Cho dãy số (un) có và
.
Tất cả các giá trị n để là?
Ta có
Đặt . Suy ra (vn) là cấp số nhận có công bội
và
.
Ta có
Do vn > 0, ∀n ≥ 1 nên (Tn) là dãy tăng.
Suy ra
Cho dãy số (un) có và
.
Tất cả các giá trị n để là?
Ta có
Đặt . Suy ra (vn) là cấp số nhận có công bội
và
.
Ta có
Do vn > 0, ∀n ≥ 1 nên (Tn) là dãy tăng.
Suy ra
Cho cấp số nhân với
. Tính
.
Ta có:
Vậy .
Cho cấp số nhân có công bội âm. Biết
. Khi đó
Ta có:
Một người xếp chồng những khúc gỗ có kích thước như nhau thành hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới
khúc gỗ và hàng trên cùng có
khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?
Đáp án: 55
Một người xếp chồng những khúc gỗ có kích thước như nhau thành hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới
khúc gỗ và hàng trên cùng có
khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?
Đáp án: 55
Mỗi hàng liền phía trên ít hơn hàng dưới khúc gỗ và hàng trên cùng có 1 khúc gỗ nên ta có đây là tổng của một cấp số cộng có:
.
Khi đó, tổng số khúc gỗ là:
(khúc gỗ).
Trong các dãy số sau, dãy số nào bị chặn trên?
Ta có:
.
Vậy đây là dãy số bị chặn trên.
Cho dãy số xác định bởi
. Tính số hạng thứ
của dãy số đó?
Ta có ,
,
Do đó là cấp số nhân với
,
,
;
.
Cho cấp số nhân (un) có . Tìm số hạng đầu tiên của dãy biết số đó không lớn hơn 100.
Ta có:
Tìm b > 0 để các số theo thứ tự đó lập thành một cấp số nhân.
Ta có:
Các số theo thứ tự đó lập thành một cấp số nhân.
(Vì b > 0)
Cho dãy số (un) thỏa mãn và
với mọi n ≥ 1. Số hạng u2018 là
Ta có
Dự đoán
Áp dụng theo quy nạp ta có: , công thức (1) đúng với n = 1.
Giả sử công thức (1) đúng với n = k, k ≥ 1 ta có
Ta có
(vì với mọi k ≥ 1 ).
Suy ra công thức (1) đúng với n = k + 1
Vậy . Suy ra
Cho một dãy số có các số hạng đầu tiên là 1,8,22,43,... Hiệu của hai số hạng liên tiếp của dãy số đó lập thành 1 cấp số cộng: 7,14,21,..., 7n. Số 35351 là số hạng thứ bao nhiêu của dãy số đã cho?
Ta có:
Cộng vế với vế của phương trình ta được:
Vậy số 35351 là số hạng thứ 101 của dãy số đã cho.
Cho cấp số cộng có ,
. Khi đó:
a) . Đúng||Sai
b) Số hạng tổng quát thứ của cấp số cộng là
. Đúng||Sai
c) Tổng số hạng đầu tiên của cấp số cộng là
. Đúng||Sai
d) Tổng . Sai||Đúng
Cho cấp số cộng có ,
. Khi đó:
a) . Đúng||Sai
b) Số hạng tổng quát thứ của cấp số cộng là
. Đúng||Sai
c) Tổng số hạng đầu tiên của cấp số cộng là
. Đúng||Sai
d) Tổng . Sai||Đúng
a) Áp dụng công thức tính số hạng tổng quát thứ của cấp số cộng ta có:
.
b) Áp dụng công thức tính số hạng tổng quát thứ của cấp số cộng ta có:
.
c) Áp dụng công thức tính tổng số hạng đầu tiên của cấp số cộng ta có:
.
d) Ta viết lại
.
Cho dãy số là một cấp số nhân có số hạng đầu
và công bội
. Đẳng thức nào sau đây đúng?
Cho dãy số là một cấp số nhân có số hạng đầu
và công bội
.
Theo công thức số hạng tổng quát ta có ,
.
Với giá trị nào của x và y thì các số -7; x; 11; y theo thứ tự đó lập thành một cấp số cộng?
Ta có:
Các số -7; x; 11 theo thứ tự đó lập thành một cấp số cộng
=>
Tương tự các số 2; 11; y theo thứ tự đó lập thành một cấp số cộng
=>
Vậy x = 2; y = 20
Tổng có công thức thu gọn là?
Cho cấp số nhân có số hạng đầu
và công bội
. Số hạng thứ sáu của
là:
Ta có:
Cho cấp số cộng (un) có các số hạng đầu lần lượt là 5; 9; 13; 17; …. Tìm số hạng tổng quát un của cấp số cộng.
Các số 5; 9; 13; 17; …. theo thứ tự lập thành một cấp số cộng (un) nên:
Cho cấp số cộng (un) biết u1 = -5 và công sai d = 2. Số 81 là số hạng thứ bao nhiêu?
Ta có:
Vậy 81 là số hạng thứ 44
Cho cấp số cộng có
. Tìm số hạng đầu tiên
.
Ta có:
Cho dãy số (un) biết .
Mệnh đề nào sau đây đúng?
Dự đoán dãy giảm sau đó chứng minh un + 1 − un < 0 bằng quy nạp toán học.
Từ giả thiết suy ra un > 0, ∀n ∈ ℕ*.
Ta có
Giả sử: uk + 1 − uk < 0, ∀k ≥ 1
Xét hiệu
Theo nguyên lí quy nạp suy ra un + 1 − un < 0, ∀n ∈ ℕ*
Vậy dãy số (un) là dãy số giảm.
Cho dãy số , biết
. Số
là số hạng thứ mấy của dãy số?
Ta có:
Vậy số là số hạng thứ 7 của dãy số.
Số hạng tổng quát của cấp số cộng là . Gọi
là tổng số hạng đầu tiên của cấp số cộng đã cho. Mệnh đề nào sau đây đúng?
Cấp số cộng
Cho cấp số cộng (un) có ;
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Từ hình vuông có cạnh bằng , người ta chia mỗi cạnh của hình vuông thành ba phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông mới (hình vẽ).Tiếp tục quá trình này đến vô hạn. Gọi
là diện tích của hình vuông được tạo thành ở bước thứ n
. Tính tổng
?
Đáp án: 5/4 (kết quả ghi dưới dạng phân số tối giản a/b)
Từ hình vuông có cạnh bằng , người ta chia mỗi cạnh của hình vuông thành ba phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông mới (hình vẽ).Tiếp tục quá trình này đến vô hạn. Gọi
là diện tích của hình vuông được tạo thành ở bước thứ n
. Tính tổng
?
Đáp án: 5/4 (kết quả ghi dưới dạng phân số tối giản a/b)
Giả sử cạnh hình vuông bằng a.
Ta có cạnh của hình vuông được tạo ở bước 1 là
Tương tự như trên, ta có:
,
,…,
Nên là tổng của cấp số nhân lùi vô hạn với
.
Khi đó .
Với a = 1 suy ra .
Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là đô la mỗi năm và được tăng thêm
đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là
đô la?
Đáp án: 8
Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là đô la mỗi năm và được tăng thêm
đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là
đô la?
Đáp án: 8
Gọi là tiền lương anh Nam nhận được vào năm thứ
.
Tại năm đầu tiên, lương anh Nam nhận được là .
Vì mỗi năm, anh Nam được tăng lương thêm đô, nên ta có
Do đó là cấp số cộng với
.
Tổng lương mà anh Nam nhận được là đô, áp dụng công thức tính tổng
số hạng đầu của cấp số cộng:
.
Vậy anh Nam mất 8 năm làm việc để được tổng lương là .
Cho cấp số nhân (un) có u1 = -1; u6 = -0,00001. Khi đó công bội q và số hạng tổng quát là:
Ta có:
Cho dãy số (un) với un = 2n + 1. Số hạng thứ 2019 của dãy là?
Ta có u2019 = 2.2019 + 1 = 4039
Cho dãy xác định bởi công thức . Số hạng tổng quát của dãy un là?
Ta có
Ta đi chứng minh cho dãy số có số hạng tổng quát là
Thật vậy, n = 1 thì u1 = 3 (đúng).
Giả sử với n = k(k≥1) thì . Ta đi chứng minh
Ta có (điều phải chứng minh).
Vậy số hạng tổng quát của dãy số là
Khẳng định nào sau đây là khẳng định sai?
Khẳng định sai là: “Số hạng tổng quát của cấp số cộng là
với công sai
và số hạng đầu
.”
Tìm tất cả các giá trị của x để ba số theo thứ tự lập thành một cấp số nhân.
Ta có:
Ba số theo thứ tự lập thành một cấp số nhân
Giả sử Q là tập hợp con của tập các số nguyên dương sao cho
(a)
(b)
Chọn mệnh đề đúng trong các mệnh đề dưới đây.
Mệnh đề " Mọi số nguyên dương đều thuộc " sai vì
là tập con thực sự của
nên tồn tại số nguyên dương không thuộc
.
Mệnh đề "Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc " đúng theo lí thuyết của phương pháp quy nạp.
Mệnh đề "Mọi số nguyên bé hơn k đều thuộc " sai theo giả thiết thì phải là số tự nhiên lớn hơn
.
Mệnh đề "Mọi số nguyên đều thuộc " sai vì số nguyên âm không thuộc
.
Cho cấp số cộng với
. Tìm số hạng đầu
và công sai
của cấp số cộng trên.
Ta có:
Cho dãy số . Chọn khẳng định sai trong các khẳng định sau đây.
Ta có: nên
đúng.
Do nên dãy số bị chặn, do đó “Dãy số (un) bị chặn” đúng.
.
Do nên dãy số không tăng, không giảm.
Vậy “Dãy số (un) không tăng, không giảm” đúng.
Do đó “Dãy số (un) tăng” sai.
Cho dãy số có các số hạng đầu là 8, 15, 22, 29, 36, … Số hạng tổng quát của dãy số này là
Ta có 8 = 7.1 + 1; 15 = 7.2 + 1; 22 = 7.3 + 1; 29 = 7.4 + 1; 36 = 7.5 + 1
Suy ra số hạng tổng quát un = 7n + 1
Cho cấp số cộng có
và
. Khẳng định nào sau đây là đúng?
Ta có:
Cho cấp số cộng (Un) có số hạng tổng quát là . Xác định công sai của cấp số cộng.
Ta có:
Cho dãy số , biết
. Tìm số hạng
Ta có:
Trong các dãy số cho bởi số hạng tổng quát
sau, dãy số nào là một cấp số nhân?
Xét dãy số ta có:
=> Dãy số là một cấp số nhân
Dãy số nào sau đây là cấp số nhân?
Ta có: là cấp số nhân
Dãy số lập thành cấp số nhân là
Cho dãy số biết
. Tìm số hạng tổng quát của dãy số
.
Ta có và
Suy ra dãy số là cấp số nhân với
Do đó
Tính tổng 10 số hạng đầu của cấp số cộng .
Theo bài ra ta có: