Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong các dãy số sau, dãy số nào là cấp số nhân?

     Dãy số 1, 2, 4, 8, 16 tuân theo quy luật \frac{{{u_{n + 1}}}}{{{u_n}}} = 2

    => Dãy số đó là cấp số nhân

  • Câu 2: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} = -
\frac{1}{2}, công sai d =
\frac{1}{2}. Năm số hạng liên tiếp đầu tiên của cấp số cộng là:

    Ta dùng công thức tổng quát u_{n} = u_{1}
+ (n - 1)d = - \frac{1}{2} + (n - 1)\frac{1}{2} = - 1 +
\frac{n}{2}, hoặc u_{n + 1} = u_{n}
+ d = u_{n} + \frac{1}{2} để tính các số hạng của một cấp số cộng.

    Ta có u_{1} = - \dfrac{1}{2};\ \ d =\dfrac{1}{2}\overset{ightarrow}{}\left\{ \begin{matrix}u_{1} = - \dfrac{1}{2} \\u_{2} = u_{1} + d = 0 \\u_{3} - u_{2} + d = \dfrac{1}{2} \\u_{4} = u_{3} + d = 1 \\u_{5} = u_{4} + d = \dfrac{3}{2} \\\end{matrix} ight.

  • Câu 3: Thông hiểu

    Trong các dãy số (un) cho bởi số hạng tổng quát un sau, dãy số nào tăng?

    Ta xét đáp án :u_{n} = \frac{n}{2^{n}}
\Rightarrow \left\{ \begin{matrix}
u_{1} = \frac{1}{2} \\
u_{2} = \frac{2}{4} \\
\end{matrix} \Rightarrow u_{1} = u_{2} \Rightarrow ight. Loại

    Ta xét đáp án :u_{n} = \frac{n}{2n^{2} +
1} \Rightarrow \left\{ \begin{matrix}
u_{1} = \frac{1}{3} \\
u_{2} = \frac{2}{9} \\
\end{matrix} \Rightarrow u_{1} > u_{2} \Rightarrow ight. Loại

    Ta xét đáp án :u_{n} = \frac{n^{2} + 1}{3n
+ 2} \Rightarrow \left\{ \begin{matrix}
u_{1} = \frac{2}{5} = \frac{16}{40} \\
u_{2} = \frac{5}{8} = \frac{25}{40} \\
\end{matrix} \Rightarrow u_{1} < u_{2} \Rightarrow ight. Thỏa mãn!

    Ta xét đáp án : u_{n} = ( -
2)^{n}\sqrt{n^{2} - 1} \Rightarrow \left\{ \begin{matrix}
u_{1} = 0 \\
u_{2} = 4\sqrt{3} \\
u_{3} = - 8\sqrt{8} \\
\end{matrix} \Rightarrow u_{1} < u_{2} > u_{3} \Rightarrow
ight. Loại

  • Câu 4: Vận dụng cao

    Cho dãy số (un) biết u_{n} = \frac{1}{2} + \frac{1}{2^{2}} +
\frac{1}{3^{2}} + \ldots + \frac{1}{n^{2}}. Mệnh đề nào sau đây đúng?

    Xét \frac{1}{k^{2}} < \frac{1}{(k -
1)k} = \frac{1}{k - 1} - \frac{1}{k},\forall \geq 2

    Suy ra 

    u_n<\frac{1}{2}+(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+(\frac{1}{5}-\frac{1}{6})+⋯+(\frac{1}{n-1}-\frac{1}{n})

    =\frac{3}{2}-\frac{1}{n} < \frac{3}{2}

    \Rightarrow 0 < u_n <\frac{3}{2}, \, \, \forall n \in \mathbb{N} ^*

    Vậy dãy số (un) bị chặn.

  • Câu 5: Nhận biết

    Dãy số nào dưới đây là dãy số nguyên tố nhỏ hơn 10 theo thứ tự tăng dần?

    Số nguyên tố là số tự nhiên lớn hơn 1 và chỉ có hai ước số là 1 và chính nó.

    Vậy dãy số nguyên tố nhỏ hơn 102, 3, 5, 7.

  • Câu 6: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = - 1;d = 3. Số 100 là số hạng thứ mấy của cấp số cộng?

    Ta có: \left\{ \begin{matrix}
u_{1} = - 1 \\
d = 3 \\
\end{matrix} ight.

    \overset{n \mapsto u_{n} =
100}{ightarrow}100 = u_{1} + (n - 1)d

    \Leftrightarrow 100 = 3n -
8

    \Leftrightarrow n = 36

  • Câu 7: Thông hiểu

    Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt của mỗi tầng bằng nửa diện tích của bề mặt của tầng ngay bên dưới và diện tích bề mặt của tầng một bằng nửa diện tích đế tháp. Biết diện tích bề mặt đế tháp là 12288 m^{ 2 }. Diện tích bề mặt của tầng trên cùng là:

    Đáp án: 6 m2

    Đáp án là:

    Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt của mỗi tầng bằng nửa diện tích của bề mặt của tầng ngay bên dưới và diện tích bề mặt của tầng một bằng nửa diện tích đế tháp. Biết diện tích bề mặt đế tháp là 12288 m^{ 2 }. Diện tích bề mặt của tầng trên cùng là:

    Đáp án: 6 m2

    Diện tích bề mặt của tầng trên cùng là S_{11} = \frac{12288}{2^{11}} = 6\
m^{2}.

  • Câu 8: Vận dụng

    Số đo ba kích thước của hình hộp chữ nhật lập thành một cấp số nhân. Biết thể tích của khối hộp là 125cm^{3} và diện tích toàn phần là 175cm^{2}. Tính tổng số đo ba kích thước của hình hộp chữ nhật đó.

    Ba kích thước của hình hộp chữ nhật lập thành một cấp số nhân nên ta có thể gọi ba kích thước đó là \frac{a}{q};q;aq.

    Thể tích khối hộp chữ nhật: V =
\frac{a}{q}.a.a.q = a^{3} = 125 \Rightarrow a = 5

    Diện tích toàn phần của hình hộp chữ nhật là

    S_{tp} = 2.\left( \frac{a}{q}.a + a.a.q
+ a.q + \frac{a}{q} ight)

    = 2a^{2}\left( 1 + q + \frac{1}{q}
ight) = 50.\left( 1 + q + \frac{1}{q} ight)

    Theo giả thiết ta có:

    50.\left( 1 + q + \frac{1}{q} ight) =175 \Rightarrow \left\lbrack \begin{matrix}q = 2 \\q = \dfrac{1}{2} \\\end{matrix} ight.

    Với q = 2 hoặc q = \frac{1}{2} thì kích thước của hình hộp chữ nhật là 2,5cm;5cm;10cm

    => Tổng các kích thước là 17,5cm.

  • Câu 9: Nhận biết

    Xác định tham số m > 0 để 2m – 3; m; 2m + 3 lập thành một cấp số nhân.

    Để 2m – 3; m; 2m + 3 lập thành một cấp số nhân thì

    \begin{matrix}  {m^2} = \left( {2m - 3} ight)\left( {2m + 3} ight) \hfill \\   \Leftrightarrow {m^2} = 4{m^2} - 9 \hfill \\   \Leftrightarrow {m^2} = 3 \hfill \\   \Leftrightarrow m =  \pm \sqrt 3  \hfill \\ \end{matrix}

    Do m > 0 => m = \sqrt 3

  • Câu 10: Thông hiểu

    Cho cấp số nhân \left( u_{n}
ight)u_{2} = - 6,u_{5} =
48. Tính S_{5}.

    Ta có \left\{ \begin{matrix}
u_{1}.q = - 6 \\
u_{1}.q^{4} = 48 \\
\end{matrix} \Rightarrow \left\{ \begin{matrix}
u_{1}.q = - 6 \\
q^{3} = - 8 \\
\end{matrix} \Rightarrow \left\{ \begin{matrix}
u_{1} = 3 \\
q = - 2 \\
\end{matrix} ight.\  ight.\  ight.

    Vậy S_{5} = \frac{3\left( 1 - ( - 2)^{5}
ight)}{1 - ( - 2)} = 33.

  • Câu 11: Nhận biết

    Cho cấp số nhân \left( u_{n} ight) với u_{1} = - 2;q = - 5. Viết bốn số hạng đầu tiên của cấp số nhân.

    Ta có: \left\{ \begin{matrix}
u_{1} = - 2 \\
q = - 5 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = - 2 \\
u_{2} = u_{1}q = 10 \\
u_{3} = u_{1}q^{2} = - 50 \\
u_{4} = u_{1}q^{3} = 250 \\
\end{matrix} ight.

  • Câu 12: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{2} + u_{23} = 60. Tính tổng S_{24} của 24 số hạng đầu tiên của cấp số cộng đã cho.

    Ta có:

    u_{2} + u_{23} = 60

    \Leftrightarrow \left( u_{1} + d ight)+ \left( u_{1} + 22d ight) = 60

    \Leftrightarrow 2u_{1} + 23d =60

    Khi đó:

    \Rightarrow S_{24} = \frac{24}{2}\left(u_{1} + u_{24} ight)

    \Rightarrow S_{24} = 12.\left\lbracku_{1} + \left( u_{1} + 23d ight) ightbrack

    \Rightarrow S_{24} = 12.60 =720

  • Câu 13: Vận dụng cao

    Cho một dãy số có các số hạng đầu tiên là 1,8,22,43,... Hiệu của hai số hạng liên tiếp của dãy số đó lập thành 1 cấp số cộng: 7,14,21,..., 7n. Số 35351 là số hạng thứ bao nhiêu của dãy số đã cho?

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_2} - {u_1} = 7} \\   {{u_3} - {u_2} = 14} \\   \begin{gathered}  {u_4} - {u_3} = 21 \hfill \\  ... \hfill \\ \end{gathered}  \\   {{u_n} - {u_{n - 1}} = 7\left( {n - 1} ight)} \end{array}} ight.

    Cộng vế với vế của phương trình ta được:

    \begin{matrix}  {u_n} - {u_1} = 7 + 14 + 21 + ... + 7\left( {n - 1} ight) \hfill \\   \Rightarrow {u_n} - {u_1} = \dfrac{{7n.\left( {n - 1} ight)}}{2} \hfill \\   \Rightarrow 35331 - 1 = \dfrac{{7n.\left( {n - 1} ight)}}{2} \hfill \\   \Leftrightarrow {n^2} - n - 10100 = 0 \hfill \\   \Leftrightarrow n = 101 \hfill \\ \end{matrix}

     Vậy số 35351 là số hạng thứ 101 của dãy số đã cho.

  • Câu 14: Nhận biết

    Trong các dãy số sau, dãy số nào là một cấp số nhân?

    Ta có:

    Dãy số \left( u_{n} ight) là cấp số nhân

    \Leftrightarrow u_{n} = q.u_{n -
1};\left( n \in \mathbb{N}^{*} ight)

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{u_{3}}{u_{2}} = \frac{u_{4}}{u_{3}} = ... = q;\left( u_{n} eq 0
ight)

    Gọi q là công bội.

    Xét đáp án 128; - 64;32; -
16;8;...

    \Leftrightarrow \frac{u_{2}}{u_{1}} = -
\frac{1}{2} = \frac{u_{3}}{u_{2}} = \frac{u_{4}}{u_{3}}

    Xét đáp án \sqrt{2};2;4;4\sqrt{2};...

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{1}{\sqrt{2}} eq 2 = \frac{u_{3}}{u_{2}}

    Xét đáp án 5;6;7;8;...

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{6}{5} eq \frac{7}{6} = \frac{u_{3}}{u_{2}}

    Xét đáp án 15;5;1;\frac{1}{5};...

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{1}{3} eq \frac{1}{5} = \frac{u_{3}}{u_{2}}

  • Câu 15: Thông hiểu

    Tính tổng sau S =
1 + 5 + 9 + ... + 397

    Ta có:

    S = 1 + 5 + 9 + ... + 397 là tổng của 100 số hạng đầu tiên của cấp số cộng có u_{1} = 1;d = 4

    \Rightarrow S = S_{100} =
\frac{100}{2}.(2.1 + 99.4) = 19900.

  • Câu 16: Vận dụng

    Cho dãy số (Un) là một cấp số cộng có u1 = 3 và công sai d = 4. Biết rằng tổng n số hạng đầu của dãy số (Un) là {S_n} = 253. Giá trị của n là:

     Ta có:

    \begin{matrix}  {S_n} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} ight)d} ight]}}{2} \hfill \\   \Leftrightarrow \dfrac{{n\left[ {2.3 + \left( {n - 1} ight).4} ight]}}{2} = 253 \hfill \\   \Leftrightarrow 4{n^2} + 2n - 506 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 11} \\   {n =  - \dfrac{{23}}{2}\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 17: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight)u_{1} = - 1;q = - \frac{1}{10}. Số \frac{1}{10^{103}} là số hạng thứ mấy của cấp số nhân đã cho?

    Ta có:

    u_{n} = \frac{1}{10^{103}}

    \Rightarrow u_{1}.q^{n - 1} =
\frac{1}{10^{103}}

    \Rightarrow ( - 1)\left( - \frac{1}{10}
ight)^{n - 1} = 6561

    Mà n là số chẵn và n - 1 = 103

    \Rightarrow n = 104

  • Câu 18: Nhận biết

    Cho dãy số có các số hạng đầu là 8, 15, 22, 29, 36, … Số hạng tổng quát của dãy số này là

    Ta có 8 = 7.1 + 1; 15 = 7.2 + 1; 22 = 7.3 + 1; 29 = 7.4 + 1; 36 = 7.5 + 1

    Suy ra số hạng tổng quát un = 7n + 1

  • Câu 19: Nhận biết

    Cho hai dãy số (un), (vn) được xác định như sau u1 = 3, v1 = 2\left\{ \begin{matrix}
u_{n + 1} = u_{n}^{2} + 2v_{n}^{2} \\
v_{n = 1} = 2u_{n} \cdot v_{n} \\
\end{matrix} ight. với n ≥ 2. Công thức tổng quát của hai dãy (un)(vn) là?

    Chứng minh u_{n} - \sqrt{2}v_{n} =
(\sqrt{2} - 1)^{2n}

    Ta có u_{n} = \sqrt{2}v_{n} = u_{n -
1}^{2} + 2v_{n - 1}^{2} - 2\sqrt{2}u_{n - 1}v_{n - 1} = \left( u_{n - 1}
- \sqrt{2}v_{n - 1} ight)^{2}

    Mặt khác u_{1} - \sqrt{2}v_{1} = 3 -
2\sqrt{2} = (\sqrt{2} - 1)^{2} nên (1) đúng với n = 1 Giả sử u_{k} - \sqrt{2}v_{k} = (\sqrt{2} -
1)^{2k}, ta có u_{k - 1} -
\sqrt{2}v_{k + 1} = \left( u - \sqrt{2}v_{k} ight)^{2} = (\sqrt{2} -
1)^{2k + 1}

    Vậy (1) đúng với n ≥ 1

    Ta có u_{n} + \sqrt{2}v_{n} = (\sqrt{2} +
1)^{2^{n}}

    Do đó ta suy ra:

    \left\{ \begin{matrix}
2u_{n} = (\sqrt{2} + 1)^{2^{n}} + (\sqrt{2} - 1)^{2^{n}} \\
2\sqrt{2}v_{n} = (\sqrt{2} + 1)^{2^{n}} - (\sqrt{2} - 1)^{2^{n}} \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
u_{n} = \frac{1}{2}\left\lbrack (\sqrt{2} + 1)^{2^{n}} + (\sqrt{2} -
1)^{2^{n}} ightbrack \\
v_{n} = \frac{1}{2\sqrt{2}}\left\lbrack (\sqrt{2} + 1)^{2^{n}} -
(\sqrt{2} - 1)^{2^{n}} ightbrack \\
\end{matrix} ight.

  • Câu 20: Thông hiểu

    Giá tiền công khoan giếng ở cơ sở A được tính như sau: Giá của mét khoan đầu tiên là 8000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 500 đồng so với giá của mét khoan ngay trước nó. Vậy muốn khoan 20 mét thì mất bao nhiêu đồng?

     Theo bài ra ta có:

    Giá các mét khoan lập thành một cấp số cộng với công sai d = 500, số hạng đầu là 8000.

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 8000} \\   {d = 500} \end{array}} ight.

    => Số tiền phải trả khi khoan giếng sâu 20m là:

    \begin{matrix}  {S_{20}} = \dfrac{{20.\left( {2{u_1} + 19.d} ight)}}{2} \hfill \\   \Rightarrow {S_{20}} = 10.\left( {2.8000 + 19.500} ight) = 255000 \hfill \\ \end{matrix}

    Vậy muốn khoan 20 mét thì mất 255000 đồng.

  • Câu 21: Vận dụng

    Trên một bàn cờ có nhiều ô vuông, người ta đặt 7 hạt dẻ vào ô đầu tiên, sau đó đặt tiếp vào ô thứ hai số hạt nhiều hơn ô thứ nhất là 5, tiếp tục đặt vào ô thứ ba số hạt nhiều hơn ô thứ hai là 5, ... và cứ thế tiếp tục đến ô thứ n. Biết rằng đặt hết số ô trên bàn cờ người ta phải sử dụng 25450 hạt. Hỏi bàn cờ đó có bao nhiêu ô vuông?

    Ta có:

    Số hạt dẻ trên mỗi ô (bắt đầu từ ô thứ nhất) theo thứ tự đó lập thành cấp số cộng \left( u_{n} ight)u_{1} = 7;d = 5.

    Gọi n là số ô trên bàn cờ thì u_{1} +
u_{2} + ... + u_{n} = 25450 = S_{n}

    Ta có:

    25450 = S_{n}

    \Leftrightarrow 25450 = nu_{1} +
\frac{n(n - 1)}{2}.d

    \Leftrightarrow 25450 = 7n + \frac{n^{2}
- n}{2}.5

    \Leftrightarrow 5n^{2} + 9n - 50900 =
0

    \Leftrightarrow n = 100

  • Câu 22: Thông hiểu

    Cho cấp số cộng u_{3} = 15;d = - 2. Tính u_{n}

    Ta có:

    \left\{ \begin{matrix}u_{3} = 15 \\d = - 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} + 2d = 15 \\d = - 2 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} = 19 \\d = - 2 \\\end{matrix} ight.

    \Rightarrow u_{n} = u_{1} + (n - 1)d = -2n + 21

  • Câu 23: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) với u_{1} = - 2;u_{2} = 2. Khi đó số hạng 2018 là số nào?

    Theo bài ra ta có:

    d = u_{2} - u_{1} = 2 - ( - 2) =
4

    u_{n} = u_{1} + (n - 1)d

    \Rightarrow u_{2018} = u_{1} + 2017d = -
2 + 2017.4 = 8066.

  • Câu 24: Thông hiểu

    Với n \in \mathbb{N}^{*}, cho dãy số \left( u_{n} ight) gồm tất cả các số nguyên dương chia 32 theo thứ tự tăng dần. Số hạng tổng quát của dãy số này là

    Các số nguyên dương chia 32 theo thứ tự tăng dần là 5, 8, 11, 14,…

    Ta có 5 = 3.1 + 2, 8 = 3.2 + 2, 11 = 3.3 + 2, 14 = 3.4 + 2, …

    Vậy u_{n} = 3n + 2

  • Câu 25: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)d = - 2;S_{8} = 72. Tìm số hạng đầu tiên u_{1}.

    Ta có:

    \left\{ \begin{matrix}d = - 2 \\S_{8} = 72 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}d = - 2 \\8u_{1} + \dfrac{8.7.d}{2} = 72 \\\end{matrix} ight.

    \Rightarrow 8u_{1} + 28.( - 2) =
72

    \Rightarrow u_{1} = 16

  • Câu 26: Vận dụng

    Xét tính bị chặn của dãy số un = 3n − 1, ta thu được kết quả?

    Ta có un ≥ 2, ∀n ⇒ (un) bị chặn dưới; dãy (un) không bị chặn trên.

  • Câu 27: Vận dụng

    Tính tổng A =
1000^{2} - 999^{2} + 998^{2} - 997^{2} + ... + 2^{2} -
1^{2}

    Ta có:

    A = 1000^{2} - 999^{2} + 998^{2} -
997^{2} + ... + 2^{2} - 1^{2}

    A = 1.(1000 + 999) + 1.(998 + 997) + ...
+ 1.(2 + 1)

    A = 1999 + 1995 + ... + 3

    Ta thấy các số hạng của tổng T tạo thành một cấp số cộng với số hạng đầu u_{1} = 1999 và công sai d = −4. Giả sử tổng trên có n số hạng thì

    u_{n} = 3

    \Leftrightarrow u_{1} + (n - 1) =
3

    \Leftrightarrow 1999 + (n - 1)( - 4) =
3

    \Leftrightarrow n = 500

    \Rightarrow T = S_{500} = \frac{\left(
u_{1} + u_{500} ight).500}{2} = \frac{(1999 + 3).500}{2} =
500500

  • Câu 28: Nhận biết

    Dãy số nào sau đây không phải là cấp số cộng?

    Chỉ cần tồn tại hai cặp số hạng liên tiếp của dãy số có hiệu khác nhau: u_{m + 1} - u_{m}=u_{k + 1} -u_{k} thì kết luận ngay dãy số đó không phải là cấp số cộng.

    Xét đáp án: 2;5;8;11;14...\overset{ightarrow}{}3 = u_{2} -
u_{1} = u_{3} - u_{2} = u_{4} - u_{3} =
\cdots\overset{ightarrow}{}loại

    Xét đáp án: 2;4;8;10;14...\overset{ightarrow}{}2 = u_{2} -u_{1}=u_{3} - u_{2} = 4\overset{ightarrow}{} Chọn

    Xét đáp án: 1;2;3;4;5;6...\overset{ightarrow}{}1 = u_{2} -
u_{1} = u_{3} - u_{2} = u_{4} - u_{3} =
\cdots\overset{ightarrow}{}Loại

    Xét đáp án: 15;10;5;0; -
5;...\overset{ightarrow}{} - 5 = u_{2} - u_{1} = u_{3} - u_{2} = u_{4}
- u_{3} = \cdots\overset{ightarrow}{}loại

  • Câu 29: Nhận biết

    Trong các dãy số cho dưới đây, dãy số nào là cấp số nhân?

    Ta thấy ở dãy số 2;\ 2;\ 2;\ 2;\
2u_{1} = u_{2} = u_{3} = u_{4}
= u_{5} = 2 nên đây là cấp số nhân với công bội q = 1.

  • Câu 30: Thông hiểu

    Cho dãy (un) xác định bởi u_{1} = \frac{1}{2}un = un − 1 + 2n với mọi n ≥ 2. Số hạng u50 bằng?

    Ta có

    \left\{ \begin{matrix}
u_{1} = \frac{1}{2} \\
u_{2} = u_{1} + 2 \\
u_{3} = u_{2} + 4 \\
\ldots \\
u_{49} = u_{48} + 2.49 \\
u_{50} = u_{49} + 2.50 \\
\end{matrix} ight.

    Cộng vế với vế các đẳng thức trên, ta được:

    u_{50} = \frac{1}{2} + 2(2 + 3 + \ldots +
50) = \frac{1}{2} + 2(25.51 - 1) = 2548,5.

  • Câu 31: Thông hiểu

    Tìm b > 0 để các số \frac{1}{\sqrt{2} };\sqrt{b};\sqrt{2} theo thứ tự đó lập thành một cấp số nhân.

    Ta có:

    Các số \frac{1}{\sqrt{2} };\sqrt{b};\sqrt{2} theo thứ tự đó lập thành một cấp số nhân.

    \Rightarrow {\left( {\sqrt b } ight)^2} = \left( {\frac{1}{{\sqrt 2 }}} ight).\left( {\sqrt 2 } ight)

    \Rightarrow b = 1 (Vì b > 0)

  • Câu 32: Nhận biết

    Cho dãy số (un) với un = 2n + 1. Số hạng thứ 2019 của dãy là?

    Ta có u2019 = 2.2019 + 1 = 4039

  • Câu 33: Vận dụng cao

    Tìm tất cả các giá trị thực của tham số a để phương trình x^{3} + x^{2} + 2ax + a =
0 có ba nghiệm lập thành cấp số nhân.

    Ta có:

    \left\{ \begin{matrix}
x_{1}x_{3} = {x_{2}}^{2} \\
x_{1} + x_{2} + x_{3} = - 1 \\
x_{1}.x_{2} + x_{2}x_{3} + x_{3}x_{1} = 2a \\
x_{1}.x_{2}.x_{3} = - a \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
- a^{2} = {x_{2}}^{2} \\
{x_{2}}^{2} + \left( 1 + x_{2} ight)x_{2} = 2a \\
x_{1}.x_{2}.x_{3} = - a \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
- a^{2} = {x_{2}}^{2} \\
x_{2} - 2 = - 2a \\
\end{matrix} ight.\  \Rightarrow - 8a^{3} = - a

    \Rightarrow \left\lbrack \begin{matrix}a = 0 \\a = - \dfrac{1}{2\sqrt{2}} \\\end{matrix} ight. kiểm tra lại kết quả ta được a = - \frac{1}{2\sqrt{2}}

  • Câu 34: Thông hiểu

    Cho cấp số nhân \left( u_{n}
ight) với u_{1} = - 2;\ \ u_{4} =
- 54. Tính u_{8}.

    Ta có:

    \left\{ \begin{matrix}
u_{1} = - 2 \\
u_{4} = - 54 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 2 \\
u_{1}.q^{3} = - 54 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} = - 2 \\q^{3} = 27 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} = - 2 \\q = 3 \\\end{matrix} ight.

    Vậy u_{8} = u_{1}.q^{7} = - 2.3^{7} = -
4374.

  • Câu 35: Nhận biết

    Tìm số hạng thứ 11 của cấp số cộng có số hạng đầu bằng 3 và công sai d = −2?

    Ta có: u_{11} = u_{1} + 10d = -
17

  • Câu 36: Thông hiểu

    Trong các dãy số sau, dãy số nào là cấp số nhân?

    Xét dãy số \left\{\begin{matrix}u_0=1 \\ u_n=2u_{n-1}\end{matrix}ight.\forall n\geq1

     Ta có: \frac{{{u_n}}}{{{u_{n - 1}}}} = 2 => Dãy số là cấp số nhân

  • Câu 37: Vận dụng

    Cho dãy số (un) biết \left\{ \begin{matrix}
u_{1} = 2 \\
u_{n + 1} = \frac{u_{n}^{2} + 1}{4},\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Mệnh đề nào sau đây đúng?

    Dự đoán dãy giảm sau đó chứng minh un + 1 − un < 0 bằng quy nạp toán học.

    Từ giả thiết suy ra un > 0, ∀n ∈ ℕ*.

    Ta có u_{2} - u_{1} = \frac{5}{4} - 2 =
\frac{- 3}{4} < 0.

    Giả sử: uk + 1 − uk < 0, ∀k ≥ 1

    Xét hiệu u_{k + 2} - u_{k + 1} =
\frac{u_{k + 1}^{2} + 1}{4} - \frac{u_{k}^{2} + 1}{4}

    = \frac{1}{4}\left( u_{k + 1} + u_{k}
ight)\left( u_{k + 1} - u_{k} ight) < 0

    Theo nguyên lí quy nạp suy ra un + 1 − un < 0, ∀n ∈ ℕ*

    Vậy dãy số (un) là dãy số giảm.

  • Câu 38: Thông hiểu

    Cho dãy số (un) với u_{n} = \frac{n - 1}{n^{2} + 1}, biết u_{k} = \frac{2}{13}. Hỏi uk là số hạng thứ mấy của dãy số đã cho?

    Ta có:

    u_{k} = \frac{k - 1}{k^{2} + 1}
\Rightarrow \frac{k - 1}{k^{2} + 1} = \frac{2}{13} \Rightarrow k =
5 (do  k∈ℕ*)

  • Câu 39: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + 2n + 1,n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Số hạng tổng quát un là?

    Ta có u1 = 1; u2 = u1 + 3; u3 = u2 + 5; u4 = u3 + 7; …; un = un − 1 + (2n−1)

    Cộng từng vế với vế của các đẳng thức trên và rút gọn ta được

    un = 1 + 3 + 5 + 7 + … + (2n−1) = n2.

  • Câu 40: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) biết u_{n} = 3 - 5n. Tìm công sai của cấp số cộng?

    Theo giả thiết ta có:

    u_{n + 1} = - 2 - 5n

    \Rightarrow u_{n + 1} - u_{n} = -
5;\forall n \geq 1

    Vậy d = - 5

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 24 lượt xem
Sắp xếp theo