Trong các dãy số sau, dãy số nào là một cấp số nhân?
Ta có:
Dãy số là cấp số nhân
Gọi là công bội.
Xét đáp án
Xét đáp án
Xét đáp án
Xét đáp án
Trong các dãy số sau, dãy số nào là một cấp số nhân?
Ta có:
Dãy số là cấp số nhân
Gọi là công bội.
Xét đáp án
Xét đáp án
Xét đáp án
Xét đáp án
Trong các phát biểu sau, phát biểu nào là sai?
Ta lấy một phản ví dụ:
Dãy số (un) với là cấp số cộng có công sai d = 1 > 0
Nhưng dạng khai triển của nó là -1; 0; 1; … không phải một dãy số dương.
Cho cấp số cộng
với
. Tìm số hạng đầu
và công sai
của cấp số cộng trên.
Ta có:
Tìm x và y để dãy số
là một cấp số cộng?
Để dãy số là một cấp số cộng thì
Cho cấp số nhân (un) có u1 = -1; u6 = -0,00001. Khi đó công bội q và số hạng tổng quát là:
Ta có:
Cho dãy số
với
. Khẳng định nào sau đây là đúng?
Ta có:
=> là một cấp số nhân với công bội là q = 5
Số hạng đầu tiên của dãy là:
Cho dãy số
là một cấp số nhân có số hạng đầu
và công bội
. Đẳng thức nào sau đây đúng?
Cho dãy số là một cấp số nhân có số hạng đầu
và công bội
.
Theo công thức số hạng tổng quát ta có ,
.
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b)
. Đúng||Sai
c) Cấp số cộng
thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b) . Đúng||Sai
c) Cấp số cộng thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
a) Xét dãy số đã cho ta có:
nên dãy số
không tăng không giảm.
b) đúng bằng chứng minh quy nạp.
c) Công sai d = 5 và số hạng đầu tiên bằng
Khi đó số hạng tổng quát của cấp số cộng là
d) Từ giả thiết ta có:
Suy ra tổng các số hạng của cấp số nhân đó là: .
Một chiếc đồng hồ đánh chuông, kể từ thời điểm 0 (giờ) thì sau mỗi giờ thì số tiếng chuông được đánh đúng bằng số giờ mà đồng hồ chỉ tại thời điểm đánh chuông. Hỏi một ngày đồng hồ đó đánh bao nhiêu tiếng chuông?
Kể từ lúc 1 (giờ) đến 24 (giời) số tiếng chuông được đánh lập thành cấp số cộng có 24 số hạng với , công sai
.
=> Số tiếng chuông được đánh trong 1 ngày là:
Từ hình vuông có cạnh bằng
, người ta chia mỗi cạnh của hình vuông thành ba phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông mới (hình vẽ).Tiếp tục quá trình này đến vô hạn. Gọi
là diện tích của hình vuông được tạo thành ở bước thứ n
. Tính tổng
?

Đáp án: 5/4 (kết quả ghi dưới dạng phân số tối giản a/b)
Từ hình vuông có cạnh bằng , người ta chia mỗi cạnh của hình vuông thành ba phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông mới (hình vẽ).Tiếp tục quá trình này đến vô hạn. Gọi
là diện tích của hình vuông được tạo thành ở bước thứ n
. Tính tổng
?
Đáp án: 5/4 (kết quả ghi dưới dạng phân số tối giản a/b)
Giả sử cạnh hình vuông bằng a.
Ta có cạnh của hình vuông được tạo ở bước 1 là
Tương tự như trên, ta có:
,
,…,
Nên là tổng của cấp số nhân lùi vô hạn với
.
Khi đó .
Với a = 1 suy ra .
Cho cấp số nhân (un) có u1 = 1; q = 2. Hỏi số 1024 là số hạng thứ mấy?
Ta có:
Cho dãy số (un) biết
.
Mệnh đề nào sau đây đúng?
Dự đoán dãy giảm sau đó chứng minh un + 1 − un < 0 bằng quy nạp toán học.
Từ giả thiết suy ra un > 0, ∀n ∈ ℕ*.
Ta có
Giả sử: uk + 1 − uk < 0, ∀k ≥ 1
Xét hiệu
Theo nguyên lí quy nạp suy ra un + 1 − un < 0, ∀n ∈ ℕ*
Vậy dãy số (un) là dãy số giảm.
Trong các dãy số sau, dãy số nào lập thành một cấp số cộng?
Xét đáp án A: 1; -3; -7; -11; -15; …
=> u2 – u1 = u3 – u2 = u4 – u3 = -4 => Chọn đáp án A
Xét đáp án B: 1; -3; -7; -11; -15; …
=> u2 – u1 = -4 ≠ u3 – u2 = -3 => Loại đáp án B
Xét đáp án C: 1; -3; -7; -11; -15; …
=> u2 – u1 = -3 ≠ u3 – u2 = -2 => Loại đáp án C
Xét đáp án D: 1; -3; -7; -11; -15; …
=> u2 – u1 = -4 ≠ u3 – u2 = -2 => Loại đáp án D
Cho hai dãy số (un), (vn) được xác định như sau u1 = 3, v1 = 2 và
với n ≥ 2. Công thức tổng quát của hai dãy (un) và (vn) là?
Chứng minh
Ta có
Mặt khác nên (1) đúng với n = 1 Giả sử
, ta có
Vậy (1) đúng với ∀n ≥ 1
Ta có
Do đó ta suy ra:
Cho dãy số
với mọi
. Khi đó số hạng thứ 5 của dãy là:
Ta có:
Khi đó số hạng thứ 5 của dãy là 48
Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?
Ta có:
Dãy là một cấp số cộng
với d là hằng số.
Hay
=> Cấp số cộng cần tìm là:
Cho dãy số (un) có u1 = 7; un + 1 = 2un + 3. Khi đó u3 bằng?
Ta có u3 = 2u2 + 3 = 2 ⋅ (2u1+3) + 3 = 4u1 + 9 − 4 ⋅ 7 + 9 = 37.
Cho cấp số nhân (un) có
. Tìm công bội q và số hạng đầu u1.
Ta có:
Cho cấp số cộng
có số hạng đầu
và công sai
. Số 100 là số hạng thứ mấy của cấp số cộng?
Ta có:
Với giá trị nào của m ta có thể tìm được các giá trị của x để các số
lập thành một cấp số cộng?
Để ba số hạng lập thành một cấp số cộng ta có:
Theo bất đẳng thức Cauchy ta có:
Cho cấp số cộng (un) có
;
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Với giá trị nào của
thì các số hạng
theo thứ tự đó lập thành cấp số nhân?
Ta có: các số hạng lập thành cấp số nhân
Vậy
Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một cấp số cộng. Độ dài các cạnh của tam giác đó là:
Ba cạnh của một tam giác theo thứ tự là với
lập thành một cấp số cộng nên
Ta có:
Cho cấp số nhân (un) có tổng n số hạng đầu tiên là
. Tìm số hạng đầu và công bội của cấp số nhân đó?
Ta có:
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có
Cho Sn = 1 + 2 ⋅ 3 + 3 ⋅ 32 + … + n ⋅ 3n − 1.
Khẳng định nào sau đây đúng với mọi n nguyên dương?
Ta có 3Sn = 3 + 2.32 + 3.33 + … + n.3n
Từ đó 2Sn = − 1 − 3 − 32 − … − 3n − 1 + n.3n
Giả sử
theo thứ tự lập thành một cấp số nhân. Khi đó
bằng:
Điều kiện
Theo tính chất của cấp số nhân ta có:
Cho cấp số nhân (un) biết u1 = 12;
. Tính ![]()
Gọi q là công bội của cấp số nhân (un)
Ta có:
Cho dãy số (un) có u1 = 1 và
.
Trong các phát biểu sau, có bao nhiêu phát biểu đúng?
(1) (un) là dãy số tăng.
(2) (un) là dãy số bị chặn dưới.
(3) (un) là dãy số bị chặn trên.
Ta có nên dãy số tăng.
Vậy phát biểu (1) đúng.
Vì dãy số tăng nên dãy số bị chặn dưới bởi u1.
Vậy phát biểu (2) đúng.
Ta lại có
Cộng các đẳng thức trên theo từng vế, ta được:
Mặt khác
Vậy dãy số bị chặn trên bởi 2 nên phát biểu (3) đúng.
Cho dãy số
, biết
. Số
là số hạng thứ mấy của dãy số?
Ta có:
Vậy số là số hạng thứ 8 của dãy số.
Dãy số
có công thức số hạng tổng quát nào dưới đây xác định một cấp số nhân?
Xét dãy số ta có:
nên
là công thức số hạng tổng quát xác định một cấp số nhân.
Xét dãy số
nên
không là công thức số hạng tổng quát xác định một cấp số nhân.
Xét dãy số
nên
không là công thức số hạng tổng quát xác định một cấp số nhân.
Xét dãy số
nên
không là công thức số hạng tổng quát xác định một cấp số nhân
Cho dãy số
là cấp số cộng với:
Ta có: là một cấp số cộng
=>
Tìm
để
theo thứ tự đó lập thành một cấp số nhân.
Cấp số nhân theo thứ tự là
ta có:
Hãy liệt kê năm số hạng đầu của dãy số
có số hạng tổng quát
?
Ta có:
Vậy năm số hạng đầu tiên của dãy số là
Biểu thức nào sau đây cho ta tập giá trị của tổng ![]()
Ta có:
Với
Với
Với
Dự đoán ta sẽ chứng minh (*) đúng bằng phương pháo quy nạp.
Với đương nhiên (*) đúng.
Giả sử (*) đúng với tức là:
Ta chứng minh (*) đúng với
Ta có:
Vậy (*) đúng với mọi số tự nhiên n tức là
Trong các dãy số dưới đây, dãy số nào là dãy số giảm?
Xét phương án , ta có:
nên dãy này là dãy số tăng.
Xét phương án , ta có:
nên dãy này là dãy số giảm.
Xét phương án , ta có:
nên dãy này là dãy số tăng.
Xét phương án , ta có:
nên dãy này là dãy số tăng.
Vậy dãy số là dãy số giảm.
Một rạp hát có 30 dãy ghế, dãy đầu tiên có 25 ghế. Mỗi dãy sau có hơn dãy trước 3 ghế. Hỏi rạp hát có tất cả bao nhiêu ghế?
Số ghế của mỗi dãy (bắt đầu từ dãy đầu tiên) theo thứ tự đó lập thành một cấp số cộng có 30 số hạng có công sai
Tổng số ghế là
Cho cấp số cộng
có
. Số 100 là số hạng thứ mấy của cấp số cộng?
Ta có:
Dãy số (un) được cho bởi
. Hãy tìm khẳng định sai trong các khẳng định sau.
...
Áp dụng phương pháp quy nạp ta có un = 2n − 1.
Cho một cấp số cộng (Un) có
. Công sai d của cấp số cộng là:
Ta có: