Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Từ độ cao 63m của tháp nghiêng Pi-sa ở Italia, người ta thả một quả bóng cao su xuống đất. Giả sử mỗi lần chạm quả bóng lại nảy lên độ cao bằng \frac{1}{10} độ cao mà quả bóng đạt được ngay trước đó. Tính độ dài hành trình của quả bóng từ thời điểm ban đầu cho đến khi nó nằm yên trên mặt đất.

    Đáp án: 77

    Đáp án là:

    Từ độ cao 63m của tháp nghiêng Pi-sa ở Italia, người ta thả một quả bóng cao su xuống đất. Giả sử mỗi lần chạm quả bóng lại nảy lên độ cao bằng \frac{1}{10} độ cao mà quả bóng đạt được ngay trước đó. Tính độ dài hành trình của quả bóng từ thời điểm ban đầu cho đến khi nó nằm yên trên mặt đất.

    Đáp án: 77

    Ta thấy:

    Ban đầu bóng cao 63m nên chạm đất lần 1 bóng di chuyển quãng đường S_{1} = 63(m).

    Từ lúc chạm đất lần một đến chạm đất lần hai bóng di chuyển được quãng đường là S_{2} = 2S_{1}.\frac{1}{10} =
2.63.\frac{1}{10} = \frac{63}{5} (do độ cao lần hai bằng \frac{1}{10} độ cao ban đầu).

    Từ lúc chạm đất lần hai đến chạm đất lần ba bóng di chuyển được quãng đường là S_{3} = S_{2}\frac{1}{10} (do độ cao lần ba bằng \frac{1}{10} độ cao lần hai)...

    Cứ tiếp tục như vậy kéo dài ra vô tận thì ta có được tổng quãng đường mà bóng cao su đã di chuyển là

    S = S_{1} + S_{2} + S_{3} +
...

    = S_{1} + S_{2} + S_{2}.\frac{1}{10} +
S_{2}.\left( \frac{1}{10} ight)^{2} + ...

    = S_{1} + S_{2}\dfrac{1}{1 -\dfrac{1}{10}}

    = 63 + \frac{63}{5}.\frac{10}{9} = 77\
(m) .

    Vậy quãng đường di chuyển của bóng là 77m.

  • Câu 2: Vận dụng

    Cho dãy số (un) biết \left\{ \begin{matrix}
u_{1} = 2 \\
u_{n + 1} = \frac{u_{n}^{2} + 1}{4},\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Mệnh đề nào sau đây đúng?

    Dự đoán dãy giảm sau đó chứng minh un + 1 − un < 0 bằng quy nạp toán học.

    Từ giả thiết suy ra un > 0, ∀n ∈ ℕ*.

    Ta có u_{2} - u_{1} = \frac{5}{4} - 2 =
\frac{- 3}{4} < 0.

    Giả sử: uk + 1 − uk < 0, ∀k ≥ 1

    Xét hiệu u_{k + 2} - u_{k + 1} =
\frac{u_{k + 1}^{2} + 1}{4} - \frac{u_{k}^{2} + 1}{4}

    = \frac{1}{4}\left( u_{k + 1} + u_{k}
ight)\left( u_{k + 1} - u_{k} ight) < 0

    Theo nguyên lí quy nạp suy ra un + 1 − un < 0, ∀n ∈ ℕ*

    Vậy dãy số (un) là dãy số giảm.

  • Câu 3: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{2} + u_{23} = 60. Tính tổng S_{24} của 24 số hạng đầu tiên của cấp số cộng đã cho.

    Ta có:

    u_{2} + u_{23} = 60

    \Leftrightarrow \left( u_{1} + d ight)+ \left( u_{1} + 22d ight) = 60

    \Leftrightarrow 2u_{1} + 23d =60

    Khi đó:

    \Rightarrow S_{24} = \frac{24}{2}\left(u_{1} + u_{24} ight)

    \Rightarrow S_{24} = 12.\left\lbracku_{1} + \left( u_{1} + 23d ight) ightbrack

    \Rightarrow S_{24} = 12.60 =720

  • Câu 4: Nhận biết

    Trong các dãy số (u_{n}) cho bởi số hạng tổng quát u_{n} sau, dãy số nào là một cấp số nhân?

    Xét dãy số u_n=7.3^n ta có: 

    \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{7.3}^{n + 1}}}}{{{{7.3}^n}}} = 3

    => Dãy số u_n=7.3^n là một cấp số nhân 

  • Câu 5: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} =
2 và công sai d = 3. Giá trị u_{2024} bằng

    Áp dụng công thức số hạng tổng quát

    u_{2024} = u_{1} + 2023d = 2 + 2023.3 = 6071.

  • Câu 6: Nhận biết

    Giả sử A là tập con của tập hợp các số nguyên dương sao cho

    (I) k ∈ A

    (II) n ∈ A ⇒ n + 1 ∈ A, ∀n ≥ k

    Lúc đó, ta có: 

    (I) k ∈ A : số nguyên dương k thuộc tập A.

    (II) n ∈ A ⇒ n + 1 ∈ A, ∀n ≥ k : nếu số nguyên dương n(n≥k) thuộc tập A thì số nguyên dương đứng ngay sau nó (n+1) cũng thuộc A. Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc A.

  • Câu 7: Nhận biết

    Khẳng định nào sau đây là khẳng định sai?

    Khẳng định sai là: “Số hạng tổng quát của cấp số cộng \left( u_{n} ight)u_{n} = u_{1} + nd với công sai d và số hạng đầu u_{1}.”

  • Câu 8: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight)u_{1} = 2;u_{2} = - 8. Mệnh đề nào sau đây đúng?

    Theo bài ra ta có:

    \left\{ \begin{matrix}
u_{1} = 2 \\
u_{2} = - 8 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
u_{1}.q = - 8 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\\begin{matrix}q = - 4 \\S_{5} = 2.\dfrac{1 - ( - 4)^{5}}{1 + 4} = 410 \\S_{6} = 2.\dfrac{1 - ( - 4)^{6}}{1 + 4} = - 1638 \\u_{5} = u_{1}.q^{4} = 512 \\\end{matrix} \\\end{matrix} ight.

  • Câu 9: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + n^{2} \\
\end{matrix} ight.. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có \left\{ \begin{matrix}
u_{1} = 1 \\
u_{2} = u_{1} + 1^{2} \\
u_{3} = u_{2} + 2^{2} \\
\cdots \\
u_{n} = u_{n - 1} + (n - 1)^{2} \\
\end{matrix} ight.

    Cộng vế với vế của các đẳng thức trên, ta được

    u_{n} = 1 + 1^{2} + 2^{2} + \ldots + (n
- 1)^{2} = 1 + \frac{n(n - 1)(n - 2)}{6}

  • Câu 10: Nhận biết

    Trong các dãy số sau đây, dãy số nào là cấp số cộng?

    Ta có dãy số 1; - 3; - 7; - 11; -
15 là một cấp số cộng có công sai d
= - 4.

  • Câu 11: Thông hiểu

    Tìm z để 2; 8; z; 128 lập thành một cấp số nhân.

    Dãy số 2; 8; z; 128 theo thứ tự là u1; u2; u3; u4 ta có:

    \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{u_2}}}{{{u_1}}} = \dfrac{{{u_3}}}{{{u_2}}}} \\   {\dfrac{{{u_2}}}{{{u_1}}} = \dfrac{{{u_3}}}{{{u_2}}}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\dfrac{8}{2} = \dfrac{z}{8}} \\   {\dfrac{{128}}{z} = \dfrac{z}{8}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {z = 32} \\   {{z^2} = 1024} \end{array}} ight. \Rightarrow z = 32

  • Câu 12: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    a) Xét dãy số đã cho ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4} \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số \left( u_{n} ight) không tăng không giảm.

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}" đúng bằng chứng minh quy nạp.

    c) Công sai d = 5 và số hạng đầu tiên bằng u_{1} = - 2020

    Khi đó số hạng tổng quát của cấp số cộng là

    u_{n} = u_{1} + 5(n - 1)

    \Rightarrow u_{n} = - 2025 +
5n

    d) Từ giả thiết ta có:

    \left\{ \begin{matrix}
u_{1} = 160 \\
u_{6} = 5 \\
\end{matrix} ight.\  \Rightarrow q = \sqrt[5]{\frac{u_{6}}{u_{1}}} =
\frac{1}{2}

    Suy ra tổng các số hạng của cấp số nhân đó là: S = \dfrac{u_{1}\left( 1 - q^{6} ight)}{1 - q} =\dfrac{160.\left\lbrack 1 - \left( \dfrac{1}{2} ight)^{6}ightbrack}{\dfrac{1}{2}} = 315.

  • Câu 13: Thông hiểu

    Với giá trị nào của x;y thì các số hạng - 2;x; - 18;y theo thứ tự đó lập thành cấp số nhân?

    Ta có: các số hạng - 2;x; -
18;ylập thành cấp số nhân

    \Rightarrow \left\{ \begin{matrix}\dfrac{x}{- 2} = \dfrac{- 18}{x} \\\dfrac{- 18}{x} = \dfrac{y}{- 18} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \pm 6 \\y = \dfrac{324}{x} = \pm 54 \\\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(x;y) = (6;54) \\
(x;y) = ( - 6;54) \\
\end{matrix} ight.

  • Câu 14: Thông hiểu

    Cho cấp số nhân (un) có {u_2} = \frac{1}{4};{u_5} = 16. Tìm công bội q và số hạng đầu u1.

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_2} = \dfrac{1}{4}} \\   {{u_5} = 16} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1}.q = \dfrac{1}{4}} \\   {{u_1}.{q^4} = 16} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{q^3} = 64} \\   {{u_1}.{q^4} = 16} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {q = 4} \\   {{u_1} = \dfrac{1}{{16}}} \end{array}} ight.

  • Câu 15: Thông hiểu

    Xét các số nguyên dương chia hết cho 3. Tổng 50 số nguyên dương đầu tiên đó bằng:

    Ta có:

    Số nguyên dương chia hết cho 3 có dạng 3n;\left( n \in \mathbb{N}^{*} ight) nên chúng lập thành cấp số cộng u_{n} =
n

    ightarrow \left\{ \begin{matrix}
u_{1} = 3 \\
u_{50} = 150 \\
\end{matrix} ight.

    S_{n} = \frac{n}{2}.\left( u_{1} + u_{n}
ight) = n.u_{1} + \frac{n(n - 1)d}{2}

    \Rightarrow S_{50} = \frac{50}{2}.\left(
u_{1} + u_{50} ight) = 3825

  • Câu 16: Vận dụng cao

    Cho tổng S(n) = 2 + 4 + 6 + … + 2n. Khi đó S30 bằng?

    Ta có S30 = 2 + 4 + 6 + … + 60

     ⇒ 2S30 = (2+60) + (4+58) + (6+56) + … + (60+2) (có 30 ngoặc đơn)

    \Rightarrow S_{30} = \frac{(2 + 60)
\cdot 30}{2} = 930

  • Câu 17: Vận dụng

    Cho cấp số cộng \left( {{u_n}} ight) có số hạng đầu {u_1} = 1 và tổng 100 số hạng đầu tiên của dãy bằng . Tính giá trị của biểu thức: P = \frac{1}{{{u_1}{u_2}}} + \frac{1}{{{u_2}{u_3}}} + ... + \frac{1}{{{u_{49}}.{u_{50}}}}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho cấp số cộng \left( {{u_n}} ight) có số hạng đầu {u_1} = 1 và tổng 100 số hạng đầu tiên của dãy bằng . Tính giá trị của biểu thức: P = \frac{1}{{{u_1}{u_2}}} + \frac{1}{{{u_2}{u_3}}} + ... + \frac{1}{{{u_{49}}.{u_{50}}}}?

    Chỗ nhập nội dung câu trả lời tự luận

    Gọi d là công sai của cấp số cộng. ta có:

    S_{100} = 50\left( 2u_{1} + 99d ight) =14950u_{1} = 1 \Rightarrow d =3

    Ta có:

    P = \frac{1}{u_{1}u_{2}} +\frac{1}{u_{2}u_{3}} + ... + \frac{1}{u_{49}.u_{50}}

    \Rightarrow P.d = \frac{d}{u_{1}u_{2}} +\frac{d}{u_{2}u_{3}} + ... + \frac{d}{u_{49}.u_{50}}

    = \frac{u_{2} - u_{1}}{u_{1}u_{2}} +\frac{u_{3} - u_{2}}{u_{2}u_{3}} + ... + \frac{u_{50} -u_{49}}{u_{49}.u_{50}}

    = \frac{1}{u_{1}} - \frac{1}{u_{50}} =\frac{1}{1 + 49.3} = \frac{147}{148}

    Với d = 3 \Rightarrow P =\frac{49}{148}

  • Câu 18: Nhận biết

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + ( - 1)^{2n} \\
\end{matrix} ight.. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có un + 1 = un + (−1)2n = un + 1 ⇒ u2 = 2; u3 = 3; u4 = 4; …

    Dễ dàng dự đoán được un = n.

    Thật vậy, ta chứng minh được un = n (*) bằng phương pháp quy nạp như sau:

    Với n = 1 ⇒ u1 = 1. Vậy (*) đúng với n = 1.

    Giả sử (*) đúng với n = k (k∈ℕ*), ta có uk = k

    Ta đi chứng minh (*) cũng đúng với n = k + 1, tức là uk + 1 = k + 1

    Thật vậy, từ hệ thức xác định dãy số (un) ta có uk + 1 = uk + (−1)2k = k + 1

    Vậy (*) đúng với mọi n ∈ ℕ*. Số hạng tổng quát của dãy số là un = n.

  • Câu 19: Vận dụng

    Một cấp số cộng có số hạng đầu là 1, công sai là 4, tổng của n số hạng đầu là 561. Khi đó số hạng thứ n của cấp số cộng đó là u_{n} có giá trị là bao nhiêu?

    Ta có: \left\{ \begin{matrix}
u_{1} = 1;d = 4 \\
S_{m} = 561 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} = 1;d = 4 \.u_{1} + \dfrac{n(n - 1)}{2}.d = 561 \\\end{matrix} ight.

    \Leftrightarrow n + \frac{n^{2} -
n}{2}.4 = 561

    \Leftrightarrow 2n^{2} - n - 561 =
0

    \Leftrightarrow n = 17

    \Rightarrow u_{n} = u_{17} = u_{1} + 16d
= 1 + 16.4 = 65

  • Câu 20: Vận dụng

    Một người nhảy bungee (một trò chơi mạo hiểm mà người chơi nhảy từ một nơi có địa thế cao xuống với dây dai an toàn buộc xung quanh người) từ một cây cầu và căng một sợi dây dài 100 m. Sau mỗi lần rơi xuống, nhờ sự đàn hồi của dây, người nhảy dược kéo lên một quãng đường có độ dài bằng 75\% so với lần rơi trước đó và lại bị rơi xuống đúng bằng quãng đường vừa dược kéo lên. Tính tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống (làm tròn kết quả đến hàng đơn vị của mét)?

    Đáp án: 666

    Đáp án là:

    Một người nhảy bungee (một trò chơi mạo hiểm mà người chơi nhảy từ một nơi có địa thế cao xuống với dây dai an toàn buộc xung quanh người) từ một cây cầu và căng một sợi dây dài 100 m. Sau mỗi lần rơi xuống, nhờ sự đàn hồi của dây, người nhảy dược kéo lên một quãng đường có độ dài bằng 75\% so với lần rơi trước đó và lại bị rơi xuống đúng bằng quãng đường vừa dược kéo lên. Tính tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống (làm tròn kết quả đến hàng đơn vị của mét)?

    Đáp án: 666

    Gọi u_{n} là quãng dường người đó dược kéo lên ở lần thứ n (đơn vị tính: mét).

    Ta có u_{1} = 0,75 \cdot 100 = 100 \cdot
1,5 = 75\ mu_{n} = 0,75 \cdot
u_{n - 1}.

    Vậy \left( u_{n} ight) là cấp số nhân với số hạng đầu u_{1} = 75 và công bội q = 0,75.

    Tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống là

    S = 100 + 2u_{1} + 2u_{2} + \cdots +
2u_{10}

    = 100 + 2S_{10} = 100 + 2 \cdot
\frac{75\left( 1 - 0,75^{10} ight)}{1 - 0,75} \approx 666\ \
(m)

  • Câu 21: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) với u_{1} = 3u_{2} = 12. Công bội của cấp số nhân đã cho bằng

    Ta có u_{2} = u_{1}.q \Rightarrow q =
\frac{u_{2}}{u_{1}} = \frac{12}{3} = 4.

  • Câu 22: Nhận biết

    Cho cấp số nhân có số hạng thứ bảy là \frac{1}{2} và công bội \frac{1}{4}. Hỏi số hạng đầu tiên của cấp số nhân bằng bao nhiêu?

    Ta có: \left\{ \begin{matrix}u_{7} = \dfrac{1}{2} = u_{1}.q^{6} \\q = \dfrac{1}{4} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 2048 \\q = \dfrac{1}{4} \\\end{matrix} ight.

  • Câu 23: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = - 1;d = 3. Tính tổng 100 số hạng đầu tiên của cấp số cộng.

    Ta có:

    S_{n} = n.u_{1} + \frac{n(n -
1)d}{2}

    \Leftrightarrow S_{100} = 100.u_{1} +
\frac{100.99d}{2} = - 24350

  • Câu 24: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) có số hạng đầu u_{1} =
5 và công bội q = - 2. Số hạng thứ sáu của \left( u_{n}
ight) là:

    Ta có: u_{6} = u_{1}q^{5} = 5.( - 2)^{5} =
- 160

  • Câu 25: Thông hiểu

    Một cấp số nhân có số hạng đầu {u_1} = 3, công bội q = 2. Biết {S_n} = 765. Tìm n?

    Ta có:

    \begin{matrix}  {S_n} = \dfrac{{{u_1}\left( {1 - {q^n}} ight)}}{{1 - q}} = \dfrac{{3\left( {1 - {2^n}} ight)}}{{1 - 2}} = 765 \hfill \\   \Rightarrow n = 8 \hfill \\ \end{matrix}

  • Câu 26: Nhận biết

    Biết ba số m;2;m
+ 3 lập thành một cấp số nhân. Tính tổng các giá trị của m thỏa mãn?

    Để ba số m;2;m + 3 lập thành một cấp số nhân thì m.(m + 3) = 2^{2}
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = - 4 \\
\end{matrix} ight.

    Vậy tổng các giá trị của m là S = -
3

  • Câu 27: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{n} = - 2 \\
u_{n + 1} = - 2 - \frac{1}{u_{n}} \\
\end{matrix} ight.. Công thức số hạng tổng quát của dãy số là?

    Ta có u_{1} = - \frac{3}{2};u_{2} = -
\frac{4}{3};u_{3} = - \frac{5}{4};\ldots suy ra được u_{n} = - \frac{n + 1}{n}.

  • Câu 28: Thông hiểu

    Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:

    Ta có cấp số nhân (un) nên khi đó:

    \begin{matrix}\left\{ {\begin{array}{*{20}{c}}  {{u_m} = 16} \\   {{u_{m + 1}} = 36} \end{array}} ight. \Leftrightarrow \dfrac{{{u_{m + 1}}}}{{{u_m}}} = \dfrac{{36}}{{16}} = \dfrac{9}{4} \Rightarrow q = \dfrac{9}{4} \hfill \\   \Rightarrow {u_{m + 2}} = {u_{m + 1}}.q = 36.\dfrac{9}{4} = 81 \hfill \\ \end{matrix}

  • Câu 29: Vận dụng cao

    Tìm m để phương trình: {x^4} - \left( {3m + 5} ight){x^2} + {\left( {m + 1} ight)^2} = 0 có bốn nghiệm lập thành một cấp số cộng?

    Giả sử bốn nghiệm phân biệt của phương trình {x_1};{x_2};{x_3};{x_4}

    Đặt {x^2} = y \geqslant 0, ta được phương trình:

    {y^2} - \left( {3m + 5} ight)y + {\left( {m + 1} ight)^2} = 0\left( * ight)

    Ta phải tìm m sao cho (*) có hai nghiệm dương phân biệt 0 < {y_1} < {y_2}

    Khi đó (*) có 4 nghiệm là {x_1} =  - \sqrt {{y_2}} ,{x_2} =  - \sqrt {{y_1}} ;{x_3} = \sqrt {{y_1}} ;{x_4} = \sqrt {{y_2}}

    Theo đề bài thì bốn nghiệm lập thành một cấp số cộng nên

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_3} + {x_1} = 2{x_2}} \\   {{x_4} + {x_3} = 2{x_3}} \end{array}} ight. \Leftrightarrow \sqrt {{y_1}}  - \sqrt {{y_2}}  = 2\sqrt {{y_1}}  \hfill \\   \Rightarrow 3\sqrt {{y_1}}  = \sqrt {{y_2}}  \Rightarrow 9{y_1} = {y_2}\left( * ight) \hfill \\ \end{matrix}

    Áp dụng hệ thức Vi – et cho phương trình (*) ta có hệ:

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {\Delta  = {{\left( {3m + 5} ight)}^2} - 4{{\left( {m + 1} ight)}^2} > 0} \\   {S = {y_1} + {y_2} = 10{y_1} = 3m + 5} \\   {P = {y_1}{y_2} = 9{y_1}^2 = {{\left( {m + 1} ight)}^2}} \end{array}} ight. \Leftrightarrow m = 5

  • Câu 30: Thông hiểu

    Một rạp hát có 30 dãy ghế, dãy đầu tiên có 25 ghế. Mỗi dãy sau có hơn dãy trước 3 ghế. Hỏi rạp hát có tất cả bao nhiêu ghế?

    Số ghế của mỗi dãy (bắt đầu từ dãy đầu tiên) theo thứ tự đó lập thành một cấp số cộng có 30 số hạng có công sai d= 3;u_{1} = 25

    Tổng số ghế là

    S_{30} = u_{1} + u_{2} + ... +u_{30}

    = 30u_{1} + \frac{30.29}{2}.d =2055

  • Câu 31: Nhận biết

    Cho hai dãy số (un), (vn) được xác định như sau u1 = 3, v1 = 2\left\{ \begin{matrix}
u_{n + 1} = u_{n}^{2} + 2v_{n}^{2} \\
v_{n = 1} = 2u_{n} \cdot v_{n} \\
\end{matrix} ight. với n ≥ 2. Công thức tổng quát của hai dãy (un)(vn) là?

    Chứng minh u_{n} - \sqrt{2}v_{n} =
(\sqrt{2} - 1)^{2n}

    Ta có u_{n} = \sqrt{2}v_{n} = u_{n -
1}^{2} + 2v_{n - 1}^{2} - 2\sqrt{2}u_{n - 1}v_{n - 1} = \left( u_{n - 1}
- \sqrt{2}v_{n - 1} ight)^{2}

    Mặt khác u_{1} - \sqrt{2}v_{1} = 3 -
2\sqrt{2} = (\sqrt{2} - 1)^{2} nên (1) đúng với n = 1 Giả sử u_{k} - \sqrt{2}v_{k} = (\sqrt{2} -
1)^{2k}, ta có u_{k - 1} -
\sqrt{2}v_{k + 1} = \left( u - \sqrt{2}v_{k} ight)^{2} = (\sqrt{2} -
1)^{2k + 1}

    Vậy (1) đúng với n ≥ 1

    Ta có u_{n} + \sqrt{2}v_{n} = (\sqrt{2} +
1)^{2^{n}}

    Do đó ta suy ra:

    \left\{ \begin{matrix}
2u_{n} = (\sqrt{2} + 1)^{2^{n}} + (\sqrt{2} - 1)^{2^{n}} \\
2\sqrt{2}v_{n} = (\sqrt{2} + 1)^{2^{n}} - (\sqrt{2} - 1)^{2^{n}} \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
u_{n} = \frac{1}{2}\left\lbrack (\sqrt{2} + 1)^{2^{n}} + (\sqrt{2} -
1)^{2^{n}} ightbrack \\
v_{n} = \frac{1}{2\sqrt{2}}\left\lbrack (\sqrt{2} + 1)^{2^{n}} -
(\sqrt{2} - 1)^{2^{n}} ightbrack \\
\end{matrix} ight.

  • Câu 32: Thông hiểu

    Cho dãy số \left(
u_{n} ight) biết u_{n} = \frac{3n
- 1}{3n + 1}. Dãy số \left( u_{n}
ight) bị chặn trên bởi số nào dưới đây?

    Ta có: u_{n} = \frac{3n - 1}{3n + 1} = 1
- \frac{2}{3n + 1} < 1

    Mặt khác u_{2} = \frac{5}{7} >
\frac{1}{2} > 0

    => Dãy số \left( u_{n}
ight) bị chặn trên bởi số 1.

  • Câu 33: Thông hiểu

    Trong dãy số \left( u_{n} ight) cho bởi số hạng tổng quát u_{n} sau, dãy số nào là dãy số tăng?

    2^{n};n là các dãy dương và tăng nên \frac{1}{2^{n}};\frac{1}{n} là các dãy giảm

    => Loại các đáp án u_{n} =\frac{1}{2^{n}};u_{n} = \frac{1}{n}

    Xét đáp án u_{n} = \frac{n + 5}{3n +1} ta có: \Rightarrow \left\{\begin{matrix}u_{1} = \dfrac{3}{2} \\u_{2} = \dfrac{7}{6} \\\end{matrix} ight.\  \Rightarrow u_{1} > u_{2}(L)

    => Dãy số u_{n} = \frac{n + 5}{3n +1} không phải dãy tăng.

    Xét đáp án u_{n} = \frac{2n - 1}{n + 1} =2 - \frac{3}{n + 1}

    \Rightarrow u_{n + 1} - u_{n} = 3\left(\frac{1}{n + 1} - \frac{1}{n + 2} ight) > 0

    => Dãy số u_{n} = \frac{2n - 1}{n +1} là dãy tăng.

  • Câu 34: Vận dụng

    Cho cấp số nhân \left( u_{n}
ight) có công bội nguyên và các số hạng thoả mãn \left\{ \begin{matrix}
u_{4} - u_{2} = 54 \\
u_{5} - u_{3} = 108 \\
\end{matrix} ight.. Các khẳng định dưới đây là đúng hay sai?

    a) Số hạng đầu của cấp số nhân bằng 9. Đúng||Sai

    b) Tổng của 9 số hạng đầu tiên bằng 4599. Đúng||Sai

    c) Số 576 là số hạng thứ 6 của cấp số nhân. Sai||Đúng

    d) Gọi dãy số \left( v_{n} ight):\ \
v_{n} = u_{3n}, với n \in
\mathbb{N}^{*}. Khi đó tổng v_{1} +
v_{2} + v_{3} + ... + v_{10} = 12\left( 4^{10} - 1 ight). Sai||Đúng

    Đáp án là:

    Cho cấp số nhân \left( u_{n}
ight) có công bội nguyên và các số hạng thoả mãn \left\{ \begin{matrix}
u_{4} - u_{2} = 54 \\
u_{5} - u_{3} = 108 \\
\end{matrix} ight.. Các khẳng định dưới đây là đúng hay sai?

    a) Số hạng đầu của cấp số nhân bằng 9. Đúng||Sai

    b) Tổng của 9 số hạng đầu tiên bằng 4599. Đúng||Sai

    c) Số 576 là số hạng thứ 6 của cấp số nhân. Sai||Đúng

    d) Gọi dãy số \left( v_{n} ight):\ \
v_{n} = u_{3n}, với n \in
\mathbb{N}^{*}. Khi đó tổng v_{1} +
v_{2} + v_{3} + ... + v_{10} = 12\left( 4^{10} - 1 ight). Sai||Đúng

    a) Đúng

    Ta có:

    \left\{ \begin{matrix}
u_{4} - u_{2} = 54 \\
u_{5} - u_{3} = 108 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
u_{1}q^{3} - u_{1}q = 54 \\
u_{1}q^{4} - u_{1}q^{2} = 108 \\
\end{matrix} ight.\  ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1}q\left( q^{2} - 1 ight) = 54 \\
u_{1}q^{2}\left( q^{2} - 1 ight) = 108 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = \frac{54}{q(q^{2} - 1)} \\
\frac{1}{q} = \frac{54}{108} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} = \frac{54}{2(2^{2} - 1)} \\
q = 2 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 9 \\
q = 2 \\
\end{matrix} ight.\  ight..

    b) Đúng.

    Ta có: S_{9} = \frac{u_{1} \cdot \left( 1
- q^{9} ight)}{1 - q} = \frac{9 \cdot \left( 1 - 2^{9} ight)}{1 - 2}
= 4599

    Vậy tổng của 9 số hạng đầu tiên bằng 4599 nên mệnh đề đúng.

    c) Sai.

    Ta có:

    u_{k} = 576 \Leftrightarrow u_{1} \cdot
q^{k - 1} = 576 \Leftrightarrow 9.2^{k - 1} = 576

    \Leftrightarrow 2^{k - 1} = 64
\Leftrightarrow k - 1 = 6 \Leftrightarrow k = 7

    Vậy số 576 là số hạng thứ 7 của cấp số nhân nên mệnh đề sai.

    d) Sai.

    Ta có v_{n} = u_{3n}, nên \left( v_{n} ight) là cấp số nhân với v_{1} = u_{3} = 36 và công bội q = \frac{v_{2}}{v_{1}} =
\frac{u_{6}}{u_{3}} = \frac{9.2^{5}}{9.2^{2}} = 8.

    Nên S_{10} = 36.\frac{8^{10} -
1}{7}.

  • Câu 35: Thông hiểu

    Cho dãy số (un) thỏa mãn u_{1} = \sqrt{2}u_{n + 1} = \sqrt{2 + u_{n}} với mọi n ≥ 1. Số hạng u2018

    Ta có u_{1} = \sqrt{2} =
2\cos\frac{\pi}{4} = 2\cos\frac{\pi}{2^{2}};

    u_{2} = \sqrt{2 + \sqrt{2}} =
2cos\frac{\pi}{8} = 2cos\frac{\pi}{2^{3}}

    Dự đoán u_{n} = 2cos\frac{\pi}{2^{n +
1}}

    Áp dụng theo quy nạp ta có: u_{1} =
2cos\frac{\pi}{4} = \sqrt{2}, công thức (1) đúng với n = 1.

    Giả sử công thức (1) đúng với n = k, k ≥ 1 ta có u_{k} = 2cos\frac{\pi}{2^{k + 1}}

    Ta có u_{k + 1} = \sqrt{2 + u_{k}} =
\sqrt{2 + 2\cos\frac{\pi}{2^{k + 1}}}

    = \sqrt{2\left( 1 + \cos\frac{\pi}{2^{k
+ 2}} ight)}

    = \sqrt{4\cos^{2}\left( \frac{\pi}{2^{k
+ 2}} ight)}

    = 2cos\frac{\pi}{2^{k + 2}}

    (vì 0 < \frac{\pi}{2^{k + 2}} <
\frac{\pi}{2} với mọi k ≥ 1 ).

    Suy ra công thức (1) đúng với n = k + 1

    Vậy u_{n} = 2cos\frac{\pi}{2^{n +
1}},\forall n \in \mathbb{N}^{*}. Suy ra u_{2018} = 2cos\frac{\pi}{2^{2019}}

  • Câu 36: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) với u_{1} = 2;d = 9. Khi đó số 2018 là số hạng thứ mấy trong dãy?

    Theo bài ra ta có:

    u_{n} = u_{1} + (n - 1)d

    \Leftrightarrow 2018 = 2 + (n -
1)d

    \Leftrightarrow n = 225

  • Câu 37: Nhận biết

    Biết bốn số 5;x;15;y theo thứ tự lập thành cấp số cộng. Giá trị của biểu thức 3x + 2y bằng

    Ta có:

    x = \frac{5 + 15}{2} = 10 \Rightarrow y= 20

    \Rightarrow 3x + 2y = 70

  • Câu 38: Nhận biết

    Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên n ≥ p ( p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề A(n) đúng với n = k. Khẳng định nào sau đây là đúng?

    Mệnh đề A(n) đúng với n = k với k ≥ p.

  • Câu 39: Vận dụng

    Cho cấp số nhân có các số hạng lần lượt là \frac{1}{4};\frac{1}{2};1;...;2048. Tính tổng S của tất cả các số hạng của cấp số nhân đã cho.

    Cấp số nhân đã cho có \left\{\begin{matrix}u_{1} = \dfrac{1}{4} \\q = 2 \\\end{matrix} ight.

    \Rightarrow 2048 = 2^{11} = u_{1}.q^{n -1} = \frac{1}{2}.2^{n - 1} = 2^{n - 2}

    \Rightarrow n = 13

    => S = 2047,75

  • Câu 40: Nhận biết

    Cho dãy số \frac{1}{2};0; - \frac{1}{2}; - 1; - \frac{3}{2};... là cấp số cộng với:

    Ta có: \frac{1}{2};0; - \frac{1}{2}; - 1; - \frac{3}{2};... là một cấp số cộng

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = \dfrac{1}{2}} \\   {{u_2} - {u_1} =  - \dfrac{1}{2} = d} \end{array}} ight.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo