Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) với u_{1} = - 2;u_{2} = 2. Khi đó số hạng 2018 là số nào?

    Theo bài ra ta có:

    d = u_{2} - u_{1} = 2 - ( - 2) =
4

    u_{n} = u_{1} + (n - 1)d

    \Rightarrow u_{2018} = u_{1} + 2017d = -
2 + 2017.4 = 8066.

  • Câu 2: Nhận biết

    Hãy liệt kê năm số hạng đầu của dãy số \left( u_{n} ight) có số hạng tổng quát u_{n} = 3^{n} + n - 2;\left( n \in
\mathbb{N}^{*} ight)?

    Ta có:

    u_{1} = 3^{1} + 1 - 2 = 2

    u_{2} = 3^{2} + 2 - 2 = 9

    u_{3} = 3^{3} + 3 - 2 = 28

    u_{4} = 3^{4} + 4 - 2 = 83

    u_{5} = 3^{5} + 5 - 2 = 246

    Vậy năm số hạng đầu tiên của dãy số là 2;9;28;83;246

  • Câu 3: Nhận biết

    Cho dãy số \frac{1}{2};0; - \frac{1}{2}; - 1; - \frac{3}{2};... là cấp số cộng với:

    Ta có: \frac{1}{2};0; - \frac{1}{2}; - 1; - \frac{3}{2};... là một cấp số cộng

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = \dfrac{1}{2}} \\   {{u_2} - {u_1} =  - \dfrac{1}{2} = d} \end{array}} ight.

  • Câu 4: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?

    Dãy (un) là một cấp số cộng

    => {u_n} = an + b với a, b là hằng số

    => {u_n} = 6 - 3n

  • Câu 5: Vận dụng

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn \left\{ \begin{matrix}
u_{1} + u_{7} = 26 \\
{u_{2}}^{2} + {u_{6}}^{2} = 466 \\
\end{matrix} ight.. Mệnh đề nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
u_{1} + u_{7} = 26 \\
{u_{2}}^{2} + {u_{6}}^{2} = 466 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2u_{1} + 6d = 26 \\
\left( u_{1} + d ight)^{2} + \left( u_{1} + 5d ight)^{2} = 466 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 13 - 3d \\
\left( u_{1} + d ight)^{2} + \left( u_{1} + 5d ight)^{2} = 466 \\
\end{matrix} ight.

    Khi đó:

    \Rightarrow (13 - 2d)^{2} + (13 +
2d)^{2} = 466

    \Rightarrow \left\lbrack \begin{matrix}
d = 4 \Rightarrow u_{1} = 1 \\
d = - 4 \Rightarrow u_{1} = 25 \\
\end{matrix} ight.

  • Câu 6: Vận dụng

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn \left\{ \begin{matrix}u_{1} + u_{2} + u_{3} = 27 \\{u_{1}}^{2} + {u_{2}}^{2} + {u_{3}}^{2} = 275 \\\end{matrix} ight.. Tính u_{2}.

    Ta có:

    \left\{ \begin{matrix}u_{1} + u_{2} + u_{3} = 27 \\{u_{1}}^{2} + {u_{2}}^{2} + {u_{3}}^{2} = 275 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} + \left( u_{1} + d ight) + \left( u_{1} + 2d ight) = 27 \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} + d = 9 \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}d = 9 - u_{1} \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    Khi đó:

    \Rightarrow {u_{1}}^{2} + \left( u_{1} +9 - u_{1} ight)^{2} + \left\lbrack u_{1} + 2\left( 9 - u_{1} ight)ightbrack^{2} = 275

    \Leftrightarrow {u_{1}}^{2} - 18u_{1} +65 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}u_{1} = 13 \Rightarrow d = - 4 \\u_{1} = 5 \Rightarrow d = 4 \\\end{matrix} ight.=> u_{2} = 9

  • Câu 7: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Dãy số 1; 2; 3; 4; 5 là một cấp số cộng với công sai là d = 1

    Dãy số 1; 2; 4; 8; 16 là một cấp số nhân với công bội q = 2

    Dãy số 1; -1; 1; -1; 1 là một cấp số nhân với công bội q = -1

    Dãy số 1; -2; 4; -8; 16 là một cấp số nhân với công bội q = -2

  • Câu 8: Nhận biết

    Trong các dãy số sau, dãy số nào là cấp số cộng?

    Ta có: \left\{ \begin{matrix}
3 = 1 + 2 \\
5 = 3 + 2 \\
7 = 5 + 2 \\
9 = 7 + 2 \\
\end{matrix} ight.

    Khi đó theo định nghĩa cấp số cộng dãy số 1;3;5;7;9 là một cấp số cộng với d = 2

  • Câu 9: Thông hiểu

    Cho dãy số \left( u_{n} ight) có số hạng tổng quát u_{n} = \frac{( - 1)^{n}}{1 + n}. Khẳng định nào sau đây sai?

    Ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4}

    \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight.

    Vậy dãy số đã cho không tăng không giảm.

    Khẳng định sai là: “Dãy số \left( u_{n}
ight) là dãy giảm”

  • Câu 10: Nhận biết

    Cho dãy số (un) là một cấp số nhân có số hạng đầu u1 và công bội q. Đẳng thức nào sau đây sai?

    Từ định nghĩa cấp số nhân ta có các kết quả sau:

    \begin{matrix}  {u_{n + 1}} = {u_n}.q;\left( {n \geqslant 1} ight) \hfill \\  {u_n} = {u_1}.{q^{n - 1}};\left( {n \geqslant 2} ight) \hfill \\  {u_k}^2 = {u_{k - 1}}.{u_{k + 1}};\left( {k \geqslant 2} ight) \hfill \\ \end{matrix}

    Đáp án C sai

  • Câu 11: Nhận biết

    Trong các dãy số sau, dãy số nào là cấp số nhân?

     Ta có: \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{2^{n + 1}}}}{{{2^n}}} = 2

    => u_n=2^n là cấp số nhân

  • Câu 12: Vận dụng

    Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là 35000 đô la mỗi năm và được tăng thêm 1400 đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là 319200 đô la?

    Đáp án: 8

    Đáp án là:

    Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là 35000 đô la mỗi năm và được tăng thêm 1400 đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là 319200 đô la?

    Đáp án: 8

    Gọi u_{n} là tiền lương anh Nam nhận được vào năm thứ n.

    Tại năm đầu tiên, lương anh Nam nhận được là u_{1} = 35000.

    Vì mỗi năm, anh Nam được tăng lương thêm 1400 đô, nên ta có u_{n} = u_{n - 1} + 1400

    Do đó \left( u_{n} ight) là cấp số cộng với u_{1} = 35000,\ d =
1400.

    Tổng lương mà anh Nam nhận được là 319200 đô, áp dụng công thức tính tổng n số hạng đầu của cấp số cộng:

    S_{n} = \frac{\left\lbrack 2u_{1} + (n -
1)d ightbrack.n}{2}

    \Leftrightarrow 319200 =
\frac{\left\lbrack 2.35000 + (n - 1).1400
ightbrack.n}{2}

    \Rightarrow n = 8.

    Vậy anh Nam mất 8 năm làm việc để được tổng lương là 319200.

  • Câu 13: Thông hiểu

    Số hạng âm trong dãy số x1; x2; x3; …; xn với x_{n} = C_{n + 5}^{4} - \frac{143P_{n +
5}}{96P_{n + 3}} là?

    Ta có c_{n + 5}^{4} = \frac{(n + 5)(n +4)(n + 3)(n + 2)}{24},

    \frac{143P_{n + 5}}{96P_{n + 3}} = \frac{143(n +5)(n + 4)}{96}

    x_{n} = C_{n + 5}^{4} - \frac{143P_{n +
5}}{96P_{n + 3}}

    = \frac{(n + 5)(n + 4)(2n + 17)(2n -
7)}{96} > 0,\forall n \geq 4,n \in \mathbb{N}^{*}

    Vậy các số hạng âm là x1; x2; x3.

  • Câu 14: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    a) Xét dãy số đã cho ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4} \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số \left( u_{n} ight) không tăng không giảm.

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}" đúng bằng chứng minh quy nạp.

    c) Công sai d = 5 và số hạng đầu tiên bằng u_{1} = - 2020

    Khi đó số hạng tổng quát của cấp số cộng là

    u_{n} = u_{1} + 5(n - 1)

    \Rightarrow u_{n} = - 2025 +
5n

    d) Từ giả thiết ta có:

    \left\{ \begin{matrix}
u_{1} = 160 \\
u_{6} = 5 \\
\end{matrix} ight.\  \Rightarrow q = \sqrt[5]{\frac{u_{6}}{u_{1}}} =
\frac{1}{2}

    Suy ra tổng các số hạng của cấp số nhân đó là: S = \dfrac{u_{1}\left( 1 - q^{6} ight)}{1 - q} =\dfrac{160.\left\lbrack 1 - \left( \dfrac{1}{2} ight)^{6}ightbrack}{\dfrac{1}{2}} = 315.

  • Câu 15: Thông hiểu

    Cho dãy số \left( u_{n} ight) biết \left\{ \begin{matrix}u_{1} = 3 \\u_{n + 1} = 3u_{n} \\\end{matrix},\forall n \in N^{*} ight.. Tìm số hạng tổng quát của dãy số \left( u_{n}ight).

    Ta có u_{1} = 3\frac{u_{n+1}}{u_{n}}=3

    Suy ra dãy số \left( u_{n}ight)là cấp số nhân với \left\{\begin{matrix}u_{1} = 3 \\q = 3 \\\end{matrix} ight.

    Do đó u_{n} = u_{1}.q^{n - 1} = 3.3^{n -1} = 3^{n}

  • Câu 16: Vận dụng cao

    Tính tổng S = {\left( {2 + \frac{1}{2}} ight)^2} + {\left( {4 + \frac{1}{4}} ight)^2} + ... + {\left( {{2^n} + \frac{1}{{{2^n}}}} ight)^2}

    \begin{matrix}  S = {\left( {2 + \dfrac{1}{2}} ight)^2} + {\left( {4 + \dfrac{1}{4}} ight)^2} + ... + {\left( {{2^n} + \dfrac{1}{{{2^n}}}} ight)^2} \hfill \\  S = \left( {4 + 2 + \dfrac{1}{4}} ight) + \left( {16 + 2 + \dfrac{1}{{16}}} ight) + ... + \left( {{2^{2n}} + 2 + \dfrac{1}{{{2^{2n}}}}} ight) \hfill \\  S = \left( {4 + 16 + ... + {2^{2n}}} ight) + 2n + \left( {\frac{1}{4} + \dfrac{1}{{16}} + ... + \dfrac{1}{{{2^{2n}}}}} ight) \hfill \\ \end{matrix}

    Áp dụng công thức tính tổng của n số hạng đầu của một cấp số nhân ta có:

    \begin{matrix}  S = 4.\dfrac{{{4^{n - 1}}}}{3} + 2n + \dfrac{1}{4}.\dfrac{{{2^{\dfrac{1}{{2n}}}} - 1}}{{\dfrac{1}{4} - 1}} \hfill \\  S = 4.\dfrac{{{4^n} - 1}}{3} + 2n + \dfrac{1}{3}.\dfrac{{{2^{2n}} - 1}}{{{2^{2n}}}} \hfill \\  S = 2n + \dfrac{{{4^{n - 1}}}}{3}.\dfrac{{{{4.4}^n} + 1}}{{{4^n}}} = 2n + \dfrac{{\left( {{4^n} - 1} ight)\left( {{4^{n + 1}} + 1} ight)}}{{{{3.4}^n}}} \hfill \\ \end{matrix}

  • Câu 17: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = 4. Giá trị nhỏ nhất của u_{1}u_{2} + u_{2}u_{3} +
u_{3}u_{1} bằng:

    Ta gọi d là công sai của cấp số cộng.

    Khi đó:

    u_{1}u_{2} + u_{2}u_{3} +
u_{3}u_{1}

    = 4(4 + d) + (4 + d)(4 + 2d) + 4(4 +
2d)

    = 2d^{2} + 24d + 48 = 2(d + 6)^{2} - 24\geq - 24

    Vậy giá trị nhỏ nhất của u_{1}u_{2} +
u_{2}u_{3} + u_{3}u_{1} là -24 đạt được khi khi d = - 6.

  • Câu 18: Nhận biết

    Dãy số nào dưới đây là dãy số nguyên tố nhỏ hơn 10 theo thứ tự tăng dần?

    Số nguyên tố là số tự nhiên lớn hơn 1 và chỉ có hai ước số là 1 và chính nó.

    Vậy dãy số nguyên tố nhỏ hơn 102, 3, 5, 7.

  • Câu 19: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight)u_{1} = - 1;q = - \frac{1}{10}. Số \frac{1}{10^{103}} là số hạng thứ mấy của cấp số nhân đã cho?

    Ta có:

    u_{n} = \frac{1}{10^{103}}

    \Rightarrow u_{1}.q^{n - 1} =
\frac{1}{10^{103}}

    \Rightarrow ( - 1)\left( - \frac{1}{10}
ight)^{n - 1} = 6561

    Mà n là số chẵn và n - 1 = 103

    \Rightarrow n = 104

  • Câu 20: Thông hiểu

    Ba số hạng đầu của một cấp số nhân là x - 6; x và y. Tìm y, biết rằng công bội của cấp số nhân là 6

    Ta có x = 6(x – 6) => x = 36/5

    Từ đó suy ra y = 6x = 216/5

  • Câu 21: Nhận biết

    Cho hai dãy số (un), (vn) được xác định như sau u1 = 3, v1 = 2\left\{ \begin{matrix}
u_{n + 1} = u_{n}^{2} + 2v_{n}^{2} \\
v_{n = 1} = 2u_{n} \cdot v_{n} \\
\end{matrix} ight. với n ≥ 2. Công thức tổng quát của hai dãy (un)(vn) là?

    Chứng minh u_{n} - \sqrt{2}v_{n} =
(\sqrt{2} - 1)^{2n}

    Ta có u_{n} = \sqrt{2}v_{n} = u_{n -
1}^{2} + 2v_{n - 1}^{2} - 2\sqrt{2}u_{n - 1}v_{n - 1} = \left( u_{n - 1}
- \sqrt{2}v_{n - 1} ight)^{2}

    Mặt khác u_{1} - \sqrt{2}v_{1} = 3 -
2\sqrt{2} = (\sqrt{2} - 1)^{2} nên (1) đúng với n = 1 Giả sử u_{k} - \sqrt{2}v_{k} = (\sqrt{2} -
1)^{2k}, ta có u_{k - 1} -
\sqrt{2}v_{k + 1} = \left( u - \sqrt{2}v_{k} ight)^{2} = (\sqrt{2} -
1)^{2k + 1}

    Vậy (1) đúng với n ≥ 1

    Ta có u_{n} + \sqrt{2}v_{n} = (\sqrt{2} +
1)^{2^{n}}

    Do đó ta suy ra:

    \left\{ \begin{matrix}
2u_{n} = (\sqrt{2} + 1)^{2^{n}} + (\sqrt{2} - 1)^{2^{n}} \\
2\sqrt{2}v_{n} = (\sqrt{2} + 1)^{2^{n}} - (\sqrt{2} - 1)^{2^{n}} \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
u_{n} = \frac{1}{2}\left\lbrack (\sqrt{2} + 1)^{2^{n}} + (\sqrt{2} -
1)^{2^{n}} ightbrack \\
v_{n} = \frac{1}{2\sqrt{2}}\left\lbrack (\sqrt{2} + 1)^{2^{n}} -
(\sqrt{2} - 1)^{2^{n}} ightbrack \\
\end{matrix} ight.

  • Câu 22: Nhận biết

    Cho dãy số có các số hạng đầu là - 2;0;2;4;6;.... Số hạng tổng quát của dãu số này là đẳng thức nào dưới đây?

    Ta có: u_{1} = - 2 loại các đáp án u_{n} = n - 2u_{n} = - 2(n + 1). Ta kiểm tra u_{2} = 0

    Xét đáp án u_{n} = - 2nu_{2} = - 4 eq 0

    Xét đáp án u_{n} = 2n - 4u_{2} = 2.2 - 4 = 0 là đáp án đúng.

  • Câu 23: Nhận biết

    Dãy số nào sau đây không phải là cấp số cộng?

    Chỉ cần tồn tại hai cặp số hạng liên tiếp của dãy số có hiệu khác nhau: u_{m + 1} - u_{m}=u_{k + 1} -u_{k} thì kết luận ngay dãy số đó không phải là cấp số cộng.

    Xét đáp án: 2;5;8;11;14...\overset{ightarrow}{}3 = u_{2} -
u_{1} = u_{3} - u_{2} = u_{4} - u_{3} =
\cdots\overset{ightarrow}{}loại

    Xét đáp án: 2;4;8;10;14...\overset{ightarrow}{}2 = u_{2} -u_{1}=u_{3} - u_{2} = 4\overset{ightarrow}{} Chọn

    Xét đáp án: 1;2;3;4;5;6...\overset{ightarrow}{}1 = u_{2} -
u_{1} = u_{3} - u_{2} = u_{4} - u_{3} =
\cdots\overset{ightarrow}{}Loại

    Xét đáp án: 15;10;5;0; -
5;...\overset{ightarrow}{} - 5 = u_{2} - u_{1} = u_{3} - u_{2} = u_{4}
- u_{3} = \cdots\overset{ightarrow}{}loại

  • Câu 24: Thông hiểu

    Một cấp số cộng có 12 số hạng. Biết rằng tổng của 12 số hạng đó bằng 144 và số hạng thứ mười hai bằng 23. Khi đó công sai d của cấp số cộng đã cho là bao nhiêu?

    Ta có: \left\{ \begin{matrix}u_{12} = 23 \\S_{12} = 144 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} + 11d = 23 \\\dfrac{12}{2}.\left( u_{1} + u_{12} ight) = 144 \\\end{matrix} ight.

    => d = 2

  • Câu 25: Thông hiểu

    Cho dãy số (un) được xác định bởi \left\{ \begin{matrix}
u_{1} = 2 \\
u_{n + 1} - u_{n} = 2n - 1 \\
\end{matrix} ight..

    Số hạng tổng quát un của dãy số là?

    Ta có \left\{ \begin{matrix}
u_{1} = 2 \\
u_{2} = u_{1} + 2.2 - 1 \\
u_{3} = u_{2} + 2.3 - 1 \\
\cdots \\
u_{n} = u_{n - 1} + 2.n - 1 \\
\end{matrix} ight.

    Cộng vế với vế của các đẳng thức trên rồi rút gọn, ta được:

    un = 2 + 2 ⋅ (2+3+…+n) − (n − 1)

     = 2 + (n−1)(n+2) − n + 1

     = n2 + 1

  • Câu 26: Nhận biết

    Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:

    Do dãy số là cấp số nhân

    => q = \frac{{36}}{{16}} = \frac{9}{4}

    => Số hạng tiếp theo là: 36.\frac{9}{4} = 81

  • Câu 27: Thông hiểu

    Một cấp số nhân có số hạng đầu {u_1} = 3, công bội q = 2. Biết {S_n} = 765. Tìm n?

    Ta có:

    \begin{matrix}  {S_n} = \dfrac{{{u_1}\left( {1 - {q^n}} ight)}}{{1 - q}} = \dfrac{{3\left( {1 - {2^n}} ight)}}{{1 - 2}} = 765 \hfill \\   \Rightarrow n = 8 \hfill \\ \end{matrix}

  • Câu 28: Thông hiểu

    Cho dãy số \left( u_{n} ight) có số hạng tổng quát u_{n} = \frac{n + 3}{2n^{2} - 1}. Biết rằng u_{k} = \frac{7}{31}. Khi đó u_{k} là số hạng thứ mấy trong dãy số?

    Ta có:

    u_{k} = \frac{7}{31} \Rightarrow \frac{k
+ 3}{2k^{2} - 1} = \frac{7}{31}

    \Leftrightarrow 14k^{2} - 7 = 31k +
93

    \Leftrightarrow 14k^{2} - 31k - 100 = 0\Leftrightarrow \left\lbrack \begin{matrix}k = 4(tm) \\k = - \dfrac{25}{14}(ktm) \\\end{matrix} ight.

    Vậy u_{k} là số hạng thứ tư trong dãy số.

  • Câu 29: Nhận biết

    Cho dãy số \left( u_{n} ight) là một cấp số nhân có số hạng đầu u_{1} và công bội q. Đẳng thức nào sau đây đúng?

    Cho dãy số \left( u_{n} ight) là một cấp số nhân có số hạng đầu u_{1} và công bội q.

    Theo công thức số hạng tổng quát ta có u_{n} = u_{1}q^{n - 1}, (n \geq 2).

  • Câu 30: Vận dụng

    Cho dãy số (un)u_{n} = \frac{an + b}{cn + d}c > d > 0. Dãy số (un) là dãy số tăng với điều kiện?

    Xét hiệu u_{n + 1} - u_{n} = \frac{ad -
bc}{\lbrack c(n + 1) + d(cn + d)brack}.

    Dãy số (un) là dãy số tăng khi ad − bc > 0

    c > d > 0 nên chỉ có điều kiện ở đáp án a > 0, b < 0 để ad − bc > 0.

  • Câu 31: Vận dụng cao

    Tính tổng S = {u_1} + \frac{{{u_2}}}{2} + \frac{{{u_3}}}{3} + ... + \frac{{{u_{10}}}}{{10}}. Biết dãy số (un) xác định bởi: {u_1} = \frac{1}{3};{u_{n + 1}} = \frac{{n + 1}}{{3n}}.{u_n}

     Ta có:

    {u_{n + 1}} = \frac{{n + 1}}{{3n}}.{u_n} \Leftrightarrow \frac{{{u_{n + 1}}}}{{n + 1}} = \frac{{{u_n}}}{{3n}}

    Do {u_1} = \frac{1}{3} \Rightarrow \frac{{{u_1}}}{1} = \frac{1}{3}

    Từ đó suy ra:

    \begin{matrix}  \dfrac{{{u_2}}}{2} = \dfrac{1}{3}.\dfrac{1}{3} = {\left( {\dfrac{1}{3}} ight)^2} \hfill \\  \dfrac{{{u_3}}}{3} = \dfrac{1}{3}.{\left( {\dfrac{1}{3}} ight)^2} = {\left( {\dfrac{1}{3}} ight)^3} \hfill \\  ... \hfill \\  \dfrac{{{u_{10}}}}{{10}} = \dfrac{1}{3}.{\left( {\dfrac{1}{3}} ight)^9} = {\left( {\dfrac{1}{3}} ight)^{10}} \hfill \\ \end{matrix}

    Hay dãy \left( {\frac{{{u_n}}}{n}} ight) là một cấp số nhân có số hạng đầu {u_1} = \frac{1}{3},q = \frac{1}{3}

    Khi đó S = {u_1} + \frac{{{u_2}}}{2} + \frac{{{u_3}}}{3} + ... + \frac{{{u_{10}}}}{{10}} = \frac{{{3^{10}} - 1}}{{{{2.3}^{10}}}} = \frac{{29524}}{{59049}}

  • Câu 32: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight)u_{1} = 2;u_{2} = - 8. Mệnh đề nào sau đây đúng?

    Theo bài ra ta có:

    \left\{ \begin{matrix}
u_{1} = 2 \\
u_{2} = - 8 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
u_{1}.q = - 8 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\\begin{matrix}q = - 4 \\S_{5} = 2.\dfrac{1 - ( - 4)^{5}}{1 + 4} = 410 \\S_{6} = 2.\dfrac{1 - ( - 4)^{6}}{1 + 4} = - 1638 \\u_{5} = u_{1}.q^{4} = 512 \\\end{matrix} \\\end{matrix} ight.

  • Câu 33: Thông hiểu

    Cho cấp số cộng (Un) có số hạng tổng quát là {u_n} = 3n - 2. Xác định công sai của cấp số cộng.

    Ta có: \begin{matrix}  {u_{n + 1}} - {u_n} = 3\left( {n + 1} ight) - 2 - 3n + 2 = 3 \hfill \\   \Rightarrow d = 3 \hfill \\ \end{matrix}

  • Câu 34: Thông hiểu

    Cho dãy số (un) thỏa mãn u_{1} = \sqrt{2}u_{n + 1} = \sqrt{2 + u_{n}} với mọi n ≥ 1. Số hạng u2018

    Ta có u_{1} = \sqrt{2} =
2\cos\frac{\pi}{4} = 2\cos\frac{\pi}{2^{2}};

    u_{2} = \sqrt{2 + \sqrt{2}} =
2cos\frac{\pi}{8} = 2cos\frac{\pi}{2^{3}}

    Dự đoán u_{n} = 2cos\frac{\pi}{2^{n +
1}}

    Áp dụng theo quy nạp ta có: u_{1} =
2cos\frac{\pi}{4} = \sqrt{2}, công thức (1) đúng với n = 1.

    Giả sử công thức (1) đúng với n = k, k ≥ 1 ta có u_{k} = 2cos\frac{\pi}{2^{k + 1}}

    Ta có u_{k + 1} = \sqrt{2 + u_{k}} =
\sqrt{2 + 2\cos\frac{\pi}{2^{k + 1}}}

    = \sqrt{2\left( 1 + \cos\frac{\pi}{2^{k
+ 2}} ight)}

    = \sqrt{4\cos^{2}\left( \frac{\pi}{2^{k
+ 2}} ight)}

    = 2cos\frac{\pi}{2^{k + 2}}

    (vì 0 < \frac{\pi}{2^{k + 2}} <
\frac{\pi}{2} với mọi k ≥ 1 ).

    Suy ra công thức (1) đúng với n = k + 1

    Vậy u_{n} = 2cos\frac{\pi}{2^{n +
1}},\forall n \in \mathbb{N}^{*}. Suy ra u_{2018} = 2cos\frac{\pi}{2^{2019}}

  • Câu 35: Vận dụng

    Trong các dãy số sau, dãy nào là dãy số tăng?

    Đáp án u_n = \sin (n)  và In = (−1)n ⋅ n là các dãy không tăng, không giảm.

    Xét đáp án v_{n} = \frac{n - 1}{n +
1}, ta có:

    v_{n} = 1 - \frac{2}{n + 1} \Rightarrow
v_{n + 1} - v_{n} = \frac{2}{n + 1} - \frac{2}{n + 2} > 0,\forall n
\in \mathbb{N}^{*}

    Suy ra (vn) là dãy số tăng.

  • Câu 36: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = - 1;d = 3. Số 100 là số hạng thứ mấy của cấp số cộng?

    Ta có: \left\{ \begin{matrix}
u_{1} = - 1 \\
d = 3 \\
\end{matrix} ight.

    \overset{n \mapsto u_{n} =
100}{ightarrow}100 = u_{1} + (n - 1)d

    \Leftrightarrow 100 = 3n -
8

    \Leftrightarrow n = 36

  • Câu 37: Vận dụng

    Tìm số đo góc lớn nhất của một tứ giác, biết số đo các góc đó lập thành một cấp số nhân có số hạng cuối gấp tám lần số hạng đầu tiên?

    Giả sử cấp số nhân có số hạng đầu là u_{1}, công bội q, với q >0

    Theo bài ra ta có:

    u_{4} = 8.u_{1} \Leftrightarrowu_{1}q^{3} = u_{1}.8

    \Leftrightarrow q = 2

    S_{4} = u_{1} + u_{2} + u_{3} + u_{4}= 360^{0}

    \Leftrightarrow u_{1}.\frac{1 - q^{4}}{1- q} = 360^{0} \Rightarrow u_{1} = 24^{0}

    u_{2} = 48^{0};u_{3};96^{0};u_{4} =192^{0}

    Vậy góc lớn nhất có số đo 192^{0}

  • Câu 38: Thông hiểu

    Cho cấp số cộng có u_{1} = 5, d = 2. Khi đó:

    a) u_{6} = 15. Đúng||Sai

    b) Số hạng tổng quát thứ n của cấp số cộng là u_{n} = 2n + 3. Đúng||Sai

    c) Tổng nsố hạng đầu tiên của cấp số cộng là S_{n} = n^{2} + 4n. Đúng||Sai

    d) Tổng S = u_{10} + u_{11} + .. + u_{20}
= 310. Sai||Đúng

    Đáp án là:

    Cho cấp số cộng có u_{1} = 5, d = 2. Khi đó:

    a) u_{6} = 15. Đúng||Sai

    b) Số hạng tổng quát thứ n của cấp số cộng là u_{n} = 2n + 3. Đúng||Sai

    c) Tổng nsố hạng đầu tiên của cấp số cộng là S_{n} = n^{2} + 4n. Đúng||Sai

    d) Tổng S = u_{10} + u_{11} + .. + u_{20}
= 310. Sai||Đúng

    a) Áp dụng công thức tính số hạng tổng quát thứ n của cấp số cộng ta có:

    u_{6} = u_{1} + 5d = 5 + 5.2 =
15.

    b) Áp dụng công thức tính số hạng tổng quát thứ n của cấp số cộng ta có:

    u_{n} = u_{1} + (n - 1)d = 5 + (n - 1).2
= 2n + 3.

    c) Áp dụng công thức tính tổng nsố hạng đầu tiên của cấp số cộng ta có:

    S_{n} = nu_{1} + \frac{(n - 1)n}{2}d = 5n
+ \frac{(n - 1)n}{2}.2 = n^{2} + 4n.

    d) Ta viết lại

    S = u_{10} + u_{11} + .. +
u_{20}

    = \left( u_{1} + u_{2} + .. + u_{20}
ight) - \left( u_{1} + u_{2} + .. + u_{9} ight)

    = S_{20} - S_{9} = 480 - 117 =
363.

  • Câu 39: Thông hiểu

    Cho cấp số nhân (un) biết u1 = 12; \frac{{{u_3}}}{{{u_8}}} = 243. Tính {u_9}

    Gọi q là công bội của cấp số nhân (un)

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_3} = {u_1}.{q^2}} \\   {{u_8} = {u_1}.{q^7}} \end{array}} ight. \Rightarrow \dfrac{{{u_3}}}{{{u_8}}} = \dfrac{{{u_1}.{q^2}}}{{{u_1}.{q^7}}} = \dfrac{1}{{{q^5}}} \hfill \\   \Rightarrow q = d\frac{1}{3} \hfill \\   \Rightarrow {u_9} = {u_1}.{q^8} = 12.{\left( {\dfrac{1}{3}} ight)^8} = \dfrac{4}{{2187}} \hfill \\ \end{matrix}

  • Câu 40: Vận dụng cao

    Trong các dãy số sau dãy số nào bị chặn?

    Xét dãy (an)a_{n} = \sqrt{n^{3} + n} > 0,\forall n \in
\mathbb{N}^{*} nên dãy số (an) bị chặn dưới.

    Xét dãy (bn)b_{n} = n^{2} + \frac{1}{2n} > 0,\forall n \in
\mathbb{N}^{*} nên dãy số (bn) bị chặn dưới.

    Xét dãy (cn)cn = (−2)n + 3, ∀n ∈ ℕ* nên dãy số (cn) không bị chặn.

    Xét dãy (dn)d_{n} = \frac{3n}{n^{2} + 2},\forall n \in
\mathbb{N}^{*}.

    Ta có

    n^3-3n+2=(n-1)^2 (n+2)≥0,∀n∈N^*

    ⇒n^3+2≥3n⇒0<3n/(n^2+2)≤1

    ⇒(d_n ) bị chặn.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 18 lượt xem
Sắp xếp theo