Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho dãy (un) xác định bởi u_{1} = \frac{1}{2}un = un − 1 + 2n với mọi n ≥ 2. Số hạng u50 bằng?

    Ta có

    \left\{ \begin{matrix}
u_{1} = \frac{1}{2} \\
u_{2} = u_{1} + 2 \\
u_{3} = u_{2} + 4 \\
\ldots \\
u_{49} = u_{48} + 2.49 \\
u_{50} = u_{49} + 2.50 \\
\end{matrix} ight.

    Cộng vế với vế các đẳng thức trên, ta được:

    u_{50} = \frac{1}{2} + 2(2 + 3 + \ldots +
50) = \frac{1}{2} + 2(25.51 - 1) = 2548,5.

  • Câu 2: Thông hiểu

    Cho cấp số cộng (u_{n}) có các số hạng đầu lần lượt là 5; 9; 13; 17;... Tìm số hạng tổng quát u_{n} của cấp số cộng.

    Theo bài ra ta có:

    Dãy số đã cho là cấp số cộng

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 5} \\   {{u_2} = 9} \end{array} \Rightarrow d = {u_2} - {u_1} = 4} ight.

    => {u_n} = {u_1} + \left( {n - 1} ight).d = 4n + 1

    Vậy số hạng tổng quát của dãy số là: u_n=4n+1

  • Câu 3: Vận dụng

    Tính tổng S = 1 + 11 + 111 + ... + \underbrace {1111...11}_n?

    Xét dãy số \left( U_{n} ight) là cấp số nhân với u_{1} = 1;q =
10

    \Rightarrow S_{n} = \frac{1}{9}.\left(
10^{n} - 1 ight)

    \Rightarrow S = S_{1} + S_{2} + ... +
S_{n}

    = \sum_{k = 1}^{n}{\frac{1}{9}\left(
10^{n} - 1 ight)} = \frac{1}{9}\left( \sum_{k = 1}^{n}{10^{n} - n}
ight)

    = \frac{1}{9}\left( 10.\frac{10^{n} -
1}{9} - n ight) = \frac{1}{9}\left( \frac{10^{n + 1} - 1}{9} - n
ight)

  • Câu 4: Nhận biết

    Cho S_{n} =
\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \ldots + \frac{1}{n(n +
1)} với n ∈ ℕ*. Mệnh đề nào sau đây đúng?

    Ta có S_{1} = \frac{1}{2},S_{2} =
\frac{2}{3},S_{3} = \frac{3}{4} \Rightarrow dự đoán S_{n} = \frac{n}{n + 1}

    Với n = 1, ta được S_{1} = \frac{1}{1.2} = \frac{1}{1 + 1} (đúng)

    Giả sử mệnh đề đúng khi n = k (k≥1), tức là \frac{1}{1.2} + \frac{1}{2.3} + \ldots +
\frac{1}{k(k + 1)} = \frac{k}{k + 1}

    Ta có \frac{1}{1.2} + \frac{1}{2.3} +
\ldots + \frac{1}{k(k + 1)} = \frac{k}{k + 1}

    \begin{matrix}
& \Leftrightarrow \frac{1}{1.2} + \frac{1}{2.3} + \ldots +
\frac{1}{k(k + 1)} + \frac{1}{(k + 1)(k + 2)} = \frac{k}{k + 1} +
\frac{1}{(k + 1)(k + 2)} \\
& \\
& \\
\end{matrix}

    \Leftrightarrow \frac{1}{1.2} +
\frac{1}{2.3} + \ldots + \frac{1}{k(k + 1)} + \frac{1}{(k + 1)(k + 2)} =
\frac{k^{2} + 2k + 1}{(k + 1)(k + 2)}

    \Leftrightarrow \frac{1}{1.2} +
\frac{1}{2.3} + \ldots + \frac{1}{k(k + 1)} + \frac{1}{(k + 1)(k + 2)} =
\frac{k + 1}{k + 2}

    Suy ra mệnh đề đúng với n = k + 1.

  • Câu 5: Thông hiểu

    Cho cấp số nhân (un) có u1 = -1; u6 = -0,00001. Khi đó công bội q và số hạng tổng quát là:

    Ta có:

    \begin{matrix}  {u_6} = {u_1}.{q^5} \hfill \\   \Leftrightarrow 0,00001 =  - {q^5} \hfill \\   \Leftrightarrow q = \dfrac{{ - 1}}{{10}} \hfill \\   \Rightarrow {u_n} = {u_1}.{q^{n - 1}} =  - 1.{\left( {\dfrac{{ - 1}}{{10}}} ight)^{n - 1}} = \dfrac{{{{\left( { - 1} ight)}^n}}}{{{{10}^{n - 1}}}} \hfill \\ \end{matrix}

  • Câu 6: Vận dụng cao

    Cho ba số dương a, b, c theo thứ tự lập thành một cấp số cộng. Giá trị lớn nhất của biểu thức M = \dfrac{{\sqrt {{a^2} + 8bc}  + 3}}{{\sqrt {{{\left( {2a + c} ight)}^2} + 1} }} có dạng x\sqrt y ;\left( {x,y \in \mathbb{N}} ight). Hỏi x + y bằng bao nhiêu?

    Ta có:

    \begin{matrix}  a + c = 2b \Rightarrow a = 2b - c \hfill \\   \Rightarrow {a^2} = {\left( {2a - c} ight)^2} \hfill \\   \Leftrightarrow {a^2} + 8bc = 4{b^2} + 4bc + {c^2} \hfill \\   \Leftrightarrow {a^2} + 8bc = {\left( {2b + c} ight)^2} \hfill \\ \end{matrix}

    Theo bài ra ta có:

    M = \frac{{2b + c + 3}}{{\sqrt {{{\left( {2a + c} ight)}^2} + 1} }} = \frac{{t + 3}}{{\sqrt {{t^2} + 1} }} \leqslant \sqrt {10} ,\left( {t = 2b + c} ight)

    Dấu bằng xảy ra khi và chỉ khi 2b + c = \frac{1}{3}

    => x + y = 11

  • Câu 7: Thông hiểu

    Cho dãy số vô hạn \left( u_{n} ight) là một cấp số cộng có số hạng đầu u_{1}, công sai d. Gọi S_{n} là tổng của n số hạng đầu tiên của cấp số cộng đó.

    a) u_{5} = \frac{u_{1} +
u_{9}}{2} Đúng||Sai

    b) u_{n} = u_{n - 1} + d;(n \geq
2)Đúng||Sai

    c) S_{12} = \frac{n}{2}.\left( 2u_{1} +
11d ight)Sai||Đúng

    d) u_{n} = u_{1} + (n - 1).d;\left(
\forall n\mathbb{\in N} ight)Sai||Đúng

    Đáp án là:

    Cho dãy số vô hạn \left( u_{n} ight) là một cấp số cộng có số hạng đầu u_{1}, công sai d. Gọi S_{n} là tổng của n số hạng đầu tiên của cấp số cộng đó.

    a) u_{5} = \frac{u_{1} +
u_{9}}{2} Đúng||Sai

    b) u_{n} = u_{n - 1} + d;(n \geq
2)Đúng||Sai

    c) S_{12} = \frac{n}{2}.\left( 2u_{1} +
11d ight)Sai||Đúng

    d) u_{n} = u_{1} + (n - 1).d;\left(
\forall n\mathbb{\in N} ight)Sai||Đúng

    Ta có: u_{n} = u_{n - 1} + d;(n \geq
2) đúng

    \frac{u_{1} + u_{9}}{2} = \frac{u_{1} +
u_{1} + 8d}{2} = u_{1} + 4d = u_{5}

    Ta có:

    S_{n} = nu_{1} + \frac{n(n -
1)d}{2}

    \Rightarrow S_{12} = 6\left( 2u_{1} +
11d ight) eq \frac{n}{2}.\left( 2u_{1} + 11d ight)

    Lại có: u_{n} = u_{1} + (n - 1).d;\left(
\forall n \in \mathbb{N}^{*} ight)

  • Câu 8: Nhận biết

    Cho dãy số\left( {{u_n}} ight):\left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {{u_{n + 1}} = n{u_n}} \end{array}} ight. với mọi n\geq 1. Khi đó số hạng thứ 5 của dãy là:

    Ta có:

    \begin{matrix}  {u_1} = 2 \hfill \\  {u_2} = 1{u_1} = 2 \hfill \\  {u_3} = 2.{u_2} = 2.2 = 4 \hfill \\  {u_4} = 3.{u_3} = 3.4 = 12 \hfill \\  {u_5} = 4.{u_4} = 4.12 = 48 \hfill \\ \end{matrix}

    Khi đó số hạng thứ 5 của dãy là 48

  • Câu 9: Vận dụng

    Xét tính tăng, giảm và bị chặn của dãy số (un), biết u_{n} = \frac{2^{n}}{n!}, ta thu được kết quả?

    Ta có \frac{u_{n + 1}}{u_{n}} = \frac{2^{n
+ 1}}{(n + 1)!}:\frac{2^{n}}{n!} = \frac{2^{n + 1}}{(n + 1)!} \cdot
\frac{n!}{2^{n}} = \frac{2}{n + 1} < 1,\forall n \geq 1

    un > 0, ∀n nên un + 1 < un, ∀n ≥ 1⇒ dãy (un) là dãy số giảm.

    0 < un ≤ u1 = 2, ∀n ≥ 1 nên dãy (un) là dãy bị chặn trên.

  • Câu 10: Vận dụng cao

    Cho dãy số (un) biết \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = \frac{1}{2}u_{n} - 1 \\
\end{matrix} ight.. Mệnh đề nào sau đây đúng?

    Ta xét dãy số này bị chặn bằng phương pháp quy nạp toán học.

    Ta sẽ chứng minh bằng quy nạp  − 2 ≤ un ≤ 1, ∀n ∈ ℕ*

    Với n = 1 ta có  − 2 ≤ u1 ≤ 1 (đúng).

    Giả sử mệnh đề trên đúng với n = k ≥ 1. Tức là  − 2 ≤ uk ≤ 1

    \Rightarrow - 1 \leq \frac{1}{2}u_{k}
\leq \frac{1}{2} \Rightarrow - 2 \leq \frac{1}{2}u_{k} - 1 \leq -
\frac{1}{2} \Rightarrow - 2 \leq u_{k + 1} \leq 1

    Theo nguyên lí quy nạp ta đã chứng minh được  − 2 ≤ un ≤ 1, ∀n ∈ ℕ*

    Vậy (un) là dãy số bị chặn.

  • Câu 11: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) với u_{1} = - 2;u_{2} = 2. Khi đó số hạng 2018 là số nào?

    Theo bài ra ta có:

    d = u_{2} - u_{1} = 2 - ( - 2) =
4

    u_{n} = u_{1} + (n - 1)d

    \Rightarrow u_{2018} = u_{1} + 2017d = -
2 + 2017.4 = 8066.

  • Câu 12: Nhận biết

    Cho cấp số cộng có số hạng đầu {u_1} =  - \frac{1}{2} công sai d = \frac{1}{2}. Năm số hạng liên tiếp đầu tiên của cấp số này là:

    Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight)d,\left( {{u_1} =  - \dfrac{1}{2};d = \dfrac{1}{2}} ight) \hfill \\   \Rightarrow {u_n} =  - \dfrac{1}{2} + \left( {n - 1} ight).\dfrac{1}{2} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_2} = {u_1} + d = 0} \\   {{u_3} = {u_2} + d = \dfrac{1}{2}} \\   {{u_4} = {u_3} + d = 1} \\   {{u_5} = {u_4} + d = \dfrac{3}{2}} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 13: Nhận biết

    Cho dãy số \left( u_{n} ight) là một cấp số nhân có số hạng đầu u_{1} và công bội q. Đẳng thức nào sau đây đúng?

    Cho dãy số \left( u_{n} ight) là một cấp số nhân có số hạng đầu u_{1} và công bội q.

    Theo công thức số hạng tổng quát ta có u_{n} = u_{1}q^{n - 1}, (n \geq 2).

  • Câu 14: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + 2n + 1,n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Số hạng tổng quát un là?

    Ta có u1 = 1; u2 = u1 + 3; u3 = u2 + 5; u4 = u3 + 7; …; un = un − 1 + (2n−1)

    Cộng từng vế với vế của các đẳng thức trên và rút gọn ta được

    un = 1 + 3 + 5 + 7 + … + (2n−1) = n2.

  • Câu 15: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

  • Câu 16: Thông hiểu

    Cho cấp số cộng {u_1} =  - 3;d = 4. Chọn khẳng định đúng trong các khẳng định sau?

     Ta có: {u_3} = {u_1} + 2d =  - 3 + 2.4 = 5

  • Câu 17: Nhận biết

    Trong các dãy số sau, dãy số nào là cấp số cộng?

    Ta có: \left\{ \begin{matrix}
3 = 1 + 2 \\
5 = 3 + 2 \\
7 = 5 + 2 \\
9 = 7 + 2 \\
\end{matrix} ight.

    Khi đó theo định nghĩa cấp số cộng dãy số 1;3;5;7;9 là một cấp số cộng với d = 2

  • Câu 18: Thông hiểu

    Cho cấp số nhân (un) biết u1 = 12; \frac{{{u_3}}}{{{u_8}}} = 243. Tính {u_9}

    Gọi q là công bội của cấp số nhân (un)

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_3} = {u_1}.{q^2}} \\   {{u_8} = {u_1}.{q^7}} \end{array}} ight. \Rightarrow \dfrac{{{u_3}}}{{{u_8}}} = \dfrac{{{u_1}.{q^2}}}{{{u_1}.{q^7}}} = \dfrac{1}{{{q^5}}} \hfill \\   \Rightarrow q = d\frac{1}{3} \hfill \\   \Rightarrow {u_9} = {u_1}.{q^8} = 12.{\left( {\dfrac{1}{3}} ight)^8} = \dfrac{4}{{2187}} \hfill \\ \end{matrix}

  • Câu 19: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?

    Ta có:

    Dãy \left( u_{n} ight) là một cấp số cộng

    \Leftrightarrow u_{n} = u_{n - 1} +
d với d là hằng số.

    Hay u_{n} - u_{n - 1} = d

    => Cấp số cộng cần tìm là: \left\{
\begin{matrix}
u_{1} = 1 \\
u_{n} = u_{n - 1} - 1 \\
\end{matrix} ight.

  • Câu 20: Thông hiểu

    Cho cấp số nhân có các số hạng lần lượt là x;12;y;192. Mệnh đề nào sau đây đúng?

    Cấp số nhân x;12;y;192

    \Rightarrow \left\{ \begin{matrix}\dfrac{12}{x} = \dfrac{y}{12} \\\dfrac{y}{12} = \dfrac{192}{y} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \dfrac{144}{y} \\y^{2} = 2304 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \pm 3 \\y = \pm 48 \\\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(x;y) = (3;48) \\
(x;y) = ( - 3; - 48) \\
\end{matrix} ight.

  • Câu 21: Thông hiểu

    Tìm z để 2; 8; z; 128 lập thành một cấp số nhân.

    Dãy số 2; 8; z; 128 theo thứ tự là u1; u2; u3; u4 ta có:

    \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{u_2}}}{{{u_1}}} = \dfrac{{{u_3}}}{{{u_2}}}} \\   {\dfrac{{{u_2}}}{{{u_1}}} = \dfrac{{{u_3}}}{{{u_2}}}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\dfrac{8}{2} = \dfrac{z}{8}} \\   {\dfrac{{128}}{z} = \dfrac{z}{8}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {z = 32} \\   {{z^2} = 1024} \end{array}} ight. \Rightarrow z = 32

  • Câu 22: Vận dụng

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn \left\{ \begin{matrix}
u_{1} + u_{7} = 26 \\
{u_{2}}^{2} + {u_{6}}^{2} = 466 \\
\end{matrix} ight.. Mệnh đề nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
u_{1} + u_{7} = 26 \\
{u_{2}}^{2} + {u_{6}}^{2} = 466 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2u_{1} + 6d = 26 \\
\left( u_{1} + d ight)^{2} + \left( u_{1} + 5d ight)^{2} = 466 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 13 - 3d \\
\left( u_{1} + d ight)^{2} + \left( u_{1} + 5d ight)^{2} = 466 \\
\end{matrix} ight.

    Khi đó:

    \Rightarrow (13 - 2d)^{2} + (13 +
2d)^{2} = 466

    \Rightarrow \left\lbrack \begin{matrix}
d = 4 \Rightarrow u_{1} = 1 \\
d = - 4 \Rightarrow u_{1} = 25 \\
\end{matrix} ight.

  • Câu 23: Vận dụng

    Trên một bàn cờ có nhiều ô vuông, người ta đặt 7 hạt dẻ vào ô đầu tiên, sau đó đặt tiếp vào ô thứ hai số hạt nhiều hơn ô thứ nhất là 5, tiếp tục đặt vào ô thứ ba số hạt nhiều hơn ô thứ hai là 5, ... và cứ thế tiếp tục đến ô thứ n. Biết rằng đặt hết số ô trên bàn cờ người ta phải sử dụng 25450 hạt. Hỏi bàn cờ đó có bao nhiêu ô vuông?

    Ta có:

    Số hạt dẻ trên mỗi ô (bắt đầu từ ô thứ nhất) theo thứ tự đó lập thành cấp số cộng \left( u_{n} ight)u_{1} = 7;d = 5.

    Gọi n là số ô trên bàn cờ thì u_{1} +
u_{2} + ... + u_{n} = 25450 = S_{n}

    Ta có:

    25450 = S_{n}

    \Leftrightarrow 25450 = nu_{1} +
\frac{n(n - 1)}{2}.d

    \Leftrightarrow 25450 = 7n + \frac{n^{2}
- n}{2}.5

    \Leftrightarrow 5n^{2} + 9n - 50900 =
0

    \Leftrightarrow n = 100

  • Câu 24: Thông hiểu

    Cho dãy số (un) với \ \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + ( - 1)^{2n + 1}\text{.~} \\
\end{matrix} ight.

    Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có un + 1 = un + (−1)2n + 1 = un − 1

    u1 = 1; u2 = u1 − 1; u3 = u2 − 1; …; un = un − 1 − 1

    Cộng vế với vế của các đẳng thức trên, ta được:

    un = 1 − (n−1) = 2 − n.

  • Câu 25: Nhận biết

    Cho dãy số -7; h; 11; k. Với giá trị nào của h, k thì dãy số đã cho lập thành một cấp số cộng?

     Bốn số hạng 7; h; 11; k theo thứ tự là u1; u2; u3; u4 lập thành một cấp số cộng nên

    \begin{matrix}   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_4} - {u_3} = {u_3} - {u_2}} \\   {{u_4} - {u_3} = {u_2} - {u_1}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {k - 11 = 11 - h} \\   {k - 11 = h + 7} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {h + k = 22} \\   {h - k =  - 18} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {h = 2} \\   {k = 20} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 26: Nhận biết

    Trong các dãy số (u_{n}) cho bởi số hạng tổng quát u_{n} sau, dãy số nào là một cấp số nhân?

    Xét dãy số u_n=\frac{1}{3^{n-2}} ta có:

    \dfrac{{{u_{n + 1}}}}{{{u_n}}} = \dfrac{{\dfrac{1}{{{3^{n + 1 - 2}}}}}}{{\dfrac{1}{{{3^{n - 2}}}}}} = \dfrac{{{3^{n - 2}}}}{{{3^{n - 1}}}} = {3^{ - 1}} = \frac{1}{3}

    Vậy dãy số u_n=\frac{1}{3^{n-2}} là cấp số nhân với q = 1/3

  • Câu 27: Vận dụng

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn \left\{ \begin{matrix}u_{1} + u_{2} + u_{3} = 27 \\{u_{1}}^{2} + {u_{2}}^{2} + {u_{3}}^{2} = 275 \\\end{matrix} ight.. Tính u_{2}.

    Ta có:

    \left\{ \begin{matrix}u_{1} + u_{2} + u_{3} = 27 \\{u_{1}}^{2} + {u_{2}}^{2} + {u_{3}}^{2} = 275 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} + \left( u_{1} + d ight) + \left( u_{1} + 2d ight) = 27 \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} + d = 9 \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}d = 9 - u_{1} \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    Khi đó:

    \Rightarrow {u_{1}}^{2} + \left( u_{1} +9 - u_{1} ight)^{2} + \left\lbrack u_{1} + 2\left( 9 - u_{1} ight)ightbrack^{2} = 275

    \Leftrightarrow {u_{1}}^{2} - 18u_{1} +65 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}u_{1} = 13 \Rightarrow d = - 4 \\u_{1} = 5 \Rightarrow d = 4 \\\end{matrix} ight.=> u_{2} = 9

  • Câu 28: Nhận biết

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = cos\alpha(0 < \alpha < \pi) \\
u_{n + 1} = \sqrt{\frac{1 + u_{n}}{2}},\forall n \geq 1 \\
\end{matrix} ight..

    Số hạng thứ 2020 của dãy số đã cho là?

    Do 0 < α < π nên
    u_{2} = \sqrt{\frac{1 + cos\alpha}{2}} =\sqrt{\cos^{2}\frac{\alpha}{2}} = cos\frac{\alpha}{2};

    u_{3} =\sqrt{\frac{1 + cos\frac{\alpha}{2}}{2}} =\sqrt{\cos^{2}\frac{\alpha}{2}} = cos\frac{\alpha}{4}

    Vậy u = cos\left( \frac{\alpha}{2^{n - 1}}
ight) với mọi n ∈ ℕ*. Ta sẽ chứng minh bằng quy nạp.

    Với n = 1 thì u1 = cosα (đúng).

    Giả sử với n = k ∈ ℕ* ta có u_{k} = cos\left( \frac{\alpha}{2^{k - 1}}
ight).

    Ta chứng minh u_{k + 1} =
cos\left( \frac{\alpha}{2^{k - 1}} ight)

    Thật vậy,

    u_{k + 1} = \sqrt{\frac{1 +u_{k}}{2}} = \sqrt{\frac{1 + cos\left( \frac{\alpha}{2^{k - 1}}ight)}{2}}

    = \sqrt{\cos^{2}\left( \frac{\alpha}{2^{k}} ight)} =cos\left( \frac{\alpha}{2^{k}} ight)

    Từ đó ta có u_{2020} = cos\left(
\frac{\alpha}{2^{2019}} ight)

  • Câu 29: Vận dụng cao

    Tính giá trị u2018 của dãy số (un) xác định bởi {u_1} = 1;{u_{n + 1}} = \frac{1}{3}\left( {2{u_n} + \frac{{n - 1}}{{{n^2} + 3n + 2}}} ight);\left( {n \in {\mathbb{N}^*}} ight)

    Ta có:

    \begin{matrix}  {u_{n + 1}} = \dfrac{1}{3}\left( {2{u_n} + \dfrac{{n - 1}}{{{n^2} + 3n + 2}}} ight) \hfill \\  {u_{n + 1}} = \dfrac{1}{3}\left( {2{u_n} + \dfrac{3}{{n + 2}} - \dfrac{2}{{n + 1}}} ight) \hfill \\  {u_{n + 1}} = \dfrac{2}{3}{u_n} + \dfrac{1}{{n + 2}} - \dfrac{2}{3}.\dfrac{1}{{n + 1}} \hfill \\  {u_{n + 1}} - \dfrac{1}{{n + 2}} = \dfrac{2}{3}\left( {{u_n} - \dfrac{1}{{n + 1}}} ight)\left( * ight) \hfill \\ \end{matrix}

    Đặt {v_n} = {u_n} - \frac{1}{{n + 1}} \Rightarrow {v_{n + 1}} = \frac{2}{3}{v_n}

    => Dãy số (vn) là cấp số nhân với {v_1} = {u_1} - \frac{1}{2} = \frac{1}{2};q = \frac{2}{3}

    => {v_n} = {v_1}.{q^{n - 1}} = \frac{1}{2}.{\left( {\frac{2}{3}} ight)^{n - 1}}

    \begin{matrix}   \Rightarrow {u_n} - \dfrac{1}{{n + 1}} = \dfrac{1}{2}.{\left( {\dfrac{2}{3}} ight)^{n - 1}} \hfill \\   \Rightarrow {u_n} = \dfrac{1}{2}.{\left( {\dfrac{2}{3}} ight)^{n - 1}} + \dfrac{1}{{n + 1}} \hfill \\   \Rightarrow {u_{2018}} = \dfrac{1}{2}.{\left( {\dfrac{2}{3}} ight)^{2017}} + \dfrac{1}{{2019}} = \dfrac{{{2^{2016}}}}{{{3^{2017}}}} + \dfrac{1}{{2019}} \hfill \\ \end{matrix}

  • Câu 30: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = - 1;d = 3. Tính tổng 100 số hạng đầu tiên của cấp số cộng.

    Ta có:

    S_{n} = n.u_{1} + \frac{n(n -
1)d}{2}

    \Leftrightarrow S_{100} = 100.u_{1} +
\frac{100.99d}{2} = - 24350

  • Câu 31: Thông hiểu

    Cho cấp số cộng (Un) có số hạng tổng quát là {u_n} = 3n - 2. Xác định công sai của cấp số cộng.

    Ta có: \begin{matrix}  {u_{n + 1}} - {u_n} = 3\left( {n + 1} ight) - 2 - 3n + 2 = 3 \hfill \\   \Rightarrow d = 3 \hfill \\ \end{matrix}

  • Câu 32: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)d = - 2;S_{8} = 72. Tìm số hạng đầu tiên u_{1}.

    Ta có:

    \left\{ \begin{matrix}d = - 2 \\S_{8} = 72 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}d = - 2 \\8u_{1} + \dfrac{8.7.d}{2} = 72 \\\end{matrix} ight.

    \Rightarrow 8u_{1} + 28.( - 2) =
72

    \Rightarrow u_{1} = 16

  • Câu 33: Thông hiểu

    Với mọi số nguyên dương n thì S_{n}=n^{3}+2n chia hết cho 

    Với n = 1\Rightarrow {S_1} = {1^3} + 2.1 = 3 chia hết cho 3, ta sẽ chứng minh S_n chia hết cho 3 với mọi n.

    Giả sử khẳng định đúng với n=k tức là {S_k} = {k^3} + 2k chia hết cho 3, ta chứng minh {S_{k + 1}} = {\left( {k + 1} ight)^3} + 2\left( {k + 1} ight) cũng chia hết cho 3.

    Ta có:

    \begin{matrix}  {S_{k + 1}} = {\left( {k + 1} ight)^3} + 2\left( {k + 1} ight) \hfill \\   = {k^3} + 3{k^2} + 3k + 1 + 2k + 2 \hfill \\   = \left( {{k^3} + 2k} ight) + 3\left( {{k^2} + k + 1} ight) \hfill \\  \left\{ \begin{gathered}  \left( {{k^3} + 2k} ight) \vdots 3 \hfill \\  3\left( {{k^2} + k + 1} ight) \vdots 3 \hfill \\ \end{gathered}  ight. \Rightarrow {S_{k + 1}} \vdots 3 \hfill \\ \end{matrix}

    Vậy với mọi số nguyên dương thì S_{n}=n^{3}+2n chia hết cho 3.

  • Câu 34: Nhận biết

    Trong các phát biểu sau, phát biểu nào là sai?

    Ta lấy một phản ví dụ:

    Dãy số (un) với {u_n} = n - 2 là cấp số cộng có công sai d = 1 > 0

    Nhưng dạng khai triển của nó là -1; 0; 1; … không phải một dãy số dương.

  • Câu 35: Thông hiểu

    Cho cấp số nhân có 6 số hạng với cộng bội bằng 2 và tổng số các số hạng bằng 189. Số hạng cuối cùng của cấp số nhân có giá trị là:

    Ta có: S_{n} = \frac{u_{1}\left( 1 -
q^{n} ight)}{1 - q}n = 6;q =
2;S_{n} = 189

    \Rightarrow 189 = \frac{u_{1}\left( 1 -
2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{6} =
96

  • Câu 36: Nhận biết

    Khẳng định nào sau đây là khẳng định sai?

    Khẳng định sai là: “Số hạng tổng quát của cấp số cộng \left( u_{n} ight)u_{n} = u_{1} + nd với công sai d và số hạng đầu u_{1}.”

  • Câu 37: Nhận biết

    Với n \in \mathbb{N}^{*}, cho dãy số \left( u_{n} ight) gồm các số nguyên dương chia hết cho 7: 7, 14, 21, 28, …Công thức số hạng tổng quát của dãy số này là:

    Ta có u_{1} = 7 = 7.1, u_{2} = 14 = 7.2, u_{3} = 21 = 7.3, u_{4} = 28 = 7.4,…

    Suy ra u_{n} = 7n.

  • Câu 38: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Dãy 1;\ \ 2;\ \ 4;\ \ 8;\ \ 16 là cấp số nhân với công bội q =
2.

    Dãy 1;  - 1; 1;  - 1;1 là cấp số nhân với công bội q = -
1.

    Dãy 1;\ \  - 2;\ \ 4;\ \  - 8;\ \
16 là cấp số nhân với công bội q =
- 2.

    Dãy 1;2;3; 4;5 là cấp số cộng với công sai d = 1.

  • Câu 39: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight) có tổng n số hạng đầu tiên là S_{n} = \frac{3^{n} - 1}{3^{n -
1}}. Tìm số hạng thứ 5 của cấp số nhân đã cho.

    S_{n} = \frac{3^{n} - 1}{3^{n - 1}} =
3.\left\lbrack 1 - \left( \frac{1}{3} ight)^{n}
ightbrack

    Mặt khác

    \Rightarrow S_{n} = u_{1}.\dfrac{1 -q^{n}}{1 - q} \Rightarrow \left\{ \begin{matrix}u_{1} = 3(1 - q) \\q = \dfrac{1}{3} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\q = \dfrac{1}{3} \\\end{matrix} ight.

    \Rightarrow u_{5} = u_{1}.q^{4} =
\frac{2}{3^{4}}

  • Câu 40: Vận dụng

    Cho dãy số (un), biết un = n ⋅ cosn. Trong các phát biểu sau, có bao nhiêu phát biểu đúng?

    (1) (un) là dãy số tăng.

    (2) (un) là dãy số bị chặn dưới.

    (3) n ∈ ℕ* : un ≤ n.

    cos(n) ≤ 1 nên un < n. Phát biểu (3) đúng.

    Dãy không tăng, không giảm và không bị chặn dưới.

    Vậy có 1 phát biểu đúng trong 3 phát biểu đã cho.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 23 lượt xem
Sắp xếp theo