Một cấp số nhân có số hạng thứ hai bằng 4 và số hạng thứ sáu bằng 64. Khi đó, số hạng tổng quát của cấp số nhân đó có thể tính theo công thức nào dưới đây?
Ta có:
Một cấp số nhân có số hạng thứ hai bằng 4 và số hạng thứ sáu bằng 64. Khi đó, số hạng tổng quát của cấp số nhân đó có thể tính theo công thức nào dưới đây?
Ta có:
Dãy số nào sau đây là một cấp số cộng?
Dãy số ở đáp án A thỏa mãn điều kiện với
là cấp số cộng.
Biết các số
theo thứ tự lập thành một cấp số cộng với n > 3. Tìm n
Ta có:
Các số theo thứ tự lập thành một cấp số cộng với n > 3
Trong các dãy số
cho bởi số hạng tổng quát
, dãy nào là cấp số nhân?
Dãy là cấp số nhân có
Cho cấp số nhân
có
. Tính tổng 10 số hạng đầu tiên của cấp số nhân đã cho.
Ta có:
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Cho cấp số nhân có các số hạng lần lượt là
. Gọi
là tổng của
số hạng đầu tiên của cấp số nhân đó. Mệnh đề nào sau đây đúng?
Cấp số nhân đã cho có:
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra
. Sai||Đúng
c) Dãy số
cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng
và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra . Sai||Đúng
c) Dãy số cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
a) Ta có:
Suy ra:
b) Do công sai dương nên cấp số cộng là một dãy tăng nên
c) Ta có: là một cấp số cộng
Suy ra
d) Ta có:
Cho ba số dương a, b, c theo thứ tự lập thành một cấp số cộng. Giá trị lớn nhất của biểu thức
có dạng
. Hỏi x + y bằng bao nhiêu?
Ta có:
Theo bài ra ta có:
Dấu bằng xảy ra khi và chỉ khi
=> x + y = 11
Biết tổng ba số hạng đầu của một cấp số nhân là
, đồng thời theo thứ tự chúng là số hạng thứ nhất, số hạng thứ tư và số hạng thứ tám của một cấp số cộng. Công bội và số hạng đầu tiên của cấp số nhân là:
Gọi là bốn số hạng đầu của cấp số nhân
với công bội
.
Gọi là cấp số cộng tương ứng với công sai
.
Theo bài ra ta có:
Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?
Ta có:
Dãy là một cấp số cộng
với d là hằng số.
Hay
=> Cấp số cộng cần tìm là:
Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17; tổng của số hạng thứ hai và số hạng thứ tư bằng 14. Tìm công sai d của câp số cộng đã cho.
Ta có:
Cho cấp số nhân
với
. Viết bốn số hạng đầu tiên của cấp số nhân.
Ta có:
Từ độ cao
của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng
độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 68,2
Từ độ cao của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng
độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 68,2
Theo đề, mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng độ cao mà quả bóng đạt trước đó và sau đó lại rơi xuống từ độ cao thứ hai. Do đó độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến:
Thời điểm chạm đất lần thứ nhất là .
Thời điểm chạm đất lần thứ 2 là .
Thời điểm chạm đất lần thứ 3 là .
Thời điểm chạm đất lần thứ 4 là .
Thời điểm chạm đất lần thứ là
.
Do đó độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất là:
.
Vì ,
,
, …,
,…, là một cấp số nhân lùi vô hạn, công bội
, nên ta có:
.
Vậy
Xác định tham số m > 0 để 2m – 3; m; 2m + 3 lập thành một cấp số nhân.
Để 2m – 3; m; 2m + 3 lập thành một cấp số nhân thì
Do m > 0 =>
Trong các dãy số sau, dãy số nào là cấp số cộng?
Ta có:
Khi đó theo định nghĩa cấp số cộng dãy số là một cấp số cộng với
Cho dãy số (un), biết un = n ⋅ cosn. Trong các phát biểu sau, có bao nhiêu phát biểu đúng?
(1) (un) là dãy số tăng.
(2) (un) là dãy số bị chặn dưới.
(3) ∀n ∈ ℕ* : un ≤ n.
Vì cos(n) ≤ 1 nên un < n. Phát biểu (3) đúng.
Dãy không tăng, không giảm và không bị chặn dưới.
Vậy có 1 phát biểu đúng trong 3 phát biểu đã cho.
Tìm z để 2; 8; z; 128 lập thành một cấp số nhân.
Dãy số 2; 8; z; 128 theo thứ tự là u1; u2; u3; u4 ta có:
Cho dãy số (un) được xác định như sau
. Số hạng u11 là?
Ta có:
Cho cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; … Tìm số hạng tổng quát un của cấp số nhân đã cho.
Cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; …
Một người xếp chồng những khúc gỗ có kích thước như nhau thành
hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới
khúc gỗ và hàng trên cùng có
khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?
Đáp án: 55
Một người xếp chồng những khúc gỗ có kích thước như nhau thành hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới
khúc gỗ và hàng trên cùng có
khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?
Đáp án: 55
Mỗi hàng liền phía trên ít hơn hàng dưới khúc gỗ và hàng trên cùng có 1 khúc gỗ nên ta có đây là tổng của một cấp số cộng có:
.
Khi đó, tổng số khúc gỗ là:
(khúc gỗ).
Trong các dãy số sau dãy số nào là cấp số cộng?
Ta có:
=> Dãy số là cấp số cộng.
Cho cấp số nhân
có
. Số
là số hạng thứ mấy của cấp số nhân đã cho?
Ta có:
Mà n là số chẵn và
Xác định số hạng tổng quát của dãy số dãy số
với
.
Từ công thức
Xét đáp án với
(loại)
Xét đáp án ta thấy thỏa mãn
Xét đáp án với
(loại)
Xét đáp án với
(loại)
Nếu
theo thứ tự lập thành cấp số cộng thì dãy số nào sau đây lập thành một cấp số cộng.
Theo giả thiết ta có:
Cho dãy số
xác định bởi
. Khi đó
có giá trị bằng
Theo công thức truy hồi ta có
.
Tìm tất cả các giá trị của x để ba số
theo thứ tự lập thành một cấp số nhân.
Ta có:
Ba số theo thứ tự lập thành một cấp số nhân
Cho cấp số cộng
có các số hạng đầu lần lượt là 5; 9; 13; 17;... Tìm số hạng tổng quát
của cấp số cộng.
Theo bài ra ta có:
Dãy số đã cho là cấp số cộng
=>
=>
Vậy số hạng tổng quát của dãy số là:
Dãy số có các số hạng cho bởi
có số hạng tổng quát là công thức nào dưới đây?
Vì dãy số đã cho không phải là dãy hằng nên loại các đáp án và
Ta có: ở các đáp án
và
Xét đáp án
Xét đáp án
Vậy công thức tổng quát của dãy số đã cho là
Cho dãy (un) xác định bởi
và un = un − 1 + 2n với mọi n ≥ 2. Số hạng u50 bằng?
Ta có
Cộng vế với vế các đẳng thức trên, ta được:
.
Cho cấp số cộng
với
. Khi đó số
là số hạng thứ mấy trong dãy?
Theo bài ra ta có:
Cho dãy số (un) với ![]()
Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có un + 1 = un + (−1)2n + 1 = un − 1
u1 = 1; u2 = u1 − 1; u3 = u2 − 1; …; un = un − 1 − 1
Cộng vế với vế của các đẳng thức trên, ta được:
un = 1 − (n−1) = 2 − n.
Cho cấp số cộng
có số hạng đầu là
. Hỏi số hạng thứ tư là số nào dưới đây?
Ta có:
Vậy
Trong các dãy số (un) cho bởi số hạng tổng quát un sau, dãy số nào tăng?
Ta xét đáp án Loại
Ta xét đáp án Loại
Ta xét đáp án Thỏa mãn!
Ta xét đáp án : Loại
Dãy số (un) được cho bởi
. Hãy tìm khẳng định sai trong các khẳng định sau.
...
Áp dụng phương pháp quy nạp ta có un = 2n − 1.
Tính tổng
với
.
Các số hạng có tổng S gồm có n số hạng theo thứ tự đó lập thành một cấp số nhân có
Tìm
để các số
theo thứ tự đó lập thành một cấp số nhân.
Các số theo thứ tự đó lập thành một cấp số nhân
Cho dãy số (an) được xác định bởi
.
Phát biểu nào dưới đây về dãy số (an) là đúng?
Mỗi số hạng thứ ba trở đi luôn bằng tổng của hai số đứng ngay trước nó. Đồng thời số hạng đầu tiên và số hạng thứ hai của dãy là các số dương nên dễ thấy dãy số là một dãy tăng.
Cho cấp số cộng
có số hạng đầu và công sai lần lượt là
. Số hạng thứ
bằng:
Ta có:
Tổng
có công thức thu gọn là?