Trong các dãy số
cho bởi số hạng tổng quát
sau, dã số nào là dãy số tăng?
Xét đáp án ta có:
=> Dãy số là dãy tăng.
Trong các dãy số
cho bởi số hạng tổng quát
sau, dã số nào là dãy số tăng?
Xét đáp án ta có:
=> Dãy số là dãy tăng.
Cho cấp số cộng
. Tính ![]()
Ta có:
Viết ba số hạng xen giữa các số 2 và 22 để được một cấp số cộng có năm số hạng.
Khi viết xen giữa 2 và 22 ba số hạng ta được một cấp số cộng có 5 số hạng có:
u1 = 2; u5 = 22. Ta cần tìm u2; u3; u4
Ta có:
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có un + 1 = un + (−1)2n = un + 1 ⇒ u2 = 2; u3 = 3; u4 = 4; …
Dễ dàng dự đoán được un = n.
Thật vậy, ta chứng minh được un = n (*) bằng phương pháp quy nạp như sau:
Với n = 1 ⇒ u1 = 1. Vậy (*) đúng với n = 1.
Giả sử (*) đúng với n = k (k∈ℕ*), ta có uk = k
Ta đi chứng minh (*) cũng đúng với n = k + 1, tức là uk + 1 = k + 1
Thật vậy, từ hệ thức xác định dãy số (un) ta có uk + 1 = uk + (−1)2k = k + 1
Vậy (*) đúng với mọi n ∈ ℕ*. Số hạng tổng quát của dãy số là un = n.
Cho dãy số (un) xác định bởi
. Tính tổng của 10 số hạng đầu tiên của dãy số?
Ta có:
Tính tổng 100 số hạng đầu của cấp số cộng xác định bởi
.
Theo bài ra ta có:
Cho dãy số (un) biết
. Mệnh đề nào sau đây đúng?
Ta xét dãy số này bị chặn bằng phương pháp quy nạp toán học.
Ta sẽ chứng minh bằng quy nạp − 2 ≤ un ≤ 1, ∀n ∈ ℕ*
Với n = 1 ta có − 2 ≤ u1 ≤ 1 (đúng).
Giả sử mệnh đề trên đúng với n = k ≥ 1. Tức là − 2 ≤ uk ≤ 1
Theo nguyên lí quy nạp ta đã chứng minh được − 2 ≤ un ≤ 1, ∀n ∈ ℕ*
Vậy (un) là dãy số bị chặn.
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Dãy số nào sau đây không phải là một cấp số cộng?
Xét đáp án A:
=> Loại đáp án A
Xét đáp án B:
=> Loại đáp án B
Xét đáp án C:
=> Chọn đáp án C
Xét đáp án D:
=> Loại đáp án D
Tính tổng
. Biết dãy số (un) xác định bởi: ![]()
Ta có:
Do
Từ đó suy ra:
Hay dãy là một cấp số nhân có số hạng đầu
Khi đó
Cho cấp số nhân
có
. Số
là số hạng thứ mấy của cấp số nhân đã cho?
Ta có:
Nếu các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì m bằng bao nhiêu?
Để các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì:
Vậy nếu các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì m = 4
Cho dãy số
có số hạng tổng quát
. Khẳng định nào sau đây sai?
Ta có:
Vậy dãy số đã cho không tăng không giảm.
Khẳng định sai là: “Dãy số là dãy giảm”
Cho dãy số
xác định bởi
với
. Khi đó số hạng
của dãy
là
Ta có:
Với
, cho dãy số
gồm tất cả các số nguyên dương chia
dư
theo thứ tự tăng dần. Số hạng tổng quát của dãy số này là
Các số nguyên dương chia dư
theo thứ tự tăng dần là
,
,
,
,…
Ta có ,
,
,
, …
Vậy
Ba số hạng đầu của một cấp số nhân là
và
. Tìm
biết rằng công bội của cấp số nhân là
?
Ta có:
Ba số hạng đầu của một cấp số nhân là và
có công bội
Dãy số (un) được cho bởi
. Hãy tìm khẳng định sai trong các khẳng định sau.
...
Áp dụng phương pháp quy nạp ta có un = 2n − 1.
Cho cấp số cộng
có
. Số hạng thứ
của cấp số cộng là
Ta có:
Dãy số
có công thức số hạng tổng quát nào dưới đây xác định một cấp số nhân?
Xét dãy số ta có:
nên
là công thức số hạng tổng quát xác định một cấp số nhân.
Xét dãy số
nên
không là công thức số hạng tổng quát xác định một cấp số nhân.
Xét dãy số
nên
không là công thức số hạng tổng quát xác định một cấp số nhân.
Xét dãy số
nên
không là công thức số hạng tổng quát xác định một cấp số nhân
Trong các phát biểu sau, có bao nhiêu phát biểu đúng?
(1) Dãy số được xác định bởi
là một dãy bị chặn.
(2) Dãy số được xác định bởi an = n2 là một dãy giảm.
(3) Dãy số được xác định bởi an = 1 − n2 là một dãy số giảm và không bị chặn dưới.
(4) Dãy số được xác định bởi an = (−1)nn2 là một dãy không tăng, không giảm.
nên dãy số xác định bởi
là một dãy bị chặn.
an + 1 − an = (n+1)2 − n2 = 2n + 1 > 0, ∀n ∈ ℕ* nên dãy số xác định bởi an = n2 là dãy tăng.
an + 1 − an = (1−(n+1)2) − (1−n2) = 2n − 1 > 0, ∀n ∈ ℕ* nên dãy số xác định bởi an = 1 − n2 là dãy số giảm và không bị chặn dưới.
a1 = − 1 < a2 = 4 > a3 = − 9 nên dãy số xác định bởi an = (−1)nn2 là dãy không tăng không giảm.
Trong các dãy (un) sau đây, dãy nào là dãy số bị chặn?
Ta có:
n2 − n + 1 < n2 + 2n + 2 (do n > 0)
Suy ra , với mọi n.
Cho
là cấp số cộng biết
. Tổng 15 số hạng đầu của cấp số cộng đó bằng
Ta có:
Vậy
Nếu
theo thứ tự lập thành cấp số cộng thì dãy số nào sau đây lập thành một cấp số cộng.
Theo giả thiết ta có:
Hai số hạng đầu của một cấp số nhân là
và
. Số hạng thứ ba của cấp số nhân là:
Công bội của cấp số nhân là:
Vậy số hạng thứ ba của cấp số nhân là:
Cho cấp số cộng
thỏa mãn
. Tính số hạng đầu tiên
và công sai
của cấp số cộng đã cho.
Ta có:
Cho cấp số cộng
có
. Tìm số hạng đầu tiên
.
Ta có:
Một cấp số nhân có số hạng thứ hai bằng 4 và số hạng thứ sáu bằng 64. Khi đó, số hạng tổng quát của cấp số nhân đó có thể tính theo công thức nào dưới đây?
Ta có:
Tính tổng 10 số hạng đầu của cấp số cộng
.
Theo bài ra ta có:
Với giá trị nào của m ta có thể tìm được các giá trị của x để các số
lập thành một cấp số cộng?
Để ba số hạng lập thành một cấp số cộng ta có:
Theo bất đẳng thức Cauchy ta có:
Cho cấp số nhân (un) có u1 = 2 và u2 = -8. Mệnh đề nào sau đây đúng?
Ta có:
Vào mùa thu hoạch dưa hấu, bác T bán cho những người vào vườn mua dưa như sau:
Người thứ nhất mua bác bán nửa số dưa thu hoạch được và tặng thêm 1 quả.
Người thứ hai mua bác bán nửa số dưa còn lại và tặng thêm 1 quả.
…
Bác cứ tiếp tục bán như trên, đến người mua thứ 15 thì bác bán hết.
Tính số dưa mà bác T thu hoạch được.
Vào mùa thu hoạch dưa hấu, bác T bán cho những người vào vườn mua dưa như sau:
Người thứ nhất mua bác bán nửa số dưa thu hoạch được và tặng thêm 1 quả.
Người thứ hai mua bác bán nửa số dưa còn lại và tặng thêm 1 quả.
…
Bác cứ tiếp tục bán như trên, đến người mua thứ 15 thì bác bán hết.
Tính số dưa mà bác T thu hoạch được.
Cho cấp số cộng
thỏa mãn
. Mệnh đề nào sau đây đúng?
Ta có:
Khi đó:
Cho cấp số cộng (Un) có
. Giá trị của
bằng:
Ta có:
Cho dãy số (un) có
và
.
Tất cả các giá trị n để
là?
Ta có
Đặt . Suy ra (vn) là cấp số nhận có công bội
và
.
Ta có
Do vn > 0, ∀n ≥ 1 nên (Tn) là dãy tăng.
Suy ra
Cho dãy số
là một cấp số nhân với
. Dãy số nào sau đây không phải là cấp số nhân?
Giả sử là cấp số nhân công bội
thì:
Dãy là cấp số nhân công bội
.
Dãy là cấp số nhân với công bội
.
Dãy là cấp số nhân công bội
.
Dãy không là cấp số nhân.
Dãy số nào sau đây là cấp số nhân?
Ta có: là cấp số nhân
Dãy số lập thành cấp số nhân là
Trong các dãy số sau, dãy số nào là cấp số nhân?
Ta có:
=> là cấp số nhân
Cấp số nhân
có số hạng tổng quát là
. Số hạng đầu tiên và công bội của cấp số nhân đó là
Theo công thức số hạng tổng quát của cấp số nhân ta suy ra và
.
Cho cấp số nhân có các số hạng lần lượt là
. Mệnh đề nào sau đây đúng?
Cấp số nhân
Vậy