Tìm x để ba số
theo thứ tự đó lập thành một cấp số nhân.
Ta có:
Ba số theo thứ tự đó lập thành một cấp số nhân
Tìm x để ba số
theo thứ tự đó lập thành một cấp số nhân.
Ta có:
Ba số theo thứ tự đó lập thành một cấp số nhân
Cho cấp số cộng
với
. Khi đó số
là số hạng thứ mấy trong dãy?
Theo bài ra ta có:
Cho cấp số cộng (Un) có số hạng tổng quát là
. Xác định công sai của cấp số cộng.
Ta có:
Cho dãy số
biết
với
. Mệnh đề nào sau đây đúng?
Ta có:
=> Dãy số bị chặn dưới bởi 0.
Mặt khác
Vậy bị chặn trên, do đó dãy
bị chặn.
Cho dãy (un) xác định bởi
và un = un − 1 + 2n với mọi n ≥ 2. Số hạng u50 bằng?
Ta có
Cộng vế với vế các đẳng thức trên, ta được:
.
Tìm
để các số
theo thứ tự đó lập thành một cấp số nhân.
Các số theo thứ tự đó lập thành một cấp số nhân
Dãy số nào dưới đây là dãy số nguyên tố nhỏ hơn
theo thứ tự tăng dần?
Số nguyên tố là số tự nhiên lớn hơn và chỉ có hai ước số là
và chính nó.
Vậy dãy số nguyên tố nhỏ hơn là
,
,
,
.
Cho cấp số nhân
có công bội âm. Biết
. Khi đó ![]()
Ta có:
Xét các số nguyên dương chia hết cho 3. Tổng 50 số nguyên dương đầu tiên đó bằng:
Ta có:
Số nguyên dương chia hết cho 3 có dạng nên chúng lập thành cấp số cộng
Ba góc của một tam giác vuông tạo thành cấp số cộng. Hai góc nhọn của tam giác có số đo (độ) là:
Ba góc A, B, C của một tam giác vuông theo thứ tự đó lập thành một cấp số cộng nên
Một cấp số nhân có 6 số hạng, số hạng đầu bằng 2 và số hạng thứ sáu bằng 486. Tìm công bội q của cấp số nhân đã cho.
Ta có:
Cấp số nhân có số hạng đầu bằng 2 và số hạng thứ sáu bằng 486
=>
=>
=> =>
Vậy công bội q của cấp số nhân đã cho là q = 3
Cho dãy số
có số hạng tổng quát
. Biết rằng
. Khi đó
là số hạng thứ mấy trong dãy số?
Ta có:
Vậy là số hạng thứ tư trong dãy số.
Dãy số (un) được cho bởi
. Hãy tìm khẳng định sai trong các khẳng định sau.
...
Áp dụng phương pháp quy nạp ta có un = 2n − 1.
Cho dãy số (un) với
( a là hằng số). Hỏi un + 1 là số hạng nào sau đây?
Ta có
Cho cấp số nhân
có số hạng đầu
và công bội
. Số hạng thứ sáu của
là:
Ta có:
Trong các dãy số
cho bởi số hạng tổng quát
sau, dã số nào là dãy số tăng?
Xét đáp án ta có:
=> Dãy số là dãy tăng.
Cho dãy số (Un) là một cấp số cộng có u1 = 3 và công sai d = 4. Biết rằng tổng n số hạng đầu của dãy số (Un) là
. Giá trị của n là:
Ta có:
Với mọi số nguyên dương
, tổng
chia hết cho:
Với ta có:
không chia hết cho 9.
Với ta có:
không chia hết cho 4 và 12
Ta sẽ chứng minh chia hết cho 6 với mọi số nguyên dương
Giả sử khẳng định đúng với nghĩa là
chia hết cho 6.
Ta cần chứng minh khẳng định đúng với tức là:
cũng chia hết cho 6
Ta có:
Ta lại có: ta cần chứng minh
Thật vậy là tích hai số nguyên dương liên tiếp nên
Mặt khác và 2, 3 là hai số nguyên tố cùng nhau nên
Vậy chia hết cho 6 hay
chia hết cho 6 với mọi số nguyên dương
.
Trong các dãy số
cho bởi số hạng tổng quát
sau, dãy số nào là một cấp số nhân?
Xét dãy số ta có:
Vậy dãy số là cấp số nhân với q = 1/3
Khẳng định nào sau đây là khẳng định sai?
Khẳng định sai là: “Số hạng tổng quát của cấp số cộng là
với công sai
và số hạng đầu
.”
Cho dãy số
với
với mọi
. Khi đó số hạng
của dãy
là:
Ta có:
Cho cấp số nhân với các số hạng lần lượt là a; 12; b; 192. Mệnh đề nào dưới đây đúng?
Ta có: Cấp số nhân với các số hạng lần lượt là a; 12; b; 192
Cho cấp số nhân (un) có số hạng đầu u1 = 5; công bội q = -2. Số hạng thứ sáu của (un) là:
Ta có:
Cho dãy số
biết
. Chọn đáp án đúng.
Ta có:
Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là
đô la mỗi năm và được tăng thêm
đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là
đô la?
Đáp án: 8
Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là đô la mỗi năm và được tăng thêm
đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là
đô la?
Đáp án: 8
Gọi là tiền lương anh Nam nhận được vào năm thứ
.
Tại năm đầu tiên, lương anh Nam nhận được là .
Vì mỗi năm, anh Nam được tăng lương thêm đô, nên ta có
Do đó là cấp số cộng với
.
Tổng lương mà anh Nam nhận được là đô, áp dụng công thức tính tổng
số hạng đầu của cấp số cộng:
.
Vậy anh Nam mất 8 năm làm việc để được tổng lương là .
Cho một cấp số cộng (un) có u1 = 1 và tổng 100 số hạng đầu tiên là 24850. Tính giá trị của biểu thức ![]()
Ta có:
Ta lại có
Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?
Xét dãy số ta có:
d không cố định => Dãy số không phải là một cấp số cộng.
Tính tổng 10 số hạng đầu của cấp số cộng
.
Theo bài ra ta có:
Cho cấp số cộng
có
. Số 100 là số hạng thứ mấy của cấp số cộng?
Ta có:
Cho dãy số (un) biết
. Mệnh đề nào sau đây đúng?
Ta xét dãy số này bị chặn bằng phương pháp quy nạp toán học.
Ta sẽ chứng minh bằng quy nạp − 2 ≤ un ≤ 1, ∀n ∈ ℕ*
Với n = 1 ta có − 2 ≤ u1 ≤ 1 (đúng).
Giả sử mệnh đề trên đúng với n = k ≥ 1. Tức là − 2 ≤ uk ≤ 1
Theo nguyên lí quy nạp ta đã chứng minh được − 2 ≤ un ≤ 1, ∀n ∈ ℕ*
Vậy (un) là dãy số bị chặn.
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:
;
. Khi đó:
a)
. Đúng||Sai
b) Ba số
tạo thành một cấp số cộng. Sai||Đúng
c)
. Sai||Đúng
d)
. Đúng||Sai
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:;
. Khi đó:
a) . Đúng||Sai
b) Ba số tạo thành một cấp số cộng. Sai||Đúng
c) . Sai||Đúng
d) . Đúng||Sai
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu 0,21 và công bội .
Vì vậy
.
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 0,3 và công bội là
Vì vậy
.
Kết luận:
|
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
Cho cấp số nhân (un) có
. Tìm số hạng đầu tiên của dãy biết số đó không lớn hơn 100.
Ta có:
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Một cấp số nhân có 6 số hạng với công bội bằng 2 và tổng số các số hạng bằng 189. Tìm số hạng cuối
của cấp số nhân đã cho.
Theo giả thiết ta có:
Tính tổng ![]()
Ta có:
Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?
Ta có:
Dãy là một cấp số cộng
với d là hằng số.
Hay
=> Cấp số cộng cần tìm là:
Cho dãy số
xác định bởi công thức
. Khẳng định nào sau đây sai?
Ta có:
Với ta thấy
Suy ra dãy số đã cho là dãy số giảm.
Cho cấp số nhân (un) biết u1 = 1; u4 = 64. Tính công bội q của cấp số nhân đó.
Ta có:
Tính tổng 100 số hạng đầu của cấp số cộng xác định bởi
.
Theo bài ra ta có:
Một cấp số cộng gồm
số hạng. Hiệu số hạng đầu và số hạng cuối bằng
. Tìm công sai
của cấp số cộng đã cho?
Gọi năm số hạng của cấp số cộng đã cho là:
Theo đề bài ta có:
Vậy công sai của cấp số cộng đã cho là