Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho cấp số nhân có các số hạng lần lượt là x;12;y;192. Mệnh đề nào sau đây đúng?

    Cấp số nhân x;12;y;192

    \Rightarrow \left\{ \begin{matrix}\dfrac{12}{x} = \dfrac{y}{12} \\\dfrac{y}{12} = \dfrac{192}{y} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \dfrac{144}{y} \\y^{2} = 2304 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \pm 3 \\y = \pm 48 \\\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(x;y) = (3;48) \\
(x;y) = ( - 3; - 48) \\
\end{matrix} ight.

  • Câu 2: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + 2n + 1,n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Số hạng tổng quát un là?

    Ta có u1 = 1; u2 = u1 + 3; u3 = u2 + 5; u4 = u3 + 7; …; un = un − 1 + (2n−1)

    Cộng từng vế với vế của các đẳng thức trên và rút gọn ta được

    un = 1 + 3 + 5 + 7 + … + (2n−1) = n2.

  • Câu 3: Vận dụng cao

    Cho một dãy số có các số hạng đầu tiên là 1,8,22,43,... Hiệu của hai số hạng liên tiếp của dãy số đó lập thành 1 cấp số cộng: 7,14,21,..., 7n. Số 35351 là số hạng thứ bao nhiêu của dãy số đã cho?

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_2} - {u_1} = 7} \\   {{u_3} - {u_2} = 14} \\   \begin{gathered}  {u_4} - {u_3} = 21 \hfill \\  ... \hfill \\ \end{gathered}  \\   {{u_n} - {u_{n - 1}} = 7\left( {n - 1} ight)} \end{array}} ight.

    Cộng vế với vế của phương trình ta được:

    \begin{matrix}  {u_n} - {u_1} = 7 + 14 + 21 + ... + 7\left( {n - 1} ight) \hfill \\   \Rightarrow {u_n} - {u_1} = \dfrac{{7n.\left( {n - 1} ight)}}{2} \hfill \\   \Rightarrow 35331 - 1 = \dfrac{{7n.\left( {n - 1} ight)}}{2} \hfill \\   \Leftrightarrow {n^2} - n - 10100 = 0 \hfill \\   \Leftrightarrow n = 101 \hfill \\ \end{matrix}

     Vậy số 35351 là số hạng thứ 101 của dãy số đã cho.

  • Câu 4: Nhận biết

    Với mỗi số nguyên dương, kí hiệu un = 5.23n − 2 + 33n − 1

    Một học sinh chứng minh un luôn chia hết cho 19 như sau:

    Bước 1: Khi n = 1, ta có u1 = 5.21 + 32 = 19 ⇒ u1⋮19

    Bước 2: Giả sử uk = 5.23k − 2 + 33k + 1 chia hết cho 19 với k ≥ 1.

    Khi đó ta có uk + 1 = 5.23k + 1 + 33k + 2 = 8(5.23k − 2+33k − 1) + 19.33k − 1

    Bước 3: Vì 5.23k − 2 + 33k − 119.33k − 1 chia hết cho 19 nên uk + 1 chia hết cho 19, ∀n ∈ ℕ*

    Vậy un chia hết cho 19, ∀n ∈ ℕ*

    Lập luận trên đúng hay sai? Nếu sai thì bắt đầu từ bước nào?

    Lập luận hoàn toàn đúng!

  • Câu 5: Thông hiểu

    Trong các dãy số dưới đây, dãy số nào là dãy số giảm?

    Xét phương án u_{n} = n^{2}, ta có:

    u_{n + 1} - u_{n} = (n + 1)^{2} - n^{2} =
2n + 1 > 0,\forall n \in \mathbb{N}^{*} nên dãy này là dãy số tăng.

    Xét phương án u_{n} =
\frac{1}{n^{2}}, ta có:

    u_{n + 1} -
u_{n} = \frac{1}{(n + 1)^{2}} - \frac{1}{n^{2}} = \frac{- 2n -
1}{n^{2}(n + 1)^{2}} < 0,\forall n \in \mathbb{N}^{*} nên dãy này là dãy số giảm.

    Xét phương án u_{n} = 2n - 1, ta có:

    u_{n + 1} - u_{n} = 2n + 1 - (2n - 1) = 2
> 0,\forall n \in \mathbb{N}^{*} nên dãy này là dãy số tăng.

    Xét phương án u_{n} = n^{3} - 3, ta có:

    u_{n + 1} - u_{n} = (n + 1)^{3} - 3 -\left( n^{3} - 3 ight)

    = 3n^{2} + 3n + 1 > 0,\forall n \in\mathbb{N}^{*} nên dãy này là dãy số tăng.

    Vậy dãy số u_{n} =
\frac{1}{n^{2}} là dãy số giảm.

  • Câu 6: Nhận biết

    Với mọi n ∈ ℕ*, khẳng định nào sau đây sai?

    Thử với n = 1, n = 2, n = 3 ta kết luận được đáp án:

    2^{2} + 4^{2} + 6^{2}
+ \ldots + (2n)^{2} = \frac{2n(n + 1)(2n + 1)}{6} sai.

    Suy ra

    2^{2} + 4^{2} + 6^{2} + \ldots +
(2n)^{2} = \frac{2n(n + 1)(2n + 1)}{3} mới là kết quả đúng!

  • Câu 7: Vận dụng

    Tế bào E. Coli trong điều kiện nuôi cấy thích hợp cứ 20 phút lại nhân đôi một lần. Nếu lúc đầu có 10^{22} tế bào thì sau 2 giờ sẽ phân chia thành bao nhiêu tế bào?

    Ban đầu có 10^{22} tế bào và mỗi lần phân chia thì một tế bào tách thành hai tế bào nên ta có cấp số nhân với u_{1} = 10^{22} và công bội q = 2.

    Theo bài ra ta có:

    Cứ 20 phút phân đôi một lần nên sau 2 giờ có 6 lần phân chia tế bào.

    Ta có: u_{7} là số tế bào nhận được sau 2 giờ.

    Vậy số tế bào nhận được sau 2 giờ là u_{7} = u_{1}.q^{6} = 10^{22}.2^{6} =
64.10^{22}

  • Câu 8: Thông hiểu

    Hai số hạng đầu của một cấp số nhân là 2x + 14x^{2} - 1. Số hạng thứ ba của cấp số nhân là:

    Công bội của cấp số nhân là: a =
\frac{4x^{2} - 1}{2x + 1} = 2x - 1

    Vậy số hạng thứ ba của cấp số nhân là:

    \left( 4x^{2} - 1 ight)(2x - 1) =
8x^{3} - 4x^{2} - 2x + 1

  • Câu 9: Vận dụng

    Tính tổng S = 1 + 11 + 111 + ... + \underbrace {1111...11}_n?

    Xét dãy số \left( U_{n} ight) là cấp số nhân với u_{1} = 1;q =
10

    \Rightarrow S_{n} = \frac{1}{9}.\left(
10^{n} - 1 ight)

    \Rightarrow S = S_{1} + S_{2} + ... +
S_{n}

    = \sum_{k = 1}^{n}{\frac{1}{9}\left(
10^{n} - 1 ight)} = \frac{1}{9}\left( \sum_{k = 1}^{n}{10^{n} - n}
ight)

    = \frac{1}{9}\left( 10.\frac{10^{n} -
1}{9} - n ight) = \frac{1}{9}\left( \frac{10^{n + 1} - 1}{9} - n
ight)

  • Câu 10: Thông hiểu

    Cho cấp số nhân có các số hạng lần lượt là 1;5;16;64. Gọi S_{n} là tổng của n số hạng đầu tiên của cấp số nhân đó. Mệnh đề nào sau đây đúng?

    Cấp số nhân đã cho có: \left\{
\begin{matrix}
u_{1} = 1 \\
q = 4 \\
\end{matrix} ight.

    \Rightarrow S_{n} = u_{1}.\frac{1 -
q^{n}}{1 - q} = 1.\frac{1 - 4^{n}}{1 - 4} = \frac{4^{n} -
1}{3}

  • Câu 11: Vận dụng cao

    Cho dãy số (un), biết \left\{ \begin{matrix}
u = \sqrt{2} \\
u_{n + 1} = \sqrt{2 + u_{n}},n \in \mathbb{N}^{*} \\
\end{matrix} ight.. Khẳng định nào sau đây đúng về dãy số (un) ?

    Ta có u_{1} = \sqrt{2};u_{2} = \sqrt{2 +\sqrt{2}};u_{3} = \sqrt{2 + \sqrt{2 + \sqrt{2}}};

    \ldots;u_{n} = \sqrt{2+ \sqrt{2} + \sqrt{2 + \ldots + \sqrt{2}}}

    Do un + 1 − un > 0 nên (un) là dãy số tăng.

    Lại có \sqrt{2} < u_{n} \leq 2 suy ra dãy số bị chặn.

  • Câu 12: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{2} + u_{23} = 60. Tính tổng S_{24} của 24 số hạng đầu tiên của cấp số cộng đã cho.

    Ta có:

    u_{2} + u_{23} = 60

    \Leftrightarrow \left( u_{1} + d ight)+ \left( u_{1} + 22d ight) = 60

    \Leftrightarrow 2u_{1} + 23d =60

    Khi đó:

    \Rightarrow S_{24} = \frac{24}{2}\left(u_{1} + u_{24} ight)

    \Rightarrow S_{24} = 12.\left\lbracku_{1} + \left( u_{1} + 23d ight) ightbrack

    \Rightarrow S_{24} = 12.60 =720

  • Câu 13: Thông hiểu

    Tìm tất cả các giá trị của x để ba số 2x - 1;x;2x + 1 theo thứ tự lập thành một cấp số nhân.

    Ta có:

    Ba số 2x - 1;x;2x + 1 theo thứ tự lập thành một cấp số nhân

    \Rightarrow x^{2} = (2x - 1).(2x +
1)

    \Rightarrow x^{2} = 4x^{2} -
1

    \Rightarrow 3x^{2} = 1

    \Rightarrow x = \pm
\frac{1}{\sqrt{3}}

  • Câu 14: Nhận biết

    Cho dãy số (un) với un = 2n + 1. Số hạng thứ 2019 của dãy là?

    Ta có u2019 = 2.2019 + 1 = 4039

  • Câu 15: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) có số hạng đầu là u_{1} = 3;d = 5. Hỏi số hạng thứ tư là số nào dưới đây?

    Ta có: u_{4} = u_{1} + 3d = 3 + 3.5 =
18

    Vậy u_{4} = 18

  • Câu 16: Thông hiểu

    Cho dãy số \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_{n + 1}} = {u_n} + n} \end{array}} ight.. Tìm số hạng thứ 5 của dãy số:

    Ta có:

    \begin{matrix}  {u_2} = {u_1} + 1 = 5 \hfill \\  {u_3} = {u_2} + 2 = 7 \hfill \\  {u_4} = {u_3} + 3 = 10 \hfill \\ \end{matrix}

    Do đó số hạng thứ 5 của dãy số là Sử dụng công thức: {u_5} = {u_4} + 4 = 14

  • Câu 17: Nhận biết

    Cho dãy số (un)u1 = 7; un + 1 = 2un + 3. Khi đó u3 bằng?

    Ta có u3 = 2u2 + 3 = 2 ⋅ (2u1+3) + 3 = 4u1 + 9 − 4 ⋅ 7 + 9 = 37.

  • Câu 18: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{n} = - 1;u_{n + 1} = 8. Tính công sai d của cấp số cộng đó:

    Ta có:

    d = u_{n + 1} - u_{n} = 8 - ( - 1) =
9

  • Câu 19: Nhận biết

    Tìm số hạng thứ 11 của cấp số cộng có số hạng đầu bằng 3 và công sai d = −2?

    Ta có: u_{11} = u_{1} + 10d = -
17

  • Câu 20: Thông hiểu

    Cho dãy số (un) được xác định bởi \left\{ \begin{matrix}
u_{1} = 2 \\
u_{n + 1} - u_{n} = 2n - 1 \\
\end{matrix} ight..

    Số hạng tổng quát un của dãy số là?

    Ta có \left\{ \begin{matrix}
u_{1} = 2 \\
u_{2} = u_{1} + 2.2 - 1 \\
u_{3} = u_{2} + 2.3 - 1 \\
\cdots \\
u_{n} = u_{n - 1} + 2.n - 1 \\
\end{matrix} ight.

    Cộng vế với vế của các đẳng thức trên rồi rút gọn, ta được:

    un = 2 + 2 ⋅ (2+3+…+n) − (n − 1)

     = 2 + (n−1)(n+2) − n + 1

     = n2 + 1

  • Câu 21: Thông hiểu

    Cho dãy số (u_n) với \begin{matrix}  {u_n} = \dfrac{{\sin \left( {\dfrac{{n\pi }}{3}} ight)}}{{n + 1}} \hfill \\\end{matrix} với mọi n\geq 1. Khi đó số hạng u_{3n} của dãy (u_{n}) là:

    Ta có:

    \begin{matrix}  {u_n} = \dfrac{{\sin \left( {\dfrac{{n\pi }}{3}} ight)}}{{n + 1}} \hfill \\   \Rightarrow {u_{3n}} = \dfrac{{\sin \left( {\dfrac{{3n\pi }}{3}} ight)}}{{3n + 1}} = \dfrac{{\sin \left( {n\pi } ight)}}{{3n + 1}} = 0 \hfill \\ \end{matrix}

  • Câu 22: Thông hiểu

    Trong các dãy số sau, dãy số nào là dãy số giảm?

     

    • Xét đáp án u_{n} = \frac{n - 3}{n +
1} :

     

    Ta có u_{n} = \frac{n - 3}{n + 1};u_{n +
1} = \frac{n - 2}{n + 2}. Khi đó:

    u_{n + 1} - u_{n} = \frac{n - 2}{n + 2}
- \frac{n - 3}{n + 1} = \frac{4}{(n + 1)(n + 1)} > 0,\forall n \in
\mathbb{N}^{*}

    Vậy (un) là dãy số tăng.

     

    • Xét đáp án u_{n} =
\frac{n}{2}:

     

    Ta có u_{n} = \frac{n}{2};u_{n + 1} =
\frac{n + 1}{2}. Khi đó u_{n + 1} -
u_{n} = \frac{n + 1}{2} - \frac{n}{2} = \frac{1}{2} > 0,\forall n \in
\mathbb{N}^{*}

    Vậy (un) là dãy số tăng.

     

    • Xét đáp án u_{n} =
\frac{2}{n^{2}}:

     

    Ta có u_{n} = \frac{2}{n^{2}};u_{n + 1} =
\frac{2}{(n + 1)^{2}} \Rightarrow \frac{u_{n + 1}}{u_{n}} =
\frac{n^{2}}{(n + 1)^{2}} < \frac{n^{2}}{n^{2}} = 1,\forall n \in
\mathbb{N}^{*}

    Vậy (un) là dãy số giảm.

     

    • Xét đáp án u_{n} = \frac{( -
1)^{n}}{3^{n}}:

     

    Ta có u_{1} = \frac{- 1}{3};u_{2} =
\frac{1}{9};u_{3} = \frac{- 1}{27}

    Vậy (un) là dãy số không tăng, không giảm.

  • Câu 23: Vận dụng cao

    Cho cấp số nhân \left( u_{n} ight) có các số hạng đều dương và \left\{ \begin{matrix}u_{1} + u_{2} + u_{3} + \ldots + u_{n} = 2020 \\\dfrac{1}{u_{1}} + \dfrac{1}{u_{2}} + \dfrac{1}{u_{3}} + \ldots +\dfrac{1}{u_{n}} = 2021 \\\end{matrix} ight. Giá trị của P = u_{1} \cdot u_{2} \cdot u_{3}\ldots\ldots
u_{n} là:

    Ta có P = u_{1} \cdot \left( u_{1} \cdot q ight)\ldots..\left( u_{1} \cdot q^{n - 1} ight)

    = u_{1}^{n} \cdot q^{1 + 2 + 3 + \ldots + (n - 1)}

    = u_{1}^{n} \cdot q^{\frac{n(n -1)}{2}} = \left( u_{1} \cdot q^{\frac{n - 1}{2}}ight)^{n}

    Theo giả thiết, ta có:

    A = u_{1} + u_{2} +
u_{3} + \ldots + u_{n} = u_{1} \cdot \frac{q^{n} - 1}{q -
1}
    B = \frac{1}{u_{1}} + \frac{1}{u_{2}} +
\frac{1}{u_{3}} + \ldots + \frac{1}{u_{n}}

    = \frac{1}{u_{1}} \cdot \left( 1 +
\frac{1}{q} + \frac{1}{q^{2}} + \ldots + \frac{1}{q^{n - 1}}
ight)

    = \dfrac{1}{u_{1}} \cdot \dfrac{1 -\dfrac{1}{q^{n}}}{1 - \dfrac{1}{q}} = \dfrac{1}{u_{1}} \cdot \dfrac{q^{n} -1}{q - 1} \cdot \dfrac{1}{q^{n - 1}}.
    Suy ra \frac{A}{B} = u_{1}^{2} \cdot q^{n -
1} = \left( u_{1} \cdot q^{\frac{n - 1}{2}} ight)^{2}. Vậy P = \sqrt{\left( \frac{A}{B} ight)^{n}} =
\sqrt{\left( \frac{2020}{2021} ight)^{n}}.

  • Câu 24: Thông hiểu

    Cho dãy số (un) thỏa mãn u_{1} = \sqrt{2}u_{n + 1} = \sqrt{2 + u_{n}} với mọi n ≥ 1. Số hạng u2018

    Ta có u_{1} = \sqrt{2} =
2\cos\frac{\pi}{4} = 2\cos\frac{\pi}{2^{2}};

    u_{2} = \sqrt{2 + \sqrt{2}} =
2cos\frac{\pi}{8} = 2cos\frac{\pi}{2^{3}}

    Dự đoán u_{n} = 2cos\frac{\pi}{2^{n +
1}}

    Áp dụng theo quy nạp ta có: u_{1} =
2cos\frac{\pi}{4} = \sqrt{2}, công thức (1) đúng với n = 1.

    Giả sử công thức (1) đúng với n = k, k ≥ 1 ta có u_{k} = 2cos\frac{\pi}{2^{k + 1}}

    Ta có u_{k + 1} = \sqrt{2 + u_{k}} =
\sqrt{2 + 2\cos\frac{\pi}{2^{k + 1}}}

    = \sqrt{2\left( 1 + \cos\frac{\pi}{2^{k
+ 2}} ight)}

    = \sqrt{4\cos^{2}\left( \frac{\pi}{2^{k
+ 2}} ight)}

    = 2cos\frac{\pi}{2^{k + 2}}

    (vì 0 < \frac{\pi}{2^{k + 2}} <
\frac{\pi}{2} với mọi k ≥ 1 ).

    Suy ra công thức (1) đúng với n = k + 1

    Vậy u_{n} = 2cos\frac{\pi}{2^{n +
1}},\forall n \in \mathbb{N}^{*}. Suy ra u_{2018} = 2cos\frac{\pi}{2^{2019}}

  • Câu 25: Thông hiểu

    Tìm x và y để dãy số 9;x; - 1;y là một cấp số cộng?

    Để dãy số 9;x; - 1;y là một cấp số cộng thì \left\{ \begin{matrix}x = \dfrac{9 - 1}{2} \\- 1 = \dfrac{x + y}{2} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = 4 \\y = - 6 \\\end{matrix} ight.

  • Câu 26: Thông hiểu

    Một cấp số nhân có công bội bằng 3 và số hạng đầu bằng 5. Biết số hạng chính giữa là 32805. Hỏi cấp số nhân đã cho có bao nhiêu số hạng?

    Ta có:

    u_{n} = 32805

    \Rightarrow u_{1}.q^{n - 1} =
32805

    \Rightarrow 3^{n - 1} =
6561

    \Rightarrow n = 9

    Vậy u_{9} là số hạng chính giữa của cấp số nhân nên cấp số nhân đã cho có 17 số hạng.

  • Câu 27: Thông hiểu

    Cho một cấp số cộng có {u_4} = 2;{u_2} = 4. Hỏi {u_1} bằng bao nhiêu?

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {{u_4} = 2} \\   {{u_2} = 4} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + 3d = 2} \\   {{u_1} + d = 4} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 5} \\   {d =  - 1} \end{array}} ight.

  • Câu 28: Nhận biết

    Cho các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng. Tìm x.

    Ta có: d = 6 - 1 = 5

    Các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng

    => x = 6 + 5 = 11

    Vậy x = 11

  • Câu 29: Nhận biết

    Cho dãy số \frac{1}{2};0; - \frac{1}{2}; - 1; - \frac{3}{2};... là cấp số cộng với:

    Ta có: \frac{1}{2};0; - \frac{1}{2}; - 1; - \frac{3}{2};... là một cấp số cộng

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = \dfrac{1}{2}} \\   {{u_2} - {u_1} =  - \dfrac{1}{2} = d} \end{array}} ight.

  • Câu 30: Nhận biết

    Trong các dãy số (u_{n}) cho bởi số hạng tổng quát u_{n} sau, dãy số nào là một cấp số nhân?

    Xét dãy số u_n=7.3^n ta có: 

    \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{7.3}^{n + 1}}}}{{{{7.3}^n}}} = 3

    => Dãy số u_n=7.3^n là một cấp số nhân 

  • Câu 31: Vận dụng

    Tính tổng A = 15 + 20 + 25 + ... + 7515

     Ta thấy các số hạng của tổng A tạo thành một cấp số cộng với số hạng đầu u1 = 15 và công sai d = 5

    Giả sử tổng trên có n số hạng thì un = 7515

    \begin{matrix}   \Rightarrow {u_1} + \left( {n - 1} ight)d = 7515 \hfill \\   \Rightarrow 15 + \left( {n - 1} ight).5 = 7515 \hfill \\   \Rightarrow n = 1501 \hfill \\ \end{matrix}

    Vậy A = {A_{1501}} = \frac{{\left( {2{u_1} + 1500d} ight).1501}}{2} = \frac{{\left( {2.15 + 1500.5} ight).1501}}{2} = 5651265

     

  • Câu 32: Nhận biết

    Cho cấp số nhân (un) có u1 = 1; q = 2. Hỏi số 1024 là số hạng thứ mấy?

    Ta có:

    \begin{matrix}  {u_n} = {u_1}.{q^{n - 1}} \hfill \\   \Leftrightarrow {1.2^{n - 1}} = 1024 \hfill \\   \Leftrightarrow {2^{n - 1}} = {2^{10}} \hfill \\   \Rightarrow n - 1 = 10 \hfill \\   \Rightarrow n = 11 \hfill \\ \end{matrix}

  • Câu 33: Thông hiểu

    Cho một cấp số cộng \left( u_{n} ight)u_{4} = - 12;u_{14} = 18. Giá trị S_{16} bằng bao nhiêu?

    Ta có:

    \left\{ \begin{matrix}
u_{4} = - 12 \\
u_{14} = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + 3d = - 12 \\
u_{1} + 13d = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 21 \\
d = 3 \\
\end{matrix} ight.

    Tổng của 16 số hạng đầu tiên của cấp số cộng là:

    S_{16} = \frac{\left( 2u_{1} + 15d
ight).16}{2} = 24

  • Câu 34: Nhận biết

    Trong các dãy số sau, dãy số nào là một cấp số nhân?

    Ta có:

    Dãy số \left( u_{n} ight) là cấp số nhân

    \Leftrightarrow u_{n} = q.u_{n -
1};\left( n \in \mathbb{N}^{*} ight)

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{u_{3}}{u_{2}} = \frac{u_{4}}{u_{3}} = ... = q;\left( u_{n} eq 0
ight)

    Gọi q là công bội.

    Xét đáp án 128; - 64;32; -
16;8;...

    \Leftrightarrow \frac{u_{2}}{u_{1}} = -
\frac{1}{2} = \frac{u_{3}}{u_{2}} = \frac{u_{4}}{u_{3}}

    Xét đáp án \sqrt{2};2;4;4\sqrt{2};...

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{1}{\sqrt{2}} eq 2 = \frac{u_{3}}{u_{2}}

    Xét đáp án 5;6;7;8;...

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{6}{5} eq \frac{7}{6} = \frac{u_{3}}{u_{2}}

    Xét đáp án 15;5;1;\frac{1}{5};...

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{1}{3} eq \frac{1}{5} = \frac{u_{3}}{u_{2}}

  • Câu 35: Vận dụng

    Cho dãy số \left(
u_{n} ight) xác định bởi \left\{
\begin{matrix}
u_{1} = 6 \\
u_{n + 1} = \sqrt{6 + u_{n}};\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight.. Mệnh đề nào sau đây đúng?

    Ta có: \left\{ \begin{matrix}
u_{1} = 6 \\
u_{n + 1} = \sqrt{6 + u_{n}} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = 6 \\
u_{n + 1} \geq 0 \\
\end{matrix} ight.\  \Rightarrow u_{n} \geq 0

    \Rightarrow \left\{ \begin{matrix}
u_{1} = 6 \\
u_{n + 1} = \sqrt{6 + u_{n}} \geq \sqrt{6} \\
\end{matrix} ight.

    Ta chứng minh quy nạp u_{n} \leq
2\sqrt{3};u_{1} \leq 2\sqrt{3};u_{k} \leq 2\sqrt{3}

    u_{k + 1} = \sqrt{6 + u_{k + 1}} \leq
\sqrt{6 + 2\sqrt{3}} \leq \sqrt{6 + 6} = 2\sqrt{3}

    Cách khác:

    Ta có: u_{2} = \sqrt{12} > 3 >
\frac{5}{2} > 2 nên loại các đáp án \sqrt{6} \leq u_{n} < \frac{5}{2}; \sqrt{6} \leq u_{n} < 3; \sqrt{6} \leq u_{n} < 2

  • Câu 36: Vận dụng

    Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một cấp số cộng. Độ dài các cạnh của tam giác đó là:

    Ba cạnh của một tam giác theo thứ tự là a;b;cvới a
< b < c lập thành một cấp số cộng nên

    \left\{ \begin{matrix}
a^{2} + b^{2} = c^{2} \\
a + b + c = 3 \\
a + c = 2b \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} + b^{2} = c^{2} \\
3b = 3 \\
a + c = 2b \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} + b^{2} = c^{2} \\
b = 1 \\
a = 2b - c - 2 - c \\
\end{matrix} ight.

    Ta có:

    a^{2} + b^{2} = c^{2}\overset{b =
1}{\underset{a = 2 - c}{ightarrow}}(2 - c)^{2} + 1 =
c^{2}

    \Rightarrow - 4c = 5 \Rightarrow c =
\frac{5}{4}

    \Rightarrow \left\{ \begin{matrix}a = \dfrac{3}{4} \\b = 1 \\c = \dfrac{5}{4} \\\end{matrix} ight.

  • Câu 37: Nhận biết

    Khẳng định nào sau đây là khẳng định sai?

    Khẳng định sai là: “Số hạng tổng quát của cấp số cộng \left( u_{n} ight)u_{n} = u_{1} + nd với công sai d và số hạng đầu u_{1}.”

  • Câu 38: Thông hiểu

    Ba số hạng đầu của một cấp số nhân là x - 6;xy. Tìm y biết rằng công bội của cấp số nhân là 6?

    Ta có:

    Ba số hạng đầu của một cấp số nhân là x -
6;xy có công bội q = 6

    \Rightarrow \left\{ \begin{matrix}u_{1} = x - 6;q = 6 \\x = u_{2} = u_{1}q = 6(x - 6) \\y = u_{3} = u_{2}q^{2} = 36x \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \dfrac{36}{5} \\y = 36.\dfrac{36}{5} = \dfrac{1296}{5} \\\end{matrix} ight.

  • Câu 39: Nhận biết

    Dãy số u_{n} =
2^{2n} là cấp số nhân với

    Cấp số nhân 4;16;64;....

    \Rightarrow \left\{ \begin{matrix}u_{1} = 4 \\q = \dfrac{u_{2}}{u_{1}} = 4 \\\end{matrix} ight.

  • Câu 40: Vận dụng

    Xét tính tăng, giảm của dãy số \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = \sqrt[3]{u_{n}^{3} + 1},n \geq 1 \\
\end{matrix} ight., ta thu được kết quả?

    Ta có u_{n + 1} = \sqrt[3]{u_{n}^{3} + 1}
\Rightarrow u_{n + 1} > \sqrt[3]{u_{n}^{3}} = u_{n},\forall n \in
\mathbb{N}^{*} \Rightarrow \left( u_{n} ight) là dãy số tăng.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo