Tập giá trị của hàm số
là:
Ta có:
Mà
=>
Tập giá trị của hàm số
là:
Ta có:
Mà
=>
Cho góc
thỏa mãn
. Tính giá trị của biểu thức
.
Ta có:
Cho tam giác
. Khẳng định nào sau đây sai?
Ta có:
Do đó
Vậy khẳng định sai là:
Cho góc lượng giác
thỏa mãn
và
. Tính ![]()
Ta có:
Từ hệ thức
Do nên
Thay vào biểu thức ta được:
Đơn giản biểu thức
, ta có
Ta có:
Nghiệm của phương trình
là
Tập nghiệm của phương trình
là
Ta có
.
Tính giá trị biểu thức ![]()
Vì nên ta có:
Cho
. Giá trị
bằng:
Ta có:
Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số
là:
Ta có:
=> M = 12; m = 4
Số nghiệm của phương trình
thuộc
là:
Giải phương trình:
Ta có:
Nghiệm của phương trình tan (2x) -1 = 0 là?
Ta có:
.
Hàm số nào dưới đây đồng biến trên khoảng
?
Ta có:
Nên hàm số đồng biến trên khoảng
.
Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của phương trình
bằng?
Ta có
TH1. Với
TH2. Với
So sánh bốn nghiệm ta được nghiệm âm lớn nhất là và nghiệm dương nhỏ nhất là
.
Khi đó tổng hai nghiệm này bằng .
Nếu
và
thì
bằng bao nhiêu?
Từ giả thiết ta có:
Ta có:
Mặt khác
Một bánh xe đạp trong 5 giây quay được 2 vòng. Hỏi bánh xe quay được 1 góc bao nhiêu độ trong 2 giây?
Trong 1 giây bánh xe quay được vòng
Suy ra trong 2 giây bánh xe quay được vòng
Vậy góc bánh xe quay được là:
Trên đường tròn với điểm gốc là A. Điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo
. Gọi N là điểm đối xứng với điểm M qua trục Oy, số đo cung AN là:
Hình vẽ minh họa
Ta có:
=>
Khi đó số đo cung AN bằng .
Hàm số
có tập xác định là gì?
Hàm số xác định khi
Vậy tập xác định của hàm số là:
.
Với
, mệnh đề nào sau đây đúng?
Ta có: thuộc góc phần tư thứ I và thứ II.
Xác định chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Chọn khẳng định đúng.
Ta có: tương ứng với
.
Chu kì của hàm số
là số nào sau đây?
Chu kì của hàm số là
Cho phương trình
, nghiệm của phương trình là:
Ta có:
Hàm số nào sau đây nhận giá trị âm nếu ![]()
Ta có:
Mà
=> mang giá trị âm
Nghiệm của phương trình 2cos (2x) =-2
Ta có:
.
Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách.
Ta có:
=> Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách tịnh tiến C qua phải một đoạn có độ dài là
Nghiệm của phương trình
là
Ta có:
Hàm số
tuần hoàn có chu kì
khi
Hàm số có nghĩa
.
Chu kì của hàm số .
Cho hàm số
, số nghiệm thuộc
của phương trình
là?
Ta có:
Do đó
+) Trường hợp 1. Với
Do nên
Suy ra k = 0 ta được .
+) Trường hợp 2. Với
Do nên
Suy ra k = 0 ta được ta được
.
Vậy có 3 nghiệm thuộc của phương trình
là
;
;
.
Chọn đẳng thức đúng.
Ta có:
Ta lại có:
Hỏi trên đoạn
, phương trình
có bao nhiêu nghiệm?
Ta có
Theo giả thiết, ta có
.
Vậy có tất cả 2023 giá trị nguyên của k tương ứng với có 2023 nghiệm thỏa mãn yêu cầu bài toán.
Có bao nhiêu giá trị nguyên của tham số m để hàm số
xác định trên tập số thực?
Hàm số đã cho xác định khi
Kết hợp với điều kiện m là số nguyên
=> m = {-4; -3; ... ; 2; 3}
Vậy có 8 giá trị của tham số m thỏa mãn điều kiện.
Số nghiệm của phương trình: ![]()
Điều kiện xác định:
Với k = 0 => x = 0 (thỏa mãn)
Vậy phương trình có tất cả 3 nghiệm.
Giải phương trình
ta được họ nghiệm
. Tính
?
Đáp án: 11
Giải phương trình ta được họ nghiệm
. Tính
?
Đáp án: 11
ĐKXĐ: .
Đối chiếu điều kiện, nghiệm phương trình là
.
Giải phương trình
.
Ta có .
Với
Với
Nhận thấy chưa có đáp án nào phù hợp. Ta biểu diễn các nghiệm trên đường tròn lượng giác (hình vẽ).

Nếu tính luôn hai điểm A, B thì có tất cả 6 điểm cách đều nhau nên ta gộp được 6 điểm này thành một họ nghiệm, đó là .
Suy ra nghiệm của phương trình
Cho
. Khẳng định nào sau đây đúng?
Ta có:
=>
=>
Điểm cuối cung thuộc góc phần tư thứ ba
=>
Hàm số
xác định khi và chỉ khi:
Điều kiện các định:
Phương trình
có bao nhiêu nghiệm trên khoảng
?
Ta có:
* Trường hợp 1: ,
Vì
.
Vậy có tất cả 8 giá trị k tương ứng với trường hợp 1 có 8 nghiệm là:
;
;
;
;
;
;
;
.
* Trường hợp 2: ,
Vì
.
Vậy có tất cả 8 giá trị k tương ứng với trường hợp 2 có 8 nghiệm là:
;
;
;
;
;
;
;
.
Vậy trên khoảng phương trình đã cho có tất cả là 16 nghiệm.
Tìm chu kì T của hàm số ![]()
Ta có:
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
T là chu kì của hàm số là bội chung nhỏ nhất của T1 và T2
Suy ra hàm số tuần hoàn với chu kì
Tính giá trị biểu thức ![]()
Ta có:
Nên các cung lượng giác tương ứng đôi một phụ nhau ta có công thức
Khi đó ta có: