Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Với giá trị nào của x;y thì các số hạng - 2;x; - 18;y theo thứ tự đó lập thành cấp số nhân?

    Ta có: các số hạng - 2;x; -
18;ylập thành cấp số nhân

    \Rightarrow \left\{ \begin{matrix}\dfrac{x}{- 2} = \dfrac{- 18}{x} \\\dfrac{- 18}{x} = \dfrac{y}{- 18} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \pm 6 \\y = \dfrac{324}{x} = \pm 54 \\\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(x;y) = (6;54) \\
(x;y) = ( - 6;54) \\
\end{matrix} ight.

  • Câu 2: Vận dụng cao

    Cho dãy số (un), biết \left\{ \begin{matrix}
u = \sqrt{2} \\
u_{n + 1} = \sqrt{2 + u_{n}},n \in \mathbb{N}^{*} \\
\end{matrix} ight.. Khẳng định nào sau đây đúng về dãy số (un) ?

    Ta có u_{1} = \sqrt{2};u_{2} = \sqrt{2 +\sqrt{2}};u_{3} = \sqrt{2 + \sqrt{2 + \sqrt{2}}};

    \ldots;u_{n} = \sqrt{2+ \sqrt{2} + \sqrt{2 + \ldots + \sqrt{2}}}

    Do un + 1 − un > 0 nên (un) là dãy số tăng.

    Lại có \sqrt{2} < u_{n} \leq 2 suy ra dãy số bị chặn.

  • Câu 3: Thông hiểu

    Số hạng âm trong dãy số x1; x2; x3; …; xn với x_{n} = C_{n + 5}^{4} - \frac{143P_{n +
5}}{96P_{n + 3}} là?

    Ta có c_{n + 5}^{4} = \frac{(n + 5)(n +4)(n + 3)(n + 2)}{24},

    \frac{143P_{n + 5}}{96P_{n + 3}} = \frac{143(n +5)(n + 4)}{96}

    x_{n} = C_{n + 5}^{4} - \frac{143P_{n +
5}}{96P_{n + 3}}

    = \frac{(n + 5)(n + 4)(2n + 17)(2n -
7)}{96} > 0,\forall n \geq 4,n \in \mathbb{N}^{*}

    Vậy các số hạng âm là x1; x2; x3.

  • Câu 4: Nhận biết

    Một cấp số nhân có số hạng thứ hai bằng 4 và số hạng thứ sáu bằng 64. Khi đó, số hạng tổng quát của cấp số nhân đó có thể tính theo công thức nào dưới đây?

    Ta có: \left\{ \begin{matrix}
u_{2} = 4 \\
u_{6} = 64 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1}q = 4 \\
u_{1}q^{5} = 64 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
q = 2 \\
\end{matrix} ight.

    \Rightarrow u_{n} = u_{1}.q^{n - 1} =
2.2^{n - 1} = 2^{n}

  • Câu 5: Thông hiểu

    Cho cấp số cộng (Un) có u1 = -2 và công sai d = 3. Tìm số hạng u10

    Ta có: {u_{10}} = {u_1} + \left( {10 - 1} ight)d = {u_{10}} =  - 2 + 9.3 = 25

  • Câu 6: Thông hiểu

    Cho dãy số (u_n) với \begin{matrix}  {u_n} = \dfrac{{\sin \left( {\dfrac{{n\pi }}{3}} ight)}}{{n + 1}} \hfill \\\end{matrix} với mọi n\geq 1. Khi đó số hạng u_{3n} của dãy (u_{n}) là:

    Ta có:

    \begin{matrix}  {u_n} = \dfrac{{\sin \left( {\dfrac{{n\pi }}{3}} ight)}}{{n + 1}} \hfill \\   \Rightarrow {u_{3n}} = \dfrac{{\sin \left( {\dfrac{{3n\pi }}{3}} ight)}}{{3n + 1}} = \dfrac{{\sin \left( {n\pi } ight)}}{{3n + 1}} = 0 \hfill \\ \end{matrix}

  • Câu 7: Vận dụng cao

    Tìm m để phương trình: {x^4} - \left( {3m + 5} ight){x^2} + {\left( {m + 1} ight)^2} = 0 có bốn nghiệm lập thành một cấp số cộng?

    Giả sử bốn nghiệm phân biệt của phương trình {x_1};{x_2};{x_3};{x_4}

    Đặt {x^2} = y \geqslant 0, ta được phương trình:

    {y^2} - \left( {3m + 5} ight)y + {\left( {m + 1} ight)^2} = 0\left( * ight)

    Ta phải tìm m sao cho (*) có hai nghiệm dương phân biệt 0 < {y_1} < {y_2}

    Khi đó (*) có 4 nghiệm là {x_1} =  - \sqrt {{y_2}} ,{x_2} =  - \sqrt {{y_1}} ;{x_3} = \sqrt {{y_1}} ;{x_4} = \sqrt {{y_2}}

    Theo đề bài thì bốn nghiệm lập thành một cấp số cộng nên

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_3} + {x_1} = 2{x_2}} \\   {{x_4} + {x_3} = 2{x_3}} \end{array}} ight. \Leftrightarrow \sqrt {{y_1}}  - \sqrt {{y_2}}  = 2\sqrt {{y_1}}  \hfill \\   \Rightarrow 3\sqrt {{y_1}}  = \sqrt {{y_2}}  \Rightarrow 9{y_1} = {y_2}\left( * ight) \hfill \\ \end{matrix}

    Áp dụng hệ thức Vi – et cho phương trình (*) ta có hệ:

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {\Delta  = {{\left( {3m + 5} ight)}^2} - 4{{\left( {m + 1} ight)}^2} > 0} \\   {S = {y_1} + {y_2} = 10{y_1} = 3m + 5} \\   {P = {y_1}{y_2} = 9{y_1}^2 = {{\left( {m + 1} ight)}^2}} \end{array}} ight. \Leftrightarrow m = 5

  • Câu 8: Thông hiểu

    Cho cấp số nhân (un) có u1 = 2 và u2 = -8. Mệnh đề nào sau đây đúng?

     Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {{u_2} =  - 8 = {u_1}.q = 2q} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {q =  - 4} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{S_5} = {u_1}.\dfrac{{1 - {q^5}}}{{1 - q}} = 2.\dfrac{{1 - {{\left( { - 4} ight)}^5}}}{{1 + 4}} = 410} \\   {{S_6} = {u_1}.\dfrac{{1 - {q^6}}}{{1 - q}} = 2.\dfrac{{1 - {{\left( { - 4} ight)}^6}}}{{1 + 4}} =  - 1638} \\   {{u_5} = {u_1}{q^4} = 2.{{\left( { - 4} ight)}^4} = 512} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 9: Nhận biết

    Với giá trị x nào dưới đây thì các số - 4;x; - 9 theo thứ tự đó lập thành một cấp số nhân?

    Ta có: - 4;x; - 9 lập thành một cấp số nhân

    \Rightarrow x^{2} = ( - 4).( - 9) =
36

    \Rightarrow x = \pm 6

  • Câu 10: Vận dụng

    Một cấp số nhân có 5 số hạng, công bội q bằng \frac{1}{4} số hạng thứ nhất, tổng hai số hạng đầu bằng 24. Xác định cấp số nhân?

    Theo bài ra ta có:

    u_{1} + u_{2} = u_{1} + u_{1}.q =
24

    \Rightarrow u_{1} +
\frac{1}{4}{u_{1}}^{2} = 24

    \Rightarrow \left\lbrack \begin{matrix}
u_{1} = - 12;q = - 3 \\
u_{1} = 8;q = 2 \\
\end{matrix} ight.

  • Câu 11: Nhận biết

    Cho dãy số (un) với u_{n} = \frac{an^{2}}{n + 1} ( a là hằng số). Hỏi un + 1 là số hạng nào sau đây?

    Ta có u_{n + 1} = \frac{a \cdot (n +
1)^{2}}{(n + 1) + 1} = \frac{a(n + 1)^{2}}{n + 2}

  • Câu 12: Thông hiểu

    Tìm x để 2;8;x;128 theo thứ tự đó lập thành một cấp số nhân.

    Cấp số nhân 2;8;x;128 theo thứ tự là u_{1};u_{2};u_{3};u_{4} ta có:

    \left\{ \begin{matrix}\dfrac{u_{2}}{u_{1}} = \dfrac{u_{3}}{u_{2}} \\\dfrac{u_{3}}{u_{2}} = \dfrac{u_{4}}{u_{3}} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}\dfrac{8}{2} = \dfrac{x}{8} \\\dfrac{128}{x} = \dfrac{x}{8} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 32 \\x^{2} = 1024 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 32 \\
\left\lbrack \begin{matrix}
x = 32 \\
x = - 32 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Rightarrow x = 32

  • Câu 13: Nhận biết

    Dãy số nào sau đây không phải là một cấp số cộng?

    Xét đáp án A: - \frac{2}{3}; - \frac{1}{3};0;\frac{1}{3};\frac{2}{3};1;\frac{4}{3};....

    {u_2} - {u_1} = {u_3} - {u_2} = {u_4} - {u_3} = ... = \frac{1}{3}

    => Loại đáp án A 

    Xét đáp án B: 15\sqrt 2 ;12\sqrt 2 ;9\sqrt 2 ;6\sqrt 2 ;...

    {u_2} - {u_1} = {u_3} - {u_2} = {u_4} - {u_3} = ... = 3\sqrt 2

    => Loại đáp án B

    Xét đáp án C: \frac{4}{5};1;\frac{7}{5};\frac{9}{5};\frac{{11}}{5};...

    {u_2} - {u_1} = \frac{1}{5} e {u_3} - {u_2} = \frac{2}{5}

    => Chọn đáp án C

    Xét đáp án D: \frac{1}{{\sqrt 3 }};\frac{{2\sqrt 3 }}{3};\sqrt 3 ;\frac{{4\sqrt 3 }}{3};\frac{5}{{\sqrt 3 }};...

    {u_2} - {u_1} = {u_3} - {u_2} = {u_4} - {u_3} = ... = \frac{{\sqrt 3 }}{3}

    => Loại đáp án D

  • Câu 14: Nhận biết

    Cho cấp số nhân có số hạng thứ bảy là \frac{1}{2} và công bội \frac{1}{4}. Hỏi số hạng đầu tiên của cấp số nhân bằng bao nhiêu?

    Ta có: \left\{ \begin{matrix}u_{7} = \dfrac{1}{2} = u_{1}.q^{6} \\q = \dfrac{1}{4} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 2048 \\q = \dfrac{1}{4} \\\end{matrix} ight.

  • Câu 15: Thông hiểu

    Cho dãy số có các số hạng đầu là 0,1; 0,001;0,0001; ... Số hạng tổng quát của dãy số có dạng?

    Ta có:

    Số hạng thứ 1 có 1 chữ số 0;

    Số hạng thứ 2 có 2 chữ số 0;

    Số hạng thứ 3 có 3 chữ số 0;

    Suy ra có chữ số 0.

    Công thức số hạng tổng quát của dãy số là: u_n=\underbrace{0,00...01}_{\text{n chữ số 0}}

  • Câu 16: Nhận biết

    Cho S_{n} =
\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \ldots + \frac{1}{n(n +
1)} với n ∈ ℕ*. Mệnh đề nào sau đây đúng?

    Ta có S_{1} = \frac{1}{2},S_{2} =
\frac{2}{3},S_{3} = \frac{3}{4} \Rightarrow dự đoán S_{n} = \frac{n}{n + 1}

    Với n = 1, ta được S_{1} = \frac{1}{1.2} = \frac{1}{1 + 1} (đúng)

    Giả sử mệnh đề đúng khi n = k (k≥1), tức là \frac{1}{1.2} + \frac{1}{2.3} + \ldots +
\frac{1}{k(k + 1)} = \frac{k}{k + 1}

    Ta có \frac{1}{1.2} + \frac{1}{2.3} +
\ldots + \frac{1}{k(k + 1)} = \frac{k}{k + 1}

    \begin{matrix}
& \Leftrightarrow \frac{1}{1.2} + \frac{1}{2.3} + \ldots +
\frac{1}{k(k + 1)} + \frac{1}{(k + 1)(k + 2)} = \frac{k}{k + 1} +
\frac{1}{(k + 1)(k + 2)} \\
& \\
& \\
\end{matrix}

    \Leftrightarrow \frac{1}{1.2} +
\frac{1}{2.3} + \ldots + \frac{1}{k(k + 1)} + \frac{1}{(k + 1)(k + 2)} =
\frac{k^{2} + 2k + 1}{(k + 1)(k + 2)}

    \Leftrightarrow \frac{1}{1.2} +
\frac{1}{2.3} + \ldots + \frac{1}{k(k + 1)} + \frac{1}{(k + 1)(k + 2)} =
\frac{k + 1}{k + 2}

    Suy ra mệnh đề đúng với n = k + 1.

  • Câu 17: Thông hiểu

    Cho dãy số \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_{n + 1}} = {u_n} + n} \end{array}} ight.. Tìm số hạng thứ 5 của dãy số:

    Ta có:

    \begin{matrix}  {u_2} = {u_1} + 1 = 5 \hfill \\  {u_3} = {u_2} + 2 = 7 \hfill \\  {u_4} = {u_3} + 3 = 10 \hfill \\ \end{matrix}

    Do đó số hạng thứ 5 của dãy số là Sử dụng công thức: {u_5} = {u_4} + 4 = 14

  • Câu 18: Vận dụng

    Cho dãy số (un) biết un = 3n + 6. Mệnh đề nào sau đây đúng?

    Ta có un = 3n + 6 ⇒ un + 1 = 3(n+1) + 6 = 3n + 9

    Xét hiệu un + 1 − un = (3n+9) − (3n+6) = 3 > 0, ∀n ∈ N*

    Vậy (un) là dãy số tăng.

  • Câu 19: Thông hiểu

    Hai số hạng đầu của một cấp số nhân là 2x + 14x^{2} - 1. Số hạng thứ ba của cấp số nhân là:

    Công bội của cấp số nhân là: a =
\frac{4x^{2} - 1}{2x + 1} = 2x - 1

    Vậy số hạng thứ ba của cấp số nhân là:

    \left( 4x^{2} - 1 ight)(2x - 1) =
8x^{3} - 4x^{2} - 2x + 1

  • Câu 20: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight). Hãy chọn hệ thức đúng trong các hệ thức sau:

    Xét đáp án \dfrac{u_{10} + u_{20}}{2} =u_{5} + u_{10}

    \left\{ \begin{matrix}\dfrac{u_{10} + u_{20}}{2} = \dfrac{u_{1} + 9d + u_{1} + 29d}{2} \\u_{5} + u_{10} = u_{1} + 4d + u_{1} + 9d \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{u_{10} + u_{20}}{2} = u_{1} + 19d \\u_{5} + u_{10} = 2u_{1} + 13d \\\end{matrix} ight.

    Xét đáp án u_{90} + u_{210} =
2u_{150}

    \left\{ \begin{matrix}u_{90} + u_{210} = 2u_{1} + 298d \\2u_{150} = 2\left( u_{1} + 149d ight) \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{90} + u_{210} = 2\left( u_{1} + 149d ight) \\2u_{150} = 2\left( u_{1} + 149d ight) \\\end{matrix} ight.

    Vậy hệ thức đúng là u_{90} + u_{210} =
2u_{150}

  • Câu 21: Vận dụng cao

    Cho cấp số nhân \left( u_{n} ight) có các số hạng đều dương và \left\{ \begin{matrix}u_{1} + u_{2} + u_{3} + \ldots + u_{n} = 2020 \\\dfrac{1}{u_{1}} + \dfrac{1}{u_{2}} + \dfrac{1}{u_{3}} + \ldots +\dfrac{1}{u_{n}} = 2021 \\\end{matrix} ight. Giá trị của P = u_{1} \cdot u_{2} \cdot u_{3}\ldots\ldots
u_{n} là:

    Ta có P = u_{1} \cdot \left( u_{1} \cdot q ight)\ldots..\left( u_{1} \cdot q^{n - 1} ight)

    = u_{1}^{n} \cdot q^{1 + 2 + 3 + \ldots + (n - 1)}

    = u_{1}^{n} \cdot q^{\frac{n(n -1)}{2}} = \left( u_{1} \cdot q^{\frac{n - 1}{2}}ight)^{n}

    Theo giả thiết, ta có:

    A = u_{1} + u_{2} +
u_{3} + \ldots + u_{n} = u_{1} \cdot \frac{q^{n} - 1}{q -
1}
    B = \frac{1}{u_{1}} + \frac{1}{u_{2}} +
\frac{1}{u_{3}} + \ldots + \frac{1}{u_{n}}

    = \frac{1}{u_{1}} \cdot \left( 1 +
\frac{1}{q} + \frac{1}{q^{2}} + \ldots + \frac{1}{q^{n - 1}}
ight)

    = \dfrac{1}{u_{1}} \cdot \dfrac{1 -\dfrac{1}{q^{n}}}{1 - \dfrac{1}{q}} = \dfrac{1}{u_{1}} \cdot \dfrac{q^{n} -1}{q - 1} \cdot \dfrac{1}{q^{n - 1}}.
    Suy ra \frac{A}{B} = u_{1}^{2} \cdot q^{n -
1} = \left( u_{1} \cdot q^{\frac{n - 1}{2}} ight)^{2}. Vậy P = \sqrt{\left( \frac{A}{B} ight)^{n}} =
\sqrt{\left( \frac{2020}{2021} ight)^{n}}.

  • Câu 22: Thông hiểu

    Cho dãy (un) xác định bởi u_{1} = \frac{1}{2}un = un − 1 + 2n với mọi n ≥ 2. Số hạng u50 bằng?

    Ta có

    \left\{ \begin{matrix}
u_{1} = \frac{1}{2} \\
u_{2} = u_{1} + 2 \\
u_{3} = u_{2} + 4 \\
\ldots \\
u_{49} = u_{48} + 2.49 \\
u_{50} = u_{49} + 2.50 \\
\end{matrix} ight.

    Cộng vế với vế các đẳng thức trên, ta được:

    u_{50} = \frac{1}{2} + 2(2 + 3 + \ldots +
50) = \frac{1}{2} + 2(25.51 - 1) = 2548,5.

  • Câu 23: Thông hiểu

    Tìm x và y để dãy số 9;x; - 1;y là một cấp số cộng?

    Để dãy số 9;x; - 1;y là một cấp số cộng thì \left\{ \begin{matrix}x = \dfrac{9 - 1}{2} \\- 1 = \dfrac{x + y}{2} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = 4 \\y = - 6 \\\end{matrix} ight.

  • Câu 24: Thông hiểu

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + n^{3},\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Số nguyên dương n nhỏ nhất sao cho \sqrt{u_{n} - 1} \geq 2039190 là?

    Ta có: \left\{ \begin{matrix}
\begin{matrix}
\begin{matrix}
\begin{matrix}
u_{1} = 1 \\
u_{2} = u_{1} + 1^{3} \\
\end{matrix} \\
u_{3} = u_{2} + 2^{3} \\
\end{matrix} \\
\ldots \\
\end{matrix} \\
u_{n + 1} = u_{n} + n^{3} \\
\end{matrix} ight.

     =  > un = 1 + 13 + 23 + … + (n−1)3

    Ta lại có 13 + 23 + … + (n−1)3

    = (1 + 2 + 3 + \ldots + n - 1)^{2} =
\left( \frac{n(n - 1)}{2} ight)^{2}

    Suy ra u_{n} = 1 + \left( \frac{n(n -
1)}{2} ight)^{2}

    Theo giả thiết ta có \sqrt{u_{n} - 1} \geq2039190 \Leftrightarrow \frac{n(n - 1)}{2} \geq 2039190

    \Leftrightarrow n(n - 1) \geq 4078380 \Leftrightarrow \left\lbrack \begin{matrix}n \geq 2020 \ \leq - 2019 \\\end{matrix} ight.

    n là số nguyên dương nhỏ nhất nên n = 2020.

  • Câu 25: Thông hiểu

    Một rạp hát có 30 dãy ghế, dãy đầu tiên có 25 ghế. Mỗi dãy sau có hơn dãy trước 3 ghế. Hỏi rạp hát có tất cả bao nhiêu ghế?

    Số ghế của mỗi dãy (bắt đầu từ dãy đầu tiên) theo thứ tự đó lập thành một cấp số cộng có 30 số hạng có công sai d= 3;u_{1} = 25

    Tổng số ghế là

    S_{30} = u_{1} + u_{2} + ... +u_{30}

    = 30u_{1} + \frac{30.29}{2}.d =2055

  • Câu 26: Nhận biết

    Viết ba số hạng xen giữa các số 2 và 22 để được một cấp số cộng có năm số hạng.

    Khi viết xen giữa 2 và 22 ba số hạng ta được một cấp số cộng có 5 số hạng có:

    u1 = 2; u5 = 22. Ta cần tìm u2; u3; u4

    Ta có:

    \begin{matrix}  {u_5} = {u_1} + 4d \Rightarrow d = \dfrac{{{u_5} - {u_1}}}{4} = \dfrac{{22 - 2}}{4} = 5 \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_2} = {u_1} + d = 7} \\   {{u_3} = {u_1} + 2d = 12} \\   {{u_4} = {u_1} + 3d = 17} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 27: Nhận biết

    Tìm số hạng thứ 11 của cấp số cộng có số hạng đầu bằng 3 và công sai d = −2?

    Ta có: u_{11} = u_{1} + 10d = -
17

  • Câu 28: Vận dụng

    Cho cấp số nhân có các số hạng lần lượt là \frac{1}{4};\frac{1}{2};1;...;2048. Tính tổng S của tất cả các số hạng của cấp số nhân đã cho.

    Cấp số nhân đã cho có \left\{\begin{matrix}u_{1} = \dfrac{1}{4} \\q = 2 \\\end{matrix} ight.

    \Rightarrow 2048 = 2^{11} = u_{1}.q^{n -1} = \frac{1}{2}.2^{n - 1} = 2^{n - 2}

    \Rightarrow n = 13

    => S = 2047,75

  • Câu 29: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight)u_{1} = - 1;q = - \frac{1}{10}. Số \frac{1}{10^{103}} là số hạng thứ mấy của cấp số nhân đã cho?

    Ta có:

    u_{n} = \frac{1}{10^{103}}

    \Rightarrow u_{1}.q^{n - 1} =
\frac{1}{10^{103}}

    \Rightarrow ( - 1)\left( - \frac{1}{10}
ight)^{n - 1} = 6561

    Mà n là số chẵn và n - 1 = 103

    \Rightarrow n = 104

  • Câu 30: Vận dụng

    Nếu \frac{1}{b +c};\frac{1}{c + a};\frac{1}{a + b} theo thứ tự lập thành cấp số cộng thì dãy số nào sau đây lập thành một cấp số cộng.

    Theo giả thiết ta có:

    \frac{2}{c + a} = \frac{1}{b + c} +\frac{1}{a + b}

    \Rightarrow \frac{c + a}{2} = \frac{(b +c)(b + a)}{2b + a + c}

    \Leftrightarrow (c + a)^{2} + 2b.(a + c)= 2\left( b^{2} + ab + bc + ac ight)

    \Leftrightarrow a^{2} + c^{2} + 2ac +2bc + 2bc = 2\left( b^{2} + ab + bc + ac ight)

    \Leftrightarrow a^{2} + c^{2} =2b^{2}

  • Câu 31: Nhận biết

    Cho dãy số -7; h; 11; k. Với giá trị nào của h, k thì dãy số đã cho lập thành một cấp số cộng?

     Bốn số hạng 7; h; 11; k theo thứ tự là u1; u2; u3; u4 lập thành một cấp số cộng nên

    \begin{matrix}   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_4} - {u_3} = {u_3} - {u_2}} \\   {{u_4} - {u_3} = {u_2} - {u_1}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {k - 11 = 11 - h} \\   {k - 11 = h + 7} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {h + k = 22} \\   {h - k =  - 18} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {h = 2} \\   {k = 20} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 32: Vận dụng

    Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17. Tổng của số hạng thứ hai và số hạng thứ tư là 14. Tính công sai d của cấp số cộng đã cho.

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_6} = 17} \\   {{u_2} + {u_4} = 14} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {2{u_1} + 5d = 17} \\   {2{u_1} + 6d = 14} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 16} \\   {d =  - 3} \end{array}} ight.

  • Câu 33: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) với \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.. Công thức số hạng tổng quát của cấp số cộng này là:

    Ta có:

    \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left( u_{1} + d ight) + \left( u_{1} + 2d ight) - \left( u_{1} + 5d
ight) = 7 \\
\left( u_{1} + 3d ight) + \left( u_{1} + 7d ight) = - 14 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} - 2d = 7 \\
2u_{1} + 10d = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 3 \\
d = - 2 \\
\end{matrix} ight.

    \Rightarrow u_{n} = 3 + (n - 1)( - 2) =
5 - 2n

  • Câu 34: Thông hiểu

    Một cấp số nhân có 6 số hạng, số hạng đầu bằng 2 và số hạng thứ sáu bằng 486. Tìm công bội q của cấp số nhân đã cho.

    Theo giả thiết ta có:

    \left\{ \begin{matrix}u_{1} = 2 \\u_{6} = 486 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\u_{1}q^{5} = 486 \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\q^{5} = 243 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\q = 3 \\\end{matrix} ight.

  • Câu 35: Nhận biết

    Cho dãy số (u_n) xác định bởi u_{n}=\frac{n^{2}}{3^{n}} với \forall  n\geq 1. Khi đó số hạng u_{2n} của dãy (u_{n}) là 

     Ta có:

    \begin{matrix}  {u_n} = \dfrac{{{n^2}}}{{{3^n}}} \hfill \\   \Rightarrow {u_{2n}} = \dfrac{{{{\left( {2n} ight)}^2}}}{{{3^{2n}}}} = \dfrac{{4{n^2}}}{{{9^n}}} \hfill \\ \end{matrix}

  • Câu 36: Nhận biết

    Cho cấp số nhân có các số hạng lần lượt là 3;9;27;81. Tìm số hạng tổng quát u_{n} của cấp số nhân đã cho.

    Các số hạng lần lượt là 3;9;27;81 lập thành cấp số nhân

    \Rightarrow \left\{ \begin{matrix}u_{1} = 3 \\q = \dfrac{9}{3} = 3 \\\end{matrix} ight.\  \Rightarrow u_{n} = u_{1}.q^{n - 1} = 3.3^{n - 1}= 3^{n}

  • Câu 37: Nhận biết

    Biết bốn số 5;x;15;y theo thứ tự lập thành cấp số cộng. Giá trị của biểu thức 3x + 2y bằng

    Ta có:

    x = \frac{5 + 15}{2} = 10 \Rightarrow y= 20

    \Rightarrow 3x + 2y = 70

  • Câu 38: Vận dụng

    Phát biểu nào dưới đây về dãy số (an) được cho bởi an = 2n + n là đúng?

    Ta có an + 1 − an = 2n + 1 + n + 1 − 2n − n

     = 2.2n − 2n + 1 = 2n + 1 > 0, ∀n ∈ ℕ*

    Vậy (an) là dãy số tăng.

  • Câu 39: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Dãy số 1; 2; 3; 4; 5 là một cấp số cộng với công sai là d = 1

    Dãy số 1; 2; 4; 8; 16 là một cấp số nhân với công bội q = 2

    Dãy số 1; -1; 1; -1; 1 là một cấp số nhân với công bội q = -1

    Dãy số 1; -2; 4; -8; 16 là một cấp số nhân với công bội q = -2

  • Câu 40: Nhận biết

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = cos\alpha(0 < \alpha < \pi) \\
u_{n + 1} = \sqrt{\frac{1 + u_{n}}{2}},\forall n \geq 1 \\
\end{matrix} ight..

    Số hạng thứ 2020 của dãy số đã cho là?

    Do 0 < α < π nên
    u_{2} = \sqrt{\frac{1 + cos\alpha}{2}} =\sqrt{\cos^{2}\frac{\alpha}{2}} = cos\frac{\alpha}{2};

    u_{3} =\sqrt{\frac{1 + cos\frac{\alpha}{2}}{2}} =\sqrt{\cos^{2}\frac{\alpha}{2}} = cos\frac{\alpha}{4}

    Vậy u = cos\left( \frac{\alpha}{2^{n - 1}}
ight) với mọi n ∈ ℕ*. Ta sẽ chứng minh bằng quy nạp.

    Với n = 1 thì u1 = cosα (đúng).

    Giả sử với n = k ∈ ℕ* ta có u_{k} = cos\left( \frac{\alpha}{2^{k - 1}}
ight).

    Ta chứng minh u_{k + 1} =
cos\left( \frac{\alpha}{2^{k - 1}} ight)

    Thật vậy,

    u_{k + 1} = \sqrt{\frac{1 +u_{k}}{2}} = \sqrt{\frac{1 + cos\left( \frac{\alpha}{2^{k - 1}}ight)}{2}}

    = \sqrt{\cos^{2}\left( \frac{\alpha}{2^{k}} ight)} =cos\left( \frac{\alpha}{2^{k}} ight)

    Từ đó ta có u_{2020} = cos\left(
\frac{\alpha}{2^{2019}} ight)

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo