Cho cấp số cộng
. Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
Cho cấp số cộng
. Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
Dãy số nào sau đây không phải là cấp số cộng?
Chỉ cần tồn tại hai cặp số hạng liên tiếp của dãy số có hiệu khác nhau: thì kết luận ngay dãy số đó không phải là cấp số cộng.
Xét đáp án: loại
Xét đáp án: Chọn
Xét đáp án: Loại
Xét đáp án: loại
Tổng
có kết quả bằng?
Đặt
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra
. Sai||Đúng
c) Dãy số
cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng
và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra . Sai||Đúng
c) Dãy số cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
a) Ta có:
Suy ra:
b) Do công sai dương nên cấp số cộng là một dãy tăng nên
c) Ta có: là một cấp số cộng
Suy ra
d) Ta có:
Xác định tham số m > 0 để 2m – 3; m; 2m + 3 lập thành một cấp số nhân.
Để 2m – 3; m; 2m + 3 lập thành một cấp số nhân thì
Do m > 0 =>
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có
Cộng vế với vế của các đẳng thức trên, ta được
Tìm tất cả các giá trị của x để ba số 2x - 1; x; 2x + 1 theo thứ tự đó lập thành một cấp số nhân.
Ta có:
Ba số 2x - 1; x; 2x + 1 theo thứ tự đó lập thành một cấp số nhân:
Dãy số
là cấp số nhân với
Cấp số nhân
Trong các dãy (un) sau đây, dãy nào là dãy số bị chặn?
Ta có:
n2 − n + 1 < n2 + 2n + 2 (do n > 0)
Suy ra , với mọi n.
Cho cấp số cộng
. Xác định
biết rằng
?
Ta có:
Khi đó:
Suy ra
Cho dãy số có các số hạng đầu là 8, 15, 22, 29, 36, … Số hạng tổng quát của dãy số này là
Ta có 8 = 7.1 + 1; 15 = 7.2 + 1; 22 = 7.3 + 1; 29 = 7.4 + 1; 36 = 7.5 + 1
Suy ra số hạng tổng quát un = 7n + 1
Cho cấp số nhân (un) biết u1 = 12;
. Tính ![]()
Gọi q là công bội của cấp số nhân (un)
Ta có:
Hai số hạng đầu của một cấp số nhân là 2x + 1 và 4x2 - 1. Số hạng thứ ba của cấp số nhân là:
Ta có:
Vậy công sai của cấp số nhân là
Vậy số hạng tiếp theo sẽ là:
Cho cấp số cộng
có
. Số hạng thứ
của cấp số cộng là
Ta có:
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:
;
. Khi đó:
a)
. Đúng||Sai
b) Ba số
tạo thành một cấp số cộng. Sai||Đúng
c)
. Sai||Đúng
d)
. Đúng||Sai
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:;
. Khi đó:
a) . Đúng||Sai
b) Ba số tạo thành một cấp số cộng. Sai||Đúng
c) . Sai||Đúng
d) . Đúng||Sai
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu 0,21 và công bội .
Vì vậy
.
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 0,3 và công bội là
Vì vậy
.
Kết luận:
|
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
Tính tổng 
Áp dụng công thức tính tổng của n số hạng đầu của một cấp số nhân ta có:
Cho cấp số nhân
với
. Viết bốn số hạng đầu tiên của cấp số nhân.
Ta có:
Với mọi số nguyên dương
thì
chia hết cho
Với chia hết cho 3, ta sẽ chứng minh
chia hết cho 3 với mọi
.
Giả sử khẳng định đúng với tức là
chia hết cho 3, ta chứng minh
cũng chia hết cho 3.
Ta có:
Vậy với mọi số nguyên dương thì chia hết cho 3.
Tìm x và y để dãy số
là một cấp số cộng?
Để dãy số là một cấp số cộng thì
Cho dãy số
xác định bởi công thức
. Tìm số hạng tổng quát của dãy số?
Ta có:
suy ra
…
Cộng các vễ theo đẳng thức trên ta được
Trong các dãy số sau, dãy số nào là một cấp số nhân?
Ta có:
Dãy số là cấp số nhân
Gọi là công bội.
Xét đáp án
Xét đáp án
Xét đáp án
Xét đáp án
Cho cấp số cộng (un) có u1 = 1 và công sai d = 2. Tổng
bằng:
Ta có:
Dãy số có các số hạng cho bởi
có số hạng tổng quát là công thức nào dưới đây?
Vì dãy số đã cho không phải là dãy hằng nên loại các đáp án và
Ta có: ở các đáp án
và
Xét đáp án
Xét đáp án
Vậy công thức tổng quát của dãy số đã cho là
Một cấp số nhân có số hạng đầu
, công bội q = 2. Biết
. Tìm n?
Ta có:
Tính tổng 100 số hạng đầu của cấp số cộng xác định bởi
.
Theo bài ra ta có:
Tìm
để
theo thứ tự đó lập thành một cấp số nhân.
Cấp số nhân theo thứ tự là
ta có:
Dãy số nào sau đây có giới hạn bằng
?
Vì nên
.
Cho cấp số nhân (un) có
và công bội q = 3. Số hạng u2 là:
Ta có: u2 = u1 . q = -2 . 3 = -6
Cho cấp số cộng
có
và
Mệnh đề nào sau đây đúng?
Ta có
Một quả bóng rơi từ độ cao 6m với phương vuông góc với mặt đất. Mỗi lần chạm đất quả bóng nảy lên với độ cao bằng
độ cao của lần rơi trước. Tính quãng đường quả bóng đã bay từ lúc thả bóng cho đến lúc bóng không nảy nữa.
Ta có: Quãng đường bóng bay bằng tổng quãng đường bóng nảy lên và quãng đường bóng rơi xuống
Vì mỗi lần bóng nảy lên bằng lần nảy trước nên ta có tổng quãng đường bóng nảy lên là:
Đây là tổng của cấp số nhân lùi vô hạn có
=>
Tổng quãng đường bóng rơi xuống bằng khoảng cách độ cao ban đầu và tổng quãng đường bóng nảy lên là:
Đây là tổng của cấp số nhân lùi vô hạn với
=>
Vậy tổng quãng đường bóng bay là 42m
Cho dãy số
với
với mọi
. Khi đó số hạng
của dãy
là:
Ta có:
Cho cấp số cộng có số hạng đầu
công sai
. Năm số hạng liên tiếp đầu tiên của cấp số này là:
Ta có:
Cho dãy số (un) biết
.
Tất cả các giá trị của a để (un) là dãy số tăng là?
Xét hiệu un + 1 − un = (aun+1) − (aun − 1+1) = a(un−un − 1)
Áp dụng, ta có u2 = au1 + 1 = a + 1 ⇒ u2 − 1 = a ⇒ u2 − u1 = a
⇒ u3 − u2 = a(u2−u1) = a2
⇒ u4 − u3 = a(u3−u2) = a3
⇒ un + 1 − un = an > 0
Để dãy số (un) tăng thì un > un − 1 > … > u2 > u1 ⇒ a > 0
Cho dãy số
. Tìm số hạng thứ 5 của dãy số:
Ta có:
Do đó số hạng thứ 5 của dãy số là Sử dụng công thức:
Ba góc của một tam giác vuông tạo thành cấp số cộng. Hai góc nhọn của tam giác có số đo (độ) là:
Ba góc A, B, C của một tam giác vuông theo thứ tự đó lập thành một cấp số cộng nên
Cho cấp số cộng
có
. Tìm số hạng đầu tiên
.
Ta có:
Cho cấp số nhân
có công bội âm. Biết
. Khi đó ![]()
Ta có:
Cho dãy số (un) xác định bởi
. Tìm số hạng thứ 2018 của dãy số đã cho.
Ta có:
Đặt
Khi đó (vn) là một cấp số nhân với và công bội q = 21
Do đó số hạng tổng quát của dãy (vn) là
=>
Cho dãy số
có số hạng tổng quát
. Biết rằng
. Khi đó
là số hạng thứ mấy trong dãy số?
Ta có:
Vậy là số hạng thứ tư trong dãy số.
Dãy số nào là dãy số tăng?
Xét ta có:
Vậy là dãy số tăng.