Tìm tập xác định
của hàm số
:
Hàm số xác định khi .
Tập xác định của hàm số là: .
Tìm tập xác định
của hàm số
:
Hàm số xác định khi .
Tập xác định của hàm số là: .
Đồ thị hàm số
được suy từ đồ thị (C) của hàm số bằng cách:
Ta có
=>Đồ thị hàm số được suy từ đồ thị (C) của hàm số bằng cách tịnh tiến (C) qua phải một đoạn có độ dài là
Tìm số nghiệm của phương trình
trên đoạn
.
Ta có:
Vì nên
. Do đó phương trình
Vì nên
.
Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê dưới đây. Hỏi hàm số đó là hàm số nào?

Ta thấy tại x = 0 thì y = 1 => loại đáp án ,
Tại thì y = 1 thay vào hai đáp án
và
thì chỉ có
thỏa mãn
Vậy đồ thị ở hình vẽ đã cho là đồ thị của hàm số
Nếu
và
thì
bằng bao nhiêu?
Từ giả thiết ta có:
Ta có:
Mặt khác
Phương trình nào sau đây vô nghiệm?
+ Phương trình
Vậy phương trình vô nghiệm.
+ Phương trình
Vậy phương trình có nghiệm.
+ Phương trình
Vậy phương trình có nghiệm.
+ Phương trình
mà
nên phương trình
có nghiệm.
Một chiếc đồng hồ, có kim chỉ giờ OG chỉ số 9 và kim phút OP chỉ số 12. Số đo của góc lượng giác
là:
Góc lượng giác chiếm
đường tròn
=> Số đo là: .
Có bao nhiêu đẳng thức dưới đây là đồng nhất thức?
![]()
![]()
![]()
![]()
Ta có:
Vậy có hai đồng nhất thức.
Cho hàm số
, số nghiệm thuộc
của phương trình
là?
Ta có:
Do đó
+) Trường hợp 1. Với
Do nên
Suy ra k = 0 ta được .
+) Trường hợp 2. Với
Do nên
Suy ra k = 0 ta được ta được
.
Vậy có 3 nghiệm thuộc của phương trình
là
;
;
.
Phương trình lượng giác
có nghiệm là
với
;
. Giá trị của biểu thức
là bao nhiêu?
Đáp án: 25
Phương trình lượng giác có nghiệm là
với
;
. Giá trị của biểu thức
là bao nhiêu?
Đáp án: 25
Ta có:
Vậy phương trình có họ nghiệm là:.
Do đó
.
Một bánh xe của người đi xe ô tô quay được
vòng trong
giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).
Đáp án: 6,28
Một bánh xe của người đi xe ô tô quay được vòng trong
giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).
Đáp án: 6,28
Số đo góc quay của vòng là
.
Cho hàm số
có giá trị nhỏ nhất và giá trị lớn nhất lần lượt là
,
. Tính giá trị của biểu thức
.
Ta có:
Nên .
Suy ra .
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu
(m) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày
cho bởi công thức
. Có bao nhiêu giá trị của t thỏa mãn để độ sâu của mực nước là
?
Độ sâu của mực nước là thì h = 15.
Khi đó
Vì nên
Lại do
Cho hàm số
. Mệnh đề nào sau đây đúng?
Ta có:
Vậy là mệnh đề đúng.
Phương trình
có nghiệm là:
Ta có:
Hàm số
nghịch biến trên khoảng nào sau đây?
Hàm số tuần hoàn với chu kì
Do hàm số nghịch biến trên
=> Hàm số nghịch biến khi
Vậy đáp án đúng là
Hàm số nào sau đây là hàm số chẵn:
Hàm số sinx là hàm số lẻ
=> Hàm số y = sin5x, y = 3sin2x, y = 4sinx là hàm số lẻ
Xét hàm số y = |sinx| ta có:
Hàm số có tập xác định D = R; ∀x ∈ D thì -x ∈ D
Ta có: f(-x) = |sin( -x)| = |- sinx| = |sinx|
=> f(x)= f(-x) nên hàm số y= |sinx| là hàm số chẵn
Vậy hàm số y = |sinx| là hàm số chẵn
Gọi
là nghiệm dương nhỏ nhất của phương trình
. Mệnh đề nào sau đây là đúng?
Điều kiện:
Phương trình
Cho .
Do đó nghiệm dương nhỏ nhất ứng với .
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Áp dụng: Hàm số tuần hoàn với chu kì
Mệnh đề nào sau đây sai?
Mệnh đề sai:
Sửa lại:
Điều kiện xác định của hàm số
là:
Ta có:
Điều kiện xác định của hàm số
Cho
. Xác định dấu của biểu thức ![]()
Ta có:
=>
Trong các hàm số sau, hàm số nào là hàm số chẵn?
Xét hàm số có:
Tập xác định
Khi đó với ta có:
Vậy hàm số y = sinx là hàm số lẻ
Xét hàm số có:
Tập xác định
Khi đó với ta có:
Vậy hàm số y = x.cosx là hàm số lẻ
Xét hàm số có:
Tập xác định
Khi đó với ta có:
Vậy hàm số là hàm số lẻ
Xét hàm số có:
Tập xác định
Khi đó với ta có:
Vậy hàm số là hàm số chẵn
Phương trình lượng giác
có nghiệm là ?
Ta có:
Phương trình lượng giác
có nghiệm là:
Vậy nghiệm phương trình là:
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức
với
tính bằng
và
là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ thấp nhất trong ngày là:
Do nên
Do đó nhiệt độ thấp nhất trong ngày là .
Dấu bằng xảy ra
Do .
Mà nên
.
Khi đó .
Vậy lúc 3h là thời gian nhiệt độ thấp nhất trong ngày.
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm?
Ta có .
Phương trình có nghiệm
Vậy có tất cả 3 giá trị nguyên của tham số m.
Tập giá trị của hàm số
trên ![]()
Ta có:
Nên
Cho A, B, C là các góc của tam giác ABC. Khi đó
tương đương với:
Ta có:
Khi đó:
Biết số đo một góc
. Giá trị tổng quát của góc
là
Ta có:
Tập các giá trị của tham số m để phương trình
có nghiệm là?
(*)
Giải phương trình
?
Phương trình
.
Góc
đổi sang độ bằng bao nhiêu?
Ta có: .
Chu kì của hàm số
là số nào sau đây?
Chu kì của hàm số là
Tính ![]()
Ta có:
Góc có số đo
đổi sang độ là:
Cách 1:
Cách 2: Bấm máy tính:
Bước 1: Bấm tổ hợp phím SHIFT MODE 3 chuyển về chế độ "độ".
Bước 2: Bấm SHIFT Ans 2 =
Khẳng định nào sau đây là đúng khi nói về ?
Mỗi đường tròn trên đó ta đã chọn một chiều chuyển động gọi là chiều dương và chiều ngược lại được gọi là chiều âm là một đường tròn định hướng.
Tính giá trị ![]()
Ta có:
Tìm nghiệm dương nhỏ nhất
của
?
Phương trình
So sánh hai nghiệm ta được nghiệm dương nhỏ nhất là .