Phương trình lượng giác
có nghiệm là:
Ta có
Phương trình lượng giác
có nghiệm là:
Ta có
Giải phương trình ![]()
Ta có
Cho các hàm số sau, hàm số nào là hàm số lẻ?
Ta có:
Ta kiểm tra được và
là hàm số không chẵn không lẻ
là hàm số chẵn
là hàm số lẻ
Vậy là hàm số lẻ
Rút gọn biểu thức
ta được:
Ta có:
Hàm số
đồng biến trên khoảng nào sau đây?
Hàm số y = cosx đồng biến trên mỗi khoảng (-π + k2π; k2π) và nghịch biến trên mỗi khoảng (k2π; π + k2π) với k ∈ Z.
Chu kì của hàm số
là số nào sau đây?
Chu kì của hàm số là
Giá trị của biểu thức
là:
Ta có:
Khi đó:
Cho hàm số
. Mệnh đề nào sau đây đúng?
Ta có:
Vậy là mệnh đề đúng.
Trong các hàm số sau hàm số nào là hàm số lẻ?
Xét hàm số y = sinx:
Lấy ta có:
Vậy hàm số y = sinx là hàm số lẻ.
Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của phương trình
bằng?
Ta có
TH1. Với
TH2. Với
So sánh bốn nghiệm ta được nghiệm âm lớn nhất là và nghiệm dương nhỏ nhất là
.
Khi đó tổng hai nghiệm này bằng .
Cho hàm số
và
. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Hàm số
là hàm số chẵn. Sai||Đúng
b) Trong khoảng
đồ thị hai hàm số
và
cắt nhau tại hai điểm. Đúng||Sai
c) Giá trị lớn nhất của hàm số
bằng
. Sai||Đúng
d) Hàm số
đạt giá trị nhỏ nhất khi
. Đúng||Sai
Cho hàm số và
. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Hàm số là hàm số chẵn. Sai||Đúng
b) Trong khoảng đồ thị hai hàm số
và
cắt nhau tại hai điểm. Đúng||Sai
c) Giá trị lớn nhất của hàm số bằng
. Sai||Đúng
d) Hàm số đạt giá trị nhỏ nhất khi
. Đúng||Sai
a) Sai
TXĐ: . Do đó
Ta có là hàm số lẻ.
b) Đúng
Phương trình trong khoảng
có hai nghiệm
và
c) Sai
Ta có: , mà
.
Vậy giá trị lớn nhất của hàm số bằng
, khi
.
d) Đúng
Giá trị nhỏ nhất của hàm số bằng
, khi
Hàm số
nghịch biến trên khoảng nào sau đây?
Hàm số tuần hoàn với chu kì
Do hàm số nghịch biến trên
=> Hàm số nghịch biến khi
Vậy đáp án đúng là
Phương trình
có bao nhiêu nghiệm trên đoạn
?
Cách 1:
Ta có , với
+) .
Lại có nên
+).
Lại có nên
Vậy phương trình có 20 nghiệm trên đoạn
Cách 2:

Dùng đường tròn lượng giác, trên đoạn phương trình
có 2 nghiệm, tương tự với
.
Có 10 đoạn như vậy, trên mỗi đoạn có 2 nghiệm nên suy ra phương trình đã cho có 2.10=20 trên .
Tính độ dài của cung trên đường tròn có số đo 1,5 và bán kính bằng 20 cm.
Ta có:
Chọn công thức đúng trong các công thức dưới đây.
Công thức đúng là
Điều kiện xác định của hàm số: 
Điều kiện xác định của hàm số:
Hàm số
có tất cả bao nhiêu giá trị nguyên?
Ta có:
Mà
Nên có giá trị thỏa mãn.
Tập nghiệm của phương trình
là?
Giải phương trình
thu được kết quả là:
Điều kiện
.
Tập giá trị của hàm số
là:
Ta có:
Mà
=>
Tìm số nghiệm của phương trình
trên đoạn
.
Ta có:
Vì nên
. Do đó phương trình
Vì nên
.
Rút gọn biểu thức: ![]()
Ta có:
Tập nghiệm của phương trình
là:
Ta có:
=> Phương trình vô nghiêm.
Trong các khẳng định sau, khẳng định nào sai?
Ta có .
Cho góc
được biểu diễn trên đường tròn lượng giác như hình vẽ. Mệnh đề nào dưới đây đúng?

Góc được biểu diễn như hình vẽ, khi đó
.
Tung độ của điểm là
suy ra
Mệnh đề đúng là .
Trên đường tròn lượng giác có điểm gốc là A. Điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo
. Gọi N là điểm đối xứng với M qua trục Ox, số đo cung lượng giác AN bằng:
Vì số đo cung AM bằng
=>
N là điểm đối xứng với M qua trục Ox =>
=> Số đo cung AN bằng
=> Số đo cung lượng giác AN có số đo là:
Trong các mệnh đề sau, mệnh đề nào sai?
Vì hàm số y = tan x tuần hoàn với chu kì π
Nên đáp án: “Hàm số y = tanx tuần hoàn với chu kì 2π” là đáp án sai.
Cho tam giác
có các góc
thỏa mãn biểu thức
. Khẳng định nào sau đây đúng?
Ta có:
Vậy tam giác cân.
Nghiệm của phương trình: ![]()
Ta có:
Cho
là các góc của tam giác ABC. Khi đó:
![]()
Ta có:
Gọi
là nghiệm dương nhỏ nhất của phương trình
. Mệnh đề nào sau đây là đúng?
Điều kiện:
Phương trình
Cho .
Do đó nghiệm dương nhỏ nhất ứng với .
Nghiệm của phương trình tan (2x) -1 = 0 là?
Ta có:
.
Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê dưới đây. Hỏi hàm số đó là hàm số nào?

Ta thấy tại x = 0 thì y = 1 => loại đáp án ,
Tại thì y = 1 thay vào hai đáp án
và
thì chỉ có
thỏa mãn
Vậy đồ thị ở hình vẽ đã cho là đồ thị của hàm số
Giá trị của
là:
Ta có:
Tìm tập xác định của hàm số 
Hàm số xác định
Vậy tập xác định
Cho phương trình
. Đặt
, ta được phương trình nào sau đây?
Ta có: trở thành
.
Biết rằng phương trình
có nghiệm dạng
với
và
. Tính
.
Điều kiện xác định
Ta có:
=> Phương trình tương đương
=>
Nếu
và
thì
bằng bao nhiêu?
Từ giả thiết ta có:
Ta có:
Mặt khác
Cho góc lượng giác
thỏa mãn
và
. Tính ![]()
Ta có:
Từ hệ thức
Do nên
Thay vào biểu thức ta được:
Tìm tập xác định
của hàm số
?
Ta có:
Hàm số được xác định khi
Vậy tập xác định của hàm số là