Số 7922 là số hạng thứ bao nhiêu của dãy số un = n2 + 1?
Ta có 7922 = 7921 + 1 = 892 + 1 ⇒ n = 89
Số 7922 là số hạng thứ bao nhiêu của dãy số un = n2 + 1?
Ta có 7922 = 7921 + 1 = 892 + 1 ⇒ n = 89
Cho tam giác ABC vuông tại C có độ dài ba cạnh lập thành một cấp số nhân có công bội lớn hơn 1. Xác định công bội của cấp số nhân đó.
Giả sử là độ dài ba cạnh của tam giác ABC, .
Do độ lớn ba cạnh tam giác lập thành cấp số nhân, công bội nên
Cho cấp số nhân có các số hạng lần lượt là . Gọi là tổng của số hạng đầu tiên của cấp số nhân đó. Mệnh đề nào sau đây đúng?
Cấp số nhân đã cho có:
Cho dãy số (un) xác định bởi .
Số hạng thứ 2020 của dãy số đã cho là?
Do 0 < α < π nên
Vậy với mọi n ∈ ℕ*. Ta sẽ chứng minh bằng quy nạp.
Với n = 1 thì u1 = cosα (đúng).
Giả sử với n = k ∈ ℕ* ta có .
Ta chứng minh
Thật vậy,
Từ đó ta có
Dãy số là cấp số nhân với
Cấp số nhân
Cho cấp số nhân có . Mệnh đề nào sau đây đúng?
Theo bài ra ta có:
Cho cấp số nhân có . Số là số hạng thứ mấy của cấp số nhân đã cho?
Ta có:
Cho cấp số cộng có số hạng đầu và công sai lần lượt là . Số hạng thứ bằng:
Ta có:
Trong các dãy số cho bởi số hạng tổng quát , dãy nào là cấp số nhân?
Dãy là cấp số nhân có
Biết bốn số theo thứ tự lập thành cấp số cộng. Giá trị của biểu thức bằng
Ta có:
Xét tính tăng giảm của dãy số , ta thu được kết quả
Ta có
Vậy dãy (un) là dãy số giảm.
Biết ba số lập thành một cấp số nhân. Tính tổng các giá trị của m thỏa mãn?
Để ba số lập thành một cấp số nhân thì
Vậy tổng các giá trị của m là
Cho một cấp số cộng (Un) có . Công sai d của cấp số cộng là:
Ta có:
Cho dãy số , biết . Dãy số bị chặn trên bởi số nào dưới đây?
Ta có:
Với mọi n ta có:
Vậy dãy số bị chặn trên bởi
Cho dãy xác định bởi công thức . Số hạng tổng quát của dãy un là?
Ta có
Ta đi chứng minh cho dãy số có số hạng tổng quát là
Thật vậy, n = 1 thì u1 = 3 (đúng).
Giả sử với n = k(k≥1) thì . Ta đi chứng minh
Ta có (điều phải chứng minh).
Vậy số hạng tổng quát của dãy số là
Cho cấp số cộng có . Số 100 là số hạng thứ mấy của cấp số cộng?
Ta có:
Cho dãy số (un) với . Công thức số hạng tổng quát của dãy số là?
Ta có
Nhân vế với vế của các đẳng thức trên, ta được: .
Một cấp số cộng có 12 số hạng. Biết rằng tổng của 12 số hạng đó bằng 144 và số hạng thứ mười hai bằng 23. Khi đó công sai d của cấp số cộng đã cho là bao nhiêu?
Ta có:
=> d = 2
Cho dãy số biết . Số hạng có ba chữ số lớn nhất của dãy là:
Tìm số hạng tổng quát của dãy số
Dự đoán
Ta chứng minh theo phương pháp quy nạp
Với ta có:
Giả sử , khi đó ta có:
Vậy công thức tổng quát được chứng minh theo nguyên lí quy nạp.
Ta có:
Mà
Nên ta chọn
Vậy là số hạng cần tìm.
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức là một dãy số giảm. Sai||Đúng
b) . Đúng||Sai
c) Cấp số cộng thỏa mãn có số hạng tổng quát là . Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức là một dãy số giảm. Sai||Đúng
b) . Đúng||Sai
c) Cấp số cộng thỏa mãn có số hạng tổng quát là . Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
a) Xét dãy số đã cho ta có:
nên dãy số không tăng không giảm.
b) đúng bằng chứng minh quy nạp.
c) Công sai d = 5 và số hạng đầu tiên bằng
Khi đó số hạng tổng quát của cấp số cộng là
d) Từ giả thiết ta có:
Suy ra tổng các số hạng của cấp số nhân đó là: .
Cho a, b, c theo thứ tự lập thành cấp số cộng. Giá trị x + y là bao nhiêu? Biết:
Ta có: a, b, c lập thành cấp số cộng nên
a + c = 2b => (a + c)2 = 4b2
Cho dãy số (un) xác định bởi .
Số nguyên dương n nhỏ nhất sao cho là?
Ta có:
= > un = 1 + 13 + 23 + … + (n−1)3
Ta lại có 13 + 23 + … + (n−1)3
Suy ra
Theo giả thiết ta có
Mà n là số nguyên dương nhỏ nhất nên n = 2020.
Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?
Ta có:
Dãy là một cấp số cộng
với d là hằng số.
Hay
=> Cấp số cộng cần tìm là:
Ba góc của một tam giác vuông tạo thành cấp số cộng. Hai góc nhọn của tam giác có số đo (độ) là:
Ba góc A, B, C của một tam giác vuông theo thứ tự đó lập thành một cấp số cộng nên
Cho cấp số nhân có công bội . Đẳng thức nào sau đây đúng?
Mệnh đề đúng .
Cho cấp số cộng thỏa mãn . Tính công sai của cấp số cộng đó:
Ta có:
Một người muốn có 100 triệu sau 18 tháng phải gửi mỗi tháng vào ngân hàng bao nhiêu tiền, biết lãi suất 0,6%/ tháng (lãi kép)?
Gọi a là số tiền gửi mỗi tháng.
Cuối tháng thứ 1 số tiền là
Cuối tháng thứ 2 số tiền là
Cuối tháng thứ n số tiền là
Áp dụng công thức trên, ta tính được
Vậy số tiền phải gửi mỗi tháng là 5246112 (đồng).
Với mọi số nguyên dương thì chia hết cho
Với chia hết cho 3, ta sẽ chứng minh chia hết cho 3 với mọi .
Giả sử khẳng định đúng với tức là chia hết cho 3, ta chứng minh cũng chia hết cho 3.
Ta có:
Vậy với mọi số nguyên dương thì chia hết cho 3.
Cho dãy số , biết . Số là số hạng thứ mấy của dãy số?
Ta có:
Vậy số là số hạng thứ 7 của dãy số.
Một cấp số nhân có số hạng đầu , công bội q = 2. Biết . Tìm n?
Ta có:
Cho dãy số vô hạn (un) là cấp số cộng có công sai d, số hạng đầu u1. Hãy chọn khẳng định sai?
Ta có:
Công thức tổng n số hạng đầu tiên của cấp số cộng là:
Cho hai số −3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số đó tạo thành cấp số cộng có công sai d = 2. Tìm n.
Ta có:
Cấp số cộng có k số hạng gồm có và số hạng cuối .
Khi đó:
Do đó
Một cấp số nhân có 6 số hạng, số hạng đầu bằng 2 và số hạng thứ sáu bằng 486. Tìm công bội q của cấp số nhân đã cho.
Theo giả thiết ta có:
Cho dãy số (un) xác định bởi . Tìm số hạng thứ 2018 của dãy số đã cho.
Ta có:
Đặt
Khi đó (vn) là một cấp số nhân với và công bội q = 21
Do đó số hạng tổng quát của dãy (vn) là
=>
Trong các phát biểu sau, có bao nhiêu phát biểu đúng?
(1) Dãy số được xác định bởi là một dãy bị chặn.
(2) Dãy số được xác định bởi an = n2 là một dãy giảm.
(3) Dãy số được xác định bởi an = 1 − n2 là một dãy số giảm và không bị chặn dưới.
(4) Dãy số được xác định bởi an = (−1)nn2 là một dãy không tăng, không giảm.
nên dãy số xác định bởi là một dãy bị chặn.
an + 1 − an = (n+1)2 − n2 = 2n + 1 > 0, ∀n ∈ ℕ* nên dãy số xác định bởi an = n2 là dãy tăng.
an + 1 − an = (1−(n+1)2) − (1−n2) = 2n − 1 > 0, ∀n ∈ ℕ* nên dãy số xác định bởi an = 1 − n2 là dãy số giảm và không bị chặn dưới.
a1 = − 1 < a2 = 4 > a3 = − 9 nên dãy số xác định bởi an = (−1)nn2 là dãy không tăng không giảm.
Cho dãy số , biết . Dãy số bị chặn dưới bởi số nào dưới đây?
Ta có:
Trong các dãy số sau, dãy số nào là cấp số nhân?
Ta có:
=> là cấp số nhân
Xét các số nguyên dương chia hết cho 3. Tổng 50 số nguyên dương đầu tiên đó bằng:
Ta có:
Số nguyên dương chia hết cho 3 có dạng nên chúng lập thành cấp số cộng
Cho dãy số , biết . Tìm số hạng
Ta có:
Cho cấp số cộng có số hạng đầu công sai . Năm số hạng liên tiếp đầu tiên của cấp số này là:
Ta có: