Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Khẳng định nào dưới đây sai?

    Số hạng tổng quát của cấp số cộng (un) là {u_n} = {u_1} + \left( {n - 1} ight)d với công sai d và số hạng đầu u1

  • Câu 2: Thông hiểu

    Trong các dãy (un) sau đây, dãy nào là dãy số bị chặn?

    Ta có:

    n2 − n + 1 < n2 + 2n + 2 (do n > 0)

    Suy ra u_{n} = \frac{n^{2} - n + 1}{n^{2}
+ 2n + 2} < 1, với mọi n.

  • Câu 3: Nhận biết

    Cho cấp số nhân (un) có u1 = 1; q = 2. Hỏi số 1024 là số hạng thứ mấy?

    Ta có:

    \begin{matrix}  {u_n} = {u_1}.{q^{n - 1}} \hfill \\   \Leftrightarrow {1.2^{n - 1}} = 1024 \hfill \\   \Leftrightarrow {2^{n - 1}} = {2^{10}} \hfill \\   \Rightarrow n - 1 = 10 \hfill \\   \Rightarrow n = 11 \hfill \\ \end{matrix}

  • Câu 4: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = - 5d = 3. Mệnh đề nào sau đây đúng?

    Ta có

    \left\{ \begin{matrix}
u_{1} = - 5 \\
d = 3 \\
\end{matrix} ight.\ \overset{CTTQ}{ightarrow}u_{13} = u_{1} + (13 -
1)d = - 5 + 3(13 - 1) = 31

  • Câu 5: Nhận biết

    Trong các dãy được cho dưới đây, dãy số nào là cấp số cộng?

    Xét dãy số u_{n}=7-3n

    Ta có:

    \begin{matrix}  {u_{n + 1}} = 7 - 3\left( {n + 1} ight) \hfill \\   \Rightarrow {u_{n + 1}} - {u_n} = 7 - 3\left( {n + 1} ight) - \left( {7 - 3n} ight) =  - 3 \hfill \\ \end{matrix}

    Vậy dãy số u_{n}=7-3n là một cấp số cộng với u_1=4;d=-3

  • Câu 6: Thông hiểu

    Ba số hạng đầu của một cấp số nhân là x - 6;xy. Tìm y biết rằng công bội của cấp số nhân là 6?

    Ta có:

    Ba số hạng đầu của một cấp số nhân là x -
6;xy có công bội q = 6

    \Rightarrow \left\{ \begin{matrix}u_{1} = x - 6;q = 6 \\x = u_{2} = u_{1}q = 6(x - 6) \\y = u_{3} = u_{2}q^{2} = 36x \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \dfrac{36}{5} \\y = 36.\dfrac{36}{5} = \dfrac{1296}{5} \\\end{matrix} ight.

  • Câu 7: Thông hiểu

    Cho dãy số (un) được xác định bởi \left\{ \begin{matrix}
u_{1} = 2 \\
u_{n + 1} - u_{n} = 2n - 1 \\
\end{matrix} ight..

    Số hạng tổng quát un của dãy số là?

    Ta có \left\{ \begin{matrix}
u_{1} = 2 \\
u_{2} = u_{1} + 2.2 - 1 \\
u_{3} = u_{2} + 2.3 - 1 \\
\cdots \\
u_{n} = u_{n - 1} + 2.n - 1 \\
\end{matrix} ight.

    Cộng vế với vế của các đẳng thức trên rồi rút gọn, ta được:

    un = 2 + 2 ⋅ (2+3+…+n) − (n − 1)

     = 2 + (n−1)(n+2) − n + 1

     = n2 + 1

  • Câu 8: Vận dụng cao

    Tổng S = {100^2} - {99^2} + {98^2} - {97^2} + ... + {2^2} - {1^2} là: 

    Ta có: S = {100^2} - {99^2} + {98^2} - {97^2} + ... + {2^2} - {1^2} = 199 + 15 + ... + 3

    Xét cấp số cộng (un) có:

    Số hạng đầu là u1 = 199

    Công sai d = u2 – u1 = 195 – 199 = -4

    Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight)d \hfill \\   \Leftrightarrow 3 = 199 - 4\left( {n - 1} ight) \hfill \\   \Rightarrow n = 50 \hfill \\   \Rightarrow S = \dfrac{{n\left( {{u_1} + {u_{50}}} ight)}}{2} = \dfrac{{50\left( {199 + 3} ight)}}{2} = 5050 \hfill \\ \end{matrix}

  • Câu 9: Vận dụng

    Tính tổng S = 1
- 2 + 3 - 4 + 5 + ... + (2n - 1) - 2n với n \geq 1;n\mathbb{\in N}.

    Với \forall n \in \mathbb{N}^{*} thì (2n - 1) - 2n = - 1

    Ta có:

    S = 1 - 2 + 3 - 4 + 5 + ... + (2n - 1) -
2n

    S = (1 - 2) + (3 - 4) + (5 - 6) + ... +
\left\lbrack (2n - 1) - 2n ightbrack

    Do đó ta xem S là tổng của n số hạng, mà mỗi số hạng đều bằng -1..

    => S = - 1

    Ta có: 1;3;5;...;2n - 12;4;6;...;2n là cấp số cộng có n số hạng nên.

    S = (1 + 3 + 5 + ... + 2n - 1) - (2 + 4
+ 6 + ... + 2n)

    S = \frac{n}{2}.(1 + 2n - 1) -
\frac{n}{2}.(2 + 2n)

    S = n^{2} - \left( n^{2} + n ight) = -
n

  • Câu 10: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{2} + u_{23} = 60. Tính tổng S_{24} của 24 số hạng đầu tiên của cấp số cộng đã cho.

    Ta có:

    u_{2} + u_{23} = 60

    \Leftrightarrow \left( u_{1} + d ight)+ \left( u_{1} + 22d ight) = 60

    \Leftrightarrow 2u_{1} + 23d =60

    Khi đó:

    \Rightarrow S_{24} = \frac{24}{2}\left(u_{1} + u_{24} ight)

    \Rightarrow S_{24} = 12.\left\lbracku_{1} + \left( u_{1} + 23d ight) ightbrack

    \Rightarrow S_{24} = 12.60 =720

  • Câu 11: Vận dụng

    Phát biểu nào dưới đây về dãy số (an) được cho bởi an = 2n + n là đúng?

    Ta có an + 1 − an = 2n + 1 + n + 1 − 2n − n

     = 2.2n − 2n + 1 = 2n + 1 > 0, ∀n ∈ ℕ*

    Vậy (an) là dãy số tăng.

  • Câu 12: Nhận biết

    Cho dãy số \frac{1}{2};0; - \frac{1}{2}; - 1; - \frac{3}{2};... là cấp số cộng với:

    Ta có: \frac{1}{2};0; - \frac{1}{2}; - 1; - \frac{3}{2};... là một cấp số cộng

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = \dfrac{1}{2}} \\   {{u_2} - {u_1} =  - \dfrac{1}{2} = d} \end{array}} ight.

  • Câu 13: Nhận biết

    Cho dãy số (u_{n}), biết u_{n}=\frac{-n}{n+1}. Năm số hạng đầu tiên của dãy số đó lần lượt là:

    Ta có:

    \begin{matrix}  {u_1} = \dfrac{{ - 1}}{{1 + 1}} = \dfrac{{ - 1}}{2} \hfill \\  {u_2} = \dfrac{{ - 2}}{{2 + 1}} = \dfrac{{ - 2}}{3} \hfill \\  {u_3} = \dfrac{{ - 3}}{{3 + 1}} = \dfrac{{ - 3}}{4} \hfill \\  {u_4} = \dfrac{{ - 4}}{{4 + 1}} = \dfrac{{ - 4}}{5} \hfill \\  {u_5} = \dfrac{{ - 5}}{{5 + 1}} = \dfrac{{ - 5}}{6} \hfill \\ \end{matrix}

    Vậy 5 số hạng đầu tiên của dãy số là: -\frac{1}{2};-\frac{2}{3};-\frac{3}{4};-\frac{4}{5};-\frac{5}{6}

  • Câu 14: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) với u_{1} = - 2;u_{2} = 2. Khi đó số hạng 2018 là số nào?

    Theo bài ra ta có:

    d = u_{2} - u_{1} = 2 - ( - 2) =
4

    u_{n} = u_{1} + (n - 1)d

    \Rightarrow u_{2018} = u_{1} + 2017d = -
2 + 2017.4 = 8066.

  • Câu 15: Thông hiểu

    Một cấp số nhân có số hạng đầu {u_1} = 3, công bội q = 2. Biết {S_n} = 765. Tìm n?

    Ta có:

    \begin{matrix}  {S_n} = \dfrac{{{u_1}\left( {1 - {q^n}} ight)}}{{1 - q}} = \dfrac{{3\left( {1 - {2^n}} ight)}}{{1 - 2}} = 765 \hfill \\   \Rightarrow n = 8 \hfill \\ \end{matrix}

  • Câu 16: Nhận biết

    Trong các dãy số sau, dãy số nào là cấp số nhân?

     Dãy số 1, 2, 4, 8, 16 tuân theo quy luật \frac{{{u_{n + 1}}}}{{{u_n}}} = 2

    => Dãy số đó là cấp số nhân

  • Câu 17: Thông hiểu

    Cho cấp số nhân (un) có u1 = 2 và u2 = -8. Mệnh đề nào sau đây đúng?

     Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {{u_2} =  - 8 = {u_1}.q = 2q} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {q =  - 4} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{S_5} = {u_1}.\dfrac{{1 - {q^5}}}{{1 - q}} = 2.\dfrac{{1 - {{\left( { - 4} ight)}^5}}}{{1 + 4}} = 410} \\   {{S_6} = {u_1}.\dfrac{{1 - {q^6}}}{{1 - q}} = 2.\dfrac{{1 - {{\left( { - 4} ight)}^6}}}{{1 + 4}} =  - 1638} \\   {{u_5} = {u_1}{q^4} = 2.{{\left( { - 4} ight)}^4} = 512} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 18: Nhận biết

    Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên n ≥ p (p là một
    số tự nhiên). Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với n bằng:

    Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với n bằng n=p

  • Câu 19: Vận dụng

    Tìm số đo góc lớn nhất của một tứ giác, biết số đo các góc đó lập thành một cấp số nhân có số hạng cuối gấp tám lần số hạng đầu tiên?

    Giả sử cấp số nhân có số hạng đầu là u_{1}, công bội q, với q >0

    Theo bài ra ta có:

    u_{4} = 8.u_{1} \Leftrightarrowu_{1}q^{3} = u_{1}.8

    \Leftrightarrow q = 2

    S_{4} = u_{1} + u_{2} + u_{3} + u_{4}= 360^{0}

    \Leftrightarrow u_{1}.\frac{1 - q^{4}}{1- q} = 360^{0} \Rightarrow u_{1} = 24^{0}

    u_{2} = 48^{0};u_{3};96^{0};u_{4} =192^{0}

    Vậy góc lớn nhất có số đo 192^{0}

  • Câu 20: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

  • Câu 21: Thông hiểu

    Cho cấp số cộng (Un) có u_1=11 và công sai d = 4. Tính {u_{99}}?

    Ta có: {u_{99}} = {u_1} + 99d = 11 + 98.4 = 403

  • Câu 22: Vận dụng

    Cho dãy số (un)u1 = 1u_{n + 1} = u_{n} = \frac{1}{(1 + n)^{2}},\forall n
\in \mathbb{N}^{*}.

    Trong các phát biểu sau, có bao nhiêu phát biểu đúng?

    (1) (un) là dãy số tăng.

    (2) (un) là dãy số bị chặn dưới.

    (3) (un) là dãy số bị chặn trên.

    Ta có \forall n \in \mathbb{N}^{*},u_{n +
1} - u_{n} = \frac{1}{(1 + n)^{2} > 0} nên dãy số tăng.

    Vậy phát biểu (1) đúng.

    Vì dãy số tăng nên dãy số bị chặn dưới bởi u1.

    Vậy phát biểu (2) đúng.

    Ta lại có u_{1} = 1;u_{2} = u_{1} +
\frac{1}{2^{2}};u_{3} = u_{2} + \frac{1}{3^{2}};u_{n} = u_{n - 1} +
\frac{1}{n^{2}}

    Cộng các đẳng thức trên theo từng vế, ta được:

    u_{n} = u_{1} + \frac{1}{2^{2}} +
\frac{1}{3^{2}} + \ldots + \frac{1}{n^{2}}

    Mặt khác \frac{1}{n^{2}} < \frac{1}{n(n
- 1)} = \frac{1}{n - 1} - \frac{1}{n} \Rightarrow (*)

    \Leftrightarrow u_{n} = 1 + \frac{1}{1}
- \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \ldots + \frac{1}{n - 1} -
\frac{1}{n}

    \Leftrightarrow u_{n} = 1 + \frac{1}{1}
- \frac{1}{n} < 2,\forall n \in \mathbb{N}^{*}

    Vậy dãy số bị chặn trên bởi 2 nên phát biểu (3) đúng.

  • Câu 23: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 5 \\
u_{n + 1} = u_{n} + n \\
\end{matrix} ight.. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có u_{n} = 5 + 1 + 2 + 3 + \ldots + n -
1 = 5 + \frac{n(n - 1)}{2}

  • Câu 24: Thông hiểu

    Cho dãy số (un) với u_{n} = \frac{n - 1}{n^{2} + 1}, biết u_{k} = \frac{2}{13}. Hỏi uk là số hạng thứ mấy của dãy số đã cho?

    Ta có:

    u_{k} = \frac{k - 1}{k^{2} + 1}
\Rightarrow \frac{k - 1}{k^{2} + 1} = \frac{2}{13} \Rightarrow k =
5 (do  k∈ℕ*)

  • Câu 25: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight) có công bội âm. Biết u_{3} = 12;u_{7} = 192. Khi đó u_{10} = ?

    Ta có:

    \left\{ \begin{matrix}
u_{3} = 12 \\
u_{7} = 192 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1}.q^{2} = 12 \\
u_{1}.q^{6} = 192 \\
\end{matrix} ight.

    \Leftrightarrow \frac{q^{2}}{q^{6}} =
\frac{12}{192} \Leftrightarrow q^{4} = 16

    \Leftrightarrow q = - 2;(q < 0)
\Rightarrow u_{1} = 3

    \Rightarrow u_{10} = u_{1}.q^{9} = 3.( -
2)^{9} = - 1536

  • Câu 26: Thông hiểu

    Ba số hạng đầu của một cấp số nhân là x - 6; x và y. Tìm y, biết rằng công bội của cấp số nhân là 6

    Ta có x = 6(x – 6) => x = 36/5

    Từ đó suy ra y = 6x = 216/5

  • Câu 27: Nhận biết

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = 2 \\
u_{n + 1} = u_{n} + 5,n \in \mathbb{N}^{*} \\
\end{matrix} ight.. Giá trị u10 là?

    Từ \left\{ \begin{matrix}
u_{1} = 2 \\
u_{n + 1} = u_{n} + 5,n \in \mathbb{N}^{*} \\
\end{matrix} ight. ta có un + 1 − un = 5

    dãy (un) là một cấp số cộng với công sai d = 5 nên

    u10 = u1 + 9d = 2 + 45 = 47

  • Câu 28: Vận dụng cao

    Tổng S = sin(x) + sin(2x) + … + sin(nx) (với x ≠ kπ ) có công thức thu gọn là?

    Ta có 2sin\frac{x}{2} \cdot S = 2sinx\cdot sin\frac{x}{2} + 2sin2x \cdot sin\frac{x}{2} + .. + 2sinnx \cdotsin\frac{x}{2}

    = \cos\frac{x}{2} - \cos\frac{3x}{2} +\cos\frac{3x}{2} - \cos{x\frac{5x}{2}} + \ldots + \cos{x\frac{2n -1}{2}x} - \cos{\frac{2n + 1}{2}x}

    = cos\frac{x}{2} - cos\frac{2n +1}{2}x

    Vậy S = \frac{cos\frac{x}{2} - cos\frac{2n+ 1}{2}x}{2sin\frac{x}{2}}

  • Câu 29: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    a) Xét dãy số đã cho ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4} \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số \left( u_{n} ight) không tăng không giảm.

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}" đúng bằng chứng minh quy nạp.

    c) Công sai d = 5 và số hạng đầu tiên bằng u_{1} = - 2020

    Khi đó số hạng tổng quát của cấp số cộng là

    u_{n} = u_{1} + 5(n - 1)

    \Rightarrow u_{n} = - 2025 +
5n

    d) Từ giả thiết ta có:

    \left\{ \begin{matrix}
u_{1} = 160 \\
u_{6} = 5 \\
\end{matrix} ight.\  \Rightarrow q = \sqrt[5]{\frac{u_{6}}{u_{1}}} =
\frac{1}{2}

    Suy ra tổng các số hạng của cấp số nhân đó là: S = \dfrac{u_{1}\left( 1 - q^{6} ight)}{1 - q} =\dfrac{160.\left\lbrack 1 - \left( \dfrac{1}{2} ight)^{6}ightbrack}{\dfrac{1}{2}} = 315.

  • Câu 30: Vận dụng cao

    Cho dãy số (un) thỏa mãn {u_1} = 1;{u_n} = 10{u_{n - 1}} - 1,\left( {\forall n \geqslant 2} ight). Tìm giá trị nhỏ nhất của n thỏa mãn \log {a_n} > 100

    Ta có:

    {u_n} = 10{u_{n - 1}} - 1 \Leftrightarrow {u_n} - \frac{1}{9} = 10\left( {{u_{n - 1}} - \frac{1}{9}} ight)\left( * ight)

    Đặt {v_n} = {u_n} - \frac{1}{9} \Rightarrow {v_1} = {u_1} - \frac{1}{9} = \frac{8}{9}

    \left( * ight) \Rightarrow {v_n} = 10.{v_{n + 1}},\left( {n \geqslant 2} ight)

    Dãy (vn) là cấp số nhân với công bội q = 10

    => {u_n} = {v_n} + \frac{1}{9} = \frac{8}{9}{.10^{n - 1}} + \frac{1}{9} > {10^{100}}

    Vậy giá trị nhỏ nhất của n để \log {a_n} > 100 là n = 102

  • Câu 31: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) có số hạng đầu là u_{1} = 3;d = 5. Hỏi số hạng thứ tư là số nào dưới đây?

    Ta có: u_{4} = u_{1} + 3d = 3 + 3.5 =
18

    Vậy u_{4} = 18

  • Câu 32: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = 1 và công sai d = 2. Tổng 10 số hạng đầu của cấp số cộng bằng:

    Tổng 10 số hạng đầu của cấp số cộng là

    S_{n} = \frac{n}{2}\left\lbrack 2u_{1} +
(n - 1)d ightbrack

    \Rightarrow S_{10} =
\frac{10}{2}\left\lbrack 2.1 + (10 - 1)2 ightbrack =
100

  • Câu 33: Vận dụng

    Cho khai triển {\left( {x - 2y + m} ight)^4}. Tìm m để tổng các hệ số của khai triển bằng 0.

    Tổng các hệ số của khai triển là giá trị của biểu thức tại x=y=1

    Vậy tổng các hệ số của khai triển là: {\left( {1 - 2.1 + m} ight)^4} = {\left( {m - 1} ight)^4}

    Để tổng các hệ số khai triển bằng 0 thì {\left( {m - 1} ight)^4} = 0 \Leftrightarrow m = 1

  • Câu 34: Thông hiểu

    Một cấp số nhân có công bội bằng 3 và số hạng đầu bằng 5. Biết số hạng chính giữa là 32805. Hỏi cấp số nhân đã cho có bao nhiêu số hạng?

    Ta có:

    u_{n} = 32805

    \Rightarrow u_{1}.q^{n - 1} =
32805

    \Rightarrow 3^{n - 1} =
6561

    \Rightarrow n = 9

    Vậy u_{9} là số hạng chính giữa của cấp số nhân nên cấp số nhân đã cho có 17 số hạng.

  • Câu 35: Nhận biết

    Với n \in \mathbb{N}^{*}, cho dãy số \left( u_{n} ight) gồm các số nguyên dương chia hết cho 7: 7, 14, 21, 28, …Công thức số hạng tổng quát của dãy số này là:

    Ta có u_{1} = 7 = 7.1, u_{2} = 14 = 7.2, u_{3} = 21 = 7.3, u_{4} = 28 = 7.4,…

    Suy ra u_{n} = 7n.

  • Câu 36: Thông hiểu

    Cho dãy số \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_{n + 1}} = {u_n} + n} \end{array}} ight.. Tìm số hạng thứ 5 của dãy số:

    Ta có:

    \begin{matrix}  {u_2} = {u_1} + 1 = 5 \hfill \\  {u_3} = {u_2} + 2 = 7 \hfill \\  {u_4} = {u_3} + 3 = 10 \hfill \\ \end{matrix}

    Do đó số hạng thứ 5 của dãy số là Sử dụng công thức: {u_5} = {u_4} + 4 = 14

  • Câu 37: Nhận biết

    Trong các dãy số cho dưới đây, dãy số nào là cấp số nhân?

    Ta thấy ở dãy số 2;\ 2;\ 2;\ 2;\
2u_{1} = u_{2} = u_{3} = u_{4}
= u_{5} = 2 nên đây là cấp số nhân với công bội q = 1.

  • Câu 38: Nhận biết

    Trong các dãy số \left( u_{n} ight) cho bởi số hạng tổng quát u_{n}, dãy nào là cấp số nhân?

    Dãy u_{n} = \frac{1}{3^{n - 2}} =
9.\left( \frac{1}{3} ight)^{n} là cấp số nhân có \left\{ \begin{matrix}u_{1} = 3 \\q = \dfrac{1}{3} \\\end{matrix} ight.

  • Câu 39: Thông hiểu

    Dãy số nào sau đây là một cấp số cộng?

    Dãy số ở đáp án A thỏa mãn điều kiện {u_{n + 1}} - {u_1} = 2 với n \geqslant 1 là cấp số cộng.

  • Câu 40: Vận dụng

    Cho hai số -3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số tạo thành cấp số cộng có công sai d = 2. Tìm n

    Xen kẽ giữa hai số -3 và 23 n số hạng để tạo thành một cấp số cộng thì:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} =  - 3} \\   {{u_{n + 2}} = 23} \end{array}} ight. \hfill \\   \Rightarrow {u_1} + \left( {n + 1} ight).d = 23 \hfill \\   \Rightarrow  - 3 + \left( {n + 1} ight).2 = 23 \hfill \\   \Rightarrow n = 12 \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 26 lượt xem
Sắp xếp theo