Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    a) Xét dãy số đã cho ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4} \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số \left( u_{n} ight) không tăng không giảm.

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}" đúng bằng chứng minh quy nạp.

    c) Công sai d = 5 và số hạng đầu tiên bằng u_{1} = - 2020

    Khi đó số hạng tổng quát của cấp số cộng là

    u_{n} = u_{1} + 5(n - 1)

    \Rightarrow u_{n} = - 2025 +
5n

    d) Từ giả thiết ta có:

    \left\{ \begin{matrix}
u_{1} = 160 \\
u_{6} = 5 \\
\end{matrix} ight.\  \Rightarrow q = \sqrt[5]{\frac{u_{6}}{u_{1}}} =
\frac{1}{2}

    Suy ra tổng các số hạng của cấp số nhân đó là: S = \dfrac{u_{1}\left( 1 - q^{6} ight)}{1 - q} =\dfrac{160.\left\lbrack 1 - \left( \dfrac{1}{2} ight)^{6}ightbrack}{\dfrac{1}{2}} = 315.

  • Câu 2: Thông hiểu

    Số hạng âm trong dãy số x1; x2; x3; …; xn với x_{n} = C_{n + 5}^{4} - \frac{143P_{n +
5}}{96P_{n + 3}} là?

    Ta có c_{n + 5}^{4} = \frac{(n + 5)(n +4)(n + 3)(n + 2)}{24},

    \frac{143P_{n + 5}}{96P_{n + 3}} = \frac{143(n +5)(n + 4)}{96}

    x_{n} = C_{n + 5}^{4} - \frac{143P_{n +
5}}{96P_{n + 3}}

    = \frac{(n + 5)(n + 4)(2n + 17)(2n -
7)}{96} > 0,\forall n \geq 4,n \in \mathbb{N}^{*}

    Vậy các số hạng âm là x1; x2; x3.

  • Câu 3: Thông hiểu

    Cho dãy số (u_{n}), biết {u_n} = {\left( {\frac{{n - 1}}{{n + 1}}} ight)^{2n + 3}}. Tìm số hạng u_{n+1}

    Ta có:

    \begin{matrix}  {u_n} = {\left( {\dfrac{{n - 1}}{{n + 1}}} ight)^{2n + 3}} \hfill \\   \Rightarrow {u_{n + 1}} = {\left( {\dfrac{{n + 1 - 1}}{{n + 1 + 1}}} ight)^{2\left( {n + 1} ight) + 3}} \hfill \\   \Rightarrow {u_{n + 1}} = {\left( {\dfrac{n}{{n + 2}}} ight)^{2n + 5}} \hfill \\ \end{matrix}

  • Câu 4: Nhận biết

    Với mọi n ∈ ℕ*, khẳng định nào sau đây sai?

    Thử với n = 1, n = 2, n = 3 ta kết luận được đáp án:

    2^{2} + 4^{2} + 6^{2}
+ \ldots + (2n)^{2} = \frac{2n(n + 1)(2n + 1)}{6} sai.

    Suy ra

    2^{2} + 4^{2} + 6^{2} + \ldots +
(2n)^{2} = \frac{2n(n + 1)(2n + 1)}{3} mới là kết quả đúng!

  • Câu 5: Nhận biết

    Cho dãy số \left( u_{n} ight) là một cấp số nhân với u_{n} eq 0;n \in\mathbb{N}^{*}. Dãy số nào sau đây không phải là cấp số nhân?

    Giả sử \left( u_{n} ight) là cấp số nhân công bội q thì:

    Dãy u_{1};u_{3};u_{5} là cấp số nhân công bội q^{2}.

    Dãy 3u_{1};3u_{2};3u_{3} là cấp số nhân với công bội 2q.

    Dãy \frac{1}{u_{1}};\frac{1}{u_{2}};\frac{1}{u_{3}} là cấp số nhân công bội \frac{1}{q}.

    Dãy u_{1} + 2;u_{2} + 2;u_{3} +2 không là cấp số nhân.

  • Câu 6: Vận dụng

    Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là 35000 đô la mỗi năm và được tăng thêm 1400 đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là 319200 đô la?

    Đáp án: 8

    Đáp án là:

    Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là 35000 đô la mỗi năm và được tăng thêm 1400 đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là 319200 đô la?

    Đáp án: 8

    Gọi u_{n} là tiền lương anh Nam nhận được vào năm thứ n.

    Tại năm đầu tiên, lương anh Nam nhận được là u_{1} = 35000.

    Vì mỗi năm, anh Nam được tăng lương thêm 1400 đô, nên ta có u_{n} = u_{n - 1} + 1400

    Do đó \left( u_{n} ight) là cấp số cộng với u_{1} = 35000,\ d =
1400.

    Tổng lương mà anh Nam nhận được là 319200 đô, áp dụng công thức tính tổng n số hạng đầu của cấp số cộng:

    S_{n} = \frac{\left\lbrack 2u_{1} + (n -
1)d ightbrack.n}{2}

    \Leftrightarrow 319200 =
\frac{\left\lbrack 2.35000 + (n - 1).1400
ightbrack.n}{2}

    \Rightarrow n = 8.

    Vậy anh Nam mất 8 năm làm việc để được tổng lương là 319200.

  • Câu 7: Nhận biết

    Cho cấp số nhân (un) có {u_1} = 2 và công bội q = 3. Số hạng u2 là:

    Ta có: u2 = u1 . q = -2 . 3 = -6

  • Câu 8: Nhận biết

    Viết ba số hạng xen giữa các số 2 và 22 để được một cấp số cộng có năm số hạng.

    Khi viết xen giữa 2 và 22 ba số hạng ta được một cấp số cộng có 5 số hạng có:

    u1 = 2; u5 = 22. Ta cần tìm u2; u3; u4

    Ta có:

    \begin{matrix}  {u_5} = {u_1} + 4d \Rightarrow d = \dfrac{{{u_5} - {u_1}}}{4} = \dfrac{{22 - 2}}{4} = 5 \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_2} = {u_1} + d = 7} \\   {{u_3} = {u_1} + 2d = 12} \\   {{u_4} = {u_1} + 3d = 17} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 9: Nhận biết

    Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến A(n) đúng với mọi giá trị nguyên n ≥ p, với p là số nguyên dương ta sẽ tiến hành 2 bước

    Bước 1 (bước cơ sở). Chứng minh rằng A(n) đúng khi n = 1

    Bước 2 (bước quy nạp). Với số nguyên dương tùy ý k, ta giả sử A(n) đúng khi n = k (theo giả thiết quy nạp). Ta sẽ chứng minh rằng A(n) đúng khi n = k + 1

    Hãy chọn câu trả lời đúng tương ứng với lí luận trên.

    Bước 1 sai, vì theo bài toán n ≥ p nên ta phải chứng minh rằng A(n) đúng khi n = p.

    Bước 2 sai, không thể "Với số nguyên dương tùy ý k " mà phải là "Với số nguyên dương k, (k p) ".

  • Câu 10: Thông hiểu

    Cho dãy số \left(
u_{n} ight) biết u_{n} = \frac{3n
- 1}{3n + 1}. Dãy số \left( u_{n}
ight) bị chặn trên bởi số nào dưới đây?

    Ta có: u_{n} = \frac{3n - 1}{3n + 1} = 1
- \frac{2}{3n + 1} < 1

    Mặt khác u_{2} = \frac{5}{7} >
\frac{1}{2} > 0

    => Dãy số \left( u_{n}
ight) bị chặn trên bởi số 1.

  • Câu 11: Vận dụng cao

    Cho một dãy số có các số hạng đầu tiên là 1; 8; 22; 43; … Hiệu của hai số hạng liên tiếp của dãy số đó lập thành một cấp số cộng 7; 14; 21; …, 7n. Số 35351 là số hạng thứ mấy của cấp số đã cho?

    Theo đề bài ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_2} - {u_1} = 7} \\   {{u_3} - {u_2} = 14} \\   {{u_4} - {u_3} = 21} \\   \begin{gathered}  ..... \hfill \\  {u_n} - {u_{n - 1}} = 7\left( {n - 1} ight) \hfill \\ \end{gathered}  \end{array}} ight.

    Cộng các vế của các phương trình của hệ ta được:

    {u_n} - {u_1} = 7 + 14 + 21 + ... + 7\left( {n - 1} ight) = \frac{{7.n\left( {n - 1} ight)}}{2}\left( * ight)

    Đặt {u_n} = 35351

    Từ (*) suy ra:

    \begin{matrix}  35351 - 1 = \dfrac{{7n\left( {n - 1} ight)}}{2} \hfill \\   \Leftrightarrow {n^2} - n - 10100 = 0 \hfill \\   \Leftrightarrow n = 101 \hfill \\ \end{matrix}

    Do đó 35351 là số hạng thứ 101 của dãy số

  • Câu 12: Vận dụng

    Một cấp số cộng có số hạng đầu là 1, công sai là 4, tổng của n số hạng đầu là 561. Khi đó số hạng thứ n của cấp số cộng đó là u_{n} có giá trị là bao nhiêu?

    Ta có: \left\{ \begin{matrix}
u_{1} = 1;d = 4 \\
S_{m} = 561 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} = 1;d = 4 \.u_{1} + \dfrac{n(n - 1)}{2}.d = 561 \\\end{matrix} ight.

    \Leftrightarrow n + \frac{n^{2} -
n}{2}.4 = 561

    \Leftrightarrow 2n^{2} - n - 561 =
0

    \Leftrightarrow n = 17

    \Rightarrow u_{n} = u_{17} = u_{1} + 16d
= 1 + 16.4 = 65

  • Câu 13: Thông hiểu

    Cho dãy số (u_n) với \begin{matrix}  {u_n} = \dfrac{{\sin \left( {\dfrac{{n\pi }}{3}} ight)}}{{n + 1}} \hfill \\\end{matrix} với mọi n\geq 1. Khi đó số hạng u_{3n} của dãy (u_{n}) là:

    Ta có:

    \begin{matrix}  {u_n} = \dfrac{{\sin \left( {\dfrac{{n\pi }}{3}} ight)}}{{n + 1}} \hfill \\   \Rightarrow {u_{3n}} = \dfrac{{\sin \left( {\dfrac{{3n\pi }}{3}} ight)}}{{3n + 1}} = \dfrac{{\sin \left( {n\pi } ight)}}{{3n + 1}} = 0 \hfill \\ \end{matrix}

  • Câu 14: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} =
2 và công sai d = 3. Giá trị u_{2024} bằng

    Áp dụng công thức số hạng tổng quát

    u_{2024} = u_{1} + 2023d = 2 + 2023.3 = 6071.

  • Câu 15: Vận dụng cao

    Cho tam giác ABC cân tại A, AH ⊥ BC. Các cạnh AB, AH, BC lập thành một cấp số nhân. Tính công bội q của cấp số nhân đó.

    Ta có: AB = AC (tam giác ABC cân)

    Các cạnh BC, AB, AH lập thành cấp số nhân nên ta có hệ phương trình:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\dfrac{1}{q} = \dfrac{{BC}}{{AH}} = \dfrac{{2HC}}{{AH}} = 2\cot \widehat C} \\   {\dfrac{1}{q} = \dfrac{{AH}}{{AB}} = 2\sin \widehat B} \end{array}} ight. \hfill \\   \Rightarrow \cot \widehat C = \sin \widehat C \Rightarrow 2\cos \widehat C = {\sin ^2}\widehat C = 1 - {\cos ^2}\widehat C \hfill \\   \Leftrightarrow {\cos ^2}\widehat C - 2\cos \widehat C - 1 = 0 \hfill \\   \Leftrightarrow \cos \widehat C = \sqrt 2  - 1;\left( {0 < \widehat C < {{90}^0}} ight) \hfill \\   \Leftrightarrow \sin \widehat C = \sqrt {2\left( {\sqrt 2  - 1} ight)}  \hfill \\ \end{matrix}

    Vậy công bội của cấp số nhân là q = \frac{1}{{\sin \widehat C}} = \frac{1}{{\sqrt {2\left( {\sqrt 2  - 1} ight)} }} = \frac{1}{2}.\sqrt {2\left( {\sqrt 2  + 1} ight)}

  • Câu 16: Thông hiểu

    Hai số hạng đầu của một cấp số nhân là 2x + 1 và 4x2 - 1. Số hạng thứ ba của cấp số nhân là: 

    Ta có: \frac{{4{x^2} - 1}}{{2x + 1}} = 2x - 1

    Vậy công sai của cấp số nhân là 2x - 1

    Vậy số hạng tiếp theo sẽ là: \left( {4{x^2} - 1} ight)\left( {2x - 1} ight) = 8{x^3} - 4{x^2} - 2x + 1

  • Câu 17: Nhận biết

    Trong các dãy được cho dưới đây, dãy số nào là cấp số cộng?

    Xét dãy số u_{n}=7-3n

    Ta có:

    \begin{matrix}  {u_{n + 1}} = 7 - 3\left( {n + 1} ight) \hfill \\   \Rightarrow {u_{n + 1}} - {u_n} = 7 - 3\left( {n + 1} ight) - \left( {7 - 3n} ight) =  - 3 \hfill \\ \end{matrix}

    Vậy dãy số u_{n}=7-3n là một cấp số cộng với u_1=4;d=-3

  • Câu 18: Vận dụng

    Cho dãy số \left(
u_{n} ight) với \left\{\begin{matrix}u_{1} = 1 \\u_{n + 1} = \dfrac{u_{n} + 2}{u_{n} + 1};(n \geq 1) \\\end{matrix} ight.. Chọn đáp án đúng.

    Ta chứng minh 1 \leq u_{n} \leq
\frac{3}{2};n \geq 1 bằng phương pháp quy nạp.

    Với n = 1 ta có: 1 \leq u_{1} \leq \frac{3}{2}

    Giả sử 1 \leq u_{k} \leq \frac{3}{2};k
\geq 1. Ta cần chứng minh 1 \leq
u_{k +} \leq \frac{3}{2}.

    Thật vậy u_{k + 1} = 1 + \frac{1}{u_{k} +
1}

    u_{k} + 1 > 0 \Rightarrow u_{k + 1}
= 1 + \frac{1}{u_{k} + 1} > 1

    u_{k} + 1 \geq 2 \Rightarrow u_{k + 1}
= 1 + \frac{1}{u_{k} + 1} \leq 1 + \frac{1}{2} =
\frac{3}{2}

    Vậy 1 \leq u_{n} \leq \frac{3}{2};n \geq
1 hay dãy \left( u_{n}
ight) bị chặn trên bởi \frac{3}{2} và bị chặn dưới bởi 1.

  • Câu 19: Vận dụng

    Tính tổng S = 1
- 2 + 3 - 4 + 5 + ... + (2n - 1) - 2n với n \geq 1;n\mathbb{\in N}.

    Với \forall n \in \mathbb{N}^{*} thì (2n - 1) - 2n = - 1

    Ta có:

    S = 1 - 2 + 3 - 4 + 5 + ... + (2n - 1) -
2n

    S = (1 - 2) + (3 - 4) + (5 - 6) + ... +
\left\lbrack (2n - 1) - 2n ightbrack

    Do đó ta xem S là tổng của n số hạng, mà mỗi số hạng đều bằng -1..

    => S = - 1

    Ta có: 1;3;5;...;2n - 12;4;6;...;2n là cấp số cộng có n số hạng nên.

    S = (1 + 3 + 5 + ... + 2n - 1) - (2 + 4
+ 6 + ... + 2n)

    S = \frac{n}{2}.(1 + 2n - 1) -
\frac{n}{2}.(2 + 2n)

    S = n^{2} - \left( n^{2} + n ight) = -
n

  • Câu 20: Thông hiểu

    Cho dãy số \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_{n + 1}} = {u_n} + n} \end{array}} ight.. Tìm số hạng thứ 5 của dãy số:

    Ta có:

    \begin{matrix}  {u_2} = {u_1} + 1 = 5 \hfill \\  {u_3} = {u_2} + 2 = 7 \hfill \\  {u_4} = {u_3} + 3 = 10 \hfill \\ \end{matrix}

    Do đó số hạng thứ 5 của dãy số là Sử dụng công thức: {u_5} = {u_4} + 4 = 14

  • Câu 21: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight)u_{1} = 3;q = - 2. Số 192 là số hạng thứ mấy của cấp số nhân đã cho?

    Ta có:

    u_{n} = 192

    \Rightarrow u_{1}.q^{n - 1} =
192

    \Rightarrow 3.2^{n - 1} =
192

    \Rightarrow ( - 1)^{n - 1}.2^{n - 1} =
64

    \Rightarrow n = 7

  • Câu 22: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight) biết u_{5} = 5, u_{10} = 15 Khi đó u_{7} bằng

    Ta có

    \left\{ \begin{matrix}
u_{5} = 5 \\
u_{10} = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + 4d = 5 \\
u_{1} + 9d = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 3 \\
d = 2 \\
\end{matrix} ight.

    Vậy u_{7} = u_{1} + 6d = - 3 + 6.2 =
9

  • Câu 23: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

  • Câu 24: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight) có tổng n số hạng đầu tiên là S_{n} = 5^{n} - 1. Tìm số hạng thứ 4 của cấp số nhân đã cho.

    Ta có:

    S_{n} = 5^{n - 1}

    \Rightarrow u_{1}.\frac{1 - q^{n}}{1 -q} = 5^{n - 1}

    \Rightarrow \left\{ \begin{matrix}u_{1} = q - 1 \\q = 5 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 4 \\q = 5 \\\end{matrix} ight.

    Khi đó u_{4} = u_{1}.q^{3} = 4.5^{3} =500

  • Câu 25: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight)u_{1} = 3 và công bội q = 3. Số hạng tổng quát của cấp số nhân \left( u_{n}
ight)

    Số hạng tổng quát của cấp số nhân \left(
u_{n} ight)

    u_{n} = u_{1}.q^{n - 1} = 3.3^{n - 1} =
3^{n}.

  • Câu 26: Vận dụng cao

    Cho xeq 0 và x+\frac{1}{x} là một số nguyên. Khi đó với mọi số nguyên dương n, có kết luận gì về T(n,x)=x^{n}+\frac{1}{x^{n}}?

    Ta có:

    T\left( {1;x} ight) = x + \frac{1}{x} là một số nguyên

    T\left( {2;x} ight) = {x^2} + \frac{1}{{{x^2}}} = {\left( {x + \frac{1}{x}} ight)^2} - 2 cũng là một số nguyên

    Ta sẽ chứng minh T(n,x)=x^{n}+\frac{1}{x^{n}} là một số nguyên.

    Ta có: 

    T\left( {1;x} ight) là một số nguyên 

    Giả sử T(n,x) là số nguyên với n \ge1. Ta sẽ chứng minh T\left( {n + 1;x} ight) cũng là số nguyên.

    Ta có: 

    \begin{matrix}  T\left( {n + 1;x} ight) = {x^{n + 1}} + \dfrac{1}{{{x^{n + 1}}}} \hfill \\   = \left( {x + \dfrac{1}{x}} ight).\left( {{x^n} + \dfrac{1}{{{x^n}}}} ight) - \left( {{x^{n - 1}} + \dfrac{1}{{{x^{n - 1}}}}} ight) \hfill \\   = T\left( {1;x} ight).T\left( {n;x} ight) - T\left( {n - 1;x} ight) \hfill \\ \end{matrix}

    Theo giả thiết quy nạp ta có: 

    \left\{ \begin{gathered}  T\left( {1;x} ight) \in \mathbb{Z} \hfill \\  T\left( {n;x} ight) \in \mathbb{Z} \hfill \\  T\left( {n - 1;x} ight) \in \mathbb{Z} \hfill \\ \end{gathered}  ight. \Rightarrow T\left( {n + 1;x} ight) \in \mathbb{Z}

    Vậy T(n,x)=x^{n}+\frac{1}{x^{n}} là một số nguyên.

  • Câu 27: Nhận biết

    Cho dãy số có các số hạng đầu là 8, 15, 22, 29, 36, … Số hạng tổng quát của dãy số này là

    Ta có 8 = 7.1 + 1; 15 = 7.2 + 1; 22 = 7.3 + 1; 29 = 7.4 + 1; 36 = 7.5 + 1

    Suy ra số hạng tổng quát un = 7n + 1

  • Câu 28: Thông hiểu

    Cho \left( u_{n} ight) là cấp số cộng biết u_{3} + u_{13} = 80. Tổng 15 số hạng đầu của cấp số cộng đó bằng

    Ta có:

    u_{3} + u_{13} = 80

    \Leftrightarrow (u_{1} + 2d) + (u_{1} +
12d) = 80

    \Leftrightarrow 2u_{1} + 14d =
80

    Vậy S_{15} = \frac{15}{2}\left( 2u_{1} +
14d ight) = \frac{15}{2}.80 = 600

  • Câu 29: Nhận biết

    Cho cấp số cộng (un) có u_1 = -4; d = \frac{1}{2}. Khẳng định nào sau đây là khẳng định đúng?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} =  - 4} \\   {d = \dfrac{1}{2}} \end{array}\mathop  \to \limits^{CTTQ} } ight.{u_n} = {u_1} + \left( {n - 1} ight)d =  - 4 + \dfrac{1}{2}\left( {n - 1} ight) \hfill \\   \Rightarrow {u_n} =  - 4 + \dfrac{1}{2}\left( {n - 1} ight) \hfill \\ \end{matrix}

  • Câu 30: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + 2n + 1,n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Số hạng tổng quát un là?

    Ta có u1 = 1; u2 = u1 + 3; u3 = u2 + 5; u4 = u3 + 7; …; un = un − 1 + (2n−1)

    Cộng từng vế với vế của các đẳng thức trên và rút gọn ta được

    un = 1 + 3 + 5 + 7 + … + (2n−1) = n2.

  • Câu 31: Thông hiểu

    Cho cấp số nhân (un) biết u1 = 12; \frac{{{u_3}}}{{{u_8}}} = 243. Tính {u_9}

    Gọi q là công bội của cấp số nhân (un)

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_3} = {u_1}.{q^2}} \\   {{u_8} = {u_1}.{q^7}} \end{array}} ight. \Rightarrow \dfrac{{{u_3}}}{{{u_8}}} = \dfrac{{{u_1}.{q^2}}}{{{u_1}.{q^7}}} = \dfrac{1}{{{q^5}}} \hfill \\   \Rightarrow q = d\frac{1}{3} \hfill \\   \Rightarrow {u_9} = {u_1}.{q^8} = 12.{\left( {\dfrac{1}{3}} ight)^8} = \dfrac{4}{{2187}} \hfill \\ \end{matrix}

  • Câu 32: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 5 \\
u_{n + 1} = u_{n} + n \\
\end{matrix} ight.. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có u_{n} = 5 + 1 + 2 + 3 + \ldots + n -
1 = 5 + \frac{n(n - 1)}{2}

  • Câu 33: Nhận biết

    Trong các dãy số sau, dãy số nào lập thành một cấp số cộng?

    Xét đáp án A: 1; -3; -7; -11; -15; …

    => u2 – u1 = u3 – u2 = u4 – u3 = -4 => Chọn đáp án A

    Xét đáp án B: 1; -3; -7; -11; -15; …

    => u2 – u1 = -4 ≠ u3 – u2 = -3 => Loại đáp án B

    Xét đáp án C: 1; -3; -7; -11; -15; …

    => u2 – u1 = -3 ≠ u3 – u2 = -2 => Loại đáp án C

    Xét đáp án D: 1; -3; -7; -11; -15; …

    => u2 – u1 = -4 ≠ u3 – u2 = -2 => Loại đáp án D

  • Câu 34: Nhận biết

    Cho một cấp số nhân \left( u_{n} ight)u_{1} = 1;q = 2019. Tính u_{2019}?

    Ta có:

    u_{n} = u_{1}.q^{n - 1} \Leftrightarrow
u_{2019} = 1.2019^{2018} = 2019^{2018}

  • Câu 35: Vận dụng

    Giả sử \sin \frac{a}{6};\cos a;\tan a theo thứ tự lập thành một cấp số nhân. Khi đó \cos 2a bằng:

    Điều kiện \cos a e 0 \Leftrightarrow a e \frac{\pi }{2} + k\pi ;\left( {k \in \mathbb{Z}} ight)

    Theo tính chất của cấp số nhân ta có:

    \begin{matrix}  {\cos ^2}a = \dfrac{{\sin a}}{6}.\tan a \hfill \\   \Leftrightarrow 6{\cos ^2}a = \dfrac{{{{\sin }^2}a}}{{\cos a}} \hfill \\   \Leftrightarrow 6{\cos ^3}a - {\sin ^2}a = 0 \hfill \\   \Leftrightarrow 6{\cos ^3}a + {\cos ^2}a - 1 = 0 \hfill \\   \Leftrightarrow {\cos ^2}a = \dfrac{1}{2} \hfill \\   \Rightarrow \cos 2a = 2{\cos ^2}a - 1 = 2.{\left( {\dfrac{1}{2}} ight)^2} - 1 =  - \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 36: Nhận biết

    Trong các dãy số \left( u_{n} ight) cho bởi số hạng tổng quát u_{n}, dãy nào là cấp số nhân?

    Dãy u_{n} = \frac{1}{3^{n - 2}} =
9.\left( \frac{1}{3} ight)^{n} là cấp số nhân có \left\{ \begin{matrix}u_{1} = 3 \\q = \dfrac{1}{3} \\\end{matrix} ight.

  • Câu 37: Thông hiểu

    Cho cấp số nhân có các số hạng lần lượt là x;12;y;192. Mệnh đề nào sau đây đúng?

    Cấp số nhân x;12;y;192

    \Rightarrow \left\{ \begin{matrix}\dfrac{12}{x} = \dfrac{y}{12} \\\dfrac{y}{12} = \dfrac{192}{y} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \dfrac{144}{y} \\y^{2} = 2304 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \pm 3 \\y = \pm 48 \\\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(x;y) = (3;48) \\
(x;y) = ( - 3; - 48) \\
\end{matrix} ight.

  • Câu 38: Vận dụng

    Cho dãy số (un)u1 = 1u_{n + 1} = u_{n} = \frac{1}{(1 + n)^{2}},\forall n
\in \mathbb{N}^{*}.

    Trong các phát biểu sau, có bao nhiêu phát biểu đúng?

    (1) (un) là dãy số tăng.

    (2) (un) là dãy số bị chặn dưới.

    (3) (un) là dãy số bị chặn trên.

    Ta có \forall n \in \mathbb{N}^{*},u_{n +
1} - u_{n} = \frac{1}{(1 + n)^{2} > 0} nên dãy số tăng.

    Vậy phát biểu (1) đúng.

    Vì dãy số tăng nên dãy số bị chặn dưới bởi u1.

    Vậy phát biểu (2) đúng.

    Ta lại có u_{1} = 1;u_{2} = u_{1} +
\frac{1}{2^{2}};u_{3} = u_{2} + \frac{1}{3^{2}};u_{n} = u_{n - 1} +
\frac{1}{n^{2}}

    Cộng các đẳng thức trên theo từng vế, ta được:

    u_{n} = u_{1} + \frac{1}{2^{2}} +
\frac{1}{3^{2}} + \ldots + \frac{1}{n^{2}}

    Mặt khác \frac{1}{n^{2}} < \frac{1}{n(n
- 1)} = \frac{1}{n - 1} - \frac{1}{n} \Rightarrow (*)

    \Leftrightarrow u_{n} = 1 + \frac{1}{1}
- \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \ldots + \frac{1}{n - 1} -
\frac{1}{n}

    \Leftrightarrow u_{n} = 1 + \frac{1}{1}
- \frac{1}{n} < 2,\forall n \in \mathbb{N}^{*}

    Vậy dãy số bị chặn trên bởi 2 nên phát biểu (3) đúng.

  • Câu 39: Thông hiểu

    Cho dãy số vô hạn \left( u_{n} ight) là một cấp số cộng có số hạng đầu u_{1}, công sai d. Gọi S_{n} là tổng của n số hạng đầu tiên của cấp số cộng đó.

    a) u_{5} = \frac{u_{1} +
u_{9}}{2} Đúng||Sai

    b) u_{n} = u_{n - 1} + d;(n \geq
2)Đúng||Sai

    c) S_{12} = \frac{n}{2}.\left( 2u_{1} +
11d ight)Sai||Đúng

    d) u_{n} = u_{1} + (n - 1).d;\left(
\forall n\mathbb{\in N} ight)Sai||Đúng

    Đáp án là:

    Cho dãy số vô hạn \left( u_{n} ight) là một cấp số cộng có số hạng đầu u_{1}, công sai d. Gọi S_{n} là tổng của n số hạng đầu tiên của cấp số cộng đó.

    a) u_{5} = \frac{u_{1} +
u_{9}}{2} Đúng||Sai

    b) u_{n} = u_{n - 1} + d;(n \geq
2)Đúng||Sai

    c) S_{12} = \frac{n}{2}.\left( 2u_{1} +
11d ight)Sai||Đúng

    d) u_{n} = u_{1} + (n - 1).d;\left(
\forall n\mathbb{\in N} ight)Sai||Đúng

    Ta có: u_{n} = u_{n - 1} + d;(n \geq
2) đúng

    \frac{u_{1} + u_{9}}{2} = \frac{u_{1} +
u_{1} + 8d}{2} = u_{1} + 4d = u_{5}

    Ta có:

    S_{n} = nu_{1} + \frac{n(n -
1)d}{2}

    \Rightarrow S_{12} = 6\left( 2u_{1} +
11d ight) eq \frac{n}{2}.\left( 2u_{1} + 11d ight)

    Lại có: u_{n} = u_{1} + (n - 1).d;\left(
\forall n \in \mathbb{N}^{*} ight)

  • Câu 40: Nhận biết

    Xác định bốn số hạng đầu của một dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = sin^{2}\left( \frac{\pi
n}{4} ight) + \cos\left( \frac{2\pi n}{3} ight) với \forall n \in \mathbb{N}^{*}?

    Ta có:

    u_{1} = \sin^{2}\left( \frac{\pi}{4}ight) + \cos\left( \frac{2\pi}{3} ight) = 0

    u_{2} = \sin^{2}\left( \frac{2\pi}{4}ight) + \cos\left( \frac{4\pi}{3} ight) = \frac{1}{2}

    u_{3} = \sin^{2}\left( \frac{3\pi}{4}ight) + \cos\left( \frac{6\pi}{3} ight) = \frac{3}{2}

    u_{4} = \sin^{2}\left( \frac{4\pi}{4}ight) + \cos\left( \frac{8\pi}{3} ight) = \frac{- 1}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo