Khẳng định nào sau đây là khẳng định sai?
Khẳng định sai là: “Số hạng tổng quát của cấp số cộng là
với công sai
và số hạng đầu
.”
Khẳng định nào sau đây là khẳng định sai?
Khẳng định sai là: “Số hạng tổng quát của cấp số cộng là
với công sai
và số hạng đầu
.”
Trong các dãy số
cho bởi số hạng tổng quát
sau, dã số nào là dãy số tăng?
Xét đáp án ta có:
=> Dãy số là dãy tăng.
Cho dãy số (un) thỏa mãn
và
với mọi n ≥ 1. Số hạng u2018 là
Ta có
Dự đoán
Áp dụng theo quy nạp ta có: , công thức (1) đúng với n = 1.
Giả sử công thức (1) đúng với n = k, k ≥ 1 ta có
Ta có
(vì với mọi k ≥ 1 ).
Suy ra công thức (1) đúng với n = k + 1
Vậy . Suy ra
Ba góc của một tam giác vuông tạo thành cấp số cộng. Hai góc nhọn của tam giác có số đo (độ) là:
Ba góc A, B, C của một tam giác vuông theo thứ tự đó lập thành một cấp số cộng nên
Cho dãy số
xác định bởi
. Khi đó
có giá trị bằng
Theo công thức truy hồi ta có
.
Cho một cấp số cộng
có
. Tìm
?
Theo bài ra ta có:
Cho cấp số nhân
có công bội
. Đẳng thức nào sau đây đúng?
Mệnh đề đúng .
Biết các số
theo thứ tự lập thành một cấp số cộng với n > 3. Tìm n
Ta có:
Các số theo thứ tự lập thành một cấp số cộng với n > 3
Cho dãy số (un) với
( a là hằng số). Hỏi un + 1 là số hạng nào sau đây?
Ta có
Cho dãy số (un), biết un = n ⋅ cosn. Trong các phát biểu sau, có bao nhiêu phát biểu đúng?
(1) (un) là dãy số tăng.
(2) (un) là dãy số bị chặn dưới.
(3) ∀n ∈ ℕ* : un ≤ n.
Vì cos(n) ≤ 1 nên un < n. Phát biểu (3) đúng.
Dãy không tăng, không giảm và không bị chặn dưới.
Vậy có 1 phát biểu đúng trong 3 phát biểu đã cho.
Từ độ cao
của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng
độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 68,2
Từ độ cao của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng
độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất? (Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 68,2
Theo đề, mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng độ cao mà quả bóng đạt trước đó và sau đó lại rơi xuống từ độ cao thứ hai. Do đó độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến:
Thời điểm chạm đất lần thứ nhất là .
Thời điểm chạm đất lần thứ 2 là .
Thời điểm chạm đất lần thứ 3 là .
Thời điểm chạm đất lần thứ 4 là .
Thời điểm chạm đất lần thứ là
.
Do đó độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất là:
.
Vì ,
,
, …,
,…, là một cấp số nhân lùi vô hạn, công bội
, nên ta có:
.
Vậy
Dãy số nào sau đây là một cấp số cộng?
Dãy số ở đáp án A thỏa mãn điều kiện với
là cấp số cộng.
Cho cấp số nhân (un) có
và công bội q = 3. Số hạng u2 là:
Ta có: u2 = u1 . q = -2 . 3 = -6
Cho dãy số
, biết
. Dãy số
bị chặn trên bởi số nào dưới đây?
Ta có:
Với mọi n ta có:
Vậy dãy số bị chặn trên bởi
Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?
Ta có:
Dãy là một cấp số cộng
với d là hằng số.
Hay
=> Cấp số cộng cần tìm là:
Cho cấp số cộng
có số hạng đầu
công sai
Năm số hạng liên tiếp đầu tiên của cấp số cộng là:
Ta dùng công thức tổng quát , hoặc
để tính các số hạng của một cấp số cộng.
Ta có
Cho dãy số
xác định bởi
. Ba số hạng đầu tiên của dãy là:
Ba số hạng đầu tiên của dãy là
Cho dãy số
. Chọn khẳng định sai trong các khẳng định sau đây.
Ta có: nên
đúng.
Do nên dãy số bị chặn, do đó “Dãy số (un) bị chặn” đúng.
.
Do nên dãy số không tăng, không giảm.
Vậy “Dãy số (un) không tăng, không giảm” đúng.
Do đó “Dãy số (un) tăng” sai.
Cho cấp số cộng
có các số hạng đầu lần lượt là 5; 9; 13; 17;... Tìm số hạng tổng quát
của cấp số cộng.
Theo bài ra ta có:
Dãy số đã cho là cấp số cộng
=>
=>
Vậy số hạng tổng quát của dãy số là:
Biết ba số
lập thành một cấp số nhân. Tính tổng các giá trị của m thỏa mãn?
Để ba số lập thành một cấp số nhân thì
Vậy tổng các giá trị của m là
Cho dãy số (un) có u1 = 1 và
.
Trong các phát biểu sau, có bao nhiêu phát biểu đúng?
(1) (un) là dãy số tăng.
(2) (un) là dãy số bị chặn dưới.
(3) (un) là dãy số bị chặn trên.
Ta có nên dãy số tăng.
Vậy phát biểu (1) đúng.
Vì dãy số tăng nên dãy số bị chặn dưới bởi u1.
Vậy phát biểu (2) đúng.
Ta lại có
Cộng các đẳng thức trên theo từng vế, ta được:
Mặt khác
Vậy dãy số bị chặn trên bởi 2 nên phát biểu (3) đúng.
Cho cấp số cộng có
,
. Khi đó:
a)
. Đúng||Sai
b) Số hạng tổng quát thứ
của cấp số cộng là
. Đúng||Sai
c) Tổng
số hạng đầu tiên của cấp số cộng là
. Đúng||Sai
d) Tổng
. Sai||Đúng
Cho cấp số cộng có ,
. Khi đó:
a) . Đúng||Sai
b) Số hạng tổng quát thứ của cấp số cộng là
. Đúng||Sai
c) Tổng số hạng đầu tiên của cấp số cộng là
. Đúng||Sai
d) Tổng . Sai||Đúng
a) Áp dụng công thức tính số hạng tổng quát thứ của cấp số cộng ta có:
.
b) Áp dụng công thức tính số hạng tổng quát thứ của cấp số cộng ta có:
.
c) Áp dụng công thức tính tổng số hạng đầu tiên của cấp số cộng ta có:
.
d) Ta viết lại
.
Trong các dãy số dưới đây, dạy số nào không phải là cấp số nhân lùi vô hạn?
Vì dãy ở đáp án C là một cấp số nhân có công bội q = 3/2 > 0
=> không phải dãy lùi vô hạn
Tìm z để 2; 8; z; 128 lập thành một cấp số nhân.
Dãy số 2; 8; z; 128 theo thứ tự là u1; u2; u3; u4 ta có:
Cho dãy số
với
với mọi
. Khi đó số hạng
của dãy
là:
Ta có:
Cho dãy số (un) biết
. Mệnh đề nào sau đây đúng?
Ta có
Xét tỉ số:
Vậy (un) là dãy số tăng.
Dãy số nào sau đây không phải là cấp số nhân?
Xét đáp án có
=> Dãy số không phải là cấp số nhân.
Cho cấp số cộng (un) có các số hạng đầu lần lượt là 5; 9; 13; 17; …. Tìm số hạng tổng quát un của cấp số cộng.
Các số 5; 9; 13; 17; …. theo thứ tự lập thành một cấp số cộng (un) nên:
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b)
. Đúng||Sai
c) Cấp số cộng
thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b) . Đúng||Sai
c) Cấp số cộng thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
a) Xét dãy số đã cho ta có:
nên dãy số
không tăng không giảm.
b) đúng bằng chứng minh quy nạp.
c) Công sai d = 5 và số hạng đầu tiên bằng
Khi đó số hạng tổng quát của cấp số cộng là
d) Từ giả thiết ta có:
Suy ra tổng các số hạng của cấp số nhân đó là: .
Tính tổng 10 số hạng đầu tiên của cấp số nhân(un) có ![]()
Ta có:
Tổng
có kết quả bằng?
Đặt
Cho cấp số cộng
có
và
. Khẳng định nào sau đây là đúng?
Ta có:
Cho tam giác ABC vuông tại C có độ dài ba cạnh lập thành một cấp số nhân có công bội lớn hơn 1. Xác định công bội của cấp số nhân đó.
Giả sử là độ dài ba cạnh của tam giác ABC,
.
Do độ lớn ba cạnh tam giác lập thành cấp số nhân, công bội nên
Cho cấp số nhân (un) có
. Tìm công bội q và số hạng đầu u1.
Ta có:
Trong các dãy số cho dưới đây, dãy số nào là cấp số nhân?
Ta thấy ở dãy số có
nên đây là cấp số nhân với công bội
.
Cho tam giác ABC có độ dài các cạnh là a, b, c theo thứ tự lập thành một cấp số cộng. Biết
. Tính giá trị x + y.
Ta có:
=> x + y = 4
Giá tiền công khoan giếng ở cơ sở A được tính như sau: Giá của mét khoan đầu tiên là 8000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 500 đồng so với giá của mét khoan ngay trước nó. Vậy muốn khoan 20 mét thì mất bao nhiêu đồng?
Theo bài ra ta có:
Giá các mét khoan lập thành một cấp số cộng với công sai d = 500, số hạng đầu là 8000.
=>
=> Số tiền phải trả khi khoan giếng sâu 20m là:
Vậy muốn khoan 20 mét thì mất 255000 đồng.
Một cấp số nhân có 6 số hạng, số hạng đầu bằng 2 và số hạng thứ sáu bằng 486. Tìm công bội q của cấp số nhân đã cho.
Theo giả thiết ta có:
Tìm tất cả các giá trị của x để ba số
theo thứ tự lập thành một cấp số nhân.
Ta có:
Ba số theo thứ tự lập thành một cấp số nhân