Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho dãy số (un) biết \left\{ \begin{matrix}
u_{1} = 1;u_{2} = 2 \\
u_{n + 2} = au_{n + 1} + (1 - a)u_{n},\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight.. Các giá trị của a để dãy số (un) tăng là?

    Xét hiệu  un + 2 − un + 1

     = aun + 1 + (1−a)un − un + 1

     = (a−1)(un + 1un)

     ⇒ u3 − u2 = (a−1)(u2u1) = (a−1);

     ⇒ u4 − u3 = (a−1)(u3u2) = (a−1)2

    un + 1 − un = (a−1)n − 1 > 0

    Để dãy số (un) tăng suy ra a − 1 > 0 ⇔ a > 1

  • Câu 2: Thông hiểu

    Cho dãy số (un) với u_{n} = \frac{n - 1}{n^{2} + 1}, biết u_{k} = \frac{2}{13}. Hỏi uk là số hạng thứ mấy của dãy số đã cho?

    Ta có:

    u_{k} = \frac{k - 1}{k^{2} + 1}
\Rightarrow \frac{k - 1}{k^{2} + 1} = \frac{2}{13} \Rightarrow k =
5 (do  k∈ℕ*)

  • Câu 3: Vận dụng

    Cho dãy số (un) biết \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = au_{n} + 1,\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Tất cả các giá trị của a để (un) là dãy số tăng là?

    Xét hiệu un + 1 − un = (aun+1) − (aun − 1+1) = a(unun − 1)

    Áp dụng, ta có u2 = au1 + 1 = a + 1 ⇒ u2 − 1 = a ⇒ u2 − u1 = a

     ⇒ u3 − u2 = a(u2u1) = a2

     ⇒ u4 − u3 = a(u3u2) = a3

     ⇒ un + 1 − un = an > 0

    Để dãy số (un) tăng thì un > un − 1 > … > u2 > u1 ⇒ a > 0

  • Câu 4: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Xét đáp án \frac{1}{\pi};\frac{1}{\pi^{2}};\frac{1}{\pi^{4}};\frac{1}{\pi^{6}};...\Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{1}{\pi} eq \frac{1}{\pi^{2}} = \frac{u_{3}}{u_{2}}

    => Dãy số \frac{1}{\pi};\frac{1}{\pi^{2}};\frac{1}{\pi^{4}};\frac{1}{\pi^{6}};... không phải là cấp số nhân.

  • Câu 5: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight)có số hạng đầu u_{1} = -
5và công sai d = 3. Số 100 là số hạng thứ mấy của cấp số cộng?

    Ta có:

    u_{n} = u_{1} + (n - 1)d

    \Leftrightarrow 100 = - 5 + (n - 1)3
\Leftrightarrow n = 36

  • Câu 6: Nhận biết

    Dãy số nào sau đây không phải là cấp số cộng?

    Chỉ cần tồn tại hai cặp số hạng liên tiếp của dãy số có hiệu khác nhau: u_{m + 1} - u_{m}=u_{k + 1} -u_{k} thì kết luận ngay dãy số đó không phải là cấp số cộng.

    Xét đáp án: 2;5;8;11;14...\overset{ightarrow}{}3 = u_{2} -
u_{1} = u_{3} - u_{2} = u_{4} - u_{3} =
\cdots\overset{ightarrow}{}loại

    Xét đáp án: 2;4;8;10;14...\overset{ightarrow}{}2 = u_{2} -u_{1}=u_{3} - u_{2} = 4\overset{ightarrow}{} Chọn

    Xét đáp án: 1;2;3;4;5;6...\overset{ightarrow}{}1 = u_{2} -
u_{1} = u_{3} - u_{2} = u_{4} - u_{3} =
\cdots\overset{ightarrow}{}Loại

    Xét đáp án: 15;10;5;0; -
5;...\overset{ightarrow}{} - 5 = u_{2} - u_{1} = u_{3} - u_{2} = u_{4}
- u_{3} = \cdots\overset{ightarrow}{}loại

  • Câu 7: Vận dụng

    Cho cấp số cộng (un) có u3 = -15; u20 = 60. Tổng của 10 số hạng đầu tiên của cấp số cộng này là:

    Gọi u1, d lần lượt là số hạng đầu và công sai của cấp số cộng

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {{u_5} =  - 15} \\   {{u_{20}} = 60} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + 4d =  - 15} \\   {{u_1} + 19d = 60} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} =  - 35} \\   {d = 5} \end{array}} ight.

    => Tổng của 10 số hạng đầu tiên của cấp số cộng này là:

    {S_{10}} = \frac{{10}}{2}.\left( {2{u_1} + 9d} ight) = 5.\left[ {2.\left( { - 35} ight) + 9.5} ight] =  - 125

  • Câu 8: Thông hiểu

    Cho một cấp số nhân có các số hạng đều không âm thỏa mãn {u_2} = 6;{u_4} = 24. Tính tổng của 12 số hạng đầu tiên của cấp số nhân đó.

    Giả sử công bội của cấp số nhân là q

    Ta có:

    => {u_4} = {u_2}.{q^2} \Rightarrow q =  \pm 2

    Do cấp số nhân có các số hạng không âm nên q = 2

    Ta có: {S_{12}} = {u_1}.\frac{{1 - {2^{12}}}}{{1 - 2}} = 3\left( {{2^{12}} - 1} ight)

  • Câu 9: Nhận biết

    Trong các dãy số sau, dãy số nào là cấp số nhân?

     Dãy số 1, 2, 4, 8, 16 tuân theo quy luật \frac{{{u_{n + 1}}}}{{{u_n}}} = 2

    => Dãy số đó là cấp số nhân

  • Câu 10: Nhận biết

    Trong các dãy số sau, dãy số nào là cấp số cộng?

    Ta có: \left\{ \begin{matrix}
3 = 1 + 2 \\
5 = 3 + 2 \\
7 = 5 + 2 \\
9 = 7 + 2 \\
\end{matrix} ight.

    Khi đó theo định nghĩa cấp số cộng dãy số 1;3;5;7;9 là một cấp số cộng với d = 2

  • Câu 11: Thông hiểu

    Hai số hạng đầu của một cấp số nhân là 2x + 14x^{2} - 1. Số hạng thứ ba của cấp số nhân là:

    Công bội của cấp số nhân là: a =
\frac{4x^{2} - 1}{2x + 1} = 2x - 1

    Vậy số hạng thứ ba của cấp số nhân là:

    \left( 4x^{2} - 1 ight)(2x - 1) =
8x^{3} - 4x^{2} - 2x + 1

  • Câu 12: Vận dụng

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn \left\{ \begin{matrix}u_{1} + u_{2} + u_{3} = 27 \\{u_{1}}^{2} + {u_{2}}^{2} + {u_{3}}^{2} = 275 \\\end{matrix} ight.. Tính u_{2}.

    Ta có:

    \left\{ \begin{matrix}u_{1} + u_{2} + u_{3} = 27 \\{u_{1}}^{2} + {u_{2}}^{2} + {u_{3}}^{2} = 275 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} + \left( u_{1} + d ight) + \left( u_{1} + 2d ight) = 27 \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} + d = 9 \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}d = 9 - u_{1} \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    Khi đó:

    \Rightarrow {u_{1}}^{2} + \left( u_{1} +9 - u_{1} ight)^{2} + \left\lbrack u_{1} + 2\left( 9 - u_{1} ight)ightbrack^{2} = 275

    \Leftrightarrow {u_{1}}^{2} - 18u_{1} +65 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}u_{1} = 13 \Rightarrow d = - 4 \\u_{1} = 5 \Rightarrow d = 4 \\\end{matrix} ight.=> u_{2} = 9

  • Câu 13: Vận dụng

    Bác Hoa mua nhà trị giá 900 triệu đồng theo phương thức trả góp. Nếu cuối mỗi tháng bắt đầu từ tháng thứ nhất bác Hoa trả 8 000 000 và chịu lãi số tiền chưa trả là 0,6% mỗi tháng thì sau bao lâu bác Hoa trả hết số tiền trên?

    Ta có:

    8000000 =
\frac{900.10^{6}.0,006.1,006^{n}}{1,006^{n} - 1}

    \Leftrightarrow 1,006^{n} =
3,077

    \Leftrightarrow n \approx
187,887

    Vậy sau khoảng 188 tháng thì bác Hoa sẽ trả hết số tiền đó.

  • Câu 14: Vận dụng cao

    Cho tổng S_{n} =
\frac{3}{(1.2)^{2}} + \frac{5}{(2.3)^{2}} + \frac{7}{(3.4)^{2}} + \ldots
+ \frac{2n + 1}{\lbrack n(n + 1)brack^{2}}. Giá trị S10

    Cách 1:

    Ta có \frac{3}{(1.2)^{2}} = \frac{1}{1} -
\frac{1}{4};\frac{5}{(2.3)^{2}} = \frac{1}{4} -
\frac{1}{9};\ldots

    Suy ra S_{n} = \frac{1}{1} - \frac{1}{4} +
\frac{1}{4} - \frac{1}{9} + \ldots + \frac{1}{n^{2}} - \frac{1}{(n +
1)^{2}} = \frac{n(n + 2)}{(n + 1)^{2}}

    Vậy S_{10} = \frac{10(10 + 2)}{(10 +
1)^{2}} = \frac{120}{121}.

    Cách 2:

    Ta có S_{10} = \frac{3}{(1.2)^{2}} +
\frac{5}{(2.3)^{2}} + \frac{7}{(3.4)^{2}} + \ldots +
\frac{21}{(10.11)^{2}}

    Suy ra S_{10} = \frac{1}{1} - \frac{1}{4}
+ \frac{1}{4} - \frac{1}{9} + \ldots + \frac{1}{10^{2}} -
\frac{1}{11^{2}} = \frac{1}{1} - \frac{1}{11^{2}} =
\frac{120}{121}.

  • Câu 15: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) với u_{1} = 2;d = - 3. Tổng 10 số hạng đầu tiên của dãy là:

    Tổng 10 số hạng đầu tiên của dãy là:

    S_{10} = \frac{10}{2}\left( 2u_{1} + 9d
ight) = 5(4 - 27) = - 115

  • Câu 16: Thông hiểu

    Cho cấp số cộng (Un) có số hạng tổng quát là {u_n} = 3n - 2. Xác định công sai của cấp số cộng.

    Ta có: \begin{matrix}  {u_{n + 1}} - {u_n} = 3\left( {n + 1} ight) - 2 - 3n + 2 = 3 \hfill \\   \Rightarrow d = 3 \hfill \\ \end{matrix}

  • Câu 17: Nhận biết

    Cho S_{n} =
\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \ldots + \frac{1}{n(n +
1)} với n ∈ ℕ*. Mệnh đề nào sau đây đúng?

    Ta có S_{1} = \frac{1}{2},S_{2} =
\frac{2}{3},S_{3} = \frac{3}{4} \Rightarrow dự đoán S_{n} = \frac{n}{n + 1}

    Với n = 1, ta được S_{1} = \frac{1}{1.2} = \frac{1}{1 + 1} (đúng)

    Giả sử mệnh đề đúng khi n = k (k≥1), tức là \frac{1}{1.2} + \frac{1}{2.3} + \ldots +
\frac{1}{k(k + 1)} = \frac{k}{k + 1}

    Ta có \frac{1}{1.2} + \frac{1}{2.3} +
\ldots + \frac{1}{k(k + 1)} = \frac{k}{k + 1}

    \begin{matrix}
& \Leftrightarrow \frac{1}{1.2} + \frac{1}{2.3} + \ldots +
\frac{1}{k(k + 1)} + \frac{1}{(k + 1)(k + 2)} = \frac{k}{k + 1} +
\frac{1}{(k + 1)(k + 2)} \\
& \\
& \\
\end{matrix}

    \Leftrightarrow \frac{1}{1.2} +
\frac{1}{2.3} + \ldots + \frac{1}{k(k + 1)} + \frac{1}{(k + 1)(k + 2)} =
\frac{k^{2} + 2k + 1}{(k + 1)(k + 2)}

    \Leftrightarrow \frac{1}{1.2} +
\frac{1}{2.3} + \ldots + \frac{1}{k(k + 1)} + \frac{1}{(k + 1)(k + 2)} =
\frac{k + 1}{k + 2}

    Suy ra mệnh đề đúng với n = k + 1.

  • Câu 18: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight) có công bội âm. Biết u_{3} = 12;u_{7} = 192. Khi đó u_{10} = ?

    Ta có:

    \left\{ \begin{matrix}
u_{3} = 12 \\
u_{7} = 192 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1}.q^{2} = 12 \\
u_{1}.q^{6} = 192 \\
\end{matrix} ight.

    \Leftrightarrow \frac{q^{2}}{q^{6}} =
\frac{12}{192} \Leftrightarrow q^{4} = 16

    \Leftrightarrow q = - 2;(q < 0)
\Rightarrow u_{1} = 3

    \Rightarrow u_{10} = u_{1}.q^{9} = 3.( -
2)^{9} = - 1536

  • Câu 19: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = 1 và công sai d = 2. Tổng 10 số hạng đầu của cấp số cộng bằng:

    Tổng 10 số hạng đầu của cấp số cộng là

    S_{n} = \frac{n}{2}\left\lbrack 2u_{1} +
(n - 1)d ightbrack

    \Rightarrow S_{10} =
\frac{10}{2}\left\lbrack 2.1 + (10 - 1)2 ightbrack =
100

  • Câu 20: Vận dụng

    Tìm tất cả các giá trị của x để ba số 2x - 1; x; 2x + 1 theo thứ tự đó lập thành một cấp số nhân.

    Ta có:

    Ba số 2x - 1; x; 2x + 1 theo thứ tự đó lập thành một cấp số nhân:

    \Rightarrow {x^2} = \left( {2x - 1} ight)\left( {2x + 1} ight)

    \Rightarrow {x^2} = 4{x^2} - 1

    \Rightarrow 3{x^2} = 1

    \Rightarrow {x^2} = \frac{1}{3} \Rightarrow x =  \pm \frac{1}{{\sqrt 3 }}

  • Câu 21: Nhận biết

    Cho cấp số nhân (un) có số hạng đầu u1 = 5; công bội q = -2. Số hạng thứ sáu của (un) là:

    Ta có: {u_6} = {u_1}.{q^{6 - 1}} = 5.{\left( { - 2} ight)^5} =  - 160

  • Câu 22: Nhận biết

    Cho dãy số (u_{n}), biết {u_n} = {( - 1)^n}.2n. Mệnh đề nào sau đây sai?

    Ta có:

    \begin{matrix}  {u_n} = {( - 1)^n}.2n \hfill \\   \Rightarrow {u_1} = {( - 1)^1}.2.1 =  - 2 \hfill \\   \Rightarrow {u_2} = {( - 1)^2}.2.2 = 4 \hfill \\   \Rightarrow {u_3} = {( - 1)^3}.2.3 =  - 6 \hfill \\   \Rightarrow {u_4} = {( - 1)^4}.2.4 = 8 \hfill \\ \end{matrix}

    Vậy mệnh đề sai là: u_{4}=-8

  • Câu 23: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) với u_{1} = - 2;u_{2} = 2. Khi đó số hạng 2018 là số nào?

    Theo bài ra ta có:

    d = u_{2} - u_{1} = 2 - ( - 2) =
4

    u_{n} = u_{1} + (n - 1)d

    \Rightarrow u_{2018} = u_{1} + 2017d = -
2 + 2017.4 = 8066.

  • Câu 24: Thông hiểu

    Cho dãy số \left( u_{n} ight) biết \left\{ \begin{matrix}u_{1} = 3 \\u_{n + 1} = 3u_{n} \\\end{matrix},\forall n \in N^{*} ight.. Tìm số hạng tổng quát của dãy số \left( u_{n}ight).

    Ta có u_{1} = 3\frac{u_{n+1}}{u_{n}}=3

    Suy ra dãy số \left( u_{n}ight)là cấp số nhân với \left\{\begin{matrix}u_{1} = 3 \\q = 3 \\\end{matrix} ight.

    Do đó u_{n} = u_{1}.q^{n - 1} = 3.3^{n -1} = 3^{n}

  • Câu 25: Thông hiểu

    Cho một cấp số nhân có 15 số hạng. Đẳng thức nào sau đây là sai?

    Ta có: u_{1}.u_{15} = u_{1}.u_{1}.q^{14}= \left( u_{1}.q^{a - 1} ight).\left( u_{1}.q^{b - 1} ight) =u_{a}.u_{b}

    Với a + b = 16

    Đáp án sai u_{1}.u_{15} =u_{6}.u_{9}

  • Câu 26: Nhận biết

    Cho dãy số (un)u1 = 7; un + 1 = 2un + 3. Khi đó u3 bằng?

    Ta có u3 = 2u2 + 3 = 2 ⋅ (2u1+3) + 3 = 4u1 + 9 − 4 ⋅ 7 + 9 = 37.

  • Câu 27: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) biết u_{n} = 3 - 5n. Tìm công sai của cấp số cộng?

    Theo giả thiết ta có:

    u_{n + 1} = - 2 - 5n

    \Rightarrow u_{n + 1} - u_{n} = -
5;\forall n \geq 1

    Vậy d = - 5

  • Câu 28: Thông hiểu

    Cho một cấp số cộng (Un) có {u_1} = \frac{1}{3};{u_8} = 26. Công sai d của cấp số cộng là:

    Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight)d \hfill \\   \Rightarrow {u_8} = {u_1} + 7d \hfill \\   \Rightarrow 26 = \dfrac{1}{3} + 7.d \hfill \\   \Rightarrow d = \dfrac{{11}}{3} \hfill \\ \end{matrix}

  • Câu 29: Thông hiểu

    Cho cấp số cộng (Un) có u_1=11 và công sai d = 4. Tính {u_{99}}?

    Ta có: {u_{99}} = {u_1} + 99d = 11 + 98.4 = 403

  • Câu 30: Thông hiểu

    Với giá trị nào của x;y thì các số hạng - 2;x; - 18;y theo thứ tự đó lập thành cấp số nhân?

    Ta có: các số hạng - 2;x; -
18;ylập thành cấp số nhân

    \Rightarrow \left\{ \begin{matrix}\dfrac{x}{- 2} = \dfrac{- 18}{x} \\\dfrac{- 18}{x} = \dfrac{y}{- 18} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \pm 6 \\y = \dfrac{324}{x} = \pm 54 \\\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(x;y) = (6;54) \\
(x;y) = ( - 6;54) \\
\end{matrix} ight.

  • Câu 31: Thông hiểu

    Cho dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{1}{n^{2} + n}. Khẳng định nào sau đây sai?

    Ta có:

    \dfrac{u_{n}}{u_{n + 1}} =\dfrac{\dfrac{1}{n^{2} + n}}{\dfrac{1}{(n + 1)^{2} + (n + 1)}}

    = \frac{n(n - 1)}{n(n + 1)} = \frac{n -
1}{n + 1}

    Với \forall n \in \mathbb{N}^{*},n >
1 ta thấy \frac{n - 1}{n + 1} = 1 -
\frac{2}{n + 1} < 1

    Suy ra dãy số đã cho là dãy số giảm.

  • Câu 32: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) có số hạng đầu u_{1} =
5 và công bội q = - 2. Số hạng thứ sáu của \left( u_{n}
ight) là:

    Ta có: u_{6} = u_{1}q^{5} = 5.( - 2)^{5} =
- 160

  • Câu 33: Nhận biết

    Dãy số u_{n} =
2^{2n} là cấp số nhân với

    Cấp số nhân 4;16;64;....

    \Rightarrow \left\{ \begin{matrix}u_{1} = 4 \\q = \dfrac{u_{2}}{u_{1}} = 4 \\\end{matrix} ight.

  • Câu 34: Thông hiểu

    Dãy số (un) được cho bởi \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + 2 \\
\end{matrix} ight.. Hãy tìm khẳng định sai trong các khẳng định sau.

    u_1=1

    u_2=1+2=1+1.2

    u_3=1+2+2=1+2.2

    u_4=1+2+2+2=1+3.2

    ...

    u_n=1+2+⋯+2=1+(n-1).2

    Áp dụng phương pháp quy nạp ta có un = 2n − 1.

  • Câu 35: Thông hiểu

    Cho dãy số (u_n) với \begin{matrix}  {u_n} = \dfrac{{\sin \left( {\dfrac{{n\pi }}{3}} ight)}}{{n + 1}} \hfill \\\end{matrix} với mọi n\geq 1. Khi đó số hạng u_{3n} của dãy (u_{n}) là:

    Ta có:

    \begin{matrix}  {u_n} = \dfrac{{\sin \left( {\dfrac{{n\pi }}{3}} ight)}}{{n + 1}} \hfill \\   \Rightarrow {u_{3n}} = \dfrac{{\sin \left( {\dfrac{{3n\pi }}{3}} ight)}}{{3n + 1}} = \dfrac{{\sin \left( {n\pi } ight)}}{{3n + 1}} = 0 \hfill \\ \end{matrix}

  • Câu 36: Vận dụng cao

    Cho dãy số (un) thỏa mãn {u_1} = 1;{u_n} = 10{u_{n - 1}} - 1,\left( {\forall n \geqslant 2} ight). Tìm giá trị nhỏ nhất của n thỏa mãn \log {a_n} > 100

    Ta có:

    {u_n} = 10{u_{n - 1}} - 1 \Leftrightarrow {u_n} - \frac{1}{9} = 10\left( {{u_{n - 1}} - \frac{1}{9}} ight)\left( * ight)

    Đặt {v_n} = {u_n} - \frac{1}{9} \Rightarrow {v_1} = {u_1} - \frac{1}{9} = \frac{8}{9}

    \left( * ight) \Rightarrow {v_n} = 10.{v_{n + 1}},\left( {n \geqslant 2} ight)

    Dãy (vn) là cấp số nhân với công bội q = 10

    => {u_n} = {v_n} + \frac{1}{9} = \frac{8}{9}{.10^{n - 1}} + \frac{1}{9} > {10^{100}}

    Vậy giá trị nhỏ nhất của n để \log {a_n} > 100 là n = 102

  • Câu 37: Thông hiểu

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 8u_{3} - u_{7} +8u_{5} = u_{6} + u_{8} - 8u_{4}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}

    Đáp án: 64

    Đáp án là:

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 8u_{3} - u_{7} +8u_{5} = u_{6} + u_{8} - 8u_{4}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}

    Đáp án: 64

    Giả sử cấp số nhân có công bội là q, khi đó theo bài ra ta có:

    8u_{3} - u_{7} + 8u_{5} = u_{6} + u_{8}
- 8u_{4}

    \Leftrightarrow 8\left( u_{3} + u_{4} +
u_{5} ight) = u_{6} + u_{7} + u_{8}

    \Leftrightarrow 8\left( u_{3} + u_{3}q +
u_{3}q^{2} ight) = u_{6} + u_{6}q + u_{6}q^{2}

    \Leftrightarrow 8u_{3}\left( 1 + q +
q^{2} ight) = u_{6}\left( 1 + q + q^{2} ight)

    \Leftrightarrow 8u_{3} = u_{6} do 1 + q + q^{2} > 0

    \Leftrightarrow 8u_{3} = u_{3}q^{3}
\Leftrightarrow u_{3}\left( 8 - q^{3} ight) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
u_{3} = 0 \\
q = 2 \\
\end{matrix} ight.

    Ta có: \frac{u_{8} + u_{9} +u_{10}}{u_{2} + u_{3} + u_{4}} = \frac{u_{8} + u_{8}q +u_{8}q^{2}}{u_{2} + u_{2}q + u_{2}q^{2}}= \frac{u_{8}\left( 1 + q +q^{2} ight)}{u_{2}\left( 1 + q + q^{2} ight)} =\frac{u_{2}q^{6}}{u_{2}} = q^{6} = 64

  • Câu 38: Vận dụng cao

    Tính tổng S = {\left( {2 + \frac{1}{2}} ight)^2} + {\left( {4 + \frac{1}{4}} ight)^2} + ... + {\left( {{2^n} + \frac{1}{{{2^n}}}} ight)^2}

    \begin{matrix}  S = {\left( {2 + \dfrac{1}{2}} ight)^2} + {\left( {4 + \dfrac{1}{4}} ight)^2} + ... + {\left( {{2^n} + \dfrac{1}{{{2^n}}}} ight)^2} \hfill \\  S = \left( {4 + 2 + \dfrac{1}{4}} ight) + \left( {16 + 2 + \dfrac{1}{{16}}} ight) + ... + \left( {{2^{2n}} + 2 + \dfrac{1}{{{2^{2n}}}}} ight) \hfill \\  S = \left( {4 + 16 + ... + {2^{2n}}} ight) + 2n + \left( {\frac{1}{4} + \dfrac{1}{{16}} + ... + \dfrac{1}{{{2^{2n}}}}} ight) \hfill \\ \end{matrix}

    Áp dụng công thức tính tổng của n số hạng đầu của một cấp số nhân ta có:

    \begin{matrix}  S = 4.\dfrac{{{4^{n - 1}}}}{3} + 2n + \dfrac{1}{4}.\dfrac{{{2^{\dfrac{1}{{2n}}}} - 1}}{{\dfrac{1}{4} - 1}} \hfill \\  S = 4.\dfrac{{{4^n} - 1}}{3} + 2n + \dfrac{1}{3}.\dfrac{{{2^{2n}} - 1}}{{{2^{2n}}}} \hfill \\  S = 2n + \dfrac{{{4^{n - 1}}}}{3}.\dfrac{{{{4.4}^n} + 1}}{{{4^n}}} = 2n + \dfrac{{\left( {{4^n} - 1} ight)\left( {{4^{n + 1}} + 1} ight)}}{{{{3.4}^n}}} \hfill \\ \end{matrix}

  • Câu 39: Thông hiểu

    Trong các dãy (un) sau đây, dãy nào là dãy số bị chặn?

    Ta có:

    n2 − n + 1 < n2 + 2n + 2 (do n > 0)

    Suy ra u_{n} = \frac{n^{2} - n + 1}{n^{2}
+ 2n + 2} < 1, với mọi n.

  • Câu 40: Nhận biết

    Cho dãy số (un) với un = 2n + 1. Số hạng thứ 2019 của dãy là?

    Ta có u2019 = 2.2019 + 1 = 4039

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo