Cho cấp số nhân
có
. Tính
.
Ta có
Vậy .
Cho cấp số nhân
có
. Tính
.
Ta có
Vậy .
Một cấp số nhân có
số hạng, công bội q bằng
số hạng thứ nhất, tổng hai số hạng đầu bằng
. Xác định cấp số nhân?
Theo bài ra ta có:
Cho một cấp số cộng (Un) có
. Công sai d của cấp số cộng là:
Ta có:
Cho cấp số cộng
có
. Tìm công sai
của cấp số cộng?
Gọi d là công sai của cấp số cộng khi đó ta có:
Cho cấp số nhân (un) có
và công bội q = 3. Số hạng u2 là:
Ta có: u2 = u1 . q = -2 . 3 = -6
Cho cấp số cộng
có số hạng đầu
và công sai
. Số 100 là số hạng thứ mấy của cấp số cộng?
Ta có:
Tính tổng ![]()
Ta có:
Cho dãy số
với
với mọi
. Khi đó số hạng
của dãy
là:
Ta có:
Cho dãy số
có số hạng tổng quát
. Biết rằng
. Khi đó
là số hạng thứ mấy trong dãy số?
Ta có:
Vậy là số hạng thứ tư trong dãy số.
Cho hai dãy số (un), (vn) được xác định như sau u1 = 3, v1 = 2 và
với n ≥ 2. Công thức tổng quát của hai dãy (un) và (vn) là?
Chứng minh
Ta có
Mặt khác nên (1) đúng với n = 1 Giả sử
, ta có
Vậy (1) đúng với ∀n ≥ 1
Ta có
Do đó ta suy ra:
Trong các dãy số sau, dãy số nào là cấp số nhân?
Dãy số 1, 2, 4, 8, 16 tuân theo quy luật
=> Dãy số đó là cấp số nhân
Cho dãy số
xác định bởi
. Khi đó
có giá trị bằng
Theo công thức truy hồi ta có
.
Với giá trị nào của
thì các số hạng
theo thứ tự đó lập thành cấp số nhân?
Ta có: các số hạng lập thành cấp số nhân
Vậy
Khẳng định nào sau đây là khẳng định sai?
Khẳng định sai là: “Số hạng tổng quát của cấp số cộng là
với công sai
và số hạng đầu
.”
Cho cấp số nhân
có công bội âm. Biết
. Khi đó ![]()
Ta có:
Cho dãy xác định bởi công thức
. Số hạng tổng quát của dãy un là?
Ta có
Ta đi chứng minh cho dãy số có số hạng tổng quát là
Thật vậy, n = 1 thì u1 = 3 (đúng).
Giả sử với n = k(k≥1) thì . Ta đi chứng minh
Ta có (điều phải chứng minh).
Vậy số hạng tổng quát của dãy số là
Cho các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng. Tìm a?
Đặt u1 = -4; u2 = 1; u3 = 6; u4 = a
Theo bài ra ta có:
Các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng
=> u3 – u2 = u4 – u3
=> 6 – 1 = a – 6
=> a = 11
Cho dãy số
, biết
. Số
là số hạng thứ mấy của dãy số?
Ta có:
Vậy số là số hạng thứ 7 của dãy số.
Cho cấp số cộng (Un) có u1 = -2 và công sai d = 3. Tìm số hạng u10
Ta có:
Cho dãy số (un) biết
.
Mệnh đề nào sau đây đúng?
Dự đoán dãy giảm sau đó chứng minh un + 1 − un < 0 bằng quy nạp toán học.
Từ giả thiết suy ra un > 0, ∀n ∈ ℕ*.
Ta có
Giả sử: uk + 1 − uk < 0, ∀k ≥ 1
Xét hiệu
Theo nguyên lí quy nạp suy ra un + 1 − un < 0, ∀n ∈ ℕ*
Vậy dãy số (un) là dãy số giảm.
Cho
và
là một số nguyên. Khi đó với mọi số nguyên dương
, có kết luận gì về
?
Ta có:
là một số nguyên
cũng là một số nguyên
Ta sẽ chứng minh là một số nguyên.
Ta có:
là một số nguyên
Giả sử là số nguyên với
. Ta sẽ chứng minh
cũng là số nguyên.
Ta có:
Theo giả thiết quy nạp ta có:
Vậy là một số nguyên.
Cho dãy (un) xác định bởi
và un = un − 1 + 2n với mọi n ≥ 2. Số hạng u50 bằng?
Ta có
Cộng vế với vế các đẳng thức trên, ta được:
.
Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?
Xét dãy số ta có:
d không cố định => Dãy số không phải là một cấp số cộng.
Xét các số nguyên dương chia hết cho 3. Tổng 50 số nguyên dương đầu tiên đó bằng:
Ta có:
Số nguyên dương chia hết cho 3 có dạng nên chúng lập thành cấp số cộng
Cho cấp số nhân
. Hỏi số
là số hạng thứ mấy trong cấp số nhân đã cho?
Ta có: là cấp số nhân với
Trong các phát biểu sau, có bao nhiêu phát biểu đúng?
(1) Dãy số được xác định bởi
là một dãy bị chặn.
(2) Dãy số được xác định bởi an = n2 là một dãy giảm.
(3) Dãy số được xác định bởi an = 1 − n2 là một dãy số giảm và không bị chặn dưới.
(4) Dãy số được xác định bởi an = (−1)nn2 là một dãy không tăng, không giảm.
nên dãy số xác định bởi
là một dãy bị chặn.
an + 1 − an = (n+1)2 − n2 = 2n + 1 > 0, ∀n ∈ ℕ* nên dãy số xác định bởi an = n2 là dãy tăng.
an + 1 − an = (1−(n+1)2) − (1−n2) = 2n − 1 > 0, ∀n ∈ ℕ* nên dãy số xác định bởi an = 1 − n2 là dãy số giảm và không bị chặn dưới.
a1 = − 1 < a2 = 4 > a3 = − 9 nên dãy số xác định bởi an = (−1)nn2 là dãy không tăng không giảm.
Cho cấp số cộng
có
. Tìm số hạng đầu tiên
.
Ta có:
Cho cấp số nhân
có
. Số
là số hạng thứ mấy của cấp số nhân đã cho?
Ta có:
Mà n là số chẵn và
Bác Hoa mua nhà trị giá 900 triệu đồng theo phương thức trả góp. Nếu bác Hoa muốn trả hết nợ trong 3 năm và phải trả lãi mức 6% trên năm thì mỗi tháng bác phải trả bao nhiêu tiền?
Gọi x (đồng) là số tiền bác Hoa phải trả mỗi năm. (Điều kiện x > 0)
Ta có:
(đồng)
Vậy số tiền bác Hoa phải trả mỗi tháng là (đồng).
Một cấp số nhân có số hạng đầu
, công bội q = 2. Biết
. Tìm n?
Ta có:
Dãy số
là cấp số nhân với
Cấp số nhân
Cấp số nhân
có số hạng tổng quát là
. Số hạng đầu tiên và công bội của cấp số nhân đó là
Theo công thức số hạng tổng quát của cấp số nhân ta suy ra và
.
Cho dãy số (un) là một cấp số nhân có số hạng đầu u1 và công bội q. Đẳng thức nào sau đây sai?
Từ định nghĩa cấp số nhân ta có các kết quả sau:
Đáp án C sai
Cho cấp số cộng
thỏa mãn
. Tính công sai
của cấp số cộng đó:
Ta có:
Tìm m để phương trình:
có bốn nghiệm lập thành một cấp số cộng?
Giả sử bốn nghiệm phân biệt của phương trình
Đặt , ta được phương trình:
Ta phải tìm m sao cho (*) có hai nghiệm dương phân biệt
Khi đó (*) có 4 nghiệm là
Theo đề bài thì bốn nghiệm lập thành một cấp số cộng nên
Áp dụng hệ thức Vi – et cho phương trình (*) ta có hệ:
Biết các số
theo thứ tự lập thành một cấp số cộng với n > 3. Tìm n
Ta có:
Các số theo thứ tự lập thành một cấp số cộng với n > 3
Cho dãy số (un) có un = − n2 + n + 1. Số − 19 là số hạng thứ mấy của dãy?
Giả sử un = − 19(n∈ℕ*) Suy ra (do n∈ℕ*).
Vậy số − 19 là số hạng thứ 5 của dãy.
Cho dãy số (un) xác định bởi
.
Số nguyên dương n nhỏ nhất sao cho
là?
Ta có:
= > un = 1 + 13 + 23 + … + (n−1)3
Ta lại có 13 + 23 + … + (n−1)3
Suy ra
Theo giả thiết ta có
Mà n là số nguyên dương nhỏ nhất nên n = 2020.
Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một cấp số cộng. Độ dài các cạnh của tam giác đó là:
Ba cạnh của một tam giác theo thứ tự là với
lập thành một cấp số cộng nên
Ta có:
Cho cấp số cộng
có số hạng đầu và công sai lần lượt là
. Số hạng thứ
bằng:
Ta có: