Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Cánh Diều.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho dãy số (u_{n}), biết {u_n} = \cos n + \sin n. Dãy số (u_{n}) bị chặn trên bởi số nào dưới đây?

     Ta có:

    \begin{matrix}  {u_n} = \cos n + \sin n \hfill \\   = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin n + \dfrac{1}{{\sqrt 2 }}\cos n} ight) \hfill \\   = \sqrt 2 \left( {\sin \dfrac{\pi }{4}\sin n + \cos \dfrac{\pi }{4}\cos n} ight) \hfill \\   = \sqrt 2 \cos \left( {n - \dfrac{\pi }{4}} ight) \hfill \\ \end{matrix}

    Với mọi n ta có:

    \begin{matrix}   - 1 \leqslant \cos \left( {n - \dfrac{\pi }{4}} ight) \leqslant 1 \hfill \\   \Leftrightarrow  - \sqrt 2  \leqslant {u_n} = \sqrt 2 \cos \left( {n - \dfrac{\pi }{4}} ight) \leqslant \sqrt 2  \hfill \\ \end{matrix}

    Vậy dãy số (u_{n}) bị chặn trên bởi \sqrt{2}

  • Câu 2: Thông hiểu

    Cho cấp số nhân với các số hạng lần lượt là a; 12; b; 192. Mệnh đề nào dưới đây đúng?

     Ta có: Cấp số nhân với các số hạng lần lượt là a; 12; b; 192

    \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{12}}{a} = \dfrac{b}{{12}}} \\   {\dfrac{b}{{12}} = \dfrac{{192}}{b}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = \dfrac{{144}}{y}} \\   {{b^2} = 2034} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a =  \pm 3} \\   {b =  \pm 48} \end{array}} ight.

  • Câu 3: Nhận biết

    Xác định tham số m > 0 để 2m – 3; m; 2m + 3 lập thành một cấp số nhân.

    Để 2m – 3; m; 2m + 3 lập thành một cấp số nhân thì

    \begin{matrix}  {m^2} = \left( {2m - 3} ight)\left( {2m + 3} ight) \hfill \\   \Leftrightarrow {m^2} = 4{m^2} - 9 \hfill \\   \Leftrightarrow {m^2} = 3 \hfill \\   \Leftrightarrow m =  \pm \sqrt 3  \hfill \\ \end{matrix}

    Do m > 0 => m = \sqrt 3

  • Câu 4: Nhận biết

    Cho cấp số nhân có các số hạng lần lượt là 3;9;27;81. Tìm số hạng tổng quát u_{n} của cấp số nhân đã cho.

    Các số hạng lần lượt là 3;9;27;81 lập thành cấp số nhân

    \Rightarrow \left\{ \begin{matrix}u_{1} = 3 \\q = \dfrac{9}{3} = 3 \\\end{matrix} ight.\  \Rightarrow u_{n} = u_{1}.q^{n - 1} = 3.3^{n - 1}= 3^{n}

  • Câu 5: Vận dụng cao

    Tính tổng 3 + 33 + 333 + ... + 33...33 + ....

     Ta có:

    \begin{matrix}  S = 3\left( {1 + 11 + 111 + ... + 11...1} ight) \hfill \\  S = 3.\left( {\dfrac{{10 - 1}}{9} + \dfrac{{{{10}^2} - 1}}{9} + ... + \dfrac{{{{10}^n} - 1}}{9}} ight) \hfill \\  S = \dfrac{3}{9}.\left( {10 + {{10}^2} + ... + {{10}^n} - n} ight) \hfill \\  S = \dfrac{1}{3}.\left( {10.\dfrac{{{{10}^n} - 1}}{{10 - 1}} - n} ight) = \dfrac{1}{{27}}.\left( {{{10}^{n + 1}} - 10 - 9n} ight) \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) với u_{1} = 2;d = 9. Khi đó số 2018 là số hạng thứ mấy trong dãy?

    Theo bài ra ta có:

    u_{n} = u_{1} + (n - 1)d

    \Leftrightarrow 2018 = 2 + (n -
1)d

    \Leftrightarrow n = 225

  • Câu 7: Nhận biết

    Cho dãy số (un) là một cấp số nhân có số hạng đầu u1 và công bội q. Đẳng thức nào sau đây sai?

    Từ định nghĩa cấp số nhân ta có các kết quả sau:

    \begin{matrix}  {u_{n + 1}} = {u_n}.q;\left( {n \geqslant 1} ight) \hfill \\  {u_n} = {u_1}.{q^{n - 1}};\left( {n \geqslant 2} ight) \hfill \\  {u_k}^2 = {u_{k - 1}}.{u_{k + 1}};\left( {k \geqslant 2} ight) \hfill \\ \end{matrix}

    Đáp án C sai

  • Câu 8: Nhận biết

    Trong các dãy số sau, dãy số nào không phải cấp số nhân?

    Xét đáp án 1^{2};2^{2};3^{2};4^{2};...\Leftrightarrow \frac{u_{2}}{u_{1}} = 4 eq
\frac{9}{4} = \frac{u_{3}}{u_{2}}

    => Dãy số 1^{2};2^{2};3^{2};4^{2};... không phải là cấp số nhân.

  • Câu 9: Thông hiểu

    Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:0,212121\ldots =
\frac{a}{b}; 4,333\ldots =
\frac{c}{d}. Khi đó:

    a) a + b = 40. Đúng||Sai

    b) Ba số a;b;58 tạo thành một cấp số cộng. Sai||Đúng

    c) c + d = 15. Sai||Đúng

    d) \lim c = 13. Đúng||Sai

    Đáp án là:

    Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:0,212121\ldots =
\frac{a}{b}; 4,333\ldots =
\frac{c}{d}. Khi đó:

    a) a + b = 40. Đúng||Sai

    b) Ba số a;b;58 tạo thành một cấp số cộng. Sai||Đúng

    c) c + d = 15. Sai||Đúng

    d) \lim c = 13. Đúng||Sai

    Ta có: 0,212121\ldots = 0,21 + 0,0021 +
0,000021 + \ldots

    Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu 0,21 và công bội \frac{1}{100}.

    Vì vậy

    0,212121\ldots = 0,21 + 0,0021 +0,000021 + \ldots= \frac{0,21}{1 - \frac{1}{100}} =\frac{7}{33}.

    Ta có: 0,333\ldots = 0,3 + 0,03 + 0,003 +
\ldots

    Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 0,3 và công bội là \frac{1}{10}

    Vì vậy

    4,333\ldots = 4 + 0,3 + 0,03 +0,003 + \ldots= 4 + \frac{0,3}{1 - \frac{1}{10}} =\frac{13}{3}.

    Kết luận:

    a) Đúng

    b) Sai

    c) Sai

    d) Đúng

  • Câu 10: Thông hiểu

    Cho một cấp số cộng \left( u_{n} ight)u_{4} = - 12;u_{14} = 18. Giá trị S_{16} bằng bao nhiêu?

    Ta có:

    \left\{ \begin{matrix}
u_{4} = - 12 \\
u_{14} = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + 3d = - 12 \\
u_{1} + 13d = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 21 \\
d = 3 \\
\end{matrix} ight.

    Tổng của 16 số hạng đầu tiên của cấp số cộng là:

    S_{16} = \frac{\left( 2u_{1} + 15d
ight).16}{2} = 24

  • Câu 11: Vận dụng cao

    Cho một dãy số có các số hạng đầu tiên là 1,8,22,43,... Hiệu của hai số hạng liên tiếp của dãy số đó lập thành 1 cấp số cộng: 7,14,21,..., 7n. Số 35351 là số hạng thứ bao nhiêu của dãy số đã cho?

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_2} - {u_1} = 7} \\   {{u_3} - {u_2} = 14} \\   \begin{gathered}  {u_4} - {u_3} = 21 \hfill \\  ... \hfill \\ \end{gathered}  \\   {{u_n} - {u_{n - 1}} = 7\left( {n - 1} ight)} \end{array}} ight.

    Cộng vế với vế của phương trình ta được:

    \begin{matrix}  {u_n} - {u_1} = 7 + 14 + 21 + ... + 7\left( {n - 1} ight) \hfill \\   \Rightarrow {u_n} - {u_1} = \dfrac{{7n.\left( {n - 1} ight)}}{2} \hfill \\   \Rightarrow 35331 - 1 = \dfrac{{7n.\left( {n - 1} ight)}}{2} \hfill \\   \Leftrightarrow {n^2} - n - 10100 = 0 \hfill \\   \Leftrightarrow n = 101 \hfill \\ \end{matrix}

     Vậy số 35351 là số hạng thứ 101 của dãy số đã cho.

  • Câu 12: Vận dụng

    Trong các dãy số sau, dãy nào là dãy số tăng?

    Đáp án u_n = \sin (n)  và In = (−1)n ⋅ n là các dãy không tăng, không giảm.

    Xét đáp án v_{n} = \frac{n - 1}{n +
1}, ta có:

    v_{n} = 1 - \frac{2}{n + 1} \Rightarrow
v_{n + 1} - v_{n} = \frac{2}{n + 1} - \frac{2}{n + 2} > 0,\forall n
\in \mathbb{N}^{*}

    Suy ra (vn) là dãy số tăng.

  • Câu 13: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight)với u_{n} = 3n - 7. Tìm số hạng đầu u_{1} và công sai d của cấp số cộng trên.

    Ta có:

    u_{n} = 3n - 7 \Rightarrow u_{1} = 3.1 -
7 = - 4

    u_{n} - u_{n - 1} = (3n - 7) - (3n - 3 -
7) = 3 \Rightarrow d = 3

  • Câu 14: Thông hiểu

    Cho \left( u_{n} ight) là cấp số cộng biết u_{3} + u_{13} = 80. Tổng 15 số hạng đầu của cấp số cộng đó bằng

    Ta có:

    u_{3} + u_{13} = 80

    \Leftrightarrow (u_{1} + 2d) + (u_{1} +
12d) = 80

    \Leftrightarrow 2u_{1} + 14d =
80

    Vậy S_{15} = \frac{15}{2}\left( 2u_{1} +
14d ight) = \frac{15}{2}.80 = 600

  • Câu 15: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?

    Dãy (un) là một cấp số cộng

    => {u_n} = an + b với a, b là hằng số

    => {u_n} = 6 - 3n

  • Câu 16: Vận dụng

    Cho dãy số (un) xác định bởi {u_1} = 2;{u_{n + 1}} =  - 2{u_n};\left( {n \geqslant 1,n \in \mathbb{N}} ight). Tính tổng của 10 số hạng đầu tiên của dãy số?

     Ta có:

    \begin{matrix}  \dfrac{{{u_{n + 1}}}}{{{u_n}}} =  - 2 \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {q =  - 2} \end{array}} ight. \hfill \\   \Rightarrow {S_{10}} = \dfrac{{{u_1}.\left( {1 - {q^{10}}} ight)}}{{1 - q}} =  - 682 \hfill \\ \end{matrix}

  • Câu 17: Nhận biết

    Cho dãy số \left( u_{n} ight) xác định bởi \left\{ \begin{matrix}
u_{1} = \frac{1}{2} \\
u_{n} = \frac{1}{2 - u_{n - 1}},\ \forall n \geq 2 \\
\end{matrix} ight.. Khi đó u_{3} có giá trị bằng

    Theo công thức truy hồi ta có

    u_{2} = \frac{1}{2 - \frac{1}{2}} =
\frac{2}{3} \Rightarrow u_{3} = \frac{1}{2 - \frac{2}{3}} =
\frac{3}{4}.

  • Câu 18: Thông hiểu

    Cho dãy số \left( u_{n} ight) có số hạng tổng quát u_{n} = \frac{( - 1)^{n}}{1 + n}. Khẳng định nào sau đây sai?

    Ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4}

    \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight.

    Vậy dãy số đã cho không tăng không giảm.

    Khẳng định sai là: “Dãy số \left( u_{n}
ight) là dãy giảm”

  • Câu 19: Vận dụng

    Ba góc của một tam giác vuông tạo thành cấp số cộng. Hai góc nhọn của tam giác có số đo (độ) là:

    Ba góc A, B, C của một tam giác vuông theo thứ tự đó (A < B < C) lập thành một cấp số cộng nên

    \left\{ \begin{matrix}C = 90^{0} \\C + A = 2B \\A + B + C = 180^{0} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}C = 90^{0} \\C + A = 2B \\3B = 180^{0} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}C = 90^{0} \\A = 30^{0} \\B = 60^{0} \\\end{matrix} ight.

  • Câu 20: Thông hiểu

    Tìm x để ba số 1
+ x;9 + x;33 + x theo thứ tự đó lập thành một cấp số nhân.

    Ta có:

    Ba số 1 + x;9 + x;33 + x theo thứ tự đó lập thành một cấp số nhân

    \Rightarrow (9 + x)^{2} = (1 + x).(33 +
x)

    \Rightarrow 81 + 18x + x^{2} = x^{2} +
34x + 33

    \Rightarrow 16x = 48

    \Rightarrow x = 3

  • Câu 21: Nhận biết

    Tính tổng 10 số hạng đầu của cấp số cộng u_{1} = 5;u_{2} = 9.

    Theo bài ra ta có:

    d = u_{2} - u_{1} = 4

    \Rightarrow S_{10} = \frac{10}{2}.\left(
u_{1} + u_{10} ight) = 5\left( 2u_{1} + 9d ight) = 230

  • Câu 22: Vận dụng

    Xét tính tăng giảm của dãy số u_{n} = n - \sqrt{n^{2} - 1}, ta thu được kết quả

    Ta có u_{n + 1} - u_{n} = \frac{1}{(n + 1)
+ \sqrt{(n + 1)^{2} - 1}} - \frac{1}{n + \sqrt{n^{2} - 1}} <
0

    Vậy dãy (un) là dãy số giảm.

  • Câu 23: Thông hiểu

    Cho dãy số \left( u_{n} ight) biết \left\{ \begin{matrix}u_{1} = 3 \\u_{n + 1} = 3u_{n} \\\end{matrix},\forall n \in N^{*} ight.. Tìm số hạng tổng quát của dãy số \left( u_{n}ight).

    Ta có u_{1} = 3\frac{u_{n+1}}{u_{n}}=3

    Suy ra dãy số \left( u_{n}ight)là cấp số nhân với \left\{\begin{matrix}u_{1} = 3 \\q = 3 \\\end{matrix} ight.

    Do đó u_{n} = u_{1}.q^{n - 1} = 3.3^{n -1} = 3^{n}

  • Câu 24: Thông hiểu

    Cho cấp số cộng {u_1} =  - 3;d = 4. Chọn khẳng định đúng trong các khẳng định sau?

     Ta có: {u_3} = {u_1} + 2d =  - 3 + 2.4 = 5

  • Câu 25: Nhận biết

    Cho dãy số u_{n}
= \frac{n^{2} + 2n - 1}{n + 1}. Giá trị u11

    Ta có u_{11} = \frac{11^{2} + 2.11 - 1}{11
+ 1} = \frac{71}{6}

  • Câu 26: Thông hiểu

    Cho dãy số (u_{n}), biết {u_n} = \frac{{n + 1}}{{2n + 1}}. Số \frac{8}{15} là số hạng thứ mấy của dãy số?

    Ta có: 

    \begin{matrix}  {u_k} = \dfrac{8}{{15}} \hfill \\   \Leftrightarrow \dfrac{{k + 1}}{{2k + 1}} = \dfrac{8}{{15}};\left( {k \in {\mathbb{N}^*}} ight) \hfill \\   \Leftrightarrow 15\left( {k + 1} ight) = 8\left( {2k + 1} ight) \hfill \\   \Leftrightarrow 15k + 15 = 16k + 8 \hfill \\   \Leftrightarrow k = 7 \hfill \\ \end{matrix}

    Vậy số \frac{8}{15} là số hạng thứ 7 của dãy số.

  • Câu 27: Vận dụng

    Tính tổng S = 1
- 2 + 3 - 4 + 5 + ... + (2n - 1) - 2n với n \geq 1;n\mathbb{\in N}.

    Với \forall n \in \mathbb{N}^{*} thì (2n - 1) - 2n = - 1

    Ta có:

    S = 1 - 2 + 3 - 4 + 5 + ... + (2n - 1) -
2n

    S = (1 - 2) + (3 - 4) + (5 - 6) + ... +
\left\lbrack (2n - 1) - 2n ightbrack

    Do đó ta xem S là tổng của n số hạng, mà mỗi số hạng đều bằng -1..

    => S = - 1

    Ta có: 1;3;5;...;2n - 12;4;6;...;2n là cấp số cộng có n số hạng nên.

    S = (1 + 3 + 5 + ... + 2n - 1) - (2 + 4
+ 6 + ... + 2n)

    S = \frac{n}{2}.(1 + 2n - 1) -
\frac{n}{2}.(2 + 2n)

    S = n^{2} - \left( n^{2} + n ight) = -
n

  • Câu 28: Nhận biết

    Cho dãy số \left(
u_{n} ight) xác định bởi u_{n} =
\frac{n^{2} + 3n + 7}{n + 1}. Ba số hạng đầu tiên của dãy là:

    Ba số hạng đầu tiên của dãy là \frac{11}{2};\frac{17}{3};\frac{25}{4}

  • Câu 29: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Dãy số 1; 2; 3; 4; 5 là một cấp số cộng với công sai là d = 1

    Dãy số 1; 2; 4; 8; 16 là một cấp số nhân với công bội q = 2

    Dãy số 1; -1; 1; -1; 1 là một cấp số nhân với công bội q = -1

    Dãy số 1; -2; 4; -8; 16 là một cấp số nhân với công bội q = -2

  • Câu 30: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} =
2 và công sai d = 3. Giá trị u_{2024} bằng

    Áp dụng công thức số hạng tổng quát

    u_{2024} = u_{1} + 2023d = 2 + 2023.3 = 6071.

  • Câu 31: Vận dụng

    Giả sử \sin \frac{a}{6};\cos a;\tan a theo thứ tự lập thành một cấp số nhân. Khi đó \cos 2a bằng:

    Điều kiện \cos a e 0 \Leftrightarrow a e \frac{\pi }{2} + k\pi ;\left( {k \in \mathbb{Z}} ight)

    Theo tính chất của cấp số nhân ta có:

    \begin{matrix}  {\cos ^2}a = \dfrac{{\sin a}}{6}.\tan a \hfill \\   \Leftrightarrow 6{\cos ^2}a = \dfrac{{{{\sin }^2}a}}{{\cos a}} \hfill \\   \Leftrightarrow 6{\cos ^3}a - {\sin ^2}a = 0 \hfill \\   \Leftrightarrow 6{\cos ^3}a + {\cos ^2}a - 1 = 0 \hfill \\   \Leftrightarrow {\cos ^2}a = \dfrac{1}{2} \hfill \\   \Rightarrow \cos 2a = 2{\cos ^2}a - 1 = 2.{\left( {\dfrac{1}{2}} ight)^2} - 1 =  - \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 32: Thông hiểu

    Tìm tất cả các giá trị của x để ba số 2x - 1;x;2x + 1 theo thứ tự lập thành một cấp số nhân.

    Ta có:

    Ba số 2x - 1;x;2x + 1 theo thứ tự lập thành một cấp số nhân

    \Rightarrow x^{2} = (2x - 1).(2x +
1)

    \Rightarrow x^{2} = 4x^{2} -
1

    \Rightarrow 3x^{2} = 1

    \Rightarrow x = \pm
\frac{1}{\sqrt{3}}

  • Câu 33: Thông hiểu

    Với giá trị nào của x;y thì các số hạng - 2;x; - 18;y theo thứ tự đó lập thành cấp số nhân?

    Ta có: các số hạng - 2;x; -
18;ylập thành cấp số nhân

    \Rightarrow \left\{ \begin{matrix}\dfrac{x}{- 2} = \dfrac{- 18}{x} \\\dfrac{- 18}{x} = \dfrac{y}{- 18} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \pm 6 \\y = \dfrac{324}{x} = \pm 54 \\\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(x;y) = (6;54) \\
(x;y) = ( - 6;54) \\
\end{matrix} ight.

  • Câu 34: Thông hiểu

    Cho cấp số cộng (Un) có u_1=11 và công sai d = 4. Tính {u_{99}}?

    Ta có: {u_{99}} = {u_1} + 99d = 11 + 98.4 = 403

  • Câu 35: Thông hiểu

    Có bao nhiêu giá trị nguyên của a để ba số a^{4};a^{2};3a^{2} - 9 lập thành một cấp số cộng?

    Để ba số a^{4};a^{2};3a^{2} - 9 lập thành một cấp số cộng thì a^{4} + 3a^{2}
- 9 = 2a^{2}

    Đặt t = a^{2};(t \geq 0) phương trình trở thành

    t^{2} + t - 9 = 0\Leftrightarrow \left\lbrack \begin{matrix}t = \dfrac{- 1 + \sqrt{37}}{2} \\t = \dfrac{- 1 - \sqrt{37}}{2}(l) \\\end{matrix} ight.

    Với t = \frac{- 1 + \sqrt{37}}{2}
\Rightarrow a = \pm \sqrt{\frac{- 1 + \sqrt{37}}{2}}

    Do a\mathbb{\in Z} vậy không có giá trị nào của a thỏa mãn yêu cầu để bài.

  • Câu 36: Thông hiểu

    Một cấp số nhân có 6 số hạng, số hạng đầu bằng 2 và số hạng thứ sáu bằng 486. Tìm công bội q của cấp số nhân đã cho.

    Ta có:

    Cấp số nhân có số hạng đầu bằng 2 và số hạng thứ sáu bằng 486

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {{u_6} = 486} \end{array}} ight.

    => {{u_1}.{q^5} = 486}

    => {{q^5} = 243} => {q = 3}

    Vậy công bội q của cấp số nhân đã cho là q = 3

  • Câu 37: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

  • Câu 38: Nhận biết

    Dãy số nào dưới đây là dãy số nguyên tố nhỏ hơn 10 theo thứ tự tăng dần?

    Số nguyên tố là số tự nhiên lớn hơn 1 và chỉ có hai ước số là 1 và chính nó.

    Vậy dãy số nguyên tố nhỏ hơn 102, 3, 5, 7.

  • Câu 39: Vận dụng cao

    Xác định công thức tổng quát của dãy số \left\{ \begin{matrix}u_{1} = \dfrac{- 1}{2} \\u_{n + 1} = \sqrt{\dfrac{u_{n} + 1}{2}};n \geq 1 \\\end{matrix} ight..

    Ta có: \left\{ \begin{matrix}u_{2} = \sqrt{\dfrac{u_{1} + 1}{2} = \dfrac{1}{2}} \\u_{3} = \sqrt{\dfrac{u_{2} + 1}{2}} = \dfrac{\sqrt{3}}{2} \\\end{matrix} ight.

    Nhận thấy \left\{ \begin{matrix}u_{1} = - \dfrac{1}{2} = \cos\left( \dfrac{2\pi}{3} ight) \\u_{2} = \dfrac{1}{2} = \cos\left( \dfrac{\pi}{3} ight) \\u_{3} = \dfrac{1}{2} = \dfrac{\sqrt{3}}{2} = \cos\left( \frac{\pi}{6}ight) \\\end{matrix} ight.

    Dự đoán u_{n} = \cos\left(
\frac{4\pi}{3.2^{n}} ight)(*)

    Ta chứng minh bằng quy nạp

    Trước hết u_{1} = \cos\left(
\frac{2\pi}{3} ight) = \cos\left( \frac{4\pi}{3.2^{1}}
ight) đúng với n = 1

    Giả sử (*) đúng khi n = k;k \in \mathbb{N}^{*}. Khi đó u_{k} = \cos\left( \frac{4\pi}{3.2^{k}}
ight)

    Ta có:

    u_{k + 1} = \sqrt{\dfrac{u_{k} + 1}{2}} =\sqrt{\dfrac{\cos\left( \dfrac{4\pi}{3.2^{k}} ight) +1}{2}}

    = \sqrt{\dfrac{\cos\left(2.\dfrac{4\pi}{3.2^{k + 1}} ight) + 1}{2}}

    = \sqrt{\dfrac{2.\left\lbrack \cos\left(\dfrac{4\pi}{3.2^{k + 1}} ight) ightbrack^{2} - 1 +1}{2}}

    = \sqrt{\left\lbrack \cos\left(\dfrac{4\pi}{3.2^{k + 1}} ight) ightbrack^{2}}

    = \left| \cos\left( \dfrac{4\pi}{3.2^{k +1}} ight) ight|

    Mặt khác ta có k \geq 1. Do đó 0 \leq \frac{4\pi}{3.2^{k + 1}} \leq
\frac{4\pi}{3.2^{1 + 1}} = \frac{\pi}{3} < \frac{\pi}{2}

    Vậy \cos\left( \dfrac{4\pi}{3.2^{k + 1}}ight) \geq 0 \Rightarrow u_{k + 1} = \cos\left( \dfrac{4\pi}{3.2^{k +1}} ight)

    Vậy (*) đúng với n = k + 1. Theo nguyên lí quy nạp, ta có điều phải chứng minh.

  • Câu 40: Nhận biết

    Trong các dãy số sau đây, dãy số nào là cấp số cộng?

    Ta có dãy số 1; - 3; - 7; - 11; -
15 là một cấp số cộng có công sai d
= - 4.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo