Cho cấp số nhân
có công bội âm. Biết
. Khi đó ![]()
Ta có:
Cho cấp số nhân
có công bội âm. Biết
. Khi đó ![]()
Ta có:
Cho dãy số (un) biết
.
Tất cả các giá trị của a để (un) là dãy số tăng là?
Xét hiệu un + 1 − un = (aun+1) − (aun − 1+1) = a(un−un − 1)
Áp dụng, ta có u2 = au1 + 1 = a + 1 ⇒ u2 − 1 = a ⇒ u2 − u1 = a
⇒ u3 − u2 = a(u2−u1) = a2
⇒ u4 − u3 = a(u3−u2) = a3
⇒ un + 1 − un = an > 0
Để dãy số (un) tăng thì un > un − 1 > … > u2 > u1 ⇒ a > 0
Một cấp số cộng có 12 số hạng. Biết rằng tổng của 12 số hạng đó bằng 144 và số hạng thứ mười hai bằng 23. Khi đó công sai d của cấp số cộng đã cho là bao nhiêu?
Ta có:
=> d = 2
Dãy số có các số hạng cho bởi
có số hạng tổng quát là công thức nào dưới đây?
Vì dãy số đã cho không phải là dãy hằng nên loại các đáp án và
Ta có: ở các đáp án
và
Xét đáp án
Xét đáp án
Vậy công thức tổng quát của dãy số đã cho là
Dãy số nào sau đây không phải là một cấp số cộng?
Xét đáp án A:
=> Loại đáp án A
Xét đáp án B:
=> Loại đáp án B
Xét đáp án C:
=> Chọn đáp án C
Xét đáp án D:
=> Loại đáp án D
Cho các dãy số sau. Dãy số nào là dãy số tăng?
Xét đáp án dãy là dãy hằng nên không tăng không giảm.
Xét đáp án
(Loại)
Xét đáp án
(Chọn)
Xét đáp án
(Loại)
Dãy số nào sau đây không phải là cấp số cộng?
Chỉ cần tồn tại hai cặp số hạng liên tiếp của dãy số có hiệu khác nhau: thì kết luận ngay dãy số đó không phải là cấp số cộng.
Xét đáp án: loại
Xét đáp án: Chọn
Xét đáp án: Loại
Xét đáp án: loại
Cho cấp số nhân
có số hạng đầu là
, công bội là
. Tính
?
Theo công thức cấp số nhân ta có:
Tìm tất cả các giá trị của x để ba số 2x - 1; x; 2x + 1 theo thứ tự đó lập thành một cấp số nhân.
Ta có:
Ba số 2x - 1; x; 2x + 1 theo thứ tự đó lập thành một cấp số nhân:
Cho hai dãy số (un), (vn) được xác định như sau u1 = 3, v1 = 2 và
với n ≥ 2. Công thức tổng quát của hai dãy (un) và (vn) là?
Chứng minh
Ta có
Mặt khác nên (1) đúng với n = 1 Giả sử
, ta có
Vậy (1) đúng với ∀n ≥ 1
Ta có
Do đó ta suy ra:
Tìm x và y để dãy số
là một cấp số cộng?
Để dãy số là một cấp số cộng thì
Cho cấp số nhân
có tổng n số hạng đầu tiên là
. Tổng n số hạng đầu tiên của cấp số nhân là 2046. Xác định n.
Ta có:
Tính tổng 
Áp dụng công thức tính tổng của n số hạng đầu của một cấp số nhân ta có:
Cho Sn = 1 + 2 ⋅ 3 + 3 ⋅ 32 + … + n ⋅ 3n − 1.
Khẳng định nào sau đây đúng với mọi n nguyên dương?
Ta có 3Sn = 3 + 2.32 + 3.33 + … + n.3n
Từ đó 2Sn = − 1 − 3 − 32 − … − 3n − 1 + n.3n
Cho dãy (un) xác định bởi
và un = un − 1 + 2n với mọi n ≥ 2. Số hạng u50 bằng?
Ta có
Cộng vế với vế các đẳng thức trên, ta được:
.
Cho dãy số có các số hạng đầu là
. Số hạng tổng quát của dãu số này là đẳng thức nào dưới đây?
Ta có: loại các đáp án
và
. Ta kiểm tra
Xét đáp án có
Xét đáp án có
là đáp án đúng.
Xét tính bị chặn của dãy số un = 3n − 1, ta thu được kết quả?
Ta có un ≥ 2, ∀n ⇒ (un) bị chặn dưới; dãy (un) không bị chặn trên.
Cho dãy số
. Tìm số hạng thứ 5 của dãy số:
Ta có:
Do đó số hạng thứ 5 của dãy số là Sử dụng công thức:
Cho dãy số
là một cấp số nhân với
. Dãy số nào sau đây không phải là cấp số nhân?
Giả sử là cấp số nhân công bội
thì:
Dãy là cấp số nhân công bội
.
Dãy là cấp số nhân với công bội
.
Dãy là cấp số nhân công bội
.
Dãy không là cấp số nhân.
Cho cấp số cộng
có
và công sai
. Tổng 10 số hạng đầu của cấp số cộng bằng:
Tổng 10 số hạng đầu của cấp số cộng là
Trong các dãy số sau, dãy số nào là cấp số nhân?
Xét dãy số
Ta có: => Dãy số là cấp số nhân
Cho các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng. Tìm a?
Đặt u1 = -4; u2 = 1; u3 = 6; u4 = a
Theo bài ra ta có:
Các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng
=> u3 – u2 = u4 – u3
=> 6 – 1 = a – 6
=> a = 11
Cho cấp số nhân
có
. Tính tổng 10 số hạng đầu tiên của cấp số nhân đã cho.
Ta có:
Cho dãy số (un) được xác định như sau
. Số hạng u11 là?
Ta có:
Tìm số đo góc lớn nhất của một tứ giác, biết số đo các góc đó lập thành một cấp số nhân có số hạng cuối gấp tám lần số hạng đầu tiên?
Giả sử cấp số nhân có số hạng đầu là , công bội
, với
Theo bài ra ta có:
Mà
Vậy góc lớn nhất có số đo
Cho cấp số cộng (un) có u3 = -15; u20 = 60. Tổng của 10 số hạng đầu tiên của cấp số cộng này là:
Gọi u1, d lần lượt là số hạng đầu và công sai của cấp số cộng
Ta có:
=> Tổng của 10 số hạng đầu tiên của cấp số cộng này là:
Cho cấp số cộng
thỏa mãn
có công sai
, các số hạng của cấp số cộng đã cho đều khác 0. Với giá trị nào của
thì dãy số
là một cấp số cộng?
Ta có:
Theo yêu cầu bài toán thì ta phải có:
Cho cấp số cộng
với
. Tổng 10 số hạng đầu tiên của dãy là:
Tổng 10 số hạng đầu tiên của dãy là:
Trong các dãy số sau, dãy số nào là cấp số nhân?
=> Loại đáp án A
=> Loại đáp án B
=> Dãy số là cấp số nhân có công bội q = 2
Chọn đáp án C
=> Loại đáp án B
Cho dãy số (un) thỏa mãn
và
với mọi n ≥ 1. Số hạng u2018 là
Ta có
Dự đoán
Áp dụng theo quy nạp ta có: , công thức (1) đúng với n = 1.
Giả sử công thức (1) đúng với n = k, k ≥ 1 ta có
Ta có
(vì với mọi k ≥ 1 ).
Suy ra công thức (1) đúng với n = k + 1
Vậy . Suy ra
Trong các dãy số sau, dãy số nào là cấp số nhân?
Dãy số 1, 2, 4, 8, 16 tuân theo quy luật
=> Dãy số đó là cấp số nhân
Cho cấp số cộng (Un) có
và công sai d = 4. Tính
?
Ta có:
Cho cấp số nhân (un) có
. Tìm công bội q và số hạng đầu u1.
Ta có:
Số hạng đầu tiên của cấp số nhân
thỏa mãn hệ
là:
Ta có:
Cho cấp số nhân
với công bội
. Đặt
. Khẳng định nào sau đây đúng?
Theo công thức tính tổng số hạng đầu của CSN ta được
.
Tính tổng ![]()
Ta có:
Tính tổng 10 số hạng đầu của cấp số cộng
.
Theo bài ra ta có:
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có
Cộng vế với vế của các đẳng thức trên, ta được
Hãy liệt kê năm số hạng đầu của dãy số
có số hạng tổng quát
?
Ta có:
Vậy năm số hạng đầu tiên của dãy số là
Cho dãy số có các số hạng đầu là 0,1; 0,001;0,0001; ... Số hạng tổng quát của dãy số có dạng?
Ta có:
Số hạng thứ 1 có 1 chữ số 0;
Số hạng thứ 2 có 2 chữ số 0;
Số hạng thứ 3 có 3 chữ số 0;
Suy ra có chữ số 0.
Công thức số hạng tổng quát của dãy số là: