Cho cấp số nhân có các số hạng lần lượt là
. Mệnh đề nào sau đây đúng?
Cấp số nhân
Vậy
Cho cấp số nhân có các số hạng lần lượt là
. Mệnh đề nào sau đây đúng?
Cấp số nhân
Vậy
Cho cấp số nhân
có
. Tính tổng 10 số hạng đầu tiên của cấp số nhân đã cho.
Ta có:
Cho cấp số cộng
thỏa mãn
. Tính công sai
của cấp số cộng đó:
Ta có:
Cho dãy số (un) xác định bởi
. Tìm số hạng thứ 2018 của dãy số đã cho.
Ta có:
Đặt
Khi đó (vn) là một cấp số nhân với và công bội q = 21
Do đó số hạng tổng quát của dãy (vn) là
=>
Một cấp số cộng có 8 số hạng. Số hạng đầu là 5, số hạng thứ tám là 40. Khi đó công sai d của cấp số cộng đó là bao nhiêu?
Theo bài ra ta có:
Cho cấp số cộng (Un) có
. Giá trị của
bằng:
Ta có:
Cho ba số dương a, b, c theo thứ tự lập thành một cấp số cộng. Giá trị lớn nhất của biểu thức
có dạng
. Hỏi x + y bằng bao nhiêu?
Ta có:
Theo bài ra ta có:
Dấu bằng xảy ra khi và chỉ khi
=> x + y = 11
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai
b) Cho dãy số
được xác định bởi công thức
có số hạng thứ 3 là:
. Đúng||Sai
c) Cho dãy số
được xác định bởi công thức
là dãy số giảm và bị chặn dưới. Sai||Đúng
d) Tổng
. Đúng||Sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai
b) Cho dãy số được xác định bởi công thức
có số hạng thứ 3 là:
. Đúng||Sai
c) Cho dãy số được xác định bởi công thức
là dãy số giảm và bị chặn dưới. Sai||Đúng
d) Tổng . Đúng||Sai
Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân đúng vì dãy số đã cho là cấp số nhân với công bội q = 1.
Số hạng thứ ba của dãy số là:
.
Xét ta có:
suy ra
là dãy số giảm
Lại có suy ra
là dãy số bị chặn trên.
Suy ra phát biểu “Cho dãy số được xác định bởi công thức
là dãy số giảm và bị chặn dưới.” là phát biểu sai.
Ta có: là tổng cấp số nhân lùi vô hạn
với
có số hạng đầu và công bội lần lượt là:
Cho cấp số cộng (un) có u3 = -15; u20 = 60. Tổng của 10 số hạng đầu tiên của cấp số cộng này là:
Gọi u1, d lần lượt là số hạng đầu và công sai của cấp số cộng
Ta có:
=> Tổng của 10 số hạng đầu tiên của cấp số cộng này là:
Xét tính bị chặn của dãy số un = 3n − 1, ta thu được kết quả?
Ta có un ≥ 2, ∀n ⇒ (un) bị chặn dưới; dãy (un) không bị chặn trên.
Cho dãy số -7; h; 11; k. Với giá trị nào của h, k thì dãy số đã cho lập thành một cấp số cộng?
Bốn số hạng 7; h; 11; k theo thứ tự là u1; u2; u3; u4 lập thành một cấp số cộng nên
Xét tính tăng, giảm của dãy số
, ta thu được kết quả?
Ta có là dãy số tăng.
Tổng S = sin(x) + sin(2x) + … + sin(nx) (với x ≠ kπ ) có công thức thu gọn là?
Ta có
Vậy
Cho dãy số (un) được xác định như sau
. Số hạng u11 là?
Ta có:
Cho cấp số nhân
có
và công bội
. Số hạng tổng quát của cấp số nhân
là
Số hạng tổng quát của cấp số nhân là
.
Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:
Do dãy số là cấp số nhân
=>
=> Số hạng tiếp theo là:
Với
, cho dãy số
gồm tất cả các số nguyên dương chia
dư
theo thứ tự tăng dần. Số hạng tổng quát của dãy số này là
Các số nguyên dương chia dư
theo thứ tự tăng dần là
,
,
,
,…
Ta có ,
,
,
, …
Vậy
Cho cấp số nhân
có
. Số
là số hạng thứ mấy của cấp số nhân đã cho?
Ta có:
Mà n là số chẵn và
Với
, cho dãy số
gồm các số nguyên dương chia hết cho
:
,
,
,
, …Công thức số hạng tổng quát của dãy số này là:
Ta có ,
,
,
,…
Suy ra .
Cho cấp số cộng
có
. Tìm số hạng đầu tiên
.
Ta có:
Cho một cấp số cộng
có
. Giá trị
bằng bao nhiêu?
Ta có:
Tổng của 16 số hạng đầu tiên của cấp số cộng là:
Cho cấp số nhân
với công bội
. Đặt
. Khẳng định nào sau đây đúng?
Theo công thức tính tổng số hạng đầu của CSN ta được
.
Số hạng âm trong dãy số x1; x2; x3; …; xn với
là?
Ta có
Vậy các số hạng âm là x1; x2; x3.
Cho cấp số cộng
có số hạng đầu
công sai
Năm số hạng liên tiếp đầu tiên của cấp số cộng là:
Ta dùng công thức tổng quát , hoặc
để tính các số hạng của một cấp số cộng.
Ta có
Tại một nhà máy, người ta đo được rằng
lượng nước sau khi sử dụng được xử lí và tái sử dụng. Với
ban đầu được sử dụng lần đầu tại nhà máy, khi quá trình xử lí và tái sử dụng lặp lại mãi mãi, nhà máy sử dụng được tổng lượng nước là bao nhiêu?
Đáp án: 500
Tại một nhà máy, người ta đo được rằng lượng nước sau khi sử dụng được xử lí và tái sử dụng. Với
ban đầu được sử dụng lần đầu tại nhà máy, khi quá trình xử lí và tái sử dụng lặp lại mãi mãi, nhà máy sử dụng được tổng lượng nước là bao nhiêu?
Đáp án: 500
Ta có:
.
Cho dãy số
, biết
. Ba số hạng đầu tiên của dãy số đó lần lượt là:
Ta có:
Ba số hạng đầu tiên của dãy số đó lần lượt là:
Cho dãy số (un) với
, biết
. Hỏi uk là số hạng thứ mấy của dãy số đã cho?
Ta có:
(do k∈ℕ*)
Với giá trị
nào dưới đây thì các số
theo thứ tự đó lập thành một cấp số nhân?
Ta có: lập thành một cấp số nhân
Dùng quy nạp chứng minh mệnh đề chứa biến
đúng với mọi số tự nhiên
(p là một
số tự nhiên). Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với
bằng:
Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với bằng
Cho dãy số
. Giá trị u11 là
Ta có
Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một cấp số cộng. Độ dài các cạnh của tam giác đó là:
Ba cạnh của một tam giác theo thứ tự là với
lập thành một cấp số cộng nên
Ta có:
Dãy số (un) được cho bởi
. Hãy tìm khẳng định sai trong các khẳng định sau.
...
Áp dụng phương pháp quy nạp ta có un = 2n − 1.
Ba số hạng đầu của một cấp số nhân là
và
. Tìm
biết rằng công bội của cấp số nhân là
?
Ta có:
Ba số hạng đầu của một cấp số nhân là và
có công bội
Cho
là cấp số cộng biết
. Tổng 15 số hạng đầu của cấp số cộng đó bằng
Ta có:
Vậy
Trong các dãy số sau dãy số nào là cấp số cộng?
Ta có:
=> Dãy số là cấp số cộng.
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b)
. Đúng||Sai
c) Cấp số cộng
thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b) . Đúng||Sai
c) Cấp số cộng thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
a) Xét dãy số đã cho ta có:
nên dãy số
không tăng không giảm.
b) đúng bằng chứng minh quy nạp.
c) Công sai d = 5 và số hạng đầu tiên bằng
Khi đó số hạng tổng quát của cấp số cộng là
d) Từ giả thiết ta có:
Suy ra tổng các số hạng của cấp số nhân đó là: .
Trong các phát biểu sau, phát biểu nào là sai?
Ta lấy một phản ví dụ:
Dãy số (un) với là cấp số cộng có công sai d = 1 > 0
Nhưng dạng khai triển của nó là -1; 0; 1; … không phải một dãy số dương.
Trong các dãy số sau đây, dãy số nào là cấp số cộng?
Ta có dãy số là một cấp số cộng có công sai
.
Cho một cấp số nhân có 15 số hạng. Đẳng thức nào sau đây là sai?
Ta có:
Với
Đáp án sai
Cho tập hợp
. Số tập hợp con của tập hợp
gồm ba phần tử có thể sắp xếp thành một cấp số nhân tăng là:
Gọi ba phần tử thỏa mãn yêu cầu bài toán là với
lập thành một cấp số nhân
Suy ra lập thành một cấp số cộng
Thấy rằng a và c phải cùng tính chẵn lẻ.
Khi đó số tập con thỏa mãn yêu cầu bài toán là