Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tìm x và y để dãy số 9;x; - 1;y là một cấp số cộng?

    Để dãy số 9;x; - 1;y là một cấp số cộng thì \left\{ \begin{matrix}x = \dfrac{9 - 1}{2} \\- 1 = \dfrac{x + y}{2} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = 4 \\y = - 6 \\\end{matrix} ight.

  • Câu 2: Nhận biết

    Dãy số nào sau đây là cấp số nhân?

    Ta có: \left( u_{n} ight) là cấp số nhân \Leftrightarrow u_{n + 1} =
q.u_{n}

    Dãy số lập thành cấp số nhân là \left\{
\begin{matrix}
u_{1} = - 1 \\
u_{n + 1} = - 3u_{n};n \geq 1 \\
\end{matrix} ight.

  • Câu 3: Nhận biết

    Cho dãy số \left( u_{n} ight), biết u_{n} = \frac{n}{2^{n}}. Chọn đáp án đúng.

    Ta có: u_{4} = \frac{4}{2^{4}} =
\frac{4}{16} = \frac{1}{4}

  • Câu 4: Nhận biết

    Cho cấp số cộng (un) có các số hạng đầu lần lượt là 5; 9; 13; 17; …. Tìm số hạng tổng quát un của cấp số cộng.

    Các số 5; 9; 13; 17; …. theo thứ tự lập thành một cấp số cộng (un) nên:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} =  - 3} \\   {d = {u_2} - {u_1} = 4} \end{array}\mathop  \to \limits^{CTTQ} } ight.{u_n} = {u_1} + \left( {n - 1} ight)d = 5 + 4\left( {n - 1} ight) = 4n + 1 \hfill \\   \Rightarrow {u_n} = 4n + 1 \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu

    Tìm x để ba số 1
+ x;9 + x;33 + x theo thứ tự đó lập thành một cấp số nhân.

    Ta có:

    Ba số 1 + x;9 + x;33 + x theo thứ tự đó lập thành một cấp số nhân

    \Rightarrow (9 + x)^{2} = (1 + x).(33 +
x)

    \Rightarrow 81 + 18x + x^{2} = x^{2} +
34x + 33

    \Rightarrow 16x = 48

    \Rightarrow x = 3

  • Câu 6: Thông hiểu

    Cho cấp số cộng (Un) có u1 = -2 và công sai d = 3. Tìm số hạng u10

    Ta có: {u_{10}} = {u_1} + \left( {10 - 1} ight)d = {u_{10}} =  - 2 + 9.3 = 25

  • Câu 7: Nhận biết

    Dãy số u_{n} = 2^{n} là cấp số nhân với

    Cấp số nhân 1;2;4;8;16;32;...

    \Rightarrow \left\{ \begin{matrix}u_{1} = 1 \\q = \dfrac{u_{2}}{u_{1}} = 2 \\\end{matrix} ight.

  • Câu 8: Nhận biết

    Hãy liệt kê năm số hạng đầu của dãy số \left( u_{n} ight) có số hạng tổng quát u_{n} = 3^{n} + n - 2;\left( n \in
\mathbb{N}^{*} ight)?

    Ta có:

    u_{1} = 3^{1} + 1 - 2 = 2

    u_{2} = 3^{2} + 2 - 2 = 9

    u_{3} = 3^{3} + 3 - 2 = 28

    u_{4} = 3^{4} + 4 - 2 = 83

    u_{5} = 3^{5} + 5 - 2 = 246

    Vậy năm số hạng đầu tiên của dãy số là 2;9;28;83;246

  • Câu 9: Vận dụng cao

    Tính giá trị u2018 của dãy số (un) xác định bởi {u_1} = 1;{u_{n + 1}} = \frac{1}{3}\left( {2{u_n} + \frac{{n - 1}}{{{n^2} + 3n + 2}}} ight);\left( {n \in {\mathbb{N}^*}} ight)

    Ta có:

    \begin{matrix}  {u_{n + 1}} = \dfrac{1}{3}\left( {2{u_n} + \dfrac{{n - 1}}{{{n^2} + 3n + 2}}} ight) \hfill \\  {u_{n + 1}} = \dfrac{1}{3}\left( {2{u_n} + \dfrac{3}{{n + 2}} - \dfrac{2}{{n + 1}}} ight) \hfill \\  {u_{n + 1}} = \dfrac{2}{3}{u_n} + \dfrac{1}{{n + 2}} - \dfrac{2}{3}.\dfrac{1}{{n + 1}} \hfill \\  {u_{n + 1}} - \dfrac{1}{{n + 2}} = \dfrac{2}{3}\left( {{u_n} - \dfrac{1}{{n + 1}}} ight)\left( * ight) \hfill \\ \end{matrix}

    Đặt {v_n} = {u_n} - \frac{1}{{n + 1}} \Rightarrow {v_{n + 1}} = \frac{2}{3}{v_n}

    => Dãy số (vn) là cấp số nhân với {v_1} = {u_1} - \frac{1}{2} = \frac{1}{2};q = \frac{2}{3}

    => {v_n} = {v_1}.{q^{n - 1}} = \frac{1}{2}.{\left( {\frac{2}{3}} ight)^{n - 1}}

    \begin{matrix}   \Rightarrow {u_n} - \dfrac{1}{{n + 1}} = \dfrac{1}{2}.{\left( {\dfrac{2}{3}} ight)^{n - 1}} \hfill \\   \Rightarrow {u_n} = \dfrac{1}{2}.{\left( {\dfrac{2}{3}} ight)^{n - 1}} + \dfrac{1}{{n + 1}} \hfill \\   \Rightarrow {u_{2018}} = \dfrac{1}{2}.{\left( {\dfrac{2}{3}} ight)^{2017}} + \dfrac{1}{{2019}} = \dfrac{{{2^{2016}}}}{{{3^{2017}}}} + \dfrac{1}{{2019}} \hfill \\ \end{matrix}

  • Câu 10: Thông hiểu

    Cho cấp số nhân (un) biết u1 = 12; \frac{{{u_3}}}{{{u_8}}} = 243. Tính {u_9}

    Gọi q là công bội của cấp số nhân (un)

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_3} = {u_1}.{q^2}} \\   {{u_8} = {u_1}.{q^7}} \end{array}} ight. \Rightarrow \dfrac{{{u_3}}}{{{u_8}}} = \dfrac{{{u_1}.{q^2}}}{{{u_1}.{q^7}}} = \dfrac{1}{{{q^5}}} \hfill \\   \Rightarrow q = d\frac{1}{3} \hfill \\   \Rightarrow {u_9} = {u_1}.{q^8} = 12.{\left( {\dfrac{1}{3}} ight)^8} = \dfrac{4}{{2187}} \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

  • Câu 12: Vận dụng

    Từ hình vuông đầu tiên có cạnh bằng 1 (đơn vị độ dải), nối các trung điểm của bốn cạnh để có hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh của hình vuông thứ hai để được hình vuông thứ ba. Cứ tiếp tục làm như thế, nhận được một dãy hình vuông (xem Hình 5).

    Kí hiệu p_{n} là chu vi của hình vuông thứ nQ_{n} là tổng chu vi của n hình vuông đầu tiên. Viết công thức tính p_{n}Q_{n}(n = 1,2,3,\ldots) và tìm lim Q_{n} (giới hạn này nếu có được gọi là tổng chu vi của các hình vuông).

    Đáp án: 13,66

    Đáp án là:

    Từ hình vuông đầu tiên có cạnh bằng 1 (đơn vị độ dải), nối các trung điểm của bốn cạnh để có hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh của hình vuông thứ hai để được hình vuông thứ ba. Cứ tiếp tục làm như thế, nhận được một dãy hình vuông (xem Hình 5).

    Kí hiệu p_{n} là chu vi của hình vuông thứ nQ_{n} là tổng chu vi của n hình vuông đầu tiên. Viết công thức tính p_{n}Q_{n}(n = 1,2,3,\ldots) và tìm lim Q_{n} (giới hạn này nếu có được gọi là tổng chu vi của các hình vuông).

    Đáp án: 13,66

    Ta có:

    p_{n} = 4 \cdot \frac{1}{(\sqrt{2})^{n -
1}}

    Q_{n} = 4 + 4 \cdot \frac{1}{\sqrt{2}} +
4 \cdot \frac{1}{(\sqrt{2})^{2}} + \ldots + 4 \cdot
\frac{1}{(\sqrt{2})^{n - 1}}

    = 4 \cdot \frac{1}{1 -
\frac{1}{\sqrt{2}}} \approx 13,66

  • Câu 13: Nhận biết

    Cho cấp số nhân (un) có u1 = 1; q = 2. Hỏi số 1024 là số hạng thứ mấy?

    Ta có:

    \begin{matrix}  {u_n} = {u_1}.{q^{n - 1}} \hfill \\   \Leftrightarrow {1.2^{n - 1}} = 1024 \hfill \\   \Leftrightarrow {2^{n - 1}} = {2^{10}} \hfill \\   \Rightarrow n - 1 = 10 \hfill \\   \Rightarrow n = 11 \hfill \\ \end{matrix}

  • Câu 14: Nhận biết

    Cho cấp số cộng (u_{n}) có u_{3}=15 và d=-2 . Tìm u_{n} 

    Ta có: 

    \begin{matrix}  {u_3} = 15 \hfill \\   \Leftrightarrow {u_1} + 2d = 15 \hfill \\   \Rightarrow {u_1} = 19 \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow {u_n} = {u_1} + \left( {n - 1} ight).d \hfill \\   = 19 + \left( {n - 1} ight).\left( { - 2} ight) \hfill \\   = 21 - 2n \hfill \\   \Rightarrow {u_n} =  - 2n + 21 \hfill \\ \end{matrix}

  • Câu 15: Nhận biết

    Cho dãy số \left( u_{n} ight) với u_{n} = 2n + 5. Số 19 là số hạng thứ bao nhiêu của dãy số đó?

    Ta có

    u_{n} = 19 \Leftrightarrow 2n + 5 =
19

    \Leftrightarrow 2n = 14 \Leftrightarrow n
= 7.

    Vậy 19 là số hạng thứ 7 của dãy số đã cho.

  • Câu 16: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight). Hãy chọn hệ thức đúng trong các hệ thức sau:

    Xét đáp án \dfrac{u_{10} + u_{20}}{2} =u_{5} + u_{10}

    \left\{ \begin{matrix}\dfrac{u_{10} + u_{20}}{2} = \dfrac{u_{1} + 9d + u_{1} + 29d}{2} \\u_{5} + u_{10} = u_{1} + 4d + u_{1} + 9d \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{u_{10} + u_{20}}{2} = u_{1} + 19d \\u_{5} + u_{10} = 2u_{1} + 13d \\\end{matrix} ight.

    Xét đáp án u_{90} + u_{210} =
2u_{150}

    \left\{ \begin{matrix}u_{90} + u_{210} = 2u_{1} + 298d \\2u_{150} = 2\left( u_{1} + 149d ight) \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{90} + u_{210} = 2\left( u_{1} + 149d ight) \\2u_{150} = 2\left( u_{1} + 149d ight) \\\end{matrix} ight.

    Vậy hệ thức đúng là u_{90} + u_{210} =
2u_{150}

  • Câu 17: Thông hiểu

    Trong các dãy số dưới đây, dạy số nào không phải là cấp số nhân lùi vô hạn?

     Vì dãy ở đáp án C là một cấp số nhân có công bội q = 3/2 > 0

    \frac{3}{2};\frac{9}{4};\frac{{27}}{8};..;{\left( {\frac{3}{2}} ight)^n};...=> không phải dãy lùi vô hạn

  • Câu 18: Nhận biết

    Cho cấp số cộng có số hạng đầu {u_1} =  - \frac{1}{2} công sai d = \frac{1}{2}. Năm số hạng liên tiếp đầu tiên của cấp số này là:

    Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight)d,\left( {{u_1} =  - \dfrac{1}{2};d = \dfrac{1}{2}} ight) \hfill \\   \Rightarrow {u_n} =  - \dfrac{1}{2} + \left( {n - 1} ight).\dfrac{1}{2} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_2} = {u_1} + d = 0} \\   {{u_3} = {u_2} + d = \dfrac{1}{2}} \\   {{u_4} = {u_3} + d = 1} \\   {{u_5} = {u_4} + d = \dfrac{3}{2}} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu

    Trong các dãy số sau, dãy số nào bị chặn trên?

    Ta có:

    \left( v_{n} ight):v_{n} = - n^{2} + 2
\leq 2.

    Vậy đây là dãy số bị chặn trên.

  • Câu 20: Thông hiểu

    Cho các dãy số sau. Dãy số nào là dãy số tăng?

    Xét đáp án 1;1;1;1;1;1... dãy là dãy hằng nên không tăng không giảm.

    Xét đáp án 1;\frac{-1}{2};\frac{1}{4};\frac{-1}{8};\frac{1}{16};... \Rightarrow {u_1} > {u_2} < {u_3} (Loại)

    Xét đáp án 1;3;5;7;9;.... \Rightarrow {u_n} < {u_{n + 1}};n \in {\mathbb{N}^*} (Chọn)

    Xét đáp án 1;\frac{1}{2};\frac{1}{4};\frac{1}{8};\frac{1}{16};... Rightarrow {u_1} > {u_2} > {u_3}.... > {u_n} > ... (Loại)

  • Câu 21: Vận dụng cao

    Trong các dãy số sau dãy số nào bị chặn?

    Xét dãy (an)a_{n} = \sqrt{n^{3} + n} > 0,\forall n \in
\mathbb{N}^{*} nên dãy số (an) bị chặn dưới.

    Xét dãy (bn)b_{n} = n^{2} + \frac{1}{2n} > 0,\forall n \in
\mathbb{N}^{*} nên dãy số (bn) bị chặn dưới.

    Xét dãy (cn)cn = (−2)n + 3, ∀n ∈ ℕ* nên dãy số (cn) không bị chặn.

    Xét dãy (dn)d_{n} = \frac{3n}{n^{2} + 2},\forall n \in
\mathbb{N}^{*}.

    Ta có

    n^3-3n+2=(n-1)^2 (n+2)≥0,∀n∈N^*

    ⇒n^3+2≥3n⇒0<3n/(n^2+2)≤1

    ⇒(d_n ) bị chặn.

  • Câu 22: Nhận biết

    Trong các dãy số sau, dãy số nào lập thành một cấp số cộng?

    Xét đáp án A: 1; -3; -7; -11; -15; …

    => u2 – u1 = u3 – u2 = u4 – u3 = -4 => Chọn đáp án A

    Xét đáp án B: 1; -3; -7; -11; -15; …

    => u2 – u1 = -4 ≠ u3 – u2 = -3 => Loại đáp án B

    Xét đáp án C: 1; -3; -7; -11; -15; …

    => u2 – u1 = -3 ≠ u3 – u2 = -2 => Loại đáp án C

    Xét đáp án D: 1; -3; -7; -11; -15; …

    => u2 – u1 = -4 ≠ u3 – u2 = -2 => Loại đáp án D

  • Câu 23: Nhận biết

    Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên n ≥ p (p là một
    số tự nhiên). Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với n bằng:

    Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với n bằng n=p

  • Câu 24: Vận dụng

    Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17. Tổng của số hạng thứ hai và số hạng thứ tư là 14. Tính công sai d của cấp số cộng đã cho.

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_6} = 17} \\   {{u_2} + {u_4} = 14} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {2{u_1} + 5d = 17} \\   {2{u_1} + 6d = 14} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 16} \\   {d =  - 3} \end{array}} ight.

  • Câu 25: Nhận biết

    Trong các dãy số \left( u_{n} ight) cho bởi số hạng tổng quát u_{n}, dãy nào là cấp số nhân?

    Dãy u_{n} = \frac{1}{3^{n - 2}} =
9.\left( \frac{1}{3} ight)^{n} là cấp số nhân có \left\{ \begin{matrix}u_{1} = 3 \\q = \dfrac{1}{3} \\\end{matrix} ight.

  • Câu 26: Vận dụng

    Cho dãy số (un) biết un = 3n + 6. Mệnh đề nào sau đây đúng?

    Ta có un = 3n + 6 ⇒ un + 1 = 3(n+1) + 6 = 3n + 9

    Xét hiệu un + 1 − un = (3n+9) − (3n+6) = 3 > 0, ∀n ∈ N*

    Vậy (un) là dãy số tăng.

  • Câu 27: Thông hiểu

    Cho dãy số \left(
u_{n} ight) biết u_{n} = \frac{3n
- 1}{3n + 1}. Dãy số \left( u_{n}
ight) bị chặn trên bởi số nào dưới đây?

    Ta có: u_{n} = \frac{3n - 1}{3n + 1} = 1
- \frac{2}{3n + 1} < 1

    Mặt khác u_{2} = \frac{5}{7} >
\frac{1}{2} > 0

    => Dãy số \left( u_{n}
ight) bị chặn trên bởi số 1.

  • Câu 28: Thông hiểu

    Tìm z để 2; 8; z; 128 lập thành một cấp số nhân.

    Dãy số 2; 8; z; 128 theo thứ tự là u1; u2; u3; u4 ta có:

    \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{u_2}}}{{{u_1}}} = \dfrac{{{u_3}}}{{{u_2}}}} \\   {\dfrac{{{u_2}}}{{{u_1}}} = \dfrac{{{u_3}}}{{{u_2}}}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\dfrac{8}{2} = \dfrac{z}{8}} \\   {\dfrac{{128}}{z} = \dfrac{z}{8}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {z = 32} \\   {{z^2} = 1024} \end{array}} ight. \Rightarrow z = 32

  • Câu 29: Thông hiểu

    Giá tiền công khoan giếng ở cơ sở A được tính như sau: Giá của mét khoan đầu tiên là 8000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 500 đồng so với giá của mét khoan ngay trước nó. Vậy muốn khoan 20 mét thì mất bao nhiêu đồng?

     Theo bài ra ta có:

    Giá các mét khoan lập thành một cấp số cộng với công sai d = 500, số hạng đầu là 8000.

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 8000} \\   {d = 500} \end{array}} ight.

    => Số tiền phải trả khi khoan giếng sâu 20m là:

    \begin{matrix}  {S_{20}} = \dfrac{{20.\left( {2{u_1} + 19.d} ight)}}{2} \hfill \\   \Rightarrow {S_{20}} = 10.\left( {2.8000 + 19.500} ight) = 255000 \hfill \\ \end{matrix}

    Vậy muốn khoan 20 mét thì mất 255000 đồng.

  • Câu 30: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight)u_{1} = - 1;q = - \frac{1}{10}. Số \frac{1}{10^{103}} là số hạng thứ mấy của cấp số nhân đã cho?

    Ta có:

    u_{n} = \frac{1}{10^{103}}

    \Rightarrow u_{1}.q^{n - 1} =
\frac{1}{10^{103}}

    \Rightarrow ( - 1)\left( - \frac{1}{10}
ight)^{n - 1} = 6561

    Mà n là số chẵn và n - 1 = 103

    \Rightarrow n = 104

  • Câu 31: Vận dụng

    Tổng n số hạng đầu tiên của một cấp số cộng là S_{n} = \frac{3n^{2} - 19n}{4};\left( n
\in \mathbb{N}^{*} ight). Tìm số hạng đầu tiên u_{1} và công sai d của cấp số cộng đã cho.

    Ta có:

    S_{n} = \frac{3n^{2} - 19n}{4} =
\frac{3}{4}n^{2} - \frac{19}{4}n

    Mặt khác

    S_{n} = n.u_{1} + \frac{n(n - 1)d}{2} =
\frac{d}{2}.n^{2} + \left( u_{1} - \frac{d}{2} ight).n

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{d}{2} = \dfrac{3}{4} \\u_{1} - \dfrac{d}{2} = - \dfrac{19}{4} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} = - 4 \\d = \dfrac{3}{2} \\\end{matrix} ight.

  • Câu 32: Vận dụng

    Cho khai triển {\left( {x - 2y + m} ight)^4}. Tìm m để tổng các hệ số của khai triển bằng 0.

    Tổng các hệ số của khai triển là giá trị của biểu thức tại x=y=1

    Vậy tổng các hệ số của khai triển là: {\left( {1 - 2.1 + m} ight)^4} = {\left( {m - 1} ight)^4}

    Để tổng các hệ số khai triển bằng 0 thì {\left( {m - 1} ight)^4} = 0 \Leftrightarrow m = 1

  • Câu 33: Vận dụng cao

    Cho một dãy số có các số hạng đầu tiên là 1; 8; 22; 43; … Hiệu của hai số hạng liên tiếp của dãy số đó lập thành một cấp số cộng 7; 14; 21; …, 7n. Số 35351 là số hạng thứ mấy của cấp số đã cho?

    Theo đề bài ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_2} - {u_1} = 7} \\   {{u_3} - {u_2} = 14} \\   {{u_4} - {u_3} = 21} \\   \begin{gathered}  ..... \hfill \\  {u_n} - {u_{n - 1}} = 7\left( {n - 1} ight) \hfill \\ \end{gathered}  \end{array}} ight.

    Cộng các vế của các phương trình của hệ ta được:

    {u_n} - {u_1} = 7 + 14 + 21 + ... + 7\left( {n - 1} ight) = \frac{{7.n\left( {n - 1} ight)}}{2}\left( * ight)

    Đặt {u_n} = 35351

    Từ (*) suy ra:

    \begin{matrix}  35351 - 1 = \dfrac{{7n\left( {n - 1} ight)}}{2} \hfill \\   \Leftrightarrow {n^2} - n - 10100 = 0 \hfill \\   \Leftrightarrow n = 101 \hfill \\ \end{matrix}

    Do đó 35351 là số hạng thứ 101 của dãy số

  • Câu 34: Thông hiểu

    Cho cấp số cộng (u_{n}) có các số hạng đầu lần lượt là 5; 9; 13; 17;... Tìm số hạng tổng quát u_{n} của cấp số cộng.

    Theo bài ra ta có:

    Dãy số đã cho là cấp số cộng

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 5} \\   {{u_2} = 9} \end{array} \Rightarrow d = {u_2} - {u_1} = 4} ight.

    => {u_n} = {u_1} + \left( {n - 1} ight).d = 4n + 1

    Vậy số hạng tổng quát của dãy số là: u_n=4n+1

  • Câu 35: Vận dụng

    Xét tính bị chặn của dãy số u_{n} = \frac{1}{1.3} + \frac{1}{2.4} + \ldots +
\frac{1}{n(n + 2)}, ta thu được kết quả?

    Ta có 0 < u_{n} < \frac{1}{1.2} +
\frac{1}{2.3} + \ldots + \frac{1}{n \cdot (n + 1)} = 1 - \frac{1}{n + 1}
< 1

    Dãy (un) bị chặn.

  • Câu 36: Thông hiểu

    Cho cấp số nhân với các số hạng lần lượt là a; 12; b; 192. Mệnh đề nào dưới đây đúng?

     Ta có: Cấp số nhân với các số hạng lần lượt là a; 12; b; 192

    \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{12}}{a} = \dfrac{b}{{12}}} \\   {\dfrac{b}{{12}} = \dfrac{{192}}{b}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = \dfrac{{144}}{y}} \\   {{b^2} = 2034} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a =  \pm 3} \\   {b =  \pm 48} \end{array}} ight.

  • Câu 37: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) với công bội q eq
1. Đặt S_{n} = u_{1} + u_{2} + ...
+ u_{n}. Khẳng định nào sau đây đúng?

    Theo công thức tính tổng n số hạng đầu của CSN ta được S_{n} =
\frac{u_{1}\left( 1 - q^{n} ight)}{1 - q}.

  • Câu 38: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{n} = - 2 \\
u_{n + 1} = - 2 - \frac{1}{u_{n}} \\
\end{matrix} ight.. Công thức số hạng tổng quát của dãy số là?

    Ta có u_{1} = - \frac{3}{2};u_{2} = -
\frac{4}{3};u_{3} = - \frac{5}{4};\ldots suy ra được u_{n} = - \frac{n + 1}{n}.

  • Câu 39: Nhận biết

    Biết bốn số 5;x;15;y theo thứ tự lập thành cấp số cộng. Giá trị của biểu thức 3x + 2y bằng

    Ta có:

    x = \frac{5 + 15}{2} = 10 \Rightarrow y= 20

    \Rightarrow 3x + 2y = 70

  • Câu 40: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) với \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.. Công thức số hạng tổng quát của cấp số cộng này là:

    Ta có:

    \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left( u_{1} + d ight) + \left( u_{1} + 2d ight) - \left( u_{1} + 5d
ight) = 7 \\
\left( u_{1} + 3d ight) + \left( u_{1} + 7d ight) = - 14 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} - 2d = 7 \\
2u_{1} + 10d = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 3 \\
d = - 2 \\
\end{matrix} ight.

    \Rightarrow u_{n} = 3 + (n - 1)( - 2) =
5 - 2n

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo