Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Tính tổng {S_n} = {\left( {2 + \frac{1}{2}} ight)^2} + {\left( {4 + \frac{1}{4}} ight)^2} + ... + {\left( {{2^n} + \frac{1}{{{2^n}}}} ight)^2}

     Ta có:

    \begin{matrix}  {S_n} = {\left( {2 + \dfrac{1}{2}} ight)^2} + {\left( {4 + \dfrac{1}{4}} ight)^2} + ... + {\left( {{2^n} + \dfrac{1}{{{2^n}}}} ight)^2} \hfill \\  {S_n} = \left( {4 + 2 + \dfrac{1}{4}} ight) + \left( {{4^2} + 2 + \dfrac{1}{{{4^2}}}} ight) + ... + \left( {\dfrac{1}{4} + \dfrac{1}{{{4^2}}} + ... + \dfrac{1}{{{4^n}}}} ight) \hfill \\  {S_n} = 2n + \left( {4 + {4^2} + ... + {4^n}} ight) + \left( {\dfrac{1}{4} + \dfrac{1}{{{4^2}}} + ... + \dfrac{1}{{{4^n}}}} ight) \hfill \\   = 2n + 4.\dfrac{{1 - {4^n}}}{{1 - 4}} + \frac{1}{4}\frac{{1 - \frac{1}{{{4^n}}}}}{{1 - \frac{1}{4}}} \hfill \\  {S_n} = 2n + \dfrac{4}{3}\left( {{4^n} - 1} ight) + \dfrac{{{4^{n - 1}}}}{{{{3.4}^n}}} \hfill \\ \end{matrix}

  • Câu 2: Nhận biết

    Cho cấp số cộng (u_{n}) có u_{3}=15 và d=-2 . Tìm u_{n} 

    Ta có: 

    \begin{matrix}  {u_3} = 15 \hfill \\   \Leftrightarrow {u_1} + 2d = 15 \hfill \\   \Rightarrow {u_1} = 19 \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow {u_n} = {u_1} + \left( {n - 1} ight).d \hfill \\   = 19 + \left( {n - 1} ight).\left( { - 2} ight) \hfill \\   = 21 - 2n \hfill \\   \Rightarrow {u_n} =  - 2n + 21 \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight) có công bội âm. Biết u_{3} = 12;u_{7} = 192. Khi đó u_{10} = ?

    Ta có:

    \left\{ \begin{matrix}
u_{3} = 12 \\
u_{7} = 192 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1}.q^{2} = 12 \\
u_{1}.q^{6} = 192 \\
\end{matrix} ight.

    \Leftrightarrow \frac{q^{2}}{q^{6}} =
\frac{12}{192} \Leftrightarrow q^{4} = 16

    \Leftrightarrow q = - 2;(q < 0)
\Rightarrow u_{1} = 3

    \Rightarrow u_{10} = u_{1}.q^{9} = 3.( -
2)^{9} = - 1536

  • Câu 4: Thông hiểu

    Cho cấp số nhân \left( u_{n}
ight)u_{2} = - 6,u_{5} =
48. Tính S_{5}.

    Ta có \left\{ \begin{matrix}
u_{1}.q = - 6 \\
u_{1}.q^{4} = 48 \\
\end{matrix} \Rightarrow \left\{ \begin{matrix}
u_{1}.q = - 6 \\
q^{3} = - 8 \\
\end{matrix} \Rightarrow \left\{ \begin{matrix}
u_{1} = 3 \\
q = - 2 \\
\end{matrix} ight.\  ight.\  ight.

    Vậy S_{5} = \frac{3\left( 1 - ( - 2)^{5}
ight)}{1 - ( - 2)} = 33.

  • Câu 5: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight). Xác định u_{15} biết rằng u_{2} = 3;u_{4} = 7?

    Ta có:

    u_{4} - u_{2} = u_{1} + 3d - \left(
u_{1} + d ight) = 2d = 4 \Rightarrow d = 2

    Khi đó: u_{1} = u_{2} - d = 3 - 2 =
1

    Suy ra u_{15} = u_{1} + 17d = 1 + 17.2 =
35

  • Câu 6: Vận dụng cao

    Tính tổng S = {\left( {2 + \frac{1}{2}} ight)^2} + {\left( {4 + \frac{1}{4}} ight)^2} + ... + {\left( {{2^n} + \frac{1}{{{2^n}}}} ight)^2}

    \begin{matrix}  S = {\left( {2 + \dfrac{1}{2}} ight)^2} + {\left( {4 + \dfrac{1}{4}} ight)^2} + ... + {\left( {{2^n} + \dfrac{1}{{{2^n}}}} ight)^2} \hfill \\  S = \left( {4 + 2 + \dfrac{1}{4}} ight) + \left( {16 + 2 + \dfrac{1}{{16}}} ight) + ... + \left( {{2^{2n}} + 2 + \dfrac{1}{{{2^{2n}}}}} ight) \hfill \\  S = \left( {4 + 16 + ... + {2^{2n}}} ight) + 2n + \left( {\frac{1}{4} + \dfrac{1}{{16}} + ... + \dfrac{1}{{{2^{2n}}}}} ight) \hfill \\ \end{matrix}

    Áp dụng công thức tính tổng của n số hạng đầu của một cấp số nhân ta có:

    \begin{matrix}  S = 4.\dfrac{{{4^{n - 1}}}}{3} + 2n + \dfrac{1}{4}.\dfrac{{{2^{\dfrac{1}{{2n}}}} - 1}}{{\dfrac{1}{4} - 1}} \hfill \\  S = 4.\dfrac{{{4^n} - 1}}{3} + 2n + \dfrac{1}{3}.\dfrac{{{2^{2n}} - 1}}{{{2^{2n}}}} \hfill \\  S = 2n + \dfrac{{{4^{n - 1}}}}{3}.\dfrac{{{{4.4}^n} + 1}}{{{4^n}}} = 2n + \dfrac{{\left( {{4^n} - 1} ight)\left( {{4^{n + 1}} + 1} ight)}}{{{{3.4}^n}}} \hfill \\ \end{matrix}

  • Câu 7: Thông hiểu

    Dãy số (un) được cho bởi \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + 2 \\
\end{matrix} ight.. Hãy tìm khẳng định sai trong các khẳng định sau.

    u_1=1

    u_2=1+2=1+1.2

    u_3=1+2+2=1+2.2

    u_4=1+2+2+2=1+3.2

    ...

    u_n=1+2+⋯+2=1+(n-1).2

    Áp dụng phương pháp quy nạp ta có un = 2n − 1.

  • Câu 8: Thông hiểu

    Trong các dãy (un) sau đây, dãy nào là dãy số bị chặn?

    Ta có:

    n2 − n + 1 < n2 + 2n + 2 (do n > 0)

    Suy ra u_{n} = \frac{n^{2} - n + 1}{n^{2}
+ 2n + 2} < 1, với mọi n.

  • Câu 9: Vận dụng cao

    Tổng S = sin(x) + sin(2x) + … + sin(nx) (với x ≠ kπ ) có công thức thu gọn là?

    Ta có 2sin\frac{x}{2} \cdot S = 2sinx\cdot sin\frac{x}{2} + 2sin2x \cdot sin\frac{x}{2} + .. + 2sinnx \cdotsin\frac{x}{2}

    = \cos\frac{x}{2} - \cos\frac{3x}{2} +\cos\frac{3x}{2} - \cos{x\frac{5x}{2}} + \ldots + \cos{x\frac{2n -1}{2}x} - \cos{\frac{2n + 1}{2}x}

    = cos\frac{x}{2} - cos\frac{2n +1}{2}x

    Vậy S = \frac{cos\frac{x}{2} - cos\frac{2n+ 1}{2}x}{2sin\frac{x}{2}}

  • Câu 10: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) với u_{1} = 3u_{2} = 12. Công bội của cấp số nhân đã cho bằng

    Ta có u_{2} = u_{1}.q \Rightarrow q =
\frac{u_{2}}{u_{1}} = \frac{12}{3} = 4.

  • Câu 11: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) với u_{1} = 2;d = - 3. Tổng 10 số hạng đầu tiên của dãy là:

    Tổng 10 số hạng đầu tiên của dãy là:

    S_{10} = \frac{10}{2}\left( 2u_{1} + 9d
ight) = 5(4 - 27) = - 115

  • Câu 12: Thông hiểu

    Giả sử Q là tập hợp con của tập các số nguyên dương sao cho

    (a) k ∈ \mathbb{ Q}

    (b) n ∈ \mathbb{Q} => n + 1 ∈ \mathbb{Q} ,∀ n ≥ k.

    Chọn mệnh đề đúng trong các mệnh đề dưới đây.

     Mệnh đề " Mọi số nguyên dương đều thuộc \mathbb{Q}" sai vì \mathbb{Q} là tập con thực sự của \mathbb{N^*} nên tồn tại số nguyên dương không thuộc \mathbb{Q}.

    Mệnh đề "Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc \mathbb{Q}" đúng theo lí thuyết của phương pháp quy nạp.

    Mệnh đề "Mọi số nguyên bé hơn k đều thuộc \mathbb{Q}" sai theo giả thiết thì phải là số tự nhiên lớn hơn k \in \mathbb{Q}.

    Mệnh đề "Mọi số nguyên đều thuộc \mathbb{Q}" sai vì số nguyên âm không thuộc \mathbb{Q}.

  • Câu 13: Vận dụng

    Xét tính bị chặn của dãy số un = 3n − 1, ta thu được kết quả?

    Ta có un ≥ 2, ∀n ⇒ (un) bị chặn dưới; dãy (un) không bị chặn trên.

  • Câu 14: Nhận biết

    Trong các dãy số sau, dãy số nào lập thành một cấp số cộng?

    Xét đáp án A: 1; -3; -7; -11; -15; …

    => u2 – u1 = u3 – u2 = u4 – u3 = -4 => Chọn đáp án A

    Xét đáp án B: 1; -3; -7; -11; -15; …

    => u2 – u1 = -4 ≠ u3 – u2 = -3 => Loại đáp án B

    Xét đáp án C: 1; -3; -7; -11; -15; …

    => u2 – u1 = -3 ≠ u3 – u2 = -2 => Loại đáp án C

    Xét đáp án D: 1; -3; -7; -11; -15; …

    => u2 – u1 = -4 ≠ u3 – u2 = -2 => Loại đáp án D

  • Câu 15: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight)u_{1} = 3;q = - 2. Số 192 là số hạng thứ mấy của cấp số nhân đã cho?

    Ta có:

    u_{n} = 192

    \Rightarrow u_{1}.q^{n - 1} =
192

    \Rightarrow 3.2^{n - 1} =
192

    \Rightarrow ( - 1)^{n - 1}.2^{n - 1} =
64

    \Rightarrow n = 7

  • Câu 16: Thông hiểu

    Xen vào giữa hai số 4 và 40 bốn số để được một cấp số cộng có công sai lớn hơn 3. Tìm tổng 4 số đó.

    Sau khi chèn 4 số vào giữa hai số 4 và 40 thì cấp số cộng đó có 6 số hạng

    Nghĩa là coi 4 là số hạng đầu tiên thì 40 là số hạng thứ 6

    Theo bài ra ta có: \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_6} = 40} \end{array}} ight.

    {u_1} + 5.d = 40

    \begin{matrix}   \Rightarrow 4 + 5.d = 40 \hfill \\   \Rightarrow 5.d = 36 \hfill \\   \Rightarrow d = \dfrac{{36}}{5} \hfill \\ \end{matrix}

    Vậy công sai của cấp số cộng là d = \frac{{36}}{5}

    Khi đó 4 số hạng được thêm lần lượt là: \frac{{56}}{5};\frac{{92}}{5};\frac{{128}}{5};\frac{{164}}{5}

    Tổng bốn số hạng ở trên là: \frac{{56}}{5} + \frac{{92}}{5} + \frac{{128}}{5} + \frac{{164}}{5} = 88

  • Câu 17: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + n^{2} \\
\end{matrix} ight.. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có \left\{ \begin{matrix}
u_{1} = 1 \\
u_{2} = u_{1} + 1^{2} \\
u_{3} = u_{2} + 2^{2} \\
\cdots \\
u_{n} = u_{n - 1} + (n - 1)^{2} \\
\end{matrix} ight.

    Cộng vế với vế của các đẳng thức trên, ta được

    u_{n} = 1 + 1^{2} + 2^{2} + \ldots + (n
- 1)^{2} = 1 + \frac{n(n - 1)(n - 2)}{6}

  • Câu 18: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = - 1;d = 3. Tính tổng 100 số hạng đầu tiên của cấp số cộng.

    Ta có:

    S_{n} = n.u_{1} + \frac{n(n -
1)d}{2}

    \Leftrightarrow S_{100} = 100.u_{1} +
\frac{100.99d}{2} = - 24350

  • Câu 19: Vận dụng

    Một cấp số nhân có 5 số hạng, công bội q bằng \frac{1}{4} số hạng thứ nhất, tổng hai số hạng đầu bằng 24. Xác định cấp số nhân?

    Theo bài ra ta có:

    u_{1} + u_{2} = u_{1} + u_{1}.q =
24

    \Rightarrow u_{1} +
\frac{1}{4}{u_{1}}^{2} = 24

    \Rightarrow \left\lbrack \begin{matrix}
u_{1} = - 12;q = - 3 \\
u_{1} = 8;q = 2 \\
\end{matrix} ight.

  • Câu 20: Nhận biết

    Cho cấp số nhân (un) biết u1 = 1; u4 = 64. Tính công bội q của cấp số nhân đó.

    Ta có: 

    \begin{matrix}  {u_n} = {u_1}.{q^{n - 1}} \hfill \\   \Rightarrow {u_4} = {u_1}.{q^{4 - 1}} \hfill \\   \Rightarrow 64 = 1.{q^3} \hfill \\   \Rightarrow {q^3} = 64 \Rightarrow q = 4 \hfill \\ \end{matrix}

  • Câu 21: Thông hiểu

    Cho dãy số (un) biết u_{n} = \frac{5^{n}}{n^{2}}. Mệnh đề nào sau đây đúng?

    Ta có u_{n} = \frac{5^{n}}{n^{2}} >
0,\forall n \in \mathbb{N}^{*} \Rightarrow u_{n + 1} = \frac{5^{n +
1}}{(n + 1)^{2}}

    Xét tỉ số:

    \frac{u_{n + 1}}{u_{n}} = \frac{5^{n +
1}}{(n + 1)^{2}} \cdot \frac{n^{2}}{5^{n}}

    = \frac{5n^{2}}{n^{2} + 2n + 1} =
\frac{n^{2} + 2n + 1 + 4n^{2} - 2n - 1}{n^{2} + 2n + 1}

    = 1 + \frac{2n(n - 1) + 2n^{2} -
1}{n^{2} + 2n + 1} > 1,\forall n \in \mathbb{N}^{*}

    Vậy (un) là dãy số tăng.

  • Câu 22: Vận dụng

    Tìm số đo góc lớn nhất của một tứ giác, biết số đo các góc đó lập thành một cấp số nhân có số hạng cuối gấp tám lần số hạng đầu tiên?

    Giả sử cấp số nhân có số hạng đầu là u_{1}, công bội q, với q >0

    Theo bài ra ta có:

    u_{4} = 8.u_{1} \Leftrightarrowu_{1}q^{3} = u_{1}.8

    \Leftrightarrow q = 2

    S_{4} = u_{1} + u_{2} + u_{3} + u_{4}= 360^{0}

    \Leftrightarrow u_{1}.\frac{1 - q^{4}}{1- q} = 360^{0} \Rightarrow u_{1} = 24^{0}

    u_{2} = 48^{0};u_{3};96^{0};u_{4} =192^{0}

    Vậy góc lớn nhất có số đo 192^{0}

  • Câu 23: Nhận biết

    Cho dãy số u_{n}
= \frac{n^{2} + 2n - 1}{n + 1}. Giá trị u11

    Ta có u_{11} = \frac{11^{2} + 2.11 - 1}{11
+ 1} = \frac{71}{6}

  • Câu 24: Thông hiểu

    Một rạp hát có 30 dãy ghế, dãy đầu tiên có 25 ghế. Mỗi dãy sau có hơn dãy trước 3 ghế. Hỏi rạp hát có tất cả bao nhiêu ghế?

    Số ghế của mỗi dãy (bắt đầu từ dãy đầu tiên) theo thứ tự đó lập thành một cấp số cộng có 30 số hạng có công sai d= 3;u_{1} = 25

    Tổng số ghế là

    S_{30} = u_{1} + u_{2} + ... +u_{30}

    = 30u_{1} + \frac{30.29}{2}.d =2055

  • Câu 25: Thông hiểu

    Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17; tổng của số hạng thứ hai và số hạng thứ tư bằng 14. Tìm công sai d của câp số cộng đã cho.

    Ta có:

    \left\{ \begin{matrix}
u_{1} + u_{6} = 17 \\
u_{2} + u_{4} = 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2u_{1} + 5d = 17 \\
2u_{1} + 6d = 14 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 16 \\
d = - 3 \\
\end{matrix} ight.

  • Câu 26: Thông hiểu

    Một cấp số nhân có 6 số hạng, số hạng đầu bằng 2 và số hạng thứ sáu bằng 486. Tìm công bội q của cấp số nhân đã cho.

    Theo giả thiết ta có:

    \left\{ \begin{matrix}u_{1} = 2 \\u_{6} = 486 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\u_{1}q^{5} = 486 \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\q^{5} = 243 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\q = 3 \\\end{matrix} ight.

  • Câu 27: Vận dụng

    Cho dãy số (un), biết un = n ⋅ cosn. Trong các phát biểu sau, có bao nhiêu phát biểu đúng?

    (1) (un) là dãy số tăng.

    (2) (un) là dãy số bị chặn dưới.

    (3) n ∈ ℕ* : un ≤ n.

    cos(n) ≤ 1 nên un < n. Phát biểu (3) đúng.

    Dãy không tăng, không giảm và không bị chặn dưới.

    Vậy có 1 phát biểu đúng trong 3 phát biểu đã cho.

  • Câu 28: Thông hiểu

    Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:0,212121\ldots =
\frac{a}{b}; 4,333\ldots =
\frac{c}{d}. Khi đó:

    a) a + b = 40. Đúng||Sai

    b) Ba số a;b;58 tạo thành một cấp số cộng. Sai||Đúng

    c) c + d = 15. Sai||Đúng

    d) \lim c = 13. Đúng||Sai

    Đáp án là:

    Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:0,212121\ldots =
\frac{a}{b}; 4,333\ldots =
\frac{c}{d}. Khi đó:

    a) a + b = 40. Đúng||Sai

    b) Ba số a;b;58 tạo thành một cấp số cộng. Sai||Đúng

    c) c + d = 15. Sai||Đúng

    d) \lim c = 13. Đúng||Sai

    Ta có: 0,212121\ldots = 0,21 + 0,0021 +
0,000021 + \ldots

    Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu 0,21 và công bội \frac{1}{100}.

    Vì vậy

    0,212121\ldots = 0,21 + 0,0021 +0,000021 + \ldots= \frac{0,21}{1 - \frac{1}{100}} =\frac{7}{33}.

    Ta có: 0,333\ldots = 0,3 + 0,03 + 0,003 +
\ldots

    Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 0,3 và công bội là \frac{1}{10}

    Vì vậy

    4,333\ldots = 4 + 0,3 + 0,03 +0,003 + \ldots= 4 + \frac{0,3}{1 - \frac{1}{10}} =\frac{13}{3}.

    Kết luận:

    a) Đúng

    b) Sai

    c) Sai

    d) Đúng

  • Câu 29: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) với u_{1} = 2;d = 9. Khi đó số 2018 là số hạng thứ mấy trong dãy?

    Theo bài ra ta có:

    u_{n} = u_{1} + (n - 1)d

    \Leftrightarrow 2018 = 2 + (n -
1)d

    \Leftrightarrow n = 225

  • Câu 30: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) với công bội q eq
1. Đặt S_{n} = u_{1} + u_{2} + ...
+ u_{n}. Khẳng định nào sau đây đúng?

    Theo công thức tính tổng n số hạng đầu của CSN ta được S_{n} =
\frac{u_{1}\left( 1 - q^{n} ight)}{1 - q}.

  • Câu 31: Nhận biết

    Cho cấp số cộng có số hạng đầu {u_1} =  - \frac{1}{2} công sai d = \frac{1}{2}. Năm số hạng liên tiếp đầu tiên của cấp số này là:

    Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight)d,\left( {{u_1} =  - \dfrac{1}{2};d = \dfrac{1}{2}} ight) \hfill \\   \Rightarrow {u_n} =  - \dfrac{1}{2} + \left( {n - 1} ight).\dfrac{1}{2} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_2} = {u_1} + d = 0} \\   {{u_3} = {u_2} + d = \dfrac{1}{2}} \\   {{u_4} = {u_3} + d = 1} \\   {{u_5} = {u_4} + d = \dfrac{3}{2}} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 32: Nhận biết

    Trong các dãy số sau, dãy số nào là cấp số cộng?

    Ta có: \left\{ \begin{matrix}
3 = 1 + 2 \\
5 = 3 + 2 \\
7 = 5 + 2 \\
9 = 7 + 2 \\
\end{matrix} ight.

    Khi đó theo định nghĩa cấp số cộng dãy số 1;3;5;7;9 là một cấp số cộng với d = 2

  • Câu 33: Nhận biết

    Cho dãy số (u_{n}) với u_{n}=\frac{3}{2}.5^{n}. Khẳng định nào sau đây là đúng?

    Ta có: \frac{{{u_{n + 1}}}}{{{u_n}}} = \dfrac{{\dfrac{3}{2}{{.5}^{n + 1}}}}{{\dfrac{3}{2}{{.5}^n}}} = 5 > 1

    => (u_{n}) là một cấp số nhân với công bội là q = 5

    Số hạng đầu tiên của dãy là: {u_1} = \frac{3}{2}{.5^1} = \frac{{15}}{2}

  • Câu 34: Thông hiểu

    Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:

    Ta có cấp số nhân (un) nên khi đó:

    \begin{matrix}\left\{ {\begin{array}{*{20}{c}}  {{u_m} = 16} \\   {{u_{m + 1}} = 36} \end{array}} ight. \Leftrightarrow \dfrac{{{u_{m + 1}}}}{{{u_m}}} = \dfrac{{36}}{{16}} = \dfrac{9}{4} \Rightarrow q = \dfrac{9}{4} \hfill \\   \Rightarrow {u_{m + 2}} = {u_{m + 1}}.q = 36.\dfrac{9}{4} = 81 \hfill \\ \end{matrix}

  • Câu 35: Vận dụng

    Tính tổng A =
1000^{2} - 999^{2} + 998^{2} - 997^{2} + ... + 2^{2} -
1^{2}

    Ta có:

    A = 1000^{2} - 999^{2} + 998^{2} -
997^{2} + ... + 2^{2} - 1^{2}

    A = 1.(1000 + 999) + 1.(998 + 997) + ...
+ 1.(2 + 1)

    A = 1999 + 1995 + ... + 3

    Ta thấy các số hạng của tổng T tạo thành một cấp số cộng với số hạng đầu u_{1} = 1999 và công sai d = −4. Giả sử tổng trên có n số hạng thì

    u_{n} = 3

    \Leftrightarrow u_{1} + (n - 1) =
3

    \Leftrightarrow 1999 + (n - 1)( - 4) =
3

    \Leftrightarrow n = 500

    \Rightarrow T = S_{500} = \frac{\left(
u_{1} + u_{500} ight).500}{2} = \frac{(1999 + 3).500}{2} =
500500

  • Câu 36: Vận dụng

    Cho cấp số cộng \left( {{u_n}} ight) có số hạng đầu {u_1} = 1 và tổng 100 số hạng đầu tiên của dãy bằng . Tính giá trị của biểu thức: P = \frac{1}{{{u_1}{u_2}}} + \frac{1}{{{u_2}{u_3}}} + ... + \frac{1}{{{u_{49}}.{u_{50}}}}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho cấp số cộng \left( {{u_n}} ight) có số hạng đầu {u_1} = 1 và tổng 100 số hạng đầu tiên của dãy bằng . Tính giá trị của biểu thức: P = \frac{1}{{{u_1}{u_2}}} + \frac{1}{{{u_2}{u_3}}} + ... + \frac{1}{{{u_{49}}.{u_{50}}}}?

    Chỗ nhập nội dung câu trả lời tự luận

    Gọi d là công sai của cấp số cộng. ta có:

    S_{100} = 50\left( 2u_{1} + 99d ight) =14950u_{1} = 1 \Rightarrow d =3

    Ta có:

    P = \frac{1}{u_{1}u_{2}} +\frac{1}{u_{2}u_{3}} + ... + \frac{1}{u_{49}.u_{50}}

    \Rightarrow P.d = \frac{d}{u_{1}u_{2}} +\frac{d}{u_{2}u_{3}} + ... + \frac{d}{u_{49}.u_{50}}

    = \frac{u_{2} - u_{1}}{u_{1}u_{2}} +\frac{u_{3} - u_{2}}{u_{2}u_{3}} + ... + \frac{u_{50} -u_{49}}{u_{49}.u_{50}}

    = \frac{1}{u_{1}} - \frac{1}{u_{50}} =\frac{1}{1 + 49.3} = \frac{147}{148}

    Với d = 3 \Rightarrow P =\frac{49}{148}

  • Câu 37: Nhận biết

    Cho dãy số (u_{n}), biết u_{n}=3^{n}. Tìm số hạng u_{2n-1}

    Ta có:

    \begin{matrix}  {u_n} = {3^n} \hfill \\   \Rightarrow {u_{2n - 1}} = {3^{2n - 1}} = {3^n}{.3^{n - 1}} \hfill \\ \end{matrix}

  • Câu 38: Nhận biết

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = 2 \\
u_{n + 1} = u_{n} + 5,n \in \mathbb{N}^{*} \\
\end{matrix} ight.. Giá trị u10 là?

    Từ \left\{ \begin{matrix}
u_{1} = 2 \\
u_{n + 1} = u_{n} + 5,n \in \mathbb{N}^{*} \\
\end{matrix} ight. ta có un + 1 − un = 5

    dãy (un) là một cấp số cộng với công sai d = 5 nên

    u10 = u1 + 9d = 2 + 45 = 47

  • Câu 39: Nhận biết

    Một cấp số nhân có số hạng thứ hai bằng 4 và số hạng thứ sáu bằng 64. Khi đó, số hạng tổng quát của cấp số nhân đó có thể tính theo công thức nào dưới đây?

    Ta có: \left\{ \begin{matrix}
u_{2} = 4 \\
u_{6} = 64 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1}q = 4 \\
u_{1}q^{5} = 64 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
q = 2 \\
\end{matrix} ight.

    \Rightarrow u_{n} = u_{1}.q^{n - 1} =
2.2^{n - 1} = 2^{n}

  • Câu 40: Nhận biết

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + ( - 1)^{2n} \\
\end{matrix} ight.. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có un + 1 = un + (−1)2n = un + 1 ⇒ u2 = 2; u3 = 3; u4 = 4; …

    Dễ dàng dự đoán được un = n.

    Thật vậy, ta chứng minh được un = n (*) bằng phương pháp quy nạp như sau:

    Với n = 1 ⇒ u1 = 1. Vậy (*) đúng với n = 1.

    Giả sử (*) đúng với n = k (k∈ℕ*), ta có uk = k

    Ta đi chứng minh (*) cũng đúng với n = k + 1, tức là uk + 1 = k + 1

    Thật vậy, từ hệ thức xác định dãy số (un) ta có uk + 1 = uk + (−1)2k = k + 1

    Vậy (*) đúng với mọi n ∈ ℕ*. Số hạng tổng quát của dãy số là un = n.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 27 lượt xem
Sắp xếp theo