Dãy số (un) được cho bởi
. Hãy tìm khẳng định sai trong các khẳng định sau.
...
Áp dụng phương pháp quy nạp ta có un = 2n − 1.
Dãy số (un) được cho bởi
. Hãy tìm khẳng định sai trong các khẳng định sau.
...
Áp dụng phương pháp quy nạp ta có un = 2n − 1.
Cho một dãy số có các số hạng đầu tiên là 1; 8; 22; 43; … Hiệu của hai số hạng liên tiếp của dãy số đó lập thành một cấp số cộng 7; 14; 21; …, 7n. Số 35351 là số hạng thứ mấy của cấp số đã cho?
Theo đề bài ta có:
Cộng các vế của các phương trình của hệ ta được:
Đặt
Từ (*) suy ra:
Do đó 35351 là số hạng thứ 101 của dãy số
Tế bào E. Coli trong điều kiện nuôi cấy thích hợp cứ 20 phút lại nhân đôi một lần. Nếu lúc đầu có
tế bào thì sau 2 giờ sẽ phân chia thành bao nhiêu tế bào?
Ban đầu có tế bào và mỗi lần phân chia thì một tế bào tách thành hai tế bào nên ta có cấp số nhân với
và công bội
.
Theo bài ra ta có:
Cứ 20 phút phân đôi một lần nên sau 2 giờ có 6 lần phân chia tế bào.
Ta có: là số tế bào nhận được sau 2 giờ.
Vậy số tế bào nhận được sau 2 giờ là
Cho cấp số cộng
có
. Số hạng thứ
của cấp số cộng là
Ta có:
Số hạng đầu tiên của cấp số nhân
thỏa mãn hệ
là:
Ta có:
Tính tổng
. Biết dãy số (un) xác định bởi: ![]()
Ta có:
Do
Từ đó suy ra:
Hay dãy là một cấp số nhân có số hạng đầu
Khi đó
Cho dãy số
với
. Dãy số
là dãy số
Ta có:
Vậy dãy số là dãy số tăng.
Hai số hạng đầu của một cấp số nhân là
và
. Số hạng thứ ba của cấp số nhân là:
Công bội của cấp số nhân là:
Vậy số hạng thứ ba của cấp số nhân là:
Cho cấp số cộng có số hạng đầu
công sai
. Năm số hạng liên tiếp đầu tiên của cấp số này là:
Ta có:
Khẳng định nào sau đây là khẳng định sai?
Khẳng định sai là: “Số hạng tổng quát của cấp số cộng là
với công sai
và số hạng đầu
.”
Tổng
có kết quả bằng?
Ta có
Do đó
Cho cấp số cộng (Un) có u1 = -2 và công sai d = 3. Tìm số hạng u10
Ta có:
Cho
là cấp số cộng biết
. Tổng 15 số hạng đầu của cấp số cộng đó bằng
Ta có:
Vậy
Cho dãy số (un) với
, biết
. Hỏi uk là số hạng thứ mấy của dãy số đã cho?
Ta có:
(do k∈ℕ*)
Cho cấp số cộng (Un) có
và công sai d = 4. Tính
?
Ta có:
Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt của mỗi tầng bằng nửa diện tích của bề mặt của tầng ngay bên dưới và diện tích bề mặt của tầng một bằng nửa diện tích đế tháp. Biết diện tích bề mặt đế tháp là
. Diện tích bề mặt của tầng trên cùng là:
Đáp án: 6 m2
Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt của mỗi tầng bằng nửa diện tích của bề mặt của tầng ngay bên dưới và diện tích bề mặt của tầng một bằng nửa diện tích đế tháp. Biết diện tích bề mặt đế tháp là . Diện tích bề mặt của tầng trên cùng là:
Đáp án: 6 m2
Diện tích bề mặt của tầng trên cùng là .
Dãy số
là cấp số nhân với
Cấp số nhân
Xét tính tăng, giảm và bị chặn của dãy số (un), biết
, ta thu được kết quả?
Ta có
Mà un > 0, ∀n nên un + 1 < un, ∀n ≥ 1⇒ dãy (un) là dãy số giảm.
Vì 0 < un ≤ u1 = 2, ∀n ≥ 1 nên dãy (un) là dãy bị chặn trên.
Cho cấp số nhân
với
và
. Công bội của cấp số nhân đã cho bằng
Ta có .
Cho cấp số cộng
thỏa mãn
. Mệnh đề nào sau đây đúng?
Ta có:
Khi đó:
Cho dãy số
, biết
. Mệnh đề nào sau đây sai?
Ta có:
Vậy mệnh đề sai là:
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Trong các dãy số sau dãy số nào là cấp số cộng?
Ta có:
=> Dãy số là cấp số cộng.
Trong các dãy số sau đây, dãy số nào là cấp số cộng?
Ta có dãy số là một cấp số cộng có công sai
.
Cho dãy số
biết
. Chọn đáp án đúng.
Ta có:
Trong các dãy số dưới đây, dãy số nào là dãy số giảm?
Xét phương án , ta có:
nên dãy này là dãy số tăng.
Xét phương án , ta có:
nên dãy này là dãy số giảm.
Xét phương án , ta có:
nên dãy này là dãy số tăng.
Xét phương án , ta có:
nên dãy này là dãy số tăng.
Vậy dãy số là dãy số giảm.
Tìm x để ba số
theo thứ tự đó lập thành một cấp số nhân.
Ta có:
Ba số theo thứ tự đó lập thành một cấp số nhân
Cho tập hợp
. Số tập hợp con của tập hợp
gồm ba phần tử có thể sắp xếp thành một cấp số nhân tăng là:
Gọi ba phần tử thỏa mãn yêu cầu bài toán là với
lập thành một cấp số nhân
Suy ra lập thành một cấp số cộng
Thấy rằng a và c phải cùng tính chẵn lẻ.
Khi đó số tập con thỏa mãn yêu cầu bài toán là
Cho dãy số (un), biết un = n ⋅ cosn. Trong các phát biểu sau, có bao nhiêu phát biểu đúng?
(1) (un) là dãy số tăng.
(2) (un) là dãy số bị chặn dưới.
(3) ∀n ∈ ℕ* : un ≤ n.
Vì cos(n) ≤ 1 nên un < n. Phát biểu (3) đúng.
Dãy không tăng, không giảm và không bị chặn dưới.
Vậy có 1 phát biểu đúng trong 3 phát biểu đã cho.
Cho cấp số cộng
thỏa mãn
. Tính tổng 16 số hạng đầu tiên của cấp số cộng đã cho.
Ta có:
Cho dãy số
là một cấp số nhân có số hạng đầu
và công bội
. Đẳng thức nào sau đây đúng?
Cho dãy số là một cấp số nhân có số hạng đầu
và công bội
.
Theo công thức số hạng tổng quát ta có ,
.
Cho dãy số
có số hạng tổng quát
. Biết rằng
. Khi đó
là số hạng thứ mấy trong dãy số?
Ta có:
Vậy là số hạng thứ tư trong dãy số.
Cho cấp số nhân có các số hạng lần lượt là
. Tìm số hạng tổng quát
của cấp số nhân đã cho.
Các số hạng lần lượt là lập thành cấp số nhân
Biểu thức nào sau đây cho ta tập giá trị của tổng ![]()
Ta có:
Với
Với
Với
Dự đoán ta sẽ chứng minh (*) đúng bằng phương pháo quy nạp.
Với đương nhiên (*) đúng.
Giả sử (*) đúng với tức là:
Ta chứng minh (*) đúng với
Ta có:
Vậy (*) đúng với mọi số tự nhiên n tức là
Cho dãy số
. Tìm số hạng thứ 5 của dãy số:
Ta có:
Do đó số hạng thứ 5 của dãy số là Sử dụng công thức:
Cho cấp số nhân
có số hạng đầu là
, công bội là
. Tính
?
Theo công thức cấp số nhân ta có:
Cho cấp số nhân với các số hạng lần lượt là a; 12; b; 192. Mệnh đề nào dưới đây đúng?
Ta có: Cấp số nhân với các số hạng lần lượt là a; 12; b; 192
Giá tiền công khoan giếng ở cơ sở A được tính như sau: Giá của mét khoan đầu tiên là 8000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 500 đồng so với giá của mét khoan ngay trước nó. Vậy muốn khoan 20 mét thì mất bao nhiêu đồng?
Theo bài ra ta có:
Giá các mét khoan lập thành một cấp số cộng với công sai d = 500, số hạng đầu là 8000.
=>
=> Số tiền phải trả khi khoan giếng sâu 20m là:
Vậy muốn khoan 20 mét thì mất 255000 đồng.
Cho cấp số nhân (un) có u1 = 2 và u2 = -8. Mệnh đề nào sau đây đúng?
Ta có: