Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho tam giác ABC có các góc \widehat{A};\widehat{B};\widehat{C} bất kì. Biểu thức T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A} không thể nhận giá trị nào sau đây?

    Ta có:

    T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A}

    = 2\left( \sin\widehat{A}.\frac{1}{2} +
\cos\widehat{A}.\frac{\sqrt{3}}{2} ight)

    = 2\left(
\sin\widehat{A}\cos\frac{\pi}{3} + \cos\widehat{A}.sin\frac{\pi}{3}
ight)

    = 2sin\left( \widehat{A} + \frac{\pi}{3}
ight)

    Với tam giác ABC bất kì ta luôn có:

    0 < \widehat{A} < \pi \Rightarrow
\frac{\pi}{3} < \widehat{A} + \frac{\pi}{3} <
\frac{4\pi}{3}

    \Rightarrow - \sqrt{3} < T \leq
2

    Vậy biểu thức T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A} không thể nhận giá trị 2\sqrt{3}.

  • Câu 2: Vận dụng cao

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y = \sqrt{5 - m\sin x - (m + 1)\cos x} xác định trên tập số thực?

    Hàm số đã cho xác định khi

    5 - m\sin x - (m + 1)\cos x \geq0;\forall x\mathbb{\in R}

    \begin{matrix}   \Rightarrow 5 \geqslant \max \left\{ {m\sin x - \left( {m + 1} ight)\cos x} ight\} \hfill \\   \Leftrightarrow 5 \geqslant \sqrt {{m^2} + {{\left( {m + 1} ight)}^2}}  \hfill \\   \Leftrightarrow {m^2} + m - 12 \leqslant 0 \Rightarrow m \in \left[ { - 4;3} ight] \hfill \\ \end{matrix}

    Kết hợp với điều kiện m là số nguyên

    => m = {-4; -3; ... ; 2; 3}

    Vậy có 8 giá trị của tham số m thỏa mãn điều kiện.

  • Câu 3: Vận dụng

    Tìm giá trị lớn nhất M của biểu thức P = 4\sin^{2}x + \sqrt{2}\sin\left( 2x +\frac{\pi}{4} ight) xác định

    Ta có:

    P = 4\sin^{2}x + \sqrt{2}\sin\left( 2x +\frac{\pi}{4} ight)

    \Rightarrow P = 4\left( \frac{1 -\cos2x}{2} ight) + \sin2x + \cos2x

    \Rightarrow P = \sin2x - \cos2x +2

    \Rightarrow P = \sqrt{2}\sin\left( 2x -\frac{\pi}{4} ight) + 2

    Mặt khác - 1 \leq \sin\left( 2x +\frac{\pi}{4} ight) \leq 1

    \Rightarrow - \sqrt{2} + 2 \leq\sqrt{2}\sin\left( 2x + \frac{\pi}{4} ight) + 2 \leq \sqrt{2} +2

    Vậy giá trị lớn nhất của biểu thức là P =\sqrt{2} + 2.

  • Câu 4: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    a) Điều kiện xác định của hàm số y =
cot2xlà:

    2x eq k\pi \Rightarrow x eq
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    b) Ta có:

    \sin x + \cos x = 0 \Leftrightarrow
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) = 0

    \Leftrightarrow \sin\left( x +
\frac{\pi}{4} ight) = 0 \Leftrightarrow x = - \frac{\pi}{4} +
k\pi;\left( k\mathbb{\in Z} ight)

    x \in (0;\pi) \Rightarrow 0 < -
\frac{\pi}{4} + k\pi < \pi

    \Rightarrow \frac{1}{4} < k <
\frac{5}{4}k\mathbb{\in
Z} suy ra k = 1

    Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng (0;\pi).

    c) Ta có: \sqrt{3}\cos x + m = 1 \Leftrightarrow
\cos x = \frac{1 - m}{\sqrt{3}}

    Phương trình đã cho có nghiệm khi và chỉ khi

    - 1 \leq \frac{1 - m}{\sqrt{3}} \leq 1
\Leftrightarrow - \sqrt{3} \leq 1 - m \leq \sqrt{3}

    \Leftrightarrow 1 - \sqrt{3} \leq m \leq
1 + \sqrt{3}

    m\mathbb{\in Z \Rightarrow}m = \left\{
- 2; - 1;0;1;2 ight\}

    Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.

    d) Ta có:

    \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} \Leftrightarrow \sin\left( x - \frac{2\pi}{3} ight) =
\sin\left( \frac{\pi}{6} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x - \dfrac{2\pi}{3} = \dfrac{\pi}{6} + k2\pi \\x - \dfrac{2\pi}{3} = \pi - \dfrac{\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{5\pi}{6} + k2\pi \\x = \dfrac{3\pi}{2} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình \sin\left( x - \frac{2\pi}{3}
ight) = \frac{1}{2} trên đường tròn lượng giác là 2.

  • Câu 5: Thông hiểu

    Tìm tập nghiệm của phương trình \left( \sin x + 1 ight).\left( \sin x - \sqrt{2}
ight) = 0?

    Ta có:

    \left( \sin x + 1 ight).\left( \sin x
- \sqrt{2} ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\sin x + 1 = 0 \\
\sin x - \sqrt{2} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\sin x = - 1 \\
\sin x = \sqrt{2}(L) \\
\end{matrix} ight.

    \Leftrightarrow \sin x = - 1
\Leftrightarrow x = - \frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z}
ight)

    Vậy phương trình có tập nghiệm là: S =
\left\{ - \frac{\pi}{2} + k2\pi|k\mathbb{\in Z} ight\}

  • Câu 6: Nhận biết

    Nghiệm của phương trình \sin x. \cos x = \frac{1}{2} là?

     Ta có: \sin x.cosx = \frac{1}{2} \Leftrightarrow \sin 2x = 1

    \Leftrightarrow 2x = \frac{\pi }{2} + k2\pi  \Leftrightarrow x = \frac{\pi }{4} + k\pi.

  • Câu 7: Thông hiểu

    Giải phương trình \sin\left( \frac{2x}{3}
- \frac{\pi}{3} ight) = 0.

    Phương trình

    \sin\left( \frac{2x}{3} - \frac{\pi}{3}
ight) = 0 \Leftrightarrow \frac{2x}{3} - \frac{\pi}{3} =
k\pi

    \Leftrightarrow \frac{2x}{3} =
\frac{\pi}{3} + k\pi \Leftrightarrow x = \frac{\pi}{2} +
\frac{k3\pi}{2}\ \left( k\mathbb{\in Z} ight).

    Vậy đáp án cần tìm là: x = \frac{\pi}{2}
+ \frac{k3\pi}{2}\ \left( k\mathbb{\in Z} ight).

  • Câu 8: Thông hiểu

    Cho phương trình {\cot ^2}3x - 3\cot 3x + 2 = 0. Đặt t = \cot 3x, ta được phương trình nào sau đây? 

     Ta có: {\cot ^2}3x - 3\cot 3x + 2 = 0  trở thành {t^2} - 3t + 2 = 0.

  • Câu 9: Thông hiểu

    Cho hàm số f(x) = \cos xg(x) = \sin x. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Hàm số g(x) là hàm số chẵn. Sai||Đúng

    b) Trong khoảng (0 ; 2\pi) đồ thị hai hàm số y = f(x)y = g(x) cắt nhau tại hai điểm. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x) +
g(x) bằng 2. Sai||Đúng

    d) Hàm số y = f(x) + g(x) đạt giá trị nhỏ nhất khi x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight). Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) = \cos xg(x) = \sin x. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Hàm số g(x) là hàm số chẵn. Sai||Đúng

    b) Trong khoảng (0 ; 2\pi) đồ thị hai hàm số y = f(x)y = g(x) cắt nhau tại hai điểm. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x) +
g(x) bằng 2. Sai||Đúng

    d) Hàm số y = f(x) + g(x) đạt giá trị nhỏ nhất khi x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight). Đúng||Sai

    a) Sai

    TXĐ: D\mathbb{= R}. Do đó \forall x \in D \Rightarrow - x \in
D.

    Ta có \forall x \in D:g( - x) = \sin( -
x) = - \sin(x) = - g(x) \Rightarrow g(x) là hàm số lẻ.

    b) Đúng

    Phương trình \sin x = \cos x trong khoảng (0 ; 2\pi) có hai nghiệm x = \frac{\pi}{4}x = \frac{5\pi}{4}

    c) Sai

    Ta có: y = \sin x + \cos x =
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) , mà \forall x: - 1 \leq \sin\left( x + \frac{\pi}{4}
ight) \leq 1

    \Leftrightarrow - \sqrt{2} \leq
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) \leq \sqrt{2}.

    Vậy giá trị lớn nhất của hàm số y = \sin
x + \cos x bằng \sqrt{2}, khi \sin\left( x + \frac{\pi}{4} ight) =
1.

    d) Đúng

    Giá trị nhỏ nhất của hàm số y = \sin x +
\cos x bằng - \sqrt{2}, khi \sin\left( x + \frac{\pi}{4} ight) = -
1

    \Leftrightarrow x + \frac{\pi}{4} = -\frac{\pi}{2} + k2\pi\left( k\mathbb{\in Z} ight)

    \Leftrightarrow x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight).

  • Câu 10: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Vì hàm số y = tan x tuần hoàn với chu kì π

    Nên đáp án: “Hàm số y = tanx tuần hoàn với chu kì 2π” là đáp án sai.

  • Câu 11: Thông hiểu

    Rút gọn biểu thức: B = \cos(a + b)\cos(a - b) + \sin(a + b)\sin(a -b)

    Ta có:

    B = \cos(a + b)\cos(a - b) + \sin(a +
b)\sin(a - b)

    B = \cos\left\lbrack a + b - (a - b)
ightbrack

    B = \cos2b = 1 - 2\sin^{2}b

  • Câu 12: Thông hiểu

    Hàm số đồng biến trên khoảng \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)là:

    Với x \in \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)  \to 2x \in \left( { - \frac{{2\pi }}{3};\frac{\pi }{3}} ight) \to 2x + \frac{\pi }{6} \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) thuộc góc phần tư thứ IV và thứ nhất nên hàm số y = \sin \left( {2x + \frac{\pi }{6}} ight) đồng biến trên khoảng \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)

  • Câu 13: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau:

    Theo công thức cộng

    \cos(a + b) = \cos a.cosb - \sin
a.sinb.

  • Câu 14: Nhận biết

    Phương trình lượng giác \cos 3x = \cos \frac{\pi }{{15}} có nghiệm là ?

     Ta có: \cos 3x = \cos \frac{\pi }{{15}} \Leftrightarrow 3x =  \pm \frac{\pi }{{15}} + k2\pi

    \Leftrightarrow x =  \pm \frac{\pi }{{45}} + \frac{{k2\pi }}{3}

  • Câu 15: Thông hiểu

    Biết rằng \frac{\pi}{2} < \alpha <
\frac{3\pi}{4}. Mệnh đề nào sau đây đúng?

    Ta có:

    \frac{\pi}{2} < \alpha <
\frac{3\pi}{4} \Rightarrow \pi < 2\alpha <
\frac{3\pi}{2}

    \Rightarrow \frac{9\pi}{2} < 2\alpha
+ \frac{7\pi}{2} < 5\pi

    Xét trên đường tròn lượng giác ta thấy 2\alpha + \frac{7\pi}{2} thuộc góc phần tư thứ II nên ta có:

    \sin\left( 2\alpha + \frac{7\pi}{2}
ight) > 0

    \cos\left( 2\alpha + \frac{7\pi}{2}
ight) < 0

    \tan\left( 2\alpha + \frac{7\pi}{2}
ight) < 0

    \cot\left( 2\alpha + \frac{7\pi}{2}
ight) < 0

  • Câu 16: Vận dụng

    Đồ thị hàm số y = \sin x được suy ra từ đồ thị C của hàm số y = cosx + 1 bằng cách:

    Ta có: y = \sin x = \cos\left(
\frac{\pi}{2} - x ight) = \cos\left( x - \frac{\pi}{2}
ight)

    Tịnh tiến đồ thị y = cosx + 1 sang phải \frac{\pi}{2} ta được đồ thị hàm số y = \cos\left( x - \frac{\pi}{2} ight) +
1

    Tiếp theo tịnh tiến đồ thị y = \cos\left(
x - \frac{\pi}{2} ight) + 1 xuống dưới một đơn vị ta được đồ thị hàm số y = \cos\left( x - \frac{\pi}{2}
ight)

    VD

     

    0

  • Câu 17: Thông hiểu

    Nếu \cos(a + b) =
0 thì khẳng định nào sau đây đúng?

    Ta có:

    \cos(a + b) = 0

    \Leftrightarrow a + b = \frac{\pi}{2} +
k\pi

    \Leftrightarrow a = - b + \frac{\pi}{2}
+ k\pi

    \Rightarrow \left| \sin(a + 2b) ight|
= \left| \sin\left( - b + 2b + \frac{\pi}{2} + k\pi ight) ight| =
\left| \cos(b + k\pi) ight| = \left| \cos b ight|

  • Câu 18: Thông hiểu

    Cho hàm số y =\tan2x. Chọn kết luận đúng trong các kết luận sau khi xét sự biến thiên của hàm số đã cho trên một chu kì tuần hoàn?

    Tập xác định: D\mathbb{=
R}\backslash\left\{ \frac{\pi}{4} + \frac{k\pi}{2}|k\mathbb{\in Z}
ight\}

    Hàm số y = \tan2x tuần hoàn với chu kì \frac{\pi}{2}, dựa vào các đáp án đã cho ta xét tính đơn điệu của hàm số trên \left( 0;\frac{\pi}{2} ight)\backslash\left\{
\frac{\pi}{4} ight\}

    Dựa vào kết quả khảo sát sự biến thiên của hàm số y = \tan x phần lí thuyết ta có thể suy ra với hàm số y = tan2x đồng biến trên khoảng \left( 0;\frac{\pi}{4}
ight)\left(
\frac{\pi}{4};\frac{\pi}{2} ight).

  • Câu 19: Vận dụng

    Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu h (m) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày (0 \leq t < 24) cho bởi công thức h = 3cos\left( \frac{\pi t}{6} + 1 ight) +
12. Có bao nhiêu giá trị của t thỏa mãn để độ sâu của mực nước là 15\ m?

    Độ sâu của mực nước là 15\ m thì h = 15.

    Khi đó

    15 = 3cos\left( \frac{\pi t}{6} + 1
ight) + 12n \Leftrightarrow \cos\left( \frac{\pi t}{6} + 1 ight) =
1

    \Leftrightarrow \cos\left( \frac{\pi
t}{6} + 1 ight) = cos0 \Leftrightarrow \frac{\pi t}{6} + 1 =
k2\pi

    \Leftrightarrow t = \frac{6(k2\pi -
1)}{\pi};k \in Z

    0 \leq t < 24 nên

    0 \leq \frac{6(k2\pi - 1)}{\pi} \leq 24
\Leftrightarrow 0 < k \leq 2

    Lại do k \in Z \Rightarrow k \in \{ 1;2\}
\Rightarrow t \in \left\{ \frac{6(2\pi - 1)}{\pi};\frac{6(4\pi -
1)}{\pi} ight\}

  • Câu 20: Vận dụng cao

    Nếu \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(p.q eq 0)\cot\alpha\cot\beta là hai nghiệm của phương trình x^{2} - rx + s = 0 thì tích P = r.s bằng:

    Ta có: \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(p.q eq 0)nên theo định lí Vi – ét ta có:\left\{\begin{matrix}\tan\alpha + \tan\beta = p \\\tan\alpha.\tan\beta = q \\\end{matrix} ight.

    \cot\alpha\cot\beta là hai nghiệm của phương trình x^{2} - rx + s = 0 nên theo định lí Vi – ét ta có: \left\{ \begin{matrix}\cot\alpha + \cot\beta = r \\\cot\alpha\cot\beta = s \\\end{matrix} ight.

    Khi đó:

    P = r.s

    P = \left( \cot\alpha + \cot\betaight).\cot\alpha.\cot\beta

    P = \left( \frac{1}{\tan\alpha} +
\frac{1}{\tan\beta}
ight).\frac{1}{\tan\alpha}.\frac{1}{\tan\beta}

    P = \frac{\tan\alpha +\tan\beta}{\tan\alpha.\tan\beta} = \frac{p}{q^{2}}

  • Câu 21: Thông hiểu

    Cho \alpha =
\frac{\pi}{2} + k2\pi. Xác định k để 10\pi < \alpha < 11\pi.

    Ta có:

    10\pi < \alpha < 11\pi

    \Rightarrow 10\pi < \frac{\pi}{2} +
k2\pi < 11\pi

    \Rightarrow \frac{19\pi}{2} < k2\pi
< \frac{21\pi}{2}

    \Rightarrow k = 5

  • Câu 22: Nhận biết

    Hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) có tập xác định là gì?

    Hàm số y = \tan\left( 2x - \frac{\pi}{4}
ight) xác định khi

    2x - \frac{\pi}{4} eq \frac{\pi}{2} +
k\pi

    \Rightarrow x eq \frac{3\pi}{8} +
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    Vậy tập xác định của hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) là: D\mathbb{= R}\backslash\left\{ \frac{3\pi}{8} +
\frac{k\pi}{2},k\mathbb{\in Z} ight\}.

  • Câu 23: Thông hiểu

    Giải phương trình \cot(3x - 1) = - \sqrt{3}

    Ta có:

    \cot(3x - 1) = - \sqrt{3}

    \Leftrightarrow \cot(3x - 1) =
\cot\left( - \frac{\pi}{6} ight)

    \Leftrightarrow 3x - 1 = - \frac{\pi}{6}
+ k\pi

    \Rightarrow x = \frac{1}{3} -
\frac{\pi}{18} + k\frac{\pi}{3}

    \underset{k = 1}{ightarrow}x =
\frac{1}{3} + \frac{5\pi}{18} + k\frac{\pi}{3}

  • Câu 24: Thông hiểu

    Rút gọn biểu thức S = \cos^{2}\left( \frac{\pi}{4} + \alpha ight) -\cos^{2}\left( \frac{\pi}{4} - \alpha ight)

    Vì hai góc \left( \frac{\pi}{4} + \alpha
ight)\left( \frac{\pi}{4} -
\alpha ight) phụ nhau nên

    \cos\left( \dfrac{\pi}{4} - \alphaight) = \sin\left( \dfrac{\pi}{4} + \alpha ight)

    S = \cos^{2}\left( \frac{\pi}{4} + \alphaight) - \cos^{2}\left( \frac{\pi}{4} - \alpha ight)

    \Rightarrow S = \cos^{2}\left(\frac{\pi}{4} + \alpha ight) - \sin^{2}\left( \frac{\pi}{4} + \alphaight)

    \Rightarrow S = \cos\left( \frac{\pi}{4}+ 2\alpha ight) = - \sin2\alpha

  • Câu 25: Vận dụng

    Trên đường tròn với điểm gốc là A. Điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo 60^{0}. Gọi N là điểm đối xứng với điểm M qua trục Oy, số đo cung AN là:

    Hình vẽ minh họa

    Ta có: \widehat{AOM} =
60^{0};\widehat{MON} = 60^{0}

    => \widehat{AON} =
120^{0}

    Khi đó số đo cung AN bằng 120^{0}.

  • Câu 26: Vận dụng cao

    Biết rằng phương trình \dfrac{1}{\sin x} + \dfrac{1}{\sin2x} + \dfrac{1}{\sin4x}+ \cdots + \dfrac{1}{\sin\left( 2^{2018}x ight)} = 0 có nghiệm dạng x = \frac{2k\pi}{2^{a} - b} với k \in \mathbb{Z}a,b \in \mathbb{N}^{*}. Tính S = a + b

    Điều kiện \left\{ \begin{matrix}\sin x eq 0 \\\sin2x eq 0 \\\sin4x eq 0 \\\cdots \\\sin\left( 2^{2018}x ight) eq 0 \\\end{matrix} ight.

    \Leftrightarrow sin\left( 2^{2018}x
ight) eq 0

    \Leftrightarrow 2^{2018}x eq k\pi
\Leftrightarrow x eq \frac{k\pi}{2^{2018}},k \in
\mathbb{Z}

    Ta có:

    \frac{1}{\sin x} = \frac{1 + \cos x -\cos x}{\sin x}

    =\dfrac{2\cos^{2}\dfrac{x}{2}}{2\sin\dfrac{x}{2}cos\dfrac{x}{2}} -cotx

    = cot\frac{x}{2} - cotx

    Thiết lập các đẳng thức tương tự như trên thì phương trình đã cho trở thành

    \cot\frac{x}{2} - \cot x + \cot x -\cot2x

    {+ \cdots \cot\left( 2^{2017}x ight) -\cot\left( 2^{2018}x ight) = 0}{\Leftrightarrow \cot\frac{x}{2} - \cot\left( 2^{2018}x ight) =0}

    {\Leftrightarrow \cot\frac{x}{2} =\cot\left( 2^{2018}x ight)}{\Leftrightarrow \frac{x}{2} = 2^{2018}x + k\pi,k \in\mathbb{Z}}

    {\Leftrightarrow x = \frac{2k\pi}{1 -
2^{2019}},k \in \mathbb{Z}
}{\Leftrightarrow x = \frac{2k\pi}{2^{2019} - 1},k \in
\mathbb{Z}}

    Vậy a = 2019,b = 1 nên a + b = 2020.

  • Câu 27: Nhận biết

    Chu kì của hàm số y = \tan x

    Hàm số y = \tan x tuần hoàn với chu kỳ T = \pi.

  • Câu 28: Nhận biết

    Trong các hàm số sau hàm số nào là hàm số lẻ?

    Xét hàm số y = sinx:

    Lấy x \in D \Rightarrow  - x \in D ta có:

    \sin \left( { - x} ight) =  - \sin x \Rightarrow f\left( { - x} ight) =  - x

    Vậy hàm số y = sinx là hàm số lẻ.

  • Câu 29: Nhận biết

    Gọi S là tập nghiệm của phương trình 2\cos x - \sqrt 3  = 0. Khẳng định nào sau đây là đúng?

    Ta có 2\cos x - \sqrt 3  = 0 \Leftrightarrow \cos x = \cos \frac{\pi }{6}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x =  - \,\frac{\pi }{6} + k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Nhận thấy với nghiệm x =  - \,\frac{\pi }{6} + k2\pi \xrightarrow{{k = 1}}x = \frac{{11\pi }}{6} \in S.

  • Câu 30: Nhận biết

    Nghiệm của phương trình \cos x = -
\frac{1}{2}

    Ta có:

    \cos x = - \frac{1}{2} \Leftrightarrow
\cos x = \cos\left( \frac{2\pi}{3} ight)

    \Leftrightarrow x = \pm \frac{2\pi}{3} +
k2\pi\ \ \ \ (k \in Ζ)

  • Câu 31: Nhận biết

    Tìm tất cả các nghiệm của phương trình \sin\left( x + \frac{\pi}{6} ight) =
1.

    Ta có \sin\left( x + \frac{\pi}{6}
ight) = 1

    \Leftrightarrow x + \frac{\pi}{6} =
\frac{\pi}{2} + k2\pi

    \Leftrightarrow x = \frac{\pi}{3} +
k2\pi\left( k\mathbb{\in Z} ight).

  • Câu 32: Vận dụng

    Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của phương trình \sin \left( {3x - \frac{\pi }{4}} ight) = \frac{{\sqrt 3 }}{2} bằng?

    Ta có \sin \left( {3x - \frac{\pi }{4}} ight) = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {3x - \frac{\pi }{4}} ight) = \sin \frac{\pi }{3}

    \Leftrightarrow \left[ \begin{gathered}  3x - \frac{\pi }{4} = \frac{\pi }{3} + k2\pi  \hfill \\  3x - \frac{\pi }{4} = \pi  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight. 

    \Leftrightarrow \left[ \begin{gathered}  3x = \frac{{7\pi }}{{12}} + k2\pi  \hfill \\  3x = \frac{{11\pi }}{{12}} + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{{7\pi }}{{36}} + \frac{{k2\pi }}{3} \hfill \\  x = \frac{{11\pi }}{{36}} + \frac{{k2\pi }}{3} \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight).

    TH1. Với

    x = \frac{{7\pi }}{{36}} + \frac{{k2\pi }}{3}\xrightarrow{{{\text{Cho}}}}\left[ \begin{gathered}  x > 0 \Leftrightarrow k >  - \frac{7}{{24}} \Rightarrow {k_{\min }} = 0 \to x = \frac{{7\pi }}{{36}} \hfill \\  x < 0 \Leftrightarrow k <  - \frac{7}{{24}} \Rightarrow {k_{\max }} =  - \,1 \to x =  - \frac{{17\pi }}{{36}} \hfill \\ \end{gathered}  ight.

    TH2. Với

    x = \frac{{11\pi }}{{36}} + \frac{{k2\pi }}{3}\xrightarrow{{{\text{Cho}}}}\left[ \begin{gathered}  x > 0 \Leftrightarrow k >  - \frac{{11}}{{24}} \Rightarrow {k_{\min }} = 0 \to x = \frac{{11\pi }}{{36}} \hfill \\  x < 0 \Leftrightarrow k <  - \frac{{11}}{{24}} \Rightarrow {k_{\max }} =  - \,1 \to x =  - \frac{{13\pi }}{{36}} \hfill \\ \end{gathered}  ight.

    So sánh bốn nghiệm ta được nghiệm âm lớn nhất là x =  - \frac{{13\pi }}{{36}} và nghiệm dương nhỏ nhất là x = \frac{{7\pi }}{{36}}.

    Khi đó tổng hai nghiệm này bằng - \frac{{13\pi }}{{36}} + \frac{{7\pi }}{{36}} =  - \frac{\pi }{6}.

     

  • Câu 33: Nhận biết

    Đồ thị hàm số y=\cos x+1 đi qua điểm nào sau đây?

     Xét điểm (0; 2) => x = 0; y = 2

    Thay vào hàm số ta có:

    cos0 + 1 = 1 + 1 = 2 (thỏa mãn)

    Vậy đồ thị hàm số y = cosx + 1 đi qua điểm (0; 2)

  • Câu 34: Thông hiểu

    Cho phương trình lượng giác 2cos(x -
\frac{\pi}{3}) = 1, vậy:

    a) Phương trình đã cho tương đương với phương trình \cos\left( x - \frac{\pi}{3} ight) = \cos\left(
- \frac{\pi}{3} ight). Sai||Đúng

    b) Trong khoảng ( - \pi;\pi) phương trình có 3 nghiệm. Sai||Đúng

    c) Trong khoảng ( - \pi;\pi) phương trình có 1 nghiệm nguyên. Đúng||Sai

    d) Tổng các nghiệm của phương trình trên ( - \pi;\pi) bằng \frac{2\pi}{3}. Đúng||Sai

    Đáp án là:

    Cho phương trình lượng giác 2cos(x -
\frac{\pi}{3}) = 1, vậy:

    a) Phương trình đã cho tương đương với phương trình \cos\left( x - \frac{\pi}{3} ight) = \cos\left(
- \frac{\pi}{3} ight). Sai||Đúng

    b) Trong khoảng ( - \pi;\pi) phương trình có 3 nghiệm. Sai||Đúng

    c) Trong khoảng ( - \pi;\pi) phương trình có 1 nghiệm nguyên. Đúng||Sai

    d) Tổng các nghiệm của phương trình trên ( - \pi;\pi) bằng \frac{2\pi}{3}. Đúng||Sai

    Phương trình  \Leftrightarrow cos(x -\dfrac{\pi}{3}) = \dfrac{1}{2} = \cos\dfrac{\pi}{3}

    \Leftrightarrow\left\lbrack \begin{matrix}x = k2\pi \\x = \dfrac{2\pi}{3} + k2\pi \\\end{matrix} ight.

    x \in ( - \pi;\pi) nên:

    Với x = k2\pi ta chỉ chọn được k = 0 \Rightarrow x = 0.

    Với x = \frac{2\pi}{3} + k2\pi ta chỉ chọn được k = 0 \Rightarrow x =
\frac{2\pi}{3}.

    Vậy tổng các nghiệm bằng \frac{2\pi}{3}.

    Kết luận:

    a) Sai

    b) Sai

    c) Đúng

    d) Đúng

  • Câu 35: Nhận biết

    Cho góc lượng giác \alpha. Trong các khẳng định sau, khẳng định nào sai?

    Ta có:

    \cos2\alpha = 2\cos^{2}\alpha - 1 = 1 -2\sin^{2}\alpha = \cos^{2}\alpha - \sin^{2}\alpha

  • Câu 36: Thông hiểu

    Tìm tập xác định D của hàm số y = \sqrt{\frac{1 - \sin x}{1 + \sin
x}}?

    Ta có: - 1 \leq \sin x \leq 1
\Leftrightarrow \left\{ \begin{matrix}
1 - \sin x \geq 0 \\
1 + \sin x \geq 0 \\
\end{matrix} ight.

    Hàm số được xác định khi 1 + \sin x eq
0 \Leftrightarrow x eq - \frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z}
ight)

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ - \frac{\pi}{2} + k2\pi|k\mathbb{\in Z}
ight\}

  • Câu 37: Nhận biết

    Tính giá trị biểu thức A =\cos10^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}

    \sin10^{0} eq 0 nên ta có:

    A =\frac{16\sin10^{0}.\cos10^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{8\sin20^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{4\sin40^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{2\sin80^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{\sin160^{0}}{16\sin10^{0}}

    A = \frac{\sin20^{0}}{16\sin10^{0}} =\frac{2.\sin10^{0}.\cos10^{0}}{16\sin10^{0}} =\frac{1}{8}.\cos10^{0}

  • Câu 38: Vận dụng

    Cho hình vẽ:

    Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?

    Ta thấy hàm số có giá trị lớn nhất là \sqrt{2} và giá trị nhỏ nhất là - \sqrt{2} => loại hàm số y = \sin\left( x - \frac{\pi}{4} ight)y = \cos\left( x - \frac{\pi}{4}
ight)

    Tại x = \frac{3\pi}{4} \Rightarrow y = -
\sqrt{2} ta thấy chỉ có y =
\sqrt{2}\cos\left( x + \frac{\pi}{4} ight) thỏa mãn

  • Câu 39: Thông hiểu

    Cho góc lượng giác \alpha thỏa mãn \frac{\pi}{2} < \alpha < \pi\sin\alpha = \frac{4}{5}. Tính F = \sin2(\alpha + \pi)

    Ta có:

    F = \sin2(\alpha + \pi)

    = \sin(2\alpha + 2\pi)

    = \sin2\alpha =2\sin\alpha\cos\alpha

    Từ hệ thức \sin^{2}\alpha + \cos^{2}\alpha= 1

    \Rightarrow \cos\alpha = \pm \sqrt{1 -\sin^{2}\alpha} = \pm \frac{3}{5}

    Do \frac{\pi}{2} < \alpha <
\pi nên \cos\alpha = -
\frac{3}{5}

    Thay \sin\alpha = \frac{4}{5};\cos\alpha =- \frac{3}{5} vào biểu thức ta được:

    F = 2.\frac{4}{5}.\left( - \frac{3}{5}
ight) = - \frac{24}{25}

  • Câu 40: Vận dụng

    Gọi x_0 là nghiệm âm lớn nhất của phương trình \cos \left( {5x - {{45}^0}} ight) = \frac{{\sqrt 3 }}{2}. Mệnh đề nào sau đây là đúng?

     Ta có:

    \Leftrightarrow \left[ \begin{gathered}  5x = {75^0} + k{360^0} \hfill \\  5x = {15^0} + k{360^0} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = {15^0} + k{72^0} \hfill \\  x = {3^0} + k{72^0} \hfill \\ \end{gathered}  ight.{\text{ }}\,\left( {k \in \mathbb{Z}} ight)

    TH1. Với x = {15^0} + k{72^0} < 0 \Leftrightarrow k <  - \frac{5}{{24}}

    \Rightarrow {k_{\max }} =  - \,1 \to x =  - \,{57^0}

    TH2. Với x = {3^0} + k{72^0} < 0 \Leftrightarrow k <  - \,\frac{1}{{24}}

    \Rightarrow {k_{\max }} =  - \,1 \Rightarrow x =  - \,{69^0}

    So sánh hai nghiệm ta được nghiệm âm lớn nhất của phương trình là x=-57^0

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo