Cho các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng. Tìm a?
Đặt u1 = -4; u2 = 1; u3 = 6; u4 = a
Theo bài ra ta có:
Các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng
=> u3 – u2 = u4 – u3
=> 6 – 1 = a – 6
=> a = 11
Cho các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng. Tìm a?
Đặt u1 = -4; u2 = 1; u3 = 6; u4 = a
Theo bài ra ta có:
Các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng
=> u3 – u2 = u4 – u3
=> 6 – 1 = a – 6
=> a = 11
Viết ba số hạng xen giữa các số 2 và 22 để được một cấp số cộng có năm số hạng.
Khi viết xen giữa 2 và 22 ba số hạng ta được một cấp số cộng có 5 số hạng có:
u1 = 2; u5 = 22. Ta cần tìm u2; u3; u4
Ta có:
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b)
. Đúng||Sai
c) Cấp số cộng
thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b) . Đúng||Sai
c) Cấp số cộng thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
a) Xét dãy số đã cho ta có:
nên dãy số
không tăng không giảm.
b) đúng bằng chứng minh quy nạp.
c) Công sai d = 5 và số hạng đầu tiên bằng
Khi đó số hạng tổng quát của cấp số cộng là
d) Từ giả thiết ta có:
Suy ra tổng các số hạng của cấp số nhân đó là: .
Cho cấp số cộng
. Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
Cho dãy số
xác định bởi
. Mệnh đề nào sau đây đúng?
Ta có:
Ta chứng minh quy nạp
Cách khác:
Ta có: nên loại các đáp án
;
;
Cho dãy số
thỏa mãn điều kiện
;
với
số hạng
bằng:
Ta có:
Vậy
Cho một cấp số nhân
có
. Hỏi
là số hạng thứ mấy của cấp số nhân?
Ta có:
Vậy số là số hạng thứ 11 của cấp số nhân.
Xác định số hạng đầu u1 và công sai d của cấp số cộng (un) có u9 = 5u2 và u13 = 2u6 + 5.
Ta có:
Cho cấp số nhân
có
và công bội
. Số hạng tổng quát của cấp số nhân
là
Số hạng tổng quát của cấp số nhân là
.
Cho cấp số cộng (Un) có
. Giá trị của
bằng:
Ta có:
Dùng quy nạp chứng minh mệnh đề chứa biến
đúng với mọi số tự nhiên
(p là một
số tự nhiên). Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với
bằng:
Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với bằng
Cho dãy số (un) với
.
Số hạng tổng quát un là?
Ta có u1 = 1; u2 = u1 + 3; u3 = u2 + 5; u4 = u3 + 7; …; un = un − 1 + (2n−1)
Cộng từng vế với vế của các đẳng thức trên và rút gọn ta được
un = 1 + 3 + 5 + 7 + … + (2n−1) = n2.
Tổng
là:
Ta có:
Xét cấp số cộng (un) có:
Số hạng đầu là u1 = 199
Công sai d = u2 – u1 = 195 – 199 = -4
Ta có:
Cho dãy số (un) với
. Công thức số hạng tổng quát của dãy số là?
Ta có suy ra được
.
Cho cấp số nhân với các số hạng lần lượt là a; 12; b; 192. Mệnh đề nào dưới đây đúng?
Ta có: Cấp số nhân với các số hạng lần lượt là a; 12; b; 192
Cho cấp số cộng (un) có các số hạng đầu lần lượt là 5; 9; 13; 17; …. Tìm số hạng tổng quát un của cấp số cộng.
Các số 5; 9; 13; 17; …. theo thứ tự lập thành một cấp số cộng (un) nên:
Tìm
để
theo thứ tự đó lập thành một cấp số nhân.
Cấp số nhân theo thứ tự là
ta có:
Cho dãy số
biết
. Chọn đáp án đúng.
Ta có:
Cho cấp số nhân (un) biết u1 = 1; u4 = 64. Tính công bội q của cấp số nhân đó.
Ta có:
Cho dãy số
là một cấp số nhân với
. Dãy số nào sau đây không phải là cấp số nhân?
Giả sử là cấp số nhân công bội
thì:
Dãy là cấp số nhân công bội
.
Dãy là cấp số nhân với công bội
.
Dãy là cấp số nhân công bội
.
Dãy không là cấp số nhân.
Một kiến trúc sư thiết kế một hội trường với 15 ghế ngồi ở hàng thứ nhất, 18 ghế ngồi ở hàng thứ hai, 21 ghế ngồi ở hàng thứ ba và cứ như vậy (số ghế ngồi ở hàng sau nhiều hơn 3 ghế so với số ghế ngồi ở hàng liền trước nó). Nếu muốn hội trường đó có số sức chứa ít nhất 870 ghế ngồi thì kiến trúc sư phải thiết kế tối thiểu bao nhiêu hàng ghế.
Đáp án: 20
Một kiến trúc sư thiết kế một hội trường với 15 ghế ngồi ở hàng thứ nhất, 18 ghế ngồi ở hàng thứ hai, 21 ghế ngồi ở hàng thứ ba và cứ như vậy (số ghế ngồi ở hàng sau nhiều hơn 3 ghế so với số ghế ngồi ở hàng liền trước nó). Nếu muốn hội trường đó có số sức chứa ít nhất 870 ghế ngồi thì kiến trúc sư phải thiết kế tối thiểu bao nhiêu hàng ghế.
Đáp án: 20
Số ghế ở các hàng tạo thành một cấp số cộng có và công sai
.
Giả sử hội trường có hàng ghế
.
Tổng số ghế có trong hội trường là:
Để hội trường đó có số sức chứa ít nhất 870 ghế ngồi thì
Vậy kiến trúc sư phải thiết kế tối thiểu 20 hàng ghế.
Một bệnh nhân hàng ngày phải uống
thuốc kháng sinh đặc trị bệnh bạch hầu. Sau một ngày hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể vẫn còn
lượng thuốc của ngày hôm trước. Các mệnh đề sau đúng hay sai?
a) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu còn trong cơ thể sau ngày đầu tiên uống thuốc là
. Đúng||Sai
b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ
là
. Đúng||Sai
c) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ
là
. Sai||Đúng
d) Ước tính lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể nếu bệnh nhân sử dụng thuốc trong một thời gian 30 ngày là
. Đúng||Sai
Một bệnh nhân hàng ngày phải uống thuốc kháng sinh đặc trị bệnh bạch hầu. Sau một ngày hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể vẫn còn
lượng thuốc của ngày hôm trước. Các mệnh đề sau đúng hay sai?
a) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu còn trong cơ thể sau ngày đầu tiên uống thuốc là . Đúng||Sai
b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ là
. Đúng||Sai
c) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ là
. Sai||Đúng
d) Ước tính lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể nếu bệnh nhân sử dụng thuốc trong một thời gian 30 ngày là . Đúng||Sai
a) Ta có hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau ngày đầu còn , suy ra mệnh đề đúng.
b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ là:
suy ra mệnh đề đúng.
c) Gọi là lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể bệnh nhân sau khi uống ở ngày thứ n
Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ là:
Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ là:
Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ là:
Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ là:
Suy ra mệnh đề sai.
d) Nếu bệnh nhân sử dụng thuốc trong thời gian 30 ngày. Khi đó lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể được ước lượng là:
Vậy lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể được ước lượng trong 30 ngày là , suy ra mệnh đề đúng.
Số 7922 là số hạng thứ bao nhiêu của dãy số un = n2 + 1?
Ta có 7922 = 7921 + 1 = 892 + 1 ⇒ n = 89
Cho cấp số cộng
có
. Tìm công sai
của cấp số cộng?
Gọi d là công sai của cấp số cộng khi đó ta có:
Với giá trị nào của
thì các số hạng
theo thứ tự đó lập thành cấp số nhân?
Ta có: các số hạng lập thành cấp số nhân
Vậy
Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:
Do dãy số là cấp số nhân
=>
=> Số hạng tiếp theo là:
Cho dãy số (un) được xác định như sau
. Số hạng u11 là?
Ta có:
Cho cấp số cộng
có số hạng đầu là
. Hỏi số hạng thứ tư là số nào dưới đây?
Ta có:
Vậy
Cho cấp số cộng
thỏa mãn
có công sai
, các số hạng của cấp số cộng đã cho đều khác 0. Với giá trị nào của
thì dãy số
là một cấp số cộng?
Ta có:
Theo yêu cầu bài toán thì ta phải có:
Xen vào giữa hai số 4 và 40 bốn số để được một cấp số cộng có công sai lớn hơn 3. Tìm tổng 4 số đó.
Sau khi chèn 4 số vào giữa hai số 4 và 40 thì cấp số cộng đó có 6 số hạng
Nghĩa là coi 4 là số hạng đầu tiên thì 40 là số hạng thứ 6
Theo bài ra ta có:
Vậy công sai của cấp số cộng là
Khi đó 4 số hạng được thêm lần lượt là:
Tổng bốn số hạng ở trên là:
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b)
. Đúng||Sai
c) Cấp số cộng
thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b) . Đúng||Sai
c) Cấp số cộng thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
a) Xét dãy số đã cho ta có:
nên dãy số
không tăng không giảm.
b) đúng bằng chứng minh quy nạp.
c) Công sai d = 5 và số hạng đầu tiên bằng
Khi đó số hạng tổng quát của cấp số cộng là
d) Từ giả thiết ta có:
Suy ra tổng các số hạng của cấp số nhân đó là: .
Tế bào E. Coli trong điều kiện nuôi cấy thích hợp cứ 20 phút lại nhân đôi một lần. Nếu lúc đầu có
tế bào thì sau 2 giờ sẽ phân chia thành bao nhiêu tế bào?
Ban đầu có tế bào và mỗi lần phân chia thì một tế bào tách thành hai tế bào nên ta có cấp số nhân với
và công bội
.
Theo bài ra ta có:
Cứ 20 phút phân đôi một lần nên sau 2 giờ có 6 lần phân chia tế bào.
Ta có: là số tế bào nhận được sau 2 giờ.
Vậy số tế bào nhận được sau 2 giờ là
Bạn An thả quả bóng cao su từ độ cao
so với mặt đất theo phương thẳng đứng. Mỗi lần chạm đất quả bóng lại nảy lên theo phương thẳng đứng có độ cao bằng
độ cao lần rơi trước đó. Tổng quãng đường quả bóng đi được gần bằng bao nhiêu?
Đáp án: 45
Bạn An thả quả bóng cao su từ độ cao so với mặt đất theo phương thẳng đứng. Mỗi lần chạm đất quả bóng lại nảy lên theo phương thẳng đứng có độ cao bằng
độ cao lần rơi trước đó. Tổng quãng đường quả bóng đi được gần bằng bao nhiêu?
Đáp án: 45
Quãng đường bóng đi được từ khi thả đến chạm đất lần 1 là .
Quãng đường bóng đi được từ khi chạm đất lần 1đến chạm đất lần 2 là .
Quãng đường bóng đi được từ khi chạm đất lần 2 đến chạm đất lần 3 là ……
Quãng đường bóng đi được từ khi chạm đất lần n đến chạm đất lần là
Tổng quãng đường bóng đi được từ lúc thả đến không nảy lên nữa là:
.
Dãy số nào là cấp số nhân?
Theo bài ra ta có:
(loại)
(loại)
(thỏa mãn)
(loại)
Cho dãy số
, biết
. Dãy số
bị chặn trên bởi số nào dưới đây?
Ta có:
Với mọi n ta có:
Vậy dãy số bị chặn trên bởi
Cho dãy số
biết
. Tìm số hạng tổng quát của dãy số
.
Ta có và
Suy ra dãy số là cấp số nhân với
Do đó
Cho dãy xác định bởi công thức
. Số hạng tổng quát của dãy un là?
Ta có
Ta đi chứng minh cho dãy số có số hạng tổng quát là
Thật vậy, n = 1 thì u1 = 3 (đúng).
Giả sử với n = k(k≥1) thì . Ta đi chứng minh
Ta có (điều phải chứng minh).
Vậy số hạng tổng quát của dãy số là
Dãy số nào sau đây không phải là cấp số cộng?
Chỉ cần tồn tại hai cặp số hạng liên tiếp của dãy số có hiệu khác nhau: thì kết luận ngay dãy số đó không phải là cấp số cộng.
Xét đáp án: loại
Xét đáp án: Chọn
Xét đáp án: Loại
Xét đáp án: loại
Cho dãy số
biết
với
. Mệnh đề nào sau đây đúng?
Ta có:
=> Dãy số bị chặn dưới bởi 0.
Mặt khác
Vậy bị chặn trên, do đó dãy
bị chặn.
Cho cấp số nhân (un) có u1 = -1; u6 = -0,00001. Khi đó công bội q và số hạng tổng quát là:
Ta có: