Số hạng âm trong dãy số x1; x2; x3; …; xn với
là?
Ta có
Vậy các số hạng âm là x1; x2; x3.
Số hạng âm trong dãy số x1; x2; x3; …; xn với
là?
Ta có
Vậy các số hạng âm là x1; x2; x3.
Xác định bốn số hạng đầu của một dãy số
xác định bởi công thức
với
?
Ta có:
Cho một cấp số cộng
có
. Tìm
?
Theo bài ra ta có:
Tổng n số hạng đầu tiên của một cấp số cộng là
. Tìm số hạng tổng quát
của cấp số cộng đã cho.
Ta có:
Mặt khác
Tìm x và y để dãy số
là một cấp số cộng?
Để dãy số là một cấp số cộng thì
Cho cấp số nhân (un) có u1 = 2 và u2 = -8. Mệnh đề nào sau đây đúng?
Ta có:
Dãy số (un) được cho bởi
. Hãy tìm khẳng định sai trong các khẳng định sau.
...
Áp dụng phương pháp quy nạp ta có un = 2n − 1.
Với
, cho dãy số
gồm tất cả các số nguyên dương chia
dư
theo thứ tự tăng dần. Số hạng tổng quát của dãy số này là
Các số nguyên dương chia dư
theo thứ tự tăng dần là
,
,
,
,…
Ta có ,
,
,
, …
Vậy
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có
Cộng vế với vế của các đẳng thức trên, ta được
Cho cấp số cộng có số hạng đầu
công sai
. Năm số hạng liên tiếp đầu tiên của cấp số này là:
Ta có:
Cho một cấp số cộng (un) có u1 = 1 và tổng 100 số hạng đầu tiên là 24850. Tính giá trị của biểu thức ![]()
Ta có:
Ta lại có
Tìm b > 0 để các số
theo thứ tự đó lập thành một cấp số nhân.
Ta có:
Các số theo thứ tự đó lập thành một cấp số nhân.
(Vì b > 0)
Cho tổng
. Giá trị S10 là
Cách 1:
Ta có
Suy ra
Vậy .
Cách 2:
Ta có
Suy ra .
Cho cấp số cộng
. Tính ![]()
Ta có:
Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:
Ta có:
Trong các dãy số
cho bởi số hạng tổng quát
, dãy nào là cấp số nhân?
Dãy là cấp số nhân có
Cho cấp số cộng
với
. Khi đó số
là số hạng thứ mấy trong dãy?
Theo bài ra ta có:
Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:
Ta có cấp số nhân (un) nên khi đó:
Cho cấp số nhân (un) có
. Tìm công bội q và số hạng đầu u1.
Ta có:
Từ hình vuông có cạnh bằng
, người ta chia mỗi cạnh của hình vuông thành ba phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông mới (hình vẽ).Tiếp tục quá trình này đến vô hạn. Gọi
là diện tích của hình vuông được tạo thành ở bước thứ n
. Tính tổng
?

Đáp án: 5/4 (kết quả ghi dưới dạng phân số tối giản a/b)
Từ hình vuông có cạnh bằng , người ta chia mỗi cạnh của hình vuông thành ba phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông mới (hình vẽ).Tiếp tục quá trình này đến vô hạn. Gọi
là diện tích của hình vuông được tạo thành ở bước thứ n
. Tính tổng
?
Đáp án: 5/4 (kết quả ghi dưới dạng phân số tối giản a/b)
Giả sử cạnh hình vuông bằng a.
Ta có cạnh của hình vuông được tạo ở bước 1 là
Tương tự như trên, ta có:
,
,…,
Nên là tổng của cấp số nhân lùi vô hạn với
.
Khi đó .
Với a = 1 suy ra .
Cho dãy số
là một cấp số nhân với
. Dãy số nào sau đây không phải là cấp số nhân?
Giả sử là cấp số nhân công bội
thì:
Dãy là cấp số nhân công bội
.
Dãy là cấp số nhân với công bội
.
Dãy là cấp số nhân công bội
.
Dãy không là cấp số nhân.
Nếu các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì m bằng bao nhiêu?
Để các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì:
Vậy nếu các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì m = 4
Người ta trồng
cây theo một hình tam giác như sau: hàng thứ nhất trồng 1 cây, kể từ hàng thứ hai trở đi số cây trồng mỗi hàng nhiều hơn 1 cây so với hàng liền trước nó. Hỏi có tất cả bao nhiêu hàng cây?
Giả sử trồng được n hàng cây
Số cây ở mỗi hàng lập thành cấp số cộng có và công sai
Theo giả thiết ta có:
Vậy có tất cả hàng cây.
Trong các dãy số sau, dãy số nào là cấp số nhân?
=> Loại đáp án A
=> Loại đáp án B
=> Dãy số là cấp số nhân có công bội q = 2
Chọn đáp án C
=> Loại đáp án B
Cho cấp số nhân có 6 số hạng với cộng bội bằng 2 và tổng số các số hạng bằng 189. Số hạng cuối cùng của cấp số nhân có giá trị là:
Ta có: mà
Cho dãy số (un) xác định bởi
. Giá trị u10 là?
Từ ta có un + 1 − un = 5
⇒ dãy (un) là một cấp số cộng với công sai d = 5 nên
u10 = u1 + 9d = 2 + 45 = 47
Trong các dãy số sau, dãy số nào lập thành một cấp số cộng?
Xét đáp án A: 1; -3; -7; -11; -15; …
=> u2 – u1 = u3 – u2 = u4 – u3 = -4 => Chọn đáp án A
Xét đáp án B: 1; -3; -7; -11; -15; …
=> u2 – u1 = -4 ≠ u3 – u2 = -3 => Loại đáp án B
Xét đáp án C: 1; -3; -7; -11; -15; …
=> u2 – u1 = -3 ≠ u3 – u2 = -2 => Loại đáp án C
Xét đáp án D: 1; -3; -7; -11; -15; …
=> u2 – u1 = -4 ≠ u3 – u2 = -2 => Loại đáp án D
Phát biểu nào dưới đây về dãy số (an) được cho bởi an = 2n + n là đúng?
Ta có an + 1 − an = 2n + 1 + n + 1 − 2n − n
= 2.2n − 2n + 1 = 2n + 1 > 0, ∀n ∈ ℕ*
Vậy (an) là dãy số tăng.
Giả sử
theo thứ tự lập thành một cấp số nhân. Khi đó
bằng:
Điều kiện
Theo tính chất của cấp số nhân ta có:
Cho dãy số (un) với
, biết
. Hỏi uk là số hạng thứ mấy của dãy số đã cho?
Ta có:
(do k∈ℕ*)
Cho cấp số cộng
có số hạng đầu và công sai lần lượt là
. Số hạng thứ
bằng:
Ta có:
Cho
với n ∈ ℕ*. Mệnh đề nào sau đây đúng?
Ta có dự đoán
Với n = 1, ta được (đúng)
Giả sử mệnh đề đúng khi n = k (k≥1), tức là
Ta có
Suy ra mệnh đề đúng với n = k + 1.
Cho cấp số cộng
có
và
Mệnh đề nào sau đây đúng?
Ta có
Trong các dãy số sau dãy số nào là cấp số cộng?
Ta có:
=> Dãy số là cấp số cộng.
Một người nhảy bungee (một trò chơi mạo hiểm mà người chơi nhảy từ một nơi có địa thế cao xuống với dây dai an toàn buộc xung quanh người) từ một cây cầu và căng một sợi dây dài 100 m. Sau mỗi lần rơi xuống, nhờ sự đàn hồi của dây, người nhảy dược kéo lên một quãng đường có độ dài bằng
so với lần rơi trước đó và lại bị rơi xuống đúng bằng quãng đường vừa dược kéo lên. Tính tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống (làm tròn kết quả đến hàng đơn vị của mét)?

Đáp án: 666
Một người nhảy bungee (một trò chơi mạo hiểm mà người chơi nhảy từ một nơi có địa thế cao xuống với dây dai an toàn buộc xung quanh người) từ một cây cầu và căng một sợi dây dài 100 m. Sau mỗi lần rơi xuống, nhờ sự đàn hồi của dây, người nhảy dược kéo lên một quãng đường có độ dài bằng so với lần rơi trước đó và lại bị rơi xuống đúng bằng quãng đường vừa dược kéo lên. Tính tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống (làm tròn kết quả đến hàng đơn vị của mét)?
Đáp án: 666
Gọi là quãng dường người đó dược kéo lên ở lần thứ
(đơn vị tính: mét).
Ta có và
.
Vậy là cấp số nhân với số hạng đầu
và công bội
.
Tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống là
Cho dãy số (un) có
và c > d > 0. Dãy số (un) là dãy số tăng với điều kiện?
Xét hiệu .
Dãy số (un) là dãy số tăng khi ad − bc > 0
Mà c > d > 0 nên chỉ có điều kiện ở đáp án a > 0, b < 0 để ad − bc > 0.
Dãy số nào sau đây không phải là cấp số nhân?
Xét đáp án có
=> Dãy số không phải là cấp số nhân.
Trong các dãy số sau, dãy số nào là một cấp số nhân?
Ta có:
Dãy số là cấp số nhân
Gọi là công bội.
Xét đáp án
Xét đáp án
Xét đáp án
Xét đáp án
Trong các dãy (un) sau đây, dãy nào là dãy số bị chặn?
Ta có:
n2 − n + 1 < n2 + 2n + 2 (do n > 0)
Suy ra , với mọi n.
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có un + 1 = un + (−1)2n = un + 1 ⇒ u2 = 2; u3 = 3; u4 = 4; …
Dễ dàng dự đoán được un = n.
Thật vậy, ta chứng minh được un = n (*) bằng phương pháp quy nạp như sau:
Với n = 1 ⇒ u1 = 1. Vậy (*) đúng với n = 1.
Giả sử (*) đúng với n = k (k∈ℕ*), ta có uk = k
Ta đi chứng minh (*) cũng đúng với n = k + 1, tức là uk + 1 = k + 1
Thật vậy, từ hệ thức xác định dãy số (un) ta có uk + 1 = uk + (−1)2k = k + 1
Vậy (*) đúng với mọi n ∈ ℕ*. Số hạng tổng quát của dãy số là un = n.