Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Gọi x_0 là nghiệm dương nhỏ nhất của phương trình \frac{{2\cos 2x}}{{1 - \sin 2x}} = 0. Mệnh đề nào sau đây là đúng?

    Điều kiện: 1 - \sin 2x e 0 \Leftrightarrow \sin 2x e 1

    Phương trình \frac{{2\cos 2x}}{{1 - \sin 2x}} = 0

    \Leftrightarrow \cos 2x = 0\xrightarrow{{{{\sin }^2}2x + {{\cos }^2}2x = 1}}\left[ \begin{gathered}  \sin 2x = 1\,\,\,\,\,\,\,\,\,\,(L) \hfill \\  \sin 2x =  - 1\,\,\,\,\,(TM) \hfill \\ \end{gathered}  ight.

    Cho - \frac{\pi }{4} + k\pi  > 0\xrightarrow{{}}k > \frac{1}{4}.

    Do đó nghiệm dương nhỏ nhất ứng với  k = 1 \to x = \frac{{3\pi }}{4} \in \left[ {\frac{{3\pi }}{4};\pi } ight].

  • Câu 2: Thông hiểu

    Phương trình 1 + 2\cos 2x = 0 có nghiệm là:

     Giải phương trình:

    \begin{matrix}  1 + 2\cos 2x = 0 \hfill \\   \Leftrightarrow \cos 2x =  - \dfrac{1}{2} \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {2x = \dfrac{{2\pi }}{3} + k2\pi } \\   {2x =  - \dfrac{{2\pi }}{3} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{3} + k\pi } \\   {x =  - \dfrac{\pi }{3} + k\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 3: Vận dụng

    Cho A, B, C là các góc của tam giác ABC. Khi đó D = \sin A + \sin B + \sin C tương đương với:

    Ta có:

    \left\{ \begin{matrix}\dfrac{A + B}{2} = \dfrac{\pi}{2} - \dfrac{C}{2} \\\dfrac{C}{2} = \dfrac{\pi}{2} - \dfrac{A + B}{2} \\\end{matrix} ight.\  ightarrow \left\{ \begin{matrix}\sin\dfrac{A + B}{2} = \cos\dfrac{C}{2} \\\sin\dfrac{C}{2} = \cos\dfrac{A + B}{2} \\\end{matrix} ight.

    Khi đó:

    D = \sin A + \sin B + \sin
C

    D = 2\sin\frac{A + B}{2}\cos\frac{A -B}{2} + 2\sin\frac{C}{2}\cos\frac{C}{2}

    D = 2\cos\frac{C}{2}\cos\frac{A - B}{2} +2\cos\frac{A + B}{2}\cos\frac{C}{2}

    D = 2\cos\frac{C}{2}\left( \cos\frac{A -B}{2} + \cos\frac{A + B}{2} ight)

    D =4\cos\frac{C}{2}.\cos\frac{A}{2}.\cos\frac{B}{2}

  • Câu 4: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Nhắc lại kiến thức cơ bản:

    Hàm số y = \sin x là hàm số lẻ.

    Hàm số y = \cos x là hàm số chẵn.

    Hàm số y = \tan x là hàm số lẻ.

    Hàm số y = \cot x là hàm số lẻ.

  • Câu 5: Nhận biết

    Phương trình lượng giác \cos 3x = \cos \frac{\pi }{{15}} có nghiệm là ?

     Ta có: \cos 3x = \cos \frac{\pi }{{15}} \Leftrightarrow 3x =  \pm \frac{\pi }{{15}} + k2\pi

    \Leftrightarrow x =  \pm \frac{\pi }{{45}} + \frac{{k2\pi }}{3}

  • Câu 6: Nhận biết

    Tập xác định D của hàm số y =
\frac{1}{\sin x - \cos x} là:

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\sin x - \cos x eq 0 \hfill \\\Rightarrow \tan x eq 1 \hfill \\\Rightarrow x eq \dfrac{\pi}{4} + k\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Vậy tập xác định D=\mathbb{R}\backslash\left\{ \frac{\pi}{4} + k\pi,k\mathbb{\in Z}ight\}

  • Câu 7: Nhận biết

    Một bánh xe của người đi xe ô tô quay được 1 vòng trong 0,1giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).

    Đáp án: 6,28

    Đáp án là:

    Một bánh xe của người đi xe ô tô quay được 1 vòng trong 0,1giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).

    Đáp án: 6,28

    Số đo góc quay của 1 vòng là 2\pi.

  • Câu 8: Vận dụng

    Phương trình \tan x = \sqrt 3 có bao nhiêu nghiệm thuộc khoảng \left( { - 20\pi ;18\pi } ight)?

     Điều kiện xác định: x e \frac{\pi }{2} + k\pi

    \tan x = \sqrt 3  \Leftrightarrow x = \frac{\pi }{3} + k\pi

    Do x \in \left( { - 20\pi ;18\pi } ight)

    \begin{matrix}   \Rightarrow  - 20\pi  < \dfrac{\pi }{3} + k\pi  < 18\pi  \hfill \\   \Leftrightarrow \dfrac{{ - 61}}{3} < k < \dfrac{{53}}{3} \Rightarrow k \in \left\{ { - 20; - 19;...;17} ight\} \hfill \\ \end{matrix}

    Vậy có tất cả 38 nghiệm

  • Câu 9: Vận dụng

    Tìm tập xác định D của hàm số y = \sqrt{5
+ 2cot^{2}x - \sin x} + \cot\left( \frac{\pi}{2} + x
ight)

    Hàm số xác định khi và chỉ khi

    5 + 2cot^{2}x - \sin x \geq 0\cot\left( \frac{\pi}{2} + x
ight) xác định và \cot x xác định

    Ta có: \cot\left( \frac{\pi}{2} + x
ight) xác định khi và chỉ khi

    \begin{matrix}\sin\left( \dfrac{\pi}{2} + x ight) eq 0 \hfill \\\Rightarrow \dfrac{\pi}{2} + x eq k\pi\hfill \\\Rightarrow x eq - \dfrac{\pi}{2} + k\pi,k\mathbb{\in Z} \hfill\\\end{matrix}

    Mà cot x xác định khi

    \begin{matrix}\sin x eq 0 \hfill \\\Rightarrow x eq k\pi \hfill \\\Rightarrow x eq + k\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Do đó hàm số xác định khi và chỉ khi \left\{ \begin{matrix}x eq - \dfrac{\pi}{2} + k\pi \\x eq k\pi \\\end{matrix} ight.\  \Rightarrow x eq \dfrac{k\pi}{2},k \in\mathbb{Z}

    Vậy tập xác định của hàm số là D\mathbb{=R}\backslash\left\{ \frac{k\pi}{2},k \in\mathbb{ Z} ight\}

  • Câu 10: Vận dụng

    Cho hai hàm số f(x) = \frac{cos2x}{1 +
sin^{2}3x};g(x) = \frac{|sin2x| - cos3x}{2 + tan^{2}x}. Mệnh đề nào sau đây đúng?

    Xét hàm số f(x) = \frac{cos2x}{1 +
sin^{2}3x} có tập xác định D=\mathbb{ R}

    Với mọi x thuộc D => -x thuộc D ta có:

    f( - x) = \frac{\cos( - 2x)}{1 +
sin^{2}( - 3x)} = \frac{cos2x}{1 + sin^{2}3x} = f(x)

    Vậy f(x) là hàm số chẵn

    Tương tự xét hàm số g(x) = \frac{|sin2x|
- cos3x}{2 + tan^{2}x};D\mathbb{= R}\backslash\left\{ \frac{\pi}{2} +
k\pi,k\mathbb{\in Z} ight\}

    Với mọi x thuộc D => -x thuộc D ta có:

    \begin{matrix}g( - x) = \dfrac{\left| \sin( - 2x) ight| - \cos( - 3x)}{2 + tan^{2}( -x)}\hfill \\= \dfrac{|sin2x| - cos3x}{2 + tan^{2}x} = g(x) \hfill\\\end{matrix}

    Vậy g(x) là hàm số chẵn.

  • Câu 11: Vận dụng

    Tính tổng T các nghiệm của phương trình {\cos ^2}x - \sin 2x = \sqrt 2  + {\sin ^2}x trên khoảng \left( {0;2\pi } ight)?

     Phương trình \Leftrightarrow {\cos ^2}x - {\sin ^2}x - \sin 2x = \sqrt 2

    \Leftrightarrow \cos 2x - \sin 2x = \sqrt 2

    \Leftrightarrow \cos \left( {2x + \frac{\pi }{4}} ight) = 1

    \Leftrightarrow 2x + \frac{\pi }{4} = k2\pi  \Leftrightarrow x =  - \frac{\pi }{8} + k\pi {\text{ }}\left( {k \in \mathbb{Z}} ight)

    Do 0 < x < 2\pi \xrightarrow{{}}0 <  - \frac{\pi }{8} + k\pi  < 2\pi

    \Leftrightarrow \frac{1}{8} < k < \frac{{17}}{8}\xrightarrow{{k \in \mathbb{Z}}}\left[ \begin{gathered}  k = 1 \to x = \frac{{7\pi }}{8} \hfill \\  k = 2 \to x = \frac{{15\pi }}{8} \hfill \\ \end{gathered}  ight.

    Suy ra T = \frac{{7\pi }}{8} + \frac{{15\pi }}{8} = \frac{{11}}{4}\pi.

  • Câu 12: Nhận biết

    Biết \frac{\pi}{2} < \alpha <
\frac{3\pi}{2}, khẳng định nào sau đây đúng?

    Với \frac{\pi}{2} < \alpha <
\frac{3\pi}{2} thì \cos\alpha <
0.

  • Câu 13: Thông hiểu

    Cho hàm số y = -2\sin\left( x + \frac{\pi}{3} ight) + 2. Mệnh đề nào sau đây đúng?

    Ta có:

    - 1 \leq \sin\left( x + \frac{\pi}{3}ight) \leq 1

    \Rightarrow 2 \geq - 2\sin\left( x +\frac{\pi}{3} ight) \geq - 2

    \Rightarrow 4 \geq - 2\sin\left( x +\frac{\pi}{3} ight) + 2 \geq 0

    \Rightarrow 4 \geq y \geq 0

    Vậy y \geq 0;\forall x\mathbb{\inR} là mệnh đề đúng.

  • Câu 14: Thông hiểu

    Tìm tập xác định D của hàm số y = \frac{\tan x - 1}{\sin x} + \cos\left( x +
\frac{\pi}{3} ight)?

    Hàm số y = \frac{\tan x - 1}{\sin x} +
\cos\left( x + \frac{\pi}{3} ight) xác định khi:

    \left\{ \begin{matrix}\sin x eq 0 \\\cos x eq 0 \\\end{matrix} ight.\  \Leftrightarrow \sin2x eq 0

    \Leftrightarrow 2x eq k\pi
\Leftrightarrow x eq \frac{k\pi}{2}\left( k\mathbb{\in Z}
ight)

    Vậy D=\mathbb{ R}\backslash\left\{\frac{k\pi}{2}|k\in\mathbb{ Z} ight\}

  • Câu 15: Thông hiểu

    Biết \sin\alpha +
\cos\alpha = \frac{5}{4}. Khi đó \sin\alpha.\cos\alpha có giá trị bằng:

    Ta có:

    \sin\alpha.cos\alpha

    = \frac{1}{2}\left\lbrack \left(\sin\alpha + \cos\alpha ight)^{2} - \left( \sin^{2}\alpha +\cos^{2}\alpha ight) ightbrack

    = \frac{1}{2}\left\lbrack \left(
\frac{5}{4} ight)^{2} - 1 ightbrack = \frac{9}{32}

  • Câu 16: Thông hiểu

    Cho góc lượng giác \alpha thỏa mãn \frac{\pi}{2} < \alpha < \pi\sin\alpha = \frac{4}{5}. Tính F = \sin2(\alpha + \pi)

    Ta có:

    F = \sin2(\alpha + \pi)

    = \sin(2\alpha + 2\pi)

    = \sin2\alpha =2\sin\alpha\cos\alpha

    Từ hệ thức \sin^{2}\alpha + \cos^{2}\alpha= 1

    \Rightarrow \cos\alpha = \pm \sqrt{1 -\sin^{2}\alpha} = \pm \frac{3}{5}

    Do \frac{\pi}{2} < \alpha <
\pi nên \cos\alpha = -
\frac{3}{5}

    Thay \sin\alpha = \frac{4}{5};\cos\alpha =- \frac{3}{5} vào biểu thức ta được:

    F = 2.\frac{4}{5}.\left( - \frac{3}{5}
ight) = - \frac{24}{25}

  • Câu 17: Thông hiểu

    Điều kiện xác định của hàm số: y=\frac{{{\sin}^{2}}x+3\cos x+1}{\sin\frac{x}{2}}

     Điều kiện xác định của hàm số:

    \sin \frac{x}{2} e 0

    \Rightarrow \frac{x}{2} e k\pi

    \Rightarrow x e k2\pi

  • Câu 18: Thông hiểu

    Trên đoạn \left\lbrack - 2\pi;\frac{5\pi}{2}
ightbrack, đồ thị hai hàm số y
= \tan xy = 1 cắt nhau tại bao nhiêu điểm?

    Phương trình hoành độ giao điểm của hai đồ thị hàm số là

    \tan x = 1 \Rightarrow x = \frac{\pi}{4}
+ k\pi;\left( k\mathbb{\in Z} ight)

    Theo bài ra ta có: x \in \left\lbrack -
2\pi;\frac{5\pi}{2} ightbrack

    \Rightarrow - 2\pi \leq \frac{\pi}{4} +
k\pi \leq \frac{5\pi}{2}

    \Rightarrow - \frac{9}{4} \leq k \leq
\frac{9}{4}

    \Rightarrow k \in \left\{ - 2; - 1;0;1;2
ight\}

    Vậy đồ thị hai hàm số đã cho cắt nhau tại 5 điểm trên đoạn \left\lbrack - 2\pi;\frac{5\pi}{2}
ightbrack.

  • Câu 19: Nhận biết

    Khẳng định nào sau đây đúng?

    Trong khoảng \left( 0;\frac{\pi}{2}
ight) thì hàm số y = \sin
x đồng biến.

  • Câu 20: Thông hiểu

    Phương trình sinx = \frac{\sqrt{3}}{2} có hai họ nghiệm có dạng x = \alpha + k\pix = \beta + k\pi, k \in \mathbb{Z}(0 < \alpha < \beta <
\pi). Khi đó, tính \beta -
\alpha ?

    Ta có \ sinx = \dfrac{\sqrt{3}}{2}\Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{\pi}{3} + k2\pi \\x = \dfrac{2\pi}{3} + k2\pi \\\end{matrix}\ (k \in \mathbb{Z}) ight..

    \Rightarrow \beta = \frac{2\pi}{3},\alpha
= \frac{\pi}{3} \Rightarrow \beta - \alpha = \frac{\pi}{3}.

  • Câu 21: Nhận biết

    Từ thời điểm đồng hồ chỉ đúng 12 giờ đến khi kim giờ chỉ 1 giờ đúng thì kim phút quay được góc bao nhiêu độ?

    Khi kim giờ chỉ đúng 1 giờ thì kim phút đã quay được 1 vòng ứng với góc lượng giác là: - 360^{0}

  • Câu 22: Thông hiểu

    Cho \sin a =
\frac{3}{5};cosa < 0;cosb = \frac{3}{5};sinb > 0. Giá trị sin(a - b) bằng:

    Ta có:

    \left\{ \begin{matrix}
\sin a = \frac{3}{5} \\
\cos a < 0 \\
\end{matrix} \Rightarrow cosa = - \sqrt{1 - \sin^{2}a} = - \frac{4}{5}
ight.

    \left\{ \begin{matrix}
\cos b = \frac{3}{5} \\
\sin b > 0 \\
\end{matrix} \Rightarrow sinb = \sqrt{1 - \cos^{2}b} = \frac{4}{5}
ight.

    sin(a - b) = sina\cos b - cosa\sin b =
\frac{3}{5} \cdot \frac{3}{5} - \left( - \frac{4}{5} ight) \cdot
\frac{4}{5} = 1

  • Câu 23: Vận dụng

    Cho \frac{\pi}{2} < \alpha < \pi. Xác định dấu của biểu thức M = \cos\left( -
\frac{\pi}{2} + \alpha ight).tan(\pi - \alpha)

    Ta có:

    \frac{\pi}{2} < \alpha < \pi
ightarrow 0 < - \frac{\pi}{2} + \alpha <
\frac{\pi}{2}

    \Rightarrow \cos\left( - \frac{\pi}{2} +
\alpha ight) > 0

    \frac{\pi}{2} < \alpha < \pi
ightarrow 0 < \pi - \alpha < \frac{\pi}{2}

    \Rightarrow \tan(\pi - \alpha) >
0

    => M = \cos\left( - \frac{\pi}{2} +
\alpha ight).tan(\pi - \alpha) > 0

  • Câu 24: Thông hiểu

    Giải phương trình \sin\left( \frac{2x}{3}
- \frac{\pi}{3} ight) = 0.

    Phương trình

    \sin\left( \frac{2x}{3} - \frac{\pi}{3}
ight) = 0 \Leftrightarrow \frac{2x}{3} - \frac{\pi}{3} =
k\pi

    \Leftrightarrow \frac{2x}{3} =
\frac{\pi}{3} + k\pi \Leftrightarrow x = \frac{\pi}{2} +
\frac{k3\pi}{2}\ \left( k\mathbb{\in Z} ight).

    Vậy đáp án cần tìm là: x = \frac{\pi}{2}
+ \frac{k3\pi}{2}\ \left( k\mathbb{\in Z} ight).

  • Câu 25: Thông hiểu

    Ta có: \sin\frac{90^{0}}{4}.\cos\frac{270^{0}}{4} =\frac{1}{2}\left( c - \frac{\sqrt{a}}{b} ight) với a,b,c\in \mathbb{N},a \leq 5. Xác định giá trị của biểu thức T = a - b +
c?

    Ta có:

    \sin\frac{90^{0}}{4}.\cos\frac{270^{0}}{4}

    = \frac{1}{2}.\left( \sin\frac{90^{0} -
270^{0}}{4} + \sin\frac{90^{0} + 270^{0}}{4} ight)

    = \frac{1}{2}.\left\lbrack \sin\left( -
45^{0} ight) + \sin\left( 90^{0} ight) ightbrack

    = \frac{1}{2}.\left( -
\frac{\sqrt{2}}{2} + 1 ight) = \frac{1}{2}\left( 1 -
\frac{\sqrt{2}}{2} ight)

    \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = 1 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow T = 1

  • Câu 26: Nhận biết

    Quy ước chọn chiều dương của một đường tròn định hướng là

    Quy ước chọn chiều dương của một đường tròn định hướng là luôn ngược chiều quay kim đồng hồ

  • Câu 27: Thông hiểu

    Cho các hàm số y
= \cos x;y = \sin x;y = \tan x;y = \cot x. Trong các hàm số trên, có bao nhiêu hàm số lẻ?

    Ta có:

    y = \cos x là hàm số chẵn vì:

    Tập xác định của hàm số D\mathbb{=
R}

    Với \forall x \in D \Rightarrow - x \in
D

    f( - x) = \cos( - x) = \cos x =
f(x)

    y = \sin x là hàm số lẻ vì:

    Tập xác định của hàm số D\mathbb{=
R}

    Với \forall x \in D \Rightarrow - x \in
D

    f( - x) = \sin( - x) = - \sin x = -
f(x)

    y = \tan x là hàm số lẻ vì

    Tập xác định của hàm số D\mathbb{=
R}\backslash\left\{ \frac{\pi}{2} + k\pi|k\mathbb{\in Z}
ight\}

    Với \forall x \in D \Rightarrow - x \in
D

    f( - x) = \tan( - x) = - \tan x = -
f(x)

    y = \cot x là hàm số lẻ vì

    Tập xác định của hàm số D\mathbb{=
R}\backslash\left\{ k\pi|k\mathbb{\in Z} ight\}

    Với \forall x \in D \Rightarrow - x \in
D

    f( - x) = \cot( - x) = \cot( - x) = -
f(x)

  • Câu 28: Thông hiểu

    Với góc \alpha bất kì. Khẳng định nào sau đây đúng?

    Ta có:

    \cos\left( 180^{0} - \alpha ight) = -
\cos\alpha

    => \cos^{2}\left( 180^{0} - \alphaight) = \cos^{2}\alpha

    => \sin^{2}\alpha + \cos^{2}\left(180^{0} - \alpha ight) = \sin^{2}\alpha + \cos^{2}\alpha =1

  • Câu 29: Vận dụng

    Số nghiệm của phương trình \sin 5x + \sqrt 3 \cos 5x = 2\sin 7x trên khoảng \left( {0;\frac{\pi }{2}} ight) là? 

     Phương trình \Leftrightarrow \frac{1}{2}\sin 5x + \frac{{\sqrt 3 }}{2}\cos 5x = \sin 7x

    \Leftrightarrow \sin \left( {5x + \frac{\pi }{3}} ight) = \sin 7x

    \Leftrightarrow \sin 7x = \sin \left( {5x + \frac{\pi }{3}} ight)

    \Leftrightarrow \left[ \begin{gathered}  7x = 5x + \frac{\pi }{3} + k2\pi  \hfill \\  7x = \pi  - \left( {5x + \frac{\pi }{3}} ight) + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k\pi  \hfill \\  x = \frac{\pi }{{18}} + \frac{{k\pi }}{6} \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight).

    Với  0 < \frac{\pi }{6} + k\pi  < \frac{\pi }{2}

    \Leftrightarrow  - \frac{1}{6} < k < \frac{1}{3}\xrightarrow{{k \in \mathbb{Z}}}k = 0 \to x = \frac{\pi }{6}

    Với 0 < \frac{\pi }{{18}} + k\frac{\pi }{6} < \frac{\pi }{2}

    \Leftrightarrow  - \frac{1}{3} < k < \frac{8}{3}\xrightarrow{{k \in \mathbb{Z}}}\left[ \begin{gathered}  k = 0 \to x = \frac{\pi }{{18}} \hfill \\  k = 1 \to x = \frac{{2\pi }}{9} \hfill \\  k = 2 \to x = \frac{{7\pi }}{{18}} \hfill \\ \end{gathered}  ight.

    Vậy có 4 nghiệm thỏa mãn.

  • Câu 30: Vận dụng cao

    Hàm số y = cos^{2}x - \cos x có tất cả bao nhiêu giá trị nguyên?

    Ta có:

    y = cos^{2}x - \cos x = \left( \cosx - \frac{1}{2} ight)^{2} - \frac{1}{4}.

    - 1 \leq \cos x \leq 1

    \begin{matrix}\Leftrightarrow - \dfrac{3}{2} \leq \cos x - \dfrac{1}{2} \leq \dfrac{1}{2}\\\Leftrightarrow 0 \leq \left( \cos x - \dfrac{1}{2} ight)^{2} \leq\dfrac{9}{4} \\\end{matrix}

    \begin{matrix}\Leftrightarrow - \dfrac{1}{4} \leq \left( \cos x - \dfrac{1}{2}ight)^{2} - \dfrac{1}{4} \leq 2 \hfill \\\Leftrightarrow - \dfrac{1}{4} \leq y \leq 2\overset{y\in\mathbb{Z}}{\Rightarrow}y \in \left\{ 0;1 ight\} \hfill\\\end{matrix}

    Nên có 3 giá trị thỏa mãn.

  • Câu 31: Nhận biết

    Phương trình nào dưới đây có tập nghiệm trùng với tập nghiệm của phương trình {\tan ^2}x = 3?

     Ta có {\tan ^2}x = 3 \Leftrightarrow \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} = 3 \Leftrightarrow {\sin ^2}x = 3{\cos ^2}x

    \Leftrightarrow 1 - {\cos ^2}x = 3{\cos ^2}x \Leftrightarrow 4{\cos ^2}x = 1

    Vậy {\tan ^2}x = 3 \Leftrightarrow 4{\cos ^2}x = 1.

  • Câu 32: Thông hiểu

    Hàm số  y = \sin 2x đồng biến trên khoảng nào trong các khoảng sau?

    Ta có x \in \left( {0;\frac{\pi }{4}} ight) \to 2x \in \left( {0;\frac{\pi }{2}} ight) thuộc gốc phần tư thứ I

    => Hàm số y = \sin 2x đồng biến trên khoảng \left( {0;\frac{\pi }{4}} ight)

  • Câu 33: Thông hiểu

    Một bánh xe đạp trong 5 giây quay được 2 vòng. Hỏi bánh xe quay được 1 góc bao nhiêu độ trong 2 giây?

    Trong 1 giây bánh xe quay được \frac{2}{5} vòng

    Suy ra trong 2 giây bánh xe quay được \frac{4}{5} vòng

    Vậy góc bánh xe quay được là: \frac{4}{5}.360^{0} = 288^{0}

  • Câu 34: Vận dụng cao

    Cho bất đẳng thức \cos2A + \frac{1}{64\cos^{4}A} - (2\cos2B + 4\sin B) +\frac{13}{4} \leq 0, với A;B;C là ba góc của tam giác ABC. Khẳng định đúng là

    Ta có:

    \begin{matrix}  \cos 2A + \dfrac{1}{{64{{\cos }^4}A}} - (2\cos 2B + 4\sin B) + \dfrac{{13}}{4} \leqslant 0 \hfill \\   \Leftrightarrow {\cos ^2}A + {\cos ^2}A + \dfrac{1}{{64{{\cos }^4}A}} + 4{\sin ^2}B - 4\sin B + 1 \leqslant \dfrac{3}{4}\left( * ight) \hfill \\ \end{matrix}

    Áp dụng bất đẳng thức Cauchy ta có:

    {\cos ^2}A + {\cos ^2}A + \frac{1}{{64{{\cos }^4}A}} \geqslant \frac{3}{4}\left( 1 ight)

    4{\sin ^2}B - 4\sin B + 1 \geqslant 0 \text{    }(2)

    Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:

    \left\{ \begin{gathered}  {\cos ^2}A = \frac{1}{{64{{\cos }^4}A}} \hfill \\  \sin B = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \cos A = \frac{1}{2} \hfill \\  \sin B = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  A = {60^0} \hfill \\  B = {30^0} \hfill \\  C = {90^0} \hfill \\ \end{gathered}  ight.

    Vậy \widehat{B} + \widehat{C} =120^{0}

  • Câu 35: Nhận biết

    Tìm tất cả các giá trị của tham số m để phương trình \left( {m + 1} ight)\sin x + 2 - m = 0 có nghiệm?

     Phương trình \left( {m + 1} ight)\sin x + 2 - m = 0

    \Leftrightarrow \left( {m + 1} ight)\sin x = m - 2 \Leftrightarrow \sin x = \frac{{m - 2}}{{m + 1}}

    Để phương trình có nghiệm \Leftrightarrow  - \,1 \leqslant \frac{{m - 2}}{{m + 1}} \leqslant 1

    \Leftrightarrow \left\{ \begin{gathered}  0 \leqslant 1 + \frac{{m - 2}}{{m + 1}} \hfill \\  \frac{{m - 2}}{{m + 1}} - 1 \leqslant 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  \frac{{2m - 1}}{{m + 1}} \geqslant 0 \hfill \\   - \frac{3}{{m + 1}} \leqslant 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \left[ \begin{gathered}  m \geqslant \frac{1}{2} \hfill \\  m <  - \,1 \hfill \\ \end{gathered}  ight. \hfill \\  m >  - \,1 \hfill \\ \end{gathered}  ight. \Leftrightarrow m \geqslant \frac{1}{2}

    là giá trị cần tìm.

  • Câu 36: Thông hiểu

    Rút gọn biểu thức C = \cos(7\pi - x) + 3\sin\left( \frac{3\pi}{2} + xight) - \cos\left( \frac{\pi}{2} - x ight) + \sin x ta được:

    Ta có:

    C = \cos(7\pi - x) + 3\sin\left(\frac{3\pi}{2} + x ight) - \cos\left( \frac{\pi}{2} - x ight) + \sin x

    C = \cos(\pi - x) - 3\sin\left(\frac{\pi}{2} + x ight) - \sin x + \sin x

    C = - \cos x - 3cosx = -
4cosx

  • Câu 37: Vận dụng cao

    Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình \tan x + \tan\left( x + \frac{\pi}{4} ight) =1.

    Hình vẽ minh họa

    Điều kiện \left\{ \begin{matrix}\cos x eq 0 \\\cos\left( x + \dfrac{\pi}{4} ight) eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{2} + k\pi \\x eq \dfrac{\pi}{4} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Ta có:

    \tan x + \tan\left( x + \frac{\pi}{4}ight) = 1

    \Leftrightarrow \tan x + \frac{\tan x +1}{1 - \tan x} = 1

    \Leftrightarrow \tan x - tan^{2}x + \tanx + 1 = 1 - \tan x

    \Leftrightarrow tan^{2}x - 3tanx =0

    \Leftrightarrow \left[ \begin{gathered}  \tan x = 0 \hfill \\  \tan x = 3 \hfill \\ \end{gathered}  ight.

    Với tanx = 0 ta được nghiệm x=k\pi

    Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.

    Với tanx = 3 ta được x = acrtan 3 + kπ

    Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.

    Tính diện tích hình chữ nhật ABCD.

    \begin{matrix}   \Rightarrow \sin \alpha  = \dfrac{{AT}}{{OT}} = \dfrac{3}{{\sqrt {10} }} \hfill \\  \widehat {ADC} = \dfrac{\alpha }{2} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\sin \dfrac{\alpha }{2} = \dfrac{{AC}}{2}} \\   {\cos \dfrac{\alpha }{2} = \dfrac{{AD}}{2}} \end{array}} ight. \hfill \\   \Rightarrow 2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2} = \dfrac{3}{{\sqrt {10} }} \hfill \\   \Rightarrow AC.AD = \dfrac{6}{{\sqrt {10} }} \hfill \\   \Rightarrow {S_{ABCD}} = \dfrac{{3\sqrt {10} }}{5} \hfill \\ \end{matrix}

  • Câu 38: Thông hiểu

    Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?

    Thực hiện kiểm tra đáp án ta thấy:

    Hàm số y = \cot x là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ

    Hàm số y = \frac{\sin x + 1}{\cosx} không chẵn không lẻ

    Hàm số y = tan^{2}x và hàm số y = \left| \cot x ight| là hàm số chẵn.

  • Câu 39: Nhận biết

    Tập nghiệm của phương trình \sin x=0 là?

     Ta có: \sin x =0 \Leftrightarrow x = k\pi \, , \, k \in \mathbb{Z}.

  • Câu 40: Nhận biết

    Hàm số y =  1-2\sin x+\tan x + \cot x không xác định trong khoảng nào trong các khoảng sau đây?

    Hàm số xác định khi 

    \begin{matrix}   \Leftrightarrow \left\{ \begin{gathered}  \sin x e 0 \hfill \\  \cos x e 0 \hfill \\ \end{gathered}  ight. \hfill \\   \Leftrightarrow \sin 2x e 0 \hfill \\   \Leftrightarrow 2x e k\pi  \hfill \\   \Leftrightarrow x e \dfrac{{k\pi }}{2},k \in \mathbb{Z}. \hfill \\ \end{matrix}

    Ta chọn k = 3 \to x e \frac{{3\pi }}{2} nhưng điểm \frac{{3\pi }}{2} thuộc khoảng \left( {\pi  + k2\pi ;2\pi  + k2\pi } ight)

    Vậy hàm số không xác định trong khoảng \left( {\pi  + k2\pi ;2\pi  + k2\pi } ight)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo