Cho dãy số (un) thỏa mãn
. Tìm giá trị nhỏ nhất của n thỏa mãn ![]()
Ta có:
Đặt
Dãy (vn) là cấp số nhân với công bội q = 10
=>
Vậy giá trị nhỏ nhất của n để là n = 102
Cho dãy số (un) thỏa mãn
. Tìm giá trị nhỏ nhất của n thỏa mãn ![]()
Ta có:
Đặt
Dãy (vn) là cấp số nhân với công bội q = 10
=>
Vậy giá trị nhỏ nhất của n để là n = 102
Một dãy số được xác định bởi
. Số hạng tổng quát
của dãy số đó là:
Ta có:
Mạnh cầm một tờ giấy và lấy kéo cắt thành 7 mảnh sau đó nhặt một trong số bảy mảnh giấy đã cắt và lại cắt thành 7 mảnh. Mạnh cứ tiếp tục cắt như vậy. Sau một hồi, Mạnh thu lại và đếm tất cả các mảnh giấy đã cắt. Hỏi kết quả nào sau đây có thể xảy ra?
Mỗi lần cắt một mảnh giấy thành 7 mảnh, tức là Mạnh tạo thêm 6 mảnh giấy. Do đó công thức tính số mảnh giấy theo n bước được thực hiện là .
Ta chứng minh tính đúng đắn của công thức trên bằng phương pháp quy nạp theo n.
Với ta có:
(đúng)
Giả sử sau k bước, Mạnh thu được số mảnh giấy là:
Tiếp tục đến bước . Mạnh lấy một trong số những mảnh giấy nhận được trong k bước cắt trước và cắt thành 7 mảnh. Tức là Mạnh đã lấy đi 1 trong
mảnh và thay vào đó 7 mảnh được cắt ra.
Vậy tổng số mảnh giấy ở bước là:
Vậy công thức đúng với mọi số nguyên dương
. Theo công thức trên chỉ có phương án
thỏa mãn.
Cho cấp số nhân
thỏa mãn
. Tính ![]()
Đáp án: 64
Cho cấp số nhân thỏa mãn
. Tính
Đáp án: 64
Giả sử cấp số nhân có công bội là , khi đó theo bài ra ta có:
do
Ta có:
Tìm z để 2; 8; z; 128 lập thành một cấp số nhân.
Dãy số 2; 8; z; 128 theo thứ tự là u1; u2; u3; u4 ta có:
Cho dãy số
, biết
. Dãy số
bị chặn trên bởi số nào dưới đây?
Ta có:
Với mọi n ta có:
Vậy dãy số bị chặn trên bởi
Cho cấp số cộng (un) có các số hạng đầu lần lượt là 5; 9; 13; 17; …. Tìm số hạng tổng quát un của cấp số cộng.
Các số 5; 9; 13; 17; …. theo thứ tự lập thành một cấp số cộng (un) nên:
Trong các dãy số sau, dãy số nào bị chặn trên?
Ta có:
.
Vậy đây là dãy số bị chặn trên.
Cho cấp số cộng
thỏa mãn
. Tính số hạng đầu tiên
và công sai
của cấp số cộng đã cho.
Ta có:
Tính tổng 10 số hạng đầu của cấp số cộng
.
Theo bài ra ta có:
Cho cấp số nhân
có công bội nguyên và các số hạng thoả mãn
. Các khẳng định dưới đây là đúng hay sai?
a) Số hạng đầu của cấp số nhân bằng
. Đúng||Sai
b) Tổng của 9 số hạng đầu tiên bằng 4599. Đúng||Sai
c) Số 576 là số hạng thứ 6 của cấp số nhân. Sai||Đúng
d) Gọi dãy số
, với
. Khi đó tổng
. Sai||Đúng
Cho cấp số nhân có công bội nguyên và các số hạng thoả mãn
. Các khẳng định dưới đây là đúng hay sai?
a) Số hạng đầu của cấp số nhân bằng . Đúng||Sai
b) Tổng của 9 số hạng đầu tiên bằng 4599. Đúng||Sai
c) Số 576 là số hạng thứ 6 của cấp số nhân. Sai||Đúng
d) Gọi dãy số , với
. Khi đó tổng
. Sai||Đúng
a) Đúng
Ta có:
.
b) Đúng.
Ta có:
Vậy tổng của 9 số hạng đầu tiên bằng 4599 nên mệnh đề đúng.
c) Sai.
Ta có:
Vậy số 576 là số hạng thứ 7 của cấp số nhân nên mệnh đề sai.
d) Sai.
Ta có , nên
là cấp số nhân với
và công bội
.
Nên .
Cho các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng. Tìm x.
Ta có: d = 6 - 1 = 5
Các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng
=> x = 6 + 5 = 11
Vậy x = 11
Tính tổng 10 số hạng đầu tiên của cấp số nhân(un) có ![]()
Ta có:
Cho cấp số cộng (Un) có u1 = -2 và công sai d = 3. Tìm số hạng u10
Ta có:
Cho dãy số
biết
. Số hạng có ba chữ số lớn nhất của dãy là:
Tìm số hạng tổng quát của dãy số
Dự đoán
Ta chứng minh theo phương pháp quy nạp
Với ta có:
Giả sử , khi đó ta có:
Vậy công thức tổng quát được chứng minh theo nguyên lí quy nạp.
Ta có:
Mà
Nên ta chọn
Vậy là số hạng cần tìm.
Một cấp số nhân có
số hạng, công bội q bằng
số hạng thứ nhất, tổng hai số hạng đầu bằng
. Xác định cấp số nhân?
Theo bài ra ta có:
Tính tổng ![]()
Ta thấy các số hạng của tổng A tạo thành một cấp số cộng với số hạng đầu u1 = 15 và công sai d = 5
Giả sử tổng trên có n số hạng thì un = 7515
Vậy
Cho dãy số
xác định bởi
. Giá trị
là
Ta có: .
Cho cấp số cộng (un) có u1 = 1 và công sai d = 2. Tổng
bằng:
Ta có:
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra
. Sai||Đúng
c) Dãy số
cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng
và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra . Sai||Đúng
c) Dãy số cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
a) Ta có:
Suy ra:
b) Do công sai dương nên cấp số cộng là một dãy tăng nên
c) Ta có: là một cấp số cộng
Suy ra
d) Ta có:
Với
, cho dãy số
gồm tất cả các số nguyên dương chia
dư
theo thứ tự tăng dần. Số hạng tổng quát của dãy số này là
Các số nguyên dương chia dư
theo thứ tự tăng dần là
,
,
,
,…
Ta có ,
,
,
, …
Vậy
Cho cấp số nhân
có
và công bội
. Số hạng tổng quát của cấp số nhân
là
Số hạng tổng quát của cấp số nhân là
.
Tìm m để phương trình:
có bốn nghiệm lập thành một cấp số cộng?
Giả sử bốn nghiệm phân biệt của phương trình
Đặt , ta được phương trình:
Ta phải tìm m sao cho (*) có hai nghiệm dương phân biệt
Khi đó (*) có 4 nghiệm là
Theo đề bài thì bốn nghiệm lập thành một cấp số cộng nên
Áp dụng hệ thức Vi – et cho phương trình (*) ta có hệ:
Trong các dãy số sau, dãy số nào không phải cấp số nhân?
Xét đáp án có
=> Dãy số không phải là cấp số nhân.
Với giá trị
nào dưới đây thì các số
theo thứ tự đó lập thành một cấp số nhân?
Ta có: lập thành một cấp số nhân
Cho cấp số nhân
có
. Tính tổng 10 số hạng đầu tiên của cấp số nhân đã cho.
Ta có:
Nếu các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì m bằng bao nhiêu?
Để các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì:
Vậy nếu các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì m = 4
Cho dãy số (un) được xác định bởi
.
Số hạng tổng quát un của dãy số là?
Ta có
Cộng vế với vế của các đẳng thức trên rồi rút gọn, ta được:
un = 2 + 2 ⋅ (2+3+…+n) − (n − 1)
= 2 + (n−1)(n+2) − n + 1
= n2 + 1
Cho dãy số vô hạn
là một cấp số cộng có số hạng đầu
, công sai
. Gọi
là tổng của n số hạng đầu tiên của cấp số cộng đó.
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Cho dãy số vô hạn là một cấp số cộng có số hạng đầu
, công sai
. Gọi
là tổng của n số hạng đầu tiên của cấp số cộng đó.
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Ta có: đúng
Ta có:
Lại có:
Cho cấp số cộng
biết
. Tìm công sai của cấp số cộng?
Theo giả thiết ta có:
Vậy
Trong các dãy số sau, dãy số nào là cấp số nhân?
Ta có:
=> là cấp số nhân
Khẳng định nào sau đây là khẳng định sai?
Khẳng định sai là: “Số hạng tổng quát của cấp số cộng là
với công sai
và số hạng đầu
.”
Biết bốn số
theo thứ tự lập thành cấp số cộng. Giá trị của biểu thức
bằng
Ta có:
Cho cấp số nhân (un) có
. Tìm công bội q và số hạng đầu u1.
Ta có:
Một cấp số nhân có số hạng đầu
, công bội q = 2. Biết
. Tìm n?
Ta có:
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có
Cho dãy số
biết
. Chọn đáp án đúng.
Ta có:
Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên n ≥ p ( p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề A(n) đúng với n = k. Khẳng định nào sau đây là đúng?
Mệnh đề A(n) đúng với n = k với k ≥ p.
Cho dãy số có các số hạng đầu là
Số hạng tổng quát của dãy số này là
Ta có
Suy ra
Cho cấp số cộng
có các số hạng đầu lần lượt là 5; 9; 13; 17;... Tìm số hạng tổng quát
của cấp số cộng.
Theo bài ra ta có:
Dãy số đã cho là cấp số cộng
=>
=>
Vậy số hạng tổng quát của dãy số là: