Cho cấp số nhân (un) có u1 = -1; u6 = -0,00001. Khi đó công bội q và số hạng tổng quát là:
Ta có:
Cho cấp số nhân (un) có u1 = -1; u6 = -0,00001. Khi đó công bội q và số hạng tổng quát là:
Ta có:
Cho cấp số nhân (un) có u1 = 1; q = 2. Hỏi số 1024 là số hạng thứ mấy?
Ta có:
Một cấp số nhân có 6 số hạng với công bội bằng 2 và tổng số các số hạng bằng 189. Tìm số hạng cuối
của cấp số nhân đã cho.
Theo giả thiết ta có:
Một người xếp chồng những khúc gỗ có kích thước như nhau thành
hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới
khúc gỗ và hàng trên cùng có
khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?
Đáp án: 55
Một người xếp chồng những khúc gỗ có kích thước như nhau thành hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới
khúc gỗ và hàng trên cùng có
khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?
Đáp án: 55
Mỗi hàng liền phía trên ít hơn hàng dưới khúc gỗ và hàng trên cùng có 1 khúc gỗ nên ta có đây là tổng của một cấp số cộng có:
.
Khi đó, tổng số khúc gỗ là:
(khúc gỗ).
Cho dãy số (un) biết
.
Mệnh đề nào sau đây đúng?
Dự đoán dãy giảm sau đó chứng minh un + 1 − un < 0 bằng quy nạp toán học.
Từ giả thiết suy ra un > 0, ∀n ∈ ℕ*.
Ta có
Giả sử: uk + 1 − uk < 0, ∀k ≥ 1
Xét hiệu
Theo nguyên lí quy nạp suy ra un + 1 − un < 0, ∀n ∈ ℕ*
Vậy dãy số (un) là dãy số giảm.
Trong các dãy số sau, dãy số nào bị chặn trên?
Ta có:
.
Vậy đây là dãy số bị chặn trên.
Giá tiền công khoan giếng ở cơ sở A được tính như sau: Giá của mét khoan đầu tiên là 8000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 500 đồng so với giá của mét khoan ngay trước nó. Vậy muốn khoan 20 mét thì mất bao nhiêu đồng?
Theo bài ra ta có:
Giá các mét khoan lập thành một cấp số cộng với công sai d = 500, số hạng đầu là 8000.
=>
=> Số tiền phải trả khi khoan giếng sâu 20m là:
Vậy muốn khoan 20 mét thì mất 255000 đồng.
Cho cấp số nhân
có
. Tính tổng 10 số hạng đầu tiên của cấp số nhân đã cho.
Ta có:
Tính tổng ![]()
Ta có:
Biết các số
theo thứ tự lập thành một cấp số cộng với n > 3. Tìm n
Ta có:
Các số theo thứ tự lập thành một cấp số cộng với n > 3
Cho dãy số có các số hạng đầu là 0,1; 0,001;0,0001; ... Số hạng tổng quát của dãy số có dạng?
Ta có:
Số hạng thứ 1 có 1 chữ số 0;
Số hạng thứ 2 có 2 chữ số 0;
Số hạng thứ 3 có 3 chữ số 0;
Suy ra có chữ số 0.
Công thức số hạng tổng quát của dãy số là:
Cho cấp số nhân (un) biết u1 = 12;
. Tính ![]()
Gọi q là công bội của cấp số nhân (un)
Ta có:
Cho dãy số
xác định bởi công thức
. Khẳng định nào sau đây sai?
Ta có:
Với ta thấy
Suy ra dãy số đã cho là dãy số giảm.
Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17; tổng của số hạng thứ hai và số hạng thứ tư bằng 14. Tìm công sai d của câp số cộng đã cho.
Ta có:
Cho cấp số nhân
với công bội
. Đặt
. Khẳng định nào sau đây đúng?
Theo công thức tính tổng số hạng đầu của CSN ta được
.
Cho dãy số -7; h; 11; k. Với giá trị nào của h, k thì dãy số đã cho lập thành một cấp số cộng?
Bốn số hạng 7; h; 11; k theo thứ tự là u1; u2; u3; u4 lập thành một cấp số cộng nên
Dãy số nào sau đây không phải là cấp số cộng?
Chỉ cần tồn tại hai cặp số hạng liên tiếp của dãy số có hiệu khác nhau: thì kết luận ngay dãy số đó không phải là cấp số cộng.
Xét đáp án: loại
Xét đáp án: Chọn
Xét đáp án: Loại
Xét đáp án: loại
Cho cấp số cộng có số hạng đầu
công sai
. Năm số hạng liên tiếp đầu tiên của cấp số này là:
Ta có:
Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?
Xét dãy số ta có:
d không cố định => Dãy số không phải là một cấp số cộng.
Một cấp số cộng gồm
số hạng. Hiệu số hạng đầu và số hạng cuối bằng
. Tìm công sai
của cấp số cộng đã cho?
Gọi năm số hạng của cấp số cộng đã cho là:
Theo đề bài ta có:
Vậy công sai của cấp số cộng đã cho là
Tìm
để
theo thứ tự đó lập thành một cấp số nhân.
Cấp số nhân theo thứ tự là
ta có:
Biết ba số
lập thành một cấp số nhân. Tính tổng các giá trị của m thỏa mãn?
Để ba số lập thành một cấp số nhân thì
Vậy tổng các giá trị của m là
Cho cấp số nhân
với số hạng đầu
và công bội
. Với
, khẳng định nào sau đây đúng?
Do là cấp số nhân nên
.
Thêm hai số thực dương x và y vào giữa hai số 5 và 320 để được bốn số
theo thứ tự đó lập thành cấp số nhận. Khẳng định nào sau đây là đúng?
Ta có:
Các số hạng lập thành cấp số nhân
Cho cấp số cộng
có
. Số 100 là số hạng thứ mấy của cấp số cộng?
Ta có:
Tổng
là:
Ta có:
Xét cấp số cộng (un) có:
Số hạng đầu là u1 = 199
Công sai d = u2 – u1 = 195 – 199 = -4
Ta có:
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Cho cấp số cộng
. Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
Với mỗi số nguyên dương, kí hiệu un = 5.23n − 2 + 33n − 1
Một học sinh chứng minh un luôn chia hết cho 19 như sau:
Bước 1: Khi n = 1, ta có u1 = 5.21 + 32 = 19 ⇒ u1⋮19
Bước 2: Giả sử uk = 5.23k − 2 + 33k + 1 chia hết cho 19 với k ≥ 1.
Khi đó ta có uk + 1 = 5.23k + 1 + 33k + 2 = 8(5.23k − 2+33k − 1) + 19.33k − 1
Bước 3: Vì 5.23k − 2 + 33k − 1 và 19.33k − 1 chia hết cho 19 nên uk + 1 chia hết cho 19, ∀n ∈ ℕ*
Vậy un chia hết cho 19, ∀n ∈ ℕ*
Lập luận trên đúng hay sai? Nếu sai thì bắt đầu từ bước nào?
Lập luận hoàn toàn đúng!
Dãy số nào sau đây không phải là một cấp số cộng?
Xét đáp án A:
=> Loại đáp án A
Xét đáp án B:
=> Loại đáp án B
Xét đáp án C:
=> Chọn đáp án C
Xét đáp án D:
=> Loại đáp án D
Cho dãy số (un) với
, biết
. Hỏi uk là số hạng thứ mấy của dãy số đã cho?
Ta có:
(do k∈ℕ*)
Cho dãy số
biết
. Số hạng có ba chữ số lớn nhất của dãy là:
Tìm số hạng tổng quát của dãy số
Dự đoán
Ta chứng minh theo phương pháp quy nạp
Với ta có:
Giả sử , khi đó ta có:
Vậy công thức tổng quát được chứng minh theo nguyên lí quy nạp.
Ta có:
Mà
Nên ta chọn
Vậy là số hạng cần tìm.
Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên n ≥ p ( p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề A(n) đúng với n = k. Khẳng định nào sau đây là đúng?
Mệnh đề A(n) đúng với n = k với k ≥ p.
Cho khai triển
. Tìm m để tổng các hệ số của khai triển bằng 0.
Tổng các hệ số của khai triển là giá trị của biểu thức tại
Vậy tổng các hệ số của khai triển là:
Để tổng các hệ số khai triển bằng 0 thì
Cho dãy số
với mọi
. Khi đó số hạng thứ 5 của dãy là:
Ta có:
Khi đó số hạng thứ 5 của dãy là 48
Cho dãy số (un), biết un = n ⋅ cosn. Trong các phát biểu sau, có bao nhiêu phát biểu đúng?
(1) (un) là dãy số tăng.
(2) (un) là dãy số bị chặn dưới.
(3) ∀n ∈ ℕ* : un ≤ n.
Vì cos(n) ≤ 1 nên un < n. Phát biểu (3) đúng.
Dãy không tăng, không giảm và không bị chặn dưới.
Vậy có 1 phát biểu đúng trong 3 phát biểu đã cho.
Cho dãy số
có số hạng tổng quát
. Khẳng định nào sau đây sai?
Ta có:
Vậy dãy số đã cho không tăng không giảm.
Khẳng định sai là: “Dãy số là dãy giảm”
Từ hình vuông đầu tiên có cạnh bằng 1 (đơn vị độ dải), nối các trung điểm của bốn cạnh để có hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh của hình vuông thứ hai để được hình vuông thứ ba. Cứ tiếp tục làm như thế, nhận được một dãy hình vuông (xem Hình 5).

Kí hiệu
là chu vi của hình vuông thứ
và
là tổng chu vi của
hình vuông đầu tiên. Viết công thức tính
và
và tìm lim
(giới hạn này nếu có được gọi là tổng chu vi của các hình vuông).
Đáp án: 13,66
Từ hình vuông đầu tiên có cạnh bằng 1 (đơn vị độ dải), nối các trung điểm của bốn cạnh để có hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh của hình vuông thứ hai để được hình vuông thứ ba. Cứ tiếp tục làm như thế, nhận được một dãy hình vuông (xem Hình 5).
Kí hiệu là chu vi của hình vuông thứ
và
là tổng chu vi của
hình vuông đầu tiên. Viết công thức tính
và
và tìm lim
(giới hạn này nếu có được gọi là tổng chu vi của các hình vuông).
Đáp án: 13,66
Ta có:
Trong các dãy số sau, dãy số nào không phải cấp số nhân?
Xét đáp án có
=> Dãy số không phải là cấp số nhân.
Khi ký hợp đồng dài hạn 10 năm với các công nhân tuyển dụng, công ty X, đề xuất phương án trả lương như sau: Người lao động sẽ nhận 7 triệu ở quý đầu tiên (một quý là ba tháng), và kể từ quí làm việc thứ hai mức lương sẽ tăng 500.000 đồng mỗi quý. Như vậy sau 10 năm làm việc, hết hạn hợp đồng, tổng số tiền lương người lao động đã nhận được là bao nhiêu?
Ta có:
Số tiền nhận được hàng quý là một cấp số cộng hữu hạn với số hạng đầu tiên là: (triệu), công sai là 0,5 (triệu).
Trong 10 năm sẽ có 40 quý nên cấp số cộng trên có 40 phần tử.
Từ đó ta có
(triệu đồng)