Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến A(n) đúng với mọi giá trị nguyên n ≥ p, với p là số nguyên dương ta sẽ tiến hành 2 bước

    Bước 1 (bước cơ sở). Chứng minh rằng A(n) đúng khi n = 1

    Bước 2 (bước quy nạp). Với số nguyên dương tùy ý k, ta giả sử A(n) đúng khi n = k (theo giả thiết quy nạp). Ta sẽ chứng minh rằng A(n) đúng khi n = k + 1

    Hãy chọn câu trả lời đúng tương ứng với lí luận trên.

    Bước 1 sai, vì theo bài toán n ≥ p nên ta phải chứng minh rằng A(n) đúng khi n = p.

    Bước 2 sai, không thể "Với số nguyên dương tùy ý k " mà phải là "Với số nguyên dương k, (k p) ".

  • Câu 2: Nhận biết

    Cho cấp số nhân \left( u_{n} ight) với u_{1} = - 2;q = - 5. Viết bốn số hạng đầu tiên của cấp số nhân.

    Ta có: \left\{ \begin{matrix}
u_{1} = - 2 \\
q = - 5 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = - 2 \\
u_{2} = u_{1}q = 10 \\
u_{3} = u_{1}q^{2} = - 50 \\
u_{4} = u_{1}q^{3} = 250 \\
\end{matrix} ight.

  • Câu 3: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight) biết u_{5} = 5, u_{10} = 15 Khi đó u_{7} bằng

    Ta có

    \left\{ \begin{matrix}
u_{5} = 5 \\
u_{10} = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + 4d = 5 \\
u_{1} + 9d = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 3 \\
d = 2 \\
\end{matrix} ight.

    Vậy u_{7} = u_{1} + 6d = - 3 + 6.2 =
9

  • Câu 4: Vận dụng

    Cho dãy số \left( u_{n} ight) xác định bởi công thức \left\{ \begin{matrix}
u_{1} = 2020 \\
u_{n + 1} = u_{n} + n \\
\end{matrix} ight.\ ;\left( \forall n \in \mathbb{N}^{*}
ight). Tìm số hạng tổng quát của dãy số?

    Ta có:

    u_{n + 1} - u_{n} = n,\forall n \in
\mathbb{N}^{*} suy ra

    u_{2} - u_{1} = 1

    u_{3} - u_{2} = 2

    u_{4} - u_{3} = 3

    u_{n + 1} - u_{n} = n

    Cộng các vễ theo đẳng thức trên ta được

    u_{n + 1} - u_{n} = 1 + 2 + 3 + ... + n
= \frac{n(n + 1)}{2}

    \Leftrightarrow u_{n + 1} = 2020 +
\frac{n(n + 1)}{2};\left( \forall n \in \mathbb{N}^{*}
ight)

  • Câu 5: Vận dụng

    Người ta trồng 3003 cây theo hình tam giác như sau: Hàng thứ nhất có 1 cây. hàng thứ hai có hai cây, hàng thứ ba có ba cây,.... Vậy có tất cả bao nhiêu hàng?

    Gọi số hàng cây được trồng là x (hàng)

    Số cây các hàng là: 1; 2; 3; 4; ...; x - 1; x

    Số cây của mỗi hàng (bắt đầu từ hàng thứ nhất) lập thành một cấp số cộng 

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 1} \\   {d = 1} \end{array}} ight.

    Khi đó ta có:

    \begin{matrix}  {S_x} = \dfrac{{x\left[ {2.{u_1} + \left( {x - 1} ight).d} ight]}}{2} \hfill \\   \Leftrightarrow 3003 = \dfrac{{x\left[ {2.{u_1} + \left( {x - 1} ight).d} ight]}}{2} \hfill \\   \Leftrightarrow 6006 = 2x + {x^2} - x \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 77\left( {tm} ight)} \\   {x =  - 78\left( {ktm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy có tất cả 77 hàng cây được trồng.

  • Câu 6: Nhận biết

    Cho cấp số nhân (un) có {u_1} = 2 và công bội q = 3. Số hạng u2 là:

    Ta có: u2 = u1 . q = -2 . 3 = -6

  • Câu 7: Nhận biết

    Trong các dãy số sau dãy số nào là cấp số cộng?

    Ta có:

    u_{n + 1} - u_{n}

    = \left\lbrack 4 + 3(n + 1)
ightbrack - (4 + 3n)

    = 3

    => Dãy số \left( u_{n} ight):u_{n} =
4 + 3n là cấp số cộng.

  • Câu 8: Thông hiểu

    Ba số hạng đầu của một cấp số nhân là x - 6; x và y. Tìm y, biết rằng công bội của cấp số nhân là 6

    Ta có x = 6(x – 6) => x = 36/5

    Từ đó suy ra y = 6x = 216/5

  • Câu 9: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{n} = - 1;u_{n + 1} = 8. Tính công sai d của cấp số cộng đó:

    Ta có:

    d = u_{n + 1} - u_{n} = 8 - ( - 1) =
9

  • Câu 10: Nhận biết

    Cho dãy số -7; h; 11; k. Với giá trị nào của h, k thì dãy số đã cho lập thành một cấp số cộng?

     Bốn số hạng 7; h; 11; k theo thứ tự là u1; u2; u3; u4 lập thành một cấp số cộng nên

    \begin{matrix}   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_4} - {u_3} = {u_3} - {u_2}} \\   {{u_4} - {u_3} = {u_2} - {u_1}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {k - 11 = 11 - h} \\   {k - 11 = h + 7} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {h + k = 22} \\   {h - k =  - 18} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {h = 2} \\   {k = 20} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Một cấp số cộng có 8 số hạng. Số hạng đầu là 5, số hạng thứ tám là 40. Khi đó công sai d của cấp số cộng đó là bao nhiêu?

    Theo bài ra ta có: \left\{ \begin{matrix}
u_{1} = 5 \\
40 = u_{8} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 5 \\
40 = u_{1} + 7d \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 5 \\
d = 5 \\
\end{matrix} ight.

  • Câu 12: Nhận biết

    Trong các dãy số sau, dãy số nào không phải cấp số nhân?

    Xét đáp án 1^{2};2^{2};3^{2};4^{2};...\Leftrightarrow \frac{u_{2}}{u_{1}} = 4 eq
\frac{9}{4} = \frac{u_{3}}{u_{2}}

    => Dãy số 1^{2};2^{2};3^{2};4^{2};... không phải là cấp số nhân.

  • Câu 13: Thông hiểu

    Một cấp số nhân có 6 số hạng với công bội bằng 2 và tổng số các số hạng bằng 189. Tìm số hạng cuối u_{6} của cấp số nhân đã cho.

    Theo giả thiết ta có:

    \left\{ \begin{matrix}q = 2 \\S_{6} = 189 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}q = 2 \\u_{1}.\dfrac{1 - q^{6}}{1 - q} = 189 \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}q = 2 \\u_{1}.\dfrac{1 - 2^{6}}{1 - 2} = 189 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}q = 2 \\u_{1} = 3 \\\end{matrix} ight.

    \Rightarrow u_{6} = u_{1}.q^{5} =
3.2^{6} = 96

  • Câu 14: Thông hiểu

    Cho cấp số cộng (u_{n}) có các số hạng đầu lần lượt là 5; 9; 13; 17;... Tìm số hạng tổng quát u_{n} của cấp số cộng.

    Theo bài ra ta có:

    Dãy số đã cho là cấp số cộng

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 5} \\   {{u_2} = 9} \end{array} \Rightarrow d = {u_2} - {u_1} = 4} ight.

    => {u_n} = {u_1} + \left( {n - 1} ight).d = 4n + 1

    Vậy số hạng tổng quát của dãy số là: u_n=4n+1

  • Câu 15: Nhận biết

    Dãy số nào là dãy số tăng?

    Xét u_{n} = n^{2} ta có: u_{n + 1} - u_{n} = (n + 1)^{2} - n^{2} = 2n + 1
> 0;\forall n \in \mathbb{N}^{*}

    Vậy u_{n} = n^{2} là dãy số tăng.

  • Câu 16: Thông hiểu

    Cho cấp số cộng (Un) có số hạng tổng quát là {u_n} = 3n - 2. Xác định công sai của cấp số cộng.

    Ta có: \begin{matrix}  {u_{n + 1}} - {u_n} = 3\left( {n + 1} ight) - 2 - 3n + 2 = 3 \hfill \\   \Rightarrow d = 3 \hfill \\ \end{matrix}

  • Câu 17: Thông hiểu

    Biểu thức nào sau đây cho ta tập giá trị của tổng S = 1 - 2 + 3 - 4+ ...- 2n + (2n+1)

    Ta có:

    Với n=0=>S=1

    Với n = 1 \Rightarrow S = 1 - 2 + 3 = 2

    Với n = 2 \Rightarrow S = 1 - 2 + 3 - 4 + 5 = 3

    Dự đoán S = n + 1\left( * ight) ta sẽ chứng minh (*) đúng bằng phương pháo quy nạp.

    Với n = 0 đương nhiên (*) đúng.

    Giả sử (*) đúng với n=k tức là:

    \begin{matrix}  {S_k} = 1 - 2 + 3 - 4 + ... - 2k + \left( {2k + 1} ight) \hfill \\   = k + 1 \hfill \\ \end{matrix}

    Ta chứng minh (*) đúng với n = k + 1

    Ta có:

    \begin{matrix}  {S_{k + 1}} = 1 - 2 + 3 - 4 + ... - 2\left( {k + 1} ight) + \left[ {2\left( {k + 1} ight) + 1} ight] \hfill \\   = \left( {1 - 2 + 3 - 4... - 2k + 2k + 1} ight) - \left( {2k + 2} ight) + \left( {2k + 3} ight) \hfill \\   = {S_k} +  - \left( {2k + 2} ight) + \left( {2k + 3} ight) \hfill \\   = k + 1 + 1 \hfill \\ \end{matrix}

    Vậy (*) đúng với mọi số tự nhiên n tức là S=n+1

  • Câu 18: Thông hiểu

    Cho dãy số (u_n) với \begin{matrix}  {u_n} = \dfrac{{\sin \left( {\dfrac{{n\pi }}{3}} ight)}}{{n + 1}} \hfill \\\end{matrix} với mọi n\geq 1. Khi đó số hạng u_{3n} của dãy (u_{n}) là:

    Ta có:

    \begin{matrix}  {u_n} = \dfrac{{\sin \left( {\dfrac{{n\pi }}{3}} ight)}}{{n + 1}} \hfill \\   \Rightarrow {u_{3n}} = \dfrac{{\sin \left( {\dfrac{{3n\pi }}{3}} ight)}}{{3n + 1}} = \dfrac{{\sin \left( {n\pi } ight)}}{{3n + 1}} = 0 \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu

    Một cấp số nhân có 6 số hạng, số hạng đầu bằng 2 và số hạng thứ sáu bằng 486. Tìm công bội q của cấp số nhân đã cho.

    Ta có:

    Cấp số nhân có số hạng đầu bằng 2 và số hạng thứ sáu bằng 486

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {{u_6} = 486} \end{array}} ight.

    => {{u_1}.{q^5} = 486}

    => {{q^5} = 243} => {q = 3}

    Vậy công bội q của cấp số nhân đã cho là q = 3

  • Câu 20: Nhận biết

    Cho dãy số \left( u_{n} ight), biết u_{n} = \frac{n}{2^{n}}. Chọn đáp án đúng.

    Ta có: u_{4} = \frac{4}{2^{4}} =
\frac{4}{16} = \frac{1}{4}

  • Câu 21: Nhận biết

    Khẳng định nào sau đây là khẳng định sai?

    Khẳng định sai là: “Số hạng tổng quát của cấp số cộng \left( u_{n} ight)u_{n} = u_{1} + nd với công sai d và số hạng đầu u_{1}.”

  • Câu 22: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) với u_{1} = 2;d = - 3. Tổng 10 số hạng đầu tiên của dãy là:

    Tổng 10 số hạng đầu tiên của dãy là:

    S_{10} = \frac{10}{2}\left( 2u_{1} + 9d
ight) = 5(4 - 27) = - 115

  • Câu 23: Nhận biết

    Một cấp số nhân có số hạng thứ hai bằng 4 và số hạng thứ sáu bằng 64. Khi đó, số hạng tổng quát của cấp số nhân đó có thể tính theo công thức nào dưới đây?

    Ta có: \left\{ \begin{matrix}
u_{2} = 4 \\
u_{6} = 64 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1}q = 4 \\
u_{1}q^{5} = 64 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
q = 2 \\
\end{matrix} ight.

    \Rightarrow u_{n} = u_{1}.q^{n - 1} =
2.2^{n - 1} = 2^{n}

  • Câu 24: Thông hiểu

    Cho cấp số nhân \left( u_{n}
ight) với u_{1} = - 2;\ \ u_{4} =
- 54. Tính u_{8}.

    Ta có:

    \left\{ \begin{matrix}
u_{1} = - 2 \\
u_{4} = - 54 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 2 \\
u_{1}.q^{3} = - 54 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} = - 2 \\q^{3} = 27 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} = - 2 \\q = 3 \\\end{matrix} ight.

    Vậy u_{8} = u_{1}.q^{7} = - 2.3^{7} = -
4374.

  • Câu 25: Vận dụng cao

    Một quả bóng rơi từ độ cao 6m với phương vuông góc với mặt đất. Mỗi lần chạm đất quả bóng nảy lên với độ cao bằng \dfrac{3}{4} độ cao của lần rơi trước. Tính quãng đường quả bóng đã bay từ lúc thả bóng cho đến lúc bóng không nảy nữa.

    Ta có: Quãng đường bóng bay bằng tổng quãng đường bóng nảy lên và quãng đường bóng rơi xuống

    Vì mỗi lần bóng nảy lên bằng \dfrac{3}{4} lần nảy trước nên ta có tổng quãng đường bóng nảy lên là:

    {S_1} = 6.\frac{3}{4} + 6.{\left( {\frac{3}{4}} ight)^2} + ... + 6.{\left( {\frac{3}{4}} ight)^n} + ...

    Đây là tổng của cấp số nhân lùi vô hạn có {u_1} = 6.\frac{3}{4} = \frac{9}{1},q = \frac{3}{4}

    => {S_1} = \dfrac{{\dfrac{9}{2}}}{{1 - \dfrac{3}{4}}} = 18

    Tổng quãng đường bóng rơi xuống bằng khoảng cách độ cao ban đầu và tổng quãng đường bóng nảy lên là:

    {S_2} = 6 + 6.\frac{3}{4} + 6.{\left( {\frac{3}{4}} ight)^2} + ... + 6.{\left( {\frac{3}{4}} ight)^n} + ...

    Đây là tổng của cấp số nhân lùi vô hạn với {u_1} = 6;q = \frac{3}{4}

    => {S_2} = \dfrac{6}{{1 - \dfrac{3}{4}}} = 24

    Vậy tổng quãng đường bóng bay là 42m

  • Câu 26: Thông hiểu

    Cho dãy số \left( u_{n} ight) biết \left\{ \begin{matrix}u_{1} = 3 \\u_{n + 1} = 3u_{n} \\\end{matrix},\forall n \in N^{*} ight.. Tìm số hạng tổng quát của dãy số \left( u_{n}ight).

    Ta có u_{1} = 3\frac{u_{n+1}}{u_{n}}=3

    Suy ra dãy số \left( u_{n}ight)là cấp số nhân với \left\{\begin{matrix}u_{1} = 3 \\q = 3 \\\end{matrix} ight.

    Do đó u_{n} = u_{1}.q^{n - 1} = 3.3^{n -1} = 3^{n}

  • Câu 27: Thông hiểu

    Một cấp số cộng gồm 5 số hạng. Hiệu số hạng đầu và số hạng cuối bằng 20. Tìm công sai d của cấp số cộng đã cho?

    Gọi năm số hạng của cấp số cộng đã cho là: u_{1}^{};u_{2}^{};u_{3}^{};u_{4}^{};u_{5}^{}.

    Theo đề bài ta có:

    u_{1} - u_{5} = 20

    \Leftrightarrow u_{1} - (u_{1} + 4d) =
20

    \Leftrightarrow d = - 5

    Vậy công sai của cấp số cộng đã cho là d
= - 5

  • Câu 28: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

  • Câu 29: Thông hiểu

    Cho dãy số (u_{n}), biết {u_n} = \sin n - \cos n. Dãy số (u_{n}) bị chặn dưới bởi số nào dưới đây?

    Ta có:

    \begin{matrix}  {u_n} = \sin n - \cos n \hfill \\   = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin n - \dfrac{1}{{\sqrt 2 }}\cos n} ight) \hfill \\   = \sqrt 2 \left( {\cos \dfrac{\pi }{4}\sin n - \sin \dfrac{\pi }{4}\cos n} ight) \hfill \\   = \sqrt 2 \sin \left( {n - \dfrac{\pi }{4}} ight) \hfill \\   \Rightarrow 1 \geqslant \sin \left( {n - \dfrac{\pi }{4}} ight) \geqslant  - 1 \hfill \\   \Rightarrow \sqrt 2  \geqslant \sqrt 2 \sin \left( {n - \dfrac{\pi }{4}} ight) \geqslant  - \sqrt 2  \hfill \\ \end{matrix}

  • Câu 30: Thông hiểu

    Trong các dãy số dưới đây, dạy số nào không phải là cấp số nhân lùi vô hạn?

     Vì dãy ở đáp án C là một cấp số nhân có công bội q = 3/2 > 0

    \frac{3}{2};\frac{9}{4};\frac{{27}}{8};..;{\left( {\frac{3}{2}} ight)^n};...=> không phải dãy lùi vô hạn

  • Câu 31: Thông hiểu

    Cho một cấp số cộng \left( u_{n} ight)u_{1} = 2;u_{8} = 16. Tìm d;S_{10}?

    Theo bài ra ta có:

    \left\{ \begin{matrix}
u_{1} = 2 \\
u_{8} = 16 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
u_{1} + 7d = 16 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
d = 2 \\
\end{matrix} ight.

    \Rightarrow S_{10} = \frac{\left\lbrack
2u_{1} + 9d ightbrack.n}{2} = 110

  • Câu 32: Vận dụng

    Cho tập hợp M =
\left\{ 2^{1};2^{2};2^{3};...;2^{2020} ight\}. Số tập hợp con của tập hợp M gồm ba phần tử có thể sắp xếp thành một cấp số nhân tăng là:

    Gọi ba phần tử thỏa mãn yêu cầu bài toán là 2^{a} < 2^{b} < 2^{c} với a,b,c \in \left\{ 1;2;...;2020
ight\}

    2^{a};2^{b};2^{c} lập thành một cấp số nhân

    Suy ra a,b,c lập thành một cấp số cộng

    \Rightarrow a + b = 2c

    Thấy rằng a và c phải cùng tính chẵn lẻ.

    Khi đó số tập con thỏa mãn yêu cầu bài toán là C_{1010}^{2} + C_{1010}^{2} = 1019090

  • Câu 33: Nhận biết

    Cho cấp số cộng (u_{n}) có u_{1}=-3 và d=\frac{1}{2}. Khẳng định nào sau đây là đúng?

    Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight).d \hfill \\   \Rightarrow {u_n} =  - 3 + \left( {n - 1} ight).\dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 34: Thông hiểu

    Tìm tất cả các giá trị của x để ba số 2x - 1;x;2x + 1 theo thứ tự lập thành một cấp số nhân.

    Ta có:

    Ba số 2x - 1;x;2x + 1 theo thứ tự lập thành một cấp số nhân

    \Rightarrow x^{2} = (2x - 1).(2x +
1)

    \Rightarrow x^{2} = 4x^{2} -
1

    \Rightarrow 3x^{2} = 1

    \Rightarrow x = \pm
\frac{1}{\sqrt{3}}

  • Câu 35: Vận dụng cao

    Biết rằng tồn tại đúng ba giá trị m1, m2, m3 của tham số m để phương trình{x^3} - 9{x^2} + 23x + {m^3} - 4{m^2} + m - 9 = 0  có ba nghiệm phân biệt lập thành một cấp số cộng, tính giá trị của biểu thức D = {m_1}^3 + {m_2}^3 + {m_3}^3

     Ta có phương trình đã cho có 3 nghiệm phân biệt thì điều kiện cần là - \frac{b}{{3a}} =  - \frac{{ - 9}}{3} = 3 là nghiệm của phương trình

    \begin{matrix}   \Leftrightarrow {3^3} - {9.3^2} + 23.3 + {m^3} - 4{m^2} + m - 9 = 0 \hfill \\   \Leftrightarrow {m^3} - 4{m^2} + m + 6 = 0 \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {m =  - 1} \\   {m = 2} \\   {m = 3} \end{array}} ight. \hfill \\ \end{matrix}

    Với m =  - 1;m = 2;m = 3 thì {m^3} - 4{m^2} + m + 6 = 0 \Leftrightarrow {m^3} - 4{m^2} + m - 9 =  - 15

    \begin{matrix}   \Rightarrow {x^3} - 9{x^2} + 23x - 15 = 0 \hfill \\   \Leftrightarrow \left( {x - 3} ight)\left( {{x^2} - 6x + 5} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 3} \\   {x = 5} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy ba số 1, 3, 5 lập thành cấp số cộng

    Vậy giá trị cần tìm là 34

  • Câu 36: Vận dụng cao

    Tổng S ={4.5}^{100} \cdot \left( \frac{1}{5} + \frac{1}{5^{2}} + \frac{1}{5^{3}}+ \ldots + \frac{1}{5^{100}} ight) + 1 có kết quả bằng?

    Đặt M = \frac{1}{5} + \frac{1}{5^{2}} +\frac{1}{5^{3}} + \ldots + \frac{1}{5^{100}}

    \Rightarrow 5M - M = \left( 1 +\frac{1}{5} + \frac{1}{5^{2}} + \ldots + \frac{1}{5^{99}} ight) -\left( \frac{1}{5} + \frac{1}{5^{2}} + \frac{1}{5^{3}}\ldots +\frac{1}{5^{100}} ight)

    = 1 - \frac{1}{5^{100}}

    \Rightarrow 4M = 1 - \frac{1}{5^{100}}\Rightarrow M = \frac{5^{100} - 1}{{4.5}^{100}}

    \Rightarrow S = {4.5}^{100} \cdot\frac{5^{100} - 1}{{4.5}^{100}} + 1 = 5^{100}

  • Câu 37: Nhận biết

    Với mọi n ∈ ℕ*, khẳng định nào sau đây sai?

    Thử với n = 1, n = 2, n = 3 ta kết luận được đáp án:

    2^{2} + 4^{2} + 6^{2}
+ \ldots + (2n)^{2} = \frac{2n(n + 1)(2n + 1)}{6} sai.

    Suy ra

    2^{2} + 4^{2} + 6^{2} + \ldots +
(2n)^{2} = \frac{2n(n + 1)(2n + 1)}{3} mới là kết quả đúng!

  • Câu 38: Vận dụng

    Cho dãy số \left( u_{n}
ight) thỏa mãn log_{3}\left(
2u_{5} - 63 ight) = 2log_{4}\left( u_{n} - 8n + 8 ight);\left(
\forall n \in \mathbb{N}^{*} ight). Đặt S_{n} = u_{1} + u_{2} + ... + u_{n}. Tìm số nguyên dương lớn nhất của n thỏa mãn \frac{u_{n}.S_{2n}}{u_{2n}.S_{n}} <
\frac{148}{75}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho dãy số \left( u_{n}
ight) thỏa mãn log_{3}\left(
2u_{5} - 63 ight) = 2log_{4}\left( u_{n} - 8n + 8 ight);\left(
\forall n \in \mathbb{N}^{*} ight). Đặt S_{n} = u_{1} + u_{2} + ... + u_{n}. Tìm số nguyên dương lớn nhất của n thỏa mãn \frac{u_{n}.S_{2n}}{u_{2n}.S_{n}} <
\frac{148}{75}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 39: Vận dụng

    Tổng n số hạng đầu tiên của một cấp số cộng là S_{n} = \frac{3n^{2} - 19n}{4};\left( n
\in \mathbb{N}^{*} ight). Tìm số hạng đầu tiên u_{1} và công sai d của cấp số cộng đã cho.

    Ta có:

    S_{n} = \frac{3n^{2} - 19n}{4} =
\frac{3}{4}n^{2} - \frac{19}{4}n

    Mặt khác

    S_{n} = n.u_{1} + \frac{n(n - 1)d}{2} =
\frac{d}{2}.n^{2} + \left( u_{1} - \frac{d}{2} ight).n

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{d}{2} = \dfrac{3}{4} \\u_{1} - \dfrac{d}{2} = - \dfrac{19}{4} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} = - 4 \\d = \dfrac{3}{2} \\\end{matrix} ight.

  • Câu 40: Vận dụng

    Xét tính tăng giảm của dãy số u_{n} = n - \sqrt{n^{2} - 1}, ta thu được kết quả

    Ta có u_{n + 1} - u_{n} = \frac{1}{(n + 1)
+ \sqrt{(n + 1)^{2} - 1}} - \frac{1}{n + \sqrt{n^{2} - 1}} <
0

    Vậy dãy (un) là dãy số giảm.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 23 lượt xem
Sắp xếp theo