Một cấp số nhân có
số hạng, công bội q bằng
số hạng thứ nhất, tổng hai số hạng đầu bằng
. Xác định cấp số nhân?
Theo bài ra ta có:
Một cấp số nhân có
số hạng, công bội q bằng
số hạng thứ nhất, tổng hai số hạng đầu bằng
. Xác định cấp số nhân?
Theo bài ra ta có:
Trong các dãy số
cho bởi số hạng tổng quát
sau, dã số nào là dãy số tăng?
Xét đáp án ta có:
=> Dãy số là dãy tăng.
Có bao nhiêu giá trị nguyên của
để ba số
lập thành một cấp số cộng?
Để ba số lập thành một cấp số cộng thì
Đặt phương trình trở thành
Với
Do vậy không có giá trị nào của a thỏa mãn yêu cầu để bài.
Cho cấp số nhân
thỏa mãn
. Tính
?
Đáp án: 4
Cho cấp số nhân thỏa mãn
. Tính
?
Đáp án: 4
Giả sử cấp số nhân có công bội là , khi đó theo bài ra ta có:
do
Ta có:
Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:
Ta có:
Cho cấp số cộng có số hạng đầu
công sai
. Năm số hạng liên tiếp đầu tiên của cấp số này là:
Ta có:
Cho a, b, c theo thứ tự lập thành cấp số cộng. Giá trị x + y là bao nhiêu? Biết:
![]()
Ta có: a, b, c lập thành cấp số cộng nên
a + c = 2b => (a + c)2 = 4b2
Cho dãy số
là một cấp số nhân có số hạng đầu
và công bội
. Đẳng thức nào sau đây đúng?
Cho dãy số là một cấp số nhân có số hạng đầu
và công bội
.
Theo công thức số hạng tổng quát ta có ,
.
Cho cấp số nhân
có số hạng đầu là
, công bội là
. Tính
?
Theo công thức cấp số nhân ta có:
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Cho dãy số (Un) là một cấp số cộng có u1 = 3 và công sai d = 4. Biết rằng tổng n số hạng đầu của dãy số (Un) là
. Giá trị của n là:
Ta có:
Cho cấp số nhân (un) có u1 = 2 và u2 = -8. Mệnh đề nào sau đây đúng?
Ta có:
Cho một cấp số nhân
có
. Hỏi
là số hạng thứ mấy của cấp số nhân?
Ta có:
Vậy số là số hạng thứ 11 của cấp số nhân.
Trong các phát biểu sau, phát biểu nào là sai?
Ta lấy một phản ví dụ:
Dãy số (un) với là cấp số cộng có công sai d = 1 > 0
Nhưng dạng khai triển của nó là -1; 0; 1; … không phải một dãy số dương.
Dãy số (un) được cho bởi
. Hãy tìm khẳng định sai trong các khẳng định sau.
...
Áp dụng phương pháp quy nạp ta có un = 2n − 1.
Cho cấp số cộng có
,
. Khi đó:
a)
. Đúng||Sai
b) Số hạng tổng quát thứ
của cấp số cộng là
. Đúng||Sai
c) Tổng
số hạng đầu tiên của cấp số cộng là
. Đúng||Sai
d) Tổng
. Sai||Đúng
Cho cấp số cộng có ,
. Khi đó:
a) . Đúng||Sai
b) Số hạng tổng quát thứ của cấp số cộng là
. Đúng||Sai
c) Tổng số hạng đầu tiên của cấp số cộng là
. Đúng||Sai
d) Tổng . Sai||Đúng
a) Áp dụng công thức tính số hạng tổng quát thứ của cấp số cộng ta có:
.
b) Áp dụng công thức tính số hạng tổng quát thứ của cấp số cộng ta có:
.
c) Áp dụng công thức tính tổng số hạng đầu tiên của cấp số cộng ta có:
.
d) Ta viết lại
.
Cho dãy số (un) biết
.
Tất cả các giá trị của a để (un) là dãy số tăng là?
Xét hiệu un + 1 − un = (aun+1) − (aun − 1+1) = a(un−un − 1)
Áp dụng, ta có u2 = au1 + 1 = a + 1 ⇒ u2 − 1 = a ⇒ u2 − u1 = a
⇒ u3 − u2 = a(u2−u1) = a2
⇒ u4 − u3 = a(u3−u2) = a3
⇒ un + 1 − un = an > 0
Để dãy số (un) tăng thì un > un − 1 > … > u2 > u1 ⇒ a > 0
Cho cấp số nhân có số hạng thứ bảy là
và công bội
. Hỏi số hạng đầu tiên của cấp số nhân bằng bao nhiêu?
Ta có:
Số 7922 là số hạng thứ bao nhiêu của dãy số un = n2 + 1?
Ta có 7922 = 7921 + 1 = 892 + 1 ⇒ n = 89
Cho cấp số cộng
thỏa mãn
. Khi đó
bằng:
Ta có:
Cho dãy số
xác định bởi công thức
. Khẳng định nào sau đây sai?
Ta có:
Với ta thấy
Suy ra dãy số đã cho là dãy số giảm.
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra
. Sai||Đúng
c) Dãy số
cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng
và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra . Sai||Đúng
c) Dãy số cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
a) Ta có:
Suy ra:
b) Do công sai dương nên cấp số cộng là một dãy tăng nên
c) Ta có: là một cấp số cộng
Suy ra
d) Ta có:
Trong dãy số
cho bởi số hạng tổng quát
sau, dãy số nào là dãy số tăng?
Vì là các dãy dương và tăng nên
là các dãy giảm
=> Loại các đáp án
Xét đáp án ta có:
=> Dãy số không phải dãy tăng.
Xét đáp án
=> Dãy số là dãy tăng.
Cho dãy số -7; h; 11; k. Với giá trị nào của h, k thì dãy số đã cho lập thành một cấp số cộng?
Bốn số hạng 7; h; 11; k theo thứ tự là u1; u2; u3; u4 lập thành một cấp số cộng nên
Cho dãy số có các số hạng đầu là
. Số hạng tổng quát của dãu số này là đẳng thức nào dưới đây?
Ta có: loại các đáp án
và
. Ta kiểm tra
Xét đáp án có
Xét đáp án có
là đáp án đúng.
Cho cấp số cộng (un) biết u1 = -5 và công sai d = 2. Số 81 là số hạng thứ bao nhiêu?
Ta có:
Vậy 81 là số hạng thứ 44
Khẳng định nào dưới đây sai?
Số hạng tổng quát của cấp số cộng (un) là với công sai d và số hạng đầu u1
Viết ba số hạng xen giữa các số 2 và 22 để được một cấp số cộng có năm số hạng.
Khi viết xen giữa 2 và 22 ba số hạng ta được một cấp số cộng có 5 số hạng có:
u1 = 2; u5 = 22. Ta cần tìm u2; u3; u4
Ta có:
Cho cấp số cộng
có
. Gọi
là tổng 5 số hạng đầu tiên của cấp số cộng đã cho. Mệnh đề nào sau đây đúng?
Ta có:
Và
Một quả bóng cao su được thả từ độ cao
. Mỗi lần chạm đất quả bóng lại nảy lên hai phần ba độ cao của lần rơi trước. Tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng
Đáp án 405
Một quả bóng cao su được thả từ độ cao . Mỗi lần chạm đất quả bóng lại nảy lên hai phần ba độ cao của lần rơi trước. Tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng
Đáp án 405
Gọi là khoảng cách lần rơi thứ
Ta có ,
,…,
,…
Suy ra tổng các khoảng cách rơi của quả bóng từ lúc thả bóng cho đến lần rơi thứ bằng
.
Gọi là khoảng cách lần nảy thứ
Ta có ,
,…,
,…
Suy ra tổng các khoảng cách nảy của quả bóng từ lúc thả bóng cho đến đến lần nảy thứ bằng
.
Vậy tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng .
Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17; tổng của số hạng thứ hai và số hạng thứ tư bằng 14. Tìm công sai d của câp số cộng đã cho.
Ta có:
Trong các dãy số sau, dãy số nào bị chặn trên?
Ta có:
.
Vậy đây là dãy số bị chặn trên.
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:
;
. Khi đó:
a)
. Đúng||Sai
b) Ba số
tạo thành một cấp số cộng. Sai||Đúng
c)
. Sai||Đúng
d)
. Đúng||Sai
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:;
. Khi đó:
a) . Đúng||Sai
b) Ba số tạo thành một cấp số cộng. Sai||Đúng
c) . Sai||Đúng
d) . Đúng||Sai
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu 0,21 và công bội .
Vì vậy
.
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 0,3 và công bội là
Vì vậy
.
Kết luận:
|
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
Cho dãy số (un), biết un = n ⋅ cosn. Trong các phát biểu sau, có bao nhiêu phát biểu đúng?
(1) (un) là dãy số tăng.
(2) (un) là dãy số bị chặn dưới.
(3) ∀n ∈ ℕ* : un ≤ n.
Vì cos(n) ≤ 1 nên un < n. Phát biểu (3) đúng.
Dãy không tăng, không giảm và không bị chặn dưới.
Vậy có 1 phát biểu đúng trong 3 phát biểu đã cho.
Trong các dãy số dưới đây, dạy số nào không phải là cấp số nhân lùi vô hạn?
Vì dãy ở đáp án C là một cấp số nhân có công bội q = 3/2 > 0
=> không phải dãy lùi vô hạn
Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt của mỗi tầng bằng nửa diện tích của bề mặt của tầng ngay bên dưới và diện tích bề mặt của tầng một bằng nửa diện tích đế tháp. Biết diện tích bề mặt đế tháp là
. Diện tích bề mặt của tầng trên cùng là:
Đáp án: 6 m2
Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt của mỗi tầng bằng nửa diện tích của bề mặt của tầng ngay bên dưới và diện tích bề mặt của tầng một bằng nửa diện tích đế tháp. Biết diện tích bề mặt đế tháp là . Diện tích bề mặt của tầng trên cùng là:
Đáp án: 6 m2
Diện tích bề mặt của tầng trên cùng là .
Khẳng định nào sau đây là khẳng định sai?
Khẳng định sai là: “Số hạng tổng quát của cấp số cộng là
với công sai
và số hạng đầu
.”
Cho dãy số
, với
. Mệnh đề nào sau đây đúng?
Ta có: là dãy thay dấu nên không tăng, không giảm.
Tập giá trị của dãy số là {-1; 1}
Vậy dãy số là dãy số bị chặn.
Cho dãy số
biết
. Số hạng có ba chữ số lớn nhất của dãy là:
Tìm số hạng tổng quát của dãy số
Dự đoán
Ta chứng minh theo phương pháp quy nạp
Với ta có:
Giả sử , khi đó ta có:
Vậy công thức tổng quát được chứng minh theo nguyên lí quy nạp.
Ta có:
Mà
Nên ta chọn
Vậy là số hạng cần tìm.
Cho cấp số cộng (un) có các số hạng đầu lần lượt là 5; 9; 13; 17; …. Tìm số hạng tổng quát un của cấp số cộng.
Các số 5; 9; 13; 17; …. theo thứ tự lập thành một cấp số cộng (un) nên: