Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?
Ta có: không có dạng
nên không phải là cấp số cộng.
Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?
Ta có: không có dạng
nên không phải là cấp số cộng.
Dãy số nào là cấp số nhân?
Theo bài ra ta có:
(loại)
(loại)
(thỏa mãn)
(loại)
Trong các dãy số (un) cho bởi số hạng tổng quát un sau, dãy số nào tăng?
Ta xét đáp án Loại
Ta xét đáp án Loại
Ta xét đáp án Thỏa mãn!
Ta xét đáp án : Loại
Một cấp số nhân có 6 số hạng, số hạng đầu bằng 2 và số hạng thứ sáu bằng 486. Tìm công bội q của cấp số nhân đã cho.
Ta có:
Cấp số nhân có số hạng đầu bằng 2 và số hạng thứ sáu bằng 486
=>
=>
=> =>
Vậy công bội q của cấp số nhân đã cho là q = 3
Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên n ≥ p ( p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề A(n) đúng với n = k. Khẳng định nào sau đây là đúng?
Mệnh đề A(n) đúng với n = k với k ≥ p.
Tính giá trị u2018 của dãy số (un) xác định bởi ![]()
Ta có:
Đặt
=> Dãy số (vn) là cấp số nhân với
=>
Cho dãy số (un) được xác định bởi
.
Số hạng tổng quát un của dãy số là?
Ta có
Cộng vế với vế của các đẳng thức trên rồi rút gọn, ta được:
un = 2 + 2 ⋅ (2+3+…+n) − (n − 1)
= 2 + (n−1)(n+2) − n + 1
= n2 + 1
Cho cấp số cộng
thỏa mãn
. Khi đó
bằng:
Ta có:
Cho dãy số (un) xác định bởi
. Tính tổng của 10 số hạng đầu tiên của dãy số?
Ta có:
Tìm
để
theo thứ tự đó lập thành một cấp số nhân.
Cấp số nhân theo thứ tự là
ta có:
Một cấp số nhân có
số hạng, công bội q bằng
số hạng thứ nhất, tổng hai số hạng đầu bằng
. Xác định cấp số nhân?
Theo bài ra ta có:
Cho dãy số (un) biết
.
Tất cả các giá trị của a để (un) là dãy số tăng là?
Xét hiệu un + 1 − un = (aun+1) − (aun − 1+1) = a(un−un − 1)
Áp dụng, ta có u2 = au1 + 1 = a + 1 ⇒ u2 − 1 = a ⇒ u2 − u1 = a
⇒ u3 − u2 = a(u2−u1) = a2
⇒ u4 − u3 = a(u3−u2) = a3
⇒ un + 1 − un = an > 0
Để dãy số (un) tăng thì un > un − 1 > … > u2 > u1 ⇒ a > 0
Cho dãy số
có số hạng tổng quát
. Khẳng định nào sau đây sai?
Ta có:
Vậy dãy số đã cho không tăng không giảm.
Khẳng định sai là: “Dãy số là dãy giảm”
Xét các số nguyên dương chia hết cho 3. Tổng 50 số nguyên dương đầu tiên đó bằng:
Ta có:
Số nguyên dương chia hết cho 3 có dạng nên chúng lập thành cấp số cộng
Cho một cấp số nhân có 15 số hạng. Đẳng thức nào sau đây là sai?
Ta có:
Với
Đáp án sai
Một kiến trúc sư thiết kế một hội trường với 15 ghế ngồi ở hàng thứ nhất, 18 ghế ngồi ở hàng thứ hai, 21 ghế ngồi ở hàng thứ ba và cứ như vậy (số ghế ngồi ở hàng sau nhiều hơn 3 ghế so với số ghế ngồi ở hàng liền trước nó). Nếu muốn hội trường đó có số sức chứa ít nhất 870 ghế ngồi thì kiến trúc sư phải thiết kế tối thiểu bao nhiêu hàng ghế.
Đáp án: 20
Một kiến trúc sư thiết kế một hội trường với 15 ghế ngồi ở hàng thứ nhất, 18 ghế ngồi ở hàng thứ hai, 21 ghế ngồi ở hàng thứ ba và cứ như vậy (số ghế ngồi ở hàng sau nhiều hơn 3 ghế so với số ghế ngồi ở hàng liền trước nó). Nếu muốn hội trường đó có số sức chứa ít nhất 870 ghế ngồi thì kiến trúc sư phải thiết kế tối thiểu bao nhiêu hàng ghế.
Đáp án: 20
Số ghế ở các hàng tạo thành một cấp số cộng có và công sai
.
Giả sử hội trường có hàng ghế
.
Tổng số ghế có trong hội trường là:
Để hội trường đó có số sức chứa ít nhất 870 ghế ngồi thì
Vậy kiến trúc sư phải thiết kế tối thiểu 20 hàng ghế.
Cho hai số −3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số đó tạo thành cấp số cộng có công sai d = 2. Tìm n.
Ta có:
Cấp số cộng có k số hạng gồm có và số hạng cuối
.
Khi đó:
Do đó
Cho dãy số
biết
với
. Mệnh đề nào sau đây đúng?
Ta có:
=> Dãy số bị chặn dưới bởi 0.
Mặt khác
Vậy bị chặn trên, do đó dãy
bị chặn.
Với
, cho dãy số
gồm tất cả các số nguyên dương chia
dư
theo thứ tự tăng dần. Số hạng tổng quát của dãy số này là
Các số nguyên dương chia dư
theo thứ tự tăng dần là
,
,
,
,…
Ta có ,
,
,
, …
Vậy
Với giá trị nào của x và y thì các số -7; x; 11; y theo thứ tự đó lập thành một cấp số cộng?
Ta có:
Các số -7; x; 11 theo thứ tự đó lập thành một cấp số cộng
=>
Tương tự các số 2; 11; y theo thứ tự đó lập thành một cấp số cộng
=>
Vậy x = 2; y = 20
Cho tổng
. Giá trị S10 là
Cách 1:
Ta có
Suy ra
Vậy .
Cách 2:
Ta có
Suy ra .
Xác định bốn số hạng đầu của một dãy số
xác định bởi công thức
với
?
Ta có:
Cho cấp số cộng
biết
. Tìm công sai của cấp số cộng?
Theo giả thiết ta có:
Vậy
Trong các dãy số sau dãy số nào là cấp số cộng?
Ta có:
=> Dãy số là cấp số cộng.
Cho cấp số cộng (un) có
;
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra
. Sai||Đúng
c) Dãy số
cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng
và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra . Sai||Đúng
c) Dãy số cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
a) Ta có:
Suy ra:
b) Do công sai dương nên cấp số cộng là một dãy tăng nên
c) Ta có: là một cấp số cộng
Suy ra
d) Ta có:
Trong các dãy số sau, dãy số nào là cấp số nhân?
=> Loại đáp án A
=> Loại đáp án B
=> Dãy số là cấp số nhân có công bội q = 2
Chọn đáp án C
=> Loại đáp án B
Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một cấp số cộng. Độ dài các cạnh của tam giác đó là:
Ba cạnh của một tam giác theo thứ tự là với
lập thành một cấp số cộng nên
Ta có:
Giả sử Q là tập hợp con của tập các số nguyên dương sao cho
(a) ![]()
(b) ![]()
Chọn mệnh đề đúng trong các mệnh đề dưới đây.
Mệnh đề " Mọi số nguyên dương đều thuộc " sai vì
là tập con thực sự của
nên tồn tại số nguyên dương không thuộc
.
Mệnh đề "Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc " đúng theo lí thuyết của phương pháp quy nạp.
Mệnh đề "Mọi số nguyên bé hơn k đều thuộc " sai theo giả thiết thì phải là số tự nhiên lớn hơn
.
Mệnh đề "Mọi số nguyên đều thuộc " sai vì số nguyên âm không thuộc
.
Cho dãy số (Un) là một cấp số cộng có u1 = 3 và công sai d = 4. Biết rằng tổng n số hạng đầu của dãy số (Un) là
. Giá trị của n là:
Ta có:
Biết rằng tồn tại đúng ba giá trị m1, m2, m3 của tham số m để phương trình
có ba nghiệm phân biệt lập thành một cấp số cộng, tính giá trị của biểu thức ![]()
Ta có phương trình đã cho có 3 nghiệm phân biệt thì điều kiện cần là là nghiệm của phương trình
Với thì
Vậy ba số 1, 3, 5 lập thành cấp số cộng
Vậy giá trị cần tìm là 34
Dãy số (un) được cho bởi
. Hãy tìm khẳng định sai trong các khẳng định sau.
...
Áp dụng phương pháp quy nạp ta có un = 2n − 1.
Một cấp số nhân có số hạng thứ hai bằng 4 và số hạng thứ sáu bằng 64. Khi đó, số hạng tổng quát của cấp số nhân đó có thể tính theo công thức nào dưới đây?
Ta có:
Cho cấp số cộng
có
và
. Tìm
Ta có:
Khẳng định nào dưới đây sai?
Số hạng tổng quát của cấp số cộng (un) là với công sai d và số hạng đầu u1
Cho
với n ∈ ℕ*. Mệnh đề nào sau đây đúng?
Ta có dự đoán
Với n = 1, ta được (đúng)
Giả sử mệnh đề đúng khi n = k (k≥1), tức là
Ta có
Suy ra mệnh đề đúng với n = k + 1.
Cho dãy số
xác định bởi
. Tính số hạng thứ
của dãy số đó?
Ta có ,
,
Do đó là cấp số nhân với
,
,
;
.
Cho dãy số
là một cấp số nhân có số hạng đầu
và công bội
. Đẳng thức nào sau đây đúng?
Cho dãy số là một cấp số nhân có số hạng đầu
và công bội
.
Theo công thức số hạng tổng quát ta có ,
.
Cho dãy số
, với
. Mệnh đề nào sau đây đúng?
Ta có: là dãy thay dấu nên không tăng, không giảm.
Tập giá trị của dãy số là {-1; 1}
Vậy dãy số là dãy số bị chặn.
Cho cấp số nhân có 6 số hạng với cộng bội bằng 2 và tổng số các số hạng bằng 189. Số hạng cuối cùng của cấp số nhân có giá trị là:
Ta có: mà