Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Số hạng âm trong dãy số x1; x2; x3; …; xn với x_{n} = C_{n + 5}^{4} - \frac{143P_{n +
5}}{96P_{n + 3}} là?

    Ta có c_{n + 5}^{4} = \frac{(n + 5)(n +4)(n + 3)(n + 2)}{24},

    \frac{143P_{n + 5}}{96P_{n + 3}} = \frac{143(n +5)(n + 4)}{96}

    x_{n} = C_{n + 5}^{4} - \frac{143P_{n +
5}}{96P_{n + 3}}

    = \frac{(n + 5)(n + 4)(2n + 17)(2n -
7)}{96} > 0,\forall n \geq 4,n \in \mathbb{N}^{*}

    Vậy các số hạng âm là x1; x2; x3.

  • Câu 2: Thông hiểu

    Ba số hạng đầu của một cấp số nhân là x - 6; x và y. Tìm y, biết rằng công bội của cấp số nhân là 6

    Ta có x = 6(x – 6) => x = 36/5

    Từ đó suy ra y = 6x = 216/5

  • Câu 3: Thông hiểu

    Dãy số (un) được cho bởi \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + 2 \\
\end{matrix} ight.. Hãy tìm khẳng định sai trong các khẳng định sau.

    u_1=1

    u_2=1+2=1+1.2

    u_3=1+2+2=1+2.2

    u_4=1+2+2+2=1+3.2

    ...

    u_n=1+2+⋯+2=1+(n-1).2

    Áp dụng phương pháp quy nạp ta có un = 2n − 1.

  • Câu 4: Nhận biết

    Dãy số nào sau đây không phải là cấp số cộng?

    Chỉ cần tồn tại hai cặp số hạng liên tiếp của dãy số có hiệu khác nhau: u_{m + 1} - u_{m}=u_{k + 1} -u_{k} thì kết luận ngay dãy số đó không phải là cấp số cộng.

    Xét đáp án: 2;5;8;11;14...\overset{ightarrow}{}3 = u_{2} -
u_{1} = u_{3} - u_{2} = u_{4} - u_{3} =
\cdots\overset{ightarrow}{}loại

    Xét đáp án: 2;4;8;10;14...\overset{ightarrow}{}2 = u_{2} -u_{1}=u_{3} - u_{2} = 4\overset{ightarrow}{} Chọn

    Xét đáp án: 1;2;3;4;5;6...\overset{ightarrow}{}1 = u_{2} -
u_{1} = u_{3} - u_{2} = u_{4} - u_{3} =
\cdots\overset{ightarrow}{}Loại

    Xét đáp án: 15;10;5;0; -
5;...\overset{ightarrow}{} - 5 = u_{2} - u_{1} = u_{3} - u_{2} = u_{4}
- u_{3} = \cdots\overset{ightarrow}{}loại

  • Câu 5: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} =
2 và công sai d = 3. Giá trị u_{2024} bằng

    Áp dụng công thức số hạng tổng quát

    u_{2024} = u_{1} + 2023d = 2 + 2023.3 = 6071.

  • Câu 6: Vận dụng

    Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là 35000 đô la mỗi năm và được tăng thêm 1400 đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là 319200 đô la?

    Đáp án: 8

    Đáp án là:

    Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là 35000 đô la mỗi năm và được tăng thêm 1400 đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là 319200 đô la?

    Đáp án: 8

    Gọi u_{n} là tiền lương anh Nam nhận được vào năm thứ n.

    Tại năm đầu tiên, lương anh Nam nhận được là u_{1} = 35000.

    Vì mỗi năm, anh Nam được tăng lương thêm 1400 đô, nên ta có u_{n} = u_{n - 1} + 1400

    Do đó \left( u_{n} ight) là cấp số cộng với u_{1} = 35000,\ d =
1400.

    Tổng lương mà anh Nam nhận được là 319200 đô, áp dụng công thức tính tổng n số hạng đầu của cấp số cộng:

    S_{n} = \frac{\left\lbrack 2u_{1} + (n -
1)d ightbrack.n}{2}

    \Leftrightarrow 319200 =
\frac{\left\lbrack 2.35000 + (n - 1).1400
ightbrack.n}{2}

    \Rightarrow n = 8.

    Vậy anh Nam mất 8 năm làm việc để được tổng lương là 319200.

  • Câu 7: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) có số hạng đầu là u_{1} = 3;d = 5. Hỏi số hạng thứ tư là số nào dưới đây?

    Ta có: u_{4} = u_{1} + 3d = 3 + 3.5 =
18

    Vậy u_{4} = 18

  • Câu 8: Thông hiểu

    Cho hai số −3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số đó tạo thành cấp số cộng có công sai d = 2. Tìm n.

    Ta có:

    Cấp số cộng có k số hạng gồm có u_{1} = -3 và số hạng cuối u_{k} =23.

    Khi đó:

    u_{k + 1} = u_{1} + (k -1)d

    \Leftrightarrow 23 = - 3 + (k -1).2

    \Leftrightarrow k = 14

    Do đó n = k - 2 = 12

  • Câu 9: Vận dụng cao

    Cho một cấp số cộng (un) có u1 = 1 và tổng 100 số hạng đầu tiên là 24850. Tính giá trị của biểu thức S = \frac{1}{{{u_1}{u_2}}} + \frac{1}{{{u_2}{u_3}}} + ... + \frac{1}{{{u_{48}}.{u_{49}}}} + \frac{1}{{{u_{49}}.{u_{50}}}}

    Ta có:

    \begin{matrix}  {u_{100}} + {u_1} = 497 \hfill \\   \Rightarrow {u_{100}} = 1 + 99d \hfill \\   \Rightarrow d = 5 \hfill \\   \Rightarrow {u_{50}} = 246 \hfill \\ \end{matrix}

    Ta lại có

    \begin{matrix}  5S = \dfrac{{{u_2} - {u_1}}}{{{u_1}{u_2}}} + \dfrac{{{u_3} - {u_2}}}{{{u_2}{u_3}}} + ... + \dfrac{{{u_{49}} - {u_{48}}}}{{{u_{48}}.{u_{49}}}} + \dfrac{{{u_{50}} - {u_{49}}}}{{{u_{50}}.{u_{49}}}} = \dfrac{1}{{{u_1}}} - \dfrac{1}{{{u_{50}}}} = 1 - \dfrac{1}{{246}} \hfill \\   \Rightarrow S = \dfrac{{49}}{{246}} \hfill \\ \end{matrix}

  • Câu 10: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = 1 và công sai d = 2. Tổng 10 số hạng đầu của cấp số cộng bằng:

    Tổng 10 số hạng đầu của cấp số cộng là

    S_{n} = \frac{n}{2}\left\lbrack 2u_{1} +
(n - 1)d ightbrack

    \Rightarrow S_{10} =
\frac{10}{2}\left\lbrack 2.1 + (10 - 1)2 ightbrack =
100

  • Câu 11: Nhận biết

    Cho dãy số \left( u_{n} ight) với u_{n} = 2n + 5. Số 19 là số hạng thứ bao nhiêu của dãy số đó?

    Ta có

    u_{n} = 19 \Leftrightarrow 2n + 5 =
19

    \Leftrightarrow 2n = 14 \Leftrightarrow n
= 7.

    Vậy 19 là số hạng thứ 7 của dãy số đã cho.

  • Câu 12: Thông hiểu

    Có bao nhiêu giá trị nguyên của a để ba số a^{4};a^{2};3a^{2} - 9 lập thành một cấp số cộng?

    Để ba số a^{4};a^{2};3a^{2} - 9 lập thành một cấp số cộng thì a^{4} + 3a^{2}
- 9 = 2a^{2}

    Đặt t = a^{2};(t \geq 0) phương trình trở thành

    t^{2} + t - 9 = 0\Leftrightarrow \left\lbrack \begin{matrix}t = \dfrac{- 1 + \sqrt{37}}{2} \\t = \dfrac{- 1 - \sqrt{37}}{2}(l) \\\end{matrix} ight.

    Với t = \frac{- 1 + \sqrt{37}}{2}
\Rightarrow a = \pm \sqrt{\frac{- 1 + \sqrt{37}}{2}}

    Do a\mathbb{\in Z} vậy không có giá trị nào của a thỏa mãn yêu cầu để bài.

  • Câu 13: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Dãy số 1; 2; 3; 4; 5 là một cấp số cộng với công sai là d = 1

    Dãy số 1; 2; 4; 8; 16 là một cấp số nhân với công bội q = 2

    Dãy số 1; -1; 1; -1; 1 là một cấp số nhân với công bội q = -1

    Dãy số 1; -2; 4; -8; 16 là một cấp số nhân với công bội q = -2

  • Câu 14: Nhận biết

    Cho cấp số nhân \left( u_{n} ight) có số hạng đầu là u_{1} = 1, công bội là q = 2019. Tính u_{2019}?

    Theo công thức cấp số nhân ta có: u_{2019} = u_{1}.q^{n - 1} = 1.2019^{2019 - 1} =
2019^{2018}

  • Câu 15: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai

    b) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = \frac{5n + 2}{19n + 1} có số hạng thứ 3 là: u_{3} = \frac{17}{58}. Đúng||Sai

    c) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới. Sai||Đúng

    d) Tổng S = \frac{1}{3} +
\frac{1}{3^{2}} + ... + \frac{1}{3^{n}} + ... = \frac{1}{3} . Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai

    b) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = \frac{5n + 2}{19n + 1} có số hạng thứ 3 là: u_{3} = \frac{17}{58}. Đúng||Sai

    c) Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới. Sai||Đúng

    d) Tổng S = \frac{1}{3} +
\frac{1}{3^{2}} + ... + \frac{1}{3^{n}} + ... = \frac{1}{3} . Đúng||Sai

    Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân đúng vì dãy số đã cho là cấp số nhân với công bội q = 1.

    Số hạng thứ ba của dãy số \left( u_{n}
ight) là: u_{3} = \frac{5.3 +
2}{19.3 + 1} = \frac{17}{58}.

    Xét u_{n} = 9 - 2n ta có: u_{n + 1} - u_{n} = - 2 < 0,\forall
n\mathbb{\in N} suy ra \left( u_{n}
ight) là dãy số giảm

    Lại có n\mathbb{\in N \Rightarrow}n \geq
0 \Rightarrow u_{n} = 9 - 2n \leq 9 suy ra \left( u_{n} ight) là dãy số bị chặn trên.

    Suy ra phát biểu “Cho dãy số \left( u_{n}
ight) được xác định bởi công thức u_{n} = 9 - 2n là dãy số giảm và bị chặn dưới.” là phát biểu sai.

    Ta có: S = \frac{1}{3} + \frac{1}{3^{2}}
+ ... + \frac{1}{3^{n}} + ... là tổng cấp số nhân lùi vô hạn \left( u_{n} ight) với u_{n} = \frac{1}{3^{n}} có số hạng đầu và công bội lần lượt là: u_{1} = \frac{1}{3};q
= \frac{1}{3}

    \Rightarrow S = \dfrac{u_{1}}{1 - q} =\dfrac{\dfrac{1}{3}}{1 - \dfrac{1}{3}} = \dfrac{1}{2}

  • Câu 16: Vận dụng

    Cho dãy số (un)u_{1} = \frac{1}{5}u_{n + 1} = \frac{n + 1}{5n}u_{n},\forall n \geq
1.

    Tất cả các giá trị n để S = \sum_{k =
1}^{n}\mspace{2mu}\frac{u_{k}}{k} < \frac{5^{2018} -
1}{{4.5}^{2018}} là?

    Ta có u_{n + 1} = \frac{n + 1}{5n}u_{n}
\Leftrightarrow \frac{u_{n + 1}}{n + 1} = \frac{1}{5} \cdot
\frac{u_{n}}{n}

    Đặt v_{n} = \frac{u_{n}}{n},\forall n \geq
1. Suy ra (vn) là cấp số nhận có công bội q = \frac{1}{5}v = \frac{1}{5}.

    Ta có S = \sum_{k =
1}^{n}\mspace{2mu}\frac{u_{k}}{k} = \sum_{k = 1}^{n}\mspace{2mu} v_{k} =
v_{1}\frac{1 - q^{n}}{1 - q} = \frac{1}{5} \cdot \frac{1 - \left(
\frac{1}{5} ight)^{n}}{1 - \frac{1}{5}} = \frac{1}{4} \cdot
\frac{5^{n} - 1}{5^{n}} = T_{n}

    Do vn > 0, ∀n ≥ 1 nên (Tn) là dãy tăng.

    Suy ra T_{n} < \frac{5^{2018} -
1}{{4.5}^{2018}} = T_{2018} \Leftrightarrow n < 2018

  • Câu 17: Thông hiểu

    Cho cấp số cộng (Un) có số hạng tổng quát là {u_n} = 3n - 2. Xác định công sai của cấp số cộng.

    Ta có: \begin{matrix}  {u_{n + 1}} - {u_n} = 3\left( {n + 1} ight) - 2 - 3n + 2 = 3 \hfill \\   \Rightarrow d = 3 \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Cho dãy số (un) với \ \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + ( - 1)^{2n + 1}\text{.~} \\
\end{matrix} ight.

    Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có un + 1 = un + (−1)2n + 1 = un − 1

    u1 = 1; u2 = u1 − 1; u3 = u2 − 1; …; un = un − 1 − 1

    Cộng vế với vế của các đẳng thức trên, ta được:

    un = 1 − (n−1) = 2 − n.

  • Câu 19: Nhận biết

    Cho dãy số có các số hạng đầu là - 2;0;2;4;6;.... Số hạng tổng quát của dãu số này là đẳng thức nào dưới đây?

    Ta có: u_{1} = - 2 loại các đáp án u_{n} = n - 2u_{n} = - 2(n + 1). Ta kiểm tra u_{2} = 0

    Xét đáp án u_{n} = - 2nu_{2} = - 4 eq 0

    Xét đáp án u_{n} = 2n - 4u_{2} = 2.2 - 4 = 0 là đáp án đúng.

  • Câu 20: Thông hiểu

    Cho cấp số cộng có u_{1} = 5, d = 2. Khi đó:

    a) u_{6} = 15. Đúng||Sai

    b) Số hạng tổng quát thứ n của cấp số cộng là u_{n} = 2n + 3. Đúng||Sai

    c) Tổng nsố hạng đầu tiên của cấp số cộng là S_{n} = n^{2} + 4n. Đúng||Sai

    d) Tổng S = u_{10} + u_{11} + .. + u_{20}
= 310. Sai||Đúng

    Đáp án là:

    Cho cấp số cộng có u_{1} = 5, d = 2. Khi đó:

    a) u_{6} = 15. Đúng||Sai

    b) Số hạng tổng quát thứ n của cấp số cộng là u_{n} = 2n + 3. Đúng||Sai

    c) Tổng nsố hạng đầu tiên của cấp số cộng là S_{n} = n^{2} + 4n. Đúng||Sai

    d) Tổng S = u_{10} + u_{11} + .. + u_{20}
= 310. Sai||Đúng

    a) Áp dụng công thức tính số hạng tổng quát thứ n của cấp số cộng ta có:

    u_{6} = u_{1} + 5d = 5 + 5.2 =
15.

    b) Áp dụng công thức tính số hạng tổng quát thứ n của cấp số cộng ta có:

    u_{n} = u_{1} + (n - 1)d = 5 + (n - 1).2
= 2n + 3.

    c) Áp dụng công thức tính tổng nsố hạng đầu tiên của cấp số cộng ta có:

    S_{n} = nu_{1} + \frac{(n - 1)n}{2}d = 5n
+ \frac{(n - 1)n}{2}.2 = n^{2} + 4n.

    d) Ta viết lại

    S = u_{10} + u_{11} + .. +
u_{20}

    = \left( u_{1} + u_{2} + .. + u_{20}
ight) - \left( u_{1} + u_{2} + .. + u_{9} ight)

    = S_{20} - S_{9} = 480 - 117 =
363.

  • Câu 21: Nhận biết

    Cho cấp số nhân \left( u_{n} ight) có công bội q. Đẳng thức nào sau đây đúng?

    Mệnh đề đúng u_{k} = u_{1}q^{k -
1}.

  • Câu 22: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{n} = - 1;u_{n + 1} = 8. Tính công sai d của cấp số cộng đó:

    Ta có:

    d = u_{n + 1} - u_{n} = 8 - ( - 1) =
9

  • Câu 23: Nhận biết

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + ( - 1)^{2n} \\
\end{matrix} ight.. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có un + 1 = un + (−1)2n = un + 1 ⇒ u2 = 2; u3 = 3; u4 = 4; …

    Dễ dàng dự đoán được un = n.

    Thật vậy, ta chứng minh được un = n (*) bằng phương pháp quy nạp như sau:

    Với n = 1 ⇒ u1 = 1. Vậy (*) đúng với n = 1.

    Giả sử (*) đúng với n = k (k∈ℕ*), ta có uk = k

    Ta đi chứng minh (*) cũng đúng với n = k + 1, tức là uk + 1 = k + 1

    Thật vậy, từ hệ thức xác định dãy số (un) ta có uk + 1 = uk + (−1)2k = k + 1

    Vậy (*) đúng với mọi n ∈ ℕ*. Số hạng tổng quát của dãy số là un = n.

  • Câu 24: Vận dụng

    Tổng n số hạng đầu tiên của một cấp số cộng là S_{n} = \frac{3n^{2} - 19n}{4};\left( n
\in \mathbb{N}^{*} ight). Tìm số hạng đầu tiên u_{1} và công sai d của cấp số cộng đã cho.

    Ta có:

    S_{n} = \frac{3n^{2} - 19n}{4} =
\frac{3}{4}n^{2} - \frac{19}{4}n

    Mặt khác

    S_{n} = n.u_{1} + \frac{n(n - 1)d}{2} =
\frac{d}{2}.n^{2} + \left( u_{1} - \frac{d}{2} ight).n

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{d}{2} = \dfrac{3}{4} \\u_{1} - \dfrac{d}{2} = - \dfrac{19}{4} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} = - 4 \\d = \dfrac{3}{2} \\\end{matrix} ight.

  • Câu 25: Nhận biết

    Trong các dãy số sau đây, dãy số nào là cấp số cộng?

    Ta có dãy số 1; - 3; - 7; - 11; -
15 là một cấp số cộng có công sai d
= - 4.

  • Câu 26: Vận dụng

    Tìm số đo góc lớn nhất của một tứ giác, biết số đo các góc đó lập thành một cấp số nhân có số hạng cuối gấp tám lần số hạng đầu tiên?

    Giả sử cấp số nhân có số hạng đầu là u_{1}, công bội q, với q >0

    Theo bài ra ta có:

    u_{4} = 8.u_{1} \Leftrightarrowu_{1}q^{3} = u_{1}.8

    \Leftrightarrow q = 2

    S_{4} = u_{1} + u_{2} + u_{3} + u_{4}= 360^{0}

    \Leftrightarrow u_{1}.\frac{1 - q^{4}}{1- q} = 360^{0} \Rightarrow u_{1} = 24^{0}

    u_{2} = 48^{0};u_{3};96^{0};u_{4} =192^{0}

    Vậy góc lớn nhất có số đo 192^{0}

  • Câu 27: Vận dụng cao

    Cho dãy số (un) biết un = a sin(n)+b cos(n). Mệnh đề nào sau đây đúng?

    Xét |un| = |a sin(n)+b cos(n)| ≤ |a| + |b| ⇒  − (|a|+|b|) ≤ un ≤ |a| + |b|

    Vậy dãy số (un) bị chặn.

  • Câu 28: Nhận biết

    Dãy số u_{n} = 2^{n} là cấp số nhân với

    Cấp số nhân 1;2;4;8;16;32;...

    \Rightarrow \left\{ \begin{matrix}u_{1} = 1 \\q = \dfrac{u_{2}}{u_{1}} = 2 \\\end{matrix} ight.

  • Câu 29: Nhận biết

    Cho dãy số (u_{n}), biết {u_n} = {( - 1)^n}.\frac{{{2^n}}}{n}. Tìm số hạng u_{3}

    Ta có:

    {u_3} = {( - 1)^3}.\frac{{{2^3}}}{3} =  - \frac{8}{3}

  • Câu 30: Thông hiểu

    Một cấp số nhân có số hạng đầu {u_1} = 3, công bội q = 2. Biết {S_n} = 765. Tìm n?

    Ta có:

    \begin{matrix}  {S_n} = \dfrac{{{u_1}\left( {1 - {q^n}} ight)}}{{1 - q}} = \dfrac{{3\left( {1 - {2^n}} ight)}}{{1 - 2}} = 765 \hfill \\   \Rightarrow n = 8 \hfill \\ \end{matrix}

  • Câu 31: Thông hiểu

    Cho dãy số \left( u_{n} ight) có số hạng tổng quát u_{n} = \frac{n + 3}{2n^{2} - 1}. Biết rằng u_{k} = \frac{7}{31}. Khi đó u_{k} là số hạng thứ mấy trong dãy số?

    Ta có:

    u_{k} = \frac{7}{31} \Rightarrow \frac{k
+ 3}{2k^{2} - 1} = \frac{7}{31}

    \Leftrightarrow 14k^{2} - 7 = 31k +
93

    \Leftrightarrow 14k^{2} - 31k - 100 = 0\Leftrightarrow \left\lbrack \begin{matrix}k = 4(tm) \\k = - \dfrac{25}{14}(ktm) \\\end{matrix} ight.

    Vậy u_{k} là số hạng thứ tư trong dãy số.

  • Câu 32: Vận dụng cao

    Tính tổng 3 + 33 + 333 + ... + 33...33 + ....

     Ta có:

    \begin{matrix}  S = 3\left( {1 + 11 + 111 + ... + 11...1} ight) \hfill \\  S = 3.\left( {\dfrac{{10 - 1}}{9} + \dfrac{{{{10}^2} - 1}}{9} + ... + \dfrac{{{{10}^n} - 1}}{9}} ight) \hfill \\  S = \dfrac{3}{9}.\left( {10 + {{10}^2} + ... + {{10}^n} - n} ight) \hfill \\  S = \dfrac{1}{3}.\left( {10.\dfrac{{{{10}^n} - 1}}{{10 - 1}} - n} ight) = \dfrac{1}{{27}}.\left( {{{10}^{n + 1}} - 10 - 9n} ight) \hfill \\ \end{matrix}

  • Câu 33: Nhận biết

    Dãy số nào sau đây là cấp số nhân?

    Ta có: \left( u_{n} ight) là cấp số nhân \Leftrightarrow u_{n + 1} =
q.u_{n}

    Dãy số lập thành cấp số nhân là \left\{
\begin{matrix}
u_{1} = - 1 \\
u_{n + 1} = - 3u_{n};n \geq 1 \\
\end{matrix} ight.

  • Câu 34: Vận dụng

    Cho dãy số (un) biết \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = au_{n} + 1,\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Tất cả các giá trị của a để (un) là dãy số tăng là?

    Xét hiệu un + 1 − un = (aun+1) − (aun − 1+1) = a(unun − 1)

    Áp dụng, ta có u2 = au1 + 1 = a + 1 ⇒ u2 − 1 = a ⇒ u2 − u1 = a

     ⇒ u3 − u2 = a(u2u1) = a2

     ⇒ u4 − u3 = a(u3u2) = a3

     ⇒ un + 1 − un = an > 0

    Để dãy số (un) tăng thì un > un − 1 > … > u2 > u1 ⇒ a > 0

  • Câu 35: Thông hiểu

    Ba số hạng đầu của một cấp số nhân là x - 6;xy. Tìm y biết rằng công bội của cấp số nhân là 6?

    Ta có:

    Ba số hạng đầu của một cấp số nhân là x -
6;xy có công bội q = 6

    \Rightarrow \left\{ \begin{matrix}u_{1} = x - 6;q = 6 \\x = u_{2} = u_{1}q = 6(x - 6) \\y = u_{3} = u_{2}q^{2} = 36x \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \dfrac{36}{5} \\y = 36.\dfrac{36}{5} = \dfrac{1296}{5} \\\end{matrix} ight.

  • Câu 36: Vận dụng

    Cho dãy số vô hạn (un) là cấp số cộng có công sai d, số hạng đầu u1. Hãy chọn khẳng định sai?

     Ta có:

    Công thức tổng n số hạng đầu tiên của cấp số cộng là:

    \begin{matrix}  {S_n} = n{u_1} + \dfrac{{n\left( {n - 1} ight)d}}{2} \hfill \\   \Rightarrow {S_{12}} = 12{u_1} + \dfrac{{12.11.d}}{2} = 6\left( {2{u_1} + 11d} ight) e \dfrac{n}{2}.\left( {2{u_1} + 11d} ight) \hfill \\ \end{matrix}

  • Câu 37: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{2} = 2001;u_{5} = 1995. Khi đó u_{1001} bằng:

    Ta có:

    \left\{ \begin{matrix}
u_{2} = 2001 \\
u_{5} = 1995 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + d = 2001 \\
u_{1} + 4d = 1995 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 2003 \\
d = - 2 \\
\end{matrix} ight.

    \Rightarrow u_{1001} = u_{1} + 1000d =
3

  • Câu 38: Thông hiểu

    Cho dãy số (u_n) với \begin{matrix}  {u_n} = \dfrac{{\sin \left( {\dfrac{{n\pi }}{3}} ight)}}{{n + 1}} \hfill \\\end{matrix} với mọi n\geq 1. Khi đó số hạng u_{3n} của dãy (u_{n}) là:

    Ta có:

    \begin{matrix}  {u_n} = \dfrac{{\sin \left( {\dfrac{{n\pi }}{3}} ight)}}{{n + 1}} \hfill \\   \Rightarrow {u_{3n}} = \dfrac{{\sin \left( {\dfrac{{3n\pi }}{3}} ight)}}{{3n + 1}} = \dfrac{{\sin \left( {n\pi } ight)}}{{3n + 1}} = 0 \hfill \\ \end{matrix}

  • Câu 39: Thông hiểu

    Một cấp số cộng có 8 số hạng. Số hạng đầu là 5, số hạng thứ tám là 40. Khi đó công sai d của cấp số cộng đó là bao nhiêu?

    Theo bài ra ta có: \left\{ \begin{matrix}
u_{1} = 5 \\
40 = u_{8} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 5 \\
40 = u_{1} + 7d \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 5 \\
d = 5 \\
\end{matrix} ight.

  • Câu 40: Thông hiểu

    Tìm x để ba số 1
+ x;9 + x;33 + x theo thứ tự đó lập thành một cấp số nhân.

    Ta có:

    Ba số 1 + x;9 + x;33 + x theo thứ tự đó lập thành một cấp số nhân

    \Rightarrow (9 + x)^{2} = (1 + x).(33 +
x)

    \Rightarrow 81 + 18x + x^{2} = x^{2} +
34x + 33

    \Rightarrow 16x = 48

    \Rightarrow x = 3

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo