Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Nghiệm của phương trình \sin \left( {\frac{{2x}}{3} + \frac{\pi }{3}} ight) = 0

     Ta có \sin \left( {\frac{{2x}}{3} + \frac{\pi }{3}} ight) = 0

    \Leftrightarrow \frac{{2x}}{3} + \frac{\pi }{3} = k\pi

    \Leftrightarrow \frac{{2x}}{3} =  - \frac{\pi }{3} + k\pi

    \Leftrightarrow x =  - \frac{\pi }{2} + \frac{{k3\pi }}{2}\left( {k \in \mathbb{Z}} ight).

  • Câu 2: Nhận biết

    Công thức nào sau đây sai?

    Ta có:

    \sin a\cos b - \cos a\sin b = \sin(a -
b)

    \cos a\cos b + \sin a\sin b = \cos(a -
b)

    \sin(a + b) = \sin a\cos b + \cos a\sin
b

    \cos(a + b) = \cos a\cos b - \sin a\sin
b

  • Câu 3: Nhận biết

    Điều kiện xác định của hàm số y = f\left( x ight) = \frac{{2\cos x - 1}}{{\sin x}}

     Điều kiện xác định của hàm số:

    \begin{matrix}  \sin x e 0 \hfill \\   \Leftrightarrow x e k\pi ,k \in \mathbb{Z} \hfill \\ \end{matrix}

  • Câu 4: Vận dụng

    Cho ba góc nhọn thỏa mãn \tan\widehat{A} = \frac{1}{2};\tan\widehat{B} =\frac{1}{5};\tan\widehat{C} = \frac{1}{8}. Tính tổng số đo ba góc nhọn.

    Ta có:

    \tan\left( \widehat{A} + \widehat{B}ight) = \dfrac{\tan\widehat{A} + \tan\widehat{B}}{1 -\tan\widehat{A}.tan\widehat{B}} = \dfrac{\dfrac{1}{2} + \dfrac{1}{5}}{1 -\dfrac{1}{2}.\dfrac{1}{5}} = \dfrac{7}{9}

    \Rightarrow \tan\left( \widehat{A} +\widehat{B} + \widehat{C} ight) = \frac{\tan\left( \widehat{A} +\widehat{B} ight) + \tan\widehat{C}}{1 - \tan\left( \widehat{A} +\widehat{B} ight).\tan\widehat{C}} = \dfrac{\dfrac{7}{9} + \dfrac{1}{8}}{1- \dfrac{7}{9}.\dfrac{1}{8}} = 1

    \Rightarrow \widehat{A} + \widehat{B} +
\widehat{C} = 45^{0}

  • Câu 5: Nhận biết

    Với x \in \left( {\frac{{31\pi }}{4};\frac{{33\pi }}{4}} ight), mệnh đề nào sau đây là đúng?

    Ta có \left( {\frac{{31\pi }}{4};\frac{{33\pi }}{4}} ight) = \left( { - \frac{\pi }{4} + 8\pi ;\frac{\pi }{4} + 8\pi } ight) thuộc góc phần tư thứ I và II.

  • Câu 6: Nhận biết

    Với x \in \left( {0;\frac{\pi }{4}} ight), mệnh đề nào sau đây là đúng?

    Ta có x \in \left( {0;\frac{\pi }{4}} ight) \to 2x \in \left( {0;\frac{\pi }{2}} ight) thuộc góc phần tư thứ I. Do đó

    y = \sin 2x đồng biến \to y =  - \sin 2x nghịch biến.

    y = \cos 2x nghịch biến \to y =  - 1 + \cos 2x nghịch biến.

  • Câu 7: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Nhắc lại kiến thức cơ bản:

    Hàm số y = \sin x là hàm số lẻ.

    Hàm số y = \cos x là hàm số chẵn.

    Hàm số y = \tan x là hàm số lẻ.

    Hàm số y = \cot x là hàm số lẻ.

  • Câu 8: Thông hiểu

    Số nghiệm của phương trình \sin \left( {2x - {{40}^0}} ight) = \frac{{\sqrt 3 }}{2} với - {180^0} \leqslant x \leqslant {180^0} là?

    4 || Bốn || bốn || 4 nghiệm

    Đáp án là:

    Số nghiệm của phương trình \sin \left( {2x - {{40}^0}} ight) = \frac{{\sqrt 3 }}{2} với - {180^0} \leqslant x \leqslant {180^0} là?

    4 || Bốn || bốn || 4 nghiệm

     Phương trình \sin \left( {2x - {{40}^0}} ight) = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {2x - {{40}^0}} ight) = \sin {60^0}

    \Leftrightarrow \left[ \begin{gathered}  2x - {40^0} = {60^0} + k{360^0} \hfill \\  2x - {40^0} = {180^0} - {60^0} + k{360^0} \hfill \\ \end{gathered}  ight.\,

    \Leftrightarrow \left[ \begin{gathered}  2x = {100^0} + k{360^0} \hfill \\  2x = {160^0} + k{360^0} \hfill \\ \end{gathered}  ight.\,

    \Leftrightarrow \left[ \begin{gathered}  x = {50^0} + k{180^0} \hfill \\  x = {80^0} + k{180^0} \hfill \\ \end{gathered}  ight.

    • TH1: Xét nghiệm x = {50^0} + k{180^0}:

    - {180^0} \leqslant x \leqslant {180^0}\xrightarrow{{}} - {180^0} \leqslant {50^0} + k{180^0} \leqslant {180^0}

    \Leftrightarrow  - \frac{{23}}{{18}} \leqslant k \leqslant \frac{{13}}{{18}}\xrightarrow{{k \in \mathbb{Z}}}\left[ \begin{gathered}  k =  - 1 \to x =  - {130^0} \hfill \\  k = 0 \to x = {50^0} \hfill \\ \end{gathered}  ight..

    • TH2: Xét nghiệm x = {80^0} + k{180^0}:

    - {180^0} \leqslant x \leqslant {180^0}\xrightarrow{{}} - {180^0} \leqslant {80^0} + k{180^0} \leqslant {180^0}

    \Leftrightarrow  - \frac{{13}}{9} \leqslant k \leqslant \frac{5}{9}\xrightarrow{{k \in \mathbb{Z}}}\left[ \begin{gathered}  k =  - 1 \to x =  - {100^0} \hfill \\  k = 0 \to x = {80^0} \hfill \\ \end{gathered}  ight..

    Vậy có tất cả 4 nghiệm thỏa mãn bài toán.

     

  • Câu 9: Thông hiểu

    Rút gọn biểu thức S = \cos^{2}\left( \frac{\pi}{4} + \alpha ight) -\cos^{2}\left( \frac{\pi}{4} - \alpha ight)

    Vì hai góc \left( \frac{\pi}{4} + \alpha
ight)\left( \frac{\pi}{4} -
\alpha ight) phụ nhau nên

    \cos\left( \dfrac{\pi}{4} - \alphaight) = \sin\left( \dfrac{\pi}{4} + \alpha ight)

    S = \cos^{2}\left( \frac{\pi}{4} + \alphaight) - \cos^{2}\left( \frac{\pi}{4} - \alpha ight)

    \Rightarrow S = \cos^{2}\left(\frac{\pi}{4} + \alpha ight) - \sin^{2}\left( \frac{\pi}{4} + \alphaight)

    \Rightarrow S = \cos\left( \frac{\pi}{4}+ 2\alpha ight) = - \sin2\alpha

  • Câu 10: Vận dụng

    Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu h (m) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày (0 \leq t < 24) cho bởi công thức h = 3cos\left( \frac{\pi t}{6} + 1 ight) +
12. Có bao nhiêu giá trị của t thỏa mãn để độ sâu của mực nước là 15\ m?

    Độ sâu của mực nước là 15\ m thì h = 15.

    Khi đó

    15 = 3cos\left( \frac{\pi t}{6} + 1
ight) + 12n \Leftrightarrow \cos\left( \frac{\pi t}{6} + 1 ight) =
1

    \Leftrightarrow \cos\left( \frac{\pi
t}{6} + 1 ight) = cos0 \Leftrightarrow \frac{\pi t}{6} + 1 =
k2\pi

    \Leftrightarrow t = \frac{6(k2\pi -
1)}{\pi};k \in Z

    0 \leq t < 24 nên

    0 \leq \frac{6(k2\pi - 1)}{\pi} \leq 24
\Leftrightarrow 0 < k \leq 2

    Lại do k \in Z \Rightarrow k \in \{ 1;2\}
\Rightarrow t \in \left\{ \frac{6(2\pi - 1)}{\pi};\frac{6(4\pi -
1)}{\pi} ight\}

  • Câu 11: Thông hiểu

    Hàm số  y = \sin 2x đồng biến trên khoảng nào trong các khoảng sau?

    Ta có x \in \left( {0;\frac{\pi }{4}} ight) \to 2x \in \left( {0;\frac{\pi }{2}} ight) thuộc gốc phần tư thứ I

    => Hàm số y = \sin 2x đồng biến trên khoảng \left( {0;\frac{\pi }{4}} ight)

  • Câu 12: Vận dụng cao

    Tập giá trị của hàm số y = \frac{\cos x +1}{\sin x + 1} trên \left\lbrack0;\frac{\pi}{2} ightbrack

    Ta có:

    \left\{ \begin{matrix}0 \leq \cos x \leq 1 \\0 \leq \sin x \leq 1 \\\end{matrix} ight.\ ;\left( x \in \left\lbrack 0;\frac{\pi}{2}ightbrack ight)

    Nên \frac{0 + 1}{1 + 1} \leq \frac{\cos x+ 1}{1 + 1} \leq \frac{1 + 1}{0 + 1} \Rightarrow \frac{1}{2} \leq y \leq2

  • Câu 13: Nhận biết

    Tổng các nghiệm thuộc khoảng \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) của phương trình: \cos x = \frac{1}{2}

     Giải phương trình:

    \begin{matrix}  \cos x = \dfrac{1}{2} \hfill \\   \Leftrightarrow \cos x = \cos \left( {\dfrac{\pi }{3}} ight) \hfill \\   \Leftrightarrow x =  \pm \dfrac{\pi }{3} + k2\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Tổng nghiệm của phương trình bằng 0.

  • Câu 14: Vận dụng cao

    Nếu \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(q eq 0) thì P = cos^{2}(\alpha + \beta) + p\sin(\alpha +
\beta).cos(\alpha + \beta) + qsin^{2}(\alpha + \beta) bằng:

    Ta có: \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(q eq 0)nên theo định lí Vi – ét ta có: \left\{ \begin{matrix}
\tan\alpha + \tan\beta = p \\
\tan\alpha.tan\beta = q \\
\end{matrix} ight.

    \Rightarrow \tan(\alpha + \beta) =
\frac{\tan\alpha + \tan\beta}{1 - \tan\alpha.tan\beta} = \frac{p}{1 -
q}

    Khi đó:

    P = \cos^{2}(\alpha + \beta) +p\sin(\alpha + \beta).\cos(\alpha + \beta) + q\sin^{2}(\alpha +\beta)

    P = \cos^{2}(\alpha + \beta).\left\lbrack1 + p\tan(\alpha + \beta) + q\tan^{2}(\alpha + \beta)ightbrack

    P = \frac{1 + p\tan(\alpha + \beta) +q\tan^{2}(\alpha + \beta)}{1 + \tan^{2}(\alpha + \beta)}

    P = \dfrac{1 + p.\dfrac{p}{1 - q} +q.\left( \dfrac{p}{1 - q} ight)^{2}}{1 + \left( \dfrac{p}{1 - q}ight)^{2}}

    P = \dfrac{(1 - q)^{2} + p^{2}(1 - q) +q.p^{2}}{(1 - q)^{2} + p^{2}}

    P = \dfrac{(1 - q)^{2} + p^{2} - p^{2}.q+ q.p^{2}}{(1 - q)^{2} + p^{2}}

    P = 1

  • Câu 15: Nhận biết

    Nghiệm của phương trình \sin x = -
1

    Ta có: \sin x = - 1 \Leftrightarrow x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight).

  • Câu 16: Vận dụng

    Với a,b là các số nguyên dương và \frac{a}{b} là phân số tối giản. Biết rằng \cos x = - \frac{a}{b} khi \tan x = - \frac{3}{4}x \in \left( \frac{\pi}{2};\pi ight). Tính S = a + b.

    Ta có:

    1 + \tan^{2}x =\frac{1}{\cos^{2}x}

    \Leftrightarrow \cos^{2}x = \frac{1}{1 +\tan^{2}x}

    \Leftrightarrow \cos^{2}x =\frac{16}{25}

    \Leftrightarrow \cos x = \pm
\frac{4}{5}

    x \in \left( \frac{\pi}{2};\pi
ight) nên \cos x < 0
\Rightarrow \cos x = - \frac{4}{5}

    Khi đó a = 4;b = 5 => S = 4 + 5 = 9

  • Câu 17: Thông hiểu

    Cho góc \alpha thỏa mãn \sin2\alpha = \frac{2}{3}. Tính giá trị của biểu thức P = \sin^{4}\alpha +\cos^{4}a.

    Ta có:

    P = \sin^{4}\alpha +\cos^{4}a

    = \left( \sin^{2}\alpha + \cos^{2}\alphaight)^{2} - 2\sin^{2}\alpha \cos^{2}\alpha

    = 1 - \dfrac{1}{2}\left(2\sin\alpha\cos\alpha ight)^{2}

    = 1 -\dfrac{1}{2}\sin^{2}(2\alpha)

    = 1 - \frac{1}{2}.\left( \frac{2}{3}ight)^{2} = \frac{7}{9}

  • Câu 18: Vận dụng cao

    Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình \tan x + \tan\left( x + \frac{\pi}{4} ight) =1.

    Hình vẽ minh họa

    Điều kiện \left\{ \begin{matrix}\cos x eq 0 \\\cos\left( x + \dfrac{\pi}{4} ight) eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{2} + k\pi \\x eq \dfrac{\pi}{4} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Ta có:

    \tan x + \tan\left( x + \frac{\pi}{4}ight) = 1

    \Leftrightarrow \tan x + \frac{\tan x +1}{1 - \tan x} = 1

    \Leftrightarrow \tan x - tan^{2}x + \tanx + 1 = 1 - \tan x

    \Leftrightarrow tan^{2}x - 3tanx =0

    \Leftrightarrow \left[ \begin{gathered}  \tan x = 0 \hfill \\  \tan x = 3 \hfill \\ \end{gathered}  ight.

    Với tanx = 0 ta được nghiệm x=k\pi

    Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.

    Với tanx = 3 ta được x = acrtan 3 + kπ

    Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.

    Tính diện tích hình chữ nhật ABCD.

    \begin{matrix}   \Rightarrow \sin \alpha  = \dfrac{{AT}}{{OT}} = \dfrac{3}{{\sqrt {10} }} \hfill \\  \widehat {ADC} = \dfrac{\alpha }{2} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\sin \dfrac{\alpha }{2} = \dfrac{{AC}}{2}} \\   {\cos \dfrac{\alpha }{2} = \dfrac{{AD}}{2}} \end{array}} ight. \hfill \\   \Rightarrow 2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2} = \dfrac{3}{{\sqrt {10} }} \hfill \\   \Rightarrow AC.AD = \dfrac{6}{{\sqrt {10} }} \hfill \\   \Rightarrow {S_{ABCD}} = \dfrac{{3\sqrt {10} }}{5} \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu

    Trong các phương trình sau có bao nhiêu phương trình có nghiệm?

    \sin x = \frac{1}{2};{\text{ }}\sin x = \frac{{ - \sqrt 2 }}{2};{\text{ }}\sin x = \frac{{1 + \sqrt 3 }}{2}

      Do y = sin (x) có tập giá trị là [-1;1] nên các phương trình \sin x = \frac{1}{2};{\text{ }}\sin x = \frac{{ - \sqrt 2 }}{2} có nghiệm;

    phương trình {\text{ }}\sin x = \frac{{1 + \sqrt 3 }}{2} vô nghiệm do  \frac{{1 + \sqrt 3 }}{2} > 1

  • Câu 20: Nhận biết

    Tập nghiệm của phương trình \sin x=0 là?

     Ta có: \sin x =0 \Leftrightarrow x = k\pi \, , \, k \in \mathbb{Z}.

  • Câu 21: Nhận biết

    Phương án nào sau đây sai với mọi k\in\mathbb{ Z}?

    Ta có:

    \sin x = 0 \Leftrightarrow x =
k\pi;\left( k\mathbb{\in Z} ight)

    Vậy đáp án sai là: \sin x = 0
\Leftrightarrow x = \frac{\pi}{2} + k\pi

  • Câu 22: Thông hiểu

    Đồ thị hàm số y = \sin x được suy từ đồ thị (C) của hàm số bằng cách:

    Ta có

    y = \sin x = \cos \left( {\frac{\pi }{2} - x} ight) = \cos \left( {x - \frac{\pi }{2}} ight)

    =>Đồ thị hàm số y = \sin x được suy từ đồ thị (C) của hàm số bằng cách tịnh tiến (C) qua phải một đoạn có độ dài là \frac{\pi }{2}

  • Câu 23: Thông hiểu

    Trong các hàm số sau, hàm số nào là hàm số lẻ?

    Ta kiểm tra được y = \cos x +
sin^{2}xy = - \cos x là hàm số chẵn

    Hàm số y = \sin x + \cos x không chẵn không lẻ

    => Hàm số y = \sin x.cos3x là hàm số lẻ.

  • Câu 24: Thông hiểu

    Biết rằng \frac{\pi}{2} < \alpha <
\frac{3\pi}{4}. Mệnh đề nào sau đây đúng?

    Ta có:

    \frac{\pi}{2} < \alpha <
\frac{3\pi}{4} \Rightarrow \pi < 2\alpha <
\frac{3\pi}{2}

    \Rightarrow \frac{9\pi}{2} < 2\alpha
+ \frac{7\pi}{2} < 5\pi

    Xét trên đường tròn lượng giác ta thấy 2\alpha + \frac{7\pi}{2} thuộc góc phần tư thứ II nên ta có:

    \sin\left( 2\alpha + \frac{7\pi}{2}
ight) > 0

    \cos\left( 2\alpha + \frac{7\pi}{2}
ight) < 0

    \tan\left( 2\alpha + \frac{7\pi}{2}
ight) < 0

    \cot\left( 2\alpha + \frac{7\pi}{2}
ight) < 0

  • Câu 25: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau:

    Theo công thức cộng

    \cos(a + b) = \cos a.cosb - \sin
a.sinb.

  • Câu 26: Thông hiểu

    Rút gọn biểu thức: F = \sin(x - y).\cos y + \cos(x - y)\sin y

    Áp dụng công thức \sin(a + b) = \sin
a\cos b + \cos a\sin b ta được:

    F = \sin(x - y).cosy + \cos(x - y)\sin
y

    F = \sin\left\lbrack (x - y) + y
ightbrack = \sin x

  • Câu 27: Thông hiểu

    Cho \frac{\pi}{2}
< \alpha < \pi. Giá trị lượng giác nào sau đây luôn dương?

    Ta có:

    \sin(\pi + \alpha) = -
\sin\alpha

    \cos\left( \frac{\pi}{2} - \alpha
ight) = \sin\alpha

    \cos( - \alpha) =
\cos\alpha

    \tan(\alpha + \pi) =
\tan\alpha

    Theo bài ra \frac{\pi}{2} < \alpha
< \pi

    => \left\{ \begin{matrix}
\sin\alpha > 0 \\
\cos\alpha < 0 \\
\tan\alpha < 0 \\
\end{matrix} ight.

  • Câu 28: Thông hiểu

    Tổng giá trị lớn nhất và nhỏ nhất của hàm số y = 3cosx + 4

    Do - 1 \leq cosx \leq 1\forall x \in
\mathbb{R} nên 1 \leq 3cosx + 4
\leq 7,\forall x \in \mathbb{R}.

    Nên \max_{\mathbb{R}}\mspace{2mu} y =
7 đạt được khi cosx = 1
\Leftrightarrow x = k2\pi\ (k \in \mathbb{Z}).

    \min_{\mathbb{R}}\mspace{2mu} y =
1 đạt được khi cosx = - 1
\Leftrightarrow x = \pi + k2\pi(k \in \mathbb{Z}).

    Suy ra \max_{\mathbb{R}}\mspace{2mu} y +
\min_{\mathbb{R}}\mspace{2mu} y = 8.

  • Câu 29: Vận dụng

    Tìm tập xác định D của hàm số y =
\tan\left( \frac{\pi}{2}.cosx ight)

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\dfrac{\pi}{2}.cosx eq \dfrac{\pi}{2} + k\pi \\\cos x eq 1 + 2k(*) \\\end{matrix}

    Do k là số nguyên => \cos x eq \pm 1\Rightarrow \sin x eq 0 \Rightarrow x eq k\pi,k \in\mathbb{Z}

    Vậy tập xác định D\mathbb{=R}\backslash\left\{ k\pi,k\in\mathbb{ Z} ight\}

  • Câu 30: Thông hiểu

    Xác định nghiệm của phương trình - \cos2x = \cos\left( x - 30^{0}ight)?

    Ta có:

    - \cos2x = \cos\left( x - 30^{0}ight)

    \Leftrightarrow \cos\left( 180^{0} - 2x
ight) = \cos\left( x - 30^{0} ight)

    \Leftrightarrow \left\lbrack
\begin{matrix}
x - 30^{0} = 180^{0} - 2x + k360^{0} \\
x - 30^{0} = - 180^{0} + 2x + k360^{0} \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 70^{0} + k120^{0} \\
x = 150^{0} - k360^{0} \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Vậy phương trình đã cho có nghiệm \left\lbrack \begin{matrix}
x = 70^{0} + k120^{0} \\
x = 150^{0} + k360^{0} \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight).

  • Câu 31: Vận dụng

    Tìm chu kì T của hàm số y = 2\sin^{2}x +3\cos^{2}3x

    Ta có:

    \begin{matrix}y = 2\sin^{2}x + 3\cos^{2}3x \hfill \\= 2.\dfrac{1 - \cos2x}{2} + 3.\dfrac{1 + \cos6x}{2} \hfill\\= \dfrac{1}{2}(3.\cos6x - 2\cos2x + 5)\hfill \\\end{matrix}

    Hàm số y = 3.\cos6x tuần hoàn với chu kì T_{1} = \frac{\pi}{3}

    Hàm số y = - 2\cos2x tuần hoàn với chu kì T_{2} = \pi

    T là chu kì của hàm số y = \tan3x + \cot{x} là bội chung nhỏ nhất của T1 và T2

    Suy ra hàm số y = \dfrac{1}{2}(3.\cos6x -2\cos2x + 5) tuần hoàn với chu kì T
= \pi

  • Câu 32: Nhận biết

    Tìm tập xác định của hàm số y =
\cot\left( 2x - \frac{\pi}{4} ight) + sin2x

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\sin\left( 2x - \dfrac{\pi}{4} ight) eq 0 \hfill \\\Leftrightarrow 2x - \dfrac{\pi}{4} eq k\pi \hfill \\\Rightarrow x eq \dfrac{\pi}{8} + k\dfrac{\pi}{2};\left( k\mathbb{\in Z}ight) \hfill \\\end{matrix}

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ \frac{\pi}{8} + k\frac{\pi}{2},k\mathbb{\in Z}
ight\}

  • Câu 33: Nhận biết

    Trên đường tròn lượng giác, cung có số đo \frac{\pi}{6} + \frac{k2\pi}{3};\left(k\in\mathbb{ Z} ight) được biểu diễn bởi bao nhiêu điểm?

    Xét theo chiều dương với k =
0,1,2,3 ta thấy cung có số đo \frac{\pi}{6} + \frac{k2\pi}{3};\left(
k\mathbb{\in Z} ight) được biểu diễn bởi ba điểm trên đường tròn lượng giác như sau:

  • Câu 34: Thông hiểu

    Xét đường tròn bán kính 20cm. Cung tròn có số đo 37^{0} có độ dài tương ứng là:

    Độ dài cung tròn góc \alpha (với \alpha có đơn vị là độ):

    l = \frac{R\pi\alpha}{180^{0}} =
\frac{20.\pi.37^{0}}{180^{0}} = \frac{37\pi}{9}(cm)

  • Câu 35: Vận dụng

    Tính giá trị biểu thức:

    C = \left\lbrack \sin\left(\frac{\pi}{2} - x ight) + \sin(10\pi + x) ightbrack^{2} +\left\lbrack \cos\left( \frac{3\pi}{2} - x ight) + \sin(8\pi - x)ightbrack^{2}

    Ta có:

    \sin\left( \frac{\pi}{2} - x ight) =
\cos x

    \sin(10\pi + x) = \sin x

    \cos\left( \frac{3\pi}{2} - x ight) =
\cos\left( 2\pi - \frac{\pi}{2} - x ight) = \cos\left( \frac{\pi}{2} +
x ight) = - \sin x

    \sin(8\pi - x) = \cos x

    Khi đó:

    C = \left\lbrack \sin\left(
\frac{\pi}{2} - x ight) + \sin(10\pi + x) ightbrack^{2} +
\left\lbrack \cos\left( \frac{3\pi}{2} - x ight) + \sin(8\pi - x)
ightbrack^{2}

    C = \left( \cos x + \sin x ight)^{2} +
\left\lbrack \cos x - \sin x ightbrack^{2}

    C = cos^{2}x + 2sinx\cos x + sin^{2}x +
cos^{2}x - 2sinx\cos x + sin^{2}x

    C = 2cos^{2}x + 2sin^{2}x =
2

  • Câu 36: Thông hiểu

    Cho phương trình lượng giác \sin\left( 3x
+ \frac{\pi}{3} ight) = - \frac{\sqrt{3}}{2}

    a) Phương trình có nghiệm \left\lbrack\begin{matrix}x = - \dfrac{\pi}{9} + k\dfrac{2\pi}{3} \\x = \dfrac{\pi}{3} + k\dfrac{2\pi}{3} \\\end{matrix}(k\mathbb{\in Z}) ight. Sai||Đúng

    b) Phương trình có nghiệm âm lớn nhất bằng - \frac{2\pi}{9} Đúng||Sai

    c) Trên khoảng \left( 0;\frac{\pi}{2}
ight) phương trình đã cho có 3 nghiệm Sai||Đúng

    d) Tổng các nghiệm của phương trình trong khoảng \left( 0;\frac{\pi}{2} ight) bằng \frac{7\pi}{9} Đúng||Sai

    Đáp án là:

    Cho phương trình lượng giác \sin\left( 3x
+ \frac{\pi}{3} ight) = - \frac{\sqrt{3}}{2}

    a) Phương trình có nghiệm \left\lbrack\begin{matrix}x = - \dfrac{\pi}{9} + k\dfrac{2\pi}{3} \\x = \dfrac{\pi}{3} + k\dfrac{2\pi}{3} \\\end{matrix}(k\mathbb{\in Z}) ight. Sai||Đúng

    b) Phương trình có nghiệm âm lớn nhất bằng - \frac{2\pi}{9} Đúng||Sai

    c) Trên khoảng \left( 0;\frac{\pi}{2}
ight) phương trình đã cho có 3 nghiệm Sai||Đúng

    d) Tổng các nghiệm của phương trình trong khoảng \left( 0;\frac{\pi}{2} ight) bằng \frac{7\pi}{9} Đúng||Sai

    Ta có:

    \sin\left( 3x + \frac{\pi}{3} ight) = -\frac{\sqrt{3}}{2}

    \Leftrightarrow \left\lbrack\begin{matrix}3x + \dfrac{\pi}{3} = - \dfrac{\pi}{3} + k2\pi \\3x + \dfrac{\pi}{3} = \dfrac{4\pi}{3} + k2\pi \\\end{matrix}(k\mathbb{\in Z}) ight. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
  {3x =  - \dfrac{{2\pi }}{3} + k2\pi } \\ 
  {3x = \pi  + k2\pi } 
\end{array}(k \in \mathbb{Z}) } ight.

    \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
  {x =  - \dfrac{{2\pi }}{9} + k\dfrac{{2\pi }}{3}} \\ 
  {x = \dfrac{\pi }{3} + k\dfrac{{2\pi }}{3}} 
\end{array}(k \in \mathbb{Z})} ight.

     

    x \in \left( 0;\frac{\pi}{2}
ight) nên x = \frac{\pi}{3},x =
\frac{4\pi}{9}.

    Kết luận:

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

  • Câu 37: Nhận biết

    Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình \sqrt 3 \cos x + m - 1 = 0 có nghiệm?

     Ta có \sqrt 3 \cos x + m - 1 = 0 \Leftrightarrow \cos x = \frac{{1 - m}}{{\sqrt 3 }}.

    Phương trình có nghiệm \Leftrightarrow  - 1 \leqslant \frac{{1 - m}}{{\sqrt 3 }} \leqslant 1

    \Leftrightarrow 1 - \sqrt 3  \leqslant m \leqslant 1 + \sqrt 3 \xrightarrow{{m \in \mathbb{Z}}}m \in \left\{ {0;1;2} ight\}

    Vậy có tất cả 3 giá trị nguyên của tham số m.

  • Câu 38: Thông hiểu

    Số nghiệm của phương trình: \sqrt {1 - {x^2}} \sin x = 0

     Điều kiện xác định: x \in \left[ { - 1;1} ight]

    \begin{matrix}  \sqrt {1 - {x^2}} \sin x = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sqrt {1 - {x^2}}  = 0} \\   {\sin x = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {1 - {x^2} = 0} \\   {x = k\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm 1} \\   {x = k\pi ;\left( {k \in \mathbb{Z}} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Với k = 0 => x = 0 (thỏa mãn)

    Vậy phương trình có tất cả 3 nghiệm.

  • Câu 39: Vận dụng

    Phương trình \frac{{\sin x - \cos x}}{{1 + \sin x.\cos x}} = 0 có nghiệm là:

     Điều kiện xác định: 1 + \sin x.\cos x e 0

    \begin{matrix}  \dfrac{{\sin x - \cos x}}{{1 + \sin x.\cos x}} = 0 \hfill \\   \Leftrightarrow \sin x - \cos x = 0 \hfill \\   \Leftrightarrow \sqrt 2 \sin \left( {x - \dfrac{\pi }{4}} ight) = 0 \hfill \\   \Leftrightarrow \sin \left( {x - \dfrac{\pi }{4}} ight) = 0 \hfill \\   \Leftrightarrow x - \dfrac{\pi }{4} = \dfrac{\pi }{2} + k\pi  \hfill \\   \Leftrightarrow x = \dfrac{{3\pi }}{4} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Kiểm tra điều kiện ta thấy x = \frac{3\pi }{4} + k\pi thỏa mãn

    Vậy nghiệm của phương trình là: x = \frac{3\pi }{4} + k\pi

  • Câu 40: Thông hiểu

    Đơn giản biểu thức A = cos\left( \alpha - \frac{\pi}{2} ight) +
sin(\alpha + \pi), ta có

    Ta có:

    A = cos\left( \alpha - \frac{\pi}{2}
ight) + sin(\alpha + \pi)

    = cos\left( \frac{\pi}{2} - \alpha
ight) - sin\alpha = sin\alpha - sin\alpha = 0

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 21 lượt xem
Sắp xếp theo