Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn
để phương trình
có nghiệm?
Ta có
Phương trình có nghiệm
.
Vậy có tất cả 2023 giá trị nguyên của tham số m.
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn
để phương trình
có nghiệm?
Ta có
Phương trình có nghiệm
.
Vậy có tất cả 2023 giá trị nguyên của tham số m.
Cho bất đẳng thức
, với
là ba góc của tam giác ABC. Khẳng định đúng là
Ta có:
Áp dụng bất đẳng thức Cauchy ta có:
Mà
Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:
Vậy
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm?
Ta có .
Phương trình có nghiệm
Vậy có tất cả 3 giá trị nguyên của tham số m.
Số nghiệm trong khoảng
của phương trình
là
Ta có:
.
Với thì
.
Suy ra .
Vậy có 1 nghiệm trong khoảng .
Trong các hàm số sau, hàm số nào có đồ thị tương ứng với hình vẽ?

Ta có:
=> Loại đáp án và
Tại x = 0 => y = 1 ta thấy thỏa mãn
Chọn đẳng thức đúng.
Ta có:
Ta lại có:
Tìm chu kì T của hàm số lượng giác ![]()
Hàm số y = cos3x tuần hoàn với chu kì
Hàm số y = cos5x tuần hoàn với chu kì
=> Hàm số tuần hoàn với chu kì là
Mệnh đề nào sau đây sai?
Mệnh đề sai:
Sửa lại:
Trong các hàm số sau, hàm số nào đồng biến trên khoảng
?
Với
Thuộc góc phần tư thứ IV và thứ nhất nên hàm số đồng biến trên khoảng
Tìm tập các định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Hãy nêu tất cả các hàm số trong các hàm số
thỏa mãn điều kiện đồng biến và nhận giá trị âm trong khoảng
?
Ta có:
Hàm số y = tan x đồng biến và nhận giá trị âm trên khoảng
=> sai
Trên khoảng hàm số y = sin x đồng biến và nhận giá trị âm.
Khẳng định nào sau đây sai?
Trên khoảng thì hàm số
đồng biến.
Cho hàm số y = sinx. Mệnh đề nào sau đây đúng?
Ta có thể hiểu như sau:
“ Hàm số y = sinx đồng biến khi góc x thuộc góc phần tư thứ IV và thứ I; nghịch biến khi góc x thuộc góc phần tư thứ II và III”.
Trên đường tròn lượng giác có điểm gốc là A. Điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo
. Gọi N là điểm đối xứng với M qua trục Ox, số đo cung lượng giác AN bằng:
Vì số đo cung AM bằng
=>
N là điểm đối xứng với M qua trục Ox =>
=> Số đo cung AN bằng
=> Số đo cung lượng giác AN có số đo là:
Cho phương trình lượng giác ![]()
a) Với
, phương trình (*) có nghiệm là
Đúng||Sai
b) Với
, phương trình (*) có một nghiệm là
Đúng||Sai
c) Với
thì số nghiệm của phương trình (*) trên đoạn
là 3. Sai||Đúng
d) Số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 8. Sai||Đúng
Cho phương trình lượng giác
a) Với , phương trình (*) có nghiệm là
Đúng||Sai
b) Với , phương trình (*) có một nghiệm là
Đúng||Sai
c) Với thì số nghiệm của phương trình (*) trên đoạn
là 3. Sai||Đúng
d) Số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 8. Sai||Đúng
Thay vào (*) ta được:
Thay vào (*) ta được:
Với thì phương trình có nghiệm
.
Thay vào (*) ta được:
Vì xét nghiệm trên đoạn nên ta có:
Mà
Vậy với thì số nghiệm của phương trình (*) trên đoạn
là 2.
d) Ta có:
Để phương trình có nghiệm thì
mà
Vậy số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 10.
Giá trị của biểu thức
là:
Ta có:
Khi đó:
Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?
Hàm số không tuần hoàn. Thật vậy:
Tập xác định .
Giả sử
.
Cho x = 0 và x = π, ta được
Điều này trái với định nghĩa là T > 0
Vậy hàm số không phải là hàm số tuần hoàn.
Tương tự chứng minh cho các hàm số và
không tuần hoàn.
Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách.
Ta có:
=> Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách tịnh tiến C qua phải một đoạn có độ dài là
Cho
. Tính giá trị
bằng
Ta có:
Cho góc
thỏa mãn
và
. Tính giá trị của biểu thức
?
Do =>
Ta lại có:
Giải phương trình ![]()
Ta có:
Tìm tất các các giá trị thực của tham số m để phương trình
vô nghiệm?
Áp dụng điều kiện có nghiệm của phương trình cos x = a.
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Phương trình
Do đó, phương trình vô nghiệm
.
Phương trình
có bao nhiêu nghiệm thuộc khoảng
?
Điều kiện xác định:
Do
Vậy có tất cả 38 nghiệm
Tập nghiệm của phương trình
là?
Ta có: .
Tìm tập xác định
của hàm số
?
Ta có:
Hàm số được xác định khi
Vậy tập xác định của hàm số là
Xác định chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Trong các mệnh đề sau, mệnh đề nào sai?
Vì hàm số y = tan x tuần hoàn với chu kì π
Nên đáp án: “Hàm số y = tanx tuần hoàn với chu kì 2π” là đáp án sai.
Cho
và biểu thức
. Mệnh đề nào sau đây đúng?
Ta có: nên
=>
Khẳng định nào sau đây đúng?
Trong khoảng thì hàm số
đồng biến.
Trên đường tròn lượng giác có bao nhiêu vị trí biểu diện nghiệm của phương trình
?
Điều kiện xác định:
Ta có:
Kết hợp với điều kiện xác định suy ra phương trình có nghiệm nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.
Số nghiệm thuộc đoạn
của phương trình: ![]()
Điều kiện xác định
Vậy có tất cả 15 nghiệm.
Mệnh đề nào sau đây đúng?
Ta có:
Vậy đúng.
Nếu
và
là hai nghiệm của phương trình
thì
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Rút gọn biểu thức ![]()
Ta có:
Cho hàm số
. Chọn kết luận đúng trong các kết luận sau khi xét sự biến thiên của hàm số đã cho trên một chu kì tuần hoàn?
Tập xác định:
Hàm số tuần hoàn với chu kì
, dựa vào các đáp án đã cho ta xét tính đơn điệu của hàm số trên
Dựa vào kết quả khảo sát sự biến thiên của hàm số phần lí thuyết ta có thể suy ra với hàm số
đồng biến trên khoảng
và
.
Khẳng định nào sau đây là đúng khi nói về
đường tròn lượng giác
?
Mỗi đường tròn định hướng có bán kính , tâm trùng với gốc tọa độ là một đường tròn lượng giác.
Giải phương trình: ![]()
Giải phương trình:
Với giá trị nào của m thì phương trình
có nghiệm:
Ta có:
Do
Vậy
Gọi
là nghiệm trong khoảng
của phương trình
, nếu biểu diễn
với a, b là hai số nguyên và
là phân số tối giản thì a.b bằng bao nhiêu?
Phương trình .
Với .
Suy ra a =11 và b = 6 .
Vậy a.b=66.
Đổi số đo của góc
sang radian được kết quả là:
Ta có: