Viết ba số hạng xen giữa các số 2 và 22 để được một cấp số cộng có năm số hạng.
Khi viết xen giữa 2 và 22 ba số hạng ta được một cấp số cộng có 5 số hạng có:
u1 = 2; u5 = 22. Ta cần tìm u2; u3; u4
Ta có:
Viết ba số hạng xen giữa các số 2 và 22 để được một cấp số cộng có năm số hạng.
Khi viết xen giữa 2 và 22 ba số hạng ta được một cấp số cộng có 5 số hạng có:
u1 = 2; u5 = 22. Ta cần tìm u2; u3; u4
Ta có:
Cho cấp số cộng
. Hãy chọn hệ thức đúng trong các hệ thức sau:
Xét đáp án
Xét đáp án
Vậy hệ thức đúng là
Cho các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng. Tìm a?
Đặt u1 = -4; u2 = 1; u3 = 6; u4 = a
Theo bài ra ta có:
Các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng
=> u3 – u2 = u4 – u3
=> 6 – 1 = a – 6
=> a = 11
Trong các dãy số
cho bởi số hạng tổng quát
sau, dã số nào là dãy số tăng?
Xét đáp án ta có:
=> Dãy số là dãy tăng.
Cho dãy số có các số hạng đầu là
Số hạng tổng quát của dãy số này là
Ta có
Suy ra
Trong các dãy số
cho bởi số hạng tổng quát
sau, dãy số nào là một cấp số nhân?
Xét dãy số ta có:
Vậy dãy số là cấp số nhân với q = 1/3
Cho tổng
.
Khi đó công thức tính tổng S(n) là?
Giá tiền công khoan giếng ở cơ sở A được tính như sau: Giá của mét khoan đầu tiên là 8000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 500 đồng so với giá của mét khoan ngay trước nó. Vậy muốn khoan 20 mét thì mất bao nhiêu đồng?
Theo bài ra ta có:
Giá các mét khoan lập thành một cấp số cộng với công sai d = 500, số hạng đầu là 8000.
=>
=> Số tiền phải trả khi khoan giếng sâu 20m là:
Vậy muốn khoan 20 mét thì mất 255000 đồng.
Cho một cấp số nhân có 15 số hạng. Đẳng thức nào sau đây là sai?
Ta có:
Với
Đáp án sai
Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:
Do dãy số là cấp số nhân
=>
=> Số hạng tiếp theo là:
Cho dãy số
. Tìm số hạng thứ 5 của dãy số:
Ta có:
Do đó số hạng thứ 5 của dãy số là Sử dụng công thức:
Cho cấp số nhân
có công bội âm. Biết
. Khi đó ![]()
Ta có:
Trong các dãy số sau, dãy số nào lập thành một cấp số cộng?
Xét đáp án A: 1; -3; -7; -11; -15; …
=> u2 – u1 = u3 – u2 = u4 – u3 = -4 => Chọn đáp án A
Xét đáp án B: 1; -3; -7; -11; -15; …
=> u2 – u1 = -4 ≠ u3 – u2 = -3 => Loại đáp án B
Xét đáp án C: 1; -3; -7; -11; -15; …
=> u2 – u1 = -3 ≠ u3 – u2 = -2 => Loại đáp án C
Xét đáp án D: 1; -3; -7; -11; -15; …
=> u2 – u1 = -4 ≠ u3 – u2 = -2 => Loại đáp án D
Một quả bóng rơi từ độ cao 6m với phương vuông góc với mặt đất. Mỗi lần chạm đất quả bóng nảy lên với độ cao bằng
độ cao của lần rơi trước. Tính quãng đường quả bóng đã bay từ lúc thả bóng cho đến lúc bóng không nảy nữa.
Ta có: Quãng đường bóng bay bằng tổng quãng đường bóng nảy lên và quãng đường bóng rơi xuống
Vì mỗi lần bóng nảy lên bằng lần nảy trước nên ta có tổng quãng đường bóng nảy lên là:
Đây là tổng của cấp số nhân lùi vô hạn có
=>
Tổng quãng đường bóng rơi xuống bằng khoảng cách độ cao ban đầu và tổng quãng đường bóng nảy lên là:
Đây là tổng của cấp số nhân lùi vô hạn với
=>
Vậy tổng quãng đường bóng bay là 42m
Cho dãy số
biết
. Dãy số
bị chặn trên bởi số nào dưới đây?
Ta có:
Mặt khác
=> Dãy số bị chặn trên bởi số
.
Tìm x và y để dãy số
là một cấp số cộng?
Để dãy số là một cấp số cộng thì
Cho một cấp số cộng (Un) có
. Công sai d của cấp số cộng là:
Ta có:
Cho cấp số nhân
có
. Tính
.
Ta có
Vậy .
Cho hai dãy số (un), (vn) được xác định như sau u1 = 3, v1 = 2 và
với n ≥ 2. Công thức tổng quát của hai dãy (un) và (vn) là?
Chứng minh
Ta có
Mặt khác nên (1) đúng với n = 1 Giả sử
, ta có
Vậy (1) đúng với ∀n ≥ 1
Ta có
Do đó ta suy ra:
Dãy số nào sau đây không phải là một cấp số cộng?
Xét đáp án A:
=> Loại đáp án A
Xét đáp án B:
=> Loại đáp án B
Xét đáp án C:
=> Chọn đáp án C
Xét đáp án D:
=> Loại đáp án D
Cho dãy số (un) với ![]()
Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có un + 1 = un + (−1)2n + 1 = un − 1
u1 = 1; u2 = u1 − 1; u3 = u2 − 1; …; un = un − 1 − 1
Cộng vế với vế của các đẳng thức trên, ta được:
un = 1 − (n−1) = 2 − n.
Xác định tham số m > 0 để 2m – 3; m; 2m + 3 lập thành một cấp số nhân.
Để 2m – 3; m; 2m + 3 lập thành một cấp số nhân thì
Do m > 0 =>
Cho cấp số nhân
thỏa mãn
. Tính
?
Đáp án: 4
Cho cấp số nhân thỏa mãn
. Tính
?
Đáp án: 4
Giả sử cấp số nhân có công bội là , khi đó theo bài ra ta có:
do
Ta có:
Tính tổng ![]()
Ta có:
Ta thấy các số hạng của tổng T tạo thành một cấp số cộng với số hạng đầu và công sai d = −4. Giả sử tổng trên có n số hạng thì
Cho cấp số cộng (Un) có
và công sai d = 4. Tính
?
Ta có:
Tìm m để phương trình:
có bốn nghiệm lập thành một cấp số cộng?
Giả sử bốn nghiệm phân biệt của phương trình
Đặt , ta được phương trình:
Ta phải tìm m sao cho (*) có hai nghiệm dương phân biệt
Khi đó (*) có 4 nghiệm là
Theo đề bài thì bốn nghiệm lập thành một cấp số cộng nên
Áp dụng hệ thức Vi – et cho phương trình (*) ta có hệ:
Cho cấp số nhân
. Hỏi số
là số hạng thứ mấy trong cấp số nhân đã cho?
Ta có: là cấp số nhân với
Với
, cho dãy số
gồm tất cả các số nguyên dương chia
dư
theo thứ tự tăng dần. Số hạng tổng quát của dãy số này là
Các số nguyên dương chia dư
theo thứ tự tăng dần là
,
,
,
,…
Ta có ,
,
,
, …
Vậy
Cho dãy số
biết
. Chọn đáp án đúng.
Ta có:
Cho cấp số nhân (un) biết u1 = 12;
. Tính ![]()
Gọi q là công bội của cấp số nhân (un)
Ta có:
Cho dãy số (un) là một cấp số nhân có số hạng đầu u1 và công bội q. Đẳng thức nào sau đây sai?
Từ định nghĩa cấp số nhân ta có các kết quả sau:
Đáp án C sai
Cho cấp số nhân (un) có tổng n số hạng đầu tiên là
. Tìm số hạng đầu và công bội của cấp số nhân đó?
Ta có:
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có un + 1 = un + (−1)2n = un + 1 ⇒ u2 = 2; u3 = 3; u4 = 4; …
Dễ dàng dự đoán được un = n.
Thật vậy, ta chứng minh được un = n (*) bằng phương pháp quy nạp như sau:
Với n = 1 ⇒ u1 = 1. Vậy (*) đúng với n = 1.
Giả sử (*) đúng với n = k (k∈ℕ*), ta có uk = k
Ta đi chứng minh (*) cũng đúng với n = k + 1, tức là uk + 1 = k + 1
Thật vậy, từ hệ thức xác định dãy số (un) ta có uk + 1 = uk + (−1)2k = k + 1
Vậy (*) đúng với mọi n ∈ ℕ*. Số hạng tổng quát của dãy số là un = n.
Cho dãy số (un) có
và
.
Tất cả các giá trị n để
là?
Ta có
Đặt . Suy ra (vn) là cấp số nhận có công bội
và
.
Ta có
Do vn > 0, ∀n ≥ 1 nên (Tn) là dãy tăng.
Suy ra
Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một cấp số cộng. Độ dài các cạnh của tam giác đó là:
Ba cạnh của một tam giác theo thứ tự là với
lập thành một cấp số cộng nên
Ta có:
Cho cấp số nhân (un) có u1 = 2 và u2 = -8. Mệnh đề nào sau đây đúng?
Ta có:
Cho cấp số cộng
có số hạng đầu và công sai lần lượt là
. Số hạng thứ
bằng:
Ta có:
Cho dãy số (un) với
. Mệnh đề nào sau đây đúng?
Dãy số là dãy số không bị chặn vì
Cho dãy số
xác định bởi công thức
. Khẳng định nào sau đây sai?
Ta có:
Với ta thấy
Suy ra dãy số đã cho là dãy số giảm.
Cho cấp số nhân
với
và
. Công bội của cấp số nhân đã cho bằng
Ta có .