Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Xét tính tăng, giảm của dãy số u_{n} = \frac{3^{n} - 1}{2^{n},} ta được kết quả?

    Ta có u_{n + 1} - u_{n} = \frac{3^{n + 1}- 1}{2^{n + 1}} - \frac{3^{n} - 1}{2^{n}}

    = \frac{3^{n + 1} - 1 -{2.3}^{n} + 2}{2^{n + 1}} = \frac{3^{n} + 1}{2^{n + 1}} >0

    dãy (un) là dãy số tăng.

  • Câu 2: Nhận biết

    Cho cấp số nhân (un) có số hạng đầu u1 = 5; công bội q = -2. Số hạng thứ sáu của (un) là:

    Ta có: {u_6} = {u_1}.{q^{6 - 1}} = 5.{\left( { - 2} ight)^5} =  - 160

  • Câu 3: Vận dụng cao

    Cho xeq 0 và x+\frac{1}{x} là một số nguyên. Khi đó với mọi số nguyên dương n, có kết luận gì về T(n,x)=x^{n}+\frac{1}{x^{n}}?

    Ta có:

    T\left( {1;x} ight) = x + \frac{1}{x} là một số nguyên

    T\left( {2;x} ight) = {x^2} + \frac{1}{{{x^2}}} = {\left( {x + \frac{1}{x}} ight)^2} - 2 cũng là một số nguyên

    Ta sẽ chứng minh T(n,x)=x^{n}+\frac{1}{x^{n}} là một số nguyên.

    Ta có: 

    T\left( {1;x} ight) là một số nguyên 

    Giả sử T(n,x) là số nguyên với n \ge1. Ta sẽ chứng minh T\left( {n + 1;x} ight) cũng là số nguyên.

    Ta có: 

    \begin{matrix}  T\left( {n + 1;x} ight) = {x^{n + 1}} + \dfrac{1}{{{x^{n + 1}}}} \hfill \\   = \left( {x + \dfrac{1}{x}} ight).\left( {{x^n} + \dfrac{1}{{{x^n}}}} ight) - \left( {{x^{n - 1}} + \dfrac{1}{{{x^{n - 1}}}}} ight) \hfill \\   = T\left( {1;x} ight).T\left( {n;x} ight) - T\left( {n - 1;x} ight) \hfill \\ \end{matrix}

    Theo giả thiết quy nạp ta có: 

    \left\{ \begin{gathered}  T\left( {1;x} ight) \in \mathbb{Z} \hfill \\  T\left( {n;x} ight) \in \mathbb{Z} \hfill \\  T\left( {n - 1;x} ight) \in \mathbb{Z} \hfill \\ \end{gathered}  ight. \Rightarrow T\left( {n + 1;x} ight) \in \mathbb{Z}

    Vậy T(n,x)=x^{n}+\frac{1}{x^{n}} là một số nguyên.

  • Câu 4: Vận dụng

    Phát biểu nào dưới đây về dãy số (an) được cho bởi an = 2n + n là đúng?

    Ta có an + 1 − an = 2n + 1 + n + 1 − 2n − n

     = 2.2n − 2n + 1 = 2n + 1 > 0, ∀n ∈ ℕ*

    Vậy (an) là dãy số tăng.

  • Câu 5: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} = -
\frac{1}{2}, công sai d =
\frac{1}{2}. Năm số hạng liên tiếp đầu tiên của cấp số cộng là:

    Ta dùng công thức tổng quát u_{n} = u_{1}
+ (n - 1)d = - \frac{1}{2} + (n - 1)\frac{1}{2} = - 1 +
\frac{n}{2}, hoặc u_{n + 1} = u_{n}
+ d = u_{n} + \frac{1}{2} để tính các số hạng của một cấp số cộng.

    Ta có u_{1} = - \dfrac{1}{2};\ \ d =\dfrac{1}{2}\overset{ightarrow}{}\left\{ \begin{matrix}u_{1} = - \dfrac{1}{2} \\u_{2} = u_{1} + d = 0 \\u_{3} - u_{2} + d = \dfrac{1}{2} \\u_{4} = u_{3} + d = 1 \\u_{5} = u_{4} + d = \dfrac{3}{2} \\\end{matrix} ight.

  • Câu 6: Thông hiểu

    Thêm hai số thực dương x và y vào giữa hai số 5 và 320 để được bốn số 5;x;y;320 theo thứ tự đó lập thành cấp số nhận. Khẳng định nào sau đây là đúng?

    Ta có:

    Các số hạng 5;x;y;320 lập thành cấp số nhân

    \Rightarrow \left\{ \begin{matrix}u_{1} = 5 \\\begin{matrix}q = \dfrac{x}{5} \\y = u_{3} = u_{1}q^{2} = \dfrac{x^{2}}{5} \\320 = u_{4} = u_{1}q^{3} = \dfrac{x^{3}}{25} \\\end{matrix} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = 20 \\y = 80 \\\end{matrix} ight.

  • Câu 7: Thông hiểu

    Trong các dãy số (un) cho bởi số hạng tổng quát un sau, dãy số nào tăng?

    Ta xét đáp án :u_{n} = \frac{n}{2^{n}}
\Rightarrow \left\{ \begin{matrix}
u_{1} = \frac{1}{2} \\
u_{2} = \frac{2}{4} \\
\end{matrix} \Rightarrow u_{1} = u_{2} \Rightarrow ight. Loại

    Ta xét đáp án :u_{n} = \frac{n}{2n^{2} +
1} \Rightarrow \left\{ \begin{matrix}
u_{1} = \frac{1}{3} \\
u_{2} = \frac{2}{9} \\
\end{matrix} \Rightarrow u_{1} > u_{2} \Rightarrow ight. Loại

    Ta xét đáp án :u_{n} = \frac{n^{2} + 1}{3n
+ 2} \Rightarrow \left\{ \begin{matrix}
u_{1} = \frac{2}{5} = \frac{16}{40} \\
u_{2} = \frac{5}{8} = \frac{25}{40} \\
\end{matrix} \Rightarrow u_{1} < u_{2} \Rightarrow ight. Thỏa mãn!

    Ta xét đáp án : u_{n} = ( -
2)^{n}\sqrt{n^{2} - 1} \Rightarrow \left\{ \begin{matrix}
u_{1} = 0 \\
u_{2} = 4\sqrt{3} \\
u_{3} = - 8\sqrt{8} \\
\end{matrix} \Rightarrow u_{1} < u_{2} > u_{3} \Rightarrow
ight. Loại

  • Câu 8: Thông hiểu

    Cho dãy số (un) được xác định như sau \left\{ \begin{matrix}
u_{1} = 0 \\
u_{n + 1} = \frac{n}{n + 1}\left( u_{n} + 1 ight) \\
\end{matrix} ight.. Số hạng u11 là?

    Ta có:

    \begin{matrix}
u_{2} & = \frac{1}{2}\left( u_{1} + 1 ight) = \frac{1}{2}; &
u_{3} = \frac{2}{3}\left( u_{2} + 1 ight) = 1; & u_{4} =
\frac{3}{4}\left( u_{3} + 1 ight) = \frac{3}{2}; \\
u_{5} & = \frac{4}{5}\left( u_{4} + 1 ight) = 2; & u_{6} =
\frac{5}{6}\left( u_{5} + 1 ight) = \frac{5}{2}; & u_{7} =
\frac{6}{7}\left( u_{6} + 1 ight) = 3 \\
u_{8} & = \frac{7}{8}\left( u_{7} + 1 ight) = \frac{7}{2}; &
u_{9} = \frac{8}{9}\left( u_{8} + 1 ight) = 4; & u_{10} =
\frac{1}{2}\left( u_{9} + 1 ight) = \frac{9}{2}; \\
u_{11} & = \frac{10}{11}\left( u_{10} + 1 ight) = 5 & & \\
\end{matrix}

  • Câu 9: Thông hiểu

    Cho dãy số (u_{n}), biết {u_n} = {\left( {\frac{{n - 1}}{{n + 1}}} ight)^{2n + 3}}. Tìm số hạng u_{n+1}

    Ta có:

    \begin{matrix}  {u_n} = {\left( {\dfrac{{n - 1}}{{n + 1}}} ight)^{2n + 3}} \hfill \\   \Rightarrow {u_{n + 1}} = {\left( {\dfrac{{n + 1 - 1}}{{n + 1 + 1}}} ight)^{2\left( {n + 1} ight) + 3}} \hfill \\   \Rightarrow {u_{n + 1}} = {\left( {\dfrac{n}{{n + 2}}} ight)^{2n + 5}} \hfill \\ \end{matrix}

  • Câu 10: Vận dụng cao

    Cho một cấp số cộng (un) có u1 = 1 và tổng 100 số hạng đầu tiên là 24850. Tính giá trị của biểu thức S = \frac{1}{{{u_1}{u_2}}} + \frac{1}{{{u_2}{u_3}}} + ... + \frac{1}{{{u_{48}}.{u_{49}}}} + \frac{1}{{{u_{49}}.{u_{50}}}}

    Ta có:

    \begin{matrix}  {u_{100}} + {u_1} = 497 \hfill \\   \Rightarrow {u_{100}} = 1 + 99d \hfill \\   \Rightarrow d = 5 \hfill \\   \Rightarrow {u_{50}} = 246 \hfill \\ \end{matrix}

    Ta lại có

    \begin{matrix}  5S = \dfrac{{{u_2} - {u_1}}}{{{u_1}{u_2}}} + \dfrac{{{u_3} - {u_2}}}{{{u_2}{u_3}}} + ... + \dfrac{{{u_{49}} - {u_{48}}}}{{{u_{48}}.{u_{49}}}} + \dfrac{{{u_{50}} - {u_{49}}}}{{{u_{50}}.{u_{49}}}} = \dfrac{1}{{{u_1}}} - \dfrac{1}{{{u_{50}}}} = 1 - \dfrac{1}{{246}} \hfill \\   \Rightarrow S = \dfrac{{49}}{{246}} \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Một cấp số nhân có số hạng đầu {u_1} = 3, công bội q = 2. Biết {S_n} = 765. Tìm n?

    Ta có:

    \begin{matrix}  {S_n} = \dfrac{{{u_1}\left( {1 - {q^n}} ight)}}{{1 - q}} = \dfrac{{3\left( {1 - {2^n}} ight)}}{{1 - 2}} = 765 \hfill \\   \Rightarrow n = 8 \hfill \\ \end{matrix}

  • Câu 12: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight) có tổng n số hạng đầu tiên là u_{1} = - 6;q = - 2. Tổng n số hạng đầu tiên của cấp số nhân là 2046. Xác định n.

    Ta có:

    2046 = u_{1}.\frac{1 - q^{n}}{1 -
q}

    \Rightarrow 2046 = ( - 6).\frac{1 - ( -
2)^{n}}{1 - ( - 2)}

    \Rightarrow n = 10

  • Câu 13: Thông hiểu

    Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17; tổng của số hạng thứ hai và số hạng thứ tư bằng 14. Tìm công sai d của câp số cộng đã cho.

    Ta có:

    \left\{ \begin{matrix}
u_{1} + u_{6} = 17 \\
u_{2} + u_{4} = 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2u_{1} + 5d = 17 \\
2u_{1} + 6d = 14 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 16 \\
d = - 3 \\
\end{matrix} ight.

  • Câu 14: Thông hiểu

    Cho dãy số \left( u_{n} ight) biết \left\{ \begin{matrix}u_{1} = 3 \\u_{n + 1} = 3u_{n} \\\end{matrix},\forall n \in N^{*} ight.. Tìm số hạng tổng quát của dãy số \left( u_{n}ight).

    Ta có u_{1} = 3\frac{u_{n+1}}{u_{n}}=3

    Suy ra dãy số \left( u_{n}ight)là cấp số nhân với \left\{\begin{matrix}u_{1} = 3 \\q = 3 \\\end{matrix} ight.

    Do đó u_{n} = u_{1}.q^{n - 1} = 3.3^{n -1} = 3^{n}

  • Câu 15: Nhận biết

    Dãy số nào sau đây có giới hạn bằng 0?

    \left| q ight| < 1 nên \lim {q^n} = 0.

  • Câu 16: Nhận biết

    Cho dãy số \left( u_{n} ight) với u_{n} = \frac{3}{2}.5^{n}. Khẳng định nào sau đây đúng?

    Ta có: u_{n} = \frac{3}{2}.5^{n} là cấp số nhân có u_{1} = \frac{15}{2};q =5.

  • Câu 17: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} =
2 và công sai d = 3. Giá trị u_{2024} bằng

    Áp dụng công thức số hạng tổng quát

    u_{2024} = u_{1} + 2023d = 2 + 2023.3 = 6071.

  • Câu 18: Thông hiểu

    Dãy số nào sau đây là một cấp số cộng?

    Dãy số ở đáp án A thỏa mãn điều kiện {u_{n + 1}} - {u_1} = 2 với n \geqslant 1 là cấp số cộng.

  • Câu 19: Nhận biết

    Khẳng định nào sau đây là khẳng định sai?

    Khẳng định sai là: “Số hạng tổng quát của cấp số cộng \left( u_{n} ight)u_{n} = u_{1} + nd với công sai d và số hạng đầu u_{1}.”

  • Câu 20: Vận dụng

    Cho cấp số nhân (un) có \left\{ {\begin{array}{*{20}{c}}  {{u_{20}} = 8{u_{17}}} \\   {{u_1} + {u_5} = 272} \end{array}} ight.. Tìm số hạng đầu tiên của dãy biết số đó không lớn hơn 100.

     Ta có: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_{20}} = 8{u_{17}}} \\   {{u_1} + {u_5} = 272} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1}{q^{19}} = 8{u_1}.{q^{16}}} \\   {{u_1} + {u_1}.{q^4} = 272} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1}{q^{16}}\left( {{q^3} - 8} ight) = 0} \\   {{u_1}.\left( {1 + {q^4}} ight) = 272} \end{array}} ight. \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {q = 0 \Rightarrow {u_1} = 272 > 100\left( L ight)} \\   {q = 2 \Rightarrow {u_1} = 16 < 100\left( {tm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 21: Thông hiểu

    Trong các dãy số sau, dãy số nào bị chặn trên?

    Ta có:

    \left( v_{n} ight):v_{n} = - n^{2} + 2
\leq 2.

    Vậy đây là dãy số bị chặn trên.

  • Câu 22: Nhận biết

    Dãy số nào dưới đây là dãy số nguyên tố nhỏ hơn 10 theo thứ tự tăng dần?

    Số nguyên tố là số tự nhiên lớn hơn 1 và chỉ có hai ước số là 1 và chính nó.

    Vậy dãy số nguyên tố nhỏ hơn 102, 3, 5, 7.

  • Câu 23: Nhận biết

    Dãy số nào sau đây là cấp số nhân?

    Ta có: \left( u_{n} ight) là cấp số nhân \Leftrightarrow u_{n + 1} =
q.u_{n}

    Dãy số lập thành cấp số nhân là \left\{
\begin{matrix}
u_{1} = - 1 \\
u_{n + 1} = - 3u_{n};n \geq 1 \\
\end{matrix} ight.

  • Câu 24: Nhận biết

    Cho cấp số nhân (un) biết u1 = 1; u4 = 64. Tính công bội q của cấp số nhân đó.

    Ta có: 

    \begin{matrix}  {u_n} = {u_1}.{q^{n - 1}} \hfill \\   \Rightarrow {u_4} = {u_1}.{q^{4 - 1}} \hfill \\   \Rightarrow 64 = 1.{q^3} \hfill \\   \Rightarrow {q^3} = 64 \Rightarrow q = 4 \hfill \\ \end{matrix}

  • Câu 25: Thông hiểu

    Trong các dãy số dưới đây, dạy số nào không phải là cấp số nhân lùi vô hạn?

     Vì dãy ở đáp án C là một cấp số nhân có công bội q = 3/2 > 0

    \frac{3}{2};\frac{9}{4};\frac{{27}}{8};..;{\left( {\frac{3}{2}} ight)^n};...=> không phải dãy lùi vô hạn

  • Câu 26: Thông hiểu

    Biểu thức nào sau đây cho ta tập giá trị của tổng S = 1 - 2 + 3 - 4+ ...- 2n + (2n+1)

    Ta có:

    Với n=0=>S=1

    Với n = 1 \Rightarrow S = 1 - 2 + 3 = 2

    Với n = 2 \Rightarrow S = 1 - 2 + 3 - 4 + 5 = 3

    Dự đoán S = n + 1\left( * ight) ta sẽ chứng minh (*) đúng bằng phương pháo quy nạp.

    Với n = 0 đương nhiên (*) đúng.

    Giả sử (*) đúng với n=k tức là:

    \begin{matrix}  {S_k} = 1 - 2 + 3 - 4 + ... - 2k + \left( {2k + 1} ight) \hfill \\   = k + 1 \hfill \\ \end{matrix}

    Ta chứng minh (*) đúng với n = k + 1

    Ta có:

    \begin{matrix}  {S_{k + 1}} = 1 - 2 + 3 - 4 + ... - 2\left( {k + 1} ight) + \left[ {2\left( {k + 1} ight) + 1} ight] \hfill \\   = \left( {1 - 2 + 3 - 4... - 2k + 2k + 1} ight) - \left( {2k + 2} ight) + \left( {2k + 3} ight) \hfill \\   = {S_k} +  - \left( {2k + 2} ight) + \left( {2k + 3} ight) \hfill \\   = k + 1 + 1 \hfill \\ \end{matrix}

    Vậy (*) đúng với mọi số tự nhiên n tức là S=n+1

  • Câu 27: Thông hiểu

    Một kiến trúc sư thiết kế một hội trường với 15 ghế ngồi ở hàng thứ nhất, 18 ghế ngồi ở hàng thứ hai, 21 ghế ngồi ở hàng thứ ba và cứ như vậy (số ghế ngồi ở hàng sau nhiều hơn 3 ghế so với số ghế ngồi ở hàng liền trước nó). Nếu muốn hội trường đó có số sức chứa ít nhất 870 ghế ngồi thì kiến trúc sư phải thiết kế tối thiểu bao nhiêu hàng ghế.

    Đáp án: 20

    Đáp án là:

    Một kiến trúc sư thiết kế một hội trường với 15 ghế ngồi ở hàng thứ nhất, 18 ghế ngồi ở hàng thứ hai, 21 ghế ngồi ở hàng thứ ba và cứ như vậy (số ghế ngồi ở hàng sau nhiều hơn 3 ghế so với số ghế ngồi ở hàng liền trước nó). Nếu muốn hội trường đó có số sức chứa ít nhất 870 ghế ngồi thì kiến trúc sư phải thiết kế tối thiểu bao nhiêu hàng ghế.

    Đáp án: 20

    Số ghế ở các hàng tạo thành một cấp số cộng có u_{1} = 15 và công sai d = 3.

    Giả sử hội trường có n hàng ghế n\mathbb{\in N}*.

    Tổng số ghế có trong hội trường là:

    S_{n} = \frac{\left\lbrack 2u_{1} + (n -
1)d ightbrack.n}{2} = \frac{\lbrack 2.15 + (n - 1).3brack n}{2} =
\frac{3n^{2} + 27n}{2}.

    Để hội trường đó có số sức chứa ít nhất 870 ghế ngồi thì S_{n} \geq 870

    \Leftrightarrow \frac{3n^{2} + 27n}{2}
\geq 870 \Leftrightarrow n^{2} + 9n - 580 \geq 0 \Leftrightarrow
\left\lbrack \begin{matrix}
n \geq 20 \\
n \leq - 29 \\
\end{matrix}. ight.

    Vậy kiến trúc sư phải thiết kế tối thiểu 20 hàng ghế.

  • Câu 28: Vận dụng

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn \left\{ \begin{matrix}u_{1} + u_{2} + u_{3} = 27 \\{u_{1}}^{2} + {u_{2}}^{2} + {u_{3}}^{2} = 275 \\\end{matrix} ight.. Tính u_{2}.

    Ta có:

    \left\{ \begin{matrix}u_{1} + u_{2} + u_{3} = 27 \\{u_{1}}^{2} + {u_{2}}^{2} + {u_{3}}^{2} = 275 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} + \left( u_{1} + d ight) + \left( u_{1} + 2d ight) = 27 \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} + d = 9 \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}d = 9 - u_{1} \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    Khi đó:

    \Rightarrow {u_{1}}^{2} + \left( u_{1} +9 - u_{1} ight)^{2} + \left\lbrack u_{1} + 2\left( 9 - u_{1} ight)ightbrack^{2} = 275

    \Leftrightarrow {u_{1}}^{2} - 18u_{1} +65 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}u_{1} = 13 \Rightarrow d = - 4 \\u_{1} = 5 \Rightarrow d = 4 \\\end{matrix} ight.=> u_{2} = 9

  • Câu 29: Vận dụng

    Một cấp số cộng có số hạng đầu là 1, công sai là 4, tổng của n số hạng đầu là 561. Khi đó số hạng thứ n của cấp số cộng đó là u_{n} có giá trị là bao nhiêu?

    Ta có: \left\{ \begin{matrix}
u_{1} = 1;d = 4 \\
S_{m} = 561 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} = 1;d = 4 \.u_{1} + \dfrac{n(n - 1)}{2}.d = 561 \\\end{matrix} ight.

    \Leftrightarrow n + \frac{n^{2} -
n}{2}.4 = 561

    \Leftrightarrow 2n^{2} - n - 561 =
0

    \Leftrightarrow n = 17

    \Rightarrow u_{n} = u_{17} = u_{1} + 16d
= 1 + 16.4 = 65

  • Câu 30: Thông hiểu

    Cho cấp số nhân với các số hạng lần lượt là a; 12; b; 192. Mệnh đề nào dưới đây đúng?

     Ta có: Cấp số nhân với các số hạng lần lượt là a; 12; b; 192

    \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{12}}{a} = \dfrac{b}{{12}}} \\   {\dfrac{b}{{12}} = \dfrac{{192}}{b}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = \dfrac{{144}}{y}} \\   {{b^2} = 2034} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a =  \pm 3} \\   {b =  \pm 48} \end{array}} ight.

  • Câu 31: Nhận biết

    Với mọi n ∈ ℕ*, khẳng định nào sau đây sai?

    Thử với n = 1, n = 2, n = 3 ta kết luận được đáp án:

    2^{2} + 4^{2} + 6^{2}
+ \ldots + (2n)^{2} = \frac{2n(n + 1)(2n + 1)}{6} sai.

    Suy ra

    2^{2} + 4^{2} + 6^{2} + \ldots +
(2n)^{2} = \frac{2n(n + 1)(2n + 1)}{3} mới là kết quả đúng!

  • Câu 32: Vận dụng cao

    Tính tổng 3 + 33 + 333 + ... + 33...33 + ....

     Ta có:

    \begin{matrix}  S = 3\left( {1 + 11 + 111 + ... + 11...1} ight) \hfill \\  S = 3.\left( {\dfrac{{10 - 1}}{9} + \dfrac{{{{10}^2} - 1}}{9} + ... + \dfrac{{{{10}^n} - 1}}{9}} ight) \hfill \\  S = \dfrac{3}{9}.\left( {10 + {{10}^2} + ... + {{10}^n} - n} ight) \hfill \\  S = \dfrac{1}{3}.\left( {10.\dfrac{{{{10}^n} - 1}}{{10 - 1}} - n} ight) = \dfrac{1}{{27}}.\left( {{{10}^{n + 1}} - 10 - 9n} ight) \hfill \\ \end{matrix}

  • Câu 33: Nhận biết

    Cho cấp số cộng (u_{n}) có u_{3}=15 và d=-2 . Tìm u_{n} 

    Ta có: 

    \begin{matrix}  {u_3} = 15 \hfill \\   \Leftrightarrow {u_1} + 2d = 15 \hfill \\   \Rightarrow {u_1} = 19 \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow {u_n} = {u_1} + \left( {n - 1} ight).d \hfill \\   = 19 + \left( {n - 1} ight).\left( { - 2} ight) \hfill \\   = 21 - 2n \hfill \\   \Rightarrow {u_n} =  - 2n + 21 \hfill \\ \end{matrix}

  • Câu 34: Vận dụng

    Tế bào E. Coli trong điều kiện nuôi cấy thích hợp cứ 20 phút lại nhân đôi một lần. Nếu lúc đầu có 10^{22} tế bào thì sau 2 giờ sẽ phân chia thành bao nhiêu tế bào?

    Ban đầu có 10^{22} tế bào và mỗi lần phân chia thì một tế bào tách thành hai tế bào nên ta có cấp số nhân với u_{1} = 10^{22} và công bội q = 2.

    Theo bài ra ta có:

    Cứ 20 phút phân đôi một lần nên sau 2 giờ có 6 lần phân chia tế bào.

    Ta có: u_{7} là số tế bào nhận được sau 2 giờ.

    Vậy số tế bào nhận được sau 2 giờ là u_{7} = u_{1}.q^{6} = 10^{22}.2^{6} =
64.10^{22}

  • Câu 35: Nhận biết

    Cho dãy số (u_{n}), với {u_n} = {( - 1)^n}. Mệnh đề nào sau đây đúng?

    Ta có: {u_n} = {( - 1)^n} là dãy thay dấu nên không tăng, không giảm.

    Tập giá trị của dãy số {u_n} = {( - 1)^n} là {-1; 1}

    \Rightarrow  - 1 \leqslant {u_n} \leqslant 1

    Vậy dãy số u_{n} là dãy số bị chặn.

  • Câu 36: Thông hiểu

    Xen vào giữa hai số 4 và 40 bốn số để được một cấp số cộng có công sai lớn hơn 3. Tìm tổng 4 số đó.

    Sau khi chèn 4 số vào giữa hai số 4 và 40 thì cấp số cộng đó có 6 số hạng

    Nghĩa là coi 4 là số hạng đầu tiên thì 40 là số hạng thứ 6

    Theo bài ra ta có: \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_6} = 40} \end{array}} ight.

    {u_1} + 5.d = 40

    \begin{matrix}   \Rightarrow 4 + 5.d = 40 \hfill \\   \Rightarrow 5.d = 36 \hfill \\   \Rightarrow d = \dfrac{{36}}{5} \hfill \\ \end{matrix}

    Vậy công sai của cấp số cộng là d = \frac{{36}}{5}

    Khi đó 4 số hạng được thêm lần lượt là: \frac{{56}}{5};\frac{{92}}{5};\frac{{128}}{5};\frac{{164}}{5}

    Tổng bốn số hạng ở trên là: \frac{{56}}{5} + \frac{{92}}{5} + \frac{{128}}{5} + \frac{{164}}{5} = 88

  • Câu 37: Thông hiểu

    Cho cấp số nhân (un) có u1 = -1; u6 = -0,00001. Khi đó công bội q và số hạng tổng quát là:

    Ta có:

    \begin{matrix}  {u_6} = {u_1}.{q^5} \hfill \\   \Leftrightarrow 0,00001 =  - {q^5} \hfill \\   \Leftrightarrow q = \dfrac{{ - 1}}{{10}} \hfill \\   \Rightarrow {u_n} = {u_1}.{q^{n - 1}} =  - 1.{\left( {\dfrac{{ - 1}}{{10}}} ight)^{n - 1}} = \dfrac{{{{\left( { - 1} ight)}^n}}}{{{{10}^{n - 1}}}} \hfill \\ \end{matrix}

  • Câu 38: Nhận biết

    Cho các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng. Tìm a?

    Đặt u1 = -4; u2 = 1; u3 = 6; u4 = a

    Theo bài ra ta có:

    Các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng

    => u3 – u2 = u4 – u3

    => 6 – 1 = a – 6

    => a = 11

  • Câu 39: Nhận biết

    Một cấp số nhân có ba số hạng là a, b, c (theo thứ tự đó) trong đó các số hạng đều khác 0 và công bội q eq 0. Mệnh đề nào sau đây là đúng?

    Ta có: ac = b^{2} \Rightarrow
\frac{1}{b^{2}} = \frac{1}{ac}

  • Câu 40: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = - 1;S_{23} = 483. Tìm công sai d của cấp số cộng?

    Gọi d là công sai của cấp số cộng khi đó ta có:

    S_{23} = 483 \Leftrightarrow
\frac{23\left( 2u_{1} + 22d ight)}{2} = 483

    \Leftrightarrow \frac{23.( - 2 +
22d)}{2} = 483

    \Leftrightarrow d = 2

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo