Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho cấp số cộng (un) có u3 = -15; u20 = 60. Tổng của 10 số hạng đầu tiên của cấp số cộng này là:

    Gọi u1, d lần lượt là số hạng đầu và công sai của cấp số cộng

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {{u_5} =  - 15} \\   {{u_{20}} = 60} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + 4d =  - 15} \\   {{u_1} + 19d = 60} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} =  - 35} \\   {d = 5} \end{array}} ight.

    => Tổng của 10 số hạng đầu tiên của cấp số cộng này là:

    {S_{10}} = \frac{{10}}{2}.\left( {2{u_1} + 9d} ight) = 5.\left[ {2.\left( { - 35} ight) + 9.5} ight] =  - 125

  • Câu 2: Nhận biết

    Cho dãy số (u_n) xác định bởi u_{n}=\frac{n^{2}}{3^{n}} với \forall  n\geq 1. Khi đó số hạng u_{2n} của dãy (u_{n}) là 

     Ta có:

    \begin{matrix}  {u_n} = \dfrac{{{n^2}}}{{{3^n}}} \hfill \\   \Rightarrow {u_{2n}} = \dfrac{{{{\left( {2n} ight)}^2}}}{{{3^{2n}}}} = \dfrac{{4{n^2}}}{{{9^n}}} \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu

    Cho các dãy số sau. Dãy số nào là dãy số tăng?

    Xét đáp án 1;1;1;1;1;1... dãy là dãy hằng nên không tăng không giảm.

    Xét đáp án 1;\frac{-1}{2};\frac{1}{4};\frac{-1}{8};\frac{1}{16};... \Rightarrow {u_1} > {u_2} < {u_3} (Loại)

    Xét đáp án 1;3;5;7;9;.... \Rightarrow {u_n} < {u_{n + 1}};n \in {\mathbb{N}^*} (Chọn)

    Xét đáp án 1;\frac{1}{2};\frac{1}{4};\frac{1}{8};\frac{1}{16};... Rightarrow {u_1} > {u_2} > {u_3}.... > {u_n} > ... (Loại)

  • Câu 4: Thông hiểu

    Tìm b > 0 để các số \frac{1}{\sqrt{2} };\sqrt{b};\sqrt{2} theo thứ tự đó lập thành một cấp số nhân.

    Ta có:

    Các số \frac{1}{\sqrt{2} };\sqrt{b};\sqrt{2} theo thứ tự đó lập thành một cấp số nhân.

    \Rightarrow {\left( {\sqrt b } ight)^2} = \left( {\frac{1}{{\sqrt 2 }}} ight).\left( {\sqrt 2 } ight)

    \Rightarrow b = 1 (Vì b > 0)

  • Câu 5: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = - 5d = 3. Mệnh đề nào sau đây đúng?

    Ta có

    \left\{ \begin{matrix}
u_{1} = - 5 \\
d = 3 \\
\end{matrix} ight.\ \overset{CTTQ}{ightarrow}u_{13} = u_{1} + (13 -
1)d = - 5 + 3(13 - 1) = 31

  • Câu 6: Vận dụng

    Trong các dãy số sau, dãy nào là dãy số tăng?

    Đáp án u_n = \sin (n)  và In = (−1)n ⋅ n là các dãy không tăng, không giảm.

    Xét đáp án v_{n} = \frac{n - 1}{n +
1}, ta có:

    v_{n} = 1 - \frac{2}{n + 1} \Rightarrow
v_{n + 1} - v_{n} = \frac{2}{n + 1} - \frac{2}{n + 2} > 0,\forall n
\in \mathbb{N}^{*}

    Suy ra (vn) là dãy số tăng.

  • Câu 7: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} =
2 và công sai d = 3. Giá trị u_{2024} bằng

    Áp dụng công thức số hạng tổng quát

    u_{2024} = u_{1} + 2023d = 2 + 2023.3 = 6071.

  • Câu 8: Thông hiểu

    Tìm tất cả các giá trị của x để ba số 2x - 1;x;2x + 1 theo thứ tự lập thành một cấp số nhân.

    Ta có:

    Ba số 2x - 1;x;2x + 1 theo thứ tự lập thành một cấp số nhân

    \Rightarrow x^{2} = (2x - 1).(2x +
1)

    \Rightarrow x^{2} = 4x^{2} -
1

    \Rightarrow 3x^{2} = 1

    \Rightarrow x = \pm
\frac{1}{\sqrt{3}}

  • Câu 9: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    a) Xét dãy số đã cho ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4} \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số \left( u_{n} ight) không tăng không giảm.

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}" đúng bằng chứng minh quy nạp.

    c) Công sai d = 5 và số hạng đầu tiên bằng u_{1} = - 2020

    Khi đó số hạng tổng quát của cấp số cộng là

    u_{n} = u_{1} + 5(n - 1)

    \Rightarrow u_{n} = - 2025 +
5n

    d) Từ giả thiết ta có:

    \left\{ \begin{matrix}
u_{1} = 160 \\
u_{6} = 5 \\
\end{matrix} ight.\  \Rightarrow q = \sqrt[5]{\frac{u_{6}}{u_{1}}} =
\frac{1}{2}

    Suy ra tổng các số hạng của cấp số nhân đó là: S = \dfrac{u_{1}\left( 1 - q^{6} ight)}{1 - q} =\dfrac{160.\left\lbrack 1 - \left( \dfrac{1}{2} ight)^{6}ightbrack}{\dfrac{1}{2}} = 315.

  • Câu 10: Thông hiểu

    Cho cấp số nhân lùi vô hạn \left( {{u_n}} ight) công bội q. Đặt S = {u_1} + {u_2} + ... + {u_n} + ... thì:

    Tổng cấp số nhân là: S = {u_1}.\frac{{1 - {q^n}}}{{1 - q}}

    Do cấp số đã cho là cấp số nhân lùi vô hạn nên ta có:

    \begin{matrix}  \left| q ight| < 1 \Rightarrow {q^n} \mapsto 0 \hfill \\   \Rightarrow 1 - {q^n} \mapsto 1 \hfill \\   \Rightarrow S = \dfrac{{{u_1}}}{{1 - q}} \hfill \\ \end{matrix}

  • Câu 11: Nhận biết

    Dãy số nào là cấp số nhân?

    Theo bài ra ta có:

    \frac{u_{n + 1}}{u_{n}} = \frac{7 - 3^{n
+ 1}}{7 - 3^{n}} = \frac{3\left( 7 - 3^{n} ight) - 14}{7 - 3^{n}} = 3
- \frac{14}{7 - 3^{n}} (loại)

    \frac{u_{n + 1}}{u_{n}} =\dfrac{\dfrac{7}{3n + 3}}{\dfrac{7}{3n}} = 1 - \frac{1}{n +1}(loại)

    \dfrac{u_{n + 1}}{u_{n}} = \dfrac{7.2^{n +2}}{7.2^{n + 1}} = 2(thỏa mãn)

    \dfrac{u_{n + 1}}{u_{n}} = \dfrac{7 - 3(n +1)}{7 - 3n} = 1 - \frac{3}{7 - 3n} (loại)

  • Câu 12: Thông hiểu

    Số hạng âm trong dãy số x1; x2; x3; …; xn với x_{n} = C_{n + 5}^{4} - \frac{143P_{n +
5}}{96P_{n + 3}} là?

    Ta có c_{n + 5}^{4} = \frac{(n + 5)(n +4)(n + 3)(n + 2)}{24},

    \frac{143P_{n + 5}}{96P_{n + 3}} = \frac{143(n +5)(n + 4)}{96}

    x_{n} = C_{n + 5}^{4} - \frac{143P_{n +
5}}{96P_{n + 3}}

    = \frac{(n + 5)(n + 4)(2n + 17)(2n -
7)}{96} > 0,\forall n \geq 4,n \in \mathbb{N}^{*}

    Vậy các số hạng âm là x1; x2; x3.

  • Câu 13: Nhận biết

    Cho một cấp số nhân \left( u_{n} ight)u_{1} = 1;q = 2019. Tính u_{2019}?

    Ta có:

    u_{n} = u_{1}.q^{n - 1} \Leftrightarrow
u_{2019} = 1.2019^{2018} = 2019^{2018}

  • Câu 14: Thông hiểu

    Với n \in \mathbb{N}^{*}, cho dãy số \left( u_{n} ight) xác định bởi hệ thức truy hồi u_{1} =
2, u_{n + 1} = 2u_{n} + 3. Giá trị của số hạng thứ 4 bằng

    Ta có:

    u_{2} = 2u_{1} + 3 = 2.2 + 3 =
7,

    u_{3} = 2u_{2} + 3 = 2.7 + 3 =
17,

    u_{4} = 2u_{3} + 3 = 2.17 + 3 =
37.

  • Câu 15: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) với \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.. Công thức số hạng tổng quát của cấp số cộng này là:

    Ta có:

    \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left( u_{1} + d ight) + \left( u_{1} + 2d ight) - \left( u_{1} + 5d
ight) = 7 \\
\left( u_{1} + 3d ight) + \left( u_{1} + 7d ight) = - 14 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} - 2d = 7 \\
2u_{1} + 10d = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 3 \\
d = - 2 \\
\end{matrix} ight.

    \Rightarrow u_{n} = 3 + (n - 1)( - 2) =
5 - 2n

  • Câu 16: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight)u_{1} = 3;q = - 2. Số 192 là số hạng thứ mấy của cấp số nhân đã cho?

    Ta có:

    u_{n} = 192

    \Rightarrow u_{1}.q^{n - 1} =
192

    \Rightarrow 3.2^{n - 1} =
192

    \Rightarrow ( - 1)^{n - 1}.2^{n - 1} =
64

    \Rightarrow n = 7

  • Câu 17: Vận dụng

    Một bệnh nhân hàng ngày phải uống 150mg thuốc kháng sinh đặc trị bệnh bạch hầu. Sau một ngày hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể vẫn còn 6\% lượng thuốc của ngày hôm trước. Các mệnh đề sau đúng hay sai?

    a) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu còn trong cơ thể sau ngày đầu tiên uống thuốc là 9(mg). Đúng||Sai

    b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ 2 159(mg). Đúng||Sai

    c) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ 4 170(mg). Sai||Đúng

    d) Ước tính lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể nếu bệnh nhân sử dụng thuốc trong một thời gian 30 ngày là 159,57mg. Đúng||Sai

    Đáp án là:

    Một bệnh nhân hàng ngày phải uống 150mg thuốc kháng sinh đặc trị bệnh bạch hầu. Sau một ngày hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể vẫn còn 6\% lượng thuốc của ngày hôm trước. Các mệnh đề sau đúng hay sai?

    a) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu còn trong cơ thể sau ngày đầu tiên uống thuốc là 9(mg). Đúng||Sai

    b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ 2 159(mg). Đúng||Sai

    c) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ 4 170(mg). Sai||Đúng

    d) Ước tính lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể nếu bệnh nhân sử dụng thuốc trong một thời gian 30 ngày là 159,57mg. Đúng||Sai

    a) Ta có hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau ngày đầu còn 150 \times 6\%= 9(mg), suy ra mệnh đề đúng.

    b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 2 là: 150 \times 6\% + 150 = 159(mg) suy ra mệnh đề đúng.

    c) Gọi u_{n} là lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể bệnh nhân sau khi uống ở ngày thứ n

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 1 là: u_{1} = 150(mg)

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 2 là:

    u_{2} = u_{1} \times 6\% + 150= 150 \times 6\% + 150 = 150 \times (0,06 + 1)

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 3 là:

    u_{3} = u_{2}.6\% + 150 = 150\times (0,06 + 1) \times 0,06 + 150

    = 150 \times (0,06^{2} + 0,06 +
1)

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 4 là:

    u_{4} = u_{3} \times 6\% + 150= 150 \times (0,06^{2} + 0,06 + 1) \times 0,06 + 150

    = 150 \times (0,06^{3} + 0,06^{2} + 0,06
+ 1) = 159,5724(mg)

    Suy ra mệnh đề sai.

    d) Nếu bệnh nhân sử dụng thuốc trong thời gian 30 ngày. Khi đó lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể được ước lượng là:

    S = 150 \times \left( 1 + 0,06 +
0,06^{2} + \ldots + 0,06^{29} ight)

    = 150 \times u_{1}\frac{1 - q^{30}}{1 -
q} = 150 \times 1 \times \frac{1 - 0,06^{30}}{1 - 0,06}

    = \frac{7500}{47} \approx
159,57mg

    Vậy lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể được ước lượng trong 30 ngày là 159,57mg, suy ra mệnh đề đúng.

  • Câu 18: Nhận biết

    Tính tổng 10 số hạng đầu của cấp số cộng u_{1} = 5;u_{2} = 9.

    Theo bài ra ta có:

    d = u_{2} - u_{1} = 4

    \Rightarrow S_{10} = \frac{10}{2}.\left(
u_{1} + u_{10} ight) = 5\left( 2u_{1} + 9d ight) = 230

  • Câu 19: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight) có tổng n số hạng đầu tiên là S_{n} = \frac{3^{n} - 1}{3^{n -
1}}. Tìm số hạng thứ 5 của cấp số nhân đã cho.

    S_{n} = \frac{3^{n} - 1}{3^{n - 1}} =
3.\left\lbrack 1 - \left( \frac{1}{3} ight)^{n}
ightbrack

    Mặt khác

    \Rightarrow S_{n} = u_{1}.\dfrac{1 -q^{n}}{1 - q} \Rightarrow \left\{ \begin{matrix}u_{1} = 3(1 - q) \\q = \dfrac{1}{3} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\q = \dfrac{1}{3} \\\end{matrix} ight.

    \Rightarrow u_{5} = u_{1}.q^{4} =
\frac{2}{3^{4}}

  • Câu 20: Nhận biết

    Tìm b >
0 để các số \frac{1}{\sqrt{2}};\sqrt{b};\sqrt{2} theo thứ tự đó lập thành một cấp số nhân.

    Các số \frac{1}{\sqrt{2}};\sqrt{b};\sqrt{2} theo thứ tự đó lập thành một cấp số nhân

    \Rightarrow \left( \sqrt{b} ight)^{2}
= \frac{1}{\sqrt{2}}.\sqrt{2}

    \Rightarrow b = 1

  • Câu 21: Vận dụng cao

    Cho tam giác ABC có độ dài các cạnh là a, b, c theo thứ tự lập thành một cấp số cộng. Biết \tan \frac{A}{2}.\tan \frac{C}{2} = \frac{x}{y};\left( {x,y \in \mathbb{N}} ight). Tính giá trị x + y.

    Ta có:

    \begin{matrix}  a + c = 2b \hfill \\   \Rightarrow \sin A + \sin C = 2\sin B \hfill \\   \Rightarrow 2\sin \dfrac{{A + C}}{2}.\cos \dfrac{{A - C}}{2} = 4\sin \dfrac{B}{2}.\cos \dfrac{B}{2} = 4\sin \dfrac{{A + C}}{2}.\cos \dfrac{{A + C}}{2} \hfill \\   \Rightarrow \cos \dfrac{{A - C}}{2} = 2\cos \dfrac{{A + C}}{2} \hfill \\   \Rightarrow \cos \dfrac{A}{2}.\cos \dfrac{C}{2} + \sin \dfrac{A}{2}.\sin \dfrac{C}{2} = 2\cos \dfrac{A}{2}.\cos \dfrac{C}{2} - 2\sin \dfrac{A}{2}.\sin \dfrac{C}{2} \hfill \\   \Rightarrow \cos \dfrac{A}{2}.\cos \dfrac{C}{2} = 3\sin \dfrac{A}{2}.\sin \dfrac{C}{2} \hfill \\   \Rightarrow 3\tan \dfrac{A}{2}.\tan \dfrac{C}{2} = 1 \hfill \\   \Rightarrow \tan \dfrac{A}{2}.\tan \dfrac{C}{2} = \dfrac{1}{3} \hfill \\ \end{matrix}

    => x + y = 4

  • Câu 22: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = 1 và công sai d = 2. Tổng 10 số hạng đầu của cấp số cộng bằng:

    Tổng 10 số hạng đầu của cấp số cộng là

    S_{n} = \frac{n}{2}\left\lbrack 2u_{1} +
(n - 1)d ightbrack

    \Rightarrow S_{10} =
\frac{10}{2}\left\lbrack 2.1 + (10 - 1)2 ightbrack =
100

  • Câu 23: Thông hiểu

    Một cấp số cộng có 8 số hạng. Số hạng đầu là 5, số hạng thứ tám là 40. Khi đó công sai d của cấp số cộng đó là bao nhiêu?

    Theo bài ra ta có: \left\{ \begin{matrix}
u_{1} = 5 \\
40 = u_{8} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 5 \\
40 = u_{1} + 7d \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 5 \\
d = 5 \\
\end{matrix} ight.

  • Câu 24: Nhận biết

    Cho dãy số (un)un =  − n2 + n + 1. Số  − 19 là số hạng thứ mấy của dãy?

    Giả sử un =  − 19(n∈ℕ*) Suy ra - n^{2} + n + 1 = - 19 \Leftrightarrow
- n^{2} + n + 20 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 5 \\
n = - 4 \\
\end{matrix} \Leftrightarrow n = 5 ight. (do  n∈ℕ*).

    Vậy số  − 19 là số hạng thứ 5 của dãy.

  • Câu 25: Nhận biết

    Trong các dãy số sau dãy số nào là cấp số cộng?

    Ta có:

    u_{n + 1} - u_{n}

    = \left\lbrack 4 + 3(n + 1)
ightbrack - (4 + 3n)

    = 3

    => Dãy số \left( u_{n} ight):u_{n} =
4 + 3n là cấp số cộng.

  • Câu 26: Vận dụng

    Tính tổng A =
1000^{2} - 999^{2} + 998^{2} - 997^{2} + ... + 2^{2} -
1^{2}

    Ta có:

    A = 1000^{2} - 999^{2} + 998^{2} -
997^{2} + ... + 2^{2} - 1^{2}

    A = 1.(1000 + 999) + 1.(998 + 997) + ...
+ 1.(2 + 1)

    A = 1999 + 1995 + ... + 3

    Ta thấy các số hạng của tổng T tạo thành một cấp số cộng với số hạng đầu u_{1} = 1999 và công sai d = −4. Giả sử tổng trên có n số hạng thì

    u_{n} = 3

    \Leftrightarrow u_{1} + (n - 1) =
3

    \Leftrightarrow 1999 + (n - 1)( - 4) =
3

    \Leftrightarrow n = 500

    \Rightarrow T = S_{500} = \frac{\left(
u_{1} + u_{500} ight).500}{2} = \frac{(1999 + 3).500}{2} =
500500

  • Câu 27: Vận dụng cao

    Tìm tất cả các giá trị thực của tham số a để phương trình x^{3} + x^{2} + 2ax + a =
0 có ba nghiệm lập thành cấp số nhân.

    Ta có:

    \left\{ \begin{matrix}
x_{1}x_{3} = {x_{2}}^{2} \\
x_{1} + x_{2} + x_{3} = - 1 \\
x_{1}.x_{2} + x_{2}x_{3} + x_{3}x_{1} = 2a \\
x_{1}.x_{2}.x_{3} = - a \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
- a^{2} = {x_{2}}^{2} \\
{x_{2}}^{2} + \left( 1 + x_{2} ight)x_{2} = 2a \\
x_{1}.x_{2}.x_{3} = - a \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
- a^{2} = {x_{2}}^{2} \\
x_{2} - 2 = - 2a \\
\end{matrix} ight.\  \Rightarrow - 8a^{3} = - a

    \Rightarrow \left\lbrack \begin{matrix}a = 0 \\a = - \dfrac{1}{2\sqrt{2}} \\\end{matrix} ight. kiểm tra lại kết quả ta được a = - \frac{1}{2\sqrt{2}}

  • Câu 28: Thông hiểu

    Cho một cấp số nhân có 15 số hạng. Đẳng thức nào sau đây là sai?

    Ta có: u_{1}.u_{15} = u_{1}.u_{1}.q^{14}= \left( u_{1}.q^{a - 1} ight).\left( u_{1}.q^{b - 1} ight) =u_{a}.u_{b}

    Với a + b = 16

    Đáp án sai u_{1}.u_{15} =u_{6}.u_{9}

  • Câu 29: Thông hiểu

    Cho dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{1}{n^{2} + n}. Khẳng định nào sau đây sai?

    Ta có:

    \dfrac{u_{n}}{u_{n + 1}} =\dfrac{\dfrac{1}{n^{2} + n}}{\dfrac{1}{(n + 1)^{2} + (n + 1)}}

    = \frac{n(n - 1)}{n(n + 1)} = \frac{n -
1}{n + 1}

    Với \forall n \in \mathbb{N}^{*},n >
1 ta thấy \frac{n - 1}{n + 1} = 1 -
\frac{2}{n + 1} < 1

    Suy ra dãy số đã cho là dãy số giảm.

  • Câu 30: Thông hiểu

    Dãy số nào sau đây là một cấp số cộng?

    Dãy số ở đáp án A thỏa mãn điều kiện {u_{n + 1}} - {u_1} = 2 với n \geqslant 1 là cấp số cộng.

  • Câu 31: Nhận biết

    Trong các dãy số sau, dãy số nào không phải cấp số nhân?

    Xét đáp án 1^{2};2^{2};3^{2};4^{2};...\Leftrightarrow \frac{u_{2}}{u_{1}} = 4 eq
\frac{9}{4} = \frac{u_{3}}{u_{2}}

    => Dãy số 1^{2};2^{2};3^{2};4^{2};... không phải là cấp số nhân.

  • Câu 32: Nhận biết

    Cho dãy số \left(
u_{n} ight) biết \left\{\begin{matrix}u_{1} = 3 \\u_{n + 1} = \dfrac{u_{n}}{2} + 2 \\\end{matrix} ight.. Mệnh đề nào sau đây sai?

    Ta có:

    u_{2} = \frac{u_{1}}{2} + 2 =
\frac{3}{2} + 2 = \frac{7}{2}

    u_{3} = \frac{u_{3}}{2} + 2 =
\frac{7}{4} + 2 = \frac{15}{4}

    u_{4} = \frac{u_{3}}{2} + 2 =
\frac{15}{8} + 2 = \frac{31}{8}

    u_{5} = \frac{u_{4}}{2} + 2 =
\frac{31}{16} + 2 = \frac{63}{16}

  • Câu 33: Vận dụng

    Với mọi số nguyên dương n, tổng S_{n}=n^{3}+11n chia hết cho:

    Với n=1 ta có: {S_1} = 1 + 11 = 12 không chia hết cho 9.

    Với n=2 ta có: {S_2} = {2^3} + 11.2 = 30 không chia hết cho 4 và 12

    Ta sẽ chứng minh S_{n}=n^{3}+11n chia hết cho 6 với mọi số nguyên dương n

    Giả sử khẳng định đúng với n=k nghĩa là {S_k} = {k^3} + 11k chia hết cho 6.

    Ta cần chứng minh khẳng định đúng với n=k+1 tức là:

    {S_{k + 1}} = {\left( {k + 1} ight)^3} + 11.\left( {k + 1} ight) cũng chia hết cho 6

    Ta có:

    \begin{matrix}  {S_{k + 1}} = {\left( {k + 1} ight)^3} + 11.\left( {k + 1} ight) \hfill \\   = {k^3} + 3{k^2} + 3k + 1 + 11k + 11 \hfill \\   = \left( {{k^3} + 11k} ight) + \left( {3{k^2} + 3k} ight) + 12 \hfill \\   = \left( {{k^3} + 11k} ight) + 3k\left( {k + 1} ight) + 12 \hfill \\ \end{matrix}

    Ta lại có: \left\{ \begin{gathered}  \left( {{k^3} + 11k} ight) \vdots 6 \hfill \\  12 \vdots 6 \hfill \\ \end{gathered}  ight. ta cần chứng minh 3k\left( {k + 1} ight) \vdots 6

    Thật vậy k\left( {k + 1} ight) là tích hai số nguyên dương liên tiếp nên k\left( {k + 1} ight) \vdots 2

    Mặt khác 3k\left( {k + 1} ight) \vdots 3 và 2, 3 là hai số nguyên tố cùng nhau nên 3k\left( {k + 1} ight) \vdots  6

    Vậy {S_{k + 1}} = {\left( {k + 1} ight)^3} + 11k chia hết cho 6 hay S_{n}=n^{3}+11n chia hết cho 6 với mọi số nguyên dương n.

  • Câu 34: Nhận biết

    Dãy số nào dưới đây là dãy số nguyên tố nhỏ hơn 10 theo thứ tự tăng dần?

    Số nguyên tố là số tự nhiên lớn hơn 1 và chỉ có hai ước số là 1 và chính nó.

    Vậy dãy số nguyên tố nhỏ hơn 102, 3, 5, 7.

  • Câu 35: Nhận biết

    Trong các dãy số sau, dãy số nào là một cấp số nhân?

    Ta có:

    Dãy số \left( u_{n} ight) là cấp số nhân

    \Leftrightarrow u_{n} = q.u_{n -
1};\left( n \in \mathbb{N}^{*} ight)

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{u_{3}}{u_{2}} = \frac{u_{4}}{u_{3}} = ... = q;\left( u_{n} eq 0
ight)

    Gọi q là công bội.

    Xét đáp án 128; - 64;32; -
16;8;...

    \Leftrightarrow \frac{u_{2}}{u_{1}} = -
\frac{1}{2} = \frac{u_{3}}{u_{2}} = \frac{u_{4}}{u_{3}}

    Xét đáp án \sqrt{2};2;4;4\sqrt{2};...

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{1}{\sqrt{2}} eq 2 = \frac{u_{3}}{u_{2}}

    Xét đáp án 5;6;7;8;...

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{6}{5} eq \frac{7}{6} = \frac{u_{3}}{u_{2}}

    Xét đáp án 15;5;1;\frac{1}{5};...

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{1}{3} eq \frac{1}{5} = \frac{u_{3}}{u_{2}}

  • Câu 36: Vận dụng

    Vào mùa thu hoạch dưa hấu, bác T bán cho những người vào vườn mua dưa như sau:

    Người thứ nhất mua bác bán nửa số dưa thu hoạch được và tặng thêm 1 quả.

    Người thứ hai mua bác bán nửa số dưa còn lại và tặng thêm 1 quả.

    Bác cứ tiếp tục bán như trên, đến người mua thứ 15 thì bác bán hết.

    Tính số dưa mà bác T thu hoạch được.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Vào mùa thu hoạch dưa hấu, bác T bán cho những người vào vườn mua dưa như sau:

    Người thứ nhất mua bác bán nửa số dưa thu hoạch được và tặng thêm 1 quả.

    Người thứ hai mua bác bán nửa số dưa còn lại và tặng thêm 1 quả.

    Bác cứ tiếp tục bán như trên, đến người mua thứ 15 thì bác bán hết.

    Tính số dưa mà bác T thu hoạch được.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 37: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)d = - 2;S_{8} = 72. Tìm số hạng đầu tiên u_{1}.

    Ta có:

    \left\{ \begin{matrix}d = - 2 \\S_{8} = 72 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}d = - 2 \\8u_{1} + \dfrac{8.7.d}{2} = 72 \\\end{matrix} ight.

    \Rightarrow 8u_{1} + 28.( - 2) =
72

    \Rightarrow u_{1} = 16

  • Câu 38: Vận dụng cao

    Cho tổng S_{n} =
\frac{3}{(1.2)^{2}} + \frac{5}{(2.3)^{2}} + \frac{7}{(3.4)^{2}} + \ldots
+ \frac{2n + 1}{\lbrack n(n + 1)brack^{2}}. Giá trị S10

    Cách 1:

    Ta có \frac{3}{(1.2)^{2}} = \frac{1}{1} -
\frac{1}{4};\frac{5}{(2.3)^{2}} = \frac{1}{4} -
\frac{1}{9};\ldots

    Suy ra S_{n} = \frac{1}{1} - \frac{1}{4} +
\frac{1}{4} - \frac{1}{9} + \ldots + \frac{1}{n^{2}} - \frac{1}{(n +
1)^{2}} = \frac{n(n + 2)}{(n + 1)^{2}}

    Vậy S_{10} = \frac{10(10 + 2)}{(10 +
1)^{2}} = \frac{120}{121}.

    Cách 2:

    Ta có S_{10} = \frac{3}{(1.2)^{2}} +
\frac{5}{(2.3)^{2}} + \frac{7}{(3.4)^{2}} + \ldots +
\frac{21}{(10.11)^{2}}

    Suy ra S_{10} = \frac{1}{1} - \frac{1}{4}
+ \frac{1}{4} - \frac{1}{9} + \ldots + \frac{1}{10^{2}} -
\frac{1}{11^{2}} = \frac{1}{1} - \frac{1}{11^{2}} =
\frac{120}{121}.

  • Câu 39: Thông hiểu

    Trong các dãy số \left( u_{n} ight) cho bởi số hạng tổng quát u_{n} sau, dã số nào là dãy số tăng?

    Xét đáp án u_{n} = 2^{n} ta có:

    u_{n + 1} - u_{n} = 2^{n + 1} - 2^{n} =
2^{n} > 0

    => Dãy số u_{n} = 2^{n} là dãy tăng.

  • Câu 40: Nhận biết

    Biết bốn số 5;x;15;y theo thứ tự lập thành cấp số cộng. Giá trị của biểu thức 3x + 2y bằng

    Ta có:

    x = \frac{5 + 15}{2} = 10 \Rightarrow y= 20

    \Rightarrow 3x + 2y = 70

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo