Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Dãy số u_{n} = 2^{n} là cấp số nhân với

    Cấp số nhân 1;2;4;8;16;32;...

    \Rightarrow \left\{ \begin{matrix}u_{1} = 1 \\q = \dfrac{u_{2}}{u_{1}} = 2 \\\end{matrix} ight.

  • Câu 2: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) với u_{1} = - 2;u_{2} = 2. Khi đó số hạng 2018 là số nào?

    Theo bài ra ta có:

    d = u_{2} - u_{1} = 2 - ( - 2) =
4

    u_{n} = u_{1} + (n - 1)d

    \Rightarrow u_{2018} = u_{1} + 2017d = -
2 + 2017.4 = 8066.

  • Câu 3: Thông hiểu

    Cho cấp số cộng (Un) có {u_1} = 4;{u_2} = 1. Giá trị của {u_{10}} bằng:

    Ta có:

    \begin{matrix}  {u_1} = 4;{u_2} = 1 \Rightarrow d = {u_2} - {u_1} = 1 - 4 =  - 3 \hfill \\   \Rightarrow {u_{10}} = {u_1} + 9d = 4 + 9.\left( { - 3} ight) =  - 23 \hfill \\ \end{matrix}

  • Câu 4: Nhận biết

    Xác định tham số m > 0 để 2m – 3; m; 2m + 3 lập thành một cấp số nhân.

    Để 2m – 3; m; 2m + 3 lập thành một cấp số nhân thì

    \begin{matrix}  {m^2} = \left( {2m - 3} ight)\left( {2m + 3} ight) \hfill \\   \Leftrightarrow {m^2} = 4{m^2} - 9 \hfill \\   \Leftrightarrow {m^2} = 3 \hfill \\   \Leftrightarrow m =  \pm \sqrt 3  \hfill \\ \end{matrix}

    Do m > 0 => m = \sqrt 3

  • Câu 5: Thông hiểu

    Cho cấp số cộng (Un) có u1 = -2 và công sai d = 3. Tìm số hạng u10

    Ta có: {u_{10}} = {u_1} + \left( {10 - 1} ight)d = {u_{10}} =  - 2 + 9.3 = 25

  • Câu 6: Thông hiểu

    Cho một cấp số cộng \left( u_{n} ight)u_{1} = 2;u_{8} = 16. Tìm d;S_{10}?

    Theo bài ra ta có:

    \left\{ \begin{matrix}
u_{1} = 2 \\
u_{8} = 16 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
u_{1} + 7d = 16 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
d = 2 \\
\end{matrix} ight.

    \Rightarrow S_{10} = \frac{\left\lbrack
2u_{1} + 9d ightbrack.n}{2} = 110

  • Câu 7: Thông hiểu

    Cho dãy số (u_{n}), biết {u_n} = \cos n + \sin n. Dãy số (u_{n}) bị chặn trên bởi số nào dưới đây?

     Ta có:

    \begin{matrix}  {u_n} = \cos n + \sin n \hfill \\   = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin n + \dfrac{1}{{\sqrt 2 }}\cos n} ight) \hfill \\   = \sqrt 2 \left( {\sin \dfrac{\pi }{4}\sin n + \cos \dfrac{\pi }{4}\cos n} ight) \hfill \\   = \sqrt 2 \cos \left( {n - \dfrac{\pi }{4}} ight) \hfill \\ \end{matrix}

    Với mọi n ta có:

    \begin{matrix}   - 1 \leqslant \cos \left( {n - \dfrac{\pi }{4}} ight) \leqslant 1 \hfill \\   \Leftrightarrow  - \sqrt 2  \leqslant {u_n} = \sqrt 2 \cos \left( {n - \dfrac{\pi }{4}} ight) \leqslant \sqrt 2  \hfill \\ \end{matrix}

    Vậy dãy số (u_{n}) bị chặn trên bởi \sqrt{2}

  • Câu 8: Thông hiểu

    Cho dãy số (un) với \ \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + ( - 1)^{2n + 1}\text{.~} \\
\end{matrix} ight.

    Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có un + 1 = un + (−1)2n + 1 = un − 1

    u1 = 1; u2 = u1 − 1; u3 = u2 − 1; …; un = un − 1 − 1

    Cộng vế với vế của các đẳng thức trên, ta được:

    un = 1 − (n−1) = 2 − n.

  • Câu 9: Vận dụng

    Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là 35000 đô la mỗi năm và được tăng thêm 1400 đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là 319200 đô la?

    Đáp án: 8

    Đáp án là:

    Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là 35000 đô la mỗi năm và được tăng thêm 1400 đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là 319200 đô la?

    Đáp án: 8

    Gọi u_{n} là tiền lương anh Nam nhận được vào năm thứ n.

    Tại năm đầu tiên, lương anh Nam nhận được là u_{1} = 35000.

    Vì mỗi năm, anh Nam được tăng lương thêm 1400 đô, nên ta có u_{n} = u_{n - 1} + 1400

    Do đó \left( u_{n} ight) là cấp số cộng với u_{1} = 35000,\ d =
1400.

    Tổng lương mà anh Nam nhận được là 319200 đô, áp dụng công thức tính tổng n số hạng đầu của cấp số cộng:

    S_{n} = \frac{\left\lbrack 2u_{1} + (n -
1)d ightbrack.n}{2}

    \Leftrightarrow 319200 =
\frac{\left\lbrack 2.35000 + (n - 1).1400
ightbrack.n}{2}

    \Rightarrow n = 8.

    Vậy anh Nam mất 8 năm làm việc để được tổng lương là 319200.

  • Câu 10: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{n} = - 2 \\
u_{n + 1} = - 2 - \frac{1}{u_{n}} \\
\end{matrix} ight.. Công thức số hạng tổng quát của dãy số là?

    Ta có u_{1} = - \frac{3}{2};u_{2} = -
\frac{4}{3};u_{3} = - \frac{5}{4};\ldots suy ra được u_{n} = - \frac{n + 1}{n}.

  • Câu 11: Vận dụng

    Cho cấp số cộng (un) có u1 = 1 và công sai d = 2. Tổng {S_{10}} = {u_1} + {u_2} + {u_3} + ... + {u_{10}} bằng:

    Ta có: 

    \begin{matrix}  {S_n} = \dfrac{{n\left( {{u_n} + {u_1}} ight)}}{2} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} ight)d} ight]}}{2} \hfill \\   \Rightarrow {S_{10}} = \dfrac{{10\left[ {2 + \left( {10 - 1} ight).2} ight]}}{2} = 100 \hfill \\ \end{matrix}

  • Câu 12: Thông hiểu

    Cho dãy số (un) được xác định bởi \left\{ \begin{matrix}
u_{1} = 2 \\
u_{n + 1} - u_{n} = 2n - 1 \\
\end{matrix} ight..

    Số hạng tổng quát un của dãy số là?

    Ta có \left\{ \begin{matrix}
u_{1} = 2 \\
u_{2} = u_{1} + 2.2 - 1 \\
u_{3} = u_{2} + 2.3 - 1 \\
\cdots \\
u_{n} = u_{n - 1} + 2.n - 1 \\
\end{matrix} ight.

    Cộng vế với vế của các đẳng thức trên rồi rút gọn, ta được:

    un = 2 + 2 ⋅ (2+3+…+n) − (n − 1)

     = 2 + (n−1)(n+2) − n + 1

     = n2 + 1

  • Câu 13: Vận dụng

    Xét tính bị chặn của dãy số un = 3n − 1, ta thu được kết quả?

    Ta có un ≥ 2, ∀n ⇒ (un) bị chặn dưới; dãy (un) không bị chặn trên.

  • Câu 14: Nhận biết

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = cos\alpha(0 < \alpha < \pi) \\
u_{n + 1} = \sqrt{\frac{1 + u_{n}}{2}},\forall n \geq 1 \\
\end{matrix} ight..

    Số hạng thứ 2020 của dãy số đã cho là?

    Do 0 < α < π nên
    u_{2} = \sqrt{\frac{1 + cos\alpha}{2}} =\sqrt{\cos^{2}\frac{\alpha}{2}} = cos\frac{\alpha}{2};

    u_{3} =\sqrt{\frac{1 + cos\frac{\alpha}{2}}{2}} =\sqrt{\cos^{2}\frac{\alpha}{2}} = cos\frac{\alpha}{4}

    Vậy u = cos\left( \frac{\alpha}{2^{n - 1}}
ight) với mọi n ∈ ℕ*. Ta sẽ chứng minh bằng quy nạp.

    Với n = 1 thì u1 = cosα (đúng).

    Giả sử với n = k ∈ ℕ* ta có u_{k} = cos\left( \frac{\alpha}{2^{k - 1}}
ight).

    Ta chứng minh u_{k + 1} =
cos\left( \frac{\alpha}{2^{k - 1}} ight)

    Thật vậy,

    u_{k + 1} = \sqrt{\frac{1 +u_{k}}{2}} = \sqrt{\frac{1 + cos\left( \frac{\alpha}{2^{k - 1}}ight)}{2}}

    = \sqrt{\cos^{2}\left( \frac{\alpha}{2^{k}} ight)} =cos\left( \frac{\alpha}{2^{k}} ight)

    Từ đó ta có u_{2020} = cos\left(
\frac{\alpha}{2^{2019}} ight)

  • Câu 15: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) với công bội q eq
1. Đặt S_{n} = u_{1} + u_{2} + ...
+ u_{n}. Khẳng định nào sau đây đúng?

    Theo công thức tính tổng n số hạng đầu của CSN ta được S_{n} =
\frac{u_{1}\left( 1 - q^{n} ight)}{1 - q}.

  • Câu 16: Thông hiểu

    Cho dãy số (un) với u_{n} = \frac{n - 1}{n^{2} + 1}, biết u_{k} = \frac{2}{13}. Hỏi uk là số hạng thứ mấy của dãy số đã cho?

    Ta có:

    u_{k} = \frac{k - 1}{k^{2} + 1}
\Rightarrow \frac{k - 1}{k^{2} + 1} = \frac{2}{13} \Rightarrow k =
5 (do  k∈ℕ*)

  • Câu 17: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight). Xác định u_{15} biết rằng u_{2} = 3;u_{4} = 7?

    Ta có:

    u_{4} - u_{2} = u_{1} + 3d - \left(
u_{1} + d ight) = 2d = 4 \Rightarrow d = 2

    Khi đó: u_{1} = u_{2} - d = 3 - 2 =
1

    Suy ra u_{15} = u_{1} + 17d = 1 + 17.2 =
35

  • Câu 18: Vận dụng cao

    Xác định công thức tổng quát của dãy số \left\{ \begin{matrix}u_{1} = \dfrac{- 1}{2} \\u_{n + 1} = \sqrt{\dfrac{u_{n} + 1}{2}};n \geq 1 \\\end{matrix} ight..

    Ta có: \left\{ \begin{matrix}u_{2} = \sqrt{\dfrac{u_{1} + 1}{2} = \dfrac{1}{2}} \\u_{3} = \sqrt{\dfrac{u_{2} + 1}{2}} = \dfrac{\sqrt{3}}{2} \\\end{matrix} ight.

    Nhận thấy \left\{ \begin{matrix}u_{1} = - \dfrac{1}{2} = \cos\left( \dfrac{2\pi}{3} ight) \\u_{2} = \dfrac{1}{2} = \cos\left( \dfrac{\pi}{3} ight) \\u_{3} = \dfrac{1}{2} = \dfrac{\sqrt{3}}{2} = \cos\left( \frac{\pi}{6}ight) \\\end{matrix} ight.

    Dự đoán u_{n} = \cos\left(
\frac{4\pi}{3.2^{n}} ight)(*)

    Ta chứng minh bằng quy nạp

    Trước hết u_{1} = \cos\left(
\frac{2\pi}{3} ight) = \cos\left( \frac{4\pi}{3.2^{1}}
ight) đúng với n = 1

    Giả sử (*) đúng khi n = k;k \in \mathbb{N}^{*}. Khi đó u_{k} = \cos\left( \frac{4\pi}{3.2^{k}}
ight)

    Ta có:

    u_{k + 1} = \sqrt{\dfrac{u_{k} + 1}{2}} =\sqrt{\dfrac{\cos\left( \dfrac{4\pi}{3.2^{k}} ight) +1}{2}}

    = \sqrt{\dfrac{\cos\left(2.\dfrac{4\pi}{3.2^{k + 1}} ight) + 1}{2}}

    = \sqrt{\dfrac{2.\left\lbrack \cos\left(\dfrac{4\pi}{3.2^{k + 1}} ight) ightbrack^{2} - 1 +1}{2}}

    = \sqrt{\left\lbrack \cos\left(\dfrac{4\pi}{3.2^{k + 1}} ight) ightbrack^{2}}

    = \left| \cos\left( \dfrac{4\pi}{3.2^{k +1}} ight) ight|

    Mặt khác ta có k \geq 1. Do đó 0 \leq \frac{4\pi}{3.2^{k + 1}} \leq
\frac{4\pi}{3.2^{1 + 1}} = \frac{\pi}{3} < \frac{\pi}{2}

    Vậy \cos\left( \dfrac{4\pi}{3.2^{k + 1}}ight) \geq 0 \Rightarrow u_{k + 1} = \cos\left( \dfrac{4\pi}{3.2^{k +1}} ight)

    Vậy (*) đúng với n = k + 1. Theo nguyên lí quy nạp, ta có điều phải chứng minh.

  • Câu 19: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    a) Xét dãy số đã cho ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4} \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số \left( u_{n} ight) không tăng không giảm.

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}" đúng bằng chứng minh quy nạp.

    c) Công sai d = 5 và số hạng đầu tiên bằng u_{1} = - 2020

    Khi đó số hạng tổng quát của cấp số cộng là

    u_{n} = u_{1} + 5(n - 1)

    \Rightarrow u_{n} = - 2025 +
5n

    d) Từ giả thiết ta có:

    \left\{ \begin{matrix}
u_{1} = 160 \\
u_{6} = 5 \\
\end{matrix} ight.\  \Rightarrow q = \sqrt[5]{\frac{u_{6}}{u_{1}}} =
\frac{1}{2}

    Suy ra tổng các số hạng của cấp số nhân đó là: S = \dfrac{u_{1}\left( 1 - q^{6} ight)}{1 - q} =\dfrac{160.\left\lbrack 1 - \left( \dfrac{1}{2} ight)^{6}ightbrack}{\dfrac{1}{2}} = 315.

  • Câu 20: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = - 1;d = 3. Tính tổng 100 số hạng đầu tiên của cấp số cộng.

    Ta có:

    S_{n} = n.u_{1} + \frac{n(n -
1)d}{2}

    \Leftrightarrow S_{100} = 100.u_{1} +
\frac{100.99d}{2} = - 24350

  • Câu 21: Nhận biết

    Cho dãy số\left( {{u_n}} ight):\left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {{u_{n + 1}} = n{u_n}} \end{array}} ight. với mọi n\geq 1. Khi đó số hạng thứ 5 của dãy là:

    Ta có:

    \begin{matrix}  {u_1} = 2 \hfill \\  {u_2} = 1{u_1} = 2 \hfill \\  {u_3} = 2.{u_2} = 2.2 = 4 \hfill \\  {u_4} = 3.{u_3} = 3.4 = 12 \hfill \\  {u_5} = 4.{u_4} = 4.12 = 48 \hfill \\ \end{matrix}

    Khi đó số hạng thứ 5 của dãy là 48

  • Câu 22: Thông hiểu

    Hai số hạng đầu của một cấp số nhân là 2x + 1 và 4x2 - 1. Số hạng thứ ba của cấp số nhân là: 

    Ta có: \frac{{4{x^2} - 1}}{{2x + 1}} = 2x - 1

    Vậy công sai của cấp số nhân là 2x - 1

    Vậy số hạng tiếp theo sẽ là: \left( {4{x^2} - 1} ight)\left( {2x - 1} ight) = 8{x^3} - 4{x^2} - 2x + 1

  • Câu 23: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?

    Dãy (un) là một cấp số cộng

    => {u_n} = an + b với a, b là hằng số

    => {u_n} = 6 - 3n

  • Câu 24: Nhận biết

    Cho cấp số cộng có số hạng đầu {u_1} =  - \frac{1}{2} công sai d = \frac{1}{2}. Năm số hạng liên tiếp đầu tiên của cấp số này là:

    Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight)d,\left( {{u_1} =  - \dfrac{1}{2};d = \dfrac{1}{2}} ight) \hfill \\   \Rightarrow {u_n} =  - \dfrac{1}{2} + \left( {n - 1} ight).\dfrac{1}{2} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_2} = {u_1} + d = 0} \\   {{u_3} = {u_2} + d = \dfrac{1}{2}} \\   {{u_4} = {u_3} + d = 1} \\   {{u_5} = {u_4} + d = \dfrac{3}{2}} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 25: Vận dụng

    Cho cấp số nhân \left( u_{n}
ight) có công bội nguyên và các số hạng thoả mãn \left\{ \begin{matrix}
u_{4} - u_{2} = 54 \\
u_{5} - u_{3} = 108 \\
\end{matrix} ight.. Các khẳng định dưới đây là đúng hay sai?

    a) Số hạng đầu của cấp số nhân bằng 9. Đúng||Sai

    b) Tổng của 9 số hạng đầu tiên bằng 4599. Đúng||Sai

    c) Số 576 là số hạng thứ 6 của cấp số nhân. Sai||Đúng

    d) Gọi dãy số \left( v_{n} ight):\ \
v_{n} = u_{3n}, với n \in
\mathbb{N}^{*}. Khi đó tổng v_{1} +
v_{2} + v_{3} + ... + v_{10} = 12\left( 4^{10} - 1 ight). Sai||Đúng

    Đáp án là:

    Cho cấp số nhân \left( u_{n}
ight) có công bội nguyên và các số hạng thoả mãn \left\{ \begin{matrix}
u_{4} - u_{2} = 54 \\
u_{5} - u_{3} = 108 \\
\end{matrix} ight.. Các khẳng định dưới đây là đúng hay sai?

    a) Số hạng đầu của cấp số nhân bằng 9. Đúng||Sai

    b) Tổng của 9 số hạng đầu tiên bằng 4599. Đúng||Sai

    c) Số 576 là số hạng thứ 6 của cấp số nhân. Sai||Đúng

    d) Gọi dãy số \left( v_{n} ight):\ \
v_{n} = u_{3n}, với n \in
\mathbb{N}^{*}. Khi đó tổng v_{1} +
v_{2} + v_{3} + ... + v_{10} = 12\left( 4^{10} - 1 ight). Sai||Đúng

    a) Đúng

    Ta có:

    \left\{ \begin{matrix}
u_{4} - u_{2} = 54 \\
u_{5} - u_{3} = 108 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
u_{1}q^{3} - u_{1}q = 54 \\
u_{1}q^{4} - u_{1}q^{2} = 108 \\
\end{matrix} ight.\  ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1}q\left( q^{2} - 1 ight) = 54 \\
u_{1}q^{2}\left( q^{2} - 1 ight) = 108 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = \frac{54}{q(q^{2} - 1)} \\
\frac{1}{q} = \frac{54}{108} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} = \frac{54}{2(2^{2} - 1)} \\
q = 2 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 9 \\
q = 2 \\
\end{matrix} ight.\  ight..

    b) Đúng.

    Ta có: S_{9} = \frac{u_{1} \cdot \left( 1
- q^{9} ight)}{1 - q} = \frac{9 \cdot \left( 1 - 2^{9} ight)}{1 - 2}
= 4599

    Vậy tổng của 9 số hạng đầu tiên bằng 4599 nên mệnh đề đúng.

    c) Sai.

    Ta có:

    u_{k} = 576 \Leftrightarrow u_{1} \cdot
q^{k - 1} = 576 \Leftrightarrow 9.2^{k - 1} = 576

    \Leftrightarrow 2^{k - 1} = 64
\Leftrightarrow k - 1 = 6 \Leftrightarrow k = 7

    Vậy số 576 là số hạng thứ 7 của cấp số nhân nên mệnh đề sai.

    d) Sai.

    Ta có v_{n} = u_{3n}, nên \left( v_{n} ight) là cấp số nhân với v_{1} = u_{3} = 36 và công bội q = \frac{v_{2}}{v_{1}} =
\frac{u_{6}}{u_{3}} = \frac{9.2^{5}}{9.2^{2}} = 8.

    Nên S_{10} = 36.\frac{8^{10} -
1}{7}.

  • Câu 26: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?

    Xét dãy số  u_{n}=-2^{n}+15 ta có:

     \begin{matrix}  {u_{n + 1}} =  - {2^{n + 1}} + 15 \hfill \\   \Rightarrow {u_{n + 1}} - {u_n} =  - {2^{n + 1}} + 15 + {2^n} - 15 \hfill \\   =  - {2^{n + 1}} + {2^n}=d \hfill \\ \end{matrix}

    d không cố định => Dãy số u_{n}=-2^{n}+15 không phải là một cấp số cộng.

  • Câu 27: Vận dụng cao

    Tính tổng S = {u_1} + \frac{{{u_2}}}{2} + \frac{{{u_3}}}{3} + ... + \frac{{{u_{10}}}}{{10}}. Biết dãy số (un) xác định bởi: {u_1} = \frac{1}{3};{u_{n + 1}} = \frac{{n + 1}}{{3n}}.{u_n}

     Ta có:

    {u_{n + 1}} = \frac{{n + 1}}{{3n}}.{u_n} \Leftrightarrow \frac{{{u_{n + 1}}}}{{n + 1}} = \frac{{{u_n}}}{{3n}}

    Do {u_1} = \frac{1}{3} \Rightarrow \frac{{{u_1}}}{1} = \frac{1}{3}

    Từ đó suy ra:

    \begin{matrix}  \dfrac{{{u_2}}}{2} = \dfrac{1}{3}.\dfrac{1}{3} = {\left( {\dfrac{1}{3}} ight)^2} \hfill \\  \dfrac{{{u_3}}}{3} = \dfrac{1}{3}.{\left( {\dfrac{1}{3}} ight)^2} = {\left( {\dfrac{1}{3}} ight)^3} \hfill \\  ... \hfill \\  \dfrac{{{u_{10}}}}{{10}} = \dfrac{1}{3}.{\left( {\dfrac{1}{3}} ight)^9} = {\left( {\dfrac{1}{3}} ight)^{10}} \hfill \\ \end{matrix}

    Hay dãy \left( {\frac{{{u_n}}}{n}} ight) là một cấp số nhân có số hạng đầu {u_1} = \frac{1}{3},q = \frac{1}{3}

    Khi đó S = {u_1} + \frac{{{u_2}}}{2} + \frac{{{u_3}}}{3} + ... + \frac{{{u_{10}}}}{{10}} = \frac{{{3^{10}} - 1}}{{{{2.3}^{10}}}} = \frac{{29524}}{{59049}}

  • Câu 28: Vận dụng

    Cho dãy số \left( u_{n}
ight) thỏa mãn log_{3}\left(
2u_{5} - 63 ight) = 2log_{4}\left( u_{n} - 8n + 8 ight);\left(
\forall n \in \mathbb{N}^{*} ight). Đặt S_{n} = u_{1} + u_{2} + ... + u_{n}. Tìm số nguyên dương lớn nhất của n thỏa mãn \frac{u_{n}.S_{2n}}{u_{2n}.S_{n}} <
\frac{148}{75}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho dãy số \left( u_{n}
ight) thỏa mãn log_{3}\left(
2u_{5} - 63 ight) = 2log_{4}\left( u_{n} - 8n + 8 ight);\left(
\forall n \in \mathbb{N}^{*} ight). Đặt S_{n} = u_{1} + u_{2} + ... + u_{n}. Tìm số nguyên dương lớn nhất của n thỏa mãn \frac{u_{n}.S_{2n}}{u_{2n}.S_{n}} <
\frac{148}{75}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 29: Thông hiểu

    Cho cấp số nhân với các số hạng lần lượt là a; 12; b; 192. Mệnh đề nào dưới đây đúng?

     Ta có: Cấp số nhân với các số hạng lần lượt là a; 12; b; 192

    \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{12}}{a} = \dfrac{b}{{12}}} \\   {\dfrac{b}{{12}} = \dfrac{{192}}{b}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = \dfrac{{144}}{y}} \\   {{b^2} = 2034} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a =  \pm 3} \\   {b =  \pm 48} \end{array}} ight.

  • Câu 30: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{n} = - 1;u_{n + 1} = 8. Tính công sai d của cấp số cộng đó:

    Ta có:

    d = u_{n + 1} - u_{n} = 8 - ( - 1) =
9

  • Câu 31: Vận dụng

    Cho cấp số cộng (un) có u3 = -15; u20 = 60. Tổng của 10 số hạng đầu tiên của cấp số cộng này là:

    Gọi u1, d lần lượt là số hạng đầu và công sai của cấp số cộng

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {{u_5} =  - 15} \\   {{u_{20}} = 60} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + 4d =  - 15} \\   {{u_1} + 19d = 60} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} =  - 35} \\   {d = 5} \end{array}} ight.

    => Tổng của 10 số hạng đầu tiên của cấp số cộng này là:

    {S_{10}} = \frac{{10}}{2}.\left( {2{u_1} + 9d} ight) = 5.\left[ {2.\left( { - 35} ight) + 9.5} ight] =  - 125

  • Câu 32: Thông hiểu

    Cho cấp số nhân (un) có {u_2} = \frac{1}{4};{u_5} = 16. Tìm công bội q và số hạng đầu u1.

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_2} = \dfrac{1}{4}} \\   {{u_5} = 16} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1}.q = \dfrac{1}{4}} \\   {{u_1}.{q^4} = 16} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{q^3} = 64} \\   {{u_1}.{q^4} = 16} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {q = 4} \\   {{u_1} = \dfrac{1}{{16}}} \end{array}} ight.

  • Câu 33: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + 2n + 1,n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Số hạng tổng quát un là?

    Ta có u1 = 1; u2 = u1 + 3; u3 = u2 + 5; u4 = u3 + 7; …; un = un − 1 + (2n−1)

    Cộng từng vế với vế của các đẳng thức trên và rút gọn ta được

    un = 1 + 3 + 5 + 7 + … + (2n−1) = n2.

  • Câu 34: Nhận biết

    Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến A(n) đúng với mọi giá trị nguyên n ≥ p, với p là số nguyên dương ta sẽ tiến hành 2 bước

    Bước 1 (bước cơ sở). Chứng minh rằng A(n) đúng khi n = 1

    Bước 2 (bước quy nạp). Với số nguyên dương tùy ý k, ta giả sử A(n) đúng khi n = k (theo giả thiết quy nạp). Ta sẽ chứng minh rằng A(n) đúng khi n = k + 1

    Hãy chọn câu trả lời đúng tương ứng với lí luận trên.

    Bước 1 sai, vì theo bài toán n ≥ p nên ta phải chứng minh rằng A(n) đúng khi n = p.

    Bước 2 sai, không thể "Với số nguyên dương tùy ý k " mà phải là "Với số nguyên dương k, (k p) ".

  • Câu 35: Nhận biết

    Dãy số u_{n} =
2^{2n} là cấp số nhân với

    Cấp số nhân 4;16;64;....

    \Rightarrow \left\{ \begin{matrix}u_{1} = 4 \\q = \dfrac{u_{2}}{u_{1}} = 4 \\\end{matrix} ight.

  • Câu 36: Nhận biết

    Cho dãy số (u_{n}), biết u_{n}=\frac{n}{3^{n}-1}. Ba số hạng đầu tiên của dãy số đó lần lượt là:

    Ta có:

    \begin{matrix}  {u_1} = \dfrac{1}{{{3^1} - 1}} = \dfrac{1}{2} \hfill \\  {u_2} = \dfrac{2}{{{3^2} - 1}} = \dfrac{1}{4} \hfill \\  {u_3} = \dfrac{3}{{{3^3} - 1}} = \dfrac{3}{{26}} \hfill \\ \end{matrix}

    Ba số hạng đầu tiên của dãy số đó lần lượt là: \frac{1}{2};\frac{1}{4};\frac{3}{26}

  • Câu 37: Nhận biết

    Cho dãy số \left( u_{n} ight) là một cấp số nhân với u_{n} eq 0;n \in\mathbb{N}^{*}. Dãy số nào sau đây không phải là cấp số nhân?

    Giả sử \left( u_{n} ight) là cấp số nhân công bội q thì:

    Dãy u_{1};u_{3};u_{5} là cấp số nhân công bội q^{2}.

    Dãy 3u_{1};3u_{2};3u_{3} là cấp số nhân với công bội 2q.

    Dãy \frac{1}{u_{1}};\frac{1}{u_{2}};\frac{1}{u_{3}} là cấp số nhân công bội \frac{1}{q}.

    Dãy u_{1} + 2;u_{2} + 2;u_{3} +2 không là cấp số nhân.

  • Câu 38: Thông hiểu

    Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:

    Ta có cấp số nhân (un) nên khi đó:

    \begin{matrix}\left\{ {\begin{array}{*{20}{c}}  {{u_m} = 16} \\   {{u_{m + 1}} = 36} \end{array}} ight. \Leftrightarrow \dfrac{{{u_{m + 1}}}}{{{u_m}}} = \dfrac{{36}}{{16}} = \dfrac{9}{4} \Rightarrow q = \dfrac{9}{4} \hfill \\   \Rightarrow {u_{m + 2}} = {u_{m + 1}}.q = 36.\dfrac{9}{4} = 81 \hfill \\ \end{matrix}

  • Câu 39: Vận dụng cao

    Cho a, b, c theo thứ tự lập thành cấp số cộng. Giá trị x + y là bao nhiêu? Biết:

    B = {\log _2}\left( {{a^2} + ab + } ight){b^2} + bc + {c^2} = x{\log _2}\left( {{a^2} + ac + {c^2}} ight) + y;\left( {x,y \in \mathbb{N}} ight)

    Ta có: a, b, c lập thành cấp số cộng nên

    a + c = 2b => (a + c)2 = 4b2

    \begin{matrix}   \Rightarrow b\left( {a + c} ight) + 2{b^2} = {\left( {a + c} ight)^2} \hfill \\   \Rightarrow 2{a^2} + ab + 2{b^2} + bc + {c^2} = 2\left( {{a^2} + ac + {c^2}} ight) \hfill \\   \Rightarrow B = {\log _2}\left( {{a^2} + ab + } ight){b^2} + bc + {c^2} = {\log _2}\left( {{a^2} + ac + {c^2}} ight) + 1 \hfill \\   =  > x + y = 1 + 1 = 2 \hfill \\ \end{matrix}

  • Câu 40: Thông hiểu

    Cho hai số −3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số đó tạo thành cấp số cộng có công sai d = 2. Tìm n.

    Ta có:

    Cấp số cộng có k số hạng gồm có u_{1} = -3 và số hạng cuối u_{k} =23.

    Khi đó:

    u_{k + 1} = u_{1} + (k -1)d

    \Leftrightarrow 23 = - 3 + (k -1).2

    \Leftrightarrow k = 14

    Do đó n = k - 2 = 12

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo