Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho cấp số nhân có các số hạng lần lượt là x;12;y;192. Mệnh đề nào sau đây đúng?

    Cấp số nhân x;12;y;192

    \Rightarrow \left\{ \begin{matrix}\dfrac{12}{x} = \dfrac{y}{12} \\\dfrac{y}{12} = \dfrac{192}{y} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \dfrac{144}{y} \\y^{2} = 2304 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \pm 3 \\y = \pm 48 \\\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(x;y) = (3;48) \\
(x;y) = ( - 3; - 48) \\
\end{matrix} ight.

  • Câu 2: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight)u_{1} = - 3;q = - 2. Tính tổng 10 số hạng đầu tiên của cấp số nhân đã cho.

    Ta có: \left\{ \begin{matrix}u_{1} = - 3 \\q = - 2 \\\end{matrix} ight.

    \Rightarrow S_{10} = u_{1}.\frac{1 -q^{10}}{1 - q} = ( - 3).\frac{1 - ( - 2)^{10}}{1 + 2} =1023

  • Câu 3: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{n} = - 1;u_{n + 1} = 8. Tính công sai d của cấp số cộng đó:

    Ta có:

    d = u_{n + 1} - u_{n} = 8 - ( - 1) =
9

  • Câu 4: Vận dụng

    Cho dãy số (un) xác định bởi {u_1} = \frac{{ - 41}}{{20}};{u_{n + 1}} = 21{u_n} + 1;\left( {n \geqslant 1} ight). Tìm số hạng thứ 2018 của dãy số đã cho.

    Ta có: {u_{n + 1}} = 21{u_n} + 1 \Rightarrow {u_{n + 1}} + \frac{1}{{20}} = 21\left( {{u_n} + \frac{1}{{20}}} ight)

    Đặt {v_n} = {u_n} + \frac{1}{{20}} \Rightarrow {v_{n + 1}} = 21{v_n}

    Khi đó (vn) là một cấp số nhân với và công bội q = 21

    Do đó số hạng tổng quát của dãy (vn) là {v_n} = {v_1}.{q^{n - 1}} =  - {2.21^{n - 1}} \Rightarrow {u_n} =  - {2.21^{n - 1}} - \frac{1}{{20}}

    => {u_{2018}} =  - {2.21^{2017}} - \frac{1}{{20}}

  • Câu 5: Thông hiểu

    Một cấp số cộng có 8 số hạng. Số hạng đầu là 5, số hạng thứ tám là 40. Khi đó công sai d của cấp số cộng đó là bao nhiêu?

    Theo bài ra ta có: \left\{ \begin{matrix}
u_{1} = 5 \\
40 = u_{8} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 5 \\
40 = u_{1} + 7d \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 5 \\
d = 5 \\
\end{matrix} ight.

  • Câu 6: Thông hiểu

    Cho cấp số cộng (Un) có {u_1} = 4;{u_2} = 1. Giá trị của {u_{10}} bằng:

    Ta có:

    \begin{matrix}  {u_1} = 4;{u_2} = 1 \Rightarrow d = {u_2} - {u_1} = 1 - 4 =  - 3 \hfill \\   \Rightarrow {u_{10}} = {u_1} + 9d = 4 + 9.\left( { - 3} ight) =  - 23 \hfill \\ \end{matrix}

  • Câu 7: Vận dụng cao

    Cho ba số dương a, b, c theo thứ tự lập thành một cấp số cộng. Giá trị lớn nhất của biểu thức M = \dfrac{{\sqrt {{a^2} + 8bc}  + 3}}{{\sqrt {{{\left( {2a + c} ight)}^2} + 1} }} có dạng x\sqrt y ;\left( {x,y \in \mathbb{N}} ight). Hỏi x + y bằng bao nhiêu?

    Ta có:

    \begin{matrix}  a + c = 2b \Rightarrow a = 2b - c \hfill \\   \Rightarrow {a^2} = {\left( {2a - c} ight)^2} \hfill \\   \Leftrightarrow {a^2} + 8bc = 4{b^2} + 4bc + {c^2} \hfill \\   \Leftrightarrow {a^2} + 8bc = {\left( {2b + c} ight)^2} \hfill \\ \end{matrix}

    Theo bài ra ta có:

    M = \frac{{2b + c + 3}}{{\sqrt {{{\left( {2a + c} ight)}^2} + 1} }} = \frac{{t + 3}}{{\sqrt {{t^2} + 1} }} \leqslant \sqrt {10} ,\left( {t = 2b + c} ight)

    Dấu bằng xảy ra khi và chỉ khi 2b + c = \frac{1}{3}

    => x + y = 11

  • Câu 8: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai

    b) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = \frac{5n + 2}{19n + 1} có số hạng thứ 3 là: u_{3} = \frac{17}{58}. Đúng||Sai

    c) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới. Sai||Đúng

    d) Tổng S = \frac{1}{3} +
\frac{1}{3^{2}} + ... + \frac{1}{3^{n}} + ... = \frac{1}{3} . Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai

    b) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = \frac{5n + 2}{19n + 1} có số hạng thứ 3 là: u_{3} = \frac{17}{58}. Đúng||Sai

    c) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới. Sai||Đúng

    d) Tổng S = \frac{1}{3} +
\frac{1}{3^{2}} + ... + \frac{1}{3^{n}} + ... = \frac{1}{3} . Đúng||Sai

    Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân đúng vì dãy số đã cho là cấp số nhân với công bội q = 1.

    Số hạng thứ ba của dãy số \left( u_{n}
ight) là: u_{3} = \frac{5.3 +
2}{19.3 + 1} = \frac{17}{58}.

    Xét u_{n} = 9 - 2n ta có: u_{n + 1} - u_{n} = - 2 < 0,\forall
n\mathbb{\in N} suy ra \left( u_{n}
ight) là dãy số giảm

    Lại có n\mathbb{\in N \Rightarrow}n \geq
0 \Rightarrow u_{n} = 9 - 2n \leq 9 suy ra \left( u_{n} ight) là dãy số bị chặn trên.

    Suy ra phát biểu “Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới.” là phát biểu sai.

    Ta có: S = \frac{1}{3} + \frac{1}{3^{2}}
+ ... + \frac{1}{3^{n}} + ... là tổng cấp số nhân lùi vô hạn \left( u_{n} ight) với u_{n} = \frac{1}{3^{n}} có số hạng đầu và công bội lần lượt là: u_{1} = \frac{1}{3};q
= \frac{1}{3}

    \Rightarrow S = \dfrac{u_{1}}{1 - q} =\dfrac{\dfrac{1}{3}}{1 - \dfrac{1}{3}} = \dfrac{1}{2}

  • Câu 9: Vận dụng

    Cho cấp số cộng (un) có u3 = -15; u20 = 60. Tổng của 10 số hạng đầu tiên của cấp số cộng này là:

    Gọi u1, d lần lượt là số hạng đầu và công sai của cấp số cộng

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {{u_5} =  - 15} \\   {{u_{20}} = 60} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + 4d =  - 15} \\   {{u_1} + 19d = 60} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} =  - 35} \\   {d = 5} \end{array}} ight.

    => Tổng của 10 số hạng đầu tiên của cấp số cộng này là:

    {S_{10}} = \frac{{10}}{2}.\left( {2{u_1} + 9d} ight) = 5.\left[ {2.\left( { - 35} ight) + 9.5} ight] =  - 125

  • Câu 10: Vận dụng

    Xét tính bị chặn của dãy số un = 3n − 1, ta thu được kết quả?

    Ta có un ≥ 2, ∀n ⇒ (un) bị chặn dưới; dãy (un) không bị chặn trên.

  • Câu 11: Nhận biết

    Cho dãy số -7; h; 11; k. Với giá trị nào của h, k thì dãy số đã cho lập thành một cấp số cộng?

     Bốn số hạng 7; h; 11; k theo thứ tự là u1; u2; u3; u4 lập thành một cấp số cộng nên

    \begin{matrix}   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_4} - {u_3} = {u_3} - {u_2}} \\   {{u_4} - {u_3} = {u_2} - {u_1}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {k - 11 = 11 - h} \\   {k - 11 = h + 7} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {h + k = 22} \\   {h - k =  - 18} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {h = 2} \\   {k = 20} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 12: Vận dụng

    Xét tính tăng, giảm của dãy số \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = \sqrt[3]{u_{n}^{3} + 1},n \geq 1 \\
\end{matrix} ight., ta thu được kết quả?

    Ta có u_{n + 1} = \sqrt[3]{u_{n}^{3} + 1}
\Rightarrow u_{n + 1} > \sqrt[3]{u_{n}^{3}} = u_{n},\forall n \in
\mathbb{N}^{*} \Rightarrow \left( u_{n} ight) là dãy số tăng.

  • Câu 13: Vận dụng cao

    Tổng S = sin(x) + sin(2x) + … + sin(nx) (với x ≠ kπ ) có công thức thu gọn là?

    Ta có 2sin\frac{x}{2} \cdot S = 2sinx\cdot sin\frac{x}{2} + 2sin2x \cdot sin\frac{x}{2} + .. + 2sinnx \cdotsin\frac{x}{2}

    = \cos\frac{x}{2} - \cos\frac{3x}{2} +\cos\frac{3x}{2} - \cos{x\frac{5x}{2}} + \ldots + \cos{x\frac{2n -1}{2}x} - \cos{\frac{2n + 1}{2}x}

    = cos\frac{x}{2} - cos\frac{2n +1}{2}x

    Vậy S = \frac{cos\frac{x}{2} - cos\frac{2n+ 1}{2}x}{2sin\frac{x}{2}}

  • Câu 14: Thông hiểu

    Cho dãy số (un) được xác định như sau \left\{ \begin{matrix}
u_{1} = 0 \\
u_{n + 1} = \frac{n}{n + 1}\left( u_{n} + 1 ight) \\
\end{matrix} ight.. Số hạng u11 là?

    Ta có:

    \begin{matrix}
u_{2} & = \frac{1}{2}\left( u_{1} + 1 ight) = \frac{1}{2}; &
u_{3} = \frac{2}{3}\left( u_{2} + 1 ight) = 1; & u_{4} =
\frac{3}{4}\left( u_{3} + 1 ight) = \frac{3}{2}; \\
u_{5} & = \frac{4}{5}\left( u_{4} + 1 ight) = 2; & u_{6} =
\frac{5}{6}\left( u_{5} + 1 ight) = \frac{5}{2}; & u_{7} =
\frac{6}{7}\left( u_{6} + 1 ight) = 3 \\
u_{8} & = \frac{7}{8}\left( u_{7} + 1 ight) = \frac{7}{2}; &
u_{9} = \frac{8}{9}\left( u_{8} + 1 ight) = 4; & u_{10} =
\frac{1}{2}\left( u_{9} + 1 ight) = \frac{9}{2}; \\
u_{11} & = \frac{10}{11}\left( u_{10} + 1 ight) = 5 & & \\
\end{matrix}

  • Câu 15: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight)u_{1} = 3 và công bội q = 3. Số hạng tổng quát của cấp số nhân \left( u_{n}
ight)

    Số hạng tổng quát của cấp số nhân \left(
u_{n} ight)

    u_{n} = u_{1}.q^{n - 1} = 3.3^{n - 1} =
3^{n}.

  • Câu 16: Nhận biết

    Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:

    Do dãy số là cấp số nhân

    => q = \frac{{36}}{{16}} = \frac{9}{4}

    => Số hạng tiếp theo là: 36.\frac{9}{4} = 81

  • Câu 17: Thông hiểu

    Với n \in \mathbb{N}^{*}, cho dãy số \left( u_{n} ight) gồm tất cả các số nguyên dương chia 32 theo thứ tự tăng dần. Số hạng tổng quát của dãy số này là

    Các số nguyên dương chia 32 theo thứ tự tăng dần là 5, 8, 11, 14,…

    Ta có 5 = 3.1 + 2, 8 = 3.2 + 2, 11 = 3.3 + 2, 14 = 3.4 + 2, …

    Vậy u_{n} = 3n + 2

  • Câu 18: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight)u_{1} = - 1;q = - \frac{1}{10}. Số \frac{1}{10^{103}} là số hạng thứ mấy của cấp số nhân đã cho?

    Ta có:

    u_{n} = \frac{1}{10^{103}}

    \Rightarrow u_{1}.q^{n - 1} =
\frac{1}{10^{103}}

    \Rightarrow ( - 1)\left( - \frac{1}{10}
ight)^{n - 1} = 6561

    Mà n là số chẵn và n - 1 = 103

    \Rightarrow n = 104

  • Câu 19: Nhận biết

    Với n \in \mathbb{N}^{*}, cho dãy số \left( u_{n} ight) gồm các số nguyên dương chia hết cho 7: 7, 14, 21, 28, …Công thức số hạng tổng quát của dãy số này là:

    Ta có u_{1} = 7 = 7.1, u_{2} = 14 = 7.2, u_{3} = 21 = 7.3, u_{4} = 28 = 7.4,…

    Suy ra u_{n} = 7n.

  • Câu 20: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)d = - 2;S_{8} = 72. Tìm số hạng đầu tiên u_{1}.

    Ta có:

    \left\{ \begin{matrix}d = - 2 \\S_{8} = 72 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}d = - 2 \\8u_{1} + \dfrac{8.7.d}{2} = 72 \\\end{matrix} ight.

    \Rightarrow 8u_{1} + 28.( - 2) =
72

    \Rightarrow u_{1} = 16

  • Câu 21: Thông hiểu

    Cho một cấp số cộng \left( u_{n} ight)u_{4} = - 12;u_{14} = 18. Giá trị S_{16} bằng bao nhiêu?

    Ta có:

    \left\{ \begin{matrix}
u_{4} = - 12 \\
u_{14} = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + 3d = - 12 \\
u_{1} + 13d = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 21 \\
d = 3 \\
\end{matrix} ight.

    Tổng của 16 số hạng đầu tiên của cấp số cộng là:

    S_{16} = \frac{\left( 2u_{1} + 15d
ight).16}{2} = 24

  • Câu 22: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) với công bội q eq
1. Đặt S_{n} = u_{1} + u_{2} + ...
+ u_{n}. Khẳng định nào sau đây đúng?

    Theo công thức tính tổng n số hạng đầu của CSN ta được S_{n} =
\frac{u_{1}\left( 1 - q^{n} ight)}{1 - q}.

  • Câu 23: Thông hiểu

    Số hạng âm trong dãy số x1; x2; x3; …; xn với x_{n} = C_{n + 5}^{4} - \frac{143P_{n +
5}}{96P_{n + 3}} là?

    Ta có c_{n + 5}^{4} = \frac{(n + 5)(n +4)(n + 3)(n + 2)}{24},

    \frac{143P_{n + 5}}{96P_{n + 3}} = \frac{143(n +5)(n + 4)}{96}

    x_{n} = C_{n + 5}^{4} - \frac{143P_{n +
5}}{96P_{n + 3}}

    = \frac{(n + 5)(n + 4)(2n + 17)(2n -
7)}{96} > 0,\forall n \geq 4,n \in \mathbb{N}^{*}

    Vậy các số hạng âm là x1; x2; x3.

  • Câu 24: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} = -
\frac{1}{2}, công sai d =
\frac{1}{2}. Năm số hạng liên tiếp đầu tiên của cấp số cộng là:

    Ta dùng công thức tổng quát u_{n} = u_{1}
+ (n - 1)d = - \frac{1}{2} + (n - 1)\frac{1}{2} = - 1 +
\frac{n}{2}, hoặc u_{n + 1} = u_{n}
+ d = u_{n} + \frac{1}{2} để tính các số hạng của một cấp số cộng.

    Ta có u_{1} = - \dfrac{1}{2};\ \ d =\dfrac{1}{2}\overset{ightarrow}{}\left\{ \begin{matrix}u_{1} = - \dfrac{1}{2} \\u_{2} = u_{1} + d = 0 \\u_{3} - u_{2} + d = \dfrac{1}{2} \\u_{4} = u_{3} + d = 1 \\u_{5} = u_{4} + d = \dfrac{3}{2} \\\end{matrix} ight.

  • Câu 25: Vận dụng cao

    Tại một nhà máy, người ta đo được rằng 80\% lượng nước sau khi sử dụng được xử lí và tái sử dụng. Với 100\ m^{3} ban đầu được sử dụng lần đầu tại nhà máy, khi quá trình xử lí và tái sử dụng lặp lại mãi mãi, nhà máy sử dụng được tổng lượng nước là bao nhiêu?

    Đáp án: 500

    Đáp án là:

    Tại một nhà máy, người ta đo được rằng 80\% lượng nước sau khi sử dụng được xử lí và tái sử dụng. Với 100\ m^{3} ban đầu được sử dụng lần đầu tại nhà máy, khi quá trình xử lí và tái sử dụng lặp lại mãi mãi, nhà máy sử dụng được tổng lượng nước là bao nhiêu?

    Đáp án: 500

    Ta có:

    100 + 100.0,8 + 100.0,8)^{2} +
100.(0,8)^{3} + \ldots

    = 100.\frac{1}{1 - 0,8} = 500\left( \
m^{3} ight).

  • Câu 26: Nhận biết

    Cho dãy số (u_{n}), biết u_{n}=\frac{n}{3^{n}-1}. Ba số hạng đầu tiên của dãy số đó lần lượt là:

    Ta có:

    \begin{matrix}  {u_1} = \dfrac{1}{{{3^1} - 1}} = \dfrac{1}{2} \hfill \\  {u_2} = \dfrac{2}{{{3^2} - 1}} = \dfrac{1}{4} \hfill \\  {u_3} = \dfrac{3}{{{3^3} - 1}} = \dfrac{3}{{26}} \hfill \\ \end{matrix}

    Ba số hạng đầu tiên của dãy số đó lần lượt là: \frac{1}{2};\frac{1}{4};\frac{3}{26}

  • Câu 27: Thông hiểu

    Cho dãy số (un) với u_{n} = \frac{n - 1}{n^{2} + 1}, biết u_{k} = \frac{2}{13}. Hỏi uk là số hạng thứ mấy của dãy số đã cho?

    Ta có:

    u_{k} = \frac{k - 1}{k^{2} + 1}
\Rightarrow \frac{k - 1}{k^{2} + 1} = \frac{2}{13} \Rightarrow k =
5 (do  k∈ℕ*)

  • Câu 28: Nhận biết

    Với giá trị x nào dưới đây thì các số - 4;x; - 9 theo thứ tự đó lập thành một cấp số nhân?

    Ta có: - 4;x; - 9 lập thành một cấp số nhân

    \Rightarrow x^{2} = ( - 4).( - 9) =
36

    \Rightarrow x = \pm 6

  • Câu 29: Nhận biết

    Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên n ≥ p (p là một
    số tự nhiên). Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với n bằng:

    Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với n bằng n=p

  • Câu 30: Nhận biết

    Cho dãy số u_{n}
= \frac{n^{2} + 2n - 1}{n + 1}. Giá trị u11

    Ta có u_{11} = \frac{11^{2} + 2.11 - 1}{11
+ 1} = \frac{71}{6}

  • Câu 31: Vận dụng

    Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một cấp số cộng. Độ dài các cạnh của tam giác đó là:

    Ba cạnh của một tam giác theo thứ tự là a;b;cvới a
< b < c lập thành một cấp số cộng nên

    \left\{ \begin{matrix}
a^{2} + b^{2} = c^{2} \\
a + b + c = 3 \\
a + c = 2b \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} + b^{2} = c^{2} \\
3b = 3 \\
a + c = 2b \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} + b^{2} = c^{2} \\
b = 1 \\
a = 2b - c - 2 - c \\
\end{matrix} ight.

    Ta có:

    a^{2} + b^{2} = c^{2}\overset{b =
1}{\underset{a = 2 - c}{ightarrow}}(2 - c)^{2} + 1 =
c^{2}

    \Rightarrow - 4c = 5 \Rightarrow c =
\frac{5}{4}

    \Rightarrow \left\{ \begin{matrix}a = \dfrac{3}{4} \\b = 1 \\c = \dfrac{5}{4} \\\end{matrix} ight.

  • Câu 32: Thông hiểu

    Dãy số (un) được cho bởi \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + 2 \\
\end{matrix} ight.. Hãy tìm khẳng định sai trong các khẳng định sau.

    u_1=1

    u_2=1+2=1+1.2

    u_3=1+2+2=1+2.2

    u_4=1+2+2+2=1+3.2

    ...

    u_n=1+2+⋯+2=1+(n-1).2

    Áp dụng phương pháp quy nạp ta có un = 2n − 1.

  • Câu 33: Thông hiểu

    Ba số hạng đầu của một cấp số nhân là x - 6;xy. Tìm y biết rằng công bội của cấp số nhân là 6?

    Ta có:

    Ba số hạng đầu của một cấp số nhân là x -
6;xy có công bội q = 6

    \Rightarrow \left\{ \begin{matrix}u_{1} = x - 6;q = 6 \\x = u_{2} = u_{1}q = 6(x - 6) \\y = u_{3} = u_{2}q^{2} = 36x \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \dfrac{36}{5} \\y = 36.\dfrac{36}{5} = \dfrac{1296}{5} \\\end{matrix} ight.

  • Câu 34: Thông hiểu

    Cho \left( u_{n} ight) là cấp số cộng biết u_{3} + u_{13} = 80. Tổng 15 số hạng đầu của cấp số cộng đó bằng

    Ta có:

    u_{3} + u_{13} = 80

    \Leftrightarrow (u_{1} + 2d) + (u_{1} +
12d) = 80

    \Leftrightarrow 2u_{1} + 14d =
80

    Vậy S_{15} = \frac{15}{2}\left( 2u_{1} +
14d ight) = \frac{15}{2}.80 = 600

  • Câu 35: Nhận biết

    Trong các dãy số sau dãy số nào là cấp số cộng?

    Ta có:

    u_{n + 1} - u_{n}

    = \left\lbrack 4 + 3(n + 1)
ightbrack - (4 + 3n)

    = 3

    => Dãy số \left( u_{n} ight):u_{n} =
4 + 3n là cấp số cộng.

  • Câu 36: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    a) Xét dãy số đã cho ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4} \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số \left( u_{n} ight) không tăng không giảm.

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}" đúng bằng chứng minh quy nạp.

    c) Công sai d = 5 và số hạng đầu tiên bằng u_{1} = - 2020

    Khi đó số hạng tổng quát của cấp số cộng là

    u_{n} = u_{1} + 5(n - 1)

    \Rightarrow u_{n} = - 2025 +
5n

    d) Từ giả thiết ta có:

    \left\{ \begin{matrix}
u_{1} = 160 \\
u_{6} = 5 \\
\end{matrix} ight.\  \Rightarrow q = \sqrt[5]{\frac{u_{6}}{u_{1}}} =
\frac{1}{2}

    Suy ra tổng các số hạng của cấp số nhân đó là: S = \dfrac{u_{1}\left( 1 - q^{6} ight)}{1 - q} =\dfrac{160.\left\lbrack 1 - \left( \dfrac{1}{2} ight)^{6}ightbrack}{\dfrac{1}{2}} = 315.

  • Câu 37: Nhận biết

    Trong các phát biểu sau, phát biểu nào là sai?

    Ta lấy một phản ví dụ:

    Dãy số (un) với {u_n} = n - 2 là cấp số cộng có công sai d = 1 > 0

    Nhưng dạng khai triển của nó là -1; 0; 1; … không phải một dãy số dương.

  • Câu 38: Nhận biết

    Trong các dãy số sau đây, dãy số nào là cấp số cộng?

    Ta có dãy số 1; - 3; - 7; - 11; -
15 là một cấp số cộng có công sai d
= - 4.

  • Câu 39: Thông hiểu

    Cho một cấp số nhân có 15 số hạng. Đẳng thức nào sau đây là sai?

    Ta có: u_{1}.u_{15} = u_{1}.u_{1}.q^{14}= \left( u_{1}.q^{a - 1} ight).\left( u_{1}.q^{b - 1} ight) =u_{a}.u_{b}

    Với a + b = 16

    Đáp án sai u_{1}.u_{15} =u_{6}.u_{9}

  • Câu 40: Vận dụng

    Cho tập hợp M =
\left\{ 2^{1};2^{2};2^{3};...;2^{2020} ight\}. Số tập hợp con của tập hợp M gồm ba phần tử có thể sắp xếp thành một cấp số nhân tăng là:

    Gọi ba phần tử thỏa mãn yêu cầu bài toán là 2^{a} < 2^{b} < 2^{c} với a,b,c \in \left\{ 1;2;...;2020
ight\}

    2^{a};2^{b};2^{c} lập thành một cấp số nhân

    Suy ra a,b,c lập thành một cấp số cộng

    \Rightarrow a + b = 2c

    Thấy rằng a và c phải cùng tính chẵn lẻ.

    Khi đó số tập con thỏa mãn yêu cầu bài toán là C_{1010}^{2} + C_{1010}^{2} = 1019090

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo