Xác định tham số m > 0 để 2m – 3; m; 2m + 3 lập thành một cấp số nhân.
Để 2m – 3; m; 2m + 3 lập thành một cấp số nhân thì
Do m > 0 =>
Xác định tham số m > 0 để 2m – 3; m; 2m + 3 lập thành một cấp số nhân.
Để 2m – 3; m; 2m + 3 lập thành một cấp số nhân thì
Do m > 0 =>
Cho dãy số
xác định bởi
. Ba số hạng đầu tiên của dãy là:
Ba số hạng đầu tiên của dãy là
Cho dãy số (un) là một cấp số nhân có số hạng đầu u1 và công bội q. Đẳng thức nào sau đây sai?
Từ định nghĩa cấp số nhân ta có các kết quả sau:
Đáp án C sai
Một cấp số cộng có 12 số hạng. Biết rằng tổng của 12 số hạng đó bằng 144 và số hạng thứ mười hai bằng 23. Khi đó công sai d của cấp số cộng đã cho là bao nhiêu?
Ta có:
=> d = 2
Cho cấp số nhân
có
. Mệnh đề nào sau đây đúng?
Theo bài ra ta có:
Cho cấp số cộng
có các số hạng đầu lần lượt là 5; 9; 13; 17;... Tìm số hạng tổng quát
của cấp số cộng.
Theo bài ra ta có:
Dãy số đã cho là cấp số cộng
=>
=>
Vậy số hạng tổng quát của dãy số là:
Cho dãy số
với
. Khẳng định nào sau đây là đúng?
Ta có:
=> là một cấp số nhân với công bội là q = 5
Số hạng đầu tiên của dãy là:
Tính tổng sau ![]()
Ta có:
là tổng của 100 số hạng đầu tiên của cấp số cộng có
.
Cho dãy số (un) được xác định bởi
.
Số hạng tổng quát un của dãy số là?
Ta có
Cộng vế với vế của các đẳng thức trên rồi rút gọn, ta được:
un = 2 + 2 ⋅ (2+3+…+n) − (n − 1)
= 2 + (n−1)(n+2) − n + 1
= n2 + 1
Cho cấp số cộng
thỏa mãn
. Tính tổng 16 số hạng đầu tiên của cấp số cộng đã cho.
Ta có:
Cho cấp số nhân
. Hỏi số
là số hạng thứ mấy trong cấp số nhân đã cho?
Ta có: là cấp số nhân với
Cho cấp số cộng
có số hạng đầu
và tổng
số hạng đầu tiên của dãy bằng . Tính giá trị của biểu thức:
?
Cho cấp số cộng có số hạng đầu
và tổng
số hạng đầu tiên của dãy bằng . Tính giá trị của biểu thức:
?
Gọi d là công sai của cấp số cộng. ta có:
mà
Ta có:
Với
Biết bốn số
theo thứ tự lập thành cấp số cộng. Giá trị của biểu thức
bằng
Ta có:
Với giá trị nào của m ta có thể tìm được các giá trị của x để các số
lập thành một cấp số cộng?
Để ba số hạng lập thành một cấp số cộng ta có:
Theo bất đẳng thức Cauchy ta có:
Cấp số nhân
có số hạng tổng quát là
. Số hạng đầu tiên và công bội của cấp số nhân đó là
Theo công thức số hạng tổng quát của cấp số nhân ta suy ra và
.
Cho dãy số
, biết
. Số
là số hạng thứ mấy của dãy số?
Ta có:
Vậy số là số hạng thứ 8 của dãy số.
Cho cấp số nhân có các số hạng lần lượt là
. Gọi
là tổng của
số hạng đầu tiên của cấp số nhân đó. Mệnh đề nào sau đây đúng?
Cấp số nhân đã cho có:
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có
Cộng vế với vế của các đẳng thức trên, ta được
Cho cấp số cộng
với
. Tổng 10 số hạng đầu tiên của dãy là:
Tổng 10 số hạng đầu tiên của dãy là:
Cho dãy số (un) có u1 = 7; un + 1 = 2un + 3. Khi đó u3 bằng?
Ta có u3 = 2u2 + 3 = 2 ⋅ (2u1+3) + 3 = 4u1 + 9 − 4 ⋅ 7 + 9 = 37.
Dãy số nào sau đây có giới hạn bằng
?
Vì nên
.
Xét các số nguyên dương chia hết cho 3. Tổng 50 số nguyên dương đầu tiên đó bằng:
Ta có:
Số nguyên dương chia hết cho 3 có dạng nên chúng lập thành cấp số cộng
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Trong các dãy số dưới đây, dạy số nào không phải là cấp số nhân lùi vô hạn?
Vì dãy ở đáp án C là một cấp số nhân có công bội q = 3/2 > 0
=> không phải dãy lùi vô hạn
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b)
. Đúng||Sai
c) Cấp số cộng
thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b) . Đúng||Sai
c) Cấp số cộng thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
a) Xét dãy số đã cho ta có:
nên dãy số
không tăng không giảm.
b) đúng bằng chứng minh quy nạp.
c) Công sai d = 5 và số hạng đầu tiên bằng
Khi đó số hạng tổng quát của cấp số cộng là
d) Từ giả thiết ta có:
Suy ra tổng các số hạng của cấp số nhân đó là: .
Cho cấp số cộng
có
. Số 100 là số hạng thứ mấy của cấp số cộng?
Ta có:
Cho khai triển
. Tìm m để tổng các hệ số của khai triển bằng 0.
Tổng các hệ số của khai triển là giá trị của biểu thức tại
Vậy tổng các hệ số của khai triển là:
Để tổng các hệ số khai triển bằng 0 thì
Cho cấp số nhân
có công bội
. Đẳng thức nào sau đây đúng?
Mệnh đề đúng .
Cho hai số −3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số đó tạo thành cấp số cộng có công sai d = 2. Tìm n.
Ta có:
Cấp số cộng có k số hạng gồm có và số hạng cuối
.
Khi đó:
Do đó
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Cho dãy số
xác định bởi
. Tính số hạng thứ
của dãy số đó?
Ta có ,
,
Do đó là cấp số nhân với
,
,
;
.
Xét tính tăng, giảm và bị chặn của dãy số (un), biết
, ta thu được kết quả?
Ta có un > 0, ∀n ≥ 1
⇒ dãy (un) là dãy số giảm.
Mặt khác 0 < un < 1⇒ dãy (un) là dãy bị chặn.
Trong các dãy số (un) cho bởi số hạng tổng quát un sau, dãy số nào tăng?
Ta xét đáp án Loại
Ta xét đáp án Loại
Ta xét đáp án Thỏa mãn!
Ta xét đáp án : Loại
Cho dãy số
xác định bởi công thức
. Tìm số hạng tổng quát của dãy số?
Ta có:
suy ra
…
Cộng các vễ theo đẳng thức trên ta được
Cho ba số x, y, z theo thứ tự đó vừa lập thành cấp số cộng, vừa lập thành cấp số nhân khi và chỉ khi:
Gọi m và n lần lượt là công sai và công bội của cấp số cộng và cấp số nhân.
Ta có:
Cho dãy số (un) biết
. Mệnh đề nào sau đây đúng?
Ta xét dãy số này bị chặn bằng phương pháp quy nạp toán học.
Ta sẽ chứng minh bằng quy nạp − 2 ≤ un ≤ 1, ∀n ∈ ℕ*
Với n = 1 ta có − 2 ≤ u1 ≤ 1 (đúng).
Giả sử mệnh đề trên đúng với n = k ≥ 1. Tức là − 2 ≤ uk ≤ 1
Theo nguyên lí quy nạp ta đã chứng minh được − 2 ≤ un ≤ 1, ∀n ∈ ℕ*
Vậy (un) là dãy số bị chặn.
Trong các dãy số sau, dãy số nào là cấp số cộng?
Ta có:
Khi đó theo định nghĩa cấp số cộng dãy số là một cấp số cộng với
Cho cấp số cộng
thỏa mãn
. Tính công sai
của cấp số cộng đó:
Ta có:
Tính tổng ![]()
Ta có:
Cho các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng. Tìm a?
Đặt u1 = -4; u2 = 1; u3 = 6; u4 = a
Theo bài ra ta có:
Các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng
=> u3 – u2 = u4 – u3
=> 6 – 1 = a – 6
=> a = 11