Tính tổng ![]()
Ta có:
Tính tổng ![]()
Ta có:
Viết ba số hạng xen giữa các số 2 và 22 để được một cấp số cộng có năm số hạng.
Khi viết xen giữa 2 và 22 ba số hạng ta được một cấp số cộng có 5 số hạng có:
u1 = 2; u5 = 22. Ta cần tìm u2; u3; u4
Ta có:
Cho tổng
.
Khi đó công thức tính tổng S(n) là?
Cho cấp số nhân
có số hạng đầu
và công bội
. Số hạng thứ sáu của
là:
Ta có:
Cho cấp số cộng
với
. Tổng 10 số hạng đầu tiên của dãy là:
Tổng 10 số hạng đầu tiên của dãy là:
Cho dãy số
biết
. Dãy số
bị chặn trên bởi số nào dưới đây?
Ta có:
Mặt khác
=> Dãy số bị chặn trên bởi số
.
Cho cấp số cộng
. Hãy chọn hệ thức đúng trong các hệ thức sau:
Xét đáp án
Xét đáp án
Vậy hệ thức đúng là
Cho dãy số
, biết
. Số
là số hạng thứ mấy của dãy số?
Ta có:
Vậy số là số hạng thứ 8 của dãy số.
Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17. Tổng của số hạng thứ hai và số hạng thứ tư là 14. Tính công sai d của cấp số cộng đã cho.
Ta có:
Cho dãy số
xác định bởi
. Tính số hạng thứ
của dãy số đó?
Ta có ,
,
Do đó là cấp số nhân với
,
,
;
.
Trên một bàn cờ có nhiều ô vuông, người ta đặt 7 hạt dẻ vào ô đầu tiên, sau đó đặt tiếp vào ô thứ hai số hạt nhiều hơn ô thứ nhất là 5, tiếp tục đặt vào ô thứ ba số hạt nhiều hơn ô thứ hai là 5, ... và cứ thế tiếp tục đến ô thứ n. Biết rằng đặt hết số ô trên bàn cờ người ta phải sử dụng 25450 hạt. Hỏi bàn cờ đó có bao nhiêu ô vuông?
Ta có:
Số hạt dẻ trên mỗi ô (bắt đầu từ ô thứ nhất) theo thứ tự đó lập thành cấp số cộng có
.
Gọi n là số ô trên bàn cờ thì
Ta có:
Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:
Ta có cấp số nhân (un) nên khi đó:
Cho dãy số (un), biết un = n ⋅ cosn. Trong các phát biểu sau, có bao nhiêu phát biểu đúng?
(1) (un) là dãy số tăng.
(2) (un) là dãy số bị chặn dưới.
(3) ∀n ∈ ℕ* : un ≤ n.
Vì cos(n) ≤ 1 nên un < n. Phát biểu (3) đúng.
Dãy không tăng, không giảm và không bị chặn dưới.
Vậy có 1 phát biểu đúng trong 3 phát biểu đã cho.
Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:
Do dãy số là cấp số nhân
=>
=> Số hạng tiếp theo là:
Số hạng tổng quát của cấp số cộng là
. Gọi
là tổng số hạng đầu tiên của cấp số cộng đã cho. Mệnh đề nào sau đây đúng?
Cấp số cộng
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:
;
. Khi đó:
a)
. Đúng||Sai
b) Ba số
tạo thành một cấp số cộng. Sai||Đúng
c)
. Sai||Đúng
d)
. Đúng||Sai
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:;
. Khi đó:
a) . Đúng||Sai
b) Ba số tạo thành một cấp số cộng. Sai||Đúng
c) . Sai||Đúng
d) . Đúng||Sai
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu 0,21 và công bội .
Vì vậy
.
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 0,3 và công bội là
Vì vậy
.
Kết luận:
|
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
Một cấp số cộng có 12 số hạng. Biết rằng tổng của 12 số hạng đó bằng 144 và số hạng thứ mười hai bằng 23. Khi đó công sai d của cấp số cộng đã cho là bao nhiêu?
Ta có:
=> d = 2
Tính tổng 10 số hạng đầu tiên của cấp số nhân(un) có ![]()
Ta có:
Trong các dãy số sau, dãy số nào là cấp số cộng?
Ta có:
Khi đó theo định nghĩa cấp số cộng dãy số là một cấp số cộng với
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai
b) Cho dãy số
được xác định bởi công thức
có số hạng thứ 3 là:
. Đúng||Sai
c) Cho dãy số
được xác định bởi công thức
là dãy số giảm và bị chặn dưới. Sai||Đúng
d) Tổng
. Đúng||Sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai
b) Cho dãy số được xác định bởi công thức
có số hạng thứ 3 là:
. Đúng||Sai
c) Cho dãy số được xác định bởi công thức
là dãy số giảm và bị chặn dưới. Sai||Đúng
d) Tổng . Đúng||Sai
Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân đúng vì dãy số đã cho là cấp số nhân với công bội q = 1.
Số hạng thứ ba của dãy số là:
.
Xét ta có:
suy ra
là dãy số giảm
Lại có suy ra
là dãy số bị chặn trên.
Suy ra phát biểu “Cho dãy số được xác định bởi công thức
là dãy số giảm và bị chặn dưới.” là phát biểu sai.
Ta có: là tổng cấp số nhân lùi vô hạn
với
có số hạng đầu và công bội lần lượt là:
Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17; tổng của số hạng thứ hai và số hạng thứ tư bằng 14. Tìm công sai d của câp số cộng đã cho.
Ta có:
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b)
. Đúng||Sai
c) Cấp số cộng
thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b) . Đúng||Sai
c) Cấp số cộng thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
a) Xét dãy số đã cho ta có:
nên dãy số
không tăng không giảm.
b) đúng bằng chứng minh quy nạp.
c) Công sai d = 5 và số hạng đầu tiên bằng
Khi đó số hạng tổng quát của cấp số cộng là
d) Từ giả thiết ta có:
Suy ra tổng các số hạng của cấp số nhân đó là: .
Trong các phát biểu sau, phát biểu nào là sai?
Ta lấy một phản ví dụ:
Dãy số (un) với là cấp số cộng có công sai d = 1 > 0
Nhưng dạng khai triển của nó là -1; 0; 1; … không phải một dãy số dương.
Dãy số nào sau đây không phải là một cấp số cộng?
Xét đáp án A:
=> Loại đáp án A
Xét đáp án B:
=> Loại đáp án B
Xét đáp án C:
=> Chọn đáp án C
Xét đáp án D:
=> Loại đáp án D
Với
, cho dãy số
gồm các số nguyên dương chia hết cho
:
,
,
,
, …Công thức số hạng tổng quát của dãy số này là:
Ta có ,
,
,
,…
Suy ra .
Cho dãy số (un) có
và
.
Tất cả các giá trị n để
là?
Ta có
Đặt . Suy ra (vn) là cấp số nhận có công bội
và
.
Ta có
Do vn > 0, ∀n ≥ 1 nên (Tn) là dãy tăng.
Suy ra
Trong các dãy số sau đây, dãy số nào là cấp số cộng?
Ta có dãy số là một cấp số cộng có công sai
.
Cho dãy số (un) với ![]()
Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có un + 1 = un + (−1)2n + 1 = un − 1
u1 = 1; u2 = u1 − 1; u3 = u2 − 1; …; un = un − 1 − 1
Cộng vế với vế của các đẳng thức trên, ta được:
un = 1 − (n−1) = 2 − n.
Cho dãy số có các số hạng đầu là 0,1; 0,001;0,0001; ... Số hạng tổng quát của dãy số có dạng?
Ta có:
Số hạng thứ 1 có 1 chữ số 0;
Số hạng thứ 2 có 2 chữ số 0;
Số hạng thứ 3 có 3 chữ số 0;
Suy ra có chữ số 0.
Công thức số hạng tổng quát của dãy số là:
Cho dãy số
, biết
. Ba số hạng đầu tiên của dãy số đó lần lượt là:
Ta có:
Ba số hạng đầu tiên của dãy số đó lần lượt là:
Cho dãy số (un) thỏa mãn
và
với mọi n ≥ 1. Số hạng u2018 là
Ta có
Dự đoán
Áp dụng theo quy nạp ta có: , công thức (1) đúng với n = 1.
Giả sử công thức (1) đúng với n = k, k ≥ 1 ta có
Ta có
(vì với mọi k ≥ 1 ).
Suy ra công thức (1) đúng với n = k + 1
Vậy . Suy ra
Trong các dãy số
cho bởi số hạng tổng quát
sau, dãy số nào là một cấp số nhân?
Xét dãy số ta có:
=> Dãy số là một cấp số nhân
Một rạp hát có 30 dãy ghế, dãy đầu tiên có 25 ghế. Mỗi dãy sau có hơn dãy trước 3 ghế. Hỏi rạp hát có tất cả bao nhiêu ghế?
Số ghế của mỗi dãy (bắt đầu từ dãy đầu tiên) theo thứ tự đó lập thành một cấp số cộng có 30 số hạng có công sai
Tổng số ghế là
Cho cấp số nhân
có
. Mệnh đề nào sau đây đúng?
Theo bài ra ta có:
Tổng
là:
Ta có:
Xét cấp số cộng (un) có:
Số hạng đầu là u1 = 199
Công sai d = u2 – u1 = 195 – 199 = -4
Ta có:
Dùng quy nạp chứng minh mệnh đề chứa biến
đúng với mọi số tự nhiên
(p là một
số tự nhiên). Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với
bằng:
Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với bằng
Tìm z để 2; 8; z; 128 lập thành một cấp số nhân.
Dãy số 2; 8; z; 128 theo thứ tự là u1; u2; u3; u4 ta có:
Cho dãy số
, biết
. Mệnh đề nào sau đây sai?
Ta có:
Vậy mệnh đề sai là:
Trong các dãy số cho dưới đây, dãy số nào là cấp số nhân?
Ta thấy ở dãy số có
nên đây là cấp số nhân với công bội
.
Cho dãy số
có số hạng tổng quát
. Khẳng định nào sau đây sai?
Ta có:
Vậy dãy số đã cho không tăng không giảm.
Khẳng định sai là: “Dãy số là dãy giảm”