Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Cho hình vẽ:

Trên đường tròn lượng giác, số đo của góc lượng giác
là:
Từ hình vẽ ta có:
Hỏi
là một nghiệm của phương trình nào sau đây?
Với , suy ra
Cho
và
. Khi đó giá trị của
là:
Ta có:
Do hay
Vậy
Cho
. Giá trị lượng giác nào sau đây luôn dương?
Ta có:
Theo bài ra
=>
Đổi số đo của góc
sang đơn vị radian?
Cách 1: Áp dụng công thức với
ta được:
Cách 2: Bấm máy tính:
Bước 1: Bấm tổ hợp phím SHIFT MODE 4 chuyển về chế độ rad.
Bước 2: Bấm 120 SHIFT Ans 1 =
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
và
xác định và
xác định
Ta có: xác định khi và chỉ khi
Mà cot x xác định khi
Do đó hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Ta có:
với
. Xác định giá trị của biểu thức
?
Ta có:
Rút gọn biểu thức ![]()
Ta có:
Tập nghiệm của phương trình
là
Ta có
.
Với x thuộc (0;1), hỏi phương trình
có bao nhiêu nghiệm?
Phương trình
- Với .
có 6 nghiệm.
- Với .
có 6 nghiệm.
Vậy phương trình đã cho có 12 nghiệm.
Trên đường tròn bán kính 20cm. Tính độ dài của cung có số đo
.
Độ dài cung tròn là:
Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình
.
Hình vẽ minh họa
Điều kiện
Ta có:
Với ta được nghiệm
Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.
Với ta được
Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.
Tính diện tích hình chữ nhật ABCD.
Trong các hàm số sau, hàm số nào là hàm số chẵn?
Tất các các hàm số đều có TXĐ: .
Do đó
Bây giờ ta kiểm tra hoặc
Với . Ta có
Suy ra hàm số là hàm số lẻ.
Với . Ta có
Suy ra hàm số không chẵn không lẻ.
Với . Ta có
Suy ra hàm số là hàm số chẵn.
Với Ta có
Suy ra hàm số là hàm số lẻ.
Phương trình
có họ nghiệm là
Ta có:
là nghiệm của phương trình.
: Chia 2 vế phương trình cho
ta được:
.
Nghiệm của phương trình
là
Ta có: .
Tìm tập xác định
của hàm số
?
Ta có:
Hàm số được xác định khi
Vậy tập xác định của hàm số là
Số giờ có ánh sáng mặt trời của một thành phố A trong ngày thứ
của năm 2022 được cho bởi một hàm số
với
và
. Vào ngày nào trong năm thì thành phố A có nhiều giờ có ánh sáng mặt trời nhất?
Vì
Ngày có ánh sáng mặt trời nhiều nhất
Do
Với rơi vào ngày 29 tháng 5 (vì ta đã biết tháng 1 và 3 có 31 ngày, tháng 4 có 30 ngày, riêng đối với năm 2022 thì không phải năm nhuận nên tháng 2 có 28 ngày hoặc dựa vào dữ kiện
thì ta biết năm này tháng 2 chỉ có 28 ngày).
Chọn đẳng thức đúng.
Ta có:
Ta lại có:
Đồ thị hàm số
được suy từ đồ thị (C) của hàm số bằng cách:
Nhắc lại lý thuyết:
Cho (C) là đồ thị của hàm số và
, ta có:
+ Tịnh tiến (C) lên p trên đơn vị thì được đồ thị của hàm số .
+ Tịnh tiến (C) xuống dưới p đơn vị thì được đồ thị của hàm số
+ Tịnh tiến (C) sang trái p đơn vị thì được đồ thị của hàm số
+ Tịnh tiến (C) sang phải p đơn vị thì được đồ thị của hàm số
Vậy đồ thị hàm số được suy từ đồ thị hàm số
bằng cách tịnh tiến sang phải
đơn vị.
Cho góc
thỏa mãn
và
. Tính giá trị
.
Ta có:
Ta có:
Ta lại có:
Mà
Cho tam giác
có các góc
thỏa mãn biểu thức
. Khẳng định nào sau đây đúng?
Ta có:
Vậy tam giác cân.
Tập xác định của hàm số: ![]()
Ta có:
Xác định chu kì T của hàm số lượng giác
?
Hàm số y = cos(ax + b) tuần hoàn với chu kì
=> tuần hoàn với chu kì
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
Thực hiện kiểm tra đáp án ta thấy:
Hàm số là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ
Hàm số không chẵn không lẻ
Hàm số và hàm số
là hàm số chẵn.
Cho góc
thỏa mãn
và
. Tính giá trị của biểu thức
.
Ta có:
Mặt khác
Mà
Khẳng định nào sau đây sai?
Trên khoảng thì hàm số
đồng biến.
Điều kiện xác định của hàm số: 
Điều kiện xác định của hàm số:
Cho
. Tính giá trị biểu thức ![]()
Do nên bình phương hai vế ta được:
Vậy
Phương trình
có bao nhiêu nghiệm thuộc
?
Ta có:
, mà
.
.
Suy ra ,
.
Vậy có 4044 nghiệm thuộc
.
Giá trị nào sau đây của x thỏa mãn
?
Ta có:
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu
(m) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày
cho bởi công thức
. Có bao nhiêu giá trị của t thỏa mãn để độ sâu của mực nước là
?
Độ sâu của mực nước là thì h = 15.
Khi đó
Vì nên
Lại do
Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê dưới đây. Hỏi hàm số đó là hàm số nào?

Ta thấy tại x = 0 thì y = 1 => loại đáp án ,
Tại thì y = 1 thay vào hai đáp án
và
thì chỉ có
thỏa mãn
Vậy đồ thị ở hình vẽ đã cho là đồ thị của hàm số
Tập nghiệm của phương trình
là?
Ta có:
Cho phương trình
. Đặt
, ta được phương trình nào sau đây?
Ta có: trở thành
.
Đơn giản biểu thức
, ta có
Ta có:
Nếu
và
thì
bằng bao nhiêu?
Từ giả thiết ta có:
Ta có:
Mặt khác
Hàm số
đồng biến trên khoảng nào trong các khoảng sau?
Ta có thuộc gốc phần tư thứ I
=> Hàm số đồng biến trên khoảng
Cho tam giác
. Khẳng định nào sau đây sai?
Ta có:
Do đó
Vậy khẳng định sai là:
Số nghiệm của phương trình: ![]()
Điều kiện xác định:
Với k = 0 => x = 0 (thỏa mãn)
Vậy phương trình có tất cả 3 nghiệm.