Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Ba góc của một tam giác vuông tạo thành cấp số cộng. Hai góc nhọn của tam giác có số đo (độ) là:

    Ba góc A, B, C của một tam giác vuông theo thứ tự đó (A < B < C) lập thành một cấp số cộng nên

    \left\{ \begin{matrix}C = 90^{0} \\C + A = 2B \\A + B + C = 180^{0} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}C = 90^{0} \\C + A = 2B \\3B = 180^{0} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}C = 90^{0} \\A = 30^{0} \\B = 60^{0} \\\end{matrix} ight.

  • Câu 2: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight). Hãy chọn hệ thức đúng trong các hệ thức sau:

    Xét đáp án \dfrac{u_{10} + u_{20}}{2} =u_{5} + u_{10}

    \left\{ \begin{matrix}\dfrac{u_{10} + u_{20}}{2} = \dfrac{u_{1} + 9d + u_{1} + 29d}{2} \\u_{5} + u_{10} = u_{1} + 4d + u_{1} + 9d \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{u_{10} + u_{20}}{2} = u_{1} + 19d \\u_{5} + u_{10} = 2u_{1} + 13d \\\end{matrix} ight.

    Xét đáp án u_{90} + u_{210} =
2u_{150}

    \left\{ \begin{matrix}u_{90} + u_{210} = 2u_{1} + 298d \\2u_{150} = 2\left( u_{1} + 149d ight) \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{90} + u_{210} = 2\left( u_{1} + 149d ight) \\2u_{150} = 2\left( u_{1} + 149d ight) \\\end{matrix} ight.

    Vậy hệ thức đúng là u_{90} + u_{210} =
2u_{150}

  • Câu 3: Nhận biết

    Giả sử A là tập con của tập hợp các số nguyên dương sao cho

    (I) k ∈ A

    (II) n ∈ A ⇒ n + 1 ∈ A, ∀n ≥ k

    Lúc đó, ta có: 

    (I) k ∈ A : số nguyên dương k thuộc tập A.

    (II) n ∈ A ⇒ n + 1 ∈ A, ∀n ≥ k : nếu số nguyên dương n(n≥k) thuộc tập A thì số nguyên dương đứng ngay sau nó (n+1) cũng thuộc A. Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc A.

  • Câu 4: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

  • Câu 5: Vận dụng

    Cho dãy số (un) xác định bởi {u_1} = \frac{{ - 41}}{{20}};{u_{n + 1}} = 21{u_n} + 1;\left( {n \geqslant 1} ight). Tìm số hạng thứ 2018 của dãy số đã cho.

    Ta có: {u_{n + 1}} = 21{u_n} + 1 \Rightarrow {u_{n + 1}} + \frac{1}{{20}} = 21\left( {{u_n} + \frac{1}{{20}}} ight)

    Đặt {v_n} = {u_n} + \frac{1}{{20}} \Rightarrow {v_{n + 1}} = 21{v_n}

    Khi đó (vn) là một cấp số nhân với và công bội q = 21

    Do đó số hạng tổng quát của dãy (vn) là {v_n} = {v_1}.{q^{n - 1}} =  - {2.21^{n - 1}} \Rightarrow {u_n} =  - {2.21^{n - 1}} - \frac{1}{{20}}

    => {u_{2018}} =  - {2.21^{2017}} - \frac{1}{{20}}

  • Câu 6: Thông hiểu

    Cho cấp số nhân \frac{1}{2};\frac{1}{4};\frac{1}{8};...;\frac{1}{4096}. Hỏi số \frac{1}{4096} là số hạng thứ mấy trong cấp số nhân đã cho?

    Ta có: \frac{1}{2};\frac{1}{4};\frac{1}{8};...;\frac{1}{4096} là cấp số nhân với \left\{ \begin{matrix}u_{1} = \dfrac{1}{2} \\q = \dfrac{u_{2}}{u_{1}} = \dfrac{1}{2} \\\end{matrix} ight.

    \Rightarrow u_{n} = \frac{1}{2}.\left(
\frac{1}{2} ight)^{n - 1} = \frac{1}{2^{n}} =
\frac{1}{4096}

    \Rightarrow \frac{1}{2^{n}} =
\frac{1}{2^{12}} \Rightarrow n = 12

  • Câu 7: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) với \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.. Công thức số hạng tổng quát của cấp số cộng này là:

    Ta có:

    \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left( u_{1} + d ight) + \left( u_{1} + 2d ight) - \left( u_{1} + 5d
ight) = 7 \\
\left( u_{1} + 3d ight) + \left( u_{1} + 7d ight) = - 14 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} - 2d = 7 \\
2u_{1} + 10d = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 3 \\
d = - 2 \\
\end{matrix} ight.

    \Rightarrow u_{n} = 3 + (n - 1)( - 2) =
5 - 2n

  • Câu 8: Nhận biết

    Hãy liệt kê năm số hạng đầu của dãy số \left( u_{n} ight) có số hạng tổng quát u_{n} = 3^{n} + n - 2;\left( n \in
\mathbb{N}^{*} ight)?

    Ta có:

    u_{1} = 3^{1} + 1 - 2 = 2

    u_{2} = 3^{2} + 2 - 2 = 9

    u_{3} = 3^{3} + 3 - 2 = 28

    u_{4} = 3^{4} + 4 - 2 = 83

    u_{5} = 3^{5} + 5 - 2 = 246

    Vậy năm số hạng đầu tiên của dãy số là 2;9;28;83;246

  • Câu 9: Thông hiểu

    Trong các dãy số sau, dãy số nào bị chặn trên?

    Ta có:

    \left( v_{n} ight):v_{n} = - n^{2} + 2
\leq 2.

    Vậy đây là dãy số bị chặn trên.

  • Câu 10: Thông hiểu

    Số hạng âm trong dãy số x1; x2; x3; …; xn với x_{n} = C_{n + 5}^{4} - \frac{143P_{n +
5}}{96P_{n + 3}} là?

    Ta có c_{n + 5}^{4} = \frac{(n + 5)(n +4)(n + 3)(n + 2)}{24},

    \frac{143P_{n + 5}}{96P_{n + 3}} = \frac{143(n +5)(n + 4)}{96}

    x_{n} = C_{n + 5}^{4} - \frac{143P_{n +
5}}{96P_{n + 3}}

    = \frac{(n + 5)(n + 4)(2n + 17)(2n -
7)}{96} > 0,\forall n \geq 4,n \in \mathbb{N}^{*}

    Vậy các số hạng âm là x1; x2; x3.

  • Câu 11: Nhận biết

    Dãy số u_{n} =
2^{2n} là cấp số nhân với

    Cấp số nhân 4;16;64;....

    \Rightarrow \left\{ \begin{matrix}u_{1} = 4 \\q = \dfrac{u_{2}}{u_{1}} = 4 \\\end{matrix} ight.

  • Câu 12: Thông hiểu

    Một cấp số cộng có 8 số hạng. Số hạng đầu là 5, số hạng thứ tám là 40. Khi đó công sai d của cấp số cộng đó là bao nhiêu?

    Theo bài ra ta có: \left\{ \begin{matrix}
u_{1} = 5 \\
40 = u_{8} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 5 \\
40 = u_{1} + 7d \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 5 \\
d = 5 \\
\end{matrix} ight.

  • Câu 13: Vận dụng

    Giả sử \sin \frac{a}{6};\cos a;\tan a theo thứ tự lập thành một cấp số nhân. Khi đó \cos 2a bằng:

    Điều kiện \cos a e 0 \Leftrightarrow a e \frac{\pi }{2} + k\pi ;\left( {k \in \mathbb{Z}} ight)

    Theo tính chất của cấp số nhân ta có:

    \begin{matrix}  {\cos ^2}a = \dfrac{{\sin a}}{6}.\tan a \hfill \\   \Leftrightarrow 6{\cos ^2}a = \dfrac{{{{\sin }^2}a}}{{\cos a}} \hfill \\   \Leftrightarrow 6{\cos ^3}a - {\sin ^2}a = 0 \hfill \\   \Leftrightarrow 6{\cos ^3}a + {\cos ^2}a - 1 = 0 \hfill \\   \Leftrightarrow {\cos ^2}a = \dfrac{1}{2} \hfill \\   \Rightarrow \cos 2a = 2{\cos ^2}a - 1 = 2.{\left( {\dfrac{1}{2}} ight)^2} - 1 =  - \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 14: Nhận biết

    Dãy số nào là dãy số tăng?

    Xét u_{n} = n^{2} ta có: u_{n + 1} - u_{n} = (n + 1)^{2} - n^{2} = 2n + 1
> 0;\forall n \in \mathbb{N}^{*}

    Vậy u_{n} = n^{2} là dãy số tăng.

  • Câu 15: Vận dụng cao

    Cho Sn = 1 + 2 ⋅ 3 + 3 ⋅ 32 + … + n ⋅ 3n − 1.

    Khẳng định nào sau đây đúng với mọi n nguyên dương?

    Ta có 3Sn = 3 + 2.32 + 3.33 + … + n.3n

    Từ đó 2Sn =  − 1 − 3 − 32 − … − 3n − 1 + n.3n

    \Leftrightarrow 2S_{n} = - \frac{3^{n} -
1}{2} + n{.3}^{n}

    \Leftrightarrow S_{n} = - \frac{3^{n} -
1}{4} + \frac{n}{2} \cdot 3^{n}

  • Câu 16: Nhận biết

    Cho cấp số nhân \left( u_{n} ight) với u_{1} = - 2;q = - 5. Viết bốn số hạng đầu tiên của cấp số nhân.

    Ta có: \left\{ \begin{matrix}
u_{1} = - 2 \\
q = - 5 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = - 2 \\
u_{2} = u_{1}q = 10 \\
u_{3} = u_{1}q^{2} = - 50 \\
u_{4} = u_{1}q^{3} = 250 \\
\end{matrix} ight.

  • Câu 17: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Dãy 1;\ \ 2;\ \ 4;\ \ 8;\ \ 16 là cấp số nhân với công bội q =
2.

    Dãy 1;  - 1; 1;  - 1;1 là cấp số nhân với công bội q = -
1.

    Dãy 1;\ \  - 2;\ \ 4;\ \  - 8;\ \
16 là cấp số nhân với công bội q =
- 2.

    Dãy 1;2;3; 4;5 là cấp số cộng với công sai d = 1.

  • Câu 18: Nhận biết

    Tính tổng 10 số hạng đầu của cấp số cộng u_{1} = 5;u_{2} = 9.

    Theo bài ra ta có:

    d = u_{2} - u_{1} = 4

    \Rightarrow S_{10} = \frac{10}{2}.\left(
u_{1} + u_{10} ight) = 5\left( 2u_{1} + 9d ight) = 230

  • Câu 19: Vận dụng cao

    Cho a, b, c theo thứ tự lập thành cấp số cộng. Giá trị x + y là bao nhiêu? Biết:

    B = {\log _2}\left( {{a^2} + ab + } ight){b^2} + bc + {c^2} = x{\log _2}\left( {{a^2} + ac + {c^2}} ight) + y;\left( {x,y \in \mathbb{N}} ight)

    Ta có: a, b, c lập thành cấp số cộng nên

    a + c = 2b => (a + c)2 = 4b2

    \begin{matrix}   \Rightarrow b\left( {a + c} ight) + 2{b^2} = {\left( {a + c} ight)^2} \hfill \\   \Rightarrow 2{a^2} + ab + 2{b^2} + bc + {c^2} = 2\left( {{a^2} + ac + {c^2}} ight) \hfill \\   \Rightarrow B = {\log _2}\left( {{a^2} + ab + } ight){b^2} + bc + {c^2} = {\log _2}\left( {{a^2} + ac + {c^2}} ight) + 1 \hfill \\   =  > x + y = 1 + 1 = 2 \hfill \\ \end{matrix}

  • Câu 20: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = - 5d = 3. Mệnh đề nào sau đây đúng?

    Ta có

    \left\{ \begin{matrix}
u_{1} = - 5 \\
d = 3 \\
\end{matrix} ight.\ \overset{CTTQ}{ightarrow}u_{13} = u_{1} + (13 -
1)d = - 5 + 3(13 - 1) = 31

  • Câu 21: Thông hiểu

    Xen vào giữa hai số 4 và 40 bốn số để được một cấp số cộng có công sai lớn hơn 3. Tìm tổng 4 số đó.

    Sau khi chèn 4 số vào giữa hai số 4 và 40 thì cấp số cộng đó có 6 số hạng

    Nghĩa là coi 4 là số hạng đầu tiên thì 40 là số hạng thứ 6

    Theo bài ra ta có: \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_6} = 40} \end{array}} ight.

    {u_1} + 5.d = 40

    \begin{matrix}   \Rightarrow 4 + 5.d = 40 \hfill \\   \Rightarrow 5.d = 36 \hfill \\   \Rightarrow d = \dfrac{{36}}{5} \hfill \\ \end{matrix}

    Vậy công sai của cấp số cộng là d = \frac{{36}}{5}

    Khi đó 4 số hạng được thêm lần lượt là: \frac{{56}}{5};\frac{{92}}{5};\frac{{128}}{5};\frac{{164}}{5}

    Tổng bốn số hạng ở trên là: \frac{{56}}{5} + \frac{{92}}{5} + \frac{{128}}{5} + \frac{{164}}{5} = 88

  • Câu 22: Nhận biết

    Cho cấp số nhân \left( u_{n} ight) có số hạng đầu là u_{1} = 1, công bội là q = 2019. Tính u_{2019}?

    Theo công thức cấp số nhân ta có: u_{2019} = u_{1}.q^{n - 1} = 1.2019^{2019 - 1} =
2019^{2018}

  • Câu 23: Nhận biết

    Trong các dãy được cho dưới đây, dãy số nào là cấp số cộng?

    Xét dãy số u_{n}=7-3n

    Ta có:

    \begin{matrix}  {u_{n + 1}} = 7 - 3\left( {n + 1} ight) \hfill \\   \Rightarrow {u_{n + 1}} - {u_n} = 7 - 3\left( {n + 1} ight) - \left( {7 - 3n} ight) =  - 3 \hfill \\ \end{matrix}

    Vậy dãy số u_{n}=7-3n là một cấp số cộng với u_1=4;d=-3

  • Câu 24: Vận dụng

    Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17. Tổng của số hạng thứ hai và số hạng thứ tư là 14. Tính công sai d của cấp số cộng đã cho.

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_6} = 17} \\   {{u_2} + {u_4} = 14} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {2{u_1} + 5d = 17} \\   {2{u_1} + 6d = 14} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 16} \\   {d =  - 3} \end{array}} ight.

  • Câu 25: Thông hiểu

    Tìm x để 2;8;x;128 theo thứ tự đó lập thành một cấp số nhân.

    Cấp số nhân 2;8;x;128 theo thứ tự là u_{1};u_{2};u_{3};u_{4} ta có:

    \left\{ \begin{matrix}\dfrac{u_{2}}{u_{1}} = \dfrac{u_{3}}{u_{2}} \\\dfrac{u_{3}}{u_{2}} = \dfrac{u_{4}}{u_{3}} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}\dfrac{8}{2} = \dfrac{x}{8} \\\dfrac{128}{x} = \dfrac{x}{8} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 32 \\x^{2} = 1024 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 32 \\
\left\lbrack \begin{matrix}
x = 32 \\
x = - 32 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Rightarrow x = 32

  • Câu 26: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} =
2 và công sai d = 3. Giá trị u_{2024} bằng

    Áp dụng công thức số hạng tổng quát

    u_{2024} = u_{1} + 2023d = 2 + 2023.3 = 6071.

  • Câu 27: Nhận biết

    Cho hai dãy số (un), (vn) được xác định như sau u1 = 3, v1 = 2\left\{ \begin{matrix}
u_{n + 1} = u_{n}^{2} + 2v_{n}^{2} \\
v_{n = 1} = 2u_{n} \cdot v_{n} \\
\end{matrix} ight. với n ≥ 2. Công thức tổng quát của hai dãy (un)(vn) là?

    Chứng minh u_{n} - \sqrt{2}v_{n} =
(\sqrt{2} - 1)^{2n}

    Ta có u_{n} = \sqrt{2}v_{n} = u_{n -
1}^{2} + 2v_{n - 1}^{2} - 2\sqrt{2}u_{n - 1}v_{n - 1} = \left( u_{n - 1}
- \sqrt{2}v_{n - 1} ight)^{2}

    Mặt khác u_{1} - \sqrt{2}v_{1} = 3 -
2\sqrt{2} = (\sqrt{2} - 1)^{2} nên (1) đúng với n = 1 Giả sử u_{k} - \sqrt{2}v_{k} = (\sqrt{2} -
1)^{2k}, ta có u_{k - 1} -
\sqrt{2}v_{k + 1} = \left( u - \sqrt{2}v_{k} ight)^{2} = (\sqrt{2} -
1)^{2k + 1}

    Vậy (1) đúng với n ≥ 1

    Ta có u_{n} + \sqrt{2}v_{n} = (\sqrt{2} +
1)^{2^{n}}

    Do đó ta suy ra:

    \left\{ \begin{matrix}
2u_{n} = (\sqrt{2} + 1)^{2^{n}} + (\sqrt{2} - 1)^{2^{n}} \\
2\sqrt{2}v_{n} = (\sqrt{2} + 1)^{2^{n}} - (\sqrt{2} - 1)^{2^{n}} \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
u_{n} = \frac{1}{2}\left\lbrack (\sqrt{2} + 1)^{2^{n}} + (\sqrt{2} -
1)^{2^{n}} ightbrack \\
v_{n} = \frac{1}{2\sqrt{2}}\left\lbrack (\sqrt{2} + 1)^{2^{n}} -
(\sqrt{2} - 1)^{2^{n}} ightbrack \\
\end{matrix} ight.

  • Câu 28: Thông hiểu

    Cho cấp số nhân có 6 số hạng với cộng bội bằng 2 và tổng số các số hạng bằng 189. Số hạng cuối cùng của cấp số nhân có giá trị là:

    Ta có: S_{n} = \frac{u_{1}\left( 1 -
q^{n} ight)}{1 - q}n = 6;q =
2;S_{n} = 189

    \Rightarrow 189 = \frac{u_{1}\left( 1 -
2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{6} =
96

  • Câu 29: Thông hiểu

    Cho một cấp số nhân có 15 số hạng. Đẳng thức nào sau đây là sai?

    Ta có: u_{1}.u_{15} = u_{1}.u_{1}.q^{14}= \left( u_{1}.q^{a - 1} ight).\left( u_{1}.q^{b - 1} ight) =u_{a}.u_{b}

    Với a + b = 16

    Đáp án sai u_{1}.u_{15} =u_{6}.u_{9}

  • Câu 30: Thông hiểu

    Cho dãy số (u_n) với \begin{matrix}  {u_n} = \dfrac{{\sin \left( {\dfrac{{n\pi }}{3}} ight)}}{{n + 1}} \hfill \\\end{matrix} với mọi n\geq 1. Khi đó số hạng u_{3n} của dãy (u_{n}) là:

    Ta có:

    \begin{matrix}  {u_n} = \dfrac{{\sin \left( {\dfrac{{n\pi }}{3}} ight)}}{{n + 1}} \hfill \\   \Rightarrow {u_{3n}} = \dfrac{{\sin \left( {\dfrac{{3n\pi }}{3}} ight)}}{{3n + 1}} = \dfrac{{\sin \left( {n\pi } ight)}}{{3n + 1}} = 0 \hfill \\ \end{matrix}

  • Câu 31: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = - 0,1;d = 0,1. Số hạng thứ 7 của cấp số cộng là

    Ta có: u_{7} = u_{1} + 6d = - 0,1 + 6.0,1
= 0,5

  • Câu 32: Vận dụng

    Xét tính tăng, giảm của dãy số \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = \sqrt[3]{u_{n}^{3} + 1},n \geq 1 \\
\end{matrix} ight., ta thu được kết quả?

    Ta có u_{n + 1} = \sqrt[3]{u_{n}^{3} + 1}
\Rightarrow u_{n + 1} > \sqrt[3]{u_{n}^{3}} = u_{n},\forall n \in
\mathbb{N}^{*} \Rightarrow \left( u_{n} ight) là dãy số tăng.

  • Câu 33: Thông hiểu

    Giá tiền công khoan giếng ở cơ sở A được tính như sau: Giá của mét khoan đầu tiên là 8000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 500 đồng so với giá của mét khoan ngay trước nó. Vậy muốn khoan 20 mét thì mất bao nhiêu đồng?

     Theo bài ra ta có:

    Giá các mét khoan lập thành một cấp số cộng với công sai d = 500, số hạng đầu là 8000.

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 8000} \\   {d = 500} \end{array}} ight.

    => Số tiền phải trả khi khoan giếng sâu 20m là:

    \begin{matrix}  {S_{20}} = \dfrac{{20.\left( {2{u_1} + 19.d} ight)}}{2} \hfill \\   \Rightarrow {S_{20}} = 10.\left( {2.8000 + 19.500} ight) = 255000 \hfill \\ \end{matrix}

    Vậy muốn khoan 20 mét thì mất 255000 đồng.

  • Câu 34: Thông hiểu

    Cho dãy số (un) biết u_{n} = \frac{5^{n}}{n^{2}}. Mệnh đề nào sau đây đúng?

    Ta có u_{n} = \frac{5^{n}}{n^{2}} >
0,\forall n \in \mathbb{N}^{*} \Rightarrow u_{n + 1} = \frac{5^{n +
1}}{(n + 1)^{2}}

    Xét tỉ số:

    \frac{u_{n + 1}}{u_{n}} = \frac{5^{n +
1}}{(n + 1)^{2}} \cdot \frac{n^{2}}{5^{n}}

    = \frac{5n^{2}}{n^{2} + 2n + 1} =
\frac{n^{2} + 2n + 1 + 4n^{2} - 2n - 1}{n^{2} + 2n + 1}

    = 1 + \frac{2n(n - 1) + 2n^{2} -
1}{n^{2} + 2n + 1} > 1,\forall n \in \mathbb{N}^{*}

    Vậy (un) là dãy số tăng.

  • Câu 35: Thông hiểu

    Cho dãy số (u_{n}), biết u_n=\frac{2n+5}{5n-4}. Số \frac{7}{12} là số hạng thứ mấy của dãy số?

    Ta có:

    \begin{matrix}  {u_k} = \dfrac{7}{{12}} \hfill \\   \Leftrightarrow \dfrac{{2k + 5}}{{5k - 4}} = \dfrac{7}{{12}};\left( {k \in {\mathbb{N}^*}} ight) \hfill \\   \Leftrightarrow 12\left( {2k + 5} ight) = 7\left( {5k - 4} ight) \hfill \\   \Leftrightarrow 24k + 60 = 35k - 28 \hfill \\   \Leftrightarrow 11k = 88 \hfill \\   \Leftrightarrow k = 8 \hfill \\ \end{matrix}

    Vậy số \frac{7}{12} là số hạng thứ 8 của dãy số.

  • Câu 36: Vận dụng

    Xét tính tăng, giảm và bị chặn của dãy số (un), biết u_{n} = \frac{1}{\sqrt{1 + n +n^{2}}}, ta thu được kết quả?

    Ta có un > 0, ∀n ≥ 1

    \frac{u_{n + 1}}{u_{n}} =\frac{\sqrt{n^{2} + n + 1}}{\sqrt{(n + 1)^{2} + (n + 1) +1}}

    = \sqrt{\frac{n^{2} + n + 1}{n^{2} + 3n+ 3}} < 1,\forall n \in \mathbb{N}^{*} \Rightarrow u_{n + 1} <u_{n},\forall n \geq 1

    dãy (un) là dãy số giảm.

    Mặt khác 0 < un < 1⇒ dãy (un) là dãy bị chặn.

  • Câu 37: Vận dụng cao

    Tìm tất cả các giá trị thực của tham số a để phương trình x^{3} + x^{2} + 2ax + a =
0 có ba nghiệm lập thành cấp số nhân.

    Ta có:

    \left\{ \begin{matrix}
x_{1}x_{3} = {x_{2}}^{2} \\
x_{1} + x_{2} + x_{3} = - 1 \\
x_{1}.x_{2} + x_{2}x_{3} + x_{3}x_{1} = 2a \\
x_{1}.x_{2}.x_{3} = - a \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
- a^{2} = {x_{2}}^{2} \\
{x_{2}}^{2} + \left( 1 + x_{2} ight)x_{2} = 2a \\
x_{1}.x_{2}.x_{3} = - a \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
- a^{2} = {x_{2}}^{2} \\
x_{2} - 2 = - 2a \\
\end{matrix} ight.\  \Rightarrow - 8a^{3} = - a

    \Rightarrow \left\lbrack \begin{matrix}a = 0 \\a = - \dfrac{1}{2\sqrt{2}} \\\end{matrix} ight. kiểm tra lại kết quả ta được a = - \frac{1}{2\sqrt{2}}

  • Câu 38: Thông hiểu

    Tìm tất cả các giá trị của x để ba số 2x - 1;x;2x + 1 theo thứ tự lập thành một cấp số nhân.

    Ta có:

    Ba số 2x - 1;x;2x + 1 theo thứ tự lập thành một cấp số nhân

    \Rightarrow x^{2} = (2x - 1).(2x +
1)

    \Rightarrow x^{2} = 4x^{2} -
1

    \Rightarrow 3x^{2} = 1

    \Rightarrow x = \pm
\frac{1}{\sqrt{3}}

  • Câu 39: Thông hiểu

    Cho một cấp số nhân \left( u_{n} ight)u_{1} = 5;q = \frac{1}{3} . Hỏi \frac{5}{59049} là số hạng thứ mấy của cấp số nhân?

    Ta có: u_{n} = u_{1}.q^{n - 1}
\Leftrightarrow \frac{5}{59049} = 5.\left( \frac{1}{3} ight)^{n - 1}
\Rightarrow n = 11

    Vậy số \frac{5}{59049} là số hạng thứ 11 của cấp số nhân.

  • Câu 40: Nhận biết

    Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:

    Do dãy số là cấp số nhân

    => q = \frac{{36}}{{16}} = \frac{9}{4}

    => Số hạng tiếp theo là: 36.\frac{9}{4} = 81

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo