Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng. Tìm a?

    Đặt u1 = -4; u2 = 1; u3 = 6; u4 = a

    Theo bài ra ta có:

    Các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng

    => u3 – u2 = u4 – u3

    => 6 – 1 = a – 6

    => a = 11

  • Câu 2: Vận dụng

    Cho cấp số cộng (un) biết u1 = -5 và công sai d = 2. Số 81 là số hạng thứ bao nhiêu?

     Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight)d \hfill \\   \Leftrightarrow 8 =  - 5 + \left( {n - 1} ight).2 \hfill \\   \Leftrightarrow n = 44 \hfill \\ \end{matrix}

    Vậy 81 là số hạng thứ 44

  • Câu 3: Thông hiểu

    Cho dãy số \left(
u_{n} ight):u_{n} = sin\frac{\pi}{n}. Chọn khẳng định sai trong các khẳng định sau đây.

    Ta có: u_{n + 1} = sin\frac{\pi}{n +
1} nên u_{n + 1} = sin\frac{\pi}{n +
1} đúng.

    Do - 1 \leq sin\frac{\pi}{n} \leq
1 nên dãy số bị chặn, do đó “Dãy số (un) bị chặn” đúng.

    u_{1} = sin\pi = 0,u_{2} =
sin\frac{\pi}{2} = 1,u_{3} = sin\frac{\pi}{3} =
\frac{\sqrt{3}}{2}.

    Do \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số không tăng, không giảm.

    Vậy “Dãy số (un) không tăng, không giảm” đúng.

    Do đó “Dãy số (un) tăng” sai.

  • Câu 4: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) với u_{1} = - 2;u_{2} = 2. Khi đó số hạng 2018 là số nào?

    Theo bài ra ta có:

    d = u_{2} - u_{1} = 2 - ( - 2) =
4

    u_{n} = u_{1} + (n - 1)d

    \Rightarrow u_{2018} = u_{1} + 2017d = -
2 + 2017.4 = 8066.

  • Câu 5: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) với u_{1} = 3u_{2} = 12. Công bội của cấp số nhân đã cho bằng

    Ta có u_{2} = u_{1}.q \Rightarrow q =
\frac{u_{2}}{u_{1}} = \frac{12}{3} = 4.

  • Câu 6: Vận dụng

    Cho dãy số (Un) là một cấp số cộng có u1 = 3 và công sai d = 4. Biết rằng tổng n số hạng đầu của dãy số (Un) là {S_n} = 253. Giá trị của n là:

     Ta có:

    \begin{matrix}  {S_n} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} ight)d} ight]}}{2} \hfill \\   \Leftrightarrow \dfrac{{n\left[ {2.3 + \left( {n - 1} ight).4} ight]}}{2} = 253 \hfill \\   \Leftrightarrow 4{n^2} + 2n - 506 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 11} \\   {n =  - \dfrac{{23}}{2}\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 7: Vận dụng cao

    Cho Sn = 1 + 2 ⋅ 3 + 3 ⋅ 32 + … + n ⋅ 3n − 1.

    Khẳng định nào sau đây đúng với mọi n nguyên dương?

    Ta có 3Sn = 3 + 2.32 + 3.33 + … + n.3n

    Từ đó 2Sn =  − 1 − 3 − 32 − … − 3n − 1 + n.3n

    \Leftrightarrow 2S_{n} = - \frac{3^{n} -
1}{2} + n{.3}^{n}

    \Leftrightarrow S_{n} = - \frac{3^{n} -
1}{4} + \frac{n}{2} \cdot 3^{n}

  • Câu 8: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight) có tổng n số hạng đầu tiên là S_{n} = \frac{3^{n} - 1}{3^{n -
1}}. Tìm số hạng thứ 5 của cấp số nhân đã cho.

    S_{n} = \frac{3^{n} - 1}{3^{n - 1}} =
3.\left\lbrack 1 - \left( \frac{1}{3} ight)^{n}
ightbrack

    Mặt khác

    \Rightarrow S_{n} = u_{1}.\dfrac{1 -q^{n}}{1 - q} \Rightarrow \left\{ \begin{matrix}u_{1} = 3(1 - q) \\q = \dfrac{1}{3} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\q = \dfrac{1}{3} \\\end{matrix} ight.

    \Rightarrow u_{5} = u_{1}.q^{4} =
\frac{2}{3^{4}}

  • Câu 9: Thông hiểu

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 8u_{3} - u_{7} +8u_{5} = u_{6} + u_{8} - 8u_{4}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}

    Đáp án: 64

    Đáp án là:

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 8u_{3} - u_{7} +8u_{5} = u_{6} + u_{8} - 8u_{4}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}

    Đáp án: 64

    Giả sử cấp số nhân có công bội là q, khi đó theo bài ra ta có:

    8u_{3} - u_{7} + 8u_{5} = u_{6} + u_{8}
- 8u_{4}

    \Leftrightarrow 8\left( u_{3} + u_{4} +
u_{5} ight) = u_{6} + u_{7} + u_{8}

    \Leftrightarrow 8\left( u_{3} + u_{3}q +
u_{3}q^{2} ight) = u_{6} + u_{6}q + u_{6}q^{2}

    \Leftrightarrow 8u_{3}\left( 1 + q +
q^{2} ight) = u_{6}\left( 1 + q + q^{2} ight)

    \Leftrightarrow 8u_{3} = u_{6} do 1 + q + q^{2} > 0

    \Leftrightarrow 8u_{3} = u_{3}q^{3}
\Leftrightarrow u_{3}\left( 8 - q^{3} ight) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
u_{3} = 0 \\
q = 2 \\
\end{matrix} ight.

    Ta có: \frac{u_{8} + u_{9} +u_{10}}{u_{2} + u_{3} + u_{4}} = \frac{u_{8} + u_{8}q +u_{8}q^{2}}{u_{2} + u_{2}q + u_{2}q^{2}}= \frac{u_{8}\left( 1 + q +q^{2} ight)}{u_{2}\left( 1 + q + q^{2} ight)} =\frac{u_{2}q^{6}}{u_{2}} = q^{6} = 64

  • Câu 10: Thông hiểu

    Một cấp số cộng có 8 số hạng. Số hạng đầu là 5, số hạng thứ tám là 40. Khi đó công sai d của cấp số cộng đó là bao nhiêu?

    Theo bài ra ta có: \left\{ \begin{matrix}
u_{1} = 5 \\
40 = u_{8} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 5 \\
40 = u_{1} + 7d \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 5 \\
d = 5 \\
\end{matrix} ight.

  • Câu 11: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) với \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.. Công thức số hạng tổng quát của cấp số cộng này là:

    Ta có:

    \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left( u_{1} + d ight) + \left( u_{1} + 2d ight) - \left( u_{1} + 5d
ight) = 7 \\
\left( u_{1} + 3d ight) + \left( u_{1} + 7d ight) = - 14 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} - 2d = 7 \\
2u_{1} + 10d = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 3 \\
d = - 2 \\
\end{matrix} ight.

    \Rightarrow u_{n} = 3 + (n - 1)( - 2) =
5 - 2n

  • Câu 12: Nhận biết

    Cho S_{n} =
\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \ldots + \frac{1}{n(n +
1)} với n ∈ ℕ*. Mệnh đề nào sau đây đúng?

    Ta có S_{1} = \frac{1}{2},S_{2} =
\frac{2}{3},S_{3} = \frac{3}{4} \Rightarrow dự đoán S_{n} = \frac{n}{n + 1}

    Với n = 1, ta được S_{1} = \frac{1}{1.2} = \frac{1}{1 + 1} (đúng)

    Giả sử mệnh đề đúng khi n = k (k≥1), tức là \frac{1}{1.2} + \frac{1}{2.3} + \ldots +
\frac{1}{k(k + 1)} = \frac{k}{k + 1}

    Ta có \frac{1}{1.2} + \frac{1}{2.3} +
\ldots + \frac{1}{k(k + 1)} = \frac{k}{k + 1}

    \begin{matrix}
& \Leftrightarrow \frac{1}{1.2} + \frac{1}{2.3} + \ldots +
\frac{1}{k(k + 1)} + \frac{1}{(k + 1)(k + 2)} = \frac{k}{k + 1} +
\frac{1}{(k + 1)(k + 2)} \\
& \\
& \\
\end{matrix}

    \Leftrightarrow \frac{1}{1.2} +
\frac{1}{2.3} + \ldots + \frac{1}{k(k + 1)} + \frac{1}{(k + 1)(k + 2)} =
\frac{k^{2} + 2k + 1}{(k + 1)(k + 2)}

    \Leftrightarrow \frac{1}{1.2} +
\frac{1}{2.3} + \ldots + \frac{1}{k(k + 1)} + \frac{1}{(k + 1)(k + 2)} =
\frac{k + 1}{k + 2}

    Suy ra mệnh đề đúng với n = k + 1.

  • Câu 13: Vận dụng

    Cho dãy số (un), biết un = n ⋅ cosn. Trong các phát biểu sau, có bao nhiêu phát biểu đúng?

    (1) (un) là dãy số tăng.

    (2) (un) là dãy số bị chặn dưới.

    (3) n ∈ ℕ* : un ≤ n.

    cos(n) ≤ 1 nên un < n. Phát biểu (3) đúng.

    Dãy không tăng, không giảm và không bị chặn dưới.

    Vậy có 1 phát biểu đúng trong 3 phát biểu đã cho.

  • Câu 14: Nhận biết

    Tính tổng 100 số hạng đầu của cấp số cộng xác định bởi u_{1} = - 5;d = 3.

    Theo bài ra ta có:

    S_{100} = \frac{\left( 2u_{1} + 99d
ight).100}{2} = 14350

  • Câu 15: Vận dụng cao

    Với giá trị nào của m ta có thể tìm được các giá trị của x để các số {5^{x + 1}} + {5^{1 - x}};\frac{m}{2};{25^x} + {25^{ - x}} lập thành một cấp số cộng?

     Để ba số hạng lập thành một cấp số cộng ta có:

    \begin{matrix}  \left( {{5^{x + 1}} + {5^{1 - x}}} ight) + \left( {{{25}^x} + {{25}^{ - x}}} ight) = 2.\left( {\dfrac{m}{2}} ight) \hfill \\   \Rightarrow m = 5\left( {{5^x} + \dfrac{1}{{{5^x}}}} ight) + \left( {{5^{2x}} + \dfrac{1}{{{5^{2x}}}}} ight) \hfill \\ \end{matrix}

    Theo bất đẳng thức Cauchy ta có:

    \begin{matrix}  {5^x} + \dfrac{1}{{{5^x}}} \geqslant 2\sqrt 1  = 2 \hfill \\  {5^{2x}} + \dfrac{1}{{{5^{2x}}}} \geqslant 2 \hfill \\   \Rightarrow m \geqslant 5.2 + 2 = 12 \hfill \\ \end{matrix}

  • Câu 16: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) với u_{1} = 2;d = 9. Khi đó số 2018 là số hạng thứ mấy trong dãy?

    Theo bài ra ta có:

    u_{n} = u_{1} + (n - 1)d

    \Leftrightarrow 2018 = 2 + (n -
1)d

    \Leftrightarrow n = 225

  • Câu 17: Thông hiểu

    Một kiến trúc sư thiết kế một hội trường với 15 ghế ngồi ở hàng thứ nhất, 18 ghế ngồi ở hàng thứ hai, 21 ghế ngồi ở hàng thứ ba và cứ như vậy (số ghế ngồi ở hàng sau nhiều hơn 3 ghế so với số ghế ngồi ở hàng liền trước nó). Nếu muốn hội trường đó có số sức chứa ít nhất 870 ghế ngồi thì kiến trúc sư phải thiết kế tối thiểu bao nhiêu hàng ghế.

    Đáp án: 20

    Đáp án là:

    Một kiến trúc sư thiết kế một hội trường với 15 ghế ngồi ở hàng thứ nhất, 18 ghế ngồi ở hàng thứ hai, 21 ghế ngồi ở hàng thứ ba và cứ như vậy (số ghế ngồi ở hàng sau nhiều hơn 3 ghế so với số ghế ngồi ở hàng liền trước nó). Nếu muốn hội trường đó có số sức chứa ít nhất 870 ghế ngồi thì kiến trúc sư phải thiết kế tối thiểu bao nhiêu hàng ghế.

    Đáp án: 20

    Số ghế ở các hàng tạo thành một cấp số cộng có u_{1} = 15 và công sai d = 3.

    Giả sử hội trường có n hàng ghế n\mathbb{\in N}*.

    Tổng số ghế có trong hội trường là:

    S_{n} = \frac{\left\lbrack 2u_{1} + (n -
1)d ightbrack.n}{2} = \frac{\lbrack 2.15 + (n - 1).3brack n}{2} =
\frac{3n^{2} + 27n}{2}.

    Để hội trường đó có số sức chứa ít nhất 870 ghế ngồi thì S_{n} \geq 870

    \Leftrightarrow \frac{3n^{2} + 27n}{2}
\geq 870 \Leftrightarrow n^{2} + 9n - 580 \geq 0 \Leftrightarrow
\left\lbrack \begin{matrix}
n \geq 20 \\
n \leq - 29 \\
\end{matrix}. ight.

    Vậy kiến trúc sư phải thiết kế tối thiểu 20 hàng ghế.

  • Câu 18: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} = -
\frac{1}{2}, công sai d =
\frac{1}{2}. Năm số hạng liên tiếp đầu tiên của cấp số cộng là:

    Ta dùng công thức tổng quát u_{n} = u_{1}
+ (n - 1)d = - \frac{1}{2} + (n - 1)\frac{1}{2} = - 1 +
\frac{n}{2}, hoặc u_{n + 1} = u_{n}
+ d = u_{n} + \frac{1}{2} để tính các số hạng của một cấp số cộng.

    Ta có u_{1} = - \dfrac{1}{2};\ \ d =\dfrac{1}{2}\overset{ightarrow}{}\left\{ \begin{matrix}u_{1} = - \dfrac{1}{2} \\u_{2} = u_{1} + d = 0 \\u_{3} - u_{2} + d = \dfrac{1}{2} \\u_{4} = u_{3} + d = 1 \\u_{5} = u_{4} + d = \dfrac{3}{2} \\\end{matrix} ight.

  • Câu 19: Thông hiểu

    Cho dãy số (un) được xác định như sau \left\{ \begin{matrix}
u_{1} = 0 \\
u_{n + 1} = \frac{n}{n + 1}\left( u_{n} + 1 ight) \\
\end{matrix} ight.. Số hạng u11 là?

    Ta có:

    \begin{matrix}
u_{2} & = \frac{1}{2}\left( u_{1} + 1 ight) = \frac{1}{2}; &
u_{3} = \frac{2}{3}\left( u_{2} + 1 ight) = 1; & u_{4} =
\frac{3}{4}\left( u_{3} + 1 ight) = \frac{3}{2}; \\
u_{5} & = \frac{4}{5}\left( u_{4} + 1 ight) = 2; & u_{6} =
\frac{5}{6}\left( u_{5} + 1 ight) = \frac{5}{2}; & u_{7} =
\frac{6}{7}\left( u_{6} + 1 ight) = 3 \\
u_{8} & = \frac{7}{8}\left( u_{7} + 1 ight) = \frac{7}{2}; &
u_{9} = \frac{8}{9}\left( u_{8} + 1 ight) = 4; & u_{10} =
\frac{1}{2}\left( u_{9} + 1 ight) = \frac{9}{2}; \\
u_{11} & = \frac{10}{11}\left( u_{10} + 1 ight) = 5 & & \\
\end{matrix}

  • Câu 20: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 5 \\
u_{n + 1} = u_{n} + n \\
\end{matrix} ight.. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có u_{n} = 5 + 1 + 2 + 3 + \ldots + n -
1 = 5 + \frac{n(n - 1)}{2}

  • Câu 21: Thông hiểu

    Trong các dãy số sau, dãy số nào là dãy số giảm?

     

    • Xét đáp án u_{n} = \frac{n - 3}{n +
1} :

     

    Ta có u_{n} = \frac{n - 3}{n + 1};u_{n +
1} = \frac{n - 2}{n + 2}. Khi đó:

    u_{n + 1} - u_{n} = \frac{n - 2}{n + 2}
- \frac{n - 3}{n + 1} = \frac{4}{(n + 1)(n + 1)} > 0,\forall n \in
\mathbb{N}^{*}

    Vậy (un) là dãy số tăng.

     

    • Xét đáp án u_{n} =
\frac{n}{2}:

     

    Ta có u_{n} = \frac{n}{2};u_{n + 1} =
\frac{n + 1}{2}. Khi đó u_{n + 1} -
u_{n} = \frac{n + 1}{2} - \frac{n}{2} = \frac{1}{2} > 0,\forall n \in
\mathbb{N}^{*}

    Vậy (un) là dãy số tăng.

     

    • Xét đáp án u_{n} =
\frac{2}{n^{2}}:

     

    Ta có u_{n} = \frac{2}{n^{2}};u_{n + 1} =
\frac{2}{(n + 1)^{2}} \Rightarrow \frac{u_{n + 1}}{u_{n}} =
\frac{n^{2}}{(n + 1)^{2}} < \frac{n^{2}}{n^{2}} = 1,\forall n \in
\mathbb{N}^{*}

    Vậy (un) là dãy số giảm.

     

    • Xét đáp án u_{n} = \frac{( -
1)^{n}}{3^{n}}:

     

    Ta có u_{1} = \frac{- 1}{3};u_{2} =
\frac{1}{9};u_{3} = \frac{- 1}{27}

    Vậy (un) là dãy số không tăng, không giảm.

  • Câu 22: Nhận biết

    Cho hai dãy số (un), (vn) được xác định như sau u1 = 3, v1 = 2\left\{ \begin{matrix}
u_{n + 1} = u_{n}^{2} + 2v_{n}^{2} \\
v_{n = 1} = 2u_{n} \cdot v_{n} \\
\end{matrix} ight. với n ≥ 2. Công thức tổng quát của hai dãy (un)(vn) là?

    Chứng minh u_{n} - \sqrt{2}v_{n} =
(\sqrt{2} - 1)^{2n}

    Ta có u_{n} = \sqrt{2}v_{n} = u_{n -
1}^{2} + 2v_{n - 1}^{2} - 2\sqrt{2}u_{n - 1}v_{n - 1} = \left( u_{n - 1}
- \sqrt{2}v_{n - 1} ight)^{2}

    Mặt khác u_{1} - \sqrt{2}v_{1} = 3 -
2\sqrt{2} = (\sqrt{2} - 1)^{2} nên (1) đúng với n = 1 Giả sử u_{k} - \sqrt{2}v_{k} = (\sqrt{2} -
1)^{2k}, ta có u_{k - 1} -
\sqrt{2}v_{k + 1} = \left( u - \sqrt{2}v_{k} ight)^{2} = (\sqrt{2} -
1)^{2k + 1}

    Vậy (1) đúng với n ≥ 1

    Ta có u_{n} + \sqrt{2}v_{n} = (\sqrt{2} +
1)^{2^{n}}

    Do đó ta suy ra:

    \left\{ \begin{matrix}
2u_{n} = (\sqrt{2} + 1)^{2^{n}} + (\sqrt{2} - 1)^{2^{n}} \\
2\sqrt{2}v_{n} = (\sqrt{2} + 1)^{2^{n}} - (\sqrt{2} - 1)^{2^{n}} \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
u_{n} = \frac{1}{2}\left\lbrack (\sqrt{2} + 1)^{2^{n}} + (\sqrt{2} -
1)^{2^{n}} ightbrack \\
v_{n} = \frac{1}{2\sqrt{2}}\left\lbrack (\sqrt{2} + 1)^{2^{n}} -
(\sqrt{2} - 1)^{2^{n}} ightbrack \\
\end{matrix} ight.

  • Câu 23: Thông hiểu

    Với giá trị nào của x;y thì các số hạng - 2;x; - 18;y theo thứ tự đó lập thành cấp số nhân?

    Ta có: các số hạng - 2;x; -
18;ylập thành cấp số nhân

    \Rightarrow \left\{ \begin{matrix}\dfrac{x}{- 2} = \dfrac{- 18}{x} \\\dfrac{- 18}{x} = \dfrac{y}{- 18} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \pm 6 \\y = \dfrac{324}{x} = \pm 54 \\\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(x;y) = (6;54) \\
(x;y) = ( - 6;54) \\
\end{matrix} ight.

  • Câu 24: Nhận biết

    Một cấp số nhân có số hạng thứ hai bằng 4 và số hạng thứ sáu bằng 64. Khi đó, số hạng tổng quát của cấp số nhân đó có thể tính theo công thức nào dưới đây?

    Ta có: \left\{ \begin{matrix}
u_{2} = 4 \\
u_{6} = 64 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1}q = 4 \\
u_{1}q^{5} = 64 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
q = 2 \\
\end{matrix} ight.

    \Rightarrow u_{n} = u_{1}.q^{n - 1} =
2.2^{n - 1} = 2^{n}

  • Câu 25: Nhận biết

    Trong các dãy số sau, dãy số nào là cấp số nhân?

     Ta có: \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{2^{n + 1}}}}{{{2^n}}} = 2

    => u_n=2^n là cấp số nhân

  • Câu 26: Thông hiểu

    Cho cấp số cộng u_{3} = 15;d = - 2. Tính u_{n}

    Ta có:

    \left\{ \begin{matrix}u_{3} = 15 \\d = - 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} + 2d = 15 \\d = - 2 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} = 19 \\d = - 2 \\\end{matrix} ight.

    \Rightarrow u_{n} = u_{1} + (n - 1)d = -2n + 21

  • Câu 27: Nhận biết

    Trong các dãy số (u_{n}) cho bởi số hạng tổng quát u_{n} sau, dãy số nào là một cấp số nhân?

    Xét dãy số u_n=7.3^n ta có: 

    \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{7.3}^{n + 1}}}}{{{{7.3}^n}}} = 3

    => Dãy số u_n=7.3^n là một cấp số nhân 

  • Câu 28: Vận dụng

    Số đo ba kích thước của hình hộp chữ nhật lập thành một cấp số nhân. Biết thể tích của khối hộp là 125cm^{3} và diện tích toàn phần là 175cm^{2}. Tính tổng số đo ba kích thước của hình hộp chữ nhật đó.

    Ba kích thước của hình hộp chữ nhật lập thành một cấp số nhân nên ta có thể gọi ba kích thước đó là \frac{a}{q};q;aq.

    Thể tích khối hộp chữ nhật: V =
\frac{a}{q}.a.a.q = a^{3} = 125 \Rightarrow a = 5

    Diện tích toàn phần của hình hộp chữ nhật là

    S_{tp} = 2.\left( \frac{a}{q}.a + a.a.q
+ a.q + \frac{a}{q} ight)

    = 2a^{2}\left( 1 + q + \frac{1}{q}
ight) = 50.\left( 1 + q + \frac{1}{q} ight)

    Theo giả thiết ta có:

    50.\left( 1 + q + \frac{1}{q} ight) =175 \Rightarrow \left\lbrack \begin{matrix}q = 2 \\q = \dfrac{1}{2} \\\end{matrix} ight.

    Với q = 2 hoặc q = \frac{1}{2} thì kích thước của hình hộp chữ nhật là 2,5cm;5cm;10cm

    => Tổng các kích thước là 17,5cm.

  • Câu 29: Thông hiểu

    Trong các dãy số \left( u_{n} ight) cho bởi số hạng tổng quát u_{n} sau, dã số nào là dãy số tăng?

    Xét đáp án u_{n} = 2^{n} ta có:

    u_{n + 1} - u_{n} = 2^{n + 1} - 2^{n} =
2^{n} > 0

    => Dãy số u_{n} = 2^{n} là dãy tăng.

  • Câu 30: Thông hiểu

    Giả sử Q là tập hợp con của tập các số nguyên dương sao cho

    (a) k ∈ \mathbb{ Q}

    (b) n ∈ \mathbb{Q} => n + 1 ∈ \mathbb{Q} ,∀ n ≥ k.

    Chọn mệnh đề đúng trong các mệnh đề dưới đây.

     Mệnh đề " Mọi số nguyên dương đều thuộc \mathbb{Q}" sai vì \mathbb{Q} là tập con thực sự của \mathbb{N^*} nên tồn tại số nguyên dương không thuộc \mathbb{Q}.

    Mệnh đề "Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc \mathbb{Q}" đúng theo lí thuyết của phương pháp quy nạp.

    Mệnh đề "Mọi số nguyên bé hơn k đều thuộc \mathbb{Q}" sai theo giả thiết thì phải là số tự nhiên lớn hơn k \in \mathbb{Q}.

    Mệnh đề "Mọi số nguyên đều thuộc \mathbb{Q}" sai vì số nguyên âm không thuộc \mathbb{Q}.

  • Câu 31: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) với số hạng đầu u_{1} và công bội q. Với n \geq
1, khẳng định nào sau đây đúng?

    Do \left( u_{n} ight) là cấp số nhân nên u_{n + 1} = u_{n}.q\ \ ,\ \ (n
\geq 1).

  • Câu 32: Nhận biết

    Cho dãy số \left(
u_{n} ight) biết \left\{\begin{matrix}u_{1} = 3 \\u_{n + 1} = \dfrac{u_{n}}{2} + 2 \\\end{matrix} ight.. Mệnh đề nào sau đây sai?

    Ta có:

    u_{2} = \frac{u_{1}}{2} + 2 =
\frac{3}{2} + 2 = \frac{7}{2}

    u_{3} = \frac{u_{3}}{2} + 2 =
\frac{7}{4} + 2 = \frac{15}{4}

    u_{4} = \frac{u_{3}}{2} + 2 =
\frac{15}{8} + 2 = \frac{31}{8}

    u_{5} = \frac{u_{4}}{2} + 2 =
\frac{31}{16} + 2 = \frac{63}{16}

  • Câu 33: Thông hiểu

    Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:

    Ta có:

    \left\{ \begin{matrix}
u_{k} = 16 \\
u_{k + 1} = 36 \\
\end{matrix} ight.\  \Rightarrow q = \frac{u_{k + 1}}{u_{k}} =
\frac{9}{4}

    u_{k + 2} = u_{k + 1}.q =
81

  • Câu 34: Vận dụng

    Cho dãy số (an) được xác định bởi \left\{ \begin{matrix}
a_{1} = 1;a_{2} = 2 \\
a_{n + 2} - a_{n + 1} - a_{n} = 0 \\
\end{matrix} ight..

    Phát biểu nào dưới đây về dãy số (an) là đúng?

    Mỗi số hạng thứ ba trở đi luôn bằng tổng của hai số đứng ngay trước nó. Đồng thời số hạng đầu tiên và số hạng thứ hai của dãy là các số dương nên dễ thấy dãy số là một dãy tăng.

  • Câu 35: Vận dụng

    Tìm số đo góc lớn nhất của một tứ giác, biết số đo các góc đó lập thành một cấp số nhân có số hạng cuối gấp tám lần số hạng đầu tiên?

    Giả sử cấp số nhân có số hạng đầu là u_{1}, công bội q, với q >0

    Theo bài ra ta có:

    u_{4} = 8.u_{1} \Leftrightarrowu_{1}q^{3} = u_{1}.8

    \Leftrightarrow q = 2

    S_{4} = u_{1} + u_{2} + u_{3} + u_{4}= 360^{0}

    \Leftrightarrow u_{1}.\frac{1 - q^{4}}{1- q} = 360^{0} \Rightarrow u_{1} = 24^{0}

    u_{2} = 48^{0};u_{3};96^{0};u_{4} =192^{0}

    Vậy góc lớn nhất có số đo 192^{0}

  • Câu 36: Vận dụng cao

    Cho dãy số (un) thỏa mãn {u_1} = 1;{u_n} = 10{u_{n - 1}} - 1,\left( {\forall n \geqslant 2} ight). Tìm giá trị nhỏ nhất của n thỏa mãn \log {a_n} > 100

    Ta có:

    {u_n} = 10{u_{n - 1}} - 1 \Leftrightarrow {u_n} - \frac{1}{9} = 10\left( {{u_{n - 1}} - \frac{1}{9}} ight)\left( * ight)

    Đặt {v_n} = {u_n} - \frac{1}{9} \Rightarrow {v_1} = {u_1} - \frac{1}{9} = \frac{8}{9}

    \left( * ight) \Rightarrow {v_n} = 10.{v_{n + 1}},\left( {n \geqslant 2} ight)

    Dãy (vn) là cấp số nhân với công bội q = 10

    => {u_n} = {v_n} + \frac{1}{9} = \frac{8}{9}{.10^{n - 1}} + \frac{1}{9} > {10^{100}}

    Vậy giá trị nhỏ nhất của n để \log {a_n} > 100 là n = 102

  • Câu 37: Nhận biết

    Cho dãy số (u_{n}), biết {u_n} = {( - 1)^n}.\frac{{{2^n}}}{n}. Tìm số hạng u_{3}

    Ta có:

    {u_3} = {( - 1)^3}.\frac{{{2^3}}}{3} =  - \frac{8}{3}

  • Câu 38: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    a) Xét dãy số đã cho ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4} \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số \left( u_{n} ight) không tăng không giảm.

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}" đúng bằng chứng minh quy nạp.

    c) Công sai d = 5 và số hạng đầu tiên bằng u_{1} = - 2020

    Khi đó số hạng tổng quát của cấp số cộng là

    u_{n} = u_{1} + 5(n - 1)

    \Rightarrow u_{n} = - 2025 +
5n

    d) Từ giả thiết ta có:

    \left\{ \begin{matrix}
u_{1} = 160 \\
u_{6} = 5 \\
\end{matrix} ight.\  \Rightarrow q = \sqrt[5]{\frac{u_{6}}{u_{1}}} =
\frac{1}{2}

    Suy ra tổng các số hạng của cấp số nhân đó là: S = \dfrac{u_{1}\left( 1 - q^{6} ight)}{1 - q} =\dfrac{160.\left\lbrack 1 - \left( \dfrac{1}{2} ight)^{6}ightbrack}{\dfrac{1}{2}} = 315.

  • Câu 39: Thông hiểu

    Cho cấp số nhân (un) có u1 = -1; u6 = -0,00001. Khi đó công bội q và số hạng tổng quát là:

    Ta có:

    \begin{matrix}  {u_6} = {u_1}.{q^5} \hfill \\   \Leftrightarrow 0,00001 =  - {q^5} \hfill \\   \Leftrightarrow q = \dfrac{{ - 1}}{{10}} \hfill \\   \Rightarrow {u_n} = {u_1}.{q^{n - 1}} =  - 1.{\left( {\dfrac{{ - 1}}{{10}}} ight)^{n - 1}} = \dfrac{{{{\left( { - 1} ight)}^n}}}{{{{10}^{n - 1}}}} \hfill \\ \end{matrix}

  • Câu 40: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{n} = - 1;u_{n + 1} = 8. Tính công sai d của cấp số cộng đó:

    Ta có:

    d = u_{n + 1} - u_{n} = 8 - ( - 1) =
9

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo