Cho cấp số cộng
có số hạng đầu là
. Hỏi số hạng thứ tư là số nào dưới đây?
Ta có:
Vậy
Cho cấp số cộng
có số hạng đầu là
. Hỏi số hạng thứ tư là số nào dưới đây?
Ta có:
Vậy
Cho ba số a; 5; 3b theo thứ tự lập thành cấp số cộng và ba số a; 3; 3b theo thứ tự lập thành cấp số nhân thì
bằng?
Ta có:
Ba số a; 5; 3b theo thứ tự lập thành cấp số cộng
=> a + 3b = 5.2
=> a = 10 – 3b
Ba số a; 3; 3b theo thứ tự lập thành cấp số nhân
=> a.3b = 32
=> ab = 3
Cho cấp số nhân
có tổng n số hạng đầu tiên là
. Tìm số hạng thứ 5 của cấp số nhân đã cho.
Mặt khác
Cho cấp số cộng
. Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
Một cấp số nhân có 6 số hạng, số hạng đầu bằng 2 và số hạng thứ sáu bằng 486. Tìm công bội q của cấp số nhân đã cho.
Ta có:
Cấp số nhân có số hạng đầu bằng 2 và số hạng thứ sáu bằng 486
=>
=>
=> =>
Vậy công bội q của cấp số nhân đã cho là q = 3
Trong các dãy số (un) cho bởi số hạng tổng quát un sau, dãy số nào tăng?
Ta xét đáp án Loại
Ta xét đáp án Loại
Ta xét đáp án Thỏa mãn!
Ta xét đáp án : Loại
Cho một cấp số nhân có 15 số hạng. Đẳng thức nào sau đây là sai?
Ta có:
Với
Đáp án sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b)
. Đúng||Sai
c) Cấp số cộng
thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b) . Đúng||Sai
c) Cấp số cộng thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
a) Xét dãy số đã cho ta có:
nên dãy số
không tăng không giảm.
b) đúng bằng chứng minh quy nạp.
c) Công sai d = 5 và số hạng đầu tiên bằng
Khi đó số hạng tổng quát của cấp số cộng là
d) Từ giả thiết ta có:
Suy ra tổng các số hạng của cấp số nhân đó là: .
Cho cấp số cộng (un) có
;
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Từ độ cao
của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng
độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 68,2
Từ độ cao của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng
độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 68,2
Theo đề, mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng độ cao mà quả bóng đạt trước đó và sau đó lại rơi xuống từ độ cao thứ hai. Do đó độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến:
Thời điểm chạm đất lần thứ nhất là .
Thời điểm chạm đất lần thứ 2 là .
Thời điểm chạm đất lần thứ 3 là .
Thời điểm chạm đất lần thứ 4 là .
Thời điểm chạm đất lần thứ là
.
Do đó độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất là:
.
Vì ,
,
, …,
,…, là một cấp số nhân lùi vô hạn, công bội
, nên ta có:
.
Vậy
Biết bốn số
theo thứ tự lập thành cấp số cộng. Giá trị của biểu thức
bằng
Ta có:
Một cấp số nhân có số hạng thứ hai bằng 4 và số hạng thứ sáu bằng 64. Khi đó, số hạng tổng quát của cấp số nhân đó có thể tính theo công thức nào dưới đây?
Ta có:
Cho cấp số cộng
thỏa mãn
. Mệnh đề nào sau đây đúng?
Ta có:
Khi đó:
Cho cấp số nhân (un) biết u1 = 1; u4 = 64. Tính công bội q của cấp số nhân đó.
Ta có:
Cho hai số −3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số đó tạo thành cấp số cộng có công sai d = 2. Tìm n.
Ta có:
Cấp số cộng có k số hạng gồm có và số hạng cuối
.
Khi đó:
Do đó
Trong các phát biểu sau, có bao nhiêu phát biểu đúng?
(1) Dãy số được xác định bởi
là một dãy bị chặn.
(2) Dãy số được xác định bởi an = n2 là một dãy giảm.
(3) Dãy số được xác định bởi an = 1 − n2 là một dãy số giảm và không bị chặn dưới.
(4) Dãy số được xác định bởi an = (−1)nn2 là một dãy không tăng, không giảm.
nên dãy số xác định bởi
là một dãy bị chặn.
an + 1 − an = (n+1)2 − n2 = 2n + 1 > 0, ∀n ∈ ℕ* nên dãy số xác định bởi an = n2 là dãy tăng.
an + 1 − an = (1−(n+1)2) − (1−n2) = 2n − 1 > 0, ∀n ∈ ℕ* nên dãy số xác định bởi an = 1 − n2 là dãy số giảm và không bị chặn dưới.
a1 = − 1 < a2 = 4 > a3 = − 9 nên dãy số xác định bởi an = (−1)nn2 là dãy không tăng không giảm.
Cho dãy số
, biết
. Số
là số hạng thứ mấy của dãy số?
Ta có:
Vậy số là số hạng thứ 7 của dãy số.
Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17; tổng của số hạng thứ hai và số hạng thứ tư bằng 14. Tìm công sai d của câp số cộng đã cho.
Ta có:
Cho dãy số
biết
với
. Mệnh đề nào sau đây đúng?
Ta có:
=> Dãy số bị chặn dưới bởi 0.
Mặt khác
Vậy bị chặn trên, do đó dãy
bị chặn.
Cho cấp số cộng
có số hạng đầu và công sai lần lượt là
. Số hạng thứ
bằng:
Ta có:
Cho cấp số nhân
thỏa mãn
. Tính ![]()
Đáp án: 64
Cho cấp số nhân thỏa mãn
. Tính
Đáp án: 64
Giả sử cấp số nhân có công bội là , khi đó theo bài ra ta có:
do
Ta có:
Cho dãy số
xác định bởi
. Khi đó
có giá trị bằng
Theo công thức truy hồi ta có
.
Cho dãy số có các số hạng đầu là 0,1; 0,001;0,0001; ... Số hạng tổng quát của dãy số có dạng?
Ta có:
Số hạng thứ 1 có 1 chữ số 0;
Số hạng thứ 2 có 2 chữ số 0;
Số hạng thứ 3 có 3 chữ số 0;
Suy ra có chữ số 0.
Công thức số hạng tổng quát của dãy số là:
Cho cấp số cộng
có
. Gọi
là tổng 5 số hạng đầu tiên của cấp số cộng đã cho. Mệnh đề nào sau đây đúng?
Ta có:
Và
Cho dãy số
biết
. Dãy số
bị chặn trên bởi số nào dưới đây?
Ta có:
Mặt khác
=> Dãy số bị chặn trên bởi số
.
Cho cấp số cộng
có
. Tìm công sai
của cấp số cộng?
Gọi d là công sai của cấp số cộng khi đó ta có:
Cho dãy số (un) xác định bởi
.
Số hạng thứ 2020 của dãy số đã cho là?
Do 0 < α < π nên
Vậy với mọi n ∈ ℕ*. Ta sẽ chứng minh bằng quy nạp.
Với n = 1 thì u1 = cosα (đúng).
Giả sử với n = k ∈ ℕ* ta có .
Ta chứng minh
Thật vậy,
Từ đó ta có
Viết ba số hạng xen giữa các số 2 và 22 để được một cấp số cộng có năm số hạng.
Khi viết xen giữa 2 và 22 ba số hạng ta được một cấp số cộng có 5 số hạng có:
u1 = 2; u5 = 22. Ta cần tìm u2; u3; u4
Ta có:
Biết các số
theo thứ tự lập thành một cấp số cộng với n > 3. Tìm n
Ta có:
Các số theo thứ tự lập thành một cấp số cộng với n > 3
Xác định bốn số hạng đầu của một dãy số
xác định bởi công thức
với
?
Ta có:
Cho dãy số (un) với un = 2n + 1. Số hạng thứ 2019 của dãy là?
Ta có u2019 = 2.2019 + 1 = 4039
Cho tổng S(n) = 2 + 4 + 6 + … + 2n. Khi đó S30 bằng?
Ta có S30 = 2 + 4 + 6 + … + 60
⇒ 2S30 = (2+60) + (4+58) + (6+56) + … + (60+2) (có 30 ngoặc đơn)
Một cấp số nhân có 6 số hạng với công bội bằng 2 và tổng số các số hạng bằng 189. Tìm số hạng cuối
của cấp số nhân đã cho.
Theo giả thiết ta có:
Trong các dãy số
cho bởi số hạng tổng quát
sau, dãy số nào là một cấp số nhân?
Xét dãy số ta có:
=> Dãy số là một cấp số nhân
Trong các dãy số dưới đây, dãy số nào là dãy số giảm?
Xét phương án , ta có:
nên dãy này là dãy số tăng.
Xét phương án , ta có:
nên dãy này là dãy số giảm.
Xét phương án , ta có:
nên dãy này là dãy số tăng.
Xét phương án , ta có:
nên dãy này là dãy số tăng.
Vậy dãy số là dãy số giảm.
Cho cấp số nhân (un) có
. Tìm số hạng đầu tiên của dãy biết số đó không lớn hơn 100.
Ta có:
Cho dãy số
là một cấp số nhân có số hạng đầu
và công bội
. Đẳng thức nào sau đây đúng?
Cho dãy số là một cấp số nhân có số hạng đầu
và công bội
.
Theo công thức số hạng tổng quát ta có ,
.
Cho tam giác ABC có độ dài các cạnh là a, b, c theo thứ tự lập thành một cấp số cộng. Biết
. Tính giá trị x + y.
Ta có:
=> x + y = 4
Cho cấp số cộng (Un) có
. Giá trị của
bằng:
Ta có:
Trong các dãy số sau, dãy số nào không phải cấp số nhân?
Xét đáp án có
=> Dãy số không phải là cấp số nhân.