Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Với n \in \mathbb{N}^{*}, cho dãy số \left( u_{n} ight) xác định bởi hệ thức truy hồi u_{1} =
2, u_{n + 1} = 2u_{n} + 3. Giá trị của số hạng thứ 4 bằng

    Ta có:

    u_{2} = 2u_{1} + 3 = 2.2 + 3 =
7,

    u_{3} = 2u_{2} + 3 = 2.7 + 3 =
17,

    u_{4} = 2u_{3} + 3 = 2.17 + 3 =
37.

  • Câu 2: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Xét đáp án \frac{1}{\pi};\frac{1}{\pi^{2}};\frac{1}{\pi^{4}};\frac{1}{\pi^{6}};...\Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{1}{\pi} eq \frac{1}{\pi^{2}} = \frac{u_{3}}{u_{2}}

    => Dãy số \frac{1}{\pi};\frac{1}{\pi^{2}};\frac{1}{\pi^{4}};\frac{1}{\pi^{6}};... không phải là cấp số nhân.

  • Câu 3: Thông hiểu

    Cho dãy số (un) với u_{n} = \frac{n - 1}{n^{2} + 1}, biết u_{k} = \frac{2}{13}. Hỏi uk là số hạng thứ mấy của dãy số đã cho?

    Ta có:

    u_{k} = \frac{k - 1}{k^{2} + 1}
\Rightarrow \frac{k - 1}{k^{2} + 1} = \frac{2}{13} \Rightarrow k =
5 (do  k∈ℕ*)

  • Câu 4: Vận dụng cao

    Từ độ cao 5 5 , 8 m của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng \frac{1}{10} độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 68,2

    Đáp án là:

    Từ độ cao 5 5 , 8 m của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng \frac{1}{10} độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 68,2

    Theo đề, mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng \frac{1}{10} độ cao mà quả bóng đạt trước đó và sau đó lại rơi xuống từ độ cao thứ hai. Do đó độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến:

    Thời điểm chạm đất lần thứ nhất là d_{1}
= 55,8(m).

    Thời điểm chạm đất lần thứ 2 là d_{2}= 55,8 + 2.\frac{55,8}{10}( m ).

    Thời điểm chạm đất lần thứ 3 là d_{3} =
55,8 + 2.\frac{55,8}{10} + 2.\frac{55,8}{10^{2}}(m).

    Thời điểm chạm đất lần thứ 4 là d_{4} =
55,8 + 2.\frac{55,8}{10} + 2.\frac{55,8}{10^{2}} +
2.\frac{55,8}{10^{3}}(m).

    Thời điểm chạm đất lần thứ n,\ \ (n >
1)

    d_{n} = 55,8 +
2.\frac{55,8}{10} + 2.\frac{55,8}{10^{2}} + ... + 2.\frac{55,8}{10^{n -
1}}(m).

    Do đó độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất là:

    d = 55,8 +
2.\frac{55,8}{10} + 2.\frac{55,8}{10^{2}} + ... + 2.\frac{55,8}{10^{n -
1}} + ...(m).

    2.\frac{55,8}{10}, 2.\frac{55,8}{10^{2}}, 2.\frac{55,8}{10^{3}}, …, 2.\frac{55,8}{10^{n - 1}},…, là một cấp số nhân lùi vô hạn, công bội q =
\frac{1}{10}, nên ta có:

    2.\dfrac{55,8}{10} + 2.\dfrac{55,8}{10^{2}}+ ... + 2.\dfrac{55,8}{10^{n - 1}} + ...= \dfrac{2.\dfrac{55,8}{10}}{1 -\dfrac{1}{10}} = 12,4.

    Vậy d = 55,8 + 2.\frac{55,8}{10} +
2.\frac{55,8}{10^{2}} + ... + 2.\frac{55,8}{10^{n - 1}} +
...

    = 55,8 + 12,4 = 68,2\ (m)

  • Câu 5: Thông hiểu

    Cho cấp số nhân lùi vô hạn \left( {{u_n}} ight) công bội q. Đặt S = {u_1} + {u_2} + ... + {u_n} + ... thì:

    Tổng cấp số nhân là: S = {u_1}.\frac{{1 - {q^n}}}{{1 - q}}

    Do cấp số đã cho là cấp số nhân lùi vô hạn nên ta có:

    \begin{matrix}  \left| q ight| < 1 \Rightarrow {q^n} \mapsto 0 \hfill \\   \Rightarrow 1 - {q^n} \mapsto 1 \hfill \\   \Rightarrow S = \dfrac{{{u_1}}}{{1 - q}} \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight) biết u_{5} = 5, u_{10} = 15 Khi đó u_{7} bằng

    Ta có

    \left\{ \begin{matrix}
u_{5} = 5 \\
u_{10} = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + 4d = 5 \\
u_{1} + 9d = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 3 \\
d = 2 \\
\end{matrix} ight.

    Vậy u_{7} = u_{1} + 6d = - 3 + 6.2 =
9

  • Câu 7: Vận dụng

    Cho dãy số \left( u_{n}
ight) thỏa mãn log_{3}\left(
2u_{5} - 63 ight) = 2log_{4}\left( u_{n} - 8n + 8 ight);\left(
\forall n \in \mathbb{N}^{*} ight). Đặt S_{n} = u_{1} + u_{2} + ... + u_{n}. Tìm số nguyên dương lớn nhất của n thỏa mãn \frac{u_{n}.S_{2n}}{u_{2n}.S_{n}} <
\frac{148}{75}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho dãy số \left( u_{n}
ight) thỏa mãn log_{3}\left(
2u_{5} - 63 ight) = 2log_{4}\left( u_{n} - 8n + 8 ight);\left(
\forall n \in \mathbb{N}^{*} ight). Đặt S_{n} = u_{1} + u_{2} + ... + u_{n}. Tìm số nguyên dương lớn nhất của n thỏa mãn \frac{u_{n}.S_{2n}}{u_{2n}.S_{n}} <
\frac{148}{75}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Vận dụng

    Cho dãy số \left(
u_{n} ight) biết u_{n} =
\frac{1}{1.4} + \frac{1}{2.5} + ... + \frac{1}{n(n + 3)} với \forall n = 1,2,3.... Mệnh đề nào sau đây đúng?

    Ta có: u_{n} > 0

    => Dãy số \left( u_{n}
ight) bị chặn dưới bởi 0.

    Mặt khác \frac{1}{k(k + 3)} <
\frac{1}{k(k + 1)} = \frac{1}{k} - \frac{1}{k + 1};\left( k\mathbb{\in
Z} ight)

    u_{n} < \frac{1}{1.2} + \frac{1}{2.3}
+ \frac{1}{3.4} + ... + \frac{1}{n(n + 1)}

    = 1 - \frac{1}{2} + \frac{1}{2} -
\frac{1}{3} + ... + \frac{1}{n} - \frac{1}{n + 1}

    = 1 - \frac{1}{n + 1} <
1

    Vậy \left( u_{n} ight) bị chặn trên, do đó dãy \left( u_{n}
ight) bị chặn.

  • Câu 9: Nhận biết

    Cho cấp số nhân \left( u_{n} ight) có số hạng đầu là u_{1} = 1, công bội là q = 2019. Tính u_{2019}?

    Theo công thức cấp số nhân ta có: u_{2019} = u_{1}.q^{n - 1} = 1.2019^{2019 - 1} =
2019^{2018}

  • Câu 10: Thông hiểu

    Cho dãy số (u_{n}), biết {u_n} = \cos n + \sin n. Dãy số (u_{n}) bị chặn trên bởi số nào dưới đây?

     Ta có:

    \begin{matrix}  {u_n} = \cos n + \sin n \hfill \\   = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin n + \dfrac{1}{{\sqrt 2 }}\cos n} ight) \hfill \\   = \sqrt 2 \left( {\sin \dfrac{\pi }{4}\sin n + \cos \dfrac{\pi }{4}\cos n} ight) \hfill \\   = \sqrt 2 \cos \left( {n - \dfrac{\pi }{4}} ight) \hfill \\ \end{matrix}

    Với mọi n ta có:

    \begin{matrix}   - 1 \leqslant \cos \left( {n - \dfrac{\pi }{4}} ight) \leqslant 1 \hfill \\   \Leftrightarrow  - \sqrt 2  \leqslant {u_n} = \sqrt 2 \cos \left( {n - \dfrac{\pi }{4}} ight) \leqslant \sqrt 2  \hfill \\ \end{matrix}

    Vậy dãy số (u_{n}) bị chặn trên bởi \sqrt{2}

  • Câu 11: Thông hiểu

    Cho dãy số \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_{n + 1}} = {u_n} + n} \end{array}} ight.. Tìm số hạng thứ 5 của dãy số:

    Ta có:

    \begin{matrix}  {u_2} = {u_1} + 1 = 5 \hfill \\  {u_3} = {u_2} + 2 = 7 \hfill \\  {u_4} = {u_3} + 3 = 10 \hfill \\ \end{matrix}

    Do đó số hạng thứ 5 của dãy số là Sử dụng công thức: {u_5} = {u_4} + 4 = 14

  • Câu 12: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?

    Dãy (un) là một cấp số cộng

    => {u_n} = an + b với a, b là hằng số

    => {u_n} = 6 - 3n

  • Câu 13: Vận dụng cao

    Tổng S ={4.5}^{100} \cdot \left( \frac{1}{5} + \frac{1}{5^{2}} + \frac{1}{5^{3}}+ \ldots + \frac{1}{5^{100}} ight) + 1 có kết quả bằng?

    Đặt M = \frac{1}{5} + \frac{1}{5^{2}} +\frac{1}{5^{3}} + \ldots + \frac{1}{5^{100}}

    \Rightarrow 5M - M = \left( 1 +\frac{1}{5} + \frac{1}{5^{2}} + \ldots + \frac{1}{5^{99}} ight) -\left( \frac{1}{5} + \frac{1}{5^{2}} + \frac{1}{5^{3}}\ldots +\frac{1}{5^{100}} ight)

    = 1 - \frac{1}{5^{100}}

    \Rightarrow 4M = 1 - \frac{1}{5^{100}}\Rightarrow M = \frac{5^{100} - 1}{{4.5}^{100}}

    \Rightarrow S = {4.5}^{100} \cdot\frac{5^{100} - 1}{{4.5}^{100}} + 1 = 5^{100}

  • Câu 14: Nhận biết

    Trong các dãy được cho dưới đây, dãy số nào là cấp số cộng?

    Xét dãy số u_{n}=7-3n

    Ta có:

    \begin{matrix}  {u_{n + 1}} = 7 - 3\left( {n + 1} ight) \hfill \\   \Rightarrow {u_{n + 1}} - {u_n} = 7 - 3\left( {n + 1} ight) - \left( {7 - 3n} ight) =  - 3 \hfill \\ \end{matrix}

    Vậy dãy số u_{n}=7-3n là một cấp số cộng với u_1=4;d=-3

  • Câu 15: Thông hiểu

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + n^{3},\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Số nguyên dương n nhỏ nhất sao cho \sqrt{u_{n} - 1} \geq 2039190 là?

    Ta có: \left\{ \begin{matrix}
\begin{matrix}
\begin{matrix}
\begin{matrix}
u_{1} = 1 \\
u_{2} = u_{1} + 1^{3} \\
\end{matrix} \\
u_{3} = u_{2} + 2^{3} \\
\end{matrix} \\
\ldots \\
\end{matrix} \\
u_{n + 1} = u_{n} + n^{3} \\
\end{matrix} ight.

     =  > un = 1 + 13 + 23 + … + (n−1)3

    Ta lại có 13 + 23 + … + (n−1)3

    = (1 + 2 + 3 + \ldots + n - 1)^{2} =
\left( \frac{n(n - 1)}{2} ight)^{2}

    Suy ra u_{n} = 1 + \left( \frac{n(n -
1)}{2} ight)^{2}

    Theo giả thiết ta có \sqrt{u_{n} - 1} \geq2039190 \Leftrightarrow \frac{n(n - 1)}{2} \geq 2039190

    \Leftrightarrow n(n - 1) \geq 4078380 \Leftrightarrow \left\lbrack \begin{matrix}n \geq 2020 \ \leq - 2019 \\\end{matrix} ight.

    n là số nguyên dương nhỏ nhất nên n = 2020.

  • Câu 16: Thông hiểu

    Cho dãy số (un) với \ \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + ( - 1)^{2n + 1}\text{.~} \\
\end{matrix} ight.

    Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có un + 1 = un + (−1)2n + 1 = un − 1

    u1 = 1; u2 = u1 − 1; u3 = u2 − 1; …; un = un − 1 − 1

    Cộng vế với vế của các đẳng thức trên, ta được:

    un = 1 − (n−1) = 2 − n.

  • Câu 17: Nhận biết

    Cho cấp số cộng (u_{n}) có u_{1}=-3 và d=\frac{1}{2}. Khẳng định nào sau đây là đúng?

    Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight).d \hfill \\   \Rightarrow {u_n} =  - 3 + \left( {n - 1} ight).\dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Tìm z để 2; 8; z; 128 lập thành một cấp số nhân.

    Dãy số 2; 8; z; 128 theo thứ tự là u1; u2; u3; u4 ta có:

    \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{u_2}}}{{{u_1}}} = \dfrac{{{u_3}}}{{{u_2}}}} \\   {\dfrac{{{u_2}}}{{{u_1}}} = \dfrac{{{u_3}}}{{{u_2}}}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\dfrac{8}{2} = \dfrac{z}{8}} \\   {\dfrac{{128}}{z} = \dfrac{z}{8}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {z = 32} \\   {{z^2} = 1024} \end{array}} ight. \Rightarrow z = 32

  • Câu 19: Vận dụng

    Cho dãy số (un)u_{1} = \frac{1}{5}u_{n + 1} = \frac{n + 1}{5n}u_{n},\forall n \geq
1.

    Tất cả các giá trị n để S = \sum_{k =
1}^{n}\mspace{2mu}\frac{u_{k}}{k} < \frac{5^{2018} -
1}{{4.5}^{2018}} là?

    Ta có u_{n + 1} = \frac{n + 1}{5n}u_{n}
\Leftrightarrow \frac{u_{n + 1}}{n + 1} = \frac{1}{5} \cdot
\frac{u_{n}}{n}

    Đặt v_{n} = \frac{u_{n}}{n},\forall n \geq
1. Suy ra (vn) là cấp số nhận có công bội q = \frac{1}{5}v = \frac{1}{5}.

    Ta có S = \sum_{k =
1}^{n}\mspace{2mu}\frac{u_{k}}{k} = \sum_{k = 1}^{n}\mspace{2mu} v_{k} =
v_{1}\frac{1 - q^{n}}{1 - q} = \frac{1}{5} \cdot \frac{1 - \left(
\frac{1}{5} ight)^{n}}{1 - \frac{1}{5}} = \frac{1}{4} \cdot
\frac{5^{n} - 1}{5^{n}} = T_{n}

    Do vn > 0, ∀n ≥ 1 nên (Tn) là dãy tăng.

    Suy ra T_{n} < \frac{5^{2018} -
1}{{4.5}^{2018}} = T_{2018} \Leftrightarrow n < 2018

  • Câu 20: Nhận biết

    Cho cấp số nhân \left( u_{n} ight) với u_{1} = - 2;q = - 5. Viết bốn số hạng đầu tiên của cấp số nhân.

    Ta có: \left\{ \begin{matrix}
u_{1} = - 2 \\
q = - 5 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = - 2 \\
u_{2} = u_{1}q = 10 \\
u_{3} = u_{1}q^{2} = - 50 \\
u_{4} = u_{1}q^{3} = 250 \\
\end{matrix} ight.

  • Câu 21: Thông hiểu

    Tìm tất cả các giá trị của x để ba số 2x - 1;x;2x + 1 theo thứ tự lập thành một cấp số nhân.

    Ta có:

    Ba số 2x - 1;x;2x + 1 theo thứ tự lập thành một cấp số nhân

    \Rightarrow x^{2} = (2x - 1).(2x +
1)

    \Rightarrow x^{2} = 4x^{2} -
1

    \Rightarrow 3x^{2} = 1

    \Rightarrow x = \pm
\frac{1}{\sqrt{3}}

  • Câu 22: Thông hiểu

    Cho cấp số cộng có u_{1} = 5, d = 2. Khi đó:

    a) u_{6} = 15. Đúng||Sai

    b) Số hạng tổng quát thứ n của cấp số cộng là u_{n} = 2n + 3. Đúng||Sai

    c) Tổng nsố hạng đầu tiên của cấp số cộng là S_{n} = n^{2} + 4n. Đúng||Sai

    d) Tổng S = u_{10} + u_{11} + .. + u_{20}
= 310. Sai||Đúng

    Đáp án là:

    Cho cấp số cộng có u_{1} = 5, d = 2. Khi đó:

    a) u_{6} = 15. Đúng||Sai

    b) Số hạng tổng quát thứ n của cấp số cộng là u_{n} = 2n + 3. Đúng||Sai

    c) Tổng nsố hạng đầu tiên của cấp số cộng là S_{n} = n^{2} + 4n. Đúng||Sai

    d) Tổng S = u_{10} + u_{11} + .. + u_{20}
= 310. Sai||Đúng

    a) Áp dụng công thức tính số hạng tổng quát thứ n của cấp số cộng ta có:

    u_{6} = u_{1} + 5d = 5 + 5.2 =
15.

    b) Áp dụng công thức tính số hạng tổng quát thứ n của cấp số cộng ta có:

    u_{n} = u_{1} + (n - 1)d = 5 + (n - 1).2
= 2n + 3.

    c) Áp dụng công thức tính tổng nsố hạng đầu tiên của cấp số cộng ta có:

    S_{n} = nu_{1} + \frac{(n - 1)n}{2}d = 5n
+ \frac{(n - 1)n}{2}.2 = n^{2} + 4n.

    d) Ta viết lại

    S = u_{10} + u_{11} + .. +
u_{20}

    = \left( u_{1} + u_{2} + .. + u_{20}
ight) - \left( u_{1} + u_{2} + .. + u_{9} ight)

    = S_{20} - S_{9} = 480 - 117 =
363.

  • Câu 23: Nhận biết

    Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên n ≥ p ( p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề A(n) đúng với n = k. Khẳng định nào sau đây là đúng?

    Mệnh đề A(n) đúng với n = k với k ≥ p.

  • Câu 24: Thông hiểu

    Có bao nhiêu giá trị nguyên của a để ba số a^{4};a^{2};3a^{2} - 9 lập thành một cấp số cộng?

    Để ba số a^{4};a^{2};3a^{2} - 9 lập thành một cấp số cộng thì a^{4} + 3a^{2}
- 9 = 2a^{2}

    Đặt t = a^{2};(t \geq 0) phương trình trở thành

    t^{2} + t - 9 = 0\Leftrightarrow \left\lbrack \begin{matrix}t = \dfrac{- 1 + \sqrt{37}}{2} \\t = \dfrac{- 1 - \sqrt{37}}{2}(l) \\\end{matrix} ight.

    Với t = \frac{- 1 + \sqrt{37}}{2}
\Rightarrow a = \pm \sqrt{\frac{- 1 + \sqrt{37}}{2}}

    Do a\mathbb{\in Z} vậy không có giá trị nào của a thỏa mãn yêu cầu để bài.

  • Câu 25: Thông hiểu

    Cho dãy số (u_{n}), biết {u_n} = \sin n - \cos n. Dãy số (u_{n}) bị chặn dưới bởi số nào dưới đây?

    Ta có:

    \begin{matrix}  {u_n} = \sin n - \cos n \hfill \\   = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin n - \dfrac{1}{{\sqrt 2 }}\cos n} ight) \hfill \\   = \sqrt 2 \left( {\cos \dfrac{\pi }{4}\sin n - \sin \dfrac{\pi }{4}\cos n} ight) \hfill \\   = \sqrt 2 \sin \left( {n - \dfrac{\pi }{4}} ight) \hfill \\   \Rightarrow 1 \geqslant \sin \left( {n - \dfrac{\pi }{4}} ight) \geqslant  - 1 \hfill \\   \Rightarrow \sqrt 2  \geqslant \sqrt 2 \sin \left( {n - \dfrac{\pi }{4}} ight) \geqslant  - \sqrt 2  \hfill \\ \end{matrix}

  • Câu 26: Nhận biết

    Với mỗi số nguyên dương, kí hiệu un = 5.23n − 2 + 33n − 1

    Một học sinh chứng minh un luôn chia hết cho 19 như sau:

    Bước 1: Khi n = 1, ta có u1 = 5.21 + 32 = 19 ⇒ u1⋮19

    Bước 2: Giả sử uk = 5.23k − 2 + 33k + 1 chia hết cho 19 với k ≥ 1.

    Khi đó ta có uk + 1 = 5.23k + 1 + 33k + 2 = 8(5.23k − 2+33k − 1) + 19.33k − 1

    Bước 3: Vì 5.23k − 2 + 33k − 119.33k − 1 chia hết cho 19 nên uk + 1 chia hết cho 19, ∀n ∈ ℕ*

    Vậy un chia hết cho 19, ∀n ∈ ℕ*

    Lập luận trên đúng hay sai? Nếu sai thì bắt đầu từ bước nào?

    Lập luận hoàn toàn đúng!

  • Câu 27: Vận dụng

    Cho dãy số vô hạn (un) là cấp số cộng có công sai d, số hạng đầu u1. Hãy chọn khẳng định sai?

     Ta có:

    Công thức tổng n số hạng đầu tiên của cấp số cộng là:

    \begin{matrix}  {S_n} = n{u_1} + \dfrac{{n\left( {n - 1} ight)d}}{2} \hfill \\   \Rightarrow {S_{12}} = 12{u_1} + \dfrac{{12.11.d}}{2} = 6\left( {2{u_1} + 11d} ight) e \dfrac{n}{2}.\left( {2{u_1} + 11d} ight) \hfill \\ \end{matrix}

  • Câu 28: Nhận biết

    Tìm số hạng thứ 11 của cấp số cộng có số hạng đầu bằng 3 và công sai d = −2?

    Ta có: u_{11} = u_{1} + 10d = -
17

  • Câu 29: Thông hiểu

    Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:0,212121\ldots =
\frac{a}{b}; 4,333\ldots =
\frac{c}{d}. Khi đó:

    a) a + b = 40. Đúng||Sai

    b) Ba số a;b;58 tạo thành một cấp số cộng. Sai||Đúng

    c) c + d = 15. Sai||Đúng

    d) \lim c = 13. Đúng||Sai

    Đáp án là:

    Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:0,212121\ldots =
\frac{a}{b}; 4,333\ldots =
\frac{c}{d}. Khi đó:

    a) a + b = 40. Đúng||Sai

    b) Ba số a;b;58 tạo thành một cấp số cộng. Sai||Đúng

    c) c + d = 15. Sai||Đúng

    d) \lim c = 13. Đúng||Sai

    Ta có: 0,212121\ldots = 0,21 + 0,0021 +
0,000021 + \ldots

    Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu 0,21 và công bội \frac{1}{100}.

    Vì vậy

    0,212121\ldots = 0,21 + 0,0021 +0,000021 + \ldots= \frac{0,21}{1 - \frac{1}{100}} =\frac{7}{33}.

    Ta có: 0,333\ldots = 0,3 + 0,03 + 0,003 +
\ldots

    Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 0,3 và công bội là \frac{1}{10}

    Vì vậy

    4,333\ldots = 4 + 0,3 + 0,03 +0,003 + \ldots= 4 + \frac{0,3}{1 - \frac{1}{10}} =\frac{13}{3}.

    Kết luận:

    a) Đúng

    b) Sai

    c) Sai

    d) Đúng

  • Câu 30: Vận dụng

    Cho dãy số (un) xác định bởi {u_1} = 2;{u_{n + 1}} =  - 2{u_n};\left( {n \geqslant 1,n \in \mathbb{N}} ight). Tính tổng của 10 số hạng đầu tiên của dãy số?

     Ta có:

    \begin{matrix}  \dfrac{{{u_{n + 1}}}}{{{u_n}}} =  - 2 \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {q =  - 2} \end{array}} ight. \hfill \\   \Rightarrow {S_{10}} = \dfrac{{{u_1}.\left( {1 - {q^{10}}} ight)}}{{1 - q}} =  - 682 \hfill \\ \end{matrix}

  • Câu 31: Thông hiểu

    Một cấp số cộng gồm 5 số hạng. Hiệu số hạng đầu và số hạng cuối bằng 20. Tìm công sai d của cấp số cộng đã cho?

    Gọi năm số hạng của cấp số cộng đã cho là: u_{1}^{};u_{2}^{};u_{3}^{};u_{4}^{};u_{5}^{}.

    Theo đề bài ta có:

    u_{1} - u_{5} = 20

    \Leftrightarrow u_{1} - (u_{1} + 4d) =
20

    \Leftrightarrow d = - 5

    Vậy công sai của cấp số cộng đã cho là d
= - 5

  • Câu 32: Vận dụng cao

    Với giá trị nào của m ta có thể tìm được các giá trị của x để các số {5^{x + 1}} + {5^{1 - x}};\frac{m}{2};{25^x} + {25^{ - x}} lập thành một cấp số cộng?

     Để ba số hạng lập thành một cấp số cộng ta có:

    \begin{matrix}  \left( {{5^{x + 1}} + {5^{1 - x}}} ight) + \left( {{{25}^x} + {{25}^{ - x}}} ight) = 2.\left( {\dfrac{m}{2}} ight) \hfill \\   \Rightarrow m = 5\left( {{5^x} + \dfrac{1}{{{5^x}}}} ight) + \left( {{5^{2x}} + \dfrac{1}{{{5^{2x}}}}} ight) \hfill \\ \end{matrix}

    Theo bất đẳng thức Cauchy ta có:

    \begin{matrix}  {5^x} + \dfrac{1}{{{5^x}}} \geqslant 2\sqrt 1  = 2 \hfill \\  {5^{2x}} + \dfrac{1}{{{5^{2x}}}} \geqslant 2 \hfill \\   \Rightarrow m \geqslant 5.2 + 2 = 12 \hfill \\ \end{matrix}

  • Câu 33: Nhận biết

    Một cấp số nhân có số hạng thứ hai bằng 4 và số hạng thứ sáu bằng 64. Khi đó, số hạng tổng quát của cấp số nhân đó có thể tính theo công thức nào dưới đây?

    Ta có: \left\{ \begin{matrix}
u_{2} = 4 \\
u_{6} = 64 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1}q = 4 \\
u_{1}q^{5} = 64 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
q = 2 \\
\end{matrix} ight.

    \Rightarrow u_{n} = u_{1}.q^{n - 1} =
2.2^{n - 1} = 2^{n}

  • Câu 34: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

  • Câu 35: Nhận biết

    Cho cấp số nhân (un) có số hạng đầu u1 = 5; công bội q = -2. Số hạng thứ sáu của (un) là:

    Ta có: {u_6} = {u_1}.{q^{6 - 1}} = 5.{\left( { - 2} ight)^5} =  - 160

  • Câu 36: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = - 5d = 3. Mệnh đề nào sau đây đúng?

    Ta có

    \left\{ \begin{matrix}
u_{1} = - 5 \\
d = 3 \\
\end{matrix} ight.\ \overset{CTTQ}{ightarrow}u_{13} = u_{1} + (13 -
1)d = - 5 + 3(13 - 1) = 31

  • Câu 37: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight) có tổng n số hạng đầu tiên là S_{n} = \frac{3^{n} - 1}{3^{n -
1}}. Tìm số hạng thứ 5 của cấp số nhân đã cho.

    S_{n} = \frac{3^{n} - 1}{3^{n - 1}} =
3.\left\lbrack 1 - \left( \frac{1}{3} ight)^{n}
ightbrack

    Mặt khác

    \Rightarrow S_{n} = u_{1}.\dfrac{1 -q^{n}}{1 - q} \Rightarrow \left\{ \begin{matrix}u_{1} = 3(1 - q) \\q = \dfrac{1}{3} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\q = \dfrac{1}{3} \\\end{matrix} ight.

    \Rightarrow u_{5} = u_{1}.q^{4} =
\frac{2}{3^{4}}

  • Câu 38: Nhận biết

    Cho dãy số (u_{n}), biết {u_n} = {( - 1)^n}.\frac{{{2^n}}}{n}. Tìm số hạng u_{3}

    Ta có:

    {u_3} = {( - 1)^3}.\frac{{{2^3}}}{3} =  - \frac{8}{3}

  • Câu 39: Nhận biết

    Cho dãy số (u_{n}), biết u_{n}=5^{n+1}. Tìm số hạng u_{n-1}

    Ta có:

    \begin{matrix}  {u_n} = {5^{n + 1}} \hfill \\   \Rightarrow {u_{n - 1}} = {5^{\left( {n - 1} ight) + 1}} = {5^n} \hfill \\ \end{matrix}

  • Câu 40: Vận dụng

    Người ta trồng 3003 cây theo hình tam giác như sau: Hàng thứ nhất có 1 cây. hàng thứ hai có hai cây, hàng thứ ba có ba cây,.... Vậy có tất cả bao nhiêu hàng?

    Gọi số hàng cây được trồng là x (hàng)

    Số cây các hàng là: 1; 2; 3; 4; ...; x - 1; x

    Số cây của mỗi hàng (bắt đầu từ hàng thứ nhất) lập thành một cấp số cộng 

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 1} \\   {d = 1} \end{array}} ight.

    Khi đó ta có:

    \begin{matrix}  {S_x} = \dfrac{{x\left[ {2.{u_1} + \left( {x - 1} ight).d} ight]}}{2} \hfill \\   \Leftrightarrow 3003 = \dfrac{{x\left[ {2.{u_1} + \left( {x - 1} ight).d} ight]}}{2} \hfill \\   \Leftrightarrow 6006 = 2x + {x^2} - x \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 77\left( {tm} ight)} \\   {x =  - 78\left( {ktm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy có tất cả 77 hàng cây được trồng.

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 18 lượt xem
Sắp xếp theo