Cho cấp số nhân
có tổng
số hạng đầu tiên là
với
. Tìm số hạng đầu
và công bội
của cấp số nhân đó?
Ta có:
,
.
Cho cấp số nhân
có tổng
số hạng đầu tiên là
với
. Tìm số hạng đầu
và công bội
của cấp số nhân đó?
Ta có:
,
.
Cho dãy số (un), biết un = n ⋅ cosn. Trong các phát biểu sau, có bao nhiêu phát biểu đúng?
(1) (un) là dãy số tăng.
(2) (un) là dãy số bị chặn dưới.
(3) ∀n ∈ ℕ* : un ≤ n.
Vì cos(n) ≤ 1 nên un < n. Phát biểu (3) đúng.
Dãy không tăng, không giảm và không bị chặn dưới.
Vậy có 1 phát biểu đúng trong 3 phát biểu đã cho.
Dãy số nào sau đây không phải là cấp số cộng?
Chỉ cần tồn tại hai cặp số hạng liên tiếp của dãy số có hiệu khác nhau: thì kết luận ngay dãy số đó không phải là cấp số cộng.
Xét đáp án: loại
Xét đáp án: Chọn
Xét đáp án: Loại
Xét đáp án: loại
Cho tam giác ABC có độ dài các cạnh là a, b, c theo thứ tự lập thành một cấp số cộng. Biết
. Tính giá trị x + y.
Ta có:
=> x + y = 4
Cho dãy số (un) xác định bởi
.
Số nguyên dương n nhỏ nhất sao cho
là?
Ta có:
= > un = 1 + 13 + 23 + … + (n−1)3
Ta lại có 13 + 23 + … + (n−1)3
Suy ra
Theo giả thiết ta có
Mà n là số nguyên dương nhỏ nhất nên n = 2020.
Cho cấp số nhân (un) có u1 = -1; u6 = -0,00001. Khi đó công bội q và số hạng tổng quát là:
Ta có:
Một cấp số nhân có số hạng thứ hai bằng 4 và số hạng thứ sáu bằng 64. Khi đó, số hạng tổng quát của cấp số nhân đó có thể tính theo công thức nào dưới đây?
Ta có:
Cho cấp số cộng
với
. Tổng 10 số hạng đầu tiên của dãy là:
Tổng 10 số hạng đầu tiên của dãy là:
Ba góc của một tam giác vuông tạo thành cấp số cộng. Hai góc nhọn của tam giác có số đo (độ) là:
Ba góc A, B, C của một tam giác vuông theo thứ tự đó lập thành một cấp số cộng nên
Cho dãy (un) xác định bởi
và un = un − 1 + 2n với mọi n ≥ 2. Số hạng u50 bằng?
Ta có
Cộng vế với vế các đẳng thức trên, ta được:
.
Cho phương trình bậc ba:
(m là tham số). Tìm m để phương trình có ba nghiệm phân biệt lập thành cấp số nhân.
Ta có:
Để ba nghiệm của phương trình lập thành một cấp số nhân
Cho dãy số (un) có
và c > d > 0. Dãy số (un) là dãy số tăng với điều kiện?
Xét hiệu .
Dãy số (un) là dãy số tăng khi ad − bc > 0
Mà c > d > 0 nên chỉ có điều kiện ở đáp án a > 0, b < 0 để ad − bc > 0.
Cho cấp số cộng
có
. Tính tổng 100 số hạng đầu tiên của cấp số cộng.
Ta có:
Xét các số nguyên dương chia hết cho 3. Tổng 50 số nguyên dương đầu tiên đó bằng:
Ta có:
Số nguyên dương chia hết cho 3 có dạng nên chúng lập thành cấp số cộng
Cho cấp số cộng
có
. Tìm số hạng đầu tiên
.
Ta có:
Cho dãy số
xác định bởi
. Giá trị
là
Ta có: .
Người ta thiết kế một cái tháp gồm 11 tầng theo cách: Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích mặt trên của tầng ngay bên dưới và diện tích bề mặt trên của tầng 1 bằng nửa diện tích đế tháp. Biết diện tích đế tháp là
, tính diện tích mặt trên cùng gần nhất với giá trị nào sau đây?
Gọi là diện tích đế tháp và
là diện tích bề mặt trên của tầng thứ n, với
.
Theo giả thiết ta có:
Dãy số lập thành sấp số nhân với số hạng đầu tiên là
, công sai
.
Diện tích mặt trên cùng của tháp là:
Cho dãy số
biết
. Tìm số hạng tổng quát của dãy số
.
Ta có và
Suy ra dãy số là cấp số nhân với
Do đó
Tế bào E. Coli trong điều kiện nuôi cấy thích hợp cứ 20 phút lại nhân đôi một lần. Nếu lúc đầu có
tế bào thì sau 2 giờ sẽ phân chia thành bao nhiêu tế bào?
Ban đầu có tế bào và mỗi lần phân chia thì một tế bào tách thành hai tế bào nên ta có cấp số nhân với
và công bội
.
Theo bài ra ta có:
Cứ 20 phút phân đôi một lần nên sau 2 giờ có 6 lần phân chia tế bào.
Ta có: là số tế bào nhận được sau 2 giờ.
Vậy số tế bào nhận được sau 2 giờ là
Tính tổng sau ![]()
Ta có:
là tổng của 100 số hạng đầu tiên của cấp số cộng có
.
Cho cấp số cộng (un) có
;
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?
Ta có: không có dạng
nên không phải là cấp số cộng.
Cho cấp số nhân (un) có số hạng đầu u1 = 5; công bội q = -2. Số hạng thứ sáu của (un) là:
Ta có:
Cho cấp số cộng (un) có các số hạng đầu lần lượt là 5; 9; 13; 17; …. Tìm số hạng tổng quát un của cấp số cộng.
Các số 5; 9; 13; 17; …. theo thứ tự lập thành một cấp số cộng (un) nên:
Cho cấp số nhân
có
và công bội
. Số hạng tổng quát của cấp số nhân
là
Số hạng tổng quát của cấp số nhân là
.
Một cấp số nhân có 6 số hạng, số hạng đầu bằng 2 và số hạng thứ sáu bằng 486. Tìm công bội q của cấp số nhân đã cho.
Ta có:
Cấp số nhân có số hạng đầu bằng 2 và số hạng thứ sáu bằng 486
=>
=>
=> =>
Vậy công bội q của cấp số nhân đã cho là q = 3
Cho dãy số
, biết
. Mệnh đề nào sau đây sai?
Ta có:
Vậy mệnh đề sai là:
Cho cấp số nhân có số hạng thứ bảy là
và công bội
. Hỏi số hạng đầu tiên của cấp số nhân bằng bao nhiêu?
Ta có:
Cho cấp số nhân
có
. Số
là số hạng thứ mấy của cấp số nhân đã cho?
Ta có:
Cho tổng S(n) = 2 + 4 + 6 + … + 2n. Khi đó S30 bằng?
Ta có S30 = 2 + 4 + 6 + … + 60
⇒ 2S30 = (2+60) + (4+58) + (6+56) + … + (60+2) (có 30 ngoặc đơn)
Cho dãy số
có số hạng tổng quát
. Biết rằng
. Khi đó
là số hạng thứ mấy trong dãy số?
Ta có:
Vậy là số hạng thứ tư trong dãy số.
Tìm z để 2; 8; z; 128 lập thành một cấp số nhân.
Dãy số 2; 8; z; 128 theo thứ tự là u1; u2; u3; u4 ta có:
Cho dãy số
xác định bởi
với
. Khi đó số hạng
của dãy
là
Ta có:
Cho cấp số nhân
với
. Viết bốn số hạng đầu tiên của cấp số nhân.
Ta có:
Cho cấp số cộng
. Tính ![]()
Ta có:
Cho dãy số
với
với mọi
. Khi đó số hạng
của dãy
là:
Ta có:
Cho cấp số cộng (Un) có u1 = -2 và công sai d = 3. Tìm số hạng u10
Ta có:
Cho dãy số
với
. Số
là số hạng thứ bao nhiêu của dãy số đó?
Ta có
.
Vậy 19 là số hạng thứ 7 của dãy số đã cho.
Xác định số hạng đầu u1 và công sai d của cấp số cộng (un) có u9 = 5u2 và u13 = 2u6 + 5.
Ta có:
Cho cấp số nhân (un) có u1 = 2 và u2 = -8. Mệnh đề nào sau đây đúng?
Ta có: