Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho dãy số (un) biết \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = \frac{1}{2}u_{n} - 1 \\
\end{matrix} ight.. Mệnh đề nào sau đây đúng?

    Ta xét dãy số này bị chặn bằng phương pháp quy nạp toán học.

    Ta sẽ chứng minh bằng quy nạp  − 2 ≤ un ≤ 1, ∀n ∈ ℕ*

    Với n = 1 ta có  − 2 ≤ u1 ≤ 1 (đúng).

    Giả sử mệnh đề trên đúng với n = k ≥ 1. Tức là  − 2 ≤ uk ≤ 1

    \Rightarrow - 1 \leq \frac{1}{2}u_{k}
\leq \frac{1}{2} \Rightarrow - 2 \leq \frac{1}{2}u_{k} - 1 \leq -
\frac{1}{2} \Rightarrow - 2 \leq u_{k + 1} \leq 1

    Theo nguyên lí quy nạp ta đã chứng minh được  − 2 ≤ un ≤ 1, ∀n ∈ ℕ*

    Vậy (un) là dãy số bị chặn.

  • Câu 2: Thông hiểu

    Cho dãy số \left( u_{n} ight) có số hạng tổng quát u_{n} = \frac{( - 1)^{n}}{1 + n}. Khẳng định nào sau đây sai?

    Ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4}

    \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight.

    Vậy dãy số đã cho không tăng không giảm.

    Khẳng định sai là: “Dãy số \left( u_{n}
ight) là dãy giảm”

  • Câu 3: Vận dụng

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn \left\{ \begin{matrix}
u_{1} + u_{7} = 26 \\
{u_{2}}^{2} + {u_{6}}^{2} = 466 \\
\end{matrix} ight.. Mệnh đề nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
u_{1} + u_{7} = 26 \\
{u_{2}}^{2} + {u_{6}}^{2} = 466 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2u_{1} + 6d = 26 \\
\left( u_{1} + d ight)^{2} + \left( u_{1} + 5d ight)^{2} = 466 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 13 - 3d \\
\left( u_{1} + d ight)^{2} + \left( u_{1} + 5d ight)^{2} = 466 \\
\end{matrix} ight.

    Khi đó:

    \Rightarrow (13 - 2d)^{2} + (13 +
2d)^{2} = 466

    \Rightarrow \left\lbrack \begin{matrix}
d = 4 \Rightarrow u_{1} = 1 \\
d = - 4 \Rightarrow u_{1} = 25 \\
\end{matrix} ight.

  • Câu 4: Vận dụng

    Cho dãy số (un)u_{n} = \frac{an + b}{cn + d}c > d > 0. Dãy số (un) là dãy số tăng với điều kiện?

    Xét hiệu u_{n + 1} - u_{n} = \frac{ad -
bc}{\lbrack c(n + 1) + d(cn + d)brack}.

    Dãy số (un) là dãy số tăng khi ad − bc > 0

    c > d > 0 nên chỉ có điều kiện ở đáp án a > 0, b < 0 để ad − bc > 0.

  • Câu 5: Vận dụng cao

    Tính tổng S = {\left( {2 + \frac{1}{2}} ight)^2} + {\left( {4 + \frac{1}{4}} ight)^2} + ... + {\left( {{2^n} + \frac{1}{{{2^n}}}} ight)^2}

    \begin{matrix}  S = {\left( {2 + \dfrac{1}{2}} ight)^2} + {\left( {4 + \dfrac{1}{4}} ight)^2} + ... + {\left( {{2^n} + \dfrac{1}{{{2^n}}}} ight)^2} \hfill \\  S = \left( {4 + 2 + \dfrac{1}{4}} ight) + \left( {16 + 2 + \dfrac{1}{{16}}} ight) + ... + \left( {{2^{2n}} + 2 + \dfrac{1}{{{2^{2n}}}}} ight) \hfill \\  S = \left( {4 + 16 + ... + {2^{2n}}} ight) + 2n + \left( {\frac{1}{4} + \dfrac{1}{{16}} + ... + \dfrac{1}{{{2^{2n}}}}} ight) \hfill \\ \end{matrix}

    Áp dụng công thức tính tổng của n số hạng đầu của một cấp số nhân ta có:

    \begin{matrix}  S = 4.\dfrac{{{4^{n - 1}}}}{3} + 2n + \dfrac{1}{4}.\dfrac{{{2^{\dfrac{1}{{2n}}}} - 1}}{{\dfrac{1}{4} - 1}} \hfill \\  S = 4.\dfrac{{{4^n} - 1}}{3} + 2n + \dfrac{1}{3}.\dfrac{{{2^{2n}} - 1}}{{{2^{2n}}}} \hfill \\  S = 2n + \dfrac{{{4^{n - 1}}}}{3}.\dfrac{{{{4.4}^n} + 1}}{{{4^n}}} = 2n + \dfrac{{\left( {{4^n} - 1} ight)\left( {{4^{n + 1}} + 1} ight)}}{{{{3.4}^n}}} \hfill \\ \end{matrix}

  • Câu 6: Vận dụng

    Xét tính bị chặn của dãy số u_{n} = \frac{1}{1.3} + \frac{1}{2.4} + \ldots +
\frac{1}{n(n + 2)}, ta thu được kết quả?

    Ta có 0 < u_{n} < \frac{1}{1.2} +
\frac{1}{2.3} + \ldots + \frac{1}{n \cdot (n + 1)} = 1 - \frac{1}{n + 1}
< 1

    Dãy (un) bị chặn.

  • Câu 7: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    a) Xét dãy số đã cho ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4} \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số \left( u_{n} ight) không tăng không giảm.

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}" đúng bằng chứng minh quy nạp.

    c) Công sai d = 5 và số hạng đầu tiên bằng u_{1} = - 2020

    Khi đó số hạng tổng quát của cấp số cộng là

    u_{n} = u_{1} + 5(n - 1)

    \Rightarrow u_{n} = - 2025 +
5n

    d) Từ giả thiết ta có:

    \left\{ \begin{matrix}
u_{1} = 160 \\
u_{6} = 5 \\
\end{matrix} ight.\  \Rightarrow q = \sqrt[5]{\frac{u_{6}}{u_{1}}} =
\frac{1}{2}

    Suy ra tổng các số hạng của cấp số nhân đó là: S = \dfrac{u_{1}\left( 1 - q^{6} ight)}{1 - q} =\dfrac{160.\left\lbrack 1 - \left( \dfrac{1}{2} ight)^{6}ightbrack}{\dfrac{1}{2}} = 315.

  • Câu 8: Thông hiểu

    Cho dãy số (un) với u_{n} = \frac{n - 1}{n^{2} + 1}, biết u_{k} = \frac{2}{13}. Hỏi uk là số hạng thứ mấy của dãy số đã cho?

    Ta có:

    u_{k} = \frac{k - 1}{k^{2} + 1}
\Rightarrow \frac{k - 1}{k^{2} + 1} = \frac{2}{13} \Rightarrow k =
5 (do  k∈ℕ*)

  • Câu 9: Nhận biết

    Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:

    Do dãy số là cấp số nhân

    => q = \frac{{36}}{{16}} = \frac{9}{4}

    => Số hạng tiếp theo là: 36.\frac{9}{4} = 81

  • Câu 10: Vận dụng

    Cho ba số x, y, z theo thứ tự đó vừa lập thành cấp số cộng, vừa lập thành cấp số nhân khi và chỉ khi:

    Gọi m và n lần lượt là công sai và công bội của cấp số cộng và cấp số nhân.

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {y = x + m = xn} \\   {z = x + 2m = x{n^2}} \end{array}} ight. \hfill \\   \Rightarrow m = x{n^2} - xn \hfill \\   \Rightarrow x + x{n^2} - xn = xn \hfill \\   \Rightarrow {n^2} - 2n + 1 = 0 \hfill \\   \Leftrightarrow n = 1 \Rightarrow m = 0 \Rightarrow x = y = z \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) với \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.. Công thức số hạng tổng quát của cấp số cộng này là:

    Ta có:

    \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left( u_{1} + d ight) + \left( u_{1} + 2d ight) - \left( u_{1} + 5d
ight) = 7 \\
\left( u_{1} + 3d ight) + \left( u_{1} + 7d ight) = - 14 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} - 2d = 7 \\
2u_{1} + 10d = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 3 \\
d = - 2 \\
\end{matrix} ight.

    \Rightarrow u_{n} = 3 + (n - 1)( - 2) =
5 - 2n

  • Câu 12: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight). Xác định u_{15} biết rằng u_{2} = 3;u_{4} = 7?

    Ta có:

    u_{4} - u_{2} = u_{1} + 3d - \left(
u_{1} + d ight) = 2d = 4 \Rightarrow d = 2

    Khi đó: u_{1} = u_{2} - d = 3 - 2 =
1

    Suy ra u_{15} = u_{1} + 17d = 1 + 17.2 =
35

  • Câu 13: Nhận biết

    Cho các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng. Tìm a?

    Đặt u1 = -4; u2 = 1; u3 = 6; u4 = a

    Theo bài ra ta có:

    Các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng

    => u3 – u2 = u4 – u3

    => 6 – 1 = a – 6

    => a = 11

  • Câu 14: Thông hiểu

    Với mọi số nguyên dương n thì S_{n}=n^{3}+2n chia hết cho 

    Với n = 1\Rightarrow {S_1} = {1^3} + 2.1 = 3 chia hết cho 3, ta sẽ chứng minh S_n chia hết cho 3 với mọi n.

    Giả sử khẳng định đúng với n=k tức là {S_k} = {k^3} + 2k chia hết cho 3, ta chứng minh {S_{k + 1}} = {\left( {k + 1} ight)^3} + 2\left( {k + 1} ight) cũng chia hết cho 3.

    Ta có:

    \begin{matrix}  {S_{k + 1}} = {\left( {k + 1} ight)^3} + 2\left( {k + 1} ight) \hfill \\   = {k^3} + 3{k^2} + 3k + 1 + 2k + 2 \hfill \\   = \left( {{k^3} + 2k} ight) + 3\left( {{k^2} + k + 1} ight) \hfill \\  \left\{ \begin{gathered}  \left( {{k^3} + 2k} ight) \vdots 3 \hfill \\  3\left( {{k^2} + k + 1} ight) \vdots 3 \hfill \\ \end{gathered}  ight. \Rightarrow {S_{k + 1}} \vdots 3 \hfill \\ \end{matrix}

    Vậy với mọi số nguyên dương thì S_{n}=n^{3}+2n chia hết cho 3.

  • Câu 15: Thông hiểu

    Cho một cấp số nhân \left( u_{n} ight)u_{1} = 5;q = \frac{1}{3} . Hỏi \frac{5}{59049} là số hạng thứ mấy của cấp số nhân?

    Ta có: u_{n} = u_{1}.q^{n - 1}
\Leftrightarrow \frac{5}{59049} = 5.\left( \frac{1}{3} ight)^{n - 1}
\Rightarrow n = 11

    Vậy số \frac{5}{59049} là số hạng thứ 11 của cấp số nhân.

  • Câu 16: Vận dụng

    Dân số của thành phố A hiện nay là 4 triệu người. Biết rằng tỉ lệ tăng dân số hằng năm của thành phố A là 1%. Hỏi dân số của thành phố A sau 5 năm nữa sẽ là bao nhiêu?

    Với mỗi số nguyên dương n, ký hiệu u_{n} là số dân của thành phố A sau n năm.

    Khi đó, theo giả thiết của bài toán ta có:

    u_{n} = u_{n - 1} + u_{n - 1}.0,01 =
u_{n - 1}.1,01;(n \geq 2)

    Ta có: \left( u_{n} ight) là một cấp số nhân với số hạng đầu là u_{1} = 4
+ 4.0,01 = 4.1,01 và công bội q =
1,01

    \Rightarrow u_{n} = 4.1,01.(1,01)^{n -
1} = 4.(1,01)^{n};(n \geq 1)

    => Số dân của thành phố A sau 5 năm là: \Rightarrow u_{5} = 4.(1,01)^{5} = 4,2 (triệu người).

  • Câu 17: Nhận biết

    Cho dãy số (u_{n}), biết {u_n} = {( - 1)^n}.2n. Mệnh đề nào sau đây sai?

    Ta có:

    \begin{matrix}  {u_n} = {( - 1)^n}.2n \hfill \\   \Rightarrow {u_1} = {( - 1)^1}.2.1 =  - 2 \hfill \\   \Rightarrow {u_2} = {( - 1)^2}.2.2 = 4 \hfill \\   \Rightarrow {u_3} = {( - 1)^3}.2.3 =  - 6 \hfill \\   \Rightarrow {u_4} = {( - 1)^4}.2.4 = 8 \hfill \\ \end{matrix}

    Vậy mệnh đề sai là: u_{4}=-8

  • Câu 18: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) có số hạng đầu u_{1} =
5 và công bội q = - 2. Số hạng thứ sáu của \left( u_{n}
ight) là:

    Ta có: u_{6} = u_{1}q^{5} = 5.( - 2)^{5} =
- 160

  • Câu 19: Nhận biết

    Trong các dãy số sau, dãy số nào lập thành một cấp số cộng?

    Xét đáp án A: 1; -3; -7; -11; -15; …

    => u2 – u1 = u3 – u2 = u4 – u3 = -4 => Chọn đáp án A

    Xét đáp án B: 1; -3; -7; -11; -15; …

    => u2 – u1 = -4 ≠ u3 – u2 = -3 => Loại đáp án B

    Xét đáp án C: 1; -3; -7; -11; -15; …

    => u2 – u1 = -3 ≠ u3 – u2 = -2 => Loại đáp án C

    Xét đáp án D: 1; -3; -7; -11; -15; …

    => u2 – u1 = -4 ≠ u3 – u2 = -2 => Loại đáp án D

  • Câu 20: Nhận biết

    Trong các dãy số sau, dãy số nào là một cấp số nhân?

    Ta có:

    Dãy số \left( u_{n} ight) là cấp số nhân

    \Leftrightarrow u_{n} = q.u_{n -
1};\left( n \in \mathbb{N}^{*} ight)

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{u_{3}}{u_{2}} = \frac{u_{4}}{u_{3}} = ... = q;\left( u_{n} eq 0
ight)

    Gọi q là công bội.

    Xét đáp án 128; - 64;32; -
16;8;...

    \Leftrightarrow \frac{u_{2}}{u_{1}} = -
\frac{1}{2} = \frac{u_{3}}{u_{2}} = \frac{u_{4}}{u_{3}}

    Xét đáp án \sqrt{2};2;4;4\sqrt{2};...

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{1}{\sqrt{2}} eq 2 = \frac{u_{3}}{u_{2}}

    Xét đáp án 5;6;7;8;...

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{6}{5} eq \frac{7}{6} = \frac{u_{3}}{u_{2}}

    Xét đáp án 15;5;1;\frac{1}{5};...

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{1}{3} eq \frac{1}{5} = \frac{u_{3}}{u_{2}}

  • Câu 21: Vận dụng cao

    Cho phương trình bậc ba: {x^3} + \left( {5 - m} ight){x^2} + \left( {6 - 5m} ight)x - 6m = 0 (m là tham số). Tìm m để phương trình có ba nghiệm phân biệt lập thành cấp số nhân.

    Ta có:

    \begin{matrix}  {x^3} + \left( {5 - m} ight){x^2} + \left( {6 - 5m} ight)x - 6m = 0 \hfill \\   \Leftrightarrow \left( {x - m} ight)\left( {{x^2} + 5x + 6} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = m} \\   {x =  - 2} \\   {x =  - 3} \end{array}} ight. \hfill \\ \end{matrix}

    Để ba nghiệm của phương trình lập thành một cấp số nhân

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\left( { - 2} ight).\left( { - 3} ight) = {m^2}} \\   { - 3m = {{\left( { - 2} ight)}^2}} \\   { - 2m = {{\left( { - 3} ight)}^2}} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m =  \pm \sqrt 6 } \\   {m =  - \dfrac{4}{3}} \\   {m =  - \dfrac{9}{2}} \end{array}} ight.

     

  • Câu 22: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{n} = - 1;u_{n + 1} = 8. Tính công sai d của cấp số cộng đó:

    Ta có:

    d = u_{n + 1} - u_{n} = 8 - ( - 1) =
9

  • Câu 23: Nhận biết

    Cho cấp số nhân (un) có u1 = 1; q = 2. Hỏi số 1024 là số hạng thứ mấy?

    Ta có:

    \begin{matrix}  {u_n} = {u_1}.{q^{n - 1}} \hfill \\   \Leftrightarrow {1.2^{n - 1}} = 1024 \hfill \\   \Leftrightarrow {2^{n - 1}} = {2^{10}} \hfill \\   \Rightarrow n - 1 = 10 \hfill \\   \Rightarrow n = 11 \hfill \\ \end{matrix}

  • Câu 24: Nhận biết

    Cấp số nhân \left( u_{n} ight) có số hạng tổng quát là u_{n} =
\frac{3}{5}.2^{n - 1},n \in \mathbb{N}^{*}. Số hạng đầu tiên và công bội của cấp số nhân đó là

    Theo công thức số hạng tổng quát của cấp số nhân ta suy ra u_{1} = \frac{3}{5}q = 2.

  • Câu 25: Nhận biết

    Cho cấp số cộng (un) có các số hạng đầu lần lượt là 5; 9; 13; 17; …. Tìm số hạng tổng quát un của cấp số cộng.

    Các số 5; 9; 13; 17; …. theo thứ tự lập thành một cấp số cộng (un) nên:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} =  - 3} \\   {d = {u_2} - {u_1} = 4} \end{array}\mathop  \to \limits^{CTTQ} } ight.{u_n} = {u_1} + \left( {n - 1} ight)d = 5 + 4\left( {n - 1} ight) = 4n + 1 \hfill \\   \Rightarrow {u_n} = 4n + 1 \hfill \\ \end{matrix}

  • Câu 26: Thông hiểu

    Dãy số nào sau đây là một cấp số cộng?

    Dãy số ở đáp án A thỏa mãn điều kiện {u_{n + 1}} - {u_1} = 2 với n \geqslant 1 là cấp số cộng.

  • Câu 27: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) biết u_{n} = 3 - 5n. Tìm công sai của cấp số cộng?

    Theo giả thiết ta có:

    u_{n + 1} = - 2 - 5n

    \Rightarrow u_{n + 1} - u_{n} = -
5;\forall n \geq 1

    Vậy d = - 5

  • Câu 28: Thông hiểu

    Cho dãy số (un) biết u_{n} = \frac{5^{n}}{n^{2}}. Mệnh đề nào sau đây đúng?

    Ta có u_{n} = \frac{5^{n}}{n^{2}} >
0,\forall n \in \mathbb{N}^{*} \Rightarrow u_{n + 1} = \frac{5^{n +
1}}{(n + 1)^{2}}

    Xét tỉ số:

    \frac{u_{n + 1}}{u_{n}} = \frac{5^{n +
1}}{(n + 1)^{2}} \cdot \frac{n^{2}}{5^{n}}

    = \frac{5n^{2}}{n^{2} + 2n + 1} =
\frac{n^{2} + 2n + 1 + 4n^{2} - 2n - 1}{n^{2} + 2n + 1}

    = 1 + \frac{2n(n - 1) + 2n^{2} -
1}{n^{2} + 2n + 1} > 1,\forall n \in \mathbb{N}^{*}

    Vậy (un) là dãy số tăng.

  • Câu 29: Thông hiểu

    Một dãy số được xác định bởi u_{1} = - 4;u_{n} = - \frac{1}{2}u_{n - 1};(n \geq
2). Số hạng tổng quát u_{n} của dãy số đó là:

    Ta có: \left\{ \begin{matrix}
u_{1} = - 4 \\
u_{n + 1} = - \frac{1}{2}u_{n} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = - 4 \\
q = - \frac{1}{2} \\
\end{matrix} ight.

    \Rightarrow u_{n} = u_{1}.q^{n - 1} = -
4.\left( - \frac{1}{2} ight)^{n - 1}

  • Câu 30: Nhận biết

    Xác định bốn số hạng đầu của một dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = sin^{2}\left( \frac{\pi
n}{4} ight) + \cos\left( \frac{2\pi n}{3} ight) với \forall n \in \mathbb{N}^{*}?

    Ta có:

    u_{1} = \sin^{2}\left( \frac{\pi}{4}ight) + \cos\left( \frac{2\pi}{3} ight) = 0

    u_{2} = \sin^{2}\left( \frac{2\pi}{4}ight) + \cos\left( \frac{4\pi}{3} ight) = \frac{1}{2}

    u_{3} = \sin^{2}\left( \frac{3\pi}{4}ight) + \cos\left( \frac{6\pi}{3} ight) = \frac{3}{2}

    u_{4} = \sin^{2}\left( \frac{4\pi}{4}ight) + \cos\left( \frac{8\pi}{3} ight) = \frac{- 1}{2}

  • Câu 31: Nhận biết

    Cho dãy số (u_{n}), biết {u_n} = \frac{{2{n^2} - 1}}{{{n^2} + 3}}. Tìm số hạng u_{5}

    Ta có:

    {u_5} = \frac{{{{2.5}^2} - 1}}{{{5^2} + 3}} = \frac{{49}}{{28}} = \frac{7}{4}

  • Câu 32: Thông hiểu

    Một cấp số nhân có công bội bằng 3 và số hạng đầu bằng 5. Biết số hạng chính giữa là 32805. Hỏi cấp số nhân đã cho có bao nhiêu số hạng?

    Ta có:

    u_{n} = 32805

    \Rightarrow u_{1}.q^{n - 1} =
32805

    \Rightarrow 3^{n - 1} =
6561

    \Rightarrow n = 9

    Vậy u_{9} là số hạng chính giữa của cấp số nhân nên cấp số nhân đã cho có 17 số hạng.

  • Câu 33: Vận dụng

    Tổng n số hạng đầu tiên của một cấp số cộng là S_{n} = n^{2} + 4n^{2};\left( n \in
\mathbb{N}^{*} ight). Tìm số hạng tổng quát u_{n} của cấp số cộng đã cho.

    Ta có:

    S_{n} = n^{2} + 4n^{2}

    Mặt khác

    S_{n} = n.u_{1} + \frac{n(n - 1)d}{2} =
\frac{d}{2}.n^{2} + \left( u_{1} - \frac{d}{2} ight).n

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{d}{2} = 1 \\u_{1} - \dfrac{d}{2} = 4 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} = 5 \\d = 2 \\\end{matrix} ight.

    \Rightarrow u_{n} = 2n + 3

  • Câu 34: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight)u_{1} = - 1;q = - \frac{1}{10}. Số \frac{1}{10^{103}} là số hạng thứ mấy của cấp số nhân đã cho?

    Ta có:

    u_{n} = \frac{1}{10^{103}}

    \Rightarrow u_{1}.q^{n - 1} =
\frac{1}{10^{103}}

    \Rightarrow ( - 1)\left( - \frac{1}{10}
ight)^{n - 1} = 6561

    Mà n là số chẵn và n - 1 = 103

    \Rightarrow n = 104

  • Câu 35: Thông hiểu

    Trong các dãy số sau, dãy số nào bị chặn trên?

    Ta có:

    \left( v_{n} ight):v_{n} = - n^{2} + 2
\leq 2.

    Vậy đây là dãy số bị chặn trên.

  • Câu 36: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    a) Xét dãy số đã cho ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4} \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số \left( u_{n} ight) không tăng không giảm.

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}" đúng bằng chứng minh quy nạp.

    c) Công sai d = 5 và số hạng đầu tiên bằng u_{1} = - 2020

    Khi đó số hạng tổng quát của cấp số cộng là

    u_{n} = u_{1} + 5(n - 1)

    \Rightarrow u_{n} = - 2025 +
5n

    d) Từ giả thiết ta có:

    \left\{ \begin{matrix}
u_{1} = 160 \\
u_{6} = 5 \\
\end{matrix} ight.\  \Rightarrow q = \sqrt[5]{\frac{u_{6}}{u_{1}}} =
\frac{1}{2}

    Suy ra tổng các số hạng của cấp số nhân đó là: S = \dfrac{u_{1}\left( 1 - q^{6} ight)}{1 - q} =\dfrac{160.\left\lbrack 1 - \left( \dfrac{1}{2} ight)^{6}ightbrack}{\dfrac{1}{2}} = 315.

  • Câu 37: Nhận biết

    Giả sử A là tập con của tập hợp các số nguyên dương sao cho

    (I) k ∈ A

    (II) n ∈ A ⇒ n + 1 ∈ A, ∀n ≥ k

    Lúc đó, ta có: 

    (I) k ∈ A : số nguyên dương k thuộc tập A.

    (II) n ∈ A ⇒ n + 1 ∈ A, ∀n ≥ k : nếu số nguyên dương n(n≥k) thuộc tập A thì số nguyên dương đứng ngay sau nó (n+1) cũng thuộc A. Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc A.

  • Câu 38: Thông hiểu

    Cho hai số −3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số đó tạo thành cấp số cộng có công sai d = 2. Tìm n.

    Ta có:

    Cấp số cộng có k số hạng gồm có u_{1} = -3 và số hạng cuối u_{k} =23.

    Khi đó:

    u_{k + 1} = u_{1} + (k -1)d

    \Leftrightarrow 23 = - 3 + (k -1).2

    \Leftrightarrow k = 14

    Do đó n = k - 2 = 12

  • Câu 39: Thông hiểu

    Một người xếp chồng những khúc gỗ có kích thước như nhau thành 10 hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới 1 khúc gỗ và hàng trên cùng có 1 khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?

    Đáp án: 55

    Đáp án là:

    Một người xếp chồng những khúc gỗ có kích thước như nhau thành 10 hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới 1 khúc gỗ và hàng trên cùng có 1 khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?

    Đáp án: 55

    Mỗi hàng liền phía trên ít hơn hàng dưới 1 khúc gỗ và hàng trên cùng có 1 khúc gỗ nên ta có đây là tổng của một cấp số cộng có: u_{1} = 1;d = 1;n = 10.

    Khi đó, tổng số khúc gỗ là:

    S_{10} = \frac{n\left( 2u_{1} + (n - 1)d
ight)}{2}

    = \frac{10\left( 2.1 + (10 - 1)1
ight)}{2} = 55 (khúc gỗ).

  • Câu 40: Thông hiểu

    Cho cấp số cộng {u_1} =  - 3;d = 4. Chọn khẳng định đúng trong các khẳng định sau?

     Ta có: {u_3} = {u_1} + 2d =  - 3 + 2.4 = 5

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo