Đề kiểm tra 45 phút Toán 11 Chương 2 Chân trời sáng tạo

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số Cấp số cộng Cấp số nhân giác gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Chân trời sáng tạo.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Nếu các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì m bằng bao nhiêu?

    Để các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì:

    \begin{matrix}  5 + m + 17 + m = 2\left( {7 + 2m} ight) \hfill \\   \Leftrightarrow 5 + m + 17 + m = 2\left( {7 + 2m} ight) \hfill \\   \Leftrightarrow 2m = 8 \Rightarrow m = 4 \hfill \\ \end{matrix}

    Vậy nếu các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì m = 4

  • Câu 2: Thông hiểu

    Cho cấp số nhân \left( u_{n}
ight)u_{2} = - 6,u_{5} =
48. Tính S_{5}.

    Ta có \left\{ \begin{matrix}
u_{1}.q = - 6 \\
u_{1}.q^{4} = 48 \\
\end{matrix} \Rightarrow \left\{ \begin{matrix}
u_{1}.q = - 6 \\
q^{3} = - 8 \\
\end{matrix} \Rightarrow \left\{ \begin{matrix}
u_{1} = 3 \\
q = - 2 \\
\end{matrix} ight.\  ight.\  ight.

    Vậy S_{5} = \frac{3\left( 1 - ( - 2)^{5}
ight)}{1 - ( - 2)} = 33.

  • Câu 3: Thông hiểu

    Tìm x và y để dãy số 9;x; - 1;y là một cấp số cộng?

    Để dãy số 9;x; - 1;y là một cấp số cộng thì \left\{ \begin{matrix}x = \dfrac{9 - 1}{2} \\- 1 = \dfrac{x + y}{2} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = 4 \\y = - 6 \\\end{matrix} ight.

  • Câu 4: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    a) Xét dãy số đã cho ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4} \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số \left( u_{n} ight) không tăng không giảm.

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}" đúng bằng chứng minh quy nạp.

    c) Công sai d = 5 và số hạng đầu tiên bằng u_{1} = - 2020

    Khi đó số hạng tổng quát của cấp số cộng là

    u_{n} = u_{1} + 5(n - 1)

    \Rightarrow u_{n} = - 2025 +
5n

    d) Từ giả thiết ta có:

    \left\{ \begin{matrix}
u_{1} = 160 \\
u_{6} = 5 \\
\end{matrix} ight.\  \Rightarrow q = \sqrt[5]{\frac{u_{6}}{u_{1}}} =
\frac{1}{2}

    Suy ra tổng các số hạng của cấp số nhân đó là: S = \dfrac{u_{1}\left( 1 - q^{6} ight)}{1 - q} =\dfrac{160.\left\lbrack 1 - \left( \dfrac{1}{2} ight)^{6}ightbrack}{\dfrac{1}{2}} = 315.

  • Câu 5: Nhận biết

    Với n \in \mathbb{N}^{*}, cho dãy số \left( u_{n} ight) gồm các số nguyên dương chia hết cho 7: 7, 14, 21, 28, …Công thức số hạng tổng quát của dãy số này là:

    Ta có u_{1} = 7 = 7.1, u_{2} = 14 = 7.2, u_{3} = 21 = 7.3, u_{4} = 28 = 7.4,…

    Suy ra u_{n} = 7n.

  • Câu 6: Thông hiểu

    Một cấp số nhân có 6 số hạng với công bội bằng 2 và tổng số các số hạng bằng 189. Tìm số hạng cuối u_{6} của cấp số nhân đã cho.

    Theo giả thiết ta có:

    \left\{ \begin{matrix}q = 2 \\S_{6} = 189 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}q = 2 \\u_{1}.\dfrac{1 - q^{6}}{1 - q} = 189 \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}q = 2 \\u_{1}.\dfrac{1 - 2^{6}}{1 - 2} = 189 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}q = 2 \\u_{1} = 3 \\\end{matrix} ight.

    \Rightarrow u_{6} = u_{1}.q^{5} =
3.2^{6} = 96

  • Câu 7: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight) có tổng n số hạng đầu tiên là S_{n} = 5^{n} - 1. Tìm số hạng thứ 4 của cấp số nhân đã cho.

    Ta có:

    S_{n} = 5^{n - 1}

    \Rightarrow u_{1}.\frac{1 - q^{n}}{1 -q} = 5^{n - 1}

    \Rightarrow \left\{ \begin{matrix}u_{1} = q - 1 \\q = 5 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 4 \\q = 5 \\\end{matrix} ight.

    Khi đó u_{4} = u_{1}.q^{3} = 4.5^{3} =500

  • Câu 8: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} = -
\frac{1}{2}, công sai d =
\frac{1}{2}. Năm số hạng liên tiếp đầu tiên của cấp số cộng là:

    Ta dùng công thức tổng quát u_{n} = u_{1}
+ (n - 1)d = - \frac{1}{2} + (n - 1)\frac{1}{2} = - 1 +
\frac{n}{2}, hoặc u_{n + 1} = u_{n}
+ d = u_{n} + \frac{1}{2} để tính các số hạng của một cấp số cộng.

    Ta có u_{1} = - \dfrac{1}{2};\ \ d =\dfrac{1}{2}\overset{ightarrow}{}\left\{ \begin{matrix}u_{1} = - \dfrac{1}{2} \\u_{2} = u_{1} + d = 0 \\u_{3} - u_{2} + d = \dfrac{1}{2} \\u_{4} = u_{3} + d = 1 \\u_{5} = u_{4} + d = \dfrac{3}{2} \\\end{matrix} ight.

  • Câu 9: Thông hiểu

    Cho dãy số \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_{n + 1}} = {u_n} + n} \end{array}} ight.. Tìm số hạng thứ 5 của dãy số:

    Ta có:

    \begin{matrix}  {u_2} = {u_1} + 1 = 5 \hfill \\  {u_3} = {u_2} + 2 = 7 \hfill \\  {u_4} = {u_3} + 3 = 10 \hfill \\ \end{matrix}

    Do đó số hạng thứ 5 của dãy số là Sử dụng công thức: {u_5} = {u_4} + 4 = 14

  • Câu 10: Nhận biết

    Biết bốn số 5;x;15;y theo thứ tự lập thành cấp số cộng. Giá trị của biểu thức 3x + 2y bằng

    Ta có:

    x = \frac{5 + 15}{2} = 10 \Rightarrow y= 20

    \Rightarrow 3x + 2y = 70

  • Câu 11: Nhận biết

    Cho dãy số (un)u1 = 7; un + 1 = 2un + 3. Khi đó u3 bằng?

    Ta có u3 = 2u2 + 3 = 2 ⋅ (2u1+3) + 3 = 4u1 + 9 − 4 ⋅ 7 + 9 = 37.

  • Câu 12: Thông hiểu

    Với giá trị nào của x và y thì các số -7; x; 11; y theo thứ tự đó lập thành một cấp số cộng?

    Ta có:

    Các số -7; x; 11 theo thứ tự đó lập thành một cấp số cộng

    => - 7 + 11 = 2.x \Rightarrow x = 2

    Tương tự các số 2; 11; y theo thứ tự đó lập thành một cấp số cộng

    => 2 + y = 2.11 \Rightarrow y = 20

    Vậy x = 2; y = 20

  • Câu 13: Thông hiểu

    Có bao nhiêu giá trị nguyên của a để ba số a^{4};a^{2};3a^{2} - 9 lập thành một cấp số cộng?

    Để ba số a^{4};a^{2};3a^{2} - 9 lập thành một cấp số cộng thì a^{4} + 3a^{2}
- 9 = 2a^{2}

    Đặt t = a^{2};(t \geq 0) phương trình trở thành

    t^{2} + t - 9 = 0\Leftrightarrow \left\lbrack \begin{matrix}t = \dfrac{- 1 + \sqrt{37}}{2} \\t = \dfrac{- 1 - \sqrt{37}}{2}(l) \\\end{matrix} ight.

    Với t = \frac{- 1 + \sqrt{37}}{2}
\Rightarrow a = \pm \sqrt{\frac{- 1 + \sqrt{37}}{2}}

    Do a\mathbb{\in Z} vậy không có giá trị nào của a thỏa mãn yêu cầu để bài.

  • Câu 14: Nhận biết

    Trong các dãy số \left( u_{n} ight) cho bởi số hạng tổng quát u_{n}, dãy nào là cấp số nhân?

    Dãy u_{n} = \frac{1}{3^{n - 2}} =
9.\left( \frac{1}{3} ight)^{n} là cấp số nhân có \left\{ \begin{matrix}u_{1} = 3 \\q = \dfrac{1}{3} \\\end{matrix} ight.

  • Câu 15: Nhận biết

    Khẳng định nào dưới đây sai?

    Số hạng tổng quát của cấp số cộng (un) là {u_n} = {u_1} + \left( {n - 1} ight)d với công sai d và số hạng đầu u1

  • Câu 16: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?

    Ta có:

    Dãy \left( u_{n} ight) là một cấp số cộng

    \Leftrightarrow u_{n} = u_{n - 1} +
d với d là hằng số.

    Hay u_{n} - u_{n - 1} = d

    => Cấp số cộng cần tìm là: \left\{
\begin{matrix}
u_{1} = 1 \\
u_{n} = u_{n - 1} - 1 \\
\end{matrix} ight.

  • Câu 17: Thông hiểu

    Một dãy số được xác định bởi u_{1} = - 4;u_{n} = - \frac{1}{2}u_{n - 1};(n \geq
2). Số hạng tổng quát u_{n} của dãy số đó là:

    Ta có: \left\{ \begin{matrix}
u_{1} = - 4 \\
u_{n + 1} = - \frac{1}{2}u_{n} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = - 4 \\
q = - \frac{1}{2} \\
\end{matrix} ight.

    \Rightarrow u_{n} = u_{1}.q^{n - 1} = -
4.\left( - \frac{1}{2} ight)^{n - 1}

  • Câu 18: Nhận biết

    Cho cấp số cộng (un) có u_1 = -4; d = \frac{1}{2}. Khẳng định nào sau đây là khẳng định đúng?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} =  - 4} \\   {d = \dfrac{1}{2}} \end{array}\mathop  \to \limits^{CTTQ} } ight.{u_n} = {u_1} + \left( {n - 1} ight)d =  - 4 + \dfrac{1}{2}\left( {n - 1} ight) \hfill \\   \Rightarrow {u_n} =  - 4 + \dfrac{1}{2}\left( {n - 1} ight) \hfill \\ \end{matrix}

  • Câu 19: Vận dụng

    Tính tổng S = -
2 + 4 - 8 + 16 - 32 + 64 - ... + ( - 2)^{n - 1} + ( - 2)^{n} với n \geq 1,n\mathbb{\in N}.

    Các số hạng - 2;4; - 8;16; - 32;64;...;(
- 2)^{n - 1};( - 2)^{n} có tổng S gồm có n số hạng theo thứ tự đó lập thành một cấp số nhân có u_{1} = -
2;q = - 2

    \Rightarrow S = S_{n} = u_{1}.\frac{1 -
q^{n}}{1 - q}

    \Rightarrow S = ( - 2).\frac{1 - ( -
2)^{n}}{3}

  • Câu 20: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) có số hạng đầu và công sai lần lượt là - 2;3. Số hạng thứ 10 bằng:

    Ta có: u_{1} = - 2;d = 3

    \Rightarrow u_{10} = u_{1} + 9d =
25

  • Câu 21: Vận dụng

    Xét tính bị chặn của dãy số u_{n} = \frac{1}{1.3} + \frac{1}{2.4} + \ldots +
\frac{1}{n(n + 2)}, ta thu được kết quả?

    Ta có 0 < u_{n} < \frac{1}{1.2} +
\frac{1}{2.3} + \ldots + \frac{1}{n \cdot (n + 1)} = 1 - \frac{1}{n + 1}
< 1

    Dãy (un) bị chặn.

  • Câu 22: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{n} = - 2 \\
u_{n + 1} = - 2 - \frac{1}{u_{n}} \\
\end{matrix} ight.. Công thức số hạng tổng quát của dãy số là?

    Ta có u_{1} = - \frac{3}{2};u_{2} = -
\frac{4}{3};u_{3} = - \frac{5}{4};\ldots suy ra được u_{n} = - \frac{n + 1}{n}.

  • Câu 23: Nhận biết

    Cho cấp số nhân \left( u_{n} ight) có số hạng đầu là u_{1} = 1, công bội là q = 2019. Tính u_{2019}?

    Theo công thức cấp số nhân ta có: u_{2019} = u_{1}.q^{n - 1} = 1.2019^{2019 - 1} =
2019^{2018}

  • Câu 24: Vận dụng cao

    Tổng S = {100^2} - {99^2} + {98^2} - {97^2} + ... + {2^2} - {1^2} là: 

    Ta có: S = {100^2} - {99^2} + {98^2} - {97^2} + ... + {2^2} - {1^2} = 199 + 15 + ... + 3

    Xét cấp số cộng (un) có:

    Số hạng đầu là u1 = 199

    Công sai d = u2 – u1 = 195 – 199 = -4

    Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight)d \hfill \\   \Leftrightarrow 3 = 199 - 4\left( {n - 1} ight) \hfill \\   \Rightarrow n = 50 \hfill \\   \Rightarrow S = \dfrac{{n\left( {{u_1} + {u_{50}}} ight)}}{2} = \dfrac{{50\left( {199 + 3} ight)}}{2} = 5050 \hfill \\ \end{matrix}

  • Câu 25: Nhận biết

    Khẳng định nào sau đây là khẳng định sai?

    Khẳng định sai là: “Số hạng tổng quát của cấp số cộng \left( u_{n} ight)u_{n} = u_{1} + nd với công sai d và số hạng đầu u_{1}.”

  • Câu 26: Nhận biết

    Cho dãy số (u_{n}) với u_{n}=\frac{3}{2}.5^{n}. Khẳng định nào sau đây là đúng?

    Ta có: \frac{{{u_{n + 1}}}}{{{u_n}}} = \dfrac{{\dfrac{3}{2}{{.5}^{n + 1}}}}{{\dfrac{3}{2}{{.5}^n}}} = 5 > 1

    => (u_{n}) là một cấp số nhân với công bội là q = 5

    Số hạng đầu tiên của dãy là: {u_1} = \frac{3}{2}{.5^1} = \frac{{15}}{2}

  • Câu 27: Thông hiểu

    Cho cấp số nhân lùi vô hạn \left( {{u_n}} ight) công bội q. Đặt S = {u_1} + {u_2} + ... + {u_n} + ... thì:

    Tổng cấp số nhân là: S = {u_1}.\frac{{1 - {q^n}}}{{1 - q}}

    Do cấp số đã cho là cấp số nhân lùi vô hạn nên ta có:

    \begin{matrix}  \left| q ight| < 1 \Rightarrow {q^n} \mapsto 0 \hfill \\   \Rightarrow 1 - {q^n} \mapsto 1 \hfill \\   \Rightarrow S = \dfrac{{{u_1}}}{{1 - q}} \hfill \\ \end{matrix}

  • Câu 28: Vận dụng cao

    Tính giá trị u2018 của dãy số (un) xác định bởi {u_1} = 1;{u_{n + 1}} = \frac{1}{3}\left( {2{u_n} + \frac{{n - 1}}{{{n^2} + 3n + 2}}} ight);\left( {n \in {\mathbb{N}^*}} ight)

    Ta có:

    \begin{matrix}  {u_{n + 1}} = \dfrac{1}{3}\left( {2{u_n} + \dfrac{{n - 1}}{{{n^2} + 3n + 2}}} ight) \hfill \\  {u_{n + 1}} = \dfrac{1}{3}\left( {2{u_n} + \dfrac{3}{{n + 2}} - \dfrac{2}{{n + 1}}} ight) \hfill \\  {u_{n + 1}} = \dfrac{2}{3}{u_n} + \dfrac{1}{{n + 2}} - \dfrac{2}{3}.\dfrac{1}{{n + 1}} \hfill \\  {u_{n + 1}} - \dfrac{1}{{n + 2}} = \dfrac{2}{3}\left( {{u_n} - \dfrac{1}{{n + 1}}} ight)\left( * ight) \hfill \\ \end{matrix}

    Đặt {v_n} = {u_n} - \frac{1}{{n + 1}} \Rightarrow {v_{n + 1}} = \frac{2}{3}{v_n}

    => Dãy số (vn) là cấp số nhân với {v_1} = {u_1} - \frac{1}{2} = \frac{1}{2};q = \frac{2}{3}

    => {v_n} = {v_1}.{q^{n - 1}} = \frac{1}{2}.{\left( {\frac{2}{3}} ight)^{n - 1}}

    \begin{matrix}   \Rightarrow {u_n} - \dfrac{1}{{n + 1}} = \dfrac{1}{2}.{\left( {\dfrac{2}{3}} ight)^{n - 1}} \hfill \\   \Rightarrow {u_n} = \dfrac{1}{2}.{\left( {\dfrac{2}{3}} ight)^{n - 1}} + \dfrac{1}{{n + 1}} \hfill \\   \Rightarrow {u_{2018}} = \dfrac{1}{2}.{\left( {\dfrac{2}{3}} ight)^{2017}} + \dfrac{1}{{2019}} = \dfrac{{{2^{2016}}}}{{{3^{2017}}}} + \dfrac{1}{{2019}} \hfill \\ \end{matrix}

  • Câu 29: Vận dụng

    Tính tổng A = 15 + 20 + 25 + ... + 7515

     Ta thấy các số hạng của tổng A tạo thành một cấp số cộng với số hạng đầu u1 = 15 và công sai d = 5

    Giả sử tổng trên có n số hạng thì un = 7515

    \begin{matrix}   \Rightarrow {u_1} + \left( {n - 1} ight)d = 7515 \hfill \\   \Rightarrow 15 + \left( {n - 1} ight).5 = 7515 \hfill \\   \Rightarrow n = 1501 \hfill \\ \end{matrix}

    Vậy A = {A_{1501}} = \frac{{\left( {2{u_1} + 1500d} ight).1501}}{2} = \frac{{\left( {2.15 + 1500.5} ight).1501}}{2} = 5651265

     

  • Câu 30: Thông hiểu

    Cho dãy số (u_{n}), biết u_n=\frac{2n+5}{5n-4}. Số \frac{7}{12} là số hạng thứ mấy của dãy số?

    Ta có:

    \begin{matrix}  {u_k} = \dfrac{7}{{12}} \hfill \\   \Leftrightarrow \dfrac{{2k + 5}}{{5k - 4}} = \dfrac{7}{{12}};\left( {k \in {\mathbb{N}^*}} ight) \hfill \\   \Leftrightarrow 12\left( {2k + 5} ight) = 7\left( {5k - 4} ight) \hfill \\   \Leftrightarrow 24k + 60 = 35k - 28 \hfill \\   \Leftrightarrow 11k = 88 \hfill \\   \Leftrightarrow k = 8 \hfill \\ \end{matrix}

    Vậy số \frac{7}{12} là số hạng thứ 8 của dãy số.

  • Câu 31: Thông hiểu

    Cho dãy số (un) được xác định bởi \left\{ \begin{matrix}
u_{1} = 2 \\
u_{n + 1} - u_{n} = 2n - 1 \\
\end{matrix} ight..

    Số hạng tổng quát un của dãy số là?

    Ta có \left\{ \begin{matrix}
u_{1} = 2 \\
u_{2} = u_{1} + 2.2 - 1 \\
u_{3} = u_{2} + 2.3 - 1 \\
\cdots \\
u_{n} = u_{n - 1} + 2.n - 1 \\
\end{matrix} ight.

    Cộng vế với vế của các đẳng thức trên rồi rút gọn, ta được:

    un = 2 + 2 ⋅ (2+3+…+n) − (n − 1)

     = 2 + (n−1)(n+2) − n + 1

     = n2 + 1

  • Câu 32: Thông hiểu

    Tìm x để 2;8;x;128 theo thứ tự đó lập thành một cấp số nhân.

    Cấp số nhân 2;8;x;128 theo thứ tự là u_{1};u_{2};u_{3};u_{4} ta có:

    \left\{ \begin{matrix}\dfrac{u_{2}}{u_{1}} = \dfrac{u_{3}}{u_{2}} \\\dfrac{u_{3}}{u_{2}} = \dfrac{u_{4}}{u_{3}} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}\dfrac{8}{2} = \dfrac{x}{8} \\\dfrac{128}{x} = \dfrac{x}{8} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 32 \\x^{2} = 1024 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 32 \\
\left\lbrack \begin{matrix}
x = 32 \\
x = - 32 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Rightarrow x = 32

  • Câu 33: Thông hiểu

    Một cấp số cộng có 8 số hạng. Số hạng đầu là 5, số hạng thứ tám là 40. Khi đó công sai d của cấp số cộng đó là bao nhiêu?

    Theo bài ra ta có: \left\{ \begin{matrix}
u_{1} = 5 \\
40 = u_{8} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 5 \\
40 = u_{1} + 7d \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 5 \\
d = 5 \\
\end{matrix} ight.

  • Câu 34: Nhận biết

    Cho dãy số (un) với u_{n} = \frac{an^{2}}{n + 1} ( a là hằng số). Hỏi un + 1 là số hạng nào sau đây?

    Ta có u_{n + 1} = \frac{a \cdot (n +
1)^{2}}{(n + 1) + 1} = \frac{a(n + 1)^{2}}{n + 2}

  • Câu 35: Nhận biết

    Dãy số nào là dãy số tăng?

    Xét u_{n} = n^{2} ta có: u_{n + 1} - u_{n} = (n + 1)^{2} - n^{2} = 2n + 1
> 0;\forall n \in \mathbb{N}^{*}

    Vậy u_{n} = n^{2} là dãy số tăng.

  • Câu 36: Vận dụng

    Trong các dãy số sau, dãy nào là dãy số tăng?

    Đáp án u_n = \sin (n)  và In = (−1)n ⋅ n là các dãy không tăng, không giảm.

    Xét đáp án v_{n} = \frac{n - 1}{n +
1}, ta có:

    v_{n} = 1 - \frac{2}{n + 1} \Rightarrow
v_{n + 1} - v_{n} = \frac{2}{n + 1} - \frac{2}{n + 2} > 0,\forall n
\in \mathbb{N}^{*}

    Suy ra (vn) là dãy số tăng.

  • Câu 37: Vận dụng cao

    Cho xeq 0 và x+\frac{1}{x} là một số nguyên. Khi đó với mọi số nguyên dương n, có kết luận gì về T(n,x)=x^{n}+\frac{1}{x^{n}}?

    Ta có:

    T\left( {1;x} ight) = x + \frac{1}{x} là một số nguyên

    T\left( {2;x} ight) = {x^2} + \frac{1}{{{x^2}}} = {\left( {x + \frac{1}{x}} ight)^2} - 2 cũng là một số nguyên

    Ta sẽ chứng minh T(n,x)=x^{n}+\frac{1}{x^{n}} là một số nguyên.

    Ta có: 

    T\left( {1;x} ight) là một số nguyên 

    Giả sử T(n,x) là số nguyên với n \ge1. Ta sẽ chứng minh T\left( {n + 1;x} ight) cũng là số nguyên.

    Ta có: 

    \begin{matrix}  T\left( {n + 1;x} ight) = {x^{n + 1}} + \dfrac{1}{{{x^{n + 1}}}} \hfill \\   = \left( {x + \dfrac{1}{x}} ight).\left( {{x^n} + \dfrac{1}{{{x^n}}}} ight) - \left( {{x^{n - 1}} + \dfrac{1}{{{x^{n - 1}}}}} ight) \hfill \\   = T\left( {1;x} ight).T\left( {n;x} ight) - T\left( {n - 1;x} ight) \hfill \\ \end{matrix}

    Theo giả thiết quy nạp ta có: 

    \left\{ \begin{gathered}  T\left( {1;x} ight) \in \mathbb{Z} \hfill \\  T\left( {n;x} ight) \in \mathbb{Z} \hfill \\  T\left( {n - 1;x} ight) \in \mathbb{Z} \hfill \\ \end{gathered}  ight. \Rightarrow T\left( {n + 1;x} ight) \in \mathbb{Z}

    Vậy T(n,x)=x^{n}+\frac{1}{x^{n}} là một số nguyên.

  • Câu 38: Vận dụng

    Người ta trồng 3003 cây theo hình tam giác như sau: Hàng thứ nhất có 1 cây. hàng thứ hai có hai cây, hàng thứ ba có ba cây,.... Vậy có tất cả bao nhiêu hàng?

    Gọi số hàng cây được trồng là x (hàng)

    Số cây các hàng là: 1; 2; 3; 4; ...; x - 1; x

    Số cây của mỗi hàng (bắt đầu từ hàng thứ nhất) lập thành một cấp số cộng 

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 1} \\   {d = 1} \end{array}} ight.

    Khi đó ta có:

    \begin{matrix}  {S_x} = \dfrac{{x\left[ {2.{u_1} + \left( {x - 1} ight).d} ight]}}{2} \hfill \\   \Leftrightarrow 3003 = \dfrac{{x\left[ {2.{u_1} + \left( {x - 1} ight).d} ight]}}{2} \hfill \\   \Leftrightarrow 6006 = 2x + {x^2} - x \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 77\left( {tm} ight)} \\   {x =  - 78\left( {ktm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy có tất cả 77 hàng cây được trồng.

  • Câu 39: Thông hiểu

    Cho dãy số có các số hạng đầu là 0,1; 0,001;0,0001; ... Số hạng tổng quát của dãy số có dạng?

    Ta có:

    Số hạng thứ 1 có 1 chữ số 0;

    Số hạng thứ 2 có 2 chữ số 0;

    Số hạng thứ 3 có 3 chữ số 0;

    Suy ra có chữ số 0.

    Công thức số hạng tổng quát của dãy số là: u_n=\underbrace{0,00...01}_{\text{n chữ số 0}}

  • Câu 40: Thông hiểu

    Trong các dãy số sau, dãy số nào bị chặn trên?

    Ta có:

    \left( v_{n} ight):v_{n} = - n^{2} + 2
\leq 2.

    Vậy đây là dãy số bị chặn trên.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Chân trời sáng tạo Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo