Trong các dãy số sau, dãy số nào là cấp số nhân?
Xét dãy số
Ta có: => Dãy số là cấp số nhân
Trong các dãy số sau, dãy số nào là cấp số nhân?
Xét dãy số
Ta có: => Dãy số là cấp số nhân
Trong dãy số
cho bởi số hạng tổng quát
sau, dãy số nào là dãy số tăng?
Vì là các dãy dương và tăng nên
là các dãy giảm
=> Loại các đáp án
Xét đáp án ta có:
=> Dãy số không phải dãy tăng.
Xét đáp án
=> Dãy số là dãy tăng.
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai
b) Cho dãy số
được xác định bởi công thức
có số hạng thứ 3 là:
. Đúng||Sai
c) Cho dãy số
được xác định bởi công thức
là dãy số giảm và bị chặn dưới. Sai||Đúng
d) Tổng
. Đúng||Sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai
b) Cho dãy số được xác định bởi công thức
có số hạng thứ 3 là:
. Đúng||Sai
c) Cho dãy số được xác định bởi công thức
là dãy số giảm và bị chặn dưới. Sai||Đúng
d) Tổng . Đúng||Sai
Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân đúng vì dãy số đã cho là cấp số nhân với công bội q = 1.
Số hạng thứ ba của dãy số là:
.
Xét ta có:
suy ra
là dãy số giảm
Lại có suy ra
là dãy số bị chặn trên.
Suy ra phát biểu “Cho dãy số được xác định bởi công thức
là dãy số giảm và bị chặn dưới.” là phát biểu sai.
Ta có: là tổng cấp số nhân lùi vô hạn
với
có số hạng đầu và công bội lần lượt là:
Biết rằng tồn tại đúng ba giá trị m1, m2, m3 của tham số m để phương trình
có ba nghiệm phân biệt lập thành một cấp số cộng, tính giá trị của biểu thức ![]()
Ta có phương trình đã cho có 3 nghiệm phân biệt thì điều kiện cần là là nghiệm của phương trình
Với thì
Vậy ba số 1, 3, 5 lập thành cấp số cộng
Vậy giá trị cần tìm là 34
Cho dãy (un) xác định bởi
và un = un − 1 + 2n với mọi n ≥ 2. Số hạng u50 bằng?
Ta có
Cộng vế với vế các đẳng thức trên, ta được:
.
Khẳng định nào sau đây là khẳng định sai?
Khẳng định sai là: “Số hạng tổng quát của cấp số cộng là
với công sai
và số hạng đầu
.”
Cho dãy số (un) biết
.
Mệnh đề nào sau đây đúng?
Dự đoán dãy giảm sau đó chứng minh un + 1 − un < 0 bằng quy nạp toán học.
Từ giả thiết suy ra un > 0, ∀n ∈ ℕ*.
Ta có
Giả sử: uk + 1 − uk < 0, ∀k ≥ 1
Xét hiệu
Theo nguyên lí quy nạp suy ra un + 1 − un < 0, ∀n ∈ ℕ*
Vậy dãy số (un) là dãy số giảm.
Cho cấp số nhân
thỏa mãn
. Tính ![]()
Đáp án: 64
Cho cấp số nhân thỏa mãn
. Tính
Đáp án: 64
Giả sử cấp số nhân có công bội là , khi đó theo bài ra ta có:
do
Ta có:
Xác định công thức tổng quát của dãy số
.
Ta có:
Nhận thấy
Dự đoán
Ta chứng minh bằng quy nạp
Trước hết đúng với
Giả sử đúng khi
. Khi đó
Ta có:
Mặt khác ta có . Do đó
Vậy
Vậy (*) đúng với . Theo nguyên lí quy nạp, ta có điều phải chứng minh.
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra
. Sai||Đúng
c) Dãy số
cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng
và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra . Sai||Đúng
c) Dãy số cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
a) Ta có:
Suy ra:
b) Do công sai dương nên cấp số cộng là một dãy tăng nên
c) Ta có: là một cấp số cộng
Suy ra
d) Ta có:
Dãy số có các số hạng cho bởi
có số hạng tổng quát là công thức nào dưới đây?
Vì dãy số đã cho không phải là dãy hằng nên loại các đáp án và
Ta có: ở các đáp án
và
Xét đáp án
Xét đáp án
Vậy công thức tổng quát của dãy số đã cho là
Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:
Ta có cấp số nhân (un) nên khi đó:
Khách hàng A gửi 60 triệu đồng vào ngân hàng với kì hạn 1 tháng với lãi suất của loại kì hạn này là
. Ngân hàng đó quy định: “Khi kết thúc kỳ hạn gửi tiền mà người gửi không đến rút tiền thì toàn bộ số tiền (bao gồm cả vốn và lãi) sẽ được chuyển gửi tiếp với kỳ hạn như kỳ hạn mà người gửi đã gửi”. Hỏi nếu sau hai năm, kể từ ngày gửi người đó đến ngân hàng để rút tiền thì số tiền rút được (gồm cả vốn và lãi) là bao nhiêu?
Với số nguyên dương , kí hiệu
là số tiền người đó rút được (gồm cả vốn và lãi) sau
tháng kể từ ngày gửi. khi đó, theo giả thiết của bài toán ta có:
Ta có: là một cấp số nhân với số hạng đầu
với công bội
nên
Số tiền rút được sau 2 năm là:
(đồng)
Dãy số (un) được cho bởi
. Hãy tìm khẳng định sai trong các khẳng định sau.
...
Áp dụng phương pháp quy nạp ta có un = 2n − 1.
Cho cấp số cộng
biết
. Tìm công sai của cấp số cộng?
Theo giả thiết ta có:
Vậy
Cho một cấp số cộng
có
. Giá trị
bằng bao nhiêu?
Ta có:
Tổng của 16 số hạng đầu tiên của cấp số cộng là:
Trong các dãy số
cho bởi số hạng tổng quát
sau, dãy số nào là một cấp số nhân?
Xét dãy số ta có:
Vậy dãy số là cấp số nhân với q = 1/3
Một cấp số cộng gồm
số hạng. Hiệu số hạng đầu và số hạng cuối bằng
. Tìm công sai
của cấp số cộng đã cho?
Gọi năm số hạng của cấp số cộng đã cho là:
Theo đề bài ta có:
Vậy công sai của cấp số cộng đã cho là
Cho hai số -3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số tạo thành cấp số cộng có công sai d = 2. Tìm n
Xen kẽ giữa hai số -3 và 23 n số hạng để tạo thành một cấp số cộng thì:
Cho một cấp số nhân có 15 số hạng. Đẳng thức nào sau đây là sai?
Ta có:
Với
Đáp án sai
Cho dãy số
, biết
. Số
là số hạng thứ mấy của dãy số?
Ta có:
Vậy số là số hạng thứ 7 của dãy số.
Khẳng định nào dưới đây sai?
Số hạng tổng quát của cấp số cộng (un) là với công sai d và số hạng đầu u1
Cho dãy số vô hạn (un) là cấp số cộng có công sai d, số hạng đầu u1. Hãy chọn khẳng định sai?
Ta có:
Công thức tổng n số hạng đầu tiên của cấp số cộng là:
Hai số hạng đầu của một cấp số nhân là
và
. Số hạng thứ ba của cấp số nhân là:
Công bội của cấp số nhân là:
Vậy số hạng thứ ba của cấp số nhân là:
Cho ba số x, y, z theo thứ tự đó vừa lập thành cấp số cộng, vừa lập thành cấp số nhân khi và chỉ khi:
Gọi m và n lần lượt là công sai và công bội của cấp số cộng và cấp số nhân.
Ta có:
Giả sử Q là tập hợp con của tập các số nguyên dương sao cho
(a) ![]()
(b) ![]()
Chọn mệnh đề đúng trong các mệnh đề dưới đây.
Mệnh đề " Mọi số nguyên dương đều thuộc " sai vì
là tập con thực sự của
nên tồn tại số nguyên dương không thuộc
.
Mệnh đề "Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc " đúng theo lí thuyết của phương pháp quy nạp.
Mệnh đề "Mọi số nguyên bé hơn k đều thuộc " sai theo giả thiết thì phải là số tự nhiên lớn hơn
.
Mệnh đề "Mọi số nguyên đều thuộc " sai vì số nguyên âm không thuộc
.
Dãy số nào sau đây không phải là cấp số cộng?
Chỉ cần tồn tại hai cặp số hạng liên tiếp của dãy số có hiệu khác nhau: thì kết luận ngay dãy số đó không phải là cấp số cộng.
Xét đáp án: loại
Xét đáp án: Chọn
Xét đáp án: Loại
Xét đáp án: loại
Xét tính tăng, giảm và bị chặn của dãy số (un), biết
, ta thu được kết quả?
Ta có un > 0, ∀n ≥ 1
⇒ dãy (un) là dãy số giảm.
Mặt khác 0 < un < 1⇒ dãy (un) là dãy bị chặn.
Cho cấp số nhân
với
và
. Công bội của cấp số nhân đã cho bằng
Ta có .
Cho dãy số (un) thỏa mãn
. Tìm giá trị nhỏ nhất của n thỏa mãn ![]()
Ta có:
Đặt
Dãy (vn) là cấp số nhân với công bội q = 10
=>
Vậy giá trị nhỏ nhất của n để là n = 102
Xác định bốn số hạng đầu của một dãy số
xác định bởi công thức
với
?
Ta có:
Có bao nhiêu giá trị nguyên của
để ba số
lập thành một cấp số cộng?
Để ba số lập thành một cấp số cộng thì
Đặt phương trình trở thành
Với
Do vậy không có giá trị nào của a thỏa mãn yêu cầu để bài.
Biết bốn số
theo thứ tự lập thành cấp số cộng. Giá trị của biểu thức
bằng
Ta có:
Cho cấp số nhân có các số hạng lần lượt là
. Tìm số hạng tổng quát
của cấp số nhân đã cho.
Các số hạng lần lượt là lập thành cấp số nhân
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Cho dãy số
xác định bởi
. Khi đó
có giá trị bằng
Theo công thức truy hồi ta có
.
Cho cấp số nhân
có
và công bội
. Số hạng tổng quát của cấp số nhân
là
Số hạng tổng quát của cấp số nhân là
.
Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?
Ta có: không có dạng
nên không phải là cấp số cộng.
Cho cấp số nhân
có tổng n số hạng đầu tiên là
. Tìm số hạng thứ 5 của cấp số nhân đã cho.
Mặt khác
Một cấp số cộng có 12 số hạng. Biết rằng tổng của 12 số hạng đó bằng 144 và số hạng thứ mười hai bằng 23. Khi đó công sai d của cấp số cộng đã cho là bao nhiêu?
Ta có:
=> d = 2