Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho cấp số nhân (un) có số hạng đầu u1 = 5; công bội q = -2. Số hạng thứ sáu của (un) là:

    Ta có: {u_6} = {u_1}.{q^{6 - 1}} = 5.{\left( { - 2} ight)^5} =  - 160

  • Câu 2: Vận dụng

    Một bệnh nhân hàng ngày phải uống 150mg thuốc kháng sinh đặc trị bệnh bạch hầu. Sau một ngày hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể vẫn còn 6\% lượng thuốc của ngày hôm trước. Các mệnh đề sau đúng hay sai?

    a) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu còn trong cơ thể sau ngày đầu tiên uống thuốc là 9(mg). Đúng||Sai

    b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ 2 159(mg). Đúng||Sai

    c) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ 4 170(mg). Sai||Đúng

    d) Ước tính lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể nếu bệnh nhân sử dụng thuốc trong một thời gian 30 ngày là 159,57mg. Đúng||Sai

    Đáp án là:

    Một bệnh nhân hàng ngày phải uống 150mg thuốc kháng sinh đặc trị bệnh bạch hầu. Sau một ngày hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể vẫn còn 6\% lượng thuốc của ngày hôm trước. Các mệnh đề sau đúng hay sai?

    a) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu còn trong cơ thể sau ngày đầu tiên uống thuốc là 9(mg). Đúng||Sai

    b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ 2 159(mg). Đúng||Sai

    c) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ 4 170(mg). Sai||Đúng

    d) Ước tính lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể nếu bệnh nhân sử dụng thuốc trong một thời gian 30 ngày là 159,57mg. Đúng||Sai

    a) Ta có hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau ngày đầu còn 150 \times 6\%= 9(mg), suy ra mệnh đề đúng.

    b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 2 là: 150 \times 6\% + 150 = 159(mg) suy ra mệnh đề đúng.

    c) Gọi u_{n} là lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể bệnh nhân sau khi uống ở ngày thứ n

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 1 là: u_{1} = 150(mg)

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 2 là:

    u_{2} = u_{1} \times 6\% + 150= 150 \times 6\% + 150 = 150 \times (0,06 + 1)

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 3 là:

    u_{3} = u_{2}.6\% + 150 = 150\times (0,06 + 1) \times 0,06 + 150

    = 150 \times (0,06^{2} + 0,06 +
1)

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 4 là:

    u_{4} = u_{3} \times 6\% + 150= 150 \times (0,06^{2} + 0,06 + 1) \times 0,06 + 150

    = 150 \times (0,06^{3} + 0,06^{2} + 0,06
+ 1) = 159,5724(mg)

    Suy ra mệnh đề sai.

    d) Nếu bệnh nhân sử dụng thuốc trong thời gian 30 ngày. Khi đó lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể được ước lượng là:

    S = 150 \times \left( 1 + 0,06 +
0,06^{2} + \ldots + 0,06^{29} ight)

    = 150 \times u_{1}\frac{1 - q^{30}}{1 -
q} = 150 \times 1 \times \frac{1 - 0,06^{30}}{1 - 0,06}

    = \frac{7500}{47} \approx
159,57mg

    Vậy lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể được ước lượng trong 30 ngày là 159,57mg, suy ra mệnh đề đúng.

  • Câu 3: Nhận biết

    Cho cấp số nhân (un) biết u1 = 1; u4 = 64. Tính công bội q của cấp số nhân đó.

    Ta có: 

    \begin{matrix}  {u_n} = {u_1}.{q^{n - 1}} \hfill \\   \Rightarrow {u_4} = {u_1}.{q^{4 - 1}} \hfill \\   \Rightarrow 64 = 1.{q^3} \hfill \\   \Rightarrow {q^3} = 64 \Rightarrow q = 4 \hfill \\ \end{matrix}

  • Câu 4: Thông hiểu

    Với giá trị nào của x;y thì các số hạng - 2;x; - 18;y theo thứ tự đó lập thành cấp số nhân?

    Ta có: các số hạng - 2;x; -
18;ylập thành cấp số nhân

    \Rightarrow \left\{ \begin{matrix}\dfrac{x}{- 2} = \dfrac{- 18}{x} \\\dfrac{- 18}{x} = \dfrac{y}{- 18} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \pm 6 \\y = \dfrac{324}{x} = \pm 54 \\\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(x;y) = (6;54) \\
(x;y) = ( - 6;54) \\
\end{matrix} ight.

  • Câu 5: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{2} + u_{23} = 60. Tính tổng S_{24} của 24 số hạng đầu tiên của cấp số cộng đã cho.

    Ta có:

    u_{2} + u_{23} = 60

    \Leftrightarrow \left( u_{1} + d ight)+ \left( u_{1} + 22d ight) = 60

    \Leftrightarrow 2u_{1} + 23d =60

    Khi đó:

    \Rightarrow S_{24} = \frac{24}{2}\left(u_{1} + u_{24} ight)

    \Rightarrow S_{24} = 12.\left\lbracku_{1} + \left( u_{1} + 23d ight) ightbrack

    \Rightarrow S_{24} = 12.60 =720

  • Câu 6: Nhận biết

    Cho dãy số (un) là một cấp số nhân có số hạng đầu u1 và công bội q. Đẳng thức nào sau đây sai?

    Từ định nghĩa cấp số nhân ta có các kết quả sau:

    \begin{matrix}  {u_{n + 1}} = {u_n}.q;\left( {n \geqslant 1} ight) \hfill \\  {u_n} = {u_1}.{q^{n - 1}};\left( {n \geqslant 2} ight) \hfill \\  {u_k}^2 = {u_{k - 1}}.{u_{k + 1}};\left( {k \geqslant 2} ight) \hfill \\ \end{matrix}

    Đáp án C sai

  • Câu 7: Vận dụng cao

    Cho dãy số (un), biết \left\{ \begin{matrix}
u = \sqrt{2} \\
u_{n + 1} = \sqrt{2 + u_{n}},n \in \mathbb{N}^{*} \\
\end{matrix} ight.. Khẳng định nào sau đây đúng về dãy số (un) ?

    Ta có u_{1} = \sqrt{2};u_{2} = \sqrt{2 +\sqrt{2}};u_{3} = \sqrt{2 + \sqrt{2 + \sqrt{2}}};

    \ldots;u_{n} = \sqrt{2+ \sqrt{2} + \sqrt{2 + \ldots + \sqrt{2}}}

    Do un + 1 − un > 0 nên (un) là dãy số tăng.

    Lại có \sqrt{2} < u_{n} \leq 2 suy ra dãy số bị chặn.

  • Câu 8: Vận dụng cao

    Cho ba số dương a, b, c theo thứ tự lập thành một cấp số cộng. Giá trị lớn nhất của biểu thức M = \dfrac{{\sqrt {{a^2} + 8bc}  + 3}}{{\sqrt {{{\left( {2a + c} ight)}^2} + 1} }} có dạng x\sqrt y ;\left( {x,y \in \mathbb{N}} ight). Hỏi x + y bằng bao nhiêu?

    Ta có:

    \begin{matrix}  a + c = 2b \Rightarrow a = 2b - c \hfill \\   \Rightarrow {a^2} = {\left( {2a - c} ight)^2} \hfill \\   \Leftrightarrow {a^2} + 8bc = 4{b^2} + 4bc + {c^2} \hfill \\   \Leftrightarrow {a^2} + 8bc = {\left( {2b + c} ight)^2} \hfill \\ \end{matrix}

    Theo bài ra ta có:

    M = \frac{{2b + c + 3}}{{\sqrt {{{\left( {2a + c} ight)}^2} + 1} }} = \frac{{t + 3}}{{\sqrt {{t^2} + 1} }} \leqslant \sqrt {10} ,\left( {t = 2b + c} ight)

    Dấu bằng xảy ra khi và chỉ khi 2b + c = \frac{1}{3}

    => x + y = 11

  • Câu 9: Nhận biết

    Tìm số hạng thứ 11 của cấp số cộng có số hạng đầu bằng 3 và công sai d = −2?

    Ta có: u_{11} = u_{1} + 10d = -
17

  • Câu 10: Nhận biết

    Cho dãy số (u_{n}), biết u_{n}=\frac{-n}{n+1}. Năm số hạng đầu tiên của dãy số đó lần lượt là:

    Ta có:

    \begin{matrix}  {u_1} = \dfrac{{ - 1}}{{1 + 1}} = \dfrac{{ - 1}}{2} \hfill \\  {u_2} = \dfrac{{ - 2}}{{2 + 1}} = \dfrac{{ - 2}}{3} \hfill \\  {u_3} = \dfrac{{ - 3}}{{3 + 1}} = \dfrac{{ - 3}}{4} \hfill \\  {u_4} = \dfrac{{ - 4}}{{4 + 1}} = \dfrac{{ - 4}}{5} \hfill \\  {u_5} = \dfrac{{ - 5}}{{5 + 1}} = \dfrac{{ - 5}}{6} \hfill \\ \end{matrix}

    Vậy 5 số hạng đầu tiên của dãy số là: -\frac{1}{2};-\frac{2}{3};-\frac{3}{4};-\frac{4}{5};-\frac{5}{6}

  • Câu 11: Thông hiểu

    Một cấp số cộng gồm 5 số hạng. Hiệu số hạng đầu và số hạng cuối bằng 20. Tìm công sai d của cấp số cộng đã cho?

    Gọi năm số hạng của cấp số cộng đã cho là: u_{1}^{};u_{2}^{};u_{3}^{};u_{4}^{};u_{5}^{}.

    Theo đề bài ta có:

    u_{1} - u_{5} = 20

    \Leftrightarrow u_{1} - (u_{1} + 4d) =
20

    \Leftrightarrow d = - 5

    Vậy công sai của cấp số cộng đã cho là d
= - 5

  • Câu 12: Vận dụng

    Cho dãy số \left(
u_{n} ight) biết u_{n} =
\frac{1}{1.4} + \frac{1}{2.5} + ... + \frac{1}{n(n + 3)} với \forall n = 1,2,3.... Mệnh đề nào sau đây đúng?

    Ta có: u_{n} > 0

    => Dãy số \left( u_{n}
ight) bị chặn dưới bởi 0.

    Mặt khác \frac{1}{k(k + 3)} <
\frac{1}{k(k + 1)} = \frac{1}{k} - \frac{1}{k + 1};\left( k\mathbb{\in
Z} ight)

    u_{n} < \frac{1}{1.2} + \frac{1}{2.3}
+ \frac{1}{3.4} + ... + \frac{1}{n(n + 1)}

    = 1 - \frac{1}{2} + \frac{1}{2} -
\frac{1}{3} + ... + \frac{1}{n} - \frac{1}{n + 1}

    = 1 - \frac{1}{n + 1} <
1

    Vậy \left( u_{n} ight) bị chặn trên, do đó dãy \left( u_{n}
ight) bị chặn.

  • Câu 13: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) với u_{1} = 2;d = - 3. Tổng 10 số hạng đầu tiên của dãy là:

    Tổng 10 số hạng đầu tiên của dãy là:

    S_{10} = \frac{10}{2}\left( 2u_{1} + 9d
ight) = 5(4 - 27) = - 115

  • Câu 14: Nhận biết

    Khẳng định nào sau đây là khẳng định sai?

    Khẳng định sai là: “Số hạng tổng quát của cấp số cộng \left( u_{n} ight)u_{n} = u_{1} + nd với công sai d và số hạng đầu u_{1}.”

  • Câu 15: Nhận biết

    Cho cấp số nhân có các số hạng lần lượt là 3;9;27;81. Tìm số hạng tổng quát u_{n} của cấp số nhân đã cho.

    Các số hạng lần lượt là 3;9;27;81 lập thành cấp số nhân

    \Rightarrow \left\{ \begin{matrix}u_{1} = 3 \\q = \dfrac{9}{3} = 3 \\\end{matrix} ight.\  \Rightarrow u_{n} = u_{1}.q^{n - 1} = 3.3^{n - 1}= 3^{n}

  • Câu 16: Thông hiểu

    Cho cấp số nhân \left( u_{n}
ight)u_{2} = - 6,u_{5} =
48. Tính S_{5}.

    Ta có \left\{ \begin{matrix}
u_{1}.q = - 6 \\
u_{1}.q^{4} = 48 \\
\end{matrix} \Rightarrow \left\{ \begin{matrix}
u_{1}.q = - 6 \\
q^{3} = - 8 \\
\end{matrix} \Rightarrow \left\{ \begin{matrix}
u_{1} = 3 \\
q = - 2 \\
\end{matrix} ight.\  ight.\  ight.

    Vậy S_{5} = \frac{3\left( 1 - ( - 2)^{5}
ight)}{1 - ( - 2)} = 33.

  • Câu 17: Thông hiểu

    Với giá trị nào của x và y thì các số -7; x; 11; y theo thứ tự đó lập thành một cấp số cộng?

    Ta có:

    Các số -7; x; 11 theo thứ tự đó lập thành một cấp số cộng

    => - 7 + 11 = 2.x \Rightarrow x = 2

    Tương tự các số 2; 11; y theo thứ tự đó lập thành một cấp số cộng

    => 2 + y = 2.11 \Rightarrow y = 20

    Vậy x = 2; y = 20

  • Câu 18: Nhận biết

    Cho cấp số nhân (un) có u1 = 1; q = 2. Hỏi số 1024 là số hạng thứ mấy?

    Ta có:

    \begin{matrix}  {u_n} = {u_1}.{q^{n - 1}} \hfill \\   \Leftrightarrow {1.2^{n - 1}} = 1024 \hfill \\   \Leftrightarrow {2^{n - 1}} = {2^{10}} \hfill \\   \Rightarrow n - 1 = 10 \hfill \\   \Rightarrow n = 11 \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu

    Cho cấp số nhân có các số hạng lần lượt là x;12;y;192. Mệnh đề nào sau đây đúng?

    Cấp số nhân x;12;y;192

    \Rightarrow \left\{ \begin{matrix}\dfrac{12}{x} = \dfrac{y}{12} \\\dfrac{y}{12} = \dfrac{192}{y} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \dfrac{144}{y} \\y^{2} = 2304 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \pm 3 \\y = \pm 48 \\\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(x;y) = (3;48) \\
(x;y) = ( - 3; - 48) \\
\end{matrix} ight.

  • Câu 20: Vận dụng cao

    Một quả bóng cao su được thả từ độ cao 81m. Mỗi lần chạm đất quả bóng lại nảy lên hai phần ba độ cao của lần rơi trước. Tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng

    Đáp án 405

    Đáp án là:

    Một quả bóng cao su được thả từ độ cao 81m. Mỗi lần chạm đất quả bóng lại nảy lên hai phần ba độ cao của lần rơi trước. Tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng

    Đáp án 405

    Gọi r_{i} là khoảng cách lần rơi thứ i

    Ta có r_{1} = 81, r_{2} = \frac{2}{3}.81,…, r_{n} = \left( \frac{2}{3} ight)^{n -
1}.81,…

    Suy ra tổng các khoảng cách rơi của quả bóng từ lúc thả bóng cho đến lần rơi thứ n bằng 81.\frac{1 - \left( \frac{2}{3} ight)^{n}}{1 -
\frac{2}{3}}.

    Gọi t_{i} là khoảng cách lần nảy thứ i

    Ta có t_{1} = \frac{2}{3}.81, t_{2} = \left( \frac{2}{3}
ight).\frac{2}{3}81,…, t_{n} =
\left( \frac{2}{3} ight)^{n - 1}\frac{2}{3}.81,…

    Suy ra tổng các khoảng cách nảy của quả bóng từ lúc thả bóng cho đến đến lần nảy thứ n bằng \dfrac{2}{3}.81.\dfrac{1 - \left( \dfrac{2}{3}ight)^{n - 1}}{1 - \dfrac{2}{3}}.

    Vậy tổng các khoảng cách rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy nữa bằng S =
\lim\left( 81.\frac{1 - \left( \frac{2}{3} ight)^{n}}{1 - \frac{2}{3}}
+ \frac{2}{3}.81.\frac{1 - \left( \frac{2}{3} ight)^{n - 1}}{1 -
\frac{2}{3}} ight) = 405.

  • Câu 21: Nhận biết

    Trong các dãy số sau đây, dãy số nào là cấp số cộng?

    Ta có dãy số 1; - 3; - 7; - 11; -
15 là một cấp số cộng có công sai d
= - 4.

  • Câu 22: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = - 1;S_{23} = 483. Tìm công sai d của cấp số cộng?

    Gọi d là công sai của cấp số cộng khi đó ta có:

    S_{23} = 483 \Leftrightarrow
\frac{23\left( 2u_{1} + 22d ight)}{2} = 483

    \Leftrightarrow \frac{23.( - 2 +
22d)}{2} = 483

    \Leftrightarrow d = 2

  • Câu 23: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?

    Xét dãy số  u_{n}=-2^{n}+15 ta có:

     \begin{matrix}  {u_{n + 1}} =  - {2^{n + 1}} + 15 \hfill \\   \Rightarrow {u_{n + 1}} - {u_n} =  - {2^{n + 1}} + 15 + {2^n} - 15 \hfill \\   =  - {2^{n + 1}} + {2^n}=d \hfill \\ \end{matrix}

    d không cố định => Dãy số u_{n}=-2^{n}+15 không phải là một cấp số cộng.

  • Câu 24: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + n^{2} \\
\end{matrix} ight.. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có \left\{ \begin{matrix}
u_{1} = 1 \\
u_{2} = u_{1} + 1^{2} \\
u_{3} = u_{2} + 2^{2} \\
\cdots \\
u_{n} = u_{n - 1} + (n - 1)^{2} \\
\end{matrix} ight.

    Cộng vế với vế của các đẳng thức trên, ta được

    u_{n} = 1 + 1^{2} + 2^{2} + \ldots + (n
- 1)^{2} = 1 + \frac{n(n - 1)(n - 2)}{6}

  • Câu 25: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 5 \\
u_{n + 1} = u_{n} + n \\
\end{matrix} ight.. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có u_{n} = 5 + 1 + 2 + 3 + \ldots + n -
1 = 5 + \frac{n(n - 1)}{2}

  • Câu 26: Thông hiểu

    Một cấp số cộng có 12 số hạng. Biết rằng tổng của 12 số hạng đó bằng 144 và số hạng thứ mười hai bằng 23. Khi đó công sai d của cấp số cộng đã cho là bao nhiêu?

    Ta có: \left\{ \begin{matrix}u_{12} = 23 \\S_{12} = 144 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} + 11d = 23 \\\dfrac{12}{2}.\left( u_{1} + u_{12} ight) = 144 \\\end{matrix} ight.

    => d = 2

  • Câu 27: Thông hiểu

    Cho cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; … Tìm số hạng tổng quát un của cấp số nhân đã cho.

     Cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; …

    \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 3} \\   {q = \dfrac{9}{3} = 3} \end{array}} ight. \Rightarrow {u_n} = {u_1}.{q^{n - 1}} = {3.3^{n - 1}} = {3^n}

  • Câu 28: Nhận biết

    Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên n ≥ p ( p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề A(n) đúng với n = k. Khẳng định nào sau đây là đúng?

    Mệnh đề A(n) đúng với n = k với k ≥ p.

  • Câu 29: Vận dụng

    Số hạng tổng quát của cấp số cộng là {u_n} = 3n + 4,n \in {\mathbb{N}^*}. Gọi {S_n} là tổng số hạng đầu tiên của cấp số cộng đã cho. Mệnh đề nào sau đây đúng?

    Cấp số cộng {u_n} = an + b \to \left\{ {\begin{array}{*{20}{c}}  {{u_1} = a + b} \\   {d = a} \end{array}} ight.

    \begin{matrix}  {u_n} = 3n + 4 \to \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 7} \\   {d = 3} \end{array}} ight. \hfill \\   \Rightarrow {S_n} = n{u_1} + \dfrac{{n\left( {n - 1} ight)d}}{2} = 7n + \dfrac{{3\left( {{n^2} - n} ight)}}{2} = \dfrac{{3{n^2} + 11n}}{2} \hfill \\ \end{matrix}

  • Câu 30: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = \frac{1}{2} \\
u_{n + 1} = 2u_{n} \\
\end{matrix} ight.. Công thức số hạng tổng quát của dãy số là?

    Ta có

    \left\{ \begin{matrix}u_{1} = \frac{1}{2} \\u_{2} = 2u_{1} \\u_{3} = 2u_{2} \\\cdots \\u_{n} = 2u_{n - 1} \\\end{matrix} ight.

    Nhân vế với vế của các đẳng thức trên, ta được: u_{1} \cdot u_{2} \cdot u_{3}\ldots u_{n} =
\frac{1}{2} \cdot 2^{n - 1} \cdot u_{1} \cdot u_{2}\ldots u_{n - 1}
\Leftrightarrow u_{n} = 2^{n - 2}.

  • Câu 31: Thông hiểu

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 8u_{3} - u_{7} +8u_{5} = u_{6} + u_{8} - 8u_{4}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}

    Đáp án: 64

    Đáp án là:

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 8u_{3} - u_{7} +8u_{5} = u_{6} + u_{8} - 8u_{4}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}

    Đáp án: 64

    Giả sử cấp số nhân có công bội là q, khi đó theo bài ra ta có:

    8u_{3} - u_{7} + 8u_{5} = u_{6} + u_{8}
- 8u_{4}

    \Leftrightarrow 8\left( u_{3} + u_{4} +
u_{5} ight) = u_{6} + u_{7} + u_{8}

    \Leftrightarrow 8\left( u_{3} + u_{3}q +
u_{3}q^{2} ight) = u_{6} + u_{6}q + u_{6}q^{2}

    \Leftrightarrow 8u_{3}\left( 1 + q +
q^{2} ight) = u_{6}\left( 1 + q + q^{2} ight)

    \Leftrightarrow 8u_{3} = u_{6} do 1 + q + q^{2} > 0

    \Leftrightarrow 8u_{3} = u_{3}q^{3}
\Leftrightarrow u_{3}\left( 8 - q^{3} ight) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
u_{3} = 0 \\
q = 2 \\
\end{matrix} ight.

    Ta có: \frac{u_{8} + u_{9} +u_{10}}{u_{2} + u_{3} + u_{4}} = \frac{u_{8} + u_{8}q +u_{8}q^{2}}{u_{2} + u_{2}q + u_{2}q^{2}}= \frac{u_{8}\left( 1 + q +q^{2} ight)}{u_{2}\left( 1 + q + q^{2} ight)} =\frac{u_{2}q^{6}}{u_{2}} = q^{6} = 64

  • Câu 32: Thông hiểu

    Cho dãy số \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_{n + 1}} = {u_n} + n} \end{array}} ight.. Tìm số hạng thứ 5 của dãy số:

    Ta có:

    \begin{matrix}  {u_2} = {u_1} + 1 = 5 \hfill \\  {u_3} = {u_2} + 2 = 7 \hfill \\  {u_4} = {u_3} + 3 = 10 \hfill \\ \end{matrix}

    Do đó số hạng thứ 5 của dãy số là Sử dụng công thức: {u_5} = {u_4} + 4 = 14

  • Câu 33: Nhận biết

    Dãy số nào dưới đây là dãy số nguyên tố nhỏ hơn 10 theo thứ tự tăng dần?

    Số nguyên tố là số tự nhiên lớn hơn 1 và chỉ có hai ước số là 1 và chính nó.

    Vậy dãy số nguyên tố nhỏ hơn 102, 3, 5, 7.

  • Câu 34: Nhận biết

    Cho dãy số có các số hạng đầu là 8, 15, 22, 29, 36, … Số hạng tổng quát của dãy số này là

    Ta có 8 = 7.1 + 1; 15 = 7.2 + 1; 22 = 7.3 + 1; 29 = 7.4 + 1; 36 = 7.5 + 1

    Suy ra số hạng tổng quát un = 7n + 1

  • Câu 35: Thông hiểu

    Cho hai số −3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số đó tạo thành cấp số cộng có công sai d = 2. Tìm n.

    Ta có:

    Cấp số cộng có k số hạng gồm có u_{1} = -3 và số hạng cuối u_{k} =23.

    Khi đó:

    u_{k + 1} = u_{1} + (k -1)d

    \Leftrightarrow 23 = - 3 + (k -1).2

    \Leftrightarrow k = 14

    Do đó n = k - 2 = 12

  • Câu 36: Vận dụng

    Biết các số C_{n}^{1};C_{n}^{2};C_{n}^{3} theo thứ tự lập thành một cấp số cộng với n > 3. Tìm n

    Ta có: 

    Các số C_{n}^{1};C_{n}^{2};C_{n}^{3} theo thứ tự lập thành một cấp số cộng với n > 3

    \begin{matrix}  C_n^1 + C_n^3 = 2C_n^2 \hfill \\   \Leftrightarrow \dfrac{{n!}}{{1!\left( {n - 1} ight)!}} + \dfrac{{n!}}{{3!\left( {n - 3} ight)!}} = 2.\dfrac{{n!}}{{2!\left( {n - 2} ight)!}} \hfill \\   \Leftrightarrow n + \dfrac{{n\left( {n - 1} ight)\left( {n - 2} ight)}}{6} = n\left( {n - 1} ight) \hfill \\   \Leftrightarrow 6n + \left( {{n^2} - n} ight)\left( {n - 2} ight) = 6n\left( {n - 1} ight) \hfill \\   \Leftrightarrow 6n + {n^3} - 3{n^2} + 2n = 6{n^2} - 6n \hfill \\   \Leftrightarrow {n^3} - 9{n^2} + 14n = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 0\left( {ktm} ight)} \\   {n = 2\left( {ktm} ight)} \\   {n = 7\left( {tm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 37: Vận dụng

    Mạnh cầm một tờ giấy và lấy kéo cắt thành 7 mảnh sau đó nhặt một trong số bảy mảnh giấy đã cắt và lại cắt thành 7 mảnh. Mạnh cứ tiếp tục cắt như vậy. Sau một hồi, Mạnh thu lại và đếm tất cả các mảnh giấy đã cắt. Hỏi kết quả nào sau đây có thể xảy ra?

    Mỗi lần cắt một mảnh giấy thành 7 mảnh, tức là Mạnh tạo thêm 6 mảnh giấy. Do đó công thức tính số mảnh giấy theo n bước được thực hiện là S_n = 6n + 1.

    Ta chứng minh tính đúng đắn của công thức trên bằng phương pháp quy nạp theo n.

    Với n=1 ta có: {S_1} = 6.1 + 1 = 7 (đúng) 

    Giả sử sau k bước, Mạnh thu được số mảnh giấy là: {S_k} = 6.k + 1

    Tiếp tục đến bước n=k+1. Mạnh lấy một trong số những mảnh giấy nhận được trong k bước cắt trước và cắt thành 7 mảnh. Tức là Mạnh đã lấy đi 1 trong S_k mảnh và thay vào đó 7 mảnh được cắt ra.

    Vậy tổng số mảnh giấy ở bước k+1 là:

    \begin{matrix}  {S_{k + 1}} = {S_k} - 1 + 7 \hfill \\   = {S_k} + 6 \hfill \\   = 6k + 1 + 6 \hfill \\   = 6\left( {k + 1} ight) + 1 \hfill \\ \end{matrix}

    Vậy công thức {S_n} = 6n + 1 đúng với mọi số nguyên dương n. Theo công thức trên chỉ có phương án 121 = 6.20 + 1 thỏa mãn.

  • Câu 38: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

  • Câu 39: Vận dụng

    Cho tập hợp M =
\left\{ 2^{1};2^{2};2^{3};...;2^{2020} ight\}. Số tập hợp con của tập hợp M gồm ba phần tử có thể sắp xếp thành một cấp số nhân tăng là:

    Gọi ba phần tử thỏa mãn yêu cầu bài toán là 2^{a} < 2^{b} < 2^{c} với a,b,c \in \left\{ 1;2;...;2020
ight\}

    2^{a};2^{b};2^{c} lập thành một cấp số nhân

    Suy ra a,b,c lập thành một cấp số cộng

    \Rightarrow a + b = 2c

    Thấy rằng a và c phải cùng tính chẵn lẻ.

    Khi đó số tập con thỏa mãn yêu cầu bài toán là C_{1010}^{2} + C_{1010}^{2} = 1019090

  • Câu 40: Thông hiểu

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + n^{3},\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Số nguyên dương n nhỏ nhất sao cho \sqrt{u_{n} - 1} \geq 2039190 là?

    Ta có: \left\{ \begin{matrix}
\begin{matrix}
\begin{matrix}
\begin{matrix}
u_{1} = 1 \\
u_{2} = u_{1} + 1^{3} \\
\end{matrix} \\
u_{3} = u_{2} + 2^{3} \\
\end{matrix} \\
\ldots \\
\end{matrix} \\
u_{n + 1} = u_{n} + n^{3} \\
\end{matrix} ight.

     =  > un = 1 + 13 + 23 + … + (n−1)3

    Ta lại có 13 + 23 + … + (n−1)3

    = (1 + 2 + 3 + \ldots + n - 1)^{2} =
\left( \frac{n(n - 1)}{2} ight)^{2}

    Suy ra u_{n} = 1 + \left( \frac{n(n -
1)}{2} ight)^{2}

    Theo giả thiết ta có \sqrt{u_{n} - 1} \geq2039190 \Leftrightarrow \frac{n(n - 1)}{2} \geq 2039190

    \Leftrightarrow n(n - 1) \geq 4078380 \Leftrightarrow \left\lbrack \begin{matrix}n \geq 2020 \ \leq - 2019 \\\end{matrix} ight.

    n là số nguyên dương nhỏ nhất nên n = 2020.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 28 lượt xem
Sắp xếp theo