Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Mạnh cầm một tờ giấy và lấy kéo cắt thành 7 mảnh sau đó nhặt một trong số bảy mảnh giấy đã cắt và lại cắt thành 7 mảnh. Mạnh cứ tiếp tục cắt như vậy. Sau một hồi, Mạnh thu lại và đếm tất cả các mảnh giấy đã cắt. Hỏi kết quả nào sau đây có thể xảy ra?

    Mỗi lần cắt một mảnh giấy thành 7 mảnh, tức là Mạnh tạo thêm 6 mảnh giấy. Do đó công thức tính số mảnh giấy theo n bước được thực hiện là S_n = 6n + 1.

    Ta chứng minh tính đúng đắn của công thức trên bằng phương pháp quy nạp theo n.

    Với n=1 ta có: {S_1} = 6.1 + 1 = 7 (đúng) 

    Giả sử sau k bước, Mạnh thu được số mảnh giấy là: {S_k} = 6.k + 1

    Tiếp tục đến bước n=k+1. Mạnh lấy một trong số những mảnh giấy nhận được trong k bước cắt trước và cắt thành 7 mảnh. Tức là Mạnh đã lấy đi 1 trong S_k mảnh và thay vào đó 7 mảnh được cắt ra.

    Vậy tổng số mảnh giấy ở bước k+1 là:

    \begin{matrix}  {S_{k + 1}} = {S_k} - 1 + 7 \hfill \\   = {S_k} + 6 \hfill \\   = 6k + 1 + 6 \hfill \\   = 6\left( {k + 1} ight) + 1 \hfill \\ \end{matrix}

    Vậy công thức {S_n} = 6n + 1 đúng với mọi số nguyên dương n. Theo công thức trên chỉ có phương án 121 = 6.20 + 1 thỏa mãn.

  • Câu 2: Thông hiểu

    Hai số hạng đầu của một cấp số nhân là 2x + 14x^{2} - 1. Số hạng thứ ba của cấp số nhân là:

    Công bội của cấp số nhân là: a =
\frac{4x^{2} - 1}{2x + 1} = 2x - 1

    Vậy số hạng thứ ba của cấp số nhân là:

    \left( 4x^{2} - 1 ight)(2x - 1) =
8x^{3} - 4x^{2} - 2x + 1

  • Câu 3: Thông hiểu

    Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:

    Ta có cấp số nhân (un) nên khi đó:

    \begin{matrix}\left\{ {\begin{array}{*{20}{c}}  {{u_m} = 16} \\   {{u_{m + 1}} = 36} \end{array}} ight. \Leftrightarrow \dfrac{{{u_{m + 1}}}}{{{u_m}}} = \dfrac{{36}}{{16}} = \dfrac{9}{4} \Rightarrow q = \dfrac{9}{4} \hfill \\   \Rightarrow {u_{m + 2}} = {u_{m + 1}}.q = 36.\dfrac{9}{4} = 81 \hfill \\ \end{matrix}

  • Câu 4: Nhận biết

    Cho dãy số (un) là một cấp số nhân có số hạng đầu u1 và công bội q. Đẳng thức nào sau đây sai?

    Từ định nghĩa cấp số nhân ta có các kết quả sau:

    \begin{matrix}  {u_{n + 1}} = {u_n}.q;\left( {n \geqslant 1} ight) \hfill \\  {u_n} = {u_1}.{q^{n - 1}};\left( {n \geqslant 2} ight) \hfill \\  {u_k}^2 = {u_{k - 1}}.{u_{k + 1}};\left( {k \geqslant 2} ight) \hfill \\ \end{matrix}

    Đáp án C sai

  • Câu 5: Nhận biết

    Cho cấp số cộng (u_{n}) có u_{3}=15 và d=-2 . Tìm u_{n} 

    Ta có: 

    \begin{matrix}  {u_3} = 15 \hfill \\   \Leftrightarrow {u_1} + 2d = 15 \hfill \\   \Rightarrow {u_1} = 19 \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow {u_n} = {u_1} + \left( {n - 1} ight).d \hfill \\   = 19 + \left( {n - 1} ight).\left( { - 2} ight) \hfill \\   = 21 - 2n \hfill \\   \Rightarrow {u_n} =  - 2n + 21 \hfill \\ \end{matrix}

  • Câu 6: Nhận biết

    Cho dãy số\left( {{u_n}} ight):\left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {{u_{n + 1}} = n{u_n}} \end{array}} ight. với mọi n\geq 1. Khi đó số hạng thứ 5 của dãy là:

    Ta có:

    \begin{matrix}  {u_1} = 2 \hfill \\  {u_2} = 1{u_1} = 2 \hfill \\  {u_3} = 2.{u_2} = 2.2 = 4 \hfill \\  {u_4} = 3.{u_3} = 3.4 = 12 \hfill \\  {u_5} = 4.{u_4} = 4.12 = 48 \hfill \\ \end{matrix}

    Khi đó số hạng thứ 5 của dãy là 48

  • Câu 7: Thông hiểu

    Tìm x và y để dãy số 9;x; - 1;y là một cấp số cộng?

    Để dãy số 9;x; - 1;y là một cấp số cộng thì \left\{ \begin{matrix}x = \dfrac{9 - 1}{2} \\- 1 = \dfrac{x + y}{2} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = 4 \\y = - 6 \\\end{matrix} ight.

  • Câu 8: Nhận biết

    Trong các dãy được cho dưới đây, dãy số nào là cấp số cộng?

    Xét dãy số u_{n}=7-3n

    Ta có:

    \begin{matrix}  {u_{n + 1}} = 7 - 3\left( {n + 1} ight) \hfill \\   \Rightarrow {u_{n + 1}} - {u_n} = 7 - 3\left( {n + 1} ight) - \left( {7 - 3n} ight) =  - 3 \hfill \\ \end{matrix}

    Vậy dãy số u_{n}=7-3n là một cấp số cộng với u_1=4;d=-3

  • Câu 9: Thông hiểu

    Một cấp số nhân có 6 số hạng, số hạng đầu bằng 2 và số hạng thứ sáu bằng 486. Tìm công bội q của cấp số nhân đã cho.

    Theo giả thiết ta có:

    \left\{ \begin{matrix}u_{1} = 2 \\u_{6} = 486 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\u_{1}q^{5} = 486 \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\q^{5} = 243 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\q = 3 \\\end{matrix} ight.

  • Câu 10: Nhận biết

    Dãy số nào sau đây không phải là một cấp số cộng?

    Xét đáp án A: - \frac{2}{3}; - \frac{1}{3};0;\frac{1}{3};\frac{2}{3};1;\frac{4}{3};....

    {u_2} - {u_1} = {u_3} - {u_2} = {u_4} - {u_3} = ... = \frac{1}{3}

    => Loại đáp án A 

    Xét đáp án B: 15\sqrt 2 ;12\sqrt 2 ;9\sqrt 2 ;6\sqrt 2 ;...

    {u_2} - {u_1} = {u_3} - {u_2} = {u_4} - {u_3} = ... = 3\sqrt 2

    => Loại đáp án B

    Xét đáp án C: \frac{4}{5};1;\frac{7}{5};\frac{9}{5};\frac{{11}}{5};...

    {u_2} - {u_1} = \frac{1}{5} e {u_3} - {u_2} = \frac{2}{5}

    => Chọn đáp án C

    Xét đáp án D: \frac{1}{{\sqrt 3 }};\frac{{2\sqrt 3 }}{3};\sqrt 3 ;\frac{{4\sqrt 3 }}{3};\frac{5}{{\sqrt 3 }};...

    {u_2} - {u_1} = {u_3} - {u_2} = {u_4} - {u_3} = ... = \frac{{\sqrt 3 }}{3}

    => Loại đáp án D

  • Câu 11: Thông hiểu

    Một cấp số nhân có số hạng đầu {u_1} = 3, công bội q = 2. Biết {S_n} = 765. Tìm n?

    Ta có:

    \begin{matrix}  {S_n} = \dfrac{{{u_1}\left( {1 - {q^n}} ight)}}{{1 - q}} = \dfrac{{3\left( {1 - {2^n}} ight)}}{{1 - 2}} = 765 \hfill \\   \Rightarrow n = 8 \hfill \\ \end{matrix}

  • Câu 12: Thông hiểu

    Cho dãy số (u_{n}), biết {u_n} = \cos n + \sin n. Dãy số (u_{n}) bị chặn trên bởi số nào dưới đây?

     Ta có:

    \begin{matrix}  {u_n} = \cos n + \sin n \hfill \\   = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin n + \dfrac{1}{{\sqrt 2 }}\cos n} ight) \hfill \\   = \sqrt 2 \left( {\sin \dfrac{\pi }{4}\sin n + \cos \dfrac{\pi }{4}\cos n} ight) \hfill \\   = \sqrt 2 \cos \left( {n - \dfrac{\pi }{4}} ight) \hfill \\ \end{matrix}

    Với mọi n ta có:

    \begin{matrix}   - 1 \leqslant \cos \left( {n - \dfrac{\pi }{4}} ight) \leqslant 1 \hfill \\   \Leftrightarrow  - \sqrt 2  \leqslant {u_n} = \sqrt 2 \cos \left( {n - \dfrac{\pi }{4}} ight) \leqslant \sqrt 2  \hfill \\ \end{matrix}

    Vậy dãy số (u_{n}) bị chặn trên bởi \sqrt{2}

  • Câu 13: Vận dụng

    Cho dãy số \left(
u_{n} ight) với \left\{\begin{matrix}u_{1} = 1 \\u_{n + 1} = \dfrac{u_{n} + 2}{u_{n} + 1};(n \geq 1) \\\end{matrix} ight.. Chọn đáp án đúng.

    Ta chứng minh 1 \leq u_{n} \leq
\frac{3}{2};n \geq 1 bằng phương pháp quy nạp.

    Với n = 1 ta có: 1 \leq u_{1} \leq \frac{3}{2}

    Giả sử 1 \leq u_{k} \leq \frac{3}{2};k
\geq 1. Ta cần chứng minh 1 \leq
u_{k +} \leq \frac{3}{2}.

    Thật vậy u_{k + 1} = 1 + \frac{1}{u_{k} +
1}

    u_{k} + 1 > 0 \Rightarrow u_{k + 1}
= 1 + \frac{1}{u_{k} + 1} > 1

    u_{k} + 1 \geq 2 \Rightarrow u_{k + 1}
= 1 + \frac{1}{u_{k} + 1} \leq 1 + \frac{1}{2} =
\frac{3}{2}

    Vậy 1 \leq u_{n} \leq \frac{3}{2};n \geq
1 hay dãy \left( u_{n}
ight) bị chặn trên bởi \frac{3}{2} và bị chặn dưới bởi 1.

  • Câu 14: Vận dụng cao

    Cho tổng S_{n} =
\frac{3}{(1.2)^{2}} + \frac{5}{(2.3)^{2}} + \frac{7}{(3.4)^{2}} + \ldots
+ \frac{2n + 1}{\lbrack n(n + 1)brack^{2}}. Giá trị S10

    Cách 1:

    Ta có \frac{3}{(1.2)^{2}} = \frac{1}{1} -
\frac{1}{4};\frac{5}{(2.3)^{2}} = \frac{1}{4} -
\frac{1}{9};\ldots

    Suy ra S_{n} = \frac{1}{1} - \frac{1}{4} +
\frac{1}{4} - \frac{1}{9} + \ldots + \frac{1}{n^{2}} - \frac{1}{(n +
1)^{2}} = \frac{n(n + 2)}{(n + 1)^{2}}

    Vậy S_{10} = \frac{10(10 + 2)}{(10 +
1)^{2}} = \frac{120}{121}.

    Cách 2:

    Ta có S_{10} = \frac{3}{(1.2)^{2}} +
\frac{5}{(2.3)^{2}} + \frac{7}{(3.4)^{2}} + \ldots +
\frac{21}{(10.11)^{2}}

    Suy ra S_{10} = \frac{1}{1} - \frac{1}{4}
+ \frac{1}{4} - \frac{1}{9} + \ldots + \frac{1}{10^{2}} -
\frac{1}{11^{2}} = \frac{1}{1} - \frac{1}{11^{2}} =
\frac{120}{121}.

  • Câu 15: Nhận biết

    Cho dãy số (un)u1 = 7; un + 1 = 2un + 3. Khi đó u3 bằng?

    Ta có u3 = 2u2 + 3 = 2 ⋅ (2u1+3) + 3 = 4u1 + 9 − 4 ⋅ 7 + 9 = 37.

  • Câu 16: Nhận biết

    Cho dãy số \left( u_{n} ight) xác định bởi u_{n} = \frac{n - 1}{n^{2} + 2n
+ 3}. Giá trị u_{21}

    Ta có: u_{21} = \frac{21 - 1}{21^{2} +
2.21 + 3} = \frac{10}{243}.

  • Câu 17: Nhận biết

    Cho dãy số (u_{n}) với u_{n}=\frac{3}{2}.5^{n}. Khẳng định nào sau đây là đúng?

    Ta có: \frac{{{u_{n + 1}}}}{{{u_n}}} = \dfrac{{\dfrac{3}{2}{{.5}^{n + 1}}}}{{\dfrac{3}{2}{{.5}^n}}} = 5 > 1

    => (u_{n}) là một cấp số nhân với công bội là q = 5

    Số hạng đầu tiên của dãy là: {u_1} = \frac{3}{2}{.5^1} = \frac{{15}}{2}

  • Câu 18: Thông hiểu

    Cho dãy số \left( u_{n} ight) biết \left\{ \begin{matrix}u_{1} = 3 \\u_{n + 1} = 3u_{n} \\\end{matrix},\forall n \in N^{*} ight.. Tìm số hạng tổng quát của dãy số \left( u_{n}ight).

    Ta có u_{1} = 3\frac{u_{n+1}}{u_{n}}=3

    Suy ra dãy số \left( u_{n}ight)là cấp số nhân với \left\{\begin{matrix}u_{1} = 3 \\q = 3 \\\end{matrix} ight.

    Do đó u_{n} = u_{1}.q^{n - 1} = 3.3^{n -1} = 3^{n}

  • Câu 19: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

  • Câu 20: Thông hiểu

    Giả sử Q là tập hợp con của tập các số nguyên dương sao cho

    (a) k ∈ \mathbb{ Q}

    (b) n ∈ \mathbb{Q} => n + 1 ∈ \mathbb{Q} ,∀ n ≥ k.

    Chọn mệnh đề đúng trong các mệnh đề dưới đây.

     Mệnh đề " Mọi số nguyên dương đều thuộc \mathbb{Q}" sai vì \mathbb{Q} là tập con thực sự của \mathbb{N^*} nên tồn tại số nguyên dương không thuộc \mathbb{Q}.

    Mệnh đề "Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc \mathbb{Q}" đúng theo lí thuyết của phương pháp quy nạp.

    Mệnh đề "Mọi số nguyên bé hơn k đều thuộc \mathbb{Q}" sai theo giả thiết thì phải là số tự nhiên lớn hơn k \in \mathbb{Q}.

    Mệnh đề "Mọi số nguyên đều thuộc \mathbb{Q}" sai vì số nguyên âm không thuộc \mathbb{Q}.

  • Câu 21: Thông hiểu

    Tìm z để 2; 8; z; 128 lập thành một cấp số nhân.

    Dãy số 2; 8; z; 128 theo thứ tự là u1; u2; u3; u4 ta có:

    \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{u_2}}}{{{u_1}}} = \dfrac{{{u_3}}}{{{u_2}}}} \\   {\dfrac{{{u_2}}}{{{u_1}}} = \dfrac{{{u_3}}}{{{u_2}}}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\dfrac{8}{2} = \dfrac{z}{8}} \\   {\dfrac{{128}}{z} = \dfrac{z}{8}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {z = 32} \\   {{z^2} = 1024} \end{array}} ight. \Rightarrow z = 32

  • Câu 22: Vận dụng

    Biết các số C_{n}^{1};C_{n}^{2};C_{n}^{3} theo thứ tự lập thành một cấp số cộng với n > 3. Tìm n

    Ta có: 

    Các số C_{n}^{1};C_{n}^{2};C_{n}^{3} theo thứ tự lập thành một cấp số cộng với n > 3

    \begin{matrix}  C_n^1 + C_n^3 = 2C_n^2 \hfill \\   \Leftrightarrow \dfrac{{n!}}{{1!\left( {n - 1} ight)!}} + \dfrac{{n!}}{{3!\left( {n - 3} ight)!}} = 2.\dfrac{{n!}}{{2!\left( {n - 2} ight)!}} \hfill \\   \Leftrightarrow n + \dfrac{{n\left( {n - 1} ight)\left( {n - 2} ight)}}{6} = n\left( {n - 1} ight) \hfill \\   \Leftrightarrow 6n + \left( {{n^2} - n} ight)\left( {n - 2} ight) = 6n\left( {n - 1} ight) \hfill \\   \Leftrightarrow 6n + {n^3} - 3{n^2} + 2n = 6{n^2} - 6n \hfill \\   \Leftrightarrow {n^3} - 9{n^2} + 14n = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 0\left( {ktm} ight)} \\   {n = 2\left( {ktm} ight)} \\   {n = 7\left( {tm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 23: Thông hiểu

    Cho cấp số cộng (Un) có {u_1} = 4;{u_2} = 1. Giá trị của {u_{10}} bằng:

    Ta có:

    \begin{matrix}  {u_1} = 4;{u_2} = 1 \Rightarrow d = {u_2} - {u_1} = 1 - 4 =  - 3 \hfill \\   \Rightarrow {u_{10}} = {u_1} + 9d = 4 + 9.\left( { - 3} ight) =  - 23 \hfill \\ \end{matrix}

  • Câu 24: Thông hiểu

    Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:0,212121\ldots =
\frac{a}{b}; 4,333\ldots =
\frac{c}{d}. Khi đó:

    a) a + b = 40. Đúng||Sai

    b) Ba số a;b;58 tạo thành một cấp số cộng. Sai||Đúng

    c) c + d = 15. Sai||Đúng

    d) \lim c = 13. Đúng||Sai

    Đáp án là:

    Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:0,212121\ldots =
\frac{a}{b}; 4,333\ldots =
\frac{c}{d}. Khi đó:

    a) a + b = 40. Đúng||Sai

    b) Ba số a;b;58 tạo thành một cấp số cộng. Sai||Đúng

    c) c + d = 15. Sai||Đúng

    d) \lim c = 13. Đúng||Sai

    Ta có: 0,212121\ldots = 0,21 + 0,0021 +
0,000021 + \ldots

    Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu 0,21 và công bội \frac{1}{100}.

    Vì vậy

    0,212121\ldots = 0,21 + 0,0021 +0,000021 + \ldots= \frac{0,21}{1 - \frac{1}{100}} =\frac{7}{33}.

    Ta có: 0,333\ldots = 0,3 + 0,03 + 0,003 +
\ldots

    Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 0,3 và công bội là \frac{1}{10}

    Vì vậy

    4,333\ldots = 4 + 0,3 + 0,03 +0,003 + \ldots= 4 + \frac{0,3}{1 - \frac{1}{10}} =\frac{13}{3}.

    Kết luận:

    a) Đúng

    b) Sai

    c) Sai

    d) Đúng

  • Câu 25: Nhận biết

    Trong các dãy số sau, dãy số nào là cấp số nhân?

    \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{\left( { - 1} ight)}^{n + 1}}.\left( {n + 1} ight)}}{{{{\left( { - 1} ight)}^n}.n}} =  - \frac{{n + 1}}{n}=> Loại đáp án A

    \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{\left( {n + 1} ight)}^2}}}{{{n^2}}}=> Loại đáp án B

    \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{2^{n + 1}}}}{{{2^n}}} = 2 \Rightarrow {u_{n + 1}} = 2{u_n}=> Dãy số là cấp số nhân có công bội q = 2

    Chọn đáp án C

    \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{n + 1}}{{3n}}=> Loại đáp án B

  • Câu 26: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight)với u_{n} = 3n - 7. Tìm số hạng đầu u_{1} và công sai d của cấp số cộng trên.

    Ta có:

    u_{n} = 3n - 7 \Rightarrow u_{1} = 3.1 -
7 = - 4

    u_{n} - u_{n - 1} = (3n - 7) - (3n - 3 -
7) = 3 \Rightarrow d = 3

  • Câu 27: Nhận biết

    Cho cấp số cộng (u_{n}) có u_{1}=-3 và d=\frac{1}{2}. Khẳng định nào sau đây là đúng?

    Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight).d \hfill \\   \Rightarrow {u_n} =  - 3 + \left( {n - 1} ight).\dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 28: Thông hiểu

    Xen vào giữa hai số 4 và 40 bốn số để được một cấp số cộng có công sai lớn hơn 3. Tìm tổng 4 số đó.

    Sau khi chèn 4 số vào giữa hai số 4 và 40 thì cấp số cộng đó có 6 số hạng

    Nghĩa là coi 4 là số hạng đầu tiên thì 40 là số hạng thứ 6

    Theo bài ra ta có: \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_6} = 40} \end{array}} ight.

    {u_1} + 5.d = 40

    \begin{matrix}   \Rightarrow 4 + 5.d = 40 \hfill \\   \Rightarrow 5.d = 36 \hfill \\   \Rightarrow d = \dfrac{{36}}{5} \hfill \\ \end{matrix}

    Vậy công sai của cấp số cộng là d = \frac{{36}}{5}

    Khi đó 4 số hạng được thêm lần lượt là: \frac{{56}}{5};\frac{{92}}{5};\frac{{128}}{5};\frac{{164}}{5}

    Tổng bốn số hạng ở trên là: \frac{{56}}{5} + \frac{{92}}{5} + \frac{{128}}{5} + \frac{{164}}{5} = 88

  • Câu 29: Thông hiểu

    Với n \in \mathbb{N}^{*}, cho dãy số \left( u_{n} ight) gồm tất cả các số nguyên dương chia 32 theo thứ tự tăng dần. Số hạng tổng quát của dãy số này là

    Các số nguyên dương chia 32 theo thứ tự tăng dần là 5, 8, 11, 14,…

    Ta có 5 = 3.1 + 2, 8 = 3.2 + 2, 11 = 3.3 + 2, 14 = 3.4 + 2, …

    Vậy u_{n} = 3n + 2

  • Câu 30: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + n^{2} \\
\end{matrix} ight.. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có \left\{ \begin{matrix}
u_{1} = 1 \\
u_{2} = u_{1} + 1^{2} \\
u_{3} = u_{2} + 2^{2} \\
\cdots \\
u_{n} = u_{n - 1} + (n - 1)^{2} \\
\end{matrix} ight.

    Cộng vế với vế của các đẳng thức trên, ta được

    u_{n} = 1 + 1^{2} + 2^{2} + \ldots + (n
- 1)^{2} = 1 + \frac{n(n - 1)(n - 2)}{6}

  • Câu 31: Nhận biết

    Khẳng định nào dưới đây sai?

    Số hạng tổng quát của cấp số cộng (un) là {u_n} = {u_1} + \left( {n - 1} ight)d với công sai d và số hạng đầu u1

  • Câu 32: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) với số hạng đầu u_{1} và công bội q. Với n \geq
1, khẳng định nào sau đây đúng?

    Do \left( u_{n} ight) là cấp số nhân nên u_{n + 1} = u_{n}.q\ \ ,\ \ (n
\geq 1).

  • Câu 33: Thông hiểu

    Nếu các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì m bằng bao nhiêu?

    Để các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì:

    \begin{matrix}  5 + m + 17 + m = 2\left( {7 + 2m} ight) \hfill \\   \Leftrightarrow 5 + m + 17 + m = 2\left( {7 + 2m} ight) \hfill \\   \Leftrightarrow 2m = 8 \Rightarrow m = 4 \hfill \\ \end{matrix}

    Vậy nếu các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì m = 4

  • Câu 34: Vận dụng

    Cho cấp số nhân (un) có tổng n số hạng đầu tiên là {S_n} = {5^n} - 1. Tìm số hạng đầu và công bội của cấp số nhân đó?

     Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_1} = {S_1} = 5 - 1 = 4} \\   {{u_1} + {u_2} = {S_2} = {5^2} - 1 = 24} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_2} = 24 - {u_1} = 20} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {q = \dfrac{{{u_2}}}{{{u_1}}} = 5} \end{array}} ight.

  • Câu 35: Vận dụng cao

    Cho phương trình: x^{3} +3x^{2}-(24+m)x-26-n=0. Tìm hệ thức liên hệ giữa m và n để 3 nghiệm phân biệt x_{1},x_{2},x_{3} lập thành một cấp số cộng.

    Vì ba nghiệm {x_1};{x_2};{x_3} phân biệt lập thành một cấp số cộng nên ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{x_1} = x_0 - d} \\   {{x_2} = x_0} \\   {{x_3} = x_0 + d} \end{array}} ight.;\left( {d e 0} ight)

    Theo giả thiết ta có: 

    \begin{matrix}  {x^3} + 3{x^2} - (24 + m)x - 26 - n \hfill \\   = \left( {x - {x_1}} ight).\left( {x - {x_2}} ight).\left( {x - {x_3}} ight) \hfill \\   = \left( {x - {x_0} + d} ight)\left( {x - {x_0}} ight)\left( {x - {x_0} - d} ight) \hfill \\   = {x^3} - 3{x_0}{x^2} + \left( {3{x_0}^2 - {d^2}} ight)x - {x_0}^3 + {x_0}.{d^2};\left( {\forall x} ight) \hfill \\ \end{matrix}

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}   - 3{x_0} = 3 \hfill \\  24 + m = 3{x_0}^2 - {d^2} \hfill \\ \end{gathered}  \\   { - 26 - n =  - {x_0}^3 + {x_0}.{d^2}} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_0} =  - 1} \\   {m - n} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 36: Vận dụng

    Người ta trồng 3240 cây theo một hình tam giác như sau: hàng thứ nhất trồng 1 cây, kể từ hàng thứ hai trở đi số cây trồng mỗi hàng nhiều hơn 1 cây so với hàng liền trước nó. Hỏi có tất cả bao nhiêu hàng cây?

    Giả sử trồng được n hàng cây (n \geq 1,n
\in N)

    Số cây ở mỗi hàng lập thành cấp số cộng có u_{1} = 1 và công sai d = 1

    Theo giả thiết ta có:

    S_{n} = 3240

    \Leftrightarrow \frac{n}{2}.\left\lbrack
2u_{1} + (n - 1)d ightbrack = 3240

    \Leftrightarrow n(n + 1) =
6480

    \Leftrightarrow n^{2} + n - 6480 =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
n = 80(tm) \\
n = - 81(ktm) \\
\end{matrix} ight.

    Vậy có tất cả 80 hàng cây.

  • Câu 37: Nhận biết

    Cho dãy số (u_n) xác định bởi u_{n}=\frac{n^{2}}{3^{n}} với \forall  n\geq 1. Khi đó số hạng u_{2n} của dãy (u_{n}) là 

     Ta có:

    \begin{matrix}  {u_n} = \dfrac{{{n^2}}}{{{3^n}}} \hfill \\   \Rightarrow {u_{2n}} = \dfrac{{{{\left( {2n} ight)}^2}}}{{{3^{2n}}}} = \dfrac{{4{n^2}}}{{{9^n}}} \hfill \\ \end{matrix}

  • Câu 38: Thông hiểu

    Cho các dãy số sau. Dãy số nào là dãy số tăng?

    Xét đáp án 1;1;1;1;1;1... dãy là dãy hằng nên không tăng không giảm.

    Xét đáp án 1;\frac{-1}{2};\frac{1}{4};\frac{-1}{8};\frac{1}{16};... \Rightarrow {u_1} > {u_2} < {u_3} (Loại)

    Xét đáp án 1;3;5;7;9;.... \Rightarrow {u_n} < {u_{n + 1}};n \in {\mathbb{N}^*} (Chọn)

    Xét đáp án 1;\frac{1}{2};\frac{1}{4};\frac{1}{8};\frac{1}{16};... Rightarrow {u_1} > {u_2} > {u_3}.... > {u_n} > ... (Loại)

  • Câu 39: Vận dụng cao

    Bạn An thả quả bóng cao su từ độ cao 5\ \
m so với mặt đất theo phương thẳng đứng. Mỗi lần chạm đất quả bóng lại nảy lên theo phương thẳng đứng có độ cao bằng \frac{4}{5} độ cao lần rơi trước đó. Tổng quãng đường quả bóng đi được gần bằng bao nhiêu?

    Đáp án: 45

    Đáp án là:

    Bạn An thả quả bóng cao su từ độ cao 5\ \
m so với mặt đất theo phương thẳng đứng. Mỗi lần chạm đất quả bóng lại nảy lên theo phương thẳng đứng có độ cao bằng \frac{4}{5} độ cao lần rơi trước đó. Tổng quãng đường quả bóng đi được gần bằng bao nhiêu?

    Đáp án: 45

    Quãng đường bóng đi được từ khi thả đến chạm đất lần 1 là 5\ \ m.

    Quãng đường bóng đi được từ khi chạm đất lần 1đến chạm đất lần 2 là \frac{4}{5}.5.2.

    Quãng đường bóng đi được từ khi chạm đất lần 2 đến chạm đất lần 3 là \left( \frac{4}{5}
ight)^{2}.5.2……

    Quãng đường bóng đi được từ khi chạm đất lần n đến chạm đất lần n + 1\left( \frac{4}{5} ight)^{n}.5.2

    Tổng quãng đường bóng đi được từ lúc thả đến không nảy lên nữa là:

    S = 5 + \frac{4}{5}.5.2 + \left(
\frac{4}{5} ight)^{2}.5.2 + ... + \left( \frac{4}{5} ight)^{n}.5.2 +
...

    = 5 + 5.2.\left( \frac{4}{5} + \left(\frac{4}{5} ight)^{2} + ... + \left( \frac{4}{5} ight)^{n} + ...ight)= 5 + 5.2.\dfrac{\dfrac{4}{5}}{1 - \dfrac{4}{5}} = 45.

  • Câu 40: Vận dụng

    Dân số của thành phố A hiện nay là 4 triệu người. Biết rằng tỉ lệ tăng dân số hằng năm của thành phố A là 1%. Hỏi dân số của thành phố A sau 5 năm nữa sẽ là bao nhiêu?

    Với mỗi số nguyên dương n, ký hiệu u_{n} là số dân của thành phố A sau n năm.

    Khi đó, theo giả thiết của bài toán ta có:

    u_{n} = u_{n - 1} + u_{n - 1}.0,01 =
u_{n - 1}.1,01;(n \geq 2)

    Ta có: \left( u_{n} ight) là một cấp số nhân với số hạng đầu là u_{1} = 4
+ 4.0,01 = 4.1,01 và công bội q =
1,01

    \Rightarrow u_{n} = 4.1,01.(1,01)^{n -
1} = 4.(1,01)^{n};(n \geq 1)

    => Số dân của thành phố A sau 5 năm là: \Rightarrow u_{5} = 4.(1,01)^{5} = 4,2 (triệu người).

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 19 lượt xem
Sắp xếp theo