Tổng
có công thức thu gọn là?
Tổng
có công thức thu gọn là?
Xác định số hạng tổng quát của dãy số dãy số
với
.
Từ công thức
Xét đáp án với
(loại)
Xét đáp án ta thấy thỏa mãn
Xét đáp án với
(loại)
Xét đáp án với
(loại)
Dãy số nào sau đây không phải là cấp số nhân?
Dãy là cấp số nhân với công bội
.
Dãy là cấp số nhân với công bội
.
Dãy là cấp số nhân với công bội
.
Dãy là cấp số cộng với công sai
.
Cho dãy số
với
. Dãy số
là dãy số
Ta có:
Vậy dãy số là dãy số tăng.
Số hạng đầu tiên của cấp số nhân
thỏa mãn hệ
là:
Ta có:
Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17; tổng của số hạng thứ hai và số hạng thứ tư bằng 14. Tìm công sai d của câp số cộng đã cho.
Ta có:
Cho dãy số (un) biết
.
Mệnh đề nào sau đây đúng?
Dự đoán dãy giảm sau đó chứng minh un + 1 − un < 0 bằng quy nạp toán học.
Từ giả thiết suy ra un > 0, ∀n ∈ ℕ*.
Ta có
Giả sử: uk + 1 − uk < 0, ∀k ≥ 1
Xét hiệu
Theo nguyên lí quy nạp suy ra un + 1 − un < 0, ∀n ∈ ℕ*
Vậy dãy số (un) là dãy số giảm.
Cho cấp số cộng
. Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
Cho dãy số (un) biết
.
Tất cả các giá trị của a để (un) là dãy số tăng là?
Xét hiệu un + 1 − un = (aun+1) − (aun − 1+1) = a(un−un − 1)
Áp dụng, ta có u2 = au1 + 1 = a + 1 ⇒ u2 − 1 = a ⇒ u2 − u1 = a
⇒ u3 − u2 = a(u2−u1) = a2
⇒ u4 − u3 = a(u3−u2) = a3
⇒ un + 1 − un = an > 0
Để dãy số (un) tăng thì un > un − 1 > … > u2 > u1 ⇒ a > 0
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có
Cộng vế với vế của các đẳng thức trên, ta được
Cho một dãy số có các số hạng đầu tiên là 1,8,22,43,... Hiệu của hai số hạng liên tiếp của dãy số đó lập thành 1 cấp số cộng: 7,14,21,..., 7n. Số 35351 là số hạng thứ bao nhiêu của dãy số đã cho?
Ta có:
Cộng vế với vế của phương trình ta được:
Vậy số 35351 là số hạng thứ 101 của dãy số đã cho.
Trong các dãy số
cho bởi số hạng tổng quát
sau, dã số nào là dãy số tăng?
Xét đáp án ta có:
=> Dãy số là dãy tăng.
Cho khai triển
. Tìm m để tổng các hệ số của khai triển bằng 0.
Tổng các hệ số của khai triển là giá trị của biểu thức tại
Vậy tổng các hệ số của khai triển là:
Để tổng các hệ số khai triển bằng 0 thì
Bạn An thả quả bóng cao su từ độ cao
so với mặt đất theo phương thẳng đứng. Mỗi lần chạm đất quả bóng lại nảy lên theo phương thẳng đứng có độ cao bằng
độ cao lần rơi trước đó. Tổng quãng đường quả bóng đi được gần bằng bao nhiêu?
Đáp án: 45
Bạn An thả quả bóng cao su từ độ cao so với mặt đất theo phương thẳng đứng. Mỗi lần chạm đất quả bóng lại nảy lên theo phương thẳng đứng có độ cao bằng
độ cao lần rơi trước đó. Tổng quãng đường quả bóng đi được gần bằng bao nhiêu?
Đáp án: 45
Quãng đường bóng đi được từ khi thả đến chạm đất lần 1 là .
Quãng đường bóng đi được từ khi chạm đất lần 1đến chạm đất lần 2 là .
Quãng đường bóng đi được từ khi chạm đất lần 2 đến chạm đất lần 3 là ……
Quãng đường bóng đi được từ khi chạm đất lần n đến chạm đất lần là
Tổng quãng đường bóng đi được từ lúc thả đến không nảy lên nữa là:
.
Cho
là cấp số cộng biết
. Tổng 15 số hạng đầu của cấp số cộng đó bằng
Ta có:
Vậy
Trong các dãy số sau, dãy số nào lập thành một cấp số cộng?
Xét đáp án A: 1; -3; -7; -11; -15; …
=> u2 – u1 = u3 – u2 = u4 – u3 = -4 => Chọn đáp án A
Xét đáp án B: 1; -3; -7; -11; -15; …
=> u2 – u1 = -4 ≠ u3 – u2 = -3 => Loại đáp án B
Xét đáp án C: 1; -3; -7; -11; -15; …
=> u2 – u1 = -3 ≠ u3 – u2 = -2 => Loại đáp án C
Xét đáp án D: 1; -3; -7; -11; -15; …
=> u2 – u1 = -4 ≠ u3 – u2 = -2 => Loại đáp án D
Cho cấp số nhân
có tổng n số hạng đầu tiên là
. Tổng n số hạng đầu tiên của cấp số nhân là 2046. Xác định n.
Ta có:
Xét các số nguyên dương chia hết cho 3. Tổng 50 số nguyên dương đầu tiên đó bằng:
Ta có:
Số nguyên dương chia hết cho 3 có dạng nên chúng lập thành cấp số cộng
Cho cấp số nhân lùi vô hạn
công bội
. Đặt
thì:
Tổng cấp số nhân là:
Do cấp số đã cho là cấp số nhân lùi vô hạn nên ta có:
Cho cấp số nhân có các số hạng lần lượt là
. Tìm số hạng tổng quát
của cấp số nhân đã cho.
Các số hạng lần lượt là lập thành cấp số nhân
Bác Hoa mua nhà trị giá 900 triệu đồng theo phương thức trả góp. Nếu cuối mỗi tháng bắt đầu từ tháng thứ nhất bác Hoa trả 8 000 000 và chịu lãi số tiền chưa trả là 0,6% mỗi tháng thì sau bao lâu bác Hoa trả hết số tiền trên?
Ta có:
Vậy sau khoảng 188 tháng thì bác Hoa sẽ trả hết số tiền đó.
Cho dãy số
xác định bởi
với
. Khi đó số hạng
của dãy
là
Ta có:
Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17. Tổng của số hạng thứ hai và số hạng thứ tư là 14. Tính công sai d của cấp số cộng đã cho.
Ta có:
Trong các dãy số
cho bởi số hạng tổng quát
, dãy nào là cấp số nhân?
Dãy là cấp số nhân có
Cho cấp số nhân (un) có u1 = -1; u6 = -0,00001. Khi đó công bội q và số hạng tổng quát là:
Ta có:
Trong các dãy (un) sau đây, dãy nào là dãy số bị chặn?
Ta có:
n2 − n + 1 < n2 + 2n + 2 (do n > 0)
Suy ra , với mọi n.
Cho cấp số cộng
. Xác định
biết rằng
?
Ta có:
Khi đó:
Suy ra
Cho cấp số cộng
có số hạng đầu
công sai
Năm số hạng liên tiếp đầu tiên của cấp số cộng là:
Ta dùng công thức tổng quát , hoặc
để tính các số hạng của một cấp số cộng.
Ta có
Cho dãy số (un) với
.
Số hạng tổng quát un là?
Ta có u1 = 1; u2 = u1 + 3; u3 = u2 + 5; u4 = u3 + 7; …; un = un − 1 + (2n−1)
Cộng từng vế với vế của các đẳng thức trên và rút gọn ta được
un = 1 + 3 + 5 + 7 + … + (2n−1) = n2.
Giả sử Q là tập hợp con của tập các số nguyên dương sao cho
(a) ![]()
(b) ![]()
Chọn mệnh đề đúng trong các mệnh đề dưới đây.
Mệnh đề " Mọi số nguyên dương đều thuộc " sai vì
là tập con thực sự của
nên tồn tại số nguyên dương không thuộc
.
Mệnh đề "Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc " đúng theo lí thuyết của phương pháp quy nạp.
Mệnh đề "Mọi số nguyên bé hơn k đều thuộc " sai theo giả thiết thì phải là số tự nhiên lớn hơn
.
Mệnh đề "Mọi số nguyên đều thuộc " sai vì số nguyên âm không thuộc
.
Cho cấp số nhân
với công bội
. Đặt
. Khẳng định nào sau đây đúng?
Theo công thức tính tổng số hạng đầu của CSN ta được
.
Cho cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; … Tìm số hạng tổng quát un của cấp số nhân đã cho.
Cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; …
Trong các dãy số sau dãy số nào là cấp số cộng?
Ta có:
=> Dãy số là cấp số cộng.
Cho dãy số (un) với
. Công thức số hạng tổng quát của dãy số là?
Ta có
Nhân vế với vế của các đẳng thức trên, ta được: .
Biết ba số
lập thành một cấp số nhân. Tính tổng các giá trị của m thỏa mãn?
Để ba số lập thành một cấp số nhân thì
Vậy tổng các giá trị của m là
Người ta trồng
cây theo một hình tam giác như sau: hàng thứ nhất trồng 1 cây, kể từ hàng thứ hai trở đi số cây trồng mỗi hàng nhiều hơn 1 cây so với hàng liền trước nó. Hỏi có tất cả bao nhiêu hàng cây?
Giả sử trồng được n hàng cây
Số cây ở mỗi hàng lập thành cấp số cộng có và công sai
Theo giả thiết ta có:
Vậy có tất cả hàng cây.
Tìm z để 2; 8; z; 128 lập thành một cấp số nhân.
Dãy số 2; 8; z; 128 theo thứ tự là u1; u2; u3; u4 ta có:
Cho cấp số cộng
với
. Khi đó số hạng
là số nào?
Theo bài ra ta có:
.
Cho cấp số cộng (un) có
;
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Cho hai dãy số (un), (vn) được xác định như sau u1 = 3, v1 = 2 và
với n ≥ 2. Công thức tổng quát của hai dãy (un) và (vn) là?
Chứng minh
Ta có
Mặt khác nên (1) đúng với n = 1 Giả sử
, ta có
Vậy (1) đúng với ∀n ≥ 1
Ta có
Do đó ta suy ra: