Cấp số nhân
có số hạng tổng quát là
. Số hạng đầu tiên và công bội của cấp số nhân đó là
Theo công thức số hạng tổng quát của cấp số nhân ta suy ra và
.
Cấp số nhân
có số hạng tổng quát là
. Số hạng đầu tiên và công bội của cấp số nhân đó là
Theo công thức số hạng tổng quát của cấp số nhân ta suy ra và
.
Tìm tất cả các giá trị của x để ba số
theo thứ tự lập thành một cấp số nhân.
Ta có:
Ba số theo thứ tự lập thành một cấp số nhân
Cho cấp số nhân
có
. Tính tổng 10 số hạng đầu tiên của cấp số nhân đã cho.
Ta có:
Cho dãy số
là cấp số cộng với:
Ta có: là một cấp số cộng
=>
Cho dãy số (un), biết
. Khẳng định nào sau đây đúng về dãy số (un) ?
Ta có
Do un + 1 − un > 0 nên (un) là dãy số tăng.
Lại có suy ra dãy số bị chặn.
Cho một cấp số cộng
có
. Giá trị
bằng bao nhiêu?
Ta có:
Tổng của 16 số hạng đầu tiên của cấp số cộng là:
Xen vào giữa hai số 4 và 40 bốn số để được một cấp số cộng có công sai lớn hơn 3. Tìm tổng 4 số đó.
Sau khi chèn 4 số vào giữa hai số 4 và 40 thì cấp số cộng đó có 6 số hạng
Nghĩa là coi 4 là số hạng đầu tiên thì 40 là số hạng thứ 6
Theo bài ra ta có:
Vậy công sai của cấp số cộng là
Khi đó 4 số hạng được thêm lần lượt là:
Tổng bốn số hạng ở trên là:
Cho dãy số -7; h; 11; k. Với giá trị nào của h, k thì dãy số đã cho lập thành một cấp số cộng?
Bốn số hạng 7; h; 11; k theo thứ tự là u1; u2; u3; u4 lập thành một cấp số cộng nên
Cho dãy số có các số hạng đầu là
Số hạng tổng quát của dãy số này là
Ta có
Suy ra
Tính tổng 10 số hạng đầu tiên của cấp số nhân(un) có ![]()
Ta có:
Dãy số nào sau đây không phải là cấp số nhân?
Dãy là cấp số nhân với công bội
.
Dãy là cấp số nhân với công bội
.
Dãy là cấp số nhân với công bội
.
Dãy là cấp số cộng với công sai
.
Giả sử A là tập con của tập hợp các số nguyên dương sao cho
(I) k ∈ A
(II) n ∈ A ⇒ n + 1 ∈ A, ∀n ≥ k
Lúc đó, ta có:
(I) k ∈ A : số nguyên dương k thuộc tập A.
(II) n ∈ A ⇒ n + 1 ∈ A, ∀n ≥ k : nếu số nguyên dương n(n≥k) thuộc tập A thì số nguyên dương đứng ngay sau nó (n+1) cũng thuộc A. Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc A.
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có
Cộng vế với vế của các đẳng thức trên, ta được
Giả sử Q là tập hợp con của tập các số nguyên dương sao cho
(a) ![]()
(b) ![]()
Chọn mệnh đề đúng trong các mệnh đề dưới đây.
Mệnh đề " Mọi số nguyên dương đều thuộc " sai vì
là tập con thực sự của
nên tồn tại số nguyên dương không thuộc
.
Mệnh đề "Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc " đúng theo lí thuyết của phương pháp quy nạp.
Mệnh đề "Mọi số nguyên bé hơn k đều thuộc " sai theo giả thiết thì phải là số tự nhiên lớn hơn
.
Mệnh đề "Mọi số nguyên đều thuộc " sai vì số nguyên âm không thuộc
.
Xác định số hạng đầu u1 và công sai d của cấp số cộng (un) có u9 = 5u2 và u13 = 2u6 + 5.
Ta có:
Cho một dãy số có các số hạng đầu tiên là 1,8,22,43,... Hiệu của hai số hạng liên tiếp của dãy số đó lập thành 1 cấp số cộng: 7,14,21,..., 7n. Số 35351 là số hạng thứ bao nhiêu của dãy số đã cho?
Ta có:
Cộng vế với vế của phương trình ta được:
Vậy số 35351 là số hạng thứ 101 của dãy số đã cho.
Cho dãy số (un) có
và c > d > 0. Dãy số (un) là dãy số tăng với điều kiện?
Xét hiệu .
Dãy số (un) là dãy số tăng khi ad − bc > 0
Mà c > d > 0 nên chỉ có điều kiện ở đáp án a > 0, b < 0 để ad − bc > 0.
Cho dãy số
với
với mọi
. Khi đó số hạng
của dãy
là:
Ta có:
Cho một cấp số cộng có
. Hỏi
bằng bao nhiêu?
Ta có:
Cho dãy số (un) với
. Công thức số hạng tổng quát của dãy số là?
Ta có suy ra được
.
Tìm
để các số
theo thứ tự đó lập thành một cấp số nhân.
Các số theo thứ tự đó lập thành một cấp số nhân
Xét tính tăng, giảm và bị chặn của dãy số (un), biết
, ta thu được kết quả?
Ta có un > 0, ∀n ≥ 1
⇒ dãy (un) là dãy số giảm.
Mặt khác 0 < un < 1⇒ dãy (un) là dãy bị chặn.
Dãy số nào sau đây không phải là cấp số cộng?
Chỉ cần tồn tại hai cặp số hạng liên tiếp của dãy số có hiệu khác nhau: thì kết luận ngay dãy số đó không phải là cấp số cộng.
Xét đáp án: loại
Xét đáp án: Chọn
Xét đáp án: Loại
Xét đáp án: loại
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra
. Sai||Đúng
c) Dãy số
cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng
và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra . Sai||Đúng
c) Dãy số cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
a) Ta có:
Suy ra:
b) Do công sai dương nên cấp số cộng là một dãy tăng nên
c) Ta có: là một cấp số cộng
Suy ra
d) Ta có:
Cho cấp số cộng
có
. Tìm số hạng đầu tiên
.
Ta có:
Cho cấp số cộng
có số hạng đầu là
. Hỏi số hạng thứ tư là số nào dưới đây?
Ta có:
Vậy
Cho cấp số nhân
. Hỏi số
là số hạng thứ mấy trong cấp số nhân đã cho?
Ta có: là cấp số nhân với
Dãy số nào là dãy số tăng?
Xét ta có:
Vậy là dãy số tăng.
Tìm tất cả các giá trị thực của tham số a để phương trình
có ba nghiệm lập thành cấp số nhân.
Ta có:
kiểm tra lại kết quả ta được
Cho
là cấp số cộng biết
. Tổng 15 số hạng đầu của cấp số cộng đó bằng
Ta có:
Vậy
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai
b) Cho dãy số
được xác định bởi công thức
có số hạng thứ 3 là:
. Đúng||Sai
c) Cho dãy số
được xác định bởi công thức
là dãy số giảm và bị chặn dưới. Sai||Đúng
d) Tổng
. Đúng||Sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai
b) Cho dãy số được xác định bởi công thức
có số hạng thứ 3 là:
. Đúng||Sai
c) Cho dãy số được xác định bởi công thức
là dãy số giảm và bị chặn dưới. Sai||Đúng
d) Tổng . Đúng||Sai
Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân đúng vì dãy số đã cho là cấp số nhân với công bội q = 1.
Số hạng thứ ba của dãy số là:
.
Xét ta có:
suy ra
là dãy số giảm
Lại có suy ra
là dãy số bị chặn trên.
Suy ra phát biểu “Cho dãy số được xác định bởi công thức
là dãy số giảm và bị chặn dưới.” là phát biểu sai.
Ta có: là tổng cấp số nhân lùi vô hạn
với
có số hạng đầu và công bội lần lượt là:
Cho cấp số cộng
với
. Tìm số hạng đầu
và công sai
của cấp số cộng trên.
Ta có:
Cho cấp số nhân
với công bội
. Đặt
. Khẳng định nào sau đây đúng?
Theo công thức tính tổng số hạng đầu của CSN ta được
.
Trong các dãy số sau, dãy số nào không phải cấp số nhân?
Xét đáp án có
=> Dãy số không phải là cấp số nhân.
Cho dãy số
. Chọn khẳng định sai trong các khẳng định sau đây.
Ta có: nên
đúng.
Do nên dãy số bị chặn, do đó “Dãy số (un) bị chặn” đúng.
.
Do nên dãy số không tăng, không giảm.
Vậy “Dãy số (un) không tăng, không giảm” đúng.
Do đó “Dãy số (un) tăng” sai.
Cho cấp số cộng
có số hạng đầu
và tổng
số hạng đầu tiên của dãy bằng . Tính giá trị của biểu thức:
?
Cho cấp số cộng có số hạng đầu
và tổng
số hạng đầu tiên của dãy bằng . Tính giá trị của biểu thức:
?
Gọi d là công sai của cấp số cộng. ta có:
mà
Ta có:
Với
Ba số hạng đầu của một cấp số nhân là
và
. Tìm
biết rằng công bội của cấp số nhân là
?
Ta có:
Ba số hạng đầu của một cấp số nhân là và
có công bội
Cho dãy số
biết
. Ba số hạng đầu tiên của dãy đó lần lượt là những số nào dưới đây?
Ta có:
Cho cấp số nhân có 6 số hạng với cộng bội bằng 2 và tổng số các số hạng bằng 189. Số hạng cuối cùng của cấp số nhân có giá trị là:
Ta có: mà
Tế bào E. Coli trong điều kiện nuôi cấy thích hợp cứ 20 phút lại nhân đôi một lần. Nếu lúc đầu có
tế bào thì sau 2 giờ sẽ phân chia thành bao nhiêu tế bào?
Ban đầu có tế bào và mỗi lần phân chia thì một tế bào tách thành hai tế bào nên ta có cấp số nhân với
và công bội
.
Theo bài ra ta có:
Cứ 20 phút phân đôi một lần nên sau 2 giờ có 6 lần phân chia tế bào.
Ta có: là số tế bào nhận được sau 2 giờ.
Vậy số tế bào nhận được sau 2 giờ là