Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Hàm số lượng giác và phương trình lượng giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Phương trình \tan x = \tan 3x có nghiệm là:

     Giải phương trình:

    \begin{matrix}  \tan x = \tan 3x \hfill \\   \Leftrightarrow \tan 3x = \tan x \hfill \\   \Leftrightarrow 3x = x + k\pi  \hfill \\   \Leftrightarrow 2x = k\pi  \hfill \\   \Leftrightarrow x = \dfrac{{k\pi }}{2};\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 2: Vận dụng

    Số nghiệm của phương trình \cos 2x +1=0 trên đoạn [0; 1000 \pi] là?

    Ta có: \cos 2x + 1 = 0 \Leftrightarrow \cos 2x =  - 1 \Leftrightarrow 2x = \pi  + k2\pi

    \Leftrightarrow x = \frac{\pi }{2} + k\pi ,\,\,k \in \mathbb{Z}

    Ta có: 0 \leqslant \frac{\pi }{2} + k\pi  \leqslant 1000\pi  \Leftrightarrow  - \frac{1}{2} \leqslant k \leqslant \frac{{1999}}{2}.

    Ta được k \in \left\{ {0;1;2;...999} ight\}.

    Có 1000 giá trị k, ứng với 1000 nghiệm của phương trình trên [0; 1000 \pi].

  • Câu 3: Vận dụng cao

    Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = 1 - 2|cos3x|.

    Ta có

    \begin{matrix}- 1 \leq cos3x \leq 1 \hfill \\ \Rightarrow 0 \leq |cos3x| \leq 1 \hfill \\ \Rightarrow 0 \geq - 2|cos3x| \geq - 2 \hfill\\\end{matrix}

    \begin{matrix}\Rightarrow 1 \geq 1 - 2|cos3x| \geq - 1  \\\Rightarrow 1 \geq y \geq - 1  \hfill\\\Rightarrow \left\{ \begin{matrix}M = 1 \\m = - 1 \\\end{matrix} ight.\ \hfill \\\end{matrix}

  • Câu 4: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Tất các các hàm số đều có TXĐ: {\text{D}} = \mathbb{R}.

    Do đó \forall x \in {\text{D}} \Rightarrow  - x \in {\text{D}}{\text{.}}

    Bây giờ ta kiểm tra f\left( { - x} ight) = f\left( x ight) hoặc f\left( { - x} ight) =  - f\left( x ight).

     Với y = f\left( x ight) =  - \,\,\sin x. Ta có

    f\left( { - x} ight) =  - \,\,\sin \left( { - x} ight) = \sin x =  - \left( { - \sin x} ight)

    \Rightarrow f\left( { - x} ight) =  - f\left( x ight)

    Suy ra hàm số là hàm số lẻ.

    Với y = f\left( x ight) = \cos x - \sin x. . Ta có

    f\left( { - x} ight) = \cos \left( { - x} ight) - \sin \left( { - x} ight) = \cos x + \sin x

    \Rightarrow f\left( { - x} ight) e \left\{ { - f\left( x ight),f\left( x ight)} ight\}

    Suy ra hàm số không chẵn không lẻ.

    Với y = f\left( x ight) = \cos x + {\sin ^2}x. Ta có

    f\left( { - \,x} ight) = \cos \left( { - \,x} ight) + {\sin ^2}\left( { - \,x} ight)

    = \cos \left( { - \,x} ight) + {\left[ {\sin \left( { - \,x} ight)} ight]^2}

    = \cos x + {\left[ { - \sin x} ight]^2} = \cos x + {\sin ^2}x

    \Rightarrow f\left( { - x} ight) = f\left( x ight)

    Suy ra hàm số là hàm số chẵn.

    Với y = f\left( x ight) = \cos x\sin x. Ta có

    f\left( { - \,x} ight) = \cos \left( { - \,x} ight).\sin \left( { - \,x} ight) =  - \cos x\sin x

    \Rightarrow f\left( { - x} ight) =  - f\left( x ight)

     Suy ra hàm số là hàm số lẻ.

  • Câu 5: Vận dụng

    Cho hàm số y =f(x) = \cos2x - 4\cos x + 4. Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x)?

    Ta có:

    y =f(x) = \cos2x - 4\cos x + 4

    = 2\cos^{2}x - 4\cos x + 3

    Đặt \cos x = t,t \in \lbrack -
1;1brack. Xét hàm số f(t) =
2t^{2} - 4t + 3 trên đoạn \lbrack -
1;1brack

    Ta có bảng biến thiên

    Từ bảng biến thiên ta có: \left\{
\begin{matrix}
\max y = \max\underset{t \in \lbrack - 1;1brack}{f(t)} = 9 \\
\min y = \min\underset{t \in \lbrack - 1;1brack}{f(t)} = 1 \\
\end{matrix} ight.

    Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho là 10.

  • Câu 6: Thông hiểu

    Chọn đẳng thức đúng.

    Ta có:

    \cos^{2}\left( \frac{\pi}{2} +\frac{a}{2} ight) = \frac{1 + \cos\left( \dfrac{\pi}{2} + aight)}{2}

    = \frac{1 + \sin( - a)}{2} = \frac{1 -
\sin a}{2}

  • Câu 7: Nhận biết

    Khẳng định nào sau đây sai?

    Trên khoảng \left( 0;\frac{\pi}{2}
ight) thì hàm số y =
tanx đồng biến.

  • Câu 8: Thông hiểu

    Hàm số nào sau đây nhận giá trị âm nếu 0 < x < \frac{\pi }{2}

     Ta có:  y = \cos \left( {x + \pi } ight)  = -\cos x

    0 < x < \frac{\pi }{2} 

    => y = \cos \left( {x + \pi } ight) mang giá trị âm

  • Câu 9: Nhận biết

    Nghiệm của phương trình \cos x = -
\frac{1}{2}

    Ta có:

    \cos x = - \frac{1}{2} \Leftrightarrow
\cos x = \cos\left( \frac{2\pi}{3} ight)

    \Leftrightarrow x = \pm \frac{2\pi}{3} +
k2\pi\ \ \ \ (k \in Ζ)

  • Câu 10: Thông hiểu

    Giá trị của biểu thức C =\sin\frac{\pi}{24}.\sin\frac{5\pi}{24}.\sin\frac{7\pi}{24}.\sin\frac{11\pi}{24} là:

    Ta có:\left\{ \begin{matrix}\sin\dfrac{7\pi}{24} = \cos\dfrac{5\pi}{24} \\\sin\dfrac{11\pi}{24} = \cos\dfrac{\pi}{24} \\\end{matrix} ight.

    Khi đó:

    C =\sin\frac{\pi}{24}.\sin\frac{5\pi}{24}.\sin\frac{7\pi}{24}.\sin\frac{11\pi}{24}

    C =\sin\frac{\pi}{24}.\sin\frac{5\pi}{24}.\cos\frac{5\pi}{24}.\cos\frac{\pi}{24}

    C = \dfrac{1}{4}.\left(2\sin\frac{\pi}{24}.\cos\frac{\pi}{24} ight).\left(2.\sin\frac{5\pi}{24}.\cos\frac{5\pi}{24} ight)

    C =\frac{1}{4}.\sin\frac{\pi}{12}.\sin\frac{5\pi}{12}

    C = \frac{1}{4}.\frac{1}{2}.\left(\cos\frac{6\pi}{12} + \cos\frac{\pi}{3} ight)

    C = \frac{1}{4}.\frac{1}{2}.\left( 0 +
\frac{1}{2} ight) = \frac{1}{16}

  • Câu 11: Thông hiểu

    Tập nghiệm của phương trình \tan^{2}x + 3 = 0 là:

    Ta có: \tan^{2}x + 3 \geq 3

    => Phương trình vô nghiêm.

  • Câu 12: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    a) Điều kiện xác định của hàm số y =
cot2xlà:

    2x eq k\pi \Rightarrow x eq
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    b) Ta có:

    \sin x + \cos x = 0 \Leftrightarrow
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) = 0

    \Leftrightarrow \sin\left( x +
\frac{\pi}{4} ight) = 0 \Leftrightarrow x = - \frac{\pi}{4} +
k\pi;\left( k\mathbb{\in Z} ight)

    x \in (0;\pi) \Rightarrow 0 < -
\frac{\pi}{4} + k\pi < \pi

    \Rightarrow \frac{1}{4} < k <
\frac{5}{4}k\mathbb{\in
Z} suy ra k = 1

    Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng (0;\pi).

    c) Ta có: \sqrt{3}\cos x + m = 1 \Leftrightarrow
\cos x = \frac{1 - m}{\sqrt{3}}

    Phương trình đã cho có nghiệm khi và chỉ khi

    - 1 \leq \frac{1 - m}{\sqrt{3}} \leq 1
\Leftrightarrow - \sqrt{3} \leq 1 - m \leq \sqrt{3}

    \Leftrightarrow 1 - \sqrt{3} \leq m \leq
1 + \sqrt{3}

    m\mathbb{\in Z \Rightarrow}m = \left\{
- 2; - 1;0;1;2 ight\}

    Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.

    d) Ta có:

    \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} \Leftrightarrow \sin\left( x - \frac{2\pi}{3} ight) =
\sin\left( \frac{\pi}{6} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x - \dfrac{2\pi}{3} = \dfrac{\pi}{6} + k2\pi \\x - \dfrac{2\pi}{3} = \pi - \dfrac{\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{5\pi}{6} + k2\pi \\x = \dfrac{3\pi}{2} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình \sin\left( x - \frac{2\pi}{3}
ight) = \frac{1}{2} trên đường tròn lượng giác là 2.

  • Câu 13: Thông hiểu

    Cho \frac{\pi}{2}
< x < \pi. Mệnh đề nào sau đây đúng?

    Ta có:

    \frac{\pi}{2} < x < \pi
\Leftrightarrow - \pi < - x < - \frac{\pi}{2}

    \Leftrightarrow \frac{\pi}{2} <
\frac{3\pi}{2} - x < \pi

    Do đó điểm cuối của cung có số đo \frac{3\pi}{2} - x thuộc góc phần tư thứ II

    Vậy \sin\left( \frac{3\pi}{2} - x ight)
> 0

  • Câu 14: Vận dụng

    Tìm nghiệm dương nhỏ nhất x_0 của 3\sin 3x - \sqrt 3 \cos 9x = 1 + 4{\sin ^3}3x?

    Phương trình \Leftrightarrow 3\sin 3x - 4{\sin ^3}3x - \sqrt 3 \cos 9x = 1

    \Leftrightarrow \sin 9x - \sqrt 3 \cos 9x = 1

    \Leftrightarrow \frac{1}{2}\sin 9x - \frac{{\sqrt 3 }}{2}\cos 9x = \frac{1}{2}

    \Leftrightarrow \sin \left( {9x - \frac{\pi }{3}} ight) = \frac{1}{2}

    \Leftrightarrow \sin \left( {9x - \frac{\pi }{3}} ight) = \sin \frac{\pi }{6}

    \Leftrightarrow \left[ \begin{gathered}  9x - \frac{\pi }{3} = \frac{\pi }{6} + k2\pi  \hfill \\  9x - \frac{\pi }{3} = \pi  - \frac{\pi }{6} + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{{18}} + \frac{{k2\pi }}{9} \hfill \\  x = \frac{{7\pi }}{{54}} + \frac{{k2\pi }}{9} \hfill \\ \end{gathered}  ight.

    \xrightarrow{{{\text{Cho}} > 0}}\left[ \begin{gathered}  \frac{\pi }{{18}} + \frac{{k2\pi }}{9} > 0 \Leftrightarrow k >  - \frac{1}{4}\xrightarrow{{k \in \mathbb{Z}}}{k_{\min }} = 0 \to x = \frac{\pi }{{18}} \hfill \\  \frac{{7\pi }}{{54}} + \frac{{k2\pi }}{9} > 0 \Leftrightarrow k >  - \frac{7}{{12}}\xrightarrow{{k \in \mathbb{Z}}}{k_{\min }} = 0 \to x = \frac{{7\pi }}{{54}} \hfill \\ \end{gathered}  ight.

    So sánh hai nghiệm ta được nghiệm dương nhỏ nhất là \frac {\pi}{18}.

  • Câu 15: Thông hiểu

    Hỏi trên \left[ {0;\frac{\pi }{2}} ight), phương trình 2{\sin ^2}x - 3\sin x + 1 = 0 có bao nhiêu nghiệm?

     Phương trình 2{\sin ^2}x - 3\sin x + 1 = 0 \Leftrightarrow \left[ \begin{gathered}  \sin x = \frac{1}{2} \hfill \\  \sin x = 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  \sin x = \sin \frac{\pi }{6} \hfill \\  \sin x = 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\  x = \frac{\pi }{2} + k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Theo giả thiết

    0 \leqslant x < \frac{\pi }{2} \Leftrightarrow \left[ \begin{gathered}  0 \leqslant \frac{\pi }{6} + k2\pi  < \frac{\pi }{2} \hfill \\  0 \leqslant \frac{{5\pi }}{6} + k2\pi  < \frac{\pi }{2} \hfill \\  0 \leqslant \frac{\pi }{2} + k2\pi  < \frac{\pi }{2} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}   - \frac{1}{{12}} < k < \frac{1}{6}\xrightarrow{{k \in \mathbb{Z}}}k = 0 \to x = \frac{\pi }{6} \hfill \\   - \frac{5}{{12}} < k <  - \frac{1}{{12}}\xrightarrow{{k \in \mathbb{Z}}}k \in \emptyset  \hfill \\   - \frac{1}{4} < k < 0\xrightarrow{{k \in \mathbb{Z}}}k \in \emptyset  \hfill \\ \end{gathered}  ight.

    Vậy phương trình có duy nhất một nghiệm trên \left[ {0;\frac{\pi }{2}} ight).

  • Câu 16: Nhận biết

    Phương trình \sin x + 1 = 0 có nghiệm là:

    Ta có:

    \sin x = - 1 \Leftrightarrow x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

    Vậy phương trình có nghiệm là x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

  • Câu 17: Nhận biết

    Phương trình lượng giác \cot\ x =
\frac{\sqrt{3}}{3} có nghiệm là:

    Ta có

    \cot x = \frac{\sqrt{3}}{3}

    \Leftrightarrow \cot x = \cot\left(
\frac{\pi}{3} ight)

    \Leftrightarrow x = \frac{\pi}{3} +
k\pi,\left( k\mathbb{\in Z} ight)

  • Câu 18: Thông hiểu

    Cho góc \alpha thỏa mãn \cos\alpha = - \frac{4}{5}\pi < \alpha < \frac{3\pi}{2}. Tính H =\sin\frac{\alpha}{2}\cos\frac{3\alpha}{2}

    Ta có:

    H =
\sin\frac{\alpha}{2}\cos\frac{3\alpha}{2}

    H = \frac{1}{2}\left( \sin2\alpha -\sin\alpha ight)

    H = \frac{1}{2}\sin\alpha.(2\cos\alpha -1)

    Mặt khác \sin^{2}\alpha + \cos^{2}\alpha =1

    \Rightarrow \sin\alpha = \pm \sqrt{1 -\cos^{2}\alpha} = \pm \frac{3}{5}

    Do \pi < \alpha < \frac{3\pi}{2}
\Rightarrow \sin\alpha = - \frac{3}{5}

    Khi đó giá trị biểu thức H là: H =
\frac{39}{50}

  • Câu 19: Thông hiểu

    Đổi số đo của góc 120^{0}sang đơn vị radian?

    Cách 1: Áp dụng công thức \mu = \frac{m.\pi}{180} với m = 120^{0} ta được:

    \mu = \frac{m.\pi}{180} =
\frac{120.\pi}{180} = \frac{2.\pi}{3}

    Cách 2: Bấm máy tính:

    Bước 1: Bấm tổ hợp phím SHIFT MODE 4 chuyển về chế độ rad.

    Bước 2: Bấm 120 SHIFT Ans 1 =

  • Câu 20: Nhận biết

    Hỏi trên đoạn [0; 2023 \pi], phương trình \sqrt 3 \cot x - 3 = 0 có bao nhiêu nghiệm? 

     Ta có \cot x = \sqrt 3  \Leftrightarrow \cot x = \cot \frac{\pi }{6}

    \Leftrightarrow x = \frac{\pi }{6} + k\pi {\text{ }}\left( {k \in \mathbb{Z}} ight)

    Theo giả thiết, ta có

    0 \leqslant \frac{\pi }{6} + k\pi  \leqslant 2023\pi \xrightarrow{{{\text{xap xi}}}} - \frac{1}{6} \leqslant k \leqslant 2022,833

    \xrightarrow{{k \in \mathbb{Z}}}k \in \left\{ {0;1;...;2022} ight\}.

    Vậy có tất cả 2023 giá trị nguyên của k tương ứng với có 2023 nghiệm thỏa mãn yêu cầu bài toán.

  • Câu 21: Thông hiểu

    Tìm giá trị thực của tham số m để phương trình \left( {m - 2} ight)\sin 2x = m + 1 nhận x = \frac{\pi }{{12}} làm nghiệm. 

     Vì x = \frac{\pi }{{12}}là một nghiệm của phương trình \left( {m - 2} ight)\sin 2x = m + 1nên ta có:

    \left( {m - 2} ight).\sin \frac{{2\pi }}{{12}} = m + 1

    \Leftrightarrow \frac{{m - 2}}{2} = m + 1 \Leftrightarrow m - 2 = 2m + 2 \Leftrightarrow m =  - \,4.

    Vậy m = - 4 là giá trị cần tìm.

  • Câu 22: Nhận biết

    Tìm tập các định D của hàm số y =
\frac{2020}{\sin x}

    Hàm số xác định khi và chỉ khi \sin x
eq 0 \Rightarrow x eq k\pi,k\mathbb{\in Z}

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ k\pi,k\mathbb{\in Z} ight\}

  • Câu 23: Nhận biết

    Mệnh đề nào sau đây là sai?

    Hàm số  y = \cot x tuần hoàn với chu kì \pi

  • Câu 24: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Xét hàm số y = f(x) = sin2x có:

    Tập xác định D=\mathbb{ R}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = \sin( - 2x) = - sin2x = - f(x) \hfill \\\Rightarrow f( - x) = - f(x) 
 \hfill\\\end{matrix}

    Vậy hàm số y = sinx là hàm số lẻ

    Xét hàm số y = f(x) = x\cos x có:

    Tập xác định D=\mathbb{ R}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = ( - x).cos( - x) = - x\cos x = - f(x) \hfill \\\Rightarrow f( - x) = - f(x) \hfill \\\end{matrix}

    Vậy hàm số y = x.cosx là hàm số lẻ

    Xét hàm số y = f(x) = \cos
x.cotx có:

    Tập xác định D=\mathbb{ R}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = \cos( - x).cot( - x) = - \cos x.cotx = - f(x) \hfill \\\Rightarrow f( - x) = - f(x) \hfill \\\end{matrix}

    Vậy hàm số y = \cos x.cotx là hàm số lẻ

    Xét hàm số y = f(x) = \frac{\tan x}{\sin
x} có:

    Tập xác định D\mathbb{=
R}\backslash\left\{ k\frac{\pi}{2};k\mathbb{\in Z} ight\}

    Khi đó với \forall x \in D \Rightarrow -
x \in D ta có:

    \begin{matrix}f( - x) = \dfrac{\tan( - x)}{\sin( - x)} = \dfrac{- \tan x}{- \sin x} =f(x) \hfill\\\Rightarrow f( - x) = f(x) \hfill \\\end{matrix}

    Vậy hàm số y = \frac{\tan x}{\sin
x}là hàm số chẵn

  • Câu 25: Vận dụng cao

    Xét đường tròn lượng giác như hình vẽ. Biết \widehat {AOC} = \widehat {AOF} = 30^\circ, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình 2 \sin x -1 = 0 được biểu diễn trên đường tròn lượng giác là những điểm nào?

     

    Ta có: 2\sin x - 1 = 0 \Leftrightarrow \sin x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\,,\,k \in \mathbb{Z}

    Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.

  • Câu 26: Vận dụng

    Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê dưới đây. Hỏi hàm số đó là hàm số nào?

    Ta thấy tại x = 0 thì y = 1 => loại đáp án y = \sin\frac{2x}{3}, y = \sin\frac{3x}{2}

    Tại x = 3\pi thì y = 1 thay vào hai đáp án y = \cos\frac{2x}{3}y = \cos\frac{3x}{2} thì chỉ có y = \cos\frac{2x}{3} thỏa mãn

    Vậy đồ thị ở hình vẽ đã cho là đồ thị của hàm số y = \cos\frac{2x}{3}

  • Câu 27: Thông hiểu

    Trong các hàm số sau, hàm số nào là hàm số tuần hoàn?

    Hàm số y = x + \sin x là hàm số không tuần hoàn

    Tập xác định D=\mathbb{ R}

    Giả sử

    \begin{matrix}f(x + T) = f(x),\forall x \in D \hfill \\\Rightarrow (x + T) + \sin(x + T) = x + \sin x;\forall x \in D \hfill \\\Rightarrow T + \sin(x + T) = \sin x,\forall x \in D \hfill \\\end{matrix}

    Cho x = 0 và x = π ta được

    \begin{matrix}\left\{ \begin{matrix}T + \sin x = sin0 = 0 \\T + \sin(T + \pi) = \sin\pi = 0 \hfill\\\end{matrix} ight.\ \hfill \\\Rightarrow 2T + \sin T + \sin(T + \pi) = 0 \Rightarrow T = 0 \hfill\\\end{matrix}

    Điều này trái với định nghĩa T > 0

    Vậy hàm số y = x + sinx không phải là hàm số tuần hoàn

    Tương tự chứng minh cho các hàm số y =
x\cos xy = \frac{\sin
x}{x} không tuần hoàn.

    Vậy hàm số y = \sin x là hàm số tuần hoàn

  • Câu 28: Thông hiểu

    Biết rằng \frac{\sin\dfrac{\pi}{9} +\sin\dfrac{5\pi}{9}}{\cos\dfrac{\pi}{9} + \cos\dfrac{5\pi}{9}} = \tan\left(\dfrac{m\pi}{n} ight) với m,n\in\mathbb{ N} và \frac{m}{n} tối giản. Khi đó kết quả nào sau đây đúng?

    Ta có:

    \frac{\sin\dfrac{\pi}{9} +\sin\dfrac{5\pi}{9}}{\cos\dfrac{\pi}{9} + \cos\dfrac{5\pi}{9}} =\frac{2\sin\dfrac{\pi}{3}\cos\left( - \dfrac{2\pi}{9}ight)}{2\cos\dfrac{\pi}{3}\cos\left( - \dfrac{2\pi}{9} ight)} =\tan\left( \dfrac{\pi}{3} ight)

    \Rightarrow \left\{ \begin{matrix}
m = 1 \\
n = 3 \\
\end{matrix} ight.\  \Rightarrow n - m = 2

  • Câu 29: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về ''đường tròn lượng giác'' ?

    Mỗi đường tròn định hướng có bán kính R =1, tâm trùng với gốc tọa độ là một đường tròn lượng giác.

  • Câu 30: Vận dụng

    Rút gọn biểu thức: S = \cos\left( \frac{\pi}{2} - x ight).sin(\pi -x) - \sin\left( \frac{\pi}{2} - x ight).cos(\pi - x) ta được:

    Ta có:

    S = \cos\left( \frac{\pi}{2} - xight).\sin(\pi - x) - \sin\left( \frac{\pi}{2} - x ight).\cos(\pi -x)

    S = \sin x.\sin x - \cos x.\cos( -x)

    S = \sin^{2}x + \cos^{2}x = 1

  • Câu 31: Vận dụng

    Tính giá trị biểu thức H =
tan10^{0}.tan20^{0}.tan30^{0}....tan80^{0}

    Ta có: \tan x.\tan\left( 90^{0} - xight) = \tan x.\cot x = 1

    H = \left( \tan10^{0}.\tan80^{0}ight).\left( \tan20^{0}.\tan70^{0} ight).\left( \tan30^{0}.\tan60^{0}ight).\left( \tan40^{0}.\tan50^{0} ight)

    H = 1.1.1.1 = 1

  • Câu 32: Thông hiểu

    Tìm tập xác định D của hàm số y = \frac{\tan x - 1}{\sin x} + \cos\left( x +
\frac{\pi}{3} ight)?

    Hàm số y = \frac{\tan x - 1}{\sin x} +
\cos\left( x + \frac{\pi}{3} ight) xác định khi:

    \left\{ \begin{matrix}\sin x eq 0 \\\cos x eq 0 \\\end{matrix} ight.\  \Leftrightarrow \sin2x eq 0

    \Leftrightarrow 2x eq k\pi
\Leftrightarrow x eq \frac{k\pi}{2}\left( k\mathbb{\in Z}
ight)

    Vậy D=\mathbb{ R}\backslash\left\{\frac{k\pi}{2}|k\in\mathbb{ Z} ight\}

  • Câu 33: Thông hiểu

    Phương trình \cos^{2}2x+ \cos 2x-\frac{3}{4}=0 có nghiệm là:

     \begin{matrix}  {\cos ^2}2x + \cos 2x - \dfrac{3}{4} = 0 \hfill \\   \Leftrightarrow \left( {\cos 2x - \dfrac{1}{2}} ight).\left( {\cos 2x + \dfrac{3}{2}} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\cos 2x - \dfrac{1}{2} = 0} \\   {\cos 2x + \dfrac{3}{2} = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\cos 2x = \dfrac{1}{2}\left( {tm} ight)} \\   {\cos 2x =  - \dfrac{3}{2}\left( L ight)} \end{array}} ight. \hfill \\  \cos 2x = \dfrac{1}{2} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {2x = \dfrac{\pi }{3} + k2\pi } \\   {2x =  - \dfrac{\pi }{3} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{6} + k\pi } \\   {x =  - \dfrac{\pi }{6} + k\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\   \Rightarrow x =  \pm \dfrac{\pi }{6} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 34: Thông hiểu

    Tổng giá trị lớn nhất và nhỏ nhất của hàm số y = 3cosx + 4

    Do - 1 \leq cosx \leq 1\forall x \in
\mathbb{R} nên 1 \leq 3cosx + 4
\leq 7,\forall x \in \mathbb{R}.

    Nên \max_{\mathbb{R}}\mspace{2mu} y =
7 đạt được khi cosx = 1
\Leftrightarrow x = k2\pi\ (k \in \mathbb{Z}).

    \min_{\mathbb{R}}\mspace{2mu} y =
1 đạt được khi cosx = - 1
\Leftrightarrow x = \pi + k2\pi(k \in \mathbb{Z}).

    Suy ra \max_{\mathbb{R}}\mspace{2mu} y +
\min_{\mathbb{R}}\mspace{2mu} y = 8.

  • Câu 35: Vận dụng

    Biểu diễn hai nghiệm của phương trình \sqrt{3}\cos x - \sin x = - 1 được biểu diễn trên đường tròn lượng giác như sau:

    Tính AB - OI với I là hình chiếu vuông góc của B trên OA bằng:

    \sqrt{3}\cos x - \sin x = -
1

    \Rightarrow \sin\left( x - \frac{\pi}{3}
ight) = \frac{1}{2}

    \Rightarrow \left\lbrack \begin{matrix}x = \dfrac{\pi}{2} + k2\pi \\x = \dfrac{7\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    => AB = \sqrt{\frac{9}{4} +
\frac{3}{4}} = 3

    \Rightarrow AB - OI =
\frac{3}{2}

  • Câu 36: Nhận biết

    Tính giá trị biểu thức A =\cos10^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}

    \sin10^{0} eq 0 nên ta có:

    A =\frac{16\sin10^{0}.\cos10^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{8\sin20^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{4\sin40^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{2\sin80^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{\sin160^{0}}{16\sin10^{0}}

    A = \frac{\sin20^{0}}{16\sin10^{0}} =\frac{2.\sin10^{0}.\cos10^{0}}{16\sin10^{0}} =\frac{1}{8}.\cos10^{0}

  • Câu 37: Thông hiểu

    Cho các hàm số y
= \cos x;y = \sin x;y = \tan x;y = \cot x. Trong các hàm số trên, có bao nhiêu hàm số lẻ?

    Ta có:

    y = \cos x là hàm số chẵn vì:

    Tập xác định của hàm số D\mathbb{=
R}

    Với \forall x \in D \Rightarrow - x \in
D

    f( - x) = \cos( - x) = \cos x =
f(x)

    y = \sin x là hàm số lẻ vì:

    Tập xác định của hàm số D\mathbb{=
R}

    Với \forall x \in D \Rightarrow - x \in
D

    f( - x) = \sin( - x) = - \sin x = -
f(x)

    y = \tan x là hàm số lẻ vì

    Tập xác định của hàm số D\mathbb{=
R}\backslash\left\{ \frac{\pi}{2} + k\pi|k\mathbb{\in Z}
ight\}

    Với \forall x \in D \Rightarrow - x \in
D

    f( - x) = \tan( - x) = - \tan x = -
f(x)

    y = \cot x là hàm số lẻ vì

    Tập xác định của hàm số D\mathbb{=
R}\backslash\left\{ k\pi|k\mathbb{\in Z} ight\}

    Với \forall x \in D \Rightarrow - x \in
D

    f( - x) = \cot( - x) = \cot( - x) = -
f(x)

  • Câu 38: Thông hiểu

    Tìm tập nghiệm của phương trình \frac{2cosx + \sqrt{2}}{\sqrt{2}\sin x + 1} =
0?

    Điều kiện: \sqrt{2}\sin x + 1 eq 0
\Leftrightarrow \sin x eq - \frac{1}{\sqrt{2}}

    \Leftrightarrow \left\{ \begin{matrix}x eq - \dfrac{\pi}{4} + k2\pi \\x eq \dfrac{5\pi}{4} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Ta có:

    \frac{2\cos x + \sqrt{2}}{\sqrt{2}\sin x +1} = 0

    \Leftrightarrow 2cosx + \sqrt{2} = 0
\Leftrightarrow \cos x = - \frac{\sqrt{2}}{2}

    \Leftrightarrow \cos x = -
\frac{\sqrt{2}}{2}

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{3\pi}{4} + k2\pi \\x = - \dfrac{3\pi}{4} + k2\pi \\\end{matrix} ight.\ \left( k\mathbb{\in Z} ight)

    Kết hợp với điều kiện suy ra phương trình có nghiệm x = \frac{3\pi}{4} + k2\pi;k\mathbb{\in
Z}

    Vậy phương trình có tập nghiệm là: S =
\left\{ \frac{3\pi}{4} + k2\pi|k\mathbb{\in Z} ight\}

  • Câu 39: Vận dụng cao

    Nếu \alpha +\beta + \gamma = \frac{\pi}{2}\cot\alpha + \cot\gamma = 2\cot\beta thì \cot\alpha.\cot\gamma bằng bao nhiêu?

    Từ giả thiết ta có:

    \alpha + \beta + \gamma = \frac{\pi}{2}\Rightarrow \beta = \frac{\pi}{2} - (\alpha + \gamma)

    Ta có:

    \cot\alpha + \cot\gamma =2\cot\beta

    = 2\cot\left\lbrack \frac{\pi}{2} -(\alpha + \gamma) ightbrack = 2\tan(\alpha + \gamma)

    = 2.\frac{\tan\alpha + \tan\gamma}{1 -\tan\alpha.\tan\gamma}

    Mặt khác

    \dfrac{\tan\alpha + \tan\gamma}{1 -\tan\alpha.\tan\gamma} = \dfrac{\dfrac{1}{\cot\alpha} +\dfrac{1}{\cot\gamma}}{1 - \dfrac{1}{\cot\alpha}.\dfrac{1}{\cot\gamma}} =\dfrac{\cot\alpha + \cot\gamma}{\cot\alpha.\cot\gamma - 1}

    \Rightarrow \cot\alpha + \cot\gamma =2.\frac{\cot\alpha + \cot\gamma}{\cot\alpha.\cot\gamma - 1}

    \Leftrightarrow \cot\alpha.\cot\gamma - 1= 2

    \Leftrightarrow \cot\alpha.\cot\gamma =3

  • Câu 40: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau:

    Theo công thức cộng

    \cos(a + b) = \cos a.cosb - \sin
a.sinb.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 1 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo