Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho dãy số \left( u_{n} ight) có số hạng tổng quát u_{n} = \frac{( - 1)^{n}}{1 + n}. Khẳng định nào sau đây sai?

    Ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4}

    \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight.

    Vậy dãy số đã cho không tăng không giảm.

    Khẳng định sai là: “Dãy số \left( u_{n}
ight) là dãy giảm”

  • Câu 2: Vận dụng

    Tính tổng S = 1 + 11 + 111 + ... + \underbrace {1111...11}_n?

    Xét dãy số \left( U_{n} ight) là cấp số nhân với u_{1} = 1;q =
10

    \Rightarrow S_{n} = \frac{1}{9}.\left(
10^{n} - 1 ight)

    \Rightarrow S = S_{1} + S_{2} + ... +
S_{n}

    = \sum_{k = 1}^{n}{\frac{1}{9}\left(
10^{n} - 1 ight)} = \frac{1}{9}\left( \sum_{k = 1}^{n}{10^{n} - n}
ight)

    = \frac{1}{9}\left( 10.\frac{10^{n} -
1}{9} - n ight) = \frac{1}{9}\left( \frac{10^{n + 1} - 1}{9} - n
ight)

  • Câu 3: Nhận biết

    Cho dãy số (un) có số hạng tổng quát u_{n} = \frac{2n + 1}{n +2}. Số \frac{167}{84} là số hạng thứ mấy của dãy?

    Ta có u_{n} = \frac{167}{84}\Leftrightarrow \frac{2n + 1}{n + 2} = \frac{167}{84} \Leftrightarrow84(2 + 1) = 167(n + 2) \Leftrightarrow n = 250

    Vậy \frac{167}{84} là số hạng thứ 250 của dãy số (un)

  • Câu 4: Thông hiểu

    Cho cấp số nhân có các số hạng lần lượt là 1;5;16;64. Gọi S_{n} là tổng của n số hạng đầu tiên của cấp số nhân đó. Mệnh đề nào sau đây đúng?

    Cấp số nhân đã cho có: \left\{
\begin{matrix}
u_{1} = 1 \\
q = 4 \\
\end{matrix} ight.

    \Rightarrow S_{n} = u_{1}.\frac{1 -
q^{n}}{1 - q} = 1.\frac{1 - 4^{n}}{1 - 4} = \frac{4^{n} -
1}{3}

  • Câu 5: Thông hiểu

    Cho dãy số (u_{n}), biết {u_n} = \sin n - \cos n. Dãy số (u_{n}) bị chặn dưới bởi số nào dưới đây?

    Ta có:

    \begin{matrix}  {u_n} = \sin n - \cos n \hfill \\   = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin n - \dfrac{1}{{\sqrt 2 }}\cos n} ight) \hfill \\   = \sqrt 2 \left( {\cos \dfrac{\pi }{4}\sin n - \sin \dfrac{\pi }{4}\cos n} ight) \hfill \\   = \sqrt 2 \sin \left( {n - \dfrac{\pi }{4}} ight) \hfill \\   \Rightarrow 1 \geqslant \sin \left( {n - \dfrac{\pi }{4}} ight) \geqslant  - 1 \hfill \\   \Rightarrow \sqrt 2  \geqslant \sqrt 2 \sin \left( {n - \dfrac{\pi }{4}} ight) \geqslant  - \sqrt 2  \hfill \\ \end{matrix}

  • Câu 6: Vận dụng

    Cho cấp số cộng (un) có u3 = -15; u20 = 60. Tổng của 10 số hạng đầu tiên của cấp số cộng này là:

    Gọi u1, d lần lượt là số hạng đầu và công sai của cấp số cộng

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {{u_5} =  - 15} \\   {{u_{20}} = 60} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + 4d =  - 15} \\   {{u_1} + 19d = 60} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} =  - 35} \\   {d = 5} \end{array}} ight.

    => Tổng của 10 số hạng đầu tiên của cấp số cộng này là:

    {S_{10}} = \frac{{10}}{2}.\left( {2{u_1} + 9d} ight) = 5.\left[ {2.\left( { - 35} ight) + 9.5} ight] =  - 125

  • Câu 7: Thông hiểu

    Trong các dãy số dưới đây, dạy số nào không phải là cấp số nhân lùi vô hạn?

     Vì dãy ở đáp án C là một cấp số nhân có công bội q = 3/2 > 0

    \frac{3}{2};\frac{9}{4};\frac{{27}}{8};..;{\left( {\frac{3}{2}} ight)^n};...=> không phải dãy lùi vô hạn

  • Câu 8: Nhận biết

    Với n \in \mathbb{N}^{*}, cho dãy số \left( u_{n} ight) gồm các số nguyên dương chia hết cho 7: 7, 14, 21, 28, …Công thức số hạng tổng quát của dãy số này là:

    Ta có u_{1} = 7 = 7.1, u_{2} = 14 = 7.2, u_{3} = 21 = 7.3, u_{4} = 28 = 7.4,…

    Suy ra u_{n} = 7n.

  • Câu 9: Thông hiểu

    Cho cấp số cộng (u_{n}) có các số hạng đầu lần lượt là 5; 9; 13; 17;... Tìm số hạng tổng quát u_{n} của cấp số cộng.

    Theo bài ra ta có:

    Dãy số đã cho là cấp số cộng

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 5} \\   {{u_2} = 9} \end{array} \Rightarrow d = {u_2} - {u_1} = 4} ight.

    => {u_n} = {u_1} + \left( {n - 1} ight).d = 4n + 1

    Vậy số hạng tổng quát của dãy số là: u_n=4n+1

  • Câu 10: Nhận biết

    Cho cấp số cộng (un) có u_1 = -4; d = \frac{1}{2}. Khẳng định nào sau đây là khẳng định đúng?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} =  - 4} \\   {d = \dfrac{1}{2}} \end{array}\mathop  \to \limits^{CTTQ} } ight.{u_n} = {u_1} + \left( {n - 1} ight)d =  - 4 + \dfrac{1}{2}\left( {n - 1} ight) \hfill \\   \Rightarrow {u_n} =  - 4 + \dfrac{1}{2}\left( {n - 1} ight) \hfill \\ \end{matrix}

  • Câu 11: Nhận biết

    Cho một cấp số nhân \left( u_{n} ight)u_{1} = 1;q = 2019. Tính u_{2019}?

    Ta có:

    u_{n} = u_{1}.q^{n - 1} \Leftrightarrow
u_{2019} = 1.2019^{2018} = 2019^{2018}

  • Câu 12: Nhận biết

    Một cấp số nhân có số hạng thứ hai bằng 4 và số hạng thứ sáu bằng 64. Khi đó, số hạng tổng quát của cấp số nhân đó có thể tính theo công thức nào dưới đây?

    Ta có: \left\{ \begin{matrix}
u_{2} = 4 \\
u_{6} = 64 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1}q = 4 \\
u_{1}q^{5} = 64 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
q = 2 \\
\end{matrix} ight.

    \Rightarrow u_{n} = u_{1}.q^{n - 1} =
2.2^{n - 1} = 2^{n}

  • Câu 13: Nhận biết

    Viết ba số hạng xen giữa các số 2 và 22 để được một cấp số cộng có năm số hạng.

    Khi viết xen giữa 2 và 22 ba số hạng ta được một cấp số cộng có 5 số hạng có:

    u1 = 2; u5 = 22. Ta cần tìm u2; u3; u4

    Ta có:

    \begin{matrix}  {u_5} = {u_1} + 4d \Rightarrow d = \dfrac{{{u_5} - {u_1}}}{4} = \dfrac{{22 - 2}}{4} = 5 \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_2} = {u_1} + d = 7} \\   {{u_3} = {u_1} + 2d = 12} \\   {{u_4} = {u_1} + 3d = 17} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 14: Vận dụng

    Trong các phát biểu sau, có bao nhiêu phát biểu đúng?

    (1) Dãy số được xác định bởi a_{n} = 1 +
\frac{1}{n} là một dãy bị chặn.

    (2) Dãy số được xác định bởi an = n2 là một dãy giảm.

    (3) Dãy số được xác định bởi an = 1 − n2 là một dãy số giảm và không bị chặn dưới.

    (4) Dãy số được xác định bởi an = (−1)nn2 là một dãy không tăng, không giảm.

    0 < 1 + \frac{1}{n} < 2,\forall n
\in \mathbb{N}^{*} nên dãy số xác định bởi a_{n} = 1 + \frac{1}{n} là một dãy bị chặn.

    an + 1 − an = (n+1)2 − n2 = 2n + 1 > 0, ∀n ∈ ℕ* nên dãy số xác định bởi an = n2 là dãy tăng.

    an + 1 − an = (1−(n+1)2) − (1−n2) = 2n − 1 > 0, ∀n ∈ ℕ* nên dãy số xác định bởi an = 1 − n2 là dãy số giảm và không bị chặn dưới.

    a1 =  − 1 < a2 = 4 > a3 =  − 9 nên dãy số xác định bởi an = (−1)nn2 là dãy không tăng không giảm.

  • Câu 15: Vận dụng

    Tìm tất cả các giá trị của x để ba số 2x - 1; x; 2x + 1 theo thứ tự đó lập thành một cấp số nhân.

    Ta có:

    Ba số 2x - 1; x; 2x + 1 theo thứ tự đó lập thành một cấp số nhân:

    \Rightarrow {x^2} = \left( {2x - 1} ight)\left( {2x + 1} ight)

    \Rightarrow {x^2} = 4{x^2} - 1

    \Rightarrow 3{x^2} = 1

    \Rightarrow {x^2} = \frac{1}{3} \Rightarrow x =  \pm \frac{1}{{\sqrt 3 }}

  • Câu 16: Thông hiểu

    Một cấp số nhân có công bội bằng 3 và số hạng đầu bằng 5. Biết số hạng chính giữa là 32805. Hỏi cấp số nhân đã cho có bao nhiêu số hạng?

    Ta có:

    u_{n} = 32805

    \Rightarrow u_{1}.q^{n - 1} =
32805

    \Rightarrow 3^{n - 1} =
6561

    \Rightarrow n = 9

    Vậy u_{9} là số hạng chính giữa của cấp số nhân nên cấp số nhân đã cho có 17 số hạng.

  • Câu 17: Nhận biết

    Dãy số nào sau đây là cấp số nhân?

    Ta có: \left( u_{n} ight) là cấp số nhân \Leftrightarrow u_{n + 1} =
q.u_{n}

    Dãy số lập thành cấp số nhân là \left\{
\begin{matrix}
u_{1} = - 1 \\
u_{n + 1} = - 3u_{n};n \geq 1 \\
\end{matrix} ight.

  • Câu 18: Vận dụng cao

    Cho phương trình: x^{3} +3x^{2}-(24+m)x-26-n=0. Tìm hệ thức liên hệ giữa m và n để 3 nghiệm phân biệt x_{1},x_{2},x_{3} lập thành một cấp số cộng.

    Vì ba nghiệm {x_1};{x_2};{x_3} phân biệt lập thành một cấp số cộng nên ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{x_1} = x_0 - d} \\   {{x_2} = x_0} \\   {{x_3} = x_0 + d} \end{array}} ight.;\left( {d e 0} ight)

    Theo giả thiết ta có: 

    \begin{matrix}  {x^3} + 3{x^2} - (24 + m)x - 26 - n \hfill \\   = \left( {x - {x_1}} ight).\left( {x - {x_2}} ight).\left( {x - {x_3}} ight) \hfill \\   = \left( {x - {x_0} + d} ight)\left( {x - {x_0}} ight)\left( {x - {x_0} - d} ight) \hfill \\   = {x^3} - 3{x_0}{x^2} + \left( {3{x_0}^2 - {d^2}} ight)x - {x_0}^3 + {x_0}.{d^2};\left( {\forall x} ight) \hfill \\ \end{matrix}

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}   - 3{x_0} = 3 \hfill \\  24 + m = 3{x_0}^2 - {d^2} \hfill \\ \end{gathered}  \\   { - 26 - n =  - {x_0}^3 + {x_0}.{d^2}} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_0} =  - 1} \\   {m - n} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu

    Dãy số (un) được cho bởi \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + 2 \\
\end{matrix} ight.. Hãy tìm khẳng định sai trong các khẳng định sau.

    u_1=1

    u_2=1+2=1+1.2

    u_3=1+2+2=1+2.2

    u_4=1+2+2+2=1+3.2

    ...

    u_n=1+2+⋯+2=1+(n-1).2

    Áp dụng phương pháp quy nạp ta có un = 2n − 1.

  • Câu 20: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight). Xác định u_{15} biết rằng u_{2} = 3;u_{4} = 7?

    Ta có:

    u_{4} - u_{2} = u_{1} + 3d - \left(
u_{1} + d ight) = 2d = 4 \Rightarrow d = 2

    Khi đó: u_{1} = u_{2} - d = 3 - 2 =
1

    Suy ra u_{15} = u_{1} + 17d = 1 + 17.2 =
35

  • Câu 21: Thông hiểu

    Một cấp số cộng có 8 số hạng. Số hạng đầu là 5, số hạng thứ tám là 40. Khi đó công sai d của cấp số cộng đó là bao nhiêu?

    Theo bài ra ta có: \left\{ \begin{matrix}
u_{1} = 5 \\
40 = u_{8} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 5 \\
40 = u_{1} + 7d \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 5 \\
d = 5 \\
\end{matrix} ight.

  • Câu 22: Thông hiểu

    Tính tổng sau S =
1 + 5 + 9 + ... + 397

    Ta có:

    S = 1 + 5 + 9 + ... + 397 là tổng của 100 số hạng đầu tiên của cấp số cộng có u_{1} = 1;d = 4

    \Rightarrow S = S_{100} =
\frac{100}{2}.(2.1 + 99.4) = 19900.

  • Câu 23: Thông hiểu

    Cho dãy số (un) với \ \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + ( - 1)^{2n + 1}\text{.~} \\
\end{matrix} ight.

    Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có un + 1 = un + (−1)2n + 1 = un − 1

    u1 = 1; u2 = u1 − 1; u3 = u2 − 1; …; un = un − 1 − 1

    Cộng vế với vế của các đẳng thức trên, ta được:

    un = 1 − (n−1) = 2 − n.

  • Câu 24: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = - 0,1;d = 0,1. Số hạng thứ 7 của cấp số cộng là

    Ta có: u_{7} = u_{1} + 6d = - 0,1 + 6.0,1
= 0,5

  • Câu 25: Thông hiểu

    Cho dãy số (u_{n}), biết {u_n} = \frac{{n + 1}}{{2n + 1}}. Số \frac{8}{15} là số hạng thứ mấy của dãy số?

    Ta có: 

    \begin{matrix}  {u_k} = \dfrac{8}{{15}} \hfill \\   \Leftrightarrow \dfrac{{k + 1}}{{2k + 1}} = \dfrac{8}{{15}};\left( {k \in {\mathbb{N}^*}} ight) \hfill \\   \Leftrightarrow 15\left( {k + 1} ight) = 8\left( {2k + 1} ight) \hfill \\   \Leftrightarrow 15k + 15 = 16k + 8 \hfill \\   \Leftrightarrow k = 7 \hfill \\ \end{matrix}

    Vậy số \frac{8}{15} là số hạng thứ 7 của dãy số.

  • Câu 26: Thông hiểu

    Cho dãy số (u_{n}), biết {u_n} = {\left( {\frac{{n - 1}}{{n + 1}}} ight)^{2n + 3}}. Tìm số hạng u_{n+1}

    Ta có:

    \begin{matrix}  {u_n} = {\left( {\dfrac{{n - 1}}{{n + 1}}} ight)^{2n + 3}} \hfill \\   \Rightarrow {u_{n + 1}} = {\left( {\dfrac{{n + 1 - 1}}{{n + 1 + 1}}} ight)^{2\left( {n + 1} ight) + 3}} \hfill \\   \Rightarrow {u_{n + 1}} = {\left( {\dfrac{n}{{n + 2}}} ight)^{2n + 5}} \hfill \\ \end{matrix}

  • Câu 27: Thông hiểu

    Cho một cấp số nhân \left( u_{n} ight)u_{1} = 5;q = \frac{1}{3} . Hỏi \frac{5}{59049} là số hạng thứ mấy của cấp số nhân?

    Ta có: u_{n} = u_{1}.q^{n - 1}
\Leftrightarrow \frac{5}{59049} = 5.\left( \frac{1}{3} ight)^{n - 1}
\Rightarrow n = 11

    Vậy số \frac{5}{59049} là số hạng thứ 11 của cấp số nhân.

  • Câu 28: Thông hiểu

    Nếu các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì m bằng bao nhiêu?

    Để các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì:

    \begin{matrix}  5 + m + 17 + m = 2\left( {7 + 2m} ight) \hfill \\   \Leftrightarrow 5 + m + 17 + m = 2\left( {7 + 2m} ight) \hfill \\   \Leftrightarrow 2m = 8 \Rightarrow m = 4 \hfill \\ \end{matrix}

    Vậy nếu các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì m = 4

  • Câu 29: Vận dụng

    Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17. Tổng của số hạng thứ hai và số hạng thứ tư là 14. Tính công sai d của cấp số cộng đã cho.

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_6} = 17} \\   {{u_2} + {u_4} = 14} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {2{u_1} + 5d = 17} \\   {2{u_1} + 6d = 14} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 16} \\   {d =  - 3} \end{array}} ight.

  • Câu 30: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?

    Xét dãy số  u_{n}=-2^{n}+15 ta có:

     \begin{matrix}  {u_{n + 1}} =  - {2^{n + 1}} + 15 \hfill \\   \Rightarrow {u_{n + 1}} - {u_n} =  - {2^{n + 1}} + 15 + {2^n} - 15 \hfill \\   =  - {2^{n + 1}} + {2^n}=d \hfill \\ \end{matrix}

    d không cố định => Dãy số u_{n}=-2^{n}+15 không phải là một cấp số cộng.

  • Câu 31: Thông hiểu

    Một cấp số nhân có 6 số hạng với công bội bằng 2 và tổng số các số hạng bằng 189. Tìm số hạng cuối u_{6} của cấp số nhân đã cho.

    Theo giả thiết ta có:

    \left\{ \begin{matrix}q = 2 \\S_{6} = 189 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}q = 2 \\u_{1}.\dfrac{1 - q^{6}}{1 - q} = 189 \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}q = 2 \\u_{1}.\dfrac{1 - 2^{6}}{1 - 2} = 189 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}q = 2 \\u_{1} = 3 \\\end{matrix} ight.

    \Rightarrow u_{6} = u_{1}.q^{5} =
3.2^{6} = 96

  • Câu 32: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

  • Câu 33: Nhận biết

    Cho dãy số \left(
u_{n} ight) xác định bởi u_{n} =
\frac{n^{2} + 3n + 7}{n + 1}. Ba số hạng đầu tiên của dãy là:

    Ba số hạng đầu tiên của dãy là \frac{11}{2};\frac{17}{3};\frac{25}{4}

  • Câu 34: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Dãy số 1; 2; 3; 4; 5 là một cấp số cộng với công sai là d = 1

    Dãy số 1; 2; 4; 8; 16 là một cấp số nhân với công bội q = 2

    Dãy số 1; -1; 1; -1; 1 là một cấp số nhân với công bội q = -1

    Dãy số 1; -2; 4; -8; 16 là một cấp số nhân với công bội q = -2

  • Câu 35: Vận dụng cao

    Tổng Sn = 1.3 + 2.5 + 3.7 + … + n(2n+1) có công thức thu gọn là?

    Sn = Σi = 1ni(2i+1) = Σi = 1n (2i2+1)

    = 2\Sigma_{i = 1}^{n}\mspace{2mu} i^{2}
+ \Sigma_{i = 1}^{n}\mspace{2mu} i = \frac{2n(n + 1)(2n +
1)}{6}

    = \frac{n(n + 1)}{2} = \frac{n(n + 1)(4n
+ 5)}{6}

  • Câu 36: Nhận biết

    Tính tổng 10 số hạng đầu của cấp số cộng u_{1} = 5;u_{2} = 9.

    Theo bài ra ta có:

    d = u_{2} - u_{1} = 4

    \Rightarrow S_{10} = \frac{10}{2}.\left(
u_{1} + u_{10} ight) = 5\left( 2u_{1} + 9d ight) = 230

  • Câu 37: Nhận biết

    Cho dãy số \left( u_{n} ight) xác định bởi u_{n} = \frac{n - 1}{n^{2} + 2n
+ 3}. Giá trị u_{21}

    Ta có: u_{21} = \frac{21 - 1}{21^{2} +
2.21 + 3} = \frac{10}{243}.

  • Câu 38: Nhận biết

    Cho cấp số nhân (un) có u1 = 1; q = 2. Hỏi số 1024 là số hạng thứ mấy?

    Ta có:

    \begin{matrix}  {u_n} = {u_1}.{q^{n - 1}} \hfill \\   \Leftrightarrow {1.2^{n - 1}} = 1024 \hfill \\   \Leftrightarrow {2^{n - 1}} = {2^{10}} \hfill \\   \Rightarrow n - 1 = 10 \hfill \\   \Rightarrow n = 11 \hfill \\ \end{matrix}

  • Câu 39: Vận dụng

    Cho dãy số (un)u_{1} = \frac{1}{5}u_{n + 1} = \frac{n + 1}{5n}u_{n},\forall n \geq
1.

    Tất cả các giá trị n để S = \sum_{k =
1}^{n}\mspace{2mu}\frac{u_{k}}{k} < \frac{5^{2018} -
1}{{4.5}^{2018}} là?

    Ta có u_{n + 1} = \frac{n + 1}{5n}u_{n}
\Leftrightarrow \frac{u_{n + 1}}{n + 1} = \frac{1}{5} \cdot
\frac{u_{n}}{n}

    Đặt v_{n} = \frac{u_{n}}{n},\forall n \geq
1. Suy ra (vn) là cấp số nhận có công bội q = \frac{1}{5}v = \frac{1}{5}.

    Ta có S = \sum_{k =
1}^{n}\mspace{2mu}\frac{u_{k}}{k} = \sum_{k = 1}^{n}\mspace{2mu} v_{k} =
v_{1}\frac{1 - q^{n}}{1 - q} = \frac{1}{5} \cdot \frac{1 - \left(
\frac{1}{5} ight)^{n}}{1 - \frac{1}{5}} = \frac{1}{4} \cdot
\frac{5^{n} - 1}{5^{n}} = T_{n}

    Do vn > 0, ∀n ≥ 1 nên (Tn) là dãy tăng.

    Suy ra T_{n} < \frac{5^{2018} -
1}{{4.5}^{2018}} = T_{2018} \Leftrightarrow n < 2018

  • Câu 40: Vận dụng cao

    Tính tổng S = {u_1} + \frac{{{u_2}}}{2} + \frac{{{u_3}}}{3} + ... + \frac{{{u_{10}}}}{{10}}. Biết dãy số (un) xác định bởi: {u_1} = \frac{1}{3};{u_{n + 1}} = \frac{{n + 1}}{{3n}}.{u_n}

     Ta có:

    {u_{n + 1}} = \frac{{n + 1}}{{3n}}.{u_n} \Leftrightarrow \frac{{{u_{n + 1}}}}{{n + 1}} = \frac{{{u_n}}}{{3n}}

    Do {u_1} = \frac{1}{3} \Rightarrow \frac{{{u_1}}}{1} = \frac{1}{3}

    Từ đó suy ra:

    \begin{matrix}  \dfrac{{{u_2}}}{2} = \dfrac{1}{3}.\dfrac{1}{3} = {\left( {\dfrac{1}{3}} ight)^2} \hfill \\  \dfrac{{{u_3}}}{3} = \dfrac{1}{3}.{\left( {\dfrac{1}{3}} ight)^2} = {\left( {\dfrac{1}{3}} ight)^3} \hfill \\  ... \hfill \\  \dfrac{{{u_{10}}}}{{10}} = \dfrac{1}{3}.{\left( {\dfrac{1}{3}} ight)^9} = {\left( {\dfrac{1}{3}} ight)^{10}} \hfill \\ \end{matrix}

    Hay dãy \left( {\frac{{{u_n}}}{n}} ight) là một cấp số nhân có số hạng đầu {u_1} = \frac{1}{3},q = \frac{1}{3}

    Khi đó S = {u_1} + \frac{{{u_2}}}{2} + \frac{{{u_3}}}{3} + ... + \frac{{{u_{10}}}}{{10}} = \frac{{{3^{10}} - 1}}{{{{2.3}^{10}}}} = \frac{{29524}}{{59049}}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo