Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight) có tổng n số hạng đầu tiên là u_{1} = - 6;q = - 2. Tổng n số hạng đầu tiên của cấp số nhân là 2046. Xác định n.

    Ta có:

    2046 = u_{1}.\frac{1 - q^{n}}{1 -
q}

    \Rightarrow 2046 = ( - 6).\frac{1 - ( -
2)^{n}}{1 - ( - 2)}

    \Rightarrow n = 10

  • Câu 2: Thông hiểu

    Cho dãy số (u_{n}), biết {u_n} = \sin n - \cos n. Dãy số (u_{n}) bị chặn dưới bởi số nào dưới đây?

    Ta có:

    \begin{matrix}  {u_n} = \sin n - \cos n \hfill \\   = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin n - \dfrac{1}{{\sqrt 2 }}\cos n} ight) \hfill \\   = \sqrt 2 \left( {\cos \dfrac{\pi }{4}\sin n - \sin \dfrac{\pi }{4}\cos n} ight) \hfill \\   = \sqrt 2 \sin \left( {n - \dfrac{\pi }{4}} ight) \hfill \\   \Rightarrow 1 \geqslant \sin \left( {n - \dfrac{\pi }{4}} ight) \geqslant  - 1 \hfill \\   \Rightarrow \sqrt 2  \geqslant \sqrt 2 \sin \left( {n - \dfrac{\pi }{4}} ight) \geqslant  - \sqrt 2  \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = - 1;S_{23} = 483. Tìm công sai d của cấp số cộng?

    Gọi d là công sai của cấp số cộng khi đó ta có:

    S_{23} = 483 \Leftrightarrow
\frac{23\left( 2u_{1} + 22d ight)}{2} = 483

    \Leftrightarrow \frac{23.( - 2 +
22d)}{2} = 483

    \Leftrightarrow d = 2

  • Câu 4: Nhận biết

    Cho cấp số cộng (un) có u_1 = -4; d = \frac{1}{2}. Khẳng định nào sau đây là khẳng định đúng?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} =  - 4} \\   {d = \dfrac{1}{2}} \end{array}\mathop  \to \limits^{CTTQ} } ight.{u_n} = {u_1} + \left( {n - 1} ight)d =  - 4 + \dfrac{1}{2}\left( {n - 1} ight) \hfill \\   \Rightarrow {u_n} =  - 4 + \dfrac{1}{2}\left( {n - 1} ight) \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu

    Cho cấp số cộng có u_{1} = 5, d = 2. Khi đó:

    a) u_{6} = 15. Đúng||Sai

    b) Số hạng tổng quát thứ n của cấp số cộng là u_{n} = 2n + 3. Đúng||Sai

    c) Tổng nsố hạng đầu tiên của cấp số cộng là S_{n} = n^{2} + 4n. Đúng||Sai

    d) Tổng S = u_{10} + u_{11} + .. + u_{20}
= 310. Sai||Đúng

    Đáp án là:

    Cho cấp số cộng có u_{1} = 5, d = 2. Khi đó:

    a) u_{6} = 15. Đúng||Sai

    b) Số hạng tổng quát thứ n của cấp số cộng là u_{n} = 2n + 3. Đúng||Sai

    c) Tổng nsố hạng đầu tiên của cấp số cộng là S_{n} = n^{2} + 4n. Đúng||Sai

    d) Tổng S = u_{10} + u_{11} + .. + u_{20}
= 310. Sai||Đúng

    a) Áp dụng công thức tính số hạng tổng quát thứ n của cấp số cộng ta có:

    u_{6} = u_{1} + 5d = 5 + 5.2 =
15.

    b) Áp dụng công thức tính số hạng tổng quát thứ n của cấp số cộng ta có:

    u_{n} = u_{1} + (n - 1)d = 5 + (n - 1).2
= 2n + 3.

    c) Áp dụng công thức tính tổng nsố hạng đầu tiên của cấp số cộng ta có:

    S_{n} = nu_{1} + \frac{(n - 1)n}{2}d = 5n
+ \frac{(n - 1)n}{2}.2 = n^{2} + 4n.

    d) Ta viết lại

    S = u_{10} + u_{11} + .. +
u_{20}

    = \left( u_{1} + u_{2} + .. + u_{20}
ight) - \left( u_{1} + u_{2} + .. + u_{9} ight)

    = S_{20} - S_{9} = 480 - 117 =
363.

  • Câu 6: Nhận biết

    Cho dãy số (un) với u_{n} = \frac{an^{2}}{n + 1} ( a là hằng số). Hỏi un + 1 là số hạng nào sau đây?

    Ta có u_{n + 1} = \frac{a \cdot (n +
1)^{2}}{(n + 1) + 1} = \frac{a(n + 1)^{2}}{n + 2}

  • Câu 7: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?

    Xét dãy số  u_{n}=-2^{n}+15 ta có:

     \begin{matrix}  {u_{n + 1}} =  - {2^{n + 1}} + 15 \hfill \\   \Rightarrow {u_{n + 1}} - {u_n} =  - {2^{n + 1}} + 15 + {2^n} - 15 \hfill \\   =  - {2^{n + 1}} + {2^n}=d \hfill \\ \end{matrix}

    d không cố định => Dãy số u_{n}=-2^{n}+15 không phải là một cấp số cộng.

  • Câu 8: Thông hiểu

    Cho dãy số (un) với u_{n} = \frac{n - 1}{n^{2} + 1}, biết u_{k} = \frac{2}{13}. Hỏi uk là số hạng thứ mấy của dãy số đã cho?

    Ta có:

    u_{k} = \frac{k - 1}{k^{2} + 1}
\Rightarrow \frac{k - 1}{k^{2} + 1} = \frac{2}{13} \Rightarrow k =
5 (do  k∈ℕ*)

  • Câu 9: Nhận biết

    Cho dãy số (u_{n}) với u_{n}=\frac{3}{2}.5^{n}. Khẳng định nào sau đây là đúng?

    Ta có: \frac{{{u_{n + 1}}}}{{{u_n}}} = \dfrac{{\dfrac{3}{2}{{.5}^{n + 1}}}}{{\dfrac{3}{2}{{.5}^n}}} = 5 > 1

    => (u_{n}) là một cấp số nhân với công bội là q = 5

    Số hạng đầu tiên của dãy là: {u_1} = \frac{3}{2}{.5^1} = \frac{{15}}{2}

  • Câu 10: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai

    b) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = \frac{5n + 2}{19n + 1} có số hạng thứ 3 là: u_{3} = \frac{17}{58}. Đúng||Sai

    c) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới. Sai||Đúng

    d) Tổng S = \frac{1}{3} +
\frac{1}{3^{2}} + ... + \frac{1}{3^{n}} + ... = \frac{1}{3} . Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai

    b) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = \frac{5n + 2}{19n + 1} có số hạng thứ 3 là: u_{3} = \frac{17}{58}. Đúng||Sai

    c) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới. Sai||Đúng

    d) Tổng S = \frac{1}{3} +
\frac{1}{3^{2}} + ... + \frac{1}{3^{n}} + ... = \frac{1}{3} . Đúng||Sai

    Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân đúng vì dãy số đã cho là cấp số nhân với công bội q = 1.

    Số hạng thứ ba của dãy số \left( u_{n}
ight) là: u_{3} = \frac{5.3 +
2}{19.3 + 1} = \frac{17}{58}.

    Xét u_{n} = 9 - 2n ta có: u_{n + 1} - u_{n} = - 2 < 0,\forall
n\mathbb{\in N} suy ra \left( u_{n}
ight) là dãy số giảm

    Lại có n\mathbb{\in N \Rightarrow}n \geq
0 \Rightarrow u_{n} = 9 - 2n \leq 9 suy ra \left( u_{n} ight) là dãy số bị chặn trên.

    Suy ra phát biểu “Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới.” là phát biểu sai.

    Ta có: S = \frac{1}{3} + \frac{1}{3^{2}}
+ ... + \frac{1}{3^{n}} + ... là tổng cấp số nhân lùi vô hạn \left( u_{n} ight) với u_{n} = \frac{1}{3^{n}} có số hạng đầu và công bội lần lượt là: u_{1} = \frac{1}{3};q
= \frac{1}{3}

    \Rightarrow S = \dfrac{u_{1}}{1 - q} =\dfrac{\dfrac{1}{3}}{1 - \dfrac{1}{3}} = \dfrac{1}{2}

  • Câu 11: Vận dụng

    Người ta trồng 3003 cây theo hình tam giác như sau: Hàng thứ nhất có 1 cây. hàng thứ hai có hai cây, hàng thứ ba có ba cây,.... Vậy có tất cả bao nhiêu hàng?

    Gọi số hàng cây được trồng là x (hàng)

    Số cây các hàng là: 1; 2; 3; 4; ...; x - 1; x

    Số cây của mỗi hàng (bắt đầu từ hàng thứ nhất) lập thành một cấp số cộng 

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 1} \\   {d = 1} \end{array}} ight.

    Khi đó ta có:

    \begin{matrix}  {S_x} = \dfrac{{x\left[ {2.{u_1} + \left( {x - 1} ight).d} ight]}}{2} \hfill \\   \Leftrightarrow 3003 = \dfrac{{x\left[ {2.{u_1} + \left( {x - 1} ight).d} ight]}}{2} \hfill \\   \Leftrightarrow 6006 = 2x + {x^2} - x \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 77\left( {tm} ight)} \\   {x =  - 78\left( {ktm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy có tất cả 77 hàng cây được trồng.

  • Câu 12: Thông hiểu

    Cho cấp số cộng (Un) có {u_1} = 4;{u_2} = 1. Giá trị của {u_{10}} bằng:

    Ta có:

    \begin{matrix}  {u_1} = 4;{u_2} = 1 \Rightarrow d = {u_2} - {u_1} = 1 - 4 =  - 3 \hfill \\   \Rightarrow {u_{10}} = {u_1} + 9d = 4 + 9.\left( { - 3} ight) =  - 23 \hfill \\ \end{matrix}

  • Câu 13: Thông hiểu

    Trong các dãy số dưới đây, dạy số nào không phải là cấp số nhân lùi vô hạn?

     Vì dãy ở đáp án C là một cấp số nhân có công bội q = 3/2 > 0

    \frac{3}{2};\frac{9}{4};\frac{{27}}{8};..;{\left( {\frac{3}{2}} ight)^n};...=> không phải dãy lùi vô hạn

  • Câu 14: Vận dụng

    Cho dãy số (un) biết \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = au_{n} + 1,\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Tất cả các giá trị của a để (un) là dãy số tăng là?

    Xét hiệu un + 1 − un = (aun+1) − (aun − 1+1) = a(unun − 1)

    Áp dụng, ta có u2 = au1 + 1 = a + 1 ⇒ u2 − 1 = a ⇒ u2 − u1 = a

     ⇒ u3 − u2 = a(u2u1) = a2

     ⇒ u4 − u3 = a(u3u2) = a3

     ⇒ un + 1 − un = an > 0

    Để dãy số (un) tăng thì un > un − 1 > … > u2 > u1 ⇒ a > 0

  • Câu 15: Thông hiểu

    Một rạp hát có 30 dãy ghế, dãy đầu tiên có 25 ghế. Mỗi dãy sau có hơn dãy trước 3 ghế. Hỏi rạp hát có tất cả bao nhiêu ghế?

    Số ghế của mỗi dãy (bắt đầu từ dãy đầu tiên) theo thứ tự đó lập thành một cấp số cộng có 30 số hạng có công sai d= 3;u_{1} = 25

    Tổng số ghế là

    S_{30} = u_{1} + u_{2} + ... +u_{30}

    = 30u_{1} + \frac{30.29}{2}.d =2055

  • Câu 16: Vận dụng cao

    Cho dãy số (un), biết \left\{ \begin{matrix}
u = \sqrt{2} \\
u_{n + 1} = \sqrt{2 + u_{n}},n \in \mathbb{N}^{*} \\
\end{matrix} ight.. Khẳng định nào sau đây đúng về dãy số (un) ?

    Ta có u_{1} = \sqrt{2};u_{2} = \sqrt{2 +\sqrt{2}};u_{3} = \sqrt{2 + \sqrt{2 + \sqrt{2}}};

    \ldots;u_{n} = \sqrt{2+ \sqrt{2} + \sqrt{2 + \ldots + \sqrt{2}}}

    Do un + 1 − un > 0 nên (un) là dãy số tăng.

    Lại có \sqrt{2} < u_{n} \leq 2 suy ra dãy số bị chặn.

  • Câu 17: Vận dụng

    Cho ba số a; 5; 3b theo thứ tự lập thành cấp số cộng và ba số a; 3; 3b theo thứ tự lập thành cấp số nhân thì \left| {3b - a} ight| bằng?

    Ta có:

    Ba số a; 5; 3b theo thứ tự lập thành cấp số cộng

    => a + 3b = 5.2

    => a = 10 – 3b

    Ba số a; 3; 3b theo thứ tự lập thành cấp số nhân

    => a.3b = 32

    => ab = 3

    \begin{matrix}   \Rightarrow b\left( {10 - 3b} ight) = 3 \hfill \\   \Leftrightarrow 3{b^2} - 10b + 3 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {b = 3 \Rightarrow a = 1 \Rightarrow \left| {3y - x} ight| = 8} \\   {b = \dfrac{1}{3} \Rightarrow a = 9 \Rightarrow \left| {3y - x} ight| = 8} \end{array}} ight. \hfill \\   \Rightarrow \left| {3y - x} ight| = 8 \hfill \\ \end{matrix}

     

  • Câu 18: Vận dụng cao

    Một người muốn có 100 triệu sau 18 tháng phải gửi mỗi tháng vào ngân hàng bao nhiêu tiền, biết lãi suất 0,6%/ tháng (lãi kép)?

    Gọi a là số tiền gửi mỗi tháng.

    Cuối tháng thứ 1 số tiền là a + a.0,006 =a.1,006

    Cuối tháng thứ 2 số tiền là \left\lbracka.(1,006 + 1) ightbrack.1,006 = a(1,006)^{2} + a.1006

    Cuối tháng thứ n số tiền là

    a(1,006)^{n} + a(1,006)^{n - 1} + ... +a.1,006

    = a.1,006\left\lbrack (1,006)^{n - 1} +(1,006)^{n - 12} + ... + 1 ightbrack

    = \frac{a}{1006}.(1,006).\left\lbrack(1,006)^{n} - 1 ightbrack

    Áp dụng công thức trên, ta tính được

    a =\frac{100.10^{6}.0,006}{1,006.\left\lbrack (1,006)^{18} - 1ightbrack} \approx 5246111,01

    Vậy số tiền phải gửi mỗi tháng là 5246112 (đồng).

  • Câu 19: Thông hiểu

    Cho cấp số nhân \frac{1}{2};\frac{1}{4};\frac{1}{8};...;\frac{1}{4096}. Hỏi số \frac{1}{4096} là số hạng thứ mấy trong cấp số nhân đã cho?

    Ta có: \frac{1}{2};\frac{1}{4};\frac{1}{8};...;\frac{1}{4096} là cấp số nhân với \left\{ \begin{matrix}u_{1} = \dfrac{1}{2} \\q = \dfrac{u_{2}}{u_{1}} = \dfrac{1}{2} \\\end{matrix} ight.

    \Rightarrow u_{n} = \frac{1}{2}.\left(
\frac{1}{2} ight)^{n - 1} = \frac{1}{2^{n}} =
\frac{1}{4096}

    \Rightarrow \frac{1}{2^{n}} =
\frac{1}{2^{12}} \Rightarrow n = 12

  • Câu 20: Nhận biết

    Cho cấp số nhân (un) có u1 = 1; q = 2. Hỏi số 1024 là số hạng thứ mấy?

    Ta có:

    \begin{matrix}  {u_n} = {u_1}.{q^{n - 1}} \hfill \\   \Leftrightarrow {1.2^{n - 1}} = 1024 \hfill \\   \Leftrightarrow {2^{n - 1}} = {2^{10}} \hfill \\   \Rightarrow n - 1 = 10 \hfill \\   \Rightarrow n = 11 \hfill \\ \end{matrix}

  • Câu 21: Thông hiểu

    Số hạng âm trong dãy số x1; x2; x3; …; xn với x_{n} = C_{n + 5}^{4} - \frac{143P_{n +
5}}{96P_{n + 3}} là?

    Ta có c_{n + 5}^{4} = \frac{(n + 5)(n +4)(n + 3)(n + 2)}{24},

    \frac{143P_{n + 5}}{96P_{n + 3}} = \frac{143(n +5)(n + 4)}{96}

    x_{n} = C_{n + 5}^{4} - \frac{143P_{n +
5}}{96P_{n + 3}}

    = \frac{(n + 5)(n + 4)(2n + 17)(2n -
7)}{96} > 0,\forall n \geq 4,n \in \mathbb{N}^{*}

    Vậy các số hạng âm là x1; x2; x3.

  • Câu 22: Thông hiểu

    Cho hai số −3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số đó tạo thành cấp số cộng có công sai d = 2. Tìm n.

    Ta có:

    Cấp số cộng có k số hạng gồm có u_{1} = -3 và số hạng cuối u_{k} =23.

    Khi đó:

    u_{k + 1} = u_{1} + (k -1)d

    \Leftrightarrow 23 = - 3 + (k -1).2

    \Leftrightarrow k = 14

    Do đó n = k - 2 = 12

  • Câu 23: Nhận biết

    Với mỗi số nguyên dương, kí hiệu un = 5.23n − 2 + 33n − 1

    Một học sinh chứng minh un luôn chia hết cho 19 như sau:

    Bước 1: Khi n = 1, ta có u1 = 5.21 + 32 = 19 ⇒ u1⋮19

    Bước 2: Giả sử uk = 5.23k − 2 + 33k + 1 chia hết cho 19 với k ≥ 1.

    Khi đó ta có uk + 1 = 5.23k + 1 + 33k + 2 = 8(5.23k − 2+33k − 1) + 19.33k − 1

    Bước 3: Vì 5.23k − 2 + 33k − 119.33k − 1 chia hết cho 19 nên uk + 1 chia hết cho 19, ∀n ∈ ℕ*

    Vậy un chia hết cho 19, ∀n ∈ ℕ*

    Lập luận trên đúng hay sai? Nếu sai thì bắt đầu từ bước nào?

    Lập luận hoàn toàn đúng!

  • Câu 24: Vận dụng

    Cho cấp số nhân (un) có tổng n số hạng đầu tiên là {S_n} = {5^n} - 1. Tìm số hạng đầu và công bội của cấp số nhân đó?

     Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_1} = {S_1} = 5 - 1 = 4} \\   {{u_1} + {u_2} = {S_2} = {5^2} - 1 = 24} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_2} = 24 - {u_1} = 20} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {q = \dfrac{{{u_2}}}{{{u_1}}} = 5} \end{array}} ight.

  • Câu 25: Thông hiểu

    Với mọi số nguyên dương n thì S_{n}=n^{3}+2n chia hết cho 

    Với n = 1\Rightarrow {S_1} = {1^3} + 2.1 = 3 chia hết cho 3, ta sẽ chứng minh S_n chia hết cho 3 với mọi n.

    Giả sử khẳng định đúng với n=k tức là {S_k} = {k^3} + 2k chia hết cho 3, ta chứng minh {S_{k + 1}} = {\left( {k + 1} ight)^3} + 2\left( {k + 1} ight) cũng chia hết cho 3.

    Ta có:

    \begin{matrix}  {S_{k + 1}} = {\left( {k + 1} ight)^3} + 2\left( {k + 1} ight) \hfill \\   = {k^3} + 3{k^2} + 3k + 1 + 2k + 2 \hfill \\   = \left( {{k^3} + 2k} ight) + 3\left( {{k^2} + k + 1} ight) \hfill \\  \left\{ \begin{gathered}  \left( {{k^3} + 2k} ight) \vdots 3 \hfill \\  3\left( {{k^2} + k + 1} ight) \vdots 3 \hfill \\ \end{gathered}  ight. \Rightarrow {S_{k + 1}} \vdots 3 \hfill \\ \end{matrix}

    Vậy với mọi số nguyên dương thì S_{n}=n^{3}+2n chia hết cho 3.

  • Câu 26: Nhận biết

    Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:

    Do dãy số là cấp số nhân

    => q = \frac{{36}}{{16}} = \frac{9}{4}

    => Số hạng tiếp theo là: 36.\frac{9}{4} = 81

  • Câu 27: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?

    Ta có:

    Dãy \left( u_{n} ight) là một cấp số cộng

    \Leftrightarrow u_{n} = u_{n - 1} +
d với d là hằng số.

    Hay u_{n} - u_{n - 1} = d

    => Cấp số cộng cần tìm là: \left\{
\begin{matrix}
u_{1} = 1 \\
u_{n} = u_{n - 1} - 1 \\
\end{matrix} ight.

  • Câu 28: Thông hiểu

    Cho cấp số cộng (u_{n}) có các số hạng đầu lần lượt là 5; 9; 13; 17;... Tìm số hạng tổng quát u_{n} của cấp số cộng.

    Theo bài ra ta có:

    Dãy số đã cho là cấp số cộng

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 5} \\   {{u_2} = 9} \end{array} \Rightarrow d = {u_2} - {u_1} = 4} ight.

    => {u_n} = {u_1} + \left( {n - 1} ight).d = 4n + 1

    Vậy số hạng tổng quát của dãy số là: u_n=4n+1

  • Câu 29: Nhận biết

    Cho dãy số (u_{n}), biết {u_n} = \frac{{2{n^2} - 1}}{{{n^2} + 3}}. Tìm số hạng u_{5}

    Ta có:

    {u_5} = \frac{{{{2.5}^2} - 1}}{{{5^2} + 3}} = \frac{{49}}{{28}} = \frac{7}{4}

  • Câu 30: Nhận biết

    Khẳng định nào sau đây là khẳng định sai?

    Khẳng định sai là: “Số hạng tổng quát của cấp số cộng \left( u_{n} ight)u_{n} = u_{1} + nd với công sai d và số hạng đầu u_{1}.”

  • Câu 31: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) biết u_{n} = 3 - 5n. Tìm công sai của cấp số cộng?

    Theo giả thiết ta có:

    u_{n + 1} = - 2 - 5n

    \Rightarrow u_{n + 1} - u_{n} = -
5;\forall n \geq 1

    Vậy d = - 5

  • Câu 32: Vận dụng

    Xét tính tăng, giảm và bị chặn của dãy số (un), biết u_{n} = \frac{2^{n}}{n!}, ta thu được kết quả?

    Ta có \frac{u_{n + 1}}{u_{n}} = \frac{2^{n
+ 1}}{(n + 1)!}:\frac{2^{n}}{n!} = \frac{2^{n + 1}}{(n + 1)!} \cdot
\frac{n!}{2^{n}} = \frac{2}{n + 1} < 1,\forall n \geq 1

    un > 0, ∀n nên un + 1 < un, ∀n ≥ 1⇒ dãy (un) là dãy số giảm.

    0 < un ≤ u1 = 2, ∀n ≥ 1 nên dãy (un) là dãy bị chặn trên.

  • Câu 33: Vận dụng cao

    Tính tổng S = {\left( {2 + \frac{1}{2}} ight)^2} + {\left( {4 + \frac{1}{4}} ight)^2} + ... + {\left( {{2^n} + \frac{1}{{{2^n}}}} ight)^2}

    \begin{matrix}  S = {\left( {2 + \dfrac{1}{2}} ight)^2} + {\left( {4 + \dfrac{1}{4}} ight)^2} + ... + {\left( {{2^n} + \dfrac{1}{{{2^n}}}} ight)^2} \hfill \\  S = \left( {4 + 2 + \dfrac{1}{4}} ight) + \left( {16 + 2 + \dfrac{1}{{16}}} ight) + ... + \left( {{2^{2n}} + 2 + \dfrac{1}{{{2^{2n}}}}} ight) \hfill \\  S = \left( {4 + 16 + ... + {2^{2n}}} ight) + 2n + \left( {\frac{1}{4} + \dfrac{1}{{16}} + ... + \dfrac{1}{{{2^{2n}}}}} ight) \hfill \\ \end{matrix}

    Áp dụng công thức tính tổng của n số hạng đầu của một cấp số nhân ta có:

    \begin{matrix}  S = 4.\dfrac{{{4^{n - 1}}}}{3} + 2n + \dfrac{1}{4}.\dfrac{{{2^{\dfrac{1}{{2n}}}} - 1}}{{\dfrac{1}{4} - 1}} \hfill \\  S = 4.\dfrac{{{4^n} - 1}}{3} + 2n + \dfrac{1}{3}.\dfrac{{{2^{2n}} - 1}}{{{2^{2n}}}} \hfill \\  S = 2n + \dfrac{{{4^{n - 1}}}}{3}.\dfrac{{{{4.4}^n} + 1}}{{{4^n}}} = 2n + \dfrac{{\left( {{4^n} - 1} ight)\left( {{4^{n + 1}} + 1} ight)}}{{{{3.4}^n}}} \hfill \\ \end{matrix}

  • Câu 34: Nhận biết

    Dãy số nào là cấp số nhân?

    Theo bài ra ta có:

    \frac{u_{n + 1}}{u_{n}} = \frac{7 - 3^{n
+ 1}}{7 - 3^{n}} = \frac{3\left( 7 - 3^{n} ight) - 14}{7 - 3^{n}} = 3
- \frac{14}{7 - 3^{n}} (loại)

    \frac{u_{n + 1}}{u_{n}} =\dfrac{\dfrac{7}{3n + 3}}{\dfrac{7}{3n}} = 1 - \frac{1}{n +1}(loại)

    \dfrac{u_{n + 1}}{u_{n}} = \dfrac{7.2^{n +2}}{7.2^{n + 1}} = 2(thỏa mãn)

    \dfrac{u_{n + 1}}{u_{n}} = \dfrac{7 - 3(n +1)}{7 - 3n} = 1 - \frac{3}{7 - 3n} (loại)

  • Câu 35: Thông hiểu

    Với n \in \mathbb{N}^{*}, cho dãy số \left( u_{n} ight) gồm tất cả các số nguyên dương chia 32 theo thứ tự tăng dần. Số hạng tổng quát của dãy số này là

    Các số nguyên dương chia 32 theo thứ tự tăng dần là 5, 8, 11, 14,…

    Ta có 5 = 3.1 + 2, 8 = 3.2 + 2, 11 = 3.3 + 2, 14 = 3.4 + 2, …

    Vậy u_{n} = 3n + 2

  • Câu 36: Vận dụng

    Cho cấp số cộng (un) có u1 = 1 và công sai d = 2. Tổng {S_{10}} = {u_1} + {u_2} + {u_3} + ... + {u_{10}} bằng:

    Ta có: 

    \begin{matrix}  {S_n} = \dfrac{{n\left( {{u_n} + {u_1}} ight)}}{2} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} ight)d} ight]}}{2} \hfill \\   \Rightarrow {S_{10}} = \dfrac{{10\left[ {2 + \left( {10 - 1} ight).2} ight]}}{2} = 100 \hfill \\ \end{matrix}

  • Câu 37: Thông hiểu

    Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:

    Ta có:

    \left\{ \begin{matrix}
u_{k} = 16 \\
u_{k + 1} = 36 \\
\end{matrix} ight.\  \Rightarrow q = \frac{u_{k + 1}}{u_{k}} =
\frac{9}{4}

    u_{k + 2} = u_{k + 1}.q =
81

  • Câu 38: Nhận biết

    Dãy số nào là dãy số tăng?

    Xét u_{n} = n^{2} ta có: u_{n + 1} - u_{n} = (n + 1)^{2} - n^{2} = 2n + 1
> 0;\forall n \in \mathbb{N}^{*}

    Vậy u_{n} = n^{2} là dãy số tăng.

  • Câu 39: Nhận biết

    Cấp số nhân \left( u_{n} ight) có số hạng tổng quát là u_{n} =
\frac{3}{5}.2^{n - 1},n \in \mathbb{N}^{*}. Số hạng đầu tiên và công bội của cấp số nhân đó là

    Theo công thức số hạng tổng quát của cấp số nhân ta suy ra u_{1} = \frac{3}{5}q = 2.

  • Câu 40: Thông hiểu

    Cho cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; … Tìm số hạng tổng quát un của cấp số nhân đã cho.

     Cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; …

    \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 3} \\   {q = \dfrac{9}{3} = 3} \end{array}} ight. \Rightarrow {u_n} = {u_1}.{q^{n - 1}} = {3.3^{n - 1}} = {3^n}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo