Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Phương trình \sin \left( {\frac{\pi }{6} + x} ight) = \cos 2x có nghiệm là

     Giải phương trình:

    \begin{matrix}  \sin \left( {\dfrac{\pi }{6} + x} ight) = \cos 2x \hfill \\   \Leftrightarrow \sin \left( {\dfrac{\pi }{6} + x} ight) = \sin \left( {\dfrac{\pi }{2} - 2x} ight) \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\dfrac{\pi }{6} + x = \dfrac{\pi }{2} - 2x + k2\pi } \\   {\dfrac{\pi }{6} + x = \pi  - \left( {\dfrac{\pi }{2} - 2x} ight) + k2\pi } \end{array}} ight. \hfill  \\ \end{matrix}

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {3x = \dfrac{\pi }{3} + k2\pi } \\   { - x = \dfrac{\pi }{3} + k2\pi } \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{9} + \dfrac{{k2\pi }}{3}} \\   {x =  - \dfrac{\pi }{3} + k'2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight)

  • Câu 2: Vận dụng

    Tính giá trị biểu thức E = \cos\dfrac{2\pi}{7} + \cos\dfrac{4\pi}{7} +\cos\dfrac{6\pi}{7}

    Ta có:

    2\sin\frac{\pi}{7}.E =2\sin\frac{\pi}{7}.\left( \cos\frac{2\pi}{7} + \cos\frac{4\pi}{7} +\cos\frac{6\pi}{7} ight)

    \Leftrightarrow 2\sin\frac{\pi}{7}.E =2sin\frac{\pi}{7}.\cos\frac{2\pi}{7} +2\sin\frac{\pi}{7}\cos\frac{4\pi}{7} +2\sin\frac{\pi}{7}\cos\frac{6\pi}{7}

    \Leftrightarrow 2\sin\frac{\pi}{7}.E =\sin\frac{3\pi}{7} - \sin\frac{\pi}{7} + \sin\frac{5\pi}{7} -\sin\frac{3\pi}{7} + \sin\frac{7\pi}{7} -\sin\frac{5\pi}{7}

    \Leftrightarrow 2\sin\frac{\pi}{7}.E = -\sin\frac{\pi}{7} + \sin\pi

    \Leftrightarrow 2\sin\frac{\pi}{7}.E = -\sin\frac{\pi}{7}

    \Leftrightarrow E = -
\frac{1}{2}

  • Câu 3: Thông hiểu

    Phương trình nào cùng tập nghiệm với phương trình \tan x = 1

     Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {\cot x.\tan x = 1} \\   {\tan x = 1} \end{array}} ight. \Rightarrow \cot x = \dfrac{1}{{\tan x}} = 1

    Vậy phương trình \tan x = 1 có cùng tập nghiệm với phương trình \cot x = 1

  • Câu 4: Vận dụng

    Cho hình vẽ:

    Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?

    Ta thấy hàm số có giá trị lớn nhất là \sqrt{2} và giá trị nhỏ nhất là - \sqrt{2} => loại hàm số y = \sin\left( x - \frac{\pi}{4} ight)y = \cos\left( x - \frac{\pi}{4}
ight)

    Tại x = \frac{3\pi}{4} \Rightarrow y = -
\sqrt{2} ta thấy chỉ có y =
\sqrt{2}\cos\left( x + \frac{\pi}{4} ight) thỏa mãn

  • Câu 5: Thông hiểu

    Cho \frac{\pi}{4} < x \leq \frac{3\pi}{4} và biểu thức P = \tan\left( x +
\frac{\pi}{4} ight). Mệnh đề nào sau đây đúng?

    Ta có: \frac{\pi}{4} < x \leq
\frac{3\pi}{4} nên \frac{\pi}{4}
< x + \frac{\pi}{4} \leq \pi

    => P = \tan\left( x + \frac{\pi}{4}
ight) \leq 0

  • Câu 6: Thông hiểu

    Cho phương trình \sin x.\cos x = 1 có nghiệm là:

     Giải phương trình như sau:

    \begin{matrix}  \sin x.\cos x = 1 \hfill \\   \Leftrightarrow 2\sin x.\cos x = 2 \hfill \\   \Leftrightarrow \sin 2x = 2\left( L ight) \hfill \\ \end{matrix}

    \sin 2x \in \left[ { - 1;1} ight]

    vậy phương trình lượng giác đã cho vô nghiệm.

  • Câu 7: Thông hiểu

    Rút gọn biểu thức S = \cos^{2}\left( \frac{\pi}{4} + \alpha ight) -\cos^{2}\left( \frac{\pi}{4} - \alpha ight)

    Vì hai góc \left( \frac{\pi}{4} + \alpha
ight)\left( \frac{\pi}{4} -
\alpha ight) phụ nhau nên

    \cos\left( \dfrac{\pi}{4} - \alphaight) = \sin\left( \dfrac{\pi}{4} + \alpha ight)

    S = \cos^{2}\left( \frac{\pi}{4} + \alphaight) - \cos^{2}\left( \frac{\pi}{4} - \alpha ight)

    \Rightarrow S = \cos^{2}\left(\frac{\pi}{4} + \alpha ight) - \sin^{2}\left( \frac{\pi}{4} + \alphaight)

    \Rightarrow S = \cos\left( \frac{\pi}{4}+ 2\alpha ight) = - \sin2\alpha

  • Câu 8: Thông hiểu

    Cho tam giác ABC. Khẳng định nào sau đây sai?

    Ta có:

    \widehat{A} + \widehat{B} + \widehat{C}
= \pi \Rightarrow \widehat{A} + \widehat{B} = \pi -
\widehat{C}

    Do đó \cos\left( \widehat{A} +
\widehat{B} ight) = \cos\left( \pi - \widehat{C} ight) = -
\cos\widehat{C}

    Vậy khẳng định sai là: \cos\left(
\widehat{A} + \widehat{B} ight) = \cos\widehat{C}

  • Câu 9: Vận dụng

    Phương trình \cot x=\sqrt 3 có bao nhiêu nghiệm thuộc \left[ { - 2022\pi \,,\,2022\pi } ight]?

     Ta có: \cot x=\sqrt 3

    \Leftrightarrow x = \frac{\pi }{6} + k\pi \,,\,k \in \mathbb{Z}, mà - 2022\pi  \leqslant x \leqslant 2022\pi.

    \Rightarrow  - 2022\pi  \leqslant \frac{\pi }{6} + k\pi  \leqslant 2022\pi

    \Leftrightarrow  - 2022 \leqslant \frac{1}{6} + k \leqslant 2022

    \Leftrightarrow  - 2022 - \frac{1}{6} \leqslant k \leqslant 2022 - \frac{1}{6}.

    Suy ra - 2022\pi  \leqslant x \leqslant 2022\pi, k \in Z.

    Vậy \cot x=\sqrt 3 có 4044 nghiệm thuộc \left[ { - 2022\pi \,,\,2022\pi } ight].

  • Câu 10: Vận dụng

    Tính tổng T tất cả các nghiệm của phương trình 2\cos 2x + 2\cos x - \sqrt 2  = 0 trên đoạn \left[ {0;3\pi } ight].

    Phương trình 2\cos 2x + 2\cos x - \sqrt 2  = 0

    \Leftrightarrow 2\left( {2{{\cos }^2}x - 1} ight) + 2\cos x - \sqrt 2  = 0

    \Leftrightarrow 4{\cos ^2}x + 2\cos x - 2 - \sqrt 2  = 0

    \Leftrightarrow \left[ \begin{gathered}  \cos x = \frac{{\sqrt 2 }}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(TM) \hfill \\  \cos x =  - \frac{{\sqrt 2  + 1}}{2}\,\,\,\,\,\,(L) \hfill \\ \end{gathered}  ight.\,\, \Leftrightarrow \cos x = \frac{{\sqrt 2 }}{2}

     \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k2\pi \xrightarrow{{x \in \left[ {0;3\pi } ight]}}x = \frac{\pi }{4};x = \frac{{9\pi }}{4} \hfill \\  x =  - \,\frac{\pi }{4} + k2\pi \xrightarrow{{x \in \left[ {0;3\pi } ight]}}x = \frac{{7\pi }}{4} \hfill \\ \end{gathered}  ight.

    \xrightarrow{{}}T = \frac{\pi }{4} + \frac{{9\pi }}{4} + \frac{{7\pi }}{4} = \frac{{17\pi }}{4}.

  • Câu 11: Nhận biết

    Giải phương trình \sin \left( {\frac{{2x}}{3} - \frac{\pi }{3}} ight) = 0?

     Phương trình \sin \left( {\frac{{2x}}{3} - \frac{\pi }{3}} ight) = 0 \Leftrightarrow \frac{{2x}}{3} - \frac{\pi }{3} = k\pi

    \Leftrightarrow \frac{{2x}}{3} = \frac{\pi }{3} + k\pi  \Leftrightarrow x = \frac{\pi }{2} + \frac{{k3\pi }}{2}{\text{ }}\left( {k \in \mathbb{Z}} ight).

  • Câu 12: Vận dụng

    Xác định chu kì T của hàm số y = 3\cos(2x+ 1) - 2\sin\left( \dfrac{x}{2} - 3 ight)

    Hàm số y = 3\cos(2x + 1) tuần hoàn với chu kì T_{1} = \pi

    Hàm số y = - 2\sin\left( \frac{x}{2} - 3ight) tuần hoàn với chu kì T_{2}
= 4\pi

    Suy ra hàm số y = 3\cos(2x + 1) -2\sin\left( \frac{x}{2} - 3 ight) tuần hoàn với chu kì T = 4\pi

  • Câu 13: Thông hiểu

    Tìm tập xác định D của hàm số y = tan2x:

    Hàm số xác định khi cos2x eq 0
\Leftrightarrow 2x eq \frac{\pi}{2} + k\pi \Leftrightarrow x eq
\frac{\pi}{4} + k\frac{\pi}{2}\ (k \in \mathbb{Z}).

    Tập xác định của hàm số là: D =\mathbb{R} \setminus  \left\{ \frac{\pi}{4} + k\frac{\pi}{2} \mid k\in \mathbb{Z} ight\}.

  • Câu 14: Nhận biết

    Hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) có tập xác định là gì?

    Hàm số y = \tan\left( 2x - \frac{\pi}{4}
ight) xác định khi

    2x - \frac{\pi}{4} eq \frac{\pi}{2} +
k\pi

    \Rightarrow x eq \frac{3\pi}{8} +
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    Vậy tập xác định của hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) là: D\mathbb{= R}\backslash\left\{ \frac{3\pi}{8} +
\frac{k\pi}{2},k\mathbb{\in Z} ight\}.

  • Câu 15: Thông hiểu

    Cho phương trình {\cot ^2}3x - 3\cot 3x + 2 = 0. Đặt t = \cot 3x, ta được phương trình nào sau đây? 

     Ta có: {\cot ^2}3x - 3\cot 3x + 2 = 0  trở thành {t^2} - 3t + 2 = 0.

  • Câu 16: Vận dụng cao

    Cho bất đẳng thức \cos2A + \frac{1}{64\cos^{4}A} - (2\cos2B + 4\sin B) +\frac{13}{4} \leq 0, với A;B;C là ba góc của tam giác ABC. Khẳng định đúng là

    Ta có:

    \begin{matrix}  \cos 2A + \dfrac{1}{{64{{\cos }^4}A}} - (2\cos 2B + 4\sin B) + \dfrac{{13}}{4} \leqslant 0 \hfill \\   \Leftrightarrow {\cos ^2}A + {\cos ^2}A + \dfrac{1}{{64{{\cos }^4}A}} + 4{\sin ^2}B - 4\sin B + 1 \leqslant \dfrac{3}{4}\left( * ight) \hfill \\ \end{matrix}

    Áp dụng bất đẳng thức Cauchy ta có:

    {\cos ^2}A + {\cos ^2}A + \frac{1}{{64{{\cos }^4}A}} \geqslant \frac{3}{4}\left( 1 ight)

    4{\sin ^2}B - 4\sin B + 1 \geqslant 0 \text{    }(2)

    Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:

    \left\{ \begin{gathered}  {\cos ^2}A = \frac{1}{{64{{\cos }^4}A}} \hfill \\  \sin B = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \cos A = \frac{1}{2} \hfill \\  \sin B = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  A = {60^0} \hfill \\  B = {30^0} \hfill \\  C = {90^0} \hfill \\ \end{gathered}  ight.

    Vậy \widehat{B} + \widehat{C} =120^{0}

  • Câu 17: Nhận biết

    Cho \alpha \in
\left( 0;\frac{\pi}{2} ight). Khẳng định nào sau đây đúng?

    Ta có:

    \alpha \in \left( 0;\frac{\pi}{2}
ight) \Rightarrow \alpha - \pi \in \left( - \pi; - \frac{\pi}{2}
ight)

    \Rightarrow \sin(\alpha - \pi) <
0

  • Câu 18: Nhận biết

    Phương trình lượng giác \cos 3x = \cos \frac{\pi }{{15}} có nghiệm là ?

     Ta có: \cos 3x = \cos \frac{\pi }{{15}} \Leftrightarrow 3x =  \pm \frac{\pi }{{15}} + k2\pi

    \Leftrightarrow x =  \pm \frac{\pi }{{45}} + \frac{{k2\pi }}{3}

  • Câu 19: Thông hiểu

    Tìm tập xác định D của hàm số y = \sqrt{\frac{1 - \sin x}{1 + \sin
x}}?

    Ta có: - 1 \leq \sin x \leq 1
\Leftrightarrow \left\{ \begin{matrix}
1 - \sin x \geq 0 \\
1 + \sin x \geq 0 \\
\end{matrix} ight.

    Hàm số được xác định khi 1 + \sin x eq
0 \Leftrightarrow x eq - \frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z}
ight)

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ - \frac{\pi}{2} + k2\pi|k\mathbb{\in Z}
ight\}

  • Câu 20: Thông hiểu

    Cho hàm số y = -2\sin\left( x + \frac{\pi}{3} ight) + 2. Mệnh đề nào sau đây đúng?

    Ta có:

    - 1 \leq \sin\left( x + \frac{\pi}{3}ight) \leq 1

    \Rightarrow 2 \geq - 2\sin\left( x +\frac{\pi}{3} ight) \geq - 2

    \Rightarrow 4 \geq - 2\sin\left( x +\frac{\pi}{3} ight) + 2 \geq 0

    \Rightarrow 4 \geq y \geq 0

    Vậy y \geq 0;\forall x\mathbb{\inR} là mệnh đề đúng.

  • Câu 21: Thông hiểu

    Cho tam giác ABC có các góc \widehat{A};\widehat{B};\widehat{C} bất kì. Biểu thức T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A} không thể nhận giá trị nào sau đây?

    Ta có:

    T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A}

    = 2\left( \sin\widehat{A}.\frac{1}{2} +
\cos\widehat{A}.\frac{\sqrt{3}}{2} ight)

    = 2\left(
\sin\widehat{A}\cos\frac{\pi}{3} + \cos\widehat{A}.sin\frac{\pi}{3}
ight)

    = 2sin\left( \widehat{A} + \frac{\pi}{3}
ight)

    Với tam giác ABC bất kì ta luôn có:

    0 < \widehat{A} < \pi \Rightarrow
\frac{\pi}{3} < \widehat{A} + \frac{\pi}{3} <
\frac{4\pi}{3}

    \Rightarrow - \sqrt{3} < T \leq
2

    Vậy biểu thức T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A} không thể nhận giá trị 2\sqrt{3}.

  • Câu 22: Thông hiểu

    Cho x= \frac{\pi}{2} +k\pi (k \in \mathbb{Z}) là nghiệm của phương trình nào sau đây?

     Ta có:

    \cos 2x =  - 1 \Leftrightarrow 2x = \pi  + k2\pi  \Rightarrow x = \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} ight)

  • Câu 23: Nhận biết

    Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình \sqrt 3 \cos x + m - 1 = 0 có nghiệm?

     Ta có \sqrt 3 \cos x + m - 1 = 0 \Leftrightarrow \cos x = \frac{{1 - m}}{{\sqrt 3 }}.

    Phương trình có nghiệm \Leftrightarrow  - 1 \leqslant \frac{{1 - m}}{{\sqrt 3 }} \leqslant 1

    \Leftrightarrow 1 - \sqrt 3  \leqslant m \leqslant 1 + \sqrt 3 \xrightarrow{{m \in \mathbb{Z}}}m \in \left\{ {0;1;2} ight\}

    Vậy có tất cả 3 giá trị nguyên của tham số m.

  • Câu 24: Vận dụng

    Cho tam giác ABC có: \cos\widehat{A} = \frac{4}{5}\cos\widehat{B} = \frac{5}{13}. Xác định \cos\widehat{C}.

    Ta có: \left\{ \begin{matrix}\cos\widehat{A} = \dfrac{4}{5} \\\cos\widehat{B} = \dfrac{5}{13} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}\sin\widehat{A} = \dfrac{3}{5} \\\sin\widehat{B} = \dfrac{12}{13} \\\end{matrix} ight.

    \widehat{A} + \widehat{B} +
\widehat{C} = 180^{0} khi đó:

    \cos\widehat{C} = \cos\left\lbrack180^{0} - \left( \widehat{A} + \widehat{B} ight)ightbrack

    = - \cos\left( \widehat{A} + \widehat{B}
ight)

    = - \left(\cos\widehat{A}\cos\widehat{B} - \sin\widehat{A}\sin\widehat{B}ight)

    = - \left( \frac{4}{5}.\frac{5}{13} -
\frac{3}{5}.\frac{12}{13} ight) = \frac{16}{65}

  • Câu 25: Vận dụng

    Cho phương trình 3\cos x + \cos2x - \cos3x + 1 = 2\sin x.\sin2x. Gọi \alpha là nghiệm nhỏ nhất thuộc khoảng (0;2\pi) của phương trình. Tính \sin\left( \alpha - \frac{\pi}{4}
ight).

    Phương trình tương đương:

    3\cos x + \cos2x - \cos3x + 1 =2\sin x.\sin2x

    \Leftrightarrow 2\cos x + \cos2x + 1 =0

    \Leftrightarrow \cos^{2}x + \cos x =0

    \Leftrightarrow \left\lbrack\begin{matrix}\cos x = 0 \\\cos x = - 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{\pi}{2} + k\pi \\x = \pi + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    (0;2\pi) nên x \in \left\{ \frac{\pi}{2};\pi;\frac{3\pi}{2}
ight\}. Nghiệm lớn nhất của phương trình là \alpha = \frac{\pi}{2}

    Vậy \sin\left( \alpha - \frac{\pi}{4}
ight) = \sin\left( \frac{\pi}{2} - \frac{\pi}{4} ight) =
\sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}

  • Câu 26: Nhận biết

    Góc \frac{2\pi}{5} đổi sang độ bằng bao nhiêu?

    Ta có: \frac{2\pi}{5} =
\frac{2\pi}{5}\left( \frac{180}{\pi} ight)^{0} = 72^{0}.

  • Câu 27: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau:

    Theo công thức cộng

    \cos(a + b) = \cos a.cosb - \sin
a.sinb.

  • Câu 28: Nhận biết

    Tổng các nghiệm thuộc khoảng \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) của phương trình: \cos x = \frac{1}{2}

     Giải phương trình:

    \begin{matrix}  \cos x = \dfrac{1}{2} \hfill \\   \Leftrightarrow \cos x = \cos \left( {\dfrac{\pi }{3}} ight) \hfill \\   \Leftrightarrow x =  \pm \dfrac{\pi }{3} + k2\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Tổng nghiệm của phương trình bằng 0.

  • Câu 29: Nhận biết

    Trong các hàm sau hàm nào là hàm số chẵn?

    Xét hàm số y = -cosx

    Lấy x \in D \Rightarrow  - x \in D ta có:

    - \cos \left( { - x} ight) =  - \cos x \Rightarrow f\left( { - x} ight) = f\left( x ight)

    => Hàm số y = -cosx là hàm số chẵn.

  • Câu 30: Nhận biết

    Chọn đáp án sai

    Trong khoảng \left( {0;\frac{\pi }{2}} ight), hàm số y = \sin x - \cos x là hàm số:

    Ta thấy:

    Trên khoảng \left( {0;\frac{\pi }{2}} ight) hàm y =f(x)= \sin x đồng biến và hàm y= g(x)= - \cos x đồng biến

    => Trên \left( {0;\frac{\pi }{2}} ight) hàm số y = \sin x - \cos x đồng biến.

  • Câu 31: Thông hiểu

    Cho góc lượng giác \alpha thỏa mãn \frac{\pi}{2} < \alpha < \pi\sin\alpha = \frac{4}{5}. Tính F = \sin2(\alpha + \pi)

    Ta có:

    F = \sin2(\alpha + \pi)

    = \sin(2\alpha + 2\pi)

    = \sin2\alpha =2\sin\alpha\cos\alpha

    Từ hệ thức \sin^{2}\alpha + \cos^{2}\alpha= 1

    \Rightarrow \cos\alpha = \pm \sqrt{1 -\sin^{2}\alpha} = \pm \frac{3}{5}

    Do \frac{\pi}{2} < \alpha <
\pi nên \cos\alpha = -
\frac{3}{5}

    Thay \sin\alpha = \frac{4}{5};\cos\alpha =- \frac{3}{5} vào biểu thức ta được:

    F = 2.\frac{4}{5}.\left( - \frac{3}{5}
ight) = - \frac{24}{25}

  • Câu 32: Thông hiểu

    Một chiếc đồng hồ, có kim chỉ giờ OG chỉ số 9 và kim phút OP chỉ số 12. Số đo của góc lượng giác (OG;OP) là:

    Góc lượng giác (OG;OP) chiếm \frac{1}{4} đường tròn

    => Số đo là: \frac{1}{4}.2\pi + k2\pi= \frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight).

  • Câu 33: Vận dụng cao

    Cho hàm số y = \frac{1 - m\sin x}{\cos x+ 2}. Có bao nhiêu giá trị của tham số m thuộc đoạn [0; 10] để giá trị nhỏ nhất của hàm số nhỏ hơn -2?

    Ta có:

    y.(cosx + 2) = 1 – m.sinx

    => m.sinx + y.cosx = 1 – 2y

    Phương trình có nghiệm khi

    \begin{matrix}m^{2} + y^{2} \geq (2y - 1)^{2} \\\Rightarrow 3y^{2} - 4y + 1 - m^{2} \leq 0 \\\end{matrix}

    Nghiệm của phương trình 3y^{2} - 4y + 1 -m^{2} = 0x = \frac{2 \pm\sqrt{3m^{2} + 1}}{3}

    => \frac{2 - \sqrt{3m^{2} + 1}}{3}\leq y \leq \frac{2 + \sqrt{3m^{2} + 1}}{3}

    => \min y = \frac{2 - \sqrt{3m^{2} +1}}{3}

    Theo yêu cầu bài toán ta có:

    \begin{matrix}  \dfrac{{2 - \sqrt {3{m^2} + 1} }}{3} <  - 2 \hfill \\   \Leftrightarrow \sqrt {3{m^2} + 1}  > 8 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m > \sqrt {21} } \\   {m <  - \sqrt {21} } \end{array}} ight. \hfill \\ \end{matrix}

    Mặt khác m thuộc đoạn [0; 10] nên m = {5; 6; 7; 8; 9; 10}

  • Câu 34: Thông hiểu

    Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách.

    Ta có: y = \sin x = \cos\left(
\frac{\pi}{2} - x ight) = \cos\left( x - \frac{\pi}{2}
ight)

    => Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách tịnh tiến C qua phải một đoạn có độ dài là \frac{\pi}{2}

  • Câu 35: Thông hiểu

    Tìm tập xác định D của hàm số y = \frac{1}{{\sqrt {1 - \sin \,x} }}.

    Hàm số xác định khi và chỉ khi 

    1 - \sin x > 0 \Leftrightarrow \sin x < 1 \,\,(*)

    - 1 \leqslant \sin x \leqslant 1 nên \left( * ight) \Leftrightarrow \sin x e 1 \Leftrightarrow x e \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}

    Vậy tập xác định {\text{D}} = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} ight\}

  • Câu 36: Thông hiểu

    Tính giá trị \cos\left\lbrack \frac{\pi}{4} + \pi(2k + 1)
ightbrack

    Ta có:

    \cos\left\lbrack \frac{\pi}{4} + \pi(2k
+ 1) ightbrack

    = \cos\left\lbrack \frac{\pi}{4} + \pi +
k2\pi ightbrack

    = \cos\left\lbrack \frac{\pi}{4} + \pi
ightbrack

    = - \cos\left( \frac{\pi}{4} ight) = -
\frac{\sqrt{2}}{2}

  • Câu 37: Nhận biết

    Với x \in \left( {0;\frac{\pi }{4}} ight), mệnh đề nào sau đây là đúng?

    Ta có x \in \left( {0;\frac{\pi }{4}} ight) \to 2x \in \left( {0;\frac{\pi }{2}} ight) thuộc góc phần tư thứ I. Do đó

    y = \sin 2x đồng biến \to y =  - \sin 2x nghịch biến.

    y = \cos 2x nghịch biến \to y =  - 1 + \cos 2x nghịch biến.

  • Câu 38: Nhận biết

    Phương trình \sin x + 1 = 0 có nghiệm là:

    Ta có:

    \sin x = - 1 \Leftrightarrow x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

    Vậy phương trình có nghiệm là x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

  • Câu 39: Nhận biết

    Trong các hàm số sau hàm số nào là hàm số lẻ?

    Xét hàm số y = sinx:

    Lấy x \in D \Rightarrow  - x \in D ta có:

    \sin \left( { - x} ight) =  - \sin x \Rightarrow f\left( { - x} ight) =  - x

    Vậy hàm số y = sinx là hàm số lẻ.

  • Câu 40: Vận dụng cao

    Cho hàm số y = x \sin x, số nghiệm thuộc \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1 là?

     Ta có: y' = \operatorname{s} {\text{inx}} + x\cos x

    y'' = \cos x + \cos x - x\sin x = 2\cos x - x\sin x

    Do đó

    y'' + y = 1 \Leftrightarrow 2\cos x = 1 \Leftrightarrow \cos x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{3} + k2\pi  \hfill \\  x =  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\left( {k \in Z} ight)

    +) Trường hợp 1. Với x = \frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant \frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{5}{{12}} \leqslant k \leqslant \frac{5}{6}

    Suy ra k = 0 ta được x = \frac{\pi }{3}.

    +) Trường hợp 2. Với x = -\frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant -\frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{1}{{12}} \leqslant k \leqslant \frac{7}{6}

    Suy ra k = 0 ta được x =  - \frac{\pi }{3};\,\,\,\,k = 1 ta được x = \frac{{5\pi }}{3}.

    Vậy có 3 nghiệm thuộc x \in \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1

    x = \frac{\pi }{3}; x = -\frac{\pi }{3}; x = \frac{{5\pi }}{3}.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo