Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có
Cộng vế với vế của các đẳng thức trên, ta được
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có
Cộng vế với vế của các đẳng thức trên, ta được
Thêm hai số thực dương x và y vào giữa hai số 5 và 320 để được bốn số
theo thứ tự đó lập thành cấp số nhận. Khẳng định nào sau đây là đúng?
Ta có:
Các số hạng lập thành cấp số nhân
Cho dãy số (un) xác định bởi
.
Số hạng thứ 2020 của dãy số đã cho là?
Do 0 < α < π nên
Vậy với mọi n ∈ ℕ*. Ta sẽ chứng minh bằng quy nạp.
Với n = 1 thì u1 = cosα (đúng).
Giả sử với n = k ∈ ℕ* ta có .
Ta chứng minh
Thật vậy,
Từ đó ta có
Trong các dãy số sau, dãy nào là dãy số tăng?
Đáp án và In = (−1)n ⋅ n là các dãy không tăng, không giảm.
Xét đáp án , ta có:
Suy ra (vn) là dãy số tăng.
Dãy số
có công thức số hạng tổng quát nào dưới đây xác định một cấp số nhân?
Xét dãy số ta có:
nên
là công thức số hạng tổng quát xác định một cấp số nhân.
Xét dãy số
nên
không là công thức số hạng tổng quát xác định một cấp số nhân.
Xét dãy số
nên
không là công thức số hạng tổng quát xác định một cấp số nhân.
Xét dãy số
nên
không là công thức số hạng tổng quát xác định một cấp số nhân
Cho một cấp số cộng
có
. Giá trị
bằng bao nhiêu?
Ta có:
Tổng của 16 số hạng đầu tiên của cấp số cộng là:
Cho cấp số cộng
có
. Giá trị nhỏ nhất của
bằng:
Ta gọi là công sai của cấp số cộng.
Khi đó:
Vậy giá trị nhỏ nhất của là -24 đạt được khi khi
.
Nếu
theo thứ tự lập thành cấp số cộng thì dãy số nào sau đây lập thành một cấp số cộng.
Theo giả thiết ta có:
Cho cấp số nhân
có số hạng đầu
và công bội
. Số hạng thứ sáu của
là:
Ta có:
Xét tính bị chặn của dãy số
, ta thu được kết quả?
Ta có
Dãy (un) bị chặn.
Cho cấp số cộng
biết
. Tìm công sai của cấp số cộng?
Theo giả thiết ta có:
Vậy
Giá tiền công khoan giếng ở cơ sở A được tính như sau: Giá của mét khoan đầu tiên là 8000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 500 đồng so với giá của mét khoan ngay trước nó. Vậy muốn khoan 20 mét thì mất bao nhiêu đồng?
Theo bài ra ta có:
Giá các mét khoan lập thành một cấp số cộng với công sai d = 500, số hạng đầu là 8000.
=>
=> Số tiền phải trả khi khoan giếng sâu 20m là:
Vậy muốn khoan 20 mét thì mất 255000 đồng.
Cho dãy số (un) thỏa mãn
. Tìm giá trị nhỏ nhất của n thỏa mãn ![]()
Ta có:
Đặt
Dãy (vn) là cấp số nhân với công bội q = 10
=>
Vậy giá trị nhỏ nhất của n để là n = 102
Một cấp số nhân có 6 số hạng với công bội bằng 2 và tổng số các số hạng bằng 189. Tìm số hạng cuối
của cấp số nhân đã cho.
Theo giả thiết ta có:
Trong các dãy được cho dưới đây, dãy số nào là cấp số cộng?
Xét dãy số
Ta có:
Vậy dãy số là một cấp số cộng với
Trong các dãy số (un) cho bởi số hạng tổng quát un sau, dãy số nào tăng?
Ta xét đáp án Loại
Ta xét đáp án Loại
Ta xét đáp án Thỏa mãn!
Ta xét đáp án : Loại
Với
, cho dãy số
gồm các số nguyên dương chia hết cho
:
,
,
,
, …Công thức số hạng tổng quát của dãy số này là:
Ta có ,
,
,
,…
Suy ra .
Trong các dãy số sau, dãy số nào là cấp số nhân?
Dãy số 1, 2, 4, 8, 16 tuân theo quy luật
=> Dãy số đó là cấp số nhân
Cho một dãy số có các số hạng đầu tiên là 1,8,22,43,... Hiệu của hai số hạng liên tiếp của dãy số đó lập thành 1 cấp số cộng: 7,14,21,..., 7n. Số 35351 là số hạng thứ bao nhiêu của dãy số đã cho?
Ta có:
Cộng vế với vế của phương trình ta được:
Vậy số 35351 là số hạng thứ 101 của dãy số đã cho.
Cho cấp số cộng
. Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
Cho cấp số cộng
thỏa mãn
. Khi đó
bằng:
Ta có:
Dãy số
là cấp số nhân với
Cấp số nhân
Tổng Sn = 1.3 + 2.5 + 3.7 + … + n(2n+1) có công thức thu gọn là?
Sn = Σi = 1n i(2i+1) = Σi = 1n (2i2+1)
Tìm tất cả các giá trị của x để ba số
theo thứ tự lập thành một cấp số nhân.
Ta có:
Ba số theo thứ tự lập thành một cấp số nhân
Cho dãy số (un) với ![]()
Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có un + 1 = un + (−1)2n + 1 = un − 1
u1 = 1; u2 = u1 − 1; u3 = u2 − 1; …; un = un − 1 − 1
Cộng vế với vế của các đẳng thức trên, ta được:
un = 1 − (n−1) = 2 − n.
Cho dãy số (un) với
.
Số hạng tổng quát un là?
Ta có u1 = 1; u2 = u1 + 3; u3 = u2 + 5; u4 = u3 + 7; …; un = un − 1 + (2n−1)
Cộng từng vế với vế của các đẳng thức trên và rút gọn ta được
un = 1 + 3 + 5 + 7 + … + (2n−1) = n2.
Trong các dãy số sau đây, dãy số nào là cấp số cộng?
Ta có dãy số là một cấp số cộng có công sai
.
Tính tổng 100 số hạng đầu của cấp số cộng xác định bởi
.
Theo bài ra ta có:
Cho dãy số
, biết
. Số
là số hạng thứ mấy của dãy số?
Ta có:
Vậy số là số hạng thứ 8 của dãy số.
Trong các dãy số
cho bởi số hạng tổng quát
, dãy nào là cấp số nhân?
Dãy là cấp số nhân có
Với mỗi số nguyên dương, kí hiệu un = 5.23n − 2 + 33n − 1
Một học sinh chứng minh un luôn chia hết cho 19 như sau:
Bước 1: Khi n = 1, ta có u1 = 5.21 + 32 = 19 ⇒ u1⋮19
Bước 2: Giả sử uk = 5.23k − 2 + 33k + 1 chia hết cho 19 với k ≥ 1.
Khi đó ta có uk + 1 = 5.23k + 1 + 33k + 2 = 8(5.23k − 2+33k − 1) + 19.33k − 1
Bước 3: Vì 5.23k − 2 + 33k − 1 và 19.33k − 1 chia hết cho 19 nên uk + 1 chia hết cho 19, ∀n ∈ ℕ*
Vậy un chia hết cho 19, ∀n ∈ ℕ*
Lập luận trên đúng hay sai? Nếu sai thì bắt đầu từ bước nào?
Lập luận hoàn toàn đúng!
Trên một bàn cờ có nhiều ô vuông, người ta đặt 7 hạt dẻ vào ô đầu tiên, sau đó đặt tiếp vào ô thứ hai số hạt nhiều hơn ô thứ nhất là 5, tiếp tục đặt vào ô thứ ba số hạt nhiều hơn ô thứ hai là 5, ... và cứ thế tiếp tục đến ô thứ n. Biết rằng đặt hết số ô trên bàn cờ người ta phải sử dụng 25450 hạt. Hỏi bàn cờ đó có bao nhiêu ô vuông?
Ta có:
Số hạt dẻ trên mỗi ô (bắt đầu từ ô thứ nhất) theo thứ tự đó lập thành cấp số cộng có
.
Gọi n là số ô trên bàn cờ thì
Ta có:
Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên n ≥ p ( p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề A(n) đúng với n = k. Khẳng định nào sau đây là đúng?
Mệnh đề A(n) đúng với n = k với k ≥ p.
Cho cấp số cộng (un) có u3 = -15; u20 = 60. Tổng của 10 số hạng đầu tiên của cấp số cộng này là:
Gọi u1, d lần lượt là số hạng đầu và công sai của cấp số cộng
Ta có:
=> Tổng của 10 số hạng đầu tiên của cấp số cộng này là:
Cho cấp số cộng
có số hạng đầu
công sai
Năm số hạng liên tiếp đầu tiên của cấp số cộng là:
Ta dùng công thức tổng quát , hoặc
để tính các số hạng của một cấp số cộng.
Ta có
Tìm b > 0 để các số
theo thứ tự đó lập thành một cấp số nhân.
Ta có:
Các số theo thứ tự đó lập thành một cấp số nhân.
(Vì b > 0)
Cho cấp số nhân
có
và công bội
. Số hạng tổng quát của cấp số nhân
là
Số hạng tổng quát của cấp số nhân là
.
Một rạp hát có 30 dãy ghế, dãy đầu tiên có 25 ghế. Mỗi dãy sau có hơn dãy trước 3 ghế. Hỏi rạp hát có tất cả bao nhiêu ghế?
Số ghế của mỗi dãy (bắt đầu từ dãy đầu tiên) theo thứ tự đó lập thành một cấp số cộng có 30 số hạng có công sai
Tổng số ghế là
Vào mùa thu hoạch dưa hấu, bác T bán cho những người vào vườn mua dưa như sau:
Người thứ nhất mua bác bán nửa số dưa thu hoạch được và tặng thêm 1 quả.
Người thứ hai mua bác bán nửa số dưa còn lại và tặng thêm 1 quả.
…
Bác cứ tiếp tục bán như trên, đến người mua thứ 15 thì bác bán hết.
Tính số dưa mà bác T thu hoạch được.
Vào mùa thu hoạch dưa hấu, bác T bán cho những người vào vườn mua dưa như sau:
Người thứ nhất mua bác bán nửa số dưa thu hoạch được và tặng thêm 1 quả.
Người thứ hai mua bác bán nửa số dưa còn lại và tặng thêm 1 quả.
…
Bác cứ tiếp tục bán như trên, đến người mua thứ 15 thì bác bán hết.
Tính số dưa mà bác T thu hoạch được.
Cho cấp số nhân (un) biết u1 = 12;
. Tính ![]()
Gọi q là công bội của cấp số nhân (un)
Ta có: