac{\pi}{6}ight).\sin\left( \alpha - \frac{\pi}{6} ight)

    G = \frac{1}{2}\left( \cos\frac{\pi}{3}- \cos2\alpha ight)

    Ta có:

    \cos2\alpha = 1 - 2\sin^{2}\alpha = 1 -2.\left( \frac{3}{5} ight)^{2} = \frac{7}{25}

    Khi đó giá trị biểu thức G là:

    G = \frac{1}{2}\left( \cos\frac{\pi}{3}
- \frac{7}{25} ight) = \frac{1}{2}\left( \frac{1}{2} - \frac{7}{25}
ight) = \frac{11}{100}

  • Câu 16: Thông hiểu

    Tìm chu kì T của hàm số y = \cos 2x + \sin \frac{x}{2}

    Hàm số y = \cos 2x tuần hoàn với chu kì {T_1} = \frac{{2\pi }}{2} = \pi

    Hàm số y = \sin \frac{x}{2} tuần hoàn với chu kì {T_2} = \frac{{2\pi }}{{\dfrac{1}{2}}} = 4\pi

    Suy ra hàm số y = \cos 2x + \sin \frac{x}{2} tuần hoàn với chu kì T = 4\pi

  • Câu 17: Nhận biết

    Hai hàm số nào sau đây có chu kì khác nhau?

    Hai hàm số \left\{ \begin{matrix}y = \cos x \\y = \cot\dfrac{x}{2} \\\end{matrix} ight. có cùng chu kì 2π

    Hai hàm số \left\{ \begin{matrix}y = \sin\dfrac{x}{2} \\y = \cos\dfrac{x}{2} \\\end{matrix} ight. có cùng chu kì 4π

    Hai hàm số \left\{ \begin{matrix}y = tan2x \\y = cot2x \\\end{matrix} ight. có cùng chu kì \frac{\pi}{2}

    Hàm số y = sinx có chu kì 2π, hàm số y = tanx có chu kì \frac{\pi}{2}

  • Câu 18: Nhận biết

    Cường độ dòng điện trong một đoạn mạch là i = \sqrt{2}sin(100\pi t + \alpha) (A). Tại thời điểm t =
\frac{1}{100}s thì cường độ trong mạch có giá trị bằng.

    Thay t = \frac{1}{100}s vào biểu thức cường độ dòng điện ta được:

    i = \sqrt{2}sin\left( 100\pi \cdot
\frac{1}{100} + \alpha ight) = \sqrt{2}sin(\pi + \alpha) = -
\sqrt{2}sin(\alpha)(A).

  • Câu 19: Nhận biết

    Số vị trí biểu diễn các nghiệm của phương trình \tan \left( {2x - \frac{\pi }{3}} ight) + \sqrt 3  = 0 trên đường tròn lượng giác là?

     Ta có \tan \left( {2x - \frac{\pi }{3}} ight) + \sqrt 3  = 0 \Leftrightarrow \tan \left( {2x - \frac{\pi }{3}} ight) =  - \sqrt 3

    \Leftrightarrow \tan \left( {2x - \frac{\pi }{3}} ight) = \tan \left( { - \frac{\pi }{3}} ight)

    \Leftrightarrow 2x - \frac{\pi }{3} =  - \,\frac{\pi }{3} + k\pi

    \Leftrightarrow 2x = k\pi  \Leftrightarrow x = \frac{{k\pi }}{2}{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Ta xét có 4 vị trí biểu diễn các nghiệm của phương trình đã cho trên đường tròn lượng giác là A, B, C, D.

  • Câu 20: Nhận biết

    Trong các phương trình sau, phương trình nào tương đương với phương trình 3{\sin ^2}x = {\cos ^2}x ?

     Ta có 3{\sin ^2}x = {\cos ^2}x. Chi hai vế phương trình cho {\sin ^2}x, ta được {\cot ^2}x = 3.

  • Câu 21: Nhận biết

    Với x \in \left(
\frac{31\pi}{4};\frac{33\pi}{4} ight), mệnh đề nào sau đây đúng?

    Ta có: x \in \left(
\frac{31\pi}{4};\frac{33\pi}{4} ight) = \left( - \frac{\pi}{4} +
8\pi;\frac{\pi}{4} + 8\pi ight) thuộc góc phần tư thứ I và thứ II.

  • Câu 22: Vận dụng

    Tìm tập xác định D của hàm số y =
\tan\left( \frac{\pi}{2}.cosx ight)

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\dfrac{\pi}{2}.cosx eq \dfrac{\pi}{2} + k\pi \\\cos x eq 1 + 2k(*) \\\end{matrix}

    Do k là số nguyên => \cos x eq \pm 1\Rightarrow \sin x eq 0 \Rightarrow x eq k\pi,k \in\mathbb{Z}

    Vậy tập xác định D\mathbb{=R}\backslash\left\{ k\pi,k\in\mathbb{ Z} ight\}

  • Câu 23: Thông hiểu

    Có bao nhiêu đẳng thức dưới đây là đồng nhất thức?

    \cos x - \sin x = \sqrt{2}\sin\left( x +
\frac{\pi}{4} ight)

    \cos x - \sin x = \sqrt{2}\cos\left( x +
\frac{\pi}{4} ight)

    \cos x - \sin x = \sqrt{2}\sin\left( x -
\frac{\pi}{4} ight)

    \cos x - \sin x = \sqrt{2}\sin\left(
\frac{\pi}{4} - x ight)

    Ta có:

    \cos x - \sin x = \sqrt{2}\cos\left( x +
\frac{\pi}{4} ight)

    = \sqrt{2}\cos\left\lbrack \frac{\pi}{2}
- \left( \frac{\pi}{4} - x ight) ightbrack

    = \sqrt{2}\sin\left( \frac{\pi}{4} - x
ight)

    Vậy có hai đồng nhất thức.

  • Câu 24: Vận dụng

    Tính tổng A =\sin^{2}35^{0} + \sin^{2}10^{0} + \sin^{2}15^{0} + ... + \sin^{2}80^{0} +\sin^{2}85^{0}

    Ta có: 5^{0} + 85^{0} = 10^{0} + 80^{0} =
40^{0} + 50^{0} = ... = 90^{0}

    Nên \sin^{2}5^{0} + \sin^{2}85^{0} =\sin^{2}10^{0} + \sin^{2}80^{0} = \sin^{2}40^{0} +\sin^{2}50^{0} = ... =1

    sin^{2}45^{0} = \frac{1}{2}

    => A = \underbrace {1 + 1 + ... + 1}_{n{\text{ so 1}}} + \frac{1}{2} = \frac{{17}}{2}

  • Câu 25: Thông hiểu

    Ta có: \sin\frac{90^{0}}{4}.\cos\frac{270^{0}}{4} =\frac{1}{2}\left( c - \frac{\sqrt{a}}{b} ight) với a,b,c\in \mathbb{N},a \leq 5. Xác định giá trị của biểu thức T = a - b +
c?

    Ta có:

    \sin\frac{90^{0}}{4}.\cos\frac{270^{0}}{4}

    = \frac{1}{2}.\left( \sin\frac{90^{0} -
270^{0}}{4} + \sin\frac{90^{0} + 270^{0}}{4} ight)

    = \frac{1}{2}.\left\lbrack \sin\left( -
45^{0} ight) + \sin\left( 90^{0} ight) ightbrack

    = \frac{1}{2}.\left( -
\frac{\sqrt{2}}{2} + 1 ight) = \frac{1}{2}\left( 1 -
\frac{\sqrt{2}}{2} ight)

    \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = 1 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow T = 1

  • Câu 26: Vận dụng

    Tính giá trị biểu thức T = \sin^{2}10^{0} + \sin^{2}20^{0} + ... +\sin^{2}80^{0}

    Ta có: 10^{0} + 80^{0} = 20^{0} + 70^{0}
= ... = 90^{0}

    Nên các cung lượng giác tương ứng đôi một phụ nhau ta có công thức \sin\left( 90^{0} - x ight) = \cos
x

    Khi đó ta có:

    T = \sin^{2}10^{0} + \sin^{2}20^{0} + ...+ \sin^{2}80^{0}

    T = \left( \sin^{2}10^{0} + \cos^{2}10^{0}ight) + \left( \sin^{2}20^{0} + \cos^{2}20^{0} ight)

    + \left(\sin^{2}30^{0} + \cos^{2}0^{0} ight) + \left( \sin^{2}40^{0} +\cos^{2}40^{0} ight)

    T = 1 + 1 + 1 + 1 = 4

  • Câu 27: Thông hiểu

    Trên đoạn \left\lbrack - 2\pi;\frac{5\pi}{2}
ightbrack, đồ thị hai hàm số y
= \tan xy = 1 cắt nhau tại bao nhiêu điểm?

    Phương trình hoành độ giao điểm của hai đồ thị hàm số là

    \tan x = 1 \Rightarrow x = \frac{\pi}{4}
+ k\pi;\left( k\mathbb{\in Z} ight)

    Theo bài ra ta có: x \in \left\lbrack -
2\pi;\frac{5\pi}{2} ightbrack

    \Rightarrow - 2\pi \leq \frac{\pi}{4} +
k\pi \leq \frac{5\pi}{2}

    \Rightarrow - \frac{9}{4} \leq k \leq
\frac{9}{4}

    \Rightarrow k \in \left\{ - 2; - 1;0;1;2
ight\}

    Vậy đồ thị hai hàm số đã cho cắt nhau tại 5 điểm trên đoạn \left\lbrack - 2\pi;\frac{5\pi}{2}
ightbrack.

  • Câu 28: Vận dụng

    Tại thủ đô A số giờ có ánh sáng mặt trời trong ngày thứ x (ở đây x là số ngày tính từ ngày 1 tháng giêng) của một năm không nhận được cho bởi công thức:

    T(x) = 12 + 2,83sin\left( \frac{2\pi x}{365} -
\frac{32}{73} ight) với x\mathbb{\in Z};0 < x < 365.

    Hỏi vào ngày nào trong năm thì thủ đô A có khoảng 10 giờ ánh sáng mặt trời?

    Thủ đô A có khoảng 10 giờ ánh sáng mặt trời trong ngày nếu

    12 + 2,83sin\left( \frac{2\pi x}{365} -
\frac{32}{73} ight) = 10

    \Leftrightarrow \sin\left( \frac{2\pi
x}{365} - \frac{32}{73} ight) = \frac{- 200}{283}

    \Leftrightarrow \left\lbrack\begin{matrix}\dfrac{2\pi x}{365} - \dfrac{32}{73} \approx - 0,78 + k2\pi \\\dfrac{2\pi x}{365} - \dfrac{32}{73} \approx 3,93 + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow \left\lbrack
\begin{matrix}
x \approx 34,49 + 365\pi \\
x \approx 308,30 + 365\pi \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    x\mathbb{\in Z};0 < x <
365 nên k = 0 suy ra \left\lbrack \begin{matrix}
x \approx 34,69 \\
x \approx 308,30 \\
\end{matrix} ight..

    Như vậy vào khoảng ngày thứ 34 của năm tức là ngày 3 tháng 2 và ngày thứ 308 của năm, tức là ngày 4 tháng 11 thành phố A sẽ có 10 giờ ánh sáng mặt trời.

  • Câu 29: Nhận biết

    Nghiệm của phương trình tan (2x) -1 = 0 là?

     Ta có: \tan 2x - 1 = 0 \Leftrightarrow \tan 2x = 1

    \Leftrightarrow 2x = \frac{\pi }{4} + k\pi  \Leftrightarrow x = \frac{\pi }{8} + k\frac{\pi }{2}.

  • Câu 30: Vận dụng cao

    Tìm tất các các giá trị thực của tham số m để phương trình \cos x -m =0 vô nghiệm?

     Áp dụng điều kiện có nghiệm của phương trình cos x = a.

    - Phương trình có nghiệm khi |a| \leq 1.

    - Phương trình vô nghiệm khi |a|>1.

    Phương trình \cos x - m = 0 \Leftrightarrow \cos x = m

    Do đó, phương trình \cos x -m =0 vô nghiệm \Leftrightarrow \left| m ight| > 1 \Leftrightarrow \left[ \begin{gathered}  m <  - 1 \hfill \\  m > 1 \hfill \\ \end{gathered}  ight..

  • Câu 31: Vận dụng

    Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu h (mét) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày (0 \leq t \leq 24) cho bởi hàm số h(t) = a\cos\left( \frac{\pi}{6}t
ight) + b có đồ thị như hình bên dưới (a,b là các số thực dương). Gọi S là tập hợp tất cả các thời điểm t trong ngày để chiều cao của mực nước biển là 15 mét. Tổng tất cả phần tử của S bằng.

    Đáp án: 36

    Đáp án là:

    Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu h (mét) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày (0 \leq t \leq 24) cho bởi hàm số h(t) = a\cos\left( \frac{\pi}{6}t
ight) + b có đồ thị như hình bên dưới (a,b là các số thực dương). Gọi S là tập hợp tất cả các thời điểm t trong ngày để chiều cao của mực nước biển là 15 mét. Tổng tất cả phần tử của S bằng.

    Đáp án: 36

    Theo đồ thị ta có: \left\{ \begin{matrix}
h(6) = 9 \\
h(24) = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- a + b = 9 \\
a + b = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 12 \\
\end{matrix} ight.

    Suy ra: h(t) = 3cos\left( \frac{\pi}{6}t
ight) + 12.

    Theo đề bài yêu cầu:

    h(t) = 15

    \Leftrightarrow 3cos\left(
\frac{\pi}{6}t ight) + 12 = 15

    \Leftrightarrow \cos\left(
\frac{\pi}{6}t ight) = 1

    \Leftrightarrow \frac{\pi}{6}t = k2\pi
\Leftrightarrow t = 12k\left( k\mathbb{\in Z} ight)

    Vì: 0 \leq t \leq 24 nên t = 0,t = 12,t = 24

    Suy ra: S = \left\{ 0;12;24
ight\}

  • Câu 32: Thông hiểu

    Đổi số đo của góc 120^{0}sang đơn vị radian?

    Cách 1: Áp dụng công thức \mu = \frac{m.\pi}{180} với m = 120^{0} ta được:

    \mu = \frac{m.\pi}{180} =
\frac{120.\pi}{180} = \frac{2.\pi}{3}

    Cách 2: Bấm máy tính:

    Bước 1: Bấm tổ hợp phím SHIFT MODE 4 chuyển về chế độ rad.

    Bước 2: Bấm 120 SHIFT Ans 1 =

  • Câu 33: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Nhắc lại kiến thức cơ bản:

    Hàm số y = \sin x là hàm số lẻ.

    Hàm số y = \cos x là hàm số chẵn.

    Hàm số y = \tan x là hàm số lẻ.

    Hàm số y = \cot x là hàm số lẻ.

  • Câu 34: Thông hiểu

    Biết A,B,C là các góc của tam giác ABC, mệnh đề nào sau đây đúng?

    A,B,C là các góc của tam giác ABC nên A + B + C = \pi \Rightarrow A + C = \pi -
B.

    Khi đó sin(A + C) = sin(\pi - B) =
sinB;cos(A + C) = cos(\pi - B) = - cosB.

    tan(A + C) = tan(\pi - B) = - tanB;cot(A
+ C) = cot(\pi - B) = - cotB.

  • Câu 35: Nhận biết

    Xác định chu kì T của hàm số lượng giác y
= \cos\left( \frac{x}{2} + 2016 ight)?

    Hàm số y = cos(ax + b) tuần hoàn với chu kì T = \frac{2\pi}{|a|}

    => y = \cos\left( \frac{x}{2} + 2016
ight) tuần hoàn với chu kì T =
4\pi

  • Câu 36: Thông hiểu

    Tổng giá trị lớn nhất và nhỏ nhất của hàm số y = 3cosx + 4

    Do - 1 \leq cosx \leq 1\forall x \in
\mathbb{R} nên 1 \leq 3cosx + 4
\leq 7,\forall x \in \mathbb{R}.

    Nên \max_{\mathbb{R}}\mspace{2mu} y =
7 đạt được khi cosx = 1
\Leftrightarrow x = k2\pi\ (k \in \mathbb{Z}).

    \min_{\mathbb{R}}\mspace{2mu} y =
1 đạt được khi cosx = - 1
\Leftrightarrow x = \pi + k2\pi(k \in \mathbb{Z}).

    Suy ra \max_{\mathbb{R}}\mspace{2mu} y +
\min_{\mathbb{R}}\mspace{2mu} y = 8.

  • Câu 37: Thông hiểu

    Hàm số y = \sin 2x nghịch biến trên khoảng nào sau đây?

     Hàm số y = \sin 2x tuần hoàn với chu kì T = \frac{{2\pi }}{2} = \pi

    Do hàm số y=\sin x nghịch biến trên \left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } ight)

    => Hàm số y = \sin{2x} nghịch biến khi 

    \begin{matrix}  \dfrac{\pi }{2} + k2\pi  < 2x < \dfrac{{3\pi }}{2} + k2\pi  \hfill \\   \Rightarrow \dfrac{\pi }{4} + k\pi  < x < \dfrac{{3\pi }}{4} + k\pi  \hfill \\ \end{matrix}

    Vậy đáp án đúng là \left( {\frac{\pi }{2};\pi } ight)

  • Câu 38: Thông hiểu

    Cho hàm số f(x) = \cos xg(x) = \sin x. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Hàm số g(x) là hàm số chẵn. Sai||Đúng

    b) Trong khoảng (0 ; 2\pi) đồ thị hai hàm số y = f(x)y = g(x) cắt nhau tại hai điểm. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x) +
g(x) bằng 2. Sai||Đúng

    d) Hàm số y = f(x) + g(x) đạt giá trị nhỏ nhất khi x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight). Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) = \cos xg(x) = \sin x. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Hàm số g(x) là hàm số chẵn. Sai||Đúng

    b) Trong khoảng (0 ; 2\pi) đồ thị hai hàm số y = f(x)y = g(x) cắt nhau tại hai điểm. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x) +
g(x) bằng 2. Sai||Đúng

    d) Hàm số y = f(x) + g(x) đạt giá trị nhỏ nhất khi x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight). Đúng||Sai

    a) Sai

    TXĐ: D\mathbb{= R}. Do đó \forall x \in D \Rightarrow - x \in
D.

    Ta có \forall x \in D:g( - x) = \sin( -
x) = - \sin(x) = - g(x) \Rightarrow g(x) là hàm số lẻ.

    b) Đúng

    Phương trình \sin x = \cos x trong khoảng (0 ; 2\pi) có hai nghiệm x = \frac{\pi}{4}x = \frac{5\pi}{4}

    c) Sai

    Ta có: y = \sin x + \cos x =
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) , mà \forall x: - 1 \leq \sin\left( x + \frac{\pi}{4}
ight) \leq 1

    \Leftrightarrow - \sqrt{2} \leq
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) \leq \sqrt{2}.

    Vậy giá trị lớn nhất của hàm số y = \sin
x + \cos x bằng \sqrt{2}, khi \sin\left( x + \frac{\pi}{4} ight) =
1.

    d) Đúng

    Giá trị nhỏ nhất của hàm số y = \sin x +
\cos x bằng - \sqrt{2}, khi \sin\left( x + \frac{\pi}{4} ight) = -
1

    \Leftrightarrow x + \frac{\pi}{4} = -\frac{\pi}{2} + k2\pi\left( k\mathbb{\in Z} ight)

    \Leftrightarrow x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight).

  • Câu 39: Vận dụng

    Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của phương trình \sin \left( {3x - \frac{\pi }{4}} ight) = \frac{{\sqrt 3 }}{2} bằng?

    Ta có \sin \left( {3x - \frac{\pi }{4}} ight) = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {3x - \frac{\pi }{4}} ight) = \sin \frac{\pi }{3}

    \Leftrightarrow \left[ \begin{gathered}  3x - \frac{\pi }{4} = \frac{\pi }{3} + k2\pi  \hfill \\  3x - \frac{\pi }{4} = \pi  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight. 

    \Leftrightarrow \left[ \begin{gathered}  3x = \frac{{7\pi }}{{12}} + k2\pi  \hfill \\  3x = \frac{{11\pi }}{{12}} + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{{7\pi }}{{36}} + \frac{{k2\pi }}{3} \hfill \\  x = \frac{{11\pi }}{{36}} + \frac{{k2\pi }}{3} \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight).

    TH1. Với

    x = \frac{{7\pi }}{{36}} + \frac{{k2\pi }}{3}\xrightarrow{{{\text{Cho}}}}\left[ \begin{gathered}  x > 0 \Leftrightarrow k >  - \frac{7}{{24}} \Rightarrow {k_{\min }} = 0 \to x = \frac{{7\pi }}{{36}} \hfill \\  x < 0 \Leftrightarrow k <  - \frac{7}{{24}} \Rightarrow {k_{\max }} =  - \,1 \to x =  - \frac{{17\pi }}{{36}} \hfill \\ \end{gathered}  ight.

    TH2. Với

    x = \frac{{11\pi }}{{36}} + \frac{{k2\pi }}{3}\xrightarrow{{{\text{Cho}}}}\left[ \begin{gathered}  x > 0 \Leftrightarrow k >  - \frac{{11}}{{24}} \Rightarrow {k_{\min }} = 0 \to x = \frac{{11\pi }}{{36}} \hfill \\  x < 0 \Leftrightarrow k <  - \frac{{11}}{{24}} \Rightarrow {k_{\max }} =  - \,1 \to x =  - \frac{{13\pi }}{{36}} \hfill \\ \end{gathered}  ight.

    So sánh bốn nghiệm ta được nghiệm âm lớn nhất là x =  - \frac{{13\pi }}{{36}} và nghiệm dương nhỏ nhất là x = \frac{{7\pi }}{{36}}.

    Khi đó tổng hai nghiệm này bằng - \frac{{13\pi }}{{36}} + \frac{{7\pi }}{{36}} =  - \frac{\pi }{6}.

     

  • Câu 40: Nhận biết

    Trong các khẳng định sau, khẳng định nào sai?

    Ta có \cos(a + b) = \cos a.cosb - \sin
a.sinb.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 29 lượt xem
Sắp xếp theo