Cho dãy số
có số hạng tổng quát
. Biết rằng
. Khi đó
là số hạng thứ mấy trong dãy số?
Ta có:
Vậy là số hạng thứ tư trong dãy số.
Cho dãy số
có số hạng tổng quát
. Biết rằng
. Khi đó
là số hạng thứ mấy trong dãy số?
Ta có:
Vậy là số hạng thứ tư trong dãy số.
Giả sử Q là tập hợp con của tập các số nguyên dương sao cho
(a) ![]()
(b) ![]()
Chọn mệnh đề đúng trong các mệnh đề dưới đây.
Mệnh đề " Mọi số nguyên dương đều thuộc " sai vì
là tập con thực sự của
nên tồn tại số nguyên dương không thuộc
.
Mệnh đề "Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc " đúng theo lí thuyết của phương pháp quy nạp.
Mệnh đề "Mọi số nguyên bé hơn k đều thuộc " sai theo giả thiết thì phải là số tự nhiên lớn hơn
.
Mệnh đề "Mọi số nguyên đều thuộc " sai vì số nguyên âm không thuộc
.
Ba số hạng đầu của một cấp số nhân là
và
. Tìm
biết rằng công bội của cấp số nhân là
?
Ta có:
Ba số hạng đầu của một cấp số nhân là và
có công bội
Xác định số hạng đầu u1 và công sai d của cấp số cộng (un) có u9 = 5u2 và u13 = 2u6 + 5.
Ta có:
Trong dãy số
cho bởi số hạng tổng quát
sau, dãy số nào là dãy số tăng?
Vì là các dãy dương và tăng nên
là các dãy giảm
=> Loại các đáp án
Xét đáp án ta có:
=> Dãy số không phải dãy tăng.
Xét đáp án
=> Dãy số là dãy tăng.
Trong các dãy số sau, dãy số nào lập thành một cấp số cộng?
Xét đáp án A: 1; -3; -7; -11; -15; …
=> u2 – u1 = u3 – u2 = u4 – u3 = -4 => Chọn đáp án A
Xét đáp án B: 1; -3; -7; -11; -15; …
=> u2 – u1 = -4 ≠ u3 – u2 = -3 => Loại đáp án B
Xét đáp án C: 1; -3; -7; -11; -15; …
=> u2 – u1 = -3 ≠ u3 – u2 = -2 => Loại đáp án C
Xét đáp án D: 1; -3; -7; -11; -15; …
=> u2 – u1 = -4 ≠ u3 – u2 = -2 => Loại đáp án D
Tổng
có công thức thu gọn là?
Cho cấp số nhân
có công bội
. Đẳng thức nào sau đây đúng?
Mệnh đề đúng .
Tế bào E. Coli trong điều kiện nuôi cấy thích hợp cứ 20 phút lại nhân đôi một lần. Nếu lúc đầu có
tế bào thì sau 2 giờ sẽ phân chia thành bao nhiêu tế bào?
Ban đầu có tế bào và mỗi lần phân chia thì một tế bào tách thành hai tế bào nên ta có cấp số nhân với
và công bội
.
Theo bài ra ta có:
Cứ 20 phút phân đôi một lần nên sau 2 giờ có 6 lần phân chia tế bào.
Ta có: là số tế bào nhận được sau 2 giờ.
Vậy số tế bào nhận được sau 2 giờ là
Trong các dãy số sau, dãy số nào là dãy số giảm?
Xét đáp án :
Ta có . Khi đó:
Vậy (un) là dãy số tăng.
Xét đáp án :
Ta có . Khi đó
Vậy (un) là dãy số tăng.
Xét đáp án :
Ta có
Vậy (un) là dãy số giảm.
Xét đáp án :
Ta có
Vậy (un) là dãy số không tăng, không giảm.
Cho dãy số
. Giá trị u11 là
Ta có
Trong các dãy số
cho bởi số hạng tổng quát
, dãy nào là cấp số nhân?
Dãy là cấp số nhân có
Với mọi số nguyên dương
, tổng
chia hết cho:
Với ta có:
không chia hết cho 9.
Với ta có:
không chia hết cho 4 và 12
Ta sẽ chứng minh chia hết cho 6 với mọi số nguyên dương
Giả sử khẳng định đúng với nghĩa là
chia hết cho 6.
Ta cần chứng minh khẳng định đúng với tức là:
cũng chia hết cho 6
Ta có:
Ta lại có: ta cần chứng minh
Thật vậy là tích hai số nguyên dương liên tiếp nên
Mặt khác và 2, 3 là hai số nguyên tố cùng nhau nên
Vậy chia hết cho 6 hay
chia hết cho 6 với mọi số nguyên dương
.
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:
;
. Khi đó:
a)
. Đúng||Sai
b) Ba số
tạo thành một cấp số cộng. Sai||Đúng
c)
. Sai||Đúng
d)
. Đúng||Sai
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:;
. Khi đó:
a) . Đúng||Sai
b) Ba số tạo thành một cấp số cộng. Sai||Đúng
c) . Sai||Đúng
d) . Đúng||Sai
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu 0,21 và công bội .
Vì vậy
.
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 0,3 và công bội là
Vì vậy
.
Kết luận:
|
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
Cho cấp số cộng
có
. Tìm số hạng đầu tiên
.
Ta có:
Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?
Dãy (un) là một cấp số cộng
=> với a, b là hằng số
=>
Trong các dãy số sau, dãy số nào bị chặn trên?
Ta có:
.
Vậy đây là dãy số bị chặn trên.
Trong các dãy số dưới đây, dạy số nào không phải là cấp số nhân lùi vô hạn?
Vì dãy ở đáp án C là một cấp số nhân có công bội q = 3/2 > 0
=> không phải dãy lùi vô hạn
Dãy số
là cấp số nhân với
Cấp số nhân
Cho dãy số (un), biết un = n ⋅ cosn. Trong các phát biểu sau, có bao nhiêu phát biểu đúng?
(1) (un) là dãy số tăng.
(2) (un) là dãy số bị chặn dưới.
(3) ∀n ∈ ℕ* : un ≤ n.
Vì cos(n) ≤ 1 nên un < n. Phát biểu (3) đúng.
Dãy không tăng, không giảm và không bị chặn dưới.
Vậy có 1 phát biểu đúng trong 3 phát biểu đã cho.
Một người muốn có 100 triệu sau 18 tháng phải gửi mỗi tháng vào ngân hàng bao nhiêu tiền, biết lãi suất 0,6%/ tháng (lãi kép)?
Gọi a là số tiền gửi mỗi tháng.
Cuối tháng thứ 1 số tiền là
Cuối tháng thứ 2 số tiền là
Cuối tháng thứ n số tiền là
Áp dụng công thức trên, ta tính được
Vậy số tiền phải gửi mỗi tháng là 5246112 (đồng).
Cho dãy (un) xác định bởi
và un = un − 1 + 2n với mọi n ≥ 2. Số hạng u50 bằng?
Ta có
Cộng vế với vế các đẳng thức trên, ta được:
.
Cho cấp số cộng
thỏa mãn
. Tính số hạng đầu tiên
và công sai
của cấp số cộng đã cho.
Ta có:
Một bệnh nhân hàng ngày phải uống
thuốc kháng sinh đặc trị bệnh bạch hầu. Sau một ngày hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể vẫn còn
lượng thuốc của ngày hôm trước. Các mệnh đề sau đúng hay sai?
a) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu còn trong cơ thể sau ngày đầu tiên uống thuốc là
. Đúng||Sai
b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ
là
. Đúng||Sai
c) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ
là
. Sai||Đúng
d) Ước tính lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể nếu bệnh nhân sử dụng thuốc trong một thời gian 30 ngày là
. Đúng||Sai
Một bệnh nhân hàng ngày phải uống thuốc kháng sinh đặc trị bệnh bạch hầu. Sau một ngày hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể vẫn còn
lượng thuốc của ngày hôm trước. Các mệnh đề sau đúng hay sai?
a) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu còn trong cơ thể sau ngày đầu tiên uống thuốc là . Đúng||Sai
b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ là
. Đúng||Sai
c) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ là
. Sai||Đúng
d) Ước tính lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể nếu bệnh nhân sử dụng thuốc trong một thời gian 30 ngày là . Đúng||Sai
a) Ta có hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau ngày đầu còn , suy ra mệnh đề đúng.
b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ là:
suy ra mệnh đề đúng.
c) Gọi là lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể bệnh nhân sau khi uống ở ngày thứ n
Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ là:
Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ là:
Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ là:
Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ là:
Suy ra mệnh đề sai.
d) Nếu bệnh nhân sử dụng thuốc trong thời gian 30 ngày. Khi đó lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể được ước lượng là:
Vậy lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể được ước lượng trong 30 ngày là , suy ra mệnh đề đúng.
Cho cấp số nhân có số hạng thứ bảy là
và công bội
. Hỏi số hạng đầu tiên của cấp số nhân bằng bao nhiêu?
Ta có:
Dãy số nào sau đây không phải là cấp số cộng?
Chỉ cần tồn tại hai cặp số hạng liên tiếp của dãy số có hiệu khác nhau: thì kết luận ngay dãy số đó không phải là cấp số cộng.
Xét đáp án: loại
Xét đáp án: Chọn
Xét đáp án: Loại
Xét đáp án: loại
Tìm m để phương trình:
có bốn nghiệm lập thành một cấp số cộng?
Giả sử bốn nghiệm phân biệt của phương trình
Đặt , ta được phương trình:
Ta phải tìm m sao cho (*) có hai nghiệm dương phân biệt
Khi đó (*) có 4 nghiệm là
Theo đề bài thì bốn nghiệm lập thành một cấp số cộng nên
Áp dụng hệ thức Vi – et cho phương trình (*) ta có hệ:
Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến A(n) đúng với mọi giá trị nguyên n ≥ p, với p là số nguyên dương ta sẽ tiến hành 2 bước
Bước 1 (bước cơ sở). Chứng minh rằng A(n) đúng khi n = 1
Bước 2 (bước quy nạp). Với số nguyên dương tùy ý k, ta giả sử A(n) đúng khi n = k (theo giả thiết quy nạp). Ta sẽ chứng minh rằng A(n) đúng khi n = k + 1
Hãy chọn câu trả lời đúng tương ứng với lí luận trên.
Bước 1 sai, vì theo bài toán n ≥ p nên ta phải chứng minh rằng A(n) đúng khi n = p.
Bước 2 sai, không thể "Với số nguyên dương tùy ý k " mà phải là "Với số nguyên dương k, (k ≥ p) ".
Cho dãy số
biết
. Ba số hạng đầu tiên của dãy đó lần lượt là những số nào dưới đây?
Ta có:
Cho cấp số nhân
có
. Mệnh đề nào sau đây đúng?
Theo bài ra ta có:
Khẳng định nào sau đây là khẳng định sai?
Khẳng định sai là: “Số hạng tổng quát của cấp số cộng là
với công sai
và số hạng đầu
.”
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có un + 1 = un + (−1)2n = un + 1 ⇒ u2 = 2; u3 = 3; u4 = 4; …
Dễ dàng dự đoán được un = n.
Thật vậy, ta chứng minh được un = n (*) bằng phương pháp quy nạp như sau:
Với n = 1 ⇒ u1 = 1. Vậy (*) đúng với n = 1.
Giả sử (*) đúng với n = k (k∈ℕ*), ta có uk = k
Ta đi chứng minh (*) cũng đúng với n = k + 1, tức là uk + 1 = k + 1
Thật vậy, từ hệ thức xác định dãy số (un) ta có uk + 1 = uk + (−1)2k = k + 1
Vậy (*) đúng với mọi n ∈ ℕ*. Số hạng tổng quát của dãy số là un = n.
Cho một cấp số cộng
có
. Giá trị
bằng bao nhiêu?
Ta có:
Tổng của 16 số hạng đầu tiên của cấp số cộng là:
Tính tổng 10 số hạng đầu của cấp số cộng
.
Theo bài ra ta có:
Một cấp số nhân có ba số hạng là a, b, c (theo thứ tự đó) trong đó các số hạng đều khác 0 và công bội
. Mệnh đề nào sau đây là đúng?
Ta có:
Tính tổng
với
.
Với thì
Ta có:
Do đó ta xem S là tổng của n số hạng, mà mỗi số hạng đều bằng -1..
=>
Ta có: và
là cấp số cộng có n số hạng nên.
Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:
Ta có cấp số nhân (un) nên khi đó:
Xen vào giữa hai số 4 và 40 bốn số để được một cấp số cộng có công sai lớn hơn 3. Tìm tổng 4 số đó.
Sau khi chèn 4 số vào giữa hai số 4 và 40 thì cấp số cộng đó có 6 số hạng
Nghĩa là coi 4 là số hạng đầu tiên thì 40 là số hạng thứ 6
Theo bài ra ta có:
Vậy công sai của cấp số cộng là
Khi đó 4 số hạng được thêm lần lượt là:
Tổng bốn số hạng ở trên là:
Cho cấp số nhân với các số hạng lần lượt là a; 12; b; 192. Mệnh đề nào dưới đây đúng?
Ta có: Cấp số nhân với các số hạng lần lượt là a; 12; b; 192
Cho cấp số cộng
có các số hạng đầu lần lượt là 5; 9; 13; 17;... Tìm số hạng tổng quát
của cấp số cộng.
Theo bài ra ta có:
Dãy số đã cho là cấp số cộng
=>
=>
Vậy số hạng tổng quát của dãy số là: