Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức

Mô tả thêm: Đề kiểm tra 45 phút Toán 11 Dãy số. Cấp số cộng và cấp số nhân gồm 40 câu hỏi trắc nghiệm giúp bạn học ôn tập, củng cố lại kiến thức sách Kết nối tri thức.
  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến A(n) đúng với mọi giá trị nguyên n ≥ p, với p là số nguyên dương ta sẽ tiến hành 2 bước

    Bước 1 (bước cơ sở). Chứng minh rằng A(n) đúng khi n = 1

    Bước 2 (bước quy nạp). Với số nguyên dương tùy ý k, ta giả sử A(n) đúng khi n = k (theo giả thiết quy nạp). Ta sẽ chứng minh rằng A(n) đúng khi n = k + 1

    Hãy chọn câu trả lời đúng tương ứng với lí luận trên.

    Bước 1 sai, vì theo bài toán n ≥ p nên ta phải chứng minh rằng A(n) đúng khi n = p.

    Bước 2 sai, không thể "Với số nguyên dương tùy ý k " mà phải là "Với số nguyên dương k, (k p) ".

  • Câu 2: Vận dụng

    Cho dãy số {u_n} = \frac{{{2^{n - 1}} + 1}}{n}. Số hạng thứ 10 của dãy số đó là:

    Ta có: {u_{10}} = \frac{{{2^{10 - 1}} + 1}}{{10}} = 51,3

  • Câu 3: Nhận biết

    Cho dãy số \left(
u_{n} ight) biết \left\{\begin{matrix}u_{1} = 3 \\u_{n + 1} = \dfrac{u_{n}}{2} + 2 \\\end{matrix} ight.. Mệnh đề nào sau đây sai?

    Ta có:

    u_{2} = \frac{u_{1}}{2} + 2 =
\frac{3}{2} + 2 = \frac{7}{2}

    u_{3} = \frac{u_{3}}{2} + 2 =
\frac{7}{4} + 2 = \frac{15}{4}

    u_{4} = \frac{u_{3}}{2} + 2 =
\frac{15}{8} + 2 = \frac{31}{8}

    u_{5} = \frac{u_{4}}{2} + 2 =
\frac{31}{16} + 2 = \frac{63}{16}

  • Câu 4: Nhận biết

    Cho dãy số \left( u_{n} ight) xác định bởi u_{n} = \frac{n - 1}{n^{2} + 2n
+ 3}. Giá trị u_{21}

    Ta có: u_{21} = \frac{21 - 1}{21^{2} +
2.21 + 3} = \frac{10}{243}.

  • Câu 5: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + 2n + 1,n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Số hạng tổng quát un là?

    Ta có u1 = 1; u2 = u1 + 3; u3 = u2 + 5; u4 = u3 + 7; …; un = un − 1 + (2n−1)

    Cộng từng vế với vế của các đẳng thức trên và rút gọn ta được

    un = 1 + 3 + 5 + 7 + … + (2n−1) = n2.

  • Câu 6: Vận dụng cao

    Cho xeq 0 và x+\frac{1}{x} là một số nguyên. Khi đó với mọi số nguyên dương n, có kết luận gì về T(n,x)=x^{n}+\frac{1}{x^{n}}?

    Ta có:

    T\left( {1;x} ight) = x + \frac{1}{x} là một số nguyên

    T\left( {2;x} ight) = {x^2} + \frac{1}{{{x^2}}} = {\left( {x + \frac{1}{x}} ight)^2} - 2 cũng là một số nguyên

    Ta sẽ chứng minh T(n,x)=x^{n}+\frac{1}{x^{n}} là một số nguyên.

    Ta có: 

    T\left( {1;x} ight) là một số nguyên 

    Giả sử T(n,x) là số nguyên với n \ge1. Ta sẽ chứng minh T\left( {n + 1;x} ight) cũng là số nguyên.

    Ta có: 

    \begin{matrix}  T\left( {n + 1;x} ight) = {x^{n + 1}} + \dfrac{1}{{{x^{n + 1}}}} \hfill \\   = \left( {x + \dfrac{1}{x}} ight).\left( {{x^n} + \dfrac{1}{{{x^n}}}} ight) - \left( {{x^{n - 1}} + \dfrac{1}{{{x^{n - 1}}}}} ight) \hfill \\   = T\left( {1;x} ight).T\left( {n;x} ight) - T\left( {n - 1;x} ight) \hfill \\ \end{matrix}

    Theo giả thiết quy nạp ta có: 

    \left\{ \begin{gathered}  T\left( {1;x} ight) \in \mathbb{Z} \hfill \\  T\left( {n;x} ight) \in \mathbb{Z} \hfill \\  T\left( {n - 1;x} ight) \in \mathbb{Z} \hfill \\ \end{gathered}  ight. \Rightarrow T\left( {n + 1;x} ight) \in \mathbb{Z}

    Vậy T(n,x)=x^{n}+\frac{1}{x^{n}} là một số nguyên.

  • Câu 7: Vận dụng

    Với mọi số nguyên dương n, tổng S_{n}=n^{3}+11n chia hết cho:

    Với n=1 ta có: {S_1} = 1 + 11 = 12 không chia hết cho 9.

    Với n=2 ta có: {S_2} = {2^3} + 11.2 = 30 không chia hết cho 4 và 12

    Ta sẽ chứng minh S_{n}=n^{3}+11n chia hết cho 6 với mọi số nguyên dương n

    Giả sử khẳng định đúng với n=k nghĩa là {S_k} = {k^3} + 11k chia hết cho 6.

    Ta cần chứng minh khẳng định đúng với n=k+1 tức là:

    {S_{k + 1}} = {\left( {k + 1} ight)^3} + 11.\left( {k + 1} ight) cũng chia hết cho 6

    Ta có:

    \begin{matrix}  {S_{k + 1}} = {\left( {k + 1} ight)^3} + 11.\left( {k + 1} ight) \hfill \\   = {k^3} + 3{k^2} + 3k + 1 + 11k + 11 \hfill \\   = \left( {{k^3} + 11k} ight) + \left( {3{k^2} + 3k} ight) + 12 \hfill \\   = \left( {{k^3} + 11k} ight) + 3k\left( {k + 1} ight) + 12 \hfill \\ \end{matrix}

    Ta lại có: \left\{ \begin{gathered}  \left( {{k^3} + 11k} ight) \vdots 6 \hfill \\  12 \vdots 6 \hfill \\ \end{gathered}  ight. ta cần chứng minh 3k\left( {k + 1} ight) \vdots 6

    Thật vậy k\left( {k + 1} ight) là tích hai số nguyên dương liên tiếp nên k\left( {k + 1} ight) \vdots 2

    Mặt khác 3k\left( {k + 1} ight) \vdots 3 và 2, 3 là hai số nguyên tố cùng nhau nên 3k\left( {k + 1} ight) \vdots  6

    Vậy {S_{k + 1}} = {\left( {k + 1} ight)^3} + 11k chia hết cho 6 hay S_{n}=n^{3}+11n chia hết cho 6 với mọi số nguyên dương n.

  • Câu 8: Thông hiểu

    Cho dãy số \left( u_{n} ight) xác định bởi \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} + 5 = 2\left( u_{n} + 5 ight) \\
\end{matrix} ight.. Tính số hạng thứ 2024 của dãy số đó?

    Ta có v_{n} = u_{n} + 5, \forall n \in Ν^{*} \Rightarrow v_{n + 1} =
2v_{n}, \forall n \in
Ν^{*}

    Do đó \left( v_{n} ight) là cấp số nhân với v_{1} = 6, q = 2, v_{n}
= 6.q^{n - 1};

    v_{2024} =
6.2^{2023} \Rightarrow u_{2024} = 6.2^{2023} - 5.

  • Câu 9: Nhận biết

    Biết bốn số 5;x;15;y theo thứ tự lập thành cấp số cộng. Giá trị của biểu thức 3x + 2y bằng

    Ta có:

    x = \frac{5 + 15}{2} = 10 \Rightarrow y= 20

    \Rightarrow 3x + 2y = 70

  • Câu 10: Vận dụng

    Tổng n số hạng đầu tiên của một cấp số cộng là S_{n} = n^{2} + 4n^{2};\left( n \in
\mathbb{N}^{*} ight). Tìm số hạng tổng quát u_{n} của cấp số cộng đã cho.

    Ta có:

    S_{n} = n^{2} + 4n^{2}

    Mặt khác

    S_{n} = n.u_{1} + \frac{n(n - 1)d}{2} =
\frac{d}{2}.n^{2} + \left( u_{1} - \frac{d}{2} ight).n

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{d}{2} = 1 \\u_{1} - \dfrac{d}{2} = 4 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} = 5 \\d = 2 \\\end{matrix} ight.

    \Rightarrow u_{n} = 2n + 3

  • Câu 11: Thông hiểu

    Cho dãy số (u_{n}), biết {u_n} = \frac{{n + 1}}{{2n + 1}}. Số \frac{8}{15} là số hạng thứ mấy của dãy số?

    Ta có: 

    \begin{matrix}  {u_k} = \dfrac{8}{{15}} \hfill \\   \Leftrightarrow \dfrac{{k + 1}}{{2k + 1}} = \dfrac{8}{{15}};\left( {k \in {\mathbb{N}^*}} ight) \hfill \\   \Leftrightarrow 15\left( {k + 1} ight) = 8\left( {2k + 1} ight) \hfill \\   \Leftrightarrow 15k + 15 = 16k + 8 \hfill \\   \Leftrightarrow k = 7 \hfill \\ \end{matrix}

    Vậy số \frac{8}{15} là số hạng thứ 7 của dãy số.

  • Câu 12: Vận dụng cao

    Tại một nhà máy, người ta đo được rằng 80\% lượng nước sau khi sử dụng được xử lí và tái sử dụng. Với 100\ m^{3} ban đầu được sử dụng lần đầu tại nhà máy, khi quá trình xử lí và tái sử dụng lặp lại mãi mãi, nhà máy sử dụng được tổng lượng nước là bao nhiêu?

    Đáp án: 500

    Đáp án là:

    Tại một nhà máy, người ta đo được rằng 80\% lượng nước sau khi sử dụng được xử lí và tái sử dụng. Với 100\ m^{3} ban đầu được sử dụng lần đầu tại nhà máy, khi quá trình xử lí và tái sử dụng lặp lại mãi mãi, nhà máy sử dụng được tổng lượng nước là bao nhiêu?

    Đáp án: 500

    Ta có:

    100 + 100.0,8 + 100.0,8)^{2} +
100.(0,8)^{3} + \ldots

    = 100.\frac{1}{1 - 0,8} = 500\left( \
m^{3} ight).

  • Câu 13: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = - 1;d = 3. Tính tổng 100 số hạng đầu tiên của cấp số cộng.

    Ta có:

    S_{n} = n.u_{1} + \frac{n(n -
1)d}{2}

    \Leftrightarrow S_{100} = 100.u_{1} +
\frac{100.99d}{2} = - 24350

  • Câu 14: Nhận biết

    Biết ba số m;2;m
+ 3 lập thành một cấp số nhân. Tính tổng các giá trị của m thỏa mãn?

    Để ba số m;2;m + 3 lập thành một cấp số nhân thì m.(m + 3) = 2^{2}
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = - 4 \\
\end{matrix} ight.

    Vậy tổng các giá trị của m là S = -
3

  • Câu 15: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?

    Dãy (un) là một cấp số cộng

    => {u_n} = an + b với a, b là hằng số

    => {u_n} = 6 - 3n

  • Câu 16: Nhận biết

    Tìm b >
0 để các số \frac{1}{\sqrt{2}};\sqrt{b};\sqrt{2} theo thứ tự đó lập thành một cấp số nhân.

    Các số \frac{1}{\sqrt{2}};\sqrt{b};\sqrt{2} theo thứ tự đó lập thành một cấp số nhân

    \Rightarrow \left( \sqrt{b} ight)^{2}
= \frac{1}{\sqrt{2}}.\sqrt{2}

    \Rightarrow b = 1

  • Câu 17: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Dãy số 1; 2; 3; 4; 5 là một cấp số cộng với công sai là d = 1

    Dãy số 1; 2; 4; 8; 16 là một cấp số nhân với công bội q = 2

    Dãy số 1; -1; 1; -1; 1 là một cấp số nhân với công bội q = -1

    Dãy số 1; -2; 4; -8; 16 là một cấp số nhân với công bội q = -2

  • Câu 18: Nhận biết

    Dãy số u_{n} =
2^{2n} là cấp số nhân với

    Cấp số nhân 4;16;64;....

    \Rightarrow \left\{ \begin{matrix}u_{1} = 4 \\q = \dfrac{u_{2}}{u_{1}} = 4 \\\end{matrix} ight.

  • Câu 19: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Xét đáp án \frac{1}{\pi};\frac{1}{\pi^{2}};\frac{1}{\pi^{4}};\frac{1}{\pi^{6}};...\Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{1}{\pi} eq \frac{1}{\pi^{2}} = \frac{u_{3}}{u_{2}}

    => Dãy số \frac{1}{\pi};\frac{1}{\pi^{2}};\frac{1}{\pi^{4}};\frac{1}{\pi^{6}};... không phải là cấp số nhân.

  • Câu 20: Thông hiểu

    Cho dãy số (u_{n}), biết {u_n} = \sin n - \cos n. Dãy số (u_{n}) bị chặn dưới bởi số nào dưới đây?

    Ta có:

    \begin{matrix}  {u_n} = \sin n - \cos n \hfill \\   = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin n - \dfrac{1}{{\sqrt 2 }}\cos n} ight) \hfill \\   = \sqrt 2 \left( {\cos \dfrac{\pi }{4}\sin n - \sin \dfrac{\pi }{4}\cos n} ight) \hfill \\   = \sqrt 2 \sin \left( {n - \dfrac{\pi }{4}} ight) \hfill \\   \Rightarrow 1 \geqslant \sin \left( {n - \dfrac{\pi }{4}} ight) \geqslant  - 1 \hfill \\   \Rightarrow \sqrt 2  \geqslant \sqrt 2 \sin \left( {n - \dfrac{\pi }{4}} ight) \geqslant  - \sqrt 2  \hfill \\ \end{matrix}

  • Câu 21: Nhận biết

    Cho dãy số -7; h; 11; k. Với giá trị nào của h, k thì dãy số đã cho lập thành một cấp số cộng?

     Bốn số hạng 7; h; 11; k theo thứ tự là u1; u2; u3; u4 lập thành một cấp số cộng nên

    \begin{matrix}   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_4} - {u_3} = {u_3} - {u_2}} \\   {{u_4} - {u_3} = {u_2} - {u_1}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {k - 11 = 11 - h} \\   {k - 11 = h + 7} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {h + k = 22} \\   {h - k =  - 18} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {h = 2} \\   {k = 20} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 22: Thông hiểu

    Cho một cấp số nhân có 15 số hạng. Đẳng thức nào sau đây là sai?

    Ta có: u_{1}.u_{15} = u_{1}.u_{1}.q^{14}= \left( u_{1}.q^{a - 1} ight).\left( u_{1}.q^{b - 1} ight) =u_{a}.u_{b}

    Với a + b = 16

    Đáp án sai u_{1}.u_{15} =u_{6}.u_{9}

  • Câu 23: Thông hiểu

    Ba số hạng đầu của một cấp số nhân là x - 6;xy. Tìm y biết rằng công bội của cấp số nhân là 6?

    Ta có:

    Ba số hạng đầu của một cấp số nhân là x -
6;xy có công bội q = 6

    \Rightarrow \left\{ \begin{matrix}u_{1} = x - 6;q = 6 \\x = u_{2} = u_{1}q = 6(x - 6) \\y = u_{3} = u_{2}q^{2} = 36x \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \dfrac{36}{5} \\y = 36.\dfrac{36}{5} = \dfrac{1296}{5} \\\end{matrix} ight.

  • Câu 24: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{n} = - 1;u_{n + 1} = 8. Tính công sai d của cấp số cộng đó:

    Ta có:

    d = u_{n + 1} - u_{n} = 8 - ( - 1) =
9

  • Câu 25: Thông hiểu

    Trong các dãy (un) sau đây, dãy nào là dãy số bị chặn?

    Ta có:

    n2 − n + 1 < n2 + 2n + 2 (do n > 0)

    Suy ra u_{n} = \frac{n^{2} - n + 1}{n^{2}
+ 2n + 2} < 1, với mọi n.

  • Câu 26: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = \frac{1}{2} \\
u_{n + 1} = 2u_{n} \\
\end{matrix} ight.. Công thức số hạng tổng quát của dãy số là?

    Ta có

    \left\{ \begin{matrix}u_{1} = \frac{1}{2} \\u_{2} = 2u_{1} \\u_{3} = 2u_{2} \\\cdots \\u_{n} = 2u_{n - 1} \\\end{matrix} ight.

    Nhân vế với vế của các đẳng thức trên, ta được: u_{1} \cdot u_{2} \cdot u_{3}\ldots u_{n} =
\frac{1}{2} \cdot 2^{n - 1} \cdot u_{1} \cdot u_{2}\ldots u_{n - 1}
\Leftrightarrow u_{n} = 2^{n - 2}.

  • Câu 27: Vận dụng

    Tìm số đo góc lớn nhất của một tứ giác, biết số đo các góc đó lập thành một cấp số nhân có số hạng cuối gấp tám lần số hạng đầu tiên?

    Giả sử cấp số nhân có số hạng đầu là u_{1}, công bội q, với q >0

    Theo bài ra ta có:

    u_{4} = 8.u_{1} \Leftrightarrowu_{1}q^{3} = u_{1}.8

    \Leftrightarrow q = 2

    S_{4} = u_{1} + u_{2} + u_{3} + u_{4}= 360^{0}

    \Leftrightarrow u_{1}.\frac{1 - q^{4}}{1- q} = 360^{0} \Rightarrow u_{1} = 24^{0}

    u_{2} = 48^{0};u_{3};96^{0};u_{4} =192^{0}

    Vậy góc lớn nhất có số đo 192^{0}

  • Câu 28: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{4} = - 12;u_{14} = 18. Tính số hạng đầu tiên u_{1} và công sai d của cấp số cộng đã cho.

    Ta có:

    \left\{ \begin{matrix}
u_{4} = - 12 \\
u_{14} = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + 3d = - 12 \\
u_{1} + 13d = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 21 \\
d = 3 \\
\end{matrix} ight.

  • Câu 29: Vận dụng

    Xét tính bị chặn của dãy số un = 3n − 1, ta thu được kết quả?

    Ta có un ≥ 2, ∀n ⇒ (un) bị chặn dưới; dãy (un) không bị chặn trên.

  • Câu 30: Vận dụng cao

    Cho một dãy số có các số hạng đầu tiên là 1; 8; 22; 43; … Hiệu của hai số hạng liên tiếp của dãy số đó lập thành một cấp số cộng 7; 14; 21; …, 7n. Số 35351 là số hạng thứ mấy của cấp số đã cho?

    Theo đề bài ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_2} - {u_1} = 7} \\   {{u_3} - {u_2} = 14} \\   {{u_4} - {u_3} = 21} \\   \begin{gathered}  ..... \hfill \\  {u_n} - {u_{n - 1}} = 7\left( {n - 1} ight) \hfill \\ \end{gathered}  \end{array}} ight.

    Cộng các vế của các phương trình của hệ ta được:

    {u_n} - {u_1} = 7 + 14 + 21 + ... + 7\left( {n - 1} ight) = \frac{{7.n\left( {n - 1} ight)}}{2}\left( * ight)

    Đặt {u_n} = 35351

    Từ (*) suy ra:

    \begin{matrix}  35351 - 1 = \dfrac{{7n\left( {n - 1} ight)}}{2} \hfill \\   \Leftrightarrow {n^2} - n - 10100 = 0 \hfill \\   \Leftrightarrow n = 101 \hfill \\ \end{matrix}

    Do đó 35351 là số hạng thứ 101 của dãy số

  • Câu 31: Thông hiểu

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 8u_{3} - u_{7} +8u_{5} = u_{6} + u_{8} - 8u_{4}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}

    Đáp án: 64

    Đáp án là:

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 8u_{3} - u_{7} +8u_{5} = u_{6} + u_{8} - 8u_{4}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}

    Đáp án: 64

    Giả sử cấp số nhân có công bội là q, khi đó theo bài ra ta có:

    8u_{3} - u_{7} + 8u_{5} = u_{6} + u_{8}
- 8u_{4}

    \Leftrightarrow 8\left( u_{3} + u_{4} +
u_{5} ight) = u_{6} + u_{7} + u_{8}

    \Leftrightarrow 8\left( u_{3} + u_{3}q +
u_{3}q^{2} ight) = u_{6} + u_{6}q + u_{6}q^{2}

    \Leftrightarrow 8u_{3}\left( 1 + q +
q^{2} ight) = u_{6}\left( 1 + q + q^{2} ight)

    \Leftrightarrow 8u_{3} = u_{6} do 1 + q + q^{2} > 0

    \Leftrightarrow 8u_{3} = u_{3}q^{3}
\Leftrightarrow u_{3}\left( 8 - q^{3} ight) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
u_{3} = 0 \\
q = 2 \\
\end{matrix} ight.

    Ta có: \frac{u_{8} + u_{9} +u_{10}}{u_{2} + u_{3} + u_{4}} = \frac{u_{8} + u_{8}q +u_{8}q^{2}}{u_{2} + u_{2}q + u_{2}q^{2}}= \frac{u_{8}\left( 1 + q +q^{2} ight)}{u_{2}\left( 1 + q + q^{2} ight)} =\frac{u_{2}q^{6}}{u_{2}} = q^{6} = 64

  • Câu 32: Thông hiểu

    Cho dãy số vô hạn \left( u_{n} ight) là một cấp số cộng có số hạng đầu u_{1}, công sai d. Gọi S_{n} là tổng của n số hạng đầu tiên của cấp số cộng đó.

    a) u_{5} = \frac{u_{1} +
u_{9}}{2} Đúng||Sai

    b) u_{n} = u_{n - 1} + d;(n \geq
2)Đúng||Sai

    c) S_{12} = \frac{n}{2}.\left( 2u_{1} +
11d ight)Sai||Đúng

    d) u_{n} = u_{1} + (n - 1).d;\left(
\forall n\mathbb{\in N} ight)Sai||Đúng

    Đáp án là:

    Cho dãy số vô hạn \left( u_{n} ight) là một cấp số cộng có số hạng đầu u_{1}, công sai d. Gọi S_{n} là tổng của n số hạng đầu tiên của cấp số cộng đó.

    a) u_{5} = \frac{u_{1} +
u_{9}}{2} Đúng||Sai

    b) u_{n} = u_{n - 1} + d;(n \geq
2)Đúng||Sai

    c) S_{12} = \frac{n}{2}.\left( 2u_{1} +
11d ight)Sai||Đúng

    d) u_{n} = u_{1} + (n - 1).d;\left(
\forall n\mathbb{\in N} ight)Sai||Đúng

    Ta có: u_{n} = u_{n - 1} + d;(n \geq
2) đúng

    \frac{u_{1} + u_{9}}{2} = \frac{u_{1} +
u_{1} + 8d}{2} = u_{1} + 4d = u_{5}

    Ta có:

    S_{n} = nu_{1} + \frac{n(n -
1)d}{2}

    \Rightarrow S_{12} = 6\left( 2u_{1} +
11d ight) eq \frac{n}{2}.\left( 2u_{1} + 11d ight)

    Lại có: u_{n} = u_{1} + (n - 1).d;\left(
\forall n \in \mathbb{N}^{*} ight)

  • Câu 33: Nhận biết

    Cho dãy số (u_n) xác định bởi u_{n}=\frac{n^{2}}{3^{n}} với \forall  n\geq 1. Khi đó số hạng u_{2n} của dãy (u_{n}) là 

     Ta có:

    \begin{matrix}  {u_n} = \dfrac{{{n^2}}}{{{3^n}}} \hfill \\   \Rightarrow {u_{2n}} = \dfrac{{{{\left( {2n} ight)}^2}}}{{{3^{2n}}}} = \dfrac{{4{n^2}}}{{{9^n}}} \hfill \\ \end{matrix}

  • Câu 34: Thông hiểu

    Nếu các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì m bằng bao nhiêu?

    Để các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì:

    \begin{matrix}  5 + m + 17 + m = 2\left( {7 + 2m} ight) \hfill \\   \Leftrightarrow 5 + m + 17 + m = 2\left( {7 + 2m} ight) \hfill \\   \Leftrightarrow 2m = 8 \Rightarrow m = 4 \hfill \\ \end{matrix}

    Vậy nếu các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì m = 4

  • Câu 35: Thông hiểu

    Một rạp hát có 30 dãy ghế, dãy đầu tiên có 25 ghế. Mỗi dãy sau có hơn dãy trước 3 ghế. Hỏi rạp hát có tất cả bao nhiêu ghế?

    Số ghế của mỗi dãy (bắt đầu từ dãy đầu tiên) theo thứ tự đó lập thành một cấp số cộng có 30 số hạng có công sai d= 3;u_{1} = 25

    Tổng số ghế là

    S_{30} = u_{1} + u_{2} + ... +u_{30}

    = 30u_{1} + \frac{30.29}{2}.d =2055

  • Câu 36: Nhận biết

    Tính tổng 100 số hạng đầu của cấp số cộng xác định bởi u_{1} = - 5;d = 3.

    Theo bài ra ta có:

    S_{100} = \frac{\left( 2u_{1} + 99d
ight).100}{2} = 14350

  • Câu 37: Thông hiểu

    Trong các dãy số sau, dãy số nào bị chặn trên?

    Ta có:

    \left( v_{n} ight):v_{n} = - n^{2} + 2
\leq 2.

    Vậy đây là dãy số bị chặn trên.

  • Câu 38: Thông hiểu

    Tìm x để 2;8;x;128 theo thứ tự đó lập thành một cấp số nhân.

    Cấp số nhân 2;8;x;128 theo thứ tự là u_{1};u_{2};u_{3};u_{4} ta có:

    \left\{ \begin{matrix}\dfrac{u_{2}}{u_{1}} = \dfrac{u_{3}}{u_{2}} \\\dfrac{u_{3}}{u_{2}} = \dfrac{u_{4}}{u_{3}} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}\dfrac{8}{2} = \dfrac{x}{8} \\\dfrac{128}{x} = \dfrac{x}{8} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 32 \\x^{2} = 1024 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 32 \\
\left\lbrack \begin{matrix}
x = 32 \\
x = - 32 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Rightarrow x = 32

  • Câu 39: Thông hiểu

    Thêm hai số thực dương x và y vào giữa hai số 5 và 320 để được bốn số 5;x;y;320 theo thứ tự đó lập thành cấp số nhận. Khẳng định nào sau đây là đúng?

    Ta có:

    Các số hạng 5;x;y;320 lập thành cấp số nhân

    \Rightarrow \left\{ \begin{matrix}u_{1} = 5 \\\begin{matrix}q = \dfrac{x}{5} \\y = u_{3} = u_{1}q^{2} = \dfrac{x^{2}}{5} \\320 = u_{4} = u_{1}q^{3} = \dfrac{x^{3}}{25} \\\end{matrix} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = 20 \\y = 80 \\\end{matrix} ight.

  • Câu 40: Vận dụng

    Cho ba số x, y, z theo thứ tự đó vừa lập thành cấp số cộng, vừa lập thành cấp số nhân khi và chỉ khi:

    Gọi m và n lần lượt là công sai và công bội của cấp số cộng và cấp số nhân.

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {y = x + m = xn} \\   {z = x + 2m = x{n^2}} \end{array}} ight. \hfill \\   \Rightarrow m = x{n^2} - xn \hfill \\   \Rightarrow x + x{n^2} - xn = xn \hfill \\   \Rightarrow {n^2} - 2n + 1 = 0 \hfill \\   \Leftrightarrow n = 1 \Rightarrow m = 0 \Rightarrow x = y = z \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Toán 11 Chương 2 Kết nối tri thức Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 20 lượt xem
Sắp xếp theo