Dãy số nào sau đây là cấp số nhân?
Ta có: là cấp số nhân
Dãy số lập thành cấp số nhân là
Dãy số nào sau đây là cấp số nhân?
Ta có: là cấp số nhân
Dãy số lập thành cấp số nhân là
Cho cấp số cộng
có số hạng đầu là
. Hỏi số hạng thứ tư là số nào dưới đây?
Ta có:
Vậy
Cho dãy số (un) có u1 = 1 và
.
Trong các phát biểu sau, có bao nhiêu phát biểu đúng?
(1) (un) là dãy số tăng.
(2) (un) là dãy số bị chặn dưới.
(3) (un) là dãy số bị chặn trên.
Ta có nên dãy số tăng.
Vậy phát biểu (1) đúng.
Vì dãy số tăng nên dãy số bị chặn dưới bởi u1.
Vậy phát biểu (2) đúng.
Ta lại có
Cộng các đẳng thức trên theo từng vế, ta được:
Mặt khác
Vậy dãy số bị chặn trên bởi 2 nên phát biểu (3) đúng.
Cho cấp số nhân
với công bội
. Đặt
. Khẳng định nào sau đây đúng?
Theo công thức tính tổng số hạng đầu của CSN ta được
.
Cho dãy số (un) xác định bởi
.
Số nguyên dương n nhỏ nhất sao cho
là?
Ta có:
= > un = 1 + 13 + 23 + … + (n−1)3
Ta lại có 13 + 23 + … + (n−1)3
Suy ra
Theo giả thiết ta có
Mà n là số nguyên dương nhỏ nhất nên n = 2020.
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:
;
. Khi đó:
a)
. Đúng||Sai
b) Ba số
tạo thành một cấp số cộng. Sai||Đúng
c)
. Sai||Đúng
d)
. Đúng||Sai
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:;
. Khi đó:
a) . Đúng||Sai
b) Ba số tạo thành một cấp số cộng. Sai||Đúng
c) . Sai||Đúng
d) . Đúng||Sai
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu 0,21 và công bội .
Vì vậy
.
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 0,3 và công bội là
Vì vậy
.
Kết luận:
|
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
Trong các dãy được cho dưới đây, dãy số nào là cấp số cộng?
Xét dãy số
Ta có:
Vậy dãy số là một cấp số cộng với
Cho cấp số cộng
có
. Gọi
là tổng 5 số hạng đầu tiên của cấp số cộng đã cho. Mệnh đề nào sau đây đúng?
Ta có:
Và
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Cho cấp số cộng
biết
. Tìm công sai của cấp số cộng?
Theo giả thiết ta có:
Vậy
Tính tổng sau ![]()
Ta có:
là tổng của 100 số hạng đầu tiên của cấp số cộng có
.
Cho dãy số
, biết
. Ba số hạng đầu tiên của dãy số đó lần lượt là:
Ta có:
Ba số hạng đầu tiên của dãy số đó lần lượt là:
Khẳng định nào dưới đây sai?
Số hạng tổng quát của cấp số cộng (un) là với công sai d và số hạng đầu u1
Cho cấp số nhân (un) có u1 = 1; q = 2. Hỏi số 1024 là số hạng thứ mấy?
Ta có:
Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là
đô la mỗi năm và được tăng thêm
đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là
đô la?
Đáp án: 8
Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là đô la mỗi năm và được tăng thêm
đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là
đô la?
Đáp án: 8
Gọi là tiền lương anh Nam nhận được vào năm thứ
.
Tại năm đầu tiên, lương anh Nam nhận được là .
Vì mỗi năm, anh Nam được tăng lương thêm đô, nên ta có
Do đó là cấp số cộng với
.
Tổng lương mà anh Nam nhận được là đô, áp dụng công thức tính tổng
số hạng đầu của cấp số cộng:
.
Vậy anh Nam mất 8 năm làm việc để được tổng lương là .
Cho dãy số
. Tìm số hạng thứ 5 của dãy số:
Ta có:
Do đó số hạng thứ 5 của dãy số là Sử dụng công thức:
Cho dãy số (un) được xác định bởi
.
Số hạng tổng quát un của dãy số là?
Ta có
Cộng vế với vế của các đẳng thức trên rồi rút gọn, ta được:
un = 2 + 2 ⋅ (2+3+…+n) − (n − 1)
= 2 + (n−1)(n+2) − n + 1
= n2 + 1
Cho dãy số (Un) là một cấp số cộng có u1 = 3 và công sai d = 4. Biết rằng tổng n số hạng đầu của dãy số (Un) là
. Giá trị của n là:
Ta có:
Trong các dãy (un) sau đây, dãy nào là dãy số bị chặn?
Ta có:
n2 − n + 1 < n2 + 2n + 2 (do n > 0)
Suy ra , với mọi n.
Cho dãy số
biết
. Số hạng có ba chữ số lớn nhất của dãy là:
Tìm số hạng tổng quát của dãy số
Dự đoán
Ta chứng minh theo phương pháp quy nạp
Với ta có:
Giả sử , khi đó ta có:
Vậy công thức tổng quát được chứng minh theo nguyên lí quy nạp.
Ta có:
Mà
Nên ta chọn
Vậy là số hạng cần tìm.
Cho cấp số nhân
có công bội âm. Biết
. Khi đó ![]()
Ta có:
Cho dãy số
biết
. Tìm số hạng tổng quát của dãy số
.
Ta có và
Suy ra dãy số là cấp số nhân với
Do đó
Cho dãy số
với mọi
. Khi đó số hạng thứ 5 của dãy là:
Ta có:
Khi đó số hạng thứ 5 của dãy là 48
Tính giá trị u2018 của dãy số (un) xác định bởi ![]()
Ta có:
Đặt
=> Dãy số (vn) là cấp số nhân với
=>
Cho cấp số cộng
có số hạng đầu
và công sai
. Giá trị
bằng
Áp dụng công thức số hạng tổng quát
.
Cho phương trình:
. Tìm hệ thức liên hệ giữa m và n để 3 nghiệm phân biệt
lập thành một cấp số cộng.
Vì ba nghiệm phân biệt lập thành một cấp số cộng nên ta có:
Theo giả thiết ta có:
Cho cấp số nhân (un) có
. Biết
. Tính
?
Ta có:
Xét (*)
Trong các dãy số
cho bởi số hạng tổng quát
, dãy nào là cấp số nhân?
Dãy là cấp số nhân có
Cho cấp số cộng
có
và công sai
. Tổng 10 số hạng đầu của cấp số cộng bằng:
Tổng 10 số hạng đầu của cấp số cộng là
Cho cấp số nhân (un) có u1 = 2 và u2 = -8. Mệnh đề nào sau đây đúng?
Ta có:
Cho cấp số nhân
có công bội nguyên và các số hạng thoả mãn
. Các khẳng định dưới đây là đúng hay sai?
a) Số hạng đầu của cấp số nhân bằng
. Đúng||Sai
b) Tổng của 9 số hạng đầu tiên bằng 4599. Đúng||Sai
c) Số 576 là số hạng thứ 6 của cấp số nhân. Sai||Đúng
d) Gọi dãy số
, với
. Khi đó tổng
. Sai||Đúng
Cho cấp số nhân có công bội nguyên và các số hạng thoả mãn
. Các khẳng định dưới đây là đúng hay sai?
a) Số hạng đầu của cấp số nhân bằng . Đúng||Sai
b) Tổng của 9 số hạng đầu tiên bằng 4599. Đúng||Sai
c) Số 576 là số hạng thứ 6 của cấp số nhân. Sai||Đúng
d) Gọi dãy số , với
. Khi đó tổng
. Sai||Đúng
a) Đúng
Ta có:
.
b) Đúng.
Ta có:
Vậy tổng của 9 số hạng đầu tiên bằng 4599 nên mệnh đề đúng.
c) Sai.
Ta có:
Vậy số 576 là số hạng thứ 7 của cấp số nhân nên mệnh đề sai.
d) Sai.
Ta có , nên
là cấp số nhân với
và công bội
.
Nên .
Ba góc của một tam giác vuông tạo thành cấp số cộng. Hai góc nhọn của tam giác có số đo (độ) là:
Ba góc A, B, C của một tam giác vuông theo thứ tự đó lập thành một cấp số cộng nên
Cho cấp số nhân
có
. Mệnh đề nào sau đây đúng?
Theo bài ra ta có:
Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?
Ta có: không có dạng
nên không phải là cấp số cộng.
Cho cấp số cộng
biết
,
Khi đó
bằng
Ta có
Vậy
Cho cấp số cộng
thỏa mãn
. Khi đó
bằng:
Ta có:
Với giá trị nào của
thì các số hạng
theo thứ tự đó lập thành cấp số nhân?
Ta có: các số hạng lập thành cấp số nhân
Vậy
Cho một cấp số nhân có 15 số hạng. Đẳng thức nào sau đây là sai?
Ta có:
Với
Đáp án sai
Cho dãy số (un) xác định bởi
.
Số hạng thứ 2020 của dãy số đã cho là?
Do 0 < α < π nên
Vậy với mọi n ∈ ℕ*. Ta sẽ chứng minh bằng quy nạp.
Với n = 1 thì u1 = cosα (đúng).
Giả sử với n = k ∈ ℕ* ta có .
Ta chứng minh
Thật vậy,
Từ đó ta có
Giả sử A là tập con của tập hợp các số nguyên dương sao cho
(I) k ∈ A
(II) n ∈ A ⇒ n + 1 ∈ A, ∀n ≥ k
Lúc đó, ta có:
(I) k ∈ A : số nguyên dương k thuộc tập A.
(II) n ∈ A ⇒ n + 1 ∈ A, ∀n ≥ k : nếu số nguyên dương n(n≥k) thuộc tập A thì số nguyên dương đứng ngay sau nó (n+1) cũng thuộc A. Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc A.